
[

fBndy
GARY B. LITTLE

Author of Inside the Apple Ile and Apple Pro DOS:
Advanced Features far Programmers

MAC
ASSEMBLY
LANGUAGE

A Guide for
Programmers

Other Brady Books by Gary B. Little

Inside the Apple lie
Inside the Apple lie
Apple ProDOS: Advanced Features for Programmers

MAC ASSEMBLY
LANGUAGE

A Guide for
Programmers

Gary B. Little

A Brady Book
Published by Prentice Hall Press

New York, NY 10023

Copyright © 1986 by Gary B. Little
All rights reserved,
including the right of reproduction
in whole or in part in any form

A Brady Book
Published by Prentice Hall Press
A Division of Simon & Schuster, Inc.
Gulf + Western Building
One Gulf + Western Plaza
New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.

Manufactured in the United States of America

12345678910

Library of Congress Cataloging-in-Publication Data

Little. Gary B., 1954--
Mac Assembly Language.

"A Brady book."
Bibliography: p.
Includes index.
1. Macintosh (Computer)-Programming.

2. Assembler language (Computer program language)
I. Title.
QA76.8.M3L58 1986 005.265 86-25980

ISBN 0-13-541434-2

Dedication
This book is dedicated to my mother,

Barbara Hope Little

Contents
Preface
Chapter I: INSIDE THE 68000

MICROPROCESSOR I
The 68000 Instruction Set 2

Programmer's Model 6

Address Registers 8

Data Registers 10

The Status Register 10

The System Byte 11
T-Trace Mode 11
5--Supervisor State 1 2
I-Interrupt Mask 12

The User Byte 13
The Extend Flag 13
The Negative Flag 14
The Zero Flag 14
The Overflow Flag 14
The Carry Flag 15

The Program Counter 15

The Addressing Modes 16

Implicit Mode 18
Immediate Mode 19
Data Register Direct Mode 20
Address Register Direct Mode 21
Address Register Indirect Mode 21
Address Register Indirect with Post-Increment
Mode 23
Address Register Indirect with Pre-Decrement
Mode 24
Address Register Indirect with Displacement
Mode 25
Address Register Indirect with Index Mode 27

vi

Contents

Absolute Modes
Program Counter with Displacement Mode
Program Counter with Index Mode

The Stack

Exceptions
The Reset Exception
The Internally Generated Exceptions
The Externally Generated Exceptions
The Exceptions Caused by Instructions

Unconditional Traps
Conditional Traps

Chapter 2: ASSEMBLER TOOLS
The Editor

The Assembler
Source Code Format

The Label Field
The Instruction Field
The Operand Field
The Comment Field

Assembler Directives
Symbol Definition Directives
Data Allocation Directives
Assembly Control Directives
Linker Control Directives
Printing Control Directives

The Linker
Linker Code Modules
File Type and Creator Code
Output File
Bundle Bit
Starting Location
Linker Resource Modules
End of File

The Resource Compiler
Using the RMaker Resource Compiler

Name of Output File

vii

28
29
31

32

35
37
38
39
41
41
43.

44
46

46
48
48
49
49
50
50
51
53
56
62
63

64
65
66
67
68
68
68
69

69
72
73

viii Mac Assembly Language

Including Other Resource Files
TYPE Statements

The Executive Program

Search Paths

Equate, Trap, and Macro Files

The Pascal Connection
Stack-Based Subroutines
Register-Based Subroutines

Putting It All Together
Alternative Application Development Techniques
Creating a Separate Resource File

The Standard Program Header

Applications and the Finder
Version Data Resource
Icon List Resource
File Reference Resource
Bundle Resource

73
74

77

78

80

82
84
88

89

97

98

99
100
101
101
102

Chapter 5: THE 68000 INSTRUCTION
SET 107
Data Movement Instructions

Clearing to Zero
Moving to Address Registers
Quick Moves
Moving Multiple Registers
Swapping Data Register Halves
Exchanging Registers
Linking and Unlinking the Stack
Moving Data to and from Peripherals

Program Control Instructions
Unconditional Jumps and Branches
Conditional Branches
Looping

Arithmetic Instructions
Unsigned and Signed Binary Numbers

108
110
110
110
111
112
112
112
114

115
115
117
120

122
123

Contents

BCD Numbers
Binary Addition, Subtraction, and Negation
BCD Addition, Subtraction, and Negation
Multiplication and Division
Sign Extension
Comparing
Testing

Bit Manipulation Instructions

Logical Instructions

Shift and Rotate Instructions
Arithmetic Shift Instructions
Logical Shift Instructions
Rotate Instructions

System Control Instructions
Status Register Control Instructions
Trap Instructions
Processor Control ·Instructions

Chapter 4: MEMORY MANAGEMENT
Macintosh Memory Map

Exception Vectors
System Global Variables
Trap Dispatch Table
System Heap
Application Heap
Stack
Application Global Space
Screen Buffer
System Error Handler Buffer
Sound Buffer
Expansion RAM
ROM
Memory-Mapped 1/0 Space

Data Storage in the Application Heap
Pointers
Handles
Deallocation
Allocation Tips

ix

125
125
126
128
128
129
130

131

134

139
142
142
142

144
146
147
148

176
176
178
178
178
179
179
179
179
180
181
181
181
181
181

182
184
185
188
188

x Mac Assembly Language

Data Storage on the Stack
LINK and UNLK

Data Storage Within the Application
Global Space

Data Storage Within the Application Code

Chapter 5: EVENTS AND INPUT/OUTPUT
OPERATIONS
The Event Manager

Getting an Event
Dealing With an Event

Keyboard Events
Mouse Events
Window Events
Disk-Inserted Events

Monitoring the Mouse Button

Keyboard Input

The Mouse Position and Cursors
The Cursor Instructions
Cursor Visibility

The Speaker

The System Clock
Reading the Time of Day and Date

Chapter 6: WINDOWS AND VIDEO
OUTPUT
Introduction to Windows

QuickDraw Global Variables
The Parts of a Window
Coordinate Systems

Creating Windows

Destroying Windows

Reacting to Window-Related Events
Update Events

189
190

191

193

195
201
203
207
213
214
214
215

216

216

220
222
224

225

226
227

230
230
237
238
240

243

251

251
252

Activate Events
Button-Down Events
A Window Application

The Window Title

Displaying Text
Positioning the Pen
Setting Text Characteristics
Drawing Text
Spacing Control

Contents

Example Programs Using Text Handling
Instructions

Handy Utilities

Displaying Graphics
Setting Pen Characteristics
Drawing Lines
Drawing Shapes

Rectangles
Ovals
Round-Comer Rectangles
Arcs
Polygons

Chapter 7: MENUS
Initializing the Menu Manager

Creating a Menu
Building the Menus
MENU Resource Files
Destroying Menus
Adding Items From Resource Files
Determining the Number of Items in a Menu

Building a Menu Bar
Displaying the Menu Bar
Modifying the Menu Bar

Menu Title Display

Menu Item Display
Changing the Name of an Item
Disabling and Enabling Item Names

xi

253
254
260

268

269
274
276
281
283

283
296

297
303
305
306
307
307
307
308
308

511
318

318
319
322
324
325
326

327
329
330

330

331
331
332

xii Mac Assembly Language

Changing the Style of Item Names
Checking and Marking Item Names
Associating Icons with Item Names

Selecting Items From a Menu
Accessing Menu Items from the Keyboard

Example Program Using Menu Manager
Instructions

Chapter 8: DIALOGS AND ALERTS
Preparing the Dialog Manager

Creating Dialog Boxes

Items and Item Lists

Item Types
Static Text
Variable Text Box
Control Items
Icons
Pictures
Disabling Items

Changing Item Attributes

Using Dialog Boxes
Modal Dialog Boxes
Modeless Dialog Boxes

Drawing Within Dialog Boxes

Removing Dialog Boxes From the Screen

A Dialog Box Program

Creating Alert Templates

Using Alert Boxes

332
335
336

338
340

341

552
360

361

365

367
367
368
369
371
371
371

371

375
375
385

387

387

388

402

404

Contents xiii

Chapter 9: SUPPORTING DESI{
ACCESSORIES 406
Opening Desk Accessories 410

Desk Accessories and Mouse Clicks 411

Desk Accessories and Editing 412

Periodic Functions of Desk Accessories 414

Initializing Toolbox Managers 414

An Application Program Supporting Desk
Accessories 415

Appendix A: The ASCII Character ~et 428
Appendix B: Finding, Fixing, and Avoiding

Programming Errors 429
Appendix C: The MacsBug Debugger 433

Invoking MacsBug 433
Locating the Program 434
Disassembling the Program 435
Displaying and Setting Memory Locations 435
Displaying and Setting Registers 436
Stepping and Tracing 436
Leaving MacsBug 437

Appendix D: Utility Programs 438

Bibliography 440

Index 443

Lhnits of Liability and
Disclabner of Warranty

The author and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Registered Tradem.arks
Apple, the Apple logo, the Macintosh logo, MacWrite, and

MacPaint are trademarks of Apple Computer, Inc.
Macintosh is a trademark of Mcintosh Laboratory, Inc., and is

licensed to Apple Computer, Inc.
CompuServe is a trademark of CompuServe Incorporated.
Delphi is a trademark of General Videotex Corporation.
MC68000 is a trademark of Motorola Inc.
IBM PC is a trademark of International Business Machines

Corporation.

Preface
Nothing gives me more pleasure than programming the Macintosh
in 68000 assembly language. Why? Primarily because it's much
more challenging than using a high-level language like BASIC or Pas
cal, I suppose; and I do enjoy a good challenge. But it's more than
that: It's knowing that when the program is finished it will run
faster and more efficiently than its high-level language counterpart.
It's knowing I can exercise complete control over the microproces
sor and that the program isn't doing anything "behind my back"
because I control its every move.

Assembly language programming is not for everyone, of course.
It is far too demanding for the less exacting programmers among
us. If you don't want to concern yourself with such finicky, but
important, details as avoiding register conflicts, selecting address
ing modes, or allocating safe data areas, then I suggest you stick to
a language like BASIC, which handles these details for you.

If, on the other hand, you're intrigued by the possibility of writing
blindingly fast programs and learning about the internal structure of
the Macintosh and the Macintosh Plus along the way, by all means
give assembly language a try. It may take a while to fully under
stand the language, but the rewards are worth the effort.

The purpose of this book is to show you how to develop assembly
language programs on the Macintosh using Apple's Macintosh
68000 Development System CMDS). The discussion relates to both
the original MDS and version 2.0, which was released in the sum
mer of 1986. If you're using another assembler, you will still find the
book useful, although the specific examples will probably have to be
adapted to suit the syntactical requirements of your assembler.

I've assumed throughout the book that you are no stranger to
programming or computerese, so I've avoided lengthy explanations
of such fundamental concepts as byte, bit, hexadecimal, and so on.
I have, of course, emphasized those points that might be confusing
to those who have programming experience, but not necessarily in
assembly language. Knowledge of any .other assembly language will
be helpful, however.

This book is divided into two parts. The first part-Chapters 1, 2,
and 3-primarily contains reference material describing 68000
assembly language in general and the programming tools you must
master to create usable programs. The second part-Chapters 4

xvii

xviii Mac Assembly Language

through 9-shows specific examples of how to create assembly lan
guage programs that implement the standard Macintosh user
interface.

In Chapter 1 I describe the 68000 microprocessor itself. This
includes a preliminary look at the instructions it supports and an
analysis of its internal registers. Also described is the 68000 stack
and the addressing modes that instructions use to locate data.

Chapter 2 is a detailed description of how to use the programming
tools that come with MOS: the editor, assembler, linker, resource
compiler, and executive program. I also include step-by-step
instructions for creating a typical application program.

Chapter 3 takes a close look at each of the 68000's instructions,
highlighting the important characteristics of each. This chapter
includes several reference tables indicating the permitted address
ing modes for each instruction and showing how each instruction
affects the 68000's internal condition code flags. You will refer to
these tables quite often when you're developing assembly language
programs.

Part 2 shows how to develop 68000 programs in the unique Mac
intosh environment. I analyze most of the important subroutines
contained in the Macintosh ROM and show how to use them from
assembly language. By taking advantage of these subroutines, you
can implement the standard Macintosh user-interface in your own
programs with a minimum of effort. The specification for this inter
face is found in Inside Macintosh, Apple's programming guide to the
Macintosh, a book that every programmer should obtain and
review.

Chapter 4 shows how memory is used on the Macintosh and
describes a group of ROM subroutines, called the Memory Man
ager, that applications can use to allocate and deallocate memory
space. Chapter 5 covers the Event Manager, the portion of the
ROM that deals with input/output activity like key presses and
mouse clicks.

Chapters 6, 7, and 8 deal with three of the most important groups
of ROM subroutines: the Window Manager, the Menu Manager, and
the Dialog Manager. After mastering them, you should have no
trouble handling multiple windows on the screen, implementing pull
down menus, and using dialog and alert boxes.

I wrap things up in Chapter 9 by showing how to write an assem
bly language program in such a way that it will work properly with

Preface xix

desk accessories. This is an important consideration for all Macin
tosh programmers.

By the end of the book I hope you will have learned enough to
develop serious assembly language applications on the Macintosh.
Keep in mind, however, that I have only scratched the surface of
the Macintosh ROM and there are many more subroutines in it that
are available to the assembly language programmer. The definitive
description of these subroutines is in Inside Macintosh. I've included
a list of other useful books and periodicals for Macintosh software
developers in the Bibliography.

You should also consider becoming a member of the new Apple
Programmer's and Developer's Association CAPDA), since it is a
convenient source of official Apple technical material. Contact
APDA at 290 SW 43rd Street, Renton, WA 98055, (206) 251--6548.

Gary B. Little
Vancouver, British Columbia, Canada

Chapter I

Inside the 68000
Microprocessor

The Motorola MC68000 microprocessor (the 68000 to its
friends) is the brain that controls the Apple Macintosh. Its pri
mary function, of course, is to run all those programs that
make the Macintosh such a delightful computer to work with. It
is also responsible for controlling the various input/output (1/0)

devices attached to the Macintosh: the two serial ports (usu
ally used to connect a printer and a modem), the external disk
drive port, the mouse, the keyboard, and, on the Macintosh
Plus, the SCSI (Small Computer Standard Interface) port.

In this chapter I'll examine those aspects of the 68000
microprocessor important to programmers. This will include
an overview of the instructions the 68000 supports (more
detailed descriptions appear in Chapter 3), the internal regis
ters it uses to store addresses and data, and the methods it
uses to locate data to work with. I definitely won't be dis
cussing anything that requires a degree in electrical engineer
ing. If you're interested in such topics as hardware interfacing
or timing diagrams, you won't find them here. Instead, refer
to Motorola's specification booklet for the MC68000
microprocessor.

First, a few general words about the operational character
istics of the 68000. The 68000 is usually referred to as a
16/32-bit microprocessor by computer designers. This is
because, although it has a 16-bit data bus, (it grabs data from
memory 16 bits--one word, two bytes-at a time), it has
several 32-bit internal registers in which to store data.
Despite this apparent size mismatch, you can tell the 68000
to fill an entire register using just one instruction; when you

I

2 Mac Assembly Language

do this, the 68000 automatically fetches two consecutive
words of data. A true 32-bit version of the 68000, called the
68020, sports a 32-bit data bus, so it can fill a register more
quickly, in just one fetch. Macintosh-like computers using the
faster 68020 are rumored to be on the drawing board at
Apple Computer, Inc.

The 68000 uses a 24-bit address bus, which means it can
directly access up to 16 megabytes (actually 16,777,216
bytes) of memory! You can calculate this number for yourself
by realizing that each of the 24 bits placed on the address bus
can be either on or off; that means there are 2 24 (16,777,216)
unique address combinations that can be formed. Addresses
are usually referred to by six-digit hexadecimal numbers
ranging from $000000 to $FFFFFF (the leading dollar sign
indicates the number is hexadecimal, not decimal).

Compare the 68000 with the 6502 microprocessor used by
Apple's first product, the Apple II. The 6502 is limited to a 64K
address space (1 K = 1 ,024 bytes) because its address bus is
only 16 bits wide (and 2 16 = 65,536). Additional 64K banks of
memory can be added to a 6502 system, but you can use only
one of them at a time. To select a bank, or go from one bank
to another, you must use complex bank-switching techniques
to ensure that no two banks become active at the same
time. This is not a very straightforward way of accessing
memory and makes software development very difficult.

Most of the 68000's address space is unused on current
versions of the Macintosh, but future releases will probably
use much more. We'll look at how the memory space is used
in a Macintosh in Chapter 4.

The 68000 Instruction Set

As shown in Table 1-1 , there are 55 basic types of instruc
tions the 68000 understands. Instructions are commands to
the 68000, telling it what to do: Move data from place to
place, fill an internal register with a number, call a subroutine,
add two numbers together, and so on. A few of the 68000

Inside the 68000 Microprocessor

instructions are similar in nature to commands in a higher
level language, such as BASIC: JSR (GOSUB-call a subrou
tine), RTS (RETURN-return from a subroutine), and JMP
(GOTO--jump to a specific location) are the most obvious.
Most, however, involve direct manipulation of internal regis
ters and status bits, operations that are usually not easily
done from higher-level languages like BASIC and Pascal.

Table 1-1. The 68000 Instruction Set.

Instruction

ABCD
ADD
AND
ASL
ASR
Bee
BCHG
BCLR
BRA
BSET
BSR
BTST
CHK
CLR
CMP
DBcc
DIVS
DIVU
EOR
EXG
EXT
ILLEGAL
JMP
JSR
LEA
LINK
LSL
LSR
MOVE
MULS

Description

Add two BCD numbers with extend bit CX>
Add two binary numbers
Logical "and"
Arithmetic shift left
Arithmetic shift right
Branch if condition (cc) is true
Test a bit and change it
Test a bit and clear it
Branch relative always
Test a bit and set it
Branch to a subroutine
Test a bit and set flags
Check a data register against bounds
Clear to zero
Compare
Decrement, Test, Branch until condition is true
Signed division
Unsigned division
Logical "exclusive or"
Exchange two registers
Sign extension
Illegal instruction exception
Jump
Jump to a subroutine
Load effective address
Allocate a stack frame
Logical shift left
Logical shift right
Move
Signed multiplication

4 Mac Assembly Language

Table 1-1. continued

Instruction

MULU
NBCD
NEG
NOP
NOT
OR
PEA
RESET
ROL
ROR
ROXL
ROXR
RTE
RTR
RTS
SBCD
Sec
STOP
SUB
SWAP
TAS
TRAP
TRAPV
TST
UNLK

Description

Unsigned multiplication
Negate a BCD number
Negate a binary number
No operation
One's complement
Logical "or''
Push effective address
Reset external devices
Rotate bits left
Rotate bits right
Rotate bits through extend bit (X) left
Rotate bits through extend bit (X) right
Return from exception
Return and restore status
Return from subroutine
Subtract two BCD numbers
Set bits conditionally
Stop execution until interrupt
Subtract two binary numbers
Exchange halves of data register
Test and set a bit
Trap exception
Trap if overflow flag (V) is set
Test
Deallocate a stack frame

The instructions in Table 1-1 are the ones you will use to
write source code for a 68000 assembly language program.
Since the 68000 processor (like all processors) understands
only binary numbers, you must convert any assembly lan
guage program you write to this computer-readable binary
form before you can run it. One way to do this is to use the
assembler and linker that come with Apple's Macintosh
68000 Development System (MOS), which we'll be using in
this book. The executable code generated by MOS (or any
other assembler/linker) is called object code or machine code.

Inside the 68000 Microprocessor 5

You'll rarely need to know the binary equivalent of a 68000
instruction unless you're hand-patching machine code during
a debugging operation. For instance, you may sometimes
want to remove a portion of code before rerunning a program
you're debugging. You can do this by storing words contain
ing $4E71, the binary equivalent of the "do-nothing" NOP (No
OPeration) instruction, over top of the code.

Even though you will probably never have to concern your
self with the binary form of an instruction or how an instruc
tion is stored in memory, it's still interesting to know
something about what's involved.

First of all, an instruction is always an even number of
bytes in length. Since two bytes are referred to as a word,
this means an instruction is an integral number of words in
length. The shortest instruction is one word long and the
longest is five words.

The first word of an instruction is called the operation
word. (Refer to Figure 1-1.) It tells the 68000 the type of
instruction involved in the operation (MOVE, MULU, LEA, and
so on) and some, perhaps all, information relating to the oper
ands of the instruction. The operands are the portions of the
instruction that tell the 68000 where to find the data it is to
manipulate, and where to store the result. Most instructions
have at least one operand and many have two, one called a
source operand and the other called a destination operand.

If there isn't enough room in the operation word to store all
the information needed to describe the operands fully, the
next one to four words in memory are used as extension
words to complete the operand definition. If there are two
operands, the extension word or words for the source oper
and comes first. I'll discuss this in greater detail later on when
we look at the various addressing modes the 68000 operands
rely on to access data.

It is instructive at this point to consider the general form of
a two-operand instruction, such as the ADD instruction:

ADD source_operand,dest_operand

15

1--

1--

6 Mac Assembly Language

As you can see, the two operands are entered right after
the instruction mnemonic and are separated by a comma. For
the ADD instruction, the operands tell the 68000 how to
locate the two numbers to be added together; the result is
stored at the location described by the destination operand.
We'll be looking at the precise form of the operands later on in
this chapter.

0 +---- (bit numbers)

Operation 'Word low memoriy

extension word(s) for the
source operand. Haiy be -
o~ 1 ~or 2 words.

extension word(s) for the high memoriy
destination operand. Haiy be ~

o~ 1 ~ or 2 words.

Figure 1-1. The Format of a 68000 Instruction.

By the way, you must be careful to specify the operands in
a two-operand instruction in the correct order: The source
operand always comes first. Assemblers for some other
microprocessors, notably 8088 assemblers, insist that oper
ands be specified in the opposite order!

Programmer's Model

One measure of the power of a microprocessor is the
number of internal registers it uses to manipulate and trans
fer data. This is because operations involving data stored in
registers are handled much faster than the corresponding
operations with data stored somewhere in the random-

Inside the 68000 Microprocessor 7

access memory (RAM) space available to the 68000. With
plenty of registers at your disposal, it's easy to crank up the
speed of a program by using as many of them as possible for
storage of data or intermediate results before storing the
final result in memory.

As shown in Figure 1-2, the 68000 supports several regis
ters: eight 32-bit data registers, nine 32-bit address registers,
one 32-bit program counter register, and one 16-bit status
register. Keep in mind that these registers are not RAM or
read-only memory (ROM) locations; they form part of the
internal structure of the 68000 microprocessor itself.

DO
01

02

DATA o3
REGISTERS o4

05

ADDRESS

06
07

AO
Al
A2
A3

REGISTERS A4
AS
A6

STACK A7
POINTERS AT

PROGRAM PC COUNTER

31

31

31

15 7 _Q f- (bit number)

15 0 f- (bit number)

Supervisor SP
User SP

0

15 7 0
STATUS I I CCR I REGISTER

Figure 1-2. The 68000 Register Set.

8 Mac Assembly Language

The bits in a register are numbered from 0 to 31 (or 15 in
the case of the status register), where bit 0 is the least-sig
nificant bit and bit 31 is the most-significant bit.

A bit is said to be more significant than another if its binary
weight is higher. The binary weight is the numeric value
associated with the bit, that is, its contribution to the mag
nitude of the number. For bit number n, the binary weight
is 2". When numbers are written down, they are written
with the most-significant digit on the left and the least-sig
nificant on the right.

The right-to-left numbering scheme used to identify bits in a
register is the same as the one used to identify bits in a byte
(eight bits), a word (two consecutive bytes; 16 bits), and a
long word (four consecutive bytes; 32 bits).

Now let's look at each of the 68000's 19 registers.

Address Registers

Although the 68000 has nine address registers, only eight
are active at any given time. The conventional names for
these eight address registers are AO, A 1, A2, and so on, up to
A 7. The ninth address register is an alternate A 7 register.

Except for the A 7 register, the address registers can be
used interchangeably, subject only to restrictions on their use
dictated by the Macintosh's operating system. (The operat
ing system is made up of a program called System and the
subroutines in ROM it uses.) The A7 register is special
because the 68000 uses it as a pointer to an important data
structure called a stack. As you will see below, certain 68000
instructions, and even your own programs, use the stack for
temporary data storage. Not surprisingly, another name for
the A 7 register is SP (which stands for stack pointer).

You can use the 68000 in one of two operating modes, user
or supervisor. You select the appropriate mode by acljusting

Inside the 68000 Microprocessor 9

the supervisor state bit in the 68000 status register. Only one
of the A 7 registers (the supervisor stack pointer) is normally
used on the Macintosh because you're always in the supervi
sor mode. If you enter the user mode, the user stack pointer
(the alternate A7 register) becomes active. This means it is
possible to set up two independent stacks in memory, one for
the operating system and one for the application. Another dif
ference between the two operating modes is that in the user
mode there are certain instructions you are not permitted to
execute; if you're in supervisor mode, you can execute any
instruction you want. The Macintosh always operates in
supervisor mode, so you should not worry about what
instructions are valid.

An address register may hold any data you care to store in
it. But, as the name suggests, it is usually used to hold the
address of something, perhaps a data structure or variable
used by your program. You can also use it as an index into a
data structure when either of the 68000's two indexed
addressing modes are used (more on these addressing
modes later).

You can store either a word (two bytes) or a long word
(four bytes) in an address register, but notjust one byte. You
have to be careful if you store a word in an address register,
however. The word, as you might expect, occupies the lower
half (bits 0 to 15) of the register. What you might not expect
is that the upper 16 bits of the register are also affected
because of automatic sign extension. The sign bit of a word is
bit 15, the most significant bit. If it is a one, the number is
considered to be negative; if it is zero, it's positive. When you
store a word in an address register, the contents of bit 15 are
copied (extended) to bits 16 through 31 .

This means that a word-sized address can only describe an
address in the first 32K of the 68000's 16-megabyte address
space, or the last 32K. This is because bit 15 of the address
words from $0000 to $7FFF (the first 32K addresses) is zero,
so the top 16 bits of the address register will also be zero.
From $8000 to $FFFF, however, bit 15 is one, and sign exten
sion means that the address register will contain $FFFF8000

I 0 Mac Assembly Language

to $FFFFFFFF. Since only the first 24 bits of an address are
significant to the 68000, this corresponds to an address
range from $FF8000 to $FFFFFF, the 32K area of memory
just below the 16-megabyte upper limit of the address space.

You should avoid moving word quantities into address regis
ters on the Macintosh unless you are absolutely sure the
address is less than $8000. Even if you are sure, it's probably
best to use long words instead, to ensure your program will be
compatible with future versions of the Macintosh, where data
areas may be relocated. The only "penalty" is that the instruc
tion is slightly longer and takes a little longer to execute.

Data Registers

There are eight data registers and their names are DO, D 1 ,
02, and so on, up to 07. They are logically equivalent, so you
can use any one of them in exactly the same way you would
use any other, subject, again, to any restrictions of the oper
ating system.

Although the data registers are the same size as the
address registers (32 bits), the 68000 behaves differently
when you store numbers in them. First of all, you can store
long words, words, or bytes in them (not just long words or
words). Bytes occupy bits 0 to 7, words occupy bits 0 to 15,
and long words occupy the entire register, bits 0 to 31 . Sec
ond, no sign extension occurs when you store a word (or a
byte) in a data register. Data registers are usually used for
the storage of numeric data or indexes into data structures.

The Status Register

The status register (called the SR) is a 16-bit register that
reflects the operational mode of the 68000. It is actually
made up of two parts, the system byte and the user byte (or
condition code register), as shown in Figure 1-3.

Trace Mode

Supervisor Mode ___ _,

Interrupt Mask --------'

System Byte

Inside the 68000 Microprocessor 11

0

.__ ___ Carry Flag

.....__ ____ Overflow Flag

~-----Zero Flag

'--------Negative Flag

....._-------Extend Flag

User Byte
(Condition Code Register)

Figure 1-3. The 68000 Status Register.

The System Byte

The bits in the system byte reflect the fundamental operat
ing state of the 68000: whether it's in supervisor or user
mode, what hardware interrupts are enabled, and whether
instruction tracing is enabled. The Macintosh operating sys
tem initializes the system byte when you first turn on the
Macintosh. Few applications need to change this initial set
ting, so you can usually ignore it altogether.

In any event, let's look at the meaning of the five bits in the
system byte the 68000 uses (the other three bits have no
meaning). The bit numbers given are relative to the entire
16-bit status register.

T-Trace Mode

If the trace mode bit (bit 15) is zero, the 68000 executes a
program in the normal way. If it is one, however, the 68000
interrupts the program after the execution of each instruc
tion and passes control to a program whose starting address
is stored at location $000024. (This is exception vector #9;

12 Mac Assembly Language

more on exceptions at the end of this chapter.) You are
responsible for installing this program before activating the
trace mode; if you don't, the Mac will die a horrible death as it
tries to execute a program that doesn't exist.

The only programs you're likely to come across that fiddle
with the trace mode bit are programming utilities called
debuggers. The most well-known is the MacsBug program
that comes with MOS (see Appendix C). When you activate
its trace feature, the contents of all the registers are dis
played every time an instruction in the main program is exe
cuted. This makes it easy to check that a program is
performing as it should.

S-Supervisor State

The supervisor state bit (bit 13) is initially set to one when
you start up the Macintosh, meaning that the 68000 is oper
ating in supervisor mode. In this mode, you can execute any
68000 instruction and the supervisor stack pointer is active.

If the 5 bit is off, you're in user mode and the user stack
pointer (the alternate A7 register) is active. In this mode
there are several 68000 instructions you can't use Call noted
in Chapter 3), most of which involve direct modification of the
system byte in the status register. If you try to use them
anyway, you'll generate a privilege violation exception.

I-Interrupt Mask

The interrupt mask (bits 10, 9, 8) lets you enable or disable
hardware interrupt processing. As you will see later on,. inter
rupts are events that peripherals use to signal they are ready
to receive or send data or that some special condition has
taken place that needs immediate attention. Interrupts are
usually enabled so the 68000 can execute its programs with
out having to periodically check (or poll) for 1/0 operations.
Programs that use polling techniques for 1/0 operations are

Inside the 68000 Microprocessor I :5

understandably less efficient than those using interrupt
techniques.

Each hardware interrupt is associated with a particular pri
ority level fixed by the hardware design. Any interrupt having
a level at or below the value of the interrupt mask is ignored
by the 68000. There is an exception: If the mask value is 7
(binary 111) , a level 7 interrupt is permitted.

You should never change the value of the interrupt mask
unless you really know what you're doing. Applications
requiring you to change it are rare, indeed.

The User Byte

The user byte is of much more interest to a programmer. It
contains five one-bit condition code flags, the settings of
which are referred to, or affected by, most 68000 instruc
tions. For example, the 68000 supports a group of branch
conditionally instructions (like BCC, BCS, and BVC) you can
use to change the order of execution of a program based on
the state of a condition code flag.

The user byte is also called the Condition Code Register, or
CCR for short.

The Extend Flag

The extend flag (X) is primarily used to indicate the carry or
borrow status in an addition or subtraction operation. If it is
set to one, a carry out of the most significant bit of the oper
and occurred during an addition operation, or a borrow
occurred during a subtraction operation.

The existence of the extend flag makes it possible to carry
out multiword mathematical operations. For example, if you
want to add two numbers that each occupy three words in
memory, you would first add the lowest-order words using
the standard ADD instruction, and then use the ADDX (add
with extend) instruction for the middle- and high-order words
so that any carry would be included in the total.

14 Mac Assembly Language

The extend flag also participates in many of the 68000's bit
shifting instructions that we'll look at in Chapter 3.

The Negative Flag

The negative flag (N) indicates the sign of the result of the
last mathematical operation or of the data last moved into a
data register.

The negative flag is set to one if the sign bit (the most-sig
nificant bit) of the result or data is one; otherwise, it will be
zero. The sign bit is bit 7 for a byte, bit 15 for a word, and bit
31 for a long word.

The Zero Flag

The zero flag (Z) indicates whether the result of the last
mathematical operation was zero. If it was, the zero flag is
set to one; if not, the zero flag is cleared to zero.

You should note that the zero flag is not just aQ.iusted after
mathematical operations. Any time you move a zero value
into a data register, the zero flag is set to one. If some other
value is involved, the zero flag is cleared to zero.

The Overflow Flag

The overflow flag (V) is only important if you're working
with signed numbers. Signed numbers are those where the
most significant bit of the operand (bit 7 for a byte, bit 15 for
a word, or bit 31 for a long word) is used to hold the sign of
the number (one means negative, zero means positive). The
rest of the bits hold the magnitude of the number in a two's
complement form. The two's complement form of a number is
formed by taking the binary form of the absolute value of the
number, complementing all the bits (changing ones to zeros
and vice versa), and then adding one. This form is used to
facilitate internal addition and subtraction operations.

Inside the 68000 Microprocessor 15

If the result of a mathematical operation on two signed
numbers is outside the range of numbers that can be repre
sented in this format, the overflow flag is set to one; if all
goes well and the number is in range, it is cleared to zero. You
can use the branch conditionally instructions BVS (branch on
overflow set) and BVC (branch on overflow clear) to pass
program control anywhere you want in the program when an
overflow condition occurs. Another instruction that checks
the V flag is TRAPV; this instruction causes a 68000 excep
tion if the V flag is one.

The overflow flag is also set if the divisor in a DIVU or DIVS
instruction is one or if the state of the sign bit changes as the
result of one of the 68000's bit shifting instructions.

The Carry Flag

The carry flag (C) is very similar to the extend flag. In fact,
every instruction that sets or clears the extend flag also sets
or clears the carry flag. The converse is not true, however,
as only the carry flag is affected by certain operations. For
example, most data movement operations clear the carry
flag only, and only the carry bit participates in the "rotate
left" CROL) and "rotate right" CROR) bit shifting operations.

The Program Counter

Another important register in the 68000 is the program
counter. It always holds the address of the position in a pro
gram where the 68000 is currently operating. Without the
program counter, the 68000 would have no idea of what
instruction to execute next.

Although the program counter is a 32-bit register, only the
first 24 bits are significant, since the 68000 only has a 24-bit
address bus. The program counter can hold any address in
the 68000's 16-megabyte range.

16 Mac Assembly Language

Instructions are usually processed in the order in which
they appear in a program. After an instruction has been dealt
with, the program counter will be pointing to the next in-line
instruction. There are ways to skip around a program, of
course, such as by using the branch conditionally instructions
(Bee) and the jump (JMP) and jump to subroutine (JSR)
instructions. When the program flow changes with a branch
or a jump, the program counter is automatically set equal to
the target address specified in the instruction.

The program counter is also affected by the 68000 return
from subroutine instructions RTS, RTR, and RTE. In each
case, an address is removed from the 68000 stack and
placed in the program counter so that processing can con
tinue with the instruction following the one that called the
subroutine and placed the address on the stack in the first
place.

The Addressing Modes

You've already seen that a complete 68000 instruction is
made up of an instruction mnemonic and up to two operands
that tell the 68000 where to find data to work with and
where to store the results. A location to be dealt with by an
instruction is called an effective address and could be a mem
ory location or an internal register specifically referred to in
the instruction, or a memory location calculated by adding
together as many as three different quantities. The availabil
ity of so many different ways to access data permits you to
write very efficient and powerful programs.

You tell the 68000 how to calculate an effective address for
an instruction by specifying an addressing mode for each
operand the instruction uses. Actually, as you will see, for
some instructions you don't have to specify an addressing
mode at all if the mode is implicit.

There are 12 fundamental addressing modes you can use
with the 68000. Their MOS assembler formats are summarized
in Table 1-2, as are the effective address calculations for each

Inside the 68000 Microprocessor 17

mode. Most other assemblers use these same formats.
Be aware that not all instructions can use each addressing

mode. To determine which are permitted, you'll have to con
sult the detailed description for the instruction in question. In
Chapter 3, I'll summarize the addressing modes each instruc
tion can use.

Table 1-2. The 68000 Addressing Modes.

Name of
Addressing

Mode

Data Register Direct
Address Register Direct
Register Indirect
Register Indirect with Post-increment

Register Indirect with Pre-decrement

Register Indirect with Displacement
Register Indirect with Index
Absolute short:

long:

Program Counter with Displacement
Program Counter Relative with Index
Immediate standard:

Effective Address
Calculation

EA= Dn
EA= An
EA= (An)
EA = (An), An =

An+N
An = An-N, EA=

(An)
EA = (An)+d16
EA = (An)+ (Rn)+ dB
EA = (next word)
EA = (next long

word)
EA = CPC)+d16
EA = CPC>+CRn>+dB
EA = next word

Assembler
Syntax

Dn
An
(An)
(An>+

-(An)

d16(An)
dB(An,Rn)
xxxx
xxxxxxxx

d16(PC)
dBCPC,Rn)
#xxxx
or

quick:
EA = next long word #xxxxxxxx
EA = operation word #xx

Implicit

Abbreviations:

EA= SR, SP, PC, USP

EA = effective address
Dn = data register Cn=O to 7)
An = address register (n = 0 to 7)
d16 = 16-bit signed displacement
dB = B-bit signed displacement
Rn = address or data register used as index

Cn=O to 7)
PC = program counter register
SR = status register

18 Mac Assembly Language

Table 1-2. continued

Abbreviations SP = stack pointer (same as A 7)
USP = user stack pointer
N = 1 for bytes, 2 for words, 4 for long words
() = contents of

xx refers to a number from 1 to 8 CADDQ, SUBQ)
or to a number from - 128 to + 127 CMOVEQ).

xxxx and xxxxxxxx refer to numbers of size word
and long word, respectively.

Let's look at each of the addressing modes.

Implicit Mode

There are a few 68000 instructions that don't require you
to specify all operands because the "missing" operands are
implicit to the instruction. The implicit operand usually
involves the program counter, the user or supervisor stack
pointer, or the status register. For example, when you use
the JMP Gump) or Bee (branch conditionally) instructions, the
only operand you have to specify represents the target
address of the jump or branch. You don't have to indicate
that this address is to be transferred into the program
counter because it is implicit. Similarly, the JSR Gump to sub
routine) and BSR (branch to subroutine) instructions always
save a return address on the stack, so there's no need to
spell it out.

Instructions that act on the 68000 status register and the
condition code register also use the implicit addressing mode,
even though the MOS assembler actually requires you to
explicitly refer to SR or CCR in the operand field of the instruc
tion. These are MOVE to/from CCR and MOVE to/from SR, as
well as certain logical instructions used to modify bits in the
status register CANDI to SR, EORI to SR, and ORI to SR).

Inside the 68000 Microprocessor 19

Immediate Mode

An immediate operand is a numeric constant (a specific
number) that is stored in the one to five words each 68000
instructions occupies. Only a source operand can use the
immediate addressing mode.

Byte and word operations require one extension word to
hold the number; long word operations require two extension
words. As we saw earlier in this chapter, these extension
words immediately follow the operation word for the
instruction.

When you use the immediate addressing mode to refer to a
constant, the 68000 simply reads it directly from the exten
sion word or words. That means the effective address is sim
ply the address of the instruction's extension word. The
assembler format for the immediate addressing mode is:

#number

or

#symbol

where number represents a number within the range allowed
by the operand, and symbol represents a symbolic name for a
numeric constant. A number can be decimal or hexadecimal;
hexadecimal numbers are preceded by a $ sign. Symbols are
defined in source code using the EQU or SET assembler direc
tives (see Chapter 2).

The # symbol preceding the number or symbol is very
important; if you don't include it, the instruction is assembled
as if the operand were an address, rather than a constant, so
the program won't work as expected.

Here are examples of some immediate operands:

#45
#$20
#mySize

decimal 45
hexadecimal 20 (decimal 45)
"mySize" is the EQU symbol for a number

20 Mac Assembly Language

There is a special "quick" form of the immediate addressing
mode you can use if the number is small enough to fit within
the operation word itself. For example, if you're adding or
subtracting an immediate quantity from one to eight, you can
use the AOOQ and SUBQ instructions. To move an immediate
quantity from -128 to 127 to a destination, you can use the
MOVEQ instruction.

The MOS assembler automatically optimizes your code by
converting any ADD, SUB, and MOVE instructions to the
quick equivalent if the immediate operand is in the range per
mitted by the quick form.

Data Register Direct Mode

When you use this addressing mode the operand is simply
one of the eight data registers, 00-07. To select this mode
when you write a program, refer to the data register as Dn
(n = 0 to 7). Here are some simple examples of how to use
the data register direct addressing mode:

MOVE #4,DD
CLR.L M

;put a r. into oa.w
;clear D4.L to zero

(Notice that the semicolon indicates the beginning of a com
ment in an assembler source statement.)

When you use the data register direct addressing mode,
you can deal with operands that are three different sizes:
byte, word, and long word. To indicate the size of the oper
and, attach one of the following suffixes to the standard
instruction mnemonic:

.B (byte)

.W (word)

.L (long word)

When you do this, only the first eight bits (byte), 16 bits
(word), or 32 bits (long word) of the data register are used
by the instruction.

Inside the 68000 Microprocessor 21

If you don't specify a suffix, the MOS assembler assumes
you're dealing with an operand size of word. The MOVE
example we just looked at, for instance, only acts on the
lower 16 bits of the data register.

Address Register Direct Mode

The operand here is one of the eight address registers,
AO-A 7. The assembler format parallels that used for the data
register direct mode: You refer to the address register by An
(n = 0 to 7). (You can also refer to A7 as SP, if you wish.)
You cannot, however, move byte quantities into an address
register and, as explained earlier in this chapter, word quanti
ties are sign-extended across the upper part of the register.

Here's an example of how to load the address of the data
area whose label is "Record" into the address register AO:

LEA Record, AD ;!love the address of 11 Record 11 into AD

CA label is a symbolic name associated with an instruction or
a data area within a program.)

Although you don't have to store addresses in an address
register, you will often use them for that purpose so you can
take advantage of the 68000's powerful address register indi
rect addressing modes. These modes are typically used after
first storing the base address of a data structure in an
address register. They cannot be used with data registers.

Address Register Indirect Mode

The operand here is one of the eight address registers, but
the effective address that is acted on is the address stored in
the register, not the register itself (see Figure 1-4). To indi
cate this addressing mode, enclose the name of the address
register in parentheses. The assembler format for this
addressing mode is:

(An}

22 Mac Assembly Language

Here are some examples:

MOVE.L #4,(A3) ;Store 4 (long word form) at the address contained in A3
MOVE DO,(A2) ;Store what's in DD (word) at the address contained in A2

You should be careful not to confuse this indirect mode with
the direct mode, where data is read from or written to the
register itself. Whenever you see the parentheses, think
"contents of".

(An)

An []--

address is the address stored The effective
in the An reg ister.

high memory

effective address

low memor y

Figure 1-4. Address Register Indirect Addressing Mode.

Also be careful that the address register does not contain
an odd address when the operand size is a word or long
word. When you try to execute such an instruction, the
68000 generates an address error exception and you'll see
the infamous Macintosh bomb box. I'll discuss exceptions in
detail later in this chapter.

Inside the 68000 Microprocessor 23

Address Register Indirect with Post-Increment
Mode

This addressing mode is quite similar to the address regis
ter indirect mode, except after the effective address is used,
the number in the address register is incremented by one (for
a byte operation), two (for a word operation), or four (for a
long word operation). (See Figure 1-5.) The addressing mode
is designated by placing parentheses around the name of the
address register, followed by a plus sign to indicate the post
increment operation:

(An)+

The post-increment addressing mode is very useful when
you're moving ranges of memory from one place to another
because you don't have to follow each move with extra
instructions to increment the base pointers for the two
blocks. For example, consider the instruction:

MOVE (AD)+,(AL)+

If you execute this 10 times in a row, the 10 words beginning
at the initial address stored in AO will be moved to a block
beginning at the initial address stored in A 1 . After each word
is moved, the address registers are incremented by two (it's
a word operation) so that you're ready to move the next
word.

Post-increment addressing is also handy for removing (pop
ping) data that is passed on the 68000's stack. To do this,
you would execute an instruction such as:

MOVE (SP)+,DD ;Take a word off the stack

As you'll see later on, the stack is a data structure that
grows down in memory: When you add data to it, the stack
pointer is decreased, and when you remove data from it, the
stack pointer is increased.

.24 Mac Assembly Language

(An)+

An l I +N

An [

N = 1 (byte operation)
= 2 (word operation)
= 4 (long word operation)

J-

1
_J

high memory

~ EA+N

effectiYe address

low memor y

Figure 1-5. The Address Register Indirect With Post-Increment
Addressing Mode.

Address Register Indirect with Pre-Decrement Mode

This addressing mode is primarly used to add items to the
stack. It is designated by placing a minus sign before the
name of an address register enclosed in parentheses:

-(An)

The effective address is calculated by first decrementing
the contents of the address register by one (for a byte opera
tion), by two (for a word operation), or by four (for a long
word operation). The address acted on is the new address in
the address register. (See Figure 1-6.)

For example, to place a long word operand on the stack,
use an instruction like

MOVE.L DD, - (SP)

-(An)

An [

l-·
An l

N = 1 (byte operation)
= 2 (word operation)
= 4 (long word operation)

Inside the 68000 Microprocessor 25

high memory

EA-N

r--1 effectiYe address

]---

l_
s

low memory

Figure 1-6. Address Register Indirect With Pre-Decrement Addressing Mode.

When this instruction is executed, the stack pointer is first
decremented by four and then the contents of DO are placed
at the address stored in the stack pointer register.

Address Register Indirect with Displacement Mode

The effective address here is calculated by adding a 16-bit
sign-extended word to the address stored in an address reg
ister. (See Figure 1-7.) The assembler format for this
addressing mode is:

d1b(An)

or

label(An)

26 Mac Assembly Language

where d 16 represents a number from - 32768 to 32767 and
label represents the EQU symbol for such a number, or the
label for an instruction or data area. If you use a number or
label, do not precede it with #, as you would if using the
immediate addressing mode.

This addressing mode is typically used when you want to
access a specific item in a data structure whose base
address is stored in the address register. For example, if
there's a data structure beginning at location "Addresses" in
your program, and you want to read the third word (which
occupies bytes 4 and 5; numbering begins with 0) in the struc
ture, you would use the instruction:

LEA
MOVE

Addresses,AO
t;(AO),DO

;Load base address into AO
;Third word starts at offset t;

You'll be using this addressing mode quite often on the
Macintosh because any variables you define within the pro
gram (using the DS assembler directive) must always be ref-

high memory

d 16(An)

~
effective address

+d16

l

An [}--

low memory

Figure 1-7. Address Register Indirect With Displacement Addressing Mode.

Inside the 68000 Microprocessor 2 7

erenced as displacements from the address stored in the AS
register. So, for example, if you call your variable
"MyRecord", its base address is given by a "MyRecord(AS)"
operand and the address of the third word in the data struc
ture is "MyRecord + 4(AS)". The assembler calculates the
(AS) offset by adding MyRecord and 4 at assembly time.

Address Register Indirect with Index Mode

The effective address for this addressing mode is calcu
lated by adding together the number stored in an address
register, an index that is stored in another address register
or a data register (sign-extended word or long word), and an
8-bit, sign-extended, displacement byte (see Figure 1-8). The
assembler format for this mode is:

d&(An,Rn)

or

label(An,Rn)

where Rn represents the data or address register being used
as the index register, di! represents a number, and label repre
sents the symbolic name for a number.

To indicate whether the index register is a word or a long
word, add a .W or .L suffix to its name; some examples are
03.L, AO.W, and 02.W. If no suffix is specified, a word index is
assumed.

This addressing mode requires one extension word. The
first byte contains information relating to the index register
and its size. The second byte contains the 8-bit displacement.
Note that since the displacement byte is only 8 bits long, the
displacement range is from - 128 to + 127. (The base point is
the word following the operation word.)

This indexed addressing mode is useful when you're work
ing with a group of fixed-length records. To access any rec
ord in the group, first store the address of the first record

28 Mac Assembly Language

high memory

d8(An,Rn) I
effectiYe address

d8(An,Rn.Y) +Rn
dB(An ,Rn .L) .f

1

An l J-

mor low me y

Figure 1-8. Address Register Indirect With Index Addressing Mode.

(record 0) in an address register, then multiply the record
number you want by the number of bytes in a record, and
store the result in the index register. When you access the
record, you can use the displacement byte to step to the field
in the record you are interested in.

Absolute Modes

The effective address for the absolute long addressing
mode is stored in two extension words for the operand. It
represents a specific address in the 68000's 16-megabyte
memory space that the operand is to use.

The assembler format for this addressing mode is simply:

$xyzzzz ;xy > DD z = D .• F

or

label

Inside the 68000 Microprocessor 29

where label is a symbolic label for a fixed memory location
defined using the EQU or SET assembler directive. (See
Chapter 2.)

If label refers to a position within your application program,
the MOS assembler uses the program counter with displace
ment addressing mode, label (PC), instead.

There is one other variant of the absolute addressing
mode: absolute short. In this case, the effective address is
formed by sign extending the 16-bit address stored in the
extension word for the operand. The assembler format is:

$00xxxx ;x = a .. F

or

label

Since the address is sign-extended, this addressing mode can
only be used if the address is in the first 32K or last 32K of
memory.

Program Counter with Displacement Mode

The effective address in this mode is the sum of the
address in the program counter register and a sign-extended,
16-bit displacement word stored in an extension word after
the operation word. (See Figure 1-9.)

The assembler format is:

label(PC)

or

label

where label represents the symbolic label for a position within
the program. The assembler automatically determines what
the displacement between the program counter and the

50 Mac Assembly Language

labeled position is and puts it into the executable object code
for the program. You should never have to calculate it
yourself.

high memory

d 16(PC) n effectiYe address

+d16

l

t-

PC [}---

low memory

Figure 1-9. Program Counter With Displacement Addressing Mode.

Program counter with displacement is a very important
addressing mode on the Macintosh because all the programs
you write must be relocatable, able to run at any position in
memory. This means that no part of the program must refer
to an absolute location if that location is within the body of
the program. By referring to addresses in a relative way, the
operating system can load and run the program anywhere it
wants. In fact, the MOS makes it very difficult to write non
relocatable code because all references to labels are relativ~
to the program counter; the alternative mode, absolute long
addressing, is not used in these circumstances.

Inside the 68000 Microprocessor :.H

Program Counter with Index Mode

The effective address for this mode is the sum of the
address in the program counter, the long word or sign
extended word in a data or address register used as an
index, and a sign-extended 8-bit displacement byte. (See Fig
ure 1-10.) The assembler format is:

label(PC,Rn)

where Rn represents the data or address register being used
as the index and label represents the location of another
instruction in the program. The assembler takes care of con
verting this location into an 8-bit offset from the value of the
program counter.

high memory

d B(PC,Rn) _n d8(PC ,Rn. Y)
d8(PC,Rn.L) +Rn

+dt-1

effective address

l

PC l }-

low memor y

Figure 1-10. Program Counter With Index Addressing Mode.

As with the address register indirect with index mode, the
index register can be a word or a long word. Use the .W or .L
suffix to identify its size.

52 Mac Assembly Language

Note that if the index register is a data register, you can
also use the following assembler operand format:

label(Dn)

You don't have to specifically refer to the PC register. You
can't omit the reference to PC if the index register is an
address register because "label (An)" is used to indicate that
the address register indirect with displacement addressing
mode is to be used.

The program counter with index addressing mode requires
one extension word. The first byte contains information
relating to the index register and its size. The second byte
contains the 8-bit displacement. Note that since the displace
ment byte is only 8 bits long, the displacement range is from
- 128 to + 127. (The base point is the word following the
operation word.) This means that the data structure you're

indexing into must be quite close to the instruction.
The program counter with index addressing mode is quite

similar to the address register indirect with index we looked
at earlier. In fact, it's possible to write code to access records
in a data structure that uses either addressing mode. The
advantage of using the program counter with index mode is
that you don't "waste" an address register for storage of the
base address. The disadvantage is that the base address
must be within the range covered by the 8-bit displacement
byte.

The Stack

The stack is a last-in, first-out (LIFO) data area in RAM that
is implicitly used by several 68000 instructions for storage or
retrieval of data. The LIFO characteristic means that the last
item placed (or pushed) on the stack will be the first item
removed (or pulled) from the stack. Figure 1-11 shows, sym
bolically, what a stack looks like and where data is pushed on
it and pulled from it.

Inside the 68000 Microprocessor 55

high m emory high memory

aft.r
SP ---I last word SP

L
last word HOYE.L •num,-(SP)

num Clow word)

num (high word)

low memory 1 ow memory

(a) The stack pointer always
points to the last word
pushed on the stllck.

(b) After a push operation.
SP is decremented by the
size of the item. Use the
-(SP) addressing mode
for this.

SP ____,

high memory

last word

low memory

after
HOYE.l (SP)+ ,DO

(c) After a pop operation.
SP is incremented by the
size of the item. Use the
(SP)+ addressing mode
for this.

Figure 1-11a, b, c. The 68000 Stack and Stack Pointer.

The address of the top of the stack (the address of the last
item pushed on the stack) is stored in the current stack
pointer register, SP, the active A 7 register. (The Macintosh
operating system initializes its value when you start up.)

:34 Mac Assembly Language

Remember that SP refers to either the supervisor stack
pointer (A 7) or the user stack pointer (A 7'), depending on
whether the supervisor state flag (S) in the status register is
on or off.

When data is pushed on the stack, the stack pointer is first
decremented by the size of the data and then the data is
stored at the address stored in the stack pointer. Be aware,
however, that if you try to push an odd number of bytes on
the stack, the 68000 first pushes one extra byte on the stack
to ensure that the stack pointer always contains an even
address.

The instructions that implicitly push data on the stack are
JSR, BSR, and PEA (all of which push long word addresses);
and LINK, which pushes the contents of a 32-bit address reg
ister and then creates a data "frame" within the stack by.
decrementing the stack pointer by the number of bytes spec
ified in the operand.

Since the stack pointer is decremented when something is
placed on the stack, the stack grows downward in memory.

When you pop data from the stack, the stack pointer is
incremented by the size of the data, or by the size of the data
plus one if you try to pop a single byte.

The instructions that implicitly pop data from the stack are
RTS, which pops a long word address pushed there by a JSR
instruction and puts it in the program counter; RTR and RTE,
both of which pop a word into the status register and a long
word address into the program counter; and UNLK, which
restores the initial value of the stack pointer to deallocate a
data frame created by LINK and then pops a long word into
an address register.

You can also explicitly use the stack for temporary data
storage by using the A 7 indirect with pre-decrement address
ing mode, -(SP), to place data on the stack. When you want
to remove data, you can use the corresponding post-incre
ment addressing mode, (SP)+. You'll see in later chapters
that most of the internal ROM subroutines used on the Mac
intosh to perform standard operations are accessed by pass
ing parameters on the stack using the pre-decrement

Inside the 68000 Microprocessor 55

addressing mode; function results are retrieved from the
stack using the post-increment addressing mode.

The stack can be positioned anywhere in memory simply by
acljusting the value of SP. It's usually placed near the top of
the available RAM space so that as large a space as possible
will be left for a program to use. You'll see where it's posi
tioned on the Macintosh in Chapter 4.

Exceptions

Under normal circumstances, the 68000 keeps busy by
executing program instructions in the order dictated by the
program logic. There are several special events called excep
tions, however, that can temporarily interrupt the natural
flow of a program, and force the 68000 to enter an exception
processing state. As shown in Table 1-3, these events are
generated by external input/output devices, internal errors,
or certain 68000 instructions.

Table 1-3. The 68000 Exception Vectors.

Vector Vector Address
Number (hexadecimal) Description of Exception

0 $000 Reset: initial SSP
$004 Reset: initial PC

2 $008 Bus Error
3 $00C Address Error
4 $010 Illegal Instruction
s $014 Divide by Zero
6 $018 CHK Instruction
7 $01C TRAPV Instruction
8 $020 Privilege Violation
9 $024 Trace

10 $028 Line "A" Emulator
11 $02C Line "F'' Emulator
12 $030 [reserved]
13 $034 [reserved]
14 $038 [reserved]

56 Mac Assembly Language

Table 1-3. continued

. Vector Vector Address
Number (hexadecimal) Description of Exception

15 $03C Uninitialized interrupt vector
1~23 $040-$05F [reserved]
24 $060 Spurious Interrupt
25 $064 Level 1 autovector (VIA)
26 $068 Level 2 autovector CSCC)
27 $06C Level 3 autovector (VIA+ SCC)
28 $070 Level 4 autovector (switch)
29 $074 Level 5 autovector (VIA+ switch)
30 $078 Level 6 autovector (SCC +switch)
31 $07C Level 7 autovector (VIA+ SCC +switch)
32-47 $080-$0BF TRAP #n Instruction Vectors
48-63 $0C0-$0FF [reserved]
64-255 $100-$3FF User Interrupt Vectors (*)

(*)The user interrupt vectors are actually used for storage of global
variables on the Macintosh.

Each of the events that can trigger exception processing is
associated with a vector number from #0 to #255. The vec
tors themselves are long words, stored in the first 1024
bytes of the 68000 memory space, and which hold the
address of the program to which control is to pass when the
exception occur.s. To calculate the location of the vector from
a given vector number, simply multiply the vector number by
four. This means that the vectors occupy the address space
from $000000 to $0003FF.

The exception-handling subroutine is responsible for prop
erly servicing the exception request before returning control
to the main program at the point where the exception
occurred. The operating system automatically installs a
default set of exception subroutines when the Macintosh
first starts up. You normally don't have to change these
unless you want to take advantage of an exception that the

Inside the 68000 Microprocessor 37

operating system doesn't normally use, or if you want to
change what happens when a given exception occurs.

Before we begin looking at each type of exception in detail,
let's review exactly what happens when an exception
occurs. It's a four-step process:

• The 68000 makes an internal copy of the status register and
then sets the supervisor state flag to one and clears the trace
mode flag to zero. This means the 68000 will commence oper
ating in supervisor mode Cif it wasn't already) and instruction
tracing will be turned off. If the exception was caused by reset
or by a hardware interrupt, the interrupt level mask in the sta
tus register is also changed, as explained below.

• The 68000 determines the vector number for the interrupt and
uses it to calculate the address of the vector (by multiplying by
four).

• The 68000 pushes on the supervisor stack the program
counter Cit contains the address of the next instruction to be
executed in the interrupted program), followed by the previ
ously saved copy of the status register. These two pushes
aren't made if the exception is caused by a reset.

• The new program counter value is loaded from the exception
vector.

Once these steps are completed, the 68000 starts execut
ing the exception handling subroutine. Such a subroutine fin
ishes with an RTE (return from exception) instruction that
restores the original values of the program counter and the
status register from the stack so that execution of the main
program will continue on as if nothing had happened.

Let's take a more detailed look at the types of exceptions
handled by the 68000.

The Reset Exception

A reset exception (vector #0) occurs when you first turn
on the Macintosh or when you press the front part of the pro
grammer's switch on the side of the Macintosh. The interrupt
mask bits in the status register are set to 111 by the 68000
when a reset occurs. On the Macintosh, the subroutine that

:58 Mac Assembly Language

handles the reset exception boots the system from disk.
Unlike any other exception vector, the reset vector

requires two long words of storage so it actually occupies the
space you'd think would be used by exception vector #1
(such an exception can't occur with the 68000). The first long
word contains the new value of the supervisor stack pointer
and the second long word contains the new value of the pro
gram counter.

If you look at the values stored in the reset vector after
you've turned on the Macintosh, you'll become very confused
because the second long word doesn't point to the standard
disk boot subroutine. In fact, it doesn't point anywhere in par
ticular. This is because the Macintosh has been designed to
temporarily remap its memory space when a reset exception
occurs so that the address of the base of the ROM space,
which is normally $400000, becomes $000000. Thus, it is the
long words at $400000 and $400004 that are used to fill the
stack pointer and the program counter when a reset occurs.
The ROM is remapped to $400000 during the reset sequence.
If resets weren't handled this way, you wouldn't be able to
start up the Mac because a RAM-based reset vector would
contain random data on power up.

The Internally Generated Exceptions

BUS ERROR (vector #2). If implemented by the system
hardware, this exception occurs if you try to address an area
of memory that doesn't exist. Bus errors cannot occur on the
Macintosh.

ADDRESS ERROR (vector #5). This exception occurs when
the 68000 tries to access a word or long word operand that
begins at an odd address or when it tries to execute an
instruction that begins at an odd address. This type of error
is very serious and causes a fatal bomb box to appear on the
Macintosh screen.

PRNILEGE VIOLATION (vector #8). This exception occurs
if you're in user mode and you try to execute an instruction

Inside the 68000 Microprocessor 39

that is valid in supervisor mode only. Since you're always in
supervisor mode on the Macintosh (or should be!) this excep
tion should never occur.

TRACE (vector #9). This exception occurs after every
instruction is executed if the trace flag CT) in the system byte
of the status register is one. Debugging programs such as
MacsBug typically handle trace exceptions by displaying the
contents of all the registers, the stack, an area of memory,
or other information that may assist a programmer in deter
mining whether a program is executing as expected.

The Externally Generated Exceptions

An exception caused by a peripheral device is called an
interrupt. An interrupt is a simply an electrical signal from the
peripheral port, such as one of the Mac's serial ports, indicat
ing that an event has just occurred that should be dealt with
immediately, such as the arrival of data from a modem. The
68000 normally responds to an interrupt by halting execution
of the main program in memory, servicing the source of the
interrupt, and then returning to the main program. By using
interrupts to signal events, the 68000 does not have to worry
about missing events that might occur while it's performing
time-consuming operations. If you couldn't use interrupts,
you'd have to do periodic status checks for incoming informa
tion and this would slow down your program.

A different priority level, from 1 to 7, is assigned to each
source of interrupts when a 68000-based system is designed.
Here are the priority levels for the interrupts possible on a
Macintosh:

• level 1 : VIA interrupts
• level 2: sec interrupts
• level 3: VIA and SCC together
• level 4: interrupt button on programmer's switch
• level 5: interrupt button and VIA together
• level 6: interrupt button and sec together
• level 7: interrupt button and VIA and SCC together

40 Mac Assembly Language

The VIA is the 6522 Versatile Interface Adapter used to
control the mouse and clock. The sec is the 8530 Serial Com
munications Controller that controls the two serial ports on
the Macintosh.

The interrupt mask in the status register lets you prevent
certain interrupts from occurring. Any interrupt having a level
at or below the level of the mask is ignored by the 68000. The
exception is a level 7 interrupt; it is always permitted and is
referred to as a non-maskable interrupt.

All interrupts can be enabled by storing 000 in the mask,
and this is the value the Macintosh operating system uses.

The interrupt mask is automatically changed by the 68000
when an interrupt of a certain level is dealt with. As part of
the interrupt handling process, the mask is changed to the
current level being processed so that lower- or equal-priority
events can't interfere with the handling of the current inter
rupt. The normal mask is restored after interrupt processing
is finished.

AUTOVECTOR INTERRUPT (vectors #25 to #31). A periph
eral device can use one of two techniques to interrupt the
68000, depending on how the hardware interface has been
configured. One alternative is to have the peripheral provide
a vector number between 64 and 255 to the 68000 when the
interrupt occurs. The other technique, the one used on the
Macintosh, is for the 68000 to use one of the seven
autovector exception vectors. The one used will depend on
the interrupt priority level: vectors #25 to #31 correspond to
priority levels 1 to 7, respectively.

USER INTERRUPT (vectors #64 to #255). Since all inter
rupts are handled by autovectors on the Macintosh, these
vectors aren't used for storage of interrupt vectors. The
Macintosh operating system, however, uses this space (from
$100 to $3FF) for the storage of global system variables, so
you can't use this area for your own purposes.

SPURIOUS INTERRUPT (vector #24). This exception
occurs only if a bus error condition is detected during the han
dling of another exception. Since bus errors can't occur on
the Macintosh, this exception can't occur either.

Inside the 68000 Microprocessor 41

The Exceptions Caused by Instructions

An exception caused by a 68000 instruction is called a trap.
There are two classes of traps: unconditional and conditional.

Unconditional Traps

The following trap instructions unconditionally cause
exception processing to begin:

TRAP #n

ILLEGAL

$Fxxx

$Axxx

;n ; O to 15 (trap number)
;special "illegal" instruction
;any instruction whose operation
word begins with 1111 ($F)
;any instruction whose operation
word begins with 1010 ($A)

TRAP (Vectors #52 to #47). When one of the 16 TRAP #n
instructions is encountered, control passes to the address
stored in exception vector n + 32. On some 68000-based sys
tems, the trap instructions are used to invoke the fundamen
tal 1/0 operations supported by the computer's operating
system. The Macintosh operating system does not use these
vectors, however, so they're free for use by your own appli
cation programs. The MacsBug debugger, for example, uses
the TRAP # 15 instruction to implant software breakpoints in
a program. (A breakpoint is a position in a program where
you want processing to stop so you can examine registers to
verify that all is going well.)

ILLEGAL (vector #4). The ILLEGAL instruction is one that
does not correspond to any other documented instruction. All
other undocumented instructions are reserved for future
extensions to the 68000 instruction set, so you should not
use them to generate an illegal instruction exception.

The exception vector for the ILLEGAL instruction is not
used by the Macintosh operating system, so it's available for
your own use.

42 Mac Assembly Language

$Fxxx and $Axxx (vectors #11 and #10). Any instruction
whose operation word is of the form $Fxxx or $Axxx (xxx
represents three hexadecimal digits) will also cause an
exception. The line F emulator exception ($Fxxx) is not used
by the Macintosh operating system, so you can install your
own code to handle these types of instructions. Such code
would typically examine the unused 12 bits of the operation
word to determine the exact nature of the instruction, much
like the 68000 does when it interprets a standard instruction.
Data for the instruction could also be passed on the stack and
results could be returned on the stack, in accordance with a
pre-defined software protocol.

The line A emulator trap ($Axxx), on the other hand, is
extensively used by programs running on the Macintosh to
access a group of about 500 standard subroutines contained
in the Macintosh ROM area. These subroutines are logically
divided into two groups:

• operating system calls
• user-interface toolbox calls

The operating system calls perform fundamental low-level
operations, such as communicating with peripheral devices or
allocating and deallocating blocks of memory. The user-inter
face toolbox calls include subroutines for implementing pull
down menus, windows, scroll. bars, and most other features
defined by the standard Macintosh human-interface
guidelines.

Apple has assigned standard mnemonic names to each of
the $Axxx trap instructions; they are easily identified
because they all start with the underscore symbol. The
names are defined in standard trap files that come with the
MOS assembler. Each line in these files is of the form:

.TRAP _SubroutineName $Axxx ;xxx = hex digits

.TRAP is an assembler directive that assigns the name fol
lowing it to the line A emulator instruction on the right. (See
Chapter 2.)

Inside the 68000 Microprocessor 43

The Macintosh operating system stores the address of a
standard trap handler in the $Axxx vector when the system
starts up. This handler takes the last nine bits (for a toolbox
instruction) or eight bits (for an operating system) of the
$Axxx word, multiplies it by four, and uses the result as an
index into a trap dispatch table extending from $400 to $7FF.
The entry in the table is the address of the subroutine to be
called (in slightly encoded form on the 64K ROM version of
the Macintosh). When the subroutine ends, control returns to
the instruction following the trap in the main program.

Conditional Traps

There are also four instructions that may cause an excep
tion to occur, depending on the state of the condition codes
or the results of a calculation:

DIVO
DIVS
TRAPV

CHK <ea>Dn

if division by ze~o
if division by zero
if the overflow flag (V) is L
if data register is out of range

ZERO DIVIDE (vector #5). If the divisor you specify for a
DNU (unsigned divide) or DIVS (signed divide) instruction is
zero, a zero divide exception occurs.

TRAPV (Vector #7). This exception occurs if you execute
the TRAPV instruction when the overflow flag in the status
register is set to 1 .

CHK INSTRUCTION (vector #6). The CHK instruction is
always of the form:

CHK <ea>,Dn

where <ea> designates any valid addressing mode yielding an
effective address. If the signed number stored in Dn is less
than zero or greater than the value specified by the source
operand, an exception occurs.

Chapter 2

Assembler Tools

In this chapter we're going to take a look at most of the pro
grams that make up the Macintosh 68000 Development Sys
tem CMDS) published by Apple. The MDS contains all the
tools you'll need to develop assembly language programs on
the Macintosh, including:

• Edit, an editor for creating 68000 assembly language source
code files and MOS control files;

• Asm, an assembler for converting source code files into object
code modules;

• Link, a linker for combining one or more object code modules
into a single application;

• RMaker, a resource compiler for converting source code defin
ing standard data structures such as menus, windows, and
icons into object code modules, and for adding resources to
applications; and

• Exec, an executive program for automating the entire assem
bly, linking, and resource compilation process.

A flowchart of the usual assembly/linking/compilation pro
cedure is shown in Figure 2-1. Variations are possible, but I'll
be following this basic procedure to develop most of the pro
grams in the book. The usual procedure goes something like
this (the numbers refer to the steps shown in Figure 2-1):

(1,2,3) The editor is used to produce source code for the assem
bler, a linker control file for the linker, and resource
source code for the resource compiler.

(4) The assembler is used to convert program source code
files into object code (.Rel) modules.

(5) The linker is used to process a linker control file that tells
it how to combine object code modules into an application

44

Assembler Tools 45

file. After linking, the application's resources are usually
not yet available.

(6) The resource compiler is used to create the resources
used by the program and either append them to the
application file or store them in a separate resource file.

(Later in this chapter, you'll see how to combine steps 4, 5,
and 6 by executing a .Job file with the Exec program.)

Once these steps are completed, the application can be run
by double-clicking its icon on the Finder's desktop.

