
MACINTOSH
ASSEMBLY LANGUAGE

AN INTRODUCTION
JAN L. HARRINGTON

MAC I N+GSF1

AN INTRODUCTION

Jan L. Harrington
Bentley College

Department of Computer Information Systems

CBS COMPUTER BOOKS

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

Production Manager: Paul Nardi
Composition: The Publisher's Network, Morrisville, PA

Copyright© 1986 by CBS College Publishing
All rights reserved
Address correspondence to:
383 Madison Avenue
New York, NY 10017

Library of Congress Cataloging in Publication Data

Harrington, Jan L.
Macintosh assembly language.

(CBS computer books).
Includes index. ·
1. Macintosh (Computer)-Programming. 2. Assembler

language (Computer program language) I. Title.
II. Series.
QA76.8.M3H36 1986 005.265 85-30592

ISBN 0-03-000833-6

Printed in the United States of America

Published simultaneously in Canada

678 039 987654321

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press
Saunders College Publishing

Chapter 1

Chapter2

Chapter3

Chapter4

Chapters

Table of Contents

PREFACE

INTRODUCTION
Chapter Objectives 1
Assembly Language: Why Bother? 1
The Standard Macintosh User Interface 4

NUMBERING SYSTEMS:
MACINTOSH'S MICROPROCESSOR AND MEMORY
Chapter Objectives 15
Computer Numbering Systems and How Information

is Represented in a Computer's Memory 15
Macintosh's Microprocessor 25
How Macintosh's RAM is Used 31
Addressing RAM 33
Questions and Problems 49

USING THE MACINTOSH 68000
DEVELOPMENT SYSTEM
Chapter Objectives 51
Introduction 51
Using the Editor 55
The Assembler 58
The Linker 63
Running an Application 68
Run-Time System Errors 68
The Executive 72
Debugging 7 4

THE 68000 INSTRUCTION SET (PART 1)
Chapter Objectives 80
Creating an 1/0 Shell 80
Assembler Directives 82
Data Manipulation Instructions 86
LOOPING 92
Making Comparisons 94
Testing the Condition Codes 95
Questions and Problems 99

THE 68000 INSTRUCTION SET (PART 2)
Chapter Objectives 103
Integer Arithmetic 103

ix

1

15

51

80

103

v

vi MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Chapter6

Chapter7

Chapter a

Chapter9

Logical Operations 11 O
Subroutines 114
Putting the Instruction Set to Work -

Sorting and Searching Arrays 116
Questions and Problems 130

THE PASCAL CONNECTION TO THE TOOLBOX AND
OPERATING SYSTEM ROUTINES 133
Chapter Objectives 133
Pascal Elementary Data Types 134
User-Defined Data Types 137
Pascal Data Structures 138
Procedure and Function Calls 141
An Overview of the Toolbox and Operating

System Routines 144
Calling Toolbox and Operating System Routines­

The Trap Mechanism 149
Using Toolbox and Operating System Routines -

Modifying the Sort and Search 150
Questions and Problems 156

SETTING UP THE DESKTOP: WINDOWS AND MENUS 159
Chapter Objectives 159
Creating Windows 159
Programming Technique- Making a Resource File

Part of Program Code 175
Manipulating Windows 176
Creating Menus 183
Questions and Problems 191

CONTROLLING PROGRAM ACTIONS:
MONITORING EVENTS 193
Chapter Objectives 193
The System Event Mechanism 193
Retrieving Events 198
Handling Mouse Down Events 202
Handling Key Down Events 220
Handling Update Events 221
A Word About Activate Events 223
Pulling Things Together Thus Far - WindowPlay 223
Questions and Problems 232

SCREEN AND KEYBOARD 1/0:
USING TEXTEDIT, ALERT AND DIALOG BOXES
Chapter Objectives 235
Entering, Displaying, and Editing Text 235

235

Chapter 10

Chapter 11

Chapter 12

TABLE OF CONTENTS vii

Controlling Program Actions with Alert and
Dialog Boxes 261

Questions and Problems 272

PRINTING 275
Chapter Objectives 275
Introduction 275
Accessing the Printing Manager 276
Data Structures for Printing 279
Programming Technique- Packing an Equates File 283
Establishing Print Records 284
The Sequence of Printing Manager Routines 285
Opening and Closing the Printing Manager 287
Collecting Information for the Print Record 287
Opening and Closing a Document 288
Printing a Single Page 289
Imaging and Printing Spool Files 300
Completing the Printing Task 301
Putting it All Together- BannerPrint 302
Questions and Problems 319

FILE 1/0
Chapter Objectives 322
Introduction 322
Data Structures for File Operations 323
Creating a Data File 330
Opening a File 332
Writing to Disk Files 333
Reading From Disk Files 336
Closing a File 339
Timing out for File 1/0 339
Managing Disk Changes and Choosing File Names -

the Standard Package 340
Questions and Problems 344

322

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 347
Chapter Objectives 34 7
Introduction 347
The Binary-Decimal Conversion Package 348
Floating Point Decimal-to-Binary Conversions 350
Programming Technique - Using Separately Assembled

Subroutines 355
Formats Available Through FP68K's Conversion Routines 357
Executing a Binary-to-Decimal Conversion 359
Programming Technique- Using Macros 360
An Overview of the FP68K and ELEM68K Routines 362

viii MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Finishing the Task- Doing Binary to Decimal Conversions
and Formatting Output 367

Questions and Problems 377

Appendix A THE VIDEO TAPE INDEX PROGRAM 380

Appendix B SUMMARY OF OPERATING SYSTEM AND TOOLBOX
ROUTINES DISCUSSED IN THIS BOOK 448

1. INITIALIZING THE SYSTEM 448
2. USING A RESOURCE FILE 449
3. CREATING WINDOWS 449
4. MANIPULATING WINDOWS 449
5. CLOSlf'JG WINDOWS 450
6. CREATING MENUS 451
7. MANIPULATING MENUS 451
8. IDENTIFYING EVENTS 452
9. HANDLING EVENTS 453

10. HANDLING TEXT 454
11. DIALOG BOXES 456
12. ALERTS 456
13. PRINTING 456
14. MANAGIN~ COORDINATES 457
15. DRAWING· 457
16. MOVING TEXT 458
17. STRING COMPARISON 458
18. FONT CHARACTERISTICS 458
19. FILE PRpCE~SING 459
20. ARITHMETIC 459

Appendix C GLOSSARY 465

Appendix D MATERIAL~ FOR FURTHER REFERENCE 478

Index 479

PREFAeE

It seems as though there is a flood of Macintosh software hitting the market
these days, most of it written in Pascal on a Lisa (the Macintosh's now defunct big
brother, most recently known as the Macintosh XL) or in assembly language on
either a Lisa or a Macintosh. Some commercial software developers are also
beginning to work in Forth and C. No language, however, gives a programmer
more control over the Macintosh than assembly language.

People who learn to program the Macintosh in assembly language gain in four
ways:

1. They learn the basic principles of microcomputer architecture;

2. They learn how computers store and manipulate numbers;

3. They learn the basics of using an assembly language instruction set;

4. They learn to focus on creating applications with a standard, user-friendly
interface.

This book was written to teach the four areas listed above to both students in a
classroom situation and an individual working alone. It is designed to take some­
one who knows Pascal and get that person functioning in an assembly language
environment. It assumes no background in computer architecture or assembly
language. By the same token, it is not a definitive work. One of its primary goals is to
give a programmer the tools needed to understand documentation so that he or
she can independently go beyond what this book covers. Therefore, while it
presents material common to assembly language programming on all computers,
this is also a practical book, aimed at doing assembly language programming on
the Macintosh. It was designed to teach assembly language programming specifi­
cally on the Macintosh and is not intended to be a general 68000 assembly
language text.

Programming the Macintosh in assembly language isn't an easy task. In fact, it
can be complex and tedious since access to the Macinotsh's internal ROM routines

IX

x MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

is really designed for Pascal, and assembly language programmers must simulate
the Pascal syntax. Nonetheless, working in assembly language does give a
programmer computing power that no other language can deliver.

Learning to program in assembly language on the Macintosh presents two
challenges: A person must not only master the microprocessor's instruction set,
but also must be able to interact with the ToolBox and operating system routines
that reside in Macintosh's ROM. All 1/0 is done through those routines. In tact,
Macintosh assembly language programs are often little more than a series of calls
to the ROM routines. The instruction set itself takes a back seat; it is used primarily
to set up parameters before issuing a call.

Because assembly language on the Macintosh is a rather complex task, this
book is not intended to be an exhaustive treatment of the subject, but it will:

1. Provide the technical background needed to function in assembly language

2. Introduce the commonly used instructions in the Macintosh's instruction set

3. Demonstrate how to use the Tool Box and operating system routines neces­
sary to create basic assembly language applications.

This book does not deal specifically with producing Macintosh graphics.
Creating spectacular graphics takes two kinds of knowledge: knowing how to use
the ROM graphics routines and knowing how to sequence calls to those routines to
draw the desired images. This book teaches the former, how to read the documen­
tation that describes the graphics routines, and provides the skills needed to call
the routines from assembly language. Sequencing calls to graphics routines to
produce some particular picture, however, is beyond the scope of this book. The
effective use of Macintosh graphics is an extensive subject that deserves a book all
its own.

Resources for Learning
This book is based on Apple's Macintosh 68000 Development System (MOS),

a package of software tools that supports the development of either stand-alone
assembly language applications or assembly language routines that can be called
by high-level language programs. While it is not the only such package available
for the Macintosh, it is the most complete and the most convenient to use. If not
available from your regular software supply house, it can be ordered directly from
Apple:

Macintosh Technical Support
Apple Computer
MS4-T
20525 Mariani Avenue
Cupertino, CA 95014

To obtain an exact price and details on ordering, call the customer service line
at 408-973-2222 between 9:30 A. M. and 1 :30 P. M. Pacific time.

Complete documentation for all Macintosh ROM routines can be found in
Inside Macintosh, now available at computer retailers and bookstores or through
direct order from Apple. Though the book you are reading right now is indepen­
dent of Inside Macintosh, programmers inevitably will wish to go beyond what this
book presents and it may be difficult to teach a course in Macintosh assembly
language without at least one copy of that manual available for reference. This
book teaches people how to interpret what they find in Inside Macintosh, how to
decipher the Pascal syntax for the Tool Box and operating system calls and turn it
into assembly language. It also focuses on understanding the sequence in which
they should use the ROM routines.

There is one other reference that students should use in conjunction with this
book and Inside Macintosh- The MC68000 Programmer's Reference Manual
(hereafter referred to as the PRM). The PRM, which is included with the Macintosh
68000 Development System, is a reference work detailing the instruction set of the
Macintosh's 68000 microprocessor.

Developing assembly language programs is much easier with the aid of a
number of utility programs that Apple has written. These include programs that
dump the contents of a disk file in hexadecimal, print a spooled print file, and aid in
creating screen formats and alert and dialog boxes. For a while Apple was
distributing these utilities with the Software Supplement to Inside Macintosh. Now
that Inside Macintosh is available in bookstores, however, the utilities can be
downloaded from a number of dial-up information systems, such as CompuServe,
and from public bulletin boards. They are also available from most Macintosh
users groups.

Reader Background
This book assumes that the reader has knowledge equivalent to a one­

semester course in Pascal, though not necessarily on the Macintosh. It also
assumes that the reader has some experience working with the Macintosh itself. In
particular, he or she should have used a Macintosh word processor such as
MacWrite. Though Chapter 1 discusses in detail the characteristics of the Macin­
tosh user interface, the book assumes that people are familiar with mouse-driven
applications that use pull-down menus and overlapping windows.

Overview of the Book
The introduction found in Chapter 1 lays a foundation for the Macintosh

assembly language environment. It discusses the differences between assembly
language and high-level languages and explains what is to be gained by working
in assembly language. The chapter also examines the characteristics of the
standard Macintosh user interface, emphasizing that all successful Macintosh
software adheres to that interface.

PREFACE xi

xii MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Chapter 2 presents technical background information. This includes a look at
the binary, octal and hexadecimal numbering systems, the architecture of the
Macintosh's microprocessor (in particular, its registers), how the Macintosh uses its
available RAM (including the stack), and addressing memory from assembly
language.

Chapter 3 contains a short assembly language program to type in. This will
provide practice in using the Macintosh 68000 Development System. Working
through the exercise early in the course will make it easier for students to concen­
trate on programming without worrying about how to use the Editor, Assembler,
and Linker.

Chapters 4 and 5 present an introduction to the assembly language instruc­
tions that form the backbone of a Macintosh assembly language program. This
chapter has numerous blocks of sample code, each of which is to be inserted into a
ToolBox "shell" that is created out of the program in Chapter 3.

Although this book deals with assembly language, ifs a fact of life that access to
ToolBox and operating system routines is based in Pascal. If people are going to
be able to read the documentation of those routines in Inside Macintosh, they must
understand Pascal data types, data structures, and procedures and functions.
Therefore, Chapter 6 reviews the necessary Pascal concepts. It also describes the
structure of the ToolBox and operating system routines and how an assembly
language program gains access to them.

The remainder of the book deals with the ToolBox and operating system
routines that are needed to create a Macintosh assembly language application.
Chapter 7 dicussses setting up the desktop (managing windows and pull-down
menus). Chapter 8 discusses managing program operation by monitoring the
keyboard and mouse. Chapter 9 handles entering and editing text. Printing from
an application (tedious but not difficult) is presented in Chapter 10. File liO (not as
complicated as it looks) is discussed in Chapter 11.

Chapter 12 discusses floating point arithmetic. Even if an application does no
significant amount of math, it will at least need to use the routines that convert a
string of numeric characters into a binary number and a binary number to a string
of characters for numeric 1/0.

The Video Tape Index
Program

. The major application that is developed throughout most of the book is a video
tape index. The program is a specialized database system that could be used in a
home to catalog which program has been recorded on which video tape or in a
video rental outletfor inventory control. The video tape index program first appears
in Chapter 5 in the discussion of handling arrays in main memory and is used to
explore sorting and searching techniques for such arrays. It is presented in bits
and pieces throughout the book. Complete source code for the program can be
found in Appendix A.

PREFACE xiii

To most students the source code for the video tape index program may look a
bit forbidding at first. It is long - about 3,000 lines of code - far longer than most
of the Pascal programs that are written in programming classes. Nonetheless, it
assembles to only about 12K and uses another 12K of space for data storage. It will
therefore run on a 128K Mac.

Why use such a large example? Certainly the sample programs that come with
the Macintosh 68000 Development System are much shorter. First, the very
simplicity of those examples creates a problem. The features of a Macintosh
application interact in many unexpected ways. While Apple provides a sample
program that creates a window, the video tape index uses multiple, overlapping
windows to demonstrate more extensive window management. One of Apple's
sample programs demonstrates text editing, but only in one window. The video
tape index uses multiple windows for text editing to explore a more complex,
meaningful environment.

Secondly, meaningful Macintosh assembly language programs do become
very large, generally occupying 25 to 400K. Apple's short examples really don't do
any meaningful work. The video tape index program is a complete, useful applica­
tion that can easily be customized to meet individual needs. It is also available,
along with other sample programs, on disk from the publisher of this book.

c H A p T E R 0 N E

INTRODLJeTION

Chapter Objectives

1. To explore the advantages and disadvantages of programming in assembly
language

2. To become familiar with the characteristics of the standard Macintosh user
interface

Assembly Language:
Why Bother?

Back in the early days (that means anything before 1964), people who wanted
to learn about computers studied logical circuit design and then a mysterious
language called "assembly." Once they had mastered assembly language pro­
gramming, they moved on to high-level languages like FORTRAN.

It doesn't work that way any more. For most people today, their first exposure to
programming is through a high-level (English-like) language, usually BASIC or
Pascal. Pascal doesn't require much knowledge about the internal workings of
your computer; not necessarily a bad thing, since knowing the internal organiza­
tion of a microprocessor doesn't automatically make you a good programmer.

There are, though, some things that assembly language can do better than
BASIC, Pascal and other high-level languages. Primarly, assembly language

1

2 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

programs run faster than high-level language programs. To understand why, you
must first realize that there is only one language that a computer can run directly­
machfne language. Machine language consists of a series of binary codes (O's and
1's) which make perfect sense to a computer but very little sense to a human.

Assembly language was created to free programmers from having to program
in machine language. Each command that the computer could understand (an
instruction) was given a short mnemonic code consisting of two to five letters.
Programmers could then use the mnemonics rather than the complex binary.
Once the source code was finished, it had to be translated into machine language
so the computer could run it. The translation was (and still is) accomplished by a
program called an assembler. The resulting machine language version is called
object code and can be run directly by the computer.

High-level languages also require translation to object code. Most versions of
BASIC are interpreted. That means that the conversion to object code occurs line
by line as the program is being run; no permanent machine language version of
the program is ever created. If you have a FOR/NEXT loop that repeats 100 times,
every statement in that loop will be translated to machine language 100 times.
lntepreted BASIC programs are just about the slowest programs around.

Most other high-level languages are compiled. All of the translation to machine
language occurs at one time. Just like an assembler, a compiler gives you a
machine language version of your program. Object code derived from a compiler
usually cannot be run alone, though. It needs to be linked to run-time libraries (a
collection of standard programs that handle functions such as input and output).
While compiled programs can run almost as fast as assembled programs, they
tend to be bigger. This becomes a major concern when you are writing software for
a machine with limited RAM such as the first edition Macintosh (with only 128K).

In addition to increasing the speed of program execution, assembly language
gives you more control over your computer than high-level language. When you
use an interpreted language, you have little opportunity to determine where your
program or its variable tables are placed in main memory. Though some compilers
do allow you to specify where large blocks of code should begin (e.g., your
program's object code and run-time libraries), you are still extremely limited. With
assembly language, you can access RAM locations directly and determine exactly
what will be placed in each location. A well-written assembly language program is
generally more efficient than an interpreted or compiled program; in other words, it
makes better use of available main memory.

In order to gain the speed and efficiency of assembly language programs, you
must in turn know something about the internal physical organization of your
computer. You need to know not only how RAM is used, but you must also have
some knowledge of the "architecture" of its microprocessor.

Assembly language has one major drawback, assuming that you don't con­
sider having to acquire technical knowledge about your computer a drawback.

INTRODUCTION 3

High-level languages are more or less portable between different computers.
Consider, for example, all the different microprocessors and operating systems
that run Microsoft BASIC. Languages such as Pascal and FORTRAN differ only
minimally between computers. Assembly language, however, is specific to one
particular microprocessor; the mnemonics are different for each one. Therefore,
learning assembly language on one computer does not automatically prepare you
to write assembly language programs on another. Each microprocessor has its
own instruction set (the entire group of instructions that a microprocessor can
understand).

Nonetheless without programming in assembly language it is very difficult to
do serious program development on a Macintosh. With BASIC you are limited to
very small, very slow programs. For example, after the Microsoft interpreter is
loaded, you have only 14K left in the 128K machine for programs. Though this
limitation has no relevance for the 512K Macintosh, a significant number of 128K
machines have been purchased and much software is designed to run in that
more restrictive environment.

Many Macintosh programs have been written in Pascal, but they were devel­
oped on a Lisa. Lisa Pascal for the Macintosh is very different from MacPascal.
MacPascal is interpreted, like BASIC. That means that while it is an excellent tool
for learning about Pascal, programs written in MacPascal will run nearly as slowly
as interpreted BASIC programs.

There is another disadvantage to developing Macintosh applications com­
pletely in a high-level language which relates to the nature of Macintosh software.
Successful Macintosh applications are designed around the standard Macintosh
user interface (discussed in the second part of this chapter). To implement that
interface, the Macintosh uses a set of over 500 prewritten routines. Some are in
ROM (read only memory); others are on disk as part of the system files. The
routines fall into two major groups: those that are part of the operating system and
those that constitute the Too/Box. (For an overview of Macintosh's built-in routines,
see Chapter 6.)

No language currently available gives you access to all of the ToolBox and
operating system routines within the standard language environment. (Lisa Pascal
can call all of the Macintosh's internal routines, but MacPascal cannot.) Some, like
Microsoft BASIC 2.0, allow a programmer to build assembly language libraries
that can be called from the high-level language program. Others, like MacPascal,
have an interface to many of the routines which require assembly language
knowledge to set up the calls. A programmer who wishes to exploit a Macintosh
high-level language to its maximum must therefore have at least some knowledge
of the Macintosh assembly language interface.

What it all boils down to is this - if you want to be able to tap the full power of a
Macintosh, then you will find that being able to use assembly language is the most
valuable tool available.

4 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The Standard
Macintosh User

Interface

The Macintosh has made most of us redefine what it means when we say a
program is easy to use. When we open a brand-new piece of Macintosh software,
we expect to be able to run it by simply double-clicking on its icon from the Finder.
We also expect to find that program actions are controlled by menus and that the
mouse controls placement of the cursor. These are all characters of the standard
Macintosh user interface. They have the effect of making Macintosh applications
programs very easy to learn and use. By the same token, they increase the burden
on the programmer.

Macintosh software packages that stray from the standard user interface have
not fared well with reviewers or users. During the first six to nine months after
Macintosh was released, many independent software developers rushed to mar­
ket Macintosh versions of software that was running on other systems without
completely adapting it to the Macintosh environment. Few of those early efforts are
still being sold; most have been significantly upgraded to adhere to the Macintosh
interface. The moral of the story is ... if you're going to program the Macintosh, do it
Apple's way when it comes to the user interface. In terms of that interface, creativity
wins few prizes.

The Macintosh standard user interface is characterized by the following:

1. Use of the mouse as the primary input device to control menu selections,
window manipulation, cursor placement and text selection

2. Pull-down menus, including the standard Apple, File, and Edit menus

3. Multiple, overlapping windows

4. Text editing with cut, copy, paste and clear functions

5. Control of program actions with alert and dialog boxes

Macintosh Cursors
The Macintosh's mouse is "hard wired" to a moveable cursor that appears on

the screen; it lays on top of everything else that is displayed. The cursor's shape will
vary with particular program actions. It may be:

1. An arrow (used when making menu selections, dragging windows, closing
windows, sizing windows, scrolling windows contents, etc.)

2. A straight line (used to mark the place where text characters will be inserted)

3. An I-beam (used to aid in positioning the cursor in text documents)

INTRODUCTION 5

4. A wrist watch (used to indicate long waits)

Other special cursors include the cross for sizing and positioning graphics objects,
and an outlined cross used for making array selections. Applications may also
design their own cursors.

Menus
Menus were certainly not invented by the Macintosh development team; they

are used in a great deal of commerical software. Most users consider menu-driven
software as easier to learn and easier to use than software that requires learning a
set of commands. Menus on other computers, however, not only look different
from Macintosh menus but accept input about menu selections in a very different
way.

A typical non-Macintosh menu appears in Figure 1.1. A program using this
menu will usually clear the screen, print the menu, and issue an input statement
(e.g., a Pascal read). The user makes a selection by entering a number that
corresponds to the appropriate menu option. Program execution is suspended
until the menu selection is made; the user has no way to escape from making a
menu choice, save perhaps resetting the computer.

File Menu -

1. Nev
2. Open
3. Close
4.Save
S. Save As
6. Print
7. Quit

Enter option number:

Flgure1.1 A Standard Microcomputer Menu

Macintosh menus also present the user with a list of options. Figure 1.2
presents the Macintosh version of the menu from Figure 1.1 The menu's title
appears above the part of the screen where program actions take place; this is
known as the menu bar. To see the menu options, the user positions the arrow
cursor on the menu title, presses the mouse button, and drags the arrow down.

6 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Options are highlighted (displayed in inverse video-white letters on a black
background) as the arrow cursor is dragged. The user indicates a menu selection
by releasing the mouse button when the cursor is positioned on the appropriate
option.

t----i Op1~ n ...
Close
Soue
Soue As ...
Poge Setup
Print...
Quit

The Menu Bar

This menu is "pulled-doyn". It may
temporarily cover part of the main
Yi ndoY, but ..,hen the menu is
released, the main Yindoy's contents
are unaltered_

Figure 1.2 The Macintosh's Standard File Menu

Two things make the Macintosh menu selection process very different from
standard menu selections. In the first place, the user can escape from the menu by
either returning the arrow cursor to the menu title or by dragging the cursor off the
bottom of the menu. Secondly, pulling down the menu doesn't require erasing
what appears on the main portion of the screen, though part of the screen may be
temporarily covered by the menu options. Selections from Macintosh menus can
therefore be made while text and/or graphics are present on the Macintosh
screen.

Most Macintosh applications will support three standard menus plus any
additional menus the application requires. The leftmost menu in the menu bar has
the silhouette of an apple with a bite out of it for a title. This "Apple" menu (see Figure
1.3) supports the Macintosh desk accessories and may also include an "about"
feature that describes the software in which the menu appears. A desk accessory
is a stand-alone program that can be run at any time without exiting the major
application (e.g ., MacWrite or MacPaint) being executed.

INTRODUCTION 7

The second menu from the left is the File menu (see Figure 1.2). A standard file
menu provides options for opening new and existing files, saving files, closing files,
printing files, and exiting the program. The third standard menu, the Edit menu
(Figure 1.4), implements editing operations: cut, paste, copy, and clear (delete).
Note that clear is often not supported as a menu item (that is the case in Figure 1.4) .

.- 1:1 File Edit Search Format Font Style
-~bout MacWrite... Untitled

Choose Printer
Scrapbook
Rlarm Clock
Note Pad
Calculator
Key Caps
Control Panel
Puzzle

The standard Apple menu contains an "about"" option that
describes the application as Yell as the desk accessories.
The specific desk accessories can be changed b\I using a
utility p rog ram k noY n as t be Desk Accessory Mover.

Figure 1.3 The Macintosh Standard Apple Menu

Font Style

Untitled

Cut XH 8-
Copy XC Keyboard equivalents
Paste XU

Show Clipboard

Figure 1.4 The Macintosh Standard Edit Menu

.,

.,

8 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Users who are very familiar with a piece of software often prefer to issue menu
selections from the keyboard. To make this possible, an application can associate
a pair of keystrokes with any or all options in a menu. Known as keyboard
equivalents, they appear to the right of the menu options as the cloverleaf symbol
followed by a single key. Keyboard equivalents for the File and Edit menus are
standard and should not be changed. Note that identifying which option has been
selected from which menu, regardless of whether the selection is made by mouse
or keyboard equivalent, is not automatic; it must be programmed into an applica­
tion.

An application has complete control over which menus appear in the menu
bar. The three standard menus should usually be present. Nonetheless, there are
times when it makes no sense in terms of program function to allow selection from a
particular menu. In that case, an application should disable that menu. Titles of
windows that have been disabled appear dimmed; their titles are printed in light
grey ratherthan black (Figure 1.5). If it makes sense to disable only specific options
rather than an entire menu, the application should do so. Options that have been
disabled appear dimmed, while the menu title is still printed in black (Figure 1.6).

Details on creating menus, manipulating the menu bar, and disabling and
enabling menus can be found in Chapter 7. Information of identifying menu
selections is part of Chapter 8.

,. S Hie Form design

=D M11cFile

It
The title of the File menu above is dimmed.
That means that the menu ls disabled and its
options not available to the user.

Figure 1.5 A Disabled Menu

,. s · Form design

l~u=i ~::t r
S11ue Rs ...
t)uit

Mac File

The Nev, Did, end Quit options in this File menu are
dimmed. That means thit those particular options are
not available to the user. On the other hand, the Save As
option is available. Only the options that are not
appropriate at the time are dimmed.

Figure 1.6 A Macintosh Menu with Disabled Items

Windows

INTRODUCTION 9

.,

Windows are rectangles that appear on the Macintosh screen. They are used
to display text and graphics, to collect data essential to program function, and to
warn the user about the consequences of specific actions.

The Macintosh supports six different types of windows. Depending on its type,
a window may have one or more of the following features (see Figure 1. 7):

1. A title displayed in a title bar

2. A drag region (the entire title bar except for the GoAway box)

3. A GoAway box (at the left of the title bar)

4. Controls (e.g., scroll bars, push buttons, radio button, check buttons)

5. A grow icon (located in the lower right corner of the window) - note that an
icon is nothing more than a small picture that represents an object or a
function within the computer.

A window that accepts user input, regardless of whether that input is text or
graphics, has the same title as the document file which contains the material on
disk. If the document has not yet been saved, the window title is "Untitled." Other
windows, such as the desk accessories, have titles that reflect their function. For
example, the note pad desk accessory's window has the title "Note Pad." Windows
that warn users (alerts) and windows that collect data (dialogs) have no titles.

10 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

T be GoAYa y Box

ntitled

The Wi ndoY Title

A Vertical Scroll Bar
{some Yi ndoYs also have
horizontal scroll bars}

Figure 1. 7 The Parts of a Macintosh Window

The Title Bar

The drag region consists of the entire title bar except the GoAway box. It allows
the user to move the window around the screen. When a user positions the cursor
in the drag region and presses the mouse button, an outline of the window will
follow the arrow cursor as the user drags it around the screen. The final position of
the window is determined by the location of the arrow cursor when the mouse
button is released.

A GoAway box is the small rectangle that appears in the left-hand corner of the
title bar. If the mouse button is clicked while the arrow cursor is within the GoAway
box, the application should close the window. If the window contains a document
that has been modified since it was last saved to disk, the application will ask the
user whether or not the document should be saved before closing.

The term "controls" refers to a group of things that can appear in a window.
They include scroll bars, push buttons, radio buttons, and check boxes. (The latter
three are illustrated in Figure 1.8.) Scroll bars are used to change the portion of a
large document that is visible at any time within a window. Scrolling is discussed in
Chapters 7 and 8. The other types of controls appear primarily in dialog and alert
boxes (see Chapter 9).

A grow icon appears in the lower right-hand corner of document windows. It
allows a user to change the size of a window. When the user positions the arrow
cursor in the grow icon and presses the mouse button, an outline bfthe window will
follow the cursor as it is dragged about the screen. The final size of the window is
determined by the position of the cursor when the mouse button is released. Sizing
windows is discussed in Chapter 8.

Windows are not restricted to changing their size and position within a single
plane. They can change positions relative to any other windows present on the
screen. If we assume that windows are stacked on the screen like sheets of paper

INTRODUCTION 11

might be piled on a desk, then we can say that windows cjn change their location
in that pile. In Macintosh terminology, windows move f%m front to back. Like
pieces of paper, Macintosh windows can overlap. Windoyvs to the back may be
obscured by those in front of them.

(OK) A Push Button

D Check Boxes

~

0 Radio Buttons

@

Flgure1.8 Macintosh Controls

The front-most window on the screen is the active window; an application can
only work in an active window. Active windows are highlighted in some way,
though the actual details of the highlighting depend on the type of window. For
example, the highlighting in standard document windows like the one in Figure 1. 7
includes horizontal lines in the title bar and a pattern in the scroll bars. When a
standard document window is inactive, its title bar will contain only the title.

;

Text Editing ~
Throughout a Macintosh application, entry and modifica ·on of text is managed

in a single, consistent manner. The place where new c aracters are added
(indicated by a single, straight-line cursor) is known as the i ertion point.

Cut, paste, copy, and clear - the editing operations - affect one or more
contiguous characters in a block known as the selection range. The selection
range is highlighted (see Figure 1.9) by displaying white haracters on a black
background.

A user selects text in two major ways:

1. By holding down the mouse button and dragging the ursor across the text.
(In this case, if a selection goes beyond what is currTly visible in the text

12 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

window, the text should scroll.) All text over which the cursor is dragged will
be included in the selection range.

2. By clicking the mouse button while the shift button is down (known as shift­
clicking). All text between the current position of the cursor and the place
where the shift-click occurred will be selected.

50 Untitled

This is an example of how the Macintosh displays
the . The characters in
the selection range are displayed in inverse
video.

Figure 1.9 The Selection Range in a Text Document

The editing operations (cut, paste, and copy) affect what is known as the
clipboard. The clipboard is a holding area for text and/or graphics images. It may
be kept in main memory or may be saved to disk if it becomes very large.
Executing a cut deletes the current selection range and places it on the clipboard;
copy merely places the selection range on the clipboard without deleting it from
the document. Paste takes whatever is on the clipboard and places it in the
document just after the current selection range. Generally, the selection range for
paste operations will simply be an insertion point. Note that the clipboard can only
hold one thing at a time. While paste does not disturb the contents of the clipboard,
each cut or copy replaces what was previously there.

Clear does not affect the clipboard. It merely deletes the current selection
range. The backspace key has the same effect as clear.

The implementation of Macintosh text editing is discussed in detail in Chapter 9.

INTRODUCTION 13

Alerts and Dialog Boxes
Alerts and dialog boxes are specialized windows. They are used by an applica­

tion to either warn the user about the consequences of a particular action (an alert)
or to collect information essential to program function (dialog boxes).

Alerts contain the text of a warning and one or more push buttons (see Figure
1.10). One button is selected as the default button; it is heavily outlined. Pressing
either the Enter or Return key will have the same effect as positioning the arrow
cursor over the button and clicking the mouse button. Most alert boxes have an OK
button which simply closes the alert and continues with program action. Some also
have a Cancel button which permits a user to escape from some action he or she
may have inadvertantly requested.

Untitled

Sa11e changes before quitting?

n Yes]I
(No) Cancel

Characteristics of an alert:
1. Contains text and push buttons
2. The default button is heavil ~outlined. It 'Nill be selected 'Nhen the

the user presses Enter or Return
3. The alert is the active 'Ni ndo'N (note that the text 'Ni ndw in the

background has been unhighlighted)

Figure 1.10 An Alert

Dialog boxes come in two varieties: modal and mode/ess. A modal dialog box
prevents the user from working anywhere but within the box. They are used to
collect information that the application must have before it can continue. For
example, a modal dialog box is used to collect that name of a file before saving it to
disk for the first time. Modal dialog boxes display messages, have areas for
entering text, and can contain push buttons, radio buttons, and check boxes (see
Figure 1.11). They are removed completely from the screen when the user has
finished with them.

14 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Modeless dialog boxes are much more like other windows. They permit the
user to work outside the dialog box while the dialog box is still on the screen.
Modeless dialog boxes are most commonly used to implement Find and Search
operations (see Figure 1.12).

Alerts and dialog boxes are discussed in Chapter 9.

H lmageWriter (Standard or Wide) ([OK JI
Paper: ®US Letter O A4 letter

O us Legal O International Fanfold [Cancel J
O Computer Paper

Orientation: @Tall O Tall Adjusted OWide

Pagination: ®Normal pages 0 No breaks between pages

Reduction: @None 0 50 percent

Che recte ri sti cs of e mode 1 die 1 og box:
1. User can work only in the die log box
2. Contei ~s display text, fields for editing text, end controls
3. The default button (the button selected by Enter or Return) is
heavily outlined

~

Flgure1.11 A Modal Dialog Box

=o Change

Find what I SearchString I
Change to l

(Find NeHt) ([hlll\\jl~. 'fhNl I' ind) (t:IHlnlJI~) (Change All)

@Whole Word 0 Partial Word

Characteristics of a mode less dialog box
1. User can work outside the dialog box while the box is still on the
screen
2. Contains display text, text that can be edited, end controls
3. The default button (the button selected when the user presses Enter
or Return) may or may not be heevil y out11 ned

H

Figure1.12 A Modeless Dialog Box

c H A P T E R T W 0

NLJMBERINC3 S¥STErv1S:
MACINTOSH'S

MIGRGPRGGESSGR AN9
MEMGR'f

Chapter Objectives

1. To learn the three major numbering systems used to represent instructions,
characters, and quantities in a computer

2. To understand the organization of the Macintosh's microprocessor and, in
particular, its registers

3. To understand the purpose of a stack and how it works

4. To understand how the Macintosh's main memory is distributed between the
operating system and an application program

5. To get an overview of the ways in which a Macintosh assembly language
program specifies the location of data in main memory (addressing modes)

6. To understand the use of symbolic addresses

Computer
Numbering Systems
and How Information

is Represented in
a Computer's Memory

When we talk about a computer's memory, we use either the hexadecimal
(base 16) or octal (base 8) numbering systems. Both are used as a shorthand for

15

16 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

binary numbers, which get very clumsy very quickly. To understand hexadecimal
and octal, we must first look at binary numbers.

Binary Numbers
Base 2 (binary) is a natural for describing the internal state of a computer.

Anything we want to put in a computer must be represented by groups of
integrated circuits. Each one of those circuits can carry either a high voltage (by
convention, assigned a value of 1) or a low voltage (assigned a value of 0). As it so
happens, O and 1 are the digits that make up the binary numbering system.

As you probably remember from junior-high math, binary numbers work on a
place-value system, just like the base 10 numbers we use every day. Instead of
representing a power of 10, though, each binary place represents a power of 2.

Figure 2.1 shows you a sample binary number and the base 10 value of each
place. There is one group of 128, one group of 64, one group of 32, one group of 8,
and a single 1. In base 10, this number would be 233. To convert a binary number
to a base 10 number, all you have to do is add up the base 10 place values of each
binary place that has a 1 in it.

1 1 0 0 0 a binary number

27 26 25 24 23 22 21 2" Base Two place values

128 64 32 16 8 4 2 Base Ten equivalents

To covert Base Two (binary) to Base Ten (decimal):

Add up the decimal place values of each binary place that
contains a one:

128+64+32+8+1 =233

Figure 2.1 A Binary Number

Each binary place is called a binary digit, or bit. A bit can stand for one of two
different things and therefore takes a value of either 0or1.

We certainly need to be able to have more than two values in the computer
(there are 53 letters, 10 digits, and a number of punctuation marks and special
characters), so we group a series of bits together. Eight bits are called a byte. A

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 17

byte can represent the binary equivalent of 0 through 255 (you get 255 when you
put a 1 in each of the eight places). Those values are used as codes for whatever
we wantto store in the computer. The bits in a byte are numbered from O through 7,
starting at the right.

Though there are a number of coding schemes, most microcomputers (includ­
ing the Macintosh) use ASCII code to represent characters and instructions.
(Numbers intended for mathematical operations are usually not coded, but stored
as binary quantities.) ASCII stands for American Standard Code for Information
Interchange.

When you studied Pascal, one important thing you had to know was the
difference between storing a digit as a CHAR or as an INTEGER or a REAL. If you
stored the digit in a CHAR variable, then you couldn't do arithmetic operations with
it unless you first converted it to an INTEGER or a REAL. You are now in a position
to understand why.

The binary ASCII codes for the digits 0 through 9 are 0110000 (48 in base 10) to
0111001 (57 in base 10). That's what will be stored in main memory when you assign
a digit to a CHAR variable. The value of these codes bears no relation to the actual
quantity the digits represent, and trying to use them in arithmetic operations would
certainly produce ridiculous results. On the other hand, storing one of the quan­
tities 0 through 9 in a numeric variable stores 0000 to 1001, the exact binary
equivalent of the digit.

Storing digits as a CHAR requires one byte per digit. For example, "28" would
be stored as 0011010 and 0111000. Numbers, though, can hold up to 255 in a single
byte. 28 would be 00011100.

You've probably noticed that the ASCII codes for the digits are only 7 bits long.
Standard ASCII is a 7-bit code. The eighth bit in the byte is usually not used.

The Macintosh, though, uses an extended ASCII code which lets you use a
combination of the shift and option keys to generate characters which are not
usually available from the keyboard. These additional characters are created by
using bit seven (the eighth bit) to provide additional code combinations. Standard
ASCII codes end at 01111111, but Macintosh codes go all the way through 10001001.
You can see Macintosh's character codes in Table 2.1

Most assemblers, including the MOS Assembler, will accept binary numbers
as part of the source code. To indicate that a quantity is binary, preface it with a
percent sign(%). For example, the Assembler will recognize % 1100011 as a binary
number having the decimal value 99. Without the percent sign, the number will be
interpreted as base 10 with the value of one hundred ten thousand and eleven.

The binary system is used in computers for one other major purpose besides
specifying ASCII codes; it is used to count the bytes in the computer's memory. The
number given to each byte is called its address. In the 128K Macintosh, there are
131,072 bytes of RAM (one kilobyte = 1024 bytes), so the binary equivalent of the
maximum address is 11111111111111111. Such a number is too long for most people to
handle easily. Therefore, we use hexadecimal as a shorthand.

18 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Table 2.1 Macintosh Extended ASCII Character Set

NON-PRINTING CHARACTERS*

What you Binary Hex Meaning of
Press Code Code thecoc!e

00000000 00 Null
00000001 01 Start of header
00000010 02 Start of text

Enter key 00000011 03 Enter
00000100 04 End of tape
00000101 05 Enquiry
00000110 06 Acknowledge
00000111 07 Bell

Backspace key 00001000 08 Backspace
Tab key 00001001 09 Horizontal tab

00001010 0A Line feed
00001011 0B Vertical tab
00001100 0C Form feed

Return key 00001101 0D Carriage return
00001110 0E Shift out
00001111 0F Shift in

00010000 10 Data link escape
00010001 11 Open Apple
00010010 12 Check mark
00010011 13 Filled diamond
00010100 14 Filled circle
00010101 15 Closed Apple
00010110 16 Synchronous idle
00010111 17 End transmission block
00011000 18 Cancel
00011001 19 End of medium
00011010 1A Substitute

Clearkeyt 00011011 1B Clear
Left arrowt 00011100 1C Move left
Right arrowt 00011101 1D Move right
Up arrowt 00011110 1E Move up
Down arrowt 00011111 1F Move down

*Non-printing characters generally cannot be generated from the keyboard (exceptions are noted in the
"What you Press" column).
tThese keys appear on the Macintosh keypad.

(continued)

NUMBERING SYSTEMS: MACINTOSH'S IV!ICROPROCESSOR AND MEMORY 19

PRINTING CHARACTERS

What you What you Binary Hex What you What you Binary Hex
Press See Code Code Press See Code ~

Space bar A space 00100000 20 SHIFT-2 @ 01000000 40
SHIFT-1 ! 00100001 21 SHIFT-a A 01000001 41
SHIFT-' 00100010 22 SHIFT-b B 01000010 42
SHIFT-3 # 00100011 23 SHIFT-c c 01000011 43
SHIFT-4 $ 00100100 24 SHIFT-d 0 01000100 44
SHIFT-5 % 00100101 26 SHIFT-a E 01000101 45
SHIFT-7 & 00100110 26 SHIFT-f F 01000110 46

00100111 27 SHIFT-g G 01000111 47
SHIFT-9 (001010(Z)0 28 SHIFT-h H 01001000 48
SHIFT-0) 00101001 29 SHIFT-i I 01001001 49
SHIFT-8 * 00101010 2A SHIFT-j J 01001010 4A
SHIFT-= + 00101011 28 SHIFT-k K 0101211011 48

00101100 2C SHIFT-I L 01001100 4C
00101101 20 SHIFT-m M 01001101 40
00101110 2E SHIFT-n N 01001110 4E

I 00101111 2F SHIFT-o 0 01001111 4F

0· 0 00110000 30 SHIFT-p p 0101000~ 50
1 1 00110001 31 SHIFT-q Q 01010001 51
2. 2 00110010 32 SHIFT-r R 01010010 52
3 3 00110011 33 SHIFT-s s 0101121{2>11 53
4· 4 0011'2'100 34 SHIFT-t t 01010100 S4
5 5 00110101 35 SHIFT-u u 01010101 S5
6. 6 00110110 36 SHIFT-v v 01010110 S6
7 7 00110111 37 SHIFT-w w 01010111 S7
8 8 00111000 38 SHIFT-x x 01011000 S8
9 9 00111001 39 SHIFT-y y 01011001 59
SHIFT-; 00111010 3A SHIFT-z z 01011010 5A
; 00111011 38 [[01011011 SB
SHIFT-, < 00111100 3C \ \ 01011100 SC

00111101 30]] 01011101 so
SHIFT-. > 00111110 3E SHIFT-6 " 01011110 SE
SHIFT-/ ? 00111111 3F SHIFT-- 01011111 5F

(continued)

20 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Table 2.1 (continued)

PRINTING CHARACTERS

What you What you Binary Hex What you What you Binary Hex
Er~ Sflfl Codfl .QQQfl_ ErflSS Sflfl Code .QQdfl.

01100000 60 OPT-u/SHFT-a At 10000000 S0
a a 01100001 61 SH FT-OPT-a A 10000001 S1
b b 01100010 62 SHFT-OPT-c ~ 10000010 S2
c c 01100011 63 OPT-e/SHFT-e 10000011 S3
d d 01100100 64 OPT-n/SHFT-n f:.i 10000100 B4
e e 01100101 65 OPT-u/SHFT-o 0 10000101 S5
f f 01100110 6S OPT-u/u (j 10000110 SS
g g 01100111 S7 OPT-e/a a 10000111 S7
h h 01101000 68 OPT-'/a a 10001000 SS
i 01101001 S9 OPT-Va a 10001001 B9
j j 01101010 SA OPT-u/a a 10001010 BA
k k 01101011 SB OPT-n/a a 10001011 SB
I I 01101100 SC OPT-a a 10001100 BC
m m 01101101 SD OPT-c c; 10001101 SD
n n 01101110 SE OPT-e/e e 10001110 SE
0 0 01101111 SF OPT-'/e e 10001111 SF

p p 01110000 70 OPT-Ve A 10010000 90
q q 01110001 71 OPT-u/e e 10010001 91
r r 01110010 72 OPT-e/i r 10010010 92
s s 01110011 73 OPT-'/i 10010011 93
t t 01110100 74 OPT-Vi 10010100 94
u u 01110101 75 OPT-u/i 'j 10010101 95
v v 01110110 7S OPT-n/n n 10010110 9S
w w 01110111 77 OPT-e/o 6 10010111 97
x x 01111000 7B OPT-'/o 0 10011000 9B
y y 01111001 79 OPT-Vo 0 10011001 99
z z 01111010 7A OPT-u/o 0 10011010 9A
SHIFT-[{ 01111011 78 OPT-n/o i5 10011011 98
SHIFT-\ I 01111100 7C OPT-e/u u 10011100 9C
SHIFT-] } 01111101 7D OPT-'/u t) 10011101 9D
SHIFT-' 01111110 7E OPT-Vu 0 10011110 9E
delete* 01111111 7F OPT-u/u (j 10011111 9F

•A non-printing character
tAccented characters which are useful for foreign languages are generated by a two-key sequence. You
must first press the OPTION key and the modifier (' ,i,u,n, or e) together; nothing will appear on the screen.
Then press the key above which you "fish the accent to appear.

(continued)

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 21

PRINTING CHARACTERS

What you What you Binary Hex What you What you Binary Hex
Press See Code ~ Press See Code ~

OPT-t t 10100000 A0 SHFT-OPT-/ l 11000000 C0
SHFT-OPT-8 . 10100001 A1 OPT-1 I 11000001 C1
OPT-4 ¢ 10100010 A2 OPT-I ..., 11000010 C2
OPT-3 £ 10100011 A3 OPT-v " 11000011 C3
OPT-6 § 10100100 A4 OPT-f f 11000100 C4
OPT-B 10100101 AS OPT-x 11000101 cs
OPT-7 11 10100110 A6 OPT-j d 11000110 C6
OPT-s B 10100111 A7 SHFT-OPT-\ 11000111 C7
OPT-r ® 10101000 AB OPT-\ ((11001000 CB
OPT-g © 10101001 A9 OPT-; 11001001 C9
OPT-2 TM 10101010 AA (unused) 11001010 CA
OPT-e 10101011 AB OPT-'/SHFT-a A 11001011 CB
OPT-u 10101100 AC OPT-n/SHFT-a A 11001100 cc
OPT-= "# 10101101 AD OPT-n/SHFT-o 0 11001101 CD
SH FT-OPT-' IE. 10101110 AE SHFT-OPT-q CE 11001110 CE
SHFT-OPT-o 0 10101111 AF OPT-q 00 11001111 CF

OPT-S 10110000 B0 OPT-- 11010000 D0
SH FT-OPT-= ± 10110001 B1 SH FT-OPT-- 11010001 D1
OPT-, ~ 10110010 B2 OPT-[11010010 D2
OPT-. ;;:>: 10110011 B3 SHFT-OPT-[11010011 D3
OPT-y ¥ 10110100 B4 OPT-) 11010100 D4
OPT-t 10110101 BS SHFT-OPT-) 11010101 D5
OPT-d a 10110110 B6 OPT-/ + 11010110 D6
OPT-w I. 10110111 B7 SHFT-OPT-v 0 11010111 D7
SHFT-OPT-p II 10111000 BB OPT-u/y i. 11011000 DB
OPT-p 7t 10111001 B9 SH FT-OPT-' 11011001 D9
OPT-b J 10111010 BA
OPT-9 10111011 BB
OPT-0 10111100 BC
OPT-z n 10111101 BD
OPT-' m 10111110 BE
OPT-o " 10111111 BF

*The picture that appears on the screen varies with the type font in use.

22 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Hexadecimal Numbers
Base 16 (hexadecimal or simply "hex") presents a unique challenge to we

human beings. This numbering system should be able to express the quantities O
through 15 in a single place, but we only have ten digits available (0 through 9).
Therefore, we use the letters A-F to represent 10 through 15 respectively. Figure
2.2 shows some hexadecimal place values. The sample number has a decimal
(base 10) value of 77,631.

2 F 3 F a hexadecimal number

16" Base Sixteen place values

65,536 4096 256 16 Base Ten equivalents

To covert Base Sixteen (Hexadecimal) to Base Ten (decimal):

Multiply each hexadecimal digit by its decimal equivalent
and add:

(65,536 * 1) + (4096. 2) + (256 * 15) + (16. 3) + 15 = 77,631

Figure 2.2 A Hexadecimal Number

How hex can give us a shorthand for large binary numbers is probably not
instantly obvious, but consider this: the maximum quantity that a four-digit binary
number can represent is 15 (in binary, 1111), which, "by coincidence," is the
maximum value of a single hex digit.

Converting a binary to hex number becomes very simple. First, divide the
binary number into groups of 4 digits, working from the right. Then substitute the
hexadecimal equivalent for each group of 4 binary digits. Thafs all there is to it.

As we saw above, the maximum RAM address in the 128K Macintosh is
11111111111111111 in binary. Figure 2.3 shows its conversion to hexadecimal. Now the
maximum address appears as $1FFFF. The$ in front of the number alerts us (and
the Assembler) that what follows is hexadecimal. The hex figure is certainly more
manageable than that string of seventeen 1's. Though the MOS assembler will
accept quantities and codes in binary, octal (Base 8), decimal, and hex, we
generally specify addresses and character codes in hexadecimal and quantities in
base10.

Hexadecimal is also used as a shorthand for binary when representing ASCII
codes. The digits have codes of $30 through $39; 0 has a code of $30, 1 of $31, 2 of
$32, and so on. The hexadecimal values of the codes seem much more logical
than the base 10 codes of 48-57.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 23

F F F

To do the conversion:

1. Divide the binary number into groups of four , starting
from the right.

F

2. Substitute the corresponding hexadecimal digit for each group
of four binary digits.

Figure 2.3 Converting Binary to Hexadecimal

By this point it has probably occurred to you that if the maximum RAM address
is $1FFFF, there is no way to specify such an address in one byte (the maximum
hex value for one byte is $FF); it will take three bytes. We also would like to be able
to do arithmetic on numbers more than one byte in length (e.g., with values greater
than 255, occupying more than eight binary places). The microprocessor used in
the Macintosh conveniently allows us to work with words and longwords.

A word refers to two bytes (16 bits) and always begins on a byte with an even
address. For example, a word could occupy the bytes at $33AA and $33AB but
not the bytes at $33AB and $33AC. We number the bits in a word 0-15, starting
from the right. Bits 0-7 are referred to as the "low-order" byte; 8-15 are called the
"high-order" byte.

A longword is 4 bytes (32 bits). Like a word, it musfbegin on a byte with an even
address. The bits are numbered 0-31, starting at the right. Bits 0-15 are the low­
order bits and 16-31 the high-order bits.

Octal Numbers
The octal numbering system (also known as base 8) has been around com­

puters as long as hex, but it isn't used a great deal any more. Like hex, octal
became popular as a shorthand for binary. It was useful when the largest bit
grouping was a byte and when data codes were only 6 bits. Why resurrect octal
here, then? Because the MOS assembler will accept octal numbers as well as
binary, decimal, and hexadecimal numbers.

24 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Since octal is base 8, it uses the digits O through 7. Each octal place therefore
represents a power of 8 Oust like binary places are powers of 2 and hex places are
powers of 16). A sample octal number can be found in Figure 2.4. Its decimal value
is36,545.

0 7 3 0

32,768 4096 512 64 8 1

To convert Base Eight (octal) to aase Ten (decimal):

Multiply each octal digit by its decimal equivalent
and add:

an octal number

Base Eight equivalents

Base Ten equivalents

(32,768. 8) + (4096. 0) + (512. 7) + (64. 3) + (8. 0) + 1 = 36,545

Figure 2.4 An Octal Number

Converting binary to octal is very much like converting binary to hex. While it
takes four binary places to represent the full range of hex digits (0-F), it takes only
three binary places to get the octal digits (111 base 2 = 7 base 8). Therefore, to do
the conversion, divide a binary number into groups of three (starting from the right,
just as when converting to hex), then substitute the appropriate octal digit for each
group of three binary digits. An example of a binary to octal conversion appears in
Figure2.5.

8 8

3 5 3

To do the conversion:
1. Divide the binary number into groups of three, starting
from the right.
2. Substitute the corresponding octal digit for each group
of four bi nary digits.

Figure 2.5 Converting Binary to Octal

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 25

Macintosh's
Microprocessor

A microprocessor is not a microcomputer. The term microcomputer refers to
the whole machine, while the microprocessor is only a part of a microcomputer. In
fact, a microcomputer needs not only a microprocessor, but also some RAM,
enough code in ROM to boot the machine, pathways-known as buses-to carry
data and addresses from one place to the other, some provision for 1/0, and a
clock.

The microprocessor, though, is truly the brain of the computer. The Macin­
tosh's microprocessor is Motorola's MC68000 (or just "68000"). You may read in
some publicity releases that it is a "32-bit microprocessor.· That assertion is not
completely true. While the 68000 has 32-bit registers (we'll get to registers shortly),
its buses are smaller.

The 68000's data bus is only 16 bits wide (this is the path along which data travel
between RAM, ROM, and the microprocessor). The address bus (the path along
which addresses travel from the microprocessor to RAM and ROM) is 24 bits wide.

The 24-bit address bus sets the limit on the maximum amount of memory
Macintosh can address directly. These 24 bits (3 bytes) allow us to have a
maximum address of $FFFFFF - 16 megabytes. Not all of this can be used for
RAM, though. In order to access anything stored in ROM, the ROM must have its
own address range, distinct from RAM. Macintosh has 64K of ROM which resides
at$400000-$40FFFF.

Registers
Registers are special storage locations within a microprocessor. Almost all the

actions a program performs on data occur while the data or their addresses are in
the registers. The Macintosh's 68000 microprocessor has four different kinds of
registers: eight data registers, eight address registers, one status register, and one
program counter (see Figure 2.6).

The data registers (numbered 00-07) are used primarily for data manipula­
tion. Because they are 32 bits wide, they can accommodate byte, word, and
longword operations. The address registers (numbered AO-A7) are also 32 bits
wide. In addition to allowing the data manipulation (though only on words and
longwords), they can be used for addressing RAM (much more on this to come).
Register A7 also has a special use with regard to the stack (see next section).

The status register is an extremely useful tool. While it is only 16 bits wide, it
carries more than two bytes worth of information; the bits act individually as flags.

We say a bit is set if it has a value of 1; when we clear a bit, we make sure its
value is 0. The bits in the status register are set at the end of many microcomputer
operations. A program can check the condition of the bits in the status register to
discover the result of executing an instruction.

26 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

bit number

/
31 16 15 8 7 H

DH
31 16 15 8 7 H

D1
31 16 15 ~ 7 H

D2
31 16 15 8 7 H

D3
31 16 15 8 7 H Data

D4 Registers
31 16 15 8 7 H

D5
31 16 15 8 7 H

D6
31 16 15 8 7 H

D7
31 16 15 8 7 H

AH
31 16 15 8 7 H

A1
31 16 15 8 7 H

A2
31 16 15 8 7 H Address

A3 Registers
31 16 15 8 7 H

A4
31 16 15 8 7 H

AS
31 16 15 8 7 H

A6
31 16 15 8 7 H

~ Stack
Pointer (SP)

31 16 15 8 7 H
Program
Counter (PC)

15 8 7 H
Status
Register

Figure 2.6 Macintosh 68000 Registers

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 27

Figure 2. 7 shows the 68000's status register. The eighth high-order bits are
used by the computer itself and are therefore called the system byte. It contains a
supervisor bit, a trace bit, and three bits which form an interrupt mask. Macintosh
assembly language programmers will rarely use the system byte.

z v c

Extend bit

Negative bit

Zero bit

Overflo'W' bit

Carry bit

Figure 2. 7 Macintosh 68000 Status Register

The supervisor-state bit is unnecessary because the Macintosh uses its Micro­
processor in a slightly unusual way. The standard 68000 microprocessor has two
"modes": a user mode and a supervisor mode. A program running in the user
mode is prohibited from using some of the microprocessor's instructions. The
Macintosh, howaver, runs only in the supervisor mode. Therefore, the bit in the
system byte which would ordinarily be used to switch between the user and
supervisor modes is irrelevant.

The Macintosh does not recognize the 68000's trace mode. In fact, if the trace
bit is set, the Macintosh will consider it a system error. (See Chapter 3 for more
details on system errors.)

The interrupt mask bits are used to control which peripheral device (e.g., disk
drives) can signal the CPU that they are in need of attention. The signal sent from
the device is known as an interrupt, since it forces the CPU to interrupt whatever it
is doing and take care of the device. Macintosh programs do not need to control
interrupts through the system byte of the status register; they have a more powerful
way to monitor what happens to the system. These are what the Macintosh calls
events (discussed in detail in Chapter 8). Though some events are caused by
hardware interrupts (e.g., inserting a disk into a disk drive, clicking the mouse

28 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

button, striking a key on the keyboard), others are generated by the operating
system. The event mechanism is therefore more powerful and flexible than relying
on an interrupt mask in the status register.

While a Macintosh application will probably never look at the system byte of the
status register, it is virtually impossible to write an assembly language program
without, at some time, consulting the user byte of the status register; the user byte is
comprised of the eight low-order bits of the status register.

In the user byte, bit 0 is the carry bit. It is affected by integer addition and
subtraction instructions as well as some other, less frequently used instructions. If
the execution of an arithmetic instruction causes a carry out of the left-most bit
(known as the most significant bit}, the carry flag will be set. If there is no carry out,
then the flag will be cleared.

To understand how the carry flag works, lefs consider some simple binary
addition. The binary addition table is very simple:

0+0=0
0+1=1
1 + 1 = O with a carry out of 1

1 + 1 + 1 = 1 with a carry out of 1

Computers add only two numbers together at a time, working from the right-most
(least significant) bit to the left, just as we do when performing decimal addition. A
carry out from one bit position will cause a carry in to the bit position directly to its
left. Therefore, the fourth expression above is the result of adding two 1 's with a
carry in from the previous bit.

Assume that a computer is executing the following addition:

101010 Value 1
+010010 Value2

111100 Result

When the addition is peformed on bit 1 (the second bit from the right) a carry is
generated into bit 2, but this operation will nevertheless clear the carry bit. The
most significant bit, bit 5 (since this is only a six-bit number), doesn't generate a
carry. The carry bit will be set only if the carry is out of the most significant bit.

Consider, however, a slight modification to the problem:

101010 Value 1
+110010 Value 2
1011100 Result

The only change was in the most significant bit of Value 2 (it is a 1 rather than a O in
this case). Now there is a carry out of the most significant bit. The carry flag will be
set.

Another way to think of the carry bit is to visualize it as holding the value of a
carry. In the first addition example above, there was actually a carry out of O.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 29

Therefore the carry bit is cleared. The second example caused a carry out of 1 ,
setting the bit.

The second bit in the status register (bit 1) is the overflow flag. It is set whenever
the result of an integer addition, subtraction, or division is too large to fit in the
location where the result of the operation was to be stored. Other, less frequently
used instructions also affect the overflow bit. While this at first may seem to be the
same as the carry bit, it is not. The major difference is that the carry flag holds the
value of a carry, while the overflow flag is a true flag, signaling the fact that an
overflow occurred. ·

In many microprocessors, by the way, the distinction between the operation of
the carry and overflow flags is different from that of the 68000. The carry bit is
affected by operations on unsigned numbers, while the overflow flag monitors
operations on signed numbers. That is not true with the 68000. The 68000's
addition and subtraction instructions work only on signed numbers and affect both
overflow and carry flags. While there are separate instructions for signed and
unsigned multiplication and division, the multiplication instructions always clear
the overflow and carry flags, regardless of the result of the operation. The division
instructions, both signed and unsigned, clear the carry flag and affect the overflow
flag based on the result of the operation.

Bit 2 is called the negative flag. It is set (i.e., gets a value of 1) whenever an
operation produces a negative result. Note that other operations besides arith­
metic ones can produce negative results. This most importantly includes com­
parison operations where you are trying to decide whether one quantity or
character is larger than another.

The zero bit (bit 3) works very much like the negative bit. It is set whenever an
operation gives a result of zero. Though it may seem a bit confusing at first, you
need to remember that when bit 3 is 1, the result was O; when bit 3 is 0, the result
was non-zero. f(ou need to check bit 2, the negative bit, to know whether the result
was negative or positive.)

Bit 4 is known as the extend bit. The extend bit functions, in most cases, just like
the carry bit. It is used primarily for multiple-precision arithmetic operations (com­
putations that span more than one longword).

Different instructions affect the status register differently. Therefore, as you·
learn the 68000 instruction set, you must not only be aware of what the instruction
does, but also how it changes the user byte of the status register.

The Stack
As well as the registers just described, the 68000 microprocessor uses a

special sort of storage area in RAM known as a stack. (Actually, the 68000 has two
stacks, but the Macintosh uses only one.)

You can think of the stack as a tall silo that is 32 bits wide. Many pieces of data
and address can be stored in the stack, one on top of the other (see Figure 2.8).
Access to the stack is in last in, first out order.

30 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The only patl) in and out is from the top!

"Ill ,..

31 B

Last lo~word in - first one out

First lo~word in - last one out

Figure 2.8 The Stack

~ bitnumber

~ Stack pointer (SP)
points here - the
top of the stack

Register A? is used as the stack pointer. It contains the address of the last item
stored on the stack (called the 'top" of the stack) so that you dont need to keep
track of where the stack is physically or how many items are stored there. When
writing programs, the stack pointer can be referred to as A? or SP.

What is the stack used for? Often, the stack is used as an extra register for
quick, temporary storage. Cf ou push something onto the stack and pull it off, which
sometimes leads to the image of the stack as a spring-loaded tube.) The stack is
also the place where the microprocessor stores subroutine return addresses.

Have you ever wondered how a Pascal program knows where to return to
when a procedure ends? Every time the program encounters a statementthat calls
a procedure, it pushes the address of the statement just after the call onto the top of
the stack. Everytime it finds the END that finishes a procedure, it pulls the top
address of the stack and resumes execution at that address. The last in, first out
access to the stack ensures that nested procedures will return properly.

Assembly language subroutines affect the stack in exactly the same way.
Whenever you issue a JSR Gump to subroutine) instruction, the address of the next
program instruction is pushed onto the stack. The RTS (return from subroutine)
instruction causes the address to be pulled from the stack and lets the system
know where to resume the main program.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 31

The Program Counter
The final register that an application uses is the program counter. The program

counter contains the main memory address of the beginning of the statement
following the one currently being executed. In other words, it is a 32-bit register that
contains the address of the next program instruction. In fact, it is the contents of the
program counter, often abbreviated to "PC," that gets pushed onto the stack when
you jump to a subroutine.

How Macintosh's RAM
is Used

It may sound like a lot-128K RAM - but only a portion of that space is actually
available to a program. Figure 2.9a shows how the Macintosh's RAM is divided
between the user and the system in a 128K machine.

The bottom of RAM ($00-$FF) is used by the 68000 microprocessor for
hardware exception vectors. These are rarely of concern to assembly language
programmers. The next $300 bytes ($100-$3FF) are used by the operating system
to store global variables that are shared by various parts of the system. (This is
called the "system communication area.") There are more system globals in
$800-$AFF.

The $400 bytes spanning $400-$7FF contain the System Dispatch Table. This
table is the entry way to the ROM Tool Box routines. As a programmer, you don't
need to know the exact address in ROM of any ToolBox routine you want to use.
Instead, the assembler translates your call into a reference to the Dispatch Table (a
"trap"), where the actual ROM addresses are stored. The table itself is stored in
ROM and loaded into RAM when you start up the system.

At first this may seem like an extra, unnecessary step. Why look up the address
in a table when a program could go to it directly just as easily? Because this
arrangement gives added flexibility. If at some time in the future you upgrade your
Macintosh and change the ROM, you won't have to modify any programs that use
T oolBox routines. Using the Dispatch Table will also let you substitute a program of
your own for any ToolBox routine. All you have to do is replace the address in the
Dispatch Table with the starting address of your program (this is known as
applying a patch). Since ROM can't be patched, it is essential that the Dispatch
Table be in RAM in order to have the ability to change it.

The top of RAM (i.e., the high addresses $1FD00-$1FFE3) is used as a buffer
for the Sound Driver. The Sound Driver is the part of the operating system that
controls the sounds that come from the Macintosh's speaker. Just below the sound
buffer ($1A700-$1FC7F) lies the main screen buffer. This areas is used to map out
what will be displayed on the screen.

32 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Main Sound Buffer

177J777.i'777.777?777.i'777.777?777.i'777.777?777.i"7'77.'77.1$1FDHH
F'"~~~~~~~~~=~ $1FC7F

Main Screen Buffer

Debugger

Application Parameters

Application Globals

...............
· · · · · ·Stack· · · · · · · · · ·

i--~~~·-·-·-·~· -·-·-·-·-·~·~~~----1$B4DBB

System Heap

System Globals

System Dispatch Table

System Communication Area

t--~~~~~~~~~~~~~$HH1HH

Hardware Exception Vectors
'--~~~~~--'-~~~~~---J$HHHHH

Figure 2.9(a) 12BK Macintosh RAM

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 33

When you use a debugger to help develop assembly language programs, it
installs just below the screen buffer. (See Chapter 3 for a definition of a debugger
and how to use one.) The region just below the debugger is set aside to hold data
(called application globals) for an application program. The size of the area is not
fixed; it is initialized when the program is loaded to allow only as much space as the
program actually requires.

The remaining space, from $BOO to the beginning of the application globals, is
under programmer control. At system startup, the area$ BOO to $4CFF is initialized
as the system heap. This area is used by the operating system when a program is
running.

Under most circumstances, programs running on a 128K machine begin at
$4000, the start of the applications heap, and grow up in memory; the stack
begins at the top of the application heap (below the application globals) and grows
down in memory. If the program and the stack meet, then application has run out of
memory. Program execution will stop, for example, ifthe program attempts tb add
anything else to the stack.

One of the most important things to understand from the preceding discussion
is that there is nowhere near 128K for an application program. There are $15AOO
bytes between the bottom of the application heap and the bottom of the screen
buffer (about 71 K), but part of this is lost to application globals and the stack. The
space for source code is therefore rather limited, especially if a program needs
tables of text stored in RAM.

Memory use in a 512K Macintosh is very similar to that in the 128K machine. If
you look at Figure 9.2b, you'll see that the extra memory is concentrated in the
application areas and the system heap. Instead of a 16.SK system heap like the
128K machine, the 512K Mac has a 46K system heap. Programs therefore gener­
ally begin at $COOO rather than at $4000 as they do on a 128K machine. The
remainder of the extra RAM is allocated to the application heap, the stack, and the
various parameters and global values.

Addressing RAM
When programming in Pascal, you don't have to worry about where data are

stored in RAM. You use variable names as labels on storage locations; the
loading/linking process assigns the actual addresses to the variable names,
allowing a program to retrieve the data stored previously by simply specifying the
particular variable wanted.

Assembly language, being closer to machine language, requires that the
programmer keep track of where everything is stored in RAM. That includes not
only the program itself but any data the program may need to use. Therefore,
assembly languages provide a variety of ways of specifying where a data item is
stored. The 68000 has thirteen different ways that fall into five general groups;
these methods are known as addressing modes.

34 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Main Sound Buffer

h-r.>7777'7'7'l'777.,..,.,.,'777......,;.,..,.,._,.,~~~~~$7FDHH
I""'""'~""""" """""""" """'"""'"""""""'"""'~ $7FC7F

Main Screen Buffer

Debugger

Application Parameters

Application Glob a ls

· ·······Stack···········

: : : : : : i\pp)iQa~ior\ He~p: : : : : : : :
....................... $I?JC.Ji?Jli!JB

System Heap

Sy stem Globals

Sy stem Dispatch Tab le

System Communication Area

t--~~~~~~~~~~~~~$HH1HH

Hardware Exception Vectors
'--~~~~~--=-~~~~~--1$HHHHH

Figure 2.9(b) 512K Macintosh RAM

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 35

The purpose of the rest of this chapter is to introduce you to the 68000's
addressing modes. Though, at this point, it may seem like overkill to have so many
ways to indicate a main memory location, you will discover as you learn the
instruction set and how to use the ToolBox and operating system routines that the
flexibility that comes with these thirteen modes is essential to a well-written pro­
gram.

