Brady

GARY B LITTLE

Author of Inside the Apple Ile and App]e Pro D0S:
Advanced Features for Programmers

MAC

0000000000

.'.“
.....-

...........
........

R
5 RHBH
i }_\ GUIDE FOR PROGRAMMERS €
RIS I QS REIE SRy
g R IR N RN RCISIEIEE
0 R U RIS IS
BERR: itk el R0 MINEI0 IS Y
feRRE et g nclctiEnEnE
tEEEgEledcOinnnINEREnE
SEEELCCHE S RRT L ANdNEENNS

COVERSMDS20

MAC
ASSEMBLY
LANGUAGE

A Guide for
Programmers

=4

Other Brady Books by Gary B. Little

Inside the Apple lic
Inside the Apple Ile
Apple ProDOS: Advanced Features for Programmers

MAC ASSEMBLY
LANGUAGE

A Guide for
Programmers

Gary B. Little

A Brady Book
Published by Prentice Hall Press
New York, NY 10023

Copyright © 1986 by Gary B. Little
All rights reserved,

including the right of reproduction
in whole or in part in any form

A Brady Book

Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.
Gulf + Western Building

One Gulf + Western Plaza

New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.

Manufactured in the United States of America

12345678910

Library of Congress Cataloging-in-Publication Data

Little, Gary B., 1954—
Mac Assembly Language.

“A Brady book.”

Bibliography: p.

Includes index.

1. Macintosh (Computer)—Programming.
2. Assembler language (Computer program language)
I. Title.
QA76.8.M3L58 1986 005.265 86-25980

ISBN 0-13-541434-2

Dedication

This book is dedicated to my mother,
Barbara Hope Little

Contents

Preface

Chapter 1: INSIDE THE 68000
MICROPROCESSOR
The 68000 Instruction Set
Programmer’s Model
Address Registers
Data Registers
The Status Register

The System Byte
T—Trace Mode
S—Supervisor State
I—Interrupt Mask

The User Byte
The Extend Flag
The Negative Flag
The Zero Flag
The Overflow Flag
The Carry Flag

The Program Counter
The Addressing Modes

Implicit Mode

Immediate Mode

Data Register Direct Mode

Address Register Direct Mode

Address Register Indirect Mode

Address Register Indirect with Post-Increment
Mode

Address Register Indirect with Pre-Decrement
Mode

Address Register Indirect with Displacement
Mode

Address Register Indirect with Index Mode

vi

23

24

25

Contents

Absolute Modes
Program Counter with Displacement Mode
Program Counter with Index Mode

The Stack

Exceptions
The Reset Exception
The Internally Generated Exceptions
The Externally Generated Exceptions
The Exceptions Caused by Instructions
Unconditional Traps
Conditional Traps

Chapter 2: ASSEMBLER TOOLS
The Editor

The Assembler

Source Code Format
The Label Field
The Instruction Field
The Operand Field
The Comment Field

Assembler Directives
Symbol Definition Directives
Data Allocation Directives
Assembly Control Directives
Linker Control Directives
Printing Control Directives

The Linker
Linker Code Modules
File Type and Creator Code
Output File
Bundle Bit
Starting Location
Linker Resource Modules
End of File

The Resource Compiler
Using the RMaker Resource Compiler
Name of Output File

vii

28
29
31

32

35
37
38
39
41
41
43 .

414

46

46
48
48
49
49
50
50
51
53
56
62
63

64
65
66
67
68
68
68
69

69
72
73

viii Mac Assembly Language

Chapter 3:

Including Other Resource Files
TYPE Statements

The Executive Program
Search Paths
Equate, Trap, and Macro Files

The Pascal Connection
Stack-Based Subroutines
Register-Based Subroutines

Putting It All Together

73
74

77
78
80
82

88
89

Alternative Application Development Techniques

Creating a Separate Resource File
The Standard Program Header

Applications and the Finder
Version Data Resource
Icon List Resource
File Reference Resource
Bundle Resource

THE 68000 INSTRUCTION
SET

Data Movement Instructions
Clearing to Zero
Moving to Address Registers
Quick Moves
Moving Multiple Registers
Swapping Data Register Halves
Exchanging Registers
Linking and Unlinking the Stack
Moving Data to and from Peripherals

Program Control Instructions
Unconditional Jumps and Branches
Conditional Branches
Looping

Arithmetic Instructions
Unsigned and Signed Binary Numbers

97
o8

99
100
101
101
102

107

108
110
110
110
111
112
112
112
114

115
115
117
120

122
123

Contents

BCD Numbers

Binary Addition, Subtraction, and Negation
BCD Addition, Subtraction, and Negation
Muiltiplication and Division

Sign Extension

Comparing

Testing

Bit Manipulation Instructions
Logical Instructions

Shift and Rotate Instructions
Arithmetic Shift Instructions
Logical Shift Instructions
Rotate Instructions

System Control Instructions
Status Register Control Instructions
Trap Instructions
Processor Control Instructions

Chapter 4: MEMORY MANAGEMENT

Macintosh Memory Map
Exception Vectors
System Global Variables
Trap Dispatch Table
System Heap
Application Heap
Stack
Application Global Space
Screen Buffer
System Error Handler Buffer
Sound Buffer
Expansion RAM
ROM
Memory-Mapped I/O Space

Data Storage in the Application Heap
Pointers
Handles
Deallocation
Allocation Tips

125
125
126
128
128
129
130

131
134

139
142
142
142

144
146
147
148

176

176
178
178
178
179
179
179
179
180
181
181
181
181
181

182
184
185
188
188

X Mac Assembly Language

Data Storage on the Stack
LINK and UNLK

Data Storage Within the Application
Global Space

Data Storage Within the Application Code

Chapter 5: EVENTS AND INPUT/OUTPUT
OPERATIONS

The Event Manager
Getting an Event
Dealing With an Event

Keyboard Events
Mouse Events
Window Events
Disk-Inserted Events

Monitoring the Mouse Button
Keyboard Input

The Mouse Position and Cursors
The Cursor Instructions
Cursor Visibility

The Speaker

The System Clock
Reading the Time of Day and Date

Chapter 6: WINDOWS AND VIDEO
OUTPUT

Introduction to Windows
QuickDraw Gilobal Variables
The Parts of a Window
Coordinate Systems

Creating Windows
Destroying Windows

Reacting to Window-Related Events
Update Events

189
190

191
193

195

201
203
207
213
214
214
215

216
216

220
222
224

225

226
227

230

230
237
238
240

243
251

251
252

Contents Xxi

Activate Events 253
Button-Down Events 254
A Window Application 260
The Window Title ' 268
Displaying Text 269
Positioning the Pen 274
Setting Text Characteristics 276
Drawing Text 281
Spacing Control 283
Example Programs Using Text Handling
Instructions 283
Handy Utilities 296
Displaying Graphics 297
Setting Pen Characteristics 303
Drawing Lines 305
Drawing Shapes 306
Rectangles 307
Ovals 307
Round-Corner Rectangles 307
Arcs 308
Polygons 308
Chapter 7: MENUS 311
Initializing the Menu Manager 318
Creating a Menu 318
Building the Menus 319
MENU Resource Files 322
Destroying Menus 324
Adding Items From Resource Files 325
Determining the Number of Items in a Menu 326
Building a Menu Bar 327
Displaying the Menu Bar 329
Modifying the Menu Bar 330
Menu Title Display 330
Menu Item Display 331
Changing the Name of an Item 331

Disabling and Enabling ltem Names 332

xii Mac Assembly Language

Chapter 8:

Changing the Style of Item Names
Checking and Marking tem Names
Associating Icons with Item Names

Selecting Items From a Menu

Accessing Menu Iltems from the Keyboard

Example Program Using Menu Manager
Instructions

DIALOGS AND ALERTS

Preparing the Dialog Manager
Creating Dialog Boxes
Items and Item Lists
Item Types

Static Text

Variable Text Box

Control Items s

Icons

Pictures

Disabling Items
Changing Item Attributes
Using Dialog Boxes

Modal Dialog Boxes

Modeless Dialog Boxes
Drawing Within Dialog Boxes
Removing Dialog Boxes From the Screen
A Dialog Box Program

Creating Alert Templates

Using Alert Boxes

332
335
336
338
340

341

352

360
361
365
367
367
368
369
371
371
371
371
375
375
385
387
387
388
402

404

Contents xiii

Chapter 9: SUPPORTING DESK

ACCESSORIES 406
Opening Desk Accessories 410
Desk Accessories and Mouse Clicks 411
Desk Accessories and Editing 412
Periodic Functions of Desk Accessories 414
Initializing Toolbox Managers 414

An Application Program Supporting Desk
Accessories 415

Appendix A: The ASCII Character Set 428
Appendix B: Finding, Fixing, and Avoiding

Programming Errors 429
Appendix C: The MacsBug Debugger 433
Invoking MacsBug 433
Locating the Program 434
Disassembling the Program 435
Displaying and Setting Memory Locations 435
Displaying and Setting Registers 436
Stepping and Tracing 436
Leaving MacsBug 437
Appendix D: Utlity Programs 438
Bibliography 440

Index 443

Limits of Liability and
Disclaimer of Warranty

The author and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Registered Trademarks

Apple, the Apple logo, the Macintosh logo, MacWrite, and
MacPaint are trademarks of Apple Computer, Inc.

Macintosh is a trademark of Mcintosh Laboratory, Inc., and is
licensed to Apple Computer, Inc.

CompuServe is a trademark of CompuServe Incorporated.

Delphi is a trademark of General Videotex Corporation.

MC68000 is a trademark of Motorola Inc.

IBM PC is a trademark of International Business Machines
Corporation.

Preface

Nothing gives me more pleasure than programming the Macintosh
in 68000 assembly language. Why? Primarily because it's much
more challenging than using a high-level language like BASIC or Pas-
cal, | suppose; and | do enjoy a good challenge. But it's more than
that: It's knowing that when the program is finished it will run
faster and more efficiently than its high-level language counterpart.
It's knowing | can exercise complete control over the microproces-
sor and that the program isn't doing anything “behind my back”
because | control its every move.

Assembly language programming is not for everyone, of course.
It is far too demanding for the less exacting programmers among
us. If you don't want to concern yourself with such finicky, but
important, details as avoiding register conflicts, selecting address-
ing modes, or allocating safe data areas, then | suggest you stick to
a language like BASIC, which handles these details for you.

If, on the other hand, you're intrigued by the possibility of writing
blindingly fast programs and learning about the internal structure of
the Macintosh and the Macintosh Plus along the way, by all means
give assembly language a try. It may take a while to fully under-
stand the language, but the rewards are worth the effort.

The purpose of this book is to show you how to develop assembly
language programs on the Macintosh using Apple’'s Macintosh
68000 Development System (MDS). The discussion relates to both
the original MDS and version 2.0, which was released in the sum-
mer of 1986. If you're using another assembiler, you will still find the
book useful, although the specific examples will probably have to be
adapted to suit the syntactical requirements of your assembler.

I've assumed throughout the book that you are no stranger to
programming or computerese, so I've avoided lengthy explanations
of such fundamental concepts as byte, bit, hexadecimal, and so on.
I have, of course, emphasized those points that might be confusing
to those who have programming experience, but not necessarily in
assembly language. Knowledge of any other assembly language will
be helpful, however.

This book is divided into two parts. The first part—Chapters 1, 2,
and 3—primarily contains reference material describing 68000
assembly language in general and the programming tools you must
master to create usable programs. The second part—Chapters 4

xvii

Xxviii Mac Assembly Language

through 9—shows specific examples of how to create assembly lan-
guage programs that implement the standard Macintosh user
interface.

In Chapter 1 | describe the 68000 microprocessor itself. This
includes a preliminary look at the instructions it supports and an
analysis of its internal registers. Also described is the 68000 stack
and the addressing modes that instructions use to locate data.

Chapter 2 is a detailed description of how to use the programming
tools that come with MDS: the editor, assembler, linker, resource
compiler, and executive program. | also include step-by-step
instructions for creating a typical application program.

Chapter 3 takes a close look at each of the 68000's instructions,
highlighting the important characteristics of each. This chapter
includes several reference tables indicating the permitted address-
ing modes for each instruction and showing how each instruction
affects the 68000’'s internal condition code flags. You will refer to
these tables quite often when you're developing assembly language
programs.

Part 2 shows how to develop 68000 programs in the unique Mac-
intosh environment. | analyze most of the important subroutines
contained in the Macintosh ROM and show how to use them from
assembly language. By taking advantage of these subroutines, you
can implement the standard Macintosh user-interface in your own
programs with a minimum of effort. The specification for this inter-
face is found in Inside Macintosh, Apple’'s programming guide to the
Macintosh, a book that every programmer should obtain and
review.

Chapter 4 shows how memory is used on the Macintosh and
describes a group of ROM subroutines, called the Memory Man-
ager, that applications can use to allocate and deallocate memory
space. Chapter 5 covers the Event Manager, the portion of the
ROM that deals with input/output activity like key presses and
mouse clicks.

Chapters 6, 7, and 8 deal with three of the most important groups
of ROM subroutines: the Window Manager, the Menu Manager, and
the Dialog Manager. After mastering them, you should have no
trouble handling multiple windows on the screen, implementing pull-
down menus, and using dialog and alert boxes.

I wrap things up in Chapter 9 by showing how to write an assem-
bly language program in such a way that it will work properly with

Preface Xxix

desk accessories. This is an important consideration for all Macin-
tosh programmers.

By the end of the book | hope you will have learned enough to
develop serious assembly language applications on the Macintosh.
Keep in mind, however, that | have only scratched the surface of
the Macintosh ROM and there are many more subroutines in it that
are available to the assembly language programmer. The definitive
description of these subroutines is in Inside Macintosh. I've included
a list of other useful books and periodicals for Macintosh software
developers in the Bibliography.

You should also consider becoming a member of the new Apple
Programmer’s and Developer's Association (APDA), since it is a
convenient source of official Apple technical material. Contact
APDA at 290 SW 43rd Street, Renton, WA 98055, (206) 251—-6548.

Gary B. Little
Vancouver, British Columbia, Canada

Chapter 1

Inside the 68000
Microprocessor

The Motorola MC68000 microprocessor (the 68000 to its
friends) is the brain that controls the Apple Macintosh. Its pri-
mary function, of course, is to run all those programs that
make the Macintosh such a delightful computer to work with. It
is also responsible for controlling the various input/output (1/0)
devices attached to the Macintosh: the two serial ports (usu-
ally used to connect a printer and a modem), the external disk
drive port, the mouse, the keyboard, and, on the Macintosh
Plus, the SCSI (Small Computer Standard Interface) port.

In this chapter I'l examine those aspects of the 68000
microprocessor important to programmers. This will include
an overview of the instructions the 68000 supports (more
detailed descriptions appear in Chapter 3), the internal regis-
ters it uses to store addresses and data, and the methods it
uses to locate data to work with. | definitely won’t be dis-
cussing anything that requires a degree in electrical engineer-
ing. If you're interested in such topics as hardware interfacing
or timing diagrams, you won’'t find them here. Instead, refer
to Motorola’s specification booklet for the MC68000
microprocessor.

First, a few general words about the operational character-
istics of the 68000. The 68000 is usually referred to as a
16/32-bit microprocessor by computer designers. This is
because, although it has a 16-bit data bus, (it grabs data from
memory 16 bits—one word, two bytes—at a time), it has
several 32-bit internal registers in which to store data.
Despite this apparent size mismatch, you can tell the 68000
to fill an entire register using just one instruction; when you

2 Mac Assembly Language

do this, the 68000 automatically fetches two consecutive
words of data. A true 32-bit version of the 68000, called the
68020, sports a 32-bit data bus, so it can fill a register more
quickly, in just one fetch. Macintosh-like computers using the
faster 68020 are rumored to be on the drawing board at
Apple Computer, Inc.

The 68000 uses a 24-bit address bus, which means it can
directly access up to 16 megabytes (actually 16,777,216
bytes) of memory! You can calculate this number for yourself
by realizing that each of the 24 bits placed on the address bus
can be either on or off; that means there are 224 (16,777,216)
unique address combinations that can be formed. Addresses
are usually referred to by six-digit hexadecimal numbers
ranging from $000000 to $FFFFFF (the leading dollar sign
indicates the number is hexadecimal, not decimal).

Compare the 68000 with the 6502 microprocessor used by
Apple’s first product, the Apple ll. The 6502 is limited to a 64K
address space (1K = 1,024 bytes) because its address bus is
only 16 bits wide (and 2'¢ = 65,536). Additional 64K banks of
memory can be added to a 6502 system, but you can use only
one of them at a time. To select a bank, or go from one bank
to another, you must use complex bank-switching techniques
to ensure that no two banks become active at the same
time. This is not a very straightforward way of accessing
memory and makes software development very difficult.

Most of the 68000’s address space is unused on current
versions of the Macintosh, but future releases will probably
use much more. We'll look at how the memory space is used
in a Macintosh in Chapter 4.

The 68000 Instruction Set

As shown in Table 1-1, there are 55 basic types of instruc-
tions the 68000 understands. Instructions are commands to
the 68000, telling it what to do: Move data from place to
place, fill an internal register with a number, call a subroutine,
add two numbers together, and so on. A few of the 68000

Inside the 68000 Microprocessor 3

instructions are similar in nature to commands in a higher-
level language, such as BASIC: JSR (GOSUB—-call a subrou-
tine), RTS (RETURN—return from a subroutine), and JMP
(GOTO—jump to a specific location) are the most obvious.
Most, however, involve direct manipulation of internal regis-
ters and status bits, operations that are usually not easily
done from higher-level languages like BASIC and Pascal.

Table 1-1. The 68000 Instruction Set.

Instruction Description

|

ABCD Add two BCD numbers with extend bit (X)

ADD Add two binary numbers

AND Logical “and”

ASL Arithmetic shift left

ASR Arithmetic shift right

Bcc Branch if condition (cc) is true

BCHG Test a bit and change it

BCLR Test a bit and clear it

BRA Branch relative always

BSET Test a bit and set it

BSR Branch to a subroutine

BTST Test a bit and set flags

CHK Check a data register against bounds

CLR Clear to zero

CMP Compare

DBcc Decrement, Test, Branch until condition is true

DIVS Signed division

DIVU Unsigned division

EOR Logical “exclusive or”

EXG Exchange two registers

EXT Sign extension

ILLEGAL Illegal instruction exception

JMP Jump

JSR Jump to a subroutine

LEA Load effective address

LINK Allocate a stack frame

LSL Logical shift left

LSR Logical shift right

MOVE Move

MULS Signed multiplication

4 Mac Assembly Language

Table 1-1. continued

Instruction Description
|
MULU Unsigned multiplication
NBCD Negate a BCD number
NEG Negate a binary number
NOP No operation
NOT One’s complement
OR Logical “or”
PEA Push effective address
RESET Reset external devices
ROL Rotate bits left
ROR Rotate bits right
ROXL Rotate bits through extend bit (X) left
ROXR Rotate bits through extend bit (X) right
RTE Return from exception
RTR Return and restore status
RTS Return from subroutine
SBCD Subtract two BCD numbers
Scc Set bits conditionally
STOP Stop execution until interrupt
sSuB Subtract two binary numbers
SWAP Exchange halves of data register
TAS Test and set a bit
TRAP Trap exception
TRAPV Trap if overflow flag (V) is set
TST Test
UNLK Deallocate a stack frame

The instructions in Table 1-1 are the ones you will use to
write source code for a 68000 assembly language program.
Since the 68000 processor (like all processors) understands
only binary numbers, you must convert any assembly lan-
guage program you write to this computer-readable binary
form before you can run it. One way to do this is to use the
assembler and linker that come with Apple’'s Macintosh
68000 Development System (MDS), which we’ll be using in
this book. The executable code generated by MDS (or any
other assembler/linker) is called object code or machine code.

Inside the 68000 Microprocessor 5

You'll rarely need to know the binary equivalent of a 68000
instruction unless you're hand-patching machine code during
a debugging operation. For instance, you may sometimes
want to remove a portion of code before rerunning a program
you're debugging. You can do this by storing words contain-
ing $4E71, the binary equivalent of the “do-nothing” NOP (No
OPeration) instruction, over top of the code.

Even though you will probably never have to concern your-
self with the binary form of an instruction or how an instruc-
tion is stored in memory, it's still interesting to know
something about what's involved.

First of all, an instruction is always an even number of
bytes in length. Since two bytes are referred to as a word,
this means an instruction is an integral number of words in
length. The shortest instruction is one word long and the
longest is five words.

The first word of an instruction is called the operation
word. (Refer to Figure 1-1.) It tells the 68000 the type of
instruction involved in the operation (MOVE, MULU, LEA, and
so on) and some, perhaps all, information relating to the oper-
ands of the instruction. The operands are the portions of the
instruction that tell the 68000 where to find the data it is to
manipulate, and where to store the result. Most instructions
have at least one operand and many have two, one called a
source operand and the other called a destination operand.

If there isn't enough room in the operation word to store all
the information needed to describe the operands fully, the
next one to four words in memory are used as extension
words to complete the operand definition. If there are two
operands, the extension word or words for the source oper-
and comes first. I'll discuss this in greater detail later on when
we look at the various addressing modes the 68000 operands
rely on to access data.

It is instructive at this point to consider the general form of
a two-operand instruction, such as the ADD instruction:

ADD source_operand,dest_operand

6 Mac Assembly Language

As you can see, the two operands are entered right after
the instruction mnemonic and are separated by a comma. For
the ADD instruction, the operands tell the 68000 how to
locate the two numbers to be added together; the result is
stored at the location described by the destination operand.

- We'll be looking at the precise form of the operands later on in

this chapter.

15 0 «———(bit numbers)
Operation Yord low memory
extension word(s) for the
— source operand. May be —
0,1,o0r 2 words.
extension word(s) for the high memory
— destination operand. May be —

0,1, or 2 words.

Figure 1-1. The Format of a 68000 Instruction.

By the way, you must be careful to specify the operands in
a two-operand instruction in the correct order: The source
operand always comes first. Assemblers for some other
microprocessors, notably 8088 assemblers, insist that oper-
ands be specified in the opposite order!

Programmer’s Model

One measure of the power of a microprocessor is the
number of internal registers it uses to manipulate and trans-
fer data. This is because operations involving data stored in
registers are handled much faster than the corresponding
operations with data stored somewhere in the random-

Inside the 68000 Microprocessor 7

access memory (RAM) space available to the 68000. With
plenty of registers at your disposal, it's easy to crank up the
speed of a program by using as many of them as possible for
storage of data or intermediate results before storing the

final result in memory.

As shown in Figure 1-2, the 68000 supports several regis-
ters: eight 32-bit data registers, nine 32-bit address registers,
one 32-bit program counter register, and one 16-bit status
register. Keep in mind that these registers are not RAM or
read-only memory (ROM) locations; they form part of the
internal structure of the 68000 microprocessor itself.

3 15 7

DO

D1

D2

paTa D3

REGISTERS P4

DS

D6

D7

3 15

A0

Al

A2

ADDRESS 3

REGISTERS

AS

A6

STACK A7

POINTERS A7’
PROGRAM

counTer PCl

15 7

Figure 1-2. The 68000 Register Set.

0 «— (bit number)

«— (bit number)

Supervisor SP
User SP

8 Mac Assembly Language

The bits in a register are numbered from O to 31 (or 15 in
the case of the status register), where bit O is the least-sig-
nificant bit and bit 31 is the most-significant bit.

A bit is said to be more significant than another if its binary
weight is higher. The binary weight is the numeric value
associated with the bit, that is, its contribution to the mag-
nitude of the number. For bit number n, the binary weight
is 2". When numbers are written down, they are written
with the most-significant digit on the left and the least-sig-
nificant on the right.

The right-to-left numbering scheme used to identify bits in a
register is the same as the one used to identify bits in a byte
(eight bits), a word (two consecutive bytes; 16 bits), and a
long word (four consecutive bytes; 32 bits).

Now let’s look at each of the 68000’s 19 registers.

Address Registers

Although the 68000 has nine address registers, only eight
are active at any given time. The conventional names for
these eight address registers are AO, A1, A2, and so on, up to
A7. The ninth address register is an alternate A7 register.

Except for the A7 register, the address registers can be
used interchangeably, subject only to restrictions on their use
dictated by the Macintosh’s operating system. (The operat-
ing system is made up of a program called System and the
subroutines in ROM it uses.) The A7 register is special
because the 68000 uses it as a pointer to an important data
structure called a stack. As you will see below, certain 68000
instructions, and even your own programs, use the stack for
temporary data storage. Not surprisingly, another name for
the A7 register is SP (which stands for stack pointer).

You can use the 68000 in one of two operating modes, user
or supervisor. You select the appropriate mode by adjusting

Inside the 68000 Microprocessor 9

the supervisor state bit in the 68000 status register. Only one
of the A7 registers (the supervisor stack pointer) is normally
used on the Macintosh because you're always in the supervi-
sor mode. If you enter the user mode, the user stack pointer
(the alternate A7 register) becomes active. This means it is
possible to set up two independent stacks in memory, one for
the operating system and one for the application. Another dif-
ference between the two operating modes is that in the user
mode there are certain instructions you are not permitted to
execute; if you're in supervisor mode, you can execute any
instruction you want. The Macintosh always operates in
supervisor mode, so you should not worry about what
instructions are valid.

An address register may hold any data you care to store in
it. But, as the name suggests, it is usually used to hold the
address of something, perhaps a data structure or variable
used by your program. You can also use it as an index into a
data structure when either of the 68000's two indexed
addressing modes are used (more on these addressing
modes later).

You can store either a word (two bytes) or a long word
(four bytes) in an address register, but not just one byte. You
have to be careful if you store a word in an address register,
however. The word, as you might expect, occupies the lower
half (bits O to 15) of the register. What you might not expect
is that the upper 16 bits of the register are also affected
because of automatic sign extension. The sign bit of a word is
bit 15, the most significant bit. If it is a one, the number is
considered to be negative; if it is zero, it's positive. When you
store a word in an address register, the contents of bit 15 are
copied (extended) to bits 16 through 31.

This means that a word-sized address can only describe an
address in the first 32K of the 68000’s 16-megabyte address
space, or the last 32K. This is because bit 15 of the address
words from $0000 to $7FFF (the first 32K addresses) is zero,
so the top 16 bits of the address register will also be zero.
From $8000 to $FFFF, however, bit 15 is one, and sign exten-
sion means that the address register will contain $FFFF8000

10 Mac Assembly Language

to $FFFFFFFF. Since only the first 24 bits of an address are
significant to the 68000, this corresponds to an address
range from $FF8000 to $FFFFFF, the 32K area of memory
just below the 16-megabyte upper limit of the address space.

You should avoid moving word quantities into address regis-
ters on the Macintosh unless you are absolutely sure the
address is less than $8000. Even if you are sure, it's probably
best to use long words instead, to ensure your program will be
compatible with future versions of the Macintosh, where data
areas may be relocated. The only “penalty” is that the instruc-
tion is slightly longer and takes a little longer to execute.

Data Registers

There are eight data registers and their names are DO, D1,
D2, and so on, up to D7. They are logically equivalent, so you
can use any one of them in exactly the same way you would
use any other, subject, again, to any restrictions of the oper-
ating system.

Although the data registers are the same size as the
address registers (32 bits), the 68000 behaves differently
when you store numbers in them. First of all, you can store
long words, words, or bytes in them (not just long words or
words). Bytes occupy bits O to 7, words occupy bits O to 15,
and long words occupy the entire register, bits O to 31. Sec-
ond, no sign extension occurs when you store a word (or a
byte) in a data register. Data registers are usually used for
the storage of numeric data or indexes into data structures.

The Status Register

The status register (called the SR) is a 16-bit register that
reflects the operational mode of the 68000. It is actually
made up of two parts, the system byte and the user byte (or
condition code register), as shown in Figure 1-3.

Inside the 68000 Microprocessor 11

15 13 109 8 4 3 2 1
T s A x[n{zlv

0
[
S
L Carry Flag

Overflow Flag

2
Z

Trace Mode

Supervisor Mode
Zero Flag

Interrupt Mask

Negative Flag

ExtendFlag

L g A v J
System Byte User Byte
(Condition Code Register)

Figure 1-3. The 68000 Status Register.

The System Byte

The bits in the system byte reflect the fundamental operat-
ing state of the 68000: whether it's in supervisor or user
mode, what hardware interrupts are enabled, and whether
instruction tracing is enabled. The Macintosh operating sys-
tem initializes the system byte when you first turn on the
Macintosh. Few applications need to change this initial set-
ting, so you can usually ignore it altogether.

In any event, let's look at the meaning of the five bits in the
system byte the 68000 uses (the other three bits have no
meaning). The bit numbers given are relative to the entire
16-bit status register.

T—Trace Mode

If the trace mode bit (bit 15) is zero, the 68000 executes a
program in the normal way. If it is one, however, the 68000
interrupts the program after the execution of each instruc-
tion and passes control to a program whose starting address
is stored at location $000024. (This is exception vector #9;

12 Mac Assembly Language

more on exceptions at the end of this chapter.) You are
responsible for installing this program before activating the
trace mode; if you don’t, the Mac will die a horrible death as it
tries to execute a program that doesn’t exist.

The only programs you're likely to come across that fiddle
with the trace mode bit are programming utilities called
debuggers. The most well-known is the MacsBug program
that comes with MDS (see Appendix C). When you activate
its trace feature, the contents of all the registers are dis-
played every time an instruction in the main program is exe-
cuted. This makes it easy to check that a program is
performing as it should.

S—Supervisor State

The supervisor state bit (bit 13) is initially set to one when
you start up the Macintosh, meaning that the 68000 is oper-
ating in supervisor mode. In this mode, you can execute any
68000 instruction and the supervisor stack pointer is active.

If the S bit is off, you're in user mode and the user stack
pointer (the alternate A7 register) is active. In this mode
there are several 68000 instructions you can't use (all noted
in Chapter 3), most of which involve direct modification of the
system byte in the status register. If you try to use them
anyway, you'll generate a privilege violation exception.

I—Interrupt Mask

The interrupt mask (bits 10, 9, 8) lets you enable or disable
hardware interrupt processing. As you will see later on, inter-
rupts are events that peripherals use to signal they are ready
to receive or send data or that some special condition has
taken place that needs immediate attention. Interrupts are
usually enabled so the 68000 can execute its programs with-
out having to periodically check (or poll) for /O operations.
Programs that use polling techniques for 1/O operations are

Inside the 68000 Microprocessor 13

understandably less efficient than those using interrupt
techniques.

Each hardware interrupt is associated with a particular pri-
ority level fixed by the hardware design. Any interrupt having
a level at or below the value of the interrupt mask is ignored
by the 68000. There is an exception: If the mask value is 7
(binary 111), a level 7 interrupt is permitted.

You should never change the value of the interrupt mask
unless you really know what you’re doing. Applications
requiring you to change it are rare, indeed.

The User Byte

The user byte is of much more interest to a programmer. It
contains five one-bit condition code flags, the settings of
which are referred to, or affected by, most 68000 instruc-
tions. For example, the 68000 supports a group of branch
conditionally instructions (like BCC, BCS, and BVC) you can
use to change the order of execution of a program based on
the state of a condition code flag.

The user byte is also called the Condition Code Register, or
CCR for short.

The Extend Flag

The extend flag (X) is primarily used to indicate the carry or
borrow status in an addition or subtraction operation. If it is
set to one, a carry out of the most significant bit of the oper-
and occurred during an addition operation, or a borrow
occurred during a subtraction operation.

The existence of the extend flag makes it possible to carry
out multiword mathematical operations. For example, if you
want to add two numbers that each occupy three words in
memory, you would first add the lowest-order words using
the standard ADD instruction, and then use the ADDX (add
with extend) instruction for the middle- and high-order words
so that any carry would be included in the total.

14 Mac Assembly Language

The extend flag also participates in many of the 68000’s bit
shifting instructions that we'll look at in Chapter 3.

The Negative Flag

The negative flag (N) indicates the sign of the result of the
last mathematical operation or of the data last moved into a
data register.

The negative flag is set to one if the sign bit (the most-sig-
nificant bit) of the result or data is one; otherwise, it will be
zero. The sign bit is bit 7 for a byte, bit 15 for a word, and bit
31 for a long word.

The Zero Flag

The zero flag (Z) indicates whether the result of the last
mathematical operation was zero. If it was, the zero flag is
set to one; if not, the zero flag is cleared to zero.

You should note that the zero flag is not just adjusted after
mathematical operations. Any time you move a zero value
into a data register, the zero flag is set to one. If some other
value is involved, the zero flag is cleared to zero.

The Overflow Flag

The overflow flag (V) is only important if you're working
with sighed numbers. Signed numbers are those where the
most significant bit of the operand (bit 7 for a byte, bit 15 for
a word, or bit 31 for a long word) is used to hold the sign of
the number (one means negative, zero means positive). The
rest of the bits hold the magnitude of the number in a two’s
complement form. The two’'s complement form of a number is
formed by taking the binary form of the absolute value of the
number, complementing all the bits (changing ones to zeros
and vice versa), and then adding one. This form is used to
facilitate internal addition and subtraction operations.

Inside the 68000 Microprocessor 15

If the result of a mathematical operation on two signed
numbers is outside the range of numbers that can be repre-
sented in this format, the overflow flag is set to one; if all
goes well and the number is in range, it is cleared to zero. You
can use the branch conditionally instructions BVS (branch on
overflow set) and BVC (branch on overflow clear) to pass
program control anywhere you want in the program when an
overflow condition occurs. Another instruction that checks
the V flag is TRAPV; this instruction causes a 68000 excep-
tion if the V flag is one.

The overflow flag is also set if the divisor in a DIVU or DIVS
instruction is one or if the state of the sign bit changes as the
result of one of the 68000's bit shifting instructions.

The Carry Flag

The carry flag (C) is very similar to the extend flag. In fact,
every instruction that sets or clears the extend flag also sets
or clears the carry flag. The converse is not true, however,
as onl\'/ the carry flag is affected by certain operations. For
example, most data movement operations clear the carry
flag only, and only the carry bit participates in the “rotate
left” (ROL) and “rotate right” (RORY) bit shifting operations.

The Program Counter

Another important register in the 68000 is the program
counter. It always holds the address of the position in a pro-
gram where the 68000 is currently operating. Without the
program counter, the 68000 would have no idea of what
instruction to execute next.

Although the program counter is a 32-bit register, only the
first 24 bits are significant, since the 68000 only has a 24-bit
address bus. The program counter can hold any address in
the 68000’s 16-megabyte range.

16 Mac Assembly Language

Instructions are usually processed in the order in which
they appear in a program. After an instruction has been dealt
with, the program counter will be pointing to the next in-line
instruction. There are ways to skip around a program, of
course, such as by using the branch conditionally instructions
(Bcc) and the jump (JMP) and jump to subroutine (JSR)
instructions. When the program flow changes with a branch
or a jump, the program counter is automatically set equal to
the target address specified in the instruction.

The program counter is also affected by the 68000 return
from subroutine instructions RTS, RTR, and RTE. In each
case, an address is removed from the 68000 stack and
placed in the program counter so that processing can con-
tinue with the instruction following the one that called the
subroutine and placed the address on the stack in the first
place.

The Addressing Modes

You've already seen that a complete 68000 instruction is
made up of an instruction mnemonic and up to two operands
that tell the 68000 where to find data to work with and
where to store the results. A location to be dealt with by an
instruction is called an effective address and could be a mem-
ory location or an internal register specifically referred to in
the instruction, or a memory location calculated by adding
together as many as three different quantities. The availabil-
ity of so many different ways to access data permits you to
write very efficient and powerful programs.

You tell the 68000 how to calculate an effective address for
an instruction by specifying an addressing mode for each
operand the instruction uses. Actually, as you will see, for
some instructions you don't have to specify an addressing
mode at all if the mode is implicit.

There are 12 fundamental addressing modes you can use
with the 68000. Their MDS assembler formats are summarized
in Table 1-2, as are the effective address calculations for each

Inside the 68000 Microprocessor 17

mode. Most other assemblers use these same formats.

Be aware that not all instructions can use each addressing
mode. To determine which are permitted, you'll have to con-
sult the detailed description for the instruction in question. In
Chapter 3, I'll summarize the addressing modes each instruc-
tion can use.

Table 1-2. The 68000 Addressing Modes.

Name of
Addressing Effective Address Assembler
Mode Calculation Syntax
|
Data Register Direct EA = Dn Dn
Address Register Direct EA = An An
Register Indirect EA = (An) (An)
Register Indirect with Post-increment EA = (An), An = (An)+
An+N
Register Indirect with Pre-decrement An = An—N, EA = —(An)
(An)
Register Indirect with Displacement EA = (An)+di16 d16(An)
Register Indirect with Index EA = (An)+(Rn)+d8 d8(An,Rn)
Absolute short: EA = (next word) XXXX
long: EA = (next long HKXXXKXXXXK
word)
Program Counter with Displacement EA = (PC)+d16 d16(PC)
Program Counter Relative with Index EA = (PC)+(Rn)+d8 d8(PC,Rn)
Immediate standard: EA = next word F#xxxx
or
EA = next long word #xxxxxxxx
quick: EA = operation word #xx
Implicit EA = SR, SP, PC, USP
Abbreviations: EA = effective address
Dn = data register (n=0 to 7)
An = address register (n=0 to 7)
d16 = 16-bit signed displacement
d8 = 8-bit signed displacement
Rn = address or data register used as index
(n=0to 7)
PC = program counter register
SR = status register

18 Mac Assembly Language

Table 1-2. continued

Abbreviations SP = stack pointer (same as A7)
USP = user stack pointer
N = 1 for bytes, 2 for words, 4 for long words
() = contents of

xx refers to a number from 1 to 8 (ADDQ, SUBQ)
or to a number from —128 to +127 (MOVEQ).

xxxx and xxxxxxxx refer to numbers of size word
and long word, respectively.

Let's look at each of the addressing modes.

Implicit Mode

There are a few 68000 instructions that don't require you
to specify all operands because the “missing” operands are
implicit to the instruction. The implicit operand usually
involves the program counter, the user or supervisor stack
pointer, or the status register. For example, when you use
the JMP (ump) or Bcc (branch conditionally) instructions, the
only operand you have to specify represents the target
address of the jump or branch. You don’'t have to indicate
that this address is to be transferred into the program
counter because it is implicit. Similarly, the JSR (ump to sub-
routine) and BSR (branch to subroutine) instructions always
save a return address on the stack, so there’'s no need to
spell it out.

Instructions that act on the 68000 status register and the
condition code register also use the implicit addressing mode,
even though the MDS assembler actually requires you to
explicitly refer to SR or CCR in the operand field of the instruc-
tion. These are MOVE to/from CCR and MOVE to/from SR, as
well as certain logical instructions used to modify bits in the
status register (ANDI to SR, EORI to SR, and ORI to SR).

Inside the 68000 Microprocessor 19

Immediate Mode

An immediate operand is a numeric constant (a specific
number) that is stored in the one to five words each 68000
instructions occupies. Only a source operand can use the
immediate addressing mode.

Byte and word operations require one extension word to
hold the number; long word operations require two extension
words. As we saw earlier in this chapter, these extension
words immediately follow the operation word for the
instruction.

When you use the immediate addressing mode to refer to a
constant, the 68000 simply reads it directly from the exten-
sion word or words. That means the effective address is sim-
ply the address of the instruction’s extension word. The
assembler format for the immediate addressing mode is:

#number
or
#symbol

where number represents a number within the range allowed
by the operand, and symbol represents a symbolic name for a
numeric constant. A number can be decimal or hexadecimal;
hexadecimal numbers are preceded by a $ sign. Symbols are
defined in source code using the EQU or SET assembler direc-
tives (see Chapter 2).

The # symbol preceding the number or symbol is very
important; if you don’t include it, the instruction is assembled
as if the operand were an address, rather than a constant, so
the program won't work as expected.

Here are examples of some immediate operands:

#45 decimal 45
#%$2D hexadecimal 2D (decimal 45)
#mySize “mySize” is the EQU symbol for a number

20 Mac Assembly Language

There is a special “quick” form of the immediate addressing
mode you can use if the number is small enough to fit within
the operation word itself. For example, if you're adding or
subtracting an immediate quantity from one to eight, you can
use the ADDQ and SUBQ instructions. To move an immediate
quantity from — 128 to 127 to a destination, you can use the
MOVERQ instruction.

The MDS assembler automatically optimizes your code by
converting any ADD, SUB, and MOVE instructions to the
quick equivalent if the immediate operand is in the range per-
mitted by the quick form.

Data Register Direct Mode

When you use this addressing mode the operand is simply
one of the eight data registers, DO-D7. To select this mode
when you write a program, refer to the data register as Dn
(n = 0 to 7). Here are some simple examples of how to use
the data register direct addressing mode:

MOVE #4,D0 ;put a 4 into DO.W
CLR.L D4 ;clear D4.L to zero

(Notice that the semicolon indicates the beginning of a com-
ment in an assembler source statement.)

When you use the data register direct addressing mode,
you can deal with operands that are three different sizes:
byte, word, and long word. To indicate the size of the oper-
and, attach one of the following suffixes to the standard
instruction mnemonic:

.B (byte)
W (word)
.L. (long word)

When you do this, only the first eight bits (byte), 16 bits
(word), or 32 bits (long word) of the data register are used
by the instruction.

Inside the 68000 Microprocessor 21

If you don't specify a suffix, the MDS assembler assumes
youre dealing with an operand size of word. The MOVE
example we just looked at, for instance, only acts on the
lower 16 bits of the data register.

Address Register Direct Mode

The operand here is one of the eight address registers,
AO—A7. The assembler format parallels that used for the data
register direct mode: You refer to the address register by An
(n = 0 to 7). (You can also refer to A7 as SP, if you wish.)
You cannot, however, move byte quantities into an address
register and, as explained earlier in this chapter, word quanti-
ties are sign-extended across the upper part of the register.

Here’'s an example of how to load the address of the data
area whose label is “Record” into the address register AO:

LEA Record,AD ;Move the address of "Record" into AOD

(A label is a symbolic name associated with an instruction or
a data area within a program.)

Although you don't have to store addresses in an address
register, you will often use them for that purpose so you can
take advantage of the 68000’s powerful address register indi-
rect addressing modes. These modes are typically used after
first storing the base address of a data structure in an
address register. They cannot be used with data registers.

Address Register Indirect Mode

The operand here is one of the eight address registers, but
the effective address that is acted on is the address stored in
the register, not the register itself (see Figure 1-4). To indi-
cate this addressing mode, enclose the name of the address
register in parentheses. The assembler format for this
addressing mode is:

(Rn)

22 Mac Assembly Language

Here are some examples:

MOVE.L #4,(A3) ;Store 4 (long word form) at the address contained in A3
MOVE DO, (A2) ;Store what's in DO (word) at the address contained in A2

You should be careful not to confuse this indirect mode with
the direct mode, where data is read from or written to the
register itself. Whenever you see the parentheses, think
“contents of".

high memory

(An)

effective address

An —

The effective address is the address stored
in the An register.

low memory

Figure 1-4. Address Register Indirect Addressing Mode.

Also be careful that the address register does not contain
an odd address when the operand size is a word or long
word. When you try to execute such an instruction, the
68000 generates an address error exception and you'll see
the infamous Macintosh bomb box. I'll discuss exceptions in
detail later in this chapter.

Inside the 68000 Microprocessor 23

Address Register Indirect with Post-Increment
Mode

This addressing mode is quite similar to the address regis-
ter indirect mode, except after the effective address is used,
the number in the address register is incremented by one (for
a byte operation), two (for a word operation), or four (for a
long word operation). (See Figure 1-5.) The addressing mode
is designated by placing parentheses around the name of the
address register, followed by a plus sign to indicate the post-
increment operation:

(Rn)+

The post-increment addressing mode is very useful when
you're moving ranges of memory from one place to another
because you don't have to follow each move with extra
instructions to increment the base pointers for the two
blocks. For example, consider the instruction:

MOVE (AD)+, (AD)+

If you execute this 10 times in a row, the 10 words beginning
at the initial address stored in AO will be moved to a block
beginning at the initial address stored in A1. After each word
is moved, the address registers are incremented by two (it's
a word operation) so that you're ready to move the next
word.

Post-increment addressing is also handy for removing (pop-
ping) data that is passed on the 68000's stack. To do this,
you would execute an instruction such as:

MOVE (SP)+,D0 ;Take a word off the stack

As you'll see later on, the stack is a data structure that
grows down in memory: When you add data to it, the stack
pointer is decreased, and when you remove data from it, the
stack pointer is increased.

24 Mac Assembly Language

high memory

(An)+

EA+N

effective address

Anl '

+N

An | e

low memory

N (byte operation)

=1
= 2 (word operation)
= 4 (long word operation)

Figure 1-5. The Address Register Indirect With Post-Increment
Addressing Mode.

Address Register Indirect with Pre-Decrement Mode

This addressing mode is primarly used to add items to the
stack. It is designated by placing a minus sign before the
name of an address register enclosed in parentheses:

-(An)

The effective address is calculated by first decrementing
the contents of the address register by one (for a byte opera-
tion), by two (for a word operation), or by four (for a long
word operation). The address acted on is the new address in
the address register. (See Figure 1-6.)

For example, to place a long word operand on the stack,
use an instruction like

MOVE.L DO,-(SP)

Inside the 68000 Microprocessor 25

high memory

-(An)

EA-N

effective address

an [—

an | | —

low memory
1 (byte operation)

2 (word operation)

4 (long word operation)

Figure 1-6. Address Register Indirect With Pre-Decrement Addressing Mode.

When this instruction is executed, the stack pointer is first
decremented by four and then the contents of DO are placed
at the address stored in the stack pointer register.

Address Register Indirect with Displacement Mode

The effective address here is calculated by adding a 16-bit
sign-extended word to the address stored in an address reg-

ister. (See Figure 1-7.) The assembler format for this
addressing mode is:

d16(Rn)
or

label(An)

26 Mac Assembly Language

where di6 represents a number from —32768 to 32767 and
label represents the EQU symbol for such a number, or the
label for an instruction or data area. If you use a number or
label, do not precede it with #, as you would if using the
immediate addressing mode.

This addressing mode is typically used when you want to
access a specific item in a data structure whose base
address is stored in the address register. For example, if
there’'s a data structure beginning at location “Addresses” in
your program, and you want to read the third word (which
occupies bytes 4 and 5; numbering begins with 0) in the struc-
ture, you would use the instruction:

LEA Addresses,AD ;Load base address into AD
MOVE 4(A0),DO ;Third word starts at offset 4

You'll be using this addressing mode quite often on the
Macintosh because any variables you define within the pro-
gram (using the DS assembler directive) must always be ref-

high memory

d16(An)

l_. effective address

+d16

l

An |——

low memory

Figure 1-7. Address Register Indirect With Displacement Addressing Mode.

Inside the 68000 Microprocessor 27

erenced as displacements from the address stored in the A5
register. So, for example, if you call your variable
“MyRecord”, its base address is given by a “MyRecord(A5)”
operand and the address of the third word in the data struc-
ture is “MyRecord+4(A5)”. The assembler calculates the
(AB) offset by adding MyRecord and 4 at assembly time.

Address Register Indirect with Index Mode

The effective address for this addressing mode is calcu-
lated by adding together the number stored in an address
register, an index that is stored in another address register
or a data register (sign-extended word or long word), and an
8-bit, sign-extended, displacement byte (see Figure 1-8). The
assembler format for this mode is:

da (An,Rn)
or

label(An,Rn)

where rn represents the data or address register being used
as the index register, da represents a number, and label repre-
sents the symbolic name for a number.

To indicate whether the index register is a word or a long
word, add a .W or .L suffix to its name; some examples are
D3.L, AO.W, and D2.W. If no suffix is specified, a word index is
assumed.

This addressing mode requires one extension word. The
first byte contains information relating to the index register
and its size. The second byte contains the 8-bit displacement.
Note that since the displacement byte is only 8 bits long, the
displacement range is from — 128 to + 127. (The base point is
the word following the operation word.)

This indexed addressing mode is useful when you're work-
ing with a group of fixed-length records. To access any rec-
ord in the group, first store the address of the first record

28 Mac Assembly Language

high memory

effective address
d8(An,Rn)]
d8(An,Rn.¥) +Rn
d8(An,Rn.L) |

+d8
|

An [—

low memory

Figure 1-8. Address Register Indirect With Index Addressing Mode.

(record 0) in an address register, then multiply the record
number you want by the number of bytes in a record, and
store the result in the index register. When you access the
record, you can use the displacement byte to step to the field
in the record you are interested in.

Absolute Modes

The effective address for the absolute long addressing
mode is stored in two extension words for the operand. It
represents a specific address in the 68000's 16-megabyte
memory space that the operand is to use.

The assembler format for this addressing mode is simply:

$xyzzzz yXy > 00 z = 0..F
or

label

Inside the 68000 Microprocessor 29

where 1abel is a symbolic label for a fixed memory location
defined using the EQU or SET assembler directive. (See
Chapter 2.)

If label refers to a position within your application program,
the MDS assembler uses the program counter with displace-
ment addressing mode, label (PC), instead.

There is one other variant of the absolute addressing
mode: absolute short. In this case, the effective address is
formed by sign extending the 16-bit address stored in the
extension word for the operand. The assembler format is:

$00xxxx ;x = 0..F

or

label

Since the address is sign-extended, this addressing mode can
only be used if the address is in the first 32K or last 32K of
memory.

Program Counter with Displacement Mode

The effective address in this mode is the sum of the
address in the program counter register and a sign-extended,
16-bit displacement word stored in an extension word after
the operation word. (See Figure 1-9.)

The assembler format is:

label(PC)
or
label
where label represents the symbolic label for a position within

the program. The assembler automatically determines what
the displacement between the program counter and the

30 Mac Assembly Language

labeled position is and puts it into the executable object code
for the program. You should never have to calculate it
yourself.

high memory

d16{(PC)

l_. effective address

PC —

low memory
Figure 1-9. Program Counter With Displacement Addressing Mode.

Program counter with displacement is a very important
addressing mode on the Macintosh because all the programs
you write must be relocatable, able to run at any position in
memory. This means that no part of the program must refer
to an absolute location if that location is within the body of
the program. By referring to addresses in a relative way, the
operating system can load and run the program anywhere it
wants. In fact, the MDS makes it very difficult to write non-
relocatable code because all references to labels are relativé
to the program counter; the alternative mode, absolute long
addressing, is not used in these circumstances.

Inside the 68000 Microprocessor 31

Program Counter with Index Mode

The effective address for this mode is the sum of the
address in the program counter, the long word or sign-
extended word in a data or address register used as an
index, and a sign-extended 8-bit displacement byte. (See Fig-
ure 1-10.) The assembler format is:

label(PC,Rn)

where rn represents the data or address register being used
as the index and label represents the location of another
instruction in the program. The assembler takes care of con-
verting this location into an 8-bit offset from the value of the
program counter.

high memory

d8(PC,Rn) effective address
d8(PC,Rn.¥) [_-—)
d8(PC,Rn.L) +Rn
+d8

low memory

Figure 1-10. Program Counter With Index Addressing Mode.

As with the address register indirect with index mode, the
index register can be a word or a long word. Use the W or .L
suffix to identify its size.

32 Mac Assembly Language

Note that if the index register is a data register, you can
also use the following assembler operand format:

label(Dn)

You don't have to specifically refer to the PC register. You
can't omit the reference to PC if the index register is an
address register because “label (An)” is used to indicate that
the address register indirect with displacement addressing
mode is to be used.

The program counter with index addressing mode requires
one extension word. The first byte contains information
relating to the index register and its size. The second byte
contains the 8-bit displacement. Note that since the displace-
ment byte is only 8 bits long, the displacement range is from
—128 to +127. (The base point is the word following the
operation word.) This means that the data structure you're
indexing into must be quite close to the instruction.

The program counter with index addressing mode is quite
similar to the address register indirect with index we looked
at earlier. In fact, it's possible to write code to access records
in a data structure that uses either addressing mode. The
advantage of using the program counter with index mode is
that you don't “waste” an address register for storage of the
base address. The disadvantage is that the base address
must be within the range covered by the 8-bit displacement
byte.

The Stack

The stack is a last-in, first-out (LIFO) data area in RAM that
is implicitly used by several 68000 instructions for storage or
retrieval of data. The LIFO characteristic means that the last
item placed (or pushed) on the stack will be the first item
removed (or pulled) from the stack. Figure 1-11 shows, sym-
bolically, what a stack looks like and where data is pushed on
it and pulled from it.

high memory

last word

SP

—

low memory

(a) The stack pointer always

points to the last word
pushed on the stack.

Inside the 68000 Microprocessor

high memory

last word

num (low word)

L

num (high word)

low memory

(b) After a push operation,

SP is decremented by the
size of the item. Use the
-(SP) addressing mode

for this.

high memory

SP

D ——

last word

(c) After a pop operation,

low memory

after

33

MOVE L ®num ,-(SP)

after

MOVE.L (SP)+,DO

SP is incremented by the
size of the item. Use the

(SP)+ addressing mode

for this.

Figure 1-11a, b, c.

The 68000 Stack and Stack Pointer.

The address of the top of the stack (the address of the last
item pushed on the stack) is stored in the current stack
pointer register, SP, the active A7 register. (The Macintosh
operating system initializes its value when you start up.)

34 Mac Assembly Language

Remember that SP refers to either the supervisor stack
pointer (A7) or the user stack pointer (A7’'), depending on
whether the supervisor state flag (S) in the status register is
on or off.

When data is pushed on the stack, the stack pointer is first
decremented by the size of the data and then the data is
stored at the address stored in the stack pointer. Be aware,
however, that if you try to push an odd number of bytes on
the stack, the 68000 first pushes one extra byte on the stack
to ensure that the stack pointer always contains an even
address.

The instructions that implicitly push data on the stack are
JSR, BSR, and PEA (all of which push long word addresses);
and LINK, which pushes the contents of a 32-bit address reg-
ister and then creates a data “frame” within the stack by.
decrementing the stack pointer by the number of bytes spec-
ified in the operand.

Since the stack pointer is decremented when something is
placed on the stack, the stack grows downward in memory.

When you pop data from the stack, the stack pointer is
incremented by the size of the data, or by the size of the data
plus one if you try to pop a single byte.

The instructions that implicitly pop data from the stack are
RTS, which pops a long word address pushed there by a JSR
instruction and puts it in the program counter; RTR and RTE,
both of which pop a word into the status register and a long
word address into the program counter; and UNLK, which
restores the initial value of the stack pointer to deallocate a
data frame created by LINK and then pops a long word into
an address register.

You can also explicitly use the stack for temporary data
storage by using the A7 indirect with pre-decrement address-
ing mode, —(SP), to place data on the stack. When you want
to remove data, you can use the corresponding post-incre-
ment addressing mode, (SP)+. You'll see in later chapters
that most of the internal ROM subroutines used on the Mac-
intosh to perform standard operations are accessed by pass-
ing parameters on the stack using the pre-decrement

Inside the 68000 Microprocessor 35

addressing mode; function results are retrieved from the
stack using the post-increment addressing mode.

The stack can be positioned anywhere in memory simply by
adjusting the value of SP. It's usually placed near the top of
the available RAM space so that as large a space as possible
will be left for a program to use. You'll see where it's posi-
tioned on the Macintosh in Chapter 4. :

Exceptions

Under normal circumstances, the 68000 keeps busy by
executing program instructions in the order dictated by the
program logic. There are several special events called excep-
tions, however, that can temporarily interrupt the natural
flow of a program, and force the 68000 to enter an exception
processing state. As shown in Table 1-3, these events are
generated by external input/output devices, internal errors,
or certain 68000 instructions.

Table 1-3. The 68000 Exception Vectors.

Vector Vector Address
Number Chexadecimal) Description of Exception
.|
(o] $000 Reset: initial SSP
$004 " Reset: initial PC
2 $008 Bus Error
3 $00C Address Error
4 $010 Illegal Instruction
) $014 Divide by Zero
6 $018 CHK Instruction
7 $01C TRAPYV Instruction
8 $020 Privilege Violation
9 $024 Trace
10 $028 Line “A” Emulator
11 $02C Line “F” Emulator
12 $030 [reserved]
13 $034 [reserved]
14 $038 [reserved]

36 Mac Assembly Language

Téble 1-3. continued

Vector Vector Address

Number C(Chexadecimal) Description of Exception
]

15 $03C Uninitialized interrupt vector

1623 $040—$05F [reserved]

24 $060 Spurious Interrupt

25 $064 Level 1 autovector (VIA)

26 $068 Level 2 autovector (SCC)

27 $06C Level 3 autovector (VIA+SCC)

28 $070 Level 4 autovector (switch)

29 $074 Level 5 autovector (VIA + switch)

30 $078 Level 6 autovector (SCC + switch)

31 $07C Level 7 autovector (VIA +SCC + switch)

32-47 $080—$0BF TRAP #n Instruction Vectors

48-63 $0CO—$OFF [reserved]

64-255 $100—$3FF User Interrupt Vectors (*)

(*) The user interrupt vectors are actually used for storage of global

variables on the Macintosh.

Each of the events that can trigger exception processing is
associated with a vector number from #0 to #255. The vec-
tors themselves are long words, stored in the first 1024
bytes of the 68000 memory space, and which hold the
address of the program to which control is to pass when the
exception occurs. To calculate the location of the vector from
a given vector number, simply multiply the vector number by
four. This means that the vectors occupy the address space
from $000000 to $0003FF.

The exception-handling subroutine is responsible for prop-
erly servicing the exception request before returning control
to the main program at the point where the exception
occurred. The operating system automatically installs a
default set of exception subroutines when the Macintosh
first starts up. You normally dont have to change these
unless you want to take advantage of an exception that the

Inside the 68000 Microprocessor 37

operating system doesn’t normally use, or if you want to
change what happens when a given exception occurs.

Before we begin looking at each type of exception in detail,
let’'s review exactly what happens when an exception
occurs. It's a four-step process:

® The 68000 makes an internal copy of the status register and
then sets the supervisor state flag to one and clears the trace
mode flag to zero. This means the 68000 will commence oper-
ating in supervisor mode (if it wasn't already) and instruction
tracing will be turned off. If the exception was caused by reset
or by a hardware interrupt, the interrupt level mask in the sta-
tus register is also changed, as explained below.

® The 68000 determines the vector number for the interrupt and
uses it to calculate the address of the vector (by multiplying by
four).

® The 68000 pushes on the supervisor stack the program
counter (it contains the address of the next instruction to be
executed in the interrupted program), followed by the previ-
ously saved copy of the status register. These two pushes
aren't made if the exception is caused by a reset.

® The new program counter value is loaded from the exception
vector.

Once these steps are completed, the 68000 starts execut-
ing the exception handling subroutine. Such a subroutine fin-
ishes with an RTE (return from exception) instruction that
restores the original values of the program counter and the
status register from the stack so that execution of the main
program will continue on as if nothing had happened.

Let's take a more detailed look at the types of exceptions
handled by the 68000.

The Reset Exception

A reset exception (vector #0) occurs when you first turn
on the Macintosh or when you press the front part of the pro-
grammer’s switch on the side of the Macintosh. The interrupt
mask bits in the status register are set to 111 by the 68000
when a reset occurs. On the Macintosh, the subroutine that

38 Mac Assembly Language

handles the reset exception boots the system from disk.

Unlike any other exception vector, the reset vector
requires two long words of storage so it actually occupies the
space you'd think would be used by exception vector #1
(such an exception can't occur with the 68000). The first long
word contains the new value of the supervisor stack pointer
and the second long word contains the new value of the pro-
gram counter.

If you look at the values stored in the reset vector after
you've turned on the Macintosh, you’'ll become very confused
because the second long word doesn’t point to the standard
disk boot subroutine. In fact, it doesn’t point anywhere in par-
ticular. This is because the Macintosh has been designed to
temporarily remap its memory space when a reset exception
occurs so that the address of the base of the ROM space,
which is normally $400000, becomes $000000. Thus, it is the
long words at $400000 and $400004 that are used to fill the
stack pointer and the program counter when a reset occurs.
The ROM is remapped to $400000 during the reset sequence.
If resets weren’'t handled this way, you wouldn’t be able to
start up the Mac because a RAM-based reset vector would
contain random data on power up.

The Internally Generated Exceptions

BUS ERROR (vector #2). If implemented by the system
hardware, this exception occurs if you try to address an area
of memory that doesn’t exist. Bus errors cannot occur on the
Macintosh.

ADDRESS ERROR (vector #3). This exception occurs when
the 68000 tries to access a word or long word operand that
begins at an odd address or when it tries to execute an
instruction that begins at an odd address. This type of error
is very serious and causes a fatal bomb box to appear on the
Macintosh screen.

PRIVILEGE VIOLATION (vector #8). This exception occurs
if you're in user mode and you try to execute an instruction

Inside the 68000 Microprocessor 39

that is valid in supervisor mode only. Since you'’re always in
supervisor mode on the Macintosh (or should be!) this excep-
tion should never occur.

TRACE (vector #9). This exception occurs after every
instruction is executed if the trace flag (T) in the system byte
of the status register is one. Debugging programs such as
MacsBug typically handle trace exceptions by displaying the
contents of all the registers, the stack, an area of memory,
or other information that may assist a programmer in deter-
mining whether a program is executing as expected.

The Externally Generated Exceptions

An exception caused by a peripheral device is called an
interrupt. An interrupt is a simply an electrical signal from the
peripheral port, such as one of the Mac’s serial ports, indicat-
ing that an event has just occurred that should be dealt with
immediately, such as the arrival of data from a modem. The
68000 normally responds to an interrupt by halting execution
of the main program in memory, servicing the source of the
interrupt, and then returning to the main program. By using
interrupts to signal events, the 68000 does not have to worry
about missing events that might occur while it’'s performing
time-consuming operations. If you couldn’t use interrupts,
you'd have to do periodic status checks for incoming informa-
tion and this would slow down your program.

A different priority level, from 1 to 7, is assigned to each
source of interrupts when a 68000-based system is designed.
Here are the priority levels for the interrupts possible on a
Macintosh:

level 1: VIA interrupts

level 2: SCC interrupts

level 3: VIA and SCC together

level 4: interrupt button on programmer’'s switch
level 5: interrupt button and VIA together

level 6: interrupt button and SCC together

level 7: interrupt button and VIA and SCC together

40 Mac Assembly Language

The VIA is the 6522 Versatile Interface Adapter used to
control the mouse and clock. The SCC is the 8530 Serial Com-
munications Controller that controls the two serial ports on
the Macintosh.

The interrupt mask in the status register lets you prevent
certain interrupts from occurring. Any interrupt having a level
at or below the level of the mask is ignored by the 68000. The
exception is a level 7 interrupt; it is always permitted and is
referred to as a non-maskable interrupt.

All interrupts can be enabled by storing 000 in the mask,
and this is the value the Macintosh operating system uses.

The interrupt mask is automatically changed by the 68000
when an interrupt of a certain level is dealt with. As part of
the interrupt handling process, the mask is changed to the
current level being processed so that lower- or equal-priority
events can't interfere with the handling of the current inter-
rupt. The normal mask is restored after interrupt processing
is finished.

AUTOVECTOR INTERRUPT (vectors #25 to #31). A periph-
eral device can use one of two techniques to interrupt the
68000, depending on how the hardware interface has been
configured. One alternative is to have the peripheral provide
a vector number between 64 and 255 to the 68000 when the
interrupt occurs. The other technique, the one used on the
Macintosh, is for the 68000 to use one of the seven
autovector exception vectors. The one used will depend on
the interrupt priority level: vectors #25 to #31 correspond to
priority levels 1 to 7, respectively.

USER INTERRUPT (vectors #64 to #255). Since all inter-
rupts are handled by autovectors on the Macintosh, these
vectors aren't used for storage of interrupt vectors. The
Macintosh operating system, however, uses this space (from
$100 to $3FF) for the storage of global system variables, so
you can't use this area for your own purposes.

SPURIOUS INTERRUPT (vector #24). This exception
occurs only if a bus error condition is detected during the han-
dling of another exception. Since bus errors can't occur on
the Macintosh, this exception can’t occur either.

Inside the 68000 Microprocessor 41

The Exceptions Caused by Instructions

An exception caused by a 68000 instruction is called a trap.
There are two classes of traps: unconditional and conditional.

Unconditional Traps

The following trap instructions unconditionélly cause
exception processing to begin:

TRAP #n ;0 = 0 to 15 (trap number)

ILLEGAL ;special "illegal" instruction

$Pxxx ;any instruction whose operation
word begins with 1111 ($F)

$AXXX ;any instruction whose operation

word begins with 1010 ($A)

TRAP (vectors #32 to #47). When one of the 16 TRAP #n
instructions is encountered, control passes to the address
stored in exception vector n+32. On some 68000-based sys-
tems, the trap instructions are used to invoke the fundamen-
tal I/O operations supported by the computer's operating
system. The Macintosh operating system does not use these
vectors, however, so they're free for use by your own appli-
cation programs. The MacsBug debugger, for example, uses
the TRAP #15 instruction to implant software breakpoints in
a program. (A breakpoint is a position in a program where
you want processing to stop so you can examine registers to
verify that all is going well.)

ILLEGAL (vector #4). The ILLEGAL instruction is one that
does not correspond to any other documented instruction. All
other undocumented instructions are reserved for future
extensions to the 68000 instruction set, so you should not
use them to generate an illegal instruction exception.

The exception vector for the ILLEGAL instruction is not
used by the Macintosh operating system, so it's available for
your own use.

42 Mac Assembly Language

$Fxxx and $Axxx (vectors #I11 and #10). Any instruction
whose operation word is of the form $Fxxx or $Axxx (xxx
represents three hexadecimal digits) will also cause an
exception. The line F emulator exception ($Fxxx) is not used
by the Macintosh operating system, so you can install your
own code to handle these types of instructions. Such code
would typically examine the unused 12 bits of the operation
word to determine the exact nature of the instruction, much
like the 68000 does when it interprets a standard instruction.
Data for the instruction could also be passed on the stack and
results could be returned on the stack, in accordance with a
pre-defined software protocol.

The line A emulator trap ($Axxx), on the other hand, is
extensively used by programs running on the Macintosh to
access a group of about 500 standard subroutines contained
in the Macintosh ROM area. These subroutines are logically
divided into two groups:

® operating system calls
® user-interface toolbox calls

The operating system calls perform fundamental low-level
operations, such as communicating with peripheral devices or
allocating and deallocating blocks of memory. The user-inter-
face toolbox calls include subroutines for implementing pull-
down menus, windows, scroll bars, and most other features
defined by the standard Macintosh human-interface
guidelines.

Apple has assigned standard mnemonic names to each of
the $Axxx trap instructions; they are easily identified
because they all start with the underscore symbol. The
names are defined in standard trap files that come with the
MDS assembler. Each line in these files is of the form:

.TRAP _SubroutineName $AxXxX ;XXX = hex digits

.TRAP is an assembler directive that assigns the name fol-
lowing it to the line A emulator instruction on the right. (See
Chapter 2.)

Inside the 68000 Microprocessor 43

The Macintosh operating system stores the address of a
standard trap handler in the $Axxx vector when the system
starts up. This handler takes the last nine bits (for a toolbox
instruction) or eight bits (for an operating system) of the
$Axxx word, multiplies it by four, and uses the result as an
index into a trap dispatch table extending from $400 to $7FF.
The entry in the table is the address of the subroutine to be
called (in slightly encoded form on the 64K ROM version of
the Macintosh). When the subroutine ends, control returns to
the instruction following the trap in the main program.

Conditional Traps

There are also four instructions that may cause an excep-
tion to occur, depending on the state of the condition codes
or the results of a calculation:

DIVU if division by zero

DIVS if division by zero

TRAPV if the overflow flag (V) is 1
CHK <ea>Dn if data register is out of range

ZERO DIVIDE (vector #5). If the divisor you specify for a
DIVU (unsigned divide) or DIVS (signed divide) instruction is
zero, a zero divide exception occurs.

TRAPV (vector #7). This exception occurs if you execute
the TRAPV instruction when the overflow flag in the status
register is set to 1.

CHK INSTRUCTION (vector #6). The CHK instruction is
always of the form:

CHK <ea>,Dn

where <ea> designates any valid addressing mode yielding an
effective address. If the sighed number stored in Dn is less
than zero or greater than the value specified by the source
operand, an exception occurs.

Chapter 2
Assembler Tools

In this chapter we're going to take a look at most of the pro-
grams that make up the Macintosh 68000 Development Sys-
tem (MDS) published by Apple. The MDS contains all the
tools you'll need to develop assembly language programs on
the Macintosh, including:

Edit, an editor for creating 68000 assembly language source
code files and MDS control files;

Asm, an assembler for converting source code files into object
code modules;

Link, a linker for combining one or more object code modules
into a single application;

RMaker, a resource compiler for converting source code defin-
ing standard data structures such as menus, windows, and
icons into object code modules, and for adding resources to
applications; and

Exec, an executive program for automating the entire assem-
bly, linking, and resource compilation process.

A flowchart of the usual assembly/linking/compilation pro-
cedure is shown in Figure 2-1. Variations are possible, but I'll
be following this basic procedure to develop most of the pro-
grams in the book. The usual procedure goes something like
this (the numbers refer to the steps shown in Figure 2-1):

(1,2,3) The editor is used to produce source code for the assem-

bler, a linker control file for the linker, and resource
source code for the resource compiler.

(4) The assembler is used to convert program source code
files into object code (.Rel) modules.

(5) The linker is used to process a linker control file that tells
it how to combine object code modules into an application

14

Assembler Tools 45

file. After linking, the application’s resources are usually
not yet available.

(6) The resource compiler is used to create the resources
used by the program and either append them to the
application file or store them in a separate resource file.

(Later in this chapter, you'll see how to combine steps 4, 5,
and 6 by executing a .Job file with the Exec program.)

Once these steps are completed, the application can be run
by double-clicking its icon on the Finder's desktop.

® .Asm Rel
file file
* Asm J
) @ . ®© Application file
% I;':ll-': — @ App! without resources
Eat Link l
® R -
file N
RMaker
Notes: App! Complete application
(with resources)

(1) The order of development is indicated
by the circled numbers.

(2) Steps 4, 5, and 6 can be combined by
executing a .Job file with the
Exec program.

Figure 2-1. A Flowchart Showing One Way to Develop an Application with
MDS.

In this chapter we'll also look at some of the standard sym-
bol definition files that come with MDS, explain what they
contain, and show how to use them to your advantage.

46 Mac Assembly Language

Finally, you’'ll see how to translate calls to standard toolbox
trap subroutines in the Macintosh ROM, which are usually
documented in terms of Pascal procedures and functions,
into the equivalent assembly language calling sequences.

At the end of the chapter, Il put everything together and
show you how to use the MDS tools to create a simple appli-
cation that will serve as the shell for some of the short pro-
grams and subroutines developed in later chapters.

The Editor

The MDS editor is called Edit. With it you can create the
source documents used by the assembler, linker, resource
compiler, and executive. These documents are stored as
standard text files, so you can also modify or create them
with any other editor or word processor that supports such
files.

To invoke the editor from the Finder you can either double-
click its icon or double-click one of the text files you've previ-
ously created with it.

There is nothing really exciting about the MDS editor; it's
basically a vanilla editor with few of the frills you might find in
a serious word processing program like MacWrite or
Microsoft Word. For example, you can't change the size or
style of a portion of text in the file, only the entire file. It is,
however, all you need to quickly and easily develop source
code for the other MDS programs.

The Assembler

The MDS assembiler is called Asm. Use it to convert a
68000 assembly language program from source code form to
a relocatable object code form suitable for subsequent pro-
cessing with the linker. You invoke it by double-clicking the
Asm icon and selecting a file name or by passing control to it

Assembler Tools 47

directly from the linker or the resource compiler Transfer
menus. The object code files created by the assembler have
.Rel suffixes (which stands for relocatable).

Listing 2-1. A Simple Program Showing the Formats of Lines

LR R R

Start

@l

Beep

@l:

GetDur

of 68000 Source Code.

Format.Asm

This simple program shows the formats of typical lines

of tA8000 assembly language code.

An asterisk in column 1 means the entire line is a comment
(A semicolon works, too!)

.TRAP _SysBeep $AGC8

.TRAP _Button $Aq74

NOP ;"Start" is a reqular label
BSR GetDur ;Comment field begins with a ;
BSR Beep

CLR.B - (SP) ;Space for result

_Button

TST.B (SP)+ ;Is mouse button down?

BNE Start ;Yes, so keep beeping

RTS ;@1 is a local label

TST Duration(AS) ;Is Duration zero?

BEQ @l ;If so, branch

MOVE Duration(AS),-(SP)
SysBeep ;Toolbox traps begins with ""

RTS ;Not the same as the other @1
;Indented, so followed by ":"

MOVE #30,Duration(AS) ;Initialize beep length
RTS

Duration DS 1 ;Define space for variable

48 Mac Assembly Language

Source Code Format

The source code for an assembly language program is
stored in a standard text file, and is created with the MDS
editor. The program source code must adhere to certain
rules of syntax dictated by the assembler, some of which
were referred to in Chapter 1 when we looked at instruction
names and addressing mode formats. Each line in the source
file is composed of four fields, each separated from the next
by one or more tab characters or blank spaces. (See Listing
2-1.) These fields are the label field, the instruction field, the
operand field, and the comment field.

The Label Field

A label is a symbolic name for a position in a program or a
piece of data. It must begin with a letter (A..Z or a..z), a
period (.), or an underscore (_); subsequent characters can
also include digits (0..9) and dollar signs ($). If the label does
not begin in the first column of the line, it must end with a
colon (:) so that it will not be mistaken for an instruction
mnemonic.

A special form of label, called a local label begins with an at
sign (@) and is followed by a single digit (0..9). (If it is
indented you must also include a colon.) A given local label
has meaning only between two standard labels and can only
be referred to by instructions within that range. This means
you can use the same local label in another area of a program
without causing an assembly error. Local labels are handy for
identifying instructions not referred to in other parts of a
program.

Labels are primarily used for two purposes: to provide a
symbolic name for a piece of data or for the target address of
a branch or jump instruction. By using labels, you never have
to worry about calculating offsets when you're using pro-
gram counter relative addressing modes; it's done for you

Assembler Tools 49

automatically by the assembler. The use of labels also makes
a program listing much easier to understand.

The Instruction Field

An instruction is either a mnemonic for a 68000 instruction
or one of several assembler directives supported by the MDS
assembler. The standard names for the 68000 instructions
were given in Chapter 1. Assembler directives will be
described later in this chapter.

The Operand Field

This field contains the operand or operands for the instruc-
tion or assembler directive in the instruction field. As we saw
in Chapter 1, operands for instructions indicate the address-
ing modes to be used to form effective addresses. If there
are two operands for the instruction, the source operand
comes first and is separated from the destination operand
with a comma (,).

The assembler formats for the standard 68000 operands
were also given in Chapter 1. There are two special forms of
operands involving strings of characters supported by the
MDS assembler that we haven't seen yet, however. The first
is the string immediate operand, #’WXYZ’, where the immedi-
ate values used are the ASCII codes for the characters in the
string. (The ASCII coding scheme is described in Chapter 5.)
The number of characters used is one (byte operation), two
(word operation), or four (long word) operation.