.Asm
.------- file

110 .Rel
~ file

'Asm

©~n ~

~~~ppl 
Link 

© 

~ ® l@] file 
Edit 

I ~----l~ ® ~ 1 file 

Notes: 

( 1) The order of development is indicated 
by the circled numbers. 

(2) Steps 4, 5, and 6 can be combined by 
executing a .Job fi 1 e with the 
Exec program. 

RMaker 

Application file 
without resources 

Complete application 
(with resources) 

Figure 2-1. A Flowchart Showing One Way to Develop an Application with 
MOS. 

In this chapter we'll also look at some of the standard sym
bol definition files that come with MOS, explain what they 
contain, and show how to use them to your advantage. 



46 Mac Assembly Language 

Finally, you'll see how to translate calls to standard toolbox 
trap subroutines in the Macintosh ROM, which are usually 
documented in terms of Pascal procedures and functions, 
into the equivalent assembly language calling sequences. 

At the end of the chapter, I'll put everything together and 
show you how to use the MOS tools to create a simple appli
cation that will serve as the shell for some of the short pro
grams and subroutines developed in later chapters. 

The Editor 

The MOS editor is called Edit. With it you can create the 
source documents used by the assembler, linker, resource 
compiler, and executive. These documents are stored as 
standard text files, so you can also modify or create them 
with any other editor or word processor that supports such 
files. 

To invoke the editor from the Finder you can either double
click its icon or double-click one of the text files you've previ
ously created with it. 

There is nothing really exciting about the MOS editor; it's 
basically a vanilla editor with few of the frills you might find in 
a serious word processing program like MacWrite or 
Microsoft Word. For example, you can't change the size or 
style of a portion of text in the file, only the entire file. It is, 
however, all you need to quickly and easily develop source 
code for the other MOS programs. 

The Assembler 

The MOS assembler is called Asm. Use it to convert a 
68000 assembly language program from source code form to 
a relocatable object code form suitable for subsequent pro
cessing with the linker. You invoke it by double-clicking the 
Asm icon and selecting a file name or by passing control to it 



Assembler Tools 4 7 

directly from the linker or the resource compiler Transfer 
menus. The object code files created by the assembler have 
.Rel suffixes (which stands for relocatable). 

Listing 2-l. A Simple Program Showing the Formats of Lines 
of b8000 Source Code. 

* Format.Asm 

* 
* This simple program shows the formats of typical lines 
* of 68000 assembly language code. 
* An asterisk in column L means the entire line is a comment 

(A semicolon works, too!) 

.TRAP _SysBeep 

.TRAP _Button 

Start NOP 

@L 

;"Start" is a regular label 

;Comment field begins with a 

;Space for result 

;Is mouse button down? 
;Yes, so keep beeping 

;@L is a local label 
Beep ;Is Duration zero? 

;If so, branch 

MOVE Duration(AS),-(SP) 
_sysBeep ;Toolbox traps begins with "-" 

@L: RTS 

GetDur MOVE 
RTS 

Duration 

#30,Duration(AS) 

DS 

;Not the same as the other @L 

; Indented, so followed by ": 11 

;Initialize beep length 

;Define space for variable 



48 Mac Assembly Language 

Source Code Format 

The source code for an assembly language program is 
stored in a standard text file, and is created with the MOS 
editor. The program source code must adhere to certain 
rules of syntax dictated by the assembler, some of which 
were referred to in Chapter 1 when we looked at instruction 
names and addressing mode formats. Each line in the source 
file is composed of four fields, each separated from the next 
by one or more tab characters or blank spaces. (See Listing 
2-1.) These fields are the label field, the instruction field, the 
operand field, and the comment field. 

The Label Field 

A label is a symbolic name for a position in a program or a 
piece of data. It must begin with a letter (A .. Z or a .. z), a 
period (.), or an underscore (_); subsequent characters can 
also include digits (0 .. 9) and dollar signs($). If the label does 
not begin in the first column of the line, it must end with a 
colon (:) so that it will not be mistaken for an instruction 
mnemonic. 

A special form of label, called a local label begins with an at 
sign (@) and is followed by a single digit (0 .. 9). (If it is 
indented you must also include a colon.) A given local label 
has meaning only between two standard labels and can only 
be referred to by instructions within that range. This means 
you can use the same local label in another area of a program 
without causing an assembly error. Local labels are handy for 
identifying instructions not referred to in other parts of a 
program. 

Labels are primarily used for two purposes: to provide a 
symbolic name for a piece of data or for the target address of 
a branch or jump instruction. By using labels, you never have 
to worry about calculating offsets when you're using pro
gram counter relative addressing modes; it's done for you 



Assembler Tools 49 

automatically by the assembler. The use of labels also makes 
a program listing much easier to understand. 

The Instruction Field 

An instruction is either a mnemonic for a 68000 instruction 
or one of several assembler directives supported by the MDS 
assembler. The standard names for the 68000 instructions 
were given in Chapter 1 . Assembler directives will be 
described later in this chapter. 

The Operand Field 

This field contains the operand or operands for the instruc
tion or assembler directive in the instruction field. As we saw 
in Chapter 1 , operands for instructions indicate the address
ing modes to be used to form effective addresses. If there 
are two operands for the instruction, the source operand 
comes first and is separated from the destination operand 
with a comma (,). 

The assembler formats for the standard 68000 operands 
were also given in Chapter 1 . There are two special forms of 
operands involving strings of characters supported by the 
MDS assembler that we haven't seen yet, however. The first 
is the string immediate operand, #'WXVZ', where the immedi
ate values used are the ASCII codes for the characters in the 
string. (The ASCII coding scheme is described in Chapter 5.) 
The number of characters used is one (byte operation), two 
(word operation), or four (long word) operation. 

You can also specify a string as the operand of a PEA or 
LEA instruction: 

PEA 'GARY' 

LEA 'GARY' ,Al. 

;Push address of string 
;Load address of string 

In these cases, the string can be any length and the 
assembler will store it as a constant at the end of the code 



50 Mac Assembly Language 

space during the assembly process. What is actually 
pushed or loaded by these instructions is the address of 
the string, not the contents of the string. The method used 
to store the string is dictated by the setting of the 
STRING_FORMAT directive (see below); the default for
mat is a length byte followed by the ASCII codes for the 
characters in the string. 

You should also be aware that MOS lets you use mathe
matical expressions in operands, using operators such as: + 
(add), - (subtract or negate),* (multiply), and I (divide). The 
add operator is especially useful for identifying an offset into 
a data structure. If the base address of the structure is in AO 
and you want to access the word that begins bottom bytes 
into the PortRect field, for example, use an operand of the 
form PortRect + bottom(AO). 

I'll be discussing all the mathematical operators and how 
they're evaluated later on in this chapter. 

The Comment Field 

The comment field begins with a semicolon(;). The semico
lon, and everything after it on the line, is ignored by the 
assembler, so you are free to enter any text you want, typi
cally an explanation of what the program is doing. If the 
entire line is a comment, put a semicolon or an asterisk (*) in 
column 1. 

Assembler Directives 

The instruction field in an assembly language program usu
ally holds a 68000 instruction, but it can also hold a "pseudo
instruction", or assembler directive, which controls the 
assembly process in some way, defines symbols, or allocates 
space for data storage. 

In this section, I'll summarize all the common assembler 
directives you will use with MOS. 



Assembler Tools 51 

Symbol Definition Directives 

The symbol definition directives assign names to certain 
values or expressions. (See Table 2-1.) These values can rep
resent absolute memory locations, trap instructions, numeric 
constants, or arbitrary sequences of characters. By making 
liberal use of symbols, you can improve the readability of your 
programs, thus making them easier to modify and debug. 

Table 2-1. Symbol Definition Directives Used by Asm. 

Directive 

.TRAP 
EQU 
SET 
REG 

Meaning 

Assigns a symbol to a SAxxx trap instruction 
Assigns a symbol to an expression (can't reassign) 
Assigns a symbol to an expression (can reassign) 
Assigns a symbol to a register list 

There are four symbol definition directives. Let's look at 
them in the order of their popularity . 

• TRAP The . TRAP (Define Trap Instruction) directive 
assigns a name to a particular line A emulator trap instruc
tion. As you saw in Chapter 1 , these instructions are used to 
access the user interface toolbox and operating system sub
routines in the Macintosh ROM. Once you've assigned a name 
to a trap, the name can be used in the instruction field just 
like any standard 68000 instruction; you don't have to memo
rize its $Annn numeric form. The format for the .TRAP direc
tive is: 

.TRAP name $Annn 

where name is the name to be given to the trap instruction. 
The standard trap names used on the Macintosh are con

tained in a file called Traps.txt on the MOS disk (or in a 
packed symbol file called Traps.D). In most cases, you will 
incorporate these files into every program using the 



52 Mac Assembly Language 

INCLUDE directive (see page 56), so you probably won't need 
to explicitly use the . TRAP directive in your own programs. If 
you're short on memory space, however, (and you might be if 
you're still using a 128K Macintosh) you may not have enough 
room to include an entire trap file, so use the .TRAP directive 
to define the subset of trap instructions used by your 
program. 

EQU The EQU (Symbol Equate, Permanent) directive 
assigns a symbolic name to a particular expression. Once the 
name is assigned, it cannot be reassigned later in the pro
gram. The format for the EQU directive is: 

label EQU expression 

where expression is usually a numeric constant representing 
data or an address, but it can also be a mathematical formula 
or even an operand such as (A3) + . Label represents a sym
bolic name adhering to the naming guidelines described above 
for entries in the label field in a line of source code. 

Here are some example of how to use the EQU directive: 

NumberOne EQU L ;A numeric equate 
PUSH EQU -(SP) ;An operand equate 
Buff Size EQU l.02.!;*b ;A formula equate 
Time EQU $20C ;An address equate 

SET The SET (Symbol Equate, Temporary) directive is 
just like the EQU directive, except that the symbol can be 
redefined later in the program using another SET directive. 
The assembler format is: 

label SET expression 

where label and expression have the same meaning as for the 
EQU directive. 

The SET directive is often used within a macro definition to 
assign symbolic names to variables used only by the macro. 
You can't use EQU because the next time the macro is 



Assembler Tools 53 

invoked, the same symbols are defined once again. I'll be look
ing at macros later in this chapter. 

REG The REG (Register Equate) directive assigns a sym
bol to a register list used by the MOVEM (move multiple reg
isters) instruction. The format for the directive is: 

label REG register list 

where register list refers to a group of one or more ranges of 
consecutive registers. The starting and ending registers in a 
range are separated by a dash (-) and each range group is 
separated from the next by a slash(/). For example, the reg
ister list for registers DO, 01, 02, 07, and AO, A1, and A2 
would be DO--D2/D7/AO--A2. 

Data Allocation Directives 

The data allocation directives are used to allocate space for 
any constants, variables, and data structures that the pro
gram uses. (See Table 2-2.) The data space so allocated can 
be part of the code space for the program or it can be located 
in the application global variable space in the upper end of 
memory, depending on the directive used. 

Table 2-2. Data Allocation Directives Used by Asm. 

Directive 

DC 
DCB 
DS 

Meaning 

Reserves space for a constant 
Reserves space for a block of constants 
Reserves space for a variable 

As you will see, each of the data allocation directives has a 
byte, word, and long word form that you select by using a .B, 
.W, or .L extension. If no extension is specified, the word 
form is used. If you use the word or long word forms, and the 
next free location is an odd address, a byte of padding is first 



54 Mac Assembly Language 

allocated by the assembler. The label associated with a data 
allocation directive always refers to the address after any 
padding byte, however. 

Remember that word alignment is absolutely necessary if 
you want to access long or long word data. If the alignment 
isn't correct, an address error exception will crash the sys
tem. Fortunately, the MOS assembler does all it can to help 
you avoid such situations. 

DC The DC (Define Constant) directive stores data within 
the code space of the program. The assembler formats are: 

[label] DC value 
[label] DC.B value 
[label] DC.W value 
[label] DC.L value 

;store word data 
;store byte data 
;store word data 
;store long word data 

where value represents the numeric value of the data to be 
stored or a string of characters enclosed in single quotation 
marks. If a string is specified, the ASCII code for each charac
ter is stored by the assembler. The brackets around label 
indicate that a label (a symbolic name for the constant) is 
optional. 

Multiple values can be stored by specifying a series of val
ues in the operand field separated by commas. For example, 

TwoBytes DC.L $t;S,b3 ;TwoBytes is the label 

causes the values 00 00 00 45 00 00 00 3F to be stored in the 
object code. The first four bytes are for $00000045 and the 
next four are for $0000003F (decimal 63). 

DCB The DCB (Define Constant Block) directive allocates 
a block of data within the code space of the program and 
stores a specific value in each byte in that block. The assem
bler formats for the DCB directive are: 

[label] DCB size,value 
Clabell DCB.B size,value 
[label] DCB.ff size,value 
[label] DCB.L size,value 

;store block of words 
;store block of bytes 
;store block of words 
;store block of long words 



Assembler Tools 55 

where size represents the number of data units (bytes, 
words, or long words) to be allocated, and value represents 
the number to be stored in each data unit in the block. 

To reserve 32 bytes of memory, each initialized to the 
value $7F, use the following directive: 

OurBlock DCB.B 32,$7F 

Be sure not to reverse the order of the size and value 
parameters. 

DS You can also allocate data space in the application 
global variable space, which begins at the address pointed to 
by the AS register and grows downward in memory. (The AS 
register is properly initialized by the operating system when 
your program starts to run.) This is where you should 
reserve space for a number if you are going to change its 
value during program execution. 

Unlike the DC directive, OS (Define Storage) does not ini
tialize the values stored in this data space. The assembler 
formats are: 

[label] DS size 
[label] DS.B size 
[labell DS.L size 
[label] DS.W size 

;reserve words 
;reserve bytes 
;reserve long words 
;reserve words 

where size represents the number of data units (bytes, 
words, or long words) to be allocated. 

When you read from or write to a piece of data in the appli
cation global area, you must always use the AS register indi
rect with offset addressing mode. That is, if you have 
allocated a word with a directive like: 

MyData DS.W t 

then you must use a MyData(AS) operand to access it. One 
of the most common sources of bugs in an assembly Ian-



56 Mac Assembly Language 

guage program is caused by forgetting to tack on CAS) to the 
name of a variable allocated with the DS directive. Be careful. 

Assembly Control Directives 

The assembly control directives dictate the exact manner 
in which the source file is to be assembled. (See Table 2-3.) In 
particular, they dictate what parts of the file are to be 
assembled, how strings are to be handled, and how macros 
are to be handled. 

Table 2-3. Assembly Control Directives Used by Asm. 

Directive 

INCLUDE 
STRING_FORMAT 
IF .• ELSE .. ENDIF 
MACRO 
END 
.DUMP 

Meaning 

Reads in another source file during assembly 
Sets the string storage format 
Assembles code according to conditions 
Assigns an instruction sequence to a name 
Marks the end of the source code 
Saves symbols in a packed symbol file (.Sym) 

INCLUDE If you have a standard chunk of assembly 
source code that is common to many programs, you may 
want to save it in a separate file on disk. Then, when you 
want to incorporate it into another source document, all you 
need to do is specify the file name as the argument of an 
INCLUDE (Include a Source File) directive in your program. 
This makes it easy to incorporate a standard sequence of 
source statements in any program you develop. 

The assembler format for the INCLUDE directive is: 

[label] INCLUDE filename 

where the name of the file to be included is filename or 
filename.asm. 



Assembler Tools 57 

As you'll see later on, INCLUDE is most commonly used for 
including the standard trap and symbol definition files that 
come with MOS. 

STRING_l'ORMAT The STRING_FORMAT (Set String 
Storage Format) directive sets the method the assembler is 
to use when it stores character strings in memory. The for
mat for the directive is: 

STRIRG_FORKAT value 

where value represents a number from zero to three, 
inclusive. 

There are two types of strings in a program that 
STRING_FORMAT affects, those used as arguments of PEA 
and LEA instructions, and those allocated using the DC data 
allocation directive. In each case, a string is represented as a 
sequence of characters enclosed by single quotation marks: 

1Test String• 

If your string includes the single quotation mark, enter two 
of them in a row; the first one is ignored and the second 
forms part of the string: 

•Gary• • s String' 

Bit 0 of the value assigned to STRING_FORMAT controls 
how strings used with PEA and LEA are handled: if zero, the 
string is stored as a group of ASCII characters followed by a 0 
byte; if one, the string is preceded by a length byte. In either 
case, space for the string is allocated after the end of the 
program code. 

Bit 1 of STRING_FORMAT controls the format of DC 
strings. If the bit is zero, the string is stored without a pre
ceding length byte or a trailing 0 byte. If it is one, however, 
the string is preceded by a length byte. This means the fol
lowing values for STRING_FORMAT are permitted: 



58 Mac Assembly Language 

STRING_FORllAT D 
STRING_FORllAT :L 

STRING_FORllAT 2 
STRING_FORllAT 3 

;DC (text only) , PEA/LEA (D trailer) 
;DC (text only) , PEA/LEA (length) 
;DC (length) , PEA/LEA (D trailer) 
;All strings preceded by length byte 

You'll probably find the most convenient STRING_FORMAT 
to use is 3 because the standard Macintosh trap instructions 
expect strings preceded by length bytes. Unfortunately, the 
default value is 1 , so be careful that you set 
STRING_FORMA T to 3 if you want to define a string pre
ceded by a length byte with the DC directive. 

IF • .ELSE • .ENDIF The IF .. ELSE .. ENDIF (Conditional Assem
bly) directives let you develop programs that can be assem
bled in different ways depending on the state of a condition 
you specify. For example, your program may contain extra 
code that should only be assembled if you are testing the pro
gram, not if you are releasing the program to the public. 
Rather than removing this extra code for good and then 
assembling the program, you can simply leave it in and 
assemble it only if you enable a debug condition. That way, 
you don't have to maintain two versions of the same 
program. 

The format of the conditional assembly directive is as 
follows: 

IF condition 
insert lines to be assembled if the condition is true 
[ ELSE 
insert lines to be assembled if the condition is false 

l 
END IF 

where condition is a mathematical or logical expression that 
evaluates to a true (non-zero) or false (zero) result. If the full 
IF .. ELSE .. ENDIF structure is used, everything between the 
IF and ELSE lines is assembled if the condition is true and 
assembly continues after the ENDIF line; otherwise, every
thing between ELSE and ENDIF is assembled instead. 



Assembler Tools 59 

Notice, however, that the ELSE directive is optional (as 
indicated by the brackets). If it's not used, all the lines 
between IF and ENDIF are assembled only if the condition is 
true. 

When specifying a condition, you can use several arithme
tic, logical, and shifting operators to form a mathematical 
expression. Here are those operators, in decreasing order of 
precedence of evaluation: 

negation 
shift one bit right 
shift one bit left 
logical and 
logical or 
multiplication 
division 
addition 
subtraction 

>> 
<< 
& 

* 
I 
+ 

To alter the standard order of evaluation, use parentheses to 
enclose the expressions to be evaluated first. 

Logical conditions can also be formed using comparison 
operators: > (greater than), < (less than), > = (greater than 
or equal), < = (less than or equal), = (equal), and < > (not 
equal). Note, however, that you can only compare strings for 
equality or non-equality. 

Here are some valid expressions for condition: 

DEBUG = 1 
MYFLAG 
(MYFLAG+3)/ll 
MYFLAG <> ~5 

true if DEBUG is 1 
true if MYFLAG is non-zero 
true if the expression is non-zero 
true if MYFLAG is not ~5 

MACRO A macro is a shorthand representation for a com
monly used group of instructions. When the assembler 
encounters a reference to a macro, it automatically expands 
the reference by placing the group of instructions the macro 
defines into the object code. 



60 Mac Assembly Language 

The format for a MACRO (Macro Definition) directive is: 

MACRO name [arguments] 
[body of macro l 
I 

where name is the symbolic name for a macro (the syntax rules 
for a name are the same as for labels) and arguments represents 
an optional list of variables used within the body of the 
macro. Each argument is separated from the next by a 
comma. 

Each line in the body of the macro can be anything you 
want, as long as it follows the syntax rules dictated by the 
assembler. That is, just as with any normal line, it can include 
labels, instructions, operands, and comments. (If you use 
labels, they should be local ones so that global label names 
won't be duplicated if you use the macro more than once. 
Symbols should be defined with the SET directive rather than 
the EQU directive.) The only difference is that a line can also 
contain references to the arguments of the macro; this is 
done by enclosing the argument name in braces ( { } ) . When 
the macro is invoked, these arguments are replaced by the 
actual parameters specified when the macro is invoked. 

To invoke a macro, use its name as if it were an instruction; 
the operands for the instruction are actually the parameters 
for the macro. For example, suppose there are several places 
in your program where you're executing a portion of code 
that takes the form: 

CLR.L -(SP) 
MOVE x(AS),-(SP) 
MOVE y(AS),-(SP) 
PEA Address 

Your program might become more understandable, and eas
ier to develop, if you define a macro called PushPos, as 
follows: 



Assembler Tools 61 

MACRO PushPos M:L,M2,M3 
CLR.L -(SP) 
MOVE IM:Ll(AS), -(SP) 
MOVE IM21(AS), -(SP) 
PEA IM31 

If you do this, you can invoke the macro by including a line 
like this in the source file: 

PushPos hpos,vpos,MyRecord 

This will generate the following code when the file is 
assembled: 

CLR.L -(SP) 
MOVE hpos(AS),-(SP) 
MOVE vpos(AS),-(SP) 
PEA MyRecord 

Macros are often used to define push and pop stack opera
tions. Here are two macros, POP and PUSH, you can use for 
this: 

MACRO POP Dest ; 
MOVE.W (SP)+,(Dest} 
I 

MACRO PUSH Item ; 
MOVE.W (Iteml,-(SP) 

;Pop into Dest 

;Push from Item 

The POP and PUSH macros are word-sized. You should 
also define macros that can handle long word operations (and 
call them POP.Land PUSH.L). 

END The END (End of Source Statements) directive tells 
the assembler to terminate the assembly process. Anything 
that appears in the source file after the END directive is 
ignored by the assembler. 



62 Mac Assembly Language 

.DUMP The format of the .DUMP (Dump Symbols to File) 
directive is: 

.DUMP filename 

This command tells the assembler to store its list of symbols 
(defined using EQU or SET) in a file having the name file
name .Sym. Such a file can be converted to a packed symbol 
file using the PackSyms program on the MOS disk. 

A packed symbol file has an extension of .D and can be 
incorporated in a program with the INCLUDE directive, just as 
if it was a standard text file. The advantage of using a packed 
symbol file is that it takes up less space on the disk than a 
standard symbol file and it can be assembled faster than a 
standard text file. 

Linker Control Directives 

Linker control directives provide information the linker 
requires in order to properly combine more than one assem
bled code file into a single, executable application. (See Table 
2-4.) Such information includes lists of program symbols that 
may be accessed from other code modules, and symbols that 
are defined externally in other modules. 

Table 2-4. Linker Control Directives Used by Asm. 

Directive Meaning 

XDEF Identifies symbols that can be accessed by code in 
another .Rel file 

XREF Identifies symbols that are defined in another .Rel file 

XDEF The XDEF (External Definition) directive identifies 
any label or symbol in one code module that might be referred 
to in another code module it is linked with. Without this infor
mation, the linker cannot resolve references between mod
ules and will generate an error. 



Assembler Tools 63 

The assembler form for the XDEF command is: 

XDEF symbol_list 

where symbol_list is a list of all symbols in the code module that 
can be referred to in other code modules. Each symbol in the 
list is separated from the next by a comma. 

XREF The XREF (External Reference) directive tells the 
linker that a particular group of symbols used in the program 
is defined in another code module. The assembler form for 
XREF is: 

XREF symbol_list 

As with XDEF, each symbol in symbol_list is separated from 
the next with a comma. Each symbol must be named in an 
XDEF directive in another code module. 

Printing Control Directives 

The printing control directives control the way in which out
put generated by the assembler is handled. This output con
sists of a listing of the program that includes the source code 
statements and the object code they generate. 

Table 2-5. Printer Control Directives Used by Asm. 

Directive 

.NoList 

.ListToFile 

.ListToDisp 

Meaning 

Tums off the listing of the Asm output 
Lists the Asm output to a file 
Lists the Asm output on the screen 

.NoList The .NoList (Don't List Assembly Output) direc
tives turns off the assembler listing entirely. This is the 
default condition . 

.ListToFile The .ListToFile (List Assembly Output in File) 
directive tells the assembler to store its output in the file 



64 Mac Assembly Language 

whose name is stored in the operand field following it. For 
example, the command: 

.ListToFile Assembly.Txt 

causes the listing to be stored in a file called Assembly.Txt . 
. ListToDisp The .ListToDisp (List Assembly Output on 

Screen) directive tells the assembler to display its output on 
the screen while the file is assembled. 

You can also indicate what's to happen to an assembler list
ing by pulling down Edit's Options menu before you begin to 
assemble and selecting either No Listing, List to File, or List 
to Display. 

The Linker 

The linker is used to combine .Rel files (relocatable object 
code files), usually created by the assembler or resource 
compiler, into an application that can be launched from the 
Finder with a double-click. Less frequently, it is used to cre
ate other types of files, not necessarily directly executable 
applications. 

The activities of the linker are controlled by a linker control 
file that has a file name extension of .Link. This extension is 
mandatory. The control file contains commands that tell the 
linker such things as what .Rel files are to be combined, what 
the name of the output file is to be, what the file type and 
creator codes for the output file are to be, and what the 
starting location in an application is to be. 

The simplest linker control file contains just two lines and is 
all you need for linking most simple applications: 

MyFile.Rel 
$ 

These lines tell the linker to deal with one relocatable file 
only, MyFile.Rel, and to create an output file called MyFile 



Assembler Tools 65 

that will contain the final application. MyFile.Rel is typically 
created by using Asm to assemble your 68000 source code 
file. It could, however, be created by compiling a program 
written in another language, such as Pascal or C, that sup
ports the MOS .Rel file format. The $ sign following the name 
of the .Rel file signifies the end of the linker control file and is 
required. If you are using MOS 2.0, you can also use the /END 
command. 

If you're linking several separate .Rel files together, you'll 
include all their names before the final $ sign. The name of the 
application file created will be the name of the first .Rel file 
specified, without the .Rel extension. If you don't place a disk 
prefix in front of the name of a .Rel file, Link expects to find it 
on the same disk volume that holds the linker control file. 

Comment lines within a linker control file begin with a semi
colon. Unlike Asm (or RMaker), you cannot use an asterisk 
instead. Another important difference is that comments can
not be tacked onto the ends of lines containing linker control 
statements. 

There are only a few linker commands you need to master. 
A discussion of these commands follows. 

Linker Code Modules 

The names of all .Rel files containing the application's pro
gram code must appear at the beginning of the control file. 
Each name must appear on a separate line and you can omit 
the .Rel extension if you wish. For example, if you want to 
link filename1 .rel to filename2.rel, place the following two 
lines at the beginning of the linker control file: 

filename:L.Rel 
f1lename2 

The name given to the application created by this linker 
control file will be filename 1 unless you choose another using 
the /OUTPUT command. It is the same as the name of the 
first .Rel file, but without the .Rel extension. 



66 Mac Assembly Language 

The linker combines separate code modules into a single 
resource of type CODE, called a segment. Its resource identi
fication code is 1 . (Resources are described later in this chap
ter.) The maximum size of a code segment is 32K. 

If you want to create another code segment, enter a line in 
the linker control file that contains just the < symbol, and fol
low it with lines containing the .Rel files to be linked into the 
new code segment. 

The main reason for breaking a program into several code 
segments is to save memory space. Only when code in one 
segment calls code in another segment is that other segment 
loaded into memory. At the same time, the space occupied 
by the calling segment is normally freed up using the 
_UnLoadSeg trap instruction. Unless you're short of memory 
space, or your program is larger than 32K, you won't have to 
bother with creating multiple code segments. 

File Type and Creator Code 

The Macintosh operating system uses two four-character 
sequences called the file type code and the creator code (or 
signature) to identify a file. 

The file type code identifies the type of information stored 
in a file so that an application can interpret it properly. Some 
common .file type codes are PNTG (a MacPaint document), 
TEXT (a file containing lines of text), and APPL (a file con
taining code for an application). 

The creator code serves to mate a file to the application 
that created it in the first place. When a non-application file 
is opened, the Finder reads its creator code, launches the 
application with the same creator code (its file type code is 
APPL), and passes the name of the non-application file to it 
so it can be opened. MacPaint, for example, stores a creator 
code of MPNT in its application file and all data files it cre
ates. When you double-click a MacPaint document, the 
MacPaint application is launched and the document is 
opened. 



Assembler Tools - 67 

File type codes and creator codes for commercial products 
must be approved by the Macintosh Technical Support Divi
sion of Apple Computer, Inc. to ensure uniqueness. That 
doesn't mean you can't use file type codes that are already 
taken. It just means the internal structure of any file you cre
ate with that file type code should be the same as for stan
dard files of that type. For example, you can use a file type 
code of TEXT as long as your file contains lines of text in 
ASCII-encoded form. 

For a file that defines an application, th~ file type code is 
always APPL and this is the default used for Link's output 
files. The creator code can be anything you like (as long as no 
other application uses it). If you don't specify one, the linker 
chooses a null creator code (four zero bytes). 

Use the /TYPE command to override these defaults. For 
example, if you are linking files to create an application that 
has a creator code of DEMO, place the command: 

/TYPE 1 APPL 1 1 DEM0 1 

in the linker control file. Note that the first code after /TYPE 
is the file type code and is followed by the creator code. They 
must both be exactly four characters long and enclosed in 
single quotation marks; shorter strings must include padding 
blanks. 

Output File 

The name of the file created by the linker is usually the 
same as the name of the first .Rel file linked, but without the 
.Rel extension. If you want to use a different name, use the 
/OUTPUT command. For example, to select a file name of 
OurDemo, place the command: 

/OUTPUT OurDemo 

in the linker control file before the $ terminator. 



68 Mac Assembly Language 

Bundle Bit 

The bundle bit must be set for those applications containing 
ICN#, FREF, and BNDL resources that define custom 
desktop icons to be used by the Finder. The bundle bit is part 
of an attribute byte in the file's directory entry on disk. 

To set the bundle bit, use the command: 

/BUNDLE 

You'll see how to create custom icons for applications and 
their documents at the end of this chapter. 

Starting Location 

The starting location of a program is usually the first 
instruction in the first .Rel file specified. You can, however, 
override this default using a linker command of the form: 

!FirstLoc 

where FirstLoc is the label of the instruction in the program 
that is to be called when the program is launched. There 
must be no spaces between the exclamation mark and the 
name of the label. With MDS 2 .0 you can also use the /ST ART 
command to achieve the same result. 

The only labels you can use as starting locations are .those 
that are defined as external in the source program. Use the 
XDEF assembler directive to do this. 

Linker Resource Modules 

You can also link .Rel files containing nothing but resources 
created with the RMaker resource compiler. To do this, 
insert the line: 

/RESOURCES 

in the linker control file after the names of all the code files 



Assembler Tools 69 

being linked, then list the names of all the RMaker .Rel files, 
one per line. 

End of File 

The$ sign (or, for MOS 2.0 only, the /END command) is 
used to signify the end of a linker control file. Place it on a line 
by itself at the end of the linker control file. It is required. 

The Resource Compiler 

Each file on a Macintosh disk is actually made up of two 
logical parts called the data fork and the resource fork. The 
data fork contains anything you care to store in it, such as 
parameters for an application, the text for a word processor 
or editor, and so on. The data is placed there using a group of 
operating system instructions making up the Macintosh File 
Manager. Refer to Inside Macintosh for a description of those 
instructions. 

The resource fork contains one or more resources used by 
an application. A resource is a chunk of data or program code 
that defines such data structures as a character string, the 
bit image for an icon, a character font, a cursor, the code for 
a desk accessory, and the templates the toolbox uses to 
build windows, menus, and dialog boxes. Even the code for 
your application program is· a resource. 

The main advantage of using resources for the storage of 
such items is that it makes your program more modular and, 
hence, easier to debug. It's also very easy for someone else 
to change the visual interface of your program without hav
ing to rewrite the program code itself. 

The Macintosh supports several general classes of 
resources, each identified by a unique four-character name. 
Some of the more common ones are summarized in Table 2-6. 
Note that the operating system distinguishes between 
uppercase and lowercase characters; that means a MENU 
resource, for example, is not the same as a Menu resource. 



70 Mac Assembly Language 

Table 2-6. Common Resource Types Used by the Macintosh. 

Resource 
Type 

* ALRT 
* BNDL 

CDEF 
* CNTL 

CODE 
CURS 

* DITL 
* DLOG 

DRVR 
DSAT 
EFNT 
ETAB 
FCMT 
FKEY 
FOBJ 
FONT 

* FREF 
FRSV 
FWID 
ICN# 
ICON 
INIT 
INTL 
KEYC 
MBAR 
MDEF 

*MENU 
PACK 
PAT 
PAT# 
PDEF 
PICT 
PREC 
SERO 

* STR 
* STR# 

WDEF 
*WIND 

Meaning 

Alert box template 
Application bundle 
Control definition 
Control template 
Assembly language code segment 
Cursor 
List of items in a dialog or alert box 
Dialog box template 
Device driver or desk accessory 
System startup alert table 
Font selection for MOS Edit 
Tab settings for MOS Edit 
"Get Info" comments 
Function key routine (command-shift-number) 
Folder information 
Character font 
File reference 
Reserved font 
Font widths 
Icon list 
Icon 
Initialization routine 
International utilities 
Keyboard configuration 
Menu bar 
Menu definition routine 
Menu 
Package of routines 
Pattern 
Pattern list 
Printing routines 
Picture 
Printing record 
Serial drivers 
String 
String list 
Window definition routine 
Window template 

*These resource types are explicitly supported by RMaker. 



Assembler Tools 71 

Each resource is associated with a resource identification 
code, a number from -32768 to +32767. All codes from 
- 32768 to + 127 are reserved for use by the operating sys
tem, so you shouldn't use them for application resources 
unless they are intended to replace system resources. The ID 
code you assign to a resource must be unique within the 
group of resource files of a certain type open at any given 
time. If there is duplication, only the first resource located 
with that number will be available. 

As soon as an application starts running, two resource files 
are automatically opened: the operating system's (located in 
the resource fork of a file called System on your startup disk) 
and the application's. When the application requests a 
resource (this is done by specifying the resource type and 
identification code) its own resource file is searched first and, 
if the resource isn't found, the operating system resource file 
is searched. 

The application can also explicitly open other resource files, 
such as those associated with an open data file. If it does 
this, the search for a given resource begins with the last file 
opened and continues down through to the System resource 
file until the resource is found. 

As shown in Figure 2-2, each resource has an attribute 
byte that reflects some of its properties. The property asso
ciated with a particular bit in the attribute byte is asserted if 
the bit is set to one. The attribute byte is usually set to zero 
when you create the resource, but you can aQiust it to suit 
your requirements. 

The only two attributes you're likely to deal with are 
ResPreload (bit 2) and ResPurgeable (bit 5). If the 
ResPreload bit is set to 1 , the resource is loaded into memory 
as soon as the resource file in which it is stored is opened. 
This means if your resources are part of the application file 
itself (the usual case), they will all be loaded into memory as 
soon as you run (or launch) your application from the Finder. 
If you don't set the ResPreload bit, the disk will be accessed 
each time you use a resource for the first time, and your 
application may appear to run more slowly. 

If the ResPurgeable bit is set to 1 , the resource may be 



72 Mac Assembly Language 

7 6 5 4 3 2 1 0 

[reserved) 

Reslocked 

Figure 2-2. The Format of the Attribute Byte for a Resource. 

removed, that is, purged, from memory if the operating sys
tem runs out of space. If the resource is purged, it can't be 
used until it's loaded into memory again. The Macintosh trap 
instructions that use resources automatically detect when a 
resource has been purged and will reload the resource as 
required. If your application program needs plenty of mem
ory, mark your resources as purgeable so that space can be 
freed up when required. The only penalty is that you will 
encounter more disk activity when purged resources are 
later reloaded. 

Using the RMaker Resource Compiler 

In this section you'll learn how to use the MDS resource 
compiler, RMaker. This program is primarily used to append 
the resources defined in an RMaker source code document to 
an application file. It can also be used to create a separate 
resource file for use by other applications, or to create a .Rel 
file suitable for linking by Link using the /RESOURCES 
command. 



Assembler Tools 73 

Name of Output File 

The first non-comment and non-blank line in a RMaker 
source file (we'll call this file the input file) must contain the 
name of the file in which the resources are to be stored. The 
line that follows must either be blank or contain a sequence 
of eight characters defining the file type code (first four char
acters) and the creator code (second four characters). 
(Comment lines begin with an asterisk.) 

There are three general forms of names you can specify, 
each causing a slightly different result: 

!filename. If you place an exclamation mark in front of a 
file name, the resources are appended to the file with that 
name. Use this form of name to add your resources to the 
application file created by the linker so your program code 
and all its resources will be in the same file. This is the form 
you'll probably use most often. 

filename or filename.xxx. If you specify a file name with or 
without an extension (other than .Rel). RMaker stores the 
resources in a standard resource file. By convention, you 
should use a name extension of .Rsrc to identify such a file. 

filename.Rel. If you specify a .Rel file name extension, 
RMaker saves the resources in the file in the same format 
the assembler uses to save relocatable object code. This 
means the file can can be linked with Linker by specifying its 
name after the line containing the linker's /RESOURCES 
command. 

No other information may appear on the line containing the 
file name. In particular, comment fields like the ones used 
with TYPE commands are not permitted. (See page 74.) 

Including Other Resource Files 

You can direct the resource compiler to combine the 
resources in other files with the current file by using the 
INCLUDE statement. The format is: 

INCLUDE filename 



7 4 Mac Assembly ,t.anguage 

where filename is the name of the file to use. The included file 
name can be any file containing resources, including an appli
cation file created by Link. The code for an application is 
stored in a series of two or more CODE resources. 

TYPE Statements 

Most of an RMaker input file is made up of several TYPE 
statements that define the data in the resources. The format 
of a TYPE statement is as follows: 

TYPE XXXX 
enamel ,ID C (aa) l 
data for resource 

;;XXXX =resource type code 
;;resource name, ID, attribute 
;;the resource data goes here 

The brackets enclose optional parameters (don't include 
them in your file!), which means you don't have to assign a 
name to a resource and you don't have to specify the value of 
the resource's attribute byte (but you do have to specify a 
resource ID). The default value for the attribute byte is zero. 

In general, each TYPE statement must be entered on one 
line. You can indicate a continuation to the next line, how
ever, by typing in + + at the end of the line. Comments follow 
two successive semicolons(;;) and are ignored by RMaker. 
For example, to define a STR# (string list) resource, use a 
TYPE statement like the following: 

TYPE STR# 
MyStrings,L26 (32) 
2 

The first line ++ 
is a long one 
The last line is short 

;;type code is 'STR#' 
;;Name, ID, attribute 
;;Data: number of strings 
;;Lst resource string 
;;(continuation of Lst string) 
;;2nd resource string 

Notice that all numbers used in RMaker source statements 
must be decimal numbers, with a few exceptions that I'll 
point out as we encounter them. Strings are entered without 
quotation marks and are converted to ASCII codes by 
RMaker. To enter the ASCII code for a character that can't 



Assembler Tools 75 

be entered directly from the keyboard, use the command \xx 
where xx represents the two hexadecimal digits of the ASCII 
code. For example, use \ 14 to enter the "Apple" symbol 
(ASCII $14). 

You can define multiple resources of the same type with a 
single TYPE command. Do this by following the TYPE state
ments for a resource definition with a blank line and beginning 
the next resource definition with the name, ID, attribute line. 

Of the many resources used on the Macintosh, only 12 are 
directly supported by RMaker (they are marked with aster
isks in Table 2-6). You'll see how to use most of these later in 
this book. 

It is possible, however, to create any resource by equating 
it to the special PROC (procedure) or GNRL (general) 
resource types supported by RMaker. This is useful if the 
resource is simply an assembly language program or if you 
know the internal structure of the resource you're trying to 
create. The structure of standard resources not directly sup
ported by RMaker is available in Inside Macintosh. 

Let's look at how to use the special PROC and GNRL 
resource types. 

PROC A PROC (Procedure) resource contains an execut
able assembly language program. Its RMaker format is as 
follows: 

Type PROC 
,L26 (32) 
AProgram 

;;ID followed by attribute 
;;Name of program containing code 

Notice that the attribute value in this example is 32 (that is, 
bit 5 of the attribute byte is 1 ) . This means the resource is 
purgeable. 

The PROC resource is made up of the entire contents of 
the first code segment in the specified program, except the 
first four bytes. (These bytes are used by the operating sys
tem only and are not part of the code.) This segment has a 
CODE resource ID of 1 , is created by the linker, and contains 



76 Mac Assembly Language 

the application's 68000 assembly language instructions. 
Other code segments are ignored by RMaker. 

Other Macintosh resources that contain executable code 
can be created with RMaker by equating their names to 
PROC as follows: 

Type PACK = PROC 
,:L28 

MyPackage 

"PACK is like a PROC resource" 

This resource definition creates a PACK resource (a 
resource containing a group of related assembly language 
subroutines) and stores the code in MyPackage in it. Another 
type of resource that contains executable code is DRVR (a 
device driver or a desk accessory). 

GNRL The GNRL (General Resource) resource type pro
vides another way to define resources that RMaker doesn't 
explicitly support. These could be standard system resources 
like ICON, FONT, or MBAR, or your own custom resources. 

The first part of a TYPE statement using GNRL looks like 
this: 

Type MINE = GNRL 
,:L26 ; ; Resource ID 

This means we're about to define a new resource type 
called MINE. After the line containing the resource ID, you 
can use six element type designators to indicate the format 
of subsequent data lines in the definition. They are: 

.H The following numbers are hexadecimal 

.I The follovving numbers are decimal vvords (integers) 

.L The following numbers are decimal long vvords 

.P The follovving string is preceded by a length byte 

.R Read the follovving resource from a file (the format of the fol
lovving line is: filename type ID) 

.5 The following string has no length byte 

An element type designator must appear on a line by itself, 
although comments can be included. 



Assembler Tools 77 

Let's use these designators to continue our definition of the 
MINE resource: 

.H 
OFFF 7FFF 
.I 
123 343 
.L 
70000 63423 
.P 
Your name here 
.R 
custom.Rsrc ICON 244 
.s 
No length string 

;;hexadecimals follow 

;;decimal words follow 

;;decimal long words follow 

; ; length+string 

;;read in ICON resource #244 
;;from a file called Custorn.Rsrc 
;;string without length 

Of course, since this is a custom resource, the meaning of the 
contents are completely up to you. If you assign a reserved 
resource type to GNRL, you will have to make sure you store 
data in the form and order described in Inside Macintosh. 

In later chapters you'll see how to use GNRL to create 
MBAR (menu bar), ICON, and ICN# resources. 

The Executive Program 

You use the Exec program to combine the many chores 
associated with the assembly process into one simple step. 
To do this, first use Edit to create an executive control file 
whose file name has a .Job extension. Each line in this file is 
made up of the following parts in this order: 

• the name of an application to run 
• the name of the file to be opened by the application when it 

starts up 
• the name of the application to run if the first application ends 

normally 
• the name of the application to run if the first application ends 

with an error 



78 Mac Assembly Language 

Each part of the line is separated from the next by a single 
tab character. For example, when the executive encounters 
the following line: 

Asm ourCode.Asm Exec Edit 

it loads the assembler and begins assembling the file called 
OurCode .Asm. If the assembly ends with no error, control 
returns to Exec so the next line in the .Job control file will be 
dealt with; otherwise, Edit is called up to enable you to fix 
your error. In a typical scenario, the next lines in the .Job file 
would be of the form: 

Link OurCode.Link Exec 
RMaker OurCode.R Exec 

Edit 
Edit 

This causes the final application to be linked after assembly 
and the resources to be created. 

Search Paths 

A Macintosh with 128K ROM supports a hierarchical disk 
directory structure called HFS. In an HFS system, several 
directories may be set up on one disk, each containing many 
files, and directories may be created within other directories. 
To uniquely identify a file, you must specify its name and the 
sequence of directories to pass through to reach its direc
tory. The identifying string, called a pathname, is made up of 
the directory names, each separated from the next by a 
colon, followed by the file name. 

For example, suppose you have a disk called MyDisk. MyDisk 
is also the name of the first directory on the disk, called the 
root directory. If you have a directory called Work within the 
root directory and a file called Demo.Asm within Work, the 
pathname describing the file is MyDisk:Work:Demo.Asm. 

A problem arises when using MOS 2.0 with an HFS system: 
how to tell the assembler tools where to find input files and 



Assembler Tools 79 

where to store output files. One solution is to specify a com
plete pathname for each file, but this is awkward. The recom
mended solution is to specify a simple file name and let the 
assembler tool read the file from, or store it to, a default 
directory. 

Each class of file an MOS 2 .0 assembler tool might use is 
associated with a default search path, as described in the 
MOS users manual. The search path is a list of the directories 
a tool will search to locate an input file (or a directory for an 
output file), in search order. Each directory is referred to in 
relative terms, usually using the source file directory, the 
root directory, or the launch directory (the directory in which 
the assembler tool is stored) as a reference point. 

For example, the first three directories in the search path 
for Asm INCLUDE files are *L:MDS Includes:, *S::MDS 
Includes, and *S:MDS Includes. *L symbolizes the launch 
directory and *S the source directory. Two colons in a row, 
as in the second directory, means "back up one directory". 
When you use the INCLUDE command in an assembler source 
file, MOS first looks for the file in a directory called MOS 
Includes within the launch directory. If it's not there, the 
search continues with a similarly named directory within the 
directory in which the source directory is defined. The third 
choice is the MOS Includes directory within the source direc
tory. The search continues until the file is found or the search 
path is exhausted. 

The default search paths can be changed using an applica
tion called the Path Manager. You should resist tampering 
with the standard defaults, however .. 

MOS 1 .0 does not support search paths because it works 
with 'flat' disks (called MFS disks) only, disks which have only 
one directory. To tell MOS to use a certain disk when reading 
or writing a file, precede the file name with a "DiskName:" 
disk name prefix. If you don't specify a disk name, all the 
assembler tools, with one exception, will use the disk on 
which the source file is stored when it looks for input files or 
creates output files. 

The exception is RMaker. It expects input files (INCLUDE 



80 Mac Assembly Language 

files and files to which it is appending) to be on the same disk 
as RMaker itself. and it stores output files on the RMaker 
disk. This can cause problems if your assembler tools are on a 
disk in one drive and your source files are in a second drive 
because RMaker will not find its input files unless you use disk 
names to override the default. To avoid having to use disk 
names. put a copy of RMaker on your data disk and run it 
from that disk. 

Equate, Trap, and Macro Files 

The MOS disk contains several definition files containing 
standard symbolic names for various items often used in 
assembly language programs: addresses of system global 
variables. offsets into data structures. bit flags. data masks. · 
and other numeric quantities. There are also files defining the 
standard toolbox and operating system trap instructions. and 
useful sets of macros. 

You should always use these symbolic names in your own 
programs instead of absolute numbers or addresses because 
the programs will be easier to understand and debug. And if 
you need to use a number describing a system parameter. 
don't assume it will be a specific value; always read its value 
from the system variable given in the equate file. For exam
ple, don't assume the base address of the screen memory is 
$7A700--read it from the ScrnBase variable instead, so the 
same program will work properly on a 128K Macintosh or a 
Macintosh Plus. 

The names. and general contents. of the major symbol defi
nition files that come with MOS. are as follows: 

ATalkEqu.txt 
SysEqu.txt 
ToolEqu.txt 
QuickEqu.txt 
FixMath.txt 
FSEqu.txt 
PackMacs.txt 

;AppleTalk equates 
;Operating system equates 
;Toolbox equates 
;Quickdraw equates 
;Fixed point math traps/macros 
;Filing system equates 
;Macros for standard packages 



PrEqu.txt 
SysErr.txt 
TimeEqu.txt 
Traps.txt 
SANEMacs.txt 
MacDefs.txt 

;Printing system equates 
;system error numbers 
;Time Manager equates 

Assembler Tools 81 

;Toolbox/operating system/QuickDraw traps 
;Standard Apple Numeric Environment macros 
;Macros for translating Lisa macros 

Note: The file Traps.txt was broken into three files, called 
SysTraps.txt, ToolTraps.txt, and QuickTraps.txt, in ver
sion 1 .0 of MDS. 

You should make a point of printing out the contents of 
each definition file as soon as you buy your MDS assembler 
because you're going to use the symbols they contain again 
and again. To assemble the pre-defined symbol definition files 
with your application source code, use the INCLUDE directive 
in your source code. 

The MOS also contains several packed symbol files, identifi
able by their .D file name extensions: 

ATalkEqu.D 
FSEqu.D 
QuickEqu.D 
QuickEquX.D 
SysEqu.D 
SysEquX.D 
SysErr.D 
SysErrX.D 
TimeEqu.D 
ToolEqu.D 
ToolEquX.D 
Traps.D 

;AppleTalk equates 
;File system equates 
;Common Quickdraw equates 
;All Quickdraw equates 
;Common operating system equates 
;All operating system equates 
;Common error number equates 
;All error number equates 
;Time Manager equates 
;common toolbox equates 
;All toolbox equates 
;All trap instructions 

Note: The file Traps.D was called MacTraps.D in version 
1.0 of MDS. 

These files contain the same information as their unpacked 
(.txt) counterparts, but are more convenient to use because 
they take up less disk space and assemble faster. They can-



8.2 Mac Assembly Language 

not, however, be viewed using the editor. Remember that 
you can create your own packed symbol files using the 
.DUMP directive and the PackSyms program. 

The most useful definition files are the ones containing the 
trap instructions (Traps .txt) and the standard equate files 
(SysEqu.txt, ToolEqu.txt, and QuickEqu.txt). You should 
make it a point to always include the packed form of these 
files (Traps.D, SysEqu.D, ToolEqu.D, and QuickEqu.D) at the 
beginning of every program you write so they're always 
there when you need them. 

If you do include standard definition files in your programs, 
don't redefine the symbols they contain, or use the symbols 
for instruction labels. (It's easy to do this accidentally if you're 
not familiar with the contents of the included files.) If you do, 
you will see either a "Multiply defined symbol" or "Illegal line" 
error when the program is assembled. 

The Pascal Connection 

In the early days of the Macintosh, most applications were 
written in the Pascal language; alternative development tools 
simply were not available at the time. It should not come as a 
surprise, therefore, to learn that most of the hundreds of 
subroutines in the Macintosh ROM are designed to receive 
parameters and return results in accordance with Pascal 
specifications. In fact, Apple's standard Macintosh software 
reference manual, Inside Macintosh, documents calls to these 
subroutines in terms of two Pascal constructs, procedures 
and functions, and the parameters are defined in terms of 
Pascal data types. 

Much of the preliminary work in developing an assembly 
language program on the Macintosh is determining how to 
emulate the effect of a Pascal procedure or function call 
when calling a ROM subroutine with a $Axxx trap instruction. 
In this section you'll see how to approach this problem. 



Assembler Tools 83 

First of all, let's look at the general form of a Pascal proce
dure and function. A Pascal procedure is simply a call to a sub
routine that performs some action but which does not return 
a separate result. (If parameters are passed by address, 
rather than by value, a result can be returned through a spe
cific parameter.) The general form for a procedure call is: 

PROCEDURE name (parm1 
parm2 
parmN 

type1 
type2 
typeN ); 

where name is a character string identifying the procedure, parmx 

(X = 1, 2, ...• N) are the names of the parameters for the 
procedure, and typeX are the data types for the parameters. 
The standard data types are integers. characters, real num
bers. and so on. Other, more complex data types can be cre
ated from these standard data types. as you'll see below. 

A Pascal function is a call to a subroutine that returns a 
result. Its form is similar to that for a procedure: 

FUNCTION name (parm1 type1 
parm2 type2 
parmN typeN type; 

The type on the far right represents the data type of the result 
generated by the function. 

The function and procedure parameters are usually specific 
values. If a VAR identifier is placed in front of any parameter 
name in the Pascal description, however, the address of the 
location containing the parameter must be passed to the sub
routine, not its value. Addresses are also passed if the 
parameter data structure is longer than four bytes or if a 
result is to be returned through the parameter. 

The fundamental data types supported by Pascal are 
shown in Table 2-7. 



84 Mac Assembly Language 

Table 2-7. The Fundamental Data Types Supported by Pascal. 

Stack Size 
Data Type (bytes) 

INTEGER 2 
LONGINT 4 
BOOLEAN 2 

CHAR 2 

STRING[n] 4 

SignedByte 2 

Byte 2 

Ptr 4 

Handle 4 

Record 2 or4 

VAR parameter 4 

Description 

two's complement integer 
two's complement long integer 
Boolean (true/false) value (bit 0 of the 

high-order byte contains the value; 
1 = true, 0 = false) 

ASCII-encoded character (in the low
order byte) 

the address of a sequence of bytes 
preceded by a length byte 

one-byte signed number in the low-order 
byte 

one-byte unsigned number in the low
order byte 

a pointer to (the address of) a data 
structure 

a handle to (the address of the pointer 
to) a data structure 

if the data structure (the record) is 4 
bytes or less, the value itself; if longer, 
a pointer to the data structure 

the address of the parameter 

Pascal procedure and function calls to the subroutines in 
the Macintosh ROM are handled in one of two ways: they are 
either stack-based or register-based. The exact method used 
is important in determining the equivalent assembly language 
instructions. 

Stack·Based Subroutines 

Of two classes of subroutines in the Macintosh ROM, user 
interface toolbox subroutines and operating system subrou
tines, it is the toolbox subroutines that are usually stack
based. This means the ROM subroutine expects to find its 
parameters on the stack when it takes control. (You must 
push them on the stack in the order they occur in the rou-



Assembler Tools 85 

tine's Pascal definition.) It also means that any function 
results are returned on the stack. The space each standard 
Pascal data type occupies on the stack is shown in Table 2-7. 

Let's look at a Pascal procedure call to a stack-based ROM 
subroutine so you can see how to convert it into the equiva
lent assembly language code: 

PROCEDURE DragWindow (theWindow : WindowPtr; 
startPt : Point; 
boundsRect : Rect); 

The first thing to determine is the name of the assembly 
language trap instruction corresponding to this procedure. In 
almost all cases, this name is the same as the Pascal proce
dure name, except it is preceded by an underscore character 
(the names are defined in the Traps.D file). Thus, the trap 
instruction for the above example is _DragWindow. Unfortu
nately, this simple rule is not always followed; a few Pascal 
and trap instruction names are slightly different. These dif
ferences are noted in Inside Macintosh. 

The DragWindow procedure has three parameters: one of 
type Windowptr, one of type Point, and one of type Rectangle. 
Windowptr is really of type ptr (by convention, so is any other 
parameter whose name ends in ptr), so it simply represents 
the address of a data structure. The other two data types are 
not fundamental Pascal data types referred to in the previous 
section. They are, however, defined in terms of these data 
types; it's just a question of knowing the definition. Table 2-8 
shows the definitions of some of the common custom data 
types used with the Macintosh trap instructions. 

Table 2-8. Examples of Some Custom Data Types Used by 
the Macintosh Trap Instructions. 

Point: 

Rectangle: 

Integer (vertical position) 
Integer (horizontal position) 

Integer (top position) 
Integer (left position) 



86 Mac Assembly Language 

T~ble 2-8. continued 

BitMap: 

Pattern: 

PenState: 

Integer (bottom position) 
Integer (right position) 

Ptr (pointer to a bit image) 
Integer (width of bit image in bytes) 
Rectangle (boundary rectangle) 

Integer Crows 1,2 of pattern) 
Integer Crows 3,4 of pattern) 
Integer (rows 5,6 of pattern) 
Integer (rows 7,8 of pattern) 

Point 
Point 
Integer 
Pattern 

(pen location) 
(pen size) 
(pen mode) 
(pen pattern) 

The three pushes needed for Drag Window are: 

MOVE.L theWindow,-(SP) 
MOVE.L startPt,-(SP) 
PEA boundsRect 

;pointer (long word) 
;point (long word) 
;address of rectangle coordinates 

(In this example, theWindow, startpt, and boundsRect are 
constants defined using the DC assembler directive.) 

The first parameter is a pointer, so we have to push a long 
word on the stack. The second parameter is a defined data 
type called point; it is made up of two words (see Table 2-8), 
the first for the vertical coordinate and the second for the 
horizontal coordinate, so we push another long word contain
ing the values. The third parameter is of type rectangle, a 
data structure longer than four bytes. Such data structures 
are always passed by address rather than value; this means 
we have to push an address to this structure rather than the 
coordinates of two opposite corners of the rectangle itself. 
This is done using the PEA (push effective address) 
instruction. 

Finally, to make the call, use the trap instruction: 

_DragWindow 



Assembler Tools 8 7 

This trap instruction is defined with the . TRAP directive in 
one of the system trap files. Its definition can be incorporated 
in your program using an INCLUDE directive at the start of 
your source file. 

Pascal functions are handled quite similarly to procedures. 
The key difference is that Pascal functions make room for a 
result on the stack by decrementing the stack pointer before 
calling a ROM subroutine, therefore your assembly language 
program must do the same. This is done before its parame
ters are pushed on the stack. The stack size of the result is 
always one word or two, depending on the ROM subroutine, 
so you will usually use CLR.L - (SP) or CLR - CSP) to do this. 

After calling a ROM subroutine that returns a result, you 
must remember to remove the result from the stack. If you 
don't do this before executing a return from subroutine CRTS) 
instruction, you will almost certainly crash the system. CRTS 
expects the last word on the stack to be the address of the 
code following the JSR or BSR instruction that called the 
subroutine.) 

For example, the assembly language equivalent of the 
function: 

FUNCTION GetNewWindow (windowID : INTEGER ; 
wstorage : Ptr ; 
behind : WindowPtr) : WindowPtr; 

is: 

CLR.L -(SP) ;Push long word for ptr result 
MOVE windowID,-(SP) ;Push integer 
MOVE.L wstorage,-(SP) 
KOVE.L behind,-(SP) 
_GetNewWindow 
MOVE.L (SP)+,AO 

;Push pointer 
;Push pointer 
;Call ROM 
;Pop the result into AO 

In this example, windowID, wstorage, and behind are constants that 
were defined using the DC assembler directive. 

The size of the result of a Pascal function call is indicated by 
the data type referred to at the end of the FUNCTION decla-



88 Mac Assembly Language 

ration. In the case of GetNewWindow, we are dealing with a 
pointer that has a size of four bytes. Thus, the first thing to 
do is clear space for it on the stack with a CLR.L -CSP) 
instruction. You could have also done this using a SUBQ.L 
#4,SP or a MOVE.L #0, - CSP) instruction. The parameters 
are the'1 stacked just as they are for a procedure call, before 
executing the trap instruction. Finally, pop the result off the 
stack into the AO register. 

Space for a word result can be allocated with a CLR - (SP) 
instruction. Some programmers allocate space for a 
Boolean (true/false) result with a CLR.B - CSP) instruc
tion, but this actually causes the 68000 to reduce SP by 
two bytes to ensure that SP contains an even address. 
Why use the CLR.B notation? It emphasizes the fact that a 
true Pascal Boolean parameter uses only the least-signifi
cant bit in the high-order byte of a word. 

For both procedures and functions it is critically important 
to ensure that parameters of the proper size are pushed on 
the stack and results of the proper size are popped from the 
stack. If you use incorrect sizes, the stack will soon become 
damaged and the system will crash. 

Stack-based calls preserve all registers except AO, A 1 , and 
A7 (the stack pointer), and DO, 01, and 02. This means you 
can safely store intermediate results in A2-AS or 03-07 
before calling a trap instruction. 

Register-Based Subroutines 

Most of the calls to the operating system subroutines in the 
Macintosh ROM are not made by passing parameters and 
results on the stack. Rather, they are passed using certain 
68000 registers. These subroutines typically handle low-level 
system chores such as memory management. (See Chapter 
4 for a discussion.) 



Assembler Tools 89 

In cases where only one or two parameters are involved, 
the AO and DO registers are used to pass the parameters. AO 
is used for addresses and DO for data. If you're dealing with 
more than two parameters, the address of a parameter 
block is passed in AO instead. In either case, all other regis
ters (except A7) are preserved by a register-based subrou
tine; there's no need to save and restore them yourself. 

On exit from a register-based subroutine, the DO register 
contains the returned result, which is usually an error code. If 
it is zero, no error occurred. Since each such subroutine exe
cutes a TST.W DO (test for DO zero) instruction, a BEQ 
(branch on zero) instruction can be used to transfer control if 
no error occurred. 

Putting It All Together 

The purpose of this section is to walk you through the pro
cess of developing an actual application program using the 
MDS. In so doing, you'll produce a program that creates a 
large window on the screen and a menu bar with an Apple 
menu and a File menu. The File menu contains a Quit com
mand you can use to exit the program and return to the 
Finder. Use this program as a shell for some of the program
ming examples presented in later chapters where all you 
need is a window in which to display a result. 

The first step, of course, is to use Edit to create the pro
gram source code file for Asm, the control file for Link, the 
source code for the RMaker resource compiler, and the exec
utive control file for Exec. The program we're going to 
examine is shown in Listing 2-2, the linker control file in Listing 
2-3, the RMaker source file in Listing 2-4, and the executive 
control file in Listing 2-5. They are called MainDemo .Asm, 
MainDemo.Link, MainDemo.R, and MainDemo.Job, respec
tively. At this point, it's not important that you understand 
exactly what the assembly language code for the program 
does, although the comments should help you. 



90 Mac Assembly Language 

Listing 2-2. The Assembly Language Source File for MainDemo. 

llainDemo.Asm 

This is a shell for a simple one-window application. 
It does not support desk accessories. 

llindID EQU L26 

AppleID EQU L 

FileID EQU 2 

START OF STANDARD HEADER ••. 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Window ID 
;llenu ID for Apple menu 
;llenu ID for File menu 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various llanagers: 

PEA -4(AS) 
_InitGraf 
_InitFonts 
_Initllindows 
_Initllenus 
_TEI nit 
llOVE.L #0,-(SP) 
_InitDialogs 
_InitCursor 

llOVE.L #$DDDDFFFF,DD 
_FlushEvents 

END OF STANDARD HEADER ••• 

CLR - (SP) 
PEA 1llainDemo.Rsrc 1 

_OpenResFile 
llOVE (SP)+,DD 

;Start of QuickDraw globals 
;Initialize QuickDraw 
;Font llanager 
;Window llanager 
;llenu llanager 
;TextEdit 
;(no restart procedure) 
;Dialog llanager 
;lie want 11 arrow" cursor 

;Get rid of every event 

;Use these instructions 
if you create 

; a separate resource file. 

Create and draw a window on the screen: 



Assembler Tools 91 

Listing 2-2. continued 

CLR.L -(SP) ;Space for returned pointer 
MOVE #liindID, - (SP) ;Resource ID 
MOVE.L #0,-(SP) ;Store on heap 
MOVE.L #-l.,-(SP) ;-l. =front window 
_GetNewliindow ;Get window from resource file 

The next step is very important. It ensures that our new 
window is the active port so that we can draw in it. The 
pointer to the window is already on the stack. 

_SetPort ;Make window the active GrafPort 

Create two standard menus: 

CLR. L - (SP) ; Space for handle 
MOVE #AppleID,-(SP) ;Menu ID number 
_GetRMenu 

MOVE #0,-(SP) 
_InsertMenu 

;Get Menu from resource file 

;(O =add to end) 
;Add to menu bar 

CLR. L - (SP) ; Space for handle 
MOVE #FileID, - (SP) i Menu ID number 
_GetRMenu 

MOVE #0,-(SP) 
_InsertMenu 

_DrawMenuBar 

;Get menu from resource file 

;(O =add to end) 
;Add to menu bar 

;Display menu bar 

[insert your application code here] 

GetEvent 
CLR.B -(SP) 
MOVE #$FFFF,-(SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetEvent 

;Leave space for Boolean result 
;Allow all events 
;Results are returned here 
;Check for an event 
;Pop and test the result flag 
;Branch if no pending event 



92 Mac Assembly Language 

Listing 2-2. continued 

MOVE EventRecord+evtNum,DD ;Get event type code 
CMP #mButDwnEvt,DD ;Is it a button-down event? 
BNE GetEvent ; No, so branch 

CLR - (SP) ; Space for result 
MOVE.L EventRecord+evtMouse,-(SP) ;Where info 
PEA ClickWindow ;VAR window involved 
_FindWindow ;Where was button pressed? 

MOVE 
CMP 
BNE 

(SP)+,DD 
#InMenuBar,DD 
GetEvent 

;Get result 
;Pressed in menu bar? 
;No, so ignore 

See if "QUIT" was selected from File menu: 

CLR.L -(SP) ;space for result 
PEA EventRecord+evtMouse ;Where 
_MenuSelect ;Get menu selection 
MOVE (SP)+,Db ;Save menu number in 
MOVE (SP)+,DD ;Discard item number 

MOVE #0,-(SP) 
_HiliteMenu ;Highlight from menu 

CMP #FileID,Db ;In the FILE menu? 
BNE GetEvent ;No, so branch 

must have selected QUIT command: 

RTS ;Return to Finder 

; The application constants: 

Db 

title 

EventRecord DCB.B EvtBlkSize,D ;space for event record 

ClickWindow DC.L a ;Pointer to window 



Assembler Tools 95 

Listing 2-3. The Linker Control File for MainDemo. 

llainDemo.Link 

Link this file to create an application 
(without resources). 

llainDemo 
Insert 11 /Bundle" to set the bundle bit 

$ 

Listing 2-~. The RMaker Source File for MainDemo. 

* llainDemo.R 

* * Compile this after assembling and linking llainDemo.Asm 

* * The next command appends the resources to the application: 
!llainDemo 

Type llEHU 
,L 
\Lt; 

About this demo ... 

,2 
File 

Quit 

Type WIND 
,L28 
Development 
.liO 5 332 502 
Visible HoGoAway 
.Ii 
a 

; ; Resource ID 
;;Title is the Apple symbol (ASCII $Loli) 
; ;About box 

;;Resource ID 
; ;Menu Title 
; ;Only item is 11 Quit 11 

; ; Resource ID 
;;Title for Window 
; ;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID . .Ii= title, no grow box 
;;User-definable item (not used) 

Listing 2-5. The Executive Control File for MainDemo. 

Asm llainDemo.Asm 
Link llainDemo.Link 
Rllaker llainDemo.R 

Exec 
Exec 
Exec 

Edit 
Edit 
Edit 



94 Mac Assembly Language 

What is important is to know how to convert this group of 
source files into an executable program. To begin, start up 
the MOS assembler. This can be done in several ways, 
depending on where you are in the MOS system: 

•You can double-click the Asm icon from the Finder's desktop, 
or click it and select Open from the Finder's File menu. 

• If you're using Edit, Link, RMaker, or Exec, you can select the 
Asm command from the Transfer menu. If you do this from 
Edit, the current file being edited is assembled. 

When the assembler takes over, you must specify the 
name of the file to be assembled by selecting the Open ... 
command from the File menu. (This isn't necessary if you're 
editing the file and you transfer to Asm directly.) Select the 
file called MainOemo.Asm. 

The assembly process then begins. As it proceeds, the 
name of the file being acted on is displayed in a box at the top 
of the screen. This is normally the name of the main source 
file, but it will change to that of an included file when 
necessary. 

The assembly process creates a relocatable object code file 
called MainDemo .Rel. The next step is to convert this file into 
an application using Link. To do this, go from the assembler to 
the linker by pulling down the Transfer menu and selecting 
LINK. Then select the linker control file called MainDemo.Link 
and wait for the linking procedure to end. When it does, an 
application file called MainDemo will have been created. 

At this point, you're still not done because the application 
makes use of resources for a window and two menus that 
have not yet been added to its file. Add them by moving to 
the resource compiler by selecting the RMAKER command 
from the Transfer menu, and then selecting the MainDemo .R 
file to work with. 

The MainOemo.R file tells the resource compiler to append 
the menu and window resources to the application file cre
ated with the linker (MainOemo). The RMaker command for 
this is !MainDemo. If you're using MOS 1.0, precede the file 
name with the name of the disk on which it resides; if you 



Assembler Tools 95 

don't specify the disk prefix, and RMaker is on a different disk 
than MainDemo, you will see a "Can't create the output file!" 
error message. 

When RMaker finishes, the application contains all the 
resources it needs to operate, and you're done. Return to the 
Finder by selecting the Quit command from the File menu and 
then double-click the MainDemo icon to run the application. 
When you do this, you'll see a large window entitled Develop
ment covering most of the screen. To leave the application, 
select the Quit command from its File menu. 

Of course, you can also use the Exec program to automati
cally perform all the steps needed to create the complete 
application. To do this, double-click the Exec icon, choose the 
Open Job File command from its File menu •. then select the 
MainDemo.Job file to act on. If all goes well, you'll eventually 
return to Exec where you can choose the Quit command 
from the File menu to return to the Finder so that you can 
launch MainDemo. 

Alternative Application Development Techniques 

There are, of course, several other ways to create a com
plete application. One alternative is to create .Rel modules 
with both Asm and RMaker, then link the two modules 
together into a final application with a linker control file of the 
form: 

llainDemo.Rel 
/RESOURCES 
Resources.Rel 
$ 

To do this, change the !MainDemo output file name in the 
RMaker source program to Resources .Rel before running 
RMaker. 

Another alternative is to use RMaker to store the 
resources in an APPL file, and use an INCLUDE command to 
incorporate the code resources in the output file created by 



96 Mac Assembly Language 

Link. To do this, replace the RMaker line containing 
!MainDemo and the blank line following it with: 

OurApplication 
APPL???? 

and put the line: 

INCLUDE MainDemo 

at the end of the RMaker source file. This creates a complete 
application called OurApplication that has a creator code of 
???? (which means undefined). 

If you use the latter technique, you might want to use 
Link's /TYPE command to specify a file type code other than 
APPL and a creator code of ???? for the MainDemo output 
file. If you don't, the system will crash if you try to launch the 
resourceless MainDemo application. The Finder will not try to 
launch a non-application file that has a creator code of ????. 

Table 2-9 contains a summary of the various types of files 
that can be handled by Asm, Link, and RMaker, and the types 
of output files they can create. 

Table 2-9. Input and Output Files for the MDS Assembler 
Tools. 

Asm 

Input Files Output Files 

* start with any text file * filename.Rel 
containing 68000 source 
code (a file name 
extension of .Asm is 
optional). 

* the main source code 
file can include any 
textfile containing 
68000 source code (a 
file name extension of 
.Asm is optional). Use 
INCLUDE. 



Table 2-9. continued 

Link 

Input Files 

* the main source code 
file can include any files 
containing packed 
symbols Ca file name 
extension of .D is 
optional). Use 
INCLUDE. 

* start with the 
FileName.Link linker 
control file. 

*the filename.Rel 
modules to be linked 
are named within the 
control file. 

RMaker * start with the 
filename.R file 
containing RMaker 
source commands. 

* the main .R source file 
can include any 
previously created 
resource 

Assembler Tools 97 

Output Files 

* filename (root name of 
first .Rel module). 

* as specified by the 
/OUTPUT FILENAME 
command. 

* filename.Rel Ca resource 
file in linkable form). 

* filename or 
filename.Rsrc Ca general 
resource file). 

* !filename (append to 
existing resource file). 

Creating a Separate Resource File 

In the early stages of program development you may find it 
more convenient to compile your resources into a file other 
than the one containing the application code. That way, if you 
modify your resource definitions you won't have to waste 
time assembling and linking the program source code again 
(and vice versa); all you have to do is recompile the RMaker 
source file and run the same application file again. This 
speeds up the development process considerably. 



98 Mac Assembly Language 

To create a separate resource file in our example, replace 
the !MainDemo statement in the RMaker file with 
MainDemo.Rsrc. This tells RMaker to store the resources in 
a file called MainDemo.Rsrc on the disk. 

You must also add the following four lines of code after the 
initialization instructions in MainDemo.Asm: 

CLR -(SP) 
PEA 1MainDemo.Rsrc 1 

_OpenResFile 
MOVE (SP)+,DD 

;Space for result 
;Name of resource file 
;Open the resource file 
;Pop result (refnum) 

This specifically opens the MainDemo.Rsrc resource file so 
that its resources are available to the application. You don't 
have to explicitly open a resource file if the resources are 
stored in the same file as the application, because the 
resource fork of the application file is automatically opened 
when the application is launched. 

There is also a _ CloseResFile instruction you can use to 
close a resource file. You rarely have to use it, however, 
since all resource files are closed when the application ends 
and returns to the Finder. 

The Standard Program Header 

The first part of the demonstration program contains a 
sequence of instructions designed to initialize various groups 
of toolbox and operating·'system instructions, called Manag
ers, used by the program. (We've actually initialized manag
ers we don't use so that the same header can be used with 
any program you might write.) It also flushes any pending 
input/output CI/0) operations and turns on the standard 
arrow cursor. 

A similar header should be inserted at the beginning of every 
application you write for the Macintosh. If you don't do this, the 



Assembler Tools 99 

program will fail when you try to use a manager that has not 
been initialized. The easiest way to insert it is to create the 
header with the Editor and save it to a file called Header.Asm. 
Then, when you write a program, just put the line: 

INCLUDE Header.Asm 

at the beginning of the file and the header will be loaded and 
assembled when you assemble the file. 

Applications and the Finder 

Unless you include some special resources in an application 
file, the Finder uses the generic icons shown in Figure 2-3 
when it displays the application, or its data files, on the 
desktop. 

D 
Application Document 

Figure 2-3. The Generic Icons for an Application and a Document File. 

It is possible to define alternative icons for the Finder to 
use, however. To do this, you must first add four types of 
resources to the application file: BNDL, FREF, ICN#, and a 
resource whose type code is the same as the signature of 
the application. You must also set the bundle bit in the appli
cation's disk directory entry using the /BUNDLE linker 
instruction. 

Let's go through the steps to follow to create the 
resources the Finder needs to display the icon shown in Fig
ure 2-4 for our example application. 



I 00 Mac Assembly Language 

•••• • • • • • • • • • • • • • • • • • • •••• 
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• 

••••• • • • •• • • • • • • • • • 
••• • • • • • •••• • • • 

• • • • • • • • • • 

• • • • • • • • • • • • • • • ••••• • • • • • • ••• 
••••••••••••• • • • ••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••••• • • • • ••• • •••• • • ••• • • • • • • • ••••••••••••••• 

The Icon 

• ••• 

• ••• • ••• 

The I con·s Mask 

Figure 2-4. A Custom Icon and its Mask. 

Version Data Resource 

The first step is to pick a four-character signature for the 
application. We'll choose DEMO: we won't bother seeking 
approval of the signature from Apple's Macintosh Technical 
Support Division. You should get approval if you're developing 
a commercial application. The first resource type we need to 
define has the name DEMO; it is called the version data (or 
autograph) of the application. 

By convention, the resource ID of the version data is zero. 
The data it contains can be anything you like, so we'll use a 
standard Pascal-style string (one preceded by a length byte) 
containing the title of the application: 



TYPE DEMO = GNRL 
,a 
.P 
Demo by Gary Little 

Assembler Tools IOI 

;;DEMO is not pre-defined 
;;Resource ID (D by convention) 
;;Pascal-type string follows 
;;The string itself! 

Icon List Resource 

Next, we have to design the icon for our application and 
any files it creates. As you will see in Chapter 7, an icon is 
represented by a series of 32 long words; each bit in a long 
word reflects the state of a pixel in a row of the icon ( 1 = 
black, 0 =white). 

The Finder also requires a mask for each icon-the Finder 
uses it to determine the appearance of the icon when it is 
selected. For a selected icon, pixels in the icon that corre
spond to white pixels in the mask are displayed as usual; 
those that correspond to black pixels are inverted. (This is an 
exclusive-or operation.) The mask is usually the same shape 
as the standard icon, but is filled with black. 

The icon definition and its mask must be stored in an ICN# 
(icon list) resource, with the standard icon coming first. (See 
Listing 2-6.) If you need to define more than one ICN# 
resource, be sure to give each a unique resource ID. 

File Reference Resource 

The next resource.to create is FREF (file reference). It con
tains a list of each file type used by the application and the 
local ID of the ICN# resource containing its icon definition. 
This local ID is not the same as the resource ID; the mapping 
of a local ID to an actual resource ID is defined within the 
BNDL resource. 

Here is the format of the RMaker source code for a FREF 
resource: 

Type PREF 
,L28 
APPL D 

;;Resource ID for PREF 
;;File type APPL, local ID of ICN# = D 



I 02 Mac Assembly Language 

If you've defined a special icon for a data file used by the 
application, you must create another FREF resource contain
ing the file type code for the file and its local ID code. Its local 
ID must be different from the one used for the application's 
icon. 

Bundle Resource 

The last resource to define is BNDL (bundle). It contains 
three types of items: 

• The application's signature and the resource ID of its version 
data (usually zero); 

• a mapping of the local IDs for the FREF resources used by the 
application to the actual resource IDs; and 

• a mapping of the local IDs for all ICN# resources referred to in 
the FREF resources to the actual resource IDs. 

Here is the RMaker format of the BNDL resource file: 

Type BNDL 
,:L211 

DEllO 0 

ICN# 
0 l.211 ], :i.2q 

PREF 
0 ],211 ], :i.2q 

resource ID for BNDL 
Version data resource ID 
resource type for next line 
local to absolute ID mapping 
resource type for next line 
local to absolute ID mapping 

This example presumes we've created two ICN# and FREF 
resources (one for the application and one for a data file it 
uses). 

Notice how the mapping scheme works: The line after the 
one containing the name of the resource type is made up of 
consecutive pairs of numbers. The first number in a pair rep
resents the local ID and the second represents the actual 
resource ID. 

There is one last step you must take to ensure that your 
application and its icons will integrate smoothly with the 
Finder: You must set the application's bundle bit. To do this, 
put the /BUNDLE command in the linker control file. 



Assembler Tools I 03 

When the Finder first encounters an application whose bun
dle bit is set, it copies the version data, BNDL, ICN#, and 
FREF resources from the application's resource file and puts 
them in an invisible file called DeskTop. This is the file that the 
Finder inspects to determine what icon to display for a file 
associated with a given creator-type code (signature). 

When the Finder transfers resources to DeskTop it checks 
to see if the resource IDs of the application's ICN# and FREF 
resource IDs are already in use. If they are, it renumbers 
them and changes the absolute IDs in the BNDL resource to 
reflect the changes. Since the data in other Finder-related 
resources use local IDs, they do not have to be modified-this 
is why local IDs are used in the first place. 

You can use the resource definitions in Listing 2-6 to create 
a custom icon for our example program. Add these state
ments to the RMaker source file in Listing 2-4, and add the 
commands: 

/BUNDLE 
/TYPE 1 APPL 1 'DEMO' 

to the linker control file in Listing 2-3 before assembling and 
linking the application. The /TYPE commands sets the appli
cation's signature to DEMO, the one referred to in the BNDL 
resource. 

Listing 2-b. The RMaker Resource Definitions for a Custom 
Icon. 

* Newicon.R 

* * These resources allow the Finder to display 
* a custom icon for an application. 

Type DEMO ; GNRL 
,o 
.P 
Demo by Gary Little 

Type ICN# ; GNRL 

;;Version data (signature) resource 
;;Resource ID (0 by convention) 
;;A Pascal string follows 

;;An icon list resource 



I 04 Mac Assembly Language 

Listing 2-b. continued 

,:i.211 

.B 
DDDDDDDD 
:LE7DD<IED 
:L:L<l:LllD:LD 
:L:L.t;:LSS:LD 
:LM:L25:LD 
:L:L.t;:LDS:LD 
:i.:i.1qas:i.a 

:L:L.t;:LDS:LD 
:L:L.t;:LDS:LD 
:L:L.t;:LDS:LD 
:L:L.t;:LDS:LD 
:LE7DD.t;ED 
DDDDDDDD 
DDDDDDDD 
DDD3FFED 
:LllD.t;DD:LD 
:LllD<IFFqa 
:LllDSDDSD 
:LllDSDDSD 
:LllDSDDSD 
:LllDSDDSD 
:LllDSDDSD 
:LllDSDDSD 
:LllD<IFFqa 
:LllD.t;DD:LD 
:i.110.i;a:i.qa 
:LllD.t;D?qa 
:LllD.t;D:Lqa 
:LllDSDD:LD 
:LllD<IDD:LD 
:LllD.t;DD:LD 
DDD7FFFD 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 
3FFFFFFll 

;;hexadecimals follow 
;;This is the icon definition 

;;This is the icon•s mask 



Assembler Tools I 05 

Listing 2-6. continued 

3FFFFFF8 
3FFFFFF8 
3FFFFFF8 
3FFFFFF8 
3FFFFFF8 
DDDDDDDD 
1ED1FFFD 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
1ED3FFED 
DDDDDDDD 

Type FREF 
,128 
APPL D ;;APPL file type uses ICN# D 

Type BNDL ;;Bundle resource 
,128 
DEMO D ; ;Version data resource + ID 

ICN# 
D 128 ; ;Local D resource ID 128 
FREF 
D 128 ; ;Local D resource ID 1211 



106 Mac Assembly Language 

Once you've defined an icon for an application, it's a bit 
tricky changing it. That's because the Finder doesn't transfer 
the application's icon to the DeskTop file every time it 
encounters the application, only the first time it encounters 
it. To force the Finder to use your redefined icon, you must 
rebuild the DeskTop file from scratch by holding the Option 
and Command keys when the application's disk is inserted. 



Chapter 5 

The 68000 Instruction 
Set 

In this chapter we're going to take a close look at the com
plete 68000 instruction set to determine exactly what each 
instruction does. In so doing, you'll see what addressing 
modes can be used with what instructions and how instruc
tions affect the five status flags in the condition code regis
ter. Once you've mastered this information, you'll be ready to 
develop assembly language programs on the Macintosh. 

For the purpose of analysis, the 68000 instruction set will 
be separated into seven logical groups: 

Data Movement Instructions. These instructions move data from 
place to place. 

Program Control Instructions. These instructions control the order 
in which the 68000 executes a program. 

Arithmetic Instructions. These instructions add, subtract, multiply, 
divide, and negate binary numbers, or add, subtract, and negate 
binary-coded decimal (BCD) numbers. 

Bit Manipulation Instructions. These instructions adjust or test the 
settings of individual bits in an operand. 

Logical Instructions. These instructions perform logical operations 
(and, or, exclusive or, not) according to the rules of Boolean 
algebra. 

Shift and Rotate Instructions. These instructions move bits in an 
operand to the left or right, or in a circle formed by logically "con
necting" the least- and most-significant bits directly or through 
the X flag. 

System Control Instructions. These instructions perform a variety 
of system control operations, such as manipulating the status 

107 



108 Mac Assembly Language 

register, the user stack pointer, and forcing exception 
processing. 

We'll look at each of these groups in separate sections. 
The tables of instructions in this chapter indicate the 

addressing modes permitted for the source and destination 
operands of each 68000 instruction. These modes are 
described in Table 1-2 in Chapter 1 . For a two-operand 
instruction, any source mode marked with a given symbol (x 
