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PREFAeE 

It seems as though there is a flood of Macintosh software hitting the market 
these days, most of it written in Pascal on a Lisa (the Macintosh's now defunct big 
brother, most recently known as the Macintosh XL) or in assembly language on 
either a Lisa or a Macintosh. Some commercial software developers are also 
beginning to work in Forth and C. No language, however, gives a programmer 
more control over the Macintosh than assembly language. 

People who learn to program the Macintosh in assembly language gain in four 
ways: 

1. They learn the basic principles of microcomputer architecture; 

2. They learn how computers store and manipulate numbers; 

3. They learn the basics of using an assembly language instruction set; 

4. They learn to focus on creating applications with a standard, user-friendly 
interface. 

This book was written to teach the four areas listed above to both students in a 
classroom situation and an individual working alone. It is designed to take some­
one who knows Pascal and get that person functioning in an assembly language 
environment. It assumes no background in computer architecture or assembly 
language. By the same token, it is not a definitive work. One of its primary goals is to 
give a programmer the tools needed to understand documentation so that he or 
she can independently go beyond what this book covers. Therefore, while it 
presents material common to assembly language programming on all computers, 
this is also a practical book, aimed at doing assembly language programming on 
the Macintosh. It was designed to teach assembly language programming specifi­
cally on the Macintosh and is not intended to be a general 68000 assembly 
language text. 

Programming the Macintosh in assembly language isn't an easy task. In fact, it 
can be complex and tedious since access to the Macinotsh's internal ROM routines 

IX 
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is really designed for Pascal, and assembly language programmers must simulate 
the Pascal syntax. Nonetheless, working in assembly language does give a 
programmer computing power that no other language can deliver. 

Learning to program in assembly language on the Macintosh presents two 
challenges: A person must not only master the microprocessor's instruction set, 
but also must be able to interact with the ToolBox and operating system routines 
that reside in Macintosh's ROM. All 1/0 is done through those routines. In tact, 
Macintosh assembly language programs are often little more than a series of calls 
to the ROM routines. The instruction set itself takes a back seat; it is used primarily 
to set up parameters before issuing a call. 

Because assembly language on the Macintosh is a rather complex task, this 
book is not intended to be an exhaustive treatment of the subject, but it will: 

1. Provide the technical background needed to function in assembly language 

2. Introduce the commonly used instructions in the Macintosh's instruction set 

3. Demonstrate how to use the Tool Box and operating system routines neces­
sary to create basic assembly language applications. 

This book does not deal specifically with producing Macintosh graphics. 
Creating spectacular graphics takes two kinds of knowledge: knowing how to use 
the ROM graphics routines and knowing how to sequence calls to those routines to 
draw the desired images. This book teaches the former, how to read the documen­
tation that describes the graphics routines, and provides the skills needed to call 
the routines from assembly language. Sequencing calls to graphics routines to 
produce some particular picture, however, is beyond the scope of this book. The 
effective use of Macintosh graphics is an extensive subject that deserves a book all 
its own. 

Resources for Learning 
This book is based on Apple's Macintosh 68000 Development System (MOS), 

a package of software tools that supports the development of either stand-alone 
assembly language applications or assembly language routines that can be called 
by high-level language programs. While it is not the only such package available 
for the Macintosh, it is the most complete and the most convenient to use. If not 
available from your regular software supply house, it can be ordered directly from 
Apple: 

Macintosh Technical Support 
Apple Computer 
MS4-T 
20525 Mariani Avenue 
Cupertino, CA 95014 

To obtain an exact price and details on ordering, call the customer service line 
at 408-973-2222 between 9:30 A. M. and 1 :30 P. M. Pacific time. 



Complete documentation for all Macintosh ROM routines can be found in 
Inside Macintosh, now available at computer retailers and bookstores or through 
direct order from Apple. Though the book you are reading right now is indepen­
dent of Inside Macintosh, programmers inevitably will wish to go beyond what this 
book presents and it may be difficult to teach a course in Macintosh assembly 
language without at least one copy of that manual available for reference. This 
book teaches people how to interpret what they find in Inside Macintosh, how to 
decipher the Pascal syntax for the Tool Box and operating system calls and turn it 
into assembly language. It also focuses on understanding the sequence in which 
they should use the ROM routines. 

There is one other reference that students should use in conjunction with this 
book and Inside Macintosh- The MC68000 Programmer's Reference Manual 
(hereafter referred to as the PRM). The PRM, which is included with the Macintosh 
68000 Development System, is a reference work detailing the instruction set of the 
Macintosh's 68000 microprocessor. 

Developing assembly language programs is much easier with the aid of a 
number of utility programs that Apple has written. These include programs that 
dump the contents of a disk file in hexadecimal, print a spooled print file, and aid in 
creating screen formats and alert and dialog boxes. For a while Apple was 
distributing these utilities with the Software Supplement to Inside Macintosh. Now 
that Inside Macintosh is available in bookstores, however, the utilities can be 
downloaded from a number of dial-up information systems, such as CompuServe, 
and from public bulletin boards. They are also available from most Macintosh 
users groups. 

Reader Background 
This book assumes that the reader has knowledge equivalent to a one­

semester course in Pascal, though not necessarily on the Macintosh. It also 
assumes that the reader has some experience working with the Macintosh itself. In 
particular, he or she should have used a Macintosh word processor such as 
MacWrite. Though Chapter 1 discusses in detail the characteristics of the Macin­
tosh user interface, the book assumes that people are familiar with mouse-driven 
applications that use pull-down menus and overlapping windows. 

Overview of the Book 
The introduction found in Chapter 1 lays a foundation for the Macintosh 

assembly language environment. It discusses the differences between assembly 
language and high-level languages and explains what is to be gained by working 
in assembly language. The chapter also examines the characteristics of the 
standard Macintosh user interface, emphasizing that all successful Macintosh 
software adheres to that interface. 

PREFACE xi 
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Chapter 2 presents technical background information. This includes a look at 
the binary, octal and hexadecimal numbering systems, the architecture of the 
Macintosh's microprocessor (in particular, its registers), how the Macintosh uses its 
available RAM (including the stack), and addressing memory from assembly 
language. 

Chapter 3 contains a short assembly language program to type in. This will 
provide practice in using the Macintosh 68000 Development System. Working 
through the exercise early in the course will make it easier for students to concen­
trate on programming without worrying about how to use the Editor, Assembler, 
and Linker. 

Chapters 4 and 5 present an introduction to the assembly language instruc­
tions that form the backbone of a Macintosh assembly language program. This 
chapter has numerous blocks of sample code, each of which is to be inserted into a 
ToolBox "shell" that is created out of the program in Chapter 3. 

Although this book deals with assembly language, ifs a fact of life that access to 
ToolBox and operating system routines is based in Pascal. If people are going to 
be able to read the documentation of those routines in Inside Macintosh, they must 
understand Pascal data types, data structures, and procedures and functions. 
Therefore, Chapter 6 reviews the necessary Pascal concepts. It also describes the 
structure of the ToolBox and operating system routines and how an assembly 
language program gains access to them. 

The remainder of the book deals with the ToolBox and operating system 
routines that are needed to create a Macintosh assembly language application. 
Chapter 7 dicussses setting up the desktop (managing windows and pull-down 
menus). Chapter 8 discusses managing program operation by monitoring the 
keyboard and mouse. Chapter 9 handles entering and editing text. Printing from 
an application (tedious but not difficult) is presented in Chapter 10. File liO (not as 
complicated as it looks) is discussed in Chapter 11. 

Chapter 12 discusses floating point arithmetic. Even if an application does no 
significant amount of math, it will at least need to use the routines that convert a 
string of numeric characters into a binary number and a binary number to a string 
of characters for numeric 1/0. 

The Video Tape Index 
Program 

. The major application that is developed throughout most of the book is a video 
tape index. The program is a specialized database system that could be used in a 
home to catalog which program has been recorded on which video tape or in a 
video rental outletfor inventory control. The video tape index program first appears 
in Chapter 5 in the discussion of handling arrays in main memory and is used to 
explore sorting and searching techniques for such arrays. It is presented in bits 
and pieces throughout the book. Complete source code for the program can be 
found in Appendix A. 
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To most students the source code for the video tape index program may look a 
bit forbidding at first. It is long - about 3,000 lines of code - far longer than most 
of the Pascal programs that are written in programming classes. Nonetheless, it 
assembles to only about 12K and uses another 12K of space for data storage. It will 
therefore run on a 128K Mac. 

Why use such a large example? Certainly the sample programs that come with 
the Macintosh 68000 Development System are much shorter. First, the very 
simplicity of those examples creates a problem. The features of a Macintosh 
application interact in many unexpected ways. While Apple provides a sample 
program that creates a window, the video tape index uses multiple, overlapping 
windows to demonstrate more extensive window management. One of Apple's 
sample programs demonstrates text editing, but only in one window. The video 
tape index uses multiple windows for text editing to explore a more complex, 
meaningful environment. 

Secondly, meaningful Macintosh assembly language programs do become 
very large, generally occupying 25 to 400K. Apple's short examples really don't do 
any meaningful work. The video tape index program is a complete, useful applica­
tion that can easily be customized to meet individual needs. It is also available, 
along with other sample programs, on disk from the publisher of this book. 



c H A p T E R 0 N E 

INTRODLJeTION 

Chapter Objectives 

1. To explore the advantages and disadvantages of programming in assembly 
language 

2. To become familiar with the characteristics of the standard Macintosh user 
interface 

Assembly Language: 
Why Bother? 

Back in the early days (that means anything before 1964), people who wanted 
to learn about computers studied logical circuit design and then a mysterious 
language called "assembly." Once they had mastered assembly language pro­
gramming, they moved on to high-level languages like FORTRAN. 

It doesn't work that way any more. For most people today, their first exposure to 
programming is through a high-level (English-like) language, usually BASIC or 
Pascal. Pascal doesn't require much knowledge about the internal workings of 
your computer; not necessarily a bad thing, since knowing the internal organiza­
tion of a microprocessor doesn't automatically make you a good programmer. 

There are, though, some things that assembly language can do better than 
BASIC, Pascal and other high-level languages. Primarly, assembly language 
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programs run faster than high-level language programs. To understand why, you 
must first realize that there is only one language that a computer can run directly­
machfne language. Machine language consists of a series of binary codes (O's and 
1's) which make perfect sense to a computer but very little sense to a human. 

Assembly language was created to free programmers from having to program 
in machine language. Each command that the computer could understand (an 
instruction) was given a short mnemonic code consisting of two to five letters. 
Programmers could then use the mnemonics rather than the complex binary. 
Once the source code was finished, it had to be translated into machine language 
so the computer could run it. The translation was (and still is) accomplished by a 
program called an assembler. The resulting machine language version is called 
object code and can be run directly by the computer. 

High-level languages also require translation to object code. Most versions of 
BASIC are interpreted. That means that the conversion to object code occurs line 
by line as the program is being run; no permanent machine language version of 
the program is ever created. If you have a FOR/NEXT loop that repeats 100 times, 
every statement in that loop will be translated to machine language 100 times. 
lntepreted BASIC programs are just about the slowest programs around. 

Most other high-level languages are compiled. All of the translation to machine 
language occurs at one time. Just like an assembler, a compiler gives you a 
machine language version of your program. Object code derived from a compiler 
usually cannot be run alone, though. It needs to be linked to run-time libraries (a 
collection of standard programs that handle functions such as input and output). 
While compiled programs can run almost as fast as assembled programs, they 
tend to be bigger. This becomes a major concern when you are writing software for 
a machine with limited RAM such as the first edition Macintosh (with only 128K). 

In addition to increasing the speed of program execution, assembly language 
gives you more control over your computer than high-level language. When you 
use an interpreted language, you have little opportunity to determine where your 
program or its variable tables are placed in main memory. Though some compilers 
do allow you to specify where large blocks of code should begin (e.g., your 
program's object code and run-time libraries), you are still extremely limited. With 
assembly language, you can access RAM locations directly and determine exactly 
what will be placed in each location. A well-written assembly language program is 
generally more efficient than an interpreted or compiled program; in other words, it 
makes better use of available main memory. 

In order to gain the speed and efficiency of assembly language programs, you 
must in turn know something about the internal physical organization of your 
computer. You need to know not only how RAM is used, but you must also have 
some knowledge of the "architecture" of its microprocessor. 

Assembly language has one major drawback, assuming that you don't con­
sider having to acquire technical knowledge about your computer a drawback. 
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High-level languages are more or less portable between different computers. 
Consider, for example, all the different microprocessors and operating systems 
that run Microsoft BASIC. Languages such as Pascal and FORTRAN differ only 
minimally between computers. Assembly language, however, is specific to one 
particular microprocessor; the mnemonics are different for each one. Therefore, 
learning assembly language on one computer does not automatically prepare you 
to write assembly language programs on another. Each microprocessor has its 
own instruction set (the entire group of instructions that a microprocessor can 
understand). 

Nonetheless without programming in assembly language it is very difficult to 
do serious program development on a Macintosh. With BASIC you are limited to 
very small, very slow programs. For example, after the Microsoft interpreter is 
loaded, you have only 14K left in the 128K machine for programs. Though this 
limitation has no relevance for the 512K Macintosh, a significant number of 128K 
machines have been purchased and much software is designed to run in that 
more restrictive environment. 

Many Macintosh programs have been written in Pascal, but they were devel­
oped on a Lisa. Lisa Pascal for the Macintosh is very different from MacPascal. 
MacPascal is interpreted, like BASIC. That means that while it is an excellent tool 
for learning about Pascal, programs written in MacPascal will run nearly as slowly 
as interpreted BASIC programs. 

There is another disadvantage to developing Macintosh applications com­
pletely in a high-level language which relates to the nature of Macintosh software. 
Successful Macintosh applications are designed around the standard Macintosh 
user interface (discussed in the second part of this chapter). To implement that 
interface, the Macintosh uses a set of over 500 prewritten routines. Some are in 
ROM (read only memory); others are on disk as part of the system files. The 
routines fall into two major groups: those that are part of the operating system and 
those that constitute the Too/Box. (For an overview of Macintosh's built-in routines, 
see Chapter 6.) 

No language currently available gives you access to all of the ToolBox and 
operating system routines within the standard language environment. (Lisa Pascal 
can call all of the Macintosh's internal routines, but MacPascal cannot.) Some, like 
Microsoft BASIC 2.0, allow a programmer to build assembly language libraries 
that can be called from the high-level language program. Others, like MacPascal, 
have an interface to many of the routines which require assembly language 
knowledge to set up the calls. A programmer who wishes to exploit a Macintosh 
high-level language to its maximum must therefore have at least some knowledge 
of the Macintosh assembly language interface. 

What it all boils down to is this - if you want to be able to tap the full power of a 
Macintosh, then you will find that being able to use assembly language is the most 
valuable tool available. 
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The Standard 
Macintosh User 

Interface 

The Macintosh has made most of us redefine what it means when we say a 
program is easy to use. When we open a brand-new piece of Macintosh software, 
we expect to be able to run it by simply double-clicking on its icon from the Finder. 
We also expect to find that program actions are controlled by menus and that the 
mouse controls placement of the cursor. These are all characters of the standard 
Macintosh user interface. They have the effect of making Macintosh applications 
programs very easy to learn and use. By the same token, they increase the burden 
on the programmer. 

Macintosh software packages that stray from the standard user interface have 
not fared well with reviewers or users. During the first six to nine months after 
Macintosh was released, many independent software developers rushed to mar­
ket Macintosh versions of software that was running on other systems without 
completely adapting it to the Macintosh environment. Few of those early efforts are 
still being sold; most have been significantly upgraded to adhere to the Macintosh 
interface. The moral of the story is ... if you're going to program the Macintosh, do it 
Apple's way when it comes to the user interface. In terms of that interface, creativity 
wins few prizes. 

The Macintosh standard user interface is characterized by the following: 

1. Use of the mouse as the primary input device to control menu selections, 
window manipulation, cursor placement and text selection 

2. Pull-down menus, including the standard Apple, File, and Edit menus 

3. Multiple, overlapping windows 

4. Text editing with cut, copy, paste and clear functions 

5. Control of program actions with alert and dialog boxes 

Macintosh Cursors 
The Macintosh's mouse is "hard wired" to a moveable cursor that appears on 

the screen; it lays on top of everything else that is displayed. The cursor's shape will 
vary with particular program actions. It may be: 

1. An arrow (used when making menu selections, dragging windows, closing 
windows, sizing windows, scrolling windows contents, etc.) 

2. A straight line (used to mark the place where text characters will be inserted) 

3. An I-beam (used to aid in positioning the cursor in text documents) 
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4. A wrist watch (used to indicate long waits) 

Other special cursors include the cross for sizing and positioning graphics objects, 
and an outlined cross used for making array selections. Applications may also 
design their own cursors. 

Menus 
Menus were certainly not invented by the Macintosh development team; they 

are used in a great deal of commerical software. Most users consider menu-driven 
software as easier to learn and easier to use than software that requires learning a 
set of commands. Menus on other computers, however, not only look different 
from Macintosh menus but accept input about menu selections in a very different 
way. 

A typical non-Macintosh menu appears in Figure 1.1. A program using this 
menu will usually clear the screen, print the menu, and issue an input statement 
(e.g., a Pascal read). The user makes a selection by entering a number that 
corresponds to the appropriate menu option. Program execution is suspended 
until the menu selection is made; the user has no way to escape from making a 
menu choice, save perhaps resetting the computer. 

File Menu -

1. Nev 
2. Open 
3. Close 
4.Save 
S. Save As 
6. Print 
7. Quit 

Enter option number: 

Flgure1.1 A Standard Microcomputer Menu 

Macintosh menus also present the user with a list of options. Figure 1.2 
presents the Macintosh version of the menu from Figure 1.1 The menu's title 
appears above the part of the screen where program actions take place; this is 
known as the menu bar. To see the menu options, the user positions the arrow 
cursor on the menu title, presses the mouse button, and drags the arrow down. 
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Options are highlighted (displayed in inverse video-white letters on a black 
background) as the arrow cursor is dragged. The user indicates a menu selection 
by releasing the mouse button when the cursor is positioned on the appropriate 
option. 

t----i Op1~ n ... 
Close 
Soue 
Soue As ... 
Poge Setup 
Print... 
Quit 

The Menu Bar 

This menu is "pulled-doyn". It may 
temporarily cover part of the main 
Yi ndoY, but ..,hen the menu is 
released, the main Yindoy's contents 
are unaltered_ 

Figure 1.2 The Macintosh's Standard File Menu 

Two things make the Macintosh menu selection process very different from 
standard menu selections. In the first place, the user can escape from the menu by 
either returning the arrow cursor to the menu title or by dragging the cursor off the 
bottom of the menu. Secondly, pulling down the menu doesn't require erasing 
what appears on the main portion of the screen, though part of the screen may be 
temporarily covered by the menu options. Selections from Macintosh menus can 
therefore be made while text and/or graphics are present on the Macintosh 
screen. 

Most Macintosh applications will support three standard menus plus any 
additional menus the application requires. The leftmost menu in the menu bar has 
the silhouette of an apple with a bite out of it for a title. This "Apple" menu (see Figure 
1.3) supports the Macintosh desk accessories and may also include an "about" 
feature that describes the software in which the menu appears. A desk accessory 
is a stand-alone program that can be run at any time without exiting the major 
application (e.g ., MacWrite or MacPaint) being executed. 
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The second menu from the left is the File menu (see Figure 1.2). A standard file 
menu provides options for opening new and existing files, saving files, closing files, 
printing files, and exiting the program. The third standard menu, the Edit menu 
(Figure 1.4), implements editing operations: cut, paste, copy, and clear (delete). 
Note that clear is often not supported as a menu item (that is the case in Figure 1.4) . 

.- 1:1 File Edit Search Format Font Style 
-~bout MacWrite... Untitled 

Choose Printer 
Scrapbook 
Rlarm Clock 
Note Pad 
Calculator 
Key Caps 
Control Panel 
Puzzle 

The standard Apple menu contains an "about"" option that 
describes the application as Yell as the desk accessories. 
The specific desk accessories can be changed b\I using a 
utility p rog ram k noY n as t be Desk Accessory Mover. 

Figure 1.3 The Macintosh Standard Apple Menu 

Font Style 

Untitled 

Cut XH 8-
Copy XC Keyboard equivalents 
Paste XU 

Show Clipboard 

Figure 1.4 The Macintosh Standard Edit Menu 

., 

., 
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Users who are very familiar with a piece of software often prefer to issue menu 
selections from the keyboard. To make this possible, an application can associate 
a pair of keystrokes with any or all options in a menu. Known as keyboard 
equivalents, they appear to the right of the menu options as the cloverleaf symbol 
followed by a single key. Keyboard equivalents for the File and Edit menus are 
standard and should not be changed. Note that identifying which option has been 
selected from which menu, regardless of whether the selection is made by mouse 
or keyboard equivalent, is not automatic; it must be programmed into an applica­
tion. 

An application has complete control over which menus appear in the menu 
bar. The three standard menus should usually be present. Nonetheless, there are 
times when it makes no sense in terms of program function to allow selection from a 
particular menu. In that case, an application should disable that menu. Titles of 
windows that have been disabled appear dimmed; their titles are printed in light 
grey ratherthan black (Figure 1.5). If it makes sense to disable only specific options 
rather than an entire menu, the application should do so. Options that have been 
disabled appear dimmed, while the menu title is still printed in black (Figure 1.6). 

Details on creating menus, manipulating the menu bar, and disabling and 
enabling menus can be found in Chapter 7. Information of identifying menu 
selections is part of Chapter 8. 

,. S Hie Form design 

=D M11cFile 

It 
The title of the File menu above is dimmed. 
That means that the menu ls disabled and its 
options not available to the user. 

Figure 1.5 A Disabled Menu 



,. s · Form design 

l~u=i ~::t r 
S11ue Rs ... 
t)uit 

Mac File 

The Nev, Did, end Quit options in this File menu are 
dimmed. That means thit those particular options are 
not available to the user. On the other hand, the Save As 
option is available. Only the options that are not 
appropriate at the time are dimmed. 

Figure 1.6 A Macintosh Menu with Disabled Items 

Windows 
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Windows are rectangles that appear on the Macintosh screen. They are used 
to display text and graphics, to collect data essential to program function, and to 
warn the user about the consequences of specific actions. 

The Macintosh supports six different types of windows. Depending on its type, 
a window may have one or more of the following features (see Figure 1. 7): 

1. A title displayed in a title bar 

2. A drag region (the entire title bar except for the GoAway box) 

3. A GoAway box (at the left of the title bar) 

4. Controls (e.g., scroll bars, push buttons, radio button, check buttons) 

5. A grow icon (located in the lower right corner of the window) - note that an 
icon is nothing more than a small picture that represents an object or a 
function within the computer. 

A window that accepts user input, regardless of whether that input is text or 
graphics, has the same title as the document file which contains the material on 
disk. If the document has not yet been saved, the window title is "Untitled." Other 
windows, such as the desk accessories, have titles that reflect their function. For 
example, the note pad desk accessory's window has the title "Note Pad." Windows 
that warn users (alerts) and windows that collect data (dialogs) have no titles. 
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T be GoAYa y Box 

ntitled 

The Wi ndoY Title 

A Vertical Scroll Bar 
{some Yi ndoYs also have 
horizontal scroll bars} 

Figure 1. 7 The Parts of a Macintosh Window 

The Title Bar 

The drag region consists of the entire title bar except the GoAway box. It allows 
the user to move the window around the screen. When a user positions the cursor 
in the drag region and presses the mouse button, an outline of the window will 
follow the arrow cursor as the user drags it around the screen. The final position of 
the window is determined by the location of the arrow cursor when the mouse 
button is released. 

A GoAway box is the small rectangle that appears in the left-hand corner of the 
title bar. If the mouse button is clicked while the arrow cursor is within the GoAway 
box, the application should close the window. If the window contains a document 
that has been modified since it was last saved to disk, the application will ask the 
user whether or not the document should be saved before closing. 

The term "controls" refers to a group of things that can appear in a window. 
They include scroll bars, push buttons, radio buttons, and check boxes. (The latter 
three are illustrated in Figure 1.8.) Scroll bars are used to change the portion of a 
large document that is visible at any time within a window. Scrolling is discussed in 
Chapters 7 and 8. The other types of controls appear primarily in dialog and alert 
boxes (see Chapter 9). 

A grow icon appears in the lower right-hand corner of document windows. It 
allows a user to change the size of a window. When the user positions the arrow 
cursor in the grow icon and presses the mouse button, an outline bfthe window will 
follow the cursor as it is dragged about the screen. The final size of the window is 
determined by the position of the cursor when the mouse button is released. Sizing 
windows is discussed in Chapter 8. 

Windows are not restricted to changing their size and position within a single 
plane. They can change positions relative to any other windows present on the 
screen. If we assume that windows are stacked on the screen like sheets of paper 
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might be piled on a desk, then we can say that windows cjn change their location 
in that pile. In Macintosh terminology, windows move f%m front to back. Like 
pieces of paper, Macintosh windows can overlap. Windoyvs to the back may be 
obscured by those in front of them. 

( OK ) A Push Button 

D Check Boxes 

~ 

0 Radio Buttons 

@ 

Flgure1.8 Macintosh Controls 

The front-most window on the screen is the active window; an application can 
only work in an active window. Active windows are highlighted in some way, 
though the actual details of the highlighting depend on the type of window. For 
example, the highlighting in standard document windows like the one in Figure 1. 7 
includes horizontal lines in the title bar and a pattern in the scroll bars. When a 
standard document window is inactive, its title bar will contain only the title. 

; 

Text Editing ~ 
Throughout a Macintosh application, entry and modifica ·on of text is managed 

in a single, consistent manner. The place where new c aracters are added 
(indicated by a single, straight-line cursor) is known as the i ertion point. 

Cut, paste, copy, and clear - the editing operations - affect one or more 
contiguous characters in a block known as the selection range. The selection 
range is highlighted (see Figure 1.9) by displaying white haracters on a black 
background. 

A user selects text in two major ways: 

1. By holding down the mouse button and dragging the ursor across the text. 
(In this case, if a selection goes beyond what is currTly visible in the text 
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window, the text should scroll.) All text over which the cursor is dragged will 
be included in the selection range. 

2. By clicking the mouse button while the shift button is down (known as shift­
clicking). All text between the current position of the cursor and the place 
where the shift-click occurred will be selected. 

50 Untitled 

This is an example of how the Macintosh displays 
the . The characters in 
the selection range are displayed in inverse 
video. 

Figure 1.9 The Selection Range in a Text Document 

The editing operations (cut, paste, and copy) affect what is known as the 
clipboard. The clipboard is a holding area for text and/or graphics images. It may 
be kept in main memory or may be saved to disk if it becomes very large. 
Executing a cut deletes the current selection range and places it on the clipboard; 
copy merely places the selection range on the clipboard without deleting it from 
the document. Paste takes whatever is on the clipboard and places it in the 
document just after the current selection range. Generally, the selection range for 
paste operations will simply be an insertion point. Note that the clipboard can only 
hold one thing at a time. While paste does not disturb the contents of the clipboard, 
each cut or copy replaces what was previously there. 

Clear does not affect the clipboard. It merely deletes the current selection 
range. The backspace key has the same effect as clear. 

The implementation of Macintosh text editing is discussed in detail in Chapter 9. 
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Alerts and Dialog Boxes 
Alerts and dialog boxes are specialized windows. They are used by an applica­

tion to either warn the user about the consequences of a particular action (an alert) 
or to collect information essential to program function (dialog boxes). 

Alerts contain the text of a warning and one or more push buttons (see Figure 
1.10). One button is selected as the default button; it is heavily outlined. Pressing 
either the Enter or Return key will have the same effect as positioning the arrow 
cursor over the button and clicking the mouse button. Most alert boxes have an OK 
button which simply closes the alert and continues with program action. Some also 
have a Cancel button which permits a user to escape from some action he or she 
may have inadvertantly requested. 

Untitled 

Sa11e changes before quitting? 

n Yes ]I 
( No ) Cancel 

Characteristics of an alert: 
1. Contains text and push buttons 
2. The default button is heavil ~outlined. It 'Nill be selected 'Nhen the 

the user presses Enter or Return 
3. The alert is the active 'Ni ndo'N (note that the text 'Ni ndw in the 

background has been unhighlighted) 

Figure 1.10 An Alert 

Dialog boxes come in two varieties: modal and mode/ess. A modal dialog box 
prevents the user from working anywhere but within the box. They are used to 
collect information that the application must have before it can continue. For 
example, a modal dialog box is used to collect that name of a file before saving it to 
disk for the first time. Modal dialog boxes display messages, have areas for 
entering text, and can contain push buttons, radio buttons, and check boxes (see 
Figure 1.11). They are removed completely from the screen when the user has 
finished with them. 
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Modeless dialog boxes are much more like other windows. They permit the 
user to work outside the dialog box while the dialog box is still on the screen. 
Modeless dialog boxes are most commonly used to implement Find and Search 
operations (see Figure 1.12). 

Alerts and dialog boxes are discussed in Chapter 9. 

H lmageWriter (Standard or Wide) ([ OK JI 
Paper: ®US Letter O A4 letter 

O us Legal O International Fanfold [Cancel J 
O Computer Paper 

Orientation: @Tall O Tall Adjusted OWide 

Pagination: ®Normal pages 0 No breaks between pages 

Reduction: @None 0 50 percent 

Che recte ri sti cs of e mode 1 die 1 og box: 
1. User can work only in the die log box 
2. Contei ~s display text, fields for editing text, end controls 
3. The default button (the button selected by Enter or Return) is 
heavily outlined 

~ 

Flgure1.11 A Modal Dialog Box 

=o Change 

Find what I SearchString I 
Change to l 

(Find NeHt) ( [ hlll\\jl~. 'fhNl I' ind) ( t:IHlnlJI~) (Change All) 

@Whole Word 0 Partial Word 

Characteristics of a mode less dialog box 
1. User can work outside the dialog box while the box is still on the 
screen 
2. Contains display text, text that can be edited, end controls 
3. The default button (the button selected when the user presses Enter 
or Return) may or may not be heevil y out11 ned 

H 

Figure1.12 A Modeless Dialog Box 
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Chapter Objectives 

1. To learn the three major numbering systems used to represent instructions, 
characters, and quantities in a computer 

2. To understand the organization of the Macintosh's microprocessor and, in 
particular, its registers 

3. To understand the purpose of a stack and how it works 

4. To understand how the Macintosh's main memory is distributed between the 
operating system and an application program 

5. To get an overview of the ways in which a Macintosh assembly language 
program specifies the location of data in main memory (addressing modes) 

6. To understand the use of symbolic addresses 

Computer 
Numbering Systems 
and How Information 

is Represented in 
a Computer's Memory 

When we talk about a computer's memory, we use either the hexadecimal 
(base 16) or octal (base 8) numbering systems. Both are used as a shorthand for 

15 
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binary numbers, which get very clumsy very quickly. To understand hexadecimal 
and octal, we must first look at binary numbers. 

Binary Numbers 
Base 2 (binary) is a natural for describing the internal state of a computer. 

Anything we want to put in a computer must be represented by groups of 
integrated circuits. Each one of those circuits can carry either a high voltage (by 
convention, assigned a value of 1) or a low voltage (assigned a value of 0). As it so 
happens, O and 1 are the digits that make up the binary numbering system. 

As you probably remember from junior-high math, binary numbers work on a 
place-value system, just like the base 10 numbers we use every day. Instead of 
representing a power of 10, though, each binary place represents a power of 2. 

Figure 2.1 shows you a sample binary number and the base 10 value of each 
place. There is one group of 128, one group of 64, one group of 32, one group of 8, 
and a single 1. In base 10, this number would be 233. To convert a binary number 
to a base 10 number, all you have to do is add up the base 10 place values of each 
binary place that has a 1 in it. 

1 1 0 0 0 a binary number 

27 26 25 24 23 22 21 2" Base Two place values 

128 64 32 16 8 4 2 Base Ten equivalents 

To covert Base Two (binary) to Base Ten (decimal): 

Add up the decimal place values of each binary place that 
contains a one: 

128+64+32+8+1 =233 

Figure 2.1 A Binary Number 

Each binary place is called a binary digit, or bit. A bit can stand for one of two 
different things and therefore takes a value of either 0or1. 

We certainly need to be able to have more than two values in the computer 
(there are 53 letters, 10 digits, and a number of punctuation marks and special 
characters), so we group a series of bits together. Eight bits are called a byte. A 
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byte can represent the binary equivalent of 0 through 255 (you get 255 when you 
put a 1 in each of the eight places). Those values are used as codes for whatever 
we wantto store in the computer. The bits in a byte are numbered from O through 7, 
starting at the right. 

Though there are a number of coding schemes, most microcomputers (includ­
ing the Macintosh) use ASCII code to represent characters and instructions. 
(Numbers intended for mathematical operations are usually not coded, but stored 
as binary quantities.) ASCII stands for American Standard Code for Information 
Interchange. 

When you studied Pascal, one important thing you had to know was the 
difference between storing a digit as a CHAR or as an INTEGER or a REAL. If you 
stored the digit in a CHAR variable, then you couldn't do arithmetic operations with 
it unless you first converted it to an INTEGER or a REAL. You are now in a position 
to understand why. 

The binary ASCII codes for the digits 0 through 9 are 0110000 (48 in base 10) to 
0111001 (57 in base 10). That's what will be stored in main memory when you assign 
a digit to a CHAR variable. The value of these codes bears no relation to the actual 
quantity the digits represent, and trying to use them in arithmetic operations would 
certainly produce ridiculous results. On the other hand, storing one of the quan­
tities 0 through 9 in a numeric variable stores 0000 to 1001, the exact binary 
equivalent of the digit. 

Storing digits as a CHAR requires one byte per digit. For example, "28" would 
be stored as 0011010 and 0111000. Numbers, though, can hold up to 255 in a single 
byte. 28 would be 00011100. 

You've probably noticed that the ASCII codes for the digits are only 7 bits long. 
Standard ASCII is a 7-bit code. The eighth bit in the byte is usually not used. 

The Macintosh, though, uses an extended ASCII code which lets you use a 
combination of the shift and option keys to generate characters which are not 
usually available from the keyboard. These additional characters are created by 
using bit seven (the eighth bit) to provide additional code combinations. Standard 
ASCII codes end at 01111111, but Macintosh codes go all the way through 10001001. 
You can see Macintosh's character codes in Table 2.1 

Most assemblers, including the MOS Assembler, will accept binary numbers 
as part of the source code. To indicate that a quantity is binary, preface it with a 
percent sign(%). For example, the Assembler will recognize % 1100011 as a binary 
number having the decimal value 99. Without the percent sign, the number will be 
interpreted as base 10 with the value of one hundred ten thousand and eleven. 

The binary system is used in computers for one other major purpose besides 
specifying ASCII codes; it is used to count the bytes in the computer's memory. The 
number given to each byte is called its address. In the 128K Macintosh, there are 
131,072 bytes of RAM (one kilobyte = 1024 bytes), so the binary equivalent of the 
maximum address is 11111111111111111. Such a number is too long for most people to 
handle easily. Therefore, we use hexadecimal as a shorthand. 
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Table 2.1 Macintosh Extended ASCII Character Set 

NON-PRINTING CHARACTERS* 

What you Binary Hex Meaning of 
Press Code Code thecoc!e 

00000000 00 Null 
00000001 01 Start of header 
00000010 02 Start of text 

Enter key 00000011 03 Enter 
00000100 04 End of tape 
00000101 05 Enquiry 
00000110 06 Acknowledge 
00000111 07 Bell 

Backspace key 00001000 08 Backspace 
Tab key 00001001 09 Horizontal tab 

00001010 0A Line feed 
00001011 0B Vertical tab 
00001100 0C Form feed 

Return key 00001101 0D Carriage return 
00001110 0E Shift out 
00001111 0F Shift in 

00010000 10 Data link escape 
00010001 11 Open Apple 
00010010 12 Check mark 
00010011 13 Filled diamond 
00010100 14 Filled circle 
00010101 15 Closed Apple 
00010110 16 Synchronous idle 
00010111 17 End transmission block 
00011000 18 Cancel 
00011001 19 End of medium 
00011010 1A Substitute 

Clearkeyt 00011011 1B Clear 
Left arrowt 00011100 1C Move left 
Right arrowt 00011101 1D Move right 
Up arrowt 00011110 1E Move up 
Down arrowt 00011111 1F Move down 

*Non-printing characters generally cannot be generated from the keyboard (exceptions are noted in the 
"What you Press" column). 
tThese keys appear on the Macintosh keypad. 

(continued) 
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PRINTING CHARACTERS 

What you What you Binary Hex What you What you Binary Hex 
Press See Code Code Press See Code ~ 

Space bar A space 00100000 20 SHIFT-2 @ 01000000 40 
SHIFT-1 ! 00100001 21 SHIFT-a A 01000001 41 
SHIFT-' 00100010 22 SHIFT-b B 01000010 42 
SHIFT-3 # 00100011 23 SHIFT-c c 01000011 43 
SHIFT-4 $ 00100100 24 SHIFT-d 0 01000100 44 
SHIFT-5 % 00100101 26 SHIFT-a E 01000101 45 
SHIFT-7 & 00100110 26 SHIFT-f F 01000110 46 

00100111 27 SHIFT-g G 01000111 47 
SHIFT-9 ( 001010(Z)0 28 SHIFT-h H 01001000 48 
SHIFT-0 ) 00101001 29 SHIFT-i I 01001001 49 
SHIFT-8 * 00101010 2A SHIFT-j J 01001010 4A 
SHIFT-= + 00101011 28 SHIFT-k K 0101211011 48 

00101100 2C SHIFT-I L 01001100 4C 
00101101 20 SHIFT-m M 01001101 40 
00101110 2E SHIFT-n N 01001110 4E 

I 00101111 2F SHIFT-o 0 01001111 4F 

0· 0 00110000 30 SHIFT-p p 0101000~ 50 
1 1 00110001 31 SHIFT-q Q 01010001 51 
2. 2 00110010 32 SHIFT-r R 01010010 52 
3 3 00110011 33 SHIFT-s s 0101121{2>11 53 
4· 4 0011'2'100 34 SHIFT-t t 01010100 S4 
5 5 00110101 35 SHIFT-u u 01010101 S5 
6. 6 00110110 36 SHIFT-v v 01010110 S6 
7 7 00110111 37 SHIFT-w w 01010111 S7 
8 8 00111000 38 SHIFT-x x 01011000 S8 
9 9 00111001 39 SHIFT-y y 01011001 59 
SHIFT-; 00111010 3A SHIFT-z z 01011010 5A 
; 00111011 38 [ [ 01011011 SB 
SHIFT-, < 00111100 3C \ \ 01011100 SC 

00111101 30 ] ] 01011101 so 
SHIFT-. > 00111110 3E SHIFT-6 " 01011110 SE 
SHIFT-/ ? 00111111 3F SHIFT-- 01011111 5F 

(continued) 
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Table 2.1 (continued) 

PRINTING CHARACTERS 

What you What you Binary Hex What you What you Binary Hex 
Er~ Sflfl Codfl .QQQfl_ ErflSS Sflfl Code .QQdfl. 

01100000 60 OPT-u/SHFT-a At 10000000 S0 
a a 01100001 61 SH FT-OPT-a A 10000001 S1 
b b 01100010 62 SHFT-OPT-c ~ 10000010 S2 
c c 01100011 63 OPT-e/SHFT-e 10000011 S3 
d d 01100100 64 OPT-n/SHFT-n f:.i 10000100 B4 
e e 01100101 65 OPT-u/SHFT-o 0 10000101 S5 
f f 01100110 6S OPT-u/u (j 10000110 SS 
g g 01100111 S7 OPT-e/a a 10000111 S7 
h h 01101000 68 OPT-'/a a 10001000 SS 
i 01101001 S9 OPT-Va a 10001001 B9 
j j 01101010 SA OPT-u/a a 10001010 BA 
k k 01101011 SB OPT-n/a a 10001011 SB 
I I 01101100 SC OPT-a a 10001100 BC 
m m 01101101 SD OPT-c c; 10001101 SD 
n n 01101110 SE OPT-e/e e 10001110 SE 
0 0 01101111 SF OPT-'/e e 10001111 SF 

p p 01110000 70 OPT-Ve A 10010000 90 
q q 01110001 71 OPT-u/e e 10010001 91 
r r 01110010 72 OPT-e/i r 10010010 92 
s s 01110011 73 OPT-'/i 10010011 93 
t t 01110100 74 OPT-Vi 10010100 94 
u u 01110101 75 OPT-u/i 'j 10010101 95 
v v 01110110 7S OPT-n/n n 10010110 9S 
w w 01110111 77 OPT-e/o 6 10010111 97 
x x 01111000 7B OPT-'/o 0 10011000 9B 
y y 01111001 79 OPT-Vo 0 10011001 99 
z z 01111010 7A OPT-u/o 0 10011010 9A 
SHIFT-[ { 01111011 78 OPT-n/o i5 10011011 98 
SHIFT-\ I 01111100 7C OPT-e/u u 10011100 9C 
SHIFT-] } 01111101 7D OPT-'/u t) 10011101 9D 
SHIFT-' 01111110 7E OPT-Vu 0 10011110 9E 
delete* 01111111 7F OPT-u/u (j 10011111 9F 

•A non-printing character 
tAccented characters which are useful for foreign languages are generated by a two-key sequence. You 
must first press the OPTION key and the modifier (' ,i,u,n, or e) together; nothing will appear on the screen. 
Then press the key above which you "fish the accent to appear. 

(continued) 
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PRINTING CHARACTERS 

What you What you Binary Hex What you What you Binary Hex 
Press See Code ~ Press See Code ~ 

OPT-t t 10100000 A0 SHFT-OPT-/ l 11000000 C0 
SHFT-OPT-8 . 10100001 A1 OPT-1 I 11000001 C1 
OPT-4 ¢ 10100010 A2 OPT-I ..., 11000010 C2 
OPT-3 £ 10100011 A3 OPT-v " 11000011 C3 
OPT-6 § 10100100 A4 OPT-f f 11000100 C4 
OPT-B 10100101 AS OPT-x 11000101 cs 
OPT-7 11 10100110 A6 OPT-j d 11000110 C6 
OPT-s B 10100111 A7 SHFT-OPT-\ 11000111 C7 
OPT-r ® 10101000 AB OPT-\ (( 11001000 CB 
OPT-g © 10101001 A9 OPT-; 11001001 C9 
OPT-2 TM 10101010 AA (unused) 11001010 CA 
OPT-e 10101011 AB OPT-'/SHFT-a A 11001011 CB 
OPT-u 10101100 AC OPT-n/SHFT-a A 11001100 cc 
OPT-= "# 10101101 AD OPT-n/SHFT-o 0 11001101 CD 
SH FT-OPT-' IE. 10101110 AE SHFT-OPT-q CE 11001110 CE 
SHFT-OPT-o 0 10101111 AF OPT-q 00 11001111 CF 

OPT-S 10110000 B0 OPT-- 11010000 D0 
SH FT-OPT-= ± 10110001 B1 SH FT-OPT-- 11010001 D1 
OPT-, ~ 10110010 B2 OPT-[ 11010010 D2 
OPT-. ;;:>: 10110011 B3 SHFT-OPT-[ 11010011 D3 
OPT-y ¥ 10110100 B4 OPT-) 11010100 D4 
OPT-t 10110101 BS SHFT-OPT-) 11010101 D5 
OPT-d a 10110110 B6 OPT-/ + 11010110 D6 
OPT-w I. 10110111 B7 SHFT-OPT-v 0 11010111 D7 
SHFT-OPT-p II 10111000 BB OPT-u/y i. 11011000 DB 
OPT-p 7t 10111001 B9 SH FT-OPT-' 11011001 D9 
OPT-b J 10111010 BA 
OPT-9 10111011 BB 
OPT-0 10111100 BC 
OPT-z n 10111101 BD 
OPT-' m 10111110 BE 
OPT-o " 10111111 BF 

*The picture that appears on the screen varies with the type font in use. 
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Hexadecimal Numbers 
Base 16 (hexadecimal or simply "hex") presents a unique challenge to we 

human beings. This numbering system should be able to express the quantities O 
through 15 in a single place, but we only have ten digits available (0 through 9). 
Therefore, we use the letters A-F to represent 10 through 15 respectively. Figure 
2.2 shows some hexadecimal place values. The sample number has a decimal 
(base 10) value of 77,631. 

2 F 3 F a hexadecimal number 

16" Base Sixteen place values 

65,536 4096 256 16 Base Ten equivalents 

To covert Base Sixteen (Hexadecimal) to Base Ten (decimal): 

Multiply each hexadecimal digit by its decimal equivalent 
and add: 

(65,536 * 1) + (4096. 2) + (256 * 15) + (16. 3) + 15 = 77,631 

Figure 2.2 A Hexadecimal Number 

How hex can give us a shorthand for large binary numbers is probably not 
instantly obvious, but consider this: the maximum quantity that a four-digit binary 
number can represent is 15 (in binary, 1111), which, "by coincidence," is the 
maximum value of a single hex digit. 

Converting a binary to hex number becomes very simple. First, divide the 
binary number into groups of 4 digits, working from the right. Then substitute the 
hexadecimal equivalent for each group of 4 binary digits. Thafs all there is to it. 

As we saw above, the maximum RAM address in the 128K Macintosh is 
11111111111111111 in binary. Figure 2.3 shows its conversion to hexadecimal. Now the 
maximum address appears as $1FFFF. The$ in front of the number alerts us (and 
the Assembler) that what follows is hexadecimal. The hex figure is certainly more 
manageable than that string of seventeen 1's. Though the MOS assembler will 
accept quantities and codes in binary, octal (Base 8), decimal, and hex, we 
generally specify addresses and character codes in hexadecimal and quantities in 
base10. 

Hexadecimal is also used as a shorthand for binary when representing ASCII 
codes. The digits have codes of $30 through $39; 0 has a code of $30, 1 of $31, 2 of 
$32, and so on. The hexadecimal values of the codes seem much more logical 
than the base 10 codes of 48-57. 
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F F F 

To do the conversion: 

1. Divide the binary number into groups of four , starting 
from the right. 

F 

2. Substitute the corresponding hexadecimal digit for each group 
of four binary digits. 

Figure 2.3 Converting Binary to Hexadecimal 

By this point it has probably occurred to you that if the maximum RAM address 
is $1FFFF, there is no way to specify such an address in one byte (the maximum 
hex value for one byte is $FF); it will take three bytes. We also would like to be able 
to do arithmetic on numbers more than one byte in length (e.g., with values greater 
than 255, occupying more than eight binary places). The microprocessor used in 
the Macintosh conveniently allows us to work with words and longwords. 

A word refers to two bytes (16 bits) and always begins on a byte with an even 
address. For example, a word could occupy the bytes at $33AA and $33AB but 
not the bytes at $33AB and $33AC. We number the bits in a word 0-15, starting 
from the right. Bits 0-7 are referred to as the "low-order" byte; 8-15 are called the 
"high-order" byte. 

A longword is 4 bytes (32 bits). Like a word, it musfbegin on a byte with an even 
address. The bits are numbered 0-31, starting at the right. Bits 0-15 are the low­
order bits and 16-31 the high-order bits. 

Octal Numbers 
The octal numbering system (also known as base 8) has been around com­

puters as long as hex, but it isn't used a great deal any more. Like hex, octal 
became popular as a shorthand for binary. It was useful when the largest bit 
grouping was a byte and when data codes were only 6 bits. Why resurrect octal 
here, then? Because the MOS assembler will accept octal numbers as well as 
binary, decimal, and hexadecimal numbers. 
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Since octal is base 8, it uses the digits O through 7. Each octal place therefore 
represents a power of 8 Oust like binary places are powers of 2 and hex places are 
powers of 16). A sample octal number can be found in Figure 2.4. Its decimal value 
is36,545. 

0 7 3 0 

32,768 4096 512 64 8 1 

To convert Base Eight (octal) to aase Ten (decimal): 

Multiply each octal digit by its decimal equivalent 
and add: 

an octal number 

Base Eight equivalents 

Base Ten equivalents 

(32,768. 8) + (4096. 0) + (512. 7) + (64. 3) + (8. 0) + 1 = 36,545 

Figure 2.4 An Octal Number 

Converting binary to octal is very much like converting binary to hex. While it 
takes four binary places to represent the full range of hex digits (0-F), it takes only 
three binary places to get the octal digits (111 base 2 = 7 base 8). Therefore, to do 
the conversion, divide a binary number into groups of three (starting from the right, 
just as when converting to hex), then substitute the appropriate octal digit for each 
group of three binary digits. An example of a binary to octal conversion appears in 
Figure2.5. 

8 8 

3 5 3 

To do the conversion: 
1. Divide the binary number into groups of three, starting 
from the right. 
2. Substitute the corresponding octal digit for each group 
of four bi nary digits. 

Figure 2.5 Converting Binary to Octal 
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Macintosh's 
Microprocessor 

A microprocessor is not a microcomputer. The term microcomputer refers to 
the whole machine, while the microprocessor is only a part of a microcomputer. In 
fact, a microcomputer needs not only a microprocessor, but also some RAM, 
enough code in ROM to boot the machine, pathways-known as buses-to carry 
data and addresses from one place to the other, some provision for 1/0, and a 
clock. 

The microprocessor, though, is truly the brain of the computer. The Macin­
tosh's microprocessor is Motorola's MC68000 (or just "68000"). You may read in 
some publicity releases that it is a "32-bit microprocessor.· That assertion is not 
completely true. While the 68000 has 32-bit registers (we'll get to registers shortly), 
its buses are smaller. 

The 68000's data bus is only 16 bits wide (this is the path along which data travel 
between RAM, ROM, and the microprocessor). The address bus (the path along 
which addresses travel from the microprocessor to RAM and ROM) is 24 bits wide. 

The 24-bit address bus sets the limit on the maximum amount of memory 
Macintosh can address directly. These 24 bits (3 bytes) allow us to have a 
maximum address of $FFFFFF - 16 megabytes. Not all of this can be used for 
RAM, though. In order to access anything stored in ROM, the ROM must have its 
own address range, distinct from RAM. Macintosh has 64K of ROM which resides 
at$400000-$40FFFF. 

Registers 
Registers are special storage locations within a microprocessor. Almost all the 

actions a program performs on data occur while the data or their addresses are in 
the registers. The Macintosh's 68000 microprocessor has four different kinds of 
registers: eight data registers, eight address registers, one status register, and one 
program counter (see Figure 2.6). 

The data registers (numbered 00-07) are used primarily for data manipula­
tion. Because they are 32 bits wide, they can accommodate byte, word, and 
longword operations. The address registers (numbered AO-A7) are also 32 bits 
wide. In addition to allowing the data manipulation (though only on words and 
longwords), they can be used for addressing RAM (much more on this to come). 
Register A7 also has a special use with regard to the stack (see next section). 

The status register is an extremely useful tool. While it is only 16 bits wide, it 
carries more than two bytes worth of information; the bits act individually as flags. 

We say a bit is set if it has a value of 1; when we clear a bit, we make sure its 
value is 0. The bits in the status register are set at the end of many microcomputer 
operations. A program can check the condition of the bits in the status register to 
discover the result of executing an instruction. 
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bit number 
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31 16 15 8 7 H 

DH 
31 16 15 8 7 H 

D1 
31 16 15 ~ 7 H 

D2 
31 16 15 8 7 H 

D3 
31 16 15 8 7 H Data 

D4 Registers 
31 16 15 8 7 H 

D5 
31 16 15 8 7 H 

D6 
31 16 15 8 7 H 

D7 
31 16 15 8 7 H 

AH 
31 16 15 8 7 H 

A1 
31 16 15 8 7 H 

A2 
31 16 15 8 7 H Address 

A3 Registers 
31 16 15 8 7 H 

A4 
31 16 15 8 7 H 

AS 
31 16 15 8 7 H 

A6 
31 16 15 8 7 H 

~ Stack 
Pointer (SP) 

31 16 15 8 7 H 
Program 
Counter (PC) 

15 8 7 H 
Status 
Register 

Figure 2.6 Macintosh 68000 Registers 
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Figure 2. 7 shows the 68000's status register. The eighth high-order bits are 
used by the computer itself and are therefore called the system byte. It contains a 
supervisor bit, a trace bit, and three bits which form an interrupt mask. Macintosh 
assembly language programmers will rarely use the system byte. 

z v c 

Extend bit 

Negative bit 

Zero bit 

Overflo'W' bit 

Carry bit 

Figure 2. 7 Macintosh 68000 Status Register 

The supervisor-state bit is unnecessary because the Macintosh uses its Micro­
processor in a slightly unusual way. The standard 68000 microprocessor has two 
"modes": a user mode and a supervisor mode. A program running in the user 
mode is prohibited from using some of the microprocessor's instructions. The 
Macintosh, howaver, runs only in the supervisor mode. Therefore, the bit in the 
system byte which would ordinarily be used to switch between the user and 
supervisor modes is irrelevant. 

The Macintosh does not recognize the 68000's trace mode. In fact, if the trace 
bit is set, the Macintosh will consider it a system error. (See Chapter 3 for more 
details on system errors.) 

The interrupt mask bits are used to control which peripheral device (e.g., disk 
drives) can signal the CPU that they are in need of attention. The signal sent from 
the device is known as an interrupt, since it forces the CPU to interrupt whatever it 
is doing and take care of the device. Macintosh programs do not need to control 
interrupts through the system byte of the status register; they have a more powerful 
way to monitor what happens to the system. These are what the Macintosh calls 
events (discussed in detail in Chapter 8). Though some events are caused by 
hardware interrupts (e.g., inserting a disk into a disk drive, clicking the mouse 
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button, striking a key on the keyboard), others are generated by the operating 
system. The event mechanism is therefore more powerful and flexible than relying 
on an interrupt mask in the status register. 

While a Macintosh application will probably never look at the system byte of the 
status register, it is virtually impossible to write an assembly language program 
without, at some time, consulting the user byte of the status register; the user byte is 
comprised of the eight low-order bits of the status register. 

In the user byte, bit 0 is the carry bit. It is affected by integer addition and 
subtraction instructions as well as some other, less frequently used instructions. If 
the execution of an arithmetic instruction causes a carry out of the left-most bit 
(known as the most significant bit}, the carry flag will be set. If there is no carry out, 
then the flag will be cleared. 

To understand how the carry flag works, lefs consider some simple binary 
addition. The binary addition table is very simple: 

0+0=0 
0+1=1 
1 + 1 = O with a carry out of 1 

1 + 1 + 1 = 1 with a carry out of 1 

Computers add only two numbers together at a time, working from the right-most 
(least significant) bit to the left, just as we do when performing decimal addition. A 
carry out from one bit position will cause a carry in to the bit position directly to its 
left. Therefore, the fourth expression above is the result of adding two 1 's with a 
carry in from the previous bit. 

Assume that a computer is executing the following addition: 

101010 Value 1 
+010010 Value2 

111100 Result 

When the addition is peformed on bit 1 (the second bit from the right) a carry is 
generated into bit 2, but this operation will nevertheless clear the carry bit. The 
most significant bit, bit 5 (since this is only a six-bit number), doesn't generate a 
carry. The carry bit will be set only if the carry is out of the most significant bit. 

Consider, however, a slight modification to the problem: 

101010 Value 1 
+110010 Value 2 
1011100 Result 

The only change was in the most significant bit of Value 2 (it is a 1 rather than a O in 
this case). Now there is a carry out of the most significant bit. The carry flag will be 
set. 

Another way to think of the carry bit is to visualize it as holding the value of a 
carry. In the first addition example above, there was actually a carry out of O. 
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Therefore the carry bit is cleared. The second example caused a carry out of 1 , 
setting the bit. 

The second bit in the status register (bit 1) is the overflow flag. It is set whenever 
the result of an integer addition, subtraction, or division is too large to fit in the 
location where the result of the operation was to be stored. Other, less frequently 
used instructions also affect the overflow bit. While this at first may seem to be the 
same as the carry bit, it is not. The major difference is that the carry flag holds the 
value of a carry, while the overflow flag is a true flag, signaling the fact that an 
overflow occurred. · 

In many microprocessors, by the way, the distinction between the operation of 
the carry and overflow flags is different from that of the 68000. The carry bit is 
affected by operations on unsigned numbers, while the overflow flag monitors 
operations on signed numbers. That is not true with the 68000. The 68000's 
addition and subtraction instructions work only on signed numbers and affect both 
overflow and carry flags. While there are separate instructions for signed and 
unsigned multiplication and division, the multiplication instructions always clear 
the overflow and carry flags, regardless of the result of the operation. The division 
instructions, both signed and unsigned, clear the carry flag and affect the overflow 
flag based on the result of the operation. 

Bit 2 is called the negative flag. It is set (i.e., gets a value of 1) whenever an 
operation produces a negative result. Note that other operations besides arith­
metic ones can produce negative results. This most importantly includes com­
parison operations where you are trying to decide whether one quantity or 
character is larger than another. 

The zero bit (bit 3) works very much like the negative bit. It is set whenever an 
operation gives a result of zero. Though it may seem a bit confusing at first, you 
need to remember that when bit 3 is 1, the result was O; when bit 3 is 0, the result 
was non-zero. f( ou need to check bit 2, the negative bit, to know whether the result 
was negative or positive.) 

Bit 4 is known as the extend bit. The extend bit functions, in most cases, just like 
the carry bit. It is used primarily for multiple-precision arithmetic operations (com­
putations that span more than one longword). 

Different instructions affect the status register differently. Therefore, as you· 
learn the 68000 instruction set, you must not only be aware of what the instruction 
does, but also how it changes the user byte of the status register. 

The Stack 
As well as the registers just described, the 68000 microprocessor uses a 

special sort of storage area in RAM known as a stack. (Actually, the 68000 has two 
stacks, but the Macintosh uses only one.) 

You can think of the stack as a tall silo that is 32 bits wide. Many pieces of data 
and address can be stored in the stack, one on top of the other (see Figure 2.8). 
Access to the stack is in last in, first out order. 
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The only patl) in and out is from the top! 

"Ill ,.. 

31 B 

Last lo~word in - first one out 

First lo~word in - last one out 

Figure 2.8 The Stack 

~ bitnumber 

~ Stack pointer (SP) 
points here - the 
top of the stack 

Register A? is used as the stack pointer. It contains the address of the last item 
stored on the stack (called the 'top" of the stack) so that you dont need to keep 
track of where the stack is physically or how many items are stored there. When 
writing programs, the stack pointer can be referred to as A? or SP. 

What is the stack used for? Often, the stack is used as an extra register for 
quick, temporary storage. Cf ou push something onto the stack and pull it off, which 
sometimes leads to the image of the stack as a spring-loaded tube.) The stack is 
also the place where the microprocessor stores subroutine return addresses. 

Have you ever wondered how a Pascal program knows where to return to 
when a procedure ends? Every time the program encounters a statementthat calls 
a procedure, it pushes the address of the statement just after the call onto the top of 
the stack. Everytime it finds the END that finishes a procedure, it pulls the top 
address of the stack and resumes execution at that address. The last in, first out 
access to the stack ensures that nested procedures will return properly. 

Assembly language subroutines affect the stack in exactly the same way. 
Whenever you issue a JSR Gump to subroutine) instruction, the address of the next 
program instruction is pushed onto the stack. The RTS (return from subroutine) 
instruction causes the address to be pulled from the stack and lets the system 
know where to resume the main program. 
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The Program Counter 
The final register that an application uses is the program counter. The program 

counter contains the main memory address of the beginning of the statement 
following the one currently being executed. In other words, it is a 32-bit register that 
contains the address of the next program instruction. In fact, it is the contents of the 
program counter, often abbreviated to "PC," that gets pushed onto the stack when 
you jump to a subroutine. 

How Macintosh's RAM 
is Used 

It may sound like a lot-128K RAM - but only a portion of that space is actually 
available to a program. Figure 2.9a shows how the Macintosh's RAM is divided 
between the user and the system in a 128K machine. 

The bottom of RAM ($00-$FF) is used by the 68000 microprocessor for 
hardware exception vectors. These are rarely of concern to assembly language 
programmers. The next $300 bytes ($100-$3FF) are used by the operating system 
to store global variables that are shared by various parts of the system. (This is 
called the "system communication area.") There are more system globals in 
$800-$AFF. 

The $400 bytes spanning $400-$7FF contain the System Dispatch Table. This 
table is the entry way to the ROM Tool Box routines. As a programmer, you don't 
need to know the exact address in ROM of any ToolBox routine you want to use. 
Instead, the assembler translates your call into a reference to the Dispatch Table (a 
"trap"), where the actual ROM addresses are stored. The table itself is stored in 
ROM and loaded into RAM when you start up the system. 

At first this may seem like an extra, unnecessary step. Why look up the address 
in a table when a program could go to it directly just as easily? Because this 
arrangement gives added flexibility. If at some time in the future you upgrade your 
Macintosh and change the ROM, you won't have to modify any programs that use 
T oolBox routines. Using the Dispatch Table will also let you substitute a program of 
your own for any ToolBox routine. All you have to do is replace the address in the 
Dispatch Table with the starting address of your program (this is known as 
applying a patch). Since ROM can't be patched, it is essential that the Dispatch 
Table be in RAM in order to have the ability to change it. 

The top of RAM (i.e., the high addresses $1FD00-$1FFE3) is used as a buffer 
for the Sound Driver. The Sound Driver is the part of the operating system that 
controls the sounds that come from the Macintosh's speaker. Just below the sound 
buffer ($1A700-$1FC7F) lies the main screen buffer. This areas is used to map out 
what will be displayed on the screen. 
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Figure 2.9(a) 12BK Macintosh RAM 
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When you use a debugger to help develop assembly language programs, it 
installs just below the screen buffer. (See Chapter 3 for a definition of a debugger 
and how to use one.) The region just below the debugger is set aside to hold data 
(called application globals) for an application program. The size of the area is not 
fixed; it is initialized when the program is loaded to allow only as much space as the 
program actually requires. 

The remaining space, from $BOO to the beginning of the application globals, is 
under programmer control. At system startup, the area$ BOO to $4CFF is initialized 
as the system heap. This area is used by the operating system when a program is 
running. 

Under most circumstances, programs running on a 128K machine begin at 
$4000, the start of the applications heap, and grow up in memory; the stack 
begins at the top of the application heap (below the application globals) and grows 
down in memory. If the program and the stack meet, then application has run out of 
memory. Program execution will stop, for example, ifthe program attempts tb add 
anything else to the stack. 

One of the most important things to understand from the preceding discussion 
is that there is nowhere near 128K for an application program. There are $15AOO 
bytes between the bottom of the application heap and the bottom of the screen 
buffer (about 71 K), but part of this is lost to application globals and the stack. The 
space for source code is therefore rather limited, especially if a program needs 
tables of text stored in RAM. 

Memory use in a 512K Macintosh is very similar to that in the 128K machine. If 
you look at Figure 9.2b, you'll see that the extra memory is concentrated in the 
application areas and the system heap. Instead of a 16.SK system heap like the 
128K machine, the 512K Mac has a 46K system heap. Programs therefore gener­
ally begin at $COOO rather than at $4000 as they do on a 128K machine. The 
remainder of the extra RAM is allocated to the application heap, the stack, and the 
various parameters and global values. 

Addressing RAM 
When programming in Pascal, you don't have to worry about where data are 

stored in RAM. You use variable names as labels on storage locations; the 
loading/linking process assigns the actual addresses to the variable names, 
allowing a program to retrieve the data stored previously by simply specifying the 
particular variable wanted. 

Assembly language, being closer to machine language, requires that the 
programmer keep track of where everything is stored in RAM. That includes not 
only the program itself but any data the program may need to use. Therefore, 
assembly languages provide a variety of ways of specifying where a data item is 
stored. The 68000 has thirteen different ways that fall into five general groups; 
these methods are known as addressing modes. 
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The purpose of the rest of this chapter is to introduce you to the 68000's 
addressing modes. Though, at this point, it may seem like overkill to have so many 
ways to indicate a main memory location, you will discover as you learn the 
instruction set and how to use the ToolBox and operating system routines that the 
flexibility that comes with these thirteen modes is essential to a well-written pro­
gram. 

To understand addressing, you must first know a little about the format of an 
assembly language statement. The format of assembly language statements is far 
more rigid than the format of high-level language statements. Statements are 
broken up into four fields. The first field, which rilay be left blank, is used for 
statement labels, known often as symbolic addresses. The second field contains 
the instruction mnemonic. The third field specifies either the data to be operated on 
or the address of where the data can be found. It often also indicates where the 
results of the operation should be placed. The data item itself is called the operand. 
The place where the operand can be found is its effective address. The fourth field 
is, like the label field, optional; it can be used for comments. Comment fields begin 
with a semicolon. Figure 2.10 shows a 68000 assembly language statement and its 
fields. 

Event MOVE.L A1,-(SP) 

Instruction 
Mnemonic 

Symbolic Address Effective Address* 

; put the pointer on the stack 

Comment 

*This effective address field hes tvo operands. The first, At, is the effective 
address of the source operand. The second, -(SP), is the effective address 
of the destination operand. 

Figure 2.10 Format of a 68000 Assembly Language Instruction 

The instruction in Figure 2.10 takes the contents of register A 1 and moves it onto 
the stack. The instruction therefore has two operands, one specifying the source of 
the data, and the other the destination. The two operands are separated by a 
comma. The comment ("put the pointer on the stack') is preceded by a semicolon. 

To make addressing easier to understand, let's create a very simple com­
puter-the "Extremely-Micro Computer"-to use in some of the examples. This 
computer has only two registers: a data register called D and an address register 
called A. It also has ten RAM locations, numbered in base 10 from Oto 9. 
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Register Direct Modes 
In register direct modes, the operand itself is loaded into either a data register 

or an address register. 

Mode #1: Data Register Direct 
Figure 2.11 shows the state of the Extremely-Micro Computer just before an 
operation using Data Register Direct addressing. The value 224, which is stored in 
RAM location 7, has been copied into the data register D. The effective address of 
that value is specified by simply coding: 

D 

Whatever operation is indicated by the assembly language instruction will act 
on the value that has been stored in register D. 

To do Data Register Direct addressing using the 68000 microprocessor, 
replace D in the Extremely-Micro Computer statement with On, where n is the 
number of the data register. 

224 

R 

D 

The operand is 
loaded into the 
date register. 

Figure 2.11 Using Data Register Direct Addressing 
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Mode #2: Address Register Direct 
Address Register Direct addressing works exactly like Data Register Direct 
addressing. The only difference is that the operand is contained in one of the 
address registers rather than in a data register. The assembly language format for 
an address register direct effective address is: 

An 

where n is the number of the address register. 
Never use register A? for direct addressing or for any sort of addressing that 

requires changing the value in a register, since it is used as the stack pointer. 
Register AS always contains the address of the top of the applications globals area. 
It too should never be used for any sort of addressing that requires a change in the 
quantity stored in the register. 

Register Indirect 
Addressing 

The basic principle behind register indirect addressing is that instead of putting 
the operand itself into a register, a program loads the register with the address 
where the operand can be found. Register Indirect addressing can be done only 
with the address registers. 

Mode #3: Address Register Indirect 
To perform Address Register Indirect addressing, store the location of the operand 
in an address register. For example, Figure 2.12 shows the Extremely-Micro 
Computer just before execution of a statement using Address Register Indirect 
addressing. 

The operand is still the quantity 224, but the contents of the address register A 
is 7. The 7 is a pointer to the RAM location where 224 is stored. The effective 
.address would appear as: 

(A) 

The parentheses are required. They can be read as '1he contents of." Therefore, (A) 
translates to "the effective address is the contents of register A." 

For the 68000, add the number of the address register to the Extremely-Micro 
format: 

(An) 

Be sure to replace then with the number of the specific address register being 
used. 
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Figure 2.12 Using Address Register Indirect Addressing 
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When a program needs to process a series of data items, such as when data are 
stored in an array, Pascal makes life easy by allowing the program to step through 
the array by using a variable as a subscript. Since you can't use variable names in 
assembly language, you might have to process the series of data values as follows: 

1. Store the address of the first data value in an address register. 

2. Process the value. 

3. Increment the address so that it now reflects the location of the next data 
value. 

4. Repeat steps 3 and 4 until all data values have been processed. 

Address Register Indirect with Postincrement addressing, more simply called 
"Postincrement" addressing, is one way to do steps 2 and 3 with only one assembly 
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language statement. The format for the Extremely-Micro Computer will be: 

(A)+ 

Prior to executing this statement, load the location of the first data value into 
register A. Suppose, for example, we want to process the values in RAM locations 
0-4. Figure 2.13 shows the state of the Extremely-Micro Computer just before 
beginning that processing; 0 has been stored in register A, since it is the lowest 
address in the series we want to process. 
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Figure 2.13 Using Address Register Indirect with Postincrement Addressing 

When the computer executes the statement that processes the data, not only 
will the operation specified by the instruction be performed, but the address in 
register A will be increased by one, so that register A will then contain the address 
of the next value. First the operation is performed, then the address is incremented 
(thus the word "postincrement" in the name of this addressing mode). 

While we've been using the Extremely-Micro Computer, we haven't worried 
about the size of the operands. The precise operation of Postincrement address­
ing, though, does depend on operand size. When the instruction specifies an 
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operation on one byte, the increment will be only one byte. For word operations, 
the increment will be two bytes; for longword operations, the increment will be four 
bytes. 

lnstructionMnemonic.B (An)+ 

describes an operation on a byte. (As always, the n should be replaced by the 
number of the address register being used.) Note that this is not a complete 
assembly language statement; many statements include not only the effective 
address of an input (source) operand, but the destination location for the results of 
the operation. 

lnstructionMnemonic. W (An)+ = operation on a word 
lnstructionMnemonic.L (An)+ = operation on a longword 

We will discuss when to use which extension (.B, . W, or .L) as we discuss the 
individual 68000 instructions. 

Mode #5: Address Register Indirect with Predecrement 
Address Register Indirect with Predecrement addressing ("Predecrement" for 
short) is very similar to Postincrement addressing. When you use Predecrement 
addressing, the address found in the address register is decremented (decreased) 
prior to performing the operation specified by the assembly language instruction. 
The size of the decrement (byte, word, or longword) depends on the extension you 
put on the instruction mnemonic, just like it does with Postincrement addressing. 

Predecrement addressing is specified by: 

- (An) where n = address register number. 

Mode #6: Address Register Indirect with Displacement 
The two types of Displacement addressing available on the 68000 are additional 
ways to easily address data in a series of memory locations. Suppose (for whatever 
reason) your data are placed in every other location, as they are in the Extremely­
Micro Computer example in Figure 2.14. Predecrement and Postincrement 
addressing will only let a program move one location at a time, but in this case you 
want to move two. What can you do? 

Address Register Indirect with Displacement addressing allows you to specify 
a quantity {the displacement) which will be added to the contents of the address 
register. In a general form, we would use: 

d(A) where d = the displacement. 
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In Figure 2.14, we want to move two memory locations. Therefore, the displace­
ment is 2 and the general form becomes: 

2(A) 

When the computer executes a statement using the effective address specifica­
tion, the displacement (2) will be added to the contents of register A (0) to give us 
the effective address (2). This statement will process the operand in location 2. 

When Address Register Indirect with Displacement addressing is used with the 
68000, there are two restrictions on the value of the displacement. First, it must be 
an integer, though it can be either positive or negative. Secondly, it must occupy 
no more than 16 binary digits, which translates to a value of $7FFF. (That means 
that bit 15 is not used as a part of the quantity; it is reserved to indicate the sign of the 
displacement.) The 68000 format is: 

d(An) where d = 16-bit displacement 
n =address register number 

1lJ 

R~ 
D 

lfwe use 2(A) to specify the 
effective address, the displacement 
of 2 will be added to the contents 
of A to generate the location of 
the operand 

122 

116 

111 

309 

269 

Figure 2.14 Using Address Register Indirect with Displacement Addressing 
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Really, then, what good is Address Register Indirect with Displacement address­
ing? It comes in handy when you want to access data in file structures. 

Assume, for example, that you are working with a direct access file. The file will 
have a fixed number of bytes allocated for each field. (Without fixed field lengths 
you can't do direct access.) The file might have the following fields: 

Name 
Age 
Sex 

25 bytes 
1 byte 
1 byte 

You want to read an entire 27-byte record at one time from the disk into main 
memory. How, then, can you retrieve one particular field? If you know how many 
bytes any given field is offset from the beginning of the record, you can use 
Address Register Indirect with Displacement addressing to locate the field you 
want. 

To locate the Age field, first load the starting address of the record into address 
register A2. Then specify the effective address of the Age field by using: 

25(A2) 

Note that while Age is the 26th byte of the record, it is offset only 25 bytes from the 
first byte in the record. 

We'll see much more of this technique when we talk about the File Manager in 
Chapter 11. 

Mode #7: Address Register Indirect with Index 
Address Register Indirect with Index addressing (the other form of displacement 
addressing) adds an additional wrinkle. The effective address will not only be the 
sum of the contents of an address register and a displacement, but the contents of 
an index register will also be needed. An index register is any data or address 
register that you decide to use to hold an index value. That, by the way, isn't as 
much a circular definition as it might seem at first glance. 

Consider the Extremely-Micro Computer example in Figure 2.15. Suppose we 
want to process the values in locations 3-6. We load the address 3 into register A. 
We load a starting index value of 0 into register D. (In this case, we don't have any 
choice of what register to use as an index register since we only have two and we 
must use the address register to hold the memory address.) The effective address 
is computed as shown in 2.15(a). The address in register A (3) is added to the 
displacement (in this example, 0) which is added to the value in register D (also 0). 
This instruction will therefore process the value stored in memory location 3. 

In order to process the next memory location, all we need to do is increment the 
value in register D. (As you'll see in Chapter 4, the incrementing can be done with a 
single 68000 statement.) In 2.15(b) register D contains a value of1. When we repeat 
the same instruction, the effective address becomes 4. Note that though this 
example used a displacement of zero; in practice you may use other values. 
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(a) 

3 B 

D 

(a) 
(A) 3 .0'(A,D) 

d .0' 1 + (D) .0' 

3 = effective address 

[remember that () means 
"contents of"] 

3 B 

D 

( b) 

(A) 3 

d .0' 

+ (D) 1 

4 = 

126 

312 

104 

196 

94 

.0'(A,D) 

1 

H 
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effective address 

Figure 2.15 Using Address Register Indirect with Index Indexing 

The 68000 form of Address Register Indirect with Index addressing is: 

d(An,Rn) d = displacement 
n = register number 
R = either "A" or "D" 

When using this addressing mode, you are limited to an 8-bit displacement (a 
range of -128 to + 127). The R above should be replaced by either an A if you are 
using an address register, or D if you are using a data register for the index register. 

We'll see this mode in action at the end of Chapter 5 when we discuss the 
handling of arrays. 
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Absolute Data Addressing 
Absolute Data addressing allows you to follow the instruction mnemonic with 

the actual address of the operand. No registers are needed. 

Mode #8: Absolute Short Address 
To use Absolute Short addressing, follow an instruction mnemonic with 16-bit 
address: 

Instruction Mnemonic. W 16-bit address (Remember that there may also 
be a destination specified in the 
68000 statement along with the 
address of the operand) 

The assembler "extends" this address to a 24-bit effective address by copying bit 15 
into bits16-31 of the next word. (Though the extension is to a full 32 bits, only 24 can 
be used for an address since the 68000 has that 24-bit address bus.) 

The extension means that when a program uses absolute short addresses of 
$0000 to $7FFF, the effective address will be in the range $000000 to $007FFF. To 
understand why, we need to look at the binary equivalent of these addresses. 

$7FFF = % 0111111111111111 

Bit 15 is 0. When we extend that value, we get an effective address of: 

%0000 0000 0111111111111111 or $007FFF. 

But look at what happens if we specify an address of $8000: 

$8000 = %1000 0000 0000 0000. 

After the extension we get: 

% 111111111000 0000 0000 0000 or $FF8000. 

In other words, when a program uses Absolute Short addressing on an 
address in the range $8000 to $FFFF, the assembler generates an effective 
address of $FF8000 to $FFFFFF. But the 128K Macintosh has a maximum RAM 
address of $1FFFFF and the 512K Mac a maximum of $7FFFFF. For all practical 
purposes, then, this addressing mode is only good for addresses in the lower 
portion of memory - $0000 to $7FFFF. 

Mode #9: Absolute Long Address 
You can still use absolute addressing, even though Absolute Short addressing 
wonl access the entire address range, by using Absolute Long addressing. 
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Absolute Long addressing has the form: 

lnstructionMnemonic.L 32-bit address 

The .L following the instruction mnemonic tells the assembler not to extend 
whatever address follows. Therefore, the address specified will be used as the 
effective address without any changes. 

Symbolic Addresses 
In most applications, you will never use either absolute addressing mode. In 

fact, it is not only possible, but desirable to write programs without reference to 
absolute addresses. Instead, you will use what are known as symbolic addresses. 

A symbolic address is a name (or label) assigned to either a program instruc­
tion or a main memory location where some data are sorted. Through the assem­
bly and linking processes, the symbolic addresses are translated into absolute 
addresses in object code. But when writing the program, you need not worrry 
about specific RAM locations. You can refer to the address of any instruction in the 
program by simply using its label; you can refer to the storage location of a piece of 
data by using the name you assigned to it. You can also assign symbolic 
addresses to data structures. There is much, much more about this in Chapters 4 
ands. 

For example, suppose a program has just performed a comparison operation 
to determine if two quantities are equal. If they are not equal, the program should 
branch to another portion of the program. The mnemonic for an unconditional 
branch is BRA. You could write the instruction using an absolute address: 

BRA $A123 

This statement assumes that you know exactly what program instruction begins at 
memory location $A123. If you change your program (perhaps you had an error to 
correct), it's likely that many of the instructions will shift their places in RAM. What 
you originally expected to find at $A123 will no longer be there. 

If however, you write the statement as: 

BRA Label1 

then the program will branch to whatever instruction has Label1 in its label field. 
Label1 is a symbolic address. It will be replaced by an absolute address in the 
object code when the program is assembled and linked. 

Symbolic addresses can be used anywhere an absolute address is required. 
There are rules for constructing legal symbolic addresses: 

1. If the symbolic address does not begin in column 1 (at the far left of the 
Editor's input window), you must follow it with a colon. 
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2. There is no limit to the number of characters in a symbolic address, but for 
practical considerations, attempt to keep them to under 15 characters. All 
characters are significant. 

3. The first character must be a letter, period(.), or under bar(_). 

4. All other characters must be selected from among letters, numbers, periods, 
underbars, and dollar signs. Blanks are not allowed. 

5. Symbolic addresses must not be the same as 68000 instructions, nor can 
they duplicate the names of Tool Box or operating systems routines. 

Program Counter Relative 
Addressing 

As you remember, the program counter is a special register that holds the main 
memory address of the start of the next program instruction to be executed. The 
68000 microprocessor has two addressing modes that let you specify effective 
addresses as relative to the current contents of the program counter. 

Mode #10: Program Counter with Displacement 
Program Counter with Displacement addressing works very much like Address 
Register Indirect with Displacement addressing (mode #6). The 68000 format for 
specifying an effective address is: 

d(PC) d = displacement 

The assembler computes the effective address by adding the displacement to the 
current contents of the program counter. 

As with displacement addressing using an address register, the displacement 
must be a 16-bit integer. You should also note that the expression (PC) is used 
exactly as shown. (Remember that the parentheses mean ''the contents of," so 
(PC) means ''the contents of the program counter.) 

Mode #11: Program Counter with Index 
This second program counter mode is also analogous to an address register mode 
- Address Register Indirect with Index addressing (mode #7). The effective 

s is the sum of the contents of the program counter, a 16-bit displacement, 
3 contents of an index register. (You may use either a data or an address 
r.) 
e effective address specification must indicate whether the index value is 16 
)its. Therefore, the 68000 format has two possible forms: 

;PC,Rn.W) 
{PC,Rn.L) 

or 
d = displacement 
R = either A or D 
n = register number. 
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Just like other addressing modes that use a displacement, the displacement may 
be a positive or negative integer. 

The Macintosh has a variation on Program Counter with Index addressing that 
is not standard for the 68000 microprocessor. If you specify an effective address 
as: 

d(Dn) d = displacement 

it will assemble as if you had written: 

d(PC,Dn) 

Though this shorthand for Program Counter with Index addressing looks like a 
Data Register Indirect with Displacement mode, it is not. There is no Data Register 
Indirect with Displacement addressing available with the MC68000 chip; that form 
of addressing can be performed only with an address register. 

Immediate Data 
Using immediate data doesn~ qualify as addressing RAM, though ifs usually 

discussed along with the other address modes. When you use immediate data, the 
operand itself is part of the assembly language statement. 

Mode #12: Immediate 
The major problem when using immediate data is finding a way to indicate the 
difference between immediate data and absolute addressing. In other words, how 
will the assembler know the difference between: 

$FF 

when the $FF refers to RAM location $0000FF and: 

$FF 

when the $FF refers to the quantity 255? To avoid the confusion, all immediate 
data is preceded by a#. Therefore, the quantity 255 should be written: 

#$FF 

If you have assigned symbolic addresses to data, you can use those symbolic 
addresses instead of the actual values. For example, to set the output type font you 
need to give the TextFont routine a code number that represents the font you 
want. Remembering the codes is difficult, so each one is assigned a symbolic 
address. The font called Geneva is coded as 3. We could specify that font as #3. 
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But if we assign the value 3 to the symbolic address geneva, then we 'can use 
#geneva to represent the actual quantity associated with that address. 

Immediate data can be character (or string) data as well as quantities. Strings 
are surrounded by paired single or double quotes. For example: 

#'AB' or#"AB" 

will assemble as the ASCII codes of the characters A and B. Strings occupy one 
byte of space per character. 

Mode #13: Quick Immediate 
The expression "quick immediate" refers to a special type of immediate data. Some 
of the 68000 instructions have a variation that embeds the operand into the 
machine language instruction code (the op code) itself upon assembly, though the 
specification of the operation in the source code is the same as standard immedi­
ate data. 

Because the operand becomes a part of the op coae, qu1cK irmnernare aata 1s 
limited to very small operands. Just how small depends on the individual instruc­
tion. 

Why are quick immediate instructions of any use? They save space. A state­
ment using immediate data takes a minimum of two words when assembled (one 
for the op code and one for the data); if there is a destination for the result specified 
in the instruction then at least three words will be needed. Quick immediate 
instructions use one less word of space, since op code and data assemble into a 
single word rather than two. 

Questions and 
Problems 

1. Convert the following decimal numbers to binary. Then convert the binary to 
octal and hexadecimal. 

a. 8 d. 136 g. 1023 
b. 19 e. 506 h. 1028 
c. 67 f. 695 

2. Convert the following hexadecimal numbers to binary. 

a. OOFC d. FFAD g. 01AE 
b. OA03 e. CC12 h. 0333 
c. E216 f. 2390 
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3. A. Consider the user byte of the 68000's status register. Assuming that the 
unused bits (5-7) are always cleared, show the contents of the user byte 
when the execution of a word-sized instruction produces a result of: 

a. -6 d. 40,000 
b. 28 e. -65,000 
c. 0 

B. It's difficult to determine the value of one of the five flags without knowing 
exactly what kind of instruction was executed. Which flag is it? 

4. A. If a microcomputer has a 16-bit address bus, what is the maximum 
address that bus can carry? Express your answer in hexadecimal. 

B. What is the maximum address that a 32-bit address bus can carry? 

Problems 5 and 6 refer to the Extremely-Micro Computer. As you will remember, it 
has an address register, A, and a data register, D. Main memory consists of 
storage locations numbered 0 through 9. 

5. Assume that A contains 6 and D contains 2. 

A. What location is indicated by each of the address specifications below? 

a. 6 d. (A) g. D 
b. #6 e. 2(A) h. -(A) 
c. A f. I (A,D) 

B. Which of the 68000's addressing modes is being used? 

6. Assume now that A contains A, D contains 3, and the program counter (PC) 
contains 2. Repeat questions A and B from problem 5 for the following 
effective address specifications. 

a. 2 d. 2(PC) g. 2(PC,A) 
b. (A) e. 2(PC,D) h. #2 
c. -(A) f. (D) 

7. A. What effect will the effective address specification (SP)+ have on the 
68000 register A 7? 

B. What effect will - (SP) have on register A 7? 
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8. Indicate whether the following are legal or illegal 68000 effective address 
specifications. For each illegal specification, state why it is illegal. 

a. 06 
b. 08 
c. (03)+ 

d. AO 
e. (A)+ 
f. (A4)+ 

g. (A4)-
h. (DO) 
i. 6(A4) 

j. -8(A4) 
k. -256(A4) 
I. - 256(A4,D3) 

9. Assuming that a program is performing word-sized operations, what address 
will be generated by the assembler from the following absolute short 
addresses? 

a. 0023 c. FF39 
b. A100 d. EE9B 
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Chapter Objectives 

1. To learn the steps needed to create a Macintosh Assembly language 
application 

2. To acquire proficiency in using the Macintosh 68000 Development System 

3. To understand the purpose of a debugger and how it is used to aid program 
development 

Introduction 

This chapter is designed to familiarize you with the software that supports 
assembly language programming on the Macintosh. Though you can work with 
this software with only the internal disk drive, you will find that adding the external 
drive will save a great deal of disk-swapping and file-moving frustration. The 
figures in this chapter assume that you are using a two-disk system, though you will 
find instructions for shuffling files for operating with only one. 

The software will run quite acceptably on a 128K Macintosh with one exception 
(see the discussion on debugging toward the end of this chapter). The 128K will, 
however, severely limit the size of application that can be developed. If you intend 
to pursue Macintosh program development beyond the course you are now 
taking, you should seriously consider upgrading a 128K. 

51 
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Regardless of what size machine you are using, you should install the pro­
grammer's switch. That's the mysterious little piece of plastic that came with your 
Mac but without instructions. The programmer's switch snaps into place through 
the slots on the left hand side of the machine, all the way back and down. Place it so 
that the switch labeled RESET is toward the front of the machine. Pressing the 
RESET button will allow you to restart the system after a system error or when it is 
"hung" without having to turn the power off and on again. The other button, 
INTERRUPT, can be used to invoke the debugger. 

To get the most out of the rest of this book, practice using the software now, 
before you become concerned with the 68000 instruction set. A sample program 
to be entered, assembled, linked and run appears in Listing 3.1. This program 
opens a window, prints a line of text, and then waits for the user to hit any key or 
click the mouse button before returning to the Finder. 

Listing 3.1 Sample Assembly Language Program 

Include MacTraps.D 
Include ToolEqu.D 
Include SysEqu.D 

PEA-4(A5) 
_lnitGraf 
_I nit Windows 
_lnitMenus 
_I nit Fonts 

;Includes addresses of ToolBox routines 
;Includes the ToolBox equates 
;Includes the System equates 

;Initializes QuickDraw 
;Initializes the Window Manager 
;Initializes the Menu Manager 
;Initializes the Font Manager 

CLR.L -(SP) ;Clear space for WindowPtr result 
PEA Storage Pointer ;Window Storage pointer 
PEA BoundsRect ;Exterior coordinates of window 
PEA 'MAL Output Window' ;Title 
ST -(SP) ;Make the window visible 
MOVE #documentProc,-(SP) ;Make it a standard document window 
MOVE.L #-1,-(SP) ;Put the window in front 
ST -(SP) ;Draw a go-away box 
CLR.L -(SP) ;Place for window's reference value 
_NewWindow ;Draw a standard document window 

LEA WindowPtr,A0 ;load destination address for pointer 
MOVE.L (SP)+,(A0) ;retrieve pointer 

MOVE.L WindowPtr.-(SP) 
_SelectWindow 

MOVE.L 
_Set Port 

_lnitCursor 

WindowPtr,-(SP) ;put pointer back on the stack 
;make this window the current grafport 

;set the cursor to the arrow (continued) 



MOVE.W 
_TextFont 

MOVE.W 
_TextSize 

MOVE.W 
MOVE.W 
_Move To 
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#7,-(SP) ;7 = athens 
;Set the text font 

#18,-(SP) ;18 for 18-point type 
;Set the text size 

#65,-(SP) ;Horizontal coordinate 
#100,-(SP) ;Vertical coordinate 

;Move the pen 

PEA 'HOORAY!!! You did It!' 
_Drawstring 

MOVE.L everyEvent, D0 ;Mask to select all events 

Flush Events ;Clear the event queue 

Event CLR -(SP) ;Space for boolean result 
MOVE #%0000000000111110,-(SP) ;Mask for keyboard and mouse 
PEA Even!Record ;Place to receive event info 
_GetNextEvent ;Get next event from queue 

MOVE (SP)+,D0 
CMP #0,00 
BEQ Event 

RTS 

DC.L 0 

;Has a keyboard or mouse event occurred? 

;If no event, branch to look again 

;Return to the Finder 

WindowPtr 
BoundsRect 
every Event 
Event Record 
What DC 
Message 
When DC.L 
Point DC.L 
Modify DC 

DC.W 40,20,300,350 
DC.L $0000FFFF 

0 
DC.L 0 
0 
0 
0 

;where GetNextEvent Puts its result 

StoragePointer DCB.W windowSize,0 

END 

The Macintosh 68000 Development System (the MOS) is the formal name for 
the set of programs that enable a programmer to enter, assemble, link, and run 
assembly language programs. It also includes a family of debuggers, programs 
that, among other things, display whafs happening in the Macintosh's registers 
while a program is running. 
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On the disk named MDS1(Figure3.1) you will find : 

1 . the Editor (Edit) - allows you to enter assembly language source programs. 

2. the Executive (Exec) - automates the assembling and linking process 

3. the Assembler (Asm) - translates source code created by the Editor into 
binary object code 

4. the Linker (Link) - links separately assembled modules of source code into 
an executable application 

5. the Resource Compiler (RMaker) - creates files that define windows, 
menus, etc. 

6. Debug Nubs - files used by some of the debuggers 

7. Assembler Support Files (in the folder ASM Stuff) 

r S File Edit Uiew Special 
... 

MDSl 
9 items 362K in disk 

~ ~ @ii) ~~ 
Edit Asm link Exec RMaker 

PackSy ms MacDB Nubs Empty Folder System Folder 

Figure 3.1 The Disk MOS 1 

The disk named MDS2 (Figure 3.2) contains: 

1 . the Macintosh Debuggers (in the folder Debuggers) 

2. the Equates Files (in the Equ Files folder) - handy definitions that the 
ToolBox uses 

3. the Symbol Packer (PackSyms) - a program that compacts Equates Files so 
they will take up less room in your source files 
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4. Packed Symbol Files (in the .D Files folder) - what you get when you put 
Equates Files through the Symbol Packer 

5. Trap Files (in the Trap Files folder) - files that assign names to the instruc­
tion words that reference the Tool Box Dispatch Table 

6. some Sample Programs 

., 

MDS2 
389K in disk 

CJ CJ 
Empty Folder Sample Programs Debuggers 

Figure 3.2 The Disk MOS 2 

Using the Editor 

The Macintosh 68000 Development System comes with its own text editor for 
creating program source files. You may also use MacWrite, but save the document 
as text only, without any formatting information. The MOS editor is "disk based." 
That means you can edit files much larger than what will fit in RAM; the editor 
shuffles bits and pieces of text between the disk and RAM as needed. 

Invoke the editor by double-clicking on its icon. (There are two other ways to 
get into the editor, but this will do for now.) 

Assembly language source files are more or less free form (i .e., there are no set 
columns in which particular parts of the statements must appear). The only rules 
are: 

1. The first field is reserved for symbolic addresses. If a statement doesn't have 
a symbolic address, then it must begin with at least one blank. Symbolic 
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addresses don't necessarily have to start in column one (the far left-hand 
position on the screen), but if they don't, they must be followed by a colon( :). 

2. The second field is reserved for the instruction mnemonic. It must be sepa­
rated from the symbolic address (if one is present) by at least one space. 

3. The third field holds one or more operands (either the operands themselves 
or their effective addresses). The operand field must be separated from the 
mnemonic by at least one space. 

4. The fourth field may contain a comment. Comments begin with semicolons 
(;)and must be separated from the operand field by at least one space. You 
may also have a line in your source file that is all comment. In that case you 
must either have a semicolon or an asterisk (*)in column one. 

For readability, we usually line up the fields. The MOS editor comes with preset 
tab stops which can be changed by using the FORMAT menu (see Figure 3.3). 

To make indentation to the mnemonic field easier, the editor also provides 
automatic indentation. Once you have tabbed to a particular spot without entering 
text in any preceding tab zone, the RETURN key will place the cursor at that tab 
stop instead of in column one. To type something to the left, hit the BACKSPACE 
key. Automatic indentation can be turned off from the FORMAT menu (Figure 3.3). 

r- S File Edit Search bi m::rm Font Size Transfer 

D 
Inc I ude Mac Trap Show I nuisibles ~dresses of Too I Box routines 
Include ToolEqu .......................................................... ~e Tool Box equates 
Include SysEqu . ~e System equates 

Printing Form11t 
PEA -4(AS > 
_Jn i tGraf 
_Jn i UJ i ndows 
_Jni tMenus 
_Jni tFonts 

....Debugger 

; Initializes QulckDraw 
; Initializes the Window Manager 
; Initializes the Menu Manager 
;In·ilial izes the Font Manager 

CLR.L -CSP) ;Clear space for i.JindowPtr result 
PEA StorogePointer ;Window Storage pointer 
PEA BoundsRec t ; Exler i or coord i notes of window 
PEA 'MAL Output Window ' ;Ti tie 
ST -<SP> ;Hoke the window visible 
MOUE rDocProc,-<SP) ;Make it a standard document window 
MOUE.L •-1,-<SP) ;Put the window in front 
ST -<SP) ; Dr aw a go-away box 
CLR. L -<SP) ; PI ace for window's reference value 

IQI ]i!Ji!H~:::,',:::~, ;Draw a standard document window HmJIIH[2@ 

Figure 3.3 The MOS Editor's Format Menu 

The editor provides some basic features for changing source code. Cut, copy, 
and paste work just as they do in MacWrite. You can also align all the text in a 
selected block (select with the mouse as when using MacWrite) with options 
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available from the EDIT menu (see Figure 3.4) . The SEARCH menu (Figure 3.5) 
provides standard find and change capabilities. 

When you have finished entering the sample program, save it to disk. The FILE 
menu (Figure 3.6), just like the MacWrite FILE menu, allows you to name the file 
before you save it. 

,. 
Search Format Font Size Transfer 

AL. files:PAOG I .RSM 

Cut a€H 
Copy a€C 
Paste a€U 

Align a€A 
Moue Left a€l 
Moue Right a€R 

; Includes addresses of Tool Box routines 
; Includes the Tool Box equates 
; Inc I udes the System equo tes 

; lni tiol izes QuickDraw 
; lni ti al izes the Window Manager 
; Initializes the Menu Manager 
; Initializes the Font Manager 

;Clear space for WindowPtr result 
r ;1.Jindow Storage pointer 

.,~r---.,:il!;"'l"r.-:r.:::':'l'"'u ;Exterior coordinates of window 
indow' ;Title 

ST 
MOVE 
MOVE L 
ST 
CLR . L 

-<SP) 
rDocProc, - <SP> 
• -1 , -CSP ) 
-<SP) 
-CSP) 

Jiewl-lindow 

LEA LJindowPtr,AO 
MOUE .L <SP)+ I A 1 

;Hake the window visible 
; Make i l a standard document window 
;Put the window in front 
; Drow a go-owoy box 
;Place for window's reference value 
; Drow a standard document window 

; I ood des ti notion address for pointer 
;get pointer from stack 

Figure 3.4 The MOS Editor's Edit Menu 

File 

D 

Edit ..,,, •l..lll.m Format Font Size Transfer 
"I: Find a€F 

Change a€S L.files:PROG2.ASM 
lnc luq·············· ········ ············· ··· 

i~~:~q HitlP lind 

PEA -4<AS > 
_Ini tGraf 
_In i tLJ l ndows 
_Ini tMenus 
_In i tFonts 

....Debugger 

; Includes addresses of Too I Box routines 
; Includes the Too I Box equates 
; Inc I udes the System equates 

; Initializes QuickDraw 
;Initializes the i.lindow Manager 
; In it i a I i zes the Menu Manager 
;Initializes the Font Manager 

CLR.L -<SP) ;Clear space for LJindowPtr result 
PEA StoragePointer ;LJindow Storage pointer 
PEA BoundsRect ;Exterior coordinates of window 
PEA 'MAL Output Window' ; Ti tie 
ST - <SP> ;Make the window v isible 
MOVE rDocProc,-<SP) ;Make it a standard document window 
MOUE . L • -1 , - <SP> ; Put the window in front 
ST - <SP) ; Draw a go-away box 
CLR . L -<SP> ;Place for window's reference va lue 

..JiewW i ndow ;Draw a standard document window ttt!!!t!!!rnIH]l~; 

Figure 3.5 The MOS Editor's Search Menu 

., 

., 
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r s llil:cl Edit Se11rch Form11t Font Size Tr11nsfer 

~l~New ~N 

S<JL'e 
S11ue BS ... 

LEA ~ i ndowP tr, AO 
MOVE . L <SP)+, A 1 

Figure 3.6 The MOS Editor's File Menu 

How you riame your file is important. The various programs that make up the 
Macintosh 68000 Development System look for files with specific extensions to 
their names. Assembly language source files should have the extension .ASM. 
You could, for example, name the sample program Sample.Asm. 

The Assembler 

There is very little unused space on the disk MDS1. Therefore, if you are 
working with a single disk system, you will have to create a special disk for the 
assembly process. On it you should put your source file, any equates and trap files 
it uses (for the sample program in Listing 3.1 copy Mactraps.D, ToolEqu.D, and 
SysEqu.D from MDS2), the Assembler, and the folder A$M Stuff. 

With a two-drive system, copy the equates and trap files onto the text disk 
which also holds your source file. Put the text disk in the external drive and leave 
MDS1 in the internal drive. 

If you are in the Editor and using a two-drive system, you can invoke the 
Assembler from the Editor's TRANSFER menu (Figure 3.7) . With a single-disk 
system you must copy your source file onto your special Assembler disk. You can 
then enter the Assembler by double-clicking on its icon from the Finder (this 
method will obviously also work for a two-drive system). 

The Assembler will present a list of the files which it can identify as possible 
candidates for assembly (Figure 3.8). If you have a large number of source files on 
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Include MacTraps.O 
Include ToolEqu.D 
Inc I ude SysEqu . D 

PEA -4<AS) 
_In i tGraf 
_ Jn i tl.I i ndows 
_lni tMenus 
_Jn i tFonts 

....Debugger 

; Inc I udes oddr 
;Inc ludes the 
; Includes the 

; In i ti a I i zes 
; Initializes 
; Initializes 
; In i ti a I i zes 

Box routines 

ager 

CLR.L -<SP) ;Clear space for WindowPtr result 
PEA StoragePointer ;Window Storage pointer 
PEA BoundsRecl ;Exterior coordinates of window 
PEA 'MAL Output Window' ;Ti tie 
ST -<SP> ;Make the window visible 
MOVE r.J?ocProc,-<SP) ;Make it a standard document window 
MOUE .. L •-1, - <SP > ;Pu.t .the window in front 
ST -<SP) ;Drow a go-away box 
CLR.L -<SP> ;Place for window's reference value 
J'iewW i ndow ; Drow a s tandord document window 

Figure 3. 7 The MOS Editor's Transfer Menu 

.. s File Options Tronsfer 

FPEqu.THt 5d 
PROGi.RSM lls~•~mbh~ MAL.files 
PAOG2.ASM 

Eject 

Cancel L~riue 
{'\ 

Figure 3.8 Assembler File Select Screen 

., 
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your disk, select the Filter by Time option from the FILE menu (Figure 3.9). This 
will display only those files that have been modified since they were last 
assembled. Double-click on the file name and the assembly process will begin. 
The assembled version of the program is written to a file with the extension .REL 
(e.g., assembling Sample.Asm will produce Sample.REL). 

Before beginning assembly, you can make some choices about the kind of 
output the assembler will produce. By default you will get no listing of the 
assembled version of your program. If you want a listing, select it from the 
OPTIONS menu (Figure 3.10). The listing can be displayed on the screen or 
written to a file. If you choose a file listing (the smart choice, since screen listings will 
rapidly scroll out of sight), the listing will be written to a file with the extension .LST 
(e.g., a source file named Sample.Asm will generate a listing file named Sample. 
LST). Note that assembling with a listing significantly lengthens the time it takes to 
assemble a program. 

The Assembler listing for the Sample program appears in Listing 3.2. The 
leftmost column is a line number for your reference only. The second column from 
the left contains the hexadecimal RAM address where each program line begins. 
By default, the Assembler starts all programs at $0000. This is not where the 
program will end up in RAM when the program is run. The operating system will 
add all the program locations to a fixed base address at run time. 

The remaining numbers are the hexadecimal equivalents of the instruction 
mnemonics and their operands. You will have noticed that there are x's in some 
places rather than hexadecimal numbers. The x's fill in places for absolute 
addresses which the assembler was unable to identify. They will be replaced with 
addresses by the Linker when space for storage locations the applications globals 
area is allocated. 