To understand addressing, you must first know a little about the format of an
assembly language statement. The format of assembly language statements is far
more rigid than the format of high-level language statements. Statements are
broken up into four fields. The first field, which rilay be left blank, is used for
statement labels, known often as symbolic addresses. The second field contains
the instruction mnemonic. The third field specifies either the data to be operated on
or the address of where the data can be found. It often also indicates where the
results of the operation should be placed. The data item itself is called the operand.
The place where the operand can be found is its effective address. The fourth field
is, like the label field, optional; it can be used for comments. Comment fields begin
with a semicolon. Figure 2.10 shows a 68000 assembly language statement and its
fields.

Event MOVE.L A1,-(SP)

Instruction
Mnemonic

Symbolic Address Effective Address*

; put the pointer on the stack

Comment

*This effective address field hes tvo operands. The first, At, is the effective
address of the source operand. The second, -(SP), is the effective address
of the destination operand.

Figure 2.10 Format of a 68000 Assembly Language Instruction

The instruction in Figure 2.10 takes the contents of register A 1 and moves it onto
the stack. The instruction therefore has two operands, one specifying the source of
the data, and the other the destination. The two operands are separated by a
comma. The comment ("put the pointer on the stack') is preceded by a semicolon.

To make addressing easier to understand, let's create a very simple com­
puter-the "Extremely-Micro Computer"-to use in some of the examples. This
computer has only two registers: a data register called D and an address register
called A. It also has ten RAM locations, numbered in base 10 from Oto 9.

36 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Register Direct Modes
In register direct modes, the operand itself is loaded into either a data register

or an address register.

Mode #1: Data Register Direct
Figure 2.11 shows the state of the Extremely-Micro Computer just before an
operation using Data Register Direct addressing. The value 224, which is stored in
RAM location 7, has been copied into the data register D. The effective address of
that value is specified by simply coding:

D

Whatever operation is indicated by the assembly language instruction will act
on the value that has been stored in register D.

To do Data Register Direct addressing using the 68000 microprocessor,
replace D in the Extremely-Micro Computer statement with On, where n is the
number of the data register.

224

R

D

The operand is
loaded into the
date register.

Figure 2.11 Using Data Register Direct Addressing

126

116

111

309

322

122

269

224

239

250

.0
1
2
3
i
5
6

7
8

9

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 37

Mode #2: Address Register Direct
Address Register Direct addressing works exactly like Data Register Direct
addressing. The only difference is that the operand is contained in one of the
address registers rather than in a data register. The assembly language format for
an address register direct effective address is:

An

where n is the number of the address register.
Never use register A? for direct addressing or for any sort of addressing that

requires changing the value in a register, since it is used as the stack pointer.
Register AS always contains the address of the top of the applications globals area.
It too should never be used for any sort of addressing that requires a change in the
quantity stored in the register.

Register Indirect
Addressing

The basic principle behind register indirect addressing is that instead of putting
the operand itself into a register, a program loads the register with the address
where the operand can be found. Register Indirect addressing can be done only
with the address registers.

Mode #3: Address Register Indirect
To perform Address Register Indirect addressing, store the location of the operand
in an address register. For example, Figure 2.12 shows the Extremely-Micro
Computer just before execution of a statement using Address Register Indirect
addressing.

The operand is still the quantity 224, but the contents of the address register A
is 7. The 7 is a pointer to the RAM location where 224 is stored. The effective
.address would appear as:

(A)

The parentheses are required. They can be read as '1he contents of." Therefore, (A)
translates to "the effective address is the contents of register A."

For the 68000, add the number of the address register to the Extremely-Micro
format:

(An)

Be sure to replace then with the number of the specific address register being
used.

38 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

7 H

D

The location of the
operand is placed in
the address register

Figure 2.12 Using Address Register Indirect Addressing

Mode #4: Address Register Indirect
with Postincrement

126

11 6

1 1 1

309

322

122

269

224

239

250

II

1
2
3
1
s
6

®
8

9

When a program needs to process a series of data items, such as when data are
stored in an array, Pascal makes life easy by allowing the program to step through
the array by using a variable as a subscript. Since you can't use variable names in
assembly language, you might have to process the series of data values as follows:

1. Store the address of the first data value in an address register.

2. Process the value.

3. Increment the address so that it now reflects the location of the next data
value.

4. Repeat steps 3 and 4 until all data values have been processed.

Address Register Indirect with Postincrement addressing, more simply called
"Postincrement" addressing, is one way to do steps 2 and 3 with only one assembly

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 39

language statement. The format for the Extremely-Micro Computer will be:

(A)+

Prior to executing this statement, load the location of the first data value into
register A. Suppose, for example, we want to process the values in RAM locations
0-4. Figure 2.13 shows the state of the Extremely-Micro Computer just before
beginning that processing; 0 has been stored in register A, since it is the lowest
address in the series we want to process.

l t
.-----------.

z R

D

The address of the-first
operand to be processed is
pl aced i n the address register.

126

116

111

309

322

122

269

224

239

250

®
1
2
3
i
5
6

7
8
9

Figure 2.13 Using Address Register Indirect with Postincrement Addressing

When the computer executes the statement that processes the data, not only
will the operation specified by the instruction be performed, but the address in
register A will be increased by one, so that register A will then contain the address
of the next value. First the operation is performed, then the address is incremented
(thus the word "postincrement" in the name of this addressing mode).

While we've been using the Extremely-Micro Computer, we haven't worried
about the size of the operands. The precise operation of Postincrement address­
ing, though, does depend on operand size. When the instruction specifies an

40 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

operation on one byte, the increment will be only one byte. For word operations,
the increment will be two bytes; for longword operations, the increment will be four
bytes.

lnstructionMnemonic.B (An)+

describes an operation on a byte. (As always, the n should be replaced by the
number of the address register being used.) Note that this is not a complete
assembly language statement; many statements include not only the effective
address of an input (source) operand, but the destination location for the results of
the operation.

lnstructionMnemonic. W (An)+ = operation on a word
lnstructionMnemonic.L (An)+ = operation on a longword

We will discuss when to use which extension (.B, . W, or .L) as we discuss the
individual 68000 instructions.

Mode #5: Address Register Indirect with Predecrement
Address Register Indirect with Predecrement addressing ("Predecrement" for
short) is very similar to Postincrement addressing. When you use Predecrement
addressing, the address found in the address register is decremented (decreased)
prior to performing the operation specified by the assembly language instruction.
The size of the decrement (byte, word, or longword) depends on the extension you
put on the instruction mnemonic, just like it does with Postincrement addressing.

Predecrement addressing is specified by:

- (An) where n = address register number.

Mode #6: Address Register Indirect with Displacement
The two types of Displacement addressing available on the 68000 are additional
ways to easily address data in a series of memory locations. Suppose (for whatever
reason) your data are placed in every other location, as they are in the Extremely­
Micro Computer example in Figure 2.14. Predecrement and Postincrement
addressing will only let a program move one location at a time, but in this case you
want to move two. What can you do?

Address Register Indirect with Displacement addressing allows you to specify
a quantity {the displacement) which will be added to the contents of the address
register. In a general form, we would use:

d(A) where d = the displacement.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 41

In Figure 2.14, we want to move two memory locations. Therefore, the displace­
ment is 2 and the general form becomes:

2(A)

When the computer executes a statement using the effective address specifica­
tion, the displacement (2) will be added to the contents of register A (0) to give us
the effective address (2). This statement will process the operand in location 2.

When Address Register Indirect with Displacement addressing is used with the
68000, there are two restrictions on the value of the displacement. First, it must be
an integer, though it can be either positive or negative. Secondly, it must occupy
no more than 16 binary digits, which translates to a value of $7FFF. (That means
that bit 15 is not used as a part of the quantity; it is reserved to indicate the sign of the
displacement.) The 68000 format is:

d(An) where d = 16-bit displacement
n =address register number

1lJ

R~
D

lfwe use 2(A) to specify the
effective address, the displacement
of 2 will be added to the contents
of A to generate the location of
the operand

122

116

111

309

269

Figure 2.14 Using Address Register Indirect with Displacement Addressing

H
1
2

3
i
5
6
7
8

9

42 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Really, then, what good is Address Register Indirect with Displacement address­
ing? It comes in handy when you want to access data in file structures.

Assume, for example, that you are working with a direct access file. The file will
have a fixed number of bytes allocated for each field. (Without fixed field lengths
you can't do direct access.) The file might have the following fields:

Name
Age
Sex

25 bytes
1 byte
1 byte

You want to read an entire 27-byte record at one time from the disk into main
memory. How, then, can you retrieve one particular field? If you know how many
bytes any given field is offset from the beginning of the record, you can use
Address Register Indirect with Displacement addressing to locate the field you
want.

To locate the Age field, first load the starting address of the record into address
register A2. Then specify the effective address of the Age field by using:

25(A2)

Note that while Age is the 26th byte of the record, it is offset only 25 bytes from the
first byte in the record.

We'll see much more of this technique when we talk about the File Manager in
Chapter 11.

Mode #7: Address Register Indirect with Index
Address Register Indirect with Index addressing (the other form of displacement
addressing) adds an additional wrinkle. The effective address will not only be the
sum of the contents of an address register and a displacement, but the contents of
an index register will also be needed. An index register is any data or address
register that you decide to use to hold an index value. That, by the way, isn't as
much a circular definition as it might seem at first glance.

Consider the Extremely-Micro Computer example in Figure 2.15. Suppose we
want to process the values in locations 3-6. We load the address 3 into register A.
We load a starting index value of 0 into register D. (In this case, we don't have any
choice of what register to use as an index register since we only have two and we
must use the address register to hold the memory address.) The effective address
is computed as shown in 2.15(a). The address in register A (3) is added to the
displacement (in this example, 0) which is added to the value in register D (also 0).
This instruction will therefore process the value stored in memory location 3.

In order to process the next memory location, all we need to do is increment the
value in register D. (As you'll see in Chapter 4, the incrementing can be done with a
single 68000 statement.) In 2.15(b) register D contains a value of1. When we repeat
the same instruction, the effective address becomes 4. Note that though this
example used a displacement of zero; in practice you may use other values.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 43

(a)

3 B

D

(a)
(A) 3 .0'(A,D)

d .0' 1 + (D) .0'

3 = effective address

[remember that () means
"contents of"]

3 B

D

(b)

(A) 3

d .0'

+ (D) 1

4 =

126

312

104

196

94

.0'(A,D)

1

H

1
2

3
i
5
6

7
8

9

effective address

Figure 2.15 Using Address Register Indirect with Index Indexing

The 68000 form of Address Register Indirect with Index addressing is:

d(An,Rn) d = displacement
n = register number
R = either "A" or "D"

When using this addressing mode, you are limited to an 8-bit displacement (a
range of -128 to + 127). The R above should be replaced by either an A if you are
using an address register, or D if you are using a data register for the index register.

We'll see this mode in action at the end of Chapter 5 when we discuss the
handling of arrays.

44 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Absolute Data Addressing
Absolute Data addressing allows you to follow the instruction mnemonic with

the actual address of the operand. No registers are needed.

Mode #8: Absolute Short Address
To use Absolute Short addressing, follow an instruction mnemonic with 16-bit
address:

Instruction Mnemonic. W 16-bit address (Remember that there may also
be a destination specified in the
68000 statement along with the
address of the operand)

The assembler "extends" this address to a 24-bit effective address by copying bit 15
into bits16-31 of the next word. (Though the extension is to a full 32 bits, only 24 can
be used for an address since the 68000 has that 24-bit address bus.)

The extension means that when a program uses absolute short addresses of
$0000 to $7FFF, the effective address will be in the range $000000 to $007FFF. To
understand why, we need to look at the binary equivalent of these addresses.

$7FFF = % 0111111111111111

Bit 15 is 0. When we extend that value, we get an effective address of:

%0000 0000 0111111111111111 or $007FFF.

But look at what happens if we specify an address of $8000:

$8000 = %1000 0000 0000 0000.

After the extension we get:

% 111111111000 0000 0000 0000 or $FF8000.

In other words, when a program uses Absolute Short addressing on an
address in the range $8000 to $FFFF, the assembler generates an effective
address of $FF8000 to $FFFFFF. But the 128K Macintosh has a maximum RAM
address of $1FFFFF and the 512K Mac a maximum of $7FFFFF. For all practical
purposes, then, this addressing mode is only good for addresses in the lower
portion of memory - $0000 to $7FFFF.

Mode #9: Absolute Long Address
You can still use absolute addressing, even though Absolute Short addressing
wonl access the entire address range, by using Absolute Long addressing.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 45

Absolute Long addressing has the form:

lnstructionMnemonic.L 32-bit address

The .L following the instruction mnemonic tells the assembler not to extend
whatever address follows. Therefore, the address specified will be used as the
effective address without any changes.

Symbolic Addresses
In most applications, you will never use either absolute addressing mode. In

fact, it is not only possible, but desirable to write programs without reference to
absolute addresses. Instead, you will use what are known as symbolic addresses.

A symbolic address is a name (or label) assigned to either a program instruc­
tion or a main memory location where some data are sorted. Through the assem­
bly and linking processes, the symbolic addresses are translated into absolute
addresses in object code. But when writing the program, you need not worrry
about specific RAM locations. You can refer to the address of any instruction in the
program by simply using its label; you can refer to the storage location of a piece of
data by using the name you assigned to it. You can also assign symbolic
addresses to data structures. There is much, much more about this in Chapters 4
ands.

For example, suppose a program has just performed a comparison operation
to determine if two quantities are equal. If they are not equal, the program should
branch to another portion of the program. The mnemonic for an unconditional
branch is BRA. You could write the instruction using an absolute address:

BRA $A123

This statement assumes that you know exactly what program instruction begins at
memory location $A123. If you change your program (perhaps you had an error to
correct), it's likely that many of the instructions will shift their places in RAM. What
you originally expected to find at $A123 will no longer be there.

If however, you write the statement as:

BRA Label1

then the program will branch to whatever instruction has Label1 in its label field.
Label1 is a symbolic address. It will be replaced by an absolute address in the
object code when the program is assembled and linked.

Symbolic addresses can be used anywhere an absolute address is required.
There are rules for constructing legal symbolic addresses:

1. If the symbolic address does not begin in column 1 (at the far left of the
Editor's input window), you must follow it with a colon.

46 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

2. There is no limit to the number of characters in a symbolic address, but for
practical considerations, attempt to keep them to under 15 characters. All
characters are significant.

3. The first character must be a letter, period(.), or under bar(_).

4. All other characters must be selected from among letters, numbers, periods,
underbars, and dollar signs. Blanks are not allowed.

5. Symbolic addresses must not be the same as 68000 instructions, nor can
they duplicate the names of Tool Box or operating systems routines.

Program Counter Relative
Addressing

As you remember, the program counter is a special register that holds the main
memory address of the start of the next program instruction to be executed. The
68000 microprocessor has two addressing modes that let you specify effective
addresses as relative to the current contents of the program counter.

Mode #10: Program Counter with Displacement
Program Counter with Displacement addressing works very much like Address
Register Indirect with Displacement addressing (mode #6). The 68000 format for
specifying an effective address is:

d(PC) d = displacement

The assembler computes the effective address by adding the displacement to the
current contents of the program counter.

As with displacement addressing using an address register, the displacement
must be a 16-bit integer. You should also note that the expression (PC) is used
exactly as shown. (Remember that the parentheses mean ''the contents of," so
(PC) means ''the contents of the program counter.)

Mode #11: Program Counter with Index
This second program counter mode is also analogous to an address register mode
- Address Register Indirect with Index addressing (mode #7). The effective

s is the sum of the contents of the program counter, a 16-bit displacement,
3 contents of an index register. (You may use either a data or an address
r.)
e effective address specification must indicate whether the index value is 16
)its. Therefore, the 68000 format has two possible forms:

;PC,Rn.W)
{PC,Rn.L)

or
d = displacement
R = either A or D
n = register number.

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 47

Just like other addressing modes that use a displacement, the displacement may
be a positive or negative integer.

The Macintosh has a variation on Program Counter with Index addressing that
is not standard for the 68000 microprocessor. If you specify an effective address
as:

d(Dn) d = displacement

it will assemble as if you had written:

d(PC,Dn)

Though this shorthand for Program Counter with Index addressing looks like a
Data Register Indirect with Displacement mode, it is not. There is no Data Register
Indirect with Displacement addressing available with the MC68000 chip; that form
of addressing can be performed only with an address register.

Immediate Data
Using immediate data doesn~ qualify as addressing RAM, though ifs usually

discussed along with the other address modes. When you use immediate data, the
operand itself is part of the assembly language statement.

Mode #12: Immediate
The major problem when using immediate data is finding a way to indicate the
difference between immediate data and absolute addressing. In other words, how
will the assembler know the difference between:

$FF

when the $FF refers to RAM location $0000FF and:

$FF

when the $FF refers to the quantity 255? To avoid the confusion, all immediate
data is preceded by a#. Therefore, the quantity 255 should be written:

#$FF

If you have assigned symbolic addresses to data, you can use those symbolic
addresses instead of the actual values. For example, to set the output type font you
need to give the TextFont routine a code number that represents the font you
want. Remembering the codes is difficult, so each one is assigned a symbolic
address. The font called Geneva is coded as 3. We could specify that font as #3.

48 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

But if we assign the value 3 to the symbolic address geneva, then we 'can use
#geneva to represent the actual quantity associated with that address.

Immediate data can be character (or string) data as well as quantities. Strings
are surrounded by paired single or double quotes. For example:

#'AB' or#"AB"

will assemble as the ASCII codes of the characters A and B. Strings occupy one
byte of space per character.

Mode #13: Quick Immediate
The expression "quick immediate" refers to a special type of immediate data. Some
of the 68000 instructions have a variation that embeds the operand into the
machine language instruction code (the op code) itself upon assembly, though the
specification of the operation in the source code is the same as standard immedi­
ate data.

Because the operand becomes a part of the op coae, qu1cK irmnernare aata 1s
limited to very small operands. Just how small depends on the individual instruc­
tion.

Why are quick immediate instructions of any use? They save space. A state­
ment using immediate data takes a minimum of two words when assembled (one
for the op code and one for the data); if there is a destination for the result specified
in the instruction then at least three words will be needed. Quick immediate
instructions use one less word of space, since op code and data assemble into a
single word rather than two.

Questions and
Problems

1. Convert the following decimal numbers to binary. Then convert the binary to
octal and hexadecimal.

a. 8 d. 136 g. 1023
b. 19 e. 506 h. 1028
c. 67 f. 695

2. Convert the following hexadecimal numbers to binary.

a. OOFC d. FFAD g. 01AE
b. OA03 e. CC12 h. 0333
c. E216 f. 2390

NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 49

3. A. Consider the user byte of the 68000's status register. Assuming that the
unused bits (5-7) are always cleared, show the contents of the user byte
when the execution of a word-sized instruction produces a result of:

a. -6 d. 40,000
b. 28 e. -65,000
c. 0

B. It's difficult to determine the value of one of the five flags without knowing
exactly what kind of instruction was executed. Which flag is it?

4. A. If a microcomputer has a 16-bit address bus, what is the maximum
address that bus can carry? Express your answer in hexadecimal.

B. What is the maximum address that a 32-bit address bus can carry?

Problems 5 and 6 refer to the Extremely-Micro Computer. As you will remember, it
has an address register, A, and a data register, D. Main memory consists of
storage locations numbered 0 through 9.

5. Assume that A contains 6 and D contains 2.

A. What location is indicated by each of the address specifications below?

a. 6 d. (A) g. D
b. #6 e. 2(A) h. -(A)
c. A f. I (A,D)

B. Which of the 68000's addressing modes is being used?

6. Assume now that A contains A, D contains 3, and the program counter (PC)
contains 2. Repeat questions A and B from problem 5 for the following
effective address specifications.

a. 2 d. 2(PC) g. 2(PC,A)
b. (A) e. 2(PC,D) h. #2
c. -(A) f. (D)

7. A. What effect will the effective address specification (SP)+ have on the
68000 register A 7?

B. What effect will - (SP) have on register A 7?

50 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

8. Indicate whether the following are legal or illegal 68000 effective address
specifications. For each illegal specification, state why it is illegal.

a. 06
b. 08
c. (03)+

d. AO
e. (A)+
f. (A4)+

g. (A4)-
h. (DO)
i. 6(A4)

j. -8(A4)
k. -256(A4)
I. - 256(A4,D3)

9. Assuming that a program is performing word-sized operations, what address
will be generated by the assembler from the following absolute short
addresses?

a. 0023 c. FF39
b. A100 d. EE9B

c H A p T E R T H R E

USINC3 THE ~.~J\CINTOSH
68000 BE\/EL8PMENT

S't'STErv1

Chapter Objectives

1. To learn the steps needed to create a Macintosh Assembly language
application

2. To acquire proficiency in using the Macintosh 68000 Development System

3. To understand the purpose of a debugger and how it is used to aid program
development

Introduction

This chapter is designed to familiarize you with the software that supports
assembly language programming on the Macintosh. Though you can work with
this software with only the internal disk drive, you will find that adding the external
drive will save a great deal of disk-swapping and file-moving frustration. The
figures in this chapter assume that you are using a two-disk system, though you will
find instructions for shuffling files for operating with only one.

The software will run quite acceptably on a 128K Macintosh with one exception
(see the discussion on debugging toward the end of this chapter). The 128K will,
however, severely limit the size of application that can be developed. If you intend
to pursue Macintosh program development beyond the course you are now
taking, you should seriously consider upgrading a 128K.

51

52 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Regardless of what size machine you are using, you should install the pro­
grammer's switch. That's the mysterious little piece of plastic that came with your
Mac but without instructions. The programmer's switch snaps into place through
the slots on the left hand side of the machine, all the way back and down. Place it so
that the switch labeled RESET is toward the front of the machine. Pressing the
RESET button will allow you to restart the system after a system error or when it is
"hung" without having to turn the power off and on again. The other button,
INTERRUPT, can be used to invoke the debugger.

To get the most out of the rest of this book, practice using the software now,
before you become concerned with the 68000 instruction set. A sample program
to be entered, assembled, linked and run appears in Listing 3.1. This program
opens a window, prints a line of text, and then waits for the user to hit any key or
click the mouse button before returning to the Finder.

Listing 3.1 Sample Assembly Language Program

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D

PEA-4(A5)
_lnitGraf
_I nit Windows
_lnitMenus
_I nit Fonts

;Includes addresses of ToolBox routines
;Includes the ToolBox equates
;Includes the System equates

;Initializes QuickDraw
;Initializes the Window Manager
;Initializes the Menu Manager
;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result
PEA Storage Pointer ;Window Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ;Title
ST -(SP) ;Make the window visible
MOVE #documentProc,-(SP) ;Make it a standard document window
MOVE.L #-1,-(SP) ;Put the window in front
ST -(SP) ;Draw a go-away box
CLR.L -(SP) ;Place for window's reference value
_NewWindow ;Draw a standard document window

LEA WindowPtr,A0 ;load destination address for pointer
MOVE.L (SP)+,(A0) ;retrieve pointer

MOVE.L WindowPtr.-(SP)
_SelectWindow

MOVE.L
_Set Port

_lnitCursor

WindowPtr,-(SP) ;put pointer back on the stack
;make this window the current grafport

;set the cursor to the arrow (continued)

MOVE.W
_TextFont

MOVE.W
_TextSize

MOVE.W
MOVE.W
_Move To

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 53

#7,-(SP) ;7 = athens
;Set the text font

#18,-(SP) ;18 for 18-point type
;Set the text size

#65,-(SP) ;Horizontal coordinate
#100,-(SP) ;Vertical coordinate

;Move the pen

PEA 'HOORAY!!! You did It!'
_Drawstring

MOVE.L everyEvent, D0 ;Mask to select all events

Flush Events ;Clear the event queue

Event CLR -(SP) ;Space for boolean result
MOVE #%0000000000111110,-(SP) ;Mask for keyboard and mouse
PEA Even!Record ;Place to receive event info
_GetNextEvent ;Get next event from queue

MOVE (SP)+,D0
CMP #0,00
BEQ Event

RTS

DC.L 0

;Has a keyboard or mouse event occurred?

;If no event, branch to look again

;Return to the Finder

WindowPtr
BoundsRect
every Event
Event Record
What DC
Message
When DC.L
Point DC.L
Modify DC

DC.W 40,20,300,350
DC.L $0000FFFF

0
DC.L 0
0
0
0

;where GetNextEvent Puts its result

StoragePointer DCB.W windowSize,0

END

The Macintosh 68000 Development System (the MOS) is the formal name for
the set of programs that enable a programmer to enter, assemble, link, and run
assembly language programs. It also includes a family of debuggers, programs
that, among other things, display whafs happening in the Macintosh's registers
while a program is running.

54 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

On the disk named MDS1(Figure3.1) you will find :

1 . the Editor (Edit) - allows you to enter assembly language source programs.

2. the Executive (Exec) - automates the assembling and linking process

3. the Assembler (Asm) - translates source code created by the Editor into
binary object code

4. the Linker (Link) - links separately assembled modules of source code into
an executable application

5. the Resource Compiler (RMaker) - creates files that define windows,
menus, etc.

6. Debug Nubs - files used by some of the debuggers

7. Assembler Support Files (in the folder ASM Stuff)

r S File Edit Uiew Special
...

MDSl
9 items 362K in disk

~ ~ @ii) ~~
Edit Asm link Exec RMaker

PackSy ms MacDB Nubs Empty Folder System Folder

Figure 3.1 The Disk MOS 1

The disk named MDS2 (Figure 3.2) contains:

1 . the Macintosh Debuggers (in the folder Debuggers)

2. the Equates Files (in the Equ Files folder) - handy definitions that the
ToolBox uses

3. the Symbol Packer (PackSyms) - a program that compacts Equates Files so
they will take up less room in your source files

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 55

4. Packed Symbol Files (in the .D Files folder) - what you get when you put
Equates Files through the Symbol Packer

5. Trap Files (in the Trap Files folder) - files that assign names to the instruc­
tion words that reference the Tool Box Dispatch Table

6. some Sample Programs

.,

MDS2
389K in disk

CJ CJ
Empty Folder Sample Programs Debuggers

Figure 3.2 The Disk MOS 2

Using the Editor

The Macintosh 68000 Development System comes with its own text editor for
creating program source files. You may also use MacWrite, but save the document
as text only, without any formatting information. The MOS editor is "disk based."
That means you can edit files much larger than what will fit in RAM; the editor
shuffles bits and pieces of text between the disk and RAM as needed.

Invoke the editor by double-clicking on its icon. (There are two other ways to
get into the editor, but this will do for now.)

Assembly language source files are more or less free form (i .e., there are no set
columns in which particular parts of the statements must appear). The only rules
are:

1. The first field is reserved for symbolic addresses. If a statement doesn't have
a symbolic address, then it must begin with at least one blank. Symbolic

56 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

addresses don't necessarily have to start in column one (the far left-hand
position on the screen), but if they don't, they must be followed by a colon(:).

2. The second field is reserved for the instruction mnemonic. It must be sepa­
rated from the symbolic address (if one is present) by at least one space.

3. The third field holds one or more operands (either the operands themselves
or their effective addresses). The operand field must be separated from the
mnemonic by at least one space.

4. The fourth field may contain a comment. Comments begin with semicolons
(;)and must be separated from the operand field by at least one space. You
may also have a line in your source file that is all comment. In that case you
must either have a semicolon or an asterisk (*)in column one.

For readability, we usually line up the fields. The MOS editor comes with preset
tab stops which can be changed by using the FORMAT menu (see Figure 3.3).

To make indentation to the mnemonic field easier, the editor also provides
automatic indentation. Once you have tabbed to a particular spot without entering
text in any preceding tab zone, the RETURN key will place the cursor at that tab
stop instead of in column one. To type something to the left, hit the BACKSPACE
key. Automatic indentation can be turned off from the FORMAT menu (Figure 3.3).

r- S File Edit Search bi m::rm Font Size Transfer

D
Inc I ude Mac Trap Show I nuisibles ~dresses of Too I Box routines
Include ToolEqu .. ~e Tool Box equates
Include SysEqu . ~e System equates

Printing Form11t
PEA -4(AS >
_Jn i tGraf
_Jn i UJ i ndows
_Jni tMenus
_Jni tFonts

....Debugger

; Initializes QulckDraw
; Initializes the Window Manager
; Initializes the Menu Manager
;In·ilial izes the Font Manager

CLR.L -CSP) ;Clear space for i.JindowPtr result
PEA StorogePointer ;Window Storage pointer
PEA BoundsRec t ; Exler i or coord i notes of window
PEA 'MAL Output Window ' ;Ti tie
ST -<SP> ;Hoke the window visible
MOUE rDocProc,-<SP) ;Make it a standard document window
MOUE.L •-1,-<SP) ;Put the window in front
ST -<SP) ; Dr aw a go-away box
CLR. L -<SP) ; PI ace for window's reference value

IQI]i!Ji!H~:::,',:::~, ;Draw a standard document window HmJIIH[2@

Figure 3.3 The MOS Editor's Format Menu

The editor provides some basic features for changing source code. Cut, copy,
and paste work just as they do in MacWrite. You can also align all the text in a
selected block (select with the mouse as when using MacWrite) with options

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 57

available from the EDIT menu (see Figure 3.4) . The SEARCH menu (Figure 3.5)
provides standard find and change capabilities.

When you have finished entering the sample program, save it to disk. The FILE
menu (Figure 3.6), just like the MacWrite FILE menu, allows you to name the file
before you save it.

,.
Search Format Font Size Transfer

AL. files:PAOG I .RSM

Cut a€H
Copy a€C
Paste a€U

Align a€A
Moue Left a€l
Moue Right a€R

; Includes addresses of Tool Box routines
; Includes the Tool Box equates
; Inc I udes the System equo tes

; lni tiol izes QuickDraw
; lni ti al izes the Window Manager
; Initializes the Menu Manager
; Initializes the Font Manager

;Clear space for WindowPtr result
r ;1.Jindow Storage pointer

.,~r---.,:il!;"'l"r.-:r.:::':'l'"'u ;Exterior coordinates of window
indow' ;Title

ST
MOVE
MOVE L
ST
CLR . L

-<SP)
rDocProc, - <SP>
• -1 , -CSP)
-<SP)
-CSP)

Jiewl-lindow

LEA LJindowPtr,AO
MOUE .L <SP)+ I A 1

;Hake the window visible
; Make i l a standard document window
;Put the window in front
; Drow a go-owoy box
;Place for window's reference value
; Drow a standard document window

; I ood des ti notion address for pointer
;get pointer from stack

Figure 3.4 The MOS Editor's Edit Menu

File

D

Edit ..,,, •l..lll.m Format Font Size Transfer
"I: Find a€F

Change a€S L.files:PROG2.ASM
lnc luq·············· ········ ············· ···

i~~:~q HitlP lind

PEA -4<AS >
_Ini tGraf
_In i tLJ l ndows
_Ini tMenus
_In i tFonts

....Debugger

; Includes addresses of Too I Box routines
; Includes the Too I Box equates
; Inc I udes the System equates

; Initializes QuickDraw
;Initializes the i.lindow Manager
; In it i a I i zes the Menu Manager
;Initializes the Font Manager

CLR.L -<SP) ;Clear space for LJindowPtr result
PEA StoragePointer ;LJindow Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ; Ti tie
ST - <SP> ;Make the window v isible
MOVE rDocProc,-<SP) ;Make it a standard document window
MOUE . L • -1 , - <SP> ; Put the window in front
ST - <SP) ; Draw a go-away box
CLR . L -<SP> ;Place for window's reference va lue

..JiewW i ndow ;Draw a standard document window ttt!!!t!!!rnIH]l~;

Figure 3.5 The MOS Editor's Search Menu

.,

.,

58 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

r s llil:cl Edit Se11rch Form11t Font Size Tr11nsfer

~l~New ~N

S<JL'e
S11ue BS ...

LEA ~ i ndowP tr, AO
MOVE . L <SP)+, A 1

Figure 3.6 The MOS Editor's File Menu

How you riame your file is important. The various programs that make up the
Macintosh 68000 Development System look for files with specific extensions to
their names. Assembly language source files should have the extension .ASM.
You could, for example, name the sample program Sample.Asm.

The Assembler

There is very little unused space on the disk MDS1. Therefore, if you are
working with a single disk system, you will have to create a special disk for the
assembly process. On it you should put your source file, any equates and trap files
it uses (for the sample program in Listing 3.1 copy Mactraps.D, ToolEqu.D, and
SysEqu.D from MDS2), the Assembler, and the folder A$M Stuff.

With a two-drive system, copy the equates and trap files onto the text disk
which also holds your source file. Put the text disk in the external drive and leave
MDS1 in the internal drive.

If you are in the Editor and using a two-drive system, you can invoke the
Assembler from the Editor's TRANSFER menu (Figure 3.7) . With a single-disk
system you must copy your source file onto your special Assembler disk. You can
then enter the Assembler by double-clicking on its icon from the Finder (this
method will obviously also work for a two-drive system).

The Assembler will present a list of the files which it can identify as possible
candidates for assembly (Figure 3.8). If you have a large number of source files on

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 59

Include MacTraps.O
Include ToolEqu.D
Inc I ude SysEqu . D

PEA -4<AS)
_In i tGraf
_ Jn i tl.I i ndows
_lni tMenus
_Jn i tFonts

....Debugger

; Inc I udes oddr
;Inc ludes the
; Includes the

; In i ti a I i zes
; Initializes
; Initializes
; In i ti a I i zes

Box routines

ager

CLR.L -<SP) ;Clear space for WindowPtr result
PEA StoragePointer ;Window Storage pointer
PEA BoundsRecl ;Exterior coordinates of window
PEA 'MAL Output Window' ;Ti tie
ST -<SP> ;Make the window visible
MOVE r.J?ocProc,-<SP) ;Make it a standard document window
MOUE .. L •-1, - <SP > ;Pu.t .the window in front
ST -<SP) ;Drow a go-away box
CLR.L -<SP> ;Place for window's reference value
J'iewW i ndow ; Drow a s tandord document window

Figure 3. 7 The MOS Editor's Transfer Menu

.. s File Options Tronsfer

FPEqu.THt 5d
PROGi.RSM lls~•~mbh~ MAL.files
PAOG2.ASM

Eject

Cancel L~riue
{'\

Figure 3.8 Assembler File Select Screen

.,

60 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

your disk, select the Filter by Time option from the FILE menu (Figure 3.9). This
will display only those files that have been modified since they were last
assembled. Double-click on the file name and the assembly process will begin.
The assembled version of the program is written to a file with the extension .REL
(e.g., assembling Sample.Asm will produce Sample.REL).

Before beginning assembly, you can make some choices about the kind of
output the assembler will produce. By default you will get no listing of the
assembled version of your program. If you want a listing, select it from the
OPTIONS menu (Figure 3.10). The listing can be displayed on the screen or
written to a file. If you choose a file listing (the smart choice, since screen listings will
rapidly scroll out of sight), the listing will be written to a file with the extension .LST
(e.g., a source file named Sample.Asm will generate a listing file named Sample.
LST). Note that assembling with a listing significantly lengthens the time it takes to
assemble a program.

The Assembler listing for the Sample program appears in Listing 3.2. The
leftmost column is a line number for your reference only. The second column from
the left contains the hexadecimal RAM address where each program line begins.
By default, the Assembler starts all programs at $0000. This is not where the
program will end up in RAM when the program is run. The operating system will
add all the program locations to a fixed base address at run time.

The remaining numbers are the hexadecimal equivalents of the instruction
mnemonics and their operands. You will have noticed that there are x's in some
places rather than hexadecimal numbers. The x's fill in places for absolute
addresses which the assembler was unable to identify. They will be replaced with
addresses by the Linker when space for storage locations the applications globals
area is allocated.

You can also specify that what is written to the .REL file should be the minimum
necessary to create a working application (Normal Output) or that the .REL file
should include extra information to permit creation of a Linker listing (Verbose
Output). Verbose Output will lengthen both the assembly and linking processes.

If any errors are detected during assembly, they will be stored in a file with
extension .ERR (e.g., if your source file is Sample.Asm, then the errors will be
listed in Sample.ERR). The error file will be placed on the same disk as your
source file. The errors will also display on the screen as they are discovered, but
they generally scroll by too fast for you to read and remember them.

Though a .REL file is created for an assembly in which errors were detected,
you will not be able to successfully link or execute any program with errors.
Therefore, if your program has errors, return to the Editor. There you can examine
the .ERR file at your leisure (printing it out if necessary) and then make the needed
changes to your source file.

If you are using a two-disk system, you can return to the Editor through the
Assembler's TRANSFER menu (Figure 3.11). With a single-disk system, you must
transfer the .ERR file back to the disk that contains the Editor and then enter the
Editor from the Finder.

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 61

Figure 3.9 Assembler File Menu

[Hswmblt~] MRL.files
PROG2.RSM

Eject

Con eel Driue

Figure 3.10 Assembler Options Menu

62 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 3.2 Assembler Listing of Sample Program

0000

0000
0000
0000
0000 486D FFFC
0004 A86E
0006 A912
0008 A930
000A ABFE
000C
000C
000C 42A7
000E 4840 xxxx
0012 4840)()()()(
0016 4840)()()()(
001A 50E7
001C 3F3C 0000
document window
0020 2F3C FFFF FFFF
0026 50E7
0028 42A7
002A A913
002C
002C 41C0 xxxx
pointer
0030 209F
0032
0032 2F3A xxxx
0036 A91F
0038
0038 2F3A xxxx
stack
003C A873
003E
003E N350
0040
0040
0040 3F3C 0007
0044 N387
0046
0046 3F3C 0012
004A N38A
004C
004C 3F3C0041
0050 3F3C 0064
0054 A893
0056 4840)()()()(
005A N384
005C
005C 203A)()()()(

Include MacTraps.D

Include ToolEqu.D
Include SysEqu.D

PEA-4(A'5)

;Includes addresses of ToolBox
routines
;Includes the ToolBox equates
;Includes the System equates

lnitGraf
-lnitWindows

;Initializes QuickDraw
;Initializes the Window Manager
;Initializes the Menu Manager
;Initializes the Font Manager

-lnitMenus
:::1nitFonts

CLR.L
(PX)
(PX)
(PX)

-(SP)
PEA
PEA

;Clear space for WindowPtr result
StoragePointer ;Window Storage pointer
BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ;Title

ST -(SP) ;Make the window visible
MOVE #documentProc,-(SP) ;Make it a standard

MOVE.L
ST -(SP)
CLR.L -(SP)
_NewWindow

#-1,-(SP) ;Put the window in front
;Draw a go-away box
;Place for window's reference value
;Draw a standard document window

(PX) LEA WindowPtr,A0 ;load destination address for

MOVE.L (SP)+,(A0) ;retrieve pointer

(R) MOVE.L WindowPtr,-(SP)

(R)

_SelectWindow

MOVE.L WindowPtr,-(SP) ;put pointer back on the

_Set Port

_lnitCursor

MOVE.W
_TextFont

MOVE.W
_TextSize

MOVE.W
MOVE.W

Move To

;make this window the current grafport

;set the cursor to the arrow

#7,-(SPj ;7 = athens
;Set the text font

#18,-(SP) ;18 for 18-point type
;Set the text size

#65,-(SP) ;Horizontal coordinate
#100,-(SP) ;Vertical coordinate

(PX)- PEA
;Move the pen

'HOORAYlll You did it!'
_Drawstring

(R) MOVE.L everyEvent,D0 ;Mask to select all events

(continued)

0060 A032
0062
0062 4267
0064 3F3C 003E
keyboard and mouse
0068 4840)()()()(
006C M70
006E
006E 301F
occurred?
0070 0C40 0000
0074 67 EC (P)
0076
0076 4E75
0078

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 63

_Flush Events· ;Clear the event queue

Event CLR -(SP) ;Space for boolean result
MOVE #%0000000000111110,-(SP) ;Mask for

(PX) PEA EventRecord ;Place to receive event info
_GetNextEvent ;Get next event from queue

MOVE (SP)+,D0

RTS

CMP
BEQ

#0,D0
Event

;Has a keyboard or mouse event

;If no event, branch to look again

;Return to the Finder

0078
0078
007C
0084
0088
0088
OOBA
OOBE
0092
0096
0098

00000000 WindowPtr DC.L 0
0028 0014 012C 015E BoundsRect DC.W 40,20,300,350
0000 FFFF everyEvent DC.L $0000FFFF

0000
00000000
00000000
00000000
0000

EventRecord ;where GetNextEvent Puts its result
What DC 0

Message DC.L 0
When DC.L 0
Point DC.L 0

Modify DC 0

0098 xxxx xxxx xxxx (R) StoragePointer DCB.W windowSize,0
0100
0100

01E2

11 4D 41 4C 20 4F 75 74 70 75 74 20 57 69 GE 64 6F 77;
'MAL Output Window'

16 48 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21 ;
'HOORAY!!! Youdic:I~!'

01F9 00

The Linker

A .REL file contains an object code that is relocatable (capable of being moved
around in main memory). Though it is in the binary, machine language form that
the computer will understand, it is not an executable application since many of the
absolute addresses are missing. The Linker provides the final step in the process.

64 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The Linker generates two types of output. Assuming that no errors are
detected during the linking process, you will get an executable application
(appears on the desktop as a diamond with a hand holding a pen) and a file with a
.MAP extension. A .MAP file contains a symbol table (exactly where everything is
when your program is in RAM) and also the Linker listing, if you requested one.

The operation of the Linker is determined by a Linker control file. A control file
contains the names of the .REL files to be linked (you can assemble a large
program in small parts and then have the Linker combine them into a single
application) and, optionally, a symbolic address that indicates which instruction in
your source code is the start of your program; instructions on how the program can
be segmented (it is possible to break a program which is too large to fit into
memory into segments which are then loaded as needed); and options that control
the contents of the Linker output file.

Linker control files are text files that are created with the Editor. They must be
given the extension .LINK (e.g., the Linker control file for the Sample program
should be called Sample.LINK). At a minimum, a Linker control file must contain
the name of the program to be linked and a$ that marks the end of the file.

For the Sample program, create a text file that contains:

Sample

$

The [will turn on the listing to the .MAP file and is therefore optional.
If you are working with a two-drive system, save the Linker control file on your

text disk. With a single-drive system, put the .REL file, the Linker control file, and
the Linker on one disk before beginning the linking process.

You can enter the Linker from the Finder, or from the Assem bier's TRANSFER
menu (Figure 3.11). The Linker displays a list of Linker control files on the current
disk (Figure 3.12). Double-clicking on the file name will then begin the linking
process.

If the Linker encounters any errors, they will be stored in a file with a .LERR
extension (e.g., for the Sample program, Linker errors will be written to Sample.
LERR). A .LERR file can be examined from the Editor, just like .ERR files.

If you include a [in a Linker Control file, the .MAP file will include a program
listing like the one in Listing 3.3. This listing differs from an Assembler listing in one
important way: the x's in the Assembler listing have been replaced with absolute
addresses. This is the version of the program that will actually run.

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 65

Figure 3.11 Assembler Transfer Menu

Figure 3.12 Linker File Select Screen

MAL.files

Eject

Concel Driue

66 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 3.3 Linker Listing of Sample Program

Sample.Rel

000000:
000000:
000000:
000000:
000000: 48 6D FF FC
000004:A86E
000006:M12
000008: A9 30
00000A: A8 FE
00000C:
00000C:
00000C: 42 A7
00000E: 487A 0088
000012: 487A 0068
000016: 487 A 0188
00001 A: 50 E7
00001 C: 3F 3C 00 00
window
000020: 2F 3C FF FF FF FF
000026: 50 E7
000028: 42 A7
00002A: A9 13
00002C:
00002C: 41FA004A
000030: 20 9F
000032:
000032: 2F 3A 00 44
000036: A9 1 F
000038:

. 000038: 2F 3A 00 3E
00003C: A8 73
00003E:
00003E: A8 50
000040:
000040:
000040: 3F 3C 00 07
000044: A8 87
000046.:
000046:3F3C 0012
00004A: A8 SA
00004C:
00004C: 3F 3C 00 41
000050: 3F 3C 00 64
000054: A8 93
000056:
000056: 487 A 018A
00005A: A8 84
00005C:
00005C: 20 3A 00 26

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D

;Includes addresses of ToolBox routines
;Includes the ToolBox equates
;Includes the System equates

PEA-4(A5)
;Initializes QuickDraw lnitGraf

-lnitWindows
-lnitMenus
_I nit Fonts

;Initializes the Window Manager
;Initializes the Menu Manager
;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result
PEA StoragePointer ;Window Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ;Title
ST -(SP) ;Make the window visible
MOVE #documentProc,-(SP) ;Make it a standard document

;Put the window in front
;Draw a go-away box

MOVE.L#-1,-(SP)
ST -(SP)
CLR.L -(SP)
_NewWindow

;Place for window's reference value
;Draw a standard document window

LEA WindowPtr,A0 ;load destination address for pointer
MOVE.L(SP)+,(A0) ;retrieve pointer

MOVE.LWindowPtr,-(SP)
_SelectWindow

MOVE.LWindowPtr,-(SP) ;put pointer back on the stack
SetPort ;make this window the current grafport

_lnitCursor

MOVE.W
_ TextFont

MOVE.W
_TextSize

MOVE.W
MOVE.W
_Move To

;set the cursor to the arrow

#7,-(SP) ;7 = athens
;Set the text font

#18,-(SP) ;18 for 18-point type
;Set the text size

#65,-(SP) ;Horizontal coordinate
#100,-(SP) ;Vertical coordinate

;Move the pen

PEA 'HOORAY!!! You did it!'
_Drawstring

MOVE.LeveryEvent,D0;Mask to select all events

(continued)

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 67

000060: A0 32
000062:
000062: 42 67
000064: 3F 3C 00 3E
keyboard and mouse
000068: 487 A 001 E
00006C:~70
00006E:

Event

00006E: 30 1 F
occurred?
000070: 0C 40 00 00
000074: 67 EC
000076:
000076: 4E 75
000078:
000078:
000078: 00 00 00 00
00007C: 00 28
00007E: 00 14
000080: 01 2C

_Flush Events ;Clear the event queue

CLR -(SP) ;Space for boolean result
MOVE #%0000000000111110,-(SP) ;Mask for

PEA EventRecord
_GetNextEvent

MOVE (SP)+,D0

CMP #0,D0
BEQ Event

RTS

;Place to receive event info
;Get next event from queue

;Has a keyboard or mouse event

;If no event, branch to look again

;Return to the Finder

WindowPtr DC.L 0

000082: 01 SE BoundsRect DC.W 40,20,300,350
000084: 00 00 FF FF everyEvent DC.L $0000FFFF
000088: EventRecord ;where GetNextEvent Puts its result
000088:0000 What DC 0
00008A: 00 00 00 00 Message
00008E: 00 00 00 00 When DC.L
000092: 00 00 00 00 Point DC.L
000096: 00 00 Modify DC
000098:

DC.L 0
0
0
0

000098: 00
00
~00
00
00
00
00
00
00
00
00
00
00
000000

StoragePointer DCB.W windowSize,0
0001D0:
000100: 11 40 41 4C 20 4F 75 74 70 75 74 20 57 69 6E 64 6F 77

0001E2:16 48 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21

0001F9:00

68 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

A caveat is in order with regard to the Linker. If your attempt at linking gives
system error #28, then the Finder has run out of memory (the stack has run into the
heap) and cannot place your application file in the disk directory. A disk should
theoretically hold somewhere near one hundred files, but if you are working with a
128K Mac you may see this error with less than 20 files on your disk. If this occurs,
delete some files or transfer just the few files you absolutely need to another disk to
successfully complete the linking. (.MAP, .ERR, .LST and .LERR files are good
candidates for deletion.)

Running an Application
After a successful linking, there are two ways to execute an application. The

successful linking will add an extra option to the Linker's TRANSFER menu (Figure
3.13). You can run the program by selecting that option. You can also run any
application at any time by double-clicking its icon from the Finder.

Assuming that you have successfully entered, assembled, and linked the
Sample program, your output will appear as in Figure 3.14

Run-Time System
Errors

There are some errors that the Assembler's error-checking capabilities will not
catch. These often don't show up until an application is running and appear as
system errors that require resetting the system to recover (such as error #28
mentioned above).

For example, assume that you wanted to specify an operand as immediate
data. To correct, you should have used:

Instruction Mnemonic #SomeQuantity ,DO

Unfortunately, you left off the# which means that your source code contained:

Instruction Mnemonic SomeQuantity ,DO

The Assembler interpreted the quantity as an absolute address; what was in the
source file was a totally correct use of Absolute addressing. The problem, though,
is that you don't want what is stored at whatever address the quantity represents;
you want the quantity itself. Nonetheless, since the syntax of the statement is
correct, the Assembler won't pick up the error.

. USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 69

Figure 3.13 Linker Transfer Menu after a Program has been Successfully Linked

MRL Output Window

HOORAY! !! You did it!

Figure 3.14 Output From Sample Program

70 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

When you run the application, all sorts of strange things can happen. More
often than not, a system error #02 (bad address) will occur.

You'll find the error messages associated with the system errors in Table 3.1.
Though such errors are extremely difficult to interpret, the table includes some
suggestions as to causes of the more common ones and their solutions.

Table 3.1 Macintosh's System Error Codes

=E~rro=r~Coci==e=---=E~rro=r~M=e=ss=a~g=e~~~~~~~~Co='-m~me-'="nts=-~~~~~~~~-

01 Bus Error Not applicable on the Macintosh

02 Address Error

03 Illegal Instruction

O 4 Zero divide

O 5 Range Check Error

06 Overflow

07 Privilege violation

08 Trace Mode Error

09 Line 1010 Trap

Your program has attempted to use
an address which makes no sense to the
operating system (a word or longword reference
has been made to an odd address). Can be
caused when an immediate operand is missing
its#.

The code in an instruction field does not
represent any instruction in the
68000's instruction set. Check immediate
addressing for missing #.

Just what is says -- your program has
attempted to do a division by zero.

Failure of one particular 68000 instruction -­
CHK (checks one word of a data register against
an upper - bound value).

Failure of one particular 68000 instruction -­
TRAPV (executes a trap if the overflow flag
in the status register is set).

Not terribly important since all assembly
language programs run in the "supervisor"
mode, where you have access to all
instructions.

Trace mode is initiated by setting one of
the bits in the user byte of the status
register. The Macintosh never uses trace mode;
therefore, this error will occur whenever the
trace-mode bit is accidentally set.

"Line 1010 Trap" has to do with calling
ToolBox routines (see Chapter 6).

(continued)

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 71

Error Code Error Message Comments

10 Line 1111 Trap Another trap not used on the Macintosh. Line
1111 traps are reserved for further expansion
of the instruction set (details are in Chapter 6).

11 Hardware Exception Error The system thinks some other sort of trap has
occurred. This usually means that the machine
is seeing some sort of illegal binary instruction
code. If you get this, check for addresses and/or
operands that are the wrong size.

12 Unimplemented Core Routine Can occur when a program invokes the
debugger when the debugger isn't
present in memory.

13 Uninstalled Interrupt Can occur when a program invokes the
debugger when the debugger isn't
present in memory.

14 1/0 Core Error Problem with file access.

15 Segment Loader Error Caused by failure of an attempt to load a program
segment into main memory.

16 Floating Point Error The problem lies in whatever
part of the program calls FP68K, the
Macintosh's floating point arithmetic
package.

17-24 Packages 0-7 missing Packages are self- contained routines
present in the system (see Chapters 6, 11
and 12 for more information).

25 Memory Full You have two options -- upgrade to 512K or
segment your program into portions that
don't need to be memory co-resident.

26 Bad Program Launch Usually caused by an attempt to launch a file
that isn't an executable application.

27 File System Map Trashed Something is wrong with a disk's directory.

28 Stack Ran Into Heap Another sort of out-of-memory error.

29 not used

30 Disk Insertion Error Generates the "Please insert the disk:" alert.

(continued)

72 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Table 3.1 (continued)

Error Code Error Message Comments

31

32-56

not used

Memory Manager Errors Indicate problems with the routines that
manage the use of Macintosh RAM.

41 No Finder The Finder isn't on any disk currently in the
system's drives.

100 Bad startup disk System can't boot because something is wrong
with the startup disk. Causes a blank screen
with a disk icon in the center. The disk icon
contains a question mark.

The Executive

If you have been working along with this chapter, you may have decided that
transferring from the Editor to the Assembler to the Linker and back again is a giant
pain. There is a way, though, to "automate" most of the tedious steps in the process
by using the Executive.

The actions of the Executive are controlled by a file created with the Editor and
given the extension .JOB. A .JOB file has four fields, separated by tabs. The first
field contains the names of the application to be executed (e.g., ASM or LINK).
The second field contains what input the application requires (usually a file name).
The third field is the application to which the Executive should return if the
execution of the application in the first field is successful (usually the Executive).
The fourth field is the application that should be executed if the execution of the
application in the first field is not successful (usually the Editor).

An Executive control file for the Sample program might appear as:

ASM
LINK

Sample.Asm
Sample.Link

Exec
text.Disk:Sample

Edit
Edit

When setting up Executive control files, you need to pay attention to what disk
your files are on. All applications should be on the startup disk (i.e., the inter,nal
drive). Source files (source code and Linker control files) should be on the same
disk as the .JOB file (preferably on a text disk in the external drive). Because of disk
space considerations, it will be very difficultto use the Executive with a single-drive
system.

If you want the Executive to automatically run your program after it finishes
linking (assuming your source files and the completed application are on a text disk
in the external drive), precede the program's name with the name of the disk. For

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 73

example, if your text disk is named Text.Disk as in the sample .JOB file above,
specify the name of the application to be created by the Linker as:

Text.Disk: Sample

The name of the application is separated from the name of the disk by a colon.
To initiate the actions specified in an Executive control file, enter the Executive.

Usually, you wiil do so by either double-clicking on its icon from the Finder or
transferring to it from the Editor.

The Executive's file select screen (Figure 3.15) lets you select the .JOB file to
execute. Once you double-click on the file name, the process becomes automatic.

Figure 3.15 The Executive's File Select Screen

The two-line .JOB file above will perform the following actions:

1. Assemble the file Sample.Asm

2. If the Assembler detects errors, execute the Editor

a. Make the file Sample.ERR the active window
b. When Sample.ERR is closed, make Sample.Asm the active window

74 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

3. After a successful assembly, link the file Sample.REL, using Sample.LINK
as the Linker control file

4. If the Linker detects errors, execute the Editor

a. Make the file Sample.LERA the active window
b. When Sample.LERA is closed, make Sample.LINK the active window

5. If the linking is successful, execute the completed application, Sample

Though using the Executive does not speed up the processes required to
prepare an assembly language program (the Editor, Assembler and Linker still
have to be loaded into memory every time you need them), it will decrease the
amount of work you have to do. Set the Executive running and go get a soda ...

The time it takes to prepare an assembly language program for execution is
severely constrained by the Macintosh's disk access speed. When using the
68000 Development System as it is distributed by Apple there is no way to keep the
Editor, Assembler, and Linker continuously in RAM. There are, however, two ways
to get around the problem. The first addresses the problem by keeping the Editor,
Assembler, and Linker in RAM; the second deals with disk access speed.

If you havea512K Mac you can use a portion of that memory as a RAM disk. To
do so, purchase Mac Memory Disk by Assimilation Process (available for about
$30). There is just enough room on the RAM disk for the system files and the Editor,
Assembler, and Linker. There is no room for the Executive; the editing, assem­
bling, and linking process must be managed manually. That is far less of a
disadvantage than it might seem. Since all three programs are in RAM, transfer
between them is almost instantaneous. The major drawback to using the RAM disk
is that it doesn't leave enough room in memory for a debugger.

The only way to speed up disk access time is to use a hard disk. In terms of
cost, a hard disk is not always a viable option. In fact, upgrading a 128K machine to
512K and purchasing the RAM disk software will cost far less than purchasing a
hard disk.

When you use the Executive, you no longer have access to the Assembler and
Linker OPTIONS menus (e.g., to control listings). You must therefore specify the
options you want in your source file (see the section on Assembler Directives in
Chapter 4).

Debugging

An assembler, like an interpreter or compiler, checks for syntax errors as it
translates source code to object code. None of the three translation programs,
however, can catch logic errors; they simply aren't capable of "understanding"

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 75

what a programmer intended. Finding logic errors is therefore the toughest part of
the programming. A debugger is a program designed to help the assembly
language programmer with that task.

When debugging a Pascal program you may have placed writeln statements
at strategic places in the code to display the contents of important variables. This
allowed you to monitor the contents of the variables as they changed and helped
you pin-point the exact spot in a program where something went wrong. The same
strategy isn't sufficient, however, when you are working in assembly language.

Assembly language programs have much greater control over the computer
than high-level language programs in the sense that as well as manipulating data
storage locations (i.e., variables) they have direct access to the CPU's registers.
Therefore, in order to find the source of an error it is usually necessary to see what
is happening within the registers while the program is running.

A debugger is a program that, among other things, will do the following:

1. Run an assembly language program one instruction at a time

2. Display the contents of the CPU's registers after each instruction is executed

3. Display the contents of main memory locations

4. Disassemble program instructions from either RAM or ROM.

It is generally very difficult to successfully complete an assembly language pro­
gram without at some point employing a debugger.

If you open the Debuggers folder on MDS2, you will find not one, but six
debuggers. The best one is MacDB. Unfortunately, you need two Macintosh's
hooked together to use it (one runs the program and the other runs the debugger).
Of the other five, two require external terminals (TermBugA and TermBugB) and
one runs on the Lisa (LisaBug). Both MidiBug and MaxBug, though, will run on a
single, free-standing Macintosh.

MaxBug will run only on a 512K machine. Midi Bug will run with 128K, but (and
this is ;:i. very big "but") once Midi Bug is installed, there is no room in memory for any
other ;:i.pplication (the Editor, Linker, etc.). Why is this such a problem? Debuggers
can't pe executed like other applications (i.e., by clicking an icon from the Finder).
Instead, whenever you boot a disk containing a file called MacsBug (regardless of
whether that file was originally Midi Bug or MaxBug), that debugger will be auto­
matically placed in memory. It will sit in memory until invoked by an "exception" in
your program.

This means that whenever you want to run a program and use Midi Bug with a
128K machine, you must:

1. Create a special debugging disk with a file named MacsBug on it. (Be sure
the file is a renamed Midi Bug since MaxBug won't fit, no matter how hard you
try.)

76 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

2. Use MDS1 to boot your Macintosh and complete the assembly and linking
process

3. Copy the completed application to the debugging disk

4. Reboot the system with the debugging disk as the startup disk

This long procedure would appear to be the only way to use a debugger with a
128K machine.

The presence of a debugger in memory does not necessarily mean that the
debugger will be activated when you run an application. The debugger must be
"invoked." Though there are several ways to do so, the easiest is to include the
instruction:

_Debugger

in your source code at the point you wish the debugger to take over.
MidiBug and MaxBug provide the same kind of display; with MaxBug you

simply get more of it. Figure 3.16 shows the information you receive after the
execution of a single instruction.

>
00CCFE:
PC=0000CCFE SR=0000A014
00=00000000 01 =000000FF
04=00000018 05=00000000
A0=000022C0 A1=0000021F
A4=000142AF A5=00070 E42
>

Figure 3.16 MidiBug and MaxBug Display

PC MOVE.W #$003E,-(A7)

02=003F0000 03=00000000
06=00000000 07=00000000
A2=0001437 A A3=00070364
A6=00070680 A7=00070D3C

The debugger first prints the starting address of the instruction in main memory
(in Figure 3.16, $00CCFE). It then disassembles and prints the instruction itself. It is
important to remember that what is being disassembled is the object code that is
stored in RAM. That means that the symbolic addresses that you used in your
source code will not appear; instead you will see the absolute addresses that were
substituted for the symbolic addresses during the assembly and linking process.
All addresses and quantities are expressed in hexadecimal, regardless of the
numbering system used in your source code. The stack pointer disassembles as
A7, even though it may have been referred to as SP in the original program.

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 77

The remainder of the debugger's output displays the contents of the 68000's
registers. PC refers to the program counter, SR to the status register, D0-07 to the
eight data registers, and AO-A 7 to the eight address registers. All register contents
are in hexadecimal.

Once a debugger is invoked, it will print its > prompt, display information
aboutthe current instruction, print another >, and wait for your command. Though
there are many commands to control action of the debugger, two will be of the
most use. T (for Trace) executes a single instruction. Traps (calls to ToolBox and
operating system routines) are handled as if they were one instruction; the debug­
ger will not trace the instructions that are part of the ToolBox or operating system
routine.

S (for Step) when used alone, will also execute one instruction. Traps, though,
are not treated as single instructions: the debugger will display each step in any
Tool Box or operating system routines. You can also execute a series of instructions
with Step by appending a quantity to the command that represents the number of
commands to be executed. For example,

86

will execute six instructions, printing the debugging information about each one.
Midi Bug replaces the very bottom of the screen with output for one instruction.

The rest of the screen displays the output from the program being executed. As
you execute successive instructions, the display for the previous instruction will
scroll out of sight.

MaxBug replaces the entire screen with its own output and can therefore
display information for up to five instructions at one time. If a program affects
Macintosh's screen, then MaxBug will briefly show program output each time the
screen changes and then return to the debugging display. The ' key (the key
above and to the left of the TAB) will also toggle between the application's screen
and the debugger's screen.

Using a debugger does present one problem. Since the debugger is monitor­
ing the keyboard for your commands, it effectively prevents a program from
getting input from either the keyboard or the mouse. If a program expects input to
stop a loop, then when you run the program from within the debugger, you won't
be able to stop the loop the same way you would ifthe program were running on its
own. The situation can be somewhat distressing, since a disk drive may be
spinning continually when you are using the debugger. (There is a process for
stopping a drive while using a debugger; see the MOS manual.)

Ultimately, most loops stop by checking one of the flags in the status register.
For example, the Sample program uses an instruction that checks the zero flag (bit
2). If the zero bit is set, the loop continues: if the bit is clear, the loop will end and the
program stop. The solution, then, is to trick the program into thinking that it has
required input by manually clearing the zero bit.

78 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

In Figure 3.16, the contents of the status register is $0000A014, which means
that the zero bit is set. How in the world can you tell? Remember that each
hexadecimal digit represents four binary digits. Therefore, the 4 in the right-most
position actually represents $0100. The zero bit is bit 2 (the third bit from the right).
What we need to do is replace the 4 with the hexadecimal representation of any of
the following code groups: %0000, %0001, %0010, %0011, %1000, %1001,
% 1010, or % 1011 (in hexadecimal: 0, 1, 2, 3, 8, 9, A, or B). The trick is that the third
bit must be zero; the contents of the others is irrelevant.

The command:

SROOOOA010

will replace the contents of the status register with whatever follows SR. Give the
debugger this command just before executing the instruction that tests the zero bit.

The debuggers allow you to change the contents of any register at any time.

Dn new contents

will replace the contents of data register n.

An new contents

will do the same for address register n.
To replace the contents of the program counter, use:

PC new contents

Be very careful when changing the program counter, since the instruction
executed after a Trace or Step instruction will be whatever instruction begins at the
address in the program counter.

To see the assembly language version of an application's instructions as they
are stored in memory, use ID (instruction disassemble). Used alone, ID will
disassemble the instruction at the current contents of the program counter. Follow
ID with an address and it will disassemble the instruction at that address.

The debugger command SM (set memory) will change the contents of a
memory location. It's general form is:

SM main memory address new contents

For example:

SM1A2B33

will place $33 in location $1A2B. Note that the debugger expects all addresses and
quantities to be expressed in hexadecimal; no leading$ is necessary.

USING THE MACINTOSH 68000 DEVELOPMENT SYSTEM 79

In some cases, you may wish to trace a few steps of a program and then let it
run on its own again. The command G, for GO, will resume normal program
execution, sending the debugger back into the background. It is therefore possi­
ble to place the trap that invokes the debugger at several places in a program. This
will allow you to trace a few steps at whatever parts of the program are of interest.

If a program is so full of bugs that it cannot terminate successfully on its own,
there are two ways to exit the debugger. The debugger command ES (exit to shell)
will generally return to the Finder (note that some program errors will cause this
command to fail and your only recourse is to reboot). RB (reboot) will reset the
machine.

The successful use of a debugger is something that cannot be directly taught;
it's something that comes from practice. To begin to understand what a debugger
does, insert _debugger in the Sample program just below the _initFonts
statement. Copy the appropriate debugger onto a disk that also contains a System
Folder. For a single drive system, place the final version of the Sample program on
this disk as well; in a two-drive system, the Sample program should be on a text
disk in the external drive. Boot the system to install the debugger and then run the
Sample program by double-clicking on its icon. The debugger screen will appear
almost instanteously.

Monitor the progress of the program using the T command. Keeping a printed
listing of the program handy will also aid in understanding what appears on the
screen. Look primarily at how each instruction changes the contents of the CPU's
registers. Experiment with the other debugger commands. When you are finished,
type G to return control to Sample so that it can terminate with a click of the mouse
button or a key press.

80

c H A p T E R F 0 u R

THE 68000 INSTRUGTl8N SET
(Pfo\RT1)

Chapter Objectives

1. To create an 1/0 shell program that can be used to explore the 68000
instruction set

2. To understand the purpose and use of assembler directives

3. To understand data manipulation instructions (MOVE, LEA, PEA)

4. To understand instructions used to make comparisons in assembly lan­
guage programs

5. To take a first look at creating a loop within an assembly language program,
including instructions which execute unconditional branches

Creating an 1/0 Shell
Since all Macintosh 1/0 is done exclusively through the ToolBox, if you are

going to see the result of executing even the simplest 68000 instruction, you'll need
to be able to use the ToolBox right away. That would seem to mean that you must
learn how to use the Tool Box at the same time you are learning the instruction set.

If, though, you modify the Sample program from Chapter 3 so that it appears as
in Listing 4.1, you will have a ToolBox"shell" into which you can insert bits of 68000
code. The shell will display the results of executing those instructions. You can

THE 68000 INSTRUCTION SET (PART1) 81

then, for the most part, leave worrying about the Tool Box until you understand the
instruction set. Therefore, many of the program listings in this chapter are
designed to be inserted into the shell (as indicated in Listing 4.1) before they are
run.

Listing 4.1 Sample Macintosh Assembly Language Program

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D

;Includes addresses of ToolBox routines
;Includes the ToolBox equates

PEA-4(A5)
lnitGraf

-lnitWindows
-lnitMenus
=:1nitFonts

;Includes the System equates

;Initializes QuickDraw
;Initializes the Window Manager
;Initializes the Menu Manager
;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result
PEA Storage Pointer ;Window Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ;Title
ST -(SP) ;Make the window visible
MOVE #documentProc,-(SP) ;Make it a standard document window
MOVE.L #-1,-(SP) ;Put the window in front
ST -(SP) ;Draw a go-away box
CLR.L -(SP) ;Place for window's reference value
_NewWindow ;Draw a standard document window

LEA WindowPtr,A0 ;load destination address for pointer
MOVE.L (SP)+,(A0) ;retrieve pointer

MOVE.L WindowPtr,-(SP)
_SelectWindow

MOVE.L WindowPtr,-(SP) ;put pointer back on the stack
_Set Port ;make this window the current grafport

_lnitCursor

MOVE.W #7,-(SP)
_TextFont

MOVE.W #18,-(SP)
_TextSize

;set the cursor to the arrow

;7 = athens
;Set the text font

;18 for 18-point type
;Set the text size

MOVE.W #65,-(SP) ;Horizontal coordinate
MOVE.W #100,-(SP) ;Vertical coordinate
_Move To ;Move the pen (continued)

82 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 4.1 (continued)

PEA 'HOORAY!!! You did it!'
REMOVE THESE STATEMENTS
TO CREATE THE TOOLBOX
SHELL

_Drawstring

MOVE.L everyEvent,D0;Mask to select all events
Flush Events :Clear the event queue

Event CLR -(SP) ;Space for boolean result
MOVE #%0000000000111110,-(SP) ;Mask for keyboard and mouse
PEA EventRecord ;Place to receive event info
_GetNextEvent ;Get next event from queue

MOVE (SP)+,D0
CMP #0,D0
BEQ Event

RTS

DC.L 0

;Has a keyboard or mouse event occurred?

;If no event, branch to look again

;Return to the Finder

WindowPtr
BoundsRect
every Event
EventRecord
What DC
Message
When DC.L
Point DC.L
Modify DC

DC.W 40,20,300,350
DC.L $0000FFFF

0
DC.L 0
0
0
0

;where GetNextEvent Puts its result

Assembler Directives
lacintosh assembly language source file may contain more than just 68000
:ions. It can also include assembler directives. Assembler directives are
I mnemonics that give the assembler directions that are to be followed
the assembly process. Most of them involve setting aside space for storage.

;an also assign values to symbolic addresses and cause external source files
ncluded as a part of the file being assembled.

THE 68000 INSTRUCTION SET (PART 1) 83

EQU (Equate)
One of the most useful assembler directives is EQU (equate). EQU assigns a

permanent value to a symbolic address. For example:

Name EQU O

assigns the value 0 to the symbolic address Name. Then, instead of using 0 in
source code, use Name. When the program is assembled, the value 0 will be
substituted for Name everywhere it appears.

An equate is directly equivalent to assigning a constant value to an identifier in
the const block of a Pascal program. Like Pascal constants, the values assigned
to symbolic addresses by EQU cannot be changed during program execution.

To handle equates and other symbolic addresses, the assembler builds a
symbol table. Think of a symbol table as a two-dimensional array kept in RAM while
the assembler is running. One column holds the symbolic addresses; there is
therefore one row in the symbol table for each symbolic address. A second column
in the table identifies the type of symbolic address (e.g., whether it is an equate or a
statement label). The assembler enters a symbolic address into the symbol table
when it is first encountered. For an equate, a third column in the array holds the
value assigned to the symbolic address. For statement labels, the third column
holds the address of the program statement to which the label refers.