or o) may be associated with any destination mode marked 
with the same symbol. One-operand instructions can be used 
with any of the marked addressing modes, of course. 

Note that the word Address in an operand table refers to 
the absolute addressing mode (long or short) and the word 
#Immediate refers to the immediate addressing mode. 

The tables also indicate how the settings of the condition 
code flags change after an instruction is executed. The fol
lowing symbols are used to represent the changes: 

* 
1 
0 

the flag changes to 0 or 1 , depending on the result 
the flag is always set to 1 
the flag is always cleared to 0 
the flag is not affected 

U the flag is undefined and meaningless 

Data Movement Instructions 

The data movement instructions are summarized in Table 
3-1 , which begins on page 149 at the end of this chapter. 

The main 68000 instruction for moving data from place to 
place is MOVE. With it you can move data between registers, 
between memory locations, or between a memory location 
and a register. You can also use it to store a specific number 
in a register or a memory location. 

If a multibyte number is moved to an area of memory begin
ning at a particular location, the most-significant bytes of the 
number are stored first (at the lower addresses). Some 



The 68000 Instruction Set I 09 

microprocessors, notably the Apple H's 6502, store such num
bers in the opposite order. 

Here are some examples of how to use MOVE: 

MOVE.L D:L,DD 
MOVE #3;;S,D3 
MOVE MyConstant,D:L 

;Move D:L to DD (entire register) 
;Move decimal 3;;5 to D3 (word) 
;Move word stored at MyConstant 
; into D:L 

In the last example, MyConstant is the label for a data area 
reserved using the DC (define constant) assembler directive. 
The MOS assembler always converts a reference to this type 
of label as a reference to label(PC) to make the program relo
catable, as required by the Macintosh operating system. If 
MyConstant is a symbol assigned to an absolute memory 
location using the EQU or SET directive, however, the abso
lute addressing mode is used for the source operand. If a 
symbol represents an immediate quantity rather than an 
address, it must be preceded by #. 

If space for a variable is reserved using the DS directive, 
any reference to the variable must use AS address register 
indirect addressing: 

MOVE Db,MyVariable(AS) ;Move the word in Db into 
; MyVariable + (AS) 

If you will be moving a value to a data area in memory, you 
should reserve the area with the OS directive. If you use DC 
instead, you'll run into difficulties, because program counter 
indirect addressing is not permitted for destination operands. 
This means you cannot use an instruction of the form: 

MOVE D:L,MyData ;Illegal where MyData is a constant 

Instead, you must use code like this: 

LEA MyData, AD 
MOVE D:L, (AD) 

;Move EA of MyData into AD 
;Store D:L at MyData 



110 Mac Assembly Language 

LEA is another common data movement instruction. It 
moves the effective address (EA) of the source operand into 
the destination operand, not the value stored at that 
address. It is often used to move the base address of a data 
structure into an address register so items in the structure 
can be accessed using an indirect addressing mode with or 
without index. A related instruction, PEA, pushes the effec
tive address of its operand on the stack; this is often used for 
passing the address of a data structure to a Macintosh tool
box subroutine. 

Clearing to Zero 

The 68000 has a special instruction for storing a zero in a 
particular operand: CLR (CLeaR). This instruction is prefera
ble to a MOVE #0, <EA> instruction because it executes 
more quickly. 

Moving to Address Registers 

The 68000 has a separate instruction for moving a word or 
long word quantity into an address register: MOVEA. If you 
use it to move a word, the sign bit (bit 15) is automatically 
extended through the high-order 16 bits of the address regis
ter. The other mqjor difference between MOVEA and MOVE 
is that MOVEA does not affect the status flags in the condi
tion code register. 

Quick Moves 

MOVEQ (MOVE Quick) is a special form of the standard 
MOVE instruction you can use when the source operand is a 
small immediate quantity between - 128 to + 127 and the 
destination operand is a data register. The advantage of 
using it instead of a standard MOVE instruction is that it is 
faster and takes up less space. 

If you use a MOVE instruction when you could have used a 
MOVEQ instruction, don't worry. The MOS assembler auto-



The 68000 Instruction Set 111 

matically optomizes the code by substituting the MOVEQ 
instruction during the assembly process. 

Moving Multiple Registers 

MOVEM is a very convenient instruction. It moves the con
tents of a group of data and address registers to a temporary 
storage area in memory or vice versa. 

MOVEM is most often used to save the contents of regis
ters before calling a subroutine that might change the values 
in those registers. On return from the subroutine the original 
values can be restored by another MOVEM in the opposite 
direction. You would not, of course, restore (or save) any 
registers that may be used to return results. 

The two forms of the MOVEM instruction are: 

MOVE register_list,<EA> ;save registers 
MOVE <EA>,register_list 

where register_list represents the names of the registers to be 
transferred. Each individual register in the list is separated 
from the next by a I. In addition, you can specify a group of 
consecutive address or data registers by using a minus sign 
to separate the first and last register in the range. 

For example, if you wanted to save DO, 01, 02, 04, A2, and 
A3 on the stack, you could use the instruction: 

MOVEM DD/Dt/D2/D~/A2/A3,-(SP) 

or you could use: 

MOVEM DD-D2/D~/A2-A3,-(SP) 

Use the MOS assembler's REG directive to assign a symbolic 
name to a register list. 

The order of transfer of registers with MOVEM is DO 
through 07, followed by AO through A 7, unless you are using 
the - (An) addressing mode where the order is A 7 through 



112 Mac Assembly Language 

AO then D7 through DO. This means that no matter what 
addressing mode is used, the register values are arranged in 
memory in the same order. 

Swapping Data Register Halves 

SWAP exchanges the upper word of a data register with 
the lower word, which then can be accessed with a word 
operation. It cannot be used with address registers. 

Exchanging Registers 

EXG (EXchanGe) exchanges the contents of two address 
registers, an address register and a data register, or two 
data registers. Using EXG is a convenient way to save the 
contents of a register when you have to use the register for 
something else (perhaps for passing data to a subroutine). 
For example, the following subroutine could be used to pre

serve DO: 

EXG DD,Db ;Save DD in Db 
LEA Data,DD 
JSR Subroutine 
EXG DD,Db ;Restore value of DD 

Note that this technique works only if the register you're 
exchanging with DO (06 in the example) is not altered by the 
subroutine. 

Linking and Unlinking the Stack 

The LINK and UNLK instructions facilitate the development 
of re-entrant and recursive subroutines. A re-entrant subrou
tine is one that can be interrupted, called by the interrupt 
handler, and then completed without any adverse effects. A 
recursive subroutine is one that can call itself without causing 
spurious results. 



The 68000 Instruction Set 115 

Most subroutines are not re-entrant or recursive because 
they use a fixed area for storage of their own variables 
(called local variables) and temporary results. This area is 
overwritten if you call the subroutine while you're already in 

it. 
To avoid this problem, you can set up a data area on the 

stack relative to the stack pointer (called a stack frame), and 
access the data elements as offsets from the stack pointer. 
When the subroutine is called recursively, a similar frame is 
created, but it will be below the old one, so there will be no 
interference with the data used during the first subroutine 

call. 
The LINK instruction sets up such a stack frame. It is of the 

form: 

LINK An,#-num 

where -num represents the number of bytes in the frame. This 
number must be negative and even. When the 68000 exe
cutes the LINK instruction it first pushes the address register 
specified in its operand on the stack and then places the 
resulting stack pointer into the address register. The number 
in the operand is then added to the stack pointer to make 
room for the frame on the stack. Since the frame size is a 
negative number, the frame is, in effect, pushed on the 
stack. 

Once the frame has been created, the stack pointer will 
point to its base, so you can access the data elements in the 
frame using the address register indirect with displacement 
addressing mode: 

MOVE 
MOVE 

2(SP) ,DO 
DL,O(SP) 

;Move 2nd word in frame into DO 
;Store DL into 1st word in frame 

These examples assume, of course, that you haven't 
pushed anything else on the stack after the LINK instruc-



• 

114 Mac Assembly Language 

tion. If you have, you'll have to increase the SP displace
ments accordingly. 

To remove a stack frame, use the UNLK (UNLinK) instruc
tion. It is of the form: 

UNLK An 

where An is the same address register used by the LINK 
instruction. UNLK transfers the contents of the address reg
ister into the stack pointer, and pops a long word from the 
stack into the address register. As a result, the stack pointer 
and the address register are restored to the values they held 
just before the LINK instruction was executed. 

In order for UNLK to work properly. the address register 
must contain the same value stored in it by the LINK 
instruction. 

Moving Data to and from Peripherals 

There is one final data movement instruction, but you'll 
rarely use it on the Macintosh. It is the move peripheral data 
instruction, MOVEP, and it transfers information between a 
data register and peripheral devices such as the Macintosh's 
two serial ports. These chores are usually performed by call
ing low-level 1/0 subroutines that form part of the Macintosh 
operating system. 

When you send data to a peripheral device with MOVEP, 
each byte of the operand (which is a word or a long word in a 
data register) is stored at every second memory location 
beginning at the effective address of the destination oper
and. The high-order byte or bytes of the operand are sent 
first and the effective address can describe an odd or even 
address. 

Similarly, when you're reading data from the peripheral 



The 68000 Instruction Set 115 

device, the data register is filled, high-order byte first, from 
every second memory location starting with the base 
address. 

Communication with peripherals is handled in this strange 
way so that peripherals that can handle only a byte of data at 
a time can be interfaced to the 68000. 

Program Control Instructions 

In the normal course of events, the 68000 executes an 
instruction, increments the program counter by the size of 
the instruction, then executes the next instruction in mem
ory. From time to time, however, it becomes necessary to 
alter this linear flow so you can skip to parts of a program 
dictated by the results of a calculation or the behavior of the 
user. This is done with 68000 branch and jump instructions 
that implicitly change the address stored in the program 
counter register. See Table 3-2, page 159, for a complete list
ing of the 68000 program control instructions. 

In this section we're going to look at the instructions you 
can use to move around in a program. These instructions can 
be categorized as unconditional branch, conditional branch, 
and looping instructions. We'll also look at some conditional 
instructions that can be used to set and clear memory loca
tions, and registers that may be used as flags. 

Unconditional Jumps and Branches 

The 68000 has four instructions you can use to force a 
transfer of control to a particular target address: JMP 
(JuMP), BRA (Branch Relative Always), JSR (Jump to Sub
Routine) and BSR (Branch to SubRoutine). 

The first two instructions, JMP and BRA, are straightfor
ward. In each case, the effective address of the operand is 
placed in the program counter, causing execution to continue 



116 Mac Assembly Language 

at that new address. JMP is usually used with a program 
label as an operand; BRA must be: 

JMP MoreCode 
BRl'I Skip Next 

The difference between the two is that the operand for BRA 
is always a 16-bit signed offset (or 8-bit if the BRA.S short form 
is used) to the target address, whereas the operand for a JMP 
instruction could represent a number of addressing modes, 
including program counter relative, as shown in the example. 
This means the target of a branch is more limited since it must 
be in the range - 32768 to + 32767 ( 16-bit) or - 128 to + 127 
(8-bit) from the position immediately following the operation 
word. Since code segments on the Macintosh cannot exceed 
32K bytes, this does not pose a problem. 

The other two unconditional branch instructions, JSR and 
BSR, are a bit more complex. They pass control to a target 
address like their JMP and BRA counterparts, but they also 
push the address of the instruction that follows them in mem
ory on the stack. By doing this, the program at the target 
address, called a subroutine, can return control to this 
instruction by popping the address from the stack into the 
program counter using the RTS (ReTurn from Subroutine) 
instruction. 

Any portion of code that may have to be executed in vari
ous parts of a program should be made into a subroutine and 
called with a JSR or BSR instruction. This not only makes the 
program more modular and easy to read, it reduces the 
amount of memory needed by the program. 

There is another return instruction with which you should 
become familiar: RTR (ReTurn and Restore condition codes). 
Like RTS, this instruction pops a return address from the 
stack, but before it does, it pops a word and places the low
order byte into the condition code register. RTR is useful 
where you want to preserve the condition code flags across 
a subroutine calL To use it you have to push the contents of 
the CCR as soon as you enter the subroutine: 



The 68000 Instruction Set 117 

JSR MySub ;Call the subroutine 

MySub MOVE SR,-(SP) ;Save flags on stack 

[subroutine code here] 

RTR ;Restore flags and return 

The RTR instruction eliminates the need to execute an 
explicit MOVE (SP)+ ,CCR pop instruction before ending the 
subroutine with an RTS. 

Conditional Branches 

One of the most common things you will do in a program is 
alter the program flow conditionally. That is, you will make a 
decision on what part of a program to execute based on the 
result of a calculation or comparison, the number in a regis
ter, or the value of the condition code flags. The instructions 
you use to make such decisions are Bee (branch condition
ally) instructions of the form: 

Bee TargetAddr 

where TargetAddr represents the label for the instruction in the 
program where control is to pass if the flag settings associ
ated with the cc condition are in effect. If the flags are not 
properly set, the next instruction in line is executed instead. 

The cc in Bee represents a one- or two-character mne
monic for a condition that is true when the condition code 
flags in the status register have a particular set of values. 
Table 3-3 shows what each cc mnemonic is, what it means, 
and the settings of the flags if the cc condition is true. For 
example, LS means lower or same and is true if the carry and 
zero flags are both set to 1 . 



118 Mac Assembly Language 

Table 3-3. Conditional Tests Used with the Bee, DBee, and 
Sec Instructions. 

cc 
Name Condition Flag Setting for Condition= true 

(1) cc carry clear C=O 
(2) cs carry set C=1 

EQ equal Z=1 
(3) F false (always false) 
(4) GE greater or equal CN=1 V=1) or CN=O V=O> 
(4) GT greater than CN=1 V=1 Z=O> or CN=O V=O 

Z=O) 
HI higher CC=O Z=O> 

(4) LE less or equal Z=1 or CN=1 V=O> or CN=O V=1) 
LS lower or same C=1 or Z=1 

(4) LT less or same CN=1 V=O> or CN=O V=O 
(4) MI minus N=1 

NE not equal Z=O 
(4) PL plus N=O 
(3) T true (always true) 
(4) vc overflow clear V=O 
(4) vs overflow set V=1 

C 1) CC is equivalent to HS (higher or same). 
(2) CS is equivalent to LO Clower). 
(3) F and T cannot be used with the Bee instructions. BF, if it were 

permitted, would be the same as NOP. BT, if it were permitted, 
would be the same as BRA. 

(4) These conditions are useful when your operation uses two's 
complement signed arithmetic. 

Note: Higher and lower refer to unsigned numbers. Greater and less 
refer to signed two's complement numbers. 

Most 68000 instructions affect the condition code flags in 
some way. For example, if you move a zero into a data regis
ter, the zero flag becomes 1 . If you compare tvvo operands 
with a CMP instruction, all flags except extend are affected, 
depending on the result of the subtraction operation that 
CMP performs: destination minus source. 

Bee instructions are most often used after a CMP instruc
tion so that you can easily change the program flow if a result 



The 68000 Instruction Set 119 

is the same as, higher, or lower, than another number. In 
fact, most of the cc mnemonics stand for a phrase that 
reflects the relative magnitudes of two numbers, thus it's 
easy to remember which Bee instruction to use. 

Consider the following comparison: 

CMP #.t;,DL 

When this instruction is executed, the 68000 first subtracts 4 
from the word in the D 1 register, then sets the flags based 
on the result. The result itself is not stored anywhere (use 
SUB for that). 

If the two operands are unsigned binary numbers, you can 
use the following Bee instructions to transfer control to 
another position in the program according to the result of the 
comparison: 

• BEQ : branch if D 1 is equal to 4 

• BNE : branch if D 1 is not equal to 4 
e BHS : branch if D 1 is higher than or the same as 4 

• BHI : branch if D1 is higher than 4 
e BLS : branch if D1 is lower than or the same as 4 

• BLO : branch if D 1 is lower than 4 

Note: You can use BCC (carry clear) instead of BHS, and BCS 
(carry set) instead of BLO. 

For signed binary numbers, the following branch instruc
tions should be used instead: 

• BGE : branch if D1 is greater than or equal to 4 
• BGT : branch if D1 is greater than 4 
• BLE : branch if D1 is less than or equal to 4 
• BLT : branch if D1 is less than 4 
• BVC : branch if no overflow occurred 
• BVS : branch if overflow occurred 
• BPL : branch if result is positive 
• BMI : branch if result is negative 

Notice that in a comparison operation, you are always com
paring the destination operand to the source operand, not 
the source operand to the destination operand. 



120 Mac Assembly Language 

The default form of a Bee instruction is the long form. This 
means that the word following the operation word in memory 
contains the 16-bit offset to the target destination (the offset 
is measured from the location after the operation word). This 
is a signed number from - 32768 to + 32767 and is calculated 
for you by the assembler; all you have to do is specify a label. 

The alternate form is the short form; you tell the assembler 
to use it by adding a .S suffix to the Bee instruction mne
monic. For these branches, eight bits in the operation word 
itself are used to hold the offset. This means the range of the 
branch is restricted to - 128 to + 127, but you do save two 
bytes of memory. 

There is another set of conditional instructions of the form 
Sec (Set conditionally). These instructions don't directly 
affect the program flow but can be used to store ones in each 
bit of a byte operand if the condition defined by cc is true, or 
to store zeros if the condition is false. The target operands 
used by Sec instructions are called flags because their con
tents are usually status indicators that a program can check 
when making decisions on what part of a program to execute 
next. 

Looping 

Two of the most common high-level programming con
structs are DO ... UNTIL and FOR ... NEXT loops where a por
tion of code is repeatedly executed until a counter is 
exhausted or a particular terminating condition occurs. You 
can build such loops in assembly language using the 68000 
DBcc (test condition Decrement and Branch until condition 
true) instructions. As with the Bee instructions, the cc refers 
to one of the 16 conditional tests supported by the 68000. 

The operation of a DBcc instruction is shown in Figure 3-1. 
Before entering the loop, a data register is loaded with a 
word that contains the maximum number of loops to per
form, minus one. The start of the loop is identified by a 
labeled instruction. 



NO 

Initialize 
Dn Counter 

Start of 
Loop 

The 68000 Instruction Set 121 

DB cc D n, l ab el (DBcc instruction) 

YES 
Stop Looping 

NO 

Dn = Dn -1 

YES 

Figure 3-1. The 68000 DBcc Instruction. 



122 Mac Assembly Language 

At the bottom of the loop is a DBcc Dn,label instruction. When 
this instruction is encountered, the 68000 first checks to see 
if the condition is true; if it is, control passes to the following 
instruction and looping ends. If it's not, the word in the data 
register is decremented and, if the result is not - 1 , you will 
loop to the labeled instruction. When the counter reaches - 1, 
looping ends. 

Since the termination condition is Dn = - 1 , the initial value 
of the loop counter must be one less than the number of 
times you want to loop. For example, if you want to loop a 
maximum of 10 times, set Dn equal to 9. 

As you have seen, you normally exit a loop in one of two 
ways: when the condition becomes true or the counter 
reaches -1, whichever comes first. You can easily design a 
loop governed by the counter only, by using the DBF version 
of DBcc. Since the condition code F means false or never 
true, looping will never end before the counter reaches - 1 . 
DBF is useful when you must perform a task a fixed number 
of times. Another name for DBF is DBRA. 

Arithm.eticlnstructions 

The 68000 has several instructions you can use to perform 
the basic arithmetic functions: addition, subtraction, multipli
cation, division, and negation. All these instructions, except 
the negation instructions, require two operands. Negation 
involves one operand only. Table 3-4 on page 166 summarizes 
the arithmetic instructions supported by the 68000. 

The operands for addition, subtraction, and negation 
instructions can be either simple binary numbers (signed or 
unsigned) or binary-coded-decimal (BCD) numbers. The multi
plication and division instructions work with binary numbers 
only. Before discussing the arithmetic instructions, let's look 
at the differences between binary and BCD numbers. (See 
Figure 3-2 .) 



The 68000 Instruction Set 125 

_1 ......._6_......._5 ......._4_......._:o ......._2_.......___._l _o_I uns1 gned b1 nary 

magnitude 

1 6 5 4 3 2 I ol 

1 magnitude 

sign bit ( 1 = negative) 

s1 gned b1 nary 
(t wo·s complement) 

b 1 nary-coded-de c 1ma1 
(BCD) 

first decimal second decimal 
digit digit 

Figure 3-2. Binary and BCD numbers. 

Unsigned and Signed Binary Numbers 

Binary numbers can be unsigned or signed. An unsigned 
binary number is one where every bit of the byte, word, or 
long word describing the number contributes to the number's 
magnitude. The number is always positive, of course. The 
contribution, or weight, of a particular bit is given by the deci
mal number 2n, where n is the bit number (0 to 7 for a byte, 0 
to 15 for a word, and 0 to 31 for a long word). To calculate 
the decimal equivalent value of a binary number, simply add 
together the weights of every bit that is one. For instance, 
binary 10001001 is the same as decimal 137 (27 + 2 3 + 2°). 



124 Mac Assembly Language 

The 68000 expects a signed binary number to be in two's 
complement form. This means the most-significant bit of the 
number (bit 7 for a byte, bit 15 for a word, and bit 31 for a 
long word) holds the sign of the number: one for negative, 
zero for positive. For a positive number, the remaining bits 
reflect the magnitude of the number in the same way they do 
for an unsigned binary number. 

To calculate the two's complement binary representation 
of a negative number, take the binary form of the absolute 
value of the number, complement it by changing all ones to 
zeros and zeros to ones, then add binary one to the result. 
Let's see how this works by considering how to convert deci
mal - 43 into binary two's complement form: 

00:10:10:1:1 ( +L;3) 
:11010:100 (complement) 

:1 (add :1) 

:110:10101 (-L;3 in two's complement) 

The 68000 uses the two's complement form for signed 
numbers because it simplifies binary arithmetic operations: 
The numbers can be dealt with just as if they were unsigned 
binary numbers and the signed result will still be correct. No 
explicit ac:tiustments have to be made by your program to 
account for the different signs of the numbers being 
manipulated. 

An overflow condition occurs if the result of an operation is 
too large or too small to be represented in the two's comple
ment form. The ranges of allowed values are as follows: 

• byte 
• word 
•long word 

-128 to + 127 
- 32768 to + 32767 
-(231) to (231)-1 

When an overflow occurs, the overflow flag in the 68000 sta
tus register is set. 



The 68000 Instruction Set 125 

BCD Numbers 

A binary-coded-decimal number is a decimal number whose 
digits are stored in consecutive half-bytes. Each digit is 
stored as a binary number from 0000 to 1001 . The binary pat
terns from 1010 to 1111 are not used since they don't corre
spond to decimal digits. 

Consider the BCD form of decimal 83, namely 1000001 1 : 
The first half-byte, 1000, is the 8 digit, and the second half
byte, 0011, is the 3 digit. Compare this with the standard 
binary representation of the same number, 01010011. 

Decimal numbers entered by a user from the keyboard are 
often stored in BCD form. It is easy to do because the low
order four bits of the ASCII code for a digit turn out to be the 
digit's BCD representation. 

Binary Addition, Subtraction, and Negation 

You can add two binary numbers together with the ADD 
and ADDX instructions; the result is stored in the destination 
operand. The only difference between these two instructions 
is that ADDX also adds the value of the extend flag to the 
result. 

After an addition operation, the extend flag indicates 
whether the result of the addition was larger than the largest 
unsigned number the operand can hold. For example, if you're 
working with byte operands and you add 245 to 10, a carry is 
generated, and the extend flag is set, because the result is 
larger than the largest byte quantity, 255. 

Addition affects the state of the overflow flag as well, a 
fact that is important if you are dealing with two's comple
ment signed numbers. The overflow flag is set if the result of 
the addition is out of the range of signed numbers permitted 
by the operand size. 

If you're simply adding two numbers, each of which fits in 
one operand, you will use the ADD instruction, or the ADDQ 
instruction if the source operand is an immediate number 
from one to eight, to combine them: 



126 Mac Assembly Language 

ADDQ #5,DO 
ADD DO,D:L 
ADD.L #60000,(AO) 

;Add 5 to DO 
;Add DO to D:L 
;Add 60000 to (AO) 

If you're dealing with numbers that won't fit in one operand, 
you must add the low-order part of the numbers with the 
ADD instruction, and then add the higher-order parts with 
the ADDX instruction to ensure that any carry generated is 
included in the total. For example, suppose you want to add 
the number $00FEC200 stored at CAO) to CAO)+ 3 to the 
number $00353500 stored at CA 1 ) to CA 1 ) + 3 using word
sized operands. Here's how you'd do it: 

ADD.W 2(A0),2(A:L) 
ADDX.W (AO),(Al.) 

;Add low-order, generate carry 
;Add high-order with carry 

If the extend flag is set after these two instructions, the 
number is larger than $FFFFFFFF. The overflow flag is set if 
the result is greater than $7FFFFFFF or less than 
$80000000. 

The SUB (Subtract) and SUBX (Subtract with extend) 
instructions are the basic subtraction operations and they 
behave similarly to ADD and ADDX. For subtractions, how
ever, the extend flag is set if a borrow condition occurs. 

NEG (Negate) and NEGX (Negate with eXtend) change the 
sign of a number by subtracting the operand from zero. If 
NEGX is used, the extend bit is also subtracted. 

BCD Addition, Subtraction, and Negation 

Three instructions use BCD numbers: ABCD (Add BCD with 
extend), SBCD (Subtract BCD with extend), NBCD (Negate 
BCD with extend). They use byte operands only and all 
include the extend flag in their operations. 

There are two basic forms for the BCD addition (ABCD) 
and subtraction (SBCD) instructions: 

ABCD 
SBCD 

Dx,Dy 
Dx,Dy 

;Add Dx to Dy 
;Subtract Dx from Dy 



and: 

ABCD 
SBCD 

-(Ax),-(Ay) 
-(Ax),-(Ay) 

The 68000 Instruction Set 12 7 

;Decrement, add (Ax) to (Ay) 
;Decrement, subtract (Ax) from (Ay) 

In each case, the source operand is added to or subtracted 
from the destination operand, as is the extend flag, and the 
result is stored in the destination operand. If the result of the 
addition is nonzero, the zero flag is cleared to zero. If it isn't, 
the state of the zero flag does not change. If a decimal carry 
is generated, the carry and extend flags are set to one. 
Because of the way flags are handled, you should always set 
the zero flag to one and the extend flag to zero before a BCD 
operation. This can be done with a MOVE #4,CCR instruction. 

The second form of the ABCD instruction is handy for 
quickly adding together two sequences of BCD digits stored 
in memory. To do this, first load one address register with 
the address following the last digit of the first number and 
another with the address following the last digit of the sec
ond. Then, if you have six digits to add together, use the fol
lowing code: 

MOVE 
ABCD 
ABCD 
ABCD 

#t;,CCR 
-(AO),-(A:L) 

-(AO) ,-(A:L) 

- (AD) , - ( A1) 

;Z;1, X;D 
;Add low-order digits 
;Add mid-order digits 
;Add high-order digits 

Because the address registers are pre-decremented, suc
cessive ABCD operations always access the next two digits 
in the BCD string of digits. In a more general program, you 
would create a program loop using a DBRA instruction to 
repeat a single ABCD instruction a given number of times. 

The last BCD instruction is NBCD (Negate BCD with 
extend). This instruction subtracts from zero the sum of the 
operand (a byte containing two BCD digits) and the extend 
bit and stores the result in the operand. As with the ABCD 
and SBCD instructions, the zero flag is cleared if the result is 
non-zero, but is not changed otherwise. 



128 Mac Assembly Language 

Multiplication and Division 

The 68000 has two powerful multiplication instructions,. 
MULU (Unsigned MULtiply) and MULS (Signed MULtiply). As 
their names suggest, MULU acts on unsigned binary numbers 
and MULS acts on signed binary numbers. 

The general forms of these instructions are: 

MULU <EA>, Dn 
MULS <EA>,Dn 

The two operands are always words and the result is a long 
word. The result is stored in the data register specified in the 
destination operand. 

There are also two division instructions, DIVU (Unsigned 
DIVide) and DIVS (Signed DIVide). The general forms are the 
same as the multiplication instructions: 

DIVU <EA>,Dn 
DIVS <EA>,Dn 

A division operation is performed by dividing the destination 
operand (a 32-bit data register) by the 16-bit source operand. 
The quotient is a 16-bit number stored in the lower word of 
the data register and the remainder is a 16-bit number stored 
in the upper word of the data register. If you attempt to 
divide by zero, a division by zero exception occurs. This 
exception uses exception vector #5. 

Sign Extension 

EXT (sign EXTend) converts a signed byte to a signed 
word (EXT.W) or a signed word to a signed long word 
(EXT .L). This is done by extending the sign bit of the byte (bit 
7) or word (bit 15) through bits 8 to 15 (for a word operation) 
or bits 16 through 31 (for a long word operation). The number 
acted on must be in a data register. 



The 68000 Instruction Set 129 

EXT is useful when you've loaded a byte or word into a 
data register but you are about to use it in a word or long 
word operation. If you don't extend the operand first, the 
operation will not behave as expected because the high order 
part of the data register is not properly set up. 

Here is an example of how to use EXT with the Macintosh's 
built-in number-to-string conversion instruction, _Pack7: 

LEA theString,AO 
MOVE theNumber,DD 
EXT.L DO 
MOVE #0,-(SP) 

;AD = pointer to string space 
;DD.L = number to convert 
;Adjust upper word 

_Pack7 ;convert number to string 

The _Pack7 instruction expects the number to be in the DO.L 
register. In this example, theNumber is a word quantity, so 
the upper word of DO is undefined after the MOVE 
theNumber,DO instruction. An EXT.L DO instruction extends 
the word while maintaining its sign and magnitude. 

Comparing 

The CMP (CoMPare) instruction compares the value speci
fied by the destination operand with the number specified by 
the source operand. The comparison is made by subtracting 
the source operand from the destination operand, setting the 
flags according to the result, but not storing the result. The 
Bee instructions can then be used to transfer control to vari
ous parts of the program, based on the state of the condition 
code flags. See the section on Program Control Instructions 
for more information on how to use these branch 
instructions. 

There is one special form of the compare instruction, 
CMPM, which is usually used as part of a subroutine that 
compares one block of memory to another. Both its operands 
use the (An)+ addressing mode only. Here is how you would 
use it to check whether two 128-byte areas of memory, ini
tially pointed to by AO and A 1 , are the same: 



130 Mac Assembly Language 

Comparellem 
@:L 

llOVE #32-:L,DD 
CllPll.L (AD)+,(A:L)+ 
DBBE DD,@:L 

SHE 
RTS 

DD 

;32 long words to compare 
;Compare the two areas 
;Loop until all done or 
;until a mismatch. 
;Set according to result 

On exit, DO = 0 if the two areas are the same; otherwise DO 
= -1. 

The DBNE loop can terminate in two ways: if the loop 
counter CDO) reaches - 1 or if the condition associated with 
BNE becomes true. (The condition becomes true if the two 
long words being compared with CMPM are not the same.) 
Since the (An)+ addressing mode means the data block 
pointers are incremented by four after each comparison, the 
next comparison always checks the next long word in the 
block. 

The SNE instruction places ones in every bit of DO if the 
comparison fails (NE is true), or zeros if it succeeds. 

Testing 

The TST (TeST) instruction works just like a CMP #0, <EA> 
instruction. That is, the operand is compared with zero and 
the condition code flags are set according to the result. In 
particular, if the operand is zero, the zero flag is set to one 
and if the high-order bit (the sign bit) of the operand is one, 
the negative flag is set to one. Here is the code to use to 
check if the DO register contains a zero: 

TST.L DD ;Is DD zero? 
BBQ ToZero ;Branch if it is 

The TAS (Test And Set) instruction is similar to the TST 
instruction, but it only works with byte operands. In addition, 
it always causes bit 7 of the byte at the effective address to 
be set to one. TAS is an indivisible operation, that is, one that 
cannot be interrupted. This means that if the bit is used as a 
busy flag to indicate that a certain data area, device, or other 



The 68000 Instruction Set 131 

resource is unavailable, no two co-processors will ever think 
the flag is not busy at the same time. It's not possible for one 
processor to interrupt another after the N flag has been 
cleared (to indicate that bit 7 is zero) but before the bit 7 flag 
is set to one. If it could, the second processor would think 
that the resource was available when it wasn't and chaos 
would ensue. Since the Macintosh is a single processor sys
tem, you should never need to use the TAS instruction. 

Bit Manipulation Instructions 

The bit manipulation instructions, BTST, BSET, BCLR, and 
BCHG act on single bits within an operand. If the destination 
operand is a data register, you can act on any bit from 0 to 
31 . For other operands, you can only act on bits 0 to 7. The 
bit number to be acted on is either stored in a data register or 
is an immediate quantity. Table 3-5 shows the bit manipula
tion instructions and describes their actions. 



I 32 Mac Assembly Language 

Table 3-5. The 68000 Bit Manipulation Instructions. 

Instructions 

Descriptions 

BCHG (test a Bit and CHanGe) 
BCLR (test a Bit and CLeaR) 
BSET (test a Bit and SET) 
BTST CTeST a Bit) 

BCHG tests a bit in the destination operand, sets 
the Z flag in the status register to reflect the result, 
then complements the bit in the destination oper
and whose number is given by the source operand. 
The bit number can be 0 to 31 if the destination op
erand is a data register, or 0 to 7 if it is not. 

BCLR tests a bit in the destination operand, sets 
the Z flag in the status register to reflect the result, 
then clears to zero the bit in the destination oper
and whose number is given by the source operand. 
The bit number can be 0 to 31 if the destination op
erand is a data register, or 0 to 7 if it is not. 

BSET tests a bit in the destination operand, sets 
the Z flag in the status register to reflect the result, 
then sets to 1 the bit in the destination operand 
whose number is given by the source operand. The 
bit number can be 0 to 31 if the destination operand 
is a data register, or 0 to 7 if it is not. 

BTST tests the bit in the destination operand whose 
number is given by the source operand and sets the 
Z flag in the status register to one if the bit is zero; 
if it isn't, the Z flag is cleared. The bit number can be 
0 to 31 if the destination operand is a data register, 
or 0 to 7 if it is not. 

Operand Size .B, .L 



Table 3-5. continued 

Srce Dest Modes 

XO x Dn 
An 

0 CAn) 
0 CAn)+ 
0 -(An) 
0 d16(An) 
0 d8CAn,Rn) 
0 Address 

d16CPC) 
d8CPC,Rn) 

XO #Immediate 

For x operations, the operand 
size is always long. For o opera
tions the operand size is always 
byte. 

The 68000 Instruction Set 155 

x N z v c 

I - I - I * 
Z=1 if the bit tested is O; 

Z = 0 otherwise. 

BTST (Bit TeSi) tests the state of a bit in the operand and 
sets the zero flag in the status register to one if the bit is 
zero; otherwise, it clears it to zero. 

BSET (Bit SET) forces a bit in the operand to one. For 
example, suppose you want to set bit 2 of a long word oper
and to one. You could use either: 

BSET.L #2,<EA> 

or: 

MOVEQ.L #2,Dn 
BSET. L Dn, <EA> 

;Dn = any' data register 

BCLR (Bit CLeaR) works just like BSET except that it 
clears the bit to zero. 

BCHG (Bit CHanGe) complements a given bit in the oper
and. If the bit is one, it is changed to zero, and vice versa. 



1.34 Mac Assembly Language 

Logical Instructions 

There are four basic groups of logical instructions sup
ported by the 68000: complement (NOT), logical and CANO), 
inclusive-or COR), and exclusive-or CEOR). They are summa
rized in Table 3-6. There are also varieties of AND, OR, and 
EOR called ANDI, ORI, and EORI that can be used if the 
source operand is an immediate quantity. 

Table 3-6. The 68000 Logical Instructions. 

Instructions 

Descriptions 

AND (AND logical) 
OR (OR logical) 

AND combines two operands by clearing to zero all 
bits in the destination operand that correspond to 0 
bits in the source operand. Bits corresponding to 1 
bits in the source operand are not affected. The re
sult is stored in the destination operand. 

OR combines two operands by setting to one all 
bits in the destination operand that correspond to 1 
bits in the source operand. Bits corresponding to 0 
bits in the source operand are not affected. The re
sult is stored in the destination operand. 

Operand Size .B, .W, .L 

Srce Dest 

XO x 

x 0 

x 0 

x 0 

x 0 

x 0 

x 0 

x 
x 
x 

Modes 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16(PC) 
dSCPC,Rn) 
#Immediate 

X N Z v c 

I I * I * 0 0 

N = 1 if the most-significant 
bit of the result is 1; N = 0 
otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 



The 68000 Instruction Set 155 

Table 3-6. continued 

Instruction 

Description 

Operand Size 

Srce Dest 

x x 

x 
x 
x 
x 
x 
x 

Instructions 

Descriptions 

Operand Size 

EOR (Exclusive OR logical) 

EOR combines two operands by complementing all 
bits in the destination operand that correspond to 1 
bits in the source operand. All other bits are unaf
fected. The result is stored in the destination oper
and. 

.B, .W, .L 

Modes 

On 
An 
(An) 
CAn>+ 
-(An) 
d16CAn) 
dSCAn,Rn) 
Address 
d16CPC) 
dSCPC,Rn) 
#Immediate 

x N z v c 
0 0 

N = 1 if the most-significant 
bit of the result is 1 ; N = 0 
otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

ANDI CANO logical Immediate) 
ORI CCR logical Immediate) 
EORI (Exclusive OR Immediate) 

ANDI works just like AND, but the source operand 
is always an immediate number. 

ORI works just like OR, but the source operand is 
always an immediate number. 

EORI works just like EOR, but the source operand 
is always an immediate number. 

.B, .W, .L 



136 Mac Assembly Language 

Table 3-6. continued 

Srce Dest Modes 

x On 
An 

x (An) 
x (An)+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16(PC) 
d8(PC,Rn) 

x #Immediate 

x N z v c 
0 0 

N = 1 if the most-significant 
bit of the result is 1 ; N = 0 
otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

Note: There are also word forms of ANDI, ORI, and EORI that 
implicitly use the CCR (not privileged) or SR (privileged) as the des
tination operand: ANDI to CCR, ORI to CCR, EORI to CCR, ANDI to 
SR, ORI to SR, and EORI to SR. All condition code flags can change 
after these operations. 

Instruction NOT (logical complement) 

Description Calculates the one's complement of the destination 
operand and stores it in the destination location. 
The one's complement is calculated by converting 
all 1 's to O's and vice versa. 

Operand Size .B, .W, .L 

Srce Dest Modes 

x On 
An 

x (An) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16(PC) 
d8CPC,Rn) 
#Immediate 

x N z v c 

0 0 

N = 1 if the most-significant 
bit of the result is 1 ; N = 0 
otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 



The 68000 Instruction Set 137 

A logical operation involves the bit by bit combination of the 
source operand with the destination operand. The result of a 
particular bit combination (either 1 or 0) is dictated by the 

rules of Boolean algebra outlined in Figure 3-3. and is stored in 
the same bit of the destination operand. As you can see, the 
combination rules are different for OR, EOR, AND, and NOT 
operations. 

The NOT instruction involves only one operand. As a result 
of the operation, any one bits are converted to zero and zero 

OR 
operand2 
0 1 E 

operand2 
OR 0 1 

0 0 1 0 0 1 
operan d1 operan d1 

1 1 1 1 1 0 

inclusive OR exclusive OR 

operand2 operand2 
A ND 0 1 N OT x x 

0 0 0 0 1 1 
operan d1 operan d1 

1 0 1 1 0 0 

logical AND logical NOT 

(x don"t care) 

Figure 3-3. Boolean Algebra Logic Tables. 



138 Mac Assembly Language 

bits to one bits. The operand is said to have been 
complemented. 

The AND instruction clears certain bits of the destination 
operand to zero (if they are not already zero) and leaves 
others unaffected. The bits cleared are those that are zero in 
the source operand. For example, if DO contains $00001232 
and you execute an AND.L #$FO instruction, DO changes to 
$00001230. 

If you'd rather set bits to one, use the OR instruction 
instead. This instruction forces every bit that is one in the 
source operand to one in the destination operand. All other 
bits are unaffected. 

The EOR instruction complements those bits in the destina
tion operand that correspond to one bits in the source oper
and. Any bit that is zero is changed to one and vice versa. 
EOR is useful for flipping bits used as software flags or 
switches, although you can also use the BCHG instruction for 
that. 



The 68000 Instruction Set I 39 

Shift and Rotate Instructions 

The 68000 has several instructions you can use to move an 
operand's data bits one or more positions to the left or right. 
(See Table 3-7 .) The bit shift count is either an immediate 
quantity or is stored in a data register. 

Table 3-7. The 68000 Shift and Rotate Instructions. 

Instructions 

Descriptions 

ROL CROtate Left) 
ROR CROtate Right) 
ROXL CROtate Left with eXtend) 
ROXR CROtate Right with eXtend) 

ROL shifts the bits in the operand to the left. Bits 
shifted out of the high-order bit are placed in the 
carry ·flag of the condition code register and into bit 
0 of the destination operand. 

ROR shifts the bits in the operand to the right. Bits 
shifted out of bit 0 are placed in the carry flag of the 
condition code register and into the high-order bit of 
the destination operand. 

ROXL shifts the bits in the operand to the left. Bits 
shifted out of the high-order bit are placed in the 
carry and extend flags of the condition code regis
ter. The previous contents of the extend flag are 
shifted into bit 0 of the destination operand. 

ROXR shifts the bits in the operand to the right. 
Bits shifted out of bit 0 are placed in the carry and 
extend flags of the condition code register. The pre
vious contents of the extend flag are shifted into 
the high-order bit of the destination operand. 

Operand Sizes .B, .W, .L 



140 Mac Assembly Language 

Table 3-7. continued 
ROL, ROR, ROXL, and ROXR continued 

Srce Dest Modes 

x x On 
An 

0 CAn) 
0 CAn>+ 
0 -(An> 
0 d16(An> 
0 d8CAn,Rn) 
0 Address 

d16CPC) 
d8CPC,Rn) 

x #Immediate 

x N z v c 

* 

N = 1 if the most significant 
bit of the result is set; 
N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

C = 1 if the last bit shifted 
out of the operand is 1 ; 
C = 0 otherwise. For ROL 
and ROR, C = 0 if the shift 
count is 0. 

The shift count is 1 for the sin
gle-operand form of the instruc
tion (o). In this case the 
operand size is always word. 

For ROXL and ROXR, C is 
set equal to the value of 
the X bit if the shift count 
is 0. 

Instructions 

Descriptions 

LSL (Logical Shift Left) 

For ROL and ROR, X is un
affected. For ROXL and 
ROXR, X = 1 if the last bit 
shifted out of the operand 
is 1 ; it is unaffected if the 
shift count is 0. 

LSR (Logical Shift Right) 
ASL (Arithmetic Shift Left) 
ASR (Arithmetic Shift Right) 

LSL shifts the bits in the operand to the left. Bits 
shifted out of the high-order bit are placed in the 
carry and extend flags of the condition code regis
ter and a 0 is placed in bit 0 of the destination oper
and. 

LSR shifts the bits in the operand to the right. Bits 
shifted out of bit 0 are placed in the carry and ex
tend flags of the condition code register and a 0 is 
placed in the high-order bit of the destination oper
and. 



The 68000 Instruction Set 141 

Table 3-7. continued 

Descriptions ASL shifts the bits in the operand to the left. Bits 
shifted out of the high-order bit are placed in the 
carry and extend flags of the condition code regis
ter and a 0 is placed in bit 0 of the destination oper
and. If the high-order bit of the operand changes, 
the overflow flag is set. 

Operand Size 

Srce Dest 

x x 

0 

0 

0 

0 

0 

0 

x 

ASR shifts the bits in the destination operand to the 
right. Bits shifted out of bit 0 are placed in the carry 
and extend flags of the condition code register. The 
high-order bit of the operand remains as it was 
before the shift • 

• B,.W,.L 

Modes 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16CAn) 
d8(An,Rn) 
Address 
d16(PC) 
d8(PC,Rn) 
#Immediate 

' 

x N z v c 

* 

N = 1 If the most significant 
bit of the result is set; 
N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

C = 1 if the last bit shifted 
out of the operand is 1 ; 
C = 0 otherwise. C = 0 if the 
shift count is 0. 

The shift count is 1 for the 
single-operand form of the in
struction (o). In this case the 
operand size is always word. 

X = 1 if the last bit shifted 
out of the operand is 1 ; it 
is unaffected if the shift 
count is 0. 

For LSL and LSR, V is al
ways 0. For ASL and ASR, 
V = 1 if the most-signifi
cant bit changes any time 
during the shift operation; 
V = 0 otherwise. 

Bit shifting operations have two main purposes. First, they 
can be used to multiply or divide operands by powers of two. 
This is because every shift right halves the value in the oper-



142 Mac Assembly Language 

and and every shift left doubles it. Second, they can be used 
to transfer any eight consecutive bits in a register to the low 
order eight bits so that they can be dealt with by byte opera
tions. The general form of the shifting and rotating instruc
tions is shown in Figure 3-4. 

Arithmetic Shift Instructions 

Signed numbers can be shifted with the arithmetic shift 
instructions, ASR (Arithmetic Shift Right) and ASL (Arithme
tic Shift Left). ASR shifts the bits one position to the right 
while preserving the status of the sign bit; the least-signifi
cant bit is moved into the carry and extend flags in the status 
register. ASL shifts bits to the left and clears bit 0 to zero but 
does not preserve the sign bit; it does, however, set the 
overflow flag if the sign bit of the number changes as a result 
of the shift. 

Logical Shift Instructions 
• 

The logical shifts, LSR (Logical Shift Right) and LSL (Logical 
Shift Left), are similar to arithmetic shifts except the sign bit 
is not preserved (LSR) and the overflow flag is not affected 
(LSL). For LSR, a 0 bit is always moved into the most-signifi
cant bit. For LSL, a 0 bit is always moved into the least-signifi
cant bit. LSR and LSL should be used if you are working with 
unsigned numbers. 

Rotate Instructions 

The rotate instructions move bits through an operand in a 
circular path including only the bits in the operand (ROL and 
ROR), or the bits in the operand and the extend bit (ROXL 
and ROXR). As a bit passes through one end of the operand 
(or operand plus extend bit) it reappears at the other end. 
The carry flag is set according to the state of the bit shifted 
out of an operand. The extend flag is only affected by the 
ROXL and ROXR instructions where it is a member of the cir
cle through which the bits are rotated. 



The 68000 Instruction Set 145 

+- 0 ASL 

~: I and 
LSL 

ROL 
[£]E 

I E I 

c----.-
ROXL 

ASR r.+---1 --

ROR r---1 1 ·[£] 

ROXR r 
Figure 3-4. The 68000 Shift and Rotate Instructions. 



144 Mac Assembly Language 

System Control Instructions 

The system control instructions are made up of a 
hodgepodge of rarely used instructions. (See Table 3-8.) 
They are usually used in low-level operating system pro
grams only. Most of them are used to read from or write to 
the 68000 status register, and many are privileged instruc
tions that can only be executed in supervisor mode. 

Table 3-8. The 68000 System Control Instructions. 

Instruction CHK CCHecK register against bounds) 

Description Compares the signed number in the data register 
specified by the destination operand with the 
signed number in the source operand. If the number 
in the data register is less than zero or greater than 
the number in the source operand, exception #6 is 
generated. 

Operand Size .W 

Srce Dest Modes 

x x On 
An 

x (An) 
x CAn)+ 
x -CAn) 
x d16CAn) 
x d8(An,Rn) 
x Address 
x d16CPC) 
x d8CPC,Rn) 
x #Immediate 

x N z v c 
u u u 

N = 1 if the the destination 
operand is negative. N = 0 
if the destination operand 
is greater than the source 
operand. If neither of 
these two conditions is 
true, N is undefined. 



The 68000 Instruction Set 145 

Table 3-8. continued 

Instruction ILLEGAL (ILLEGAL instruction) 

Description Causes exception #4 to occur. 

Operand Size not applicable 

No flags are affected. 

Instruction RESET (RESET external devices) [privileged] 

Description Causes all external devices to be reset to their 
startup states. 

Operand Size not applicable 

No flags are affected. 

Instruction STOP (load status register and STOP) [privileged] 

Description Loads the immediate value specified in the operand 
into the 68000 status register. Processing then 
stops until a hardware interrupt exception occurs 
that has a priority greater than the one set by the 
interrupt mask in the status register. 

Operand Size not applicable 

Srce Dest Modes 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 

x #Immediate 

x N z v c 

* 

The flags are set according 
to the number stored in 
the immediate source op
erand. 



146 Mac Assembly Language 

Table 3-8. continued 

TRAP (TRAP) Instruction 

Description Causes an exception to occur. The number of the 
exception vector involved is 32 plus the number 
specified in the immediate operand (0 to 15). 

Operand Size not applicable 

Srce Dest Modes No flags are affected. 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 

x #Immediate 

Instruction TRAPV (TRAP on oVerflow) 

Description Causes exception #7 to occur if the overflow flag in 
the condition code register is set to 1. 

Operand Size not applicable 

No flags are affected. 

Status Register Control Instructions 

The system control instructions you'll probably use most 
often are the ones that let you read from and write to the 
condition code register (recall that the CCR is low-order byte 
of the 16-bit status register). They are: 

HOVE SR, <EA> ;Read entire status register 
ANDI.B #num,SR ;AND CCR portion of SR 
EORI.B #num,SR ;EOR CCR portion of SR 
ORI.B #num,SR ;OR CCR portion of SR 
MOVE <EA>,CCR ;(always byte size) 



The 68000 Instruction Set 14 7 

With these instructions you can set or clear any of the con
dition code flags in several different ways, as well as read the 
values of the flags. For example, you could set the carry flag 
of the CCR as follows: 

ORI. B #1, SR ;Force bit a of SR (C) to 1 

The .B extensions of the instruction mnemonics for the logi
cal instructions are important. They indicate you are dealing 
with the lower half of the status register only-the condition 
code register. 

There are also word forms of ANDI, EORI, and ORI that can 
be used to modify the entire status register, not just the con
dition code half. In addition, you can use MOVE <EA> ,SR to 
put a certain number in the entire register. All of these are 
privileged instructions that you will probably never use. 
There are two other privileged instructions that deal with 
registers: MOVE USP.An and MOVE An.USP. They are used 
to read from or write to the user stack pointer. 

Trap Instructions 

There are three system control instructions that generate 
traps. Traps are exceptions caused by these instructions: 
TRAP, TRAPV, and CHK. The TRAP instruction is of the form 

TRAP #num 

where num represents a trap number from 0 to 15. The 
exception vectors for these traps are #32 to #47, respec
tively. The TRAP instruction is a convenient way to pass con
trol to a subroutine you've previously installed by placing its 
address in the appropriate exception vector. The Macintosh 
operating system does not use any of the TRAP vectors but 
the MOS MacsBug debugger uses TRAP # 15 as a software 
breakpoint instruction. 

The TRAPV instruction causes an exception only if the 
overflow flag in the CCR is 1 . The exception vector used is 



148 Mac Assembly Language 

#7. You probably won't use this instruction very often as it's 
usually more convenient to handle an overflow condition by 
using a BVS instruction to direct an application to your own 
error handler. 

The CHK instruction is of the form 

CHK <EA>,Dn ;Dn = any data register 

and it checks to see if the word in the data register is either 
negative or greater than the word stored at the effective 
address. If it is, an exception occurs that uses exception vec· 
tor #8. You cannot use CHK with a byte or long word 
operand. 

If you're writing a subroutine to handle exceptions, it must 
end with another system control instruction, RTE (ReTurn 
from Exception. This instruction pops the three words stored 
on the stack by the 68000 when an exception occurs and 
places them in the status register (one word) and the pro· 
gram counter (two words). 

Processor Control Instructions 

The RESET instruction causes a hardware reset condition 
to be sent to all peripheral ports connected to the 68000 and 
is usually used to force these ports to their power·on states. 
On the Macintosh, however, a RESET instruction causes the 
system to shut down and start up just as if the power had 
been turned on. 

The STOP instruction loads its 16·bit immediate operand 
into the status register, then causes the 68000 to stop exe· 
cuting instructions until an interrupt occurs that has a priority 
higher than that stored in the status register's interrupt 
mask. When execution continues, it begins with the instruc
tion following the STOP instruction. You will probably never 
have to use this instruction on the Macintosh. 



The 68000 Instruction Set 149 

Table 3-1. The 68000 Data Movement Instructions. 

Instruction MOVE (MOVE data) 

Description Moves the value at the source location to the desti
nation location. 

Operand Size .B, • W, .L 

Srce Dest Modes 

x x On 
x *An 
x x (An) 
x x (An>+ 
x x -(An) 
x x d16(An) 
x x dSCAn,Rn> 
x x Address 
x d16CPC) 
x d8(PC,Rn) 
x #Immediate 

* A source operand of An is 
not permitted for byte-sized op
erations. 

x N z v c 
0 0 

N = 1 if a negative number 
is moved; N = 0 otherwise. 

Z = 1 if a zero is moved; 
Z = 0 otherwise. 

Instruction MOVE from CCR (MOVE data from the CCR) 

Description Transfers the contents of the condition code regis
ter to the destination location. 

Operand Size .W (only the low-order byte is significant) 

Srce Dest Modes 

x On 
An 

x (An) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16(PC> 
d8(PC,Rn) 
#Immediate 

The source operand is always 
CCR. 

No flags are affected. 



150 Mac Assembly Language 

Table 3-1. continued 

Instruction MOVE to CCR (MOVE data to the CCR) 

Description Transfers the contents of the condition code regis
ter to the destination location. 

Operand Size .W (only the low-order byte is significant) 

Srce Dest Modes 

x Dn 
An 

x (An) 
x (An)+ 
x -(An) 
x d16CAn) 
x d8(An,Rn) 
x Address 
x d16(PC) 
x d8(PC,Rn) 
x #Immediate 

The destination operand is al
ways CCR. 

x N z v c 

* 

The flags are set in accor
dance with the number in 
the source operand. 

Instruction MOVE to SR (MOVE data to the SR) [privileged] 

Description Moves the value at the source location into the full 
16-bit status register. 

Operand Size .W 

Srce Dest Modes 

x Dn 
An 

x (An) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 
x d16(PC) 
x d8(PC,Rn) 
x #Immediate 

The destination operand is al
ways SR. 

x N z v c 

* 

The flags are set in accor
dance with the number in 
the source operand. 



The 68000 Instruction Set 151 

Table 3-1. continued 

Instruction MOVE from SR (MOVE data from the SR) [privi
leged] 

Description Transfers the contents of the status register to the 
destination location. 

Operand Size .W 

Srce Dest Modes 

x On 
An 

x CAn) 
x (An) 
x -(An) 
x d16CAn) 
x dSCAn,Rn) 
x Address 

d16CPC) 
d8CPC,Rn) 
#Immediate 

The source operand is always 
SR. 

No flags are affected. 

Instruction MOVE USP (MOVE User Stack Pointer) [privileged] 

Description Transfers the contents of the user stack pointer 
CA 7') to the destination register, or vice-versa. 

Operand Size .L 

Srce Dest Modes 

On 
x 0 An 

CAn) 
CAn)+ 
-(An) 
d16CAn) 
dSCAn,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 
#Immediate 

The source operand is always 
USP if moving to An. The desti
nation operand is always USP if 
moving from An. 

No flags are affected. 



152 Mac Assembly Language 

Table 3-1. continued 

Instruction 

Description 

MCVEA (MOVE Address) 

Moves the value at the source location to an ad
dress register. If the value is word-sized, it is first 
sign-extended to a 32-bit value. 

Operand Size .W, .L 

Srce Dest 

x 
x x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

Instruction 

Description 

Modes No flags are affected. 

Dn 
An 
CAn) 
CAn>+ 
-(An) 
d16CAn) 
dSCAn,Rn) 
Address 
d16CPC) 
dSCPC,Rn) 
#Immediate 

MOVEM (MOVE Multiple registers) 

Moves the contents of a group of registers to an 
area of memory, or vice versa. The order of transfer 
is always DO through D7, then AO through A7, un
less -(An) addressing mode is used, in which case 
the standard order is reversed. 

Operand Size .W, .L 



The 68000 Instruction Set 155 

Table 3-1. continued 
MOVEM continued 

Srce Dest Modes No flags are affected. 

Dn 
An 

x 0 (An) 
x (An)+ 

0 -(An) 
x 0 d16CAn) 
x 0 d8(An.Rn) 
x 0 Address 
x d16(PC) 
x d8(PC,Rn) 

#Immediate 

The destination operand used with an operand marked with x is a 
register list. The source operand used with an operand marked with 
o is a register list. (See page 111 for a description of a register list.) 

Instruction MOVEP (MOVE Peripheral data> 

Description Moves bytes of data between a data register and 
alternate bytes of memory. The transfer begins 
with the highest-order byte and ends with the low
est-order byte. 

Operand Size .W, .L 

Srce Dest Modes No flags are affected. 

x 0 On 
An 
(An) 
(An>+ 
-(An) 

0 x d16(An) 
d8(An,Rn> 
Address 
d16(PC) 
d8(PC,Rn) 
#Immediate 



154 Mac Assembly Language 

Table 3-1. continued 

Instruction MOVEQ (MOVE Quick) 

Description Moves an immediate quantity from - 128 to - 127 
into a data register. 

Operand Size .L 

Srce Dest Modes 

x On 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 

x #Immediate 

x N z v c 

0 0 

N = 1 if a negative number 
is moved; N = 0 otherwise. 

Z = 1 if a zero is moved; 
Z = 0 otherwise. 

Instruction 

Description 

CLR CCLeaR an operand) 

Moves a zero into the location specified by the oper
and. 

Operand Size .B, .W, .L 

Srce Dest Modes 

x On 
An 

x CAn) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16(PC) 
d8CPC,Rn) 
#Immediate 

An immediate source operand 
of #0 is implicit. 

x N z v c 
0 1 0 0 



The 68000 Instrnction Set 155 

Table 3-1. continued 

Instruction EXG (EXchanGe registers) 

Description Exchanges the contents of the source and destina
tion registers. An entire register (all 32 bits) is ac
ted on by this operation. 

Operand Size .L 

Srce Dest Modes No flags are affected. 

x x On 
x x An 

(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 
#Immediate 

Instruction LEA (Load Effective Address) 

Description Transfers the effective address of the source oper
and into the address register specified by the desti
nation operand. 

Operand Size .L 

Srce Dest Modes No flags are affected. 

On 
x An 

x (An) 
(An>+ 
-(An) 

x d16CAn) 
x d8(An,Rn) 
x Address 
x d16(PC) 
x d8(PC,Rn) 

#Immediate 



156 Mac Assembly Language 

Table 3-1. continued 

Instruction 

Description 

LINK CLINK and allocate) 

Pushes the value of the address register in the oper
and on to the stack, transfers the new value of the 
stack pointer to the address register, then adds the 
immediate quantity specified by the destination op
erand (a sign-extended word) to the stack pointer. 
The immediate quantity must be negative to allo
cate stack space in the normal way. 

Operand Size not applicable 

Srce Dest Modes No flags are affected. 

On 
x An 

(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 

x #Immediate 

Instruction PEA (Push Effective Address) 

Description Decrements the stack pointer by four, then places 
the effective address of the operand at the location 
pointed to by SP. 

Operand Size .L 



Table 3-1. continued 
PEA continued 

Srce Dest Modes 

Dn 
An 

x (An) 
(An)+ 
-(An) 

x d16(An) 
x d8(An,Rn) 
x Address 
x d16CPC) 
x d8(PC,Rn) 

#Immediate 

A destination addressing mode 
of - CSP) is implicit. 

The 68000 Instruction Set 157 

No flags are affected. 

Instruction SWAP (SWAP register halves) 

Description Exchanges the upper 16 bits of a data register with 
the lower 16 bits. 

Operand Size . W 

Srce Dest Modes 

x Dn 
An 
(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16(PC) 
d8(PC,Rn) 
#Immediate 

x N z v c 
0 0 

N = 1 if bit 31 is set after 
the swap; N = 0 otherwise. 

Z = 1 if the entire register is 
zero; Z = 0 otherwise. 



158 Mac Assembly Language 

Table 3-1. continued 

Instruction UNLK CUNLinK and deallocate) 

Description Deallocates the stack space allocated with LINK by 
transferring the value in the address register oper
and to the stack pointer and then popping the long 
word on the stack into the address register. 

Operand Size not applicable 

Srce Dest Modes No flags are affected. 

Dn 
x An 

CAn) 
CAn>+ 
-(An) 
d16CAn) 
d8(An,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 
#Immediate 



The 68000 Instruction Set 159 

Table 3-2. The 68000 Program Control Instructions. 

Instruction 

Description 

Bee (Branch conditionally) The cc stands for one of 
the two-character mnemonics shown in Table 3-3. 

Causes program execution to continue at a position 
in the program relative to the program counter if 
the conditions associated with cc are true. The 
branch instructions are BCC (carry clear), BCS (car
ry set), BEQ (equal), BGE (greater or equal), BGT 
(greater than), BHI (higher), BLE (less or equal), 
BLS Clower or same), BLT (less than), BMI (minus), 
BNE (not equal), BPL (plus), BVC (overflow clear), 
and BVS (overflow set). 

Operand Size .S (short branch) or .L (long branch) If the size is .S, 
the branching range is - 128 to + 127. If the size is 
.L, the range is -32768 to +32767. 

Srce Dest Modes No flags are affected. 

Dn 
An 
CAn) 
CAn)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 

x d16CPC) 
d8CPC,Rn) 
#Immediate 

Instruction BRA (Branch Relative Always) 

Description Causes program execution to continue at a position 
in the program relative to the program counter. The 
branch is always taken. 

Operand Size .S (short branch) or .L (long branch) If the size is .S, 
the branching range is - 128 to + 127. If the size is 
.L, the range is -32768 to +32767. 



160 Mac Assembly Language 

Table 3-2. continued 
BRA continued 

Srce Dest 

x 

Instruction 

Description 

Modes No flags are affected. 

On 
An 
(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 
#Immediate 

BSR (Branch to SubRoutine) 

Pushes the current value of the program counter on 
the stack (the address of the next instruction in the 
program), then causes program execution to con
tinue at a position in the program relative to the 
program counter. 

Operand Size .S (short branch) or .L (long branch) If the size is .S, 
the branching range is -128 to + 127. If the size is 
.L, the range is -32768 to +32767. 

Srce Dest Modes No flags are affected. 

On 
An 
(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 

x d16(PC) 
d8(PC,Rn) 
#Immediate 



The 68000 Instruction Set 161 

Table 3-2. continued 

Instruction 

Description 

DBcc (Test condition, Decrement, and Branch) 

This is a looping instruction that first tests to see if 
the condition referred to by Bee is true; if it is, exe-
cution continues with the next in-line instruction. If 
not, the contents of the data register (always a 
word) are decremented and, if the result is not - 1 , 
control passes to the position in the program speci
fied by the destination operand. If the result is - 1, 
execution continues with the next in-line instruc
tion. Any of the 16 conditions in Table 3-3 can be 
used with DBcc. 

Operand Size . W 

Srce Dest Modes No flags are affected. 

x On 
An 
(An> 
(An)+ 
-(An) 
d16(An) 
dB( An, Rn) 
Address 

x d16CPC) 
d8(PC,Rn) 
#Immediate 

Instruction JMP (JuMP) 

Description Causes program execution to continue at the ad
dress stored at the effective address specified in 
the operand. 

Operand Size not applicable 



162 Mac Assembly Language 

Table 3-2. continued 
JMP continued 

Srce Dest 

x 

x 
x 
x 
x 
x 

Instruction 

Description 

Modes No flags are affected. 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 
#Immediate 

JSR (Jump to SubRoutine) 

Pushes the current value of the program counter on 
the stack (the address of the next instruction in the 
program), then causes program execution to the ef
fective address specified in the operand. 

Operand Size not applicable 

Srce Dest Modes No flags are affected. 

Dn 
An 

x (An) 
(An>+ 
-(An) 

x d16(An) 
x d8(An,Rn) 
x Address 
x d16(PC) 
x d8CPC,Rn) 

#Immediate 



The 68000 Instruction Set 165 

Table 3-2. continued 

Instruction 
Description 

Operand Size 

Instruction 

Description 

Operand Size 

x 

* 

N 

* 

NOP (No OPeration) 
Does nothing at all except kill some time and ad
vance the program counter by one word. 

Not applicable, there are no operands. No flags are 
affected. 

RTE CReTurn from Exception) [privileged] 

Terminates execution of an exception-handling sub
routine. It pops the status register and program 
counter from the system stack, and control re
sumes at the point where the exception occurred. 
(The SR and PC are automatically placed on the 
stack when the exception first occurs.) 

Not applicable, there are no operands. 

z v c 

* * * 

The flags are set according to the contents of the word popped from 
the stack. 

Instruction 

Description 

Operand Size 

x N 

* * 

RTR CReTurn and Restore condition codes) 

Pops the first word on the stack and places the low
order byte in the condition code register. It then 
pops the next long word on the stack into the pro
gram counter so that control resumes at the point 
where the subroutine was called. 

Not applicable, there are no operands. 

z v c 

* * * 

The flags are set according to the contents of the word popped from 
the stack. 



164 Mac Assembly Language 

Table 3-2. continued 

Instruction RTS CReTum from Subroutine) 

Description Pops a long word on the stack into the program 
counter, causing execution to continue at the ad
dress stored in the long word. RTS is used to termi
nate a subroutine called with JSR or BSR. 

Operand Size Not applicable, there are no operands. No flags are 
affected. 

Instruction Sec (Set conditionally) 

Description Causes the byte operand to be set to all ones if the 
condition given by cc is true, or to all zeros if the 
condition is false. The conditions corresponding to 
cc are shown in Table 3-3. 

Operand Size .B 

Srce Dest Modes No flags are affected. 

x Dn 
An 

x (An) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16CPC) 
d8CPC,Rn) 
#Immediate 

Instruction T AS (Test and Set an operand) 

Description Tests bit 7 of the byte operand, sets the N and Z 
flags· according to the result, then setS the bit to 
one. This operation cannot be interrupted, therefore 
it's ideal for setting busy flags or other semaphores 
used in multitasking environments. 

Operand Size .B 



Table 3-2. continued 
TAS continued 

Srce Dest Modes 

x On 
An 

x CAn> 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16CPC) 
d8CPC,Rn) 
#Immediate 

The 68000 Instruction Set 165 

x N z v c 
0 0 

N = 1 if bit 7 of the operand 
is 1 ; N = 0 otherwise. 

Z = 1 if the operand is zero; 
Z = 0 otherwise. 

Instruction TST (Test an operand) 

Description Compares the operand with zero and sets the condi
tion code flags according to the result. The result 
itself is not saved. 

Operand Size .B, .W, .L 

Srce Dest Modes 

x Dn 
An 

x (An) 
x (An)+ 
x -(An) 
x d16CAn) 
x d8(An,Rn) 
x Address 

d16(PC) 
d8CPC,Rn) 
#Immediate 

x N z v c 
0 0 

N = 1 if the operand is nega
tive; N = 0 otherwise. 

Z = 1 if the operand is zero; 
Z = 0 otherwise. 



I 66 Mac Assembly Language 

Table 3-4. The 68000 Arithmetic Instructions. 

Instructions 

Descriptions 

ABCD (Add Binary-Coded Decimal with extend) 
SBCD (Subtract Binary-Coded Decimal with extend) 

ABCD adds the BCD number in the source operand 
and the extend bit to the BCD number in the desti
nation operand, then stores the result in the desti
nation operand. 

SJ:!CD subtracts the BCD number in the source oper
and and the extend bit from the BCD number in the 
destination operand, and stores the result in the 
destination operand. 

Operand Size .B 

Srce Dest 

x x 

0 0 

Instructions 

Descriptions 

Modes 

On 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16(PC) 
d8CPC,Rn) 
#Immediate 

ADD (Add Binary) 
SUB (Subtract Binary) 

x N z v c 

* 

Z = 1 if the result is zero; 
otherwise, Z is unchanged. 

C = 1 if a decimal carry (for 
ABCD) or borrow (for 
SBCD) was generated; 
C = 0 otherwise. 

X= 1 if a decimal carry (for 
ABCD) or borrow (for 
SBCD) was generated; 
X = 0 otherwise. 

ADD adds the binary number in the source operand 
to the binary number in the destination operand, 
then stores the result in the destination operand. 

SUB subtracts the binary number in the source op
erand from the binary number in the destination op
erand, then stores the result in the destination 
operand. 

Operand Size .B, .W, .L 



The 68000 Instruction Set 167 

Table 3-4. continued 
ADD and SUB continued 

Srce Dest 

XO x 
x 
x 0 

x 0 

x 0 

x 0 

x 0 

x 0 

x 
x 
x 

Modes 

Dn 
*An 
CAn) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 
#Immediate 

x N z v c 

* 

N = 1 if the result is nega
tive; N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

V = 1 if an overflow result
ed; V= 0 otherwise. 

C=1 if a carry (ADD) or 
borrow (SUB) was gener
ated; C = 0 otherwise. 

* A source operand of An is not 
permitted for byte-sized opera
tions. 

X= 1 if a carry CADD) or 
borrow (SUB) was gener
ated; X = 0 otherwise. 

Instructions 

Descriptions 

Operand Size 

Srce Dest 

x 
x x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

ADDA (Add Address) 
SUBA (Subtract Address) 

ADDA adds the binary number in the source oper
and to the address in the destination operand, then 
stores the result in the destination operand. 

SUBA subtracts the binary number in the source op
erand from the address in the destination operand, 
then stores the result in the destination operand. 

.W.L 

Modes No flags are affected. 

Dn 
An 
CAn) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8(PC,Rn) 
#Immediate 

Unlike normal add and subtract instructions, ADDA and SUBA do 
not affect the status flags. 



168 Mac Assembly Language 

Table 3-4. continued 

Instructions 

Descriptions 

ADDI (Add Immediate) 
SUBJ (Subtract Immediate) 

ADDI adds the immediate binary number in the 
source operand to the binary number in the destina
tion operand, then stores the result in the destina
tion operand. 

SUBJ subtracts the immediate binary number in the 
source operand from the binary number in the desti
nation operand, then stores the result in the desti
nation operand. 

Operand Size .B, .W, .L 

Srce Dest 

x 

x 
x 
x 
x 
x 
x 

x 

Instructions 

Descriptions 

Modes 

Dn 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16CPC) 
d8CPC,Rn) 
#Immediate 

ADDQ (Add Quick) 
SUBQ (Subtract Quick) 

x N z v c 

* 

N = 1 if the result is nega
tive; N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

V = 1 if an overflow result
ed; V = 0 otherwise. 

C= 1 if a carry (for ADDI) 
or borrow (for SUBI) was 
generated; C = 0 other
wise. 

X = 1 if a carry (for ADDI) 
or borrow (for SUBI) was 
generated; X = 0 other
wise. 

ADDQ adds the immediate binary number in the 
source operand (a number from 1 to 8) to the binary 
number in the destination operand, then stores the 
result in the destination operand. 



The 68000 Instruction Set 169 

Table 3-4. continued 

Description SUBQ subtracts the immediate binary number in 
the source operand (a number from 1 to 8) from the 
binary number in the destination operand, then 
stores the result in the destination operand. 

Operand Size .B, .W, .L 

Srce Dest Modes 

x On 
x *An 
x (An) 
x· (An)+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16CPC) 
d8CPC,Rn) 

x #Immediate 

x N z v c 

* 

N = 1 if the result is nega
tive; N = 0 if the result is 
positive. 

Z = 1 if the result is zero; 
Z=O if it isn't. 

V = 1 if an overflow result
ed; V = 0 if it didn't. 

C= 1 if a carry (ADDQ) or 
borrow CSUBQ> was gen
erated; C = 0 otherwise. 

* A destination operand of An 
is not permitted for byte-sized 
operations. 

X = 1 if a carry CADDQ) or 
borrow (SUBQ) was gen
erated; X = 0 otherwise. 

Instructions 

Descriptions 

Operand Size 

ADDX (Add eXtended) 
SUBX (Subtract eXtended) 

ADDX adds the binary number in the source oper
and to the extend bit to the binary number in the 
destination operand, then stores the result in the 
destination operand. 

SUBX subtracts the binary number in the source op
erand and the extend bit from the binary number in 
the destination operand, then stores the result in 
the destination operand. 

.B, .W, .L 



170 Mac Assembly Language 

Table 3-4. continued 
ADDX and SUBX continued 

Srce Dest Modes 

x x Dn 
*An 
(An) 
(An>+ 

0 0 -(An) 
d16(An) 
d8(An,Rn) 
Address 
d16(PC) 
d8(PC,Rn) 
#Immediate 

Instruction CMP (Compare) 

x N z v c 
* 

N = 1 if the result is nega
tive; N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = 0 otherwise. 

V = 1 if an overflow result
ed; V = 0 otherwise. 

C = 1 if a carry CAD DX) or 
borrow (SUBX) was gen
erated; C = 0 otherwise. 

X = 1 if a carry CAD DX) or 
borrow (SUBX) was gen
erated; X = 0 otherwise. 

Description Subtracts the source operand from the destination 
operand, and sets the condition code flags accord
ing to the result. The result itself is not stored. The 
destination operand must be a data register. 

Operand Size .B, .W, .L 

Srce Dest Modes 

x x Dn 
x *An 
x (An) 
x (An>+ 
x -(An) 
x d16(An) 
x d8(An,Rn) 
x Address 
x d16(PC) 
x d8CPC,Rn) 
x #Immediate 

* A source operand of An is 
not permitted for byte-sized 
operations. 

x N z v c 

N = 1 if the source operand 
is less than the destina
tion operand; N = 0 other
wise. 

Z = 1 if the source operand 
is the same as the destina
tion operand; Z = 0 other
wise. 

V = 1 if the subtraction 
caused an overflow; V = 0 
otherwise. 

C = 1 if the destination op
erand is less than the 
source operand; C=O oth
erwise. 



The 68000 Instruction Set 171 

Table 3-4. continued 

Instruction 

Description 

CMPA (Compare Address) 

Subtracts the address in the source operand from 
the address in the destination operand, and sets the 
condition code flags according to the result. The re
sult itself is not stored. If the word form of CMPA is 
used, the addresses are sign-extended before the 
comparison is made. 

Operand Size .W .L 

Srce Dest 

x 
x x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

Instruction 

Description 

Operand Size 

Modes 

On 
An 
(An) 
(An>+ 
-(An) 
d16(An) 
dS(An,Rn) 
Address 
d16(PC) 
dSCPC,Rn) 
#Immediate 

x N z v c 

N = 1 if the source operand 
is less than the destina
tion operand; N = 0 other
wise. 

Z = 1 if the source operand 
is the same as the destina
tion operand; Z = 0 other
wise. 

V = 1 if the subtraction 
caused an overflow; V = 0 
otherwise. 

C = 1 if the destination op
erand is less than the 
source operand; C = 0 oth
erwise. 

CMPI (Compare Immediate) 

Subtracts the immediate source operand from the 
destination operand, then sets the condition code 
flags according to the result. The result is not 
stored. 

.B,.W,.L 



172 Mac Assembly Language 

Table 3-4. continued 
CMPI continued 

Srce Dest Modes 

x Dn 
An 

x (An) 

x CAn>+ 
x -CAn) 
x d16(An) 
x d8(An,Rn) 
x Address 

d16CPC) 
d8CPC,Rn) 

x #Immediate 

x N z v c 

N = 1 if the source operand 
is less than the destina
tion operand; N = 0 other
wise. 

Z = 1 If the source operand 
is the same as the destina
tion operand; Z = 0 other• 
wise. 

V = 1 if the subtraction 
caused an overflow; V= 0 
otherwise. 

C = 1 if the destination op
erand is less than the 
source operand; C = 0 oth
erwise. 

Instruction CMPM (Compare Memory) 

Description Subtracts the source operand from the destination 
operand, and sets the .condition code flags accord
ing to the result. The result is not stored. Only the 
(An)+ addressing mode can be used with this in
struction, so it's ideal for comparing one area of 
memory with another. 

Operand Size .B, .W, .L 



The 68000 Instruction Set 173 

Table 3-4. continued 
CMPM continued 

Srce Dest 

x x 

Instructions 

Descriptions 

Modes 

On 
An 
CAn) 
CAn>+ 
-(An) 
d16(An) 
dS(An,Rn) 
Address 
d16CPC) 
dSCPC,Rn) 
#Immediate 

DIVS (Signed DIVide) 

x N z v c 

* * * 

N = 1 if the source operand 
is less than the destina
tion operand; N = 0 other
wise. 

Z = 1 if the source operand 
is the same as the destina
tion operand; Z=O other
wise. 

V= 1 if the subtraction 
caused an overflow; V = 0 
otherwise. 

C = 1 if the destination op
erand is less than the 
source operand; C = 0 oth
erwise. 

DIVU (Unsigned DIVide) 
MULS (Signed MULtiply) 
MULU (Unsigned MULtiply) 

DIVS divides the destination operand Ca long word) 
by the source operand Ca word) and stores the re
sult in the destination operand. The low-order 16 
bits of the result is the quotient and the upper 16 
bits is the remainder. The division operation is per
formed using two's complement signed arithmetic. 

DIVU divides the destination operand Ca long word) 
by the source operand Ca word) and stores the re
sult in the destination operand. The low-order 16 
bits of the result is the quotient and the upper 16 
bits is the remainder. The division operation is per
formed using unsigned arithmetic. 

MULS multiplies the destination operand Ca word) 
by the source operand Ca word) and stores the re
sult (a long word) in the destination operand. The 
multiplication is performed using two's complement 
signed arithmetic. 



17 4 Mac Assembly Language 

Table 3-4. continued 

Descriptions MULU multiplies the destination operand Ca word) 
by the source operand Ca word) and stores the re
sult Ca long word) in the destination operand. The 
multiplication operation is performed using un
signed arithmetic. 

Operand Size • W 

Srce Dest Modes 

x x Dn 
An 

x CAn) 
x (An>+ 
x -(An) 
x d16CAn) 
x d8(An,Rn) 
x Address 
x d16CPC) 
x d8CPC,Rn) 
x #Immediate 

Instruction EXT (sign EXTend) 

x N z v c 

N = 1 if the dividend for 
DIVU or DIVS is negative; 
N = 0 otherwise. 

Z = 1 if the dividend for 
DIVU or DIVS is zero; Z=O 
otherwise. 

For DIVU and DIVS, V= 1 if 
a division overflow oc
curred; V= 0 otherwise. 
For MULU and MULS, 
V=O. 

Description Copies bit 7 (word form) or bit 15 (long word form) 
of a data register through bits 8-1 S or bits 16-31 of 
the register. 

Operand Size .W .L 

Srce Dest Modes 

x On 
An 
CAn) 
CAn>+ 
-(An) 
d16(An) 
d8CAn,Rn) 
Address 
d16CPC> 
d8CPC,Rn> 
#Immediate 

X N Z v c 
0 0 

N = 1 if the result is nega
tive; N = 0 otherwise. 

Z = 1 if the result is zero; 
Z = O otherwise. 



The 68000 Instruction Set 175 

Table 3-4. continued 

Instructions 

Descriptions 

Operand Size 

Srce Dest 

x 

x 
x 
x 
x 
x 
x 

NEG CNEGate) 
NBCD (Negate Binary-Coded Decimal with extend) 
NEGX CNEGate with extend) 

NEG subtracts the operand from zero and stores 
the result at the operand location. Standard binary 
arithmetic is used. 

NBCD subtracts the operand and the extend bit 
from zero and stores the result at the operand loca
tion. BCD arithmetic is used. 

NEGX subtracts the operand and the extend bit 
from zero and stores the result at the operand loca
tion. Standard binary arithmetic is used. 

.B,.W,.L 

Modes 

Dn 
An 
(An) 
(An)+ 
-(An) 
d16(An) 
d8(An,Rn) 
Address 
d16(PC) 
d8CPC,Rn) 
#Immediate 

x N z v c 

* 

For NEG and NEGX, N = 1 if 
the result is negative; 
N = 0 otherwise. For 
NBCD, N is undefined. 

For NEG and NEGX, Z = 1 if 
the result is zero; Z = 0 
otherwise. For NBCD, Z = 0 
if the result is non-zero; 
otherwise, Z is unchanged. 

For NEG and NEGX, V=1 if 
an overflow occurred; 
V = 0 otherwise. For 
NBCD, V is undefined. 

For NEG, C=O if the result 
is O; C = 1 otherwise. For 
NEGX, C = 1 if a borrow oc
curred; C = 0 otherwise. 
For NBCD, C = 1 if a deci
mal borrow occurred; C = 0 
otherwise. 

The X flag is set the same 
as the C flag. 



Chapter 4 

Memory Management 

In this chapter I'll begin by explaining how the Macintosh oper
ating system uses the 16-megabyte address space sup
ported by the 68000. This will include a discussion of the 
usage of the RAM space (128K or 512K for the Macintosh, 
1M for the Macintosh Plus), the ROM space (64K or 128K), 
and the memory-mapped I/O space in the high end of 
memory. 

When we finish the guided tour of the memory space. 
you'll see how a 68000 assembly language program makes 
use of different areas in the RAM memory space for the 
storage of the program itself and the data it uses. In so 
doing. you'll see how and where space for constants. vari
ables. and other data structures used by the program can 
be allocated without interfering with the smooth operation 
of the system. 

Macintosh Memory Map 

Figure 4-1 shows the allocation of the 68000's 16M 
address space on a Macintosh. As you can see. much of the 
space is unused, so there's plenty of room for future RAM 
or ROM expansion. Global variables containing the 
addresses of the key areas in the memory space are also 
shown in Figure 4-1 . 

Let's traverse the memory space from bottom to top to 
see how it's used on the Macintosh. 

176 



177 

$FFFFFF l 
Used biy 

1/0 devices l Pointer- Locations 

64K Of" 1 28K --

$400000 

(Mac Plus) $100000 ~ 
(Mac 51 2) $080000 
(Mac 128) $020000 

28 biytes +--

ROMBase 
MemTop 
ScrnBase 
CurrentA5 
CurStackBase 
HeapEnd 
ApplZone 
SysZone 
RAMBase 

740 biy tes +--1---~-=-=~=..:~~..;......,::----t 
128 biytes 

21 888 biy tes +--- Scr-een Buffer-
(Scr-nBase) 

Jump Table 
32 biytes +--- Application Par-ameter-s +--- A5 = (Cur-r-entA5) 

256 biy tes +--- Quick Dr-aw Glob a ls +---i_ ( A5) 
1----=----------t 

Application Globals 
1-------------i+--(Cur-StackBase) 

1 Stack 

+---SP= A7 

Fr-ee Space 

+--- (HeapEnd) 

I Application Heap 

1--------------t+-- (ApplZone) 

$2AE 
$108 
$824 
$904 
$908 
$114 
$2AA 
$2A6 
$282 

(64K ROM) $000800 J-, Siystem Heap 

(128K ROM) $001400 Ltl--------------t+-- (SiysZone) 0 ,. (RAMBue) 
Onliy on a Mac f--- Tr-ap Dispatch Table 

with a 128K ROM 1-------------i 
$ 000800 Siy stem Glob a 1 Y ar-iab Jes 

$ 000400 1--__ Tr-_ ap'--D_i_s.;;..p_a_tc_h_T_a_b_le_---1 

$OOO 1 00 Siy stem Globa 1 Y ar-iab les 

Exception Yector-s 
$000000.__~~~~~~--~~~ 

Figure 4-1. A Macintosh Memory Map. 



178 Mac Assembly Language 

Exception Vectors 

As explained in Chapter 1 , the area from $000000 to 
$0000FF holds the 68000's first 64 exception vectors. 

System Global Variables 

These variables occupy the space from $000100 to 
$0003FF and from $000800 to $000AFF. (!he space from 
$000100 to $0003FF is available because user interrupt vec
tors are not needed on the Macintosh.) They are primarily for 
the private use of the Macintosh operating system, but can 
also be inspected by your own programs. Some of the more 
interesting variables stored here are pointers to the various 
data areas that I'll discuss in this section: the current time, 
the name of the current applic;:ation, and the background pat
tern of the screen. You can find lists of the system global 
variables in the symbol equate files that come with the MOS. 

Trap Dispatch Table 

On a Macintosh with a 64K ROM, this table runs from 
$000400 to $0007FF and contains a list of the starting 
addresses of every toolbox and operating system .subroutine 
in encoded form. 

On a Macintosh with a 128K ROM, this table is made up of 
two parts. The first part, from $000400 to $0007FF, contains 
the starting addresses of the 256 operating system subrou
tines. The second part, from $000COO to $0013FF, contains 
the starting addresses of the 512 user-interface toolbox 
subroutines. 

Most of operating system and toolbox subroutines are 
located in the Macintosh ROM, but some are loaded into RAM 
when the system starts up. The RAM-based subroutines are 
primarily replacements for buggy ROM subroutines, or new 
subroutines that have not yet been committed to ROM. 



Memory Management 179 

System Heap 

The system heap is an area reserved for the storage of the 
resources and data structures used by the operating system. 
The contents of the system heap are not removed vvhen a 
nevv program is started up (or launched) from the Finder. 

A pointer to the base of the system heap is stored in a sys
tem global variable called RAM Base. For a Macintosh vvith a 
64K ROM, the heap base is $000800; for a Macintosh vvith a 
128K ROM, it is $001400. 

Application Heap 

The application heap is an area used by programs for stor
age of data, program constants, resources, and even the 
program itself. The application heap is initially 6K long, but 
expands to fill the free space above the heap as more space 
is requested by your program. The items in the application 
heap are released vvhenever a nevv application is launched. 

Stack 

This is the stack described in Chapter 1 . Recall from the 
previous discussion that vvhen data is added to it, the stack 
grovvs dovvn in memory; this means it shares the same free 
space the application heap can move up into. If the top of the 
stack and the top of the heap ever collide, an out-of-memory 
bomb appears on the screen. 

Application Global Space 

This space is made up of global variables, application 
parameters, and a jump table. The size of this space is dic
tated by the specific application you are using; it is automati
cally reserved vvhen the application is launched. The global 
variables are those defined in your program vvith the OS 
assembler directive, and also those used by QuickDravv (the 



180 Mac Assembly Language 

set of toolbox subroutines responsible for drawing images on 
the screen). Variables are placed just below the memory 
location whose address is stored in the AS register, in 
reverse order of declaration; the first variable defined is 
stored in the highest part of the space. 

The long word stored at the address in AS is the first entry 
in the 32-byte application parameter table. It contains the 
address of the first QuickDraw global variable, normally given 
by the effective address of -4CAS). The only other active 
entry in the table, located at offset 16, is a handle to a Finder 
startup information record. (A handle is the address of a 
pointer to the record.) This record tells the application which 
documents it is to open or print as it starts up, if any. 

The jump table is present only if the application is made up 
of more than one code segment. Calls from one segment to 
the other are made through the jump table. 

Screen Buffer 

The screen buffer is exactly 21 ,888 bytes long and begins at 
$1A700 for a 128K Macintosh or at $7 A 700 for the S 12K 
model. If you do the mathematics, you'll find this corresponds 
to 17S,104 bits, exactly the number in a grid measuring S 12 
wide by 342 high. Not surprisingly, these are the dimensions 
of the Macintosh screen display, in pixels. (Pixel stands for 
"picture element," a dot on the screen display.) 

Each bit in the screen buffer controls the appearance of a 
different pixel on the screen. If the bit is one, its pixel is black; 
if it's zero, its pixel is white. 

There is a linear relationship between the screen buffer and 
the pixels on the screen. To calculate the byte and bit number 
within the screen buffer that corresponds to a particular pixel, . 
you first multiply the row number CO to 341) by S 12 (the screen 
width in pixels) and add the result to the column number (0 to 
S11 ). If you then divide this number by eight, the byte number 
you want is the dividend; subtract the remainder from seven.to 
determine the relevant bit number within that byte. 



Memory Management 181 

System Error Handler Buffer 

The System Error Handler, the part of the operating sys
tem that takes over when a fatal system error occurs, uses 
this area for data storage. It is the System Error Handler that 
displays the infamous bomb alert box. 

Sound Buffer 

The operating system uses this buffer to control the sound 
generated by the Macintosh's built-in speaker. 

Expansion RAM 

This is the space that is occupied as you add more RAM 
memory to your Macintosh. 

ROM 

The Macintosh ROM space begins at $400000 (4 
megabytes) and is either 64K or 128K bytes long, depending 
on which version of the Macintosh you are using. This ROM 
contains the hundreds of fundamental subroutines making up 
the Macintosh operating system and the user interface tool
box. It is these subroutines that are accessed through the 
use of the line A emulator trap instructions ($Axxx) dis
cussed in Chapter 1 . 

Memory-Mapped 110 Space 

The upper eight megabytes of the 16M address space are 
reserved for control of Macintosh input/output devices even 
though only a few locations are actually used. There's really 
no RAM or ROM up here, it's just that the 1/0 devices are 
wired into the system in such a way that you can communi
cate with them by reading from or writing to certain loca-



182 Mac Assembly Language 

tions. This method of handling 1/0 operations is called 
memory-mapped 1/0. 

The 1/0 locations provide support for the control of the fol-
lowing peripheral interfaces: 

• Intel 8530 Serial Communications Controller (SCC). 
• Synertek 6522 Versatile Interface Adapter (VIA). 
• Integrated Woz Machine ((WM) disk controller. 

You should never have to refer to 1/0 locations in your own 
programs because the Macintosh operating system includes 
the low-level drivers that perform most 1/0 operations you'd 
ever need. 

Data Storage in the Application Heap 

Now that you've seen how the various areas of memory are 
used on the Macintosh, it's time to discover where your own 
programs can store data safely. The operating system trap 
instructions we'll be looking at are summarized in Table 4-1 . 

Table 4-1. Memory Manager Trap Instructions. 

Pointers 

_DisposPtr 

MOVE.L thePtr,AD 
_DisposPtr 

_NewPtr 

MOVE.L #blockSize,DD 
_NewPtr 

Handles 

_DisposHandle 

MOVE.L thePtr,AD 
_DisposHandle 

Releases a nonrelocatable block. 

;AD.L ; pointer to the block 
;Error code returned in DD.W 

Allocates a nonrelocatable block. 

;DD.L ; size of block in bytes 
;The pointer is returned in AD.L 
;DD.L contains the error code 