You can also specify that what is written to the .REL file should be the minimum 
necessary to create a working application (Normal Output) or that the .REL file 
should include extra information to permit creation of a Linker listing (Verbose 
Output). Verbose Output will lengthen both the assembly and linking processes. 

If any errors are detected during assembly, they will be stored in a file with 
extension .ERR (e.g., if your source file is Sample.Asm, then the errors will be 
listed in Sample.ERR). The error file will be placed on the same disk as your 
source file. The errors will also display on the screen as they are discovered, but 
they generally scroll by too fast for you to read and remember them. 

Though a .REL file is created for an assembly in which errors were detected, 
you will not be able to successfully link or execute any program with errors. 
Therefore, if your program has errors, return to the Editor. There you can examine 
the .ERR file at your leisure (printing it out if necessary) and then make the needed 
changes to your source file. 

If you are using a two-disk system, you can return to the Editor through the 
Assembler's TRANSFER menu (Figure 3.11). With a single-disk system, you must 
transfer the .ERR file back to the disk that contains the Editor and then enter the 
Editor from the Finder. 
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Figure 3.9 Assembler File Menu 

[ Hswmblt~] MRL.files 
PROG2.RSM 

Eject 

Con eel Driue 

Figure 3.10 Assembler Options Menu 
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Listing 3.2 Assembler Listing of Sample Program 

0000 

0000 
0000 
0000 
0000 486D FFFC 
0004 A86E 
0006 A912 
0008 A930 
000A ABFE 
000C 
000C 
000C 42A7 
000E 4840 xxxx 
0012 4840 )()()()( 
0016 4840 )()()()( 
001A 50E7 
001C 3F3C 0000 
document window 
0020 2F3C FFFF FFFF 
0026 50E7 
0028 42A7 
002A A913 
002C 
002C 41C0 xxxx 
pointer 
0030 209F 
0032 
0032 2F3A xxxx 
0036 A91F 
0038 
0038 2F3A xxxx 
stack 
003C A873 
003E 
003E N350 
0040 
0040 
0040 3F3C 0007 
0044 N387 
0046 
0046 3F3C 0012 
004A N38A 
004C 
004C 3F3C0041 
0050 3F3C 0064 
0054 A893 
0056 4840 )()()()( 
005A N384 
005C 
005C 203A )()()()( 

Include MacTraps.D 

Include ToolEqu.D 
Include SysEqu.D 

PEA-4(A'5) 

;Includes addresses of ToolBox 
routines 
;Includes the ToolBox equates 
;Includes the System equates 

lnitGraf 
-lnitWindows 

;Initializes QuickDraw 
;Initializes the Window Manager 
;Initializes the Menu Manager 
;Initializes the Font Manager 

-lnitMenus 
:::1nitFonts 

CLR.L 
(PX) 
(PX) 
(PX) 

-(SP) 
PEA 
PEA 

;Clear space for WindowPtr result 
StoragePointer ;Window Storage pointer 
BoundsRect ;Exterior coordinates of window 
PEA 'MAL Output Window' ;Title 

ST -(SP) ;Make the window visible 
MOVE #documentProc,-(SP) ;Make it a standard 

MOVE.L 
ST -(SP) 
CLR.L -(SP) 
_NewWindow 

#-1,-(SP) ;Put the window in front 
;Draw a go-away box 
;Place for window's reference value 
;Draw a standard document window 

(PX) LEA WindowPtr,A0 ;load destination address for 

MOVE.L (SP)+,(A0) ;retrieve pointer 

(R) MOVE.L WindowPtr,-(SP) 

(R) 

_SelectWindow 

MOVE.L WindowPtr,-(SP) ;put pointer back on the 

_Set Port 

_lnitCursor 

MOVE.W 
_TextFont 

MOVE.W 
_TextSize 

MOVE.W 
MOVE.W 

Move To 

;make this window the current grafport 

;set the cursor to the arrow 

#7,-(SPj ;7 = athens 
;Set the text font 

#18,-(SP) ;18 for 18-point type 
;Set the text size 

#65,-(SP) ;Horizontal coordinate 
#100,-(SP) ;Vertical coordinate 

(PX)- PEA 
;Move the pen 

'HOORAYlll You did it!' 
_Drawstring 

(R) MOVE.L everyEvent,D0 ;Mask to select all events 

(continued) 



0060 A032 
0062 
0062 4267 
0064 3F3C 003E 
keyboard and mouse 
0068 4840 )()()()( 
006C M70 
006E 
006E 301F 
occurred? 
0070 0C40 0000 
0074 67 EC (P) 
0076 
0076 4E75 
0078 
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_Flush Events· ;Clear the event queue 

Event CLR -(SP) ;Space for boolean result 
MOVE #%0000000000111110,-(SP) ;Mask for 

(PX) PEA EventRecord ;Place to receive event info 
_GetNextEvent ;Get next event from queue 

MOVE (SP)+,D0 

RTS 

CMP 
BEQ 

#0,D0 
Event 

;Has a keyboard or mouse event 

;If no event, branch to look again 

;Return to the Finder 

0078 
0078 
007C 
0084 
0088 
0088 
OOBA 
OOBE 
0092 
0096 
0098 

00000000 WindowPtr DC.L 0 
0028 0014 012C 015E BoundsRect DC.W 40,20,300,350 
0000 FFFF everyEvent DC.L $0000FFFF 

0000 
00000000 
00000000 
00000000 
0000 

EventRecord ;where GetNextEvent Puts its result 
What DC 0 

Message DC.L 0 
When DC.L 0 
Point DC.L 0 

Modify DC 0 

0098 xxxx xxxx xxxx (R) StoragePointer DCB.W windowSize,0 
0100 
0100 

01E2 

11 4D 41 4C 20 4F 75 74 70 75 74 20 57 69 GE 64 6F 77; 
'MAL Output Window' 

16 48 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21 ; 
'HOORAY!!! Youdic:I~!' 

01F9 00 

The Linker 

A .REL file contains an object code that is relocatable (capable of being moved 
around in main memory). Though it is in the binary, machine language form that 
the computer will understand, it is not an executable application since many of the 
absolute addresses are missing. The Linker provides the final step in the process. 
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The Linker generates two types of output. Assuming that no errors are 
detected during the linking process, you will get an executable application 
(appears on the desktop as a diamond with a hand holding a pen) and a file with a 
.MAP extension. A .MAP file contains a symbol table (exactly where everything is 
when your program is in RAM) and also the Linker listing, if you requested one. 

The operation of the Linker is determined by a Linker control file. A control file 
contains the names of the .REL files to be linked (you can assemble a large 
program in small parts and then have the Linker combine them into a single 
application) and, optionally, a symbolic address that indicates which instruction in 
your source code is the start of your program; instructions on how the program can 
be segmented (it is possible to break a program which is too large to fit into 
memory into segments which are then loaded as needed); and options that control 
the contents of the Linker output file. 

Linker control files are text files that are created with the Editor. They must be 
given the extension .LINK (e.g., the Linker control file for the Sample program 
should be called Sample.LINK). At a minimum, a Linker control file must contain 
the name of the program to be linked and a$ that marks the end of the file. 

For the Sample program, create a text file that contains: 

Sample 

$ 

The [will turn on the listing to the .MAP file and is therefore optional. 
If you are working with a two-drive system, save the Linker control file on your 

text disk. With a single-drive system, put the .REL file, the Linker control file, and 
the Linker on one disk before beginning the linking process. 

You can enter the Linker from the Finder, or from the Assem bier's TRANSFER 
menu (Figure 3.11). The Linker displays a list of Linker control files on the current 
disk (Figure 3.12). Double-clicking on the file name will then begin the linking 
process. 

If the Linker encounters any errors, they will be stored in a file with a .LERR 
extension (e.g., for the Sample program, Linker errors will be written to Sample. 
LERR). A .LERR file can be examined from the Editor, just like .ERR files. 

If you include a [ in a Linker Control file, the .MAP file will include a program 
listing like the one in Listing 3.3. This listing differs from an Assembler listing in one 
important way: the x's in the Assembler listing have been replaced with absolute 
addresses. This is the version of the program that will actually run. 
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Figure 3.11 Assembler Transfer Menu 

Figure 3.12 Linker File Select Screen 

MAL.files 

Eject 

Concel Driue 
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Listing 3.3 Linker Listing of Sample Program 

Sample.Rel 

000000: 
000000: 
000000: 
000000: 
000000: 48 6D FF FC 
000004:A86E 
000006:M12 
000008: A9 30 
00000A: A8 FE 
00000C: 
00000C: 
00000C: 42 A7 
00000E: 487A 0088 
000012: 487A 0068 
000016: 487 A 0188 
00001 A: 50 E7 
00001 C: 3F 3C 00 00 
window 
000020: 2F 3C FF FF FF FF 
000026: 50 E7 
000028: 42 A7 
00002A: A9 13 
00002C: 
00002C: 41FA004A 
000030: 20 9F 
000032: 
000032: 2F 3A 00 44 
000036: A9 1 F 
000038: 

. 000038: 2F 3A 00 3E 
00003C: A8 73 
00003E: 
00003E: A8 50 
000040: 
000040: 
000040: 3F 3C 00 07 
000044: A8 87 
000046.: 
000046:3F3C 0012 
00004A: A8 SA 
00004C: 
00004C: 3F 3C 00 41 
000050: 3F 3C 00 64 
000054: A8 93 
000056: 
000056: 487 A 018A 
00005A: A8 84 
00005C: 
00005C: 20 3A 00 26 

Include MacTraps.D 
Include ToolEqu.D 
Include SysEqu.D 

;Includes addresses of ToolBox routines 
;Includes the ToolBox equates 
;Includes the System equates 

PEA-4(A5) 
;Initializes QuickDraw lnitGraf 

-lnitWindows 
-lnitMenus 
_I nit Fonts 

;Initializes the Window Manager 
;Initializes the Menu Manager 
;Initializes the Font Manager 

CLR.L -(SP) ;Clear space for WindowPtr result 
PEA StoragePointer ;Window Storage pointer 
PEA BoundsRect ;Exterior coordinates of window 
PEA 'MAL Output Window' ;Title 
ST -(SP) ;Make the window visible 
MOVE #documentProc,-(SP) ;Make it a standard document 

;Put the window in front 
;Draw a go-away box 

MOVE.L#-1,-(SP) 
ST -(SP) 
CLR.L -(SP) 
_NewWindow 

;Place for window's reference value 
;Draw a standard document window 

LEA WindowPtr,A0 ;load destination address for pointer 
MOVE.L(SP)+,(A0) ;retrieve pointer 

MOVE.LWindowPtr,-(SP) 
_SelectWindow 

MOVE.LWindowPtr,-(SP) ;put pointer back on the stack 
SetPort ;make this window the current grafport 

_lnitCursor 

MOVE.W 
_ TextFont 

MOVE.W 
_TextSize 

MOVE.W 
MOVE.W 
_Move To 

;set the cursor to the arrow 

#7,-(SP) ;7 = athens 
;Set the text font 

#18,-(SP) ;18 for 18-point type 
;Set the text size 

#65,-(SP) ;Horizontal coordinate 
#100,-(SP) ;Vertical coordinate 

;Move the pen 

PEA 'HOORAY!!! You did it!' 
_Drawstring 

MOVE.LeveryEvent,D0;Mask to select all events 

(continued) 
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000060: A0 32 
000062: 
000062: 42 67 
000064: 3F 3C 00 3E 
keyboard and mouse 
000068: 487 A 001 E 
00006C:~70 
00006E: 

Event 

00006E: 30 1 F 
occurred? 
000070: 0C 40 00 00 
000074: 67 EC 
000076: 
000076: 4E 75 
000078: 
000078: 
000078: 00 00 00 00 
00007C: 00 28 
00007E: 00 14 
000080: 01 2C 

_Flush Events ;Clear the event queue 

CLR -(SP) ;Space for boolean result 
MOVE #%0000000000111110,-(SP) ;Mask for 

PEA EventRecord 
_GetNextEvent 

MOVE (SP)+,D0 

CMP #0,D0 
BEQ Event 

RTS 

;Place to receive event info 
;Get next event from queue 

;Has a keyboard or mouse event 

;If no event, branch to look again 

;Return to the Finder 

WindowPtr DC.L 0 

000082: 01 SE BoundsRect DC.W 40,20,300,350 
000084: 00 00 FF FF everyEvent DC.L $0000FFFF 
000088: EventRecord ;where GetNextEvent Puts its result 
000088:0000 What DC 0 
00008A: 00 00 00 00 Message 
00008E: 00 00 00 00 When DC.L 
000092: 00 00 00 00 Point DC.L 
000096: 00 00 Modify DC 
000098: 

DC.L 0 
0 
0 
0 

000098: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000000000000000000000000000000000000000000000000 
~0000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000 
000000 

StoragePointer DCB.W windowSize,0 
0001D0: 
000100: 11 40 41 4C 20 4F 75 74 70 75 74 20 57 69 6E 64 6F 77 

0001E2:16 48 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21 

0001F9:00 
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A caveat is in order with regard to the Linker. If your attempt at linking gives 
system error #28, then the Finder has run out of memory (the stack has run into the 
heap) and cannot place your application file in the disk directory. A disk should 
theoretically hold somewhere near one hundred files, but if you are working with a 
128K Mac you may see this error with less than 20 files on your disk. If this occurs, 
delete some files or transfer just the few files you absolutely need to another disk to 
successfully complete the linking. (.MAP, .ERR, .LST and .LERR files are good 
candidates for deletion.) 

Running an Application 
After a successful linking, there are two ways to execute an application. The 

successful linking will add an extra option to the Linker's TRANSFER menu (Figure 
3.13). You can run the program by selecting that option. You can also run any 
application at any time by double-clicking its icon from the Finder. 

Assuming that you have successfully entered, assembled, and linked the 
Sample program, your output will appear as in Figure 3.14 

Run-Time System 
Errors 

There are some errors that the Assembler's error-checking capabilities will not 
catch. These often don't show up until an application is running and appear as 
system errors that require resetting the system to recover (such as error #28 
mentioned above). 

For example, assume that you wanted to specify an operand as immediate 
data. To correct, you should have used: 

Instruction Mnemonic #SomeQuantity ,DO 

Unfortunately, you left off the# which means that your source code contained: 

Instruction Mnemonic SomeQuantity ,DO 

The Assembler interpreted the quantity as an absolute address; what was in the 
source file was a totally correct use of Absolute addressing. The problem, though, 
is that you don't want what is stored at whatever address the quantity represents; 
you want the quantity itself. Nonetheless, since the syntax of the statement is 
correct, the Assembler won't pick up the error. 
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Figure 3.13 Linker Transfer Menu after a Program has been Successfully Linked 

MRL Output Window 

HOORAY! !! You did it! 

Figure 3.14 Output From Sample Program 
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When you run the application, all sorts of strange things can happen. More 
often than not, a system error #02 (bad address) will occur. 

You'll find the error messages associated with the system errors in Table 3.1. 
Though such errors are extremely difficult to interpret, the table includes some 
suggestions as to causes of the more common ones and their solutions. 

Table 3.1 Macintosh's System Error Codes 

=E~rro=r~Coci==e=---=E~rro=r~M=e=ss=a~g=e~~~~~~~~Co='-m~me-'="nts=-~~~~~~~~-

01 Bus Error Not applicable on the Macintosh 

02 Address Error 

03 Illegal Instruction 

O 4 Zero divide 

O 5 Range Check Error 

06 Overflow 

07 Privilege violation 

08 Trace Mode Error 

09 Line 1010 Trap 

Your program has attempted to use 
an address which makes no sense to the 
operating system (a word or longword reference 
has been made to an odd address). Can be 
caused when an immediate operand is missing 
its#. 

The code in an instruction field does not 
represent any instruction in the 
68000's instruction set. Check immediate 
addressing for missing #. 

Just what is says -- your program has 
attempted to do a division by zero. 

Failure of one particular 68000 instruction -­
CHK (checks one word of a data register against 
an upper - bound value). 

Failure of one particular 68000 instruction -­
TRAPV (executes a trap if the overflow flag 
in the status register is set). 

Not terribly important since all assembly 
language programs run in the "supervisor" 
mode, where you have access to all 
instructions. 

Trace mode is initiated by setting one of 
the bits in the user byte of the status 
register. The Macintosh never uses trace mode; 
therefore, this error will occur whenever the 
trace-mode bit is accidentally set. 

"Line 1010 Trap" has to do with calling 
ToolBox routines (see Chapter 6). 

(continued) 
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Error Code Error Message Comments 

10 Line 1111 Trap Another trap not used on the Macintosh. Line 
1111 traps are reserved for further expansion 
of the instruction set (details are in Chapter 6). 

11 Hardware Exception Error The system thinks some other sort of trap has 
occurred. This usually means that the machine 
is seeing some sort of illegal binary instruction 
code. If you get this, check for addresses and/or 
operands that are the wrong size. 

12 Unimplemented Core Routine Can occur when a program invokes the 
debugger when the debugger isn't 
present in memory. 

13 Uninstalled Interrupt Can occur when a program invokes the 
debugger when the debugger isn't 
present in memory. 

14 1/0 Core Error Problem with file access. 

15 Segment Loader Error Caused by failure of an attempt to load a program 
segment into main memory. 

16 Floating Point Error The problem lies in whatever 
part of the program calls FP68K, the 
Macintosh's floating point arithmetic 
package. 

17-24 Packages 0-7 missing Packages are self- contained routines 
present in the system (see Chapters 6, 11 
and 12 for more information). 

25 Memory Full You have two options -- upgrade to 512K or 
segment your program into portions that 
don't need to be memory co-resident. 

26 Bad Program Launch Usually caused by an attempt to launch a file 
that isn't an executable application. 

27 File System Map Trashed Something is wrong with a disk's directory. 

28 Stack Ran Into Heap Another sort of out-of-memory error. 

29 not used 

30 Disk Insertion Error Generates the "Please insert the disk:" alert. 

(continued) 
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Table 3.1 (continued) 

Error Code Error Message Comments 

31 

32-56 

not used 

Memory Manager Errors Indicate problems with the routines that 
manage the use of Macintosh RAM. 

41 No Finder The Finder isn't on any disk currently in the 
system's drives. 

100 Bad startup disk System can't boot because something is wrong 
with the startup disk. Causes a blank screen 
with a disk icon in the center. The disk icon 
contains a question mark. 

The Executive 

If you have been working along with this chapter, you may have decided that 
transferring from the Editor to the Assembler to the Linker and back again is a giant 
pain. There is a way, though, to "automate" most of the tedious steps in the process 
by using the Executive. 

The actions of the Executive are controlled by a file created with the Editor and 
given the extension .JOB. A .JOB file has four fields, separated by tabs. The first 
field contains the names of the application to be executed (e.g., ASM or LINK). 
The second field contains what input the application requires (usually a file name). 
The third field is the application to which the Executive should return if the 
execution of the application in the first field is successful (usually the Executive). 
The fourth field is the application that should be executed if the execution of the 
application in the first field is not successful (usually the Editor). 

An Executive control file for the Sample program might appear as: 

ASM 
LINK 

Sample.Asm 
Sample.Link 

Exec 
text.Disk:Sample 

Edit 
Edit 

When setting up Executive control files, you need to pay attention to what disk 
your files are on. All applications should be on the startup disk (i.e., the inter,nal 
drive). Source files (source code and Linker control files) should be on the same 
disk as the .JOB file (preferably on a text disk in the external drive). Because of disk 
space considerations, it will be very difficultto use the Executive with a single-drive 
system. 

If you want the Executive to automatically run your program after it finishes 
linking (assuming your source files and the completed application are on a text disk 
in the external drive), precede the program's name with the name of the disk. For 
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example, if your text disk is named Text.Disk as in the sample .JOB file above, 
specify the name of the application to be created by the Linker as: 

Text.Disk: Sample 

The name of the application is separated from the name of the disk by a colon. 
To initiate the actions specified in an Executive control file, enter the Executive. 

Usually, you wiil do so by either double-clicking on its icon from the Finder or 
transferring to it from the Editor. 

The Executive's file select screen (Figure 3.15) lets you select the .JOB file to 
execute. Once you double-click on the file name, the process becomes automatic. 

Figure 3.15 The Executive's File Select Screen 

The two-line .JOB file above will perform the following actions: 

1. Assemble the file Sample.Asm 

2. If the Assembler detects errors, execute the Editor 

a. Make the file Sample.ERR the active window 
b. When Sample.ERR is closed, make Sample.Asm the active window 
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3. After a successful assembly, link the file Sample.REL, using Sample.LINK 
as the Linker control file 

4. If the Linker detects errors, execute the Editor 

a. Make the file Sample.LERA the active window 
b. When Sample.LERA is closed, make Sample.LINK the active window 

5. If the linking is successful, execute the completed application, Sample 

Though using the Executive does not speed up the processes required to 
prepare an assembly language program (the Editor, Assembler and Linker still 
have to be loaded into memory every time you need them), it will decrease the 
amount of work you have to do. Set the Executive running and go get a soda ... 

The time it takes to prepare an assembly language program for execution is 
severely constrained by the Macintosh's disk access speed. When using the 
68000 Development System as it is distributed by Apple there is no way to keep the 
Editor, Assembler, and Linker continuously in RAM. There are, however, two ways 
to get around the problem. The first addresses the problem by keeping the Editor, 
Assembler, and Linker in RAM; the second deals with disk access speed. 

If you havea512K Mac you can use a portion of that memory as a RAM disk. To 
do so, purchase Mac Memory Disk by Assimilation Process (available for about 
$30). There is just enough room on the RAM disk for the system files and the Editor, 
Assembler, and Linker. There is no room for the Executive; the editing, assem­
bling, and linking process must be managed manually. That is far less of a 
disadvantage than it might seem. Since all three programs are in RAM, transfer 
between them is almost instantaneous. The major drawback to using the RAM disk 
is that it doesn't leave enough room in memory for a debugger. 

The only way to speed up disk access time is to use a hard disk. In terms of 
cost, a hard disk is not always a viable option. In fact, upgrading a 128K machine to 
512K and purchasing the RAM disk software will cost far less than purchasing a 
hard disk. 

When you use the Executive, you no longer have access to the Assembler and 
Linker OPTIONS menus (e.g., to control listings). You must therefore specify the 
options you want in your source file (see the section on Assembler Directives in 
Chapter 4). 

Debugging 

An assembler, like an interpreter or compiler, checks for syntax errors as it 
translates source code to object code. None of the three translation programs, 
however, can catch logic errors; they simply aren't capable of "understanding" 



USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 75 

what a programmer intended. Finding logic errors is therefore the toughest part of 
the programming. A debugger is a program designed to help the assembly 
language programmer with that task. 

When debugging a Pascal program you may have placed writeln statements 
at strategic places in the code to display the contents of important variables. This 
allowed you to monitor the contents of the variables as they changed and helped 
you pin-point the exact spot in a program where something went wrong. The same 
strategy isn't sufficient, however, when you are working in assembly language. 

Assembly language programs have much greater control over the computer 
than high-level language programs in the sense that as well as manipulating data 
storage locations (i.e., variables) they have direct access to the CPU's registers. 
Therefore, in order to find the source of an error it is usually necessary to see what 
is happening within the registers while the program is running. 

A debugger is a program that, among other things, will do the following: 

1. Run an assembly language program one instruction at a time 

2. Display the contents of the CPU's registers after each instruction is executed 

3. Display the contents of main memory locations 

4. Disassemble program instructions from either RAM or ROM. 

It is generally very difficult to successfully complete an assembly language pro­
gram without at some point employing a debugger. 

If you open the Debuggers folder on MDS2, you will find not one, but six 
debuggers. The best one is MacDB. Unfortunately, you need two Macintosh's 
hooked together to use it (one runs the program and the other runs the debugger). 
Of the other five, two require external terminals (TermBugA and TermBugB) and 
one runs on the Lisa (LisaBug). Both MidiBug and MaxBug, though, will run on a 
single, free-standing Macintosh. 

MaxBug will run only on a 512K machine. Midi Bug will run with 128K, but (and 
this is ;:i. very big "but") once Midi Bug is installed, there is no room in memory for any 
other ;:i.pplication (the Editor, Linker, etc.). Why is this such a problem? Debuggers 
can't pe executed like other applications (i.e., by clicking an icon from the Finder). 
Instead, whenever you boot a disk containing a file called MacsBug (regardless of 
whether that file was originally Midi Bug or MaxBug), that debugger will be auto­
matically placed in memory. It will sit in memory until invoked by an "exception" in 
your program. 

This means that whenever you want to run a program and use Midi Bug with a 
128K machine, you must: 

1. Create a special debugging disk with a file named MacsBug on it. (Be sure 
the file is a renamed Midi Bug since MaxBug won't fit, no matter how hard you 
try.) 
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2. Use MDS1 to boot your Macintosh and complete the assembly and linking 
process 

3. Copy the completed application to the debugging disk 

4. Reboot the system with the debugging disk as the startup disk 

This long procedure would appear to be the only way to use a debugger with a 
128K machine. 

The presence of a debugger in memory does not necessarily mean that the 
debugger will be activated when you run an application. The debugger must be 
"invoked." Though there are several ways to do so, the easiest is to include the 
instruction: 

_Debugger 

in your source code at the point you wish the debugger to take over. 
MidiBug and MaxBug provide the same kind of display; with MaxBug you 

simply get more of it. Figure 3.16 shows the information you receive after the 
execution of a single instruction. 

> 
00CCFE: 
PC=0000CCFE SR=0000A014 
00=00000000 01 =000000FF 
04=00000018 05=00000000 
A0=000022C0 A1=0000021F 
A4=000142AF A5=00070 E42 
> 

Figure 3.16 MidiBug and MaxBug Display 

PC MOVE.W #$003E,-(A7) 

02=003F0000 03=00000000 
06=00000000 07=00000000 
A2=0001437 A A3=00070364 
A6=00070680 A7=00070D3C 

The debugger first prints the starting address of the instruction in main memory 
(in Figure 3.16, $00CCFE). It then disassembles and prints the instruction itself. It is 
important to remember that what is being disassembled is the object code that is 
stored in RAM. That means that the symbolic addresses that you used in your 
source code will not appear; instead you will see the absolute addresses that were 
substituted for the symbolic addresses during the assembly and linking process. 
All addresses and quantities are expressed in hexadecimal, regardless of the 
numbering system used in your source code. The stack pointer disassembles as 
A7, even though it may have been referred to as SP in the original program. 
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The remainder of the debugger's output displays the contents of the 68000's 
registers. PC refers to the program counter, SR to the status register, D0-07 to the 
eight data registers, and AO-A 7 to the eight address registers. All register contents 
are in hexadecimal. 

Once a debugger is invoked, it will print its > prompt, display information 
aboutthe current instruction, print another >, and wait for your command. Though 
there are many commands to control action of the debugger, two will be of the 
most use. T (for Trace) executes a single instruction. Traps (calls to ToolBox and 
operating system routines) are handled as if they were one instruction; the debug­
ger will not trace the instructions that are part of the ToolBox or operating system 
routine. 

S (for Step) when used alone, will also execute one instruction. Traps, though, 
are not treated as single instructions: the debugger will display each step in any 
Tool Box or operating system routines. You can also execute a series of instructions 
with Step by appending a quantity to the command that represents the number of 
commands to be executed. For example, 

86 

will execute six instructions, printing the debugging information about each one. 
Midi Bug replaces the very bottom of the screen with output for one instruction. 

The rest of the screen displays the output from the program being executed. As 
you execute successive instructions, the display for the previous instruction will 
scroll out of sight. 

MaxBug replaces the entire screen with its own output and can therefore 
display information for up to five instructions at one time. If a program affects 
Macintosh's screen, then MaxBug will briefly show program output each time the 
screen changes and then return to the debugging display. The ' key (the key 
above and to the left of the TAB) will also toggle between the application's screen 
and the debugger's screen. 

Using a debugger does present one problem. Since the debugger is monitor­
ing the keyboard for your commands, it effectively prevents a program from 
getting input from either the keyboard or the mouse. If a program expects input to 
stop a loop, then when you run the program from within the debugger, you won't 
be able to stop the loop the same way you would ifthe program were running on its 
own. The situation can be somewhat distressing, since a disk drive may be 
spinning continually when you are using the debugger. (There is a process for 
stopping a drive while using a debugger; see the MOS manual.) 

Ultimately, most loops stop by checking one of the flags in the status register. 
For example, the Sample program uses an instruction that checks the zero flag (bit 
2). If the zero bit is set, the loop continues: if the bit is clear, the loop will end and the 
program stop. The solution, then, is to trick the program into thinking that it has 
required input by manually clearing the zero bit. 
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In Figure 3.16, the contents of the status register is $0000A014, which means 
that the zero bit is set. How in the world can you tell? Remember that each 
hexadecimal digit represents four binary digits. Therefore, the 4 in the right-most 
position actually represents $0100. The zero bit is bit 2 (the third bit from the right). 
What we need to do is replace the 4 with the hexadecimal representation of any of 
the following code groups: %0000, %0001, %0010, %0011, %1000, %1001, 
% 1010, or % 1011 (in hexadecimal: 0, 1, 2, 3, 8, 9, A, or B). The trick is that the third 
bit must be zero; the contents of the others is irrelevant. 

The command: 

SROOOOA010 

will replace the contents of the status register with whatever follows SR. Give the 
debugger this command just before executing the instruction that tests the zero bit. 

The debuggers allow you to change the contents of any register at any time. 

Dn new contents 

will replace the contents of data register n. 

An new contents 

will do the same for address register n. 
To replace the contents of the program counter, use: 

PC new contents 

Be very careful when changing the program counter, since the instruction 
executed after a Trace or Step instruction will be whatever instruction begins at the 
address in the program counter. 

To see the assembly language version of an application's instructions as they 
are stored in memory, use ID (instruction disassemble). Used alone, ID will 
disassemble the instruction at the current contents of the program counter. Follow 
ID with an address and it will disassemble the instruction at that address. 

The debugger command SM (set memory) will change the contents of a 
memory location. It's general form is: 

SM main memory address new contents 

For example: 

SM1A2B33 

will place $33 in location $1A2B. Note that the debugger expects all addresses and 
quantities to be expressed in hexadecimal; no leading$ is necessary. 
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In some cases, you may wish to trace a few steps of a program and then let it 
run on its own again. The command G, for GO, will resume normal program 
execution, sending the debugger back into the background. It is therefore possi­
ble to place the trap that invokes the debugger at several places in a program. This 
will allow you to trace a few steps at whatever parts of the program are of interest. 

If a program is so full of bugs that it cannot terminate successfully on its own, 
there are two ways to exit the debugger. The debugger command ES (exit to shell) 
will generally return to the Finder (note that some program errors will cause this 
command to fail and your only recourse is to reboot). RB (reboot) will reset the 
machine. 

The successful use of a debugger is something that cannot be directly taught; 
it's something that comes from practice. To begin to understand what a debugger 
does, insert _debugger in the Sample program just below the _initFonts 
statement. Copy the appropriate debugger onto a disk that also contains a System 
Folder. For a single drive system, place the final version of the Sample program on 
this disk as well; in a two-drive system, the Sample program should be on a text 
disk in the external drive. Boot the system to install the debugger and then run the 
Sample program by double-clicking on its icon. The debugger screen will appear 
almost instanteously. 

Monitor the progress of the program using the T command. Keeping a printed 
listing of the program handy will also aid in understanding what appears on the 
screen. Look primarily at how each instruction changes the contents of the CPU's 
registers. Experiment with the other debugger commands. When you are finished, 
type G to return control to Sample so that it can terminate with a click of the mouse 
button or a key press. 
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c H A p T E R F 0 u R 

THE 68000 INSTRUGTl8N SET 
(Pfo\RT1) 

Chapter Objectives 

1. To create an 1/0 shell program that can be used to explore the 68000 
instruction set 

2. To understand the purpose and use of assembler directives 

3. To understand data manipulation instructions (MOVE, LEA, PEA) 

4. To understand instructions used to make comparisons in assembly lan­
guage programs 

5. To take a first look at creating a loop within an assembly language program, 
including instructions which execute unconditional branches 

Creating an 1/0 Shell 
Since all Macintosh 1/0 is done exclusively through the ToolBox, if you are 

going to see the result of executing even the simplest 68000 instruction, you'll need 
to be able to use the ToolBox right away. That would seem to mean that you must 
learn how to use the Tool Box at the same time you are learning the instruction set. 

If, though, you modify the Sample program from Chapter 3 so that it appears as 
in Listing 4.1, you will have a ToolBox"shell" into which you can insert bits of 68000 
code. The shell will display the results of executing those instructions. You can 
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then, for the most part, leave worrying about the Tool Box until you understand the 
instruction set. Therefore, many of the program listings in this chapter are 
designed to be inserted into the shell (as indicated in Listing 4.1) before they are 
run. 

Listing 4.1 Sample Macintosh Assembly Language Program 

Include MacTraps.D 
Include ToolEqu.D 
Include SysEqu.D 

;Includes addresses of ToolBox routines 
;Includes the ToolBox equates 

PEA-4(A5) 
lnitGraf 

-lnitWindows 
-lnitMenus 
=:1nitFonts 

;Includes the System equates 

;Initializes QuickDraw 
;Initializes the Window Manager 
;Initializes the Menu Manager 
;Initializes the Font Manager 

CLR.L -(SP) ;Clear space for WindowPtr result 
PEA Storage Pointer ;Window Storage pointer 
PEA BoundsRect ;Exterior coordinates of window 
PEA 'MAL Output Window' ;Title 
ST -(SP) ;Make the window visible 
MOVE #documentProc,-(SP) ;Make it a standard document window 
MOVE.L #-1,-(SP) ;Put the window in front 
ST -(SP) ;Draw a go-away box 
CLR.L -(SP) ;Place for window's reference value 
_NewWindow ;Draw a standard document window 

LEA WindowPtr,A0 ;load destination address for pointer 
MOVE.L (SP)+,(A0) ;retrieve pointer 

MOVE.L WindowPtr,-(SP) 
_SelectWindow 

MOVE.L WindowPtr,-(SP) ;put pointer back on the stack 
_Set Port ;make this window the current grafport 

_lnitCursor 

MOVE.W #7,-(SP) 
_TextFont 

MOVE.W #18,-(SP) 
_TextSize 

;set the cursor to the arrow 

;7 = athens 
;Set the text font 

;18 for 18-point type 
;Set the text size 

MOVE.W #65,-(SP) ;Horizontal coordinate 
MOVE.W #100,-(SP) ;Vertical coordinate 
_Move To ;Move the pen (continued) 
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Listing 4.1 (continued) 

PEA 'HOORAY!!! You did it!' 
REMOVE THESE STATEMENTS 
TO CREATE THE TOOLBOX 
SHELL 

_Drawstring 

MOVE.L everyEvent,D0;Mask to select all events 
Flush Events :Clear the event queue 

Event CLR -(SP) ;Space for boolean result 
MOVE #%0000000000111110,-(SP) ;Mask for keyboard and mouse 
PEA EventRecord ;Place to receive event info 
_GetNextEvent ;Get next event from queue 

MOVE (SP)+,D0 
CMP #0,D0 
BEQ Event 

RTS 

DC.L 0 

;Has a keyboard or mouse event occurred? 

;If no event, branch to look again 

;Return to the Finder 

WindowPtr 
BoundsRect 
every Event 
EventRecord 
What DC 
Message 
When DC.L 
Point DC.L 
Modify DC 

DC.W 40,20,300,350 
DC.L $0000FFFF 

0 
DC.L 0 
0 
0 
0 

;where GetNextEvent Puts its result 

Assembler Directives 
lacintosh assembly language source file may contain more than just 68000 
:ions. It can also include assembler directives. Assembler directives are 
I mnemonics that give the assembler directions that are to be followed 
the assembly process. Most of them involve setting aside space for storage. 

;an also assign values to symbolic addresses and cause external source files 
ncluded as a part of the file being assembled. 
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EQU (Equate) 
One of the most useful assembler directives is EQU (equate). EQU assigns a 

permanent value to a symbolic address. For example: 

Name EQU O 

assigns the value 0 to the symbolic address Name. Then, instead of using 0 in 
source code, use Name. When the program is assembled, the value 0 will be 
substituted for Name everywhere it appears. 

An equate is directly equivalent to assigning a constant value to an identifier in 
the const block of a Pascal program. Like Pascal constants, the values assigned 
to symbolic addresses by EQU cannot be changed during program execution. 

To handle equates and other symbolic addresses, the assembler builds a 
symbol table. Think of a symbol table as a two-dimensional array kept in RAM while 
the assembler is running. One column holds the symbolic addresses; there is 
therefore one row in the symbol table for each symbolic address. A second column 
in the table identifies the type of symbolic address (e.g., whether it is an equate or a 
statement label). The assembler enters a symbolic address into the symbol table 
when it is first encountered. For an equate, a third column in the array holds the 
value assigned to the symbolic address. For statement labels, the third column 
holds the address of the program statement to which the label refers. 

Each time the assembler recognizes a reference to a symbolic address in the 
program being assembled, it checks the symbol table to see if it can find an entry 
for that symbolic address. If the symbolic address is an equate, then the assembler 
merely substitutes the value of the equate in the table for the symbolic address in 
the source code. 

Because the assembler expects to find an entry for an equate in the symbol 
table, EQU statements must appear before their symbolic addresses are used in 
program instructions; otherwise, the program simply will not assemble. It is there­
fore good programming to group all EQU statements together (along with com­
ments explaining what they reference) immediately after the INCLUDE directives 
(discussed directly below) at the very beginning of the program. 

You can EQU addresses as well as constant numeric data. For example, if you 
include: 

Address_1 EQU $1A3B 

in source code, you can use Address_1 in any place where you need to 
reference the address $1A3B. It is acceptable in any of the Macintosh's addressing 
modes that accept absolute addressing. 

What, then, is in those equates files (e.g., ToolEqu. D and SysEqu. D) that came 
with your Macintosh 68000 Development System? If you look at the source listings 
(ToolEqu.Txt and SysEqu.Txt) you'll see that both files are nothing more than a 
series of EQU statements. They set up constants that are useful when working with 
Tool Box and operating system routines. 
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INCLUDE 
To make the symbolic addresses available in the equates file to any program 

you write, INCLUDE the equates files. INCLUDE is another assembler directive. It 
instructs the assembler to seek another source file which is to be inserted into a 
program. To use INCLUDE, specify: 

INCLUDE fname 

where fname is the name of the source file to be included in the program being 
assembled. 

Data Allocation 
There are two assembler directives that fall into the classification "data alloca­

tion directives." These set up symbolic addresses for storage locations in either the 
program itself or the applications globals area of RAM. You can think of them as 
analogous to variable names (i.e., the symbolic address represents the location of 
one or more pieces of data). The contents of storage locations identified by such 
symbolic addresses can be changed while the program is running. 

DC (define constant) assigns one or more values to a symbolic address. The 
statement: 

Label DC 0 

will, for example, cause the following actions during assembly: 

1. An address for Label will be selected at the end of the source code. (If you 
look at the bottom of the assembler listing for the Sample program, you will 
see the space that has been allocated for each DC directive. 

2. Label will be associated with that address. 

3. The address associated with Label will be given an initial value of 0. 

There are four variations on the define constant directive: DC, DC.B, DC.W, 
DC.L. The extensions determine whether the data will be aligned on byte, word, or 
longword boundaries. If no extension is present, the data will be aligned on word 
boundaries by default. 

At first glance, it might seem that DC isn't much different from EQU. 
Remember, though, that EQU assigns a permanent value to a symbolic address, 
whereas values assigned by DC are only initial values and can be changed by the 
instructions within a program. 

The fact that DC allows changing the value associated with a symbolic address 
does not mean that you should necessarily do so. It is good practice to use DC only 
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to store constants and not as locations for data that will change (i.e., consider a 
location established by DC as if it were in ROM, useful for read-only operations). 
The major exception to this rule occurs when an application does printing (see 
Chapter 10 for details). 

DC is also used to assign a series of storage locations, each with its own unique 
value, to a single symbolic address. The statement: 

Label DC 0,16,'ASampleWindow' 

reserves enough storage to store the values 0, 16, and the string "A Sample 
Window." Use of the symbolic address Label will reference the two numeric values 
and the string. This capability is important when preparing data for use with 
ToolBox routines. 

DCB (define constant block) sets aside a block of memory locations, all of 
which will be initialized to the same value. (Notice that this is not the same as using 
DC to reference a series of values, since the DC values can be different from one 
another.) To use DCB, you must not only specify the initial value for the storage 
locations, but the length of the block of locations to be reserved. For example: 

Label DCB 12,0 

will reserve twelve words of storage, beginning at the symbolic address Label. 
Each location will be given the initial value 0. 

The general form of the DCB assembler directive is: 

Symbolic address DCB length of block, initial value 

The actual number of bytes reserved depends on the extension applied to the 
DCB directive. If there is no extension, or if you use an extension of .W, the"length 
of block" parameter will refer to the number of words to be set aside. An extension 
of .B indicates that the length is expressed in bytes; .L specifies a length in number 
of longwords. 

OS (define storage) also reserves a block of storage locations. This storage 
does not become a part of an assembled program. Rather, it is allocated in the 
applications globals area at run time. This form of storage allocation should be 
used for all read/write operations (i.e., a program should avoid writing into its own 
code, as it would if you wrote to a DC location). 

The applications globals area begins at $-100(AS) and grows down in mem­
ory. All storage locations allocated by OS must therefore always be referenced 
relative to AS with what looks like Address Register Indirect with offset addressing. 
Since AS always contains the starting location of the applications globals area, its 
contents should never be changed during program execution. 

The general form of the statement is: 

Symbolic address OS length of block 
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Therefore, the statement: 

Label OS 12 

will set aside twelve words of storage. No initial value is given to the storage. 
As with the DCB directive, how the length parameter is interpreted depends on 

the extension affixed to the mnemonic. No extension or an extension of. W refers to 
words, .B to bytes, and .L to longwords. 

Access to the storage set aside by Label above appears as: 

Label(AS) 

The amount of space needed for OS locations appears on the Linker screen 
during the linking process beside the label "Data Size." 

End of Source 
Another essential assembler directive is END. END is the last statement in a 

source code file. Any statements after END will be ignored by the assembler. It is 
important to remember that END is the physical end of the source code. It has 
nothing to do with the logical end of a program. 

Printing Control Directives 
If you are using the Executive, you cannot control listing options from the 

OPTIONS menus in the Assembler and Linker. You can, though, specify the same 
choices in your source code . 

. EJECT will cause the printer to start a new page. This directive will take effect 
when creating a hard copy of either an assembler or linker listing . 

. Verbose, LlstTofile, and .ListToDisp have the same effect as selecting 
those commands from the OPTIONS menus (see Chapter 3). To turn off verbose 
assembly or a listing use .NoVerbose or .NoList respectively. 

Data Manipulation 
Instructions 

An important part of any microprocessor's instruction set is concerned with 
moving data around in memory. Arithmetic instructions require that at least one 
operand be located in a data or address register. Even more importantly, the 
Macintosh's ToolBox routines look for parameters which have been placed on the 
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stack; operating system routines expect their parameters to be pointed to by 
addresses in registers. 

The most frequently used 68000 data manipulation instructions used in Macin­
tosh assembly language programs are MOVE, PEA, LEA. 

MOVE 
The MOVE instruction takes a piece of data and shifts it from one location to 

another. Like an assignment statement in a high-level language (e.g., C=A), the 
data in the source location is copied into the destination location; the contents of 
the source location are not altered. 

The format of the MOVE instruction is: 

MOVE source address, destination address 

For example: 

MOVE #12,01 

will put the decimal quantity 12 into data register 01. (Remember that when # 
precedes a number it will be interpreted as a quantity rather than as an address.) 

The size of the operand transferred by a MOVE statement depends on the 
extension given the instruction. MOVE or MOVE.W will move one word of data. 
WORD.B will move a byte and MOVE.L will move a longword. 

Source and destination addresses can be specified using most of the 68000's 
addressing modes. The examples which follow will show you the ones most 
commonly used. 

In order to see the results of MOVE statements, lefs use a ToolBox routine to 
display a single character on the screen. This routine is called DrawChar and it 
expects to find the ASCII code for the character to be printed on the top of the 
stack. Therefore, the step that immediately precedes the call to DrawChar must 
MOVE a character onto the stack. 

All ToolBox routines are called by their names. To let the assembler know that 
the statement is a call, an underbar (_) is put in front of the routine name. 
Therefore, if you put the line: 

_DrawChar 

into your source code, it will execute the DrawChar routine. More detail on how 
such calls work appears beginning in Chapter 6. 

The ASCII code for a character is placed on top of the stack using Address 
Register Indirect with Predecrement addressing. (In fact, putting things on the 
stack is a very common use of this addressing mode.) For example: 

MOVE source address, - (SP) 
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This statement will cause the Mac to first decrement the contents of the stack 
pointer (SP or A 7). The data pointed to by the source address will then be moved to 
the new address contained in the stack pointer. 

Why is the address decremented rather than incremented? Remember that 
the stack starts high in memory and grows down (i .e., the bottom of the stack has a 
high address; the top of the stack will always have an address lower than the 
bottom). Therefore, each time we put something on the stack, the address of the 
top must first be decreased. 

Insert these statements into the Tool Box shell : 

MOVE #$0040, - (SP) 
_DrawChar 

When you assemble, link, and run the program, the character "@" will print on the 
screen (see Figure 4.1). $0040 is the ASCII code for "@". Because $0040 is 
preceded by#, the quantity $0040 is moved to the stack. This is an example of 
using immediate data as the source address in a MOVE statement. (Note: The 
DrawChar routine expects to find an entire word of data on the stack. Though 
ASCII codes occupy only a single byte, you must nevertheless move a word onto 
the stack with the ASCII code in the low-order byte. Thus we move $0040 onto the 
stack, forcing the ASCII code into bits 0-7.) 

~D MAL Output Window 

@ 

Figure 4.1 Output From a Single Call to DrawChar 
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It is also possible to use MOVE to take things off the stack. This is important 
because many of the ToolBox routines return information needed later in a 
program. That information is placed on the top of the stack. If you use the 
instruction: 

MOVE (SP)+ ,D1 

the contents of the RAM location pointed to by the contents of the stack pointer will 
be moved to data register D1. Then the stack pointer will be incremented. 

As we have previously discussed, when an operand or address is placed on 
the stack, the contents of the stack pointer must be decremented. Similarly, when 
something is taken off the stack and effectively "removed" from the stack, the stack 
pointer must be incremented. Therefore, the example above uses Address Regis­
ter Indirect with Postincrement addressing. The contents of the stack pointer are 
incremented after the instruction is executed. This is probably the most common 
situation in which this particular addressing mode is used. 

Other addressing modes are also commonly used with the MOVE statement. 
Remove the two statements you previously placed in the ToolBox shell and insert 
the following: 

MOVE #$0040,01 
MOVE 01, - (SP) 
_DrawChar 

Running the program should still print that "@." (If you're getting tired of "@," 

substitute the hexadecimal equivalent of any other ASCII code Macintosh uses.) 
The first MOVE uses Data Register Direct addressing to specify the destination 

address. The $0040 will be stored in data register D1. 
The second MOVE uses the same addressing mode to specify the source 

address. The contents of data register D1 are moved onto the top of the stack (after, 
of course, the contents of the stack pointer [A7J are decremented). 

You can also move data stored under symbolic addresses. For example, try 
this in the shell: 

Data EQU 
MOVE 

_DrawChar 

$0040 
#Data, - (SP) 

The EQU permanently associates the symbolic address Data with the value 
$0040. Using the symbolic address in the MOVE statement has the same effect as 
using $0040 as immediate data. Notice that just like the number $0040, the 
symbolic address was preceded by a # so that the assembler realized that the 
quantity stored as Data was to be used as immediate data rather than as an 
address. 
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Symbolic addresses assigned values by EQU can be used anywhere you 
would use data. For example: 

Data EQU $0040 
MOVE #Data,D1 
MOVE D1, - (SP) 
_DrawChar 

will put $0040 into data register 01 and then move it onto the stack. If you put the 
above code into the ToolBox shell, you should still see"@" printed in the output 
window. 

MOVE can also be used to transfer data between registers. The third line of the 
following code will move the contents of data register 01 to data register 02. 

Data EQU $0040 
MOVE #Data,D1 
MOVE D1,D2 
MOVE D2, - (SP) 
_DrawChar 

The source address in a MOVE statement can be specified using any of the 
68000's addressing modes. The destination address, however, cannot be spec­
ified with immediate addressing nor can it use either of the program counter 
addressing modes. 

The reason immediate addressing cannot be used should be obvious. The 
destination must be a location, a place to put something. Ifs simply not possible to 
store something in a piece of data. 

Why the program counter modes can't be used may not be so clear. But 
consider this: if you store a piece of data in the program counter, you will destroy 
the previous contents of the program counter. Since the program counter keeps 
track of which instruction is to be executed next, erasing that address will com­
pletely disrupt program execution. 

The MOVE instruction, like most other instructions, affects the flags in the status 
register. The extend bit is unaffected. The carry and overflow bits always get a 
value of 0. 01'/e say that they are cleared.) 

What happens to the negative and zero bits depends on the value being 
moved. If the value is equal to zero, the zero flag will be set (given a value of 1) and 
the negative bit will be cleared. If the value is negative, the negative bit will be set 
and the zero bit cleared. If the value is positive, both bits will be cleared. 

PEA 
The letters PEA stand for Push Effective Address. This instruction is not 

commonly used in many 68000 machines, but because it pushes addresses onto 
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the stack and then automatically decrements the stack pointer, it is extremely 
useful for setting up parameters for ToolBox routines. 

Take a look at the two statements you removed from the Sample program to 
create the shell: 

PEA 'HOORAYlll You did it' 
_Drawstring 

This use of the ToolBox routine Drawstring displays the string that you see as the 
operand for the PEA instruction. Like DrawChar, Drawstring looks for its oper­
and on the stack. The string itself, though, is not placed on the stack; during 
assembly and linking it is placed at the end of the program code. Therefore, when 
you wantto display a string, push a pointer to the start of the string. 

What's a pointer? A pointer is an address that cdrresponds to the starting 
address of a series of storage locations. Usually, a pointer will be the starting 
address of a string or a data structure in main memory. 

The general form of the instruction is: 

PEA effective address of source data 

PEA can use any addressing mode except immediate, simply because immediate 
data isn't an address. This instruction does not affect the codes in the status 
register. 

LEA 
LEA stands for Load Effective Address. It moves an address into an address 

register. The general form of the instruction is: 

LEA source address, destination address register 

LEA is most useful for retrieving the absolute address assigned to a symbolic 
address. To see how it works, let's look at the data structure used to pass 
parameters to the operating system routines that provide access to disk files. 

paramBlock 
Link 
Type 
Trap 
CmdAddr 
Complete 
Result 
NamePtr 
VRefNum 

DC.L 0 
DC 5 
DC O 
DC.L 0 
DC.L 0 
DC 0 
DC.L 0 
DC 2 
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These eight parameters are common to all file manager routines. (The complete 
parameter block contains 8 to 16 additional fields, depending on the specific 
routine.) The first four fields are used by the File Manager. The other four, though, 
are of concern to the programmer. 

For example, NamePtr must contain the address of the location where the 
name of a file is stored. The pointer must be loaded into NamePtr before calling 
the File Manager routine. Assume that the file name is stored under a symbolic 
address: 

Fname DC 'SampleFile. Text' 

The instruction: 

LEA Fname,A1 

will store the starting address of the string SampleFile.Text in A1. This is an 
example of absolute addressing, since Fname represents a specific RAM loca­
tion. 

To put that address into NamePtr, the address of NamePtr must also be 
available in an address register: 

LEA NamePtr ,A2 

Then, a program can execute: 

MOVE.L A1,(A2) 

This statement takes whatever is stored in A1 (the address of Fname) and stores it 
at the address stored in A2 (the address of NamePtr). 

There are some things that are important to remember about LEA. The 
destination of the instruction is always an address register. The mnemonic does 
not take any extensions; LEA always transfers a full longword (even though the 
addresses are only 24 bits). 

The source address can be either in an address register, the program counter, 
or can be an absolute address. Three address register indirect addressing modes 
are acceptable: Address Register Indirect, Address Register Indirect with Dis­
placement, and Address Register Indirect with Displacement and Index. Both of 
the program counter modes can also be used for the source address. 

LEA does not affect any of the flags in the status register. 

LOOPING 

Executing a series of statements repeatedly is rather easy in a high-level 
language. In Pascal for example, you can use WHILE/DO.REPEAT/UNTIL, and 
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FOR to implement iteration. With 68000 assembly language, though, there are no 
built-in looping instructions. To understand the sequence of instructions necessary 
to create a loop, consider the steps required to repeat a set of instructions a fixed 
number of times. 

1. Initialize the counter to 1. 

2. Compare the counter with the quantity that represents the number of times 
the loop is to be executed. 

3. If the counter equals the ending value, then terminate the loop. 

4. Otherwise, execute the instructions that form the body of the loop. 

5. Increment the counter. 

6. Return to step 2. 

To program a loop in assembly language, you must execute each step above. 
To see a loop in action, insert the following instructions into your 1/0 shell: 

Again 

MOVE #1,D1 
MOVE #5,D2 
CMP D1,D2 
BMI Done 
MOVE #$0040, - (SP) 
_DrawChar 
Add #1,01 
BRA Again 

;counter 
;number of times to execute loop 
;check the counter 
;end the loop 

;increment the counter 
;continue the loop 

In order to get this code to work (it should print a series of six "@"s as in Figure 4.2), 
place the symbolic address Done in the label field of the statement: 

MOVE.L everyEvent,DO 

so that the statement appears as: 

Done MOVE.L everyEvent,DO 

This sequence introduces four new instructions: CMP (used to make deci­
sions), BMI (one way to check the flags in the status register), ADD (integer 
addition), and BRA (one way to do an unconditional branch). Once you are familiar 
with these instructions and their variations you will, believe it or not, know most of 
the instructions used in Macintosh assembly language programs. 
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MAL Output Window 

@@@@@@ 

Figure 4.2 Output From Multiple Calls to DrawChar 

Making Comparisons 
The 68000 instruction set has one generalized instruction for making com­

parisons - CMP. (There are others, but they are more specialized and less 
commonly used.) The general form of the instruction is: 

CMP address of source operand, destination data register 

CMP subtracts the source operand from the quantity in the destination data 
register. The result of the subtraction isn't stored anywhere. The instruction does, 
though, set the codes in the status register according to that result. 

For example, consider this series of instructions: 

MOVE 
MOVE 
CMP 

#6,01 
#10,02 
01,02 

The CMP instruction will perform the subtraction "1 0 - 6 ." The result (4) is not stored 
anywhere. The negative bit in the status register is cleared (the result was positive). 
The zero bit is also cleared (the result was non-zero). Since no overflow occurred 
and no borrow was required, both the overflow and carry bits are cleared . CMP 
does not affect the extend bit. 



Now, look at these instructions: 

MOVE 
MOVE 
CMP 

#12,01 
#10,02 
01,02 
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The result of the subtraction is - 2. Therefore, the negative and carry bits will be set 
and the others cleared. 

After executing: 

MOVE 
MOVE 
CMP 

#5,01 
#5,02 
01,02 

only the zero bit will be set; all the others will be cleared. 
CMP will work with characters as well as quantities. If you think about ASCII 

codes for a moment, you'll notice that letters that come alphabetically first have 
numerically lower codes than those that come later (e.g., A = $41, B = $42, C = 
$43, etc.). Therefore, when CMP performs a subtraction using ASCII codes, a 
program is actually testing for alphabetical order. 

For example: 

MOVE 
MOVE 
CMP 

#$0043,01 
#$0046,02 
01,02 

tests whether C comes before F in an alphabetical sequence. Remember that 
lower-case letters have different codes from upper-case letters so, for example, h 
will be greater than H. 

You can specify the source operand using any addressing mode. 

Testing the Condition 
Codes 

CMP is conceptually only part of an IF/THEN statement. It compares the 
operands in question and sets the status register so you can actually test the 
condition. Testing the condition requires a separate instruction. 

In Pascal, any executable statement, including a compound statement, can 
follow THEN for execution if the condition is true. In assembly language, you are 
much more limited. Though you can test for a variety of relationships between the 
quantities being compared (e.g., equal to, not equal to, greater than, less than, 
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plus, etc.), there are only two possible actions: you can branch to another instruc­
tion (the branch will take place if the condition is true; otherwise program execution 
continues with the next statement); or you can set or clear a destination byte (the 
byte will be set if the tested condition is true, cleared if the condition is false). 

or 

Using Pascal, you would write: 

IF condition is true THEN GOTO symbolic address 

IF condition is true THEN destination byte = $FF 
ELSE destination byte = $00; 

Regardless of whether you decide to branch or set a byte, you will still be 
testing the condition codes that were set during a previous operation. 

Bee 
Bee stands for Branch on Condition Code. It is a conditional branch, since the 

branch occurs only if the condition being tested is true. The cc is replaced by two 
letters which stand for the specific condition you want to test. The most commonly 
used forms are: 

BEQ Branch if Equal (true if the zero bit is set) 
BNE Branch if Not Equal (true if the zero bit is clear) 
BMI Branch if Minus (true if the negative bit is set) 
BPL Branch if Plus (true if the negative bit is clear) 

The following conditions, also often used, are tested using logical combina­
tions of the bits in the status register: 

BGE Branch if Greater Than or Equal To 
BGT Branch if Greater Than 
BLE Branch if Less Than or Equal To 
BLT Branch if Less Than 

The full set of condition codes can be found in the 68000 Programmer's 
Reference Manual that came with your Macintosh 68000 Development System. 

To use a Bee, code a statement like: 

Bee symbolic address of destination 

How does a branch work? During assembly, the assembler computes the 
number of bytes between the Bee instruction and the destination statement. This 
quantity, know as an offset, becomes a part of the instruction in the object code. 
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When the statement is executed, the appropriate condition codes are tested. If the 
condition is true, the offset is added to the contents of the program counter. The 
program continues at the program counter's new contents. The offset is limited to 
the quantity that will fit in one word. 

To explore how Bee works, insert the following code into your Tool Box shell: 

MOVE #0,01 
MOVE #5,D2 
CMP D1,D2 
BMI Less Than 
PEA 'The source operand is smaller than the destination 

operand' 
_Drawstring 
JMP Ending 

LessThan PEA 'The source operand is larger than the destination 
operand' 

_Drawstring 
Ending PEA 'Ill' 

_Drawstring 

Vary the mnemonic in the fourth line (BMI) to see how the different conditions 
work. You can also put different values in D1 and D2. Try, for example, using equal 
quantities. 

Unconditional Branching 
without Tests 

There is one instruction in the above example that we haven't discussed -
JMP. JMP is one of two instructions that does an unconditional branch. ("Jump 
directly to a symbolic address; Do not pass Go, Do not collect $200 ... ") The 
general form is: 

JMP symbolic address of destination 

During assembly, the symbolic address ofthe destination is replaced by the actual 
address of the destination instruction. 

The other instruction that causes an unconditional branch is BRA. Like Bee, 
during assembly the assembler computes the number of bytes between the BRA 
instruction and the destination instruction and turns that quantity into an offset. The 
offset is limited to the quantity that will fit one word. 

The general form is: 

BRA symbolic address of destination 
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When a program executes an unconditional branch, the contents of the 
program counter are changed. If branch is initiated by a JMP instruction, the 
address in the operand field will replace whatever was in the program counter. 
With BRA, the offset in the operand is added to the current contents of the program 
counter. In either case, program execution continues at the new address indicated 
by the modified program counter. 

In most cases, choosing whether to use JMP or BRA is a toss up. If, though, 
you have a very long program and are concerned about space, BRA can save at 
least one word of space over JMP. In cases where the offset will fit within a byte, it is 
assembled in the same word as the BRA instruction. If the offset is more than 255, it 
will be assembled into the word after the instruction. A JMP always occupies two or 
three bytes, one for the instruction and one or two for the address, depending on itE 
size. Therefore, if an unconditional branch spans less than 255 bytes, you will save 
one or two words of space in your object code every time you use BRA rather than 
JMP. On the other hand, if you want to shift program control more than 32,767 
bytes (the maximum offset), you must use the JMP. 

More on Testing Condition 
Codes(Scc) 

The second option for action after testing a condition code-setting or clearing 
a byte-is specified by the various forms of Sec (Set on Condition Code). The 
cc is replaced by two characters representing the condition to be tested. 

A Sec statement is written: 

Sec address of byte to be set or cleared 

The destination byte can be specified by any addressing mode except: 1) 
Address Register Direct; 2) Program Counter with Displacement; 3) Program 
Counter with Index; 4) Immediate; and 5) Quick Immediate. 

For example, consider these instructions: 

MOVE 
MOVE 
CMP 
SEQ 

#2,01 
#6,02 
01,02 
03 

The SEQ (Set if Equal) instruction checks the zero bit in the status register. In 
this case, the zero bit has been cleared because the result of the comparison was 
non-zero. Therefore, the SEQ instruction will clear D3 (fill it will all zeros). 

If, though, you execute: 

MOVE 
MOVE 
CMP 
SNE 

#2,01 
#6,02 
01,02 
D3 
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03 will be set (filled with all 1's [$FF]). SNE (Set if Not Equal) is true if the zero bit in 
the status register has been cleared. 

As with Bee, you can test a wide variety of conditions: 

SGE Set if Greater Than or Equal To 
SGT Set if Greater Than 
SLE Set if Less Than or Equal To 
SL T Set if Less Than 
SMI Set if Minus 
SPL Set if Plus 

(Other, less frequently used codes are in the Programmer's Reference Manua~. 
It is also possible to set or clear a byte without testing the condition codes. 

ST destination address 

will fill the byte specified by the destination address with all 1's. By the same token, 

SF destination address 

clears the byte at the destination address. 
To clear either a word or longword, use the CLR instruction: 

CLR destination address 

with no extension or a .Wextension will clear two bytes beginning atthe destination 
address; an extension of .L will clear four bytes. CLR.B will clear one byte. The 
address to be cleared can be specified using any addressing mode except: 1) 
Address Register Direct; 2) Program Counter with Displacement; 3) Program 
Counter with Index; 4) Immediate; and 5) Quick Immediate. 

There is no instruction to simply set all the bits in a word or longword. 

Questions and 
Problems 

For problems 1 through 5, assume the contents of the following selected 68000 
registers and memory locations (the latter are identified by symbolic and absolute 
addresses): 

DO .. [OOOOAB 12) 
02 .. [FFOOFFAA) 
AO .. (00000001) 

D1 .. [00000002) 
03 .. [FFOOOOOO) 
A 1 .. (00000002) 
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$0001 .. (003AJ 
LOC1 

$0004 .. [0002] 
LOC4 

$0002 .. (0001] 
LOC2 

$0005 .. (0020] 
LOCS 

$0003 .. (001 OJ 
LOC3 

$0006 .. (0011] 
LOC6 

1 . What will be stored in register D3 after each of the instructions below are 
executed? 

2. 

3. 

a. MOVE.B 
b. MOVE 
c. MOVE.L 

DO,D3 
DO,D3 
DO,D3 

d. MOVE.B 
e. MOVE 
f. MOVE.L 

D2,D3 
D2,D3 
D2,D3 

A. What will be stored in the destination register after each of the instructions 
below are executed? 

B. Identify the addressing mode used in each case. 

a. MOVE LOC1,DO j. SF DO 
b. LEA LOC1,AO k. CLR D2 
c. MOVE.L AO.DO I. CLR.L D2 
d. MOVE (AO),DO m. MOVE #'C' ,DO 
e. MOVE 4(AO,D1),DO n. MOVE #'AB',DO 
f. MOVE 2(AO),DO 0. MOVE.B #'AB' ,DO 
g. CMP D1,DO p. MOVE.L #'ABCD' ,DO 
h. ST DO q. MOVE.L #' ABC',DO 
i. CLR.B DO r. MOVE #'ABC' ,DO 

Identify the contents of each register and memory location that changes 
when the following blocks of code are executed: 

a. MOVE LOC2,DO 
MOVE #0006,AO 
MOVE DO.AO 

b. LEA LOC2,AO 
MOVE #0006,(AO) 

c. MOVE #0004,AO 
MOVE (AO)+,DO 

d. Offset EQU 3 
LEA LOC2,AO 
MOVE Offset( AO), DO 
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e. MOVE #6,DO 
MOVE #10,D1 
CMP DO,D1 
BGT Greater 
MOVE D1,D2 
JMP Done 

Greater MOVE DO,D2 
Done 

f. MOVE LOCS,DO 
MOVE LOC6,D1 
LEA LOC1,AO 
CMP DO,D1 
BLT Store 
MOVE D1 ,(AO) 
JMP Done 

Store MOVE DO,(AO) 
Done 

g. MOVE LOC6,DO 
MOVE LOC5,D1 
LEA LOC1,AO 
CMP DO,D1 
BLT Store 
MOVE D1 ,(AO) 
JMP Done 

Store MOVE DO,(AO) 
Done 

4. Problems (f) and (g) in 3 above are essentially the same; their difference lies 
only in the quantities being compared. Looking at both blocks of code, what 
do they do? 

5. For each block of code below, indicate the state of the flags in the status 
register after the code has been executed. 

a. MOVE LOC1,DO c. MOVE LOC3,D1 
CMP LOC2,DO CMP #10,D1 

b. MOVE LOC6,DO d. LEA LOCS,AO 
CMP LOC1 ,DO MOVE LOC4,DO 

CMP (AO),DO 
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6. Write a block of code that will load an operand into a data register from a main 
memory location called Spot and then push that same operand onto the 
stack: 

a. Write the code assuming that Spot has been defined as: 

Spot DC 0 

b. Write the code assuming that Spot has been defined as: 

Spot OS 1 

7. Write a block of code that pulls a longword from the stack and stores it in a 
main memory location called NextPlace: 

a. Write the code assuming that NextPlace has been defined as: 

NextPlace DC.L 0 

b. Write the code assuming that NextPlace has been defined as: 

NextPlace DS.L 1 

8. Write a block of code that: 

a. loads an operand from Place1 into a data register. 
b. loads a second operand from Place2 into another data register. 
c. compares the operands. 
d. If the operands are equal, branches to a statement labeled Done. 

i. if Place 1 > Place 2, writes the first operand in Largest and the 
second in Smallest 

ii. if Place 2 < =Place 2, writes the first operand in Smallest and the 
second in Largest 

All operands are word-sized. Be sure to set aside storage space for Place1, 
Place2, Smallest, and Largest with the DC or OS directive. (Remember: 
storage locations defined by OS must be referenced relative to register AS.) 
Use additional statement labels as necessary. 

9. Write two versions of a block of code that creates a string - 'Some silly texf -
and pushes its addresses onto the stack: 

a. Allocate the string as a literal within the code itself. 
b. Allocate the string with a DC directive. 

I 0. Write a block of code that loads an operand from main memory into a data 
register. If the operand is positive, set 07; if it is negative, clear 07. Allocate 
any necessary storage locations. Something to think about: is a CMP 
instruction required as part of your code? 
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Chapter Objectives 

1. To understand the two's complement system of integer representation 

2. To review the process of constructing an assembly language loop 

3. To learn the integer arithmetic instructions 

4. To learn the logical instructions 

5. To understand the use of assembly language subroutines 

Integer Arithmetic 

Microprocessor instruction sets contain instructions for doing arithmetic with 
integers. To manipulate them, you need to know how integers are stored. 

Two's Complement 
The Macintosh stores integers using a twos complement system. Comple­

menting is easier to understand if we look first at base 10 (decimal). The 
complement of a base 10 number is the quantity which, when added to the original 
number, produces a sum of10. For example, the 10's complement of 6 is 4; the 10's 
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complement of 4 is 6. By the same token, the two's complement of a binary number 
is the quantity which, when added to that number, will produce a result of 2. 

There is a simple procedure for obtaining a binary number's two's comple­
ment: 

1 . Invert the bits in a number (for every 0 write a 1, for every 1 write a 0) 

2. Add 1 to the least significant bit 

For example, to convert % 100011 to its two's complement: 

1. Invert: %100011 becomes %011100 

2. Add 1: %011100 + 1 becomes %011101 

To convert a number back to its true-magnitude binary form, take the two's 
complement of the two's complement. 

The Macintosh has two sizes of integer - 16 bits and 32 bits (integer and 
longinteger). In each case, the high-order bit is used as a sign bit - bit 15 of an 
integer and bit 31 of a longinteger. (Remember that the bits are numbered begin­
ning with 0.) If the high-order bit is clear, the number is positive; if it is set, the 
number is negative. That means that the high-order bit does not participate in the 
magnitude of the number. An integer therefore has only 15 bits available for the 
number itself, producing a range of - 32, 768 to + 32, 767. A longinteger has 31 
bits available for the number, giving it a range of - 2,147,483,648 to 
+2,147,483,647. 

Negative numbers are stored in their two's complement form. Positive num­
bers are stored in their true magnitude form (i.e., they are not translated to two's 
complement). This means that if you look at positive numbers in registers or in main 
memory, they can be directly converted to decimal. Negative numbers, on the 
other hand, must first be converted back to their true magnitude form before you 
can determine their value. 

As an example, consider the number -5. In binary, 5 is %0101. If the number 
were positive, it would be stored in a word-sized location as %0000 0000 0000 
0101 ($0005). Tostorea -5, however, twothingsmusthappen:thebinarymustbe 
converted to two's complement form, and a 1 must be placed in bit 15 as the sign 
bit: 

1. Convert to two's complement 

a. lnvertthedigits(%000000000000101)toget %111111111111010. 
Note that we are working with only 15 bits; the 16th will be added later to 
serve as a sign bit. 

b. Add 1 to get % 111 1111 1111 1011. This is the two's complement form. 

2. Insert a sign bit to get the final number % 1111 1111 1111 1011 
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In hexadecimal, - 5 appears as $FFFB. That is the quantity you will see 
displayed by the debugger if you examine a register or memory location that 
contains -5. In hex, -1 is$FFFF, -2 is$FFFE, -3 is$FFFD, -4 is$FFFC, and 
soon. 

The Integer Arithmetic 
Instructions 

Before going on, lefs recapitulate the code that creates a loop like the one first 
introduced in Chapter 4: 

TopOfLoop MOVE #1,D1 
MOVE #TargetValue,D2 
CMP D1,D2 
BMI Outside Loop 
[body of the loop goes here) 
ADD #1,D1 
BRA TopOfLoop 

Outside Loop 

The steps in this loop are: 

1. Initialize a counter 

2. Set a location equal to the target value 

3. Compare the counter to the target value 

4. If the counter equals the target value, end the loop 

Step 1 
2 
3 
4 
5 
6 
7 

5. Execute the body of the loop (any executable statements go here) 

6. Increment the counter 

7. Transfer control to the top of the loop 

The instruction in statement 6 is an example of integer arithmetic. Integer 
arithmetic adds and subtracts numbers up to 32 bits in length. The highest-order 
bit (regardless of the size of the operands) is maintained as a sign bit (0 = a positive 
number, 1 = a negative number). 

Integer arithmetic also multiplies and divides signed or unsigned whole num­
bers up to 16 bits in length: the result can fill up to 32 bits. If you indicate that you 
want to do a signed operation, the highest-order bit in each operand will be used 
as a sign bit. Otherwise, all bits participate in the magnitude of the number. 

To do arithmetic with larger or smaller numbers or numbers that have a 
fractional portion, you must use the Macintosh floating point arithmetic package 
(see Chapter 12). 
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ADD 
The ADD instruction adds a source operand and a destination operand and stores 
the result in the destination location. One of the two operands must be a data 
register; therefore, the instruction can take two forms: 

ADD effective address of source operand, destination data register 

or 

ADD source data register, effective address of destination operand 

The statement: 

ADD #16,D1 

will add the quantity 16 to the contents of 01 and store the result in 01. The second 
operand, which had previously been in 01, will be lost when the result is stored. 
The ADD statement has the same effect as the Pascal statement: 

01:=01+16 

In this form of ADD, you may use any addressing mode to specify the source 
operand. 

When you specify the destination operand as a RAM address (the source 
operand will be in a data register), you may only use "alterable" addressing modes: 
all the address register direct modes and absolute addressing. For example, 
assume the symbolic address Label1 has been assigned to a location in the 
applications globals area. Then: 

MOVE 
ADD 

#22,D1 
D1,Label1 

will 1) put the quantity 22 into 01, 2) add the quantity in 01 to the quantity in the RAM 
location associated with the symbolic address Label1, and 3) store the result in 
Label1. (The Pascal equivalent is Label1: = Label1 + D1.) 

If you want to use an address register as the destination for the result of an 
addition, you need to use a variation of the ADD instruction: ADDA. The instruction 
is written as: 

ADDA effective address of source operand, destination address register 

For example: 

ADDA #22,A1 
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will add the quantity 22 to the contents of A1 and store the result back in A1. (In 
Pascal, A1: = A1 + 22.) You may use any addressing mode to specify the source 
operand. 

It is also possible to add immediate data to an operand stored in RAM without 
moving the operand into a data register. ADDI (Add Immediate) and AODQ (Add 
Quick) will both do the job. ADDI has the form: 

ADDI #quantity, effective address of destination operand 

An ADDQ instruction is written exactly like an ADDI, but the immediate data is 
restricted to the range 1 to 8. The quantity is assembled as a part of the instruction 
and therefore can save space in your source code. 

Any variation of the ADD instruction can be specified as operating on a byte 
(ADD.B), a word (ADD or ADD. W), or a longword (ADD.L). 

This family of instructions affects all the condition codes. As you might expect, 
the negative bit will be set ifthe result is negative, cleared if positive. The zero bit will 
be set ifthe result is zero, cleared if non-zero. The carry and extend bits are both set 
if a carry occurs and cleared if there has been no carry. An overflow will set the 
overflow bit; otherwise, it will be cleared. 

SUB 
SUB (Subtract) is exactly analogous to ADD. The instruction subtracts the quantity 
in a $Ource location from the quantity in a destination location and stores the result 
in the destination location. As with ADD, there are two forms: 

SUB effective address of source operand, destination data register 

or 

SUB source data register, effective address of destination operand 

The instruction: 

SUB #12,D1 

has the same effect as the Pascal statement: 

D1 := D1 -12 

The instructions: 

MOVE 
SUB 

#12,D1 
D1,Label1 
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perform the same actions as: 

Label1 = Label1 - D1 

(assuming that Label1 has been previously assigned as a symbolic address). 
SUB has the same restrictions on addressing modes as ADD. If the source 

operand is specified by its effective address (as opposed to being in a data 
register), then you may use any addressing mode. But if the destination address is 
identified by an effective address, only the register indirect and absolute modes 
are acceptable. 

SUB, as does ADD, has three variations: 

1. SUBA - the destination address is an address register, as in: 

SUB #333,A1 

2. SUBI - the source address is an immediate quantity and the destination is 
identified by its effective address; i.e.: 

SUB #54,Label3 

where Label3 has been previously defined as a symbolic address. 

3. SUBQ - the source address is an immediate quantity in the range 1 through 
8 and the destination location is specified with any addressing mode but the 
program counter modes. For example: 

SUBQ #2,(A2) 

With each variation you may specify the size of the operands as byte (e.g., 
SUB.B), word (e.g., SUB or SUB.W), or longword (e.g., SUB.L). 

SUB also affects the condition codes in the same way as ADD: the negative bit 
is set if the result is negative (cleared if positive); the zero bit is set if the result is zero 
(cleared if non-zero); carry and extend bits are set if a borrow occurred (cleared if 
no borrow occurred); and the overflow bit is set if an overflow occurred (cleared if 
no overflow). 

Integer Multiplication 
Integer multiplication comes in two forms - MULS and MULU. MULS (for Signed 
Multiply) computes the product of two 16-bit signed numbers and returns a signed 
32-bit result. MULU (Unsigned Multiply) does the same but returns an unsigned 
result. 

The general form for these instructions is: 
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MULS effective address of source operand, destination data register 

or 

MULU effective address of source operand, destination data register 

You may use any addressing mode except Address Register Direct to specify 
the effective address of the source operand. For example: 

MULU #62,D1 

will multiply whatever quantity is stored in 01 by the quantity 62 and store the result 
in 01. When using MULU or MULS, rememberthat you must use a data register as 
the destination in a multiplication operation. 

The source operand can only be a word in length; therefore, MULU and MULS 
do not take extensions. 

With either instruction, the overflow and carry bits of the status register are 
always cleared; the extend bit is not affected. MULS will cause the negative bit to 
be set if the result is negative; MULU will set the negative bit if the most significant 
bit of the result is set. (In both cases the negative bit will be cleared if the condition 
for setting the bit has not occurred.) The zero bit will be set when either MULU or 
MULS produces a zero result and cleared for a non-zero result. 

Integer Division 
DIVS and DIVU perform division on signed and unsigned numbers, respectively. 
The general form of the instructions is: 

DIVS effective address of source operand, destination data register 

or 

DIVU effective address of source operand, destination data register 

The destination operand (up to 32 bits in length and contained in a data 
register) is divided by the source operand. The source operand can be specified 
using any addressing mode except Address Register Indirect and is 16 bits in 
length. 

The result is stored in the destination data register. The lower-order half of the 
longword (bits 0-15) will contain the quotient. The upper half (bits 16-31) will contain 
the remainder. For example: 

MOVE 
DIVS 

#33,D1 
#4,D1 
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will cause 01 to receive the following contents: 

%0000 0000 0000 0001 0000 0000 0000 1000 

The quotient (8) is, as explained above, in the lower-order half of the 32-bit 
longword; the remainder (1) begins in bit 16, the first bit of the higher-order half of 
the longword. 

Since the source operand is restricted to 16 bits, neither DIVU or DIVS take an 
extension. The size of the operation is always a word. 

Overflows can be nasty when doing integer division. An overflow condition 
arises when the quotient is larger than 16 bits. If the condition is detected before the 
operation finishes, it is possible that the overflow bit in the status register will be set 
and the destination data register left unchanged. Therefore, if a division could 
generate an overflow, a program should check the overflow bit before assuming 
that the operation was completed successfully. If no overflow has occurred, the bit 
will be cleared. 

The carry bit will always be cleared by a division. The extend bit is unaffected. 
The zero and negative bits are set or cleared, depending on the result of the 
operation. 

Logical Operations 
The way the integer division instructions return their results presents an inter­

esting problem - what can you do if you are interested in the quotient, but not in 
the remainder? Conversely, what if you need just the remainder? To isolate the 
quotient, you will need to fill the high-order half of the destination data register with 
zeros. To isolate the remainder, you'll need to first fill the low-order half of the 
destination register with zeros and then swap the two halves so that your 
remainder is in the low-order half. 

There is more than one way to selectively set the bits in a byte, word, or 
longword, but a commonly employed strategy is to use a logical operator and an 
immediate operand called a "mask." The logical operations available in the 68000 
instruction set are AND, OR, EOR, and NOT. 

AND 
Logical instructions work differently than any other kind of instruction - they 

operate separately on each bit in the operands. AND compares the state of the pair 
of bits that occupy the same location in each operand. If the two bits are both 1, 
then that bit will have a result of1. If either or both area, the result will be zero. Table 
5.1 summarizes the effect of ANDing two bits together. In essence, AND has the 
same effect as multiplying the two bits. 
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The AND instruction takes two forms: 

AND effective address of source operand, destination data register 

or 

AND source data register, effective address of destination 

If the effective address field is the source operand (the first form above), then 
you may use any addressing mode but Address Register Direct. If the effective 
address field is the destination of the operation, there are further restrictions; Data 
Register Direct, both program counter modes, and Immediate are also not 
allowed. The size of an AND operation can be specified as byte (.B), word (no 
extension or • W), or longword (.L). 

RilD 1 a 

1 1 a 

a a a 

Table 5.1 AND Truth Table 

To see how AND works, consider the following example: 

MOVE.B #%00110101,DO 
AND.B #%11110000,DO 

Can you predict what the result (stored in DO) will be? Remember that ANDing 
two 1's produces a 1, but ANDing anything else produces a 0. The result will 
therefore be %00110000. 

How then, can this help us when we want to isolate one part of the result of a 
division operation? There's another way to look at how an AND works - ANDing 
something with a 1 preserves the value of the source bit. ANDing something with a 
0 will always return a 0. To retrieve the quotient of a division, we need to zero outthe 
high-order bits and leave the low-order bits alone. To get only the remainder, we 
need to first zero out the low-order bits, leaving the high-order bits untouched, and 
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then swap the low- and high-order halves of the register. The strategy, then, is to 
create a "mask" so that when we AND the mask with the data register holding the 
result of the division, the part we want to retain will be unaltered, but the half we 
don't want will be filled with Os. Let's look at an example: 

MOVE #88,D1 (D1) = $00000058 
DIVU #3,D1 (D1) = $00010010 (quotient=29; remainder= 1) 
AND #$0000FFFF,D1 

The mask in the example is $0000FFFF (in binary: % 0000 0000 000000001111 
111111111111). Therefore, the contents of 01 after the AND instruction is executed will 
be $00000010. The remainder has been "masked" off and we can now use the 
quotient in 01 as a quantity somewhere else in the program. 

To isolate the remainder, we'll need to reverse the mask: 

AND #$FFFFOOOO,D1 

The contents of 01 will be $00010000. The problem with this result is that though 
the remainder is actually 1, the quantity 01is65,536. What we need now is some 
way to make the high-order bits the low-order bits, and make the low-order bits the 
high-order bits. The instruction SWAP does exactly that for the contents of any 
data register: 

SWAP D1 

will leave us with $00000001 in 01, which is exactly what we need to work with the 
remainder as a quantity. Note that SWAP only works with data registers. It sets the 
negative flag if the most significant bit of the result is set and sets the zero flag if the 
entire result is zero (otherwise, both are cleared). The overflow and carry bits are 
always cleared; the extend bit is not affected. 

OR 
Like, AND, OR has two general forms: 

OR effective address of source operand, destination data register 

and 

OR source data register, effective address of destination operand 

OR is also exactly like AND with regard to restrictions on addressing modes, 
operand size specification, and effect of the condition codes. 

OR is not like AND, though, when it comes to producing results. If you OR 
together two bits, the result will be 1 if either of the two bits is 1; the result will be 0 
only if both input bits are 0 (see Table 5.2). 
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OR 1 a 
1 1 1 

a 1 a 

Table 5.2 OR Truth Table 

What do you think the final contents of D1 will be after we execute these 
instructions? 

MOVE.B 
OR.B 

#%00001111 ,01 
#%10101010,01 

The final contents of D1 will be % 10101111. The only places where the result will have 
Os are those bit positions in which there were Os in the OR instruction operands. 

NOT 
The general form of the NOT instruction is: 

NOT effective address of destination operand 

The instruction inverts the bits in the destination operand, which can be specified 
using any addressing mode but: 1) Address Register Direct; 2) Program Counter 
with Displacement; 3) Program Counter with Index; 4) Immediate; and 5) Quick 
Immediate. In other words, it replaces each 0 with a 1, and each 1 with a 0. For 
example, if D1 contains %0000 0001111110100000111110001011, then: 

NOT.L 01 

will place % 11111110 0000 01011111 0000 0111 0100 in D1. Note that NOT takes an 
extension (.B, . W, or .L) to specify the size of the operand. 

NOT, like the other logical operators, does affect the condition codes in the 
status register. The negative and zero bits are set or cleared according to the result 
of the operations, overflow and carry are always cleared, and extend is not 
affected. 
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EOR 
You may remember that AND does a multiplication of two bits and returns the 

result. EOR (Exclusive OR) adds two bits and returns the results. (In the case of 1 + 
1, it returns O and throws away the carry.) Therefore, EOR will produce a result of 0 
when both input bits are the same (either two 1s or two Os); the result will be 1 when 
the two inputs are different (0 and 1). See Table 5.3 for the truth table. 

For example: 

MOVE.B 
EOR.B 

#O/o00001111,D2 
#O/o11001100,D2 

will place % 11000011 in 02. 
EOR functions exactly like AND and OR in terms of operand size specification, 

address mode restrictions, and effect on the condition codes. 

EOR 1 a 
1 a 1 

a 1 a 

Table 5.3 EOR Truth Table 

Subroutines 

Assembly language programs are never famous for their elegant structure, but 
you can achieve some semblance of order if you break your program into modules 
by placing blocks of code that perform a single function into subroutines. 

Assembly language subroutines are much like Pascal procedures used in a 
program where all variables are defined in the program's var block (i.e., all 
variables are global). All storage locations defined by data allocation directives are 
available to all subroutines (i.e., they are also globa~. You must take care that you 
place your subroutines so that the main program will not drop into them, since 
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assembly language programs execute sequentially unless they encounter a 
branch instruction. Generally, that means that subroutines will be placed toward 
the end of the source code, after the statement that forms the logical end to the 
main program. 

To call a subroutine, you may JSR Oump to subroutine) or BSR (branch to 
subroutine): 

JSR symbolic add,ress of first statement of subroutine 

or 

BSR symbolic address of first statement of subroutine 

The difference between the two is the same as the difference between JMP 
and BRA. During assembly, the symbolic address following JSR is turned into an 
absolute address. When the JSR is encountered during program execution, the 
absolute address replaces the contents of the program counter, and program 
execution continues with the instruction at that address. 

On the other hand, assembling a BSR instruction creates an offset equal to the 
number of bytes betweeri the BSR instruction and the start of the subroutine. The 
Macintosh will add the offset to the contents of the program counter to determine 
the absolute address for the first instruction of the subroutine. 

Even before changing the contents of the program counter, both instructions 
cause the address of the following instruction to be pushed onto the stack. This is 
the address where program execution will continue when the subroutine is 
finished. Subroutines end with RTS (return from subroutine). RTS pulls the 
address that JSR or BSR pushed onto it from the top of the stack and puts it in the 
program counter. 

Remember that because the stack is a last in, first out device, nested sub­
routines will always return to whatever routin~ called them. There may be situa­
tions, though, where you don't need to thread your way up through nested 
subroutines but would like to return directly to, for ex~mple, a main program. You 
can do this by pulling one longword off the stack for each level of subroutine 
nesting you want to skip. An example of this technique appears in the following 
section. 

NOTE: RTS has a special use in Macintosh as$embly language. While most 
assembly language programs signal the logical e11d of the program with some­
thing akin to an END statement, a Macintosh assembly language program does 
not. (Remember that END is an assembler directive that signals the physical end of 
your source code.) Whenever your program should return to the Finder (i.e., a 
logical ending place), use RTS. It has the same effect as END. in a Pascal 
program. It is an executable statement that stops the assembly language program 
and returns control of the system to the Finder. Obviously, this will only work if there 
are no subroutine return addresses on the stack. (If there are, the RTS will simply 
return you to the statement below the last encountered JSR or BSR.) 
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Putting the 
Instruction Set to Work 

- Sorting and 
Searching Arrays 

Among the things that assembly language does exceptionally well are sorting 
and searching. When the data to be sorted and searched are kept in an array in 
main memory, the processes execute at breakneck speed. Lefs look, then, at how 
the video tape index program maintains its master file as a sorted RAM array which 
can be searched using an efficient binary search technique. You will see that 
understanding the individual instructions is really a very minor part of the task; ifs 
figuring out which instructions to use when thafs the challenge. 

Introduction to the Video 
Tape Index Program 

The video tape index program actually uses two files. The first - TAPE.MAS­
TER - is a sequential file that is read into a main memory array at the start of 
program execution. All changes to TAPE.MASTER are made while it is in main 
memory. It is rewritten to disk just before the program ends (when the user 
selectsQUITfromtheOPTIONSmenu). The second file -ANNOTATIONS - isa 
direct access file that is kept on disk. Since the annotations can be rather long (up 
to 256 characters each), they are brought into memory only as needed. 

Though TAPE.MASTER is a sequential file, it nonetheless has fixed field 
lengths, and therefore fixed record lengths. Why? To locate a particular field in a 
particular record in main memory, you must know exactly where each piece of 
data will begin relative to the starting address of the array. This is not possible if the 
ends of fields depend only on the number of characters in each individual piece of 
data. 

NOTE TO PURISTS: There is a way to manage this data with variable field and 
record lengths by preceding the records with a look-up table that gives the relative 
starting location of each record; the programming required to maintain and 
especially to search such a structure is far more complex than that required by the 
video tape index program. 

The structure of TAPE. MASTER is: 

TapeName 
Producer 
ReleaseDate 
Rating 
TapeNumber 
AnnotNum 

30 characters 
20 characters 
4 characters 
4 characters 
4 characters 
1 word (2 bytes) 

Total record length = 64 bytes 
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To allocate space in main memory to hold the array, we need a very large block 
of storage set aside in the applications globals area: 

TapeArray DS.B 6400 

This statement allocates enough storage for 100 records (one byte for each of the 
64 characters in each record). Note that because this statement uses a DS 
directive, there is no way to automatically assign a starting value to each byte in the 
storage block when the program is assembled. 

New records are entered into a temporary area called NewRecord. 
NewRecord is a data structure (we'll talk more about data structures in Chapter 6) 
defined as follows: 

NewRecord DS.B 64 

Offsets into the record are defined as equates at the top of the program: 

oTapeName 
oProducer 
oReleaseDate 
oRating 
oTapeNumber 
oAnnotNum 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

0 
30 
50 
54 
58 
62 

The symbolic address NewRecord refers to the starting address of this data 
structure in memory. A program can, however, get to any field within the structure 
by using Address Register Indirect With Offset Addressing. For example, to 
specify the starting location of the ReleaseDate field, use: 

NewRecord + oReleaseDate(A5) 

Rememberthat because space for NewRecord is allocated with DS, its address is 
relative to (AS), the start of the applications globals area. 

Inserting New Records into 
a Sorted Array 

In order to do a binary search, the array you are searching must be in some 
order. TAPE.MASTER is kept in alphabetical order by the name of the tape. 
Though there are many ways of sorting an array, one simple technique for 
inserting a new record into an array that is already in order is the straight-insertion 
method. To understand the process, take a look at Listing 5.1, pseudocode that 
describes the video tape index's straight-insertion sort. 
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Listing 5.1 Pseudocode for Straight Insertion Sort 

Get number of records in TapeArray. 

Subtract 1 from number to records to get record number of last record (the record pointer). 

Initialize two character pointers to the first character, one for TapeArray and one for NewRecord. 

If record to be inserted is not the first record then 

Repeat 

Get next character from TapeArray record indicated by record pointer; 

Get next character from NewRecord; 

If character from TapeArray is greater than character from NewRecord then 

Move entire TapeArray down one record position; 

Decrement record pointer; 

Reset character pointers to first character 

Until entire name field has been compared OR character from NewRecord is greater 
than character from TapeArray OR record pointer is -1. 

Add 1 to record pointer to obtain record number where NewRecord will be inserted into 
TapeArray. 

Move characters from NewRecord to TapeArray. 

Increment the total number of records in TapeArray. 

The strategy involves comparing the data to be inserted with the bottom record in 
the array. If the new record should be placed "above" the last record, the last 
record is moved down, in effect creating a hole in the array. The new record is then 
compared to the last record but one. If the new record should be placed above the 
last record but one, the last record but one is moved into the hole created when the 
last record was moved. This process is repeated, making comparisons between 
the new record and records already in the array from the bottom up, until such time 
as the new record is equal to or less than a record in the array. Once that condition 
is encountered, the new record is inserted into the hole in the array (thus the name, 
straight-insertion sort). 

Locating Data Stored in Arrays 
Before examining the subroutine that performs the straight-insertion sort in detail, 
let's look at accessing data stored in arrays. How do we do it? We use Address 
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Register Indirect with Index addressing. 
The starting address of the TAPE.MASTER array in main memory is given by 

the symbolic address TapeArray(A5). (There is no need for us to know its 
absolute address.) The starting address of any given record will therefore be equal 
to: 

[(Record Number) * 64) + TapeArray(AS) 

where 64 is the number of bytes in a record. (In this case the characters are packed 
into adjoining bytes.) The expression in brackets above is an offset into the 
TAPE.MASTER array. If this expression seems a bit confusing at first, remember 
that in a computer, numbering systems generally begin with 0 rather than 1 (i.e., the 
second record will have a record number of 1). We might use that quantity as the 
displacement in Address Register Indirect with Index addressing. 

Using the displacement locates the start of one particular record. It does not, 
though, locate a particular field or character that is a part of the record. (The 
displacement is an offset with the array.) To do that, we need an additional offset 
within the record. The index register portion of the effective address could be used 
for that purpose. The same equates that hold offsets into NewRecord can be used 
as offset into a TapeArray record since both have the same structure. To locate, 
for example, the first character in the Rating field, oRating might first be placed in 
a data register: 

MOVE #oRating,DO 

Then, an effective address for the first character in the Rating field would appear 
as: 

Offset(AO,DO) 

where Offset is computed by the method described above, and the address of 
TapeArray(AS) has previously been stored in AO. 

There is a major problem with using the offset as a displacement, however, in 
an array the size of the one used by the video tape index program. With Address 
Register Indirect with Index addressing, the displacement is limited to a range of 
-128 to + 127. As soon as there are more than three records in the array, the offset 
will exceed that range. It is therefore easier to manually compute an address into 
TapeArray. 

For example, to locate the beginning of the Rating field: 

1. Get the starting address of TapeArray: 

LEA TapeArray(AS),AO 
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2. Compute the record offset (assume the record number is in DO): 

MULU #64,DO 

3. Add the record offset to the start of the array: 

ADD 00,AO 

4. Add the field offset: 

ADD #oRating,AO 

It may also be necessary to step through a record, character by character. In 
that case, the strategy is to initialize the index register with the offset into the array 
and then increment it by 1 to move to each successive character. 

Assuming that DO is used as the index register and that AO contains the starting 
address of TapeArray, an entire 64-character record could be handled using the 
following code: 

MOVE RecordNumber,00 
MULU #64,00 ;compute offset 
MOVE #O,D7 ;initialize character counter 

Loop MOVE.B (A0,00),01 ;get one character 
(process the character in some way} 
ADOQ #1,00 ;Increment index register 
AOOQ #1,07 ;increment character counter 
CMP #64,D7 ;have 64 char. been handled? 
BNE Loop ;return to get another 
RTS 

This technique is used to compare the name of the tape in the record to be inserted 
with tape names already in the file. 

The Straight-Insertion Sort 
The assembly language version of the straight-insertion sort appears in Listing 5.2. 
This is part of the subroutine that handles the entry of new records. It assumes that 
the data to be inserted into TapeArray has been collected in NewRecord. 

Since the sort starts by looking at the last record in the array, the record number 
of the first record to be considered will be equal to the total number of records in the 
file. Therefore, the sort first loads that quantity into 01 [(a) in Listing 5.2]. When 
computing offsets, though, the quantity should be one less than the number of 
records. (Rememberthatthe records are numbered beginning with 0.) The routine 
therefore subtracts 1 from the number of records. The program statement at (b) 
initializes 02 as a character counter and index register. 
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Listing 5.2 Straight-Insertion Sort (Version 1) 

(a) 

(b) 
(c) 

(d) 

(e) 

(f) 
(g) 
(h) 

(i) 

Sort MOVE Tota1Records,D1 
SUBO #1,D1 
MOVE #0,D2 
LEA TapeArray(A5),A1 
LEA NewRecord(A5),A2 
CMP #0,D1 
BEO lnsertNew 

Checking 
JSR Compute0ffset1 

NextChar 
MOVE.B (A1,D6),D3 
MOVE.B (A2,D2),D4 
CMP D3,D4 
BGT lnsertNew 
BLT MoveOld 
ADDO #1,D2 . 
ADDO #1,D6 
CMP #30,D2 

;adjust for record #'s beginning with 0 
;index register/character counter 
;start of array 
;start of new record 
~irst record? 
;if so, insert immediately 

;character from array 
;character from new record 
;new-old 
;found place to insert record 

;move existing record down 
;increment character counter/index 

processed?) 
;are two fields exactly equal? (30 bytes 

(k) 

(I) 

(m) 

(n) 

(o) 

BEO lnsertNew 
BRA NextChar 

MoveOld 
MOVE 
ADDO 
JSR 
JSR 

D1,D5 
#1,D5 
Compute0ffset1 
Compute0ffset2 

;if equal, insert new record 
;look at next character 

;record # to move to 

Another 
ADDO 
ADDO 
CMP 
BNE 
SUBO 
CMP 
BEO 
BRA 

MOVE.B 
#1,D6 
#1,D7 
#64,D6 
Another 
#1,D1 
#-1,D1 
lnsertNew 
Checking 

(A 1,D6),(A 1,D7) 
;increment index 

;move one character 

lnsertNew 
MOVE D1,D5 
ADDO #1,D1 

MOVE #0,D2 
JSR Compute0ffset2 

;has an entire record been moved? 

;move back a record 
;does new record go in first position? 

;record number to insert at 

;initialize index 

(p) Again MOVE.B (A2,D2),(A1 ,D7) ;move one character 

(q) 

ADDO #1,D2 
ADDO #1,D7 
CMP #64,D2 ;entire record moved? 
BNE Again 

LEA Tota1Records,A0 
ADDO #1,(A0) 
BRA AllDone ;return - sort is complete (continued) 



122 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Listing 5.2 (continued) 

(r) 
Compute0ffset1 

MOVE D1,D6 
MULU #64,06 
RTS 

Compute0ffset2 
MOVE D5,D7 
MULU #64,07 
RTS 

;offset = record # • 124 

We also need to place the starting addresses of TapeArray and NewRecord 
in address registers so they can be used as part of Address Register Indirect with 
Index addressing. That happens at (c); A1 will hold the address for TapeArray and 
A2 will hold NewRecord's address. If the record being inserted is the first record 
(e.g., the array is empty),' the record is simply moved to TapeArray without further 
processing (d). If TapeArray already has some records, the sort needs to begin 
comparing characters. · 

The first task is to compute the offset for the record indicated by 01. If you look 
at (e), you'll see that offsets are computed in subroutines. The subroutine Com­
pute0ffset1 (r) uses the contents of 01 as the record number; Compute0ffset2 
bases its computations on 05. To compute an offset, the program: 

1. Moves the record number into a temporary storage register (06) and then 

2. Multiplies the record number by the record length (64 bytes). 

Once the offset is computed, one character from the tape array can be loaded 
into 03 (f). A character from the new record is loaded into 04 (g). The characters 
are compared to each other (h). If the character from the new record is greater 
(comes later in an alphabetical sequence) than the character from the array, then 
the place to insert the new record ha·s been found. The program branches to do 
the insertion (n). If the charactj:lr from the new record is less than the character from 
the array, then the record in the array must be moved "down" one position (j). On 
the other hand, if the two characters'are equal, there are two possibilities. 

If 30 bytes (the total length of the field) have been examined, then the names of 
the two tapes are equal. The program checks fpr this condition by incrementing the 
index register/character counter in 02 and then comparing the new value with 30 
(i). The video tape index program inserts records with duplicate tape names 
without further ordering. Therefore, if the two fields are equal, the new record can 
be inserted directly after th~ old one. 

If all 30 characters have not been checked, then it is not possible to make a 
judgment about whether to insert a record or move an existing one. The only 
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recourse is to check the next character in the field. Therefore, the program 
branches back to (f) to begin the comparison process again. 

Moving an existing record down (j) is done character by character. The first 
task is to compute two offsets: one to the beginning of the record (Offset1 in 06) 
which will be moved; and the other to the beginning of the location to which it will be 
moved (Offset2 in 07). Then, statement (k) moves a single character. The index 
registers are incremented and then checked against the number of bytes in the 
record (64) to determine if all of the characters have been moved. If not, the 
program branches to move another character. 

Once an entire record has been moved, the contents of 01 are decremented 
(m). Why decrement the record number? Simply because a straight insertion sort 
starts at the bottom of the array and moves toward the beginning. If, after the 
decrement, 01 contains -1, then the new record comes before all others already 
in the file and should be inserted. In that case, the program branches to insert the 
new record (n). Otherwise, the program branches to begin a new comparison (e). 

Inserting a new record (n) involves moving characters one by one from 
NewRecord into the array. The insertion position is one record beyond the one 
pointed to by 01. Therefore, 01 is incremented. The offset into TapeArray is 
computed (o) and a single character is moved (p). The index registers (02 and 07) 
must then be incremented to count the characters just transferred. Just as with the 
procedure for moving an existing record down, the number of characters moved is 
compared against the total number of characters which must be moved (64) to 
determine ifthe process is complete, If not, the program branches to move another 
(p). 

Once the new record is inserted into the array, only one task remains -
incrementing the total number of records. The absolute address associated with 
the symbolic address NumRecords is loaded into address register A1 (q). The 
quantity stored at the address in AO can then be incremented with a single 
instruction. Now NumRecords reflects the number of records in the array after the 
new record has been inserted. This action completes the straight-insertion sort. 

Locating Records in a 
Sorted Array 

One of the fastest ways to search an ordered list is to use a binary search. The 
binary search strategy involves looking at the middle record in the list, deciding 
whether the record you want is above or below the middle, and then looking only in 
the half of the list where the record could occur. The file is repeatedly cut in half, 
always looking atthe middle record, until eitherthe desired record is located or it is 
apparent that the record wanted isn't present in the array. 