You can also specify a string as the operand of a PEA or
LEA instruction:

PEA 'GARY! ;Push address of string
LEAR 'GARY',Al ;Load address of string

In these cases, the string can be any length and the
assembler will store it as a constant at the end of the code

50 Mac Assembly Language

space during the assembly process. What is actually
pushed or loaded by these instructions is the address of
the string, not the contents of the string. The method used
to store the string is dictated by the setting of the
STRING_FORMAT directive (see below); the default for-
mat is a length byte followed by the ASCII codes for the
characters in the string.

You should also be aware that MDS lets you use mathe-
matical expressions in operands, using operators such as: +
(add), — (subtract or negate), * (multiply), and / (divide). The
add operator is especially useful for identifying an offset into
a data structure. If the base address of the structure is in AO
and you want to access the word that begins bottom bytes
into the PortRect field, for example, use an operand of the
form PortRect +bottom(AO).

I'll be discussing all the mathematical operators and how
they're evaluated later on in this chapter.

The Comment Field

The comment field begins with a semicolon (;). The semico-
lon, and everything after it on the line, is ignored by the
assembler, so you are free to enter any text you want, typi-
cally an explanation of what the program is doing. If the
entire line is a comment, put a semicolon or an asterisk (*) in
column 1.

Assembler Directives

The instruction field in an assembly language program usu-
ally holds a 68000 instruction, but it can also hold a “pseudo-
instruction”, or assembler directive, which controls the
assembly process in some way, defines symbols, or allocates
space for data storage.

In this section, I'll summarize all the common assembler
directives you will use with MDS.

Assembler Tools 51

Symbol Definition Directives

The symbol definition directives assign names to certain
values or expressions. (See Table 2-1.) These values can rep-
resent absolute memory locations, trap instructions, numeric
constants, or arbitrary sequences of characters. By making
liberal use of symbols, you can improve the readability of your
programs, thus making them easier to modify and debug.

Table 2-1. Symbol Definition Directives Used by Asm.

Directive Meaning
]

.TRAP Assigns a symbol to a $Axxx trap instruction

EQU Assigns a symbol to an expression (can’t reassign)
SET Assigns a symbol to an expression (can reassign)
REG Assigns a symbol to a register list

There are four symbol definition directives. Let’s look at
them in the order of their popularity.

.TRAP The .TRAP (Define Trap Instruction) directive
assigns a name to a particular line A emulator trap instruc-
tion. As you saw in Chapter 1, these instructions are used to
access the user interface toolbox and operating system sub-
routines in the Macintosh ROM. Once you've assigned a name
to a trap, the name can be used in the instruction field just
like any standard 68000 instruction; you don't have to memo-
rize its $Annn numeric form. The format for the . TRAP direc-
tive is:

.TRAP name $Annn

where nare is the name to be given to the trap instruction.
The standard trap names used on the Macintosh are con-
tained in a file called Traps.txt on the MDS disk (or in a
packed symbol file called Traps.D). In most cases, you will
incorporate these files into every program using the

52 Mac Assembly Language

INCLUDE directive (see page 56), so you probably won't need
to explicitly use the .TRAP directive in your own programs. If
you're short on memory space, however, (and you might be if
you're still using a 128K Macintosh) you may not have enough
room to include an entire trap file, so use the .TRAP directive
to define the subset of trap instructions used by your
program.

EQU The EQU (Symbol Equate, Permanent) directive
assigns a symbolic name to a particular expression. Once the
name is assigned, it cannot be reassigned later in the pro-
gram. The format for the EQU directive is:

label EQU expression

where expression is usually a numeric constant representing
data or an address, but it can also be a mathematical formula
or even an operand such as (A3)+. Label represents a sym-
bolic name adhering to the naming guidelines described above
for entries in the label field in a line of source code.

Here are some example of how to use the EQU directive:

NumberOne EQU 1 ;A numeric equate
PUSH EQU -(SP) ;An operand equate
BuffSize EQU 1024*6 ;A formula equate
Tine EQU $20C ;An address equate

SET The SET (Symbol Equate, Temporary) directive is
just like the EQU directive, except that the symbol can be
redefined later in the program using another SET directive.
The assembler format is:

label SET expression

where label and expression have the same meaning as for the
EQU directive.

The SET directive is often used within a macro definition to
assign symbolic names to variables used only by the macro.
You can't use EQU because the next time the macro is

Assembler Tools 53

invoked, the same symbols are defined once again. I'll be look-
ing at macros later in this chapter.

REG The REG (Register Equate) directive assigns a sym-
bol to a register list used by the MOVEM (move multiple reg-
isters) instruction. The format for the directive is:

label REG register list

where register 1ist refers to a group of one or more ranges of
consecutive registers. The starting and ending registers in a
range are separated by a dash (—) and each range group is
separated from the next by a slash (/). For example, the reg-
ister list for registers DO, D1, D2, D7, and AO, A1, and A2
would be DO—-D2/D7/A0—-A2.

Data Allocation Directives

The data allocation directives are used to allocate space for
any constants, variables, and data structures that the pro-
gram uses. (See Table 2-2.) The data space so allocated can
be part of the code space for the program or it can be located
in the application global variable space in the upper end of
memory, depending on the directive used.

Table 2-2. Data Allocation Directives Used by Asm.

Directive Meaning
|
DC Reserves space for a constant
DCB Reserves space for a block of constants
DS Reserves space for a variable

As you will see, each of the data allocation directives has a
byte, word, and long word form that you select by using a .B,
W, or .L extension. If no extension is specified, the word
form is used. If you use the word or long word forms, and the
next free location is an odd address, a byte of padding is first

54 Mac Assembly Language

allocated by the assembler. The label associated with a data
allocation directive always refers to the address after any
padding byte, however.

Remember that word alignment is absolutely necessary if
you want to access long or long word data. If the alignment
isn't correct, an address error exception will crash the sys-
tem. Fortunately, the MDS assembler does all it can to help
you avoid such situations.

DC The DC (Define Constant) directive stores data within
the code space of the program. The assembler formats are:

[label] DC value ;store word data
[label] DC.B value ;store byte data
[label]l DC.W value ;store word data
[label]l DC.L value ;store long word data

where value represents the numeric value of the data to be
stored or a string of characters enclosed in single quotation
marks. If a string is specified, the ASCII code for each charac-
ter is stored by the assembler. The brackets around label
indicate that a label (a symbolic name for the constant) is
optional.

Multiple values can be stored by specifying a series of val-
ues in the operand field separated by commas. For example,

TwoBytes DC.L $45,63 ;TwoBytes is the label

causes the values 00 00 00 45 00 00 00 3F to be stored in the
object code. The first four bytes are for $00000045 and the
next four are for $0000003F (decimal 63).

DCB The DCB (Define Constant Block) directive allocates
a block of data within the code space of the program and
stores a specific value in each byte in that block. The assem-
bler formats for the DCB directive are:

[label]l] DCB size,value ;store block of words
[label]l DCB.B size,value ;store block of bytes
[label]l DCB.W size,value ;store block of words

[label]l DCB.L size,value ;store block of long words

Assembler Tools 55

where size represents the number of data units (bytes,
words, or long words) to be allocated, and value represents
the number to be stored in each data unit in the block.

To reserve 32 bytes of memory, each initialized to the
value $7F, use the following directive:

OurBlock DCB.B 32,$7F

Be sure not to reverse the order of the size and value
parameters.

DS You can also allocate data space in the application
global variable space, which begins at the address pointed to
by the A5 register and grows downward in memory. (The A5
register is properly initialized by the operating system when
your program starts to run.) This is where you should
reserve space for a number if you are going to change its
value during program execution.

Unlike the DC directive, DS (Define Storage) does not ini-
tialize the values stored in this data space. The assembler
formats are:

[label]l DS size ;reserve words
[label]l DS.B size ;reserve bytes
[label]l DS.L size ;reserve long words
[label]l DS.W size ;reserve words

where size represents the number of data units (bytes,
words, or long words) to be allocated.

When you read from or write to a piece of data in the appli-
cation global area, you must always use the A5 register indi-
rect with offset addressing mode. That is, if you have
allocated a word with a directive like:

MyData DS.W 1

then you must use a MyData(A5) operand to access it. One
of the most commmon sources of bugs in an assembly lan-

56 Mac Assembly Language

guage program is caused by forgetting to tack on (A5) to the
name of a variable allocated with the DS directive. Be careful.

Assembly Control Directives

The assembly control directives dictate the exact manner
in which the source file is to be assembled. (See Table 2-3.) In
particular, they dictate what parts of the file are to be
assembled, how strings are to be handled, and how macros
are to be handled.

Table 2-3. Assembly Control Directives Used by Asm.

Directive Meaning
. |

INCLUDE Reads in another source file during assembly
STRING_FORMAT Sets the string storage format
IF..ELSE..ENDIF Assembles code according to conditions

MACRO Assigns an instruction sequence to a name
END Marks the end of the source code
.DUMP Saves symbols in a packed symbol file (.Sym)

INCLUDE If you have a standard chunk of assembly
source code that is common to many programs, you may
want to save it in a separate file on disk. Then, when you
want to incorporate it into another source document, all you
need to do is specify the file name as the argument of an
INCLUDE (Include a Source File) directive in your program.
This makes it easy to incorporate a standard sequence of
source statements in any program you develop.

The assembler format for the INCLUDE directive is:

[label]l INCLUDE filename

where the name of the file to be included is filenane or
filename.asn.

Assembler Tools 57

As you'll see later on, INCLUDE is most commonly used for
including the standard trap and symbol definition files that
come with MDS.

STRING_FORMAT The STRING_FORMAT (Set String
Storage Format) directive sets the method the assembler is
to use when it stores character strings in memory. The for-
mat for the directive is:

STRING_FORMAT value

where value represents a number from zero to three,
inclusive.

There are two types of strings in a program that
STRING_FORMAT affects, those used as arguments of PEA
and LEA instructions, and those allocated using the DC data
allocation directive. In each case, a string is represented as a
sequence of characters enclosed by single quotation marks:

'Test String!

If your string includes the single quotation mark, enter two
of them in a row; the first one is ignored and the second
forms part of the string:

'Gary''s String!

Bit O of the value assigned to STRING_FORMAT controls
how strings used with PEA and LEA are handled: if zero, the
string is stored as a group of ASCII characters followed by a O
byte; if one, the string is preceded by a length byte. In either
case, space for the string is allocated after the end of the
program code.

Bit 1 of STRING_FORMAT controls the format of DC
strings. If the bit is zero, the string is stored without a pre-
ceding length byte or a trailing O byte. If it is one, however,
the string is preceded by a length byte. This means the fol-
lowing values for STRING_FORMAT are permitted:

58 Mac Assembly Language

STRING_FORMAT 0 ;DC (text only) , PEA/LEA (0 trailer)
STRING_FORMAT 1 ;DC (text only) , PEA/LEA (length)
STRING_FORMAT 2 ;DC (length) , PEA/LER (D trailer)
STRING_FORMAT 3 ;All strings preceded by length byte

You'll probably find the most convenient STRING_FORMAT
to use is 3 because the standard Macintosh trap instructions
expect strings preceded by length bytes. Unfortunately, the
default value is 1, so be careful that vyou set
STRING_FORMAT to 3 if you want to define a string pre-
ceded by a length byte with the DC directive.

IF..ELSE..ENDIF The IF..ELSE..ENDIF (Conditional Assem-
bly) directives let you develop programs that can be assem-
bled in different ways depending on the state of a condition
you specify. For example, your program may contain extra
code that should only be assembiled if you are testing the pro-
gram, not if you are releasing the program to the public.
Rather than removing this extra code for good and then
assembling the program, you can simply leave it in and
assemble it only if you enable a debug condition. That way,
you don’t have to maintain two versions of the same
program.

The format of the conditional assembly directive is as
follows:

IF condition

insert lines to be assembled if the condition is true

[ELSE

insert lines to be assembled if the condition is false
]

ENDIF

where condition is a mathematical or logical expression that
evaluates to a true (non-zero) or false (zero) result. If the full
IF..ELSE..ENDIF structure is used, everything between the
IF and ELSE lines is assembled if the condition is true and
assembly continues after the ENDIF line; otherwise, every-
thing between ELSE and ENDIF is assembled instead.

Assembler Tools 59

Notice, however, that the ELSE directive is optional (as
indicated by the brackets). If it's not used, all the lines
between IF and ENDIF are assembled only if the condition is
true.

When specifying a condition, you can use several arithme-
tic, logical, and shifting operators to form a mathematical
expression. Here are those operators, in decreasing order of
precedence of evaluation:

negation -
shift one bit right >>
shift one bit left <<
logical and &
logical or !
multiplication *
division /
addition +

subtraction -

To alter the standard order of evaluation, use parentheses to
enclose the expressions to be evaluated first.

Logical conditions can also be formed using comparison
operators: > (greater than), < (less than), > = (greater than
or equal), <= (less than or equal), = (equal), and <> (not
equal). Note, however, that you can only compare strings for
equality or non-equality.

Here are some valid expressions for condition:

DEBUG = 1 ; true if DEBUG is 1

MYFLAG ; true if MYFLAG is non-zero
(MYFLAG+3)/8 ; true if the expression is non-zero
MYFLAG <> 4S ; true if MYFLAG is not 45

MACRO A macro is a shorthand representation for a com-
monly used group of instructions. When the assembler
encounters a reference to a macro, it automatically expands
the reference by placing the group of instructions the macro
defines into the object code.

60 Mac Assembly Language

The format for a MACRO (Macro Definition) directive is:

MACRO name [argquments] =
[body of macrol
I

where nane is the symbolic name for a macro (the syntax rules
for a name are the same as for labels) and argunents represents
an optional list of variables used within the body of the
macro. Each argument is separated from the next by a
comma.

Each line in the body of the macro can be anything you
want, as long as it follows the syntax rules dictated by the
assembler. That is, just as with any normal line, it can include
labels, instructions, operands, and comments. (f you use
labels, they should be local ones so that global label names
won't be duplicated if you use the macro more than once.
Symbols should be defined with the SET directive rather than
the EQU directive.) The only difference is that a line can also
contain references to the arguments of the macro; this is
done by enclosing the argument name in braces ({ }). When
the macro is invoked, these arguments are replaced by the
actual parameters specified when the macro is invoked.

To invoke a macro, use its name as if it were an instruction;
the operands for the instruction are actually the parameters
for the macro. For example, suppose there are several places
in your program where you're executing a portion of code
that takes the form:

CLR.L -(SP)

MOVE X(RS),-(SP)
MOVE Y(RS),-(SP)
PEA Address

Your program might become more understandable, and eas-
ier to develop, if you define a macro called PushPos, as
follows:

Assembler Tools 61

MACRO PushPos M1, M2,M3 =
CLR.L -(SP)

MOVE {M1}(AS),-(SP)
MOVE {M2}(AS),-(SP)
PEA (M3}

If you do this, you can invoke the macro by including a line
like this in the source file:

PushPos hpos,vpos,MyRecord

This will generate the following code when the file is
assembled:

CLR.L -(SP)

MOVE hpos(AS), - (SP)
MOVE vpos(AS), - (SP)
PEA MyRecord

Macros are often used to define push and pop stack opera-
tions. Here are two macros, POP and PUSH, you can use for
this:

MACRO POP Dest =
MOVE.W (SP)+,{Dest} ;Pop into Dest
|

MACRO PUSH Item =
MOVE.W (Item},-(SP) ;Push from Itenm
|

The POP and PUSH macros are word-sized. You should
also define macros that can handle long word operations (and
call them POP.L and PUSH.L).

END The END (End of Source Statements) directive tells
the assembler to terminate the assembly process. Anything
that appears in the source file after the END directive is
ignored by the assembler.

62 Mac Assembly Language

DUMP The format of the .DUMP (Dump Symbols to File)
directive is:

.DUMP filename

This command tells the assembler to store its list of symbols
(defined using EQU or SET) in a file having the name file-
name.Sym. Such a file can be converted to a packed symbol
file using the PackSyms program on the MDS disk.

A packed symbol file has an extension of .D and can be
incorporated in a program with the INCLUDE directive, just as
if it was a standard text file. The advantage of using a packed
symbol file is that it takes up less space on the disk than a
standard symbol file and it can be assembled faster than a
standard text file.

Linker Control Directives

Linker control directives provide information the linker
requires in order to properly combine more than one assem-
bled code file into a single, executable application. (See Table
2-4.) Such information includes lists of program symbols that
may be accessed from other code modules, and symbols that
are defined externally in other modules.

Table 2-4. Linker Control Directives Used by Asm.

Directive Meaning
|

XDEF Identifies symbols that can be accessed by code in
another .Rel file
XREF Identifies symbols that are defined in another .Rel file

XDEF The XDEF (External Definition) directive identifies
any label or symbol in one code module that might be referred
to in another code module it is linked with. Without this infor-
mation, the linker cannot resolve references between mod-
ules and will generate an error.

Assembler Tools 63

The assembler form for the XDEF command is:

XDEF symbol_list

where synbol_list is a list of all symbols in the code module that
can be referred to in other code modules. Each symbol in the
list is separated from the next by a comma.

XREF The XREF (External Reference) directive tells the
linker that a particular group of symbols used in the program
is defined in another code module. The assembler form for
XREF is:

XREF symbol_list

As with XDEF, each symbol in symbol_list is separated from
the next with a comma. Each symbol must be named in an
XDEF directive in another code module.

Printing Control Directives

The printing control directives control the way in which out-
put generated by the assembiler is handled. This output con-
sists of a listing of the program that includes the source code
statements and the object code they generate.

Table 2-5. Printer Control Directives Used by Asm.

Directive Meaning
|
.NolList Turns off the listing of the Asm output
.ListToFile Lists the Asm output to a file
.ListToDisp Lists the Asm output on the screen

NoList The .NoList (Don't List Assembly Output) direc-
tives turns off the assembler listing entirely. This is the
default condition.

ListToFile The .ListToFile (List Assembly Output in File)
directive tells the assembler to store its output in the file

64 Mac Assembly Language

whose name is stored in the operand field following it. For
example, the command:

.ListToFile Assembly.Txt

causes the listing to be stored in a file called Assembly.Txt.

ListToDisp The .ListToDisp (List Assembly Output on
Screen) directive tells the assembler to display its output on
the screen while the file is assembled.

You can also indicate what's to happen to an assembler list-
ing by pulling down Edit’'s Options menu before you begin to
assemble and selecting either No Listing, List to File, or List
to Display.

The Linker

The linker is used to combine .Rel files (relocatable object
code files), usually created by the assembler or resource
compiler, into an application that can be launched from the
Finder with a double-click. Less frequently, it is used to cre-
ate other types of files, not necessarily directly executable
applications.

The activities of the linker are controlled by a linker control
file that has a file name extension of .Link. This extension is
mandatory. The control file contains commands that tell the
linker such things as what .Rael files are to be combined, what
the name of the output file is to be, what the file type and
creator codes for the output file are to be, and what the
starting location in an application is to be.

The simplest linker control file contains just two lines and is
all you need for linking most simple applications:

MyFile.Rel
$

These lines tell the linker to deal with one relocatable file
only, MyFile.Rel, and to create an output file called MyFile

Assembler Tools 65

that will contain the final application. MyFile.Rel is typically
created by using Asm to assemble your 68000 source code
file. It could, however, be created by compiling a program
written in another language, such as Pascal or C, that sup-
ports the MDS .Rel file format. The $ sign following the name
of the .Rel file signifies the end of the linker control file and is
required. If you are using MDS 2.0, you can also use the /END
command.

If you’re linking several separate .Rel files together, you'll
include all their names before the final $ sign. The name of the
application file created will be the name of the first .Rel file
specified, without the .Rel extension. If you don’t place a disk
prefix in front of the name of a .Rel file, Link expects to find it
on the same disk volume that holds the linker control file.

Comment lines within a linker control file begin with a semi-
colon. Unlike Asm (or RMaker), you cannot use an asterisk
instead. Another important difference is that comments can-
not be tacked onto the ends of lines containing linker control
statements.

There are only a few linker commands you need to master.
A discussion of these commands follows.

Linker Code Modules

The names of all .Rel files containing the application’s pro-
gram code must appear at the beginning of the control file.
Each name must appear on a separate line and you can omit
the .Rel extension if you wish. For example, if you want to
link filename1.rel to filename?2.rel, place the following two
lines at the beginning of the linker control file:

filenamel.Rel
filenanme2d

The name given to the application created by this linker
control file will be filename1 unless you choose another using
the /OUTPUT command. It is the same as the name of the
first .Rel file, but without the .Rel extension.

66 Mac Assembly Language

The linker combines separate code modules into a single
resource of type CODE, called a segment. Its resource identi-
fication code is 1. (Resources are described later in this chap-
ter.) The maximum size of a code segment is 32K.

If you want to create another code segment, enter a line in
the linker control file that contains just the < symbol, and fol-
low it with lines containing the .Rel files to be linked into the
new code segment.

The main reason for breaking a program into several code
segments is to save memory space. Only when code in one
segment calls code in another segment is that other segment
loaded into memory. At the same time, the space occupied
by the calling segment is normally freed up using the
_UnLoadSeg trap instruction. Unless you're short of memory
space, or your program is larger than 32K, you won't have to
bother with creating multiple code segments.

File Type and Creator Code

The Macintosh operating system uses two four-character
sequences called the file type code and the creator code (or
signature) to identify a file.

The file type code identifies the type of information stored
in a file so that an application can interpret it properly. Some
common file type codes are PNTG (a MacPaint document),
TEXT (a file containing lines of text), and APPL (a file con-
taining code for an application).

The creator code serves to mate a file to the application
that created it in the first place. When a non-application file
is opened, the Finder reads its creator code, launches the
application with the same creator code (its file type code is
APPL), and passes the name of the non-application file to it
so it can be opened. MacPaint, for example, stores a creator
code of MPNT in its application file and all data files it cre-
ates. When you double-click a MacPaint document, the
MacPaint application is launched and the document is
opened.

Assembler Tools 67

File type codes and creator codes for commercial products
must be approved by the Macintosh Technical Support Divi-
sion of Apple Computer, Inc. to ensure uniqueness. That
doesn’'t mean you can’t use file type codes that are already
taken. It just means the internal structure of any file you cre-
ate with that file type code should be the same as for stan-
dard files of that type. For example, you can use a file type
code of TEXT as long as your file contains lines of text in
ASCIl-encoded form.

For a file that defines an application, the file type code is
always APPL and this is the default used for Link’s output
files. The creator code can be anything you like (as long as no
other application uses it). If you don’t specify one, the linker
chooses a null creator code (four zero bytes).

Use the /TYPE command to override these defaults. For
example, if you are linking files to create an application that
has a creator code of DEMO, place the command:

/TYPE 'APPL' 'DEMO!

in the linker control file. Note that the first code after /TYPE
is the file type code and is followed by the creator code. They
must both be exactly four characters long and enclosed in
single quotation marks; shorter strings must include padding
blanks.

Output File

The name of the file created by the linker is usually the
same as the name of the first .Rel file linked, but without the
.Rel extension. If you want to use a different name, use the
/OUTPUT command. For example, to select a file name of
OurDemo, place the command:

/0UTPUT OurDemo

in the linker control file before the $ terminator.

68 Mac Assembly Language

Bundle Bit

The bundle bit must be set for those applications containing
ICN#, FREF, and BNDL resources that define custom
desktop icons to be used by the Finder. The bundle bit is part
of an attribute byte in the file’s directory entry on disk.

To set the bundle bit, use the command:

/BUNDLE

You'll see how to create custom icons for applications and
their documents at the end of this chapter.

Starting Location

The starting location of a program is usually the first
instruction in the first .Rel file specified. You can, however,
override this default using a linker command of the form:

!FirstLoc

where Firstloc is the label of the instruction in the program
that is to be called when the program is launched. There
must be no spaces between the exclamation mark and the
name of the label. With MDS 2.0 you can also use the /ISTART
command to achieve the same resuilt.

The only labels you can use as starting locations are those
that are defined as external in the source program. Use the
XDEF assembler directive to do this.

Linker Resource Modules
You can also link .Rel files containing nothing but resources
created with the RMaker resource compiler. To do this,

insert the line:

/RESOURCES

in the linker control file after the names of all the code files

Assembler Tools 69

being linked, then list the names of all the RMaker .Rel files,
one per line.

End of File

The $ sign (or, for MDS 2.0 only, the /[END command) is
used to signify the end of a linker control file. Place it on a line
by itself at the end of the linker control file. It is required.

The Resource Compiler

Each file on a Macintosh disk is actually made up of two
logical parts called the data fork and the resource fork. The
data fork contains anything you care to store in it, such as
parameters for an application, the text for a word processor
or editor, and so on. The data is placed there using a group of
operating system instructions making up the Macintosh File
Manager. Refer to Inside Macintosh for a description of those
instructions.

The resource fork contains one or more resources used by
an application. A resource is a chunk of data or program code
that defines such data structures as a character string, the
bit image for an icon, a character font, a cursor, the code for
a desk accessory, and the templates the toolbox uses to
build windows, menus, and dialog boxes. Even the code for
your application program is a resource.

The main advantage of using resources for the storage of
such items is that it makes your program more modular and,
hence, easier to debug. It's also very easy for someone else
to change the visual interface of your program without hav-
ing to rewrite the program code itself.

The Macintosh supports several general classes of
resources, each identified by a unique four-character name.
Some of the more commmon ones are summarized in Table 2-6.
Note that the operating system distinguishes between
uppercase and lowercase characters; that means a MENU
resource, for example, is not the same as a Menu resource.

70 Mac Assembly Language

Table 2-6. Common Resource Types Used by the Macintosh.

Resource
Type Meaning
|
* ALRT Alert box template
* BNDL Application bundile
CDEF Control definition
* CNTL Control template
CODE Assembly language code segment
CURS Cursor
* DITL List of items in a dialog or alert box
* DLOG Dialog box template
DRVR Device driver or desk accessory
DSAT System startup alert table
EFNT Font selection for MDS Edit
ETAB Tab settings for MDS Edit
FCMT “Get Info” comments
FKEY Function key routine (command-shift-number)
FOBJ Folder information
FONT Character font
* FREF File reference
FRSV Reserved font
FWID Font widths
ICN# Icon list
ICON Icon
INIT Initialization routine
INTL International utilities
KEYC Keyboard configuration

MBAR Menu bar
MDEF Menu definition routine
* MENU Menu

PACK Package of routines
PAT Pattern
PAT# Pattern list
PDEF Printing routines
PICT Picture
PREC Printing record
SERD Serial drivers
* STR String
* STR# String list
WDEF Window definition routine
* WIND Window template

* These resource types are explicitly supported by RMaker.

Assembler Tools 71

Each resource is associated with a resource identification
code, a number from —32768 to +32767. All codes from
—32768 to + 127 are reserved for use by the operating sys-
tem, so you shouldn't use them for application resources
unless they are intended to replace system resources. The ID
code you assign to a resource must be unique within the
group of resource files of a certain type open at any given
time. If there is duplication, only the first resource located
with that number will be available.

As soon as an application starts running, two resource files
are automatically opened: the operating system’s (located in
the resource fork of a file called System on your startup disk)
and the application's. When the application requests a
resource (this is done by specifying the resource type and
identification code) its own resource file is searched first and,
if the resource isn't found, the operating system resource file
is searched.

The application can also explicitly open other resource files,
such as those associated with an open data file. If it does
this, the search for a given resource begins with the last file
opened and continues down through to the System resource
file until the resource is found.

As shown in Figure 2-2, each resource has an attribute
byte that reflects some of its properties. The property asso-
ciated with a particular bit in the attribute byte is asserted if
the bit is set to one. The attribute byte is usually set to zero
when you create the resource, but you can adjust it to suit
your requirements.

The only two attributes you're likely to deal with are
ResPreload (bit 2) and ResPurgeable (bit 5). If the
ResPreload bit is set to 1, the resource is loaded into memory
as soon as the resource file in which it is stored is opened.
This means if your resources are part of the application file
itself (the usual case), they will all be loaded into memory as
soon as you run (or launch) your application from the Finder.
If you don’t set the ResPreload bit, the disk will be accessed
each time you use a resource for the first time, and your
application may appear to run more slowly.

If the ResPurgeable bit is set to 1, the resource may be

72 Mac Assembly Language

7|16 |5 4|3 |2 110

[reserved]—J [reserved]

ResChanged

ResPreload

ResProtected

ReslLocked

ResPurgeable

ResSysHeap

Figure 2-2. The Format of the Attribute Byte for a Resource.

removed, that is, purged, from memory if the operating sys-
tem runs out of space. If the resource is purged, it can't be
used until it's loaded into memory again. The Macintosh trap
instructions that use resources automatically detect when a
resource has been purged and will reload the resource as
required. If your application program needs plenty of mem-
ory, mark your resources as purgeable so that space can be
freed up when required. The only penalty is that you will
encounter more disk activity when purged resources are
later reloaded.

Using the RMaker Resource Compiler

In this section you'll learn how to use the MDS resource
compiler, RMaker. This program is primarily used to append
the resources defined in an RMaker source code document to
an application file. It can also be used to create a separate
resource file for use by other applications, or to create a .Rel
file suitable for linking by Link using the /RESOURCES
command.

Assembler Tools 73

Name of Output File

The first non-comment and non-blank line in a RMaker
source file (we'll call this file the input file) must contain the
name of the file in which the resources are to be stored. The
line that follows must either be blank or contain a sequence
of eight characters defining the file type code (first four char-
acters) and the creator code (second four characters).
(Comment lines begin with an asterisk.)

There are three general forms of names you can specify,
each causing a slightly different result:

Ifilename. If you place an exclamation mark in front of a
file name, the resources are appended to the file with that
name. Use this form of name to add your resources to the
application file created by the linker so your program code
and all its resources will be in the same file. This is the form
you'll probably use most often.

filename or filename.xxx. If you specify a file name with or
without an extension (other than .Rel), RMaker stores the
resources in a standard resource file. By convention, you
should use a name extension of .Rsrc to identify such a file.

filename.Rel. If you specify a .Rel file name extension,
RMaker saves the resources in the file in the same format
the assembler uses to save relocatable object code. This
means the file can can be linked with Linker by specifying its
name after the line containing the linker's /RESOURCES
command.

No other information may appear on the line containing the
file name. In particular, comment fields like the ones used
with TYPE commands are not permitted. (See page 74.)

Including Other Resource Files
You can direct the resource compiler to combine the

resources in other files with the current file by using the
INCLUDE statement. The format is:

INCLUDE filename

74 Mac Assembly Language

where filenane is the name of the file to use. The included file
name can be any file containing resources, including an appli-
cation file created by Link. The code for an application is
stored in a series of two or more CODE resources.

TYPE Statements

Most of an RMaker input file is made up of several TYPE
statements that define the data in the resources. The format
of a TYPE statement is as follows:

TYPE XXXX ;1 XXXX = resource type code
[namel,ID [(aa)l ;;resource name, ID, attribute
data for resource ;;the resource data goes here

The brackets enclose optional parameters (don't include
them in your file!), which means you don’t have to assign a
name to a resource and you don't have to specify the value of
the resource’s attribute byte (but you do have to specify a
resource ID). The default value for the attribute byte is zero.

In general, each TYPE statement must be entered on one
line. You can indicate a continuation to the next line, how-
ever, by typing in + + at the end of the line. Comments follow
two successive semicolons (;;) and are ignored by RMaker.
For example, to define a STR# (string list) resource, use a
TYPE statement like the following:

TYPE STR# ;itype code is 'STR#!
MyStrings,128 (32) ; ;Name, ID, attribute

2 y;Data: number of strings

The first line ++ ;:1st resource string

is a long one ;i(continuation of 1st string)

The last line is short ;;2nd resource string

Notice that all numbers used in RMaker source statements
must be decimal numbers, with a few exceptions that I'll
point out as we encounter them. Strings are entered without
quotation marks and are converted to ASCIl codes by
RMaker. To enter the ASCIl code for a character that can’t

Assembler Tools 75

be entered directly from the keyboard, use the command \ xx
where xx represents the two hexadecimal digits of the ASCII
code. For example, use \14 to enter the “Apple” symbol
CASCII $14).

You can define muiltiple resources of the same type with a
single TYPE command. Do this by following the TYPE state-
ments for a resource definition with a blank line and beginning
the next resource definition with the name, ID, attribute line.

Of the many resources used on the Macintosh, only 12 are
directly supported by RMaker (they are marked with aster-
isks in Table 2-6). You’'ll see how to use most of these later in
this book.

It is possible, however, to create any resource by equating
it to the special PROC (procedure) or GNRL (general)
resource types supported by RMaker. This is useful if the
resource is simply an assembly language program or if you
know the internal structure of the resource you're trying to
create. The structure of standard resources not directly sup-
ported by RMaker is available in Inside Macintosh.

Let’'s look at how to use the special PROC and GNRL
resource types.

PROC A PROC (Procedure) resource contains an execut-
able assembly language program. Its RMaker format is as
follows:

Type PROC
(128 (32) ;:ID followed by attribute
AProgranm ;;Name of program containing code

Notice that the attribute value in this example is 32 (that is,
bit 5 of the attribute byte is 1). This means the resource is
purgeable.

The PROC resource is made up of the entire contents of
the first code segment in the specified program, except the
first four bytes. (These bytes are used by the operating sys-
tem only and are not part of the code.) This segment has a
CODE resource ID of 1, is created by the linker, and contains

76 Mac Assembly Language

the application’'s 68000 assembly language instructions.
Other code segments are ignored by RMaker.

Other Macintosh resources that contain executable code
can be created with RMaker by equating their names to
PROC as follows:

Type PACK = PROC ;3 "PACK is like a PROC resource"
1128
MyPackage

This resource definition creates a PACK resource (a
resource containing a group of related assembly language
subroutines) and stores the code in MyPackage in it. Another
type of resource that contains executable code is DRVR (a
device driver or a desk accessory).

GNRL The GNRL (General Resource) resource type pro-
vides another way to define resources that RMaker doesn’t
explicitly support. These could be standard system resources
like ICON, FONT, or MBAR, or your own custom resources.

The first part of a TYPE statement using GNRL looks like
this:

Type MINE = GNRL
1128 ; ;Resource ID

This means we're about to define a new resource type
called MINE. After the line containing the resource ID, you
can use six element type designators to indicate the format
of subsequent data lines in the definition. They are:

The following numbers are hexadecimal

The following numbers are decimal words (integers)

The following numbers are decimal long words

The following string is preceded by a length byte

Read the following resource from a file (the format of the fol-
lowing line is: filename type ID)

.S The following string has no length byte

PUE -

An element type designator must appear on a line by itself,
although comments can be included.

Assembler Tools 77

Let’'s use these designators to continue our definition of the
MINE resource:

H ; yhexadecimals follow

OFFF 7FFF

I ;;decinal words follow

123 343

.L ;;decimal long words follow
70000 83423

.P ;;length+string

Your name here

.R ;;read in ICON resource #244
Custom.Rsrc ICON 244 ;;from a file called Custom.Rsrc
.S ;;string without length

No length string

Of course, since this is a custom resource, the meaning of the
contents are completely up to you. If you assign a reserved
resource type to GNRL, you will have to make sure you store
data in the form and order described in Inside Macintosh.

In later chapters you’'ll see how to use GNRL to create
MBAR (menu bar), ICON, and ICN# resources.

The Executive Program

You use the Exec program to combine the many chores
associated with the assembly process into one simple step.
To do this, first use Edit to create an executive control file
whose file name has a .Job extension. Each line in this file is
made up of the following parts in this order:

® the name of an application to run

® the name of the file to be opened by the application when it
starts up

® the name of the application to run if the first application ends
normally

® the name of the application to run if the first application ends
with an error

78 Mac Assembly Language

Each part of the line is separated from the next by a single
tab character. For example, when the executive encounters
the following line:

Asn OurCode.Asn Exec Edit

it loads the assembler and begins assembling the file called
OurCode.Asm. If the assembly ends with no error, control
returns to Exec so the next line in the .Job control file will be
dealt with; otherwise, Edit is called up to enable you to fix
your error. In a typical scenario, the next lines in the .Job file
would be of the form:

Link OurCode.Link Exec Edit
RMaker OurCode.R Exec Edit

This causes the final application to be linked after assembly
and the resources to be created.

Search Paths

A Macintosh with 128K ROM supports a hierarchical disk
directory structure called HFS. In an HFS system, several
directories may be set up on one disk, each containing many
files, and directories may be created within other directories.
To uniquely identify a file, you must specify its name and the
sequence of directories to pass through to reach its direc-
tory. The identifying string, called a pathname, is made up of
the directory names, each separated from the next by a
colon, followed by the file name.

For example, suppose you have a disk called MyDisk. MyDisk
is also the name of the first directory on the disk, called the
root directory. If you have a directory called Work within the
root directory and a file called Demo.Asm within Work, the
pathname describing the file is MyDisk:Work:Demo.Asm.

A problem arises when using MDS 2.0 with an HFS system:
how to tell the assembler tools where to find input files and

Assembler Tools 79

where to store output files. One solution is to specify a com-
plete pathname for each file, but this is awkward. The recom-
mended solution is to specify a simple file name and let the
assembler tool read the file from, or store it to, a default
directory.

Each class of file an MDS 2.0 assembler tool might use is
associated with a default search path, as described in the
MDS users manual. The search path is a list of the directories
a tool will search to locate an input file (or a directory for an
output file), in search order. Each directory is referred to in
relative terms, usually using the source file directory, the
root directory, or the launch directory (the directory in which
the assembler tool is stored) as a reference point.

For example, the first three directories in the search path
for Asm INCLUDE files are *L:MDS Includes:, *S::MDS
Includes, and *S:MDS Includes. *L symbolizes the launch
directory and *S the source directory. Two colons in a row,
as in the second directory, means “back up one directory”.
When you use the INCLUDE command in an assembler source
file, MDS first looks for the file in a directory called MDS
Includes within the launch directory. If it's not there, the
search continues with a similarly named directory within the
directory in which the source directory is defined. The third
choice is the MDS Includes directory within the source direc-
tory. The search continues until the file is found or the search
path is exhausted.

The default search paths can be changed using an applica-
tion called the Path Manager. You should resist tampering
with the standard defaults, however.

MDS 1.0 does not support search paths because it works
with 'flat’ disks (called MFS disks) only, disks which have only
one directory. To tell MDS to use a certain disk when reading
or writing a file, precede the file name with a “DiskName:”
disk name prefix. If you don't specify a disk name, all the
assembler tools, with one exception, will use the disk on
which the source file is stored when it looks for input files or
creates output files.

The exception is RMaker. It expects input files (INCLUDE

80 Mac Assembly Language

files and files to which it is appending) to be on the same disk
as RMaker itself, and it stores output files on the RMaker
disk. This can cause problems if your assembler tools are on a
disk in one drive and your source files are in a second drive
because RMaker will not find its input files unless you use disk
names to override the default. To avoid having to use disk
names, put a copy of RMaker on your data disk and run it
from that disk.

Equate, Trap, and Macro Files

The MDS disk contains several definition files containing
standard symbolic names for various items often used in
assembly language programs: addresses of system global
variables, offsets into data structures, bit flags, data masks, -
and other numeric quantities. There are also files defining the
standard toolbox and operating system trap instructions, and
useful sets of macros.

You should always use these symbolic names in your own
programs instead of absolute numbers or addresses because
the programs will be easier to understand and debug. And if
you need to use a number describing a system parameter,
don’t assume it will be a specific value; always read its value
from the system variable given in the equate file. For exam-
ple, don't assume the base address of the screen memory is
$7A700—read it from the ScrnBase variable instead, so the
same program will work properly on a 128K Macintosh or a
Macintosh Plus.

The names, and general contents, of the major symbol defi-
nition files that come with MDS, are as follows:

ATalkEqu.txt ;AppleTalk equates

SysEqu.txt ;Operating system equates
ToolEqu.txt ;Toolbox equates

QuickEqu.txt ;Quickdraw equates
FixMath.txt ;Fixed point math traps/macros
FSEqu.txt ;Filing system equates

PackMacs.txt ;Macros for standard packages

Assembler Tools 81

PrEqu.txt ;Printing system equates

SysErr.txt ;System error numbers

TimeEqu.txt ;Time Manager equates

Traps.txt ;Toolbox/operating system/QuickDraw traps
SANEMacs. txt ;Standard Apple Numeric Environment macros
MacDefs.txt ;Macros for translating Lisa macros

Note: The file Traps.txt was broken into three files, called
SysTraps.txt, ToolTraps.txt, and QuickTraps.txt, in ver-
sion 1.0 of MDS.

You should make a point of printing out the contents of
each definition file as soon as you buy your MDS assembler
because you're going to use the symbols they contain again
and again. To assemble the pre-defined symbol definition files
with your application source code, use the INCLUDE directive
in your source code.

The MDS also contains several packed symbol files, identifi-
able by their .D file name extensions:

ATalkEqu.D ;AppleTalk equates

FSEqu.D ;File system equates
QuickEqu.D ;Common Quickdraw equates
QuickEquX.D ;All Quickdraw equates
SysEqu.D ;Common operating system equates
SysEquX.D ;All operating system equates
SysErr.D ;Common error number equates
SysErrX.D yAll error number equates
TimeEqu.D ;Time Manager equates
ToolEqu.D ;Common toolbox equates
ToolEquX.D ;All toolbox equates

Traps.D ;All trap instructions

Note: The file Traps.D was called MacTraps.D in version
1.0 of MDS.

These files contain the same information as their unpacked
(.txt) counterparts, but are more convenient to use because
they take up less disk space and assemble faster. They can-

82 Mac Assembly Language

not, however, be viewed using the editor. Remember that
you can create your own packed symbol files using the
.DUMP directive and the PackSyms program.

The most useful definition files are the ones containing the
trap instructions (Traps.txt) and the standard equate files
(SysEqu.txt, ToolEqu.txt, and QuickEqu.txt). You should
make it a point to always include the packed form of these
files (Traps.D, SysEqu.D, ToolEqu.D, and QuickEqu.D) at the
beginning of every program you write so they're always
there when you need them.

If you do include standard definition files in your programs,
don’'t redefine the symbols they contain, or use the symbols
for instruction labels. (It's easy to do this accidentally if you're
not familiar with the contents of the included files.) If you do,
you will see either a “Multiply defined symbol” or “lllegal line”
error when the program is assembled.

The Pascal Connection

In the early days of the Macintosh, most applications were
written in the Pascal language; alternative development tools
simply were not available at the time. It should not come as a
surprise, therefore, to learn that most of the hundreds of
subroutines in the Macintosh ROM are designed to receive
parameters and return results in accordance with Pascal
specifications. In fact, Apple's standard Macintosh software
reference manual, Inside Macintosh, documents calls to these
subroutines in terms of two Pascal constructs, procedures
and functions, and the parameters are defined in terms of
Pascal data types.

Much of the preliminary work in developing an assembly
language program on the Macintosh is determining how to
emulate the effect of a Pascal procedure or function call
when calling a ROM subroutine with a $Axxx trap instruction.
In this section you'll see how to approach this problem.

Assembler Tools 83

First of all, let’s look at the general form of a Pascal proce-
dure and function. A Pascal procedure is simply a call to a sub-
routine that performs some action but which does not return
a separate result. (If parameters are passed by address,
rather than by value, a result can be returned through a spe-
cific parameter.) The general form for a procedure call is:

PROCEDURE name (parml : typel ;
parmg : typecd ;
parnN : typeN);

where nane is a character string identifying the procedure, parnx
X =1, 2, ..., N) are the names of the parameters for the
procedure, and typex are the data types for the parameters.
The standard data types are integers, characters, real num-
bers, and so on. Other, more complex data types can be cre-
ated from these standard data types, as you’'ll see below.

A Pascal function is a call to a subroutine that returns a
result. Its form is similar to that for a procedure:

FUNCTION name (parml : typel ;
parm2 : typee ;
parmN : typeN) : type;

The type on the far right represents the data type of the result
generated by the function.

The function and procedure parameters are usually specific
values. If a VAR identifier is placed in front of any parameter
name in the Pascal description, however, the address of the
location containing the parameter must be passed to the sub-
routine, not its value. Addresses are also passed if the
parameter data structure is longer than four bytes or if a
result is to be returned through the parameter.

The fundamental data types supported by Pascal are
shown in Table 2-7.

84 Mac Assembly Language

Table 2-7. The Fundamental Data Types Supported by Pascal.

Stack Size
Data Type (bytes) Description

|

INTEGER 2 two’s complement integer

LONGINT) two’'s complement long integer

BOOLEAN 2 Boolean (true/false) value (bit O of the
high-order byte contains the value;
1 = true, O = false)

CHAR 2 ASCll-encoded character (in the low-
order byte)

STRINGInNn] q the address of a sequence of bytes
preceded by a length byte

SignedByte 2 one-byte signed number in the low-order
byte

Byte 2 one-byte unsigned number in the low-
order byte

Ptr q a pointer to (the address of) a data
structure

Handle q a handle to (the address of the pointer
to) a data structure

Record 2o0r4 if the data structure (the record) is 4
bytes or less, the value itself; if longer,
a pointer to the data structure

VAR parameter q the address of the parameter

Pascal procedure and function calls to the subroutines in
the Macintosh ROM are handled in one of two ways: they are
either stack-based or register-based. The exact method used
is important in determining the equivalent assembly language
instructions.

Stack-Based Subroutines

Of two classes of subroutines in the Macintosh ROM, user
interface toolbox subroutines and operating system subrou-
tines, it is the toolbox subroutines that are usually stack-
based. This means the ROM subroutine expects to find its
parameters on the stack when it takes control. (You must
push them on the stack in the order they occur in the rou-

Assembler Tools 85

tine's Pascal definition.) It also means that any function
results are returned on the stack. The space each standard
Pascal data type occupies on the stack is shown in Table 2-7.

Let's look at a Pascal procedure call to a stack-based ROM
subroutine so you can see how to convert it into the equiva-
lent assembly language code:

PROCEDURE DragWindow (theWindow : WindowPtr;
startPt : Point;
boundsRect : Rect);

The first thing to determine is the name of the assembly
language trap instruction corresponding to this procedure. In
almost all cases, this name is the same as the Pascal proce-
dure name, except it is preceded by an underscore character
(the names are defined in the Traps.D file). Thus, the trap
instruction for the above example is _ DragWindow. Unfortu-
nately, this simple rule is not always followed; a few Pascal
and trap instruction names are slightly different. These dif-
ferences are noted in Inside Macintosh.

The DragWindow procedure has three parameters: one of
type WindowPtr, one of type Point, and one of type Rectangle.
WindowPtr is really of type Ptr (by convention, so is any other
parameter whose name ends in Ptr), so it simply represents
the address of a data structure. The other two data types are
not fundamental Pascal data types referred to in the previous
section. They are, however, defined in terms of these data
types; it's just a question of knowing the definition. Table 2-8
shows the definitions of some of the common custom data
types used with the Macintosh trap instructions.

Table 2-8. Examples of Some Custom Data Types Used by
the Macintosh Trap Instructions.

Point: Integer (vertical position)
Integer (horizontal position)
Rectangle: Integer (top position)

Integer (left position)

86 Mac Assembly Language

Table 2-8. continued

Integer (bottom position)
Integer (right position)
BitMap: Ptr (pointer to a bit image)
Integer (width of bit image in bytes)
Rectangle (boundary rectangle)
Pattern: Integer (rows 1,2 of pattern)
Integer (rows 3,4 of pattern)
Integer (rows 5,6 of pattern)
Integer (rows 7,8 of pattern)
PenState: Point (pen location)
Point (pen size)
Integer (pen mode)
Pattern (pen pattern)

The three pushes needed for DragWindow are:

MOVE.L theWindow,-(SP) ;pointer (long word)
MOVE.L startPt,-(SP) ;point (long word)
PER boundsRect ;address of rectangle coordinates

(In this example, theWindow, startPt, and boundsRect are
constants defined using the DC assembiler directive.)

The first parameter is a pointer, so we have to push a long
word on the stack. The second parameter is a defined data
type called point; it is made up of two words (see Table 2-8),
the first for the vertical coordinate and the second for the
horizontal coordinate, so we push another long word contain-
ing the values. The third parameter is of type rectangle, a
data structure longer than four bytes. Such data structures
are always passed by address rather than value; this means
we have to push an address to this structure rather than the
coordinates of two opposite corners of the rectangle itself.
This is done using the PEA (push effective address)
instruction.

Finally, to make the call, use the trap instruction:

_DragWindow

Assembler Tools 87

This trap instruction is defined with the .TRAP directive in
one of the system trap files. Its definition can be incorporated
in your program using an INCLUDE directive at the start of
your source file.

Pascal functions are handled quite similarly to procedures.
The key difference is that Pascal functions make room for a
result on the stack by decrementing the stack pointer before
calling a ROM subroutine, therefore your assembly language
program must do the same. This is done before its parame-
ters are pushed on the stack. The stack size of the result is
always one word or two, depending on the ROM subroutine,
so you will usually use CLR.L —(SP) or CLR —(SP) to do this.

After calling a ROM subroutine that returns a result, you
must remember to remove the result from the stack. If you
don't do this before executing a return from subroutine (RTS)
instruction, you will almost certainly crash the system. (RTS
expects the last word on the stack to be the address of the
code following the JSR or BSR instruction that called the
subroutine.)

For example, the assembly language equivalent of the
function:

FUNCTION GetNewWindow (windowID : INTEGER ;
wStorage : Ptr ;
behind : WindowPtr) : WindowPtr;

is:

CLR.L -(SP) ;Push long word for ptr result
MOVE windowID,-(SP) ;Push integer
MOVE.L wStorage,-(SP) ;Push pointer

MOVE.L behind,-(SP) ;Push pointer
_GetNewWindow ;Call ROM
MOVE.L (SP)+,AO ;Pop the result into AO

In this example, windowID, wStorage, and behind are constants that
were defined using the DC assembler directive.

The size of the result of a Pascal function call is indicated by
the data type referred to at the end of the FUNCTION decla-

88 Mac Assembly Language

ration. In the case of GetNewWindow, we are dealing with a
pointer that has a size of four bytes. Thus, the first thing to
do is clear space for it on the stack with a CLR.L —(SP)
instruction. You could have also done this using a SUBQ.L
#4,SP or a MOVE.L #0,—(SP) instruction. The parameters
are then stacked just as they are for a procedure call, before
executihg the trap instruction. Finally, pop the result off the
stack into the AO register.

Space for a word result can be allocated with a CLR —(SP)
instruction. Some programmers allocate space for a
Boolean (true/false) result with a CLR.B —(SP) instruc-
tion, but this actually causes the 68000 to reduce SP by
two bytes to ensure that SP contains an even address.
Why use the CLR.B notation? It emphasizes the fact that a
true Pascal Boolean parameter uses only the least-signifi-
cant bit in the high-order byte of a word.

For both procedures and functions it is critically important
to ensure that parameters of the proper size are pushed on
the stack and results of the proper size are popped from the
stack. If you use incorrect sizes, the stack will soon become
damaged and the system will crash.

Stack-based calls preserve all registers except AO, A1, and
A7 (the stack pointer), and DO, D1, and D2. This means you
can safely store intermediate results in A2-A5 or D3-D7
before calling a trap instruction.

Register-Based Subroutines

Most of the calls to the operating system subroutines in the
Macintosh ROM are not made by passing parameters and
results on the stack. Rather, they are passed using certain
68000 registers. These subroutines typically handle low-level
system chores such as memory management. (See Chapter
4 for a discussion.)

Assembler Tools 89

In cases where only one or two parameters are involved,
the AO and DO registers are used to pass the parameters. AO
is used for addresses and DO for data. If you're dealing with
more than two parameters, the address of a parameter
block is passed in AO instead. In either case, all other regis-
ters (except A7) are preserved by a register-based subrou-
tine; there’s no need to save and restore them yourself.

On exit from a register-based subroutine, the DO register
contains the returned result, which is usually an error code. If
it is zero, no error occurred. Since each such subroutine exe-
cutes a TST.W DO (test for DO zero) instruction, a BEQ
(branch on zero) instruction can be used to transfer control if
no error occurred.

Putting It All Together

The purpose of this section is to walk you through the pro-
cess of developing an actual application program using the
MDS. In so doing, you’'ll produce a program that creates a
large window on the screen and a menu bar with an Apple
menu and a File menu. The File menu contains a Quit com-
mand you can use to exit the program and return to the
Finder. Use this program as a shell for some of the program-
ming examples presented in later chapters where all you
need is a window in which to display a result.

The first step, of course, is to use Edit to create the pro-
gram source code file for Asm, the control file for Link, the
source code for the RMaker resource compiler, and the exec-
utive control file for Exec. The program we’re going to
examine is shown in Listing 2-2, the linker control file in Listing
2-3, the RMaker source file in Listing 2-4, and the executive
control file in Listing 2-5. They are called MainDemo.Asm,
MainDemo.Link, MainDemo.R, and MainDemo.Job, respec-
tively. At this point, it’'s not important that you understand
exactly what the assembly language code for the program
does, although the comments should help you.

90

Listing 2-2. The

MainDemo.Asn

Mac Assembly Language

Assemnbly Langquage Source File for

; This is a shell for a simple one-window application.
; It does not support desk accessories.

WindID EQU 128
AppleID EQU 1
FileID EQU 2

; START OF STANDARD HEADER...

INCLUDE ToolEqu.D
INCLUDE QuickEqu.D
INCLUDE SysEqu.D
INCLUDE Traps.D

;Window ID
yMenu ID for Apple menu
;Menu ID for File menu

;Toolbox equates
;QuickDraw equates
;Operating system equates
;Trap instructions

; Initialize the various Managers:

PEA -4(AS)
_InitGraf
InitFonts
InitWindows
_InitMenus
_TEInit
MOVE.L #0,-(SP)
InitDialogs

InitCursor

MOVE.L #$O0000FFFF,DO
_FlushEvents

; END OF STANDARD HEARER...

H CLR -(SP)

H PEA 'MainDemo.Rsrc!
H _OpenResFile

H MOVE (SP)+,D0

; Create and draw a window on the

;Start of QuickDraw globals
;Initialize QuickDraw

;Font Manager

;Window Manager

;Menu Manager

;TextEdit

;(no restart procedure)
;Dialog Manager

;We want "arrow" cursor

;Get rid of every event

;Use these instructions
; 1f you create
; a separate resource file.

screen:

MainDemo.

Listing 2-2. continued

CLR.L
MOVE

-(SP)
#WindID, - (SP)
MOVE.L #0,-(SP)
MOVE.L #-1,-(SP)
_GetNewWindow

Assembler Tools

;Space for returned pointer
;Resource ID

;Store on heap

;-1 = front window

;Get window from resource file

; The next step is very important. It ensures that our new
; window is the active port so that we can draw in it. The
; pointer to the window is already on the stack.

_SetPort

; Create two standard menus:
CLR.L - (SP)
MOVE #RApplelD, - (SP)

_GetRMenu

MOVE #0, - (SP)
_InsertMenu

CLR.L -(SP)
MOVE #FileID, - (SP)
_GetRMenu

MOVE #0,-(SP)
_InsertMenu

_DrawMenuBar

; [insert your application code

GetEvent
CLR.B - (SP)
MOVE #$FFFF, - (SP)
PEA EventRecord
_GetNextEvent
TST.B (SP)+

BEQ GetEvent

;Make window the active GrafPort

;Space for handle
;Menu ID number
;Get Menu from resource file

;(0 = add to end)
;Add to menu bar

;Space for handle
;Menu ID number
;Get menu from resource file

7(0 = add to end)
;Add to menu bar

;Display menu bar

herel

;Leave space for Boolean result
;Allow all events

;Results are returned here
;Check for an event

;Pop and test the result flag
;Branch if no pending event

91

92 Mac Assembly Language

Listing 2-2. continued

MOVE EventRecord+evtNum,D0 ;Get event type code

CMP #mButDwnEvt,D0 ;Is it a button-down event?
BNE GetEvent ;No, so branch

CLR -(SP) ;Space for result

MOVE.L EventRecord+evtMouse,-(SP) ;Where info
PEA ClickWindow ;VAR window involved
_FindWindow ;Where was button pressed?
MOVE (SP)+,DD ;Get result

CMP #InMenuBar,DOD ;Pressed in menu bar?

BNE GetEvent ;No, so ignore

; See if "QUIT" was selected from File menu:

CLR.L - (SP) ;Space for result

PEA EventRecord+evtMouse ;Where
_MenuSelect ;Get menu selection
MOVE (SP)+,Db ;Save menu number in D&
MOVE (SP)+,D0 ;Discard item number

MOVE #0, - (SP)

_HiliteMenu ;Highlight from menu title
CHP #FileID,Db ;In the FILE menu?
BNE GetEvent ;No, so branch

; must have selected QUIT command:

RTS ;Return to Finder

; The application constants:
EventRecord DCB.B EvtBlkSize,0 ;Space for event record

ClickWindow DC.L 0 ;Pointer to window

Assembler Tools

Listing 2-3. The Linker Control File for MainDemo.

MainDemo.Link

H
; Link this file to create an application
; (without resources).

MainDemo

; Insert "/Bundle" to set the bundle bit
$

Listing 2-4. The RMaker Source File for MainDemo.

MainDemo.R

The next command appends the resources to the application:

*
*
* Compile this after assembling and linking MainDemo.Asm
*
*
!MainDemo

Type MENU

'd ; sResource ID

\14 ;;Title is the Apple symbol (ASCII $14)
About this demo... ; sAbout box

/2 Resource ID

H
File s Menu Title

Quit ;only item is "Quit"
Type WIND
(128 ; sResource ID
Development ;;Title for Window
40 S 332 so2 ;;Window coordinates (TLBR)
Visible NoGoAway ;;Visible window/ no goaway box
4 s Window ID. 4 = title, no grow box
0 ; ;User-definable item (not used)

Listing 2-5. The Executive Control File for MainDemo.

Asnm MainDemo.Asnm Exec Edit
Link MainDemo.Link Exec Edit
RMaker MainDemo.R Exec Edit

94 Mac Assembly Language

What is important is to know how to convert this group of
source files into an executable program. To begin, start up
the MDS assembler. This can be done in several ways,
depending on where you are in the MDS system:

® You can double-click the Asm icon from the Finder's desktop,
or click it and select Open from the Finder’s File menu.

® If you're using Edit, Link, RMaker, or Exec, you can select the
Asm command from the Transfer menu. If you do this from
Edit, the current file being edited is assembled.

When the assembler takes over, you must specify the
name of the file to be assembled by selecting the Open...
command from the File menu. (This isn't necessary if you're
editing the file and you transfer to Asm directly.) Select the
file called MainDemo.Asm.

The assembly process then begins. As it proceeds, the
name of the file being acted on is displayed in a box at the top
of the screen. This is normally the name of the main source
file, but it will change to that of an included file when
necessary.

The assembly process creates a relocatable object code file
called MainDemo.Rel. The next step is to convert this file into
an application using Link. To do this, go from the assembler to
the linker by pulling down the Transfer menu and selecting
LINK. Then select the linker control file called MainDemo.Link
and wait for the linking procedure to end. When it does, an
application file called MainDemo will have been created.

At this point, you're still not done because the application
makes use of resources for a window and two menus that
have not yet been added to its file. Add them by moving to
the resource compiler by selecting the RMAKER command
from the Transfer menu, and then selecting the MainDemo.R
file to work with.

The MainDemo.R file tells the resource compiler to append
the menu and window resources to the application file cre-
ated with the linker (MainDemo). The RMaker command for
this is 'MainDemo. If you're using MDS 1.0, precede the file
name with the name of the disk on which it resides; if you

Assembler Tools 95

don’t specify the disk prefix, and RMaker is on a different disk
than MainDemo, you will see a “Can’t create the output file!”
error message.

When RMaker finishes, the application contains all the
resources it needs to operate, and you're done. Return to the
Finder by selecting the Quit command from the File menu and
then double-click the MainDemo icon to run the application.
When you do this, you'll see a large window entitled Develop-
ment covering most of the screen. To leave the application,
select the Quit command from its File menu.

Of course, you can also use the Exec program to automati-
cally perform all the steps needed to create the complete
application. To do this, double-click the Exec icon, choose the
Open Job File command from its File menu, then select the
MainDemo.Job file to act on. If all goes well, you'll eventually
return to Exec where you can choose the Quit command
from the File menu to return to the Finder so that you can
launch MainDemo.

Alternative Application Development Techniques

There are, of course, several other ways to create a com-
plete application. One alternative is to create .Rel modules
with both Asm and RMaker, then link the two modules
together into a final application with a linker control file of the
form:

MainDemo.Rel
/RESOURCES
Resources.Rel
$

To do this, change the !MainDemo output file name in the
RMaker source program to Resources.Rel before running
RMaker.

Another alternative is to use RMaker to store the
resources in an APPL file, and use an INCLUDE command to
incorporate the code resources in the output file created by

96 Mac Assembly Language

Link. To do this, replace the RMaker line containing
{MainDemo and the blank line following it with:

OurApplication
APPL?22?

and put the line:

INCLUDE MainDemo

at the end of the RMaker source file. This creates a complete
application called OurApplication that has a creator code of
?2?2?2? (which means undefined).

If you use the latter technique, you might want to use
Link's /ITYPE command to specify a file type code other than
APPL and a creator code of ?2?2?? for the MainDemo output
file. If you don't, the system will crash if you try to launch the
resourceless MainDemo application. The Finder will not try to
launch a non-application file that has a creator code of 22?272.

Table 2-9 contains a summary of the various types of files
that can be handled by Asm, Link, and RMaker, and the types
of output files they can create.

Table 2-9. Input and Output Files for the MDS Assembler

Tools.
Input Files Output Files
|
Asm * start with any text file * filename.Rel

containing 68000 source
code (a file name
extension of .Asm is
optional).

* the main source code
file can include any
textfile containing
68000 source code (a
file name extension of
.Asm is optional). Use
INCLUDE.

Table 2-9. continued

Assembler Tools 97

Input Files

Output Files

Link

RMaker

* the main source code

file can include any files

containing packed
symbols (a file name
extension of .D is
optional). Use
INCLUDE.

* start with the
FileName.Link linker
control file.

* the filename.Rel
modules to be linked
are named within the
control file.

* start with the
filename.R file
containing RMaker
source commands.

* the main .R source file
can include any
previously created
resource

* filename (root name of
first .Rel module).

* as specified by the
/OQUTPUT FILENAME
command.

* filename.Rel (a resource
file in linkable form).

* filename or
filename.Rsrc (a general
resource file).

* tfilename (append to
existing resource file).

Creating a Separate Resource File

In the early stages of program development you may find it
more convenient to compile your resources into a file other
than the one containing the application code. That way, if you
modify your resource definitions you won't have to waste
time assembling and linking the program source code again
(and vice versa); all you have to do is recompile the RMaker
source file and run the same application file again. This
speeds up the development process considerably.

98 Mac Assembly Language

To create a separate resource file in our example, replace
the !'MainDemo statement in the RMaker file with
MainDemo.Rsrc. This tells RMaker to store the resources in
a file called MainDemo.Rsrc on the disk.

You must also add the following four lines of code after the
initialization instructions in MainDemo.Asm:

CLR - (SP) ;Space for result

PER 'MainDemo.Rsrc! ;Name of resource file
_OpenResFile ;0pen the resource file
MOVE (SP)+,D0 ;Pop result (refnum)

This specifically opens the MainDemo.Rsrc resource file so
that its resources are available to the application. You don't
have to explicitly open a resource file if the resources are
stored in the same file as the application, because the
resource fork of the application file is automatically opened
when the application is launched.

There is also a _CloseResFile instruction you can use to
close a resource file. You rarely have to use it, however,
since all resource files are closed when the application ends
and returns to the Finder.

The Standard Program Header

The first part of the demonstration program contains a
sequence of instructions designed to initialize various groups
of toolbox and operating-system instructions, called Manag-
ers, used by the program. (We've actually initialized manag-
ers we don't use so that the same header can be used with
any program you might write.) It also flushes any pending
input/output (I/0) operations and turns on the standard
arrow cursor.

A similar header should be inserted at the beginning of every
application you write for the Macintosh. If you don’t do this, the

Assembler Tools 99

program will fail when you try to use a manager that has not
been initialized. The easiest way to insert it is to create the
header with the Editor and save it to a file called Header.Asm.
Then, when you write a program, just put the line:

INCLUDE Header.Asm

at the beginning of the file and the header will be loaded and
assembled when you assemble the file.

Applications and the Finder

Unless you include some special resources in an application
file, the Finder uses the generic icons shown in Figure 2-3
when it displays the application, or its data files, on the

desktop.

Application Document

Figure 2-3. The Generic Icons for an Application and a Document File.

It is possible to define alternative icons for the Finder to
use, however. To do this, you must first add four types of
resources to the application file: BNDL, FREF, ICN#, and a
resource whose type code is the same as the signature of
the application. You must also set the bundle bit in the appli-
cation’s disk directory entry using the /BUNDLE linker
instruction.

Let's go through the steps to follow to create the
resources the Finder needs to display the icon shown in Fig-
ure 2-4 for our example application.

100 Mac Assembly Language

EEEENESEEEEEEEEEEREEEREEEEE
=III. =Illl E' .'E =III= EEI 1 ==
P EE_ ITEi i H =
§ fie f B} | E i
P Ef 0§ ff | i
Semn" Zmumn 3 8 “mma" EEE=lllllll====lllllllllIEE
s e 7 BB E :
H N =8 GEa== H H
]] A § EEEE 1]]
1]] Hn EEER HER]
] i s £f e m -
EE E.lllllllll = ==== == =
1] u mm = HNEEE 1]]
H = =sgS 3 EEam H H
1] En s HEEEE 1] u
1]] [[T 111 1|]
= =........-....= ==== ===IIIIIIIIII==
The Icon The Icon’s Mask

Figure 2-4. A Custom Icon and its Mask.

Version Data Resource

The first step is to pick a four-character signature for the
application. We'll choose DEMO: we won't bother seeking
approval of the signature from Apple’'s Macintosh Technical
Support Division. You should get approval if you're developing
a commercial application. The first resource type we need to
define has the name DEMO,; it is called the version data (or
autograph) of the application.

By convention, the resource ID of the version data is zero.
The data it contains can be anything you like, so we'll use a
standard Pascal-style string (one preceded by a length byte)
containing the title of the application:

Assembler Tools 101

TYPE DEMO = GNRL ; ;DEMO is not pre-defined

0 ; sResource ID (0 by convention)
.P ;;Pascal-type string follows
Demo by Gary Little ;;The string itself!

Icon List Resource

Next, we have to design the icon for our application and
any files it creates. As you will see in Chapter 7, an icon is
represented by a series of 32 long words; each bit in a long
word reflects the state of a pixel in a row of the icon (1 =
black, O = white).

The Finder also requires a mask for each icon—the Finder
uses it to determine the appearance of the icon when it is
selected. For a selected icon, pixels in the icon that corre-
spond to white pixels in the mask are displayed as usual;
those that correspond to black pixels are inverted. (This is an
exclusive-or operation.) The mask is usually the same shape
as the standard icon, but is filled with black.

The icon definition and its mask must be stored in an ICN#
(icon list) resource, with the standard icon coming first. (See
Listing 2-6.) If you need to define more than one ICN#
resource, be sure to give each a unique resource ID.

File Reference Resource

The next resource to create is FREF (file reference). It con-
tains a list of each file type used by the application and the
local ID of the ICN# resource containing its icon definition.
This local ID is not the same as the resource ID; the mapping
of a local ID to an actual resource ID is defined within the
BNDL resource.

Here is the format of the RMaker source code for a FREF
resource:

Type FREF
+128 ; ;Resource ID for FREF
RAPPL D ;;File type APPL, local ID of ICN# = O

102 Mac Assembly Language

If you've defined a special icon for a data file used by the
application, you must create another FREF resource contain-
ing the file type code for the file and its local ID code. Its local
ID must be different from the one used for the application’s
icon.

Bundle Resource

The last resource to define is BNDL (bundle). It contains
three types of items:

® The application’s signature and the resource ID of its version
data (usually zero);

® a mapping of the local IDs for the FREF resources used by the
application to the actual resource IDs; and

® a mapping of the local IDs for all ICN# resources referred to in
the FREF resources to the actual resource IDs.

Here is the RMaker format of the BNDL resource file:

Type BNDL

1128 ;3 resource ID for BNDL

DEMO O 7+ Version data resource ID
ICN# ;3 resource type for next line
0 128 1 229 ;3 local to absolute ID mapping
FREF ;3 resource type for next line
0 228 1 129 ;3 local to absolute ID mapping

This example presumes we've created two ICN# and FREF
resources (one for the application and one for a data file it
uses).

Notice how the mapping scheme works: The line after the
one containing the name of the resource type is made up of
consecutive pairs of numbers. The first number in a pair rep-
resents the local ID and the second represents the actual
resource ID.

There is one last step you must take to ensure that your
application and its icons will integrate smoothly with the
Finder: You must set the application’s bundle bit. To do this,
put the /BUNDLE command in the linker control file.

Assembler Tools 103

When the Finder first encounters an application whose bun-
dle bit is set, it copies the version data, BNDL, ICN#, and
FREF resources from the application’'s resource file and puts
them in an invisible file called DeskTop. This is the file that the
Finder inspects to determine what icon to display for a file
associated with a given creator-type code (signature).

When the Finder transfers resources to DeskTop it checks
to see if the resource IDs of the application’s ICN# and FREF
resource IDs are already in use. If they are, it renumbers
them and changes the absolute IDs in the BNDL resource to
reflect the changes. Since the data in other Finder-related
resources use local IDs, they do not have to be modified—this
is why local IDs are used in the first place.

You can use the resource definitions in Listing 2-6 to create
a custom icon for our example program. Add these state-
ments to the RMaker source file in Listing 2-4, and add the
commands:

/BUNDLE
/TYPE 'APPL' 'DEMO!

to the linker control file in Listing 2-3 before assembling and
linking the application. The /TYPE commands sets the appli-
cation’s signature to DEMO, the one referred to in the BNDL
resource.

Listing 2-6. The RMaker Resource Definitions for a Custonm
Icon.

NewIcon.R

*
*
* These resources allow the Finder to display
* a custom icon for an application.

Type DEMO = GNRL ;;Version data (signature) resource
.0 ; ;Resource ID (0 by convention)
.P ;3B Pascal string follows

Demo by Gary Little

Type ICN# = GNRL ;;An icon list resource

104

Mac Assembly Language

Listing 2-6. continued

1128

H
0ooooooo
LE?DD4ED
11418020
11415510
11412510
11410510
11790510
11410520
11410510
11410510
11410510
LE?DO4ED
nooooooo
oooooooo
DOD3FFED
18040010
1804FF90
18050050
14050050
18050050
14050050
18050050
18050050
1804FF90
18040010
18040190
18040790
18040190
18050010
18040010
14040010
OOO?FFFO
3JFFFFFF8
JFFFFFF8
3JFFFFFF8
3IFFFFFF8
JFFFFFFA
3FFFFFF8
JFFFFFF8
3JFFFFFF8

; shexadecimals follow
;3This is the icon definition

;3This is the icon's mask

Assembler Tools 105

Listing 2-bk. continued

JFFFFFF8
JFFFFFF8
JFFFFFF8
3FFFFFF8
JFFFFFFa
oooooooo
LEOLFFFO
LED3IFFED
LEO3IFFED
LEO3FFED
LEO3FFEQ
LEO3FFED
LEO3FFEO
LEO3FFEO
LEO3FFEO
LEO3FFED
LEO3FFED
LED3FFED
LEO3FFED
LEO3FFED
1EO3FFEOQ
1EO03FFEOQ
LEO3FFEO
oooooooo

Type FREF
1128
APPL O ;;APPL file type uses ICN# O

Type BNDL ;;Bundle resource

, 128

DEMO O ;;Version data resource + ID
ICN#

0 128 ;;Local 0 = resource ID 128
FREF

0 128 ;;Local 0 = resource ID 128

106 Mac Assembly Language

Once you've defined an icon for an application, it's a bit
tricky changing it. That’s because the Finder doesn’t transfer
the application’'s icon to the DeskTop file every time it
encounters the application, only the first time it encounters
it. To force the Finder to use your redefined icon, you must
rebuild the DeskTop file from scratch by holding the Option
and Command keys when the application’s disk is inserted.

Chapter 3

The 68000 Instruction
Set

In this chapter we're going to take a close look at the com-
plete 68000 instruction set to determine exactly what each
instruction does. In so doing, you’ll see what addressing
modes can be used with what instructions and how instruc-
tions affect the five status flags in the condition code regis-
ter. Once you've mastered this information, you'll be ready to
develop assembly language programs on the Macintosh.

For the purpose of analysis, the 68000 instruction set will
be separated into seven logical groups:

Data Movement Instructions. These instructions move data from
place to place.

Program Control Instructions. These instructions control the order
in which the 68000 executes a program.

Arithmetic Instructions. These instructions add, subtract, multiply,
divide, and negate binary numbers, or add, subtract, and negate
binary-coded decimal (BCD) numbers.

Bit Manipulation Instructions. These instructions adjust or test the
settings of individual bits in an operand.

Logical Instructions. These instructions perform logical operations
(and, or, exclusive or, not) according to the rules of Boolean
algebra.

Shift and Rotate Instructions. These instructions move bits in an
operand to the left or right, or in a circle formed by logically “con-
necting” the least- and most-significant bits directly or through
the X flag.

System Control Instructions. These instructions perform a variety
of system control operations, such as manipulating the status

107

108 Mac Assembly Language

register, the user stack pointer, and forcing exception
processing.

We'll look at each of these groups in separate sections.

The tables of instructions in this chapter indicate the
addressing modes permitted for the source and destination
operands of each 68000 instruction. These modes are
described in Table 1-2 in Chapter 1. For a two-operand
instruction, any source mode marked with a given symbol (x
or o) may be associated with any destination mode marked
with the same symbol. One-operand instructions can be used
with any of the marked addressing modes, of course.

Note that the word Address in an operand table refers to
the absolute addressing mode (long or short) and the word
#Immediate refers to the immediate addressing mode.

The tables also indicate how the settings of the condition
code flags change after an instruction is executed. The fol-
lowing symbols are used to represent the changes:

* the flag changes to O or 1, depending on the result
1 the flag is always set to 1
o the flag is always cleared to O
the flag is not affected
U the flag is undefined and meaningless

Data Movement Instructions

The data movement instructions are summarized in Table
3-1, which begins on page 149 at the end of this chapter.

The main 68000 instruction for moving data from place to
place is MOVE. With it you can move data between registers,
between memory locations, or between a memory location
and a register. You can also use it to store a specific number
in a register or a memory location.

If a multibyte number is moved to an area of memory begin-
ning at a particular location, the most-significant bytes of the
number are stored first (at the lower addresses). Some

The 68000 Instruction Set 109

microprocessors, notably the Apple II's 6502, store such num-
bers in the opposite order.
Here are some examples of how to use MOVE:

MOVE.L D1,DO ;Move D1 to DO (entire register)

MOVE #345,D3 ;Move decimal 345 to D3 (word)

MOVE MyConstant,Dl ;Move word stored at MyConstant
; into D1

In the last example, MyConstant is the label for a data area
reserved using the DC (define constant) assembler directive.
The MDS assembiler always converts a reference to this type
of label as a reference to label(PC) to make the program relo-
catable, as required by the Macintosh operating system. If
MyConstant is a symbol assigned to an absolute memory
location using the EQU or SET directive, however, the abso-
lute addressing mode is used for the source operand. If a
symbol represents an immediate quantity rather than an
address, it must be preceded by #.