Releases a relocatable block. 

;AD.L ; pointer to the block 
;Error code returned in DD.W 



Table 4-1. continued 

Handles 

_HLock 

MOVE.L theHandle,AD 
_HLock 

_Hunlock 

MOVE.L theHandle,AD 
_Hunlock 

_NewHandle 

MOVE.L #blockSize,DD 
_NewHandle 

Error Reporting 

Memory Management 185 

Locks a relocatable block in place. 

;AD.L ; handle to the block 
;Error code returned in DD.W 

Unlocks a relocatable block. 

;AD.L ; handle to the block 
;Error code returned in DD.Wt 

Allocates a relocatable block. 

;DD.L ; size of block in bytes 
;The handle is returned in AD.L 
;DD.L contains the error code 

Memory management error codes are returned in the DO.W 
register. 

Here is a list of errors codes and their meanings: 

Symbolic Name Value Meaning 
No Err 0 No error occurred 
MemFullErr -108 No room for block 
NilHandleErr -109 Illegal operation on nil handle 
MemWZErr -111 Illegal operation on free block 
MemPurErr -112 Illegal operation on locked block 

There are four areas of RAM we'll be looking at: 

• the application heap 
•the stack 
• the application global space 
• the program storage area (within the heap) 

Let's begin by considering the application heap. When a 
68000 program is launched, it is loaded into an area of mem
ory called the application heap, located in the low end of 
memory, just above the system heap used by the operating 
system. The exact position the program occupies in the heap 
is not important as long as the program is relocatable (capa-



184 Mac Assembly Language 

ble of running at any position in memory). Because of the 
way the MOS assembler assembles code, it is difficult to 
write a program that is not relocatable. 

When a new application is launched from the Finder, the 
application heap is cleared of all information to prevent uncon
trolled growth. The system heap is not affected, however. 

The application heap is simply a general-purpose data stor
age area. It is used to hold not only program code, but also 
resources used by the program: data buffers, and other data 
structures used either by the toolbox and operating system 
subroutines or directly by the program. It is obviously not a 
static structure; as items are added to it, it grows upward in 
memory toward the top of the stack, which grows 
downward. 

There are four trap instructions you can use to dynamically 
allocate and deallocate blocks of data on the application heap. 
These blocks are referred to by either pointers or handles, 
depending on how they were first allocated. 

Pointers 

A pointer is a long word containing the address of a block of 
data in the heap. (See Figure 4-2.) This block is nonrelocat
able: the operating system never tries to relocate it when it 
compacts the heap. (Heap compaction is the packing 
together of relocatable blocks in the heap; it is performed 
periodically to ensure there will be minimal dead space 
between blocks. To reserve a data block on the heap refer
enced by a pointer, use the _NewPtr trap instruction: 

MOVE.L #size,DO 
_NewPtr 

;DO = size of block in bytes 

The pointer (a long word) is returned in the AO register if no 
error occurred. An error code (a word) is returned in the DO 
register; if it is zero, no error occurred. The only error that 
can occur for _NewPtr has the symbolic name MemFullErr 
(code -108), which means that there is not enough space in 



Memory Management 185 

H ~ 
Block of., H 

[ Pointer L Memory-i J H H 
LL LL 

heap 

Figure 4-2. A Pointer to a Block of Memory. 

the application heap for a nonrelocatable block of the size 
requested. 

You can add the ",CLEAR" suffix to _NewPtr to zero the 
allocated block after allocating it. Another suffix, "SYS", lets 
you allocate space in the system heap rather than the appli
cation heap. 

Handles 

A handle is a long word containing the address, not of the 
block of data itself, but of the location of a master pointer 
that contains the current address of the block of data. (See 
Figure 4-3 .) If necessary, the operating system may relocate 
the data block in memory but if it does, the handle to it 
remains valid (only the address stored in the master pointer 
changes). This means you can use your handles without hav
ing to worry about whether your data block has moved, at 
least until the data block is finally disposed of (see below). To 



186 Mac Assembly Language 

reserve heap space referenced by a handle, use the 
_NewHandle trap: 

MOVE.L #size,DO 
_lleweandle 

;DO = size of block in bytes 

The handle Ca long word) is returned in the AO register. 
As with _NewPtr, an error code is returned as a word in 
DO. 

_,J Master Pointe r t---i 

CT CT en:~ 

Block of 

l Handle 1 Memory J 
l..ll.L u..U.r 

heap 

Figure 4-3. A Handle to a Block of Memory. 

The choice of whether to reference a block of data by han
dle or by pointer is often dictated by the requirements of the 
toolbox trap instruction that uses the data block: Some 
instructions require you to pass pointers to data areas; 
others require handles. 

If the space is for a data structure of your own design, it's 
easiest to deal with pointers because the elements of the 
data block can be easily accessed using the address register 
indirect with offset addressing mode, d16(An). You don't 



Memory Management 187 

have to worry about the block of data moving around in mem
ory if you use a pointer. For example, if AO contains the 
pointer to the data block, position 60 in the block would be 
accessed by using an operand of the form "60(A0)". 

If, on the other hand, you have a handle to a block, you 
must "de-reference" the handle so you can access the block 
as you would if you were dealing with a pointer: 

MOVE.L MyHndl(AS),AD ;MyHndl is a long word variable 
MOVE.L (AD),AD ;Convert handle to pointer 

Notice what the last instruction does: It takes the long 
word to which the handle points and puts it in AO. Since the 
handle points to a pointer to the data block, you can now use 
the AO address register indirect addressing modes to access 
the block in the same way you would if you were dealing with 
a pointer directly. 

But be careful! The de-referenced handle used to access 
the data in a block is valid only if the block has not been relo
cated since you did the de-referencing. Calling some trap 
instructions can result in block relocation, so you should lock 
the data block in place before doing so. Do this by calling the 
_HLock trap instruction: 

MOVE.L MyHndl(AS),AD 
_!!Lock 

My!lndl DS.L L 

;AD = handle to block 

;Handle stored here 

When you've finished fiddling with the data block, you 
should unlock the data block with the _HUnlock trap to make 
it relocatable again: 

MOVE.L My!lndl(AS),AD ;AD= handle to block 
_Hunlock 

If you don't do this, you'll create islands of immovable data 
blocks in the heap space that can interfere with efficient 



188 Mac Assembly Language 

heap compaction; these may make it impossible to allocate a 
large space in the heap without running out of memory. 

Deallocation 

One of the nice things about allocating blocks in the heap is 
that you can easily deallocate them when you're through 
with them. Thus, you don't have to waste memory space for 
data areas you only use once. The two trap instructions for 
removing data blocks are _DisposPtr and _DisposHandle. 
The first is for blocks referenced by pointer and the other is 
for those referenced by handle. On entry to either trap, the 
AO register contains the pointer or handle to the data block 
being disposed of. Here's an example using _DisposPtr: 

MOVE.L MyPtr(AS),AO 
_DisposPtr 

;Load pointer into AO 
;Release the data block 

It's always a good idea to dispose of unused data blocks 
because it frees up valuable memory space. 

Allocation Tips 

If you're dealing with both pointers and handles, you 
should try to allocate all your pointer areas first, if possible, 
to avoid excessive heap fragmentation. Suppose you don't 
and you allocate a handle area first, followed by some 
pointer areas. If you subsequently dispose of the handle 
area, you'll be left with a hole in the heap that can't be filled 
by compaction because the pointer areas can't be moved. If 
you have several holes like this, shielded by pointer areas, 
and they're not big enough to hold later-defined handle 
areas, the heap will soon become very large and you may 
run out of memory. 

If the pointer areas are defined first, they cannot interfere 
with movement of handle areas during heap compaction. 



Memory Management 189 

Data Storage on the Stack 

We saw in Chapter 3 that several 68000 instructions implic
itly use the 68000 stack for data storage or retrieval, notably 
the JSR, BSR, and RTS instructions used in connection with 
subroutine calls. 

You can also explicitly push data on the stack using the 
-(SP) addressing mode. You might want to do this, for 
example, to save the contents of a register that is tempora
rily required for something else. You can restore the original 
contents by later popping it from the stack using the CSP)+ 
addressing mode. 

More commonly, you'll use the stack for passing parame
ters to the user interface toolbox subroutines. For example, 
to set the active drawing location to position (8,50) on the 
screen, you push the two coordinates on the stack, then call 
the _MoveTo trap instruction: 

MOVE 
MOVE 
_MoveTo 

#8,-(SP) 
#50,-(SP) 

;Horizontal coordinate 
;Vertical coordinate 
;Position the cursor 

The subroutines to which trap instructions pass control are 
designed in such a way that you don't have to pop the data 
from the stack after the call; this is done for you automati
cally. If a result is returned on the stack, however, you will 
have to pop it off to prevent uncontrolled stack growth and 
to ensure that you'll return to the correct location when the 
next RTS or RTR instruction is encountered. 

An example of a trap instruction that returns a result on 
the stack is MenuSelect. (See Chapter 7 .) Here's how to 
handle a call to this trap: 

CLR.L -(SP) 
MOVE.L Point,-(SP) 
_Menu Select 
MOVE.L (SP)+,DO 

;Clear space for result 
;Position of mouse 

;Pop the result 



190 Mac Assembly Language 

Since _MenuSelect returns a result on the stack, you have 
to clear a space for it before calling it. That's the purpose 
of the CLR.L -(SP) instruction. The instruction after 
_MenuSelect transfers the result (a long word) from the 
stack to the DO register. 

LINK and UNLK 

Recall from Chapter 3 that a data area can also be allocated 
on the stack using the LINK and UNLK instructions. You must 
use these instructions for re-entrant or recursive subrou
tines. They may also be useful to you for allocating and deal
locating temporary data structures so you don't have to deal 
with the more cumbersome _NewPtr and _DisposPtr (and 
_NewHandle and _DisposHandle) traps. It also means you 
don't have to allocate permanent storage space for the rec
ord using the OS or DC directives. 

Suppose you want to use the Macintosh _ GetFontlnfo trap 
instruction to determine the dimensions of the active font. As 
you will see in Chapter 6, _GetFontlnfo returns data in an 
8-byte font information record. The height of a text line can 
then be calculated by adding the three integer fields in the 
record that are stored at offsets 0 (ascent), 2 (descent), and 
6 (leading) bytes from the start of the record. 

Here is a subroutine using LINK and UNLK that you can use 
to create space for the font information record on the stack 
and return the height in DO. It also shows how to access the 
parameters in the record using the d 16(SP) addressing 
mode: 

GetBeight LINK Ab,#-0 
MOVE. L SP, - (SP) 
_GetFontinfo 
MOVE D(SP) ,DD 
ADD 2(SP) ,DD 
ADD b(SP) ,DD 
UNLK Ab 
RTS 

;Push Ab, create stack frame 
;Push pointer to stack frame 
;On exit, SP points to record 
;Height of text is 
; ascent+descent+leading 

;Restore original SP, Ab 



Memory Management 191 

After allocation of space for the record with LINK (notice 
the size is negative, as required), SP points to the base 
address of the font information record in the stack area. 
Since _GetFontlnfo requires a pointer to this record, SP is 
pushed on the stack with a MOVE.L SP,-CSP) instruction. 
When _ GetFontlnfo finishes, SP again points to the base of 
the record, and the fields are accessed with operands of 
O(SP), 2CSP), and 6(SP). The UNLK A6 instruction at the end 
of the subroutine restores the stack to its state on entry. 

Data Storage Within the Application 
Global Space 

The traditional definition of a variable is a memory location 
(or locations) that holds data of byte, word, or long word 
size. This data can be altered at any time by your program to 
change its value. In the MOS environment, the word variable 
usually means a memory location allocated using the DS 
(Define Storage) assembler directive. 

When a program is launched, its variables are set up in an 
application global space in the upper end of RAM memory, 
just below the screen buffer. (See Figure 4-4.) 

The application global space not only holds your program's 
variables, but also variables used by QuickDraw screen draw
ing primitives (the group of subroutines in the Macintosh 
ROM responsible for managing the screen display), and 
parameters the Macintosh operating system uses to transfer 
control to other code segments. The 68000 stack is set up 
just below the variable space. 

After launch, the AS register points to the first long word 
past the end of the variables; this is the first entry in the 
application parameters table. Variables are stored between 
this address and the bottom of the stack, in reverse order of 
declaration. 

The first variables in the space (at the upper end of the 
space) are usually the QuickDraw global variables, although 



192 Mac Assembly Language 

high memory 

Jump Table 

Application 
l A5 Reg1 st er} Parameters 

QuickDraw 
(points to first Globals 
word in the application Application 

(32 biytes) 

(256 biy tes) 

parameters tab le) Global 
Variables 

low memory 

Figure 4-4. The Application Global Space. 

an application can store them in the heap, if preferred. The 
usual space reserved for the QuickDraw global variable space 
by MOS is 256 bytes. (You can adjust the size of the space 
using a linker command called /GLOBALS, but you should 
rarely have to do this.) 

Beneath the QuickDraw variables are the application's own 
variables. To access them (or the QuickDraw variables), you 
must use the AS address register indirect with offset 
addressing mode, d16(A5). Fortunately, you do not have to 
know the absolute offsets to the variables in the space 
because they are calculated for you by the assembler; all you 
need do is specify the name of the variable in the operand. 
For example, if you have defined two long words called 
MyVariable as follows: 

MyVariable DS.L 2 

and you want to store the contents of the D 1 register in the 
first long word, you would use the instruction: 



Memory Management 193 

MOVE.L D1,MyVariable(AS) 

If you want to deal with the second long word, use: 

MyVariable+~(AS) 

as the destination operand. 
A common error in assembly language programs is omitting 

the reference to the AS register. It is required! You should 
also take care not to destroy the contents of the AS register. 
If you do change it, you won't be able to access variables until 
you reload it with the address of the end of the variable 
space. This value is stored in a system global variable called 
CurrentAS. 

The size of the application global space is not fixed. Rather, 
its size is controlled by the number of variables defined in 
your application. The advantage of this is that you can define 
as many variables as you want in your program, provided, of 
course, that you don't run out of RAM space. 

Data Storage Within the Application Code 

Data areas can be allocated within the application code 
itself using the DC and DCB assembler directives. These 
directives also place specific values in the spaces so allo
cated. Memory locations allocated with either of these two 
directives are called constants since their contents are not 
expected to change. 

To store two constants, $BEAF (word) and $32 (long 
word), in a program, use: 

Myllord DC.II 
MyLllord DC.L 

:SBEAF 
$32 

;Store BE AF 
;store DD DD DD 32 

When constants are accessed by name. the MDS assem
bler forces you to use the program counter indirect with dis
placement addressing mode to ensure that your program will 



194 Mac Assembly Language 

be relocatable. If you want to read the constant MyLWord, 
you would use an instruction like: 

MOVE.L MyLWord(PC),DO 

If you forget the (PC), the MDS assembler will supply it for 
you. Since the constants are located relative to the program 
counter, the program will be relocatable. 

Constants are not supposed to be changed on the fly by a 
program, they're supposed to stay the same. Constants that 
are changed are really variables in disguise and should be 
defined as such using the DS assembler directive. Apple has 
even published warnings to programmers about writing to 
constants. The reason given is that it may cause your pro
grams to be incompatible with future versions of the Macin
tosh, which may use hardware techniques to physically 
prevent you from writing to the code space. (Protecting the 
code space has merit; it's to prevent runaway programs from 
disturbing other programs in a multi-user environment.) 

There is also a practical reason for not writing to a con
stant: It's simply awkward to do so from a programming 
point of view. This is because the program counter indirect 
addressing modes used to read constants cannot be used to 
write to them. Thus, an instruction like: 

MOVE #8,MyConstant(PC) ;invalid instruction 

is not permitted and will cause an error message during the 
assembly process. You can work around this limitation by 
loading the effective address of the constant into an address 
register (using LEA) and then using an address register indi
rect addressing mode: 

LEA MyConstant,AO 
MOVE #8, (AO) 

but this is less efficient than defining MyConstant as a vari
able in the first place. 



Chapter 5 

Events and 
Input/Output 
Operations 

There are two standard ways for a user to interact with a 
Macintosh program while it is running. The first is to enter 
commands from the keyboard, just as you would on any 
traditional personal computer. The second is to roll the 
mouse around the tabletop until its cursor appears above an 
"action" icon on the screen (this may be a rectangular push
button, a window's close box, or a square check box), and 
then click the mouse button to select the icon to perform the 
action associated with it. The Macintosh was the first per
sonal computer to incorporate the mouse as a standard input 
device. 

Variants of the basic click operation are double-click and 
drag operations. You double-click by quickly pressing and 
releasing the mouse button twice in succession. The maxi
mum delay between the two clicks of a double-click can be 
set using the Control Panel desk accessory, and is stored in 
the system global variable DoubleTime. If the clicks are more 
widely separated, a program should consider them to be two 
separate clicks. You drag the mouse by moving it while the 
button is held down. 

User-initiated activities such as a keystroke or a mouse 
click are just two of a group of 14 types of operations 
referred to as events. Each type of event on the Macintosh is 
summarized in Table 5-1. There is also another event, called a 
null event, that is reported only if no other event is pending. 

195 



196 Mac Assembly Language 

Table 5-1. Macintosh Event Type Codes. 

Symbolic Name 
for Event Type Value Description 

NullEvt 0 No event occurred 
MButDwnEvt 1 The mouse button was pressed 
MButUpEvt 2 The mouse button was released 
KeyDwnEvt 3 A character key was pressed 
KeyUpEvt 4 A character key was released 
AutoKeyEvt 5 A character key was auto-repeated 
UpdatEvt 6 A window requires updating 
DisklnsertEvt 7 A disk was inserted 
ActivateEvt 8 A window was activated or deactivated 
NetworkEvt 10 An AppleTalk network event occurred 
lODrvrEvt 11 An 1/0 driver event occurred 
App1Evt 12 An application-defined event 
App2Evt 13 An application-defined event 
App3Evt 14 An application-defined event 
App4Evt 15 An application-defined event 

An event usually represents a specific input/output 0/0) 
operation. It may, however, simply act as a reminder that a 
particular action, such as the redrawing of a window, must 
be performed. The classes of events a Macintosh application 
may have to respond to are as follows: 

• Keyboard Events (key-down, key-up, auto-key) 
• Mouse Events (button-down, button-up) 
•Window Events (update, activate/deactivate) 

• Disk-inserted Event 
• AppleTalk network event 
• 1/0 driver events 

There are also four types of events you can simulate from 
within your application programs. They can relate to any 
occurrence you wish. 

Several Macintosh operating system trap instructions are 
available to deal with events; they make up the part of the 
operating system called the Event Manager. In this chapter, 
I'll describe the most important of these instructions. I'll also 



Events and Input/Output Operations 197 

look at some other instructions relating to common 
input/output operations that aren't actually dealt with by the 
Event Manager: beeping the speaker and reading the time 
and date from the Macintosh's built-in clock/calendar. These 
instructions are summarized in Table 5-2. 

Table 5-2. The Macintosh Event Manager and 1/0 Trap Instructions. 

Trap Instructions 

_Button 

CLR.B -(SP) 
_Button 
llOVE.B (SP)+,DD 

_Delay 

llOVE.L #duration,AD 
_Delay 

_EventAvail 

CLR.B -(SP) 
llOVE #mask,-(SP) 
PEA theEvent 
_EventAvail 
llOVE.B (SP)+,DD 

Tests if the mouse button is down. 

;BOOLEAN: space for result 

;Result: true = button is down 
false = button is up 

Does nothing for a fixed tick count. 

;AD.L = I.ength of delay in ticks 
;Result in DD.L = time on clock 

after delay 

Checks the event queue for the next event 
without removing the event from the queue. 

;BOOLEAN: space for result 
;INTEGER: the event mask 
;VAR: an EventRecord 

;Result: true = event occurred 
false = no event occurred 

The size of an EventRecord is given by the constant EvtBlkSize. The 
structure of an event record is shown in Table 5-3. 



198 Mac Assembly Language 

Table 5-2. continued 

Trap Instructions 

_FlushEvents 

MOVE.L #theMasks,DO 

_FlushEvents 
MOVE.W DO,stopEvent 

Removes events from the event queue. 

;DO.L event mask for events that 
will stop the search is in 
the upper word (stopMask). 
event mask for events that 
can be removed is in the 
the lower word (whichMask). 

;DD.W event type code that 
stopped the search 

If stopMask is zero, the entire queue is examined. 

_GetCursor Loads a cursor record from a resource file. 

CLR. L - (SP) ; HANDLE: space for result 
MOVE #cursorID,-(SP) ;INTEGER: cursor resource ID 
_GetCursor 
MOVE.L (SP)+,AO 

_GetMouse 

PEA mouseLoc 
_GetMouse 

_GetNextEvent 

CLR.B -(SP) 
MOVE #mask,-(SP) 
PEA theEvent 
_GetNextEvent 
MOVE.B (SP)+,DO 

;Result: Bandle to cursor record 

Gets the current mouse position. 

;VAR: a point. Local coordinates. 

Checks the event queue for the next event and 
removes the event from the queue. 

;BOOLEAN: space for result 
;INTEGER: the event mask 
;VAR: an EventRecord 

;Result: true = event occurred 
false = no event occurred 



Table 5-2. continued 

Trap Instructions 

_HideCursor 

_HideCursor 

_lnitCursor 

_InitCursor 

_IUDateString 

Events and Input/Output Operations 199 

Hides the current cursor. 

;No parameters 

Sets the current cursor to the standard arrow 
and resets the cursor visibility level to zero. 

;no parameters required 

Gets a date string. 

llOVE.L #seconds,-(SP) ;LONGINT: seconds since Jan 111qo~ 
llOVE.B #format,-(SP) ;BYTE: O =short format 

PEA 
llOVE 
_Pac kb 

theString 
#0,- (SP) 

_IUTimeString 

1 = long format 
2 = abbreviated long format 

;VAR: the returned date string 
;INTEGER: 0 = _IUDateString 

Gets a time string. 

llOVE.L #seconds,-(SP) ;LONGINT: seconds since Jan L11qo~ 
llOVE.B #withSeconds,-(SP) ;BOOLEAN: true = include seconds 

false = no seconds 
PEA 
MOVE 
_Packb 

theString 
#2,-(SP) 

_ObscureCursor 

_Obscurecursor 

_SetCursor 

PEA newcursor 
_setcursor 

;VAR: the returned time string 
;INTEGER: 2 = _IUTimeString 

Removes the cursor until the mouse is moved. 

;No parameters 

Designates a new cursor as the current cursor. 

;VAR: a cursor record 

The size of a cursor record is given by the constant CursRec. 



200 Mac Assembly Language 

Table 5-2. continued 

Trap Instructions 

_ShieldCursor Removes the cursor from the screen when it's 
within a certain rectangle. 

PEA shieldRect ;VAR: a rectangle 
MOVE.L #globalOrigin,-(SP) ;LONGINT: origin of coordinates 
_ShieldCursor 

_ShowCursor 

_Showcursor 

_Still Down 

CLR.B - (SP) 
_StillDown 
MOVE.B (SP)+,DO 

Displays a previously hidden cursor. 

;No parameters 

Tests if the mouse button has been held down 
since the previous press, without removing any 
button-up event. 

;BOOLEAN: space for result 

;Result: true = button is still down 
false = button was released 

_SysBeep Beeps the speaker. 

MOVE #duration,-(SP) ;INTEGER: Length of beep in ticks 
_sys Beep 

_ WaitMouseUp 

CLR.B -(SP) 
_WaitMouseup 
MOVE.B (SP)+,DO 

Tests if the mouse button has been held down 
since the previous press, and removes any but
ton-up event. 

;BOOLEAN: space for result 

;Result: true = button is still down 
false = button was released 



Table 5-2. continued 

Trap Instructions 

System Variables 
Time ($20C) 

Ticks 

SysEvtMask 
Double Time 

($16A) 

($144) 
($2FO) 

Events and Input/Output Operations 201 

The current time expressed in seconds 
since January 1 , 1 904. [long word] 
The number of ticks since bootup. [long 
word] 
The system event mask. [word] 
Maximum time (in ticks) between two 
clicks before they will be considered a 
double click. [long word] 

The Event Manager 
' 

Generally speaking, when an event occurs on the Macin
tosh, a unique code representing the event is placed in an 
event queue maintained by the operating system. A typical 
application periodically checks this queue for the presence of 
an event and if it finds one, processes it. If the queue is empty, 
it keeps checking the queue until a recognizable event occurs. 
Certain types of events are not actually placed in the queue 
even though they are reported as if they were. These are the 
window update and activate/deactivate events. Only true 110 
events are placed in the queue. 

At the very beginning of an application you should ensure 
any stray events that are pending when the application is 
launched are removed (or flushed) from the queue. To do this, 
use the _FlushEvents instruction: 

MOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Flush all events 

The low-order word of the long word stored in DO (called 
whichMask) is an event mask that tells _FlushEvents which 
events to remove from the queue. As shown in Figure 5-1 , 
each bit in an event mask corresponds to one of the 16 event 



202 Mac Assembly Language 

types that the Event Manager controls. To remove a particu
lar type of event, simply set the appropriate bit to one. (Null 
events cannot be masked out, however.) In the example just 
given, the low-order word is $FFFF, which means "flush all 
types of events." 

The high-order word in DO (called stopMask) is also an 
event mask. It indicates how many events are to be removed 
from the queue. All events in the queue up to and including 
the first event of a type whose bit is set in the word are 
removed. The correspondence of bits to events is the same 
as for whichMask. If all events are to be flushed, the high
order word must be $0000. 

When a Macintosh application first begins, any type of 
event that occurs will be posted in the event queue, even 
though your application may not be designed to respond to all 
events. If you want to restrict the types of events to be 
posted, store an appropriate system event mask in the sys
tem global variable SysEvtMask. Alternatively, your program 
can simply ignore any unsupported events that are fished out 
of the queue using the instructions described in the next 
section. 

l1sJ14J13J12l11l10l 9 le J 7 l 6 J s J • l 3J 2J 1 J oJ 
on •4 J applicati 

applicati on •3 '--

applicati on •2 
applicati on •1 
1/0 drive r 

n•twork 

[r•s•r•• d] 

activ at•/ deact1v ate 

An event type is selected if its bit is 1; otherwise 
it is ignored. 

Figure 5-1. The Format of an Event Mask. 

mous• down 

mous• up 

ic.v down 

auto-k•v 

updat• 

disk-ins.rt•d 



Events and Input/Output Operations 205 

Getting an Event 

Once the event queue has been flushed and, optionally, a 
system event mask has been set up, your program can begin 
to get events from the queue and act on them. There are 
two instructions for doing this: _ GetNextEvent and 
_EventA vail. 

_GetNextEvent is the one you'll be using most often, so 
let's look at it first. Here's the type of subroutine you might 
call to get an event to deal with: 

GetEvent CLR.B -(SP) 
MOVE #$FFFF,-(SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetEvent 
RTS 

;Space for Boolean result 
;Event mask (look for all) 
;Address of event record 

;Pop and test Boolean result 
;Branch if no event 

EventRecord DCB.B EvtBlkSize,O ;EvtBlkSize = 16 

_ GetNextEvent returns a Boolean result indicating 
whether a non-null event has been removed from the queue. 
If one has, the result is true (non-zero), otherwise it is false 
(zero). To make room for this result, you must clear space on 
the stack with a CLR.B - (SP) instruction. (Recall from Chap
ter 1 this actually decrements the stack pointer by two 
bytes, not one.) 

The first parameter _ GetNextEvent requires is an event 
mask, reflecting the types of events that may be retrieved 
from the queue. _GetNextEvent ignores any other types of 
events that may be in the queue. In the example, the event 
mask is $FFFF, meaning that all events are retrievable. The 
event mask is passed on the stack. 

The second parameter passed on the stack is the address 
of a 16-byte data structure called an event record. The event 
record is where the results of the call to _ GetNextEvent are 
stored. The size of the event record is given by the system 
constant EvtBlkSize so space for it can be reserved with a 
directive of the form DCB.B EvtBlkSize,O. 



204 Mac Assembly Language 

After calling _GetNextEvent, you can pop the Boolean 
result from the stack and test it with a TST .B (SP)+ instruc
tion. If no event (other than a null event) is pending, the zero 
flag is set to one, and you can call _GetNextEvent once again 
by looping with a BEQ instruction. This simple loop involving 
_ GetNextEvent is called an event loop and forms the back
bone of most interactive programs. 

Table 5-3. The Structure of an Event Record. 

Size Symbolic 
Description of Field (bytes) Offset name 

Event type code 2 evtNum 
Event message 4 evtMessage 
Time of event 4 evtTicks 
Mouse coordinates 4 evtMouse 
Event modifier (high) 1 evtMeta 
Event modifier (low) 1 evtMBut 

If a non-null event occurs, the event record is filled with 
information describing the event and the event code is 
removed from the queue. As shown in Table 5-3, the event 
record is made up of six fields, which you can access using 
the offset names indicated. For example, to read the event 
type code into 01, use the instruction: 

MOVE EventRecord+evtNum,D1 ;EventRecord defined with DC 

The word stored in the evtNum field, sometimes called the 
What field, indicates the type of event that occurred. Each bit 
in evtNum has the same meaning as in an event mask. (See 
Figure 5-1.) The symbolic names for each of the 16 event 
type codes are shown in Table 5-1. 

The long word stored in the evtTicks field (sometimes 
called When) is the time at which the event occurred, in units 
of ticks. (A tick is roughly one-sixtieth of a second.) The time 



Events and Input/Output Operations 205 

is measured from the time when the Macintosh was first 
turned on. 

The evtMouse field (sometimes called Where) of the event 
record indicates the position of the mouse when the event 
occurred. The position is expressed in global coordinates 
where the coordinate origin is at the top-left corner of the 
screen. (See Chapter 6 for a description of coordinate sys
tems.) The high-order word is the vertical position and the 
low-order word is the horizontal position. 

The evtMeta and evtMBut fields describe the status of the 
modifier keys and the mouse button when the event 
occurred. EvtMBut also contains bits used as flags to mark 
whether an activate or deactivate event occurred, and 
whether the newly activated window is of a different type 
than the previously active window. There are two types of 
windows: application and system. System windows are desk 
accessory windows. The meaning of each bit in the evtMeta 
and evtMBut bytes is shown in Figure 5-2. 

The last field is evtMessage (a long word). I've left it to last 
because the information it holds depends on the type of 
event that is reported. The format of the evtMessage field 
for keyboard, window, and disk-inserted events is shown in 
Figure 5-3. EvtMessage fields for other events are either 
undefined (null and mouse events), for the private use of the 
operating system (network and 1/0 driver events), or defined 
by the application (application events). 

The low-order word of the evtMessage field for a keyboard 
event reflects the key code and character code for the key 
(or combination of keys) that was pressed or released. I'll dis
cuss the meaning of these codes later in this chapter. 

For a window event, the evtMessage field contains a long 
word pointer to the window's data structure. I'll describe this 
data structure in Chapter 6. 

For a disk-inserted event, the high-order word of the 
evtMessage field contains the result code generated by the 
operating system instruction that attempts to mount the 
disk. The low-order word contains the drive number < 1 for 



206 Mac Assembly Language 

evtHeta evtHBut 

not used 11 10 9 8 7 not used 

1 = button down 
0 =button up 

1 = command key down 
0 = command key up 

1 = shift key down 
0 = shift key up 

.....__ ___ 1 = caps lock down 
0 = caps lock up 

...._____ 1 = option key down 
0 = option key up 

Symbolic names for the modifier bits: 

Name 
OptionKey 
Alphalock 
ShiftKey 
CmdKey 
BtnState 
ActiYeflag 

Value 
1 1 
10 
g 

B 
7 
0 

Description 
Option key (either one) 
Caps Lock key 
Shift key (either one) 
Command key 
Mouse But ton 
ActiYate/DeactiYate 

1 =activate 
0 = deactivate 

1 = system/appl 
switch 

0 = no change in 
window type 

Figure 5-2. The Format of the Modifiers Field of an Event Record. 

internal, 2 for external). See Inside Macintosh for a descrip
tion of the disk mounting trap instruction. 

The second instruction you can use for inspecting the event 
queue is_EventAvail. This instruction works just like 
_GetNextEvent, except it does not remove the reported 
event from the queue. It is useful for checking whether a par-



Events and Input/Output Operations 207 

The formnt for keybonrd events: 

31 15 7 

[unused] 

The formnt for window events: 

31 23 

[unused] pointer to window 

The formnt for disk-inserted events: 

31 

result code 

0 =no error 
-33 = disk not formatted 

15 

drive number 

1 = internal drive 
2 = externa 1 drive 

Figure 5-3. The Format of the evtMessage Field of an Event Record. 

ticular event has happened without actually having to act on 
it right away. 

Dealing With An Event 

When a non-null event is returned by _GetNextEvent, it is 
up to your application to deal with it in an appropriate way. In 
this section, we'll explore some of the alternatives open to 
you for the common event types. 

Every program dealing with events contains an event dis
patcher subroutine that determines what event has occurred 
and calls the appropriate subroutine to handle it. The shell of 
a general-purpose event dispatcher is shown in Listing 5-1 . 
You would call it whenever a call to _ GetNextEvent indicates 
a non-null event has occurred. 

0 

0 

0 



208 Mac Assembly Language 

Listing 5-1. The Asm Source File, Linker Control File, 
and RMaker Source File for the Dispatcher 
Program. 

Asm Source File 
Dispatcher.Asm 
This is an example of how to use an 
event dispatcher subroutine. 

AppleID EQU :L ;Menu ID for Apple Menu 
FileID EQU 2 ;Menu ID for File Menu 
l!indID EQU :126 ;Window ID 

INCLUDE ToolEqu.D ;Toolbox equates 
INCLUDE QuickEqu.D ;QuickDraw equates 
INCLUDE SysEqu.D ;Operating system equates 
INCLUDE Traps.D ;Trap instructions 

Initialize the various Managers: 

PEA -L;(AS) 
_InitGraf 
_InitFonts 
_Initl!indows 
_InitMenus 
_TEI nit 
MOVE.L #0,-(SP) 
_InitDialogs 
_InitCursor 

MOVE.L #$0000FFFF,DO 
_FlushEvents 

;Start of QuickDraw globals 
;Initialize QuickDraw 
;Font Manager 
;Window Manager 
;Menu Manager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;lie want arrow cursor 

;Get rid of every event 

Create and draw a window on the screen: 

CLR.L -(SP) ;Space for returned pointer 
MOVE #l!indID, - (SP) ;Resource ID 
MOVE.L #0,-(SP) ;store on heap 
MOVE.L #-:1,-(SP) ;-:L = front window 
GetNewl!indow ;Get window from resource file 

MOVE.L (SP),WindowPtr(AS) ;save ptr, but leave on stack 
_Set Port ;Make window the active GrafPort 



Events and Input/Output Operations 209 

Listing 5-L. continued 

Create two standard menus: 

CLR. L - (SP) ; Space for handle 
MOVE #AppleID,-(SP) ;Menu ID number 

GetRMenu ;Get Menu from resource file 
MOVE.L (SP)+,AppleB(AS);Save menu handle 

CLR. L - (SP) ; Space for handle 
MOVE #FileID I - (SP) ; Menu ID number 
_GetRMenu ;Get menu from resource file 
MOVE.L (SP)+,FileB(AS) ;Save menu handle 

Add menus to menu bar: 

MOVE.L AppleB(AS),-(SP) 
MOVE #0,-(SP) ;(O =add to end) 
_InsertMenu 

MOVE.L FileB(AS),-(SP) 
MOVE #0,-(SP) 
_InsertMenu 

_DrawMenuBar 

MainLoop 
BSR GetEvent 
BSR HandleEvent 
BRA MainLoop 

GetEvent 
CLR.B -(SP) 
MOVE #-L, - (SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetEvent 
RTS 

;Add to menu bar 

;(O =add to end) 
;Add to menu bar 

;Display menu bar 

;Leave space for Boolean result 
;Allow ALL events 
;Results are returned here 
;Check for an event 
;Pop and test the result flag 
;Branch if no pending event 

* BandleEvent is the event dispatcher. It takes the event type 
* code returned by _GetNextEvent and calls the subroutine that 
* handles it. Access to the event handling subroutines is 
* through a Lb-entry jump table. 



210 Mac Assembly Language 

Listing 5-L. continued 

HandleEvent 

llOVE EventRecord+evtNum,DO 
ASL #2,DO ;Two shifts = times ~ 

JllP JumpTable(PC,DO);Jump to handler 

JumpTable 

JllP Ignore ;Null event (never used) 
JllP DollouseDown ;Button-down 
JllP Ignore ;Button-up 
JllP DoKeyDown ;Key-down 
JllP Ignore ;Key-up 
JllP DoKeyDown ;Auto-key 
JllP DoUpdate ;Update 
JllP Ignore ;Disk-inserted 
JllP DoActivate ;Activate 
JllP Ignore 
JllP Ignore 
JllP Ignore 
JllP Ignore 
JllP Ignore 
JllP Ignore 
JllP Ignore 

Ignore 
RTS 

DoKeyDown 
RTS 

Do Update 
RTS 

DoActivate 
RTS 

DollouseDown 

CLR -(SP) ;Space for result 



Events and Input/Output Operations 211 

Listing 5-:L. continued 

MOVE.L EventRecord+evtMouse,-(SP) ;Where 
PEA WindowPtr(AS) 
_Find Window 

MOVE 
CMP 
BEQ 
RTS 

(SP)+,DD 
#InMenuBar,DD 
QuitCheck 

;Where was button pressed? 

;Get result 
;Pressed in menu bar? 
;Yes, so check it out 
;Ignore everything else 

; See if "QUIT" was selected from File menu: 

QuitCheck 

MOVE.L #0,-(SP) ;result = menu/item selected 
PEA EventRecord+evtMouse ;Where 
MenuSelect ;Get menu selection 

MOVE (SP)+,MenuNum(AS) ;Save menu number 
MOVE (SP)+,DD ;Discard item number 

MOVE #D, - (SP) 
_HiliteMenu ;Remove highlight from menu title 

CMP #FileID,MenuNum(AS) ;In the FILE menu? 
BNE GetEvent 

* Must have selected QUIT command, so return to Finder by 
* popping the subroutine return address before RTS. (We could 
*also return just by executing a _ExitToShell instruction.) 

MOVE.L (SP)+,DD ;Pop the return address (long!) 

RTS ;Return to Finder 

Record for _GetNextEvent: 

EventRecord DCB.B EvtBlkSize,D ;Reserve space for record 

; Here are the program globals. Use (AS) addressing. 

AppleH 
FileH 

DS.L 
DS.L 

;Handle to Apple menu 
;Handle to File menu 



212 Mac Assembly Language 

Listing 5-L. continued 

WindowPtr DS.L 

MenuNum DS.W 

Linker Control File 
Dispatcher.Link 

L ;Pointer to window 

L ;Menu number selected 

Link this file to create application 
(without resources). 

Dispatcher 
$ 

* RMaker Source File 
* Dispatcher.R 

* * Compile this after assembling and linking Dispatcher.Asm 

* * The next command appends the resources to the application: 
!Dispatcher 

Type MENU 
,L 
\Lt; 

About this demo ... 

,2 
File 

Quit 

Type WIND 
,L28 
Event Dispatcher Demo 
40 5 332 502 
Visible NoGoAway 
i; 

o 

; ; Resource ID 
;;Title is the Apple symbol (ASCII $L4) 
; ;About box 

; ; Resource ID 
; ;Menu Title 
; ;Only item is "Quit" 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID. 4 =title, no grow box 
;;User-definable item (not used) 



Events and Input/Output Operations 21 S 

The HandleEvent subroutine in Listing 5-1 first loads DO 
with the event type code from the evtNum field of the event 
record. It then multiplies the code by four (with two bit shifts 
to the left) to get the relative position within JumpTable of 
the jump to its event handler. This works because each JMP 
instruction in the table is four bytes long and the JMPs are in 
event type code order. 

Finally, control passes to the handler with a jump instruc
tion that uses the program counter indirect with index 
addressing mode. This technique is much more convenient 
(and elegant) than performing a series of CMP instructions to 
check for each event type separately. 

Event dispatching is easy. It's writing the event handling 
subroutines referred to in the jump table that's difficult! 

Keyboard Events 

The three keyboard events are: 

KeyDwnEvt (key-down) 
KeyUpEvt (key-up) 
AutoKeyEvt (auto-key) 

The most important of these events is the key-down event 
that occurs when the user presses a character key on the 
keyboard. A character key is any key other than Caps Lock, 
Option, Shift, and Command. These keys are called modifier 
keys. Whether you deal with the key press may depend on 
whether the program is in a text insertion mode. If it is, the 
next step would be to display the entered character on the 
screen. I'll illustrate one method of displaying characters in 
the next chapter. 

Most programs ignore key-up events because there is 
rarely a need to know when a key is released. 

The auto-key event occurs when a character key begins to 
repeat after you've held it down for a short length of time. 
You can set the delay time with the Control Panel desk 
accessory. This event is usually treated in the same way as a 
standard key-down event. 



2 I 4 Mac Assembly Language 

Mouse Events 

There are two mouse events dealt with by the Event 
Manager: 

MButDwnEvt (mouse button down) 
MButUpEvt (mouse button up) 

As with key-up events, button-up events are usually 
ignored. A button-down event, however, indicates the user 
has clicked the mouse somewhere on the screen. When you 
detect a click, you should first determine what part of the 
screen is involved by using a trap instruction called 
_FindWindow. As you will see in the next chapter, 
_FindWindow returns a numeric code indicating whether the 
click occurred in the menu bar at the top of the screen, on the 
desktop, or in some part of an application or system window. 

Clicks in the desktop are usually ignored, menu bar clicks 
are handled by the Menu Manager (see Chapter 7), and clicks 
in a window are handled by the Window Manager. (See Chap
ter 6.) 

If the click is in a window, you should read the evtMessage 
field of the event record to get the pointer to the window 
involved. If it's not the pointer to the currently active window 
(use the _FrontWindow instruction to get its pointer if you 
haven't kept track of it), the appropriate step to take is to 
deactivate the currently active window and activate the new 
one by calling _SelectWindow. If the click is in the active win
dow, the code returned by _FindWindow will indicate exactly 
what part of the window: the close box, the drag area, the 
grow box, the zoom box, or the content region. Suggestions 
for handling clicks in these areas are presented in Chapter 6. 

Window Events 

There are two types of window events: update events and 
activate/deactivate events. An update event, UpdatEvt, 
occurs whenever a portion of any window on the screen 
needs to be redrawn because it has just become exposed to 
view. Update events occur when you enlarge a window. 



Events and Input/Output Operations 215 

when you move aside an overlapping window, or a new win
dow is created. A program must react to an update event by 
drawing the newly exposed portion of the screen. 

An activate event occurs when a previously inactive window 
is to be made active. To handle it, bring the window to the front 
of the screen and redraw its scroll bars, if necessary. 

A deactivate event usually occurs in conjunction with an 
activate event since no two windows can be active at the 
same time. To handle the event, mark the window as inac
tive by dimming its scroll bar and grow box area. 

Activate and deactivate events both generate an Acti
vateEvt event type. To distinguish between activate and 
deactivate, you must check bit 0 of the evtMBut byte in the 
event record. If it is 1, you're dealing with an activate event; 
otherwise it's a deactivate event. Here are the instructions 
you would use to check the status of this bit: 

MOVE.B EventRecord+evtMBut,DO 
BTST #0,DO ;Is bit a set to l? 
BNE My Activate ;Yes, so activate 

In this example, MyActivate marks the start of the code 
that handles the activate event. The code after the BNE 
instruction would handle the deactivate event. 

Disk-Inserted Events 

A disk-inserted event, DisklnsertEvt, occurs when you place a 
disk into the internal or external disk drive. If you listen care
fully, you'll hear the disk drive motor whir as soon as you do 
this. What is happening is that the lowest level of the Macintosh 
operating system detects the insertion and tries to mount the 
disk by reading some directory information into memory. It 
then posts the event in the event queue so you get a chance to 
deal with it further, if you wish. You may, for example, want to 
initialize a new disk as soon as it is inserted. I won't be describ
ing the specifics of how to handle disk-inserted events in this 
book; refer to Inside Macintosh instead. 



216 Mac Assembly Language 

AppleTalk network events (NetworkEvt), 1/0 driver events 
(IODrvrEvt), and application-defined events (App1 Evt, App2-
Evt, App3Evt, App4Evt) are also not covered in this book. 

Monitoring the Mouse Button 

You can use three instructions to check the status of the 
mouse button without scanning the event queue with 
_GetNextEvent: _Button, _StillDown, and _WaitMouseUp. 
None of these require parameters, but all do return a Boolean 
result on the stack, so the calling sequence for each of them 
is of the form: 

CLR.B -(SP) 
_Button 
MOVE.B (SP)+,DD 

;Space for result 
;(or _StillDown, _WaitMouseUp) 
;Pop result from stack 

The first instruction is _Button. It returns a true (non-zero) 
result if the mouse button is currently down; otherwise it 
returns false (zero). 

_StillDown returns a true result if the mouse button is cur
rently down and there is no pending button-up event in the 
event queue. If there is a pending button-up event, it is not 
removed from the queue. You will usually use _StillDown in 
situations where you want to identify when a drag operation 
has been completed. 

The third instruction, _WaitMouseUp, works just like 
_StiIIDown except that it removes the pending button-up 
event from the event queue. 

Keyboard Input 

We saw earlier that whenever any of the three keyboard 
events occurs (key-down, key-up, or auto-key), the low
order word of the evtMessage field of _GetNextEvent's 
event record contains both the key code and the character 
code for the key involved. Each key on the keyboard gener-



Events and Input/Output Operations 217 

ates an event when it is pressed, except the modifier keys: 
the Caps Lock key, the two Shift keys, the two Option keys 
(there is only one Option key on the Macintosh Plus key
board), and the Command key. As you will see, a modifier key 
simply affects the character code generated when a charac
ter key is pressed. 

To detect the pressing of a modifier key by itself, you have 
to use an instruction called _ GetKeys. _ GetKeys returns a 
bit map showing which keys on the keyboard are currently 
pressed. See Inside Macintosh for a description of this 

instruction. 
Each physical key on the Macintosh keyboard and keypad 

is associated with a unique number, called a key code, 
between 0 and 255. There are two exceptions: The two Shift 
keys share the same key code, as do the two Option keys on 
the original Macintosh keyboard. Your applications will rarely 
have to deal with key codes. 

The code you are usually more interested in is the charac
ter code. This is a number between 0 and 255 representing 
the alphanumeric symbol (a letter, number, or punctuation 
mark) associated with the keystroke. The character code is 
usually different if the same key is pressed while one or two 
modifier keys are held down. 

For a given character font, the correspondence of charac
ter codes from 32 to 127 to printable symbols invariably fol
lows the ASCII standard shown in Figure 5-4. It is the duty of 
the designer of the font to make the conventional symbol 
assignment, however. 

The first 32 character codes, from 0 to 31, are called con
trol characters since they have traditionally been used by 
computers to control various aspects of the output to a 
screen display, printer, or communications device. For exam
ple, the carriage return code ($00) causes the print head of a 
printer to return to the left edge of the paper. The form feed 
code ($0C) causes the printer to skip to the top of the next 
page. A few of the control characters on the Macintosh actu
ally correspond to special symbols: a cloverleaf, a check 
mark, a diamond, and an apple icon, for example. These sym
bols are not part of the ASCII standard. 



2 I 8 Mac Assembly Language 

Second Hex Digit 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 D D D D D D D D D D D D 

1 D 8€ ../ • • D D D D D D D D D D 

2 I II # $ 3 & I ( ) * + . 
' - . 

3 0 1 2 3 4 5 6 7 8 g . . < = ) . 
' 

4 @ A B c D E F G H I J K L M N 

5 p Q R s T u u w H y 2 [ \ ] "' 

6 
First 

7 
Hex 

' a b c d e f ,g h i j k I m n 
p q r s t u u w H y z { I } 

,.., 

Digit 8 n A I; E N 0 u a ' a a ,.., 0 , 
a a a c e 

9 e e i i i ... ii 6 0 0 0 0 u u ii 

A t 0 ¢ £ § • en 8 ® © TM ,. .. 
:;t: f( 

B 00 ± i 1 ¥ Jl a I n ,,. f I ! Q ~ 

c l, . ..r f p /J. « » fl fi Ci ([ I ., ... 
D - - " " ' ' <> y D D D D D D 

E D D D D D D D D D D D D D D D 

F D D D D D D D D D D D D D D D 

Figure 5-4. The ASCII Character Set. (Shown in the System Font.) 

The symbol assignment of the highest 128 character 
codes, from 128 to 255, are not defined by the ASCII standard 
either. The symbols to which they correspond on the Macin
tosh are usually a mixed bag of foreign-language characters 
and special icons like Greek characters and copyright and 
trademark notices. Again, the assigned symbols depend on 
the particular font you're using. 

D 

0 

I 
? 

0 

-
0 

e 
ii 

.8 

II 

CB 

D 

D 

D 



Events and Input/Output Operations 219 

To enter a certain character code from the keyboard, you 
must either press a key by itself or in combination with one or 
tvvo modifier keys. The easiest way to determine what key 
combination corresponds to what character is to use the 
standard Key Caps desk accessory. If there is no symbol for a 
particular character code in the font, Key Caps displays a 
small rectangle over the key. The keys that generate control 
characters are the Return, Enter, Tab, and Backspace keys, 
and, if you are using the Macintosh Plus keyboard, the four 
arrow keys and the Clear key. Here are the codes these keys 
generate: 

• The Return key generates code $OD. 
• The Enter key generates code $03. 
• The Tab key generates code $09. 
• The Backspace key generates code $08. 
• The Space Bar generates code $20. 
•The Clear key generates code $1B. 
• The Left Arrow key generates code $1 C. 
• The Right Arrow key generates code $1 D. 
•The Up Arrow key generates code $1E. 
• The Down Arrow key generates code $1 F. 
• The = key on the keypad generates the same code as , on the 

main keyboard. Use its key code ($82) to distinguish it from 
the comma. The key code for comma is $B2. 

The mapping of keystroke combinations to character codes 
is completely arbitrary and is handled by two INIT resources 
(having ID codes 1 and 2) in the System program. These 
resources contain assembly language subroutines that take a 
key code and a modifier key status byte as input and return 
the corresponding character code. By changing these 
resources, you can easily redefine the keyboard layout to 
whatever suits you-perhaps a Dvorak arrangement. Of 
course, you'll probably want to mark each key with its new 
symbol if you do this. 

One of the common things you'll do in a program is check 
for the entry of particular character codes from the key
board. Here is the type of subroutine you'd call after 



220 Mac Assembly Language 

detecting a key-down event to see if a certain character, say 
'V' or 'y', was pressed: 

CheckKey MOVE.L EventRecord+evtMessage,DO ;Put key/char code in DO 
CMP.B #'Y 1 ,DO ;Was 'Y' pressed? 
BEQ YesPress ;Yes, so branch 
CMP.B # 1 y' ,DO 
BEQ Yes Press 
RTS 

YesPress NOP 
RTS 

;Was 'Y' pressed? 
;Yes, so branch 

;Insert handler here 

Notice that the evtMessage long word placed in DO is com
pared with 'y' and 'V' using the byte form (.B) of CMP. This is 
done to isolate the portion of the evtMessage field that con
tains the character code. 

The Mouse Position and Cursors 

Strangely enough, the most common input activity on the 
Macintosh, moving the mouse, does not generate a reported 
event. Instead, the lowest level of the operating system 
automatically monitors the position of the mouse and 
updates the position of its cursor (also called a pointer) on 
the screen. 

If you want to determine the position of the mouse cursor, 
use the _ GetMouse instruction. _ GetMouse requires only 
one parameter on the stack, the address of a long word data 
area where the result (a coordinate point) will be stored: 

PEA mouseLoc 
_GetMouse 

mouseLoc DC.W o 
DC.W 0 

;Push addr of mouseLoc 

;Vertical position 
;Horizontal position 

Notice that instead of defining mouseLoc with a DC.L direc
tive, I've used two DC. W directives to emphasize the fact 



Events and Input/Output Operations 221 

that the coordinate is made up of a vertical and horizontal 
position. 

The mouse position returned by _ GetMouse is expressed in 
the local coordinate system of the currently active window, 
not the global coordinate system used by _ GetNextEvent to 
store a point in the evtMouse field of an event record. You'll 
learn about coordinate systems in Chapter 6. 

You can also control the appearance of the cursor, includ
ing whether it should be displayed or not. This is convenient 
because you'll probably want to display a different cursor in 
areas of the screen used for different purposes. For exam
ple, you might use a standard arrow cursor when the cursor 
is outside an active window, but an I-beam cursor when it's 
inside the window. The appearance of the I-beam serves as 
a reminder that text can be entered if the mouse is clicked. 

Before we look at the instructions that affect the cursor, 
let's look at the data structure that defines a cursor. As 
shown in Table 5-4, a cursor record begins with two groups of 
32 bytes each. Each group defines a 16x 16 bit image that cor
responds to a 16x 16 square of screen pixels. The first word 
corresponds to the first row of the screen image, the second 
to the second row, and so on. In addition, the left-most bit in a 
word (bit 15) corresponds to the left-most position in the 
screen image. A one bit in a word means that the correspond
ing pixel is black. The symbolic name for the size of a cursor 
record is CursRec. The size of the cursor record is given by 
the constant CursRec. 

Table 5-4. The Structure of a Cursor Record. 

Description of Field 

Data defining cursor 
Data defining cursor mask 
Active cursor position 

Size 
(bytes) 

32 
32 
4 

Symbolic 
Offset name 

data 
mask 

hotspot 



222 Mac Assembly Language 

The first 32 bytes are the data that define the shape of the 
cursor on the screen. The second 32 bytes define a mask 
that combines with this data to form the image that actually 
appears on the screen. Only those pixels in the cursor's 
image corresponding to black pixels in the mask are copied to 
the screen. By defining a mask the same shape as the cur
sor's bit image, but completely black, and surrounding it with 
a fringe one pixel wide, you ensure that the cursor will be visi
ble against a black background, because the fringe area will 
be white. 

Following the two bit images in the cursor record is a point 
(two words defining a vertical and horizontal position) called 
the hotSpot. This is the position within the cursor image that 
appears on the screen at the current mouse position. The 
coordinates of the hotspot are measured relative to the (0,0) 
position in the top left corner of the cursor's bit image. Just 
like the Macintosh screen, horizontal coordinates increase to 
the right and vertical coordinates increase to the bottom. 

The standard cursor used on the Macintosh is the arrow. 
Four other cursor definitions are stored in the resource file that 
forms a part of the Macintosh operating system and is always 
available for use by an application. Their resource IDs are: 

IBeamCursor 
CrossCursor 
PlusCursor 
WatchCursor 

= 1 Can I-beam) 
= 2 (a "thin" plus sign) 
= 3 (a "thick" plus sign) 
= 4 (a wristwatch) 

The resource type for a cursor resource is CURS. The data 
for the resource is simply one cursor record. 

The Cursor Instructions 

Now that you've seen how cursors are constructed, let's 
see how to use them. When you first begin a program you'll 
probably want to call _InitCursor. (It has no parameters.) 
This instruction makes the standard arrow cursor the cur
rent cursor and makes it visible. Thereafter, you can make 



Events and Input/Output Operations 223 

~ Watch Cursor 

Pluscursor 

+ CrossCursor 

I IBeamCursor 

Standard arrow cursor 

Figure 5-5. The Standard Macintosh Cursors. 

any other cursor active by passing the address of the cursor 
record to _SetCursor as follows: 

PEA CursorRecord ;Pointer to cursor record 
_SetCursor 
CursorRecord DCB.B CursRec,D ;CursRec = 68 

where cursorRecord is a label for the start of the cursor record in 
the program constant area. (If you put it in the variable area, 
use CursorRecord(AS)). If you have allocated space for the 
cursor record on the heap, push the pointer to it instead. 

You can load a cursor record from a resource file by pass
ing the CURS resource ID to _ GetCursor as follows: 

CLR.L -{SP) ;Room for handle 
MOVE #IBeamCursor,-{SP) ;Resource ID 
_Getcursor 
MOVE.L {SP)+,IBeamH{AS) ;Pop and save handle 

IBeamH DS.L L ;Handle to cursor record 



224 Mac Assembly Language 

_ GetCursor allocates space for the cursor record in the 
heap and returns a handle to it. If the handle is zero, the cur
sor record could not be found. 

To make this cursor active, de-reference the handle 
returned by _GetCursor and pass the result (the address of 
the cursor record) to _SetCursor like this: 

MOVE.L IBeamB(AS),AD ;Get handle in AD 
MOVE.L (AD),-(SP) ;Put address in AD (ptr) on stack 
_Setcursor 

The standard arrow cursor does not reside in a resource 
file, so the easiest way to make it active is to call _InitCursor. 
The cursor record for the arrow cursor is stored in the Quick
Draw global variable area, at the offset given by Arrow. I'll 
discuss this global area in the next chapter. 

Cursor Visibility 

There are four cursor instructions that affect the visibility 
of the cursor on the screen. The first instruction, _HideCur
sor, removes the cursor from the screen by decrementing an 
internal counter, called the cursor level, by one. The cursor 
will only appear on the screen if the cursor level is zero, its 
initial value. To add one to the cursor level, use _ShowCur
sor. This instruction makes the cursor visible if _HideCursor 
has only been called once. 

The _ ObscureCursor instruction removes the cursor from 
the screen temporarily. It reappears the next time the mouse 
is moved. You might want to use _ObscureCursor to avoid 
having the mouse cursor interfere with a text entry cursor, 
for example. 

The last of the four visibility instructions is _ShieldCursor and 
is used to remove the cursor from the screen if it falls inside a 
given rectangle on the screen. _ShieldCursor is the only instruc
tion of the four requiring parameters: the address of the data 
structure containing the top, left, bottom, and right points of 
the rectangle, and a point that contains the origin of the coordi-



Events and Input/Output Operations 225 

nate system for the rectangle expressed in global coordinates. 
Here's what the call to _ShieldCursor looks like: 

PEA Rectangle 
MOVE.L #$00230015,-(SP) ;Point=(21,35) 
_ShieldCursor 

Rectangle DC.W 10,10,100,200 ;TLBR 

Notice that the first half of the long word containing the 
point represents the vertical coordinate; the second half con
tains the horizontal coordinate. This is the reverse of the 
standard (h,v) order used by mathematicians. 

The data structures for a rectangle and a point will be 
described in greater detail in the next chapter. 

The Speaker 

The Macintosh toolbox contains a small group of instruc
tions making up the Sound Driver. These instructions can be 
used to generate simple harmonic tones or complex sound 
effects on the Macintosh. 

The only speaker-related toolbox instruction I'm going to 
cover, however, is the _SysBeep instruction. If you want to 
make beautiful music on the Macintosh, refer to the "Sound 
Driver" chapter of Inside Macintosh. 

The _SysBeep instruction, as you might guess, beeps the 
speaker for a fixed length of time. Here is how to use it: 

MOVE 
_Sys Beep 

#3~,-(SP) ;Duration (in ticks) 
;Beep the speaker 

The word pushed on the stack before calling _SysBeep is 
the duration of the beep, in ticks. The beep sound gradually 
decays from loud to soft when you call _SysBeep. 

You can control the volume of the sound using the Control 
Panel desk accessory. If the sound is turned off completely, 
the menu bar blinks once instead. 



226 Mac Assembly Language 

The System Clock 

The Macintosh has a built-in, battery-operated clock that 
maintains the current date and time of day. With it you can 
calculate time increments as fine as one-sixtieth of a second. 

There are several instructions in the toolbox that access 
the system clock. These are the ones that will be most useful 
to you: _Delay (delay a length of time), _IUTimeString (read 
the time), and _IUDateString (read the date). We'll also look 
at two global system variables that reflect the current time 
and date: Ticks and Time. 

A delay loop is a portion of code used to kill time between 
two operations. Such loops are commonly used in animation 
programs to fix the film speed and in music generation pro
grams to fix the frequency of the sound. The toolbox _Delay 
instruction can be called for these purposes: 

MOVE.L Duration,AD 
_Delay 

Duration DC.L li53 

;AD = Length of delay 

;constant 

Here, Duration is a long word constant that represents the 
length of the delay in ticks. On exit, the DO.L register contains 
the time on the system clock in ticks when the delay loop 
ends. You can also read this time from the system variable 
Ticks. 

You may be tempted to generate delays by inserting 
dummy instruction loops in your program instead. If you do 
this, you can calculate the approximate delay by counting the 
number of cycles the 68000 needs to execute the instruc
tions and multiplying the result by the cycle time (which is the 
reciprocal of 7 .8 MHz, the clock frequency of the 68000 on 
the Macintosh). The Motorola M68000 Programmer's Refer
ence Manual contains the cycle times for each 68000 instruc
tion. You should avoid this method, however, because 
interrupts caused by the mouse (and other sources) will 



Events and Input/Output Operations 227 

make the delay seem longer than expected and future ver
sions of the Macintosh may operate at a faster clock rate. 

If you want to measure the time interval between the hap
pening of two events, simply read the value stored at Ticks 
once when the first event occurs and again just after the sec
ond event. The elapsed time, in seconds, is simply the differ
ence between the two values, divided by 60. 

Reading the Time of Day and Date 

Although the toolbox has several instructions you can use 
to set the time of day and the date, we're not going to look at 
them here because you'll rarely use them. When you want to 
change the time and date, it's much more convenient to use 
the Control Panel desk accessory. 

What you'll usually want to do is read the current time and 
date in order to display it on the screen; to do this, use the 
_Pack6 instruction. _Pack6 is actually a multipurpose 
instruction that provides access to a package of related time 
and date instructions. An instruction in the package is 
selected by pushing a routine selector word on the stack 
before calling _Pack6. 

To read the time, use _Pack6 with a routine selector of 2: 

MOVE.L Time,-(SP) ;Get seconds since Jan 111ga4 
MOVE.B #-1,-(SP) ;-1=seconds/D= no seconds 
PEA TString(AS) ;String returned here 
MOVE #2, - (SP) ;SELECTOR: 2 = Read time 
Packb -

TString DS b ;time string 

The first number pushed on the stack is the long word 
value stored in the global system variable, Time. This holds 
the number of seconds since midnight on January 1 , 1904. A 
rather odd time base, to be sure, but, in any event, _Pack6 
converts this tick count it into a string of the form: 

BB:MM:SS XM (X = A or P) 



.2.28 Mac Assembly Language 

The seconds part of the time string (:55) is actually 
returned only if you push a Boolean value of true C - 1) after 
pushing the Time value. If you push false (0), seconds are 
ignored. 

The other useful routine selector for _Pack6 is 0. Use it to 
return a date string in one of the following three forms: 

9/21/86 
Sunday, September 21, 1986 
Sun, Sep 21, 1986 

short date form 
unabbreviated long date form 
abbreviated long date form 

Here's how to return any of these strings: 

MOVE.L Time,-(SP) ;Seconds count 
MOVE.B #:1.,-(SP) ;form code, O=short, 

; :!.=long, 2=abbrev. 
PEA DString(AS) ;Date string variable 
MOVE #0 1 -(SP) ;Routine selector 
_Packb 

Dstring DS 2q ;Enough room for longest 
; string. 

If you prefer, you can define macros for calls to _Pack6 to 
make it easier to remember what it is you're doing. Here are 
two macros for _IUTimeString (_Pack6, selector 2) and 
_IUDateString (_Pack6, selector 0): 

MACRO _IUTillleString = 
MOVE #2,-(SP) 
_Packb 
I 

MACRO _IUDateString = 
MOVE #0 1 ,-(SP). 
_Packb 
I 

These macros are equivalent to two of the same name in the 
PackMacs.txt system equate file on the MOS disk. 



Events and Input/Output Operations 229 

If you include these definitions in your program source file, 
read the time and date by calling _IUTimeString and 
_IUDateString, instead of explicitly pushing a routine selector 
and calling _Pack6. 

By the way, the "IU" in these names stands for Interna
tional Utilities. These are utilities that are country-depend
ent-that is, the formats of the strings they return vary 
depending on national requirements. Two INTL resources 
(with IDs of 0 and 1 ) contain information describing how date 
and time strings are to be formatted. The Macintosh is 
shipped with the INTL resources appropriate to the country 
in which it is sold. 



Chapter 6 

Windows and Video 
Output 

This chapter examines the most fundamental element of the 
Macintosh user interface: the window. This is where applica
tions display their text and graphic output so it can be viewed 
by the user. 

The Macintosh interface permits the handling of windows 
in a very flexible way: There can be several windows on the 
desktop at any time and each can be moved (or dragged) 
around the screen independently of the others. Unlike some 
operating systems that use the window metaphor, Macin
tosh windows can overlap one another. In fact, any window 
may totally obscure another. 

Although several windows can coexist on the screen, only 
one is said to be active at any given time. By convention, the 
active window is always at the front of the screen and its 
drag region and scroll controls (more about these window 
parts later) are highlighted. To activate another window, all 
you have to do is click within its frame. 

In the next section, you'll see how a window is represented 
in memory and what the various parts of a window are. You'll 
learn how to create windows, destroy them, move them 
around on the screen, and resize them. At the end of the 
chapter, some of the instructions used to draw text and 
graphics in a window will be analyzed. 

Introduction to Windows 

To the user, a window is just a rectangular box on the 
screen containing the output of a program. From a program-

250 



Windows and Video Output 251 

mer's point of view, however, a window is much more than 
that. Its definition includes the window's position on the 
screen; the font; style; and size of the characters to be used 
when writing text in it; its title; whether it has a close box; 
and more. All this information is kept in a data structure 
called a window record. 

Table 6-1. The Window Manager Trap Instructions. 

_Begin Update 

MOVE.L thellindow,-(SP) 
_Begin Update 

Saves the window's visible 
region, then assigns the visible 
region to the update region. 

;POINTER: to window record 

Call _BeginUpdate in response to an update event for a 
window. 

_CloseWindow 

KOVE.L thellindow,-(SP) 
_Close Window 

Removes a window from the 
screen but does not free up the 
window record. 

;POINTER: to window record 

Use this instruction if you created the window by passing a 
nonzero wStorage parameter to _NewWindow; otherwise, use 

DisposWindow. 

_DisposWindow 

KOVE.L thellindow,-(SP) 
_Disposllindow 

Removes a window from the 
screen and frees up all memory 
associated with the window 
record. 

;POINTER: to window record 

Use this instruction if you created the window by passing a 
zero wStorage parameter to _NewWindow; otherwise, use 
_CloseWindow. 



232 Mac Assembly Language 

Table 6-1. continued 

_DragWindow 

MOVE.L theWindow,-(SP) 
MOVE.L startPoint,-(SP) 

PEA limitRect 

_DragWindow 

Drags a window around the 
screen in response to the 
movement of the mouse and 
redraws it when the mouse 
button is released. 

;POINTER: to window record 
;LONGINT: point where mouse was 

pressed (global) 
;POINTER: to rectangle limiting 

the scope of the drag 

The points for the limitRect rectangle are stored in global 
coordinates. 

_DrawGrowlcon 

MOVE.L theWindow,-(SP) 
_DrawGrowicon 

_End Update 

MOVE.L theWindow,-(SP) 
_EndUpdate 

Draws the window's size box 
and the "elevator shafts" for 
the scroll bars. 

;POINTER: to the window 

Restores the window's visible 
region to the region saved 
when _BeginUpdate was 
called. 

;POINTER: to window record 

Call EndUpdate at the end of your update-handling code. 

_FindWindow 

CLR -(SP) 
MOVE.L mousePoint,-(SP) 

PEA the Window 

_FindWindow 
MOVE (SP)+,DD 

Retums a code indicating the 
part of a window in which a 
mouse click occurred. 

;INTEGER: space for result 
;LONGINT: point on screen where 

mouse was pressed (global) 
;VAR: pointer to window that was 

clicked is returned here 

;Result: window part code 



Table 6-1. continued 

_FrontWindow 

CLR.L -(SP) 
_Frontllindow 
MOVE.L (SP)+,AO 

_GetNewWindow 

CLR.L - (SP) 

Windows and Video Output 255 

Returns a pointer to the 
currently active window. 

;POINTER: space for result 

;Result: pointer to window 

Loads a new window from a 
WIND resource file and 
displays it. 

;POINTER: space for result 
MOVE #templateID,-(SP) ;INTEGER: resource ID of WIND 
MOVE.L wstorage,-(SP) 
MOVE.L behindWindow,-(SP) 
_GetNewWindow 
MOVE.L (SP)+,AO 

_GetWTitle 

MOVE.L theWindow,-(SP) 
PEA newTitle 
_SetWTitle 

_GlobalToLocal 

PEA thePoint 
_GlobalToLocal 

_InitGraf 

MOVE.L globalVars,-(SP) 
_InitGraf 

_InvalRect 

PEA badRect 
_InvalRect 

;POINTER: to window record 
;POINTER: to window in front 

;Result: pointer to window 

Returns the title of a window. 

;POINTER: to the window 
;VAR: the title string 

Convert global coordinates to 
local coordinates. 

;VAR: a point (long word) 

Initializes the QuickDraw 
drawing environment. 

;POINTER: to QD global variables 

Adds a rectangular region to 
the current window's update 
region. 

;POINTER: to a rectangle (local) 



234 Mac Assembly Language 

Table 6-1. continued 

_lnvalRgn 

MOVE.L badRegion,-(SP) 
_InvalRgn 

_LocalToGlobal 

PEA thePoint 
_LocalToGlobal 

_NewWindow 

CLR.L -(SP) 
MOVE.L wstorage, - (SP) 
PEA windowRect 
PEA title 
MOVE.B #visible, - (SP) 

MOVE #windowType,-(SP) 
MOVE.L behindWindow,-(SP) 
MOVE.B #hasClose,-(SP) 

MOVE.L #refCon,-(SP) 
_NewWindow 
MOVE.L (SP)+,AD 

_SelectWindow 

MOVE.L theWindow,-(SP) 
_Select Window 

_SetWTitle 

MOVE.L theWindow,-(SP) 
PEA newTitle 
_setWTitle 

Adds a region to the current 
window's update region. 

;POINTER: to a region 

Convert local coordinates to 
global coordinates. 

;VAR: a point (long word) 

Creates and displays a new 
window. 

;POINTER: space for result 
;POINTER: to window record 
;POINTER: to port rectangle 
;POINTER: to window title 
;BOOLEAN: true = visible 

false = invisible 
;INTEGER: window defn ID 
;POINTER: to window in front 
;BOOLEAN: true = close box 

false = no close box 
;LONGINT: reference constant 

;Result: pointer to window 

Deactivates the previous 
window, activates a new 
window, redraws the new 
window in the front of the 
screen, and generates all 
necessary activate and update 
events. 

;POINTER: to window to activate 

Sets the title of a window. 

;POINTER: to the window 
;POINTER: to the new title 



Table 6-1. continued 

_Size Window 

MOVE.L theWindow,-(SP) 
MOVE #newWidth,-(SP) 
MOVE #newBeight,-(SP) 
MOVE.B #update,-(SP) 

Windows and Video Output 235 

Draws a window with new 
dimensions. 

;POINTER: to the window 
;INTEGER: new width 
;INTEGER: new height 
;BOOLEAN: true = updates OK 

false = no updates 

The Boolean update parameter indicates whether newly 
exposed regions of the window are to be placed in the window's 
update region. 

_SystemClick 

PEA theEvent 
MOVE.L theWindow,-(SP) 

_SystemClick 

_TrackBox 

CLR.B -(SP) 
MOVE.L theWindow,-(SP) 
MOVE.L thePoint,-(SP) 
MOVE partCode,-(SP) 
_TrackBox 
MOVE.B (SP)+,DO 

_ TrackGoAway 

CLR.B -(SP) 
MOVE.L theWindow,-(SP) 
MOVE.L thePoint,-(SP) 
_TrackGoAway 
MOVE.B (SP)+,DO 

Passes a button-down event to 
a desk accessory for 
processing. 

;POINTER: to the event record 
;POINTER: to window where event 

occurred 

Checks if the mouse button is 
released when the mouse 
cursor is still in the zoom box. 

;BOOLEAN: space for result 
;POINTER: to window involved 
;LONGINT: mouse position (global) 
;INTEGER: _FindWindow part code 

;Result: true = still in box 
false = not in box 

Checks that the mouse button 
is released when the mouse 
cursor is still in the go-away 
box. 

;BOOLEAN: space for result 
;POINTER: to window involved 
;LONGINT: mouse position (global) 

;Result: true = still in box 
false = not in box 



256 Mac Assembly Language 

Table 6-1. continued 

_ValidRect 

PEA badRect 
_ValidRect 

_ValidRgn 

MOVE.L badRegion,-(SP) 
_ValidRgn 

_Zoom Window 

MOVE.L theWindow,-(SP) 
MOVE partCode,-(SP) 
MOVE.B #front,-(SP) 

Removes a rectangular region 
from the current window's 
update region. 

;POINTER: to a rectangle (local) 

Removes a region from .the 
current window's update 
region. 

;POINTER: to a region 

Zooms a window in or out. 

;POINTER: to window involved 
;INTEGER: _FindWindow part code 
;BOOLEAN: true = bring to front 

false = leave alone 

Call this instruction with a partCode of #inZoomln (:zoom 
window to its pre-zoomed state) or #inZoomOut (:zoom out the 
window). 

The subroutines used to control windows make up the part 
of the Macintosh toolbox called the Window Manager. It is 
these subroutines that we'll be investigating for the next sev
eral pages. You should keep in mind, however, that the Win
dow Manager ultimately relies on a group of fundamental 
screen drawing subroutines, collectively called QuickDraw, 
whenever it must display anything on the screen. It also uses 
the Font Manager, the part of the toolbox that deals with text 
characters. For these reasons, before any of the Window 
Manager commands can be used you must initialize Quick
Draw and the Font Manager with the following instructions: 

PEA -4(AS) 
_InitGraf 
_InitFonts 

;Address of QuickDraw global area 
;Initialize QuickDraw 
;Initialize Font Manager 



Windows and Video Output 257 

Notice that these are the first three instructions used in the 
standard program header described in Chapter 2. 

QuickDraw Global Variables 

MOS pre-allocates a 2S6-byte space for QuickDraw global 
variables just below the address pointed to by the AS regis
ter, although only GrafSize (206) bytes are actually used. The 
address of the last variable in the space (a long word) is given 
by -4(AS) and that's the address passed to _lnitGraf. 

_lnitGraf stores the address of the last variable in the 
QuickDraw variable space at the location pointed to by AS. 
This is the first entry in the system parameter table. 

The end of the QuickDraw global area contains the follow
ing variables, shown in reverse order, from high to low 
memory: 

The Port 
White 
Black 
Gray 
LtGray 
DkGray 
Arrow 
ScreenBits 
RandSeed 

(4 bytes) 
(8 bytes) 
(8 bytes) 
(8 bytes) 
(8 bytes) 
(8 bytes) 
(68 bytes) 
(14 bytes) 
(4 bytes) 

a pointer to the active window 
standard white pattern 
standard black pattern 
standard gray pattern 
standard light gray pattern 
standard dark gray pattern 
standard arrow cursor record 
screen bitmap (see below) 
seed for random number generator 

Additional QuickDraw variables below these are for the pri
vate use of QuickDraw. Below all the QuickDraw variables 
are the application's global variables. 

The symbolic names given for the QuickDraw variables rep
resent offsets from the highest addressed variable, ThePort. 
To access a QuickDraw variable, say RandSeed, use an 
instruction sequence like the following: 

llOVE.L (AS),AO ;Get pointer to QD area in AD 
llOVE.L RandSeed(AO),DO ;Access RandSeed 

Alternately, you can access it directly with a MOVE.L 



258 Mac Assembly Language 

Rand5eed-4(A5),DO instruction, but only if you pass the 
effective address of -4(A5) to _lnitGraf. 

The Parts of a Window 

Before you learn how to create windows, I'll summarize the 
terminology used to describe the various parts of a window. 
Figure 6-1 shows a typical Macintosh window whose constit
uent parts are labeled. 

content +-~+-~~~~~ 
region 

scro 11 controls 

drag 
region 

Figure 6-1. The Parts of a Macintosh Window. 

zoom 
box 

size box 

The go-away box (also called the close box) is located in 
the top left-hand comer of the window. According to the 
Macintosh user-interface guidelines, if you click this box, the 
window is to close and disappear from the screen. Some win
dows, such as dialog and alert boxes, do not have a go-away 
box. 



Windows and Video Output 239 

The drag region is the rectangular region on the top of a 
window containing the title of the window and, if the window 
is the active one, the "racing stripes" on either side of the 
title. The drag region does not include the go-away box. A 
window need not have a drag region. 

If the mouse button is pressed while the cursor is in the 
drag region and the mouse is moved with the button still 
down, an outline of the window moves around the screen. 
When the button is released, the window is redrawn at its 
new position. 

The content region is the area of the window within which 
you can draw and view text and graphics. It is bounded by 
the window frame, which includes the window's outline, the 
go-away box, and the drag region. 

The slz:e box, if present, is located in the lower right-hand 
comer of the window, usually within the content region. By 
positioning the mouse pointer in the size box and dragging the 
mouse, you can alter the size of the window. 

A z:oom box sometimes appears in the top right-hand cor
ner of a window. The first time you click this box, the window 
expands to fill the entire screen, enabling you to quickly view 
as much information within the window as possible; on the 
next click in the zoom box, the window returns to its pre
zoomed size. 

The scroll controls are found in horizontal and vertical "ele
vator shafts" that appear within the content region of a win
dow. They include two arrows at either end of the shaft, and 
a movable control called a thumb. The scroll controls are used 
to move the portion of a text or graphics image within a win
dow up and down or left and right. Movement can be line by 
line by clicking an arrow, or page by page by clicking in the 
space between an arrow and the thumb. You can move 
directly to any part of the document shown in the window by 
moving the thumb. 

It is the responsibility of the programmer to adhere to the 
standard user-interface guidelines in response to mouse 
activity in the various parts of a window. For example, if the 
mouse is clicked in the go-away box, the window does not 



240 Mac Assembly Language 

automatically close; it is up to you to write your program in 
such a way that it does. We'll see how to do this later in this 
chapter. 

Coordinate Systems 

Now a word about the coordinate systems used by Quick
Draw and the Window Manager. The first element in a win
dow record is a QuickDraw data structure called a GrafPort, 
which contains information concerning the drawing environ
ment for the window: this includes the pen characteristics for 
drawing operations, background patterns, and fill patterns. 
One important field in a Graf Port is called PortBits. It is a 
bitmap that describes the portion of a rectangular array of 
bits (a bit image) that drawing operations are to affect and 
imposes a coordinate system for the map. The structure of a 
bitmap record like PortBits is as follows: 

BaseAddr 
row Bytes 
boundsRect 

pointer 
integer 
rectangle 

BaseAddr is a pointer to the memory location defining the 
upper left-hand comer of the bit image. 

RowBytes is the width of the bit image in bytes; it must be 
an even number. Even though rowBytes must describe an 
integral number of words, the active portion of the bit image 
may be narrower. The boundsRect rectangle defines the por
tion of the bit image that is the active part of the bitmap; this 
rectangle must not extend beyond the boundaries of the bit 
image. 

The data structure for a rectangle is made up four integers 
representing the position of its top, left, bottom, and right 
boundaries, in that order. The symbolic names for the off
sets to these points are (as you might expect) top, left, 
bottom, and right. 



Windows and Video Output 241 

BoundsRect also defines a coordinate system where the 
bit in the top-left corner of the bit image has a coordinate 
equal to the top-left coordinate for boundsRect. This coordi
nate is not necessarily (0,0). In fact, when a window is cre
ated, the (0,0) position is assigned to the top-left corner of 
the content region of the window and boundsRect is acljusted 
to account for this. (This is done to make it easier for you to 
position items within a window.) The coordinate system 
defined by boundsRect is called a local coordinate system 
because it is used by drawing operations for the GrafPort 
with which it is associated. 

The notation (x,y) is the shorthand representation for the 
coordinates of a point on the screen. The first number, x, 
is the horizontal position and the second, y, is the vertical 
position. 

The area within a GrafPort's bitmap that QuickDraw 
actually draws into is described by PortRect, another field 
in the Graf Port data structure. PortRect describes a rec
tangle that is usually wholly contained within the bitmap. It 
is defined using local coordinates. When a window is 
opened, PortRect is the rectangle enclosing the content 
region of the window. 

A standard bitmap describing the Macintosh screen is 
stored at ScreenBits in the QuickDraw global variable area. If 
you passed an address of -4(A5) to _InitGraf, this address is 
given by ScreenBits-4(A5). For a 512K Macintosh, the 
BaseAddr value for this bitmap contains $7 A 700 (the start of 
the screen buffer), rowBytes contains 64, and the coordi
nates of boundsRect are 0,0, 342,512 (top, left, bottom, 
right). This means the bit image is the entire screen and that 
the entire screen forms part of the bitmap. 

To compare coordinates in one GrafPort with those in 
another, you must first convert to a common coordinate sys
tem. The QuickDraw subroutines use a global coordinate sys-



242 Mac Assembly Language 

tern where the top-left corner of the bitmap pointed to by 
BaseAddr is always considered to be at (0,0). As long as the 
BaseAddr pointers for the GrafPorts whose coordinates are 
being compared contains the same value, global coordinates 
map to memory locations in exactly the same way for each 
GrafPort; thus, comparisons are meaningful. For windows 
displayed on the Macintosh screen, this is indeed the case: 
BaseAddr always points to the starting address of the 
screen buffer. 

In either coordinate system, the horizontal coordinates 
increase as you move to the right and the vertical coordi
nates increase as you move to the bottom. 

You usually pass global coordinates to Window Manager 
subroutines. This is the same coordinate system used by 
_GetNextEvent for passing the position of the mouse when 
an event occurs. The instructions that draw text and graph
ics within a window use the local coordinate system, 
however. 

Before a drawing instruction can use a global coordinate, 
the coordinate must first be converted to a local coordinate 
using the _GlobalToLocal trap instruction: 

PEA lfhere(AS) 
_GlobalToLocal 

Where DS.L L 

;push addr of global coords 
;convert global to local 

;Point: vertical, horizontal 

_GlobalToLocal takes the global coordinate at Where, con
verts it to a local coordinate, and stores it at Where. 

Notice that the Where variable is a data structure of type 
point. A point is simply a long word that contains the vertical 
(high-order word) and horizontal (low-order word) coordi
nates for a position on the screen. This order is the reverse 
of the order used when describing a point using the standard 
(x,y) notation. The MOS symbolic offsets to the vertical and 
horizontal components of a point are v and h. There is a 
related trap instruction, _LocalToGlobal, for performing the 
opposite conversion. 



Windows and Video Output 24.3 

Creating Windows 

Before defining windows on the Macintosh, you must call 
the _lnitWindows instruction. This clears the desktop to its 
background pattern, erases the menu bar at the top of the 
screen, and initializes all window-related data structures. 
_lnitWindows does not require any parameters and must 
only be called once at the beginning of a program. 

There are eight pre-defined types of windows you can use 
on the Macintosh, each identified by a unique code called a 
window definition ID. These windows are shown in Figure 
6-2. If you are using a Macintosh with the original 64K RO Ms, 
you can only use the first six window types shown. 

The use of the standard windows is dictated by the Macin
tosh user-interface guidelines. Windows with an ID = 0, 4, 8, 
or 12 are the most common and usually contain a document 
being acted on by the application. These window types are 
the same, except that two don't have a zoom box and two 
don't have a grow box. 

Windows with an ID = 1 , 2, and 3 are usually used as dialog 
and alert boxes. (See Chapter 8.) Windows with an ID = 16 
are most commonly used by desk accessories, such as the 
calculator. 

There are two basic ways to create a window. First, you 
can create it from scratch within the program. Second, you 
can use RMaker to create a WIND resource and store it in a 
resource file. 

The _NewWindow instruction defines a window from 
scratch. Its general form is as follows: 

CLR.L -(SP) ;Clear space for result 
MOVE.L #0,-(SP) ;O=use heap for record 
PEA WindRect ;Window dimensions 
PEA •our Window• ;Title for window 
MOVE.B #-:I., - (SP) ;-:I.= visible (O=invisible) 
MOVE #0,-(SP) ;O = window definition ID 
MOVE.L #-:1.,-(SP) ;-], = this window in front 
MOVE.B #-:1.,-(SP) ;-:I. =draw a close box 



244 Mac Assembly Language 

-0 Window Types 

window definition ID= O 

DocumentProc 

f2J 

window definition ID= 2 

Pl ai nDBoxProc 

0 Window Types 

window definition ID= 4 

NoGrowDocProc 

§0 Window Types 0§ 

window definition ID= 8 

ZoomDocProc 
only on a Macintosh 

with 1 28K ROMs 

f2J 

window definition ID= 1 

DBoxProc 

window definition ID= 3 

AltDBoxProc 

D lllmdow Types 

window definition ID= 16 

RDocProc 

§0~ Window Types ~0§ 

window definition ID= 12 

ZoomNoGrow 
only on a Macintosh 

with 1 28K ROMs 

Figure 6-2. Standard Macintosh Window Types. 



Windows and Video Output 245 

CLR.L -(SP) ;User-definable parameter 
_NewWindow 
llOVE.L (SP)+,theWindow(AS) ;Pop .long word pointer 

WindRect DC.W so,so,200,300 ;Window rectangle (TLBR) 

theWindow DS.L ;space for long 

_NewWindow is a function that returns on the stack a 
pointer to the window record. This means you must clear 
space for a long word on the stack before pushing the param
eters _NewWindow requires. After calling _NewWindow, 
pop the pointer off the stack and store it in a variable so you 
can use it to access the window later on. 

The first parameter passed to _NewWindow is a pointer to 
the area it uses to store the window record. You can reserve 
such an area (its size is given by the MOS constant Window
Size, 156 bytes) on the stack using _NewPtr. (See Chapter 
4.) It's usually more convenient to ask _NewWindow to 
reserve this space automatically, however. To tell it to do 
this, push a zero pointer as in the above example. 

The next parameter is a pointer to the coordinates of the 
window rectangle. The coordinates must be in top, left, bot
tom, right order. 

The next five parameters relate to the appearance of the 
window. The first is its title, whether it is visible (true, -1) or 
invisible (false, 0). Next is the window definition ID code. The 
third refers to a pointer to the window in front of it (or - 1 if 
the window is to be drawn in front) and the fourth concerns 
whether a close box is to be drawn (true, - 1) or not drawn 
(false, 0). 

Listing 6-1 is a program illustrating how to use _New
Window. It creates and displays each of the eight basic win
dow types whose definition IDs are kept in a table at Wind ID. 
The program also displays the window definition ID number in 
the window using some instructions (_Pack7, _MoveTo, and 
_Drawstring) I haven't discussed yet. I'll be explaining these 
instructions later on in this chapter. To display each type of 
window in the program, keep clicking the mouse button. 



246 Mac Assembly Language 

After the last window type is displayed, you will return to the 
Finder. 

Listing b-L. The Source File and Linker Control File for 
the WindTypes Program. 

* Asm Source File 
* llindTypes.Asm 

* * This program displays the seven basic window types on the 
* screen. Click the mouse button to move between the windows. 

lfindRum EQU 11 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Humber of window types 

;Toolbox equates 
;QuickDraw eqnates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -.t;(AS) 
_InitGraf 
_InitFonts 
_Initlfindows 
_InitKenus 
_TEI nit 
MOVE.L #D,-(SP) 
_InitDialogs 
_InitCursor 

MOVE.L #SDDDDFFFF,DD 
_FlushEvents 

;Start of QD globals area 
;Initialize QuickDraw 
;Font Manager 
;lfindow Manager 
;Menu Manager 
;TextEdit 
;(no restart procednre) 
;Dialog Manager 
;Ile want arrow cursor 

;Get rid of every event 

LEA lfindIDs,Ab ;Load base address of ID table 

MOVE #lfindRum-L,Db ;set up loop count for DBF 

; Draw a window on the screen. The window ID is 
; contained in (Ab). 
Drawlfind 



Windows and Video Output 247 

Listing b-L. continued 

CLR.L -(SP) ;Space for returned pointer 
MOVE.L #D,-(SP) ;D ; store window in stack 
PEA Window ;Window rectangle 
PEA 'Window Types' ;Window Title 
MOVE.B #-1, - (SP) ; - :r. ; visible 
MOVE (Ab),-(SP) ;First window type is at (Ab) 
MOVE.L #-:L, - (SP) ;-:r. ; front window 
MOVE.B #-:L, - (SP) ;-1 ; go away button 
MOVE.L #D,-(SP) ;refCon 
_NewWindow ;Draw the window 
MOVE.L (SP),WindPtr(AS) ;Save pointer (don't pop) 
_setPort ;Make window current for drawing 

CMP 
BEQ 
CMP 
BNE 

#D,(Ab) 
@D 
#11,(Ab) 
@:L 

;Is this a standard doc window? 
;Yes, so branch 
;Is this zoom with grow box? 
;No, so branch 

@D MOVE. L WindPtr( AS) I - (SP) 
_DrawGrowicon ;Draw the grow box 

Display the window definition ID number of the window: 

@1 LEA String(AS),AD 
CLR.L DD 
MOVE (Ab)+,DD 
MOVE #D,-(SP) 
_Pack7 

MOVE #2D,-(SP) 
MOVE #2D,-(SP) 
_MoveTo 

;Address of string in AD 
;Make sure high word is zero 
;Put ID in DD and bump pointer 

;_NumToString 

;horizontal pas. 
;vertical pos. 

;Position the pen 

PEA •window definition ID ; ' 
_Drawstring ;Display the string 

PEA String(AS) 
_Drawstring ;Print the window type code 

JSR GetButton ;Wait for button press 

MOVE.L WindPtr(AS),-(sp) ;Erase window and remove it 