Pseudocode for a binary search appears in Listing 5.3. TapeArray refers to 
the array in RAM while SearchString contains the tape name to be found. A 
pointer to the top record being considered is initialized to 0. (When we talk about 
the top and bottom of the array, we think of the array as if it were written on a sheet a 
paper, with record number O at the top.) The pointer to the bottom of the array is 
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initialized to the total number of records minus one. Then we compute the number 
of the middle record by adding top to bottom and dividing by 2. 

If the record we are looking for is above the middle record, then we move the 
bottom pointer up to the middle; if it is below the middle record, we move to top 
pointer down to the middle. We know that a search has been unsuccessful (the 
record we want isn't present in the array) if the two pointers cross (i.e., bottom 
becomes greater than top). 

We must handle the top two records and the two bottom records in the array 
separately. Therefore, ifthe computation of the middle record number generates a 
result equal to 1or2, the program does a sequential search of the first two records; 
if the computation generates a record number equal to the total number of records 
-1 or the total number of records, the program searches the last two records 
sequentially. Note that these two "special case" searches occupy more than 1/2 of 
the pseudocode listing. 

A binary search also falls apart if there are less than four records in the array. If 
you wish to handle such a possibility in a program, check the number of records in 
the array before beginning the search. If there are less than four records, search 
the array sequentially. The video tape index program assumes that there will never 
be less than four records-a fairly realistic assumption considering the nature of 
the application-and therefore does not handle that situation. 

Listing 5.3 Pseudocode for Binary Search 

Set bottom record pointer equal to total number of records - 1. 

Set top record pointer equal to 0. 

Initialize character pointers for TapeArray and SearchString. 

Repeat 

Compute number of middle record; 

If middle record is not one of the first two records or last two records then 

Get next character from TapeArray; 

Get next character from SearchString; 

Compare the characters; 

If character from name field of TapeArray record is greater than character from 
SearchString then 

Make bottom pointer equal to the middle record number; 

Reset charac,ter pointers to beginning of records 

(continued) 
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Else 

Make top pointer equal to the middle record number; 

Reset character pointers to beginning of records 

Until all characters in name field have been compared and are equal OR top pointer is greater 
than bottom pointer OR middle record is one of first two records or last two records. 

If top pointer is greater than bottom pointer then 

Else 

Report "No Find" 

If all characters in name field have been compared and are equal then 

Else 

Location of record with SearchString is middle record number. 

{must be first two or last two records} 

If middle record is one of first two records then 

Set middle record to 0 for first record; 

While character from name filed of TapeArray record is equal to character from 
SearchString do 

Get next character from TapeArray; 

Get next character from SearchString: 

If all characters in name field of TapeArray record are equal to all characters in 
SearchString then 

Else 

Location of SearchString is record 0 

Set middle record to 1 for second record; 

While character from name filed of TapeArray record is equal to 
character from SearchString do 

Get character form TapeArray; 

Get character from SearchString; 

If all characters in name field of TapeArray record are equal to all 
characters in Search String then 

Location of SearchString is record 1 

(continued) 
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Listing 5.3 (continued) 

Else 

Else 

Report "No Find"; 

Set middle record number equal to last record - 1 ; 

While character from name filed of TapeArray record is equal to 
character from SearchString do 

Get next character from TapeArray; 

Get next character from SearchString; 

If all characters in name field of TapeArray record are equal to all 
characters in SearchString then 

Else 

Location of search string is last record -1 

Set middle record number equal to last record; 

While character from name field Tape Array record is equal to 
characters in SearchString do 

Get next character from TapeArray record; 

Get next character from SearchString; 

If all characters in name field of TapeArray record are equal to 
all characters in SearchString then 

Location of SearchString is last record 

Else 

Report "NoFind". 

The assembly language version of the binary search is a subroutine called by 
three modules in the video tape index program (Select, Change, and Delete). The 
code appears in Listing 5.4. 

The name of the tape for which the routine is searching is stored in the first field 
of NewRecord. When a search is successful, the record number of the record in 
the array whose TapeName matches the tape name in NewRecord is returned in 
05 (this assumes that the records are numbered beginning with 0). If a search is 
unsuccessful, then the routine returns a -1 in 05. 
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Listing 5.4 Binary Search 

NameSearch ;result appears in D5 (-1 =no find) 
(a) LEA TapeArray(A5),A2 

LEA NewRecord(A5),A2 
MOVE Tota1Records,D1 

(b) SUBO #1,D1 ;bottom pointer 
MOVE D1,D3 

(c) SUB #1,D3 ;save total number of records-1 for later reference 
(d) MOVE #0,D2 ;top pointer 

Mid Point 
(e) MOVE D2,D5 ;find middle record# 

ADD D1,D5 
DIVU #2,05 

(f) ANO.L #$0000FFFF,05;mask off remainder 
(g) CMP #1,05 
(h) BLE TopRec ;handle first two records 

CMP D5,D3 
(i) BLE BottomRec ;handle last two records 

MOVE #0,D4 ;initialize index 

JSR Compute0ffset2 
CheckChar 

MOVE.B (A2,D7),D0 ;character from array 
MOVE.B (A1 ,D4),D6 ;character from search string 

G) CMP D0,D6 
(k) BPL BottomHalf 
(I) BMI TopHalf 

ADDO #1,04 
ADDO #1,07 

(m) CMP #30,04 ;are two fields exactly alike? 

(n) 

(o) 

(p) 

BNE CheckChar 
RTS 

BottomHalf 
MOVE D5,D2 
BRA NoFindCheck 

TopHalf 
MOVE D5,D1 

NoFindCheck 
CMP D2,D1 
BMI NoFind 
MOVE #0,04 

;move top pointer down 

;move bottom pointer up 

;pointers have crossed 
;reset index 

BRA MidPoint ;find new middle record and go again 

(q) 

(r) 

No Find 
MOVE #-1,D5 
ATS 

TopRec MOVE #0,05 
JSR OneCheck 
MOVE #1,D5 
JSR OneCheck 
MOVE #-1,D5 
ATS 

;-1 =no find 

;no find 

(continued) 
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Listing 5.4 (continued) 

(s) Bottom Rec 
MOVE D3,D5 
JSR OneCheck 
ADDO #1,D3 
MOVE D3,D5 
JSR OneCheck 
MOVE #-1,D5 
ATS 

;no find 

(t) OneCheck 
MOVE #0,D4 
JSR Compute0ffset2 

One More 
MOVE.B (A1,D7).D0 ;characterfromarray 
MOVE.B (A2,D4).D6 ;character from search string 
CMP D6,D0 
BN E WrongOne 
ADDO #1,D4 
ADDO #1,D7 
CMP #30,D4 
BNE OneMore 

(u) MOVE.L (SP)+,D7 ;pop two subroutine return addresses off stack 
ATS ;return directly to "Select" routine 

(v) WrongOne 
ATS ;return to Top or Bottom 

Conducting a Binary Search 
To begin the binary search, we load the addresses of the two data structures and 
the value of the one constant that the search will need to reference (TapeArray, 
NewRecord, and TotalRecords) into registers [(a) in Listing 5.4]. The record 
number of the last record in the array (equal to the total number of records minus 
one, since the records are numbered beginning with zero) is saved in 01 (b) as the 
bottom pointer. The number of the last record but one is moved to 03 for future 
reference (c), and the top pointer-held in 02-is initialized to 0 (d). 

To compute the middle record (e), we sum the contents of the top and bottom 
pointers and then divide by 2. Then the remainder portion of the result is removed 
by ANDing the destination location (05) with the appropriate mask (f). If you can't 
remember how this works, refer back to the section in this chapter that deals with 
AND. 

The next step in the search is to determine whether the middle record is either 
the first or second record (h) or one of the last two records (i). If it is, then the 
program must branch to examine those records separately. 

Otherwise, the routine must compare the name of the tape in the middle record 
with the name of the tape for which we are searching. The comparison (j) is 
performed in the same way as the comparisons in the straight-insertion sort. 
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There are three possible results of the comparison. The character from the 
name of the tape for which we are searching may be greater than the name of the 
tape in the middle record (k). If so, the top pointer is moved down to equal the 
middle record (n). If the character from the name of the tape for which we are 
searching is less than the character from the name of the tape in the middle record 
(I), the bottom pointer must be replaced by the number of the middle record (o). In 
either case, before proceeding to compute another midpoint, the program needs 
to determine if the two pointers have crossed (p). 

A top pointer greater than a bottom pointer indicates that the record for which 
we are searching is not in the array (q). The search routine loads the "no find" flag (a 
-1) into 05 and returns to the calling program. If the pointers have not crossed, 
then the search must continue by computing another midpoint (e) and repeating 
the entire comparison procedure. 

On the other hand, if the two characters being compared are equal, then it is 
not possible to decide immediately whether the correct record has been found or 
whether the character checking must continue. The deciding factor is the total 
number of characters that have been checked. If all 30 characters are alike (m), the 
name of the tape for which we are searching is exactly the same as the name of the 
tape in the middle record. The search therefore ends successfully (the number of 
the middle record remains in 05) and the subroutine returns to the calling pro­
gram. 

The top and bottom two records are searched sequentially (r,s). For example, if 
the middle record was computed to equal either 0 or 1, then 0 is loaded into 05. 
The comparison between the name of the tape for which we are searching and the 
name of the tape in record 0 is performed by the subroutine OneCheck (t). The 
procedure is exactly the same as that used earlier in the program beginning at the 
symbolic address CheckChar. 

Assuming that the search of record O is successful, there is no need for the 
routine to return to Top (r), where it was called; it can return directly to the part ofthe 
program that called the entire search. To "skip" one subroutine level, we need to 
pull one subroutine return address off the stack. At (u) the top of the stack is moved 
into 07 and, since Postincrement addressing is used, the stack pointer is also 
incremented. Remember that incrementing the stack pointer has the effect of 
removing the top item from the stack. The RTS that follows will therefore transfer 
program control back to the original calling program. 

If the search of record 0 is unsuccessful (u), then the search continues with 
record 1. An unsuccessful search of record 1 indicates a "no find." The two bottom 
records are handled in exactly the same manner. 

This binary search technique can be used with any ordered file or array that 
contains more than three records. Since TAPE. MASTER is ordered by tape name, 
that is the only field on that will support a binary search. If we need to retrieve tapes 
by something other than the name of the tape, there are two alternatives: reorder 
the array on the field to be searched, or do a sequential search. The video tape 
index program uses the latter approach. 
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Questions and 
Problems 

1. Show how the decimal numbers below would be stored as 16-bit binary 
integers in a 2's complement system. 

a. 12 d. -84 g. 2006 
b. -12 e. 603 h. -2006 
c. 84 f. -603 

2. Convert your answers from problem 1 to their hexadecimal representation. 

3. Convert the 2's complement integers below from hexadecimal to binary and 
then to their true magnitude in decimal. Remember to consider the high­
order bit as a sign bit. 

4. 

5. 

a. 0016 d. FFOO g. 88BC 
b. EA14 e. 010A h. 0333 
c. 1183 f, 4100 

Indicate whether each of the following represent legal 68000 instructions. 
For each illegal instruction, describe what is wrong with it. 

a. ADD SomePlace, DO i. MULU.L SomePlace, DO 
b. ADD.L DO, SomePlace j. MULU Locate(AS), D6 
c. ADD DO, Locate(AS) k. DIVS #12,D3 
d. SUB D0,#8 I. DIVU #-6, D2 
e. SUB #8,DO m. DIVS.L #$FFOO, D6 
f. SUB #10,AO n. AND #6,DO 
g. SUB (SP)+,DO o. AND D6,A1 
h. MULU D1,D7 p. OR D2,#% 11110000 

For the following blocks of code: 

A. indicate the contents of the destination register after the code has been 
executed 

B. indicate the state of each of the flags in the user byte of the status register 
after the code has been executed. 

a. MOVE #44,DO 
MOVE #86,D1 
ADD DO,D1 

b. MOVE #186, DO 
MOVE #- 99,D1 
ADD DO,D1 

c. MOVE #-186,DO 
MOVE #99,D1 
ADD DO,D1 

d. MOVE #99,DO 
MOVE #106,D1 
ADD.B DO,D1 
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e. MOVE #12,00 j. MOVE #% 11110000,00 
MOVE #10,01 AND.B #%00110011,DO 
MULU 00,01 

k. MOVE #% 11110000,DO 
f. MOVE #8,DO OR.B #%00010011,00 

MOVE #6,DO 
MULU DO,D1 I. MOVE #$00AB,DO 

AND #$FFFF,DO 
g. MOVE #31,DO 

MOVE #-3,01 m. MOVE #$00AB,DO 
MULS DO,D1 OR #$FFFF,DO 

h. MOVE #80,00 n. MOVE #$00AB,DO 
MOVE #-8,01 EOR #$FOFO,DO 
DIVS DO,D1 

o. MOVE #$124A,DO 
i. MOVE #80,00 NOT DO 

MOVE #-8,01 
DIVU 01,DO 

6. Indicate the contents of registers DO and 01 when the block of code below 
finishes executing. 

MOVE #6,DO 
MOVE #O,D1 

Top ADD #4,01 
SUB #1,DO 
CMP #0,00 
BNE Top 

7. Consider the following block of code: 

MOVE #0,DO 
MOVE #0,01 
LEA Start(A5),AO 

Top MOVE (AO,D0),02 
BEQ Done 
ADD D2,D1 
ADD #2,DO 
BRA Top 

Done 
Start OS 20 
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A. What does this code do? 
B. Why is the index register, DO, incremented by 2 rather than 1? Hint: 

consider the size of the addition instruction's operands. 

8. A. What Pascal operation does this block of code simulate? 

DIVS 
AND.L 
SWAP 

Operand2,DO 
#$FFFFOOOO,DO 
DO 

B. What Pascal operation does this block of code simulate? 

DIVS Operand2,DO 
AND.L #$0000FFFF, DO 

9. Write an assembly language subroutine that will take an operand from 
register DO and compute its square. 

10. Write an assembly language subroutine that computes the factorial of a 
word-sized operand which is passed to the subroutine in DO (n! = 1 * 2 * 3 * 
.... n-1 * n). 

11. Write an assembly language subroutine that checks an array of ten charac­
ters (stored in consecutive main memory locations) and returns the array 
position of the character which is alphabetically last. Place the result in 
register D7. 

12. Write an assembly language subroutine that checks a character string stored 
in main memory and counts the occurrences of a given character within that 
string. The address of the first character in the string is passed to the 
subroutine in AO; the ASCII code of the character being counted is in DO. 
Though the length of the string is unknown, its last character is a double 
quote("). 

13. One assembly language instruction you have not seen is a "shift." A left shift 
moves the bits in the operand one position to the left and puts a zero in bit O. A 
right shift moves the bits one position right and fills the high-order bit with a 0. 

As an example, let's consider a byte-sized shift. The byte at the address 
$1A2B contains the quantity01100110. TheinstructionASL$1A2B(ASL = 
arithmetic shift left) produces the result 11001100. The instruction ASR 
$1 A2B (ASR = arithmetic shift right) produces the result 00110011 . 

What does a left shift do? What does a right shift do? Hint: the answer is 
closely tied to the fact that the contents of the byte is a quantity rather than an 
address or an ASCII code. 
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Chapter Objectives 

1. To review Pascal elementary data types 

2. To review Pascal user-defined data types 

3. To review Pascal data structures (arrays and records) 

4. To review Pascal syntax for procedure and function calls 

5. To take a first look at translating the Pascal syntax of the ToolBox and 
operating system routines into assembly language 

6. To understand the general organization of the Tool Box and operating system 
routines 

7. To learn more details about the trap mechanism that provides access to the 
ToolBox and operating system routines 

Yes, this is an assembly language book, not a Pascal book. Nevertheless, the 
Macintosh's internal routines were created with the Pascal programmer in mind. It 
will therefore not only simplify the process of mastering the Tool Box and operating 
system routines, but make it possible for you to read Macintosh documentation if 
you are comfortable with Pascal data types, their assembly language equivalents 
and how additional data types and data structures are constructed from elemen­
tary data types. 

133 
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Pascal Elementary Data 
Types 

There are six elementary data types from which all other data types are 
developed - three numeric, two character, and one logical. 

Numeric Data Types 

Integers 
Integers are stored as either INTEGER or LONGINT (longinteger). An INTEGER 
occupies two bytes. Whenever the specifications for a ROM routine require an 
INTEGER, you must set aside two bytes of storage somewhere. A LONGINT 
ocupies 4 bytes, which means you must allocate the full four bytes anywhere a 
LONGINT is required. 

The most significant bit in an INTEGER is used as a sign bit. If bit 15 is clear, 
then the number is positive; if it is set, the number is negative. The remaining 15 bits 
hold the number. Therefore, the maximum value that can be stored in an INTEGER 
location is 32,767; the minimum is -32,768. A Pascal INTEGER is therefore 
exactly the same as the Macintosh's 16-bit word. 

To set aside space for an INTEGER you must: 

SymbolicAddress DC. W initial value 

A LONG INT also retains the most significant bit as a sign bit. Bit 31 will hold a 0 
for a positive number and a 1 for a negative number. The maximum quantity that 
you can store in a LONG INT is 2,147,483,647; the minimum is - 2,147,483,648. A 
Pascal LONG INT is therefore exactly the same as the Macintosh's 32-bit longword. 

To declare space for a LONGINT, use: 

SymbolicAddress DC.L initial value 

Integer and longintegers are stored using the two's complement system 
described in Chapter 5. Why use the two's complement form? The answer lies in 
how arithmetic operations are done. With a two's complement system, you can 
perform a subtraction using addition. In other words, to do a subtraction you take 
the two's complement of the subtrahend (the number on the bottom in a subtrac­
tion operation) and add it to the minuend (the number on the top). The result is the 
same as if you did a standard subtraction. A computer designed to use two's 
complement arithmetic, therefore, only requires hardware which can do addition; 
it doesn't need special subtraction circuitry. 
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There are times, when you're in the midst of developing a Macintosh assembly 
language application, that being able to handle two's complement numbers is very 
handy. For example, the File Manager (the part of the Tool Box that provides for file 
1/0) returns a result code in DO after each call to one of its routines. A successful file 
operation has a result code of O , but all the other result codes are negative. 

If you are monitoring the progress of the program with the debugger, then you 
can use that result code as a clue to why an attempted file operation failed. 
Suppose that the program attempted to write something to the disk, but the disk 
was full. The result code for a disk full error is - 34, but the contents of DO appear 
as $FFDE. Believe it or not, $FFDE is the two's complement representation of 
-34. To prove it, let's convert $FFDE back to its true magnitude form: 

Step 1: Convert the hexadecimal digits to binary 

$FFDE = % 1111 1111 1101 1110 

Step 2: Invert the digits 

% 1000 0000 0010 0001 (Note that the highest order bit does not partici- · 
pate in the magnitude of the number; it is a sign 
bit) 

Step3: Add 1 

% 1000 0000 0010 0010 

Step 4: Convert the binary to hexadecimal 

% 1000 0000 0010 0010 = - 2215 

Step 5: Convert the hexadecimal to decimal 

-2215= -(16*2)+2= -34 

Real Numbers 
Real numbers, stored as the Pascal data type REAL, occupy 4 bytes. The number 
is broken into three parts: the mantissa (the fractional part of the number), the 
exponent (the power to which 2 is raised and then multiplied by the mantissa), and 
the sign of the mantissa. All quantities are binary. 

The Macintosh makes no use of the Pascal data type REAL. Arithmetic 
operations on numbers that contain fractional portions are handled by FP68K, the 
floating point arithmetic package. FP68K is discussed in detail in Chapter 12. 
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Character Data Types 
The data type CHAR occupies two bytes. The ASCII code of the character is 

stored in the low-order byte (bits 0-7); the high-order byte is unused. Though it 
may seem like a waste of space to use 16 bits to store an eight-bit code, it is 
nonetheless the way the Macintosh was designed to handle single characters. 
Fortunately, whenever Macintosh needs to deal with more than one character at a 
time, the ASCII codes are packed into adjoining bytes. 

The Tool Box routine _DrawChar requires data stored as CHAR, which is why 
we've been moving an entire word (e.g., $0040) onto the stack rather than just the 
eight bits occupied by an ASCII code. To allocate space for a CHAR, use: 

SymbollcAddress DC. W initial value 

Pascal also has a data type to handle strings - STRING[n). The overall length 
of the string is n + 1 bytes. The first byte contains the length of the string. The rest of 
the bytes contain the ASCII codes of the characters. For example, STRING[255] 
(also written Str255) requires 256 bytes of storage and will accommodate a string 
of up to 255 characters. Note that even though the definition allows 255 charac­
ters, you need not use them all. 

Since a STRING requires more space than a longword, it can be specified by 
using a constant block: 

SymbolicAddress DCB.B length, initial value 

For example, a Str255 data item could be accommodated by: 

°Label DCB.B 256, 11 11 

Strings that are defined in assembly language programs are not automatically 
assembled with length bytes. By default, strings that are defined by LEA or PEA 
instructions are placed immediately after program code and are given a length 
byte. On the other hand, strings defined by any form of DC directive are allocated 
space in the place where they occur in the application source code. They do not 
have length bytes. This distinction can be important, since a number of ToolBox 
routines have parameters of type Str255 and therefore expect the first byte to be a 
length byte. 

The default allocations can be overridden with the STRING_FORMAT 
assembler directive. The format of the directive is: 

STRING_FORMAT value 

STRING_FORMAT's value is two bits. The first bit determines how LEA and PEA 
strings will be handled. If it has a value of 1 (the default), these strings will be 
assembled with a length byte. A value of 0 assembles the text without a preceding 
length byte but with a trailing 0. 
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The second bit affects the format of DC strings. A value of O (the default) 
produces strings with no length byte and no trailing 0 . A value of 1 will assemble 
the strings with a length byte. 

If you wish both types of strings to be assembled with length bytes, use: 

STRING_FORMAT 3 

The 3 is the decimal equivalent of a two-bit number with a 1 in each bit. 

The Logical Data Type 
Pascal's final elementary data type is BOOLEAN. Though a BOOLEAN 

occupies two bytes, only one bit is important. Bit 8 holds a 1 if the word has the 
value of true, a O if the value is false; all other bits are cleared. If you define a 
BOOLEAN as: 

SymbolicAddress DC. W initial value 

then you can compare the symbolic address against Oto test for a value of false, 
but you must test against 256 to check for a value of true. 

User-Defined Data 
Types 

As you probably remember, Pascal allows a programmer to combine the 
elementary data types to create new data types known as "user-defined data 
types." There are four user-defined types commonly used in the definitions of 
Macintosh ToolBox and operating system routines: 

1 . SignedByte - occupies one byte with its contents stored in two's comple­
ment form. A SignedByte can therefore hold integers in the range - 128 to 
+127. 

2. Byte - occupies two bytes with the value stored in the low-order byte. 

3. Ptr (a "pointer") - occupies four bytes and contains an address which 
indicates the starting location of a data structure. The Macintosh uses many 
different pointers; they can be identified by the presence of the characters 
Ptr in the data type name. 

4. Handle - occupies four bytes and contains the address of a master pointer. 
(A Handle is a pointer to a Ptr.) As with pointers, the Macintosh uses many 
different handles. Handles have the characters Handle as part of their data 
type name. 
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While a number of ToolBox routines provide handles to data structures, it 
sometimes becomes necessary to use a pointer to that same data structure. In that 
case, an application must "de-reference" the handle. The code to do so appears 
as: 

MOVE.L SomeHandle,AO 
MOVE.L (AO ),AO 

The first line loads the handle itself into an address register. The second line says: 
take whatever you find at the address specified by the contents of AO, and put it 
back in AO . This will place the pointer in AO, since the contents of a handle storage 
location is a pointer. 

We'll look at other user-defined types as we need them to work with ToolBox 
and operating system calls. 

Pascal Data Structures 
Pascal data structures come in two varieties - arrays and records. Arrays can 

be built from any previously defined data type, though all values in an array must 
be of the same type. Records, as well, can be created from any previously defined 
data type, but different data types are permitted within the record; each item in a 
record is termed a field. 

Arrays 
The Pascal syntax: 

ArrayName = ARRAY [1 .. 20] of INTEGER 

creates a new data type called ArrayName that contains space for 20 values, 
each of which is an INTEGER. Therefore, the total length of this data structure is 20 
words (40 bytes). To allocate space for it in an assembly language program, you 
might use: 

SymbolicAddress DCB. W 20,initial value 

where the 20 refers to the length of the array. 
When an array is PACKED, the computer will store the data as efficiently as 

possible, without regard to how that storage might affect access. For example: 

NewArray = ARRAY [1 .. 24] of BOOLEAN 
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will require 24 words of storage, since each BOOLEAN occupies an entire word. 
To allocate space for it in an assembly language program, you must write: 

SymbolicAddress DCB. W 24,0 

But: 

NewArray =PACKED ARRAY [1 .. 24) of BOOLEAN 

will require only 24 bits (one and a half words), since the boolean values will be 
crammed one next to the other. Defining the packed array for assembly language 
use requires only: 

SyrrabolicAddress DCB.B 3,0 

As a further example, consider the Pascal data type Str255, which is defined 
as: 

Str255 = PACKED ARRAY [1 .. 256] of CHAR 

Instead of occupying one word per character as in the CHAR data type, each 
eight-bit ASCII code is packed in a single byte, and the entire stririg will occupy up 
to 256 bytes. (Don't forget that the first byte contains a number indicating how 
many characters there are in the string.) On the other hand: 

StringArray = ARRAY [1 .. 256] of CHAR 

would occupy 512 bytes, since each non-packed character requires an entire 
word. 

Records 
In terms of dealing with ToolBox and operating system routines, you will 

encounter records more frequently than arrays. Records are commonly used to · 
group information about various entities within the Macintosh. For example, when­
ever you create a menu, the Mac stores data about that menu in a menu record. 
Th~t record is defined as: · 

Menuln!o = RECORD 
menu ID 
menuWIDTH 
menu Height 
menuProc 
enableFlags 
menu Data 

END; 

:INTEGER; 
:INTEGER; 
:INTEGER; 
:Handle; 
:PACKED ARRAY [O .. 31) of BOOLEAN; 
:Str255; 
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This definition creates a new data type called Menulnfo which represents a record 
consisting of six fields of data. Whenever you create a menu, the Macintosh will 
return a pointer to a pointer (the Menu Handle} that will tell you where this 
information is stored. 

How much storage will this menu record use? You can determine the length of 
any record by adding up the length required by each of its fields. In the menu 
record, each of the first three fields requires one word, the Handle data type 
requires two words, the packed array is 32 bits long and therefore requires 2 
words, and the string is up to 256 bytes (128 words) long. Therefore, each menu 
record will take up a maximum of 135 words, or 270 bytes. 

The menu record is an example of a record that will be generated for you by the 
Macintosh; you gain access to it by the handle that is returned by the system when 
you create the menu. At times, though, you will need to define records within your 
programs so that you can either access fields within the records after the Macin­
tosh creates them, or pass data to ToolBox and operating system routines in a 
record. 

For exam pie, every time an "evenf happens to the system (an event could be a 
keypress, a click of the mouse, a disk insertion, or a signal from an 1/0 device, etc.), 
the Macintosh generates an event record, recording data about the event. An 
event record has the structure: 

EventRecord = RECORD 
what 
message 
when 
where 
modifiers 

END; 

:INTEGER; 
:LONGINT; 
:LONGINT; 
:Point; 
:INTEGER; 

If you examine the contents of what, then you can determine what kind of event 
occurred. (What will contain a code identifying the type of event.) Where lets you 
know where the mouse pointer was when the event occurred. The data type Point 
(a user-defined data type) consists of two numbers which give the coordinates of 
the mouse pointer in a Cartesian coordinate system which is superimposed on the 
screen. (See Chapter 7 and the discussion of windows for more information.) 

Since the Sample program in Chapter 3 is designed to respond to mouse and 
keyboard events, the program must set aside space for the event record at the end 
of the program code. (If the storage had been allocated with OS, the space would 
be in the applications globals area.) The definition appears as: 

EventRecord 
What DC 0 
Message DC.L 0 
When DC.L 0 
Point DC.L 0 
Modify DC 0 
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Just as with the structure of TAPE.MASTER that was defined in Chapter 5, we can 
access the starting address of the structure by referencing the symbolic address 
EventRecord, or we can access a single field by using its individual symbolic 
address. For example, What will reference the address of the word that contains 
the code representing the type of event that the system recorded. 

This works only because the assembler allocates storage in the order in which 
it encounters DC and OS directives. If the allocation directives for a record are 
placed physically one after the other in the source code, they will be allocated 
physically contiguous storage locations. 

Interacting with the File Manager (the group of operating system routines that 
control file 1/0) is probably the most complex task we must tackle when writing 
Macintosh assembly language programs, at least in terms of the associated data 
structures. File Manager routines require some data as input and will return 
additional data when the routines are finished, using extremely large records 
known as parameter blocks. An example of this usage appears in Chapter 4 in the 
discussion of the instruction LEA. (Complete discussion of the File Manager 
appears in Chapter 11.) 

Procedure and Function 
Calls 

Procedures and functions are two types of Pascal subprograms. When used in 
a Pascal program, the data used by these subprograms may be declared globally 
in the program's var block. In that case, the programmer has the option of merely 
letting the subprogram use whatever data it needs without bothering to explicitly 
transfer the data into and out of the subprogram. However, the ToolBox and 
operating system routines, all of which are defined as Pascal functions and 
procedures, cannot use global data because they are external to the program 
which calls them: that is, the code for the Tool Box and operating system routines is 
never a part of the source code of the application in which they are being used. 
Use of the Macintosh's built-in routine therefore requires careful attention to the 
process of moving data to and from procedures and functions. 

The data passed to a subprogram are called parameters. Parameters that are 
only used as input to a subprogram are known as value parameters. Parameters 
that are modified within the subprogram and then passed back to the main 
program are called variable parameters. Each call to a procedure or function 
involves not only the name of the subprogram but a list of the parameters that will 
be passed in and out of the subprogram. 

Procedures and functions differ primarily in how they return information to the 
main program. A procedure returns data only through variable parameters spec­
ified in the call's parameter list. A function, though, returns an additional result. This 
result might be a handle to a data structure or a boolean indicating whether or not 
the function successfully completed the required operation. 
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Access to the Tool Box and operating system routines is through either a Pascal 
procedure or function call. Macintosh technical documentation presents them in 
their Pascal syntax and generally leaves it up to the assembly language program­
mer to simulate the calling sequence. 

The_DrawChar routine, which you have already seen, is written in Pascal as: 

PROCEDURE DrawChar (ch: CHAR); 

The parameter list (ch: CHAR) appears in parentheses after the name of the 
procedure (DrawChar). The ch is the variable name given to the parameter; 
CHAR refers to its data type. As an assembly language programmer, you will not 
necessarily be concerned with variable names, but with the data types, since they 
specify the size and format of the data you must prepare before calling the 
procedure. ch is a value parameter; it is used only as input to the procedure. 

Parameter lists are not limited to a single parameter. For example: 

- PROCEDURE lnsertMenu (menu: MenuHandle; beforelD: INTEGER) 

requires two parameters, the handle to a menu record and an integer indicating 
the relative position of this menu in the menu list (i.e., when this menu is placed in 
the menu bar, between which of the other menus should it be placed?). Parameter 
names are separated from their data types by colons. If more than one parameter 
has the same data type, the parameter names will be separated by commas. (See 
the discussion on BlockMove below for an example.) Parameters with different 
data types are separated by semicolons. Variable parameters are preceded by 
VAR; value parameters have nothing to distinguish them. Both of lnsertMenu's 
parameters are therefore value parameters; they serve only as input to the pro­
cedure. 

To call a ToolBox procedure from an assembly language program, you must 
first push the parameters, in order from left to right as they appear in the parameter 
list, onto the stack. Then you call the procedure. To draw a character using 
DrawChar for example: 

MOVE $0040, - (SP) 

first places the ASCII code of one character onto the stack. Because the Pascal 
data type is CHAR, an entire word is moved. Once the character is on the stack, 
then: 

_DrawChar 

initiates the call to the Tool Box routine. The procedure takes the parameters off the 
stack while it is executing, so that when it terminates, none remain on the stack. 

ToolBox functions are handled in approximately the same way. The main 
difference is that before beginning to push the function's parameters onto the 
stack, a program must push an empty space for the function's result. The space for 
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the result is always deepest in the stack. When the function is finished, all of the 
parameters will have been removed from the stack; the result will be on top so that 
it can be easily recovered. 

For example, the ToolBox function MenuSelect identifies which menu item 
received a click from the mouse. The Pascal definition of the function is: 

FUNCTION MenuSelect (startPt: Point) : Longlnt 

The parameter startPt is the coordinates where the mouse was clicked. The data 
type Point refers to a user-defined data structure that is tour bytes long and 
contains the coordinates of where the mouse was when the mouse button was 
clicked. The result of this function is the number of the menu item that was chosen. 
Since that data type of the result is Long Int, four bytes must be set aside to hold it. 
Therefore, the first step in the set-up sequence is to clear space on the stack tor the 
result: 

CLR.L -(SP) 

Then, the point can be moved onto the stack: 

MOVE.L Point (Point comes from the event record described above) 

Finally, all that remains is to call the function: 

_Menu Item 

When a function finishes, you must always recover the result: 

MOVE.L (SP)+ ,DO 

NOTE: Regardless of whether your program will use the result in any way, be 
sure to remove it from the stack. If the result is not removed, its presence will disrupt 
the operation of further procedure and function calls and will probably cause RTS 
instructions to fail in unexpected ways. 

Probably the hardest thing about simulating the Pascal syntax tor assembly 
language calls to Tool Box routines is deciding whether to put the parameter itself 
on the stack or to merely push a pointer to the parameter. Here are a few guidelines 
that should help: 

1. Push pointers to variable parameters. For example, the procedure 
GlobalToLocal converts a point from the screen's coordinate system to the 
coordinate system of whatever window that point is within. In Pascal, the 
procedure is defined as: 

PROCEDURE GlobalToLocal (VAR pt: Point) 
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The point will be passed into the procedure, converted, and then passed out. 
Since the procedure needs an address to store the converted coordinates, 
the address of the point is placed on the stack rather than the value of the 
point itself. Therefore, to call GlobalTolocal, you would: 

PEA Point 
_GlobalTolocal 

2. Push pointers to records. In other words, when the data type of a parameter 
is a record or an array rather than a single value, only a pointer to the 
beginning of the data structure is necessary. 

3. Push pointers to parameters that occupy more than 4 bytes of space. 

4. Otherwise, move the parameter onto the stack using the MOVE instruction. 
When moving parameters, pay particular attention to the size of the param­
eter. Note that if you move a byte, the Macintosh will automatically push 
another unused byte onto the stack to keep the stack pointer on an even 
address. 

Operating System procedures and functions are described with Pascal syntax 
just like ToolBox routines, but they do not get their parameters from the stack. 
Instead, Operating System routines take their parameters from registers. Operat­
ing System functions also return their results in registers. Unfortunately, the only 
way to know which parameters should be placed in which registers is to consult 
Inside Macintosh; merely examining the procedure or function definition will not 
give you that information. An example of the use of one Operating System routine 
follows. 

An Overview of the 
Toolbox and Operating 

System Routines 
One of the things that makes the Macintosh both a pleasure and a pain to 

program in assembly language is the presence of so many prewritten routines. 
Most are in ROM, though some are present only on disk. They fall into two major 
groups: those known as the ToolBox and those that are part of the operating 
system. In either case, they are organized into "Managers," each of which relates to 
one general function. 

TheToolBox 
The Tool Box consists of 13 ROM managers and three sets of routines on disk: 

1. The Resource Manager provides tools that manage resources. Resources 
are constructs such as windows and menus that an application will use. Most 
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applications will store resources in a file that is separate from the source code 
during the development process and will need to use at least the Resource 
Manager routine that opens the appropriate resource file. 

2. QuickDraw contains all of Macintosh's graphics routines. Even applications 
that contain no graphics must make use of QuickDraw routines, since they 
control the location of all screen display operations and provide for the 
manipulation of text display characteristics. 

3. The Font Manager is a small set of routines that are rarely accessed directly 
by a programmer. Instead, they are called by QuickDraw when a program 
requests font manipulations. 

4. The ToolBox Event Manager contains routines that monitor things that 
happen to the system. Events (discussed in detail in Chapter 8) include 
occurrences such as a click of the mouse button, the insertion of a disk, or the 
press of a key on the keyboard. Interaction with the Event Manager forms the 
central control structure of any Macintosh application. 

5. The Window Manager handles the definition, disposition, and manipulation 
of windows. Any application that adheres to the standard Macintosh user 
interface will make significant use of these routines. 

6. The Control Manager does for controls what the Window Manager does for 
windows. Controls include scroll bars in windows and buttons (those hot-dog 
shaped balloons that appear in alert and dialog boxes). Control Manager 
routines may be called directly by a program or may be called by the Dialog 
Manager (see below). 

7. The Menu Manager provides routines that create and manipulate menus. 
Most applications use the Menu Manager extensively. 

8. TextEdit is a powerful set of routines that provide for the entry, display, and 
editing of text. Even a totally graphics-based application cannot avoid TextEdit, 
since some of the standard desk accessories (which all Macintosh applications 
should support) allow text editing. 

9. The Dialog Manager allows an application to create, manipulate, dispose, 
and monitor events in dialog and alert boxes. Virtually every Macintosh 
program will use dialogs and alerts in some way. 

10. The Desk Manager contains the routines that support desk accessories. 
They allow an application to invoke a specific desk accessory and to then 
turn management of that desk accessory over to the system. 

11. The Scrap Manager provides the capability to transfer text and graphics 
between applications via the Clipboard. Whether or not an application will 
interact with the Scrap Manager is determined by the characteristics of the 
specific application. 

12. The ToolBox Utilities are a diverse set of routines that cover some logical 
operations and bit manipulations. 
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13. The Package Manager is a gateway to the non-ROM Tool Box routines. The 
non-ROM routines are grouped into three packages which are loaded into 
RAM the first time they are called by an application. The packages handled 
by the Package Manager are: 
a. The Binary-Decimal Conversion Package converts ASCII strings of 

decimal characters into binary numbers that can then be used in arith­
metic operations. 

b. The International Utilities Package contains a group of routines that 
make it possible to write non-English applications; also has some useful 
string comparison routines. 

c. The Standard File Package contains the standard dialog boxes that 
gather information about opening, closing, and saving files. 

The Operating System 
Routines 

Like the ToolBox, the operating system's routines are divided into managers. 
Eight are in ROM; two managers and three packages are on disk. 

1 . The Memory Manager handles the allocation of main memory while an 
application is running. Most Memory Manager routines affectthe application 
heap. 

2. The Segment Loader is the part of the operating system that actually loads a 
program into memory so it can be executed. For small applications, the 
Segment Loader i$ transparent to the programmer. It is invoked when a user 
double-clicks on a program icon. However, large applications that will not fit 
all at once into main memory can be broken up into chunks known as 
segments. In that case, the programmer must explicitly use Segment Loader 
routines to manage the swapping of segments between the disk and main 
memory. 

3. The Operating System Event Manager contains the routines that actually 
detect hardware events such as mouse button and key presses. The events 
are passed directly to the ToolBox Event Manager, which can then be 
tapped by a programmer. An application rarely accesses the Operating 
System Event Manager directly. 

4. The File Manager provides routines that create, open, close, read to, and 
write from files. They provide an unprecedented amount of flexibility in file 
1/0. 

5. The Device Manager, like the File Manager, deals with 1/0, but on the 
device rather than the file level. There are three device drivers in ROM: 

a. The Disk Driver (takes care of the disk drives) 
b. The Sound Driver (handles the Macintosh's speaker) 
c. The Serial Drivers (manages the two serial communications ports) 
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6. The Vertical Retrace Manager handles system actions which must be 
repeated at regular intervals while an application is running. These include 
incrementing the system clock, checking to see if the stack and heap have 
run into each other, and looking for hardware events such as a disk insertion 
or a change in the status of the mouse button. The only time an application 
will use the Vertical Retrace Manager is if it wishes to insert an activity of its 
own among those that the operating system is performing automatically. 

7. The System Error Handler is that part of the operating systerri that provides 
the alert box with the little bomb in the upper left-hand corner. It is invoked 
whenever the system detects an error from which the system cannot recover, 
such as a binary instruction code which has no meaning to the 68000, or an 
address which is larger than the Macintosh's address range. This is another 
manager which is rarely tapped directly by an application program. 

8. The Operating System Utilities are another miscellaneous set of "nifty" 
routines. They provide some string comparison (the string comparisons in 
the International Utilities Package are better), provide block move 
capabilities, and give access to the system's date and time. 

9. The Printing Manager is not in ROM but rather is kept on disk. Along with 
the appropriate Printer Driver, the Macintosh can then support a the­
oretically infinite number of different printers. Any application that supports 
printing will make extensive use of the Printing Manager's routines. 

10. The AppleTalk Manager is the Macintosh's gateway to the AppleTalk 
telecommunications network. It contains a number of disk-based routines to 
manage Apple Talk access as well as a pair of RAM-based device drivers. 

11. The Disk Initialization Package is also on disk. It is called by the Standard 
File Package whenever a disk needs to be initialized. It is rarely called directly 
by an application program. 

12. The Floating-Point Arithmetic and Transcendental Functions Pack­
ages, both of which are kept on disk, provide for arithmetic operations which 
cannot be handled within a single 32-bit register. 

A Couple of Things to Be 
Aware Of 

There is a conceptual problem with the way the ToolBox and Operating 
System routines are grouped. The Managers themselves tell you nothing about the 
sequence of calls necessary to perform a specific program action. For example, 
the routine that detects and identifies what sort of event has occurred is a part of the 
Event Manager. If the event was a mouse down event (the mouse button was 
clicked), then you must use a Window Manager routine to discover where the 
mouse button was pressed, even if it was pressed in the menu bar. Assuming that 
the mouse down event was in the menu bar, then Menu Manager routines can 
determine which menu and what item within that menu was selected. 
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Figuring out which routine to call when is one of the most baffling tasks in 
creating any Macintosh application, regardless of the language in which an 
application is written. Therefore, as you read on in this book, you will generally find 
descriptions of ToolBox and operating system calls grouped by function rather 
than by manager to aid you in understanding the sequencing of activities within an 
application. 

Though the ToolBox and operating system routines are mostly in ROM, they 
are nonetheless programs. That means that they make use of the 68000's internal 
registers. If an application has placed information that must be retained in address 
and/or data registers, that information may be lost during a call to one of the Mac's 
routines. There are two ways to get around the problem. 

The first is to put information that the application requires in some other form of 
storage by assigning it to storage locations defined by DC or DS directives. The 
second is to temporarily save the contents of the registers on the stack. 

The instruction MOVEM (move multiple registers) simplifies the task of placing 
the contents of a series of registers on the stack. The general form of the instruction 
is: 

MOVEM.L register list, - (SP) 

To retrieve the contents of the registers: 

MOVEM.L (SP)+ ,register list 

The register list accepts either a series of individual registers separated by I or a 
range of registers indicated by a starting and ending register number. For example: 

MOVEM.L 01/02/ AO - A4, - (SP) 

will place the contents of 01, 02, AO, A1, A2, A3, andA4 on the stack in that order. 
When retrieving information stored on the stack, the register list must be in the 

same order as when the information was stored. The system will correctly pull the 
information from the stack and place it in the appropriate registers. To retrieve the 
information stored in the example above, use: 

MOVEM.L (SP)+,D1/D2/AO-A4 

Be very aware of what is happening to the stack when attempting to use it for 
temporary storage of CPU registers. Consider the situation when it becomes 
necessary to save register contents before jumping or branching to a subroutine. 
The subroutine instruction pushes a return address onto the stack. That return 
address is "on top" of the register contents. Therefore, the application must not 
attempt to restore the contents of the registers until after the program has returned 
from the subroutine: that is, the return address must be pulled from the stack 
before the registers can be properly restored. If it is necessary to have the contents 
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of the registers within the subroutine, then the instruction to save them should 
occur after the jump or branch to subroutine instruction. 

When should an application save the contents of its registers? There are two 
approaches you can take. The conservative approach says save all registers every 
time an application makes a call to a ToolBox or operating system routine. The 
second method is initially to not save any registers and then monitor program 
activity with the debugger to determine specifically which registers are altered and 
must therefore be saved. In general, the ToolBox and operating system routines 
use D0-02 and AO-A4, though there are many exceptions. 

Calling Toolbox and 
Operating System 

Routines -
The Trap Mechanism 

All the ToolBox and operating system routines you have seen so far are 
invoked in assembly language source code with a name that begins with an 
underbar. The Assembler translates those routine names into machine language 
instructions that the Macintosh can understand. 

When assembled, all calls to ToolBoxand operating system routines - except 
those of the Printing Manager - begin with $A, or %1010; the rest of the instruction 
word contains information that identifies the particular routine being called. The 
68000 microprocessor has no instructions with codes that begin with % 1010. 
Therefore, it "traps" those instructions. Under most circumstances, the micro­
processor would return a system error indicating that it encountered an unrecog­
nizable instruction. The Macintosh operating system, however, intercepts the 
microprocessor's detection of the trap. It interprets the trap as a reference to the 
ToolBox Dispatch Table discussed in Chapter 2. Because instructions that begin 
with % 1010 are not part of the microprocessor's hardware instruction set, they are 
known as "unimplemented instructions" or "line 1010 unimplemented instructions." 
They allow a computer manufacturer to enhance the 68000 instruction set by 
adding custom instructions that are implemented in software. 

Trap words are associated with names by using the assembler directive 
. TRAP. For example, the routine that draws a single character has a trap word of 
$A883. To give it a name, the following could be included in program code: 

. TRAP _DrawChar $A883 

For the programmer's convenience, trap words for all ROM routines are 
assigned names in the file MacTraps.D (found on MDS2). It should be INCLUDEd 
at the beginning of each application developed on a 512K machine. There may not 



150 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

be enough memory in a 128K machine to assemble a program that contains the 
entire MacTraps.D file. In that case, you will need to define explicity any traps the 
program uses with the .TRAP directive. 

Using Toolbox and 
Operating System 

Routines - Simplifying 
the Sort and Search 

The straight-insertion sort and the binary search have one basic process in 
common - they compare strings. The sort also moves large blocks of code. It 
would simplify the code for these two utilities considerably if they could use 
prewritten routines to accomplish the comparison and move activities. 

There are actually three different routines that do string comparisons. One is an 
Operating System routine - EqualString. The problem is that this function only 
returns a boolean value indicating whether the two strings being compared are 
equal or unequal. That is not enough information for either the sort or the search; 
both need to know direction (i.e., is the SearchString greater than or less than the 
string in the array?). 

Tucked within the International Utilities Package are two string comparison func­
tions. One is exactly like EqualString (IUIDString); but the other, IUMagString, 
returns the kind of result the sort and search require - a 0 ifthe strings are equal, a -1 
if the first string is less than the second, and a + 1 if the first string is greater than the 
second one. Depending on how you look at it, there is one drawback to using 
IUMagString; upper-case and lower-case letters are evaluated as different charac­
ters, with lower-case coming after upper-case. (EqualString and IUIDString ignore 
the upper- and lower-case distinction.) 

IUMagString is specified as: 

FUNCTION IUMagString (aPtr, bPtr: Ptr; alen, blen:INTEGER): 
INTEGER; 

The first two parameters are of the same data type - Ptr. They are pointers to the 
start of the two strings which are to be compared. The third and fourth parameters 
are both integers - the number of bytes in each string. The result is an integer as 
described above. 

In terms of the sort, one of the strings is contained in the data structure 
identified by NewRecord. The second is somewhere within TapeArray. We'll use 
the string in the array as the "a" string. Therefore, to find its starting address, we 
need to compute its offset from the beginning of the array, just as we did before. 
(Take the record number and multiply by 64, the length of a record.) If the offset is 
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in 06 (as it is after a call to Compute Offset1) and the address of TapeArray is in A3, 
then a pointer to the start of the beginning of the "a" string is equal to: 

ADDA D6,A3 

The address of NewRecord goes into A2. We will need to compare 30 
characters, since the tape name field is 30 characters long. 

The set-up sequence therefore involves first pushing an empty word onto the 
stack to contain the result and then each of the parameters in order: 

CLR.W 
MOVE.L 
MOVE.L 
MOVE.W 
MOVE.W 

-(SP) 
A3,-(SP) 
A2,-(SP) 
#30,-(SP) 
#30,-(SP) 

;space for integer result 
; "a" pointer 
; "b" pointer 
;characters in "a" string 
;characters in "b" string 

At this point it might seem that we're ready to call the function. Using: 

_IUMagString 

though, it will not work in this case. IUMagString is part of a package and therefore 
doesn't exist as a separate call. Instead, whenever you need a routine that is part of 
a package, first push a number that identifies the routine onto the stack and then 
call the package as a whole. The International Utilities Package is Package #6; 
IUMagString is routine #10. Therefore, to initiate IUMagString: 

MOVE. W #10, - (SP) 
_Pack& 

(For further information on using Macintosh's packages, see Chapter 12). 
The result of IUMagString is recovered by the instruction: 

MOVE.W (SP)+,DO 

Since a MOVE instruction sets the condition codes, the value of the result can be 
checked using one or more of the Bee variations without any further manipulation. 

To see how IUMagStrlng simplifies the sort and search routines, take a look at 
Listings 6.1 (the sort) and 6.2 (the search). 

A prewritten routine that moves blocks of main memory would simplify consid­
erably one of the major tasks of the straight-insertion sort. BlockMove is an 
operating system procedure that does just that. It is defined as: 

PROCEDURE BlockMove (sourcePtr, DestPtr: Ptr; byteCount: Size); 
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This definition alone does not contain enough information to call the routine. Inside 
Macintosh, though, indicates that: 

1 . A pointer to the starting location of the bytes to be moved (the source pointer) 
should be placed in AO; 

2. A pointer to the starting location of where the bytes should be moved to (the 
destination pointer) should be placed in A 1; 

3. The total number of bytes to be moved should be placed in DO and that the 
size of this operand is longinteger. 

Listing 6.1 Straight-Insertion Sort with Block Moves 

MOVE TotalRecords,01 
LEA TapeArray(A5),A2 
CMP #0,01 
BEQ lnsertNew ;if first record, insert immediately 
SUBQ #1,01 ;otherwise, adjust for record #'s beginning with 0 

Checking 

JSR ComputeAddress1 

MOVE.L 01 ,-(SP) 
CLR.W -(SP) 
MOVE.L A3,-(SP) 
PEA NewRecord(A5) 
MOVE.W #30,-(SP) 
MOVE.W #30,-(SP) 
MOVE.W #10,-(SP) 

Packs 
MOVE.W (SP)+,00 
MOVE.L (SP)+,01 

CMP 
BLE 
BGT 

MoveOld 

#0,00 
JustBeforelnsert 
MoveOld 

MOVE D1,D5 
ADDO #1,D5 
JSR ComputeAddress1 
JSR ComputeAddress2 

MOVE.L A3,A0 
MOVE.L A4,A1 
MOVE.L #64,00 
_BlockMove 

SUBQ 
CMP 
BEQ 
BRA 

#1,01 
#-1,D1 
JustBeforelnsert 
Checking 

;Address returned in A3 

;save 01 on stack 
;space for result 
;pointer to record in array 
;pointer to new record 
;characters to look at in first string 
;characters to look at in second string 
;ID for IUMa•JString 
;invoke the package 
;recover result 
;recover former contents of 01 

;found place to insert record 
;move existing record down 

;record # to move to 
;offset returned in A3 
;offset returned in A4 

;source pointer for block move 
;destination pointer for block move 

;64 bytes will be moved 
;move an entire record 

;move back a record 
;does new record go in first position? 

(continued) 
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JustBeforelnsert 
ADDO #1,D1 ;insert just below where comparing 

lnsertNew 
MOVE D1,D5 

JSR ComputeAddress2 

LEA NewRecord(A5},A0 
MOVE.L A4,A1 

;pointer to source (the new record) 
;pointer to destination 

MOVE.L #64,D0 ;number of bytes to move 
_Block Move ;move a record 

LEA Tota1Records,A0 
ADDO #1,(A0} ;increment number of records 

ComputeAddress1 
MOVE.L D1,D6 
MULU #64,D6 
MOVE.L A2,A3 
ADDA.L D6,A3 
RTS 

ComputeAddress2 
MOVE.L D5,D7 
MULU #64,D7 
MOVE.L A2,A4 
ADDA.L D7,A4 
RTS 

;offset "' record # * 64 bytes 

Listing 6.2 Sequential Search with String Comparison Routine from the International Utilities Package 

LEA TapeArray(A5},A2 ;start of tape array 
MOVE TotalRecords,01 
SUBO #1,D1 ;bottom pointer 
MOVE D1,D3 
SUBO #1,D3 
MOVE #0,02 

;save last record-1 #for future reference 
;top pointer 

MidPoint 
MOVE D2,D5 ;find middle record# 
ADD D1,D5 
DIVU #2,D5 
AND.L #$0000FFFF,D5 ;mask off remainder 
CMP. #1,D5 
BLE TopRec ;handle first two records 
CMP D5,D3 
BLE BottomRec ;handle last two records 

JSR ComputeAddress2 
MOVEM.L D1-D5/A1-A2,-(SP) ;save registers 

(continued) 
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Listing 6.2 (continued) 

CLR.W -(SP) 
MOVE.L A4,-(SP) 
PEA NewRecord(AS) 
MOVE.W #3!2>,-(SP) 
MOVE.W #30,-(SP) 
MOVE.W #10,-(SP) 

;space for result 
;pointer to record jn tape array 
;pointer to search string 
;number of characters to compare 
;number of characters to compare 

Packs ;invoke the package 
MOVE.W (SP)+,D0 ;recover result 
MOVEM.L (SP)+,D1-D5/A1-A2 ;restore registers 

CMP 
BGT 
BLT 

#0,D0 
To pH a If 
Bottom Half 

;check result of string compare 
;array greater than search string 
;array less than search string 

LEA RecordCounter,A0 
MOVE D5,(A0) 
JSR DisplayOneRecord ;must be equal - record has been found 
MOVE f1eturnFlag(A5),D0 
CMP #0,D0 ;which module called this routine? 
BEQ KeepGoing ;call was from Select 
RTS ;call was from Change or Delete 

KeepGoing 
JSR 
JSR 
RTS 

DisplayDialog3 ;display find & wait dialog box 
DisplayWiridows;clear text edit windows 

;return to Select menu 

BottomHalf 
MOVE D5,D2 
BRA NoFindCheck 

To pH a If 
MOVE D5,D1 

NoFindCheck 
CMP 
BMI 
BRA 

No Find 

02,01 
No Find 
Mid Point 

;move top pointer down 

;move bottom pointer up 

;pointers have crossed 
;find new middle record and go again 

JSR 
JSR 
RTS 

DisplayDialog1 ;displays "none found" dialog box 
DisplayWindows ;clear screen and text edit records 

TopRec MOVE #0,05 
JSR OneCheck 
MOVE #1,D5 
JSR OneCheck 
BRA NoFind 

Bottom Rec 
MOVE 03,05 
JSR OneCheck 
ADDO #1:03 
MOVE 03,05 
JSR OneCheck 
BRA NoFind 

;return to Select menu 

(continued) 
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OneCheck 
JSR ConiputeAddress2 

MOVEM.L D1-D5/A1-A2,-(SP) 
CLR.W -(SP) ;space for result 
MOVE.L A4,-(SP) ;pointer to array 
PEA NewRecord(A5) ;pointer to search string 
MOVE.W #30,-(SP) ;number of characters to compare 
MOVE.W #30,-(SP) ;number of characters to compare 
MOVE.W #10,-(SP) 

Packs ;invoke the package 
MOVE.W (SP)+,D0 ;recover result 
MOVEM.L (SP)+,D1-D5/A1-A2 

CMP #0,D0 
BNE WrongOne ;correct record not found 

LEA RecordCounter,A0 
MOVE D5,(A0) 
JSR DisplayOrieRecord 
MOVE ReturnFlag(A5),D0 
CMP #0,D0 ;where does this call originate? 
BEd OneCheckContinues ;call comes from Select 
MOVE.L (SP)+,D0;pull extra subroutine return address from stack 
ATS ;call comes from Change or Delete 

OneCheckContinues 
JSR DisplayDialog3 
JSR OisplayWindows 
MOVE #9,00 
MOVE.L (SP)+,07 ;pop subroutine return address off stack 
ATS ;return directly to "Select" routine 

Wrong One 
MOVE #9,D0 
ATS ;return to Top or Bottom 

When BlockMove terminates, a result code will be placed in DO, indicating 
whether or not an error occurred. 

One situation in which the sort moves data is to move an existing record down 
in the array. Therefore, the source of the data to be moved is the current record and 
the destination is one record below it. This requires two addresses in TapeArray 
that are computed by the subroutines ComputeAddress1 and ComputeAddress2. 
A pointer to the current record is returned in A3, and a pointer to the record below 
is returned in A4. To set-up for BlockMove, then: 

MOVE.L 
MOVE.L 
MOVE.L 

A3,AO 
A4,A1 
#64,00 

;pointer to current record 
;pointer to record just below 
;record is 64 bytes long 



156 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Operating System routines are called just like ToolBox routines: 

_BlockMove 

In many cases, a program will not bother to check the result of an operation 
such as a block move. Since the result is in a register, though, and not on the stack 
like the results of Tool Box functions, it can be safely ignored. 

To see where BlockMove fits into the flow of the straight-insertion sort, see 
Listing 6.1. 

Questions and 
Problems 

1. Write an assembler directive that will set aside storage space in the applica­
tions globals area for each of the following Pascal data structures: 

a. TYPE Point = RECORD 
v: INTEGER; 
h: INTEGER 

END; 

b. TYPE Rect = RECORD 
top: INTEGER; 
left: INTEGER; 
bottom: INTEGER; 
right: INTEGER 

END; 

c. TYPE Rect = RECORD 
top Left: Point; 
bottomRight: Point 

END; 

d. TYPE Region = RECORD 
rgnSize: INTEGER; 
rgnBBox: Rect 

END; 

e. TYPE Cursor = RECORD 

{assume that data type Point as 
defined in a above} 

{assume the data type Rect as 
defined in b or c above} 

data: ARRAY (0 .. 15) of INTEGER; 
mask: ARRAY (0 .. 15) of INTEGER; 
hotspot: Point (assume Point as in a above} 

END; 
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f. TYPE 
Style = INTEGER; 
FM Input = PACKED RECORD 
family: INTEGER; 
size: INTEGER; 
face: Style; 
need Bits: BOOLEAN; 
device: INTEGER; 
number: Point; [assume Point as in a} 
denom: Point 

END; 

g. TYPE ScrapStuff = RECORD 
ScrapSize: LONGINT; 
ScrapHandle: Handle; 
ScrapCount: INTEGER; 
ScrapState: INTEGER; 
ScrapName: StringPtr 

END; 

2. Listed below are some Pascal data type statements for data structures used 
as ToolBox routine parameters. For each: 

A. decide whether the parameter itself or a pointer to the parameter should 
be placed on the stack and 

B. write the assembly language statements that will place the parameter or 
its pointer on the stack. 

For this exercise only, assume that space has been allocated in the 
applications globals area for the data structures and that each has the 
symbolic address DataType. 

Example: TYPE Pointer = Ptr; Answer: When used as a value parameter, 
push the pointer itself: MOVE.L DataType(A5),(SP) +. When used as a 
variable parameter, push the address of the pointer: PEA DataType(AS). 

a. TYPE TEHandle = Handle; [used as a value parameter} 

b. TYPE TEHandle = Handle; [used as a variable parameter} 

c. TYPE Point = RECORD (used as a value parameter} 
v: INTEGER; 
h: INTEGER 

END; 

d. TYPE Point = RECORD (used as a variable parameter} 
v: INTEGER; 
h: INTEGER 

END; 
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e. TYPE Rect = RECORD 
top Lett: 
bottom Right: 

END; 

f. TYPE Rect = RECORD 
top Left: 
bottom Right: 

END; 

(used as a value parameter} 
Point; 
Point 

(used as a variable parameter] 
Point; 
Point 

g. TYPE Str03 = PACKED ARRAY [O .. 3] of CHAR; 

h. TYPE Str255 = PACKED ARRAY [O .. 255] of CHAR; 

3. Consider the program skeleton below: 

MOVEM.L 
JSR 

DO/D1 I AO -A4,(SP) + 
StartOfSubroutine 

(end of main program} 
StartOfSubroutine 

MOVEM.L 
ATS 

(body of subroutine goes here} 

-(SP), DO/D1/AO-A4 

A. What problem can you see with the statements in this program skeleton? 
Hint: think about the order in which operands and addresses are placed 
on the stack. 

B. What simple re-arrangement of the statements will solve the problem? 
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Chapter Objectives 

1. To learn the steps necessary to create a Macintosh window 

2. To understand the purpose of resource files and know how to prepare one 
for use by a Macintosh application 

3. To explore the ToolBox routines that manipulate windows 

4. To learn the steps necessary to create a Macintosh menu 

5. To explore the ToolBox routines that manage the menu bar 

As we discussed in Chapter 1, a major element in a successful Macintosh 
application is adherence to the standard Macintosh user interface. Two of the 
distinguishing characteristics of that interface are windows and pull-down menus. 

Creating Windows 
The ToolBox routines that manipulate windows are grouped together under 

the heading of the Window Manager. These routines provide facilities for not only 
creating windows, but for changing their size and position on the screen. 

159 
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Before using any Window Manager routines, first initialize QuickDraw; the 
Window Manager relies on many QuickDraw routines. Then call the routine which 
initializes the Window Manager. The calling sequence is: 

PEA -4(A5) 
_lnitGraf 
_lnltWindows 

;initializes QuickDraw 
;initializes the Window Manager 

Usually, this is done at the very beginning of a program, immediately after the 
statements that INCLUDE equates files. In fact, it is important to perform these and 
the other initialization routines that we will encounter in a specific order. Macin­
tosh's ROM routines are deeply interconnected and some of the initialization 
routines rely on others in order to function properly. Failure to initialize in the correct 
order will cause a system error when you attempt to execute your program. 

There are two ways to define windows. The first is to place all of the window 
specifications within the application program itself. The second is to create a 
source file (defined below) which contains a template for the window and to access 
that template from within the application. In either case, a number of parameters 
must be present to completely describe the window. These include its boundaries 
(how big it should be), its type, its title, whether it is visible or invisible, whether it 
should have a GoAway box, and where it should be placed relative to other 
windows on the screen (e.g., in front or in back). 

Window Boundaries 
Windows are specialized graphics ports (known as grafports) in which the 

Macintosh can draw. A grafport (the concept originates with QuickDraw, the set of 
graphics routines that underlie nearly everything Macintosh does) is basically an 
area in which the Macintosh can execute graphics procedures. Grafports can 
overlap and move from front to back on the screen, providing the basis for 
overlapping windows. 

Grafports have many characteristics, but most important for working with 
windows is the coordinate system that defines them. Superimposed on the Macin­
tosh screen is a coordinate grid. If we assume that the origin (0,0) is in the upper 
left-hand corner Gust below the menu bar), then the screen is 512 pixels wide and 
342 pixels tall. The term pixel is short for "picture element" and refers to one dot on 
the screen. The Macintosh screen coordinate system appears in Figure 7.1. 
Windows are rectangles that have corners defined in that coordinate system. Note 
thatthis is not necessarily the only coordinate system that can be superimposed on 
the screen, but it is the one that is used when defining windows. The 512 x 342 
coordinate grid is often referred to as the screen's global coordinates. 
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The coordinote system impooed on the Mocintosh'o 
screen hos• top left coordi nete of l!l ,J!I ond • bottom 
right coordi note of S 12, 342. 

Thi• coordi nete system does not include the menu bar . 

Though many coordi nete oystemo could be imposed on the 
screen, this is the one thot i• used to define 'Windo'W• end 
to ploce graphics images. 

Each pairs of coordi neteo (•point) refer• to one pixel. 

Figure 7.1 The Macintosh Screen's Coordinate System 

/ 
512, 342 

The rectangles that define window boundaries are contained in the user­
defined data type Rect. In the Pascal syntax: 

TYPE Rect = RECORD CASE INTEGER OF 
0: (top: INTEGER; 

left: INTEGER; 
bottom: INTEGER; 
right: INTEGER}; 

1: (topleft: Point; 
botRight: Point} 

END; 

What this means is that there are two choices for defining the corners of a 
rectangle, though for all intents and purposes, they work out the same. You can 
either provide four separate positions that indicate the top, left, bottom, and right 
positions of the rectangle; or provide two points, one for the top left corner of the 
rectangle and the other for the bottom right. A point is another user-defined data 
type that puts together an X and Y coordinate to locate a specific pixel. 
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As an example, consider the window used in the Sample program . Its top left 
corner is at 40,20 and its bottom right corner at 300,350. Figure 7.2a shows those 
coordinates. If a window is defined within an application program (rather than in a 
resource file) , then the rectangle which describes the window boundaries is 
usually assigned to a symbolic address. In the Sample program , the "boundary 
rectangle" is: 

BoundsRect 40,20,300,350 

Any use of the symbolic address BoundsRect will refer to all four integers. The 
coordinates are expressed in the screen's global coordinate system. These are the 
window's initial coordinates, which will change if the window is sized. 

~D - MAL Output Window 

48, 20' 

Figure 7.2(a) Using Global Coordinates to Define a Window 

ore ex pressed in 
terms of the screen 's 
5 12 x 342 pixel 
9rid. 

Note thot t he "'i ndo., ·s 
9l obol coo rdi notes 
do not include the 
ti tle bor . 

Windows have a second coordinate system called a local coordinate system . 
In a local coordinate system the point 0,0 is assigned to the upper left-hand corner 
of a window, regardless of the size of the window or where it is currently placed on 
the screen. For example, if window has global screen coordinates of 40, 20, 300, 
350, the top left point of 40, 20 is translated to 0,0 for the window's local coordinate 
system . 

The bottom local coordinate for a window is equal to the bottom global 
coordinate minus the top global coordinate plus 1 (e.g ., 300 - 40 + 1 = 261). The 
right local coordinate is computed in a similar way; subtract the left global coordi­
nate from the right global coordinate and add 1 (e.g., 350 - 20 + 1 = 331) . The 
boundaries of this window's initial local coordinate system are therefore 0, 0, 261 , 
331, as shown in Figure 7 .2b. 
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The bottom right local coordinates of a window will change as the window is 
sized. Though the top left local coordinates will remain at 0, 0, the bottom right 
coordinates will increase and decrease with the size of the window. 

MAL Output Window 

coordinate oyotem 
the top left corner 
is el,.,ays 0' ,0'. 

Note that the title 
bar io note pert 
of the local coordi note 
oyotem . 

Figure 7.2(b) A Window's Local Coordinate System 

Window Types 
The Macintosh provides six pre-defined window types. These will be adequate 

for the majority of applications. Each type has an identifying number (see Table 
7.1). If ToolEqu.D is INCLUDEd in your source code, you can use the symbolic 
address assigned to the number rather than using the number itself. 

Symbolic Address 

documentProc 
dBoxProc 
plainDBox 
altDBoxProc 
noGrowDocProc 

rDocProc 

ID# Comments 

0 Standard document window 
1 Alert or modal dialog box (heavy inner border) 
2 Plain window with single outline border 
3 Plain window with a shadow on the right and bottom 
4 Standard document window that cannot contain grow 

icon 
16 Round cornered window for desk accessories 

Table 7.1 Pre-defined Window Type~ and Their ID Numbers 
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The window type documentProc is a standard document window (see Figure 
7 .3a) . It has a title bar, square corners, and may contain a size box and scroll bars. 
noGrowDocProc (Figure 7.3b) is the same as a documentProc box but cannot 
contain a size box and scroll bars. 

MAL Output Window 

Th is is a stan dard wi ndow wi th scro l l bars 

Figure 7.3(a) Standard Document Window with Scroll Bars 

MAL Output Window 

Thi s i s e doc ument w i ndow w ithout gr ow box 

Figure 7.3(b) Standard Document Window without Grow Icon 

docu ment Proc 

Ca n have: 
Sc roll bars 
Grow ico n 
GoAway box 

Created by an 
oppli cation fo r 

noGrowDocProc 

May not contai n: 
Sc roll bars 
Grow Ico n 

but may have: 
GoAway box 

Created by an 
op pli cati on for 

... 

... 
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plainDBox (Figure 7 .3c) is simply a rectangle with a solid border. It has no title 
or scroll bars. If you use altDBoxProc (Figure 7.3d), you'll get a plain box with a 
shadow along the right and bottom borders. dBoxProc (Figure 7.3e) will produce 
a plain window with an inner border. This type of window is generally used as an 
alert box. 

This is a plain document box 

Figure 7.3(c) Plain Document Box 

This is a plain document box with shadow 

Figure 7.3(d) Plain Document Box with Shadow 

Has: 
No title bar 
No scroll bars 
No gro"'1 icon 

Creoted by on 
opplicetion for 
graphics or text 

Hes : 
No ti tle bar 
No scroll bars 
No gro"'1 icon 

Created by an 
applicotion for 
graphics or text 
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This is an alert or dialog box 

Figure 7.3(e) Alert or Dialog Box 

dBoxProc 

Hos: 
Inner border 

but no : 
Title bor 

Scroll bors 

Gro"' icon 

Used by olerts ond 

rDocProc (Figure 7.3f) is a round-cornered window. It has a title, but no scroll 
bars. It is most often used to hold desk accessories and therefore will generally not 
appear in an application program unless that program is defining its own desk 
accessories. 

This is a round-cornered window 

Figure 7.3(f) Round-cornered Window 

rDocProc 

Hos : 
Inverse highlighting 

in title bor 
Rounded corners 

Used by desk 
accessories 
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The Window Record 
Information about the windows an application uses are kept in window records, 

one for each window. The structure of a window record is as follows: 

WindowRecord = RECORD 
port: 
windowKind: 
visible: 

END; 

hilited: 
goAwayFlag: 
spareFlag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
title Width: 
controllist: 
nextWindow: 
windowPic: 
refCon: 

Graf Port; 
INTEGER; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 
RgnHandle; 
RgnHandle; 
RgnHandle; 
Handle; 
Handle; 
String Handle; 
INTEGER; 
Handle; 
WindowPeek; 
PicHandle; 
LONGINT; 

the window's grafport 
the window's type 
TRUE if visible 
TRUE if highlighted 
TRUE if goAway region 
currently unused 
structure region 
content region 
update region 
window definition function 
used by windowDefProc 
window's tme 
width of title in pixels 
handle to first control 
next window in list 
pie. for drawing window 
reference value 

An application can ignore many of the fields in a window record, but some do 
require further mention. In particular, an application may need to get to the three 
"region" parameters: the structure, content, and update regions. The term region 
comes from QuickDraw. It refers to some area that can be bounded by a rectangle 
but is not necessarily rectangular in shape. In other words, a region can be 
described by the rectangle that most closely encloses its contents. A region is 
defined by a simple record: 

Region = RECORD 
rgnSize: 
rgnBox: 

END; 

INTEGER; 
Reel 

rgnSize contains the number of bytes in the region. rgnBox is the rectangle that 
encloses it. 

Windows have three regions. The structure region includes the window's 
outside outline and its title bar, if it has one. The content region is everything inside 
the window, including scroll bars. The update region contains those parts of a 
window that have been changed by the actions of an application and therefore 
need to be redrawn. All three regions can change while an application is execut­
ing. 
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It may be necessary for an application to retrieve the rectangles that describe 
any of these three regions. To do so, the application must: 

1. Get the pointer to the window record. 

2. Use an offset into the window record to retrieve the region's handle. Offsets 
into a window record are defined in the ToolBox equates file. 

3. De-reference the handle to get a pointer to the region record. 

4. Add 2 to the pointer to the region record to skip over the region size 
parameter. The result will be the starting address of the region rectangle. 

As an example, lefs look at finding the structure rectangle for a window: 

MOVE.L 
MOVE.L 
MOVE.L 
ADDA 

WindowPtr ,AO 
strucRgn{AO),AO 
{AO),AO 
#2,AO 

;get pointer to window record 
;get handle to structure region 
;get pointer to region record 
;adjust address to skip over 
;region size 

Other parameters from the window record that an application might need will 
be discussed with the program activities that require them. 

Defining Windows within an 
Application Program 

The Window Manager routine NewWindow will set up and draw a window 
whose parameters are specified wholly within the application program. In Pascal, 
the routine appears as: 

FUNCTION NewWindow {wStorage: Ptr; boundsRect: Rect; title: Str255; 
visible: BOOLEAN; proclD: INTEGER; behind: WindowPtr; 
goAwayFlag: BOOLEAN; refCon: Longlnt) : WindowPtr; 

Note first of all that NewWindow is a function; it returns something called 
WindowPtr (the window pointer). The window pointer is the address of the 
location in the applications globals area of the window record. Many Window 
Manager routines need this window pointer as a parameter so they can operate on 
the correct window. 

Since a window pointer contains an address, it will require a longword (4 bytes) 
of space. Therefore, the first step before calling NewWindow is to reserve space 
on the stack for the WindowPtr result: 

CLR.L -{SP) 

Then all the remaining parameters must be placed, in order, on the stack. 
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wStorage refers to a pointer to where the window record will be stored. It must 
reserve enough space for the entire window record. Therefore, wStorage should 
be defined as: 

wStorage 
wStorage 

DCB.W 
DS 

windowslze,O or 
windowslze 

where windowslze is defined in the ToolEqu.D file as the number of words in a 
window record. As long as ToolEqu.D has been INCLUDED in your source code, 
it isn't necessary to know the actual size of the window record. Using symbolic 
addresses rather than actual quantities is always preferable. For example, if the 
size of a window record changes at some later date, you will only need to use the 
updated equates file rather than changing your application program. 

Since wStorage is a pointer, push it onto the stack using MOVE.L. Whenever 
a parameter is 4 bytes or less in length, put the parameter itself on the stack. 

It is possible to allocate space for the window record on the application heap 
rather than in a program's code (using DC) or the applications globals area (using 
OS). To do so, use a value of O for wStorage. 

boundsRect is the coordinates of the boundaries of the window's rectangle. 
As discussed above, the boundary rectangle should be assigned to a symbolic 
address. That address is placed on the stack with PEA, since the coordinates 
themselves occupy 8 bytes and are therefore too long to be placed on the stack 
themselves. 

The title of the window can be simply included as a string in quotes. However, 
the string itself is not pushed on the stack. Like the boundary rectangle, it occupies 
more than 4 bytes. 

PEA 'Text of the Title' 

will push a pointer to the string Text of the Title onto the stack and place the string 
at the end of the program code. 

visible is a boolean that indicates whether the window should initially be visible 
or invisible. If it has a value of TRUE, the window will be visible; otherwise, the 
window will be defined by NewWindow but not drawn. A boolean occupies a 
word of space. Therefore, to create a visible window, you would: 

ST -(SP) 

Though ST only affects one byte, the system will automatically push an unused 
byte onto the stack to keep the contents of the stack pointer even. 

The proclD is one of the six pre-defined window types mentioned above. 
Since proclD is an integer, simply MOVE the appropriate constant onto the stack. 
For example: 

MOVE #documentProc, - (SP) 

will indicate that this window should be a standard document window. 
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behind indicates where this new window should be placed relative to other 
windows on the screen. If behind contains a pointer to the window record of 
another window, the new window will be placed directly behind that window. On 
the other hand, if behind is 0, the new window will be placed behind all the other 
windows. A value of -1 for behind will place the new window in front. Since 
behind is a pointer, it requires a longword of space: 

MOVE.L #-1,-(SP) 

The goAwayFlag is a boolean that determines whether or not a GoAway box 
will appear in the title bar of the window. A value of TRUE draws a GoAway box; 
FALSE leaves it out. 

The final parameter, refCon, sets up space for the window's reference value. A 
reference value is anything a programmer wishes to assign. It can be used in any 
way an application desires. In most cases, an application will rarely use it and 
should therefore give it a value of 0. 

The complete NewWindow calling sequence appears as: 

CLR.L - (SP) ;space for window pointer result 
PEA wStorage ;pointer to storage for window record 
PEA boundsRect ;coordinates of window corners 
PEA 'Text of Title' ;title of the window 
ST - (SP) ;visible window 
MOVE documentProc ;window's resource ID 
MOVE.L #- 1, - (SP) ;window goes in front of all others 
SF - (SP) ;no GoAway box 
CLR.L - (SP) ;room for reference value 
_NewWindow ;calls the routine 

When NewWindow finishes, the window pointer will be left on top of the stack. 
Since the window pointer is essential to so many other Window Manager routines, 
it is vital that a program retrieve that window pointer before doing anything else. 
Space for the window pointer should be prepared by defining: 

WindowPointer DC.L O 

or 

WindowPointer DS.L 1 

Then, immediately after defining the window, the pointer can be moved to 
WindowPointer with: 

LEA 
MOVE.L 

WindowPointer ,AO 
(SP)+,(AO) 
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Using Resource Files to 
Create Windows 

Using NewWindow is really the hard way to create a window. It is far more 
efficient to place the window definition parameters in a resource file which an 
application program can then tap. Changes to parameters can then be made in 
the resource file without requiring modification of the source code. 

A resource file is a text file that has been compiled by the Resource Compiler, 
RMaker. It may contain not only window definitions, but definitions for things like 
menus and dialog boxes. To create a resource file, enter the Editor and type the 
resource definitions. Resource source files should be named with an extension of 
.R. (For example, the resource source file for the video tape index is called 
Tapes.A.) · 

The format of a resource file is very rigid. The first line contains the name of the 
file to which RMaker should write the compiled file. While the Video Tape Index 
program was being developed, the first line of its resource file read: 

tape.index: Tapes.Rsrc 

For each resource you wish to define, first identify the type of resource to which 
the definition applies. For example, to define a window: 

TYPE WIND 

The word TYPE is a signal that a new resource definition is beginning. WIND 
refers to one of 12 predefined resource types - in particular, a window. 

The remainder of a window definition might appear as: 

,1 
A Sample Window 
4020300350 
Visible GoAway 
0 
0 

The second line contains a space, followed by a comma and then a sequence 
number for the window. Since it is possible to have many window definitions in the 
same resource file, each must be assigned a unique sequence number. By 
referring to that sequence number, the Macintosh can access the window defini­
tions in any order. The space preceding the comma is required. 

The text of the window title appears directly below the sequence number. It 
should not be in quotes. Even if you are defining a window type that doesn't have a 
title, it is useful to include one anyway simply for documentation. 

The coordinates of the window's boundary rectangle follow immediately on the 
next line, separated by spaces. Their order is top, left, bottom, right. 
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The fifth line of a window definition indicates whether the window is visible or 
invisible and whether or not it should have a GoAway box. Use the appropriate 
word (Visible, Invisible, GoAway, noGoAway), though only the first character is 
actually used by the Macintosh. 

A resource file will not accept the symbolic addresses assigned to window 
resource ID's in the ToolEqu.D file. Therefore, on the sixth line of a window 
definition you must use the numeric values to indicate what type of window should 
be drawn. The 0 in the example above refers to a standard document window 
(documentProc). 

The final line of the window definition contains the window's reference value. If 
no reference value is needed, use 0 as a placeholder. 

Once a resource file has been created by the Editor, it must be compiled using 
RMaker. Enter RMaker either by transferring to it from the Editor or by double­
clicking on its icon from the Finder. Once you "open" a resource source file, the 
compilation proceeds automatically. A successful compilation produces a binary 
file with the name specified on the first line of the resource file's source code (e.g., 
the original compiled resource file for the video tape index was Tapes.Rsrc). 

Before an application program can use the information in a separate resource 
file, that file must be opened. Therefore, immediately after initializing all the manag­
ers, open the resource file the program will be using. The routine that does so, 
OpenResFile, is part of the Resource Manager. The calling sequence for 
OpenResFile is: 

FUNCTION OpenResFile (fileName: Str255) : INTEGER; 

OpenResFile returns an integer which contains a reference number for the 
file. It is rarely used. Nevertheless, since the reference number is left on the stack, 
you must be sure to remove it after calling the routine, since an extra parameter left 
on the stack will disrupt stack operations. 

The sequence to open the separate resource file for the video tape index 
appears as: 

CLR 
PEA 
_OpenResFile 
MOVE 

- (SP) ;space for result 
'Tape.index:Tapes.Rsrc' ;name of resource file 

(SP)+,DO ;discard unused result 

Once a window has been defined in a resource file, creating it from an applications 
program is very straightforward. The routine to use is GetNewWindow: 
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FUNCTION GetNewWlndow (windowlD: INTEGER; wStorage: Ptr; 
behind: WindowPtr) : WindowPtr; 

windowlD refers to the sequence number assigned to the window definition in 
the resource file. The other parameters are exactly the same as those for 
NewWindow: wStorage is a pointer to where the window record will be stored, 
behind determines the window's placement on the screen, and WindowPtr is the 
window pointer result. 

To create the window defined by the sample window definition above (assum­
ing it has a windowlD of 1), you would code: 

CLR.L -(SP) 
MOVE #1, - (SP) 
PEA wStorage 
MOVE.L #- 1, - (SP) 
_GetNewWlndow 
LEA WindowPointer ,AO 
MOVE.L (SP)+ ,A 1 
MOVE.L A 1,(AO) 

;space for window pointer result 
;window ID 
;pointer to storage for window record 
;put this window in front 

;get address for window pointer 
;retrieve window pointer from stack 
;store window pointer 

The video tape index program uses seven different windows. The portion of 
Tapes.R that contains the window definitions appears in Listing 7.1. Note that 
TYPE WIND is not repeated. Once RMaker has encountered a single TYPE 
statement, it assumes that all resource definitions that follow are of the same type 
until another TYPE appears. 

Each window has its unique sequence number. While sequence numbers may 
not repeat within the same type of resource, they may be duplicated within another 
type (e.g., the eight menus that the program uses are numbered 1-8 even though 
the windows are numbered 1-7). 

The main window is a standard document window (see Figure 7 .4) with the title 
Video Tape Index. It acts more or less like a placemat for the remaining windows, 
which hold text as it is entered or displayed. Windows 2-6 are plain document 
windows (the window resource ID is 2). Though these windows have no titles when 
drawn, the resource file contains titles so the windows can be easily identified. The 
seventh window is another standard document window. 

How do you figure out the coordinates for the window boundaries? Unfortu­
nately, there is no easy way. Trial and error generally works best. The boundaries 
of the video tape index text windows changed six or seven times before they were 
properly placed. Making such changes with the definitions in a resource file is 
quick and easy; doing it with window definitions in an application is tedious and 
time consuming. 
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Listing 7.1 Resource Templates for Video Tape Index Windows 

TYPE WIND 
'1 

Video Tape Index 
4010300500 
visible NoGoAway 
0 
0 

,2 
Tape Name 
50 240 70490 
visible NoGoAway 
2 
0 

,3 
Producer 
75 240 95 415 
visible NoGoAway 
2 
0 

,4 
Date 
100 240 120 283 
visible NoGoAway 
2 
0 

,5 
Rating 
125 240 145 269 
visible NoGoAway 
2 
0 

,6 
Tape Number 
150 240 170 276 
visible NoGoAway 
2 
0 

,7 
Annotation 
205 20 280 490 
visible NoGoAway 
0 
0 

;; window tempates follow 
;; sequence number 

;; title 
;; boundary rectangle 
;; visible but no GoAway Box 
;; window type (documentProc) 
;; reference value 

;; sequence number 
;; title for documentation only 

;; window type (plainDBox) 
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,. a Eclit Enter 

Tepe Name: 

Producer /Distributor: 

Phi n Document Boxes 
(pleinDBox) 

Date of Release: 

Rating: 

Tape Number: 

Annotation 

Standard Document Windo"'• 
(document Proc) 

Figure 7.4 Window Types Used by the Video Tape Index Program 

Programming 
Technique - Making a 
Resource File Part of 

Program Code 

While an application is being developed it is convenient to keep the resource 
file separate from the program code; such an arrangement facilitates changes in 
the resource definitions. Once an application is completely debugged and its 
resource definitions no longer changing, the resources can be linked into the 
application itself. To make resource definitions parts of an application, do the 
following: 



176 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

1. Rename the RMaker output file so that it has a .REL extension (e.g., the video 
tape index resource file Tapes.Rsrc was recompiled as TapesRsrc.REL). 

2. Remove the call to OpenResFile from the application's source code and 
reassemble the application. 

3. Add the following to the application's Linker control file after the names of all 
program modules: 

/Resources 
ResourceFileName. REL 

When modified to include its resource file in program code, the video 
tape index's Linker control file appears as: 

Tapes.REL ;assembled version of program code 
PrLink.REL ;needed to do printing (see Chapter 10) 

/Resources 
TapesRsrc.REL ;compiled version of resource file 

$ 

4. Re-link the application 

Once the resource file is linked to the program code, the separate resource file 
no longer needs to be present on the same disk as the application. Note also that 
this procedure significantly lengthens the linking process and therefore should 
really be the last step in preparing an application. 

Manipulating Windows 
If you have run the videotape index program, you will have noticed that as you 

select an option from the main Options menu, the title of the main, background 
window changes to match the option selected. The text windows - hidden when 
the program begins - appear. Whenever you select Quit from within one of the 
program functions, the text windows disappear and the main window's title reverts 
to Video Tape Index. These functions are accomplished with a few of the many 
routines that permit the manipulation of windows once they have been created. 

Changing a Window's Title 
Changing a window's title is accomplished with the SetWTitle routine: 

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255); 
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To use it, move the appropriate window pointer to the stack and then push a 
pointer to a string for the title. For example, changing the video tape index's main 
window's title from Video Tape Index to Enter New Titles and Annotations 
requires: 

MOVE.L 
PEA 
_SetWTitle 

MainWindowPtr, -(SP) 
'Enter New Titles and Annotations' 

Making Windows Appear 
and Disappear 

It is possible, at any time, to make any window visible or invisible. This does not 
change the position of the windows relative to one another; it merely affects 
whether or not they can be seen. 

To make a previously invisible window visible, use: 

PROCEDURE ShowWindow (theWindow: Ptr); 

Move the window pointer onto the stack and then call the routine. For example: 

MOVE.L SomeWindowPtr, -(SP) 
_ShowWindow 

Using ShowWlndow on a window that is already visible will have no effect. 
The routine to make a previously visible window invisible is HideWindow: 

PROCEDURE HideWindow (theWindow: Ptr); 

Changing a Window's 
Position in the Plane 

How much of a window is visible also depends on which other windows are in 
front of it. Two routines, BrlngToFront and SendBehind directly affect window 
position. 

BringToFront will make the window in the procedure call the front-most 
window on the screen: 

PROCEDURE BringToFront (theWindow: Ptr); 

SendBehind can place a particular window behind all other windows or 
behind any other window on the desktop: 

PROCEDURE SendBehind (theWindow: Ptr; 
behindWindow: Ptr); 
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The parameter theWindow is a pointer to the window that should be moved. 
behindWindow is a pointer to the window behind which theWindow should be 
placed. If behlndWindow is 0, then theWlndow will be sent to the very back. 

BringToFront and SendBehind do not, however, make a window active. As 
stated in Chapter 1, regardless of how many windows occupy the screen at any 
given time, only one can be active. An active window is highlighted, though the 
specifics of the highlighting depend on the type of window. For example, for 
standard document windows, highlighting means that the title will appear in the title 
bar surrounded by horizontal lines. When a standard document window is inac­
tive, the title bar still contains the title but the horizontal lines disappear. Drawing 
can only occur in active windows. 

The routine SelectWindow is the best way to activate a window: 

PROCEDURE SelectWindow (theWindow: WindowPtr); 

A call to SelectWindow will do the following: 

1. Unhighlight whatever window was most recently active; 

2. Bring the window being activated to the front (i.e., does the same thing as 
BringToFront); 

3. Highlight the window; and 

4. Let the program know that one window is deactivated and another activated 
(this generates two "events," which are discussed in Chapter 8). 

Whenever possible, it is better to use SelectWindow rather than 
BringToFront. You should also not use SendBehlnd to deactivate a window, 
since using SelectWlndow takes care of it for you. 

The Video Tape Index program uses repeated calls to SelectWindow to 
manage its windows. If the main window is brought to the front by SelectWlndow, 
it effectively hides the text entry windows since it is so much bigger. Therefore, 
each time the program returns from a subroutine that performs one of the Options, 
it executes: 

MOVE.L MainWlndowPtr, - (SP) 
_SelectWindow 

Selecting each of the text entry windows in turn brings them in front of the main 
window. The actions which follow involve set-up for text entry and will therefore be 
discussed in detail in Chapter 9. 

Preparing Windows That 
Will Change Size 

If an application needs to give the user the ability to size a window, that window 
should contain a grow icon (two overlapping squares). In document windows, the 
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grow icon always appears in the lower right-hand corner of a window. A grow icon 
is displayed by the routine DrawGrowlcon: 

PROCEDURE DrawGrowlcon (theWindow: WindowPtr); 

If the window indicated by theWindow (a pointer to the appropriate window 
record) is active, DrawGrowlcon will draw the outline of the grow icon area, the 
icon itself, and the outline of the area that should contain scroll bars for that 
window. If the window is inactive, only the grow icon area and the scroll bar areas 
will be drawn. 

For details on how to use the grow icon to size windows, see the section in 
Chapter 8 on handling mouse down events in grow regions. 

Setting Up Scroll Bars 
One of the things that the Macintosh does very well is scrolling through large 

documents. The scroll bars that provide that facility are grouped with buttons and 
check boxes under the heading of controls. Controls are graphics images that 
allow the user to control program action in some way. 

Most controls, like buttons and check boxes, only appear in dialog and alert 
boxes. They are handled by Dialog Manager routines (see Chapter 9). Generally, 
the only controls an application will deal with directly are scroll bars. 

Information about a control is stored in a control record that is located by a 
handle: 

ControlRecord = RECORD 

END; 

nextControl: 
contrlOwner: 
contrlRect: 
contrlVis: 
contr!Hilite: 
contrlValue: 
contrlMin: 
contrlMax: 
contrlDef Proc: 
contrlData: 
contrlAction: 
contrlRefCon: 
contrlTitle: 

Control Handle; 
WindowPtr; 
Rect; 
BOOLEAN; 
BOOLEA!'I; 
INTEGER; 
INTEGER; 
INTEGER; 
Handle; 
Handle; 
ProcPtr; 
LON GI NT; 
Str255; 

next control 
control's window 
boundary rectangle 
TRUE if visible 
TRUE if highlighted 
current value 
minimum value 
maximum value 
definition function 
used by contrlDef Proc 
default action proc. 
reference value 
title 

While an application will not need to retrieve data from most of these fields, 
there are two that are of some importance. Like windows, controls can be assigned 
arbitrary reference values (contrlRefCon) by an application. Since it may be 
necessary to identify what type of control a control record describes, the reference 
value can be used to hold that information. For example, some of the sample code 
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in Chapter 8 must distinguish between vertical and horizontal scroll bars. There­
fore, each was assigned a unique reference value. Remember that reference 
values are assigned arbitrarily by an application and have no meaning to the 
system other than what an application gives them. 

The first parameter in the record, nextControl, is also of some importance. 
Controls belong to windows. The handle to the control record of a window's first 
control will be stored in the wControlLlst parameter of the window record. The 
rest of a window's controls are linked together in a chain through the nextControl 
field of the control record. In other words, the handle to the next control in the list is 
found in the nextControl field. A window's last control will have a nextControl 
value of 0. A window without any controls will have a wControlList value of 0. This 
type of organization is known as a linked list. An application can find all of a 
window's controls by threading its way down the list, from one nextControl field to 
the next. 

Scroll bars, like windows, can be defined either within an application or from a 
template in a resource file. Using a resource file is the simpler of the two pro­
cedures. 

The scroll bars in the program that created Figure 7.3b were defined with the 
following entries in a resource file: 

TYPECNTL 
,1 

horizontal 
2450 261 316 
Visible 
16 
0 
01001 

,2 
vertical 
0316 245331 
Visible 
16 
0 
01001 

;unique resource ID# 
;title for documentation only 
;boundary rectangle 
;visible or invisible? 
;procedure ID that stands for scroll bar 
;application-defined reference value 
;minimum maximum value 

;unique resource ID# 
;title for documentation only 
;boundary rectangle 
;visible or invisible? 
;procedure ID that stands for scroll bar 
;application-defined reference value 
;minimum maximum value 

Control templates have a type of CNTL. As with windows, each control in the 
resource file must be assigned a unique number, its resource ID, which is the first 
line in the template. The space preceding the comma is required. 

The third line may contain the title of the control. Since scroll bars do not have 
titles, that line is ignored by the system and can therefore be used just as documen­
tation to identify the control. The third line in the control template is the boundary 
rectangle that defines where the control should be drawn. Coordinates are 
expressed in the local coordinate system of the window in which the control will 
appear. For scroll bars, the boundary rectangle should be 16 pixels wide. A 
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horizontal scroll bar will begin at the right edge of the window and end 15 pixels 
before its left edge, leaving room for the grow icon (a 15x15 pixel square). Vertical 
scroll bars will begin at the top of the window and end 15 pixels above the bottom, 
again to leave room for the grow icon. 

As discussed earlier in this chapter, the window in Figure 7.3b has global 
coordinates of 40, 20, 300, 350. It is therefore 261 pixels high (top - bottom + 1) 
and 331 pixels wide (right - left + 1), giving it local coordinates of 0, 0, 261, 331. 
These latter coordinates were used to determine the boundary rectangles of the 
scroll bars. For example, the horizontal scroll bar has a top coordinate of 245 (261 
- 16) to accommodate the width of the scroll bar, a left coordinate of 0 so the scroll 
bar will begin at the right edge of the window, a bottom coordinate of 261, and a left 
coordinate of 316 (331 - 15) to accommodate the grow icon. 

Line four in the control template indicates whether the control is initially visible 
or invisible. Visible controls will be drawn when the control is created. The fifth line 
indicates what type of control the definition is for. Scroll bars have a procedure ID 
of 16. As with windows, the procedure ID's must be used as integers; the symbolic 
addresses assigned to them in the Tool Box equates file cannot be substituted. 

Line six contains the optional reference value. This longinteger can be 
assigned any value in the resource file and accessed and changed while the 
application is running. If you will not use a reference value, simply assign it a value 
ofO. 

The three parameters in the final line of the control template are the minimum 
value the control can take, the maximum value the control can take, and its initial 
value. The initial value for scroll bars should always be 1; this will ensure that the 
scroll bars are drawn and active when the control is created. A scroll bar is an 
analog scale; each movement within it represents movement of a certain percent­
age of a document. Therefore, its minimum value should be set to O or 1. The 
maximum value is rather arbitrary, but the larger the maximum value, the greater 
the sensitivity of the scale. For example, if a scroll bar has a range of Oto 10, then 
the document will have, in effect, 10 positions to which it can be scrolled, each 
presenting a move of 10% through the document. On the other hand, a maximum 
value of 100 divides the scale into 100 pieces, permitting far smaller movements 
within the document. 

Once a control template has been defined in a resource file and the resource 
file successfully compiled with RMaker, the control is created by GetNewControl: 

FUNCTION GetNewControl (controllD: INTEGER; theWindow: 
WindowPtr) : ControlHandle; 

GetNewControl returns a longinteger result which is a handle to the control 
record. All the other routines which affect controls need the handle to locate the 
record. Therefore, the control handle must be saved after it is pulled from the stack. 

The parameter controllD is the resource ID number from the first line of the 
control template in the resource file. The second parameter is a pointer to the 
window in which the control will be drawn. 



182 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

The program that drew Figure 7 .3b created scroll bars with the following code: 

CLR.L -(SP) 
MOVE #1, - (SP) 
MOVE.L WindowPtr, - (SP) 
_GetNewControl 

;space for control handle result 
;the horizontal scroll bar 
;window pointer 

LEA BottomControlHandle,AO 
MOVE.L. (SP)+ ,(AO) ;retrieve handle 

CLR.L - (SP) ;space for control handle result 
MOVE #2, - (SP) ;the vertical scroll bar 
MOVE.L WindowPtr, -(SP) ;window pointer 
_GetNewControl 

LEA 
MOVE.L 

SideControlHandle,AO 
(SP)+,(AO) 

The above sequence will only display the control bars. It does not take care of 
moving them or moving the text in the window. For intercepting mouse down 
events in scroll bars, see Chapter 8. Chapter 9 includes a discussion of scrolling 
text within a window. 

Closing and Disposing of 
Windows 

If an application needs to remove a window from the screen (rather than 
making it invisible or hiding it behind another window), there are two routines that 
will do so. CloseWindow is used when an application allocated its own storage for 
the window record: 

PROCEDURE CloseWindow (theWindow: WindowPtr); 

This routine removes the window from the screen and deletes it from the applica­
tion's window list. Since storage for the window record was allocated by the 
application, that block of storage is unaffected when the window is closed. Any 
other data structures associated with the window are deleted from memory. 

On the other hand, if an application did not give the window creation routine a 
storage area for the window record, but rather indicated that the window record 
should be placed on the heap (a wStorage value of 0), DlsposWlndow is used to 
remove it: 

PROCEDURE DlsposWlndow (theWlndow: WlndowPtr); 

DlsposWlndow will not only remove the window from the screen and the window 
list, but will release the memory used to store the window record. 
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Once a window has been closed with either CloseWlndow or DisposWindow, it 
cannot be used again unless it is redefined by another call to NewWindow or 
GetNewWindow. 

Creating Menus 
Like windows, menus can be created either completely within an application 

program, or they can be retrieved from a template in a resource file. Creating 
menus within an application is far more cumbersome than creating a window 
within an application. It is far easier to always use a resource file for menu 
definitions. 

Defining Menus 
Resource file menu definitions begin with: 

TYPE MENU 

and, like window definitions, are followed by a second line containing a sequence 
number unique to that menu. (As mentioned earlier, sequence numbers need only 
be unique within resource type.) 

The complete definition for the Video Tape Index's Options menu appears as: 

TYPE MENU 
,3 

Options 
Enter 
Change 
Delete 
Select 
Print 
Qult/Q 

The third line of the definition is the window's title. The remaining lines are the 
options that will appear when the window is pulled down. The I after Quit indicates 
that Quit has a keyboard equivalent. When the menu is pulled down, Quit will 
appear with a cloverleaf- Q to its right and the Macintosh will interpret that key 
sequence as equivalent to selecting Quit from the menu with the mouse. Use as 
many keyboard equivalents for as many menu items as you wish, but the equiv­
alents should be unique. 
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All Macintosh applications support at least two, and often three, standard 
menus. The Apple menu (its title appears as an apple symbol) provides access to 
the Macintosh's built-in desk accessories; these should be available in all applica­
tions. Some of the desk accessories also require the ability to edit text. Therefore, 
applications should have an Edit menu, even if the remainder of the program does 
no text editing at all. Finally, most applications will have a File menu that handles 
the opening, saving, printing, and closing of files. 

To define the Apple menu, use: 

TYPE MENU 
,1 

\ 14 

The \ indicates that the title of the menu is not a character string, but an ASCII 
code. In the Macintosh's extended ASCII character set, 14 represents the solid 
apple symbol. No menu items are part of this definition; they are added later. 

An Edit menu also has a standard format: 

TYPE MENU 
,2 

Undo/Z 
(-
Cut/X 
Copy/C 
PasteN 
Clear 

The fourth line of this definition((-) prints a line across the width of the menu. 
Note then when numbering the items in a menu, this line counts as an item, even 
though it's not an option. The line will be printed unhighlighted (dimmed, or light­
grey). A left parenthesis preceding any menu item indicates that the item should be 
dimmed. The order of the items in an Edit menu and their keyboard equivalents are 
standard and should be used as shown if your application is to conform to the 
standard Macintosh user interface. 

The remainder of the video tape index's menu templates appear in Listing 7.2. 
Note that the keyboard equivalents have been selected to be as mnemonic as 
possible (e.g., cloverleaf-A stands for "Add a new record"). Also notice that while 
cloverleaf- Q stands for Quit in all of these menus, no more than one of them is 
present in the menu bar at any given time. 
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Listing 7.2 Templates for Application-Specific Menus Used in the Video Tape Index 

TYPE MENU 
,3 

Options 
Enter 
Change 
Delete 
Select 
Print 
Quit/Q 

,4 
Enter 
Add/A 
Quit/Q 

,5 
Change 
Find Record/F 
Save Change/S 
Abandon Change/A 
Quit/Q 

,6 
Delete 
Find Record/F 
Delete/D 
CanceVC 
Quit/a 

,7 
Select 
Display All 
Display All Titles 
Select One Title 
Select by Producer 
Select by Date 
Select by Rating 
Select by Tape Number 
Quit/Q 

,8 
Print 
Print All 
Print All Titles 
Quit/Q 

;; menu templates follow 
;; sequence number 

;; menu title 
;; menu item #1 

;; menu item #2 
;; menu item #3 
;; menu item #4 
;; menu item #5 
;; menu item #6 (has keyboard equivalent -

cloverleaf-Q) 

;; sequence number 
;; menu title 
;; menu item #1 (with keyboard equivalent) 
;; menu item #2 (with keyboard equivalent) 
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Defining the Menu Record 
Just as information about windows is stored in window records, information 

about menus is stored in menu records. Before attempting to create a menu 
record, though, you must first initialize the Menu Manager with: 

_lnitMenus 

(The routine has no parameters.) This initialization should be placed directly after 
lnltWindows. 