If space for a variable is reserved using the DS directive,
any reference to the variable must use A5 address register
indirect addressing:

MOVE Db,MyVariable(AS) ;Move the word in D& into
; MyVariable + (AS)

If you will be moving a value to a data area in memory, you
should reserve the area with the DS directive. If you use DC
instead, you’'ll run into difficulties, because program counter
indirect addressing is not permitted for destination operands.
This means you cannot use an instruction of the form:

MOVE D1,MyData ;Illegal where MyData is a constant

Instead, you must use code like this:

LEA MyData,RO ;Move ER of MyData into AO
MOVE D1, (AD) ;Store D1 at MyData

110 Mac Assembly Language

. LEA is another common data movement instruction. It
moves the effective address (EA) of the source operand into
the destination operand, not the value stored at that
address. It is often used to move the base address of a data
structure into an address register so items in the structure
can be accessed using an indirect addressing mode with or
without index. A related instruction, PEA, pushes the effec-
tive address of its operand on the stack; this is often used for
passing the address of a data structure to a Macintosh tool-
box subroutine.

Clearing to Zero

The 68000 has a special instruction for storing a zero in a
particular operand: CLR (CLeaR). This instruction is prefera-
ble to a MOVE #0,<EA> instruction because it executes
more quickly.

Moving to Address Registers

The 68000 has a separate instruction for moving a word or
long word quantity into an address register: MOVEA. If you
use it to move a word, the sign bit (bit 15) is automatically
extended through the high-order 16 bits of the address regis-
ter. The other major difference between MOVEA and MOVE
is that MOVEA does not affect the status flags in the condi-
tion code register.

Quick Moves

MOVEQ (MOVE Quick) is a special form of the standard
MOVE instruction you can use when the source operand is a
small immediate quantity between — 128 to +127 and the
destination operand is a data register. The advantage of
using it instead of a standard MOVE instruction is that it is
faster and takes up less space.

If you use a MOVE instruction when you could have used a
MOVEQ instruction, don’t worry. The MDS assembler auto-

The 68000 Instruction Set 111

matically optomizes the code by substituting the MOVEQ
instruction during the assembly process.

Moving Multiple Registers

MOVEM is a very convenient instruction. It moves the con-
tents of a group of data and address registers to a temporary
storage area in memory or vice versa.

MOVEM is most often used to save the contents of regis-
ters before calling a subroutine that might change the values
in those registers. On return from the subroutine the original
values can be restored by another MOVEM in the opposite
direction. You would not, of course, restore (or save) any
registers that may be used to return results.

The two forms of the MOVEM instruction are:

MOVE register_list,<ERA> ;save registers
MOVE <EA>,register_list

where register_list represents the names of the registers to be
transferred. Each individual register in the list is separated
from the next by a /. In addition, you can specify a group of
consecutive address or data registers by using a minus sign
to separate the first and last register in the range.

For example, if you wanted to save DO, D1, D2, D4, A2, and
A3 on the stack, you could use the instruction:

MOVEM DO/D1/D2/D4/R2/A3,-(SP)

or you could use:

MOVEM DO-D2/D4/A2-R3, - (SP)

Use the MDS assembler's REG directive to assign a symbolic
name to a register list.

The order of transfer of registers with MOVEM is DO
through D7, followed by AO through A7, unless you are using
the — (An) addressing mode where the order is A7 through

112 Mac Assembly Language

AO then D7 through DO. This means that no matter what
addressing mode is used, the register values are arranged in
memory in the same order.

Swapping Data Register Halves

SWAP exchanges the upper word of a data register with
the lower word, which then can be accessed with a word
operation. It cannot be used with address registers.

Exchanging Registers

EXG (EXchanGe) exchanges the contents of two address
registers, an address register and a data register, or two
data registers. Using EXG is a convenient way to save the
contents of a register when you have to use the register for
something else (perhaps for passing data to a subroutine).
For example, the following subroutine could be used to pre-
serve DO:

EXG DO,Dk ;Save DO in Db

LER Data,DO

JSR Subroutine

EXG D0, Dbk ;Restore value of DO

Note that this technique works only if the register you're
exchanging with DO (D6 in the example) is not altered by the
subroutine.

Linking and Unlinking the Stack

The LINK and UNLK instructions facilitate the development
of re-entrant and recursive subroutines. A re-entrant subrou-
tine is one that can be interrupted, called by the interrupt
handler, and then completed without any adverse effects. A
recursive subroutine is one that can call itself without causing
spurious results.

The 68000 Instruction Set 113

Most subroutines are not re-entrant or recursive because
they use a fixed area for storage of their own variables
(called local variables) and temporary results. This area is
overwritten if you call the subroutine while you're already in
it.

To avoid this problem, you can set up a data area on the
stack relative to the stack pointer (called a stack frame), and
access the data elements as offsets from the stack pointer.
When the subroutine is called recursively, a similar frame is
created, but it will be below the old one, so there will be no
interference with the data used during the first subroutine
call.

The LINK instruction sets up such a stack frame. It is of the
form:

LINK An,#-nun

where -nun represents the number of bytes in the frame. This
number must be negative and even. When the 68000 exe-
cutes the LINK instruction it first pushes the address register
specified in its operand on the stack and then places the
resulting stack pointer into the address register. The number
in the operand is then added to the stack pointer to make
room for the frame on the stack. Since the frame size is a
negative number, the frame is, in effect, pushed on the
stack.

Once the frame has been created, the stack pointer will
point to its base, so you can access the data elements in the
frame using the address register indirect with displacement
addressing mode:

MOVE 2(SP),DO ;Move 2nd word in frame into DO
MOVE D1,0(SP) ;Store D) into 1lst word in frame

These examples assume, of course, that you haven’t
pushed anything else on the stack after the LINK instruc-

114 Mac Assembly Language

tion. If you have, you'll have to increase the SP displace-
ments accordingly.

To remove a stack frame, use the UNLK (UNLInK) instruc-
tion. It is of the form:

UNLK An

where mn is the same address register used by the LINK
instruction. UNLK transfers the contents of the address reg-
ister into the stack pointer, and pops a long word from the
stack into the address register. As a result, the stack pointer
and the address register are restored to the values they held
just before the LINK instruction was executed.

In order for UNLK to work properly, the address register
must contain the same value stored in it by the LINK
instruction.

Moving Data to and from Peripherals

There is one final data movement instruction, but you'll
rarely use it on the Macintosh. It is the move peripheral data
instruction, MOVEP, and it transfers information between a
data register and peripheral devices such as the Macintosh’s
two serial ports. These chores are usually performed by call-
ing low-level 1/0O subroutines that form part of the Macintosh
operating system.

When you send data to a peripheral device with MOVEP,
each byte of the operand (which is a word or a long word in a
data register) is stored at every second memory location
beginning at the effective address of the destination oper-
and. The high-order byte or bytes of the operand are sent
first and the effective address can describe an odd or even
address.

Similarly, when you’re reading data from the peripheral

The 68000 Instruction Set 115

device, the data register is filled, high-order byte first, from
every second memory location starting with the base
address.

Communication with peripherals is handled in this strange
way so that peripherals that can handle only a byte of data at
a time can be interfaced to the 68000.

Program Control Instructions

In the normal course of events, the 68000 executes an
instruction, increments the program counter by the size of
the instruction, then executes the next instruction in mem-
ory. From time to time, however, it becomes necessary to
alter this linear flow so you can skip to parts of a program
dictated by the results of a calculation or the behavior of the
user. This is done with 68000 branch and jump instructions
that implicitly change the address stored in the program
counter register. See Table 3-2, page 159, for a complete list-
ing of the 68000 program control instructions.

In this section we're going to look at the instructions you
can use to move around in a program. These instructions can
be categorized as unconditional branch, conditional branch,
and looping instructions. We'll also look at some conditional
instructions that can be used to set and clear memory loca-
tions, and registers that may be used as flags.

Unconditional Jumps and Branches

The 68000 has four instructions you can use to force a
transfer of control to a particular target address: JMP
(JuMP), BRA (Branch Relative Always), JSR (Jump to Sub-
Routine) and BSR (Branch to SubRoutine).

The first two instructions, JMP and BRA, are straightfor-
ward. In each case, the effective address of the operand is
placed in the program counter, causing execution to continue

116 Mac Assembly Language

at that new address. JMP is usually used with a program
label as an operand; BRA must be:

JHP MoreCode
BRA SkipNext

The difference between the two is that the operand for BRA
is always a 16-bit signed offset (or 8-bit if the BRA.S short form
is used) to the target address, whereas the operand for a JMP
instruction could represent a number of addressing modes,
including program counter relative, as shown in the example.
This means the target of a branch is more limited since it must
be in the range —32768 to +32767 (16-bit) or —128 to +127
(8-bit) from the position immediately following the operation
word. Since code segments on the Macintosh cannot exceed
32K bytes, this does not pose a problem.

The other two unconditional branch instructions, JSR and
BSR, are a bit more complex. They pass control to a target
address like their JMP and BRA counterparts, but they also
push the address of the instruction that follows them in mem-
ory on the stack. By doing this, the program at the target
address, called a subroutine, can return control to this
instruction by popping the address from the stack into the
program counter using the RTS (ReTurn from Subroutine)
instruction.

Any portion of code that may have to be executed in vari-
ous parts of a program should be made into a subroutine and
called with a JSR or BSR instruction. This not only makes the
program more modular and easy to read, it reduces the
amount of memory needed by the program.

There is another return instruction with which you should
become familiar: RTR (ReTurn and Restore condition codes).
Like RTS, this instruction pops a return address from the
stack, but before it does, it pops a word and places the low-
order byte into the condition code register. RTR is useful
where you want to preserve the condition code flags across
a subroutine call. To use it you have to push the contents of
the CCR as soon as you enter the subroutine:

The 68000 Instruction Set 117

JSR MySub ;Call the subroutine

MySub MOVE SR, - (SP) ;Save flags on stack
[subroutine code herel

RTR ;Restore flags and return

The RTR instruction eliminates the need to execute an
explicit MOVE (SP)+ ,CCR pop instruction before ending the
subroutine with an RTS.

Conditional Branches

One of the most common things you will do in a program is
alter the program flow conditionally. That is, you will make a
decision on what part of a program to execute based on the
result of a calculation or comparison, the number in a regis-
ter, or the value of the condition code flags. The instructions
you use to make such decisions are Bcc (branch condition-
ally) instructions of the form:

Bee TargetAddr

where Targethddr represents the label for the instruction in the
program where control is to pass if the flag settings associ-
ated with the cc condition are in effect. If the flags are not
properly set, the next instruction in line is executed instead.

The cc in Bcc represents a one- or two-character mne-
monic for a condition that is true when the condition code
flags in the status register have a particular set of values.
Table 3-3 shows what each cc mnemonic is, what it means,
and the settings of the flags if the cc condition is true. For
example, LS means lower or same and is true if the carry and
zero flags are both set to 1.

118 Mac Assembly Language

Table 3-3. Conditional Tests Used with the Bcc, DBcc, and
Scc Instructions.

cc

Name Condition Flag Setting for Condition=true
|
1) CC carry clear C=0
2) Cs carry set Cc=1

EQ equal Z=1
a3) F false (always false)
(C)) GE greater or equal (N=1V=1) or (N=0V=0)
@ GT greater than (N=1V=1Z=0)or (N=0V=0
Z=0)
HIl higher (C=0Z=0)
(C)) LE less or equal Z=1or (N=1V=0)or(N=0V=1)
LS lower or same C=1o0orzZ=1
(C)) LT less or same (N=1V=0)or(N=0V=1)
@ Ml minus N=1
NE not equal Z=0
()] PL plus N=0

a3) T true (always true)
@ vC overflow clear
@ VS overflow set

<<
nu
=0

(1) CC is equivalent to HS (higher or same).

(2) CS is equivalent to LO (lower).

(3) F and T cannot be used with the Bcc instructions. BF, if it were
permitted, would be the same as NOP. BT, if it were permitted,
would be the same as BRA.

(4) These conditions are useful when your operation uses two's
complement signed arithmetic.

Note: Higher and lower refer to unsigned numbers. Greater and less

refer to signed two’'s complement numbers.

Most 68000 instructions affect the condition code flags in
some way. For example, if you move a zero into a data regis-
ter, the zero flag becomes 1. If you compare two operands
with a CMP instruction, all flags except extend are affected,
depending on the result of the subtraction operation that
CMP performs: destination minus source.

Bcc instructions are most often used after a CMP instruc-
tion so that you can easily change the program flow if a result

The 68000 Instruction Set 119

is the same as, higher, or lower, than another number. In
fact, most of the cc mnemonics stand for a phrase that
reflects the relative magnitudes of two numbers, thus it's
easy to remember which Bcc instruction to use.

Consider the following comparison:

CHMP #4,D1

When this instruction is executed, the 68000 first subtracts 4
from the word in the D1 register, then sets the flags based
on the result. The result itself is not stored anywhere (use
SUB for that).

If the two operands are unsigned binary numbers, you can
use the following Bcc instructions to transfer control to
another position in the program according to the result of the
comparison:

® BEQ : branch if D1 is equal to 4

® BNE : branch if D1 is not equal to 4

® BHS : branch if D1 is higher than or the same as 4
® BHI : branch if D1 is higher than 4

® BLS : branch if D1 is lower than or the same as 4
® BLO : branch if D1 is lower than 4

Note: You can use BCC (carry clear) instead of BHS, and BCS
(carry set) instead of BLO.

For signed binary numbers, the following branch instruc-
tions should be used instead:

® BGE : branch if D1 is greater than or equal to 4
BGT : branch if D1 is greater than 4

BLE : branch if D1 is less than or equal to 4
BLT : branch if D1 is less than 4

BVC : branch if no overflow occurred

BVS : branch if overflow occurred

BPL : branch if result is positive

BMI : branch if result is negative

Notice that in a comparison operation, you are always com-
paring the destination operand to the source operand, not
the source operand to the destination operand.

120 Mac Assembly Language

The default form of a Bcc instruction is the long form. This
means that the word following the operation word in memory
contains the 16-bit offset to the target destination (the offset
is measured from the location after the operation word). This
is a signed number from —32768 to +32767 and is calculated
for you by the assembler; all you have to do is specify a label.

The alternate form is the short form; you tell the assembler
to use it by adding a .S suffix to the Bcc instruction mne-
monic. For these branches, eight bits in the operation word
itself are used to hold the offset. This means the range of the
branch is restricted to — 128 to + 127, but you do save two
bytes of memory.

There is another set of conditional instructions of the form
Scc (Set conditionally). These instructions don't directly
affect the program flow but can be used to store ones in each
bit of a byte operand if the condition defined by cc is true, or
to store zeros if the condition is false. The target operands
used by Scc instructions are called flags because their con-
tents are usually status indicators that a program can check
when making decisions on what part of a program to execute
next.

Looping

Two of the most common high-level programming con-
structs are DO...UNTIL and FOR...NEXT loops where a por-
tion of code is repeatedly executed until a counter is
exhausted or a particular terminating condition occurs. You
can build such loops in assembly language using the 68000
DBcc (test condition Decrement and Branch until condition
true) instructions. As with the Bcc instructions, the cc refers
to one of the 16 conditional tests supported by the 68000.

The operation of a DBcc instruction is shown in Figure 3-1.
Before entering the loop, a data register is loaded with a
word that contains the maximum number of loops to per-
form, minus one. The start of the loop is identified by a
labeled instruction.

Initialize
Dn Counter

4
Start of

Loop

DBcc Dn,label

cC .
condition

The 68000 Instruction Set 121

(DBcec instruction)

YES

true?

Dn = Dn -1

YES

Stop Looping

Figure 3-1. The 68000 DBcc Instruction.

122 Mac Assembly Language

At the bottom of the loop is a pBcc bn, label instruction. When
this instruction is encountered, the 68000 first checks to see
if the condition is true; if it is, control passes to the following
instruction and looping ends. If it's not, the word in the data
register is decremented and, if the result is not —1, you will
loop to the labeled instruction. When the counter reaches — 1,
looping ends.

Since the termination condition is Dn = — 1, the initial value
of the loop counter must be one less than the number of
times you want to loop. For example, if you want to loop a
maximum of 10 times, set Dn equal to 9.

As you have seen, you normally exit a loop in one of two
ways: when the condition becomes true or the counter
reaches — 1, whichever comes first. You can easily design a
loop governed by the counter only, by using the DBF version
of DBcc. Since the condition code F means false or never
true, looping will never end before the counter reaches —1.
DBF is useful when you must perform a task a fixed number
of times. Another name for DBF is DBRA.

Arithmetic Instructions

The 68000 has several instructions you can use to perform
the basic arithmetic functions: addition, subtraction, muiltipli-
cation, division, and negation. All these instructions, except
the negation instructions, require two operands. Negation
involves one operand only. Table 3-4 on page 166 summarizes
the arithmetic instructions supported by the 68000.

The operands for addition, subtraction, and negation
instructions can be either simple binary numbers (signed or
unsigned) or binary-coded-decimal (BCD) numbers. The muilti-
plication and division instructions work with binary numbers
only. Before discussing the arithmetic instructions, let's look
at the differences between binary and BCD numbers. (See
Figure 3-2.)

The 68000 Instruction Set 123

7|6|s5|4|3|2|1|0| unsigned binary

magr;itude

signed binary

I G I {two's complement)

-
L]
a

magﬁitude
sign bit {1 = negative)

binary-coded-decimal
{BCD)

first d]acimal secoﬁd decimal
digit digit

T|]6|5|4|3|2]|1]0

Figure 3-2. Binary and BCD numbers.

Unsigned and Signed Binary Numbers

Binary numbers can be unsigned or signed. An unsigned
binary number is one where every bit of the byte, word, or
long word describing the number contributes to the number’'s
magnitude. The number is always positive, of course. The
contribution, or weight, of a particular bit is given by the deci-
mal number 2°, where n is the bit number (O to 7 for a byte, O
to 15 for a word, and O to 31 for a long word). To calculate
the decimal equivalent value of a binary number, simply add
together the weights of every bit that is one. For instance,
binary 10001001 is the same as decimal 137 (27 + 23 + 29).

124 Mac Assembly Language

The 68000 expects a signed binary number to be in two’s
complement form. This means the most-significant bit of the
number (bit 7 for a byte, bit 15 for a word, and bit 31 for a
long word) holds the sign of the number: one for negative,
zero for positive. For a positive number, the remaining bits
reflect the magnitude of the number in the same way they do
for an unsigned binary number.

To calculate the two’s complement binary representation
of a negative number, take the binary form of the absolute
value of the number, complement it by changing all ones to
zeros and zeros to ones, then add binary one to the result.
Let’'s see how this works by considering how to convert deci-
mal —43 into binary two’s complement form:

00101011 (+43)
11010100 (complement)
1 (add 1)

11010101 (-43 in two's complement)

The 68000 uses the two’'s complement form for signed
numbers because it simplifies binary arithmetic operations:
The numbers can be dealt with just as if they were unsigned
binary numbers and the signed result will still be correct. No
explicit adjustments have to be made by your program to
account for the different signs of the numbers being
manipulated.

An overflow condition occurs if the result of an operation is
too large or too small to be represented in the two's comple-
ment form. The ranges of allowed values are as follows:

® byte —128 to +127
® word —32768 to +32767
® long word —(23") to (23')—1

When an overflow occurs, the overflow flag in the 68000 sta-
tus register is set.

The 68000 Instruction Set 125

BCD Numbers

A binary-coded-decimal number is a decimal number whose
digits are stored in consecutive half-bytes. Each digit is
stored as a binary number from 0000 to 1001. The binary pat-
terns from 1010 to 1111 are not used since they don’t corre-
spond to decimal digits. ‘

Consider the BCD form of decimal 83, namely 10000011:
The first half-byte, 1000, is the 8 digit, and the second half-
byte, 0011, is the 3 digit. Compare this with the standard
binary representation of the same number, 01010011.

Decimal numbers entered by a user from the keyboard are
often stored in BCD form. It is easy to do because the low-
order four bits of the ASCII code for a digit turn out to be the
digit’s BCD representation.

Binary Addition, Subtraction, and Negation

You can add two binary numbers together with the ADD
and ADDX instructions; the result is stored in the destination
operand. The only difference between these two instructions
is that ADDX also adds the value of the extend flag to the
result.

After an addition operation, the extend flag indicates
whether the result of the addition was larger than the largest
unsigned number the operand can hold. For example, if you're
working with byte operands and you add 245 to 10, a carry is
generated, and the extend flag is set, because the resuilt is
larger than the largest byte quantity, 255.

Addition affects the state of the overflow flag as well, a
fact that is important if you are dealing with two’s comple-
ment signed numbers. The overflow flag is set if the result of
the addition is out of the range of signed numbers permitted
by the operand size.

If you're simply adding two numbers, each of which fits in
one operand, you will use the ADD instruction, or the ADDQ
instruction if the source operand is an immediate number
from one to eight, to combine them:

126 Mac Assembly Language

ADDQ #5,DO0 ;Add 5 to DO
ADD DO, D1 ;Add DO to D1
ADD.L #60000, (AD) ;Add 60000 to (AO)

If you're dealing with numbers that won’t fit in one operand,
you must add the low-order part of the numbers with the
ADD instruction, and then add the higher-order parts with
the ADDX instruction to ensure that any carry generated is
included in the total. For example, suppose you want to add
the number $O0OFEC200 stored at (AO) to (AO)+3 to the
number $00353500 stored at (A1) to (A1)+3 using word-
sized operands. Here’s how you’d do it:

ADD.W 2(R0),2(Ad) ;Add low-order, generate carry
ADDX.W (AD), (A1) ;Add high-order with carry

If the extend flag is set after these two instructions, the
number is larger than $FFFFFFFF. The overflow flag is set if
the result is greater than $7FFFFFFF or less than
$80000000.

The SUB (Subtract) and SUBX (Subtract with eXtend)
instructions are the basic subtraction operations and they
behave similarly to ADD and ADDX. For subtractions, how-
ever, the extend flag is set if a borrow condition occurs.

NEG (Negate) and NEGX (Negate with eXtend) change the
sign of a number by subtracting the operand from zero. If
NEGX is used, the extend bit is also subtracted.

BCD Addition, Subtraction, and Negation

Three instructions use BCD numbers: ABCD (Add BCD with
extend), SBCD (Subtract BCD with extend), NBCD (Negate
BCD with extend). They use byte operands only and all
include the extend flag in their operations.

There are two basic forms for the BCD addition (ABCD)
and subtraction (SBCD) instructions:

ABCD Dx,Dy ;Add Dx to Dy
SBCD Dx,Dy ;Subtract Dx from Dy

The 68000 Instruction Set 127

and:

ABCD - (Ax),-(Ry) ;Decrement, add (Ax) to (Ay)
SBCD -(Ax),-(Ay) ;Decrement, subtract (Ax) from (Ay)

In each case, the source operand is added to or subtracted
from the destination operand, as is the extend flag, and the
result is stored in the destination operand. If the result of the
addition is nonzero, the zero flag is cleared to zero. If it isn't,
the state of the zero flag does not change. If a decimal carry
is generated, the carry and extend flags are set to one.
Because of the way flags are handled, you should always set
the zero flag to one and the extend flag to zero before a BCD
operation. This can be done with a MOVE #4,CCR instruction.

The second form of the ABCD instruction is handy for
quickly adding together two sequences of BCD digits stored
in memory. To do this, first load one address register with
the address following the last digit of the first number and
another with the address following the last digit of the sec-
ond. Then, if you have six digits to add together, use the fol-
lowing code:

MOVE #4,CCR y2=1, X=0

ABCD -(R0),-(AY) ;Add low-order digits
ABCD -(AD),—- (A1) ;Add mid-order digits
ABCD -(A0),- (A1) ;Add high-order digits

Because the address registers are pre-decremented, suc-
cessive ABCD operations always access the next two digits
in the BCD string of digits. In a more general program, you
would create a program loop using a DBRA instruction to
repeat a single ABCD instruction a given number of times.

The last BCD instruction is NBCD (Negate BCD with
extend). This instruction subtracts from zero the sum of the
operand (a byte containing two BCD digits) and the extend
bit and stores the result in the operand. As with the ABCD
and SBCD instructions, the zero flag is cleared if the result is
non-zero, but is not changed otherwise.

128 Mac Assembly Language

Multiplication and Division

The 68000 has two powerful multiplication instructions,.
MULU (Unsigned MULtiply) and MULS (Signed MULtiply). As
their names suggest, MULU acts on unsigned binary numbers
and MULS acts on signed binary numbers.

The general forms of these instructions are:

MULU <EA>,Dn
MOLS <ER>,Dn

The two operands are always words and the result is a long
word. The result is stored in the data register specified in the
destination operand.

There are also two division instructions, DIVU (Unsigned
DIVide) and DIVS (Signed DIVide). The general forms are the
same as the multiplication instructions:

DIVU <ER>,Dn
DIVS <EA>,Dn

A division operation is performed by dividing the destination
operand (a 32-bit data register) by the 16-bit source operand.
The quotient is a 16-bit number stored in the lower word of
the data register and the remainder is a 16-bit number stored
in the upper word of the data register. If you attempt to
divide by zero, a division by zero exception occurs. This
exception uses exception vector #5.

Sign Extension

EXT (sign EXTend) converts a signed byte to a signed
word (EXT.W) or a signed word to a signed long word
(EXT.L). This is done by extending the sign bit of the byte (bit
7) or word (bit 15) through bits 8 to 15 (for a word operation)
or bits 16 through 31 (for a long word operation). The number
acted on must be in a data register.

The 68000 Instruction Set 129

EXT is useful when you've loaded a byte or word into a
data register but you are about to use it in a word or long
word operation. If you don't extend the operand first, the
operation will not behave as expected because the high order
part of the data register is not properly set up.

Here is an example of how to use EXT with the Macintosh’s
built-in number-to-string conversion instruction, _Pack7:

LEA theString,AO ;A0 = pointer to string space
MOVE theNumber,DO ;D0.L = number to convert
EXT.L DO ;Adjust upper word

MOVE #0,-(SP)

_Pack? ;Convert number to string

The _rack? instruction expects the number to be in the DO.L
register. In this example, theNumber is a word quantity, so
the upper word of DO is undefined after the MOVE
theNumber,DO instruction. An EXT.L DO instruction extends
the word while maintaining its sign and magnitude.

Comparing

The CMP (CoMPare) instruction compares the value speci-
fied by the destination operand with the number specified by
the source operand. The comparison is made by subtracting
the source operand from the destination operand, setting the
flags according to the result, but not storing the result. The
Bcc instructions can then be used to transfer control to vari-
ous parts of the program, based on the state of the condition
code flags. See the section on Program Control Instructions
for more information on how to use these branch
instructions.

There is one special form of the compare instruction,
CMPM, which is usually used as part of a subroutine that
compares one block of memory to another. Both its operands
use the (An)+ addressing mode only. Here is how you would
use it to check whether two 128-byte areas of memory, ini-
tially pointed to by AO and A1, are the same:

130 Mac Assembly Language

CompareMem MOVE #32-1,D0 ;32 long words to compare
@1 CMPM.L (RO)+,(ALl)+ ;Compare the two areas
DBNE DO,@1 ;Loop until all done or
;until a mismatch.
SNE DO ;Set according to result

RTS

On exit, DO = 0O if the two areas are the same; otherwise DO
= —1.

The DBNE loop can terminate in two ways: if the loop
counter (D0O) reaches — 1 or if the condition associated with
BNE becomes true. (The condition becomes true if the two
long words being compared with CMPM are not the same.)
Since the (An)+ addressing mode means the data block
pointers are incremented by four after each comparison, the
next comparison always checks the next long word in the
block.

The SNE instruction places ones in every bit of DO if the
comparison fails (NE is true), or zeros if it succeeds.

Testing

The TST (TeST) instruction works just like a CMP #0,<EA>
instruction. That is, the operand is compared with zero and
the condition code flags are set according to the result. In
particular, if the operand is zero, the zero flag is set to one
and if the high-order bit (the sign bit) of the operand is one,
the negative flag is set to one. Here is the code to use to
check if the DO register contains a zero:

TST.L DO ;Is DO zero?
BEQ ToZero ;Branch if it is

The TAS (Test And Set) instruction is similar to the TST
instruction, but it only works with byte operands. In addition,
it always causes bit 7 of the byte at the effective address to
be set to one. TAS is an indivisible operation, that is, one that
cannot be interrupted. This means that if the bit is used as a
busy flag to indicate that a certain data area, device, or other

The 68000 Instruction Set 131

resource is unavailable, no two co-processors will ever think
the flag is not busy at the same time. It's not possible for one
processor to interrupt another after the N flag has been
cleared (to indicate that bit 7 is zero) but before the bit 7 flag
is set to one. If it could, the second processor would think
that the resource was available when it wasn't and chaos
would ensue. Since the Macintosh is a single processor sys-
tem, you should never need to use the TAS instruction.

Bit Manipulation Instructions

The bit manipulation instructions, BTST, BSET, BCLR, and
BCHG act on single bits within an operand. If the destination
operand is a data register, you can act on any bit from O to
31. For other operands, you can only act on bits O to 7. The
bit number to be acted on is either stored in a data register or
is an immediate quantity. Table 3-5 shows the bit manipula-
tion instructions and describes their actions.

132 Mac Assembly Language

Table 3-5. The 68000 Bit Manipulation Instructions.

Instructions

Descriptions

Operand Size

BCHG (test a Bit and CHanGe)
BCLR (test a Bit and CLeaR)
BSET (test a Bit and SET)
BTST (TeST a Bit)

BCHG tests a bit in the destination operand, sets
the Z flag in the status register to reflect the result,
then complements the bit in the destination oper-
and whose number is given by the source operand.
The bit number can be O to 31 if the destination op-
erand is a data register, or O to 7 if it is not.

BCLR tests a bit in the destination operand, sets
the Z flag in the status register to reflect the result,
then clears to zero the bit in the destination oper-
and whose number is given by the source operand.
The bit number can be O to 31 if the destination op-
erand is a data register, or O to 7 if it is not.

BSET tests a bit in the destination operand, sets
the Z flag in the status register to reflect the result,
then sets to 1 the bit in the destination operand
whose number is given by the source operand. The
bit number can be O to 31 if the destination operand
is a data register, or O to 7 if it is not.

BTST tests the bit in the destination operand whose
number is given by the source operand and sets the
Z flag in the status register to one if the bit is zero;
if it isn’t, the Z flag is cleared. The bit number can be
0 to 31 if the destination operand is a data register,
or O to 7 if it is not.

.B, .L

The 68000 Instruction Set 133

Table 3-5. continued

Srce Dest Modes X N y4 \V4 C

Xo x Dn - - * - -

An
Z=1 if the bit tested is O;

(An) .
(An)+ Z=0 otherwise.

—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
xo #Immediate

000000

For x operations, the operand
size is always long. For o opera-
tions the operand size is always
byte.

BTST (Bit TeST) tests the state of a bit in the operand and
sets the zero flag in the status register to one if the bit is
zero; otherwise, it clears it to zero.

BSET (Bit SET) forces a bit in the operand to one. For
example, suppose you want to set bit 2 of a long word oper-
and to one. You could use either:

BSET.L #¢2,<ER>

or:

MOVEQ.L #2,Dn ;Dn = any data register
BSET.L Dn,<EA>

BCLR (Bit CLeaR) works just like BSET except that it
clears the bit to zero. ‘

BCHG (Bit CHanGe) complements a given bit in the oper-
and. If the bit is one, it is changed to zero, and vice versa.

134

Mac Assembly Language

Logical Instructions

There are four basic groups of logical instructions sup-
ported by the 68000: complement (NOT), logical and (AND),
inclusive-or (OR), and exclusive-or (EOR). They are summa-
rized in Table 3-6. There are also varieties of AND, OR, and
EOR called ANDI, ORI, and EORI that can be used if the
source operand is an immediate quantity.

Table 3-6. The 68000 Logical Instructions.

Instructions

Descriptions

Operand Size

AND (AND logical)
OR (OR logical)

AND combines two operands by clearing to zero all
bits in the destination operand that correspond to O
bits in the source operand. Bits corresponding to 1
bits in the source operand are not affected. The re-
sult is stored in the destination operand.

OR combines two operands by setting to one all
bits in the destination operand that correspond to 1
bits in the source operand. Bits corresponding to O
bits in the source operand are not affected. The re-
sult is stored in the destination operand.

.B, .W, .L

Srce Dest Modes X N z \Y4 (o

pre) x Dn C - * * (o] (0]
An

x o (An) N =1 if the most-significant
x ° C(An)+ bit of the result is 1; N=0
x ° —(An) otherwise.
x o d16(An) Z=1 if the result is zero;
x o d8(An,Rn) Z=0 otherwise.
x o Address
x d16(PC)
x d8(PC,Rn)
x #Immediate

The 68000 Instruction Set 135

Table 3-6. continued

Instruction EOR (Exclusive OR logical)

Description EOR combines two operands by complementing all
bits in the destination operand that correspond to 1
bits in the source operand. All other bits are unaf-
fected. The result is stored in the destination oper-
and.

Operand Size .B, .W, .L

Srce Dest Modes X N z \Y4 C
x x Dn - * * (o] (o}
An — s .
x (An) N = 1 if the most-s.lgmﬁca_nt
x (An)+ bit of tl:le result is 1; N=0
x —(An) otherwise.
x d16(An) Z=_1 if the r.esult is zero;
x d8(An,Rn) Z=0 otherwise.
x Address
d16(PC)
d8(PC,Rn)
#Ilmmediate
Instructions ANDI (AND logical Immediate)
ORI (OR logical Immediate)
EORI (Exclusive OR Immediate)
Descriptions ANDI works just like AND, but the source operand

Operand Size

is always an immediate number.

ORI works just like OR, but the source operand is
always an immediate number.

EORI works just like EOR, but the source operand
is always an immediate number.

B, W, .L

136 Mac Assembly Language

Table 3-6. continued

Srce Dest

x

X X X XXX

Modes X N z \4 (o
Dn - * * (o] (o]
An
(An) N =1 if the most-significant
(An)+ bit of the result is 1; N=0
—(An) otherwise.
d16(An) Z=1 if the result is zero;
d8(An,Rn) Z=0 otherwise.

Address
d16(PC)
d8(PC,Rn)
#Immediate

Note: There are also word forms of ANDI, ORI, and EORI that
implicitly use the CCR (not privileged) or SR (privileged) as the des-
tination operand: ANDI to CCR, ORI to CCR, EORI to CCR, ANDI to
SR, ORI to SR, and EORI to SR. All condition code flags can change
after these operations.

Instruction

Description

NOT (logical complement)

Calculates the one’'s complement of the destination
operand and stores it in the destination location.
The one’s complement is calculated by converting
all 1’s to O’s and vice versa.

Operand Size .B, .W, .L
Srce Dest Modes X N z Vv C
X Dn - * * lo) o
An . —
x (An) N =1 if the most-significant
x (An)+ bit of the result is 1; N=0
x —(An) otherwise.
x d16(An) Z=1 if the result is zero;
x d8(An,Rn) Z=0 otherwise.
x Address
d16(PC)
d8(PC,Rn)
#lmmediate

The 68000 Instruction Set 137

A logical operation involves the bit by bit combination of the
source operand with the destination operand. The result of a
particular bit combination (either 1 or 0) is dictated by the
rules of Boolean algebra outlined in Figure 3-3, and is stored in
the same bit of the destination operand. As you can see, the
combination rules are different for OR, EOR, AND, and NOT

operations.

The NOT instruction involves only one operand. As a result
of the operation, any one bits are converted to zero and zero

OR tgerandf
0| O 1

opetandi
1 1 1

inclusive OR

operand2

AND| o 1

o O 0
operand1

1 0 1

logical AND

{x = don't care)

operand2

EOR| © 1

o O 1
operand1i

1 1 0

exclusive OR

operand2
NOT | R
0 1 1
opetr-andi
1 0O 0O

logical NOT

Figure 3-3. Boolean Algebra Logic Tables.

138 Mac Assembly Language

bits to one bits. The operand is said to have been
complemented.

The AND instruction clears certain bits of the destination
operand to zero (if they are not already zero) and leaves
others unaffected. The bits cleared are those that are zero in
the source operand. For example, if DO contains $00001232
and you execute an AND.L #$FO instruction, DO changes to
$00001230.

If you'd rather set bits to one, use the OR instruction
instead. This instruction forces every bit that is one in the
source operand to one in the destination operand. All other
bits are unaffected.

The EOR instruction complements those bits in the destina-
tion operand that correspond to one bits in the source oper-
and. Any bit that is zero is changed to one and vice versa.
EOR is useful for flipping bits used as software flags or
switches, although you can also use the BCHG instruction for
that.

The 68000 Instruction Set 139

Shift and Rotate Instructions

The 68000 has several instructions you can use to move an
operand’s data bits one or more positions to the left or right.
(See Table 3-7.) The bit shift count is either an immediate
quantity or is stored in a data register.

Table 3-7. The 68000 Shift and Rotate Instructions.

Instructions

Descriptions

Operand Sizes

ROL (ROtate Left)

ROR (ROtate Right)

ROXL (ROtate Left with eXtend)
ROXR (ROtate Right with eXtend)

ROL shifts the bits in the operand to the left. Bits
shifted out of the high-order bit are placed in the
carry flag of the condition code register and into bit
O of the destination operand.

ROR shifts the bits in the operand to the right. Bits
shifted out of bit O are placed in the carry flag of the
condition code register and into the high-order bit of
the destination operand.

ROXL shifts the bits in the operand to the left. Bits
shifted out of the high-order bit are placed in the
carry and extend flags of the condition code regis-
ter. The previous contents of the extend flag are
shifted into bit O of the destination operand.

ROXR shifts the bits in the operand to the right.
Bits shifted out of bit O are placed in the carry and
extend flags of the condition code register. The pre-
vious contents of the extend flag are shifted into
the high-order bit of the destination operand.

.B, W, .L

140 Mac Assembly Language

Table 3-7. continued

ROL, ROR, ROXL, and ROXR continued

Srce | Dest Modes X N z \" Cc
x x Dn * * * (0] *
An
o (An) N =1 if the most significant
o (An)+ bit of the result is set;
o —(An) N =0 otherwise.
o d16(An) Z=1 if the result is zero;
o d8(An,Rn) Z=0 otherwise.
o Address C=1 if the last bit shifted
d16(PC) out of the operand is 1;
d8(PC,Rn) C=0 otherwise. For ROL
x #lmmediate and ROR, C=0 if the shift
count is O.

The shift count is 1 for the sin-
gle-operand form of the instruc-

tion (o). In

For ROXL and ROXR, C is
set equal to the value of

this case the the X bit if the shift count

operand size is always word. is O.

Instructions

Descriptions

For ROL and ROR, X is un-
affected. For ROXL and
ROXR, X=1 if the last bit
shifted out of the operand
is 1; it is unaffected if the
shift count is O.

LSL (Logical Shift Left)

LSR (Logical Shift Right)
ASL (Arithmetic Shift Left)
ASR (Arithmetic Shift Right)

LSL shifts the bits in the operand to the left. Bits
shifted out of the high-order bit are placed in the
carry and extend flags of the condition code regis-
ter and a O is placed in bit O of the destination oper-
and.

LSR shifts the bits in the operand to the right. Bits
shifted out of bit O are placed in the carry and ex-
tend flags of the condition code register and a O is
placed in the high-order bit of the destination oper-
and.

The 68000 Instruction Set 141

Table 3-7. continued

Descriptions ASL shifts the bits in the operand to the left. Bits

shifted out of the high-order bit are placed in the
carry and extend flags of the condition code regis-
ter and a O is placed in bit O of the destination oper-
and. If the high-order bit of the operand changes,
the overflow flag is set.
ASR shifts the bits in the destination operand to the
right. Bits shifted out of bit O are placed in the carry
and extend flags of the condition code register. The
high-order bit of the operand remains as it was
before the shift.

Operand Size .B, .W, .L

Srce Dest Modes X N z Vv C
x X Dn * * * * *
An " o
° CAn) N =1 if the most significant
° C(An)+ bit of the result is set;
o —(An) ‘ N =0. otherwise.
o d16(An) Z=1 if the r.esult is zero;
° d8(An,Rn) Z=0.otherW|se.))
o Address C=1 if the last bit shifted
d16(PC) out of the operand is 1;
d8(PC,Rn) C=0 otherwise. C=0if the
x #Immediate shift count is O.
X=1 if the last bit shifted
The shift count is 1 for the out of the operand is 1; it
single-operand form of the in- is unaffected if the shift
struction (o). In this case the count is O.
operand size is always word. For LSL and LSR, V is al-

ways 0. For ASL and ASR,
V=1 if the most-signifi-
cant bit changes any time
during the shift operation;
V=0 otherwise.

Bit shifting operations have two main purposes. First, they
can be used to muiltiply or divide operands by powers of two.
This is because every shift right halves the value in the oper-

142 Mac Assembly Language

and and every shift left doubles it. Second, they can be used
to transfer any eight consecutive bits in a register to the low
order eight bits so that they can be dealt with by byte opera-
tions. The general form of the shifting and rotating instruc-
tions is shown in Figure 3-4.

Arithmetic Shift Instructions

Sighed numbers can be shifted with the arithmetic shift
instructions, ASR (Arithmetic Shift Right) and ASL (Arithme-
tic Shift Left). ASR shifts the bits one position to the right
while preserving the status of the sign bit; the least-signifi-
cant bit is moved into the carry and extend flags in the status
register. ASL shifts bits to the left and clears bit O to zero but
does not preserve the sign bit; it does, however, set the
overflow flag if the sign bit of the number changes as a result
of the shift.

Logical Shift Instructions

The logical shifts, LSR (Logical Shift Right) and LSL (Logical
Shift Left), are similar to arithmetic shifts except the sign bit
is not preserved (LSR) and the overflow flag is not affected
(LSL). For LSR, a 0O bit is always moved into the most-signifi-
cant bit. For LSL, a O bit is always moved into the least-signifi-
cant bit. LSR and LSL should be used if you are working with
unsigned numbers.

Rotate Instructions

The rotate instructions move bits through an operand in a
circular path including only the bits in the operand (ROL and
RORY), or the bits in the operand and the extend bit (ROXL
and ROXR). As a bit passes through one end of the operand
(or operand plus extend bit) it reappears at the other end.
The carry flag is set according to the state of the bit shifted
out of an operand. The extend flag is only affected by the
ROXL and ROXR instructions where it is a member of the cir-
cle through which the bits are rotated.

ASL
and
LSL

ROL

ROXL

ASR

ROR

ROXR

The 68000 Instruction Set

143

N B E

Figure 3-4. The 68000 Shift and Rotate Instructions.

144 Mac Assembly Language

System Control Instructions

The system control

instructions are made up of a

hodgepodge of rarely used instructions. (See Table 3-8.)
They are usually used in low-level operating system pro-
grams only. Most of them are used to read from or write to
the 68000 status register, and many are privileged instruc-
tions that can only be executed in supervisor mode.

Table 3-8. The 68000 System Control Instructions.

CHK (CHecK register against bounds)

Compares the signed number in the data register
specified by the destination operand with the
signed number in the source operand. If the number
in the data register is less than zero or greater than
the number in the source operand, exception #6 is

X N z \"4 C

Instruction
Description
generated.
Operand Size W
Srce Dest Modes
x x Dn
An
x (An)
x (An)+
x —(An)
x d16(An)
x d8(An,Rn)
x Address
x d16(PC)
x d8(PC,Rn)
x #Immediate

- * U U U

N=1 if the the destination
operand is negative. N=0
if the destination operand
is greater than the source
operand. If neither of
these two conditions is
true, N is undefined.

The 68000 Instruction Set 145

Table 3-8. continued

Instruction ILLEGAL (ILLEGAL instruction)
Description Causes exception #4 to occur.

Operand Size not applicable

No flags are affected.

Instruction RESET (RESET external devices) [privileged]

Description Causes all external devices to be reset to their
startup states.
Operand Size not applicable

No flags are affected.

Instruction STOP (load status register and STOP) [privileged]

Description Loads the immediate value specified in the operand
into the 68000 status register. Processing then
stops until a hardware interrupt exception occurs
that has a priority greater than the one set by the
interrupt mask in the status register.

Operand Size not applicable

Srce Dest Modes X N z \4 C
Dn * * * * *
An "
(An) The flags are set according
(An)+ to the number stored in
—(An) the immediate source op-
d16(An) erand.
d8(An,Rn)

Address
d16(PC)
d8(PC,Rn)

x #Immediate

146 Mac Assembly Language

Table 3-8. continued

Instruction

Description

Operand Size

TRAP (TRAP)

Causes an exception to occur. The number of the
exception vector involved is 32 plus the number
specified in the immediate operand (O to 15).

not applicable

Srce Dest

Modes No flags are affected.

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

Instruction

Description

Operand Size

TRAPV (TRAP on oVerflow)

Causes exception #7 to occur if the overflow flag in
the condition code register is set to 1.

not applicable

No flags are affected.

Status Registér Control Instructions

The system control instructions you’ll probably use most

often are the

ones that let you read from and write to the

condition code register (recall that the CCR is low-order byte
of the 16-bit status register). They are:

MOVE SR, <EA>
ANDI.B #num,SR
EORI.B #num,SR
ORI.B #num, SR

;Read entire status register
;AND CCR portion of SR

;EOR CCR portion of SR

;OR CCR portion of SR

MOVE <EA>,CCR ;(always byte size)

The 68000 Instruction Set 147

With these instructions you can set or clear any of the con-
dition code flags in several different ways, as well as read the
values of the flags. For example, you could set the carry flag
of the CCR as follows:

ORI.B #1,SR sForce bit 0 of SR (C) to 1

The .B extensions of the instruction mnemonics for the logi-
cal instructions are important. They indicate you are dealing
with the lower half of the status register only—the condition
code register.

There are also word forms of ANDI, EORI, and ORI that can
be used to modify the entire status register, not just the con-
dition code half. In addition, you can use MOVE <EA>,SR to
put a certain number in the entire register. All of these are
privileged instructions that you will probably never use.
There are two other privileged instructions that deal with
registers: MOVE USP,An and MOVE An,USP. They are used
to read from or write to the user stack pointer.

Trap Instructions

There are three system control instructions that generate
traps. Traps are exceptions caused by these instructions:
TRAP, TRAPV, and CHK. The TRAP instruction is of the form

TRAP #num

where num represents a trap number from O to 15. The
exception vectors for these traps are #32 to #47, respec-
tively. The TRAP instruction is a convenient way to pass con-
trol to a subroutine you’ve previously installed by placing its
address in the appropriate exception vector. The Macintosh
operating system does not use any of the TRAP vectors but
the MDS MacsBug debugger uses TRAP #15 as a software
breakpoint instruction.

The TRAPV instruction causes an exception only if the
overflow flag in the CCR is 1. The exception vector used is

148 Mac Assembly Language

#7. You probably won’t use this instruction very often as it's
usually more convenient to handle an overflow condition by
using a BVS instruction to direct an application to your own
error handler.

The CHK instruction is of the form

CHK <EA>,Dn ;Dn = any data register

and it checks to see if the word in the data register is either
negative or greater than the word stored at the effective
address. If it is, an exception occurs that uses exception vec-
tor #8. You cannot use CHK with a byte or long word
operand.

If you're writing a subroutine to handle exceptions, it must
end with another system control instruction, RTE (ReTurn
from Exception. This instruction pops the three words stored
on the stack by the 68000 when an exception occurs and
places them in the status register (one word) and the pro-
gram counter (two words).

Processor Control Instructions

The RESET instruction causes a hardware reset condition
to be sent to all peripheral ports connected to the 68000 and
is usually used to force these ports to their power-on states.
On the Macintosh, however, a RESET instruction causes the
system to shut down and start up just as if the power had
been turned on. '

The STOP instruction loads its 16-bit immediate operand
into the status register, then causes the 68000 to stop exe-
cuting instructions until an interrupt occurs that has a priority
higher than that stored in the status register’'s interrupt
mask. When execution continues, it begins with the instruc-
tion following the STOP instruction. You will probably never
have to use this instruction on the Macintosh.

The 68000 Instruction Set 149

Table 3-1. The 68000 Data Movement Instructions.

Instruction MOVE (MOVE data)

Description Moves the value at the source location to the desti-
nation location.

Operand Size .B, .W, .L

Srce Dest Modes X N 4 Vv C
x xX Dn - * * o lo)
x * An -
x x (An) N =1 if a negative numPer
x x (An)+ is mqved; N =0 otherwise.
x x —(An) Z=1 if a zero is moved;
x x d16(An) Z=0 otherwise.
x x d8(An,Rn)
x x Address
x d16(PC)
x d8(PC,Rn)
x #Immediate

* A source operand of An is
not permitted for byte-sized op-

erations.
Instruction MOVE from CCR (MOVE data from the CCR)
Description Transfers the contents of the condition code regis-

ter to the destination location.

Operand Size .W (only the low-order byte is significant)

Srce Dest Modes No flags are affected.

x Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

X X X X X X

The source operand is always
CCR.

150 Mac Assembly Language

Table 3-1. continued

Instruction

Description

Operand Size

MOVE to CCR (MOVE data to the CCR)

Transfers the contents of the condition code regis-
ter to the destination location.

.W (only the low-order byte is significant)

Srce Dest

Modes

X

X X X XXX XXX

Dn

An

(An)
(An)+

- (An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

The destination operand is al-

X N z \4 (o

* * * * *

The flags are set in accor-
dance with the number in
the source operand.

MOVE to SR (MOVE data to the SR) [privileged]

Moves the value at the source location into the full

ways CCR.
Instruction
Description
16-bit status register.
Operand Size W
Srce Dest Modes
x Dn
An

x (An)

x (An)+

x —(An)

x d16(An)

x d8(An,Rn)

x Address

x d16(PC)

x d8(PC,Rn)

x #Ilmmediate

The destination operand is al-

ways SR.

X N z Vv C

* * * * *

The flags are set in accor-
dance with the number in
the source operand.

The 68000 Instruction Set 151

Table 3-1. continued

Instruction

Description

Operand Size

MOVE from SR (MOVE data from the SR) [privi-
leged]

Transfers the contents of the status register to the
destination location.

W

Srce Dest

Modes No flags are affected.

x

XXX XXX

Dn

An

(An)

(An)
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

The source operand is always

SR.

Instruction

Description

Operand Size

MOVE USP (MOVE User Stack Pointer) [privileged]

Transfers the contents of the user stack pointer
(AT’) to the destination register, or vice-versa.

L

Srce Dest

Modes No flags are affected.

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#lmmediate

The source operand is always
USP if moving to An. The desti-
nation operand is always USP if
moving from An.

152 Mac Assembly Language

Table 3-1. continued

Instruction

Description

MOVEA (MOVE Address)

Moves the value at the source location to an ad-
dress register. If the value is word-sized, it is first
sign-extended to a 32-bit value.

Operand Size W, .L
Srce Dest Modes No flags are affected.
x Dn
x x An
x (An)
x (An)+
x —(An)
x d16(An)
X d8(An,Rn)
x Address
x d16(PC)
x d8(PC,Rn)
x #Ilmmediate
Instruction MOVEM (MOVE Multiple registers)
Description Moves the contents of a group of registers to an

Operand Size

area of memory, or vice versa. The order of transfer
is always DO through D7, then AO through A7, un-
less -(An) addressing mode is used, in which case
the standard order is reversed.

W, .L

The 68000 Instruction Set 153

Table 3-1. continued

MOVEM continued

Srce Dest

Modes No flags are affected.

XX XXX XX
00O00O (o]

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

The destination operand used with an operand marked with x is a
register list. The source operand used with an operand marked with
o is a register list. (See page 111 for a description of a register list.)

Instruction

Description

Operand Size

MOVEP (MOVE Peripheral data)

Moves bytes of data between a data register and
alternate bytes of memory. The transfer begins
with the highest-order byte and ends with the low-
est-order byte.

W, .L

Srce Dest

Modes No flags are affected.

X o

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

154 Mac Assembly Language

Table 3-1. continued

Instruction

Description

Operand Size

MOVEQ (MOVE Quick)

Moves an immediate quantity from — 128 to — 127

into a data register.

.L

Srce Dest

Modes

X

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#lmmediate

Instruction

Description

Operand Size

X

Cc

*

*

o

o

N=1 if a negative number
is moved; N =0 otherwise.
if a zero is moved;

z=1

Z=0 otherwise.

CLR (CLeaR an operand)

Moves a zero into the location specified by the oper-

and.

.B, W, .L

Srce Dest

Modes

x

XX XX XX

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

An immediate source operand

of #0 is implicit.

The 68000 Instruction Set 155

Table 3-1. continued

Instruction

Description

EXG (EXchanGe registers)

Exchanges the contents of the source and destina-
tion registers. An entire register (all 32 bits) is ac-
ted on by this operation.

Operand Size .L
Srce | Dest Modes No flags are affected.
x x Dn
x x An
(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate
Instruction LEA (Load Effective Address)
Description Transfers the effective address of the source oper-

Operand Size

and into the address register specified by the desti-
nation operand.

.L

Srce Dest

Modes No flags are affected.

X X X X X

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

156

Mac Assembly Language

Table 3-1. continued

Instruction

Description

Operand Size

LINK (LINK and allocate)

Pushes the value of the address register in the oper-
and on to the stack, transfers the new value of the
stack pointer to the address register, then adds the
immediate quantity specified by the destination op-
erand (a sign-extended word) to the stack pointer.
The immediate quantity must be negative to allo-
cate stack space in the normal way.

not applicable

Srce Dest

Modes No flags are affected.

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

Instruction

Description

Operand Size

PEA (Push Effective Address)

Decrements the stack pointer by four, then places
the effective address of the operand at the location
pointed to by SP.

L

The 68000 Instruction Set 157

Table 3-1. continued

PEA continued

Srce Dest

Modes No flags are affected.

X X X X X

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

A destination addressing mode
of —(SP) is implicit.

Instruction

Description

SWAP (SWAP register halves)

Exchanges the upper 16 bits of a data register with
the lower 16 bits.

Operand Size W
Srce Dest Modes X N z \4 C
x Dn - * * (o] 0

An
(An) N=1 if bit 31 is set after
(An)+ the swap; N =0 otherwise.
—(An) Z=1 if the entire register is
d16CAn) zero; Z=0 otherwise.
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

158 Mac Assembly Language

Table 3-1. continued

Instruction

Description

Operand Size

UNLK (UNLinK and deallocate)

Deallocates the stack space allocated with LINK by
transferring the value in the address register oper-
and to the stack pointer and then popping the long
word on the stack into the address register.

not applicable

Srce Dest

Modes

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Ilmmediate

No flags are affected.

The 68000 Instruction Set 159

Table 3-2. The 68000 Program Control Instructions.

Instruction

Description

Operand Size

Bcc (Branch conditionally) The cc stands for one of
the two-character mnemonics shown in Table 3-3.

Causes program execution to continue at a position
in the program relative to the program counter if
the conditions associated with cc are true. The
branch instructions are BCC (carry clear), BCS (car-
ry set), BEQ (equal), BGE (greater or equal), BGT
(greater than), BHI (higher), BLE (less or equal),
BLS (lower or same), BLT (less than), BMI (minus),
BNE (not equal), BPL (plus), BVC (overflow clear),
and BVS (overflow set).

.S (short branch) or .L (long branch) If the size is .S,
the branching range is —128 to + 127. If the size is
.L, the range is —32768 to +32767.

Srce Dest

Modes No flags are affected.

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

Instruction

Description

Operand Size

BRA (Branch Relative Always)

Causes program execution to continue at a position
in the program relative to the program counter. The
branch is always taken.

.S (short branch) or .L (long branch) If the size is .S,
the branching range is — 128 to + 127. If the size is
.L, the range is —32768 to +32767.

160 Mac Assembly Language

Table 3-2. continued

BRA continued

Srce Dest

Modes No flags are affected.

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#lmmediate

Instruction

Description

Operand Size

BSR (Branch to SubRoutine)

Pushes the current value of the program counter on
the stack (the address of the next instruction in the
program), then causes program execution to con-
tinue at a position in the program relative to the
program counter.

.S (short branch) or .L (long branch) If the size is .S,
the branching range is — 128 to + 127. If the si;e is
.L, the range is —32768 to +32767.

Srce Dest

Modes No flags are affected.

Dn

An

(An)

(An) +
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

The 68000 Instruction Set 161

Table 3-2. continued

Instruction DBcc (Test condition, Decrement, and Branch)

Description This is a looping instruction that first tests to see if
the condition referred to by Bcc is true; if it is, exe-
cution continues with the next in-line instruction. If
not, the contents of the data register (always a
word) are decremented and, if the result is not — 1,
control passes to the position in the program speci-
fied by the destination operand. If the result is —1,
execution continues with the next in-line instruc-
tion. Any of the 16 conditions in Table 3-3 can be
used with DBcc.

Operand Size W

Srce Dest Modes No flags are affected.

x Dn
An
(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address

x d16(PC)

d8(PC,Rn)
#lmmediate

Instruction JMP (JuMP)

Description Causes program execution to continue at the ad-
dress stored at the effective address specified in
the operand.

Operand Size not applicable

162 Mac Assembly Language

Table 3-2. continued

JMP continued

Srce Dest

Modes

X

X X X X X

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

Instruction

Description

Operand Size

JSR (Jump to SubRoutine)

No flags are affected.

Pushes the current value of the program counter on
the stack (the address of the next instruction in the
program), then causes program execution to the ef-
fective address specified in the operand.

not applicable

Srce Dest

Modes

X

X X X XX

Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

No flags are affected.

The 68000 Instruction Set 163

Table 3-2. continued

Instruction NOP (No OPeration)
Description Does nothing at all except kill some time and ad-
vance the program counter by one word.

Operand Size Not applicable, there are no operands. No flags are

affected.
Instruction RTE (ReTurn from Exception) [privileged]
Description Terminates execution of an exception-handling sub-

routine. It pops the status register and program
counter from the system stack, and control re-
sumes at the point where the exception occurred.
(The SR and PC are automatically placed on the
stack when the exception first occurs.)

Operand Size Not applicable, there are no operands.

X N z Vv Cc

* * * * *

The flags are set according to the contents of the word popped from
the stack.

Instruction RTR (ReTurn and Restore condition codes)

Description Pops the first word on the stack and places the low-
order byte in the condition code register. 1t then
pops the next long word on the stack into the pro-
gram counter so that control resumes at the point
where the subroutine was called.

Operand Size Not applicable, there are no operands.

X N z Vv Cc

* * * * *

The flags are set according to the contents of the word popped from
the stack.

164

Mac Assembly Language

Table 3-2. continued

Instruction

Description

Operand Size

Instruction

Description

RTS (ReTurn from Subroutine)

Pops a long word on the stack into the program
counter, causing execution to continue at the ad-
dress stored in the long word. RTS is used to termi-
nate a subroutine called with JSR or BSR.

Not applicable, there are no operands. No flags are
affected.

Scc (Set conditionally)

Causes the byte operand to be set to all ones if the
condition given by cc is true, or to all zeros if the
condition is false. The conditions corresponding to
cc are shown in Table 3-3.

Operand Size B
Srce Dest Modes No flags are affected.
x Dn
An
x (An)
x (An)+
x —(An)
x d16(An)
x d8(An,Rn)
x Address
d16(PC)
d8(PC,Rn)
#lmmediate
Instruction TAS (Test and Set an operand) .
Description Tests bit 7 of the byte operand, sets the N and Z

Operand Size

flags according to the result, then sets the bit to
one. This operation cannot be interrupted, therefore
it's ideal for setting busy flags or other semaphores
used in multitasking environments.

The 68000 Instruction Set 165

Table 3-2. continued
TAS continued

Srce Dest Modes X N z \Y4 (o}
x Dn - * * (o] (o]
An -
x ‘ (An) N=1 if bit 7 of the operand
x (An)+ is 1; N=0 otherwise.
x —(An) Z=1 if the operand is zero;
x d16¢An) . Z=0 otherwise.
x d8(An,Rn)
x Address
d16(PC)
d8(PC,Rn)
#Immediate
Instruction TST (Test an operand)
Description Compares the operand with zero and sets the condi-

tion code flags according to the result. The result
itself is not saved.

Operand Size .B, W, .L

Srce Dest Modes X N z \V4 C
x Dn - * * (o] 0
An . " -
x (An) N = 1 if the operand. is nega-
x (An)+ tlve;. N=0 otherwns.e.
x —(An) Z=1 if the operand is zero;
x d16CAn) Z=0 otherwise.
x d8(An,Rn)
x Address
d16(PC)
d8(PC,Rn)
#Immediate

166

Mac Assembly Language

Table 3-4. The 68000 Arithmetic Instructions.

Instructions ABCD (Add Binary-Coded Decimal with extend)
SBCD (Subtract Binary-Coded Decimal with extend)
Descriptions ABCD adds the BCD number in the source operand
and the extend bit to the BCD number in the desti-
nation operand, then stores the result in the desti-
nation operand.
SBCD subtracts the BCD number in the source oper-
and and the extend bit from the BCD number in the
destination operand, and stores the result in the
destination operand.
Operand Size B
Srce Dest Modes X N z \4 C
x x Dn * U * U *
An N -
(An) Z=1 if the result is zero;
An)+ otherwise, Z is unchanged.
° o —(An) C=1 if a decimal carry (for
d16¢An) ABCD) or borrow (for
d8(An,Rn) SBCD) was. generated;
Address C=0 otherwise.
d16(PC) X=1 if a decimal carry (for
#lmmediate SBCD) was generated;
X =0 otherwise.
Instructions ADD (Add Binary)
’ SUB (Subtract Binary)
Descriptions ADD adds the binary number in the source operand

Operand Size

to the binary number in the destination operand,
then stores the result in the destination operand.

SUB subtracts the binary number in the source op-
erand from the binary number in the destination op-
erand, then stores the result in the destination
operand.

.B, W, .L

Table 3-4. continued

The 68000 Instruction Set 167

ADD and SUB continued

Srce Dest Modes

x Dn

* An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)

(<]

0000O0O0O0

X X X XX XXX XXX

#Immediate

* A source operand of An is not
permitted for byte-sized opera-
tions.

Instructions

X N z Vv (]

* * * * %*

N=1 if the result is nega-
tive; N=0 otherwise.

Z=1 if the result is zero;
Z=0 otherwise.

V=1 if an overflow result-
ed; V=0 otherwise.

C=1 if a carry (ADD) or
borrow (SUB) was gener-
ated; C=0 otherwise.

X=1 if a carry (ADD) or
borrow (SUB) was gener-
ated; X=0 otherwise.

ADDA (Add Address)

SUBA (Subtract Address)

Descriptions

ADDA adds the binary number in the source oper-

and to the address in the destination operand, then
stores the result in the destination operand.

SUBA subtracts the binary number in the source op-
erand from the address in the destination operand,
then stores the result in the destination operand.

Operand Size W .L

Srce Dest Modes

Dn

x An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

XXX XXXXXXXX

No flags are affected.

Unlike normal add and subtract instructions, ADDA and SUBA do

not affect the status flags.

168

Mac Assembly Language

Table 3-4. continued

Instructions

Descriptions

ADDI (Add Immediate)
SUBI (Subtract Immediate)

ADDI adds the immediate binary number in the
source operand to the binary number in the destina-
tion operand, then stores the result in the destina-
tion operand.

SUBI subtracts the immediate binary number in the
source operand from the binary number in the desti-
nation operand, then stores the result in the desti-
nation operand.

Operand Size .B, .W, .L
Srce Dest Modes X N Zz \V4 Cc
x Dn * * %* * *
An .
x (An) N=1 if the result is nega-
x CAn)+ tive; N =0 otherwise.
x —(An) Z=1 if the result is zero;
x d16¢An) Z=0 otherwise.
x d8(An,Rn) V=1 if an overflow result-
x Address ed; V=0 otherwise.
d16(PC) C=1 if a carry (for ADDI)
d8(PC,Rn) or borrow (for SUBI) was
x #Immediate generated; C=0 other-
wise.

X=1 if a carry (for ADDD
or borrow (for SUBI) was
generated; X=0 other-
wise.

Instructions ADDQ (Add Quick)
SUBQ (Subtract Quick)
Descriptions ADDQ adds the immediate binary number in the

source operand (a number from 1 to 8) to the binary
number in the destination operand, then stores the
result in the destination operand.

The 68000 Instruction Set 169

Table 3-4. continued

Description

SUBQ subtracts the immediate binary number in
the source operand (a number from 1 to 8) from the
binary number in the destination operand, then
stores the result in the destination operand.

Operand Size .B, .W, .L
Srce Dest Modes X N 4 \V4 C

x Dn * * * * *

x * An N N

x (An) N.=1 if the .result is neg.a-

- (An)+ tlve-; .N=O if the result is

x —(An) posrt.lve.)

x d16(An) Z=1 |f ,:h.e result is zero;

x d8(An,Rn) Z=0.|f it isn’t.

x Address V=1 if an- o.ver.ﬂow result-
d16(PC) ed; \{=0 if it didn’t.
d8(PC,Rn) C=1 if a carry (ADDQ) or

x #lmmediate borrow (SUBQ) was gen-
erated; C=0 otherwise.

* A destination operand of An
is not permitted for byte-sized

operations.

Instructions

Descriptions

Operand Size

X=1 if a carry (ADDQ) or
borrow (SUBQ) was gen-
erated; X=0 otherwise.

ADDX (Add eXtended)
SUBX (Subtract eXtended)

ADDX adds the binary number in the source oper-
and to the extend bit to the binary number in the
destination operand, then stores the resuit in the
destination operand.

SUBX subtracts the binary number in the source op-
erand and the extend bit from the binary number in
the destination operand, then stores the result in
the destination operand.

.B, .W, .L

170 Mac Assembly Language

Table 3-4. continued

ADDX and SUBX continued

Srce Dest Modes

x x Dn

* An

(An)
(An)+

o o —(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

Instruction

CMP (Compare)

X N z \"4 Cc

* * * * *

N=1 if the result is nega-
tive; N =0 otherwise.

Z=1 if the result is zero;
Z=0 otherwise.

V=1 if an overflow result-
ed; V=0 otherwise.

C=1 if a carry (ADDX) or
borrow (SUBX) was gen-
erated; C=0 otherwise.

X=1 if a carry (ADDX) or
borrow (SUBX) was gen-
erated; X=0 otherwise.

Description Subtracts the source operand from the destination
operand, and sets the condition code flags accord-
ing to the result. The result itself is not stored. The
destination operand must be a data register.

Operand Size .B, .W, .L

Srce Dest Modes

x Dn

* An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#lmmediate

XX XXX XXX XXX

* A source operand of An is
not permitted for byte-sized
operations.

X N 4 \" C

* * * *

N=1 if the source operand
is less than the destina-
tion operand; N=0 other-
wise.

Z=1 if the source operand
is the same as the destina-
tion operand; Z=0 other-
wise.

V=1 if the subtraction
caused an overflow; V=0
otherwise.

C=1 if the destination op-
erand is less than the
source operand; C=0 oth-
erwise.

The 68000 Instruction Set 171

Table 3-4. continued

Instruction CMPA (Compare Address)

Description Subtracts the address in the source operand from
the address in the destination operand, and sets the
condition code flags according to the result. The re-
sult itself is not stored. If the word form of CMPA is
used, the addresses are sign-extended before the
comparison is made.

Operand Size W .L

Srce Dest Modes X N z \4 C

x Dn - * * * *

x x An .

x (An) N=1 if the source operand

x (An)+ is less than the destina-

x —(An) tion operand; N=0 other-

x d16(An) wise.

x d8(An,Rn) Z.— 1 if the source opet:and

x Address is the same as the destina-

x d16(PC) ti?n operand; Z=0 other-

x d8(PC,Rn) wise. .

x #Immediate V=1 if the subtraction
caused an overflow; V=0
otherwise.

C=1 if the destination op-
erand is less than the
source operand; C=0 oth-
erwise.

Instruction CMPI (Compare Immediate)

Description Subtracts the immediate source operand from the

Operand Size

destination operand, then sets the condition code
flags according to the result. The result is not
stored.

.B, W, .L

172 Mac Assembly Language

Table 3-4. continued

CMPI continued

Srce Dest Modes

x Dn

An

(An)
(An)+
—(An)
d16(An)
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
x #Immediate

X XXX XX

Instruction

X N z \4 C

* * * *

N=1 if the source operand
is less than the destina-
tion operand; N=0 other-
wise.

Z=1 if the source operand
is the same as the destina-
tion operand; Z=0 other-
wise. :

V=1 if the subtraction
caused an overflow; V=0
otherwise.

C=1 if the destination op-
erand is less than the
source operand; C=0 oth-
erwise.

CMPM (Compare Memory)

Description Subtracts the source operand from the destination
operand, and sets the condition code flags accord-
ing to the result. The result is not stored. Only the
(An)+ addressing mode can be used with this in-
struction, so it's ideal for comparing one area of

memory with another.

Operand Size .B,.W, .L

The 68000 Instruction Set 173

Table 3-4. continued

CMPM continued

Srce Dest Modes X N y4 \4 C
Dn - * * * *
An X
(An) N=1 if the source operand
x x (An)+ is less than the destina-
—(An) tion operand; N=0 other-
d16(An) wise.
d8(An,Rn) Z=1 if the source operand
Address is the same as the destina-
d16(PC) tion operand; Z=0 other-
d8(PC,Rn) wise. .
#Immediate V=1 if the subtraction
caused an overflow; V=0
otherwise.

C=1 if the destination op-
erand is less than the
source operand; C=0 oth-
erwise.

Instructions DIVS (Signed DIVide)
DIVU (Unsigned DIVide)
MULS (Signed MULtiply)
MULU (Unsigned MULtiply)
Descriptions DIVS divides the destination operand (a long word)

by the source operand (a word) and stores the re-
sult in the destination operand. The low-order 16
bits of the result is the quotient and the upper 16
bits is the remainder. The division operation is per-
formed using two’s complement signed arithmetic.

DIVU divides the destination operand (a long word)
by the source operand (a word) and stores the re-
sult in the destination operand. The low-order 16
bits of the result is the quotient and the upper 16
bits is the remainder. The division operation is per-
formed using unsigned arithmetic.

MULS multiplies the destination operand (a word)
by the source operand (a word) and stores the re-
sult (a long word) in the destination operand. The
multiplication is performed using two’s complement
signed arithmetic.

174

Mac Assembly Language

Table 3-4. continued

Descriptions

MULU multiplies the destination operand (a word)
by the source operand (a word) and stores the re-
sult (a long word) in the destination operand. The
multiplication operation is performed using un-
signed arithmetic.

Operand Size W
Srce Dest Modes X N z \4 C
x x Dn - * * * (o]
An . .

x (An) N=1 if the dividend for

x (An)+ DIVU or DIVS is negative;

x —CAn) N =0 otherwise.

x d16C¢An) Z=1 if the dividend for

x d8(An,Rn) DIVU or DIVS is zero; Z=0

x Addre:ss otherwise.

x d16(PC) For DIVU and DIVS, V=1 if

x d8(PC,Rn) a division overflow oc-

x #lmm;diate curred; V=0 otherwise.
For MULU and MULS,
V=0.

Instruction EXT (sign EXTend)

Description Copies bit 7 (word form) or bit 15 (long word form)
of a data register through bits 8-15 or bits 16—31 of
the register.

Operand Size W .L

Srce Dest Modes X N z \V4 (o}
x Dn - * * (o) (o]
An - -
(An) N=1 if the result is nega-
(An)+ tive; N=0 otherwise.
—(An) Z=1 if the result is zero;
d16¢An) Z=0 otherwise.
d8(An,Rn)
Address
d16(PC)
d8(PC,Rn)
#Immediate

The 68000 Instruction Set 175

Table 3-4. continued

Instructions

Descriptions

Operand Size

NEG (NEGate)
NBCD (Negate Binary-Coded Decimal with extend)
NEGX (NEGate with eXtend)

NEG subtracts the operand from zero and stores
the result at the operand location. Standard binary
arithmetic is used.

NBCD subtracts the operand and the extend bit
from zero and stores the result at the operand loca-
tion. BCD arithmetic is used.

NEGX subtracts the operand and the extend bit
from zero and stores the result at the operand loca-
tion. Standard binary arithmetic is used.

.B, W, .L

Srce Dest Modes X N z A\ C
X Dn * * * * *
An
x (An) For NEG and NEGX, N=1 if
x (An)+ the result is negative;
x —(An) N=0 otherwise. For
x d16C(An) NBCD, N is undefined.
x d8(An,Rn) For NEG and NEGX, Z=1 if
x Address the result is zero; Z=0
d16(PC) otherwise. For NBCD,Z=0
ds(PC,Rn) if the result is non-zero;
#Immediate otherwise, Z is unchanged.
For NEG and NEGX, V=1 if

an overflow occurred;
v=0 otherwise. For
NBCD, V is undefined.

For NEG, C=0 if the result
is 0; C=1 otherwise. For
NEGX, C=1 if a borrow oc-
curred; C=0 otherwise.
For NBCD, C=1 if a deci-
mal borrow occurred; C=0
otherwise.

The X flag is set the same
as the C flag.

Chapter 4
Memory Management

In this chapter I'll begin by explaining how the Macintosh oper-
ating system uses the 16-megabyte address space sup-
ported by the 68000. This will include a discussion of the
usage of the RAM space (128K or 512K for the Macintosh,
1M for the Macintosh Plus), the ROM space (64K or 128K),
and the memory-mapped /O space in the high end of
memory.

When we finish the guided tour of the memory space,
you'll see how a 68000 assembly language program makes
use of different areas in the RAM memory space for the
storage of the program itself and the data it uses. In so
doing, you’'ll see how and where space for constants, vari-
ables, and other data structures used by the program can
be allocated without interfering with the smooth operation
of the system.

Macintosh Memory Map

Figure 4-1 shows the allocation of the 68000's 16M
address space on a Macintosh. As you can see, much of the
space is unused, so there’s plenty of room for future RAM
or ROM expansion. Global variables containing the
addresses of the key areas in the memory space are also
shown in Figure 4-1.

Let's traverse the memory space from bottom to top to
see how it's used on the Macintosh.

176

177

$FFFFFF
Used by Pointer Locations
1/0 devices ROMBase $24AE
MemTop $108
ScrnBase $324
$800000 CurrentdS | $904
[CurStackBase | $908
HeapEnd $114
‘ ApplZone $244
$420000 SysZone $246
RAMBase $2B2

64K or 128K «—

$400000 —— (ROMbase)

Unused

(Mac Plus) $100000 (Reserved for RAM)

(Mac 512) $080000
(Mac 128) $020000

28 bytes «——§
740 bytes «———
128 bytes «—| System Error Handler

—— (MemTop)

21888 bytes «—— Screen Buffer

t—— (ScrnBase)

Jump Table
32 bytes «——| Application Parameters |, a5 - (CurrentAS)
256 bytes «——| QuickDraw Globals L ¢as)

Application Globals
«—— (CurStackBase)

l Stack

T Application Heap
«—— (AppliZone)

(64K ROM) $000B00

(128K ROM) $001400 jL System Heap
'g"'."i ?;;KM;SH «——| Trap Dispatch Table
$000800 System Global Yariables

$000400 Trap Dispatch Table

$000100 System Global Yariables

Exception Yectors

$000000

Figure 4-1. A Macintosh Memory Map.