248 Mac Assembly Language 

Listing b-L. continued 

_DisposWindow ; from system 

DBRA Db,DrawWind ;Loop until Db=-L 

RTS ;Return to Finder 

; Loop until the mouse button is pressed: 

GetButton 

CLR.B -(SP) ;Leave space for Boolean result 
MOVE #-L,-(SP) ;Allow all events 
PEA EventRecord ;Results are returned here 

-GetNextEvent ;Check for an event 
TST.B (SP)+ ;Pop and test the result code 
BEQ GetButton ;Branch if no event 

MOVE EventRecord+evtNum,DO ;Get event type 
CMP #mButDwnEvt,DD ;Is it a button-down event? 
BNE GetButton ;No, so branch 

RTS 

EventRecord 

Window 

Wind!Ds 

DCB.B 

DC.W 

DC.W 
DC.W 

EvtBlkSize,o ;Space for event record 

so,2s,200,22s ;window coordinates 

0,1,2,3 ;Valid IDs for windows 
t;,11,12,Lb 

Here are the program globals. Use (AS) addressing. 

WindPtr DS.L 

String DS.W 

Linker Control File 
WindTypes.Link 

Wind Types 
$ 

;Pointer to our window 

2 ;Space for number conversion 



Windows and Video Output 249 

Another way to define a new window is to read its defini
tion from a resource file using the _ GetNewWindow instruc
tion. Like _NewWindow, _GetNewWindow returns a pointer 
to the window data structure: 

WindID EQU L;;;; ;Window resource ID 

CLR.L -(SP) ;Space for result 
MOVE #Wind ID, - (SP) ;Window resource ID 
MOVE.L #0,-(SP) ;window record on heap 
MOVE.L #-L,-(SP) ;Ptr to window in front 
_GetNewWindow 
MOVE.L (SP)+,theWindow(AS) ;Save the result 

theWindow DS.L L 

As you can see, you need only specify a resource ID 
number and a window pointer to load a window definition 
from a resource file. All the other parameters needed to 
describe the window record are contained within the 
resource file itself. 

Of course, you can only use _GetNewWindow if you've pre
viously stored the WIND resource in a resource file and that 
file is open. To create the resource, first use Edit to create a 
source code file for the window record for RMaker, the 
resource compiler. The form of the definition for a window is 
shown in Table 6-2. Next, place the name of the application 
file (preceded by ! ) at the beginning of the RMaker source file 
so that the window resource will be placed in the resource 
fork of the application file itself during the compilation pro
cess. This assumes the file has already been created by 
assembling and linking the main program file. 

It is convenient to place the window resource in the applica
tion's resource fork because it means the resource will be 
automatically available to the application when it starts to 
run. You could also use RMaker to store the definition in a 
separate resource file, but that file would have to be explicitly 
opened using _OpenResFile. 



250 Mac Assembly Language 

Table 6-2. The RMaker Format of a WIND Resource 
Definition. 

Type WIND 
.128 
A Pane in the Glass 
20 20 350 400 
IN 
4 
0 

;; Resource ID of window 
;; window title 
;; coordinates of window CTLBR> 
;; window status 
;; window definition ID 
;; reference value (user-definable) 

The window definition ID can be 0, 1, 2, 3, 4, 8, 12, or 16. 
The window status can be Visible (V) or Invisible (I), 

NoGoaway (N) or Goaway (G). 

Once a window has been created, you still can't draw any
thing in it because it is not the active drawing window. To 
activate a window to enable you to draw text and graphics in 
it, push the pointer to the window on the stack, and call the 
_SetPort instruction: 

MOVE.L theWindow(AS),-(SP) 
_setPort 

theWindow DS.L L 

This instruction presumes, of course, that the pointer 
returned by _NewWindow or _GetNewWindow was stored 
in a variable called the Window. 

Before you use _SetPort to designate a new active drawing 
window' you should save the pointer to the current drawing 
window using _GetPort. That way, you can easily return con
trol to the original window with another _SetPort instruction. 

To use _GetPort, pass the address of the location in which 
_GetPort is to return the pointer as follows: 

PEA OldWindPtr ;Return pointer here 
_GetPort 

OldWindPtr DC.L a ;This is a constant 



Windows and Video Output 251 

Since OldWindPtr is a constant, the (AS) addressing mode 
is not used with PEA. 

Destroying Windows 

There are two instructions that will close a window, 
_CloseWindow and _DisposWindow. The one to use depends 
on how you initially created the window. 

If you used _NewPtr to create space for the window rec
ord used by _NewWindow, use _CloseWindow to close the 
window. It takes a pointer to the window record as a param
eter, removes the window from the screen, but does not free 
up the area used by the window record. To free up that 
space you must use the Memory Manager's _DisposPtr 
instruction. (See Chapter 4.) 

If the Window Manager automatically allocated space for 
the window record on the heap (it always does if you use 
_GetNewWindow), use _DisposWindow to close the win
dow. This instruction not only erases the window from the 
screen, it also deallocates the space reserved for the window 
record. 

Both _CloseWindow and _DisposWindow cause update 
events if previously hidden parts of other windows are 
exposed when a window disappears. An activate event also 
occurs if the active window is closed and there are other win
dows on the screen; the window nearest the front of the 
screen is activated. 

Reacting to Window-Related Events 

In the previous chapter you learned the Event Manager can 
post three types of events that should be processed by the 
Window Manager: 



252 Mac Assembly Language 

• UpdatEvt (window update event) 
• ActivateEvt (window activate or deactivate event) 
• MButDwnEvt (mouse button down event) 

These events are by no means processed automatically; it is 
up to your program to detect them and take appropriate 
action. 

Update Events 

An update event (UpDatEvt) occurs when a previously hid
den portion of a window comes into view. This happens if 
another window is closed, moved, or resized, or if the subject 
window is activated and moved to the front of the screen or 
is enlarged by dragging on its size box. The Window Manager 
instructions take care of automatically adding newly exposed 
regions of a window in a data structure called the update 
region and generating the update event. 

When you respond to an update event, you must re-draw 
those portions of the window contained in the update region. 
To do this, first call _BeginUpdate to ensure that subsequent 
drawing within the window will be restricted (or clipped) to 
the update region only. This is done by temporarily assigning 
the window's visible region-the part you can see on the 
screen-to the intersection of the existing visible region and 
the update region. This means you can redraw the entire 
window, but only the update region is affected. 

Next, you have to redraw the screen. To do this, of course, 
you must know what the contents of the screen were just 
before the update event occurred. This requires careful plan
ning on your part, and virtually dictates that you maintain 
some sort of data structure in memory describing the con
tents of the window at any given time, so you can re-create it 
when necessary. 

When the screen has been redrawn, call _EndUpdate. This 
empties the update region and resets the visible region of the 
window to its original value. 

Here's what the entire procedure looks like: 



KOVE.L theWindow(AS),-(SP) 
_Begin Update 

[re-write the screen here) 

KOVE.L theWindow(AS),-(SP) 
_End Update 

Windows and Video Output 255 

You can force update events to occur under program con
trol by adding regions or rectangular areas to the accumu
lated update region using _lnvalRgn and _lnvalRect. (See 
Inside Macintosh for a technical description of a region.) This 
is a handy way of forcing the redrawing of a portion of the 
screen. You use _lnvalRgn and _lnvalRect as follows: 

and 

PEA Rectangle 
_InvalRect 

Rectangle DS.W LD,LD,SD,75 

KOVE.L RgnHndl(AS),-(SP) 
_InvalRgn 

RgnHndl DS.L L 

;address of rectangle coords 

;TLBR (local) 

;push handle to region 

Notice that the rectangle coordinates used by _lnvalRect are 
local coordinates. 

There are corresponding instructions for removing regions 
and rectangular areas from the update region: _ ValidRgn and 
_ValidRect. Use them \f you want to prevent an update 
event from being posted in the event queue. 

Activate Events 

An activate event (ActivateEvt) occurs when either of two 
events occurs: A window is activated or a window is deacti-



254 Mac Assembly Language 

vated. To determine which of these two related events has 
occurred, check the ActiveFlag bit (bit 0) of the evtMBut field 
of the EventRecord returned by _GetNextEvent: 

MOVE.B EventRecord+evtMBut,DO 
BTST #ActiveFlag,DO ;Is activate bit on? 
BBQ DeActivateit ;No, so deactivate 

If it's an activate event, the bit will be 1 and the BEQ branch 
will not be taken. 

An activate event occurs when a new window is brought 
to the front of the screen. This happens when you call 
_SelectWindow when the mouse is clicked inside an inactive 
window or when the currently active window is closed. To 
handle an activate event, you should call _SetPort to make 
the activated window the current drawing window, and 
then redraw the size box (using _DrawGrowlcon) and the 
scroll bars, if necessary. You may also want to highlight or 
dim certain items in the menus at the top of the screen, 
depending on whether they are applicable to the newly acti
vated window. (You'll see how to do this in the next 
chapter.) 

For a deactivate event, you should dim the scroll bar and 
grow box by calling _DrawGrowlcon. Since the window isn't 
active, the Window Manager will not draw the highlighted 
grow box icon as it normally would. The deactivation subrou
tine may also involve highlighting or removing highlighting 
from menu items. 

Button-Down Events 

Your response to a button-down event (MButDwnEvt) 
depends on precisely where the mouse button was pressed: 
in a close box, the drag area, a content region, or another 
identifiable part of a window. To determine the location, use 
the _FindWindow instruction: 



Windo\Vs and Video Output 255 

CLR - (SP) ; Space for result 
MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global) 
PEA theWindow(AS) ;Window pointer returned here 
_FindWindow 
MOVE (SP)+,partCode(AS) 

EventRecord 
theWindow 
partCode 

DCB.B EvtBlkSize,a 
DS.L 1 
DS.L 

;Event record 

The word result returned by _FindWindow, stored at 
partCode in the above example, is a part code that reflects the 
region on the screen in which the mouse button was pressed. 
There are nine possible part codes: 

0 in Desk (in the desktop) 
1 inMenuBar (in the menu bar) 
2 inSysWindow (in a desk accessory window) 
3 in Content (in a content region) 
4 inDrag (in a drag region) 
s in Grow (in a size region) 
6 inGoAway (in a go-away box) 
7 inZoomOut (in a zoom box) 
8 inZoomln (in a zoom box) 

The last two part codes, inZoomOut and inZoomln, cannot 
be returned if the Macintosh is using the original 64K ROMs. 

The inSysWindow part code is generated if the mouse is 
pressed in any part of a system (desk accessory) window. 
This means inContent, inDrag, inGrow, inGoAway, 
inZoomOut, and inZoomln codes refer to regions in application 
windows only. 

inDesk. If the part code is inDesk you will probably want to 
ignore the button press because no specific action is dictated 
by the user-interface guidelines. 

inMenuBar. If the part code is inMenuBar, you should pass 
control to the Menu Manager so it can take care of pulling 
down menus and selecting menu items. You'll see how to do 
this in the next chapter. 



256 Mac Assembly Language 

inSysWindow. A part code of inSysWindow means there 
has been a click in the window for a desk accessory. You'll 
learn about desk accessories in detail in Chapter 9, but for 
now all you need to know is that you should pass control to 
the desk accessory using the _SystemClick instruction: 

PEA EventRecord 
MOVE.L theWindow(AS),-(SP) 
_SystemClick 

EventRecord DCB.B 
theiindow DS.L 

EvtBlkSize,a 
:L 

;Event record 
;[returned by _FindWindowl 

EventRecord is the same record used by the _ GetNextEvent 
instruction that reported the button-down event. 

inContent, inDrag, inGrow, inGoAway, inZoomln, inZoomOut. 
After you call _FindWindow and you've determined that the 
button was pressed in an application window, you should 
check whether the window is currently active or not. This 
can be done by comparing the window pointer returned by 
_FindWindow, which was stored at theWindow(AS) in the 
example above, with the pointer returned by the 
_FrontWindow function. If they aren't the same, simply call 
_SelectWindow to activate the window in which the click 
occurred. Here's how to do this: 

CLR.L -(SP) 
_FrontWindow 
MOVE.L (SP)+,Ab 
CMP.L theWindow(AS),Ab 
BEQ Continue 
MOVE.L Ab,-(SP) 
_Selectwindow 
RTS 

Continue 

;A pointer is returned 
;Get pointer to active window 
;Pop the window pointer 
;Are windows same? 
;Yes, so proceed normally 
;Push new window pointer 
; and select new window. 

The call to _SelectWindow automatically generates an acti
vate event. 

If the window is already active, you would proceed to Con
tinue, which would be the part of the program that processes 



Windows and Video Output 257 

inContent, inDrag, inGrow, inGoAway, inZoomln, and 
inZoomOut part codes. 

inContent. There is no standard procedure to follow when 
the button is clicked in the content region of a window; it will 
depend on the nature of your application. If, for example, the 
program is a word processor, you will probably want to place 
an I-beam cursor at the mouse position to indicate a new text 
insertion point. On the other hand, the click may be within an 
action box you've drawn on the screen, so you would per
form the action associated with it. 

inDrag. If the button is pressed in the drag region of a win
dow, call _Drag Window. When you do this, an outline image 
of the window will be moved around the screen as you move 
the mouse with the button still down. If you move the mouse 
outside the limits of a bounding rectangle you pass to 
_DragWindow, the outline disappears and reappears only if 
the mouse is dragged back into range again. 

When the button is released, the window is redrawn at its 
new position. If the mouse is released outside the bounding 
rectangle, however, the window stays at its original position. 
Here's what the calling sequence for _DragWindow looks 
like: 

MOVE.L theiindow(AS),-(SP) ;window pointer 
MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global) 
PEA boundRect ;bounding rectangle (TLBR) 
_Dragiindow 

where boundRect is a constant made up of two global coordi
nates: the top-left and bottom-right coordinates of the rec
tangle within which the mouse pointer must be kept during 
the drag operation. 

inGrow. When you detect a button press in the grow box, 
call _GrowWindow. _GrowWindow displays an outline of the 
window that expands and contracts as the mouse is moved 
back and forth. To avoid shrinking windows to a miniscule 
size or expanding them to an enormous size, you can specify 



.258 Mac Assembly Language 

minimum and maximum values for the final rectangle's height 
and width. Here's how to use _GrowWindow: 

CLR.L -(SP) ;Space for long word 
MOVE.L theWindow(AS),-(SP) ;Push pointer to window 
MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global) 
PEA sizeRect 
_GrowWindow 
MOVE.L (SP)+,DD 

SizeRect DC.W LD,:L0,300,270 

;Dimension limits 

;Pop result into DD 

;height (min), width 
; (min), height (max), 
;width (max) 

Notice that since sizeRect refers to a group of constants, it is 
not followed by (AS). 

When the mouse button is released, _GrowWindow ends 
and a long word is returned on the stack. The high-order 
word of this number represents the new height of the win
dow, in pixels. The low-order word represents the new 
width. If the size did not actually change, a zero is returned. 

If the window has, indeed, changed in size, you must call 
_SizeWindow to redraw it. If the height and width are in DO, 
here's what you would do: 

MOVE.L theWindow(AS),-(SP) 
MOVE.L DO,-(SP) 
MOVE.B #-L,-(SP) 
_SizeWindow 

;push width and height 
;-L = generate updates 

The last item pushed on the stack is a Boolean quantity 
indicating whether any new portions of the window that 
come into view are to be automatically added to the win
dow's update region (true) or not (false). You would normally 
set this Boolean item to true ( - 1 ) and then redraw the win
dow contents when processing the update event returned by 
the next call to _GetNextEvent. 

You also have to redraw the grow box on the window if the 
window is resized. This is done as follows: 



MOVE.L theWindow(AS),-(SP) 
_DrawGrowicon 

Windows and Video Output 259 

;Pointer to window 

If the window contains any scroll controls, they will also 
have to be redrawn using the appropriate Control Manager 
instructions. The Control Manager is described in Inside 
Macintosh. 

inGoAway. According to the user-interface guidelines, if 
the button is pressed in a go-away box, you are not to imme
diately call _CloseWindow or _DisposWindow to erase the 
window from the screen. Rather, you must call 
_ TrackGoAway to check that the mouse cursor is still posi
tioned in (or very near) the go-away box when the button is 
released. Only if it is are you to close the window. The pur
pose of calling _ TrackGoAway is to prevent closing a window 
on the basis of an errant mouse click. 

_ TrackGoAway is a function that returns a Boolean 
result. You pass to it a pointer to the window and the coor
dinates of the point where the mouse was pressed, in global 
coordinates: 

CLR.B -(SP) ;Space for Boolean result 
MOVE.L theWindow(AS),-(SP) ;Push window pointer 
MOVE.L EventRecord+evtMouse,-(SP) ;global coordinates 
_TrackGoAway 
TST.B (SP)+ ;Is the result O (false)? 
BEQ NoClose 
MOVE.L theWindow(AS),-(SP) 
_DisposWindow 

;Yes, so branch 

;Close the window 

Notice that the TST .B instruction is used to check if the 
Boolean result is true or false and pop the result from the 
stack at the same time. If the result is zero, or false, the BEQ 
instruction transfers control to NoClose. NoClose is the label 
for an instruction somewhere else in the program. 

inZoomln and inZoomOut. When either of these two part 
codes is returned, call _ TrackBox to check that the mouse 
button is released when its cursor is still in the zoom box: 



260 Mac Assembly Language 

CLR.B -(SP) ;Space for Boolean result 
MOVE.L theWindow(AS),-(SP) ;Push window pointer 
MOVE.L EventRecord+evtMouse,-(SP) ;coordinates (global) 
MOVE partCode(AS),-(SP) ;push _FindWindow result 
_TrackBox 
TST.B (SP)+ ;BNE succeeds if in box 

Like _ TrackGoAway, _ TrackBox returns a Boolean result 
indicating whether the button was released in the box or not. 

If the result is true, you should immediately call _Zoom
Window to handle the zoom activity. _ZoomWindow zooms 
the window out to full screen size (for inZoomOut) or zooms it 
back to the pre-zoomed size (for inZoomin). Here is how to 
call _ZoomWindow: 

MOVE.L theWindow(AS),-(SP) 
MOVE partCode(AS),-(SP) 
MOVE.B #-li,-(SP) 

ZoomWindow 

;Push window pointer 
;Push _FindWindow result 
;-:i. = window in front 

Notice that the third parameter is a Boolean, indicating 
whether the window will be brought to the front (true) or left 
where it is (false). 

The ROM subroutines called by the _ TrackBox and _Zoom
Window instructions are not included in the Macintosh's origi
nal 64K ROM. Since these instructions are used only in 
response to inZoomOut or inZoomin part codes, however, 
and these codes cannot be generated by a Macintosh using a 
64K ROM, a program that includes them will still work on an 
older Macintosh. 

A Window Application 

The program in Listing 6-2 demonstrates how to react to 
button-down events when a window is on the screen. With it 
you can drag a window around the screen, resize it, and close 
it by clicking in the goaway box. It uses some Menu Manager 
instructions, such as _Disableitem and _Enableitem, not cov
ered yet, but we'll be looking at them in the next chapter. 



Windows and Video Output 261 

Listing b-2. The Source File, Linker Control File, and 
RMaker File for the MainWind Program. 

Asm Source File 
llainWind.Asm 

This program shows how to manipulate a 
single window on the screen. 

Wind ID EQU L21l 

llenuBarID 
AppleID 
FileID 

EQU 
EQU 
EQU 

L21l 

L 

2 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Window ID 

;llenu bar ID 
;Menu ID for Apple menu 
;llenu ID for File menu 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -4(AS) 
_InitGraf 
_InitFonts 
_Initlfindows 
_Initllenus 
_TEI nit 
MOVE.L #0,-(SP) 
_InitDialogs 
_InitCursor 

llOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Start of QuickDraw globals 
;Initialize QuickDraw 
;Font llanager 
;llindow llanager 
;Menu llanager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;We want arrow cursor 

;Get rid of every event 

Read menu bar from llBAR resource, then make it current 
using _setllenuBar and draw it using _DrawMenuBar: 

CLR. L - (SP) ; Space for result 
llOVE #llenuBarID,-(SP) ;Push resource ID 
_GetNewl!Bar 
_setllenuBar 
_DrawllenuBar 

CLR.L -(SP) 
llOVE #FileID,-(SP) 

;Handle already on stack 
;Display menu bar 



Z6Z Mac Assembly Language 

Listing b-2. continued 

_GetMHandle ;Get handle to file menu 
MOVE.L (SP)+,FileHndl(AS) ;Save it for later use 

BSR Openllindow 

MainLoop 
BSR GetEvent 
BSR HandleEvent 
BRA MainLoop 

GetEvent 
CLR.B -(SP) 
MOVE #SFFFF I - (SP) 
PEA EventRecord 
_GetRextEvent 
TST.B (SP)+ 
BEQ GetEvent 
RTS 

;Open up the window 

;Leave space for Boolean result 
;Allow all events 
;Results are returned here 
;Check for an event 
;Pop and test the result flag 
;Branch if no pending event 

HandleEvent 
MOVE 
CMP 
BEQ 

EventRecord+evtRum,Da ;Get event type code 
#MButDwnEvt,DD ;Is it a button-down event? 
@2 ;Yes, so branch 

CMP 
BEQ 

RTS 

#DpdatEvt,DD 
@l. 

;Update event? 
;Yes, so branch 

;Ignore everything else 

* Handle an update event by redrawing the grow box. 
* In a complete application, you would redraw the text 
* and graphics in the window as well. 

@l. MOVE.L Ourllindow(AS),-(SP) 
_BeginDpdate 

MOVE.L Ourllindow(AS),AD 
PEA PortRect(AD) 
_EraseRect 

;Restrict to update region 

;The window rectangle 
;Erase the window 

MOVE.L Ourllindow(AS),-(SP) 
_DrawGrowicon ;Redraw the size box 

(redraw window contents here) 



Windows and Video Output 263 

Listing b-2. continued 

MOVE.L OurWindow(AS),-(SP) 
_EndUpdate ;Clear update region 

RTS 

* Handle mouse clicks: 

@2 -(SP) ;Space for result CLR 
MOVE.L 
PEA 

EventRecord+evtMouse,-(SP) ;Where info 
ClickWindow ;VAR window involved 

_Find Window 
MOVE (SP)+,DD 

;Where was button pressed? 
;Pop the result 

CMP #b,DD ;Above b? 
BHI Ignore ;Yes, so ignore 
ASL #2,DD ;Times .t; to step into table 
JMP ClickTable(PC,DD) 

Ignore RTS 

ClickTable 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 

Ignore 
DoMenuBar 
Ignore 
Ignore 
DoDrag 
DoGrow 
DoGoAway 

; Get menu selection: 

;InDesk 
;InMenuBar 
;InSysWindow 
;InContent 
;InDrag 
;InGrow 
;InGoAway 

DoMenuBar 
CLR.L 
PEA 

-(SP) ;space for result 
EventRecord+evtMouse ;Where 

_MenuSelect 
MOVE (SP)+,Db 
MOVE (SP)+,D7 

MOVE #0,-(SP) 
_HiliteMenu 

CMP 
BNE 

#FileID,Db 
GetEvent 

;Get menu selection 
;Save menu number in Db 
;Save item number in D7 

;Remove highlight from menu title 

;In the FILE menu? 
;No, so branch 



264 Mac Assembly Language 

Listing b-2. continued 

CMP 
BNE 

#2,07 

@1 

_ExitToShell 

;QUIT selected? 
;No, so branch 

;Return to Finder 

; Open the window: 

@1 BSR 
RTS 

Openllindow ;Open window again 

; Drag the window: 

Do Drag 
MOVE.L Ourllindow(AS),-(SP) 
MOVE.L EventRecord+evtMouse,-(SP) ;where 
PEA boundsRect ;bounding rectangle (constant) 
_Dragllindow ;Move window around screen 
RTS 

DoGoAway 
CLR. B - (SP) ; Space for Boolean result 
MOVE.L Ourllindow(AS),-(SP) 
MOVE.L EventRecord+evtMouse,-(SP) ;where 
_TrackGoAway 
TST.B (SP)+ 
BNE @1 
RTS 

;Is the result true? 
;Yes, so branch and close 

@1 MOVE. L Ourllindow (AS) I - (SP) 
_Disposllindow ;Get rid of window 

Enable the "open window" item: 

MOVE.L FileHndl(AS),-(SP) 
MOVE #1 1 -(SP) 
_Enableitem 
RTS 

* Track the mouse in the grow box until the button is released. 
* Then redraw the window with its new size. 



Windows and Video Output .265 

Listing b-2. continued 

DoGrow 
CLR.L -(SP) ;Space for result 
MOVE.L Ouriindow(AS),-(SP) 
MOVE.L EventRecord+evtMouse,-(SP) ;where 
PEA sizeRect 
_Growiindow 
MOVE.L (SP)+,Db ;Get new height, width 

BEQ @L ;Branch if size didn't change 

Resize and accumulate all of new window into update region. 
When the update event is handled, the window contents are 
erased and the grow box is redrawn. 

MOVE.L Ouriindow(AS),-(SP) 
MOVE. L Db I - (SP) ; New dimensions 
MOVE.B #-L,-(SP) ;-L =create update events 
_Sizeiindow ;Redraw window with new size 

MOVE.L Ouriindow(AS),AO 
PEA PortRect(AO) ;New window rectangle 
_InvalRect ;Force update of entire window 

@L RTS 

; Create and draw a window on the screen with grow box: 

Open Window 
CLR.L - (SP) 
MOVE #WindID,-(SP) 
MOVE .L #0, - (SP) 
MOVE.L #-L,-(SP) 
_GetNewUndow 

;Space for returned pointer 
;Resource ID 
;Store on heap 
;-L ~ front window 
;Get window from resource file 

MOVE.L (SP),-(SP) ;Replicate pointer on stack 
MOVE.L (SP),Ouriindow(AS) ;save pointer for later 
_DrawGrowicon ;Draw the grow box 

The next step ensures that our new window is the active 
drawing window. The pointer to the window is already on the 
stack. 



266 Mac Assembly Language 

Listing b-2. continued 

_SetPort ;Make window the active GrafPort 

Disable inapplicable menu item: 

MOVE.L FileBndl(AS),-(SP) 
MOVE #L,-(SP) 
_Disable!tem 
RTS 

;Disable 11 open window" item 

; The application constants: 

EventRecord DCB.B EvtBlkSize,O ;Space for event record 

ClickWindow DC.L 0 ;Pointer to window 

boundsRect DC.W 30,30,340,SDD ;Drag rectangle 

sizeRect DC.W 3D,2DD,327,4'lD ;h,w (min) h,w (max) 

; The application variables: 

OurWindow DS.L ;Pointer to our window 

FileBndl DS.L 

Linker Control File 
MainWind.Link 

;Bandle to file menu 

Link this file to create application 
(without resources). 

Main Wind 
$ 

* RMaker Source File 
* MainWind.R 

* * Compile this after assembling and linking MainWind.Asm 

* 
* The next command appends the resources to the application: 
!Book:MainWind 



Windows and Video Output 267 

Listing 6-2. continued 

Type MBAR ; GNRL 
,:L26 
.I 
2 

:L 
2 

Type MENU 
I], 

:Lt; 
About this demo .•. 

,2 
File 

Open Window 
Quit 

Type WIND 
,:L26 
Window Demo 
.i;a s 2sa .i;aa 
Visible GoAway 
D 

a 

;;Menu bar resource 

; ;Two menus 
;;ID of :Lst menu 
; ;ID of 2nd menu 

; ; Resource ID 
;;Title is the Apple symbol (ASCII $:LL;) 
; ;About box 

; ; Resource ID 
; ;Menu Title 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ goaway box 
;;Window ID. D; document window 
;;User-definable item (not used) 

The only subroutine in this program that requires more 
explanation than found in the program's comments is 
DoGrow, the one that handles activity in the size box. If the 
window is to be resized C_GrowWindow returns a nonzero 
result), _SizeWindow is called to redraw the window with its 
new size. The entire content region of the window is then 
accumulated into the window's update region by calling 
_lnvalRect. This causes the next update event to act on the 
entire window. In this program, update events erase the 
entire window. 

If the entire window was not made invalid like this, and the 
window was enlarged, the screen clearing operation would 
not erase the old scroll control shafts and size box because 
_SizeWindow only places the newly exposed areas of the 
window into the update region. 



268 Mac Assembly Language 

The Window Title 

The Window Manager has two instructions you can use to 
get the title of a window or set the title of a window: _GetW
Title and _SetWTitle. To get a title, use the following portion 
of code: 

MOVE.L theWindow(AS),-(SP) ;Push window pointer 
PEA TitleString(AS) ;Push address of string 
_GetWTitle 

TitleString DS ~a ;String returned here 

where TitleString is the address of a block of memory in the 
variable space where the string representing the window's title 
will be stored. The string is returned with a preceding length 
byte. The 40 bytes reserved with the DS 40 directive should be 
enough for the longest title string you're likely to use. 

The calling sequence for setting a title is similar: 

MOVE.L theWindow(AS),-(SP) ;Push window pointer 
PEA •New Title' ;[this pushes an address] 
_SetWTitle 

Notice how the PEA instruction is used here. Although its 
operand is a string constant, the MDS assembler converts 
the operand to the address at which the assembler stores 
the string. This will be somewhere after the end of the pro
gram code space in the area reserved for constants. This 
form of PEA is equivalent to an instruction sequence of the 
form: 

PEA MyString 
NOP 

llyString DC 'New Title' 

provided that the STRING_FORMAT directive is set to 3 so 
that the DC string is preceded by a length byte. 



Windows and Video Output 269 

Displaying Text 

Once you've created a window, you can easily display text 
in it using several QuickDraw instructions designed for that 
purpose. (See Table 6-3.) Unlike most computers, the text 
characters can be displayed in a variety of typefaces, styles, 
and sizes, thus you can craft the appearance of your output 
very carefully. 

Table 6-3. Trap Instructions Used to Draw text. 

_CharWidth 

CLR -(SP) 
MOVE #theChar,-(SP)
_CharWidth 
MOVE (SP)+,DD 

_DrawChar 

MOVE #theChar,-(SP) 
_DrawChar 

_DrawString 

PEA theString 
_Drawstring 

_DrawText 

PEA theText 

MOVE #firstChar,-(SP) 

MOVE #charcount,-(SP) 

_DrawText 

Returns the width of a 
character in pixels. 

;INTEGER: space for result 
;CHAR: character to test 

;Result: width of character 

Draws a character at the 
current pen position. 

;CHAR: character to draw 

Draws a character string at 
the current pen position. 

;POINTER: to the string 

Draws a sequence of 
characters at the current pen 
position. 

;POINTER: to a sequence of 
characters 

;INTEGER: Position of 1st 
character to draw 

;INTEGER: Number of characters 
to draw 



2 70 Mac Assembly Language 

Table 6-3. continued 

_GetFontlnfo 

PEA info 
_GetFontinfo 

Returns the characteristics for 
the current font. 

;VAR: font information record 

The font information record is four words long. The offsets to 
its fields are given by ascent, descent, widMax, and leading (all 
integers). 

_GetPen 

_Move 

PEA penLoc 
_GetPen 

MOVE #horiz,-(SP) 
MOVE #vert,-(SP) 
_Move 

_Move To 

MOVE #horiz,-(SP) 
MOVE #vert,-(SP) 
_MoveTo 

_ScrollRect 

PEA 
MOVE 

theRect 
#hScroll,-(SP) 

MOVE #vScroll,-(SP) 
MOVE.L updateRgn,-(SP) 
_scrollRect 

Returns the current pen 
position. 

;POINTER: to a point structure 

Moves the pen relative to its 
current position. 

;INTEGER: horizontal movement 
;INTEGER: vertical movement 

Moves the pen to an absolute 
position. 

;INTEGER: horizontal position 
;INTEGER: vertical position 

Scrolls the bits within a 
rectangle. 

;POINTER: to scroll rectangle 
;INTEGER: horizontal distance 
;INTEGER: vertical distance 
;HANDLE: to update region 

To scroll down and to the left, use positive scrolling distances. 
To scroll up and to the right, use negative scrolling distances. The 
newly exposed area is cleared to the window's background color 
and is added to the update region. 



Table 6-3. continued 

_String Width 

CLR -(SP) 
PEA theString 
_StringWidth 
llOVE (SP)+,DD 

_TextFace 

llOVE #typeStyle,-(SP) 
_TextFace 

_TextFont 

Windows and Video Output 271 

Returns the width of a 
character string. 

;INTEGER: space for result 
;POINTER: to the string 

;Result: width of string 

Sets the character style. 

;INTEGER: style word 

Selects the current drawing 
font. 

llOVE #fontNumber,-(SP) ;INTEGER: font number 
_TextFont 

_TextMode 

llOVE #mode,-(SP) 
_Textllode 

_TextSize 

llOVE #pointSize,-(SP) 
_TextSize 

_TextWidth 

CLR - (SP) 
PEA theText 
llOVE #firstChar,-(SP) 

llOVE #charcount,-(SP) 

_TextWidth 
llOVE (SP)+,DD 

Sets the source transfer mode 
for character drawing. 

;INTEGER: text transfer mode 

Sets the point size for the 
current font. 

;INTEGER: type size in points 

Returns the width of a 
sequence of characters. 

;INTEGER: space for result 
;POINTER: to the text 
;INTEGER: Position of Lst 

character in text 
;INTEGER: Number of characters 

to measure 

;Result: width of text 

The word font is used to describe a group of characters 
having the same general typeface and size. On the Macin
tosh, font definitions are resources of type FONT and are 



2 72 Mac Assembly Language 

usually stored in the resource fork of the System file so they 
are available to any application. A standard System file con
tains a great many fonts, including the system font (Chicago 
12), and the default application font (Geneva 12). Others can 
be removed (to save disk space) or added vvith an Apple util

ity program called Font/DA Mover. 
The size of a font is measured in a unit called points reflect

ing the height of the matrix in vvhich the characters are 

defined and dravvn. A point is roughly one seventy-second of 
an inch, so each character in a 12 point font, for example, is 
roughly one sixth of an inch high. 

Each character in a font is defined vvithin an imaginary rec
tangle, called the font rectangle, vvhich encloses the pixels 

used by the largest character in the font. (See Figure 6-3.) 
(Another rectangle, called the character rectangle, is the 
smallest rectangle enclosing the outline of the character.) 

Each of these pixels may be on or off. 

character 
origin 

font 
ascent 

leading i maxKern 

ascent 
,....----- line 

next character 
/ origin 

baseline 

descent 
line 

next ascent 
line 

Figure 6-3. The Characteristics of a Macintosh Font. 

A character is positioned relative to tvvo landmarks vvithin 
the font rectangle: the character origin and the baseline. This 
is done to ensure that the characters vvill line up smoothly on 



Windows and Video Output .2 73 

the same line. The baseline is an imaginary line on which the 
character is written. It serves much the same purpose as a 
line on a page of notebook paper. 

The ascent of a font is the number of pixels above the base
line and below the ascent line. The ascent line for a font is 
located just above the highest pixel of the tallest character in 
the font. Most characters occupy only the area between the 
ascent line and the baseline. 

The descent of a font is the number of pixels below the 
baseline and above the descent line. The descent line is 
located just below the lowest pixel used by any character in 
the font. The pixels between these two lines hold the 
descenders of letters such as g, j, p, q, and y. 

The leading of a font is the number of pixels between the 
descent line. of one row of characters and the ascent line of 
the next row below. This means the number of pixels 
between two aQiacent baselines is equal to ascent plus 
descent plus leading. 

The kem is the number of pixels between the character ori
gin and the left edge of the font rectangle. There is usually at 
least two columns of blank kern, so there will always be 
white space between act.iacent characters, even if the previ
ous character is the widest one in the font. 

You should also be familiar with the quantity called 
widMax. This represents the maximum width of a character 
in the font, and is simply the number of pixels between two 
aQiacent character origins. WidMax is an important attribute 
to know because you'll use it to quickly check whether you've 
got room to display a character on the current line in a 
window. 

The _ GetFontlnfo instruction returns the characteristics of 
the currently active font in a font information record. The 
four items in a font information record have the symbolic off
sets of ascent, descent, widMax, and leading. They are all 
integers. 

_GetFontlnfo takes a pointer to the record as a parameter, 
then fills that record with the values appropriate to the cur
rent font: 



2 7 4 Mac Assembly Language 

PEA Fontlnfo ;Address of record 
_GetFontinfo 

Fontinfo DCB.W ~.a ; Four words in record . 

The individual elements within the Fontinfo record can be 
accessed using the fixed offsets referred to above, and are 
defined in the MDS symbol definition files. Here's how to cal
culate the distance between rows for a given font: 

MOVE Fontinfo+ascent,DD 
ADD Fontlnfo+descent,DD 
ADD Fontlnfo+leading,DD 

This sequence merely adds together the ascent, descent, 
and leading fields in the Fontinfo record and stores the result 
in DO. 

Positioning the Pen 

Now that you've seen how a character is defined, let's see 
how to draw one in a window. The first thing to do is set the 
current drawing location to a position within the window. For 
obvious reasons, this location is called the pen position. 

When you first begin to draw text in the window, you will 
probably want to use the _MoveTo instruction to move to a 
particular horizontal and vertical position without drawing 
anything. For example, to move to location (50,75), use the 
following instructions: 

MOVE 
MOVE 
_MoveTo 

#50,-(SP) 
#75,-(SP) 

;Horizontal position 
;Vertical position 
;Move the pen 

Notice that the coordinates passed to _MoveTo are local 
coordinates. Recall also that when a window is first created, 
the (0,0) local coordinate refers to the top left-hand comer of 
its content region and that the coordinates increase to the 
right (horizontal) and down (vertical). 



Windows and Video Output 275 

Use the _Move instruction to move the pen to a position 
relative to its current position. For example, to move the pen 
position down 10 pixels and five pixels to the right, use the 
following instructions: 

MOVE 
MOVE 
_Move 

#5,-(SP) 

#10,-(SP) 

;Horizontal distance to move 
;Vertical distance to move 

The horizontal pen position is automatically advanced when 
you draw characters or strings of characters using the sub
routines you'll see in the next section. This means you don't 
have to explicitly set it after every drawing operation. 

If you ever want to know exactly where your pen is, use 
the _GetPen instruction: 

PEA penLoc ;addr. of record used by _GetPen 
_GetPen 

penLoc DC.L a ;this is a point: (h,v) 

On return from _ GetPen, the pen position is stored as a 
point at penLoc. Being a point record, you can access the 
coordinates separately by accessing the words at penLoc + v 
(vertical) and penLoc + h (horizontal). 

Here's a subroutine you can call to simulate the effect of a 
carriage return/line feed operation. It moves the pen position 
to the left side of the next character row on the screen. To 
do this, it first calculates the new vertical position by reading 
the current pen location and then adding ascent plus descent 
plus leading to its vertical component: 

PEA penLoc 
_Get Pen ;Get current location 
PEA Fontinfo 
_GetFontinfo ;Need ascent, leading 
MOVE penLoc+v,DO ;Get current vertical 
ADD Fontinfo+ascent,DO 
ADD Fontinfo+descent,DO 
ADD Fontinfo+leading,DO 



276 Mac Assembly Language 

llOVE #2,-(SP) 
llOVE DD,-(SP) 
_lloveTo 
RTS 

penLoc DC.L a 
Fontinfo DCB.W .t;,D 

;Horiz. pos. (left edge) 
;Vert. pos (next line) 

;this is a point: (h,v) 
;Four words in record 

Notice that I've set the left edge of the line to position 2 
rather than position 0. This was done so there would be room 
to display any pixels in the kem area of the character rectan
gle. The pen position always represents the character origin, 
therefore by setting the horizontal position to 2, you have 
room for two columns of kern pixels. 

It's up to you to ensure that you've got room to display 
another row of characters .in the window before calling the 
carriage return/line feed subroutine. You can do this by pre
calculating the new pen position, adding the font descent 
value to it, and comparing the result to the bottom coordi
nate of the window that is stored at offset Port
Rect +bottom from the start of the window record. If the 
new position is larger, you've run out of room. 

Setting Text Characteristics 

When a window is first created and then selected with 
_SetPort, a set of default text characteristics is initialized: 
the font to be used for drawing (Geneva), the style or type
face in which to draw the font (normal), and the size of the 
font C 12-point). With the instructions described in this sec
tion, you can override these defaults. 

To change the font used, pass a font number to the 
_ TextFont instruction: 

llOVE #fontRumber,-(SP) 
_TextFont 

The symbolic names for the various font numbers are 
shown in Table 6-4. With the exception of font numbers 0 and 



Windows and Video Output 277 

1 , these numbers are related to the resource ID number as 
follows: The ID number is 128 times the font number plus the 
size of the font, in points. Thus, the resource ID for a 24-point 
London font 00=6) is 792 (792 = 6*128 + 24). 

Table 6-4. The Symbolic Names for the Font Numbers 
Passed to TextFont. 

Symbolic Name Font Number 

sys Font 0 
applFont 1 
newYork 2 
geneva 3 
monaco 4 
venice 5 
london 6 
athens 7 
sanFran 8 
toronto 9 
cairo 11 
losAngeles 12 
times 20 
helvetica 21 
courier 22 
symbol 23 
mobile 24 

Font number zero (SysFont) refers to the system font 
used for such things as drawing the menu bar and window 
titles; this font is also called Chicago. Font number one (Appl
Font) refers to the default application font, Geneva. This is 
the font used to draw text within windows if you haven't spe
cifically selected another font. 

You may also want to change the size of the font from time 
to time. To do this, use_ TextSize by passing the point size on 
the stack as follows: 

llOVE #2.t; I - (SP) ;Select 2.t;-point 
_TextSize 



278 Mac Assembly Language 

If no font resource for that size is available, the resource 
for another size in the same font type will be scaled. The 
scaled characters will look best if the scaling factor is an even 
multiple. If a point size of zero is selected, the font resource 
having a size closest to the system font size ( 12) will be 
selected. 

Another text feature you can select is the style of typeface 
of the characters to be displayed. The style attributes are 
not part of the font resource file. They are added to the 
"raw" characters by QuickDraw as the characters are 
drawn. To select the style of the text, pass a style word on 
the stack to _ TextFace: 

MOVE Style(AS),-(SP) 
_TextFace 

Style DS.W L 

As shown in Figure 6-4, only the low-order seven bits in the 
style word are used, and each has a symbolic name associ
ated with it that reflects the style attribute it controls. You 
can set any combination of these bits using the BSET instruc
tion, to mix and match the basic style attributes: 

CLR 
BSET 
BSET 

Style{ AS) 
#outlineBit,Style(AS) 
#UlineBit,Style(AS) 

;Normal style 
;Set outline bit 
;Set underline bit 

The above instructions configure the Style variable for char
acters that are both outlined and underlined. 

There is one other drawing characteristic you may want to 
set up before you draw characters in a window: the source 
transfer mode. This mode governs how the pixels within a 
character rectangle are logically combined with the corre
sponding pixels on the writing surface in the window to form 
the pixel actually placed on the screen. The eight different 
transfer modes are summarized in Figure 6-5. 

The default transfer mode is srcOr, which means the two 
rectangles are superimposed to generate the result. This 



Low-order byte: 

7 6 5 4 
T 

not use d-

3 
f 

Windows and Video Output 2 79 

2 1 0 
'f 

.....___ bold 

ft6lfc 

underl 1ne 

condense 

extend 

Symbolic names for the bits in the style word: 

Name 81t # 

BoldBit 0 
ltalicBit 1 
UlineBit 2 
OutlineBit 3 
ShadowBit 4 
CondenseBi t 5 
ExtendBit 6 

Figure 6-4. The Style Word Used with _ TextFace. 



280 Mac Assembly Language 

SrcCopy 
PatCopy 

NotSrcCopy 
NotPatCopy 

source 
pattern 

SrcOr 
PatOr 

NotScrOr 
NotPatOr 

+ 

destination 
pattern 

ScrXOr 
PatXOr 

NotSrcXOr 
NotPatXOr 

SrcBic 
PatBic 

NotSrcBic 
NotPatBic 

Figure 6-5. Source Transfer Modes and Pattern Transfer Modes for Text 
and Graphics Operations. 



Windows and Video Output 281 

means any pixels in the destination rectangle that are below 
black pixels in the character rectangle will be forced to black; 
pixels below white pixels are not affected. For obvious rea
sons, srcOr is called an overlay transfer mode. 

Contrast this with srcCopy where whatever is in the char
acter rectangle replaces what's in the destination rectangle; 
srcXor, where screen pixels beneath black character pixels 
are inverted; and srcBic, where screen pixels beneath black 
character pixels are erased to white. The other four transfer 
modes are notsrcCopy, notsrcOr, notsrcXor, and notsrcBic. 
They all involve inverting the pixels in the destination rectan
gle before performing the combination calculation. 

You'll probably never have to use a mode other than srcOr, 
unless you're overwriting a non-white background and want 
to ensure that the text is readable. For example, if the back
ground is black, you can select the srcXor mode and the char
acters will appear in white; you can't use srcOr because you 
wouldn't see anything drawing black on black. 

Here's how to change the source transfer mode to srcXor: 

MOVE #srcxor,-(SP) 
_TextMode 

Notice that"#" must precede the srcXor symbol because it is 
a constant, not a memory location. 

Drawing Text 

Well, we're finally ready to actually display something in a 
window! There are only three basic instructions for doing 
this: _DrawChar, _Drawstring, and _DrawText. 

Use _DrawChar if you simply want to display a single char
acter on the screen. Here's how you would display the letter 
"a" at the current pen position: 

MOVE #'a',-(SP) ;Push character on stack 
_DrawChar 



282 Mac Assembly Language 

If you want to display a string of characters, it's much more 
convenient to use _Drawstring rather than to make 
repeated calls to _OrawChar for each character: 

STRING_FORMAT 3 

PEA My String 
_Drawstring 

;DC strings have length byte 

;A string constant 
;Draw it! 

MyString DC.B 'Bello world' ;(MDS inserts length byte) 

Notice that the string is preceded by a length byte that is 
automatically inserted by MOS because the STRING_ 
FORMAT directive is 3. 

Another way to print a string is to specify the string as the 
operand of the PEA instruction: 

PEA 'Bello world' 
_Drawstring 

In this case, MOS actually stores the string bytes at the end 
of the program code. 

Use the third character drawing subroutine, _DrawText, 
to print any sequence of characters within a data structure. 
The sequence must not begin with a length byte because you 
pass the length explicitly: 

MOVE.L textPtr(AS),-(SP) 
MOVE #40,-(SP) 
MOVE #22, - (SP) 
_DrawText 

textPtr DS.L 1 

;Pointer to a block of text 
;Start at byte #40 
;Print 22 characters 

Note that the first byte in a text string is byte zero, so byte 
40 actually describes the forty-first byte. 

This method of drawing text is most useful when you're 
accessing a group of fixed length messages. 



Windows and Video Output 285 

Spacing Control 

Use _CharWidth, _StringWidth, and _ TextWidth to deter
mine the width (in pixels) of the characters or text you would 
print with _DrawChar, _Drawstring, and _DrawText, 
respectively. The arguments are passed to the Width instruc
tions in the same way as the corresponding Draw instruc
tions, but you must use a CLR -CSP) instruction to clear space 
for an integer result first. After the call, be sure to pop the 
width result. You'll use the width instructions in situations 
where you want to ensure that you won't write past the 
right edge of a window. 

Example Programs Using Text Handling 
Instructions 

Listing 6-3 shows a program that uses many of Quick
draw's text handling instructions. It uses _ TextFont to set 
the font to SysFont (Chicago) and _ TextSize to set the font 
size to 12-point. An underlined font style is then selected by 
setting the underline bit in a style word and passing it to 
_TextFace. 

Listing b-3. The Source File and Linker Control File for 
the Text Program. 

* Asm Source File 
* Text.Asm 

* 
*This program shows how to display text in a window. 

STRING_FORMAT 3 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Precede DC strings with length 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 



284 Mac Assembly Language 

Listing b-3. continued 

Initialize the various Managers: 

PEA -.<;(AS) 
_InitGraf 
_InitFonts 
_InitWindows 
_InitMenus 
_TEI nit 
MOVE.L #0,-(SP) 
_Ini tDialogs 
_InitCursor 

MOVE.L #$DDDDFFFF,DD 
_FlushEvents 

Draw a window on the screen: 

CLR.L -(SP) 
MOVE.L #0,-(SP) 
PEA Window 
PEA 'Text Demo• 
MOVE.B #-L, - (SP) 

;Start of QD globals area 
;Initialize QuickDraw 
;Font Manager 
;Window Manager 
;Menu Manager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;We want arrow cursor 

;Get rid of every event 

;Space for returned pointer 
;D = store window in stack 
;Window rectangle 
;Window Title 
;-L = visible 

MOVE #documentProc,-(SP) ;Standard window type 
MOVE.L #-L, - (SP) ;-L = front window 
MOVE.B #0,-(SP) ;D = no go away button 
MOVE.L #0,-(SP) ;refCon 

NewWindow ;Draw the window 
MOVE.L (SP) ,WindPtr(AS) ;Save pointer to window 
_SetPort ;Make window active port 

Here are some text drawing instructions: 

MOVE #SysFont, - (SP) ; Select system font (Chicago) 
_TextFont 

MOVE #l.2,-(SP) 
_TextSize 

CLR 
BSET 
MOVE 

DD 
#ulineBit,DD 
DO,-(SP) 

_TextFace 

MOVE #20, - (SP) 

;L2 point text 

;Clear style bits to 0 
;Set underline style bit 

;Select the style (typeface) 

;h 



Windows and Video Output 285 

Listing b-3. continued 

llOVE 
_lloveTo 

LEA 
BSR 

#30,-(SP) 

TheString,Ab 
Center 

BSR DoBeep 

;v 
;!love to vertical position 30 

;Get EA of string to use 
;Draw string in center of window 

RTS ;Return to Pinder 

* This subroutine centers a string on the current line. 
* On entry, Ab points to the string. 

Center 
llOVE.L WindPtr(AS),AO 
llOVE PortRect+right(AO),Db ;Right edge of window 
llOVE PortRect+left(AO),DS ;Left edge of window 
SUB DS,Db ;Width of window in Db 

CLR -(SP) 
llOVE.L Ab,-(SP) 
_stringWidth 
MOVE (SP)+,DO 

SUB DO,Db 
LSR #1,Db 
ADD DS,Db 

PEA penLoc 
_GetPen 
llOVE penLoc+v,M 

llOVE Db,-(SP) 
MOVE Dt;,-(SP) 
_MoveTo 

MOVE.L Ab,-(SP) 
_Drawstring 

RTS 

;space for result 
;Push pointer to string 
;Get width of string 
;Pop the result 

;Calculate size of white space 
;Divide by 2 to get left size 
;Add left size to left edge 

;Get vertical coordinate 

;h db 
;v dt; 
;Move to proper position 

;Pointer to string 
;Draw the string 

* Beep, wait for a mouse click, then clear screen: 



286 Mac Assembly Language 

Listing 6-3. continued 

DoBeep MOVE #30,-(SP) 
_Sys Beep 

GetllyEvent 
CLR.B -(SP) 
llOVE #-L,-(SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetMyEvent 

;L/2 second beep 

;Leave space for Boolean result 
;Allow all events 
;Results are returned here 
;Check for an event 
;Pop and test the result flag 
;Branch if null event 

MOVE EventRecord+evtNum,DO ;Get event type 
CMP #mButDwnEvt,DO ;Is it a button-down event? 
BNE GetMyEvent 

MOVE.L WindPtr(A5),AO 
PEA PortRect(AO) 
_EraseRect 

RTS 

;No, so loop 

;PortRect contains window coordinates 
;Erase the content region 

; Here are the program constants: 

EventRecord DCB.B EvtBlkSize,o ;Space for event record 

Window DC.W 50,50,300,~50 ;window rectangle 

penLoc DC.L o ; Pen position 

TheString DC 1This string is centered and underlined' 

; The program variables begin here: 

WindPtr DS.L 

Linker Control File 
Text.Link 

Text 
$ 

L ;Pointer to window 



Windows and Video Output 287 

The main subroutine in the program is called Center. It cen
ters the display of a string on the current line. When you call 
it, A6 must point to a standard string (one that is preceded 
by a length byte). 

In the example, the string is defined with a DC directive. Since 
the default MDS format for such a string is text with no length 
or trailing 0 byte, STRING_FORMAT is set equal to 3 at the 
beginning of the program. This directs the assembler to include 
the preceding length byte, as required by _DrawString. 

Center determines where to start drawing the text string 
by first calculating the width of the window rectangle. It does 
this by subtracting the left edge, stored PortRect +left bytes 
into the window record from the right edge, stored at an off
set of PortRect +right. It then uses _String Width to get the 
width of the string in pixels, and subtracts it from the window 
width. This yields the width of the unused part of the line. By 
dividing this number by two and adding it to the left position 
of the window, the program determines the horizontal posi
tion at which to begin drawing. 

To get the vertical position, it first calls _GetPen to deter
mine the current pen location. The vertical coordinate is 
located v bytes into the point record returned by _ GetPen. 
The program then calls _MoveTo to position the pen and 
draws the string with _Drawstring. 

Another interesting program is shown in Listing 6-4. It dem
onstrates how to display characters in a window without 
drawing past its right edge or below its bottom. If there isn't 
enough room on the right side, the program draws the char
acter on the left side of the next line. If you're already on the 
last line, the contents of the window are scrolled up one line, 
clearing a new bottom line in the process. Scrolling also 
occurs if you press RETURN while on the bottom line. 

Listing b-~. The Source File, Linker Control File, and 
RMaker File for the Scroll Program. 

Asm Source File 
Scroll.Asm 
This program shows how to display text in a window. 
The window is scrolled if RETURN is pressed on the bottom line. 



.288 Mac Assembly Language 

Listing b-t;. con1:lnued 

llindID EQU :L26 
File ID EQU 2 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Window ID 
;Menu ID for File menu 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -i;(AS) 
_InitGraf 
_InitFonts 
_Initllindows 
_InitMenus 
_TEI nit 

;Start of QuickDraw globals 
;Initialize QuickDraw 

MOVE.L #0,-(SP) 
_InitDialogs 
_InitCursor 
MOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Font Manager 
;llindow llanager 
;llenu llanager 
;TextEdit 
;(no restart procedure) 
;Dialog llanager 
;lie want arrow cursor 

;Get rid of every event 

Create and draw a window on the screen: 

CLR.L -(SP) ;Space for returned pointer 
MOVE #llindID, - (SP) ;Resource ID 
MOVE.L #0,-(SP) ;Store on heap 
MOVE.L #-:L, - (SP) ;-:L = front window 
_GetNewllindow ;Get window from resource file 
_Set Port ;!lake the window the current 

Create the menu bar and display it: 

CLR.L -(SP) 
MOVE #:L26,-(SP) ;llenu bar ID 
_GetNewMBar ;Load from resource file 
_setllenuBar ;!lake it current 
_DrawllenuBar ;Draw it 

;!love the pen to the start of the first line: 



Windows and Video Output 289 

Listing b-.t:;. continued 

PEA InfoRecord 
_GetFontinfo ;Get font characteristics 

MOVE #2,-(SP) ;Start at left edge 
MOVE InfoRecord+ascent,-(SP) ;Leave room for ascent 
_MoveTo 

GetEvent 
JSR DoCursor 

GetEventl. 
CLR.B -(SP) 
MOVE #$FFFF,-(SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetEventL 

;Display a cursor 

;Leave space for Boolean result 
;Allow all events 
;Results are returned here 
;Check for an event 
;Pop and test the result flag 
;Branch if no pending event 

llOVE EventRecord+evtNum,DD ;Get event type code 
CMP #KeyDwnEvt,DD ;Key-down event? 
BEQ DoKeyDown ;Yes, so branch 

CMP #AutoKeyEvt,DD ;Key repeat? 
BEQ DoKeyDown ;Yes, so branch 

CMP #mButDwnEvt,DD ;Is it a button-down event? 
BNE GetEventL ;No, so branch 

Bandle mouse button down event: 

CLR -(SP) ;Space for result 
llOVE.L EventRecord+evtMouse,-(SP) ;Where info 
PEA ClickWindow ;VAR window involved 
_FindWindow ;Where was button pressed? 
CMPI #InMenuBar,(SP)+ ;Pressed in menu bar? 
BNE GetEventL ;No, so ignore 

See if QUIT was selected from File menu: 

CLR.L -(SP) ;space for result 
PEA EventRecord+evtMouse ;Where 



.290 Mac Assembly Language 

Listing b-L;. continued 

_llenuSelect 
llOVE (SP)+,Db 
llOVE (SP)+,DD 

llOVE #0, - (SP) 
_Bilitellenu 

CllP 
BNE 

#FileID,Db 
GetEventL 

_Exi tToShell 

Bandle the key-down event: 

;Get menu selection 
;save menu number in Db 
;Discard item number 

;Remove highlight from title 

;In the FILE menu? 
;No, so branch 

;Return to Finder 

DoKeyDown 
llOVE 
CllP.B 
BBS 

EventRecord+evtllessage+2,Db 
#32,Db ;Is code >= 

; Get ASCII code 
32? 

ShowChar 

CllP.B #L3,Db 
BNE @L 

JSR CRLF 
BRA GetEvent 

@L llOVE #LO,-(SP) 
_Sys Beep 
BRA GetEventL 

ShowChar 
PEA penLoc 
_GetPen 

CLR -(SP) 
llOVE Db,-(SP) 
_Charil id th 
MOVE (SP)+,DS 
ADD penLoc+h,DS 

PEA Activel!indow 
_GetPort 

;Yes, so branch 

; Is it RETURN? 
;No, so ignore it 

;Advance to next line 

;Beep for control characters 
;Beep for L/b second 

;Get current pen position 

;Get width of character 

;DS = new position if we draw 

;Get active drawing window 



Windows and Video Output 291 

Listing b-L;. continued 

MOVE.L ActiveWindow,AD 
CMP PortRect+right(AO),DS ;Past right edge? 
BLO @1 ; It 1 s lower, so branch 

JSR CRLF ;Advance to next line 

@1 JSR UndoCursor ;Remove the cursor 

MOVE Db,-(SP) 
_DrawChar ;Draw the character 
BRA GetEvent 

* Move the pen to the left side of the next line, 
* scrolling the screen, if necessary: 

CRLF JSR UndoCursor ;Remove cursor 

PEA InfoRecord 
_GetFontinfo ;Get font characteristics 

PEA penLoc 
_GetPen ;Get pen position 

PEA ActiveWindow 
_GetPort ;Get active window 

MOVE InfoRecord+ascent,DD 
ADD InfoRecord+descent,DD 
ADD InfoRecord+leading,DD ;Get height of font 
MOVE DD,Height(AS) 

MOVE.L Ac ti veWindow, A~ 

MOVE penLoc+v,DD 
ADD Height(AS),DD 
ADD InfoRecord+leading,DD ;Distance to next line 
CMP PortRect+bottom(A~),DD ;Room for next line? 
BHS Scroll ;No, so scroll 

MOVE penLoc+v,DD 
ADD Height(AS),DD ;new v 
MOVE #2,-(SP) ;h 
MOVE DO,-(SP) ;v 



292 Mac Assembly Language 

Listing b-L;. continued 

_Move To 
RTS 

Scroll CLR.L -(SP) 
_NewRgn ;Get handle to new empty region 
MOVE.L (SP)+,Ab 

PEA PortRect(At;) ;Window rectangle 
MOVE #D,-(SP) ;Don't scroll horizontally 
MOVE Height( AS) ,DD ;# of pixels to scroll 
NEG DD ;Negative ==> scroll up 
MOVE DD,-(SP) 
MOVE.L Ab,-(SP) ;Handle to update region 
_ScrollRect ;Scroll, clear bottom line 

MOVE #2,-(SP) ;h = left edge 
MOVE penLoc+v, - (SP) ; Keep the same v 
_MoveTo ;Move to left side 

MOVE. L lib, - (SP) 
_DisposRgn ;Destroy region (it's not used) 

RTS 

Display a black-box cursor: 

DoCursor 
PEA penLoc 
_GetPen ;Get pen position 

PEA InfoRecord 
_GetFontinfo ;Get font dimensions 

MOVE penLoc+h,DD ;Calculate left, right 
MOVE DD,CursRect+left(AS) ; coords of cursor box 
ADDQ #B,DD ;(B pixels wide) 
MOVE DD,CursRect+right(AS) 

MOVE penLoc+v,DD ;Calculate top, bottom 
MOVE DD,CursRect+bottom(AS) coords of cursor box 
SUB InfoRecord+ascent,DD 
MOVE DD,CursRect+top(AS) 



Listing b-t;. continued 

PEA 
PEA 

CursRect(AS) 
AllBlack 

_FillRect 
RTS 

; Erase the cursor rectangle: 

UndoCursor 
PEA CursRect(AS) 
_EraseRect 
RTS 

; The application constants: 

Windows and Video Output 293 

;Pointer to pattern 
;Black box cursor 

;Remove the cursor 

EventRecord DCB.B EvtBlkSize,D ;Space for event record 

ClickWindow DC.L D ;Pointer to window 

penLoc DC.L a 

Active Window DC.L a 

InfoRecord DCB.W ~.a ;Font information record 

AllBlack DC.B $FF,$1F,$F1,$FF ;A solid black pattern 
DC.B $F1 1 $FF,$11,$11 

; The application variables: 

Height DS 

CursRect DS.W 

Linker Control File 
Scroll.Link 

;Height of font stored here 

;Cursor rectangle 

Link this file to create an application 
(without resources). 

Scroll 
$ 



294 Mac Assembly Language 

Listing b-t;. continued 

* RMaker Source File 
* Scroll.R 

* 
* Compile this after assembling and linking Scroll.Asm 

* 
* The next command appends the resources to the application: 
!Book:Scroll 

Type MBAR 
,128 
.I 
2 
1 
2 

Type MENU 
,1 
\1t; 

GNRL 

About this demo ... 
(-

,2 
File 

Quit 

Type WIND 
,12& 
Text Entry Window 
t;O 5 332 502 

Visible NoGoAway 
t; 

a 

;;Menu bar resource 
; ; Resource ID 
;;Decimal integers follow 
;;Number of menus 
; ;ID of 1st menu 
; ;ID of 2nd menu 

; ; Resource ID 
;;Title is the Apple symbol 
; ;About box 
;;Dimmed line 

; ; Resource ID 
; ;Menu Title 
;;Only item is Quit 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID. t; =title, no grow box 
;;User-definable item (not used) 

The portion of the program that processes key-down 
events starts at Do Key Down. It reacts to character codes 
corresponding to the RETURN key (code 13) or printable 
symbols only (codes 32 to 255); anything else causes the 
speaker to beep for one-sixth of a second. 



Windows and Video Output 295 

The main subroutine in the program is called CRLF. It posi
tions the pen on the left side of the next line in the window, 
scrolling the window contents if necessary. To determine if 
scrolling is necessary, it first adds the height of the font to 
the current vertical position, which is always on the charac
ter baseline, and to the leading. If the result is higher than or 
the same as the bottom coordinate of the window, a scrolling 
operation is needed and the BHS Scroll branch takes place 
CBHS is the same as BCC); otherwise, _MoveTo is used to 
move the pen to the left of the next line. 

Scrolling is accomplished using _ScrollRect, a trap instruc
tion called as follows: 

PEA theRect ;Rectangle in which to scroll 
BOVE #hScroll,-(SP) ;horizontal scroll distance 
BOVE #vScroll,-(SP) ;vertical scroll distance 
BOVE.L updateRgn,-(SP) ;Handle to update region 
_scrollRect 

The scrolling distances are in pixels. Positive values are 
used to scroll down ChScroll) and to the left CvScroll); nega
tive values are used to scroll up ChScroll) and to the right 
CvScroll). The area exposed as a result of the scroll is cleared 
to the window's background color (usually white) and is accu
mulated in the region whose handle is given by updateRgn. 
The bits that disappear during the scroll are not saved. If nec
essary, you can force an update event to occur by passing 
this handle to _lnvalRgn. An update handler would redraw 
the newly exposed portion of the data structure being dis
played in the window. Since this program doesn't need to fill 
the bottom line with anything, it does not do this. 

This program uses _NewRgn to get a handle to a new, 
empty region _ScrollRect can use. The calling sequence for 
_NewRgn is: 

CLR.L -(SP) 
_RewRgn 
BOVE.L (SP)+,AD 

;Space for result 

;Pop handle to region 



.296 Mac Assembly Language 

Since we don't need the region filled by _ScrollRect, we 
destroy it by calling _OisposRgn before leaving the CRLF sub
routine. If this wasn't done, the region would continue to 
grow as CRLF is called again and again. 

The CRLF subroutine is called if RETURN is pressed, or if a 
character is pressed near the right edge of the window. The 
portion of the program beginning at ShowChar shows how to 
check that the horizontal pen position will not extend past the 
right edge of the window should a character be drawn. If 
there's room, _DrawChar is called right away; otherwise it is 
called after calling CRLF. 

The program also has a subroutine called DoCursor that 
displays a solid black cursor on the screen. The cursor is a 
rectangle with a width of eight pixels and a height the same 
as the ascent for the font. The bottom left position of the rec
tangle coincides with the current pen position. The rectangle 
is filled with black using the _FillRect instruction described in 
the next section of this chapter. 

The UndoCursor subroutine removes the cursor and is 
called before drawing a character or before moving the cur
sor with the CRLF subroutine. The cursor is erased using the 
_EraseRect instruction. 

Handy Utilities 

One of the more common things you will want to display on 
the screen is the numeric result of a calculation. To do this, 
you first have to convert the number, which is usually in 
binary form, to a string of ASCII characters representing the 
decimal representation of the number. Once you convert, it's 
an easy matter to display the string using the _Drawstring 
instruction. 

The Macintosh operating system has a standard instruc
tion for converting binary numbers into an ASCII string. It is 
part of a package of standard subroutines accessed using the 
_Pack7 instruction: 



Windows and Video Output 297 

LEA String(AS),AO ;Put address of string in AD 
MOVE.L #myNumber,DO ;Put number in DD.L 
MOVE #0,-(SP) ;SELECTOR: a = number to string 
Pack7 -

String DS.11 1b ;Space for string 

The word placed on the stack just before calling _Pack7 is 
called the routine selector because it determines which of the 
subroutines contained in the package is to take control. In 
this case, the selector 0 selects the number to string 
conversion. 

If you prefer you can replace the two-instruction sequence: 

MOVE #0,-(SP) 
_Pack7 

with the easier-to-remember instruction, _NumToString. 
This instruction is really an MOS macro defined in the stan
dard symbol file called PackMacs.txt. Use the INCLUDE direc
tive to merge this file with your program source file. 

There are only two valid _Pack7 routine selectors; the 
other is 1 , which selects the opposite conversion, from string 
to binary number. The macro for this selection is _Str
ingToNum. Before calling it, transfer the address of the string 
into the AO register. The result is returned in DO.L. 

Displaying Graphics 

The Macintosh is probably more famous for its ability to dis
play graphics than anything else. QuickDraw contains many, 
many instructions that can be used to draw points, rectan
gles, ovals, rounded-corner rectangles, arcs, regions, and pic
tures on the screen. In this section we'll iook at a few of 
these instructions. 



298 Mac Assembly Language 

Table 6-5. Trap Instructions Used to Draw Graphics. 

_ClosePgon 

_ClosePgon 

_EraseArc 

PEA 
MOVE 
MOVE 

inRect 
#startAngle,-(SP) 
#arcAngle, - (SP) 

_Erase Arc 

_EraseOval 

PEA inRect 
_EraseOval 

_Erase Poly 

MOVE.L thePolygon,-(SP) 
_ErasePoly 

_EraseRect 

PEA theRect 
_EraseRect 

_EraseRoundRect 

PEA theRect 

Closes the open polygon 
record. 

;(no parameters) 

Erases an arc. 

;POINTER: to arc's rectangle 
;INTEGER: starting angle 
;INTEGER: extent of the arc 

Erases an oval. 

;POINTER: to oval's rectangle 

Erases a polygon. 

;HANDLE: to the polygon 

Erases a rectangle. 

;POINTER: to the rectangle 

Erases a round-comer 
rectangle. 

;POINTER: to the rectangle 
MOVE #cornerWidth,-(SP) ;INTEGER: width of corner oval 
MOVE #cornerHeight,-(SP) ;INTEGER: height of corner oval 
_EraseRoundRect 

_FillArc Fills an arc with a pattern. 

PEA inRect ;POINTER: to arc's rectangle 
MOVE #startAngle,-(SP) ;INTEGER: starting angle 
MOVE #arcAngle,-(SP) ;INTEGER: extent of the arc 
PEA fillPat ;POINTER: to the fill pattern 
Fill Arc -



Table 6-5. continued 

_FillOval 

PEA 
PEA 

inRect 
fillPat 

_FillOval 

_FillPoly 

MOVE.L thePolygon,-(SP) 
PEA fillPat 
_FillPoly 

_FillRect 

PEA 
PEA 

theRect 
fillPat 

_FillRect 

_FillRoundRect 

PEA theRect 

Windows and Video Output 299 

Fills an oval with a pattern. 

;POINTER: to oval's rectangle 
;POINTER: to the fill pattern 

Fills a polygon with a pattern. 

;HANDLE: to the polygon 
;POINTER: to the fill pattern 

Fills a rectangle with a pattern. 

;POINTER: to the rectangle 
;POINTER: to the fill pattern 

Fills a round-corner rectangle 
with a pattern. 

;POINTER: to the rectangle 
MOVE #cornerWidth,-(SP) ;INTEGER: width of corner oval 
MOVE #cornerHeight,-(SP) ;INTEGER: height of corner oval 
PEA fillPat ;POINTER: to the fill pattern 
_FillRoundRect 

_FrameArc 

PEA 
MOVE 
MOVE 

inRect 
#startAngle,-(SP) 
#arcAngle,-(SP) 

_Frame Arc 

_FrameOval 

PEA inRect 
_Frameoval 

_FramePoly 

MOVE.L thePolygon,-(SP) 
_FramePoly 

Frames an arc. 

;POINTER: to arc's rectangle 
;INTEGER: starting angle 
;INTEGER: extent of the arc 

Frames an oval. 

;POINTER: to oval's rectangle 

Frames a polygon. 

;HANDLE: to the polygon 



300 Mac Assembly Language 

Table 6-5. continued 

_FrameRect 

PEA theRect 
_FrameRect 

_FrameRoundRect 

Frames a rectangle. 

;POINTER: to the rectangle 

Frames a round-comer 
rectangle. 

PEA theRect ;POINTER: to the rectangle 
MOVE #corneriidth,-(SP) ;INTEGER: width of corner oval 
MOVE #cornerHeight,-(SP) ;INTEGER: height of corner oval 
_FrameRoundRect 

_GetPenState Returns the pen characteristics 
in a pen state record. 

PEA curState ;POINTER: to pen state record 
_GetpenState 

The pen state record is PSRec ( 18) bytes long. 

_lnverRect 

PEA theRect 
_InverRect 

_lnverRoundRect 

PEA theRect 
_InverRoundRect 

_lnvertArc 

Inverts a rectangle. 

;POINTER: to the rectangle 

Inverts a round-comer 
rectangle. 

;POINTER: to the rectangle 

Inverts an arc. 

PEA inRect ;POINTER: to arc's rectangle 
MOVE #startAngle,-(SP) ;INTEGER: starting angle 
MOVE #arcAngle,-(SP) ;INTEGER: extent of the arc 
_InvertArc 

_lnvertOval Inverts an oval. 

PEA inRect ;POINTER: to oval's rectangle 
_Invertoval 



Table 6-5. continued 

_lnvertPoly 

MOVE.L thePolygon,-(SP) 
_InvertPoly 

_Kill Poly 

MOVE.L thePolygon,-(SP) 
_K111Poly 

_Line 

MOVE #horiz,-(SP) 
MOVE #vert,-(SP) 
_Line 

_Line To 

MOVE #horiz,-(SP) 
MOVE #vert,-(SP) 
_LineTo 

_NumToString 

LEA theString,AD 
MOVE.L #theNumber,DD 
MOVE #0,-(SP) 
_Pack? 

_OpenPoly 

CLR.L -(SP) 
_OpenPoly 
MOVE.L (SP)+,AO 

Windows and Video Output .301 

Inverts a polygon. 

;HANDLE: to the polygon 

Destroys a polygon record and 
frees up the space it uses. 

;HANDLE: to the polygon record 

Draws a line to a position 
relative to the current pen 
position. 

;INTEGER: horizontal movement 
;INTEGER: vertical movement 

Draws a line to an absolute 
pen position. 

;INTEGER: horizontal position 
;INTEGER: vertical position 

Converts a binary number to 
an ASCII string. 

;AD = pointer to string 
;DD.L = number to convert 
;INTEGER: 0 = _NumToString 

Creates an empty polygon 
record and opens it. 

;HANDLE: space for result 

;Result: handle to polygon 
record 



302 Mac Assembly Language 

Table 6-5. continued 

_PaintArc 

PEA inRect 
MOVE #StartAngle,-(SP) 
MOVE #arcAngle,-(SP) 
_PaintArc 

_PaintOval 

PEA inRect 
_PaintOval 

_PaintPoly 

MOVE.L thePolygon,-(SP) 
_PaintPoly 

_PaintRect 

PEA theRect 
_PaintRect 

_PaintRoundRect 

PEA theRect 
_PaintRoundRect 

_PenMode 

MOVE #newMode,-(SP) 
_PenMode 

_PenNormal 

_PenNormal 

Fills an arc with the pen 
pattern. 

;POINTER: to arc's rectangle 
;INTEGER: starting angle 
;INTEGER: extent of the arc 

Fills an oval with the pen 
pattern. 

;POINTER: to oval's rectangle 

Fills a polygon with the pen 
pattern. 

;HANDLE: to the polygon 

Fills a rectangle with the pen 
pattern. 

;POINTER: to the rectangle 

Fills a round-comer rectangle 
with the pen pattern. 

;POINTER: to the rectangle 

Sets the new pen transfer 
mode. 

;INTEGER: new pen transfer mode 

Assigns default values to the 
pen size, pattern, and transfer 
mode. 

;(no parameters) 



Table 6-5. continued 

_PenPat 

PEA newPat 
_Pen Pat 

_PenSize 

Windows and Video Output 303 

Sets the new pen pattern. 

;POINTER: to the new pattern 

Sets the new width and height 
of the graphics pen. 

MOVE #newWidth,-(SP) 
MOVE #newHeight,-(SP) 

;INTEGER: new pen width 

_StringToNum 

LEA theString,AO 
MOVE #L,-(SP) 
_Pack7 

Converts an ASCII digit string 
to a binary number. 

;AO = pointer to string 
;INTEGER: L = _StringToNum 
;Result is in DO.L 

Setting Pen Characteristics 

Just as when drawing text, you must first set up the pen 
characteristics before starting to draw graphic images., in a 
window, if you're not satisified with the default values. The 
three instructions for doing this are _PenSize, _PenMode, 
and _PenPat. (See Figure 6-6.) 

Use _PenSize to set the dimensions of the rectangular nib 
of the pen. The nib of the pen hangs down and to the right of 
the pen's position. The top-left corner of the pen is aligned 
with the pen coordinates. The standard dimensions of the 
pen nib are ( 1 , 1 ) , which means that it consists of just one 
pixel. Here's how you would set the pen size to 10 pixels wide 
by 15 pixels high: 

MOVE 
MOVE 
_PenSize 

#LO,-(SP) 
#LS,-(SP) 

;width 
;height 

The _PenMode instruction sets the pattern transfer mode 
for graphic drawing operations. These modes are analogous 



504 Mac Assembly Language 

Pen Demo 

~width 
~ 

r~ height 

Figure 6-6. The Macintosh Drawing Pen. 

to the source transfer modes described above that are used 

in connection with text drawing operations. The default 
transfer mode is patCopy, the overlay mode. 

The _PenPat instruction is used to set the pattern of the 
"ink" that. comes out of the pen as you draw. A pattern is 
simply an 8x8 rectangular bit image defined by a sequence of 
eight bytes in memory. As shown in Figure 6-7. each byte 

defines the image in one row of the pattern; as usual, a one 
bit corresponds to a black pixel, a zero bit to a white pixel. 

To set the pen pattern, you must pass the address of the 
pattern's data structure on the stack: 

PEA MyPattern 
_PenPat 

MyPattern DC.B $01,$~2,$2~,$10,$10,$2~,$~2,$01 

The pattern defined is the X shown in Figure 6-7. The default 
pen pattern is a solid black image. 

If you've been fiddling with the pen characteristics and 
want to restore the standard default conditions, use _Pen
Normal. This sets the pen size to ( 1 , 1 ) , the pen pattern to 



Windows and Video Output 305 

10000001 
01000010 
00100100 

/ _,...,...,.--------- 0 0 0 1 1 0 0 0 
:::::-------00100100 
-------~-- 0 1 0 0 0 0 1 0 .........-
----10000001 

$81 
$42 
$24 
$18 
$18 
$24 
$42 
$81 

the pattern binary 
representat 1 on 

hexadec1 mal 
represent at 1 on 

Figure 6-7. Defining a Pattern. 

black, and a transfer mode of patCopy. _PenNormal requires 
no parameters. 

If you don't know the current pen characteristics, use 
_ GetPenState to return them in a pen state record: 

PEA PenState 
_GetPenState 

PenState DC.L 0 
DC.L 0 

DC.Ii 0 
DCB.B 6,0 

;Address of record 

;Point: location of pen 
;Width and height of pen 
;Pen transfer mode 
;Pen pattern 

The standard names for the offsets from PenState to the 
four elements in the pen state record are psLoc (0), psSize 
(4), psMode (8), and psPat ( 10). 

Drawing Lines 

To position the pen for a graphics drawing operation, use 
the _Move and _MoveTo instructions, just as you do when 
positioning it for text drawing operations. The pen does not 



S06 Mac Assembly Language 

draw anything on the screen when these instructions are 
used. 

To draw lines in the window, use the _Line and _LineTo 
instructions. _Line draws a line to a point that is expressed in 
terms of relative coordinates. The destination position is cal
culated by adding the current pen coordinates to the dis
tances passed on the stack as follows: 

llOVE 
llOVE 
_Line 

#L3 1 -(SP) 
#22,-(SP) 

;horiz=horiz+L3 
;vert=vert+22 

If you wish to move to an absolute position in the window 
instead, you can use _LineTo like this: 

llOVE 
llOVE 
_LineTo 

#50,-(SP) 
#bO,-(SP) 

;horizontal position 
;vertical position 
;!love to (50,bO) 

Both _Line and _LineTo automatically assign the current pen 
location to the destination location. 

Drawing Shapes 

QuickDraw has many instructions you can use to draw any 
of several classes of shapes on the screen. In this section I'll 
describe those used with rectangles, round-corner rectan
gles, ovals, arcs, and polygons. 

There are five fundamental shape-drawing operations sup
ported by the QuickDraw instructions: 

Framing: drawing an outline of the shape. 
Painting: filling a shape with the current pen pattern using the cur

rent pen transfer mode. 
Erasing: filling a shape with the window's current background pat

tern (usually white). The transfer mode used is always patCopy. 
Inverting: changing white pixels within the shape to black and vice 

versa. 
Filling: filling a shape with a given pattern. The transfer mode used 

is always patCopy. 



Windows and Video Output 507 

Let's see how to perform these operations on the most com
mon QuickDraw shapes. 

Rectangles 

As you saw earlier in this chapter, a rectangle is a data 
structure made up of two points that define its top-left and 
bottom-right coordinates, in that order. This ordering is often 
abbreviated as "TLBR". For example, suppose the top-left 
and bottom-right coordinates of a rectangle are (10,20) and 
(200,300). The data structure for the rectangle would be: 

Rectangle DC.W 20,10,300,200 ;TLBR 

The standard drawing instructions for rectangles are 
_FrameRect, _PaintRect, _EraseRect, _InverRect, and 
_FillRect. The first four of these are called by first pushing 
the address of the rectangle's data structure on the stack. 
_FillRect also requires you to push the address of the data 
structure containing the 8-byte pattern definition. 

Ovals 

The data structure for an oval is actually the same as a rec
tangle because the shape of the oval is dictated by the dimen
sions of a bounding rectangle in which it is inscribed. The 
standard drawing instructions are _FrameOval, _PaintOval, 
_EraseOval, _InvertOval, and _FillOval. They are called in the 
very same way as the corresponding instructions for 
rectangles. 

Round-Comer Rectangles 

A round-corner rectangle is a rectangle whose corners are 
rounded in the shape of small ovals that are invisibly inscribed 
in its comers. The curvature of the corner is dictated by the 
height and width of the oval's axes. The standard drawing 



308 Mac Assembly Language 

instructions are _FrameRoundRect, _PaintRoundRect, 
_EraseRoundRect, _InverRoundRect, and _FillRoundRect. 
Before you call them, you must first push the address of the 
rectangle's data structure and the width and height of the 
axes of the corner oval. For _FillRoundRect you must also 
push the address of the data structure for the fill pattern. 

Arcs 

An arc is simply a portion of the outline of an oval. (See Fig
ure 6-8.) It is defined in terms of the bounding rectangle for 
the oval; the angle at which the arc begins, measured clock
wise from the positive vertical axis of the oval; and the angu
lar extent of the arc. 

Note that all angles are expressed in degrees (from 0 to 
359), not radians. In addition, since the angles to the corners 
of the rectangle are always deemed to be 45, 135, 225, and 
315, respectively, the angles used by the arc instructions are 
not true circular degrees unless the rectangle is a square. 

The standard drawing instructions are _FrameArc, 
_PaintArc, _EraseArc, _InverArc, and _FillArc. The parame
ters you must pass to them on the stack are, in order: the 
address of the rectangle's data structure, the starting angle, 
and the angular extent. If you use _FillArc, you also have to 
push the address of the data structure that defines the fill 
pattern. 

The area affected by the paint, erase, invert, and fill opera
tions is actually the wedge bounded by the arc and the two 
radial lines extending from the center of the oval to the start
ing and end points of the arc. 

Polygons 

A polygon is a relatively complex data structure made up of 
a bounding rectangle and a series of points representing the 
vertices of the shape. To create a polygon, you first call 
_OpenPoly as follows: 



Windows and Video Output 309 

reference axis 

startAngle 

arcAngle 

arc 

bounding rectangle 
wedge 

Figure 6-8. QulckDraw Arcs and Wedges. 

CLR.L -(SP) ;Space for handle 
_openPoly 
MOVE.L (SP)+,PolyHndl(AS) ;Save handle 

PolyHndl DS.L L 

As you can see, _OpenPoly returns a handle to a polygon 
data record. You will need this handle to perform the stan
dard drawing operations with polygons. 

Once the polygon record has been opened, you define your 
polygon by making a series of calls to _Line and _LineTo, just 
as you if you were drawing the polygon on the screen. The 
lines don't actually appear on the screen because _OpenPoly 
hides the pen. When you're done, call _ClosePgon (no param
eters required). 



510 Mac Assembly Language 

The standard drawing instructions for polygons are 
_Frame Poly. _PaintPoly, _Erase Poly, _lnvertPoly, and 
_FillPoly. Before calling any of them, push the handle to the 
polygon on the stack. For _FillPoly you also have to push the 
address of the data structure defining the fill pattern. 

Once you're through with a polygon, you can deallocate the 
memory space it occupies by pushing its handle on the stack 
and calling _KillPoly. 



Chapter 7 

Menus 

Another prominent characteristic of the Macintosh user 
interface is the menu bar, which invariably appears across 
the top of the screen when an application is running. A typical 
menu bar contains the titles of one or more menus, and each 
menu is made up of one or more items. These items can be 
selected with the mouse or, sometimes, from the keyboard. 

The items within a menu remain hidden beneath its title 
until you pull down the menu by positioning the mouse cursor 
above the menu's title in the menu bar and pressing the 
mouse button. You can then select any particular item by 
dragging the mouse down (or back up) until the item is high
lighted, then releasing the mouse button. Before you release 
the mouse button, you can move to an acljacent menu by 
moving the mouse far enough sideways while it's in the menu 
bar area. 

In this chapter you'll learn how to access the Macintosh 
Menu Manager instructions from assembly language. The 
Menu Manager is made up of all the instructions you'll need to 
create menu bars and menus, to manage the items contained 
within each menu, and to easily implement the standard pull
down menu selection technique. The instructions are summa
rized in Table 7-1 . 

:511 



512 Mac Assembly Language 

Table 7-1 The Menu Manager Trap Instructions. 

_AddResMenu 

MOVE.L theMenu,-(SP) 
MOVE.L #rsrcType,-(SP) 
_AddResMenu 

_AppendMenu 

MOVE.L theMenu,-(SP) 
PEA itemstring 
_AppendMenu 

_Checkltem 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
MOVE.B #checked,-(SP) 

_Checkitem 

_ClearMenuBar 

_ClearMenuBar 

_CountMltems 

CLR - (SP) 
MOVE.L theMenu,-(SP) 
_countMitems 
MOVE (SP)+,DD 

_DeleteMenu 

MOVE #menuID,-(SP) 
_DeleteMenu 

Adds the names of resources 
to the end of a menu. 

;BANDLE: to menu record 
;LONGINT: resource type code 

Adds one or more items to the 
end of a menu. 

;BANDLE: to menu record 
;POINTER: to item name string 

Checks or unchecks a menu 
item. 

;BANDLE: to the menu 
;INTEGER: item number in menu 
;BOOLEAN: true = check 

false = uncheck 

Removes all menus from the 
active menu bar. 

;no parameters 

Returns the number of items in 
a menu. 

;INTEGER: space for result 
;BANDLE: to menu record 

;Result: number of items in menu 

Removes a menu from the 
menu bar. 

;INTEGER: ID of menu to delete 



Table 7-1. continued 

_DelMenultem 

MOVE.L theMenu,-(SP) 
MOVE #afteritem,-(SP) 
_DelMenu!tem 

Menus 515 

Deletes a menu item. 

;HANDLE: to menu record 
;INTEGER: Item # to delete 

This instruction is only available if you are using a Macintosh 
with a 128K ROM. 

_Disableltem 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
_Disableitem 

_DisposMenu 

MOVE.L theMenu,-(SP) 
_DisposMenu 

Disables an item within a menu. 

;HANDLE: to the menu 
;INTEGER: item number in menu 

Frees up the space used by a 
menu record. 

;HANDLE: to menu record 

Use _DisposMenu only if the menu was created with _NewMenu. 
The equivalent instruction for menus created with _ GetRMenu is 

ReleaseResource. 

_DrawMenuBar 

_DrawMenuBar 

_Enable Item 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
_Enable!tem 

_Getltem 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
PEA itemString 
_Get!tem 

Draws the current menu bar. 

;no parameters 

Enables an item within a menu. 

;HANDLE: to the menu 
;INTEGER: item number in menu 

Returns the name of a menu 
item. 

;HANDLE: to the menu 
;INTEGER: item number in menu 
;VAR: item's name returned here 



SI 4 Mac Assembly Language 

Table 7-1. continued 

_GetltmStyle 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
PEA theStyle 
_GetitmStyle 

_GetMenuBar 

CLR.L -(SP) 
_GetMenuBar 
MOVE.L (SP)+,AD 

_GetMHandle 

CLR.L -(SP) 
MOVE #menuID,-(SP) 
_GetMBandle 
MOVE.L (SP)+,AD 

_GetNewMBar 

CLR.L -(SP) 
MOVE #menoBarID,-(SP) 

_GetNewMBar 
MOVE.L (SP)+,AD 

_GetRMenu 

CLR.L -(SP) 
MOVE #menuID,-(SP) 
_GetRMenu 
MOVE.L (SP)+,AD 

Gets the character style for an 
item in a menu. 

;BANDLE: to the menu 
;INTEGER: item number in menu 
;VAR: new character style (word) 

Makes a copy of the current 
menu bar. 

;BANDLE: space for result 

;Result: handle to the copy 

Returns the handle to a menu 
in the menu bar. 

;BANDLE: space for result 
;INTEGER: menu ID 

;Result: handle to menu 

Loads a menu bar definition 
into memory from a MBAR 
resource. 

;BANDLE: space for result 
;INTEGER: resource ID of menu 

bar 

;Result: handle to menu bar 

Loads a predefined menu from 
a MENU resource file. 

;BANDLE: space for result 
;INTEGER: resource ID for menu 

;Result: handle to menu record 



Table 7-1. continued 

_HlliteMenu 

MOVE #menuID,-(SP) 
_HiliteMenu 

_lnitMenus 

_InitMenus 

_lnsertMenu 

MOVE.L theMenu,-(SP) 
MOVE #beforeID,-(SP) 

_InsertMenu 

_lnsMenultem 

MOVE.L theMenu,-(SP) 
PEA itemString 
MOVE #afteritem,-(SP) 
_InsMenuitem 

Menus 515 

Highlights or removes 
highlights from a menu title in 
the menu bar. 

;INTEGER: ID of menu 

Initializes the Menu Manager. 

;no parameters 

Inserts a menu after a given 
menu in the menu bar. 

;HANDLE: to menu record 
;INTEGER: menu number to insert 

after (D;add to end) 

Inserts a menu item after a 
given item. 

;HANDLE: to menu record 
;POINTER: to item string 
;INTEGER: Item # to insert after 

This instruction is only available if you are using a Macintosh with 
a 128K ROM. 

_lnsertResMenu 

MOVE.L theMenu,-(SP) 
MOVE.L #rsrcType,-(SP) 
MOVE #afteritem,-(SP) 

_InsertResMenu 

Inserts the names of resources 
after a given item in a menu. 

;HANDLE: to menu record 
;LONGINT: resource type code 
;INTEGER: item number to insert 

after (D;beginning) 



316 Mac Assembly Language 

Table 7-1. continued 

_Menu Key 

CLR.L - (SP) 
llOVE #ch,-(SP) 

_llenuKey 
llOVE.L (SP)+,DO 

Returns the menu ID and item 
number corresponding to a 
particular command key. 

;LONGINT: space for result 
;CHAR: character typed with 

command key 

;Result: llenu ID (high word) 
Item number (low word) 

If the command key does not correspond to a menu item, the 
result is zero. 

_MenuSelect 

CLR.L -(SP) 
llOVE.L #startPoint,-(SP) 

_llenuSelect 
llOVE.L (SP)+,DO 

Tracks mouse down activity in 
the menu bar by pulling down 
menus and highlighting items, 
when necessary. Returns the 
menu ID and item number 
selected. 

;LONGINT: space for result 
;LONGINT: Point where mouse 

was pressed (global) 

;Result: Menu ID (high word) 
Item number (low word) 

If no item was selected, the result is zero. 

_NewMenu 

CLR.L - (SP) 
MOVE #menuID,-(SP) 
PEA menuTitle 
_New lie nu 
llOVE.L (SP)+,AO 

Creates a new, empty menu 
record. 

;BANDLE: space for result 
;INTEGER: ID code for menu 
;POINTER: to menu title string 

;Result: handle to menu record 



Table 7-1. continued 

_Setltem 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
PEA itemString 
_setrtem 

_SetltmStyle 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
MOVE #theStyle,-(SP) 
_SetitmStyle 

_Setltmlcon 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
MOVE #iconNum,-(SP) 
_Setrtmicon 

_SetltmMark 

MOVE.L theMenu,-(SP) 
MOVE #theitem,-(SP) 
MOVE #markChar,-(SP) 
_SetitmMark 

Menus 517 

Renames a menu item. 

;BANDLE: to the menu 
;INTEGER: item number in menu 
;POINTER: to new name for item 

Sets the character style for an 
item in a menu. 

;BANDLE: to the menu 
;INTEGER: item number in menu 
;INTEGER: new character style 

Displays an icon to the left of 
an item name. 

;HANDLE: to the menu 
;INTEGER: item number in menu 
;BYTE: icon number (1 .. 255) 

Marks a menu item with a 
given character. 

;HANDLE: to the menu 
;INTEGER: item number in menu 
;CHAR: marking character 

If markChar is zero, the item is unmarked. 

_SetMenuBar 

MOVE.L menuBar,-(SP) 
_SetMenuBar 

Makes a menu bar the current 
one. 

;HANDLE: to menu bar 



318 Mac Assembly Language 

Initializing the Menu Manager 

Before using Menu Manager instructions, you must call the 
_InitMenus instruction once at the beginning of your pro
gram. This initializes the Menu Manager's internal data struc
tures so it can properly deal with subsequent Menu Manager 

instructions. 

Some of the instructions within the Menu Manager portion 
of the ROM toolbox also use the QuickDraw drawing instruc
tions, the Font Manager, and the Window Manager. This 
means you must also call _InitGraf, _InitFonts, and 
_InitWindows (in that order) before calling _InitMenus. These 
calls are part of the standard opening sequence to every pro

gram described in Chapter 2. 

Creating a Menu 

One of the first things you'll use the Menu Manager for is to 
create a menu bar. For the purposes of illustration, let's gen
erate the menu bar shown in Figure 7 -1 . This is the minimum 
menu structure most applications support so they will work 
properly with desk accessories. (See Chapter 9 for further 

discussion.) 

,.. 
File Edit 

Figure 7-1. The Standard Apple-File-Edit Menu Bar. 



Menus 519 

Building the Menus 

As with windows, you can create a menu in one of two 
ways: from scratch or by loading it directly from a resource 
file. The resource type for a menu is MENU. 

If you're creating the menu from scratch, you first have to 
build a data structure, called a menu record, to hold the menu 
items, then fill it in by adding the menu items to it. To build the 
record, call _NewMenu as follows: 

Ml.Name 
MenuHli 

CLR.L -(SP) 
MOVE #l., - (SP) 
PEA Ml.Name 
_NewMenu 

;Clear space for handle 
;Menu ID (here it's l.) 
;Title (Apple symbol) 

MOVE. L (SP)+ I Menue:i. (AS) ; Save the handle 

DC.B 
DS.L 

l.,20 
], 

;Length+ 11 Apple 11 

As you can see, _NewMenu returns a handle to the data 
structure for the new menu, so we first clear space for it on 
the stack. Then we push two parameters, a menu identifica
tion code, and the address of a string (preceded, as usual, by 
a length byte) that will be the title of the menu. After 
_NewMenu finishes, the returned handle is popped from the 
stack and stored in the MenuH 1 variable. 

Note that the menu ID code can be any positive integer not 
already used by another of your menus. Negative integers 
are reserved for menus defined by desk accessories, and a 
menu ID code of zero is not permitted. 

Now that the menu record exists, we can add the names of 
menu items to the menu. For this we use _AppendMenu. To 
illustrate this, here's how to add the first item in the standard 
Apple menu, "About Demo Program ... ": 

MOVE.L MenuHli(AS),-(SP) ;Push handle 
PEA 'About Demo Program ..• • ;Name of item 
_AppendMenu 



320 Mac Assembly Language 

_AppendMenu adds the specified item to the end of the list of 
menu items. A menu can hold up to 31 items. 

Notice the three periods following the name of the menu 
item in the above example. By convention, this means if the 
item is selected, a dialog box will appear on the screen 
requesting user input. (See Chapter 8.) Selecting an About ... 
item, for example, typically brings up an alert box containing 
a copyright notice, a description of the active program, and 
an OK button that must be clicked before you can return to 
the application. 

The string you pass to _AppendMenu can actually contain 
the names of more than one menu item. Item names are sep
arated from each other by a semicolon. For example, if you 
want to quickly create a standard Edit menu, use these 
instructions: 

CLR.L -(SP) 
MOVE #3,-(SP) 

;Space for handle 
;Menu #3 

PEA 1Edit 1 ;Name of menu 
_NewMenu ;Create Menuinfo record 
PEA •undo/Z;(-;Cut/X;Copy/C;Paste/V;Clear• 
_AppendMenu 

Since NewMenu returns a handle to the menu on the 
stack, you don't have to explicitly push a copy of it before 
calling _AppendMenu. You may want to save the handle in 
case you need it later, however, so put a MOVE.L 
(SP),MenuH3(A5) instruction after _NewMenu and define a 
variable called MenuH3 with DS.L directive. 

Notice the second item name in the string,"(-". The leading 
left parenthesis is a modifier character that disables (dims) 
the name of the item following it. Disabled items cannot be 
selected from the menu unless they are first enabled with the 
_Enableltem instruction. The single hyphen following the 
parenthesis is actually expanded into a line of hyphens across 
the width of the menu. A dimmed line of hyphens is conve
nient for physically separating groups of related items in a 
menu. 



Menus 321 

There are four other modifier characters you can use to 
affect the appearance of a menu item. They let you display 
the keyboard equivalent for an item (/), set the style of text 
used to display the item(<), display a special symbol (usually 
a check mark) to the left of the item ( ! ) , and display an icon to 
the left of the item ("). These modifier characters are sum
marized in Table 7-2. With the exception of the ( and ; modi
fier characters, each modifier is followed by a single 
character, called the argument, containing the value of the 
modifier. 

Table 7-2. Menu item modifier characters. 

Modifier character 

< 

/\ 

( 

Meaning 

Keyboard equivalent 
Character style 
Mark item 
Icon item 
Disable the item 
Multiple item separator 

Except for ( and ; , each modifier character must be fol
lowed by a single argument character. The argument charac
ter following the I modifier can be any printable symbol 
enterable from the keyboard. The character style can be < B 
(bold), <I (italic), <u (underline), <o (outline), or <s 
(shadow). The argument character following the ! modifier 
can be any printable symbol. The icon item can be "1 , "2, and 
so on. The ASCII code of the argument character, plus 208, is 
the resource ID of the icon. 

Here are two examples of item names containing modifier 