The application must also allocate storage space for a handle to each menu 
record that the program will create. Since a menu handle contains a pointer to the 
menu record, it requires a longword of space. For example: 

AppleHandle DC.L 0 

will set aside space for the handle to the apple menu (the one that gives access to 
the desk accessories). 

Assuming that space has been allocated for the menu handle, a menu record 
is created by the GetRMenu routine: 

FUNCTION GetRMenu (resourcelD: INTEGER) : MenuHandle; 

resourcelD refers to the sequence number you assigned to a particular menu. 
The function call returns the handle to the menu record. It also automatically adds 
menu items where menu items are specified in the resource definition. (If you were 
defining a menu within an application, a call to another routine would be required 
to add menu items to the menu record.) 

To create the Video Tape Index's Apple menu, the strategy is: 

CLR.L -(SP) 
MOVE #1, - (SP) 
_GetRMenu 

LEA AppleHandle,AO 
MOVE.L (SP)+ ,(AO) 

;space for menu handle result 
;menu number 1 

;address to store menu handle 
;pull handle off stack and store 

The menu handle is required by most Manager Routines and therefore must be 
recovered for subsequent use. 

While menu items are automatically added to all menus that have them listed in 
the resource file, the Apple menu is a special case. The desk accessories must be 
added in a separate step. To understand what is happening, consider that, to the 
Macintosh, desk accessories are resources, just like windows and menus. They 
are stored in the system's resource file, which is opened by the system whenever 
any application is executed. 
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Adding the desk accessories to the Apple menu is accomplished by identifying 
a type of resource (in this case DRVR) and instructing the Macintosh to find all 
resources of that type and add them to the menu in question. The Tool Box routine 
that does this is AddResMenu: 

PROCEDURE AddResMenu (theMenu: MenuHandle; 
theType: ResType); 

ResType refers to a tour-character string that identifies the resource type (e.g., 
WIND identifies a window resource type and MENU a menu resource type). 
Locating and appending the desk accessories requires: 

MOVE.L AppleHandle, - (SP) ;menu handle on stack 
MOVE.L #I DRVR I' - (SP) ;4 characters take 4 bytes 
_AddResMenu 

It is important to remember that while the menu records have been created, 
their handles saved, and menu items added where appropriate, no menu bar has 
been drawn. Getting the menu bar to appear with just the menus you want, and in 
the order you want, is a two-step process. 

Managing the Menu Bar 
Issuing a call to the routine that draws the menu bar will display only those 

menus that are part of the menu list. In fact, every menu for which a menu record 
has been created does not have to be part of the menu list; in fact, only those 
menus which should be displayed at any given time are members of the list. 
Inserting into and removing from the menu list is the way ah application controls the 
menus available to the user. 

Menu list insertion is done with the lnsertMenu routine: 

PROCEDURE lnsertMenu (theMenu: lillenuHandle; 
beforelD: INTEGER); 

The parameter beforelD refers to the position in the menu bar where the menu 
referenced by theMenu (the menu handle of the menu to be inserted) should be 
placed relative to other menus currently in the list. If beforelD is 0, then the new 
menu will appear to the right of all others. On the other hand, if beforelD contains 
the sequence number of a menu already in the menu list, the new menu will be 
inserted to the left of the menu indicated by beforelD. 

To delete a menu from the menu list use: 

PROCEDURE DeleteMenu (menulD: INTEGER); 

where menulD is the sequence number of the menu to be removed. 
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lnsertMenu and DeleteMenu do not affect the appearance of the menu bar. 
Therefore, any time a change is made to the menu list, the menu bar must be 
redrawn. The ToolBox routine: 

PROCEDURE DrawMenuBar; 

will take care of it. DrawMenuBar, which has no parameters, is simply called by: 

_DrawMenuBar 

The Video Tape Index has eight different menus (templates for six of which 
appear in Listing 7.2), though no more than three are in use at any one time. The 
Apple and Edit menus are always present. The third menu varies with which 
section of the program is currently being executed. For example, when the 
program is launched, the three menus are Apple, Edit, and Options. The 
Options menu has one item for each of the program's five functions and a Quit 
option. 

If one of the five program functions is selected, the Options menu is removed 
from the menu list. A menu corresponding to the selected function is inserted into 
the list and the menu bar redrawn. For example, the following code prepares the 
menu bar for adding new titles: 

MOVE #3, - (SP) 
_DeleteMenu 

;the Options menu is #3 

MOVE.L EnterHandle, - (SP) ;put handle of Enter menu on stack 
CLR - (SP) ;new menu will go at end of menu list 
_lnsertMenu 

_DrawMenuBar ;this makes the changes visible 

When the user exits the function (by selecting Quit from the function's menu), 
the function menu is removed, the Options menu re-inserted, and the menu bar 
redrawn. To return to the main program after entering new titles, the code is: 

MOVE #4, - (SP) 
_DeleteMenu 

MOVE.L OptlonsHandle, - (SP) 
CLR -(SP) 
_lnsertMenu 

_DrawMenuBar 

;the Enter menu is #4 

;appropriate handle goes on stack 
;put menu at end of menu list 

;changes only visible after this call 

The Video Tape Index has no File menu, since this particular application does 
not provide the user with file handling options. (See Chapter 11 for details on 
Macintosh file management.) 
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Controlling the Appearance 
of Menu Items 

In some instances, you may wish to have a menu present in the menu bar while 
some of its menu items are not available to be selected. For example, the desk 
accessories which allow you to enter text support the UnDo operation. The Video 
Tape Index, though, supports all the text editing functions except UnDo. There­
fore, when a desk accessory is being used, the Un Do item of the Edit menu should 
be highlighted (displayed in dark type), but when the user is entering text into the 
application's text windows, the UnDo item should be dimmed to indicate that it is 
not available. 

The procedures Disableltem and Enableltem take care of dimming and 
highlighting menu items, respectively. To do so, they need two pieces of informa­
tion: which menu and what item within that menu. Therefore, they appear as: 

PROCEDURE Disableltem (theMenu: MenuHandle; 
item: INTEGER); 

and 

PROCEDURE Enableltem (theMenu: MenuHandle; 
item: INTEGER); 

When counting the menu items to decide what number to use for item, 
remember to include lines as items. For example, UnDo is item 1 in the Edit menu, 
but Cut is item 3. To disable Clear, the assembly language statements would be: 

MOVE.L EditHandle, - (SP) ;put menu handle on stack 
MOVE #6, - (SP) 
_Disableltem 

On occasion, it is appropriate to disable an entire menu without removing it 
from the menu list. For example, the video tape index program disables the Edit 
menu when the user is printing. Since no editing is possible during print opera­
tions, it makes little sense to have an active Edit menu. A disabled menu will appear 
with its title dimmed. To disable an entire menu, call Disableltem with an item 
number oto. Then call DrawMenuBarto redraw the entire menu bar. To re-enable 
the menu, call Enableltem with an item number of 0 followed again by a call to 
DrawMenuBar. 

If you were to write a program that went this far with its menus - getting them 
from the resource file, inserting the desk accessory items, forming the menu list, 
and drawing the menu bar - you would discover that the menus did not pull down 
to display the menu items. There is yet another Menu Manager routine that handles 
pulling down the menus and registering a menu selection from the mouse. This 
routine is called in response to something that happens within an application - an 
event. Managing events and the actions that result from them is covered in 
Chapter a. 



190 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Enter 

Menus have a further function which may not be instantly obvious - they can 
help to establish a structure for an application program. Figure 7.5 presents a 
hierarchical block diagram of the Video Tape Index program. Note that each major 
program block, or module, corresponds to a separate menu. The function menus 
are all subordinate to the main Options menu. The code that handles each function 
is therefore written as a subroutine that can be called from the main program which 
is controlled by the Options menus. 

Options Menu 

Change Delete Select Print 
Menu - Menu - Menu - Menu - Menu -

Add new Change Delete Dis play Print 
titles and existing existing titles and entire 
annota- titles and titles. annota- file with 
tlons annota- Annota- tions In a or with-

tions tlons left variety out 
on disk. of orders annota-

tlons 

Figure 7 .5 Gross Block Diagram of Video Tape Index Program Structure 
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Questions and 
Problems 

1. For each global window boundary rectangle below, indicate the top left and 
bottom right points of its local coordinate system. 

a. 10, 10,200,200 
b. 40,40,500,500 
c. 200, 10,250, 100 

2. Assume that you want to define a standard document window with a bound­
ary rectangle of 50, 20, 275, 120. The window should be visible, have a 
GoAway box, and be placed in front of any other windows already on the 
screen. It can have a title of your own choosing. 

A. Write the assembly language code that will define this window within a 
program. Be sure to set aside storage for any data structures your code 
will use. Retrieve the window pointer from the stack. 

B. Write a resource file template for the same window. 
C. Write the assembly language code that will create the window defined by 

the template in B. 

Be sure to allocate space for any necessary data structures and retrieve the 
window pointer from the stack. 

3. For the window defined in problem 2 write blocks of code that will perform the 
following operations. (Assume that each operation is independent of any of 
the others.) 

A. change the title to something other than the original title 
B. make the window invisible 
C. make the window active 
D. close the window 

4. Write code to prepare the window defined in problem 2 for scroll bars: 

A. write code to draw a grow icon 
B. write the control templates to define vertical and horizontal scroll bars in a 

resource file 
C. write code to draw the scroll bars defined by the templates you wrote for 

B. 
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5. Write a resource file template to define a standard File menu. Include options 
to open a new file, open an existing file, close a file, print a file, save a file, and 
quit the program. Include keyboard equivalents as appropriate. (For a 
sample of how a standard File menu might appear, see Figure 1.2.) 

6. Write assembly language code to create the menu defined by the template of 
problem 5. Define data structures as needed. Retrieve and store the menu 
handle. 

7. Write assembly language_ code to insert the menu from problem 6 into the 
menu list. Finish the process by redrawing the menu bar. 

8. Write assembly language code to: 

A disable the entire File menu from problem 6 
B. disable only the options which open files 

In which case must you re-draw the menu bar? 



c H A p T E R E G H T 

CONTROLLING 
PROGRAM AGTIONS: 
MSNlffiRIN6 E'v'ENTS 

Chapter Objectives 

1. To understand how events are used to control program actions 

2. To be able to handle mouse down events in a variety of locations 

3. To be able to process key down events as equivalents for menu selections 

4. To understand the sequence of steps required to update a window 

The System Event 
Mechanism 

Macintosh applications are controlled by events. An event is anything that 
happens to the computer. A click on the mouse button is an event; pressing or 
releasing a key on the keyboard is an event. Most events that an application 
handles are those generated by users, though some are generated by the Macin­
tosh itself. The most common types of events that a program will process are: 

1 . Null events - the system reports that nothing has happened since the last 
time you checked. 

2. Mouse down events - the mouse button was pushed. 

193 
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3. Mouse up events - the mouse button was released. 

4. Key down events - a key was pressed. 

5. Key up events - a key was released. 

6. Update events - something has disrupted the contents on a window and it 
needs to be redrawn in some way. This type of event is posted by the system 
when, for example, a window that was previously obscured by another 
window is brought to the front. 

7. Activate events - a text window needs to be activated or deactivated. This 
type of event is posted by the system whenever you call SelectWindow. 

There is a point of potential confusion with regard to activate events. While 
the event is called "activate," it is generated by two distinct situations. In the 
first instance, a window must be deactivated; in the other, a window must be 
activated. Calls to SelectWindow produce two activate events. The first one 
posted to the event queue is for the window being deactivated; the second is 
for the window being activated. 

8. Disk insertion events - a disk was inserted into a disk drive. 

9. Abort events - cloverleaf-. was typed to abort an activity. 

Other types of events include: 

10. Auto-key events - generated by continuing to hold down a key. 

11. Network events - relevant to an application that interacts with the Apple Talk 
network. 

12. 1/0 driver events (currently not used). 

13-16. Four events that can be defined by an application. 

These constitute the maximum of 16 possible types of events. 
As events occur they are posted to the event queue in first-in, first-out order. 

The nature of the events also determines to some extent the order in which they will 
be detected. Activate events have the highest priority (deactivate is first, followed 
by activate) and are not actually posted to the event queue. Keyboard, mouse, 
disk, and abort events have the next priority. Update events come after those just 
mentioned, and null events are of the lowest priority. 

Wheh an event is detected, the Macintosh generates an event record for it. An 
event record has five fields: 

what: 
message: 
when: 
where: 
modify: 

INTEGER; 
LONGINTEGER; 
LONGINTEGER; 
Point; 
INTEGER; 
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The what field identifies what type of event the event record represents. Event 
types are represented by numeric codes. To identify what type of event has 
occurred, an application must compare the contents of the what field of the event 
record with the type codes for whatever events the program needs to trap. If 
SysEqu. Dis INCLUDEd in an application, you can avoid using the numeric codes 
and reference the event types by their symbolic addresses. For example: 

nullEvt 
mButDwnEvt 
updatEvt 
activateEvt 

represents the code for a null event; 
represents the code for a mouse down event; 
represents the code for an update event; 
represents the code for an activate event. 

Consult Table 8.1 to see the remainder of the symbolic addresses associated with 
event types. Using the symbolic addresses rather than the type codes makes a 
program more readable and easier to debug. 

The meaning of the message field depends on the type of event being posted: 

1 . For keyboard events - the key that was pressed. The low-order byte 
contains the ASCII code for the key; the high-order byte indicates whether 
any modifier keys, such as the shift, cloverleaf, or option keys, were also held 
down. 

2. For update and activate events - a pointer to the window where the event 
occurred 

3. For disk insert events - the drive number where the event occurred 

4. For abort events - the key that was pressed. The low-order byte contains the 
ASCII code for the key; the high-order byte identifies any modifier keys that 
were also held down. 

5. For mouse and null events - the field has no meaning 

An application commonly compares the message field to its own window pointers 
to determine which windows need updating and activating. message is used less 
frequently to directly read the keyboard for text entry; that function is handled by 
the TextEdit routines discussed in Chapter 9. 

when indicates the time when an event was posted. For most applications, this 
field is of less importance than any of the others. 

where gives the coordinates of the mouse when the event was posted. These 
coordinates are global (i.e., expressed in terms of the 512 by 342 coordinate grid 
imposed on the entire screen). where is used in conjunction with routines that 
identify where a mouse down event occurred. 

modify holds information about the state of a number of Macintosh keys; the 
modify word works as a series of flags. If set, each flag indicates that a particular 
key was pressed. modify monitors the mouse button, the cloverleaf key, the shift 
key, the caps lock key, and the options key. It also records whether an "activate" 
event represents the deactivating or activating of a window. Take a look, at Table 
8.2 to see the bit assignments in modify. 
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Event 
Symbolic Address TuQe. Comment 

nullEvt 
mButDwnEvt 
mButUpEvt 
keyDwnEvt 
keyUpEvt 
autoKeyEvt 
updatEvt 
disklnsertEvt 
activateEvt 
abortEvt 
netWorkEvt 
ioDrvrEvt 
app1 Evt 
app2Evt 
app3Evt 
app4Evt 

0 no event has occurred 
1 mouse down 
2 mouse up 
3 key down 
4 key up 
5 auto key 
6 update (note that updatEvt is not a misprint) 
7 disk insertion 
8 activate 
9 abort (pressing cloverleaf-.) 
10 network (Appletalk) 
11 1/0 driver (not used) 
12 application defined 
13 application defined 
14 application defined 
15 application defined 

Table 8.1 Symbolic Addresses Assigned to Event Types in the System Equates File 

Symbolic Address 

active Flag 
change Flag 
btnState 
cmdKey 
shiftKey 
alphalock 
option Key 

Bit 
Number 

0 
1 
7 
8 
9 
10 
11 

Comment 

Set if window is activated, cleared if deactivated 
Set if system window changes, cleared otherwise 
Set if mouse button down, cleared if up 
Set if cloverleaf key was pressed, cleared otherwise 
Set if shift key was pressed, cleared otherwise 
Set if caps lock is engaged, cleared otherwise 
Set if optionkey was pressed, cleared otherwise 

Table 8.2 Symbolic Addresses Associated with the Bits in an Event Record's Modify Word 

When retrieving events from the event queue, an application can choose to 
receive all events in order or only events of a specific type. Events can be filtered 
out by using a specific event mask. It is no accident that there are 16 possible event 
types. Each type corresponds to one bit in an integer, or word, length event mask. 
For example, if bit O is set, then the mask will include null events. If bit 1 is set, the 
mouse will also include mouse down events. The bit positions that represent the 
various types of events appear in Table 8.3. 

The Macintosh will accept a mask of -1 to select every event, the mask which 
should be used in most instances. In other words, an application should retrieve 
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every event from the queue and then compare the what field of the event record 
against the types of events the application wishes to process. 

In some special cases it may be necessary to construct a special mask. For 
example, when managing its windows and TextEdit records, the Video Tape Index 
program must remove some spurious activate and deactivate events from the 
event queue. Table 8.3 indicates that activate events are selected when bit 9 is set. 
Therefore, the mask used to remove those events is % 0000000100000000 or 
more simply, 256. 

Bit Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
10 
11 
12 - 15 

Event Type 

No event reported 
Mouse down 
Mouse up 
Key down 
Key up 
Auto key 
Update 
Disk insertion 
Activate 
Network 
Device driver 
Application defined 

Setting any given bit in a mask word will instruct GetNextEvent to report events of that type. For 
example, if bits 1 and 3 are set, GetNextEvent will report only mouse down and key down 
events. A mask of -1 will select all types of events. 

Table 8.3 The Structure of an Event Mask 

As part of the initialization process, an application should flush the event queue 
to remove any events that may have been posted prior to the application's 
execution. Usually this occurs immediately after the various managers have been 
initialized with a call to FlushEvents. FlushEvents is an operating system routine: 

PROCEDURE FlushEvents (eventMask, stopMask: INTEGER); 

The event mask is constructed as described above. The stop mask says "return all 
events that meet the event mask until an event that matches the stop mask is 
encountered." In most cases, use a stop mask of 0 to indicate that all events 
specified by the event mask should be removed. 

FlushEvents expects to find both of its parameters in DO - the event mask in 
the low-orde~ word and the stop mask in the high-order word. It is easiest to load 
the register with one MOVE statement: 

MOVE.L $0000FFFF,DO 
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This installs a stop mask of O and an event mask of -1 (the $FFFF represents -1 as 
a two's complement integer). 

The procedure is then called by using: 

_Flush Events 

Normally, FlushEvents is called only once, at the start of an application. 

Retrieving Events 
Before an application can retrieve events from the event queue, it must 

prepare storage for the event record. The event record data structure can be 
defined to be part of the application itself (using DC) or assigned to the applications 
globals area (with OS). The Video Tape Index places its event record storage 
within the program: 

Event Record 
What DC 0 
Message DC.L 0 
When DC.L 0 
Point DC.L 0 
Modify DC 0 

Using EventRecord will reference the entire 16-byte data structure. Each field can 
also be referenced separately using its own symbolic address. 

Programmers who wish to keep all read/write storage in the applications 
globals area should use: 

EventRecord DS.B 16 

which will set aside the required 16-byte area. The start of the fields within the 
record are then handled as offsets. They are part of the predefined equates in 
SysEqu.D (e.g., evtNum, evtMessage, etc.). 

Events are retrieved from the event queue with the ToolBox routine GetNext­
Event: 

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent: 
EventRecord): BOOLEAN; 

GetNextEvent returns a boolean that is set to false if the event is one that should 
be handled by the system (and not by the application program) or a null event. The 
event mask is as discussed above. Only those events which fit the mask will be 
reported by the call to GetNextEvent. 
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The event details are returned in the event record data structure. It is passed as 
a variable parameter rather than placed on the stack as the function result. 
Therefore, a call to GetNextEvent appears as: 

CLR -(SP) 
MOVE # - 1, - (SP) 
PEA EventRecord 

_GetNextEvent 

;space for boolean result 
; - 1 Is the preset mask for all events 
;since EventRecord is a variable parameter, 
;push pointer 

Calls to GetNextEvent form the basis of the loop that controls selection of 
program actions. Figure 8.1 shows you pseudocode for an event loop. In general, 
the strategy is to begin by checking the event queue for an event. If none is 
reported, the loop simply returns to check again. If an event was posted, then the 
application must isolate the event number from the event record and compare it to 
the numbers representing each type of event the program must handle. When a 
match is discovered between a posted event and one the application will deal with, 
the program should branch to a module that handles that event. In this way, the 
event loop determines the structure of the program. 

Repeat 

Retrieve an event from event queue; 

If an event has been posted then 

Retrieve event number from event record; 

Repeat 

If event number equals an event this program monitors then 

Branch to portion of program that handles that event 

Until event number equals an event this program monitors OR all 
possible event numbers have been checked; 

Until users selects Quit. 

Figure 8.1 Pseudocode for an Event Loop 

The event loop in the Sample program is deceptively simple. Since that 
program's only function is to open a window, print a string, and wait for a key or 
mouse button press, the event mask selects only those two events (a mask of 
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%0000000000111110); the program either finds a mouse or keyboard event, or it 
doesnl: 

Event CLR - {SP) ;space for boolean result 
MOVE #%0000000000111110, - {SP) ;event mask 
PEA EventRecord ;pointer to event record storage 
_GetNextEvent 

MOVE {SP)+ ,DO 
CMP #0,DO 
BEQ Event 

RTS 

;recover boolean result 

;no event - loop to keep checking 

;return to Finder 

The reason that this loop is so simple is that it can detect the occurrence of a 
desired event merely by checking the boolean result of the call GetNextEvent. 
Since the action to be taken is identical whether the event is a key or mouse button 
press (return to the Finder), there is no need to differentiate between the two types 
of events. In terms of meaningful Macintosh applications, this is an unrealistic 
situation. 

The Video Tape Index must handle four different types of events. Its main event 
loop, which traps three types of events, appears in Listing 8.1. Note that this event 
loop uses an event mask of -1 to select all types of events and then makes 
comparisons with specific event numbers to identify the particular events it must 
handle. 

Listing 8.1 Video Tape Index Main Event Loop 

Event 
CLR -(SP) 
MOVE #-1,-(SP) 
PEA EventRecord 
_GetNextEvent 

MOVE (SP)+,DO 
CMP #0,DO 
BEQ Event 

MOVE What,DO 

;Space for boolean result 
;Mask for keyboard - select all events 
;Place to receive event info 
;Get next event from queue 

;Recover event result 

;If no event, branch to look again 

;Recover event ID 
CMP #mButDwnEvt,DO ;Was mouse button pressed? 
BEQ MouseEvent 

CMP #keyDwnEvt,DO ;Was key pressed? 
BEQ KeyEvent 

BRA Event ;Look for another event 
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Each of the program's function modules also have their own event managers. 
These trap all four kinds of events: mouse down, key down, update, and activate. 
Code for the module which finds and displays data can be found in Listing 8.2. As 
you can see, the structure of this loop is essentially the same as the main event 
loop. This is one situation where repeated code is not necessarily a negative 
characteristic. 

Listing 8.2 Function Event Loop from the Video Tape Index Program 

SelectEvent 
CLR -(SP) 
MOVE #-1,-(SP) 
PEA EventRecord 
_ GetNextEvent 

MOVE (SP)+,D0 
CMP #0,00 
BEQ Select Event 

MOVE What, D0 
CMP #mButDwnEvt, D0 
BEQ SelectMouseEvent 

CMP #keyDwnEvt, D0 
BEQ SelectKeyEvent 

CMP #activateEvt, D0 
BEQ SelectActivateEvent 

CMP #upclatEvt, D0 
BEQ Select Update Event 

BRA Select Event 

;space for event type 
;event mask of -1 selects all events 
;place to store event record 
;get next event from event queue 

;recover boolean result 
;0 result means no event occurred 
;if no event, branch to keep looking 

;recover event type 
;mouse down event? 
;branch to handle event 

;key down event? 
;branch to handle event 

;activate event? 
;branch to handle event 

;update event? 
;branch to handle event 

;some unwanted type of event occurred - must 
;keep checking 

Though it is possible to write a significant Macintosh application with only one 
event loop, in most cases doing so creates "spaghetti code," code that is so 
intertwined with unconditional branches (JMP and BRA) that it is virtually impossi­
ble to follow and even more difficult to modify and debug. The Video Tape Index 
opts for clear program structure over the tightest, shortest possible code. U nfortu­
nately, such a choice may not be viable if you are writing a large application for the 
128K Mac. 
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Handling Mouse Down 
Events 

The primary task with which an application is faced when a mouse down event 
occurs is figuring out where the mouse button was pressed. The three major 
locations an application usually examines are: 

1. the menu bar 

2. the content area of a window defined by an application 

3. a system window (one created, for example, by a desk accessory) 

In some applications, the mouse button might also be pressed in the drag region of 
a window, in a GoAway box, or in a grow box. 

The Window Manager routine FindWindow identifies where the mouse button 
was pressed: 

FUNCTION FindWindow (thePt: Point; VAR whichWindow: 
WindowPtr) : INTEGER; 

thePt refers to the screen coordinates where the mouse button down event 
occurred. It can be obtained from the point field of the event record. On function 
return, the variable parameter whichWindow will contain the pointer to the 
window record of the window posting the event. The integer result contains a code 
that corresponds to the evenfs generai location (e.g., 1 = in the menu bar, 2 = in a 
system window, etc.). Symbolic addresses for each of the result codes are estab­
lished in the ToolEqu.D file; the complete set also also appears in Table 8.4 

A call to Find Window therefore appears as: 

Symbolic Address 

in Desk 
inMenuBar 
inSysWindow 
inContent 
in Drag 
inGrow 
inGoAway 
in Button 
inCheckBox 
inUpButton 
inDownButton 
inPageUp 
inPagebown 
in Thumb 

Result 
~ Comment 

0 not in a window or the menu bar 
1 in the menu bar 
2 in a system window (e.g., a desk accessory) 
3 in the content area of an application definewindow 
4 in the drag region of an application defined window 
5 in the grow region of an application defined window 
6 in the GoAway box of ari application defined window 
1 0 in a push button 
11 in a check box 
20 in up button area of a scroll bar 
21 in down button area of a scroll bar 
22 in page up area of a scroll bar 
23 in page down area of a scroll bar 
129 in thumb area of a scroll bar 

Table 8.4 Symbolic Addresses Associated with FindWindow Result Codes 
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A call to Find Window therefore appears as: 

CLR 
MOVE.L 
PEA 
_FindWindow 

-(SP) 
Point, - (SP) 
WhichWindowPtr 

;space for integer result 
;a field from the event record 
;must be defined w!th DC or OS 

The integer result should then be immediately pulled off the stack: 

MOVE (SP)+ ,DO 

The code in DO can then be compared against the codes for locations the 
application needs to monitor. For example: 

CMP #inMenuBar,DO 

will determine whether the mouse button was clicked anywhere in the menu bar. 
The constant inMenuBar is defined in the ToolBox equates file. 

FindWindow also returns location codes for: 

1. in a system window 

2. in the content region of an application window 

3. in the drag region of a window (the title bar) 

4. in the grow region 

5. in a GoAway box 

All of these locations have constants defined for them in the ToolBox equates file. 
When a match is found with a location code, the application should branch to 

handle that particular situation. Each location requires that the program execute a 
different series of actions. They are discussed separately below. 

Mouse Down Events in 
Menu Bars 

There is a single ToolBox routine MenuSelect, that pulls down menus (dis­
playing the menu items), highlights the menu title, and records which menu and 
which item within that menu were selected. Any time a program records a mouse 
down even in the menu bar, it should call MenuSelect: 

FUNCTION MenuSelect (startPt: Point) : LONGINTEGER; 

MenuSelect's longinteger result has two parts. The high-order word contains the 
sequence number of the menu. This is the number assigned to the menu in the 
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resource file. The low-order word contains the number of the selected menu item. 
(Remember: when numbering menu items, things such as lines across the menu, 
like that beneath UnDo in an Edit menu, count as items as far as MenuSelect is 
concerned.) The parameter startPt is again the Point field from the event record. 

A call to MenuSelect therefore appears as: 

CLR.L -(SP) 
MOVE.L Point, - (SP) 

;space for longinteger result 
;from the event record 

_MenuSelect 

MenuSelect's result should be pulled from the stack and put into two integer 
storage locations. Making this work properly takes a bit of care. First, two integer 
locations should be defined using either DC or OS: 

WhichMenu DC 0 
Whatltem DC O 

These declarations should be placed physically next to each other (in the order 
above) in the program. This ensures that when the storage is allocated during 
assembly, Whatltem will occupy the word immediately after WhichMenu in 
memory. Then: 

MOVE.L 
LEA 
MOVE.L 

(SP)+,02 
WhichMenu,AO 
02,(AO) 

;pulls result from stack 
;get address for high-order word 

The important step above is this last one - it moves a longinteger rather than just 
an integer. The high-order word of the result therefore goes into the word associ­
ated with the symbolic address WhlchMenu. Since the location of Whatltem is 
physically right after WhlchMenu, the low-order byte is automatically stored in the 
right place. This bit of tricky maneuvering saves several program steps (i.e., having 
to save WhlchMenu, mask off the high-order byte, and then save Whatltem 
explicitly). 

Since MenuSelect does not unhighlight a menu title, every call to 
MenuSelect needs to be followed by a call to HILiteMenu, which will remove the 
highlighting: 

PROCEDURE HiLiteMenu (menulD: INTEGER); 

This easiest way to handle this is not to determine exactly which menu needs to 
have its title unhighlighted, but to unhighlight all menus. To do so, simply use a 
menulD of 0, which will automatically unhighlight any menu title which is high­
lighted. 

The next task is to compare the contents of WhichMenu with the sequence 
numbers of the menus currently in the menu bar. These sequence numbers are 



CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 205 

the ones assigned to the menus in the application's resource file. When a match is 
found, the program must then branch to handle actions based on the specific 
menu. 

Assuming that an application adheres to the standard Macintosh user inter­
face, there will be at least three sorts of menus that it must deal with: the Apple 
menu that selects the desk accessories; the Edit menu which may reflect text 
editing in an application window or a desk accessory; and application menus 
(those specific to the particular program). Most applications will also have a 
standard File menu. 

Implementing the Desk Accessories 
Most of the work involved with handling the Macintosh's standard desk accesso­
ries is done by the ToolBox itself. In order for them to be properly updated, 
however, an application must make repeated calls to SystemTask. This pro­
cedure (it has no parameters and so is simply called with _System Task) should 
be placed in an application's event loop. If an application has more than one event 
loop, it should appear in each of them. If SystemTask is not called frequently 
enough, desk accessories such as the alarm clock will not function properly. 

The first task in processing a desk accessory is to identify which desk 
accessory has been selected. The routine Getltem will return the text of a selected 
menu item: 

PROCEDURE Getltem (theMenu : MenuHandle; item: INTEGER; 
VAR itemString: Str255); 

The first parameter is the handle of the Apple menu. The item should come from 
Whatltem which was retrieved earlier from the call to MenuSelect. The result of 
this procedure - the name of the desk accessory - should go into a storage 
location that has been defined with a length of 16 words (since that is the maximum 
length of a desk accessory name): 

DeskAccName DCB.W 

or 

DeskAccName DS.W 

The call to Getltem appears as: 

MOVE.L 
MOVE 
PEA 
_Get Item 

AppleHandle, - (SP) 
Whatltem, - (SP) 
DeskAccName(A5) 

16,0 

16 

;menu handle goes on stack 
;from MenuSelect 
;assumes OS declaration 
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At this point, the application has enough information to open the desk 
accessory and turn its execution over to the system. This is accomplished using 
OpenDeskAcc, a routine that is part of the Desk Manager: 

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER; 

The result of OpenDeskAcc can be ignored. Nevertheless, the call must allocate 
space for the result and retrieve it from the stack. The parameter theAcc is the 
desk accessory name retrieved in the call to Getltem. To call OpenDeskAcc use: 

CLR -(SP) 
PEA DeskAccName(AS) 
_OpenDeskAcc 

MOVE (SP)+ ,DO 

;space for useless result 
;assumes storage defined with OS 

;removes useless result from stack 

Once an application calls OpenDeskAcc, the desk accessory is opened for the 
user. The system will handle things such as key down events, but the application 
should continue to monitor the event queue, looking for mouse down events in 
system windows. 

Handling Edit Functions in Desk Accessories 
When a user makes a selection in the Edit menu, there are two possibilities: either 
the edit request concerns a system window (e.g., the note pad) or an application 
window. Edit functions in application windows will be discussed later in Chapter 9 
along with the other TextEdit routines, but this is an appropriate place to consider 
how to differentiate between the two sources of edit requests and how to handle 
those in system windows. 

The strategy for telling system edit requests from application edit requests is 
very straightforward. An application should simply attempt to let the system handle 
the request. If it can, it will. If the system is unable to handle an edit (because it 
occurred in an application window) it will return a result of FALSE. A FALSE result 
therefore means that the application must handle the edit itself. 

Editing in system windows is taken care of by a single ToolBox routine: 

FUNCTION SysEdlt (edltCmd: INTEGER) : BOOLEAN; 

The edltCmd is equal to the item number from the edit menu less 1, assuming that 
the items in the Edit menu have been set up in the standard order. 
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To initiate a system edit, then: 

MOVE Whatltem,00 
SUBQ #1,DO 
CLR -(SP) 
MOVE DO, - (SP) 
_SysEdlt 

MOVE (SP)+ ,01 

;retrieve original menu item number 
;adjust the item number to suit SystemEdit 
;space for boolean result 
;put adjusted Item number on stack 
;let the system handle the edit request 

;get result to verify if request was handled 

Control returns to the application when the edit has been completely processed. 

Handling Mouse Down 
Events in Application 

Menus 
Precisely what occurs as the result of selecting any given menu item will 

obviously depend on the nature of the menu. Nonetheless, the strategy for 
identifing the item selected is the same - compare Whatltem against each of the 
item numbers present in the selected menu. When a match is found, branch to a 
program module that implements the particular function. (For an example, see 
Listing 8.3, the code that selects actions from the Video Tape Index's Options 
menu.) 

Listing 8.3 Selecting Program Actions Based on Menu Selections (from the Video Tape Index) 

(a) Options MOVE Whatltem,D0 ;Move item selected to D0 

(b) CMP #1,D0 
BNE ltem2 

(c) JSR Enter ;Enter new tapes 

ltem2 CMP #2,D0 
BNE ltem3 
JSR Change ;Modify existing tapes 

ltem3 CMP #2,D0 
BNE ltem4 
JSR Delete ;Delete tapes 

ltem4 CMP #4,D0 
BNE Items 
JSR Select ;Retrieve info 

Items CMP #S,D0 
BNE Items 
JSR Print ;Print lists 

Items CMP #S,D0 
BEQ Quit ;Exit the program 
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The basic strategy behind the code in Listing 8.3 is based on knowing the 
order in which menu items were listed in the resource file. Listing 8.3 figures out 
which item in the Options menu was selected. The item list for that Options menu is: 

Enter 
Change 
Delete 
Select 
Print 
Quit 

The Macintosh assigns the number1 to the first item in the list (Enter), a 2 to the 
second (Change), and so on. The quantity stored in Whatltem (retrieved from the 
event record) therefore corresponds to the number of whichever item was 
selected. The only way to identify the particular item is to begin comparing the 
quantity in Whatltem with the numbers of menu items. That is exactly what the 
code in Listing 8.3 is doing. 

Whatltem is first moved into a data register (a). The comparisons begin at (b), 
where the item selected is compared against a 1, the number that stands for Enter. 
If a match is found, program control is transferred to a subroutine that handles 
entering new records (c). Since blocks of code that correspond to individual menu 
items can be selected repeatedly while the program is running, it makes sense in 
terms of program structure to place each block in a separate subroutine. The 
procedure is repeated for each possible item until a match is found. 

Handling Mouse Down 
Events in System Windows 

If a call to FindWindow determines that a mouse down event has occurred in a 
system window (i.e., a desk accessory), then the application can simply turn 
control over to the system to handle the event. A call to SystemClick will process 
any type of mouse down event in a system window: 

PROCEDURE SystemCllck (theEvent: EventRecord; 
theWindow: WindowPtr); 

SystemClick needs the entire event record (push its address onto the stack) and 
the result of FindWindow, generally stored in a location like WhichWindowPtr. 
The pointer can simply be moved onto the stack. 

SystemClick will handle all manner of mouse down events in system win­
dows. It will, for example, close a desk accessory if the mouse down event 
occurred in the desk accessory's GoAway box. It handles the mouse down events 
that operate the calculator. It will also select and make active a desk accessory that 
was previously deactivated by selection of another window. SystemClick will 
drag, scroll, and size system windows as well. 
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Handling Mouse Down 
Events in Application 

Windows 
A mouse down event in the content region of an application-defined window 

(identified by the constant inContent) usually means one of two things: if the 
window is inactive, then it should be brought to the front of the screen and 
activated; if it is already active, then the mouse down event most often indicates 
that the cursor should be moved, regardless of whether the window contains text 
to be edited or pictures to be drawn. 

The first task after identifying a mouse down event in an application window, 
then, is to discover whether or not the window posting the event is active. The 
Window Manager routine FrontWindow will return a pointer to whichever window 
is in front of all others on the screen (this will be the active window): 

FUNCTION FrontWindow : WindowPtr; 

Note that this function has no parameters. To call it, allocate space on the stack for 
a longinteger result and then issue the function call. After the result is retrieved from 
the stack, it can be compared to FindWindow's result. If the two pointers match, 
then the event occurred in the active window and the cursor should be moved. 
(See the discussion of TextEdit later in Chapter 9 for details.) If the pointers do not 
match, then a window must be activated. Such a code sequence might appear as: 

CLR.L - (SP) ;space for longinteger result 
_FrontWindow ;get pointer to active window 
MOVE.L (SP)+ ,AO ;recover pointer to active window 
CMP.L WhichWindowPtr,AO 

;check active window against clicked window 
BNE Mustactivate ;routine which activates clicked window 

; followed by code to move the cursor in the active window 

A window should be activated by calling SelectWindow. (See Chapter 7 for 
details.) This will bring the window to the front of the screen, deactivate and 
unhighlight the current window, and highlight the new active window as appropri­
ate. It will also generate a deactivate event for the previously active window, and 
activate and update events for the new active window. 

Mouse Down Events in Application Windows 
With Scroll Bars 
If an application window contains scroll bars, then the procedure for processing 
mouse down events in the content area of that window is more complex than 
described above. After detecting an event in the content area, the application must 
then determine whether or not the mouse down event was in the scroll bars. 
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The Control Manager routine FindControl will identify which control, if any, 
was the site of the mouse down event: 

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr; 
VAR whichControl: Control Handle) : INTEGER; 

FindControl returns two results. The first is the handle to the control record of 
the control that posted the mouse down event. If the mouse down event was not in 
a control, the control handle will be set to 0. The function's integer result corres­
ponds to the part of the control that was clicked. 

Scroll bars have five parts (see Figure 8.2) . The numbers in parentheses in 
Figure 8.2 correspond to each part's identification number. One of these numbers 
will be returned as FindControl's integer result for a mouse down event in a scroll 
bar. 

MAL Output Window 

Up arrow 
(part code = 20') 

Figure 8.2 The Parts of a Scroll Bar 

An application can 
answer that question 
by referring to the 
part codes that 
identify the parts 
of a scroll bar . 

., 

FindControl needs to know the point where the mouse buttor. was clicked. 
Unfortunately, the Event Manager returns the point in global coordinates and 
FindControl requires local coordinates. The QuickDraw routine GlobalTolocal 
(discussed further in Chapter 9) will handle the conversion: 

PROCEDURE GlobalTolocal (VAR pt: Point); 
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An application might use the following code to determine whether a mouse 
down event occurred in a scroll bar: 

PEA Point ;push address so value can return 
;convert _GlobalTolocal 

CLR 
MOVE.L 
MOVE.L 

PEA 

_FindControl 

MOVE 
CMP 
BEQ 

- (SP) ;space for part code result 
Point, - (SP) ;coordinates now local 
WhichWindowPtr, -(SP) 

;result of call to FindWindow 
WhichControlHandle 

;push address so. value can return 

(SP)+ ,DO ;retrieve part code 
#0,DO 
lnContentRegion 

;not in scroll bar 

;continue to process event in scroll bar 

If FindControl returns a part code greater than 0, then the mouse down event 
was indeed in a scroll bar (this assumes that there are no other controls in the 
window). The application should then call TrackControl: 

FUNCTION TrackControl (theControl: ControlHandle; startPt: 
Point; actlonProc: ProcPtr) : INTEGER 

TrackControl performs a number of important tasks. If the user has pressed 
the mouse button in the thumb of a scroll bar, TrackControl will continue to drag 
that thumb as long as the mouse button is held down. If the mouse button is 
pressed in the up or down arrow, TrackArrow will highlight the arrow until the 
mouse button is released. 

TrackControl's result is either the part code for the part of the control that 
posted the mouse down event, or 0. A value of O indicates thatthe user moved the 
mouse pointer from the part of the control where the event originally occurred. If 
that is the case, the application should abort processing the event and return to the 
top of the event loop. 

The parameter theControl refers to the result of FindControl. startPt is the 
same point, in local coordinates, that was passed to FindControl. The third 
parameter, action Proc. is an optional pointer to a routine that should be executed 
while the user continues to hold down the mouse button. It can be set to O if there is 
action procedure. 
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Calling TrackControl would therefore appear as follows: 

CLR 
MOVE.L 

- (SP) ;space for part code result 
WhichControlHandle, - (SP) 

MOVE.L Point, - (SP) 
CLR.L -(SP) 
_TrackControl 

MOVE 
CMP 

BEQ 

(SP)+,DO 
#0,DO 

Event 

;FindControl result 
;in local coordinates 
;no action procedure 

;retrieve part code result 
;has user moved to different part 
;of control? 
;Yes - go to top of event loop 

;otherwise, scroll the content of the window appropriately 

The actual scrolling of text will be discussed in Chapter 9, when we talk about 
TextEdit. 

Handling Mouse Down 
Events in GoAway Regions 

If a document window has been defined with a GoAway box (also known as a 
close box), then the application should check the result of FindWindow against 
the constant inGoAway (equated to the value of 6 in the Tool Box equates file). A 
mouse down event in a GoAway box indicates that the window should be closed. 

To adhere to the standard Macintosh user interface, the GoAway box should 
be highlighted as long as the mouse button is pressed. The Window Manager 
routine TrackGoAway will do so: 

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point): 
BOOLEAN; 

The parameter theWindow is the pointer to the window record of the window 
posting the event; it is the result of a call to FindWindow. thePt is the point where 
the mouse down event occurred. It is expressed in global coordinates and can 
therefore be taken directly from the event record. The boolean result is set TRUE if 
the mouse pointer was still in the GoAway box when the mouse button was 
released; it is set FALSE if the pointer was moved. In the latter case, the user has 
effectively cancelled the request to close the window, and the application should 
simply return to the top of the event loop to check for another event. 
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Code to handle a mouse down event in a GoAway box might appear as 
follows: 

CLR.B -(SP) ;space for boolean result (system will 
;push extra byte to keep stack pointer 
;even) 

MOVE.L WhichWindowPtr, - (SP) ;from FindWindow 
MOVE.L Point, - (SP) ;from the event record 
_TrackGoAway 

MOVE.B (SP)+ ,DO 
CMP #0,DO 
BEQ Event 

;retrieve boolean result 
;did user move pointer? 
;Yes - go get another event 

;application must continue by closing the window 

Closing the window may involve simply calling Close Window or DisposWindow 
to remove the window from the screen or from memory. If the contents of the window 
should be saved to disk before closing, then the application may execute a disk save 
routine before closing the window. (See Chapter 11 for details.) 

Handling Mouse Down 
Events in Drag Regions 

In a standard document window, the drag region is the bar in which the title 
appears. Mouse down events in that area indicate that the user wishes to move the 
window somewhere else on the desktop. 

The Window Manager routine DragWlndow will handle the entire process: 

PROCEDURE DragWindow (theWindow: WindowPtr; startPt: 
Point; boundsRect: Rect); 

The first two parameters are identical to those for TrackGoAway. The third 
parameter, boundsRect, is a rectangle in global coordinates that describes the 
boundaries within which the window can be moved. While the rectangle could 
theoretically encompass the entire screen, it is generally 4 pixels in from each edge 
of the screen to ensure that at least 4 pixels of a document window's title bar will 
always be seen. 

Drag Window will continue to drag an outline of the window around the screen 
until the user releases the mouse button. At that point, assuming the mouse pointer 
is within the boundary rectangle, the window will be redrawn in its new location. If 
the mouse pointer is not within the boundary rectangle, the window will be left in its 
original spot. 
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As an example, assume that a boundary rectangle has been defined with 
coordinates 4 pixels in from each edge of the screen (remember that the screen is 
342 pixels high and 512 pixels wide): 

BoundaryRect DC 4,4,338,508 

A call to DragWindow would then appear as: 

MOVE.L WhichWindowPtr, -(SP) 
MOVE.L Point, - (SP) 
PEA BoundaryRect 
_DragWindow 
BRA Event 

;from FindWindow 
;from the event record 

;go get another event 

It is important to remember that DragWindow does not change the size of a 
window; it merely moves it around the screen. 

Handling Mouse Down 
Events in Grow Regions 

If a mouse down event occurs in the grow icon, the user wishes to change the 
size of the window. Sizing a window requires a sequence of calls to at least five 
Window Manager routines: 

1. Make calls to lnvalRect to place any parts of the window that you know will 
need to be changed into the window's update region. The update region 
holds all of the parts of the window that have been disturbed by some 
program function and therefore need to be updated. If anything is present in 
the update region, the system will generate an update event for the window. 
If a window contains scroll bars, they should be placed in the update region. 

2. Call GrowWindow to get an outline of the new size that will follow the outline 
of the mouse pointer until it is released. GrowWlndow returns the coordi­
nates of the bottom right corner of the new size. When a window is sized, its 
top left corner is anchored on the screen; only the position of the bottom right 
corner changes. 

3. Call SizeWindow to actually change the size of the window. 

4. Update the window. This may include re-drawing scroll bars and the grow 
icon based on the window's new size. For a summary of the update process, 
see the end of this chapter. 

a. Call BeginUpdate (among other things, clears out the update region) 
b. Call EraseRect 
c. Re-draw window contents 
d. Call HldeControl to get rid of the old scroll bars 
e. Call MoveControl to move the scroll bars 
f. Call SizeControl to change the size of a scroll bar's rectangle 
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g. Call ShowControl to make the scroll bars appear 
h. Call DrawGrowlcon to redraw the grow region 
i. Call EndUpdate 

Lefs now look at a code that will implement the above sequence. The window 
that will be sized is the window with scroll bars from Figure 7.3b. The first step in the 
process is to take care of ensuring thatthe scroll bars get into the update region. To 
do so requires two calls to lnvalRect, one for each scroll bar: 

PROCEDURE lnvalRect (badRect: Rect); 

In order to call this routine, an application needs to know only the scroll bars' 
boundary rectangles. But if the boundary rectangles change each time the win­
dow is sized, how can the application keep track of them? The coordinates in the 
resource file will no longer be valid once a window has been sized. The answer lies 
in the control record. The coordinates of a control's current boundary rectangle are 
contained in the third field of the control record: 

MOVE.L 
MOVE.L 
LEA 

MOVE.L 

_lnvalRect 

MOVE.L 
MOVE.L 
LEA 
MOVE.L 
_lnvalRect 

BottomControlHandle,AO 
(AO),AO 
cntrlRect(AO),AO 

AO,-(SP) 

SideControlHandle,AO 
(AO),AO 
cntrlRect(AO),AO 
AO,-(SP) 

;get handle 
;get pointer 
;get starting address of 
;boundary rectangle 
;pushes pointer to 
;rectangle 

;get handle 
;get pointer 
;address of rectangle 
;push pointer 

The second step is to call GrowWindow: 

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point; 
sizeRect: Rect); LONGINT; 

theWindow comes from a call to FindWlndow; it is the window reporting the 
mouse down event. startPt is the point field from the event record, the place 
where the mouse pointer was when the button was first pressed. slzeRect is a 
rectangle that defines the maximum size that the window can be. For this example, 
sizeRect will be defined as 4 pixels in from each edge of the screen (4,4,338,508): 

CLR.L 
MOVE.L 

MOVE.L 

- (SP) ;space for coordinate result 
WhichWindowPtr, - (SP) 

;from FindWindow 
Point, - (SP) ;from event record 
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PEA SizeRect ;defined as constant 
_GrowWindow 

MOVE.L (SP)+,DO ;retrieve result 

GrowWindow's result is a longinteger containing the new bottom right coordi­
nates of the window. The high-order word contains the bottom (vertical) coordinate 
and the low-order word the right (horizontal) coordinate. These coordinates must, 
in turn, be passed to SizeWindow: 

PROCEDURE SizeWindow(theWindow: Window; w,h: INTEGER; 
fUpdate: BOOLEAN); 

The parameter theWindow, as before, comes from the call to FindWindow. w 
refers to the new horizontal coordinate of the bottom right corner or the window, h 
to the new vertical coordinate. At first it may seem that these are in the opposite 
order from which they were returned by GrowWlndow. They are not. The horizon­
tal coordinate should be deeper in the stack than the vertical coordinate, since it 
appears first in the procedure's parameter list. Therefore, if the entire longinteger 
from GrowWindow is moved onto the stack as a unit, its low-order word will 
appear as an integer that is just below its high-order word, placing the two 
coordinates in the proper order. 

fUpdate is a flag that indicates whether or not the system should generate an 
update event if the sizing changes the window's contents. A value of TRUE, the 
setting most commonly used, tells the system to do so: 

MOVE.L 
MOVE.L 

ST. "ST" 

WhichWindowPtr, - (SP) 
00,-(SP) 

-(SP) 

_Size Window 

;from FindWindow 
;coordinates recovered 
;above from GrowWindow 
;yes - generate update 
;event 

The final major step in the process of sizing a window is to update the new 
window. All updates begin with a call to BeginUpdate and should then erase the 
window. Note that since the QuickDraw routine EraseRect works on the current 
grafport, the application must first ensure that the window posting the mouse down 
event is the current grafport (see Handling Update Events): 

MOVE.L WhichWindowPtr, - (SP) 
_BeginUpdate 

MOVE.L WhichWlndowPtr,AO 
MOVE.L contRgn(AO),AO 

;from FindWindow 

;retrieve handle to content 
;region of window from 
;window record 



MOVE.L 
ADD 

MOVE.L 

_EraseRect 
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(AO),AO 
#2,AO 

AO,-(SP) 

;turn handle into pointer 
;skip over integer to get to 
;region rectangle 
;coordinates of content 
;region 

Preparing for the call to EraseRect above presents a similar problem as did 
the calls to lnvalRect: this block of code should be general enough to work 
regardless of which window posted the mouse down event. Therefore, the bound­
ary rectangle of the area which should be erased cannot be defined explicitly 
within the program code. The coordinates must be retrieved from the window 
record. The process is somewhat indirect. First, a handle to the record that defines 
the content region is pulled from the window record. 0JVe are not interested in 
updating the structure region.) That handle is de-referenced to get a pointer. The 
actual rectangle begins two bytes past the address contained in the pointer; as 
discussed in Chapter 7, the first two bytes of a region record contain the size of the 
region. Therefore, if the quantity 2 (for two bytes) is added to the pointer to the 
region record, we will have the address of the start of the region's boundary 
rectangle, which in turn can be passed to EraseRect. 

Once the current contents of the window have been erased, the application 
should redraw the contents as appropriate. This may involve calls to QuickDraw 
routines or to special TextEdit updating routines (see Chapter 9). 

The application must then update the scroll bars. First, the existing scroll bars 
must be hidden: 

PROCEDURE HideControl (theControl: ControlHandle); 

In order to write general code that will apply to any of an application's windows, 
there has to be some way to retrieve the handles for a particular window's controls. 
This can be done by using both the window record and the records of any controls 
associated with the window. As discussed in Chapter 7, the window record main­
tains a handle to the first control in its control list. Each control record maintains a 
handle to the next item in the control list. 

There is no field in a control record that explicitly indicates what type of control 
that record represents. Therefore, as mentioned in Chapter 7, the reference value 
field can be used for an application assigned code to identify control types. In the 
example below, a horizontal scroll bar was arbitrarily given a reference value of 1 
and a vertical scroll bar a reference value of 2; other controls were given higher 
values. 

MOVE.L 
MOVE.L 
BEQ 

WhichWindowPtr ,AO 
wControlList(AO),AO 
EndTheUpdate 

;handle to first control 
;handle is 0 - window 
;has no controls 
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MOVE.L (AO),A 1 
MOVE.L contrlRfCon(A 1 ),D7 
CMP #2,D7 
BGT AnotherControl 
MOVE.L AO, - (SP) 
_HideControl 

AnotherControl 
MOVE.L nextContrl(A1),AO 
BEQ NextStep 
MOVE.L (AO),A 1 
MOVE.L controlRfCon(A 1 ),D7 
CMP #2,D7 
BGT AnotherControl 
MOVE.L AO, - (SP) 
_HideControl 
BRA AnotherControl 

;get pointer 
;get reference value 

;not a scroll bar 
;push handle on stack 

;handle to next control 
;no more controls 
;get pointer 
;get reference value 

;not a scroll bar 

The "next step" is to actually move the control: 

PROCEDURE MoveControl (theControl: ControlHandle; 
h,v: INTEGER); 

The location to which this routine moves a control is specified by giving the 
control new top left coordinates in the local coordinate system of its window. h is 
the horizontal (left) coordinate and v the vertical (top). An application can deter­
mine these coordinates from the bottom right coordinates returned by 
GrowWindow. First Growwindow's global coordinates are converted to local 
coordinates. Then, for a horizontal scroll bar, the vertical coordinate will be 16 less 
than the the bottom. (The horizontal coordinate will remain at 0.) For a vertical scroll 
bar, the vertical coordinate will remain 0 and the horizontal coordinate will be 16 
less than the right. Assume that GrowWindow's result is in DO and that the handle 
to a control record for a scroll bar is in AO. Remember that this example has 
arbitrarily assigned vertical scroll bars a reference value of 2 and horizontal scroll 
bars a reference value of 1. Also note that the two coordinates returned by 
GrowWindow must be stored in RAM so their address can be passed to 
GlobalToLocal: 

MOVE.L DO,Polnts(AS) ;store coordinates in RAM 
PEA Points( AS) 
_GlobalToLocal ;convert the coordinates 

;recover local coordinates MOVE Points(AS),DO 

MOVE 
SWAP 
MOVE 
MOVE.L 
MOVE.L 

D0,01 ;get low order word (right) 
DO ;flip the words in the register 
D0,02 ;get high order word (bottom) 
(AO),A 1 ;pointer to control record 
contrlRfCon(A1),07 ;control value 
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Vertical 

CMP 
BNE 

SUB 
MOVE 
BRA 

SUB 
MOVE 

RoutineSetUp 

#1,D7 
Vertical 

#16,D2 
#O,D1 
RoutlneSetUp 

#16,D1 
#O,D2 

MOVE.L AO, - (SP) 
MOVE D1 , - (SP) 
MOVE D2, - (SP) 
_MoveControl 

;this is a vertical control bar 

;adjust vertical coordinate 
;horizontal coordinate stays O 

;adjust horizontal coordinate 
;vertical coordinate stays O 

;push handle onto stack 
;horizontal coordinate goes first 
;vertical coordinate 
;move the control 

Once the top left corners of the scroll bars have been anchored in their new 
positions, the bottom right coordinates must be changed with a call to SizeCont­
rol: 

PROCEDURE SizeControl (theControl: ControlHandle; w,h: 
INTEGER); 

The parameters w and h correspond respectively to the new right and bottom 
coordinates of the control, expressed again in the local coordinates of the control's 
window. Neither horizontal nor vertical scroll bars can use the coordinates 
returned by GrowWindow directly. A horizontal scroll bar will have aw value of15 
less than that returned by GrowWindow to allow space for the grow icon; h will not 
need to be altered. A vertical scroll bar can accept w from GrowWindow's result 
but must subtract 15 from the horizontal coordinate. Assume again that 
GrowWindow's result is in DO (now in local coordinates since they were converted 
before the call to MoveWindow) and that the handle to a control is in AO: 

MOVE DO,D1 ;get horizontal coordinate 
SWAP DO ;exchange register halves 
MOVE DO,D2 ;get vertical coordinate 
MOVE (AO),A1 ;pointer to control record 
MOVE.L contrlRfCon(A 1 ),D7 ;reference value 
CMP #1,D7 ;horizontal or vertical scroll 

bar? 
BNE Vertical2 ;must be vertical 

SUB #15,D1 ;adjust horizontal coordinate 
BRA PassParameters 

Vertical2 
SUB #15,D2 ;adjust vertical coordinate 
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PassParameters 
MOVE.L AO, - (SP) 
MOVE 01 I - (SP) 

MOVE 02, - (SP) 
_SizeControl 

;put handle on stack 
;horizontal coordinate goes 
first 
;vertical is next 

To be on the safe side, an application should follow SizeControl with a call to 
ShowControl, to be sure that the control is displayed: 

PROCEDURE ShowControl (theControl: ControlHandle); 

If the control is invisible, ShowControl will make it visible. If the control is already 
visible, ShowControl will have no effect. 

Finally, the update process should be completed with a call to EndUpdate. 
Code for these last two steps might appear as: 

MOVE.L AO, - (SP) ;control handle in AO 
_ShowControl 

MOVE.L WhichWindowPtr, -(SP) 
_End Update 

Handling Key Down 
Events 

Most applications will have a variety of uses for key down events. Primarily, 
they can be used to display text on the screen or, in combination with the cloverleaf 
key, they can substitute for using the mouse to make a menu selection. 

The first step in processing a key down event is therefore to determine which, if 
any, of the modifier keys were held down in conjunction with the key press. The 
modifier flags are stored in the high-order byte of the Modify field from the event 
record. If the cloverleaf key was pressed, bit O of that byte will be set (i.e., the byte 
will have a value of 1). This gives the entire modifier word, by the way, a value of 
256. 

To test for the cloverleaf key, an application could: 

MOVE.B 
CMP.B 
BEQ 

Modify,DO 
#1,DO 
KeyboardCommand 

;get high-order byte only 
;compare with cloverleaf value 
;branch to handle command 
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The same result could also be obtained by: 

MOVE 
CMP 
BEQ 

Modify,00 
#256,DO 
KeyboardCommand 

;get entire modifier word 
;compare with cloverleaf value 

If Modify does reveal that the cloverleaf key was pressed along with some 
other key, then the application can assume that it was intended to be a substitution 
for a mouse selection from a menu. The information needed to process such a 
selection is identical to that needed to process a mouse down menu selection -
which menu and which item within that menu. 

MenuKey is a single routine that will return both the menu and the item 
numbers corresponding to the keyboard equivalent selected by a cloverleaf 
command. It assumes that a press of the cloverleaf key has already been detected 
and therefore only needs to know what additional character was pressed at the 
same time. That character can be found as part of the event record's Message 
field. More precisely, it is in the low-order word of that field. The address of the 
character is therefore two bytes beyond the beginning of Message and can be 
indicated by using Message+ 2 as the effective address. 

MenuKey's format is: 

FUNCTION MenuKey (ch: CHAR) : LONGINTEGER; 

It should be called by using: 

CLR.L 
MOVE 
_Menu Key 

-(SP) 
Message+ 2, - (SP) 

;space for longinteger result 
;put character on the stack 

Menu Key returns its result in exactly the same format as MenuSelect. The menu 
number is in the high-order word and the item number in the low-order word. 
Therefore, immediately after issuing the call to MenuKey, an application can 
branch to join the same processing sequence that occurs after MenuSelect, 
including retrieving the result and unhighlighting the menu title. 

Key down events that are not accompanied by the cloverleaf key generally 
indicate text that should be displayed on the screen by TextEdit. Processing of 
these events is discussed in Chapter 9. 

Handling Update Events 
An update event is posted to the event queue whenever a window is newly 

activated or when something has occurred to disrupt the display of the window's 
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contents. The latter is usually the result of one window overlaying another. For 
example, if you open a desk accessory while in the midst of one of the Video Tape 
Index's functions that permit text editing, the desk accessory's window has the 
potential of covering one or more of the text entry windows and their prompts 
(which are actually displayed on the main window). Any window which covers 
another erases the contents of the windows underneath it. When the front window 
is closed or moved to the back, any windows which are uncovered will be minus 
their contents. An update event alerts the application that the newly exposed 
windows need to have their contents redrawn. 

Updating in text windows is handled by a special TextEdit routine. Updating 
the contents of other windows can be done in two ways: either by drawing only the 
region of the window that needs updating, or by erasing the entire window and 
redrawing all of its contents. The latter is far easier to implement. 

Regardless of whether you are updating text windows or other windows, all 
update processes must start with a call to BeginUpdate and finish with a call to 
EndUpdate. These two routines manage a portion of the window known as the 
update region. Update regions are important if you are attempting to do an update 
by redrawing only that portion of a window's contents that have been erased. Even 
if the update will erase the window and completely redraw it, the process must 
nonetheless be bracketed by these two routines. 

Each takes the pointer of the window to be updated as a parameter: 

PROCEDURE BeginUpdate (theWindow: WindowPtr); 

PROCEDURE EndUpdate (theWindow: WindowPtr); 

The easiest way to update a non-text window is therefore to: 

1 . Call BeginUpdate 

2. Erase the window (using EraseRect) 

3. Redraw the window's contents (procedure will vary with the window in 
question) 

4. Call EndUpdate 

Since the prompts for the Video Tape Index's text entry windows are drawn on 
the main window, any time a desk accessory is opened while one of the four text 
entry functions are in process, those prompts will be disturbed. Immediately after 
the desk accessory is closed, the main window must therefore be updated. The 
code to do so appears as: 

MOVE.L MainWindowPtr, -(SP) 
_BeginUpdate 

MOVE.L MainWindowPtr, -(SP) 
_SetPort 

;window pointer 
;start update process 

;can only draw in 
;current grafport 
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PEA MainWindowRect ;boundary rectangle 
;erase the window _EraseRect 

JSR DisplayPrompts ;redraw window contents 

;window pointer MOVE.L MainWlndowPtr, -(SP) 
_End Update ;finish update process 

Note that update events that occur while the program is in its main event loop 
can be ignored since the main window has no content at that point. 

A Word About Activate 
Events 

In most cases, activate events can be ignored. Since SelectWindow handles 
highlighting and unhighlighting windows, usually the only time an application 
needs to respond to an activate event is when a text edit window has been 
selected. Activating and deactivating text entry windows takes care of respectively 
displaying and removing the straight-line cursor (see Chapter 9). 

Pulling Things Together 
Thus Far -
WindowPlay 

In Listing 8.4 you will find the source code for a demonstration program called 
WindowPlay. Its resource file appears in Listing 8.5. This program uses many of 
the concepts and techniques presented in Chapters 7 and 8, including defining 
windows and menus and trapping a variety of events. It is very short for a complete 
Macintosh assembly language application and really doesn't do any useful work, 
but it does illustrate how to create and manipulate windows and menus. 

WindowPlay has a template for one window of each window type in its 
resource file. The windows can be displayed by selecting the window type from the 
Windows menu, creating a display like the one in Figure 8.3. The windows overlap 
on the screen, but their position in the plane can be changed by clicking on a 
window with the arrow cursor. Those windows which support title bars can be 
closed by clicking in their GoAway boxes. Any active (frontmost) window can be 
closed by selecting Close from the File menu. 
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Listing 8.4 WindowPlay 

Include MacTraps.D 
Include ToolEqu.D 
Include SysEqu.D 

PEA -4(A5) 
lnitGraf 

-lnitFonts 
MOVE.L #$0000FFFF,D0 

Flush Events 
:=1nitWindows 
_lnitMenus 
CLR.L -(SP) 
_lnitDialogs 
_TElnit 

lnitCursor 

CLR -(SP) 

;initialize QuickDraw 
;initialize Font Manager 

;flush all events from event queue 
;initialize Window Manager 
;initialize Menu Manager 

;initialize Dialog manager 
;initialize Text Edit 
;get arrow cursor 

PEA 'MAL.files:WindowPlay.Rsrc' 
_OpenResFile ;open the resource file 
MOVE (SP)+,D0 ;discard unused result 

; ------------- Set up the menus ------------------------------
CLR. L -(SP) ;space for handle 
MOVE #1,-(SP) ;menu sequence number 
_GetRMenu ;get Apple menu template 
MOVE.L (SP)+,AppleHandle(A5) ;retrieve and store handle 

MOVE.L AppleHandle(A5),-(SP) ;put handle back on stack 
MOVE.L #'DRVR',-(SP) ;resource type for desk accessories 
_AddResMenu ;get desk accessories 

MOVE.L AppleHandle(A5),-(SP) ;handle back on stack 
CLR -(SP) ;this menu goes after all others 

lnsertMenu ;put menu in menu list 

CLR.L -(SP) ;repeat the process for the other menus 
MOVE #2,-(SP) 
GetRMenu 

MOVE.L (SP)+,FileHandle(A5) 

MOVE.L FileHandle(A5).-(SP) 
CLR -(SP) 
_lnsertMenu 

CLR.L -(SP) 
MOVE #3,-(SP) 
GetRMenu 

MOVE.L (SP)+,EditHandle(A5) 

MOVE.L EditHandle(A5),-(SP) 
CLR -(SP) 
_lnsertMenu 

CLR.L -(SP) 
MOVE #4,-(SP) 
GetRMenu 

MOVE.L (SP)+,WindowHandle(A5) (continued) 
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MOVE.L WindowHandle(A5),-(SP) 
CLR -(SP) 
_lnsertMenu 

_OrawMenuBar ~inally, make It all appear 

MOVE #0,07 ;initialize window counter 

;----------------------Event loop comes next to control actions --------------------------------
Event _SystemTask ;update desk accessories 

CLR -(SP) 
MOVE #-1,-(SP) 
PEA EventRecord(A5) 
_GetNextEvent 

MOVE (SP)+,00 
CMP #0,00 
BEQ Event 

;space for boolean result 
;mask to select all events 

;address of event record 
;retrieve event from queue 

;recover result 
;did event occur? 
;no event 

MOVE EventRecord(A5),00 ;this retrieves 1st word of record - the event type 

CMP #mButDwnEvt,00 
BEQ MouseEvent 

CMP #keyDwnEvt,00 
BEQ KeyEvent 

BRA Event 

;mouse button pressed? 

;key pressed? 

;not an event this program handles 

; ------------------------------- Handle key down events ----------------------------------­

KeyEvent 
MOVE EventRecord+evtMeta(A5),00 ;get modify word 
BTST #cmdKey,D0 ;cloverleaf key held down? 
BEQ Event ;not a menu selection 

CLR.L -(SP) ;space for menu item selection 
MOVE EventRecord+evtMessage+2(A5),-(SP) ;put character pressed on stack 
_MenuKey ;identify menu and item 

BRA Selections ;join menu processing 

; ----------------------------------- Handle mouse down events --------------------------------------
Mouse Event 

CLR -(SP) ;space for "what" result 
MOVE.L EventRecord+evtMouse(A5),-(SP) ;place where event occurred 
PEA WhichWindowPtr(A5) ;window affected goes here 
_FindWindow ;determine which window posted event 
MOVE (SP)+,D0 ;recover result 

CMP #inMenuBar,00 
BEQ Menu Bar ;mouse down event in menu bar 

CMP #inSysWindow,00 
BEQ Sys Event ;mouse down event in system window 

CMP #inContent,D0 
BEQ ApplWindow ;mouse down event in application window 

(continued) 
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Listing 8.4 (continued) 
CMP #inGoAway,00 
BEQ CloseWindow 

BRA Event 

;mouse down event in GoAway box 

;not a place this program monitors 

; -------------------------------- Mouse down event in system window ----------------------------------­
SysEvent 

PEA EventRecord(A5) ;address to event record on stack 
MOVE.L WhichWindowPtr(A5),-(SP) ;window posting event 
_SystemClick ;system does all the work 

BRA Event ;get another event 

; -------------------------------- Mouse down event in menu bar --------------------------------­
Menu Bar 

;space for menu ID and menu item CLR.L -(SP) 
MOVE.L EventRecord+evtMouse(A5),-(SP) ;place where mouse button 

went down 
_MenuSelect 

Selections 
MOVE.L (SP)+,00 
MOVE 00,01 
SWAP 00 

MOVEM.L 00/01 ,-(SP) 
CLR -(SP) 
_HiliteMenu 
MOVEM.L (SP)+,00/01 

CMP #1,00 
BNE Menu2 
BRA AppleMenu 

Menu2 CMP #2,00 
BNE Menu3 
BRA File Menu 

Menu3 CMP #3,00 
BNE Menu4 
BRA Edit Menu 

Menu4 CMP #4,00 
BNE Event 
BRA WindowEvent 

;find menu number and menu item 

;recover result 
;01 now has low-order word (menu item) 
;menu ID now in low-order word of 00 

;save registers 
;selects all menus 
;remove highlighting from menu 

;in Apple menu? 

;handle desk accessories 

;in File menu? 

;in Edit menu? 

;in Window menu? 
;something weird happened ... 

----------------------- --- ---- --- ---- --- Hand le desk accessories --------------------------------------­
Apple Me nu 

MOVE.L AppleHandle(A5),-(SP) 
MOVE 01 ,-(SP) 
PEA DeskAccName(A5) 
_Getltem 

CLR -(SP) 
PEA DeskAccName(A5) 
_OpenDeskAcc 
MOVE (SP)+,00 

BRA Event 

;menu handle on stack 
;menu item on stack 
;space for desk accessory name 
;retrieve name of desk accessory 

;space for reference number 
;point to desk accessory name 
;open the desk accessory 
;discard reference number result 

(continued) 
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;--------------------------------- Handle editing in desk accessories ----------------------------------­
EditMenu 

SUBQ #1,01 
CLR -(SP) 
MOVE 01 ,-(SP) 
_Sys Edit 
MOVE (SP)+,00 

BRA Event 

;adjust item selected for SysEdit 
;space for problem result 
;adjusted item number goes on stack 
;let system handle to edit 
;get rid of resu It 

;---------------------------- Handle File Menu -------------------------------------
FileM enu 

CMP #1,01 ;Close the active window? 
BEQ WindowClose 

CMP #2,01 
BNE Event 

ATS 

WindowClose 
CLR.L -(SP) 

Front Window 
MOVE.L (SP)+,A6 

MOVE.L A6,-(SP) 
_Close Window 

SUBQ #1,07 
BNE Fix 

;Quit? 

;This returns to the Finder 

;space for pointer to active window 
;get pointer 
;save pointer 

;put pointer back on stack 
;close the window 

;decrement window counter 

MOVE.L FileHandle(AS),-(SP) 
MOVE #1,-(SP) 
_Disable Item ;if no windows present, disable Close 

Fix CMP.L Window1 Ptr(A5),A6 ;identify which window was closed 
BNE Fix2 
MOVE #1,01 
BRA ReEnable 

Fix2 CMP.L Window2Ptr(A5),A6 
BNE Fix3 
MOVE #2,01 
BRA ReEnable 

Fix3 CMP.L Window3Ptr(A5),A6 
BNE Fix4 
MOVE #3,01 
BRA ReEnable 

Fix4 CMP.L Window4Ptr(A5),A6 
BNE Fix5 
MOVE #4,01 
BRA ReEnable 

Fix5 CMP.L Window5Ptr(A5),A6 
BNE Fix6 
MOVE #5,01 
BRA ReEnable 

(continued) 
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Listing 8.4 (continued) 

Fix6 MOVE #6,01 

Re Enable 
MOVE.L WindowHandle(A5),-(SP) 
MOVE 01 ,-(SP) 

;handle to menu 
;window# 

_Enable Item ~urn the menu item back on 

BRA Event 

; ------------------------------- Handle Window Menu ------------------------------------
WindowEvent 

MOVE D1 ,-(SP) ;save register contents 
MOVE.L WindowHandle(A5),-(SP) 
MOVE D1 ,-(SP) ;window number same as menu item# 

Disableltem ;turn off this window 
MOVE (SP)+,D1 

CMP #1,D1 
BNE Window2 
CLR.L -(SP) 
MOVE #1,-(SP} 
PEA Window1 Strg(A5) 
MOVE.L #-1,-(SP) 
GetNewWindow 

MOVE.L (SP)+,Window1 Ptr(A5) 
BRA WindowCount 

Window2 CMP #2,D1 
BNE Window3 
CLR.L -(SP} 
MOVE #2,-(SP) 
PEA Window2Strg(A5} 
MOVE.L #-1,-(SP} 
GetNewWindow 

MOVE.L (SP)+,Window2Ptr(A5} 
BRA WindowCount 

Window3 CMP #3,D1 
BNE Window4 
CLR.L -(SP) 
MOVE #3,-(SP) 
PEA Window3Strg(A5) 
MOVE.L #-1,-(SP) 
GetNewWindow 

MOVE.L (SP}+,Window3Ptr(A5} 
BRA WindowCount 

Window4 CMP #4,01 
BNE Windows 
CLR.L -(SP) 
MOVE #4,-(SP) 
PEA Window4Strg(A5) 
MOVE.L #-1,-(SP) 
GetNewWindow 

MOVE.L (SP)+,Window4Ptr(A5) 
BRA WindowCount 

;window 1? 

;space for window handle 
;window ID 
;pointer to window record 
;put window in front 
;create the window 
;retrieve the pointer 

;repeat for all windows 

(continued) 



CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 229 

Windows CMP #5,D1 
BNE Windows 
CLR.L -(SP) 
MOVE #5,-(SP) 
PEA Window5Strg(A5) 
MOVE.L #-1,-(SP) 
GetNewWindow 

MOVE.L (SP)+,Window5Ptr(A5) 
BRA WindowCount 

Windows CLR.L -(SP) 
MOVE #S,-(SP) 
PEA WindowSStrg(A5) 
MOVE.L #-1,-(SP) 
GetNewWindow 

MOVE.L (SP)+, WindowSPtr(A5) 

WindowCount 
ADDO #1,D7 
CMP #1,D7 
BNE Done 

;count number of windows on screen 

MOVE.L FileHandle(A5),-(SP) 
MOVE #1,-(SP) 
_Enableltem 

Done BRA Event 

;handle to window menu 

;if first window, enable Close 

; ------------------------- Handle mouse down in application window ---------------------------­
ApplWindow 

MOVE.L WhichWindowPtr(A5),-(SP) 
_SelectWindow ;bring window to front & make active 

BRA Event 

; ----------------------------- Handle mouse down in goAway box --------------------------------­
Close Window 

CLR.B -(SP) 
MOVE.L WhichWindowPtr(A5),-(SP) 
MOVE.L EventRecord+evtMouse(A5), -(SP) 
_ TrackGoAway 

MOVE.B (SP)+,D0 
CMP #0,D0 
BEQ Event 
BRA WindowClose 

;space for boolean result 
;window posting event 
;point of event 
;monitor goAway box 

;get result 
;did user change mind? 
;don't close 
;close window just like menu selection 

;---------------------------------- Data structures --------------------------------------------

AppleHandle DS.L 
EditHandle DS.L 
FileHandle DS.L 
WindowHandle DS.L 

Window1Ptr 
Window2Ptr 
Window3Ptr 
Window4Ptr 
Window5Ptr 
WindowSPtr 

DS.L 1 
DS.L 1 
DS.L 1 
DS.L 1 
DS.L 1 
DS.L 1 

;menu handles 

;window pointers 

(continued) 
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Listing 8.4 (continued) 

Window1Strg DS 
Window2Strg DS 
Window3Strg DS 
Window4Strg DS 
Window5Strg DS 
Window6Strg DS 

windowSize ;storage for window records 
windowSize 
windowSize 
windowSize 
windowSize 
windowSize 

DS.L ;for FindWindow result WhichWindowPtr 
DeskAccName DS 1 6 ~or desk accessory name 

EventRecord DS.B 16 

Listing 8.5 Resource File for WindowPlay 

WindowPlay.Rsrc 

TYPE MENU 
.1 

\14 

,2 
File 
(Close 
Quil/Q 

,3 
Edit 
Undo/Z 
(-
Cul/X 
Copy/C 
PasteN 
Clear 

,4 
Windows 
documentProc 
dBoxProc 
plainDBox 
altDBoxProc 
noGrowDocProc 
rDocProc 

TYPE WIND 
, 1 

Sample Window 
40 160 300 480 
visible GoAway 
0 
0 

;; Apple menu 

;; File menu 

;; Edit menu 

;; Window selection menu 

;; standard document window 

(continued) 
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,2 
No title 
125 60 275 180 
visible NoGoAway 
1 
0 

,3 
No title 
6090225400 
visible NoGoAway 
2 
0 

,4 
No title 
100 225 330 350 
visible NoGoAway , 
3 
0 

,5 
Sample Window 
175110 250 300 
visible GoAway 
4 
0 

,6 
Sample 
40 40 300140 
visible GoAway 
16 
0 

;; alert or modal dialog window 

;; plain document window 

;; plain document window with shadow 

;; standard document window without size box 

;; round cornered window for desk accessories 

WindowPlay supports four menus: a standard Apple menu for the desk 
accessories, a File menu, an Edit menu (for the desk accessories only), and the 
application menu Windows that controls which windows appear on the screen. 

The structure of WindowPlay is typical of a Macintosh assembly language 
program. The set-up process involves: 

1. Initialization of all ToolBox and operating system managers 

2. Opening the resource file 

3. Reading menu templates from the resource file and creating the menu bar 

4. Entering an event loop 

The event loop itself determines the structure of the remainder of the program. 
WindowPlay looks for mouse down and key down events. Since there is no text 
editing, key down events are meaningful only as keyboard equivalents for menu 



232 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

,. a File Edit Windows 

Sample Window 

Sample Window 

Figure 8.3 Sample Output from WindowPlay 

selections. Menu selections represent either a request for a desk accessory, a 
request to return to the Finder, or a request to affect one of the windows displayed 
by the application. 

When WindowPlay is launched, the screen is blank and the Close option of the 
File menu is dimmed. (It makes no sense to allow the user to close a window when 
no windows are visible.) WindowPlay keeps track of how many windows are 
displayed and always disables Close when the count drops to O; it enables Close 
when the count rises to 1. 

You will also notice that whenever a window is selected for display, its name in 
the Windows menu is disabled. This ensures that only one window of any given 
type will be displayed at any given time. When the window is closed, its name in the 
Windows menu is re-enabled. 

Questions and 
Problems 

1. Create binary event masks to select the following events: 

a. mouse down, mouse up 
b. mouse down, key down 
c. mouse down, key down, update, activate, disk insertion 
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2. Write an event loop that: 

A. retrieves events from the event queue with an event mask that selects all 
events 

B. checks for mouse down, key down, update, activate and disk insertion 
events 

C. branches to an appropriately named subroutine to handle each type of 
event 

Be sure to allocate any data structures your event loop will use. 

3. Write an ordered list of the ToolBox and/or operating system routines that 
must be used to identify a user request for the note pad desk accessory. 
Indicate the information returned by each call. Assume that an event loop has 
already detected a mouse down event and that the Apple menu is Menu 
numberO. 

4. Write a block of assembly language code to implement the procedure you 
outlined in problem 3. Use the event record field names defined in Chapter 8. 
Allocate any other data structures your code will use. 

5. Write an ordered list of the ToolBox and/or operating system routines that 
must be used to identify a user request to scroll the text in a document 
window one page up. Indicate the information returned by each call. Assume 
that an event loop has already detected a mouse down event. 

6. Write a block of assembly language code to implement the procedure you 
outlined in problem 5. Use the event record field names defined in Chapter 8. 
Allocate any other data structures your code will use. 

7. Write an ordered list of the Tool Box and/or operating system routines that are 
needed to identify which menu item has been selected by a combination 
cloverleaf-alphanumeric key press. Indicate the information returned by 
each call. Assume that an event loop has already detected a key down event. 

8. Write a block of assembly language code to implement the procedure you 
outlined in problem 7. Use the event record field names defined in Chapter 8. 
Allocate storage space for any other data structures your code will use. 
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9. Code and implement the following modifications to the program WindowPlay 
from Listings 8.4 and 8.5: 

A. Draw scroll bars and a grow icon in the standard document window. The 
scroll bars should be defined in the resource file. 

B. Trap for events in a title bar so that the three windows with title bars can be 
moved about the screen. 

C. Handle moving the three windows with title bars, including the scroll bars 
in the standard document window. 

D. Trap for events in a grow icon. 
E. Handle sizing the standard document window. 



c H A p T E R N N E 

SCREEN J\ND KEYBOA,RD 1/0: 
USING TE)(TEDIT, ALERT AND 

[)IALeG BSXES 

Chapter Objectives 

1. To understand the data structures that support Macintosh text editing 

2. To learn to establish those data structures 

3. To learn to manage windows that support text editing 

4. To learn to implement text editing functions: entering text, deleting text, cut, 
paste, and copy 

5. To learn to manage text characteristics such as font size and type 

6. To learn to create the resource file templates that establish alerts and dialog 
boxes 

7. To learn to use alerts and dialog boxes to control program actions 

Entering, Displaying, 
and Editing Text 

TextEdit is a collection of powerful ROM routines that permit the easy entry and 
editing of text. Text is written into a rectangle defined for that purpose. The 
rectangle may be an entire window or only part of a window. 

235 
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To be precise, editing text requires two rectangles - a destination rectangle 
and a view rectangle. The destination rectangle establishes the bounds in which 
the text should be drawn; the view rectangle defines the area in which the text will 
be seen. Though both must be specified, they are usually identical. Destination 
and view rectangles are defined in the local coordinates of the grafport in which the 
text will appear. In other words, in order to enter or edit text, the window that 
contains the destination and view rectangles must be the current grafport (set with 
the SetPort routine). 

Information about the editing environment is kept in an edit record. An edit 
record contains, in part, the coordinates of the destination and view rectangles, 
font and text justification information, the current selection range, the length of the 
text, a handle to where the text is stored, the number of lines in the text, and 
positions of line starts within the text. The text itself is stored as a packed array of 
characters (i.e., each ASCII character code occupies only one byte). 

The structure of a text edit record is: 

TeRec = RECORD 
destRect: Rect; the destination rectangle 
viewRect: Rect; the view rectangle 
selRect: Rect; boundaries of selection range 
lineHeight: INTEGER; height of a line of text 
fontAscent: INTEGER; number of pixels a font rises 
selPoint: Point; location of mouse button click 
selStart: INTEGER; start of selection range 
selEnd: INTEGER; end of selection range 
active: INTEGER; used internally - do not change 
word Break: ProcPtr; used to change how TextEdit 

views the end of a word 
clikloop: ProcPtr; used to Implement automatic 

scrolling 
clickTime: LONG INT; used internally - do not change 
clickloc: INTEGER; used internally - do not change 
caretTime: LONGINT; used internally - do not change 
caretState: INTEGER; used internally - do not change 
just: INTEGER; text justification 
telength: INTEGER; text length in # of characters 
hText: Handle; handle to the text itself 
recalBack: INTEGER; used internally - do not change 
recallines: INTEGER; used internally - do not change 
clikStuff: INTEGER; used internally - do not change 
crOnly: INTEGER; if negative, indicates that a new 

line should start only after a CR 
txFont: INTEGER; font ID number 
txFace: Style; text style (e.g., bold or italic) 
txMode: INTEGER; pen mode 
txSize: INTEGER; font size 
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in Port: 
highHook: 
caretHook: 
nlines: 
lineStarts 

Graf Ptr; pointer to grafport 
ProcPtr; used by low-level routines 
ProcPtr; used by low-level routines 
INTEGER; number of lines of text 
ARRAY [0 .. 16000] of INTEGER 

positions of starts of lines 

As with the other types of records we've discussed, an application won't need 
to retrieve data from most fields of the edit record directly. There are, however, 
some exceptions. A program may, for example, need the length of the text or the 
handle which contains the pointer to the text itself. Printing characters from a text 
edit record requires knowing how many lines of text there are and where each line 
begins. Equates for field offsets into an edit record are part of the Tool Box equates 
file. For example, telength refers to a file $3E bytes in from the beginning of an 
edit record. If ToolBox.D is INCLUDEd at the beginning of an application's source 
code, the offsets to all fields in the edit record are available to the program. 

Before using any TextEdit routines, you must initialize the manager with TEI nit. 
This procedure takes no parameters. It should appear at the top of an application, 
along with the other initializations: TElnit can be the last call in the initialization 
sequence. Because text manipulation also often involves manipulating font char­
acteristics, the initialization sequence should also include a call to lnitFonts, which 
initializes the Font Manager. 

A complete initialization sequence, one that will be complete enough for most 
applications, appears as follows: 

PEA 
_lnitGraf 
_lnitfonts 
_lnitWlndows 
_lnitMenus 
CLR.L -(SP) 
_lnltDialogs 

_TElnit 
_lnitCursor 

-4(A5) 
;initialize QuickDraw 
;initialize the Font Manager 
;initialize the Window Manager 
;initialize the Menu Manager 

;initialize the Dialog Manager (discussed 
below) 
;initialize TextEdit 
;get arrow cursor 

Use this block of code exactly as it appears. Because the various managers 
interact so closely, it is imperative that the initializations are performed in this order. 

Data Structures for Text 
Edit 

Windows for text editing should be defined in a resource file, just like any other 
window. They can then be created with GetNewWindow. Text edit windows can 
also be manipulated like other windows in terms of visibility and position on the 
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screen. Doing the editing, though, requires the destination and view rectangles 
mentioned above. 

In most cases, the destination and view rectangles will cover an entire window. 
(The major exception is in dialog boxes, which will be discussed at the end of this 
chapter.) Therefore, to determine the coordinates of the destination and view 
rectangles, you need only figure out how many pixels the window encompasses. 
Consider, as an example, the Video Tape Index's text edit windows. 

The Video Tape Index uses one text window for each field in the TapeArray 
record. (For database applications this tends to simplify the text handling.) The 
Producer window, for example, has global coordinates of 75, 240, 95, 415. These 
coordinates appear in the program's resource file. The height of the window is 
therefore 21 pixels (bottom - top + 1) and its width 176 pixels (right - left + 1). 
Since the view and destination rectangles will occupy the entire window, they 
could theoretically have coordinates of 0, 0, 21, 176. In practice, though, the 
rectangles should come in at least one pixel from the edges of the windows. 
Otherwise, it's possible that the first and last characters will not be displayed 
completely. Therefore, the destination and view rectangles for the Producer text 
window have coordinates of 1, 1, 19, 175. These coordinates are defined within the 
source code: 

ProducerViewRect 
ProducerDestRect 

DC 
DC 

1,1,19,175 
1,1,19,175 

Storage must also be set aside for a handle to each text window's edit record. 
You need not reserve space for the edit record itself; this will be done by the system 
when the record is created. The handle to an edit record has the data type 
TEHandle and therefore requires a longword of space: 

or 

ProducerTextHandle DC.L 0 

ProducerTextHandle DS.L 1 

Allocating Text Edit 
Records 

Text edit records are allocated by the routine TENew: 

FUNCTION TENew (destRect, viewRect: Rect) : TEHandle; 

The addresses of the destination and view rectangles are pushed onto the stack. A 
longword handle is returned. 

The above function looks simple. There is something important, however, to be 
aware of when allocating edit records. An edit record includes the grafport of the 
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editing environment in its inPort field; the TENew routine will automatically absorb 
whatever grafport is current at the time the call to TENew is placed. Therefore, 
prior to allocating an edit record, the window for the destination and view rec­
tangles must have been created. Immediately before calling TENew, SetPort 
must be used to make that window the current grafport. 

The Video Tape Index defines all of its windows and only then creates text edit 
records. A typical code sequence, assuming the window has been defined and its 
pointer saved, is: 

MOVE.L 
_SetPort 
CLR.L 
PEA 
PEA 
_TENew 
LEA 
MOVE.L 

ProducerWindowPtr, - (SP) 
;window is current port 

- (SP) ;space for edit record handle 
ProducerOestRect 
Producerviewrect 

NameTextHandle,AO 
(SP)+,AO 

;address for handle storage 
;retrieve the handle and store 

Managing Text Edit 
Windows 

Whenever a text edit window is activated (e.g., a mouse down event was 
recorded somewhere in a deactivate text edit window), an application generally 
responds by calling SelectWindow. As mentioned in Chapter 8, SelectWindow 
generates an activate event for the window selected and a deactivate event for the 
previously active window. 

Activating and deactivating text edit windows is important, since these actions 
control the appearance and disappearance of the straight-line cursor. Therefore, 
whenever an application detects an activate event in a text edit window, the event 
should be handled, not ignored. 

TextEdit provides two routines to do the activating and deactivating: 
TeOeActivate removes the straight-line cursor; TEActivate makes the straight­
line cursor appear at the left-most position of the activated view rectangle. (It does 
not make the cursor blink.) 

The same event type is returned for both activate and deactivate events. An 
application can distinguish between the two by checking the Modify field of the 
event record. For example: 

MOVE Modify,00 
BTST #activeFlag,00 
BEQ OeActivate 

;retrieve Modify field 
;is activate bit set? 
;bit is not set - event is deactivate 

The instruction BTST (for Bit Test) is handy when you need to determine 
whether or not a specific bit has been set within a register. activeFlag is defined in 
the System equates file as 0, which corresponds to the bit position of the flag which 
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is set if an activate event really corresponds to activating a window, and cleared if it 
means the window was deactivated. BTST works by looking at the specified bit 
number in the specified register. If the bit is set, the zero flag in the status register 
will be set; if the bit is cleared, the zero flag will be cleared. Therefore, an activate 
event will set the zero flag and a deactivate event will clear it. 

In an environment like the Video Tape Index where there is more than one text 
edit record, an application must also identify which of the text edit windows posted 
a given event. Remember that for activate events, the Message field of the event 
record will contain the pointer to the window posting the event. Therefore, you 
need only compare each window pointer in turn with Message to identify the 
correct window. 

The actual activating and deactivating of text edit windows is very straightfor­
ward, requiring only the handle to the edit record: 

PROCEDURE TEActivate (hTE: TEHandle); 

PROCEDURE TEDeactlvate (hTE: TEHandle); 

Move the handle onto the stack and then call the routine. 
The Video Tape Index program's subroutine for detecting which window has 

posted an activate event and properly handling that event, ActivateTextWindow, 
appears in Listing 9.1. The first step is to retrieve the pointer of the window involved 
from the event record. This occurs at (a) in Listing 9.1. The application also needs to 
determine whether the window should be activated or deactivated. Therefore, the 
modify word is also retrieved from the event record (b). As discussed above, the 
activate or deactivate decision is based on the value of bit 0 in the modify word. A 
BTST instruction (c) can be used to check the value of the appropriate bit, which is 
equated to the symbolic address of activeFlag. If activeFlag has been cleared, 
then the window should be deactivated (d). The application branches to a block of 
code that specifically handles deactivations (k). 

Listing 9.1 Activating Text Edit Windows 

(a) 
(b) 
(c) 
(d) 

(e) 
(f) 
(g) 
(h) 

(i) 

ActivateTextWindow 
MOVE.L Message,A0 
MOVE Modify,D0 
BTST #activeFlag,D0 

;get pointer to window which posted event 

;activate bit set? 
BEQ DeActivate ;if not set, window was deactivated 

Activate1 
CMP.L NameWindowPtr,A0 ;name window event? 
BN E Activat 2 
MOVE.L NameTextHandle,-(SP) 
TEActivate 

BRA Activate99 

Activate2 
CMP.L ProducerWindowPtr,A0 
BN E Activate3 (continued) 
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MOVE.L ProducerTextHandle,-(SP) 
TEActivate 

BRA Activate99 

Activate3 
CMP.L DateWindowPtr,A0 
BNE Activate4 
MOVE.L DateTextHandle,-(SP) 
TEActivate 

BRA Activate99 

Activate4 
CMP.L RatingWindowPtr,A0 
BNE Activate5 
MOVE.L RatingTextHandle,-(SP) 
_ TEActivate 
BRA Activate99 

Activate5 
CMP.L NumberWindowPtr,A0 
BNE Activates 
MOVE.L NumberTextHandle,-(SP) 
TEActivate 

BRA Activate99 

Activates 
CMP.L AnnotationWindowPtr,A0 
BNE Activate98 ;not one of our text windows 
MOVE.L AnnotationTextHandle,-(SP) 
_ TEActivate 

Activate99 
MOVE.L Message,-(SP) 
_Set Port 

;make this the current grafport 

Activate98 
ATS 

De Activate 
(k) CMP.L NameWindowPtr,A0 

BNE DeActivate1 
MOVE.L NameTextHandle,-(SP) 
TeDeActivate 

ATS 

DeActivate1 
CMP.L ProducerWindowPtr,A0 
BNE DeActivate2 
MOVE.L ProducerTextHandle,-(SP) 
_TeDeActivate 
ATS 

DeActivate2 
CMP.L DateWindowPtr,A0 
BNE DeActivate3 
MOVE.L DateTextHandle,-(SP) 

_ TeDeActivate 
ATS (continued) 



242 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Listing 9.1 (continued) 

DeActivate3 
CM P .L RatingWindowPtr,A0 
BN E DeActivate4 
MOVE.L RatingTextHandle,-(SP) 
_TeDeActivate 
RTS 

DeActivate4 
CMP.L NumberWindowPtr,A0 
BN E DeActivate5 
MOVE.L NumberTextHandle,,(SP) 
TeDeActivate 

ATS 

DeActivate5 
CM P .L AnnotationWindowPtr,A0 
BNE DeActivate6 ;not a text window 
MOVE. L Annotation T extHandle, -(SP) 
TeDeActivate 

RTS 

DeActivate6 
RTS 

Assuming that activeFlag has been set (the window should be activated), the 
application does not execute the branch at (d). Instead it continues processing with 
statement (e). This is where the code begins the somewhat tedious process of 
identifying exactly which text window posted the activate event. There is only one 
reliable way to do so. The pointer retrieved from the message field of the event 
record must be compared to the pointer for each text window used in the applica­
tion. A match indicates that the proper window has been found. Why is this 
necessary? Because TEActivate requires the text edit handle associated with the 
window being activated; there is no way to activate the appropriate text edit 
window without knowing specifically which text edit handle should be placed on 
the stack. Therefore, the application, at (e), compares the pointer from message 
(stored in AO) with a pointer to one of the text edit windows. In this case, the 
program looks first at the window for the tape name, but the order in which the 
windows are processed is nonetheless arbitrary. 

If a match between the two pointers is not found (f), the program must branch 
to check the next window (i). On the other hand, if the two pointers are the same, 
then the application can proceed to activate the window. Statement (g) places the 
appropriate text edit handle on the stack. The window is then activated with a call to 
TEActivate (h). 

One final step remains in the activation process: the newly activated window 
must be madethe current grafport. Otherwise, no drawing can be performed in the 
window. Therefore, a call to SetPort is performed at (i). 

The entire procedure is repeated for each text edit window. 
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Deactivating the text edit windows, beginning at (k), is more or less the same as 
activating. The window involved must be identified by comparing its pointer to the 
pointer from message so that its text edit handle can be placed on the stack. The 
handle is placed on the stack followed by a call to TeDeActivate. Once the 
window is deactivated, the application can return to the main program, since no 
call to SetPort is required. 

Getting a Blinking Cursor 
The blinking cursor in a text edit window is controlled by TEldle. Like the 

SystemTask routine that updates desk accessories, TEldle must be called 
repeatedly. It should be a part of each event loop in an application. Like the 
activate and deactivate procedures, TEldle requires only the handle to the edit 
record of the text edit window where the cursor should blink (i.e., this must be the 
handle of the currently active text edit window): 

PROCEDURE TEldle (hTE: TEHandle); 

The fact that TEldle requires the handle of the currently active text window 
presents a problem for applications where there is more than one text edit window, 
any of which might be active while the same event loop is controlling program 
action. To solve this problem, TEldle can be called with a sort of "generic" text edit 
handle. The Video Tape Index, for example, has allocated additional space for a 
text edit handle called ActiveTextHandle. Whenever a text edit window is 
selected, its handle is moved into ActiveTextHandle, which is then passed to 
TEldle. Therefore, all calls to TEldle appear as: 

MOVE.L 
_TEldle 

ActiveTextHandle, - (SP) 

Moving the Cursor (Setting 
the Selection Range} 

A selection range is what is highlighted in inverse video when you drag the 
mouse across a range of text or shift-click to indicate everything between the 
cursor and the click. A selection range can also be a single spot if it simply refers to 
the position of the blinking cursor. 

Text edit records identify the selection range by counting the characters in the 
text, beginning from the left; the first position is numbered 0. The range can be set 
by an application's response to mouse actions or by the application itself. 

If an application returns a mouse down event in an active text edit window, then 
the program can assume that the selection range needs to be moved. As you 
remember, a call to FrontWindow will return a pointer to the currently active 
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window. If this is the same as the pointer returned by FindWindow, then indeed 
the mouse down event occurred in the active window and the selection range 
should be adjusted. 

TECllck takes care of positioning the selection range. It will move the straight­
line cursor as well as highlight text and can handle extended selection ranges 
indicated by shift-click actions. TECllck needs to know where the mouse down 
event occurred, whether to process shift-click actions, and the text edit handle: 

PROCEDURE TEClick (pt: Point; extend: BOOLEAN; 
hTE: TEHandle); 

Point is from the event record. If extend is true, a shift-click will be processed; 
if extend is false, the cursor will simply be repositioned, regardless of whether the 
shift key was held down. Therefore, an application must check the Modify field of 
the event record prior to calling TEClick to determine what value to give the 
extend boolean. The final parameter is simply the handle to the text edit record 
whose window posted the mouse down event. 

There is one catch here - the Point field from the event record returns the 
position of the mouse down event in global coordinates; TEClick requires thatthey 
be expressed in the local coordinates of the current grafport (i.e., those of the 
currently active text edit window). Therefore, before an application can call 
TEClick, the mouse coordinates must be converted to the local coordinate sys­
tem. 

As discussed previously, the QuickDraw routine GlobalToLocal will take care 
of the conversion: 

PROCEDURE GlobalToLocal (VAR pt: Point); 

Point is passed into the routine as global coordinates and is returned in local 
coordinates. (As you might expect, there is also a LocalToGlobal routine.) 

The code for handling selection range movement using the mouse is therefore: 

PEA Point 

_GlobalToLocal 

MOVE.L 
BTST 
SNE 
MOVE.B 

Point, - (SP) 
#shiftKey,Modify 
DO 
DO,-(SP) 

;push address so changed values can 
return 

;coordinates are now local 
;was shift key pressed? 
;set true if shift key was held down 
;moving byte puts boolean in high order 
byte - system automatically pushes 
extra byte to keep stack pointer on 
even word boundary 

MOVE.L ActiveTextHandle, - (SP) 
_TEClick 
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Note that the quantity shiftKey refers to the bit in the Modify field that is set when 
the shift key is held down during a mouse down or key down event. 

The second way to control the selection range is to explicitly set it within the 
application itself. The routine TESetSelect will do just that: 

PROCEDURE TESetSelect (selStart, selEnd: LONGINTEGER; 
hTE: TEHandle); 

selStart refers to the position to which the start of the selection range should be 
set. To set it to the first position, it should take a value of 0 since character positions 
are, as mentioned above, numbered from the left beginning with 0. selEnd refers 
to the character position which should be the right-most edge of the selection 
range. The routine also requires the handle to the text edit record. 

Why might an application need to set its own selection range? Consider the 
situation where an application must clear all the text from a text edit record without 
deleting the record itself since it will be used again. It makes sense to select all the 
text and then "cut" it out. (Implementing "cut" is discussed below.) The start of the 
selection range would therefore be set to 0 and its end to the length of the text or the 
last possible character position allowed by the view and destination rectangles. If 
the end of the selection range given in the procedure call is beyond the last 
character actually present, it will be modified to correspond to the position of that 
last character. To select all the text in the Producer text edit record (a 20 character 
field), the Video Tape Index uses: 

MOVE.L #0, - (SP) ;starting position 
MOVE.L #20, - (SP) ;ending position 
MOVE.L ProducerTextHandle, - (SP) 
_ TESetSelect 

If you look at the environment in which the Video Tape Index does this selection 
range assignment (see Listing 9.3, discussed later in this chapter), you'll notice that 
the sequence of events includes first selecting the window and then setting the 
grafport. TextEdit routines are very sensitive about grafports. To be safe, when­
ever preparing to call a TextEdit routine, be certain to set the correct grafport prior 
to making the call to TextEdit. 

Inserting Characters into 
Text Edit Records 

Just as selection ranges can be manipulated by the mouse or explicitly from 
within an application, characters can also be accepted from the keyboard or 
inserted into a text edit record by an application itself. 