«—— (SysZone) or (RAMBase)

178 Mac Assembly Language

Exception Vectors

As explained in Chapter 1, the area from $000000 to
$0000FF holds the 68000's first 64 exception vectors.

System Global Variables

These variables occupy the space from $000100 to
$0003FF and from $000800 to $000AFF. (The space from
$000100 to $0003FF is available because user interrupt vec-
tors are not needed on the Macintosh.) They are primarily for
the private use of the Macintosh operating system, but can
also be inspected by your own programs. Some of the more
interesting variables stored here are pointers to the various
data areas that I'll discuss in this section: the current time,
the name of the current application, and the background pat-
tern of the screen. You can find lists of the system global
variables in the symbol equate files that come with the MDS.

Trap Dispatch Table

On a Macintosh with a 64K ROM, this table runs from
$000400 to $0007FF and contains a list of the starting
addresses of every toolbox and operating system subroutine
in encoded form.

On a Macintosh with a 128K ROM, this table is made up of
two parts. The first part, from $000400 to $0007FF, contains
the starting addresses of the 256 operating system subrou-
tines. The second part, from $000C00 to $0013FF, contains
the starting addresses of the 512 user-interface toolbox
subroutines.

Most of operating system and toolbox subroutines are
located in the Macintosh ROM, but some are loaded into RAM
when the system starts up. The RAM-based subroutines are
primarily replacements for buggy ROM subroutines, or new
subroutines that have not yet been committed to ROM.

Memory Management 179

System Heap

The system heap is an area reserved for the storage of the
resources and data structures used by the operating system.
The contents of the system heap are not removed when a
new program is started up (or launched) from the Finder.

A pointer to the base of the system heap is stored in a sys-
tem global variable called RAMBase. For a Macintosh with a
64K ROM, the heap base is $000B00; for a Macintosh with a
128K ROM, it is $001400.

Application Heap

The application heap is an area used by programs for stor-
age of data, program constants, resources, and even the
program itself. The application heap is initially 6K long, but
expands to fill the free space above the heap as more space
is requested by your program. The items in the application
heap are released whenever a new application is launched.

Stack

This is the stack described in Chapter 1. Recall from the
previous discussion that when data is added to it, the stack
grows down in memory; this means it shares the same free
space the application heap can move up into. If the top of the
stack and the top of the heap ever collide, an out-of-mmemory
bomb appears on the screen.

Application Global Space

This space is made up of global variables, application
parameters, and a jump table. The size of this space is dic-
tated by the specific application you are using; it is automati-
cally reserved when the application is launched. The global
variables are those defined in your program with the DS
assembler directive, and also those used by QuickDraw (the

180 Mac Assembly Language

set of toolbox subroutines responsible for drawing images on
the screen). Variables are placed just below the memory
location whose address is stored in the A5 register, in
reverse order of declaration; the first variable defined is
stored in the highest part of the space.

The long word stored at the address in A5 is the first entry
in the 32-byte application parameter table. It contains the
address of the first QuickDraw global variable, normally given
by the effective address of —4(A5). The only other active
entry in the table, located at offset 16, is a handle to a Finder
startup information record. (A handle is the address of a
pointer to the record.) This record tells the application which
documents it is to open or print as it starts up, if any.

The jump table is present only if the application is made up
of more than one code segment. Calls from one segment to
the other are made through the jump table.

Screen Buffer

The screen buffer is exactly 21,888 bytes long and begins at
$1A700 for a 128K Macintosh or at $7A700 for the 512K
model. If you do the mathematics, you'll find this corresponds
to 175,104 bits, exactly the number in a grid measuring 512
wide by 342 high. Not surprisingly, these are the dimensions
of the Macintosh screen display, in pixels. (Pixel stands for
“picture element,” a dot on the screen display.)

Each bit in the screen buffer controls the appearance of a
different pixel on the screen. If the bit is one, its pixel is black;
if it's zero, its pixel is white.

There is a linear relationship between the screen buffer and
the pixels on the screen. To calculate the byte and bit number
within the screen buffer that corresponds to a particular pixel, -
you first muiltiply the row number (O to 341) by 512 (the screen
width in pixels) and add the result to the column number (O to
511). If you then divide this number by eight, the byte number
you want is the dividend; subtract the remainder from seven to
determine the relevant bit number within that byte.

Memory Management 181

System Error Handler Buffer

The System Error Handler, the part of the operating sys-
tem that takes over when a fatal system error occurs, uses
this area for data storage. It is the System Error Handler that
displays the infamous bomb alert box.

Sound Buffer

The operating system uses this buffer to control the sound
generated by the Macintosh'’s built-in speaker.

Expansion RAM

This is the space that is occupied as you add more RAM
memory to your Macintosh.

ROM

The Macintosh ROM space begins at $400000 (4
megabytes) and is either 64K or 128K bytes long, dependihg
on which version of the Macintosh you are using. This ROM
contains the hundreds of fundamental subroutines making up
the Macintosh operating system and the user interface tool-
box. It is these subroutines that are accessed through the
use of the line A emulator trap instructions ($Axxx) dis-
cussed in Chapter 1.

Memory-Mapped 1I/0 Space

The upper eight megabytes of the 16M address space are
reserved for control of Macintosh input/output devices even
though only a few locations are actually used. There’'s really
no RAM or ROM up here, it's just that the I/0O devices are
wired into the system in such a way that you can communi-
cate with them by reading from or writing to certain loca-

182 Mac Assembly Language

tions. This method of handling /0O operations is called
memory-mapped /0.

The 1I/0 locations provide support for the control of the fol-
lowing peripheral interfaces:

® Intel 8530 Serial Communications Controller (SCC).
® Synertek 6522 Versatile Interface Adapter (VIA).
® Integrated Woz Machine (IWM) disk controller.

You should never have to refer to I/0O locations in your own
programs because the Macintosh operating system includes
the low-level drivers that perform most I/O operations you'd
ever need.

Data Storage in the Application Heap

Now that you've seen how the various areas of memory are
used on the Macintosh, it's time to discover where your own
programs can store data safely. The operating system trap
instructions we’'ll be looking at are summarized in Table 4-1.

Table 4-1. Memory Manager Trap Instructions.

Pointers
|
__DisposPtr Releases a nonrelocatable block.

MOVE.L thePtr,AD yA0.L = pointer to the block
_DisposPtr ;Error code returned in DO.W
_NewPtr Allocates a nonrelocatable block.
MOVE.L #blockSize,DO ;DO.L = size of block in bytes
_NewPtr ;The pointer is returned in AD.L
;DO0.L contains the error code

Handles

__DisposHandle Releases a relocatable block.
MOVE.L thePtr,AD ;A0.L = pointer to the block

_DisposHandle ;Error code returned in DO.W

Memory Management 183

Table 4-1. continued

Handles
|
_HLock Locks a relocatable block in place.

MOVE.L theHandle,AD ;A0.L = handle to the block
_HLock ;Brror code returned in DO.W
_HUnlock Unlocks a relocatable block.
MOVE.L theHandle, RO ;AD0.L = handle to the block
_HUnlock ;Error code returned in DO.Wt
_NewHandle Allocates a relocatable block.
MOVE.L #blockSize,DO ;D0.L = size of block in bytes
_NewHandle ;The handle is returned in AD.L
;DO.L contains the error code
Error Reporting
Memory management error codes are returned in the DO.W
register.

Here is a list of errors codes and their meanings:

Symbolic Name Value Meaning

NoErr (o] No error occurred

MemFullErr —108 No room for block

NilHandleErr -109 lllegal operation on nil handle
MemWZErr -111 lllegal operation on free block
MemPurErr -112 lllegal operation on locked block

There are four areas of RAM we'll be looking at:

® the application heap

® the stack

® the application global space

® the program storage area (within the heap)

Let's begin by considering the application heap. When a
68000 program is launched, it is loaded into an area of mem-
ory called the application heap, located in the low end of
memory, just above the system heap used by the operating
system. The exact position the program occupies in the heap
is not important as long as the program is relocatable (capa-

184 Mac Assembly Language

ble of running at any position in memory). Because of the
way the MDS assembler assembles code, it is difficult to
write a program that is not relocatable.

When a new application is launched from the Finder, the
application heap is cleared of all information to prevent uncon-
trolled growth. The system heap is not affected, however.

The application heap is simply a general-purpose data stor-
age area. It is used to hold not only program code, but also
resources used by the program: data buffers, and other data
structures used either by the toolbox and operating system
subroutines or directly by the program. It is obviously not a
static structure; as items are added to it, it grows upward in
memory toward the top of the stack, which grows
downward.

There are four trap instructions you can use to dynamically
allocate and deallocate blocks of data on the application heap.
These blocks are referred to by either pointers or handles,
depending on how they were first allocated.

Pointers

A pointer is a long word containing the address of a block of
data in the heap. (See Figure 4-2.) This block is nonrelocat-
able: the operating system never tries to relocate it when it
compacts the heap. (Heap compaction is the packing
together of relocatable blocks in the heap; it is performed
periodically to ensure there will be minimal dead space
between blocks. To reserve a data block on the heap refer-
enced by a pointer, use the _NewPtr trap instruction:

MOVE.L #size,DO ;D0 = size of block in bytes
_NewPtr

The pointer (a long word) is returned in the AO register if no
error occurred. An error code (a word) is returned in the DO
register; if it is zero, no error occurred. The only error that
can occur for _NewPtr has the symbolic name MemFullErr
(code -108), which means that there is not enough space in

Memory Management 185

0
Pointer Memo

heap

Figure 4-2. A Pointer to a Block of Memory.

the application heap for a nonrelocatable block of the size
requested.

You can add the “,CLEAR"” suffix to _NewPtr to zero the
allocated block after allocating it. Another suffix, “SYS”, lets
you allocate space in the system heap rather than the appli-
cation heap.

Handles

A handle is a long word containing the address, not of the
block of data itself, but of the location of a master pointer
that contains the current address of the block of data. (See
Figure 4-3.) If necessary, the operating system may relocate
the data block in memory but if it does, the handle to it
remains valid (only the address stored in the master pointer
changes). This means you can use your handles without hav-
ing to worry about whether your data block has moved, at
least until the data block is finally disposed of (see below). To

186 Mac Assembly Language

reserve heap space referenced by a handle, use the
_NewHandle trap:

MOVE.L #size,DO ;D0 = size of block in bytes
_NewHandle

The handle (a long word) is returned in the AO register.
As with _NewPtr, an error code is returned as a word in
DO.

— 3 Master Pointer

Handle Memorg

heap

Figure 4-3. A Handle to a Block of Memory.

The choice of whether to reference a block of data by han-
dle or by pointer is often dictated by the requirements of the
toolbox trap instruction that uses the data block: Some
instructions require you to pass pointers to data areas;
others require handles.

If the space is for a data structure of your own design, it's
easiest to deal with pointers because the elements of the
data block can be easily accessed using the address register
indirect with offset addressing mode, d16(An). You don't

Memory Management 187

have to worry about the block of data moving around in mem-
ory if you use a pointer. For example, if AO contains the
pointer to the data block, position 60 in the block would be
accessed by using an operand of the form “60(A0)”.

If, on the other hand, you have a handle to a block, you
must “de-reference” the handle so you can access the block
as you would if you were dealing with a pointer:

MOVE.L MyHndl(AS),RO ;MyHndl is a long word variable
MOVE.L (RAD),AD ;Convert handle to pointer

Notice what the last instruction does: It takes the long
word to which the handle points and puts it in AO. Since the
handle points to a pointer to the data block, you can now use
the AO address register indirect addressing modes to access
the block in the same way you would if you were dealing with
a pointer directly.

But be careful! The de-referenced handle used to access
the data in a block is valid only if the block has not been relo-
cated since you did the de-referencing. Calling some trap
instructions can result in block relocation, so you should lock
the data block in place before doing so. Do this by calling the
_HLock trap instruction:

MOVE.L MyHndl(AS),AO ;A0 = handle to block
_HLock
MyHndl DS.L 1 ;Handle stored here

When you've finished fiddling with the data block, you
should unlock the data block with the _HUnlock trap to make
it relocatable again:

MOVE.L MyHndl(AS),AD ;AD = handle to block
_HUnlock

If you don’t do this, you'll create islands of immovable data
blocks in the heap space that can interfere with efficient

188 Mac Assembly Language

heap compaction; these may make it impossible to allocate a
large space in the heap without running out of memory.

Deallocation

One of the nice things about allocating blocks in the heap is
that you can easily deallocate them when you're through
with them. Thus, you don't have to waste memory space for
data areas you only use once. The two trap instructions for
removing data blocks are _ DisposPtr and _ DisposHandle.
The first is for blocks referenced by pointer and the other is
for those referenced by handle. On entry to either trap, the
AO register contains the pointer or handle to the data block
being disposed of. Here’'s an example using _ DisposPtr:

MOVE.L MyPtr(AS),AO ;Load pointer into AD
_DisposPtr ;Release the data block

It's always a good idea to dispose of unused data blocks
because it frees up valuable memory space.

Allocation Tips

If you're dealing with both pointers and handles, you
should try to allocate all your pointer areas first, if possible,
to avoid excessive heap fragmentation. Suppose you don’t
and you allocate a handle area first, followed by some
pointer areas. If you subsequently dispose of the handle
area, you'll be left with a hole in the heap that can’t be filled
by compaction because the pointer areas can’t be moved. If
you have several holes like this, shielded by pointer areas,
and they're not big enough to hold later-defined handle
areas, the heap will soon become very large and you may
run out of memory.

If the pointer areas are defined first, they cannot interfere
with movement of handle areas during heap compaction.

Memory Management 189

Data Storage on the Stack

We saw in Chapter 3 that several 68000 instructions implic-
itly use the 68000 stack for data storage or retrieval, notably
the JSR, BSR, and RTS instructions used in connection with
subroutine calls.

You can also explicitly push data on the stack using the
—(SP) addressing mode. You might want to do this, for
example, to save the contents of a register that is tempora-
rily required for something else. You can restore the original
contents by later popping it from the stack using the (SP)+
addressing mode.

More commonly, you'll use the stack for passing parame-
ters to the user interface toolbox subroutines. For example,
to set the active drawing location to position (8,50) on the
screen, you push the two coordinates on the stack, then call
the _MoveTo trap instruction:

MOVE #8, - (SP) ;Horizontal coordinate
MOVE #50,-(SP) ;Vertical coordinate
_MoveTo ;Position the cursor

The subroutines to which trap instructions pass control are
designed in such a way that you don’'t have to pop the data
from the stack after the call; this is done for you automati-
cally. If a result is returned on the stack, however, you will
have to pop it off to prevent uncontrolled stack growth and
to ensure that you'll return to the correct location when the
next RTS or RTR instruction is encountered.

An example of a trap instruction that returns a result on
the stack is _MenuSelect. (See Chapter 7.) Here’'s how to
handle a call to this trap:

CLR.L -(SP) ;Clear space for result
MOVE.L Point,-(SP) ;Position of mouse
_MenuSelect

MOVE.L (SP)+,DO ;Pop the result

190 Mac Assembly Language

Since _MenuSelect returns a result on the stack, you have
to clear a space for it before calling it. That's the purpose
of the CLR.L -(SP) instruction. The instruction after
_MenuSelect transfers the result (a long word) from the
stack to the DO register.

LINK and UNLK

Recall from Chapter 3 that a data area can also be allocated
on the stack using the LINK and UNLK instructions. You must
use these instructions for re-entrant or recursive subrou-
tines. They may also be useful to you for allocating and deal-
locating temporary data structures so you don't have to deal
with the more cumbersome _NewPtr and _DisposPtr (and
_NewHandle and _DisposHandle) traps. It also means you
don’t have to allocate permanent storage space for the rec-
ord using the DS or DC directives.

Suppose you want to use the Macintosh _ GetFontInfo trap
instruction to determine the dimensions of the active font. As
you will see in Chapter 6, _GetFontinfo returns data in an
8-byte font information record. The height of a text line can
then be calculated by adding the three integer fields in the
record that are stored at offsets O (ascent), 2 (descent), and
6 (leading) bytes from the start of the record.

Here is a subroutine using LINK and UNLK that you can use
to create space for the font information record on the stack
and return the height in DO. It also shows how to access the
parameters in the record using the di16(SP) addressing
mode:

GetHeight LINK Ab,#-8 ;Push Ak, create stack frame
MOVE.L SP,-(SP) ;Push pointer to stack frame
_GetFontInfo ;0n exit, SP points to record
MOVE 0O(SP),DO ;Height of text is
ADD 2(SP),D0O ; ascent+descent+leading

ADD bL(SP),DO
UNLK Rb ;Restore original SP, Rb
RTS

Memory Management 191

After allocation of space for the record with LINK (notice
the size is negative, as required), SP points to the base
address of the font information record in the stack area.
Since __GetFontInfo requires a pointer to this record, SP is
pushed on the stack with a MOVE.L SP, —(SP) instruction.
When _GetFontinfo finishes, SP again points to the base of
the record, and the fields are accessed with operands of
0O(SP), 2(SP), and 6(SP). The UNLK A6 instruction at the end
of the subroutine restores the stack to its state on entry.

Data Storage Within the Application
Global Space

The traditional definition of a variable is a memory location
(or locations) that holds data of byte, word, or long word
size. This data can be altered at any time by your program to
change its value. In the MDS environment, the word variable
usually means a memory location allocated using the DS
(Define Storage) assembler directive.

When a program is launched, its variables are set up in an
application global space in the upper end of RAM memory,
just below the screen buffer. (See Figure 4-4.)

The application global space not only holds your program'’s
variables, but also variables used by QuickDraw screen draw-
ing primitives (the group of subroutines in the Macintosh
ROM responsible for managing the screen display), and
parameters the Macintosh operating system uses to transfer
control to other code segments. The 68000 stack is set up
just below the variable space.

After launch, the A5 register points to the first long word
past the end of the variables; this is the first entry in the
application parameters table. Variables are stored between
this address and the bottom of the stack, in reverse order of
declaration.

The first variables in the space (at the upper end of the
space) are usually the QuickDraw global variables, although

192 Mac Assembly Language

high memory

Jump Table

AD Register

(points to first

word in the application

parameters table)

Application
Parameters

QuickDraw
Globals

Application
Global

(32 bytes)

(256 bytes)

Variables

low memory

Figure 4-4. The Application Global Space.

an application can store them in the heap, if preferred. The
usual space reserved for the QuickDraw global variable space
by MDS is 256 bytes. (You can adjust the size of the space
using a linker command called /GLOBALS, but you should
rarely have to do this.)

Beneath the QuickDraw variables are the application’s own
variables. To access them (or the QuickDraw variables), you
must use the A5 address register indirect with offset
addressing mode, d16(A5). Fortunately, you do not have to
know the absolute offsets to the variables in the space
because they are calculated for you by the assembler; all you
need do is specify the name of the variable in the operand.
For example, if you have defined two long words called
MyVariable as follows:

MyVariable DS.L 2

and you want to store the contents of the D1 register in the
first long word, you would use the instruction:

Memory Management 193

MOVE.L Dl,MyVariable(AS)

If you want to deal with the second long word, use:

MyVariable+4(AS)

as the destination operand.

A common error in assembly language programs is omitting
the reference to the A5 register. It is required! You should
also take care not to destroy the contents of the A5 register.
If you do change it, you won't be able to access variables until
you reload it with the address of the end of the variable
space. This value is stored in a system global variable called
CurrentAb5.

The size of the application global space is not fixed. Rather,
its size is controlled by the number of variables defined in
your application. The advantage of this is that you can define
as many variables as you want in your program, provided, of
course, that you don’t run out of RAM space.

Data Storage Within the Application Code

Data areas can be allocated within the application code
itself using the DC and DCB assembler directives. These
directives also place specific values in the spaces so allo-
cated. Memory locations allocated with either of these two
directives are called constants since their contents are not
expected to change. ’

To store two constants, $BEAF (word) and $32 (long
word), in a program, use:

MyWord DC.W $BEAF ;Store BE AF
MyLWord DC.L $3¢2 ;Store 00 00 00 32

When constants are accessed by name, the MDS assem-
bler forces you to use the program counter indirect with dis-
placement addressing mode to ensure that your program will

194 Mac Assembly Language

be relocatable. If you want to read the constant MyLWord,
you would use an instruction like:

MOVE.L MyLWord(PC),DD

If you forget the (rc), the MDS assembler will supply it for
you. Since the constants are located relative to the program
counter, the program will be relocatable.

Constants are not supposed to be changed on the fly by a
program, they're supposed to stay the same. Constants that
are changed are really variables in disguise and should be
defined as such using the DS assembler directive. Apple has
even published warnings to programmers about writing to
constants. The reason given is that it may cause your pro-
grams to be incompatible with future versions of the Macin-
tosh, which may use hardware techniques to physically
prevent you from writing to the code space. (Protecting the
code space has merit; it's to prevent runaway programs from
disturbing other programs in a multi-user environment.)

There is also a practical reason for not writing to a con-
stant: It's simply awkward to do so from a programming
point of view. This is because the program counter indirect
addressing modes used to read constants cannot be used to
write to them. Thus, an instruction like:

MOVE #8,MyConstant (PC) ;invalid instruction

is not permitted and will cause an error message during the
assembly process. You can work around this limitation by
loading the effective address of the constant into an address
register (using LEA) and then using an address register indi-
rect addressing mode:

LEA MyConstant,AD
MOVE #8,(AD)

but this is less efficient than defining MyConstant as a vari-
able in the first place.

Chapter 5

FEvents and
Input/Output
Operations

There are two standard ways for a user to interact with a
Macintosh program while it is running. The first is to enter
commands from the keyboard, just as you would on any
traditional personal computer. The second is to roll the
mouse around the tabletop until its cursor appears above an
“action” icon on the screen (this may be a rectangular push-
button, a window'’s close box, or a square check box), and
then click the mouse button to select the icon to perform the
action associated with it. The Macintosh was the first per-
sonal computer to incorporate the mouse as a standard input
device.

Variants of the basic click operation are double-click and
drag operations. You double-click by quickly pressing and
releasing the mouse button twice in succession. The maxi-
mum delay between the two clicks of a double-click can be
set using the Control Panel desk accessory, and is stored in
the system global variable DoubleTime. If the clicks are more
widely separated, a program should consider them to be two
separate clicks. You drag the mouse by moving it while the
button is held down.

User-initiated activities such as a keystroke or a mouse
click are just two of a group of 14 types of operations
referred to as events. Each type of event on the Macintosh is
summarized in Table 5-1. There is also another event, called a
null event, that is reported only if no other event is pending.

195

196 Mac Assembly Language

Table 5-1. Macintosh Event Type Codes.

Symbolic Name
for Event Type Value Description
|

NullEvt (o] No event occurred

MButDwnEvt 1 The mouse button was pressed
MButUpEvt 2 The mouse button was released
KeyDwnEvt 3 A character key was pressed
KeyUpEvt q A character key was released
AutoKeyEvt 5 A character key was auto-repeated
UpdatEvt 6 A window requires updating
DiskinsertEvt 7 A disk was inserted

ActivateEvt 8 A window was activated or deactivated
NetworkEvt 10 An AppleTalk network event occurred
10DrvrEvt 11 An 1/O driver event occurred

Appl1Evt 12 An application-defined event

App2Evt 13 An application-defined event

App3Evt 149 An application-defined event

Appd4Evt 15 An application-defined event

An event usually represents a specific input/output (1/0)
operation. It may, however, simply act as a reminder that a
particular action, such as the redrawing of a window, must
be performed. The classes of events a Macintosh application
may have to respond to are as follows:

® Keyboard Events (key-down, key-up, auto-key)
® Mouse Events (button-down, button-up)

® Window Events (update, activate/deactivate)

® Disk-inserted Event

® AppleTalk network event

® [/O driver events

There are also four types of events you can simulate from
within your application programs. They can relate to any
occurrence you wish.

Several Macintosh operating system trap instructions are
available to deal with events; they make up the part of the
operating system called the Event Manager. In this chapter,
I'll describe the most important of these instructions. I'll also

Events and Input/Qutput Operations 197

look at some other instructions relating to common
input/output operations that aren’t actually dealt with by the
Event Manager: beeping the speaker and reading the time
and date from the Macintosh’s built-in clock/calendar. These
instructions are summarized in Table 5-2.

Table 5-2. The Macintosh Event Manager and I/O Trap Instructions.

Trap Instructions

_Button Tests if the mouse button is down.
CLR.B - (SP) ;BOOLEAN: space for result
_Button
MOVE.B (SP)+,D0 ;Result: true = button is down

H false = button is up

_Delay Does nothing for a fixed tick count.

MOVE.L #duration,AD ;A0.L = Length of delay in ticks
_Delay ;Result in DO.L = time on clock
. after delay

_EventAvail Checks the event queue for the next event
without removing the event from the queue.

CLR.B -(SP) ;BOOLEAN: space for result
MOVE #mask, - (SP) ;INTEGER: the event mask

PEA theEvent ;VAR: an EventRecord
_EventAvail

MOVE.B (SP)+,DOD ;Result: true = event occurred

; false = no event occurred

The size of an EventRecord is given by the constant EvtBlkSize. The
structure of an event record is shown in Table 5-3.

198 Mac Assembly Language

Table 5-2. continued

Trap Instructions
|

_FlushEvents Removes events from the event queue.

DO.L = event mask for events that
will stop the search is in

; the upper word (stopMask).

; event mask for events that

; can be removed is in the

H the lower word (whichMask).

MOVE.L #theMasks,DO

_FlushEvents
MOVE.W DO,stopEvent ;DO.W = event type code that
H stopped the search

If stopMask is zero, the entire queue is examined.

_GetCursor Loads a cursor record from a resource file.
CLR.L —(SP) ;HANDLE: space for result
MOVE #cursorID,-(SP) ;INTEGER: cursor resource ID
_GetCursor
MOVE.L (SP)+,AD ;Result: Handle to cursor record
_GetMouse Gets the current mouse position.
PEA mouseLoc ;VAR: a point. Local coordinates.
_GetMouse
_GetNextEvent Checks the event queue for the next event and

removes the event from the queue.

CLR.B -(SP) ;BOOLEAN: space for result
MOVE #mask, - (SP) ;INTEGER: the event mask

PEA theEvent ;VAR: an EventRecord
_GetNextEvent

MOVE.B (SP)+,DO ;Result: true = event occurred

H false = no event occurred

Events and Input/Output Operations 199

Table 5-2. continued

Trap Instructions

_HideCursor Hides the current cursor.
_HideCursor ;No parameters
__InitCursor Sets the current cursor to the standard arrow

and resets the cursor visibility level to zero.

_InitCursor ;no parameters required

_lUDateString Gets a date string.

MOVE.L #seconds,-(SP) ;LONGINT: seconds since Jan 1/1904
MOVE.B #format,-(SP) ;BYTE: 0 = short format

H 1 = long format
H 2 = abbreviated long format
PEA theString ;VAR: the returned date string
MOVE #0,-(SP) ;INTEGER: D = _IUDateString
_Packb
_IUTimeString Gets a time string.
MOVE.L #seconds, - (SP) ;LONGINT: seconds since Jan 1/1904

MOVE.B #withSeconds,-(SP) ;BOOLEAN: true = include seconds
H false = no seconds

PER theString ;VAR: the returned time string
MOVE #2,-(SP) ;INTEGER: 2 = _IUTimeString
_Packb

__ObscureCursor Removes the cursor until the mouse is moved.
_ObscureCursor ;No parameters

_SetCursor Designates a new cursor as the current cursor.
PER newCursor ;VAR: a cursor record
_SetCursor

The size of a cursor record is given by the constant CursRec.

200 Mac Assembly Language

Table 5-2. continued

Trap Instructions
|
_ShieldCursor Removes the cursor from the screen when it’s

within a certain rectangle.

PEA shieldRect ;VAR: a rectangle
MOVE.L #globalOrigin,-(SP) ;LONGINT: origin of coordinates
_ShieldCursor
_ShowCursor Displays a previously hidden cursor.
_ShowCursor ;No parameters
_StillDown Tests if the mouse button has been held down

since the previous press, without removing any
button-up event.

CLR.B - (SP) ;BOOLEAN: space for result
_StillDown
MOVE.B (SP)+,DO ;Result: true = button is still down

; false = button was released

_SysBeep Beeps the speaker.

MOVE #duration, - (SP) ;INTEGER: Length of beep in ticks

_SysBeep
_WaitMouseUp Tests if the mouse button has been held down
since the previous press, and removes any but-
ton-up event.
CLR.B -(SP) ;BOOLEAN: space for result
_WaitMouseUp
MOVE.B (SP)+,DO ;Result: true = button is still down

H false = button was released

Events and Input/Output Operations 201

Table 5-2. continued

Trap Instructions
|
System Variables

Time ($200) The current time expressed in seconds
since January 1, 1804. [long word]

Ticks ($16A) The number of ticks since bootup. [long
word] :

SysEvtMask ($1449) The system event mask. [word]

DoubleTime ($2F0) Maximum time (in ticks) between two

clicks before they will be considered a
double click. [long word]

The Event Manager

Generally speaking, when an event occurs on the Macin-
tosh, a unique code representing the event is placed in an
event queue maintained by the operating system. A typical
application periodically checks this queue for the presence of
an event and if it finds one, processes it. If the queue is empty,
it keeps checking the queue until a recognizable event occurs.
Certain types of events are not actually placed in the queue
even though they are reported as if they were. These are the
window update and activate/deactivate events. Only true /O
events are placed in the queue.

At the very beginning of an application you should ensure
any stray events that are pending when the application is
launched are removed (or flushed) from the queue. To do this,
use the _FlushEvents instruction:

MOVE.L #$0000FFFF,DO ;Flush all events
_FlushEvents

The low-order word of the long word stored in DO (called
whichMask) is an event mask that tells _FlushEvents which
events to remove from the queue. As shown in Figure 5-1,
each bit in an event mask corresponds to one of the 16 event

202 Mac Assembly Language

types that the Event Manager controls. To remove a particu-
lar type of event, simply set the appropriate bit to one. (Null
events cannot be masked out, however.) In the example just
given, the low-order word is $FFFF, which means “flush all
types of events.”

The high-order word in DO (called stopMask) is also an
event mask. It indicates how many events are to be removed
from the queue. All events in the queue up to and including
the first event of a type whose bit is set in the word are
removed. The correspondence of bits to events is the same
as for whichMask. If all events are to be flushed, the high-
order word must be $0000.

When a Macintosh application first begins, any type of
event that occurs will be posted in the event queue, even
though your application may not be designed to respond to all
events. If you want to restrict the types of events to be
posted, store an appropriate system event mask in the sys-
tem global variable SysEvtMask. Alternatively, your program
can simply ignore any unsupported events that are fished out
of the queue using the instructions described in the next
section.

[15[14]13]12{11]10] 9|8 7|6 |5 |a|3]2][1]0]

application 4 null event
application 83 ——— mouse down
application %2 mouse up
application ®1 ‘———————— key down

170 driver ————————— key up
network auto-key
[reserved] update
activate/deactivate disk-inserted

An event type is selected if its bit is 1; otherwise
it is ignored.

Figure 5-1. The Format of an Event Mask.

Events and Input/Output Operations 203

Getting an Event

Once the event queue has been flushed and, optionally, a
system event mask has been set up, your program can begin
to get events from the queue and act on them. There are
two instructions for doing this: _GetNextEvent and
_EventAvail.

_GetNextEvent is the one you’ll be using most often, so
let’s look at it first. Here's the type of subroutine you might
call to get an event to deal with:

GetEvent CLR.B -(SP) ;Space for Boolean result
MOVE #$FFFF, - (SP) ;Event mask (look for all)
PER EventRecord ;Address of event record
_GetNextEvent
TST.B (SP)+ ;Pop and test Boolean result
BEQ GetEvent ;Branch if no event
RIS

EventRecord DCB.B EvtBlkSize,0 ;EvtBlkSize = 1b

_GetNextEvent returns a Boolean result indicating
whether a non-null event has been removed from the queue.
If one has, the result is true (non-zero), otherwise it is false
(zero). To make room for this result, you must clear space on
the stack with a CLR.B — (SP) instruction. (Recall from Chap-
ter 1 this actually decrements the stack pointer by two
bytes, not one.)

The first parameter _GetNextEvent requires is an event
mask, reflecting the types of events that may be retrieved
from the queue. _GetNextEvent ignores any other types of
events that may be in the queue. In the example, the event
mask is $FFFF, meaning that all events are retrievable. The
event mask is passed on the stack.

The second parameter passed on the stack is the address
of a 16-byte data structure called an event record. The event
record is where the results of the call to _GetNextEvent are
stored. The size of the event record is given by the system
constant EvtBlkSize so space for it can be reserved with a
directive of the form DCB.B EvtBlkSize,O.

204 Mac Assembly Language

After calling _GetNextEvent, you can pop the Boolean
result from the stack and test it with a TST.B (SP) + instruc-
tion. If no event (other than a null event) is pending, the zero
flag is set to one, and you can call _GetNextEvent once again
by looping with a BEQ instruction. This simple loop involving
_GetNextEvent is called an event loop and forms the back-
bone of most interactive programs.

Table 5-3. The Structure of an Event Record.

Size Symbolic
Description of Field (bytes) Offset name
]
Event type code 2 evtNum
Event message q evtMessage
Time of event q evtTicks
Mouse coordinates q evtMouse
Event modifier (high) 1 evtMeta
Event modifier (low) 1 evtMBut

If a non-null event occurs, the event record is filled with
information describing the event and the event code is
removed from the queue. As shown in Table 5-3, the event
record is made up of six fields, which you can access using
the offset names indicated. For example, to read the event
type code into D1, use the instruction:

MOVE EventRecord+evtNum,Dl ;EventRecord defined with DC

The word stored in the evtNum field, sometimes called the
What field, indicates the type of event that occurred. Each bit
in evtNum has the same meaning as in an event mask. (See
Figure 5-1.) The symbolic names for each of the 16 event
type codes are shown in Table 5-1.

The long word stored in the evtTicks field (sometimes
called When) is the time at which the event occurred, in units
of ticks. (A tick is roughly one-sixtieth of a second.) The time

Events and Input/Qutput Operations 205

is measured from the time when the Macintosh was first
turned on.

The evtMouse field (sometimes called Where) of the event
record indicates the position of the mouse when the event
occurred. The position is expressed in global coordinates
where the coordinate origin is at the top-left corner of the
screen. (See Chapter 6 for a description of coordinate sys-
tems.) The high-order word is the vertical position and the
low-order word is the horizontal position.

The evtMeta and evtMBuUt fields describe the status of the
modifier keys and the mouse button when the event
occurred. EvtMBuUt also contains bits used as flags to mark
whether an activate or deactivate event occurred, and
whether the newly activated window is of a different type
than the previously active window. There are two types of
windows: application and system. System windows are desk
accessory windows. The meaning of each bit in the evtMeta
and evtMBut bytes is shown in Figure 5-2.

The last field is evtMessage (a long word). I've left it to last
because the information it holds depends on the type of
event that is reported. The format of the evtMessage field
for keyboard, window, and disk-inserted events is shown in
Figure 5-3. EvtMessage fields for other events are either
undefined (null and mouse events), for the private use of the
operating system (network and I/O driver events), or defined
by the application (application events). _

The low-order word of the evtMessage field for a keyboard
event reflects the key code and character code for the key
(or combination of keys) that was pressed or released. I'll dis-
cuss the meaning of these codes later in this chapter.

For a window event, the evtMessage field contains a long
word pointer to the window’s data structure. I'll describe this
data structure in Chapter 6.

For a disk-inserted event, the high-order word of the
evtMessage field contains the result code generated by the
operating system instruction that attempts to mount the
disk. The low-order word contains the drive number (1 for

206 Mac Assembly Language

ertMeta evtMBut
T T T T T
notused |11]|10(9 |8 |7 not used 1|0
= activate
1 = button down 0 = deactivate
0 = button up
1 = system/appl
switch
| 1 = command key down 0 = no change in
0 = command key up window type
1 = shift key down
0 = shift key up
1 = caps lock down

0 = caps lock up

1 = option key down
0 = option key up

Symbolic names for the modifier bits:

Name Value Description
OptionKey 11 Option key (either one)
AlphaLock 10 Caps Lock key
ShiftKey 9 Shift key (either one) -
CmdKey 8 Command key
BtnState 7 Mouse Button
ActiveFlag O Activate/Deactivate

Figure 5-2. The Format of the Modifiers Field of an Event Record.

internal, 2 for external). See Inside Macintosh for a descrip-
tion of the disk mounting trap instruction.

The second instruction you can use for inspecting the event
queue is_EventAvail. This instruction works just like
_GetNextEvent, except it does not remove the reported
event from the queue. It is useful for checking whether a par-

Events and Input/Output Operations 207

The format for keyboard events:

31 15 7 1)

1) L T] L T T L)
[unused] . I.:eg Ieod? character code J

The format for window events:

31 23 0
[unused] l pointer to window J

The format for disk-inserted events:

31 15 [1]

result code drive number

0 = no error

-33 = disk not formatted | 1 =internal dri_\ve
: 2 = external drive

Figure 5-3. The Format of the evtMessage Field of an Event Record.

ticular event has happened without actually having to act on
it right away.

Dealing With An Event

When a non-null event is returned by _GetNextEvent, it is
up to your application to deal with it in an appropriate way. In
this section, we'll explore some of the alternatives open to
you for the common event types.

Every program dealing with events contains an event dis-
patcher subroutine that determines what event has occurred
and calls the appropriate subroutine to handle it. The shell of
a general-purpose event dispatcher is shown in Listing 5-1.
You would call it whenever a call to _GetNextEvent indicates
a non-null event has occurred.

208 Mac Assembly Language

Listing 5-1. The Asm Source File, Linker Control File,

and RMaker Source File for the Dispatcher

Progranm.

; Asm Source File
; Dispatcher.Asn

; This is an example of how to use an

; event dispatcher subroutine.

ApplelD EQU 1 ;Menu ID for Apple Menu
FileID EQU e ;Menu ID for File Menu
WindID EQU 128 ;Window ID

INCLUDE ToolEqu.D
INCLUDE QuickEqu.D
INCLUDE SysEqu.D
INCLUDE Traps.D

;Toolbox equates
;QuickDraw equates
;Operating system equates
;Trap instructions

; Initialize the various Managers:

PEA -4 (AS) ;Start of QuickDraw globals
_InitGraf ;Initialize QuickDraw
_InitFonts ;Font Manager
_InitWindows ;Window Manager
_InitMenus yMenu Manager
_TEInit ;TextEdit

MOVE.L #0,-(SP) ;(no restart procedure)
_InitDialogs ;Dialog Manager

InitCursor ;We want arrow cursor

MOVE.L #3$0000FFFF,DO
_FlushEvents

;Get rid of every event

; Create and draw a window on the screen:

CLR.L - (SP) ;Space for returned pointer

MOVE . #WindID, - (SP) ;Resource ID

MOVE.L #0,-(SP) ;Store on heap

MOVE.L #-1,-(SP) y—1 = front window
_GetNewWindow ;Get window from resource file
MOVE.L (SP),WindowPtr(AS) ;Save ptr, but leave on stack
_SetPort yMake window the active GrafPort

Events and Input/Output Operations

Listing 5-1. continued

; Create two standard menus:

CLR.L - (SP) ;Space for handle
MOVE #AppleID, - (SP) ;Menu ID number
_GetRMenu ;Get Menu from resource file

MOVE.L (SP)+,AppleH(AS);Save menu handle

CLR.L -(SP) ;Space for handle
MOVE #FileID,-(SP) ;Menu ID number
GetRMenu ;Get menu from resource file

MOVE.L (SP)+,FileH(AS) ;Save menu handle

; Add menus to menu bar:

MainLoop

GetEvent

Handle
code r
handle
throug

* ¥ ¥ *

MOVE.L AppleH(AS),-(SP)
MOVE #0,-(SP) ;(0 = add to end)
InsertMenu ;Add to menu bar

MOVE.L FileH(AS),-(SP)

MOVE #0,-(SP) ;(0 = add to end)

_InsertMenu ;Add to menu bar
_DrawMenuBar ;Display menu bar

BSR GetEvent

BSR HandleEvent

BRA MainLoop

CLR.B -(SP) ;Leave space for Boolean result
MOVE #-1,-(SP) ;Allow ALL events

PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event

TST.B (SP)+ ;Pop and test the result flag
BEQ GetEvent ;Branch if no pending event
RTS

Event is the event dispatcher. It takes the event type
eturned by _GetNextEvent and calls the subroutine that
s it. BAccess to the event handling subroutines is

h a lb-entry jump table.

209

210 Mac Assembly Language

Listing 5-1. continued

HandleEvent

MOVE
ASL
JNP

JumpTable

JMP
JMP
JHP
JMP
JMP
JHP
JMP
JHP
JHP
JHP
JMP
JMP
Jup
JHP
Jup
JMP

Ignore
RTS

DoKeyDown
RTS

DoUpdate
RTS

DoActivate
RTS

DoMouseDown

CLR

EventRecord+evtNum,DO
#2,D0 ;Two shifts = times 4
JumpTable(PC,D0);Jump to handler

Ignore ;Null event (never used)
DoMouseDown ;Button-down
Ignore ;Button-up
DoKeyDown ;Key-down
Ignore ;Key-up
DoKeyDown ;Auto-key
DoUpdate ;Update

Ignore ;Disk-inserted
DoActivate ;Activate
Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

Ignore

—-(SP) ;Space for result

Events and Input/Output Operations 211

Listing S-1. continued

MOVE.L EventRecord+evtMouse,-(SP) ;Where
PEA WindowPtr(AS)

_FPindWindow ;Where was button pressed?
MOVE (SP)+,D0 ;Get result

CMP #InMenuBar,DO ;Pressed in menu bar?

BEQ QuitCheck ;Yes, so check it out

RTS ;Ignore everything else

; See if "QUIT" was selected from File menu:
QuitCheck
MOVE.L #0,-(SP) ;result = menu/item selected
PEA EventRecord+evtMouse ;Where
_MenuSelect ;Get menu selection
MOVE (SP)+,MenuNunm(AS) ;Save menu number

MOVE (SP)+,D0 ;Discard item number

MOVE #0,-(SP)
_HiliteMenu ;Remove highlight from menu title

CHP #FileID,MenuNum(AS) ;In the FILE menu?

BNE GetEvent

* Must have selected QUIT command, so return to Finder by
* popping the subroutine return address before RTS. (We could
* also return just by executing a _ExitToShell instruction.)

MOVE.L (SP)+,DO ;Pop the return address (long!)
RIS ;Return to Finder
; Record for _GetNextEvent:
EventRecord DCB.B EvtBlkSize,O ;Reserve space for record
; Here are the program globals. Use (AS) addressing.

AppleH DS.L 3 ;Handle to Apple menu
FileH DS.L 1 ;Handle to File menu

212

Mac Assembly Language

Listing S5-1. continued

WindowPtr DS.L

MenuNum

1 ;Pointer to window

1 ;Menu nunber selected

Linker Control File
Dispatcher.Link

’
.
’

; Link this file to create application
s (without resources).

Dispatcher
$

RMaker Source File
Dispatcher.R

The next command appends the resources to the application:

!Dispatcher

Type MENU

1

\14

About this demo...

2
File
Quit

Type WIND

1128

Event Dispatcher Demo
40 5 332 s0¢e

Visible NoGoAway

4

1]

*
*
*
* Compile this after assembling and linking Dispatcher.Asm
*
E's
!

; ;Resource ID
;;Title is the Apple symbol (ASCII $14)
; ;About box

; sResource ID
;;Menu Title
;;0nly item is "Quit"

; sResource ID

;;Title for Window

;;Window coordinates (TLBR)
;3Visible window/ no goaway box

;i Window ID. 4 = title, no grow box
; ;User-definable item (not used)

Events and Input/Output Operations 213

The HandleEvent subroutine in Listing 5-1 first loads DO
with the event type code from the evtNum field of the event
record. It then multiplies the code by four (with two bit shifts
to the left) to get the relative position within JumpTable of
the jump to its event handler. This works because each JMP
instruction in the table is four bytes long and the JMPs are in
event type code order.

Finally, control passes to the handler with a jump instruc-
tion that uses the program counter indirect with index
addressing mode. This technique is much more convenient
(and elegant) than performing a series of CMP instructions to
check for each event type separately.

Event dispatching is easy. It's writing the event handling
subroutines referred to in the jump table that's difficult!

Keyboard Events

The three keyboard events are:

KeyDwnEvt (key-down)
KeyUpEvt (key-up)
AutoKeyEvt (auto-key)

The most important of these events is the key-down event
that occurs when the user presses a character key on the
keyboard. A character key is any key other than Caps Lock,
Option, Shift, and Command. These keys are called modifier
keys. Whether you deal with the key press may depend on
whether the program is in a text insertion mode. If it is, the
next step would be to display the entered character on the
screen. I'll illustrate one method of displaying characters in
the next chapter.

Most programs ignore key-up events because there is
rarely a need to know when a key is released.

The auto-key event occurs when a character key begins to
repeat after you've held it down for a short length of time.
You can set the delay time with the Control Panel desk
accessory. This event is usually treated in the same way as a
standard key-down event.

214 Mac Assembly Language

Mouse Events

There are two mouse events dealt with by the Event
Manager:

MButDwnEvt (mouse button down)
MButUpEvt (mouse button up)

As with key-up events, button-up events are usually
ignored. A button-down event, however, indicates the user
has clicked the mouse somewhere on the screen. When you
detect a click, you should first determine what part of the
screen is involved by using a trap instruction called
_FindWindow. As vyou wil see in the next chapter,
__FindWindow returns a numeric code indicating whether the
click occurred in the menu bar at the top of the screen, on the
desktop, or in some part of an application or system window.

Clicks in the desktop are usually ignored, menu bar clicks
are handled by the Menu Manager (see Chapter 7), and clicks
in a window are handled by the Window Manager. (See Chap-
ter 6.)

If the click is in a window, you should read the evtMessage
field of the event record to get the pointer to the window
involved. If it's not the pointer to the currently active window
(use the _FrontWindow instruction to get its pointer if you
haven’t kept track of it), the appropriate step to take is to
deactivate the currently active window and activate the new
one by calling _SelectWindow. If the click is in the active win-
dow, the code returned by _ FindWindow will indicate exactly
what part of the window: the close box, the drag area, the
grow box, the zoom box, or the content region. Suggestions
for handling clicks in these areas are presented in Chapter 6.

Window Events

There are two types of window events: update events and
activate/deactivate events. An update event, UpdatEvt,
occurs whenever a portion of any window on the screen
needs to be redrawn because it has just become exposed to
view. Update events occur when you enlarge a window,

Events and Input/Output Operations 215

when you move aside an overlapping window, or a new win-
dow is created. A program must react to an update event by
drawing the newly exposed portion of the screen.

An activate event occurs when a previously inactive window
is to be made active. To handle it, bring the window to the front
of the screen and redraw its scroll bars, if necessary.

A deactivate event usually occurs in conjunction with an
activate event since no two windows can be active at the
same time. To handle the event, mark the window as inac-
tive by dimming its scroll bar and grow box area.

Activate and deactivate events both generate an Acti-
vateEvt event type. To distinguish between activate and
deactivate, you must check bit O of the evtMBut byte in the
event record. If it is 1, you're dealing with an activate event;
otherwise it's a deactivate event. Here are the instructions
you would use to check the status of this bit:

MOVE.B EventRecord+evtMBut,DO
BIST #0,D0 ;Is bit D set to 1?
BNE MyActivate ;Yes, so activate

In this example, MyActivate marks the start of the code
that handles the activate event. The code after the BNE
instruction would handle the deactivate event.

Disk-Inserted Events

A disk-inserted event, DiskinsertEvt, occurs when you place a
disk into the internal or external disk drive. If you listen care-
fully, you'll hear the disk drive motor whir as soon as you do
this. What is happening is that the lowest level of the Macintosh
operating system detects the insertion and tries to mount the
disk by reading some directory information into memory. It
then posts the event in the event queue so you get a chance to
deal with it further, if you wish. You may, for example, want to
initialize a new disk as soon as it is inserted. | won’t be describ-
ing the specifics of how to handle disk-inserted events in this
book; refer to Inside Macintosh instead.

216 Mac Assembly Language

AppleTalk network events (NetworkEwvt), I/O driver events
(IODrvrEvt), and application-defined events (Appi1Evt, App2-
Evt, App3Evt, App4Evt) are also not covered in this book.

Monitoring the Mouse Button

You can use three instructions to check the status of the
mouse button without scanning the event queue with
_GetNextEvent: _Button, _StillDown, and _WaitMouseUp.
None of these require parameters, but all do return a Boolean
result on the stack, so the calling sequence for each of them
is of the form:

CLR.B -(SP) ;Space for result
_Button ;(or _StillDown, _WaitMouseUp)
MOVE.B (SP)+,DO0 ;Pop result from stack

The first instruction is _Button. It returns a true (non-zero)
result if the mouse button is currently down; otherwise it
returns false (zero).

_StillDown returns a true result if the mouse button is cur-
rently down and there is no pending button-up event in the
event queue. If there is a pending button-up event, it is not
removed from the queue. You will usually use _StillDown in
situations where you want to identify when a drag operation
has been completed.

The third instruction, _WaitMouseUp, works just like
_StillDown except that it removes the pending button-up
event from the event queue.

Keyboard Input

We saw earlier that whenever any of the three keyboard
events occurs (key-down, key-up, or auto-key), the low-
order word of the evtMessage field of _GetNextEvent's
event record contains both the key code and the character
code for the key involved. Each key on the keyboard gener-

Events and Input/Output Operations 217

ates an event when it is pressed, except the modifier keys:
the Caps Lock key, the two Shift keys, the two Option keys
(there is only one Option key on the Macintosh Plus key-
board), and the Command key. As you will see, a modifier key
simply affects the character code generated when a charac-
ter key is pressed.

To detect the pressing of a modifier key by itself, you have
to use an instruction called _GetKeys. _GetKeys returns a
bit map showing which keys on the keyboard are currently
pressed. See Inside Macintosh for a description of this
instruction.

Each physical key on the Macintosh keyboard and keypad
is associated with a unique number, called a key code,
between 0 and 255. There are two exceptions: The two Shift
keys share the same key code, as do the two Option keys on
the original Macintosh keyboard. Your applications will rarely
have to deal with key codes.

The code you are usually more interested in is the charac-
ter code. This is a number between O and 255 representing
the alphanumeric symbol (a letter, number, or punctuation
mark) associated with the keystroke. The character code is
usually different if the same key is pressed while one or two
modifier keys are held down.

For a given character font, the correspondence of charac-
ter codes from 32 to 127 to printable symbols invariably fol-
lows the ASCII standard shown in Figure 5-4. It is the duty of
the designer of the font to make the conventional symbol
assignment, however.

The first 32 character codes, from O to 31, are called con-
trol characters since they have traditionally been used by
computers to control various aspects of the output to a
screen display, printer, or communications device. For exam-
ple, the carriage return code ($0D) causes the print head of a
printer to return to the left edge of the paper. The form feed
code ($0C) causes the printer to skip to the top of the next
page. A few of the control characters on the Macintosh actu-
ally correspond to special symbols: a cloverleaf, a check
mark, a diamond, and an apple icon, for example. These sym-
bols are not part of the ASCII standard.

218 Mac Assembly Language
Second Hex Digit
012345 67 89 ABCDEF
0 o|o|o(oiojofo|o O(o|0o Oo|g
1(0(x|(v|e|(®|(0(O(O(O(O(O(O(O(O|(0O|O
21 |V RIS |B|&| O] 7
3|0|1|2(3|4|5|6|7|8|9|:]|:]|<|=|>|7?
4|@|/A(B|C|D|(E|(F|G|H|I |J|K|L|M 0
S|IP|Q(R[(S|(T(U|D|WH|YI|Z2|[[N]]"]=
. 6(° |la|lb|c|d|e|f|{g|h|i|j|k|]l|m|n]|o
Fl_:;it?pqrstuuwugz{l}"
mgitﬁﬁﬁcﬁﬁﬁﬂéﬂﬁﬁﬁﬁcéé
glé|eé|i|i|T|TV|fN|0o|o|d|o|o|a|a|d|d
AltT|°|¢|EI§|*|9|B|®|O|™]- =|FE| 8
Bleo| (s |2|F|p|ld|Z|TM(w|f|a|lo|Q|e|le
Cle|i|~|v|fl=|al«]|»]| AlA(D|E|e
D|-[—-1“(”]|¢|*|+|¢e|4|O(O|OO(O|O(0O
E(O(O|O(O|O0|0(O00|10(0010(010/|0(0
F|lOjo|g({o(ojo(ojo|joyjojojojo(jo(olo

Figure 5-4. The ASCII Character Set. (Shown in the System Font.)

The symbol assignment of the highest 128 character
codes, from 128 to 255, are not defined by the ASCII standard
either. The symbols to which they correspond on the Macin-
tosh are usually a mixed bag of foreign-language characters
and special icons like Greek characters and copyright and
trademark notices. Again, the assigned symbols depend on
the particular font you're using.

Events and Input/Output Operations 219

To enter a certain character code from the keyboard, you
must either press a key by itself or in combination with one or
two modifier keys. The easiest way to determine what key
combination corresponds to what character is to use the
standard Key Caps desk accessory. If there is no symbol for a
particular character code in the font, Key Caps displays a
small rectangle over the key. The keys that generate control
characters are the Return, Enter, Tab, and Backspace keys,
and, if you are using the Macintosh Plus keyboard, the four
arrow keys and the Clear key. Here are the codes these keys
generate:

The Return key generates code $0D.

The Enter key generates code $03.

The Tab key generates code $09.

The Backspace key generates code $08.

The Space Bar generates code $20.

The Clear key generates code $1B.

The Left Arrow key generates code $1C.

The Right Arrow key generates code $1D.

The Up Arrow key generates code $1E.

The Down Arrow key generates code $1F.

The = key on the keypad generates the same code as , on the
main keyboard. Use its key code ($82) to distinguish it from
the comma. The key code for comma is $B2.

The mapping of keystroke combinations to character codes
is completely arbitrary and is handled by two INIT resources
(having ID codes 1 and 2) in the System program. These
resources contain assembly language subroutines that take a
key code and a modifier key status byte as input and return
the corresponding character code. By changing these
resources, you can easily redefine the keyboard layout to
whatever suits you—perhaps a Dvorak arrangement. Of
course, you'll probably want to mark each key with its new
symbol if you do this.

One of the common things you'll do in a program is check
for the entry of particular character codes from the key-
board. Here is the type of subroutine you'd call after

220 Mac Assembly Language

detecting a key-down event to see if a certain character, say
Y’ or 'y’, was pressed:

CheckKey MOVE.L EventRecord+evtMessage,DO0 ;Put key/char code in DO

CMP.B #'Y',DO ;Has 'Y' pressed?
BEQ YesPress ;Yes, so branch
CMP.B #'y',DO ;Was 'y! pressed?
BEQ YesPress ;Yes, so branch
RTS

YesPress NOP ;Insert handler here

RTS

Notice that the evtMessage long word placed in DO is com-
pared with 'y’ and 'Y’ using the byte form (.B) of CMP. This is
done to isolate the portion of the evtMessage field that con-
tains the character code.

The Mouse Position and Cursors

Strangely enough, the most common input activity on the
Macintosh, moving the mouse, does not generate a reported
event. Instead, the lowest level of the operating system
automatically monitors the position of the mouse and
updates the position of its cursor (also called a pointer) on
the screen.

If you want to determine the position of the mouse cursor,
use the _GetMouse instruction. _GetMouse requires only
one parameter on the stack, the address of a long word data
area where the result (a coordinate point) will be stored:

PEA mouseLoc ;Push addr of mouseLoc
. _GetMouse
mouseLoc DC.W O ;Vertical position
DC.W O ;Horizontal position

Notice that instead of defining mousel.oc with a DC.L direc-
tive, I've used two DC.W directives to emphasize the fact

Events and Input/Output Operations 221

that the coordinate is made up of a vertical and horizontal
position.

The mouse position returned by _GetMouse is expressed in
the local coordinate system of the currently active window,
not the global coordinate system used by _ GetNextEvent to
store a point in the evtMouse field of an event record. You'll
learn about coordinate systems in Chapter 6.

You can also control the appearance of the cursor, includ-
ing whether it should be displayed or not. This is convenient
because you’'ll probably want to display a different cursor in
areas of the screen used for different purposes. For exam-
ple, you might use a standard arrow cursor when the cursor
is outside an active window, but an I-beam cursor when it's
inside the window. The appearance of the I-beam serves as
a reminder that text can be entered if the mouse is clicked.

Before we look at the instructions that affect the cursor,
let's look at the data structure that defines a cursor. As
shown in Table 5-4, a cursor record begins with two groups of
32 bytes each. Each group defines a 16x16 bit image that cor-
responds to a 16x16 square of screen pixels. The first word
corresponds to the first row of the screen image, the second
to the second row, and so on. In addition, the left-most bit in a
word (bit 15) corresponds to the left-most position in the
screen image. A one bit in a word means that the correspond-
ing pixel is black. The symbolic name for the size of a cursor
record is CursRec. The size of the cursor record is given by
the constant CursRec.

Table 5-4. The Structure of a Cursor Record.

Size Symbolic
Description of Field (bytes) Offset name
|
Data defining cursor 32 data
Data defining cursor mask 32 mask

Active cursor position q hotSpot

222 Mac Assembly Language

The first 32 bytes are the data that define the shape of the
cursor on the screen. The second 32 bytes define a mask
that combines with this data to form the image that actually
appears on the screen. Only those pixels in the cursor’s
image corresponding to black pixels in the mask are copied to
the screen. By defining a mask the same shape as the cur-
sor's bit image, but completely black, and surrounding it with
a fringe one pixel wide, you ensure that the cursor will be visi-
ble against a black background, because the fringe area will
be white.

Following the two bit images in the cursor record is a point
(two words defining a vertical and horizontal position) called
the hotSpot. This is the position within the cursor image that
appears on the screen at the current mouse position. The
coordinates of the hotSpot are measured relative to the (0,0)
position in the top left corner of the cursor’'s bit image. Just
like the Macintosh screen, horizontal coordinates increase to
the right and vertical coordinates increase to the bottom.

The standard cursor used on the Macintosh is the arrow.
Four other cursor definitions are stored in the resource file that
forms a part of the Macintosh operating system and is always
available for use by an application. Their resource IDs are:

IBeamCursor = 1 (an I-beam)
CrossCursor = 2 (a “thin” plus sign)
PlusCursor = 3 (a “thick” plus sign)
WatchCursor = 4 (a wristwatch)

The resource type for a cursor resource is CURS. The data
for the resource is simply one cursor record.

The Cursor Instructions

Now that you've seen how cursors are constructed, let's
see how to use them. When you first begin a program you'll
probably want to call _InitCursor. (It has no parameters.)
This instruction makes the standard arrow cursor the cur-
rent cursor and makes it visible. Thereafter, you can make

Events and Input/Output Operations 223

G watchCursor
== PlusCursor
+ CrossCursor
I IBeamCursor
k Standard arrow cursor

Figure 5-5. The Standard Macintosh Cursors.

any other cursor active by passing the address of the cursor
record to _SetCursor as follows:

PEA CursorRecord ;Pointer to cursor record
_SetCursor
CursorRecord DCB.B CursRec,0 ;CursRec = b8

where cursorRecord is a label for the start of the cursor record in
the program constant area. (If you put it in the variable area,
use CursorRecord(A5)). If you have allocated space for the
cursor record on the heap, push the pointer to it instead.

You can load a cursor record from a resource file by pass-
ing the CURS resource ID to _GetCursor as follows:

CLR.L -(SP) ;Room for handle
MOVE #IBeamCursor, - (SP) ;Resource ID
_GetCursor

MOVE.L (SP)+,IBeamH(AS) ;Pop and save handle

IBeamH DS.L 1 ;Handle to cursor record

224 Mac Assembly Language

_GetCursor allocates space for the cursor record in the
heap and returns a handle to it. If the handle is zero, the cur-
sor record could not be found.

To make this cursor active, de-reference the handle
returned by _GetCursor and pass the result (the address of
the cursor record) to _SetCursor like this:

MOVE.L 1IBeanmH(AS),AD ;Get handle in AD
MOVE.L (AD),-(SP) ;Put address in A0 (ptr) on stack
_SetCursor

The standard arrow cursor does not reside in a resource
file, so the easiest way to make it active is to call _InitCursor.
The cursor record for the arrow cursor is stored in the Quick-
Draw global variable area, at the offset given by Arrow. I'll
discuss this global area in the next chapter.

Cursor Visibility

There are four cursor instructions that affect the visibility
of the cursor on the screen. The first instruction, _HideCur-
sor, removes the cursor from the screen by decrementing an
internal counter, called the cursor level, by one. The cursor
will only appear on the screen if the cursor level is zero, its
initial value. To add one to the cursor level, use _ShowCur-
sor. This instruction makes the cursor visible if _HideCursor
has only been called once.

The _ObscureCursor instruction removes the cursor from
the screen temporarily. It reappears the next time the mouse
is moved. You might want to use _ObscureCursor to avoid
having the mouse cursor interfere with a text entry cursor,
for example.

The last of the four visibility instructions is _ShieldCursor and
is used to remove the cursor from the screen if it falls inside a
given rectangle on the screen. _ShieldCursor is the only instruc-
tion of the four requiring parameters: the address of the data
structure containing the top, left, bottom, and right points of
the rectangle, and a point that contains the origin of the coordi-

Events and Input/Output Operations 225

nate systemn for the rectangle expressed in global coordinates.
Here's what the call to _ShieldCursor looks like:

PER Rectangle
MOVE.L #$00230015,-(SP) ;Point=(21,35)
_ShieldCursor

Rectangle DC.W 10,10,100,200 ;TLBR

Notice that the first half of the long word containing the
point represents the vertical coordinate; the second half con-
tains the horizontal coordinate. This is the reverse of the
standard (h,v) order used by mathematicians.

The data structures for a rectangle and a point will be
described in greater detail in the next chapter.

The Speaker

The Macintosh toolbox contains a small group of instruc-
tions making up the Sound Driver. These instructions can be
used to generate simple harmonic tones or complex sound
effects on the Macintosh.

The only speaker-related toolbox instruction I'm going to
cover, however, is the _SysBeep instruction. If you want to
make beautiful music on the Macintosh, refer to the “Sound
Driver” chapter of Inside Macintosh.

The _SysBeep instruction, as you might guess, beeps the
speaker for a fixed length of time. Here is how to use it:

MOVE #34,-(SP) ;Duration (in ticks)
_SysBeep ;Beep the speaker

The word pushed on the stack before calling _SysBeep is
the duration of the beep, in ticks. The beep sound gradually
decays from loud to soft when you call _SysBeep.

You can control the volume of the sound using the Control
Panel desk accessory. If the sound is turned off completely,
the menu bar blinks once instead.

226 Mac Assembly Language

The System Clock

The Macintosh has a built-in, battery-operated clock that
‘maintains the current date and time of day. With it you can
calculate time increments as fine as one-sixtieth of a second.

There are several instructions in the toolbox that access
the system clock. These are the ones that will be most useful
to you: _Delay (delay a length of time), _IlUTimeString (read
the time), and __IUDateString (read the date). We'll also look
at two global system variables that reflect the current time
and date: Ticks and Time.

A delay loop is a portion of code used to kill time between
two operations. Such loops are commonly used in animation
programs to fix the film speed and in music generation pro-
grams to fix the frequency of the sound. The toolbox _Delay
instruction can be called for these purposes:

MOVE.L Duration,AOD ;A0 = Length of delay
_Delay

Duration DC.L 453 ;Constant

Here, buration is a long word constant that represents the
length of the delay in ticks. On exit, the DO.L register contains
the time on the system clock in ticks when the delay loop
ends. You can also read this time from the system variable
Ticks.

You may be tempted to generate delays by inserting
dummy instruction loops in your program instead. If you do
this, you can calculate the approximate delay by counting the
number of cycles the 68000 needs to execute the instruc-
tions and multiplying the result by the cycle time (which is the
reciprocal of 7.8 MHz, the clock frequency of the 68000 on
the Macintosh). The Motorola M68000 Programmer’'s Refer-
ence Manual contains the cycle times for each 68000 instruc-
tion. You should avoid this method, however, because
interrupts caused by the mouse (and other sources) will

Events and Input/Output Operations 227

make the delay seem longer than expected and future ver-
sions of the Macintosh may operate at a faster clock rate.

If you want to measure the time interval between the hap-
pening of two events, simply read the value stored at Ticks
once when the first event occurs and again just after the sec-
ond event. The elapsed time, in seconds, is simply the differ-
ence between the two values, divided by 60.

Reading the Time of Day and Date

Although the toolbox has several instructions you can use
to set the time of day and the date, we're not going to look at
them here because you'll rarely use them. When you want to
change the time and date, it's much more convenient to use
the Control Panel desk accessory.

What you'll usually want to do is read the current time and
date in order to display it on the screen; to do this, use the
_Pack6 instruction. _Pack6 is actually a multipurpose
instruction that provides access to a package of related time
and date instructions. An instruction in the package is
selected by pushing a routine selector word on the stack
before calling _Pack6.

To read the time, use _Pack6 with a routine selector of 2:

MOVE.L Time,-(SP) ;Get seconds since Jan 1/1904
MOVE.B #-1,—(SP) ;-l=seconds/0= no seconds
PEA TString(AS) ;String returned here
MOVE #2,-(SP) ;SELECTOR: 2 = Read time
_Packb

TString DS b ;time string

The first number pushed on the stack is the long word
value stored in the global system variable, Time. This holds
the number of seconds since midnight on January 1, 1904. A
rather odd time base, to be sure, but, in any event, _Pack6
converts this tick count it into a string of the form:

HH:MM:SS XM (X = A or P)

228 Mac Assembly Language

The seconds part of the time string (:SS) is actually
returned only if you push a Boolean value of true (— 1) after
pushing the Time value. If you push false (0), seconds are
ignored.

The other useful routine selector for _Pack®é6 is 0. Use it to
return a date string in one of the following three forms:

9/21/86 short date form
Sunday, September 21, 1986 unabbreviated long date form
Sun, Sep 21, 1986 abbreviated long date form

Here’s how to return any of these strings:

MOVE.L Time,-(SP) ;Seconds count

MOVE.B #1,-(SP) ;form code, O=short,
; l=long, 2=abbrev.

PEA DString(AS) ;Date string variable

MOVE #0,-(SP) ;Routine selector

_Packb

Dstring DS 29 ;Enough room for longest

; string.

If you prefer, you can define macros for calls to _Pack6 to
make it easier to remember what it is you're doing. Here are
two macros for _lUTimeString (_Pack6, selector 2) and
_lUDateString (_Pack6, selector 0):

MACRO _IUTimeString =
MOVE #2,-(SP)
_Packb

|

MACRO _IUDateString =
MOVE #0,-(SP)
_Packb

|

These macros are equivalent to two of the sarhe name in the
PackMacs.txt system equate file on the MDS disk.

Events and Input/Output Operations 229

If you include these definitions in your program source file,
read the time and date by calling _IUTimeString and
_lUDateString, instead of explicitly pushing a routine selector
and calling _Pack6.

By the way, the “IU” in these names stands for Interna-
tional Utilities. These are utilities that are country-depend-
ent—that is, the formats of the strings they return vary
depending on national requirements. Two INTL resources
(with IDs of O and 1) contain information describing how date
and time strings are to be formatted. The Macintosh is
shipped with the INTL resources appropriate to the country
in which it is sold.

Chapter 6

Windows and Video
Output

This chapter examines the most fundamental element of the
Macintosh user interface: the window. This is where applica-
tions display their text and graphic output so it can be viewed
by the user.

The Macintosh interface permits the handling of windows
in a very flexible way: There can be several windows on the
desktop at any time and each can be moved (or dragged)
around the screen independently of the others. Unlike some
operating systems that use the window metaphor, Macin-
tosh windows can overlap one another. In fact, any window
may totally obscure another.

Although several windows can coexist on the screen, only
one is said to be active at any given time. By convention, the
active window is always at the front of the screen and its
drag region and scroll controls (more about these window
parts later) are highlighted. To activate another window, all
you have to do is click within its frame.

In the next section, you'll see how a window is represented
in memory and what the various parts of a window are. You'll
learn how to create windows, destroy them, move them
around on the screen, and resize them. At the end of the
chapter, some of the instructions used to draw text and
graphics in a window will be analyzed.

Introduction to Windows

To the user, a window is just a rectangular box on the
screen containing the output of a program. From a program-

230

Windows and Video Output 231

mer’'s point of view, however, a window is much more than
that. Its definition includes the window’s position on the
screen; the font; style; and size of the characters to be used
when writing text in it; its title; whether it has a close box;
and more. All this information is kept in a data structure
called a window record.

Table 6-1. The Window Manager Trap Instructions.

.|

_BeginUpdate Saves the window’s visible
region, then assigns the visible
region to the update region.

MOVE.L theWindow,-(SP) ;POINTER: to window record
_BeginUpdate

Call _BeginUpdate in response to an update event for a

window.

_CloseWindow Removes a window from the
screen but does not free up the
window record.

MOVE.L theWindow,-(SP) ;POINTER: to window record
_CloseWindow

Use this instruction if you created the window by passing a
nonzero wStorage parameter to _ NewWindow; otherwise, use
__DisposWindow.

__DisposWindow Removes a window from the
screen and frees up all memory
associated with the window
record.

MOVE.L theWindow,-(SP) ;POINTER: to window record
_DisposWindow

Use this instruction if you created the window by passing a
zero wStorage parameter to _ NewWindow; otherwise, use
_ CloseWindow.

232 Mac Assembly Language

Table 6-1. continued

__DragWindow Drags a window around the
screen in response to the
movement of the mouse and
redraws it when the mouse
button is released.

MOVE.L theWindow,-(SP) ;POINTER: to window record
MOVE.L startPoint,-(SP) ;LONGINT: point where mouse was
pressed (global)
PER limitRect ;POINTER: to rectangle limiting
; the scope of the drag
_DragWindow

The points for the limitRect rectangle are stored in global
coordinates.

__DrawGrowlcon Draws the window’s size box
and the “elevator shafts” for
the scroll bars.

MOVE.L theWindow, - (SP) ;POINTER: to the window
_DrawGrowIcon
_EndUpdate Restores the window’s visible

region to the region saved
when _BeginUpdate was
called.

MOVE.L theWindow, - (SP) ;POINTER: to window record
_EndUpdate

__Call _ EndUpdate at the end of your update-handling code.

__FindWindow Returns a code indicating the
part of a window in which a
mouse click occurred.

CLR -(SP) ;INTEGER: space for result

MOVE.L mousePoint,-(SP) ;LONGINT: point on screen where
H mouse was pressed (global)

PEA theWindow ;VAR: pointer to window that was
s clicked is returned here

_FindWindow

MOVE (SP)+,DD ;Result: window part code

Windows and Video Output 233

Table 6-1. continued

|
__FrontWindow Returns a pointer to the
currently active window.

CLR.L -(SP) ;POINTER: space for result

_FrontWindow

MOVE.L (SP)+,AD ;Result: pointer to window
_GetNewWindow Loads a new window from a

WIND resource file and
displays it.

CLR.L -(SP) ;POINTER: space for result
MOVE #templateID,-(SP) ;INTEGER: resource ID of WIND
MOVE.L wStorage,-(SP) ;POINTER: to window record
MOVE.L behindWindow,-(SP) ;POINTER: to window in front
_GetNewWindow
MOVE.L (SP)+,A0 ;Result: pointer to window
_GetWTitle Returns the title of a window.
MOVE.L theWindow, - (SP) ;POINTER: to the window
PEA newTitle ;VAR: the title string
_SetHTitle
_GlobalToLocal Convert global coordinates to

local coordinates.

PEA thePoint ;VAR: a point (long word)
_GlobalToLocal
_InitGraf Initializes the QuickDraw

drawing environment.

MOVE.L globalVars,-(SP) ;POINTER: to QD global variables
_InitGraf
_InvalRect Adds a rectangular region to
the current window’s update
region.
PEA badRect ;POINTER: to a rectangle (local)

_InvalRect

234 Mac Assembly Language

Table 6-1. continued

|
_InvalRgn Adds a region to the current
window’s update region.

MOVE.L badRegion,-(SP) ;POINTER: to a region
_InvalRgn
_LocalToGlobal Convert local coordinates to

global coordinates.

PER thePoint ;VAR: a point (long word)
_LocalToGlobal
_NewWindow Creates and displays a new
window.

CLR.L -(SP) ;POINTER: space for result

MOVE.L wStorage,-(SP) ;POINTER: to window record

PER windowRect ;POINTER: to port rectangle

PEA title ;POINTER: to window title

MOVE.B #visible, - (SP) ;BOOLEAN: true = visible

H false = invisible
MOVE #windowType,-(SP) ;INTEGER: window defn ID
MOVE.L behindWindow,-(SP) ;POINTER: to window in front

MOVE.B #hasClose,-(SP) ;BOOLEAN: true = close box
H false = no close box
MOVE.L #refCon,-(SP) ;LONGINT: reference constant
_NewWindow
MOVE.L (SP)+,AD ;Result: pointer to window
__SelectWindow Deactivates the previous

window, activates a new
window, redraws the new
window in the front of the
screen, and generates all
necessary activate and update

events.
MOVE.L theWindow, - (SP) ;POINTER: to window to activate
_SelectWindow
_SetWTitle Sets the title of a window.
MOVE.L theWindow, - (SP) ;POINTER: to the window
PEA newTitle ;POINTER: to the new title

_SetWTitle

Windows and Video Output 235

Table 6-1. continued

|
__SizeWindow Draws a window with new
dimensions.

MOVE.L theWindow,-(SP)
MOVE #newWidth, - (SP)
MOVE #newHeight,-(SP)
MOVE.B #update, - (SP)

;POINTER: to the window
;INTEGER: new width
;INTEGER: new height
;BOOLERN: true = updates OK
H false = no updates

The Boolean update parameter indicates whether newly
exposed regions of the window are to be placed in the window’s
update region.

Passes a button-down event to
a desk accessory for
processing.

_SystemClick

PEA theEvent
MOVE.L theWindow,-(SP)

;POINTER: to the event record
;POINTER: to window where event

H occurred
_SystemClick
_TrackBox Checks if the mouse button is
released when the mouse
cursor is still in the zoom box.
CLR.B - (SP) ;BOOLEAN: space for result

MOVE.L theWindow,-(SP)
MOVE.L thePoint,-(SP)
MOVE partCode,-(SP)
_TrackBox

MOVE.B (SP)+,D0

;POINTER: to window involved
;LONGINT: mouse position (global)
;INTEGER: _FindWindow part code

;Result: true = still in box
; false = not in box

__TrackGoAway

CLR.B - (SP)

MOVE.L theWindow,-(SP)
MOVE.L thePoint,-(SP)
_TrackGoAway

MOVE.B (SP)+,D0

Checks that the mouse button
is released when the mouse
cursor is still in the go-away
box.

;BOOLEAN: space for result
;POINTER: to window involved
;LONGINT: mouse position (global)

;Result: true = still in box
; false = not in box

236 Mac Assembly Language

Table 6-1. continued

|

_ValidRect Removes a rectangular region
from the current window’s
update region.