Each time the assembler recognizes a reference to a symbolic address in the
program being assembled, it checks the symbol table to see if it can find an entry
for that symbolic address. If the symbolic address is an equate, then the assembler
merely substitutes the value of the equate in the table for the symbolic address in
the source code.

Because the assembler expects to find an entry for an equate in the symbol
table, EQU statements must appear before their symbolic addresses are used in
program instructions; otherwise, the program simply will not assemble. It is there­
fore good programming to group all EQU statements together (along with com­
ments explaining what they reference) immediately after the INCLUDE directives
(discussed directly below) at the very beginning of the program.

You can EQU addresses as well as constant numeric data. For example, if you
include:

Address_1 EQU $1A3B

in source code, you can use Address_1 in any place where you need to
reference the address $1A3B. It is acceptable in any of the Macintosh's addressing
modes that accept absolute addressing.

What, then, is in those equates files (e.g., ToolEqu. D and SysEqu. D) that came
with your Macintosh 68000 Development System? If you look at the source listings
(ToolEqu.Txt and SysEqu.Txt) you'll see that both files are nothing more than a
series of EQU statements. They set up constants that are useful when working with
Tool Box and operating system routines.

84 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

INCLUDE
To make the symbolic addresses available in the equates file to any program

you write, INCLUDE the equates files. INCLUDE is another assembler directive. It
instructs the assembler to seek another source file which is to be inserted into a
program. To use INCLUDE, specify:

INCLUDE fname

where fname is the name of the source file to be included in the program being
assembled.

Data Allocation
There are two assembler directives that fall into the classification "data alloca­

tion directives." These set up symbolic addresses for storage locations in either the
program itself or the applications globals area of RAM. You can think of them as
analogous to variable names (i.e., the symbolic address represents the location of
one or more pieces of data). The contents of storage locations identified by such
symbolic addresses can be changed while the program is running.

DC (define constant) assigns one or more values to a symbolic address. The
statement:

Label DC 0

will, for example, cause the following actions during assembly:

1. An address for Label will be selected at the end of the source code. (If you
look at the bottom of the assembler listing for the Sample program, you will
see the space that has been allocated for each DC directive.

2. Label will be associated with that address.

3. The address associated with Label will be given an initial value of 0.

There are four variations on the define constant directive: DC, DC.B, DC.W,
DC.L. The extensions determine whether the data will be aligned on byte, word, or
longword boundaries. If no extension is present, the data will be aligned on word
boundaries by default.

At first glance, it might seem that DC isn't much different from EQU.
Remember, though, that EQU assigns a permanent value to a symbolic address,
whereas values assigned by DC are only initial values and can be changed by the
instructions within a program.

The fact that DC allows changing the value associated with a symbolic address
does not mean that you should necessarily do so. It is good practice to use DC only

THE 68000 INSTRUCTION SET (PART 1) 85

to store constants and not as locations for data that will change (i.e., consider a
location established by DC as if it were in ROM, useful for read-only operations).
The major exception to this rule occurs when an application does printing (see
Chapter 10 for details).

DC is also used to assign a series of storage locations, each with its own unique
value, to a single symbolic address. The statement:

Label DC 0,16,'ASampleWindow'

reserves enough storage to store the values 0, 16, and the string "A Sample
Window." Use of the symbolic address Label will reference the two numeric values
and the string. This capability is important when preparing data for use with
ToolBox routines.

DCB (define constant block) sets aside a block of memory locations, all of
which will be initialized to the same value. (Notice that this is not the same as using
DC to reference a series of values, since the DC values can be different from one
another.) To use DCB, you must not only specify the initial value for the storage
locations, but the length of the block of locations to be reserved. For example:

Label DCB 12,0

will reserve twelve words of storage, beginning at the symbolic address Label.
Each location will be given the initial value 0.

The general form of the DCB assembler directive is:

Symbolic address DCB length of block, initial value

The actual number of bytes reserved depends on the extension applied to the
DCB directive. If there is no extension, or if you use an extension of .W, the"length
of block" parameter will refer to the number of words to be set aside. An extension
of .B indicates that the length is expressed in bytes; .L specifies a length in number
of longwords.

OS (define storage) also reserves a block of storage locations. This storage
does not become a part of an assembled program. Rather, it is allocated in the
applications globals area at run time. This form of storage allocation should be
used for all read/write operations (i.e., a program should avoid writing into its own
code, as it would if you wrote to a DC location).

The applications globals area begins at $-100(AS) and grows down in mem­
ory. All storage locations allocated by OS must therefore always be referenced
relative to AS with what looks like Address Register Indirect with offset addressing.
Since AS always contains the starting location of the applications globals area, its
contents should never be changed during program execution.

The general form of the statement is:

Symbolic address OS length of block

86 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Therefore, the statement:

Label OS 12

will set aside twelve words of storage. No initial value is given to the storage.
As with the DCB directive, how the length parameter is interpreted depends on

the extension affixed to the mnemonic. No extension or an extension of. W refers to
words, .B to bytes, and .L to longwords.

Access to the storage set aside by Label above appears as:

Label(AS)

The amount of space needed for OS locations appears on the Linker screen
during the linking process beside the label "Data Size."

End of Source
Another essential assembler directive is END. END is the last statement in a

source code file. Any statements after END will be ignored by the assembler. It is
important to remember that END is the physical end of the source code. It has
nothing to do with the logical end of a program.

Printing Control Directives
If you are using the Executive, you cannot control listing options from the

OPTIONS menus in the Assembler and Linker. You can, though, specify the same
choices in your source code .

. EJECT will cause the printer to start a new page. This directive will take effect
when creating a hard copy of either an assembler or linker listing .

. Verbose, LlstTofile, and .ListToDisp have the same effect as selecting
those commands from the OPTIONS menus (see Chapter 3). To turn off verbose
assembly or a listing use .NoVerbose or .NoList respectively.

Data Manipulation
Instructions

An important part of any microprocessor's instruction set is concerned with
moving data around in memory. Arithmetic instructions require that at least one
operand be located in a data or address register. Even more importantly, the
Macintosh's ToolBox routines look for parameters which have been placed on the

THE 68000 INSTRUCTION SET (PART1) 87

stack; operating system routines expect their parameters to be pointed to by
addresses in registers.

The most frequently used 68000 data manipulation instructions used in Macin­
tosh assembly language programs are MOVE, PEA, LEA.

MOVE
The MOVE instruction takes a piece of data and shifts it from one location to

another. Like an assignment statement in a high-level language (e.g., C=A), the
data in the source location is copied into the destination location; the contents of
the source location are not altered.

The format of the MOVE instruction is:

MOVE source address, destination address

For example:

MOVE #12,01

will put the decimal quantity 12 into data register 01. (Remember that when #
precedes a number it will be interpreted as a quantity rather than as an address.)

The size of the operand transferred by a MOVE statement depends on the
extension given the instruction. MOVE or MOVE.W will move one word of data.
WORD.B will move a byte and MOVE.L will move a longword.

Source and destination addresses can be specified using most of the 68000's
addressing modes. The examples which follow will show you the ones most
commonly used.

In order to see the results of MOVE statements, lefs use a ToolBox routine to
display a single character on the screen. This routine is called DrawChar and it
expects to find the ASCII code for the character to be printed on the top of the
stack. Therefore, the step that immediately precedes the call to DrawChar must
MOVE a character onto the stack.

All ToolBox routines are called by their names. To let the assembler know that
the statement is a call, an underbar (_) is put in front of the routine name.
Therefore, if you put the line:

_DrawChar

into your source code, it will execute the DrawChar routine. More detail on how
such calls work appears beginning in Chapter 6.

The ASCII code for a character is placed on top of the stack using Address
Register Indirect with Predecrement addressing. (In fact, putting things on the
stack is a very common use of this addressing mode.) For example:

MOVE source address, - (SP)

88 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

This statement will cause the Mac to first decrement the contents of the stack
pointer (SP or A 7). The data pointed to by the source address will then be moved to
the new address contained in the stack pointer.

Why is the address decremented rather than incremented? Remember that
the stack starts high in memory and grows down (i .e., the bottom of the stack has a
high address; the top of the stack will always have an address lower than the
bottom). Therefore, each time we put something on the stack, the address of the
top must first be decreased.

Insert these statements into the Tool Box shell :

MOVE #$0040, - (SP)
_DrawChar

When you assemble, link, and run the program, the character "@" will print on the
screen (see Figure 4.1). $0040 is the ASCII code for "@". Because $0040 is
preceded by#, the quantity $0040 is moved to the stack. This is an example of
using immediate data as the source address in a MOVE statement. (Note: The
DrawChar routine expects to find an entire word of data on the stack. Though
ASCII codes occupy only a single byte, you must nevertheless move a word onto
the stack with the ASCII code in the low-order byte. Thus we move $0040 onto the
stack, forcing the ASCII code into bits 0-7.)

~D MAL Output Window

@

Figure 4.1 Output From a Single Call to DrawChar

THE 68000 INSTRUCTION SET (PART1) 89

It is also possible to use MOVE to take things off the stack. This is important
because many of the ToolBox routines return information needed later in a
program. That information is placed on the top of the stack. If you use the
instruction:

MOVE (SP)+ ,D1

the contents of the RAM location pointed to by the contents of the stack pointer will
be moved to data register D1. Then the stack pointer will be incremented.

As we have previously discussed, when an operand or address is placed on
the stack, the contents of the stack pointer must be decremented. Similarly, when
something is taken off the stack and effectively "removed" from the stack, the stack
pointer must be incremented. Therefore, the example above uses Address Regis­
ter Indirect with Postincrement addressing. The contents of the stack pointer are
incremented after the instruction is executed. This is probably the most common
situation in which this particular addressing mode is used.

Other addressing modes are also commonly used with the MOVE statement.
Remove the two statements you previously placed in the ToolBox shell and insert
the following:

MOVE #$0040,01
MOVE 01, - (SP)
_DrawChar

Running the program should still print that "@." (If you're getting tired of "@,"

substitute the hexadecimal equivalent of any other ASCII code Macintosh uses.)
The first MOVE uses Data Register Direct addressing to specify the destination

address. The $0040 will be stored in data register D1.
The second MOVE uses the same addressing mode to specify the source

address. The contents of data register D1 are moved onto the top of the stack (after,
of course, the contents of the stack pointer [A7J are decremented).

You can also move data stored under symbolic addresses. For example, try
this in the shell:

Data EQU
MOVE

_DrawChar

$0040
#Data, - (SP)

The EQU permanently associates the symbolic address Data with the value
$0040. Using the symbolic address in the MOVE statement has the same effect as
using $0040 as immediate data. Notice that just like the number $0040, the
symbolic address was preceded by a # so that the assembler realized that the
quantity stored as Data was to be used as immediate data rather than as an
address.

90 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Symbolic addresses assigned values by EQU can be used anywhere you
would use data. For example:

Data EQU $0040
MOVE #Data,D1
MOVE D1, - (SP)
_DrawChar

will put $0040 into data register 01 and then move it onto the stack. If you put the
above code into the ToolBox shell, you should still see"@" printed in the output
window.

MOVE can also be used to transfer data between registers. The third line of the
following code will move the contents of data register 01 to data register 02.

Data EQU $0040
MOVE #Data,D1
MOVE D1,D2
MOVE D2, - (SP)
_DrawChar

The source address in a MOVE statement can be specified using any of the
68000's addressing modes. The destination address, however, cannot be spec­
ified with immediate addressing nor can it use either of the program counter
addressing modes.

The reason immediate addressing cannot be used should be obvious. The
destination must be a location, a place to put something. Ifs simply not possible to
store something in a piece of data.

Why the program counter modes can't be used may not be so clear. But
consider this: if you store a piece of data in the program counter, you will destroy
the previous contents of the program counter. Since the program counter keeps
track of which instruction is to be executed next, erasing that address will com­
pletely disrupt program execution.

The MOVE instruction, like most other instructions, affects the flags in the status
register. The extend bit is unaffected. The carry and overflow bits always get a
value of 0. 01'/e say that they are cleared.)

What happens to the negative and zero bits depends on the value being
moved. If the value is equal to zero, the zero flag will be set (given a value of 1) and
the negative bit will be cleared. If the value is negative, the negative bit will be set
and the zero bit cleared. If the value is positive, both bits will be cleared.

PEA
The letters PEA stand for Push Effective Address. This instruction is not

commonly used in many 68000 machines, but because it pushes addresses onto

THE 68000 INSTRUCTION SET (PART 1) 91

the stack and then automatically decrements the stack pointer, it is extremely
useful for setting up parameters for ToolBox routines.

Take a look at the two statements you removed from the Sample program to
create the shell:

PEA 'HOORAYlll You did it'
_Drawstring

This use of the ToolBox routine Drawstring displays the string that you see as the
operand for the PEA instruction. Like DrawChar, Drawstring looks for its oper­
and on the stack. The string itself, though, is not placed on the stack; during
assembly and linking it is placed at the end of the program code. Therefore, when
you wantto display a string, push a pointer to the start of the string.

What's a pointer? A pointer is an address that cdrresponds to the starting
address of a series of storage locations. Usually, a pointer will be the starting
address of a string or a data structure in main memory.

The general form of the instruction is:

PEA effective address of source data

PEA can use any addressing mode except immediate, simply because immediate
data isn't an address. This instruction does not affect the codes in the status
register.

LEA
LEA stands for Load Effective Address. It moves an address into an address

register. The general form of the instruction is:

LEA source address, destination address register

LEA is most useful for retrieving the absolute address assigned to a symbolic
address. To see how it works, let's look at the data structure used to pass
parameters to the operating system routines that provide access to disk files.

paramBlock
Link
Type
Trap
CmdAddr
Complete
Result
NamePtr
VRefNum

DC.L 0
DC 5
DC O
DC.L 0
DC.L 0
DC 0
DC.L 0
DC 2

92 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

These eight parameters are common to all file manager routines. (The complete
parameter block contains 8 to 16 additional fields, depending on the specific
routine.) The first four fields are used by the File Manager. The other four, though,
are of concern to the programmer.

For example, NamePtr must contain the address of the location where the
name of a file is stored. The pointer must be loaded into NamePtr before calling
the File Manager routine. Assume that the file name is stored under a symbolic
address:

Fname DC 'SampleFile. Text'

The instruction:

LEA Fname,A1

will store the starting address of the string SampleFile.Text in A1. This is an
example of absolute addressing, since Fname represents a specific RAM loca­
tion.

To put that address into NamePtr, the address of NamePtr must also be
available in an address register:

LEA NamePtr ,A2

Then, a program can execute:

MOVE.L A1,(A2)

This statement takes whatever is stored in A1 (the address of Fname) and stores it
at the address stored in A2 (the address of NamePtr).

There are some things that are important to remember about LEA. The
destination of the instruction is always an address register. The mnemonic does
not take any extensions; LEA always transfers a full longword (even though the
addresses are only 24 bits).

The source address can be either in an address register, the program counter,
or can be an absolute address. Three address register indirect addressing modes
are acceptable: Address Register Indirect, Address Register Indirect with Dis­
placement, and Address Register Indirect with Displacement and Index. Both of
the program counter modes can also be used for the source address.

LEA does not affect any of the flags in the status register.

LOOPING

Executing a series of statements repeatedly is rather easy in a high-level
language. In Pascal for example, you can use WHILE/DO.REPEAT/UNTIL, and

THE 68000 INSTRUCTION SET (PART 1) 93

FOR to implement iteration. With 68000 assembly language, though, there are no
built-in looping instructions. To understand the sequence of instructions necessary
to create a loop, consider the steps required to repeat a set of instructions a fixed
number of times.

1. Initialize the counter to 1.

2. Compare the counter with the quantity that represents the number of times
the loop is to be executed.

3. If the counter equals the ending value, then terminate the loop.

4. Otherwise, execute the instructions that form the body of the loop.

5. Increment the counter.

6. Return to step 2.

To program a loop in assembly language, you must execute each step above.
To see a loop in action, insert the following instructions into your 1/0 shell:

Again

MOVE #1,D1
MOVE #5,D2
CMP D1,D2
BMI Done
MOVE #$0040, - (SP)
_DrawChar
Add #1,01
BRA Again

;counter
;number of times to execute loop
;check the counter
;end the loop

;increment the counter
;continue the loop

In order to get this code to work (it should print a series of six "@"s as in Figure 4.2),
place the symbolic address Done in the label field of the statement:

MOVE.L everyEvent,DO

so that the statement appears as:

Done MOVE.L everyEvent,DO

This sequence introduces four new instructions: CMP (used to make deci­
sions), BMI (one way to check the flags in the status register), ADD (integer
addition), and BRA (one way to do an unconditional branch). Once you are familiar
with these instructions and their variations you will, believe it or not, know most of
the instructions used in Macintosh assembly language programs.

94 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

MAL Output Window

@@@@@@

Figure 4.2 Output From Multiple Calls to DrawChar

Making Comparisons
The 68000 instruction set has one generalized instruction for making com­

parisons - CMP. (There are others, but they are more specialized and less
commonly used.) The general form of the instruction is:

CMP address of source operand, destination data register

CMP subtracts the source operand from the quantity in the destination data
register. The result of the subtraction isn't stored anywhere. The instruction does,
though, set the codes in the status register according to that result.

For example, consider this series of instructions:

MOVE
MOVE
CMP

#6,01
#10,02
01,02

The CMP instruction will perform the subtraction "1 0 - 6 ." The result (4) is not stored
anywhere. The negative bit in the status register is cleared (the result was positive).
The zero bit is also cleared (the result was non-zero). Since no overflow occurred
and no borrow was required, both the overflow and carry bits are cleared . CMP
does not affect the extend bit.

Now, look at these instructions:

MOVE
MOVE
CMP

#12,01
#10,02
01,02

THE 68000 INSTRUCTION SET (PART 1) 95

The result of the subtraction is - 2. Therefore, the negative and carry bits will be set
and the others cleared.

After executing:

MOVE
MOVE
CMP

#5,01
#5,02
01,02

only the zero bit will be set; all the others will be cleared.
CMP will work with characters as well as quantities. If you think about ASCII

codes for a moment, you'll notice that letters that come alphabetically first have
numerically lower codes than those that come later (e.g., A = $41, B = $42, C =
$43, etc.). Therefore, when CMP performs a subtraction using ASCII codes, a
program is actually testing for alphabetical order.

For example:

MOVE
MOVE
CMP

#$0043,01
#$0046,02
01,02

tests whether C comes before F in an alphabetical sequence. Remember that
lower-case letters have different codes from upper-case letters so, for example, h
will be greater than H.

You can specify the source operand using any addressing mode.

Testing the Condition
Codes

CMP is conceptually only part of an IF/THEN statement. It compares the
operands in question and sets the status register so you can actually test the
condition. Testing the condition requires a separate instruction.

In Pascal, any executable statement, including a compound statement, can
follow THEN for execution if the condition is true. In assembly language, you are
much more limited. Though you can test for a variety of relationships between the
quantities being compared (e.g., equal to, not equal to, greater than, less than,

96 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

plus, etc.), there are only two possible actions: you can branch to another instruc­
tion (the branch will take place if the condition is true; otherwise program execution
continues with the next statement); or you can set or clear a destination byte (the
byte will be set if the tested condition is true, cleared if the condition is false).

or

Using Pascal, you would write:

IF condition is true THEN GOTO symbolic address

IF condition is true THEN destination byte = $FF
ELSE destination byte = $00;

Regardless of whether you decide to branch or set a byte, you will still be
testing the condition codes that were set during a previous operation.

Bee
Bee stands for Branch on Condition Code. It is a conditional branch, since the

branch occurs only if the condition being tested is true. The cc is replaced by two
letters which stand for the specific condition you want to test. The most commonly
used forms are:

BEQ Branch if Equal (true if the zero bit is set)
BNE Branch if Not Equal (true if the zero bit is clear)
BMI Branch if Minus (true if the negative bit is set)
BPL Branch if Plus (true if the negative bit is clear)

The following conditions, also often used, are tested using logical combina­
tions of the bits in the status register:

BGE Branch if Greater Than or Equal To
BGT Branch if Greater Than
BLE Branch if Less Than or Equal To
BLT Branch if Less Than

The full set of condition codes can be found in the 68000 Programmer's
Reference Manual that came with your Macintosh 68000 Development System.

To use a Bee, code a statement like:

Bee symbolic address of destination

How does a branch work? During assembly, the assembler computes the
number of bytes between the Bee instruction and the destination statement. This
quantity, know as an offset, becomes a part of the instruction in the object code.

THE 68000 INSTRUCTION SET (PART 1) 97

When the statement is executed, the appropriate condition codes are tested. If the
condition is true, the offset is added to the contents of the program counter. The
program continues at the program counter's new contents. The offset is limited to
the quantity that will fit in one word.

To explore how Bee works, insert the following code into your Tool Box shell:

MOVE #0,01
MOVE #5,D2
CMP D1,D2
BMI Less Than
PEA 'The source operand is smaller than the destination

operand'
_Drawstring
JMP Ending

LessThan PEA 'The source operand is larger than the destination
operand'

_Drawstring
Ending PEA 'Ill'

_Drawstring

Vary the mnemonic in the fourth line (BMI) to see how the different conditions
work. You can also put different values in D1 and D2. Try, for example, using equal
quantities.

Unconditional Branching
without Tests

There is one instruction in the above example that we haven't discussed -
JMP. JMP is one of two instructions that does an unconditional branch. ("Jump
directly to a symbolic address; Do not pass Go, Do not collect $200 ... ") The
general form is:

JMP symbolic address of destination

During assembly, the symbolic address ofthe destination is replaced by the actual
address of the destination instruction.

The other instruction that causes an unconditional branch is BRA. Like Bee,
during assembly the assembler computes the number of bytes between the BRA
instruction and the destination instruction and turns that quantity into an offset. The
offset is limited to the quantity that will fit one word.

The general form is:

BRA symbolic address of destination

98 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

When a program executes an unconditional branch, the contents of the
program counter are changed. If branch is initiated by a JMP instruction, the
address in the operand field will replace whatever was in the program counter.
With BRA, the offset in the operand is added to the current contents of the program
counter. In either case, program execution continues at the new address indicated
by the modified program counter.

In most cases, choosing whether to use JMP or BRA is a toss up. If, though,
you have a very long program and are concerned about space, BRA can save at
least one word of space over JMP. In cases where the offset will fit within a byte, it is
assembled in the same word as the BRA instruction. If the offset is more than 255, it
will be assembled into the word after the instruction. A JMP always occupies two or
three bytes, one for the instruction and one or two for the address, depending on itE
size. Therefore, if an unconditional branch spans less than 255 bytes, you will save
one or two words of space in your object code every time you use BRA rather than
JMP. On the other hand, if you want to shift program control more than 32,767
bytes (the maximum offset), you must use the JMP.

More on Testing Condition
Codes(Scc)

The second option for action after testing a condition code-setting or clearing
a byte-is specified by the various forms of Sec (Set on Condition Code). The
cc is replaced by two characters representing the condition to be tested.

A Sec statement is written:

Sec address of byte to be set or cleared

The destination byte can be specified by any addressing mode except: 1)
Address Register Direct; 2) Program Counter with Displacement; 3) Program
Counter with Index; 4) Immediate; and 5) Quick Immediate.

For example, consider these instructions:

MOVE
MOVE
CMP
SEQ

#2,01
#6,02
01,02
03

The SEQ (Set if Equal) instruction checks the zero bit in the status register. In
this case, the zero bit has been cleared because the result of the comparison was
non-zero. Therefore, the SEQ instruction will clear D3 (fill it will all zeros).

If, though, you execute:

MOVE
MOVE
CMP
SNE

#2,01
#6,02
01,02
D3

THE 68000 INSTRUCTION SET (PART1) 99

03 will be set (filled with all 1's [$FF]). SNE (Set if Not Equal) is true if the zero bit in
the status register has been cleared.

As with Bee, you can test a wide variety of conditions:

SGE Set if Greater Than or Equal To
SGT Set if Greater Than
SLE Set if Less Than or Equal To
SL T Set if Less Than
SMI Set if Minus
SPL Set if Plus

(Other, less frequently used codes are in the Programmer's Reference Manua~.
It is also possible to set or clear a byte without testing the condition codes.

ST destination address

will fill the byte specified by the destination address with all 1's. By the same token,

SF destination address

clears the byte at the destination address.
To clear either a word or longword, use the CLR instruction:

CLR destination address

with no extension or a .Wextension will clear two bytes beginning atthe destination
address; an extension of .L will clear four bytes. CLR.B will clear one byte. The
address to be cleared can be specified using any addressing mode except: 1)
Address Register Direct; 2) Program Counter with Displacement; 3) Program
Counter with Index; 4) Immediate; and 5) Quick Immediate.

There is no instruction to simply set all the bits in a word or longword.

Questions and
Problems

For problems 1 through 5, assume the contents of the following selected 68000
registers and memory locations (the latter are identified by symbolic and absolute
addresses):

DO .. [OOOOAB 12)
02 .. [FFOOFFAA)
AO .. (00000001)

D1 .. [00000002)
03 .. [FFOOOOOO)
A 1 .. (00000002)

100 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

$0001 .. (003AJ
LOC1

$0004 .. [0002]
LOC4

$0002 .. (0001]
LOC2

$0005 .. (0020]
LOCS

$0003 .. (001 OJ
LOC3

$0006 .. (0011]
LOC6

1 . What will be stored in register D3 after each of the instructions below are
executed?

2.

3.

a. MOVE.B
b. MOVE
c. MOVE.L

DO,D3
DO,D3
DO,D3

d. MOVE.B
e. MOVE
f. MOVE.L

D2,D3
D2,D3
D2,D3

A. What will be stored in the destination register after each of the instructions
below are executed?

B. Identify the addressing mode used in each case.

a. MOVE LOC1,DO j. SF DO
b. LEA LOC1,AO k. CLR D2
c. MOVE.L AO.DO I. CLR.L D2
d. MOVE (AO),DO m. MOVE #'C' ,DO
e. MOVE 4(AO,D1),DO n. MOVE #'AB',DO
f. MOVE 2(AO),DO 0. MOVE.B #'AB' ,DO
g. CMP D1,DO p. MOVE.L #'ABCD' ,DO
h. ST DO q. MOVE.L #' ABC',DO
i. CLR.B DO r. MOVE #'ABC' ,DO

Identify the contents of each register and memory location that changes
when the following blocks of code are executed:

a. MOVE LOC2,DO
MOVE #0006,AO
MOVE DO.AO

b. LEA LOC2,AO
MOVE #0006,(AO)

c. MOVE #0004,AO
MOVE (AO)+,DO

d. Offset EQU 3
LEA LOC2,AO
MOVE Offset(AO), DO

THE 68000 INSTRUCTION SET(PART1) 101

e. MOVE #6,DO
MOVE #10,D1
CMP DO,D1
BGT Greater
MOVE D1,D2
JMP Done

Greater MOVE DO,D2
Done

f. MOVE LOCS,DO
MOVE LOC6,D1
LEA LOC1,AO
CMP DO,D1
BLT Store
MOVE D1 ,(AO)
JMP Done

Store MOVE DO,(AO)
Done

g. MOVE LOC6,DO
MOVE LOC5,D1
LEA LOC1,AO
CMP DO,D1
BLT Store
MOVE D1 ,(AO)
JMP Done

Store MOVE DO,(AO)
Done

4. Problems (f) and (g) in 3 above are essentially the same; their difference lies
only in the quantities being compared. Looking at both blocks of code, what
do they do?

5. For each block of code below, indicate the state of the flags in the status
register after the code has been executed.

a. MOVE LOC1,DO c. MOVE LOC3,D1
CMP LOC2,DO CMP #10,D1

b. MOVE LOC6,DO d. LEA LOCS,AO
CMP LOC1 ,DO MOVE LOC4,DO

CMP (AO),DO

102 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

6. Write a block of code that will load an operand into a data register from a main
memory location called Spot and then push that same operand onto the
stack:

a. Write the code assuming that Spot has been defined as:

Spot DC 0

b. Write the code assuming that Spot has been defined as:

Spot OS 1

7. Write a block of code that pulls a longword from the stack and stores it in a
main memory location called NextPlace:

a. Write the code assuming that NextPlace has been defined as:

NextPlace DC.L 0

b. Write the code assuming that NextPlace has been defined as:

NextPlace DS.L 1

8. Write a block of code that:

a. loads an operand from Place1 into a data register.
b. loads a second operand from Place2 into another data register.
c. compares the operands.
d. If the operands are equal, branches to a statement labeled Done.

i. if Place 1 > Place 2, writes the first operand in Largest and the
second in Smallest

ii. if Place 2 < =Place 2, writes the first operand in Smallest and the
second in Largest

All operands are word-sized. Be sure to set aside storage space for Place1,
Place2, Smallest, and Largest with the DC or OS directive. (Remember:
storage locations defined by OS must be referenced relative to register AS.)
Use additional statement labels as necessary.

9. Write two versions of a block of code that creates a string - 'Some silly texf -
and pushes its addresses onto the stack:

a. Allocate the string as a literal within the code itself.
b. Allocate the string with a DC directive.

I 0. Write a block of code that loads an operand from main memory into a data
register. If the operand is positive, set 07; if it is negative, clear 07. Allocate
any necessary storage locations. Something to think about: is a CMP
instruction required as part of your code?

c H A p T E R F v E

THE 68000 INSTRUGTl8N SET
(PART2)

Chapter Objectives

1. To understand the two's complement system of integer representation

2. To review the process of constructing an assembly language loop

3. To learn the integer arithmetic instructions

4. To learn the logical instructions

5. To understand the use of assembly language subroutines

Integer Arithmetic

Microprocessor instruction sets contain instructions for doing arithmetic with
integers. To manipulate them, you need to know how integers are stored.

Two's Complement
The Macintosh stores integers using a twos complement system. Comple­

menting is easier to understand if we look first at base 10 (decimal). The
complement of a base 10 number is the quantity which, when added to the original
number, produces a sum of10. For example, the 10's complement of 6 is 4; the 10's

103

104 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

complement of 4 is 6. By the same token, the two's complement of a binary number
is the quantity which, when added to that number, will produce a result of 2.

There is a simple procedure for obtaining a binary number's two's comple­
ment:

1 . Invert the bits in a number (for every 0 write a 1, for every 1 write a 0)

2. Add 1 to the least significant bit

For example, to convert % 100011 to its two's complement:

1. Invert: %100011 becomes %011100

2. Add 1: %011100 + 1 becomes %011101

To convert a number back to its true-magnitude binary form, take the two's
complement of the two's complement.

The Macintosh has two sizes of integer - 16 bits and 32 bits (integer and
longinteger). In each case, the high-order bit is used as a sign bit - bit 15 of an
integer and bit 31 of a longinteger. (Remember that the bits are numbered begin­
ning with 0.) If the high-order bit is clear, the number is positive; if it is set, the
number is negative. That means that the high-order bit does not participate in the
magnitude of the number. An integer therefore has only 15 bits available for the
number itself, producing a range of - 32, 768 to + 32, 767. A longinteger has 31
bits available for the number, giving it a range of - 2,147,483,648 to
+2,147,483,647.

Negative numbers are stored in their two's complement form. Positive num­
bers are stored in their true magnitude form (i.e., they are not translated to two's
complement). This means that if you look at positive numbers in registers or in main
memory, they can be directly converted to decimal. Negative numbers, on the
other hand, must first be converted back to their true magnitude form before you
can determine their value.

As an example, consider the number -5. In binary, 5 is %0101. If the number
were positive, it would be stored in a word-sized location as %0000 0000 0000
0101 ($0005). Tostorea -5, however, twothingsmusthappen:thebinarymustbe
converted to two's complement form, and a 1 must be placed in bit 15 as the sign
bit:

1. Convert to two's complement

a. lnvertthedigits(%000000000000101)toget %111111111111010.
Note that we are working with only 15 bits; the 16th will be added later to
serve as a sign bit.

b. Add 1 to get % 111 1111 1111 1011. This is the two's complement form.

2. Insert a sign bit to get the final number % 1111 1111 1111 1011

THE 68000 INSTRUCTION SET (PART 2) 105

In hexadecimal, - 5 appears as $FFFB. That is the quantity you will see
displayed by the debugger if you examine a register or memory location that
contains -5. In hex, -1 is$FFFF, -2 is$FFFE, -3 is$FFFD, -4 is$FFFC, and
soon.

The Integer Arithmetic
Instructions

Before going on, lefs recapitulate the code that creates a loop like the one first
introduced in Chapter 4:

TopOfLoop MOVE #1,D1
MOVE #TargetValue,D2
CMP D1,D2
BMI Outside Loop
[body of the loop goes here)
ADD #1,D1
BRA TopOfLoop

Outside Loop

The steps in this loop are:

1. Initialize a counter

2. Set a location equal to the target value

3. Compare the counter to the target value

4. If the counter equals the target value, end the loop

Step 1
2
3
4
5
6
7

5. Execute the body of the loop (any executable statements go here)

6. Increment the counter

7. Transfer control to the top of the loop

The instruction in statement 6 is an example of integer arithmetic. Integer
arithmetic adds and subtracts numbers up to 32 bits in length. The highest-order
bit (regardless of the size of the operands) is maintained as a sign bit (0 = a positive
number, 1 = a negative number).

Integer arithmetic also multiplies and divides signed or unsigned whole num­
bers up to 16 bits in length: the result can fill up to 32 bits. If you indicate that you
want to do a signed operation, the highest-order bit in each operand will be used
as a sign bit. Otherwise, all bits participate in the magnitude of the number.

To do arithmetic with larger or smaller numbers or numbers that have a
fractional portion, you must use the Macintosh floating point arithmetic package
(see Chapter 12).

106 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

ADD
The ADD instruction adds a source operand and a destination operand and stores
the result in the destination location. One of the two operands must be a data
register; therefore, the instruction can take two forms:

ADD effective address of source operand, destination data register

or

ADD source data register, effective address of destination operand

The statement:

ADD #16,D1

will add the quantity 16 to the contents of 01 and store the result in 01. The second
operand, which had previously been in 01, will be lost when the result is stored.
The ADD statement has the same effect as the Pascal statement:

01:=01+16

In this form of ADD, you may use any addressing mode to specify the source
operand.

When you specify the destination operand as a RAM address (the source
operand will be in a data register), you may only use "alterable" addressing modes:
all the address register direct modes and absolute addressing. For example,
assume the symbolic address Label1 has been assigned to a location in the
applications globals area. Then:

MOVE
ADD

#22,D1
D1,Label1

will 1) put the quantity 22 into 01, 2) add the quantity in 01 to the quantity in the RAM
location associated with the symbolic address Label1, and 3) store the result in
Label1. (The Pascal equivalent is Label1: = Label1 + D1.)

If you want to use an address register as the destination for the result of an
addition, you need to use a variation of the ADD instruction: ADDA. The instruction
is written as:

ADDA effective address of source operand, destination address register

For example:

ADDA #22,A1

THE 68000 INSTRUCTION SET (PART 2) 107

will add the quantity 22 to the contents of A1 and store the result back in A1. (In
Pascal, A1: = A1 + 22.) You may use any addressing mode to specify the source
operand.

It is also possible to add immediate data to an operand stored in RAM without
moving the operand into a data register. ADDI (Add Immediate) and AODQ (Add
Quick) will both do the job. ADDI has the form:

ADDI #quantity, effective address of destination operand

An ADDQ instruction is written exactly like an ADDI, but the immediate data is
restricted to the range 1 to 8. The quantity is assembled as a part of the instruction
and therefore can save space in your source code.

Any variation of the ADD instruction can be specified as operating on a byte
(ADD.B), a word (ADD or ADD. W), or a longword (ADD.L).

This family of instructions affects all the condition codes. As you might expect,
the negative bit will be set ifthe result is negative, cleared if positive. The zero bit will
be set ifthe result is zero, cleared if non-zero. The carry and extend bits are both set
if a carry occurs and cleared if there has been no carry. An overflow will set the
overflow bit; otherwise, it will be cleared.

SUB
SUB (Subtract) is exactly analogous to ADD. The instruction subtracts the quantity
in a $Ource location from the quantity in a destination location and stores the result
in the destination location. As with ADD, there are two forms:

SUB effective address of source operand, destination data register

or

SUB source data register, effective address of destination operand

The instruction:

SUB #12,D1

has the same effect as the Pascal statement:

D1 := D1 -12

The instructions:

MOVE
SUB

#12,D1
D1,Label1

108 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

perform the same actions as:

Label1 = Label1 - D1

(assuming that Label1 has been previously assigned as a symbolic address).
SUB has the same restrictions on addressing modes as ADD. If the source

operand is specified by its effective address (as opposed to being in a data
register), then you may use any addressing mode. But if the destination address is
identified by an effective address, only the register indirect and absolute modes
are acceptable.

SUB, as does ADD, has three variations:

1. SUBA - the destination address is an address register, as in:

SUB #333,A1

2. SUBI - the source address is an immediate quantity and the destination is
identified by its effective address; i.e.:

SUB #54,Label3

where Label3 has been previously defined as a symbolic address.

3. SUBQ - the source address is an immediate quantity in the range 1 through
8 and the destination location is specified with any addressing mode but the
program counter modes. For example:

SUBQ #2,(A2)

With each variation you may specify the size of the operands as byte (e.g.,
SUB.B), word (e.g., SUB or SUB.W), or longword (e.g., SUB.L).

SUB also affects the condition codes in the same way as ADD: the negative bit
is set if the result is negative (cleared if positive); the zero bit is set if the result is zero
(cleared if non-zero); carry and extend bits are set if a borrow occurred (cleared if
no borrow occurred); and the overflow bit is set if an overflow occurred (cleared if
no overflow).

Integer Multiplication
Integer multiplication comes in two forms - MULS and MULU. MULS (for Signed
Multiply) computes the product of two 16-bit signed numbers and returns a signed
32-bit result. MULU (Unsigned Multiply) does the same but returns an unsigned
result.

The general form for these instructions is:

THE 68000 INSTRUCTION SET (PART 2) 109

MULS effective address of source operand, destination data register

or

MULU effective address of source operand, destination data register

You may use any addressing mode except Address Register Direct to specify
the effective address of the source operand. For example:

MULU #62,D1

will multiply whatever quantity is stored in 01 by the quantity 62 and store the result
in 01. When using MULU or MULS, rememberthat you must use a data register as
the destination in a multiplication operation.

The source operand can only be a word in length; therefore, MULU and MULS
do not take extensions.

With either instruction, the overflow and carry bits of the status register are
always cleared; the extend bit is not affected. MULS will cause the negative bit to
be set if the result is negative; MULU will set the negative bit if the most significant
bit of the result is set. (In both cases the negative bit will be cleared if the condition
for setting the bit has not occurred.) The zero bit will be set when either MULU or
MULS produces a zero result and cleared for a non-zero result.

Integer Division
DIVS and DIVU perform division on signed and unsigned numbers, respectively.
The general form of the instructions is:

DIVS effective address of source operand, destination data register

or

DIVU effective address of source operand, destination data register

The destination operand (up to 32 bits in length and contained in a data
register) is divided by the source operand. The source operand can be specified
using any addressing mode except Address Register Indirect and is 16 bits in
length.

The result is stored in the destination data register. The lower-order half of the
longword (bits 0-15) will contain the quotient. The upper half (bits 16-31) will contain
the remainder. For example:

MOVE
DIVS

#33,D1
#4,D1

110 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

will cause 01 to receive the following contents:

%0000 0000 0000 0001 0000 0000 0000 1000

The quotient (8) is, as explained above, in the lower-order half of the 32-bit
longword; the remainder (1) begins in bit 16, the first bit of the higher-order half of
the longword.

Since the source operand is restricted to 16 bits, neither DIVU or DIVS take an
extension. The size of the operation is always a word.

Overflows can be nasty when doing integer division. An overflow condition
arises when the quotient is larger than 16 bits. If the condition is detected before the
operation finishes, it is possible that the overflow bit in the status register will be set
and the destination data register left unchanged. Therefore, if a division could
generate an overflow, a program should check the overflow bit before assuming
that the operation was completed successfully. If no overflow has occurred, the bit
will be cleared.

The carry bit will always be cleared by a division. The extend bit is unaffected.
The zero and negative bits are set or cleared, depending on the result of the
operation.

Logical Operations
The way the integer division instructions return their results presents an inter­

esting problem - what can you do if you are interested in the quotient, but not in
the remainder? Conversely, what if you need just the remainder? To isolate the
quotient, you will need to fill the high-order half of the destination data register with
zeros. To isolate the remainder, you'll need to first fill the low-order half of the
destination register with zeros and then swap the two halves so that your
remainder is in the low-order half.

There is more than one way to selectively set the bits in a byte, word, or
longword, but a commonly employed strategy is to use a logical operator and an
immediate operand called a "mask." The logical operations available in the 68000
instruction set are AND, OR, EOR, and NOT.

AND
Logical instructions work differently than any other kind of instruction - they

operate separately on each bit in the operands. AND compares the state of the pair
of bits that occupy the same location in each operand. If the two bits are both 1,
then that bit will have a result of1. If either or both area, the result will be zero. Table
5.1 summarizes the effect of ANDing two bits together. In essence, AND has the
same effect as multiplying the two bits.

THE 68000 INSTRUCTION SET (PART 2) 111

The AND instruction takes two forms:

AND effective address of source operand, destination data register

or

AND source data register, effective address of destination

If the effective address field is the source operand (the first form above), then
you may use any addressing mode but Address Register Direct. If the effective
address field is the destination of the operation, there are further restrictions; Data
Register Direct, both program counter modes, and Immediate are also not
allowed. The size of an AND operation can be specified as byte (.B), word (no
extension or • W), or longword (.L).

RilD 1 a

1 1 a

a a a

Table 5.1 AND Truth Table

To see how AND works, consider the following example:

MOVE.B #%00110101,DO
AND.B #%11110000,DO

Can you predict what the result (stored in DO) will be? Remember that ANDing
two 1's produces a 1, but ANDing anything else produces a 0. The result will
therefore be %00110000.

How then, can this help us when we want to isolate one part of the result of a
division operation? There's another way to look at how an AND works - ANDing
something with a 1 preserves the value of the source bit. ANDing something with a
0 will always return a 0. To retrieve the quotient of a division, we need to zero outthe
high-order bits and leave the low-order bits alone. To get only the remainder, we
need to first zero out the low-order bits, leaving the high-order bits untouched, and

112 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

then swap the low- and high-order halves of the register. The strategy, then, is to
create a "mask" so that when we AND the mask with the data register holding the
result of the division, the part we want to retain will be unaltered, but the half we
don't want will be filled with Os. Let's look at an example:

MOVE #88,D1 (D1) = $00000058
DIVU #3,D1 (D1) = $00010010 (quotient=29; remainder= 1)
AND #$0000FFFF,D1

The mask in the example is $0000FFFF (in binary: % 0000 0000 000000001111
111111111111). Therefore, the contents of 01 after the AND instruction is executed will
be $00000010. The remainder has been "masked" off and we can now use the
quotient in 01 as a quantity somewhere else in the program.

To isolate the remainder, we'll need to reverse the mask:

AND #$FFFFOOOO,D1

The contents of 01 will be $00010000. The problem with this result is that though
the remainder is actually 1, the quantity 01is65,536. What we need now is some
way to make the high-order bits the low-order bits, and make the low-order bits the
high-order bits. The instruction SWAP does exactly that for the contents of any
data register:

SWAP D1

will leave us with $00000001 in 01, which is exactly what we need to work with the
remainder as a quantity. Note that SWAP only works with data registers. It sets the
negative flag if the most significant bit of the result is set and sets the zero flag if the
entire result is zero (otherwise, both are cleared). The overflow and carry bits are
always cleared; the extend bit is not affected.

OR
Like, AND, OR has two general forms:

OR effective address of source operand, destination data register

and

OR source data register, effective address of destination operand

OR is also exactly like AND with regard to restrictions on addressing modes,
operand size specification, and effect of the condition codes.

OR is not like AND, though, when it comes to producing results. If you OR
together two bits, the result will be 1 if either of the two bits is 1; the result will be 0
only if both input bits are 0 (see Table 5.2).

THE 68000 INSTRUCTION SET (PART 2) 113

OR 1 a
1 1 1

a 1 a

Table 5.2 OR Truth Table

What do you think the final contents of D1 will be after we execute these
instructions?

MOVE.B
OR.B

#%00001111 ,01
#%10101010,01

The final contents of D1 will be % 10101111. The only places where the result will have
Os are those bit positions in which there were Os in the OR instruction operands.

NOT
The general form of the NOT instruction is:

NOT effective address of destination operand

The instruction inverts the bits in the destination operand, which can be specified
using any addressing mode but: 1) Address Register Direct; 2) Program Counter
with Displacement; 3) Program Counter with Index; 4) Immediate; and 5) Quick
Immediate. In other words, it replaces each 0 with a 1, and each 1 with a 0. For
example, if D1 contains %0000 0001111110100000111110001011, then:

NOT.L 01

will place % 11111110 0000 01011111 0000 0111 0100 in D1. Note that NOT takes an
extension (.B, . W, or .L) to specify the size of the operand.

NOT, like the other logical operators, does affect the condition codes in the
status register. The negative and zero bits are set or cleared according to the result
of the operations, overflow and carry are always cleared, and extend is not
affected.

114 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

EOR
You may remember that AND does a multiplication of two bits and returns the

result. EOR (Exclusive OR) adds two bits and returns the results. (In the case of 1 +
1, it returns O and throws away the carry.) Therefore, EOR will produce a result of 0
when both input bits are the same (either two 1s or two Os); the result will be 1 when
the two inputs are different (0 and 1). See Table 5.3 for the truth table.

For example:

MOVE.B
EOR.B

#O/o00001111,D2
#O/o11001100,D2

will place % 11000011 in 02.
EOR functions exactly like AND and OR in terms of operand size specification,

address mode restrictions, and effect on the condition codes.

EOR 1 a
1 a 1

a 1 a

Table 5.3 EOR Truth Table

Subroutines

Assembly language programs are never famous for their elegant structure, but
you can achieve some semblance of order if you break your program into modules
by placing blocks of code that perform a single function into subroutines.

Assembly language subroutines are much like Pascal procedures used in a
program where all variables are defined in the program's var block (i.e., all
variables are global). All storage locations defined by data allocation directives are
available to all subroutines (i.e., they are also globa~. You must take care that you
place your subroutines so that the main program will not drop into them, since

THE 68000 INSTRUCTION SET (PART 2) 115

assembly language programs execute sequentially unless they encounter a
branch instruction. Generally, that means that subroutines will be placed toward
the end of the source code, after the statement that forms the logical end to the
main program.

To call a subroutine, you may JSR Oump to subroutine) or BSR (branch to
subroutine):

JSR symbolic add,ress of first statement of subroutine

or

BSR symbolic address of first statement of subroutine

The difference between the two is the same as the difference between JMP
and BRA. During assembly, the symbolic address following JSR is turned into an
absolute address. When the JSR is encountered during program execution, the
absolute address replaces the contents of the program counter, and program
execution continues with the instruction at that address.

On the other hand, assembling a BSR instruction creates an offset equal to the
number of bytes betweeri the BSR instruction and the start of the subroutine. The
Macintosh will add the offset to the contents of the program counter to determine
the absolute address for the first instruction of the subroutine.

Even before changing the contents of the program counter, both instructions
cause the address of the following instruction to be pushed onto the stack. This is
the address where program execution will continue when the subroutine is
finished. Subroutines end with RTS (return from subroutine). RTS pulls the
address that JSR or BSR pushed onto it from the top of the stack and puts it in the
program counter.

Remember that because the stack is a last in, first out device, nested sub­
routines will always return to whatever routin~ called them. There may be situa­
tions, though, where you don't need to thread your way up through nested
subroutines but would like to return directly to, for ex~mple, a main program. You
can do this by pulling one longword off the stack for each level of subroutine
nesting you want to skip. An example of this technique appears in the following
section.

NOTE: RTS has a special use in Macintosh as$embly language. While most
assembly language programs signal the logical e11d of the program with some­
thing akin to an END statement, a Macintosh assembly language program does
not. (Remember that END is an assembler directive that signals the physical end of
your source code.) Whenever your program should return to the Finder (i.e., a
logical ending place), use RTS. It has the same effect as END. in a Pascal
program. It is an executable statement that stops the assembly language program
and returns control of the system to the Finder. Obviously, this will only work if there
are no subroutine return addresses on the stack. (If there are, the RTS will simply
return you to the statement below the last encountered JSR or BSR.)

116 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Putting the
Instruction Set to Work

- Sorting and
Searching Arrays

Among the things that assembly language does exceptionally well are sorting
and searching. When the data to be sorted and searched are kept in an array in
main memory, the processes execute at breakneck speed. Lefs look, then, at how
the video tape index program maintains its master file as a sorted RAM array which
can be searched using an efficient binary search technique. You will see that
understanding the individual instructions is really a very minor part of the task; ifs
figuring out which instructions to use when thafs the challenge.

Introduction to the Video
Tape Index Program

The video tape index program actually uses two files. The first - TAPE.MAS­
TER - is a sequential file that is read into a main memory array at the start of
program execution. All changes to TAPE.MASTER are made while it is in main
memory. It is rewritten to disk just before the program ends (when the user
selectsQUITfromtheOPTIONSmenu). The second file -ANNOTATIONS - isa
direct access file that is kept on disk. Since the annotations can be rather long (up
to 256 characters each), they are brought into memory only as needed.

Though TAPE.MASTER is a sequential file, it nonetheless has fixed field
lengths, and therefore fixed record lengths. Why? To locate a particular field in a
particular record in main memory, you must know exactly where each piece of
data will begin relative to the starting address of the array. This is not possible if the
ends of fields depend only on the number of characters in each individual piece of
data.

NOTE TO PURISTS: There is a way to manage this data with variable field and
record lengths by preceding the records with a look-up table that gives the relative
starting location of each record; the programming required to maintain and
especially to search such a structure is far more complex than that required by the
video tape index program.

The structure of TAPE. MASTER is:

TapeName
Producer
ReleaseDate
Rating
TapeNumber
AnnotNum

30 characters
20 characters
4 characters
4 characters
4 characters
1 word (2 bytes)

Total record length = 64 bytes

THE 68000 INSTRUCTION SET (PART 2) 117

To allocate space in main memory to hold the array, we need a very large block
of storage set aside in the applications globals area:

TapeArray DS.B 6400

This statement allocates enough storage for 100 records (one byte for each of the
64 characters in each record). Note that because this statement uses a DS
directive, there is no way to automatically assign a starting value to each byte in the
storage block when the program is assembled.

New records are entered into a temporary area called NewRecord.
NewRecord is a data structure (we'll talk more about data structures in Chapter 6)
defined as follows:

NewRecord DS.B 64

Offsets into the record are defined as equates at the top of the program:

oTapeName
oProducer
oReleaseDate
oRating
oTapeNumber
oAnnotNum

EQU
EQU
EQU
EQU
EQU
EQU

0
30
50
54
58
62

The symbolic address NewRecord refers to the starting address of this data
structure in memory. A program can, however, get to any field within the structure
by using Address Register Indirect With Offset Addressing. For example, to
specify the starting location of the ReleaseDate field, use:

NewRecord + oReleaseDate(A5)

Rememberthat because space for NewRecord is allocated with DS, its address is
relative to (AS), the start of the applications globals area.

Inserting New Records into
a Sorted Array

In order to do a binary search, the array you are searching must be in some
order. TAPE.MASTER is kept in alphabetical order by the name of the tape.
Though there are many ways of sorting an array, one simple technique for
inserting a new record into an array that is already in order is the straight-insertion
method. To understand the process, take a look at Listing 5.1, pseudocode that
describes the video tape index's straight-insertion sort.

118 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 5.1 Pseudocode for Straight Insertion Sort

Get number of records in TapeArray.

Subtract 1 from number to records to get record number of last record (the record pointer).

Initialize two character pointers to the first character, one for TapeArray and one for NewRecord.

If record to be inserted is not the first record then

Repeat

Get next character from TapeArray record indicated by record pointer;

Get next character from NewRecord;

If character from TapeArray is greater than character from NewRecord then

Move entire TapeArray down one record position;

Decrement record pointer;

Reset character pointers to first character

Until entire name field has been compared OR character from NewRecord is greater
than character from TapeArray OR record pointer is -1.

Add 1 to record pointer to obtain record number where NewRecord will be inserted into
TapeArray.

Move characters from NewRecord to TapeArray.

Increment the total number of records in TapeArray.

The strategy involves comparing the data to be inserted with the bottom record in
the array. If the new record should be placed "above" the last record, the last
record is moved down, in effect creating a hole in the array. The new record is then
compared to the last record but one. If the new record should be placed above the
last record but one, the last record but one is moved into the hole created when the
last record was moved. This process is repeated, making comparisons between
the new record and records already in the array from the bottom up, until such time
as the new record is equal to or less than a record in the array. Once that condition
is encountered, the new record is inserted into the hole in the array (thus the name,
straight-insertion sort).

Locating Data Stored in Arrays
Before examining the subroutine that performs the straight-insertion sort in detail,
let's look at accessing data stored in arrays. How do we do it? We use Address

THE 68000 INSTRUCTION SET (PART 2) 119

Register Indirect with Index addressing.
The starting address of the TAPE.MASTER array in main memory is given by

the symbolic address TapeArray(A5). (There is no need for us to know its
absolute address.) The starting address of any given record will therefore be equal
to:

[(Record Number) * 64) + TapeArray(AS)

where 64 is the number of bytes in a record. (In this case the characters are packed
into adjoining bytes.) The expression in brackets above is an offset into the
TAPE.MASTER array. If this expression seems a bit confusing at first, remember
that in a computer, numbering systems generally begin with 0 rather than 1 (i.e., the
second record will have a record number of 1). We might use that quantity as the
displacement in Address Register Indirect with Index addressing.

Using the displacement locates the start of one particular record. It does not,
though, locate a particular field or character that is a part of the record. (The
displacement is an offset with the array.) To do that, we need an additional offset
within the record. The index register portion of the effective address could be used
for that purpose. The same equates that hold offsets into NewRecord can be used
as offset into a TapeArray record since both have the same structure. To locate,
for example, the first character in the Rating field, oRating might first be placed in
a data register:

MOVE #oRating,DO

Then, an effective address for the first character in the Rating field would appear
as:

Offset(AO,DO)

where Offset is computed by the method described above, and the address of
TapeArray(AS) has previously been stored in AO.

There is a major problem with using the offset as a displacement, however, in
an array the size of the one used by the video tape index program. With Address
Register Indirect with Index addressing, the displacement is limited to a range of
-128 to + 127. As soon as there are more than three records in the array, the offset
will exceed that range. It is therefore easier to manually compute an address into
TapeArray.

For example, to locate the beginning of the Rating field:

1. Get the starting address of TapeArray:

LEA TapeArray(AS),AO

120 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

2. Compute the record offset (assume the record number is in DO):

MULU #64,DO

3. Add the record offset to the start of the array:

ADD 00,AO

4. Add the field offset:

ADD #oRating,AO

It may also be necessary to step through a record, character by character. In
that case, the strategy is to initialize the index register with the offset into the array
and then increment it by 1 to move to each successive character.

Assuming that DO is used as the index register and that AO contains the starting
address of TapeArray, an entire 64-character record could be handled using the
following code:

MOVE RecordNumber,00
MULU #64,00 ;compute offset
MOVE #O,D7 ;initialize character counter

Loop MOVE.B (A0,00),01 ;get one character
(process the character in some way}
ADOQ #1,00 ;Increment index register
AOOQ #1,07 ;increment character counter
CMP #64,D7 ;have 64 char. been handled?
BNE Loop ;return to get another
RTS

This technique is used to compare the name of the tape in the record to be inserted
with tape names already in the file.

The Straight-Insertion Sort
The assembly language version of the straight-insertion sort appears in Listing 5.2.
This is part of the subroutine that handles the entry of new records. It assumes that
the data to be inserted into TapeArray has been collected in NewRecord.

Since the sort starts by looking at the last record in the array, the record number
of the first record to be considered will be equal to the total number of records in the
file. Therefore, the sort first loads that quantity into 01 [(a) in Listing 5.2]. When
computing offsets, though, the quantity should be one less than the number of
records. (Rememberthatthe records are numbered beginning with 0.) The routine
therefore subtracts 1 from the number of records. The program statement at (b)
initializes 02 as a character counter and index register.

THE 68000 INSTRUCTION SET (PART 2) 121

Listing 5.2 Straight-Insertion Sort (Version 1)

(a)

(b)
(c)

(d)

(e)

(f)
(g)
(h)

(i)

Sort MOVE Tota1Records,D1
SUBO #1,D1
MOVE #0,D2
LEA TapeArray(A5),A1
LEA NewRecord(A5),A2
CMP #0,D1
BEO lnsertNew

Checking
JSR Compute0ffset1

NextChar
MOVE.B (A1,D6),D3
MOVE.B (A2,D2),D4
CMP D3,D4
BGT lnsertNew
BLT MoveOld
ADDO #1,D2 .
ADDO #1,D6
CMP #30,D2

;adjust for record #'s beginning with 0
;index register/character counter
;start of array
;start of new record
~irst record?
;if so, insert immediately

;character from array
;character from new record
;new-old
;found place to insert record

;move existing record down
;increment character counter/index

processed?)
;are two fields exactly equal? (30 bytes

(k)

(I)

(m)

(n)

(o)

BEO lnsertNew
BRA NextChar

MoveOld
MOVE
ADDO
JSR
JSR

D1,D5
#1,D5
Compute0ffset1
Compute0ffset2

;if equal, insert new record
;look at next character

;record # to move to

Another
ADDO
ADDO
CMP
BNE
SUBO
CMP
BEO
BRA

MOVE.B
#1,D6
#1,D7
#64,D6
Another
#1,D1
#-1,D1
lnsertNew
Checking

(A 1,D6),(A 1,D7)
;increment index

;move one character

lnsertNew
MOVE D1,D5
ADDO #1,D1

MOVE #0,D2
JSR Compute0ffset2

;has an entire record been moved?

;move back a record
;does new record go in first position?

;record number to insert at

;initialize index

(p) Again MOVE.B (A2,D2),(A1 ,D7) ;move one character

(q)

ADDO #1,D2
ADDO #1,D7
CMP #64,D2 ;entire record moved?
BNE Again

LEA Tota1Records,A0
ADDO #1,(A0)
BRA AllDone ;return - sort is complete (continued)

122 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 5.2 (continued)

(r)
Compute0ffset1

MOVE D1,D6
MULU #64,06
RTS

Compute0ffset2
MOVE D5,D7
MULU #64,07
RTS

;offset = record # • 124

We also need to place the starting addresses of TapeArray and NewRecord
in address registers so they can be used as part of Address Register Indirect with
Index addressing. That happens at (c); A1 will hold the address for TapeArray and
A2 will hold NewRecord's address. If the record being inserted is the first record
(e.g., the array is empty),' the record is simply moved to TapeArray without further
processing (d). If TapeArray already has some records, the sort needs to begin
comparing characters. ·

The first task is to compute the offset for the record indicated by 01. If you look
at (e), you'll see that offsets are computed in subroutines. The subroutine Com­
pute0ffset1 (r) uses the contents of 01 as the record number; Compute0ffset2
bases its computations on 05. To compute an offset, the program:

1. Moves the record number into a temporary storage register (06) and then

2. Multiplies the record number by the record length (64 bytes).

Once the offset is computed, one character from the tape array can be loaded
into 03 (f). A character from the new record is loaded into 04 (g). The characters
are compared to each other (h). If the character from the new record is greater
(comes later in an alphabetical sequence) than the character from the array, then
the place to insert the new record ha·s been found. The program branches to do
the insertion (n). If the charactj:lr from the new record is less than the character from
the array, then the record in the array must be moved "down" one position (j). On
the other hand, if the two characters'are equal, there are two possibilities.

If 30 bytes (the total length of the field) have been examined, then the names of
the two tapes are equal. The program checks fpr this condition by incrementing the
index register/character counter in 02 and then comparing the new value with 30
(i). The video tape index program inserts records with duplicate tape names
without further ordering. Therefore, if the two fields are equal, the new record can
be inserted directly after th~ old one.

If all 30 characters have not been checked, then it is not possible to make a
judgment about whether to insert a record or move an existing one. The only

THE 68000 INSTRUCTION SET (PART 2) 123

recourse is to check the next character in the field. Therefore, the program
branches back to (f) to begin the comparison process again.

Moving an existing record down (j) is done character by character. The first
task is to compute two offsets: one to the beginning of the record (Offset1 in 06)
which will be moved; and the other to the beginning of the location to which it will be
moved (Offset2 in 07). Then, statement (k) moves a single character. The index
registers are incremented and then checked against the number of bytes in the
record (64) to determine if all of the characters have been moved. If not, the
program branches to move another character.

Once an entire record has been moved, the contents of 01 are decremented
(m). Why decrement the record number? Simply because a straight insertion sort
starts at the bottom of the array and moves toward the beginning. If, after the
decrement, 01 contains -1, then the new record comes before all others already
in the file and should be inserted. In that case, the program branches to insert the
new record (n). Otherwise, the program branches to begin a new comparison (e).

Inserting a new record (n) involves moving characters one by one from
NewRecord into the array. The insertion position is one record beyond the one
pointed to by 01. Therefore, 01 is incremented. The offset into TapeArray is
computed (o) and a single character is moved (p). The index registers (02 and 07)
must then be incremented to count the characters just transferred. Just as with the
procedure for moving an existing record down, the number of characters moved is
compared against the total number of characters which must be moved (64) to
determine ifthe process is complete, If not, the program branches to move another
(p).

Once the new record is inserted into the array, only one task remains -
incrementing the total number of records. The absolute address associated with
the symbolic address NumRecords is loaded into address register A1 (q). The
quantity stored at the address in AO can then be incremented with a single
instruction. Now NumRecords reflects the number of records in the array after the
new record has been inserted. This action completes the straight-insertion sort.

Locating Records in a
Sorted Array

One of the fastest ways to search an ordered list is to use a binary search. The
binary search strategy involves looking at the middle record in the list, deciding
whether the record you want is above or below the middle, and then looking only in
the half of the list where the record could occur. The file is repeatedly cut in half,
always looking atthe middle record, until eitherthe desired record is located or it is
apparent that the record wanted isn't present in the array.

Pseudocode for a binary search appears in Listing 5.3. TapeArray refers to
the array in RAM while SearchString contains the tape name to be found. A
pointer to the top record being considered is initialized to 0. (When we talk about
the top and bottom of the array, we think of the array as if it were written on a sheet a
paper, with record number O at the top.) The pointer to the bottom of the array is

124 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

initialized to the total number of records minus one. Then we compute the number
of the middle record by adding top to bottom and dividing by 2.

If the record we are looking for is above the middle record, then we move the
bottom pointer up to the middle; if it is below the middle record, we move to top
pointer down to the middle. We know that a search has been unsuccessful (the
record we want isn't present in the array) if the two pointers cross (i.e., bottom
becomes greater than top).

We must handle the top two records and the two bottom records in the array
separately. Therefore, ifthe computation of the middle record number generates a
result equal to 1or2, the program does a sequential search of the first two records;
if the computation generates a record number equal to the total number of records
-1 or the total number of records, the program searches the last two records
sequentially. Note that these two "special case" searches occupy more than 1/2 of
the pseudocode listing.

A binary search also falls apart if there are less than four records in the array. If
you wish to handle such a possibility in a program, check the number of records in
the array before beginning the search. If there are less than four records, search
the array sequentially. The video tape index program assumes that there will never
be less than four records-a fairly realistic assumption considering the nature of
the application-and therefore does not handle that situation.

Listing 5.3 Pseudocode for Binary Search

Set bottom record pointer equal to total number of records - 1.

Set top record pointer equal to 0.

Initialize character pointers for TapeArray and SearchString.

Repeat

Compute number of middle record;

If middle record is not one of the first two records or last two records then

Get next character from TapeArray;

Get next character from SearchString;

Compare the characters;

If character from name field of TapeArray record is greater than character from
SearchString then

Make bottom pointer equal to the middle record number;

Reset charac,ter pointers to beginning of records

(continued)

THE 68000 INSTRUCTION SET (PART 2) 125

Else

Make top pointer equal to the middle record number;

Reset character pointers to beginning of records

Until all characters in name field have been compared and are equal OR top pointer is greater
than bottom pointer OR middle record is one of first two records or last two records.

If top pointer is greater than bottom pointer then

Else

Report "No Find"

If all characters in name field have been compared and are equal then

Else

Location of record with SearchString is middle record number.

{must be first two or last two records}

If middle record is one of first two records then

Set middle record to 0 for first record;

While character from name filed of TapeArray record is equal to character from
SearchString do

Get next character from TapeArray;

Get next character from SearchString:

If all characters in name field of TapeArray record are equal to all characters in
SearchString then

Else

Location of SearchString is record 0

Set middle record to 1 for second record;

While character from name filed of TapeArray record is equal to
character from SearchString do

Get character form TapeArray;

Get character from SearchString;

If all characters in name field of TapeArray record are equal to all
characters in Search String then

Location of SearchString is record 1

(continued)

126 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 5.3 (continued)

Else

Else

Report "No Find";

Set middle record number equal to last record - 1 ;

While character from name filed of TapeArray record is equal to
character from SearchString do

Get next character from TapeArray;

Get next character from SearchString;

If all characters in name field of TapeArray record are equal to all
characters in SearchString then

Else

Location of search string is last record -1

Set middle record number equal to last record;

While character from name field Tape Array record is equal to
characters in SearchString do

Get next character from TapeArray record;

Get next character from SearchString;

If all characters in name field of TapeArray record are equal to
all characters in SearchString then

Location of SearchString is last record

Else

Report "NoFind".

The assembly language version of the binary search is a subroutine called by
three modules in the video tape index program (Select, Change, and Delete). The
code appears in Listing 5.4.

The name of the tape for which the routine is searching is stored in the first field
of NewRecord. When a search is successful, the record number of the record in
the array whose TapeName matches the tape name in NewRecord is returned in
05 (this assumes that the records are numbered beginning with 0). If a search is
unsuccessful, then the routine returns a -1 in 05.

THE 68000 INSTRUCTION SET (PART 2) 127

Listing 5.4 Binary Search

NameSearch ;result appears in D5 (-1 =no find)
(a) LEA TapeArray(A5),A2

LEA NewRecord(A5),A2
MOVE Tota1Records,D1

(b) SUBO #1,D1 ;bottom pointer
MOVE D1,D3

(c) SUB #1,D3 ;save total number of records-1 for later reference
(d) MOVE #0,D2 ;top pointer

Mid Point
(e) MOVE D2,D5 ;find middle record#

ADD D1,D5
DIVU #2,05

(f) ANO.L #$0000FFFF,05;mask off remainder
(g) CMP #1,05
(h) BLE TopRec ;handle first two records

CMP D5,D3
(i) BLE BottomRec ;handle last two records

MOVE #0,D4 ;initialize index

JSR Compute0ffset2
CheckChar

MOVE.B (A2,D7),D0 ;character from array
MOVE.B (A1 ,D4),D6 ;character from search string

G) CMP D0,D6
(k) BPL BottomHalf
(I) BMI TopHalf

ADDO #1,04
ADDO #1,07

(m) CMP #30,04 ;are two fields exactly alike?

(n)

(o)

(p)

BNE CheckChar
RTS

BottomHalf
MOVE D5,D2
BRA NoFindCheck

TopHalf
MOVE D5,D1

NoFindCheck
CMP D2,D1
BMI NoFind
MOVE #0,04

;move top pointer down

;move bottom pointer up

;pointers have crossed
;reset index

BRA MidPoint ;find new middle record and go again

(q)

(r)

No Find
MOVE #-1,D5
ATS

TopRec MOVE #0,05
JSR OneCheck
MOVE #1,D5
JSR OneCheck
MOVE #-1,D5
ATS

;-1 =no find

;no find

(continued)

128 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 5.4 (continued)

(s) Bottom Rec
MOVE D3,D5
JSR OneCheck
ADDO #1,D3
MOVE D3,D5
JSR OneCheck
MOVE #-1,D5
ATS

;no find

(t) OneCheck
MOVE #0,D4
JSR Compute0ffset2

One More
MOVE.B (A1,D7).D0 ;characterfromarray
MOVE.B (A2,D4).D6 ;character from search string
CMP D6,D0
BN E WrongOne
ADDO #1,D4
ADDO #1,D7
CMP #30,D4
BNE OneMore

(u) MOVE.L (SP)+,D7 ;pop two subroutine return addresses off stack
ATS ;return directly to "Select" routine

(v) WrongOne
ATS ;return to Top or Bottom

Conducting a Binary Search
To begin the binary search, we load the addresses of the two data structures and
the value of the one constant that the search will need to reference (TapeArray,
NewRecord, and TotalRecords) into registers [(a) in Listing 5.4]. The record
number of the last record in the array (equal to the total number of records minus
one, since the records are numbered beginning with zero) is saved in 01 (b) as the
bottom pointer. The number of the last record but one is moved to 03 for future
reference (c), and the top pointer-held in 02-is initialized to 0 (d).

To compute the middle record (e), we sum the contents of the top and bottom
pointers and then divide by 2. Then the remainder portion of the result is removed
by ANDing the destination location (05) with the appropriate mask (f). If you can't
remember how this works, refer back to the section in this chapter that deals with
AND.

The next step in the search is to determine whether the middle record is either
the first or second record (h) or one of the last two records (i). If it is, then the
program must branch to examine those records separately.

Otherwise, the routine must compare the name of the tape in the middle record
with the name of the tape for which we are searching. The comparison (j) is
performed in the same way as the comparisons in the straight-insertion sort.