characters: 

'Cut/X' A command-X will appear to the right of the item name to 
indicate that the menu item can be selected by pressing the X 
key while holding down the command key. 

'Read<B' The item name, Read, will be boldfaced. 



322 Mac Assembly Language 

You can also concatenate modifier sequences to combine 
two or more features. For example, use Read< B < U/R to dis
play the item "Read" in a boldfaced, underlined style, with a 
command-R keyboard equivalent. You'll see other examples 
of how to use modifier characters later in this chapter. 

After you've added all the items to the Edit menu, you can 
proceed to define other menus, remembering to assign each 
of them unique menu identification numbers. 

There are no subroutines in the Macintosh 64K ROM that 
permit you to rearrange items once the menu has been cre
ated, so be sure to add items in the proper order. There are 
two new instructions in the 128K ROM that correct this defi
ciency, however. The first, _lnsMenultem, lets you insert an 
item after any specified item. 

MOVE.L MenuBL(AS),-(SP) 
PEA 1New Choice• 
llOVE #2,-(SP) 
_InsMenuitem 

;Bandle to menu 
;New item name 
;Item # to add after 

The second, _DelMenultem, can be used to delete a menu 
item: 

MOVE.L MenuHL(AS),-(SP) 
MOVE #3,-(SP) 
_DelMenuitem 

;Handle to menu 
;Delete item #3 

Remember that these two instruction are available on a 
Macintosh equipped with a 128K ROM only. You can check 
whether this ROM is installed by examining the value stored 
at ROM85 ($28E). This value is $7FFF for a 128K ROM or 
$FFFF otherwise. 

MENU Resource Files 

An easier way to construct a menu is to first define it in an 
RMaker source file and compile it with RMaker to put it into a 
resource file. Menu definitions have resource type codes of 



Menus 525 

MENU. The RMaker format of the source file for such a 
resource is shown in Table 7-3. 

Table 7-3. The RMaker Format of a MENU Resource. 

Type MENU 
,131 
MyMenu 
First Entry 
Second 
Last Item 

;;Resource ID for MENU 
;;Menu title 
;;First menu item 
;;Second menu item 
;;Third menu item 

The MENU resource definition must be followed by a blank 
line. For example, the RMaker statements required to define 
a standard Edit menu resource are as follows: 

Type MENU 
,130 
File 
New 
Open .•• 
Close 
Save 
Save As ..• 
Page Setup •.. 
Print ... 
Quit 

;;Resource ID 
; ;Menu title 
; ; 1st menu i tern 
;;2nd menu item 

;;last menu item 

A blank line must follow the line containing the last menu 
item. This tells RMaker the list of menu items is complete. If 
you specify an attribute byte on the second line, don't make 
the resource purgeable or you will cause a system error. 

When you add these lines to the application's RMaker 
source file and compile it, MENU resource #130 will be avail
able for use by the application. 

When you have MENU resources at your disposal, you 
don't use _NewMenu to create a menu. Instead, use 
_GetRMenu like this: 



.324 Mac Assembly Language 

File MID EQU :L30 ;ID code for File menu 

CLR.L -(SP) ;Space for handle 
MOVE #FileMID, - (SP) ;Push menu resource ID 
_GetRMenu 
MOVE.L (SP)+,MenuH2(AS) ;Pop handle from stack 

MenuH2 DS.L :L 

Since there may be several MENU resources in a resource 
file, you must pass the menu resource ID code on the stack 
for _GetRMenu to know which one to access. As with 
_NewMenu, a handle to the data structure for the menu is 
returned on the stack. 

We've now used two different techniques to create the 
standard Apple, File, and Edit menus. In practice, you would 
probably create them all using the same technique. 

Destroying Menus 

When a particular menu is no longer needed by your appli
cation, you should formally destroy it to free up the memory 
space it occupies. Before you do this, make sure the menu is 
first removed from the menu bar using the _DeleteMenu 
instruction and then redraw the menu bar using 
_DrawMenuBar. You'll see how to use these two instruc
tions later on in this chapter. 

There are two ways to deallocate the memory space used 
by a menu, depending on how it was created. For menus cre
ated with _NewMenu, use _DisposMenu. Since menus cre
ated with _ GetRMenu are resources handled by the 
Resource Manager, you must use _Re lease Resource to dis
pose of them. 

Both _DisposMenu and _ReleaseResource require one 
parameter on the stack, the handle to the menu data 
structure: 

MOVE.L Menu82(AS),-(SP) 
_DisposMenu 

;Handle for 2nd menu 
;or _ReleaseResource 



Menus 325 

After a menu is destroyed, it's gone for good. If you want it 
back you'll have to read it in from the resource file using _ GetR
Menu or re-create it with _NewMenu and _AppendMenu. 

Adding Items From Resource Files 

It is often convenient to take the names of menu items 
from the names of resources in a resource file. For example, 
if you have a Font menu, it would be nice to add to it the 
names of all the available font resources (type FONT) in one 
simple step. It would also be useful for adding the names of all 
available desk accessories to the standard Apple menu. A 
desk accessory is a resource of type DRVR. 

As you've probably guessed by now, the Menu Manager 
has instructions to do exactly this. _AddResMenu adds the 
names of all resources of a particular type to the bottom of a 
given menu, and _InsertResMenu inserts them after any 
given item. The resources added can be in any open resource 
file. 

The parameters for _AddResMenu are the handle to the 
menu and the four-character (one long word) resource type: 

MenuHndl 

MOVE.L MenuHndl(AS),-(SP) 
MOVE.L # 1FONT 1 ,-(SP) 
_AddResMenu 

DS.L 

;Handle to menu 
;Resource type code 

;Handle stored here 

Notice the method for passing the name of the resource type 
on the stack. Each character in the name occupies exactly 
eight bits in the long word pushed on the stack. 

The menu handle needed by _AddResMenu is the one 
returned by _NewMenu or _GetRMenu when the menu was 
first created or loaded from the MENU resource file. If you 
didn't save the handle, or the menus were loaded with an 
MBAR resource, use _GetMHandle to get an existing menu's 
handle. When _AddResMenu finishes, the name of every font 
in the system and application resource files (and any other 



326 Mac Assembly Language 

open resource files) will appear in the menu whose handle is 
stored in MenuHndl. 

The _InsertResMenu instruction requires one additional 
parameter, the number of the item after which the new 
items are inserted: 

MOVE.L MenuBndl(AS),-(SP) 
MOVE.L # 1 FONT 1 ,-(SP) 
MOVE #3,-(SP) 
_InsertResMenu 

;Bandle to menu 
;Resource type code 
;Insert after item #3 

If you indicate you want to insert after item #0, the names 
are inserted before the first item in the menu. 

You should know that _AddResMenu and _lnsertResMenu 
can only be used to add the names 'of those resources having 
names associated with them. As you saw in the Chapter 2 
discussion of RMaker, resource names are optional and not 
every resource has a name. Font and desk accessory 
resources are always associated with names, however. 

A resource is also ignored if its name begins with a period. 
The Macintosh device drivers for 1/0 devices, like the disk and 
the printer, begin with periods; the device driver for the disk 
is .Sony, for example. 

The versions of _AddResMenu and lnsertResMenu in the 
Macintosh 128K ROM alphabetize the added resources 
before putting them into the menu. The 64K ROM versions 
add them in the order they are located. 

Determining the Number of Items in a Menu 

To determine the number of items in a given menu, use 
_ CountMitems by passing the handle to the menu on the 
stack: 

CLR -(SP) ;Space for result 
MOVE.L MenuHndl(AS),-(SP) ;Push handle 
_CountMitems 
MOVE (SP)+,DO ;Pop result into DD 

The number returned can be from 0 to 31 . 



Menus 327 

The only time you really have to use _ CountMltems is after 
using _AddResMenu to add an indeterminate number of 
resource names to a menu. If you don't use _AddResMenu, 
your application should be able to keep track of the number of 
items. 

Building a Menu Bar 

Once you've created all your menus and added the neces
sary items to them, it's time to create the menu bar so you 
can display it at the top of the screen. The first step is to call 
_ClearMenuBar (no parameters) to clear the menu bar data 
structure and erase the menu bar area of the screen. (If 
you're just starting your program, you don't actually have to 
do this because _ClearMenuBar is called by _InitMenus.) 

The next step is to insert the various menus into the menu 
bar using the _lnsertMenu instruction, as follows: 

MOVE.L MenuBndl(AS),-(SP) ;handle to menu 
MOVE #D, - (SP) ; beforeID 
_InsertMenu 

MenuBndl DS.L 

The beforeID number, zero in this case, indicates the ID 
code of the menu in the menu bar before which the new 
menu is to be inserted. If the number is zero, the menu is 
placed to the right of the rightmost menu. 

It is also possible to remove menus from the menu bar. For 
this, use the _DeleteMenu instruction: 

Menuid EQU 3 ;Equate for menu ID 

MOVE #MenuID,- (SP) ;menu ID (EQU constant) 
_DeleteMenu 

The only parameter _DeleteMenu requires is the menu ID 
code. In this example, menulD is a symbol representing this 
code and was defined using the EQU assembler directive. Be 



528 Mac Assembly Language 

sure to precede the symbolic name with a # in the MOVE 
instruction. If you don't, the instruction uses the number 
stored at location $000003 instead of the number three itself. 

The most convenient way to build a menu bar is to read its 
definition from a resource file using _ GetNewMBar. A menu 
bar resource has a resource type of MBAR and has the fol
lowing structure: 

Number of menus (one word) 
Resource ID of first menu (one word) 

Resource ID of last menu (one word) 

Since RMaker does not directly support this type, you'll 
have to simulate it by equating it to the GNRL RMaker 
resource type. Here's what the source code looks like for a 
menu bar that has three menus having ID numbers of 1 , 7, 
and 8: 

TYPE MBAR = GNRL ;;Create a MBAR resource 
; ; Resource ID ,li28 

.I 
3 

:L 

7 

8 

;;Using decimal integers 
; ;Three menus 
;;MenuID=li 
; ;Menu ID = 7 
; ;Menu ID = 8 

To use _GetNewMBar, first clear a space for the handle 
returned on the stack, then push the resource ID of the 
MBAR resource to be used: 

IDcode 

MBarHndl 

EQU l.26 

CLR.L -(SP) 
MOVE #IDcode,-(SP) 
_GetNewMBar 

;Space for handle 
;resource ID (immediate) 

MOVE.L (SP)+,MBarHndl(AS) ;Pop handle 

DS.L ], ;Handle to menu bar 



Menus 329 

_GetNewMBar not only creates the menu bar record, it also 
automatically appends the menus specified in the resource. 

A menu bar created with _GetNewMBar is not automati
cally made the currently active menu bar. To do this, you 
must call _SetMenuBar: 

llOVB.L llBarHndl(AS),-(SP) ;Handle to menu bar 
_SetllenuBar 

Before calling _SetMenuBar, you will probably want to read 
the handle stored at the MenuList system variable and store 
it in one of your program's own variables. MenuList contains 
the handle to the current menu bar and you'll need it if you 
want to make the original bar the active menu bar later on. 

If you need to access one of the menus associated with an 
MBAR resource, perhaps to append further items to it or 
change an item name, you can use _GetMHandle to get its 
handle: 

llenuID BQU 

CLR.L 
llOVB 

7 

-(SP) 
#llenu!D,-(SP) 

_Getl!Handle 
llOVB.L (SP)+,AD 

;space for handle 
;Push menu ID number 

;Pop handle into AD 

Once you have the handle, you can use _AppendMenu, 
_AddResMenu, or any other instruction requiring a menu 
handle. 

Displaying the Menu Bar 

Well, you've now done everything except actually display 
the menu bar on the screen. For that, simply use 
_DrawMenuBar (no parameters required). 



330 Mac Assembly Language 

Modifying the Menu Bar 

You can define as many menu bars as you want in a pro
gram, but only one can be displayed at a time. As you just 
saw, use _SetMenuBar to select any particular menu bar. 

If you want to make a few changes to the existing menu 
bar and later restore it to its original state, it's best to make a 
copy of the menu bar using _GetMenuBar. 

CLR.L -(SP) ;Space for handle 
_GetMenuBar ;Make copy of menu bar 
MOVE.L (SP)+,OldMBar(AS) ;Save new handle 

OldMBar DS.L L ;Bandle to old menu bar 

After you do this, make the changes to the current menu bar, 
then display it using _DrawMenuBar. 

To redisplay the original menu bar, use the following 
instructions: 

MOVE.L OldMBar(AS),-(SP) 
_SetftenuBar 
_DrawMenuBar 

;Activate the old menu bar 
;Display it! 

OldMBar is the handle to the copy we made of the menu 
bar before the original was altered. 

Menu Title Display 

The _HiliteMenu instruction is used to highlight a menu 
title in the menu bar (white letters on a black background). 
To use _HiliteMenu, pass the ID number of the menu on 
the stack: 

MOVE #3,-(SP) ;Menu number 3 
_BiliteMenu 



Menus 331 

You probably won't have to highlight a menu title like this 
very often because it's done automatically by the _Menu
Select instruction you call when an item is selected from a 
menu. You will use _HiliteMenu more often to remove high
lighting from a menu title after you've selected an item. To do 
this, push a zero on the stack before calling _HiliteMenu. A 
menu ID number of zero means "remove highlighting from all 
menu titles." 

Menu Item Display 

The toolbox has several commands you can use to affect 
the display of items in a pull-down menu. You'll learn about 
them in this section. 

Changing the Name of an Item 

To change the name of an item in a menu use _Setitem: 

STRING_FORMAT 3 ;Need length for DC 

llOVE.L MenuHndl(AS),-(SP) ;Handle to menu 
MOVE #2,-(SP) ;Item number in menu 
PEA Item Name ;Address of new string 

_Setitem 

Item Name DC.B 'New Name• ;(Preceded by length) 
llenuHndl DS.L 1 ;Handle to menu 

The first item in a menu is item number one, not zero. 
Notice that I set STRING_FORMAT to 3 in this example to 
force MOS to put a length byte in front of the ltemName 
string, as required by _Setitem. There is also an instruction 
called _ Getitem you can use to read the current name of a 
particular item. It is called just like _Setitem and the name is 
returned in ItemName. 



332 Mac Assembly Language 

Disabling and Enabling Item Names 

At some points in a program, certain menu items may 
become meaningless because they have no meaning in that 
environment. You saw an example of this in the window pro
gram in Listing 6-2 of Chapter 6---when the window is open, 
the "Open Window" menu item is superfluous. 

Rather than let the user select items that will be ignored by 
the application, you should disable them using the _Dis
ableltem instruction. The operating system dims disabled 
items in pull-down menus and will not permit them to be 
selected. 

To use _Disableltem, pass the handle to the menu and the 
menu item number on the stack like this: 

MOVE.L MenuHndl(AS),-(SP) 
MOVE #3,-(SP) 
_Disableitem 

;Handle to menu 
;Disable item #3 

If you want to disable a menu item when the menu is first 
installed, place a left parenthesis, (, in front of its name when 
the item is added to the menu with _AppendMenu. This same 
technique works when you define the names of menu items 
using RMaker source statements. 

To reactivate a menu item, use _Enableltem. It requires 
the same two parameters as _Disableltem. 

If you pass an item number of zero to _Disableltem or 
_Enableltem, the menu title is disabled or enabled, respec
tively. If you do this, you must call _DrawMenuBar to show 
the change. 

Changing the Style of Item Names 

It is also possible to change the style of the characters the 
Macintosh uses to draw the name of a menu item. The style 
can be bold, italic, underline, outline, shadow, condense, 
extend, or any combination of these seven basic type styles. 

To set the style of an item, first push the handle to the 



Menus 555 

menu and the menu item number on the stack. Next, push a 
style word and call _SetltmStyle. As shown in Figure 7-2, the 
low-order seven bits in the style word control the basic style 
features: The feature associated with a bit is enabled when 
the bit is one. The symbolic names for these bits are also 
shown in Figure 7-2. 

If you want to display a bold, underlined menu item, use the 
following instructions: 

MOVE.L MenuHndl(AS),-(SP) 
MOVE #3,-(SP) 
CLR 
BSET 
BSET 
MOVE 

DO 
#BoldBit,DO 
#UlineBit,DO 
DO,-(SP) 

_SetitmStyle 

;Handle to menu 
;llenu item 3 
;No style! 
;Set bold bit (0) 
;Set underline bit (2) 
;Push style word 

Set the style word to zero if you don't want to use any special 
character style attributes. 

Some elements of the style of a menu item can also be set 
by including the < modifier character in the item's name when 
the menu is formed. As you saw earlier in this chapter, • 
appending < B to the name selects bold, <I selects italic, < U 
selects underline, < 0 selects outline, and < S selects shadow. 
There are no modifiers for selecting the condense and extend 
styles, so you must select these styles using _SetltmStyle. 

If you want to determine what the current style is, use 
_ GetitmStyle. Instead of pushing a style word, push the 
address of the variable in which the style word is to be 
returned: 

llOVE.L MenuHndl(AS),-(SP) ;Handle to menu 
;Third menu item 
;Address of variable 

MOVE #3, - (SP) 
PEA Style(AS) 
_GetitmStyle 

Style DS.W L ;style word returned here 

Use the BTST instruction to check individual style bits. For 
example, if you execute these instructions: 



334 Mac Assembly Language 

Low-order byte: 

7 6 5 4 

not used 
_J 

3 2 1 0 

...____ bold 

ittJlic 

underline 

condense 

extend 

Symbolic nHmes for the bits in the style word: 

Nome Bit# 

BoldBit 0 
ltHlicBit 1 
Ul i neBi t 2 
OutlineBit 3 
ShHdowBit 4 
CondenseBi t 5 
ExtendBit 6 

Figure 7-2. The Style Word Used with _SetltmStyle and _GetltmStyle. 



Menus 555 

BTST #ItalicBit,Style(AS) ;Check bit 1 (italic bit) 
BRE BoldOn ;Branch if bit is 1 

the BNE branch will be taken if italic bit is active. 

Checking and Marking Item Names 

Use _ Checkltem to place a mark character to left of the 
name of any menu item. The standard mark character is a 
check mark symbol (ASCII code 18). You can also use 
_Checkltem to remove any mark character. 

Marks are usually used to identify which of several related 
menu items is active. When you pull down the MacWrite 
Fonts menu, for example, a check mark appears to the left of 
the name of the current font and font size. All other fonts and 
font sizes are unmarked. 

To tell _Checkltem whether to mark or remove a mark 
from an item, push a true or false Boolean parameter on the 
stack just before calling _ Checkltem. 

Here's how to place a mark character to the left of the 
third item in a menu whose handle is stored at 
MenuHndl(AS): 

MOVE.L MenuHndl(AS),-(SP) 
MOVE #3,-(SP) 
MOVE.B #-1,-(SP) 
_Checkitem 

;Handle to menu 
;Item #3 
;Boolean, -1 = mark 

Change the Boolean value to false if you want to remove the 
check mark (or other marking character) to the left of the 
item name. 

If you don't want to use the standard check mark to mark a 
menu entry, use _SetltmMark instead. 

MOVE.L MenuHndl(AS),-(SP) 
MOVE #3,-(SP) 
MOVE # 1 x1 ,-(SP) 
_setitmMark 

;Bandle to menu 
;Item #3 
;marking character 



SS6 Mac Assembly Language 

Notice that the ASCII code for the marking character is 
placed on the stack just before calling _SetitmMark. If this 
code is zero, any marking character present is removed. 

When you first add items to a menu using _AppendMenu or 
within an RMaker source file, you can use the ! modifier char
acter to place a mark in front of an item when the menu is 
first installed. This saves you the extra step of using _Check
Item or _SetitmMark after creating the menu. 

Associating Icons with Item Names 

The most dramatic way to liven up your menus is to place 
an icon to the left of an item name using _Setitmicon. Before 
you see how to do this, a word about icons. 

An icon is a 32 by 32 screen image represented in memory 
by a sequence of 32 long words. The bits in each long word 
define the pixels in one row of the icon, starting with the 
leftmost position (bit 31 ) and ending with the rightmost posi
tion (bit 0). If the bit is one, the corresponding pixel is black; 
zero bits correspond to white pixels. The long words are 
arranged in top-to-bottom row order. 

Suppose we want to determine the numeric representation 
for an X icon. The first step is to draw the icon on a 32 by 32 
grid of squares and then convert each row to the correspond
ing long word. 

Since most operations involving icons require that the icons 
be referred to by a resource ID number, the next step is to 
store the icon definition in a resource file. The resource file 
type for a single icon definition is ICON. 

RMaker does not support the ICON resource type directly, 
so you have to equate it to RMaker's GNRL type to create it. 
Here's what the source code looks like: 

TYPE ICON = GNRL 
,323 

.H 
[insert the hex numbers 
in the example above] 

; ; Resource ID 
;;Hexadecimal numbers follow 



• • .. • • • • • • .. • • .. • • • • .. • .. • • • • 
• • • .. • • .. • • .. • •• • • • • • • • • • • • • .. • 

Figure 7-3. Defining An Icon. 

Menus 337 

$80000001 
$40000002 
$20000004 
$10000008 
$08000010 
$04000020 
$02000040 
$01000080 
$00800100 
$00400200 
$00200400 
$00100800 
$00081000 
$00042000 
$00024000 
$00018000 
$00018000 
$00024000 
$00042000 
$00081000 
$00100800 
$00200400 
$00400200 
$00800100 
$01000080 
$02000040 
$04000020 
$08000010 
$10000008 
$20000004 
$40000002 
$80000001 

If you compile the resource definition and append it to the 
application (use the !filename RMaker output file command 
for this), the icon resource is opened when you launch the 
application. 

Now that you've mastered icons, let's get back to 
_Setltmlcon. This instruction takes three parameters: a han
dle to the menu, the number of the item within the menu to 
be associated with the icon, and the icon number. The icon 
number is the resource ID of the icon minus 256. It is not the 
resource ID itself. 

Icons that can be used in menus must have resource IDs 
from 257 to 511 . This means the icon number passed to 
_Setltmicon will be an integer from 1 to 255. 

If the icon was stored in a resource file under number 323, 
here's how you would assign it to the second item in a menu: 

MOVE.L MenuHndl(AS),-(SP) 
MOVE #2,-(SP) 
MOVE #b7,-(SP) 
_Setitmicon 

;Handle to menu 
;Item number 
;Icon number (ID=323) 



338 Mac Assembly Language 

Other ways to assign icons to menu items are to add the 
item to the menu using _AppendMenu or add it right in the 
definition of the MENU resource in the RMaker source state
ments. To do this, follow the item name with a A (a modifier 
character) and the character whose ASCII code is 208 less 
than the resource ID for the icon. What this means is that '1' 
(ASCII value 49) refers to resource ID 257 (the first menu 
icon), '2' to resource ID 258, and so on. If you do this, you 
don't have to bother with _Setltmlcon unless you want to 
assign a new icon to a menu item. For example, use the 
string 'DeleteA3' to place the icon with a resource ID of 259 to 
the left of the Delete menu item. 

If the menu item is checked, the icon appears to the right of 
the check mark but before the text of the menu item. 

Selecting Items From a Menu 

Once you've defined a menu bar and the menus it is to con
tain, you're ready to write the main body of your application 
program. The program must contain the code needed to 
check whether the user wants to select a menu item and the 
code to be executed when any particular item is selected. 

In a typical program, the main event loop keeps polling the 
event queue using _GetNextEvent until an event occurs. If 
it's a button-down event, you would call _FindWindow to 
determine where the button was pressed. 

CLR.11 -(SP) ;Space for result (part code) 
MOVE.L EventRecord+evtMouse,-(SP) ;Mouse location 
PEA thellindow(AS) ;Window pointer returned here 
_Findllindow 
MOVE.II (SP)+,DD ;Move part code into DD 
CMP 
BBQ 

EventRecord 

thellindow 

#inMenuBar,DD ;Were we in the menu bar? 
DoMenu ;Yes, so branch 

DCB.B EvtBlkSize,D ;_GetNextEvent•s record 

DS.L ;Pointer to window 



Menus 559 

The position parameter passed to _FindWindow is fetched 
from the evtMouse field of the event record used by the call 
to _GetNextEvent. 

If the result returned by _FindWindow is anything but 
inMenuBar, you can pass it on to the part of the program that 
processes other window-related events such as dragging, re
sizing, and closing. If the result is inMenuBar, the button was 
pressed in the menu bar region of the screen and you must 
pass control to _MenuSelect to handle the standard pull
down menu chores. _MenuSelect tracks the mouse until the 
mouse button is released and returns codes to indicate what 
menu and what menu item was selected (if any). By using it, 
you avoid writing the complex program needed to implement 
the standard pull-down menu interface. 

To use _MenuSelect, push space for a long word result on 
the stack, then push the global coordinates of the point 
where the mouse was pressed, like this: 

CLR.L -(SP) ;Space for long word result 
MOVE.L EventRecord+evtMouse,-(SP) ;Global coordinates 
_MenuSelect 
MOVE.L (SP)+,DD ;Grab the result 
BEQ Ignore ;Do nothing if a result 

The high-order 16 bits of the long word result is the ID 
number of the menu selected. The low-order 16 bits is the 
item number selected. If the result is zero, no menu item was 
chosen. Figure 7-4 shows a diagram of the format of the 
result. 

31 15 

menu ID number menu item number 

Figure 7-4. The Format of the Result Returned by _MenuSelect and 
_MenuKey 

0 

When _MenuSelect returns, it highlights the title of the 
selected menu. Before you continue, it's good practice to 



340 Mac Assembly Language 

remove the highlight from the name by passing a zero to the 
_HiliteMenu instruction: 

llOVE 
_Bilitellenu 

#0,-(SP) ;Remove highlight from all menus 

Accessing Menu Items from the Keyboard 

You can sometimes select menu items by pressing a char
acter key while holding down the command key. This works if 
you assign a command key equivalent to the menu item when 
the menu is created. This is done by following the menu item 
name with a I and the command character. For example, to 
assign command-V to "Paste", specify a menu item with the 
name PasteN when you create the menu. The command key 
equivalent appears to the right of the item name when the 
menu is pulled down with the mouse. 

When you retrieve a key-down event from the event 
queue, check the evtMeta field of the event record to see 
whether the command key was down when the event 
occurred. If it wasn't, it doesn't correspond to a menu item, 
and you can continue with the part of the program that deals 
with other types of key presses. 

Here's how to check for a key press and test whether the 
command key was down: 

GetEvent CLR.B -(SP) 
llOVE #-1.,-(SP) 
PEA EventRecord 
_GetNextEvent 
TST.B (SP)+ 
BEQ GetEvent 

;Space for Boolean result 
;Allow all events 
;Record for _GetNextEvent 

;Pop and test the result flag 
;Branch if nothing 

MOVE EventRecord+evtNum,DO ;Get event type 
CMP 
BNE 

#KeyDwnEvt,DD 
NotAKey 

;Key-down? 
;No, so branch 

MOVE EventRecord+evtMeta,DD ;Get modifiers word 
BTST.W #CmdKey,DD ;Is bit 6 (CmdKey) on? 



Menus 341 

BEQ NotACommand ;No, so branch 

NOP ;Begin command key handling 

EventRecord DCB.B EvtBlkSize,D ;Allocate event record 

Notice that I used the CmdKey symbol to represent the bit 
number (8) of the flag holding the state of the command key. 
It is relative to the word, not byte, beginning at evtMeta. If the 
command key is down, the bit is 1 , and the BTST instruction 
clears the zero flag in the status register. This means control 
does not pass to the target of the BEQ instruction, which is 
the part of the program that handles standard key presses. 

If the command key was down, the next step is to call 
_MenuKey to determine if the character pressed with it cor
responds to a menu item. 

CLR.L -(SP) ;Space for long word result 
MOVE EventRecord+evtMessage+2,-(SP) ;The character code 
_Menu Key 
MOVE.L (SP)+,DD ;Remove result code 

Recall from Chapter 5 that the low-order byte of the word 
beginning at offset evtMessage + 2 from the start of the 
event record is the character code for the key pressed. 

The format of the result code returned by _MenuKey is the 
same as for _MenuSelect. That is, the low-order word con
tains the number of the menu item selected, and the high
order word contains the ID of the menu in which the item 
appears. If the result is zero, the command key entered does 
not correspond to any menu item and can be ignored. 

Example Program Using Menu Manager 
Instructions 

The program in Listing 7 -1 illustrates how to use many of 
the important Menu Manager instructions. It creates a menu 



542 Mac Assembly Language 

bar containing three menus: Apple, File, and Font. The Apple 
menu contains an About ... item, but nothing happens if you 
select it; in a complete application you would display an alert 
box. The File menu contains a Quit item you can select to 
leave the application and return to the Finder. 

Listing 7-L. The Source File, Linker Control File, and 
RMaker File for the Menus Program. 

Asm Source File 
Menus.Asm 

This is an example of how to install a Font menu 

MenuBarID EQU L28 

Wind ID 
AppleID 
File ID 
FontID 

EQU L28 

EQU L 

EQU 2 

EQU 3 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Menu Bar resource ID 

;Window ID 
;Menu ID for Apple menu 
;Menu ID for File menu 
;Menu ID for Font menu 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -~(AS) 

_InitGraf 
_InitFonts 
_Initllindows 
_InitMenus 
_TEI nit 
MOVE.L #D,-(SP) 
_InitDialogs 
_InitCursor 

MOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Start of QuickDraw globals 
;Initialize QuickDraw 
;Font Manager 
;Window Manager 
;Menu Manager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;lie want arrow cursor 

;Get rid of every event 

Create and draw a window on the screen: 

CLR.L - (SP) ;Space for returned pointer 



Listing 7-1. continued 

MOVE #WindID,-(SP) 
MOVE.L #0,-(SP) 
MOVE.L #-L,-(SP) 

;Resource ID 
;Store on heap 
;-L = front vindov 

Menus 545 

_GetNevWindov ;Get vindov from resource file 
MOVE.L (SP),OurWindov(AS) ;Save vindov ptr for later 
_setPort ;Make vindov current GrafPort 

Get the menu bar vith tvo menus: 

CLR.L -(SP) ;space for result 
MOVE #MenuBarID, -(SP) ;MBAR resource ID 
_GetNevMBar 
_setMenuBar 

;Read in menu bar 
;handle already on stack 

Create the Font menu and the add the items to it: 

Main Loop 

CLR.L -(SP) ;Space for result 
MOVE #FontID,-(SP) ;Menu ID number 
PEA 1Font 1 

_NevMenu 
MOVE.L (SP),FontH(AS) 

MOVE.L # 1FONT 1 ,-(SP) 
_AddResMenu 

MOVE.L FontH(AS),-(SP) 
MOVE #0, - (SP) 
_InsertMenu 

_DravMenuBar 

BSR GetEvent 
BSR HandleEvent 
BRA MainLoop 

;Name of menu 
;create the menu 
;Save menu handle + on stack 

;Resource type 
;Add named font resources 

;(O = add to end) 
;Add to menu bar 

;Display menu bar 

GetEvent 

CLR.B -(SP) 
MOVE #-L,-(SP) 
PEA EventRecord 
_GetNextEvent 

;Leave space for Boolean result 
;Allov all events 
;Results are returned here 
;Check for an event 



344 Mac Assembly Language 

Listing 7-li. continued 

TST.B (SP)+ 
BEQ GetEvent 

;Pop and test the result 
;Branch if no pending event 

RTS 

* BandleEvent is the event dispatcher. It takes the event type 
* code returned by _GetNextEvent and calls the subroutine that 
* handles it. Access to the event-handling subroutines is 
* through a lb entry jump table. 

BandleEvent 

MOVE EventRecord+evtNum,DD ;Get event code 
CMP #8,DD ;Event "1_15? 
BB! Ignore ;Yes, so branch 
ASL #2,DD ;Two shifts = times ~ 

JMP JumpTable(PC,DO) ;Jump to handler 

Ignore RTS 

JumpTable 

JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 

DoKeyDown 
Do Update 
DoActivate 

RTS 

DoMouseDown 

CLR 
MOVE.L 
PEA 

Ignore ;Null event (never used) 
DoMouseDown ;Button-down 
Ignore ;Button-up 
DoKeyDown ;Key-down 
Ignore ;Key-up 
DoKeyDown ;Auto-key 
Do Update ;Update 
Ignore ;Disk-inserted 
DoActivate ;Activate 

-(SP) ;Space for result 
EventRecord+evtMouse,-(SP) ;Where 
ClickWindow ;VAR window involved 

_Find Window ;Where was button pressed? 



Menus :345 

Listing 7-l.. continued 

f'IOVE 
CMP 
BEQ 
RTS 

(SP)+,DO 
#InMenuBar,DO 
DoMenu 

;Get result 
;Pressed in menu bar? 
;Yes, so check it out 
;Ignore everything else 

Handle clicks in menu bar: 

Dof'lenu 

@:L 

-(SP) ;Space for result CLR.L 
PEA EventRecord+evtf'louse ;Where 
MenuSelect ;Get menu selection 

MOVE (SP),theMenu(AS) ;Save menu number (high word) 
MOVE 2(SP),theitem(AS) ;Save item number (low word) 

MOVE #0, - (SP) 
_HiliteMenu 

TST.L (SP)+ 
BNE @:L 

BRA GetEvent 

;Remove highlight from menu 

;Test and pop _f'lenuSelect result 
;Branch if item selected 

Cf'IP 
BNE 

#FileID,thef'lenu(AS) 
@2 

;In the File menu? 

must have selected QUIT command, so return to Finder 

@2 

_Exi tToShell ;Return to Finder 

Cf'IP 
BNE 

#FontID,theMenu(AS) ;Font menu? 
f'lenuExit ;No, so branch 

Font menu being used. First remove checks from all items, then check 
the one that was selected. 

CLR -(SP) 
MOVE.L FontH(AS),-(SP) 
_CountMitems 
MOVE (SP)+,Db 

;Space for result 
;Handle to menu 

;Get # of items in 
;Pop count into Db 

menu 

Use a DBRA loop to remove checks from everything. The count is in Db 
because Db is not destroyed by toolbox calls. 



346 Mac Assembly Language 

Listing 7-:L. continued 

SUBQ #L, Db ;count-L for DBcc loops 
Unllark llOVE.L FontH(AS),-(SP) 

llOVE 
ADDQ 

Db,-(SP) 
#L,(SP) 

llOVE.B #0,-(SP) 
_Checkitem 
DBRA Db,Unllark 

llOVE.L FontH(AS),-(SP) 

;Item number (minus L) 
;Add L for true item number 
;O (false) = remove check from the item 
;Do it! 

;Keep looping until Db = -L 

llOVE the!tem(AS),-(SP) ;Item number 
llOVE.B #-L,-(SP) ;-L (true) =checked 
_Checkitem ;Check the selected item 

Get name of font resource from the menu item: 

llOVE.L FontH(AS),-(SP) ;Handle to font menu 
llOVE theitem(AS),-(SP) ;llenu item number 
PEA fontName ; VAR name of font 
_Getitem ;Get the name 

Get the font number corresponding to the font name. For this 
use _GetFllenu: 

PEA 
PEA 
_GetFNum 

fontName 
fontNumber 

Set the new typeface: 

;Pointer to font name 
;VAR font number 
;Read number into fontNumber 

llOVE fontNumber,-(SP);Push font number 
_TextFont 

llOVE #0,-(SP) 
_TextSize 

;Select new typeface 

;O = closest to system size 
;Pick an available font size 

Position the drawing pen, clear the screen, and draw our 
test pattern: 

llOVE 
llOVE 
_lloveTo 

#30,-(SP) 
#20,-(SP) 

llOVE.L OurWindow(AS),AO 

;h 
;v 



Listing 7-1. continued 

PEA PortRect(AO) 
_EraseRect 

Menus 347 

;PortRect holds window rectangle 
;Erase the window 

PEA 'The quick brown fox jumped over the lazy dog. 1 

_Drawstring 

RTS 

; We get to here if Apple menu was selected: 

MenuExit 
RTS ;Ignore Apple menu 

; Record for _GetNextEvent: 

EventRecord DCB.B EvtBlkSize,O ;Reserve space for record 

ClickWindow 

fontNumber 
fontName 

DC.L 0 

DC 0 

DCB.B :Lb,O 

;Window where mouse was clicked 

;Font number 
;Name of font 

; Here are the program globals. Use (AS) addressing. 

FontH 

OurWindow 

theMenu 
theitem 

DS.L 

DS.L 

DS 
DS 

Linker Control File 
Menus.Link 

], 

], 

], 

], 

;Handle to Font menu 

;Pointer to window we defined 

;Menu # selected 
; Item # selected 

Link this file to create application 
(without resources). 

Menus 
$ 



348 Mac Assembly Language 

Listing 7-L. continued 

* RMaker Source File 
* Menus.R 

* 
* Compile this after assembling and linking Menus.Asm 

* * The next command appends the resources to the application: 
!Book:Menus 

Type MBAR GNRL 
,l.26 
.I ;;Integers follow 
2 ;;Number of menus 
li ;;ID of list menu 
2 ;;ID of 2nd menu 

Type MENU 
,i. 

\},L; 

About this demo ... 

, 2 

File 
Quit 

Type WIND 
,l.26 

Font Menu Example 
t;O 5 332 502 
Visible NoGoAway 
t; 

a 

; ; Resource ID 
;;Title is the Apple symbol 
; ;About box 

; ; Resource ID 
; ;Menu Title 
;;Only item is Quit 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID. t; =title, no grow box 
;;User-definable item (not used) 

The last menu, Font, is the most interesting one. (See Fig
ure 7-5 .) It contains the names of all the active fonts in the 
Macintosh System program. When you select a name from 
the Font menu, the application prints a "quick brown fox" test 
string in the window, using the selected font. A check mark 
appears to the left of the name of the last font item selected. 



Menus 

Oeuelopment 

London 
Athens 

Figure 7-5. A Font Menu. 

549 

To create the application, assemble the Menus.Asm file, 
link using the Menus.Link linker control file, then compile the 
Menus.R file with RMaker. (Remember to change the disk 
volume prefix in the !Book:Menus statements, if necessary.) 
The application is stored in a file called Menus you can double
click to launch. Let's take a closer look at the assembly lan
guage source code to see how this application has been put 
together. 

As with most of the applications in this book, it starts by 
initializing the various toolbox managers it uses. It then loads 
a new window definition from the application's resource fork 
using _GetNewWindow, and makes it the active window for 
drawing operations using _SetPort. Next, it creates a menu 
bar with an Apple and File menu by loading in MBAR resource 
# 128 using _GetNewMBar. This menu bar is then made the 
current one using _SetMenuBar. 

The Font menu cannot be included in the MBAR resource 
because there is no way to tell in advance what fonts will be 
stored in the System file. That's because it is quite common 
for users to add new fonts to it or remove fonts from it to 
save disk space, using Apple's Font/DA Mover program. 

To create the Font menu, the program uses _NewMenu. 
The names of all the active fonts are added to its item list 
using _AddResMenu. (The resource type passed to 



:550 Mac Assembly Language 

_AddResMenu is FONT.) To complete the menu bar defini
tion, the program uses _InsertMenu to add the F~:mt menu to 
the right side of the menu bar. :The program then displays the 
menu bar using _OrawMenuBar. 

The next step is to wait for a button-down event in the 
menu bar and process it. The program does this by entering 
an event loop starting with the label MainLoop. When a but
ton-down event occurs, control passes to OoMouseOown 
where the program uses _FindWindow to determine whether 
the event occurred in the menu bar area. If it didn't, control 
returns to the main event loop. 

Clicks in the menu bar are handled by the code beginning at 
OoMenu. The program calls _MenuSelect to determine what 
menu item, if any, was selected. Notice how _MenuSelect's 
long word result is handled by the program: the first word on 
the stack, at CSP), which is the high-order word of the menu 
number/item number result, is transferred to the theMenu 
variable and the second word, at 2(5P), is transferred to 
theitem. Post-increment addressing is not used because the 
program needs to keep the result on the stack so it can easily 
check whether it is zero using TST.L CSP)+. If it is non-zero, 
an item was selected, then the zero flag is clear and the BNE 
@1 branch will take place. 

Tests are then made to see what menu was pulled down. If 
it was the File menu, the only item is Quit, so the program 
calls _ExitToShell to return to the Finder. If it was the Font 
menu, the program has some housekeeping to do before 
selecting the new font and drawing the test string. In particu
lar, it must erase the check mark for the previously selected 
font name and place a check mark to the left of the new font 
name. 

To do this, the program first determines how many items 
are in the Font menu using _CountMitems, then puts the 
result in the 06 register. It next uses a OBRA loop to remove 
check marks from each item in the menu. The condition 
tested by this instruction is always true, so looping always 
continues until the counter reaches -1 . Since OBcc stops loop
ing when its counter reaches -1, the number in 06 (the 



Menus 351 

counter) is reduced by one with SUBQ before entering the 
loop. Since the _ Checkltem instruction within the loop 
requires the item number to be on the stack, 06 is first 
pushed (the item number minus one), then the value on the 
stack is incremented with an ADDQ #1,CSP) instruction. A 
zero byte (a Boolean false) is pushed on the stack just before 
calling _ Checkltem to direct _ Checkltem to remove a check 
mark from the item. 

After all items have the check marks removed, _Check
Item is called again to check the item selected. This time a -1 
byte (Boolean true) is pushed to signify the item is to be 
checked. 

The program must now set the new typeface for character 
drawing operations. To do this,. it calls _Getltem to get the 
name of the new font, and then _GetFNum to convert this 
name to a font number that can be used with _ TextFont. 
(You haven't come across _ GetFNum before. It expects two 
long words on the stack; a pointer to the font name string; 
and the location at which the integer result, the font number, 
is to be stored.) 

A call to _ TextFont sets the proper typeface used by the 
subsequent _Drawstring instruction. Before the test string 
is actually displayed, the drawing window is cleared using 
_EraseRect; the window rectangle it needs is located Port
Rect bytes from the start of the window record. 

This application does not let you change the point size of 
the text. Instead, it calls_ TextSize with a zero parameter to 
select a size for the active font that is closest to the point size 
of the system font. If it didn't do this, and the active font is 
not defined in the default size used within windows, the oper
ating system scales a differently sized set of characters of 
the same font to the 12 point size. This results in distortion if 
the size of the scaled font is not an exact multiple of an 
existing font size. 



Chapter 8 

Dialogs and Alerts 

The Macintosh user-interface guidelines describe two special 
types of windows, dialog boxes and alert boxes, which are 
used to request input from, or convey messages to, a user. 
You can create and control them with a group of Macintosh 
toolbox trap instructions that make up the Dialog Manager. 
(See Table 8-1 .) You'll learn how to use the Dialog Manager in 
this chapter. 

Table 8-1. The Dialog Manager Trap Instructions. 

_Alert 

CLR - (SP) 
MOVE #alertID,-(SP) 
MOVE.L filter,-(SP) 
_Alert 

_CautionAiert 

CLR - (SP) 
MOVE #alertID,-(SP) 
MOVE.L filter,-(SP) 
_cautionAlert 

Draws an alert box on the 
screen. The box is defined in an 
ALRT resource. 

;INTEGER: space for result 
;INTEGER: resource ID of ALRT 
;POINTER: to filter procedure 

Draws an alert box on the 
screen with the Caution icon in 
the top-left corner. The box is 
defined in an ALRT resource. 

;INTEGER: space for result 
;INTEGER: resource ID of ALRT 
;POINTER: to filter procedure 

352 



Table 8-1. continued 

_CloseDialog 

MOVE.L theDialog,-(SP) 
_CloseDialog 

Dialogs and Alerts 353 

Frees up the space used by a 
dialog record and removes the 
dialog box from the screen. 

;POINTER: to dialog 

Use _CloseDialog only if you specified a nonzero value for 
dStorage when you created the dialog. If the value was zero, use 
_DisposDialog instead. 

_DialogSelect 

CLR.B 
PEA 
PEA 

-(SP) 
theEvent 
theDialog 

PEA item Number 
_DialogSelect 
MOVE.B (SP)+,DO 

_DisposDialog 

MOVE.L theDialog,-(SP) 
_DisposDialog 

_DrawDialog 

MOVE.L theDialog,-(SP) 
_DrawDialog 

Handles an event in a 
modeless dialog box and 
indicates whether the event 
related to an enabled dialog 
item. 

;BOOLEAN: space for result 
;POINTER: to the event record 
;VAR: pointer to dialog affected 
;VAR: item number selected 

;Result: true = enabled item 
selected 

false = no enabled item 
selected 

Frees up the space used by a 
dialog record and the records it 
refers to, and removes the 
dialog box from the screen. 

;POINTER: to dialog record 

Draws the contents of a dialog 
box on the screen. 

;POINTER: to dialog record 



354 Mac Assembly Language 

Table 8-1. continued 

_GetCtlValue 

CLR -(SP) 
MOVE.L theControl,-(SP) 
_GetCtlValue 
MOVE (SP)+ 1 DO 

_GetDitem 

MOVE.L theDialog,-(SP) 
MOVE #itemNumber,-(SP) 
PEA 
PEA 
PEA 

itemType 
itemBandle 
dispRect 

_GetDitem 

_GetlText 

MOVE.L itemBandle,-(SP) 
PEA theText 
_GetIText 

Returns the current value of a 
control item. 

;INTEGER: space for result 
;BANDLE: to control item 

;Result: value of item 

Gets the properties of an item 
in a dialog box. 

;POINTER: to dialog record 
;INTEGER: item number 
;VAR: handle to item type code 
;VAR: handle to item 
;VAR: display rectangle 

Gets the text of a text item. 

;BANDLE: to text item 
;VAR: the text string 

The maximum size of the text string is 241 characters. 
Use _GetDitem to get the handle to the text item. 

_GetNewDialog 

CLR.L -(SP) 
MOVE #templateID,-(SP) 
MOVE.L dStorage,-(SP) 
MOVE.L behindWindow,-(SP) 

_GetNewDialog 
MOVE.L (SP)+,AO 

Loads a predefined dialog from 
a DLOG resource file. 

;POINTER: space for result 
;INTEGER: resource ID of DITL 
;POINTER: to dialog record 
;POINTER: to window in front 

of the dialog 

;Result: handle to dialog record 



Table 8-1. continued 

_GetResource 

CLR.L -(SP) 
MOVE.L #rsrcType,-(SP) 
MOVE #rsrcID,-(SP) 
_GetResource 
MOVE.L (SP)+,AD 

_HiliteControl 

Dialogs and Alerts 555 

Loads a resource into memory. 
Use it to load a DITL resource. 

;HANDLE: space for result 
;LONGINT: resource type code 
;INTEGER: resource ID 

;Result: handle to resource 

Highlights a control item. 

MOVE.L theControl,-(SP) ;HANDLE: to control item 
MOVE #hiliteState,-(SP) ;INTEGER: highlighting code 
_HiliteControl 

_lnitDialogs Initializes the Dialog Manager. 

MOVE.L restartProc,-(SP) ;POINTER: to restart procedure 
_InitDialogs 

To use the standard restart procedure, push a zero pointer. 

_lsDialogEvent 

CLR.B - (SP) 
PEA theEvent 
_IsDialogEvent 
MOVE.B (SP)+,DD 

_ModalDialog 

MOVE.L filter,-(SP) 
PEA itemNumber 
_llodalDialog 

Indicates whether a given 
event relates to a particular 
modeless dialog window. 

;BOOLEAN: space for result 
;POINTER: to the event record 

;Result: true = dialog-related 
false = not related 

Handles user activity in a 
modal dialog box and returns 
the number of the item 
selected. 

;POINTER: to filter procedure 
;VAR: item number (integer) 



556 Mac Assembly Language 

Table 8-1. continued 

_NewDialog 

CLR.L -(SP) 
llOVE.L dStorage,-(SP) 
PEA windowRect 
PEA title 
llOVE.B #visible,-(SP) 

llOVE #windowType,-(SP) 
llOVE.L behindWindow,-(SP) 

llOVE.B #goAwayFlag,-(SP) 

llOVE.L #refCon,-(SP) 
llOVE.L itemList,-(SP) 
_NewDialog 
llOVE.L (SP)+,AO 

_NoteAiert 

CLR - (SP) 
llOVE #alertID,-(SP) 
llOVE.L filter,-(SP) 
_NoteAlert 

_ParamText 

PEA subTexta 
PEA subTextL 
PEA subText2 
PEA subText3 
_ParamText 

Creates a new, empty dialog 
record. 

;POINTER: space for result 
;POINTER: to dialog record 
;POINTER: to dialog box rectangle 
;POINTER: to title for dialog 
;BOOLEAN: true = visible 

false = invisible 
;INTEGER: window type code 
;POINTER: to window in front 

of the dialog 
;BOOLEAN: true = has close box 

false = no close box 
;LONGINT: reference constant 
;HANDLE: to item list 

box 

;Result: handle to dialog record 

Draws an alert box on the 
screen with the Note icon in 
the top-left comer. The box is 
defined in an ALRT resource. 

;INTEGER: space for result 
;INTEGER: resource ID of ALRT 
;POINTER: to filter procedure 

Sets the values for the four 
dialog text placeholders AQ, 

"1, "2, and "3. 

;POINTER: to AO string 
;POINTER: to AL string 
;POINTER: to A2 string 
;POINTER: to A3 string 

If a pointer is zero, the current value of the placeholder string is 
not affected. 



Table 8-1. continued 

_SellText 

MOVE.L theDialog,-(SP) 
MOVE #itemNumber,-(SP) 
MOVE #selStart,-(SP) 
MOVE #selEnd,-(SP) 
_Sel!Text 

_SetCtlValue 

MOVE.L theControl,-(SP) 
MOVE #newValue,-(SP) 
_setCtlValue 

Dialogs and Alerts 357 

Selects a range of text in a 
variable text box. 

;POINTER: to dialog record 
;INTEGER: item number 
;INTEGER: starting position 
;INTEGER: ending position 

Sets the value of a control 
item. 

;HANDLE: to control item 
;INTEGER: new value for item 

The handle to the control item is the handle returned by 
_GetDltem. 

_SetDltem 

MOVE.L theDialog,-(SP) 
MOVE #itemNumber,-(SP) 
MOVE #itemType,-(SP) 
MOVE.L itemBandle,-(SP) 
PEA dispRect 
_setDitem 

_SetlText 

MOVE.L itemHandle,-(SP) 
PEA theText 
_SetIText 

Sets the properties of an item 
in a dialog box. 

;POINTER: to dialog record 
;INTEGER: item number 
;INTEGER: new item type code 
;BANDLE: to new item handle 
;POINTER: to new display rectangle 

Sets the text of a text item. 

;HANDLE: to text item 
;POINTER: to new text string 

Use _GetDltem to get the handle to the text item. 



558 Mac Assembly Language 

Table 8-1. continued 

_StopAlert 

CLR - (SP) 
MOVE #alertID,-(SP) 
MOVE.L filter,-(SP) 
_StopAlert 

System global variables: 

Draws an alert box on the 
screen with·the Stop icon in 
the top-left comer. The box is 
defined in an ALRT resource. 

;INTEGER: space for result 
;INTEGER: resource ID Of ALRT 
;POINTER: to filter procedure 

A Count 
AN umber 

($A9A) 
($A98) 

Stage of last alert minus 1 [word]. 
The resource ID of the last alert used 
[word]. 

The two standard types of dialog boxes are shown in Fig
ure 8-1 . These boxes are conventionally used to request cer
tain types of input from the user. They can be composed of 
several user-alterable items (data input fields) containing 
such things as lines of text that can be edited, check boxes, 
and buttons. They can also contain static items that cannot 
be modified, such as fixed text, icons, and pictures. Toolbox 
instructions let you easily determine which items have been 
selected and what the current settings of the items are. 

An alert box, as its name suggests, normally warns a user 
of the consequences of a proposed action that might result in 
the destruction or loss of data. In a typical application, an 
alert box contains "OK" and "Cancel" buttons that you can 
click to either verify the action or abort it. For instance, if you 
try to drag an application icon to the trash can with the 
Finder, you'll see the alert box shown in Figure 8-2. 

Alerts are often used to display status information as well. 
Most About ... items in the standard Apple menu use alert 
boxes to display authorship and copyright information, for 
example. 



Dialogs and Alerts 359 

(o) A modol diolog box 

lmogeWriter (Standard or Wide) ( OK Il 
Paper: @ US Letter O R4 Letter 

0 US Legal 0 International Fanfold (cancel ) 
O Computer Paper 

Orientation: @Tall O Tall Rdjusted O Wide 

Pagination: @ Normal pages O No breaks between pages 

Reduction: @ None O 50 percent 

(b) A modeless diolog box 

( OK 

D Find 

Find what ..... I a_s_s_e_m_b_l_y ______________ ___, 

[Find NeHt ) @Whole Word O Partial Word 

) 

Figure 8-1. Macintosh Dialog Boxes. 

Are you sure you want to remoue the 
application 11 MacPaint 11 ? 

( Cancel J 

Figure 8-2. A Macintosh Alert Box. 



360 Mac Assembly Language 

The main difference between alerts and dialogs is that 
alerts don't contain any alterable items such as text strings 
or check boxes. They simply contain static items and one or 
more buttons you can click to dismiss the alert so the main 
program can continue. 

Preparing the Dialog Manager 

Before you begin using dialog and alert boxes in a program, 
you must initialize the Dialog Manager using the _lnitDialogs 
instruction: 

MOVE.L #0,-(SP) 
_In1tD1alogs 

;Pointer to restart procedure 

The sole parameter for _lnitDialogs is a pointer to a restart 
procedure that is called when a fatal system error occurs. 
Using a pointer of zero, as in this example, indicates you want 
to use the standard system procedure, which displays a 
bomb alert box and forces you to reboot the system. A more 
elegant restart procedure would be one that simply executes 
an _ExitToShell instruction to take you to the Finder. To set 
it up, use the following two instructions: 

PEA MyRestartProc 
_In1tD1alogs 

MyRestartProc is the label of the _ExitToShell instruction in 
the program. 

Since the Dialog Manager uses QuickDraw, the Font, Win
dow, and Menu Managers, and the Text Edit toolbox instruc
tions, you have to precede the call to _InitDialogs with calls 
to _lnitGraf, _lnitFonts, _InitWindows, _lnitMenus, and 
_TElnit, in that order. 

The only instruction in this group you haven't seen before is 
_ TEinit, the instruction that initializes the toolbox's text edit-



Dialogs and Alerts 361 

ing manager, Text Edit. These instructions are used to imple
ment the standard "cut and paste" editing operations 
described in the Macintosh user-interface guidelines. The 
MDS Edit program is an example of a program that uses Text 
Edit for all its editing operations. 

Creating Dialog Boxes 

There are two general classes of dialog boxes you can 
implement on the Macintosh: modal and modeless. A modal 
dialog box is one that, once displayed, internally handles all 
keyboard and mouse events until the user dismisses the box 
by clicking a button. Mouse clicks outside an item in the dialog 
box are ignored, so you can't pull down a menu, select 
another window, or use a desk accessory until the modal dia
log box is dismissed. In fact, that is how the modal dialog box 
gets its name: When you're using it, you're confined to a spe
cial operating mode until a button is clicked. 

A modeless dialog box, on the other hand, is just like any 
other window on the screen. It has a goaway box and a title 
bar, but no grow box. The user is free to switch between the 
modeless dialog box and any other window on the screen 
without restriction. You remove a modeless dialog box from 
the screen just like any other window: by clicking its goaway 
box or selecting Close from a File menu. 

Modal and modeless dialog boxes are defined and created 
using the same general programming techniques. The differ
ence in their behavior arises because different instructions 
are used to interact with them while they are on the screen. 

Just as with a window or a menu, there are two ways to 
create a dialog box, depending on whether a template for it 
has been saved in a resource file of type DLOG. 

If the dialog definition is not in a DLOG resource file, use 
_NewDialog to create it. _NewDialog is rather complex in 
that it requires you to pass on the stack nine parameters 



36.2 Mac Assembly Language 

describing the properties of the dialog. It returns a poin~er to 
a record describing the dialog. 

For the purposes of QuickDraw's drawing instructions, a 
dialog pointer is equivalent to a window pointer. This is 
because a dialog record is a superset of a window record. 

Here is the calling sequence for _NewDialog: 

CLR.L -(SP) 
llOVE.L #D,-(SP) 
PEA DialogRect 
PEA 11 

llOVE.B #-l., - (SP) 

;Space for result 
;a = use heap for record 
;Dialog rectangle 
;Title (null) 

;-l. = visible 
llOVE #DBoxProc, - (SP) ; window definition ID 
llOVE.L #-l.,-(SP) ;-l. = front window 
llOVE.B #D,-(SP) ;a= no goaway box 
llOVE.L #D,-(SP) ;refCon (usually D) 
llOVE.L ItemBndl(AS),-(SP) ;Bandle to item list 
_RewDialog 
llOVE.L (SP)+,AD ;!love pointer into AD 

DialogRect DC.I sa,sa,2aa,2aa ;coordinates of dialog rectangle 
ItemBndl DS.L l. ;Bandle to item list 

The first parameter pushed on the stack (after making 
space for the result) is a pointer to the area where the dialog 
record is to be kept. You can get such a pointer by reserving 
a space DWindLen ( 170) bytes long using _NewPtr. If you 
use a pointer of 0, as in the example, _NewDialog allocates 
its own space for a dialog record on the heap. 

The next parameter is a pointer to the coordinates of the 
rectangle in which the dialog box is displayed. The coordi
nates are expressed in global coordinates. 

The next two parameters are a pointer to the title of the 
dialog box (if applicable) and a Boolean value indicating 
whether the box is to be visible (true) or invisible (false). 

The window definition ID can be any of the values used 
when creating standard windows. (See Chapter 6.) By con-



Dialogs and Alerts 363 

vention, however, you should only use the DBoxProc, 
PlainDBoxProc, and AltDBoxProc ID codes for modal dialog 
boxes. For modeless dialog boxes, use NoGrowDocProc (a 
window with a close box but no size box). 

The next long word parameter is the window pointer of the 
window behind which the dialog box is to be drawn. If the 
pointer is zero, the dialog box goes behind all other windows. 
If it is minus one, it goes at the front and becomes the active 
window. You will usually pass a minus one pointer. 

The goaway box Boolean parameter will normally be false 
for modal dialog boxes and true for modeless dialog boxes. 
Modal dialog boxes don't use goaway boxes or titles. 

The refCon value is for the private use of your application. 
It can be set to any value Ca long word) you like. Its meaning 
is completely up to you. 

The last parameter pushed on the stack before calling 
_NewDialog is a handle to a DITL resource containing a list of 
the items the dialog uses. You'll see how to define such a 
resource in just a moment. For now, let's see how to load a 
DITL resource into memory and get its handle: 

CLR.L - (SP) 
MOVE.L # 1DITL 1 ,-(SP) 
MOVE #L28,-(SP) 
_GetResource 
MOVE.L (SP)+,ItemHndl(AS) 

;Space for result 
;Resource type 
; Resource ID 

;Pop the handle 

_GetResource is a general purpose instruction for reading 
any type of resource into memory, not just DITL resources. It 
returns a handle to the resource record, just what we need 
for _NewDialog. 

By far the most convenient way to create a dialog is to 
read it in from a CLOG resource file with _ GetNewDialog. 
This instruction requires only three parameters: the ID of the 
CLOG resource, a pointer to the dialog record area, and the 
pointer to the window behind which the dialog window is to 
appear (or minus one if the dialog is to be the front window 
and active). 



564 Mac Assembly Language 

CLR.L -(SP) 
MOVE #J.28,-(SP) 
MOVE.L #0 1 -(SP) 
MOVE.L #-L,-(SP) 
_GetNewDialog 

;Space for result 
;Resource ID of DLOG 
;D = storage on heap 
;Put dialog in front 

MOVE.L (SP)+,DlogBndl(AS) ;Move ptr into variable 

DlogBndl DS.L L ;Bandle to dialog record 

The calling sequence for _GetNewDialog is much simpler 
than that for _NewDialog because most of the information 
needed to form the dialog record is contained in the DLOG 
resource. 

As usual, you use RMaker to create a DLOG resource. Here 
is the source format for a typical DLOG resource: 

TYPE DLOG 
J.28 

A Dialog Box 
SD SD 200 i;oo 
Visible NoGoAway 
L 

D 

J.33 

;;resource ID of this DLOG 
;;title for the dialog box 
;;coords of box (TLBR) 
;;window attributes 
;;window definition ID 
;;refCon value (usually D) 
;;resource ID of DITL (item list) 

The title for a dialog box is displayed only if you are using a 
modeless dialog box. The coordinates are global coordinates 
relative to the top left-hand comer of the screen. 

The attributes of a dialog window can be Visible (display 
the dialog box) or Invisible (don't display it), and GoAway 
(use a close box) or NoGoAway Cno close box). You can use 
any other words beginning with V, I, G, N, respectively, if you 
wish. You will usually want to define a Visible dialog box so 
you don't have to display it with _ShowWindow after loading 
it into memory. Use the GoAway attribute for modeless dia
log boxes and the NoGoAway attribute for modal dialog 
boxes. 

The window definition ID is the same as the one you would 
pass to _NewDialog. For modeless dialogs, use 4 CNoGrow-



Dialogs and Alerts 565 

DocProc). For modal dialogs, use either 1 (DBoxProc), 2 
(PlainDBoxProc), or 3 (AltDBoxProc). 

The refCon parameter has the same meaning as the one 
passed to _New Dialog. 

The DLOG resource is linked to a DlTL resource that 
describes the various items used by the dialog. You'll learn 
about DITL resources in the next section. 

Items and Item Lists 

As you have just seen, both _NewDialog and _GetNewDia
log use an important resource of type DITL (Dialog Item List). 
Such a resource is made up of a list of items that are to 
appear in a dialog or alert box. Associated with each item are 
the coordinates of the rectangle in which it is to be displayed. 
in the local coordinate system of the dialog or alert box 
window. 

The common types of items that can be defined in a DITL 
resource are as follows: 

• Static text-a line of text that cannot be modified 
• Variable text box-a line of text that can be modified 
•A control item-button, check box, radio button 
•An icon 
• A QuickDraw picture 

It is also possible to use controls defined in a CNTL resource 
file or to create application-defined items, but I won't be con
sidering them here. 

The RMaker source format for a DITL resource looks like 
this: 

TYPE DITL 
,133 ;;resource ID of this DITL 

5 ;;number of items in list 

StaticText Disabled ;;static text (disabled) 
10 121 2b 177 ;;Item rectangle (TLBR) 
My text ;;this text never changes 



566 Mac Assembly Language 

Edit 
.t;5 31 62 1<!5 
Change this 

Button 
10<! 33 MO qi; 
Cancel 

Check 
76 26 q5 107 
Sound on 

Radio 
77 171 q5 25<! 
High Rate 

;;variable text box 
; ;TLBR 
;;text to be edited 

; ;button item 
; ;TLBR 
;;Name for the button 

; ;check box item 
; ;TLBR 
;;check box name 

;;radio button item 
; ;TLBR 
;;radio button name 

The item types in a DITL resource are identified by specific 
words: 

• StaticText, StatText, or Stat for static text 
• EditText or Edit for variable text boxes 
• Button or Btnltem for standard buttons 
• CheckBox, Chkltem, or Check for check boxes 
• RadioButton, Radioltem, or Radio for radio buttons 

The other standard item types are supported by MOS 2 .0 
only. Their identification words are: 

• Icon or lconltem for icons 
• Pie or Picltem for QuickDraw pictures 
• User or Userltem for application-defined items 
• ResCitem or ResCtl for controls defined in a CNTL resource file 

These last few item types are not used very often. 
The coordinates given for the items are in the local coordi

nates of the window in which the items will appear. and are in 
standard top, left, bottom, right order. 

If an item name in the dialog template is followed by the 
word Disabled, as with the static text item above, clicks in its 
rectangle are ignored. Items whose names are followed by 
the word Enabled are active items. If neither word is used, 
the item is considered to be enabled. 



Dialogs and Alerts 567 

Item Types 

This section will describe each of the different types of 
items you can use within a dialog box. The symbolic names 
for these items are shown in Table 8-2. 

Table 8-2. Item Type Codes for Dialog and Alert Boxes. 

Symbolic Name Code Description 

User Item 0 User-defined item 
Ctrlltem 4 Control item 

BtnCtrl 4+0 Button control 
ChkCtrl 4+1 Check box control 
RadCtrl 4+2 Radio button control 
ResCtrl 4+3 Control in CNTL resource 

StatText 8 Static text 
EditText 16 Variable text box 
Icon Item 32 Icon 
Picltem 64 QuickDraw picture 
ltemDisable 128 Disabled item 

Add the constant ltemDisable to the code for an item to disable that 
item. 

Static Text 

A static text item (StatText) is a string of characters that 
appears in the dialog box, but cannot be edited. Such an item 
could be used to hold a command or an explanatory message, 
or to pose a question, for example. 

If a static text item is wider than the width of the rectangle 
in which it is to be displayed, the end of the text wraps to the 
next line in the rectangle, but you won't see it if the rectangle 
is not deep enough. Entire words wrap together, so words 
are not broken up over two lines. 

It is often convenient to be able to change the precise 
wording of a static text item after it is initially defined, by 
inserting names or phrases that can't be predicted in 



S68 Mac Assembly Language 

advance. The easiest way to do this is to use the "0, "1, "2, 
and "3 text place holders when you first define the static 
text item in the DITL resource. 

You can assign a text string to each of these place holders 
to ensure when the dialog box is drawn that the strings are 
substituted for the place holders. The instruction to use for 
this is _ParamText: 

STRING_FORMAT 3 

PEA StringO(AS) 
PEA StringL(AS) 
MOVE.L #0,-(SP) 
PEA String3(AS) 
_ParamText 

StringO DS.B 'placeholder 0 1 

StringL DS.B 'placeholder L' 
String3 DS.B '~th placeholder' 

;Need length+string for DS 

;String for AO 
;String for AL 
;(Don't change A2 string) 
;String for A3 

If a particular string is not to be changed, push a long word 
zero on the stack instead of a pointer to the string. This was 
done for the "2 place holder in the example. 

Suppose you use a dialog box to ask for verification of a file 
deletion operation. Instead of using a general static text item 
like "Are you sure you want to delete the file?", you can 
define an item such as: 

"Are you sure you want to delete A0? 11 

and then use _ParamText to subsitute for AQ the actual 
name of the file selected. This must be done before displaying 
the dialog, of course. 

Variable Text Box 

A variable text box (EditText) is a rectangle within which a 
line or lines of text is displayed. The text can be up to 241 
characters long and can be edited using the standard Macin-



Dialogs and Alerts 569 

tosh text editing techniques. This means you can click the 
mouse somewhere in the text box to select an insertion point 
for subsequent keystrokes. (The insertion point is marked by 
a blinking vertical bar.) You can select a range of text for 
deletion by dragging the mouse across the text, then press
ing any key to replace it. Further, you can extend a previous 
selection range by holding down the SHIFT key while you 
select another range. Selected text appears as white charac
ters on a black background. 

As you will see later on, the toolbox contains instructions 
you can use to pre-select a range of text or set a text inser
tion point. There are also instructions to change the text dis
played in the box and to determine what the current text is. 

If there is more than one variable text box item in a dialog, 
you can use the TAB key to move from one to the next. If 
you're in the last text box when you press TAB, you will go to 
the first one. 

Control Items 

Control items (Ctrlltem) represent the most common item 
types used in dialog boxes. The mqjor types are: 

• Buttons CCtrlltem + BtnCtrl) 
• Check boxes (Ctrlltem + ChkCtrl) 
• Radio buttons (Ctrlltem + RadCtrl) 

There is also a control item that can be set by the applica
tion (Userltem) and one defined by a control template in a 
CNTL resource file (ResCtrD. I will not be considering these 
types of control items here. 

BUTTONS. Buttons are rounded-corner rectangles that 
can be clicked to dismiss a dialog or alert box (remove it from 
the screen) and cause a particular action to occur. The name 
associated with a button appears within the body of the 
button. 

Most modal dialog boxes and alert boxes contain at least 
one button so they can be dismissed in accordance with the 
user interface guidelines. 



370 Mac Assembly Language 

There is a special visual form for the default button in a 
modal dialog or alert. This button can be selected by pressing 
the RETURN or ENTER key on the keyboard. The default 
button is easily identifiable because it is enclosed by a dark, 
black border. If you are using more than one button in your 
dialog, the one most likely to be selected spould be made the 
default so it can be easily selected with a keyboard 
command. 

For modal dialog boxes, the first item in the item list is 
always the default item, so make sure it is a button. Such a 
button is typically labeled as the OK button. For alert boxes, 
either the first or second item in the item list can be desig
nated as the default when you create the alert's item list. 

The Dialog Manager instructions that display dialog boxes 
do not automatically draw the dark border around the default 
button. You must take care of this yourself using techniques 
discussed later in this chapter. The alert box drawing instruc
tions do take care of highlighting the default button, 
however. 

CHECK BOXES. Check boxes are associated with parame
ters that can be in one of two states: on and off, selected and 
not selected, high and low, and so on. A check box appears 
as a small square in the dialog box. If it is on ( 1 ) • it has an X 
drawn in it. The name associated with the check box appears 
to its right. 

A check box is independent of all other check boxes and 
other items. This means that its setting should not affect the 
setting of any other item in the dialog box. 

RADIO BUTl'ONS. Radio buttons invariably appear in 
groups of two or more buttons, with each button represent
ing a different value that can be associated with one particu
lar parameter. They appear as small circles in a dialog box 
and the one that is on has a smaller black circle inscribed in it. 
The radio button's name appears to its right on the screen. 
Radio buttons derive their name from the fact that when a 
radio button is selected by clicking it, all other buttons in the 
group are turned off, just like when you select a station on a 
standard car radio. 



Dialogs and Alerts 371 

Icons 

An icon (lconltem) is another type of item you can associ
ate with a dialog box. In the DITL item list resource an icon is 
referred to by its resource ID number. The resource type for 
an icon is, naturally enough, ICON. 

An icon is scaled to fit the rectangle associated with it in 
the DITL resource. For best results, select a rectangle that is 
32 pixels wide and 32 pixels high. This is the exact size of an 
icon, so there will be no distortion due to scaling. 

An icon item is similar to a static text item in that it cannot 
be modified by the user. 

Pictures 

The last standard item type is a QuickDraw picture (Pic
ltem). Like an icon item, a picture is referred to by its 
resource ID number. The resource type is PICT. Also like 
icons, pictures are scaled to fit the display rectangles associ
ated with them. 

Disabling Items 

Any item in a dialog can be defined as disabled by adding 
the ItemDisable constant to its item type code or by placing 
the word Disabled after its name in the DITL resource defini
tion. It's a good idea to disable static items like icons. pic
tures, and text so mouse clicks in their rectangles will be 
ignored. 

Changing Item Attributes 

There are several toolbox instructions you can use to read 
and change the attributes of the items in a dialog box item 
list: _SetDltem, _GetDltem, _SetlText, _GetlText, _Sell
Text, _GetCtlValue, and _SetCtlValue. 



572 Mac Assembly Language 

Use _ GetDltem to determine the item type, the handle to 
the data defining the item's behavior, and the coordinates of 
the display rectangle for the item. The calling sequence is as 
follows: 

MOVE.L DialogPtr(AS),-(SP) ;Push dialog pointer 
;Item number MOVE #1 1 -(SP) 

PEA itemType 
PEA 
PEA 

itemHandle 
itemRect 

_GetDitem 

itemType DC.W 0 
itemHandle DC.L D 
itemRect DCB.W ~.o 

DialogPtr DS.L l 

;VAR Item type 
;VAR Item handle 
;VAR Item rectangle 

;Item type code 
;Item handle 
;Item rectangle 

;Dialog pointer 

The item handle refers to data or code related to the item 
type. For control items, for example, the handle refers to a 
control record that defines the control in question. For a vari
able text box item, the handle refers to the string of charac
ters currently displayed in the box. 

To change the type, handle, or rectangle of a dialog item, 
you can use _SetDltem. 

MOVE.L DialogPtr(AS),-(SP) 
MOVE #l, - (SP) 
MOVE itemType(AS),-(SP) 
MOVE.L itemHandle(AS),-(SP) 
PEA dispRect(AS) 
_setDitem 

;Push dialog pointer 
;Item number 
;New Item type 
;New Item handle 
;New Display rectangle 

_SetDltem is very useful for disabling certain dialog items so 
that the Dialog Manager will ignore clicks in them. To do this, 
add ltemDisable (decimal 128) to the standard item type 
code for the item. 

Do not confuse disabling an item with making it inactive. An 
inactive item (always a control item) is dimmed in the dialog 



Dialogs and Alerts 373 

box, but a disabled item is not. To make a control item inac
tive, use _HiliteControl: 

MOVE.L itemHandle(A5),-(SP) ;Handle to control item 
MOVE #255,-(SP) ;255 = in~ctive 
_HiliteControl 

You should make inactive and disable any control items in a 
dialog box inappropriate to the particular operating environ
ment you're in. 

To return a control item to its normal state, pass a high
lighting code of zero to _HiliteControl: 

MOVE.L itemHandle(A5),-(SP) 
MOVE #D,-(SP) 

;Handle to control item 
; a = highlight 

_Bili teControl 

You should not use _SetDitem to change the text of a 
static text or variable text item, however. For this, use 
_SetIText as follows: 

STRING_FORMAT 3 ;Need length+string for DC 

MOVE.L itemBandle(A5),-(SP) 
PEA MyText 
_SetIText 

MyText DC.B •use this string• 

;Handle to text item 
;The new text string 

You can use _GetDltem to get the proper value for itemHan
dle before calling _SetIText. 

It's often quite convenient to determine the text associated 
with a particular variable text box to enable the program to 
take the user's input and deal with it. For this, use _GetIText. 

MOVE.L itemHandle(AS),-(SP) 
PEA CurrentText(AS) 
_GetIText 

CurrentText DS.B 2~2 

;Handle to text item 
;Address of string var 

;Space for text 



574 Mac Assembly Language 

Since text items can be up to 241 characters long, you have 
to reserve 242 bytes for CurrentText. The extra byte is used 
for the leading length byte. 

One other thing you can do with text in a variable text box 
is to "pre-select" all or a portion of it. Selected text is high
lighted in white letters on a black background and is deleted 
and replaced when you type a character from the keyboard 
other than RETURN or a modifier key. If the text box con
tains a default string, you will probably want to select the 
entire string. That way, the default will disappear when the 
user types a character to change the entry; assuming, of 
course, that if the user changes even one character, he's 
likely to be entering a whole different response. This is usu
ally a valid presumption. 

To select text, use _SelIText: 

MOVE.L itemHandle(AS),-(SP) 
MOVE #l.,-(SP) 
MOVE #0,-(SP) 
MOVE #2~:1.,-(SP) 

_SelIText 

;Handle to text item 
;Item number 
;Starting char. position 
;Ending char. position 

The starting and ending position parameters passed to 
_SeIIText run from zero up to the maximum size of the text 
string. A zero value refers to a position to the left of the first 
character, one refers to the left of the second character, and 
so on. If the starting and ending positions are equal, a blinking 
vertical bar appears at that position. Typed characters are 
inserted at this point. 

The settings of control items such as check boxes and 
radio buttons can be read and changed using _ GetCtlValue 
and _SetCtlValue. Since check boxes and radio buttons are 
either on or off, their settings are either zero or one. 

To use _GetCtlValue or _SetCtlValue you must first obtain 
the handle to the check box or radio button. To do this, use 
_GetDltem. _GetCtlValue returns the current value of the 
control item so you can tell if it is on or off. 



Dialogs and Alerts 575 

CLR -(SP) ;Space for result 
MOVE.L itemHandle(AS),-(SP) ;Handle to control item 
_GetCtlHandle 
MOVE (SP)+,DO ;On if 00=1 

You will use the _SetCtlHandle instruction to take care of 
selecting and disabling check boxes and radio buttons. For 
example, if you click the mouse in a check box, you will want 
to tum it on (put an X in it) using the following instructions: 

MOVE.L itemHandle(AS),-(SP) 
MOVE #1,-(SP) 
_SetCtlValue 

;Handle to control item 
;New value (1=on) 

Remember to follow the Macintosh user interface conven
tions when enabling radio buttons: Only one button in a group 
can be selected at any given time. This means if a user clicks 
the third button in a group of four, your program will have to 
tum off the first, second, and fourth buttons, and tum on the 
third button. To do this, you have to make four calls to 
_SetCtlValue. 

Using Dialog Boxes 

The proper way to handle a dialog box once it's on the 
screen depends on whether it is a modal or modeless dialog 
box. Let's begin by considering modal boxes and then move 
on to explore modeless boxes. 

Modal Dialog Boxes 

As soon as you display a modal dialog box on the screen 
with _NewDialog or _GetNewDialog, you must call _Modal
Dialog to monitor events within the box and get a result 
indicating what item was selected. You can then deal with 
the result as you see fit before calling _ModalDialog once 
again to get more input or to dismiss the dialog box. To dis-



376 Mac Assembly Language 

miss it, call _HideWindow to erase it from the screen. (See 
Chapter 6 for a description of this instruction.) Or use _Dis
posDialog or _CloseDialog to erase it and free up the heap 
space it uses (more on these two instructions later in this 
section). 

A program subroutine that implements a simple two-button 
dialog box is shown in Listing 8-1 . It uses _GetNewDialog to 
create a dialog box defined in a DLOG resource file. 

Listing 6-L. The Source File, Linker Control File, and 
RMaker File for the Modal Program. 

Asm Source File 
llodal.Asm 

This is an example of how to use modal dialog boxes. 

AppleID 
FileID 
lfindID 
llodalID 

EQU 
EQU 
EQU 
EQU 

L 

2 

L21l 
L21l 

;llenu ID for Apple llenu 
;llenu ID for File llenu 
;Window ID 
;llodal Dialog ID 

INCLUDE ToolEqu.D ;Toolbox equates 
INCLUDE QnickEqu.D ;QnickDraw equates 
INCLUDE SysEqu.D ;Operating system equates 
INCLUDE Traps.D ;Trap instructions 

Initialize the various llanagers: 

PEA -.t;(AS) 
_InitGraf 
_InitFonts 
_Initlfindows 
_Initllenus 
_TEinit 
llOVE.L #D,-(SP) 
_InitDialogs 
_InitCursor 

llOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Start of QuickDraw globals 
;Initialize QuickDraw 
;Font llanager 
;lfindow llanager 
;llenu llanager 
;TextEdit 
;(no restart procedure) 
;Dialog llanager 
;Ile want arrow cursor 

;Get rid of every event 

Create and draw a window on the screen: 



Dialogs and Alerts 377 

Listing 6-L. continued 

CLR.L - (SP) 
MOVE #WindID,-(SP) 
MOVE.L #0,-(SP) 
MOVE.L #-1, -(SP) 
_GetHewWindow 
_Setport 

;Space for returned pointer 
;Resource ID 
;store on heap 
;-1 = front window 
;Get window from resource file 
;Make window the active GrafPort 

Create two standard menus: 

CLR.L -(SP) ;Space for handle 
MOVE #AppleID, - (SP) ; Menu ID number 
_GetRMenu ;Get Menu from resource file 
MOVE.L (SP)+,AppleH(AS) ;Save menu handle 
CLR. L - (SP) ; Space for handle 
MOVE #FileID, - (SP) ; Menu ID number 
_GetRMenu ;Get menu from resource file 
MOVE.L (SP)+,FileH(AS) ;save menu handle 

Add menus to menu bar: 

MOVE.L AppleH(AS),-(SP) 
MOVE #0, - (SP) ; ( 0 = add to end) 
_InsertMenu 

MOVE.L FileH(AS),-(SP) 
MOVE #0,-(SP) 
_InsertMenu 

_DrawMenuBar 

BSR DoDialog 

MainLoop 

BSR GetEvent 
BSR HandleEvent 
BRA MainLoop 

GetEvent 

CLR.B - (SP) 
MOVE #-1, - (SP) 

;Add to menu bar 

;(O =add to end) 
;Add to menu bar 

;Display menu bar 

;Leave space for Boolean result 
;Allow all events 



378 Mac Assembly Language 

Listing 6-L. continued 

PEA EventRecord 
_GetNextEvent 
TST.B (sp)+ 
BEQ GetEvent 
RTS 

;Results are returned here 
;Check for an event 
;Pop and test the result code 
;Branch if null event 

* Draw a dialog box on the screen and handle it: 

DoDialog 
CLR.L -(SP) ;Space for result 
MOVE #ModalID,-(SP) ;Resource ID of template 
MOVE.L #0,-(SP) ;O =storage on heap 
MOVE.L #-1,-(SP) ;-1 = window at front 
_GetNewDialog ;Create the dialog 
MOVE.L (SP)+,DialogPtr(AS) ;save dialog pointer 

BSR DoDefault ;Highlight default button 

Dialog Loop 

MOVE.L #0,-(SP) 
PEA itemNumber(AS) 
_ModalDialog 

;No filter procedure 
;Item number returned here 
;Get user input 

CMP #1, itemNumber( AS) ; "You Bet! 11 button? 
BBQ DialogErase ;Yes, so remove dialog 

MOVE #bO,-(SP) ;one-second (bO tick) beep 
_Sys Beep 
BRA DialogLoop ;And try again 

DialogErase 

MOVE.L DialogPtr(AS),-(SP) 
_DisposDialog 
RTS 

;Get rid of dialog box 

* DoDefault draws a three-pixel wide border around the 
* default button in a dialog box. (The button must be the 
*first item.) The border is separated from the button 



Dialogs and Alerts 379 

Listing 8-l. continued 

* rectangle by a one-pixel gap. 

DoDefault 

PEA Old Port ;VAR result 
_Get Port ;Get current drawing window 

MOVE.L DialogPtr(AS),-(SP) 
_SetPort ;Make dialog active for drawing 

MOVE.L DialogPtr(AS),-(SP) ;Dialog pointer 
MOVE #1,-(SP) ;Item #1 
PEA itemType ;VAR item type 
PEA itemHndl ;VAR item handle 
PEA itemRect 
_GetDitem 
PEA itemRect 
MOVE #-4,-(SP) 
MOVE #-4,-(SP) 
_InsetRect 

MOVE #3,-(SP) 
MOVE #3,-(SP) 
_Pen Size 

PEA itemRect 
MOVE #1b,-(SP) 
MOVE #1b,-(SP) 
_FrameRoundRect 

MOVE.L OldPort,-(SP) 
_SetPort 

RTS 

;VAR item rectangle 
;Get item info 
;VAR item rectangle 
;Expand left/right 4 pixels 
;Expand top/bottom 4 pixels 
;Calculate new rectangle 

;Pen width 
;Pen height 
;Set new pen size 

;VAR item rectangle 
;Width of corner oval 
;Height of corner oval 
;Draw dark border 

;Restore original drawing window 

* HandleEvent is the event dispatcher. It takes the event 
* type code returned by _GetNextEvent and calls the subroutine 
* that handles it. Access to the event handling subroutines is 
* through a Lb entry jump table. 

HandleEvent 



580 Mac Assembly Language 

Listing 8-:L. continued 

MOVE EventRecord+evtNum,DD 
CMP #1!,DD ;Event q-15? 
BHI Ignore ;Yes, so ignore 
ASL #2,DD ;Two shifts = times ~ 

JMP JumpTable(PC,DD) ;Jump to handler 

Ignore RTS 

JumpTable 

JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 
JMP 

DoKeyDown 
RTS 

DoUpdate 
RTS 

DoActivate 
RTS 

DoMouseDown 

Ignore 
DoMouseDown 
Ignore 
DoKeyDown 
Ignore 
DoKeyDown 
DoUpdate 
Ignore 
DoActivate 

;Null event (never used) 
;Button-down 
;Button-up 
;Key-down 
;Key-up 
;Auto-key 
;Update 
;Disk-inserted 
;Activate 

CLR - (SP) ; Space for result 
MOVE.L EventRecord+evtMouse,-(SP) ;Where 
PEA WindowPtr(AS) 
_Find Window 

MOVE 
CMP 
BEQ 
RTS 

(SP)+,DD 
#InMenuBar,DD 
QuitCheck 

;Where was button pressed? 

;Get result 
;Pressed in menu bar? 
;Yes, so check it out 
;Ignore everything else 

; See if 11 QUIT 11 was selected from File menu: 

QuitCheck 



Dialogs and Alerts 381 

Listing 8-l. continued 

MOVE .L #D, - (SP) ;result ; menu/item selected 
PEA EventRecord+evtMouse ;Where 
MenuSelect ;Get menu selection 

MOVE (SP)+,MenuNum(AS) ;Save menu number 
MOVE (SP)+,DD ;Discard item number 

MOVE #D, - (SP) 
_BiliteMenu ;Remove highlight from menu title 

CMP #FileID,MenuNum(AS) ;In the FILE menu? 
BNE GetEvent 

* Must have selected QUIT command, so return to Finder by 
* popping the subroutine return address before RTS. (We 
* could also return just by executing an _ExitToShell 
* instruction. ) 

MOVE.L (SP)+,DD ;Pop the return address (long!) 

RTS ;Return to Finder 

Record for _GetNextEvent: 

EventRecord DCB.B EvtBlkSize,D ;Reserve space for record 

oldPort DC.L D ;Window ptr for _GetPort 
itemType DC D ;Item type for _GetDitem 
itemHndl DC.L D ;Item handle for _GetDitem 
itemRect DCB.W <;,a ;Dialog rectangle for _GetDitem 

; Here are the program globals. Use (AS) addressing. 

AppleH DS.L ], ;Handle to Apple menu 
FileB DS.L ], ;Bandle to File menu 

WindowPtr DS.L ], ;Pointer to window 

MenuNum DS.W ], ;Menu number selected 

DialogPtr DS.L ], ;Pointer to dialog record 

itemNumber DS.W ], ;Item number for modal dialog 



582 Mac Assembly Language 

Listing 8-:L. continued 

Linker Control File 
llodal.Link 

Link this file to create application 
(without resources). 

llodal 
$ 

* Rllaker Source File 
* llodal.R 

* 
* Compile this after assembling and linking llodal.Asm 

* 
* The next command appends the resources to the application: 
!Book:Modal 

Type llENU 
,:L 

M 

About this demo •.• 

,2 

File 
Quit 

Type WIND 
,:L26 

llodal Dialog Demo 
.i:o 5 332 502 
Visible NoGoAway 
.i; 

0 

Type DLOG 
,:L26 

LOO LOO 200 350 
V N 
:L 

; ; Resource ID 

;;Title is the Apple symbol (ASCII $L.I;) 
; ;About box 

; ; Resource ID 

; ; Menu Title 
; ;Only item is 11Quit 11 

; ; Resource ID 

;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID . .i: =title, no grow box 
;;User-definable item (not used) 

; ; Modal Dialog 
; ; Resource ID 

; ;No title 
; ;TLBR 
;;Visible, No Goaway 
;;Standard dialog box type 



Dialogs and Alerts 585 

Listing 6-L. con1:lnued 

O ;;User-definable (not used) 
126 ;;Resource ID of DITL resource 

Type DITL ;;Item list for DLOG (126) 
,126 ;;Resource ID 
3 ;;Number of items 

Button ;;Button (item #1 - default) 
bO 20 qo qo 
OK 

Button ;;Button (item #2) 
bO 135 qo 205 
No !lay! 

Static Disabled 
20 30 t;O t;OO 
Do you want to continue? 

;;Static text item (item -3 - disabled) 

To use _ModalDialog, first push the pointer to a filter pro
cedure, then the address of the variable in which an item 
number is to be returned: 

llOVE.L #0,-(SP) ;No filter procedure 
PEA itemNumber(AS) ;Item number variable 
_llodalDialog 

ItemNumber DS.11 1 ;Item number returned here 

A filter procedure is a subroutine that _ModalDialog calls 
after it detects an event but before it responds to it. This lets 
you modify the effect of events any way you want. If you're 
not using a custom filter procedure (the usual case), just 
push a long word zero on the stack. This invokes the stan
dard filter function, converting the press of the RETURN or 
ENTER key to a mouse click in the first item in the dialog box. 
In typical applications, the first item will be a button. See 



584 Mac Assembly Language 

Inside Macintosh for the technical specifications of a dialog fil
ter procedure. 

When _ModalDialog takes over, it handles any update 
events related to the dialog (caused when a control item like 
a button or a check box changes value), and monitors all 
events until an active item is selected. It beeps if the mouse is 
clicked outside the dialog window and ignores all clicks inside 
the window if they're not also inside the display rectangle of 
an enabled item. Button-down events in control items like 
buttons and check boxes are monitored until the button is 
released; if the mouse is not in the control at the end of the 
click, the click is ignored. 

When _ModalDialog finishes, the itemNumber variable con
tains the number of the item selected. With one exception, 
disabled items cannot be selected, so this number corre
sponds to an active item. The exception occurs when you use 
the standard filter procedure and RETURN or ENTER is 
pressed: in this situation, _ModalDialog always returns a one 
even if the first item is disabled. The first item should always 
be an enabled button, however. 

In the subroutine in Listing 8-1 , the dialog is erased and dis
posed of with a call to _DisposDialog if the first button is 
clicked (the ''You Bet!" button). If the other button is clicked, 
the speaker beeps for one second and the subroutine calls 
_ModalDialog again. _ModalDialog does not report clicks in 
the text item because it is marked as disabled in the resource 
file. 

Listing 8-1 also shows how to highlight the default button 
(the first item). The DoDefault subroutine uses _GetDitem 
to determine the bounding rectangle for the button item, 
extends this rectangle by four pixels in all directions using 
_lnsetRect with negative parameters, then draws a dark 
border around the new rectangle with a three-pixel wide 
pen. 

The action a program takes when _ModalDialog returns a 
result depends on the type of item selected. If it was a check 
box, the box should be checked if it was previously disabled 
or vice versa. If it was a radio button, the radio button should 



Dialogs and Alerts 385 

be selected and all other radio buttons in the group should be 
disabled. 

When a button is selected, you will normally erase the dia
log window from the screen. See the following section, 
Removing Dialog Boxes From the Screen, for instructions on 
how to do this. 

Key-down events are processed by _ModalDialog only if 
there is a variable text box in the dialog. If the text box is 
enabled, its item number is returned after every key press. If 
it's not, no item number is returned, but you can still edit the 
string in the text box. It's probably best to disable text boxes 
so you don't have to keep looping back to _ModalDialog after 
every key press. Instead, after a button is pressed to dismiss 
the dialog, you can use _GetlText to determine the final 
value of the text string. 

The TAB key is used to move the text insertion cursor from 
one variable text box to the next. If you're in the last text box 
when you press TAB, you will proceed to the first text box. 

Button-down events in a variable text box are automati
cally handled by _ModalDialog in a manner consistent with 
the Macintosh user interface guidelines for text selection. 
That is, if the mouse is clicked, a blinking cursor appears and 
subsequent keystrokes are inserted at that point. If the 
mouse is dragged, a highlighted selection area appears that 
can be deleted by pressing the key for the next character to 
be inserted or the DELETE key. Later on in this chapter you'll 
see an example of how to manipulate items in a dialog box. 

Modeless Dialog Boxes 

A modeless dialog box is a bit more difficult to handle than a 
modal dialog box. When it is on the screen, the user is not 
restricted from performing other operations like moving to 
another window or selecting a desk accessory, before dis
missing it to remove it from the screen. In this respect it's 
simply like any other standard window. Unlike a modal dialog 
or an alert, it does not retain control until you select an active 



586 Mac Assembly Language 

item. You simply feed it events one at a time and it returns a 
Boolean result that tells you whether the event related to the 
dialog box or not. 

The Macintosh toolbox does make it somewhat easier to 
deal with a modeless dialog box than a window, however. 
Whenever your program calls _GetNextEvent and detects an 
event has occurred, it should call _IsDialogEvent to deter
mine whether the event relates to the modeless dialog box. 

CLR.B -(SP) 
PEA EventRecord 
_IsDialogEvent 
MOVE.B (SP)+,DO 

;space for Boolean result 
;_GetNextEvent record 

;Pop true/false result 

EventRecord DCB.B EvtBlkSize,a ;_GetNextEvent•s record 

If the result is false, the event was not dialog-related and 
can be processed as usual. If the result is true, you must 
immediately call _DialogSelect to handle the event. 

CLR.B -(SP) 
PEA EventRecord 
PEA DialogPtr(AS) 
PEA itemNumber 
_DialogSelect 
MOVE.B (SP)+,DO 

item Number 
DialogPtr 

DC.II 
DS.L 

a 
], 

;Space for Boolean result 
;_GetNextEvent record (constant) 
;Dialog pointer (variable) 
;Item number (constant) 

;Pop the result 

;Item number returned 
;Pointer to dialog record 

_DialogSelect takes the event, processes it, and returns a 
Boolean result indicating whether it related to an enabled dia
log item. If the result is false, it didn't, and you don't have to 
do anything further. _DialogSelect always returns a false 
value if you pass it a window update, deactivate, or activate 
event; these events are processed internally. 

If the result is true, the itemNumber and Dialogptr vari
ables will contain the number of the item selected and a 
pointer to the active dialog record. You can then deal with 
the result in the same way you deal with a result returned by 



Dialogs and Alerts 387 

a call to _ModaIDialog for a modal dialog box. _DialogSelect 
always returns a true result in situations where _ModaIDia
log would have reported an item-related event to you. 

Drawing Within Dialog Boxes 

You can also display text and graphics within a dialog box 
using the same instructions used with ordinary windows. 
(See Chapter 6.) Before drawing, however, make the dialog 
box the active drawing window using the _SetPort 
instruction. 

If you erase items within a dialog box, you can redraw them 
by pushing the pointer to the dialog window on the stack and 
calling _DrawDialog. You must do this because erasing does 
not cause an update event that will be dealt with during the 
next call to _ModalDialog. 

Removing Dialog Boxes From the Screen 

When a dialog box is dismissed, you can use _HideWindow 
to make it invisible with these instructions: 

MOVE.L DlogPtr(AS),-(SP) 
_Bidellindow 

;Pointer to dialog 

If you want to make it visible again later, use _ShowWindow, 
by passing it the same dialog pointer on the stack. 

When you're through with a dialog box for good, erase it 
from the screen, remove it from the list of active windows 
maintained by the Macintosh operating system, and free up 
the memory it occupies. 

The method of erasing depends on how you created the 
dialog in the first place. If you told the toolbox to automati
cally allocate storage for the dialog record on the heap, use 
_DisposDialog. This frees up all storage associated with the 
dialog, including the space used by the item list template rec-



388 Mac Assembly Language 

ord. (Recall if you pass a pointer of zero to the dialog record 
that _NewDialog or _ GetNewDialog requires, the toolbox 
automatically allocates storage space on the heap for the dia
log record.) 

If you passed your own pointer to the "space for the dialog 
record, use _CloseDialog instead. This will free up the space 
associated with the various fields in the dialog record, except 
the item list record. The dialog record itself is not affected. 
To free up the spaces used by the item list and dialog 
records, use _DisposPtr. (See Chapter 4.) 

Both _CloseDialog and _DisposDialog require only one 
parameter to be passed on the stack: The pointer to the dia
log window be destroyed. 

A Dialog Box Program 

The program in Listing 8-2 shows how to create the dialog 