PER badRect ;POINTER: to a rectangle (local)
_ValidRect
_ValidRgn Removes a region from the
current window'’s update
region.
MOVE.L badRegion,-(SP) ;POINTER: to a region
_ValidRgn
_ZoomWindow Zooms a window in or out.
MOVE.L theWindow,- (SP) sPOINTER: to window involved
MOVE partCode, - (SP) ;INTEGER: _FindWindow part code

MOVE.B #front,-(SP) ;BOOLEAN: true = bring to front
H false = leave alone

Call this instruction with a partCode of #inZoomlIn (zoom
window to its pre-zoomed state) or #inZoomOut (zoom out the
window).

The subroutines used to control windows make up the part
of the Macintosh toolbox called the Window Manager. It is
these subroutines that we’ll be investigating for the next sev-
eral pages. You should keep in mind, however, that the Win-
dow Manager ultimately relies on a group of fundamental
screen drawing subroutines, collectively called QuickDraw,
whenever it must display anything on the screen. It also uses
the Font Manager, the part of the toolbox that deals with text
characters. For these reasons, before any of the Window
Manager commands can be used you must initialize Quick-
Draw and the Font Manager with the following instructions:

PEA -4 (AS) ;Address of QuickDraw global area
_InitGraf ;Initialize QuickDraw
_InitFonts ;Initialize Font Manager

Windows and Video Output 237

Notice that these are the first three instructions used in the
standard program header described in Chapter 2.

QuickDraw Global Variables

MDS pre-allocates a 256-byte space for QuickDraw global
variables just below the address pointed to by the A5 regis-
ter, although only GrafSize (206) bytes are actually used. The
address of the last variable in the space (a long word) is given
by —4(A5) and that's the address passed to _InitGraf.

_InitGraf stores the address of the last variable in the
QuickDraw variable space at the location pointed to by A5.
This is the first entry in the system parameter table.

The end of the QuickDraw global area contains the follow-
ing variables, shown in reverse order, from high to low
memory:

ThePort (4 bytes) a pointer to the active window
White (8 bytes) standard white pattern

Black (8 bytes) standard black pattern

Gray (8 bytes) standard gray pattern

LtGray (8 bytes) standard light gray pattern
DkGray (8 bytes) standard dark gray pattern

Arrow (68 bytes) standard arrow cursor record
ScreenBits (14 bytes) screen bitmap (see below)
RandSeed (4 bytes) seed for random number generator

Additional QuickDraw variables below these are for the pri-
vate use of QuickDraw. Below all the QuickDraw variables
are the application’s global variables.

The symbolic names given for the QuickDraw variables rep-
resent offsets from the highest addressed variable, ThePort.
To access a QuickDraw variable, say RandSeed, use an
instruction sequence like the following:

MOVE.L (AS),AO ;Get pointer to QD area in AOD
MOVE.L RandSeed(AD),D0 ;Access RandSeed

Alternately, you can access it directly with a MOVE.L

238 Mac Assembly Language

RandSeed —4(A5),D0 instruction, but only if you pass the
effective address of —4(A5) to _InitGraf.

The Parts of a Window

Before you learn how to create windows, I'll summarize the
terminology used to describe the various parts of a window.
Figure 6-1 shows a typical Macintosh window whose constit-
uent parts are labeled.

drqg
. region
title
o 7
go-away [EF——— Fiquras.68000 ==L box.
box {
||
content
region -
size box

scroll controls

Figure 6-1. The Parts of a Macintosh Window.

The go-away box (also called the close box) is located in
the top left-hand corner of the window. According to the
Macintosh user-interface guidelines, if you click this box, the
window is to close and disappear from the screen. Some win-
dows, such as dialog and alert boxes, do not have a go-away
box.

Windows and Video Output 239

The drag region is the rectangular region on the top of a
window containing the title of the window and, if the window
is the active one, the “racing stripes” on either side of the
title. The drag region does not include the go-away box. A
window need not have a drag region.

If the mouse button is pressed while the cursor is in the
drag region and the mouse is moved with the button still
down, an outline of the window moves around the screen.
When the button is released, the window is redrawn at its
new position.

The content region is the area of the window within which
you can draw and view text and graphics. It is bounded by
the window frame, which includes the window’s outline, the
go-away box, and the drag region.

The size box, if present, is located in the lower right-hand
corner of the window, usually within the content region. By
positioning the mouse pointer in the size box and dragging the
mouse, you can alter the size of the window.

A zoom box sometimes appears in the top right-hand cor-
ner of a window. The first time you click this box, the window
expands to fill the entire screen, enabling you to quickly view
as much information within the window as possible; on the
next click in the zoom box, the window returns to its pre-
zoomed size.

The scroll controls are found in horizontal and vertical “ele-
vator shafts” that appear within the content region of a win-
dow. They include two arrows at either end of the shaft, and
a movable control called a thumb. The scroll controls are used
to move the portion of a text or graphics image within a win-
dow up and down or left and right. Movement can be line by
line by clicking an arrow, or page by page by clicking in the
space between an arrow and the thumb. You can move
directly to any part of the document shown in the window by
moving the thumb.

It is the responsibility of the programmer to adhere to the
standard user-interface guidelines in response to mouse
activity in the various parts of a window. For example, if the
mouse is clicked in the go-away box, the window does not

240 Mac Assembly Language

automatically close; it is up to you to write your program in
such a way that it does. We'll see how to do this later in this
chapter.

Coordinate Systems

Now a word about the coordinate systems used by Quick-
Draw and the Window Manager. The first element in a win-
dow record is a QuickDraw data structure called a GrafPort,
which contains information concerning the drawing environ-
ment for the window: this includes the pen characteristics for
drawing operations, background patterns, and fill patterns.
One important field in a GrafPort is called PortBits. It is a
bitmap that describes the portion of a rectangular array of
bits (a bit image) that drawing operations are to affect and
imposes a coordinate system for the map. The structure of a
bitmap record like PortBits is as follows:

BaseAddr pointer
rowBytes integer
boundsRect rectangle

BaseAddr is a pointer to the memory location defining the
upper left-hand corner of the bit image.

RowBytes is the width of the bit image in bytes; it must be
an even number. Even though rowBytes must describe an
integral number of words, the active portion of the bit image
may be narrower. The boundsRect rectangle defines the por-
tion of the bit image that is the active part of the bitmap; this
rectangle must not extend beyond the boundaries of the bit
image.

The data structure for a rectangle is made up four integers
representing the position of its top, left, bottom, and right
boundaries, in that order. The symbolic names for the off-
sets to these points are (as you might expect) top, left,
bottom, and right.

Windows and Video Output 241

BoundsRect also defines a coordinate system where the
bit in the top-left corner of the bit image has a coordinate
equal to the top-left coordinate for boundsRect. This coordi-
nate is not necessarily (0,0). In fact, when a window is cre-
ated, the (0,0) position is assigned to the top-left corner of
the content region of the window and boundsRect is adjusted
to account for this. (This is done to make it easier for you to
position items within a window.) The coordinate system
defined by boundsRect is called a local coordinate system
because it is used by drawing operations for the GrafPort
with which it is associated.

The notation (x,y) is the shorthand representation for the
coordinates of a point on the screen. The first number, x,
is the horizontal position and the second, vy, is the vertical
position.

The area within a GrafPort’s bitmap that QuickDraw
actually draws into is described by PortRect, another field
in the GrafPort data structure. PortRect describes a rec-
tangle that is usually wholly contained within the bitmap. It
is defined using local coordinates. When a window is
opened, PortRect is the rectangle enclosing the content
region of the window.

A standard bitmap describing the Macintosh screen is
stored at ScreenBits in the QuickDraw global variable area. If
you passed an address of —4(A5) to _InitGraf, this address is
given by ScreenBits—4(A5). For a 512K Macintosh, the
BaseAddr value for this bitmap contains $7A700 (the start of
the screen buffer), rowBytes contains 64, and the coordi-
nates of boundsRect are 0,0, 342,512 (top, left, bottom,
right). This means the bit image is the entire screen and that
the entire screen forms part of the bitmap.

To compare coordinates in one GrafPort with those in
another, you must first convert to a common coordinate sys-
tem. The QuickDraw subroutines use a global coordinate sys-

242 Mac Assembly Language

tem where the top-left corner of the bitmap pointed to by
BaseAddr is always considered to be at (0,0). As long as the
BaseAddr pointers for the GrafPorts whose coordinates are
being compared contains the same value, global coordinates
map to memory locations in exactly the same way for each
GrafPort; thus, comparisons are meaningful. For windows
displayed on the Macintosh screen, this is indeed the case:
BaseAddr always points to the starting address of the
screen buffer.

In either coordinate system, the horizontal coordinates
increase as you move to the right and the vertical coordi-
nates increase as you move to the bottom.

You usually pass global coordinates to Window Manager
subroutines. This is the same coordinate system used by
_GetNextEvent for passing the position of the mouse when
an event occurs. The instructions that draw text and graph-
ics within a window use the local coordinate system,
however.

Before a drawing instruction can use a global coordinate,
the coordinate must first be converted to a local coordinate
using the _GlobalTolocal trap instruction:

PEA Where(AS) ;push addr of global coords
_GlobalToLocal ;convert global to local
Where DS.L 1 ;Point: vertical, horizontal

_GilobalToLocal takes the global coordinate at Where, con-
verts it to a local coordinate, and stores it at Where.

Notice that the Where variable is a data structure of type
point. A point is simply a long word that contains the vertical
Chigh-order word) and horizontal (low-order word) coordi-
nates for a position on the screen. This order is the reverse
of the order used when describing a point using the standard
(x,y) notation. The MDS symbolic offsets to the vertical and
horizontal components of a point are v and h. There is a
related trap instruction, _LocalToGlobal, for performing the
opposite conversion.

Windows and Video Output 243

Creating Windows

Before defining windows on the Macintosh, you must call
the _InitWindows instruction. This clears the desktop to its
background pattern, erases the menu bar at the top of the
screen, and initializes all window-related data structures.
_InitWindows does not require any parameters and must
only be called once at the beginning of a program.

There are eight pre-defined types of windows you can use
on the Macintosh, each identified by a unique code called a
window definition ID. These windows are shown in Figure
6-2. If you are using a Macintosh with the original 64K ROMs,
you can only use the first six window types shown.

The use of the standard windows is dictated by the Macin-
tosh user-interface guidelines. Windows with an ID = O, 4, 8,
or 12 are the most common and usually contain a document
being acted on by the application. These window types are
the same, except that two don’'t have a zoom box and two
don’t have a grow box.

Windows with an ID = 1, 2, and 3 are usually used as dialog
and alert boxes. (See Chapter 8.) Windows with an ID = 16
are most commonly used by desk accessories, such as the
calculator.

There are two basic ways to create a window. First, you
can create it from scratch within the program. Second, you
can use RMaker to create a WIND resource and store it in a
resource file.

The _NewWindow instruction defines a window from
scratch. Its general form is as follows:

CLR.L - (SP) ;Clear space for result
MOVE.L #0,-(SP) ;0=use heap for record

PEA WindRect ;Window dimensions

PEA tOour Window! ;Title for window

MOVE.B #-1,-(SP) ;-1 = visible (0O=invisible)
MOVE #0,-(SP) ;0 = window definition ID
MOVE.L #-1,-(SP) +=1 = this window in front
MOVE.B #-1,-(SP) ;-1 = draw a close box

244

Mac Assembly Language

i%i
I

Window Types

window definition ID = 0

DocumentProc

window definition ID = 1

DBoxProc

window definition ID = 2

PlainDBoxProc

%
|

Window Types ===

window definition ID = 4

NoGrowDocProc

window definition ID = 3

AltDBoxProc

E0== Window Types =—=F]

ZoomDocProc

only on a Macintosh
with 128K ROMs

)

] Window Types

windoy definition ID = 16

RDocProc

-

\

%
|

Window Types =M

window definition ID =12

ZoomNoGrow

only on a Macintosh
with 128K ROMs

Figure 6-2. Standard Macintosh Window Types.

Windows and Video Output 245

CLR.L - (SP) ;User-definable parameter
_NewWindow
MOVE.L (SP)+,theWindow(RAS) ;Pop long word pointer

WindRect DC.W so,50,200,300 ;Window rectangle (TLBR)

theWindow DS.L 2 ;Space for long

_NewWindow is a function that returns on the stack a
pointer to the window record. This means you must clear
space for a long word on the stack before pushing the param-
eters _NewWindow requires. After calling _NewWindow,
pop the pointer off the stack and store it in a variable so you
can use it to access the window later on.

The first parameter passed to _ NewWindow is a pointer to
the area it uses to store the window record. You can reserve
such an area (its size is given by the MDS constant Window-
Size, 156 bytes) on the stack using _NewPtr. (See Chapter
4.) It's usually more convenient to ask _NewWindow to
reserve this space automatically, however. To tell it to do
this, push a zero pointer as in the above example.

The next parameter is a pointer to the coordinates of the
window rectangle. The coordinates must be in top, left, bot-
tom, right order.

The next five parameters relate to the appearance of the
window. The first is its title, whether it is visible (true, —1) or
invisible (false, 0). Next is the window definition ID code. The
third refers to a pointer to the window in front of it (or —1 if
the window is to be drawn in front) and the fourth concerns
whether a close box is to be drawn (true, — 1) or not drawn
(false, O).

Listing 6-1 is a program illustrating how to use _New-
Window. It creates and displays each of the eight basic win-
dow types whose definition IDs are kept in a table at WindID.
The program also displays the window definition ID number in
the window using some instructions (_Pack7, _MoveTo, and
. _Drawstring) | haven't discussed yet. I'll be explaining these
instructions later on in this chapter. To display each type of
window in the program, keep clicking the mouse button.

246 Mac Assembly Language

After the last window type is displayed, you will return to the
Finder.

Listing b6-1. The Source File and Linker Control File for
the WindTypes Program.

Asm Source File
WindTypes.Asnm

This program displays the seven basic window types on the
screen. Click the mouse button to move between the windows.

* ¥ H ¥ *

WindNum EQU 8 ;Number of window types
INCLUDE ToolEqu.D ;Toolbox equates
INCLUDE QuickEqu.D ;QuickDraw equates
INCLUDE SysEqu.D ;operating system equates
INCLUDE Traps.D ;Trap instructions

; Initialize the various Managers:

PEA —4(AS) ;Start of QD globals area

_InitGraf ;Initialize QuickDraw

_InitFonts ;Font Manager

_InitWindows ;Window HManager

_InitMenus ;Menu Manager

_TEInit ;TextBdit

MOVE.L #0,-(SP) ;(no restart procedure)

_InitDialogs ;Dialog Manager
InitCursor ;We want arrow cursor

MOVE.L #$0000FFFF,DD
_FlushEvents ;Get rid of every event
LEA WindIDs,Ab ;Load base address of ID table
MOVE #WindNum-1,D6 ;Set up loop count for DBF
; Draw a window on the screen. The window ID is

; contained in (AGL).
DrawWind

Windows and Video Output

Listing &-1. continued

@0

CLR.L - (SP) ;Space for returned pointer
MOVE.L #0,-(SP) ;0 = store window in stack

PER Window ;Window rectangle

PER 'Window Types' ;Window Title

MOVE.B #-1,-(SP) ;-1 = visible

MOVE (Ab),-(SP) ;First window type is at (Ab)
MOVE.L #-1,-(SP) ;-1 = front window

MOVE.B #-1,-(SP) ;-1 = go away button

MOVE.L #0,-(SP) ;refCon

_NewWindow ;Draw the window

MOVE.L (SP),WindPtr(AS) ;Save pointer (don't pop)
_SetPort ;Make window current for drawing
CMP #0, (Ab) ;Is this a standard doc window?
BEQ @0 ;Yes, so branch

CMP #8,(Rb) ;Is this zoom with grow box?
BNE @l ;No, so branch

MOVE.L WindPtr(AS),-(SP)
_DrawGrowIcon ;Draw the grow box

; Display the window definition ID number of the window:

@l

LEA String(AS),AOD ;Address of string in AD

CLR.L DO ;Make sure high word is zero
MOVE (AB)+,D0 ;Put ID in DO and bump pointer
MOVE #0,-(SP)

_Pack? ;_NumToString

MOVE #20, - (SP) ;horizontal pos.

MOVE #20, - (SP) ;vertical pos.

_MoveTo ;Position the pen

PEA 'window definition ID =

_DrawString ;Display the string

PEA String(AS)
_DrawString ;Print the window type code

JSR GetButton ;Wait for button press

MOVE.L WindPtr(AS),-(sp) ;Erase window and remove it

247

248 Mac Assembly Language

Listing b-1. continued

_DisposWindow ; from system
DBRA Dbk,DrawWind ;Loop until Dbk=-1
RTS ;Return to Finder

; Loop until the mouse button is pressed:

GetButton
CLR.B —(SP) ;Leave space for Boolean result
MOVE #-1,-(SP) ;Allow all events
PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event
TST.B (SP)+ ;Pop and test the result code
BEQ GetButton ;Branch if no event

MOVE EventRecord+evtNum,DD ;Get event type

CMP #nButDwnEvt,D0 ;Is it a button-down event?

BNE GetButton ;No, so branch

RIS
EventRecord DCB.B EvtBlkSize,0 ;Space for event record
Window DC.W 50,25,200,225 ;window coordinates
WindIDs DC.W 0,1,2,3 ;Valid IDs for windows

DC.W 4,8,12,16

; Here are the program globals. Use (AS) addressing.

WindPtr DS.L 1 ;Pointer to our window
String DS.W 2 ;Space for number conversion

; Linker Control File
; WindTypes.Link

’

WindTypes

$

Windows and Video Output 249

Another way to define a new window is to read its defini-
tion from a resource file using the _GetNewWindow instruc-
tion. Like _ NewWindow, _GetNewWindow returns a pointer
to the window data structure: A

WindID EQU 244 ;Window resource ID
CLR.L - (SP) ;Space for result
MOVE #WindID, - (SP) ;Window resource ID
MOVE.L #0,-(SP) ;window record on heap
MOVE.L #-1,-(SP) ;Ptr to window in front

GetNewWindow

MOVE.L (SP)+,theWindow(R5) ;Save the result

theWindow DS.L 1

As you can see, you need only specify a resource ID
number and a window pointer to load a window definition
from a resource file. All the other parameters needed to
describe the window record are contained within the
resource file itself.

Of course, you can only use _GetNewWindow if you've pre-
viously stored the WIND resource in a resource file and that
file is open. To create the resource, first use Edit to create a
source code file for the window record for RMaker, the
resource compiler. The form of the definition for a window is
shown in Table 6-2. Next, place the name of the application
file (preceded by !) at the beginning of the RMaker source file
so that the window resource will be placed in the resource
fork of the application file itself during the compilation pro-
cess. This assumes the file has already been created by
assembling and linking the main program file.

It is convenient to place the window resource in the applica-
tion’s resource fork because it means the resource will be
automatically available to the application when it starts to
run. You could also use RMaker to store the definition in a
separate resource file, but that file would have to be explicitly
opened using _OpenResFile.

250 Mac Assembly Language

Table 6-2. The RMaker Format of a WIND Resource
Definition.

Type WIND

,128 ;; Resource ID of window

A Pane in the Glass ;3 window title

20 20 350 400 ;; coordinates of window (TLBR)
IN ;s window status

q ;; window definition ID

(o] ;; reference value (user-definable)

The window definition ID canbe O, 1, 2, 3, 4, 8, 12, or 16.
The window status can be Visible (V) or Invisible (I),
NoGoaway (N) or Goaway (G).

Once a window has been created, you still can’t draw any-
thing in it because it is not the active drawing window. To
activate a window to enable you to draw text and graphics in
it, push the pointer to the window on the stack, and call the
_SetPort instruction:

MOVE.L theWindow(AS),-(SP)
_SetPort

theWindow DS.L 1

This instruction presumes, of course, that the pointer
returned by _NewWindow or _GetNewWindow was stored
in a variable called theWindow.

Before you use _SetPort to designate a new active drawing
window, you should save the pointer to the current drawing
window using _ GetPort. That way, you can easily return con-
trol to the original window with another _SetPort instruction.

To use _GetPort, pass the address of the location in which
_GetPort is to return the pointer as follows:

PEA 0l1dWindPtr ;Return pointer here
_GetPort

0ldWindPtr DC.L 0 ;This is a constant

Windows and Video Output 251

Since OldWindPtr is a constant, the (A5) addressing mode
is not used with PEA.

Destroying Windows

There are two instructions that will close a window,
__CloseWindow and _DisposWindow. The one to use depends
on how you initially created the window.

If you used _NewPtr to create space for the window rec-
ord used by _NewWindow, use _CloseWindow to close the
window. It takes a pointer to the window record as a param-
eter, removes the window from the screen, but does not free
up the area used by the window record. To free up that
space you must use the Memory Manager's _ DisposPtr
instruction. (See Chapter 4.)

If the Window Manager automatically allocated space for
the window record on the heap (it always does if you use
_GetNewWindow), use _DisposWindow to close the win-
dow. This instruction not only erases the window from the
screen, it also deallocates the space reserved for the window
record.

Both _CloseWindow and _ DisposWindow cause update
events if previously hidden parts of other windows are
exposed when a window disappears. An activate event also
occurs if the active window is closed and there are other win-
dows on the screen; the window nearest the front of the
screen is activated.

Reacting to Window-Related Events

In the previous chapter you learned the Event Manager can
post three types of events that should be processed by the
Window Manager:

252 Mac Assembly Language

® UpdatEvt (window update event)
® ActivateEvt (window activate or deactivate event)
® MButDwnEvt (mouse button down event)

These events are by no means processed automatically; it is
up to your program to detect them and take appropriate
action.

Update Events

An update event (UpDatEvt) occurs when a previously hid-
den portion of a window comes into view. This happens if
another window is closed, moved, or resized, or if the subject
window is activated and moved to the front of the screen or
is enlarged by dragging on its size box. The Window Manager
instructions take care of automatically adding newly exposed
regions of a window in a data structure called the update
region and generating the update event.

When you respond to an update event, you must re-draw
those portions of the window contained in the update region.
To do this, first call _BeginUpdate to ensure that subsequent
drawing within the window will be restricted (or clipped) to
the update region only. This is done by temporarily assigning
the window’s visible region—the part you can see on the
screen—to the intersection of the existing visible region and
the update region. This means you can redraw the entire
window, but only the update region is affected.

Next, you have to redraw the screen. To do this, of course,
you must know what the contents of the screen were just
before the update event occurred. This requires careful plan-
ning on your part, and virtually dictates that you maintain
some sort of data structure in memory describing the con-
tents of the window at any given time, so you can re-create it
when necessary.

When the screen has been redrawn, call _EndUpdate. This
empties the update region and resets the visible region of the
window to its original value.

Here's what the entire procedure looks like:

Windows and Video Output 253

MOVE.L theWindow(AS),-(SP)
_BeginUpdate

[re-write the screen herel

MOVE.L theWindow(AS),-(SP)
_EndUpdate

You can force update events to occur under program con-
trol by adding regions or rectangular areas to the accumu-
lated update region using _InvalRgn and _InvalRect. (See
Inside Macintosh for a technical description of a region.) This
is a handy way of forcing the redrawing of a portion of the
screen. You use _InvalRgn and _InvalRect as follows:

PEA Rectangle ;address of rectangle coords
_InvalBRect
Rectangle DS.W 10,10,50,7S ;TLBR (local)
and
MOVE.L RgnHndl(AS),-(SP) ;push handle to region
_InvalRgn

RgnHndl DS.L 1

Notice that the rectangle coordinates used by _InvalRect are
local coordinates.

There are corresponding instructions for removing regions
and rectangular areas from the update region: _ValidRgn and
_ValidRect. Use them if you want to prevent an update
event from being posted in the event queue.

Activate Events

An activate event (ActivateEvt) occurs when either of two
events occurs: A window is activated or a window is deacti-

254 Mac Assembly Language

vated. To determine which of these two related events has
occurred, check the ActiveFlag bit (bit O) of the evtMBut field
of the EventRecord returned by _ GetNextEvent:

MOVE.B EventRecord+evtMBut,DO
BTST #ActiveFlag,DO0 ;Is activate bit on?
BEQ DeActivatelt ;No, so deactivate

If it's an activate event, the bit will be 1 and the BEQ branch
will not be taken. '

An activate event occurs when a new window is brought
to the front of the screen. This happens when you call
_SelectWindow when the mouse is clicked inside an inactive
window or when the currently active window is closed. To
handle an activate event, you should call _SetPort to make
the activated window the current drawing window, and
then redraw the size box (using _DrawGrowlcon) and the
scroll bars, if necessary. You may also want to highlight or
dim certain items in the menus at the top of the screen,
depending on whether they are applicable to the newly acti-
vated window. (You'll see how to do this in the next
chapter.)

For a deactivate event, you should dim the scroll bar and
grow box by calling _ DrawGrowlcon. Since the window isn't
active, the Window Manager will not draw the highlighted
grow box icon as it normally would. The deactivation subrou-
tine may also involve highlighting or removing highlighting
from menu items.

Button-Down Events

Your response to a button-down event (MButDwnEwt)
depends on precisely where the mouse button was pressed:
in a close box, the drag area, a content region, or another
identifiable part of a window. To determine the location, use
the _FindWindow instruction:

Windows and Video Output 255

CLR -(SP) ;Space for result

MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global)
PEA theWindow(AS) ;Window pointer returned here
_FindWindow

MOVE (SP)+,partCode(AS)

EventRecord DCB.B EvtBlkSize,0 ;Event record
theWindow DS.L 1
partCode DS.L b

The word result returned by _FindWindow, stored at
partCode in the above example, is a part code that reflects the
region on the screen in which the mouse button was pressed.
There are nine possible part codes:

(o] inDesk (in the desktop)

1 inMenuBar (in the menu bar)

2 inSysWindow (in a desk accessory window)
3 inContent (in a content region)

q inDrag (in a drag region)

5 inGrow (in a size region)

6 inGoAway (in a go-away box)

7 inZoomOut (in a zoom box)

8 inZoomlin (in a zoom box)

The last two part codes, inZoomOut and inZoomln, cannot
be returned if the Macintosh is using the original 64K ROMs.

The inSysWindow part code is generated if the mouse is
pressed in any part of a system (desk accessory) window.
This means inContent, inDrag, inGrow, inGoAway,
inZoomOut, and inZoomlIn codes refer to regions in application
windows only.

inDesk. If the part code is inDesk you will probably want to
ignore the button press because no specific action is dictated
by the user-interface guidelines.

inMenuBar. If the part code is inMenuBar, you should pass
control to the Menu Manager so it can take care of pulling
down menus and selecting menu items. You'll see how to do
this in the next chapter.

256 Mac Assembly Language

inSysWindow. A part code of inSysWindow means there
has been a click in the window for a desk accessory. You'll
learn about desk accessories in detail in Chapter 9, but for
now all you need to know is that you should pass control to
the desk accessory using the _SystemClick instruction:

PEA EventRecord
MOVE.L theWindow(AS),-(SP)
_SystenClick
EventRecord DCB.B EvtBlkSize,D ;Event record
theWindow DS.L 1 ;[returned by _FindWindow]

EventRecord is the same record used by the _GetNextEvent
instruction that reported the button-down event.

inContent, inDrag, inGrow, inGoAway, inZoomlIn, inZoomOut.
After you call _FindWindow and you've determined that the
button was pressed in an application window, you should
check whether the window is currently active or not. This
can be done by comparing the window pointer returned by
_FindWindow, which was stored at theWindow(A5) in the
example above, with the pointer returned by the
__FrontWindow function. If they aren’t the same, simply call
_SelectWindow to activate the window in which the click
occurred. Here's how to do this:

CLR.L -(SP) ;A pointer is returned
_FrontWindow ;Get pointer to active window
MOVE.L (SP)+,Ab ;Pop the window pointer
CMP.L theWindow(AS),Ab ;Are windows same?
BEQ Continue ;Yes, so proceed normally
MOVE.L AGb,-(SP) ;Push new window pointer
_SelectWindow ; and select new window.
RTS

Continue

The call to _SelectWindow automatically generates an acti-
vate event.

If the window is already active, you would proceed to Con-
tinue, which would be the part of the program that processes

Windows and Video Output 257

inContent, inDrag, inGrow, inGoAway, inZoomln, and
inZoomOut part codes.

inContent. There is no standard procedure to follow when
the button is clicked in the content region of a window; it will
depend on the nature of your application. If, for example, the
program is a word processor, you will probably want to place
an I-beam cursor at the mouse position to indicate a new text
insertion point. On the other hand, the click may be within an
action box you've drawn on the screen, so you would per-
form the action associated with it.

inDrag. If the button is pressed in the drag region of a win-
dow, call _DragWindow. When you do this, an outline image
of the window will be moved around the screen as you move
the mouse with the button still down. If you move the mouse
outside the limits of a bounding rectangle you pass to
__DragWindow, the outline disappears and reappears only if
the mouse is dragged back into range again.

When the button is released, the window is redrawn at its
new position. If the mouse is released outside the bounding
rectangle, however, the window stays at its original position.
Here's what the calling sequence for _DragWindow looks
like:

MOVE.L theWindow(AS),-(SP) ;window pointer

MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global)
PEA boundRect ;bounding rectangle (TLBR)
_DragWindow

where boundRect is a constant made up of two global coordi-
nates: the top-left and bottom-right coordinates of the rec-
tangle within which the mouse pointer must be kept during
the drag operation.

inGrow. When you detect a button press in the grow box,
call _GrowWindow. _GrowWindow displays an outline of the
window that expands and contracts as the mouse is moved
back and forth. To avoid shrinking windows to a miniscule
size or expanding them to an enormous size, you can specify

258 Mac Assembly Language

minimum and maximum values for the final rectangle’s height
and width. Here's how to use _GrowWindow:

CLR.L -(SP) ;Space for long word

MOVE.L theWindow(AS),-(SP) ;Push pointer to window

MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global)

PEA sizeRect ;Dimension limits

_GrowWindow

MOVE.L (SP)+,DO0 ;Pop result into DO

SizeRect DC.W 10,10,300,270 sheight (min), width

;(nin), height (max),
;width (max)

Notice that since sizeRect refers to a group of constants, it is
not followed by (A5).

When the mouse button is released, _GrowWindow ends
and a long word is returned on the stack. The high-order
word of this number represents the new height of the win-
dow, in pixels. The low-order word represents the new
width. If the size did not actually change, a zero is returned.

If the window has, indeed, changed in size, you must call
_SizeWindow to redraw it. If the height and width are in DO,
here’'s what you would do:

MOVE.L theWindow(AS),-(SP)

MOVE.L DO,-(SP) ;push width and height
MOVE.B #-12,-(SP) ;-1 = generate updates
_SizeWindow

The last item pushed on the stack is a Boolean quantity
indicating whether any new portions of the window that
come into view are to be automatically added to the win-
dow's update region (true) or not (false). You would normally
set this Boolean item to true (— 1) and then redraw the win-
dow contents when processing the update event returned by
the next call to _GetNextEvent.

You also have to redraw the grow box on the window if the
window is resized. This is done as follows:

Windows and Video Output 259

MOVE.L theWindow(AS),-(SP) ;Pointer to window
_DrawGrowIcon

If the window contains any scroll controls, they will also
have to be redrawn using the appropriate Control Manager
instructions. The Control Manager is described in Inside
Macintosh.

inGoAway. According to the user-interface guidelines, if
the button is pressed in a go-away box, you are not to imme-
diately call _CloseWindow or _DisposWindow to erase the
window from the screen. Rather, you must «call
_TrackGoAway to check that the mouse cursor is still posi-
tioned in (or very near) the go-away box when the button is
released. Only if it is are you to close the window. The pur-
pose of calling _ TrackGoAway is to prevent closing a window
on the basis of an errant mouse click.

_TrackGoAway is a function that returns a Boolean
result. You pass to it a pointer to the window and the coor-
dinates of the point where the mouse was pressed, in global
coordinates:

CLR.B -(SP) ;Space for Boolean result
MOVE.L theWindow(AS),-(SP) ;Push window pointer
MOVE.L EventRecord+evtMouse,-(SP) ;global coordinates
_TrackGoAway

TST.B (SP)+ ;Is the result 0 (false)?
BEQ NoClose ;Yes, so branch

MOVE.L theWindow(AS),-(SP)

_DisposWindow ;Close the window

Notice that the TST.B instruction is used to check if the
Boolean result is true or false and pop the result from the
stack at the same time. If the result is zero, or false, the BEQ
instruction transfers control to NoClose. NoClose is the label
for an instruction somewhere else in the program.

inZoomIn and inZoomOQOut. When either of these two part
codes is returned, call _TrackBox to check that the mouse
button is released when its cursor is still in the zoom box:

260 Mac Assembly Language

CLR.B -(SP) ;Space for Boolean result
MOVE.L theWindow(AS5),-(SP) ;Push window pointer
MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global)
MOVE partCode(AS),—(SP) ;push _FindWindow result
_TrackBox

TST.B (SP)+ ;BNE succeeds if in box

Like _TrackGoAway, _TrackBox returns a Boolean result
indicating whether the button was released in the box or not.

If the result is true, you should immediately call _Zoom-
Window to handle the zoom activity. _ZoomWindow zooms
the window out to full screen size (for inZoomOut) or zooms it
back to the pre-zoomed size (for inZoomin). Here is how to
call _ZoomWindow:

MOVE.L theWindow(RS),-(SP) ;Push window pointer
MOVE partCode(RS5),-(SP) ;Push _FindWindow result
MOVE.B #-1,-(SP) ;-1 = window in fromnt
_ZoonWindow

Notice that the third parameter is a Boolean, indicating
whether the window will be brought to the front (true) or left
where it is (false).

The ROM subroutines called by the _TrackBox and _Zoom-
Window instructions are not included in the Macintosh's origi-
nal 64K ROM. Since these instructions are used only in
response to inZoomOut or inZoomln part codes, however,
and these codes cannot be generated by a Macintosh using a
64K ROM, a program that includes them will still work on an
older Macintosh.

A Window Application

The program in Listing 6-2 demonstrates how to react to
button-down events when a window is on the screen. With it
you can drag a window around the screen, resize it, and close
it by clicking in the goaway box. It uses some Menu Manager
instructions, such as _Disableltem and _ Enableltem, not cov-
ered vyet, but we'll be looking at them in the next chapter.

Windows and Video Output 261

Listing b-2. The Source File, Linker Control File, and
RMaker File for the MainWind Program.

; Asm Source File
; MainWind.Asm

; This program shows how to manipulate a
; single window on the screen.

WindID EQU 128 ;Window ID

MenuBarID EQU 128 ;Menu bar ID

AppleID EQU 1 ;Menu ID for Apple menu

FileID EQU 2 ;Menu ID for File menu
INCLUDE ToolEqu.D ;Toolbox equates
INCLUDE QuickEqu.D ;QuickDraw equates
INCLUDE SysEqu.D ;Operating system equates
INCLUDE Traps.D ;Trap instructions

; Initialize the various Managers:

PEA -4 (AS) ;Start of QuickDraw globals
_InitGraf ;Initialize QuickDraw
_InitPonts ;Font Manager.

_InitWindows ;Window Manager

_InitMenus ;Menu Manager

_TEInit ;TextEdit

MOVE.L #0,-(SP) ;(no restart procedure)
_InitDialogs ;Dialog Manager
_InitCursor ;We want arrow cursor

MOVE.L #$0000FFFF,DO
_FlushEvents ;Get rid of every event

Read menu bar from MBAR resource, then make it current
using _SetMenuBar and draw it using _DrawMenuBar:

CLR.L - (SP) ;Space for result

MOVE #MenuBarID,-(SP) ;Push resource ID
_GetNewMBar

_SetMenuBar ;Handle already on stack
_DrawMenuBar ;Display menu bar

CLR.L - (SP)

MOVE #FileID, - (SP)

262 Mac Assembly Language

Listing b&-2. continued

_GetMHandle ;Get handle to file menu
MOVE.L (SP)+,FileHndl(AS) ;Save it for later use

BSR OpenWindow ;0pen up the window
MainLoop

BSR GetEvent

BSR HandleEvent

BRA MainLoop

GetEvent
CLR.B —(SP) ;Leave space for Boolean result
MOVE #$FFFF, - (SP) ;Allow all events
PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event
TST.B (SP)+ ;Pop and test the result flag
BEQ GetEvent ;Branch if no pending event
RTS

HandleEvent

MOVE EventRecord+evtNum,DO ;Get event type code
CMP #MButDwnEvt,DD ;Is it a button-down event?
BEQ @c ;Yes, so branch

CHpP #UpdatEvt,DO ;Update event?
BEQ @l ;Yes, so branch

RTS ;Ignore everything else
* Handle an update event by redrawing the grow box.

* In a complete application, you would redraw the text
* and graphics in the window as well.

@1 MOVE.L OurWindow(AS),-(SP)
_BeginUpdate ;Restrict to update region

MOVE.L OurWindow(AS),AD
PEA PortRect (AD) ;The window rectangle
_EraseRect ;Erase the window

MOVE.L OurWindow(AS),-(SP)
_DrawGrowIcon ;Redraw the size box

; (redraw window contents here)

Windows and Video Qutput

Listing b-2. continued

MOVE.L OurWindow(AS),-(SP)
_EndUpdate ;Clear update region

RTS

* Handle mouse clicks:

@2 CLR -(SP) ;Space for result
MOVE.L EventRecord+evtMouse,-(SP) sWhere info
PEA ClickWindow ;VAR window involved
_FindWindow ;Where was button pressed?
MOVE (SP)+,DD ;Pop the result
CHMP #6,D0 ;Above &7
BHI Ignore ;Yes, so ignore
ASL #2,D0 ;Times 4 to step into table
JNP ClickTable(PC,DO)
Ignore RTS
ClickTable
JMP Ignore ;InDesk
JMP DoMenuBar ;InMenuBar
JNP Ignore ;InSysWindow
JMP Ignore ;InContent
JMP DoDrag ;InDrag
JMP DoGrow ;InGrow
JHP DoGoAway ;InGoAway

; Get menu selection:

DoMenuBar
CLR.L -(SP) ;space for result
PEA EventRecord+evtMouse ;Where
_MenuSelect ;Get menu selection
MOVE (SP)+,Db ;Save menu number in DG
MOVE (SP)+,D? ;Save item number in D?
MOVE #0,-(SP)
_HiliteMenu ;Remove highlight from menu title
CMP #FilelID,Db ;In the FILE menu?
BNE GetEvent ;No, so branch

263

264 Mac Assembly Language

Listing b-2. continued

CMP #2,D7 ;QUIT selected?
BNE @1 ;No, so branch
_ExitToShell ;Return to Finder

; Open the window:

@l BSR OpenWindow ;Open window again
RIS

; Drag the window:

DoDrag
MOVE.L OurWindow(AS),-(SP)
MOVE.L EventRecord+evtMouse,-(SP) ;where
PEA boundsRect ;bounding rectangle (constant)
_DragWindow ;Move window around screen
RTS

DoGoAway
CLR.B - (SP) ;Space for Boolean result
MOVE.L OurWindow(RS),-(SP)
MOVE.L EventRecord+evtMouse,-(SP) swhere
_TrackGoAway
TST.B (SP)+ ;Is the result true?
BNE @ ;Yes, so branch and close
RTS

@1 MOVE.L OurWindow(AS),-(SP)
_DisposWindow ;Get rid of window

; Enable the "open window" item:

MOVE.L FileHndl(AS),-(SP)
MOVE #1,-(SP)
_EnableIten

RTS

* Track the mouse in the grow box until the button is released.
* Then redraw the window with its new size.

Windows and Video Output

Listing b-2. continued

DoGrow

CLR.L - (SP) ;Space for result
MOVE.L OurWindow(AS),-(SP)

MOVE.L EventRecord+evtMouse,-(SP) ;where
PEA sizeRect

_GrowWindow
MOVE.L (SP)+,Db ;Get new height, width
BEQ @l ;Branch if size didn't change

; Resize and accumulate all of new window into update region.
; When the update event is handled, the window contents are
; erased and the grow box is redrawn.

@l

MOVE.L OurWindow(AS), - (SP)

MOVE.L D&,-(SP) ;New dimensions
MOVE.B #-1,-(SP) ;-1 = create update events
_SizeWindow ;Redraw window with new size

MOVE.L OurWindow(AS),AO

PEA PortRect(AD) ;New window rectangle
_InvalRect ;Force update of entire window
RTS

; Create and draw a window on the screen with grow box:

OpenWindow
CLR.L - (SP) ;Space for returned pointer
MOVE #WindID,-(SP) ;Resource ID
MOVE.L #0,-(SP) ;Store on heap
MOVE.L #-1,-(SP) ;-1 = front window
_GetNewWindow ;Get window from resource file
MOVE.L (SP),-(SP) ;Replicate pointer on stack
MOVE.L (SP),OurWindow(AS) ;Save pointer for later
_DrawGrowIcon ;Draw the grow box

. we we

The next step ensures that our new window is the active
drawing vwindow. The pointer to the window is already on the
stack.

265

266 Mac Assembly Language

Listing b-2. continued

_SetPort ;Make window the active GrafPort
; Disable inapplicable menu item:

MOVE.L FileHndl(AS),-(SP)

MOVE #1,-(SP)

_Disableltenm ;Disable "open window" item
RTS

; The application constants:

EventRecord DCB.B EvtBlkSize,D ;Space for event record
ClickWindow DC.L 0 ;Pointer to window
boundsRect DC.W 30,30,340,500 ;Drag rectangle
sizeRect DC.W 30,200,327,490 shyw (min) h,v (max)

; The application variables:
OurWindow DS.L 1 ;Pointer to our window

FileHndl DS.L 1 ;Handle to file menu

Linker Control File
MainWind.Link

Link this file to create application
(without resources).

MainWind

$

.
’
.
’
.
’
.
’
.
’

RMaker Source File
MainWind.R

The next command appends the resources to the application:

*
*
*
* Compile this after assembling and linking MainWind.Asm
*
*
!Book:MainWind

Windows and Video Output 267

Listing &-2. continued

Type MBAR = GNRL ; ;Menu bar resource
1128
I
e ; ;IWO menus
1 +;ID of 1st menu
2 ;;ID of 2nd menu
Type MENU
/1 ; ;Resource ID
14 ;;Title is the Apple symbol (ASCII $14)
Rbout this demo... ; ;About box
,2 ; sResource ID
File ;iMenu Title
Open Window
Quit
Type WIND
(128 ; sResource ID
Window Demo ;;Title for Window
40 S5 250 400 ; ;Window coordinates (TLBR)
Visible GoAway ;;Visible window/ goaway box
0 ;;Window ID. DO = document window
0 ; ;User-definable item (not used)

The only subroutine in this program that requires more
explanation than found in the program’s comments is
DoGrow, the one that handles activity in the size box. If the
window is to be resized (_GrowWindow returns a nonzero
result), _SizeWindow is called to redraw the window with its
new size. The entire content region of the window is then
accumulated into the window’'s update region by calling
_InvalRect. This causes the next update event to act on the
entire window. In this program, update events erase the
entire window.

If the entire window was not made invalid like this, and the
window was enlarged, the screen clearing operation would
not erase the old scroll control shafts and size box because
_SizeWindow only places the newly exposed areas of the
window into the update region.

268 Mac Assembly Language

The Window Title

The Window Manager has two instructions you can use to
get the title of a window or set the title of a window: _GetW-
Title and _SetWTitle. To get a title, use the following portion
of code:

MOVE.L theWindow(AS),-(SP) ;Push window pointer

PER TitleString(AS) ;Push address of string
_GetHTitle
TitleString DS 40 ;String returned here

where TitleString is the address of a block of memory in the
variable space where the string representing the window’s title
will be stored. The string is retumed with a preceding length
byte. The 40 bytes reserved with the DS 40 directive should be
enough for the longest title string you're likely to use.

The calling sequence for setting a title is similar:

MOVE.L theWindow(AS),-(SP) ;Push window pointer
PER 'New Title! ;[this pushes an address]
_SetWTitle

Notice how the PEA instruction is used here. Although its
operand is a string constant, the MDS assembler converts
the operand to the address at which the assembler stores
the string. This will be somewhere after the end of the pro-
gram code space in the area reserved for constants. This
form of PEA is equivalent to an instruction sequence of the
form:

PER MyString
NOP

MyString DC 'New Title!

provided that the STRING_FORMAT directive is set to 3 so
that the DC string is preceded by a length byte.

Windows and Video Output 269

Displaying Text

Once you've created a window, you can easily display text
in it using several QuickDraw instructions designed for that
purpose. (See Table 6-3.) Unlike most computers, the text
characters can be displayed in a variety of typefaces, styles,
and sizes, thus you can craft the appearance of your output
very carefully.

Table 6-3. Trap Instructions Used to Draw text.

]
_CharWidth Returns the width of a
character in pixels.

CLR -(SP) ;INTEGER: space for result

MOVE #theChar, - (SP) - ;CHAR: character to test

_CharWidth

MOVE (SP)+,D0 ;Result: width of character
__DrawChar Draws a character at the

current pen position.

MOVE #theChar,-(SP) ;CHAR: character to draw
_DrawChar
__DrawsString Draws a character string at

the current pen position.

PEA theString ;POINTER: to the string
_DrawString
__DrawText Draws a sequence of
characters at the current pen
position.
PEA theText ;POINTER: to a sequence of
; characters

MOVE #firstChar, - (SP) ;sINTEGER: Position of 1lst
H character to draw
MOVE #charCount,-(SP) ;INTEGER: Number of characters
H to draw
_DrawText

270 Mac Assembly Language

Table 6-3. continued

|
__GetFontinfo Returns the characteristics for
the current font.

PER info ;VAR: font information record
_GetFontInfo

The font information record is four words long. The offsets to
its fields are given by ascent, descent, widMax, and leading (all
integers).

__GetPen Returns the current pen
position.
PEA penLoc ;POINTER: to a point structure
_GetPen
_Move Moves the pen relative to its

current position.

MOVE #horiz,-(SP) ;INTEGER: horizontal movement
MOVE #vert,-(SP) ;INTEGER: vertical movement
_Move
_MoveTo . Moves the pen to an absolute
position.
MOVE #horiz,-(SP) yINTEGER: horizontal position
MOVE #vert,-(SP) ;INTEGER: vertical position
_MoveTo
_ScroliRect Scrolls the bits within a
rectangle.
PEA theRect ;POINTER: to scroll rectangle
MOVE #hScroll, -(SP) ;INTEGER: horizontal distance
MOVE #vScroll,-(SP) ;INTEGER: vertical distance
MOVE.L updateRgn,-(SP) ;HANDLE: to update region
_ScrollRect

To scroll down and to the left, use positive scrolling distances.
To scroll up and to the right, use negative scrolling distances. The
newly exposed area is cleared to the window’s background color
and is added to the update region.

Table 6-3. continued

Windows and Video Output 271

_StringWidth Returns the width of a
character string.
CLR -(SP) ;INTEGER: space for result
PER theString ;POINTER: to the string
_StringWidth
MOVE (SP)+,D0 ;Result: width of string
_TextFace Sets the character style.
MOVE #typeStyle,-(SP) ;INTEGER: style word
_TextFace
_TextFont Selects the current drawing
font.
MOVE #fontNumber,-(SP) ;INTEGER: font number
_TextFont
__TextMode Sets the source transfer mode
for character drawing.
MOVE #mode, - (SP) ;INTEGER: text transfer mode
_TextMode
__TextSize Sets the point size for the
current font.
MOVE #pointSize,-(SP) ;INTEGER: type size in points
_TextSize
__TextWidth Returns the width of a
sequence of characters.
CLR - (SP) ;INTEGER: space for result

PEA theText
MOVE #firstChar,-(SP)

MOVE #charCount,-(SP)

_TextWidth
MOVE (SP)+,DD

sPOINTER: to the text
;INTEGER: Position of 1st

H character in text
;INTEGER: Number of characters
; to measure

;Result: width of text

The word font is used to describe a group of characters
having the same general typeface and size. On the Macin-
tosh, font definitions are resources of type FONT and are

272 Mac Assembly Language

usually stored in the resource fork of the System file so they
are available to any application. A standard System file con-
tains a great many fonts, including the system font (Chicago
12), and the default application font (Geneva 12). Others can
be removed (to save disk space) or added with an Apple util-
ity program called Font/DA Mover.

The size of a font is measured in a unit called points reflect-
ing the height of the matrix in which the characters are
defined and drawn. A point is roughly one seventy-second of
an inch, so each character in a 12 point font, for example, is
roughly one sixth of an inch high.

Each character in a font is defined within an imaginary rec-
tangle, called the font rectangle, which encloses the pixels
used by the largest character in the font. (See Figure 6-3.)
(Another rectangle, called the character rectangle, is the
smallest rectangle enclosing the outline of the character.)
Each of these pixels may be on or off.

ascent
line
font
ascent
character next character
origin T———_| origin
— /
baseline
font
descent
i i descent
T z line
leading i widMax
maxKern next ascent

line
Figure 6-3. The Characteristics of a Macintosh Font.
A character is positioned relative to two landmarks within

the font rectangle: the character origin and the baseline. This
is done to ensure that the characters will line up smoothly on

Windows and Video Output 273

the same line. The baseline is an imaginary line on which the
character is written. It serves much the same purpose as a
line on a page of notebook paper.

The ascent of a font is the number of pixels above the base-
line and below the ascent line. The ascent line for a font is
located just above the highest pixel of the tallest character in
the font. Most characters occupy only the area between the
ascent line and the baseline.

The descent of a font is the number of pixels below the
baseline and above the descent line. The descent line is
located just below the lowest pixel used by any character in
the font. The pixels between these two lines hold the
descenders of letters such as g, j, p, 9, and v.

The leading of a font is the number of pixels between the
descent line. of one row of characters and the ascent line of
the next row below. This means the number of pixels
between two adjacent baselines is equal to ascent plus
descent plus leading.

The kern is the number of pixels between the character ori-
gin and the left edge of the font rectangle. There is usually at
least two columns of blank kern, so there will always be
white space between adjacent characters, even if the previ-
ous character is the widest one in the font.

You should also be familiar with the quantity called
widMax. This represents the maximum width of a character
in the font, and is simply the number of pixels between two
adjacent character origins. WidMax is an important attribute
to know because you'll use it to quickly check whether you've
got room to display a character on the current line in a
window.

The _GetFontInfo instruction returns the characteristics of
the currently active font in a font information record. The
four items in a font information record have the symbolic off-
sets of ascent, descent, widMax, and leading. They are all
integers.

__GetFontInfo takes a pointer to the record as a parameter,
then fills that record with the values appropriate to the cur-
rent font:

274 Mac Assembly Language

PEA FontInfo ;Address of record
_GetFontInfo

FontInfo DCB.W 4,0 ;Four words in record

The individual elements within the Fontinfo record can be
accessed using the fixed offsets referred to above, and are
defined in the MDS symbol definition files. Here’s how to cal-
culate the distance between rows for a given font:

MOVE FontInfo+ascent,DO
ADD FontInfo+descent,DO
ADD FontInfo+leading,DO

This sequence merely adds together the ascent, descent,
and leading fields in the FontInfo record and stores the result
in DO.

Positioning the Pen

Now that you've seen how a character is defined, let’s see
how to draw one in a window. The first thing to do is set the
current drawing location to a position within the window. For
obvious reasons, this location is called the pen position.

When you first begin to draw text in the window, you wiill
probably want to use the _MoveTo instruction to move to a
particular horizontal and vertical position without drawing
anything. For example, to move to location (50,75), use the
following instructions:

MOVE #50,-(SP) ;Horizontal position
MOVE #75,-(SP) ;Vertical position
_MoveTo ;Move the pen

Notice that the coordinates passed to _MoveTo are local
coordinates. Recall also that when a window is first created,
the (0,0) local coordinate refers to the top left-hand corner of
its content region and that the coordinates increase to the
right (horizontal) and down (vertical).

Windows and Video Output 275

Use the __Move instruction to move the pen to a position
relative to its current position. For example, to move the pen
position down 10 pixels and five pixels to the right, use the
following instructions:

MOVE #5,-(SP) ;Horizontal distance to move
MOVE #10,-(SP) ;Vertical distance to move
_Move

The horizontal pen position is automatically advanced when
you draw characters or strings of characters using the sub-
routines you’ll see in the next section. This means you don’t
have to explicitly set it after every drawing operation.

If you ever want to know exactly where your pen is, use
the _GetPen instruction:

PER penLoc ;addr. of record used by _GetPen
_GetPen

penLoc DC.L 0 ;this is a point: (h,v)

On return from _GetPen, the pen position is stored as a
point at penlLoc. Being a point record, you can access the
coordinates separately by accessing the words at penLoc+v
(vertical) and penLoc+h (horizontal).

Here’s a subroutine you can call to simulate the effect of a
carriage return/line feed operation. It moves the pen position
to the left side of the next character row on the screen. To
do this, it first calculates the new vertical position by reading
the current pen location and then adding ascent plus descent
plus leading to its vertical component:

PEA penLoc

_GetPen ;Get current location
PEA FontInfo

_GetFontInfo ;Need ascent, leading
MOVE penLoc+v,D0 ;Get current vertical
ADD FontInfo+ascent,DO

ADD FontInfo+descent,DD

ADD FontInfo+leading,DO

276 Mac Assembly Language

MOVE #2,-(SP) ;Horiz. pos. (left edge)
MOVE DO, - (SP) ;Vert. pos (next line)
_MoveTo
RTS
penLoc DC.L 0 ;this is a point: (h,v)
FontInfo DCB.W 4,0 ;Four words in record

Notice that I've set the left edge of the line to position 2
rather than position 0. This was done so there would be room
to display any pixels in the kern area of the character rectan-
gle. The pen position always represents the character origin,
therefore by setting the horizontal position to 2, you have
room for two columns of kern pixels.

It's up to you to ensure that you've got room to display
another row of characters in the window before calling the
carriage return/line feed subroutine. You can do this by pre-
calculating the new pen position, adding the font descent
value to it, and comparing the result to the bottom coordi-
nate of the window that is stored at offset Port-
Rect+bottom from the start of the window record. If the
new position is larger, you've run out of room.

Setting Text Characteristics

When a window is first created and then selected with
_SetPort, a set of default text characteristics is initialized:
the font to be used for drawing (Geneva), the style or type-
face in which to draw the font (normal), and the size of the
font (12-point). With the instructions described in this sec-
tion, you can override these defaults.

To change the font used, pass a font number to the
__TextFont instruction:

MOVE #fontNumber, - (SP)
_TextFont

The symbolic names for the various font numbers are
shown in Table 6-4. With the exception of font numbers O and

Windows and Video Output 277

1, these numbers are related to the resource ID number as
follows: The ID number is 128 times the font number plus the
size of the font, in points. Thus, the resource ID for a 24-point
London font (ID=6) is 792 (792 = 6*128 + 24).

Table 6-4. The Symbolic Names for the Font Numbers
Passed to _TextFont.

Symbolic Name Font Number

sysFont (0]
applFont 1
newYork 2
geneva 3
monaco q
venice 5
london 6
athens 7
sanFran 8
toronto 9
cairo 11
losAngeles 12
times 20
helvetica 21
courier 22
symbol 23
mobile 249

Font number zero (SysFont) refers to the system font
used for such things as drawing the menu bar and window
titles; this font is also called Chicago. Font number one (Appl-
Font) refers to the default application font, Geneva. This is
the font used to draw text within windows if you haven't spe-
cifically selected another font.

You may also want to change the size of the font from time
to time. To do this, use _TextSize by passing the point size on
the stack as follows:

MOVE #24,-(SP) ;Select 24-point
_TextSize

278 Mac Assembly Language

If no font resource for that size is available, the resource
for another size in the same font type will be scaled. The
scaled characters will look best if the scaling factor is an even
multiple. If a point size of zero is selected, the font resource
having a size closest to the system font size (12) will be
selected.

Another text feature you can select is the style of typeface
of the characters to be displayed. The style attributes are
not part of the font resource file. They are added to the
“raw"” characters by QuickDraw as the characters are
drawn. To select the style of the text, pass a style word on
the stack to _TextFace:

MOVE Style(AaS),-(SP)
_TextFace

Style DS.W 1

As shown in Figure 6-4, only the low-order seven bits in the
style word are used, and each has a symbolic name associ-
ated with it that reflects the style attribute it controls. You
can set any combination of these bits using the BSET instruc-
tion, to mix and match the basic style attributes:

CLR Style(AS) ;Normal style
BSET #outlineBit,Style(AS) ;Set outline bit
BSET #ulineBit,Style(AS) ;Set underline bit

The above instructions configure the Style variable for char-
acters that are both outlined and underlined.

There is one other drawing characteristic you may want to
set up before you draw characters in a window: the source
transfer mode. This mode governs how the pixels within a
character rectangle are logically combined with the corre-
sponding pixels on the writing surface in the window to form
the pixel actually placed on the screen. The eight different
transfer modes are summarized in Figure 6-5.

The default transfer mode is srcOr, which means the two
rectangles are superimposed to generate the result. This

Windows and Video Qutput 279

Low-order byte:

A
N
o

7|6 (5]|4

not used bold

jtelic
underline

eutline

shacosy
condense

extend

Symbolic names for the bits in the style word:

Name Bit #

BoldBit 0
ItalicBit 1
UlineBit 2
OutlineBit 3
ShadowBit 4
CondenseBit 5
ExtendBit 6

Figure 6-4. The Style Word Used with _TextFace.

280 Mac Assembly Language

A\

source destination

pattern pattern
SrcCopy SrcOr ScrX0r SrcBic
PatCopy PatOr PatX0r PatBic

NotSrcCopy NotScrOr NotSrcX0r NotSrcBic
NotPatCopy NotPatOr NotPatX0r NotPatBic

Figure 6-5. Source Transfer Modes and Pattern Transfer Modes for Text
and Graphics Operations.

Windows and Video Output 281

means any pixels in the destination rectangle that are below
black pixels in the character rectangle will be forced to black;
pixels below white pixels are not affected. For obvious rea-
sons, srcOr is called an overlay transfer mode.

Contrast this with srcCopy where whatever is in the char-
acter rectangle replaces what's in the destination rectangle;
srcXor, where screen pixels beneath black character pixels
are inverted; and srcBic, where screen pixels beneath black
character pixels are erased to white. The other four transfer
modes are notsrcCopy, notsrcOr, notsrcXor, and notsrcBic.
They all involve inverting the pixels in the destination rectan-
gle before performing the combination calculation.

You'll probably never have to use a mode other than srcOr,
unless you're overwriting a non-white background and want
to ensure that the text is readable. For example, if the back-
ground is black, you can select the srcXor mode and the char-
acters will appear in white; you can’'t use srcOr because you
wouldn’t see anything drawing black on black.

Here’'s how to change the source transfer mode to srcXor:

MOVE #srcXor, - (SP)
_TextMode

Notice that “#” must precede the srcXor symbol because it is
a constant, not a memory location.

Drawing Text

Waell, we're finally ready to actually display something in a
window! There are only three basic instructions for doing
this: _DrawChar, _DrawsString, and _DrawText.

Use _DrawChar if you simply want to display a single char-
acter on the screen. Here’s how you would display the letter
“a" at the current pen position:

MOVE #'a',-(SP) ;Push character on stack
_DrawChar

282 Mac Assembly Language

If you want to display a string of characters, it's much more
convenient to use _DrawString rather than to make
repeated calls to _DrawChar for each character:

STRING_FORMAT 3 ;DC strings have length byte
PER MyString ;A string constant
_DrawString ;Draw it!

MyString DC.B 'Hello world' ; (MDS inserts length byte)

Notice that the string is preceded by a length byte that is
automatically inserted by MDS because the STRING_
FORMAT directive is 3.

Another way to print a string is to specify the string as the
operand of the PEA instruction:

PER 'Hello world!
_DrawString

In this case, MDS actually stores the string bytes at the end
of the program code.

Use the third character drawing subroutine, _DrawText,
to print any sequence of characters within a data structure.
The sequence must not begin with a length byte because you
pass the length explicitly:

MOVE.L textPtr(AS),-(SP) ;Pointer to a block of text

MOVE #40,-(SP) ;Start at byte #40
MOVE #c2,-(SP) ;Print 22 characters
_DrawText

textPtr DS.L 1

Note that the first byte in a text string is byte zero, so byte
40 actually describes the forty-first byte.

This method of drawing text is most useful when you're
accessing a group of fixed length messages.

Windows and Video Output 283

Spacing Control

Use _CharWidth, _StringWidth, and _TextWidth to deter-
mine the width (in pixels) of the characters or text you would
print with _ DrawChar, _DrawString, and _DrawText,
respectively. The arguments are passed to the Width instruc-
tions in the same way as the corresponding Draw instruc-
tions, but you must use a CLR -(SP) instruction to clear space
for an integer result first. After the call, be sure to pop the
width result. You'll use the width instructions in situations
where you want to ensure that you won't write past the
right edge of a window.

Example Programs Using Text Handling
Instructions

Listing 6-3 shows a program that uses many of Quick-
draw’'s text handling instructions. It uses _TextFont to set
the font to SysFont (Chicago) and _TextSize to set the font
size to 12-point. An underlined font style is then selected by
setting the underline bit in a style word and passing it to
__TextFace.

Listing 6-3. The Source File and Linker Control File for
the Text Program.

* Asm Source File
* Text.Asm
*

* This program shows how to display text in a window.

STRING_FORMAT 3 ;Precede DC strings with length
INCLUDE ToolEqu.D ;Toolbox equates

INCLUDE QuickEqu.D ;QuickDraw equates

INCLUDE SysEqu.D ;Operating system equates

INCLUDE Traps.D ;Irap instructions

284 Mac Assembly Language

Listing b6-3.

continued

; Initialize the various Managers:

PER

-4(RS)

InitGraf
_InitFonts

InitWindows

InitMenus

_TEInit
MOVE.L

#0,-(SP)

InitDialogs

_InitCursor

MOVE.L

#$0000FFFF,DO

_FlushEvents

; Draw a window

CLR.L
MOVE.L
PER
PER
MOVE.B
MOVE
MOVE.L
MOVE.B
MOVE.L

on the screen:

-(SP)
#0,-(SP)
Window
'Text Demo!
#-1,-(SP)

;Start of QD globals area
;Initialize QuickDraw
;Font Manager

;Window Manager

;Menu Manager

;TextEdit

; (no restart procedure)
;Dialog Manager

;We want arrow cursor

;Get rid of every event

;Space for returned pointer
;0 = store window in stack
;Window rectangle

;Window Title

;-1 = visible

#documentProc,-(SP) ;Standard window type

#-1,-(SP)
#0,-(SP)
#0,-(SP)

NewWindow

MOVE.L

(SP),WindPtr(AS)

_SetPort

;-1 = front window
;0 = no go away button
;refCon
;Draw the window

;Save pointer to window
;Make window active port

; Here are some text drawing instructions:

MOVE #SysFont, - (SP)
_TextFont

MOVE #L2,—-(SP)
_TextSize

CLR DO

BSET #ulineBit,DO
MOVE DO, - (SP)
_TextFace

MOVE #20,-(SP)

;Select system font (Chicago)

;12 point text

;Clear style bits to 0
;Set underline style bit

;Select the style (typeface)

H

Listing 6-3. continued

MOVE
MoveTo

#30,-(SP)

LEA TheString, Ak
BSR Center

BSR DoBeep

RTS

Windows and Video Output

v
;Move to vertical position 30

;Get EA of string to use
;Draw string in center of window

;Return to Finder

* This subroutine centers a string on the current line.
* On entry, Ab points to the string.

Center
MOVE.L WindPtr(AS),AD
MOVE PortRect+right(AO),Db
MOVE PortRect+left(AD),DS
SUB DS, Db
CLR -(SP)
MOVE.L RAGL,-(SP)
_StringWidth
MOVE (SP)+,D0
SUB DO, Dbk
LSR #1,D6
ADD DS,DE

PEA penLoc
_GetPen
MOVE penLoc+v,D4
MOVE
MOVE
_MoveTo

D6, - (SP)
D4, - (SP)

MOVE.L Ab,-(SP)
DrawString

RTS

* Beep, wait for a mouse click,

;Right edge of window
;Left edge of window
;Width of window in Db

;Space for result

;Push pointer to string
;Get width of string
;Pop the result

;Calculate size of white space

;Divide by 2 to get left size
;Add left size to left edge

;Get vertical coordinate
sh db
;v d4

;Move to proper position

;Pointer to string
;Draw the string

then clear screen:

285

286 Mac Assembly Language

Listing b-3. continued
DoBeep MOVE #30,-(SP) ;1/2 second beep
_SysBeep
GetMyEvent
CLR.B -(SP) ;Leave space for Boolean result
MOVE #-1,-(SP) ;Allow all events
PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event
TST.B (SP)+ ;Pop and test the result flag
BEQ GetMyEvent ;Branch if null event
MOVE EventRecord+evtNum,D0 ;Get event type
CMP #nButDwnEvt,DO0 ;Is it a button-down event?
BNE GetMyEvent ;No, so loop
MOVE.L WindPtr(AS),AD
PER PortRect(AD) ;PortRect contains window coordinates
_EraseRect ;Erase the content region
RTS

; Here are the p
EventRecord
Window

penLoc

TheString

rogram constants:

DCB.B EvtBlkSize,0 ;Space for event record
DC.W 50,50,300,450 ;window rectangle

DC.L 0 ;Pen position

DC 'This string is centered and underlined!'

; The program variables begin here:

WindPtr

DS.L 3 ;Pointer to window

Linker Control File

; Text.Link

’

Text
$

Windows and Video Output 287

The main subroutine in the program is called Center. It cen-
ters the display of a string on the current line. When you call
it, A6 must point to a standard string (one that is preceded
by a length byte).

In the example, the string is defined with a DC directive. Since
the default MDS format for such a string is text with no length
or trailing O byte, STRING_FORMAT is set equal to 3 at the
beginning of the program. This directs the assembler to include
the preceding length byte, as required by _ DrawString.

Center determines where to start drawing the text string
by first calculating the width of the window rectangle. It does
this by subtracting the left edge, stored PortRect + left bytes
into the window record from the right edge, stored at an off-
set of PortRect +right. It then uses _StringWidth to get the
width of the string in pixels, and subtracts it from the window
width. This yields the width of the unused part of the line. By
dividing this number by two and adding it to the left position
of the window, the program determines the horizontal posi-
tion at which to begin drawing.

To get the vertical position, it first calls _GetPen to deter-
mine the current pen location. The vertical coordinate is
located v bytes into the point record returned by _ GetPen.
The program then calls _MoveTo to position the pen and
draws the string with _DrawString.

Another interesting program is shown in Listing 6-4. It dem-
onstrates how to display characters in a window without
drawing past its right edge or below its bottom. If there isn’t
enough room on the right side, the program draws the char-
acter on the left side of the next line. If you're already on the
last line, the contents of the window are scrolled up one line,
clearing a new bottom line in the process. Scrolling also
occurs if you press RETURN while on the bottom line.

Listing &-4. The Source File, Linker Control File, and
RMaker File for the Scroll Progran.

Asmn Source File

Scroll.Asn

This program shows how to display text in a window.

The window is scrolled if RETURN is pressed on the bottom line.

e ws we we

288

Listing b-4. continued

WindID EQU 128
FileID EQU 2

INCLUDE ToolEqu.D
INCLUDE QuickEqu.D
INCLUDE SysEqu.D
INCLUDE Traps.D

Mac Assembly Language

;Window ID
;Menu ID for File menu

;Toolbox equates
;QuickDraw equates
;operating system equates
;Trap instructions

; Initialize the various Managers:

PEA -4 (RS)
_InitGraf
_InitFonts
InitWindows
_InitMenus
_TEInit

MOVE.L #0,-(SP)
InitDialogs
_InitCursor
MOVE.L #$000D0FFFF,DO
_FlushEvents

;Start of QuickDraw globals
;Initialize QuickDraw

;Font Manager

;Window Manager

;Menu Manager

;TextBdit

;(no restart procedure)
;Dialog Manager

;We want arrow cursor

;Get rid of every event

; Create and draw a window on the screen:

CLR.L
MOVE
MOVE.L #0,-(SP)
MOVE.L #-1,-(SP)
_GetNewWindow
_SetPort

-(SP)

#WindID, - (SP)

;Space for returned pointer
;Resource ID

;Store on heap

;-1 = front window

;Get window from resource file
;Make the window the current

; Create the menu bar and display it:

CLR.L -(SP)

MOVE #128,-(SP)
_GetNewMBar
_SetMenuBar
_DrawMenuBar

sMenu bar ID

;Load from resource file
;Make it current

sDraw it

;Move the pen to the start of the first line:

Windows and Video Output

Listing b-4. continued

PEA InfoRecord

_GetFontInfo ;Get font characteristics
MOVE #2,-(SP) ;Start at left edge
MOVE InfoRecord+ascent,-(SP) ;Leave room for ascent
_MoveTo

GetEvent
JSR DoCursor ;Display a cursor

GetEventl
CLR.B - (SP) ;Leave space for Boolean result
MOVE #$FFFF, - (SP) ;Allow all events
PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event
TST.B (SP)+ ;Pop and test the result flag
BEQ GetEventl ;Branch if no pending event

MOVE EventRecord+evtNum,DO ;Get event type code
CMP #KeyDwnEvt,DO ;Key-down event?
BEQ DoKeyDown ;Yes, so branch

CMP #RutoKeyEvt,DO ;Key repeat?
BEQ DoKeyDown ;Yes, so branch

CMP #mButDwnEvt,DO0 ;Is it a button-down event?
BNE GetEventl ;No, so branch

; Handle mouse button down event:

CLR - (SP) ;Space for result

MOVE.L EventRecord+evtMouse,-(SP) ;Where info
PEA ClickWindow ;VAR window involved
_FindWindow ;Where was button pressed?
CMPI #InMenuBar, (SP)+ ;Pressed in menu bar?
BNE GetEventl ;No, so ignore

; See if QUIT was selected from File menu:

CLR.L - (SP) ;space for result
PEA EventRecord+evtMouse ;Where

289

290 Mac Assembly Language

Listing b-4. continued

_MenuSelect ;Get menu selection
MOVE (SP)+,Db ;Save menu number in D&
MOVE (SP)+,D0 ;Discard item number

MOVE #0,-(SP)

_HiliteMenu ;Remove highlight from title
CNP #FileID,DE sIn the FILE menu?

BNE GetEventl ;No, so branch

_ExitToShell ;Return to Finder

; Handle the key-down event:

DoKeyDown
MOVE EventRecord+evtMessage+Z,Db ;Get ASCII code
CMP.B #32,Db ;Is code >= 327
BHS ShowChar ;Yes, so branch
CMP.B #13,Db ;Is it RETURN?
BNE @1 ;No, so ignore it
JSR CRLF ;Advance to next line

BRA GetEvent

@1 MOVE #10,-(SP) ;Beep for control characters
_SysBeep ;Beep for 1/t second
BRA GetEventl

ShowChar
PEA penLoc
_GetPen ;Get current pen position
CLR -(SP)
MOVE Db, - (SP)
_CharWidth ;Get width of character
MOVE (SP)+,DS
ADD penLoc+h,DS ;DS = new position if we draw

PER ActiveWindow
_GetPort ;Get active drawing window

Windows and Video Output

Listing b-4. continued

MOVE.L ActiveWindow,AO

CHMP PortRect+right(a0),DS ;Past right edge?
BLO @l ;It's lower, so branch
JSR CRLF ;Advance to next line

@1 JSR UndoCursor ;Remove the cursor
MOVE D&, - (SP)
_DrawChar ;Draw the character
BRA GetEvent

* Move the pen to the left side of the next line,
* scrolling the screen, if necessary:

CRLF JSR UndoCursor ;Remove cursor
PEA InfoRecord
_GetFontInfo ;Get font characteristics
PEA penLoc
_GetPen ;Get pen position
PEA ActiveWindow
_GetPort ;Get active window
MOVE InfoRecord+ascent,DO
ADD InfoRecord+descent,DOD
ADD InfoRecord+leading,DO ;Get height of font
MOVE DO,Height(AS)
MOVE.L ActiveWindow, R4
MOVE penLoc+v,D0
ADD Height(AS),DO
ADD InfoRecord+leading,D0 ;Distance to next line
CMP PortRect+bottom(A4),D0 ;Room for next line?
BHS Scroll ;No, so scroll
MOVE penLoc+v,D0
ADD Height(RS),DO snew v
MOVE #2,-(SP) +h
MOVE DO, -(SP) v

291

292

Listing b-4. continued

_MoveTo
RTS

Scroll CLR.L -(SP)
_NewRgn
MOVE.L (SP)+,Ab
PEA PortRect(R4)
MOVE #0,-(SP)
MOVE Height(AS),DO
NEG DO
MOVE DO, - (SP)
MOVE.L Ab,-(SP)
_ScrollRect
MOVE #2,-(SP)
MOVE penLoc+v, —(SP)

_MoveTo

MOVE.L AG&,-(SP)
_DisposRgn

RIS

; Display a black-box cursor:

Mac Assembly Language

;Get handle to new empty region

;Window rectangle

;Don't scroll horizontally
;# of pixels to scroll
;Negative ==> scroll up

;Handle to update region
;Scroll, clear bottom line

+h = left edge

;Keep the same v
;Move to left side

;Destroy region (it's not used)

;Get pen position

;Get font dimensions

;Calculate left, right
; coords of cursor box
; (8 pixels wide)

;Calculate top, bottom
; coords of cursor box

DoCursor
PEA penLoc
_GetPen
PEA InfoRecord
_GetFontInfo
MOVE penLoc+h,D0
MOVE DO,CursRect+left(AS)
ADDQ #8,D0
MOVE DO,CursRect+right(AS)
MOVE penLoc+v,D0
MOVE DO,CursRect+bottom(AS)
SUB InfoRecord+ascent,DO0
MOVE DO,CursRect+top(AS)

Windows and Video Output

Listing E-4. continued

PEA CursRect(AS)

PEA AllBlack ;Pointer to pattern
_FillRect ;Black box cursor
RTS

; Erase the cursor rectangle:

UndoCursor
PEA CursRect(AS)
_EraseRect ;Remove the cursor
RTS

; The application constants:

EventRecord

DCB.B EvtBlkSize,0 ;Space for event record
ClickWindow DC.L 0 ;Pointer to window
penLoc DC.L 1}
ActiveWindow DC.L 0
InfoRecord DCB.W 4,0 ;Font information record
RllBlack DC.B $FF,$FF,$FF,$FF ;R solid black pattern

DC.B $FF, SFF, $FF,$FF

; The application variables:

Height

CursRect

DS 1 ;Height of font stored here

DS.W 4 ;Cursor rectangle

Linker Control File
Scroll.Link

Link this file to create an application
(without resources).

.t s ws ws we

Scroll
$

293

294 Mac Assembly Language

Listing b-4. continued

RMaker Source File

Scroll.R

The next command appends the resources to the application:

!Book:Scroll

Type MBAR = GNRL
1128

I

c

2

2

Type MENU
']l
\14

About this denmo...

(_

,E
File
Quit

Type WIND

/128

Text Entry Window
40 S 332 502
Visible NoGoAway
4

0

*
E'3
*
* Compile this after assembling and linking Scroll.Asm
*
*
!