If an application detects a key down event without an accompanying press of 
the cloverleaf key, then the key press represents a character to be inserted into a 
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text edit record and displayed on the screen. The routine which actually inserts the 
character is TEKey: 

PROCEDURE TEKey (key: CHAR; hTE: TEHandle); 

The character that was pressed is available in the low-order word of the event 
record's Message field (i.e., Message+ 2, just as used when identifying the key 
pressed in conjunction with the cloverleaf key). The second parameter is a handle 
to the currently active text edit record. TEKey inserts the key pressed into the text 
edit record and displays the character on the screen. It also removes characters 
that are deleted by the backspace key. To call it, use something like: 

MOVE 
MOVE.L 
_TEKey 

Message+ 2, - (SP) ;character that was pressed 
ActiveTextHandle, - (SP) 

An application can do its own text insertion and display with TElnsert: 

PROCEDURE TElnsert (text: Ptr; length: LONGINT; 
hTE: TEHandle); 

The text specified by text (a pointer to where the text to be inserted is stored) will be 
inserted into the text edit record and drawn on the screen to the left of the current 
selection range. The length parameter contains the number of characters to be 
inserted. 

The Video Tape Index uses this technique to display a record which has been 
retrieved using any of its three search strategies: printing all records sequentially; 
doing a binary search on a tape name; doing a sequential search on producer, 
date, rating, or tape number. The subroutine that performs the display, Dis­
playOneRecord, appears in Listing 9.2. 

The subroutine first removes any previous text stored in the text edit windows 
(a). This procedure (Listing 9.3) is discussed in detail later in this chapter. The next 
three statements, beginning with (b), take the number for the record being dis­
played (stored in RecordCounter) and compute a byte offset into TapeArray. 
This offset locates the start of the record whose data will be inserted into the text 
edit records. 

Each text edit record must be handled separately. Since TElnsert displays 
characters as well as inserting them into the text edit record, the first step is to make 
the appropriate text edit window the current grafport with a call to SetPort. This 
occurs at (c) for the tape name window only. 

The subroutine then prepares for the call to TElnsert. The first parameter is the 
starting address of the text that is to be inserted into the text edit record. That 
address is the sum of three things: the starting address of TapeArray (d), the byte 
offset into TapeArray that locates the start of the record (e), and an offset into the 
record for the field whose contents are being inserted. 
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Listing 9.2 Inserting Text Directly into Text Edit Records 

(a) 
(b) 

(C) 
(d) 
(e) 
(f) 
(g) 
(h) 
(i) 

(j) 

DisplayOneRecord 
JSR DisplayWindows ;clears out text edit records (Listing 9.3) 
LEA RecordCounter,A0 
MOVE (A0),D5 
MULU #64,D5 

MOVE.L NameWindowPtr,-(SP) 
Set Port 

LEA TapeArray(A5),A0 
ADD D5,A0 
MOVE.L A0,-(SP) 
MOVE.L #30,-(SP) 
MOVE.L NameTextHandle,-(SP) 
_TElnsert 

MOVE.L ProducerWindowPtr,-(SP) 
Set Port 

LEA TapeArray(A5),A0 
ADD D5,A0 
ADD.L #oProducer,A0 
MOVE.L A0,-(SP) 
MOVE.L #20,-(SP) 
MOVE.L ProducerTextHandle,-(SP) 
_TElnsert 

MOVE.L DateWindowPtr,-(SP) 
Set Port 

LEA TapeArray(A5),A0 
ADD D5,A0 
ADD.L #oReleaseDate,A0 
MOVE.L A0,-(SP) 
MOVE.L #4,-(SP) 
MOVE.L DateTextHandle,-(SP) 
_TElnsert 

MOVE.L RatingWindowPtr,-(SP) 
Set Port 

LEA TapeArray(A5),A0 
ADD D5,A0 
ADD.L #oRating,A0 
MOVE.L A0,-(SP) 
MOVE.L #4,-(SP) 
MOVE.L RaUngTextHandle,-(SP) 
_TElnsert 

MOVE.L NumberWindowPtr,-(SP) 
Set Port 

LEA TapeArray(A5),A0 
ADD D5,A0 
ADD.L #oTapeNumber,A0 
MOVE.L A0,-(SP) 
MOVE.L #4,-(SP) 
MOVE.L NumberTextHandle,-(SP) 
_TElnsert 

RTS 

;pointer to text 
;# of characters to get 
;edit record which will get characters 
;incorporate text into record 
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The name of the tape has an offset of 0, since it is the first field in the record and 
therefore needn't be considered when dealing with the tape name. Note, however, 
that for the other fields, the offset is included in the address computation. For 
example, look at statement (j), which adds the offset for the producer's name to the 
address in AO. 

Once the starting address of the source text is computed, it is pushed onto the 
stack (f). That address is followed by the number of bytes which should be inserted 
(g) and the handle to the appropriate text edit record (h). The process is completed 
by calling TElnsert (i). 

This sequence of events is repeated for each text edit window except the 
annotation window. Since annotations are kept on disk in a direct access file and 
only brought into memory as needed, annotation display is handled separately. 

Editing Text: Cut, Copy, 
Paste, and Delete (Clear) 

Those text editing functions for which the Macintosh is famous are surprisingly 
easy to implement. Cut, copy, paste, and delete (called "clear" in the Edit menu) 
each base their actions on the current selection range of a given text edit record. 
As discussed above, the placement of that selection range is controlled by either 
TEClick or TESetSelect. 

If an application detects the "cut" command (through either a cloverleaf-X key 
press or a mouse down event in the Edit menu), it should call TECut: 

PROCEDURE TECut (hTE: TEHandle); 

The text in the current selection range will be deleted from the text edit record and 
copied to the Clipboard. The text will be removed from the screen and the rest of 
the text adjusted to compensate for the characters that were deleted. 

If an application needs to remove text without copying it to the Clipboard, it can 
use TEDelete instead of TECut: 

PROCEDURE TEDelete (hTE: TEHandle); 

On the other hand, to get text onto the Clipboard without deleting it from the text 
edit record, use TECopy: 

PROCEDURE TECopy (hTE: TEHandle); 

Pasting from the Clipboard into a text edit record is similarly straightforward: 

PROCEDURE TEPaste (hTE: TEHandle); 

TEPaste takes whatever is on the Clipboard and inserts it into the text edit record 
just before the current insertion point. The screen display is adjusted to compen­
sate for the new text. Pasting does not, by the way, disturb the contents of the 
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Clipboard. Only a Cut or Copy operation will do that. An application, therefore, can 
repeatedly paste the same text into a text edit record until such time as another Cut 
or Copy is executed. 

The Video Tape Index uses the Cut function to clear out its text edit records. 
Whenever it becomes necessary to remove all characters from both the text entry 
windows and the text edit records, the program executes the following sequence 
of steps: 

1. Select a window (SelectWindow) 

2. Make it the current grafport (SetPort) 

3. Select the selection range to the maximum number of characters that will be 
stored in this text edit record (TESetSelect) 

4. Cut the text (TECut) 

The procedure outlined above is used in the Video Tape Index's subroutine 
DisplayWindows (Listing 9.3). DisplayWindows selects each text edit window in 
turn, which brings it in front of the main window. It also cuts out any text that might 
be stored in the text edit records, so that the windows are empty when they appear. 
As with the other subroutines that deal with the text edit records, DisplayWindows 
must handle each text edit window separately, repeating the same sequence for 
every window. DisplayWindows returns with the tape name window active. 

The first step is to select the window (a) and to then make it the current grafport 
(b). At that point, any existing text in the text edit record must be removed . In order 
to make TECut operate on all characters that are present, the subroutine first sets 
the selection range to encompass the maximum numbers of characters that can 
appear in the specific field. It begins the selection range at the first character 
position (c) and ends it at the last possible character position (d). Note that this will 
not cause any problems if there are less than the maximum number of characters 
in the text edit record, since TESetSelect will automatically adjust the ending 
position to the last character actually present. After placing the appropriate text 
edit handle on the stack (e), a call is made to TESetSelect (f). The contents of the 
text edit record can then be removed with TECut (g). 

The steps illustrated by statements (a) through (g) are repeated for each of the 
text edit windows. If you are looking at Listing 9.3, however, you will see that a 
number of other things happen in DisplayWindows. These are the direct result of 
the calls made to SelectWindow. 

SelectWindow not only brings a window to the front, but it also highlights that 
window. For the name, producer, rating, date, and number windows, highlighting 
is unimportant since their windows are simply outlined rectangles. But the annota­
tion window is a standard document window with a title bar. SelectWindow will 
highlight it and leave it highlighted. Since the annotation window will not be the 
active window when DisplayWindows returns, it should not be highlighted. There­
fore, the three statements beginning at (h) issue a call to HiliteWindow to remove 
the highlighting. 
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(a) 

(b) 
(c) 
(d) 
(e) 
(f) 

(g) 

(h) 

Listing 9.3 Sett!ng a Text Edit Selection Range from within an Application 

DisplayWindows 
MOVE.L AnnotatjonWindowPtr,-(SP) 
SelectWindow 

MOVE.L AnnotationWindowPtr,-(SP) 
_SetPort 
MOVE.L #0,-(SP) 
MOVE.L #255,-(SP) 
MOVE.L AnnotationTextHandle,-(SP) 
TESetSelect ;select all the text in the window 

MOVE.L AnnotationTextHandle,-(SP) 
_ TECut ;cut out text from previous use 

MOVE.L AnnotationWindowPtr,-(SP) 
SF -(SP) 
_HiliteWindow ;get rid of highlighting in this window 

MOVE.L NurnberWindowPtr,-(SP) 
SelectWindow · · · 

MOVE.L NumberWindowPtr,-(SP) 
Set Port 

MOVE.L #0,-(SP) 
MOVE.L 20,-(SP) 
MOVE.L NumberTextHandle,-(SP) 

TESetSelect 
MOVE.L NumberTextHandle,-(SP) 
_TECut 

MOVE.L RatingWindowPtr,-(SP) 
SelectWindow 

MOVE.L Ratingl/VindowPtr,-(SP) 
_Set Port 
MOVE.L #0,-(SP) 
MOVE.L #4,-(SP) 
MOVE.L RatingTextHandle,-(SP) 
_ TESetSelect 
MOVE.L RatingTextHandle,-(SP) 
_TECut 

MOVE.L DateWindowPtr,-(SP) 
SelectWindow 

MOVE.L DateWindowPtr,-(SP) 
_SetPort 
MOVE.L #0,-(SP) 
MOVE.L #5,-(SP) 
MOVE.L DateTextHandle,-(SP) 
TESetSelect 

MOVE.L QateTextHandle,-(SP) 
_TECut 

MOVE.L ProducerWindowPtr,-(SP) 
SelectWindow 

MOVE.L ProducerWindowPtr,-(SP) 
_SetPort 
MOVE.L #0,-(SP) 
MOVE.L #22,-(SP) 
MOVE.L ProducerTextHandle,-(SP) (continued) 



(i) 
(j) 

(k) 
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_ TESetSelect 
MOVE.L ProducerTextHandle,-(SP) 
_TECut 

MOVE.L $00000100,00 
_Flush Events 

MOVE.L NameWindowPtr,-(SP) 
Select Window 

MOVE.L NameWindowP!r,-(SP) 
_Set Port 
MOVE.L #0,-(SP) 
MOVE.L #32,-(SP) 
MOVE.L NameTextHandle,-(SP) 

TESetSelect 
MOVE.L NameTextHandle,-(SP) 
_TECut 

LEA ActiveTextHandle,A0 
MOVE.L Name Text Handle ,(A0) 

RTS 

;mask to remove activate events 

;name window is activated at start 

~orTEldle 

SelectWindow also generates two activate events each time it is called: one 
for the window being activated and one for the window being deactivated. The 
activate events from DisplayWindows are in some sense spurious; they do not 
correspond to any real need to activate or deactivate text edit windows. Their 
presence will confuse an event loop. Therefore, before dealing with the tape name 
window, which will be active when the subroutine ends, those extra activate events 
should be removed. A special mask is created to identify only activate events (i) 
and then used for a call to FlushEvents (j). This will remove those activate events 
before they can be processed by an event loop. 

Since the tape name window will be active when DisplayWindows returns, 
TEldle should have the handle to the name text edit record. Therefore, the hame 
text edit handle is loaded into the generic text handle just before the subroutine 
finishes (j). 

There is, by the way, an alternative way to delete the text in a text edit record -
simply dispose of the entire record. The routine TEDispose (it requires only the 
handle to the text edit record as a parameter) removes the text edit record from 
memory. It would certainly be possible to dispose and then reallocate the text edit 
records each time the Video Tape Index finished with a given record. Doing so, 
however, requires more code than emptying the text edit record by cutting out its 
entire contents. 

Displaying Static Text 
In some cases it may be necessary to display text that won't be changed. For 

example, the Video Tape Index prints the name of the field to the left of each text 
edit window (see Figure 9.1). These prompts are essential; otherwise the user will 
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have no idea what information should be entered in each text window. Nonethe­
less, there is no need to change those prompts once they are printed. 

The prompts for the TapeArray fields are printed on the main window. They 
could have been printed with Drawstring, the Tool Box routine used in the Sample 
program to display text. To use Drawstring an application must first move the 
cursor to the coordinates where printing should begin. Drawstring then prints the 
characters, moving the cursor from left to right. This can be somewhat awkward, 
especially when the text needs to be justified (e.g ., note that the Video Tape Index 
prompts are printed in a proportional type font which is lined up along the right 
hand side). 

r a Edit Enter 

Enter New Titles ond Annototions 

Tope Nome: 

Producer / Distributor: 

Dote of Releose: CJ 
Roting: D 

TBpe Number: D 
Annototion 

Text Box prompts (e .g., Dote of Releose) are drwn on 1he Main 
v;indov; . They are righ1 jus1ified v;i1hin their boundary rec1angle . 
The boundary rec1angle i1self does not appear. The prompts cannot be 
modified v;ith anyTextEdit rou1ines. 

Figure 9.1 Displaying Static Text 

TextEdit provides an alternative for printing static text with the TextBox 
routine. TextBox prints a string of text inside a rectangle expressed in the local 
coordinates of the current grafport. The rectangle has no visible borders, nor is any 
text edit record created. The routine also allows an application to specify text 
justification within the rectangle (left, right, or centered). The format of the call is: 

PROCEDURE TextBox (text: Ptr; length: LONGINTEGER; 
box: Rect; just: INTEGER) 

As with anything else that requires placing coordinates on the Macintosh 
screen, using textBox requires a bit of planning. For example, since the Video 
Tape Index will print its prompts on the main window, the coordinates of the 
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rectangles in which the prompts will be printed must be expressed in terms of that 
main window (upper left-hand corner becomes 0,0 and lower right-hand corner 
becomes 240,490). To keep things simple, the windows for each prompt are the 
same size (11 pixels high and 191 pixels wide). The height is dictated by the size of 
the text; if a window is to display 12-point text, it must be a minimum of 10 pixels 
high. The width obviously depends on the maximum number of characters that will 
be printed. Establishing the exact placement of each rectangle nonetheless 
requires a bit of trial and error. 

The parameter just is an integer that indicates how the text should be justified 
within its rectangle. A value of O will left-justify the text, 1 will center it, and -1 will 
right-justify. length is the number of characters to print, and text is a pointer to the 
text to be printed. 

Consider as an example the code that displays the prompt for the Date text 
entry window: 

PEA 
MOVE.L 
PEA 
MOVE 
_TextBox 

StringConstant 
#17, -(SP) 
DatePromptBox 
#-1,-(SP) 

;pointer to string 
;number of characters to print 
;rectangle where text should go 
;right justify the text 

Two things must have occurred before the above code will function properly. First, 
the main window must be the current grafport (through a call to SetPort). Sec­
ondly, the rectangle DatePromptBox must have been defined. For example: 

DatePromptBox DC 62,10,82,200 

It is also important to be sure that the string passed to TextBox has the data 
type Str255 (i.e., its first byte is a length byte). The easiest way to do so is to allocate 
space for the string with DC. For example: 

StringConstant DC 'Date of Release' 

The subroutine that displays the Video Tape Index's prompts, DisplayPrompts, 
appears in Listing 9.4. DisplayPrompts first establishes the font that should be 
used when the prompts are drawn (a). Setting the text font is discussed a bit further 
on in this chapter. Then, the TextBox sequence is repeated for each of the text edit 
windows that occupy plain document boxes (i.e., all but the annotation window). 
The text of the prompts have all been established as constants with DC, ensuring 
that they will be assembled with a length byte. The first step (b), is to push a pointer to 
the title string onto the stack. That pointer is followed by the number of characters in 
the string (c), a pointer to the rectangle in which the text should be printed (d), and the 
text justification (d). The text is actually printed with the call to TextBox (e). 
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Listing 9.4 Using TextBox to Display Static Text 

DisplayPrompts 
MOVE #sysFont,-(SP) 

(a) _TextFont 

(b) 
(c) 
(d) 
(e) 

PEA NameTitle ;text to print 
MOVE.L #11,-(SP) 
PEA NamePromptBox 

;number of characters to print 
;rectangle where text should be printed 
;to right justify text MOVE #-1,-(SP) 

_TextBox 

PEA ProducerTitle 
MOVE.L #22,-(SP) 
PEA ProducerPromptBox 
MOVE #-1,-(SP) 
_TextBox 

PEA DateTitle 
MOVE.L #17,-(SP) 
PEA DatePromptBox 
MOVE #-1,-(SP) 
_TextBox 

PEA RatingTitle 
MOVE.L #8,-(SP) 
PEA RatingPromptBox 
MOVE #-1,-(SP) 
_TextBox 

PEA NumberTitle 
MOVE.L #13,-(SP) 
PEA NumberPromptBox 
MOVE #-1,-(SP) 
_TextBox 

RTS 

NamePromptBox DC 
Name Title DC 
ProducerPromptBox DC 
ProducerTitle DC 
DatePromptBox DC 
Date Title DC 
RatingPromptBox DC 
Rating Title DC 
NumberPromptBox DC 
Number Title DC 

12, 10,32,200 
'Tape Name:' 
37,10,57,200 
'Producer/Distributor:' 
62, 10,82,200 
'Date of Release:' 
87,10,107,200 
'Rating:' 
112, 10, 132,200 
'Tape Number:' 
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Updating Text Edit 
Windows 

TextEdit has its own routine for updating text edit windows. Whenever an 
update event is detected in a text edit window, an application should execute the 
following sequence of steps: 

1 . Call BeginUpdate 

2. Call EraseRect (this ensures that when the window is deactivated, the cursor 
will disappear) 

3. Call the special TextEdit routine TEUpdate (discussed below) 

4. Call EndUpdate 

TEUpdate redraws the text specified by a rectangle parameter: 

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle); 

Generally, the text edit window's view rectangle is used for the rUpdate parameter. 
It is also important to remember that the text edit window referred to by TEHandle 
must be the current grafport in order for TEUpdate to work properly. 

The Event Manager will return update events only for an active window. If an 
application has windows which are visible but not active, any changes in their 
contents will not be reported. For example, consider the Video Tape Index's text 
entry screen (e.g., Figure 9.1). Only one text entry window is active at any given 
time, yet it is possible to use a desk accessory that will overlay, and therefore erase 
portions of, windows that are not active. Therefore, it may not always suffice to 
update just the window reporting the update event. 

The Video Tape Index handles updating text windows with the subroutine 
UpdateTextWindows (Listing 9.5). Whenever an update event is detected, the 
program erases and redraws the contents of all windows. 

The main window, because it is not a text edit window, is handled a bit 
differently from the text edit windows. As with all updates, the process begins with a 
call to BeginUpdate (a). To ensure that all routines which affect the screen will 
function properly, it is then made the current grafport using SetPort (b). 
UpdateTextWindows then erases the main window's contents (EraseRect at (c)). 
The window's contents are redrawn by the subroutine DisplayPrompts from Listing 
9.3 (d). As mentioned earlier, it is usually easier to erase and completely redraw a 
window's contents than it is to merely redraw the specific portion that has been 
disturbed by some other program action. The update is completed by calling 
EndUpdate (e). 



256 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Updates for the text edit windows begin in the same manner as updates to the 
main window - calling BeginUpdate (f), setting the grafport (g), and erasing the 
window (h). Redrawing the window's contents, however, is where the difference 
lies. TEUpdate will take care of redrawing the text. That routine requires that the 
text window's view rectangle (i) and its text handle (j) be placed on the stack before 
making the call (k). As usual, the update ends with EndUpdate (I). 

Listing 9.5 Updating Multiple Windows 

Update TextWindows 
MOVE.L MainWindowPtr,-(SP) 

(a) _Begin Update 
MOVE.L MainWindowPtr,-(SP) 

(b) Set Port 
PEA MainWindowRect 

(c) EraseRect 
(d) JSR Display Prompts ;re-draw window's contents 

MOVE.L MainWindowPtr,-(SP) 
(e) _End Update 

MOVE.L NameWindowPtr,-(SP) 
(f) _Begin Update 

MOVE.L NameWindowPtr,-(SP) 
(g) SetPort 

PEA NameViewRect 
(h) EraseRect 
(i) PEA NameViewRect 
(j) MOVE.L Name TextHandle, -(SP) 
(k) _TEUpdate 

MOVE.L NameWindowPtr, -(SP) 
(I) _End Update 

MOVE.L ProducerWindowPtr, -(SP) 
_Begin Update 
MOVE.L ProducerWindowPtr,-(SP) 
Set Port 

PEA ProducerViewRect 
EraseRect 

PEA ProducerViewRect 
MOVE.L ProducerTextHandle,-(SP) 
_TEUpdate 
MOVE.L ProducerWindowPtr,-(SP) 
_End Update 

MOVE.L DateWindowPtr,-(SP) 
_Begin Update 
MOVE.L DateWindowPtr,-(SP) 
Set Port 

PEA DateViewRect 
EraseRect 

PEA DateViewRect 
MOVE.L DateTextHandle,-(SP) 
_TEUpdate 
MOVE.L DateWindowPtr,-(SP) 
_End Update (continued) 
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MOVE.L RatingWindowPtr,-(SP) 
_Begin Update 
MOVE.L 
_Set Port 

RatingWindowPtr,-(SP) 

PEA RatingViewRect 
Erase Rect 

PEA RatingViewRect 
MOVE.L 
_TEUpdate 

RatingTextHandle,-(SP) 

MOVE.L 
_End Update 

RatingWindowPtr,-(SP) 

MOVE.L 
_Begin Update 

NumberWindowPtr,-(SP) 

MOVE.L NumberWindowPtr,-(SP) 
Set Port 

PEA NumberViewRect 
_EraseRect 
PEA NumberViewRect 
MOVE.L NumberTextHandle,-(SP) 
_TEUpdate 
MOVE.L NumberWindowPtr,-(SP) 
_EndUpdate 

MOVE.L AnnotationWindowPtr, -(SP) 
_Begin Update 
MOVE.L AnnotationWindowPtr,-(SP) 
_Set Port 
PEA AnnotationViewRect 
_EraseRect 
PEA AnnotationViewRect 
MOVE.L AnnotationTextHandle,-(SP) 
_TEUpdate 
MOVE.L AnnotationWindowPtr,-(SP) 
_EndUpdate 

RTS 

Changing Fonts and Font 
Characteristics 

One of the things that always excites new users about the Macintosh is its ability 
to manipulate multiple fonts with varying characteristics within a single text win­
dow. The three routines that manage those features are part of QuickDraw. 

TextFont takes care of setting the font itself: 

PROCEDURE TextFont (font: INTEGER); 

Each font is identified by a font number. Equates for the standard release fonts are 
included in the QuickDraw equates file. The system font (Chicago), for example, 
has an ID of 0, while NewYork is 2 and London is 6. The address assigned to the 
standard release fonts appear in Table 9.1. 
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Table 9.1 Symbolic Addresses Assigned to Standard Release Fonts 

Symbolic Address/ Font 
FQnt Nam~ Nymb~r 

sysFont (Chicago) 0 
applFont (Geneva) 1 

new York 2 
geneva 3 
monaco 4 
venice 5 
london 6 
at hens 7 
sanFran 8 
toronto 9 
cairo 10 
losangel 11 

To change the font, push the font ID number onto the stack and call the routine: 

MOVE #venice, - (SP) 
_TextFont 

;pushes as 

It is important to remember that TextFont only affects the current grafport and 
must therefore be repeated whenever the grafport changes to another window. 

The style of a font (boldface, italic, underlined, outlined, shadowed, etc.) is 
controlled by TextFace: 

PROCEDURE TextFace (face: Style); 

The actual style of the font is determine by the style word that is supplied as a 
parameter to the routine. Bits in the style word represent one type of text face (see 
Figure 9.2). For example, if bit O is set, text will be displayed in boldface. If bit 2 is 
set, the text will be underlined. If both bits O and 2 are set, the text will be both 
boldface and underlined. To create bold and underlined text, use: 

MOVE 
_TextFace 

#5,-(SP) ;the 5 = 0000 0000 0000 0101 

To return to normal text, use a style word of 0. 
Like TextFont, TextFace also affects only the current grafport. 
TextSize manipulates the size of the text in the current grafport: 

PROCEDURE TextSize (size: INTEGER); 

The size of the text is expressed in points, just seen in standard Style menus. 
Though an application can select virtually any size for any font, the text will look 
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best if it is expressed in a size that exists in the system. The following instructions 
will establish a text size of 14 points: 

MOVE 
_TextSize 

#14, -(SP) 

Text justification is handled by the routine TESetJust: 

PROCEDURE TESetJust (just: INTEGER; h: TEHandle); 

just is one of the three numbers used to specify justification for TextBox: 0 to left­
justify, 1 for centered text, and -1 for right-justification. his a handle to a text edit 
record containing the text to be justified. For example, to center text you might 
code: 

MOVE 
MOVE.L 
_TESetJust 

#0, -(SP) 
SomeTextHandle(A5), - (SP) 

TESetJust does not affect the text as it is displayed on the screen, only as it is 
stored in the text edit record. Therefore, to change the justification of the text on the 
screen, execute a complete update sequence that will erase the text edit window 
and redraw its contents with the new justification immediately after calling 
TESetJust. 

Bit# 7 6 5 4 3 2 1 0 

I I I I 
Unused Condense Outline Italic 

Extend Shadow Underline Bold 

To select any font style, set the appropriate bit in the style 
word. The styles are additive. For example, to get outlined 
boldface text set bits 0 and 2. 

Figure 9.2 The Style Word Used by TextFont 
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Scrolling Text 
Applications which permit the entry of large text documents will need to scroll 

text within text entry windows. Scrolling activities are implemented whenever the 
user clicks the mouse button somewhere in a scroll bar, or when the text being 
entered goes below the bottom edge of the view rectangle. 

How far the text should be scrolled depends on what initiated the scrolling 
action. A single click in an up or down arrow will scroll the text one line. A click in a 
right or left arrow will scroll the text a character or two. A click in a page up or page 
down region will move text one "page" (generally one window full). On the other 
hand, if the user drags the thumb of a scroll bar, the amount to scroll will be 
proportional to the movement of the thumb. 

Scrolling is implemented by a single TextEdit routine: 

PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle); 

dh and dv are expressed in pixels. They specify how far the text should be 
scrolled. If both values are positive, dh refers to the number of pixels to scroll to the 
right and dv refers to the number of pixels to scroll down. If the values are negative, 
dh indicates the number of pixels to scroll left and dv the number of pixels to scroll 
up. 

The height, in pixels, of a single line of text is contained in the text edit record in 
the field llneHeight. This parameter always reflects the current spacing (e.g., 
single or double spaced). Therefore, once an application determines the number 
of lines to scroll up or down, the number of pixels can be obtained by multiplying 
the number of lines to scroll by the number of pixels per line. For example, the 
following code will scroll text three lines down: 

MOVE 

MOVE.L 
MOVE.L 
MOVE 
MULU 

MOVE 
MOVE 
MOVE.L 
_TEScroll 

#3,Numlines(AS) 

TextEditHandle,AO 
(AO),AO 
lineHeight(AO),DO 
NumLines(AS),DO 

#0,-(SP) 
00,-(SP) 
TextEditHandle, - (SP) 

;# of lines to scroll 

;handle to TE record 
;get pointer 
;retrieve height of line 
;total number of pixels 

;don't move to the right 
;pixels down 
;handle to TE record 

;application must now update the text edit window 

In terms of figuring out which way to scroll, remember that when a user clicks 
the up arrow of a vertical scroll bar, the text should move down. By the same token, 
a click in the down arrow will scroll the text up. The same is true of thumb 
movement - if the thumb moves up, the text should move down; if the thumb 
moves down, the text should move up. 
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How far does text move when a thumb is dragged? Consider the situation 
where a scroll bar has a minimum of 0 and a maximum of 10. If the thumb is moved 
to the middle of the scroll bar, it will have a value of 5. The text should therefore be 
scrolled to the middle of document, regardless of the length of the document. If the 
thumb has a value of 2, the text should be scrolled 20% from the beginning of the 
document. 

Left to right scrolling is usually more rigidly controlled than up and down 
scrolling. Most text processing applications assign a fixed maximum width to a 
document. For example, Microsoft Word limits the user to an 81/2-inch-wide page, 
even though margins can be set at will. ThinkTank 512 also limits the user to an 8-1/2-
inch line. Therefore, the amount of scrolling that a single click in a left or right arrow 
will produce does not depend on the size of the font in use, but is a fixed interval 
based on the maximum width of the document. Dragging the thumb of the horizontal 
scroll bar is also proportional to the maximum fixed width of the document. 

Controlling Program 
Actions with Alert and 

Dialog Boxes 
Dialog boxes appear whenever a program needs infor.mation from the user in 

order to proceed. Alert boxes generally appear to warn the user that an error has 
occurred or that the potential to commit some error exists. 

As discussed in Chapter 1, there are two types of dialog boxes - modal and 
modeless. Modal dialog boxes restrict the user to working within the dialog box. 
For example, consider the dialog box that appears when you select the PRINT 
option from a standard File menu (Figure 9.3). Until you either click the OK button 
with the mouse or hit the ENTER key, the only actions possible are changing the 
print parameters displayed by the dialog box. 

Modeless dialog boxes are more like regular document windows. Their pres­
ence on the screen does not prevent the user from performing other activities. The 
most common example of a modeless dialog box is the window that appears when 
FIND is selected from a Search menu (Figure 1.12). The user can work in the FIND 
box, deactivate it by clicking on another visible window, work in another active 
window, and later reactivate the dialog box without ever removing it from the 
screen. 

Alert boxes are more like modal dialog boxes. They, too, freeze program 
action until the user responds to the alert. But while modal dialog boxes are used 
whenever the program needs information, alert boxes signal errors or warnings. 

Dialog and alert boxes are handled by the Dialog Manager. To properly set up 
an application for calls to the Dialog Manager, include a call to lnitDialogs in the 
initialization portion of the program. lnitDlalogs takes one parameter - a pointer 
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to whatever routine should be started whenever a system error occurs and the 
system must be restarted. The pointer should either restart the current application 
or be 0: 

CLR.L -(SP) 
_lnitDialogs 

;no restart procedure 

The call to lnitDialogs can be the last initialization in the sequence. 

r s File Edit Seorch Formot Font Size Transfer 

Quolity: 

Poge Range: 

Copies: 

Poper Feed: 

0 High 

@Rll 

EJ 

...Jlntitl~ 

O Shrndord ® Droft 

0 From: D To: D 
®Continuous O Cut Sheet 

This is the standard Job Dialog displayed end monitored by 
e cell to the Printing Manager routine PrJobDialog 

Figure 9.3 Standard Job Dialog 

Defining Dialog and Alert 
Boxes 

OK 

( Concel J 

,,::;;;:; rnmmmmJ 

., 

Dialog and alert boxes, like other windows, are defined in resource files. 
Though there are routines for defining them completely within an application, it is 
many times easier to use a resource file. Like other windows, the boundaries of 
dialog and alert boxes are rectangles expressed in global coordinates. In many 
cases, dialog boxes appear centered on the screen just below the menu bar; this is 
the position in which the standard Macintosh user interface guidelines expects 
them to appear. 

The Video Tape Index uses modal dialog boxes to control the progress of a 
search. Since only one record can be displayed at any one time, there must be 
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some mechanism to "freeze" the program, leaving that record on the screen until 
the user is ready to proceed. Therefore, rather than overlaying the text windows, 
the dialog boxes appear in the lower right-hand corner of the screen, just above 
the annotation window (see Figure 9.4). · 

Note that this technique of using modal dialog boxes to freeze program 
execution until the user is ready to go on is very much like using a dummy input 
sequence in a Pascal program . The Pascal statements: 

write ('Hit <CR> to continue:'); 
readln (Dummy); 

have the same effect as using a modal dialog box, since in either case the program 
will not resume execution until the user responds. 

r & Edit Select 

Select Titles and Annotations 

Tape Name: jEmpire Strikes Back, The 

Producer /Distributor: I Lucas Fi 1 ms 

Date of Release: 
Find More? 

[Cancel J [~ 
Rating: 

Tape Number: 

Annotation 

This sequel outdid its predicessor, bringing ne w depth to its characters. 
The evil Darth Vader emer ged as a true vi llain , while Luke, Leia and Han 
became true forces of good. 

The "" Find More?"" dialog box freezes program action until the user 
clicks the mouse button "ith the cursor in either the OK or Cancel 
button . 

Figure 9.4 Using a Dialog Box to Freeze Program Action 

The Video Tape Index uses an alert box whenever a search has been chosen 
from a menu but no search criteria has been entered. This box also appears in the 
lower right-hand side of the screen above the annotation window (see Figure 9.5). 
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Tope Number: 
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Figure 9.5 An Alert from the Video Tape Index Program 

Dialog Boxes 
The template for dialog boxes appears much like a regular window template. As an 
example, consider the resource definition for the Video Tape Index's None Found 
dialog box: 

TYPEDLOG 

,1 

"None Found" 
100 300 170 490 
Visible NoGoAway 
2 
0 
1 

;indicates the the following definitions are 
for dialog boxes 
;sequence number for this dialog box. Must 
be unique within the resource type (i.e., no 
other dialog box can have this number) 
;place for any message you like 
;coordinates of the box's boundary rectangle 
;same as for regular window definitions 
;number corresponding to type of window 
;reference value (always use 0) 
;reference number to item list where box's 
contents are defined (see below for details) 

Rules that apply to other resource definitions hold for dialog boxes as well. For 
example, the sequence number must be preceded by a space and a comma. The 
number indicating the type of window should be selected from those available for 
regular window definitions. 
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Alert Boxes 
Alert boxes have their own resource template: 

TYPEALRT 
,4 

100300170 490 
4 

;indicates that an alert box follows 
;unique sequence number within all alerts 
;boundary rectangle 
;reference number to item list where box's 
contents are defined 

7765 ; "stages" word (in hex) 

The only unusual thing about an alert box definition is the stages word. This 
number, expressed in hexadecimal, controls what will happen each time the alert 
is invoked. It means that if the user continues to make the same error, the 
consequences can vary. Alerts can be instructed to beep the Mac's speaker one or 
more times, cause the menu bar to flash, display or not display the box itself, and 
change which button within the box will be the default button (i.e., the button that is 
selected when the user presses ENTER or RETURN). 

Each alert has four stages; if an alert is called more than four times, it will simply 
repeat whatever actions are specified by the fourth stage. Each stage is controlled 
by four bits within the stages word: 

Bits 0-3 
4-7 
8-11 

12-15 

stage one 
stage two 
stage three 
stage four 

Within the four bits allocated to each stage, the highest-order bit refers to the item 
number of the default button minus 1 (the item number is the position of the item 
(usually a button] within the item list; item lists are discussed below). By convention, 
the first item in the list is always the OK button. It appears in the stages word as a 0. 
If a CANCEL button is present, it will be the second item in the item list and 
therefore is indicated as a 1 in the status word. The next lower-order bit is set if the 
alert box is to be drawn and cleared if it should not be drawn. The two lowest-order 
bits refer to how many times the speaker should be beeped (0 to 3). 

To create a stages word, first design it in binary and then translate it to 
hexadecimal. If we convert the Video Tape Index's stages word to binary, we can 
see exactly what actions it instructs the Mac to take when the alert is invoked: 

$7765 = %0111 0111 0110 0101 

In all four stages, the highest-order (left-most) bit is 0. That indicates that the default 
item will always be the OK button. (As you will see below in the discussion of item 
lists, the OK button is the first item in the item list.) The second bit from the left is 
always 1. Therefore, the box will be displayed at all four stages. The difference 
between the four stages is in the number of times the speaker will sound. At stage 
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one it wiil beep once, at stage two twice, and three times at stages three and four. 
Note that if the value of the sound bits is 0, the speaker will not sound at all but the 
menu bar will flash. 

Item Lists 
The items which appear in alert and dialog boxes are also best defined in a 
resource file. They are linked to the appropriate box by the item list number within 
the alert or dialog box definition. Therefore, each alert and dialog box must assign 
a unique number to its item list; the Mac can't tell the difference between lists that 
belong to dialog boxes and those that belong to alerts. 

A number of special items can appear in dialog and alert boxes. The phrase 
that should be used to identify the item in a resource file appears in boldface: 

1. Buttons [button] (the hot-dog shaped buttons) 

2. Check boxes [checkbox] 

3. Radio buttons [radiobutton] (the round buttons) 

4. Static text [staticText] (text that is simply displayed on the screen; it cannot 
be edited) 

5. Edit text [editText] (text that can be edited; available only in dialog boxes) 

Note that both static text and edit text items are limited to 241 characters. 
Buttons and check boxes are controls. You can manage them directly th rough 

routines in the Control Manager, but when they are part of alert and dialog boxes, 
the Dialog Manager will make the calls to the Control Manager for you. 

The item list for dialog box will appear as follows. This one is for the Video Tape 
Index's None Found dialog box: 

TYPEDILT 
,1 

2 

button 
4011060170 

OK 

static Text 
104130149 
None Found 

;indicates that item lists follow 
;same as item list reference number 
in the dialog box's definition 
;number of Items In the list 

;type of Item 
;boundary rectangle for the item, 
expressed in local coordinates of the 
dialog box 
;content of the item 

;type of item 
;coordinates to enclose the text 
;text to be printed 

Note that the location of each item in the dialog or alert box is indicated by a 
boundary rectangle. That rectangle is expressed in the local coordinates of the 
specific dialog or alert box. 
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The item number to which we referred earlier simply corresponds to an item's 
physical position in the item list. The first item that appears (in this case, the OK 
button) is item #1; the second item that appears (the text "None Found') is item #2. 

For dialog boxes, the default item (the one that is selected when the user 
presses ENTER or RETURN) is always the first item in the list. As mentioned above, 
the stages word determines whether the first or second item will be the default for 
alerts. 

The complete resource file templates for the Video Tape Index's alerts and 
dialog boxes are reprinted in Listing 9.6. The important thing to notice about these 
definitions is how the item lists are connected to the appropriate alert or dialog box 
by matching the number of the item list with the item list parameter in the alert or 
dialog box template. 

Listing 9.6 Resource Templates for the Video Tape Index's Alerts and Dialog Boxes 

TYPE DLOG 
, 1 
Dialog box for "None Found" condition 
100 300170 490 
Visibile NoGoAway 
2 
0 
1 

,2 
Dialog box for "One Found/Find More?" condition 
100 300170 490 
Visible NoGoAway 
2 
0 
2 

,3 
Dialog box for "One Found" condition 
100 300170 490 
Visible NoGoAway 
2 
0 
3 

TYPEALRT 
,4 
100 300170 490 
4 
7765 

,5 
50 140 120 390 
5 
4444 

,6 
50 140 120 390 
6 
5555 

dialog box definitions follow 
sequence number · 
comment line 
boundary rectangle 
box is visible & has no GoAway Box 
window type (plainDBox) 
no reference value 
ttem list is#1 

;; sequence number 

;; ttem list is#2 

;; sequence number 

;; ttem list is #3 

;; alert definitions follow 
;; sequence number 

;; ttem list is #4 
;; stages word 

;; sequence number 

;; ttem list is #5 

;; sequence number 

;; ttem list is #6 
(continued) 
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Listing 9.6 (continued) 

TYPE DITL 
'1 

2 

button 
40110 60 170 
OK 

static Text 
10 4130149 

None Found 

,2 
3 

button 
40110 60170 
OK 

button 
40 206080 
Cancel 

static Text 
10 41 30149 
Find More? 

,3 
1 

button 
40110 60170 
OK 

,4 
2 

button 
40110 60170 
OK 

static Text 
10530185 
Selection criteria? 

,5 
2 

button 
40180 60 240 
OK 

static Text 
101030 240 
Turn on printer. Press "Enter". 

;; item lists for dialog boxes and alerts 
;; items for "None Found" dialog box 
;; 2 items in the list 

;; push button 
;; boundary rectangle 
;; contents 

;; static text item 
;; boundary rectangle 

;; text to be displayed 

;; item list for "Find More?" dialog box 
;; 3 items in list 

;; item list for "Find & Wait" dialog box 
;; 1 item in list 

;; item list for "No selection" alert 
;; 2 items in list 

;; item list for "Printer" alert 

(continued) 
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,6 
2 

button 
40180 60 240 
OK 

static Text 
101030240 
Unexpected file error! 

;; item list for "File error" alert 

Data Structures for Alert 
and Dialog Boxes 

Dialog and alert boxes require only two data structures: a block of storage to 
hold the dialog window record (one will do if an application will never have more 
than one dialog box or alert on the screen at any given time), and a place to put a 
pointer to the dialog or alert window (this is returned by the routine that creates the 
box): 

Dialog Wind Rec 
DialogWindPtr 

OS 
DS.L 

dWindLen 
1 

The parameter dWindLen refers to the number of words in a dialog window 
record and is defined in the ToolBox equates file. 

Creating and Disposing of 
Dialog Boxes 

Unlike other windows, dialog boxes are usually created only when they are 
needed. They also are not hidden or made invisible when an application no longer 
needs them; rather, they are completely removed from the system. Re-use of the 
same dialog box during the same program run requires re-creation of the dialog 
box. Though modal dialog boxes can be managed like other windows (using 
HideWindow, ShowWindow, BringTofront, etc.), they generally are not, since 
they are used infrequently and their presence occupies memory the Mac can use 
for other purposes. Modeless dialog boxes are handled like other windows until 
the user clicks the GoAway box to close them, at which point they are deleted. 

The ToolBox routine GetNewDialog will create and display a dialog box: 

FUNCTION GetNewDialog (dialoglD: INTEGER; 
dStorage: Ptr; behind: WindowPtr): DialogPtr; 
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The first parameter, dialoglD, refers to the sequence number given to the dialog 
box in the resource file. (Don't confuse this sequence number with the number of 
the dialog box's item list; though the two numbers are often the same tor conve­
nience, they need not be.) dStorage is a pointer to the area set aside to store the 
dialog window record. 

behind has the same function as the behind parameter in the GetNewWindow 
routine; it determines the placement of the dialog box with respect to the other 
windows in the screen. A value of -1 will place the dialog box in front of all others. 

The result of GetNewDialog is a pointer to the dialog window. It is essential to 
save this pointer if any Window Manager routines are going to be used on this 
dialog window. 

To create its None Found dialog box, the Video Tape Index uses this code: 

CLR.L 

MOVE 
PEA 

-(SP) 

#1,-(SP) 
DialogWindRec(AS) 

MOVE.L #-1, - (SP) 
_GetNewDialog 

MOVE.L (SP)+ ,DialogWindPtr(AS) 

MOVE.L DialogWindPtr(A5), - (SP) 
_SetPort 

;space for dialog window 
pointer 
;this is dialog box 1 
;pointer to dialog window record 
storage 
;put dialog box in front 

;recover the window pointer 

;make dialog box the current 
;grafport 

The final step in this sequence is an important one. The dialog box must be made 
the current grafport so that activities within the box will be properly recorded. 

Disposal of a dialog box is taken care of by CloseDialog: 

PROCEDURE CloseDialog (theDialog: DialogPtr); 

Move the dialog's window pointer onto the stack and call the routine: 

MOVE.L DialogWindPtr(A5), - (SP) 
_ CloseDialog 

This will not only remove the dialog box from the screen, but will dispose of all data 
structures associated with the box. 

Managing Modal Dialog Box 
Actions 

There is no need to return to an application's event loop to monitor events 
relating to modal dialog boxes. The ToolBox routine ModalDialog performs all 
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necessary event trapping. ModalDialog polls the event manager by calling 
GetNextEvent. It also makes repeated calls to SystemTask to make sure that 
desk accessories are properly updated. If a mouse down event occurs outside the 
dialog box, the speaker will beep. 

The Pascal format for ModalDialog is: 

PROCEDURE ModalDialog (filterProc: ProcPtr; 
VAR itemHit: INTEGER); 

filterProc refers a pointer to a function that determines how Modal Dialog should 
interpret events from the event queue. A value of 0 for the filter procedure pointer 
will cause ModalDialog to default to the standard filter procedure. The standard 
filter procedure returns the value 1 for itemHit whenever the user hits the ENTER 
or RETURN keys. Assuming that the dialog box's OK button is the first item in the 
item list, then the standard filter procedure will allow the user to select OK with the 
ENTER or RETURN keys. This usage is consistent with the standard Macintosh 
user interface. 

Using ModalDialog to monitor for an OK requires only a simple loop: 

Loop MOVE.L #0, - (SP) 
PEA Whatltem(A5) 

_Modal Dialog 

MOVE Whatltem(A5),DO 
CMP #okButton,DO 
BNE Loop 

;standard filter procedure 
;place to accept number of item 
that was pressed 

;does Whatltem = 1? 

The constant okButton is defined in the Tool Box equates file. 
If other actions are possible, then the loop must continue to check item 

numbers and take the appropriate action. This process is directly analogous to 
identifying which item was selected from a menu. 

Note that events in modeless dialog boxes are handled like those in other 
windows. An application's event loop must monitor any modeless dialog boxes 
that are present along with system and application windows. 

Creating and Managing 
Alert Boxes 

A single Tool Box routine handles creating alert boxes and monitoring events 
until either the ENTER or RETURN key is pressed or a mouse down event occurs in 
the box. That same routine also takes care of disposing of the box when it is no 
longer needed. Note that if an application needs something other than an OK or a 
CANCEL reaction to some condition, then an alert box is probably not the correct 
way to control the situation; use a dialog box instead. 
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The routine that takes care of alert boxes is simply called Alert: 

FUNCTION Alert (alertlD: INTEGER; filterProc: ProcPtr) : 
INTEGER; 

alertlD is the sequence number of the alert box's definition in the resource file. 
filterProc is a pointer to a procedure that indicates how Alert should select events 
from the event queue. As with Modal Dialog, using a 0 will select the standard filter 
procedure (pressing ENTER or RETURN selects the default button just as if the 
user clicked on it with the mouse). 

Alert returns a result that corresponds the position in the item list of the item 
that was selected. If an alert box has only an OK button, then Alert's result can be 
disregarded. Nonetheless, the result must be removed from the stack. If the box 
has box OK and CANCEL buttons, then the application must examine the result to 
determine which button was selected and what action to take. 

The Video Tape Index uses one of its three alert boxes (Figure 9.5) to indicate 
that a search request was made before selection criteria was entered. Therefore, 
the box only contains some static text and an OK button (the box merely freezes 
program action until the user is ready to continue). A "no selection criteria" condi­
tion (indicated by a length of 0 in the text edit record for the field on which the 
chosen search is to be based) initiates the following actions: 

CLR 
MOVE 
MOVE.L 
_Alert 
MOVE 

-(SP) 
#4, -(SP) 
#0, -(SP) 

(SP)+,DO 

;space for alert item result 
;alert box sequence number 
;use standard filter procedure 

;retrieve result to keep stack pointer 
in good order 

Note that the result of Alert is not checked in this case, since the only button 
present is the OK button. 

Questions and 
Problems 

1 . Assume that a window has been defined with a boundary rectangle of 10, 10, 
335, 500. Write a block of code that will define a text edit record that uses the 
entire window. Allocate any necessary constants and data structures, includ­
ing needed rectangles. Be sure to retrieve the text edit handle from the stack. 



SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 273 

2. A. What sequence of events generates an activate event for a text edit 
window? 
B. Under what circumstances should the window be deactivated? 
C. Under what circumstances should it be activated? 

3. Write an ordered list of the Tool Box and/or operating system calls needed to 
activate a text edit window. Indicate the information returned by each call. 
Assume that an event loop has already detected an activate event. 

4. Write the assembly language code to implement the procedure outlined in 
problem 2. Remember to distinguish between the need to activate or deacti­
vate a window. Use the event record field names as defined in Chapter 8. 
Allocate any other data structures your code will use. 

5. A user has pressed the cloverleaf and X keys together (the keyboard equiv­
alent of selecting "cur from the Edit menu). Write an ordered list of ToolBox 
and/or operating system calls needed to process the cut operation. Assume 
that an event loop has already detected a key down event. Indicate the 
information returned by each call. 

6. Write the assembly language code to implement the cut operation outlined in 
problem 5. Assume that the Edit menu is menu #2. Use the event record field 
names as defined in Chapter 8. Allocate any other data structures your code 
will use. 

7. Describe the differences between the following ToolBox routines, each of 
which displays text: 

a. DrawChar 
b. Drawstring 
c. TE Key 
d. TE Insert 
e. TextBox 

8. Write resource file templates to define a dialog box that will appear across the 
top quarter of the screen. The box is approximately 4" wide and 3" high. The 
items in the box are: 

A. a static text item (the actual text is up to you) 
B. an edit text item to hold one line of text 
C. an OK button 
D. a Cancel button 

Choose the boundary rectangle for the dialog box and decide on placement 
of the items within it. 
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9. Write a block of assembly language code to create and monitor user actions 
in the dialog box defined in problem 8. Close the dialog box when the user 
clicks the mouse button in the OK or Cancel buttons, or presses the Enter or 
Return key. Allocate any data structures the code will require. 

10. Write resource file templates to define an alert that will appear centered on 
the screen. It should be approximately 2" high and 3" wide. The items in the 
box are a line of static text of your choosing and an OK button. Select an 
appropriate boundary rectangle for the alert and decide on placement of the 
two items. The Mac should beep once the first time the alert is invoked, twice 
the second time, and three times the third and fourth times. The box should 
always be displayed; the OK button is always the default button. 

11. Write a block of assembly language code to create and monitor user actions 
in the alert defined in problem 10. Close the alert box when the user clicks the 
mouse button in the OK button, or presses the Enter or Return key. Allocate 
any data structure the code will require. · 



c H A p T E R T E N 

PR I NII NB 

Chapter Objectives 

1. To understand the difference between draft and spooled printing 

2. To learn the sequence of Printing Manager routines that control the printing 
process 

3. To learn to position and produce images on a printed page 

Introduction 

Like most other aspects of writing a Macintosh application in assembly lan­
guage, printing requires a great deal of planning. An application must not only 
figure out where to place text and graphics on the page, but must also determine 
parameters such as the space between lines (determined by the size of the font). 
Nonetheless, the printing process is rather "cookbook"; the basic steps are the 
same for all applications. 

The Macintosh supports two types of printing - draft printing and spool 
printing. In draft printing, a document is printed directly, line by line, as text is sent 
to the Printing Manager. It is a very fast way to print, but is generally only suitable 
for printing text, since graphics requires the ability to move the cursor freely about 
the page. (This kind of movement is often referred to as direct cursor addressing.) 
Spool printing creates a disk file that contains an image of an entire document. 

275 
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Since the print file is a direct access file, graphics images that require random 
cursor movement can be stored. Once a spooled print file is complete, it can then 
be printed line by line in a separate step. 

The actual results of draft and spool printing are not the same, even though the 
same program code may be used to produce both kinds of output. For example, 
compare Figures 10.1 (draft printing) and 10.2 (spool printing). Both were created 
with exactly the same program statements. The only difference is the choice the 
user made when selecting the type of printing. Draft printing will not necessarily 
look exactly like what is seen on the screen. To duplicate screen displays exactly, 
use spool printing. 

Spool printing does have some drawbacks. First of all, it is slower than draft 
printing. Secondly, "imaging" the print file to print it requires a great deal of 
memory. In many cases, it becomes necessary to swap much of the application 
program out of memory before beginning the print operation. Therefore, the 
program must be segmented. (Such operations are handled by the Segment 
Loader.) Program segmentation is a conceptually complex operation requiring 
intimate knowledge of where storage space has been allocated in RAM and how to 
perform memory management with the Memory Manager. It is an advanced 
operation that you should attempt only when you are comfortable with the con­
cepts presented in this book. Details can be found in Inside Macintosh. 

Spool printing also uses up a great deal of disk space to store the print file. 
Consider what happens with MacWrite: if you have a 512K Mac you can store as 
many as 80 pages of text in RAM, but you can only spool a document of 27 pages, 
assuming that there is nothing on the startup disk but the MacWrite program file 
and a system folder. If, though, you ~witch the print mode from standard to draft, 
the Printing Manager will not attempt to create a print file on disk, but will print 
directly from RAM, allowing you to print the entire 80 pages. The drawback to 
switching to draft printing is that it limits the type fonts and type styles that can be 
used. 

Accessing the Printing 
Manager 

The routines that comprise the Printing Manager are not in ROM; they are 
stored on disk. The Macintosh can therefore support a variety of printers. The 
discussion that follows, though, assumes that printing will be done on the 
lmagewriter printer. 

Since Printing Manager routines are not in ROM, they are not called with the 
usual trap mechanism (i.e., an underbar followed by the name of the routine). 
Instead, they are external subroutines and are therefore invoked with a JSR. 
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Figure 10.1 Video Tapes (Draft Printing) 

Video Tapes 

Producer 

Empire Strikes Back, The Lucas Films 1980 pg 2 

This sequel outdid its predicessor, bringing new depth to its characters. 

The ev i 1 Dar th Vader emerged as a true vi 11 a in, wh i 1 e Luke, Lei a and Han 

became true forces of good. 

Return of the Jedi Lucas Films 1983 pg 

Tied up all the loose ends created in the first two films and provided a 

satisfactory ending to this middle trilogy <Lucas says there will be six 

more films). 

Search for Spock, The Paramount 1984 pg 

Gives Spock a new beginning but leaves the rest of the crew in jeapardy, 

since the Enterprise was destroyed and the crew as mutineers 

Star Trek: The Movie Paramount 1978 g 

A valiant effort to recapture the magic of the television series. 

Unfortunately, it fell short of expectations. 

Star Wars Lucas Films 1977 pg 

rhis 1-i.ndmark film raised our expectations with regard to what science 

fict.ioro films should be. It set a new standard for special effects. 

3 

6 

4 

Printing requires two special files. To print with the lmagewriter, the 
lmagewriter file must be part of the system folder on the startup disk. This file is a 
resource file containing information that describes the printer. By replacing the file 
with one that describes another printer, an application can produce printed output 
on other kinds of printers. 
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Figure 10.2 Video Tapes (Spool Printing) 

Uideo Tapes 

Tit I e Producer Date Ratg,~N~u=mb~---

Empire Strikes Back, The Lucas Fi I ms 1980 pg 

This sequel outdid its predicessor, bringing new depth to its characters. 
The evi I Darth Uader emerged as a true vi I lain, while Luke, Leia and Han 
became true forces of good. 

Return of the Jedi Lucas Films 1983 pg 

Tied up al I the loose ends created in the first two films and provided a 
satisfactory ending to this middle trilogy (Lucas says there wi I I be six 
more f i I ms) . 

Search for Spock, The Paramount 1984 pg 

Gives Spock a new beginning but leaves the rest of the crew in jeopardy, 
since the Enterprise was destroyed and the crew as mutineers 

Star Trek: The Movie Paramount 1978 g 

A valiant effort to recapture the magic of the television series. 
Un fortunate I y, it f e 11 short of expect at ions. 

Star Wars Lucas Fi I ms 1977 pg 

This landmark fi Im raised our expectations with regard to what science 
fiction films should be. It set a new standard for special effects. 

2 

3 

6 
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The second file, Prlink.Rel, must be linked to the application's object code. 
Prlink.Rel (you will find it on MDS2 in the Sample Programs folder along with the 
Printing Sample program) contains the machine language version of the Printing 
Manager routines that are not a part of the application itself. 
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Setting up the Linker Control File for an application that supports printing is 
only marginally more complex than what was created for the Sample program. For 
example, a Linker Control File to handle the Video Tape Index appears as: 

Tapes.Rel 
Prlink.Rel 

$ 

Data Structures for 
Printing 

Each printing job uses a rather complex data structure known as a print record. 
It is made up of a few single parameters and a number of subrecords. Equates for 
the field names are in the file PrEqu.Txt, which should be INCLUDEd in your 
source code. 

The fields in a printing record are filled in three ways: 

1. An application can store information directly into the record. 

2. The Printing Manager routine PrintDefault can be used to fill in default 
information. 

3. The user can change information in some fields by making selections from 
the standard Style and Job dialogs (Figures 10.3a and 10.3b). 

The top-level structure of a print record appears as: 

TPrint = RECORD 
iPrVersion: INTEGER; Printing Manager version 
prlnfo: TPrlnfo; subrecord for printer information 
rPaper: Rect; boundary coordinates of printer paper 
prStl: TPrStl; subrecord for style information 
prlnfoPT: TPrlnfo; copy of printer information subrecord 
prXlnfo: TPrXlnfo: subrecord for band information 
prJob: TPrJob; subrecord for job information 
printX: ARRAY [1 .. 19] of INTEGER; 

used Internally 
END; 
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,.. s File Edit Search Format Font Size Transfer 

Paper: @ US Letter 

O US Legal 

Orientation: @Tall 

,,, LiULuf_ 

O A4 Letter 

O International Fanfold 

O Tall Adjusted O Wide 

This;, the standard Style Dialog displayed end managed 
by a cell to the Pri nting Manager routine PrStlDialog 

Figure 10.3(a) Standard Style Dialog 
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@All 
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@ Continuous O Cut Sheet 

This;, the standard Job Dialog displayed end monitored by 
a cell to the Printing Manager routine PrJobDialog 

Figure 10.3(b) Standard Job Dialog 
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OK 

[Cancel J 

OK 
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The data types which begin with T are pointers to subrecords. Actually, each 
subrecord is allocated sequentially. For example, the printer information sub­
record begins two bytes from the beginning of the printer record and occupies the 
next 14 bytes (see below for details). The rectangle which describes the bound­
aries of the printer paper occupies the next eight bytes, from byte 16 through byte 
23. The style information subrecord follows immediately, beginning with byte 24. 

The printer information subrecord contains information about the printer 
being used in this particular printing job: 

TPrlnfo = RECORD 
iDev: INTEGER; 
iVRes: INTEGER; 
iHRes: INTEGER; 
rPage: Rect; 

END; 

information about the printer driver 
vertical resolution of printer 
horizontal resolution of printer 
boundaries of actual printing surface 

These parameters are filled when an application initializes the Printing Manager. 
The last three can be changed by the user through the standard Style dialog. 

Generally, the only field of the printer information subrecord that an application 
will use directly is rPage, a rectangle that describes the coordinates of the actual 
surface available for printing. Its top left coordinates are always 0,0. It is somewhat 
smaller than rPaper, which contains the coordinates of the physical printer paper. 
This means that the top left coordinates of rPaper will be negative. 

The printer information subrecord is duplicated in the print record. The copy is 
used internally by the Printing Manager during the printing process. 

The style Information subrecord contains parameters that further describe 
the paper being used: 

TPrStl = RECORD 

END; 

wDev: 
iPageV: 
iPageH: 
bPort: 
feed: 

TWord; 
INTEGER; 
INTEGER; 
Signed Byte; 
TFeed; 

used internally 
height of printer paper 
width of printer paper 
port to which printer is connected 
type of paper (e.g., cut sheet or pin 
feed) 

iPageV and IPageH refer to the physical dimensions of the printer paper, 
expressed in 120ths of an inch. They are set when the user makes choices from the 
standard Style dialog. bPort indicates whether the printer being used is con­
nected to the printer or the modem port. 

The final parameter, feed, is set from the standard Job dialog. The user 
chooses either continuous or single sheet. If single-sheet is selected, the Printing 
Manager will automatically pause between pages so the user can insert paper. 
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Parameters that describe a specific printing job are found in the job informa­
tion subrecord: 

TPrJob =RECORD 

END; 

ifstPage: INTEGER; 
ilstPage: INTEGER; 
iCoples: INTEGER; 
bJDocloop: SignedByte; 
ffromUser: BOOLEAN; 
pldleProc: ProcPtr; 
pfileName: TPStr80; 
ifileVol: INTEGER; 
bfileVers: SlgnedByte; 
bJobX: Signed Byte; 

first page to print 
last page to print 
number of copies to print 
O If draft, 1 If spoiled 
source of printing request 
pointer to background procedure 
name of spool file 
volume reference number 
version of spool file 
unused 

Some of these parameters are set through the standard Job dialog. Others should 
be stored directly to the printer record. 

ifstPage, ilstPage, and iCopies are selected by the user from the standard 
Job dialog: For spool printing, the system will automatically check the iCopies 
field and print the correct number of copies. When an application does draft 
printing, however, the application must check iCopies and implement multiple 
copy printing within its own code. 

bJDocloop is also set by the user from the standard Job dialog. During calls 
to routines that actually create printed images, regardless of whether an applica­
tion is doing draft or spool printing, the system will check bJDocloop and direct 
the material being printed to the appropriate output device. The application must 
then explicitly examine the contents of bJDocloop to decide whether to print a 
spool file. 

fFromUser indicates the source of the printing request. lftheffromUser byte 
is set true, then the request came from within the application; if the byte is clear, 
then the printing request came from the Finder. This parameter is set by the 
system. 

Creating a document that can be printed from the Finder requires special 
preparation. The Finder must be able to identify which application created the 
document in order to laurich that application to perform the print activity. The 
Finder looks at the document to examine its creator type, a unique four-character 
sequence that identifies an application. If the Finder can't find an application with a 
matching type, it displays the alert box "An application can't be found to.open this 
document." Creator types are assigned by Macintosh Technical Support so they 
will be unique across all Macintosh applications. 

pldleProc is a pointer to the routine thqt should execute in the background of 
the printing task. This is based on the idea that printing is a fairly slow operation; 
printer output happens at significantly slower speeds than activities which happen 
completely in main memory. Therefore, the CPU will have some idle time while it 
waits for a printer operation to finish. The background procedure can be anything 
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appropriate. If the pldleProc is set to 0, the Mac will run its default background 
procedure. This routine periodically checks the keyboard to see if the cloverleaf­
period has been pressed to interrupt printing. 

pFlleName is a pointer to the name of the spool file. By default the Printing 
Manager fills this field with a pointer to "Print File." If an application will have more 
than one spool file on disk at any given time, then this parameter can be changed 
by storing directly to the print record. A spool file name contains no more than 80 
characters; the first byte of the string must be a length byte. 

IFlleVol identifies the physical disk volume on which a spool file is stored. 
bFlleVers refers to the version number of the spool file. Volumes and file versions 
are discussed in more detail in Chapter 11. 

The final subrecord is the band information subrecord. In this context, the 
term band refers to a strip cut from a page. It takes an enormous amount of 
memory to print from a spool file, far more than will fit in memory at a single time. 
Therefore, a page to be printed is broken up into a series of strips called bands. 
The bands can run from right to left, left to right, top to bottom, or bottom to top. 
Bands can then be brought into memory one at a time and printed individually. An 
application will rarely need to access the individual fields of the band information 
subrecord. Its parameters are set by the Printing Manager. 

Programming 
Technique - Packing 

an Equates File 
Offsets for all fields in a print record are assigned symbolic addresses in the file 

PrEqu.Txt. However, unlike the other equates files, there is no packed version of 
the printer equates ori MDS2. Packed symbol files are identified by the .D 
extension. They are created from text files, like PrEqu.Txt, by the application 
PackSyms. Packing an equates file will speed up the assembly process and will 
also save disk and memory space. 

Packing an equates file is a two step process. First, the text version of the 
equates file is assembled into a symbol file with an extension of .Sym. Then the 
symbol file is packed by PackSyms. 

The creation of a symbol file is controlled by the assembler directive .DUMP . 
. DUMP places all equates in the current program into a file with the .Sym 
extension. For example, assembling this code will create the file PrEqu.Sym: 

INCLUDE 
.DUMP 

PrEqu.Txt 
PrEqu 

;get the text of the equates file 
;create the symbol file 

The two-line file above should be saved with the name PrEqu.Asm. It can then be 
assembled. Note that the program does not have to be linked or run to create 
PrEqu.Sym; assembling is enough. 
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To do the actual packing, run the PackSyms program that comes on MDS1. 
Choose the "Select inpuf option from the File menu and double click on the name 
of the file that should be packed, in this case PrEqu.Sym. PrEqu.Sym will be 
packed, but not automatically saved as PrEqu.D. When the packing of the file is 
completed, you can either select another file to pack by choosing "Select inpur 
again, or you can save all files that have been packed during the current run. 
Choose "Select outpuf from the File menu to save the packed file. The system will 
display a file name - the name of the last file packed with a .D extension. Either 
confirm the file name by hitting the Enter key or enter another filename. 

Establishing Print 
Records 

Space for a print record is allocated in the application heap. That means that an 
application doesn't need to set aside a location for the entire 120 byte record but 
merely a handle to that location. The handle to the print record is created with a 
Memory Manager routine, NewHandle; 

FUNCTION NewHandle (logicalSize:Slze) : Handle; 

NewHandle is an operating system routine. It takes one parameter - the 
number of bytes of storage that should be allocated - that is placed in DO. It 
returns a handle to that storage area in AO. Assuming that PrEqu.txt has been 
INCLUDEd in the source code, the constant iPrintSize contains the size of a print 
record. To set aside space for a print record, then: 

MOVE.L #iPrintSize,DO 
_NewHandle 
MOVE.L AO,PrintRecordHandle(AS) ;save handle 

A word of caution is in order here with regard to storage space while using the 
Printing Manager. It is true that it is good practice to place the storage for all 
locations to which an application will write in the applications globals area (i.e., they 
should be allocated with DS rather than DC). Nevertheless, the Printing Manager 
has a bad habit of altering values stored in the applications globals area. To put it 
bluntly, it trashes storage locations that it has no business touching. If you find that 
a particular value is mysteriously changed after a call to a Printing Manager 
routine, allocate its storage with DC. Though the examples in this chapter will use 
storage locations in the applications globals area, be aware that on occasion you 
may have to resort to writing to the code portion of an application. 
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A single printing activity is bounded by calls to routines that open and close the 
Printing Manager. The printing of one document is surrounded by calls to routines 
that open and close documents. Printing a single page is bounded by calls that 
open and close a page. This nested arrangement of procedure and function calls 
is diagrammed in Figure 10.4. 

PrOpen 

NewHandle 
PrintDefault 
PrStlDialog 
PrJobDialog 

PrOpenDoc 

PrCloseDoc 

PrPicFile 
DisposeHandle 

PrClose 

PrOpenPage 

Draw one page 

PrClosePage 

Figure 10.4 Nested Printing Manager Calls 
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In general, an application will organize a printing activity in the following order: 

1. Open the Printing Manager (PrOpen) 

2. Allocate a print record (NewHandle) 

3. Fill the print record with default information (PrlntDefault) 

4. Present standard Style dialog to user to fill in more information (PrStlDlalog) 

5. Present standard Job dialog to user in to finish collecting print record 
parameters (PrJobDialog) 

6. Open a document (PrOpenDoc) 

7. Open a page (PrOpenPage) 

8. Print the page 

9. Close a page (PrClosePage) 

10. Repeat steps 7 through 9 until all pages in the document have been printed 

11. Close the document (PrCloseDoc) 

12. If spool printing was done, image and print the spool file (PrPicFile) 

13. Repeat steps 6 through 12 until all documents have been printed 

14. Free the storage used by the print record (DisposHandle) 

15. Close the Printing Manager (PrClose) 

Those Printing Manager routines that return result codes do so in DO. A value 
of O indicates no error. The only other error unique to the Printing Manager is 
-108, which indicates that there wasn't enough heap space to complete the 
requested operation. All other errors generated by calls to Printing Manager 
routines are represented by Resource Manager result codes (see Table 10.1). 

Table 10.1 Resource Manager Result Codes Returned by Printing Manager Routines 

Hex Code 

0 
FFFFFF4C 
FFFFFF40 

FFFFFF3F 

Decimal Code 

0 
-180' 
-192 

-193 

No error 
Not enough memory to image and print spool file 
Resource not found (generally means something 
is wrong with the printer resource file) 
Printer resource file is missing 

*This is a Printing Manager result code, not a Resource Manager result code. 
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An application should call PrOpen and PrClose only once - at the very 
beginning and very end of printing activity. Neither routine takes any parameters 
and both are therefore called by a simple: 

JSR PrOpen 

or 

JSR PrClose. 

PrOpen opens both the printer driver and the printer resource file. PrOpen will 
do nothing, however, if either of the two things are missing or there is a problem 
with the printer resource file. A value of 0 in DO indicates that the call to PrOpen 
was successful. Otherwise, the routine returns one of the Resource Manager error 
codes. 

Collecting Information 
for the Print Record 

The first step in assembling the necessary information to complete a printing 
operation is to fill the fields of the print record with the default values for the 
parameters. These are stored in the printer resource file. They include the last 
selections made from the standard Style and Job dialog boxes. PrintDefault 
needs only the handle to the print record: 

PROCEDURE PrintDefault (hPrint: THPrint); 

As with all other Printing Manager routines, the parameter is placed on the stack 
and the routine called with a JSR: 

MOVE.L 
JSR 

PrintRecordHandle(AS), - (SP) 
PrintDefault 

Once the print record has been filled with the default information, the user has 
the opportunity to change it through the standard Style and Job dialogs. Both 
dialog boxes are predefined within the Printing Manager and do not need to be 
included in an application's resource file. 
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Usually, the Style dialog box is presented first: 

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN; 

The function displays the dialog box and returns a boolean result indicating 
whether the user closed the dialog box with the ENTER button (a value of true) or 
the CANCEL button (a value of false). If the function result is true, any changes 
made by the user will be reflected in the print record. 

The code to display the Style dialog box might be: 

CLR 
MOVE.L 
JSR 

- (SP) ;space for boolean result 
PrlntRecordHandle(AS), - (SP) 
PrStlDialog 

The standard Job dialog is handled in precisely the same way as the Style 
dialog. It, too, is a function that returns a boolean result: 

FUNCTION PrJobDialog (hPrint:THPrint) : BOOLEAN; 

Any changes made by either PrStlDialog or PrJobDialog are reflected not 
only in the print record in RAM, but in the printer resource file as well. The next time 
an application attempts to print from this same disk, it will be presented with the 
new values as default values. 

Opening and Closing a 
Document 

Macintosh printing actually involves opening a special kind of grafport -
called a printer port - in which text and graphics images are drawn. The exact 
nature of the printing port depends on whether the user selected draft or spool 
printing. Nonetheless, it is PrOpenDoc that establishes the printing port and 
makes it the current grafport: 

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort : TPPrPort; 
plOBuf:Ptr) : TPPrPort; 

hPrint is the handle to the print record. pPrPort is a pointer to storage for the 
printer port. If this parameter is 0, the Printing Manager will allocate a new printer 
port and return a handle to it as the function's result. An application does not need 
to explicitly set aside storage for a printer port; only space for its pointer (one 
longinteger location) is required. 
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plOBuf is important for spool printing. It is a pointer to a portion of memory that 
should be used as temporary storage when creating a spool file. (1/0 buffers are 
discussed in detail in Chapter11.) Normally, it is not necessary to supply an explicit 
110 buffer for spooling; the value of plOBuf will be 0, telling the system to use the 
volume's 1/0 buffer. 

To open a printing port: 

CLR.L 
MOVE.L 
CLR.L 
CLR.L 
JSR 
MOVE.L 

- (SP) ;space for printer port pointer 
PrintRecordHandle(A5), - (SP) 
- (SP) ;new printer port will be created 
- (SP) ;use the volume 110 buffer 
PrOpenDoc ;call the routine 
(SP)+ ,PrPortPtr(A5) ;recover printer port pointer 

PrCloseDoc terminates a printing task. If draft printing, it sends a form feed to 
the printer. If spool printing, it closes the spool file. If the spooling was unsuc­
cessful, it closes and then deletes the spool file. To call the routine, an application 
needs only the pointer to the printer port: 

PROCEDURE PrCloseDoc (pPrPort: TPPrPort); 

Printing a Single Page 
The real work in programming Macintosh printing activities comes in laying out 

the printed page. Each page begins with a call to PrOpenPage: 

PROCEDURE PrOpenPage (pPrPort:TPPrPort; 
pPageFrame: TPRect); 

pPrPort is nothing more than the pointer to the printer port that was returned by 
PrOpenDoc. pPageFrame is a rectangle that describes boundaries within which 
QuickDraw images will be drawn. When a spool file is printed, this rectangle will be 
scaled to fit onto the printer paper. The easiest way to handle pPageFrame is to set 
it to 0. In that case, the Printing Manager will use the page rectangle {rpage) from 
the printer records as the page frame. The page will then not be scaled when it is 
printed. 

PrOpenPage checks the page range parameters in the print record 
(iFstPage,iLstPage). If the page to be printed doesn't fall within that range, no 
printing will be performed. 

The actual printing on a page is handled by QuickDraw. An application can 
draw to the printer port using any QuickDraw routines, just as it would to the 
screen. Remember that PrOpenDoc makes the printer port the current grafport. 
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That means that any calls to QuickDraw routines that draw something will affect the 
printer port until it is closed by PrCloseDoc. Graphics printing (always spooled) 
will use the coordinates of the rPage rectangle to ensure that printed images are 
within the boundaries of the page. 

Printing straight text, especially if draft printing is possible, requires a some­
what different method for establishing spacing between lines and determining 
when a page has been filled. When printing, it is not possible to use TextEdit to 
space and justify characters; text is printed with either DrawChar, Drawstring, or 
DrawText. The latter routine is the easiest to use if the text to be printed is stored in 
a text edit record. Drawstring is convenient when the text is not stored in main 
memory in the format in which it will be printed. 

The position on the page at which text should be printed is set with MoveTo, 
the QuickDraw routine that handles cursor placement. An application must there­

. fore carefully compute the size of the font being used to determine how far apart 
lines of text must be. 

Information about the size of characters in a font can be retrieved with the 
QuickDraw routine GetFontlnfo: 

PROCEDURE GetFontlnfo(V AR info: Fontinfo); 

This procedure returns an eight-byte record, a pointer to which should be placed 
on the stack before calling the routine: 

PEA FontlnfoStorage(A5) 
_GetFontlnfo 

GetFontlnfo provides four parameters about the font for the current grafport, 
each expressed in terms of pixels: ascent (how many pixels letters like "h" rise), 
descent (how many pixels letters like "y" descend below the line), maximum 
character width, and the number of pixels between the descent of one line and the 
ascent of the next line below it (known as "leading"). The Fontinfo record structure 
is: 

Fontinfo = RECORD 
ascent: 
descent: 
widMax: 
l~ading: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

Offsets into the Fontinfo record are available in the QuickDraw equates file, which 
should be INCLUOEd at the beginning of the source code. 

The height of a line is the sum of ascent, descent, and leading: 

MOVE FontlnfoStorage + ascent(A5),D4 
ADD FontlnfoStorage + descent(A5),D4 
ADD FontlnfoStorage + leading(A5),D4 
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04 contains the height, in pixels, of a single line of text in whatever font is set for 
the current grafport. In this case, the current grafport is the printer port. Assuming 
that 03 is used to hold the vertical position of the pen (read "pen" as cursor or print 
head, if you like), then 03 will be incremented by the quantity in 04 every time a line 
is printed. 

One other parameter is necessary for text printing - the coordinate, in pixels, 
of the bottom of the page. This will be compared to the current vertical position 
(stored, in this example, in 03) to determine if a full page has been printed. The 
coordinate of the bottom can be retrieved from the print record: 

MOVE.L 
MOVE.L 
MOVE 

PrintRecordHandle(AS),AO 
(AO),AO 
prlnfo + rPage + bottom(A0),06 

;get handle 
;get pointer 
;get bottom 

How does this work? The first step retrieves the handle to print record. The second 
de-references the handle to get the pointer to the record. At this stage in the 
process, the actual address of the start of the print record is in AO. The third step 
uses Address Register Indirect with Offset addressing to locate one precise piece 
of information. prinfo and rPage are constants defined in the printer equates file. 
prlnfo stands for the number of bytes the printer information subrecord is offset 
from the beginning of the print record. rPage is an offset within the printer 
information subrecord. rPage is a rectangle; it has four components - top, left, 
bottom, right - that are defined in the QuickOraw equates file. bottom, therefore, 
refers to the third field in the rectangle, rPage. To compute the address for the 
MOVE, the Macintosh adds the three constants to obtain the offset and then adds 
that quantity to the contents of AO. 

Since some characters do descend below the printing line, it is wise to subtract 
the descent from the bottom coordinate to ensure that characters that do descend 
will be completely printed: 

SUB FontlnfoStorage + descent(AS),06 

The initial vertical position for printing text is not O; it is down the height of a 
single line from the top of the printing page. Therefore, assuming that 03 is being 
used to hold the vertical position of the pen, it should be initialized to the height of a 
line before any printing activity begins: 

MOVE 04,03 

Moving the Pen 
Printing or drawing, whether on the screen or on paper, is only possible if you 

have control over where the display activity will begin. The QuickOraw routine 
MoveTo positions Mac's pen anywhere within a grafport. Remember that a 
printing port is a special kind of grafport and that once a printer port has been 
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opened, any calls to QuickDraw routines that affect output (e.g., drawing or 
moving the pen) will affect the printed page. 

To use Move To, an application must supply the horizontal and vertical coordi­
nates, in pixels, of the new pen position: 

PROCEDURE MoveTo (h,v: INTEGER); 

h is the horizontal coordinate; v is the vertical coordinate. 
In spool printing, there is virtually no limit to how the pen can be moved, since 

writing to the spool file allows random access. When draft printing, however, be 
aware of the abilities of the specific printer being used. Some printers, like the 
lmagewriter, can move the platten backwards; that is, it is possible to pass the 
lmagewriter a vertical coordinate less than the most recent vertical coordinate. 
Many printers, however, are not only unable to move the platten backwards, but 
are unable to backspace; that is, they cannot accept a horizontal coordinate less 
than the most recent horizontal coordinate. 

Though the lmagewriter can do more or less random print head movement, 
sending print images directly to the printer in that manner will significantly slow 
down the printing process. Therefore, draft printing is really not suitable for a 
printing activity that includes graphics. 

Printing Text with 
Drawstring 

Drawstring is a QuickDraw routine that will print text from left to right, begin­
ning at the current position of the pen. Like the other QuickDraw routines that print 
characters, it does no formatting. In other words, the application must decide how 
many characters will fit on a single printed line. 

Calling Drawstring requires only a pointer to the text of the string: 

PROCEDURE Drawstring (s: Str255); 

It is important to realize that the data type of the string (Str 255) requires that the 
first byte in the string be a length byte. The system checks that length byte to 
determine the number of characters to print. 

The Video Tape Index program uses Drawstring to print information about a 
single video tape. The data for that print line is found in the TapeArray in RAM and 
must therefore be reformatted before it is printed. 

About 100 characters of 12-point type will fit across a 8 1/2" piece of paper. 
Therefore, the Video Tape Index sets up a 102-character print string. The first byte 
will be a length byte; the last byte is an extra byte appended to keep the total length 
of the string even. The strategy to assemble and print a single line of data is 
therefore: 

1 . Fill print line with blanks 
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2. Move each field from its storage location in TapeArrayto its proper position in 
the print string 

3. Set font characteristics (TextFont, TextFace, TextSize) 

4. Move the pen (Move To) 

5. Draw the string (Drawstring) 

6. Increment the register that holds the vertical position of the pen 

The code for this procedure appears in Listing 10.1. The subroutine Clear­
PrintLine (a) fills the print string with blanks. It uses a pre-defined string of 102 
blanks (stored as PrintLineMask) which is simply moved to the print string with 
BlockMove (b). ClearPrintLine also installs a length byte in the print string (c). 

Listing 10.1 Printing One Record from TapeArray 

(a) 

(b) 

(c) 

ClearPrintline 
LEA PriritlineMask,A0 
LEA Printline(A5),A1 
MOVE #102,00 
_BlockMove 

MOVE.B #100,Printline(AS) 

RTS 

(d) PrintOneRecord 
(e) JSR ClearPrintline 

LEA TapeArray(A5),A2 

~ill print line with blanks 

;set length of print line 

MOVE.L 07,-(SP) ;save record counter 
MOVE 07,05 

(f) JSR ComputeAddress2 ;address returned in A4 (see Listing 5.1 or 6.1) 

(g) 
(h) 
(i) 
Ol 

MOVE.L (SP)+,D7 ;restore record counter 

MOVE.L A4,A0 ;start of record 
LEA Printline+ 12(A5) ,A 1 
MOVE #30,00 
_BlockMove ;moves TapeName 

MOVE.L A4,A0 
ADD.L #oProducer,A0 
LEA Printline+44(A5),A1 
MOVE #20,00 
_BlockMove 

MOVE.L A4,A0 
ADO.L #oReleaseDate,A0 
LEA Printline+66(A5),A1 
MOVE #4,00 
_BlockMove 

;moves Producer 

;moves Date 

(continued) 
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Listing 10.1 (continued) 

MOVE.L A4,A0 
(k) ADD.L #oRating,A0 

LEA Printline+ 72(A5) ,A 1 
MOVE #4,D0 

- BlockMove ;moves Rating 

MOVE.L A4,A0 
ADD.L #oTapeNumber,A0 
LEA Printline+ 78(A5),A 1 
MOVE #4,D0 

- BlockMove ;moves Tape Number 

(I) MOVE #0,-(SP) 
(m) MOVE D3,-(SP) 
(n) 

(o) 
(p) 

(q) 

Move To 
MOVEM.L D1/D2/D7,-(SP) 
PEA Printline(A5) 
_Drawstring 
MOVEM.L (SP)+,D1/D2/D7 

ADD D4,D3 

ATS 

Actual printing of a single line is handled by PrintOneRecord, beginning at (d). 
On input, the number of the TapeArray record to be printed is stored in register 
07. PrintOneRecord begins by calling ClearPrintline (e) to erase the previous 
contents of the print string and reset the length byte. Then it assembles the data 
from TapeArray into their proper positions in the print line. 

To do so, PrintOneRecord must first compute the main memory address of the 
particular record being printed. Subroutines to compute such addresses already 
exist as part of the straight-insertion sort (see Listing 5.1 or 6.1) and therefore can 
simply be called rather than rewritten (f). Using the address returned by Com­
puteAddress2, PrintOneRecord then moves one field at a time with repeated calls 
to BlockMove. The starting address of the field being moved is loaded into AO (g), 
the starting position for the field in the print string into A1 (h), and the length of the 
field into DO (i). The transfer is completed with the operating system call (j). 

Steps (g) through (j) are repeated for each field. Note, however, thatthere is an 
extra step required for all fields but the first one. The offset of the field in the record 
must be added to the starting address of the record. For example, at (k) 
PrintOneline adds the offset of the Rating field. The offsets have been equated to 
symbolic addresses for ease of use. 

The actual printing process begins at (I) with the set-up sequence to move the 
pen. The horizontal coordinate is moved onto the stack; ifs value is 0 since printing 
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should begin at the far left-hand side of the page. The vertical coordinate follows it 
(m); it's value is stored in D3 while the page is being printed. A call to MoveTo 
actually moves the pen (n). To draw the print string, a pointer to the string is pushed 
onto the stack (o) followed by the call to Drawstring (p). 

Only one task remains. The register containing the vertical print coordinate, 
D3, must be incremented by the height of a single print line to prepare for printing 
the next line. Therefore, the contents of D4 (the register set aside to contain the 
height of a print line) are added to D3 (q). PrintOneline can then return to the part 
of the program that called it. 

There is an alternative to using one string to print an entire line: rather than 
moving the text to be printed into a single place, each string can be drawn 
individually. In this case, the strategy is: 

1. Set font characteristics (Textfont, Textface, TextSize) 

2. Move the pen to the beginning horizontal and vertical position of the line 
(Move To) 

3. Draw the first string (Drawstring) 

4. Set font characteristics if desired (Textfont, Textface, TextSize) 

5. Move the pen horizontally (using the same vertical coordinate) to the position 
of the next set of characters on the line (MoveTo) 

6. Draw the string (Drawstring) 

7. Repeat steps 4 through 6 until the entire line is printed 

The advantage to this second strategy is that you can vary the font characteristics 
of the text across the line, something which is not possible when the entire print line 
is a single string. 

Printing Text with DrawText 
DrawText prints an entire line of text from a specified storage location in RAM. 

It differs somewhat from Drawstring. When using Drawstring, an application 
pushes a pointer to the text onto the stack; the length of the string is imbedded in 
the string itself. DrawText requires a pointer to the starting location of an entire 
block of text, an offset into that block, and the number of bytes to print: 

PROCEDURE DrawText (textBuf:QDPtr;firstByte,byteCount: 
INTEGER); 

It is therefore best suited to printing text that is stored in a text edit record. 
Since Drawstring does not do any text formatting, it does not know where 

TextEdit marked the end of lines. Therefore, an application must use two pieces of 
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information from the text edit record to control the printing operations - the total 
number of lines in the text and the character positions of the line starts. 

The strategy to print text from a text edit record is: 

1. Get handle to the text edit record (TEGetText) 

2. De-reference handle to get a pointer to the text 

3. Retrieve total number of lines in the text 

4. Initialize a line counter 

5. Check to see if the counter contains the number of the last line. If so, jump to 
step 11. 

6. Retrieve starting position of current line 

7. Retrieve starting position of next line 

8. Subtract starting position of current line from starting position of next line to 
obtain number of characters in current line 

9. Print the line (DrawText) 

10. Increment the line counter. Jump to step 5. 

11. Retrieve total number of characters 

12. Subtract starting position of last line from total number of characters + 1 to 
obtain number of characters in last line 

13. Print the line (DrawText). 

The Video Tape Index's implementation of this procedure to print annotations 
appears in Listing 10.2. The code that begins with EnoughRoom is initiated after 
the program determines that there is enough room left on the page to print the 
entire annotation. 

The first step is to call PrintOneline to print the data from TapeArray that 
applies to the tape in question (a). A blank line must then appear between the 
TapeArray data and the first line of the annotation. Getting a blank line is straight­
forward - the register holding the vertical position of the pen (D3) is simply 
incremented by the height of a single line (held in D4) without printing any text (b). 

Printing the annotation requires a loop that uses the total number of lines in the 
annotation as a target value. Therefore, before the actual printing can begin, the 
program must retrieve the number of lines from the text edit record. The three 
statements beginning at (c) get the handle to the text edit record and de-reference 
it to obtain a pointer to the record. The number of lines in the text is then stored in 
DO (d). D1 is initialized to act as a line counter (e). 

As indicated in the printing procedure described above, the last line in the text 
must be handled separately from all other lines. The first activity in the printing loop 
musttherefore be a "look ahead" to determine if the last line has been reached. The 
line counter is incremented by 1 (f) and compared to the total number of lines in the 
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text (g). If the two values are equal, the program branches out of the loop to print 
the last line (h). Assuming that the last line has not been reached, the line counter is 
decremented to restore the correct line number (i). 

Listing 10.2 Printing an Annotation that is Stored in a TextEdit Record 

Enough Room 
MOVEM.L D2/D7,-(SP) 

(a) JSR PrintOneRecord ;(Listing 10.1) 
(b) ADD D4,D3 ;get a blank line 

MOVEM.L (SP)+,D2/D7 

(c) LEA AnnotationTextHandle,A2 
MOVE.L (A2),A2 
MOVE.L (A2),A2 

(d) MOVE teNLines(A2),D0 ;get number of lines again 
(e) MOVE #0,D1 

Anotherline 
MOVEM.L D2/D4,-(SP) 

(f) ADDO #1,D1 ;look at next line 
(g) CMP D1,D0 ;at last line? 
(h) BEO Last line 
(i) SUBO #1,D1 ;restore current line # 

MOVE #2,D4 
(j) MULU D1,D4 ;line starts are stored as integers 
(k) MOVE telines(A2,D4),D2 ;line start of this line 

ADDO #2,D4 
(I) MOVE telines(A2, D4), D5 ;start of next line 
(m) SUB D2,D5 ;D5 has number of bytes 

(n) CLR.L -(SP) 
(o) MOVE.L Annotation TextHandle ,-(SP) 
(p) TEGetText ;get handle to annotation text 

MOVE.L (SP)+,AS ;retrieve handle 
(q) MOVE.L (A6),A6 ;de-reference to get pointer 

(r) MOVE #20,-(SP) ;annotation is indented 20 pixels 
(s) MOVE D3,-(SP) 
(t) - Move To 

MOVEM.L D0/D1/D7/A2/A6,-(SP) 
(u) MOVE.L AS,-(SP) ;pointer to text 
(v) MOVE D2,-(SP) ;starting position 
(w) MOVE D5,-(SP) ;number of bytes to print 
(x) Draw Text 

MOVEM.L (SP)+,D0/D1/D7/A2/A6 
MOVEM.L (SP)+,D2/D4 

(y) ADDO #1,D1 ;increment line counter 
(z) ADD D4,D3 ;space to next line 
(aa) BRA Anotherline 

Lastline 
SUBO #1,D1 ;restore current line# 
MOVEM.L D1/D3/D7/A2/A6,-(SP) 
MULU #2,D1 

(continued) 
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Listing 10.2 (continued) 

(bb) MOVE telines(A2,D1 ),D5 ;start of last line 

(cc) MOVE #257,D0 ;total characters + 1 
SUB D5,D0 ;characters left to print 

MOVE #20,-(SP) 
MOVE 03,-(SP) 

Move To -

MOVE.L A6,-(SP) 
MOVE D5,-(SP) 
MOVE D0,-(SP) 

Draw Text 
MOVEM.L (SP)+,D1/D3/D7/A2/A6 
MOVEM.L (SP)+,D2/D4 

(dd) ADD D4,D3 ;one blank line 
ADD D4,D3 ;another blank line 

The next task is to prepare for the call to DrawText which will be used to print a 
single line. DrawText needs to know the starting address of the text, a byte offset 
into that text where printing should start, and the total number of characters to print. 

The positions within the text where new lines start are stored in the text edit 
record as integers. The start of the first line is stored immediately after the total 
number of lines in the text. Therefore, the starting position of the line being printed 
can be found by: 

1. Multiplying the line number by 2 to account for the line starts being stored as 
integers (j) 

2. Adding that result to the starting address of the text edit record and the offset 
for the number of lines, telines (k). 

Statement (k) stores the line start in DO. 
In order to figure out the number of characters in the line, the program also 

needs the line start of the following line (I). Then it subtracts the starting position of 
the current line from the starting position of the next line to obtain the number of 
characters in the current line (m). 

The final piece of data needed by DrawText is the starting address of the text 
itself. TEGetText will return a handle to the text in a text edit record. The program 
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calls it by clearing space on the stack for the handle result (n), pushing the handle 
to the text edit record on the stack (o), and then calling the routine (p). Once the 
result is pulled from the stack it must be de-referenced to obtain a pointer (q). 

Before actually printing, the pen must be moved. Since the annotation is 
indented from the left-hand margin of the page, the horizontal position is not 0, but 
20, an arbitrary indentation chosen merely because it looks nice on the page (r). 
The vertical coordinate is again taken from register 03, which stores the vertical 
position while a page is printed (s). MoveTo takes care of positioning the pen (t). 

The set-up for the call to DrawText requires pushing the pointer to the text onto 
the stack (u}, followed by the starting position in the text (v), and the total number of 
bytes to print (w). The call actually draws the text (x). 

The program then increments the line counter (y) and the vertical position of the 
pen (z). This completes printing one line of the annotation. Therefore, the program 
must branch to print another line (aa). 

Printing the last line is only slightly different from printing the other lines. The 
difference lies in determining how many characters are in the line. For the last line, 
there is no "next" line. The total number of characters in the last line is equal to the 
starting position of the last line (bb) subtracted from the total number of characters 
in the text plus 1 (cc). The remainder of the procedure is exactly the same. 

Once the annotation is printed, the final task is to print two blank lines beneath 
it. This is accomplished by simply incrementing the vertical position of the pen 
twice (dd). 

Finishing a page 
Generally, an application will decide to finish printing a page when the vertical 

pen coordinate is greater than or equal to the bottom of the page coordinate, or 
when the entire document has been printed. (The Video Tape Index closes a page 
when all records from TapeArray have been printed, even though an entire 
physical page may not be filled.) When that occurs, a call to PrClosePage is 
necessary. If the application is draft printing, the call will eject the current page and, 
if printing from single sheets, will prompt the user to insert another sheet. If the 
application is spool printing, the call will simply close the printer port for the page 
being printed. 

Calling PrClosePage needs only a pointer to the printer port as a parameter: 

PROCEDURE PrClosePage (pPrPort: TPPrPort); 

At this point, the application must decide whether there are more pages to print 
or whether the document should be closed. 
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Imaging and Printing 
Spool Files 

As far as the Macintosh is concerned, the term imaging refers to the process of 
taking the picture of a printed page that is stored in a spool file and turning it into an 
array of dots of the right size and shape. That array can then be sent to the printer 
one band at a time, so the printer can easily print the page from the top down. 

Assuming that there is sufficient memory to hold the image of a single band 
from a page of the spool file, imaging and printing the file is a simple process - it 
requires only a call to PrPlcFlle. This routine takes care of breaking the spool file 
into bands for printing, bringing the bands into memory one by one, and printing 
them. 

The format of PrPicFile is: 

PROCEDURE PrPicFlle (hPrint: THPrint; pPrPort: TPPrPort: 
plOBuf: Ptr; pDevBuf: Ptr; VAR prStatus: TPrStatus); 

The first parameter, hPrint, is the handle to the print record. The second 
parameter, pPrPort, looks, at first, to be the same as the printer port used to create 
the spool file, but it is not. The printer port created by PrOpenDoc was closed by 
the call to PrCloseDoc. PrPicFlle requires its own printer port. A value of 0 for 
pPrPort will instruct the system to allocate its own printer port. 

plOBuf is a pointer to the area in memory which should be used to hold 
information as it is read from the disk. Though application may set aside its own 
area, generally ifs just as easy to pass a 0 for this parameter, allowing the system to 
use the disk volume's buffer for this purpose. pDevBuf is also a pointer. It locates 
an area known as the "band buffer" that is used to hold data to be printed. Passing a 
0 for pDevBuf will cause the system to allocate the buffer on the heap. 

The variable parameter PrStatus is a pointer to a printer status record. The 
printer status record monitors the activity of the system while it is printing from a 
spool file. The structure of a status record is: 

TPrStatus = RECORD 
iTotPages: INTEGER; 
iCurPage: INTEGER; 
iTotCopies: INTEGER; 
iCurCopy: INTEGER; 
iTotBands: INTEGER; 
iCurBand: INTEGER; 
fPgDirty: BOOLEAN; 
flmaging: BOOLEAN; 
hPrint: TH Print; 
pPrPort: TPPrPort; 
hPlc: PicHandle; 

END; 

total number of pages 
page being printed 
number of copies to print 
copy being printed 
number of bands per page 
band being printed 
TRUE If page Is being printed 
TRUE If page is being imaged 
handle to print record 
pointer to printing port 
used internally - do not change 



PRINTING 301 

An application must allocate space for the entire printer status record: 

PrinterStatusRec DS.B iPrStatSize ;where iPrStatSlze is 
equated to the total number 
of bytes in a printer 
status record 

The printer status record is generally most useful to applications that are 
running their own background procedure. The background procedure can 
repeatedly check the fields of the printer status record to determine the status of 
the printing process. If an application relies on the default background procedure, 
the printer status record is of minimal importance. 

The code to image and print a spool file from the Video Tape Index program 
appears as follows: 

MOVE.L 
CLR.L 

CLR.L 

CLR.L 

PEA 
JSR 

PrintRecordHandle(AS), - (SP) ;put handle on stack 
-(SP) ;system allocates it own 

printing port 
-(SP) ;system uses volume 1/0 

buffer 
-(SP) ;system uses it own 

band buffer 
PrinterStatusRec(AS) ;push address 
PrPicFile ;image and print 

Completing the Printing 
Task 

When an application has finished printing, regardless of whether it has draft 
printed or imaged and printed a spool file, there is no longer any need to retain the 
print record on the heap. The storage held by the print record should therefore be 
released through a call to DisposHandle: 

PROCEDURE DisposHandle (h: Handle); 

The handle to the print record must be in AO before calling the routine: 

MOVE.L PrintRecordHandle(AS),AO ;get the handle 
_DisposHandle ;release the heap storage 

The final step is, as discussed earlier in this chapter, to call PrClose to close the 
Printing Manager. 
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Putting it All Together 
- BannerPrint 

BannerPrint is a demonstration program that prints large upper-case letters 
sideways on 81/2x11 computer paper. To create a banner, the sheets of paper 
must be separated and then taped together to hide the gaps between the pages. 
Source code for BannerPrint appears in Listing 10.3; its resource file can be found 
in Listing 10.4. 

BannerPrint creates a small text edit window in which the user can enter upper­
case letters and spaces. The standard editing functions are supported in that 
window. The banner can be draft or spool printed; which method is used is 
determined by the user's choice in the standard job dialog box. 

The large letters are stored as strings in the code portion of the program (i.e., 
they are defined as constants). There are certainly other ways to specify how the 
letters should be printed, but this particular method was chosen because it is easy 
to type in from a printed listing; you can seethe shape of the letters on the screen as 
you work. Note that while each string has its own DC directive, it doesn't have a 
unique name. The symbolic address Letters refers to the entire block of letter 
templates. 

While each line of a letter is exactly 30 characters long, all the letters are not 
made up of the same number of lines (i.e., "I" has only four lines, "W" and "M" have 
16, and all the rest have 12). That means that the program must have some way of 
locating the start of a letter within the Letters block. BannerPrint uses a technique 
known as a "jump table." 

The jump table (stored under the symbolic address Jump Table) itself consists 
of 26 numbers. Each corresponds to the number of bytes the start of a letter 
template is offset from the address assigned to Letters. Therefore, if the program 
knows the ordinal position of a character in the alphabet, it can look in the jump 
table to discover how far beyond Letters it should begin. The ordinal position a 
character is determined by comparing it against the letters in the alphabet; those 
letters are stored as OrdinalList. 

BannerPrint must also have a way to determine when all the lines of a particular 
character have been printed; since the number of lines per character vary, it can't 
simply count lines printed. Instead, the program looks ahead to the next line. If the 
first non-blank character in the next line is different from the character being 
printed, then the character must be complete. 

To keep it relatively short, BannerPrint was written without a number of checks 
that would catch user errors. It does not, for example, trap the situation where the 
user enters a character other than an upper-case letter or a space. It also does not 
prompt the user to ready the printer. For suggestions on what you can do to make 
the program "bullet-proof," see Problem 10. 



Listing 10.3 BannerPrint 

Include MacTraps.D 
Include ToolEqu.D 
Include SysEqu.D 
Include PrEqu.Txt 
Include QuickEqu.D 

PEA -4(A5) 
_lnitGraf" 
_lnitFonts 
MOUE. L •$0008FFFF, D0 
..FlushEvents 
-1 n i ti.Ii nctows 
_lni tMenus 
CLR.L -(SP) 
_lni tDialogs 
_TElnit 
_In i tCursor 

CLR -<SP> 
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PEA 'MAL.files:BannerPrint.Rsrc' 
..DpenResF i I e ; open resource f i I e 
MOUE <SP)+, 00 ; discard unused resu I t 

;------------------------- Set up menus -------------------------------
CLR.L -(SP) ;space for handle 
MOUE •t,-(SP) ;menu ID 
...Ge tRMenu ; get App I e menu temp I ate 
MOVE.L (SP)+,AppleHandle(A5) ;retrieve & store handle 

MOVE.L AppleHandle(A5),-(SP) 
MOVE.L •'DRUR' ,-<SP> 
...AddResMenu 

MOUE.LAppleHandle(A5),-(SP) 
CLR -<SP) 
_lnsertMenu 

CLR.L -<SP> 
MOUE •2 -<SP) 
....GetRMenu1 

MOUE.L <SP>+,Fi leHandle<A5) 

MOUE.L Fi leHandle(A5>,-<SP) 
CLR -<SP> 
_lnsertMenu 

CLA.L -<SP> 
MOUE 93,-<SP) 
....GetRMenu 
MOUE. L <SP)+, Edi tHancl I e<AS > 

MOUE.L EditHandle(A5),-(SP> 

;put handle back on stack 
;resource type for desk accessories 
; get desk accessories 

;put the menu after all others 
;put menu in menu list 

;repeat procedure for other menus 

(continued) 
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Listing 10.3 (continued) 

CLR -<SP) 
_inserlMenu 

..DrawMenuBar 

------------------------ Event loop starts here ------------------------
MOUE •0,UindoVIFlac;i<AS> ;wi 11 be set if window is 

Event --8yslemTask 

MOVE U i ndolllF I ag<AS), 00 
BEQ Nol.Ii ndow 
NOVE.L TexlHandle<A5),-(SP) 
_TE Idle 

NoUindow 
CLR -<SP> 
MOVE •-1, -<SP) 
PER EvenlRecordCAS) 
....GetHexlEvenl 

MOVE <SP>+,00 
BEQ Event 

MOVE EvenlRecord<AS>,00 

CMP •111ButDwnEvt, 00 
BEQ MouseEvenl 

CMP •keyDwnEvl,00 
BEQ KeyEvenl 

CMP •upDalEvl,00 
BEQ Update 

BRA Event 

present 

;update desk accessories 

;text edit window open? 