box shown in Figure 8-3. This box is made up of nine items: 
one button (the default item), an variable text box, three 
radio buttons, a check box, and three static text items. The 
static text and variable text items are disabled, so _ModalDi
alog will not return a result when they are clicked, or if text is 
entered. When the button is clicked to dismiss the dialog, the 
final value of the variable text string is displayed in the. active 
window. 

Listing 8-2. The Source File, Linker Control File, and 
RMaker File for the Items Program. 

Asm Source File 
Items.Asm 

This is an example of how to manipulate items in dialog boxes. 

AppleID 
FileID 
llindID 
Dialog ID 

EQU 
EQU 
EQU 
EQU 

;Menu ID for Apple Menu 
;Menu ID for File Menu 
;Window ID 
;Dialog ID 



Dialogs and Alerts 389 

Listing 6-2. continued 

INCLUDE ToolEqu.D 
INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;Toolbox equates 
;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -.!;(AS) 
InitGraf -
InitFonts -

_InitWindows 
InitMenus -

_TEI nit 
MOVE.L #D,-(SP) 
_InitDialogs 
_InitCursor 

MOVE.L #$DDDDFFFF,DD 
_FlushEvents 

;Start of QD globals area 
;Initialize QuickDraw 
;Font Manager 
;Window Manager 
;Menu Manager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;We want arrow cursor 

;Get rid of every event 

The resources are in a separate resource file so that we 
don't have to re-Asm and re-Link every time we fiddle 
with a resource: 

CLR - (SP) 
PEA 1 Items.Rsrc 1 

_OpenResFile 
MOVE (SP)+,DO 

Create and draw a window on the screen: 

CLR.L -(SP) ;Space for returned pointer 
MOVE #WindID, - (SP) ;Resource ID 
MOVE.L #0,-(SP) ;Store on heap 
MOVE.L #-:1.,-(SP) ;-:I.= front window 
_GetNewWindow ;Get window from resource 

The next step is very important. It ensures that our new 
window is the active port, so we can draw in it. 

file 



590 Mac Assembly Language 

Listing 8-2. continued 

_SetPort ;Make window current GrafPort 

Create two standard menus: 

CLR. L - (SP) ; Space for handle 
MOVE #AppleID,-(SP) ;Menu ID number 

GetRMenu ;Get Menu from resource file 
MOVE.L (SP)+,AppleH(AS);Save menu handle 
CLR.L -(SP) ;Space for handle 
MOVE #FileID, - (SP) ; Menu ID number 
_GetRMenu ;Get menu from resource file 
MOVE.L (SP)+,FileH(AS) ;Save menu handle 

Add menus to menu bar: 

MOVE.L AppleH(AS),-(SP) 
MOVE #0,-(SP) ;(O=addtoend) 
_InsertMenu ;Add to menu bar 

MOVE.L FileH(AS),-(SP) 
MOVE #0,-(SP) 
_InsertMenu 

_DrawMenuBar 

;(O =add to end) 
;Add to menu bar 

;Display menu bar 

CLR. L - (SP) ; Space for result 
MOVE #DialogID,-(SP) ;Resource ID of template 
MOVE.L #0,-(SP) ;o =storage on heap 
MOVE.L .. #-L,-(SP) ;-L =window at front 
_GetNewDialog ;Create the dialog 
MOVE.L (SP)+,DialogPtr(AS) ;Save dialog pointer 

BSR DoDefault ;Highlight default button 

* Set the states of all the control items. Their values are all 
* zero at the beginning, so we only have to change those that 
* are non-zero. 

MOVE 
MOVE 
BSR 

#l,,DS 
#L,Db 
SetIStatus 

;Item t, (L200 baud) 
;Value = L (on) 
;Highlight radio button 



Listing 6-2. continued 

llOVE 
llOVE 
BSR 

#b,DS 
#l. 1 Db 
SetIStatus 

Dialogs and Alerts 391 

;Item b (check box) 
;On 
;Put X in box 

* Select the entire variable text string. The selected text is 
* marked by the following _llodalDialog instruction. 

llOVE.L DialogPtr(AS),-(SP) 
llOVE #2, - (SP) ;It's item #2 
llOVE #D, - (SP) ; Start at beginning! 
llOVE #2~:1.,-(SP) ;End at end! (2~:1. is max size) 
_SelIText 

DialogLoop 
llOVE.L #D,-(SP) 
PEA itemRumber(AS) 
_llodalDialog 

;Do the selection 

;Ro filter procedure 
;Item number returned here 
;Get user input 

llOVE itemRumber(AS),DS ;Put item number in DS 

CllP #l.,DS ;OK button? 
BEQ DialogExit ;Yes, so ve•re all done 

CllP #b,DS ;Check box 
BRE @], ;Ro, so branch 

* Toggle the state of the check box by changing it to a 
* if it is l. or to L if it is a using EOR. 

BSR Getiteminfo 

CLR -(SP) ;Space for result 
llOVE.L itemHndl,-(SP) 
_GetCtlValue ;Read value for check box 
llOVE (SP)+,Db ;Get result ca or l.) 

EORI #l.,Db ;Flip bit a (contains value) 
BSR SetIStatus ;Remove the x 
BRA DialogLoop ;Back to dialog! 



392 Mac Assembly Language 

Listing 8-2. continued 

* The only other possibilities are the three radio buttons 
* (3, ~. 5). First turn them all off, then turn on the one 
* that was selected: 

@1 MOVE 05,07 ;Save item # in 07 for now 

MOVEQ #3,05 ;Start with item 3 
MOVEQ #0,Db ;D = off 

@2 BSR Set!Status 
ADDQ #1,05 ;Move to next item # 
CMP #b,05 ;Past the end? 
BNE @2 ;No, so branch 

MOVE 07,05 ;Get item # back 
MOVEQ #1,Db ;1 = on 
BSR Set!Status 
BRA DialogLoop ;Back to dialog 

DialogExit 

* Read the value of the variable text box item: 

MOVEQ #2,05 
BSR Getiteminfo 

MOVE.L itemHndl,-(SP) 
PEA theText 
_Get!Text 

;Variable text item 
;Get item attributes 

;Handle to text item 
;VAR the text string 
;Read string into theText 

MOVE.L OialogPtr(A5),-(SP) 
_OisposOialog ;Get rid of dialog box 

* Display the text string 

MOVE #25,-(SP) 
MOVE #25,-(SP) 

MoveTo ;Position the pen 

PEA 'The text entered was ••. 



Dialogs and Alerts 393 

Listing 6-2. continued 

_Drawstring 

PEA theText 
_Drawstring 

JMP MainLoop ;All done. 

* Here are the subroutines used in this example: 
* Getiteminfo gets the properties of the dialog item whose 
* number is in DS. The handle to the dialog must be stored at 
* DialogPtr. The results are returned in the constants itemType, 
* itemBndl, and itemRect. 

Getrteminfo 

MOVE.L DialogPtr(AS),-(SP) 
MOVE DS, - (SP) 
PEA itemType 
PEA itemBndl 
PEA itemRect 
_GetDitem 
RTS 

;Item number 
;VAR item type 
;VAR item handle 
;VAR item rectangle 
;Get attributes of item 

* SetIStatus sets the value of a control item. On entry, DS.W 
* contains the item number and Db.W contains its value. The 
* pointer to the dialog must be in the DialogPtr variable. 

* 
* Buttons, check boxes, and radio buttons can be set to one 
*of two values: off (0) or on (1). 

* * Note that _SetCtlValue causes an update event for the dialog 
* window handled by _ModalDialog. 

SetIStatus 

BSR Getitemlnfo ;Get item attributes 

MOVE.L itemBndl,-(SP) ;Push handle to item 
MOVE Db, - (SP) ; D=off, 1=on 
_setCtlValue ;Set new value 



394 Mac Assembly Language 

Listing 6-2. continued 

RTS 

* DoDefault draws a three-pixel wide border around the default 
*button in a dialog box. (The button must be the first item). 
* The border is separated from the button rectangle by a 
* one-pixel gap. 

DoDefault 

PEA OldPort ;VAR result 
_GetPort ;Get current drawing window 

KOVE.L DialogPtr(AS),-(SP) 
_SetPort ;Kake dialog active for drawing 

KOVE.L DialogPtr(AS),-(SP) ;Dialog pointer 
KOVE #L, -(SP) ;Item #L 
PEA itemType ;VAR item type 
PEA 
PEA 

itemBndl 
itemRect 

_GetDitem 

PEA 
KOVE 
KOVE 

itemRect 
#-'i,-(SP) 
#-'i,-(SP) 

_InsetRect 

KOVE 
KOVE 
_PenSize 

PEA 

KOVB 
KOVB 

#3,-(SP) 
#3,-(SP) 

itemRect 
#Lb,-(SP) 
#Lb,-(SP) 

_FrameRoundRect 

KOVE.L OldPort,-(SP) 
_setPort 

RTS 

;VAR item handle 
;VAR item rectangle 
;Get item info 

;VAR item rectangle 
;Expand left/right t; pixels 
;Expand top/bottom t; pixels 
;Calculate new rectangle 

;Pen width 
;Pen height 
;Set new pen size 

;VAR item rectangle 
;Width of corner oval 
;Height of corner oval 
;Draw dark border 

;Restore original drawing window 



Listing 8-2. continued 

* Constants and variables: 

oldPort DC.L 0 
item Type DC 0 
itemHndl DC.L 0 
itemRect DCB.W ~.a 

theText DCB.B 2~2,0 

DialogPtr DS.L 1 

itemNumber DS.W 1 

* The common code begins here: 

Ila in Loop 

BSR GetEvent 
BSR HandleEvent 
BRA llainLoop 

GetEvent 

CLR.B -(SP) 
llOVE #-1, -(SP) 
PEA EventRecord 
_GetNextEvent 
llOVE (SP)+, DD 
BEQ GetEvent 
RTS 

Dialogs and Alerts 395 

;Window ptr for _GetPort 
;Item type for _GetDitem 
;Item handle for _GetDitem 
;Dialog rectangle for _GetDitem 

;Variable text item 

;Dialog pointer 
;item number selected 

;Leave space for Boolean result 
;Allow all events 
;Results are returned here 
;Check for an event 
;Pop the result code 
;Branch if null event 

* HandleEvent is the event dispatcher. It takes the event type 
* code returned by _GetNextEvent and calls the subroutine that 
* handles it. Access to the event handling subroutines is 
* through a Lb entry jump table. 

HandleEvent 

llOVE EventRecord+evtNum,DD ;Get event code 
CllP #0, DD ; Event 9-157 

BHI 
ASL 

Ignore 
#2,DD 

;Yes, so branch 
;Two shifts = times ~ 



.596 Mac Assembly Language 

Listing 6-2. continued 

JllP 

Ignore RTS 

JumpTable 

JllP 
JllP 
JllP 
JllP 
JllP 
JllP 
JllP 
JllP 
JllP 

DoKeyDown 
RTS 

Do Update 
RTS 

DoActivate 
RTS 

DollouseDown 

JumpTable(PC,DD) 

Ignore 
DollouseDown 
Ignore 
DoKeyDown 
Ignore 
DoKeyDown 
DoUpdate 
Ignore 
DoActivate 

;Jump to handler 

;Null event (never 
;Button-down 
;Button-up 
;Key-down 
;Key-up 
;Auto-key 
;Update 
;Disk-inserted 
;Activate 

CLR -(SP) ;Space for result 
llOVE.L EventRecord+evtllouse,-(SP) ;Where 
PEA WindowPtr(AS) 

used) 

_FindWindow ;Where was button pressed? 

llOVE (SP)+,DD ;Get result 
CllP #InllenuBar,DD ;Pressed in menu bar? 
BEQ QuitCheck ;Yes, so check it out 
RTS ;Ignore everything else 

; See if QUIT was selected from File menu: 

QuitCheck 

llOVE.L #D,-(SP) ;Result = menu/item selected 
PEA EventRecord+evtllouse ;Where 



Dialogs and Alerts 597 

Listing 8-2. continued 

MenuSelect ;Get menu selection 
MOVE (SP)+,MenuNum(AS) ;Save menu number 
MOVE (SP)+,DO ;Discard item number 

MOVE #0,-(SP) 
_BiliteMenu ;Remove highlight from title 

CMP #FileID,MenuNum(AS) ;In the FILE menu? 
BNE GetEvent 

Must have selected QUIT command, so return to Finder by 
popping the subroutine return address before RTS. (You 
could also return just by executing an _ExitToShell 
instruction.) 

MOVE.L (SP)+,DO ;Pop the return address (long!) 

RTS ;Return to Finder 

Record for _GetNextEvent: 

EventRecord DCB.B EvtBlkSize,O ;Reserve space for record 

; Here are some globals. Use (AS) addressing. 

MenuNum 
AppleB 
FileB 
llindowPtr 

DS.W 
DS.L 
DS.L 
DS.L 

Linker Control File 
Items.Link 

], 

], 

], 

], 

;Menu number selected 
;Bandle to Apple menu 
;Bandle to File menu 
;Pointer to window 

Link this file to create application 
(without resources). 

Items 
$ 



598 Mac Assembly Language 

Listing 8-2. continued 

* RMaker Source File 
* Items.R 

* * Compile this after assembling and linking Items.Asm 

* * The next command creates a separate resource file: 
Items.Rsrc 

Type MENU 
,L 
\Lt; 
About this demo ..• 

,2 
File 
Quit 

Type WIND 
,L28 
Dialog Items Demo 
t;O 5 332 502 
Visible NoGoAway 
t; 

a 

Type DLOG 
,12q 

75 8L 225 t;3L 
V N 
L 

a 
12q 

Type DITL 
,L2'1 
q 

Button 
L20 3LD Lt;O 3t;O 
OK 

; ; Resource ID 
;;Title is the Apple symbol (ASCII $Lt;) 
;;About box 

; ; Resource ID 
; ;Menu Title 
;;Only item is Quit 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID. t;; title, no grow box 
;;User-definable item (not used) 

; ; Modal Dialog 
; ; Resource ID 
; ;No title 
; ;TLBR 
;;Visible, No Goaway 
;;Standard dialog box type 
;;User-definable (not used) 
;;Resource ID of DITL resource 

;;Item list for DLOG (L2q) 
; ; Resource ID 
;;Number of items 

;;Button (item #L - default) 



Dialogs and Alerts 399 

Listing 8-2. contlnued 

EditableText Disabled ;;Variable text box (disabled) 
.t;O L30 Sb 2110 
b!l7-7L.t;.t; ;;The text 

Radio 
70 LLD lib LbD 
300 

Radio 
70 LllS lib 23S 
L200 

Radio 
70 2b0 lib 3LD 
2.t;DO 

Checkbox 
LOO LLD LLb 2LS 
Capture Text 

StaticText Disabled 
LO 70 2b 320 

;;300 baud message 

;;L2DD baud message 

;;2.t;DD baud message 

\L.t; COMMUNICATIONS PARAMETERS \L.t; 

StaticText Disabled 
.t;O LO Sb LLD 
Phone Humber 

StaticText Disabled 
70 LO lib qs 

Baud Rate 

The dialog box is created and displayed in the usual way, 
using _GetNewDialog. The DoDefault subroutine presented 
in the previous programming example is then called to high
light the default button. 

Before calling _ModalDialog to monitor user input, the 
application sets the states of all the control items and selects 
the entire variable text string. Since this is done after display
ing the dialog box on the screen, the box appears to flicker 



400 Mac Assembly Language 

Ii: COMMUNICATIONS PARAMETERS Ii: 

Phone Number 687-7144 

Baud Rate 0300 ® 1200 02400 

~Capture TeHt 

Figure 8-3. The Dialog Box Created by the Program in Listing 8-2. 

slightly as the active control items are highlighted and the 
text is selected during the first call to _ModalDialog. You can 
eliminate the flicker by defining the dialog box as Invisible in 
the resource file; _ GetNewDialog will create it but not display 
it. After acljusting the controls and text to the appropriate 
values, you can use _ShowWindow to display the dialog box 
window in its complete starting form. Remember from Chap
ter 6, _ShowWindow requires a pointer to a window record 
that is equivalent to the dialog pointer returned by 
_GetNewDialog as a parameter. 

All the control items are initially off, as they always are 
right after a dialog box is loaded from a resource file. To indi
cate that the "1200 baud" radio button is the default, it is 
turned on by calling the SetIStatus subroutine. 

SetIStatus expects the item number in 05 and its value in 
06. It first calls the application's Getiteminfo subroutine to 
get the properties of the item, then it sets the value using 
_SetCtlValue. (Getiteminfo uses _GetDitem to determine 
the item type, handle, and bounding rectangle.) This call 
causes an update event for the dialog window that is handled 
during the text call to _ModalDialog. It is handled by drawing 
a small black circle inside the active radio button. Once the 



Dialogs and Alerts 401 

proper radio button has been turned on, the check box is 
turned on using the very same technique. 

The last preliminary step is to highlight the text in the vari
able text box. This is done to ensure that the whole entry will 
be deleted if the user starts entering a new phrase. To 
ensure that the whole string is selected, selection endpoints 
of 0 and 241 are pushed on the stack; the maximum length of 
this type of item is 241 characters. 

The application then calls _ModalDialog to request input 
from the user. If the dialog button is clicked, control passes to 
DialogExit where the final value of the text string is loaded 
into theText. Notice how this is done: Getiteminfo is called to 
get the handle to the text item, which is then passed to 
_GetIText to create a standard text string preceded by a 
length byte. DialogExit next disposes of the dialog box with 
_DisposDialog before displaying the text on the screen with 
_Drawstring. 

If the user selects the check box item, its value is toggled 
by calling _GetCtlValue to get its current value, flipping bit 
zero, where the value is kept, with an EORI # 1 ,06 instruc
tion, then calling the SetIStatus subroutine to record the 
change. 

If one of the three radio buttons is clicked, they are first all 
turned off and then the selected one is turned on. This 
ensures that only one item in the related group of radio but
tons is on at any given time, as required. 

Notice that the technique used to create this application is 
slightly different than usual. If you examine the source listing 
for the RMaker file, you will notice that the resources are 
stored in a separate file called Items .Rsrc-they are not 
appended to the application file. (The application opens this 
file with a _OpenResFile instruction.) This was done to help 
speed up the development process. If changes are made to 
the resources (to reposition the items in the alert box or 
change their rectangles, for example), all you need to do to 
incorporate the changes is run RMaker once again; there is 
no need to assemble and link again because the application 
file is not affected. Of course, once you're satisfied the 



402 Mac Assembly Language 

resources are in final form, you can append them to the appli
cation file to avoid having to open the resource file explicitly 
or running the risk of forgetting to copy the resource file 
when you make a copy of the application. 

Creating Alert Templates 

The standard toolbox instructions for creating and display
ing alert boxes insist that a template describing the form of 
the box be stored in a resource file. The resource type for an 
alert template is ALRT. 

As usual, you can use RMaker to create ALRT resources. 
The form of the source statements is as follows: 

TYPE ALRT 
,L28 

35 35 300 300 
L28 
DDDD 

;;resource ID of this ALRT 
;;alert rectangle (TLBR) 
;;resource ID of DITL (item list) 
;;stages word (must be hexadecimal) 

Just like a DLOG resource, an ALRT resource refers to a 
DITL item list resource containing descriptions of the items to 
be displayed in the alert box. Your alert boxes should only use 
static items like text, icons, pictures, or simple buttons. Con
trol items such as radio buttons and check boxes should not 
be used as they are not meaningful in an alert box 
environment. 

One important parameter in an ALRT resource is the 
stages word. It defines the behavior of the alert in each of 
four different stages. When you use the alert box for the first 
time, it enters the first stage. As you keep calling it up, it pro
gresses through the second, third, and fourth stages, in that 
order. Thereafter, the alert box always behaves as if it was 
in the fourth stage. 

The stage number minus one of the last alert box is always 
stored in the global variable ACount. The resource ID of the 
alert is stored in ANumber. Both these numbers are words. If 



15 

Dialogs and Alerts 405 

1 1 7 

stage 4 stage 3 stage 2 

sound4 CO to 3) 

boxDrwn4 C 1 = draw box) 
CO = don"t draw) 

bold ltm4 C 1 = Cance 1 button is default) 
CO = OK button is default) 

3 

Figure 8-4. The Stages Word in an ALRT Resource. 

stage 1 

you want to change the stage of an alert box, place the stage 
number, minus one, in ACount. Store minus one there if you 
want the first stage to be used the next time the alert box is 
called up. 

Each of the four four-bit groups in the stages word define 
the characteristics of one stage. The high-order four bits con
trol the fourth stage and the low-order four bits control the 
first stage. The characteristics associated with each stage 
are: what the default button is to be, what sound is to be 
emitted, and whether the alert box is to be drawn. 

For a given stage, the first two bits (0 and 1) contain a sound 
number from zero to three. In most cases, this represents the 
number of times the speaker is to beep when an alert is called 
up at that stage level. It is possible to invoke a custom sound 
procedure that interprets these numbers differently, however. 
See Inside Macintosh for details of how to do this. 

The next bit (bit 2), boxDrwn, indicates whether the alert 
box is to be drawn on the screen. You will usually set this bit 
to one (display the box), but it can be set to zero if you don't 
want the alert to be displayed at that stage level. 

The last bit (bit 3), boldltm, controls which of two buttons 
is to be the default button. The default button is the one 
selected when RETURN or ENTER is pressed from the key-

0 



404 Mac Assembly Language 

board. If the bit is set to zero, the first button (usually an OK 
button) is the default; if it is one, the second button (usually a 
Cancel button) is the default. 

In most applications you will probably want all stages to be 
equivalent, so all four fields will be the same. For example, if 
you want to beep the speaker once, display the alert box, 
and make the Cancel button the default button, use a stages 
word of $DODD. For each stage this sets the sound number 
to 01 (one beep), the boxDrwn bit to 1 (draw the box), and 
the bolditm bit to 1 (the default is Cancel). 

Using Alert Boxes 

Alert boxes are very easy to use because all screen and 
event activities are handled by a single instruction that cre
ates the alert record, draws the alert box and its items, inter
prets events until an active item is selected, erases the alert 
from the screen, and then disposes of any memory used by 
the alert record. The instruction returns the item number 
selected. All you have to do is monitor this result and take 
whatever action is appropriate. Compare this with dialog 
boxes where you have to use different instructions to create 
and dispose of the dialog. 

There are four standard toolbox instructions you can use to 
display an alert box on the screen: _Alert, _NoteAlert, _Cau
tionAlert, and _StopAlert. They all use the same calling 
sequence: 

CLR 
MOVE 
MOVE.L 

Alert -

MOVE 

-(SP) 
#:L33,-(SP) 
#0,-(SP) 

(SP)+,DD 

;Space for result 
;ALRT Resource ID 
;Filter procedure pointer 
;or _NoteAlert, _cautionAlert 
; or _StopAlert 
;Get item number selected 

The pointer to a filter procedure is similar to the one 
described earlier for dialog boxes. Pushing a zero value tells 



Dialogs and Alerts 405 

the toolbox to use the standard filter procedure. It converts a 
RETURN or ENTER keypress into the click of the default but
ton in the alert box. 

The only difference between the four alert box instructions 
is the icon they display in the top left-hand corner of the box. 
_Alert displays no icon at all. The icons displayed by the other 
instructions are shown in Figure 8-5. 

Cautlon 

Note 

Stop 

Figure 8-5. The Standard Alert Box Icons. 

The coordinates of the top left-hand corner of an icon used 
by _NoteAlert, _CautionAlert, and _StopAiert are (10,20). 
Since an icon is 32-pixels square, don't define item rectangles 
that overlap the square whose corner points are ( 10,20) and 
(42,52). 

Once _Alert, or its three relatives, take control, mouse 
clicks are handled just like _ModalDialog handles them. That 
is, mouse clicks outside the alert box produce error beeps, 
and clicks in disabled items are ignored. 



Chapter 9 

Supporting Desk 
Accessories 

Everyone who uses the Macintosh soon comes to appreciate 
the desk accessories CDAs). Desk accessories, as you know, 
are small utility programs that are always there when you 
need them. While you're in the middle of a brainstorming ses
sion with an application, you can put it on hold and quickly call 
up a DA by selecting its name from the standard Apple menu. 
When you're through with the DA, you can return to the appli
cation and continue to use it as if you had never left it. 

Some familiar desk accessories are the Scrapbook, Alarm 
Clock, Note Pad, Calculator, Key Caps, Control Panel, and 
Puzzle, some of which are shown in Figure 9-1 . There are doz
ens of others you can purchase from independent publishers 
and add to the System program or your own applications. 

It is important to realize that applications do not automati
cally support desk accessories. It is up to you, when writing 
an application, to include the instructions needed to activate 
them when appropriate events occur, and to switch between 
them and your application. In this chapter you'll see what 
these instructions are and how to use them. These instruc
tions make up the Macintosh Desk Manager and are summa
rized in Table 9-1 . 

406 



0 5:04:57 PM i 

Control Panel 

Apple Talk 

.. ~ .. 
7 -
6 -

5 -

4 -

.3 -

2 

0 Connected 

(i) Disconnected 

+ + 
+ (i) + 0 

Your Doub le-Click Speed ~....., ..... ____________ .... 
Rate of Insertion 
Point Blinking 

Key Repeat Rate 

000(1)0 
Slow Fast 

···· I·· ·· 
0(1)0 

Slow Fast 

Mouse Tracking 
···1 

..::~~0 
(i) 0 

Mouse Tablet 

RAM f128K1 r+l 
Cache ~ l:!:J 

Speaker 
Volume 

(i) 0 
On Off 

De lay until Repeat 

0 0(1)00 
Off Long Short 

Figure 9-1. Some Macintosh Desk Accessories. 

Table 9-1. Desk Manager Trap Instructions. 

_ CloseOeskAcc 

KOVE #refNum,-(SP) 
_CloseDeskAcc 

_ OpenDeskAcc 

CLR 
PEA 

-(SP) 
accName 

_OpenDeskAcc 
KOVE (SP)+,DO 

Closes a desk accessory and 
removes its window from the 
screen. 

;INTEGER: reference number 

Opens a desk accessory and 
passes control to it. 

;INTEGER : space for result 
;STRING: name of DA to open 

;Result is a reference number 



408 Mac Assembly Language 

Table 9-1. continued 

_Sys Edit 

CLR.B -(SP) 
MOVE #editCmd,-(SP) 
_sysEdit 
MOVE.B (SP)+,DD 

Passes a standard editing 
command-undo, cut, copy, and 
clear-to a desk accessory for 
processing. 

;BOOLEAN: space for result 
;INTEGER: command number 

;Result: true = DA handled it 
false = DA ignored it 

The editing command numbers are 0 (undo), 2 (cut), 3 (copy), 4 
(paste), and 5 (clear). 

_SystemClick 

PEA EventRecord 
MOVE.L theWindow,-(SP) 

_systemClick 

_System Task 

_systemTask 

Processes a button-down event 
in a desk accessory window. 

;POINTER: to the event record 
;POINTER: to window record 
;returned by _FindWindow 

Allows a desk accessory to 
perform a periodic function. 

;no parameters 

Adding Desk Accessories to a Menu 

A user cannot select a desk accessory unless its name 
appears in a menu at the top of the screen. By convention, 
the names of all the desk accessories available to an applica
tion are to be placed in a menu whose title appears on the 
left-hand side of the menu bar. Again, by convention, the title 
for this menu is the Apple symbol (ASCII code 20). 

All desk accessories are stored in resource files and have 
resource types of DRVR. You can use _AddResMenu to add 



Supporting Desk Accessories 409 

their names to an Apple menu created with _GetRMenu or 
_NewMenu. (See Chapter 7.) All you need to do is execute 
these three instructions once you've created the menu: 

MOVE.L MenuHl(AS),-(SP) 
MOVE.L #'DRVR 1 ,-(SP) 
_AddResMenu 

;Handle to "Apple" menu 
;Resource type code 

MenuHl, the handle to the Apple menu, is the variable in which 
the handle returned by _NewMenu or _ GetRMenu is stored 
when you first create the menu. For convenience, you should 
only use _AddResMenu after you've added application-spe
cific items to the Apple menu using _AppendMenu. The two 
standard items you will normally add are an About ... item and 
a dimmed dashed line item. The dashed line acts as a physical 
separator between your own special items and the general 
desk accessory items. 

Putting it all together, here is a subroutine to create an 
Apple menu containing an About ... item, a dashed line, and 
the names of every desk accessory in the System file, your 
program file, or any other open resource file: 

Ml Name 

CLR.L -(SP) 
MOVE #1,-(SP) 
PEA MlName 
_NewMenu 
MOVE.L (SP),-(SP) 

;Clear space for handle 
;Menu ID = l 
;Title (Apple symbol) 
;Create the Apple menu 
;Make copy of handle 

PEA 'About This Demo .•• ;(- 1 ;Names of first two items 
_AppendMenu ;Add them to the menu 

MOVE.L # 1 DRVR 1 ,-(SP) 
_AddResMenu 
RTS 

DC.B 1,20 

;Resource type code 
;Add accessory names 

;Length + Apple symbol 

Notice that I pushed on the stack a second copy of the han
dle returned by _NewMenu. The first is eventually popped by 
the _AppendMenu instruction and the second by 
_AddResMenu. 



4 I 0 Mac Assembly Language 

You can further simplify this procedure by creating a MENU 
resource file that already includes the About ... item and the 
dimmed dashed line. In this case, the subroutine you would 
use looks like this: 

CLR.L -(SP) 
MOVE #126,-(SP) 
_GetRMenu 
MOVE.L (SP),MenuBL(AS) 
MOVE.L #'DRVR•,-(SP) 
_AddResMenu 
RTS 

;Space for handle 
;Resource ID of MENU 
;Get the menu 
;Save menu handle 
;Resource type code 
;Add accessory names 

You can omit the fourth instruction if you won't be needing 
the menu handle later on in your program. 

Opening Desk Accessories 

While your program is running and the Apple menu is ena
bled, a user can open a desk accessory by pulling down the 
Apple menu and selecting the DA by name. For this to be pos
sible, however, your program must react in the usual way to 
button-down events in the menu bar. 

After calling _FindWindow and determining that a button
down event has occurred, call _MenuSelect to determine the 
menu ID and the number of the item selected. If the menu ID 
isn't that of the Apple menu, you can process the event in the 
usual way. If the Apple menu was involved, however, check 
to see if the item number is that of a desk accessory. If 
you've followed the suggestions in the previous section and 
created a menu beginning with two custom items, menu IDs 
of three or higher refer to desk accessories. 

To pass control to a desk accessory, push a pointer to its 
name and call _OpenDeskAcc. To determine what its name 
is, use the _Getltem instruction to convert the item number 
to an item name: 



Supporting Desk Accessories 411 

llOVE.L llenuHndl(AS),-(SP) ;Handle to Apple menu 
llOVE #11 1 -(SP) ;Item number (assume 11) 
PEA DAName ;Location for name 
_Get!tem ;Get the name 

CLR - (SP) ;Clear space for result 
PEA DAName ;Pointer to name 
_OpenDeskAcc 
llOVE (SP)+,DARef(AS) ;Save DA reference # 

DAName DCB.B :Lb,O ;Name of DA (length+:LS) 
llenuHndl DS.L ], ;Handle to Apple menu 
DA Ref DS ], ;DA reference # 

Since the name of a DA cannot exceed 15 characters, 16 
bytes are reserved for DAName (the extra byte is for a pre
ceding length byte). 

You will not usually need to use the reference number 
returned by _ OpenDeskAcc. It must be pushed on the stack 
before calling _ CloseDeskAcc to close a desk accessory and 
remove it from the screen, but this operation is normally han
dled for you by the desk accessory itself when you click its 
close box. You may, however, want to close a desk accessory 
from your application if the Close item is selected from the 
standard File menu while a desk accessory window is active. 

When you pass control to the desk accessory with 
_OpenDeskAcc, the DA takes over and performs its duties 
until you tell it you want to return to the main application. 
Exactly how you return depends on the accessory. Some
times you must click a close box to dismiss the DA entirely; 
other times you can click your application's window to acti
vate it and deactivate the accessory window. If you use the 
latter method, the window for the DA still appears on the 
screen, and if you click it the DA becomes active again. 

Desk Accessories and Mouse Clicks 

As you saw in Chapters 4 and 6, when an event loop in your 
program detects a button-down event, you usually call 



412 Mac Assembly Language 

_FindWindow to determine what part of the screen was 
clicked. If the number returned by _FindWindow is lnSys
Window, a desk accessory window (also called a system win
dow) was clicked. This type of window is created when you 
open a desk accessory and remains on the screen until you 
click the close box of the DA's window. 

It is very easy to handle a click in a desk accessory window. 
Simply make a call to _SystemClick as follows: 

PEA EventRecord 
MOVE.L theWindow(AS),-(SP) 
_system Click 

;record for _GetNextEvent 
;Pointer to window 

EventRecord is the record filled in by the call to _GetNextEvent that 
returned the button-down event. The variable theWindow con
tains the pointer to the window in which the mouse was 
clicked and is returned by _FindWindow. 

_SystemClick passes the click to the desk accessory so it 
can deal with it as follows: 

• If the desk accessory window is not active, it is activated and a 
deactivate event is posted for the currently active window. 

• If the desk accessory is already active and the click is in a close 
box, _SystemClick calls _ TrackGoAway to see if the acces
sory window should be closed. 

• If the desk accessory is already active and the click is in the 
title bar, _SystemClick calls _DragWindow so the window can 
be moved. 

• Clicks in the content region of an accessory window are han
dled in a manner dictated by the desk accessory. 

Upon return from _SystemClick, return to your event loop 
to get the next event to be processed. 

Desk Accessories and Editing 

Many desk accessories use the standard text-editing com
mands described in the Macintosh user-interface guidelines: 
undo, cut, copy, paste, and clear. A little support from the 



Supporting Desk Accessories 415 

application is needed before they will work properly, however. 
In particular, your application must always include a standard 
Edit menu in the menu bar. It must be the third menu in the 
bar, and the ordering of the items must be as follows: 

Undo 
(A disabled item) 
Cut 
Copy 
Paste 
Clear 

Just before you open a desk accessory by calling 
_OpenDeskAcc or reactivate it with _SystemClick, you 
should ensure that all these editing commands are enabled 
using _Enableltem so they will be available when the acces
sory gains control. When the application takes over once 
again, you can disable any items that have no meaning to 
your application. 

When a standard editing command is selected from the Edit 
menu, call _SysEdit to give a desk accessory a chance to 
claim it. 

CLR.B -(SP) ;Space for result 
llOVE #2,-(SP) ;Item number minus 1 
_sysEdit 
TST.B (SP)+ ;Test and pop the result 
BBQ YouEdit ;Branch if not claimed 
BRA EventLoop ;Go get next event 

Notice that the item number passed to _SysEdit is one less 
than the item number returned by _MenuSelect. The 
_SysEdit item numbers for the standard editing commands 
are as follows: 

Undo 0 
Cut 2 
Copy 3 
Paste 4 
Clear 5 



414 Mac Assembly Language 

Do not try to pass any other numbers to _SysEdit. 
If the editing command is not claimed, the result is false and 

the BEQ branch will succeed, then control passes to You Edit 
so that your application can deal with it. If the desk accessory 
did handle the editing command, you have nothing to do, so 
you can go get another event. 

You don't have to pass to _SysEdit editing commands 
entered using keyboard equivalents. When a desk accessory 
is active it automatically detects and processes keyboard 
editing commands itself. 

Periodic Functions of Desk Accessories 

Some desk accessories are designed to periodically per
form certain activities. Examples of such time-dependent 
activities are the blinking of the Note Pad's cursor, displaying 
the current time by the Alarm Clock, and updating the key 
cap display by the Key Caps accessory. 

Before a desk accessory can perform these periodic func
tions, however, your program must call the _SystemTask 
instruction at least once every timer tick. If you don't, the 
accessory will be totally inactive while your application is in 
control. For this reason, you should place the _SystemTask 
instruction in any event loops used by your program. It's also 
a good idea to call it periodically during any lengthy process
ing operations. _SystemTask requires no parameters. 

Initializing Toolbox Managers 

Even though your application may not use certain toolbox 
Managers, such as the Dialog Manager or TextEdit, for 
example, it should initialize them in case they're needed by a 
desk accessory. You will encounter no difficulties if you use 
the standard initialization header referred to in Chapter 2. 



Supporting Desk Accessories 415 

Some desk accessories may also need to insert a new 
menu in the menu bar. For this reason, you should always 
leave space for the addition of one menu to your application's 
menu bar. 

An Application Program Supporting Desk 
Accessories 

The program in Listing 9-1 illustrates how to write an appli
cation that supports desk accessories. It illustrates how to 
write a program that must work even when there is more 
than one window on the screen. The program creates a sim
ple Apple-File-Edit menu bar, adds all available desk acces
sory items to the Apple menu, and then lets you switch 
between an application window and any open desk accesso
ries in the usual way. To keep you posted on what's going on, 
it also displays an appropriate message in the application win
dow: "I'm not active" (when the window is deactivated), "I'm 
active" (when it's activated), "Window needs updating" 
(when an update event occurs), or "Keyboard not sup
ported" (when a key-down event occurs). 

Listing 9-L. The Source File, Linker Control File, and 
RMaker File for the Accessory Program. 

* Asm Source File 
* Accessory.Asm 

* * This program shows how to develop an application 
* that works with desk accessories. 

llenuBarID EQU L28 ;llenu Bar resource ID 
AppleID EQU L ;llenu ID for Apple menu 
File ID EQU 2 ;llenu ID for File menu 
Edit!D EQU 3 ;Menu ID for Edit menu 

llindID EQU L21l ;Window resource ID 

INCLUDE ToolEqu.D ;Toolbox equates 



416 Mac Assembly Language 

Listing 9-L. continued 

INCLUDE QuickEqu.D 
INCLUDE SysEqu.D 
INCLUDE Traps.D 

;QuickDraw equates 
;Operating system equates 
;Trap instructions 

Initialize the various Managers: 

PEA -t;(AS) 
_InitGraf 
_InitFonts 
_InitWindows 
_InitMenus 
_TEI nit 
MOVE.L #0,-(SP) 
_InitDialogs 
_InitCursor 

MOVE.L #$0000FFFF,DO 
_FlushEvents 

;start of QD globals area 
;Initialize QuickDraw 
;Font Manager 
;Window Manager 
;l!enu Manager 
;TextEdit 
;(no restart procedure) 
;Dialog Manager 
;We want arrow cursor 

;Get rid of every event 

Create and draw a window on the screen: 

CLR.L -(SP) 
MOVE #WindID,-(SP) 
MOVE.L #0,-(SP) 
MOVE.L #-L,-(SP) 

;Space for returned pointer 
;Resource ID 
;Store on heap 
;-L = front window 

_GetNewWindow ;Get window from resource file 
MOVE.L (SP),OurWindow(AS) ;save window pointer 
_Setport ;Window ptr already on stack 

Read Apple, File, Edit menu bar from MBAR resource, then 
make it current using _setMenuBar: 

CLR.L -(SP) ;Space for result 
MOVE #MenuBarID,-(SP);Push resource ID 
_GetNewl!Bar 
_Setl!enuBar ;Bandle already on stack 

* Add desk accessory names to Apple menu: 

CLR.L -(SP) ;Space for result 
MOVE #AppleID, - (SP) ; Menu ID for Apple menu 



Supporting Desk Accessories 417 

Listing 9-L. continued 

MainLoop 

_GetMBandle ;Return menu handle on stack 
MOVE.L (SP),AppleB(AS) ;Save it for later 
MOVE.L # 1DRVR 1 ,-(SP) ;DAs are DRVR resources 
_AddResMenu ;Put them in Apple menu 

_DrawMenuBar ;Display menu bar 

BSR GetEvent 
BSR BandleEvent 
BRA MainLoop 

GetEvent 
_systemTask 
CLR.B -(SP) 
MOVE #-l.,-(SP) 
PEA EventRecord 
_GetHextEvent 
TST.B (SP)+ 
BEQ GetEvent 
RTS 

;Let DAs do periodic functions 
;Leave space for Boolean result 
;Allow all events (-:I. = $FFFF) 
;Results are returned here 
;Check for an event 
;Pop and test the result code 
;Branch if no pending event 

* BandleEvent is the event dispatcher. It takes the event type 
* code returned by _GetNextEvent and calls the subroutine 
* that handles it. Access to the event handling subroutines is 
* through a jump table arranged in event type code order. 

BandleEvent 

MOVE EventRecord+evtNum,DD ;Get event type code 
CMP #6,DD ;Events q_],5? 
BBI Ignore ;Yes, so branch and ignore 
ASL #2, DD ; Times t; to index into table 
JMP jumpTable(PC,DD) ;Jump to handler 

Ignore RTS 

JumpTable 

JMP 
JMP 

Ignore 
DoMouseDown 

;Null event (never used) 
;Button-down 



418 Mac Assembly Language 

Listing 9-L. continued 

JllP 
JllP 
JllP 
JllP 
JllP 
JllP 
JllP 

DoKeyDown 

Ignore 
DoKeyDown 
Ignore 
DoKeyDown 
Do Update 
Ignore 
DoActivate 

;Button-up 
;Key-down 
;Key-up 
;Auto-key 
;Update 
;Disk-inserted 
;Activate 

llOVE EventRecord+evtlleta,DO ;Get modifiers word 
BTST #CmdKey,DO ;Is command key bit on? 
BNE Command Test ;Yes, so branch 

BSR ClearWindow 

llOVE #30,-(SP) 
llOVE #30,-(SP) 
_lloveTo 
PEA •Keyboard not supported' 
_Drawstring 

llOVE.L oldPort,-(SP) 
_setPort 

RTS ;Ignore other keystrokes 

; Check for COllllAND key (might be a· key equivalent for menu) 

CommandTest 
CLR.L -(SP) ;Space for result 
llOVE EventRecord+evtllessage+2,-(SP) ;Push character 
_llenuKey ;Get menu information 
JllP llenu:L 

In a typical program, you would handle update events by 
redrawing what was previously erased by calling _BeginUpdate, 
redrawing, then calling _EndUpdate. Here, I don't keep track 
of what's on the screen so I just clear the screen and display 
a message. _BeginUpdate and _EndUpdate are first called 
back-to-back to prevent the same update from begin reported 
again. 



Supporting Desk Accessories 4 I 9 

Listing q-],. continued 

Do Update 
MOVE.L OurWindow(AS),DO ;Move into DD for CMP 
CMP.L 
BNE 

EventRecord+evtMessage,DO ;Our window? 
@L ;No, so branch 

These two instructions empty the update region: 

MOVE.L OurWindow(AS),-(SP) 
_Begin Update 
MOVE.L OurWindow(AS),-(SP) 
_EndUpdate 

BSR ClearWindow 

MOVE #30,-(SP) 
MOVE #30,-(SP) 
_MoveTo 
PEA 'Window needs updating' 
_Drawstring 

MOVE.L oldPort,-(SP) 
_Setport 

@L RTS 

DoActivate 
MOVE.L OurWindow(AS),DO ;Move into DO for CMP 
CMP.L 
BNE 

MOVE 
BTST 
BEQ 

BSR 

MOVE 
MOVE 
_MoveTo 
PEA 

EventRecord+evtMessage,DO ;our window? 
@L ; No, so branch 

EventRecord+evtMeta,DO ;Get modifiers word 
#ActiveFlag,DO ;Is activate bit set? 
DeActivate ;No, so branch 

ClearWindow 

#30,-(SP) 
#30,-(SP) 

1I 1m active!' 
_Drawstring 



420 Mac Assembly Language 

Listing C!-l. continued 

MOVE.L oldPort,-(SP) 
_setPort 

@L RTS 

Deactivate 

MOVE.L OurWindow(AS),-(SP) 
_setPort ;Select our port for drawing 

BSR ClearWindow 

MOVE #30,-(SP) 
MOVE #30,-(SP) 
_MoveTo 
PEA 'I'm not active!' 
_Drawstring 

MOVE.L oldPort,-(SP) 
_SetPort 

RTS 

DoMouseDown 

CLR -(SP) ;Space for result 
MOVE.L EventRecord+evtMouse,-(SP) ;Where 
PEA WindowPtr ;VAR window selected 

-Find Window ;Where was button pressed? 
MOVE (SP)+,DO ;Get result 
CMP #b,DO ;Result above b? 
BBI @L ;Yes, so branch 

ASL #2,DO ;Times ~ to step into table 
JMP ClickTable(PC,DO) 

@L RTS ;Ignore everything else 

; Jump table to the seven click-handling subroutines: 

ClickTable 
JMP DeskTop ;In the desktop 



Supporting Desk Accessories 421 

Listing 9-L. continued 

JllP lie nu ;In the menu bar 
JllP System ;In DA window 
JllP Content ;In Content region 
JllP Drag ;In Drag region 
JllP Grow ;In Grow box 
JllP GoAway ;In Close box 

GoAway 
RTS 

Grow 
RTS 

Drag 
RTS 

The click was in the content region of a window (and must be 
ours). !lake sure it's selected using _SelectWindow to generate 
an update event. (Normally you would only do this if the 
window was not already selected.) 

Content 

System 

DeskTop 

llOVB.L WindowPtr,-(SP) 
_Selectwindow 
RTS 

PEA BventRecord 
llOVB.L WindowPtr,-(SP) 
_systemClick 
RTS 

RTS 

;Select the window 

;Handle click in DA window 

;Ignore·clicks in desktop 

* Handle clicks in the menu bar: 

lie nu 
CLR.L -(SP) ;space for result 
llOVB.L BventRecord+evtllouse,-(SP) ;where? 
_llenuSelect 



4.2.2 Mac Assembly Language 

Listing q-L. continued 

MenuL MOVB.L (SP)+,DD 
TST.L DD 
BBB @L 
RTS 

;Pop the result 
;Is DD=D (no selection)? 
;Ro, so branch 

SWAP DD swaps the high word of DD with the low word. This 
means the low word contains the menu number and the high 
word contains the item number. 

@L SWAP DD 
CMP.W #FileID,DD ;Is it the File menu? 
BBQ DoFileMenu ;Yes, so branch 

CMP.W #AppleID,DD ;Is it the Apple menu? 
BBQ DoAppleMenu ;Yes, so branch 

You must be in the Edit menu. Pass the standard editing 
commands to the desk accessory. 

CLR.B -(SP) ;Space for result 
SWAP DD ;Item # in low word 
SUBQ #L,DD ;Reduce by L for _sysBdit 
MOVE DD,-(SP) ;Push item # 
_SysBdit 
llOVB.B (SP)+,DD ;Pop Boolean result 
BBB @2 ;Branch if accessory handled 
BSR FixTitle 
RTS ;we don•t support editing! 

@2 BSR FixTitle 

RTS 

it 

Bandle the Apple menu by passing control to a DA if the item 
number is greater than 2. 

DoAppleMenu 
SWAP DD ;Get item number in DO.W 
CMP.W #2,DD ;Is it a DA? 
BBI @L ;Yes, so branch 
BRA FixTitle ;Ro, so branch 



Listing 9-:L. continued 

@L MOVE.L AppleH(AS),-(SP) 
MOVE DO,-(SP) 
PEA DARame 
_Getitem 

CLR -(SP) 
PEA DAName 
_openDeskAcc 
MOVE (SP)+,DO 

FixTitle 
MOVE #0,-(SP) 
_HiLiteMenn 
RTS 

Supporting Desk Accessories 4.23 

;Posh menu item number 
; VAR name of DA 
;Get name of accessory 

;Space for result 
;Name of accessory 
;Pass control to DA 
;Pop the result 

;Return menu title to normal 

Handle the File menu (only a Quit item): 

DoFileMenn 

SllAP DO ;Get item # in low word 
CMP.11 #L,DO ;Is it Lst item (Quit)? 
BEQ @], ;Yes, so branch 
RTS ;(should never get here) 

@L BSR FixTitle ;Remove highlight from title 

Return to Finder the easy way using _ExitToShell. Yon don't 
have to pop any pending subroutine return addresses if yon do 
this. 

_ExitToShell 

Clearllindow erases our window. The dimensions of the window 
are located at position Lb from the start of the window record 
(a variable called portRect). 

Clearllindow 
PEA old Port 
_GetPort ;Get current drawing port 
MOVE.L Onrllindow(AS),-(SP) 



424 Mac Assembly Language 

Listing C!-:L. continued 

SetPort ;Make our window current 
MOVE.L Ouriindow(AS),AD ;Ready for indirect access 
PEA PortRect(AD) ;Address of port rectangle 
_EraseRect 
RTS 

Application constants: 

EventRecord DCB.B EvtBlkSize,D ;Space for event record 

iindowPtr DC.L D ;Pointer to window 

DAHame DCB.B Lb,D ;Space for DA name string 

oldPort DC.L D ;currently active drawing port 

; Here are the program globals. Use (AS) addressing. 

ouriindow DS.L 

AppleH DS.L 

Linker Control File 
Accessory.Link 

], ;Pointer to our window 

], ;Handle to Apple menu 

Link this file to create application 
(without resources). 

Accessory 
$ 

* RMaker Source File 
* Accessory.R 

* 
*Compile this after assembling and linking Accessory.Asm 

* 
* The next command appends the resources to the application: 
!Book:Accessory 

Type MBAR GHRL 
,L28 
.I 

;;Menu bar resource 
; ; Resource ID 
;;Decimal integers follow 



Supporting Desk Accessories 425 

Listing q-],. continued 

3 
L 

2 

3 

Type llBRO 
,L 

\Lii 
About this demo ••• 
(-

,2 
File 

Quit 

,3 
Edit 

Ou do 
(
Cut/X 
Copy IC 
Paste IV 

Clear 
(-

Type llIND 
,L26 
DA Demo 
LOO 5 332 502 
Visible RoGoAway 

" o 

;;Number of menus 
;;ID of Lst menu 
;;ID of 2nd menu 
;;ID of 3rd menu 

;;Resource ID 
;;Title is the Apple symbol (ASCII $Li;) 
; ;About box 

; ; Resource ID 
;;llenu Title 
;;Only item is Quit 

;;Resource ID 
; ; llenu Title 
;;Standard Edit menu 

; ; Resource ID 
;;Title for Window 
;;Window coordinates (TLBR) 
;;Visible window/ no goaway box 
;;Window ID. II= title, no grow box 
;;Oser-definable item (not used) 

Let's take a closer look at the program to see how it sup
ports desk accessories. First of all, a menu bar with two 
menus is loaded from the application file's resource fork using 
_GetNewMBar. To add the names of the desk accessories 
(DRVR resources) to the Apple menu using _AddResMenu, 
we first need to know the handle to the Apple menu-this is 
obtained using the _GetMHandle instruction. 



426 Mac Assembly Language 

To allow any DA to perform a periodic function associated 
with it, the program includes the _SystemTask instruction in 
the GetEvent subroutine that forms part of the main event 
loop. If you remove this instruction, the Alarm Clock won't 
keep ticking, the cursor in the Note Pad won't blink, and so 
on. 

When a key-down event occurs, control passes to 
DoKeyDown, which clears the application window and uses 
_Drawstring to display the "Keyboard not supported" mes
sage. Notice that the window clearing subroutine, 
ClearWindow, first uses _GetPort to save the pointer to the 
active drawing window Cit may be a desk accessory win
dow), then uses _SetPort to select the application window. 
When _Drawstring finishes, the application calls _SetPort 
again to restore the original drawing window. It is important 
not to permanently switch to the application window 
because such an action may take the DA by surprise. 

Update events occur when a desk accessory is moved 
aside to expose a new portion of the application window; 
they are handled by the code beginning at Do Update. In a 
complete application, you would redraw the portion of the 
window previously overlaid by the DA window. This means 
you have to keep track of what is in the window at all times. 
This application simply erases the window and displays a 
"Window needs updating" message. Notice that before it 
does this it calls _BeginUpdate and _EndUpdate to empty 
the window's update region. If you don't do this, the operat
ing system will post the same update event again and again. 

Activate and deactivate events are handled in the usual 
way, beginning at DoActivate. The only concern is remem
bering to use _SetPort to select the application window for 
drawing. 

When handling button-down events you must be more con
cerned with the possibility that desk accessories are present. 
First of all, a call to _FindWindow may indicate the mouse 
was clicked in a system window: If it was, control passes to 
the System subroutine that calls _SystemClick to let the DA 
handle the click as it sees fit. 



Supporting Desk Accessories 42 7 

Clicks in the content region of the application window are 
handled by the Content subroutine. It selects the application 
window using _SelectWindow to bring it to the front of the 
screen, causing an update event to be posted in the event 
queue. It also removes the highlighting from the active DA 
window, if necessary. In a complete application you would 
probably call _SelectWindow only if the window is not already 
active. You can see if it's active by comparing the pointer 
returned by _GetPort with the OurWindow variable. 

If there is a button-down event in the menu bar and an item 
is selected from the Apple menu, control passes to DoAp
pleMenu. This subroutine checks to see if a DA was selected 
by comparing the item number returned by _MenuSelect 
with two (the first two items are an About ... item and a 
dimmed line). If the item number is greater than two, it's time 
to open the desk accessory with _ OpenDeskAcc. 

Recall, however, that _OpenDeskAcc requires the name of 
the DA as a parameter, not a menu item number. To get the 
name, the application uses _Getltem to read the item name 
into DAName. DAName is 16 bytes long to accommodate the 
maximum name size of 15 bytes and a leading length byte. 

If an item in the Edit menu is selected, its item number 
minus one is passed to _SysEdit, giving a DA a chance to per
form standard editing operations. If _SysEdit returns a 
Boolean false result, the application should deal with the edit 
command itself; here, it just ignores it. 



Appendix A 

The ASCII Character Set 

Second Hex Digit 
0 1 2 3 4 5 6 7 8 9 A 8 C D E F 

First 

0 

1 

2 

3 

4 

5 

Hex 6 

Digit 7 

8 
g 

A 

8 

c 
D 

E 

F 

D 

0 
@ 

p 

' 

p 

Fi 
e 
t 

00 

l 
-
D 

D 

D D 

8€ ./ 

! II 

1 2 

A B 

Q R 

a b 

q r 

ft I;: 
e i 
0 ¢ 

± :S. 

i ... 
- " 
D D 

D D 

D D D D 

+ • D D 

# $ 3 & 

3 4 5 6 

c D E F 

s T u u 
c d e f 

s t u u 

E N 0 u 
i i ... n 
£ § • 'II 

.!: ¥ Jl a 
v f f1$ i:J. 

" ' ' 
D D D D 

D D D D 

D D D D D D 

D D D D D D D D 
I ( ) * + 

' 
- . 

1 8 9 . . < = ) . 
' 

G H I J K L M N 

w H y 2 [ \ ] A 

g h i j k I m n 
w H y z { I } 

,.., 

8 a 8 a a 0 e a ~ 
6 0 0 0 0 u u (i 

n ® © TM " 
.. 

~ fE 

I n "' J I ! 0 a! 

fl 
,.., 

0 « » . .. A CE 

<> y D D D D D D 

D D D D D D D D 

D D D D D D D D 

Note: The characters shown are those defined in the system font 
resource. The characters used in other fonts may be 

different. 

428 

D 

D 

I 
? 

0 

-
0 

e 
ii 

B 

8 

ce 

D 

D 

D 



AppendixB 
Finding, Fixing, and 

Avoiding Programming 
Errors 

The errors listed below are the ones you're most likely to commit 
while developing 68000 assembly language programs on the Macin
tosh. To avoid them, follow the suggestions given. 

Improperly managing the stack. This is probably the most 
common cause of programming errors on the Macintosh and 
invariably leads to the unwelcome appearance of the fatal 
bomb alert. Before calling a Macintosh trap instruction, make 
absolutely certain its parameters are pushed on the stack in 
the proper order, and that they are the proper size. For func
tions, also remember to push space for the result and to pop 
the result from the stack on return from the trap instruction. 

Referring to unavailable resources. Make sure any 
resource you use in an application is either in the System file, 
has been appended to the application using the MOS !file
name RMaker command or the MOS /RESOURCES Link com
mand, or is in a resource file that has been specifically opened 
by the application with _OpenResFile. If you try to use a 
resource that is not active, your program will crash unless it 
does proper error checking. 

Redefining symbols and labels. Once a symbol has been 
defined with the EQU directive, you cannot redefine it with
out causing a "Multiply defined symbol" or "Illegal line" MOS 
error. You will most often cause these errors by inadvert
ently attempting to define a symbol in your main source code 
file that is already defined in an included MOS equate text 
(.txt) file or a packed symbol (.0) file, respectively. If a subse-

429 



450 Mac Assembly Language 

quently included .D file attempts to redefine an existing sym
bol, no error occurs, but the new definition is ignored. You 
can't redefine instruction labels, either. If you do, you will 
cause a "Multiply defined label" MDS error. 

Using the dl 6(PCJ addressing mode when trying to store a 
value in the constant allocated with the DC directive. The 
d 16CPC) addressing mode cannot be used as a destination 
operand, so use the following general instruction sequence to 
change the value of a constant. 

LEA MyConstant,AD ;MyConstant is same as MyConstant(PC) 
MOVE #number, (AD) ;Store "number" in MyConstant 

If a program must often write to constants, it's best to create 
variables instead (using the OS directive) so that you can write to 
them directly with a MOVE #number,label(AS) instruction. 

Forgetting to append the (AS) mode designator to the name of 
a variable allocated with the DS directive. If you define a vari
able, say MyVariable, access it with an operand of the form 
"MyVariableCAS)", not "MyVariable" by itself. If you don't, 
MOS uses the MyVariable(PC) addressing mode, which gen
erates a completely different effective address, causing your 
program to behave unpredictably. 

Improperly using a Bee (branch conditionally) instruction 
after a CMP instruction. Remember that a CMP instruction 
compares the destination operand with the source operand 
to determine how to set the condition code flags, not the 
other way around. For example, a BLS instruction that fol
lows it will cause a branch to the target address if the desti
nation is lower or the same (LS) as the source, not if the 
source is lower or the same as the destination. 

Improperly using the CMP instruction when the destination 
operand does not use a register direct addressing mode. If the 
destination operand for a CMP instruction is an operand other 
than Dn or An, the source operand must use the immediate 
addressing mode. CMP offset(A3),D3 is valid, but CMP off
set(A3),myVariable(A5) is not. The only exception is the 
CMPM (Ay) + ,(Ax)+ instruction. 



Finding, Fixing, and Avoiding Programming Errors 451 

Not preceding a string with a length byte. Most of the 
string-handling toolbox subroutines insist the strings you 
pass to them by address be preceded by a length byte. If you 
define a string with: 

DC. B 1 This is a string 1 

the string is not preceded by a length byte unless the 
STRING_FORMAT directive is set to 3 first. If you explicitly include 
the length byte with: 

DC.B 1b, 1This is a string• 

make sure that STRING_FORMAT is set to 1 to prevent duplication 
of the length byte. 

Specifying an incorrect loop count when using the DBcc 
instruction. The data register used as the counter in a DBcc 
loop must hold the loop count minus one because looping ends 
when the counter becomes minus one, not zero. 

Specifying an explicit destination operand for the PEA instruc
tion. The "push" in a PEA instruction is implicit, so you must 
not use an instruction of the form "PEA theString, - CSP)". 
The correct syntax is "PEA theString". 

Not specifying a disk prefix for files used by RMaker when 
using MDS I .0. Remember that the original version of 
RMaker expects to find the file it is appending to (!filename), 
or a file it is including (INCLUDE filename), on the same disk 
as RMaker itself, even if the RMaker source file is on another 
disk. In addition, if it creates a new file, it saves it on the 
RMaker disk. To override this default behavior, use a file 
name that includes a specific disk prefix. 

Using the wrong operand sise to access a field in a data rec
ord. The Macintosh operating system uses a variety of 
data structures, or records, made up of fields of byte, word, 
or long word size. If you access a field, check that your oper
and size is the same size as the field; if it's not, you won't 
access the field properly. For example, the evtMessage field 
of an event record is a long word; for a key-down event 



452 Mac Assembly Language 

the last byte in the field is the character code. To read its 
value, use an instruction like MOVE.L EventRecord+ 
evtMessage,DO and then isolate the low-order byte with an 
AND.L #$FF.DO instruction. Don't use a MOVE.B EventRec
ord + evtMessage,DO instruction because this loads only the 
first byte of the evtMessage field into the last eight bits of 
the DO register. For a key-down event, this number is 
meaningless. 

Forgetting the # when specifying an immediate operand. If 
you forget to place a # in front of an immediate operand, the 
assembler thinks you're referring to an address and assem
bles the instruction using the absolute addressing mode. This 
means the number acted on is the one stored at the address 
given by the operand, not an immediate quantity. This error 
most often occurs when you use symbolic names to refer to 
immediate numbers. For example, the symbol IBeamCursor 
refers to a constpnt, not an address, so use an operand of 
the form #IBeamCursor in an instruction. 

Reversing the order of instruction operands. Remember 
that 68000 assemblers insist that the source operand be 
specified before the destination operand. This error is com
mon for those who also program in 8086 assembly language 
on the IBM PC, where the opposite operand order is required. 

Confu.sing the use of BHSIBGE, BHIIBGT, BLS/BLE, and 
BLO/BLT. These Bee instructions are most often used after 
comparing the relative sizes of two numbers with a CMP 
instruction. If the numbers being compared are unsigned 
numbers, use the BHS (BCC), BHI, BLS, and BLO (BCS) 
instructions only. If they are signed numbers, use their coun
terparts BGE, BGT, BLE, and BLT instead. 



Appendix C 

The MacsBug Debugger 

The MDS master disk contains two debuggers you can use to help 
track down the source of programming errors that are not flagged 
during the assemble/link process. These are errors caused by faulty 
program logic or improper trap instruction calls rather than obvious 
syntax errors. 

The particular debugger described here is a single-Macintosh 
debugger called xMacsBug. (The other, Mac DB, requires two 
Macintoshes linked together by a cable.) To install it, change its 
name to MacsBug, put it in the System Folder of the disk (the one 
containing System and Finder), then boot from the disk. When the 
system starts up, the message "Macsbug installed" appears, veri
fying that the debugger is available for use. 

Macsbug is most useful for executing a program one instruction 
at a time (a procedure called stepping) and for displaying the con
tents of registers after each step. These features make it fairly 
easy to determine whether your program is operating as expected 
or, if it's not, where it begins to lose control, and why. 

Invoking MacsBug 

You can invoke MacsBug in two ways. The most common way is 
to press the rear programmer's switch on the left side of the Macin
tosh (it's marked INTERRUPT) while the program you want to 
inspect is running. The program itself can exit to MacsBug using the 
_Debugger trap instruction. 

When MacsBug takes over, it displays the contents of all the reg
isters followed by a > prompt symbol. From here you can enter any 
of a number of commands that MacsBug supports. We're only going 
to look at a few of the commands here, but they are the most 
important ones. 

433 



434 Mac Assembly Language 

You may find that the disk drive may not stop whirring 
after MacsBug takes over. To stop the internal drive, 
enter the command DM DFF1FF right away; use DM 
DFF3FF for the external drive. 

Locating the Program 

The first thing you will want to do is locate the interrupted pro
gram in the application heap. Use the HD (Heap Dump) command 
for this. HD analyzes the heap and displays the position and size of 
each free (unused) block, pointer block, and handle block it con
tains. Here is what the first part of a typical heap dump looks like: 

OOOOCBOO 

OOOOCB3~ P 00000108 
OOOOCC3C P 0000007~ 
OOOOCCBO B 0000001A 0 OOOOCC18 

* 
* 

OOOOCCCA B 000001E2 E OOOOCC1C * 20 0001 CODE 

The first line contains the address of the base of the application 
heap. The next four lines identify various blocks in the heap. The 
first three items in each of these lines hold the following information 
in the following order: 

• the starting position of the block 
• the block type code CP for pointer, H for handle, F for free) 
• the size of the block (including Memory Manager overhead 

bytes) 

For handle blocks only, these three items are followed by a four
bit hexadecimal digit describing the properties of the block. The 
attribute bits are locked (bit 3), purgeable (bit 2), and resource (bit 
1 ). Bit 0 is not used and is always zero. The long word that follows 
the digit is the address of the master pointer to the block. (See 
Chapter 4.) 

Notice that an asterisk is used to identify any blocks that are 
immovable, either because they are nonrelocatable or they are 
relocatable but locked. Recall from Chapter 4 that pointer blocks 
are always nonrelocatable. 



The MacsBug Debugger 435 

For blocks corresponding to resource files you will also see the 
resource's reference number, ID number, and type code on the 
right side of the line. A program is actually a CODE resource with a 
resource ID of 1 , so in the example the block containing the pro
gram begins at $0000CCDA. 

The program actually begins $0C bytes from the start of the 
CODE block. The first $0C bytes are used by the Memory Manager 
to keep track of the block and its properties. 

Disassembling the Program 

To verify that the CODE block does, indeed, hold the program, 
disassemble the program using the IL (Instruction List) command. 
To do this, enter a command of the form "IL addr" where addr rep
resents the address at which the disassembly is to begin. IL dis
plays 16 program lines in assembly language form, but without 
symbolic labels. In our example, enter the command "IL CCD6" to 
begin disassembling the program. ($CCD6 is the address of the 
CODE block plus $0C. The preceding$ sign is optional.) 

Standard names for 68000 instructions are shown in a disassem
bled listing. ROM trap instructions are identified by the phrases 
TOOLBOX $Axxx (user-interface toolbox instructions) or OSTRAP 
$Axxx (operating system instructions); their symbolic names are 
displayed in the comment field of a line. 

Subsequent presses of the RETURN key will disassemble the 
next 16 lines in the program. You can also use IL to disassemble any 
portion of the Macintosh ROM. You may want to do this to discover 
how the toolbox and operating system subroutines really work. 

Displaying and Setting Memory Locations 

To display the contents of memory locations, use the DM (Display 
Memory) command. The form of this command is: 

DM [ address [ number l l 

where the brackets are used to .indicate that the parameters they 
enclose are optional. Don't type the brackets when you enter the 
command. DM displays the contents of number bytes of memory 
beginning at address, in hexadecimal and ASCII form. If you don't 



456 Mac Assembly Language 

specify a number, 16 bytes are displayed. For example, if you enter 
the command DM 2EO, you will see the following line: 

000002EO Ob~b b9bE b~bS 7220 2020 2020 2020 2020 .FINDER 

The starting address is on the far left and is followed by the 16 
bytes (arranged as eight words) stored 'in memory beginning at this 
location. On the far right is the ASCII character for each byte in the 
line. If the byte is less than $20, a period is displayed instead. The 
data stored at $2EO is a string (preceded by a length byte) contain
ing the name of the application launched when you execute an 
_ExitToShell instruction. 

Note that if you now press RETURN by itself, the next 16 bytes in 
memory are displayed. This makes it easy to examine a range of 
memory with a minimum of typing. 

To store data in consecutive memory locations, use the SM 
(Store Memory) command: 

SM addr value1 [ value2 ••• valueN 

This command stores the specified values into memory beginning at 
the location given by addr. It is useful for changing program con
stants before running the program again. 

Displaying and Setting Registers 

To see what's in any of the 68000 registers after a program has 
been interrupted, simply type the name of the register (D1 to D7, 
A 1 to A 7, PC, SR) and press RETURN. To display the contents of all 
the registers at once, enter TD (Total Display). 

To change the contents of any register, follow the name of the 
register with the value to be placed in the register. Do this to initial
ize registers before calling a subroutine (with the G, GT, T, or S 
commands) that expects parameters to be passed in registers. 

Stepping and Tracing 

To verify that a program is functioning properly, it is often conve
nient to execute it one step at a time. After each step you can 
check the values in the 68000 registers to see if everything is pro
ceeding as expected. 



The MacsBug Debugger 457 

Use the T (Trace) command to execute the instruction pointed to 
by the program counter. (Use the "PC value" command to change 
the value in the program counter.) After execution, the next 
instruction and the contents of all the registers are displayed. For 
the purposes of the T command, a trap call is considered to be a 
single instruction. 

A similar command is S (Step), but it also steps through the ROM 
subroutine called by a trap instruction. If you wish, you can follow 
the S command with a number indicating the number of instructions 
to step through before returning to the MacsBug command line. 

Sometimes you don't want to step through a particular subrou
tine or code segment line by line; you just want to execute it quickly 
and examine the final results. To do this, use the GT (Go Till) com
mand. The form of this instruction is: 

GT addr 

where addr is an address in the program. When the program 

counter reaches the specified address, execution halts and 

control returns to MacsBug. 
Use the G (Go) command to begin executing a program at acer

tain address. The starting address is either the value in the program 
counter or, if you specify an address after the G command, at that 
address. Control returns to MacsBug if the program (or subroutine) 
at the starting address ends with an RTS instruction. If it ends with 
an _ExitToShell instruction, you will return to the Finder instead; 
press the interrupt switch to return to MacsBug if this happens. 

Leaving MacsBug 

You can leave MacsBug in one of three ways: 

R~Reboot the system 
ES-Exit to the shell program (usually the Finder) 
EA-Exit and relaunch the interrupted application 

The last command, EA, is not available on versions of MacsBug 
prior to version 5.0. 



Appendix» 
Utility Programs 

There are many utility programs available to assist 68000 assembly 
language programmers in program development. Some of the most 
valuable are listed here. 

ResEdit. Apple Computer, Inc., 20525 Mariani Ave., Cupertino, CA 
95014, Tel: (408) 996-1010. This is Apple's official resource editor.· 
With it you can view and change the definition of any resource file 
on a disk. This program comes with MOS (version 2.0 only), Apple's 
periodic Software Supplements, and is available from many com
mercial information utilities for no charge. 

REdit. Apple Computer, Inc. Another of Apple's resource editors. 
developed by programmers at Apple France. It is included with 
Apple's periodic Software Supplements and is available from many 
commercial information utilities as well. 

Fedit. Mac Master Software, # 122 - 939 E. El Camino Real, Sun
nyvale, CA 94087. A popular utility for snooping through files at the 
disk block level. It is also useful for changing file attributes in a disk 
directory, such as the bundle bit, and for recovering from disk 
crashes. 

Purge Icons. Author unknown. This program is available from 
many bulletin boards and commercial information utilities. It 
removes any unused ICON. BNDL, and FREF resources from a 
disk's DeskTop file--these are associated with applications that 
have been deleted from the disk. You will want to use it when 
you're designing a custom icon for an application so that the Finder 
will not keep using the original icon. (See Chapter 2.) It's also handy 
for reducing the size of the DeskTop file. 

Dialog Creator. Apple Computer, Inc. Another "visual resource 
editor," this one for defining dialog and alert boxes. It is included 
with Apple's periodic Software Supplement. 

TMON. Icom Simulations, Inc., 626 Wheeling Rd., Wheeling, IL 
60090, Tel: (312) 520-4440. This advanced, single-Macintosh 
debugger is more powerful and more useful than the MacsBug 
debugger that comes with MDS. 

438 



Utility Programs 439 

MacNosy. Jasik Designs, 343 Trenton Way, Menlo Park, CA 
94025, (415) 322-1386. The self-proclaimed "disassembler for the 
rest of us." With it you can easily inspect the subroutines in the 
Macintosh ROM or in any program on disk in assembly language for
mat. This is a great way to learn about professional programming 
techniques. 

ConCode. Pixel Pathways, P.O. Box 4065, Mt. Penn, PA 19606. 
An invaluable desk accessory for assembly language programmers. 
When you select a 68000 instruction to work with, all the valid 
addressing modes for the instruction are shown. You can also enter 
numeric values for the instruction's two operands, then execute 
the instruction to determine the result. The settings of the condi
tion code flags after execution are also shown. 

The Macintosh Reference System. TOM Programs, Suite 34-T, 
1500 Massachusetts Ave. NW, Washington, DC 20005, (202) 
223-6813. A Microsoft File database containing summaries of all the 
trap instructions documented in Inside Macintosh. The same data
base is also available in a deck of 750 color-coded 3-by-5 cards. 

MacExpress. ALsoft, Inc., P.O. Box 927, Spring, TX 77383-0927, 
(713) 353-4090. An Application Manager that directs and controls 
an application's user interface. By using it, you can concentrate on 
writing the guts of your application and leave the implementation of 
the Macintosh user interface to MacExpress. 

Consulair Professional Development Tools: Utilities. Consulair 
Corp., 140 Campo Drive, Portola Valley, CA 94025, (415) 851-3272. 
A package made up of four useful utilities: SuperMake, for automat
ically rebuilding all changed parts of an application; Grep, for search
ing multiple files for a given string pattern; Diff, for displaying the 
differences between two text files; and Maximum Performance 
Analyzer, a desk accessory that monitors a program to determine 
the time it takes to execute its routines. 



Bibliography 

The following materials will either assist in understanding the Mac
intosh programming environment or in developing applications in 
68000 assembly language, or both. 

Books 

Apple Computer, Inc., Inside Macintosh, Volumes I, 11, 111, and IV, 
Reading, MA: Addison-Wesley Publishing Company, 1985 
(volumes I to Ill) and 1986 (volume IV). The definitive work on the 
Macintosh programming environment, written by Apple's devel
oper support team. Every serious programmer must have a copy 
of all four volumes. 

Apple Computer, Inc., Macintosh 68000 Development System User's 
Manual, Cupertino, CA: Apple Computer, Inc., 1984. This is the 
manual that comes with MOS. 

Chernicoff, Stephen, Macintosh Revealed, Volume 1: Unlocking the 
Toolbox, Hasbrouck Heights, NJ: Hayden Book Company, 1985. 
An excellent introduction to the Macintosh programming 
environment. 

Chernicoff, Stephen, Macintosh Revealed, Volume 2: Programming 
with the Toolbox, Hasbrouck Heights, NJ: Hayden Book Com
pany, 1985. This book contains plenty of examples on how to pro
gram with the ROM toolbox. Although the examples are in 
Pascal, tables at the end of each chapter describe the assembly 
language equivalents of the Pascal functions and procedures 
discussed. 

Mathews, Keith, Assembly Language Primer for the Macintosh, New 
York, NV: New American Library, 1985. This is an introduction to 
68000 assembly language for novice programmers. Unfortu
nately, its lack of depth and numerous typographical errors make 
it difficult to follow. 

Motorola Inc., M68000 B/16132-Bit Microprocessor Programmer's 
Reference Manual, 5th ed., Prentice-Hall, Inc., 1986. A description 
of the 68000 written by the chip's designer. 

Rosenzweig, Edwin and Harrison, Harland, Programming the 68000: 
Macintosh Assembly Language, Hasbrouck Heights, NJ: Hayden 

440 



Utility Programs 441 

Book Company, 1986. A good introduction to 68000 assembly lan
guage programming. 

Williams, Steve, Programming the Macintosh in Assembly Language, 
Berkeley, CA: Sybex Inc .. 1986. This book contains detailed 
descriptions of a series of general-purpose macros you can use to 
simplify the development of assembly language programs. Its 
repeated references to the CP/M environment are quite perplex
ing, however. 

Periodicals 

MacDeveloper: The Electronic Magazine for Macintosh Developers, 
Harry Chesley, 1850 Union St. #360, San Francisco, CA 94123. 
This newsletter is published about six times per year and is dis
tributed via electronic bulletin board systems and national infor
mation services like Delphi and CompuServe. 

Macintosh Technical Notes, Technical Notes, Apple Computer Mail
ing Facility, 467 Saratoga Avenue, Suite 621 , San Jose, CA 95129. 
These are the "official" technical notes from Apple Computer, 
Inc., which are released at infrequent intervals during the year. 

MaclnTouch, Ford-LePage, Inc., P.O. Box 786, Framingham, MA 
01701, (617) 527-5808. A magazine valuable for its useful reviews 
of many products, including those of interest to developers. 

MacMag, 3743 Notre-Dame W., Montreal, Quebec, Canada H4C 
1 PS. This magazine often contains introductory articles about 
programming in assembly language. 

MacTutor: The Macintosh Programming Journal, MacTutor, P.O. 
Box 400, Placentia, CA 92670, (714) 630-3730. A monthly maga
zine containing much useful material for the 68000 programmer. 
No other Macintosh magazine can match it for technical content. 



Index 

$ (Link), 65, 69 

! (Link), 68 

! CRMaker), 73 

<(Link), 66 

68000 

addressing modes, 16-32 

clock speed, 226 

exceptions,35-43 

instruction set, 2-6 

registers, 6-16 

68020,2 

8088/8086, 6, 432 

A 

ABCD, 126-127, 166 

activate event, 214--215, 251, 

253-254 

ADD, 125--126, 166-167 

ADDA, 167 

ADDI, 168 

ADDQ, 20, 125, 168-169 

ADDX, 125--126, 16~170 

_AddResMenu, 312, 325--326, 

329,34~350,408-410,425 

address registers, 8-1 0 

addressing modes, 16-32 

absolute, 28-29 

absolute short, 29 

address register direct, 21 

address register indirect, 

21-22 

443 

addressing modes continued 
address register indirect 

with displacement, 25--26, 

186 

address register indirect 

withindex,27-28 

address register indirect 

with pre-decrement, 

24--25 

data register direct, 20-21 

immediate, 19, 432 

implicit, 18 

program counter with 

displacement, 2~30, 193 

program counter with index, 

31-32 

_Alert, 352, 404--405 

alert box, 238, 352, 358-360, 

404--405 

ALRT resource, 402 

AND, 134, 138 

ANDI, 134, 135--136, 147 

_AppendMenu, 312, 31~320, 

329,332,338,409 

Apple II, 2 

application parameter table, 

180 

arcs, 306, 308 

arithmetic instructions, 

122-131 

arithmetic shift instructions, 

13~143 

arithmetic operators, 59 



444 Index 

ASCilcodes,217-218,428 

ASL, 140-141, 142 

ASR, 140-141, 142 

Asm, 44, 46-64 

assembler directives, 50-64 

auto-key event, 213 

autograph resource, 100-101 

autovector interrupt, 41 

B 

bank-switching, 2 

BCD, see binary-coded decimal 

BCHG, 131-133, 138 

BCLR, 131-133 

_BeginUpdate, 231, 252-253, 

426 

binary-coded decimal 

numbers, 1 22-124, 125 

binary numbers, 122-124 

signed comparisons, 119, 

123-124 

unsigned comparisons, 119, 

123 

binary weight, 8 

Bee instructions, 16, 18, 

117-120, 159,430,432 

blocks, memory 

allocation. 182-1 88 

deallocation, 188 

BNDL resource, 102-103 

Boolean algebra, 137 

Boolean variable, 88 

BRA, 115--116, 159-160 

BSET, 131-133,278 

BSR, 18,34, 115--116, 160, 

189 

BTST. 131-133,333,335,341 

/BUNDLE, 68, 99, 102 

bundle bit, 68, 102 

bundle resource, 1 02-1 03 

_Button, 197, 216 

button-down events, 254-260 

and DAs, 411-412 

button item, 369-370 

c 
carry flag, 15 

_CautionAlert, 352, 404-405 

CCR, see condition code 

register 

character code, 21 7 

character origin, 272 

character rectangle, 272 

_CharWidth, 269, 283 

check box item, 370 

_Checkltem, 312, 335, 351 

CHK, 43, 144, 147-148 

_ClearMenuBar, 312, 327 

clock,226--229 

close box, 238 

_CloseDeskAcc, 407, 411 

_CloseDialog, 353, 388 

_ClosePgon, 298, 309 

_CloseResFile, 98 

_CloseWindow, 231, 251, 259 

CLR, 110, 154 

CMP, 118-119, 129, 170, 433 

CMPA, 171 

CMPI, 171-172 

CMPM, 129-130, 172-173 

CNTL resource, 365, 366 

CODE resource, 66, 75--76 



comments, 50 

Asm, 50 

Link,65 

RMaker, 73-7 4 

comparing numbers, 129-130 

condition code register. 13 

constants, 193-194 

content region, 239 

control character, 217 

control items, 369-371 

Control Manager, 259 

Control Panel, 195 

coordinates systems, 240-242 

global, 205, 221, 241-242 

local. 221 • 241-242 

_CountMitems, 312, 326--327, 

350 

creator code, 66--67 

CURS resource, 222, 223 

cursor, 220-225 

cursor level, 224 

cursorrecord,221-222 

D 

.D, see packed symbol file 

data fork, 69 

data registers, 10 

data types, 83--84 

date, reading, 227-229 

DBcc instructions, 120-122, 

161,431 

DBRA, 122, 350 

DC, 54, 109, 193 

DCB, 54-55, 193 

deactivate event, 214-215 

debuggers, 433 

Index 445 

debugging. 5, 12, 429-432. 

433-437 

_Delay, 197, 226 

_DeleteMenu, 312, 324, 

327-328 

_DelMenultem, 313, 322 

dereferencing, 187 

desk accessory, 325, 406-427 

editing, 412-413 

finding name, 41 0-411 

mouse clicks, 411-412 

opening, 410-411 

periodic functions, 414 

Desk Manager, 406 

dialog box, 238, 352, 358-360 

creating, 361-365 

.item lists, 365-366 

Dialog Manager, 360-361 

_DialogSelect, 353, 386--387 

_Disableltem, 260, 313, 332 

disk-inserted events, 215 

_DisposDialog. 353, 384, 

387-388,401 

_DisposHandle, 182, 188, 190 

_DisposMenu, 313, 324 

_DisposPtr, 182, 188, 190, 

251,388 

_DisposWindow. 231 , 251 • 

259 

DITL resource, 363, 365-366, 

368,371,402 

DIVS, 128, 173-174 

DIVU, 128, 173-174 

DLOG resource, 361, 363-365 

double-click, 195 

DoubleTime, 195, 201 

drag, 195 



446 Index 

drag region, 230, 239 

_DragWindow, 232, 257 

_DrawChar,269,281-282, 

283,296 

_DrawDialog, 353 

_DrawGrowlcon, 232, 254, 

259 

_DrawMenuBar, 313, 324, 

329,330,332,350 

_Drawstring, 245, 269, 

281-282,283,287,296, 

351,401,426 

_DrawText, 269, 281-282, 

283 

DRVR resource, 325, 408, 425 

DS,55-56, 109, 194 

.DUMP, 62, 82 

E 

Edit, 44, 46 

effective address, 16, 1 1 0 

element type designators, 76 

_Enableltem, 260, 313, 320, 

332,413 

/END, 65, 69 

END, 61 

_EndUpdate,232,252-253, 

426 

EOR, 134, 135, 137-138 

EORI, 134, 135-136, 147, 401 

EQU, 19, 52, 60, 109, 429 

equate files. so-a 1 

_EraseArc, 298, 308 

_EraseOval, 298, 307 

_ErasePoly, 298, 310 

_EraseRect, 296, 298, 307, 

351 

_EraseRoundRect,298,308 

_EventAvail, 197, 203, 

206-207 

Event Manager, 201-216, 251 

event mask, 201 

eventrecord,203-205 

events, 195-197 

application-defined, 216 

disk-inserted, 215 

handling, 207-216 

1/0 driver, 216 

keyboard, 213 

mouse, 214 

network, 216 

window, 214-215 

exception vector, 11 , 1 78 

exceptions 35-43 

$Axxx instruction, 41 

$Fxxx instruction, 41 

address error, 22, 38 

autovector interrupts, 40 

bus error, 38 

CHK, 43 

ILLEGAL instruction, 41 

interrupts, 39-40 

privilege violation, 38-39 

reset, 37-38 

spurious interrupts, 40 

trace, 39 

TRAP instruction, 41 

TRAPV, 43 

user interrupts, 40 

zero divide, 43 

Exec,44,77-78 

EXG, 112, 155 



_ExitToShell, 350, 360, 436 

EXT, 128-129, 174 

extend flag, 13-14 

extension words, 5 

F 

file type code, 66-67 

_FillArc, 298, 308 

_FillOval, 299, 307 

_FillPoly, 299, 310 

_FillRect, 299, 307 

_FillRoundRect, 299, 308 

_FindWindow, 214, 232, 

254-255,256.338-339, 

350,426 

flags, 13 

_FlushEvents, 198, 201 

font, 271-274 

ascent,273 

baseline, 272 

descent,273 

leading, 273 

widMax, 273 

font information record, 

273-274 

Font Manager, 236 

font rectangle, 272 

FONT resource, 271-272, 350 

Font/DA Mover, 272, 349 

_FrameArc, 299, 308 

_FrameOval, 299, 307 

_FramePoly, 299, 310 

_FrameRect, 300, 307 

_FrameRoundRect, 300, 308 

FREF resource, 101-102 

Index 447 

_FrontWindow, 214, 233, 256 

functions,82,83 

G 

_GetCtlValue, 354, 371, 

374-375,401 

_GetCursor, 198,223-224 

_GetDltem, 354, 371-374, 

384,400 

_GetFNum, 351 

_GetFontlnfo, 190-191, 270, 

273-274 

_Getltem, 313, 331, 351, 410, 

411,427 

_GetlText, 354, 371, 373-374, 

385,401 

_GetltmStyle, 314, 333 

_GetKeys, 217 

_GetMenuBar, 314, 330 

_GetMHandle, 314, 325, 329, 

425 

_GetMouse, 198, 220-221 

_GetNewDialog, 354, 399-400 

_GetNewMBar, 314, 328-329, 

349,425 

_GetNewWindow, 233, 

24~250,349 

_GetNextEvent, 198, 

203-207,254,338 

_GetPen,270,274,287 

_GetPenState, 300, 305 

_GetPort, 250-251, 426, 427 

_GetResource, 355 

_GetRMenu, 314, 323-324, 

408-410 



448 Index 

_GetWTitle, 233, 268 

global coordinates, 205, 221 , 
241-242 

global variables, 176 
application, 1 79-180, 

191-193 

system, 178 

QuickDraw, 237-238 
/GLOBALS, 192 

_GlobalToLocal, 233, 242 

GNRL resource, 76-77 

for defining ICON, 336-337 

for defining MBAR, 328 

go-away box, 238-240 

GrafPort, 240-242 

graphics, displaying, 297-310 

_GrowWindow, 257-258, 267 

H 

handle, 180, 185-188 

dereferencing, 187 

heap 

application, 1 79, 1 83, 184 

compaction, 184, 188-189 

system, 179 
HFS, 78 
_HideCursor, 199, 224 

_HideWindow, 387 

_HiliteControl, 355, 373 

_HiliteMenu, 315, 330-331 , 

340 
_HLock, 183, 187 

_HUnlock, 183, 187 

I 

ICN# resource, 101 
icon item, 371 

icon list resource, 101 

ICON resource, 336, 371 

icons, 99 

with menu items, 336-337 

IF .. ELSE .. ENDIF, 58-59 

ILLEGAL, 41 , 145 
INCLUDE (Asm), 56-57, 81 

INCLUDE CRMaker), 73-74, 

431 

INIT resource, 219 

_lnitCursor, 199, 222, 224 

_InitDialogs, 355, 360 

_lnitGraf, 233, 241 

_lnitMenus, 315, 318, 327 

_lnitWindows, 243 

_lnsertMenu, 315, 350 

_lnsertResMenu, 315, 

325-326 

_lnsMenultem, 315, 322 

instruction field, 49 

International Utilities, 229 

interrupt exceptions, 39-40 

interrupt mask, 12-13 

interrupts, 12-13 

non-maskable, 40 
INTL resource, 229 
_InvalRect, 233, 253, 267 

_lnvalRgn, 234, 253, 295 

_lnverRect, 300, 307 

_lnverRoundRect, 300, 308 

_lnvertArc, 300, 308 

_lnvertOval, 300, 307 

_lnvertPoly, 301 , 310 



_IsDialogEvent, 355, 386 

items (dialogs), 367-375 

attributes, 371-375 

disabling, 371 

_IUDateString, 199, 226, 

228-229 

_IUTimeString, 199, 226, 

228-229 

IWM chip, 182 

J 
JMP, 16, 18, 115-116, 

161-162 

JSR, 16, 18, 34, 115-116, 162, 

189 

.Jump table, 179-180 

K 

kem,273,276 

keyboard 

events, 213 

input, 216--220 

keyboard equivalent, 340-341 

key-down event, 213, 

340-341 
key-up event, 213 

Key Caps, 219 

key code, 217 

keys 

character,213,217 

modifier, 213, 217 

_KillPoly, 301 , 31 0 

L 

label, 21 , 48-49 

local, 48 

Index 449 

naming rules, 48 

label field, 48-49 

LEA,57, 110, 155, 194 

_Line, 301 , 309 

line A emulator, 42 

line F emulator, 42 

lines, drawing, 305-306 

_LineTo, 301, 309 

Link program, 44, 64-69 

LINK, 34, 112-114, 155, 

190-191 

linker control file, 64-69 

code modules, 65-66 

.ListToDisp, 64 

.ListToFile, 63--64 

local coordinates, 241-242 

local variables, 113 

_LocalToGlobal, 234, 242 

logical instructions, 134-138 

logical shift instructions, 

139-143 

logical operators, 59 

LSL, 140-141, 142 

LSR, 140-141, 142 

M 

machine code, 4 

MACRO, 59--61 

macro files, 80-81 

MacsBug, 12, 147,433-437 

MBAR resource, 325, 

328-329,349 



450 Index 

MDS, 4, 44 

addressing modes, 1 7-18 

memory map, 176-182 

memory-mapped 1/0, 181-182 

menu, 319-322 

bar,311,318,327-331 

item, 311, 331-338 

item selection, 33S-341 

Menu Manager, 214, 255, 260, 

311-351 

menu record, 319 

MENU resource, 319, 

322-324,325,338,410 

_MenuKey, 316, 341 

_MenuSelect, 189-190, 316, 

331,339,341,350,413,427 

MFS, 79 

modal dialog, 361, 375-385 

_ModalDialog, 355, 375, 

383-385,387,388,399-401 

modeless dialog, 361, 385-387 

modifier character. 320-322 

mouse 

button, 216 

events, 214 

position, 220-222 

MOVE, 1 OS-109, 149 

from CCR, 149 

from SR, 151 

to CCR, 150 

to SR, 150 

USP, 151 

_Move,270,274,305-306 

MOVEA, 110, 152 

MOVEM, 111-112, 152-153 

MOVEP, 114-115, 153 

MOVEQ, 20, 110-111, 154 

_MoveTo, 189, 245, 270, 274, 

287,295,305-306 

MULS, 128, 173-174' 

MULU, 128, 173-174 

N 

NBCD. 126-127, 175 

NEG, 126, 175 

negative flag, 14 

NEGX, 126, 175 

_NewDialog, 356, 361-365 

_NewHandle, 183, 186, 190 

_NewMenu, 316, 319-320, 

349.409 

_NewPtr, 182, 184, 185, 186, 

190,245,251,362 

_NewRgn, 295-296 

_NewWindow, 234, 243-245, 

249-250 

.NoList, 63 

non-maskable interrupt, 40 

NOP, 5, 163 

NOT, 134, 136, 137-138 

_NoteAlert, 356, 404-405 

null event, 202 

_NumToString, 297, 301 

0 

object code. 4 

_ObscureCursor, 199, 224 

_OpenDeskAcc,407,411,427 

_OpenPoly, 301 , 30S-309 

_OpenResFile, 98, 249, 

401--402,429 

operand field, 49-50 



operands, 5-6 

operation word, 5 

operation system calls, 42, 

88-89, 178 

OR, 134, 137-138 

ORI, 134, 135--136, 147 

/OUTPUT, 65, 67 

ovals, 306, 307 

overflow flag, 14-15 

p 

PACK resource, 76 

_Pack6, 227-229 

_Pack7,245,296-297 

packed symbol file, 62, 81-82 

PackMacs.txt, 228 

PackSyms, 62, 82 

_PaintArc, 302, 308 

_PaintOval, 302, 307 

_PaintPoly, 302, 310 

_PaintRect, 302, 307 

_PaintRoundRect, 302, 308 

_ParamText, 356, 368 

Pascal, 82-88 

Path Manager, 79 

pathname, 78 

PEA, 34, 57, 110, 155--156, 

268,282,431 

pen characteristics, 303-305 

_PenMode, 302, 303 

_PenNormal, 302, 303-305 

_PenPat, 303, 304 

_PenSize, 303 

PICT resource, 371 

picture item, 371 

pixel, 180 

point, 242 

point size, 272 

pointer, 184-185 

Index 451 

master, 185 

polygon, 306, 308-310 

popping, 23 

privilege violation, 41 

PROC resource, 75--76 

procedures,82,83 

program control instruction, 

115--122 

program counter, 15--16 

programmer's switch, 39-40 

purging, 72 

Q 

QuickDraw, 179--180, 191. 

192,224,236 

global variables, 237-238, 

241 

R 

radio button item, 370 

RAM space, 176, 181 

re-entrant code, 112 

rectangle, 240, 306, 307 

recursive code, 112 

REG, 53, 111 

register list, 53, 111 

registers, 6-8 

address, 8-1 0 

data, 7, 10 

status, 10, 11 

_ReleaseResource, 324 



452 Index 

relocatable code, 30, 183-184, 

194 

relocatable object code, 64 

RESET, 145, 148 

resource fork, 69 

/RESOURCES, 68-69, 72, 73, 

429 

resources, 69-72 

attributes, 71-72 

creating a file. 97-98 

ID codes, 71 

RMaker, 44, 72-77 

using with Link, 68-69 

ROL, 139-140, 142 

ROM space, 176, 178, 181 

ROR, 139-140, 142 

round-corner rectangle. 306. 

307-308 

routine selector, 227-228, 297 

ROXL, 139-140, 142 

ROXR, 139-140, 142 

rotate instructions, 139-143 

RTE, 16,34, 148, 163 

RTR, 16, 34, 116--117, 163, 

189 

RTS, 16,34, 116--117, 164, 

189 

s 
SBCD, 126--127, 166 

Sec instructions 120, 164 

sec chip. 39--40. 1 82 

screen buffer, 180 

scroll controls, 230, 239 

_ScrollRect, 270, 295-296 

SCSI interface, 1 

search paths, 78-80 

segment, 66 

_SelectWindow, 214, 234, 

254,256,427 

_SelIText, 357, 371, 373-374 

serial ports, 1, 40 

SET, 19,52,60, 109 

_SetCtIValue, 357, 371, 

374-375,400 

_SetCursor, 199,223,224 

_SetDitem, 357, 371-373 

_Setitem, 317, 331 

_SetIText, 357, 371, 373 

_Setitmicon, 317. 337-338 

_SetitmMark, 31 7, 335-336 

_SetitmStyle, 31 7, 333 

_SetMenuBar,317,330,349 

_SetPort,250,254,276,349, 

387,426 

_SetWTitle, 234, 268 

shapes, drawing, 306--307 

_ShieldCursor, 200, 224-225 

shift instructions. 139-143 

_ShowCursor, 200, 224 

_ShowWindow, 387. 400 

sign bit, 110 

sign extension, 9-10 

signature, 66--67 

size box, 239 

_SizeWindow, 235, 258, 267 

sound buffer, 181 

Sound Driver, 225 

source transfer mode, 278, 

280 

speaker,225 

spuriousinterrupts,41 



stack,8,23,32-35, 179, 

189-191 

stack frame, 113 

stack pointer, 9, 33-34 

supervisor,9, 12,34 

user, 9, 12, 34 

stages word, 402-404 

/START, 68 

static text, 367-368 

status register. 10--12 

control instructions, 

146-147 

_StillDown, 200, 216 

STOP, 145, 148 

_StopAlert, 358, 404-405 

STR# resource, 74 
STRING_FORMAT, 50, 57-58, 

268,282.287,331,431 
string immediate, 49 

_StringToNum, 297, 303 

_String'\Nidth,271,283,287 

style word, 333-334 

SUB, 126, 166-167 

SUBA, 167 

SUBI, 168 

SUBQ, 20, 168--169 

SUBX. 126, 169-170 
subroutine, 116 

supervisormode,8--10 

supervisor state, 12 

SWAP, 112, 157 
_SysBeep,200,225 

_SysEdit, 408, 413-414, 427 

SysEvtMask,201,202 
system byte, 10, 11-13 

system control instructions, 
144-148 

Index 453 

system error handler. 181 
_SystemClick, 235, 256, 408, 

412,426 

_SystemTask,408,414,426 

T 

TAS, 130--131, 164-165 

_TElnit, 360--361 

testing numbers, 130--131 

text, display of, 269-296 

_TextFace,271,278,283 

_TextFont,271,276-277, 

283,351 

;... TextMode, 271, 281 
_TextSize,271,277-278,283, 

351 

_TextWidth, 271, 283 

thumb, 239 

tick, 204, 225 

Ticks, 201 

Time, 201 

time of day, reading, 227-229 

trace mode, 11-12 

_TrackBox,235,259-256 
_TrackGoAway, 235, 259, 260 

.TRAP. 42, 51-52 

TRAP,41, 146, 147 

trap dispatch table, 1 78 

trap files, 80--81 

TRAPV,43, 146, 147-148 
TST, 130--131, 165,259,350 

two's complement, 14, 124 
/TYPE, 67 

TYPE statements, 74-77 



454 Index 

u 
UNLK, 34, 112-114, 158, 

190-191 

_UnLoadSeg, 66 

update event, 214-215, 

252-253 

update region, 252 

user byte, 10, 13-15 

user-interface toolbox, 42, 

84-85, 178 

userinterrupts,41 

user mode, 8-9 

v 
_ ValidRect, 236, 253 

_ValidRgn, 236, 253 

VAR identifier, 83 

variable, 191-193 

variable text box, 368-369 

version data resource, 

100-101 

VIA chip, 39-40, 182 

w 
_WaitMouseUp, 200, 216 

WIND resource, 243, 249 

window, 230-237 

active, 230 

definition IDs, 243, 245 

parts, 238-240 

window events, 214-215 

Window Manager, 214, 236 

windows 

application, 205 

frame, 239 

system, 205 

title, 268 

word, 5 

X,Y,Z 

XDEF, 62-63, 68 

XREF, 63 

zero flag, 14 

zoom box, 239 

_ZoomWindow, 236, 260 



About the Author 

Gary B. Little is a Macintosh and Apple II programmer who 
resides in Vancouver, British Columbia. He is also a practicing 

la\Nyer. Gary is a founding member of the Apples British 
Columbia Computer Society and of the prestigious, but not
too-serious SAGE (Serious Apple Group, Eh!). He is also an 

active member of several business organizations that pro
mote and assist software developers. He has written numer
ous articles for several microcomputer periodicals and is the 
author of four recent microcomputer books published by 
Brady. He is also the author of the Apple II communications 
program, "Point-to-Point," published by Pinpoint Publishing. 



1. Whether you own a Macintosh 
or want to buy one, this book 
tells you everything there Is to 
know about it as well as what 
it can do. You'll discover the 
Macintosh's best kept secrets 
by tapping all of its capabil
ities. $15.95 

4. Your step-by-step guide for 
using the Macintosh to run 

your office and handle all 
spreadsheet, graphing, file 

management and word pro
cessing needs. Includes 

Introduction to Macintosh 
terminology, techniques 

and programs. $18.95 

2. This book is for the novice 
who wants to learn how to pro
gram and the experienced 
Pascal programmer who 
wants to use Macintosh 
Pascal. Contains detailed 
descriptions of file usage 
on 1/0. $19.95 

3. This book gives artists and 
designers a basic under
standing of the tools used In 
MacPaint to create drawings 
and generate ideas for design 
projects. Teaches one step-at
a-time in logical understand
able increments. $15.95 

5. The latest on Microsoft 
BASIC, Version 2.1. Includes 
a tutorial with start-to-finish 
Instructions for using and 
programming with commands 
statements and functions 
explained In narrative form; 
many example programs; 
BASIC commands listed 
alphabetically, and more. 
$23.95 

Now at your book or computer store. 800 624 0023 In New Jersey· 
Or order toll-free today: • • 800-624-0024 · 

raR~Y ~M;;N~A;;N~O;;,A;;;, I;;. -A;;#- - - - - - - - 7xp~t;-___ :i 
I c/o Prentice Hall I 

P.O. Box 512, W. Nyack, NY 10994 Signature-------------------

1 Name I Circle the numbers of the titles you want below. 
(Payment must be enclosed; or, use your charge Address----------------------

! card.) Add $1 .50 for postage and handling. City State Zip I 
I 

Enclosed is check for$ __ or charge to (New Jersey residents. please add applicable sales tax .) 
O MasterCard O VISA. Dept. 3 I 

1 (0-89303-649-8) 2 (0-89303-644-7) 3 (0-89303-648-X) L ______ 4~8~3~8-2_ ___ s~-8~3~2-~ _ _ _ _ _J 



1. The perfectlntro to CP/M-86 
even If you've never programmed 
In assembly language before. 
Includes sections on sequential 
file handling and memory manip
ulation, and more. $21 .95 

5. Our best·selllng assembler 
book has been made even better! 
It now Includes 30 assembler 
Macros and version 2.0 of the 
IBM Assembler. $21.95 

2. Beyond the basics, this guide 
explores new structured concer,:s 
to analyze and solve problems n 
C with tools of modularity, Input 
and output functions, arrays and 
structures, and bit manipulation. 
$21.95 