; yMenu bar resource
; ;Resource ID

;iDecimal integers follow
; ;Number of menus

;+ID of lst menu

;3ID of 2nd menu

; sResource ID

;;Title is the Rpple symbol
; About box

;;Dimmed line

; ;Resource ID
;iMenu Title
;;0nly item is Quit

; sResource ID

;3Title for Window

;;Window coordinates (TLBR)
;3Visible window/ no goaway box
;;Window ID. 4 = title, no grow box
;;User-definable item (not used)

The portion of the program that processes key-down
events starts at DoKeyDown. It reacts to character codes
corresponding to the RETURN key (code 13) or printable
symbols only (codes 32 to 255); anything else causes the

speaker to beep for one-sixth of a second.

Windows and Video Qutput 295

The main subroutine in the program is called CRLF. It posi-
tions the pen on the left side of the next line in the window,
scrolling the window contents if necessary. To determine if
scrolling is necessary, it first adds the height of the font to
the current vertical position, which is always on the charac-
ter baseline, and to the leading. If the result is higher than or
the same as the bottom coordinate of the window, a scrolling
operation is needed and the BHS Scroll branch takes place
(BHS is the same as BCC); otherwise, _MoveTo is used to
move the pen to the left of the next line.

Scrolling is accomplished using _ScrollRect, a trap instruc-
tion called as follows:

PEA theRect ;Rectangle in which to scroll
MOVE #hScroll, - (SP) ;horizontal scroll distance
MOVE #vScroll, - (SP) ;vertical scroll distance
MOVE.L updateRgn,-(SP) ;Handle to update region
_ScrollRect

The scrolling distances are in pixels. Positive values are
used to scroll down (hScroll) and to the left (vScroll); nega-
tive values are used to scroll up (hScroll) and to the right
(vScroll). The area exposed as a result of the scroll is cleared
to the window's background color (usually white) and is accu-
mulated in the region whose handle is given by updateRgn.
The bits that disappear during the scroll are not saved. If nec-
essary, you can force an update event to occur by passing
this handle to _InvalRgn. An update handler would redraw
the newly exposed portion of the data structure being dis-
played in the window. Since this program doesn’t need to fill
the bottom line with anything, it does not do this.

This program uses _NewRgn to get a handle to a new,
empty region _ScrollRect can use. The calling sequence for
_NewRgn is:

CLR.L -(SP) ;Space for result
_NewRgn
MOVE.L (SP)+,AD ;Pop handle to region

296 Mac Assembly Language

Since we don't need the region filled by _ScrollRect, we
destroy it by calling _DisposRgn before leaving the CRLF sub-
routine. If this wasn't done, the region would continue to
grow as CRLF is called again and again.

The CRLF subroutine is called if RETURN is pressed, or if a
character is pressed near the right edge of the window. The
portion of the program beginning at ShowChar shows how to
check that the horizontal pen position will not extend past the
right edge of the window should a character be drawn. If
there's room, _DrawChar is called right away; otherwise it is
called after calling CRLF.

The program also has a subroutine called DoCursor that
displays a solid black cursor on the screen. The cursor is a
rectangle with a width of eight pixels and a height the same
as the ascent for the font. The bottom left position of the rec-
tangle coincides with the current pen position. The rectangle
is filled with black using the _FillRect instruction described in
the next section of this chapter.

The UndoCursor subroutine removes the cursor and is
called before drawing a character or before moving the cur-
sor with the CRLF subroutine. The cursor is erased using the
__EraseRect instruction.

Handy Utilities

One of the more common things you will want to display on
the screen is the numeric result of a calculation. To do this,
you first have to convert the number, which is usually in
binary form, to a string of ASCIl characters representing the
decimal representation of the number. Once you convert, it's
an easy matter to display the string using the _DrawString
instruction.

The Macintosh operating system has a standard instruc-
tion for converting binary numbers into an ASCII string. It is
part of a package of standard subroutines accessed using the
__Pack? instruction:

Windows and Video Output 297

LEA String(RS),A0 ;Put address of string in AD
MOVE.L #nyNumber,DO ;Put number in DO.L
MOVE #0,-(SP) ;SELECTOR: 0 = number to string
_Pack?

String DS.W 16 ;Space for string

The word placed on the stack just before calling _Pack? is
called the routine selector because it determines which of the
subroutines contained in the package is to take control. In
this case, the selector O selects the number to string
conversion.

If you prefer you can replace the two-instruction sequence:

MOVE #0,-(SP)
_Pack?

with the easier-to-remember instruction, _NumToString.
This instruction is really an MDS macro defined in the stan-
dard symbol file called PackMacs.txt. Use the INCLUDE direc-
tive to merge this file with your program source file.

There are only two valid _Pack7 routine selectors; the
other is 1, which selects the opposite conversion, from string
to binary number. The macro for this selection is _Str-
ingToNum. Before calling it, transfer the address of the string
into the AO register. The result is returned in DO.L.

Displaying Graphics

The Macintosh is probably more famous for its ability to dis-
play graphics than anything else. QuickDraw contains many,
many instructions that can be used to draw points, rectan-
gles, ovals, rounded-corner rectangles, arcs, regions, and pic-
tures on the screen. In this section we'll look at a few of
these instructions.

298 Mac Assembly Language

Table 6-5. Trap Instructions Used to Draw Graphics.

_ClosePgon Closes the open polygon
record.

_ClosePgon ; (no parameters)

_EraseArc Erases an arc.
PEA inRect ;POINTER: to arc's rectangle
MOVE #startAngle,-(SP) ;INTEGER: starting angle
MOVE #arcAngle,-(SP) ;INTEGER: extent of the arc
_EraseArc

__EraseOval Erases an oval.
PEA inRect ;POINTER: to oval's rectangle
_EraseOval

_ErasePoly Erases a polygon.

MOVE.L thePolygon,-(SP) ;HANDLE: to the polygon

_ErasePoly
_EraseRect Erases a rectangle.
PEA theRect ;POINTER: to the rectangle
_EraseRect
__EraseRoundRect Erases a round-corner
rectangle.
PEA theRect ;POINTER: to the rectangle

MOVE #cornerWidth,-(SP) ;INTEGER: width of corner oval
MOVE #cornerHeight,-(SP) ;INTEGER: height of corner oval

_EraseRoundRect
_FillArc Fills an arc with a pattern.
PEA inRect ;POINTER: to arc's rectangle
MOVE #startAngle,-(SP) ;INTEGER: starting angle
MOVE #arcBAngle,-(SP) ;INTEGER: extent of the arc
PEA fillPat ;POINTER: to the fill pattern

_Fillarc

Windows and Video Output 299

Table 6-5. continued

__FillOval Fills an oval with a pattern.
PEA inRect ;POINTER: to oval's rectangle
PEA fillPat ;POINTER: to the fill pattern
_Pilloval

_FillPoly Fills a polygon with a pattern.

MOVE.L thePolygon,-(SP) ;HANDLE: to the polygon

PEA fillprat ;POINTER: to the fill pattern
_FillPoly
_FillRect Fills a rectangle with a pattern.
PEA theRect ;POINTER: to the rectangle
PEA fillPat ;POINTER: to the fill pattern
_FillRect
_FillRoundRect Fills a round-corner rectangle

with a pattern.

PER theRect ;POINTER: to the rectangle
MOVE #cornerWidth,-(SP) ;INTEGER: width of corner oval
MOVE #cornerHeight,-(SP) ; INTEGER: height of corner oval

PEA fillPat ;POINTER: to the fill pattern
_FillRoundRect

_FrameArc Frames an arc.
PEA inRect ;POINTER: to arc's rectangle
MOVE #startAngle,-(SP) ;INTEGER: starting angle
MOVE #arcAngle, - (SP) ;INTEGER: extent of the arc
_FrameArc

__FrameOval Frames an oval.
PEA inRect ;POINTER: to oval's rectangle
_FrameOval

_FramePoly Frames a polygon.

MOVE.L thePolygon,-(SP) ;HANDLE: to the polygon
_FramePoly

300

Table 6-5. continued

Mac Assembly Language

_FrameRect

PEA theRect
_FrameRect

Frames a rectangile.

;POINTER: to the rectangle

__FrameRoundRect

PEA theRect

Frames a round-corner
rectangle.

;POINTER: to the rectangle

MOVE #cornerWidth,-(SP) ;INTEGER: width of corner oval
MOVE #cornerHeight,-(SP) ;INTEGER: height of corner oval
_FrameRoundRect

__GetPenState Returns the pen characteristics

PEA curState
_GetPenState

in a pen state record.

;POINTER: to pen state record

The pen state record is PSRec (18) bytes long.

_InverRect

PEA theRect
_InverRect

Inverts a rectangile.

;POINTER: to the rectangle

__InverRoundRect

PEA theRect
_InverRoundRect

Inverts a round-corner
rectangile.

;POINTER: to the rectangle

_InvertArc

PEA inRect

Inverts an arc.

;POINTER: to arc's rectangle

MOVE #startAngle,-(SP) ;INTEGER: starting angle
MOVE #arcAngle,-(SP) ;INTEGER: extent of the arc
_Invertirc

_InvertOval Inverts an oval.

PEA inRect
_InvertOval

;POINTER: to oval's rectangle

Table 6-5. continued

Windows and Video OQutput 301

_InvertPoly

MOVE.L thePolygon,-(SP)
_InvertPoly

Inverts a polygon.

;HANDLE: to the polygon

_KillPoly

MOVE.L thePolygon,-(SP)
_KillPoly

Destroys a polygon record and
frees up the space it uses.

;HANDLE: to the polygon record

_Line

MOVE #horiz, - (SP)
MOVE #vert,-(SP)
_Line

Draws a line to a position
relative to the current pen
position.

INTEGER: horizontal movement
INTEGER: vertical movement

_LineTo

MOVE #horiz,-(SP)
MOVE #vert,-(SP)
_LineTo

Draws a line to an absolute
pen position.

INTEGER: horizontal position
INTEGER: vertical position

_NumToString

LEA theString,A0
MOVE.L #theNumber,DO
MOVE #0,-(SP)

Converts a binary number to
an ASCII string.

A0 = pointer to string
DO.L = number to convert
INTEGER: 0 = _NumToString

_Pack?
_OpenPoly Creates an empty polygon
record and opens it.
CLR.L -(SP) ;HANDLE: space for result
_OpenPoly

MOVE.L (SP)+,AD

Result: handle to polygon
record

302 Mac Assembly Language

Table 6-5. continued

__PaintArc Fills an arc with the pen
pattern.
PER inRect ;POINTER: to arc's rectangle
MOVE #startAngle,-(SP) ;INTEGER: starting angle
MOVE #arcAngle,-(SP) ;INTEGER: extent of the arc
_PaintArc
_PaintOval Fills an oval with the pen
pattern.
PER inRect ;POINTER: to oval's rectangle
_PaintOval
__PaintPoly Fills a polygon with the pen
pattern.

MOVE.L thePolygon,-(SP) ;HANDLE: to the polygon

_PaintPoly
__PaintRect Fills a rectangle with the pen
pattern. '
PEA theRect ;POINTER: to the rectangle
_PaintRect
__PaintRoundRect Fills a round-corner rectangle
with the pen pattern.
PEA theRect ;POINTER: to the rectangle
_PaintRoundRect
_PenMode Sets the new pen transfer
mode.
MOVE #newMode, - (SP) ;INTEGER: new pen transfer mode
_PenMode
_PenNormal Assigns default values to the
pen size, pattern, and transfer
mode.

_PenNormal ;(no parameters)

Windows and Video Output 303

Table 6-5. continued

_PenPat Sets the new pen pattern.
PEA newPat ;POINTER: to the new pattern
_PenPat
_PenSize Sets the new width and height

of the graphics pen.

MOVE #newWidth,-(SP) ;INTEGER: new pen width
MOVE #newHeight, - (SP)

_StringToNum Converts an ASCII digit string
to a binary number.
LEA theString,AD ;A0 = pointer to string
MOVE #1,-(SP) ;INTEGER: 1 = _StringToNum
_Pack? ;Result is in DO.L

Setting Pen Characteristics

Just as when drawing text, you must first set up the pen
characteristics before starting to draw graphic images.in a
window, if you're not satisified with the default values. The
three instructions for doing this are _PenSize, _PenMode,
and _PenPat. (See Figure 6-6.)

Use __PenSize to set the dimensions of the rectangular nib
of the pen. The nib of the pen hangs down and to the right of
the pen’s position. The top-left corner of the pen is aligned
with the pen coordinates. The standard dimensions of the
pen nib are (1,1), which means that it consists of just one
pixel. Here's how you would set the pen size to 10 pixels wide
by 15 pixels high:

MOVE #10,-(SP) swidth
MOVE #15,-(SP) ;height
_PenSize

The _PenMode instruction sets the pattern transfer mode
for graphic drawing operations. These modes are analogous

304 Mac Assembly Language

Pen Demo

position

+— width
x|
I+— height

Figure 6-6. The Macintosh Drawing Pen.

to the source transfer modes described above that are used
in connection with text drawing operations. The default
transfer mode is patCopy, the overlay mode.

The _PenPat instruction is used to set the pattern of the
“ink” that comes out of the pen as you draw. A pattern is
simply an 8x8 rectangular bit image defined by a sequence of
eight bytes in memory. As shown in Figure 6-7, each byte
defines the image in one row of the pattern; as usual, a one
bit corresponds to a black pixel, a zero bit to a white pixel.

To set the pen pattern, you must pass the address of the
pattern’s data structure on the stack:

PEA MyPattern
_PenPat

MyPattern DC.B $81,%$42,%24,%$18,518,%24,%42,$61

The pattern defined is the X shown in Figure 6-7. The default
pen pattern is a solid black image.

If you've been fiddling with the pen characteristics and
want to restore the standard default conditions, use _Pen-
Normal. This sets the pen size to (1,1), the pen pattern to

Windows and Video Output 305

10000001 $61
01000010 $42
00100100 $24
00011000 $16
00011000 $16
00100100 $24
= 01000010 $42
10000001 $61
the pattern binary hexadecimal
representation representation

Figure 6-7. Defining a Pattern.

black, and a transfer mode of patCopy. _PenNormal requires
no parameters.

If you don’'t know the current pen characteristics, use
_GetPenState to return them in a pen state record:

PEA PenState ;Address of record
_GetPenState

0 ;Point: location of pen
DC.L 0 ;Width and height of pen

0 ;Pen transfer mode

8,0 ;Pen pattern

The standard names for the offsets from PenState to the
four elements in the pen state record are psLoc (0), psSize
(4), psMode (8), and psPat (10).

Drawing Lines

To position the pen for a graphics drawing operation, use
the _Move and _MoveTo instructions, just as you do when
positioning it for text drawing operations. The pen does not

306 Mac Assembly Language

draw anything on the screen when these instructions are
used.

To draw lines in the window, use the _Line and _LineTo
instructions. _Line draws a line to a point that is expressed in
terms of relative coordinates. The destination position is cal-
culated by adding the current pen coordinates to the dis-
tances passed on the stack as follows:

MOVE #13,-(SP) shoriz=horiz+13
MOVE #22,-(SP) ;vert=vert+ce
_Line

If you wish to move to an absolute position in the window
instead, you can use _LineTo like this:

MOVE #50,-(SP) shorizontal position
MOVE #60,-(SP) ;vertical position
_LineTo ;Move to (S0,&0)

Both _Line and _LineTo automatically assign the current pen
location to the destination location.

Drawing Shapes

QuickDraw has many instructions you can use to draw any
of several classes of shapes on the screen. In this section I'll
describe those used with rectangles, round-corner rectan-
gles, ovals, arcs, and polygons.

There are five fundamental shape-drawing operations sup-
ported by the QuickDraw instructions:

Framing: drawing an outline of the shape.

Painting: filing a shape with the current pen pattern using the cur-
rent pen transfer mode.

Erasing: filling a shape with the window's current background pat-
tern (usually white). The transfer mode used is always patCopy.

Inverting: changing white pixels within the shape to black and vice
versa.

Filling: filling a shape with a given pattern. The transfer mode used
is always patCopy.

Windows and Video Output 307

Let's see how to perform these operations on the most com-
mon QuickDraw shapes.

Rectangles

As you saw earlier in this chapter, a rectangle is a data
structure made up of two points that define its top-left and
bottom-right coordinates, in that order. This ordering is often
abbreviated as “TLBR”. For example, suppose the top-left
and bottom-right coordinates of a rectangle are (10,20) and
(200,300). The data structure for the rectangle would be:

Rectangle DC.W ¢0,10,300,200 ;TLBR

The standard drawing instructions for rectangles are
_FrameRect, _PaintRect, _EraseRect, _InverRect, and
_FillRect. The first four of these are called by first pushing
the address of the rectangle’'s data structure on the stack.
__FillRect also requires you to push the address of the data
structure containing the 8-byte pattern definition.

QOvals

The data structure for an oval is actually the same as arec-
tangle because the shape of the oval is dictated by the dimen-
sions of a bounding rectangle in which it is inscribed. The
standard drawing instructions are _FrameOval, _PaintOval,
__EraseOval, _InvertOval, and _FillOval. They are called in the
very same way as the corresponding instructions for
rectangles.

Round-Corner Rectangles

A round-corner rectangle is a rectangle whose corners are
rounded in the shape of small ovals that are invisibly inscribed
in its corners. The curvature of the corner is dictated by the
height and width of the oval's axes. The standard drawing

308 Mac Assembly Language

instructions are _FrameRoundRect, _PaintRoundRect,
_EraseRoundRect, _InverRoundRect, and _FillRoundRect.
Before you call them, you must first push the address of the
rectangle’'s data structure and the width and height of the
axes of the corner oval. For _FillRoundRect you must also
push the address of the data structure for the fill pattern.

Arcs

An arc is simply a portion of the outline of an oval. (See Fig-
ure 6-8.) It is defined in terms of the bounding rectangle for
the oval; the angle at which the arc begins, measured clock-
wise from the positive vertical axis of the oval; and the angu-
lar extent of the arc.

Note that all angles are expressed in degrees (from O to
359), not radians. In addition, since the angles to the corners
of the rectangle are always deemed to be 45, 135, 225, and
315, respectively, the angles used by the arc instructions are
not true circular degrees unless the rectangle is a square.

The standard drawing instructions are _FrameArc,
_PaintArc, _EraseArc, _InverArc, and _FillArc. The parame-
ters you must pass to them on the stack are, in order: the
address of the rectangle’s data structure, the starting angle,
and the angular extent. If you use _FillArc, you also have to
push the address of the data structure that defines the fill
pattern.

The area affected by the paint, erase, invert, and fill opera-
tions is actually the wedge bounded by the arc and the two
radial lines extending from the center of the oval to the start-
ing and end points of the arc.

Polygons

A polygon is a relatively complex data structure made up of
a bounding rectangle and a series of points representing the
vertices of the shape. To create a polygon, you first call
_OpenPoly as follows:

Windows and Video Output 309

// reference axis

— startAngle

— arcAngle

T arc

wedge

bounding rectangle

Figure 6-8. QuickDraw Arcs and Wedges.

CLR.L -(SP) ;Space for handle
_OpenPoly
MOVE.L (SP)+,PolyHndl(AS) ;Save handle

PolyHndl DS.L b

As you can see, _OpenPoly returns a handle to a polygon
data record. You will need this handle to perform the stan-
dard drawing operations with polygons.

Once the polygon record has been opened, you define your
polygon by making a series of calls to _Line and _LineTo, just
as you if you were drawing the polygon on the screen. The
lines don't actually appear on the screen because _ OpenPoly
hides the pen. When you’re done, call _ClosePgon (no param-
eters required).

310 Mac Assembly Language

The standard drawing instructions for polygons are
_FramePoly, _PaintPoly, _ErasePoly, _lInvertPoly, and
_FillPoly. Before calling any of them, push the handle to the
polygon on the stack. For _FillPoly you also have to push the
address of the data structure defining the fill pattern.

Once you're through with a polygon, you can deallocate the
memory space it occupies by pushing its handle on the stack
and calling _KillPoly.

Chapter 7
Menus

Another prominent characteristic of the Macintosh user
interface is the menu bar, which invariably appears across
the top of the screen when an application is running. A typical
menu bar contains the titles of one or more menus, and each
menu is made up of one or more items. These items can be
selected with the mouse or, sometimes, from the keyboard.

The items within a menu remain hidden beneath its title
until you pull down the menu by positioning the mouse cursor
above the menu’s title in the menu bar and pressing the
mouse button. You can then select any particular item by
dragging the mouse down (or back up) until the item is high-
lighted, then releasing the mouse button. Before you release
the mouse button, you can move to an adjacent menu by
moving the mouse far enough sideways while it's in the menu
bar area.

In this chapter you’'ll learn how to access the Macintosh
Menu Manager instructions from assembly language. The
Menu Manager is made up of all the instructions you'll need to
create menu bars and menus, to manage the items contained
within each menu, and to easily implement the standard puill-
down menu selection technique. The instructions are summa-
rized in Table 7-1.

311

312 Mac Assembly Language

Table 7-1 The Menu Manager Trap Instructions.

|
_AddResMenu Adds the names of resources
to the end of a menu.

MOVE.L theMenu, - (SP) ;HANDLE: to menu record
MOVE.L #rsrcType,-(SP) ;LONGINT: resource type code
_AddResMenu
_AppendMenu Adds one or more items to the

end of a menu.

MOVE.L theMenu,-(SP) ;HANDLE: to menu record
PEA itemString ;POINTER: to item name string
_AppendMenu
__Checkltem Checks or unchecks a menu
item.
MOVE.L theMenu,-(SP) ;HRANDLE: to the menu
MOVE #theltenm,-(SP) ;INTEGER: item number in menu
MOVE.B #checked, - (SP) ;BOOLEAN: true = check
H false = uncheck
_CheckIten
_ClearMenuBar Removes all menus from the
active menu bar.
_ClearMenuBar ;o paranmeters
__CountMItems Returns the number of items in
a menu.
CLR -(SP) ;INTEGER: space for result
MOVE.L theMenu,-(SP) sHANDLE: to menu record
_CountMItens
MOVE (SP)+,D0 ;Result: number of items in menu
_DeleteMenu Removes a menu from the
menu bar.
MOVE #menulID,-(SP) ;INTEGER: ID of menu to delete

_DeleteMenu

Menus 313

Table 7-1. continued

__DelMenultem Deletes a menu item.
MOVE.L theMenu,-(SP) ;HANDLE: to menu record
MOVE #afterItem,-(SP) ;INTEGER: Item # to delete
_DelMenultem

This instruction is only available if you are using a Macintosh
with a 128K ROM.

__Disableltem Disables an item within a menu.
MOVE.L theMenu, - (SP) ;HANDLE: to the menu
MOVE #theltem,-(SP) ;INTEGER: item number in menu
_DisableItem

__DisposMenu Frees up the space used by a

menu record.

MOVE.L theMenu,-(SP) +HANDLE: to menu record
_DisposMenu

Use _DisposMenu only if the menu was created with _ NewMenu.
The equivalent instruction for menus created with _GetRMenu is
__ReleaseResource.

__DrawMenuBar Draws the current menu bar.
_DrawMenuBar ;no parameters
__Enableltem Enables an item within a menu.
MOVE.L theMenu,-(SP) +HANDLE: to the menu
MOVE #theItem,-(SP) ;INTEGER: item number in menu
_Enablelten
_Getltem Returns the name of a menu
item.
MOVE.L theMenu, - (SP) ;HANDLE: to the menu
MOVE #theItem,-(SP) ;INTEGER: item number in menu
PEA itemString ;VAR: item's name returned here

_GetItenm

314

Table 7-1. continued

Mac Assembly Language

__GetltmStyle

MOVE.L theMenu,-(SP)
MOVE #theltenm,-(SP)
PEA theStyle

Gets the character style for an
item in a menu.

;HANDLE: to the menu
;INTEGER: item number in menu
;VAR: nev character style (word)

_GetItnStyle
_GetMenuBar Makes a copy of the current
menu bar.
CLR.L - (SP) ;HANDLE: space for result
_GetMenuBar

MOVE.L (SP)+,AD

;Result: handle to the copy

_GetMHandle

CLR.L -(SP)

MOVE #menuID,-(SP)
_GetMHandle

MOVE.L (SP)+,AD

Returns the handle to a menu
in the menu bar.

;HANDLE: space for result
;INTEGER: menu ID

;Result: handle to menu

_GetNewMBar

CLR.L - (SP)
MOVE #menuBarID,-(SP)

_GetNewMBar
MOVE.L (SP)+,AD

Loads a menu bar definition
into memory from a MBAR
resource.

;HANDLE: space for result
;INTEGER: resource ID of menu

H bar

;Result: handle to menu bar

_GetRMenu

CLR.L -(SP)
MOVE #menuID,-(SP)
GetRMenu

MOVE.L (SP)+,AD

Loads a predefined menu from
a MENU resource file.

;HANDLE: space for result
;INTEGER: resource ID for menu

;Result: handle to menu record

Table 7-1. continued

Menus 315

__HiliteMenu

MOVE #menulID,-(SP)

Highlights or removes
highlights from a menu title in
the menu bar.

sINTEGER: ID of menu

_HiliteMenu

_InitMenus Initializes the Menu Manager.
_InitMenus ;N0 parameters

_InsertMenu Inserts a menu after a given

MOVE.L theMenu, - (SP)
MOVE #beforeID,- (SP)

_InsertMenu

menu in the menu bar.

;HANDLE: to menu record
;INTEGER: menu number to insert
H after (0=add to end)

_InsMenultem

MOVE.L theMenu,-(SP)
PEA itemString

MOVE #afterItem,-(SP)
_InsMenulten

Inserts a menu item after a
given item.

;HANDLE: to menu record
;POINTER: to item string
;INTEGER: Item # to insert after

This instruction is only available if you are using a Macintosh with

a 128K ROM.

_InsertResMenu

MOVE.L theMenu, - (SP)
MOVE.L #rsrcType,—(SP)
MOVE #afterItem,-(SP)

_InsertResMenu

Inserts the names of resources
after a given item in a menu.

sHANDLE: to menu record
;LONGINT: resource type code
;INTEGER: item number to insert
H after (O=beginning)

316 Mac Assembly Language

Table 7-1. continued

_MenuKey Returns the menu ID and item
number corresponding to a
particular command key.

CLR.L -(SP) ;LONGINT: space for result
MOVE #ch,-(SP) ;CHAR: character typed with
; command key
_MenuKey
MOVE.L (SP)+,DO0 ;Result: Menu ID (high word)
H Iten number (low word)

If the command key does not correspond to a menu item, the
result is zero.

_MenuSelect Tracks mouse down activity in
the menu bar by pulling down
menus and highlighting items,
when necessary. Returns the
menu ID and item number
selected.

CLR.L -(SP) ;LONGINT: space for result
MOVE.L #startPoint,-(SP) ;LONGINT: Point where mouse
; was pressed (global)

_MenuSelect
MOVE.L (SP)+,DO ;Result: Menu ID (high word)
; Item number (low word)

If no item was selected, the result is zero.

_NewMenu Creates a new, empty menu
record.
CLR.L -(SP) yHANDLE: space for result
MOVE #menulID,-(SP) ;INTEGER: ID code for menu
PEA menuTitle ;POINTER: to menu title string
NewMenu

MOVE.L (SP)+,A0 ;Result: handle to menu record

Table 7-1. continued

Menus 317

_Setltem

MOVE.L theMenu, - (SP)
MOVE #theItem,-(SP)
PER itemString
_SetIten

Renames a menu item.

+HANDLE: to the menu
;INTEGER: item number in menu
;POINTER: to new name for item

_SetltmStyle

MOVE.L theMenu, - (SP)
MOVE #theItem, - (SP)
MOVE #theStyle,-(SP)
_SetItmStyle

Sets the character style for an
item in a menu.

;HANDLE: to the menu
;INTEGER: item number in menu
;INTEGER: new character style

_Setltmlcon

MOVE.L theMenu, - (SP)

MOVE #thelItem,-(SP)
MOVE #iconNum, - (SP)
_SetItmnIcon

Displays an icon to the left of
an item name.

sHANDLE: to the menu
;INTEGER: item number in menu
;BYTE: icon number (1..255)

_SetltmMark

MOVE.L theMenu, - (SP)
MOVE #theItem, - (SP)
MOVE #markChar, - (SP)
_SetItmMark

If markChar is zero, the

Marks a menu item with a
given character.

+HANDLE: to the menu

;INTEGER: item number in menu
;CHAR: marking character

item is unmarked.

_SetMenuBar

MOVE.L menuBar, - (SP)
_SetMenuBar

Makes a menu bar the current
one.

;HANDLE: to menu bar

318 Mac Assembly Language

Initializing the Menu Manager

Before using Menu Manager instructions, you must call the
_InitMenus instruction once at the beginning of your pro-
gram. This initializes the Menu Manager’s internal data struc-
tures so it can properly deal with subsequent Menu Manager
instructions.

Some of the instructions within the Menu Manager portion
of the ROM toolbox also use the QuickDraw drawing instruc-
tions, the Font Manager, and the Window Manager. This
means you must also call _InitGraf, _InitFonts, and
_InitWindows (in that order) before calling __InitMenus. These
calls are part of the standard opening sequence to every pro-
gram described in Chapter 2.

Creating a Menu

One of the first things you’'ll use the Menu Manager for is to
create a menu bar. For the purposes of illustration, let’'s gen-
erate the menu bar shown in Figure 7-1. This is the minimum
menu structure most applications support so they will work
properly with desk accessories. (See Chapter 9 for further
discussion.)

% File Edit

Figure 7-1. The Standard Apple-File-Edit Menu Bar.

Menus 319

Building the Menus

As with windows, you can create a menu in one of two
ways: from scratch or by loading it directly from a resource
file. The resource type for a menu is MENU.

If you're creating the menu from scratch, you first have to
build a data structure, called a menu record, to hold the menu
items, then fill it in by adding the menu items to it. To build the
record, call _ NewMenu as follows:

CLR.L - (SP) ;Clear space for handle
MOVE #1,-(SP) ;Menu ID (here it's 1)
PEA MlName ;Title (Apple symbol)
_NewMenu
MOVE.L (SP)+,MenuHl(AS) ;Save the handle

MlNanme DC.B 1,20 ;Length+"Apple"

MenuHl DS.L 1

As you can see, _NewMenu returns a handle to the data
structure for the new menu, so we first clear space for it on
the stack. Then we push two parameters, a menu identifica-
tion code, and the address of a string (preceded, as usual, by
‘a length byte) that will be the title of the menu. After
_NewMenu finishes, the returned handle is popped from the
stack and stored in the MenuH1 variable.

Note that the menu ID code can be any positive integer not
already used by another of your menus. Negative integers
are reserved for menus defined by desk accessories, and a
menu ID code of zero is not permitted.

Now that the menu record exists, we can add the names of
menu items to the menu. For this we use _ AppendMenu. To
illustrate this, here's how to add the first item in the standard
Apple menu, “About Demo Program...”:

MOVE.L MenuH1(AS),-(SP) sPush handle
PEA 'About Demo Program...' ;Name of item
_AppendMenu

320 Mac Assembly Language

_AppendMenu adds the specified item to the end of the list of
menu items. A menu can hold up to 31 items.

Notice the three periods following the name of the menu
item in the above example. By convention, this means if the
item is selected, a dialog box will appear on the screen
requesting user input. (See Chapter 8.) Selecting an About...
item, for example, typically brings up an alert box containing
a copyright notice, a description of the active program, and
an OK button that must be clicked before you can return to
the application.

The string you pass to _ AppendMenu can actually contain
the names of more than one menu item. ltem names are sep-
arated from each other by a semicolon. For example, if you
want to quickly create a standard Edit menu, use these
instructions:

CLR.L -(SP) ;Space for handle

MOVE #3,-(SP) ;Menu #3

PEA 'Edit! ;Name of menu

_NewMenu ;Create MenuInfo record
PEA 'Undo/Z;(-;Cut/X;Copy/C;Paste/V;Clear!
_AppendMenu

Since _NewMenu returns a handle to the menu on the
stack, you don't have to explicitly push a copy of it before
calling _ AppendMenu. You may want to save the handle in
case you need it later, however, so put a MOVE.L
(SP),MenuH3(A5) instruction after _NewMenu and define a
variable called MenuH3 with DS.L directive.

Notice the second item name in the string, “(-”. The leading
left parenthesis is a modifier character that disables (dims)
the name of the item following it. Disabled items cannot be
selected from the menu unless they are first enabled with the
__Enableltem instruction. The single hyphen following the
parenthesis is actually expanded into a line of hyphens across
the width of the menu. A dimmed line of hyphens is conve-
nient for physically separating groups of related items in a
menu.

Menus 321

There are four other modifier characters you can use to
affect the appearance of a menu item. They let you display
the keyboard equivalent for an item (/), set the style of text
used to display the item (<), display a special symbol (usually
a check mark) to the left of the item (!), and display an icon to
the left of the item (A). These modifier characters are sum-
marized in Table 7-2. With the exception of the (and ; modi-
fier characters, each modifier is followed by a single
character, called the argument, containing the value of the
modifier.

Table 7-2. Menu item modifier characters.

Modifier character Meaning
|

Keyboard equivalent
Character style

Mark item

Icon item

Disable the item

; Multiple item separator

A > = A~

Except for (and ; , each modifier character must be fol-
lowed by a single argument character. The argument charac-
ter following the / modifier can be any printable symbol
enterable from the keyboard. The character style can be <B
(bold), <l (italic), <U (underline), <O (outline), or <S
(shadow). The argument character following the ! modifier
can be any printable symbol. The icon item canbe A1, A2, and
so on. The ASCII code of the argument character, plus 208, is
the resource ID of the icon.

Here are two examples of item names containing modifier
characters:

'Cut/X’ A command-X will appear to the right of the item name to
indicate that the menu item can be selected by pressing the X
key while holding down the command key.

'Read <B’ The item name, Read, will be boldfaced.

322 Mac Assembly Language

You can also concatenate modifier sequences to combine
two or more features. For example, use Read <B<U/R to dis-
play the item “Read” in a boldfaced, underlined style, with a
command-R keyboard equivalent. You'll see other examples
of how to use modifier characters later in this chapter.

After you've added all the items to the Edit menu, you can
proceed to define other menus, remembering to assign each
of them unique menu identification numbers.

There are no subroutines in the Macintosh 64K ROM that
permit you to rearrange items once the menu has been cre-
ated, so be sure to add items in the proper order. There are
two new instructions in the 128K ROM that correct this defi-
ciency, however. The first, _InsMenultem, lets you insert an
item after any specified item.

MOVE.L MenuH1(RS),-(SP) ;Handle to menu

PEA 'New Choice! ;New item name

MOVE #2,-(SP) ;Item # to add after
InsMenuIten

The second, _DelMenultem, can be used to delete a menu
item:

MOVE.L MenuH1(AS),-(SP) ;Handle to menu
MOVE #3,-(SP) ;Delete item #3
_DelMenuIten

Remember that these two instruction are available on a
Macintosh equipped with a 128K ROM only. You can check
whether this ROM is installed by examining the value stored
at ROMS85 ($28E). This value is $7FFF for a 128K ROM or
$FFFF otherwise.

MENU Resource Files

An easier way to construct a menu is to first define it in an
RMaker source file and compile it with RMaker to put it into a
resource file. Menu definitions have resource type codes of

Menus 323

MENU. The RMaker format of the source file for such a
resource is shown in Table 7-3.

Table 7-3. The RMaker Format of a MENU Resource.

Type MENU

,131 ;;:Resource ID for MENU
MyMenu ;;:Menu title

First Entry ;;First menu item
Second ;:Second menu item
Last Item ;;Third menu item

The MENU resource definition must be followed by a blank
line. For example, the RMaker statements required to define
a standard Edit menu resource are as follows:

Type MENU

,130 ; sResource ID
File s Menu title
New ;;1st menu item
Open... ;;2nd menu item
Close

Save

Save As...

Page Setup...

Print...

Quit ;;last menu item

A blank line must follow the line containing the last menu
item. This tells RMaker the list of menu items is complete. If
you specify an attribute byte on the second line, don’t make
the resource purgeable or you will cause a system error.

When you add these lines to the application’'s RMaker
source file and compile it, MENU resource #130 will be avail-
able for use by the application.

When you have MENU resources at your disposal, you
don't use _NewMenu to create a menu. Instead, use
_GetRMenu like this:

324 Mac Assembly Language

FileMID EQU 130 ;ID code for File menu

CLR.L -(SP) ;Space for handle
MOVE #FileMID, - (SP) ;Push menu resource ID
GetRMenu

MOVE.L (SP)+,MenuH2(RS) ;Pop handle from stack

MenuH2 DS.L 1

Since there may be several MENU resources in a resource
file, you must pass the menu resource ID code on the stack
for _GetRMenu to know which one to access. As with
_NewMenu, a handle to the data structure for the menu is
returned on the stack.

We've now used two different techniques to create the
standard Apple, File, and Edit menus. In practice, you would
probably create them all using the same technique.

Destroying Menus

When a particular menu is no longer needed by your appli-
cation, you should formally destroy it to free up the memory
space it occupies. Before you do this, make sure the menu is
first removed from the menu bar using the _DeleteMenu
instruction and then redraw the menu bar using
_DrawMenuBar. You'll see how to use these two instruc-
tions later on in this chapter.

There are two ways to deallocate the memory space used
by a menu, depending on how it was created. For menus cre-
ated with _NewMenu, use _DisposMenu. Since menus cre-
ated with _GetRMenu are resources handled by the
Resource Manager, you must use _ReleaseResource to dis-
pose of them.

Both _ DisposMenu and _ReleaseResource require one
parameter on the stack, the handle to the menu data
structure:

MOVE.L MenuH2(AS),-(SP) ;Handle for 2nd menu
_DisposMenu ;0r _ReleaseResource

Menus 325

After a menu is destroyed, it's gone for good. If you want it
back you'll have to read it in from the resource file using _GetR-
Menu or re-create it with _ NewMenu and _ AppendMenu.

Adding Items From Resource Files

It is often convenient to take the names of menu items
from the names of resources in a resource file. For example,
if you have a Font menu, it would be nice to add to it the
names of all the available font resources (type FONT) in one
simple step. It would also be useful for adding the names of all
available desk accessories to the standard Apple menu. A
desk accessory is a resource of type DRVR.

As you've probably guessed by now, the Menu Manager
has instructions to do exactly this. _AddResMenu adds the
names of all resources of a particular type to the bottom of a
given menu, and _InsertResMenu inserts them after any
given item. The resources added can be in any open resource
file.

The parameters for _ AddResMenu are the handle to the
menu and the four-character (one long word) resource type:

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE.L #'FONT',-(SP) ;Resource type code
_hddResMenu

MenuHndl DS.L b ;Handle stored here

Notice the method for passing the name of the resource type
on the stack. Each character in the name occupies exactly
eight bits in the long word pushed on the stack.

The menu handle needed by _AddResMenu is the one
returned by _ NewMenu or _GetRMenu when the menu was
first created or loaded from the MENU resource file. If you
didn’t save the handle, or the menus were loaded with an
MBAR resource, use _GetMHandle to get an existing menu’s
handle. When _ AddResMenu finishes, the name of every font
in the system and application resource files (and any other

326 Mac Assembly Language

open resource files) will appear in the menu whose handle is
stored in MenuHnNdlI.

The _InsertResMenu instruction requires one additional
parameter, the number of the item after which the new
items are inserted:

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE.L #'FONT',-(SP) ;Resource type code
MOVE #3,-(SP) ;Insert after item #3
_InsertResMenu

If you indicate you want to insert after item #0, the names
are inserted before the first item in the menu.

You should know that _ AddResMenu and _ InsertResMenu
can only be used to add the names of those resources having
names associated with them. As you saw in the Chapter 2
discussion of RMaker, resource names are optional and not
every resource has a name. Font and desk accessory
resources are always associated with names, however.

A resource is also ignored if its name begins with a period.
The Macintosh device drivers for I/O devices, like the disk and
the printer, begin with periods; the device driver for the disk
is .Sony, for example.

The versions of _ AddResMenu and _ InsertResMenu in the
Macintosh 128K ROM alphabetize the added resources
before putting them into the menu. The 64K ROM versions
add them in the order they are located.

Determining the Number of Items in a Menu

To determine the number of items in a given menu, use
__CountMItems by passing the handle to the menu on the
stack:

CLR -(SP) ;Space for result
MOVE.L MenuHndl(AS),-(SP) ;Push handle
_CountMItens

MOVE (SP)+,D0 ;Pop result into DO

The number returned can be from O to 31.

Menus 327

The only time you really have to use _CountMIltems is after
using _AddResMenu to add an indeterminate number of
resource names to a menu. If you don't use _ AddResMenu,
your application should be able to keep track of the number of
items.

Building a Menu Bar

Once you've created all your menus and added the neces-
sary items to them, it's time to create the menu bar so you
can display it at the top of the screen. The first step is to call
_ClearMenuBar (no parameters) to clear the menu bar data
structure and erase the menu bar area of the screen. (If
you're just starting your program, you don’'t actually have to
do this because _ClearMenuBar is called by _ InitMenus.)

The next step is to insert the various menus into the menu
bar using the _InsertMenu instruction, as follows:

MOVE.L MenuHndl(AS),-(SP) ;handle to menu
MOVE #0,~(SP) ;beforeID
_InsertMenu

MenuHndl DS.L 3

The beforelD number, zero in this case, indicates the ID
code of the menu in the menu bar before which the new
menu is to be inserted. If the number is zero, the menu is
placed to the right of the rightmost menu.

It is also possible to remove menus from the menu bar. For
this, use the _DeleteMenu instruction:

MenuId EQU 3 ;Equate for menu ID

MOVE #MenuID,-(SP) ;menu ID (EQU constant)
_DeleteMenu

The only parameter _DeleteMenu requires is the menu ID
code. In this example, menulD is a symbol representing this
code and was defined using the EQU assembler directive. Be

328 Mac Assembly Language

sure to precede the symbolic name with a # in the MOVE
instruction. If you don't, the instruction uses the number
stored at location $000003 instead of the number three itself.

The most convenient way to build a menu bar is to read its
definition from a resource file using _ GetNewMBar. A menu
bar resource has a resource type of MBAR and has the fol-
lowing structure:

Number of menus (one word)
Resource ID of first menu (one word)

Resource ID of last menu (one word)

Since RMaker does not directly support this type, you'll
have to simulate it by equating it to the GNRL RMaker
resource type. Here's what the source code looks like for a
menu bar that has three menus having ID numbers of 1, 7,
and 8:

TYPE MBAR = GNRL ;;Create a MBAR resource
+128 ; sResource ID

I ;3Using decimal integers

;;Three menus

ysMenu ID = 1

;;Menu ID = 7

;3Menu ID = 8

o ~N 2w

To use _GetNewMBar, first clear a space for the handle
returned on the stack, then push the resource ID of the
MBAR resource to be used:

IDcode EQU 128
CLR.L - (SP) ;Space for handle
MOVE #IDcode, - (SP) ;resource ID (immediate)
_GetNewMBar

MOVE.L (SP)+,MBarHndl(AS) ;Pop handle

MBarHndl DS.L 2 ;Handle to menu bar

Menus 329

__GetNewMBar not only creates the menu bar record, it also
automatically appends the menus specified in the resource.

A menu bar created with _GetNewMBar is not automati-
cally made the currently active menu bar. To do this, you
must call _SetMenuBar: :

MOVE.L MBarHndl(RS),-(SP) ;Handle to menu bar
_SetMenuBar

Before calling _SetMenuBar, you will probably want to read
the handle stored at the MenulList system variable and store
it in one of your program’s own variables. MenuList contains
the handle to the current menu bar and you’ll need it if you
want to make the original bar the active menu bar later on.

If you need to access one of the menus associated with an
MBAR resource, perhaps to append further items to it or
change an item name, you can use _GetMHandle to get its
handle:

MenuID EQU ?

CLR.L -(SP) ;Space for handle
MOVE #MenuID, - (SP) ;Push menu ID number
_GetMHandle

MOVE.L (SP)+,AD ;Pop handle into AO

Once you have the handle, you can use _AppendMenu,
_AddResMenu, or any other instruction requiring a menu
handle.

Displaying the Menu Bar

Well, you've now done everything except actually display
the menu bar on the screen. For that, simply use
__DrawMenuBar (no parameters required).

330 Mac Assembly Language

Modifying the Menu Bar

You can define as many menu bars as you want in a pro-
gram, but only one can be displayed at a time. As you just
saw, use _SetMenuBar to select any particular menu bar.

If you want to make a few changes to the existing menu
bar and later restore it to its original state, it's best to make a
copy of the menu bar using _ GetMenuBar.

CLR.L -(SP) ;Space for handle
_GetMenuBar ;Make copy of menu bar
MOVE.L (SP)+,01dMBar(AS) ;Save new handle

0ldMBar DS.L 1 ;Handle to old menu bar

After you do this, make the changes to the current menu bar,
then display it using _ DrawMenuBar.

To redisplay the original menu bar, use the following
instructions:

MOVE.L O0ldMBar(AS),-(SP)
_SetMenuBar ;Activate the o0ld menu bar
_DrawMenuBar ;Display it!

OldMBar is the handle to the copy we made of the menu
bar before the original was altered.

Menu Title Display

The _HiliteMenu instruction is used to highlight a menu
title in the menu bar (white letters on a black background).
To use _HiliteMenu, pass the ID number of the menu on
the stack:

MOVE #3,-(SP) ;Menu number 3
_HiliteMenu

Menus 331

You probably won’t have to highlight a menu title like this
very often because it's done automatically by the _Menu-
Select instruction you call when an item is selected from a
menu. You will use _HiliteMenu more often to remove high-
lighting from a menu title after you've selected an item. To do
this, push a zero on the stack before calling _HiliteMenu. A
menu ID number of zero means “remove highlighting from all
menu titles.”

Menu Item Display

The toolbox has several commands you can use to affect
the display of items in a pull-down menu. You'll learn about
them in this section.

Changing the Name of an Item

To change the name of an item in a menu use _Setltem:

STRING_FORMAT 3 ;Need length for DC

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu

MOVE #2,-(SP) ;Item number in menu
PEA ItenmName ;Address of new string
_SetIten
ItenNane DC.B 'New Nanme!' ; (Preceded by length)
MenuHndl DS.L 1 ;Handle to menu

The first item in a menu is itemm number one, not zero.
Notice that | set STRING_FORMAT to 3 in this example to
force MDS to put a length byte in front of the ItemName
string, as required by _Setltem. There is also an instruction
called _Getltem you can use to read the current name of a
particular item. It is called just like _Setltem and the name is
returned in ltemName.

332 Mac Assembly Language

Disabling and Enabling Item Names

At some points in a program, certain menu items may
become meaningless because they have no meaning in that
environment. You saw an example of this in the window pro-
gram in Listing 6-2 of Chapter 6—when the window is open,
the “Open Window” menu item is superfluous.

Rather than let the user select items that will be ignored by
the application, you should disable them using the _ Dis-
ableltem instruction. The operating system dims disabled
items in pull-down menus and will not permit them to be
selected.

To use _Disableltem, pass the handle to the menu and the
menu item number on the stack like this:

MOVE.L MenuHndl(RS),-(SP) ;Handle to menu
MOVE #3,-(SP) ;Disable item #3
_DisableItenm

If you want to disable a menu item when the menu is first
installed, place a left parenthesis, (, in front of its name when
the item is added to the menu with _ AppendMenu. This same
technique works when you define the names of menu items
using RMaker source statements.

To reactivate a menu item, use _Enableltem. It requires
the same two parameters as _ Disableltem.

If you pass an item number of zero to _Disableltem or
_Enableltem, the menu title is disabled or enabled, respec-
tively. If you do this, you must call _ DrawMenuBar to show
the change.

Changing the Style of Item Names

It is also possible to change the style of the characters the
Macintosh uses to draw the name of a menu item. The style
can be bold, italic, underline, outline, shadow, condense,
extend, or any combination of these seven basic type styles.

To set the style of an item, first push the handle to the

Menus 333

menu and the menu item number on the stack. Next, push a
style word and call _SetltmStyle. As shown in Figure 7-2, the
low-order seven bits in the style word control the basic style
features: The feature associated with a bit is enabled when
the bit is one. The symbolic names for these bits are also
shown in Figure 7-2.

If you want to display a bold, underlined menu item, use the
following instructions:

MOVE.L MenuHndl(AS),-(SP) . ;Handle to menu

MOVE #3,-(SP) : ;Menu item 3

CLR pli} ;No style!

BSET #BoldBit,DO ;Set bold bit (0)

BSET #UlineBit,DO ;Set underline bit (2)
MOVE DO, -(SP) ;Push style word
_SetItmStyle

Set the style word to zero if you don't want to use any special
character style attributes.

Some elements of the style of a menu item can also be set
by including the < modifier character in the item’'s name when
the menu is formed. As you saw earlier in this chapter, ?
appending <B to the name selects bold, <I selects italic, <U
selects underline, <O selects outline, and <S selects shadow.
There are no modifiers for selecting the condense and extend
styles, so you must select these styles using _SetitmStyle.

If you want to determine what the current style is, use
_GetltmStyle. Instead of pushing a style word, push the
address of the variable in which the style word is to be
returned:

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE #3,-(SP) ;Third menu item
PEA Style(AS) ;Address of variable
_GetItmStyle
Style DS.W 1 ;Style word returned here

Use the BTST instruction to check individual style bits. For
example, if you execute these instructions:

334 Mac Assembly Language

Low-order byte:

716|514 |3 |21 0

not used —— L bold

jt&lic

underline

outline

shadow
condense

extend

Symbolic names for the bits in the style word:

Name Bit #*

BoldBit
ItalicBit
UlineBit
OutlineBit
ShadowBit
CondenseBit
ExtendBit

DA WN=O

Figure 7-2. The Style Word Used with _SetltmStyle and _GetitmStyle.

Menus 335

BTST #ItalicBit,Style(AS) ;Check bit 1 (italic bit)
BNE BoldOn ;Branch if bit is 1

the BNE branch will be taken if italic bit is active.

Checking and Marking Item Names

Use _Checkltem to place a mark character to left of the
name of any menu item. The standard mark character is a
check mark symbol (ASCIl code 18). You can also use
_Checkltem to remove any mark character.

Marks are usually used to identify which of several related
menu items is active. When you pull down the MacWrite
Fonts menu, for example, a check mark appears to the left of
the name of the current font and font size. All other fonts and
font sizes are unmarked.

To tell _Checkltem whether to mark or remove a mark
from an item, push a true or false Boolean parameter on the
stack just before calling _Checkltem.

Here's how to place a mark character to the left of the
third item in a menu whose handle is stored at
MenuHnNdI(CAS5):

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE #3,-(SP) ;Item #3

MOVE.B #-1,-(SP) ;Boolean, -1 = mark
_CheckIten '

Change the Boolean value to false if you want to remove the
check mark (or other marking character) to the left of the
item name.

If you don't want to use the standard check mark to mark a
menu entry, use _SetltmMark instead.

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE #3,-(SP) ;Item #3

MOVE #'x',-(SP) ;marking character
_SetItmMark

336 Mac Assembly Language

Notice that the ASCIl code for the marking character is
placed on the stack just before calling _SetltmMark. If this
code is zero, any marking character present is removed.

When you first add items to a menu using _ AppendMenu or
within an RMaker source file, you can use the ! modifier char-
acter to place a mark in front of an item when the menu is
first installed. This saves you the extra step of using _ Check-
Item or _SetltmMark after creating the menu.

Associating Icons with Item Names

The most dramatic way to liven up your menus is to place
an icon to the left of an item name using _Setltmlicon. Before
you see how to do this, a word about icons.

An icon is a 32 by 32 screen image represented in memory
by a sequence of 32 long words. The bits in each long word
define the pixels in one row of the icon, starting with the
leftmost position (bit 31) and ending with the rightmost posi-
tion (bit 0). If the bit is one, the corresponding pixel is black;
zero bits correspond to white pixels. The long words are
arranged in top-to-bottom row order.

Suppose we want to determine the numeric representation
for an X icon. The first step is to draw the icon on a 32 by 32
grid of squares and then convert each row to the correspond-
ing long word.

Since most operations involving icons require that the icons
be referred to by a resource ID number, the next step is to
store the icon definition in a resource file. The resource file
type for a single icon definition is ICON.

RMaker does not support the ICON resource type directly,
so you have to equate it to RMaker's GNRL type to create it.
Here's what the source code looks like:

TYPE ICON = GNRL

,323 ; ;Resource ID

.H ; ;Hexadecimal numbers follow
[insert the hex numbers

in the example abovel

Menus 337

T $80000001
$40000002
$20000004
}10000008
$08000010
$04000020
$0200

$01000080
$00800100
200
$00200400
$00100800
$00081000
2000
$00024000
$00018000
$00018000
$00024000
$00042000
9
4
4

00081000
00100800
00200400
200
400800100
$01000080
$02000040
$04000020
$08000010
4
4
4
E

}10000008
20000004
40000002
80000001

] 1

Figure 7-3. Defining An Icon.

If you compile the resource definition and append it to the
application (use the !filename RMaker output file command
for this), the icon resource is opened when you launch the
application.

Now that you've mastered icons, let's get back to
_Setltmlcon. This instruction takes three parameters: a han-
dle to the menu, the number of the item within the menu to
be associated with the icon, and the icon number. The icon
number is the resource ID of the icon minus 256. It is not the
resource ID itself.

Icons that can be used in menus must have resource IDs
from 257 to 511. This means the icon number passed to
_Setltmlcon will be an integer from 1 to 255.

If the icon was stored in a resource file under number 323,
here's how you would assign it to the second item in a menu:

MOVE.L MenuHndl(AS),-(SP) ;Handle to menu
MOVE #2,-(SP) ;Item number
MOVE #67,-(SP) ;Icon number (ID=323)

_SetItmIcon

338 Mac Assembly Language

Other ways to assign icons to menu items are to add the
item to the menu using _ AppendMenu or add it right in the
definition of the MENU resource in the RMaker source state-
ments. To do this, follow the item name with a A (a modifier
character) and the character whose ASCII code is 208 less
than the resource ID for the icon. What this means is that ’'1’
CASCIl value 49) refers to resource ID 257 (the first menu
icon), '2' to resource ID 258, and so on. If you do this, you
don’'t have to bother with _Setltmlcon unless you want to
assign a new icon to a menu item. For example, use the
string '‘DeleteA3’ to place the icon with a resource ID of 259 to
the left of the Delete menu item.

If the menu item is checked, the icon appears to the right of
the check mark but before the text of the menu item.

Selecting Items From a Menu

Once you've defined a menu bar and the menus it is to con-
tain, you're ready to write the main body of your application
program. The program must contain the code needed to
check whether the user wants to select a menu item and the
code to be executed when any particular item is selected.

In a typical program, the main event loop keeps polling the
event queue using _GetNextEvent until an event occurs. If
it's a button-down event, you would call _FindWindow to
determine where the button was pressed.

CLR.N - (SP) ;Space for result (part code)
MOVE.L EventRecord+evtMouse,-(SP) ;Mouse location
PEA theWindow(AS) ;Window pointer returned here
_FindWindow
MOVE.W (SP)+,DO ;Move part code into DO
CMP #inMenuBar,D0 ;Were we in the menu bar?
BEQ DoMenu ;Yes, so branch

EventRecord DCB.B EvtBlkSize,0 ;_GetNextEvent's record

theWindow DS.L 1 ;Pointer to window

Menus 339

The position parameter passed to _FindWindow is fetched
from the evtMouse field of the event record used by the call
to _GetNextEvent.

If the result returned by _FindWindow is anything but
inMenuBar, you can pass it on to the part of the program that
processes other window-related events such as dragging, re-
sizing, and closing. If the result is inMenuBar, the button was
pressed in the menu bar region of the screen and you must
pass control to _MenuSelect to handle the standard pull-
down menu chores. _MenuSelect tracks the mouse until the
mouse button is released and returns codes to indicate what
menu and what menu item was selected (if any). By using it,
you avoid writing the complex program needed to implement
the standard pull-down menu interface.

To use _MenuSelect, push space for a long word result on
the stack, then push the global coordinates of the point
where the mouse was pressed, like this:

CLR.L -(SP) ;Space for long word result
MOVE.L EventRecord+evtMouse,-(SP) ;Global coordinates
MenuSelect

MOVE.L (SP)+,DO ;Grab the result
BEQ Ignore ;Do nothing if O result

The high-order 16 bits of the long word result is the ID
number of the menu selected. The low-order 16 bits is the
item number selected. If the result is zero, no menu item was
chosen. Figure 7-4 shows a diagram of the format of the
result.

31 13 1)

menu D number menu item number

Figure 7-4. The Format of the Result Returned by _MenuSelect and
_MenuKey

When _MenuSelect returns, it highlights the title of the
selected menu. Before you continue, it's good practice to

340 Mac Assembly Language

remove the highlight from the name by passing a zero to the
__HiliteMenu instruction:

MOVE #0,-(SP) ;Remove highlight from all nmenus
_HiliteMenu

Accessing Menu Items from the Keyboard

You can sometimes select menu items by pressing a char-
acter key while holding down the command key. This works if
you assign a command key equivalent to the menu item when
the menu is created. This is done by following the menu item
name with a / and the command character. For example, to
assign command-V to “Paste”, specify a menu item with the
name Paste/V when you create the menu. The command key
equivalent appears to the right of the itemn name when the
menu is pulled down with the mouse.

When you retrieve a key-down event from the event
queue, check the evtMeta field of the event record to see
whether the command key was down when the event
occurred. If it wasn't, it doesn't correspond to a menu item,
and you can continue with the part of the program that deals
with other types of key presses.

Here's how to check for a key press and test whether the
command key was down:

GetEvent CLR.B -(SP) ;Space for Boolean result
MOVE #-1,-(SP) ;Allow all events
PEA EventRecord yRecord for _GetNextEvent
_GetNextEvent
TST.B (SP)+ ;Pop and test the result flag
BEQ GetEvent ;Branch if nothing

MOVE EventRecord+evtNum,D0 ;Get event type
CHP #KeyDwnEvt,DO ;Key-down?
BNE NotAKey yNo, so branch

MOVE EventRecord+evtMeta,DO ;Get modifiers word
BTST.W #CmdKey,DO ;Is bit 8 (CmdKey) on?

Menus 341

BEQ NotACommand ;No, so branch
NOP ;Begin command key handling

EventRecord DCB.B EvtBlkSize,O0 ;Allocate event record

Notice that | used the CmdKey symbol to represent the bit
number (8) of the flag holding the state of the command key.
It is relative to the word, not byte, beginning at evtMeta. If the
command key is down, the bit is 1, and the BTST instruction
clears the zero flag in the status register. This means control
does not pass to the target of the BEQ instruction, which is
the part of the program that handles standard key presses.

If the command key was down, the next step is to call
_MenuKey to determine if the character pressed with it cor-
responds to a menu item.

CLR.L -(SP) ;Space for long word result
MOVE EventRecord+evtMessage+2, - (SP) ;The character code
_MenuKey

MOVE.L (SP)+,DOD ;Remove result code

Recall from Chapter 5 that the low-order byte of the word
beginning at offset evtMessage+2 from the start of the
event record is the character code for the key pressed.

The format of the result code returned by _ MenuKey is the
same as for _MenuSelect. That is, the low-order word con-
tains the number of the menu item selected, and the high-
order word contains the ID of the menu in which the item
appears. If the result is zero, the command key entered does
not correspond to any menu item and can be ignored.

Example Program Using Menu Manager
Instructions

The program in Listing 7-1 illustrates how to use many of
the important Menu Manager instructions. It creates a menu

342 Mac Assembly Language

bar containing three menus: Apple, File, and Font. The Apple
menu contains an About... item, but nothing happens if you
select it; in a complete application you would display an alert
box. The File menu contains a Quit item you can select to
leave the application and return to the Finder.

Listing 7-1. The Source File, Linker Control File, and
RMaker File for the Menus Progranm.

; Asm Source File
Menus.Asm

e ws =

This is an example of how to install a Font menu

MenuBarID EQU 128 ;Menu Bar resource ID
WindID EQU 128 ;Window ID
AppleID EQU 1 ;Menu ID for Apple menu
FileID EQU c ;Menu ID for File menu
FontID EQU 3 ;Menu ID for Font menu
INCLUDE ToolEqu.D ;Toolbox equates
INCLUDE QuickEqu.D ;QuickDraw equates
INCLUDE SysEqu.D ;Operating system equates
INCLUDE Traps.D ;Trap instructions

; Initialize the various Managers:

PEA -4(AS) ;Start of QuickDraw globals
_InitGraf ;Initialize QuickDraw
_InitFonts ;Font Manager

_InitWindows ;Window Manager

_InitMenus ;Menu Manager

_TEInit ;TextEdit

MOVE.L #0,-(SP) ;(no restart procedure)
_InitDialogs ;Dialog Manager
_InitCursor ;We want arrow cursor

MOVE.L #$O0000FFFF,DD
_FlushEvents ;Get rid of every event

; Create and draw a window on the screen:

CLR.L —-(SP) ;Space for returned pointer

Menus

Listing ?-1. continued

MOVE #WindID,-(SP) ;Resource ID

MOVE.L #0,-(SP) ;Store on heap

MOVE.L #-1,-(SP) ;=1 = front window

_GetNewWindow ;Get window from resource file

MOVE.L (SP),OurWindow(AS) ;Save window ptr for later

_SetPort ;Make window current GrafPort

’

Get the menu bar with two menus:

CLR.L - (SP) ;Space for result

MOVE #MenuBarID,-(SP) ;MBAR resource ID
_GetNewMBar ;Read in menu bar
_SetMenuBar ;handle already on stack

Create the Font menu and the add the items to it:

CLR.L -(SP) ;Space for result
MOVE #FontID,-(SP) ;Menu ID number
PER 'Font! ;Name of menu
_NewMenu ;Create the menu

MOVE.L (SP),FontH(AS) ;Save menu handle + on stack

MOVE.L #'FONT',-(SP) ;Resource type
_AddResMenu ;Add named font resources

MOVE.L FontH(AS),-(SP)

MainLoop

MOVE #0,-(SP) ;(0 = add to end)
_InsertMenu ;Add to menu bar
_DrawMenuBar ;Display menu bar
BSR GetEvent

BSR HandleEvent
BRA MainLoop

GetEvent
CLR.B - (SP) ;Leave space for Boolean result
MOVE #-1,-(SP) ;Allow all events
PEA EventRecord ;Results are returned here

_GetNextEvent ;Check for an event

343

344 Mac Assembly Language

Listing ?-1. continued

TST.B (SP)+ ;Pop and test the result
BEQ GetEvent ;Branch if no pending event
RIS

* HandleEvent is the event dispatcher. It takes the event type
* code returned by _GetNextEvent and calls the subroutine that
* handles it. Access to the event-handling subroutines is

* through a 16 entry jump table.

HandleEvent

MOVE EventRecord+evtNum,DO ;6et event code

CMP #8,D0 ;Event 9_15?
BHI Ignore ;Yes, so branch
ASL #2,D0 ;Iwo shifts = times 4
JMP JumpTable(PC,D0) ;Junp to handler
Ignore RTS
JumpTable
JHP Ignore ;Null event (never used)
JNP DoMouseDown ;Button-down
JMP Ignore ;Button-up
JMP DoKeyDown ;Key-down
JMP Ignore ;Key-up
JHP DoKeyDown ;Ruto-key
JMP DoUpdate ;Update
JMP Ignore ;Disk-inserted
JMP DoActivate ;Activate
DoKeyDown
DoUpdate
DoActivate
RTS
DoMouseDown
CLR - (SP) ;Space for result
MOVE.L EventRecord+evtMouse,-(SP) ;Where
PEA ClickWindow ;VAR window involved

_FindWindow ;Where was button pressed?

Menus 345

Listing ?-1. continued

MOVE (SP)+,D0 ;Get result

CMP #InMenuBar,DO ;Pressed in menu bar?
BEQ DoMenu ;Yes, so check it out
RTS ;Ignore everything else

; Handle clicks in menu bar:

DoMenu
CLR.L - (SP) ;Space for result
PEA EventRecord+evtMouse ;Where
_MenuSelect ;Get menu selection
MOVE (SP),theMenu(AS) ;Save menu number (high word)
MOVE 2(SP),theItem(AS) ;Save item number (low word)
MOVE #0,-(SP)
_HiliteMenu ;Remove highlight from menu
TST.L (SP)+ ;Test and pop _MenuSelect result
BNE @1 ;Branch if item selected
BRA GetEvent

@l CMP #FileID,theMenu(AS) ;In the File menu?

BNE @c

; must have selected QUIT command, so return to Finder

_ExitToShell ;Return to Finder
@2 CMP #FontID,theMenu(AS) ;Font menu?
BNE MenuExit ;No, so branch

Font menu being used. First remove checks from all items, then check
the one that was selected.

CLR - (SP) ;Space for result
MOVE.L FontH(RAS),-(SP) ;Handle to menu
_CountMItens ;Get # of items in menu
MOVE (SP)+,Db ;Pop count into D&

Use a DBRA loop to remove checks from everything. The count is in Db
because Db is not destroyed by toolbox calls.

346 Mac Assembly Language

Listing ?-1. continued

SUBQ #1,Db ;Count-1 for DBcc loops
UnMark MOVE.L FontH(AS),-(SP)
MOVE D&, - (SP) ;Item number (minus 1)
ADDQ #1,(SP) ;Add 1 for true item number
MOVE.B #0,-(SP) ;0 (false) = remove check from the item
_CheckIten ;Do it!
DBRA Db, UnMark ;Keep looping until D6 = -1

MOVE.L FontH(AS),-(SP)

MOVE theItem(AS),-(SP) ;Item number

MOVE.B #-1,-(SP) y—1 (true) = checked
_CheckIten ;Check the selected item

; Get name of font resource from the menu item:

MOVE.L FontH(AS),-(SP) ;Handle to font menu
MOVE theItem(AS),-(SP) ;Menu item number
PEA fontName ;VAR name of font
_GetIten ;Get the name

; Get the font number corresponding to the font name. For this
; use _GetFMenu:

PEA fontName ;Pointer to font name
PEA fontNumber +VAR font number
_GetFNum yRead number into fontNumber

; Set the new typeface:

MOVE fontNumber,-(SP);Push font number

_TextFont ;Select new typeface
MOVE #0,-(SP) ;0 = closest to system size
_TextSize ;Pick an available font size

; Position the drawing pen, clear the screen, and draw our
; test pattern:

MOVE #30,-(SP) sh
MOVE #20, - (SP) K4
_MoveTo

MOVE.L OurWindow(AS),AD

Listing ?-1. continued

PEA PortRect(A0)

Menus

;PortRect holds window rectangle

_EraseRect ;Erase the window

PEA 'The quick brown fox jumped over the lazy dog.'
_DrawString

RTS

; We get to here if Apple menu was selected:

MenuExit
RTS

; Record for _GetNextEvent:

EventRecord DCB.B
ClickWindow DC.L 0
fontNumber DC 0
fontName DCB.B 16,0

; Here are the program globals.

FontH DS.L 1
OurWindow DS.L 1
theMenu DS 1
theIten DS 1

EvtBlkSize,0

;Ignore Apple menu

;Reserve space for record
;Window where mouse was clicked

;Font number
;Name of font

Use (AS) addressing.
;Handle to Font menu
;Pointer to window we defined

;Menu # selected
;Itenm # selected

; Linker Control File
; Menus.Link

; Link this file to create application

(without resources).

Menus
$

347

348 Mac Assembly Language

Listing ?-1. continued

* RMaker Source File

* Menus.R

*

* Compile this after assembling and linking Menus.Asm

*

* The next command appends the resources to the application:

!Book:Menus

Type MBAR = GNRL

1128

I ;;Integers follow

2 ; ;Nunber of menus

1 ;3ID of 1lst menu

2 +3ID of 2nd menu

Type MENU

'd ; ;Resource ID

\14 ;;Title is the Apple symbol
About this demo... ; ;About box

T ; ;Resource ID

File ;;Menu Title
Quit ;;0nly item is Quit

Type WIND

1128 ; sResource ID

Font Menu Example ;;Title for Window

40 S 332 S02 ;;Window coordinates (TLBR)

Visible NoGoAway ;3Visible window/ no goaway box

4 ;;Window ID. 4 = title, no grow box

0 ;;User-definable item (not used)

The last menu, Font, is the most interesting one. (See Fig-
ure 7-5.) It contains the names of all the active fonts in the
Macintosh System program. When you select a name from
the Font menu, the application prints a “quick brown fox” test
string in the window, using the selected font. A check mark
appears to the left of the name of the last font item selected.

Menus 349

Development

Chicago
Geneva

Monaco
London
Athens

Figure 7-5. A Font Menu.

To create the application, assemble the Menus.Asm file,
link using the Menus.Link linker control file, then compile the
Menus.R file with RMaker. (Remember to change the disk
volume prefix in the !Book:Menus statements, if necessary.)
The application is stored in a file called Menus you can double-
click to launch. Let’s take a closer look at the assembly lan-
guage source code to see how this application has been put
together.

As with most of the applications in this book, it starts by
initializing the various toolbox managers it uses. It then loads
a new window definition from the application’s resource fork
using _GetNewWindow, and makes it the active window for
drawing operations using _SetPort. Next, it creates a menu
bar with an Apple and File menu by loading in MBAR resource
#128 using _GetNewMBar. This menu bar is then made the
current one using _SetMenuBar.

The Font menu cannot be included in the MBAR resource
because there is no way to tell in advance what fonts will be
stored in the System file. That's because it is quite common
for users to add new fonts to it or remove fonts from it to
save disk space, using Apple’'s Font/DA Mover program.

To create the Font menu, the program uses _ NewMenu.
The names of all the active fonts are added to its item list
using _AddResMenu. (The resource type passed to

350 Mac Assembly Language

_AddResMenu is FONT.) To complete the menu bar defini-
tion, the program uses _ InsertMenu to add the Font menu to
the right side of the menu bar. The program then displays the
menu bar using _DrawMenuBar.

The next step is to wait for a button-down event in the
menu bar and process it. The program does this by entering
an event loop starting with the label MainlL.oop. When a but-
ton-down event occurs, control passes to DoMouseDown
where the program uses _ FindWindow to determine whether
the event occurred in the menu bar area. If it didn't, control
returns to the main event loop.

Clicks in the menu bar are handled by the code beginning at
DoMenu. The program calls _MenuSelect to determine what
menu item, if any, was selected. Notice how _MenuSelect's
long word result is handled by the program: the first word on
the stack, at (SP), which is the high-order word of the menu
number/itemh number result, is transferred to the theMenu
variable and the second word, at 2(SP), is transferred to
theltem. Post-increment addressing is not used because the
program needs to keep the result on the stack so it can easily
check whether it is zero using TST.L (SP) +. If it is non-zero,
an item was selected, then the zero flag is clear and the BNE
@1 branch will take place.

Tests are then made to see what menu was pulled down. If
it was the File menu, the only item is Quit, so the program
calls _ ExitToShell to return to the Finder. If it was the Font
menu, the program has some housekeeping to do before
selecting the new font and drawing the test string. In particu-
lar, it must erase the check mark for the previously selected
font name and place a check mark to the left of the new font
name.

To do this, the program first determines how many items
are in the Font menu using _CountMItems, then puts the
result in the D6 register. It next uses a DBRA loop to remove
check marks from each item in the menu. The condition
tested by this instruction is always true, so looping always
continues until the counter reaches -1. Since DBcc stops loop-
ing when its counter reaches -1, the number in D6 (the

Menus 351

counter) is reduced by one with SUBQ before entering the
loop. Since the _Checkltem instruction within the loop
requires the item number to be on the stack, D6 is first
pushed (the item number minus one), then the value on the
stack is incremented with an ADDQ #1,(SP) instruction. A
zero byte (a Boolean false) is pushed on the stack just before
calling _Checkltem to direct _Checkltem to remove a check
mark from the item.

After all items have the check marks removed, _Check-
Item is called again to check the item selected. This time a -1
byte (Boolean true) is pushed to signify the item is to be
checked.

The program must now set the new typeface for character
drawing operations. To do this,. it calls _Getltem to get the
name of the new font, and then _GetFNum to convert this
name to a font number that can be used with _TextFont.
(You haven’t come across _GetFNum before. It expects two
long words on the stack; a pointer to the font name string;
and the location at which the integer result, the font number,
is to be stored.)

A call to _TextFont sets the proper typeface used by the
subsequent _DrawString instruction. Before the test string
is actually displayed, the drawing window is cleared using
_EraseRect; the window rectangle it needs is located Port-
Rect bytes from the start of the window record.

This application does not let you change the point size of
the text. Instead, it calls _TextSize with a zero parameter to
select a size for the active font that is closest to the point size
of the system font. If it didn’t do this, and the active font is
not defined in the default size used within windows, the oper-
ating system scales a differently sized set of characters of
the same font to the 12 point size. This results in distortion if
the size of the scaled font is not an exact multiple of an
existing font size.

Chapter 8
Dialogs and Alerts

The Macintosh user-interface guidelines describe two special
types of windows, dialog boxes and alert boxes, which are
used to request input from, or convey messages to, a user.
You can create and control them with a group of Macintosh
toolbox trap instructions that make up the Dialog Manager.
(See Table 8-1.) You'll learn how to use the Dialog Manager in
this chapter.

Table 8-1. The Dialog Manager Trap Instructions.

|

_Alert Draws an alert box on the
screen. The box is defined in an
ALRT resource.

CLR -(SP) ;INTEGER: space for result
MOVE #alertID,-(SP) ;INTEGER: resource ID of ALRT
MOVE.L filter, - (SP) yPOINTER: to filter procedure
_Alert

_CautionAlert Draws an alert box on the

screen with the Caution icon in
the top-left corner. The box is
defined in an ALRT resource.

CLR - (SP) ;INTEGER: space for result
MOVE #alertID,-(SP) sINTEGER: resource ID of ALRT
MOVE.L filter,-(SP) ;POINTER: to filter procedure
_CautionAlert

352

Table 8-1. continued

Dialogs and Alerts 353

_CloseDialog

MOVE.L theDialog,-(SP)
_CloseDialog

Frees up the space used by a
dialog record and removes the
dialog box from the screen.

;POINTER: to dialog

Use __CloseDialog only if you specified a nonzero value for
dStorage when you created the dialog. If the value was zero, use
__DisposDialog instead.

__DialogSelect

CLR.B
PEA
PEA
PEA

- (SP)
theEvent
theDialog
itemNunber

_DialogSelect
MOVE.B (SP)+,D0

Handles an event in a
modeless dialog box and
indicates whether the event
related to an enabled dialog
item.

;BOOLEAN: space for result
;POINTER: to the event record
;VAR: pointer to dialog affected
;VAR: item number selected

;Result: true = enabled item

H selected

H false = no enabled item
; selected

__DisposDialog

MOVE.L theDialog,-(SP)
_DisposDialog

Frees up the space used by a
dialog record and the records it
refers to, and removes the
dialog box from the screen.

;POINTER: to dialog record

__DrawDialog

MOVE.L theDialog,-(SP)
_DrawDialog

Draws the contents of a dialog
box on the screen.

;POINTER: to dialog record

354 Mac Assembly Language

Table 8-1. continued

_GetCtlValue Returns the current value of a
control item.