THE 68000 INSTRUCTION SET (PART 2) 129

There are three possible results of the comparison. The character from the
name of the tape for which we are searching may be greater than the name of the
tape in the middle record (k). If so, the top pointer is moved down to equal the
middle record (n). If the character from the name of the tape for which we are
searching is less than the character from the name of the tape in the middle record
(I), the bottom pointer must be replaced by the number of the middle record (o). In
either case, before proceeding to compute another midpoint, the program needs
to determine if the two pointers have crossed (p).

A top pointer greater than a bottom pointer indicates that the record for which
we are searching is not in the array (q). The search routine loads the "no find" flag (a
-1) into 05 and returns to the calling program. If the pointers have not crossed,
then the search must continue by computing another midpoint (e) and repeating
the entire comparison procedure.

On the other hand, if the two characters being compared are equal, then it is
not possible to decide immediately whether the correct record has been found or
whether the character checking must continue. The deciding factor is the total
number of characters that have been checked. If all 30 characters are alike (m), the
name of the tape for which we are searching is exactly the same as the name of the
tape in the middle record. The search therefore ends successfully (the number of
the middle record remains in 05) and the subroutine returns to the calling pro­
gram.

The top and bottom two records are searched sequentially (r,s). For example, if
the middle record was computed to equal either 0 or 1, then 0 is loaded into 05.
The comparison between the name of the tape for which we are searching and the
name of the tape in record 0 is performed by the subroutine OneCheck (t). The
procedure is exactly the same as that used earlier in the program beginning at the
symbolic address CheckChar.

Assuming that the search of record O is successful, there is no need for the
routine to return to Top (r), where it was called; it can return directly to the part ofthe
program that called the entire search. To "skip" one subroutine level, we need to
pull one subroutine return address off the stack. At (u) the top of the stack is moved
into 07 and, since Postincrement addressing is used, the stack pointer is also
incremented. Remember that incrementing the stack pointer has the effect of
removing the top item from the stack. The RTS that follows will therefore transfer
program control back to the original calling program.

If the search of record 0 is unsuccessful (u), then the search continues with
record 1. An unsuccessful search of record 1 indicates a "no find." The two bottom
records are handled in exactly the same manner.

This binary search technique can be used with any ordered file or array that
contains more than three records. Since TAPE. MASTER is ordered by tape name,
that is the only field on that will support a binary search. If we need to retrieve tapes
by something other than the name of the tape, there are two alternatives: reorder
the array on the field to be searched, or do a sequential search. The video tape
index program uses the latter approach.

130 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Questions and
Problems

1. Show how the decimal numbers below would be stored as 16-bit binary
integers in a 2's complement system.

a. 12 d. -84 g. 2006
b. -12 e. 603 h. -2006
c. 84 f. -603

2. Convert your answers from problem 1 to their hexadecimal representation.

3. Convert the 2's complement integers below from hexadecimal to binary and
then to their true magnitude in decimal. Remember to consider the high­
order bit as a sign bit.

4.

5.

a. 0016 d. FFOO g. 88BC
b. EA14 e. 010A h. 0333
c. 1183 f, 4100

Indicate whether each of the following represent legal 68000 instructions.
For each illegal instruction, describe what is wrong with it.

a. ADD SomePlace, DO i. MULU.L SomePlace, DO
b. ADD.L DO, SomePlace j. MULU Locate(AS), D6
c. ADD DO, Locate(AS) k. DIVS #12,D3
d. SUB D0,#8 I. DIVU #-6, D2
e. SUB #8,DO m. DIVS.L #$FFOO, D6
f. SUB #10,AO n. AND #6,DO
g. SUB (SP)+,DO o. AND D6,A1
h. MULU D1,D7 p. OR D2,#% 11110000

For the following blocks of code:

A. indicate the contents of the destination register after the code has been
executed

B. indicate the state of each of the flags in the user byte of the status register
after the code has been executed.

a. MOVE #44,DO
MOVE #86,D1
ADD DO,D1

b. MOVE #186, DO
MOVE #- 99,D1
ADD DO,D1

c. MOVE #-186,DO
MOVE #99,D1
ADD DO,D1

d. MOVE #99,DO
MOVE #106,D1
ADD.B DO,D1

THE 68000 INSTRUCTION SET (PART 2) 131

e. MOVE #12,00 j. MOVE #% 11110000,00
MOVE #10,01 AND.B #%00110011,DO
MULU 00,01

k. MOVE #% 11110000,DO
f. MOVE #8,DO OR.B #%00010011,00

MOVE #6,DO
MULU DO,D1 I. MOVE #$00AB,DO

AND #$FFFF,DO
g. MOVE #31,DO

MOVE #-3,01 m. MOVE #$00AB,DO
MULS DO,D1 OR #$FFFF,DO

h. MOVE #80,00 n. MOVE #$00AB,DO
MOVE #-8,01 EOR #$FOFO,DO
DIVS DO,D1

o. MOVE #$124A,DO
i. MOVE #80,00 NOT DO

MOVE #-8,01
DIVU 01,DO

6. Indicate the contents of registers DO and 01 when the block of code below
finishes executing.

MOVE #6,DO
MOVE #O,D1

Top ADD #4,01
SUB #1,DO
CMP #0,00
BNE Top

7. Consider the following block of code:

MOVE #0,DO
MOVE #0,01
LEA Start(A5),AO

Top MOVE (AO,D0),02
BEQ Done
ADD D2,D1
ADD #2,DO
BRA Top

Done
Start OS 20

132 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

A. What does this code do?
B. Why is the index register, DO, incremented by 2 rather than 1? Hint:

consider the size of the addition instruction's operands.

8. A. What Pascal operation does this block of code simulate?

DIVS
AND.L
SWAP

Operand2,DO
#$FFFFOOOO,DO
DO

B. What Pascal operation does this block of code simulate?

DIVS Operand2,DO
AND.L #$0000FFFF, DO

9. Write an assembly language subroutine that will take an operand from
register DO and compute its square.

10. Write an assembly language subroutine that computes the factorial of a
word-sized operand which is passed to the subroutine in DO (n! = 1 * 2 * 3 *
.... n-1 * n).

11. Write an assembly language subroutine that checks an array of ten charac­
ters (stored in consecutive main memory locations) and returns the array
position of the character which is alphabetically last. Place the result in
register D7.

12. Write an assembly language subroutine that checks a character string stored
in main memory and counts the occurrences of a given character within that
string. The address of the first character in the string is passed to the
subroutine in AO; the ASCII code of the character being counted is in DO.
Though the length of the string is unknown, its last character is a double
quote(").

13. One assembly language instruction you have not seen is a "shift." A left shift
moves the bits in the operand one position to the left and puts a zero in bit O. A
right shift moves the bits one position right and fills the high-order bit with a 0.

As an example, let's consider a byte-sized shift. The byte at the address
$1A2B contains the quantity01100110. TheinstructionASL$1A2B(ASL =
arithmetic shift left) produces the result 11001100. The instruction ASR
$1 A2B (ASR = arithmetic shift right) produces the result 00110011 .

What does a left shift do? What does a right shift do? Hint: the answer is
closely tied to the fact that the contents of the byte is a quantity rather than an
address or an ASCII code.

CH APTER S X

Tl IE PASefo\L eeNNEeTISN

GPERATING S¥STEM
RSUTINES

Chapter Objectives

1. To review Pascal elementary data types

2. To review Pascal user-defined data types

3. To review Pascal data structures (arrays and records)

4. To review Pascal syntax for procedure and function calls

5. To take a first look at translating the Pascal syntax of the ToolBox and
operating system routines into assembly language

6. To understand the general organization of the Tool Box and operating system
routines

7. To learn more details about the trap mechanism that provides access to the
ToolBox and operating system routines

Yes, this is an assembly language book, not a Pascal book. Nevertheless, the
Macintosh's internal routines were created with the Pascal programmer in mind. It
will therefore not only simplify the process of mastering the Tool Box and operating
system routines, but make it possible for you to read Macintosh documentation if
you are comfortable with Pascal data types, their assembly language equivalents
and how additional data types and data structures are constructed from elemen­
tary data types.

133

134 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Pascal Elementary Data
Types

There are six elementary data types from which all other data types are
developed - three numeric, two character, and one logical.

Numeric Data Types

Integers
Integers are stored as either INTEGER or LONGINT (longinteger). An INTEGER
occupies two bytes. Whenever the specifications for a ROM routine require an
INTEGER, you must set aside two bytes of storage somewhere. A LONGINT
ocupies 4 bytes, which means you must allocate the full four bytes anywhere a
LONGINT is required.

The most significant bit in an INTEGER is used as a sign bit. If bit 15 is clear,
then the number is positive; if it is set, the number is negative. The remaining 15 bits
hold the number. Therefore, the maximum value that can be stored in an INTEGER
location is 32,767; the minimum is -32,768. A Pascal INTEGER is therefore
exactly the same as the Macintosh's 16-bit word.

To set aside space for an INTEGER you must:

SymbolicAddress DC. W initial value

A LONG INT also retains the most significant bit as a sign bit. Bit 31 will hold a 0
for a positive number and a 1 for a negative number. The maximum quantity that
you can store in a LONG INT is 2,147,483,647; the minimum is - 2,147,483,648. A
Pascal LONG INT is therefore exactly the same as the Macintosh's 32-bit longword.

To declare space for a LONGINT, use:

SymbolicAddress DC.L initial value

Integer and longintegers are stored using the two's complement system
described in Chapter 5. Why use the two's complement form? The answer lies in
how arithmetic operations are done. With a two's complement system, you can
perform a subtraction using addition. In other words, to do a subtraction you take
the two's complement of the subtrahend (the number on the bottom in a subtrac­
tion operation) and add it to the minuend (the number on the top). The result is the
same as if you did a standard subtraction. A computer designed to use two's
complement arithmetic, therefore, only requires hardware which can do addition;
it doesn't need special subtraction circuitry.

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 135

There are times, when you're in the midst of developing a Macintosh assembly
language application, that being able to handle two's complement numbers is very
handy. For example, the File Manager (the part of the Tool Box that provides for file
1/0) returns a result code in DO after each call to one of its routines. A successful file
operation has a result code of O , but all the other result codes are negative.

If you are monitoring the progress of the program with the debugger, then you
can use that result code as a clue to why an attempted file operation failed.
Suppose that the program attempted to write something to the disk, but the disk
was full. The result code for a disk full error is - 34, but the contents of DO appear
as $FFDE. Believe it or not, $FFDE is the two's complement representation of
-34. To prove it, let's convert $FFDE back to its true magnitude form:

Step 1: Convert the hexadecimal digits to binary

$FFDE = % 1111 1111 1101 1110

Step 2: Invert the digits

% 1000 0000 0010 0001 (Note that the highest order bit does not partici- ·
pate in the magnitude of the number; it is a sign
bit)

Step3: Add 1

% 1000 0000 0010 0010

Step 4: Convert the binary to hexadecimal

% 1000 0000 0010 0010 = - 2215

Step 5: Convert the hexadecimal to decimal

-2215= -(16*2)+2= -34

Real Numbers
Real numbers, stored as the Pascal data type REAL, occupy 4 bytes. The number
is broken into three parts: the mantissa (the fractional part of the number), the
exponent (the power to which 2 is raised and then multiplied by the mantissa), and
the sign of the mantissa. All quantities are binary.

The Macintosh makes no use of the Pascal data type REAL. Arithmetic
operations on numbers that contain fractional portions are handled by FP68K, the
floating point arithmetic package. FP68K is discussed in detail in Chapter 12.

131$ MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Character Data Types
The data type CHAR occupies two bytes. The ASCII code of the character is

stored in the low-order byte (bits 0-7); the high-order byte is unused. Though it
may seem like a waste of space to use 16 bits to store an eight-bit code, it is
nonetheless the way the Macintosh was designed to handle single characters.
Fortunately, whenever Macintosh needs to deal with more than one character at a
time, the ASCII codes are packed into adjoining bytes.

The Tool Box routine _DrawChar requires data stored as CHAR, which is why
we've been moving an entire word (e.g., $0040) onto the stack rather than just the
eight bits occupied by an ASCII code. To allocate space for a CHAR, use:

SymbollcAddress DC. W initial value

Pascal also has a data type to handle strings - STRING[n). The overall length
of the string is n + 1 bytes. The first byte contains the length of the string. The rest of
the bytes contain the ASCII codes of the characters. For example, STRING[255]
(also written Str255) requires 256 bytes of storage and will accommodate a string
of up to 255 characters. Note that even though the definition allows 255 charac­
ters, you need not use them all.

Since a STRING requires more space than a longword, it can be specified by
using a constant block:

SymbolicAddress DCB.B length, initial value

For example, a Str255 data item could be accommodated by:

°Label DCB.B 256, 11 11

Strings that are defined in assembly language programs are not automatically
assembled with length bytes. By default, strings that are defined by LEA or PEA
instructions are placed immediately after program code and are given a length
byte. On the other hand, strings defined by any form of DC directive are allocated
space in the place where they occur in the application source code. They do not
have length bytes. This distinction can be important, since a number of ToolBox
routines have parameters of type Str255 and therefore expect the first byte to be a
length byte.

The default allocations can be overridden with the STRING_FORMAT
assembler directive. The format of the directive is:

STRING_FORMAT value

STRING_FORMAT's value is two bits. The first bit determines how LEA and PEA
strings will be handled. If it has a value of 1 (the default), these strings will be
assembled with a length byte. A value of 0 assembles the text without a preceding
length byte but with a trailing 0.

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 137

The second bit affects the format of DC strings. A value of O (the default)
produces strings with no length byte and no trailing 0 . A value of 1 will assemble
the strings with a length byte.

If you wish both types of strings to be assembled with length bytes, use:

STRING_FORMAT 3

The 3 is the decimal equivalent of a two-bit number with a 1 in each bit.

The Logical Data Type
Pascal's final elementary data type is BOOLEAN. Though a BOOLEAN

occupies two bytes, only one bit is important. Bit 8 holds a 1 if the word has the
value of true, a O if the value is false; all other bits are cleared. If you define a
BOOLEAN as:

SymbolicAddress DC. W initial value

then you can compare the symbolic address against Oto test for a value of false,
but you must test against 256 to check for a value of true.

User-Defined Data
Types

As you probably remember, Pascal allows a programmer to combine the
elementary data types to create new data types known as "user-defined data
types." There are four user-defined types commonly used in the definitions of
Macintosh ToolBox and operating system routines:

1 . SignedByte - occupies one byte with its contents stored in two's comple­
ment form. A SignedByte can therefore hold integers in the range - 128 to
+127.

2. Byte - occupies two bytes with the value stored in the low-order byte.

3. Ptr (a "pointer") - occupies four bytes and contains an address which
indicates the starting location of a data structure. The Macintosh uses many
different pointers; they can be identified by the presence of the characters
Ptr in the data type name.

4. Handle - occupies four bytes and contains the address of a master pointer.
(A Handle is a pointer to a Ptr.) As with pointers, the Macintosh uses many
different handles. Handles have the characters Handle as part of their data
type name.

138 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

While a number of ToolBox routines provide handles to data structures, it
sometimes becomes necessary to use a pointer to that same data structure. In that
case, an application must "de-reference" the handle. The code to do so appears
as:

MOVE.L SomeHandle,AO
MOVE.L (AO),AO

The first line loads the handle itself into an address register. The second line says:
take whatever you find at the address specified by the contents of AO, and put it
back in AO . This will place the pointer in AO, since the contents of a handle storage
location is a pointer.

We'll look at other user-defined types as we need them to work with ToolBox
and operating system calls.

Pascal Data Structures
Pascal data structures come in two varieties - arrays and records. Arrays can

be built from any previously defined data type, though all values in an array must
be of the same type. Records, as well, can be created from any previously defined
data type, but different data types are permitted within the record; each item in a
record is termed a field.

Arrays
The Pascal syntax:

ArrayName = ARRAY [1 .. 20] of INTEGER

creates a new data type called ArrayName that contains space for 20 values,
each of which is an INTEGER. Therefore, the total length of this data structure is 20
words (40 bytes). To allocate space for it in an assembly language program, you
might use:

SymbolicAddress DCB. W 20,initial value

where the 20 refers to the length of the array.
When an array is PACKED, the computer will store the data as efficiently as

possible, without regard to how that storage might affect access. For example:

NewArray = ARRAY [1 .. 24] of BOOLEAN

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 139

will require 24 words of storage, since each BOOLEAN occupies an entire word.
To allocate space for it in an assembly language program, you must write:

SymbolicAddress DCB. W 24,0

But:

NewArray =PACKED ARRAY [1 .. 24) of BOOLEAN

will require only 24 bits (one and a half words), since the boolean values will be
crammed one next to the other. Defining the packed array for assembly language
use requires only:

SyrrabolicAddress DCB.B 3,0

As a further example, consider the Pascal data type Str255, which is defined
as:

Str255 = PACKED ARRAY [1 .. 256] of CHAR

Instead of occupying one word per character as in the CHAR data type, each
eight-bit ASCII code is packed in a single byte, and the entire stririg will occupy up
to 256 bytes. (Don't forget that the first byte contains a number indicating how
many characters there are in the string.) On the other hand:

StringArray = ARRAY [1 .. 256] of CHAR

would occupy 512 bytes, since each non-packed character requires an entire
word.

Records
In terms of dealing with ToolBox and operating system routines, you will

encounter records more frequently than arrays. Records are commonly used to ·
group information about various entities within the Macintosh. For example, when­
ever you create a menu, the Mac stores data about that menu in a menu record.
Th~t record is defined as: ·

Menuln!o = RECORD
menu ID
menuWIDTH
menu Height
menuProc
enableFlags
menu Data

END;

:INTEGER;
:INTEGER;
:INTEGER;
:Handle;
:PACKED ARRAY [O .. 31) of BOOLEAN;
:Str255;

140 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

This definition creates a new data type called Menulnfo which represents a record
consisting of six fields of data. Whenever you create a menu, the Macintosh will
return a pointer to a pointer (the Menu Handle} that will tell you where this
information is stored.

How much storage will this menu record use? You can determine the length of
any record by adding up the length required by each of its fields. In the menu
record, each of the first three fields requires one word, the Handle data type
requires two words, the packed array is 32 bits long and therefore requires 2
words, and the string is up to 256 bytes (128 words) long. Therefore, each menu
record will take up a maximum of 135 words, or 270 bytes.

The menu record is an example of a record that will be generated for you by the
Macintosh; you gain access to it by the handle that is returned by the system when
you create the menu. At times, though, you will need to define records within your
programs so that you can either access fields within the records after the Macin­
tosh creates them, or pass data to ToolBox and operating system routines in a
record.

For exam pie, every time an "evenf happens to the system (an event could be a
keypress, a click of the mouse, a disk insertion, or a signal from an 1/0 device, etc.),
the Macintosh generates an event record, recording data about the event. An
event record has the structure:

EventRecord = RECORD
what
message
when
where
modifiers

END;

:INTEGER;
:LONGINT;
:LONGINT;
:Point;
:INTEGER;

If you examine the contents of what, then you can determine what kind of event
occurred. (What will contain a code identifying the type of event.) Where lets you
know where the mouse pointer was when the event occurred. The data type Point
(a user-defined data type) consists of two numbers which give the coordinates of
the mouse pointer in a Cartesian coordinate system which is superimposed on the
screen. (See Chapter 7 and the discussion of windows for more information.)

Since the Sample program in Chapter 3 is designed to respond to mouse and
keyboard events, the program must set aside space for the event record at the end
of the program code. (If the storage had been allocated with OS, the space would
be in the applications globals area.) The definition appears as:

EventRecord
What DC 0
Message DC.L 0
When DC.L 0
Point DC.L 0
Modify DC 0

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 141

Just as with the structure of TAPE.MASTER that was defined in Chapter 5, we can
access the starting address of the structure by referencing the symbolic address
EventRecord, or we can access a single field by using its individual symbolic
address. For example, What will reference the address of the word that contains
the code representing the type of event that the system recorded.

This works only because the assembler allocates storage in the order in which
it encounters DC and OS directives. If the allocation directives for a record are
placed physically one after the other in the source code, they will be allocated
physically contiguous storage locations.

Interacting with the File Manager (the group of operating system routines that
control file 1/0) is probably the most complex task we must tackle when writing
Macintosh assembly language programs, at least in terms of the associated data
structures. File Manager routines require some data as input and will return
additional data when the routines are finished, using extremely large records
known as parameter blocks. An example of this usage appears in Chapter 4 in the
discussion of the instruction LEA. (Complete discussion of the File Manager
appears in Chapter 11.)

Procedure and Function
Calls

Procedures and functions are two types of Pascal subprograms. When used in
a Pascal program, the data used by these subprograms may be declared globally
in the program's var block. In that case, the programmer has the option of merely
letting the subprogram use whatever data it needs without bothering to explicitly
transfer the data into and out of the subprogram. However, the ToolBox and
operating system routines, all of which are defined as Pascal functions and
procedures, cannot use global data because they are external to the program
which calls them: that is, the code for the Tool Box and operating system routines is
never a part of the source code of the application in which they are being used.
Use of the Macintosh's built-in routine therefore requires careful attention to the
process of moving data to and from procedures and functions.

The data passed to a subprogram are called parameters. Parameters that are
only used as input to a subprogram are known as value parameters. Parameters
that are modified within the subprogram and then passed back to the main
program are called variable parameters. Each call to a procedure or function
involves not only the name of the subprogram but a list of the parameters that will
be passed in and out of the subprogram.

Procedures and functions differ primarily in how they return information to the
main program. A procedure returns data only through variable parameters spec­
ified in the call's parameter list. A function, though, returns an additional result. This
result might be a handle to a data structure or a boolean indicating whether or not
the function successfully completed the required operation.

142 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Access to the Tool Box and operating system routines is through either a Pascal
procedure or function call. Macintosh technical documentation presents them in
their Pascal syntax and generally leaves it up to the assembly language program­
mer to simulate the calling sequence.

The_DrawChar routine, which you have already seen, is written in Pascal as:

PROCEDURE DrawChar (ch: CHAR);

The parameter list (ch: CHAR) appears in parentheses after the name of the
procedure (DrawChar). The ch is the variable name given to the parameter;
CHAR refers to its data type. As an assembly language programmer, you will not
necessarily be concerned with variable names, but with the data types, since they
specify the size and format of the data you must prepare before calling the
procedure. ch is a value parameter; it is used only as input to the procedure.

Parameter lists are not limited to a single parameter. For example:

- PROCEDURE lnsertMenu (menu: MenuHandle; beforelD: INTEGER)

requires two parameters, the handle to a menu record and an integer indicating
the relative position of this menu in the menu list (i.e., when this menu is placed in
the menu bar, between which of the other menus should it be placed?). Parameter
names are separated from their data types by colons. If more than one parameter
has the same data type, the parameter names will be separated by commas. (See
the discussion on BlockMove below for an example.) Parameters with different
data types are separated by semicolons. Variable parameters are preceded by
VAR; value parameters have nothing to distinguish them. Both of lnsertMenu's
parameters are therefore value parameters; they serve only as input to the pro­
cedure.

To call a ToolBox procedure from an assembly language program, you must
first push the parameters, in order from left to right as they appear in the parameter
list, onto the stack. Then you call the procedure. To draw a character using
DrawChar for example:

MOVE $0040, - (SP)

first places the ASCII code of one character onto the stack. Because the Pascal
data type is CHAR, an entire word is moved. Once the character is on the stack,
then:

_DrawChar

initiates the call to the Tool Box routine. The procedure takes the parameters off the
stack while it is executing, so that when it terminates, none remain on the stack.

ToolBox functions are handled in approximately the same way. The main
difference is that before beginning to push the function's parameters onto the
stack, a program must push an empty space for the function's result. The space for

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 143

the result is always deepest in the stack. When the function is finished, all of the
parameters will have been removed from the stack; the result will be on top so that
it can be easily recovered.

For example, the ToolBox function MenuSelect identifies which menu item
received a click from the mouse. The Pascal definition of the function is:

FUNCTION MenuSelect (startPt: Point) : Longlnt

The parameter startPt is the coordinates where the mouse was clicked. The data
type Point refers to a user-defined data structure that is tour bytes long and
contains the coordinates of where the mouse was when the mouse button was
clicked. The result of this function is the number of the menu item that was chosen.
Since that data type of the result is Long Int, four bytes must be set aside to hold it.
Therefore, the first step in the set-up sequence is to clear space on the stack tor the
result:

CLR.L -(SP)

Then, the point can be moved onto the stack:

MOVE.L Point (Point comes from the event record described above)

Finally, all that remains is to call the function:

_Menu Item

When a function finishes, you must always recover the result:

MOVE.L (SP)+ ,DO

NOTE: Regardless of whether your program will use the result in any way, be
sure to remove it from the stack. If the result is not removed, its presence will disrupt
the operation of further procedure and function calls and will probably cause RTS
instructions to fail in unexpected ways.

Probably the hardest thing about simulating the Pascal syntax tor assembly
language calls to Tool Box routines is deciding whether to put the parameter itself
on the stack or to merely push a pointer to the parameter. Here are a few guidelines
that should help:

1. Push pointers to variable parameters. For example, the procedure
GlobalToLocal converts a point from the screen's coordinate system to the
coordinate system of whatever window that point is within. In Pascal, the
procedure is defined as:

PROCEDURE GlobalToLocal (VAR pt: Point)

144 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The point will be passed into the procedure, converted, and then passed out.
Since the procedure needs an address to store the converted coordinates,
the address of the point is placed on the stack rather than the value of the
point itself. Therefore, to call GlobalTolocal, you would:

PEA Point
_GlobalTolocal

2. Push pointers to records. In other words, when the data type of a parameter
is a record or an array rather than a single value, only a pointer to the
beginning of the data structure is necessary.

3. Push pointers to parameters that occupy more than 4 bytes of space.

4. Otherwise, move the parameter onto the stack using the MOVE instruction.
When moving parameters, pay particular attention to the size of the param­
eter. Note that if you move a byte, the Macintosh will automatically push
another unused byte onto the stack to keep the stack pointer on an even
address.

Operating System procedures and functions are described with Pascal syntax
just like ToolBox routines, but they do not get their parameters from the stack.
Instead, Operating System routines take their parameters from registers. Operat­
ing System functions also return their results in registers. Unfortunately, the only
way to know which parameters should be placed in which registers is to consult
Inside Macintosh; merely examining the procedure or function definition will not
give you that information. An example of the use of one Operating System routine
follows.

An Overview of the
Toolbox and Operating

System Routines
One of the things that makes the Macintosh both a pleasure and a pain to

program in assembly language is the presence of so many prewritten routines.
Most are in ROM, though some are present only on disk. They fall into two major
groups: those known as the ToolBox and those that are part of the operating
system. In either case, they are organized into "Managers," each of which relates to
one general function.

TheToolBox
The Tool Box consists of 13 ROM managers and three sets of routines on disk:

1. The Resource Manager provides tools that manage resources. Resources
are constructs such as windows and menus that an application will use. Most

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 145

applications will store resources in a file that is separate from the source code
during the development process and will need to use at least the Resource
Manager routine that opens the appropriate resource file.

2. QuickDraw contains all of Macintosh's graphics routines. Even applications
that contain no graphics must make use of QuickDraw routines, since they
control the location of all screen display operations and provide for the
manipulation of text display characteristics.

3. The Font Manager is a small set of routines that are rarely accessed directly
by a programmer. Instead, they are called by QuickDraw when a program
requests font manipulations.

4. The ToolBox Event Manager contains routines that monitor things that
happen to the system. Events (discussed in detail in Chapter 8) include
occurrences such as a click of the mouse button, the insertion of a disk, or the
press of a key on the keyboard. Interaction with the Event Manager forms the
central control structure of any Macintosh application.

5. The Window Manager handles the definition, disposition, and manipulation
of windows. Any application that adheres to the standard Macintosh user
interface will make significant use of these routines.

6. The Control Manager does for controls what the Window Manager does for
windows. Controls include scroll bars in windows and buttons (those hot-dog
shaped balloons that appear in alert and dialog boxes). Control Manager
routines may be called directly by a program or may be called by the Dialog
Manager (see below).

7. The Menu Manager provides routines that create and manipulate menus.
Most applications use the Menu Manager extensively.

8. TextEdit is a powerful set of routines that provide for the entry, display, and
editing of text. Even a totally graphics-based application cannot avoid TextEdit,
since some of the standard desk accessories (which all Macintosh applications
should support) allow text editing.

9. The Dialog Manager allows an application to create, manipulate, dispose,
and monitor events in dialog and alert boxes. Virtually every Macintosh
program will use dialogs and alerts in some way.

10. The Desk Manager contains the routines that support desk accessories.
They allow an application to invoke a specific desk accessory and to then
turn management of that desk accessory over to the system.

11. The Scrap Manager provides the capability to transfer text and graphics
between applications via the Clipboard. Whether or not an application will
interact with the Scrap Manager is determined by the characteristics of the
specific application.

12. The ToolBox Utilities are a diverse set of routines that cover some logical
operations and bit manipulations.

146 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

13. The Package Manager is a gateway to the non-ROM Tool Box routines. The
non-ROM routines are grouped into three packages which are loaded into
RAM the first time they are called by an application. The packages handled
by the Package Manager are:
a. The Binary-Decimal Conversion Package converts ASCII strings of

decimal characters into binary numbers that can then be used in arith­
metic operations.

b. The International Utilities Package contains a group of routines that
make it possible to write non-English applications; also has some useful
string comparison routines.

c. The Standard File Package contains the standard dialog boxes that
gather information about opening, closing, and saving files.

The Operating System
Routines

Like the ToolBox, the operating system's routines are divided into managers.
Eight are in ROM; two managers and three packages are on disk.

1 . The Memory Manager handles the allocation of main memory while an
application is running. Most Memory Manager routines affectthe application
heap.

2. The Segment Loader is the part of the operating system that actually loads a
program into memory so it can be executed. For small applications, the
Segment Loader i$ transparent to the programmer. It is invoked when a user
double-clicks on a program icon. However, large applications that will not fit
all at once into main memory can be broken up into chunks known as
segments. In that case, the programmer must explicitly use Segment Loader
routines to manage the swapping of segments between the disk and main
memory.

3. The Operating System Event Manager contains the routines that actually
detect hardware events such as mouse button and key presses. The events
are passed directly to the ToolBox Event Manager, which can then be
tapped by a programmer. An application rarely accesses the Operating
System Event Manager directly.

4. The File Manager provides routines that create, open, close, read to, and
write from files. They provide an unprecedented amount of flexibility in file
1/0.

5. The Device Manager, like the File Manager, deals with 1/0, but on the
device rather than the file level. There are three device drivers in ROM:

a. The Disk Driver (takes care of the disk drives)
b. The Sound Driver (handles the Macintosh's speaker)
c. The Serial Drivers (manages the two serial communications ports)

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 147

6. The Vertical Retrace Manager handles system actions which must be
repeated at regular intervals while an application is running. These include
incrementing the system clock, checking to see if the stack and heap have
run into each other, and looking for hardware events such as a disk insertion
or a change in the status of the mouse button. The only time an application
will use the Vertical Retrace Manager is if it wishes to insert an activity of its
own among those that the operating system is performing automatically.

7. The System Error Handler is that part of the operating systerri that provides
the alert box with the little bomb in the upper left-hand corner. It is invoked
whenever the system detects an error from which the system cannot recover,
such as a binary instruction code which has no meaning to the 68000, or an
address which is larger than the Macintosh's address range. This is another
manager which is rarely tapped directly by an application program.

8. The Operating System Utilities are another miscellaneous set of "nifty"
routines. They provide some string comparison (the string comparisons in
the International Utilities Package are better), provide block move
capabilities, and give access to the system's date and time.

9. The Printing Manager is not in ROM but rather is kept on disk. Along with
the appropriate Printer Driver, the Macintosh can then support a the­
oretically infinite number of different printers. Any application that supports
printing will make extensive use of the Printing Manager's routines.

10. The AppleTalk Manager is the Macintosh's gateway to the AppleTalk
telecommunications network. It contains a number of disk-based routines to
manage Apple Talk access as well as a pair of RAM-based device drivers.

11. The Disk Initialization Package is also on disk. It is called by the Standard
File Package whenever a disk needs to be initialized. It is rarely called directly
by an application program.

12. The Floating-Point Arithmetic and Transcendental Functions Pack­
ages, both of which are kept on disk, provide for arithmetic operations which
cannot be handled within a single 32-bit register.

A Couple of Things to Be
Aware Of

There is a conceptual problem with the way the ToolBox and Operating
System routines are grouped. The Managers themselves tell you nothing about the
sequence of calls necessary to perform a specific program action. For example,
the routine that detects and identifies what sort of event has occurred is a part of the
Event Manager. If the event was a mouse down event (the mouse button was
clicked), then you must use a Window Manager routine to discover where the
mouse button was pressed, even if it was pressed in the menu bar. Assuming that
the mouse down event was in the menu bar, then Menu Manager routines can
determine which menu and what item within that menu was selected.

148 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Figuring out which routine to call when is one of the most baffling tasks in
creating any Macintosh application, regardless of the language in which an
application is written. Therefore, as you read on in this book, you will generally find
descriptions of ToolBox and operating system calls grouped by function rather
than by manager to aid you in understanding the sequencing of activities within an
application.

Though the ToolBox and operating system routines are mostly in ROM, they
are nonetheless programs. That means that they make use of the 68000's internal
registers. If an application has placed information that must be retained in address
and/or data registers, that information may be lost during a call to one of the Mac's
routines. There are two ways to get around the problem.

The first is to put information that the application requires in some other form of
storage by assigning it to storage locations defined by DC or DS directives. The
second is to temporarily save the contents of the registers on the stack.

The instruction MOVEM (move multiple registers) simplifies the task of placing
the contents of a series of registers on the stack. The general form of the instruction
is:

MOVEM.L register list, - (SP)

To retrieve the contents of the registers:

MOVEM.L (SP)+ ,register list

The register list accepts either a series of individual registers separated by I or a
range of registers indicated by a starting and ending register number. For example:

MOVEM.L 01/02/ AO - A4, - (SP)

will place the contents of 01, 02, AO, A1, A2, A3, andA4 on the stack in that order.
When retrieving information stored on the stack, the register list must be in the

same order as when the information was stored. The system will correctly pull the
information from the stack and place it in the appropriate registers. To retrieve the
information stored in the example above, use:

MOVEM.L (SP)+,D1/D2/AO-A4

Be very aware of what is happening to the stack when attempting to use it for
temporary storage of CPU registers. Consider the situation when it becomes
necessary to save register contents before jumping or branching to a subroutine.
The subroutine instruction pushes a return address onto the stack. That return
address is "on top" of the register contents. Therefore, the application must not
attempt to restore the contents of the registers until after the program has returned
from the subroutine: that is, the return address must be pulled from the stack
before the registers can be properly restored. If it is necessary to have the contents

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 149

of the registers within the subroutine, then the instruction to save them should
occur after the jump or branch to subroutine instruction.

When should an application save the contents of its registers? There are two
approaches you can take. The conservative approach says save all registers every
time an application makes a call to a ToolBox or operating system routine. The
second method is initially to not save any registers and then monitor program
activity with the debugger to determine specifically which registers are altered and
must therefore be saved. In general, the ToolBox and operating system routines
use D0-02 and AO-A4, though there are many exceptions.

Calling Toolbox and
Operating System

Routines -
The Trap Mechanism

All the ToolBox and operating system routines you have seen so far are
invoked in assembly language source code with a name that begins with an
underbar. The Assembler translates those routine names into machine language
instructions that the Macintosh can understand.

When assembled, all calls to ToolBoxand operating system routines - except
those of the Printing Manager - begin with $A, or %1010; the rest of the instruction
word contains information that identifies the particular routine being called. The
68000 microprocessor has no instructions with codes that begin with % 1010.
Therefore, it "traps" those instructions. Under most circumstances, the micro­
processor would return a system error indicating that it encountered an unrecog­
nizable instruction. The Macintosh operating system, however, intercepts the
microprocessor's detection of the trap. It interprets the trap as a reference to the
ToolBox Dispatch Table discussed in Chapter 2. Because instructions that begin
with % 1010 are not part of the microprocessor's hardware instruction set, they are
known as "unimplemented instructions" or "line 1010 unimplemented instructions."
They allow a computer manufacturer to enhance the 68000 instruction set by
adding custom instructions that are implemented in software.

Trap words are associated with names by using the assembler directive
. TRAP. For example, the routine that draws a single character has a trap word of
$A883. To give it a name, the following could be included in program code:

. TRAP _DrawChar $A883

For the programmer's convenience, trap words for all ROM routines are
assigned names in the file MacTraps.D (found on MDS2). It should be INCLUDEd
at the beginning of each application developed on a 512K machine. There may not

150 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

be enough memory in a 128K machine to assemble a program that contains the
entire MacTraps.D file. In that case, you will need to define explicity any traps the
program uses with the .TRAP directive.

Using Toolbox and
Operating System

Routines - Simplifying
the Sort and Search

The straight-insertion sort and the binary search have one basic process in
common - they compare strings. The sort also moves large blocks of code. It
would simplify the code for these two utilities considerably if they could use
prewritten routines to accomplish the comparison and move activities.

There are actually three different routines that do string comparisons. One is an
Operating System routine - EqualString. The problem is that this function only
returns a boolean value indicating whether the two strings being compared are
equal or unequal. That is not enough information for either the sort or the search;
both need to know direction (i.e., is the SearchString greater than or less than the
string in the array?).

Tucked within the International Utilities Package are two string comparison func­
tions. One is exactly like EqualString (IUIDString); but the other, IUMagString,
returns the kind of result the sort and search require - a 0 ifthe strings are equal, a -1
if the first string is less than the second, and a + 1 if the first string is greater than the
second one. Depending on how you look at it, there is one drawback to using
IUMagString; upper-case and lower-case letters are evaluated as different charac­
ters, with lower-case coming after upper-case. (EqualString and IUIDString ignore
the upper- and lower-case distinction.)

IUMagString is specified as:

FUNCTION IUMagString (aPtr, bPtr: Ptr; alen, blen:INTEGER):
INTEGER;

The first two parameters are of the same data type - Ptr. They are pointers to the
start of the two strings which are to be compared. The third and fourth parameters
are both integers - the number of bytes in each string. The result is an integer as
described above.

In terms of the sort, one of the strings is contained in the data structure
identified by NewRecord. The second is somewhere within TapeArray. We'll use
the string in the array as the "a" string. Therefore, to find its starting address, we
need to compute its offset from the beginning of the array, just as we did before.
(Take the record number and multiply by 64, the length of a record.) If the offset is

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 151

in 06 (as it is after a call to Compute Offset1) and the address of TapeArray is in A3,
then a pointer to the start of the beginning of the "a" string is equal to:

ADDA D6,A3

The address of NewRecord goes into A2. We will need to compare 30
characters, since the tape name field is 30 characters long.

The set-up sequence therefore involves first pushing an empty word onto the
stack to contain the result and then each of the parameters in order:

CLR.W
MOVE.L
MOVE.L
MOVE.W
MOVE.W

-(SP)
A3,-(SP)
A2,-(SP)
#30,-(SP)
#30,-(SP)

;space for integer result
; "a" pointer
; "b" pointer
;characters in "a" string
;characters in "b" string

At this point it might seem that we're ready to call the function. Using:

_IUMagString

though, it will not work in this case. IUMagString is part of a package and therefore
doesn't exist as a separate call. Instead, whenever you need a routine that is part of
a package, first push a number that identifies the routine onto the stack and then
call the package as a whole. The International Utilities Package is Package #6;
IUMagString is routine #10. Therefore, to initiate IUMagString:

MOVE. W #10, - (SP)
_Pack&

(For further information on using Macintosh's packages, see Chapter 12).
The result of IUMagString is recovered by the instruction:

MOVE.W (SP)+,DO

Since a MOVE instruction sets the condition codes, the value of the result can be
checked using one or more of the Bee variations without any further manipulation.

To see how IUMagStrlng simplifies the sort and search routines, take a look at
Listings 6.1 (the sort) and 6.2 (the search).

A prewritten routine that moves blocks of main memory would simplify consid­
erably one of the major tasks of the straight-insertion sort. BlockMove is an
operating system procedure that does just that. It is defined as:

PROCEDURE BlockMove (sourcePtr, DestPtr: Ptr; byteCount: Size);

152 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

This definition alone does not contain enough information to call the routine. Inside
Macintosh, though, indicates that:

1 . A pointer to the starting location of the bytes to be moved (the source pointer)
should be placed in AO;

2. A pointer to the starting location of where the bytes should be moved to (the
destination pointer) should be placed in A 1;

3. The total number of bytes to be moved should be placed in DO and that the
size of this operand is longinteger.

Listing 6.1 Straight-Insertion Sort with Block Moves

MOVE TotalRecords,01
LEA TapeArray(A5),A2
CMP #0,01
BEQ lnsertNew ;if first record, insert immediately
SUBQ #1,01 ;otherwise, adjust for record #'s beginning with 0

Checking

JSR ComputeAddress1

MOVE.L 01 ,-(SP)
CLR.W -(SP)
MOVE.L A3,-(SP)
PEA NewRecord(A5)
MOVE.W #30,-(SP)
MOVE.W #30,-(SP)
MOVE.W #10,-(SP)

Packs
MOVE.W (SP)+,00
MOVE.L (SP)+,01

CMP
BLE
BGT

MoveOld

#0,00
JustBeforelnsert
MoveOld

MOVE D1,D5
ADDO #1,D5
JSR ComputeAddress1
JSR ComputeAddress2

MOVE.L A3,A0
MOVE.L A4,A1
MOVE.L #64,00
_BlockMove

SUBQ
CMP
BEQ
BRA

#1,01
#-1,D1
JustBeforelnsert
Checking

;Address returned in A3

;save 01 on stack
;space for result
;pointer to record in array
;pointer to new record
;characters to look at in first string
;characters to look at in second string
;ID for IUMa•JString
;invoke the package
;recover result
;recover former contents of 01

;found place to insert record
;move existing record down

;record # to move to
;offset returned in A3
;offset returned in A4

;source pointer for block move
;destination pointer for block move

;64 bytes will be moved
;move an entire record

;move back a record
;does new record go in first position?

(continued)

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 153

JustBeforelnsert
ADDO #1,D1 ;insert just below where comparing

lnsertNew
MOVE D1,D5

JSR ComputeAddress2

LEA NewRecord(A5},A0
MOVE.L A4,A1

;pointer to source (the new record)
;pointer to destination

MOVE.L #64,D0 ;number of bytes to move
_Block Move ;move a record

LEA Tota1Records,A0
ADDO #1,(A0} ;increment number of records

ComputeAddress1
MOVE.L D1,D6
MULU #64,D6
MOVE.L A2,A3
ADDA.L D6,A3
RTS

ComputeAddress2
MOVE.L D5,D7
MULU #64,D7
MOVE.L A2,A4
ADDA.L D7,A4
RTS

;offset "' record # * 64 bytes

Listing 6.2 Sequential Search with String Comparison Routine from the International Utilities Package

LEA TapeArray(A5},A2 ;start of tape array
MOVE TotalRecords,01
SUBO #1,D1 ;bottom pointer
MOVE D1,D3
SUBO #1,D3
MOVE #0,02

;save last record-1 #for future reference
;top pointer

MidPoint
MOVE D2,D5 ;find middle record#
ADD D1,D5
DIVU #2,D5
AND.L #$0000FFFF,D5 ;mask off remainder
CMP. #1,D5
BLE TopRec ;handle first two records
CMP D5,D3
BLE BottomRec ;handle last two records

JSR ComputeAddress2
MOVEM.L D1-D5/A1-A2,-(SP) ;save registers

(continued)

154 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 6.2 (continued)

CLR.W -(SP)
MOVE.L A4,-(SP)
PEA NewRecord(AS)
MOVE.W #3!2>,-(SP)
MOVE.W #30,-(SP)
MOVE.W #10,-(SP)

;space for result
;pointer to record jn tape array
;pointer to search string
;number of characters to compare
;number of characters to compare

Packs ;invoke the package
MOVE.W (SP)+,D0 ;recover result
MOVEM.L (SP)+,D1-D5/A1-A2 ;restore registers

CMP
BGT
BLT

#0,D0
To pH a If
Bottom Half

;check result of string compare
;array greater than search string
;array less than search string

LEA RecordCounter,A0
MOVE D5,(A0)
JSR DisplayOneRecord ;must be equal - record has been found
MOVE f1eturnFlag(A5),D0
CMP #0,D0 ;which module called this routine?
BEQ KeepGoing ;call was from Select
RTS ;call was from Change or Delete

KeepGoing
JSR
JSR
RTS

DisplayDialog3 ;display find & wait dialog box
DisplayWiridows;clear text edit windows

;return to Select menu

BottomHalf
MOVE D5,D2
BRA NoFindCheck

To pH a If
MOVE D5,D1

NoFindCheck
CMP
BMI
BRA

No Find

02,01
No Find
Mid Point

;move top pointer down

;move bottom pointer up

;pointers have crossed
;find new middle record and go again

JSR
JSR
RTS

DisplayDialog1 ;displays "none found" dialog box
DisplayWindows ;clear screen and text edit records

TopRec MOVE #0,05
JSR OneCheck
MOVE #1,D5
JSR OneCheck
BRA NoFind

Bottom Rec
MOVE 03,05
JSR OneCheck
ADDO #1:03
MOVE 03,05
JSR OneCheck
BRA NoFind

;return to Select menu

(continued)

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 155

OneCheck
JSR ConiputeAddress2

MOVEM.L D1-D5/A1-A2,-(SP)
CLR.W -(SP) ;space for result
MOVE.L A4,-(SP) ;pointer to array
PEA NewRecord(A5) ;pointer to search string
MOVE.W #30,-(SP) ;number of characters to compare
MOVE.W #30,-(SP) ;number of characters to compare
MOVE.W #10,-(SP)

Packs ;invoke the package
MOVE.W (SP)+,D0 ;recover result
MOVEM.L (SP)+,D1-D5/A1-A2

CMP #0,D0
BNE WrongOne ;correct record not found

LEA RecordCounter,A0
MOVE D5,(A0)
JSR DisplayOrieRecord
MOVE ReturnFlag(A5),D0
CMP #0,D0 ;where does this call originate?
BEd OneCheckContinues ;call comes from Select
MOVE.L (SP)+,D0;pull extra subroutine return address from stack
ATS ;call comes from Change or Delete

OneCheckContinues
JSR DisplayDialog3
JSR OisplayWindows
MOVE #9,00
MOVE.L (SP)+,07 ;pop subroutine return address off stack
ATS ;return directly to "Select" routine

Wrong One
MOVE #9,D0
ATS ;return to Top or Bottom

When BlockMove terminates, a result code will be placed in DO, indicating
whether or not an error occurred.

One situation in which the sort moves data is to move an existing record down
in the array. Therefore, the source of the data to be moved is the current record and
the destination is one record below it. This requires two addresses in TapeArray
that are computed by the subroutines ComputeAddress1 and ComputeAddress2.
A pointer to the current record is returned in A3, and a pointer to the record below
is returned in A4. To set-up for BlockMove, then:

MOVE.L
MOVE.L
MOVE.L

A3,AO
A4,A1
#64,00

;pointer to current record
;pointer to record just below
;record is 64 bytes long

156 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Operating System routines are called just like ToolBox routines:

_BlockMove

In many cases, a program will not bother to check the result of an operation
such as a block move. Since the result is in a register, though, and not on the stack
like the results of Tool Box functions, it can be safely ignored.

To see where BlockMove fits into the flow of the straight-insertion sort, see
Listing 6.1.

Questions and
Problems

1. Write an assembler directive that will set aside storage space in the applica­
tions globals area for each of the following Pascal data structures:

a. TYPE Point = RECORD
v: INTEGER;
h: INTEGER

END;

b. TYPE Rect = RECORD
top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER

END;

c. TYPE Rect = RECORD
top Left: Point;
bottomRight: Point

END;

d. TYPE Region = RECORD
rgnSize: INTEGER;
rgnBBox: Rect

END;

e. TYPE Cursor = RECORD

{assume that data type Point as
defined in a above}

{assume the data type Rect as
defined in b or c above}

data: ARRAY (0 .. 15) of INTEGER;
mask: ARRAY (0 .. 15) of INTEGER;
hotspot: Point (assume Point as in a above}

END;

THE PASCAL CONNECTION TO THE TOOLBOX AND OPERATING SYSTEM ROUTINES 157

f. TYPE
Style = INTEGER;
FM Input = PACKED RECORD
family: INTEGER;
size: INTEGER;
face: Style;
need Bits: BOOLEAN;
device: INTEGER;
number: Point; [assume Point as in a}
denom: Point

END;

g. TYPE ScrapStuff = RECORD
ScrapSize: LONGINT;
ScrapHandle: Handle;
ScrapCount: INTEGER;
ScrapState: INTEGER;
ScrapName: StringPtr

END;

2. Listed below are some Pascal data type statements for data structures used
as ToolBox routine parameters. For each:

A. decide whether the parameter itself or a pointer to the parameter should
be placed on the stack and

B. write the assembly language statements that will place the parameter or
its pointer on the stack.

For this exercise only, assume that space has been allocated in the
applications globals area for the data structures and that each has the
symbolic address DataType.

Example: TYPE Pointer = Ptr; Answer: When used as a value parameter,
push the pointer itself: MOVE.L DataType(A5),(SP) +. When used as a
variable parameter, push the address of the pointer: PEA DataType(AS).

a. TYPE TEHandle = Handle; [used as a value parameter}

b. TYPE TEHandle = Handle; [used as a variable parameter}

c. TYPE Point = RECORD (used as a value parameter}
v: INTEGER;
h: INTEGER

END;

d. TYPE Point = RECORD (used as a variable parameter}
v: INTEGER;
h: INTEGER

END;

158 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

e. TYPE Rect = RECORD
top Lett:
bottom Right:

END;

f. TYPE Rect = RECORD
top Left:
bottom Right:

END;

(used as a value parameter}
Point;
Point

(used as a variable parameter]
Point;
Point

g. TYPE Str03 = PACKED ARRAY [O .. 3] of CHAR;

h. TYPE Str255 = PACKED ARRAY [O .. 255] of CHAR;

3. Consider the program skeleton below:

MOVEM.L
JSR

DO/D1 I AO -A4,(SP) +
StartOfSubroutine

(end of main program}
StartOfSubroutine

MOVEM.L
ATS

(body of subroutine goes here}

-(SP), DO/D1/AO-A4

A. What problem can you see with the statements in this program skeleton?
Hint: think about the order in which operands and addresses are placed
on the stack.

B. What simple re-arrangement of the statements will solve the problem?

c H A p T E R s E v E N

SE I I ING UP THE 9ESKTGP:
'vv'INB8'vVS ANB rv1ENUS

Chapter Objectives

1. To learn the steps necessary to create a Macintosh window

2. To understand the purpose of resource files and know how to prepare one
for use by a Macintosh application

3. To explore the ToolBox routines that manipulate windows

4. To learn the steps necessary to create a Macintosh menu

5. To explore the ToolBox routines that manage the menu bar

As we discussed in Chapter 1, a major element in a successful Macintosh
application is adherence to the standard Macintosh user interface. Two of the
distinguishing characteristics of that interface are windows and pull-down menus.

Creating Windows
The ToolBox routines that manipulate windows are grouped together under

the heading of the Window Manager. These routines provide facilities for not only
creating windows, but for changing their size and position on the screen.

159

160 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Before using any Window Manager routines, first initialize QuickDraw; the
Window Manager relies on many QuickDraw routines. Then call the routine which
initializes the Window Manager. The calling sequence is:

PEA -4(A5)
_lnitGraf
_lnltWindows

;initializes QuickDraw
;initializes the Window Manager

Usually, this is done at the very beginning of a program, immediately after the
statements that INCLUDE equates files. In fact, it is important to perform these and
the other initialization routines that we will encounter in a specific order. Macin­
tosh's ROM routines are deeply interconnected and some of the initialization
routines rely on others in order to function properly. Failure to initialize in the correct
order will cause a system error when you attempt to execute your program.

There are two ways to define windows. The first is to place all of the window
specifications within the application program itself. The second is to create a
source file (defined below) which contains a template for the window and to access
that template from within the application. In either case, a number of parameters
must be present to completely describe the window. These include its boundaries
(how big it should be), its type, its title, whether it is visible or invisible, whether it
should have a GoAway box, and where it should be placed relative to other
windows on the screen (e.g., in front or in back).

Window Boundaries
Windows are specialized graphics ports (known as grafports) in which the

Macintosh can draw. A grafport (the concept originates with QuickDraw, the set of
graphics routines that underlie nearly everything Macintosh does) is basically an
area in which the Macintosh can execute graphics procedures. Grafports can
overlap and move from front to back on the screen, providing the basis for
overlapping windows.

Grafports have many characteristics, but most important for working with
windows is the coordinate system that defines them. Superimposed on the Macin­
tosh screen is a coordinate grid. If we assume that the origin (0,0) is in the upper
left-hand corner Gust below the menu bar), then the screen is 512 pixels wide and
342 pixels tall. The term pixel is short for "picture element" and refers to one dot on
the screen. The Macintosh screen coordinate system appears in Figure 7.1.
Windows are rectangles that have corners defined in that coordinate system. Note
thatthis is not necessarily the only coordinate system that can be superimposed on
the screen, but it is the one that is used when defining windows. The 512 x 342
coordinate grid is often referred to as the screen's global coordinates.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 161

The coordinote system impooed on the Mocintosh'o
screen hos• top left coordi nete of l!l ,J!I ond • bottom
right coordi note of S 12, 342.

Thi• coordi nete system does not include the menu bar .

Though many coordi nete oystemo could be imposed on the
screen, this is the one thot i• used to define 'Windo'W• end
to ploce graphics images.

Each pairs of coordi neteo (•point) refer• to one pixel.

Figure 7.1 The Macintosh Screen's Coordinate System

/
512, 342

The rectangles that define window boundaries are contained in the user­
defined data type Rect. In the Pascal syntax:

TYPE Rect = RECORD CASE INTEGER OF
0: (top: INTEGER;

left: INTEGER;
bottom: INTEGER;
right: INTEGER};

1: (topleft: Point;
botRight: Point}

END;

What this means is that there are two choices for defining the corners of a
rectangle, though for all intents and purposes, they work out the same. You can
either provide four separate positions that indicate the top, left, bottom, and right
positions of the rectangle; or provide two points, one for the top left corner of the
rectangle and the other for the bottom right. A point is another user-defined data
type that puts together an X and Y coordinate to locate a specific pixel.

162 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

As an example, consider the window used in the Sample program . Its top left
corner is at 40,20 and its bottom right corner at 300,350. Figure 7.2a shows those
coordinates. If a window is defined within an application program (rather than in a
resource file) , then the rectangle which describes the window boundaries is
usually assigned to a symbolic address. In the Sample program , the "boundary
rectangle" is:

BoundsRect 40,20,300,350

Any use of the symbolic address BoundsRect will refer to all four integers. The
coordinates are expressed in the screen's global coordinate system. These are the
window's initial coordinates, which will change if the window is sized.

~D - MAL Output Window

48, 20'

Figure 7.2(a) Using Global Coordinates to Define a Window

ore ex pressed in
terms of the screen 's
5 12 x 342 pixel
9rid.

Note thot t he "'i ndo., ·s
9l obol coo rdi notes
do not include the
ti tle bor .

Windows have a second coordinate system called a local coordinate system .
In a local coordinate system the point 0,0 is assigned to the upper left-hand corner
of a window, regardless of the size of the window or where it is currently placed on
the screen. For example, if window has global screen coordinates of 40, 20, 300,
350, the top left point of 40, 20 is translated to 0,0 for the window's local coordinate
system .

The bottom local coordinate for a window is equal to the bottom global
coordinate minus the top global coordinate plus 1 (e.g ., 300 - 40 + 1 = 261). The
right local coordinate is computed in a similar way; subtract the left global coordi­
nate from the right global coordinate and add 1 (e.g., 350 - 20 + 1 = 331) . The
boundaries of this window's initial local coordinate system are therefore 0, 0, 261 ,
331, as shown in Figure 7 .2b.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 163

The bottom right local coordinates of a window will change as the window is
sized. Though the top left local coordinates will remain at 0, 0, the bottom right
coordinates will increase and decrease with the size of the window.

MAL Output Window

coordinate oyotem
the top left corner
is el,.,ays 0' ,0'.

Note that the title
bar io note pert
of the local coordi note
oyotem .

Figure 7.2(b) A Window's Local Coordinate System

Window Types
The Macintosh provides six pre-defined window types. These will be adequate

for the majority of applications. Each type has an identifying number (see Table
7.1). If ToolEqu.D is INCLUDEd in your source code, you can use the symbolic
address assigned to the number rather than using the number itself.

Symbolic Address

documentProc
dBoxProc
plainDBox
altDBoxProc
noGrowDocProc

rDocProc

ID# Comments

0 Standard document window
1 Alert or modal dialog box (heavy inner border)
2 Plain window with single outline border
3 Plain window with a shadow on the right and bottom
4 Standard document window that cannot contain grow

icon
16 Round cornered window for desk accessories

Table 7.1 Pre-defined Window Type~ and Their ID Numbers

164 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The window type documentProc is a standard document window (see Figure
7 .3a) . It has a title bar, square corners, and may contain a size box and scroll bars.
noGrowDocProc (Figure 7.3b) is the same as a documentProc box but cannot
contain a size box and scroll bars.

MAL Output Window

Th is is a stan dard wi ndow wi th scro l l bars

Figure 7.3(a) Standard Document Window with Scroll Bars

MAL Output Window

Thi s i s e doc ument w i ndow w ithout gr ow box

Figure 7.3(b) Standard Document Window without Grow Icon

docu ment Proc

Ca n have:
Sc roll bars
Grow ico n
GoAway box

Created by an
oppli cation fo r

noGrowDocProc

May not contai n:
Sc roll bars
Grow Ico n

but may have:
GoAway box

Created by an
op pli cati on for

...

...

SETIING UP THE DESKTOP: WINDOWS AND MENUS 165

plainDBox (Figure 7 .3c) is simply a rectangle with a solid border. It has no title
or scroll bars. If you use altDBoxProc (Figure 7.3d), you'll get a plain box with a
shadow along the right and bottom borders. dBoxProc (Figure 7.3e) will produce
a plain window with an inner border. This type of window is generally used as an
alert box.

This is a plain document box

Figure 7.3(c) Plain Document Box

This is a plain document box with shadow

Figure 7.3(d) Plain Document Box with Shadow

Has:
No title bar
No scroll bars
No gro"'1 icon

Creoted by on
opplicetion for
graphics or text

Hes :
No ti tle bar
No scroll bars
No gro"'1 icon

Created by an
applicotion for
graphics or text

166 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

This is an alert or dialog box

Figure 7.3(e) Alert or Dialog Box

dBoxProc

Hos:
Inner border

but no :
Title bor

Scroll bors

Gro"' icon

Used by olerts ond

rDocProc (Figure 7.3f) is a round-cornered window. It has a title, but no scroll
bars. It is most often used to hold desk accessories and therefore will generally not
appear in an application program unless that program is defining its own desk
accessories.

This is a round-cornered window

Figure 7.3(f) Round-cornered Window

rDocProc

Hos :
Inverse highlighting

in title bor
Rounded corners

Used by desk
accessories

SETIING UP THE DESKTOP: WINDOWS AND MENUS 167

The Window Record
Information about the windows an application uses are kept in window records,

one for each window. The structure of a window record is as follows:

WindowRecord = RECORD
port:
windowKind:
visible:

END;

hilited:
goAwayFlag:
spareFlag:
strucRgn:
contRgn:
updateRgn:
windowDefProc:
dataHandle:
titleHandle:
title Width:
controllist:
nextWindow:
windowPic:
refCon:

Graf Port;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
RgnHandle;
RgnHandle;
RgnHandle;
Handle;
Handle;
String Handle;
INTEGER;
Handle;
WindowPeek;
PicHandle;
LONGINT;

the window's grafport
the window's type
TRUE if visible
TRUE if highlighted
TRUE if goAway region
currently unused
structure region
content region
update region
window definition function
used by windowDefProc
window's tme
width of title in pixels
handle to first control
next window in list
pie. for drawing window
reference value

An application can ignore many of the fields in a window record, but some do
require further mention. In particular, an application may need to get to the three
"region" parameters: the structure, content, and update regions. The term region
comes from QuickDraw. It refers to some area that can be bounded by a rectangle
but is not necessarily rectangular in shape. In other words, a region can be
described by the rectangle that most closely encloses its contents. A region is
defined by a simple record:

Region = RECORD
rgnSize:
rgnBox:

END;

INTEGER;
Reel

rgnSize contains the number of bytes in the region. rgnBox is the rectangle that
encloses it.

Windows have three regions. The structure region includes the window's
outside outline and its title bar, if it has one. The content region is everything inside
the window, including scroll bars. The update region contains those parts of a
window that have been changed by the actions of an application and therefore
need to be redrawn. All three regions can change while an application is execut­
ing.

16i MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

It may be necessary for an application to retrieve the rectangles that describe
any of these three regions. To do so, the application must:

1. Get the pointer to the window record.

2. Use an offset into the window record to retrieve the region's handle. Offsets
into a window record are defined in the ToolBox equates file.

3. De-reference the handle to get a pointer to the region record.

4. Add 2 to the pointer to the region record to skip over the region size
parameter. The result will be the starting address of the region rectangle.

As an example, lefs look at finding the structure rectangle for a window:

MOVE.L
MOVE.L
MOVE.L
ADDA

WindowPtr ,AO
strucRgn{AO),AO
{AO),AO
#2,AO

;get pointer to window record
;get handle to structure region
;get pointer to region record
;adjust address to skip over
;region size

Other parameters from the window record that an application might need will
be discussed with the program activities that require them.

Defining Windows within an
Application Program

The Window Manager routine NewWindow will set up and draw a window
whose parameters are specified wholly within the application program. In Pascal,
the routine appears as:

FUNCTION NewWindow {wStorage: Ptr; boundsRect: Rect; title: Str255;
visible: BOOLEAN; proclD: INTEGER; behind: WindowPtr;
goAwayFlag: BOOLEAN; refCon: Longlnt) : WindowPtr;

Note first of all that NewWindow is a function; it returns something called
WindowPtr (the window pointer). The window pointer is the address of the
location in the applications globals area of the window record. Many Window
Manager routines need this window pointer as a parameter so they can operate on
the correct window.

Since a window pointer contains an address, it will require a longword (4 bytes)
of space. Therefore, the first step before calling NewWindow is to reserve space
on the stack for the WindowPtr result:

CLR.L -{SP)

Then all the remaining parameters must be placed, in order, on the stack.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 169

wStorage refers to a pointer to where the window record will be stored. It must
reserve enough space for the entire window record. Therefore, wStorage should
be defined as:

wStorage
wStorage

DCB.W
DS

windowslze,O or
windowslze

where windowslze is defined in the ToolEqu.D file as the number of words in a
window record. As long as ToolEqu.D has been INCLUDED in your source code,
it isn't necessary to know the actual size of the window record. Using symbolic
addresses rather than actual quantities is always preferable. For example, if the
size of a window record changes at some later date, you will only need to use the
updated equates file rather than changing your application program.

Since wStorage is a pointer, push it onto the stack using MOVE.L. Whenever
a parameter is 4 bytes or less in length, put the parameter itself on the stack.

It is possible to allocate space for the window record on the application heap
rather than in a program's code (using DC) or the applications globals area (using
OS). To do so, use a value of O for wStorage.

boundsRect is the coordinates of the boundaries of the window's rectangle.
As discussed above, the boundary rectangle should be assigned to a symbolic
address. That address is placed on the stack with PEA, since the coordinates
themselves occupy 8 bytes and are therefore too long to be placed on the stack
themselves.

The title of the window can be simply included as a string in quotes. However,
the string itself is not pushed on the stack. Like the boundary rectangle, it occupies
more than 4 bytes.

PEA 'Text of the Title'

will push a pointer to the string Text of the Title onto the stack and place the string
at the end of the program code.

visible is a boolean that indicates whether the window should initially be visible
or invisible. If it has a value of TRUE, the window will be visible; otherwise, the
window will be defined by NewWindow but not drawn. A boolean occupies a
word of space. Therefore, to create a visible window, you would:

ST -(SP)

Though ST only affects one byte, the system will automatically push an unused
byte onto the stack to keep the contents of the stack pointer even.

The proclD is one of the six pre-defined window types mentioned above.
Since proclD is an integer, simply MOVE the appropriate constant onto the stack.
For example:

MOVE #documentProc, - (SP)

will indicate that this window should be a standard document window.

170 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

behind indicates where this new window should be placed relative to other
windows on the screen. If behind contains a pointer to the window record of
another window, the new window will be placed directly behind that window. On
the other hand, if behind is 0, the new window will be placed behind all the other
windows. A value of -1 for behind will place the new window in front. Since
behind is a pointer, it requires a longword of space:

MOVE.L #-1,-(SP)

The goAwayFlag is a boolean that determines whether or not a GoAway box
will appear in the title bar of the window. A value of TRUE draws a GoAway box;
FALSE leaves it out.

The final parameter, refCon, sets up space for the window's reference value. A
reference value is anything a programmer wishes to assign. It can be used in any
way an application desires. In most cases, an application will rarely use it and
should therefore give it a value of 0.

The complete NewWindow calling sequence appears as:

CLR.L - (SP) ;space for window pointer result
PEA wStorage ;pointer to storage for window record
PEA boundsRect ;coordinates of window corners
PEA 'Text of Title' ;title of the window
ST - (SP) ;visible window
MOVE documentProc ;window's resource ID
MOVE.L #- 1, - (SP) ;window goes in front of all others
SF - (SP) ;no GoAway box
CLR.L - (SP) ;room for reference value
_NewWindow ;calls the routine

When NewWindow finishes, the window pointer will be left on top of the stack.
Since the window pointer is essential to so many other Window Manager routines,
it is vital that a program retrieve that window pointer before doing anything else.
Space for the window pointer should be prepared by defining:

WindowPointer DC.L O

or

WindowPointer DS.L 1

Then, immediately after defining the window, the pointer can be moved to
WindowPointer with:

LEA
MOVE.L

WindowPointer ,AO
(SP)+,(AO)

SEITING UP THE DESKTOP: WINDOWS AND MENUS 171

Using Resource Files to
Create Windows

Using NewWindow is really the hard way to create a window. It is far more
efficient to place the window definition parameters in a resource file which an
application program can then tap. Changes to parameters can then be made in
the resource file without requiring modification of the source code.

A resource file is a text file that has been compiled by the Resource Compiler,
RMaker. It may contain not only window definitions, but definitions for things like
menus and dialog boxes. To create a resource file, enter the Editor and type the
resource definitions. Resource source files should be named with an extension of
.R. (For example, the resource source file for the video tape index is called
Tapes.A.) ·

The format of a resource file is very rigid. The first line contains the name of the
file to which RMaker should write the compiled file. While the Video Tape Index
program was being developed, the first line of its resource file read:

tape.index: Tapes.Rsrc

For each resource you wish to define, first identify the type of resource to which
the definition applies. For example, to define a window:

TYPE WIND

The word TYPE is a signal that a new resource definition is beginning. WIND
refers to one of 12 predefined resource types - in particular, a window.

The remainder of a window definition might appear as:

,1
A Sample Window
4020300350
Visible GoAway
0
0

The second line contains a space, followed by a comma and then a sequence
number for the window. Since it is possible to have many window definitions in the
same resource file, each must be assigned a unique sequence number. By
referring to that sequence number, the Macintosh can access the window defini­
tions in any order. The space preceding the comma is required.

The text of the window title appears directly below the sequence number. It
should not be in quotes. Even if you are defining a window type that doesn't have a
title, it is useful to include one anyway simply for documentation.

The coordinates of the window's boundary rectangle follow immediately on the
next line, separated by spaces. Their order is top, left, bottom, right.

172 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The fifth line of a window definition indicates whether the window is visible or
invisible and whether or not it should have a GoAway box. Use the appropriate
word (Visible, Invisible, GoAway, noGoAway), though only the first character is
actually used by the Macintosh.

A resource file will not accept the symbolic addresses assigned to window
resource ID's in the ToolEqu.D file. Therefore, on the sixth line of a window
definition you must use the numeric values to indicate what type of window should
be drawn. The 0 in the example above refers to a standard document window
(documentProc).

The final line of the window definition contains the window's reference value. If
no reference value is needed, use 0 as a placeholder.

Once a resource file has been created by the Editor, it must be compiled using
RMaker. Enter RMaker either by transferring to it from the Editor or by double­
clicking on its icon from the Finder. Once you "open" a resource source file, the
compilation proceeds automatically. A successful compilation produces a binary
file with the name specified on the first line of the resource file's source code (e.g.,
the original compiled resource file for the video tape index was Tapes.Rsrc).

Before an application program can use the information in a separate resource
file, that file must be opened. Therefore, immediately after initializing all the manag­
ers, open the resource file the program will be using. The routine that does so,
OpenResFile, is part of the Resource Manager. The calling sequence for
OpenResFile is:

FUNCTION OpenResFile (fileName: Str255) : INTEGER;

OpenResFile returns an integer which contains a reference number for the
file. It is rarely used. Nevertheless, since the reference number is left on the stack,
you must be sure to remove it after calling the routine, since an extra parameter left
on the stack will disrupt stack operations.