;space for boolean result 
;111ask lo select all events 

;pointer to event record 

;retrieve boolean result 
;no event 

; gel even l type 

;mouse down event? 

;key down event? 

;-------------------------- Handle key down events -----------------------
KeyEvenl 

MOVE EvenlRecord+evtMela<AS>,00 
BTST. L •cmdKey, 00 ; command key pressed? 
Bl'iE KeyboardEquivalenl 

MOVE EvenlRecord+evtMessage+2<A5),-(SP) ;character pressed 
MOVE.L TextHandle<AS>,-<SP) 
_TEKey ;insert character 

BRR Event 

KeyboardEquivaienl 
CLR.L -<SP> ;place for menu ID & item number 
MOVE EvenlREcord+evtMessage+2(A5), -<SP) ; character 
..MenuKey 

BRA Selections ;process with mouse down selection 
(continued) 



; ----------------------- Update the text window -------------------­
Update 

MOVE.L Charl.lindPtr<A5>,-<SP> 
...BeginUpdate 

MOVE.L Charl.lindPtr<AS>,-<SP> 
...SetPort 

PEA UiewRect<A5) 
MOUE.L TextHandle<AS>,-<SP> 
_TEUpdate 

MOVE.L Charl.lindPtr<A5>,-<SP> 
...EndUpdate 

BRA Event 
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; ---------------------- Handle mouse down events ------------------------
MouseEvent 

CLR -(SP) ; space for "!uha t" resu I t 
MOUE.L EventRecord+evtMouse<AS>,-<SP> ;place where event occurred 
PEA l.lhichl.lindowPtr(A5) ;window affected goes here 
..Findl.lindow ;get exact location of event 
MOVE (SP)+, 00 ; recover resu I t 

CMP •inMenuBar,00 ; i n menu bar? 
BEQ MenuBar 

CMP • i nSysl.I i ndow, 00 ;desk accessory? 
BEQ SysEvent 

CMP •inContent,00 ; in the text edit window? 
BEQ Appll.lindow 

CMP •inGoAway,00 ;close the window? 
BEQ GoflwayBox 

BRA Event ;not an event this program handles 

; -------------------- Handle events 
SysEvent 

in system windows -------------------

PEA EventRecorct<AS> 
MOVE . L Uh i chi.Ii ndowPtr(A5 >,-(SP ) 
...5ystemC I i ck 

BRA Event 

;window posting event 
; let system handle it 

;-------------------- Handle events in content area of window -------------­
App I I.Ii ndow 

PEA Even tRecord+ev tMouse<AS ) ; p I ace where event occurred 
....GlobalToLocal ;make local 

MOVE.LEventRecord+evtMouse<AS>,-<SP) ;coordinates now local 
MOUE EventRecord+evtMeta<AS), 00 
BTST. L •sh i ftKey, 00 ; extended se I ect ion? 
SHE 00 
MOVE.8 00,-<SP> ;extend or not extend 

(continued) 
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Listing 10.3 (continued) 
MOUE.L TextHandle(A5),-(SP) 
_TECI ick 

BRA Event 

;establish the selection range 

; ------------------- Handle events in the menu bar ----------------------­
MenuBar 

CLR.L -<SP> ;space for menu ID and menu item 
MOVE.L EventRecord+evtMouse(A5),-(SP) ·;place where event occurred 
J1enuSelect ;find menu ID and menu item 

Selections 
MOUE.L <SP>+,07 
MOUE 07,00 
SJ.IAP 07 

CLR -<SP) 
-HiliteMenu 

CMP •1,07 
BEQ AppleMenu 

CMP •2,07 
BEQ Fi leMenu 

CMP •3,07 
BEQ EditMenu 

BRA Event 

;recover result 
;06 now has menu item 
;low-order word has menu ID 

;selects all menus 
;remove high I ighting from menu 

;apple menu? 

; file menu? 

;edit menu? 

;------------------------ Handle desk accessories -------------------------
AppleMenu 

MOVE.L AppleHandle<AS>,-<SP> 
MOUE DO, -<SP) ; menu i tem 
PEA DeskAccName<AS> ;space for desk accessory name 
...Getltem 

CLR -<SP> 
PEA DeskAccName(A5) 
....OpenDeskAcc 
MOVE <SP )+, 00 

BRA Event 

;space for reference number 
;item name 

;discard result 

; ------------------------Handle editing 
EditMenu 

SUBQ •1,06 
CLR -<SP> 
MOVE D6,-<SP> 
-5ysEdit 

MOVE <SP)+, 00 
BNE Event 

AODQ •1,06 
CMP •3,06 

;adjust item selected for SysEdit 
;space for result 
;adjusted item number 

;get result 
;system handled edit 

;restore item number 
;cut? 

(continued) 



BNE EditMenu2 
MOUE.L TextHandle(A5),-(SP) 
_TECut 
BRA Event 

EditMenu2 
CMP •4,06 
BNE EditMenu3 
MOUE.L TextHandle(A5),-CSP> 
_TECopy 
BRA Event 

EditMenu3 
CMP •S,06 
BNE Edi tMenu4 
MOVE.L TextHandle<R5>,-<SP> 
_TEPaste 
BRA Event 

EditMenu4 
CMP •6,06 
BtfE Event 
MOVE.L TextHandleCA5),-CSP) 
_TEDelete 
BRA Event 
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;copy? 

;paste? 

;clear? 

;------------------- Handle Fi le Menu ----------------------------------
Fi leMenu 

CMP •t D6 ;New window? 
BEQ N~l.I i ndow 

CMP •2,06 ;Close the window 
BEQ Closel.lindow 

CMP •3,06 ;Print the banner 
BEQ Print 

CMP •4,06 ;Quit 
BNE Event 
RTS ;return to Finder 

; ------------------Open a new window with text edit record-------------­
Newl.lindow 

CLR.L -<SP> 
MOVE •1,-<SP) 
PEA Charl.lindStrg<AS> 
MOUE.L •-1,-CSP) 
....GetNewl.lindow 
MOUE. L CSP)+, Chari.Ii ndPtr(A5) 

MOVE. L Chari.Ii ndPtr<AS), -<SP> 
...SetPort 

CLR.L -CSP> 
PEA DestRect 
PEA ViewRect 

;space for window pointer 
;window ID 
;window storage 
;put window in front 

;get pointer 

;make this the current grafport 

;space for text edit handle 
;destination rectangle 
;view rectangle 

(continued) 
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Listing 10.3 (continued) 

_TENew 
MOUE.L <SP>+, TextHandle<AS> 

MOVE •1,i.tindowFlag<AS> 

MOVE.L TextHandle<AS>,-<SP> 
_TEActivate 

BRA Event 

;establish text edit record 
;get text handle 

;set window flag 

;activate the text windo~ 

-------------------- Close a window ---------------------------------
GoAwayBox 

CLR.B -<SP> ;space for boolean result 
MOVE.L i.thichi.tindowPtr(A5),-(SP) ;window pointer 
MOVE.L EventRecord+evtMouse<AS>,-<SP> ;point of event 
_TrackGoAway ;monitor GoAway box 

MOVE.B <SP>+,00 
BEQ Event 

;get result 
;don't close 

Closei.tindow 
MOVE. L TextHand I e(A5), -<SP) 
_TEDispose 

MOVE.L Charl-lindPtr<AS>,-<SP> 
..J:, I osei.t i ndow 

MOVE •0,i.tindowFlag<A5) 

BRA Event 

;close text edit record 

;close the window 

;clear window flag 

--------------------------- Print the banner ------------------------
Print 

JSR PrOpen 
MOVE.L •iPrintSize,00 
..NewHandle 
MOUE . L A0, PrRecHand I e< A5) 

MOUE.L PrRecHandle<AS>,-<SP> 
JSR PrintDefault 

CLR -<SP> 
MOUE.L PrRecHandle<AS>,-<SP> 
JSR PrJobDialog 
MOUE <SP)+ I 00 
BEQ Event 

CLR.L -<SP> 
MOVE.L PrRecHandle<AS>,-<SP> 
CLR.L -<SP> 
CLR.L -(SP) 

JSA prOpenDoc 
MOUE.L <SP>+ ,PrPortPtr(A5) 

MOVE •monaco,-<SP> 
_TextFont 

;open printing manager 
;size of print record 

;space on heap for printer record 
;save handle 

;fill record with default info 

;space for boolean result 

;draft or spooled? 

;user canceled 

;space for pointer to printer port 

;system will allocate port 
;use system 1/0 buffer 

;get the pointer 

;set the font 
(continued) 



MOVE •12,-<SP> 
_TextSize 

PEA Font I nfoStrg<A5 > 

PRINTING 309 

;set the size 

....GetFontlnfo ;get size of font 
MOVE FontlnfoStrg+ascent(A5),D4 
ADD FontlnfoStrg+clescent<A5>,D4 
ADD FontlnfoStrg+leading(A5>,D4 ;height of I ine 

MOVE.L PrRecHandle<A5>,A0 
MOVE. L (A0) I A0 
MOVE prlnfo+rPage+bottom<A0),PageBottom(A5) ;bottom of page 

MOIJE.L TextHandle<A5>,A0 
MOIJE.L (A0),A0 
MOVE telength<A0 >, D7 
MOVE.L teTextH<A0),A0 
MOVE.L (A0),A0 
MOlJE •0,00 

;handle to text edit record 
;de-reference to get pointer 
;number of characters 
;handle to text 
;pointer to text 

;initialize index register/character 
counter 

NewPage 
JSA Star tAPage ;begins new page at start uf character 

OuterLoop 
MOVE.B <A0,00),D6 
MOVE •0,01 
LEA Ordina1List,A1 

CMP.B 
BNE 
MOVE 
MULU 
ADO 
BRA 

•.. ,D6 
Loop1 
04,02 
•4,02 
02,03 
Endings 

;get one character 
;another index register 

;address of alphabet 

;is this a blank? 

Loop1 CMP.B 
BEQ 
ADDO 
BRA 

(A 1, DD, D6 
Found 
•1,01 
Loop1 

;attempt to identify character 

;character not found 

Found LEA 
MULU 
MOVE 

JwapTable,A1 
•2,01 
<A1,D1 ),05 

;offset into word-sized table 
;get offset into letter data 

LEA Letters,R6 ;starting address of letter data 

OneLine 
MOVEM . L 00-D4 /D6 /D7 /A0 /A 1 /R6, -(SP) 
MOVE •0, -<SP) ; hor i zonta I coord i note 
MOVE 03,-<SP> ;vertical coordinate 
...Move To ; set the pen 
MOUEM.L <SP>+,D0-D4/D6/D7/A0/A1/R6 

MOVEM.L D0-D4/D6/07/A0/A1/A6,-<SP> 
MOVE.L A6,-<SP> ;pointer to start of text 
MOVE 05,-<SP> ;offset into block 
MOVE •30,-(SP) ;number of bytes in I ine 

(continued) 
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Listing 10.3 (continued) 

..DrawText 
MOVEM.L 

;draw the I ine 
<SP>+,D0-D4/D6/D7/A0/A1/A6 

ADO 04,03 
CMP PageBottom<A5),03 
BLT SamePage 
JSR CloseAPage 
JSR StartAPage 

SamePage 
ADO •30,05 

MOVE 05,A3 
BlankCheck 

MOVE.B <A6,A3>,D2 
CMP.B •· ',02 
Bt£ Check.Char 
AOOQ •1,A3 
BRA BlankCheck 

Check Char 
CMP.B 02,06 
BEQ Oneline 

ADO 
ADD 

Endings 
ADDQ 
CMP 
BLT 
JSR 
BRA 

Roomlef t 

04,03 
04,03 

•1,00 
PageBottom<A5>,03 
Roomleft 
CloseAPage 
NewPage 

CMP D0,D7 
BNE Outerloop 
MOVE. L PrPortPtr<AS), -<SP) 
JSR PrClosePage 

MOVE.L PrPortPtr<A5>,-<SP> 
JSR PrCloseDoc 

MOVE.L PrRecHandle(A5>,A0 
MOVE.L <Ae>,A0 
MOVE . B prJob+bJDocloop< A0 >, 00 
BEQ DonePrinting 

MOVE.L PrRecHandle(A5),-(SP) 
CLR.L -<SP> 
CLR.L -<SP> 
CLR.L -<SP> 
PER PrStatusRec<A5> 
JSR PrPicFi le 

;increment vertical pointer 
;at bottom of page? 

;begins new page in middle of character 

;offset to next line 

;get first character of next line 
;is it a blank? 

;increment index to skip over blank 

;has character changed? 
;no change 

;space between characters 

;increMnt character counter 
;at bottom of page? 

;all characters printed? 

;draft or spooled? 

;spooler uses its own printing port 
;spooler uses its own buffer 
;spooler uses its own device buffer 

;image and print spool file 

(continued) 



DonePrinting 
MOVE. L PrRecHand I e(R:5), A0 
..JlisposHandle 

JSR PrClose 
BRA Update 

StartRPage 
MOVEM.L D0/D4/D71A0,-<SP> 
MOUE.L PrPortPtr<AS>,-<SP) 
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;free space taken by print record 

;close printing manager 
;update window - it was covered by job 
;dialog 

CLR.L -<SP> ;no sealing 
JSR prOpenPage ; new page 
MOUEM.L <SP>+,D0/D4/D7/A0 

MOUE 04,03 
RTS 

;initialize vertical coordinate 

CloseRPage 
MOUEM.L D0/D4/D7/A0,-(SP) 
MOUE.L PrPortPtrCAS),-(SP) 
JSR PrClosePage 
MOVEM.L <SP>+,D0/D4/D7/A0 
RTS 

·--------------------------------- Data Structures -----------------------
Chari.ii ndP tr OS. L 1 
Charl.lindStrg OS IJindowSize 

EuentRecord OS.B 
lolhichlJindowPtr 
DeskAccName 
IJindowFlag 

AppleHandle 
Fi leHandle 
EditHandle 
TextHandle 
PrRecHandle 
PrPortPtr 
Font I nfoStrg 

PrStatusRec 
PageBottom 

UiewRect 
DestRect 

Ordinallist 

JumpTable 

OS 
OS 

OS.L 
OS.L 
DS.L 
DS.L 
DS.L 
DS.L 
OS 

DS.B 
OS 

DC 
DC 

DC.B 

DC 
DC 

16 
DS.L 
16 
1 

1 
1 
1 
1 
1 
1 
4 

iPrStatSize 
1 

3,3,47,287 
3,3,47,287 

'ABCDEFGHIJl<LMNOPQRSTUUIJXYZ' 

0,360,720, 1080, 1440, 1800,2160,2520,2880,3000,3360,3720,4080 
4560,4920,5280,5640,6000,6360,6720,7080,7440,7880,8280,8640, 
9000 

(continued) 
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Listing 10.3 (continued) 

Letters DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

'AAAAAAAAAAAAAAA 
'AAAAAAAAAAAAAAAAAAAA 
'AAAflAA.O.AAAAAAAAAAAAAAAAAA 
'AAAAAAARAAAAAAAAAAAAAAAAAAARA ' 
' AAAAAAA AAAAAAAAA' 

AAAAAAA AAAAAAA' 
AAAAAAA ARAAAAR' 
AAARAAA AAAAAAAAA' 

'AAAAAAAAAAAAARARAAA.-.AAAAAAAAA 
'FIAAAAAAAAAAAAA 
' AAAA.O.Pn°.AAAAAAAAAAAAA 
'ARAAAAAAAAAAAAA 

DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB' 
DC.B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB' 
DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB' 
DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB' 
DC. B 'BBBBBB BBBBBBBB BBBBBB' 
DC. B 'BBBBBB BBBBBBBB BBBBBB' 
DC. B 'BBBBBB BBBBBBBB BBBBBS' 
DC. B 'BBBBBB BBBBBBBB BBBBBB' 
DC. B 'BBBBBBB BBBBBBBBBB BBBBBBB' 
DC. B ' BBBBBBBBBBBBB BBBBBBBBBBBBB ' 
DC. 8 ' BBBBBBBBBB BBBBBBBBBB ' 
DC. 8 8BB8BB BBBBBB 

DC.8 CCCCCCCCCCCCCCCCCCCCCCCC 
DC. B ' CCCCCCCCCCCCCCCCCCCCCCCCCC ' 
DC. 8 ' CCCCCCCCCCCCCCCCCCCCCCCCCCCC ' 
DC. B 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC' 
DC. B 'CCCCCCCCCC CCCCCCCCCC' 
DC. 8 'CCCCCCCC CCCCCCCC' 
DC. 8 'CCCCCCCC CCCCCCCC' 
DC. B 'CCCCCCCC CCCCCCCC' 
DC. B 'CCCCCCCC CCCCCCCC' 
DC. B ' CCCCCCCCCCC CCCCCCCCCCC ' 
DC. B ' CCCCCCCCCC CCCCCCCCCC ' 
DC. B CCCCCCCC CCCCCCCC 

DC. B 'DDDDDDDDDDDDODDDDDODDDDODDOODD' 
DC. B 'DDDDDDDDDODDDDDDODDODD' 
DC. B 'DDDODDDODDOODDDDDDDDODDDDDDDDD' 
DC. B 'DDDDDOOO DDDDDDOO' 
DC. B 'DDDDDDDD DDDDOOOD' 
DC. B 'DODOODDD DDDDDDDD' 
DC. B 'DDDDDDDD DDDDDDDD' 
DC. B 'DDDDDDDD DDODODDD' 
DC. B ' DDDDDDDD DDODDDDD ' 
DC.B DDDDDDDDDDDDDDDDDDDDDDDDDD 
DC.B DDDDDDDDDDDDDDDDDDDODD 
DC. B DDDDDDDDDDDDDDDD 

' ;IMPORTANT NOTE!!! 
;All strings are 30 
;characters in length ... 
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DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE' 
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE' 
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE' 
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE' 
DC . B 'EEEEEEEE EEEEEE EEEEEEEE' 
DC. B 'EEEEEEEE EEEEEE EEEEEEEE ' 
DC. B ' EEEEEEEE EEEEEE EEEEEEEE ' 
DC . B 'EEEEEEEE EEEEEE EEEEEEEE' 
DC . B ' EEEEEEEE EEEEEEEE ' 
DC. B ' EEEEEEEE EEEEEEEE ' 
DC. B 'EEEEEEEE EEEEEEEE' 
DC . B 'EEEEEEEE EEEEEEEE' 

DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 
DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 
DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' 
DC . B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ' 
DC . B ' FFFFFF FFFFFFFF' 
DC . B FFFFFF FFFFFFFF ' 
DC . B FFFFFF FFFFFFFF ' 
DC . B FFFFFF FFFFFFFF . 
DC.B FFFFFFFF' 
DC.B FFFFFFFF' 
DC.B FFFFFFFF' 
DC.B FFFFFFFF' 

OC.B GGGGGGGGGGGGGGGGGGGGGGGG 
DC.B ' GGGGGGGGGGGGGGGGOGGGGGGGGG 
DC. B ' GGGGGGGGGGGGGGGGGGGG ' 
DC. B 'GGGGGGGGGGGGGGGGGGGGGGGGGOGGGG' 
DC. B 'GGGGGGGOGG GGGGGGGGGG' 
DC. B 'GGGGGOGG GGGGGGGG' 
DC. B 'OGGGGGGG GGGG GGOGGGGG' 
DC. B 'GGGGGGGG GGGG GGGGGGGG' 
DC. B 'GGGGGGGG GGGG GGGGGGGG' 
DC.B ' GGGGGGGGGGGGG GGGGGGGGGGG ' 
DC.B GGGGGGGGGGGG GGGGGGGGGG ' 
DC. B GGGGGGGGGG GGGGGGGG ' 

DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH' 
oc . B • HtfflHHI IHHHHHHHHHHHHHHI n n nun H IHH. 
DC. B 'HHHHHHHHHHHHHHHHHHHH' 
DC . B ' HHHHHI I IHHHHHHHHHI Bii HID U U UM IHH' 
DC.B HHHHHHHH ' 
DC. B HHHHHHHH 
OC • B H+IHI H IHH 
DC.B HHHHHHHH 
DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHH' 
DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH' 
DC.B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH' 
DC . B ' HHHHHHHH!-'.u.U.JJ.HHHHHHHHHHHHHHHH' 

DC.B '111111111111111111111111111111' 
DC.B '111111111111111111111111111111' 
DC.B '111111111111111111111111111111' 
DC.B '111111111111111111111111111111' 
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Listing 10.3 (continued) 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

JJJJJJJJ 
J.J.LLLLJ.LLI 

JJJJJJJJJJJJ 
'JJJJJJJJJJ 
'JJJJJJJJ 
'JJJJJJJJ 
'JJJJJJJJ 
'JJJJJJJJJ 
. JJJJJJJJJJJJJJJJJJJJJJJJJJJJJ' 

JJJJ.IJJJJJJJJJJJJJJJJJJJJJ' 
JJJJJJJJJJ,.JJJJJJJJJJJJJJ. 

JJJJJJJJJJJJJJJJJJJJJJ' 

'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK' 
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK' 
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK' 
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK' 
' KKKKKKKKKKKKKK 

KKKKKKKKKKKKKKKKKK 
KKKKKKKKKK KKKKKKKKKK 

KKKKKKKKKK KKKKKKKKKK ' 
'KKKKKKKKKK KKKKKKKKKK' 
'KKKKKKKKK KKKKKKKKK' 
'KKKKKKKK KKKKKKKK' 
'KKKKKK KKKKKK' 

'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL' 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 
'LLLLLLLL 

'MMMMMMMMMMMMMm'1Mf1l' 
'Ml1Mt1l'ltlt1MtMMMMMMM' 
'1111M11Mt1t1MMtMMMMMMMMMMMtlt1t1Ml1M' 
'MMMMMt1MMMMMMMMMMMMMMMMMMMMMMM' 
' MMMMMMMMM ' 

MMMl1MMl1l1M 
MMMl1MMl1l1M 

MMMMMMMMM 
Mm'IMMMMM 

MMMMMMMMM 
MMMMMMMMM 

MMMMMMMMM 
'MMMMMMMMMMMMMMMMMMMMMMMMl'IMMMMM' 
'MMMM11t1MM1111M11MMMMMMMMMMMMMMMM' 
'l'IHt'llHHt'l~IHHl'IHMf'IHl'D'IHHl'IHHt'IHMl1HMM 

'MMMMl1MMtl1MMMMMMMMMMMMMMMMM' 

(continued) 



DC.B 
DC. B 'NtfNNNNNNtttfNtliNNNNNtlNNH' 
DC. B 'NHNNNNNl'iNNNNNNNNNNNl'itiNNNNNNNNN ' 
DC . B ' tiHtltltttlNtltNNNNNHNNNl'ltlHtttltlNNNNN ' 
DC. B ' NNNNNl'tNNN 
DC . B NNNNNNNNN 
DC. B NNNtllffitiN 
DC. B NNNNNNNNN 
DC.B 'NNNNNHNNNNNNNNNNNNNNNNNNNNNNNN' 
DC.B 'NNNNNNNtt!NNNNN~' 
DC.B '~NNNNNNN' 
DC. B 'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN' 

DC.B 0000000000000000000000 
DC.B ' 000000000000000000 ' 
DC. B ' 0000000000000000000000000 ' 
DC.B '000000000000000000000000000000' 
DC. B '000000000 000000000' 
DC. B '00000000 00000000' 
DC. B '00000000 00000000' 
DC. B '0000000000 0000000000' 
DC.B '000000000000000000000000000000' 
DC. B ' 0000000000000000000000000000 ' 
DC. B ' 00000000000000000000000000 ' 
DC. B ' 0000000000000000000000 ' 

DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP' 
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP' 
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP' 
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP' 
DC. B ' PPPPPP PPPPPP' 
DC. B PPPPPP PPPPPP' 
DC. B PPPPPP PPPPPP' 
DC. B PPPPPP PPPPPP' 
DC. B PPPPPP PPPPPP ' 
DC.B PPPPPPPPPPPPPPPP ' 
DC. B PPPPPPPPPPPPPP 
DC.B PPPPPPPPPP 

DC.B QQQQQQQQQQQQQQQQQQQQQQ 
DC. B ' QQQQQQQQQQQQQQQQQQQQQQQQQQ 
DC.B QQQQQQQQQQQQQQQQQQQCI ' 
DC. B 'QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ' 
DC. B 'QQQQQQQQQ QQQQQQQQQ' 
DC. B 'QQQQQQQQ QQQ QQQQQQQQ' 
DC. B 'QQQQQQQQ QQQ QQQQQQQQ' 
DC. B 'QQQQQQQQQQQQ QQQQQQQQQ' 
DC. B 'QQQQQQQQQQQQQQQQ()QQQOQQQQQQ' 
DC.B ' QQQQQQQQQQQQQQQQQQQQQQQQQQQQ ' 
DC.B QQQQQQQQQQQQQQQQQQQQQQQQQ 
DC.B QQQQQQQQQQQQQQQQQQQQQQ 
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Listing 10.3 (continued) 

DC. B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR' 
DC. B 'RRRRRRRRRRRRRRRRRRRRRRR' 
DC. B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR' 
DC.B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR' 
DC. B ' RRRRRR RRRRRR' 
DC. B RRRRRRRR RRRRRR. 
DC. B RRRRRRRRRR RRRRRR' 
DC. B RRRRRRRRRRR RRRRRR' 
DC. B RRRRRRRRRRRRRRR RRRRRR ' 
DC . B ' R.CnD.RR.D.RRR RRRRRRRRRRRRRRRR 
DC. B 'RRRRRRRR RRRRRRRRRRRRRR 
DC. B 'RRRRRR RRRRRRRRRR 

DC . B SSSSS SSSSSSSSSSS 
DC.B SSSSS SSSSSSSSSSSSSSS ' 
DC. B SSSSS SSSSSSSSSSSSSSSSS ' 
DC. B 'SSSSSS SSSSSSSSSSSSSSSSSSS' 
DC. B 'SSSSSS SSSSSSS SSSSSSS' 
DC. B 'SSSSSS SSSSSS SSSSSS' 
DC. B 'SSSSSS SSSSSS SSSSSS' 
DC. B 'SSSSSS SSSSSS SSSSSS' 
DC. B SSSSSSSSSSSSSSS SSSSSS' 
DC. B ' SSSSSSSSSSSSS SSSSS ' 
DC. B SSSSSSSSS SSSSS ' 
DC.B SSSSS 

DC.B TTTTTTTT' 
DC.B TTTTTTTT' 
DC.B TTTTTTTT' 
DC.B TTTTTTTT' 
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' 
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' 
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' 
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT' 
DC.B TTTTTTTT' 
DC.B TTTTTTTT' 
DC.B TTTTTTTT' 
DC.B TTTTTTTT' 

oc.e uuuuuuuuuuuuuuuuuuuuuuuuu· 
r" " UUUUUUUUUUUUUUUUUUUUUUUUUUU' 
oc.e uuuuuuuuuuuuuuuuuuuuuuuuuuuuu· 
DC.B ·uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu· 
DC. B 'UUUUUUUUUUUUU ' 
DC . B ' UUUUUUUUUUU 
DC . B ' UUUUUUUUUUU 
DC. B 'UUUUUUUUUUUUU 
DC. B 'UUUUUUUUUUUUUUUUUUUUUUU' 
DC. B ' UUUUUUUUUUUUUUUUUUUUUUUUUUUUU' 
DC.B uuuuuuuuuuuuuuuuuuuuuuuwuu· 
DC. B UUUUUUUUUUUUUUUUUUULUJUUUU' 

(continued) 



DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
OC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
OC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
OC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 
DC.B 

vvvuuuuvvv· 
uuuuvuvuuu 

uwuuuuuuu 
uwuuuuuuu 

uuuvuuuuuu 
·uuwuuuuu 
·uuuuwuuu 

UUIJUl.IUlllJ!JU 
WVIJVUWW 

uuuuuuuuuu 
wvuuuvuuu 

wuvwuuu· 

'l.Ui.u.n.RJU~~· 

'lolUl.flllJJ.llJJ.IJ.ll.I~' 
·~IWWlol~ilo&&IWWloa.11.n.U.U.Nft.lla.~ 

·~ 
~l.UJ.11.H.1 
~I.UM 
~ 
~ 
~ 

MJ.IWWIJl.H.IMJ.1 
~MW 

'~WWUUWUUJ.11.UUWJ.IMWMJ.IJ.llolUlolUJ.IW' 
• i.a.iwwwi.u~~ ... 'M~llll' 
·i.u~MMM~~i.,u· 

'l.UMJ.IJ.IMUUIJL&llJWJ.11.UU~' 

'XXXX xxxx· 
·xxxxxxxx xxxxxxx· 
'XXXXXXXXXXX XXXXXXXXXX' 
' xxxxxxxxxxxx xxxxxxxxxxx ' 

xxxxxxxxxxxxxxxxxx 
xxxxxxxxxx 
xxxxxxxxxx 

xxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxx xxxxxxxxxxx 

·xxxxxxxxxxx xxxxxxxxxx· 
·xxxxxxxx xxxxxxx· 
'XXXX XXXX' 

YYYY' 
YYYWYV' 

yyyyyyyyyy· 
YYYYYYYYYYY 

'YYYYYYYWWWYYYYYYYYYYY 
'YYYYVVVVVWYVYVYYYYYYY 
'YYYYYVWYVYYYVYV 
·yyyyyyyyyyyyyyyyyyyyyyyy 

YYWWWYYY 
YWWWYYY' 

YYYYYYY' 
yyyy· 
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Listing 10.3 (continued) 

DC. B 'ZZZZZZZZ ZZZZZZZZ' 
DC. B 'ZZZZZZZZZZZ ZZZZZZZZ' 
DC. B 'ZZZZZZZZZZZZZZ ZZZZZZZZ' 
DC.B 'ZZZZZZZZZZZZZZZZZ ZZZZZZZZ' 
DC.B 'ZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZ' 
DC.B 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' 
DC.B 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ' 
OC.B 'ZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZ' 
DC. B 'ZZZZZZZZ ZZZZZZZZZZZZZZZZZ' 
DC.B 'ZZZZZZZZ ZZZZZZZZZZZZZZ' 
DC. B 'ZZZZZZZZ ZZZZZZZZZZZ' 
DC. B 'ZZZZZZZZ ZZZZZZZZ' 

Listing 10.4 Resource File for BannerPrint 

BannerPrint.Rsrc 

TYPE MENU 
,1 

\14 

,2 
File 
New/N 
Close/W 
Print/P 
Quit/O 

,3 
Edit 
Undo/Z 
(-
Cut/X 
Copy/C 
Paste!V 
Clear 

TYPE WIND 
,1 

Banner Text 
50 110 100 400 
Visible GoAway 
0 
0 
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1. When doing draft printing, the Printing Manager will print only one copy of a 
document, regardless of the contents of the iCoples field in the print record. 
Write assembly language code to control the printing of multiple draft copies. 
For the actual printing details, include: 

JSR PrintOneCopy 

in the body of your loop. Assume that print record has been allocated and 
has a handle stored as PrRecHandle in the applications globals area. 

2. Write assembly language code to change the name of a spool file the Printing 
Manager will create from the default "Print File" to any other name of your 
choosing. Allocate any data structures your code will require. Assume the 
print record has been allocated and has a handle stored as PrRecHandle in 
the applications globals area. 

3. Write pseudocode that describes the logic necessary to print a multi-page 
document. Indicate the details of drawing a single page by writing "Draw one 
page." (The purpose of this problem is to summarize the sequence of Printing 
Manager calls.) Use the names of Printing Manager routines as appropriate. 

4. If you look carefully at Figure 10.2 (spooled output), you will notice that the 
line under the column headings stretches across the entire page. This occurs 
because the entire line is printed as one string. 

A. Suggest a strategy that would restrict the underlining to the column 
headings themselves, as it appears in Figure 10.1 (draft output). 

B. What difficulty does this present for the programmer? Hint: think in terms 
of what information is required to properly space the heading. 

5. Assume that an array of data is stored in the applications globals area. A 
pointer to the starting location of the array has the symbolic address 
BookStuff. Each record is 80 bytes long. The fields within the array are 
defined by the following equates: 

Title 
Author 
Publisher 
Date 

EQU 0 
EQU 30 
EQU 50 
EQU 75 
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Write the assembly language code that draws one record from this array onto 
a printer port. Assume: 

a. The print line will hold 100 characters. 
b. The number of the record being printed is in DO. 
c. All necessary Printing Manager calls have been made. 
d. The current vertical pen position is in D1. 
e. The height of the print line is in D2. 

Format the lines so there is space between the fields even when each field 
contains the maximum number of characters. 

6. Expand the code from problem 5 to print an entire page. As well as adding a 
loop to print repeated records from the array, include: 

a. A page number in the upper right-hand corner of the page (retrieve it from 
the printer record which is stored under PrRecHandle) 

b. A page heading of your choice centered on the page two lines below the 
page number 

c. A heading above each column, three lines below the page heading 

Assume that the page's bottom coordinate is stored in D3. All necessary 
printing manager calls have been made. The code need not check to see if 
all records in the array have been printed, but does need to check for the 
bottom of the page. Print the records single spaced. 

7. Modify the code from problem 6 to set font characteristics as follows: 

a. The page number should be boldface. 
b. The page heading should be boldface and underlined. 
c. Column headings should be standard print and underlined. 
d. All headings should be printed using the system font (Chicago); the body 

of the page (the records themselves) should use the Geneva font. 

8. Write a block of assembly language code that decides whether a user 
requested spooled or draft printing. Assume that the print record has a 
handle, PrRecHandle, stored in the applic~tions globals area. 

9. Expand the code from problem 8 to image and print the spool file. 

10. As mentioned at the end of this chapter, the program BannerPrint is far from 
bullet-proof. As it appears in Listing 8.3, it has many holes into which a user 
could fall. Code and implement the following modifications to BannerPrint, 
each of which will isolate a user from his or her mistakes: 

A. Write an alert template to indicate that the user has entered something 
other than an upper-case letter or a space. Store the template in the 
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resource file (don't forget to recompile it with RMaker). Display the alert at 
the appropriate place in the program. 

B. Write an alert template to get the user to turn on the printer. Store the 
template in the resource file. Display the alert at the appropriate place in 
the program. Printing should not begin until the user clicks OK to indicate 
that the printer is ready. 

C. Add code to disable the New option from the File menu when a text edit 
window is created. Re-enable the New option when the window is closed. 
Disable the Close option when no window is present; enable it whenever 
a window is on the screen. 

D. Add code to trap lower-case letters and transform them to upper-case 
before printing. In this case, the alert created in (a) should be displayed 
only if a character is not a letter or a space. 

11. The appearance of the large letters produced by BannerPrint depend 
entirely on the type font and type size being used. The letters will be 
unrecognizable if the font is not mono-spaced (i.e., all characters are the 
same width), but that restriction nonetheless leaves a great deal of flexibility in 
font size and style. Code and implement the following enhancements to 
BannerPrint to give the user more choices: 

A. Create a Size menu that will allow the user to select the size of the type to 
be used for printing. A template for the menu should be placed in the 
resource file. 

B. Create a Style menu that will allow the user to select the style of type to be 
used for printing (e.g., plain text, boldface, outline, etc.). 

NOTE: changes in size and style should also be reflected in the text dis­
played in the text edit window. 
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Chapter Objectives 

1. To understand the difference between sequential and direct file access 

2. To understand the data structures needed to process Macintosh files 

3. To learn to create, open, close, read from, and write to both sequential and 
direct access files 

4. To learn to use the Standard File Package to obtain file names and locations 
for opening and saving files 

Introduction 

Disk file manipulation is handled by the File Manager. While the routines and 
their parameter blocks may at first seem rather forbidding, the process is actually 
much easier than it looks. 

When programming in Pascal, you must choose between setting up a file for 
direct access (with fixed field lengths) or for sequential access (with variable field 
lengths). As far as the Macintosh is concerned, however, there are only direct 
access files. That does not mean that a file cannot be processed in a sequential 
manner. 

That last sentence is not double-talk. The terms direct access and sequential 
access really refer to how a file is processed, not to any physical characteristics of 
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the file. Direct access means that records are accessed in random order; that 
capability usually requires that the records are of a fixed length. Sequential access 
simply means that the records are accessed in order, starting at the beginning of 
the file. Assuming that one character (generally a carriage return) signifies the end 
of a record, files written for only sequential access can have variable record 
lengths. On the Macintosh it is also possible to move backwards when doing 
sequential processing. Note also that there is no reason that a file with fixed record 
lengths (i.e., a file that will permit direct access) cannot be processed in a sequen­
tial manner. For simplicity, this chapter will often speak of "direct access" and 
"sequential" files; such terminology applies only to the manner in which the data in 
the file are read and written. 

The Macintosh keeps track of its current position within a file with a pointer 
called the mark. The mark is always positioned just beyond the last character read 
or the last character written. In other words, the mark points to the next byte to be 
read or written. Direct access is therefore achieved by specifying where file 
operations should occur with respect to either the current position of the mark or 
the start of the file. The mark is moved whenever read or write activities are 
performed. There is also a File Manager routine that will set the mark anywhere 
within a file. 

Because file operations are rather slow compared to RAM-based operations, 
the Macintosh provides the option for an application to execute file operations 
asynchronously. Asynchronous file calls permit the program to continue with other 
tasks while the file operation is in progress. Synchronous file operations force the 
application to wait for the file operation to finish before proceeding. Synchronous 
execution is the default mode; asynchronous execution can be specified by setting 
bit 10 of the routine trap word. This chapter assumes that all file operations are to be 
executed synchronously. 

Macintosh files have two parts, known as forks. The resource fork contains 
resource definitions and the code of application programs; the data fork is used for 
storing data. Data files created by applications will usually use only the data fork. In 
fact, although it is possible to open a file's resource fork from the File Manager, the 
commonly used routines are directed toward the data fork. The discussion that 
follows applies only to a file's data fork. 

The resource and data forks maintain their own marks. They also maintain their 
own logical and physical end-of-file pointers. A logical end-of-file pointer is always 
positioned immediately after the last byte in the file. Since file space is allocated in 
1024-byte blocks, the physical end-of-file pointer will be positioned just after the 
byte which ends the nearest block of 1024 bytes. 

Data Structures for File 
Operations 

There are three categories of file manipulation routines: 1/0 routines, file 
information routines, and volume information routines. (In this context the term 
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volume usually refers to a single floppy disk; a volume may also be a partition on a 
hard drive.) Each group of routines has a lengthy parameter block. The address of 
the appropriate parameter block must be loaded into AO before a File Manager 
routine is called. 

The first eight parameters in the block are common to all File Manager routines: 

ParamBlockRec = RECORD 
qlink: QElemPtr; 
qType: INTEGER; 
ioTrap: INTEGER; 
ioCmAddr: Ptr; 
ioCompletion: ProcPtr; 
ioResult: OSErr; 
ioNamePtr: StringPtr; 
ioVRefNum: INTEGER; 

next element in file queue 
queue type 
routine trap 
routine address 
completion procedure 
result code 
volume or file name 
volume reference number 
or drive number 

qllnk and qType refer to the system's file queue. Requests to the File Man­
ager are queued, much like events are queued by the Event Manager. The File 
Manager, unless told otherwise, processes file activities in the order in which they 
were entered into the queue. ioTrap and loCmdAddr relate to the particular 
routine being called. These four parameters are used solely by the File Manager 
and, for the most part, can be ignored. 

ioCompletion is a pointer to a routine that should be initiated when an 
asynchronous file operation is completed. If there is no completion routine, 
ioCompletion should be set to 0. For synchronous calls, ioCompletion is auto­
matically set to 0 and can therefore be ignored. 

ioResult contains a File Manager result code (see Table 11.1). The result code 
also appears in DO atthe completion of all File Manager routines, which means that 
an assembly language application rarely needs to check this field of the parameter 
block. 

Result codes do more than report errors; they provide important information 
aboutthe condition of the file system. Consider, for example, the situation where an 
application needs to create a data file only if one doesn't already exist. The 
application can simply attempt to create the file. If a file by the same name already 
exists, the File Manager will return a result code of - 48 ($FFFFFFDO). Therefore, a 
result code of 0 (no error) or - 48 means that the application can proceed to open 
the file, since creating a file does not open it. Any other result code indicates that 
something unexpected has happened. The application can either interpret the 
code further (e.g., to determine if the disk is full) or abort the file request. 

The contents of ioNamePtr depends on whether the routine being called is 
directed toward a single file or toward an entire volume. For routines that operate 
on volumes, it contains a pointer to the name of the volume. For file operations, the 
field contains a pointer to a file name. Note that a file name may be prefaced by a 
volume name. In that case, the volume name is separated from the file name by a 
colon. For example, tape.index:Annotations refers to the file called Annota­
tions on a disk with the name tape.index. 
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Table 11.1 File Manager Result Codes 

Hex Coc!e Decimal Code Meaning 

0 0 
FFFFFFDF ·33 
FFFFFFDE -34 
FFFFFFDD -35 
FFFFFFDC -36 
FFFFFFDB -37 
FFFFFFDA -38 
FFFFFFD9 -39 
FFFFFFD8 -40 
FFFFFFD7 -41 
FFFFFFD6 -42 
FFFFFFD5 -43 
FFFFFFD4 -44 
FFFFFFD3 -45 
FFFFFFD2 -46 
FFFFFFD1 -47 
FFFFFFD0 ·48 
FFFFFFCF -49 

FFFFFFCE -50 
FFFFFFCD -51 
FFFFFFCB -53 
FFFFFFCA -54 
FFFFFFC9 -53 
FFFFFFC8 -56 
FFFFFFC7 -57 
FFFFFFC7 -58 
FFFFFFC6 -59 
FFFFFFC5 -60 

FFFFFFC4 -61 

No error 
File directory is full 
Disk is full (no free 1024 byte allocation blocks) 
Requested volume is not on-line 
Unspecific disk 1/0 error 
File or volume name is bad 
FileJs not open 
End-of-file encountered when reading 
Application tried to put mark before start of file 
No space left in system heap 
Attempt to open more than 12 access paths 
File can't be located 
Volume is hardware locked 
File is software locked 
Volume is software locked 
Some files are open 
Duplicate file name 
Attempt to open more than one access path/file for 
writing 

No volume specified and there is no default volume 
Access path number does not exist 
Volume does not exist 
Access path will not permit writing 
Attempt to mount an already mounted volume 
Drive number does not exist 
Not at Macintosh volume 
Illegal path reference number 
Unsuccessful attempt to rename a file 
Volume must be reinitialized because master directory 
block is bad 

Access path will not permit writing 

ioVRefNum can contain either a reference number to a volume or the drive 
number that contains a particular volume. Generally, we use the drive number: 1 
for the internal drive, 2 for the external drive. 

Specific Fields for 1/0 
Routines 

Calls to 1/0 routines require nine fields in addition to the eight fields described 
above: 

ioRefNum: 
ioVersNum: 
ioPermssn: 
ioMisc: 
ioBuffer 

INTEGER; 
Signed Byte; 
SignedByte; 
Ptr; 
Ptr; 

path reference number 
version number 
read/write permission 
depends on the routine 
pointer to data buffer 
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ioReqCount 
ioActCount 
ioPosMode: 

ioPosOffset: 

LONGINT; 
LON GI NT; 
INTEGER; 

LONGINT; 

number of bytes to be transferred 
actual number of bytes transferred 
newline character and position of start 
of operation relative to the mark 
offset from mark or beginning of file 

loRefNum contains a file's path reference number. When a file is opened, the 
system creates an access path to that file. An access path is a description of how 
the system should get to a file. Twelve different access paths may be open at one 
time. Any given file can therefore support up to 12 access paths, though only one 
per file can be used for writing. Each access path has its own mark which moves 
independently of the marks in any other access paths to that file. The path 
reference number identifies which specific path should be used in a file operation. 
The path reference number is returned when a file is opened and passed to 
routines which read from and write to files. 

ioVersNum was designed to allow the Finder to distinguish between two files 
with the same name on the same disk. In practice, though, the Finder ignores this 
parameter; the Resource Manager and Segment Loader wonl work with files that 
have non-zero version numbers. Therefore, the version number should always be 0. 

The Macintosh allows an application to specify what kinds of operations are 
permitted on a file; this is known as a file's read/write permission. It is stored in the 
parameter block in ioPermssn. The possible values for ioPermssn are: 

0: the same as the access path's current permission 

1: read only permission 

2: write only permission 

3: read and write permission 

By restricting file activity to reading, for example, an application can protect files 
that should not be altered. 

The contents of ioMisc varies with the specific File Manager routine. 
loBuffer is a pointer to an 110 buffer. An 1/0 buffer is an area in RAM from which 

data is written to the disk or into which data is read. Its size depends on how much 
data is to be transferred. An application does not necessarily need to set aside a 
special 1/0 buffer. For example, since the Video Tape Index program keeps the 
entire TapeArray in RAM in a single location while the application is running, that 
block of storage can double as the buffer for accepting the information when it is 
read from the disk at the beginning of program execution and when it is re-written 
just before the program ends. 

On the other hand, if data are scattered in RAM, then they must be assembled 
into a single storage block before being written to disk. Reading that same data 
back into RAM will deposit them into one contiguous block. In that case, an 
application must allocate enough storage to hold all the data. 
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ioReqCount is the number of bytes that are to be transferred. That quantity is 
passed into read and write routines. ioActCount is returned by routines that 
transfer data; it contains the number of bytes actually read or written. 

ioPosMode contains information to position the mark for data transfer opera­
tions and may also contain the ASCII code of a character that indicates the end of a 
record. The low-order byte of ioPosMode holds the position offset: 

0: read and write operations should be at the current position of the mark 
(ioPosOffset is therefore ignored) 

1: the offset contained in ioPosOffset is the offset, in bytes, from the beginning 
of the file 

2: the offset contained in ioPosOffset is the offset, in bytes, from the end of the 
file 

3: the offset contained in ioPosOffset is the offset, in bytes, from the current 
position of the mark. 

The use of ioPosOffset depends on the value of ioPosMode. If ioPosMode 
is 0, the offset parameter is ignored. For an loPosMode of 1, the offset will be 
added to the starting address of the file; the offset must be positive. When 
ioPosMode is either 2 or 3, the offset will be added to the end of the file or the mark, 
respectively; the offset may be either positive or negative. 

Specific Fields for File 
Information Routines 

The two routines that set and retrieve information about files require 16 param­
eters in addition to the first eight: 

loFRefNum: 
ioFVersNum: 
filler1: 
ioFDlrlndex: 
ioFIAttrib: 
ioFIVersNum: 
ioFIFndrlnfo: 
ioFINum: 
ioFIStBlk: 
ioFILgLen: 
ioFIPyLen: 
ioFIRStBlk: 
ioFIRLgLen: 

INTEGER; 
SlgnedByte; 
Signed Byte; 
INTEGER; 
Signed Byte; 
Signed Byte; 
Finto; 
LONGINT; 
INTEGER; 
LONGINT; 
LONGINT; 
INTEGER; 
LON GI NT; 

path reference number 
version number 
unused 
file number 
file attributes 
version number 
a record including file type 
file number 
first 1024 block of data fork 
logical EOF of data fork 
physical EOF of data fork 
first 1024 block of resource fork 
logical EOF of resource fork 
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loFIRPyLen: 
loFICrDat: 
ioFIMDDat: 

LONGINT; 
LONGINT; 
LONGINT; 

physical EOF of resource fork 
data & time of flle creation 
data & time of last modification 

This type of parameter block is used primarily when creating a new file; it 
supplies information to the Finder about a new file. An application will rarely have to 
check any of its fields directly. Those parameters which must be passed as part of 
the file creation sequence are discussed later in this chapter. 

Specific Fields for Volume 
Information Routines 

One File Manager routine, GetVollnfo, collects information about a specific 
disk volume. That routine requests its own parameter block, with 14 fields in 
addition to the eight common fields: 

filler2: 
ioVollndex: 
ioVCrDate: 
ioVLsBkUp: 
ioVAtrb: 
ioVNmFls: 
ioVDirSt: 
ioVBILen: 
ioVAIBlkSiz: 
ioVClpSlz: 
ioAIBISt: 
ioVNextFNum: 
ioVFrBlk: 

LONGINT; 
INTEGER; 
LONGINT; 
LONGINT; 
INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
LONGINT; 
LONGINT; 
INTEGER; 
LONGINT; 
INTEGER; 

unused 
volume index 
data & time of initialization 
data & time of last backup 
bit 15 set if volume locked 
number of files on volume 
first block of file directory 
number of blocks in directory 
bytes/allocation block 
number of bytes to allocate 
first block in volume block map 
next free file number 
number of free allocation blocks 

As with the file information parameters, most of the volume information parameters 
are used by the system and not directly by an application. 

Storage Space for 
Parameter Blocks 

Storage space for File Manager parameter blocks should be allocated in the 
application globals area. For example, the following allocates an 1/0 parameter 
block: 

ioParamBlock DS.B ioQEISize 
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ioQEISize is defined in the system equates file. Its value is the total number of 
bytes (50) in an 1/0 parameter block. Note that offsets for the fields within all three 
types of parameter blocks are also contained in the system equates file. 

A file information parameter block might be defined as: 

fiParamBlock DS.B ioFQEISize 

and a volume information parameter block as: 

vParamBlock DS.B loVQEISize 

How many parameter blocks of each type do you need? That depends on two 
things: the number of access paths that will be open at any one time and how much 
parameter shuffling you want to do. Since the Video Tape Index program never 
has more than one access path open at any given time, only one parameter block 
of each type is required. 

An application that simultaneously maintains more than one access path can 
handle the parameter block situation in one of two ways. The entire application can 
use a single set of parameter blocks if data returned by File Manager routines are 
removed from the parameter blocks and stored elsewhere before the blocks are 
used by a different access path. On the other hand, each access path can be 
allocated its own set of parameter blocks. In that case, data is left in the parameter 
block and doesn't need to be reloaded for subsequent calls to File Manager 
routines. 

It may also be necessary to retrieve information from parameter blocks, even if 
only one access path is open at a time, if the application makes calls to the Printing 
Manager. Since the Printing Manager tends to disrupt data in the applications 
globals area, an application should be careful to at least store the access path 
reference number elsewhere. 

Translating the Pascal syntax for File Manager routines into assembly lan­
guage is not as straightforward as with the routines of other managers. All of the 
low-level File Manager routines which must be used from assembly language have 
the form: 

FUNCTION ProcedureName (paramBlock: ParamBlkPtr; 
async: BOOLEAN): OSErr; 

In practical terms, this means that for synchronous operations the address of the 
appropriate parameter block must be loaded into AO just before the routine is 
called, and that OSErr (technically, an "operating system error" code, but in reality, 
oneofthecodesin Table11.1) will be returned in DO. Therefore, the major portion of 
the setup for a File Manager routine involves loading the necessary information 
into a parameter block. 
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Creating a Data File 
Creating a new file involves three steps: 

1. Create the file (Create) 

2. Assemble information about the file that the Finder already has (GetFilelnfo) 

3. Fill in the remaining information that the Finder needs (SetFilelnfo) 

The actual creation of a new file requires three pieces of information: the name 
to be given to the file, its location (usually given as a drive number), and the version 
number (should always be 0). These parameters must be moved into the 1/0 
parameter block: 

LEA 
MOVE.L 

MOVE 
MOVE.B 

'Tape.Master' ,AO 
AO,ioParamBlock + ioFileName(AS) 

#1,ioParamBlock + ioDrvNum(AS) 
#0,ioParamBlock + ioFileType(AS) 

;address of 
file name 
;drive# 
;version# 

The name selected for a file should be assembled with a length byte. If you wish 
to avoid worrying about the STRING_FORMAT assembler directive, allocate 
strings with LEA rather than defining them as constants. Remember that strings 
allocated with LEA and PEA are assembled with length bytes; those allocated with 
DC are assembled without length bytes. 

The drive number parameter should be passed as 1 for the internal drive or 2 
for the external drive. If you are working with a hard drive, consult the documenta­
tion that accompanied the drive to determine the drive's number. 

File version number should always be 0. 
Once the parameters are loaded into the parameter block, the starting address 

of the block is loaded into AO. Then the routine can be called: 

LEA ioParamBlock(AS),AO 
_Create 

Whenever a file is successfully created, the Finder must be supplied with 
information about that file. Therefore, Create should be followed by calls to 
GetFilelnfo and SetFilelnfo. 

Both routines use the file information parameter block. To call GetFilelnfo you 
must supply: 

1. The file's name (ioFileName) 

2. The drive number where the file is located (ioDrvNum) 
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3. The file's version number (ioFileType) 

4. The file's directory index (ioDirlndex) 

ioDirlndex contains an integer that tells the File Manager what information should 
be used to locate the file. If its value is greater than 0, GetFilelnfo will use that 
number to identify the file, assuming that it refers to the file's position in the disk 
directory. If its value is 0 or negative, GetFilelnfo will use the file's name, drive 
number, and version number to locate the file. In either case, assuming that the 
requested file exists, the call to GetFilelnfo will fill in the remainder of the fields in 
the file information parameter block with the correct data about that file. 

SetFilelnfo assures that the Finder has correct information about a given file. It 
requires the following information: 

1. The file's name (ioFileName) 

2. The drive number where the file is located (ioDrvNum) 

3. The file's version number (ioFileType) 

4. The file's type (ioFndrlnfo) 

5. The file's time and date of creation (ioFICrDat) 

6. The file's time and date of last modification (ioFIMdDat) 

The last two items listed above are supplied by the call to GetFilelnfo. The first 
three are loaded into the parameter block when setting up for the call to GetFlle­
lnfo. The setup for SetFilelnfo therefore involves loading the file type and 
reloading the address of the parameter block into AO. 

A file's type is a four-character string. Files with type 'TEXT can be read by 
Macintosh text processing programs such as MacWrite and Microsoft Word. Data 
files created by an application should therefore be type 'TEXT unless there is some 
specific reason for preventing the user from viewing and possibly modifying the 
files. 

The Video Tape Index uses the following code to set up and call GetFilelnfo 
and SetFilelnfo after creating a new Tape.Master file (Tape.Master holds the 
information from TapeArray): 

LEA 'Tape.Master',AO 
MOVE.L AO,fiParamBlock + ioFileName(AS) 
MOVE #1,fiParamBlock + ioDrvnum(AS) 
MOVE.B #0,fiParamBlock + ioFlleType(AS) 
MOVE #0,fiParamBlock + ioFDirlndex(AS) 

LEA fiParamBlock(AS),AO 
_GetFilelnfo 

MOVE.L $'TEXT ,fiParamBlock + ioFIUsrWds 

;file name 
;drive number 
;version number 
;use name & version 
number to find file 

;start of ioFndrlnfo 
record 
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LEA fiParamBlock(AS),AO 
_SetFilelnfo 

Opening a File 
Before a file can be read from or written to, it must be opened. Creating a file 

merely creates a disk directory entry that will produce a document icon when the 
disk's contents are viewed from the Finder; creating does not open a file. The File 
Manager routine Open will open a file by creating an access path to that file. It 
returns a reference number to the access path. 

The information required by Open is: 

1 . the name of the file 

2. the drive number 

3. the file's version number 

4. the permission code for this access path (Remember that only one access 
path to any file can allow writing.) 

5. in ioMisc, a pointer to an access path buffer 

An access path buffer is a block of RAM that is used as temporary storage by the 
access path. Either allocate the access path buffer explicitly, in which case it 
should be defined as 522 bytes long, or instruct the system to use the volume's 
buffer by passing a value of 0. It is important that all access paths to one file share 
the same buffer, regardless of whether it is an application-defined buffer or the 
volume's buffer. 

The Video Tape Index uses the following code to open the Annotations file: 

LEA 'An notations', AO 
MOVE.L AO,ioParamBlock + ioFileName(AS) ;file name 
MOVE #1,ioParamBlock + iodrvnum(AS) ;drive# 
MOVE.B #0,ioParamBlock + ioFileType(AS) ;version# 
MOVE.B #3,ioParamBlock + ioPermssn(AS) ;read & write 

permission 
CLR.L ioParamBlock + ioOwnBuf(AS) ;use volume buffer 
LEA ioParamBlock(AS),AO 
_Open 

CMP #0,DO ;any errors? 
BNE FileError ;handle error 

LEA fiRefNum,AO ;save access path 
MOVE ioParamBlock + ioRefNum(AS),(AO) ;reference number 
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The final step in the sequence above explicitly retrieves the access path reference 
number from the parameter block and stores it elsewhere. This is necessary 
because calls to the Printing Manager disrupt the values in the parameter block 
and their integrity cannot be ensured. The access path reference number is 
therefore always reloaded into the parameter block before any further operations 
are performed on that file. 

Writing to Disk Files 

A single File Manager routine, Write, performs both sequential and direct 
access write operations. The difference between the two types of processing is in 
how an application specifies where writing should begin. 

Writing a Sequential File 
The Video Tape Index stores the data from the RAM-based TapeArray in a 

sequential file (Tape.Master). This file is read into RAM when the program is 
launched and rewritten to disk when the user selects Quit from the Options menu. 
Since the format of the file is exactly the same as the format of TapeArray, the block 
of storage occupied by T apeArray can be used as the 1/0 buffer for both read and 
write operations. 

TapeArray has fixed field, and therefore fixed record, lengths. That charac­
teristic makes it easy to do direct access operations on the array while it is in RAM. 
Nonetheless, do not assume that all sequential files need to have fixed record 
lengths; on the contrary, they do not. Generally, a carriage return is used to mark 
the end of a record in a sequential file. The carriage return is not automatically 
inserted by the system; it must be written explicitly as the last character of each 
record. 

Data are written to disk in 512-byte blocks. If a write operation ends up with a 
final segment of less than 512 bytes, that data is stored temporarily in the access 
path buffer until either another write request brings the total number of bytes to 512, 
or until the application calls a routine that flushes the buffer. FlushFile will explicitly 
write all contents of an access path buffer to disk (requires only the access path 
reference number in the 1/0 parameter block). Close also flushes the access path 
buffer. (See the section later in this chapter on closing files.) 

Write requires the following parameters in the 1/0 parameter block: 

1. access path reference number (ioRefNum) 

2. starting address of the 1/0 buffer (ioBuffer) 

3. number of bytes that should be transferred (ioReqCount) 

4. the position mode (PosMode) 
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5. the offset (ioPosOffset) 

Write returns another result in addition to the error code in DO. ioActCount will 
contain the actual number of bytes that were written. 

To write the entire Tape.Master file, the Video Tape Index uses the following 
code: 

MOVE 
LEA 
MOVE.L 
MOVE 
MULU 

fiRefNum,ioParamBlock + ioRefNum(AS) 
TapeArray(AS),AO 
AO,loParamBlock + loBuffer(AS) 
Total Records, DO 
#64,DO 

;access path 

;110 buffer 

;total bytes to 
move 

MOVE.L DO,ioParamBlock + loByteCount(AS) 
MOVE #0,loParamBlock + loPosMode(AS) ;(see below) 
LEA ioParamBlock(AS),AO 
_Write 

The ioPosMode necessary for a sequential write has a code of 0. That 
indicates that the write operation should begin at the current position of the mark. 
As mentioned earlier in this chapter, when ioPosMode is zero, the offset param­
eter is ignored. 

To append to a sequential file, use an ioPosMode of 2 and an loPosOffset of 
0. The write will then begin exactly at the logical end-of-file. 

If you look at the listing of the Video Tape Index program, you will notice that 
there is a write operation that occurs before TapeArray is written. Like many 
sequential files, Tape.Master stores "housekeeping" information in its first record; 
the term "housekeeping" usually refers to data needed to process the rest of the file, 
or constants that must be retained from one program run to another. The first four 
bytes of Tape.Master contain two integers - the total number of records in the file 
and the last annotation number used. Those bytes are therefore processed 
separately: 

MOVE 
SWAP 
AND.L 
MOVE 
MOVE.L 
MOVE 

LEA 
MOVE.L 

MOVE.L 

Total Records, DO 
DO 
#$FFFFOOOO,DO 
LastAnnotNumb,DO 

;retrieve total records 
;(see below) 
;clear low order byte 
;retrieve last annot.# 

DO,DataBuffer(AS) 
flRefNum,loParamBlock + loRefNum(AS) 

;access path reference # 
DataBuffer(AS),AO 
AO,loParamBlock + ioBuffer(a5) 

;1/0 buffer 
#4,loParamBlock + loByteCount(AS) 

;write only four bytes 
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LEA 
_Write 
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#0,ioParamBlock + ioPosMode(AS) 
;write at mark 

ioParamBlock(AS),AO 

The five first steps in this block of code prepare the total number of records and 
the last annotation number for writing. When the total number of records is moved 
into DO, it is stored in the low-order word of the register, since the MOVE was 
specified as a word-length operation. The next instruction, SWAP inverts the 
position of the high- and low-order words of registers. In the example above, it puts 
the total number of records into the high-order word. ANDing DO with the mask of 
$FFFFOOOO preserves whatever is stored in the high-order word (the total number 
of records) and clears out the low-order word. The second MOVE, since it is also a 
word-sized instruction, puts the last annotation number in the low-order word of DO 
without disturbing the total number of records in the high-order word. Finally, the 
contents of DO are transferred to the first four bytes of the storage location set aside 
as an 1/0 buffer. (This buffer is 256 bytes long - just enough space for an 
annotation.) 

Writing to a Direct Access 
File 

The only difference between writing to a direct access file and to a sequential 
file lies in ioPosMode. Generally, a direct access operation occurs with a byte 
offset relative to the beginning of the file (ioPosMode = 1) or relative to the current 
position of the mark (ioPosMode = 3). 

The Video Tape Index program stores annotations for the tapes in a direct 
access file. The last field in the TapeArray records is an integer that corresponds to 
the record number of each tape's annotation. Annotation record numbers are 
assigned sequentially as new tapes are entered. In other words, the 15th tape 
entered will have an annotation number of 15, regardless of where the tape's title 
falls in the alphabetical sequence of tapes. Therefore, an annotation number will 
generally not correspond to a tape's record number in TapeArray. 

The code to write an annotation appears in Listing 11.1. The first step (a) fills the 
256-byte 1/0 buffer with blanks. Though there is nothing that says any given 
annotation must use all 256 bytes allocated for it, it is essential that the space 
between the last character of the annotation and the end of the record is padded 
with blanks. If it is not, and only the exact number of characters in the annotation 
are written to the file, a subsequent read will transfer garbage characters at the end 
of the record as well as the annotation itself. 

After filling the 1/0 buffer with blanks, the annotation is moved to the buffer. 
TEGetText provides a handle to the text (b) and BlockMove transfers the 
characters (c). The next step is to figure out exactly where this annotation should be 
placed in the file. This requires the annotation number, which is stored as the last 
field in the matching TapeArray record. 
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Listing 11.1 Writing an Annotation to its Direct Access File 

(a) 

(b) 

(c) 

(d) 
(e) 
(f) 

(g) 
(h) 

LEA AnnotRecMask,A0 
LEA DataBuffer(A5),A1 
MOVE #256,D0 
_Block Move 

CLR.L -(SP) 
MOVE.L AnnotationTextHandle,-(SP) 
TEGetText 

MOVE.L (SP)+,A2 
MOVE.L (A2),A0 
LEA DataBuffer(A5),A1 
MOVE.L AnnotationTextHandle,A3 
MOVE.L (A3),A4 
MOVE teLength(A4),D0 
_BlockMove 

LEA RecordCounter,A0 
MOVE (A0),D5 
MULU #64,D5 
ADD #oAnnotNum,D5 
LEA TapeArray(A5),A0 
ADD.L D5,A0 
MOVE (A0),D0 
MULU #256,D0 

LEA Data8uffer(A5),A0 

~ill buffer with blanks 

;place for CharsHandle result 

;get handle to text in Annotation record 
;recover CharsHandle 
;de-referencing handle to get pointer 
;text goes into disk buffer 

;de-reference again 
;number of characters to move 
;puts annotation in disk output buffer 

;offset into tape array 

;offset into file 

MOVE.L A0,ioParamBlock+ioBuffer(A5) 
MOVE.L #256,ioParamBlock+ioByteCount(A5) ;write 256 bytes, blanks and all 

(i) MOVE #1,ioParamBlock+ioPosMode(A5) ;offset is relative to beginning of file 
(j) MOVE.L D0,ioParamBlock+ioPosOffset(A5) ;offset in bytes 

MOVE fiRefNum,ioParamBlock+ioRefNum(A5) ;file reference number 
LEA ioParamBlock(A5),A0 
_Write 

To locate the annotation number, the program gets the TapeArray record 
number (d) and uses it to compute first an offset into the array (e) and then an offset 
into the record (f). That address is used to retrieve the annotation number (g). The 
annotation number is multiplied by 256 (h}, the number of characters in each 
annotation, to produce a byte offset from the beginning of the file. 

The setup for the call to Write is exactly the same as that used for a sequential 
write with two exceptions. ioPosMode is set to 1 to indicate that the offset is relative 
to the beginning of the file (i) and ioPosOffset (j) is loaded with the computed 
offset. 

Reading From Disk Files 
Reading from a file is exactly the same as writing to a file except that the data 

transfer is in the opposite direction. In a read operation, the 1/0 buffer is the location 
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into which data is read. As with writing, the buffer can be a storage location 
specifically set aside for 110, or a storage location used for another purpose as well. 

The Read routine requires precisely the same parameters as a Write: 

1 . the access path reference number (ioRefNum) 

2. a pointer to the 1/0 buffer (ioBuffer) 

3. the number of bytes that should be transferred (ioByteCount) 

4. the position mode (ioPosMode) 

5. the offset (ioPosOffset) 

Read returns two results in addition to the error code in DO. ioActCount will 
contain the actual number of bytes that were transferred. ioPosOffset will contain 
the position of the mark after the read is completed. 

All read operations transfer data in blocks of 512 bytes. If a read request 
involves less than 512 bytes, a full 512 bytes will be brought into RAM (into the 
access path buffer), but the application will receive only those bytes that were 
specified in the 1/0 parameter block. 

Reading From Sequential 
Files 

A sequential read is simply a read that begins at the current position of the mark 
and reads forward. As an example, consider the procedure used by the Video 
Tape Index to load TapeArray atthe beginning of every program run. Assume that 
the file has just been opened and that the access path reference number is 
therefore already in the parameter block (since the Tape.Master file is closed after 
its contents are read into RAM, there is no need to worry about the parameter block 
being disturbed by the Printing Manager). 

First, the housekeeping information is retrieved: 

LEA DataBuffer(AS),AO ;place to receive data 
MOVE.L AO,ioParamBlock + ioBuffer(AS) 
MOVE #4,ioParamBlock + ioByteCount(AS) ;read just first 4 bytes 
MOVE #0,ioParamBlock + ioPosMode(AS) ;read from mark 
LEA ioParamBlock(AS),AO 

Read -
MOVE.L DataBuffer(AS),00 ;get 4 bytes just read 
LEA LastAnnotNumb,AO 
MOVE 00,(AO) ;store last annot. # 
SWAP DO 
LEA Total Records,AO 
MOVE 00,(AO) ;store total records 
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After the above read operation, the mark will be positioned at the fifth byte in 
the file, the starting location of the first record of TapeArray. The program can then 
load all of TapeArray with one call to Read: 

LEA 
MOVE.L 
MOVE 
MULU 

TapeArray(A5),AO 
AO,ioParamBlock + ioBuffer(A5) 
TotalRecords, DO 
#64,DO 

;1/0 buffer 

;number of bytes to 
read 

MOVE.L DO,ioParamBlock + loByteCount(A5) 
MOVE #0,ioParamBlock + ioPosMode(A5) 

;read from mark 
LEA loParamBlock(A5),AO 
_Read 

Reading From Direct 
Access Files 

Reading from a direct access file needs an ioPosMode of 1, 2, or 3 and an 
appropriate value for ioPosOffset. In all other respects, the process is identical to 
doing a sequential read. Because the annotations are so long (up to 256 charac­
ters), the Video Tape Index program leaves them on disk and reads a single 
annotation into RAM when needed. The procedure to read a single annotation 
record is: 

LEA 
MOVE.L 
MOVE.L 

MOVE 

MOVE 
MULU 
ADD 
LEA 
ADD 
MOVE 
MULU 
MOVE.L 
LEA 
_Read 

DataBuffer(A5),AO ;place to receive data 
AO,ioParamBlock + loBuffer(A5) 
#256,ioParamBlock + ioByteCount(A5) 

;read 256 characters 
#1,ioParamBlock + ioPosMode(A5); ;relative to beginning 

of file 
Record Counter ,D5 
#64,D5 
#oAnnotNum,D5 
TapeArray(A5),AO 
05,AO 
(AO),DO 
#256,DO 
DO,ioParamBlock + ioPosOffset(A5) 
ioParamBlock(A5),AO 

;current record # 

;offset into TapeArray 

;address of annot # 
;retrieve annot. # 
;offset into file 
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Closing a File 

An application should explicitly close all files with Close before returning to the 
Finder. Though files will be closed automatically whenever the system is rebooted, 
the Close routine flushes the access path buffer, completing any write operations 
that were temporarily held because they involved less than 512 bytes. Close also 
deletes the access path. Files that are not closed cannot be deleted by the Finder. 

Close requires only one parameter - the access path reference number: 

MOVE 
LEA 
_Close 

fiRefNum,ioParamBlock + ioRefNum(AS) 
ioParamBlock(AS),AO 

Timing Out for File 1/0 

Next to printing, disk 1/0 is the slowest part of an application. Often the user will 
have to wait more than a few seconds for some file operation to be completed. For 
example, as the number of records in Tape. Master grows, the time needed to read 
and write the file will continue to increase. Applications that adhere to the Macin­
tosh user interface should change the shape of the cursor to the wrist watch 
(indicating a long wait) for any time-consuming operation. 

The shape of the cursor is controlled by the QuickDraw routine SetCursor: 

PROCEDURE SetCursor (crsr: Cursor); 

This routine's single parameter is actually a pointer to the location of a resource. 
The resource is a cursor definition. Four cursors are defined in the system resource 
file: an I-Beam (resource ID= 1), a cross (resource ID= 2), a plus sign that looks like 
an outlined cross (resource ID= 3), and the wristwatch (resource ID= 4). A handle 
to the resource definition is returned by a routine from the ToolBox utilities -
GetCursor: 

FUNCTION GetCursor (cursorlD: INTEGER); CursHandle; 

cursorlD refers to the resource ID of one particular cursor. 
The following code will set the cursor to the wrist watch: 

CLR.L -(SP) 
MOVE #4, - (SP) 
_GetCursor 

;space for cursor handle result 
;resource ID for wristwatch 



340 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

MOVE.L (SP)+ AO 
MOVE.L (AO),AO 
MOVE.L AO, - (SP) 
_SetCursor 

;retrieve cursor handle 
;de-reference to get pointer 
;put pointer on stack 
;change arrow to wristwatch 

The cursor can be returned to the arrow cursor with a call to lnitCursor. 

Managing Disk Changes 
and Choosing File 

Names - the Standard 
File Package 

Many Macintosh applications will have a standard File menu with options that 
allow a user to open, close and save files. Opening and saving files should allow 
the user to enter a file name and to change disks and drives if necessary. The 
application should also take care of initializing disks if an uninitialized disk is 
inserted. The Standard File Package (package #3) provides routines that collect 
information from predefined dialog boxes and take care of initializing disks. 

The two routines that most programmers will use are SFGetFile (routine #2 in 
the package) and SFPutFile (routine #1). SFGetFile is used to open files and 
SFPutFile to save files. Both routines return information to the application in a 
standard file reply record: 

SFReply = RECORD 
good: 
copy: 
fType: 
vRefNum: 
version: 
fName: 

BOOLEAN; 
BOOLEAN; 
OSType; 
INTEGER; 
INTEGER; 
STRING[63]; 

set FALSE if user cancels 
unused 
file type or unused 
drive number 
file version number 
file name 

The first five fields occupy 10 bytes. Therefore, an application should allocate a 
total of 7 4 bytes of space for the file reply record. Offsets for the fields in the reply 
record are assigned symbolic addresses in the Package equates file, which 
should be INCLUDEd in the application's source code. 

Selecting a File to Open 
The dialog box displayed by SFGetFile appears in Figure 11.1. It allows the 

user to change disks and the default drive, lists all files on the default drive that can 
be opened, and accepts a command to either open a file or cancel the request. 



PrDump.ASM 
PrEqu.THt 
Tapes.A SM 
Tapes.JOB 
Tapes.LINK 
Tapes.Map 
Tapes.A 

Opcrn 

Cancel~ 

Eject 

Driue 

example was taken from the MDS Editor. It therefore filters file types to 
select only those files on Tapes .Index that were created by the MDS Editor. 

Figure 11.1 "Get File" Dialog Box from the Standard File Package 

This is a stack-based routine: 

PROCEDURE SFGetFile (where: Point; prompt: Str 255; fileFilter: 
ProcPtr; numTypes: INTEGER; typelist: SFTypelist; dlgHook: 
ProcPtr; VAR reply: SFReply); 
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The parameter where contains, in global coordinates, the location of the upper 
left-hand corner of the dialog box. The prompt is ignored. 

The next three parameters specify what types of files should be presented to 
the user as candidates for opening. numTypes contains an integer indicating the 
number of types of files that should be selected. The maximum value is four; a 
value of -1 will select all files on the default volume. The actual types to be selected 
are loaded into typelist. typelist is large enough to hold 16 characters (it is a 
packed array, 16 bytes long). Since it is larger than a longword, a pointer to 
typelist is pushed onto the stack. fileFilter is a pointer to a function that can 
perform additional file filtering. For example, files could be filtered by last date of 
modification. In most cases though, no additional filtering is necessary and 
fileFilter is set to 0. 

dlgHook is a pointer that allows an application to display a dialog box other 
than the standard seen in Figure 11.1. Normally, it will be set to 0. The final 
parameter, reply, is a poi'nter to the reply record. 
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SFGetFile requires two data structures, one for the reply record and one for 
the file type list: 

ReplyRecord 
TypeList 

DS.B 
DS.B 

74 
16 

The code below will select all TEXT files: 

MOVE.L 
MOVE 
MOVE 
CLR.L 
CLR.L 
MOVE 
PEA 
CLR.L 
PEA 
MOVE 
_Pack3 

# 'TEXT' Typelist(A5) 
#50,-(SP) 
#50,-(SP) 
-(SP) 
-(SP) 
#1, -(SP) 
Typelist(A5) 
-(SP) 
ReplyRecord(A5) 
#SFGetFile, - (SP) 

;load one file type 
;top coordinate 
;left coordinate 
;place for unused prompt 
;no filter procedure 
;one file type 
;address of type list 
;use standard dialog 
;address of reply record 
;routine# 
;invoke the package 

SFGetFile monitors events and automatically takes care of ejecting disks and 
changing drives when the user clicks the appropriate button. If an uninitialized disk 
is inserted, the Standard File Package calls the Disk Initialization Package and 
handles the entire initialization process. The dialog box is closed when the user 
chooses Cancel or when a file is selected. A file can be selected by one click on the 
file name and a second click in the Open button, or by a double-click on the file 
name. 

Once the dialog box has been removed, it is up to the application to retrieve 
information from the reply record and continue with the file operation. The first 
action is generally to check the good field to determine whether the file request has 
been canceled. 

Naming a File 
SFPutFlle provides a standard dialog box (Figure 11.2) that permits a user to 

name a file as well as to eject a disk and change the default drive: 

PROCEDURE SFPutFlle (where: Point; prompt: Str 255; origName: 
Str255; dlgHook: ProcPtr; VAR reply: SFReply); 

Most of the parameters are the same as those for SFGetFile. In this case, 
though, prompt has meaning; it is displayed above the window where the file 
name is entered and usually has a value like 'Save current file as:'. orlgName 
determines what will be displayed within the file name window when the dialog box 
first appears. If the current file has a name that should be assigned to orig Name; 
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otherwise, origName should be set to the null string . To indicate the null string as a 
literal, type two single quotes or two double quotes right next to each other. 

· Edit Search Format Font Size Transfer 

tape.indeH:PrDump.ASM 

Saue document as tape.indeH 

Eject 

Cancel Driue 

The dialog box above i3 di3pleyed end managed by a cell to 
SFPutFile . SFPutFile 'Will handle 3electin9 a file name, 
changing di3k3, and changing the default drive. 

Figure 11.2 "Put File" Dialog from the Standard File Package 

If we assume that a user has selected Save As from a File menu to save a new 
text file, the assembly language code would appear as: 

MOVE 
MOVE 
PEA 
PEA 
CLR.L 
PEA 
MOVE 
_Pack3 

#50,-(SP) 
#50,-(SP) 
'Save current file as' 

-(SP) 
Reply Record 
#SFPutFlle, - (SP) 

;top coordinate 
. ;left coordinate 
;prompt 
;file name (null string) 
;use standard dialog 
;address of reply record 
;routine# 
;invoke the package 

Pointers to the text of the prompt and the file name can be pushed as literals (as 
above) or by symbolic addresses. Since their data type is Str255, they must have a 
length byte. Pushing them as literals will automatically ensure thatthe length byte is 
present. 

SFPutFile will continue to monitor events until the user either: 

1. clicks the Cancel button 
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2. types a file name and clicks the Save button or 

3. types a file name and hits the Enter or Return key. 

If the Cancel button has been clicked, control returns immediately to the applica­
tion. 

In either of the latter two applications, SFPutFile verifies the file name before 
returning. If the file name already exists, SFPutFile displays the alert that asks 
whether the existing file should be overwritten. If the user clicks the Yes button, 
control returns to the application with a value of TRUE in good. If the user clicks the 
No button, good is set FALSE. 

SFPutFile also checks to see if a disk is locked, either by hardware or 
software. If a disk is locked, an alert box informs the user of the situation and 
cancels the file operation. good receives a value of FALSE. 

When control is returned to the application, the program must then retrieve the 
appropriate information (usually the file name and drive number) from the reply 
record and proceed to save the file with a write operation as described earlier in 
this chapter. 

Questions and 
Problems 

1 . Assume that an 1/0 parameter block has been allocated with the statement: 

ioParamBlock DS ioQEISize 

where ioQEISize is defined in the system equates file as equal to the number 
of bytes in an 1/0 parameter block. Using the offsets into the parameter block 
defined in the system equates file, write assembly language code to load the 
following data: 

A. a path reference number that has been stored in the applications globals 
area under the symbolic address of PathRefNum 

B. a version number of O 
C. an 1/0 buffer in the applications globals area identified by the symbolic 

address MyBuffer 
D. write only permission 
E. the appropriate values for ioPosMode and ioPosOffset so that new 

records will be appended to the end of the file. 
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2. A. Write assembly language code to create a file named TextFile.txt on the 
internal drive. Remember to collect all the information needed by the Finder 
as well as simply creating the file. Allocate any data structures your code will 
use. 

B. At the end of your block of code, is Testfile.txt ready for read and write 
operations? Why or why not? 

Problems 3 -8 refer to the BookStuff array first introduced in problem 5. The 
structure of the array is defined as: 

Title 
Author 
Publisher 
Date 

EQU 0 
EQU 30 
EQU 50 
EQU 75 

The total length of a record is 80 bytes. The file BookStuff.data holds the 
same data as the array in RAM. 

3. Write assembly language code to open BookStuff .data for input and output 
on the external drive. Be sure to allocate required data structures. Use the 
RAM array as an 1/0 buffer. 

4. Write assembly language code to write the entire BookStuff array sequen­
tiallyto BookStuff .data. Assume that the total number of records in the array 
is stored in DO. Assume also that the file has just been opened by the code 
you wrote for problem 3. 

5. Write a block of code to perform a direct access write for one record from 
BookStuff to BookStuff .data. The record number is stored in DO. Assume 
the file has been opened by the code you wrote for problem 3. 

6. Write a block of code to read the entire BookStuff.data file into the 
BookStuff array in main memory. The total number of records in the file is 
stored in DO. Assume the file has just been opened by the code you wrote for 
problem3. 

7. Write a block of code to close BookStuff .data. 

8. Assume now that BookStuff .data has been opened with write-only permis­
sion and that the data for a single record has been stored in the applications 
globals area with a symbolic address of OneRecord. Write a block of code to 
append the new record to BookStuff .data. 
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9. Assume that a standard file reply record ha$ been defined in the applications 
globals area with a symbolic address of ReplyRecord. Write a block of code 
that will display the standard "get file" dialog box and then retrieve the name 
and drive number of the file the user selects. Anchor the top left corner of the 
dialog box at 100,80. Display the names of all files of type TEXT and MAGA 
(MacWrite version 4.5) in the dialog box. Allocate any other data structures 
your code will use. 

10. Assume that a standard file reply record has been defined in the applications 
globals area with a symbolic address of ReplyAecord. Write a block of code 
that will display the stand~rd "save as" dialog box and then retrieve the file 
name and drive number from the reply record. The top left corner of the 
dialog box is at 75, 100. Select an appropriate prompt for the dialog box. 
Allocate any necessary data structures. 
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Chapter Objectives 

1. To understand the problems associated with numeric 1/0 

2. To understand the Macintosh's floating point formats 

3. To learn to do binary/decimal conversions for integers and floating point 
numbers 

4. To learn to use the Macintosh's arithemetic packages to perform advanced 
mathematical operations 

5. To learn to use separately assembled subroutines 

6. To learn to create macros to simplify program code 

Introduction 
While microprocessor instruction sets contain instructions that perform integer 

arithmetic, they make no provision for adthemetic with numbers that contain 
fractional portions. Integer arithmetic is also limited to quantities that will fit into a 
single register (32 bits). As well as manipulating fractions and very large and very 
small numbers, it would also be useful to have routines that evaluate logarithmic 

347 
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and trigonometric functions. Most microcomputers, therefore, have software that 
provides for a variety of advanced mathematic operations. Because the numbers 
processed by these routines have decimal points that move, they are referred to as 
floating point numbers and operations on them as floating point arithmetic. The 
Macintosh has a powerful floating point arithmetic package called FP68K. Trig­
onometric, exponential and logarithmic functions are provided by the elementary 
functions package, ELEMS68K. 

The format of floating point numbers closely resembles scientific notation, 
where a mantissa is multiplied by 10 raised to a power {the exponent). For example, 
3.98 * 10-1s is a very small number (.00000000000000398). The mantissa is 3.98; 
the exponent is -15. The exact format in which floating point numbers are stored 
by computers differs from machine to machine. The Macintosh format is described 
below. 

Arithmetic, whether it be floating point or integer, presents a significant 1/0 
problem. All input from the keyboard is in ASCII; numbers enter the system as a 
string of ASCII character codes. That means that the ASCII codes must be 
converted from a string of decimal characters into a binary quantity before any 
math can be done. Integer conversion is handled by the Binary-Decimal Conver­
sion Package. Floating point conversion is a two-step process; the ASCII character 
string must first be put into an intermediate format {the canonical decimal format) 
which is then used by the decimal-to-binary conversion routines. The Pascal 
implementation of FP68K provides routines that will convert directly from an ASCII 
string to binary and back again. Unfortunately, those routines are not available 
from assembly language. An application must therefore provide the code that puts 
the ASCII string into the intermediate format. After discussing the integer conver­
sion routines, this chapter will look in detail at a subroutine that will properly 
reformat strings of decimal characters. 

The Binary- Decimal 
Conversion Package 

The Binary-Decimal Conversion Package contains only two routines: one to 
translate a string of ASCII decimal characters into a binary integer and another to 
take a binary integer and convert it to a string. 

NumToStrlng is the routine that converts a longinteger into a string of characters: 

PROCEDURE NumToStrlng (theNum: LONGINT; VAR theString: 
Str255); 
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Since the data type of the string produced by this routine is Str255, it will have a 
length byte. 

Before calling this routine, a pointer to a storage location for the string is placed 
in AO. The number that is to be converted is loaded into DO. NumToStrlng will 
place the string at the location specified by the address in AO. The string can then 
be displayed with Drawstring, for example, or incorporated into a text edit record. 

The code below will convert an integer to a string: 

MOVE.L 
LEA 
MOVE 
_Pack7 

StringStorage 

#134599,DO 
StringStorage(A5),AO 
#0, - (SP) ;select the NumToString routine 

;invoke the package 

DS.B 20 

StringToNum is the exact opposite of NumToString; it converts a string with 
the data type Str255 into a longinteger: 

PROCEDURE StringToNum (theString: Str255; VAR theNum: 
LONGINT); 

A pointer to the string to be converted is loaded into AO. The number will be 
returned in DO. The system determines the number of characters in the string by 
examining its length byte: 

LEA # '123456' ,AO 
MOVE #1, - (SP) 
_Pack7 

;select the StrlngToNum routine 
;invoke the package 

StringToNum does not check to be sure that all characters in the string are 
digits. The routine is based on the fact that the ASCII codes for the digits are $30 
through $39. If it looks just at the four low-order bits of the ASCII code, it has the 
quantity for the digit. This procedure, assuming that the four low-order bits contain 
the quantity, can be applied to any other character as well as a digit without 
creating a system error. Therefore, any character checking must be performed by 
the application. 
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Floating Point Decimal­
to-Binary Conversions 

The FP68K decimal-to-binary conversion routines work from a canonical deci­
mal format that is defined as: 

TYPE 
SigDig = Strlng[20] 
Decimal= record 

sgn: 0 .. 1; 

end; 

exp: INTEGER; 
sig:SlgDlg 

The numbers described by the decimal record are stored as a string of up to 20 
significant digits that are multiplied by 10 raised to some power (the exponent). For 
example, inthe number34567*10·6, 34567 arethesignificantdigitsand -6 is the 
exponent. The decimal point is always directly to the right of the most significant 
digit: that is, the mantissa is always presented as if it were an integer. The decimal 
point is not stored in the decimal record but its presence is inferred. The exponent 
is stored as an integer; the significant digits are a string of ASCII characters 
preceeded by a length byte (their data type is Str20). The sign (sgn) is stored in bit 
8 of the sign word. A value ofO indicates a positive number; a value of 256(a1 in bit 
8) indicates a negative number. 

There is one major problem with Macintosh's canonical decimal format -
user's don't enter data that way. An application must therefore have some way to 
convert strings of digits with embedded decimal points into that format. Listing 12.1 
is an example of a subroutine that will "parse" (break down into constituent parts) 
character strings and reformat them into the canonical decimal format. 

Listlng12.1 Parsing Numeric Strings 

;------------------- Simple Parser -------------------
I 

; Register Usage 
; A0 starting address of numeric string (load before calling routine) 

A2 starting address of decimal record (result will go here) 
00 starting character position in string 
05 exponent 
06 number of significant digits 
07 total length of string (load before calling routine) 

;~---------------------------------- (continued) 



Parser 

Positive 

XDEF Parser 

MOVE D7,D6 
MOVE #0,D0 
MOVE.B (A0),D2 
CMP.B #'-',D2 
BNE Positive 
MOVE #256,(A2) 
ADDO #1,D0 
SUBO #1,D6 
BRA Parse 

MOVE #0,(A2) 
CMP.B #'+',D2 
BNE Parse 
ADDO #1,D0 
SUBO #1,D6 
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;inltialize significant digits 
;initialize starting character position 
;get first character 
;negative number? 

;store negative sign 
;skip sign 
;don't include sign in significant digit count 

;store positive sign 
;is there a positive sign? 

;skip sign 
;don't include sign in significant digit count 

Parse MOVE D0,D3 ;save position of beginning character position 

NoDecimal 
MOVE.B (A0,D3),D2 
CMP.B #'.',D2 
BEO DecimalPoint 
ADDO #1,D3 
CMP D3,D7 
BGT NoDecimal 

;get a character 
;decimal point found? 

;skip to next character 
;past last character? 
;not decimal point or end of string 

;This block handles number of the form XXXXXXXX - No decimal point present 
;at all (i.e., they're integers) 

MOVE #0,D5 

MOVE.B D6,4(A2) 
BRA FillRecord 

Decimal Point 

;set exponent (decimal point at right of#) 

;load length byte 

CMP D3,D0 ;is decimal point in first position? 
BNE GreaterThanOne 

;This block takes care of numbers of the form .XXXXXXXXXXXX 
;The next step is to get rid of zeros between the decimal point and the 
;first significant digit. 

ADDO #1, D0 ;skip over decimal point 

MoreZeros 
MOVE.B (A0,D0),D2 ;get character 
CMP.B #'0',D2 ;isltazero? 
BNE SetExponent 
ADDO #1,D0 
CMP D0,D7 ;at end of string? 
BGT MoreZeros 

Set Exponent 
SUBO #1,DS 
MOVE D6,D5 
MULU #-1,D5 

;don't include decimal point in sig. digits 

;final exponent value (continued) 
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Listing 12.1 (continued) 

;note - D0 has position of first significant digit 

SUB D0,D7 
MOVE D7,D6 
MOVE.B D6,4(A2) 
BRA FillRecord 

;number of significant digits 

;load length byte 

;This block handles numbers that are greater than 1 and contain a decimal 
;point. They translated to XXXXXXXXX. (note that decimal point is implied and not stored) 

GreaterThanOne 
SUBO #1,D6 
MOVE D3,D1 
MOVE D6,D5 
MOVE (A0),D2 
BEO NoAdjustment 
SUBO #1,D1 

No Adjustment 

Shift 

SUB D1,D5 
MULU #-1,D5 
MOVE D3,D1 

ADDO #1,D1 
CMP D7,D1 
BGT Done 
BLT Continue 
MOVE.B (A0,D1),D2 
CMP.B #'.',D2 
BEO Done 

Continue 

;don't include decimal J:10int in sig. digits 
;get position of decimal point 
;move sig. digits to sign register 
;get sign word again 

;adjust for presence of sign 

;subtract position of decimal point 
;make it negative 
;reload position of decimal point 

;beyond last character? 
;beyond last character 
;before last character 

;decimal point in last position? 
;ignore trailing decimal point - otherwise move last digit 

MOVE.B (A0,D1 ),(A0,D3) 
ADDO #1,D3 

;shift character one position to the left 

BRA Shift 

Done MOVE.B D6,4(A2) 

Fill Record 
MOVE D5,2(A2) 
MOVE #0,D1 
MOVE #5,D2 
ADDO #1,D6 

;load length byte 

;load exponent 
;initialize loop counter 
;starting offset of string in decimal record 
;include length byte in co'unt 

Top MOVE.B (A0,D0),(A2,D2) ;move one character 
ADDO #1,01 
CMP D1,D6 
BEO Return ;all characters moved 
ADDO #1,00 
ADDO #1,02 
BRA Top 

Return RTS 
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The Parser 
The parser subroutine, like any routine that examines strings and makes 

decisions based on the characters that are present, works on a set of rules that 
describe possible character sequences and the actions to be taken when those 
sequences are found. There are three general formats in which numbers might be 
entered from the keyboard: XXXX (an integer without a decimal point); .OOOXXX (a 
fraction less than one, with or without zeros between the decimal point and the 
significant digits); and XXXX.XX (a combination of integer and fraction). This simple 
parser does not handle numbers entered in scientific notation (e.g., 1.345E+06), 
though it could certainly be expanded to do so. 

To better understand the logic of the parser, take a look at the pseudocode in 
Figure 12.1. This presents an English-like version of the subroutine's logic. The 
general strategy is to first examine the string for a plus or minus sign in the first 
character position, at which point the sign of the number can be determined and 
stored directly into the data structure set aside to hold the canonical decimal 
format. The second step is to determine which of the three forms described in the 
previous paragraph (integer, fraction, or combination) fits the character string. 

Figure 12.1 Parser Pseudocode 

Initialize number of significant digits as equal to total characters in string. 

Get the first character in the source string. 

If the first character is a minus sign then 

Store value for negative number directly into canonical data structure; 

Decrement the number of significant digits by 1 (sign doesn't count) 

Else 

If first character is a plus sign then 

Decrement the number of significant digits by 1; 

Store value for positive number directly into canonical data structure. 

Get the "next" chracter. {will be first character again if no sign was present} 

While the character being examined is not a decimal point do 

Get another character. 
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Figure 12.1 (continued) 

If no decimal point is found then {number is an integer} 

Else 

Set 0 as the exponent value; 

Store number of significant digits in canonical data structure 

If the decimal point is in the first position then {number is all fraction} 

Else 

Get next character; 

While the character being examined is not a 0 do 

Get next character; 

Decrement number of significant digits by 1 to ignore decimal point; 

Compute exponent by subtracting position of first non-zero digit from number of 
significant digits and mulitplying by-1; 

Store number oi significant digits in canonical data structure 

{number has integer and fraction parts} 

Decrement number of significant digits by 1 to ignore decimal point; 

Compute exponent by subtracting position of decimal point from number of 
significant digits and multiplying by -1 ; 

Set a pointer to the first character to the right of the decimal point; 

While the pointer less than the last character do 

Move the character one place to the left; {eliminates decimal point from 
source string} 

Increment the pointer; 

If the last character is not a decimal point then 

Move the last character; 

Store in number of significant digits in the canonical data structure. 

Store the exponent in the canoncial data structure. 

Initialize a counter to 0. 

(continued) 
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While the counter is less than or equal to the1 number of signficant digits do 

Move one characterfrom the source string to the canonical data structure; 

Increment the counter. 

Stop. 

Handling integers is straightforward; the decimal point is already in the correct 
place. Though it is not stored with the number, all integers have implied decimal 
points directly to the right of the number. The exponent for an integer is always 0. 

If the decimal point is in the first position (after the sign, if one is present), then 
the number is a fraction. Fractions must be converted to integers with no leading 
zeros and the exponent adjusted accordingly. A factional exponent will be equal to 
the number of digits in the original number (including leading zeros) multiplied by 
-1; a negative exponent indicates that the decimal point should be moved to the 
left. The number of significant digits for the canonical decimal format is determined 
by finding the left-most non-zero digit. All characters from that point to the end of 
the string are considered significant digits. 

Numbers that contain both integer and factional portions have an exponent 
equal to the number of fractional digits multiplied by -1. The string must also be 
adjusted to remove the decimal point; each digit in the fractional portion of the 
string is moved one position to the left. The number of significant digits is equal to 
the number of characters in the string less one for the decimal point and one for a 
sign, if present. 

Programming 
Technique - Using 

Separately Assembled 
Subroutines 

The parser just described is designed so that it can be used by many different 
applications. It appears to an application much like one of Macintosh's operating 
system routines in that parameters are passed to it in registers - AO contains the 
address of the source string, A2 the address of the destination data structure, and 
07 the total number of characters in the source string. An application loads the 
registers and then does a JSR to call the routine. 
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It would be inefficient to include the code for the parser in each application that 
needs to do decimal-to-binary conversions. Instead, the parser is assembled 
separately and kept in its own .Rel file that can be used whenever needed. As you 
write many applications, you may develop an entire library of utilities like the parser 
that can be used whenever needed without duplicating their code. 

In order to use separately assembled subroutines, three things must happen: 

1. The source code of the subroutine must indicate that it will be called by 
another program (an external definition); 

2. The source code of any application calling the subroutine must indicate that 
the subroutine is not part of the application's code (an external reference); 

3. The subroutine must be linked to the application during the linking process. 

The assembler directive XDEF (external definition) is used whenever a sym­
bolic address in a piece of code will be referenced by another program. For 
example, the first line in the parser subroutine is: 

XDEF Parser 

which indicates that some other piece of code will be using that symbolic address. 
The assembler directive XREF (external reference) alerts the Assembler that a 

specific symbolic address cannot be found in the code being assembled but can 
be found in some other program. Any application that uses the parser must 
therefore include the directive: 

XREF Parser 

before it executes a JSR to the code. The XREF will prevent the Assembler from 
returning an "undefined label" error. 

External references are satisfied by the Linker, which provides the actual 
addresses of all external routines. Therefore, the names of any .Rel files that 
contain symbolic addresses defined in XREF directives must be included in the 
Linker control file. If a program called Math uses the parser, its Linker control file 
will include: 

Math.Rel 
Parser.Rel 
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Formats Available 
Through FP68K's 

Conversion Routines 
FP68K has routines to generate six different numeric formats from the can­

onical decimal format: 

1. Extended - an 80- bit floating point number 

2. Double - a 64- bit floating point number 

3. Single - a 32- bit floating point number 

4. Integer - a 16- bit integer 

5. Longinteger - a 32- bit integer 

6. Computational (also known as Accounting) - a 64- bit integer 

Arithmetic operations return their results in the extended format. That format 
looks somewhat like a binary version of the canonical decimal format. Bit 79 is 
reserved as a sign bit for the mantissa; it holds 0 for a positive number and 1 for a 
negative number. The exponent is 15 bits long, stored in bits 64 through 78. Bits 0 
th rough 63 are reserved for the mantissa. 

Floating point exponents are stored as binary integers. They are the power to 
which 2 is raised and then multiplied by the mantissa. One way to store them would 
be to allocate one exponent bit as a sign bit and use two's complement notation. 
The resulting 14-bit exponent would have the range ± 116,383. Exponents, 
though, are stored without a sign bit using a technique known as excess notation. 

Excess notation means that some fixed quantity is added to every value of the 
exponent. The exact value of the excess varies from computer to computer, but it is 
always enough to make the smallest exponent value 0-. The Macintosh uses an 
excess factor of $3FFF, or 16,383. That means that the smallest possible exponent 
that can be stored in 15 bits is -16,383 and the largest + 16,384. The Macintosh 
can therefore store floating point numbers in the range 2-16,383 through 2+16,384. 
This is an enormous range, well beyond that demanded by all but the most 
intensive scientific and statistical applications. 

The mantissa is also a binary number. The first bit (bit 63) always has the value 
one. There is an implied decimal point directly between bits 62 and 63; bits 0 
through 62 contain the fractional portion of the mantissa. 

As an example, consider the decimal number 32. It is passed to FP68K's 
decimal to binary conversion routines with a sign of 0, an exponent of 0, and two 
significant digits (3 and 2). After being converted, it will appear in memory as 
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$4004 8000 0000 0000 0000. The leftmost word contains the sign and the 
exponent: %0100 0000 0000 0100. Note that the high-order bit, the sign bit, is 0 to 
indicate a positive mantissa. The other 15 bits are the exponent. To determine the 
true value of a Macintosh floating point exponent for a positive number, subtract 
$3FFF (or subtract $4000 and add 1): $4004 - $3FFF leaves $0005. The mantissa 
will therefore be multiplied by 25. If we expand the first word of the mantissa to 
binary, we get % 1000 0000. Since the decimal place is directly to the right of the 
high-order bit, the mantissa is actually %1.0000000. The complete value of the 
number is %1.000 0000 * 25 or 32. 

Any floating point number with a positive exponent and and positive mantissa 
will have an exponent word with a value between $4000 and $7FFF. It is useful to 
become accustomed to viewing floating point representations in hexadecimal, 
since that is how the contents of memory locations are displayed by the debugger. 

As a second example, lefs include a fraction with the test number and make it 
32.5. Like 32, .5 is an even power of 2, 2-1. The canonical decimal format will 
contain a O for the sign bit, a -1 for the exponent, and a 3 for the number of 
significant digits (3, 2, and 5). FP68K will convert 32.5 to $4004 8200 0000 0000 
0000. The exponent is the same as that for the even value 32; it is the mantissa that 
is different. If we expand the first word of the mantissa to binary, we get %1000 
0010 0000 0000 or %1.000 0010 0000 0000 * 25. Moving the decimal point in the 
mantissa five places to the right, produces% 100000.1, which is precisely 32.5. 

Negative mantissas produce a change in the value of the exponent word. For 
example, - 32.5 is stored as $C004 8000 0000 0000 0000. In binary, the expo­
nent word is %1100 0000 0000 0100. The high-order bit is set, representing a 
negative mantissa. To determine the true value of the exponent, first subtract 
$8000 to strip off the sign bit and then subtract $3FFF to get rid of the excess. For 
example, $C004 - $8000 = $4004; $4004 - $3FFF = $0005. Numbers with 
negative mantissas and positive exponents will have exponent word values 
between $COOO and $FFFF. 

Numbers with positive mantissas and negative exponents produce exponent 
word values in the range $0000 - $3FFF. For example, the quantity .5 generates 
an exponent of -1. It is stored by adding -1 to $3FFF, which produces an 
exponent of $3FFE. Numbers with negative mantissas and negative exponents 
have exponent word values in the range $8000 - $BFFF; - .5 has an exponent 
word of $BFFE. 

Macintosh's other two floating point formats (with 32 and 64-bit mantissas) are 
stored exactly like the extended format. They simply have less accuracy in the 
mantissa, since they store fewer bits. 

The 16- and 32-bit integer formats are the same as those manipulated by the 
integer arithmetic instructions that are part of the 68000 instruction set. The 64-bit 
integer format can be used to obtain extra accuracy and range when doing 
computations. It is, however, too long for conversion with the Binary-Decimal 
Conversion Package. 
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Executing a Binary-to­
Decimal Conversion 

The FP68K routines are part of Package 4. Like all packages, its routines are 
called by pushing the routine identifier onto the stack and then calling the package 
with _Pack4. The packages we have discussed previously, though, have had a 
relatively small number of routines, while FP68K has somewhere around 120. For 
most FP68K routines, the routine identifier is the sum of the operation code 
(identifying the type of operation the routine will perform) and an operand format 
code that identifies the format of the source operand. 