CLR —-(SP) ;INTEGER: space for result
MOVE.L theControl,-(SP) ;sHANDLE: to control item
_GetCtlvalue
MOVE (SP)+,DO ;Result: value of item
__GetDItem Gets the properties of an item

in a dialog box.

MOVE.L theDialog,-(SP) ;POINTER: to dialog record
MOVE #itemNumber,-(SP) ;INTEGER: item number
PEA itemType ;VAR: handle to item type code
PEA itemHandle ;VAR: handle to item
PEA dispRect ;VAR: display rectangle
_GetDIten
_GetIText Gets the text of a text item.
MOVE.L itemHandle,-(SP) JHRNDLE: to text item
PEA theText ;VAR: the text string
_GetIText

The maximum size of the text string is 241 characters.
Use _GetDItem to get the handle to the text item.

__GetNewDialog Loads a predefined dialog from
a DLOG resource file.

CLR.L - (SP) ;POINTER: space for result
MOVE #templateID,-(SP) ;INTEGER: resource ID of DITL
MOVE.L dStorage,-(SP) ;POINTER: to dialog record
MOVE.L behindWindow,-(SP) ;POINTER: to window in front

H of the dialog
_GetNewDialog

MOVE.L (SP)+,AD ;Result: handle to dialog record

Table 8-1. continued

Dialogs and Alerts 355

_GetResource

CLR.L -(SP)

MOVE.L #rsrcType,-(SP)
MOVE #rsrcID,-(SP)
_GetResource

MOVE.L (SP)+,R0

Loads a resource into memory.
Use it to load a DITL resource.

;HANDLE: space for result
;LONGINT: resource type code
;INTEGER: resource ID

;Result: handle to resource

__HiliteControl

MOVE.L theControl,-(SP)

Highlights a control item.

;HANDLE: to control item

MOVE #hiliteState, - (SP) ;INTEGER: highlighting code
_HiliteControl
_InitDialogs Initializes the Dialog Manager.

MOVE.L restartProc,-(SP)
_InitDialogs

;POINTER: to restart procedure

To use the standard restart procedure, push a zero pointer.

__IsDialogEvent

CLR.B -(SP)

PER theEvent
_IsDialogEvent
MOVE.B (SP)+,DO0

Indicates whether a given
event relates to a particular
modeless dialog window.

;BOOLEAN: space for result
;POINTER: to the event record

;Result: true = dialog-related
H false = not related

_ModalDialog

MOVE.L filter,-(SP)
PER itemNunber
_ModalDialog

Handles user activity in a
modal dialog box and returns
the number of the item
selected.

;POINTER: to filter procedure
;VAR: item number (integer)

356 Mac Assembly Language

Table 8-1. continued

_NewDialog Creates a new, empty dialog
record.
CLR.L -(SP) ;POINTER: space for result
MOVE.L dStorage,-(SP) ;POINTER: to dialog record
PEA wvindowRect ;POINTER: to dialog box rectangle
PEA title ;POINTER: to title for dialog box

MOVE.B #visible,-(SP) ;BOOLEAN: true = visible
; false = invisible
MOVE #windowType,-(SP) ;INTEGER: window type code
MOVE.L behindWindow,-(SP) ;POINTER: to window in fromnt
H of the dialog
MOVE.B #goAwayFlag,-(SP) ;BOOLEAN: true = has close box
s false = no close box
MOVE.L #refCon,-(SP) ;LONGINT: reference constant

MOVE.L itemList,-(SP) ;HANDLE: to item list

_NewDialog

MOVE.L (SP)+,AD ;Result: handle to dialog record
_NoteAlert Draws an alert box on the

screen with the Note icon in
the top-left corner. The box is
defined in an ALRT resource.

CLR -(SP) ;INTEGER: space for result
MOVE #alertlID,-(SP) s INTEGER: resource ID of ALRT
MOVE.L filter,-(SP) ;POINTER: to filter procedure
_NoteAlert

_ParamText Sets the values for the four

dialog text placeholders A0,
A1, A2, and A3.

PEA subText0 ;POINTER: to A0 string
PEA subTextl ;POINTER: to Al string
PEA subTexte ;POINTER: to A2 string
PEA subText3 ;POINTER: to A3 string
_ParamText

If a pointer is zero, the current value of the placeholder string is
not affected.

Dialogs and Alerts 357

Table 8-1. continued

_SellText Selects a range of text in a
variable text box.

MOVE.L theDialog,-(SP) ;POINTER: to dialog record
MOVE #itemNumber,-(SP) ;INTEGER: item number
MOVE #selStart,-(SP) ;INTEGER: starting position

MOVE #selEnd,-(SP) ;INTEGER: ending position
_SellText
_SetCtlValue Sets the value of a control
item.

MOVE.L theControl,-(SP) ;HANDLE: to control itenm
MOVE #newValue,-(SP) ;INTEGER: new value for itenm
_SetCtlValue

The handle to the control item is the handle returned by
_GetDItem.

_SetDItem Sets the properties of an item
: in a dialog box.

MOVE.L theDialog,-(SP) ;POINTER: to dialog record
MOVE #itemNumber,-(SP) ;INTEGER: item number
MOVE #itemType,-(SP) ;INTEGER: new item type code

MOVE.L itemHandle,-(SP) ;HANDLE: to new item handle
PEA dispRect ;POINTER: to new display rectangle
_SetDIten

_SetlText Sets the text of a text item.

MOVE.L itemHandle,-(SP) ;HANDLE: to text itenm
PEA theText ;POINTER: to new text string
_SetIText

Use _GetDItem to get the handle to the text item.

358 Mac Assembly Language

Table 8-1. continued

_StopAlert Draws an alert box on the
screen with-the Stop icon in
the top-left corner. The box is
defined in an ALRT resource.

CLR - (SP) ;INTEGER: space for result
MOVE #alertID,-(SP) ;INTEGER: resource ID of ALRT
MOVE.L filter,-(SP) ;POINTER: to filter procedure
_StopAlert

System global variables:

ACount ($A9A) Stage of last alert minus 1 [word].
ANumber ($A98) The resource ID of the last alert used
[word].)

The two standard types of dialog boxes are shown in Fig-
ure 8-1. These boxes are conventionally used to request cer-
tain types of input from the user. They can be composed of
several user-alterable items (data input fields) containing
such things as lines of text that can be edited, check boxes,
and buttons. They can also contain static items that cannot
be modified, such as fixed text, icons, and pictures. Toolbox
instructions let you easily determine which items have been
selected and what the current settings of the items are.

An alert box, as its name suggests, normally warns a user
of the consequences of a proposed action that might result in
the destruction or loss of data. In a typical application, an
alert box contains “OK” and “Cancel” buttons that you can
click to either verify the action or abort it. For instance, if you
try to drag an application icon to the trash can with the
Finder, you'll see the alert box shown in Figure 8-2.

Alerts are often used to display status information as well.
Most About... items in the standard Apple menu use alert
boxes to display authorship and copyright information, for
example.

Dialogs and Alerts 359

(a) A modal dialog box

ImagelWriter (Standard or Wide)

Paper: @ US Letter (O A4 Letter

QO US Legal O International Fanfold

O Computer Paper
Orientation: @ Tall (O Tall Ad justed O Wide
Pagination: @ Normal pages O No breaks between pages
Reduction: @® None (O 50 percent

{b) A modeless dialog box
[N[B——————=—— Find

Find what Iassembld

@® Whole Word O Partial Word

Figure 8-1. Macintosh Dialog Boxes.

Are you sure you want to remove the
application "MacPaint"?

[ok] [cancel]

Figure 8-2. A Macintosh Alert Box.

360 Mac Assembly Language

The main difference between alerts and dialogs is that
alerts don't contain any alterable items such as text strings
or check boxes. They simply contain static items and one or
more buttons you can click to dismiss the alert so the main
program can continue.

Preparing the Dialog Manager

Before you begin using dialog and alert boxes in a program,
you must initialize the Dialog Manager using the _ InitDialogs
instruction:

MOVE.L #0,-(SP) ;Pointer to restart procedure
_InitDialogs

The sole parameter for _InitDialogs is a pointer to a restart
procedure that is called when a fatal system error occurs.
Using a pointer of zero, as in this example, indicates you want
to use the standard system procedure, which displays a
bomb alert box and forces you to reboot the system. A more
elegant restart procedure would be one that simply executes
an _ExitToShell instruction to take you to the Finder. To set
it up, use the following two instructions:

PER MyRestartProc
_InitDialogs

MyRestartProc is the label of the _ExitToShell instruction in
the program.

Since the Dialog Manager uses QuickDraw, the Font, Win-
dow, and Menu Managers, and the Text Edit toolbox instruc-
tions, you have to precede the call to _InitDialogs with calls
to _InitGraf, _InitFonts, _InitWindows, _InitMenus, and
__TElInit, in that order.

The only instruction in this group you haven't seen before is
__TElInit, the instruction that initializes the toolbox’s text edit-

Dialogs and Alerts 361

ing manager, Text Edit. These instructions are used to imple-
ment the standard “cut and paste” editing operations
described in the Macintosh user-interface guidelines. The
MDS Edit program is an example of a program that uses Text
Edit for all its editing operations.

Creating Dialog Boxes

There are two general classes of dialog boxes you can
implement on the Macintosh: modal and modeless. A modal
dialog box is one that, once displayed, internally handles all
keyboard and mouse events until the user dismisses the box
by clicking a button. Mouse clicks outside an item in the dialog
box are ignored, so you can’'t pull down a menu, select
another window, or use a desk accessory until the modal dia-
log box is dismissed. In fact, that is how the modal dialog box
gets its name: When you're using it, you're confined to a spe-
cial operating mode until a button is clicked.

A modeless dialog box, on the other hand, is just like any
other window on the screen. It has a goaway box and a title
bar, but no grow box. The user is free to switch between the
modeless dialog box and any other window on the screen
without restriction. You remove a modeless dialog box from
the screen just like any other window: by clicking its goaway
box or selecting Close from a File menu.

Modal and modeless dialog boxes are defined and created
using the same general programming techniques. The differ-
ence in their behavior arises because different instructions
are used to interact with them while they are on the screen.

Just as with a window or a menu, there are two ways to
create a dialog box, depending on whether a template for it
has been saved in a resource file of type DLOG.

If the dialog definition is not in a DLOG resource file, use
_NewDialog to create it. _NewDialog is rather complex in
that it requires you to pass on the stack nine parameters

362 Mac Assembly Language

describing the properties of the dialog. It returns a pointer to
a record describing the dialog.

For the purposes of QuickDraw’s drawing instructions, a
dialog pointer is equivalent to a window pointer. This is
because a dialog record is a superset of a window record.

Here is the calling sequence for _ NewDialog:

CLR.L -(SP) ;Space for result
MOVE.L #0,-(SP) ;0 = use heap for record
PEA DialogRect ;Dialog rectangle

PEA " ;Title (null)

MOVE.B #-1,-(SP) ;-1 = visible

MOVE #DBoxProc, - (SP) ;window definition ID
MOVE.L #-1,-(SP) ;-1 = front window
MOVE.B #0,-(SP) ;0 = no goaway box
MOVE.L #0,-(SP) ;refCon (usually 0)
MOVE.L ItemHndl(AS),-(SP) ;Handle to item list
_NewDialog

MOVE.L (SP)+,AD ;Move pointer into AD

DialogRect DC.W S0,50,200,200 ;Coordinates of dialog rectangle
ItemHndl DS.L 1 ;Handle to item list

The first parameter pushed on the stack (after making
space for the result) is a pointer to the area where the dialog
record is to be kept. You can get such a pointer by reserving
a space DWindLen (170) bytes long using _ NewPtr. If you
use a pointer of O, as in the example, _ NewDialog allocates
its own space for a dialog record on the heap.

The next parameter is a pointer to the coordinates of the
rectangle in which the dialog box is displayed. The coordi-
nates are expressed in global coordinates.

The next two parameters are a pointer to the title of the
dialog box (if applicable) and a Boolean value indicating
whether the box is to be visible (true) or invisible (false).

The window definition ID can be any of the values used
when creating standard windows. (See Chapter 6.) By con-

Dialogs and Alerts 363

vention, however, you should only use the DBoxProc,
PlainDBoxProc, and AltDBoxProc ID codes for modal dialog
boxes. For modeless dialog boxes, use NoGrowDocProc (a
window with a close box but no size box).

The next long word parameter is the window pointer of the
window behind which the dialog box is to be drawn. If the
pointer is zero, the dialog box goes behind all other windows.
If it is minus one, it goes at the front and becomes the active
window. You will usually pass a minus one pointer.

The goaway box Boolean parameter will normally be false
for modal dialog boxes and true for modeless dialog boxes.
Modal dialog boxes don’t use goaway boxes or titles.

The refCon value is for the private use of your application.
It can be set to any value (a long word) you like. Its meaning
is completely up to you.

The last parameter pushed on the stack before calling
_NewDialog is a handle to a DITL resource containing a list of
the items the dialog uses. You'll see how to define such a
resource in just a moment. For now, let’'s see how to load a
DITL resource into memory and get its handle:

CLR.L -(SP) ;Space for result
MOVE.L #'DITL',-(SP) ;Resource type
MOVE #1248, - (SP) ;Resource ID
_GetResource

MOVE.L (SP)+,ItemHndl(AS) ;Pop the handle

_GetResource is a general purpose instruction for reading
any type of resource into memory, not just DITL resources. It
returns a handle to the resource record, just what we need
for _NewnDialog.

By far the most convenient way to create a dialog is to
read it in from a DLOG resource file with _GetNewDialog.
This instruction requires only three parameters: the ID of the
DLOG resource, a pointer to the dialog record area, and the
pointer to the window behind which the dialog window is to
appear (or minus one if the dialog is to be the front window
and active).

364 Mac Assembly Language

CLR.L - (SP) ;Space for result

MOVE #128,-(SP) ;Resource ID of DLOG

MOVE.L #0,-(SP) ;0 = storage on heap

MOVE.L #-1,-(SP) ;Put dialog in front

_GetNewDialog

MOVE.L (SP)+,DlogHndl(AS) ;Move ptr into variable
DlogHndl DS.L 1 ;Handle to dialog record

The calling sequence for _GetNewDialog is much simpler
than that for _NewDialog because most of the information
needed to form the dialog record is contained in the DLOG
resource.

As usual, you use RMaker to create a DLLOG resource. Here
is the source format for a typical DLOG resource:

TYPE DLOG
128 ;;resource ID of this DLOG
A Dialog Box ;;title for the dialog box
50 S0 200 400 ; ;coords of box (TLBR)
Visible NoGoAway ;i windovw attributes
1 ;;window definition ID
1} ;;refCon value (usually 0)
133 ;;resource ID of DITL (item list)

The title for a dialog box is displayed only if you are using a
modeless dialog box. The coordinates are global coordinates
relative to the top left-hand corner of the screen.

The attributes of a dialog window can be Visible (display
the dialog box) or Invisible (don't display it), and GoAway
(use a close box) or NoGoAway (no close box). You can use
any other words beginning with V, I, G, N, respectively, if you
wish. You will usually want to define a Visible dialog box so
you don't have to display it with _ShowWindow after loading
it into memory. Use the GoAway attribute for modeless dia-
log boxes and the NoGoAway attribute for modal dialog
boxes.

The window definition ID is the same as the one you would
pass to _NewDialog. For modeless dialogs, use 4 (NoGrow-

Dialogs and Alerts 365

DocProc). For modal dialogs, use either 1 (DBoxProc), 2
(PlainDBoxProc), or 3 (AltDBoxProc).

The refCon parameter has the same meaning as the one
passed to _NewDialog.

The DLOG resource is linked to a DITL resource that
describes the various items used by the dialog. You'll learn
about DITL resources in the next section.

Items and Item Lists

As you have just seen, both _ NewDialog and _GetNewDia-
log use an important resource of type DITL (Dialog Item List).
Such a resource is made up of a list of items that are to
appear in a dialog or alert box. Associated with each item are
the coordinates of the rectangle in which it is to be displayed,
in the local coordinate system of the dialog or alert box
window.

The common types of items that can be defined in a DITL
resource are as follows:

® Static text—a line of text that cannot be modified

® Variable text box—a line of text that can be modified
® A control item—button, check box, radio button

® An icon

® A QuickDraw picture

It is also possible to use controls defined in a CNTL resource
file or to create application-defined items, but | won’'t be con-
sidering them here.

The RMaker source format for a DITL resource looks like
this:

TYPE DITL -
,133 ;;resource ID of this DITL
S ;;nunber of items in list

StaticText Disabled ;;static text (disabled)
10 121 26 177 ;;Item rectangle (TLBR)
My text ;ithis text never changes

366

Mac Assembly Language

Edit
45 31 &2 195
Change this

Button
109 33 140 94
Cancel

Check
78 28 95 107
Sound on

Radio
?7? 171 95 289
High Rate

;;variable text box
; ;TLBR
;itext to be edited

;ibutton item
+ s TLBR
;;Name for the button

;;check box item
3 sTLBR
; ;check box name

;;radio button item
; s TLBR
;;radio button name

The item types in a DITL resource are identified by specific

words:

® StaticText, StatText, or Stat for static text

® EditText or Edit for variable text boxes

® Button or Btnltem for standard buttons

® CheckBox, Chkltem, or Check for check boxes

® RadioButton, Radioltem, or Radio for radio buttons

The other standard item types are supported by MDS 2.0
only. Their identification words are:

® [con or Iconltem for icons

® Pic or Picltem for QuickDraw pictures

® User or Userltem for application-defined items

® ResCltem or ResCtl for controls defined in a CNTL resource file

These last few item types are not used very often.

The coordinates given for the items are in the local coordi-
nates of the window in which the items will appear, and are in
standard top, left, bottom, right order.

If an item name in the dialog template is followed by the
word Disabled, as with the static text item above, clicks in its
rectangle are ignored. ltems whose names are followed by
the word Enabled are active items. If neither word is used,
the item is considered to be enabled.

Dialogs and Alerts 367

Item Types

This section will describe each of the different types of
items you can use within a dialog box. The symbolic names
for these items are shown in Table 8-2.

Table 8-2. Iltem Type Codes for Dialog and Alert Boxes.

Symbolic Name Code Description
Userltem (o} User-defined item
Ctrilitem q Control item

BtnCtrl 4+0 Button control
ChkCtrl q4+1 Check box control
RadCtrl 4+2 Radio button control
ResCtrl 4+3 Control in CNTL resource
StatText 8 Static text
EditText 16 Variable text box
Iconltem 32 Icon
Picltem 64 QuickDraw picture
ItemDisable 128 Disabled item

Add the constant ItemDisable to the code for an item to disable that
item.

Static Text

A static text item (StatText) is a string of characters that
appears in the dialog box, but cannot be edited. Such an item
could be used to hold a command or an explanatory message,
or to pose a question, for example.

If a static text item is wider than the width of the rectangle
in which it is to be displayed, the end of the text wraps to the
next line in the rectangle, but you won't see it if the rectangle
is not deep enough. Entire words wrap together, so words
are not broken up over two lines.

It is often convenient to be able to change the precise
wording of a static text item after it is initially defined, by
inserting names or phrases that can't be predicted in

368 Mac Assembly Language

advance. The easiest way to do this is to use the A0, A1, A2,
and A3 text place holders when you first define the static
text item in the DITL resource.

You can assign a text string to each of these place holders
to ensure when the dialog box is drawn that the strings are
substituted for the place holders. The instruction to use for
this is __ParamText:

STRING_FORMAT 3 ;Need length+string for DS
PER StringO(AS) ;String for AD
PEA Stringl(AS) ;String for Al

. MOVE.L #0,-(SP) ;(Don't change A2 string)
PER String3(AS) ;String for A3

_ParamText

String0 DS.B 'placeholder 0!
Stringl DS.B ‘'placeholder 1!
String3 DS.B '4th placeholder!

If a particular string is not to be changed, push a long word
zero on the stack instead of a pointer to the string. This was
done for the A2 place holder in the example.

Suppose you use a dialog box to ask for verification of a file
deletion operation. Instead of using a general static text item
like “Are you sure you want to delete the file?”, you can
define an item such as:

"Are you sure you want to delete AD2"

and then use _ParamText to subsitute for A0 the actual
name of the file selected. This must be done before displaying
the dialog, of course.

Variable Text Box

A variable text box (EditText) is a rectangle within which a
line or lines of text is displayed. The text can be up to 241
characters long and can be edited using the standard Macin-

Dialogs and Alerts 369

tosh text editing techniques. This means you can click the
mouse somewhere in the text box to select an insertion point
for subsequent keystrokes. (The insertion point is marked by
a blinking vertical bar.) You can select a range of text for
deletion by dragging the mouse across the text, then press-
ing any key to replace it. Further, you can extend a previous
selection range by holding down the SHIFT key while you
select another range. Selected text appears as white charac-
ters on a black background.

As you will see later on, the toolbox contains instructions
you can use to pre-select a range of text or set a text inser-
tion point. There are also instructions to change the text dis-
played in the box and to determine what the current text is.

If there is more than one variable text box item in a dialog,
you can use the TAB key to move from one to the next. If
you're in the last text box when you press TAB, you will go to
the first one.

Control Items

Control items (Ctrlltem) represent the most common item
types used in dialog boxes. The major types are:

® Buttons (Ctrlitem + BtnCtrl)
® Check boxes (Ctriltem + ChkCtrl)
® Radio buttons (Ctrlltem + RadCtrl)

There is also a control item that can be set by the applica-
tion (Userltem) and one defined by a control template in a
CNTL resource file (ResCtrl). I will not be considering these
types of control items here.

BUTTONS. Buttons are rounded-corner rectangles that
can be clicked to dismiss a dialog or alert box (remove it from
the screen) and cause a particular action to occur. The name
associated with a button appears within the body of the
button.

Most modal dialog boxes and alert boxes contain at least
one button so they can be dismissed in accordance with the
user interface guidelines.

370 Mac Assembly Language

There is a special visual form for the default button in a
modal dialog or alert. This button can be selected by pressing
the RETURN or ENTER key on the keyboard. The default
button is easily identifiable because it is enclosed by a dark,
black border. If you are using more than one button in your
dialog, the one most likely to be selected should be made the
default so it can be easily selected with a keyboard
command.

For modal dialog boxes, the first item in the item list is
always the default item, so make sure it is a button. Such a
button is typically labeled as the OK button. For alert boxes,
either the first or second item in the item list can be desig-
nated as the default when you create the alert’s item list.

The Dialog Manager instructions that display dialog boxes
do not automatically draw the dark border around the default
button. You must take care of this yourself using techniques
discussed later in this chapter. The alert box drawing instruc-
tions do take care of highlighting the default button,
however.

CHECK BOXES. Check boxes are associated with parame-
ters that can be in one of two states: on and off, selected and
not selected, high and low, and so on. A check box appears
as a small square in the dialog box. If it is on (1), it has an X
drawn in it. The name associated with the check box appears
to its right.

A check box is independent of all other check boxes and
other items. This means that its setting should not affect the
setting of any other item in the dialog box.

RADIO BUTTONS. Radio buttons invariably appear in
groups of two or more buttons, with each button represent-
ing a different value that can be associated with one particu-
lar parameter. They appear as smalll circles in a dialog box
and the one that is on has a smaller black circle inscribed in it.
The radio button’s name appears to its right on the screen.
Radio buttons derive their name from the fact that when a
radio button is selected by clicking it, all other buttons in the
group are turned off, just like when you select a station on a
standard car radio.

Dialogs and Alerts 371

Icons

An icon (Iconltem) is another type of item you can associ-
ate with a dialog box. In the DITL item list resource an icon is
referred to by its resource ID number. The resource type for
an icon is, naturally enough, ICON.

An icon is scaled to fit the rectangle associated with it in
the DITL resource. For best results, select a rectangle that is
32 pixels wide and 32 pixels high. This is the exact size of an
icon, so there will be no distortion due to scaling.

An icon item is similar to a static text item in that it cannot
be modified by the user.

Pictures

The last standard item type is a QuickDraw picture (Pic-
Item). Like an icon item, a picture is referred to by its
resource ID number. The resource type is PICT. Also like
icons, pictures are scaled to fit the display rectangles associ-
ated with them.

Disabling Items

Any item in a dialog can be defined as disabled by adding
the ItemDisable constant to its item type code or by placing
the word Disabled after its name in the DITL resource defini-
tion. It's a good idea to disable static items like icons, pic-
tures, and text so mouse clicks in their rectangles will be
ignored.

Changing Item Attributes

There are several toolbox instructions you can use to read
and change the attributes of the items in a dialog box item
list: _SetDltem, _GetDltem, _SetiText, _GetIText, _Sell-
Text, _GetCtlValue, and _SetCtlValue.

372 Mac Assembly Language

Use _GetDltem to determine the item type, the handle to
the data defining the item’s behavior, and the coordinates of
the display rectangle for the item. The calling sequence is as
follows:

MOVE.L DialogPtr(AS),-(SP) ;Push dialog pointer

MOVE #1,-(SP) ;Item number

PEA itenType ;VAR Item type

PEA itemHandle ;VAR Item handle

PER itemRect ;VAR Item rectangle

_GetDItenm
itemType DC.W O ;Item type code
itemHandle DC.L O ;Item handle
itemRect DCB.W 4,0 ;Item rectangle
DialogPtr DS.L 1 ;Dialog pointer

The item handle refers to data or code related to the item
type. For control items, for example, the handle refers to a
control record that defines the control in question. For a vari-
able text box item, the handle refers to the string of charac-
ters currently displayed in the box.

To change the type, handle, or rectangle of a dialog item,
you can use _SetDIltem.

MOVE.L DialogPtr(AS),-(SP) ;Push dialog pointer
MOVE #1,-(SP) ;Item number

MOVE itenType(AS),-(SP) ;New Item type

MOVE.L itemHandle(AS),-(SP) ;New Item handle

PEA dispRect(AS) ;New Display rectangle
_SetDItem

_SetDItem is very useful for disabling certain dialog items so
that the Dialog Manager will ignore clicks in them. To do this,
add ltemDisable (decimal 128) to the standard item type
code for the item.

Do not confuse disabling an item with making it inactive. An
inactive item (always a control item) is dimmed in the dialog

Dialogs and Alerts 373

box, but a disabled item is not. To make a control item inac-
tive, use _HiliteControl:

MOVE.L itemHandle(AS),-(SP) ;Handle to control item
MOVE #255, - (SP) ;255 = inactive
_HiliteControl

You should make inactive and disable any control items in a
dialog box inappropriate to the particular operating environ-
ment you're in.

To return a control item to its normal state, pass a high-
lighting code of zero to _HiliteControl:

MOVE.L itemHandle(AS),-(SP) ;Handle to control item
MOVE #0,-(SP) ;0 = highlight
_HiliteControl

You should not use _SetDIltem to change the text of a
static text or variable text item, however. For this, use
_SetlText as follows: v

STRING_FORMAT 3 ;Need length+string for DC

MOVE.L itemHandle(AS),-(SP) ;Handle to text item

PEA MyText ;The new text string
_SetIText
MyText DC.B 'Use this string!

You can use _GetDIltem to get the proper value for itemHan-
dle before calling _SetlText.

It's often quite convenient to determine the text associated
with a particular variable text box to enable the program to
take the user's input and deal with it. For this, use _GetlIText.

MOVE.L itemHandle(AS),-(SP) ;Handle to text item
PER CurrentText (AS) ;Address of string var
_GetIText

CurrentText DS.B 242 ;Space for text

374 Mac Assembly Language

Since text items can be up to 241 characters long, you have
to reserve 242 bytes for CurrentText. The extra byte is used
for the leading length byte.

One other thing you can do with text in a variable text box
is to “pre-select” all or a portion of it. Selected text is high-
lighted in white letters on a black background and is deleted
and replaced when you type a character from the keyboard
other than RETURN or a modifier key. If the text box con-
tains a default string, you will probably want to select the
entire string. That way, the default will disappear when the
user types a character to change the entry; assuming, of
course, that if the user changes even one character, he's
likely to be entering a whole different response. This is usu-
ally a valid presumption.

To select text, use _SellText:

MOVE.L itemHandle(AS),-(SP) ;Handle to text item
MOVE #1,-(SP) ;Item number

MOVE #0,-(SP) ;Starting char. position
MOVE #241,-(SP) ;Ending char. position
_SellText

The starting and ending position parameters passed to
_SellText run from zero up to the maximum size of the text
string. A zero value refers to a position to the left of the first
character, one refers to the left of the second character, and
so on. If the starting and ending positions are equal, a blinking
vertical bar appears at that position. Typed characters are
inserted at this point.

The settings of control items such as check boxes and
radio buttons can be read and changed using _GetCtlValue
and _SetCtlValue. Since check boxes and radio buttons are
either on or off, their settings are either zero or one.

To use _GetCtiValue or _SetCtlValue you must first obtain
the handle to the check box or radio button. To do this, use
_GetDItem. _GetCtlValue returns the current value of the
control item so you can tell if it is on or off.

Dialogs and Alerts 375

CLR -(SP) ;Space for result
MOVE.L itemHandle(AS),-(SP) ;Handle to control item
_GetCtlHandle

MOVE (SP)+,D0 ;on if DO=1

You will use the _SetCtlHandle instruction to take care of
selecting and disabling check boxes and radio buttons. For
example, if you click the mouse in a check box, you will want
to turn it on (put an X in it) using the following instructions:

MOVE.L itemHandle(AS),-(SP) ;Handle to control itenm
MOVE #1,-(SP) ;New value (l=on)
_SetCtlvalue

Remember to follow the Macintosh user interface conven-
tions when enabling radio buttons: Only one button in a group
can be selected at any given time. This means if a user clicks
the third button in a group of four, your program will have to
turn off the first, second, and fourth buttons, and turn on the
third button. To do this, you have to make four calls to
_SetCtlValue.

Using Dialog Boxes

The proper way to handle a dialog box once it's on the
screen depends on whether it is a modal or modeless dialog
box. Let's begin by considering modal boxes and then move
on to explore modeless boxes.

Modal Dialog Boxes

As soon as you display a modal dialog box on the screen
with _NewDialog or _GetNewDialog, you must call _Modal-
Dialog to monitor events within the box and get a result
indicating what item was selected. You can then deal with
the result as you see fit before calling _ModalDialog once
again to get more input or to dismiss the dialog box. To dis-

376 Mac Assembly Language

miss it, call _HideWindow to erase it from the screen. (See
Chapter 6 for a description of this instruction.) Or use _Dis-
posDialog or _CloseDialog to erase it and free up the heap
space it uses (more on these two instructions later in this
section).

A program subroutine that implements a simple two-button
dialog box is shown in Listing 8-1. It uses _GetNewDialog to
create a dialog box defined in a DLOG resource file.

Listing 8-1. The Source File, Linker Control File, and
RMaker File for the Modal Program.

; Asm Source File
; Modal.Asm

; This is an example of how to use modal dialog boxes.

ApplelID EQU i) ;Menu ID for Apple Menu
FilelD EQU 2 ;Menu ID for File Menu
WindID EQU 128 ;Window ID
ModalID EQU 128 ;Modal Dialog ID
INCLUDE ToolEqu.D ;Toolbox equates
INCLUDE QuickEqu.D ;QuickDrav equates
INCLUDE SysEqu.D ;Operating system equates
INCLUDE Traps.D ;Trap instructions

; Initialize the various Managers:

PEA -4 (RS) ;Start of QuickDraw globals
_InitGraf ;Initialize QuickDraw
_InitFonts ;Font Manager

_InitWindows ;Window Manager

_InitMenus ;Menu Manager

_TEInit ;TextEdit

MOVE.L #0,-(SP) ;(no restart procedure)
_InitDialogs ;Dialog Manager
_InitCursor ;We want arrow cursor

MOVE.L #$D000FFFF,DO
_FlushEvents ;Get rid of every event

; Create and draw a window on the screen:

Listing 8-1. continued

CLR.L
MOVE

-(SP)
#WindID, - (SP)
MOVE.L #0,-(SP)
MOVE.L #-1,-(SP)
_GetNewWindow
_SetPort

; Create two standard menus:

CLR.L - (SP)

MOVE #ApplelD, - (SP)
_GetRMenu

MOVE.L (SP)+,AppleH(AS)
CLR.L - (SP)

MOVE #FileID, - (SP)
_GetRMenu

MOVE.L (SP)+,FileH(AS)

; Add menus to menu bar:

MOVE.L AppleH(AS),-(SP)

MOVE #0,-(SP)
_InsertMenu

MOVE.L FileH(AS),-(SP)

MOVE #0,-(SP)

_InsertMenu

_DrawMenuBar

BSR DoDialog
MainLoop

BSR GetEvent

BSR HandleEvent

BRA MainLoop
GetEvent

CLR.B -(SP)

MOVE #-1,~-(SP)

Dialogs and Alerts

;Space for returned pointer
;Resource ID

;Store on heap

;-1 = front window

;Get window from resource file
;Make window the active GrafPort

;Space for handle

;Menu ID number

;Get Menu from resource file

;Save menu handle

;Space for handle

;Menu ID number

;Get menu from resource file
;Save menu handle

7(0 = add to end)
;Add to menu bar

3 (0 = add to end)
+Add to menu bar

;Display menu bar

;Leave space for Boolean result
;Allow all events

377

378 Mac Assembly Language

Listing 8-1. continued

PEA EventRecord ;Results are returned here
_GetNextEvent ;Check for an event

TST.B (sp)+ ;Pop and test the result code
BEQ GetEvent ;Branch if null event

RIS

* Draw a dialog box on the screen and handle it:

DoDialog
CLR.L -(SP) ;Space for result
MOVE #ModalID,-(SP) ;Resource ID of template
MOVE.L #0,-(SP) ;0 = storage on heap
MOVE.L #-1,-(SP) ;-1 = window at fromnt

_GetNewDialog ;Create the dialog
MOVE.L (SP)+,DialogPtr(AS) ;Save dialog pointer

BSR DoDefault ;Highlight default button
DialogLoop
MOVE.L #0,-(SP) ;No filter procedure
PEA itemNumber(AS) ;Item number returned here
_ModalDialog ;Get user input
CMP #1,itenNunber(AS) ;"You Bet!" button?
BEQ DialogErase ;Yes, so remove dialog
MOVE #60, - (SP) ;One-second (b0 tick) beep
_SysBeep
BRA DialogLoop ;And try again
DialogErase

MOVE.L DialogPtr(AS),-(SP)
_Disposbialog ;Get rid of dialog box
RTS

* DoDefault draws a three-pixel wide border around the
* default button in a dialog box. (The button must be the
* first item.) The border is separated from the button

Listing 8-1. continued

* rectangle by a one-pixel gap.

DoDefault

* % ¥ *

PER 0ldPort
_GetPort

Dialogs and Alerts

;VAR result
;Get current drawing window

MOVE.L DialogPtr(AS),-(SP)

_SetPort

;Make dialog active for drawing

MOVE.L DialogPtr(AS),-(SP) ;Dialog pointer

MOVE #1,-(SP)

PEA itenType
PEA itemHndl
PER itemRect
_GetDItenm

PER itemRect

MOVE #-4,-(SP)
MOVE #-4,-(SP)

_InsetRect

MOVE #3,-(SP)
MOVE #3,-(SP)

_PenSize

PEA itenmRect
MOVE #1b, - (SP)
MOVE #1b,-(SP)
FrameRoundRect

MOVE.L O0ldPort,-(SP)

SetPort

RTS

HandleEvent

;Item #1

;VAR item type

;VAR item handle

;VAR item rectangle

;Get item info

;VAR item rectangle

;Expand left/right 4 pixels
;Expand top/bottom 4 pixels
;Calculate new rectangle

;Pen width
;Pen height
;Set new pen size

;VAR item rectangle
;Width of corner oval
;Height of corner oval
;Draw dark border

;Restore original drawing window

HandleEvent is the event dispatcher. It takes the event

type code returned by _GetNextEvent and calls the subroutine
that handles it. Access to the event handling subroutines is
through a 1t entry jump table.

379

380 Mac Assembly Language

Listing 8-1. continued

MOVE EventRecord+evtNum,DO

CMP #8,D0 ;Event 9-15?
BHI Ignore ;Yes, so ignore
ASL #2,D0 ;Iwo shifts = times 4

JHP JunpTable(PC,D0D) ;Jump to handler

Ignore RTS
JumpTable
JNP Ignore ;Null event (never used)
JNP DoMouseDown ;Button-down
JMP Ignore ;Button-up
JMP DoKeyDown ;Key-down
JMP Ignore s Key-up
JHP DoKeyDown ;Auto-key
JHP DoUpdate ;Update
JMP Ignore ;Disk-inserted
JMP DoActivate ;Activate
DoKeyDown
RTS
DoUpdate
RTS
DoActivate
RTS
DoMouseDown
CLR -(SP) ;Space for result

MOVE.L EventRecord+evtMouse,-(SP) ;Where
PEA WindowPtr(AS)

_FindWindow ;Where was button pressed?
MOVE (SP)+,D0 ;Get result

CMP #InMenuBar,DO ;Pressed in menu bar?

BEQ QuitCheck ;Yes, so check it out

RTS ;Ignore everything else

; See if "QUIT" was selected from File menu:

QuitCheck

Dialogs and Alerts

Listing 8-1. continued

MOVE.L #0O,-(SP) ;result = menu/item selected
PEA EventRecord+evtMouse ;Where

_MenuSelect ;Get menu selection

MOVE (SP)+,MenuNum(AS) ;Save menu number

MOVE (SP)+,D0 ;Discard item number

MOVE #0,-(SP)
HiliteMenu ;Remove highlight from menu title

CMP #FileID,MenuNun(AS) ;In the FPILE menu?
BNE GetEvent

* Must have selected QUIT command, so return to Finder by
* popping the subroutine return address before RIS. (We

* could also return just by executing an _ExitToShell

* instruction.)

MOVE.L (SP)+,DD ;Pop the return address (long!)

RTS ;Return to Finder

; Record for _GetNextEvent:

EventRecord DCB.B EvtBlkSize,0 ;Reserve space for record
oldPort DC.L 0 ;Window ptr for _GetPort
itenType DC 0 ;Iten type for _GetDItenm
itemHndl DC.L 0 ;Iten handle for _GetDItem
itemRect DCB.W 4,0 ;Dialog rectangle for _GetDItenm

; Here are the program globals. Use (AS5) addressing.

AppleH DS.L 1 ;Handle to Apple menu
FileH DS.L 1 ;Handle to File menu
WindowPtr DS.L 1 ;Pointer to window
MenuNum DS.W 1 ;Menu number selected
DialogPtr DS.L 1 ;Pointer to dialog record

itemNumber DS.W 1 ;Item number for modal dialog

381

382 Mac Assembly Language

Listing 8-1. continued

; Linker Control File
; Modal.Link

; Link this file to create application
; (without resources).

Modal
$

RMaker Source File
Modal.R

The next command appends the resources to the application:

*
*
*
* Compile this after assembling and linking Modal.Asm
%
*
!Book:Modal

Type MENU
'1 ; sResource ID
14 ;3Title is the Apple symbol (ASCII $14)
Rbout this demo... ; ;About box
/2 ; sResource ID
File ;i Menu Title

Quit ;;0nly item is "Quit"
Type WIND
(128 ; sResource ID
Modal Dialog Demo ;;Title for Window
40 5 332 s0e ;;Window coordinates (TLBR)
Visible NoGoRway ;3Visible window/ no goaway box
4 ;iWindow ID. 4 = title, no grow box
0 ;iUser-definable item (not used)
Type DLOG ; ;Modal Dialog
1128 ; sResource ID

s No title

100 100 200 3S0 ;s TLBR
VN ;3Visible, No Goaway

1 ;;Standard dialog box type

Dialogs and Alerts 383

Listing 8-1. continued

0 ; ;User-definable (not used)
128 ; sResource ID of DITL resource
Type DITL ;;Item list for DLOG (128)
+128 ; sResource ID

3 s sNumber of items

Button ;;Button (item #1 - default)
&0 20 90 90

OK

Button ;;Button (item #2)

&0 135 90 205

No Way!

Static Disabled ;;Static text item (item -3 - disabled)
20 30 40 400

Do you want to continue?

To use _ModalDialog, first push the pointer to a filter pro-
cedure, then the address of the variable in which an item
number is to be returned:

MOVE.L #0,-(SP) ;No filter procedure
PEA itenNumber(AS) ;Item number variable
_ModalDialog

ItenNumber DS.W 1 ;Item number returned here

A filter procedure is a subroutine that _ModalDialog calls
after it detects an event but before it responds to it. This lets
you modify the effect of events any way you want. If you're
not using a custom filter procedure (the usual case), just
push a long word zero on the stack. This invokes the stan-
dard filter function, converting the press of the RETURN or
ENTER key to a mouse click in the first item in the dialog box.
In typical applications, the first item will be a button. See

384 Mac Assembly Language

Inside Macintosh for the technical specifications of a dialog fil-
ter procedure.

When _ ModalDialog takes over, it handles any update
events related to the dialog (caused when a control item like
a button or a check box changes value), and monitors all
events until an active item is selected. It beeps if the mouse is
clicked outside the dialog window and ignores all clicks inside
the window if they're not also inside the display rectangle of
an enabled item. Button-down events in control items like
buttons and check boxes are monitored until the button is
released; if the mouse is not in the control at the end of the
click, the click is ignored.

When _ModalDialog finishes, the itemmNumber variable con-
tains the number of the item selected. With one exception,
disabled items cannot be selected, so this number corre-
sponds to an active item. The exception occurs when you use
the standard filter procedure and RETURN or ENTER is
pressed: in this situation, _ModalDialog always returns a one
even if the first item is disabled. The first item should always
be an enabled button, however.

In the subroutine in Listing 8-1, the dialog is erased and dis-
posed of with a call to _DisposDialog if the first button is
clicked (the “You Bet!” button). If the other button is clicked,
the speaker beeps for one second and the subroutine calls
_ModalDialog again. _ModalDialog does not report clicks in
the text item because it is marked as disabled in the resource
file.

Listing 8-1 also shows how to highlight the default button
(the first item). The DoDefault subroutine uses _GetDitem
to determine the bounding rectangle for the button item,
extends this rectangle by four pixels in all directions using
_InsetRect with negative parameters, then draws a dark
border around the new rectangle with a three-pixel wide
pen.

The action a program takes when _ModalDialog returns a
result depends on the type of item selected. If it was a check
box, the box should be checked if it was previously disabled
or vice versa. If it was a radio button, the radio button should

Dialogs and Alerts 385

be selected and all other radio buttons in the group should be
disabled.

When a button is selected, you will normally erase the dia-
log window from the screen. See the following section,
Removing Dialog Boxes From the Screen, for instructions on
how to do this.

Key-down events are processed by _ModalDialog only if
there is a variable text box in the dialog. If the text box is
enabled, its item number is returned after every key press. If
it’'s not, no item number is returned, but you can still edit the
string in the text box. It's probably best to disable text boxes
so you don’t have to keep looping back to _ModalDialog after
every key press. Instead, after a button is pressed to dismiss
the dialog, you can use _GetlText to determine the final
value of the text string.

The TAB key is used to move the text insertion cursor from
one variable text box to the next. If you're in the last text box
when you press TAB, you will proceed to the first text box.

Button-down events in a variable text box are automati-
cally handled by _ModalDialog in a manner consistent with
the Macintosh user interface guidelines for text selection.
That is, if the mouse is clicked, a blinking cursor appears and
subsequent keystrokes are inserted at that point. If the
mouse is dragged, a highlighted selection area appears that
can be deleted by pressing the key for the next character to
be inserted or the DELETE key. Later on in this chapter you’ll
see an example of how to manipulate items in a dialog box.

Modeless Dialog Boxes

A modeless dialog box is a bit more difficult to handle than a
modal dialog box. When it is on the screen, the user is not
restricted from performing other operations like moving to
another window or selecting a desk accessory, before dis-
missing it to remove it from the screen. In this respect it's
simply like any other standard window. Unlike a modal dialog
or an alert, it does not retain control until you select an active

386 Mac Assembly Language

item. You simply feed it events one at a time and it returns a
Boolean result that tells you whether the event related to the
dialog box or not. :

The Macintosh toolbox does make it somewhat easier to
deal with a modeless dialog box than a window, however.
Whenever your program calls _GetNextEvent and detects an
event has occurred, it should call _IsDialogEvent to deter-
mine whether the event relates to the modeless dialog box.

CLR.B - (SP) ;Space for Boolean result

PEA EventRecord ;_GetNextEvent record

_IsDialogEvent

MOVE.B (SP)+,DO ;Pop true/false result
EventRecord DCB.B EvtBlkSize,0 ;_GetNextEvent's record

If the result is false, the event was not dialog-related and
can be processed as usual. If the result is true, you must-
immediately call _DialogSelect to handle the event.

CLR.B - (SP) ;Space for Boolean result
PEA EventRecord ;_GetNextEvent record (constant)

-

PEA DialogPtr(AS) ;Dialog pointer (variable)

PEA itemNumber ;Item number (constant)

_DialogSelect

MOVE.B (SP)+,DD ;Pop the result
itemNumber DC.W 0 ;Item number returned
DialogPtr DS.L 1 ;Pointer to dialog record

__DialogSelect takes the event, processes it, and returns a
Boolean result indicating whether it related to an enabled dia-
log item. If the result is false, it didn't, and you don't have to
do anything further. _DialogSelect always returns a false
value if you pass it a window update, deactivate, or activate
event; these events are processed internally.

If the result is true, the itemNumber and DialogPtr vari-
ables will contain the number of the item selected and a
pointer to the active dialog record. You can then deal with
the result in the same way you deal with a result returned by

Dialogs and Alerts 387

a call to _ModalDialog for a modal dialog box. _DialogSelect
always returns a true result in situations where _ModalDia-
log would have reported an item-related event to you.

Drawing Within Dialog Boxes

You can also display text and graphics within a dialog box
using the same instructions used with ordinary windows.
(See Chapter 6.) Before drawing, however, make the dialog
box the active drawing window using the _SetPort
instruction.

If you erase items within a dialog box, you can redraw them
by pushing the pointer to the dialog window on the stack and
calling _DrawnDialog. You must do this because erasing does
not cause an update event that will be dealt with during the
next call to _ModalDialog.

Removing Dialog Boxes From the Screen

When a dialog box is dismissed, you can use _HideWindow
to make it invisible with these instructions:

MOVE.L DlogPtr(AS),-(SP) ;Pointer to dialog
_HideWindow

If you want to make it visible again later, use _ShowWindow,
by passing it the same dialog pointer on the stack.

When you're through with a dialog box for good, erase it
from the screen, remove it from the list of active windows
maintained by the Macintosh operating system, and free up
the memory it occupies.

The method of erasing depends on how you created the
dialog in the first place. If you told the toolbox to automati-
cally allocate storage for the dialog record on the heap, use
__DisposDialog. This frees up all storage associated with the
dialog, including the space used by the item list template rec-

388 Mac Assembly Language

ord. (Recall if you pass a pointer of zero to the dialog record
that _NewDialog or _GetNewDialog requires, the toolbox
automatically allocates storage space on the heap for the dia-
log record.)

If you passed your own pointer to the ‘'space for the dialog
record, use _ CloseDialog instead. This will free up the space
associated with the various fields in the dialog record, except
the item list record. The dialog record itself is not affected.
To free up the spaces used by the item list and dialog
records, use _DisposPtr. (See Chapter 4.)

Both _CloseDialog and _DisposDialog require only one
parameter to be passed on the stack: The pointer to the dia-
log window be destroyed.

A Dialog Box Program

The program in Listing 8-2 shows how to create the dialog
box shown in Figure 8-3. This box is made up of nine items:
one button (the default item), an variable text box, three
radio buttons, a check box, and three static text items. The
static text and variable text items are disabled, so _ModalDi-
alog will not return a result when they are clicked, or if text is
entered. When the button is clicked to dismiss the dialog, the
final value of the variable text string is displayed in the active
window.

Listing 8-2. The Source File, Linker Control File, and
RMaker File for the Items Progranm.

; Asm Source File
; Items.Asnm

; This is an example of how to manipulate items in dialog boxes.

AppleID EQU 1 ;Menu ID for Apple Menu
FileID EQU 2 ;Menu ID for File Menu
WindID EQU 128 ;Window ID

DialogID EQU 129 ;Dialog ID

Listing 8-2. continued

INCLUDE ToolEqu.D
INCLUDE QuickEqu.D
INCLUDE SysEqu.D
INCLUDE Traps.D

Dialogs and Alerts

;Toolbox equates
;QuickDraw equates
;Operating system equates
;Trap instructions

; Initialize the various Managers:

PER -4(AS)
InitGraf
InitFonts
InitWindows
_InitMenus
_TEInit

MOVE.L #0,-(SP)
_InitDialogs
InitCursor

MOVE.L #$0000FFFF,DO

_FlushEvents

;Start of QD globals area
;Initialize QuickDraw
;Font Manager

;Window Manager

;Menu Manager

;TextEdit

;(no restart procedure)
;Dialog Manager

;We want arrow cursor

;Get rid of every event

; The resources are in a separate resource file so that we
; don't have to re-Asm and re-Link every time we fiddle
H

with a resource:

CLR - (SP)
PEA 'Items.Rsrc!
_OpenResFile

MOVE (Sp)+,D0

; Create and draw a window on the screen:

CLR.L —(SP)

MOVE #WindID, - (SP)

MOVE.L #0,-(SP)
MOVE.L #-2,-(SP)
_GetNewWindow

;Space for returned pointer
;Resource ID

;Store on heap

;-1 = front window

;Get window from resource file

; The next step is very important. It ensures that our new
; window is the active port, so we can draw in it.

389

390 Mac Assembly Language

Listing 8-2. continued
_SetPort ;Make window current GrafPort

; Create two standard menus:

CLR.L -(SP) ;Space for handle
MOVE #AppleID,-(SP) ;Menu ID number
_GetRMenu ;Get Menu from resource file
MOVE.L (SP)+,RppleH(AS);Save menu handle
CLR.L —-(SP) ;Space for handle
MOVE #FileID,-(SP) ;Menu ID number
GetRMenu ;Get menu from resource file

MOVE.L (SP)+,FileH(AS) ;Save menu handle
; Add menus to menu bar:

MOVE.L AppleH(AS),-(SP)

MOVE #0,-(SP) ;(0 = add to end)

_InsertMenu ;Add to menu bar

MOVE.L PileH(AS),-(SP)

MOVE #0,-(SP) ;(0 = add to end)
_InsertMenu ;Add to menu bar
_DrawMenuBar ;Display menu bar

CLR.L - (SP) ;Space for result

MOVE #DialogID, - (SP) ;Resource ID of template
MOVE.L #0,-(SP) ;0 = storage on heap
MOVE.L _ #-1,-(SP) ;-1 = window at front
_GetNewDialog ;Create the dialog

MOVE.L (SP)+,DialogPtr(AS) ;Save dialog pointer

BSR DoDefault ;Highlight default button

* Set the states of all the control items. Their values are all
* zero at the beginning, so we only have to change those that
* are non-zero.

MOVE #4,DS ;Item 4 (1200 baud)
MOVE #1,D6 ;Value = 1 (on)
BSR SetIStatus ;Highlight radio button

Listing 8-2. continued

MOVE
MOVE
BSR

#6,DS
#1,Db
SetIStatus

Dialogs and Alerts

;Item b (check box)
;on
;Put X in box

* Select the entire variable text string. The selected text is
* marked by the following _ModalDialog instruction.

;It's iten #2

;Start at beginning!

;End at end! (241 is max size)
;Do the selection

;No filter procedure
;Item number returned here
;Get user input

itemNumber(AS),DS ;Put item number in DS

;0K button?
;Yes, so we're all done

;Check box

MOVE.L DialogPtr(AS),-(SP)
MOVE #2,-(SP)
MOVE #0,-(SP)
MOVE #241,-(SP)
_SellText

DialogLoop
MOVE.L #0,-(SP)
PEA itenNumber(AS)
_ModalDialog
MOVE
CMP #1,DS
BEQ DialogExit
CMP #6,DS
BNE @1

;No, so branch

* Toggle the state of the check box by changing it to O
* if it is 1 or to 1 if it is D using EOR.

BSR GetItemInfo
CLR -(SP)

MOVE.L itemHndl,-(SP)
_GetCtlvValue

MOVE (SP)+,Db

EORI #1,Db

BSR SetIStatus

BRA DialogLoop

;Space for result

;Read value for check box
;Get result (0 or 1)

;Flip bit O (contains value)
;Renove the X
;Back to dialog!

391

392 Mac Assembly Language

Listing 8-2. continued

* The only other possibilities are the three radio buttons
* (3, 4, S). First turn them all off, then turn on the one
* that was selected:

(@ MOVE

MOVEQ
MOVEQ

@2 BSR
ADDQ
cMpP
BNE

MOVE
MOVEQ
BSR
BRA

DialogExit

DS, D? ;Save item # in D? for now
#3,D5 ;Start with item 3
#0,D6 ;0 = off

SetIStatus

#1,DS ;Move to next item #
#b6,DS ;Past the end?

@2 ;No, so branch

D?,DS ;Get item # back
#1,Db 71 = on

SetIStatus

DialogLoop ;Back to dialog

* Read the value of the variable text box item:

MOVEQ #2,DS ;Variable text item

BSR GetItemInfo ;Get item attributes
MOVE.L itemHndl,-(SP) ;Handle to text item

PEA theText ;VAR the text string
_GetIText ;Read string into theText

MOVE.L DialogPtr(AS),-(SP)
_DisposDialog ;Get rid of dialog box

* Display the text string

MOVE
MOVE

_MoveTo

PEA

#25,-(SP)
#25,-(SP)
;Position the pen

'The text entered was...

Dialogs and Alerts 393

Listing 8-2. continued

_Drawstring

PEA theText
_DrawString

JHP MainLoop ;All done.

* Here are the subroutines used in this example:

* GetItemInfo gets the properties of the dialog item whose

* number is in D5. The handle to the dialog must be stored at

* DialogPtr. The results are returned in the constants itemType,
* itemHndl, and itemRect.

GetItenInfo

MOVE.L DialogPtr(AS),-(SP)

MOVE D5, - (SP) ;Item number

PEA itemType ;VAR item type

PEA itemHndl ;VAR item handle

PERA itemRect ;VAR item rectangle
_GetDItenm ;Get attributes of itenm
RTS

SetIStatus sets the value of a control item. On entry, DS.W
contains the item number and Db.W contains its value. The
pointer to the dialog must be in the DialogPtr variable.

Buttons, check boxes, and radio buttons can be set to one
of two values: off (0) or on (1).

Note that _SetCtlValue causes an update event for the dialog
window handled by _ModalDialog.

L R BEE R K R R R

SetIStatus
BSR GetItemInfo ;Get item attributes
MOVE.L 1itemHndl,-(SP) ;Push handle to item

MOVE Db, - (SP) ;0=0ff, l=on
_SetCtlValue ;Set new value

394 Mac Assembly Language

Listing 8-2. continued

RTS

* DoDefault draws a three-pixel wide border around the default
* button in a dialog box. (The button must be the first item).
* The border is separated from the button rectangle by a

* one-pixel gap.

DoDefault

PER 0ldPort ; VAR result
_GetPort ;Get current drawing window

MOVE.L DialogPtr(AS),-(SP)
SetPort ;Make dialog active for drawing

MOVE.L DialogPtr(AS),-(SP) ;Dialog pointer

MOVE #1,-(SP) ;Item #1

PEA itemType ;VAR item type

PEA itemHndl ;VAR item handle

PEA itemRect ;VAR item rectangle
_GetDItenm ;Get item info

PEA itenRect ;VAR itenm rectangle

MOVE #-4,-(SP) ;Expand left/right 4 pixels
MOVE #-4,-(SP) ;Expand top/bottom 4 pixels
_InsetRect ;Calculate new rectangle
MOVE #3,-(SP) ;Pen width

MOVE #3,-(SP) ;Pen height

_PenSize ;Set new pen size

PEA itemRect ;VAR item rectangle

MOVE #1b, - (SP) ;Width of corner oval

MOVE #1b,-(SP) ;Height of corner oval
_FrameRoundRect ;Drav dark border

MOVE.L O0ldPort,-(SP)
SetPort ;Restore original drawing window

RTS

Listing 8-2. continued

* Constants and variables:

oldPort DC.L 0
itemType DC 0
itemHndl DC.L 0
itemRect DCB.W 4,0
theText DCB.B 242,0
DialogPtr DS.L 1
itemNumber DS.W 1

* The common code begins here:

MainLoop

BSR GetEvent
BSR HandleEvent

BRA MainLoop
GetEvent

CLR.B - (SP)

MOVE #-1, -(SP)

PEA EventRecord

_GetNextEvent

MOVE (SP)+, DD
BEQ GetEvent
RTS

Dialogs and Alerts

;Window ptr for _GetPort

;Iten type for _GetDItenm

;Iten handle for _GetDItem
;Dialog rectangle for _GetDItem

;Variable text item

;Dialog pointer
;item number selected

;Leave space for Boolean result
;Allow all events

;Results are returned here
;Check for an event

;Pop the result code

;Branch if null event

HandleEvent is the event dispatcher. It takes the event type

handles it. Access to the event handling subroutines is

*
* code returned by _GetNextEvent and calls the subroutine that
*
*

through a 16 entry jump table.

HandleEvent

MOVE EventRecord+evtNum,DO

cup #6,D0
BHI Ignore
ASL #2,D0

;Get event code
;Event 9-15?

;Yes, so branch

;Two shifts = times 4

395

396 Mac Assembly Language

Listing 8-2. continued

JHP JunpTable(PC,D0D) ;Jump to handler

Ignore RTS
JumpTable
JNP Ignore ;Null event (never used)
Jup DoMouseDown ;Button-down
JHP Ignore ;Button-up
JHP DoKeyDown ;Key-down
J¥pP Ignore ;Key-up
JHP DoKeyDown ;Auto-key
JMP DoUpdate ;Update
JMP Ignore ;Disk-inserted
JHPp DoActivate ;Activate
DoKeyDown
RIS
DoUpdate
RTS
DoActivate
RTS
DoMouseDown
CLR -(SP) ;Space for result

MOVE.L EventRecord+evtMouse,-(SP) ;Where
PEA WindowPtr(AS)

_FindWindow ;Where was button pressed?
MOVE (Sp)+,D0 ;Get result

CHMP #InMenuBar,D0 ;Pressed in menu bar?

BEQ QuitCheck ;Yes, so check it out

RTS ;Ignore everything else

; See if QUIT was selected from File menu:

QuitCheck

MOVE.L #0,-(SP) ;Result = menu/item selected
PEA EventRecord+evtMouse ;Where

Dialogs and Alerts
Listing 8-2. continued
_MenuSelect ;Get menu selection
MOVE (SP)+,MenuNum(AS) ;Save menu number
MOVE (SP)+,D0 ;Discard item number
MOVE #0,-(SP)
_HiliteMenu ;Remove highlight from title

CHP #FileID,MenuNum(AS) ;In the FILE menu?
BNE GetEvent

; Must have selected QUIT command, so return to Finder by
; popping the subroutine return address before RTS. (You
; could also return just by executing an _ExitToShell

; instruction.)

MOVE.L (SP)+,DD ;Pop the return address (long!)
RTS ;Return to Finder

; Record for _GetNextEvent:

EventRecord DCB.B EvtBlkSize,0 ;Reserve space for record

; Here are some globals. Use (AS) addressing.

MenuNum DS.W 1 ;Menu number selected
AppleH DS.L 1 ;Handle to Rpple menu
FileH DS.L 1 ;Handle to File menu
WindowPtr DS.L 1 ;Pointer to window

Linker Control File
Items.Link

Link this file to create application
(without resources).

Items
$

397

398 Mac Assembly Language

Listing 8-2. continued

*
* Items.R
*
*
*
*

Itens.Rsrc

Type MENU

/1

\14

About this demo...

,E
File
Quit

Type WIND
1128

Dialog Items Demo
40 5 332 s02
Visible NoGoAway
4

0

Type DLOG
(229

75 81 225 431
VN

1

0

129

Type DITL
,129
q

Button
120 310 140 340
OK

RMaker Source File

Compile this after assembling and linking Items.Asm

The next command creates a separate resource file:

; ;Resource ID
;1Title is the Apple symbol (ASCII $14)
; sAbout box

; ;Resource ID
;i Menu Title
;;0nly item is Quit

; sResource ID

;;Title for Window

;;Window coordinates (TLBR)
;3Visible window/ no goaway box
;sWindow ID. 4 = title, no grow box
;;User-definable item (not used)

;;Modal Dialog

; ;Resource ID

;iNo title

s +ILBR

;s Visible, No Goaway
;1Standard dialog box type
;;User-definable (not used)

; sResource ID of DITL resource

;;Item list for DLOG (129)
; sResource ID

; ;Number of itenms

;iButton (item #1 - default)

Dialogs and Alerts

Listing 8-2. continued

EditableText Disabled ;;Variable text box (disabled)
40 130 S& 280
b87-7144 ;:The text

Radio
70 120 86 160
300 ;7300 baud nmessage

Radio
70 185 86 235
1200 ;71200 baud message

Radio
70 260 86 310
2400 ;2400 baud message

Checkbox
100 110 116 215
Capture Text

StaticText Disabled
10 70 26 320
\14 COMMUNICATIONS PRRAMETERS \14

StaticText Disabled
40 10 56 110
Phone Number

StaticText Disabled
70 10 8k 95
Baud Rate

399

The dialog box is created and displayed in the usual way,
using _GetNewDialog. The DoDefault subroutine presented
in the previous programming example is then called to high-

light the default button.

Before calling _ModalDialog to monitor user input, the
application sets the states of all the control items and selects
the entire variable text string. Since this is done after display-
ing the dialog box on the screen, the box appears to flicker

400 Mac Assembly Language

% COMMUNICATIONS PARAMETERS &

Phone Number

Baud Rate (300 @ 1200 O 2400

[Capture Texut

Figure 8-3. The Dialog Box Created by the Program in Listing 8-2.

slightly as the active control items are highlighted and the
text is selected during the first call to _ModalDialog. You can
eliminate the flicker by defining the dialog box as Invisible in
the resource file; _GetNewDialog will create it but not display
it. After adjusting the controls and text to the appropriate
values, you can use _ShowWindow to display the dialog box
window in its complete starting form. Remember from Chap-
ter 6, _ShowWindow requires a pointer to a window record
that is equivalent to the dialog pointer returned by
_GetNewDialog as a parameter.

All the control items are initially off, as they always are
right after a dialog box is loaded from a resource file. To indi-
cate that the “1200 baud” radio button is the default, it is
turned on by calling the SetlStatus subroutine.

SetIStatus expects the item number in D5 and its value in
D6. It first calls the application’s GetltemInfo subroutine to
get the properties of the item, then it sets the value using
_SetCtlValue. (GetltemiInfo uses _GetDIltem to determine
the item type, handle, and bounding rectangle.) This call
causes an update event for the dialog window that is handled
during the text call to _ModalDialog. It is handled by drawing
a small black circle inside the active radio button. Once the

Dialogs and Alerts 401

proper radio button has been turned on, the check box is
turned on using the very same technique.

The last preliminary step is to highlight the text in the vari-
able text box. This is done to ensure that the whole entry will
be deleted if the user starts entering a new phrase. To
ensure that the whole string is selected, selection endpoints
of O and 241 are pushed on the stack; the maximum length of
this type of item is 241 characters.

The application then calls _ModalDialog to request input
from the user. If the dialog button is clicked, control passes to
DialogExit where the final value of the text string is loaded
into theText. Notice how this is done: GetltemlInfo is called to
get the handle to the text item, which is then passed to
_GetlText to create a standard text string preceded by a
length byte. DialogExit next disposes of the dialog box with
__DisposDialog before displaying the text on the screen with
__DrawsString.

If the user selects the check box item, its value is toggled
by calling _GetCtlValue to get its current value, flipping bit
zero, where the value is kept, with an EORI #1,D6 instruc-
tion, then calling the SetIStatus subroutine to record the
change.

If one of the three radio buttons is clicked, they are first all
turned off and then the selected one is turned on. This
ensures that only one item in the related group of radio but-
tons is on at any given time, as required.

Notice that the technique used to create this application is
slightly different than usual. If you examine the source listing
for the RMaker file, you will notice that the resources are
stored in a separate file called Items.Rsrc—they are not
appended to the application file. (The application opens this
file with a _OpenResFile instruction.) This was done to help
speed up the development process. If changes are made to
the resources (to reposition the items in the alert box or
change their rectangles, for example), all you need to do to
incorporate the changes is run RMaker once again; there is
no need to assemble and link again because the application
file is not affected. Of course, once you’re satisfied the

402 Mac Assembly Language

resources are in final form, you can append them to the appli-
cation file to avoid having to open the resource file explicitly
or running the risk of forgetting to copy the resource file
when you make a copy of the application.

Creating Alert Templates

The standard toolbox instructions for creating and display-
ing alert boxes insist that a template describing the form of
the box be stored in a resource file. The resource type for an
alert template is ALRT.

As usual, you can use RMaker to create ALRT resources.
The form of the source statements is as follows:

TYPE ALRT
1128 ;;resource ID of this ALRT
35 35 300 300 ;salert rectangle (TLBR)
128 ;sresource ID of DITL (item list)
DDDD ;istages word (must be hexadecimal)

Just like a DLOG resource, an ALRT resource refers to a
DITL item list resource containing descriptions of the items to
be displayed in the alert box. Your alert boxes should only use
static items like text, icons, pictures, or simple buttons. Con-
trol items such as radio buttons and check boxes should not
be used as they are not meaningful in an alert box
environment.

One important parameter in an ALRT resource is the
stages word. It defines the behavior of the alert in each of .
four different stages. When you use the alert box for the first
time, it enters the first stage. As you keep calling it up, it pro-
gresses through the second, third, and fourth stages, in that
order. Thereafter, the alert box always behaves as if it was
in the fourth stage.

The stage number minus one of the last alert box is always
stored in the global variable ACount. The resource ID of the
alert is stored in ANumber. Both these numbers are words. If

Dialogs and Alerts 403

13 11 [3

1 1 1 1 1 1] 1 1 1 L 1
stage 4 stage 3 stage 2 stage 1
1 1 1 1 1 1 1 1 1 1 1 1

sound4 (0 to 3)

boxDrwn4 (1 = draw box)
(0 = don"t draw)

—— bolditm4 (1 = Cancel button is default)
(D = OK button is default)

Figure 8-4. The Stages Word in an ALRT Resource.

you want to change the stage of an alert box, place the stage
number, minus one, in ACount. Store minus one there if you
want the first stage to be used the next time the alert box is
called up.

Each of the four four-bit groups in the stages word define
the characteristics of one stage. The high-order four bits con-
trol the fourth stage and the low-order four bits control the
first stage. The characteristics associated with each stage
are: what the default button is to be, what sound is to be
emitted, and whether the alert box is to be drawn.

For a given stage, the first two bits (O and 1) contain a sound
number from zero to three. In most cases, this represents the
number of times the speaker is to beep when an alert is called
up at that stage level. It is possible to invoke a custom sound
procedure that interprets these numbers differently, however.
See Inside Macintosh for details of how to do this.

The next bit (bit 2), boxDrwn, indicates whether the alert
box is to be drawn on the screen. You will usually set this bit
to one (display the box), but it can be set to zero if you don’t
want the alert to be displayed at that stage level.

The last bit (bit 3), boldltm, controls which of two buttons
is to be the default button. The default button is the one
selected when RETURN or ENTER is pressed from the key-

404 Mac Assembly Language

board. If the bit is set to zero, the first button (usually an OK
button) is the default; if it is one, the second button (usually a
Cancel button) is the default.

In most applications you will probably want all stages to be
equivalent, so all four fields will be the same. For example, if
you want to beep the speaker once, display the alert box,
and make the Cancel button the default button, use a stages
word of $DDDD. For each stage this sets the sound number
to 01 (one beep), the boxDrwn bit to 1 (draw the box), and
the bolditm bit to 1 (the default is Cancel).

Using Alert Boxes

Alert boxes are very easy to use because all screen and
event activities are handled by a single instruction that cre-
ates the alert record, draws the alert box and its items, inter-
prets events until an active item is selected, erases the alert
from the screen, and then disposes of any memory used by
the alert record. The instruction returns the item number
selected. All you have to do is monitor this result and take
whatever action is appropriate. Compare this with dialog
boxes where you have to use different instructions to create
and dispose of the dialog.

There are four standard toolbox instructions you can use to
display an alert box on the screen: _Alert, _NoteAlert, _Cau-
tionAlert, and _StopAlert. They all use the same calling
sequence:

CLR -(SP) ;Space for result

MOVE #133,-(SP) ;ALRT Resource ID

MOVE.L #0,-(SP) ;Filter procedure pointer

_Alert ;or _NoteAlert, _CautionAlert
; or _StopAlert

MOVE (SP)+,D0 ;Get item number selected

The pointer to a filter procedure is similar to the one
described earlier for dialog boxes. Pushing a zero value tells

Dialogs and Alerts 405

the toolbox to use the standard filter procedure. It converts a
RETURN or ENTER keypress into the click of the default but-
ton in the alert box.

The only difference between the four alert box instructions
is the icon they display in the top left-hand corner of the box.
_Alert displays no icon at all. The icons displayed by the other
instructions are shown in Figure 8-5.

B e
T sw

Figure 8-5. The Standard Alert Box Icons.

The coordinates of the top left-hand corner of an icon used
by _NoteAlert, _CautionAlert, and _StopAlert are (10,20).
Since an icon is 32-pixels square, don’t define item rectangles
that overlap the square whose corner points are (10,20) and
42,52).

Once _Alert, or its three relatives, take control, mouse
clicks are handled just like _ModalDialog handles them. That
is, mouse clicks outside the alert box produce error beeps,
and clicks in disabled items are ignored.

Chapter 9

Supporting Desk
Accessories

Everyone who uses the Macintosh soon comes to appreciate
the desk accessories (DAs). Desk accessories, as you know,
are small utility programs that are always there when you
need them. While you’'re in the middle of a brainstorming ses-
sion with an application, you can put it on hold and quickly call
up a DA by selecting its name from the standard Apple menu.
When you're through with the DA, you can return to the appli-
cation and continue to use it as if you had never left it.

Some familiar desk accessories are the Scrapbook, Alarm
Clock, Note Pad, Calculator, Key Caps, Control Panel, and
Puzzle, some of which are shown in Figure 9-1. There are doz-
ens of others you can purchase from independent publishers
and add to the System program or your own applications.

It is important to realize that applications do not automati-
cally support desk accessories. It is up to you, when writing
an application, to include the instructions needed to activate
them when appropriate events occur, and to switch between
them and your application. In this chapter you'll see what
these instructions are and how to use them. These instruc-
tions make up the Macintosh Desk Manager and are summa-
rized in Table 9-1.

406

Control Panel

AppleTalk
(O Connected
(@ Disconnected |

Desktop Pattern

|
- ﬂﬁﬂ

Rate of Insertion
Point Blinking

Mouse Tracking
2=

i
YO *m@ *0O

Your Double-Click Speed

|
@]0)

Slow Fast

£

Mouse

Speaker
Yolume

O

Tablet

[z=K] §)

Delay until Repeat

0O O®@OO0

Off Long Short

RAM
Cache

@)
2.0 On Off

Key Repeat Rate

0O00®0O

Slow Fast

Figure 9-1. Some Macintosh Desk Accessories.

Table 9-1. Desk Manager Trap Instructions.

_CloseDeskAcc Closes a desk accessory and
removes its window from the
screen.

MOVE #refNum,-(SP) ;INTEGER: reference number
_CloseDeskAcc

__OpenDeskAcc Opens a desk accessory and

passes control to it.
CLR -(SP) ;INTEGER: space for result
PEA accName ;STRING: name of DA to open
_OpenDeskAcc
MOVE (SP)+,D0O ;Result is a reference number

408 Mac Assembly Language

Table 9-1. continued

_SysEdit Passes a standard editing
command—undo, cut, copy, and
clear—to a desk accessory for
processing.

CLR.B -(SP) ;BOOLEAN: space for result
MOVE #editCmd,-(SP) ;INTEGER: command number
_SysEdit

MOVE.B (SP)+,DO ;Result: true = DA handled it

H false = DA ignored it

The editing command numbers are O (undo), 2 (cut), 3 (copy), 4
(paste), and 5 (clear).

_SystemClick Processes a button-down event
in a desk accessory window.

PEA EventRecord ;POINTER: to the event record
MOVE.L theWindow,-(SP) ;POINTER: to window record
;returned by _FindWindow
_SystemClick
_SystemTask Allows a desk accessory to
perform a periodic function.
_SystemTask ;D0 parameters

Adding Desk Accessories to a Menu

A user cannot select a desk accessory unless its name
appears in a menu at the top of the screen. By convention,
the names of all the desk accessories available to an applica-
tion are to be placed in a menu whose title appears on the
left-hand side of the menu bar. Again, by convention, the title
for this menu is the Apple symbol (ASCII code 20).

All desk accessories are stored in resource files and have
resource types of DRVR. You can use _ AddResMenu to add

Supporting Desk Accessories 409

their names to an Apple menu created with _GetRMenu or
_NewMenu. (See Chapter 7.) All you need to do is execute
these three instructions once you've created the menu:

MOVE.L MenuH1(AS),-(SP) ;Handle to "RApple" menu
MOVE.L #'DRVR',-(SP) ;Resource type code
_AddResMenu

MenuHl, the handle to the Apple menu, is the variable in which
the handle returned by _ NewMenu or _GetRMenu is stored
when you first create the menu. For convenience, you should
only use _AddResMenu after you've added application-spe-
cific items to the Apple menu using _ AppendMenu. The two
standard items you will normally add are an About... item and
a dimmed dashed line item. The dashed line acts as a physical
separator between your own special items and the general
desk accessory items.

Putting it all together, here is a subroutine to create an
Apple menu containing an About... item, a dashed line, and
the names of every desk accessory in the System file, your
program file, or any other open resource file:

CLR.L -(SP) ;Clear space for handle
MOVE #1,-(SP) ;Menu ID = 1
PEA MlName ;Title (Apple symbol)
_NewMenu ;Create the Apple menu
MOVE.L (SP),-(SP) ;Make copy of handle
PEA 'Rbout This Demo...;(-' ;Names of first two items
_AppendMenu ;Add them to the menu
MOVE.L #'DRVR',-(SP) ;Resource type code
_hddResMenu ;Add accessory names
RTS

MlNanme DC.B 1,20 ;Length + RApple symbol

Notice that | pushed on the stack a second copy of the han-
dle returned by _ NewMenu. The first is eventually popped by
the _AppendMenu instruction and the second by
_AddResMenu.

410 Mac Assembly Language

You can further simplify this procedure by creating a MENU
resource file that already includes the About... item and the
dimmed dashed line. In this case, the subroutine you would
use looks like this:

CLR.L - (SP) ;Space for handle
MOVE #128, - (SP) ;Resource ID of MENU
_GetRMenu ;Get the menu

MOVE.L (SP),MenuH1(AS) ;Save menu handle
MOVE.L #'DRVR',-(SP) ;Resource type code
_AddResMenu ;Add accessory names
RTS

You can omit the fourth instruction if you won’t be needing
the menu handle later on in your program.