The sequence to open the separate resource file for the video tape index
appears as:

CLR
PEA
_OpenResFile
MOVE

- (SP) ;space for result
'Tape.index:Tapes.Rsrc' ;name of resource file

(SP)+,DO ;discard unused result

Once a window has been defined in a resource file, creating it from an applications
program is very straightforward. The routine to use is GetNewWindow:

SETIING UP THE DESKTOP: WINDOWS AND MENUS 173

FUNCTION GetNewWlndow (windowlD: INTEGER; wStorage: Ptr;
behind: WindowPtr) : WindowPtr;

windowlD refers to the sequence number assigned to the window definition in
the resource file. The other parameters are exactly the same as those for
NewWindow: wStorage is a pointer to where the window record will be stored,
behind determines the window's placement on the screen, and WindowPtr is the
window pointer result.

To create the window defined by the sample window definition above (assum­
ing it has a windowlD of 1), you would code:

CLR.L -(SP)
MOVE #1, - (SP)
PEA wStorage
MOVE.L #- 1, - (SP)
_GetNewWlndow
LEA WindowPointer ,AO
MOVE.L (SP)+ ,A 1
MOVE.L A 1,(AO)

;space for window pointer result
;window ID
;pointer to storage for window record
;put this window in front

;get address for window pointer
;retrieve window pointer from stack
;store window pointer

The video tape index program uses seven different windows. The portion of
Tapes.R that contains the window definitions appears in Listing 7.1. Note that
TYPE WIND is not repeated. Once RMaker has encountered a single TYPE
statement, it assumes that all resource definitions that follow are of the same type
until another TYPE appears.

Each window has its unique sequence number. While sequence numbers may
not repeat within the same type of resource, they may be duplicated within another
type (e.g., the eight menus that the program uses are numbered 1-8 even though
the windows are numbered 1-7).

The main window is a standard document window (see Figure 7 .4) with the title
Video Tape Index. It acts more or less like a placemat for the remaining windows,
which hold text as it is entered or displayed. Windows 2-6 are plain document
windows (the window resource ID is 2). Though these windows have no titles when
drawn, the resource file contains titles so the windows can be easily identified. The
seventh window is another standard document window.

How do you figure out the coordinates for the window boundaries? Unfortu­
nately, there is no easy way. Trial and error generally works best. The boundaries
of the video tape index text windows changed six or seven times before they were
properly placed. Making such changes with the definitions in a resource file is
quick and easy; doing it with window definitions in an application is tedious and
time consuming.

174 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 7.1 Resource Templates for Video Tape Index Windows

TYPE WIND
'1

Video Tape Index
4010300500
visible NoGoAway
0
0

,2
Tape Name
50 240 70490
visible NoGoAway
2
0

,3
Producer
75 240 95 415
visible NoGoAway
2
0

,4
Date
100 240 120 283
visible NoGoAway
2
0

,5
Rating
125 240 145 269
visible NoGoAway
2
0

,6
Tape Number
150 240 170 276
visible NoGoAway
2
0

,7
Annotation
205 20 280 490
visible NoGoAway
0
0

;; window tempates follow
;; sequence number

;; title
;; boundary rectangle
;; visible but no GoAway Box
;; window type (documentProc)
;; reference value

;; sequence number
;; title for documentation only

;; window type (plainDBox)

SETIING UP THE DESKTOP: WINDOWS AND MENUS 175

,. a Eclit Enter

Tepe Name:

Producer /Distributor:

Phi n Document Boxes
(pleinDBox)

Date of Release:

Rating:

Tape Number:

Annotation

Standard Document Windo"'•
(document Proc)

Figure 7.4 Window Types Used by the Video Tape Index Program

Programming
Technique - Making a
Resource File Part of

Program Code

While an application is being developed it is convenient to keep the resource
file separate from the program code; such an arrangement facilitates changes in
the resource definitions. Once an application is completely debugged and its
resource definitions no longer changing, the resources can be linked into the
application itself. To make resource definitions parts of an application, do the
following:

176 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

1. Rename the RMaker output file so that it has a .REL extension (e.g., the video
tape index resource file Tapes.Rsrc was recompiled as TapesRsrc.REL).

2. Remove the call to OpenResFile from the application's source code and
reassemble the application.

3. Add the following to the application's Linker control file after the names of all
program modules:

/Resources
ResourceFileName. REL

When modified to include its resource file in program code, the video
tape index's Linker control file appears as:

Tapes.REL ;assembled version of program code
PrLink.REL ;needed to do printing (see Chapter 10)

/Resources
TapesRsrc.REL ;compiled version of resource file

$

4. Re-link the application

Once the resource file is linked to the program code, the separate resource file
no longer needs to be present on the same disk as the application. Note also that
this procedure significantly lengthens the linking process and therefore should
really be the last step in preparing an application.

Manipulating Windows
If you have run the videotape index program, you will have noticed that as you

select an option from the main Options menu, the title of the main, background
window changes to match the option selected. The text windows - hidden when
the program begins - appear. Whenever you select Quit from within one of the
program functions, the text windows disappear and the main window's title reverts
to Video Tape Index. These functions are accomplished with a few of the many
routines that permit the manipulation of windows once they have been created.

Changing a Window's Title
Changing a window's title is accomplished with the SetWTitle routine:

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

SETIING UP THE DESKTOP: WINDOWS AND MENUS 177

To use it, move the appropriate window pointer to the stack and then push a
pointer to a string for the title. For example, changing the video tape index's main
window's title from Video Tape Index to Enter New Titles and Annotations
requires:

MOVE.L
PEA
_SetWTitle

MainWindowPtr, -(SP)
'Enter New Titles and Annotations'

Making Windows Appear
and Disappear

It is possible, at any time, to make any window visible or invisible. This does not
change the position of the windows relative to one another; it merely affects
whether or not they can be seen.

To make a previously invisible window visible, use:

PROCEDURE ShowWindow (theWindow: Ptr);

Move the window pointer onto the stack and then call the routine. For example:

MOVE.L SomeWindowPtr, -(SP)
_ShowWindow

Using ShowWlndow on a window that is already visible will have no effect.
The routine to make a previously visible window invisible is HideWindow:

PROCEDURE HideWindow (theWindow: Ptr);

Changing a Window's
Position in the Plane

How much of a window is visible also depends on which other windows are in
front of it. Two routines, BrlngToFront and SendBehind directly affect window
position.

BringToFront will make the window in the procedure call the front-most
window on the screen:

PROCEDURE BringToFront (theWindow: Ptr);

SendBehind can place a particular window behind all other windows or
behind any other window on the desktop:

PROCEDURE SendBehind (theWindow: Ptr;
behindWindow: Ptr);

178 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The parameter theWindow is a pointer to the window that should be moved.
behindWindow is a pointer to the window behind which theWindow should be
placed. If behlndWindow is 0, then theWlndow will be sent to the very back.

BringToFront and SendBehind do not, however, make a window active. As
stated in Chapter 1, regardless of how many windows occupy the screen at any
given time, only one can be active. An active window is highlighted, though the
specifics of the highlighting depend on the type of window. For example, for
standard document windows, highlighting means that the title will appear in the title
bar surrounded by horizontal lines. When a standard document window is inac­
tive, the title bar still contains the title but the horizontal lines disappear. Drawing
can only occur in active windows.

The routine SelectWindow is the best way to activate a window:

PROCEDURE SelectWindow (theWindow: WindowPtr);

A call to SelectWindow will do the following:

1. Unhighlight whatever window was most recently active;

2. Bring the window being activated to the front (i.e., does the same thing as
BringToFront);

3. Highlight the window; and

4. Let the program know that one window is deactivated and another activated
(this generates two "events," which are discussed in Chapter 8).

Whenever possible, it is better to use SelectWindow rather than
BringToFront. You should also not use SendBehlnd to deactivate a window,
since using SelectWlndow takes care of it for you.

The Video Tape Index program uses repeated calls to SelectWindow to
manage its windows. If the main window is brought to the front by SelectWlndow,
it effectively hides the text entry windows since it is so much bigger. Therefore,
each time the program returns from a subroutine that performs one of the Options,
it executes:

MOVE.L MainWlndowPtr, - (SP)
_SelectWindow

Selecting each of the text entry windows in turn brings them in front of the main
window. The actions which follow involve set-up for text entry and will therefore be
discussed in detail in Chapter 9.

Preparing Windows That
Will Change Size

If an application needs to give the user the ability to size a window, that window
should contain a grow icon (two overlapping squares). In document windows, the

SETIING UP THE DESKTOP: WINDOWS AND MENUS 179

grow icon always appears in the lower right-hand corner of a window. A grow icon
is displayed by the routine DrawGrowlcon:

PROCEDURE DrawGrowlcon (theWindow: WindowPtr);

If the window indicated by theWindow (a pointer to the appropriate window
record) is active, DrawGrowlcon will draw the outline of the grow icon area, the
icon itself, and the outline of the area that should contain scroll bars for that
window. If the window is inactive, only the grow icon area and the scroll bar areas
will be drawn.

For details on how to use the grow icon to size windows, see the section in
Chapter 8 on handling mouse down events in grow regions.

Setting Up Scroll Bars
One of the things that the Macintosh does very well is scrolling through large

documents. The scroll bars that provide that facility are grouped with buttons and
check boxes under the heading of controls. Controls are graphics images that
allow the user to control program action in some way.

Most controls, like buttons and check boxes, only appear in dialog and alert
boxes. They are handled by Dialog Manager routines (see Chapter 9). Generally,
the only controls an application will deal with directly are scroll bars.

Information about a control is stored in a control record that is located by a
handle:

ControlRecord = RECORD

END;

nextControl:
contrlOwner:
contrlRect:
contrlVis:
contr!Hilite:
contrlValue:
contrlMin:
contrlMax:
contrlDef Proc:
contrlData:
contrlAction:
contrlRefCon:
contrlTitle:

Control Handle;
WindowPtr;
Rect;
BOOLEAN;
BOOLEA!'I;
INTEGER;
INTEGER;
INTEGER;
Handle;
Handle;
ProcPtr;
LON GI NT;
Str255;

next control
control's window
boundary rectangle
TRUE if visible
TRUE if highlighted
current value
minimum value
maximum value
definition function
used by contrlDef Proc
default action proc.
reference value
title

While an application will not need to retrieve data from most of these fields,
there are two that are of some importance. Like windows, controls can be assigned
arbitrary reference values (contrlRefCon) by an application. Since it may be
necessary to identify what type of control a control record describes, the reference
value can be used to hold that information. For example, some of the sample code

180 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

in Chapter 8 must distinguish between vertical and horizontal scroll bars. There­
fore, each was assigned a unique reference value. Remember that reference
values are assigned arbitrarily by an application and have no meaning to the
system other than what an application gives them.

The first parameter in the record, nextControl, is also of some importance.
Controls belong to windows. The handle to the control record of a window's first
control will be stored in the wControlLlst parameter of the window record. The
rest of a window's controls are linked together in a chain through the nextControl
field of the control record. In other words, the handle to the next control in the list is
found in the nextControl field. A window's last control will have a nextControl
value of 0. A window without any controls will have a wControlList value of 0. This
type of organization is known as a linked list. An application can find all of a
window's controls by threading its way down the list, from one nextControl field to
the next.

Scroll bars, like windows, can be defined either within an application or from a
template in a resource file. Using a resource file is the simpler of the two pro­
cedures.

The scroll bars in the program that created Figure 7.3b were defined with the
following entries in a resource file:

TYPECNTL
,1

horizontal
2450 261 316
Visible
16
0
01001

,2
vertical
0316 245331
Visible
16
0
01001

;unique resource ID#
;title for documentation only
;boundary rectangle
;visible or invisible?
;procedure ID that stands for scroll bar
;application-defined reference value
;minimum maximum value

;unique resource ID#
;title for documentation only
;boundary rectangle
;visible or invisible?
;procedure ID that stands for scroll bar
;application-defined reference value
;minimum maximum value

Control templates have a type of CNTL. As with windows, each control in the
resource file must be assigned a unique number, its resource ID, which is the first
line in the template. The space preceding the comma is required.

The third line may contain the title of the control. Since scroll bars do not have
titles, that line is ignored by the system and can therefore be used just as documen­
tation to identify the control. The third line in the control template is the boundary
rectangle that defines where the control should be drawn. Coordinates are
expressed in the local coordinate system of the window in which the control will
appear. For scroll bars, the boundary rectangle should be 16 pixels wide. A

SETIING UP THE DESKTOP: WINDOWS AND MENUS 181

horizontal scroll bar will begin at the right edge of the window and end 15 pixels
before its left edge, leaving room for the grow icon (a 15x15 pixel square). Vertical
scroll bars will begin at the top of the window and end 15 pixels above the bottom,
again to leave room for the grow icon.

As discussed earlier in this chapter, the window in Figure 7.3b has global
coordinates of 40, 20, 300, 350. It is therefore 261 pixels high (top - bottom + 1)
and 331 pixels wide (right - left + 1), giving it local coordinates of 0, 0, 261, 331.
These latter coordinates were used to determine the boundary rectangles of the
scroll bars. For example, the horizontal scroll bar has a top coordinate of 245 (261
- 16) to accommodate the width of the scroll bar, a left coordinate of 0 so the scroll
bar will begin at the right edge of the window, a bottom coordinate of 261, and a left
coordinate of 316 (331 - 15) to accommodate the grow icon.

Line four in the control template indicates whether the control is initially visible
or invisible. Visible controls will be drawn when the control is created. The fifth line
indicates what type of control the definition is for. Scroll bars have a procedure ID
of 16. As with windows, the procedure ID's must be used as integers; the symbolic
addresses assigned to them in the Tool Box equates file cannot be substituted.

Line six contains the optional reference value. This longinteger can be
assigned any value in the resource file and accessed and changed while the
application is running. If you will not use a reference value, simply assign it a value
ofO.

The three parameters in the final line of the control template are the minimum
value the control can take, the maximum value the control can take, and its initial
value. The initial value for scroll bars should always be 1; this will ensure that the
scroll bars are drawn and active when the control is created. A scroll bar is an
analog scale; each movement within it represents movement of a certain percent­
age of a document. Therefore, its minimum value should be set to O or 1. The
maximum value is rather arbitrary, but the larger the maximum value, the greater
the sensitivity of the scale. For example, if a scroll bar has a range of Oto 10, then
the document will have, in effect, 10 positions to which it can be scrolled, each
presenting a move of 10% through the document. On the other hand, a maximum
value of 100 divides the scale into 100 pieces, permitting far smaller movements
within the document.

Once a control template has been defined in a resource file and the resource
file successfully compiled with RMaker, the control is created by GetNewControl:

FUNCTION GetNewControl (controllD: INTEGER; theWindow:
WindowPtr) : ControlHandle;

GetNewControl returns a longinteger result which is a handle to the control
record. All the other routines which affect controls need the handle to locate the
record. Therefore, the control handle must be saved after it is pulled from the stack.

The parameter controllD is the resource ID number from the first line of the
control template in the resource file. The second parameter is a pointer to the
window in which the control will be drawn.

182 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The program that drew Figure 7 .3b created scroll bars with the following code:

CLR.L -(SP)
MOVE #1, - (SP)
MOVE.L WindowPtr, - (SP)
_GetNewControl

;space for control handle result
;the horizontal scroll bar
;window pointer

LEA BottomControlHandle,AO
MOVE.L. (SP)+ ,(AO) ;retrieve handle

CLR.L - (SP) ;space for control handle result
MOVE #2, - (SP) ;the vertical scroll bar
MOVE.L WindowPtr, -(SP) ;window pointer
_GetNewControl

LEA
MOVE.L

SideControlHandle,AO
(SP)+,(AO)

The above sequence will only display the control bars. It does not take care of
moving them or moving the text in the window. For intercepting mouse down
events in scroll bars, see Chapter 8. Chapter 9 includes a discussion of scrolling
text within a window.

Closing and Disposing of
Windows

If an application needs to remove a window from the screen (rather than
making it invisible or hiding it behind another window), there are two routines that
will do so. CloseWindow is used when an application allocated its own storage for
the window record:

PROCEDURE CloseWindow (theWindow: WindowPtr);

This routine removes the window from the screen and deletes it from the applica­
tion's window list. Since storage for the window record was allocated by the
application, that block of storage is unaffected when the window is closed. Any
other data structures associated with the window are deleted from memory.

On the other hand, if an application did not give the window creation routine a
storage area for the window record, but rather indicated that the window record
should be placed on the heap (a wStorage value of 0), DlsposWlndow is used to
remove it:

PROCEDURE DlsposWlndow (theWlndow: WlndowPtr);

DlsposWlndow will not only remove the window from the screen and the window
list, but will release the memory used to store the window record.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 183

Once a window has been closed with either CloseWlndow or DisposWindow, it
cannot be used again unless it is redefined by another call to NewWindow or
GetNewWindow.

Creating Menus
Like windows, menus can be created either completely within an application

program, or they can be retrieved from a template in a resource file. Creating
menus within an application is far more cumbersome than creating a window
within an application. It is far easier to always use a resource file for menu
definitions.

Defining Menus
Resource file menu definitions begin with:

TYPE MENU

and, like window definitions, are followed by a second line containing a sequence
number unique to that menu. (As mentioned earlier, sequence numbers need only
be unique within resource type.)

The complete definition for the Video Tape Index's Options menu appears as:

TYPE MENU
,3

Options
Enter
Change
Delete
Select
Print
Qult/Q

The third line of the definition is the window's title. The remaining lines are the
options that will appear when the window is pulled down. The I after Quit indicates
that Quit has a keyboard equivalent. When the menu is pulled down, Quit will
appear with a cloverleaf- Q to its right and the Macintosh will interpret that key
sequence as equivalent to selecting Quit from the menu with the mouse. Use as
many keyboard equivalents for as many menu items as you wish, but the equiv­
alents should be unique.

184 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

All Macintosh applications support at least two, and often three, standard
menus. The Apple menu (its title appears as an apple symbol) provides access to
the Macintosh's built-in desk accessories; these should be available in all applica­
tions. Some of the desk accessories also require the ability to edit text. Therefore,
applications should have an Edit menu, even if the remainder of the program does
no text editing at all. Finally, most applications will have a File menu that handles
the opening, saving, printing, and closing of files.

To define the Apple menu, use:

TYPE MENU
,1

\ 14

The \ indicates that the title of the menu is not a character string, but an ASCII
code. In the Macintosh's extended ASCII character set, 14 represents the solid
apple symbol. No menu items are part of this definition; they are added later.

An Edit menu also has a standard format:

TYPE MENU
,2

Undo/Z
(-
Cut/X
Copy/C
PasteN
Clear

The fourth line of this definition((-) prints a line across the width of the menu.
Note then when numbering the items in a menu, this line counts as an item, even
though it's not an option. The line will be printed unhighlighted (dimmed, or light­
grey). A left parenthesis preceding any menu item indicates that the item should be
dimmed. The order of the items in an Edit menu and their keyboard equivalents are
standard and should be used as shown if your application is to conform to the
standard Macintosh user interface.

The remainder of the video tape index's menu templates appear in Listing 7.2.
Note that the keyboard equivalents have been selected to be as mnemonic as
possible (e.g., cloverleaf-A stands for "Add a new record"). Also notice that while
cloverleaf- Q stands for Quit in all of these menus, no more than one of them is
present in the menu bar at any given time.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 185

Listing 7.2 Templates for Application-Specific Menus Used in the Video Tape Index

TYPE MENU
,3

Options
Enter
Change
Delete
Select
Print
Quit/Q

,4
Enter
Add/A
Quit/Q

,5
Change
Find Record/F
Save Change/S
Abandon Change/A
Quit/Q

,6
Delete
Find Record/F
Delete/D
CanceVC
Quit/a

,7
Select
Display All
Display All Titles
Select One Title
Select by Producer
Select by Date
Select by Rating
Select by Tape Number
Quit/Q

,8
Print
Print All
Print All Titles
Quit/Q

;; menu templates follow
;; sequence number

;; menu title
;; menu item #1

;; menu item #2
;; menu item #3
;; menu item #4
;; menu item #5
;; menu item #6 (has keyboard equivalent -

cloverleaf-Q)

;; sequence number
;; menu title
;; menu item #1 (with keyboard equivalent)
;; menu item #2 (with keyboard equivalent)

186 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Defining the Menu Record
Just as information about windows is stored in window records, information

about menus is stored in menu records. Before attempting to create a menu
record, though, you must first initialize the Menu Manager with:

_lnitMenus

(The routine has no parameters.) This initialization should be placed directly after
lnltWindows.

The application must also allocate storage space for a handle to each menu
record that the program will create. Since a menu handle contains a pointer to the
menu record, it requires a longword of space. For example:

AppleHandle DC.L 0

will set aside space for the handle to the apple menu (the one that gives access to
the desk accessories).

Assuming that space has been allocated for the menu handle, a menu record
is created by the GetRMenu routine:

FUNCTION GetRMenu (resourcelD: INTEGER) : MenuHandle;

resourcelD refers to the sequence number you assigned to a particular menu.
The function call returns the handle to the menu record. It also automatically adds
menu items where menu items are specified in the resource definition. (If you were
defining a menu within an application, a call to another routine would be required
to add menu items to the menu record.)

To create the Video Tape Index's Apple menu, the strategy is:

CLR.L -(SP)
MOVE #1, - (SP)
_GetRMenu

LEA AppleHandle,AO
MOVE.L (SP)+ ,(AO)

;space for menu handle result
;menu number 1

;address to store menu handle
;pull handle off stack and store

The menu handle is required by most Manager Routines and therefore must be
recovered for subsequent use.

While menu items are automatically added to all menus that have them listed in
the resource file, the Apple menu is a special case. The desk accessories must be
added in a separate step. To understand what is happening, consider that, to the
Macintosh, desk accessories are resources, just like windows and menus. They
are stored in the system's resource file, which is opened by the system whenever
any application is executed.

SETIING UP THE DESKTOP: WINDOWS AND MENUS 187

Adding the desk accessories to the Apple menu is accomplished by identifying
a type of resource (in this case DRVR) and instructing the Macintosh to find all
resources of that type and add them to the menu in question. The Tool Box routine
that does this is AddResMenu:

PROCEDURE AddResMenu (theMenu: MenuHandle;
theType: ResType);

ResType refers to a tour-character string that identifies the resource type (e.g.,
WIND identifies a window resource type and MENU a menu resource type).
Locating and appending the desk accessories requires:

MOVE.L AppleHandle, - (SP) ;menu handle on stack
MOVE.L #I DRVR I' - (SP) ;4 characters take 4 bytes
_AddResMenu

It is important to remember that while the menu records have been created,
their handles saved, and menu items added where appropriate, no menu bar has
been drawn. Getting the menu bar to appear with just the menus you want, and in
the order you want, is a two-step process.

Managing the Menu Bar
Issuing a call to the routine that draws the menu bar will display only those

menus that are part of the menu list. In fact, every menu for which a menu record
has been created does not have to be part of the menu list; in fact, only those
menus which should be displayed at any given time are members of the list.
Inserting into and removing from the menu list is the way ah application controls the
menus available to the user.

Menu list insertion is done with the lnsertMenu routine:

PROCEDURE lnsertMenu (theMenu: lillenuHandle;
beforelD: INTEGER);

The parameter beforelD refers to the position in the menu bar where the menu
referenced by theMenu (the menu handle of the menu to be inserted) should be
placed relative to other menus currently in the list. If beforelD is 0, then the new
menu will appear to the right of all others. On the other hand, if beforelD contains
the sequence number of a menu already in the menu list, the new menu will be
inserted to the left of the menu indicated by beforelD.

To delete a menu from the menu list use:

PROCEDURE DeleteMenu (menulD: INTEGER);

where menulD is the sequence number of the menu to be removed.

188 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

lnsertMenu and DeleteMenu do not affect the appearance of the menu bar.
Therefore, any time a change is made to the menu list, the menu bar must be
redrawn. The ToolBox routine:

PROCEDURE DrawMenuBar;

will take care of it. DrawMenuBar, which has no parameters, is simply called by:

_DrawMenuBar

The Video Tape Index has eight different menus (templates for six of which
appear in Listing 7.2), though no more than three are in use at any one time. The
Apple and Edit menus are always present. The third menu varies with which
section of the program is currently being executed. For example, when the
program is launched, the three menus are Apple, Edit, and Options. The
Options menu has one item for each of the program's five functions and a Quit
option.

If one of the five program functions is selected, the Options menu is removed
from the menu list. A menu corresponding to the selected function is inserted into
the list and the menu bar redrawn. For example, the following code prepares the
menu bar for adding new titles:

MOVE #3, - (SP)
_DeleteMenu

;the Options menu is #3

MOVE.L EnterHandle, - (SP) ;put handle of Enter menu on stack
CLR - (SP) ;new menu will go at end of menu list
_lnsertMenu

_DrawMenuBar ;this makes the changes visible

When the user exits the function (by selecting Quit from the function's menu),
the function menu is removed, the Options menu re-inserted, and the menu bar
redrawn. To return to the main program after entering new titles, the code is:

MOVE #4, - (SP)
_DeleteMenu

MOVE.L OptlonsHandle, - (SP)
CLR -(SP)
_lnsertMenu

_DrawMenuBar

;the Enter menu is #4

;appropriate handle goes on stack
;put menu at end of menu list

;changes only visible after this call

The Video Tape Index has no File menu, since this particular application does
not provide the user with file handling options. (See Chapter 11 for details on
Macintosh file management.)

SETIING UP THE DESKTOP: WINDOWS AND MENUS 189

Controlling the Appearance
of Menu Items

In some instances, you may wish to have a menu present in the menu bar while
some of its menu items are not available to be selected. For example, the desk
accessories which allow you to enter text support the UnDo operation. The Video
Tape Index, though, supports all the text editing functions except UnDo. There­
fore, when a desk accessory is being used, the Un Do item of the Edit menu should
be highlighted (displayed in dark type), but when the user is entering text into the
application's text windows, the UnDo item should be dimmed to indicate that it is
not available.

The procedures Disableltem and Enableltem take care of dimming and
highlighting menu items, respectively. To do so, they need two pieces of informa­
tion: which menu and what item within that menu. Therefore, they appear as:

PROCEDURE Disableltem (theMenu: MenuHandle;
item: INTEGER);

and

PROCEDURE Enableltem (theMenu: MenuHandle;
item: INTEGER);

When counting the menu items to decide what number to use for item,
remember to include lines as items. For example, UnDo is item 1 in the Edit menu,
but Cut is item 3. To disable Clear, the assembly language statements would be:

MOVE.L EditHandle, - (SP) ;put menu handle on stack
MOVE #6, - (SP)
_Disableltem

On occasion, it is appropriate to disable an entire menu without removing it
from the menu list. For example, the video tape index program disables the Edit
menu when the user is printing. Since no editing is possible during print opera­
tions, it makes little sense to have an active Edit menu. A disabled menu will appear
with its title dimmed. To disable an entire menu, call Disableltem with an item
number oto. Then call DrawMenuBarto redraw the entire menu bar. To re-enable
the menu, call Enableltem with an item number of 0 followed again by a call to
DrawMenuBar.

If you were to write a program that went this far with its menus - getting them
from the resource file, inserting the desk accessory items, forming the menu list,
and drawing the menu bar - you would discover that the menus did not pull down
to display the menu items. There is yet another Menu Manager routine that handles
pulling down the menus and registering a menu selection from the mouse. This
routine is called in response to something that happens within an application - an
event. Managing events and the actions that result from them is covered in
Chapter a.

190 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Enter

Menus have a further function which may not be instantly obvious - they can
help to establish a structure for an application program. Figure 7.5 presents a
hierarchical block diagram of the Video Tape Index program. Note that each major
program block, or module, corresponds to a separate menu. The function menus
are all subordinate to the main Options menu. The code that handles each function
is therefore written as a subroutine that can be called from the main program which
is controlled by the Options menus.

Options Menu

Change Delete Select Print
Menu - Menu - Menu - Menu - Menu -

Add new Change Delete Dis play Print
titles and existing existing titles and entire
annota- titles and titles. annota- file with
tlons annota- Annota- tions In a or with-

tions tlons left variety out
on disk. of orders annota-

tlons

Figure 7 .5 Gross Block Diagram of Video Tape Index Program Structure

SETIING UP THE DESKTOP: WINDOWS AND MENUS 191

Questions and
Problems

1. For each global window boundary rectangle below, indicate the top left and
bottom right points of its local coordinate system.

a. 10, 10,200,200
b. 40,40,500,500
c. 200, 10,250, 100

2. Assume that you want to define a standard document window with a bound­
ary rectangle of 50, 20, 275, 120. The window should be visible, have a
GoAway box, and be placed in front of any other windows already on the
screen. It can have a title of your own choosing.

A. Write the assembly language code that will define this window within a
program. Be sure to set aside storage for any data structures your code
will use. Retrieve the window pointer from the stack.

B. Write a resource file template for the same window.
C. Write the assembly language code that will create the window defined by

the template in B.

Be sure to allocate space for any necessary data structures and retrieve the
window pointer from the stack.

3. For the window defined in problem 2 write blocks of code that will perform the
following operations. (Assume that each operation is independent of any of
the others.)

A. change the title to something other than the original title
B. make the window invisible
C. make the window active
D. close the window

4. Write code to prepare the window defined in problem 2 for scroll bars:

A. write code to draw a grow icon
B. write the control templates to define vertical and horizontal scroll bars in a

resource file
C. write code to draw the scroll bars defined by the templates you wrote for

B.

192 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

5. Write a resource file template to define a standard File menu. Include options
to open a new file, open an existing file, close a file, print a file, save a file, and
quit the program. Include keyboard equivalents as appropriate. (For a
sample of how a standard File menu might appear, see Figure 1.2.)

6. Write assembly language code to create the menu defined by the template of
problem 5. Define data structures as needed. Retrieve and store the menu
handle.

7. Write assembly language_ code to insert the menu from problem 6 into the
menu list. Finish the process by redrawing the menu bar.

8. Write assembly language code to:

A disable the entire File menu from problem 6
B. disable only the options which open files

In which case must you re-draw the menu bar?

c H A p T E R E G H T

CONTROLLING
PROGRAM AGTIONS:
MSNlffiRIN6 E'v'ENTS

Chapter Objectives

1. To understand how events are used to control program actions

2. To be able to handle mouse down events in a variety of locations

3. To be able to process key down events as equivalents for menu selections

4. To understand the sequence of steps required to update a window

The System Event
Mechanism

Macintosh applications are controlled by events. An event is anything that
happens to the computer. A click on the mouse button is an event; pressing or
releasing a key on the keyboard is an event. Most events that an application
handles are those generated by users, though some are generated by the Macin­
tosh itself. The most common types of events that a program will process are:

1 . Null events - the system reports that nothing has happened since the last
time you checked.

2. Mouse down events - the mouse button was pushed.

193

194 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

3. Mouse up events - the mouse button was released.

4. Key down events - a key was pressed.

5. Key up events - a key was released.

6. Update events - something has disrupted the contents on a window and it
needs to be redrawn in some way. This type of event is posted by the system
when, for example, a window that was previously obscured by another
window is brought to the front.

7. Activate events - a text window needs to be activated or deactivated. This
type of event is posted by the system whenever you call SelectWindow.

There is a point of potential confusion with regard to activate events. While
the event is called "activate," it is generated by two distinct situations. In the
first instance, a window must be deactivated; in the other, a window must be
activated. Calls to SelectWindow produce two activate events. The first one
posted to the event queue is for the window being deactivated; the second is
for the window being activated.

8. Disk insertion events - a disk was inserted into a disk drive.

9. Abort events - cloverleaf-. was typed to abort an activity.

Other types of events include:

10. Auto-key events - generated by continuing to hold down a key.

11. Network events - relevant to an application that interacts with the Apple Talk
network.

12. 1/0 driver events (currently not used).

13-16. Four events that can be defined by an application.

These constitute the maximum of 16 possible types of events.
As events occur they are posted to the event queue in first-in, first-out order.

The nature of the events also determines to some extent the order in which they will
be detected. Activate events have the highest priority (deactivate is first, followed
by activate) and are not actually posted to the event queue. Keyboard, mouse,
disk, and abort events have the next priority. Update events come after those just
mentioned, and null events are of the lowest priority.

Wheh an event is detected, the Macintosh generates an event record for it. An
event record has five fields:

what:
message:
when:
where:
modify:

INTEGER;
LONGINTEGER;
LONGINTEGER;
Point;
INTEGER;

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 195

The what field identifies what type of event the event record represents. Event
types are represented by numeric codes. To identify what type of event has
occurred, an application must compare the contents of the what field of the event
record with the type codes for whatever events the program needs to trap. If
SysEqu. Dis INCLUDEd in an application, you can avoid using the numeric codes
and reference the event types by their symbolic addresses. For example:

nullEvt
mButDwnEvt
updatEvt
activateEvt

represents the code for a null event;
represents the code for a mouse down event;
represents the code for an update event;
represents the code for an activate event.

Consult Table 8.1 to see the remainder of the symbolic addresses associated with
event types. Using the symbolic addresses rather than the type codes makes a
program more readable and easier to debug.

The meaning of the message field depends on the type of event being posted:

1 . For keyboard events - the key that was pressed. The low-order byte
contains the ASCII code for the key; the high-order byte indicates whether
any modifier keys, such as the shift, cloverleaf, or option keys, were also held
down.

2. For update and activate events - a pointer to the window where the event
occurred

3. For disk insert events - the drive number where the event occurred

4. For abort events - the key that was pressed. The low-order byte contains the
ASCII code for the key; the high-order byte identifies any modifier keys that
were also held down.

5. For mouse and null events - the field has no meaning

An application commonly compares the message field to its own window pointers
to determine which windows need updating and activating. message is used less
frequently to directly read the keyboard for text entry; that function is handled by
the TextEdit routines discussed in Chapter 9.

when indicates the time when an event was posted. For most applications, this
field is of less importance than any of the others.

where gives the coordinates of the mouse when the event was posted. These
coordinates are global (i.e., expressed in terms of the 512 by 342 coordinate grid
imposed on the entire screen). where is used in conjunction with routines that
identify where a mouse down event occurred.

modify holds information about the state of a number of Macintosh keys; the
modify word works as a series of flags. If set, each flag indicates that a particular
key was pressed. modify monitors the mouse button, the cloverleaf key, the shift
key, the caps lock key, and the options key. It also records whether an "activate"
event represents the deactivating or activating of a window. Take a look, at Table
8.2 to see the bit assignments in modify.

196 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Event
Symbolic Address TuQe. Comment

nullEvt
mButDwnEvt
mButUpEvt
keyDwnEvt
keyUpEvt
autoKeyEvt
updatEvt
disklnsertEvt
activateEvt
abortEvt
netWorkEvt
ioDrvrEvt
app1 Evt
app2Evt
app3Evt
app4Evt

0 no event has occurred
1 mouse down
2 mouse up
3 key down
4 key up
5 auto key
6 update (note that updatEvt is not a misprint)
7 disk insertion
8 activate
9 abort (pressing cloverleaf-.)
10 network (Appletalk)
11 1/0 driver (not used)
12 application defined
13 application defined
14 application defined
15 application defined

Table 8.1 Symbolic Addresses Assigned to Event Types in the System Equates File

Symbolic Address

active Flag
change Flag
btnState
cmdKey
shiftKey
alphalock
option Key

Bit
Number

0
1
7
8
9
10
11

Comment

Set if window is activated, cleared if deactivated
Set if system window changes, cleared otherwise
Set if mouse button down, cleared if up
Set if cloverleaf key was pressed, cleared otherwise
Set if shift key was pressed, cleared otherwise
Set if caps lock is engaged, cleared otherwise
Set if optionkey was pressed, cleared otherwise

Table 8.2 Symbolic Addresses Associated with the Bits in an Event Record's Modify Word

When retrieving events from the event queue, an application can choose to
receive all events in order or only events of a specific type. Events can be filtered
out by using a specific event mask. It is no accident that there are 16 possible event
types. Each type corresponds to one bit in an integer, or word, length event mask.
For example, if bit O is set, then the mask will include null events. If bit 1 is set, the
mouse will also include mouse down events. The bit positions that represent the
various types of events appear in Table 8.3.

The Macintosh will accept a mask of -1 to select every event, the mask which
should be used in most instances. In other words, an application should retrieve

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 197

every event from the queue and then compare the what field of the event record
against the types of events the application wishes to process.

In some special cases it may be necessary to construct a special mask. For
example, when managing its windows and TextEdit records, the Video Tape Index
program must remove some spurious activate and deactivate events from the
event queue. Table 8.3 indicates that activate events are selected when bit 9 is set.
Therefore, the mask used to remove those events is % 0000000100000000 or
more simply, 256.

Bit Number

0
1
2
3
4
5
6
7
8
10
11
12 - 15

Event Type

No event reported
Mouse down
Mouse up
Key down
Key up
Auto key
Update
Disk insertion
Activate
Network
Device driver
Application defined

Setting any given bit in a mask word will instruct GetNextEvent to report events of that type. For
example, if bits 1 and 3 are set, GetNextEvent will report only mouse down and key down
events. A mask of -1 will select all types of events.

Table 8.3 The Structure of an Event Mask

As part of the initialization process, an application should flush the event queue
to remove any events that may have been posted prior to the application's
execution. Usually this occurs immediately after the various managers have been
initialized with a call to FlushEvents. FlushEvents is an operating system routine:

PROCEDURE FlushEvents (eventMask, stopMask: INTEGER);

The event mask is constructed as described above. The stop mask says "return all
events that meet the event mask until an event that matches the stop mask is
encountered." In most cases, use a stop mask of 0 to indicate that all events
specified by the event mask should be removed.

FlushEvents expects to find both of its parameters in DO - the event mask in
the low-orde~ word and the stop mask in the high-order word. It is easiest to load
the register with one MOVE statement:

MOVE.L $0000FFFF,DO

198 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

This installs a stop mask of O and an event mask of -1 (the $FFFF represents -1 as
a two's complement integer).

The procedure is then called by using:

_Flush Events

Normally, FlushEvents is called only once, at the start of an application.

Retrieving Events
Before an application can retrieve events from the event queue, it must

prepare storage for the event record. The event record data structure can be
defined to be part of the application itself (using DC) or assigned to the applications
globals area (with OS). The Video Tape Index places its event record storage
within the program:

Event Record
What DC 0
Message DC.L 0
When DC.L 0
Point DC.L 0
Modify DC 0

Using EventRecord will reference the entire 16-byte data structure. Each field can
also be referenced separately using its own symbolic address.

Programmers who wish to keep all read/write storage in the applications
globals area should use:

EventRecord DS.B 16

which will set aside the required 16-byte area. The start of the fields within the
record are then handled as offsets. They are part of the predefined equates in
SysEqu.D (e.g., evtNum, evtMessage, etc.).

Events are retrieved from the event queue with the ToolBox routine GetNext­
Event:

FUNCTION GetNextEvent (eventMask: INTEGER; VAR theEvent:
EventRecord): BOOLEAN;

GetNextEvent returns a boolean that is set to false if the event is one that should
be handled by the system (and not by the application program) or a null event. The
event mask is as discussed above. Only those events which fit the mask will be
reported by the call to GetNextEvent.

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 199

The event details are returned in the event record data structure. It is passed as
a variable parameter rather than placed on the stack as the function result.
Therefore, a call to GetNextEvent appears as:

CLR -(SP)
MOVE # - 1, - (SP)
PEA EventRecord

_GetNextEvent

;space for boolean result
; - 1 Is the preset mask for all events
;since EventRecord is a variable parameter,
;push pointer

Calls to GetNextEvent form the basis of the loop that controls selection of
program actions. Figure 8.1 shows you pseudocode for an event loop. In general,
the strategy is to begin by checking the event queue for an event. If none is
reported, the loop simply returns to check again. If an event was posted, then the
application must isolate the event number from the event record and compare it to
the numbers representing each type of event the program must handle. When a
match is discovered between a posted event and one the application will deal with,
the program should branch to a module that handles that event. In this way, the
event loop determines the structure of the program.

Repeat

Retrieve an event from event queue;

If an event has been posted then

Retrieve event number from event record;

Repeat

If event number equals an event this program monitors then

Branch to portion of program that handles that event

Until event number equals an event this program monitors OR all
possible event numbers have been checked;

Until users selects Quit.

Figure 8.1 Pseudocode for an Event Loop

The event loop in the Sample program is deceptively simple. Since that
program's only function is to open a window, print a string, and wait for a key or
mouse button press, the event mask selects only those two events (a mask of

200 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

%0000000000111110); the program either finds a mouse or keyboard event, or it
doesnl:

Event CLR - {SP) ;space for boolean result
MOVE #%0000000000111110, - {SP) ;event mask
PEA EventRecord ;pointer to event record storage
_GetNextEvent

MOVE {SP)+ ,DO
CMP #0,DO
BEQ Event

RTS

;recover boolean result

;no event - loop to keep checking

;return to Finder

The reason that this loop is so simple is that it can detect the occurrence of a
desired event merely by checking the boolean result of the call GetNextEvent.
Since the action to be taken is identical whether the event is a key or mouse button
press (return to the Finder), there is no need to differentiate between the two types
of events. In terms of meaningful Macintosh applications, this is an unrealistic
situation.

The Video Tape Index must handle four different types of events. Its main event
loop, which traps three types of events, appears in Listing 8.1. Note that this event
loop uses an event mask of -1 to select all types of events and then makes
comparisons with specific event numbers to identify the particular events it must
handle.

Listing 8.1 Video Tape Index Main Event Loop

Event
CLR -(SP)
MOVE #-1,-(SP)
PEA EventRecord
_GetNextEvent

MOVE (SP)+,DO
CMP #0,DO
BEQ Event

MOVE What,DO

;Space for boolean result
;Mask for keyboard - select all events
;Place to receive event info
;Get next event from queue

;Recover event result

;If no event, branch to look again

;Recover event ID
CMP #mButDwnEvt,DO ;Was mouse button pressed?
BEQ MouseEvent

CMP #keyDwnEvt,DO ;Was key pressed?
BEQ KeyEvent

BRA Event ;Look for another event

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 201

Each of the program's function modules also have their own event managers.
These trap all four kinds of events: mouse down, key down, update, and activate.
Code for the module which finds and displays data can be found in Listing 8.2. As
you can see, the structure of this loop is essentially the same as the main event
loop. This is one situation where repeated code is not necessarily a negative
characteristic.

Listing 8.2 Function Event Loop from the Video Tape Index Program

SelectEvent
CLR -(SP)
MOVE #-1,-(SP)
PEA EventRecord
_ GetNextEvent

MOVE (SP)+,D0
CMP #0,00
BEQ Select Event

MOVE What, D0
CMP #mButDwnEvt, D0
BEQ SelectMouseEvent

CMP #keyDwnEvt, D0
BEQ SelectKeyEvent

CMP #activateEvt, D0
BEQ SelectActivateEvent

CMP #upclatEvt, D0
BEQ Select Update Event

BRA Select Event

;space for event type
;event mask of -1 selects all events
;place to store event record
;get next event from event queue

;recover boolean result
;0 result means no event occurred
;if no event, branch to keep looking

;recover event type
;mouse down event?
;branch to handle event

;key down event?
;branch to handle event

;activate event?
;branch to handle event

;update event?
;branch to handle event

;some unwanted type of event occurred - must
;keep checking

Though it is possible to write a significant Macintosh application with only one
event loop, in most cases doing so creates "spaghetti code," code that is so
intertwined with unconditional branches (JMP and BRA) that it is virtually impossi­
ble to follow and even more difficult to modify and debug. The Video Tape Index
opts for clear program structure over the tightest, shortest possible code. U nfortu­
nately, such a choice may not be viable if you are writing a large application for the
128K Mac.

202 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Handling Mouse Down
Events

The primary task with which an application is faced when a mouse down event
occurs is figuring out where the mouse button was pressed. The three major
locations an application usually examines are:

1. the menu bar

2. the content area of a window defined by an application

3. a system window (one created, for example, by a desk accessory)

In some applications, the mouse button might also be pressed in the drag region of
a window, in a GoAway box, or in a grow box.

The Window Manager routine FindWindow identifies where the mouse button
was pressed:

FUNCTION FindWindow (thePt: Point; VAR whichWindow:
WindowPtr) : INTEGER;

thePt refers to the screen coordinates where the mouse button down event
occurred. It can be obtained from the point field of the event record. On function
return, the variable parameter whichWindow will contain the pointer to the
window record of the window posting the event. The integer result contains a code
that corresponds to the evenfs generai location (e.g., 1 = in the menu bar, 2 = in a
system window, etc.). Symbolic addresses for each of the result codes are estab­
lished in the ToolEqu.D file; the complete set also also appears in Table 8.4

A call to Find Window therefore appears as:

Symbolic Address

in Desk
inMenuBar
inSysWindow
inContent
in Drag
inGrow
inGoAway
in Button
inCheckBox
inUpButton
inDownButton
inPageUp
inPagebown
in Thumb

Result
~ Comment

0 not in a window or the menu bar
1 in the menu bar
2 in a system window (e.g., a desk accessory)
3 in the content area of an application definewindow
4 in the drag region of an application defined window
5 in the grow region of an application defined window
6 in the GoAway box of ari application defined window
1 0 in a push button
11 in a check box
20 in up button area of a scroll bar
21 in down button area of a scroll bar
22 in page up area of a scroll bar
23 in page down area of a scroll bar
129 in thumb area of a scroll bar

Table 8.4 Symbolic Addresses Associated with FindWindow Result Codes

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 203

A call to Find Window therefore appears as:

CLR
MOVE.L
PEA
_FindWindow

-(SP)
Point, - (SP)
WhichWindowPtr

;space for integer result
;a field from the event record
;must be defined w!th DC or OS

The integer result should then be immediately pulled off the stack:

MOVE (SP)+ ,DO

The code in DO can then be compared against the codes for locations the
application needs to monitor. For example:

CMP #inMenuBar,DO

will determine whether the mouse button was clicked anywhere in the menu bar.
The constant inMenuBar is defined in the ToolBox equates file.

FindWindow also returns location codes for:

1. in a system window

2. in the content region of an application window

3. in the drag region of a window (the title bar)

4. in the grow region

5. in a GoAway box

All of these locations have constants defined for them in the ToolBox equates file.
When a match is found with a location code, the application should branch to

handle that particular situation. Each location requires that the program execute a
different series of actions. They are discussed separately below.

Mouse Down Events in
Menu Bars

There is a single ToolBox routine MenuSelect, that pulls down menus (dis­
playing the menu items), highlights the menu title, and records which menu and
which item within that menu were selected. Any time a program records a mouse
down even in the menu bar, it should call MenuSelect:

FUNCTION MenuSelect (startPt: Point) : LONGINTEGER;

MenuSelect's longinteger result has two parts. The high-order word contains the
sequence number of the menu. This is the number assigned to the menu in the

204 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

resource file. The low-order word contains the number of the selected menu item.
(Remember: when numbering menu items, things such as lines across the menu,
like that beneath UnDo in an Edit menu, count as items as far as MenuSelect is
concerned.) The parameter startPt is again the Point field from the event record.

A call to MenuSelect therefore appears as:

CLR.L -(SP)
MOVE.L Point, - (SP)

;space for longinteger result
;from the event record

_MenuSelect

MenuSelect's result should be pulled from the stack and put into two integer
storage locations. Making this work properly takes a bit of care. First, two integer
locations should be defined using either DC or OS:

WhichMenu DC 0
Whatltem DC O

These declarations should be placed physically next to each other (in the order
above) in the program. This ensures that when the storage is allocated during
assembly, Whatltem will occupy the word immediately after WhichMenu in
memory. Then:

MOVE.L
LEA
MOVE.L

(SP)+,02
WhichMenu,AO
02,(AO)

;pulls result from stack
;get address for high-order word

The important step above is this last one - it moves a longinteger rather than just
an integer. The high-order word of the result therefore goes into the word associ­
ated with the symbolic address WhlchMenu. Since the location of Whatltem is
physically right after WhlchMenu, the low-order byte is automatically stored in the
right place. This bit of tricky maneuvering saves several program steps (i.e., having
to save WhlchMenu, mask off the high-order byte, and then save Whatltem
explicitly).

Since MenuSelect does not unhighlight a menu title, every call to
MenuSelect needs to be followed by a call to HILiteMenu, which will remove the
highlighting:

PROCEDURE HiLiteMenu (menulD: INTEGER);

This easiest way to handle this is not to determine exactly which menu needs to
have its title unhighlighted, but to unhighlight all menus. To do so, simply use a
menulD of 0, which will automatically unhighlight any menu title which is high­
lighted.

The next task is to compare the contents of WhichMenu with the sequence
numbers of the menus currently in the menu bar. These sequence numbers are

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 205

the ones assigned to the menus in the application's resource file. When a match is
found, the program must then branch to handle actions based on the specific
menu.

Assuming that an application adheres to the standard Macintosh user inter­
face, there will be at least three sorts of menus that it must deal with: the Apple
menu that selects the desk accessories; the Edit menu which may reflect text
editing in an application window or a desk accessory; and application menus
(those specific to the particular program). Most applications will also have a
standard File menu.

Implementing the Desk Accessories
Most of the work involved with handling the Macintosh's standard desk accesso­
ries is done by the ToolBox itself. In order for them to be properly updated,
however, an application must make repeated calls to SystemTask. This pro­
cedure (it has no parameters and so is simply called with _System Task) should
be placed in an application's event loop. If an application has more than one event
loop, it should appear in each of them. If SystemTask is not called frequently
enough, desk accessories such as the alarm clock will not function properly.

The first task in processing a desk accessory is to identify which desk
accessory has been selected. The routine Getltem will return the text of a selected
menu item:

PROCEDURE Getltem (theMenu : MenuHandle; item: INTEGER;
VAR itemString: Str255);

The first parameter is the handle of the Apple menu. The item should come from
Whatltem which was retrieved earlier from the call to MenuSelect. The result of
this procedure - the name of the desk accessory - should go into a storage
location that has been defined with a length of 16 words (since that is the maximum
length of a desk accessory name):

DeskAccName DCB.W

or

DeskAccName DS.W

The call to Getltem appears as:

MOVE.L
MOVE
PEA
_Get Item

AppleHandle, - (SP)
Whatltem, - (SP)
DeskAccName(A5)

16,0

16

;menu handle goes on stack
;from MenuSelect
;assumes OS declaration

206 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

At this point, the application has enough information to open the desk
accessory and turn its execution over to the system. This is accomplished using
OpenDeskAcc, a routine that is part of the Desk Manager:

FUNCTION OpenDeskAcc (theAcc: Str255) : INTEGER;

The result of OpenDeskAcc can be ignored. Nevertheless, the call must allocate
space for the result and retrieve it from the stack. The parameter theAcc is the
desk accessory name retrieved in the call to Getltem. To call OpenDeskAcc use:

CLR -(SP)
PEA DeskAccName(AS)
_OpenDeskAcc

MOVE (SP)+ ,DO

;space for useless result
;assumes storage defined with OS

;removes useless result from stack

Once an application calls OpenDeskAcc, the desk accessory is opened for the
user. The system will handle things such as key down events, but the application
should continue to monitor the event queue, looking for mouse down events in
system windows.

Handling Edit Functions in Desk Accessories
When a user makes a selection in the Edit menu, there are two possibilities: either
the edit request concerns a system window (e.g., the note pad) or an application
window. Edit functions in application windows will be discussed later in Chapter 9
along with the other TextEdit routines, but this is an appropriate place to consider
how to differentiate between the two sources of edit requests and how to handle
those in system windows.

The strategy for telling system edit requests from application edit requests is
very straightforward. An application should simply attempt to let the system handle
the request. If it can, it will. If the system is unable to handle an edit (because it
occurred in an application window) it will return a result of FALSE. A FALSE result
therefore means that the application must handle the edit itself.

Editing in system windows is taken care of by a single ToolBox routine:

FUNCTION SysEdlt (edltCmd: INTEGER) : BOOLEAN;

The edltCmd is equal to the item number from the edit menu less 1, assuming that
the items in the Edit menu have been set up in the standard order.

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 207

To initiate a system edit, then:

MOVE Whatltem,00
SUBQ #1,DO
CLR -(SP)
MOVE DO, - (SP)
_SysEdlt

MOVE (SP)+ ,01

;retrieve original menu item number
;adjust the item number to suit SystemEdit
;space for boolean result
;put adjusted Item number on stack
;let the system handle the edit request

;get result to verify if request was handled

Control returns to the application when the edit has been completely processed.

Handling Mouse Down
Events in Application

Menus
Precisely what occurs as the result of selecting any given menu item will

obviously depend on the nature of the menu. Nonetheless, the strategy for
identifing the item selected is the same - compare Whatltem against each of the
item numbers present in the selected menu. When a match is found, branch to a
program module that implements the particular function. (For an example, see
Listing 8.3, the code that selects actions from the Video Tape Index's Options
menu.)

Listing 8.3 Selecting Program Actions Based on Menu Selections (from the Video Tape Index)

(a) Options MOVE Whatltem,D0 ;Move item selected to D0

(b) CMP #1,D0
BNE ltem2

(c) JSR Enter ;Enter new tapes

ltem2 CMP #2,D0
BNE ltem3
JSR Change ;Modify existing tapes

ltem3 CMP #2,D0
BNE ltem4
JSR Delete ;Delete tapes

ltem4 CMP #4,D0
BNE Items
JSR Select ;Retrieve info

Items CMP #S,D0
BNE Items
JSR Print ;Print lists

Items CMP #S,D0
BEQ Quit ;Exit the program

208 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The basic strategy behind the code in Listing 8.3 is based on knowing the
order in which menu items were listed in the resource file. Listing 8.3 figures out
which item in the Options menu was selected. The item list for that Options menu is:

Enter
Change
Delete
Select
Print
Quit

The Macintosh assigns the number1 to the first item in the list (Enter), a 2 to the
second (Change), and so on. The quantity stored in Whatltem (retrieved from the
event record) therefore corresponds to the number of whichever item was
selected. The only way to identify the particular item is to begin comparing the
quantity in Whatltem with the numbers of menu items. That is exactly what the
code in Listing 8.3 is doing.

Whatltem is first moved into a data register (a). The comparisons begin at (b),
where the item selected is compared against a 1, the number that stands for Enter.
If a match is found, program control is transferred to a subroutine that handles
entering new records (c). Since blocks of code that correspond to individual menu
items can be selected repeatedly while the program is running, it makes sense in
terms of program structure to place each block in a separate subroutine. The
procedure is repeated for each possible item until a match is found.

Handling Mouse Down
Events in System Windows

If a call to FindWindow determines that a mouse down event has occurred in a
system window (i.e., a desk accessory), then the application can simply turn
control over to the system to handle the event. A call to SystemClick will process
any type of mouse down event in a system window:

PROCEDURE SystemCllck (theEvent: EventRecord;
theWindow: WindowPtr);

SystemClick needs the entire event record (push its address onto the stack) and
the result of FindWindow, generally stored in a location like WhichWindowPtr.
The pointer can simply be moved onto the stack.

SystemClick will handle all manner of mouse down events in system win­
dows. It will, for example, close a desk accessory if the mouse down event
occurred in the desk accessory's GoAway box. It handles the mouse down events
that operate the calculator. It will also select and make active a desk accessory that
was previously deactivated by selection of another window. SystemClick will
drag, scroll, and size system windows as well.

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 209

Handling Mouse Down
Events in Application

Windows
A mouse down event in the content region of an application-defined window

(identified by the constant inContent) usually means one of two things: if the
window is inactive, then it should be brought to the front of the screen and
activated; if it is already active, then the mouse down event most often indicates
that the cursor should be moved, regardless of whether the window contains text
to be edited or pictures to be drawn.

The first task after identifying a mouse down event in an application window,
then, is to discover whether or not the window posting the event is active. The
Window Manager routine FrontWindow will return a pointer to whichever window
is in front of all others on the screen (this will be the active window):

FUNCTION FrontWindow : WindowPtr;

Note that this function has no parameters. To call it, allocate space on the stack for
a longinteger result and then issue the function call. After the result is retrieved from
the stack, it can be compared to FindWindow's result. If the two pointers match,
then the event occurred in the active window and the cursor should be moved.
(See the discussion of TextEdit later in Chapter 9 for details.) If the pointers do not
match, then a window must be activated. Such a code sequence might appear as:

CLR.L - (SP) ;space for longinteger result
_FrontWindow ;get pointer to active window
MOVE.L (SP)+ ,AO ;recover pointer to active window
CMP.L WhichWindowPtr,AO

;check active window against clicked window
BNE Mustactivate ;routine which activates clicked window

; followed by code to move the cursor in the active window

A window should be activated by calling SelectWindow. (See Chapter 7 for
details.) This will bring the window to the front of the screen, deactivate and
unhighlight the current window, and highlight the new active window as appropri­
ate. It will also generate a deactivate event for the previously active window, and
activate and update events for the new active window.

Mouse Down Events in Application Windows
With Scroll Bars
If an application window contains scroll bars, then the procedure for processing
mouse down events in the content area of that window is more complex than
described above. After detecting an event in the content area, the application must
then determine whether or not the mouse down event was in the scroll bars.

210 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The Control Manager routine FindControl will identify which control, if any,
was the site of the mouse down event:

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;
VAR whichControl: Control Handle) : INTEGER;

FindControl returns two results. The first is the handle to the control record of
the control that posted the mouse down event. If the mouse down event was not in
a control, the control handle will be set to 0. The function's integer result corres­
ponds to the part of the control that was clicked.

Scroll bars have five parts (see Figure 8.2) . The numbers in parentheses in
Figure 8.2 correspond to each part's identification number. One of these numbers
will be returned as FindControl's integer result for a mouse down event in a scroll
bar.

MAL Output Window

Up arrow
(part code = 20')

Figure 8.2 The Parts of a Scroll Bar

An application can
answer that question
by referring to the
part codes that
identify the parts
of a scroll bar .

.,

FindControl needs to know the point where the mouse buttor. was clicked.
Unfortunately, the Event Manager returns the point in global coordinates and
FindControl requires local coordinates. The QuickDraw routine GlobalTolocal
(discussed further in Chapter 9) will handle the conversion:

PROCEDURE GlobalTolocal (VAR pt: Point);

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 211

An application might use the following code to determine whether a mouse
down event occurred in a scroll bar:

PEA Point ;push address so value can return
;convert _GlobalTolocal

CLR
MOVE.L
MOVE.L

PEA

_FindControl

MOVE
CMP
BEQ

- (SP) ;space for part code result
Point, - (SP) ;coordinates now local
WhichWindowPtr, -(SP)

;result of call to FindWindow
WhichControlHandle

;push address so. value can return

(SP)+ ,DO ;retrieve part code
#0,DO
lnContentRegion

;not in scroll bar

;continue to process event in scroll bar

If FindControl returns a part code greater than 0, then the mouse down event
was indeed in a scroll bar (this assumes that there are no other controls in the
window). The application should then call TrackControl:

FUNCTION TrackControl (theControl: ControlHandle; startPt:
Point; actlonProc: ProcPtr) : INTEGER

TrackControl performs a number of important tasks. If the user has pressed
the mouse button in the thumb of a scroll bar, TrackControl will continue to drag
that thumb as long as the mouse button is held down. If the mouse button is
pressed in the up or down arrow, TrackArrow will highlight the arrow until the
mouse button is released.

TrackControl's result is either the part code for the part of the control that
posted the mouse down event, or 0. A value of O indicates thatthe user moved the
mouse pointer from the part of the control where the event originally occurred. If
that is the case, the application should abort processing the event and return to the
top of the event loop.

The parameter theControl refers to the result of FindControl. startPt is the
same point, in local coordinates, that was passed to FindControl. The third
parameter, action Proc. is an optional pointer to a routine that should be executed
while the user continues to hold down the mouse button. It can be set to O if there is
action procedure.

212 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Calling TrackControl would therefore appear as follows:

CLR
MOVE.L

- (SP) ;space for part code result
WhichControlHandle, - (SP)

MOVE.L Point, - (SP)
CLR.L -(SP)
_TrackControl

MOVE
CMP

BEQ

(SP)+,DO
#0,DO

Event

;FindControl result
;in local coordinates
;no action procedure

;retrieve part code result
;has user moved to different part
;of control?
;Yes - go to top of event loop

;otherwise, scroll the content of the window appropriately

The actual scrolling of text will be discussed in Chapter 9, when we talk about
TextEdit.

Handling Mouse Down
Events in GoAway Regions

If a document window has been defined with a GoAway box (also known as a
close box), then the application should check the result of FindWindow against
the constant inGoAway (equated to the value of 6 in the Tool Box equates file). A
mouse down event in a GoAway box indicates that the window should be closed.

To adhere to the standard Macintosh user interface, the GoAway box should
be highlighted as long as the mouse button is pressed. The Window Manager
routine TrackGoAway will do so:

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point):
BOOLEAN;

The parameter theWindow is the pointer to the window record of the window
posting the event; it is the result of a call to FindWindow. thePt is the point where
the mouse down event occurred. It is expressed in global coordinates and can
therefore be taken directly from the event record. The boolean result is set TRUE if
the mouse pointer was still in the GoAway box when the mouse button was
released; it is set FALSE if the pointer was moved. In the latter case, the user has
effectively cancelled the request to close the window, and the application should
simply return to the top of the event loop to check for another event.

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 213

Code to handle a mouse down event in a GoAway box might appear as
follows:

CLR.B -(SP) ;space for boolean result (system will
;push extra byte to keep stack pointer
;even)

MOVE.L WhichWindowPtr, - (SP) ;from FindWindow
MOVE.L Point, - (SP) ;from the event record
_TrackGoAway

MOVE.B (SP)+ ,DO
CMP #0,DO
BEQ Event

;retrieve boolean result
;did user move pointer?
;Yes - go get another event

;application must continue by closing the window

Closing the window may involve simply calling Close Window or DisposWindow
to remove the window from the screen or from memory. If the contents of the window
should be saved to disk before closing, then the application may execute a disk save
routine before closing the window. (See Chapter 11 for details.)

Handling Mouse Down
Events in Drag Regions

In a standard document window, the drag region is the bar in which the title
appears. Mouse down events in that area indicate that the user wishes to move the
window somewhere else on the desktop.

The Window Manager routine DragWlndow will handle the entire process:

PROCEDURE DragWindow (theWindow: WindowPtr; startPt:
Point; boundsRect: Rect);

The first two parameters are identical to those for TrackGoAway. The third
parameter, boundsRect, is a rectangle in global coordinates that describes the
boundaries within which the window can be moved. While the rectangle could
theoretically encompass the entire screen, it is generally 4 pixels in from each edge
of the screen to ensure that at least 4 pixels of a document window's title bar will
always be seen.

Drag Window will continue to drag an outline of the window around the screen
until the user releases the mouse button. At that point, assuming the mouse pointer
is within the boundary rectangle, the window will be redrawn in its new location. If
the mouse pointer is not within the boundary rectangle, the window will be left in its
original spot.

214 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

As an example, assume that a boundary rectangle has been defined with
coordinates 4 pixels in from each edge of the screen (remember that the screen is
342 pixels high and 512 pixels wide):

BoundaryRect DC 4,4,338,508

A call to DragWindow would then appear as:

MOVE.L WhichWindowPtr, -(SP)
MOVE.L Point, - (SP)
PEA BoundaryRect
_DragWindow
BRA Event

;from FindWindow
;from the event record

;go get another event

It is important to remember that DragWindow does not change the size of a
window; it merely moves it around the screen.

Handling Mouse Down
Events in Grow Regions

If a mouse down event occurs in the grow icon, the user wishes to change the
size of the window. Sizing a window requires a sequence of calls to at least five
Window Manager routines:

1. Make calls to lnvalRect to place any parts of the window that you know will
need to be changed into the window's update region. The update region
holds all of the parts of the window that have been disturbed by some
program function and therefore need to be updated. If anything is present in
the update region, the system will generate an update event for the window.
If a window contains scroll bars, they should be placed in the update region.

2. Call GrowWindow to get an outline of the new size that will follow the outline
of the mouse pointer until it is released. GrowWlndow returns the coordi­
nates of the bottom right corner of the new size. When a window is sized, its
top left corner is anchored on the screen; only the position of the bottom right
corner changes.

3. Call SizeWindow to actually change the size of the window.

4. Update the window. This may include re-drawing scroll bars and the grow
icon based on the window's new size. For a summary of the update process,
see the end of this chapter.

a. Call BeginUpdate (among other things, clears out the update region)
b. Call EraseRect
c. Re-draw window contents
d. Call HldeControl to get rid of the old scroll bars
e. Call MoveControl to move the scroll bars
f. Call SizeControl to change the size of a scroll bar's rectangle

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 215

g. Call ShowControl to make the scroll bars appear
h. Call DrawGrowlcon to redraw the grow region
i. Call EndUpdate

Lefs now look at a code that will implement the above sequence. The window
that will be sized is the window with scroll bars from Figure 7.3b. The first step in the
process is to take care of ensuring thatthe scroll bars get into the update region. To
do so requires two calls to lnvalRect, one for each scroll bar:

PROCEDURE lnvalRect (badRect: Rect);

In order to call this routine, an application needs to know only the scroll bars'
boundary rectangles. But if the boundary rectangles change each time the win­
dow is sized, how can the application keep track of them? The coordinates in the
resource file will no longer be valid once a window has been sized. The answer lies
in the control record. The coordinates of a control's current boundary rectangle are
contained in the third field of the control record:

MOVE.L
MOVE.L
LEA

MOVE.L

_lnvalRect

MOVE.L
MOVE.L
LEA
MOVE.L
_lnvalRect

BottomControlHandle,AO
(AO),AO
cntrlRect(AO),AO

AO,-(SP)

SideControlHandle,AO
(AO),AO
cntrlRect(AO),AO
AO,-(SP)

;get handle
;get pointer
;get starting address of
;boundary rectangle
;pushes pointer to
;rectangle

;get handle
;get pointer
;address of rectangle
;push pointer

The second step is to call GrowWindow:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect); LONGINT;

theWindow comes from a call to FindWlndow; it is the window reporting the
mouse down event. startPt is the point field from the event record, the place
where the mouse pointer was when the button was first pressed. slzeRect is a
rectangle that defines the maximum size that the window can be. For this example,
sizeRect will be defined as 4 pixels in from each edge of the screen (4,4,338,508):

CLR.L
MOVE.L

MOVE.L

- (SP) ;space for coordinate result
WhichWindowPtr, - (SP)

;from FindWindow
Point, - (SP) ;from event record

216 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

PEA SizeRect ;defined as constant
_GrowWindow

MOVE.L (SP)+,DO ;retrieve result

GrowWindow's result is a longinteger containing the new bottom right coordi­
nates of the window. The high-order word contains the bottom (vertical) coordinate
and the low-order word the right (horizontal) coordinate. These coordinates must,
in turn, be passed to SizeWindow:

PROCEDURE SizeWindow(theWindow: Window; w,h: INTEGER;
fUpdate: BOOLEAN);

The parameter theWindow, as before, comes from the call to FindWindow. w
refers to the new horizontal coordinate of the bottom right corner or the window, h
to the new vertical coordinate. At first it may seem that these are in the opposite
order from which they were returned by GrowWlndow. They are not. The horizon­
tal coordinate should be deeper in the stack than the vertical coordinate, since it
appears first in the procedure's parameter list. Therefore, if the entire longinteger
from GrowWindow is moved onto the stack as a unit, its low-order word will
appear as an integer that is just below its high-order word, placing the two
coordinates in the proper order.

fUpdate is a flag that indicates whether or not the system should generate an
update event if the sizing changes the window's contents. A value of TRUE, the
setting most commonly used, tells the system to do so:

MOVE.L
MOVE.L

ST. "ST"

WhichWindowPtr, - (SP)
00,-(SP)

-(SP)

_Size Window

;from FindWindow
;coordinates recovered
;above from GrowWindow
;yes - generate update
;event

The final major step in the process of sizing a window is to update the new
window. All updates begin with a call to BeginUpdate and should then erase the
window. Note that since the QuickDraw routine EraseRect works on the current
grafport, the application must first ensure that the window posting the mouse down
event is the current grafport (see Handling Update Events):

MOVE.L WhichWindowPtr, - (SP)
_BeginUpdate

MOVE.L WhichWlndowPtr,AO
MOVE.L contRgn(AO),AO

;from FindWindow

;retrieve handle to content
;region of window from
;window record

MOVE.L
ADD

MOVE.L

_EraseRect

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 217

(AO),AO
#2,AO

AO,-(SP)

;turn handle into pointer
;skip over integer to get to
;region rectangle
;coordinates of content
;region

Preparing for the call to EraseRect above presents a similar problem as did
the calls to lnvalRect: this block of code should be general enough to work
regardless of which window posted the mouse down event. Therefore, the bound­
ary rectangle of the area which should be erased cannot be defined explicitly
within the program code. The coordinates must be retrieved from the window
record. The process is somewhat indirect. First, a handle to the record that defines
the content region is pulled from the window record. 0JVe are not interested in
updating the structure region.) That handle is de-referenced to get a pointer. The
actual rectangle begins two bytes past the address contained in the pointer; as
discussed in Chapter 7, the first two bytes of a region record contain the size of the
region. Therefore, if the quantity 2 (for two bytes) is added to the pointer to the
region record, we will have the address of the start of the region's boundary
rectangle, which in turn can be passed to EraseRect.

Once the current contents of the window have been erased, the application
should redraw the contents as appropriate. This may involve calls to QuickDraw
routines or to special TextEdit updating routines (see Chapter 9).

The application must then update the scroll bars. First, the existing scroll bars
must be hidden:

PROCEDURE HideControl (theControl: ControlHandle);

In order to write general code that will apply to any of an application's windows,
there has to be some way to retrieve the handles for a particular window's controls.
This can be done by using both the window record and the records of any controls
associated with the window. As discussed in Chapter 7, the window record main­
tains a handle to the first control in its control list. Each control record maintains a
handle to the next item in the control list.