The operation code for converting from decimal to binary is $0009. To produce 
an extended floating point result, $0000 is added to the operation code. If the 
conversion should produce a longinteger result, $2800 is added to the operation 
code. Each of the six available formats has a unique operand format code. 

Most FP68K routines, including decimal to binary conversions, require the 
following actions: 

1. Push a pointer to the source operand onto the stack. 

2. Push a pointer to the destination operand onto the stack. 

3. Push the routine identifier onto the stack. 

4. Invoke the package. 

To convert from the canonical decimal format to an extended floating point 
number, you might use this code: 

PEA DecimalRecord(AS) 
PEA BinaryNumber(AS) 
MOVE #$0009, - (SP) 
_Pack4 

Decimal Record 
BinaryNumber 

DS 
OS 

24 
5 

Doing the actual conversion is really quite straightforward. The biggest prob­
lem facing a programmer is generating the appropriate routine identifier. The 
Macintosh 68000 Development System has simplified the process by providing a 
file (SANEMacs.Txt) containing equates and macros. 
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Programming 
Technique -
Using Macros 

A macro is a short block of code that is assigned a name. The name of the 
macro is then used within an application to represent the entire macro. During 
assembly, the macro name is replaced by the block of code associated with the 
macro's name. Note that this is very different from using a subroutine. If a sub­
routine is called repeatedly, the program merely branches to where the·subroutine 
is located and executes it; the code of the subroutine appears only once in the 
program. A macro name is a place holder that will be replaced by the body of the 
macro when the program is assembled; a macro that is used repeatedly in the 
same program will generate repeated code. Macros are therefore generally short, 
less than 10 lines of code. 

Macros must be defined before they can be used. Macintosh macros can have 
one to two formats. Either: 

or 

.MACRO NameOfMacro [Argumentlist] 
[body of macro goes here - any executable code is allowed} 

.ENDM 

MACRO NameOfMacro [Argumentlist =] 
[body of macro goes here - any executable code is allowed} 

I 

The first format is referred to as a "Lisa-style" macro, the second as a "Macintosh­
style" macro. Both work equally well with the MOS. 

Macros can contain arguments, data that are passed to the macro from the 
application. Macro arguments work very much like the arguments passed to 
Pascal functions and procedures. The arguments used in the macro definition are 
dummy arguments. When the program containing the macro is assembled, the 
arguments are substituted by position. Consider, for example, a macro that will 
compute the position of a single field within TapeArray: 

MACRO AddressCompute R1 ,R2,R3 = 
MULU #64,[R1} 
ADD [R1},[R2} 
ADD [R3},[R2} 
I 

In this particular macro, R1 is a place holder for some register that contains the 
record number. R2 stands for an address register containing the starting address 
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of TapeArray. R3 is a constant that stands for the byte offset into a TapeArray 
record. Each dummy argument is surrounded by braces. 

When this macro is used in an application, the programmer will write: 

MOVE 
LEA 
MOVE 
AddressCompute 

TotalRecords,DO 
TapeArray, AO 
#oRatlng,D1 
DO,AO,D1 

When the program is assembled, this code will be generated: 

MOVE 
LEA 
MOVE 
MULU 
ADD 
ADD 

Total Records, DO 
TapeArray ,AO 
#oRatlng,D1 
#64,DO 
DO,AO 
D1,AO 

The arguments specified after the name of the macro in the program code will be 
substituted by position tor the dummy arguments in the macro's argument list. 

The file SANEMacs.Txt can be found on MDS2. It contains equates for the 
FP68K and ELEMS68K operand format codes and operation codes. More impor­
tantly, it also contains one macro for each FP68K and ELEMS68K routine. The 
macros compute the appropriate routine identifier, push it onto the stack, and then 
invoke the package. SANEMacs.Txt should be INCLUDEd in any application that 
uses FP68K or ELEMS68K. 

The macro for converting from the canonical decimal format to the extended 
floating point format is: 

.MACRO 
MOVE.W 
JSRFP 
.ENDM 

FDEC2X 
#FFEXT + FOD2B, - (SP) 

where FFEXT has previously been equated to $0000 and FOD2B to $0009. 
JSRFP is another macro defined within SANEMacs.Txt. It takes care of invoking 
the package. If you look at the definition of JSRFP, you will see that the package is 
invoked with _FP68K, but if disassembled by the debugger, it appears as 
_Pack4. Both have the same trap value and are equivalent. _ELEMS68K is 
also equivalent to _Packs. 

There is an important naming convention to be aware of in the operation code 
macros. The last character of most of the macro names identifies the type of source 
operand the operation will handle. For example, FADDX will look for an extended 
source operand to add to an extended destination operand. FADDD will add a 
double source operand to an extended destination operand. The suffix S indicates 
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a single source operand, Ca computational, La longinteger, and I an integer. For 
each type of operation (e.g., addition, subtraction, comparison, etc.) there are six 
routines, one for each possible type of source operand. 

The binary to decimal conversion can be simplified by using the pre-defined 
macro: 

PEA 
PEA 
FDEC2X 

DecimalRecord(AS) 
BinaryNumber(AS) 

The discussion in the rest of this chapter assumes that SANEMacs.txt has been 
INCLUDED in the application source code and that the pre-defined macros are 
available. 

An Overview of the 
FP68K and ELEMS68K 

Routines 
FP68K routines fall into two major groups - arithmetic routines and those that 

provide non-arithmetic utility functions. 

The Arithmetic Routines 
The arithmetic routines include: 

1. Addition(oneforeachtypeofsourceoperand - FADDX, FADDD, FADDS, 
FADDI, FADDL, FADDC) 

2. Subtraction (one for for each type of source operand - FSUB + the letter 
that identifies the operand type) 

3. Multiplication (one for each type of source operand - FMUL + operand 
type identifier) 

4. Division (one for each type of source operand - FDIV +operand type 
identifier) 

5. Square root (FSQRTX - works only with an extended operand) 

6. Round to integer (FRINTX - works only with an extended operand) 

7. Truncate to integer (FTINTX - works only with an extended operand) 
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8. Remainder - returns the remainder of a division operation (one for each 
type of source operand - FREM + operand type identifier) 

9. Base 2 logarithm - returns the exponent (FLOBX - works only with an 
extended operand) 

10. Base 2 exponentiation - the source operand is the power to which 2 is 
raised and then multiplied by the destination operand (FSCALBX - works 
only with an extended source operand) 

Calls to arithmetic routines (with the exception of numbers 4 - 7 and 8 - 10 
above) have the following general form: 

PEA source operand 
PEA destination operand 
OperationMacroName 

The result of the operation is placed in the destination operand. That means the 
original contents of the destination operand is erased by the result. For example, a 
FADD operation has the same effect as the Pascal statement: 

A:=A+B 

Therefore, if the destination operand must be retained for further use, it should be 
copied to another storage location before being passed to the FP68K routine. 

Code to add a longinteger to an extended floating point number appears as: 

PEA 
PEA 
FADDL 

LonglntegerNumber 
ExtendedNumber 

LonglntegerNumber(AS) 
ExtendedNumber(AS) 

DS.L 1 
OS 5 

Note that all operands are passed as pointers to main memory locations where the 
operands are actually stored. 

· The other routines, including square root and rounding, require only one 
operand: 

PEA source operand 
OperationMacroName 

The result replaces the source operand. In the case of square root, it has the effect 
of executing the Pascal statement: 

A:= SQRT(A) 



364 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

To actually compute a square root: 

PEA 
FSQRTX 

Extended Number 

ExtendedNumber(AS) 

DS 5 

The Utility Routines 
FP68K non-arithmetic routines include: 

1. Negation (FNEGX - works only with an extended operand) 

2. Absolute value (FABSX - works only with an extended operand) 

3. Conversion from all six formats to extended (FX2X, FD2X, FS2X, Fl2X, 
FL2X, FC2X) 

4. Conversion from extended to the other five formats (FX2D, FX2S, FX21, 
FX2L, FC2X) 

5. Decimal to binary conversion (FDEC2 + operand type identifier, as dis­
cussed above) 

6. Binary to decimal conversion (F?2DEC, where? is replaced by the operand­
type identifier). 

7. Comparison between two floating point numbers (FCMP + operand-type 
identifier or FCPX + operand-type identifier). These comparisons can be 
used where it makes logical sense to use the CMP instruction. 

8. Branching based on the result of floating point comparisons (FBEQ, FBL T, 
FBLE, etc.). These macros contain instructions that test the condition codes. 
They assume that the appropriate floating point comparison has been per­
formed. They should be used in place of a Bee instruction. 

Negation and absolute value each require only one operand. For example, to 
obtain the absolute value of some floating point number: 

PEA 
FABSX 

SomeNumber 

SomeNumber(AS) 

OS 5 

As with the single operand arithmetic routines, the result of a single operand utility 
routine will overwrite the source operand. 

The internal conversion routines, the decimal-to-binary conversion routines, 
and the comparison routines require two operands. As discussed earlier, the 
pointer to the source operand goes deepest in the stack, followed by the pointer to 
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the destination operand. Note that while the first two sets of routines replace the 
destination operand with the result of the operation, the comparison operations do 
not affect either operand; they merely set the flags in the status register. 

Binary-to-decimal conversions are the only routines that use three operands. 
Performing these conversions is discussed later in the chapter. 

The floating point branch instructions are used exactly like any other Bee 
instruction. For example: 

FBEQ Nextlabel 

assumes that two floating point numbers have just been compared. The program 
will branch to Nextlabel if the two numbers were equal. Note that FBEQ is not a 
new instruction; it is a macro with an argument. Nonetheless, the floating point 
branch macros can be used as if they were actual instructions. 

The ELEMS68K Routines 
ELEMS68K contains a number of advanced logarithmic, trigonometric, and 

exponential functions. Most work only with extended operands. The following 
routines require one extended operand and replace it with the result: 

1. Natural (base e) logarithm (FLNX) 

2. Base 2 logarithm (FLOG2X) 

3. Natural logarithm of 1 + extended operand (FLN1 X) 

4. Base 2 logarithm of 1 + extended operand (FLOG21 X) 

5. Raising e to a power specified by the extended operand (FEXPX) 

6. Raising 2 to a power specified by the extended operand (FEXP2X) 

7. Raising e to a power specified by the extended operand -1 (FEXP1X) 

8. Raising 2 to a power specified by the extended operand - 1 (FEXP21 X) 

9. Sine (FSIX) 

10. Cosine (FCOSX) 

11. Tangent (FTANX) 

12. Arctangent (FAT ANX) 

13. Random number generator (FRANDX) 
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For example, to find the sine of a number: 

PEA 
FSINX 

ExtendedNumber 

ExtendedNumber(A5) 

DS 5 

The two exponential routines require two operands: 

1. Raise an extended operand (the destination operand) to an integer power 
(the source operand) (FXPWRI) 

2. Raise an extended operand (the destination operand) to an extended power 
(the source operand) (FXPWRY) 

Note that even when using an integer operand, a pointer to that operand is pushed 
onto the stack rather than value of the operand itself. For example, to perform an 
integer exponentiation: 

PEA 
PEA 
FXPWRI 

lntegerExponent 
Extended Number 

DS 
DS 

lntegerExponent(A5) 
ExtendedNumber(A5) 

1 
5 

ELEMS68K also contains routines to compute compound interest and 
annuities. Each requires three extended operands - two source (the interest rate 
and the number of compounding periods) and one destination (the starting princi­
ple). A pointer to the interest rate is deepest in the stack, followed by a pointer to the 
number of compounding periods and a pointer to the destination operand: 

1. Compound interest (FCOMPOUND) 

2. Annuity (FANNUITY) 

For example, this code will compute compound interest: 

PEA 
PEA 
PEA 
FCOMPOUND 

lnterestRate 
NumbOfPds 
StartPrlnc 

DS 
DS 
DS 

lnterestRate(A5) 
NumbOf Pds(A5) 
StartPrlnc(A5) 

5 
5 
5 
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Finishing the Task -
Doing Binary to Decimal 

Conversions and 
Formatting Output 

Converting from a binary number back to the canonical decimal format is not 
precisely the opposite of converting from decimal to binary. There are two possible 
output formats - floating point and fixed point, both of which are delivered in the 
canonical decimal format record. 

To see the difference, consider the number 32.5. As noted earlier, the 
extended floating point format of 32.5 is $4004 8200 0000 0000 0000. If converted 
to a floating point number with three significant digits, the canonical decimal format 
will appear as $FFFF 0333 3235 .... or 325 * 10-1. A floating point version of the 
number (assuming that the conversion requests three digits to the right of the 
decimal point) appears as $FFFD 0533 3235 3030 ... which is 32500 * 10-3 or 
32.500. Floating point numbers are designed to be displayed in the mantissa and 
exponent format (e.g., 3.25E1) while fixed point numbers have their decimal points 
embedded in the number itself, as in 32.500. 

The output format of a binary-to-decimal routine is controlled by a tormat 
record: 

TYPE Decform = RECORD 
style : (0, 256); (0 = float; 256 = fixed} 
digits : INTEGER 
END; 

The style word stores the flag for the style in bit 8. Therefore, a value of 0 indicates 
that the number should be converted to a floating point number, while a value of 
256(a1 in bit 8) indicates that the conversion should be to fixed point. 

The meaning of the digits field depends on whether the conversion is to float or 
fixed. For a floating point number, digits indicates the total number of significant 
digits that should be stored in the canonical decimal format. For a fixed point 
number, the same field contains the number of fractional digits (those to the right of 
the decimal point) that are to be stored. 

Doing a Binary to Decimal 
Conversion 

The macro for binary to decimal conversions is F?2DEC, where? is replaced 
by the letter which indicates the format of the source binary number. For example, 
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FX20EC will convert an extended operand while Fl2DEC will convert an integer 
operand. Note that while the FP68K routines will handle integer and longinteger 
operands, they can more easily be converted by using the Binary-Decimal Con­
version Package. 

The binary-to-decimal conversion routines require three operands. A pointer to 
the format record is deepest in the stack, followed by a pointer to the source 
operand and finally a pointer to the destination data structure (the canonical 
decimal format). Assuming that a binary number in extended floating point format 
is stored in BinaryNumber(AS), the following code will convert that binary 
number to its floating point representation in the canonical decimal format with six 
significant digits (the number of significant digits in the example is arbitrary): 

LEA 
MOVE 
MOVE 
MOVE.L 
PEA 
PEA 
FX20EC 

FormatRec 
BinaryNumber 
OecimalRec 

FormatRec(A5),AO 
#0,(AO) 
#6,2(AO) 
AO,-(SP) 
BinaryNumber(A5) 
Oecima1Rec(A5) 

OS 
OS 
OS 

2 
5 
23 

;style = float 
;six significant digits 
;put pointer on stack 
;pointer to source operand 
;destination data structure 
;routine macro 

Converting the same extended binary number to a fixed point format with an 
arbitrary three digits to the right of the decimal point is only slightly different: 

LEA 
MOVE 
MOVE 

MOVE.L 
PEA 
PEA 
FX20EC 

FormatRec(A5),AO 
#256,(AO) 
#3,2(AO) 

AO,-(SP) 
BinaryNumber(A5) 
Oeclma1Rec(A5) 

;style = fixed 
;three digits to right of 
decimal point 
;pointer to format record 
;pointer to source operand 
;destination data structure 
;routine macro 

;uses same data structures as example immediately above 

The question remains as to when binary numbers should be converted to fixed 
point and when they should be converted to floating point. The answer lies in how 
the numbers will be displayed. 

Displaying Numbers from a 
Canonical Decimal Format 

Numbers that are to be displayed in fixed point format (i.e., with embedded 
decimal points) should be converted to fixed and numbers that are to be displayed 
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in floating point format (i.e., with mantissa and exponent) should be converted to 
float. The decision generally rests on the size of the number; that is, there comes a 
point where numbers contain too many digits for effective display. For example, 
3. 78E44 is the digits 378 followed by 42 zeros. Most applications will choose to 
display such a large number in its floating point form. On the other hand, 37.8 is 
conveniently displayed as a floating point number and makes more sense to the 
user than 3. 78E1. The actual point at which any given application will switch from 
fixed to floating point display will vary from application to application. 

Whichever format an application chooses to use, there still remains the prob­
lem of taking the number from the canonical decimal format and reformatting it into 
a string of ASCII characters that can be either printed with Drawstring or incorpo­
rated into a text edit record. The task is more or less the opposite of the function 
provided by the parser subroutine, which converts strings to the canonical decimal 
format. 

Listing 12.2 contains two subroutines that will convert floating and fixed point 
numbers to ASCII strings for output. Like the parser, the formatter routines are 
designed as utility routines to be assembled separately from program code and 
then called as external references. Each subroutine requires two parameters as 
input - a pointer to the string containing the number in canonical decimal format 
(in A1) and a pointer to the output string (in A2). To call either routine (assuming it 
has been properly linked to the main program code), load the pointers in the 
address registers and do a JSR to the appropriate symbolic address (FormatFloat 
or FormatFixed). 

Listing 12.2 Formatting Numeric Strings for Output 

;----------------------- Numeric Output Formatter -----------------

' ; Parameters on entry: 
A 1 ;pointer to record containing canonical decimal format 
A2 ;pointer to output string 

;---------------------------------------------------

XDEF FormatFloat 
XDEF FormatFixed 
.TRAP _Pack? $A9EE 

FormatFloat 
MOVE.L #0,00 
MOVE #1,D3 

MOVE #0,DS 
MOVE.B 4(A1),D1 
MOVE 2(A1),D2 
MOVE D1,D0 
ADD D2,D0 
SUBQ #1,D0 

;initialize register 
;character pointer in output string 
;starts at one to leave room for length byte 
;initialize character counter 
;number of significant digits 
;exponent in canonical decimal format 
;place for output exponent 

;final output exponent (exp.+ sig. digits -1) 

(continued) 
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Listing 12.2 (continued) 

MOVE (A1),D6 
CMP #0,D6 
BEO NoSignNeeded 
MOVE.B #'-',(A2,D3) 
ADDO #1,D3 

NoSignNeeded 
MOVE #5,D4 
MOVE.B (A1 ,D4).(A2,D3) 
ADDQ #1,D3 
ADDQ #1,05 
CMP.B D1,05 
BEQ lnsertExponent 
MOVE.B #'.',(A2,03) 

More Digits 
ADDO #1,D3 
ADDQ #1,D4 
MOVE.B (A1 ,D4),(A2,D3) 
ADDO #1,D5 
CMP.B D1,D5 
BNE MoreDigits 

Insert Exponent 

ADDQ #1,D3 
MOVE.B #'E',(A2,D3) 
ADDO #1,D3 

;get sign 

;positive number 
;load a negative sign 

;offset into canonical decimal format 
;move first character 
;move pointer 
;count the character 
;is there only one digit? 

;insert decimal point 

;increment pointer 
;increment offset into canonical decimal format 
;move a character 
;count the character 
;all characters moved? 

LEA ExponentString(A5),A0 
EXT.L D0 ;propagate sign through high-order word of register 
MOVE #0,-(SP) 

Pack7 
MOVE.B (A0),D1 
MOVE #1,D0 

More Exponent 
MOVE.B (A0,D0),(A2,D3) 
CMP.B D1,D0 
BEQ SetLength 
ADDO #1,D0 
ADDO #1,03 
BRA MoreExponent 

Setlength 
MOVE.B D3,(A2) 

RTS 

FormatFixed 
MOVE.B 4(A1),D1 
MOVE 2(A1),D2 
MOVE.B D1 ,D5 
MOVE D2,D7 
BGE OK 
MULU #-1,D7 

;convert integer to string 
;length of exponent string 
;starting offset into exponent string 

;move one exponent character 

;all characters moved 

;install length byte in first position 

;number of significant digits 
;exponent 
;save significant digits to fool with 
;save exponent to fool with 

;make negative exponent positive 

(continued) 



OK SUB D7,D5 
BLE Fraction 

ADD.B D1,D2 
MOVE #1,03 
MOVE #0,D4 
MOVE #5,05 
MOVE (A1),D6 
BEO CopyLoop 
MOVE.B #'-',(A2,D3) 

Copy Loop 
CMP.B D2,D4 
BNE MoveOne 
ADDO #1,D3 
MOVE.B #'.',(A2,D3) 

Move One 
ADDO #1,D3 
MOVE.B (A1 ,D5),(A2,D3) 
ADDO #1,04 
ADDO #1,D5 

Fraction 

CMP D4,D1 
BNE CopyLoop 

MOVE.B D3,(A2) 

RTS 

MOVE #1,D3 
MOVE (A1),D6 
BEO None 
MOVE.B #'-',(A2,D3) 
ADDO #1,D3 

None MOVE.B #'0',(A2,D3) 
ADDO #1,D3 
MOVE.B #'.',(A2,D3) 

MOVE #0,D0 
MOVE D5,D4 
BGT AnotherZero 
MULU #-1,D5 

Another Zero 
CMP D0,D5 
BEO GetDigits 
ADDO #1,D3 
MOVE.B #'0',(A2,D3) 
ADDO #1,D0 
BRA AnotherZero 

GetDigits 
MOVE #0,D0 
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;number is a fraction - mus~ handle separately 

;number of digits to left of decimal point 
;position pointer in output string 
;digit counter 
;initial offset into canonical decimal record 
;get sign 
;positive number 
;load a negative sign 

;insert decimal point 

;move one character 

;load length byte 

;initialize position pointer 
;get sign 

;load negative sign 

;loading leading zero and decimal point 
;must be two steps because of possibility of 
;uneven starting address 

;count zeros 
;this move is just to affect status register 

;get absolute value 

;enough 0's added? 

;to count significant digits 

(continued) 
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Listing 12.2 (continued) 

MOVE #5,D5 
AnotherDigit 

ADDO #1,D3 
MOVE.B (A1 ,D5),(A2,D3) 
ADDO #1,D5 
ADDO #1,D0 
CMP D0,D1 
BGT AnotherDigit 

MOVE.B D3,(A2) 

RTS 

ExponentString DS.B 6 

END 

;offset into canoncial decimal format 

;load length byte 

Formatting Floating Point Numbers 
Pseudocode for FormatFloat, the floating point formatter, can be found in Figure 
12.2. The routine must first compute the exponent for output. This is different from 
the exponent stored in the canonical decimal format, since the significant digits are 
stored as an integer but will be displayed in the form X.XXXX.... In fact, the 
exponent for output is equal to: 

Exponent from canonical decimal format - # sig. digits + 1 

This exponent is an integer and must ultimately be converted to a string. For­
matFloat uses NumToString from the Binary-Decimal Conversion Package for 
that purpose. NumToStrlng is very convenient, since it will insert a minus sign at 
the head of its output string if the integer being converted is negative. 

Figure 12.2 Floating Point Formatter Pseudocode 

Initialize pointer to output string {set to 0 if no length byte; set to 1 if length byte is 
required} 

Get number of significant digits from canonical decimal format. 

Get exponent from canonical decimal format. 

Compute exponent for output as Exponent from canoncial decimal format - Number of Significant 
Digits+ 1. 

Get sign from canonical decimal format. 
(continued) 
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If number is negative then 

Put negative sign in first position of output string; 

Increment pointer to output string. 

Move first significant digit from canonical decimal format to output string. 

Increment pointer to output string. 

Move decimal point to output string. 

Increment pointer to output string. 

Repeat 

Move one significant digit from the canonical decimal format to the output string; 

Increment pointer to output string 

Until no significant digits remain. 

Put "E" in output record. 

Increment pointer to output string. 

Convert integer value of exponent for output into a string. 

While exponent characters remain do 

Move one exponent character to the output string; 

Increment pointer to output string. 

Load length byte at beginning of output string (equal to pointer to output string) 
{the length byte is optional - leave it out if output 
string will be incorporated into a text edit record} 

FormatFloat checks the first word of the canonical decimal format to determine 
the sign of the number. If the number is negative, a minus sign is stored in the first 
position of the output string. Then the first significant digit is moved from the 
canonical decimal format record to the output record, followed by a decimal point. 
The remaining significant digits are placed immediately after the decimal point. 
The next character is an 'E'. Finally, the exponent, as converted by NumToStrlng, 
is moved to the output string. 

FormatFloat also places a length byte at the beginning of the output string. If 
the string is to be displayed by Drawstring, then the length byte is required, but if 
the output string is to be incorported into a text edit record, then there should be no 
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length byte. To modify FormatFloat to format without a length byte, do the follow­
ing: 

1. Initialize the output string position pointer to 0 rather than 1 (register D3) 

2. Remove the instruction that loads the lengths byte (MOVE.B D3,(A2)) 

The same holds true for FormatFixed, the fixed point formatter, since it too was 
designed to include a length byte. 

If you look closely at the assembly language code for FormatFloat in Figure 
Listing 12.2, you will see one 68000 instruction that we haven't discussed: EXT. 
EXT stands for "extend"; it takes one operand - a data register. If the instruction is 
word-sized, it will copy, or extend, the value of bit 7 into bits 8 through 15. A 
longword-sized operation will copy the value of bit 15 into bits 16 through 31. 

Why is EXT important? When the exponent is retrieved from the canonical 
decimal format it is word-sized. The operations that compute the final exponent are 
also word-sized. That means that the exponent is stored in DO as $0000XXXX, 
where the X's represent the magnitude of the exponent. A problem arises if the 
word-sized exponent is passed to NumToString. NumToString expects a long­
word operand. It makes a decision as to the sign of the number on the value in bit 
31. The value of bit31, therefore, also determines whether the number in DO will be 
interpreted as true magnitude or two's complement form. 

Consider an exponent of - 3. In its word-sized form it will be stored as 
$0000FFFC. NumToString, though, will pick up the zero in bit 31 and assume that 
the register contains a positive number. The $FFFC will be interpreted as the true 
magnitude of a positive number, or 65533. The solution is to extend the sign bit of 
the word-sized operand (bit 15) into the high-order word of the register. Assuming 
that the contents of DO are $0000FFFC, the instruction: 

EXT.L DO 

will produce a result of $FFFFFFFC. Since bit 31 is set, NumToString will correctly 
interpret the contents of DO as a negative number in two's complement form. 

Formatting Fixed Point Numbers 
Pseudocode for FormatFixed appears in Figure 12.3. Formatting fixed point 
numbers is slightly more complex than formatting floating point numbers, since 
numbers that are all fraction must be handled separately from numbers that have 
both integer and fractional parts. Numbers that are all fraction can be detected by 
subtracting the absolute value of the exponent in the canonical decimal format 
from the number of significant digits; any number that has to have its decimal point 
moved more places to the left than there are significant digits is less than one. 

For numbers that have both integer and fractional parts, the first task is to 
determine how many of the significant digits lie to the right of the decimal point by 
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summing the exponent and the number of significant digits. Though this pro­
cedure may at first seem a bit odd, consider that since the significant digits are 
stored in the canonical decimal format as if they were an integer, the exponent will 
always be negative or zero. 

Figure 12.3 Fixed Point Formatter Pseudocode 

Get number of significant digits from canonical decimal format. 

Get exponent from canonical decimal format. 

Make negative exponent positive. {need absolute value of exponent} 

Subtract absolute value of exponent from number of significant digits. 

If subtraction gives positive result then {number is integer or integer and fraction} 

Else 

Initialize pointer to output string; {0 for no length byte; 1 for length byte} 

Compute number of digits to left of decimal point by adding exponent to number of 
significant digits; 

Get sign of number from canonical decimal format; 

If number is negative then 

Put a negative sign in output string; 

Increment output string pointer; 

While significant digits remain do 

If place for decimal point found then 

Put decimal point in output string; 

increment output st~ing pointer; 

Move on significant digit from the canonical decimal format to the output string; 

Increment output string pointer; 

Load length byte at beginning of output string {optional} 

{number is all fraction} 

Initialize pointer to output string; 

Get sign of number from canonical decimal format; (continued) 
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Figure 12.3 (continued) 

If number is negative then 

Put negative sign in output string; 

Increment output string pointer; 

Put leading zero in output string; 

Increment output string pointer; 

Put decimal point in output string; 

Increment output string pointer; 

Compute number of zeros needed between decimal point and first significant digit as 
absolute value of difference between number of significant digits and exponent 

While zeros remain do 

Put zero in output string; 

Increment output string pointer; 

Repeat 

Move a significant digit from canonical decimal format to output string; 

Increment output string pointer 

Until all significant digits have been moved; 

Load length byte as equal to output string pointer. {optional} 

FormatFixed then checks the sign of the number by looking at the first word of 
the canonical decimal format record and moves a minus sign to the ouput string if 
appropriate. It then begins to move the significant digits, checking after each digit 
is moved to determine if the place to insert the decimal point has been found. The 
decimal point is inserted and the remaining significant digits are transferred. 

In order to format a number that is less than one, FormatFixed must determine 
how many zeros must be inserted between the decimal point and the first signifi­
cant digit. The number of zeros is equal to the difference between the absolute 
value of the exponent from the canonical decimal format and the number of 
significant digits. 

As with formatting fixed point numbers greater than one, the procedure for 
numbers less than one first handles the sign of the number by checking the first 
word of the canonical decimal format record. A minus sign is moved to the output 
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string if appropriate. Then a leading zero and a decimal point are inserted in the 
output string; the leading zero is, of course, not required, but simply creates a 
nicer-appearing number. 

The zeros which come between the decimal point and the significant digits are 
the next characters that are inserted in the output string. Finally, the significant 
digits themselves are moved. 

Like the parser, the formatters are intended as examples. Feel free to enhance 
and modify them to suit the needs of your particular application. 

Questions and 
Problems 

1. What will be stored in register DO after the execution of the following block of 
code: 

LEA # '3000000000' ,AO 
MOVE #1, - (SP) 
_Pack7 ;convert to longinteger 

Hint: consider the maximum quantity that can be stored in a longinteger 
location and what happens when it overflows. 

2. For each floating point number below, indicate the value of the sign, expo­
nent, and significant digits as they would be stored in Macintosh's canonical 
decimal format. 

a. 84867 d. - 48.88 * 1012 
b. 363.985 e. -3.1313 * 10·9 

c. -.00126 f. .011927 * 1043 

3. Convert the following decimal floating point numbers to Macintosh's 80-bit 
extended floating point format. Express your answer in hexadecimal. 

a. 32,767 d. -10.33 * 10-10 
b. -32,767 e .. 003 * 10-s1 
c. 8.99 * 1038 f. - .0101 * 1067 

4. Convert each 80-bit floating point number below to decimal. For base 10 
exponents between 4 and - 4 produce a fixed-point number; otherwise, 
produce a decimal floating point number. 

a. $400A 32AO 0000 0000 0000 
b. $6888 1246 0000 0000 0000 



378 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

c. $001C 32AO 0000 0000 0000 
d. $F010 AAAO 0000 0000 0000 
e. $2004 9684 1000 0000 0000 
f. $FF34 8111 3131 3100 0000 
g. $0001 1246 1444 0000 0000 
h. $3FA147666120 0000 0000 

5. Write a Macintosh-style macro that computes the area of a circle. Pass the 
radius of the circle to the macro in a data register. Return the answer in a 
different data register. 

6. Write a Macintosh-style macro that compares two characters and returns 
whichever character is alphabetically greater. Pass the characters to the 
macro in DO and 01. Return the result in D2. 

7. Using the macros defined in SANEMacs.Txt, write code to perform the 
floating point conversions below. Assume the canonical decimal format is 
stored in the applications globals area under DecimalFormat; storage for 
the result has been allocated as ConvertedNumber. 

a. canonical decimal format to double precision (64-bit) floating point 
b. canonical decimal format to longinteger 
c. canonical decimal format to computational 

8. Using the macros defined in SANEMacs.Txt, write code to perform the 
floating point operations below. A destination operand in extended floating 
point format is stored in the applications globals area as DesExtended. 
Source operands are stored as DoubleSource (64-bit floating point), 
SingleSource (32-bit floating point), lntSource (integer), LongintSource 
(longinteger) an(j CompSource (computational). 

a. add a double-precision source operand to the destination operand 
b. multiply an integer source operand by the destination operand 
c. round the destination operand to an integer 
d. invert the sign of the destination operand 
e. find the cosine of the destination operand 
f. generc~te a random number 

9. Write a block of code that compares two operands in extended floating point 
format and then puts a pointer to the larger operand in AO and a pointer to the 
smaller operand in A1. Use the macros defined in SANEMacs.Txt and 
allocate any necessary data ~tructures. 

10. Write a block of code that will create a format record for a binary-to-decimal 
conversion that will produce a floating point number with eight significant 
digits. 
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11. Write pseudocode that summarizes the procedure for doing a binary to 
decimal conversion, assuming that you are starting with a string of ASCII 
characters. 

12. Using the subroutines Parser and FormatFloat, write a subroutine that: 

A. accepts a pointer to a source operand string in AO and a pointer to a 
destination operand string in A 1; 

B. converts both operands to the extended floating point format; 
C. subtracts the source operand from the destination operand; and 
D. returns the result as a floating point number properly formatted for output 
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IN[)EX PRe6RAM 

The Video Tape Index Program is a specialized database program that main­
tains listings and annotations of tapes. It can also be used to handle, for example, 
audio tapes, records, and video discs. 

To run the program, double-click on its icon from the Finder. It will automatically 
create and open any necessary files. You may then select from the Options menu 
to update the database (entering, changing, deleting), do on-screen data display, 
or print the database. 

The program does have some limitations. Those limitations and suggested 
modifications to overcome them are: 

1. The program will support up to 100 titles. To increase this, increase the size of 
the TapeArray storage area. A 512K Mac will support as many as 500 titles, 
though if that much memory is used for the RAM array, there may not be 
enough left to image a spooled print file. In that case, you must always draft 
print. 

2. Search hits are based only on equality of the search data with data in 
TapeArray. To implement searches on equalities, allow the user to enter a 
symbol for the inequality (e.g., <, > =, etc.) at the beginning of the search 
text. Then add code to the binary and sequential search routines that 
identifies the search criteria and, based on that criteria, makes the appropri­
ate comparisons. 

3. All TapeArray data are stored in a file named TAPE.MASTER. All annota­
tions are stored in ANNOTATIONS. To allow the user to have multiple sets of 
master and annotation files, use the standard "get file" dialog box twice, once 
to select a tape file and once to select an annotation file. 

4. The program will print only the entire file, either with or without annotations. 

380 

To print only selected records, allow the user to enter selection criteria and 
verify each record against that criteria before printing. 
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5. The program will print only in tape-name order. It can be easily sorted to 
change that sequencing. Since the file must be maintained in tape-name 
order for the binary search to work, it is probably best to sort the array to a 
copy in RAM. The same straight-insertion sort that inserts new records can 
be used for that purpose. 

6. Deleting a record from the tape master file does not delete its annotation. 
Deleting annotations requires a routine that completely re-writes the annota­
tion file. It should read sequentially through TapeArray, retrieving each 
record's annotation and writing it out to the new annotation file. 

Listing A.1 Source Code of the Video Tape Index Program 

Include Mao Traps .D 
Include ToolEqu.D 
Include SysEqu.D 
Include QuickEqu.D 
Include PrEqu.Txt 

;Includes <lddresses of ToolBox routines 
;Includes the ToolBox equates 
;Includes the System equates 
;the QuickDr av equates 
;printer equates 

; ----------------------------EQUATES-----------------------------
;-------(must go at the top or program won't asstmblt!)--------------

0 T apeName EQU .0' ;offsets in tape record 
oProductr EQU 3.0' 
oReltastDatt EQU 5.0' 
oRating EQU 54 
o TapeNumbtr EQU 58 
oAnnotNum EQU 62 

; --------------------- Initialize managers ---------------------------
PEA -4(A5) 
_lnitGraf 
_lnitfonts 
_lnWtlindows 
_lnitMenus 
CLR.L -(SP) 
_lnitDialoqs 
_TElnit 

; lnitia lizes QuickDr aw 
;ln;tializes th• Font Manager 
; lnitia lizes the Window Manager 
; lnitia lizes the Menu Manager 
;no restart procedure 
;initializes dialog manager 
; lnitia lizes Text Edit 

; This section gets all eight menus from the resource fil• and makes them 
; available to the program through their handles 

CLR.L -(SP) 
MOVE •1 ,-(SP) 
-6etRMenu 

;Clear space for menu handle 
;This vill be menu 1 
;Apple menu comes in from resource file 

LEA AppleHandle ,A.0' ;Get address for handle 
MOVE.L (SP)+ ,A 1 ;Pull handle off stack 
MOVE .L A 1 ,(Ail) ;Store handle 

(continued) 
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Listing A.1 (continued) 

LEA AppleHandle ,A 1 
MOVE.l (A1),-(SP) 
MOVE.l •'ORVR" ,-(SP) 
_AddResMenu 

CLR.l -(SP) 
MOVE •2,-(SP) 
...GetRMenu 

LE A EditHandle, AS 
MOVE.L (SP)+ ,A 1 
MOVE.L A1 ,(Am 

CLR.L -(SP) 
MOVE •!,-(SP) 
...GetRMenu 

;Plrt handle back on stack 
; ldentffy desk accessories 
;Get desk accessories from system 

;Clear space for handle 
;menu •2 
;Edit menu 

;Get address for handle 
;Pull handle off stack 
;Store handle 

;Cltar space for handle 
;menu S! 
;Options menu 

LEA OptionsH.andle ,AB ;Get address for handle 
MOVE.L (SP)+,A1 ;Pullhindleoffst1ok 
MOVE.L A1 ,(Am ;Store handle 

CLR.L -(SP) 
MOVE •4,-(SP) 
...GetRMenu 

LE A EnterH.andle, AB 
MOVE.l (SP)+ ,A 1 
MOVE.L A 1 ,(Am 

CLR.L -(SP) 
MOVE •s,-(SP) 
...GetRMenu 

LE A Ch.angeH.andle ,AB 
MOVE.L (SP)+,A1 
MOVE.L Al,(~ 

CLR.L -(SP) 
MOVE •6,-(SP) 
...GetRMenu 

LEA DeleteH.andle ,AB 
MOVE.L (SP)+,A1 
MOVE.l Al ,(Am 

CLR.l -(SP) 
MOVE •1,-(SP) 

;Enter menu 

;Change menu 

;Delete menu 

...GetRMenu ;Select menu 

LEA SelectHandle ,AB 
MOVE.L (SP)+ ,A 1 
MOVE.L Al ,(Am (continued) 



CLR.L -(SP) 
MOVE •e,-(SP) 
-GetRMenu 

LEA PrintHandle ,AB 
MOVE.L (SP)+,A1 
MOVE.L A1 ,(All{) 

;Print menu 

; This section gets the seven windows from the resource file and allocates 
; their st or age. They are invisible at this point. 

CLR .L -(SP) ;space for window handle 
MOVE •1,-(SP) ;Annotation window 
PEA Annotation'w'indowStorage(AS) ;address for window record 
MOVE.L •-1,-(SP) ;put windov in front 
...GetNe'\\''w'indow 

LEA Annotation\'t'indowPtr ,AB ;destination address for pointer 
MOVE.L (SP)+ ,A 1 ;get pointer from stack 
MOVE .L A 1 ,( Af/) ;save pointer 

CLR.L -(SP) ;space for windo'\\' handle 
MOVE •6,-(SP) ;Tape Number window 
PE A Numbtr\'/indowStor age( AS) ;address for window record 
MOVE.L •-1,-(SP) ;put window in front 
...GetNtw\'/indow 

LEA Number\'/indowptr ,AB ;destination address for pointer 
MOVE.L (SP)+ ,A 1 ;retrieve pointer from stack 
MOVE.L A 1 ,(Af/) ;save· pointer 

CLR.L -(SP) 
MOVE •:5,-(SP) ;Rating window 
PE A Rating'w'indowStor age( AS) 
MOVE.L •-1,-(SP) 
...GetNew'w'indow 

LE A Rating\'t'indowPtr, AB 
MOVE.L (SP)+ ,A 1 
MOVE .L A 1 ,(Af/) 

CLR.L -(SP) 
MOVE •4 ,-(SP) ;Date window 
PE A Date\'t'indowStor age( AS) 
MOVE.L •-1 ,-(SP) 
...GetNew'w'indow 

LEA Date\'t'indowPtr ,AB 
MOVE.L (SP)+,A1 
MOVE .L A 1 ,( Af/) 

CLR.L -(SP) 
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Listing A.1 (continued) 

MOVE •3, -(SP) ;Producer window 
PE A ProduoerWindowStor age( A5) 
MOYE.L •-1 ,-(SP) 
...GetNewWindow 

LEA ProduoerWindowPtr ,AB 
MOYE.L (SP)+,A1 
MOYE.L Al ,(Ag'J 

CLR.L -(SP) 
MOYE •2,-(SP) ;Tape Name windov 
PE A Name\y'indowStor age( A5) 
MOYE.L •-t ,-(SP) 
...GetNewWindow 

LEA Name\y'indowPtr ,AB 
MOVE.L (SP)+ ,A 1 
MOYE.L A1 ,(Ag'J 

CLR.L -(SP) ;make space for window handle 
MOYE •1,-(SP) ;this is window •1 
PEA Main\y'indowStorage(A5) ;address for window record storage 
MOYE .L •-1 ,-(SP) ;put this window in front 
...GetNew\y'indow ;get window·definitfon from resource file 

LEA MainWindowPtr ,AB ;load destination address for pointer 
MOVE.L (SP)+ ,A 1 ;get pointer from stack 
MOVE .L A 1 ,( Ag'J ;put pointer into 'w'indowPtr 

; --------------- Allocate T extEdit Records ---------------------------­
MOVE.L Name'vtindowPtr ,-(SP) 
....setPort 
CLR.L -(SP) ;clear space for text handle 
PE A NameDestRect 
PE A NameYievRect 
_TENev ;allocate text record 
LEA 
MOVE.L 

Name TextHandle, AB ;get address for text handle 
(SP)+ ,(Ag'J ;take handle from stack and store 

MOVE .L Produoer'w'indowPtr, -(SP) 
....SetPort 
CLR.L -(SP) 
PE A ProducerDestRect 
PE A ProducerViewRect 
_TENew 
LEA ProduoerTextHandlt ,AB 
MOVE.L (SP)+ ,(Ag'J 

MOYE.L DateWindovPtr ,-(SP) 
-5etPort 
CLR.L -(SP) 
PE A DateDestRect 

(continued) 



PE A DateViewRect 
_TENew 
LE A Date TextHandle, AS 
MOVE.L (SP)+ ,(A.0) 

MOVE.L Ratin9WindowPtr ,-(SP) 
..SetPort 
CLR.L -(SP) 
PE A Ratin9DestRect 
PEA Ratin9ViewRect 
_TENew 
LEA RatingTextHandl& ,A}:J 
MOVE.L (SP)+ ,(AflfJ 

MOVE .L Number'w'indowPtr, -(SP) 
..SetPort 
CLR.L -(SP) 
PE A NumberDestRect 
PE A NumberViewRect 
_TENew 
LEA NumberTextHandle ,AS 
MOVE.L (SP)+ ,(A.0) 

MOVE.L Annotation'Ylindo'W'Ptr ,-(SP) 
..Set Port 
CLR.L -(SP). 
PEA AnnotationDestRect 
PE A AnnotationVi1wR1ot 
_TENew 
LEA Annotation T extHandle, AS 
MOVE.L (SP)+ ,(AflfJ 

; ---------------Change cursor to watch for file operations--------------
CLR.L -(SP) ;space for cursor handle result 
MOVE •4 ,-(SP) ;indicates the watch cursor for long wait 
....GetCursor ;get handle to cursor definition 

MOVE.L (SP)+ ,AS 
MOVE .L ( A.0), AZ 
MOVE.L AS,-(SP) 
..SetCursor 

;de-reference the handle to get pointer 
;put pointer on stack 
;set cursor to watch 

; -----------------Load TapeArray or create new file----------------------
LE A 'Tape .Master', AS ;file name 
MOVE .L A.0', ioPar amB1ock+1oFileName( A5) 
MOVE • 1 , ioP ar amBlock+ioDrvNum( A5) ;on drive 1 
MOVE.B •s,ioParamB1ock+ioFileType(A5) ;version number S 
LE A ioP ar amBlock( A5) ,AS 
...Create ;attempt to create file 

CMP •-48,DS ;duplicate file name 
BEQ OpenT~ilt 
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Listing A.1 (continued) 

CMP •B,DfJ 
BEQ Tapefilelnfo 
JMP Filttrror 

T apeFile Info 
LE A 'Tape .Master' ,AS 

;name 
;drive 
;version• 

MOVE .L AS ,fiP ar amBlock+ioFileName( A5) 
MOVE •1,fiParamBlook+ioDrvNum(AS) 
MOVE .B • B ,fiP ar amBlock+ioFile Type( AS) 
MOVE •s ,fiPar amBlock+ioFDirlndex( AS) ;use name and drive to find file 
LEA fiPar amB1ock(A5) ,AS 
-.GetFilelnfo 

MOVE .L it 'TEXT' ,fiPar amBlock+ioFlUsr'w'ds( AS) 
LEA fiParamBlock(AS) ,AB 
....SetFilelnfo 

LE A Tota !Records ,A.0" 
MOVE • .0" ,( Aff'J 
BRA CloseTapeFile 

Open T apeFile 
LEA 'Tape.Master' ,AB 
MOVE .L A.0" ,ioParamBlock+ioFi1eNam1(A5) 
MOVE •1 ,ioParamBlock+ioDrvNum(AS) 
MOVE .B • .0" ,ioParamBlock+ioFile Type( AS) 

;file type 

MOl/E.B •1,ioParamBlock+ioPermssn(AS) ;read only permission 
CLR .L ioP ar amBlock+ioOwnBuf( AS) 
LE A ioP ar amBlock( AS), A.0' 
....Open 

CMP 
BNE 

LEA 
MOVE.L 
MOVE.L 
MOVE 
LEA 
..Read 

MOVE.L 
LEA 
MOVE 
SWAP 
LEA 
MOVE 

LEA 
MOVE.L 
MOYE 
M!..ILU 

•.0,D.0' 
FileError 

DataBuffer(A5) ,AfJ 
AB ,ioParamBlock+ioBuffer(AS) 
•4 ,ioParamBlock+ioByteCount(A5) ;just get tape & annot. totals 
• B, ioPar amBlock+ioPosMode( AS) ;read from mark 
ioParamBlock(A5) ,AS 

DataBuffer( AS) ,DB 
LastAnnotNumb,AS 
D.0',(Aff'J 
D.0' 
TotalRecords ,A.0' 
D.0',(Aff'J 

;get numbers just read 

;recover last annotation number 
;put tot a 1 records in lo"Wer half 

;recover tota 1 records 

Tape Array (AS), A.0' ;destination for tape records 
A.0', ioP ar amBlock+ioBuffer( AS) 
TotalRecords ,DB 
•64 ,DB ;number of bytes to read (continued) 



MOVE.L DB ,ioPar amB1ock+ioB1:1teCount(A5) 
MOVE •B,ioParamB1ock+ie!PosMode(A5) ;read from mark 
LEA ioParamB1ock(A5) ,AB 
...Read 

Close T aptFilt 
LEA ioParamBlock(A5) ,AB 
...Close 

; ----------------- Open Annotations file or create nev file ------------------

LE A 'Annotations', A.0' 
MOVE.L AB, ioPar amBlock+ioFileName( A5) 
MOVE •1,ioParamBlock+ioDrvNum(A5) 
MOYE.B •B, ioParamBlock+ioFile T1:1pe(AS) 
LE A ioP ar amBlock( AS) ,AB 
...Create 

CMP 
BEO 
CMP 
BEO 
JMP 

AnnotF ilt Info 

•-48,0B 
Open AnnotFile 
•B,os 
AnnotFilelnfo 
FileError 

LEA ·Annotations', AB 
MOVE.L AB ,fiParamBlock+ioFileName( AS) 
MOVE •1 ,fiParamBlock+ioDrvNum(AS) 
MOYE.B •s ,fiParamBlook+ioFileT1:1pe(AS) 
MOVE • B, fiP ar amBlock+ioFDir Index( AS) 
LEA fiP ar amBlock( AS) ,AS 
....GetFile Info 

;file name 
;on drive 1 
;version number of .0' 
;point to parameter block 

;dup lie ate file name 

;file successfully created 

MOVE.L •'TEXT' ,fiParamBlock+ioF1UsrWds(A5) 
LEA fiParamBlock(AS) ,AB 
....SetFile Info 

LEA LastAnnotNumb, AB 
MOVE •-1,(A.0) 

OpenAnnotFile 
LE A ·Annotations·, AB 
MOVE .L AS ,ioP ar amBlock+ioFileName(AS) 
MOVE •1 ,ioParamBlock+ioDrvNum(A5) 
MOVE .B •B ,ioParamBlook+ioFile T1:1pe( AS) 
MOVE .B •3 ,ioParamBlock+ioPermssn( A5) 
CLR.L ioPar amB1ock+ioOvnBu1(A5) 
LE A ioP ar amBlock( A5) ,AB 
....Dpen 

cMP •B,os 
BNE FileError 

; load file name 
;load drive number 
;a version number of S 
;a llov reading and vriting 
;use volume access path buffer 

;point to parameter block 

;result code in OS 
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Listing A.1 (continued) 

fiRefNum, A.9' LEA 
MOVE 
BRA 

ioParamB1ock+ioRefNum(A5),(A.0) ;save reference number 
BeginProgr am ;file open and a 11 's we 11 

FileError 
CLR 
MOVE 
CLR.L 
-Alert 
MOVE 

RTS 

-(SP) 
•6,-(SP) 
-(SP) 

(SP)+ ,D.9' 

;returns to Finder 

; --------------Make main window visible and bring to front----------­
BeginProgr am 

MOVE.L MainWindowPtr ,-(SP) 
..Se lect"w'indow 

MOVE.L Main"w'indowPtr ,-(SP) 
..5etPod 
_lnitCursor ;set the cursor to the arrow 

MOVE.L everyEvent,D.9' ;Mask to select all events 
JlushEvents ;Clear the event queue 

JSR MainMenuBar ;Set up and draw main menu bar 

;--------------- Main Event Loop ------------------------

Event ..SystemTask 

CLR -(SP) 
MOVE •-1 ,-(SP) 
PEA EventRecord 
.....GetNextEvent 

MOVE 
CMP 
BEQ 

(SP)+ ,D.9' 
•B,D.9' 
Event 

;update desk accessories 

;Space for boo lean result 
;Mask for keyboard - select all events 
;Place to receive event info 
;Get next event from queue 

;Recover event result 

; If no event, branch to look again 

MOVE "w'hat ,D.9' ;Recover event ID 
CMP •msutDwnEvt,D.9' ;"w'as mouse button pressed? 
BEQ MouseEvent 

CMP •keyDwnEvt,D.9' ;"w'as key pressed? 
BEQ Key Event 

BRA Event ;Look for another event 
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Key Event 
MOYE.B Modify /)B ;Recover modifier bytes 
CMP B •$B1 PB ;'vlas command key pressed 
BEQ KeyboardCommand 

BRA Event 

KeyboardCommand 
CLRl -(SP) ;space for menu item selection 
MOYE Message+2,-(SP) ;put char~ter pressed on stack 
....MenuKey ;figure out what key was pressed 
BR A Selections 

MouseEvent 
CLR -(SP) 
MOYE.L Point,-(SP) 
PE A Which WindowPtr 
J ind'w'indow 

MOYE (SP)+ ,DB 

;Place for "what" result 
;Point = mouse coordinates 
;Push place for window handle of window 
;'vlhere was button pushed? 

;Recover Find\v'indow result 

CMP •inMenuBar ,DB ;Was mouse clicked in menu bar? 
BEQ MenuBar ;Mouse clicked in menu bar 
CMP •inSysWindow ,DB ;Was mouse clicked in system window? 
BEQ SysEvent ;Mouse clicked in system window 

BRA Event ;go back to check for another event 

SysEvent 
PEA EventRecord ;Event record goes on stack 
MOYE .L Which 'w'indowPtr, -(SP) ;Window pointer goes on stack, too 
_sy stemClick ;Sy stem handles tt 

BRA E-vent 

MenuBarCLR.L -(SP) 
MOYE.L Point,-(SP) 
....MenuSe lect 

Selections 
MOYE.L (SP)+ ,D2 

LE A WhichMenu, AB 
MOVE .L D2 ,( A.0) 

CLR -(SP) 
..Hil iteMenu 

;Place for menu ID and Menu item 
;Push mouse coordinates 
;Find out exactly where mouse was clicked 

;Recover result 

;get address for high-order byte of result 
;Store result 

;get set to unhigh light a 11 menus 
;Unhigh light the menus 

MOYE WhichMenu ,DB ;Put menu number in DB 

CMP •1 ,DB ;In apple menu? 
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Listing A.1 (continued) 

BNE 
JSR 

Menu2 
AppleMenu 

Menu2 CMP 
BNE 
JSR 

•2 ,D.0" ; In edit menu? 
Menu3 
EditMenu 

Menu3 CMP 
BNE 
JSR 

•3 ,D.0" ; In options menu? 
NoMenu 
Options 

NoMenu BRA Event 

AppleMenu 
LE A App leHandle, A/6 
MOVE .L ( A.0), -(SP) 
MOVE \v'hatltem,D/6 
MOVE D/6,-(SP) 
PE A Desk AccName 
...Getltem 

CLR -(SP) 
PEA DeskAccName 
....OpenDeskAcc 
MOVE (SP)+ ,D/6 

CLR -(SP) 
JliL iteMenu 

MOVE •9,D/6 
RTS 

EditMenu 
MOVE \v'hatltem ,D.0" 
SUBQ •1,D/6 
CLR -(SP) 
MOVE D/6,-(SP) 
...SysEdit 
MOVE (SP)+ ,01 
MOVE •9,D.0' 
RTS 

Options MOVE Whatltem,D/6 

CMP •1,DflJ 
BNE ltem2 
JSR Enter 

ltem2 CMP 
BNE 
JSR 

•2,D/6 
ltem3 
Change 

;Return to look for another event 

;Get address of menu handle 
;Put menu handle of stack 

;Put 10• of item clicked on stack 
;Push address where desk acc. name should go 
;Figure out which one was selected 

;Leave space for reference number 
;Put address of name on stack 
;Open the desk accessory 
;Pull reference number off stack 

; Unhigh light the menu tit le 

;Figure out which command is selected 
;ad just number to pass to Sy sEdit 
;space for result if there's a problem 
;let system know what item was chosen 
; let the system handle the edit 
;clear problem result from stack 

;Move item selected to D/6 

;Enter new tapes 

;Modify existing tapes 
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ltem3 

ltem4 

ltem5 

ltem6 

Quit 

CMP •3 ,DH 
BNE ltem4 
JSR Delete ;Delete tapes 

CMP •4 ,DH 
BNE ltem5 
JSR Select ;Retrieve info 

CMP •5,oH 
BNE ltem6 
JSR Print ;Print lists 

CMP •6 ,DH 
BEQ Quit ;Exit the proqr am 

MOVE.L Main'w'indowPtr ,-(SP) 
...Se lect'w'indow 

MOVE.L Main'w'indowPtr ,-(SP) 
....SetPort 

PEA Main'w'indowRect 
..EraseRect ;clears out text window prompts 

JSR ReDrawMainMenu ;put options menu back in menu bar 

MOVE.L EditHandle ,-(SP) 
MOVE •t ,-(SP) ;"UnDo" 

..Enable Item ;highlight "UnDo", since systems windows use it 

MOVE.L Main'w'indowPtr ,-(SP) 
PE A 'Video Tape Index' 
....Set'w'Title 

RTS 

CLR.L -(SP) 
MOVE •4,-(SP) 
...Get Cursor 
MOVE.L (SP)+ ,AH 
MOVE .L (Al!), AH 
MOVE.L A.0' ,-(SP) 
....SetCursor 

;Return to main program 

;space for cursor handle 
;ID for watch cursor 

;recover handle 
;de-reference handle to get pointer 

;pointer to cursor definition 
;set "'atch cursor for file operations 

MOVE fiRefNum ,ioPar amBlock+ioRefNum( A5) 
LE A ioPar amBlock( A5), A.0' 
_(;Jose ;close the annotations file 

LEA 'Tape.Master' ,A.0' 
MOVE .L A.0' ,ioParamBlock+iof ileName( A5) 
MOVE •1 , ioParamBlock+ioDrvNum( A5) 
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Listing A.1 (continued) 

MOVE .B •s, ioP ar amBlock+ioFile Type( AS) 
MOVE .B •2 ,ioP ar amBlock+ioPermssn(A5) ;write only permission 
CLR .L ioP ar amBlock+ioOwnBuf( AS) 
LEA ioParamBlock(AS) ,AS 
...Dpen 

CMP 
BNE 
MOVE 
S'v/AP 
AND.L 
MOVE 
MOVE.L 
LEA 
MOVE.L 
MOVE.L 
MOVE 
LEA 
_Write 

•S,DS 
FileError 
TotalRecords ,DS 
D.IJ 
•$FFFF S.IJ.0".0" ,D.0" 
Last AnnotNumb ,D .0" 
D.0" ,Dat.aBuffer( AS) 
D.ataBuffer( A5) ,A.0" 

;put tot.a 1 records in high order bits 
;clear out low order bits 

AS, ioP .ar .amBlock+ioBuff er( AS) 
•4 ,ioP.aramBlock+ioByteCount(A5) ;write just the he.ader info 
•g, ioP ar .amBlock+ioPosMode( AS) ;write .at current position of m.ark 
ioP ar .amBlock( A5), A.0" 

LEA 
MOVE.L 
MOVE 
MULU 
MOVE.L 
MOVE 
LEA 
_'v/rite 

Tape Array (AS), AS ;t.ape .arr .ay loc.ation doubles as buffer 
A.IJ, ioP ar amBlock+ioBuffer( A5) 
Tota !Records ,D.0" 
•64 ,D.0" ;tot.al number of bytes to move 
D.0", ioP .ar .amBlock+ioB\j teCount(AS) 
• S, ioP .ar amBlock+ioPosMode( AS) ;sequenti.a 1 write 
ioP .ar .amBlock( AS), AS 

LE A ioP ar .amBlock( A5), A.0" 
...Close ;close the t.ape master file 
_lnitCursor 

MOVE.L (SP)+ ,D.0" 
RTS 

;re-set to arrow cursor 

;pop subroutine return .address off stack 
;This return goes back to the Finder 

;-------------------- Enter New Titles ----------------------

Enter 
MOVE.L Main'vlindowPtr ,-(SP) 
PE A "Enter New Titles and Annot.ations · 
....Set'v/T it le 

JSR Displ.ayPrompts ;m.ake text window prompts visible 

JSR Displ.ay'vlindows: ;m.ake the text entry windows: visible 

MOVE •3,-(SP) 
-.De leteMenu ;Remove Options menu from menu list 

LEA EnterHandle ,A.0" ;get address for Enter menu's handle 
MOVE.L (A.0'),-(SP) ;put handle on stack (continued) 



CLR -(SP) ;this menu will go at the end of the list 
_lnsertMenu 

..Dr awMenuBar ;Re-draw the menu bar 

MOVE.L EditHandle ,-(SP) 
MOVE #1,-(SP) ;"UnDo" is not supported 
..Disableltem ;make "UnDo" appear dimmed 

EnterEvent 
MOVE.L ActiveTextHandle ,-(SP) 
_TEldle ;make a blinking cursor appear 

_system Task 

CLR -(SP) 
MOVE •-1,-(SP) 
PEA EventReoord 
...OetNextEvent 

MOVE 
CMP 
BEQ 

(SP)+ ,DH 
•JJ,DJJ 
EnterEvent 

;update desk accessories 

;space for boo lean result 
;mask to select all events 
;p laoe to accept event 
;get next event from queue 

;recover event result 

;no event encountered - keep checking 

MOVE 'v/hat,DJJ ;recover event ID 
CMP •mButDwnEvt,DJJ ;mouse button pressed? 
BEQ EnterMouseEvent 

CMP •keyDwnEvt,DH ;was key pressed? 
BEQ EnterKeyEvent 

CMP •aotivateEvt,DJJ ;activate event posted? 
BEQ EnterActivateEvent 

CMP •updatEvt,DJJ ;text window needs updating? 
BEQ EnterUpdateEvent 

BRA EnterEvent ; look for another event 

Enter AotivateEvent 
JSR ActivateText'W'indow 

BRA EnterEvent 

EnterUpdateEvent 
JSR Update T extWindows 

BRA EnterEvent 

EnterKeyEvent 
MOVE.B Modify ,DH ;recover modifier byte 
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Listing A.1 (continued) 

CMP.B •$.0'1,D.0' ;was command key pressed? 
BEQ EnterKeyboardCommand 

MOVE Message+2,-(SP) ;character that was pressed 
MOVE.L ActiveTextHandle,-(SP) ,:·,;;~.:!;;handle to current text record 
_ TEKey ;insert the character 

BRA EnterEvent 

EnterKeyboardCommand 
CLR.L -(SP) ;place for menu item selection 
MOVE Message+2,-(SP) ;put character pressed on stack 
.J"lenuKey 
BRA [nterSelections 

EnterMouseEvent 
CLR -(SP) ;space for "'\'/hat" resu 1t 
MOVE.L Point,-(SP) ;put mouse coordinates on stack 
PEA \v'hich\v'indowPtr ;push pointer to window record 
Jind\v'indow ;where was buttom pressed? 

MOVE (SP)+ ,D.0' ;recover FindWindow result 

CMP •inMenuBar ,D.0' ;was mouse clicked in menu bar? 
BEQ EnterMenuBar ;mouse clicked in menu bar 

CMP •inSys\v'iildow ,D.0' ;was mouse clicked in a desk accessory ? 
BEQ EnterSysEvent 

CMP •inContent,D.0' ;mouse clicked in content area of user window? 
BEQ Enterln\v'indow 

BRA EnterEvent 

EnterSy sEvent 

PEA EventRecord ;pointer to event record goes on stack 
MOVE .L Which \v'indowPtr, -(SP) ;window pointer on stack, too 
....SystemClick ;let the system handle it 

BRA EnterEvent 

EnterMenuBar 
CLR.L -(SP) 
MOVE.L Point,-(SP) 
.J"lenuSe le ct 

EnterSelections 
MO\IE.L (SP)+ ,D2 

;place for menu ID a!'\d menu item 
;push mouse coordinates 
;which menu? 

;recover result 

LE A WhichMenu, A.0' ;get address for high-order byte of result 
MOVE .L D2 ,( A.0) ;store resu 1t 
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CLR -(SP) 
Jill 1teMenu 

;mask to indicate all menus 
;unh1gh11ght the menus 

MOVE WhichMenu,DJJ ;put menu number in DJJ 

CMP •1,DB ;in App le menu? 
BNE EnterMenu2 
JSR AppleMenu 

EnterMenu2 
CMP •2,DB ;in edit menu? 
BN~ EnterMenu4 

JSR EditMenu ;was edit command in system vindow? 
CMP •B,D1 
BNE EnterEverit ;edit was in system vindow and system han~led it 

JSR DoEditing 
BRA EnterEvent 

EnterMenu4 
CMP •4,og 
BNE ~nt9rE v~mt 

EnterMe~uOptions 

MOVE Whatltem,DB ;Move item selected to DB 

CMP •1,DflJ ; Add a nev item? 
BNE Other One 
JSR AddNev Tit le 

OtherOne 
CMP •2,DflJ 
BNE EnterEvent 

;Quit? 
;not what ve vant - look for another event 

MOVE •4,-(SP) 
....DeleteMenu ;remove enter menu 

MOVE •9,DflJ 
RTS ;return to options block 

Enter In Window 

CLR.L -(SP) ;make room for pointer as result 
....FrontWindow ;find out which window is in front (i.e., active) 
MOVE.L (SP)+ ,AB ;recover FrontWindow result 
CMP .L WhichWindowPtr ,AS ;is front window same as clicked window? 
BNE MustAct1vate ;v1nd0w 1s 1nact1ve 

PEA Point 
..GlobalTolocal 

;place where mouse buttom was clicked 
;convert coordinates to local system 
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Listing A.1 (continued) 

MOVE.L Point,-(SP) ;coordinates now local 
BTST •shiftKey ,Modify ;shiftkey bit set? 
SNE D.0' ;set true if shift key was held down 
MOVE.B D.0',-(SP) ;moving byte puts boolean in high order byte 
MOVE.L ActiveTextHandle,-(SP) ;this will be currently active window 
_TEClick 

BRA EnterEvent 

MustActiv ate 
JSR SelectText'IY'indow 
BRA EnterEvent 

AddNewTitle 
; ---------------- assemble an input record -------------------------

JSR ClearNewRecord 
JSR MoveName 
JSR MoveProducer 
JSR MoveDate 
JSR MoveRating 
JSR MoveNumber 

MOVE LastAnnotNumb ,D.0' 
ADDQ •1,D.0' 
MOVE DEJ,NewRecord+o AnnotNum(A'5) 
LE A Last AnnotNumb, A.0' 
MOVE DEJ,(A.0) 

;----------------- Str aight-lnsertion Sort -------------------

Checking 

MOVE 
LEA 
CMP 
BEQ 
SUBQ 

Tota !Records ,D1 
TapeArray(A5),A2 
•.s,D1 
lnsertNew 
•1,D1 

JSR ComputeAddressl 
MOVE.L D1 ,-(SP) 
CLR.'IY' -(SP) 
MOVE .L A3 I -(SP) 
PEA NewRecord(A5) 
MOVE.W •3EJ,-(SP) 
MOVE.W •3.0,-(SP) 
MOVE.W •tEJ,-(SP) 
....Pack6 
MOVE.W (SP)+ ,DEJ 
MOVE.L (SP)+ ,Dl 

CMP •s,DEJ 

;iffirst record, insert immediately 
;otherwise, adjust for record •·s beginning with .0' 

; Address returned in A3 
;save D 1 on stack 
;space for result 
;pointer to record in array 
;pointer to new record 
;char aoters to look at in first string 
;ohar aoters to look at in second string 
; ID for IUMagString 
;invoke the package 
;recover result 
;recover former contents of D 1 

BLE JustBeforelnsert ;found place to insert record 
BGT MoveOld ;move existing record down (continued) 



MoveOld 
MOVE 
ADOQ 
JSR 
JSR 

D1 ,05 
•1,05 
Compute Address I 
Compute Address2 

;record • to move to 
;offset returned 1n A3 
;offset returned in A4 

MO\IE.L A3,AfiJ 
MO\IE.L A4,A1 
MOVE.L •64 ,DfiJ 
..BlockMove 

;source pointer for block move 
;destination pointer for block move 

;64 b11tes will be moved 
;move an entire record 

SUBQ 
CMP 
BEQ 
BRA 

JustBefore Insert 

•1 D1 
•-i 01 I 

JustBefore Insert 
Checking 

ADDQ •1,01 

lnsertNew 
MOVE 
JSR 

D1,05 
ComputeAddress2 

LE A NewRecord(A5) ,AB 
MOVE.L A4,A1 
MO\IE.L •64 ,DB 
..BlockMove 

LEA 
ADDQ 

Tota lRecords, AfiJ 
•1,(Am 

;move back a record 
;does new record go in first position? 

;insert just below where comparing 

;pointer to source (the new record) 
;pointer to destination 
;number of b\I tes to move 
;move a record 

;increment number of records 

;------------------ 'w'rite the annotation direotl\I to the Annotation file ------
LEA AnnotReoMask,AfiJ 
LE A Dat.aB•Jffer( AS), A 1 
MOVE •256 ,DfiJ 
..BlockMove ;fill first half of buffer with blanks 

CLR.L -(SP) ;place for CharsHandle result 
MOVE .L Annotation T extHandle, -(SP) 
_ TEGetT ext ;get handle to text in AnnotaUon record 
MOVE.L (SP)+ ,A2 ;recover CharsHandle 
MO\IE.L (A2) ,AB ;de-referencing handle to get pointer 
LEA DataBuffer(A5),A1 ;text goes into disk buffer 
MO\IE .L Annotation TextHandle, A3 
MOVE.L (A3),A4 
MO\IE teLength(A4),DfiJ 
..BlockMove 

MOVE 
MULU 

•256,DfiJ 
Last AnnotNumb ,OfiJ 

;de-reference again 
;number of characters to move 
;puts annotation in disk output buffer 

;characters per annotation record 
;offset into annotations file 
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Listing A.1 (continued) 

LE A DataBuffer( A5) ,AB 
MOYE .L A.0' ,ioParamBlock+ioBuffer(A5) 
MOVE.L •256,ioParamB1ock+ioByteCount(A5) ;vrite 256 bytes:, blanks: and all 
MOVE •1,toParamBlock+ioPos:Mode(A5) ;offset is: relative to beginning offile 
MOYE.L D.0',ioParamB1ock+ioPos:Offs:et(A5) ;offset in bytes: 
MOYE fiRefNum ,ioParamBlock+ioRefNum(A5) ;file reference number 
LEA ioParamBlock(A5) ,A.0' 
_'y(rite 

JSR Dis:play'y(indovs: 

RTS 

Compute Address: 1 
MOVE.L D1 ,D6 
MULU •64,06 
MOVE.L A2 ,A3 
ADDA.L D6 ,A3 
RTS 

ComputeAddres:s:2 
MOYE.L D5,D7 
MULU •64,D7 
MOYE.L A2,A4 
ADDA.L D7,A4 
RTS 

;clear vindovs: and text edit records: 

;return 

;offset= record• * 64 bytes: 

;---------------------- Change Existing Data --------------------------

Change MOVE.L MainW'indovPtr ,-(SP) 
PE A 'Change Existing Titles: and Annotations:' 
..SetW'Title 

JSR Dis:playPrompts: 
JSR Display 'w'indovs 

MOVE •3, -(SP) 
...De leteMenu ;remove Options menu from menu list 

LEA ChangeHandle ,A.0' ;get address for Change menu's handle 
MOYE.L (AS),-(SP) ;put handle on stack 

CLR -(SP) ;this: menu goes at the end 
_lnsertMenu 

..DravMenuBar 

MOVE.L EditHandle ,-(SP) 
MOVE •1,-(SP) 
...Disibltltem 
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ChangeEvent 
MOVE.L ActiveTextHandle ,-(SP) 
_TE Idle 

....System Task 

CLR -(SP) 
MOVE •-t ,-(SP) 
PEA EventRecord 
-1letNextEvent 

MOVE 
CMP 
BEQ 

(SP)+,D.0" 
•B,D.0" 
ChangeEvent 

;update desk accessories 

;space for boo lean resu 1t 
;mask to select a 11 events 
;place to accept event 
;get an event from the queue 

;recover event record 

;no event - keep looking 

MOVE 'v{hat,D.0" ;recover event ID 
CMP •mButDwnEvt,D.0' ;mouse button pressed? 
BEQ ChangeMouseEvent 

CMP •keyDwnEvt,D.0" ;key pressed? 
BEQ ChangeKeyEvent 

CMP •aotivateEvt,D.0" ;activate event posted? 
BEQ ChangeActivateEvent 

CMP •updatEvt,D.0' ;text window needs updating? 
BEQ ChangeUpdateE vent 

BR A ChangeE vent 

Chan9" Activ ateE vent 
JSR Act iv ate Text'v{indow 
BRA Chan9"Event 

ChangeUpdateEvent 
JSR Update Text'v{indows 
BRA ChangeEvent 

ChangeKey Event 
MOVE .B Modify ,D.0' ;recover modifier byte 
CMP.B •t ,DB ;was command key pressed? 
BEQ ChangeKey boardCommand 

MOVE Message+2,-(SP) 
MOVE.L ActiveTextHandle ,-(SP) 

_TEKey 

BRA ChangeEvent 

ChangeKey boardCommand 
CLR.L -(SP) ;place for menu item selection 
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Listing A.1 (continued) 

MOVE Message+2,-(SP) ;put character pressed on stack 
J'lenuKey 
BR A ChangeSe lections 

ChangeMouseEvent 
CLR -(SP) ;space for '"v/hat" result 
MOVE.L Point,-(SP) ;put mouse coordinates on stack 
PEA Which\v'indowPtr ;push pointer to window record 
..Find\v'indow ;where was mouse button pushed? 

MOVE (SP)+ ,DfJ ;recover Find\v'indow result 

CMP •;nMenuBar ,DfJ ;was mouse clicked in menu bar? 
BEQ ChangeMenuBar 

CMP •insys\v'indow ,DfJ ;was mouse clicked in a desk accessory? 
BEQ ChangeSysEvent 

CMP •;ncontent,DfJ 
BEQ Changeln\v'indow 

BRA ChangeEvent 

ChangeSy sEvent 
PEA EventRecord ;pointer to event record goes on stack 
MOVE.L WhichWindowPtr ,-(SP) ;window pointer goes on stack, too 
--5ystemClick ;let the system handle it 

BRA ChangeEvent 

ChangeMenuBar 
CLR.L -(SP) 
MOVE.L Point,-(SP) 
J'lenuSelect 

ChangeSelecticns 
MOVE.L (SP)+,02 

;place for menu ID and menu item 
;push mouse coordinates 
;which menu? which item? 

;recover result 

LEA WhichMenu,AfJ ;get address for high order byte of result 
MOVE.L 02,(A.0) ;store result 

CLR -(SP) 
Jiil iteMenu 

;mask to indicate all menus 
;unhigh light a 11 menus 

MOVE WhichMenu,DfJ ;put menu number in D.0' 

CMP •1,D.0' ;in Apple menu? 
BNF ChangeMenu2 
JSR App leMenu 
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ChangeMenu2 
CMP 
BNE 

JSR 
CMP 
BNE 

•2,0.0' 
ChangeMenu5 

EditMenu 
•.0',01 
ChangeEvent 

JSR DoEditing 
BRA ChangeEvent 

ChangeMenu5 
CMP 
BNE 

•5 ,D/lJ 
ChangeEvent 

Ch.angeMenuOptions 
MOVE 'llhatltem,D.0' 

;in Edit menu? 

;was edit request in system window? 

;edit was in system window and system handled it 

;in Change menu? 

;move 1tem selected to D.0' 

CMP •1 ,D.0' ;find a record? 
BNE Change ltem2 
MOVE •1 ,ReturnFlag(A5) ;set return flag to show origin of call 
JSR SelectOneTitle ;note: record number returned in RecordCounter(A5) 
BRA ChangeEvent 

Change ltem2 
CMP •2,D.0' ;save .a change? 
BNE Change ltem3 
JSR Changes.ave 
BRA ChangeEvent 

Change ltem3 

CMP •3,D.0' ;abandon a change? 
BNE Change ltem4 
JSR Display Windows ;clear text windows 
BRA ChangeEvent 

Change ltem4 
CMP •4,D.0' ;quit? 
BNE ChangeEvent ;get .another event 

MOVE •5,-(SP) 
....DeleteMenu ;remove Change menu 

MOVE •9,D.0' 
RTS ;return to options block 

Change In Window 
CLR.L -(SP) 
JrontWindow 
MOVE.L (SP)+ ,AJiJ 
CMP.L Which\\"indowPtr ,A.0' 
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Listing A.1 (continued) 

BNE ChangeMustActiv ate 

PEA Point 
....Globa IT oLoca 1 

MOVE.L Point,-(SP) 
BTST •shiftkey ,Modify 
SNE D.0' 
MOVE.B DiJ,-(SP) 
MOVE.L Active T extHandle, -(SP) 

;window is inactive 

_ TEClick ;re-position the cursor 

BRA ChangeEvent 

ChangeMust Activate 
JSR Se leotT exWindow 
BRA ChangeEvent 

ChangeSave 

JSR ClearNewRecord 
JSR MoveName 
JSR MoveProducer 
JSR MoveDate 
JSR MoveRating 
JSR MoveNumber 

LE A Tape Array ( A5), A2 ;start of Tape Array 
LE A RecordCounter, A.0' 
MOVE (A.0),D5 ;record number 
JSR Compute Address2 ;get address ofrecord - returned in A4 

LEA NewRecord(A5) ,A.0' 
MOVE.L A4,A1 

;source of data 
;destination of data 

MOVE.L •62,D.0' 
...BlockMove 

;move only 62 bytes so annotation • isn"t disturbed 

;------------------- re-write the annotation -------------------------------
LE A AnnotRecMask,AiJ 
LE A DataBuffer( A5), A 1 
MOVE •256,DiJ 
...BlookMove ;fill first half of buffer with blanks: 

CLR.L -(SP) ;place for Chars:Handle result 
MOVE .L Annotation TextHandle, -(SP) 
_TEGetText ;get handle to text in Annotation record 
MOVE.L (SP)+ ,A2 ;recover CharsHandle 
MOVE .L ( A2), AfJ ;de-referencing handle to get pointer 
LE A DataBuffer( A5), A 1 ;text goes into disk buffer 
MOVE .L Annotation T extHandle, A3 
MOVE .L ( A3). A4 ;de-reference aqain 
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MOYE teLength(A4) ,D.0' 
....BlockMove 

LEA 
MOY~ 
MULU 
ADD 
LEA 
ADD.L 
MOYE 
MULU 

RecordCounter, A.0' 
(A.0) ,DS 
•64,DS 
•oAnnotNum ,OS 
T~peArray(AS) ,A.0' 
05,A.0' 
(A.0) ,D.0' 
•2s6,D.0' 

DataBuffer( AS), A.0' 

;number of characters to move 
;puts annotation in disk output t>uff"r 

;offset into tape array 

;offset into file 

Alli, ioPar amBlock+ioBuffer( A5) 
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LEA 
MOYE.L 
MOYE.L 
MOYE 
MOYE.L 
MOYE 
LEA 
_\\'rite 

•2s6 ,ioParamBlock+ioByteCount(AS) ;write 256 bytes, blanks and all 
•1 ,ioParamBlock+ioPosMode(A5) ;offset is relative to beginning offile 
D.0',ioParamBlock+ioPos0ffset(A5) ;offset in bytes 
ffRefNum ,ioPar amBlock+ioRefNum( AS) ;file reference number 
ioParamBlock(A5) ,A.0' · · 

JSR Display Windows 

RTS 

; ------------------- Delete Titles -----------------------------------

D~tlt 1'10YE.L Main\rfindowPtr ,-(SP) 
PEA 'Delete Existing Titles' 
....Set'w'Title 

JSR Display Prompts 
JSR Display Windows 

MOYE •3,-(SP) 
...De leteMenu 

LEA DeleteHandle,Al 
MOYE.L (Al),-(SP) 
CLR -(SP) 
_fnsertMenu 

..pr awMenuBar 

MOVE .L EditHandle ,-(SP) 
MOVE •1 ,-(SP) 
....Disable Item 

DeleteEvent 

;remove options menu from menu list 

;get address for Delete menu's handle 
;put handle on stack · 
;this menu will go at the end of the list 
;put Delete menu into menu list 

;re-draw the menu bar 

MOYE.L ActiveTextHandle ,-(SP) 
_TE Idle 
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Listing A.1 (continued) 

...Sy stem Task ;update desk accessories 

CLR -(SP) 
MOVE •-1 ,-(SP) 
PEA EventRecord 

....13etNextEvent ;get next event from queue 

MOVE 
CMP 
BEQ 

(SP)+ ,Df6 
•16,Df6 
DeleteEvent ;no event encountered - keep looking 

MOVE 
CMP 
BEQ 

CMP 
BEQ 

What,Df6 
•mButDwnEvt ,Df6 
De leteMouseEvent 

•keyDwnEvt,Df6 
DeleteKey Event 

CMP •activateEvt,Df6 
BEQ DeleteActivateEvent 

CMP •updatEvt,Df6 
BEQ DeleteUpdateEvent 

;mouse button pressed 

;key pressed 

BRA DeleteEvent ; look for another event 

Delete Act iv ateE vent 
JSR Activate TextWindow 
BRA DeleteEvent 

De leteUpdateEvent 
JSR Update T extWindows 
BRA DeleteEvent 

De leteKeyEvent 
MOVE.B Modify ,Df6 
CMP.B •1,Df6 
BEQ DeleteKeyboardCommand ;command key was held down 

MOVE Message+2,-(SP) 
MOVE.L ActiveTextHandle ,-(SP) 
_TEKey 

BRA DeleteEvent 

De leteKey boardCommand 
CLR.L -(SP) 
MOVE Message+2,-(SP) 
...MenuKey ;figure out what key was pressed 
BR A De letese lections 
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DeleteMouseEvent 
CLR -(SP) 
MOVE.L Point,-(SP) 
PE A 'w'hich'w'indowPtr 
Jind'w'indow ;where was mouse button pushed? 

MOVE (SP)+ ,DB 
CNP •inMenuBar ,DB 
BEQ DeleteMenuBir ;mouse button pushed in the menu bar 

CMP •msys'w'indow ,DB 
BEQ DeleteSysEvent ;mouse button pushed in desk accessory 

CMP •inContent,DB 
BEQ Deleteln'w'indo'W' 

BRA DeleteEvent 

De leteSy sEvent 
PEA EventRecord 
MOVE.L 'w'hich'w'indowPtr ,-(SP) 
..SystemClick ;tet the system handle it 

BRA DeleteEvent 

De leteMenuBar 
CLR.L -(SP) 
MOVE.L Point,-(SP) 
..MenuSelect 

De leteSe lections 
MOVE.L (SP)+ ,D2 

LEA 'w'hichMenu,AB 
MOVEl D2,(A9) 

CLR -(SP) 
JliliteMenu 

MOVE 'w'hichMenu,DB 

CMP •1,DfJ 
BNE DeleteMenu2 
JSR AppleMenu 

De 1eteMenu2 
CMP •2,D.0' 
BNE DeleteMenu6 

JSR EditMenu 
CMP •s,01 

;which menu? 

;unhighlight the menus 

;in Apple menu? 

;in Edit menu? 
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Listing A.1 (continued) 

BNE 
JSR 
BRA 

De 1eteMenu6 
CMP 
BNE 

De leteEvent 
DoEditing 
DeleteEvent 

0 6 ,D.0' 
DeleteEvent 

DeleteMenuOptions 
MOVE 'w'hatltem,D.0' 

;system edit - has already been handled 

;in Delete menu? 
;get another event 

CMP •1,D.0' ;Find a title? 
BNE De 1ete0ption2 
MOVE •1,ReturnFlag(AS) 
JSR SelectOneTitle 
BRA DeltteEvent 

De 1ete0ption2 
CMP 
BNE 
JSR 
BRA 

•2 ,D .0' ;Delete a title? 
De 1ete0ption3 
DoTheDelete 
De leteE vent 

De 1ete0ption3 
CMP 
BNE 
JSR 
BRA 

•3,D.0' ;Cancel a delete? 

Delete0ption4 
CMP 
BNE 

De 1ete0ption4 
Display Windows 
De leteE vent 

•4 ,D .0' ;Quit? 
De leteE vent 

MOVE •6,-(SP) 
.J)eleteMenu ;remove Delete menu from menu list 

MOVE •9 ,D.0' 
RTS 

Delete In 'w'indow 
CLR.L -(SP) 
Jront'w'indow 
MOVE.L (SP)+ ,A.0' 
CMP .L 'w'hich 'w'indowPtr, A.0' 
BNE De leteMust Activate 

PEA Point 
....Globa IT oloca 1 

MOVE.L Point,-(SP) 
BTST •shiftkey ,Modify 
SNE D.0' 

;window is inactive 
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MOVE.B D.0",-(SP) 
MOVE .L Active T extHandle, -(SP) 
_ TEClick ;reposition the cursor 

BRA DeleteEvent 

DeleteMust Activate 
JSR Se lectT extWindow 
BRA DeleteEvent 

DoTheDelete 
LEA TapeArray(A5) ,A2 
LEA RecordCounter ,A.0" 
MOVE (Aa),D5 
ADDQ •t ,D5 
JSR Compute Address2 
MOVE.L A4 ,A.0" 

LE A RecordCounter, A.0" 
MOVE ( Aa) ,D5 
JSR ComputeAddress2 
MOVE.L A4,A1 

MOVE TotalRecords,D.0" 
LEA RecordCounter ,A.0" 
SUB (Aa),D.0" 
MULU •64 ,D.0" 
..BlockMove 

LE A Tota !Records, A.0" 
SUBQ •1,(Ai/) 
JSR Display Windows 

RTS 

;start of Tape Array 

;number ofrecord to be deleted 
;record number of source 

;get address of source 

;address of destination of move 

;number of bytes to move 

;--------------------- Select Titles ----------------------------------

Select MOVE.L MainWindowPtr ,-(SP) 
PE A 'Se le ct Titles and Annotations' 
..SetWTitle 

JSR DisplayPrompts 
JSR Display Windows 

MOVE •3,-(SP) 
...De leteMenu ;remove Options menu from list 

LE A Se lectHandle, A 1 
MOVE.L (A1),-(SP) 
CLR -(SP) 
_lnsertMenu ;put Select menu after a 11 others 

APPENDIX A 407 

(continued) 



408 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Listing A.1 (continued) 

...DrawMenuBar ;re-draw menu bar 

MOVE .L EditHandle, -(SP) 
MOVE •1 ,-(SP) 
...Disable Item 

Se lectE vent 
MOVE.L ActiveTextHandle ,-(SP) 
_TE Idle 

....System Task ;update desk accessories 

CLR -(SP) 
MOVE •-1,-(SP) 
PEA EventRecord 
...GetNextEvent ;get next event from queue 

(SP)+ ,DB 
•s,Ds 

MOVE 
CMP 
BEQ Se lectE vent ;no event encountered 

MOVE What,DS 
CMP •mButDwnEvt,DS 
BEQ Se lectMouseEvent 

CMP •key DW'nEvt ,D 18 
BEQ SelectKeyEvent 

CMP • activ ateEvt ,DH 
BEQ Se le ct Activ ateE vent 

CMP •updatEvt,DH 
fst:Q Se lectUpdateEvent 

BRA Se lectE vent 

Select Act iv ateE vent 
JSR Activate T ext\\"indow 
BRA SelectEvent 

Se lectUpdateEvent 
JSR UpdateText\\"indows 
BRA SelectEvent 

SelectKey Event 
MOVE.B Modify ,DB 
CMP.B •1 pg 

;mouse button pressed 

;key pressed 

;text W'indoW' needs act iv a ting 

;window needs updating 

BEQ SelectKeyboardCommand ;command key pressed 

MOVE Message+2,-(SP) 
MOVE .L Active TextHandle, -(SP) 
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_TEKey 

BRA SelectEvent 

Se lectKey boardCommand 
CLR.L -(SP) 
MOVE Message+2,-(SP) 
..MenuKey ;find out what key was pressed 
BR A Se lectSe lections 

Se lectMouseEvent 
CLR -(SP) 
MOVE.L Point,-(SP) 
PEA WhichWindowPtr 
J' ind'w'indow ;where was mouse button pressed? 
MOVE (SP)+ ,D.0' 

CMP •inMenuBar ,D.0' 
SEQ SelectMenuBar ;mouse buUon pressed in menu bar 

CMP •inSysWindow ,D.0' 
SEQ SelectSysEvent ;mouse button pressed in desk accessory 

CMP •inContent ,D .0' ;mouse button pressed in content area of text window? 
BEQ Select In Windo"w' 

BRA SelectEvent 

Se lectSysEvent 
PEA EventRecord 
MOVE.L WhichWindowPtr ,-(SP) 
_sy stemClick ;let the system handle it 

BRA SelectEvent 

Se lectMenuBar 
CLR.L -(SP) 
MOVE.L Point,-(SP) 
...MenuSelect 

Se lectSe lections 
MOVE .L (SP)+ ,02 

LE A WhichMenu, A.0' 
MOVE.L D2,(A.0) 

CLR -(SP) 
..Hil iteMenu 

MOVE 'w'hichMenu ,D .0' 

CMP •1,D.0' 

j"w'hich menu? 

;unhigh light a 11 menus 
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Listing A.1 (continued) 

BNE SelectMenu2 
JSR AppleMenu 

Se lectMenu2 
CMP •2,D.0' 
BNE SelectMenu7 
JSR EditMenu 

SelectMenu7 
CMP •7 ,DflJ 
BNE SelectEvent 

Se lectMenuOptions 
MOVE yt~atltem ,P.0' 

CMP 
BNE 
MOVE 
JSR 

Se lect0ptions2 
CMP 
BNE 
MOVE 
JSR 

•1,DS' 
Se 1ect0ptions2 
•1,D4 
Select All ·, 

•2,D.0' 
Seltct0ptions3 
•s,D4 
Select All 

;in Apple menu 

;in Edit menu 

;in Select menu? 

;Display a 11? 

;flag says "display amotations" 

;Display all titles? 

;flag says "don"t print annotations" 

Se lect0ptions3 
CMP 
B!iE 
MOVE 
JSR 

•3 ,DS' ;Display one title? 
Select0ptions4 
• S ,Returnflag( AS) ;return flag (ca 11 is from Select) 
Se lectOne Title 

Select0ptions4 
GMP •4 ,DB ;Select by producer 
8NE Se lect~tions5 
MOVE .L ProducerTextHafldle, A 1 
MOVE.L (A 1) ,e,2 
MOYE telength( A2) ,DS 
CMP •S,DfiJ 
BEQ Se lectr;loof 
MOVE •oProdueer ,D4 ;offset into record 
MOYE •2g ,D6 ;number of characters in field 
JSR ClearNewRecord 
JSR MoveProducer 
JSR Sequentia !Search 

Se lect0ptions5 
CMP 
BNE 
MOVE.L 
MOYE.L 

•5 ,b S' ;Select by date 
Select0ptions6 
DateT extHandle ,A 1 
(A1),A2 
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MOVE telength(A2) ,D.0' 
CMP •.0',D.0' 
BEQ SelectGoof 
MOVE •oReleaseDate ,04 
MOVE •4,D6 
JSR ClearNewReoord 
JSR MoveDate 
JSR SequentialSearch 

St 1eot0ptions6 
CMP •6 ,D .0' ;Select by rating 
BNE Select0ptions7 
MOVE .L RatirigT extHandle, A 1 
MOVE.L (A 1) ,A2 
MOVE telength( A2) ,D 1lJ 
CMP •.0',DS 
BEQ SelectGoof 
MOVE •oRating ,D4 
MOVE •4,D6 
JSR ClearNewRecord 
JSR MoveRating 
JSR Sequentia 1Search 

St ltctOptions 7 
CMP •7 ,DJ?J ;Select by tape number 
BNE Se 1ect0ptions8 
MOVE .L NumberTextHandle, A 1 
MOVE.L (A1),A2 
MOVE telength(A2) ,DflJ 
CMP •.0',D.0' 
BEQ Se lectGoof 
MOVE •o T apeNumber ,D4 
MOVE •4,D6 
JSR ClearNewRecord 
JSR MoveNurnber 
JSR Sequentia1$earch 

Se 1ect0ptions8 
CMP 
BNE 

•s,D.0' 
SelectEvent 

MOVE •7 ,-(SP) 
...DeleteMenu 

MOVE •9 ,DflJ 
RTS 

Select ln\v'indow 
CLR.L -(SP) 
..Front'Ylindow 
MOVE.L (SP)+ ,A.0' 

;Quit 
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Listing A.1 (continued) 

CMP .L 'v/hich 'v/indovPtr, AB 
BNE SelectMustActivate 

PEA Point 
...G~lToLooal 

MOIJE.L Point,-(SP) 
BTST •sMflKe\j ,Modif\I 
SNE DB 
MOYE .B D.0', -(SP) 
MOIJE.L AotiveTextHandle,-(SP) 
_TEClick 

BRA SelectEvent 

Se lectMustActivate 
JSR SelectText'vlindov 
BRA SelectEvent 

Select All 
RecordCounter ,ARI' 
•B,(Alf) ;initialize record number 

LEA 
MOYE 
MOYE TotalReoords ,StopNumber(AS) 

AllLoop 
JSR 
CMP 
BNE 
JSR 

Box LEA 
ADDQ 
MOYE 
CMP 
BEQ 
JSR 
CMP 
BEQ 
BRA 

AlmostDone 
JSR 

Cancelled 
JSR 
MOYE 
RTS 

SelectOne Title 

DisplayOneRecord 
•1,D4 
Box 
Display Annotation 
ReoordCounter ,AB 
•1,(Ai/) 
StopNumber(AS) ,DB 
(Ail) ,D.0' 
AlmostDone 
DisplayDialog2 
•2p1 
Cancelled 
Al1Loop 

DisplayDialog3 

Display 'v/indows 
•9pg 

MOIJE.L Name TextHandle ,A 1 
MOYE.L (A1),A2 
MOYE teLength(A2) ,D.0' 
CMP •B,DB 
BEQ SelectGoof 

;displays "find more?· dia1og box 
;did user oanoel? 

;displa\js "find & wait" dia1og box 

;clear text records & windows 

;if text length is .0', no selection criteria 
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JSR 
JSR 

ClearNewRecord 
MoveName ;put selected tape name into NewRecord 

;-----------------------------Binary Search-----------------------------

MidPoint 

LEA 
MOYE 
SUBQ 
MOYE 
SUBQ 
MOYE 

MOYE 
ADD 
DIYU 
AND.L 
CMP 
BLE 
CMP 
BLE 

TapeArray(A5),A2 
Tota lRecords ,D 1 

;start of tape array 

•1,D1 
D1 ,D3 
•1,D3 
•.EJ,D2 

;bottom pointer 

;save last record-1 • for future reference 
;top pointer 

D2 ,DS ;find middle record • 
D1 ,DS 
•2,DS 
•$.0".0".0".0FFFF ,DS ;mask off remainder 
•1,DS 
T opRec ;handle first two records 
D5,D3 
BottomRec ;handle last two records 

JSR Compute Address2 
MOYEM .L D 1-DS /A 1-A2, -(SP) ;save registers 
CLR.W -(SP) ;space for result 
MOYE.L A4, -(SP) ;pointer to record in tape array 
PEA NewRecord(AS) ;pointer to search string 
MOYE.W •3.0',-(SP) ;number of characters to compare 
MOVE .W •3g ,-(SP) ;number of characters to compare 
MOYE.W •1 s,-(SP) 
_pack6 ;invoke the package 
MOYE.W (SP)+ ,D.0' ;recover result 
MOYEM.L (SP)+ ,D1-D5/ A 1-A2 ;restore registers 

CMP •.0',D.0" ;check result of string compare 
;array greater than search string 
;array less than search string 

BGT TopHalf 
BLT BottomHalf 

LEA 
MOVE 
JSR 
MOYE 
CMP 
BEQ 
RTS 

i.:ecordCounter, AJJ 
DS,(A.0) 
DisplayOneRecord ;must be equal - record has been found 
ReturnFlag( AS) ,D.0" 
•s,D.0" ;which module called this routine? 
KeepGoing ;ca 11 was from Se le ct 

;ca 11 was from Change or Delete 

KeepGoing 
JSR 
JSR 
RTS 

Display Dia log3 ;display find & wait dialog box 
DfsplayWindows ;clear text edit windows 

;return to Select menu 
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Listing A.1 (continued) 

BottomHalf 
MOVE 05,02 ;move top pointer down 
BRA NoFindCMck 

TopHalf 
MOVE 05,01 ;move bottom pointer up 

02,D1 
NoFindCheck 

CMP 
BMI 
BRA 

NoFind ;pointers have crossed 
MidPoint ;find new middle record and go again 

NoFind 
JSR 
JSR 
RTS 

DisplayDialog1 ;displays "none found" dialog box 
DisplayWindows ;clear screen and text edit records 

;return to Select menu 

TopRec MOYE 
JSR 
MOYE 
JSR 
BRA 

BottomRec 
MOYE 
JSR 
ADDQ 
MOVE 
JSR 
BRA 

•s,05 
OneCheck 
•1,05 
OneCheck 
NoFind 

03,05 
OneCheck 
•1,03 
03,05 
OneCheck 
NoFind 

OneCheck 
JSR ComputeAddress2 

MOYEM.L D1-D5/A1-A2,-(SP) 
CLR.\\I -(SP) 
MOYE.L A4,-(SP) 
PEA Ne'A'Record(A5) 
MOYE.W •3.EJ,-(SP) 
MOVE.\\' •3.EJ,-(SP) 
MOYE.'W' •1.0,-(SP) 

;space for result 
;pointer to array 
;pointer to search string 
;number of characters to compare 
;number of characters to compare 

..Pack6 ;invoke the package 
MOYE.'W' (SP)+ ,DB ;recover result 
MOYEM.L (SP)+ ,01-05/ A 1-A2 

CMP •s,os 
BNE 'W'rongOne ;correct record not found 

LEA RecordCounter ,AB 
MOYE 05 ,(AS) 
JSR DisplayOneRecord 
MOVE ReturnFlag(A5) ,DB 
CMP •.o pg ;where does this call originate? 
BEQ OneCheckContinues ;call comes from Select 
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MOVE .L (SP)+ ,D .0' 
RTS 

;pull extra subroutine return address from stack 
;call comes from Change or Delete 

OneCheckContinues 
JSR DisplayDialog! 
JSR Display Windows 
MOVE •9 ,D.0' 
MOVE.L (SP)+ ,07 
RTS 

;pop subroutine return address off stack 
;return direct 1y to "Se le ct" routine 

'v/rongOne 
MOVE •9 ,D.0' 
RTS ;return to Top or Bottom 

SelectGoof 
JSR 
MOVE 
RTS 

Nose lectionCriteria 
•9,D.0' 

; -------Sequential Search for equality on Producer, Rating, Date, or Number----­
SequentialSearch 

LEA 
LEA 
ADD.L 
MOVE 
SUBQ 
LEA 
MOVE 

TapeArray(A5),A2 
NewRecord( A5) ,A 1 
D4,A1 
Tota !Records ,D 1 
•1,01 
RecordCounter,A.0' 
•.0',(A!OJ 

Sequentia !Search 1 
LE A RecordCounter, A.0' 
MOVE ( A!O) ,05 
JSR Compute Address2 
ADD.L D4,A4 

;adds offset into NewRecord 

;number of last records 

;initialize record counter 

;finds start of Tape Array record 
;adds offset into TapeArray record 

MOVEM.L D1 /A1 /A2,-(SP) ;save critical n19isters 
CLR.'v/ -(SP) 
MOVE.L A4 ,-(SP) 
MOl/E.L Al ,-(SP) 
MOVE.\\' 06,-(SP) ;characters to compare 
MOVE.'v/ 06 ,-(SP) 
MOVE.\\' •1.0',-(SP) ;IUMagString 
...Pack6 
MOVE.\\' (SP)+ ,D.0' 
MOVEM.L (SP)+ ,01IA1 / A2 ;restore critical registers 

CMP • .0' ,D .0' 
BEQ Sequentia 1Disp lay 

LE A RecordCounter, A.0' 
CMP (A.0') ,Dl 
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Listing A.1 (continued) 

BEQ EndofArray 
ADDQ •1 ,(Ail) 

SequenUa !Display 
MOVEM.L D1/A1/A2,-(SP) 
JSR DisplayOneRecord 
MOVEM.L (SP)+,01 /At /A2 

LEA 
CMP 
BNE 
JSR 
JSR 
MOVE 
RTS 

RecordCounter ,AB 
(Ail) ,01 
Sequentia1Display2 
Disp1ayDialog3 
Display"w'indovs 
•9,DB 

Sequentia1Display2 
MOVEM.L D1 /A1 /A2,-(SP) 
JSR DisplayDialog2 
MOVEM.L (SP)+,Dt/A1/A2 
LEA RecordCounter ,AB 
ADDQ •1 ,(Ail) 
BRA Sequentia1Searoh1 

EndofArr<1y 
JSR 
JSR 

MOVE 
RTS 

Display "w'indovs 
Display Dia log 1 

;last record? 

;--------------------- Print Lists------------------------------------

Print MOVE.L Main"l(indowPtr ,-(SP) 
PEA 'Print Titles and Annotations' 
..Set"w'Title 

MOVE •3,-(SP) 
...DeleteMenu ;remove Options menu from list 

LEA PrintHandle ,A 1 
MOVE.L (A1),-(SP) 
CLR -(SP) 
_lnsertMenu ;put Print menu in list 

MOVE .L EditHandle, -(SP) 
MOVE •B,-(SP) 
...Disableltem ;disable entire edit menu 

..DravMenuBar ;re-drav menu bar 

(continued) 



PrintEvent 
_system Task 

CLR -(SP) 
MOYE •-1,-(SP) 
PEA EventRecord 
....GetNextEvent 

MOVE 
CMP 
BEQ 

(SP)+,08 
•8,0/iJ 
PrintEvent 

;update desk accessories 

;get next event from queue 

;no event encountered - keep checking 

MOVE 
CMP 
BEQ 

\v'hat,08 
•mButOwnEvt,OliJ 
PrintMouseEvent 

;mouse button pressed? 

CMP •keyOwnEvt,08 ;key pressed? 
BEQ PrintKeyEvent 

BRA PrintEvent ;look for another event 

PrintKeyEvent 
MOVE.B Modify ,08 
CMP.B •1,DliJ ;command key pressed? 
BEQ PrintKey boardCommand 

BRA PrintEvent 

PrintKeyboardCommand 
CLR.L -(SP) 
MOVE Message+2,-(SP) 
...MenuKey ;what key was pressed? 
BR A PrintSe lections 

PrintMouseEvent 
CLR -(SP) 
MOVE.L Point,-(SP) 
PE A 'v/hich'v/indowptr 
...find'v/indow ;where was mouse button pressed? 
MO\IE (SP)+ ,DliJ 

CMP •;nMenuBar ,OliJ ;pressed in menu bar? 
BEQ PrintMenuBar 

CMP •1nsys\v'indow ,08 ;pressed in desk accessory ? 
BEQ PrintSysEvent 

BRA PrintEvent 

PrintSysEvent 
PEA EventRecord 
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LlstlngA.1 (continued) 

MOVE.L :Which 'w'indowPtr, -(SP) 
....Sy stemClick ;let the system handle it 

BRA PrintEvent 

PrintMenuBar 
CLR.L -(SP) 
MOVE.L Point,-(SP) 
..MenuSelect ;which menu? 