Opening Desk Accessories

While your program is running and the Apple menu is ena-
bled, a user can open a desk accessory by pulling down the
Apple menu and selecting the DA by name. For this to be pos-
sible, however, your program must react in the usual way to
button-down events in the menu bar.

After calling _FindWindow and determining that a button-
down event has occurred, call _MenuSelect to determine the
menu ID and the number of the item selected. If the menu ID
isn't that of the Apple menu, you can process the event in the
usual way. If the Apple menu was involved, however, check
to see if the item number is that of a desk accessory. If
you've followed the suggestions in the previous section and
created a menu beginning with two custom items, menu IDs
of three or higher refer to desk accessories.

To pass control to a desk accessory, push a pointer to its
name and call _OpenDeskAcc. To determine what its name
is, use the _Getltem instruction to convert the item number
to an item name:

Supporting Desk Accessories 411

MOVE.L MenuHndl(AS),-(SP) ;Handle to Apple menu

MOVE #4,-(SP) ;Item number (assume 4)

PEA DAName ;Location for name

_GetIten ;Get the name

CLR -(SP) ;Clear space for result

PEA DAName ;Pointer to name

_OpenDeskAcc

MOVE (SP)+,DARef(AS) ;Save DA reference #
DAName DCB.B 16,0 ;Name of DA (length+1S)
MenuHndl DS.L 1 ;Handle to Apple menu
DARef DS 1 ;DA reference #

Since the name of a DA cannot exceed 15 characters, 16
bytes are reserved for DAName (the extra byte is for a pre-
ceding length byte).

You will not usually need to use the reference number
returned by _OpenDeskAcc. It must be pushed on the stack
before calling _CloseDeskAcc to close a desk accessory and
remove it from the screen, but this operation is normally han-
dled for you by the desk accessory itself when you click its
close box. You may, however, want to close a desk accessory
from your application if the Close item is selected from the
standard File menu while a desk accessory window is active.

When you pass control to the desk accessory with
_OpenDeskAcc, the DA takes over and performs its duties
until you tell it you want to return to the main application.
Exactly how you return depends on the accessory. Some-
times you must click a close box to dismiss the DA entirely;
other times you can click your application’s window to acti-
vate it and deactivate the accessory window. If you use the
latter method, the window for the DA still appears on the
screen, and if you click it the DA becomes active again.

Desk Accessories and Mouse Clicks

As you saw in Chapters 4 and 6, when an event loop in your
program detects a button-down event, you usually call

412 Mac Assembly Language

_FindWindow to determine what part of the screen was
clicked. If the number returned by _FindWindow is InSys-
Window, a desk accessory window (also called a system win-
dow) was clicked. This type of window is created when you
open a desk accessory and remains on the screen until you
click the close box of the DA’s window.

It is very easy to handle a click in a desk accessory window.
Simply make a call to _SystemClick as follows:

PEA EventRecord ;record for _GetNextEvent
MOVE.L theWindow(AS),-(SP) ;Pointer to window
_SystemClick

EventRecord is the record filled in by the call to _cetNextEvent that
returned the button-down event. The variable thefindow con-
tains the pointer to the window in which the mouse was
clicked and is returned by _ FindWindow.

_SystemClick passes the click to the desk accessory so it
can deal with it as follows:

® If the desk accessory window is not active, it is activated and a
deactivate event is posted for the currently active window.

® If the desk accessory is already active and the click is in a close
box, _SystemClick calls _TrackGoAway to see if the acces-
sory window should be closed.

® If the desk accessory is already active and the click is in the
title bar, _SystemClick calls _ DragWindow so the window can
be moved.

® Clicks in the content region of an accessory window are han-
dled in a manner dictated by the desk accessory.

Upon return from _SystemClick, return to your event loop
to get the next event to be processed.

Desk Accessories and Editing

Many desk accessories use the standard text-editing com-
mands described in the Macintosh user-interface guidelines:
undo, cut, copy, paste, and clear. A little support from the

Supporting Desk Accessories 413

application is needed before they will work properly, however.
In particular, your application must always include a standard
Edit menu in the menu bar. It must be the third menu in the
bar, and the ordering of the items must be as follows:

Undo
(A disabled item)
Cut

Copy
Paste
Clear

Just before you open a desk accessory by calling
_OpenDeskAcc or reactivate it with _SystemClick, you
should ensure that all these editing commands are enabled
using _Enableltem so they will be available when the acces-
sory gains control. When the application takes over once
again, you can disable any items that have no meaning to
your application.

When a standard editing command is selected from the Edit
menu, call _SysEdit to give a desk accessory a chance to
claim it.

CLR.B -(SP) ;Space for result

MOVE #2,-(SP) ;Iten number minus 1
_SysEdit

TST.B (SP)+ ;Test and pop the result
BEQ YouEdit ;Branch if not claimed
BRA EventLoop ;Go get next event

Notice that the item number passed to _SysEdit is one less
than the item number returned by _ MenuSelect. The
_SysEdit item numbers for the standard editing commands
are as follows:

Undo O
Cut 2
Copy 3
Paste 4
Clear 5

414 Mac Assembly Language

Do not try to pass any other numbers to _SysEdit.

If the editing command is not claimed, the result is false and
the BEQ branch will succeed, then control passes to YouEdit
so that your application can deal with it. If the desk accessory
did handle the editing command, you have nothing to do, so
you can go get another event.

You don't have to pass to _SysEdit editing commands
entered using keyboard equivalents. When a desk accessory
is active it automatically detects and processes keyboard
editing commands itself.

Periodic Functions of Desk Accessories

Some desk accessories are designed to periodically per-
form certain activities. Examples of such time-dependent
activities are the blinking of the Note Pad’s cursor, displaying
the current time by the Alarm Clock, and updating the key
cap display by the Key Caps accessory.

Before a desk accessory can perform these periodic func-
tions, however, your program must call the _SystemTask
instruction at least once every timer tick. If you don’t, the
accessory will be totally inactive while your application is in
control. For this reason, you should place the _SystemTask
instruction in any event loops used by your program. It's also
a good idea to call it periodically during any lengthy process-
ing operations. _SystemTask requires no parameters.

Initializing Toolbox Managers

Even though your application may not use certain toolbox
Managers, such as the Dialog Manager or TextEdit, for
example, it should initialize them in case they're needed by a
desk accessory. You will encounter no difficulties if you use
the standard initialization header referred to in Chapter 2.

Supporting Desk Accessories 415

Some desk accessories may also need to insert a new
menu in the menu bar. For this reason, you should always
leave space for the addition of one menu to your application’s
menu bar.

An Application Program Supporting Desk
Accessories

The program in Listing 9-1 illustrates how to write an appli-
cation that supports desk accessories. It illustrates how to
write a program that must work even when there is more
than one window on the screen. The program creates a sim-
ple Apple-File-Edit menu bar, adds all available desk acces-
sory items to the Apple menu, and then lets you switch
between an application window and any open desk accesso-
ries in the usual way. To keep you posted on what's going on,
it also displays an appropriate message in the application win-
dow: “I'm not active” (when the window is deactivated), “I'm
active” (when it's activated), “Window needs updating”
(when an update event occurs), or “Keyboard not sup-
ported” (when a key-down event occurs).

Listing 9-1. The Source File, Linker Control File, and
RMaker File for the Accessory Program.

* Asm Source File
* Accessory.Asm
*
*

This program shows how to develop an application
* that works with desk accessories.

MenuBarID EQU 128 ;Menu Bar resource ID
AppleID EQU 1 ;Menu ID for Apple menu
FileID EQU 2 ;Menu ID for File menu
EditID EQU 3 ;Menu ID for Edit menu

WindID EQU 128 ;Window resource ID

INCLUDE ToolEqu.D ;Toolbox equates

416 Mac Assembly Language

Listing 9-1. continued

INCLUDE QuickEqu.D ;QuickDraw equates
INCLUDE SysEqu.D ;Operating system equates
INCLUDE Traps.D ;Trap instructions

; Initialize the various Managers:

PEA -4 (AS) ;Start of QD globals area
_InitGraf ;Initialize QuickDraw
_InitFonts ;Font Manager
_InitWindows ;Window Manager
_InitMenus ;Menu Manager

_TEInit ;TextBdit

MOVE.L #0,-(SP) ;(no restart procedure)
_Initbialogs ;Dialog Manager
_InitCursor ;We want arrow cursor

MOVE.L #$0000FFFF,DO
_FlushEvents ;Get rid of every event

; Create and draw a window on the screen:

CLR.L -(SP) ;Space for returned pointer
MOVE #WindID,-(SP) ;Resource ID

MOVE.L #0,-(SP) ;Store on heap

MOVE.L #-1,-(SP) ;-1 = front window
_GetNewWindow ;Get window from resource file
MOVE.L (SP),OurWindow(RS) ;Save window pointer
_SetPort ;Window ptr already on stack

; Read Apple, File, Edit menu bar from MBAR resource, then
; make it current using _SetMenuBar:

CLR.L -(SP) ;Space for result

MOVE #MenuBarID, - (SP);Push resource ID
_GetNewMBar

_SetMenuBar ;Handle already on stack

* Add desk accessory names to Apple menu:

CLR.L -(SP) ;Space for result
MOVE #AppleID, - (SP) ;Menu ID for Apple menu

Listing 9-1. continued

_GetMHandle
MOVE.L (SP),AppleH(AS)
MOVE.L #'DRVR',-(SP)
_AddResMenu
_DrawMenuBar
MainLoop
BSR GetEvent
BSR HandleEvent
BRA MainLoop
GetEvent
_SystemTask
CLR.B - (SP)
MOVE #-1,-(SP)
PEA EventRecord
_GetNextEvent
TST.B (SP)+
BEQ GetEvent
RTS

Supporting Desk Accessories 417

;Return menu handle on stack
;Save it for later

;DAs are DRVR resources

;Put them in Apple menu

;Display menu bar

;Let DAs do periodic functions
;Leave space for Boolean result
;Allow all events (-1 = $FFFF)
;Results are returned here
;Check for an event

;Pop and test the result code
;Branch if no pending event

* HandleEvent is the event dispatcher. It takes the event type
* code returned by _GetNextEvent and calls the subroutine

* that handles it. BAccess to the event handling subroutines is
* through a jump table arranged in event type code order.

HandleEvent
MOVE EventRecord+evtNum,DD ;Get event type code
CHP #8,D0 ;Events 9_15?
BHI Ignore ;Yes, so branch and ignore
ASL #2,D0 ;Times 4 to index into table
JMP JumpTable(PC,D0) ;Jump to handler

Ignore RTS

JumpTable
JMP Ignore ;Null event (never used)
JMP DoMouseDown ;Button-down

418 Mac Assembly Language

Listing 9-1. continued

JHP Ignore ;Button-up

JHP DoKeyDown ;Key-down

JMP Ignore ;Key-up

JMP DoKeyDown ;Auto-key

JNP DoUpdate ;Update

JMP Ignore ;Disk-inserted
JHP DoActivate ;Activate

DoKeyDown

MOVE BventRecord+evtMeta,D0 ;Get modifiers word
BTST #CndKey,DO ;Is command key bit on?
BNE CommandTest ;Yes, so branch

BSR ClearWindow

MOVE #30,-(SP)

MOVE #30,-(SP)

_MoveTo

PEA 'Keyboard not supported!
_DrawString

MOVE.L oldPort,-(SP)
_SetPort

RTS ;Ignore other keystrokes

; Check for COMMAND key (might be a-key equivalent for menu)

CommandTest
CLR.L -(SP) ;Space for result
MOVE EventRecord+evtMessage+2,—(SP) ;Push character
_MenuKey ;Get menu information
JHP Menul

; In a typical program, you would handle update events by

; redrawing what was previously erased by calling _BeginUpdate,
; redrawing, then calling _EndUpdate. Here, I don't keep track

; of what's on the screen so I just clear the screen and display
; a message. _BeginUpdate and _EndUpdate are first called

; back-to-back to prevent the same update from begin reported

; again.

Supporting Desk Accessories

Listing 9-1. continued

DoUpdate

; These

MOVE.L OurWindow(AS),DO ;Move into DO for CMP
CMP.L EventRecord+evtMessage,DD0 ;Our window?
BNE @1 ;No, so branch

two instructions empty the update region:

MOVE.L OurWindow(R&S),-(SP)
_BeginUpdate

MOVE.L OurWindow(AS),-(SP)
_EndUpdate

BSR ClearWindow

MOVE #30,-(SP)

MOVE #30,-(SP)

_MoveTo

PEA 'Window needs updating'
_DrawString

MOVE.L oldPort, - (SP)

_SetPort
@ RTS
DoActivate

MOVE.L OurWindow(AS),DO ;Move into DO for CMP
CMP.L EventRecord+evtMessage,DD your window?
BNE @1 ;No, so branch

MOVE EventRecord+evtMeta,D0 ;Get modifiers word
BIST #ActiveFlag,DO ;Is activate bit set?
BEQ DeActivate ;No, so branch

BSR ClearWindow

MOVE #30,-(SP)
MOVE #30, - (SP)
_MoveTo

PEA 'I'm active!!
_DrawString

419

420

Mac Assembly Language

Listing 9-1. continued

MOVE.L oldPort,-(SP)

_SetPort
@1 RTS
Deactivate
MOVE.L OurWindow(AS),-(SP)
_SetPort ;Select our port for drawing
BSR ClearWindow
MOVE #30,-(SP)
MOVE #30,-(SP)
_MoveTo
PEA 'I'm not active!!
_DrawString
MOVE.L oldPort,-(SP)
_SetPort
RTS
DoMouseDown
CLR -(SP) ;Space for result
MOVE.L EventRecord+evtMouse,-(SP) ;Where
PEA WindowPtr ;VAR window selected
_FindWindow ;Where was button pressed?
MOVE (SP)+,DD ;Get result
CMP #6,D0 ;Result above b6?
BHI @1 ;Yes, so branch
ASL #2,D0 ;Times 4 to step into table
JMP ClickTable(PC,DD)
@1 RTS ;Ignore everything else

; Jump table to the seven click-handling subroutines:

ClickTable

JNP DeskTop ;In the desktop

Supporting Desk Accessories
Listing 9-1. continued
JHP Menu ;In the menu bar
JMP Systen ;In DA window
JMP Content ;In Content region
JNP Drag ;In Drag region
JMP Grow ;In Grow box
JMP GoAway ;In Close box
GoAway
RTS
Grow
RTS
Drag
RTS

; The click was in the content region of a window (and must be

; ours). Make sure it's selected using _SelectWindow to generate
; an update event. (Normally you would only do this if the

; window was not already selected.)

Content
MOVE.L WindowPtr,-(SP)
_SelectWindow ;Select the window
RTS

System
PER EventRecord
MOVE.L WindowPtr,-(SP)

_SystemClick ;Handle click in DA window
RIS

DeskTop
RTS ;Ignore-clicks in desktop

* Handle clicks in the menu bar:

Menu
CLR.L -(SP) ;Space for result
MOVE.L EventRecord+evtMouse,-(SP) ;where?
_MenuSelect

421

422 Mac Assembly Language

Listing 9-1. continued

Menul MOVE.L (SP)+,DO ;Pop the result
TST.L DO ;Is DO=0 (no selection)?
BNE @l ;No, so branch
RIS

SWAP DO swaps the high word of DO with the low word. This
means the low word contains the menu number and the high
word contains the item number.

s we we

@l SWAP 1]
CMP.W #FileID,DO
BEQ DoFileMenu

;Is it the File menu?
;Yes, so branch

CMP.W #ApplelD,DO
BEQ DoAppleMenu

;Is it the Apple menu?
;Yes, so branch

You must be in the Edit menu. Pass the standard editing
commands to the desk accessory.

.
’
.
’

CLR.B - (SP) ;Space for result

SWAP DO ;Item # in low word

SUBQ #1,D0 ;Reduce by 1 for _SysEdit

MOVE DO, - (SP) ;Push item #

_SysEdit

MOVE.B (SP)+,DD ;Pop Boolean result

BNE @2 ;Branch if accessory handled it

BSR FixTitle

RTS ;We don't support editing!
@2 BSR PixTitle

RTS

Handle the Apple menu by passing control to a DA if the item
number is greater than 2.

s we

DoRppleMenu
SWAP pli] ;Get item number in DO.W
CMP.W #2,DD ;Is it a DA?
BHI @1 ;Yes, so branch

BRA FixTitle ;No, so branch

Supporting Desk Accessories

Listing 9-1. continued

@l MOVE.L AppleH(AS),-(SP)
MOVE DO, - (SP) ;Push menu item number
PEA DAName ;sVAR name of DA
_GetItenm ;Get name of accessory
CLR -(SP) ;Space for result
PEA DAName ;Name of accessory
_OpenDeskacc ;Pass control to DA
MOVE (SP)+,D0 ;Pop the result
PixTitle
MOVE #0,-(SP)
_HiLiteMenu ;Return menu title to normal
RTS

; Handle the File menu (only a Quit item):

DoFileMenu
SWAP Do ;Get item # in low word
CMP.W #1,DO ;Is it 1st item (Quit)?
BEQ @l ;Yes, so branch
RTS ; (should never get here)
@l BSR FixTitle ;Remove highlight from title

; Return to Pinder the easy way using _ExitToShell. You don't

-

have to pop any pending subroutine return addresses if you do
; this.

_ExitToShell

; ClearWindow erases our window. The dimensions of the window
; are located at position 1t from the start of the window record
; (a variable called portRect).

ClearWindow

PEA oldPort
_GetPort ;Get current drawing port
MOVE.L OurWindow(AS),-(SP)

423

424 Mac Assembly Language

Listing 9-1. continued

_SetPort ;Make our window current
MOVE.L OurWindow(AS),AD ;Ready for indirect access
PEA PortRect(AD) ;Address of port rectangle
_EraseRect

RTS

; Application constants:

EventRecord DCB.B EvtBlkSize,0 ;Space for event record
WindowPtr DC.L 0 ;Pointer to window

DAName DCB.B 16,0 ;Space for DA name string
oldPort DC.L 0 ;Currently active drawing port

; Here are the program globals. Use (AS) addressing.
OurWindow DS.L 3 ;Pointer to our window

AppleH DS.L 1 ;Handle to Apple menu

; Linker Control File
; Accessory.Link

Link this file to create application
3 (without resources).
Accessory

RMaker Source File
Accessory.R

The next command appends the resources to the application:

*
*
%
* Compile this after assembling and linking Accessory.Asm
*
*
!Book:Accessory

Type MBAR = GNRL ; ;Menu bar resource
1128 ; sResource ID
I ;;Decimal integers follow

Supporting Desk Accessories

Listing 9-1. continued
3 ; sNumber of menus
1 5+ ID of 1lst menu
e +3ID of 2nd menu
3 53ID of 3rd menu
Type MENU
11 ; sResource ID
\14 ;;Title is the Apple symbol (ASCII $14)
About this demo... ;s ;About box
(_
2 ; sResource ID
File ;i Menu Title
Quit ;;0nly item is Quit
/3 ; sResource ID
Edit s Menu Title
Undo ;;Standard Edit menu
(_
Cut/X
Copy/C
Paste/V
Clear
(...
Type WIND
,128 ; ;Resource ID
DA Demo ;;Title for Window
100 S 332 502 ;;Window coordinates (TLBR)
Visible NoGoRAway ;;Visible window/ no goaway box
4 ;;Window ID. 4 = title, no grow box
0 ; ;User-definable item (not used)

Let’s take a closer look at the program to see how it sup-
ports desk accessories. First of all, a menu bar with two
menus is loaded from the application file’s resource fork using
_GetNewMBar. To add the names of the desk accessories
(DRVR resources) to the Apple menu using _ AddResMenu,
we first need to know the handle to the Apple menu—this is
obtained using the _GetMHandle instruction.

426 Mac Assembly Language

To allow any DA to perform a periodic function associated
with it, the program includes the _SystemTask instruction in
the GetEvent subroutine that forms part of the main event
loop. If you remove this instruction, the Alarm Clock won’'t
keep ticking, the cursor in the Note Pad won’t blink, and so
on.

When a key-down event occurs, control passes to
DoKeyDown, which clears the application window and uses
__DrawsString to display the “Keyboard not supported” mes-
sage. Notice that the window clearing subroutine,
ClearWindow, first uses _GetPort to save the pointer to the
active drawing window (it may be a desk accessory win-
dow), then uses _SetPort to select the application window.
When _DrawString finishes, the application calls _SetPort
again to restore the original drawing window. It is important
not to permanently switch to the application window
because such an action may take the DA by surprise.

Update events occur when a desk accessory is moved
aside to expose a new portion of the application window;
they are handled by the code beginning at DoUpdate. In a
complete application, you would redraw the portion of the
window previously overlaid by the DA window. This means
you have to keep track of what is in the window at all times.
This application simply erases the window and displays a
“Window needs updating” message. Notice that before it
does this it calls _BeginUpdate and _ EndUpdate to empty
the window's update region. If you don’t do this, the operat-
ing system will post the same update event again and again.

Activate and deactivate events are handled in the usual
way, beginning at DoActivate. The only concern is remem-
bering to use _SetPort to select the application window for
drawing. .

When handling button-down events you must be more con-
cerned with the possibility that desk accessories are present.
First of all, a call to _FindWindow may indicate the mouse
was clicked in a system window: If it was, control passes to
the System subroutine that calls _SystemClick to let the DA
handle the click as it sees fit.

Supporting Desk Accessories 427

Clicks in the content region of the application window are
handled by the Content subroutine. It selects the application
window using _SelectWindow to bring it to the front of the
screen, causing an update event to be posted in the event
queue. It also removes the highlighting from the active DA
window, if necessary. In a complete application you would
probably call _SelectWindow only if the window is not already
active. You can see if it's active by comparing the pointer
returned by _GetPort with the OurWindow variable.

If there is a button-down event in the menu bar and an item
is selected from the Apple menu, control passes to DoAp-
pleMenu. This subroutine checks to see if a DA was selected
by comparing the item number returned by _ MenuSelect
with two (the first two items are an About... item and a
dimmed line). If the item number is greater than two, it's time
to open the desk accessory with _OpenDeskAcc.

Recall, however, that _OpenDeskAcc requires the name of
the DA as a parameter, not a menu item number. To get the
name, the application uses _Getltem to read the item name
into DAName. DAName is 16 bytes long to accommodate the
maximum name size of 15 bytes and a leading length byte.

If an item in the Edit menu is selected, its item number
minus one is passed to _SysEdit, giving a DA a chance to per-
formm standard editing operations. If _SysEdit returns a
Boolean false result, the application should deal with the edit
command itself; here, it just ignores it.

A

The ASCII Character Set

*

Appen

Second Hex Digit
2 345 6 789 ABCDEF

Oolg|~|e|o] I|o lalx|agdO(0O|0
olo AlZzlc |le |o|o|E|@|ldW|lalala
Ol |(n|Z]|=|E|~| = #|SGle|(OlO|O
aolal ~lv|=]|-|=]—|m]|= ez |O|O|0O
Ooagl+|~|¥|—|lx|—~|w|le|~|a|lae|O|O]|O
Oolol + 2(N|=N|o|o|E = Oo|a|o
O|l=|o|=|>|=|>w|e|e|g| :|O|O|O
O0|l=|e|=|x|ls|x|®|e|@|E|A|=0O|0O
Oolal- |[~|lo|=8|o|3|e|le|lalwWw|¥|e|OO
O|0|e|v|w|=2|=]|a|=2c|e|e| |+ OO
O|0|st|wn|w|os|e|a|=|=|e| =~ OO
O|le|T|a|-|O|=Z|=|w|¥|-|-|O|O
Ole|ltmo|lv|oc|e|w|=la|~|%]= |OO
Oy]|: |[n|la|je|lal=]|w|=|le|w| r|lz |O|O
O(®|=|—|=|=|e|o|e|a|e |+~ OO
0O o|lg|a]|, |a|x=|lal- |]|~ |O|O
C = N Mg OO OOO W WL

B X =

£33

Note: The characters shown are those defined in the system font

resource. The characters used in other fonts may be

different.

428

Appendix B

Finding, Fixing, and
Avoiding Programming
Errors

The errors listed below are the ones you're most likely to commit
while developing 68000 assembly language programs on the Macin-
tosh. To avoid them, follow the suggestions given.

Improperly managing the stack. This is probably the most
common cause of programming errors on the Macintosh and
invariably leads to the unwelcome appearance of the fatal
bomb alert. Before calling a Macintosh trap instruction, make
absolutely certain its parameters are pushed on the stack in
the proper order, and that they are the proper size. For func-
tions, also remember to push space for the result and to pop
the result from the stack on return from the trap instruction.

Referring to unavailable resources. Make sure any
resource you use in an application is either in the System file,
has been appended to the application using the MDS !file-
name RMaker command or the MDS /RESOURCES Link com-
mand, or is in a resource file that has been specifically opened
by the application with _OpenResFile. If you try to use a
resource that is not active, your program will crash unless it
does proper error checking.

Redefining symbols and labels. Once a symbol has been
defined with the EQU directive, you cannot redefine it with-
out causing a “Multiply defined symbol” or “lllegal line” MDS
error. You will most often cause these errors by inadvert-
ently attempting to define a symbol in your main source code
file that is already defined in an included MDS equate text
(.txt) file or a packed symbol (.D) file, respectively. If a subse-

429

430 Mac Assembly Language

quently included .D file attempts to redefine an existing sym-
bol, no error occurs, but the new definition is ignored. You
can’t redefine instruction labels, either. If you do, you will
cause a “Multiply defined label” MDS error.

Using the d16(PC) addressing mode when trying to store a
value in the constant allocated with the DC directive. The
d16(PC) addressing mode cannot be used as a destination
operand, so use the following general instruction sequence to
change the value of a constant.

LEA MyConstant,AD ;MyConstant is same as MyConstant(PC)
MOVE #number, (R0) ;Store "number" in MyConstant

If a program must often write to constants, it's best to create
variables instead (using the DS directive) so that you can write to
them directly with a MOVE #number,label(A5) instruction.

Forgetting to append the (A5) mode designator to the name of
a variable allocated with the DS directive. If you define a vari-
able, say MyVariable, access it with an operand of the form
“MyVariable(A5)”, not “MyVariable” by itself. If you don't,
MDS uses the MyVariable(PC) addressing mode, which gen-
erates a completely different effective address, causing your
program to behave unpredictably.

Improperly using a Bcc (branch conditionally) instruction
after a CMP instruction. Remember that a CMP instruction
compares the destination operand with the source operand
to determine how to set the condition code flags, not the
other way around. For example, a BLS instruction that fol-
lows it will cause a branch to the target address if the desti-
nation is lower or the same (LS) as the source, not if the
source is lower or the same as the destination.

Improperly using the CMP instruction when the destination
operand does not use a register direct addressing mode. If the
destination operand for a CMP instruction is an operand other
than Dn or An, the source operand must use the immediate
addressing mode. CMP offset(A3),D3 is valid, but CMP off-
set(A3) ,myVariable(A5) is not. The only exception is the
CMPM (Ay) +,(Ax) + instruction.

Finding, Fixing, and Avoiding Programming Errors 431

Not preceding a string with a length byte. Most of the
string-handling toolbox subroutines insist the strings you
pass to them by address be preceded by a length byte. If you
define a string with:

DC.B 'This is a string!

the string is not preceded by a length byte unless the
STRING_FORMAT directive is set to 3 first. If you explicitly include
the length byte with:

DC.B 16,'This is a string!

make sure that STRING_FORMAT is set to 1 to prevent duplication
of the length byte.

Specifying an incorrect loop count when using the DBcc
instruction. The data register used as the counter in a DBcc
loop must hold the loop count minus one because looping ends
when the counter becomes minus one, not zero.

Specifying an explicit destination operand for the PEA instruc-
tion. The “push” in a PEA instruction is implicit, so you must
not use an instruction of the form “PEA theString, —(SP)".
The correct syntax is “PEA theString”.

Not specifying a disk prefix for files used by RMaker when
using MDS 1.0. Remember that the original version of
RMaker expects to find the file it is appending to (!filename),
or a file it is including (INCLUDE filename), on the same disk
as RMaker itself, even if the RMaker source file is on another
disk. In addition, if it creates a new file, it saves it on the
RMaker disk. To override this default behavior, use a file
name that includes a specific disk prefix.

Using the wrong operand size to access a field in a data rec-
ord. The Macintosh operating system uses a variety of
data structures, or records, made up of fields of byte, word,
or long word size. If you access a field, check that your oper-
and size is the same size as the field; if it's not, you won't
access the field properly. For example, the evtMessage field
of an event record is a long word; for a key-down event

432 Mac Assembly Language

the last byte in the field is the character code. To read its
value, use an instruction like MOVE.L EventRecord-+
evtMessage,DO and then isolate the low-order byte with an
AND.L #$FF,DO instruction. Don't use a MOVE.B EventRec-
ord + evtMessage,DO instruction because this loads only the
first byte of the evtMessage field into the last eight bits of
the DO register. For a key-down event, this number is
meaningless.

Forgetting the # when specifying an immediate operand. If
you forget to place a # in front of an immediate operand, the
assembler thinks you're referring to an address and assem-
bles the instruction using the absolute addressing mode. This
means the number acted on is the one stored at the address
given by the operand, not an immediate quantity. This error
most often occurs when you use symbolic names to refer to
immediate numbers. For example, the symbol IBeamCursor
refers to a constant, not an address, so use an operand of
the form #IBeamCursor in an instruction.

Reversing the order of instruction operands. Remember
that 68000 assemblers insist that the source operand be
specified before the destination operand. This error is com-
mon for those who also program in 8086 assembly language
on the IBM PC, where the opposite operand order is required.

Confusing the use of BHS/BGE, BHI/BGT, BLS/BLE, and
BLO/BLT. These Bcc instructions are most often used after
comparing the relative sizes of two numbers with a CMP
instruction. If the numbers being compared are unsigned
numbers, use the BHS (BCC), BHI, BLS, and BLO (BCS)
instructions only. If they are signed numbers, use their coun-
terparts BGE, BGT, BLE, and BLT instead.

Appendix C
The MacsBug Debugger

The MDS master disk contains two debuggers you can use to help
track down the source of programming errors that are not flagged
during the assemble/link process. These are errors caused by faulty
program logic or improper trap instruction calls rather than obvious
syntax errors.

The particular debugger described here is a single-Macintosh
debugger called xMacsBug. (The other, MacDB, requires two
Macintoshes linked together by a cable.) To install it, change its
name to MacsBug, put it in the System Folder of the disk (the one
containing System and Finder), then boot from the disk. When the
system starts up, the message “Macsbug installed” appears, veri-
fying that the debugger is available for use.

Macsbug is most useful for executing a program one instruction
at a time (a procedure called stepping) and for displaying the con-
tents of registers after each step. These features make it fairly
easy to determine whether your program is operating as expected
or, if it's not, where it begins to lose control, and why.

Invoking MacsBug

You can invoke MacsBug in two ways. The most common way is
to press the rear programmer’s switch on the left side of the Macin-
tosh (it's marked INTERRUPT) while the program you want to
inspect is running. The program itself can exit to MacsBug using the
__Debugger trap instruction.

When MacsBug takes over, it displays the contents of all the reg-
isters followed by a » prompt symbol. From here you can enter any
of a number of commands that MacsBug supports. We're only going
to look at a few of the commands here, but they are the most
important ones.

433

434 Mac Assembly Language

You may find that the disk drive may not stop whirring
after MacsBug takes over. To stop the internal drive,
enter the command DM DFF1FF right away; use DM
DFF3FF for the external drive.

Locating the Program

The first thing you will want to do is locate the interrupted pro-
gram in the application heap. Use the HD (Heap Dump) command
for this. HD analyzes the heap and displays the position and size of
each free (unused) block, pointer block, and handle block it con-
tains. Here is what the first part of a typical heap dump looks like:

0000CBOO

0000CB34 P 00000208 *

0000CC3C P 00000074 *

0000CCBO H 00OOOOOLA O 0OOOCCLE

0000CCCA B DDOOO1E2 E 0DOOCCLC * 20 D001 CODE

The first line contains the address of the base of the application
heap. The next four lines identify various blocks in the heap. The
first three items in each of these lines hold the following information
in the following order:

® the starting position of the block

® the block type code (P for pointer, H for handle, F for free)

® the size of the block (including Memory Manager overhead
bytes)

For handle blocks only, these three items are followed by a four-
bit hexadecimal digit describing the properties of the block. The
attribute bits are locked (bit 3), purgeable (bit 2), and resource (bit
1). Bit O is not used and is always zero. The long word that follows
the digit is the address of the master pointer to the block. (See
Chapter 4.)

Notice that an asterisk is used to identify any blocks that are
immovable, either because they are nonrelocatable or they are
relocatable but locked. Recall from Chapter 4 that pointer blocks
are always nonrelocatable.

The MacsBug Debugger 435

For blocks corresponding to resource files you will also see the
resource's reference number, ID number, and type code on the
right side of the line. A program is actually a CODE resource with a
resource ID of 1, so in the example the block containing the pro-
gram begins at $0000CCDA.

The program actually begins $0C bytes from the start of the
CODE block. The first $0C bytes are used by the Memory Manager
to keep track of the block and its properties.

Disassembling the Program

To verify that the CODE block does, indeed, hold the program,
disassemble the program using the IL (Instruction List) command.
To do this, enter a command of the form “IL addr” where addr rep-
resents the address at which the disassembly is to begin. IL dis-
plays 16 program lines in assembly language form, but without
symbolic labels. In our example, enter the command “IL CCD6” to
begin disassembling the program. ($CCD6 is the address of the
CODE block plus $0C. The preceding $ sign is optional.)

Standard names for 68000 instructions are shown in a disassem-
bled listing. ROM trap instructions are identified by the phrases
TOOLBOX $Axxx (user-interface toolbox instructions) or OSTRAP
$AxXxx (operating system instructions); their symbolic names are
displayed in the comment field of a line.

Subsequent presses of the RETURN key will disassemble the
next 16 lines in the program. You can also use IL to disassemble any
portion of the Macintosh ROM. You may want to do this to discover
how the toolbox and operating system subroutines really work.

Displaying and Setting Memory Locations

To display the contents of memory locations, use the DM (Display
Memory) command. The form of this command is:

DM [address [number 1] 1]

where the brackets are used to indicate that the parameters they
enclose are optional. Don't type the brackets when you enter the
command. DM displays the contents of number bytes of memory
beginning at address, in hexadecimal and ASCII form. If you don't

436 Mac Assembly Language

specify a number, 16 bytes are displayed. For example, if you enter
the command DM 2EO, you will see the following line:

000002ED 0646 GABE b46S 7220 2020 2020 2020 2020 .FINDER

The starting address is on the far left and is followed by the 16
bytes (arranged as eight words) storedin memory beginning at this
location. On the far right is the ASCIl character for each byte in the
line. If the byte is less than $20, a period is displayed instead. The
data stored at $2E0 is a string (preceded by a length byte) contain-
ing the name of the application launched when you execute an
__ExitToShell instruction.

Note that if you now press RETURN by itself, the next 16 bytes in
memory are displayed. This makes it easy to examine a range of
memory with a minimum of typing.

To store data in consecutive memory locations, use the SM
(Store Memory) command:

SM addr valuel [value2 ... valueN]

This command stores the specified values into memory beginning at
the location given by addr. It is useful for changing program con-
stants before running the program again.

Displaying and Setting Registers

To see what's in any of the 68000 registers after a program has
been interrupted, simply type the name of the register (D1 to D7,
A1 to A7, PC, SR) and press RETURN. To display the contents of all
the registers at once, enter TD (Total Display).

To change the contents of any register, follow the name of the
register with the value to be placed in the register. Do this to initial-
ize registers before calling a subroutine (with the G, GT, T, or S
commands) that expects parameters to be passed in registers.

Stepping and Tracing

To verify that a program is functioning properly, it is often conve-
nient to execute it one step at a time. After each step you can
check the values in the 68000 registers to see if everything is pro-
ceeding as expected.

The MacsBug Debugger 437

Use the T (Trace) command to execute the instruction pointed to
by the program counter. (Use the “PC value” command to change
the value in the program counter.) After execution, the next
instruction and the contents of all the registers are displayed. For
the purposes of the T command, a trap call is considered to be a
single instruction.

A similar command is S (Step), but it also steps through the ROM
subroutine called by a trap instruction. If you wish, you can follow
the S command with a number indicating the number of instructions
to step through before returning to the MacsBug command line.

Sometimes you don't want to step through a particular subrou-
tine or code segment line by line; you just want to execute it quickly
and examine the final results. To do this, use the GT (Go Till) com-
mand. The form of this instruction is:

GT addr

where addr is an address in the program. When the program
counter reaches the specified address, execution halts and
control returns to MacsBug.

Use the G (Go) command to begin executing a program at a cer-
tain address. The starting address is either the value in the program
counter or, if you specify an address after the G command, at that
address. Control returns to MacsBug if the program (or subroutine)
at the starting address ends with an RTS instruction. If it ends with
an _ExitToShell instruction, you will return to the Finder instead;
press the interrupt switch to return to MacsBug if this happens.

Leaving MacsBug

You can leave MacsBug in one of three ways:

RB—Reboot the system
ES—EXit to the shell program (usually the Finder)
EA—EXxit and relaunch the interrupted application

The last command, EA, is not available on versions of MacsBug
prior to version 5.0.

Appendix D
Utility Programs

There are many utility programs available to assist 68000 assembly
language programmers in program development. Some of the most
valuable are listed here.

ResEdit. Apple Computer, Inc., 20525 Mariani Ave., Cupertino, CA
95014, Tel: (408) 996-1010. This is Apple’s official resource editor.-
With it you can view and change the definition of any resource file
on a disk. This program comes with MDS (version 2.0 only), Apple's
periodic Software Supplements, and is available from many com-
mercial information utilities for no charge.

REdit. Apple Computer, Inc. Another of Apple’s resource editors,
developed by programmers at Apple France. It is included with
Apple's periodic Software Supplements and is available from many
commercial information utilities as well.

Fedit. Mac Master Software, #122 - 939 E. El Camino Real, Sun-
nyvale, CA 94087. A popular utility for snooping through files at the
disk block level. It is also useful for changing file attributes in a disk
directory, such as the bundle bit, and for recovering from disk
crashes.

Purge Icons. Author unknown. This program is available from
many bulletin boards and commercial information utilities. It
removes any unused ICON, BNDL, and FREF resources from a
disk’'s DeskTop file—these are associated with applications that
have been deleted from the disk. You will want to use it when
you're designing a custom icon for an application so that the Finder
will not keep using the original icon. (See Chapter 2.) It's also handy
for reducing the size of the DeskTop file.

Dialog Creator. Apple Computer, Inc. Another “visual resource
editor,” this one for defining dialog and alert boxes. It is included
with Apple’s periodic Software Supplement.

TMON. Icom Simulations, Inc., 626 Wheeling Rd., Wheeling, IL
60090, Tel: (312) 520-4440. This advanced, single-Macintosh
debugger is more powerful and more useful than the MacsBug
debugger that comes with MDS.

438

Utility Programs 439

MacNosy. Jasik Designs, 343 Trenton Way, Menlo Park, CA
94025, (415) 322-1386. The self-proclaimed “disassembler for the
rest of us.” With it you can easily inspect the subroutines in the
Macintosh ROM or in any program on disk in assembly language for-
mat. This is a great way to learn about professional programming
techniques.

ConCode. Pixel Pathways, P.O. Box 4065, Mt. Penn, PA 19606.
An invaluable desk accessory for assembly language programmers.
When you select a 68000 instruction to work with, all the valid
addressing modes for the instruction are shown. You can also enter
numeric values for the instruction’s two operands, then execute
the instruction to determine the result. The settings of the condi-
tion code flags after execution are also shown.

The Macintosh Reference System. TOM Programs, Suite 34-T,
1500 Massachusetts Ave. NW, Washington, DC 20005, (202)
223-6813. A Microsoft File database containing summaries of all the
trap instructions documented in Inside Macintosh. The same data-
base is also available in a deck of 750 color-coded 3-by-5 cards.

MacExpress. ALsoft, Inc., P.O. Box 927, Spring, TX 77383-0927,
(713) 353-4090. An Application Manager that directs and controls
an application’s user interface. By using it, you can concentrate on
wrriting the guts of your application and leave the implementation of
the Macintosh user interface to MacExpress.

Consulair Professional Development Tools: Utilities. Consulair
Corp., 140 Campo Drive, Portola Valley, CA 94025, (415) 851-3272.
A package made up of four useful utilities: SuperMake, for automat-
ically rebuilding all changed parts of an application; Grep, for search-
ing muiltiple files for a given string pattern; Diff, for displaying the
differences between two text files; and Maximum Performance
Analyzer, a desk accessory that monitors a program to determine
the time it takes to execute its routines.

Bibliography

The following materials will either assist in understanding the Mac-
intosh programming environment or in developing applications in
68000 assembly language, or both.

Books

Apple Computer, Inc., Inside Macintosh, Volumes I, lI, 1ll, and IV,
Reading, MA: Addison-Wesley Publishing Company, 1985
(volumes | to III) and 1986 (volume V). The definitive work on the
Macintosh programming environment, written by Apple’'s devel-
oper support team. Every serious programmer must have a copy
of all four volumes.

Apple Computer, Inc., Macintosh 68000 Development System User’s
Manual, Cupertino, CA: Apple Computer, Inc., 1984. This is the
manual that comes with MDS.

Chernicoff, Stephen, Macintosh Revealed, Volume 1: Unlocking the
Toolbox, Hasbrouck Heights, NJ: Hayden Book Company, 1985.
An excellent introduction to the Macintosh programming
environment.

Chernicoff, Stephen, Macintosh Revealed, Volume 2: Programming
with the Toolbox, Hasbrouck Heights, NJ: Hayden Book Com-
pany, 1985. This book contains plenty of examples on how to pro-
gram with the ROM toolbox. Although the examples are in
Pascal, tables at the end of each chapter describe the assembly
language equivalents of the Pascal functions and procedures
discussed.

Mathews, Keith, Assembly Language Primer for the Macintosh, New
York, NY: New American Library, 1985. This is an introduction to
68000 assembly language for novice programmers. Unfortu-
nately, its lack of depth and numerous typographical errors make
it difficult to follow.

Motorola Inc., M68000 8/16/32-Bit Microprocessor Programmer’s
Reference Manual, 5th ed., Prentice-Hall, Inc., 1986. A description
of the 68000 written by the chip’s designer.

Rosenzweig, Edwin and Harrison, Harland, Programming the 68000:
Macintosh Assembly Language, Hasbrouck Heights, NJ: Hayden

440

Utility Programs 441

Book Company, 1986. A good introduction to 68000 assembly lan-
guage programming.

Williams, Steve, Programming the Macintosh in Assembly Language,
Berkeley, CA: Sybex Inc., 1986. This book contains detailed
descriptions of a series of general-purpose macros you can use to
simplify the development of assembly language programs. Its
repeated references to the CP/M environment are quite perplex-
ing, however.

Periodicals

MacDeveloper: The Electronic Magazine for Macintosh Developers,
Harry Chesley, 1850 Union St. #360, San Francisco, CA 94123.
This newsletter is published about six times per year and is dis-
tributed via electronic bulletin board systems and national infor-
mation services like Delphi and CompuServe.

Macintosh Technical Notes, Technical Notes, Apple Computer Mail-
ing Facility, 467 Saratoga Avenue, Suite 621, San Jose, CA 95129.
These are the “official” technical notes from Apple Computer,
Inc., which are released at infrequent intervals during the year.

MacinTouch, Ford-LePage, Inc., P.O. Box 786, Framingham, MA
01701, (617) 527-5808. A magazine valuable for its useful reviews
of many products, including those of interest to developers.

MacMag, 3743 Notre-Dame W., Montreal, Quebec, Canada H4C
1P8. This magazine often contains introductory articles about
programming in assembly language.

MacTutor: The Macintosh Programming Journal, MacTutor, P.O.
Box 400, Placentia, CA 92670, (714) 630-3730. A monthly maga-
zine containing much useful material for the 68000 programmer.
No other Macintosh magazine can match it for technical content.

Index

$ (Link), 65, 69
! (Link), 68
! (RMaker), 73
< (Link), 66

68000
addressing modes, 16—-32
clock speed, 226
exceptions, 3543
instruction set, 2—6
registers, 6—-16

68020, 2

8088/8086, 6, 432

A

ABCD, 126—-127, 166
activate event, 214215, 251,
253254
ADD, 125-126, 166—167
ADDA, 167
ADDI, 168
ADDQ, 20, 125, 168-169
ADDX, 125—-126, 169—170
_AddResMenu, 312, 325326,
329, 349350, 408410, 425
address registers, 8—10
addressing modes, 16—32
absolute, 2829
absolute short, 29
address register direct, 21
address register indirect,
21-22

addressing modes continued
address register indirect
with displacement, 25—26,
186
address register indirect
with index, 27—28
address register indirect
with pre-decrement,
2425
data register direct, 2021
immediate, 19, 432
implicit, 18
program counter with
displacement, 29-30, 193
program counter with index,
3132
_Alert, 352, 404405
alert box, 238, 352, 358-360,
404—405
ALRT resource, 402
AND, 134, 138
ANDI, 134, 135—-136, 147
_AppendMenu, 312, 319-320,
329, 332, 338, 409
Apple I, 2
application parameter table,
180
arcs, 306, 308
arithmetic instructions,
122—-131
arithmetic shift instructions,
139-143
arithmetic operators, 59

444 Index

ASCIl codes, 217218, 428
ASL, 140141, 142

ASR, 140-141, 142

Asm, 44, 4664

assembler directives, 50-64
auto-key event, 213
autograph resource, 100—101
autovector interrupt, 41

B

bank-switching, 2

BCD, see binary-coded decimal

BCHG, 131—-133, 138

BCLR, 131—-133

__BeginUpdate, 231, 252253,
426

binary-coded decimal
numbers, 122—-124, 125

binary numbers, 122—124
sighed comparisons, 119,

123—124
unsigned comparisons, 119,
123

binary weight, 8

Bcc instructions, 16, 18,
117-120, 159, 430, 432

blocks, memory
allocation, 182—-188
deallocation, 188

BNDL resource, 102—103

Boolean algebra, 137

Boolean variable, 88

BRA, 115-116, 159—-160

BSET, 131-133, 278

BSR, 18, 34, 115-116, 160,
189

BTST, 131—-133, 333, 335, 341

/BUNDLE, 68, 99, 102

bundle bit, 68, 102

bundle resource, 102—-103

_Button, 197, 216

button-down events, 254—-260
and DAs, 411412

button item, 369370

C

carry flag, 15

_CautionAlert, 352, 404405

CCR, see condition code
register

character code, 217

character origin, 272

character rectangle, 272

_CharWidth, 269, 283

check box item, 370

_Checkltem, 312, 335, 351

CHK, 43, 144, 147-148

_ClearMenuBar, 312, 327

clock, 226229

close box, 238

_CloseDeskAcc, 407, 411

__CloseDialog, 353, 388

_ClosePgon, 298, 309

__CloseResFile, 98

_CloseWindow, 231, 251, 259

CLR, 110, 154

CMP, 118-119, 129, 170, 433

CMPA, 171

CMPI, 171-172

CMPM, 129-130, 172—-173

CNTL resource, 365, 366

CODE resource, 66, 75—76

comments, 50
Asm, 50
Link, 65
RMaker, 73—74
comparing numbers, 129—-130
condition code register, 13
constants, 193—194
content region, 239
control character, 217
control items, 369-371
Control Manager, 259
Control Panel, 195
coordinates systems, 240—242
global, 205, 221, 241—-242
local, 221, 241—-242
_ CountMIltems, 312, 326327,
350
creator code, 6667
CURS resource, 222, 223
cursor, 220225
cursor level, 224
cursor record, 221-222

D

.D, see packed symbol file

data fork, 69

data registers, 10

data types, 83—84

date, reading, 227-229

DBcc instructions, 120-122,
161, 431

DBRA, 122, 350

DC, 54, 109, 193

DCB, 54-55, 193

deactivate event, 214215

debuggers, 433

"Index 445

debugging, 5, 12, 429432,
433-437

_Delay, 197, 226

_DeleteMenu, 312, 324,
327-328

_DelMenultem, 313, 322

dereferencing, 187

desk accessory, 325, 406427
editing, 412413
finding name, 410411
mouse clicks, 411412
opening, 410411
periodic functions, 414

Desk Manager, 406

dialog box, 238, 352, 358-360
creating, 361—-365
item lists, 365-366

Dialog Manager, 360—361

__DialogSelect, 353, 386—387

__Disableltem, 260, 313, 332

disk-inserted events, 215

__DisposDialog, 353, 384,
387-388, 401

__DisposHandle, 182, 188, 190

__DisposMenu, 313, 324

_DisposPtr, 182, 188, 190,
251, 388

__DisposWindow, 231, 251,
259

DITL resource, 363, 365-366,
368, 371, 402

DIVS, 128, 173—174

DIVU, 128, 173—-174

DLOG resource, 361, 363—-365

double-click, 195

DoubleTime, 195, 201

drag, 195

446 Index

drag region, 230, 239

__DragWindow, 232, 257

__DrawChar, 269, 281282,
283, 296

__DrawDialog, 353

__DrawGrowlcon, 232, 254,
259

__DrawMenuBar, 313, 324,
329, 330, 332, 350

__DrawsString, 245, 269,
281-282, 283, 287, 296,
351, 401, 426

_DrawText, 269, 281-282,
283

DRVR resource, 325, 408, 425

DS, 55-56, 109, 194

.DUMP, 62, 82

E

Edit, 44, 46

effective address, 16, 110

element type designators, 76

__Enableltem, 260, 313, 320,
332, 413

/END, 65, 69

END, 61

_EndUpdate, 232, 252253,
426

EOR, 134, 135, 137—-138

EORI, 134, 135136, 147, 401

EQU, 19, 52, 60, 109, 429

equate files, 80—81

_EraseArc, 298, 308

__EraseOval, 298, 307

_ErasePoly, 298, 310

_EraseRect, 296, 298, 307,
351
__EraseRoundRect, 298, 308
_EventAvail, 197, 203,
206—207
Event Manager, 201-216, 251
event mask, 201
event record, 203—-205
events, 195-197
application-defined, 216
disk-inserted, 215
handling, 207-216
1/O driver, 216
keyboard, 213
mouse, 214
network, 216
window, 214-215
exception vector, 11, 178
exceptions 3543
$Axxx instruction, 41
$Fxxx instruction, 41
address error, 22, 38
autovector interrupts, 40
bus error, 38
CHK, 43
ILLEGAL instruction, 41
interrupts, 3940
privilege violation, 3839
reset, 37-38
spurious interrupts, 40
trace, 39
TRAP instruction, 41
TRAPV, 43
user interrupts, 40
zero divide, 43
Exec, 44, 77-78
EXG, 112, 155

_ExitToShell, 350, 360, 436
EXT, 128-129, 174
extend flag, 13—14
extension words, 5

F

file type code, 6667
__FillArc, 298, 308
__FillOval, 299, 307
__FillPoly, 299, 310
__FillRect, 299, 307
__FillRoundRect, 299, 308
_FindWindow, 214, 232,

254255, 256, 338—-339,

350, 426
flags, 13
_FlushEvents, 198, 201
font, 271274

ascent, 273

baseline, 272

descent, 273

leading, 273

widMax, 273
font information record,

273274
Font Manager, 236
font rectangle, 272
FONT resource, 271-272, 350
Font/DA Mover, 272, 349
_FrameArc, 299, 308
_FrameOval, 299, 307
__FramePoly, 299, 310
_FrameRect, 300, 307
__FrameRoundRect, 300, 308
FREF resource, 101—-102

Index 447

_FrontWindow, 214, 233, 256
functions, 82, 83

G

_GetCtlValue, 354, 371,
374375, 401

_GetCursor, 198, 223224

_GetDItem, 354, 371374,
384, 400

_GetFNum, 351

_GetFontinfo, 190-191, 270,
273274

_Getltem, 313, 331, 351, 410,
411, 427

_GetlText, 354, 371, 373374,
385, 401

_GetltmStyle, 314, 333

_GetKeys, 217

_GetMenuBar, 314, 330

_GetMHandle, 314, 325, 329,
425

_GetMouse, 198, 220221

_GetNewnDialog, 354, 399400

_GetNewMBar, 314, 328-329,
349, 425

_GetNewWindow, 233,
249250, 349

_GetNextEvent, 198,
203—-207, 254, 338

_GetPen, 270, 274, 287

_GetPenState, 300, 305

_GetPort, 250-251, 426, 427

_GetResource, 355

_GetRMenu, 314, 323324,
408—410

448 Index

_GetWTitle, 233, 268
global coordinates, 205, 221,
241-242
global variables, 176
application, 179—180,
191—193
system, 178
QuickDraw, 237238
/GLOBALS, 192
_GilobalTolLocal, 233, 242
GNRL resource, 76-77
for defining ICON, 336337
for defining MBAR, 328
go-away box, 238—240
GrafPort, 240—242
graphics, displaying, 297-310
_GrowWindow, 257—258, 267

H

handle, 180, 185188
dereferencing, 187

heap
application, 179, 183, 184
compaction, 184, 188—189
system, 179

HFS, 78

__HideCursor, 199, 224

__HideWindow, 387

__HiliteControl, 355, 373

__HiliteMenu, 315, 330331,
340

_HLock, 183, 187

_HUnlock, 183, 187

I

ICN# resource, 101
icon item, 371
icon list resource, 101
ICON resource, 336, 371
icons, 99
with menu items, 336337
IF..ELSE..ENDIF, 58-59
ILLEGAL, 41, 145
INCLUDE (Asm), 56-57, 81
INCLUDE (RMaker), 73-74,
431
INIT resource, 219
_InitCursor, 199, 222, 224
__InitDialogs, 355, 360
_InitGraf, 233, 241
_InitMenus, 315, 318, 327
_InitWindows, 243
_InsertMenu, 315, 350
_InsertResMenu, 315,
325-326
_InsMenultem, 315, 322
instruction field, 49
International Utilities, 229
interrupt exceptions, 3940
interrupt mask, 12-13
interrupts, 12—-13
non-maskable, 40
INTL resource, 229
_InvalRect, 233, 253, 267
_InvalRgn, 234, 253, 295
_InverRect, 300, 307
_InverRoundRect, 300, 308
_InvertArc, 300, 308
_InvertOval, 300, 307
_InvertPoly, 301, 310

__IsDialogEvent, 355, 386

items (dialogs), 367—-375
attributes, 371-375
disabling, 371

_lUDateString, 199, 226,
228229

_IUTimeString, 199, 226,
228229

IWM chip, 182

)

JMP, 16, 18, 115-116,
161—162

JSR, 16, 18, 34, 115116, 162,
189

jump table, 179-180

K

kern, 273, 276
keyboard
events, 213
input, 216—-220
keyboard equivalent, 340-341
key-down event, 213,
340341
key-up event, 213
Key Caps, 219
key code, 217
keys
character, 213, 217
modifier, 213, 217
_KillPoly, 301, 310

Index 449

L

label, 21, 4849
local, 48
naming rules, 48
label ﬁgld, 4849
LEA, 57, 110, 155, 194
_Line, 301, 309
line A emulator, 42
line F emulator, 42
lines, drawing, 305—-306
_LineTo, 301, 309
Link program, 44, 64—69
LINK, 34, 112—-114, 155,
190-191
linker control file, 64—-69
code modules, 6566
.ListToDisp, 64
.ListToFile, 63—64
local coordinates, 241—-242
local variables, 113
_LocalToGlocbal, 234, 242
logical instructions, 134—138
logical shift instructions,
139-143
logical operators, 59
LSL, 140141, 142
LSR, 140-141, 142

M

machine code, 4

MACRO, 5961

macro files, 8081

MacsBug, 12, 147, 433—-437

MBAR resource, 325,
328-329, 349

450 Index

MDS, 4, 44

addressing modes, 17—-18
memory map, 176—182
memory-mapped /0, 181—182
menu, 319-322

bar, 311, 318, 327-331

item, 311, 331338

item selection, 338341
Menu Manager, 214, 255, 260,

311-351
menu record, 319
MENU resource, 319,

322324, 325, 338, 410
_MenuKey, 316, 341
_MenuSelect, 189-190, 316,

331, 339, 341, 350, 413, 427
MFS, 79
modal dialog, 361, 375385
_Modalbialog, 355, 375,

383—385, 387, 388, 399401
modeless dialog, 361, 385387
modifier character, 320322
mouse

button, 216

events, 214

position, 220-222
MOVE, 108-109, 149

from CCR, 149

from SR, 151

to CCR, 150

to SR, 150

UsP, 151
_Move, 270, 274, 305-306
MOVEA, 110, 152
MOVEM, 111-112, 152-153
MOVEP, 114115, 153
MOVEQ, 20, 110-111, 154

_MoveTo, 189, 245, 270, 274,
287, 295, 305-306

MULS, 128, 173-174

MULU, 128, 173—-174

N

NBCD, 126-127, 175

NEG, 126, 175

negative flag, 14

NEGX, 126, 175

_NewDialog, 356, 361—-365

_NewHandle, 183, 186, 190

_NewMenu, 316, 319-320,
349, 409

_NewPtr, 182, 184, 185, 186,
190, 245, 251, 362

_NewRgn, 295296

_NewWindow, 234, 243245,
249250

.NolList, 63

non-maskable interrupt, 40

NOP, 5, 163

NOT, 134, 136, 137-138

_NoteAlert, 356, 404405

null event, 202

_NumToString, 297, 301

o

object code, 4

_ObscureCursor, 199, 224

_OpenDeskAcc, 407, 411, 427

_OpenPoly, 301, 308-309

_OpenResFile, 98, 249,
401402, 429

operand field, 49-50

operands, 5—6

operation word, 5

operation system calls, 42,
8889, 178

OR, 134, 137-138

ORI, 134, 135-136, 147

/OUTPUT, 65, 67

ovals, 306, 307

overflow flag, 14-15

) 4

PACK resource, 76

_Pack6, 227—-229

_Pack7, 245, 296297

packed symbol file, 62, 81—82

PackMacs.txt, 228

PackSyms, 62, 82

__PaintArc, 302, 308

_PaintOval, 302, 307

__PaintPoly, 302, 310

__PaintRect, 302, 307

__PaintRoundRect, 302, 308

_ParamText, 356, 368

Pascal, 8288

Path Manager, 79

pathname, 78

PEA, 34, 57, 110, 155—-156,
268, 282, 431

pen characteristics, 303—305

__PenMode, 302, 303

__PenNormal, 302, 303—-305

_PenPat, 303, 304

__PenSize, 303

PICT resource, 371

picture item, 371

pixel, 180

Index 451

point, 242
point size, 272
pointer, 184—-185
master, 185
polygon, 306, 308310
popping, 23
privilege violation, 41
PROC resource, 75-76
procedures, 82, 83
program control instruction,
115-122
program counter, 15—16
programmer’s switch, 3940
purging, 72

Q
QuickDraw, 179-180, 191,
192, 224, 236
global variables, 237—238,
241
R

radio button item, 370
RAM space, 176, 181
re-entrant code, 112
rectangle, 240, 306, 307
recursive code, 112
REG, 53, 111
register list, 53, 111
registers, 6—8

address, 8-10

data, 7, 10

status, 10, 11
_ReleaseResource, 324

452 Index

relocatable code, 30, 183—184,
194
relocatable object code, 64
RESET, 145, 148
resource fork, 69
/IRESOURCES, 68-69, 72, 73,
429
resources, 69—72
attributes, 71-72
creating a file, 97—98
ID codes, 71
RMaker, 44, 72-77
using with Link, 68—69
ROL, 139-140, 142
ROM space, 176, 178, 181
ROR, 139-140, 142
round-corner rectangle, 306,
307-308
routine selector, 227—228, 297
ROXL, 139-140, 142
ROXR, 139-140, 142
rotate instructions, 139-143
RTE, 16, 34, 148, 163
RTR, 16, 34, 116-117, 163,
189
RTS, 16, 34, 116-117, 164,
189

S

SBCD, 126—127, 166

Scc instructions 120, 164
SCC chip, 3940, 182
screen buffer, 180

scroll controls, 230, 239
_ScrollRect, 270, 295-296

SCsl interface, 1

search paths, 78-80

segment, 66

_SelectWindow, 214, 234,
254, 256, 427

_SellText, 357, 371, 373-374

serial ports, 1, 40

SET, 19, 52, 60, 109

_SetCtlValue, 357, 371,
374375, 400

_SetCursor, 199, 223, 224

_SetDIltem, 357, 371373

_Setltem, 317, 331

_SetlText, 357, 371, 373

_Setltmlcon, 317, 337-338

_SetitmMark, 317, 335-336

__SetltmStyle, 317, 333

_SetMenuBar, 317, 330, 349

_SetPort, 250, 254, 276, 349,
387, 426

_SetWTitle, 234, 268

shapes, drawing, 306307

_ShieldCursor, 200, 224225

shift instructions, 139—-143

_ShowCursor, 200, 224

_ShowWindow, 387, 400

sign bit, 110

sign extension, 9—10

signature, 66—67

size box, 239

__SizeWindow, 235, 258, 267

sound buffer, 181

Sound Driver, 225

source transfer mode, 278,
280

speaker, 225

spurious interrupts, 41

stack, 8, 23, 3235, 179,
189-191

stack frame, 113

stack pointer, 9, 33—-34
supervisor, 9, 12, 34
user, 9, 12, 34

stages word, 402—404

ISTART, 68

static text, 367-368

status register, 10—-12
control instructions,

146—-147

__StillDown, 200, 216

STOP, 145, 148

_StopAlert, 358, 404405

STR# resource, 74

STRING_FORMAT, 50, 57-58,
268, 282, 287, 331, 431

string immediate, 49

_StringToNum, 297, 303

__StringWidth, 271, 283, 287

style word, 333334

SUB, 126, 166167

SUBA, 167

SUBI, 168

suBQ, 20, 168—-169

suBX, 126, 169—-170

subroutine, 116

supervisor mode, 8-10

supervisor state, 12

SWAP, 112, 157

_SysBeep, 200, 225

_SysEdit, 408, 413414, 427

SysEvtMask, 201, 202

system byte, 10, 11-13

system control instructions,
144—-148

Index 453

system error handler, 181

_SystemClick, 235, 256, 408,
412, 426 ‘

_SystemTask, 408, 414, 426

T

TAS, 130-131, 164-165

__TEInit, 360—361

testing numbers, 130—-131

text, display of, 269—296

_TextFace, 271, 278, 283

_TextFont, 271, 276277,
283, 351

__TextMode, 271, 281

_TextSize, 271, 277278, 283,
351

__TextWidth, 271, 283

thumb, 239

tick, 204, 225

Ticks, 201

Time, 201

time of day, reading, 227—229

trace mode, 11—-12

__TrackBox, 235, 259256

_TrackGoAway, 235, 259, 260

.TRAP, 42, 51-52

TRAP, 41, 146, 147

trap dispatch table, 178

trap files, 80—-81

TRAPV, 43, 146, 147—148

TST, 130-131, 165, 259, 350

two's complement, 14, 124

ITYPE, 67

TYPE statements, 74-77

454 Index

U

UNLK, 34, 112—-114, 158,
190-191

_UnLoadSeg, 66

update event, 214215,
252253

update region, 252

user byte, 10, 13—15

user-interface toolbox, 42,
84-85, 178

user interrupts, 41

user mode, 8-9

\Y%

_ValidRect, 236, 253

_ValidRgn, 236, 253

VAR identifier, 83

variable, 191-193

variable text box, 368-369

version data resource,
100-101

VIA chip, 3940, 182

w

_WaitMouseUp, 200, 216
WIND resource, 243, 249
window, 230237

active, 230

definition IDs, 243, 245

parts, 238-240
window events, 214-215
Window Manager, 214, 236
windows

application, 205

frame, 239

system, 205

title, 268
word, 5

X,Y, Z

XDEF, 62—63, 68

XREF, 63

zero flag, 14

zoom box, 239
_ZoomWindow, 236, 260

About the Author

Gary B. Little is a Macintosh and Apple Il programmer who
resides in Vancouver, British Columbia. He is also a practicing
lawyer. Gary is a founding member of the Apples British
Columbia Computer Society and of the prestigious, but not-
too-serious SAGE (Serious Apple Group, Eh!). He is also an
active member of several business organizations that pro-
mote and assist software developers. He has written numer-
ous articles for several microcomputer periodicals and is the
author of four recent microcomputer books published by
Brady. He is also the author of the Apple Il communications
program, “Point-to-Point,” published by Pinpoint Publishing.

BRADY'S got
the Mac ack

Susan Schmieman

1.Whether you own a Macintosh 2. This book is for the novice 3. This book gives artists and

or want to buy one, this book
tells you everything there is to
know about it as well as what
it can do. You'll discover the
Macintosh’s best kept secrets
by tapping all of its capabil-
ities. $15.95

4. Your step-lmy-step guide for
using the
your office and handle all
spreadsheet, graphing, file
management and word pro-
cessing needs. Includes
introduction to Macintosh
terminology, techniques
and programs. $18.95

Now at your book or computer store
Or order toll-free today:

acintoshtorun = S

Stan Schatt and Erik Johnson

who wants to learn how to pro-
gram and the experienced
Pascal programmer who
wants to use Macintosh
Pascal. Contains detailed
descriptions of file usage

on /0. $19.95

e

designers a basic under-
standing of the tools used in
MacPaint to create drawings
and generate ideas for design
projects. Teaches one step-at-
a-time in logical understand-
able increments. $15.95

MICRESOFT EASIC VERSIGN 21

800-624-0023 szt

5. The latest on Microsoft
BASIC, Version 2.1. Includes

a tutorial with start-to-finish
instructions for using and
programming with commands

. statements and functions
. explained in narrative form;

many example programs;
BASIC commands listed

alphabetically, and more.
$23.95

BRADY COMMUNICATIONS COMPANY, INC. Acc't #

c/o Prentice Hall

P.O. Box 512, W. Nyack, NY 10994

| Circle the numbers of the titles you want below.
(Payment must be enclosed; or, use your charge Address

Exp. date __-I

Signature
Name

card.) Add $1.50 for postage and handling. City State Zip
Enclosed is check for § or charge to (New Jersey residents, please add applicable sales tax.)
| [J MasterCard [] VISA. Dept. 3
1 (0-89303-649-8) 2 (0-89303-644-7) 3 (0-89303-648-X)
I_ 4 (0-89303-678-1) 5 (0-89303-662-5)

BRADY Speaks
Your Lanquage

2/ AR
1. The perfect intro to CP/M-86
even if you've never programmed
in assembly language before.
Includes sections on sequential
file handling and memory manip-
ulation, and more. $21.95

& T
BLY
AGE

RAMMERS

ARl

o
E
=
o
I~
=]

- |
2
q

Ll
Pl R

7
j

5. Our best-selling assembler
book has been made even better!
It now includes 30 assembler
Macros and version 2.0 of the
IBM Assembler. $21.95

2. Beyond the basics, this guide

3. The special focus is on screen
and data retrieval.

pl new str
to analyze and solve problems in
C with tools of modularity, input
and output functions, arrays and
structures, and bit manipulation.
$21.95

6. For everyone who thought APL
was too unorthodox to bother

learning, this guide will unlock the

secrets to its logic and show you
how to write the fastest, most
compact code. $22.95

You'll find a library of reusable C
software tools to help create inter-
active systems, including file
vsnangasgamenl, screen forms, etc.

7. The author of our best-selling
assembler books now demon-
strates his detailed and accurate
style on the 80286 chip. $21.95

4. The best C articles from the
highly respected Dr. Dobb'’s
Journal dealing exclusively with

Cc ge and prog
techniques. $24.95

Handbook of
PPACIM

——— ™ s

for the IBM PC
Revimed ernd Eupandead

8. PC magazine calls it: “A truly
remarkable book...A treasure

trove of useful programming infor-
mation on the IBM PC.” $§22.95

Now at your book or computer store. 800_62 4_0023 In New Jersey:
Or order toll-free today: 800-624-0024

[BRADY COMMUNICATIONS COMPANY, INC. _ Acc't # Expdate |
c/o Prentice Hall Signature
P.O. Box 512, W. Nyack, NY 10994 9 |
I Circle the numbers of the titles you want below. Name |
(Payment must be enclosed; or, use your charge ~ Address
| card.) Add $1.50 for postage and handling. Cit State Zip |
Enclosed is check for $ or charge to |(:;\Jew ‘:Jiersey residents, please add applicable sales tax.)
ept.

| [] MasterCard [] VISA

1(0-89303-390-1)
5 (0-89303-575-0)

2 (0-89303-473-8)
6 (0-89303-567-X)

3 (0-89303-612-9)
7 (0-89303-484-3)

4(0-89303-599-8)

8 (0-89303-510-6) _I

| _sCseenn _ _sOsGii0_ _ 7O _ _slsensics
i

1. This guide presents the
nuts and bolts of program-
ming the 80286 to get the
most out of the AT’s power. It
includes discussions of the
entire intel CPU family for
perspective and focuses on
IBM BIOS to enable program-
mers to get the most out of
its extended services. Exam-
ples include both assembly
language and Pascal code to
illustrate software interrupts
for DOS services, extended
memory access, and much,
much more. $21.95

2. Perfect for both beginners
and experienced program-
mers, you'll find everything
from the basics of computer
numbering through to step-
by-step instructions for using
the IBM Macro Assembler.
Clearly written, it presents
logical groupings of the
entire 80286 instruction set
for quicker, easier learning
along with complete coverage
of BIOS and a library of over
30 macros for faster pro-
gramming. It also covers
gra phics and sound control.
21.95 (Disk available)

Now at your book or computer store.
Or order toll-free today:

If you use an IBM PC-AT

number:

(T}
He Wats Groap

Bra

PROGRAMMER’S

PROBLEM SOLVER
for the IBM PC, XT & AT

Propammm

IBIVIPEM

Leo J. vSanIon

800-624-0023

BRADY has vour
286

3. Written for AT “compat-
ibles,” Scanlon’s plain
English, tutorial style covers
a crash course in computer
numbering, the fundamen-
tals of assembly language,
assemblers, and the 80286’s
instruction set. The guide
includes programs for doing
high-precision arithmetic,
sorting, and code conver-
sions along with procedures
for using Microsoft’s Macro
Assembler, EDLIN, SYMDEB
debugger, and LINK. $21.95

4. Here’s the ultimate refer-
ence source that includes
over 150 solutions to com-
mon hardware-control tasks
through high-level or assem-
bly programming or system
functions. It shows how to
code for directory access,
keyboard macros, and
advanced video and sound
control. Complete discus-
sions of graphics on the
EGA, port and modem con-
trol, printer manipulation,
and file operations answer
just about every question
that arises in programming
interfaces. $22.95

In New Jersey:
800-624-0024

I—BRADY COMMUNICATIONS COMPANY, INC.

I c/o Prentice Hall

P.O. Box 512, W. Nyack, NY 10994

| Circle the numbers of the titles you want below.
(Payment must be enclosed; or, use your charge

card.) Add $1.50 for postage and handling.

Enclosed is check for $
[] MasterCard [] VISA.

1 (0-89303-580-7)

Dept. 3
2 (0-89303-484-3)

Stat
(New Jersey residents, please add applicable sales tax.)

3 (0-89303-618-8)

Acc't # Exp. date
Signature
Name
Address
or charge to Cit Zip

4 (0-89303-787-7)

I
|
i
I
-

BRADY Knows
Programming

fAssembly

Creatmq‘ Utilities

With Assembly Language
Language 10Best for the BM PC & XT
’ ROUtiNeS crmeemec | [Bend
“ed + oo Key
= .
: .
| o
= o
i
- o
m—nﬁ# E
Jos Dormer .
a - Jorome R. Corsi and Willem F. Hils (]
FESENETEEET
1. Beyond the basics, this gulde explores 2. You learn by example with this guide 3. Learn the used for g 4. code Ilnl z for three working
mw structured concepts to anal and through hundreds of subroutine listings. utilities.

suppln? cross
referencing, and rmpplng utilities. $19.95
(Disk avallable)

of
the most popular utilities such as DBUG
SCAN, CLOCK, UNDELETE, ONE KEY,
PCALC calculator and notafud and five
others. $21.95 (Disk available)

Erobhm- in C with tools
modu r’I‘tz Input and output functions,
and

Discover how to enhance hlgh level lan-
guage programs (esp. BASIC) to quickly
and sort large data files,
generate graphics, integrate arra s lnd
use interrupts to access DOS. $17.

(]
PROGRAMMER’S
PROBLEM SOLVER
for the IBM PC, XT & AT

5.A
programmers. You'll find over 150 discus-
sions of common hardware-control tasks (in
BASIC, Pascal, or C) as well as assembler
gVGﬂIYl dr|verl and real-time operators.

text for 6. Perfect for both beginners and experi-
enced programmers, you'll find everything
from the basics of computer numbering
through to step-by-step instructions for
using the IBM Macro Assembler. With com-

7. Here's a compendium of many of the
most useful, but often neglected, advanced
ogrlmmln% oncepts. !u!orlll in format
that uses BASIC for examples, it covers
techniques such as: Ilnkod data

8. The title might say “advanced" but you'll

find a ?ulde that begins with the funda-

mentals of BASIC graphics and takes you

thmugh truly sophisticated 3-D assembly
block

plete coverage of BIOS and a Ilhnry ol over storage 2 editor, directly vagnmmln
30 macros for faster prog Inc uduTluIngr: for 25 sub- IBM's color graphlcs adapter, and muc
(Disk available) routines. $21.95 (Disk available) more. $21.9

Now at your book or computer store. In New Jersey:

Or order toll-free today: 800-624-002 800-624-0024

— — — — e e R

BRADY COMMUNICATIONS COMPANY, INC. Acc't # Exp. date I
c/o Prentice Hall
P.0. Box 512, W. Nyack, NY 10994 Signaters
Circle the numbers of the titles you want below. Neme I
| (Payment must be enclosed; or, use your charge ~ Address I
card.) Add $1.50 for postage and handling. Cit St Zip
I Enclosed is check for $ or charge to (New Jersey residents, please add applicable sales tax:) I
[J MasterCard [] VISA Dept
| 1(0-89303-473-8) 2 (0-89303-409-6) 3 (0-89303-584-X) 4(0-89303-587-4) |
5 (0-89303-787-7) 6 (0-89303-484-3) 7 (0-89303-481-9) 8 (0-89303-476-2)

e

ASSEMBLY
LANGUAGE

Unlock the power of assembly language programming on the
Macintosh with this master key—a thorough guide that shows you
how to create the fastest and most efficient Mac programs possi-
ble, explains every nook and cranny of the 68000 microprocessor,
and gives you plenty of example programs to learn from. The
assembler used is version 2.0 of Apple’s Macintosh 68000 Devel-
opment System (MDS). This is the ideal book for programmers who
want to quickly learn the fundamentals of assembly language
programming on the Macintosh.

This book will lead you step-by-step through each stage in the
development of an assembly language program. You will learn
how to use such MDS programming tools as the editor, assembler,
linker, and resource compiler. You'll also learn how to create pro-
grams that run in the unique Macintosh environment using the
Window Manager, the Menu Manager, the Dialog Manager, and
many other toolbox subroutines. An entire chapter is devoted to
showing you how to write applications that work with desk acces-
sories.

W

Cover design by Ben Santora

A Brady Book - Published by Prentice Hall Press « New York

ISBNO-13-541434-2