There is no field in a control record that explicitly indicates what type of control
that record represents. Therefore, as mentioned in Chapter 7, the reference value
field can be used for an application assigned code to identify control types. In the
example below, a horizontal scroll bar was arbitrarily given a reference value of 1
and a vertical scroll bar a reference value of 2; other controls were given higher
values.

MOVE.L
MOVE.L
BEQ

WhichWindowPtr ,AO
wControlList(AO),AO
EndTheUpdate

;handle to first control
;handle is 0 - window
;has no controls

218 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

MOVE.L (AO),A 1
MOVE.L contrlRfCon(A 1),D7
CMP #2,D7
BGT AnotherControl
MOVE.L AO, - (SP)
_HideControl

AnotherControl
MOVE.L nextContrl(A1),AO
BEQ NextStep
MOVE.L (AO),A 1
MOVE.L controlRfCon(A 1),D7
CMP #2,D7
BGT AnotherControl
MOVE.L AO, - (SP)
_HideControl
BRA AnotherControl

;get pointer
;get reference value

;not a scroll bar
;push handle on stack

;handle to next control
;no more controls
;get pointer
;get reference value

;not a scroll bar

The "next step" is to actually move the control:

PROCEDURE MoveControl (theControl: ControlHandle;
h,v: INTEGER);

The location to which this routine moves a control is specified by giving the
control new top left coordinates in the local coordinate system of its window. h is
the horizontal (left) coordinate and v the vertical (top). An application can deter­
mine these coordinates from the bottom right coordinates returned by
GrowWindow. First Growwindow's global coordinates are converted to local
coordinates. Then, for a horizontal scroll bar, the vertical coordinate will be 16 less
than the the bottom. (The horizontal coordinate will remain at 0.) For a vertical scroll
bar, the vertical coordinate will remain 0 and the horizontal coordinate will be 16
less than the right. Assume that GrowWindow's result is in DO and that the handle
to a control record for a scroll bar is in AO. Remember that this example has
arbitrarily assigned vertical scroll bars a reference value of 2 and horizontal scroll
bars a reference value of 1. Also note that the two coordinates returned by
GrowWindow must be stored in RAM so their address can be passed to
GlobalToLocal:

MOVE.L DO,Polnts(AS) ;store coordinates in RAM
PEA Points(AS)
_GlobalToLocal ;convert the coordinates

;recover local coordinates MOVE Points(AS),DO

MOVE
SWAP
MOVE
MOVE.L
MOVE.L

D0,01 ;get low order word (right)
DO ;flip the words in the register
D0,02 ;get high order word (bottom)
(AO),A 1 ;pointer to control record
contrlRfCon(A1),07 ;control value

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 219

Vertical

CMP
BNE

SUB
MOVE
BRA

SUB
MOVE

RoutineSetUp

#1,D7
Vertical

#16,D2
#O,D1
RoutlneSetUp

#16,D1
#O,D2

MOVE.L AO, - (SP)
MOVE D1 , - (SP)
MOVE D2, - (SP)
_MoveControl

;this is a vertical control bar

;adjust vertical coordinate
;horizontal coordinate stays O

;adjust horizontal coordinate
;vertical coordinate stays O

;push handle onto stack
;horizontal coordinate goes first
;vertical coordinate
;move the control

Once the top left corners of the scroll bars have been anchored in their new
positions, the bottom right coordinates must be changed with a call to SizeCont­
rol:

PROCEDURE SizeControl (theControl: ControlHandle; w,h:
INTEGER);

The parameters w and h correspond respectively to the new right and bottom
coordinates of the control, expressed again in the local coordinates of the control's
window. Neither horizontal nor vertical scroll bars can use the coordinates
returned by GrowWindow directly. A horizontal scroll bar will have aw value of15
less than that returned by GrowWindow to allow space for the grow icon; h will not
need to be altered. A vertical scroll bar can accept w from GrowWindow's result
but must subtract 15 from the horizontal coordinate. Assume again that
GrowWindow's result is in DO (now in local coordinates since they were converted
before the call to MoveWindow) and that the handle to a control is in AO:

MOVE DO,D1 ;get horizontal coordinate
SWAP DO ;exchange register halves
MOVE DO,D2 ;get vertical coordinate
MOVE (AO),A1 ;pointer to control record
MOVE.L contrlRfCon(A 1),D7 ;reference value
CMP #1,D7 ;horizontal or vertical scroll

bar?
BNE Vertical2 ;must be vertical

SUB #15,D1 ;adjust horizontal coordinate
BRA PassParameters

Vertical2
SUB #15,D2 ;adjust vertical coordinate

220 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

PassParameters
MOVE.L AO, - (SP)
MOVE 01 I - (SP)

MOVE 02, - (SP)
_SizeControl

;put handle on stack
;horizontal coordinate goes
first
;vertical is next

To be on the safe side, an application should follow SizeControl with a call to
ShowControl, to be sure that the control is displayed:

PROCEDURE ShowControl (theControl: ControlHandle);

If the control is invisible, ShowControl will make it visible. If the control is already
visible, ShowControl will have no effect.

Finally, the update process should be completed with a call to EndUpdate.
Code for these last two steps might appear as:

MOVE.L AO, - (SP) ;control handle in AO
_ShowControl

MOVE.L WhichWindowPtr, -(SP)
_End Update

Handling Key Down
Events

Most applications will have a variety of uses for key down events. Primarily,
they can be used to display text on the screen or, in combination with the cloverleaf
key, they can substitute for using the mouse to make a menu selection.

The first step in processing a key down event is therefore to determine which, if
any, of the modifier keys were held down in conjunction with the key press. The
modifier flags are stored in the high-order byte of the Modify field from the event
record. If the cloverleaf key was pressed, bit O of that byte will be set (i.e., the byte
will have a value of 1). This gives the entire modifier word, by the way, a value of
256.

To test for the cloverleaf key, an application could:

MOVE.B
CMP.B
BEQ

Modify,DO
#1,DO
KeyboardCommand

;get high-order byte only
;compare with cloverleaf value
;branch to handle command

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 221

The same result could also be obtained by:

MOVE
CMP
BEQ

Modify,00
#256,DO
KeyboardCommand

;get entire modifier word
;compare with cloverleaf value

If Modify does reveal that the cloverleaf key was pressed along with some
other key, then the application can assume that it was intended to be a substitution
for a mouse selection from a menu. The information needed to process such a
selection is identical to that needed to process a mouse down menu selection -
which menu and which item within that menu.

MenuKey is a single routine that will return both the menu and the item
numbers corresponding to the keyboard equivalent selected by a cloverleaf
command. It assumes that a press of the cloverleaf key has already been detected
and therefore only needs to know what additional character was pressed at the
same time. That character can be found as part of the event record's Message
field. More precisely, it is in the low-order word of that field. The address of the
character is therefore two bytes beyond the beginning of Message and can be
indicated by using Message+ 2 as the effective address.

MenuKey's format is:

FUNCTION MenuKey (ch: CHAR) : LONGINTEGER;

It should be called by using:

CLR.L
MOVE
_Menu Key

-(SP)
Message+ 2, - (SP)

;space for longinteger result
;put character on the stack

Menu Key returns its result in exactly the same format as MenuSelect. The menu
number is in the high-order word and the item number in the low-order word.
Therefore, immediately after issuing the call to MenuKey, an application can
branch to join the same processing sequence that occurs after MenuSelect,
including retrieving the result and unhighlighting the menu title.

Key down events that are not accompanied by the cloverleaf key generally
indicate text that should be displayed on the screen by TextEdit. Processing of
these events is discussed in Chapter 9.

Handling Update Events
An update event is posted to the event queue whenever a window is newly

activated or when something has occurred to disrupt the display of the window's

222 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

contents. The latter is usually the result of one window overlaying another. For
example, if you open a desk accessory while in the midst of one of the Video Tape
Index's functions that permit text editing, the desk accessory's window has the
potential of covering one or more of the text entry windows and their prompts
(which are actually displayed on the main window). Any window which covers
another erases the contents of the windows underneath it. When the front window
is closed or moved to the back, any windows which are uncovered will be minus
their contents. An update event alerts the application that the newly exposed
windows need to have their contents redrawn.

Updating in text windows is handled by a special TextEdit routine. Updating
the contents of other windows can be done in two ways: either by drawing only the
region of the window that needs updating, or by erasing the entire window and
redrawing all of its contents. The latter is far easier to implement.

Regardless of whether you are updating text windows or other windows, all
update processes must start with a call to BeginUpdate and finish with a call to
EndUpdate. These two routines manage a portion of the window known as the
update region. Update regions are important if you are attempting to do an update
by redrawing only that portion of a window's contents that have been erased. Even
if the update will erase the window and completely redraw it, the process must
nonetheless be bracketed by these two routines.

Each takes the pointer of the window to be updated as a parameter:

PROCEDURE BeginUpdate (theWindow: WindowPtr);

PROCEDURE EndUpdate (theWindow: WindowPtr);

The easiest way to update a non-text window is therefore to:

1 . Call BeginUpdate

2. Erase the window (using EraseRect)

3. Redraw the window's contents (procedure will vary with the window in
question)

4. Call EndUpdate

Since the prompts for the Video Tape Index's text entry windows are drawn on
the main window, any time a desk accessory is opened while one of the four text
entry functions are in process, those prompts will be disturbed. Immediately after
the desk accessory is closed, the main window must therefore be updated. The
code to do so appears as:

MOVE.L MainWindowPtr, -(SP)
_BeginUpdate

MOVE.L MainWindowPtr, -(SP)
_SetPort

;window pointer
;start update process

;can only draw in
;current grafport

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 223

PEA MainWindowRect ;boundary rectangle
;erase the window _EraseRect

JSR DisplayPrompts ;redraw window contents

;window pointer MOVE.L MainWlndowPtr, -(SP)
_End Update ;finish update process

Note that update events that occur while the program is in its main event loop
can be ignored since the main window has no content at that point.

A Word About Activate
Events

In most cases, activate events can be ignored. Since SelectWindow handles
highlighting and unhighlighting windows, usually the only time an application
needs to respond to an activate event is when a text edit window has been
selected. Activating and deactivating text entry windows takes care of respectively
displaying and removing the straight-line cursor (see Chapter 9).

Pulling Things Together
Thus Far -
WindowPlay

In Listing 8.4 you will find the source code for a demonstration program called
WindowPlay. Its resource file appears in Listing 8.5. This program uses many of
the concepts and techniques presented in Chapters 7 and 8, including defining
windows and menus and trapping a variety of events. It is very short for a complete
Macintosh assembly language application and really doesn't do any useful work,
but it does illustrate how to create and manipulate windows and menus.

WindowPlay has a template for one window of each window type in its
resource file. The windows can be displayed by selecting the window type from the
Windows menu, creating a display like the one in Figure 8.3. The windows overlap
on the screen, but their position in the plane can be changed by clicking on a
window with the arrow cursor. Those windows which support title bars can be
closed by clicking in their GoAway boxes. Any active (frontmost) window can be
closed by selecting Close from the File menu.

224 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 8.4 WindowPlay

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D

PEA -4(A5)
lnitGraf

-lnitFonts
MOVE.L #$0000FFFF,D0

Flush Events
:=1nitWindows
_lnitMenus
CLR.L -(SP)
_lnitDialogs
_TElnit

lnitCursor

CLR -(SP)

;initialize QuickDraw
;initialize Font Manager

;flush all events from event queue
;initialize Window Manager
;initialize Menu Manager

;initialize Dialog manager
;initialize Text Edit
;get arrow cursor

PEA 'MAL.files:WindowPlay.Rsrc'
_OpenResFile ;open the resource file
MOVE (SP)+,D0 ;discard unused result

; ------------- Set up the menus ------------------------------
CLR. L -(SP) ;space for handle
MOVE #1,-(SP) ;menu sequence number
_GetRMenu ;get Apple menu template
MOVE.L (SP)+,AppleHandle(A5) ;retrieve and store handle

MOVE.L AppleHandle(A5),-(SP) ;put handle back on stack
MOVE.L #'DRVR',-(SP) ;resource type for desk accessories
_AddResMenu ;get desk accessories

MOVE.L AppleHandle(A5),-(SP) ;handle back on stack
CLR -(SP) ;this menu goes after all others

lnsertMenu ;put menu in menu list

CLR.L -(SP) ;repeat the process for the other menus
MOVE #2,-(SP)
GetRMenu

MOVE.L (SP)+,FileHandle(A5)

MOVE.L FileHandle(A5).-(SP)
CLR -(SP)
_lnsertMenu

CLR.L -(SP)
MOVE #3,-(SP)
GetRMenu

MOVE.L (SP)+,EditHandle(A5)

MOVE.L EditHandle(A5),-(SP)
CLR -(SP)
_lnsertMenu

CLR.L -(SP)
MOVE #4,-(SP)
GetRMenu

MOVE.L (SP)+,WindowHandle(A5) (continued)

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 225

MOVE.L WindowHandle(A5),-(SP)
CLR -(SP)
_lnsertMenu

_OrawMenuBar ~inally, make It all appear

MOVE #0,07 ;initialize window counter

;----------------------Event loop comes next to control actions --------------------------------
Event _SystemTask ;update desk accessories

CLR -(SP)
MOVE #-1,-(SP)
PEA EventRecord(A5)
_GetNextEvent

MOVE (SP)+,00
CMP #0,00
BEQ Event

;space for boolean result
;mask to select all events

;address of event record
;retrieve event from queue

;recover result
;did event occur?
;no event

MOVE EventRecord(A5),00 ;this retrieves 1st word of record - the event type

CMP #mButDwnEvt,00
BEQ MouseEvent

CMP #keyDwnEvt,00
BEQ KeyEvent

BRA Event

;mouse button pressed?

;key pressed?

;not an event this program handles

; ------------------------------- Handle key down events ----------------------------------­

KeyEvent
MOVE EventRecord+evtMeta(A5),00 ;get modify word
BTST #cmdKey,D0 ;cloverleaf key held down?
BEQ Event ;not a menu selection

CLR.L -(SP) ;space for menu item selection
MOVE EventRecord+evtMessage+2(A5),-(SP) ;put character pressed on stack
_MenuKey ;identify menu and item

BRA Selections ;join menu processing

; ----------------------------------- Handle mouse down events --------------------------------------
Mouse Event

CLR -(SP) ;space for "what" result
MOVE.L EventRecord+evtMouse(A5),-(SP) ;place where event occurred
PEA WhichWindowPtr(A5) ;window affected goes here
_FindWindow ;determine which window posted event
MOVE (SP)+,D0 ;recover result

CMP #inMenuBar,00
BEQ Menu Bar ;mouse down event in menu bar

CMP #inSysWindow,00
BEQ Sys Event ;mouse down event in system window

CMP #inContent,D0
BEQ ApplWindow ;mouse down event in application window

(continued)

226 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 8.4 (continued)
CMP #inGoAway,00
BEQ CloseWindow

BRA Event

;mouse down event in GoAway box

;not a place this program monitors

; -------------------------------- Mouse down event in system window ----------------------------------­
SysEvent

PEA EventRecord(A5) ;address to event record on stack
MOVE.L WhichWindowPtr(A5),-(SP) ;window posting event
_SystemClick ;system does all the work

BRA Event ;get another event

; -------------------------------- Mouse down event in menu bar --------------------------------­
Menu Bar

;space for menu ID and menu item CLR.L -(SP)
MOVE.L EventRecord+evtMouse(A5),-(SP) ;place where mouse button

went down
_MenuSelect

Selections
MOVE.L (SP)+,00
MOVE 00,01
SWAP 00

MOVEM.L 00/01 ,-(SP)
CLR -(SP)
_HiliteMenu
MOVEM.L (SP)+,00/01

CMP #1,00
BNE Menu2
BRA AppleMenu

Menu2 CMP #2,00
BNE Menu3
BRA File Menu

Menu3 CMP #3,00
BNE Menu4
BRA Edit Menu

Menu4 CMP #4,00
BNE Event
BRA WindowEvent

;find menu number and menu item

;recover result
;01 now has low-order word (menu item)
;menu ID now in low-order word of 00

;save registers
;selects all menus
;remove highlighting from menu

;in Apple menu?

;handle desk accessories

;in File menu?

;in Edit menu?

;in Window menu?
;something weird happened ...

----------------------- --- ---- --- ---- --- Hand le desk accessories --------------------------------------­
Apple Me nu

MOVE.L AppleHandle(A5),-(SP)
MOVE 01 ,-(SP)
PEA DeskAccName(A5)
_Getltem

CLR -(SP)
PEA DeskAccName(A5)
_OpenDeskAcc
MOVE (SP)+,00

BRA Event

;menu handle on stack
;menu item on stack
;space for desk accessory name
;retrieve name of desk accessory

;space for reference number
;point to desk accessory name
;open the desk accessory
;discard reference number result

(continued)

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 227

;--------------------------------- Handle editing in desk accessories ----------------------------------­
EditMenu

SUBQ #1,01
CLR -(SP)
MOVE 01 ,-(SP)
_Sys Edit
MOVE (SP)+,00

BRA Event

;adjust item selected for SysEdit
;space for problem result
;adjusted item number goes on stack
;let system handle to edit
;get rid of resu It

;---------------------------- Handle File Menu -------------------------------------
FileM enu

CMP #1,01 ;Close the active window?
BEQ WindowClose

CMP #2,01
BNE Event

ATS

WindowClose
CLR.L -(SP)

Front Window
MOVE.L (SP)+,A6

MOVE.L A6,-(SP)
_Close Window

SUBQ #1,07
BNE Fix

;Quit?

;This returns to the Finder

;space for pointer to active window
;get pointer
;save pointer

;put pointer back on stack
;close the window

;decrement window counter

MOVE.L FileHandle(AS),-(SP)
MOVE #1,-(SP)
_Disable Item ;if no windows present, disable Close

Fix CMP.L Window1 Ptr(A5),A6 ;identify which window was closed
BNE Fix2
MOVE #1,01
BRA ReEnable

Fix2 CMP.L Window2Ptr(A5),A6
BNE Fix3
MOVE #2,01
BRA ReEnable

Fix3 CMP.L Window3Ptr(A5),A6
BNE Fix4
MOVE #3,01
BRA ReEnable

Fix4 CMP.L Window4Ptr(A5),A6
BNE Fix5
MOVE #4,01
BRA ReEnable

Fix5 CMP.L Window5Ptr(A5),A6
BNE Fix6
MOVE #5,01
BRA ReEnable

(continued)

228 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 8.4 (continued)

Fix6 MOVE #6,01

Re Enable
MOVE.L WindowHandle(A5),-(SP)
MOVE 01 ,-(SP)

;handle to menu
;window#

_Enable Item ~urn the menu item back on

BRA Event

; ------------------------------- Handle Window Menu ------------------------------------
WindowEvent

MOVE D1 ,-(SP) ;save register contents
MOVE.L WindowHandle(A5),-(SP)
MOVE D1 ,-(SP) ;window number same as menu item#

Disableltem ;turn off this window
MOVE (SP)+,D1

CMP #1,D1
BNE Window2
CLR.L -(SP)
MOVE #1,-(SP}
PEA Window1 Strg(A5)
MOVE.L #-1,-(SP)
GetNewWindow

MOVE.L (SP)+,Window1 Ptr(A5)
BRA WindowCount

Window2 CMP #2,D1
BNE Window3
CLR.L -(SP}
MOVE #2,-(SP)
PEA Window2Strg(A5}
MOVE.L #-1,-(SP}
GetNewWindow

MOVE.L (SP)+,Window2Ptr(A5}
BRA WindowCount

Window3 CMP #3,D1
BNE Window4
CLR.L -(SP)
MOVE #3,-(SP)
PEA Window3Strg(A5)
MOVE.L #-1,-(SP)
GetNewWindow

MOVE.L (SP}+,Window3Ptr(A5}
BRA WindowCount

Window4 CMP #4,01
BNE Windows
CLR.L -(SP)
MOVE #4,-(SP)
PEA Window4Strg(A5)
MOVE.L #-1,-(SP)
GetNewWindow

MOVE.L (SP)+,Window4Ptr(A5)
BRA WindowCount

;window 1?

;space for window handle
;window ID
;pointer to window record
;put window in front
;create the window
;retrieve the pointer

;repeat for all windows

(continued)

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 229

Windows CMP #5,D1
BNE Windows
CLR.L -(SP)
MOVE #5,-(SP)
PEA Window5Strg(A5)
MOVE.L #-1,-(SP)
GetNewWindow

MOVE.L (SP)+,Window5Ptr(A5)
BRA WindowCount

Windows CLR.L -(SP)
MOVE #S,-(SP)
PEA WindowSStrg(A5)
MOVE.L #-1,-(SP)
GetNewWindow

MOVE.L (SP)+, WindowSPtr(A5)

WindowCount
ADDO #1,D7
CMP #1,D7
BNE Done

;count number of windows on screen

MOVE.L FileHandle(A5),-(SP)
MOVE #1,-(SP)
_Enableltem

Done BRA Event

;handle to window menu

;if first window, enable Close

; ------------------------- Handle mouse down in application window ---------------------------­
ApplWindow

MOVE.L WhichWindowPtr(A5),-(SP)
_SelectWindow ;bring window to front & make active

BRA Event

; ----------------------------- Handle mouse down in goAway box --------------------------------­
Close Window

CLR.B -(SP)
MOVE.L WhichWindowPtr(A5),-(SP)
MOVE.L EventRecord+evtMouse(A5), -(SP)
_ TrackGoAway

MOVE.B (SP)+,D0
CMP #0,D0
BEQ Event
BRA WindowClose

;space for boolean result
;window posting event
;point of event
;monitor goAway box

;get result
;did user change mind?
;don't close
;close window just like menu selection

;---------------------------------- Data structures --

AppleHandle DS.L
EditHandle DS.L
FileHandle DS.L
WindowHandle DS.L

Window1Ptr
Window2Ptr
Window3Ptr
Window4Ptr
Window5Ptr
WindowSPtr

DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1
DS.L 1

;menu handles

;window pointers

(continued)

230 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 8.4 (continued)

Window1Strg DS
Window2Strg DS
Window3Strg DS
Window4Strg DS
Window5Strg DS
Window6Strg DS

windowSize ;storage for window records
windowSize
windowSize
windowSize
windowSize
windowSize

DS.L ;for FindWindow result WhichWindowPtr
DeskAccName DS 1 6 ~or desk accessory name

EventRecord DS.B 16

Listing 8.5 Resource File for WindowPlay

WindowPlay.Rsrc

TYPE MENU
.1

\14

,2
File
(Close
Quil/Q

,3
Edit
Undo/Z
(-
Cul/X
Copy/C
PasteN
Clear

,4
Windows
documentProc
dBoxProc
plainDBox
altDBoxProc
noGrowDocProc
rDocProc

TYPE WIND
, 1

Sample Window
40 160 300 480
visible GoAway
0
0

;; Apple menu

;; File menu

;; Edit menu

;; Window selection menu

;; standard document window

(continued)

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 231

,2
No title
125 60 275 180
visible NoGoAway
1
0

,3
No title
6090225400
visible NoGoAway
2
0

,4
No title
100 225 330 350
visible NoGoAway ,
3
0

,5
Sample Window
175110 250 300
visible GoAway
4
0

,6
Sample
40 40 300140
visible GoAway
16
0

;; alert or modal dialog window

;; plain document window

;; plain document window with shadow

;; standard document window without size box

;; round cornered window for desk accessories

WindowPlay supports four menus: a standard Apple menu for the desk
accessories, a File menu, an Edit menu (for the desk accessories only), and the
application menu Windows that controls which windows appear on the screen.

The structure of WindowPlay is typical of a Macintosh assembly language
program. The set-up process involves:

1. Initialization of all ToolBox and operating system managers

2. Opening the resource file

3. Reading menu templates from the resource file and creating the menu bar

4. Entering an event loop

The event loop itself determines the structure of the remainder of the program.
WindowPlay looks for mouse down and key down events. Since there is no text
editing, key down events are meaningful only as keyboard equivalents for menu

232 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

,. a File Edit Windows

Sample Window

Sample Window

Figure 8.3 Sample Output from WindowPlay

selections. Menu selections represent either a request for a desk accessory, a
request to return to the Finder, or a request to affect one of the windows displayed
by the application.

When WindowPlay is launched, the screen is blank and the Close option of the
File menu is dimmed. (It makes no sense to allow the user to close a window when
no windows are visible.) WindowPlay keeps track of how many windows are
displayed and always disables Close when the count drops to O; it enables Close
when the count rises to 1.

You will also notice that whenever a window is selected for display, its name in
the Windows menu is disabled. This ensures that only one window of any given
type will be displayed at any given time. When the window is closed, its name in the
Windows menu is re-enabled.

Questions and
Problems

1. Create binary event masks to select the following events:

a. mouse down, mouse up
b. mouse down, key down
c. mouse down, key down, update, activate, disk insertion

CONTROLLING PROGRAM ACTIONS: MONITORING EVENTS 233

2. Write an event loop that:

A. retrieves events from the event queue with an event mask that selects all
events

B. checks for mouse down, key down, update, activate and disk insertion
events

C. branches to an appropriately named subroutine to handle each type of
event

Be sure to allocate any data structures your event loop will use.

3. Write an ordered list of the ToolBox and/or operating system routines that
must be used to identify a user request for the note pad desk accessory.
Indicate the information returned by each call. Assume that an event loop has
already detected a mouse down event and that the Apple menu is Menu
numberO.

4. Write a block of assembly language code to implement the procedure you
outlined in problem 3. Use the event record field names defined in Chapter 8.
Allocate any other data structures your code will use.

5. Write an ordered list of the ToolBox and/or operating system routines that
must be used to identify a user request to scroll the text in a document
window one page up. Indicate the information returned by each call. Assume
that an event loop has already detected a mouse down event.

6. Write a block of assembly language code to implement the procedure you
outlined in problem 5. Use the event record field names defined in Chapter 8.
Allocate any other data structures your code will use.

7. Write an ordered list of the Tool Box and/or operating system routines that are
needed to identify which menu item has been selected by a combination
cloverleaf-alphanumeric key press. Indicate the information returned by
each call. Assume that an event loop has already detected a key down event.

8. Write a block of assembly language code to implement the procedure you
outlined in problem 7. Use the event record field names defined in Chapter 8.
Allocate storage space for any other data structures your code will use.

234 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

9. Code and implement the following modifications to the program WindowPlay
from Listings 8.4 and 8.5:

A. Draw scroll bars and a grow icon in the standard document window. The
scroll bars should be defined in the resource file.

B. Trap for events in a title bar so that the three windows with title bars can be
moved about the screen.

C. Handle moving the three windows with title bars, including the scroll bars
in the standard document window.

D. Trap for events in a grow icon.
E. Handle sizing the standard document window.

c H A p T E R N N E

SCREEN J\ND KEYBOA,RD 1/0:
USING TE)(TEDIT, ALERT AND

[)IALeG BSXES

Chapter Objectives

1. To understand the data structures that support Macintosh text editing

2. To learn to establish those data structures

3. To learn to manage windows that support text editing

4. To learn to implement text editing functions: entering text, deleting text, cut,
paste, and copy

5. To learn to manage text characteristics such as font size and type

6. To learn to create the resource file templates that establish alerts and dialog
boxes

7. To learn to use alerts and dialog boxes to control program actions

Entering, Displaying,
and Editing Text

TextEdit is a collection of powerful ROM routines that permit the easy entry and
editing of text. Text is written into a rectangle defined for that purpose. The
rectangle may be an entire window or only part of a window.

235

236 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

To be precise, editing text requires two rectangles - a destination rectangle
and a view rectangle. The destination rectangle establishes the bounds in which
the text should be drawn; the view rectangle defines the area in which the text will
be seen. Though both must be specified, they are usually identical. Destination
and view rectangles are defined in the local coordinates of the grafport in which the
text will appear. In other words, in order to enter or edit text, the window that
contains the destination and view rectangles must be the current grafport (set with
the SetPort routine).

Information about the editing environment is kept in an edit record. An edit
record contains, in part, the coordinates of the destination and view rectangles,
font and text justification information, the current selection range, the length of the
text, a handle to where the text is stored, the number of lines in the text, and
positions of line starts within the text. The text itself is stored as a packed array of
characters (i.e., each ASCII character code occupies only one byte).

The structure of a text edit record is:

TeRec = RECORD
destRect: Rect; the destination rectangle
viewRect: Rect; the view rectangle
selRect: Rect; boundaries of selection range
lineHeight: INTEGER; height of a line of text
fontAscent: INTEGER; number of pixels a font rises
selPoint: Point; location of mouse button click
selStart: INTEGER; start of selection range
selEnd: INTEGER; end of selection range
active: INTEGER; used internally - do not change
word Break: ProcPtr; used to change how TextEdit

views the end of a word
clikloop: ProcPtr; used to Implement automatic

scrolling
clickTime: LONG INT; used internally - do not change
clickloc: INTEGER; used internally - do not change
caretTime: LONGINT; used internally - do not change
caretState: INTEGER; used internally - do not change
just: INTEGER; text justification
telength: INTEGER; text length in # of characters
hText: Handle; handle to the text itself
recalBack: INTEGER; used internally - do not change
recallines: INTEGER; used internally - do not change
clikStuff: INTEGER; used internally - do not change
crOnly: INTEGER; if negative, indicates that a new

line should start only after a CR
txFont: INTEGER; font ID number
txFace: Style; text style (e.g., bold or italic)
txMode: INTEGER; pen mode
txSize: INTEGER; font size

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 237

in Port:
highHook:
caretHook:
nlines:
lineStarts

Graf Ptr; pointer to grafport
ProcPtr; used by low-level routines
ProcPtr; used by low-level routines
INTEGER; number of lines of text
ARRAY [0 .. 16000] of INTEGER

positions of starts of lines

As with the other types of records we've discussed, an application won't need
to retrieve data from most fields of the edit record directly. There are, however,
some exceptions. A program may, for example, need the length of the text or the
handle which contains the pointer to the text itself. Printing characters from a text
edit record requires knowing how many lines of text there are and where each line
begins. Equates for field offsets into an edit record are part of the Tool Box equates
file. For example, telength refers to a file $3E bytes in from the beginning of an
edit record. If ToolBox.D is INCLUDEd at the beginning of an application's source
code, the offsets to all fields in the edit record are available to the program.

Before using any TextEdit routines, you must initialize the manager with TEI nit.
This procedure takes no parameters. It should appear at the top of an application,
along with the other initializations: TElnit can be the last call in the initialization
sequence. Because text manipulation also often involves manipulating font char­
acteristics, the initialization sequence should also include a call to lnitFonts, which
initializes the Font Manager.

A complete initialization sequence, one that will be complete enough for most
applications, appears as follows:

PEA
_lnitGraf
_lnitfonts
_lnitWlndows
_lnitMenus
CLR.L -(SP)
_lnltDialogs

_TElnit
_lnitCursor

-4(A5)
;initialize QuickDraw
;initialize the Font Manager
;initialize the Window Manager
;initialize the Menu Manager

;initialize the Dialog Manager (discussed
below)
;initialize TextEdit
;get arrow cursor

Use this block of code exactly as it appears. Because the various managers
interact so closely, it is imperative that the initializations are performed in this order.

Data Structures for Text
Edit

Windows for text editing should be defined in a resource file, just like any other
window. They can then be created with GetNewWindow. Text edit windows can
also be manipulated like other windows in terms of visibility and position on the

238 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

screen. Doing the editing, though, requires the destination and view rectangles
mentioned above.

In most cases, the destination and view rectangles will cover an entire window.
(The major exception is in dialog boxes, which will be discussed at the end of this
chapter.) Therefore, to determine the coordinates of the destination and view
rectangles, you need only figure out how many pixels the window encompasses.
Consider, as an example, the Video Tape Index's text edit windows.

The Video Tape Index uses one text window for each field in the TapeArray
record. (For database applications this tends to simplify the text handling.) The
Producer window, for example, has global coordinates of 75, 240, 95, 415. These
coordinates appear in the program's resource file. The height of the window is
therefore 21 pixels (bottom - top + 1) and its width 176 pixels (right - left + 1).
Since the view and destination rectangles will occupy the entire window, they
could theoretically have coordinates of 0, 0, 21, 176. In practice, though, the
rectangles should come in at least one pixel from the edges of the windows.
Otherwise, it's possible that the first and last characters will not be displayed
completely. Therefore, the destination and view rectangles for the Producer text
window have coordinates of 1, 1, 19, 175. These coordinates are defined within the
source code:

ProducerViewRect
ProducerDestRect

DC
DC

1,1,19,175
1,1,19,175

Storage must also be set aside for a handle to each text window's edit record.
You need not reserve space for the edit record itself; this will be done by the system
when the record is created. The handle to an edit record has the data type
TEHandle and therefore requires a longword of space:

or

ProducerTextHandle DC.L 0

ProducerTextHandle DS.L 1

Allocating Text Edit
Records

Text edit records are allocated by the routine TENew:

FUNCTION TENew (destRect, viewRect: Rect) : TEHandle;

The addresses of the destination and view rectangles are pushed onto the stack. A
longword handle is returned.

The above function looks simple. There is something important, however, to be
aware of when allocating edit records. An edit record includes the grafport of the

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 239

editing environment in its inPort field; the TENew routine will automatically absorb
whatever grafport is current at the time the call to TENew is placed. Therefore,
prior to allocating an edit record, the window for the destination and view rec­
tangles must have been created. Immediately before calling TENew, SetPort
must be used to make that window the current grafport.

The Video Tape Index defines all of its windows and only then creates text edit
records. A typical code sequence, assuming the window has been defined and its
pointer saved, is:

MOVE.L
_SetPort
CLR.L
PEA
PEA
_TENew
LEA
MOVE.L

ProducerWindowPtr, - (SP)
;window is current port

- (SP) ;space for edit record handle
ProducerOestRect
Producerviewrect

NameTextHandle,AO
(SP)+,AO

;address for handle storage
;retrieve the handle and store

Managing Text Edit
Windows

Whenever a text edit window is activated (e.g., a mouse down event was
recorded somewhere in a deactivate text edit window), an application generally
responds by calling SelectWindow. As mentioned in Chapter 8, SelectWindow
generates an activate event for the window selected and a deactivate event for the
previously active window.

Activating and deactivating text edit windows is important, since these actions
control the appearance and disappearance of the straight-line cursor. Therefore,
whenever an application detects an activate event in a text edit window, the event
should be handled, not ignored.

TextEdit provides two routines to do the activating and deactivating:
TeOeActivate removes the straight-line cursor; TEActivate makes the straight­
line cursor appear at the left-most position of the activated view rectangle. (It does
not make the cursor blink.)

The same event type is returned for both activate and deactivate events. An
application can distinguish between the two by checking the Modify field of the
event record. For example:

MOVE Modify,00
BTST #activeFlag,00
BEQ OeActivate

;retrieve Modify field
;is activate bit set?
;bit is not set - event is deactivate

The instruction BTST (for Bit Test) is handy when you need to determine
whether or not a specific bit has been set within a register. activeFlag is defined in
the System equates file as 0, which corresponds to the bit position of the flag which

240 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

is set if an activate event really corresponds to activating a window, and cleared if it
means the window was deactivated. BTST works by looking at the specified bit
number in the specified register. If the bit is set, the zero flag in the status register
will be set; if the bit is cleared, the zero flag will be cleared. Therefore, an activate
event will set the zero flag and a deactivate event will clear it.

In an environment like the Video Tape Index where there is more than one text
edit record, an application must also identify which of the text edit windows posted
a given event. Remember that for activate events, the Message field of the event
record will contain the pointer to the window posting the event. Therefore, you
need only compare each window pointer in turn with Message to identify the
correct window.

The actual activating and deactivating of text edit windows is very straightfor­
ward, requiring only the handle to the edit record:

PROCEDURE TEActivate (hTE: TEHandle);

PROCEDURE TEDeactlvate (hTE: TEHandle);

Move the handle onto the stack and then call the routine.
The Video Tape Index program's subroutine for detecting which window has

posted an activate event and properly handling that event, ActivateTextWindow,
appears in Listing 9.1. The first step is to retrieve the pointer of the window involved
from the event record. This occurs at (a) in Listing 9.1. The application also needs to
determine whether the window should be activated or deactivated. Therefore, the
modify word is also retrieved from the event record (b). As discussed above, the
activate or deactivate decision is based on the value of bit 0 in the modify word. A
BTST instruction (c) can be used to check the value of the appropriate bit, which is
equated to the symbolic address of activeFlag. If activeFlag has been cleared,
then the window should be deactivated (d). The application branches to a block of
code that specifically handles deactivations (k).

Listing 9.1 Activating Text Edit Windows

(a)
(b)
(c)
(d)

(e)
(f)
(g)
(h)

(i)

ActivateTextWindow
MOVE.L Message,A0
MOVE Modify,D0
BTST #activeFlag,D0

;get pointer to window which posted event

;activate bit set?
BEQ DeActivate ;if not set, window was deactivated

Activate1
CMP.L NameWindowPtr,A0 ;name window event?
BN E Activat 2
MOVE.L NameTextHandle,-(SP)
TEActivate

BRA Activate99

Activate2
CMP.L ProducerWindowPtr,A0
BN E Activate3 (continued)

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 241

MOVE.L ProducerTextHandle,-(SP)
TEActivate

BRA Activate99

Activate3
CMP.L DateWindowPtr,A0
BNE Activate4
MOVE.L DateTextHandle,-(SP)
TEActivate

BRA Activate99

Activate4
CMP.L RatingWindowPtr,A0
BNE Activate5
MOVE.L RatingTextHandle,-(SP)
_ TEActivate
BRA Activate99

Activate5
CMP.L NumberWindowPtr,A0
BNE Activates
MOVE.L NumberTextHandle,-(SP)
TEActivate

BRA Activate99

Activates
CMP.L AnnotationWindowPtr,A0
BNE Activate98 ;not one of our text windows
MOVE.L AnnotationTextHandle,-(SP)
_ TEActivate

Activate99
MOVE.L Message,-(SP)
_Set Port

;make this the current grafport

Activate98
ATS

De Activate
(k) CMP.L NameWindowPtr,A0

BNE DeActivate1
MOVE.L NameTextHandle,-(SP)
TeDeActivate

ATS

DeActivate1
CMP.L ProducerWindowPtr,A0
BNE DeActivate2
MOVE.L ProducerTextHandle,-(SP)
_TeDeActivate
ATS

DeActivate2
CMP.L DateWindowPtr,A0
BNE DeActivate3
MOVE.L DateTextHandle,-(SP)

_ TeDeActivate
ATS (continued)

242 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 9.1 (continued)

DeActivate3
CM P .L RatingWindowPtr,A0
BN E DeActivate4
MOVE.L RatingTextHandle,-(SP)
_TeDeActivate
RTS

DeActivate4
CMP.L NumberWindowPtr,A0
BN E DeActivate5
MOVE.L NumberTextHandle,,(SP)
TeDeActivate

ATS

DeActivate5
CM P .L AnnotationWindowPtr,A0
BNE DeActivate6 ;not a text window
MOVE. L Annotation T extHandle, -(SP)
TeDeActivate

RTS

DeActivate6
RTS

Assuming that activeFlag has been set (the window should be activated), the
application does not execute the branch at (d). Instead it continues processing with
statement (e). This is where the code begins the somewhat tedious process of
identifying exactly which text window posted the activate event. There is only one
reliable way to do so. The pointer retrieved from the message field of the event
record must be compared to the pointer for each text window used in the applica­
tion. A match indicates that the proper window has been found. Why is this
necessary? Because TEActivate requires the text edit handle associated with the
window being activated; there is no way to activate the appropriate text edit
window without knowing specifically which text edit handle should be placed on
the stack. Therefore, the application, at (e), compares the pointer from message
(stored in AO) with a pointer to one of the text edit windows. In this case, the
program looks first at the window for the tape name, but the order in which the
windows are processed is nonetheless arbitrary.

If a match between the two pointers is not found (f), the program must branch
to check the next window (i). On the other hand, if the two pointers are the same,
then the application can proceed to activate the window. Statement (g) places the
appropriate text edit handle on the stack. The window is then activated with a call to
TEActivate (h).

One final step remains in the activation process: the newly activated window
must be madethe current grafport. Otherwise, no drawing can be performed in the
window. Therefore, a call to SetPort is performed at (i).

The entire procedure is repeated for each text edit window.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 243

Deactivating the text edit windows, beginning at (k), is more or less the same as
activating. The window involved must be identified by comparing its pointer to the
pointer from message so that its text edit handle can be placed on the stack. The
handle is placed on the stack followed by a call to TeDeActivate. Once the
window is deactivated, the application can return to the main program, since no
call to SetPort is required.

Getting a Blinking Cursor
The blinking cursor in a text edit window is controlled by TEldle. Like the

SystemTask routine that updates desk accessories, TEldle must be called
repeatedly. It should be a part of each event loop in an application. Like the
activate and deactivate procedures, TEldle requires only the handle to the edit
record of the text edit window where the cursor should blink (i.e., this must be the
handle of the currently active text edit window):

PROCEDURE TEldle (hTE: TEHandle);

The fact that TEldle requires the handle of the currently active text window
presents a problem for applications where there is more than one text edit window,
any of which might be active while the same event loop is controlling program
action. To solve this problem, TEldle can be called with a sort of "generic" text edit
handle. The Video Tape Index, for example, has allocated additional space for a
text edit handle called ActiveTextHandle. Whenever a text edit window is
selected, its handle is moved into ActiveTextHandle, which is then passed to
TEldle. Therefore, all calls to TEldle appear as:

MOVE.L
_TEldle

ActiveTextHandle, - (SP)

Moving the Cursor (Setting
the Selection Range}

A selection range is what is highlighted in inverse video when you drag the
mouse across a range of text or shift-click to indicate everything between the
cursor and the click. A selection range can also be a single spot if it simply refers to
the position of the blinking cursor.

Text edit records identify the selection range by counting the characters in the
text, beginning from the left; the first position is numbered 0. The range can be set
by an application's response to mouse actions or by the application itself.

If an application returns a mouse down event in an active text edit window, then
the program can assume that the selection range needs to be moved. As you
remember, a call to FrontWindow will return a pointer to the currently active

244 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

window. If this is the same as the pointer returned by FindWindow, then indeed
the mouse down event occurred in the active window and the selection range
should be adjusted.

TECllck takes care of positioning the selection range. It will move the straight­
line cursor as well as highlight text and can handle extended selection ranges
indicated by shift-click actions. TECllck needs to know where the mouse down
event occurred, whether to process shift-click actions, and the text edit handle:

PROCEDURE TEClick (pt: Point; extend: BOOLEAN;
hTE: TEHandle);

Point is from the event record. If extend is true, a shift-click will be processed;
if extend is false, the cursor will simply be repositioned, regardless of whether the
shift key was held down. Therefore, an application must check the Modify field of
the event record prior to calling TEClick to determine what value to give the
extend boolean. The final parameter is simply the handle to the text edit record
whose window posted the mouse down event.

There is one catch here - the Point field from the event record returns the
position of the mouse down event in global coordinates; TEClick requires thatthey
be expressed in the local coordinates of the current grafport (i.e., those of the
currently active text edit window). Therefore, before an application can call
TEClick, the mouse coordinates must be converted to the local coordinate sys­
tem.

As discussed previously, the QuickDraw routine GlobalToLocal will take care
of the conversion:

PROCEDURE GlobalToLocal (VAR pt: Point);

Point is passed into the routine as global coordinates and is returned in local
coordinates. (As you might expect, there is also a LocalToGlobal routine.)

The code for handling selection range movement using the mouse is therefore:

PEA Point

_GlobalToLocal

MOVE.L
BTST
SNE
MOVE.B

Point, - (SP)
#shiftKey,Modify
DO
DO,-(SP)

;push address so changed values can
return

;coordinates are now local
;was shift key pressed?
;set true if shift key was held down
;moving byte puts boolean in high order
byte - system automatically pushes
extra byte to keep stack pointer on
even word boundary

MOVE.L ActiveTextHandle, - (SP)
_TEClick

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 245

Note that the quantity shiftKey refers to the bit in the Modify field that is set when
the shift key is held down during a mouse down or key down event.

The second way to control the selection range is to explicitly set it within the
application itself. The routine TESetSelect will do just that:

PROCEDURE TESetSelect (selStart, selEnd: LONGINTEGER;
hTE: TEHandle);

selStart refers to the position to which the start of the selection range should be
set. To set it to the first position, it should take a value of 0 since character positions
are, as mentioned above, numbered from the left beginning with 0. selEnd refers
to the character position which should be the right-most edge of the selection
range. The routine also requires the handle to the text edit record.

Why might an application need to set its own selection range? Consider the
situation where an application must clear all the text from a text edit record without
deleting the record itself since it will be used again. It makes sense to select all the
text and then "cut" it out. (Implementing "cut" is discussed below.) The start of the
selection range would therefore be set to 0 and its end to the length of the text or the
last possible character position allowed by the view and destination rectangles. If
the end of the selection range given in the procedure call is beyond the last
character actually present, it will be modified to correspond to the position of that
last character. To select all the text in the Producer text edit record (a 20 character
field), the Video Tape Index uses:

MOVE.L #0, - (SP) ;starting position
MOVE.L #20, - (SP) ;ending position
MOVE.L ProducerTextHandle, - (SP)
_ TESetSelect

If you look at the environment in which the Video Tape Index does this selection
range assignment (see Listing 9.3, discussed later in this chapter), you'll notice that
the sequence of events includes first selecting the window and then setting the
grafport. TextEdit routines are very sensitive about grafports. To be safe, when­
ever preparing to call a TextEdit routine, be certain to set the correct grafport prior
to making the call to TextEdit.

Inserting Characters into
Text Edit Records

Just as selection ranges can be manipulated by the mouse or explicitly from
within an application, characters can also be accepted from the keyboard or
inserted into a text edit record by an application itself.

If an application detects a key down event without an accompanying press of
the cloverleaf key, then the key press represents a character to be inserted into a

246 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

text edit record and displayed on the screen. The routine which actually inserts the
character is TEKey:

PROCEDURE TEKey (key: CHAR; hTE: TEHandle);

The character that was pressed is available in the low-order word of the event
record's Message field (i.e., Message+ 2, just as used when identifying the key
pressed in conjunction with the cloverleaf key). The second parameter is a handle
to the currently active text edit record. TEKey inserts the key pressed into the text
edit record and displays the character on the screen. It also removes characters
that are deleted by the backspace key. To call it, use something like:

MOVE
MOVE.L
_TEKey

Message+ 2, - (SP) ;character that was pressed
ActiveTextHandle, - (SP)

An application can do its own text insertion and display with TElnsert:

PROCEDURE TElnsert (text: Ptr; length: LONGINT;
hTE: TEHandle);

The text specified by text (a pointer to where the text to be inserted is stored) will be
inserted into the text edit record and drawn on the screen to the left of the current
selection range. The length parameter contains the number of characters to be
inserted.

The Video Tape Index uses this technique to display a record which has been
retrieved using any of its three search strategies: printing all records sequentially;
doing a binary search on a tape name; doing a sequential search on producer,
date, rating, or tape number. The subroutine that performs the display, Dis­
playOneRecord, appears in Listing 9.2.

The subroutine first removes any previous text stored in the text edit windows
(a). This procedure (Listing 9.3) is discussed in detail later in this chapter. The next
three statements, beginning with (b), take the number for the record being dis­
played (stored in RecordCounter) and compute a byte offset into TapeArray.
This offset locates the start of the record whose data will be inserted into the text
edit records.

Each text edit record must be handled separately. Since TElnsert displays
characters as well as inserting them into the text edit record, the first step is to make
the appropriate text edit window the current grafport with a call to SetPort. This
occurs at (c) for the tape name window only.

The subroutine then prepares for the call to TElnsert. The first parameter is the
starting address of the text that is to be inserted into the text edit record. That
address is the sum of three things: the starting address of TapeArray (d), the byte
offset into TapeArray that locates the start of the record (e), and an offset into the
record for the field whose contents are being inserted.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 247

Listing 9.2 Inserting Text Directly into Text Edit Records

(a)
(b)

(C)
(d)
(e)
(f)
(g)
(h)
(i)

(j)

DisplayOneRecord
JSR DisplayWindows ;clears out text edit records (Listing 9.3)
LEA RecordCounter,A0
MOVE (A0),D5
MULU #64,D5

MOVE.L NameWindowPtr,-(SP)
Set Port

LEA TapeArray(A5),A0
ADD D5,A0
MOVE.L A0,-(SP)
MOVE.L #30,-(SP)
MOVE.L NameTextHandle,-(SP)
_TElnsert

MOVE.L ProducerWindowPtr,-(SP)
Set Port

LEA TapeArray(A5),A0
ADD D5,A0
ADD.L #oProducer,A0
MOVE.L A0,-(SP)
MOVE.L #20,-(SP)
MOVE.L ProducerTextHandle,-(SP)
_TElnsert

MOVE.L DateWindowPtr,-(SP)
Set Port

LEA TapeArray(A5),A0
ADD D5,A0
ADD.L #oReleaseDate,A0
MOVE.L A0,-(SP)
MOVE.L #4,-(SP)
MOVE.L DateTextHandle,-(SP)
_TElnsert

MOVE.L RatingWindowPtr,-(SP)
Set Port

LEA TapeArray(A5),A0
ADD D5,A0
ADD.L #oRating,A0
MOVE.L A0,-(SP)
MOVE.L #4,-(SP)
MOVE.L RaUngTextHandle,-(SP)
_TElnsert

MOVE.L NumberWindowPtr,-(SP)
Set Port

LEA TapeArray(A5),A0
ADD D5,A0
ADD.L #oTapeNumber,A0
MOVE.L A0,-(SP)
MOVE.L #4,-(SP)
MOVE.L NumberTextHandle,-(SP)
_TElnsert

RTS

;pointer to text
;# of characters to get
;edit record which will get characters
;incorporate text into record

248 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The name of the tape has an offset of 0, since it is the first field in the record and
therefore needn't be considered when dealing with the tape name. Note, however,
that for the other fields, the offset is included in the address computation. For
example, look at statement (j), which adds the offset for the producer's name to the
address in AO.

Once the starting address of the source text is computed, it is pushed onto the
stack (f). That address is followed by the number of bytes which should be inserted
(g) and the handle to the appropriate text edit record (h). The process is completed
by calling TElnsert (i).

This sequence of events is repeated for each text edit window except the
annotation window. Since annotations are kept on disk in a direct access file and
only brought into memory as needed, annotation display is handled separately.

Editing Text: Cut, Copy,
Paste, and Delete (Clear)

Those text editing functions for which the Macintosh is famous are surprisingly
easy to implement. Cut, copy, paste, and delete (called "clear" in the Edit menu)
each base their actions on the current selection range of a given text edit record.
As discussed above, the placement of that selection range is controlled by either
TEClick or TESetSelect.

If an application detects the "cut" command (through either a cloverleaf-X key
press or a mouse down event in the Edit menu), it should call TECut:

PROCEDURE TECut (hTE: TEHandle);

The text in the current selection range will be deleted from the text edit record and
copied to the Clipboard. The text will be removed from the screen and the rest of
the text adjusted to compensate for the characters that were deleted.

If an application needs to remove text without copying it to the Clipboard, it can
use TEDelete instead of TECut:

PROCEDURE TEDelete (hTE: TEHandle);

On the other hand, to get text onto the Clipboard without deleting it from the text
edit record, use TECopy:

PROCEDURE TECopy (hTE: TEHandle);

Pasting from the Clipboard into a text edit record is similarly straightforward:

PROCEDURE TEPaste (hTE: TEHandle);

TEPaste takes whatever is on the Clipboard and inserts it into the text edit record
just before the current insertion point. The screen display is adjusted to compen­
sate for the new text. Pasting does not, by the way, disturb the contents of the

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 249

Clipboard. Only a Cut or Copy operation will do that. An application, therefore, can
repeatedly paste the same text into a text edit record until such time as another Cut
or Copy is executed.

The Video Tape Index uses the Cut function to clear out its text edit records.
Whenever it becomes necessary to remove all characters from both the text entry
windows and the text edit records, the program executes the following sequence
of steps:

1. Select a window (SelectWindow)

2. Make it the current grafport (SetPort)

3. Select the selection range to the maximum number of characters that will be
stored in this text edit record (TESetSelect)

4. Cut the text (TECut)

The procedure outlined above is used in the Video Tape Index's subroutine
DisplayWindows (Listing 9.3). DisplayWindows selects each text edit window in
turn, which brings it in front of the main window. It also cuts out any text that might
be stored in the text edit records, so that the windows are empty when they appear.
As with the other subroutines that deal with the text edit records, DisplayWindows
must handle each text edit window separately, repeating the same sequence for
every window. DisplayWindows returns with the tape name window active.

The first step is to select the window (a) and to then make it the current grafport
(b). At that point, any existing text in the text edit record must be removed . In order
to make TECut operate on all characters that are present, the subroutine first sets
the selection range to encompass the maximum numbers of characters that can
appear in the specific field. It begins the selection range at the first character
position (c) and ends it at the last possible character position (d). Note that this will
not cause any problems if there are less than the maximum number of characters
in the text edit record, since TESetSelect will automatically adjust the ending
position to the last character actually present. After placing the appropriate text
edit handle on the stack (e), a call is made to TESetSelect (f). The contents of the
text edit record can then be removed with TECut (g).

The steps illustrated by statements (a) through (g) are repeated for each of the
text edit windows. If you are looking at Listing 9.3, however, you will see that a
number of other things happen in DisplayWindows. These are the direct result of
the calls made to SelectWindow.

SelectWindow not only brings a window to the front, but it also highlights that
window. For the name, producer, rating, date, and number windows, highlighting
is unimportant since their windows are simply outlined rectangles. But the annota­
tion window is a standard document window with a title bar. SelectWindow will
highlight it and leave it highlighted. Since the annotation window will not be the
active window when DisplayWindows returns, it should not be highlighted. There­
fore, the three statements beginning at (h) issue a call to HiliteWindow to remove
the highlighting.

250 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

(a)

(b)
(c)
(d)
(e)
(f)

(g)

(h)

Listing 9.3 Sett!ng a Text Edit Selection Range from within an Application

DisplayWindows
MOVE.L AnnotatjonWindowPtr,-(SP)
SelectWindow

MOVE.L AnnotationWindowPtr,-(SP)
_SetPort
MOVE.L #0,-(SP)
MOVE.L #255,-(SP)
MOVE.L AnnotationTextHandle,-(SP)
TESetSelect ;select all the text in the window

MOVE.L AnnotationTextHandle,-(SP)
_ TECut ;cut out text from previous use

MOVE.L AnnotationWindowPtr,-(SP)
SF -(SP)
_HiliteWindow ;get rid of highlighting in this window

MOVE.L NurnberWindowPtr,-(SP)
SelectWindow · · ·

MOVE.L NumberWindowPtr,-(SP)
Set Port

MOVE.L #0,-(SP)
MOVE.L 20,-(SP)
MOVE.L NumberTextHandle,-(SP)

TESetSelect
MOVE.L NumberTextHandle,-(SP)
_TECut

MOVE.L RatingWindowPtr,-(SP)
SelectWindow

MOVE.L Ratingl/VindowPtr,-(SP)
_Set Port
MOVE.L #0,-(SP)
MOVE.L #4,-(SP)
MOVE.L RatingTextHandle,-(SP)
_ TESetSelect
MOVE.L RatingTextHandle,-(SP)
_TECut

MOVE.L DateWindowPtr,-(SP)
SelectWindow

MOVE.L DateWindowPtr,-(SP)
_SetPort
MOVE.L #0,-(SP)
MOVE.L #5,-(SP)
MOVE.L DateTextHandle,-(SP)
TESetSelect

MOVE.L QateTextHandle,-(SP)
_TECut

MOVE.L ProducerWindowPtr,-(SP)
SelectWindow

MOVE.L ProducerWindowPtr,-(SP)
_SetPort
MOVE.L #0,-(SP)
MOVE.L #22,-(SP)
MOVE.L ProducerTextHandle,-(SP) (continued)

(i)
(j)

(k)

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 251

_ TESetSelect
MOVE.L ProducerTextHandle,-(SP)
_TECut

MOVE.L $00000100,00
_Flush Events

MOVE.L NameWindowPtr,-(SP)
Select Window

MOVE.L NameWindowP!r,-(SP)
_Set Port
MOVE.L #0,-(SP)
MOVE.L #32,-(SP)
MOVE.L NameTextHandle,-(SP)

TESetSelect
MOVE.L NameTextHandle,-(SP)
_TECut

LEA ActiveTextHandle,A0
MOVE.L Name Text Handle ,(A0)

RTS

;mask to remove activate events

;name window is activated at start

~orTEldle

SelectWindow also generates two activate events each time it is called: one
for the window being activated and one for the window being deactivated. The
activate events from DisplayWindows are in some sense spurious; they do not
correspond to any real need to activate or deactivate text edit windows. Their
presence will confuse an event loop. Therefore, before dealing with the tape name
window, which will be active when the subroutine ends, those extra activate events
should be removed. A special mask is created to identify only activate events (i)
and then used for a call to FlushEvents (j). This will remove those activate events
before they can be processed by an event loop.

Since the tape name window will be active when DisplayWindows returns,
TEldle should have the handle to the name text edit record. Therefore, the hame
text edit handle is loaded into the generic text handle just before the subroutine
finishes (j).

There is, by the way, an alternative way to delete the text in a text edit record -
simply dispose of the entire record. The routine TEDispose (it requires only the
handle to the text edit record as a parameter) removes the text edit record from
memory. It would certainly be possible to dispose and then reallocate the text edit
records each time the Video Tape Index finished with a given record. Doing so,
however, requires more code than emptying the text edit record by cutting out its
entire contents.

Displaying Static Text
In some cases it may be necessary to display text that won't be changed. For

example, the Video Tape Index prints the name of the field to the left of each text
edit window (see Figure 9.1). These prompts are essential; otherwise the user will

252 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

have no idea what information should be entered in each text window. Nonethe­
less, there is no need to change those prompts once they are printed.

The prompts for the TapeArray fields are printed on the main window. They
could have been printed with Drawstring, the Tool Box routine used in the Sample
program to display text. To use Drawstring an application must first move the
cursor to the coordinates where printing should begin. Drawstring then prints the
characters, moving the cursor from left to right. This can be somewhat awkward,
especially when the text needs to be justified (e.g ., note that the Video Tape Index
prompts are printed in a proportional type font which is lined up along the right
hand side).

r a Edit Enter

Enter New Titles ond Annototions

Tope Nome:

Producer / Distributor:

Dote of Releose: CJ
Roting: D

TBpe Number: D
Annototion

Text Box prompts (e .g., Dote of Releose) are drwn on 1he Main
v;indov; . They are righ1 jus1ified v;i1hin their boundary rec1angle .
The boundary rec1angle i1self does not appear. The prompts cannot be
modified v;ith anyTextEdit rou1ines.

Figure 9.1 Displaying Static Text

TextEdit provides an alternative for printing static text with the TextBox
routine. TextBox prints a string of text inside a rectangle expressed in the local
coordinates of the current grafport. The rectangle has no visible borders, nor is any
text edit record created. The routine also allows an application to specify text
justification within the rectangle (left, right, or centered). The format of the call is:

PROCEDURE TextBox (text: Ptr; length: LONGINTEGER;
box: Rect; just: INTEGER)

As with anything else that requires placing coordinates on the Macintosh
screen, using textBox requires a bit of planning. For example, since the Video
Tape Index will print its prompts on the main window, the coordinates of the

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 253

rectangles in which the prompts will be printed must be expressed in terms of that
main window (upper left-hand corner becomes 0,0 and lower right-hand corner
becomes 240,490). To keep things simple, the windows for each prompt are the
same size (11 pixels high and 191 pixels wide). The height is dictated by the size of
the text; if a window is to display 12-point text, it must be a minimum of 10 pixels
high. The width obviously depends on the maximum number of characters that will
be printed. Establishing the exact placement of each rectangle nonetheless
requires a bit of trial and error.

The parameter just is an integer that indicates how the text should be justified
within its rectangle. A value of O will left-justify the text, 1 will center it, and -1 will
right-justify. length is the number of characters to print, and text is a pointer to the
text to be printed.

Consider as an example the code that displays the prompt for the Date text
entry window:

PEA
MOVE.L
PEA
MOVE
_TextBox

StringConstant
#17, -(SP)
DatePromptBox
#-1,-(SP)

;pointer to string
;number of characters to print
;rectangle where text should go
;right justify the text

Two things must have occurred before the above code will function properly. First,
the main window must be the current grafport (through a call to SetPort). Sec­
ondly, the rectangle DatePromptBox must have been defined. For example:

DatePromptBox DC 62,10,82,200

It is also important to be sure that the string passed to TextBox has the data
type Str255 (i.e., its first byte is a length byte). The easiest way to do so is to allocate
space for the string with DC. For example:

StringConstant DC 'Date of Release'

The subroutine that displays the Video Tape Index's prompts, DisplayPrompts,
appears in Listing 9.4. DisplayPrompts first establishes the font that should be
used when the prompts are drawn (a). Setting the text font is discussed a bit further
on in this chapter. Then, the TextBox sequence is repeated for each of the text edit
windows that occupy plain document boxes (i.e., all but the annotation window).
The text of the prompts have all been established as constants with DC, ensuring
that they will be assembled with a length byte. The first step (b), is to push a pointer to
the title string onto the stack. That pointer is followed by the number of characters in
the string (c), a pointer to the rectangle in which the text should be printed (d), and the
text justification (d). The text is actually printed with the call to TextBox (e).

254 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 9.4 Using TextBox to Display Static Text

DisplayPrompts
MOVE #sysFont,-(SP)

(a) _TextFont

(b)
(c)
(d)
(e)

PEA NameTitle ;text to print
MOVE.L #11,-(SP)
PEA NamePromptBox

;number of characters to print
;rectangle where text should be printed
;to right justify text MOVE #-1,-(SP)

_TextBox

PEA ProducerTitle
MOVE.L #22,-(SP)
PEA ProducerPromptBox
MOVE #-1,-(SP)
_TextBox

PEA DateTitle
MOVE.L #17,-(SP)
PEA DatePromptBox
MOVE #-1,-(SP)
_TextBox

PEA RatingTitle
MOVE.L #8,-(SP)
PEA RatingPromptBox
MOVE #-1,-(SP)
_TextBox

PEA NumberTitle
MOVE.L #13,-(SP)
PEA NumberPromptBox
MOVE #-1,-(SP)
_TextBox

RTS

NamePromptBox DC
Name Title DC
ProducerPromptBox DC
ProducerTitle DC
DatePromptBox DC
Date Title DC
RatingPromptBox DC
Rating Title DC
NumberPromptBox DC
Number Title DC

12, 10,32,200
'Tape Name:'
37,10,57,200
'Producer/Distributor:'
62, 10,82,200
'Date of Release:'
87,10,107,200
'Rating:'
112, 10, 132,200
'Tape Number:'

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 255

Updating Text Edit
Windows

TextEdit has its own routine for updating text edit windows. Whenever an
update event is detected in a text edit window, an application should execute the
following sequence of steps:

1 . Call BeginUpdate

2. Call EraseRect (this ensures that when the window is deactivated, the cursor
will disappear)

3. Call the special TextEdit routine TEUpdate (discussed below)

4. Call EndUpdate

TEUpdate redraws the text specified by a rectangle parameter:

PROCEDURE TEUpdate (rUpdate: Rect; hTE: TEHandle);

Generally, the text edit window's view rectangle is used for the rUpdate parameter.
It is also important to remember that the text edit window referred to by TEHandle
must be the current grafport in order for TEUpdate to work properly.

The Event Manager will return update events only for an active window. If an
application has windows which are visible but not active, any changes in their
contents will not be reported. For example, consider the Video Tape Index's text
entry screen (e.g., Figure 9.1). Only one text entry window is active at any given
time, yet it is possible to use a desk accessory that will overlay, and therefore erase
portions of, windows that are not active. Therefore, it may not always suffice to
update just the window reporting the update event.

The Video Tape Index handles updating text windows with the subroutine
UpdateTextWindows (Listing 9.5). Whenever an update event is detected, the
program erases and redraws the contents of all windows.

The main window, because it is not a text edit window, is handled a bit
differently from the text edit windows. As with all updates, the process begins with a
call to BeginUpdate (a). To ensure that all routines which affect the screen will
function properly, it is then made the current grafport using SetPort (b).
UpdateTextWindows then erases the main window's contents (EraseRect at (c)).
The window's contents are redrawn by the subroutine DisplayPrompts from Listing
9.3 (d). As mentioned earlier, it is usually easier to erase and completely redraw a
window's contents than it is to merely redraw the specific portion that has been
disturbed by some other program action. The update is completed by calling
EndUpdate (e).

256 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Updates for the text edit windows begin in the same manner as updates to the
main window - calling BeginUpdate (f), setting the grafport (g), and erasing the
window (h). Redrawing the window's contents, however, is where the difference
lies. TEUpdate will take care of redrawing the text. That routine requires that the
text window's view rectangle (i) and its text handle (j) be placed on the stack before
making the call (k). As usual, the update ends with EndUpdate (I).

Listing 9.5 Updating Multiple Windows

Update TextWindows
MOVE.L MainWindowPtr,-(SP)

(a) _Begin Update
MOVE.L MainWindowPtr,-(SP)

(b) Set Port
PEA MainWindowRect

(c) EraseRect
(d) JSR Display Prompts ;re-draw window's contents

MOVE.L MainWindowPtr,-(SP)
(e) _End Update

MOVE.L NameWindowPtr,-(SP)
(f) _Begin Update

MOVE.L NameWindowPtr,-(SP)
(g) SetPort

PEA NameViewRect
(h) EraseRect
(i) PEA NameViewRect
(j) MOVE.L Name TextHandle, -(SP)
(k) _TEUpdate

MOVE.L NameWindowPtr, -(SP)
(I) _End Update

MOVE.L ProducerWindowPtr, -(SP)
_Begin Update
MOVE.L ProducerWindowPtr,-(SP)
Set Port

PEA ProducerViewRect
EraseRect

PEA ProducerViewRect
MOVE.L ProducerTextHandle,-(SP)
_TEUpdate
MOVE.L ProducerWindowPtr,-(SP)
_End Update

MOVE.L DateWindowPtr,-(SP)
_Begin Update
MOVE.L DateWindowPtr,-(SP)
Set Port

PEA DateViewRect
EraseRect

PEA DateViewRect
MOVE.L DateTextHandle,-(SP)
_TEUpdate
MOVE.L DateWindowPtr,-(SP)
_End Update (continued)

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 257

MOVE.L RatingWindowPtr,-(SP)
_Begin Update
MOVE.L
_Set Port

RatingWindowPtr,-(SP)

PEA RatingViewRect
Erase Rect

PEA RatingViewRect
MOVE.L
_TEUpdate

RatingTextHandle,-(SP)

MOVE.L
_End Update

RatingWindowPtr,-(SP)

MOVE.L
_Begin Update

NumberWindowPtr,-(SP)

MOVE.L NumberWindowPtr,-(SP)
Set Port

PEA NumberViewRect
_EraseRect
PEA NumberViewRect
MOVE.L NumberTextHandle,-(SP)
_TEUpdate
MOVE.L NumberWindowPtr,-(SP)
_EndUpdate

MOVE.L AnnotationWindowPtr, -(SP)
_Begin Update
MOVE.L AnnotationWindowPtr,-(SP)
_Set Port
PEA AnnotationViewRect
_EraseRect
PEA AnnotationViewRect
MOVE.L AnnotationTextHandle,-(SP)
_TEUpdate
MOVE.L AnnotationWindowPtr,-(SP)
_EndUpdate

RTS

Changing Fonts and Font
Characteristics

One of the things that always excites new users about the Macintosh is its ability
to manipulate multiple fonts with varying characteristics within a single text win­
dow. The three routines that manage those features are part of QuickDraw.

TextFont takes care of setting the font itself:

PROCEDURE TextFont (font: INTEGER);

Each font is identified by a font number. Equates for the standard release fonts are
included in the QuickDraw equates file. The system font (Chicago), for example,
has an ID of 0, while NewYork is 2 and London is 6. The address assigned to the
standard release fonts appear in Table 9.1.

258 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Table 9.1 Symbolic Addresses Assigned to Standard Release Fonts

Symbolic Address/ Font
FQnt Nam~ Nymb~r

sysFont (Chicago) 0
applFont (Geneva) 1

new York 2
geneva 3
monaco 4
venice 5
london 6
at hens 7
sanFran 8
toronto 9
cairo 10
losangel 11

To change the font, push the font ID number onto the stack and call the routine:

MOVE #venice, - (SP)
_TextFont

;pushes as

It is important to remember that TextFont only affects the current grafport and
must therefore be repeated whenever the grafport changes to another window.

The style of a font (boldface, italic, underlined, outlined, shadowed, etc.) is
controlled by TextFace:

PROCEDURE TextFace (face: Style);

The actual style of the font is determine by the style word that is supplied as a
parameter to the routine. Bits in the style word represent one type of text face (see
Figure 9.2). For example, if bit O is set, text will be displayed in boldface. If bit 2 is
set, the text will be underlined. If both bits O and 2 are set, the text will be both
boldface and underlined. To create bold and underlined text, use:

MOVE
_TextFace

#5,-(SP) ;the 5 = 0000 0000 0000 0101

To return to normal text, use a style word of 0.
Like TextFont, TextFace also affects only the current grafport.
TextSize manipulates the size of the text in the current grafport:

PROCEDURE TextSize (size: INTEGER);

The size of the text is expressed in points, just seen in standard Style menus.
Though an application can select virtually any size for any font, the text will look

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 259

best if it is expressed in a size that exists in the system. The following instructions
will establish a text size of 14 points:

MOVE
_TextSize

#14, -(SP)

Text justification is handled by the routine TESetJust:

PROCEDURE TESetJust (just: INTEGER; h: TEHandle);

just is one of the three numbers used to specify justification for TextBox: 0 to left­
justify, 1 for centered text, and -1 for right-justification. his a handle to a text edit
record containing the text to be justified. For example, to center text you might
code:

MOVE
MOVE.L
_TESetJust

#0, -(SP)
SomeTextHandle(A5), - (SP)

TESetJust does not affect the text as it is displayed on the screen, only as it is
stored in the text edit record. Therefore, to change the justification of the text on the
screen, execute a complete update sequence that will erase the text edit window
and redraw its contents with the new justification immediately after calling
TESetJust.