PrintSelections 
MOVE.L (SP)+,D2 

LEA WhichMenu, AB 
MOVE.L 02,(A.0) 

CLR -(SP) 
..Hil iteMenu ;unlightlight all menus 

MOVE WhichMenu ,DB 

CMP •1,DB ;in Apple menu? 
BNE PrintMenu2 
JSR AppieMenu 

PrintMenu2 
CMP •2,D.0 ;in Edit mtnu? 
BNE PrintMenu8 
JSR EditMenu 

PrintMenu8 
CMP •S,D.0" ;in Print menu? 
BNE PrintEvent 

PrintOptions 
MOVE Whatltem,D.0 

CMP •1,os ;Print all? 
BNE Print0ption2 
JSR PrinV.11 

Print0ption2 
CMP •2,0.0' ;Print a 11 titles? 
BNE PrintOption:: 
JSR PrintA11Titles 

Print0ption3 
CMP •3,DPJ ;quit? 
BNE PrintEvent 

MOVE •S,'-(SP) 
....De leteMenu ;remove Print menu (continued) 



Print All 

MOVE.L EditHandle ,-(SP) 
MOVE •.0',-(SP) 
...Enableltem ;enable entire edit menu 

MOVE •9 ,0.0' 
RTS 

JSR PrOpen ;open printing manager 
MOVE .L •iPrintSize ,0.0' ;size of print record 
..1'ewHandle ;allocate heap space for print record 
LEA PrintRecordHandle ,A2 
MOVE .L A.0' ,( A2) ;store handle to print record 

MOVE.L A.0',""(SP) ;handle back on stack 
JSR PrintDefault ;fill defau It info into print record 

CLR 
LEA 
MOVE.L 
JSR 
MOVE 
BEQ 

-(SP) ;space for boolean result 
PrintRecordHandle, A2 
(A2) ,-(SP) 
Pr JobDia log 
(SP)+ ,D.0' 
PrintF inish 

;draft or spooled? 
;remove result 
;user clicked cance 1 - close up shop 

JSR Print A le rt ;te 11 user to ready the printer 
CLR .L -(SP) ;space for pointer to printer port 
LE A PrintRecordHandle, A2 
MOVE.L (A2),-(SP) 
CLR.L -(SP) ;let system allocate new port 
CLR.L -(SP) ;use system 1/0 buffer 
JSR prOpenDoc ;allocate custom printer port 
MOVE.L (SP)+ ,PrPortPtr(A5) ;retrieve pointer 

MOVE.L 
MOVE.L 
LEA 
MOVE 

• .0' ,D 7 ;initialize a record counter 
• .0' ,D2 ;clear register 
Tota !Records, A.0' 
(A.0) ,02 

AnnotAnotherPage 
JSR AnnotPrintOnePage 
CMP 02,07 
BLT AnnotAnotherPage 
MOVE.L PrPortPtr( A5), -(SP) 
JSR PrCloseDoc ;close the document 
BR A PrintFinish ;all done 

AnnotPrintOneP age 
MOVEM.L 02/D7 ,-(SP) ;save record counter 
MOVE .L PrPortPtr( A5) ,-(SP) ;pointer to printer port 
CLR .L -(SP) ;no sea ling 
JSR PrOpenPage ;open a new page 
MOVEM.L (SP)+ ,02/D7 ;restore record counters 
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Listing A.1 (continued) 

MOVE •monaco, -(SP) 
_Textfont 

MOVE •12,-(SP) 
_TextSize 

MOVEM.L 02/07 ,-(SP) 
PE A Font lnfoStor age( A:5) 
-6etF ont Info 
MOYEM.L (SP)+ ,02/07 
MOYE F ontlnfoStorage+ascent(A5) ,04 
ADD Font lnfoStor age+descent(A5) ,D4 
ADD Font lnfoStor age+ leading( A5) ,04 ;height of line 

LEA 
MOYE.L 
MOYE.L 
MOYE 
SUB 

PrintRecordHandle ,A2 
(A2),A.0' 
(Aft'J,A.0' 
pr lnfo+rPage+bottom(Alt'J ,D6 
F ontlnfoStor age+descent(A5) ,06 

MOVE 04,03 

JSR ClearPrintL ine 
ADD D4,D3 
ADO 04,03 

MOVEM.L 02/07 ,-(SP) 
JSR PrintHead1ngs 
MOVEM.L (SP)+ ,02/07 

AnnotReoordPrint 
MOVE D7,Df6 
MULU •64,0.0' 

;de-reference to get pointer 
;page bottom coordinate 

;one blank 11ne 
;another blank line 

ADD •oAnnotNum,D.0' ;offset into tape array 
LEA TapeArray(A5),A.0' 
ADD D.0',A.0 
MOVE (Aft'J,OS 

MOVE.L •s,-(SP) 
MOVE.L •256,-(SP) 

;start of record in array 
;retrieve annotation number 

MOVE.L Annotation T extHandle, -(SP) 
_ TESetSe lect 
MOVE.L AnnotationTextHandle ,-(SP) 
_TeCut ;clear out the text edit record 

fiRefNum, A.0 LEA 
MOVE 
LEA 
MOVE.L 
MOYE.L 
MOVE 

(Alt'J,ioParamBlook+ioRefNum(A5) ;somehow Printing Manager trashes param block 
DataBuffer( A5) ,A.0' 
AS, ioP ar amBlook+ioBuffer( A5) 
•256, ioP ar amBlock+ioBy teCount( A5) 
•1,ioParamB1ook+ioPosMode(A5) ;read relative to start of file 

(continued) 



MOVE 
MULU 
ADD 
LEA 
ADD.L 
MOVE 
MULU 
MOVE.L 

D7,D5 
•64,DS 
•o AnnotNum ,D5 
Tape Array ( A5), AfiJ 
D5,A.0" 
(A.0) ,D.0" 
8 256,D.0" 
DfiJ, ioP ar amBlock+ioPosOffset(A5) 

LEA ioParamBlock(A5) ,A.0' 
..Read 

LE A DataBuffer( AS), A.0' 
MOVE.L A.0",-(SP) 
MOVE.L •256,-(SP) 
MOVE .L Annotation TextHandle ,-(SP) 
_TE Insert 

CLR.L -(SP) 
MOVE.L AnnotationTextHandle ,-(SP) 
_TEGetText 
MOVE.L (SP)+ ,A6 
MOVE.L (A6) ,A6 

MOVE •4,D1 
LE A Annotation TextHandle, A.0' 
MOVE .L ( A.0) I A.0' 
MOVE.L (A.0) ,A.0' 
MOVE teNLines( A.0) ,D.0' 
ADD DfiJ,Dl 

;number of current record 
;offset into tape array 

; A.0" has location of annot. number 
;retrieve annot. number 

;offset into file 

;annotation now in text edit record 

;9et handle to annotation text 
;retrieve handle 
;de-reference to get pointer 

;get handle 
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;de-reference to get pointer 
;number of lines of text 
;tota 1 number of. lines in this entry 

MULU 
ADD 
CMP 
BLT 
BRA 

D4,D1 
D3,D1 
D6,D1 
Enou9hRoom 
Pa9efinish 

;where you will end up if this is printed 
;will this one fit on the page? 

EnoughRoom 
MOVEM.L D2/D7 ,-(SP) 
JSR PrintOneRecord 
JSR ClearPrintl ine 
ADD D4 ,D3 ;9et a blank line 
MOVEM.L (SP)+ ,D2/D7 

LE A Annotation T extHandle, A2 
MOVE.L (A2) ,A2 
MOVE.L (A2),A2 
MOVE teNLines( A2) ,D.0' ;get number of lines again 
MOVE •.a,D1 
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Listing A.1 (continued) 

Anothtrl ine 
MO\IEM.L 02/04 ,-(SP) 
AOOQ •1,01 

;save 04 (line height) & 02 (total records) 
;look at next line 

Lastline 

CMP 01,0.0' 
BEQ Lastl ine 
SUBQ •1,01 
MOVE •2,04 
MULU 01 ,04 
MOVE telines( A2 ,04) ,02 
AOOQ •2,04 
MOVE tel ines( A2 ,04) ,05 
SUB 02,05 
MOVE •2.0',-(SP) 
MO\IE 03 ,-(SP) 
Jo'loveTo 

;at last line? 

;restore current line • 

;line starts are stored as integers 
; line start of this line 

;start of next line 
;05 has number of bytes 
;annotation is indented 2.0' pixels 

MOVEM.L D.9/D1 /D7/A2/A6,-(SP) 
MO\IE.L A6,-(SP) ;pofnter to text 
MOVE D2,-(SP) ;starting position 
MO\IE 05,-(SP) ;number of bytes to print 
..DraYText 
MOVEM.L 
MOVEM.L 

(SP)+,OS'/01 /07/A2/A6 
(SP)+ ,D2/D4 

ADOQ •1,01 
ADD 04P3 
BRA Anotherline 

;increment line counter 
;space to next line 

SUBQ •1,01 
MO\IEM.L 
MULU •2,01 

;restore current line • 
01 /03/07/ A2/A6,-(SP) 

MOVE telines(A2,01)p5 
MOVE •257 ,D.0' 
SUB 05,0S' 

MOVE •w,-(SP) 
MOVE D3,-(SP) 
Jo'loveTo 

;start of last line 
;to ta 1 characters + 1 

;characters left to print 

MOVE.L A6,-(SP) 
MOVE 05,-(SP) 
MOVE OS',-(SP) 
...Drawl ext 
MOVEM.L 
MOVEM.L 

(SP)+ ,D1 /03/07 / A2/ A6 
~;:;:::-)+ ,02/04 

ADD D4,03 

JSR ClearPrintline 
ADO 04,03 
ADD D4,D3 

;one blank line 
;another blank line 
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AOOQ 
CMP 
BEQ 
BRA 

•1,01 
02,07 
Pagefinish 
AnnotRecordPrint 

;a 11 records printed 

; ------------------- print without annotations -------------------------

Print A 11Titles 
JSR PrOpen ;open printing manager (on disk - not in ROM) 
MOVE .L •iPrintSize ,Of!J ;size of print record 
....Ne'W"Handle ;allocate heap space for print record 
LEA PrintRecordHandle ,A2 
MOYE .L AS,( A2) ;store handle to print record 

MOVEl AS,-(SP) ;put handle on stack 
JSR PrintOefault ;fill default info into print record 

CLR -(SP) ;space for boolean result 
LEA PrintReoordHandle ,A2 
MOVE.L (A2),-(SP) 
JSR. PrJobDialog 
MOYE (SP)+ ,Of!J 
BEQ Printfinish 

;draft or spooled? 
;remove result 
;user clicked CANCEL - must close up shop 

JSR PrintAlert ;tell user to ready the printer 
CLR.L -(SP) ;space for pointer to printer port 
LEA PrintRecordHandle ,A2 
MOYE.L (A2),-(SP) 
CLR.L -(SP) ;let system allocate new port 
CLR.L -(SP) ;use system 1/0 buffer 
JSR prOpenDoc ;allocate custom printer port 
MOYE.L (SP)+ ,PrPortPtr(A5) ;retrieve pointer 

MO\IE.L •s,07 ;initialize a record counter 
MOYE.L •s,02 ;clear out register 
LEA TotalRecords ,Af!J 
MOVE (Ag") ,D2 

AnotherPage 
JSR PrintOnePage 
CMP 02,07 
BLT AnotherPage 
MO\IE.L PrPortPtr(A5),-(SP) 
JSR PrCloseDoc ;close the document 

PrintF inish 
MO\IE.L •f!J,DB ;clear out register 
LEA PrintRecordHandle ,A2 
MOYE.L (A2),Af!J 
MOYE.L (Ag"),AS ;get pointer 
MOVEB prJob+bJDocLoop(Ag") ,DS 
BEQ Closeup ;draft printing was done 
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Listing A.1 (continued) 

Closeup 

LEA 
MOVE.L 
CLR.L 
CLR.L 
CLR.L 
PEA 
JSR 

PrintRecordH.andle ,A2 
(A2) ,-(SP) 
-(SP) ; let spooler set up its own printing port 
-(SP) ;let spooler use its own buffer 
-(SP) ; let spooler use its own device buffer 
PrinterStatusRec( A5) 
PrPicF ile ;image and print spoo 1 file 

MOVE .L PrintRecordHandle, A/J 
...DisposHandle ;free space taken by print record 

JSR 
MOVE 
RTS 

PrClose 
•9 ,D/J 

;close print manager 

PrintOnePage 
MOVEM.L D2/D7 ,-(SP) ;save record counter 
MOVE .L PrPortPtr( A5), -(SP) ;pointer to printer port 
CLR .L -(SP) ;no sea ling 
JSR PrOpenP age ;begin a new page 
MOVEM.L (SP)+ ,D2/D7 ;restore record counter 
MOVE •monaco, -(SP) 
_ T extF ont ;printing will be in monaco font 

MOVE •12,-(SP) 
_TextSize 

MOVEM.L D2/D7,-(SP) 
PEA FontlnfoStorage(AS) ;pointer to font info record 
...GetFontlnfo ;font characteristics needed to calculate end of page 
MOVEM.L (SP)+ ,D2/D7 
MOVE Font lnfoStor age+ ascent( AS) ,D4 
ADD Font lnfoStor age+descent( AS) ,D4 
ADD Font lnfoStor age+ leading( AS) ,D4 ;calculates height of line 

LEA 
MOVE.L 
MOVE.L 
MOVE 
SUB 

MOVE 

JSR 
ADD 
ADD 

PrintRecordHandle ,A2 
(A2) ,A!J 
(Am,Af6 
pr lnfo+rP age+bottom( Afif"J ,D6 
Font lnfoStor age+descent( AS) ,D6 

D4,D3 

ClearPrintL ine 
D4,D3 
D4,D3 

MOVEM.L D2/07 ,-(SP) 
JSR PrintHeadings 
MOVEM.L (SP)+ ,D2/D7 

;get pointer from handle 
;page bottom coordinate 
;ad just for font descent 

;initia 1 vertica 1 position 

;blank line 
;blank line 
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RecordPrint 
MOVEM.L 02/07 ,-(SP) 
JSR PrintOneRecord 
MOVEM.L (SP)+ ,02/07 
AOOQ •1,07 
CMP 02,07 
BEQ PageFinish 
CMP 06,03 

;a 11 records printed - close up shop 
;at bottom of page? 

BLT RecordPrint ;not at bottom - print another record 

PageFinish 
MOVEM.L 02/07 ,-(SP) ;save record counter 
MOVE.L PrPortPtr(A5) ,-(SP) 
JSR PrCloseP age 
MOVEM.L (SP)+ ,02/07 ;restore record counter 
RTS 

ClearPrintline ;fill print line with blanks 
LE A PrintL ineMask, Allf 
LEA Printline(A5) ,A 1 
MOVE •11l12,Dllf 
..BlockMove 

MOVE .B • 1 ss ,PrintL ine( A5) 

RTS 

PrintHeadings 
LE A P ageHead, Allf 
LEA Printline+41lf(A5) ,A 1 
MOVE •11,Dllf 
..BlockMove 
MOVE •llJ,-(SP) 
MOVE D3,-(SP) 
....Move To 
MOVEM.L D1 /D2/D7 ,-(SP) 
PEA Printline(A5) 
...Dr awString 
MOVEM.L (SP)+ ,Dl /D2/D7 
ADD D4,D3 

JSR ClearPrintline 
ADD D4,D3 
ADD D4,D3 

MOVE •4,-(SP) 
_TextFace 
LEA TitleHead,AllJ 
LE A Printline+ 12( A5), A 1 
MOVE •S,D.0" 
..BlockMove 

;set length of print line 

;blank line 
;blank line 

;und.erline the column headings 
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Listing A.1 (continued) 

LEA ProducerHead,A.0 
LEA Printline+44(AS) ,A 1 
MOVE •s,D.0 
LE A DateHead, AS 
LEA PrintL ine+66( A5), A 1 
MOVE •4,DS 
-81ockMove 

LE A RatingHead, A.0 
LE A Printline+ 72( AS) ,A 1 
MOVE •4,og 
..BlockMove 

LEA NumberHead,A.0 
LEA Printline+ 78(AS) ,A 1 
MOVE •4,DS 
..BlockMove 

MOVE •.e,-(SP) 
MOVE D3,-(SP) 
.J1oveTo 
MOVEM.L D1 /D2/D7 ,-(SP) 
PE A Printline( AS) 
..Drawstring 
MOVEM.L (SP)+ ,D1 /D2/D7 

ADD D4,D3 

MOVE •.e,-(SP) ;back to norma 1 
_TextFace 

JSR ClearPrintL ine 
ADD D4 ,D3 ;blank line 

RTS 

PrintOneRecord 
JSR 
LEA 

ClearPrintL ine 
TapeArray(AS),A2 

MOVE.L D7 ,-(SP) 
MOVE D7,DS 
JSR ComputeAddress2 
MOVE.L (SP)+ ,D7 

MOVE.L A4 ,AS 
LE A Printlihe+ 1 2( AS), A 1 
MOVE •36,D!J 
-81ockMove 

MOVE .L A4, AfiJ 
ADD .L •oProducer, A.0 

;save record counter 

;address returned in A4 
;restore record counter 

;start of record 

;moves T apeName 
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LEA Printline+44(A5) ,A 1 
MOVE •2.0',D.0' 
...BlockMove 
MOVE .L A4, A.0' 

;moves Producer 

ADD .L •oRe leaseDate, A.0' 
LEA PrintLine+66(A5) ,A 1 
MOVE •4 ,D.0' 
...BlockMove ;moves Date 

MOYE .L A4, A.0 
ADD .L •oRating, A.0' 
LE A Printliile+ 72( A5) ,A 1 
MOVE •4 ,D.0' 
...BlockMove ;moves Rating 

MOYE.L A4 ,A.0" 
ADD .L •o T apeNumber, A.0' 
LE A PrintL ine+ 78( A5), A 1 
MOYE •4,D.0' 
...BlockMove ;moves Tape Number 

MOYE •S",-(SP) 
MOVE D3,-(SP) 
J1oveTo 
MOVEM.L Dl /D2/D7 ,-(SP) 
PEA Printline(A5) 
....Drawstring 
MOYEM.L (SP)+ ,DI /D2/D7 

ADD D4,D3 

RTS 

Print Alert 
CLR 
MOYE 
CLR.L 
_Alert 
MOVE 

RTS 

-(SP) 
•5 ,-(SP) 
-(SP) 

(SP)+ ,DfiJ 

;space for integer result 
;alert ID 
;use st~ndard filter procedure 

;pop result 

; ----:------------------- Set up the mam menu -------------------------

MainMenuear 
LEA 
MOYE.L 
CLR 

AppleHandle, A 1 
(A 1),-(SP) 
-(SP) 

_JnsertMenu 

LE A EditHandle , A 1 
MOVE.L (A 1) ,-(SP) 

;Put handle on stack again 
;shows that this menu is after a 11 others 
;Puts menu in list 

;Put handle on stack again 
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Listing A.1 (continued) 

CLR -($P) 
_lnsertMenu 

ReDr awMainMenu 
LE A Options Handle, A 1 

;Put menu after the first one 
;Put menu in list 

MOVE.L (Al),-(SP) ;Put handle on stack again 

CLR -(SP) ;This menu is after the other two 
_lnsertMenu ;Put menu in list 

....Dr awMenuBar 
RTS 

;Dr aw the menu bar 

; ------------- Make the text windows visible --------------------------

Display Windows 
MOVE.L Annotation'W'indowPtr ,-(SP) 
....5e lect'W'indow 
MOVE.L Annotation'W'indowPtr ,-(SP) 
...SetPort 
MOVE.L #.IJ,-(SP) 
MOVE.L •256,-(SP) 
MOVE.L AnnotationTextHandle ,-(SP) 
_ TESetSe le ct ;select a 11 the text in the window 
MOVE.L AnnotationTextHandle ,-(SP) 
_ TECut ;cut out text from previous use 

MOVE .L AnnotationWindowptr ,-(SP) 
SF -(SP) 
....HiliteWindow ;get rid of high lighting in this window 

MOVE.L NumberWindowPtr ,-(SP) 
...Se lect'vfindow 
MOVE.L NumberWindowPtr ,-(SP) 
...SetPort 
MOVE.L •s,-(SP) 
MOVE.L 2.0',-(SP) 
MOVE .L NumberT extHandle, -(SP) 
_TESetSelect 
MOVE .L NumberT extHandle ,-(SP) 
_TECut 

MOVE .L RatingWindowPtr, -(SP) 
...Se lectWindow 
MOVE.L Rating'vfindowPtr ,-(SP) 
...Set Port 
MOVE.L •.1J,-(SP) 
MOVE.L •4 ,-(SP) 
MOVE.L RatingTextHandle ,-(SP) 
_TESetSelect 
MOVE .L RatingTextHandle, -(SP) 
_TECut 
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MOVE.L Date'vi'indowPtr ,-(SP) 
-8e lectWindow 
MOVE.L Date'vi'indowPtr ,-(SP) 
-8etPort 
MOVE .L •g ,-(SP) 
MOVE.L •5,-(SP) 
MOVE.L DateTextHandle ,-(SP) 
_TESetSe lect 
MOVE.L DateTextHandle ,-(SP) 
_TECut 

MOVE .L ProducerWindowPtr, -(SP) 
-8e lectWindow 
MOVE.L ProducerWindowPtr ,-(SP) 
-8etPort 
MOVE.L •g,-(SP) 
MOVE.L •22,-(SP) 
MOVE.L ProducerTextHandle ,-(SP) 
_ TESetSelect 
MOVE.L ProducerTextHandle ,-(SP) 
_TECut 

MOVE.L $.0'.0'.0'.0'.0'1.0'B ,D.0' ;mask to remove activate events 
....FlushE vents 

MOVE.L NameWindowPtr ,-(SP) 
-8e lectWindow ;name window is activated at start 
MOVE.L NameWindowPtr ,-(SP) 
-8etPort 
MOVE.L a .0', -(SP) 
MOVE.L •32,-(SP) 
MOVE.L NameTextHandle ,-(SP) 
_TESetSelect 
MOVE.L NameTextHandle ,-(SP) 
_TECut 

LEA Active T extHandle, A.0' 
MOVE .L Name TextHandle ,(Aft) ;for TE Idle 

RTS 

; ----------------- Select the appropriate text window -------------------­
Se lectT extWindow 

LE A Active Text Handle, A 1 
MOVE .L Which WindowPtr, A.0' 

CMP.L 
BNE 
MOVE.L 
BRA 

Name WindowPtr, A.0' 
Select! 
NameTextHandle ,(A 1) 
Select6 

;check to idenUfy specific window 

;pass appropriate handle to TE Idle 
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Listing A.1 (continued) 

Select! CMP.L 
BNE 
MOVE.L 
BRA 

ProducerW'indowPtr ,AJJ 
Select2 
Producer T extHandle ,(A 1 ) 
Select6 

Se 1ect2 CMP .L 
BNE 
MOVE.L 
BRA 

Date \v'indowPtr , A!lJ 
Select3 
Date T extHandle ,(A 1 ) 
Select6 

S1.> 1ect3 CMP .L 
BNE 
MOVE.L 
BRA 

Select4 CMP.L 
BNE 
MOVE.L 
BRA 

RatingW'indowPtr .AJJ 
S1.>lect4 
Rating Text Handle,( A 1 ) 
Select6 

NumberW'indowPtr, A!lJ 
Selects 
NumberT extHandle ,(A 1 ) 
Select6 

Select5 CMP.L Annotation'w'indowPtr ,A.0' 
BNE Select 7 ;not a text window 
MOVE .L Annotation T extHandle ,(A 1 ) 

Select6 MOVE.L W'hichW'indowPtr ,-(SP) 
-5e lect'y{indow 

Select7 RTS 

; --------- Handle activate events in text windows ------------------­
Activate TextW'indow 

MOVE .L Message, A.0' ;get pointer to window which posted event 
MOVE Modify ,D!lJ 
BTST • activeflag ,D !lJ ;activate bit set? 
BEQ De Activate ;if not set, window was deadivated 

Activatel 
CMP .L NameW'indowPtr ,A!lJ ;name window event? 
BNE Activate2 
MOVE.L NameTextHandle ,-(SP) 
_TE Activate 
BRA Activate99 

Activate2 
CMP .L ProducerWindowPtr , A!lJ 
BNE Activate3 
MOVE.L ProducerTextHandle ,-(SP) 
_TE Activate 
BRA Activate99 

Activate! 
CMP .L DateW'indowPtr ,AJJ 
BNE Activate4 
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MOVE.L DateTextHandle ,-(SP) 
_TE Activate 
BRA Activate99 

Activate4 
CMP .L RatingWindowPtr ,AH 
BNE Activates 
MOVE.L RatingT extHandle, -(SP) 
_TE Activate 
BRA Activate99 

Activates 
CMP.L NumberWindowPtr ,AH 
BNE Activate6 
MOVE.L NumberTextHandle ,-(SP) 
_TE Activate 
BRA Activate99 

Activate6 
CMP .L Annotation \'/indowPtr, AH 
BNE Activate98 ;not one of our text windows 
MOVE .L Annotation T extHandle ,-(SP) 
_TE Activate 

Activate99 
MOVE .L Message, -(SP) ;make this the current gr afport 
--5etPort 

Activate98 
RTS 

De Activate 
CMP .L NameWindowPtr, AH 
BNE De Activate 1 
MOVE.L NameTextHandle ,-(SP) 
_T eDeActivate 
RTS 

De Act iv ate 1 
CMP .L Producer'w'indowPtr, AH 
BNE DeActivate2 
MOVE.L ProducerTextHandle ,-(SP) 
_ TeDe Activate 
RTS 

DeActivate2 
CMP .L DateWindowPtr ,AH 
BNE De Activate! 
MOVE .L Date TextHandle ,-(SP) 
_ TeDeActivate 
RTS 
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Listing A.1 (continued) 

DeActivate3 
CMP .L RatingWindowPtr, AIJ 
BNE De Activ ate4 
MOVE .L RatingT extHandle ,-(SP) 
_ TeDe Activate 
RTS 

DeActivate4 
CMP .L NumberWindowPtr ,AIJ 
BNE De AcUv ate5 
MOVE.L NumberTextHandle,-(SP) 
_TeDeActivate 
RTS 

De Activ ate5 
CMP .L AnnotationWindowPtr ,AIJ 
BNE DeActivate6 ;not a text window 
MOVE .L Annotation T extHandle ,-(SP) 
-TeDe Activate 
RTS 

DeActivate6 
RTS 

; ------------------------ Update Text Windows -------------------------­
; This updates all windows, regardless of whioh one was active 
Update T ext'W'indows 

MOVE.L MainWindowPtr ,-(SP) 
..BeginUpdate 
MOVE.L Main'W'indowPtr ,-(SP) 
....SetPort 
PEA MainWindowRect 
....EraseRect 
JSR Display Prompts 
MOVE.L MainWindowPtr, -(SP) 
....EndUpdate 

MOVE .L NameWindowPtr, -(SP) 
..BeginUpdate 
MOVE.L NameWindowPk ,-(SP) 
....SetPort 
PE A NameViewRect 
....EraseRect 
PE A NameViewRect 
MOVE .L Name TextHandle ,-(SP) 
_TEUpdate 
MOVE.L NameWindowPtr,-(SP) 
....EndUpdate 

MOVE.L Producer'W'indowPtr ,-(SP) 
..BeginUpdate 

;re-draw window·s contents 
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MOVE.L Producer'w'indowPtr ,-(SP) 
....SetPort 
PE A ProducerViewRect 
....Era:s:eReot 
PEA ProducerViewRect 
MOVE.L ProducerTextHandle ,-(SP) 
_TEUpdate 
MOVE.L ProduoerWindowPtr ,-(SP) 
....EndUpdate 

MOVE.L DateWindowPtr ,-(SP) 
...BeginUpdate 
MOVE.L Date'w'indowPtr ,-(SP) 
...Set Port 
PE A DateViewRect 
....ErueReot 
PEA DateViewRect 
MOVE .L Date TextHandle ,-(SP) 
_TEUpdate 
MOVE.L DateWindowPtr ,-(SP) 
....EndUpdate 

MOVE .L RatingWindowPtr, -(SP) 
...BeginUpdate 
MOVE.L RatingWindowPtr ,-(SP) 
...Set Port 
PEA RatingViewRect 
....ErueReot 
PEA Rat1ngViewRect 
MOVE.L RatingTextHandle ,-(SP) 
_TEUpdate 
MOVE.L Rating'w'indowPtr ,-(SP) 
....EndUpdate 

MOVE.L NumberWindowPtr ,-(SP) 
...BeginUpdate 
MOVE.L NumberWindowPtr ,-(SP) 
....SetPort 
PE A NumberViewRect 
....Era:s:eReot 
PE A NumberViewRect 
MOVE.L NumberTextHandle ,-(SP) 
_TEUpdate 
MOVE.L NumberWindowPtr, -(SP) 
....EndUpdate 

MOVE.L Annotat1onW'1ndowPtr ,-(SP) 
...BeginUpdate 
MO\IE.L AnnotationW'indowPtr ,-(SP) 
....SetPort 
PEA AnnotationViewRect 
....Era:s:eReot 
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Listing A.1 (continued) 

PE A AnnotationViewRect 
MOVE .L Annotation T extHandle, -(SP) 
_TEUpdate 
MOVE.L Annotation'WindowPtr ,-(SP) 
...EndUpdate 

RTS 

;----------------- Display prompts for text entry windows --------------­
DisplayPrompts 

MOVE •sysFont,-(SP) 
_TextFont 

PEA Name Title 
MOVE.L •11,-(SP) 
PE A NamePromptBox 
MOVE •-t ,-(SP) 
_TextBox 

PEA Producer Title 
MOVE.L •22,-(SP) 
PEA ProducerPromptBox 
MOVE •-1 , -(SP) 
_TextBox 

PEA Date Title 
MOVE.L •17 ,-(SP) 
PE A DatePromptBox 
MOVE •-1 , -(SP) 
_TextBox 

PEA Ratin9Title 
MOVE.L •s ,-(SP) 
PE A Ratin9PromptBox 
MOVE •-1,-(SP) 
_TextBox 

PEA Number Title 
MO\IE.L •13,-(SP) 
PE A NumberPromptBox 
MOVE •-1,-(SP) 
_TextBox 

RTS 

;text to print 
;number of characters to print 
;rectan9 le where text should be printed 
;to right justify text 

; -------------- Do ttie text edit functions ----------------------­
DoEditing 

MOVE Whatltem,D.0" ;9et set to fi9ure out what was selected 

CMP •3 ,D.0" ;cut? 
BNE DoEditing 1 
MOVE.L ActiveTextHandle ,-(SP) 
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_TECut 
RTS 

D0Editin91 
CMP •4 ,D.0' ;copy? 
BNE D0Editin92 
MOVE.L ActiveTextH.andle ,-(SP) 
_TECopy 
RTS 

D0Editin92 
CMP •5 ,D .0' ;p.aste? 
BNE DoEditing3 
MOVE.L ActiveTextH.andle ,-(SP) 
_TEP.aste 
RTS 

D0Editin93 
CMP •6 ,D.0' ;cle.ar? 
BNE D0Editin94 ;not .a reco9niz.ab le item 
MOVE.L ActiveTextH.andle ,-(SP) 
_TEDelete 

DoEditin94 
RTS 

; ----------------- Cle.ar the NewRecord stor .age .are.a ----------------------­
Cle.arNewRecord 

LE A NewRecordM.ask, A.0' ;a II blanks 
LE A NewReoord( A5), A 1 
MOVE.L •64 ,p.0' 
...BlockMove 
RTS 

; --------------- Move dat.a from text edit records to dat.a record ----------­
MoveN.ame 

CLR.L -(SP) ;space for CharsH.andle result 
MOVE.L N.ame TextHandle ,-(SP) 
_TEGetText ;get handle to text in N.ame edit record 
MOVE.L (SP)+ ,A2 ;recover Ch.arsH.andle 
MOVE.L (A2) ,A.0' ;source pointer for block move 
LE A NewRecord+o T .apeName( A5), A 1 ;destination of block move 
MOVE .L N.ame TextH.andle ,A3 
MOVE.L (A3) ,A4 
MOVE teLength( A4) ,D.0' ;number of ch.ar acters to move 
...BlockMove 
RTS 

MoveProducer 
CLR.L -(SP) 
MOVE.L ProducerTextHandle ,-(SP) 
_TEGetText 
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Listing A.1 (continued) 

MOVE.L (SP)+ ,A2 
MOVE.L (A2),AS 
LEA· NewRecord+oProducer(A5) ,A 1 
MOVE .L ProducerT extHandle, A3 
MOVE.L (A3) ,A4 
MOVE teLen9th( A4) ,DB 
..Block Move 
RTS 

MoveDate 
CLR.L -(SP) 
MOVE.L DateTextHandle ,-(SP) 
_TEGetText 
MOVE.L (SP)+ ,A2 
MOVE.L (A2),AS 
LE A NewRecord+oReleaseDate( AS), A 1 
MOVE.L DateTextHandle ,A3 
MOVE.L (A3),A4 
MOVE teLen9th( A4) ,D .0" 
...BlockMove 
RTS 

MoveRatin9 
CLR.L -(SP) 
MOVE.L Ratin9TextHandle ,-(SP) 
_TEGetText 
MOVE.L (SP)+ ,A2 
MOVE .. L ( A2), AS 
LE A NewRtcord+oRatin9(AS) ,A 1 
MOVE.L Ratin9TextHandle ,A3 
MOVE.L (A3),A4 

. MOVE teLen9th(A4) ,DB 
...BlockMove 
RTS 

Mov1Number 
CLR.L -(SP) 
MOVE.L NumberTextHandle ,-(SP) 
_TEGetText 
MOVE.L (SP)+ ,A2 
MOVE .L ( A2), A.0" 
LE A NewRecord+o TapeNumber( AS), A 1 
MOVE.L NumberTextHandle ,A3 
MOVE.L (A3) ,A4 
MOVE teLen9th(A4) ,D.0" 
...BlockMove 
RTS 

; --------------- Alert box processing for no selection criteria-----------­
NoSe lectionCriteria 

CLR -(SP) ;space for alert Item result 
MOVE •4 ,-(SP) ;alert item ID (continued) 



MOVE.L •g,-(SP) 
_Alert 

;use standard filter procedure 

MOVE (SP)+ ,DB ;pull result from stack 
RTS 

; ----------------Display one record from array ----------------------­
Display OneRecord 

JSR Display'\'/indows ;clears out text edit records 
LE A RecordCounter, A.0' 
MOVE ( A.0) ,DS 
MULU •64,D5 

MOVE.L Name'\'/indowPtr ,-(SP) 
...Set Port 
LEA TapeArray(A5),A.0' 
ADD D5,A.0" 
MOVE.L A.0',-(SP) 
MOVE.L •3.0",-(SP) 
MOVE.L NameTextHandle ,-(SP) 
_TE Insert 

MOVE.L Producer\\"indowPtr ,-(SP) 
...SetPort 
LEA TapeArray(A5) ,A.0" 
ADD D5,A.0' 
ADD.L •oProducer ,A.0" 
MOVE.L A.0',-(SP) 
MOVE.L •w,-(SP) 

;pointer to text 
;•of characters to get 
;edit record which will get characters 
;incorporate text into record 

MOVE.L ProducerTextHandle,-(SP) 
_TE Insert 

MOVE.L Date\\"indowPtr ,-(SP) 
...SetPort 
LEA TapeArray(AS),A.0" 
ADD D::S,AB 
ADD.L •oReleaseDate ,A.0' 
MOVE.L A.0',-(SP) 
MOVE.L •4,-(SP) 
MOVE .L Date TextHandle, -(SP) 
_TE Insert 

MOVE.L Rating'\'/indowPtr ,-(SP) 
...SetPort 
LEA TapeArray(AS) ,A.0" 
ADD D5,A.0' 
ADD.L •oRating,A.0" 
MOVE.L A.0',-(SP) 
MOVE.L •4 ,-(SP) 
MOVE.L RatingTextHandle ,-(SP) 
_TE Insert 
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Listing A.1 (continued) 

MOVE.L Number"w'indowPtr ,-(SP) 
...SetPort 
LEA TapeArray(AS) ,A.0' 
ADD DS,A.0' 
ADD .L •o T apeNumber, A.0' 
MOVE.L A.0',-(SP) 
MOVE.L •4,-(SP) 
MOVE .L NumberTextHandle, -(SP) 
_TE Insert 

RTS 

; ------------- Retrieve and display an annotation -----------------------­
Display Annotation 

LEA DataBuffer(AS),A.0' 
MOVE .L A.0', ioP ar amBlock+ioBuffer( A5) 
MOVE .L •2s6, ioP ar amBlock+ioBy teCount( AS) 
MOVE •1,ioParamBlock+ioPosMode(AS) ;read relative to start of file 

LEA 
MOVE 
MULU 
ADD 
LEA 
ADD.L 
MOVE 
MULU 
MOVE.L 
LEA 
...Read 

RecordCounter, A.0' 
(Ag'J,DS 
•64,DS 
•oAnnotNum ,DS 
TapeArray(AS) ,A.0' 
DS,A.0' 
(Ag'J,D.0' 
•2s6,D.0' 
D.0', ioP ar amBlock+ioPosOffset( AS) 
ioParamBlock(A5) ,A.0' 

MOVE.L AnnotaUon"w'indowPtr ,-(SP) 
...SetPort 

LE A DataBuffer( AS) ,A.0' 
MOVE.L A.0',-(SP) 
MOVE.L •256 ,-(SP) 
MOVE.L AnnotationTextHandle ,-(SP) 
_TE Insert 

RTS 

;number of current record 
;offset into tape array 

; A.0' has location of annot. number 
;retrieve annot. number 

;offset into file 

; -----------Display and handle "'Find and Wait"' dialog box--------------­
Display Dia log3 

CLR.L -(SP) ;space for dialog pointer 
MOVE •3,-(SP) ;dialog ID 
PEA Dialog'Vt'indRec(A5) ;storage for dialog record 
MOVE.L •-t ,-(SP) ;put this dialog box in front 
....GetNewDia log 

MOVE.L (SP)+ ,Dialog'Vt'indPtr(A5) ;recover dialog pointer 
(continued) 



Dialog3a 

MOVE.L Dialog\v'indPtr(AS),-(SP) 
...SetPort 

MOVE.L •.0',-(SP) 
PE A \v'hat Item 
....Moda lDia log 

MOVE 
CMP 
BNE 

\v'hatltem,D.0' 
•okButton ,D.0' 
Dialog3a 

;use standard event filter 
;place to put number of item selected 
;let system monitor dialog box 

;OK button pressed? 

MOVE.L Dialog\v'indPtr(AS) ,-(SP) ;put dialog pointer on stack 
_c1oseDialog ;remove dialog 

RTS 

; ------------Display and handle "Find More?" dialog box---------------­
Display Dia log2 

Dialog2a 

Dtalog2b 

CLR .L -(SP) ;space for dialog pointer 
MOVE •2,-(SP) ;for dialog box •2 
PEA Dialog\'/indRec(AS) ;storage for dialog record 
MOVE.L •-1 ,-(SP) ;put dialog box in front 
-6etNewDia log 

MOVE.L (SP)+ ,Dialog\'/indPtr(AS) ;recover pointer 

MOVE.L Dialog\'/indPtr(AS),-(SP) ;put back on stack 
...SetPort 

MOVEl •.0',-(SP) 
PEA \'/hatltem 
....Moda !Dialog 

MOVE \'/haUtem,07 
CMP •okButton,07 
BEQ Dialog2b 

CMP •cance1Button,D7 
BNE Dia 1og2a 

;use standard filter procedure 
;space for item that was pressed 

MOVE .L Dialog\'/indPtr( AS), -(SP) 
_cioseDia log 

RTS ;if cancelled, returns to Select menu control 

; ------------Display and handle "No Find" dialog box-------------------­
DisplayDialog 1 

CLR.L -(SP) 
MOVE •1,-(SP) 

;space for dialog pointer 
;this is dialog box 1 
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Listing A.1 (continued} 

PEA Dialog\v'indRec(A5) ;storage for dialog record 
MOVE.L •-1 ,-(SP) ;put dialog box in front 
.JJetNewDia log ;get the dialog box 

MOVE.L (SP)+ ,Dialog\v'indPtr(A5) ;recover pointer 

MOVE.L Dialog\v'indPtr(A5) ,-(SP) ;put back on stack 
...SetPort 

Dialog1 a 
MOVE.L •g,-(SP) 
PE A What Item 
J1oda lDia log 

MOVE Whatltem,D.0' 
CMP •okButton ,DfJ 
BNE Dialog1 a 

;use standard filter procedure 
;space for item that was pressed 

MOVE.L Dialog\v'indPtr(A5) ,-(SP) 
.£1oseDia log 

RTS 

; ----------Pointers and storage for the seven window records--------------

Main 'v/indowPtr DC.L .0' 
Name\v'indowPtr DC.L .0' 
ProducerWindowPtr DC.L fJ 
Date\v'indowPtr DC.L fJ 
RatingWindowPtr DC.L fJ 
NumberWindowPtr DC.L .0' 
Annotation\v'indowPtr DC.L .0' 

MainWindowStor age DS WindowSize 
NameWindowStor age DS WindowSize 
ProducerWindowStorage DS WindowSize 
Date WindowStor age DS WindowSize 
Rating'vtindowStor age DS WindowSize 
NumberWindowStor age DS WindowSize 
Annotation'vtindowStor age DS WindowSize 

Which WindowPtr DC.L .0' ;place for F ind'vtindow result 

; ---------------- Data Structures for T extEdit -------------------

NameViewRect DC 1,1,19,249 
NameDestRect DC 1,1,19,249 
Name T extHandle DC.L fJ 
NamePromptBox DC 12,11i5,32,2fi5.0' 
Name Title DC 'Tape Name : ' 
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ProducerVieW'Rect DC 1,1,19,175 
ProducerDestRect DC · 1,1,19,175 
ProducerT extHandle DC.L /(j 

ProducerPromptBox DC 37'1 .0',57 ,2.0'.0' 
Producer Title DC 'Producer /D;stributor : ' 

DateVieW'Rect DC 1'1'19 ,42 
DateDestRect DC 1'1'19 ,42 
Date T extHandle DC.L /(j 

DatePromptBox DC 62, 1 .0',82,2.0'/8 
Date Title DC 'Date of Release:' 

RatingVieW'Rect DC 1,1,19,28 
RatingDestRect DC 1,1,19,28 
RatingT extHandle DC .L /(j 

RatingPromptBox DC 87, 1B,1.07 ,2B.0' 
Rating Tit le DC 'Rating:' 

NumberVieW'Rect DC 1,1,19,35 
NumberDestRect DC 1,1,19,35 
NumberTextHandle DC.L g 

NumberPromptBox DC 112,1.0',132,2.0'/8 
Number Title DC 'Tape Number:' 

AnnotationVieW'Rect DC 4 ,3 '72 ,46/iJ 
AnnotationDestRect DC 4,3,72,46/8 
Annotation TextHandle DC.L .0' 

ActiveTextHandle DC.L /iJ ;holds text handle of active text W'indo\¥' for TEldle 
Main WindoW'Rect DC .0' ,B ,24 /iJ, 4 9 .0' ;for Er aseRect 
; ---------------- Defintions for trapping ev~mts -----------------

everyEvent DCl $.0S.0.9FFFF 
EventRecord ;W'here GetNextEvent Puts its result 
What DC .0 
Message DC 1 B 
When DC.L .0 
Point DC.L B 
Modify DC .0 

; ---------- These are the handles for the eight menus -------------

AppleHandle DC.L .0 
EditHandle DC.L 16 
OptionsHandle DC.L .0 
EnterHandle DC.L g 
Change Handle DC.L .0 
De leteHandle DC.L g 
Se lectHandle DC.L g 

PrintHandle DC.L g 
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Listing A.1 (continued) 

.'w'hichMenu DC a 
'w'hatltem DC .0' 

Desk AccName DCB.'w' 16,.0' 

Tape Array DS.B 64.0'.0' 

NewRecord DS.B 64 

NewRecordMask DCB.B 64,"" 

TotalRecords DC .0' 

AnnotRecMask DCB.B 256,"" 

LastAnnotNumb DC .0' 

RecordCounter DC a 

StopNumber DS.'w' 

Dia log'w'indRec OS d'w'indlen 
Dia log'w'indPtr DS.L 1 

; --------------- Data structures and storage for file operations ------------
DataBuffer DS.B 256 ;need maximum 256 bytes for annotation 

ioP ar amBlock 
fiP ar amBlock 
vParamBlock 

Returnflag 

DS.B ioQElSize 
DS.B ioFQElSize 
DS.B ioVQElSize 

OS 

; 110 parameter blocks are 5.0' bytes 
;file info parameter blocks are ea bytes 
;volume paramter blocks are 64 bytes 

;source of call to SelectOneTitle 

fiRefNum DC .0' ;place for file reference number 
; -------------- Data structures and constants for printing -------------------------
PrintRecordHandle DC .L .0' 
PrinterStatusRec OS .B iPrStatSize ;printer status record 
Printline DS.B 1 fS2 
PrintlineMask DCB.B 1.0'.0'," " 

PrPortPtr 
F ontlnfoStor age 

PageHead 
TitleHead 
ProducerHead 
DateHead 
RatingHead 
NumberHead 

END 

DS.L 1 
DS.W 4 

DC 
DC 
DC 
DC 
DC 
DC 

'Video Tapes' 
'Title' 
'Producer' 
'Date' 
'Ratg' 
'Numb' 

;place to put font info for printing 
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Listing A.2 Resource File for the Video Tape Index Program 

tape .index :T apesRsrc.REL 

TYPE MENU 

'1 
\14 

,2 
Edit 
Undo/Z 
(­
Cut/X 
Cop!J/C 
Paste IV 
Clear 

,3 
Options 
Enter 
Change 
Delete 
Select 
Print 
Quit/Q 

,4 
Enter 
Add/A 
Quit/Q 

,'5 
Change 
Find Record/F 
Sa\'e Change /S 
Abandon Change I A 
Quit/Q 

,6 
Delete 
Find Record/F 
Delete ID 
Cancel/C 
Quit/Q 

,7 
Select 
Displa!J All 
Display All Titles 
Select One Title 
Select by Producer 

;; Apple menu 

;; Edit menu 

; ; Options menu 

; ; Enter menu (add new tit Jes) 

; ; Change menu (modif!J existing data) 

;; Delete menu (delete a tape master record) 

; ; Se tect menu (search the tape master file) 
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Listing A.2 (continued) 

Select bl,! Date 
Se le ct by Rating 
Select by Tape Number 
Quit/Q 

,8 
Print 
Print All 
Print All Titles 
Quit/Q 

TVPE WIND 
I 1 

Video Tape Index 
4 .0' 1 .0' 3.0'.0' 5.0'.0' 
visible NoGoAway 
.0' 
.0' 

,2 
Tape Name 
5.0' 24.0' 7.0' 49.0' 
visible NoGoAway 
2 
.0' 

,3 
Producer 
75 24.0'95 415 
visible NoGoAway 
2 
.0' 

,4 
Date 
1.0'.0' 24.0' 1 2.0' 283 
visible NoGoAway 
2 
.0' 

,5 
Rating 
125 24.0' 145 269 
visible NoGoAway 
2 
.0' 

; ; Print menu (print a coup le of lists) 

; ; Main window 

; ; Tape name window 

; ; Producer /Distributor window 

; ; Date window 

; ; Rating window 
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,6 
Tape Number 
15.0' 24 .0' 1 7.0' 276 
visible NoGoAway 
2 
.0' 

,7 
Annotation 
2.05 2.0' 28.0' 49.0' 
visible NoGoAway 
fiJ 
.0' 

TYPE DLOG 

'1 
Dialog box for "None Found" condition 
1.0'.0' 3.0'.0 17.0' 49.0' 
Visibile NoGoAway 
2 
flJ 
1 

,2 
Dialog box for "One Found/Find More?" condT 
1flJ.0'3.0'.0' 17.0' 49flJ . 11on 

Visible NoGoAway 
2 
flJ 
2 

,3 
Dia log box for "One Found .. condition 
1 .0'.0' 3.0.0' 17.0" 4 9 .0 
Visible NoGoAway 
2 
.0' 
3 

TYPE ALRT 
,4 

1.0'.0" 3.0.0" 17.0 49.0" 
4 
7765 

,5 
5.0' 14.0' 12.0' 39.0' 
5 
4444 

APPENDIX A 445 

; ; Tape number window 

; ; Annotation window 

;; None Found dialog box 

; ; Find More dialog box 

; ; One Found dialog box 

; ; No Selection Criteria a le rt 

; ; Ready Printer a le rt 
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Listing A.2 (continued) 

,6 
5.0' 14.0' 12.0'39.0' 
6 
5555 

TYPE DITL 
I 1 

2 

button 
4.0' 11.0' 60' 17.0' 

OK 

static Text 
1.0'413.0'149 
None Found 

,2 
3 

button 
4.0' 11.0'6.0' 17.0' 
OK 

button 
4.0'2.0'6.0'8.0' 
Cancel 

static Text 
1.0'41 3.0'149 
Find More? 

,3 
1 

button 
40' 11.0" 6.0' 17.0' 
OK 

,4 
2 

button 
4.0' 11.0'6.0' 170' 
OK 

static Text 
1.0'5 3.3185 
Selection criteria? 

; ; File Error alert 

; ; Item list for None Found dialog box 

;; Item list for Find Mort dialog box 

;; Item list for One Found dialog Box 

; ; Item list for No Selection Criteria a le rt 
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,5 
2 

button 
4.0' 18.0'6.0'24.0' 
OK 

static Text 
1.0' 1.0'3.0'24.0' 
Turn on printer. Press "Enter". 

,6 
2 

button 
4.0' 18.0' 6.0' 24.0' 
OK 

static Text 
1.0'1.0'3.0'24.0' 
Unexpected file error! 
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;; Item list for Ready Printer alert 

; ; Item list for File Error A le rt 



A P P E N D I X B 

SUMMAR'f eF ePERATIN6 
SYSTEM AJsJD TOOLBOX 

R8UTINES QISGUSSEQ IN 
THISBeeK 

The names of ToolBox and operating system routines discussed in this book 
are presented below, grouped by function to help when you know what you want 
to do but not what you need to do it with. Each routine is followed by a short 
description of what it does. Once you know the name of the routine you wish to use, 
the quickest way to locate details about it is to look in the index under the name of 
the routine. 

1. INITIALIZING THE 
SYSTEM 

Calls to the initialization routines should be made at the beginning of every 
program in the order in which they are listed below: 

lnitGraf: Initializes QuickDraw. (Chapter 7) 

. lnltFonts: Initializes the Font Manager. (Chapter 9) 

FlushEvents: Flushes events from the event queue. (Chapter 8) 

lnltWlndows: Initializes the window manager. (Chapter 7) 

lnitMenus: Initializes the menu manager. (Chapter 7) 

lnitDialogs: Initializes the Dialog Manager. (Chapter 9) 

TElnlt: Initializes Text Edit. (Chapter 9) 

lnitCursor: Initializes the arrow cursor. 

448 
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1.a Managing the Cursor 

GetCursor: Retrieves the 16x16 pixel image of a cursor from the system resource 
file. (Chapter 11) 

SetCursor: Changes the shape of the cursor. (Chapter 11) 

2. USING A RESOURCE 
FILE 

OpenResFile: Opens a resource file for program use. This routine is needed 
when resource definitions are kept in a file separate from the application's source 
code. (Chapter 7) 

3. CREATING 
WINDOWS 

GetNewWindow: Creates a new window from parameters contained in a 
resource file template. (Chapter 7) 

NewWlndow: Creates a new window from parameters contained in the function 
call. (Chapter 7) 

DrawGrowlcon: Draws a grow icon and the outline of scroll bars in a standard 
document window. (Chapter 7) 

GetNewControl: Defines a control for one particular window, using parameters 
from a resource file. This routine is used to define scroll bars. (Chapter 7) 

4. MANIPULATING 
WINDOWS 

4.a Activating Windows 

SelectWindow: Activates a window, making it the frontmost window on the 
screen. This is the preferred way to activate a window. (Chapter 7) 

SetPort: Makes a window the current grafport. This is an essential routine, since 
the Macintosh can only draw in the current grafport. (Chapter 8) 
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4.b Manipulating Window 
Position in the Plane 

BringToFront: Changes the position of a window in the plane, making it the 
frontmost window on the screen. This routines does not affect whether or not a 
window is visible and does not make it active. (Chapter 7) 

SendBehlnd: Changes a window's position in the plane, sending it either behind 
all other windows on the screen or some other specific window on the screen. This 
routine does not affect whether or not a window is visible. (Chapter 7) 

4.c Manipulating Window 
Appearance 

SetWTitle: Changes the title of a window. (Chapter 7) 

ShowWindow: Makes a previously invisible window visible. If the window is 
already visible, the routine has no effect. (Chapter 7) 

HideWindow: Makes a previously visible window invisible. If the window is 
already invisible, the routine has no effect. (Chapter 7) 

4.d Manipulating Window 
Regions 

lnvalRect: Incorporates a part of a window into the update region, indicating that 
something has disturbed the appearance of that part of the window and that it must 
be redrawn. (Chapter 8) 

4.e Manipulating Controls 

ShowControl: Makes a control visible. (Chapter 8) 

HldeControl: Makes a control invisible. (Chapter 8) 

5. CLOSING WINDOWS 

CloseWlndow: Removes the window from the screen and deletes it from the 
application's window list. Should be used when storage for the window record was 
allocated by the application. (Chapter 7) 
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DlsposWlndow: Removes the window from the screen and deletes it from the 
application's window list. Should be used when storage for the window record was 
placed on the application heap. (Chapter 7) 

6. CREATING MENUS 

GetRMenu: Defines a menu, using parameters from a resource file. (Chapter 7) 

· AddResMenu: Adds resources of a given type to a menu. This routine is used 
primarily to add the desk accessories to an "Applem menu. (Chapter 7) 

7. MANIPULATING 
MENUS 

7 .a Managing the Menu Bar 

lnsedMenu: Inserts a menu into the menu list, but does not re-draw the menu bar. 
(Chapter 7) 

DeleteMenu: Removes a menu from the menu list, but does not re-draw the menu 
bar. (Chapter 7) 

DrawMenuBar: Draws the menu bar, displaying the titles of all menus currently in 
the menu list. (Chapter 7) 

7 .b Manipulating Menu 
Appearance 

Dlsableltem: Disables either one menu item or an entire menu. Disabled items 
appear immediately, but the menu bar mustrbe re-drawn before a disabled menu 
will appear with its title dimmed. (Chapter 7) 

Enableltem: Enables either one menu item or an entire menu. Enabled items 
appear immediately, but the menu bar must be re-drawn before a newly enabled 
menu will appear with its title in boldface. (Chapter 7) 

HiLiteMenu: Removes highlighting from a menu title. (Chapter 8) 
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8. IDENTIFYING 
EVENTS 

GetNextEvent: Retrieves an event from the event queue. (Chapter 8) 

8.a Mouse Down Events 

FindWindow: Returns a code indicating the general location of where a mouse 
down event occurred. If the mouse down event was in a window, it also returns a 
pointer to that window. (Chapter 8) 

MenuSelect: Returns the menu ID and the item number of a menu selection made 
with the mouse. (Chapter 8) 

Getltem: Returns the text of a selected menu item. (Chapter 8) 

FrontWindow: Returns a pointer to the frontmost window on the screen. (Chapter 8) 

FindControl: Identifies which control, if any, was the site of a mouse down event. 
This routine also returns the part of the control that posted the event. (Chapter 8) 

8.b Key Down Events 

MenuKey: Returns the menu ID and menu item selection by the keyboard 
equivalent of a menu item. (Chapter 8) 

8.c Update Events 

EraseRect: Erases the contents of a rectangle. Can be used to clear the contents 
of a window before re-drawing them during the update process. (Chapter 8) 

BeginUpdate: Called at the beginning of any code that updates a window. 
(Chapter 8) 

EndUpdate: Called at the end of any code that updates a window. (Chapter 8) 
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9. HANDLING EVENTS 

9.a The Desk Accessories 

SystemTask: Updates the desk accessories. This routine must be called repeat­
edly and is therefore generally part of a main event loop. (Chapter 8) 

OpenDeskAcc: Opens a desk accessory and turns its execution over to the 
system. (Chapter 8) 

SysEdit: Handles editing requests in system windows, and in particular, the desk 
accessories. It should be called whenever an application detects an edit request. If 
the system cannot process the edit (i.e., the request wasn't tor a system window), 
the function will return a result of false. In that case, the application can process the 
edit. (Chapter 8) 

SystemClick: Handles any type of mouse down event in a system window (i.e., a 
desk accessory). (Chapter 8) 

9.b Controls 

TrackControl: Used to process mouse down events in scroll bars. If the mouse 
down event has occured in the thumb of a scroll bar, this routine will continue to 
drag that thumb as long as the mouse button is held down. If the mouse button was 
pressed in the up or down arrow, the routine will highlight the arrow until the mouse 
button is released. Returns a code for the part of the control posting the event. 
(Chapters) 

9.c GoAway Boxes 

TrackGoAway: Highlights the GoAway box as long as the mouse button is 
depressed in the box. Should be called whenever a mouse down event is detected 
in a GoAway box. (Chapter 8) 
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9.d Drag Regions 

DragWlndow: Drags an outline of a window around the screen until the mouse 
button is released. The window will be redrawn in its new location. Should be called 
whenever an application detects a mouse down event in a drag region. (Chapter 8) 

9.e Grow Regions 

GrowWlndow: Drags an outline of the window about the screen as long as the 
mouse button is held down in the grow icon. Returns the coordinates of the new 
bottom right of the window. (Chapter 8) 

SlzeWlndow: Re-draws a window with a new size, using the bottom right coordi­
nates returned by GrowWlndow. This routine only re-draws the outline of a 
window; it does not take care of controls or other window contents. (Chapter 8). 

MoveControl: Moves a control to a new location in its window. (Chapter 8) 

SlzeControl: Changes the size of a control. (Chapter 8) 

10. HANDLING TEXT 

10.a Establishing a Text 
Edit Record 

TENew: Creates a new text edit record. This routine attaches the text edit record to 
whatever window is the current grafport. (Chapter 9) 

10.b Managing Text Edit 
Windows 

TEldle: Makes the straight-line cursor blink in the active text edit window. Must be 
called repeatedly for the cursor to blink regularly and should therefore be part of an 
event loop. (Chapter 9) 

TEActlvate: Activates a text edit window, making the straight-line cursor appear. 
(Chapter9) 
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TEDeActivate: Deactivates a text edit window, removing the straight-line cursor. 
(Chapter 9). 

TEUpdate: Re-draws the text specified by a boundary rectangle, generally the 
text edit window's view rectangle. (Chapter 9) 

10.c Setting the Selection 
Range 

TECllck: Positions the straight-line cursor in a text edit window based on the 
location of a mouse down event. The routine also takes care of extended selections 
made by dragging the mouse across text or by shift-clicking. (Chapter 9) 

TESetSelect: Establishes the selection range in a text edit record based on 
starting and ending character positions passed to the routine as parameters. 
(Chapter9) 

10.d Character Display 

TEKey: Inserts one character into a text edit record at the current insertion point 
and displays it on the screen. The character to be inserted generally comes from 
the keyboard. Therefore, this routine is called in response to a key down event that 
was not a keyboard equivalent for a menu selection. (Chapter 9) 

TElnsert: Inserts one or more characters into a text edit record at the current 
insertion point and displays the new text on the screen. This routine is used, for 
example, to display text that has been read in from a disk file. (Chapter 9) 

TESetJust: Sets the justification of the text in the current text edit record. The text 
edit window should be updated after changing the justification to re-draw the text. 
(Chapter9) 

10.e Editing 

TECut: Deletes the text in the current selection range and copies it to the Clip­
board. (Chapter 9) 
TEDelete: Deletes the text in the current selection range. The text is not copied to 
the Clipboard. (Chapter 9) 

TECopy: Copies the contents of the current selection range onto the Clipboard 
without deleting it from the text edit record. (Chapter 9) 
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TEPaste: Inserts the current contents of the Clipboard into a text edit record at the 
current selection point. (Chapter 9) 

10. f Scrolling 

TEScroll: Scrolls the text in a text edit window. (Chapter 9) 

11. DIALOG BOXES 

GetNewDialog: Creates a dialog box and displays it on the screen, using a 
template and an item list from a resource file. (Chapter 9) 

CloseDialog: Removes a dialog box from the screen and deletes its data struc­
tures from memory. (Chapter 9) 

ModalDlalog: Monitors and handles events in modal dialog boxes. (Chapter 9) 

12. ALERTS 

Alert: Creates an alert from a template and item list in a resource file, monitors and 
handles events in the alert, and removes the alert from the screen when the user 
clicks on a push button. (Chapter 9) 

13. PRINTING 

NewHandle: Returns a handle to a block of memory in the application heap. This 
routine is used to allocate space for a print record. (Chapter 10) 

DisposHandle: Releases the block of memory referenced by a handle. This 
routine is used to delete a printer record. (Chapter 10) 

PrOpen: Opens the printer resource file. This call must be issued once, before any 
other Printing Manager calls. (Chapter 10) 
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PrClose: Closes the printer resource file. This call is issued once, at the end of all 
printing activity. (Chapter 10) 

PrlntDefault: Fills a printer record with default information stored in the printer 
resource file. (Chapter 10) 

PrStlDialog: Displays the standard Style dialog box, allows the user to make 
selections within the dialog box, and fills the printer record with that information. 
Data from the dialog box is also stored in the printer resource file. (Chapter 10) 

PrJobDialog:. Displays the standard Job dialog box, allows the user to make 
selections within the dialog box, and fills the printer record with that information. 
Data from the dialog box is also stored in the printer resource file. (Chapter 10) 

PrOpenDoc: Opens a printing port and makes it the current grafport. This routine 
is called once before beginning to print a document. (Chapter 10) 

PrCloseDoc: Closes a printing port. If draft printing, it issues a form feed to the 
printer. If spool printing, it closes the spool file. This routine is called once at the end 
of printing a single document. (Chapter 10) 

PrOpenPage: Opens a single page for printing. This routine is called before 
printing one page. (Chapter 10) 

PrClosePage: Closes a single page. If draft printing, the routine issues a form feed 
to the printer. If printing with single sheets, it prompts the user to insert anoth~r 
sheet of paper. (Chapter 10) 

PrPicFile: Images and prints a spool file. (Chapter 10) 

14. MANAGING 
COORDINATES 

GlobalTolocal: Translates a set of global screen coordinates into coordinates in 
the local coordinate system of the current grafport. (Chapter 8) 

LocalToGlobal: Translates a set of coordinates expressed in the local coordinate 
system of the current grafport into global screen coordinates. (Chapter 9) 

15. DRAWING 

MoveTo: Moves the pen in the current grafport. If the application is printing, this 
routine affects the print head. (Chapter 10) 
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DrawChar: Draws a single character on the screen at the current pen position. 
(Chapter6) 

Drawstring: Draws a string of characters, beginning at the current pen position 
and moving to the right. This routine does no text formatting. (Chapter 10) 

DrawText: Draws a block of text that is stored in main memory, beginning at the 
current pen position and moving to the right. This routine does no text formatting. 
(Chapter 10) 

TextBox: Draws a line of static text in a window. Though the text can be justified in 
its boundary rectangle, it is not stored in a text edit record and therefore cannot be 
edited. (Chapter 9) 

16. MOVl~G TEXT 

BlockMove: Moves a block of text stored in main memory to another main 
memory location. (Chapter 6) 

17. STRING 
COMPARISON 

IUMagString: Compares two strings of ASCII characters and returns a 0 if the two 
strings are equal, a -1 if the first string is less than the second and a + 1 if the first 
string is greater than the second. (Chapter 6) 

18. FONT 
CHARACTl;RISTICS 

TextFont: Sets the text font. (Chapter 9) 

TextFace: Sets the text style (e.g., boldface, underlined, etc.). (Chapter 9) 

TextSlze: Sets the size of the current text font. (Chapter 9) 

Getfontlnfo: Returns information about the current font in the current grafport. 
(Chapter 10) 
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19. FILE PROCESSING 

Create: Creates a new disk file. This routine does not open a file. (Chapter 11) 

GetFllelnfo: Retrieves information stored by the Finder about a specific file. This 
routine is always called immediately after creating a fiie. (Chapter 11) 

SetFllelnfo: Sets information about a file for the Finder. The routine is generally 
called during the file creation sequence, immediately after Getfllelnfo. (Chapter 
11) 

Write: Writes data from a data buffer in RAM onto a disk file. (Chapter 11) 

Read: Reads data from a disk file into a data buffer in RAM. (Chapter 11) 

Close: Closes a file. (Chapter 11) 

SFGetFlle: Displays the standard "get file" dialog box and allows the user to 
choose between the files listed. The user can also change disks and drives. The 
entire process is handled by this routine until the user selects "OK" or "Cancel". 
(Chapter 11) 

SFPutFile: Displays the standard "save as" dialog box and allows the user to enter 
a file name. The user can also change disks and drives. The entire process is 
handled by this routine until the user selected "OK" or Cancel." (Chapter 11) 

Flushflle: Forces the contents of the access path buffer to be written to disk. 
(Chapter 11) 

20. ARITHMETIC 
(All routines can be found in Chapter 12) 

20.a Integer Binary/Decimal 
Conversions 

NumToString: Converts an integer or longinteger into a string of ASCII charac­
ters. 

StringToNum: Converts a string of ASCII characters in an integer or longinteger. 

20.b Floating Point 
The names of the FP68K and ELEMS68K routines are presented below as the 

macros defined for them in SANEMacs.Txt. 
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20.b.1 Addition (A:= A + B) 

FADDX: Add an extended source operand to an extended destination operand. 

FADDD: Add a double precision source operand to an extended destination 
operand. 

FADDS: Add a single precision source operand to an extended destination 
operand. 

FADDC: Add a 64-bit (computational) integer source operand to an extended 
destination operand. 

FADDI: Add an integer source operand to an extended destination operand. 

FADDL: Add a longinteger source operand to an extended destination operand. 

20.b.2 Subtraction (A : = A - B) 

FSUBX: Subtract an extended source operand from an extended destination 
operand. 

FSUBD: Subtract a double precision source operand from an extended destina­
tion operand. 

FSUBS: Subtract a single precision source operand from an extended destination 
operand. 

FSUBC: Subtract a 64-bit integer source operand from an extended destination 
operand. 

FSUBI: Subtract an integer source operand from an extended destination oper­
and. 

FSUBL: Subtract a longinteger source operand from an extended destination 
operand. 

20.b.3 Multiplication (A : = A * B) 

FMULX: Multiply an extended source operand by an extended destination oper­
and. 

FMULD: Multiply a double precision source operand by an extended destination 
operand. 

FMULS: Multiply a single precision source operand by an extended destination 
operand. 

FMULC: Multiply a 64-bit integer source operand by an extended destination 
operand. 

FMULI: Multiply an integer source operand by an extended destination operand. 
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FMULL: Multiply a longinteger source operand by an extended destination oper­
and. 

20.b.4 Division (A:= A I B) 

FDIVX: Divide an extended destination operand by an extended source operand. 

FDIVD: Divide an extended destination operand by a double precision source 
operand. 

FDIVS: Divide an extended destination operand by a single precision source 
operand. 

FDIVC: Divide an extended destination operand by a 64-bit integer source oper­
and. 

FDIVI: Divide an extended destination operand by an integer source operand. 

FDIVL: Divide an extended destination operand by a longinteger source operand. 

20.b.5 Remainder (A : = A mod B) 

FREMX: Find the remainder of the division of an extended destination operand by 
an extended source operand. 

FREMD: Find the remainder of the division of an extended destination operand by 
a double precision source operand. 

FREMS: Find the remainder of the division of an extended destination operand by 
a single precision source operand. 

FREMC: Find the remander of the division of an extended destination operand by 
a 64-bit integer source operand. 

FREMI: Find the remainder of the division of an extended destination operand by 
an integer source operand. 

FREML: Find the remainder of the division of an extended destination operand by 
a longinteger source operand. 

20.b.6 Rounding 

FRINTX: Round an extended operand to an integer. 

FTINTX: Truncate an extended operand to an integer. 

20.b. 7 Arithmetic functions 

FSQRTX: Find the square root of an extended operand. (A : = sqrt(A)) 
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FLOGBX: Find the base 10 logarithm of an extended operand. (A : = log10A) 

FSCALBX: Multiply an extended destination operand by 2 raised to an integer 
power. (A : = A * 20) 

FCPYSGNX: Replace an extended operand with the sign of the operand. (A: = 
sign of A) 

FNEGX: Negate an extended operand (A : = - A) 

FABSX: Take the absolute value of an extended operand. (A:= IAI> 

20.b.8 Internal type conversion and arithmetic 
assignment (A : = B) 

FX2X: Move an extended source operand to an extended destination operand. 

FD2X: Move a double precision source operand to an extended destination 
operand. 

FS2X: Move a single precision source operand to an extended destination oper­
and. 

Fl2X: Move an integer source operand to an extended destination operand. 

FL2X: Move a longinteger source operand to an extended destination operand. 

FC2X: Move a 64-bit integer source operand to an extended destination operand. 

FX2D: Move an extended source operand to a double precision destination 
operand. 

FX2S: Move an extended source operand to a single precision destination oper­
and. 

FX21: Move an extended source operand to an integer destination operand. 

FX2L: Move an extended source operand to a longinteger destination operand. 

FX2C: Move an extended source operand to a 64-bit integer destination operand. 

20.b.9 Binary to decimal conversions (A : = B) 

FX2DEC: Convert an extended operand to the canonical decimal format. 

FD2DEC: Convert a double precision operand to the canonical decimal format. 

FS2DEC: Convert a single precision operand to the canonical decimal format. 

FC2DEC: Convert a 64-bit integer operand to the canonical decimal format. 

Fl2DEC: Convert an integer operand to the canonical decimal format. 

FL2DEC: Convert a longinteger operand to the canonical decimal format. 
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20.b.10 Decimal to binary conversions (A : = B) 

FDEC2X: Convert from the canonical decimal format to an extended operand. 

FDEC2D: Convert from the canonical decimal format to a double precision 
operand. 

FDEC2S: Convert from the canonical decimal format to a single precision oper­
and. 

FDEC2C: Convert from the canonical decimal format to a 64-bit integer operand. 

FDEC21: Convert from the canonical decimal format to an integer operand. 

FDEC2L: Convert from the canonical decimal format to a longinteger operand. 

20.b.11 Comparisons (use in place of CMP) 

FCMPX and FCPXX: Compare two extended operands and set the condition 
codes. 

FCMPD and FCPXD: Compare an extended operand with a double precision 
operand and set the condition codes. 

FCMPS and FCPXS: Compare an extended operand with a single precision 
operand and set the condition codes. 

FCMPC and FCPXC: Compare an extended operand with a 64-bit integer oper­
and and set the condition codes. 

FCMPI and FCPXI: Compare an extended operand with an integer operand and 
set the condition codes. 

FCMPL and FCPXL: Compare an extended operand with a longinteger operand 
and set the condition codes. 

20.b.12 Branch on condition codes (use in place of 
B~c instructions) 

FBEQ and FBEQS: Branch if equal. 

FBL T and FBL TS: Branch if less than. 

FBLE and FBLES: Branch if less than or equal. 

FBGT and FBGTS: Branch if greater than. 

FBGE 'and FBGES: Branch if greater than or equal. 

FBNE and FBNES: Branch if not equal. 
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20.b.13 Elementary functions 

FLNX: Find the natural logarithm of an extended operand. (A : = lnA) 

FLOG2X: Find the base 2 logarithm of an extended operand. (A : = log2A) 

FLN1X: Find the natural logarithm of an extended operand plus 1. (A : = In (1 + A)) 

FLOG21X: Find the base 2 logarithm of an extended operand plus 1. (A : = log2 (1 
+A)) 

FEXPX: Raise e to an extended operand power. (A : = eA) 

FEXP2X: Raise 2 to an extended operand power. (A : = 2A) 

FEXP1X: Raise e to an extended operand power and subtract 1. (A : = eA - 1) 

FEXP21X: Raise 2 to an extended operand power and subtract 1. (A : = 2A - 1) 

FXPWRI: Raise an extended operand to an integer operand power. (A : = AB) 

FXPWRY: Raise an extended operand to an extended operand power. (A:= AB) 

FCOMPOUND: Use extended operands to compute compound interest. (A : = (1 
+ Rate) #Periods) 

FANNUITY: Use extended operands to compute an annuity. (A : = (1 - (1 + 
Rate)-#Periods)/ Rate) 

FSINX: Find the sine of an extended operand. (A : = sin(A)) 

FCOSX: Find the cosine of an extended operand. (A : = cosine(A)) 

FT ANX: Find the tangent of an extended operand. (A : = tan(A)) 

FATANX: Find the arctangent of an extended operand. (A:= atan(A)) 

FRANDX: Find the next random number, using an extended operand as a seed. 
(A : = rand(A)) 
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C3LOSSAR¥ 

Absolute Address: A main memory address specified by its numeric address. 
For example, $001A is an absolute address. While an application can only 
work from absolute addresses, programmers can use symbolic addresses in 
their source code, leaving the translation to absolute addresses to the 
assembler and linker. 

Access path: A data structure describing how the Macintosh should find a disk 
file. An access path is created every time a file is opened. The Macintosh will 
support 12 access paths at any one time, though only one access path per file 
can be open for writing. 

Access path buffer: A RAM buffer that is used as temporary storage by the 
access path. 

Active window: The front-most window on the screen. An application can only 
work in an active window. Active windows are highlighted in some way. 

Address: The location of a byte in a computer's main memory. The bytes in a 
computer's main memory are numbered sequentially beginning with 0. Each 
byte therefore has a unique number known as its address. 

Address register: A general purpose register within the Macintosh's micro­
processor. The Macintosh has eight address registers, though some are 
used by the system for special purposes. AS holds the start of the applica­
tions globals area; A7 is used as the stack pointer. 

Addressing mode: A method for specifying the main memory address of a piece 
of data. The Macintosh has 13 addressing modes. 

465 
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Alert: A Macintosh window that is displayed to warn the user that continuation of a 
particular action could cause damage or that some error has already 
occurred. Alerts contain text, icons, and buttons to either continue or cancel 
the action. 

Applications globals area: A portion of RAM used tor an application's data 
storage. The size of the appiication globals area is not fixed. Rather, it is set 
during the linking process so that only the exact amount of space the 
program requires will be allocated at run-time. Assembly language program­
mers should allocate space tor all read/write data in the applications globals 
area. 

Application heap: The portion of RAM available to an application program and its 
constants. Though it is possible to place read/write data storage in the 
application heap, it is better to avoid doing so whenever possible. (Interac­
tions with the Printing Manager may cause exceptions to this rule.) 

ASCII: The American Standard Code tor Information Interchange. ASCII is a 
binary coding scheme that is used to represent characters within a com­
puter. Standard ASCII requires 7 bits to represent the full range of alpha­
numeric characters. The Macintosh generates extra characters by using 8 
bits. 

Assembler: A program that translates a programmer's assembly language 
source code into machine language. 

Assembler directive: An instruction in an assembly language source program 
that gives directions to the assembler. Assembler directives control the 
assembly process; they do not become a part of the object code. 

Assembly language: A programming language that uses mnemonic codes to 
substitute tor the machine language version of a computer's instruction set. 

Asynchronous file operations: File operations that permit the application to 
continue with other activities while the tile operation is in progress. 

Band: A strip from a printed page. Since it takes a great deal of memory to image 
and print a spooled print tile, each page is broken up into bands which can 
then be printed separately. Bands may run horizontally or vertically across 
the page, depending on the orientation of the printed page. 

Binary:The base 2 numbering system used to represent quantities, instructions, 
and characters in a computer. 

Bit: A contraction of "binary digit." A bit represents one binary place in a code or 
quantity. It can take only two values - 0or1. 
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Boot (a computer): To start the computer, either by turning on the power or 
pressing the Reset switch. It is also possible to reboot the Macintosh by 
issuing a RB (reboot) command to a debugger. 

Boundary rectangle: A set of four coordinates that describe the top left and 
bottom right corners of a rectangle. The coordinates may be expressed in 
terms of the screen's global coordinate system or in terms of the local 
coordinate system of a specific window, depending on the situation. For 
example, window definitions require global coordinates, but control defini­
tions require the local coordinates of the window in which the controls will 
appear. 

Buffer: A temporary holding area for data. Buffers are generally used to reconcile 
the speed differences between slow 1/0 devices and the much faster CPU. 
For input, for example, a disk drive fills a main memory buffer at its own 
speed. The CPU can be doing other things while the disk is working. When 
the buffer is full, the CPU empties it at electronic speeds. 

Bus: An electronic pathway that connects the parts of a computer. Buses carry 
data, addresses, and control signals between the CPU, main memory, and 
peripheral devices such as disk drives and printers. 

Byte: Eight bits viewed as a whole. 

Canonical decimal format: An intermediate numeric format used by the Macin­
tosh. It is produced by scanning an ASCII string of characters. Numbers 
expressed in the canonical decimal format can then be converted into a 
variety of binary numbers which can be used in mathematical operations. 

Clear: 1) Give a bit or a group of bits a value of 0-2) a text editing operation that 
deletes the contents of the current selection range from the document 
without affecting the clipboard. 

Clipboard: A temporary storage area used by text editing routines to hold text 
from cut operations. Cut takes the contents of the current selection range and 
places it on the clipboard, deleting it from the document and erasing the 
previous contents of the clipboard. Copy also places the current selection 
range on the clipboard, but does not delete it from the document. Paste takes 
the contents of the clipboard and inserts it into the document at the current 
insertion point; the contents of the clipboard are not disturbed. 

Compiled language: A programming language (usually a high-level language) 
that is translated to object code prior to run-time. Compiler output is a 
machine language file which generally must be linked to run-time libraries 
before execution. 
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Condition codes: see Status register. 

Conditional branch: An assembly language instruction that checks one or more 
flags in the status register and executes a branch ifthe condition specified by 
the particular instruction is true. If the condition is false, program execution 
continues with the next sequential instruction. 68000 conditional branch 
instructions have the general form Bee, where the cc is replaced with two 
letters that represent the condition to be tested. 

Control: A graphic device that helps to regulate program function. Controls 
include scroll bars, push buttons, radio button, and check boxes. 

Copy: A text editing operation that takes the contents of the current selection 
range and writes it to the clipboard. The document itself is unaffected. 

CPU (central processing unit): The brain of a computer. The CPU is the site of 
instruction decoding and execution. When the CPU is placed on a single 
silicon chip, it is referred to as a microprocessor. 

Creator: The type of application that created a file. A file's creator is a four­
character string stored with the file itself. Unless a file type is explicitly set, an 
application created by the MDS will have a file type of APPL. The creator for 
all files created by such an an application will therefore be APPL. 

Cursor: In general, some character on a computer screen (e.g., a blinking line, 
underbar, or box) that indicates where the next input will appear. On the 
Macintosh, the cursor is attached to the mouse. Moving the mouse moves 
the cursor. Macintosh cursors take a variety of shapes, including an arrow, 
an I-beam, and a wrist watch. 

Cut: A text editing operation that takes the contents of the current selection range 
and copies itto the clipboard, atthe same time deleting it from the document. 

Data fork: The part of a Macintosh file that contains data. 

Data register: A general purpose register within the Macintosh's microprocessor. 
The Macintosh has eight data registers. 

Debugger: A program designed to aid a programmer in identifying logic errors 
within an assembly language program. A debugger permits step-by-step 
program execution, displays the contents of the CPU's registers, disassem­
bles instructions, etc. 

Decrement: To decrease by some fixed quantity. If the quantity is not specified, it 
is assumed to be 1. 
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Dialog box: A Macintosh window used to collect information from the user or to 
freeze program action until the user is ready to continue. 

Direct access: A method of file processing. Files created for direct access have 
fixed field lengths, allowing an application to go directly to any record at any 
time, regardless of the location of the record most recently read or written. 
Records can be processed in random order. 

Direct cursor addressing: Having the capability of moving the cursor anywhere 
on the screen or printed page at any time, regardless of the cursor's previous 
position. 

Drag region: The title bar of a window except the GoAway box. It is used to move 
a window around the Macintosh screen. 

Edittext: Textthat can be edited using any of the Macintosh's editing routines: cut, 
copy, paste, or clear. 

Effective address: The main memory location of an operand for an assembly 
language instruction. Effective addresses are specified by using one of the 
Macintosh's 13 addressing modes. 

Equates file: A text file that contains a set of EQU statements. Each EQU 
associates a symbolic address with a constant that is useful in Macintosh 
programming. 

Event: A system activity that the Macintosh can recognize. Events include press­
ing and releasing the mouse button, pressing and releasing keys, inserting 
disks, etc. 

Event mask: A word whose bits can be selectively set to control which types of 
events are retrieved from the event queue. 

Event queue: An ordered list of events as they occur. The event queue is 
maintained by the operating system in first in, first out order. In other words, 
the first event posted to the event queue will be the first event processed. 

Excess notation: A method of storing floating point exponents. An excess value 
is selected so that when added to the smallest possible exponent, it will raise 
that exponent value to 0. All exponents are then stored with the excess value 
added to them. All exponents can therefore be kept as positive integers 
without having to resort to 2's complement representation. 

Exponent: The power to which some base number is raised. For example, in the 
expression 10497, 10 is the base number and 497 is the exponent. 



470 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

Fixed point number: A number that includes a decimal point (or binary point if the 
number is in base 2) that does not move. For example, 3.44 is a fixed point 
number. 

Floating point number: A number expressed as a mantissa multiplied by a base 
raised to some power. For example, 3.333 * 1099 is a floating point number. 
Because the exponent can change, the decimal point (or binary point, if the 
base is 2) is said to "float." 

Fork: Part of a Macintosh file. Macintosh file's have two forks - a data fork for 
storing data and a resource fork for storing resources and program code. 

GoAway box: A box that appears at the left of a title bar. Clicking the arrow cursor 
in the GoAway box will close the window. 

Grafport: A contraction of "graphics port." A graphics port is a rectangle in which 
the Macintosh can draw. Grafports form the basis for Macintosh windows. 

Hexadecimal: The base 16 numbering system. Since four binary digits can be 
represented by a single hexadecimal digit, hexadecimal is often used as a 
shorthand for binary. 

High-level language: A programming language that looks very much like Eng­
lish. BASIC, Pascal, FORTRAN, PU1, and COBOL are all high-level lan­
guages. 

Highlighting: Changing the standard coloration of something on the Macintosh 
screen to draw attention to it in some way. For example, text editing selection 
ranges are highlighted by displaying them as white characters on a black 
background. 

High-order: The upper-half of a group of bits. For example, in a word where the 
bits are numbered Othrough 15, bits ?through 15 arethe high-order byte. In a 
longword where the bits are numbered 0 through 31, bits 16 through 31 are 
the high-order word. 

Hung: A state in which the computer appears to sit still and do nothing. Many 
things can cause a computer to hang, but most often it is some sort of infinite 
loop. 

1/0 Buffer: see Buffer 

Icon: A small picture that the Macintosh uses to represent an object or program 
function. 
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Increment: To increase by some fixed quantity. If the quantity is not specified, it is 
assumed to be 1. 

Insertion point: The place in a document where new characters and/or graphic 
images are inserted. 

Instruction: A single command that a computer can understand and execute. 

Instruction set: All the commands that a computer can understand and execute. 
Each type of microprocessor has its own unique instruction set. 

Interpreted language: A programming language (usually a high-level language) 
that is translated to machine language while the program is being run. No 
permanent object code is ever generated. Statements that are executed 
repeatedly are translated each time they are executed. 

Interrupt: A signal generated by a peripheral device such as a disk drive and sent 
to the CPU. The interrupt tells the CPU that the device is in need of attention. 
The CPU will stop whatever it is doing to take care of the device. 

Keyboard equivalents: The pairing of the cloverleaf key with any other printing 
key on the keyboard as a substitute for using the mouse to make a selection 
from a pull-down menu. 

Launch: To run a Macintosh application. 

Least significant digit: In an integer, the digit in the one's place. When a number 
contains a factional portion, the least significant digit is the right-most non­
zero digit. 

Linker: A program that pulls together the various parts of an application to create 
an executable application. The Linker also completes the process of setting 
the size of the applications globals area. 

Longword: On the Macintosh, a group of 32 bits. 

Low-order: The lower-half of a group of bits. For example, in a word where the bits 
are numbered O through 15, bits O through 7 are the low-order byte. In a 
longword where the bits are numbered 0 through 31, bits 0through15 are the 
low-order word. 

Machine language: A computer can only understand instructions that are written 
in machine language. Machine language consists of a sequence of binary 
codes. Since it is so very difficult for humans to write programs that are 
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comprised of nothing but a series of O's and 1's, most programs are written in 
either assembly language or a high-level language. The programs must then 
be translated into machine language before they can be executed by a 
computer. 

Macro: A short block of code defined within a program and given a name. The 
name of the macro is then used in the source program instead of the macro 
code. During assembly, the macro code is inserted everywhere the name of 
the macro appears. 

Mantissa: The significant digits of a floating point number. The first digit of a 
mantissa will always be non-zero. For example, in the floating point number 
3.9746123 * 101s, 3.9746123 constitutes the mantissa. The number, there­
fore, has eight significant digits. 

Mark: A pointer in a Macintosh file that indicates the position of the next byte to be 
read from or written to. 

Menu: A list of options from which a user can select. Macintosh menus descend, 
or "pull-down", from the menu bar. 

Menu bar: The top line on the Macintosh screen. It contains the names of all 
menus currently available to the user. The left-most menu is the Apple menu 
which supports the standard desk accessories. Directly to its right will be 
found the File and Edit menus. 

Menu list: A list maintained by the Macintosh that contains all menus that are 
displayed in the menu bar. Menus are displayed in their order in the list. An 
application can control which menus appear in the menu bar by inserting 
and deleting menus from the menu list. 

Microcomputer: Commonly, a computer small enough to fit on a desk top. A 
microcomputer must have a microprocessor, RAM, enough ROM to boot the 
machine, buses for data and address transfer, a clock, and some provision 
for 1/0. 

Microprocessor: A CPU (central processing unit) contained on a single chip. The 
microprocessor is the place where instructions are decoded and executed. It 
is often called the "brain" of the computer. 

Mnemonic: A group of two to five letters that stand for a machine language 
instruction. The collection of letters has some relationship to the name of the 
instruction. For example, JSR stands for Jump to Subroutine. 

Modal dialog box: A dialog box that restricts the user to working within the box 
while the box is present on the screen, such as the dialog boxes that appear 
when a user selects Print from a File menu. 
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Modeless dialog box: A dialog box that permits the user to work outside the 
dialog box while the box is present on the screen. An example is the dialog 
box that appears when a user selects Find from a Search menu. 

Most significant digit: The left-most non-zero digit in a number. 

Object code: The machine language version of an assembly or high-level lan­
guage program. 

Octal: The base 8 numbering system. Since three binary digits can be repre­
sented by one octal digit, octal can be used as a shorthand for binary. It is 
less commonly used than hexadecimal. 

Op code: A binary code that represents an assembly language instruction. 

Operand: A piece of data required by an assembly language instruction. 

Operating system: A program that controls the operation of the computer. 
Generally, operating systems for single-user microcomputers provide the 
means to boot the computer, execute programs, and manage files (delete, 
re-name, etc.). 

Parameter: A piece of data used as input to or output from a Pascal subprogram. 

Parse: To break a sentence down into its constituent parts. In computers, parsing 
generally refers to analyzing a program statement to determine its elements. 
It also refers to scanning and breaking down a string of ASCII characters so 
they can be transformed into some other format (i.e., the canonical decimal 
format). 

Path reference number: A quantity that identifies an access path to a file. 

Paste: A text editing operating that takes the contents of the clipboard and inserts 
it into a document at the current selection point. The contents of the clipboard 
are unaffected. 

Patch: To modify existing program code by changing a small portion of it. 
Patching usually refers to making modifications to the binary (machine 
language) version of a program. 

Pixel: Short for "picture element." A pixel is one dot on the Macintosh's screen. 

Program counter: A 32-bit register in the Macintosh's microprocessor. The 
program counter always holds the main memory address of the next pro­
gram instruction to be executed. 

Prompt: A piece of static text that tells the user what data should be entered. 



474 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION 

RAM (random access memory): A computer's main memory. An application 
can both read from and write to RAM. RAM is volatile - when electrical 
power is removed its contents are lost. 

Region: An area within a grafport that can be bounded by a rectangle but is not 
necessarily rectangular in shape. 

Register: A special storage location within a microprocessor. The Macintosh's 
general purpose registers are 32 bits wide; each can hold a longword. 

Relocatable code: A block of object code that is independent of any fixed main 
memory location. Relocatable programs can theoretically be run regardless 
of where they are loaded into memory. The MOS Assembler creates a 
relocatable object code module which is then tied to a specific place in 
memory by the Linker. 

Resource: An entity used by the Macintosh. In some instances, the Macintosh 
views the code of an application as a single resource; but more generally, the 
term refers to something much smaller, such as a window, a menu, an icon, a 
desk accessory, etc. 

Resource file: A file that contains definitions and templates for resources. 
Resource files are created with a text editor and then translated to machine 
language by the resource compiler, RMaker. 

Resource fork: The part of a Macintosh file that stores resource definitions and 
program code. 

Resource template: An entry in a resource file that contains the parameters that 
describe a particular resource. The resource type must already have been 
defined. For example, the resource type WIND is pre-defined to describe a 
window. A resource file therefore contains only a window template - the 
data necessary to generate a window. 

ROM (read only memory): A type of computer memory from which an applica­
tion can only read. ROM cannot be modified and is non-volatile - it retains its 
contents when electrical power is removed. 

Run-time library: A set of standard programs, usually handling 1/0, that are used 
by compiled programs. The object code produced by compiler cannot be 
executed without first being linked to one or more run-time libraries. 

Scroll: To move text or graphics so that a different portion of a large document 
appears in a window on the Macintosh screen. 

Selection range: A group of contiguous characters in a block that will be affected 
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by editing operations such as cut, copy, and paste. The selection range is 
highlighted by displaying white characters on a black background. 

Sequential access: A method of file processing. Files created for sequential 
access have either variable or fixed record lengths. The records are pro­
cessed in order, generally beginning at the start of the file. Sequential 
processing proceeds either to the "nexf' or "prior'' record; it is not possible to 
move randomly through the file. 

Set: Give a bit or group of bits a value of 1. 

Significant digits: The part of a number that conveys value rather than magni­
tude. For example, in the number 0.00009994, the significant digits are 
9994. The leading zeros contribute only to the magnitude of the number, not 
to its exact value. The first significant digit in a number is most often the first 
non-zero digit from the left. Generally, the more significant digits retained in a 
number, the greater the accuracy of that number. 

Source code: The version of a program created by a programmer, regardless of 
the language in which it is written. Source code must be translated to object 
code (machine language) before it can be executed. 

Spooling: In general, using some form of auxiliary storage (usually a disk) as 
intermediate storage for an 1/0 operation. In particular, the Macintosh uses 
spooling for printing. An image of a printed document is stored on disk to be 
printed at a later time. 

Stack: A special area in RAM used for temporary storage. The Macintosh's stack is 
32 bits wide. Longwords are placed on top of one another on the stack; 
access is in last in, first out order. Many of the Macintosh's built-in routines 
take their parameters from the stack. 

Stack pointer: A register that contains the address of the top of the stack (the 
address of the last longword placed on the stack). The Macintosh uses 
register A 7 for that purpose. 

Static text: Text that is for display purposes only. It cannot be edited. 

Status register: A 16-bit register within the Macintosh's microprocessor. The bits 
in a status register function independently as flags to signal a variety of 
conditions within the computer. The flags in the status register are also 
referred to as "condition codes". 

Symbolic address: In an assembly language program, a group of characters 
used in place of an absolute main memory address. Symbolic addresses can 
be attached to program instructions, constants, and storage locations. The 
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assembly and linking process translates the symbolic addresses into abso­
lute addresses. 

Synchronous file operations: File operations that force the application to wait 
for the file operation to finish before proceeding. 

System byte: The high-order byte of the Macintosh's status register. Bits 8 
through 15 of the status register are used only by the operating system and 
are not referenced by application programs. 

System Dispatch Table: An array in RAM that contains the actual location of 
ToolBox and Operating System routines. When the Macintosh traps calls to 
those routines, it translates them into references to the System Dispatch 
Table where the address is found. The Table is kept in ROM but loaded into 
RAM at system start-up. Because the Table is in RAM when the system is 
running, it can be patched to install custom routines. 

Title bar: The top of a window. The window's title is centered in the title bar. An 
optional GoAway box may appear atthe very left. 

ToolBox: A collection of programs supplied with the Macintosh that support 
graphics and the features of the Macintosh user interface. Most of the 
ToolBox is in ROM. 

Trap: A function of the Macintosh operating system that catches ("traps') binary 
instruction codes that are not a part of the standard 68000 instruction set. The 
Macintosh uses the trap mechanism to extend the Macintosh's instruction set 
by adding instructions which call the Tool Box and operating system routines. 

True magnitude form: A representation of an integer quantity where the binary 
value stored in the computer is the same as the actual value of the number. 

Two's complement: The number which, when added to a binary number, will 
produce a result of 2. 

Two's complement form: A representation of an integer quantity where the 
binary value stored in the computer is the two's complement of the actual 
value of the number. 

Two's complement system: A method for representing integer quantities within 
a computer. Negative numbers are stored in their two's complement form; 
positive numbers are not converted but are left in their true magnitude form. 

Unconditional branch: An assembly language instruction that executes a 
branch under all circumstances. No condition codes are checked. The 
68000 has two unconditional branch instructions - BRA and JMP. 
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User byte: The low-order byte of the Macintosh's status register. An application 
often consults the bits in the user byte to determine the result of a particular 
program instruction. 

Value parameter: A parameter that is used only as input to a Pascal program. 
Even the value of the parameter is changed in the subprogram, it will 
nonetheless retain its original value as far as the main program is concerned. 

Variable parameter: A parameter that can be used for both input to and output 
from a Pascal subprogram. Any data that are to be returned to a main 
program must be declared as variable parameters. The only exception to this 
rule is for the results of functions, which in Pascal are returned across an 
assignment operator. Assembly language function results are either 
returned on the stack or in a data register. 

Volume: Either a single floppy disk or a partition on a hard disk. 

Window: A rectangle on the Macintosh screen. Windows are used to display text 
and graphics, to collect data essential to program function, and to warn the 
user about the consequences of specific actions. Virtually all user interaction 
with an application takes place within windows. 

Word: On the Macintosh, a group of16 bits. Word size does vary from computer to 
computer. 
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MATERIALS FOR 
EURTI IER REFERENCE 

To learn more about microcomputers and how they work: 

Tocci, Ronald J. and Laskowski, Lester P. Microprocessors and microcom­
puters: Hardware and Software. 2nd ed. Prentice-Hall, 1982. 

To learn more about the 68000 microprocessor and how to program it: 

M68000 16132-bit Microprocessor Programmer's Reference Manual. 4th ed. 
Prentice-Hall, 1984. 

Kane, Gerry, Doug Hawkins and Lance Leventhal. 68000 Assembly Lan­
guage Programming. Osborne/Mc-Graw-Hill, 1981. 

To learn more about the Macintosh Tool Box and operating system routines: 

Inside Macintosh. Apple Computer, 1985. 
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IUIDMagStrlng 150 
fonts 

IUMagStrlng 150 N 
font description 290 
font size 258 NewHandle 283 

font style 258 J NewWlndow 168 

fonttype 257-258 JMP97-98 NOT113 

FrontWindow 209 JSR115 null events 193 

functions 141-144 NumToString 348 

K 
G keyboard equivalents 220-221 

0 

GetCursor 339 Key down events object code 2 

GetFilelnfo 330-331 as equivalents for menu selections octal numbering system 23-24 

GetFontlnfo 290 220-221 Open 332-333 

Getltem205 defined194 OpenDeskAcc 206 

GetNewControl 181 OpenResFile 172 
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Operating System Event Manager 146 
Operating System Utilties 147 
OR 112-113 

p 

Package Manager 146 
packing an equates file 263-264 
parameters 141-144 
PEA90-91 
pointers 137-138 
PrClose287 
PrCloseDoc 289 
PrClosePage 299 
PrintDefault 287 
printing 

access to Printing Manager routines 
276-279 

closing a page 299 
computing page size 290-291 
draft {definition) 275-276 
imaging and printing a spool file 
300-301 

job dialog 288 
moving the pen 291-292 
opening a page 289 
opening/closing a document 
288-289 

opening/closin9 Printing Manager 
287 

printer record 279-283, 284, 
287-288, 301 

sequence of Printing Manager 
routines 285-286 

spooled (definition) 275-276 
style dialog 288 

printing control directives 86 
Printing Manager147, 276-279 

error codes 286 
PrJobDialog 288 
procedures 141-144 
program counter 31 
program counter relative addressing 

modes46-47 
program counter with displacement 

addressing 46 
program counter with index 

addressing 46-47 
Pr0pen287 
PrOpenDoc 288 
PrOpenPage 289 
PrStlDlalog 288 
push buttons {see: buttons) 

Q 

QuickDraw 
definition 145 
initializing 160 

quick immediate data 48 

R 

radio buttons {see: buttons) 
Read 336-338 
real numbers 135 
records 

user defined data type 139-141 
register direct addressing modes 

36-37 
register indirect addressing modes 

37-43 
registers 25-29 
resource files 171, 175-176, 180, 

183-184 
Resource Manager 144-145 
RTS115 
running an application 68 
run time libraries 2 
run time system errors 68, 70-72 

s 
Scc98-99 
Scrap Manager 145 
scroll bars 

creating 181-182 
mouse down events in 209-212 
moving 214-220 
resource file template 180 

searching 123-129, 150-156 
Segment Loader 146 
SelectWlndow 178 
SendBehind 177 
SetCursor 339 
SetFllelnfo 331-332 
SetPort222 
SetWlndowTltle 176-177 
SF99 
SFGetFile 340-342 
SFPutFile 342-344 
ShowControl 220 
ShowWindow 177 
SignedByte 137 
SlzeControl 219 
SizeWlndow 216 
sorting 117-118, 120-123, 150-156 
spooled printing 275-276, 300-301 
ST99 
stack29-30 
Standard File Package 340-344 

INDEX 481 

Standard Utilities Package 146 
statement format 55-56 
status register 25, 27-29 
straight insertion sort 117-118, 120-123 
string data 136-137 
STRING_ FORMAT 136-137 
StringToNum 349 
SUB107-108 
subroutines 114-115, 355-356 
SWAP112 
symbolic addresses 45 
SysEdit 206-207 
SystemClick 208 
system dispatch table 31, 149 
System Error Handler 14 7 
system errors 68, 70-72 

T 

TElnit237 
TEActivate 240 
TECllck244 
TECopy248 
TECut248 
TEDeActivate 240 
TEDelete 248 
TEDispose 251 
TEldle243 
TElnsert 246 
TEKey246 
TEPaste248 
TEScroll 260-261 
TESetJust 259 
TESetSelect 245 
TEUpdate 255 
text editing 

activating/deactivating 239-243 
blinking cursor 243 
character insertion 245-248 
copy248 
cut248 
definition 11-12 
delete248 
justification 259 
paste248 
selection range 243-245 
scrolling 260-261 
static text 251-254 
text edit record 235-236, 238-239, 

251 
updating 255-257 

TextBox 252-253 
TextEdit 145, 235-261 
TextFace 258 
TextFont 257-258 
TextSize 258-259 
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ToolBox Event Manager 145 
ToolBox routines144·146 
Too!Box Utilities 145 
TrackControl 211 
TrackGoAway 212-213 
Transcendental Functions Package 

147 
TRAP 149-150 
traps149·150 
two's complement 103-105 

u 
unimplemented instructions 149 
update events 

defined194 

in application windows 221·223 
in text edit windows 255-257 

user-defined data types 137-138 

v 
Vertical Retrace Manager 147 
view rectangle 238 

w 
Window Manager145 
windows 

boundary rectangles 160-163 
changing titles 176-177 
closing 182-183, 212-213 

creating 168-175 
definition 9-11 
making active 178 
making visible/invisible 177 
mouse down events in 209-212 
moving in the plane 177-178 
moving on the screen 213-214 
resource file template 171 
scrolling 179-182 
sizing 178-179, 214-220 
types 163-166 
window record 167-168 
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