~~~~~~~~~~

~~~~~~~~~~

~~~~~~~~~~

~~~~~~~~~~

~~~~~~~~~~

~~~~~~~~~~-

6. For everyone who thought APL 
was too unorthodox to bother 
learning, this guide will unlock the 
secrets to 111 logic and show you 
how to write the fastest, most 
compact code. $22.95 

3. The special focus Is on screen 
management and data retrleval. 
You ' ll find a library of reusable C 
software tools to help create Inter
active systems, Including file 
management, screen forms, etc. 
$21 .95 

7. The author of our best-selllng 
assembler books now demon
strates his detailed and accurate 
style on the 80286 chip. $21 .95 

4. The best C articles from the 
hlghly ,respected Dr. Dobb'• 
Journal dealing axcluslvely with 

;:,i~~~~::. S~~~';'9rammlng 

Now at your book or computer store. 800-624-0023 In New Jersey: 
Or order toll-free today: 800-624-0024 

fBR'AovcoMNiuNic'AT1o"Ns coM°'PANY.1NC. -A~# - - - - - - - - ~p:dat;- - :i 
c/o Prentice Hall 
P.O. Box 512, W. Nyack, NY 10994 

Signature _______________________ _ 
I 

Name I Circle the numbers of the titles you want below. ------------------------
(Payment must be enclosed ; or, use your charge Address-----------------------

' 

card.) Add $1.50 for postage and handling. City State Zip 
Enclosed IS check for $ __ or charge to (New Jersey residents. please add applicable sales_t_ax- .)--- - -----1 0 MasterCard O VISA Dept. 3 

1 (0-89303-390-1) 2 (0-89303-473-8) 3 (0-89303-612-9) 4 (0-89303-599-8) L _ 5~-8~o~7~) ___ 6~-8~0~6~) ___ 7~-8~o~8!!) ___ 8~-8~0~1~) _j 

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111Brady 



n 
1. This guide presents the 
nuts and bolts of program
ming the 80286 to get the 
most out of the AT's power. It 
includes discussions of the 
entire intel CPU family for 
perspective and focuses on 
IBM BIOS to enable program
mers to get the most out of 
its extended services. Exam
ples include both assembly 
language and Pascal code to 
illustrate software interrupts 
for DOS services, extended 
memory access, and much, 
much more. $21.95 

2. Perfect for both beginners 
and experienced program
mers, you'll find everything 
from the basics of computer 
numbering through to step
by-step instructions for using 
the IBM Macro Assembler. 
Clearly written, it presents 
logical groupings of the 
entire 80286 instruction set 
for quicker, easier learning 
along with complete coverage 
of BIOS and a library of over 
30 macros for faster pro
gramming. It also covers 
graphics and sound control. 
$21.95 (Disk available) 

Now at your book or computer store. 
Or order toll-free today: 

802860000 

ASSEMBLY 
I.ANGUAGE 
ONMS-OOS 

OOMPUTERS 

Leo J. Scanlon 

3. Written for AT "compat
ibles;• Scanlon's plain 
English, tutorial style covers 
a crash course in computer 
numbering, the fundamen
tals of assembly language, 
assemblers, and the 80286's 
instruction set. The guide 
includes programs for doing 
high-precision arithmetic, 
sorting, and code conver
sions along with procedures 
for using Microsoft's Macro 
Assembler, EDLIN, SYMDEB 
debugger, and LINK. $21.95 

4. Here's the ultimate refer
ence source that includes 
over 150 solutions to com
mon hardware-control tasks 
through high-level or assem
bly programming or system 
functions. It shows how to 
code for directory access, 
keyboard macros, and 
advanced video and sound 
control. Complete discus
sions of graphics on the 
EGA, port and modem con
trol, printer manipulation, 
and file operations answer 
just about every question 
that arises in programming 
interfaces. $22.95 

800-624-0023 In New Jersey: 800-624-0024 

r;R;:;;Y ;O,;U;;A~;-C~P;,;Y,-;;;C. - A:t ;-__ - __ - __ -__ -__ -__ -__ -__ Ex~at:-___ --, 

I c/o Prentice Hall I 
P.O. Box 512, W. Nyack, NY 10994 Signature-------------------

I Circle the numbers of the titles you want below. 
(Payment must be enclosed ; or, use your charge Address----------------------

! card.) Add $1 .50 for postage and handling. 
Enclosed is check for $ __ or charge to City State ----I D MasterCard 0 VISA. ~e~~ ~ersey residents. please add applicable sales tax.) 

Zip _____ _ 

1 
I 
I 

L _ 1 ~8~3~o2 __ 2 _:8~3~4-~ __ 3 ~89:3-:8-~ _ 
4 (0-89303-787-7) 

_J 



BRADY Knows 
PrograJDJDing 
llllll/llllllllHllll/lllllllllllllllllllllll/llllll/ll'llJ 

. ':..~~ 

1. Beyond the bealca, this guide explores 

:,WV:t:! ~~~:~~c!re and 
modu~rtty, Input and output functions, 
wraya •nd atruc:turea, and bit manlpuletlon. 
$21.95 

5. A definitive reference text tor advanced 
programmers. You'll find over 150 discus
sions of common hardware-control tHks (In 
BASIC, Paacal, or C) as well as assembler 
overlays , drivers, and re11-time operators. 
$22.95 • 

&sembly 
Language 
Aoutines,.,, .... llMPC 

6. Perfect for both beginners and experi
enced programmers, you' ll find everything 
from the basics of computer numbering 
th rough to step-by-step Instructions tor 
using the IBM Macro A11embler. With com
plete coverage of BIOS and a llbrary of over 30 macros tor taster programming. $21.95 
(Disk available) 

~~~~~ru~.0~ro'::e1~m o~~~ ~d~~e,.ced 
programming concept~ lulorlal In formal
that uHa BASIC tor examples, tt covers
techniques such as: linked data structures;
recursion ; r,lpellnln' ; and dynamic storage

~1~::."s2~~~~r.~·~~"J~~~;)2s sub-

..... R.CmiJlllW.F.191

4. Includes code ll11ing1 for three working
debuggers Including alngle-atepplng, cro11
referencing, and mapping utlllUea. $19.95
(Diak avsllab~)

8. The title might say .. advanced" but you 'll

:~~afsu~~~1:$~~!"~~~~~';: ~~~~~ou
through truly soph,stfeated 3-0 assembly
routines. Includes block graphics, creating
a ~aphlcs editor, dlrectly programming
~or:. s~~~r•phlcs adapter, and much

Now at your book or computer store. 800-624-0023 In New Jersey:
Or order toll-free today: 800-624-0024 r--------------------------,

I
BRADY COMMUNICATIONS COMPANY, INC. Acc·t # Exp. date --- I
c/o Prentice Hall Signature -----------------------

!
P.O. Box 512, W. Nyack, NY 10994 I

Name Circle the numbers of the titles you want below. -------------------------
! (Payment must be enclosed; or, use your charge Address I

cEard
1
.) Addd $1 .50 to

1
r po$stage and handling. City State Zip ___ _ _

I nc ose IS check or -- or charge to (New Jersey residents , please add applicable sales true) I
O MasterCard O VISA Dept 3

I 1 (0-89303-473-8) 2 (0-89303-409-6) 3 (0-89303-584-X) 4 (0-89303-587-4) I
L -5~-0:0:_07-7) _ _ 6~-~0~4~3~ -7~0:_o~a1 -9) _ ~(o-8~3~6-2) _J

11Brady

ASSEMBLY
LANGUAGE

Unlock the power of assembly language programming on the
Macintosh with this master key-a thorough guide that shows you
how to create the fastest and most efficient Mac programs possi
ble, explains every nook and cranny of the 68000 microprocessor,
and gives you plenty of example programs to learn from. The
assembler used is version 2.0 of Apple's Macintosh 68000 Devel
opment System (MDS). This is the ideal book for programmers who
want to quickly learn the fundamentals of assembly language
programming on the Macintosp .

This book will lead you step-by-step through each stage in the
development of an assembly language program. You will learn
how to use such MDS programming tools as the editor, assembler,
linker, and resource compiler. You '11 also learn how to create pro
grams that run in the unique Macintosh environment using the
Window Manager, the Menu Manager, the Dialog Manager, and
many other toolbox subroutines . An entire chapter is devoted to
showing you how to write applications that work with desk acces
sories.

Cover design by Ben Santora

A Brady Book· Published by Prentice Hall Press • New York

ISBN0-13-541434-2