Bit# 7 6 5 4 3 2 1 0

I I I I
Unused Condense Outline Italic

Extend Shadow Underline Bold

To select any font style, set the appropriate bit in the style
word. The styles are additive. For example, to get outlined
boldface text set bits 0 and 2.

Figure 9.2 The Style Word Used by TextFont

260 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Scrolling Text
Applications which permit the entry of large text documents will need to scroll

text within text entry windows. Scrolling activities are implemented whenever the
user clicks the mouse button somewhere in a scroll bar, or when the text being
entered goes below the bottom edge of the view rectangle.

How far the text should be scrolled depends on what initiated the scrolling
action. A single click in an up or down arrow will scroll the text one line. A click in a
right or left arrow will scroll the text a character or two. A click in a page up or page
down region will move text one "page" (generally one window full). On the other
hand, if the user drags the thumb of a scroll bar, the amount to scroll will be
proportional to the movement of the thumb.

Scrolling is implemented by a single TextEdit routine:

PROCEDURE TEScroll (dh,dv: INTEGER; hTE: TEHandle);

dh and dv are expressed in pixels. They specify how far the text should be
scrolled. If both values are positive, dh refers to the number of pixels to scroll to the
right and dv refers to the number of pixels to scroll down. If the values are negative,
dh indicates the number of pixels to scroll left and dv the number of pixels to scroll
up.

The height, in pixels, of a single line of text is contained in the text edit record in
the field llneHeight. This parameter always reflects the current spacing (e.g.,
single or double spaced). Therefore, once an application determines the number
of lines to scroll up or down, the number of pixels can be obtained by multiplying
the number of lines to scroll by the number of pixels per line. For example, the
following code will scroll text three lines down:

MOVE

MOVE.L
MOVE.L
MOVE
MULU

MOVE
MOVE
MOVE.L
_TEScroll

#3,Numlines(AS)

TextEditHandle,AO
(AO),AO
lineHeight(AO),DO
NumLines(AS),DO

#0,-(SP)
00,-(SP)
TextEditHandle, - (SP)

;# of lines to scroll

;handle to TE record
;get pointer
;retrieve height of line
;total number of pixels

;don't move to the right
;pixels down
;handle to TE record

;application must now update the text edit window

In terms of figuring out which way to scroll, remember that when a user clicks
the up arrow of a vertical scroll bar, the text should move down. By the same token,
a click in the down arrow will scroll the text up. The same is true of thumb
movement - if the thumb moves up, the text should move down; if the thumb
moves down, the text should move up.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 261

How far does text move when a thumb is dragged? Consider the situation
where a scroll bar has a minimum of 0 and a maximum of 10. If the thumb is moved
to the middle of the scroll bar, it will have a value of 5. The text should therefore be
scrolled to the middle of document, regardless of the length of the document. If the
thumb has a value of 2, the text should be scrolled 20% from the beginning of the
document.

Left to right scrolling is usually more rigidly controlled than up and down
scrolling. Most text processing applications assign a fixed maximum width to a
document. For example, Microsoft Word limits the user to an 81/2-inch-wide page,
even though margins can be set at will. ThinkTank 512 also limits the user to an 8-1/2-
inch line. Therefore, the amount of scrolling that a single click in a left or right arrow
will produce does not depend on the size of the font in use, but is a fixed interval
based on the maximum width of the document. Dragging the thumb of the horizontal
scroll bar is also proportional to the maximum fixed width of the document.

Controlling Program
Actions with Alert and

Dialog Boxes
Dialog boxes appear whenever a program needs infor.mation from the user in

order to proceed. Alert boxes generally appear to warn the user that an error has
occurred or that the potential to commit some error exists.

As discussed in Chapter 1, there are two types of dialog boxes - modal and
modeless. Modal dialog boxes restrict the user to working within the dialog box.
For example, consider the dialog box that appears when you select the PRINT
option from a standard File menu (Figure 9.3). Until you either click the OK button
with the mouse or hit the ENTER key, the only actions possible are changing the
print parameters displayed by the dialog box.

Modeless dialog boxes are more like regular document windows. Their pres­
ence on the screen does not prevent the user from performing other activities. The
most common example of a modeless dialog box is the window that appears when
FIND is selected from a Search menu (Figure 1.12). The user can work in the FIND
box, deactivate it by clicking on another visible window, work in another active
window, and later reactivate the dialog box without ever removing it from the
screen.

Alert boxes are more like modal dialog boxes. They, too, freeze program
action until the user responds to the alert. But while modal dialog boxes are used
whenever the program needs information, alert boxes signal errors or warnings.

Dialog and alert boxes are handled by the Dialog Manager. To properly set up
an application for calls to the Dialog Manager, include a call to lnitDialogs in the
initialization portion of the program. lnitDlalogs takes one parameter - a pointer

262 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

to whatever routine should be started whenever a system error occurs and the
system must be restarted. The pointer should either restart the current application
or be 0:

CLR.L -(SP)
_lnitDialogs

;no restart procedure

The call to lnitDialogs can be the last initialization in the sequence.

r s File Edit Seorch Formot Font Size Transfer

Quolity:

Poge Range:

Copies:

Poper Feed:

0 High

@Rll

EJ

...Jlntitl~

O Shrndord ® Droft

0 From: D To: D
®Continuous O Cut Sheet

This is the standard Job Dialog displayed end monitored by
e cell to the Printing Manager routine PrJobDialog

Figure 9.3 Standard Job Dialog

Defining Dialog and Alert
Boxes

OK

(Concel J

,,::;;;:; rnmmmmJ

.,

Dialog and alert boxes, like other windows, are defined in resource files.
Though there are routines for defining them completely within an application, it is
many times easier to use a resource file. Like other windows, the boundaries of
dialog and alert boxes are rectangles expressed in global coordinates. In many
cases, dialog boxes appear centered on the screen just below the menu bar; this is
the position in which the standard Macintosh user interface guidelines expects
them to appear.

The Video Tape Index uses modal dialog boxes to control the progress of a
search. Since only one record can be displayed at any one time, there must be

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 263

some mechanism to "freeze" the program, leaving that record on the screen until
the user is ready to proceed. Therefore, rather than overlaying the text windows,
the dialog boxes appear in the lower right-hand corner of the screen, just above
the annotation window (see Figure 9.4). ·

Note that this technique of using modal dialog boxes to freeze program
execution until the user is ready to go on is very much like using a dummy input
sequence in a Pascal program . The Pascal statements:

write ('Hit <CR> to continue:');
readln (Dummy);

have the same effect as using a modal dialog box, since in either case the program
will not resume execution until the user responds.

r & Edit Select

Select Titles and Annotations

Tape Name: jEmpire Strikes Back, The

Producer /Distributor: I Lucas Fi 1 ms

Date of Release:
Find More?

[Cancel J [~
Rating:

Tape Number:

Annotation

This sequel outdid its predicessor, bringing ne w depth to its characters.
The evil Darth Vader emer ged as a true vi llain , while Luke, Leia and Han
became true forces of good.

The "" Find More?"" dialog box freezes program action until the user
clicks the mouse button "ith the cursor in either the OK or Cancel
button .

Figure 9.4 Using a Dialog Box to Freeze Program Action

The Video Tape Index uses an alert box whenever a search has been chosen
from a menu but no search criteria has been entered. This box also appears in the
lower right-hand side of the screen above the annotation window (see Figure 9.5).

26.. MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Select Titles ond Annototions

Tope Nome:

Producer /Oistribut or:

Dote of Releose: CJ
D
D

Selection criterio?
Roting:

Tope Number:
([OK J)

Annototion

Figure 9.5 An Alert from the Video Tape Index Program

Dialog Boxes
The template for dialog boxes appears much like a regular window template. As an
example, consider the resource definition for the Video Tape Index's None Found
dialog box:

TYPEDLOG

,1

"None Found"
100 300 170 490
Visible NoGoAway
2
0
1

;indicates the the following definitions are
for dialog boxes
;sequence number for this dialog box. Must
be unique within the resource type (i.e., no
other dialog box can have this number)
;place for any message you like
;coordinates of the box's boundary rectangle
;same as for regular window definitions
;number corresponding to type of window
;reference value (always use 0)
;reference number to item list where box's
contents are defined (see below for details)

Rules that apply to other resource definitions hold for dialog boxes as well. For
example, the sequence number must be preceded by a space and a comma. The
number indicating the type of window should be selected from those available for
regular window definitions.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES :265

Alert Boxes
Alert boxes have their own resource template:

TYPEALRT
,4

100300170 490
4

;indicates that an alert box follows
;unique sequence number within all alerts
;boundary rectangle
;reference number to item list where box's
contents are defined

7765 ; "stages" word (in hex)

The only unusual thing about an alert box definition is the stages word. This
number, expressed in hexadecimal, controls what will happen each time the alert
is invoked. It means that if the user continues to make the same error, the
consequences can vary. Alerts can be instructed to beep the Mac's speaker one or
more times, cause the menu bar to flash, display or not display the box itself, and
change which button within the box will be the default button (i.e., the button that is
selected when the user presses ENTER or RETURN).

Each alert has four stages; if an alert is called more than four times, it will simply
repeat whatever actions are specified by the fourth stage. Each stage is controlled
by four bits within the stages word:

Bits 0-3
4-7
8-11

12-15

stage one
stage two
stage three
stage four

Within the four bits allocated to each stage, the highest-order bit refers to the item
number of the default button minus 1 (the item number is the position of the item
(usually a button] within the item list; item lists are discussed below). By convention,
the first item in the list is always the OK button. It appears in the stages word as a 0.
If a CANCEL button is present, it will be the second item in the item list and
therefore is indicated as a 1 in the status word. The next lower-order bit is set if the
alert box is to be drawn and cleared if it should not be drawn. The two lowest-order
bits refer to how many times the speaker should be beeped (0 to 3).

To create a stages word, first design it in binary and then translate it to
hexadecimal. If we convert the Video Tape Index's stages word to binary, we can
see exactly what actions it instructs the Mac to take when the alert is invoked:

$7765 = %0111 0111 0110 0101

In all four stages, the highest-order (left-most) bit is 0. That indicates that the default
item will always be the OK button. (As you will see below in the discussion of item
lists, the OK button is the first item in the item list.) The second bit from the left is
always 1. Therefore, the box will be displayed at all four stages. The difference
between the four stages is in the number of times the speaker will sound. At stage

266 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

one it wiil beep once, at stage two twice, and three times at stages three and four.
Note that if the value of the sound bits is 0, the speaker will not sound at all but the
menu bar will flash.

Item Lists
The items which appear in alert and dialog boxes are also best defined in a
resource file. They are linked to the appropriate box by the item list number within
the alert or dialog box definition. Therefore, each alert and dialog box must assign
a unique number to its item list; the Mac can't tell the difference between lists that
belong to dialog boxes and those that belong to alerts.

A number of special items can appear in dialog and alert boxes. The phrase
that should be used to identify the item in a resource file appears in boldface:

1. Buttons [button] (the hot-dog shaped buttons)

2. Check boxes [checkbox]

3. Radio buttons [radiobutton] (the round buttons)

4. Static text [staticText] (text that is simply displayed on the screen; it cannot
be edited)

5. Edit text [editText] (text that can be edited; available only in dialog boxes)

Note that both static text and edit text items are limited to 241 characters.
Buttons and check boxes are controls. You can manage them directly th rough

routines in the Control Manager, but when they are part of alert and dialog boxes,
the Dialog Manager will make the calls to the Control Manager for you.

The item list for dialog box will appear as follows. This one is for the Video Tape
Index's None Found dialog box:

TYPEDILT
,1

2

button
4011060170

OK

static Text
104130149
None Found

;indicates that item lists follow
;same as item list reference number
in the dialog box's definition
;number of Items In the list

;type of Item
;boundary rectangle for the item,
expressed in local coordinates of the
dialog box
;content of the item

;type of item
;coordinates to enclose the text
;text to be printed

Note that the location of each item in the dialog or alert box is indicated by a
boundary rectangle. That rectangle is expressed in the local coordinates of the
specific dialog or alert box.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 267

The item number to which we referred earlier simply corresponds to an item's
physical position in the item list. The first item that appears (in this case, the OK
button) is item #1; the second item that appears (the text "None Found') is item #2.

For dialog boxes, the default item (the one that is selected when the user
presses ENTER or RETURN) is always the first item in the list. As mentioned above,
the stages word determines whether the first or second item will be the default for
alerts.

The complete resource file templates for the Video Tape Index's alerts and
dialog boxes are reprinted in Listing 9.6. The important thing to notice about these
definitions is how the item lists are connected to the appropriate alert or dialog box
by matching the number of the item list with the item list parameter in the alert or
dialog box template.

Listing 9.6 Resource Templates for the Video Tape Index's Alerts and Dialog Boxes

TYPE DLOG
, 1
Dialog box for "None Found" condition
100 300170 490
Visibile NoGoAway
2
0
1

,2
Dialog box for "One Found/Find More?" condition
100 300170 490
Visible NoGoAway
2
0
2

,3
Dialog box for "One Found" condition
100 300170 490
Visible NoGoAway
2
0
3

TYPEALRT
,4
100 300170 490
4
7765

,5
50 140 120 390
5
4444

,6
50 140 120 390
6
5555

dialog box definitions follow
sequence number ·
comment line
boundary rectangle
box is visible & has no GoAway Box
window type (plainDBox)
no reference value
ttem list is#1

;; sequence number

;; ttem list is#2

;; sequence number

;; ttem list is #3

;; alert definitions follow
;; sequence number

;; ttem list is #4
;; stages word

;; sequence number

;; ttem list is #5

;; sequence number

;; ttem list is #6
(continued)

268 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 9.6 (continued)

TYPE DITL
'1

2

button
40110 60 170
OK

static Text
10 4130149

None Found

,2
3

button
40110 60170
OK

button
40 206080
Cancel

static Text
10 41 30149
Find More?

,3
1

button
40110 60170
OK

,4
2

button
40110 60170
OK

static Text
10530185
Selection criteria?

,5
2

button
40180 60 240
OK

static Text
101030 240
Turn on printer. Press "Enter".

;; item lists for dialog boxes and alerts
;; items for "None Found" dialog box
;; 2 items in the list

;; push button
;; boundary rectangle
;; contents

;; static text item
;; boundary rectangle

;; text to be displayed

;; item list for "Find More?" dialog box
;; 3 items in list

;; item list for "Find & Wait" dialog box
;; 1 item in list

;; item list for "No selection" alert
;; 2 items in list

;; item list for "Printer" alert

(continued)

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 269

,6
2

button
40180 60 240
OK

static Text
101030240
Unexpected file error!

;; item list for "File error" alert

Data Structures for Alert
and Dialog Boxes

Dialog and alert boxes require only two data structures: a block of storage to
hold the dialog window record (one will do if an application will never have more
than one dialog box or alert on the screen at any given time), and a place to put a
pointer to the dialog or alert window (this is returned by the routine that creates the
box):

Dialog Wind Rec
DialogWindPtr

OS
DS.L

dWindLen
1

The parameter dWindLen refers to the number of words in a dialog window
record and is defined in the ToolBox equates file.

Creating and Disposing of
Dialog Boxes

Unlike other windows, dialog boxes are usually created only when they are
needed. They also are not hidden or made invisible when an application no longer
needs them; rather, they are completely removed from the system. Re-use of the
same dialog box during the same program run requires re-creation of the dialog
box. Though modal dialog boxes can be managed like other windows (using
HideWindow, ShowWindow, BringTofront, etc.), they generally are not, since
they are used infrequently and their presence occupies memory the Mac can use
for other purposes. Modeless dialog boxes are handled like other windows until
the user clicks the GoAway box to close them, at which point they are deleted.

The ToolBox routine GetNewDialog will create and display a dialog box:

FUNCTION GetNewDialog (dialoglD: INTEGER;
dStorage: Ptr; behind: WindowPtr): DialogPtr;

270 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The first parameter, dialoglD, refers to the sequence number given to the dialog
box in the resource file. (Don't confuse this sequence number with the number of
the dialog box's item list; though the two numbers are often the same tor conve­
nience, they need not be.) dStorage is a pointer to the area set aside to store the
dialog window record.

behind has the same function as the behind parameter in the GetNewWindow
routine; it determines the placement of the dialog box with respect to the other
windows in the screen. A value of -1 will place the dialog box in front of all others.

The result of GetNewDialog is a pointer to the dialog window. It is essential to
save this pointer if any Window Manager routines are going to be used on this
dialog window.

To create its None Found dialog box, the Video Tape Index uses this code:

CLR.L

MOVE
PEA

-(SP)

#1,-(SP)
DialogWindRec(AS)

MOVE.L #-1, - (SP)
_GetNewDialog

MOVE.L (SP)+ ,DialogWindPtr(AS)

MOVE.L DialogWindPtr(A5), - (SP)
_SetPort

;space for dialog window
pointer
;this is dialog box 1
;pointer to dialog window record
storage
;put dialog box in front

;recover the window pointer

;make dialog box the current
;grafport

The final step in this sequence is an important one. The dialog box must be made
the current grafport so that activities within the box will be properly recorded.

Disposal of a dialog box is taken care of by CloseDialog:

PROCEDURE CloseDialog (theDialog: DialogPtr);

Move the dialog's window pointer onto the stack and call the routine:

MOVE.L DialogWindPtr(A5), - (SP)
_ CloseDialog

This will not only remove the dialog box from the screen, but will dispose of all data
structures associated with the box.

Managing Modal Dialog Box
Actions

There is no need to return to an application's event loop to monitor events
relating to modal dialog boxes. The ToolBox routine ModalDialog performs all

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 271

necessary event trapping. ModalDialog polls the event manager by calling
GetNextEvent. It also makes repeated calls to SystemTask to make sure that
desk accessories are properly updated. If a mouse down event occurs outside the
dialog box, the speaker will beep.

The Pascal format for ModalDialog is:

PROCEDURE ModalDialog (filterProc: ProcPtr;
VAR itemHit: INTEGER);

filterProc refers a pointer to a function that determines how Modal Dialog should
interpret events from the event queue. A value of 0 for the filter procedure pointer
will cause ModalDialog to default to the standard filter procedure. The standard
filter procedure returns the value 1 for itemHit whenever the user hits the ENTER
or RETURN keys. Assuming that the dialog box's OK button is the first item in the
item list, then the standard filter procedure will allow the user to select OK with the
ENTER or RETURN keys. This usage is consistent with the standard Macintosh
user interface.

Using ModalDialog to monitor for an OK requires only a simple loop:

Loop MOVE.L #0, - (SP)
PEA Whatltem(A5)

_Modal Dialog

MOVE Whatltem(A5),DO
CMP #okButton,DO
BNE Loop

;standard filter procedure
;place to accept number of item
that was pressed

;does Whatltem = 1?

The constant okButton is defined in the Tool Box equates file.
If other actions are possible, then the loop must continue to check item

numbers and take the appropriate action. This process is directly analogous to
identifying which item was selected from a menu.

Note that events in modeless dialog boxes are handled like those in other
windows. An application's event loop must monitor any modeless dialog boxes
that are present along with system and application windows.

Creating and Managing
Alert Boxes

A single Tool Box routine handles creating alert boxes and monitoring events
until either the ENTER or RETURN key is pressed or a mouse down event occurs in
the box. That same routine also takes care of disposing of the box when it is no
longer needed. Note that if an application needs something other than an OK or a
CANCEL reaction to some condition, then an alert box is probably not the correct
way to control the situation; use a dialog box instead.

272 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

The routine that takes care of alert boxes is simply called Alert:

FUNCTION Alert (alertlD: INTEGER; filterProc: ProcPtr) :
INTEGER;

alertlD is the sequence number of the alert box's definition in the resource file.
filterProc is a pointer to a procedure that indicates how Alert should select events
from the event queue. As with Modal Dialog, using a 0 will select the standard filter
procedure (pressing ENTER or RETURN selects the default button just as if the
user clicked on it with the mouse).

Alert returns a result that corresponds the position in the item list of the item
that was selected. If an alert box has only an OK button, then Alert's result can be
disregarded. Nonetheless, the result must be removed from the stack. If the box
has box OK and CANCEL buttons, then the application must examine the result to
determine which button was selected and what action to take.

The Video Tape Index uses one of its three alert boxes (Figure 9.5) to indicate
that a search request was made before selection criteria was entered. Therefore,
the box only contains some static text and an OK button (the box merely freezes
program action until the user is ready to continue). A "no selection criteria" condi­
tion (indicated by a length of 0 in the text edit record for the field on which the
chosen search is to be based) initiates the following actions:

CLR
MOVE
MOVE.L
_Alert
MOVE

-(SP)
#4, -(SP)
#0, -(SP)

(SP)+,DO

;space for alert item result
;alert box sequence number
;use standard filter procedure

;retrieve result to keep stack pointer
in good order

Note that the result of Alert is not checked in this case, since the only button
present is the OK button.

Questions and
Problems

1 . Assume that a window has been defined with a boundary rectangle of 10, 10,
335, 500. Write a block of code that will define a text edit record that uses the
entire window. Allocate any necessary constants and data structures, includ­
ing needed rectangles. Be sure to retrieve the text edit handle from the stack.

SCREEN AND KEYBOARD 1/0: USING TEXTEDIT, ALERT AND DIALOG BOXES 273

2. A. What sequence of events generates an activate event for a text edit
window?
B. Under what circumstances should the window be deactivated?
C. Under what circumstances should it be activated?

3. Write an ordered list of the Tool Box and/or operating system calls needed to
activate a text edit window. Indicate the information returned by each call.
Assume that an event loop has already detected an activate event.

4. Write the assembly language code to implement the procedure outlined in
problem 2. Remember to distinguish between the need to activate or deacti­
vate a window. Use the event record field names as defined in Chapter 8.
Allocate any other data structures your code will use.

5. A user has pressed the cloverleaf and X keys together (the keyboard equiv­
alent of selecting "cur from the Edit menu). Write an ordered list of ToolBox
and/or operating system calls needed to process the cut operation. Assume
that an event loop has already detected a key down event. Indicate the
information returned by each call.

6. Write the assembly language code to implement the cut operation outlined in
problem 5. Assume that the Edit menu is menu #2. Use the event record field
names as defined in Chapter 8. Allocate any other data structures your code
will use.

7. Describe the differences between the following ToolBox routines, each of
which displays text:

a. DrawChar
b. Drawstring
c. TE Key
d. TE Insert
e. TextBox

8. Write resource file templates to define a dialog box that will appear across the
top quarter of the screen. The box is approximately 4" wide and 3" high. The
items in the box are:

A. a static text item (the actual text is up to you)
B. an edit text item to hold one line of text
C. an OK button
D. a Cancel button

Choose the boundary rectangle for the dialog box and decide on placement
of the items within it.

274 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

9. Write a block of assembly language code to create and monitor user actions
in the dialog box defined in problem 8. Close the dialog box when the user
clicks the mouse button in the OK or Cancel buttons, or presses the Enter or
Return key. Allocate any data structures the code will require.

10. Write resource file templates to define an alert that will appear centered on
the screen. It should be approximately 2" high and 3" wide. The items in the
box are a line of static text of your choosing and an OK button. Select an
appropriate boundary rectangle for the alert and decide on placement of the
two items. The Mac should beep once the first time the alert is invoked, twice
the second time, and three times the third and fourth times. The box should
always be displayed; the OK button is always the default button.

11. Write a block of assembly language code to create and monitor user actions
in the alert defined in problem 10. Close the alert box when the user clicks the
mouse button in the OK button, or presses the Enter or Return key. Allocate
any data structure the code will require. ·

c H A p T E R T E N

PR I NII NB

Chapter Objectives

1. To understand the difference between draft and spooled printing

2. To learn the sequence of Printing Manager routines that control the printing
process

3. To learn to position and produce images on a printed page

Introduction

Like most other aspects of writing a Macintosh application in assembly lan­
guage, printing requires a great deal of planning. An application must not only
figure out where to place text and graphics on the page, but must also determine
parameters such as the space between lines (determined by the size of the font).
Nonetheless, the printing process is rather "cookbook"; the basic steps are the
same for all applications.

The Macintosh supports two types of printing - draft printing and spool
printing. In draft printing, a document is printed directly, line by line, as text is sent
to the Printing Manager. It is a very fast way to print, but is generally only suitable
for printing text, since graphics requires the ability to move the cursor freely about
the page. (This kind of movement is often referred to as direct cursor addressing.)
Spool printing creates a disk file that contains an image of an entire document.

275

276 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Since the print file is a direct access file, graphics images that require random
cursor movement can be stored. Once a spooled print file is complete, it can then
be printed line by line in a separate step.

The actual results of draft and spool printing are not the same, even though the
same program code may be used to produce both kinds of output. For example,
compare Figures 10.1 (draft printing) and 10.2 (spool printing). Both were created
with exactly the same program statements. The only difference is the choice the
user made when selecting the type of printing. Draft printing will not necessarily
look exactly like what is seen on the screen. To duplicate screen displays exactly,
use spool printing.

Spool printing does have some drawbacks. First of all, it is slower than draft
printing. Secondly, "imaging" the print file to print it requires a great deal of
memory. In many cases, it becomes necessary to swap much of the application
program out of memory before beginning the print operation. Therefore, the
program must be segmented. (Such operations are handled by the Segment
Loader.) Program segmentation is a conceptually complex operation requiring
intimate knowledge of where storage space has been allocated in RAM and how to
perform memory management with the Memory Manager. It is an advanced
operation that you should attempt only when you are comfortable with the con­
cepts presented in this book. Details can be found in Inside Macintosh.

Spool printing also uses up a great deal of disk space to store the print file.
Consider what happens with MacWrite: if you have a 512K Mac you can store as
many as 80 pages of text in RAM, but you can only spool a document of 27 pages,
assuming that there is nothing on the startup disk but the MacWrite program file
and a system folder. If, though, you ~witch the print mode from standard to draft,
the Printing Manager will not attempt to create a print file on disk, but will print
directly from RAM, allowing you to print the entire 80 pages. The drawback to
switching to draft printing is that it limits the type fonts and type styles that can be
used.

Accessing the Printing
Manager

The routines that comprise the Printing Manager are not in ROM; they are
stored on disk. The Macintosh can therefore support a variety of printers. The
discussion that follows, though, assumes that printing will be done on the
lmagewriter printer.

Since Printing Manager routines are not in ROM, they are not called with the
usual trap mechanism (i.e., an underbar followed by the name of the routine).
Instead, they are external subroutines and are therefore invoked with a JSR.

PRINTING 277

Figure 10.1 Video Tapes (Draft Printing)

Video Tapes

Producer

Empire Strikes Back, The Lucas Films 1980 pg 2

This sequel outdid its predicessor, bringing new depth to its characters.

The ev i 1 Dar th Vader emerged as a true vi 11 a in, wh i 1 e Luke, Lei a and Han

became true forces of good.

Return of the Jedi Lucas Films 1983 pg

Tied up all the loose ends created in the first two films and provided a

satisfactory ending to this middle trilogy <Lucas says there will be six

more films).

Search for Spock, The Paramount 1984 pg

Gives Spock a new beginning but leaves the rest of the crew in jeapardy,

since the Enterprise was destroyed and the crew as mutineers

Star Trek: The Movie Paramount 1978 g

A valiant effort to recapture the magic of the television series.

Unfortunately, it fell short of expectations.

Star Wars Lucas Films 1977 pg

rhis 1-i.ndmark film raised our expectations with regard to what science

fict.ioro films should be. It set a new standard for special effects.

3

6

4

Printing requires two special files. To print with the lmagewriter, the
lmagewriter file must be part of the system folder on the startup disk. This file is a
resource file containing information that describes the printer. By replacing the file
with one that describes another printer, an application can produce printed output
on other kinds of printers.

278 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Figure 10.2 Video Tapes (Spool Printing)

Uideo Tapes

Tit I e Producer Date Ratg,~N~u=mb~---

Empire Strikes Back, The Lucas Fi I ms 1980 pg

This sequel outdid its predicessor, bringing new depth to its characters.
The evi I Darth Uader emerged as a true vi I lain, while Luke, Leia and Han
became true forces of good.

Return of the Jedi Lucas Films 1983 pg

Tied up al I the loose ends created in the first two films and provided a
satisfactory ending to this middle trilogy (Lucas says there wi I I be six
more f i I ms) .

Search for Spock, The Paramount 1984 pg

Gives Spock a new beginning but leaves the rest of the crew in jeopardy,
since the Enterprise was destroyed and the crew as mutineers

Star Trek: The Movie Paramount 1978 g

A valiant effort to recapture the magic of the television series.
Un fortunate I y, it f e 11 short of expect at ions.

Star Wars Lucas Fi I ms 1977 pg

This landmark fi Im raised our expectations with regard to what science
fiction films should be. It set a new standard for special effects.

2

3

6

4

The second file, Prlink.Rel, must be linked to the application's object code.
Prlink.Rel (you will find it on MDS2 in the Sample Programs folder along with the
Printing Sample program) contains the machine language version of the Printing
Manager routines that are not a part of the application itself.

PRINTING 279

Setting up the Linker Control File for an application that supports printing is
only marginally more complex than what was created for the Sample program. For
example, a Linker Control File to handle the Video Tape Index appears as:

Tapes.Rel
Prlink.Rel

$

Data Structures for
Printing

Each printing job uses a rather complex data structure known as a print record.
It is made up of a few single parameters and a number of subrecords. Equates for
the field names are in the file PrEqu.Txt, which should be INCLUDEd in your
source code.

The fields in a printing record are filled in three ways:

1. An application can store information directly into the record.

2. The Printing Manager routine PrintDefault can be used to fill in default
information.

3. The user can change information in some fields by making selections from
the standard Style and Job dialogs (Figures 10.3a and 10.3b).

The top-level structure of a print record appears as:

TPrint = RECORD
iPrVersion: INTEGER; Printing Manager version
prlnfo: TPrlnfo; subrecord for printer information
rPaper: Rect; boundary coordinates of printer paper
prStl: TPrStl; subrecord for style information
prlnfoPT: TPrlnfo; copy of printer information subrecord
prXlnfo: TPrXlnfo: subrecord for band information
prJob: TPrJob; subrecord for job information
printX: ARRAY [1 .. 19] of INTEGER;

used Internally
END;

280 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

,.. s File Edit Search Format Font Size Transfer

Paper: @ US Letter

O US Legal

Orientation: @Tall

,,, LiULuf_

O A4 Letter

O International Fanfold

O Tall Adjusted O Wide

This;, the standard Style Dialog displayed end managed
by a cell to the Pri nting Manager routine PrStlDialog

Figure 10.3(a) Standard Style Dialog

,.. s File Edit Search Format Font Size Transfer

Quality:

Poge Ronge:

Copies:

Poper Feed:

OHigh

@All

D

O Stondard @ Oroft

O From: D To: D
@ Continuous O Cut Sheet

This;, the standard Job Dialog displayed end monitored by
a cell to the Printing Manager routine PrJobDialog

Figure 10.3(b) Standard Job Dialog

.,

OK

[Cancel J

OK

[Cancel J

PRINTING 281

The data types which begin with T are pointers to subrecords. Actually, each
subrecord is allocated sequentially. For example, the printer information sub­
record begins two bytes from the beginning of the printer record and occupies the
next 14 bytes (see below for details). The rectangle which describes the bound­
aries of the printer paper occupies the next eight bytes, from byte 16 through byte
23. The style information subrecord follows immediately, beginning with byte 24.

The printer information subrecord contains information about the printer
being used in this particular printing job:

TPrlnfo = RECORD
iDev: INTEGER;
iVRes: INTEGER;
iHRes: INTEGER;
rPage: Rect;

END;

information about the printer driver
vertical resolution of printer
horizontal resolution of printer
boundaries of actual printing surface

These parameters are filled when an application initializes the Printing Manager.
The last three can be changed by the user through the standard Style dialog.

Generally, the only field of the printer information subrecord that an application
will use directly is rPage, a rectangle that describes the coordinates of the actual
surface available for printing. Its top left coordinates are always 0,0. It is somewhat
smaller than rPaper, which contains the coordinates of the physical printer paper.
This means that the top left coordinates of rPaper will be negative.

The printer information subrecord is duplicated in the print record. The copy is
used internally by the Printing Manager during the printing process.

The style Information subrecord contains parameters that further describe
the paper being used:

TPrStl = RECORD

END;

wDev:
iPageV:
iPageH:
bPort:
feed:

TWord;
INTEGER;
INTEGER;
Signed Byte;
TFeed;

used internally
height of printer paper
width of printer paper
port to which printer is connected
type of paper (e.g., cut sheet or pin
feed)

iPageV and IPageH refer to the physical dimensions of the printer paper,
expressed in 120ths of an inch. They are set when the user makes choices from the
standard Style dialog. bPort indicates whether the printer being used is con­
nected to the printer or the modem port.

The final parameter, feed, is set from the standard Job dialog. The user
chooses either continuous or single sheet. If single-sheet is selected, the Printing
Manager will automatically pause between pages so the user can insert paper.

282 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Parameters that describe a specific printing job are found in the job informa­
tion subrecord:

TPrJob =RECORD

END;

ifstPage: INTEGER;
ilstPage: INTEGER;
iCoples: INTEGER;
bJDocloop: SignedByte;
ffromUser: BOOLEAN;
pldleProc: ProcPtr;
pfileName: TPStr80;
ifileVol: INTEGER;
bfileVers: SlgnedByte;
bJobX: Signed Byte;

first page to print
last page to print
number of copies to print
O If draft, 1 If spoiled
source of printing request
pointer to background procedure
name of spool file
volume reference number
version of spool file
unused

Some of these parameters are set through the standard Job dialog. Others should
be stored directly to the printer record.

ifstPage, ilstPage, and iCopies are selected by the user from the standard
Job dialog: For spool printing, the system will automatically check the iCopies
field and print the correct number of copies. When an application does draft
printing, however, the application must check iCopies and implement multiple
copy printing within its own code.

bJDocloop is also set by the user from the standard Job dialog. During calls
to routines that actually create printed images, regardless of whether an applica­
tion is doing draft or spool printing, the system will check bJDocloop and direct
the material being printed to the appropriate output device. The application must
then explicitly examine the contents of bJDocloop to decide whether to print a
spool file.

fFromUser indicates the source of the printing request. lftheffromUser byte
is set true, then the request came from within the application; if the byte is clear,
then the printing request came from the Finder. This parameter is set by the
system.

Creating a document that can be printed from the Finder requires special
preparation. The Finder must be able to identify which application created the
document in order to laurich that application to perform the print activity. The
Finder looks at the document to examine its creator type, a unique four-character
sequence that identifies an application. If the Finder can't find an application with a
matching type, it displays the alert box "An application can't be found to.open this
document." Creator types are assigned by Macintosh Technical Support so they
will be unique across all Macintosh applications.

pldleProc is a pointer to the routine thqt should execute in the background of
the printing task. This is based on the idea that printing is a fairly slow operation;
printer output happens at significantly slower speeds than activities which happen
completely in main memory. Therefore, the CPU will have some idle time while it
waits for a printer operation to finish. The background procedure can be anything

PRINTING 283

appropriate. If the pldleProc is set to 0, the Mac will run its default background
procedure. This routine periodically checks the keyboard to see if the cloverleaf­
period has been pressed to interrupt printing.

pFlleName is a pointer to the name of the spool file. By default the Printing
Manager fills this field with a pointer to "Print File." If an application will have more
than one spool file on disk at any given time, then this parameter can be changed
by storing directly to the print record. A spool file name contains no more than 80
characters; the first byte of the string must be a length byte.

IFlleVol identifies the physical disk volume on which a spool file is stored.
bFlleVers refers to the version number of the spool file. Volumes and file versions
are discussed in more detail in Chapter 11.

The final subrecord is the band information subrecord. In this context, the
term band refers to a strip cut from a page. It takes an enormous amount of
memory to print from a spool file, far more than will fit in memory at a single time.
Therefore, a page to be printed is broken up into a series of strips called bands.
The bands can run from right to left, left to right, top to bottom, or bottom to top.
Bands can then be brought into memory one at a time and printed individually. An
application will rarely need to access the individual fields of the band information
subrecord. Its parameters are set by the Printing Manager.

Programming
Technique - Packing

an Equates File
Offsets for all fields in a print record are assigned symbolic addresses in the file

PrEqu.Txt. However, unlike the other equates files, there is no packed version of
the printer equates ori MDS2. Packed symbol files are identified by the .D
extension. They are created from text files, like PrEqu.Txt, by the application
PackSyms. Packing an equates file will speed up the assembly process and will
also save disk and memory space.

Packing an equates file is a two step process. First, the text version of the
equates file is assembled into a symbol file with an extension of .Sym. Then the
symbol file is packed by PackSyms.

The creation of a symbol file is controlled by the assembler directive .DUMP .
. DUMP places all equates in the current program into a file with the .Sym
extension. For example, assembling this code will create the file PrEqu.Sym:

INCLUDE
.DUMP

PrEqu.Txt
PrEqu

;get the text of the equates file
;create the symbol file

The two-line file above should be saved with the name PrEqu.Asm. It can then be
assembled. Note that the program does not have to be linked or run to create
PrEqu.Sym; assembling is enough.

284 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

To do the actual packing, run the PackSyms program that comes on MDS1.
Choose the "Select inpuf option from the File menu and double click on the name
of the file that should be packed, in this case PrEqu.Sym. PrEqu.Sym will be
packed, but not automatically saved as PrEqu.D. When the packing of the file is
completed, you can either select another file to pack by choosing "Select inpur
again, or you can save all files that have been packed during the current run.
Choose "Select outpuf from the File menu to save the packed file. The system will
display a file name - the name of the last file packed with a .D extension. Either
confirm the file name by hitting the Enter key or enter another filename.

Establishing Print
Records

Space for a print record is allocated in the application heap. That means that an
application doesn't need to set aside a location for the entire 120 byte record but
merely a handle to that location. The handle to the print record is created with a
Memory Manager routine, NewHandle;

FUNCTION NewHandle (logicalSize:Slze) : Handle;

NewHandle is an operating system routine. It takes one parameter - the
number of bytes of storage that should be allocated - that is placed in DO. It
returns a handle to that storage area in AO. Assuming that PrEqu.txt has been
INCLUDEd in the source code, the constant iPrintSize contains the size of a print
record. To set aside space for a print record, then:

MOVE.L #iPrintSize,DO
_NewHandle
MOVE.L AO,PrintRecordHandle(AS) ;save handle

A word of caution is in order here with regard to storage space while using the
Printing Manager. It is true that it is good practice to place the storage for all
locations to which an application will write in the applications globals area (i.e., they
should be allocated with DS rather than DC). Nevertheless, the Printing Manager
has a bad habit of altering values stored in the applications globals area. To put it
bluntly, it trashes storage locations that it has no business touching. If you find that
a particular value is mysteriously changed after a call to a Printing Manager
routine, allocate its storage with DC. Though the examples in this chapter will use
storage locations in the applications globals area, be aware that on occasion you
may have to resort to writing to the code portion of an application.

The Sequence of
Printing Manager

Routines

PRINTING 285

A single printing activity is bounded by calls to routines that open and close the
Printing Manager. The printing of one document is surrounded by calls to routines
that open and close documents. Printing a single page is bounded by calls that
open and close a page. This nested arrangement of procedure and function calls
is diagrammed in Figure 10.4.

PrOpen

NewHandle
PrintDefault
PrStlDialog
PrJobDialog

PrOpenDoc

PrCloseDoc

PrPicFile
DisposeHandle

PrClose

PrOpenPage

Draw one page

PrClosePage

Figure 10.4 Nested Printing Manager Calls

286 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

In general, an application will organize a printing activity in the following order:

1. Open the Printing Manager (PrOpen)

2. Allocate a print record (NewHandle)

3. Fill the print record with default information (PrlntDefault)

4. Present standard Style dialog to user to fill in more information (PrStlDlalog)

5. Present standard Job dialog to user in to finish collecting print record
parameters (PrJobDialog)

6. Open a document (PrOpenDoc)

7. Open a page (PrOpenPage)

8. Print the page

9. Close a page (PrClosePage)

10. Repeat steps 7 through 9 until all pages in the document have been printed

11. Close the document (PrCloseDoc)

12. If spool printing was done, image and print the spool file (PrPicFile)

13. Repeat steps 6 through 12 until all documents have been printed

14. Free the storage used by the print record (DisposHandle)

15. Close the Printing Manager (PrClose)

Those Printing Manager routines that return result codes do so in DO. A value
of O indicates no error. The only other error unique to the Printing Manager is
-108, which indicates that there wasn't enough heap space to complete the
requested operation. All other errors generated by calls to Printing Manager
routines are represented by Resource Manager result codes (see Table 10.1).

Table 10.1 Resource Manager Result Codes Returned by Printing Manager Routines

Hex Code

0
FFFFFF4C
FFFFFF40

FFFFFF3F

Decimal Code

0
-180'
-192

-193

No error
Not enough memory to image and print spool file
Resource not found (generally means something
is wrong with the printer resource file)
Printer resource file is missing

*This is a Printing Manager result code, not a Resource Manager result code.

Opening and Closing
the Printing Manager

PRINTING 287

An application should call PrOpen and PrClose only once - at the very
beginning and very end of printing activity. Neither routine takes any parameters
and both are therefore called by a simple:

JSR PrOpen

or

JSR PrClose.

PrOpen opens both the printer driver and the printer resource file. PrOpen will
do nothing, however, if either of the two things are missing or there is a problem
with the printer resource file. A value of 0 in DO indicates that the call to PrOpen
was successful. Otherwise, the routine returns one of the Resource Manager error
codes.

Collecting Information
for the Print Record

The first step in assembling the necessary information to complete a printing
operation is to fill the fields of the print record with the default values for the
parameters. These are stored in the printer resource file. They include the last
selections made from the standard Style and Job dialog boxes. PrintDefault
needs only the handle to the print record:

PROCEDURE PrintDefault (hPrint: THPrint);

As with all other Printing Manager routines, the parameter is placed on the stack
and the routine called with a JSR:

MOVE.L
JSR

PrintRecordHandle(AS), - (SP)
PrintDefault

Once the print record has been filled with the default information, the user has
the opportunity to change it through the standard Style and Job dialogs. Both
dialog boxes are predefined within the Printing Manager and do not need to be
included in an application's resource file.

288 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Usually, the Style dialog box is presented first:

FUNCTION PrStlDialog (hPrint: THPrint) : BOOLEAN;

The function displays the dialog box and returns a boolean result indicating
whether the user closed the dialog box with the ENTER button (a value of true) or
the CANCEL button (a value of false). If the function result is true, any changes
made by the user will be reflected in the print record.

The code to display the Style dialog box might be:

CLR
MOVE.L
JSR

- (SP) ;space for boolean result
PrlntRecordHandle(AS), - (SP)
PrStlDialog

The standard Job dialog is handled in precisely the same way as the Style
dialog. It, too, is a function that returns a boolean result:

FUNCTION PrJobDialog (hPrint:THPrint) : BOOLEAN;

Any changes made by either PrStlDialog or PrJobDialog are reflected not
only in the print record in RAM, but in the printer resource file as well. The next time
an application attempts to print from this same disk, it will be presented with the
new values as default values.

Opening and Closing a
Document

Macintosh printing actually involves opening a special kind of grafport -
called a printer port - in which text and graphics images are drawn. The exact
nature of the printing port depends on whether the user selected draft or spool
printing. Nonetheless, it is PrOpenDoc that establishes the printing port and
makes it the current grafport:

FUNCTION PrOpenDoc (hPrint: THPrint; pPrPort : TPPrPort;
plOBuf:Ptr) : TPPrPort;

hPrint is the handle to the print record. pPrPort is a pointer to storage for the
printer port. If this parameter is 0, the Printing Manager will allocate a new printer
port and return a handle to it as the function's result. An application does not need
to explicitly set aside storage for a printer port; only space for its pointer (one
longinteger location) is required.

PRINTING 289

plOBuf is important for spool printing. It is a pointer to a portion of memory that
should be used as temporary storage when creating a spool file. (1/0 buffers are
discussed in detail in Chapter11.) Normally, it is not necessary to supply an explicit
110 buffer for spooling; the value of plOBuf will be 0, telling the system to use the
volume's 1/0 buffer.

To open a printing port:

CLR.L
MOVE.L
CLR.L
CLR.L
JSR
MOVE.L

- (SP) ;space for printer port pointer
PrintRecordHandle(A5), - (SP)
- (SP) ;new printer port will be created
- (SP) ;use the volume 110 buffer
PrOpenDoc ;call the routine
(SP)+ ,PrPortPtr(A5) ;recover printer port pointer

PrCloseDoc terminates a printing task. If draft printing, it sends a form feed to
the printer. If spool printing, it closes the spool file. If the spooling was unsuc­
cessful, it closes and then deletes the spool file. To call the routine, an application
needs only the pointer to the printer port:

PROCEDURE PrCloseDoc (pPrPort: TPPrPort);

Printing a Single Page
The real work in programming Macintosh printing activities comes in laying out

the printed page. Each page begins with a call to PrOpenPage:

PROCEDURE PrOpenPage (pPrPort:TPPrPort;
pPageFrame: TPRect);

pPrPort is nothing more than the pointer to the printer port that was returned by
PrOpenDoc. pPageFrame is a rectangle that describes boundaries within which
QuickDraw images will be drawn. When a spool file is printed, this rectangle will be
scaled to fit onto the printer paper. The easiest way to handle pPageFrame is to set
it to 0. In that case, the Printing Manager will use the page rectangle {rpage) from
the printer records as the page frame. The page will then not be scaled when it is
printed.

PrOpenPage checks the page range parameters in the print record
(iFstPage,iLstPage). If the page to be printed doesn't fall within that range, no
printing will be performed.

The actual printing on a page is handled by QuickDraw. An application can
draw to the printer port using any QuickDraw routines, just as it would to the
screen. Remember that PrOpenDoc makes the printer port the current grafport.

290 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

That means that any calls to QuickDraw routines that draw something will affect the
printer port until it is closed by PrCloseDoc. Graphics printing (always spooled)
will use the coordinates of the rPage rectangle to ensure that printed images are
within the boundaries of the page.

Printing straight text, especially if draft printing is possible, requires a some­
what different method for establishing spacing between lines and determining
when a page has been filled. When printing, it is not possible to use TextEdit to
space and justify characters; text is printed with either DrawChar, Drawstring, or
DrawText. The latter routine is the easiest to use if the text to be printed is stored in
a text edit record. Drawstring is convenient when the text is not stored in main
memory in the format in which it will be printed.

The position on the page at which text should be printed is set with MoveTo,
the QuickDraw routine that handles cursor placement. An application must there­

. fore carefully compute the size of the font being used to determine how far apart
lines of text must be.

Information about the size of characters in a font can be retrieved with the
QuickDraw routine GetFontlnfo:

PROCEDURE GetFontlnfo(V AR info: Fontinfo);

This procedure returns an eight-byte record, a pointer to which should be placed
on the stack before calling the routine:

PEA FontlnfoStorage(A5)
_GetFontlnfo

GetFontlnfo provides four parameters about the font for the current grafport,
each expressed in terms of pixels: ascent (how many pixels letters like "h" rise),
descent (how many pixels letters like "y" descend below the line), maximum
character width, and the number of pixels between the descent of one line and the
ascent of the next line below it (known as "leading"). The Fontinfo record structure
is:

Fontinfo = RECORD
ascent:
descent:
widMax:
l~ading:

END;

INTEGER;
INTEGER;
INTEGER;
INTEGER;

Offsets into the Fontinfo record are available in the QuickDraw equates file, which
should be INCLUOEd at the beginning of the source code.

The height of a line is the sum of ascent, descent, and leading:

MOVE FontlnfoStorage + ascent(A5),D4
ADD FontlnfoStorage + descent(A5),D4
ADD FontlnfoStorage + leading(A5),D4

PRINTING 291

04 contains the height, in pixels, of a single line of text in whatever font is set for
the current grafport. In this case, the current grafport is the printer port. Assuming
that 03 is used to hold the vertical position of the pen (read "pen" as cursor or print
head, if you like), then 03 will be incremented by the quantity in 04 every time a line
is printed.

One other parameter is necessary for text printing - the coordinate, in pixels,
of the bottom of the page. This will be compared to the current vertical position
(stored, in this example, in 03) to determine if a full page has been printed. The
coordinate of the bottom can be retrieved from the print record:

MOVE.L
MOVE.L
MOVE

PrintRecordHandle(AS),AO
(AO),AO
prlnfo + rPage + bottom(A0),06

;get handle
;get pointer
;get bottom

How does this work? The first step retrieves the handle to print record. The second
de-references the handle to get the pointer to the record. At this stage in the
process, the actual address of the start of the print record is in AO. The third step
uses Address Register Indirect with Offset addressing to locate one precise piece
of information. prinfo and rPage are constants defined in the printer equates file.
prlnfo stands for the number of bytes the printer information subrecord is offset
from the beginning of the print record. rPage is an offset within the printer
information subrecord. rPage is a rectangle; it has four components - top, left,
bottom, right - that are defined in the QuickOraw equates file. bottom, therefore,
refers to the third field in the rectangle, rPage. To compute the address for the
MOVE, the Macintosh adds the three constants to obtain the offset and then adds
that quantity to the contents of AO.

Since some characters do descend below the printing line, it is wise to subtract
the descent from the bottom coordinate to ensure that characters that do descend
will be completely printed:

SUB FontlnfoStorage + descent(AS),06

The initial vertical position for printing text is not O; it is down the height of a
single line from the top of the printing page. Therefore, assuming that 03 is being
used to hold the vertical position of the pen, it should be initialized to the height of a
line before any printing activity begins:

MOVE 04,03

Moving the Pen
Printing or drawing, whether on the screen or on paper, is only possible if you

have control over where the display activity will begin. The QuickOraw routine
MoveTo positions Mac's pen anywhere within a grafport. Remember that a
printing port is a special kind of grafport and that once a printer port has been

292 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

opened, any calls to QuickDraw routines that affect output (e.g., drawing or
moving the pen) will affect the printed page.

To use Move To, an application must supply the horizontal and vertical coordi­
nates, in pixels, of the new pen position:

PROCEDURE MoveTo (h,v: INTEGER);

h is the horizontal coordinate; v is the vertical coordinate.
In spool printing, there is virtually no limit to how the pen can be moved, since

writing to the spool file allows random access. When draft printing, however, be
aware of the abilities of the specific printer being used. Some printers, like the
lmagewriter, can move the platten backwards; that is, it is possible to pass the
lmagewriter a vertical coordinate less than the most recent vertical coordinate.
Many printers, however, are not only unable to move the platten backwards, but
are unable to backspace; that is, they cannot accept a horizontal coordinate less
than the most recent horizontal coordinate.

Though the lmagewriter can do more or less random print head movement,
sending print images directly to the printer in that manner will significantly slow
down the printing process. Therefore, draft printing is really not suitable for a
printing activity that includes graphics.

Printing Text with
Drawstring

Drawstring is a QuickDraw routine that will print text from left to right, begin­
ning at the current position of the pen. Like the other QuickDraw routines that print
characters, it does no formatting. In other words, the application must decide how
many characters will fit on a single printed line.

Calling Drawstring requires only a pointer to the text of the string:

PROCEDURE Drawstring (s: Str255);

It is important to realize that the data type of the string (Str 255) requires that the
first byte in the string be a length byte. The system checks that length byte to
determine the number of characters to print.

The Video Tape Index program uses Drawstring to print information about a
single video tape. The data for that print line is found in the TapeArray in RAM and
must therefore be reformatted before it is printed.

About 100 characters of 12-point type will fit across a 8 1/2" piece of paper.
Therefore, the Video Tape Index sets up a 102-character print string. The first byte
will be a length byte; the last byte is an extra byte appended to keep the total length
of the string even. The strategy to assemble and print a single line of data is
therefore:

1 . Fill print line with blanks

PRINTING 293

2. Move each field from its storage location in TapeArrayto its proper position in
the print string

3. Set font characteristics (TextFont, TextFace, TextSize)

4. Move the pen (Move To)

5. Draw the string (Drawstring)

6. Increment the register that holds the vertical position of the pen

The code for this procedure appears in Listing 10.1. The subroutine Clear­
PrintLine (a) fills the print string with blanks. It uses a pre-defined string of 102
blanks (stored as PrintLineMask) which is simply moved to the print string with
BlockMove (b). ClearPrintLine also installs a length byte in the print string (c).

Listing 10.1 Printing One Record from TapeArray

(a)

(b)

(c)

ClearPrintline
LEA PriritlineMask,A0
LEA Printline(A5),A1
MOVE #102,00
_BlockMove

MOVE.B #100,Printline(AS)

RTS

(d) PrintOneRecord
(e) JSR ClearPrintline

LEA TapeArray(A5),A2

~ill print line with blanks

;set length of print line

MOVE.L 07,-(SP) ;save record counter
MOVE 07,05

(f) JSR ComputeAddress2 ;address returned in A4 (see Listing 5.1 or 6.1)

(g)
(h)
(i)
Ol

MOVE.L (SP)+,D7 ;restore record counter

MOVE.L A4,A0 ;start of record
LEA Printline+ 12(A5) ,A 1
MOVE #30,00
_BlockMove ;moves TapeName

MOVE.L A4,A0
ADD.L #oProducer,A0
LEA Printline+44(A5),A1
MOVE #20,00
_BlockMove

MOVE.L A4,A0
ADO.L #oReleaseDate,A0
LEA Printline+66(A5),A1
MOVE #4,00
_BlockMove

;moves Producer

;moves Date

(continued)

294 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.1 (continued)

MOVE.L A4,A0
(k) ADD.L #oRating,A0

LEA Printline+ 72(A5) ,A 1
MOVE #4,D0

- BlockMove ;moves Rating

MOVE.L A4,A0
ADD.L #oTapeNumber,A0
LEA Printline+ 78(A5),A 1
MOVE #4,D0

- BlockMove ;moves Tape Number

(I) MOVE #0,-(SP)
(m) MOVE D3,-(SP)
(n)

(o)
(p)

(q)

Move To
MOVEM.L D1/D2/D7,-(SP)
PEA Printline(A5)
_Drawstring
MOVEM.L (SP)+,D1/D2/D7

ADD D4,D3

ATS

Actual printing of a single line is handled by PrintOneRecord, beginning at (d).
On input, the number of the TapeArray record to be printed is stored in register
07. PrintOneRecord begins by calling ClearPrintline (e) to erase the previous
contents of the print string and reset the length byte. Then it assembles the data
from TapeArray into their proper positions in the print line.

To do so, PrintOneRecord must first compute the main memory address of the
particular record being printed. Subroutines to compute such addresses already
exist as part of the straight-insertion sort (see Listing 5.1 or 6.1) and therefore can
simply be called rather than rewritten (f). Using the address returned by Com­
puteAddress2, PrintOneRecord then moves one field at a time with repeated calls
to BlockMove. The starting address of the field being moved is loaded into AO (g),
the starting position for the field in the print string into A1 (h), and the length of the
field into DO (i). The transfer is completed with the operating system call (j).

Steps (g) through (j) are repeated for each field. Note, however, thatthere is an
extra step required for all fields but the first one. The offset of the field in the record
must be added to the starting address of the record. For example, at (k)
PrintOneline adds the offset of the Rating field. The offsets have been equated to
symbolic addresses for ease of use.

The actual printing process begins at (I) with the set-up sequence to move the
pen. The horizontal coordinate is moved onto the stack; ifs value is 0 since printing

PRINTING 295

should begin at the far left-hand side of the page. The vertical coordinate follows it
(m); it's value is stored in D3 while the page is being printed. A call to MoveTo
actually moves the pen (n). To draw the print string, a pointer to the string is pushed
onto the stack (o) followed by the call to Drawstring (p).

Only one task remains. The register containing the vertical print coordinate,
D3, must be incremented by the height of a single print line to prepare for printing
the next line. Therefore, the contents of D4 (the register set aside to contain the
height of a print line) are added to D3 (q). PrintOneline can then return to the part
of the program that called it.

There is an alternative to using one string to print an entire line: rather than
moving the text to be printed into a single place, each string can be drawn
individually. In this case, the strategy is:

1. Set font characteristics (Textfont, Textface, TextSize)

2. Move the pen to the beginning horizontal and vertical position of the line
(Move To)

3. Draw the first string (Drawstring)

4. Set font characteristics if desired (Textfont, Textface, TextSize)

5. Move the pen horizontally (using the same vertical coordinate) to the position
of the next set of characters on the line (MoveTo)

6. Draw the string (Drawstring)

7. Repeat steps 4 through 6 until the entire line is printed

The advantage to this second strategy is that you can vary the font characteristics
of the text across the line, something which is not possible when the entire print line
is a single string.

Printing Text with DrawText
DrawText prints an entire line of text from a specified storage location in RAM.

It differs somewhat from Drawstring. When using Drawstring, an application
pushes a pointer to the text onto the stack; the length of the string is imbedded in
the string itself. DrawText requires a pointer to the starting location of an entire
block of text, an offset into that block, and the number of bytes to print:

PROCEDURE DrawText (textBuf:QDPtr;firstByte,byteCount:
INTEGER);

It is therefore best suited to printing text that is stored in a text edit record.
Since Drawstring does not do any text formatting, it does not know where

TextEdit marked the end of lines. Therefore, an application must use two pieces of

291 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

information from the text edit record to control the printing operations - the total
number of lines in the text and the character positions of the line starts.

The strategy to print text from a text edit record is:

1. Get handle to the text edit record (TEGetText)

2. De-reference handle to get a pointer to the text

3. Retrieve total number of lines in the text

4. Initialize a line counter

5. Check to see if the counter contains the number of the last line. If so, jump to
step 11.

6. Retrieve starting position of current line

7. Retrieve starting position of next line

8. Subtract starting position of current line from starting position of next line to
obtain number of characters in current line

9. Print the line (DrawText)

10. Increment the line counter. Jump to step 5.

11. Retrieve total number of characters

12. Subtract starting position of last line from total number of characters + 1 to
obtain number of characters in last line

13. Print the line (DrawText).

The Video Tape Index's implementation of this procedure to print annotations
appears in Listing 10.2. The code that begins with EnoughRoom is initiated after
the program determines that there is enough room left on the page to print the
entire annotation.

The first step is to call PrintOneline to print the data from TapeArray that
applies to the tape in question (a). A blank line must then appear between the
TapeArray data and the first line of the annotation. Getting a blank line is straight­
forward - the register holding the vertical position of the pen (D3) is simply
incremented by the height of a single line (held in D4) without printing any text (b).

Printing the annotation requires a loop that uses the total number of lines in the
annotation as a target value. Therefore, before the actual printing can begin, the
program must retrieve the number of lines from the text edit record. The three
statements beginning at (c) get the handle to the text edit record and de-reference
it to obtain a pointer to the record. The number of lines in the text is then stored in
DO (d). D1 is initialized to act as a line counter (e).

As indicated in the printing procedure described above, the last line in the text
must be handled separately from all other lines. The first activity in the printing loop
musttherefore be a "look ahead" to determine if the last line has been reached. The
line counter is incremented by 1 (f) and compared to the total number of lines in the

PRINTING 297

text (g). If the two values are equal, the program branches out of the loop to print
the last line (h). Assuming that the last line has not been reached, the line counter is
decremented to restore the correct line number (i).

Listing 10.2 Printing an Annotation that is Stored in a TextEdit Record

Enough Room
MOVEM.L D2/D7,-(SP)

(a) JSR PrintOneRecord ;(Listing 10.1)
(b) ADD D4,D3 ;get a blank line

MOVEM.L (SP)+,D2/D7

(c) LEA AnnotationTextHandle,A2
MOVE.L (A2),A2
MOVE.L (A2),A2

(d) MOVE teNLines(A2),D0 ;get number of lines again
(e) MOVE #0,D1

Anotherline
MOVEM.L D2/D4,-(SP)

(f) ADDO #1,D1 ;look at next line
(g) CMP D1,D0 ;at last line?
(h) BEO Last line
(i) SUBO #1,D1 ;restore current line #

MOVE #2,D4
(j) MULU D1,D4 ;line starts are stored as integers
(k) MOVE telines(A2,D4),D2 ;line start of this line

ADDO #2,D4
(I) MOVE telines(A2, D4), D5 ;start of next line
(m) SUB D2,D5 ;D5 has number of bytes

(n) CLR.L -(SP)
(o) MOVE.L Annotation TextHandle ,-(SP)
(p) TEGetText ;get handle to annotation text

MOVE.L (SP)+,AS ;retrieve handle
(q) MOVE.L (A6),A6 ;de-reference to get pointer

(r) MOVE #20,-(SP) ;annotation is indented 20 pixels
(s) MOVE D3,-(SP)
(t) - Move To

MOVEM.L D0/D1/D7/A2/A6,-(SP)
(u) MOVE.L AS,-(SP) ;pointer to text
(v) MOVE D2,-(SP) ;starting position
(w) MOVE D5,-(SP) ;number of bytes to print
(x) Draw Text

MOVEM.L (SP)+,D0/D1/D7/A2/A6
MOVEM.L (SP)+,D2/D4

(y) ADDO #1,D1 ;increment line counter
(z) ADD D4,D3 ;space to next line
(aa) BRA Anotherline

Lastline
SUBO #1,D1 ;restore current line#
MOVEM.L D1/D3/D7/A2/A6,-(SP)
MULU #2,D1

(continued)

298 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.2 (continued)

(bb) MOVE telines(A2,D1),D5 ;start of last line

(cc) MOVE #257,D0 ;total characters + 1
SUB D5,D0 ;characters left to print

MOVE #20,-(SP)
MOVE 03,-(SP)

Move To -

MOVE.L A6,-(SP)
MOVE D5,-(SP)
MOVE D0,-(SP)

Draw Text
MOVEM.L (SP)+,D1/D3/D7/A2/A6
MOVEM.L (SP)+,D2/D4

(dd) ADD D4,D3 ;one blank line
ADD D4,D3 ;another blank line

The next task is to prepare for the call to DrawText which will be used to print a
single line. DrawText needs to know the starting address of the text, a byte offset
into that text where printing should start, and the total number of characters to print.

The positions within the text where new lines start are stored in the text edit
record as integers. The start of the first line is stored immediately after the total
number of lines in the text. Therefore, the starting position of the line being printed
can be found by:

1. Multiplying the line number by 2 to account for the line starts being stored as
integers (j)

2. Adding that result to the starting address of the text edit record and the offset
for the number of lines, telines (k).

Statement (k) stores the line start in DO.
In order to figure out the number of characters in the line, the program also

needs the line start of the following line (I). Then it subtracts the starting position of
the current line from the starting position of the next line to obtain the number of
characters in the current line (m).

The final piece of data needed by DrawText is the starting address of the text
itself. TEGetText will return a handle to the text in a text edit record. The program

PRINTING 299

calls it by clearing space on the stack for the handle result (n), pushing the handle
to the text edit record on the stack (o), and then calling the routine (p). Once the
result is pulled from the stack it must be de-referenced to obtain a pointer (q).

Before actually printing, the pen must be moved. Since the annotation is
indented from the left-hand margin of the page, the horizontal position is not 0, but
20, an arbitrary indentation chosen merely because it looks nice on the page (r).
The vertical coordinate is again taken from register 03, which stores the vertical
position while a page is printed (s). MoveTo takes care of positioning the pen (t).

The set-up for the call to DrawText requires pushing the pointer to the text onto
the stack (u}, followed by the starting position in the text (v), and the total number of
bytes to print (w). The call actually draws the text (x).

The program then increments the line counter (y) and the vertical position of the
pen (z). This completes printing one line of the annotation. Therefore, the program
must branch to print another line (aa).

Printing the last line is only slightly different from printing the other lines. The
difference lies in determining how many characters are in the line. For the last line,
there is no "next" line. The total number of characters in the last line is equal to the
starting position of the last line (bb) subtracted from the total number of characters
in the text plus 1 (cc). The remainder of the procedure is exactly the same.

Once the annotation is printed, the final task is to print two blank lines beneath
it. This is accomplished by simply incrementing the vertical position of the pen
twice (dd).

Finishing a page
Generally, an application will decide to finish printing a page when the vertical

pen coordinate is greater than or equal to the bottom of the page coordinate, or
when the entire document has been printed. (The Video Tape Index closes a page
when all records from TapeArray have been printed, even though an entire
physical page may not be filled.) When that occurs, a call to PrClosePage is
necessary. If the application is draft printing, the call will eject the current page and,
if printing from single sheets, will prompt the user to insert another sheet. If the
application is spool printing, the call will simply close the printer port for the page
being printed.

Calling PrClosePage needs only a pointer to the printer port as a parameter:

PROCEDURE PrClosePage (pPrPort: TPPrPort);

At this point, the application must decide whether there are more pages to print
or whether the document should be closed.

300 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Imaging and Printing
Spool Files

As far as the Macintosh is concerned, the term imaging refers to the process of
taking the picture of a printed page that is stored in a spool file and turning it into an
array of dots of the right size and shape. That array can then be sent to the printer
one band at a time, so the printer can easily print the page from the top down.

Assuming that there is sufficient memory to hold the image of a single band
from a page of the spool file, imaging and printing the file is a simple process - it
requires only a call to PrPlcFlle. This routine takes care of breaking the spool file
into bands for printing, bringing the bands into memory one by one, and printing
them.

The format of PrPicFile is:

PROCEDURE PrPicFlle (hPrint: THPrint; pPrPort: TPPrPort:
plOBuf: Ptr; pDevBuf: Ptr; VAR prStatus: TPrStatus);

The first parameter, hPrint, is the handle to the print record. The second
parameter, pPrPort, looks, at first, to be the same as the printer port used to create
the spool file, but it is not. The printer port created by PrOpenDoc was closed by
the call to PrCloseDoc. PrPicFlle requires its own printer port. A value of 0 for
pPrPort will instruct the system to allocate its own printer port.

plOBuf is a pointer to the area in memory which should be used to hold
information as it is read from the disk. Though application may set aside its own
area, generally ifs just as easy to pass a 0 for this parameter, allowing the system to
use the disk volume's buffer for this purpose. pDevBuf is also a pointer. It locates
an area known as the "band buffer" that is used to hold data to be printed. Passing a
0 for pDevBuf will cause the system to allocate the buffer on the heap.

The variable parameter PrStatus is a pointer to a printer status record. The
printer status record monitors the activity of the system while it is printing from a
spool file. The structure of a status record is:

TPrStatus = RECORD
iTotPages: INTEGER;
iCurPage: INTEGER;
iTotCopies: INTEGER;
iCurCopy: INTEGER;
iTotBands: INTEGER;
iCurBand: INTEGER;
fPgDirty: BOOLEAN;
flmaging: BOOLEAN;
hPrint: TH Print;
pPrPort: TPPrPort;
hPlc: PicHandle;

END;

total number of pages
page being printed
number of copies to print
copy being printed
number of bands per page
band being printed
TRUE If page Is being printed
TRUE If page is being imaged
handle to print record
pointer to printing port
used internally - do not change

PRINTING 301

An application must allocate space for the entire printer status record:

PrinterStatusRec DS.B iPrStatSize ;where iPrStatSlze is
equated to the total number
of bytes in a printer
status record

The printer status record is generally most useful to applications that are
running their own background procedure. The background procedure can
repeatedly check the fields of the printer status record to determine the status of
the printing process. If an application relies on the default background procedure,
the printer status record is of minimal importance.

The code to image and print a spool file from the Video Tape Index program
appears as follows:

MOVE.L
CLR.L

CLR.L

CLR.L

PEA
JSR

PrintRecordHandle(AS), - (SP) ;put handle on stack
-(SP) ;system allocates it own

printing port
-(SP) ;system uses volume 1/0

buffer
-(SP) ;system uses it own

band buffer
PrinterStatusRec(AS) ;push address
PrPicFile ;image and print

Completing the Printing
Task

When an application has finished printing, regardless of whether it has draft
printed or imaged and printed a spool file, there is no longer any need to retain the
print record on the heap. The storage held by the print record should therefore be
released through a call to DisposHandle:

PROCEDURE DisposHandle (h: Handle);

The handle to the print record must be in AO before calling the routine:

MOVE.L PrintRecordHandle(AS),AO ;get the handle
_DisposHandle ;release the heap storage

The final step is, as discussed earlier in this chapter, to call PrClose to close the
Printing Manager.

302 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Putting it All Together
- BannerPrint

BannerPrint is a demonstration program that prints large upper-case letters
sideways on 81/2x11 computer paper. To create a banner, the sheets of paper
must be separated and then taped together to hide the gaps between the pages.
Source code for BannerPrint appears in Listing 10.3; its resource file can be found
in Listing 10.4.

BannerPrint creates a small text edit window in which the user can enter upper­
case letters and spaces. The standard editing functions are supported in that
window. The banner can be draft or spool printed; which method is used is
determined by the user's choice in the standard job dialog box.

The large letters are stored as strings in the code portion of the program (i.e.,
they are defined as constants). There are certainly other ways to specify how the
letters should be printed, but this particular method was chosen because it is easy
to type in from a printed listing; you can seethe shape of the letters on the screen as
you work. Note that while each string has its own DC directive, it doesn't have a
unique name. The symbolic address Letters refers to the entire block of letter
templates.

While each line of a letter is exactly 30 characters long, all the letters are not
made up of the same number of lines (i.e., "I" has only four lines, "W" and "M" have
16, and all the rest have 12). That means that the program must have some way of
locating the start of a letter within the Letters block. BannerPrint uses a technique
known as a "jump table."

The jump table (stored under the symbolic address Jump Table) itself consists
of 26 numbers. Each corresponds to the number of bytes the start of a letter
template is offset from the address assigned to Letters. Therefore, if the program
knows the ordinal position of a character in the alphabet, it can look in the jump
table to discover how far beyond Letters it should begin. The ordinal position a
character is determined by comparing it against the letters in the alphabet; those
letters are stored as OrdinalList.

BannerPrint must also have a way to determine when all the lines of a particular
character have been printed; since the number of lines per character vary, it can't
simply count lines printed. Instead, the program looks ahead to the next line. If the
first non-blank character in the next line is different from the character being
printed, then the character must be complete.

To keep it relatively short, BannerPrint was written without a number of checks
that would catch user errors. It does not, for example, trap the situation where the
user enters a character other than an upper-case letter or a space. It also does not
prompt the user to ready the printer. For suggestions on what you can do to make
the program "bullet-proof," see Problem 10.

Listing 10.3 BannerPrint

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D
Include PrEqu.Txt
Include QuickEqu.D

PEA -4(A5)
_lnitGraf"
_lnitFonts
MOUE. L •$0008FFFF, D0
..FlushEvents
-1 n i ti.Ii nctows
_lni tMenus
CLR.L -(SP)
_lni tDialogs
_TElnit
_In i tCursor

CLR -<SP>

PRINTING 303

PEA 'MAL.files:BannerPrint.Rsrc'
..DpenResF i I e ; open resource f i I e
MOUE <SP)+, 00 ; discard unused resu I t

;------------------------- Set up menus -------------------------------
CLR.L -(SP) ;space for handle
MOUE •t,-(SP) ;menu ID
...Ge tRMenu ; get App I e menu temp I ate
MOVE.L (SP)+,AppleHandle(A5) ;retrieve & store handle

MOVE.L AppleHandle(A5),-(SP)
MOVE.L •'DRUR' ,-<SP>
...AddResMenu

MOUE.LAppleHandle(A5),-(SP)
CLR -<SP)
_lnsertMenu

CLR.L -<SP>
MOUE •2 -<SP)
....GetRMenu1

MOUE.L <SP>+,Fi leHandle<A5)

MOUE.L Fi leHandle(A5>,-<SP)
CLR -<SP>
_lnsertMenu

CLA.L -<SP>
MOUE 93,-<SP)
....GetRMenu
MOUE. L <SP)+, Edi tHancl I e<AS >

MOUE.L EditHandle(A5),-(SP>

;put handle back on stack
;resource type for desk accessories
; get desk accessories

;put the menu after all others
;put menu in menu list

;repeat procedure for other menus

(continued)

304 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

CLR -<SP)
_inserlMenu

..DrawMenuBar

------------------------ Event loop starts here ------------------------
MOUE •0,UindoVIFlac;i<AS> ;wi 11 be set if window is

Event --8yslemTask

MOVE U i ndolllF I ag<AS), 00
BEQ Nol.Ii ndow
NOVE.L TexlHandle<A5),-(SP)
_TE Idle

NoUindow
CLR -<SP>
MOVE •-1, -<SP)
PER EvenlRecordCAS)
....GetHexlEvenl

MOVE <SP>+,00
BEQ Event

MOVE EvenlRecord<AS>,00

CMP •111ButDwnEvt, 00
BEQ MouseEvenl

CMP •keyDwnEvl,00
BEQ KeyEvenl

CMP •upDalEvl,00
BEQ Update

BRA Event

present

;update desk accessories

;text edit window open?

;space for boolean result
;111ask lo select all events

;pointer to event record

;retrieve boolean result
;no event

; gel even l type

;mouse down event?

;key down event?

;-------------------------- Handle key down events -----------------------
KeyEvenl

MOVE EvenlRecord+evtMela<AS>,00
BTST. L •cmdKey, 00 ; command key pressed?
Bl'iE KeyboardEquivalenl

MOVE EvenlRecord+evtMessage+2<A5),-(SP) ;character pressed
MOVE.L TextHandle<AS>,-<SP)
_TEKey ;insert character

BRR Event

KeyboardEquivaienl
CLR.L -<SP> ;place for menu ID & item number
MOVE EvenlREcord+evtMessage+2(A5), -<SP) ; character
..MenuKey

BRA Selections ;process with mouse down selection
(continued)

; ----------------------- Update the text window -------------------­
Update

MOVE.L Charl.lindPtr<A5>,-<SP>
...BeginUpdate

MOVE.L Charl.lindPtr<AS>,-<SP>
...SetPort

PEA UiewRect<A5)
MOUE.L TextHandle<AS>,-<SP>
_TEUpdate

MOVE.L Charl.lindPtr<A5>,-<SP>
...EndUpdate

BRA Event

PRINTING 305

; ---------------------- Handle mouse down events ------------------------
MouseEvent

CLR -(SP) ; space for "!uha t" resu I t
MOUE.L EventRecord+evtMouse<AS>,-<SP> ;place where event occurred
PEA l.lhichl.lindowPtr(A5) ;window affected goes here
..Findl.lindow ;get exact location of event
MOVE (SP)+, 00 ; recover resu I t

CMP •inMenuBar,00 ; i n menu bar?
BEQ MenuBar

CMP • i nSysl.I i ndow, 00 ;desk accessory?
BEQ SysEvent

CMP •inContent,00 ; in the text edit window?
BEQ Appll.lindow

CMP •inGoAway,00 ;close the window?
BEQ GoflwayBox

BRA Event ;not an event this program handles

; -------------------- Handle events
SysEvent

in system windows -------------------

PEA EventRecorct<AS>
MOVE . L Uh i chi.Ii ndowPtr(A5 >,-(SP)
...5ystemC I i ck

BRA Event

;window posting event
; let system handle it

;-------------------- Handle events in content area of window -------------­
App I I.Ii ndow

PEA Even tRecord+ev tMouse<AS) ; p I ace where event occurred
....GlobalToLocal ;make local

MOVE.LEventRecord+evtMouse<AS>,-<SP) ;coordinates now local
MOUE EventRecord+evtMeta<AS), 00
BTST. L •sh i ftKey, 00 ; extended se I ect ion?
SHE 00
MOVE.8 00,-<SP> ;extend or not extend

(continued)

306 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)
MOUE.L TextHandle(A5),-(SP)
_TECI ick

BRA Event

;establish the selection range

; ------------------- Handle events in the menu bar ----------------------­
MenuBar

CLR.L -<SP> ;space for menu ID and menu item
MOVE.L EventRecord+evtMouse(A5),-(SP) ·;place where event occurred
J1enuSelect ;find menu ID and menu item

Selections
MOUE.L <SP>+,07
MOUE 07,00
SJ.IAP 07

CLR -<SP)
-HiliteMenu

CMP •1,07
BEQ AppleMenu

CMP •2,07
BEQ Fi leMenu

CMP •3,07
BEQ EditMenu

BRA Event

;recover result
;06 now has menu item
;low-order word has menu ID

;selects all menus
;remove high I ighting from menu

;apple menu?

; file menu?

;edit menu?

;------------------------ Handle desk accessories -------------------------
AppleMenu

MOVE.L AppleHandle<AS>,-<SP>
MOUE DO, -<SP) ; menu i tem
PEA DeskAccName<AS> ;space for desk accessory name
...Getltem

CLR -<SP>
PEA DeskAccName(A5)
....OpenDeskAcc
MOVE <SP)+, 00

BRA Event

;space for reference number
;item name

;discard result

; ------------------------Handle editing
EditMenu

SUBQ •1,06
CLR -<SP>
MOVE D6,-<SP>
-5ysEdit

MOVE <SP)+, 00
BNE Event

AODQ •1,06
CMP •3,06

;adjust item selected for SysEdit
;space for result
;adjusted item number

;get result
;system handled edit

;restore item number
;cut?

(continued)

BNE EditMenu2
MOUE.L TextHandle(A5),-(SP)
_TECut
BRA Event

EditMenu2
CMP •4,06
BNE EditMenu3
MOUE.L TextHandle(A5),-CSP>
_TECopy
BRA Event

EditMenu3
CMP •S,06
BNE Edi tMenu4
MOVE.L TextHandle<R5>,-<SP>
_TEPaste
BRA Event

EditMenu4
CMP •6,06
BtfE Event
MOVE.L TextHandleCA5),-CSP)
_TEDelete
BRA Event

PRINTING 307

;copy?

;paste?

;clear?

;------------------- Handle Fi le Menu ----------------------------------
Fi leMenu

CMP •t D6 ;New window?
BEQ N~l.I i ndow

CMP •2,06 ;Close the window
BEQ Closel.lindow

CMP •3,06 ;Print the banner
BEQ Print

CMP •4,06 ;Quit
BNE Event
RTS ;return to Finder

; ------------------Open a new window with text edit record-------------­
Newl.lindow

CLR.L -<SP>
MOVE •1,-<SP)
PEA Charl.lindStrg<AS>
MOUE.L •-1,-CSP)
....GetNewl.lindow
MOUE. L CSP)+, Chari.Ii ndPtr(A5)

MOVE. L Chari.Ii ndPtr<AS), -<SP>
...SetPort

CLR.L -CSP>
PEA DestRect
PEA ViewRect

;space for window pointer
;window ID
;window storage
;put window in front

;get pointer

;make this the current grafport

;space for text edit handle
;destination rectangle
;view rectangle

(continued)

308 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

_TENew
MOUE.L <SP>+, TextHandle<AS>

MOVE •1,i.tindowFlag<AS>

MOVE.L TextHandle<AS>,-<SP>
_TEActivate

BRA Event

;establish text edit record
;get text handle

;set window flag

;activate the text windo~

-------------------- Close a window ---------------------------------
GoAwayBox

CLR.B -<SP> ;space for boolean result
MOVE.L i.thichi.tindowPtr(A5),-(SP) ;window pointer
MOVE.L EventRecord+evtMouse<AS>,-<SP> ;point of event
_TrackGoAway ;monitor GoAway box

MOVE.B <SP>+,00
BEQ Event

;get result
;don't close

Closei.tindow
MOVE. L TextHand I e(A5), -<SP)
_TEDispose

MOVE.L Charl-lindPtr<AS>,-<SP>
..J:, I osei.t i ndow

MOVE •0,i.tindowFlag<A5)

BRA Event

;close text edit record

;close the window

;clear window flag

--------------------------- Print the banner ------------------------
Print

JSR PrOpen
MOVE.L •iPrintSize,00
..NewHandle
MOUE . L A0, PrRecHand I e< A5)

MOUE.L PrRecHandle<AS>,-<SP>
JSR PrintDefault

CLR -<SP>
MOUE.L PrRecHandle<AS>,-<SP>
JSR PrJobDialog
MOUE <SP)+ I 00
BEQ Event

CLR.L -<SP>
MOVE.L PrRecHandle<AS>,-<SP>
CLR.L -<SP>
CLR.L -(SP)

JSA prOpenDoc
MOUE.L <SP>+ ,PrPortPtr(A5)

MOVE •monaco,-<SP>
_TextFont

;open printing manager
;size of print record

;space on heap for printer record
;save handle

;fill record with default info

;space for boolean result

;draft or spooled?

;user canceled

;space for pointer to printer port

;system will allocate port
;use system 1/0 buffer

;get the pointer

;set the font
(continued)

MOVE •12,-<SP>
_TextSize

PEA Font I nfoStrg<A5 >

PRINTING 309

;set the size

....GetFontlnfo ;get size of font
MOVE FontlnfoStrg+ascent(A5),D4
ADD FontlnfoStrg+clescent<A5>,D4
ADD FontlnfoStrg+leading(A5>,D4 ;height of I ine

MOVE.L PrRecHandle<A5>,A0
MOVE. L (A0) I A0
MOVE prlnfo+rPage+bottom<A0),PageBottom(A5) ;bottom of page

MOIJE.L TextHandle<A5>,A0
MOIJE.L (A0),A0
MOVE telength<A0 >, D7
MOVE.L teTextH<A0),A0
MOVE.L (A0),A0
MOlJE •0,00

;handle to text edit record
;de-reference to get pointer
;number of characters
;handle to text
;pointer to text

;initialize index register/character
counter

NewPage
JSA Star tAPage ;begins new page at start uf character

OuterLoop
MOVE.B <A0,00),D6
MOVE •0,01
LEA Ordina1List,A1

CMP.B
BNE
MOVE
MULU
ADO
BRA

•.. ,D6
Loop1
04,02
•4,02
02,03
Endings

;get one character
;another index register

;address of alphabet

;is this a blank?

Loop1 CMP.B
BEQ
ADDO
BRA

(A 1, DD, D6
Found
•1,01
Loop1

;attempt to identify character

;character not found

Found LEA
MULU
MOVE

JwapTable,A1
•2,01
<A1,D1),05

;offset into word-sized table
;get offset into letter data

LEA Letters,R6 ;starting address of letter data

OneLine
MOVEM . L 00-D4 /D6 /D7 /A0 /A 1 /R6, -(SP)
MOVE •0, -<SP) ; hor i zonta I coord i note
MOVE 03,-<SP> ;vertical coordinate
...Move To ; set the pen
MOUEM.L <SP>+,D0-D4/D6/D7/A0/A1/R6

MOVEM.L D0-D4/D6/07/A0/A1/A6,-<SP>
MOVE.L A6,-<SP> ;pointer to start of text
MOVE 05,-<SP> ;offset into block
MOVE •30,-(SP) ;number of bytes in I ine

(continued)

310 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

..DrawText
MOVEM.L

;draw the I ine
<SP>+,D0-D4/D6/D7/A0/A1/A6

ADO 04,03
CMP PageBottom<A5),03
BLT SamePage
JSR CloseAPage
JSR StartAPage

SamePage
ADO •30,05

MOVE 05,A3
BlankCheck

MOVE.B <A6,A3>,D2
CMP.B •· ',02
Bt£ Check.Char
AOOQ •1,A3
BRA BlankCheck

Check Char
CMP.B 02,06
BEQ Oneline

ADO
ADD

Endings
ADDQ
CMP
BLT
JSR
BRA

Roomlef t

04,03
04,03

•1,00
PageBottom<A5>,03
Roomleft
CloseAPage
NewPage

CMP D0,D7
BNE Outerloop
MOVE. L PrPortPtr<AS), -<SP)
JSR PrClosePage

MOVE.L PrPortPtr<A5>,-<SP>
JSR PrCloseDoc

MOVE.L PrRecHandle(A5>,A0
MOVE.L <Ae>,A0
MOVE . B prJob+bJDocloop< A0 >, 00
BEQ DonePrinting

MOVE.L PrRecHandle(A5),-(SP)
CLR.L -<SP>
CLR.L -<SP>
CLR.L -<SP>
PER PrStatusRec<A5>
JSR PrPicFi le

;increment vertical pointer
;at bottom of page?

;begins new page in middle of character

;offset to next line

;get first character of next line
;is it a blank?

;increment index to skip over blank

;has character changed?
;no change

;space between characters

;increMnt character counter
;at bottom of page?

;all characters printed?

;draft or spooled?

;spooler uses its own printing port
;spooler uses its own buffer
;spooler uses its own device buffer

;image and print spool file

(continued)

DonePrinting
MOVE. L PrRecHand I e(R:5), A0
..JlisposHandle

JSR PrClose
BRA Update

StartRPage
MOVEM.L D0/D4/D71A0,-<SP>
MOUE.L PrPortPtr<AS>,-<SP)

PRINTING 311

;free space taken by print record

;close printing manager
;update window - it was covered by job
;dialog

CLR.L -<SP> ;no sealing
JSR prOpenPage ; new page
MOUEM.L <SP>+,D0/D4/D7/A0

MOUE 04,03
RTS

;initialize vertical coordinate

CloseRPage
MOUEM.L D0/D4/D7/A0,-(SP)
MOUE.L PrPortPtrCAS),-(SP)
JSR PrClosePage
MOVEM.L <SP>+,D0/D4/D7/A0
RTS

·--------------------------------- Data Structures -----------------------
Chari.ii ndP tr OS. L 1
Charl.lindStrg OS IJindowSize

EuentRecord OS.B
lolhichlJindowPtr
DeskAccName
IJindowFlag

AppleHandle
Fi leHandle
EditHandle
TextHandle
PrRecHandle
PrPortPtr
Font I nfoStrg

PrStatusRec
PageBottom

UiewRect
DestRect

Ordinallist

JumpTable

OS
OS

OS.L
OS.L
DS.L
DS.L
DS.L
DS.L
OS

DS.B
OS

DC
DC

DC.B

DC
DC

16
DS.L
16
1

1
1
1
1
1
1
4

iPrStatSize
1

3,3,47,287
3,3,47,287

'ABCDEFGHIJl<LMNOPQRSTUUIJXYZ'

0,360,720, 1080, 1440, 1800,2160,2520,2880,3000,3360,3720,4080
4560,4920,5280,5640,6000,6360,6720,7080,7440,7880,8280,8640,
9000

(continued)

312 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

Letters DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

'AAAAAAAAAAAAAAA
'AAAAAAAAAAAAAAAAAAAA
'AAAflAA.O.AAAAAAAAAAAAAAAAAA
'AAAAAAARAAAAAAAAAAAAAAAAAAARA '
' AAAAAAA AAAAAAAAA'

AAAAAAA AAAAAAA'
AAAAAAA ARAAAAR'
AAARAAA AAAAAAAAA'

'AAAAAAAAAAAAARARAAA.-.AAAAAAAAA
'FIAAAAAAAAAAAAA
' AAAA.O.Pn°.AAAAAAAAAAAAA
'ARAAAAAAAAAAAAA

DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB'
DC.B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB'
DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB'
DC. B 'BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB'
DC. B 'BBBBBB BBBBBBBB BBBBBB'
DC. B 'BBBBBB BBBBBBBB BBBBBB'
DC. B 'BBBBBB BBBBBBBB BBBBBS'
DC. B 'BBBBBB BBBBBBBB BBBBBB'
DC. B 'BBBBBBB BBBBBBBBBB BBBBBBB'
DC. B ' BBBBBBBBBBBBB BBBBBBBBBBBBB '
DC. 8 ' BBBBBBBBBB BBBBBBBBBB '
DC. 8 8BB8BB BBBBBB

DC.8 CCCCCCCCCCCCCCCCCCCCCCCC
DC. B ' CCCCCCCCCCCCCCCCCCCCCCCCCC '
DC. 8 ' CCCCCCCCCCCCCCCCCCCCCCCCCCCC '
DC. B 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'
DC. B 'CCCCCCCCCC CCCCCCCCCC'
DC. 8 'CCCCCCCC CCCCCCCC'
DC. 8 'CCCCCCCC CCCCCCCC'
DC. B 'CCCCCCCC CCCCCCCC'
DC. B 'CCCCCCCC CCCCCCCC'
DC. B ' CCCCCCCCCCC CCCCCCCCCCC '
DC. B ' CCCCCCCCCC CCCCCCCCCC '
DC. B CCCCCCCC CCCCCCCC

DC. B 'DDDDDDDDDDDDODDDDDODDDDODDOODD'
DC. B 'DDDDDDDDDODDDDDDODDODD'
DC. B 'DDDODDDODDOODDDDDDDDODDDDDDDDD'
DC. B 'DDDDDOOO DDDDDDOO'
DC. B 'DDDDDDDD DDDDOOOD'
DC. B 'DODOODDD DDDDDDDD'
DC. B 'DDDDDDDD DDDDDDDD'
DC. B 'DDDDDDDD DDODODDD'
DC. B ' DDDDDDDD DDODDDDD '
DC.B DDDDDDDDDDDDDDDDDDDDDDDDDD
DC.B DDDDDDDDDDDDDDDDDDDODD
DC. B DDDDDDDDDDDDDDDD

' ;IMPORTANT NOTE!!!
;All strings are 30
;characters in length ...

(continued)

DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE'
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE'
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE'
DC.B 'EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE'
DC . B 'EEEEEEEE EEEEEE EEEEEEEE'
DC. B 'EEEEEEEE EEEEEE EEEEEEEE '
DC. B ' EEEEEEEE EEEEEE EEEEEEEE '
DC . B 'EEEEEEEE EEEEEE EEEEEEEE'
DC . B ' EEEEEEEE EEEEEEEE '
DC. B ' EEEEEEEE EEEEEEEE '
DC. B 'EEEEEEEE EEEEEEEE'
DC . B 'EEEEEEEE EEEEEEEE'

DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'
DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'
DC.B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF'
DC . B 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF '
DC . B ' FFFFFF FFFFFFFF'
DC . B FFFFFF FFFFFFFF '
DC . B FFFFFF FFFFFFFF '
DC . B FFFFFF FFFFFFFF .
DC.B FFFFFFFF'
DC.B FFFFFFFF'
DC.B FFFFFFFF'
DC.B FFFFFFFF'

OC.B GGGGGGGGGGGGGGGGGGGGGGGG
DC.B ' GGGGGGGGGGGGGGGGOGGGGGGGGG
DC. B ' GGGGGGGGGGGGGGGGGGGG '
DC. B 'GGGGGGGGGGGGGGGGGGGGGGGGGOGGGG'
DC. B 'GGGGGGGOGG GGGGGGGGGG'
DC. B 'GGGGGOGG GGGGGGGG'
DC. B 'OGGGGGGG GGGG GGOGGGGG'
DC. B 'GGGGGGGG GGGG GGGGGGGG'
DC. B 'GGGGGGGG GGGG GGGGGGGG'
DC.B ' GGGGGGGGGGGGG GGGGGGGGGGG '
DC.B GGGGGGGGGGGG GGGGGGGGGG '
DC. B GGGGGGGGGG GGGGGGGG '

DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH'
oc . B • HtfflHHI IHHHHHHHHHHHHHHI n n nun H IHH.
DC. B 'HHHHHHHHHHHHHHHHHHHH'
DC . B ' HHHHHI I IHHHHHHHHHI Bii HID U U UM IHH'
DC.B HHHHHHHH '
DC. B HHHHHHHH
OC • B H+IHI H IHH
DC.B HHHHHHHH
DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHH'
DC. B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH'
DC.B 'HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH'
DC . B ' HHHHHHHH!-'.u.U.JJ.HHHHHHHHHHHHHHHH'

DC.B '111111111111111111111111111111'
DC.B '111111111111111111111111111111'
DC.B '111111111111111111111111111111'
DC.B '111111111111111111111111111111'

PRINTING 313

(continued)

314 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

JJJJJJJJ
J.J.LLLLJ.LLI

JJJJJJJJJJJJ
'JJJJJJJJJJ
'JJJJJJJJ
'JJJJJJJJ
'JJJJJJJJ
'JJJJJJJJJ
. JJJJJJJJJJJJJJJJJJJJJJJJJJJJJ'

JJJJ.IJJJJJJJJJJJJJJJJJJJJJ'
JJJJJJJJJJ,.JJJJJJJJJJJJJJ.

JJJJJJJJJJJJJJJJJJJJJJ'

'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK'
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK'
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK'
'KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK'
' KKKKKKKKKKKKKK

KKKKKKKKKKKKKKKKKK
KKKKKKKKKK KKKKKKKKKK

KKKKKKKKKK KKKKKKKKKK '
'KKKKKKKKKK KKKKKKKKKK'
'KKKKKKKKK KKKKKKKKK'
'KKKKKKKK KKKKKKKK'
'KKKKKK KKKKKK'

'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL'
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL'
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL'
'LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL'
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL
'LLLLLLLL

'MMMMMMMMMMMMMm'1Mf1l'
'Ml1Mt1l'ltlt1MtMMMMMMM'
'1111M11Mt1t1MMtMMMMMMMMMMMtlt1t1Ml1M'
'MMMMMt1MMMMMMMMMMMMMMMMMMMMMMM'
' MMMMMMMMM '

MMMl1MMl1l1M
MMMl1MMl1l1M

MMMMMMMMM
Mm'IMMMMM

MMMMMMMMM
MMMMMMMMM

MMMMMMMMM
'MMMMMMMMMMMMMMMMMMMMMMMMl'IMMMMM'
'MMMM11t1MM1111M11MMMMMMMMMMMMMMMM'
'l'IHt'llHHt'l~IHHl'IHMf'IHl'D'IHHl'IHHt'IHMl1HMM

'MMMMl1MMtl1MMMMMMMMMMMMMMMMM'

(continued)

DC.B
DC. B 'NtfNNNNNNtttfNtliNNNNNtlNNH'
DC. B 'NHNNNNNl'iNNNNNNNNNNNl'itiNNNNNNNNN '
DC . B ' tiHtltltttlNtltNNNNNHNNNl'ltlHtttltlNNNNN '
DC. B ' NNNNNl'tNNN
DC . B NNNNNNNNN
DC. B NNNtllffitiN
DC. B NNNNNNNNN
DC.B 'NNNNNHNNNNNNNNNNNNNNNNNNNNNNNN'
DC.B 'NNNNNNNtt!NNNNN~'
DC.B '~NNNNNNN'
DC. B 'NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN'

DC.B 0000000000000000000000
DC.B ' 000000000000000000 '
DC. B ' 0000000000000000000000000 '
DC.B '000000000000000000000000000000'
DC. B '000000000 000000000'
DC. B '00000000 00000000'
DC. B '00000000 00000000'
DC. B '0000000000 0000000000'
DC.B '000000000000000000000000000000'
DC. B ' 0000000000000000000000000000 '
DC. B ' 00000000000000000000000000 '
DC. B ' 0000000000000000000000 '

DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP'
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP'
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP'
DC.B 'PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP'
DC. B ' PPPPPP PPPPPP'
DC. B PPPPPP PPPPPP'
DC. B PPPPPP PPPPPP'
DC. B PPPPPP PPPPPP'
DC. B PPPPPP PPPPPP '
DC.B PPPPPPPPPPPPPPPP '
DC. B PPPPPPPPPPPPPP
DC.B PPPPPPPPPP

DC.B QQQQQQQQQQQQQQQQQQQQQQ
DC. B ' QQQQQQQQQQQQQQQQQQQQQQQQQQ
DC.B QQQQQQQQQQQQQQQQQQQCI '
DC. B 'QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ'
DC. B 'QQQQQQQQQ QQQQQQQQQ'
DC. B 'QQQQQQQQ QQQ QQQQQQQQ'
DC. B 'QQQQQQQQ QQQ QQQQQQQQ'
DC. B 'QQQQQQQQQQQQ QQQQQQQQQ'
DC. B 'QQQQQQQQQQQQQQQQ()QQQOQQQQQQ'
DC.B ' QQQQQQQQQQQQQQQQQQQQQQQQQQQQ '
DC.B QQQQQQQQQQQQQQQQQQQQQQQQQ
DC.B QQQQQQQQQQQQQQQQQQQQQQ

PRINTING 315

(continued)

316 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

DC. B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR'
DC. B 'RRRRRRRRRRRRRRRRRRRRRRR'
DC. B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR'
DC.B 'RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR'
DC. B ' RRRRRR RRRRRR'
DC. B RRRRRRRR RRRRRR.
DC. B RRRRRRRRRR RRRRRR'
DC. B RRRRRRRRRRR RRRRRR'
DC. B RRRRRRRRRRRRRRR RRRRRR '
DC . B ' R.CnD.RR.D.RRR RRRRRRRRRRRRRRRR
DC. B 'RRRRRRRR RRRRRRRRRRRRRR
DC. B 'RRRRRR RRRRRRRRRR

DC . B SSSSS SSSSSSSSSSS
DC.B SSSSS SSSSSSSSSSSSSSS '
DC. B SSSSS SSSSSSSSSSSSSSSSS '
DC. B 'SSSSSS SSSSSSSSSSSSSSSSSSS'
DC. B 'SSSSSS SSSSSSS SSSSSSS'
DC. B 'SSSSSS SSSSSS SSSSSS'
DC. B 'SSSSSS SSSSSS SSSSSS'
DC. B 'SSSSSS SSSSSS SSSSSS'
DC. B SSSSSSSSSSSSSSS SSSSSS'
DC. B ' SSSSSSSSSSSSS SSSSS '
DC. B SSSSSSSSS SSSSS '
DC.B SSSSS

DC.B TTTTTTTT'
DC.B TTTTTTTT'
DC.B TTTTTTTT'
DC.B TTTTTTTT'
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT'
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT'
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT'
DC.B 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT'
DC.B TTTTTTTT'
DC.B TTTTTTTT'
DC.B TTTTTTTT'
DC.B TTTTTTTT'

oc.e uuuuuuuuuuuuuuuuuuuuuuuuu·
r" " UUUUUUUUUUUUUUUUUUUUUUUUUUU'
oc.e uuuuuuuuuuuuuuuuuuuuuuuuuuuuu·
DC.B ·uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu·
DC. B 'UUUUUUUUUUUUU '
DC . B ' UUUUUUUUUUU
DC . B ' UUUUUUUUUUU
DC. B 'UUUUUUUUUUUUU
DC. B 'UUUUUUUUUUUUUUUUUUUUUUU'
DC. B ' UUUUUUUUUUUUUUUUUUUUUUUUUUUUU'
DC.B uuuuuuuuuuuuuuuuuuuuuuuwuu·
DC. B UUUUUUUUUUUUUUUUUUULUJUUUU'

(continued)

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
OC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
OC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
OC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

vvvuuuuvvv·
uuuuvuvuuu

uwuuuuuuu
uwuuuuuuu

uuuvuuuuuu
·uuwuuuuu
·uuuuwuuu

UUIJUl.IUlllJ!JU
WVIJVUWW

uuuuuuuuuu
wvuuuvuuu

wuvwuuu·

'l.Ui.u.n.RJU~~·

'lolUl.flllJJ.llJJ.IJ.ll.I~'
·~IWWlol~ilo&&IWWloa.11.n.U.U.Nft.lla.~

·~
~l.UJ.11.H.1
~I.UM
~
~
~

MJ.IWWIJl.H.IMJ.1
~MW

'~WWUUWUUJ.11.UUWJ.IMWMJ.IJ.llolUlolUJ.IW'
• i.a.iwwwi.u~~ ... 'M~llll'
·i.u~MMM~~i.,u·

'l.UMJ.IJ.IMUUIJL&llJWJ.11.UU~'

'XXXX xxxx·
·xxxxxxxx xxxxxxx·
'XXXXXXXXXXX XXXXXXXXXX'
' xxxxxxxxxxxx xxxxxxxxxxx '

xxxxxxxxxxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxx xxxxxxxxxxx

·xxxxxxxxxxx xxxxxxxxxx·
·xxxxxxxx xxxxxxx·
'XXXX XXXX'

YYYY'
YYYWYV'

yyyyyyyyyy·
YYYYYYYYYYY

'YYYYYYYWWWYYYYYYYYYYY
'YYYYVVVVVWYVYVYYYYYYY
'YYYYYVWYVYYYVYV
·yyyyyyyyyyyyyyyyyyyyyyyy

YYWWWYYY
YWWWYYY'

YYYYYYY'
yyyy·

PRINTING 317

(continued)

318 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 10.3 (continued)

DC. B 'ZZZZZZZZ ZZZZZZZZ'
DC. B 'ZZZZZZZZZZZ ZZZZZZZZ'
DC. B 'ZZZZZZZZZZZZZZ ZZZZZZZZ'
DC.B 'ZZZZZZZZZZZZZZZZZ ZZZZZZZZ'
DC.B 'ZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZ'
DC.B 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'
DC.B 'ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ'
OC.B 'ZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZ'
DC. B 'ZZZZZZZZ ZZZZZZZZZZZZZZZZZ'
DC.B 'ZZZZZZZZ ZZZZZZZZZZZZZZ'
DC. B 'ZZZZZZZZ ZZZZZZZZZZZ'
DC. B 'ZZZZZZZZ ZZZZZZZZ'

Listing 10.4 Resource File for BannerPrint

BannerPrint.Rsrc

TYPE MENU
,1

\14

,2
File
New/N
Close/W
Print/P
Quit/O

,3
Edit
Undo/Z
(-
Cut/X
Copy/C
Paste!V
Clear

TYPE WIND
,1

Banner Text
50 110 100 400
Visible GoAway
0
0

Questions and
Problems

PRINTING 319

1. When doing draft printing, the Printing Manager will print only one copy of a
document, regardless of the contents of the iCoples field in the print record.
Write assembly language code to control the printing of multiple draft copies.
For the actual printing details, include:

JSR PrintOneCopy

in the body of your loop. Assume that print record has been allocated and
has a handle stored as PrRecHandle in the applications globals area.

2. Write assembly language code to change the name of a spool file the Printing
Manager will create from the default "Print File" to any other name of your
choosing. Allocate any data structures your code will require. Assume the
print record has been allocated and has a handle stored as PrRecHandle in
the applications globals area.

3. Write pseudocode that describes the logic necessary to print a multi-page
document. Indicate the details of drawing a single page by writing "Draw one
page." (The purpose of this problem is to summarize the sequence of Printing
Manager calls.) Use the names of Printing Manager routines as appropriate.

4. If you look carefully at Figure 10.2 (spooled output), you will notice that the
line under the column headings stretches across the entire page. This occurs
because the entire line is printed as one string.

A. Suggest a strategy that would restrict the underlining to the column
headings themselves, as it appears in Figure 10.1 (draft output).

B. What difficulty does this present for the programmer? Hint: think in terms
of what information is required to properly space the heading.

5. Assume that an array of data is stored in the applications globals area. A
pointer to the starting location of the array has the symbolic address
BookStuff. Each record is 80 bytes long. The fields within the array are
defined by the following equates:

Title
Author
Publisher
Date

EQU 0
EQU 30
EQU 50
EQU 75

320 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Write the assembly language code that draws one record from this array onto
a printer port. Assume:

a. The print line will hold 100 characters.
b. The number of the record being printed is in DO.
c. All necessary Printing Manager calls have been made.
d. The current vertical pen position is in D1.
e. The height of the print line is in D2.

Format the lines so there is space between the fields even when each field
contains the maximum number of characters.

6. Expand the code from problem 5 to print an entire page. As well as adding a
loop to print repeated records from the array, include:

a. A page number in the upper right-hand corner of the page (retrieve it from
the printer record which is stored under PrRecHandle)

b. A page heading of your choice centered on the page two lines below the
page number

c. A heading above each column, three lines below the page heading

Assume that the page's bottom coordinate is stored in D3. All necessary
printing manager calls have been made. The code need not check to see if
all records in the array have been printed, but does need to check for the
bottom of the page. Print the records single spaced.

7. Modify the code from problem 6 to set font characteristics as follows:

a. The page number should be boldface.
b. The page heading should be boldface and underlined.
c. Column headings should be standard print and underlined.
d. All headings should be printed using the system font (Chicago); the body

of the page (the records themselves) should use the Geneva font.

8. Write a block of assembly language code that decides whether a user
requested spooled or draft printing. Assume that the print record has a
handle, PrRecHandle, stored in the applic~tions globals area.

9. Expand the code from problem 8 to image and print the spool file.

10. As mentioned at the end of this chapter, the program BannerPrint is far from
bullet-proof. As it appears in Listing 8.3, it has many holes into which a user
could fall. Code and implement the following modifications to BannerPrint,
each of which will isolate a user from his or her mistakes:

A. Write an alert template to indicate that the user has entered something
other than an upper-case letter or a space. Store the template in the

PRINTING 321

resource file (don't forget to recompile it with RMaker). Display the alert at
the appropriate place in the program.

B. Write an alert template to get the user to turn on the printer. Store the
template in the resource file. Display the alert at the appropriate place in
the program. Printing should not begin until the user clicks OK to indicate
that the printer is ready.

C. Add code to disable the New option from the File menu when a text edit
window is created. Re-enable the New option when the window is closed.
Disable the Close option when no window is present; enable it whenever
a window is on the screen.

D. Add code to trap lower-case letters and transform them to upper-case
before printing. In this case, the alert created in (a) should be displayed
only if a character is not a letter or a space.

11. The appearance of the large letters produced by BannerPrint depend
entirely on the type font and type size being used. The letters will be
unrecognizable if the font is not mono-spaced (i.e., all characters are the
same width), but that restriction nonetheless leaves a great deal of flexibility in
font size and style. Code and implement the following enhancements to
BannerPrint to give the user more choices:

A. Create a Size menu that will allow the user to select the size of the type to
be used for printing. A template for the menu should be placed in the
resource file.

B. Create a Style menu that will allow the user to select the style of type to be
used for printing (e.g., plain text, boldface, outline, etc.).

NOTE: changes in size and style should also be reflected in the text dis­
played in the text edit window.

c H A p T E R E L E v E N

FILE 118

Chapter Objectives

1. To understand the difference between sequential and direct file access

2. To understand the data structures needed to process Macintosh files

3. To learn to create, open, close, read from, and write to both sequential and
direct access files

4. To learn to use the Standard File Package to obtain file names and locations
for opening and saving files

Introduction

Disk file manipulation is handled by the File Manager. While the routines and
their parameter blocks may at first seem rather forbidding, the process is actually
much easier than it looks.

When programming in Pascal, you must choose between setting up a file for
direct access (with fixed field lengths) or for sequential access (with variable field
lengths). As far as the Macintosh is concerned, however, there are only direct
access files. That does not mean that a file cannot be processed in a sequential
manner.

That last sentence is not double-talk. The terms direct access and sequential
access really refer to how a file is processed, not to any physical characteristics of

322

FILE 1/0 323

the file. Direct access means that records are accessed in random order; that
capability usually requires that the records are of a fixed length. Sequential access
simply means that the records are accessed in order, starting at the beginning of
the file. Assuming that one character (generally a carriage return) signifies the end
of a record, files written for only sequential access can have variable record
lengths. On the Macintosh it is also possible to move backwards when doing
sequential processing. Note also that there is no reason that a file with fixed record
lengths (i.e., a file that will permit direct access) cannot be processed in a sequen­
tial manner. For simplicity, this chapter will often speak of "direct access" and
"sequential" files; such terminology applies only to the manner in which the data in
the file are read and written.

The Macintosh keeps track of its current position within a file with a pointer
called the mark. The mark is always positioned just beyond the last character read
or the last character written. In other words, the mark points to the next byte to be
read or written. Direct access is therefore achieved by specifying where file
operations should occur with respect to either the current position of the mark or
the start of the file. The mark is moved whenever read or write activities are
performed. There is also a File Manager routine that will set the mark anywhere
within a file.

Because file operations are rather slow compared to RAM-based operations,
the Macintosh provides the option for an application to execute file operations
asynchronously. Asynchronous file calls permit the program to continue with other
tasks while the file operation is in progress. Synchronous file operations force the
application to wait for the file operation to finish before proceeding. Synchronous
execution is the default mode; asynchronous execution can be specified by setting
bit 10 of the routine trap word. This chapter assumes that all file operations are to be
executed synchronously.

Macintosh files have two parts, known as forks. The resource fork contains
resource definitions and the code of application programs; the data fork is used for
storing data. Data files created by applications will usually use only the data fork. In
fact, although it is possible to open a file's resource fork from the File Manager, the
commonly used routines are directed toward the data fork. The discussion that
follows applies only to a file's data fork.

The resource and data forks maintain their own marks. They also maintain their
own logical and physical end-of-file pointers. A logical end-of-file pointer is always
positioned immediately after the last byte in the file. Since file space is allocated in
1024-byte blocks, the physical end-of-file pointer will be positioned just after the
byte which ends the nearest block of 1024 bytes.

Data Structures for File
Operations

There are three categories of file manipulation routines: 1/0 routines, file
information routines, and volume information routines. (In this context the term

324 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

volume usually refers to a single floppy disk; a volume may also be a partition on a
hard drive.) Each group of routines has a lengthy parameter block. The address of
the appropriate parameter block must be loaded into AO before a File Manager
routine is called.

The first eight parameters in the block are common to all File Manager routines:

ParamBlockRec = RECORD
qlink: QElemPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: INTEGER;

next element in file queue
queue type
routine trap
routine address
completion procedure
result code
volume or file name
volume reference number
or drive number

qllnk and qType refer to the system's file queue. Requests to the File Man­
ager are queued, much like events are queued by the Event Manager. The File
Manager, unless told otherwise, processes file activities in the order in which they
were entered into the queue. ioTrap and loCmdAddr relate to the particular
routine being called. These four parameters are used solely by the File Manager
and, for the most part, can be ignored.

ioCompletion is a pointer to a routine that should be initiated when an
asynchronous file operation is completed. If there is no completion routine,
ioCompletion should be set to 0. For synchronous calls, ioCompletion is auto­
matically set to 0 and can therefore be ignored.

ioResult contains a File Manager result code (see Table 11.1). The result code
also appears in DO atthe completion of all File Manager routines, which means that
an assembly language application rarely needs to check this field of the parameter
block.

Result codes do more than report errors; they provide important information
aboutthe condition of the file system. Consider, for example, the situation where an
application needs to create a data file only if one doesn't already exist. The
application can simply attempt to create the file. If a file by the same name already
exists, the File Manager will return a result code of - 48 ($FFFFFFDO). Therefore, a
result code of 0 (no error) or - 48 means that the application can proceed to open
the file, since creating a file does not open it. Any other result code indicates that
something unexpected has happened. The application can either interpret the
code further (e.g., to determine if the disk is full) or abort the file request.

The contents of ioNamePtr depends on whether the routine being called is
directed toward a single file or toward an entire volume. For routines that operate
on volumes, it contains a pointer to the name of the volume. For file operations, the
field contains a pointer to a file name. Note that a file name may be prefaced by a
volume name. In that case, the volume name is separated from the file name by a
colon. For example, tape.index:Annotations refers to the file called Annota­
tions on a disk with the name tape.index.

FILE 1/0 325

Table 11.1 File Manager Result Codes

Hex Coc!e Decimal Code Meaning

0 0
FFFFFFDF ·33
FFFFFFDE -34
FFFFFFDD -35
FFFFFFDC -36
FFFFFFDB -37
FFFFFFDA -38
FFFFFFD9 -39
FFFFFFD8 -40
FFFFFFD7 -41
FFFFFFD6 -42
FFFFFFD5 -43
FFFFFFD4 -44
FFFFFFD3 -45
FFFFFFD2 -46
FFFFFFD1 -47
FFFFFFD0 ·48
FFFFFFCF -49

FFFFFFCE -50
FFFFFFCD -51
FFFFFFCB -53
FFFFFFCA -54
FFFFFFC9 -53
FFFFFFC8 -56
FFFFFFC7 -57
FFFFFFC7 -58
FFFFFFC6 -59
FFFFFFC5 -60

FFFFFFC4 -61

No error
File directory is full
Disk is full (no free 1024 byte allocation blocks)
Requested volume is not on-line
Unspecific disk 1/0 error
File or volume name is bad
FileJs not open
End-of-file encountered when reading
Application tried to put mark before start of file
No space left in system heap
Attempt to open more than 12 access paths
File can't be located
Volume is hardware locked
File is software locked
Volume is software locked
Some files are open
Duplicate file name
Attempt to open more than one access path/file for
writing

No volume specified and there is no default volume
Access path number does not exist
Volume does not exist
Access path will not permit writing
Attempt to mount an already mounted volume
Drive number does not exist
Not at Macintosh volume
Illegal path reference number
Unsuccessful attempt to rename a file
Volume must be reinitialized because master directory
block is bad

Access path will not permit writing

ioVRefNum can contain either a reference number to a volume or the drive
number that contains a particular volume. Generally, we use the drive number: 1
for the internal drive, 2 for the external drive.

Specific Fields for 1/0
Routines

Calls to 1/0 routines require nine fields in addition to the eight fields described
above:

ioRefNum:
ioVersNum:
ioPermssn:
ioMisc:
ioBuffer

INTEGER;
Signed Byte;
SignedByte;
Ptr;
Ptr;

path reference number
version number
read/write permission
depends on the routine
pointer to data buffer

326 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

ioReqCount
ioActCount
ioPosMode:

ioPosOffset:

LONGINT;
LON GI NT;
INTEGER;

LONGINT;

number of bytes to be transferred
actual number of bytes transferred
newline character and position of start
of operation relative to the mark
offset from mark or beginning of file

loRefNum contains a file's path reference number. When a file is opened, the
system creates an access path to that file. An access path is a description of how
the system should get to a file. Twelve different access paths may be open at one
time. Any given file can therefore support up to 12 access paths, though only one
per file can be used for writing. Each access path has its own mark which moves
independently of the marks in any other access paths to that file. The path
reference number identifies which specific path should be used in a file operation.
The path reference number is returned when a file is opened and passed to
routines which read from and write to files.

ioVersNum was designed to allow the Finder to distinguish between two files
with the same name on the same disk. In practice, though, the Finder ignores this
parameter; the Resource Manager and Segment Loader wonl work with files that
have non-zero version numbers. Therefore, the version number should always be 0.

The Macintosh allows an application to specify what kinds of operations are
permitted on a file; this is known as a file's read/write permission. It is stored in the
parameter block in ioPermssn. The possible values for ioPermssn are:

0: the same as the access path's current permission

1: read only permission

2: write only permission

3: read and write permission

By restricting file activity to reading, for example, an application can protect files
that should not be altered.

The contents of ioMisc varies with the specific File Manager routine.
loBuffer is a pointer to an 110 buffer. An 1/0 buffer is an area in RAM from which

data is written to the disk or into which data is read. Its size depends on how much
data is to be transferred. An application does not necessarily need to set aside a
special 1/0 buffer. For example, since the Video Tape Index program keeps the
entire TapeArray in RAM in a single location while the application is running, that
block of storage can double as the buffer for accepting the information when it is
read from the disk at the beginning of program execution and when it is re-written
just before the program ends.

On the other hand, if data are scattered in RAM, then they must be assembled
into a single storage block before being written to disk. Reading that same data
back into RAM will deposit them into one contiguous block. In that case, an
application must allocate enough storage to hold all the data.

FILE 1/0 327

ioReqCount is the number of bytes that are to be transferred. That quantity is
passed into read and write routines. ioActCount is returned by routines that
transfer data; it contains the number of bytes actually read or written.

ioPosMode contains information to position the mark for data transfer opera­
tions and may also contain the ASCII code of a character that indicates the end of a
record. The low-order byte of ioPosMode holds the position offset:

0: read and write operations should be at the current position of the mark
(ioPosOffset is therefore ignored)

1: the offset contained in ioPosOffset is the offset, in bytes, from the beginning
of the file

2: the offset contained in ioPosOffset is the offset, in bytes, from the end of the
file

3: the offset contained in ioPosOffset is the offset, in bytes, from the current
position of the mark.

The use of ioPosOffset depends on the value of ioPosMode. If ioPosMode
is 0, the offset parameter is ignored. For an loPosMode of 1, the offset will be
added to the starting address of the file; the offset must be positive. When
ioPosMode is either 2 or 3, the offset will be added to the end of the file or the mark,
respectively; the offset may be either positive or negative.

Specific Fields for File
Information Routines

The two routines that set and retrieve information about files require 16 param­
eters in addition to the first eight:

loFRefNum:
ioFVersNum:
filler1:
ioFDlrlndex:
ioFIAttrib:
ioFIVersNum:
ioFIFndrlnfo:
ioFINum:
ioFIStBlk:
ioFILgLen:
ioFIPyLen:
ioFIRStBlk:
ioFIRLgLen:

INTEGER;
SlgnedByte;
Signed Byte;
INTEGER;
Signed Byte;
Signed Byte;
Finto;
LONGINT;
INTEGER;
LONGINT;
LONGINT;
INTEGER;
LON GI NT;

path reference number
version number
unused
file number
file attributes
version number
a record including file type
file number
first 1024 block of data fork
logical EOF of data fork
physical EOF of data fork
first 1024 block of resource fork
logical EOF of resource fork

328 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

loFIRPyLen:
loFICrDat:
ioFIMDDat:

LONGINT;
LONGINT;
LONGINT;

physical EOF of resource fork
data & time of flle creation
data & time of last modification

This type of parameter block is used primarily when creating a new file; it
supplies information to the Finder about a new file. An application will rarely have to
check any of its fields directly. Those parameters which must be passed as part of
the file creation sequence are discussed later in this chapter.

Specific Fields for Volume
Information Routines

One File Manager routine, GetVollnfo, collects information about a specific
disk volume. That routine requests its own parameter block, with 14 fields in
addition to the eight common fields:

filler2:
ioVollndex:
ioVCrDate:
ioVLsBkUp:
ioVAtrb:
ioVNmFls:
ioVDirSt:
ioVBILen:
ioVAIBlkSiz:
ioVClpSlz:
ioAIBISt:
ioVNextFNum:
ioVFrBlk:

LONGINT;
INTEGER;
LONGINT;
LONGINT;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;
LONGINT;
INTEGER;
LONGINT;
INTEGER;

unused
volume index
data & time of initialization
data & time of last backup
bit 15 set if volume locked
number of files on volume
first block of file directory
number of blocks in directory
bytes/allocation block
number of bytes to allocate
first block in volume block map
next free file number
number of free allocation blocks

As with the file information parameters, most of the volume information parameters
are used by the system and not directly by an application.

Storage Space for
Parameter Blocks

Storage space for File Manager parameter blocks should be allocated in the
application globals area. For example, the following allocates an 1/0 parameter
block:

ioParamBlock DS.B ioQEISize

FILE 1/0 329

ioQEISize is defined in the system equates file. Its value is the total number of
bytes (50) in an 1/0 parameter block. Note that offsets for the fields within all three
types of parameter blocks are also contained in the system equates file.

A file information parameter block might be defined as:

fiParamBlock DS.B ioFQEISize

and a volume information parameter block as:

vParamBlock DS.B loVQEISize

How many parameter blocks of each type do you need? That depends on two
things: the number of access paths that will be open at any one time and how much
parameter shuffling you want to do. Since the Video Tape Index program never
has more than one access path open at any given time, only one parameter block
of each type is required.

An application that simultaneously maintains more than one access path can
handle the parameter block situation in one of two ways. The entire application can
use a single set of parameter blocks if data returned by File Manager routines are
removed from the parameter blocks and stored elsewhere before the blocks are
used by a different access path. On the other hand, each access path can be
allocated its own set of parameter blocks. In that case, data is left in the parameter
block and doesn't need to be reloaded for subsequent calls to File Manager
routines.

It may also be necessary to retrieve information from parameter blocks, even if
only one access path is open at a time, if the application makes calls to the Printing
Manager. Since the Printing Manager tends to disrupt data in the applications
globals area, an application should be careful to at least store the access path
reference number elsewhere.

Translating the Pascal syntax for File Manager routines into assembly lan­
guage is not as straightforward as with the routines of other managers. All of the
low-level File Manager routines which must be used from assembly language have
the form:

FUNCTION ProcedureName (paramBlock: ParamBlkPtr;
async: BOOLEAN): OSErr;

In practical terms, this means that for synchronous operations the address of the
appropriate parameter block must be loaded into AO just before the routine is
called, and that OSErr (technically, an "operating system error" code, but in reality,
oneofthecodesin Table11.1) will be returned in DO. Therefore, the major portion of
the setup for a File Manager routine involves loading the necessary information
into a parameter block.

330 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Creating a Data File
Creating a new file involves three steps:

1. Create the file (Create)

2. Assemble information about the file that the Finder already has (GetFilelnfo)

3. Fill in the remaining information that the Finder needs (SetFilelnfo)

The actual creation of a new file requires three pieces of information: the name
to be given to the file, its location (usually given as a drive number), and the version
number (should always be 0). These parameters must be moved into the 1/0
parameter block:

LEA
MOVE.L

MOVE
MOVE.B

'Tape.Master' ,AO
AO,ioParamBlock + ioFileName(AS)

#1,ioParamBlock + ioDrvNum(AS)
#0,ioParamBlock + ioFileType(AS)

;address of
file name
;drive#
;version#

The name selected for a file should be assembled with a length byte. If you wish
to avoid worrying about the STRING_FORMAT assembler directive, allocate
strings with LEA rather than defining them as constants. Remember that strings
allocated with LEA and PEA are assembled with length bytes; those allocated with
DC are assembled without length bytes.

The drive number parameter should be passed as 1 for the internal drive or 2
for the external drive. If you are working with a hard drive, consult the documenta­
tion that accompanied the drive to determine the drive's number.

File version number should always be 0.
Once the parameters are loaded into the parameter block, the starting address

of the block is loaded into AO. Then the routine can be called:

LEA ioParamBlock(AS),AO
_Create

Whenever a file is successfully created, the Finder must be supplied with
information about that file. Therefore, Create should be followed by calls to
GetFilelnfo and SetFilelnfo.

Both routines use the file information parameter block. To call GetFilelnfo you
must supply:

1. The file's name (ioFileName)

2. The drive number where the file is located (ioDrvNum)

FILE 1/0 331

3. The file's version number (ioFileType)

4. The file's directory index (ioDirlndex)

ioDirlndex contains an integer that tells the File Manager what information should
be used to locate the file. If its value is greater than 0, GetFilelnfo will use that
number to identify the file, assuming that it refers to the file's position in the disk
directory. If its value is 0 or negative, GetFilelnfo will use the file's name, drive
number, and version number to locate the file. In either case, assuming that the
requested file exists, the call to GetFilelnfo will fill in the remainder of the fields in
the file information parameter block with the correct data about that file.

SetFilelnfo assures that the Finder has correct information about a given file. It
requires the following information:

1. The file's name (ioFileName)

2. The drive number where the file is located (ioDrvNum)

3. The file's version number (ioFileType)

4. The file's type (ioFndrlnfo)

5. The file's time and date of creation (ioFICrDat)

6. The file's time and date of last modification (ioFIMdDat)

The last two items listed above are supplied by the call to GetFilelnfo. The first
three are loaded into the parameter block when setting up for the call to GetFlle­
lnfo. The setup for SetFilelnfo therefore involves loading the file type and
reloading the address of the parameter block into AO.

A file's type is a four-character string. Files with type 'TEXT can be read by
Macintosh text processing programs such as MacWrite and Microsoft Word. Data
files created by an application should therefore be type 'TEXT unless there is some
specific reason for preventing the user from viewing and possibly modifying the
files.

The Video Tape Index uses the following code to set up and call GetFilelnfo
and SetFilelnfo after creating a new Tape.Master file (Tape.Master holds the
information from TapeArray):

LEA 'Tape.Master',AO
MOVE.L AO,fiParamBlock + ioFileName(AS)
MOVE #1,fiParamBlock + ioDrvnum(AS)
MOVE.B #0,fiParamBlock + ioFlleType(AS)
MOVE #0,fiParamBlock + ioFDirlndex(AS)

LEA fiParamBlock(AS),AO
_GetFilelnfo

MOVE.L $'TEXT ,fiParamBlock + ioFIUsrWds

;file name
;drive number
;version number
;use name & version
number to find file

;start of ioFndrlnfo
record

332 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

LEA fiParamBlock(AS),AO
_SetFilelnfo

Opening a File
Before a file can be read from or written to, it must be opened. Creating a file

merely creates a disk directory entry that will produce a document icon when the
disk's contents are viewed from the Finder; creating does not open a file. The File
Manager routine Open will open a file by creating an access path to that file. It
returns a reference number to the access path.

The information required by Open is:

1 . the name of the file

2. the drive number

3. the file's version number

4. the permission code for this access path (Remember that only one access
path to any file can allow writing.)

5. in ioMisc, a pointer to an access path buffer

An access path buffer is a block of RAM that is used as temporary storage by the
access path. Either allocate the access path buffer explicitly, in which case it
should be defined as 522 bytes long, or instruct the system to use the volume's
buffer by passing a value of 0. It is important that all access paths to one file share
the same buffer, regardless of whether it is an application-defined buffer or the
volume's buffer.

The Video Tape Index uses the following code to open the Annotations file:

LEA 'An notations', AO
MOVE.L AO,ioParamBlock + ioFileName(AS) ;file name
MOVE #1,ioParamBlock + iodrvnum(AS) ;drive#
MOVE.B #0,ioParamBlock + ioFileType(AS) ;version#
MOVE.B #3,ioParamBlock + ioPermssn(AS) ;read & write

permission
CLR.L ioParamBlock + ioOwnBuf(AS) ;use volume buffer
LEA ioParamBlock(AS),AO
_Open

CMP #0,DO ;any errors?
BNE FileError ;handle error

LEA fiRefNum,AO ;save access path
MOVE ioParamBlock + ioRefNum(AS),(AO) ;reference number

FILE 1/0 333

The final step in the sequence above explicitly retrieves the access path reference
number from the parameter block and stores it elsewhere. This is necessary
because calls to the Printing Manager disrupt the values in the parameter block
and their integrity cannot be ensured. The access path reference number is
therefore always reloaded into the parameter block before any further operations
are performed on that file.

Writing to Disk Files

A single File Manager routine, Write, performs both sequential and direct
access write operations. The difference between the two types of processing is in
how an application specifies where writing should begin.

Writing a Sequential File
The Video Tape Index stores the data from the RAM-based TapeArray in a

sequential file (Tape.Master). This file is read into RAM when the program is
launched and rewritten to disk when the user selects Quit from the Options menu.
Since the format of the file is exactly the same as the format of TapeArray, the block
of storage occupied by T apeArray can be used as the 1/0 buffer for both read and
write operations.

TapeArray has fixed field, and therefore fixed record, lengths. That charac­
teristic makes it easy to do direct access operations on the array while it is in RAM.
Nonetheless, do not assume that all sequential files need to have fixed record
lengths; on the contrary, they do not. Generally, a carriage return is used to mark
the end of a record in a sequential file. The carriage return is not automatically
inserted by the system; it must be written explicitly as the last character of each
record.

Data are written to disk in 512-byte blocks. If a write operation ends up with a
final segment of less than 512 bytes, that data is stored temporarily in the access
path buffer until either another write request brings the total number of bytes to 512,
or until the application calls a routine that flushes the buffer. FlushFile will explicitly
write all contents of an access path buffer to disk (requires only the access path
reference number in the 1/0 parameter block). Close also flushes the access path
buffer. (See the section later in this chapter on closing files.)

Write requires the following parameters in the 1/0 parameter block:

1. access path reference number (ioRefNum)

2. starting address of the 1/0 buffer (ioBuffer)

3. number of bytes that should be transferred (ioReqCount)

4. the position mode (PosMode)

334 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

5. the offset (ioPosOffset)

Write returns another result in addition to the error code in DO. ioActCount will
contain the actual number of bytes that were written.

To write the entire Tape.Master file, the Video Tape Index uses the following
code:

MOVE
LEA
MOVE.L
MOVE
MULU

fiRefNum,ioParamBlock + ioRefNum(AS)
TapeArray(AS),AO
AO,loParamBlock + loBuffer(AS)
Total Records, DO
#64,DO

;access path

;110 buffer

;total bytes to
move

MOVE.L DO,ioParamBlock + loByteCount(AS)
MOVE #0,loParamBlock + loPosMode(AS) ;(see below)
LEA ioParamBlock(AS),AO
_Write

The ioPosMode necessary for a sequential write has a code of 0. That
indicates that the write operation should begin at the current position of the mark.
As mentioned earlier in this chapter, when ioPosMode is zero, the offset param­
eter is ignored.

To append to a sequential file, use an ioPosMode of 2 and an loPosOffset of
0. The write will then begin exactly at the logical end-of-file.

If you look at the listing of the Video Tape Index program, you will notice that
there is a write operation that occurs before TapeArray is written. Like many
sequential files, Tape.Master stores "housekeeping" information in its first record;
the term "housekeeping" usually refers to data needed to process the rest of the file,
or constants that must be retained from one program run to another. The first four
bytes of Tape.Master contain two integers - the total number of records in the file
and the last annotation number used. Those bytes are therefore processed
separately:

MOVE
SWAP
AND.L
MOVE
MOVE.L
MOVE

LEA
MOVE.L

MOVE.L

Total Records, DO
DO
#$FFFFOOOO,DO
LastAnnotNumb,DO

;retrieve total records
;(see below)
;clear low order byte
;retrieve last annot.#

DO,DataBuffer(AS)
flRefNum,loParamBlock + loRefNum(AS)

;access path reference #
DataBuffer(AS),AO
AO,loParamBlock + ioBuffer(a5)

;1/0 buffer
#4,loParamBlock + loByteCount(AS)

;write only four bytes

MOVE

LEA
_Write

FILE 1/0 335

#0,ioParamBlock + ioPosMode(AS)
;write at mark

ioParamBlock(AS),AO

The five first steps in this block of code prepare the total number of records and
the last annotation number for writing. When the total number of records is moved
into DO, it is stored in the low-order word of the register, since the MOVE was
specified as a word-length operation. The next instruction, SWAP inverts the
position of the high- and low-order words of registers. In the example above, it puts
the total number of records into the high-order word. ANDing DO with the mask of
$FFFFOOOO preserves whatever is stored in the high-order word (the total number
of records) and clears out the low-order word. The second MOVE, since it is also a
word-sized instruction, puts the last annotation number in the low-order word of DO
without disturbing the total number of records in the high-order word. Finally, the
contents of DO are transferred to the first four bytes of the storage location set aside
as an 1/0 buffer. (This buffer is 256 bytes long - just enough space for an
annotation.)

Writing to a Direct Access
File

The only difference between writing to a direct access file and to a sequential
file lies in ioPosMode. Generally, a direct access operation occurs with a byte
offset relative to the beginning of the file (ioPosMode = 1) or relative to the current
position of the mark (ioPosMode = 3).

The Video Tape Index program stores annotations for the tapes in a direct
access file. The last field in the TapeArray records is an integer that corresponds to
the record number of each tape's annotation. Annotation record numbers are
assigned sequentially as new tapes are entered. In other words, the 15th tape
entered will have an annotation number of 15, regardless of where the tape's title
falls in the alphabetical sequence of tapes. Therefore, an annotation number will
generally not correspond to a tape's record number in TapeArray.

The code to write an annotation appears in Listing 11.1. The first step (a) fills the
256-byte 1/0 buffer with blanks. Though there is nothing that says any given
annotation must use all 256 bytes allocated for it, it is essential that the space
between the last character of the annotation and the end of the record is padded
with blanks. If it is not, and only the exact number of characters in the annotation
are written to the file, a subsequent read will transfer garbage characters at the end
of the record as well as the annotation itself.

After filling the 1/0 buffer with blanks, the annotation is moved to the buffer.
TEGetText provides a handle to the text (b) and BlockMove transfers the
characters (c). The next step is to figure out exactly where this annotation should be
placed in the file. This requires the annotation number, which is stored as the last
field in the matching TapeArray record.

336 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 11.1 Writing an Annotation to its Direct Access File

(a)

(b)

(c)

(d)
(e)
(f)

(g)
(h)

LEA AnnotRecMask,A0
LEA DataBuffer(A5),A1
MOVE #256,D0
_Block Move

CLR.L -(SP)
MOVE.L AnnotationTextHandle,-(SP)
TEGetText

MOVE.L (SP)+,A2
MOVE.L (A2),A0
LEA DataBuffer(A5),A1
MOVE.L AnnotationTextHandle,A3
MOVE.L (A3),A4
MOVE teLength(A4),D0
_BlockMove

LEA RecordCounter,A0
MOVE (A0),D5
MULU #64,D5
ADD #oAnnotNum,D5
LEA TapeArray(A5),A0
ADD.L D5,A0
MOVE (A0),D0
MULU #256,D0

LEA Data8uffer(A5),A0

~ill buffer with blanks

;place for CharsHandle result

;get handle to text in Annotation record
;recover CharsHandle
;de-referencing handle to get pointer
;text goes into disk buffer

;de-reference again
;number of characters to move
;puts annotation in disk output buffer

;offset into tape array

;offset into file

MOVE.L A0,ioParamBlock+ioBuffer(A5)
MOVE.L #256,ioParamBlock+ioByteCount(A5) ;write 256 bytes, blanks and all

(i) MOVE #1,ioParamBlock+ioPosMode(A5) ;offset is relative to beginning of file
(j) MOVE.L D0,ioParamBlock+ioPosOffset(A5) ;offset in bytes

MOVE fiRefNum,ioParamBlock+ioRefNum(A5) ;file reference number
LEA ioParamBlock(A5),A0
_Write

To locate the annotation number, the program gets the TapeArray record
number (d) and uses it to compute first an offset into the array (e) and then an offset
into the record (f). That address is used to retrieve the annotation number (g). The
annotation number is multiplied by 256 (h}, the number of characters in each
annotation, to produce a byte offset from the beginning of the file.

The setup for the call to Write is exactly the same as that used for a sequential
write with two exceptions. ioPosMode is set to 1 to indicate that the offset is relative
to the beginning of the file (i) and ioPosOffset (j) is loaded with the computed
offset.

Reading From Disk Files
Reading from a file is exactly the same as writing to a file except that the data

transfer is in the opposite direction. In a read operation, the 1/0 buffer is the location

FILE 110 337

into which data is read. As with writing, the buffer can be a storage location
specifically set aside for 110, or a storage location used for another purpose as well.

The Read routine requires precisely the same parameters as a Write:

1 . the access path reference number (ioRefNum)

2. a pointer to the 1/0 buffer (ioBuffer)

3. the number of bytes that should be transferred (ioByteCount)

4. the position mode (ioPosMode)

5. the offset (ioPosOffset)

Read returns two results in addition to the error code in DO. ioActCount will
contain the actual number of bytes that were transferred. ioPosOffset will contain
the position of the mark after the read is completed.

All read operations transfer data in blocks of 512 bytes. If a read request
involves less than 512 bytes, a full 512 bytes will be brought into RAM (into the
access path buffer), but the application will receive only those bytes that were
specified in the 1/0 parameter block.

Reading From Sequential
Files

A sequential read is simply a read that begins at the current position of the mark
and reads forward. As an example, consider the procedure used by the Video
Tape Index to load TapeArray atthe beginning of every program run. Assume that
the file has just been opened and that the access path reference number is
therefore already in the parameter block (since the Tape.Master file is closed after
its contents are read into RAM, there is no need to worry about the parameter block
being disturbed by the Printing Manager).

First, the housekeeping information is retrieved:

LEA DataBuffer(AS),AO ;place to receive data
MOVE.L AO,ioParamBlock + ioBuffer(AS)
MOVE #4,ioParamBlock + ioByteCount(AS) ;read just first 4 bytes
MOVE #0,ioParamBlock + ioPosMode(AS) ;read from mark
LEA ioParamBlock(AS),AO

Read -
MOVE.L DataBuffer(AS),00 ;get 4 bytes just read
LEA LastAnnotNumb,AO
MOVE 00,(AO) ;store last annot. #
SWAP DO
LEA Total Records,AO
MOVE 00,(AO) ;store total records

338 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

After the above read operation, the mark will be positioned at the fifth byte in
the file, the starting location of the first record of TapeArray. The program can then
load all of TapeArray with one call to Read:

LEA
MOVE.L
MOVE
MULU

TapeArray(A5),AO
AO,ioParamBlock + ioBuffer(A5)
TotalRecords, DO
#64,DO

;1/0 buffer

;number of bytes to
read

MOVE.L DO,ioParamBlock + loByteCount(A5)
MOVE #0,ioParamBlock + ioPosMode(A5)

;read from mark
LEA loParamBlock(A5),AO
_Read

Reading From Direct
Access Files

Reading from a direct access file needs an ioPosMode of 1, 2, or 3 and an
appropriate value for ioPosOffset. In all other respects, the process is identical to
doing a sequential read. Because the annotations are so long (up to 256 charac­
ters), the Video Tape Index program leaves them on disk and reads a single
annotation into RAM when needed. The procedure to read a single annotation
record is:

LEA
MOVE.L
MOVE.L

MOVE

MOVE
MULU
ADD
LEA
ADD
MOVE
MULU
MOVE.L
LEA
_Read

DataBuffer(A5),AO ;place to receive data
AO,ioParamBlock + loBuffer(A5)
#256,ioParamBlock + ioByteCount(A5)

;read 256 characters
#1,ioParamBlock + ioPosMode(A5); ;relative to beginning

of file
Record Counter ,D5
#64,D5
#oAnnotNum,D5
TapeArray(A5),AO
05,AO
(AO),DO
#256,DO
DO,ioParamBlock + ioPosOffset(A5)
ioParamBlock(A5),AO

;current record #

;offset into TapeArray

;address of annot #
;retrieve annot. #
;offset into file

FILE 1/0 339

Closing a File

An application should explicitly close all files with Close before returning to the
Finder. Though files will be closed automatically whenever the system is rebooted,
the Close routine flushes the access path buffer, completing any write operations
that were temporarily held because they involved less than 512 bytes. Close also
deletes the access path. Files that are not closed cannot be deleted by the Finder.

Close requires only one parameter - the access path reference number:

MOVE
LEA
_Close

fiRefNum,ioParamBlock + ioRefNum(AS)
ioParamBlock(AS),AO

Timing Out for File 1/0

Next to printing, disk 1/0 is the slowest part of an application. Often the user will
have to wait more than a few seconds for some file operation to be completed. For
example, as the number of records in Tape. Master grows, the time needed to read
and write the file will continue to increase. Applications that adhere to the Macin­
tosh user interface should change the shape of the cursor to the wrist watch
(indicating a long wait) for any time-consuming operation.

The shape of the cursor is controlled by the QuickDraw routine SetCursor:

PROCEDURE SetCursor (crsr: Cursor);

This routine's single parameter is actually a pointer to the location of a resource.
The resource is a cursor definition. Four cursors are defined in the system resource
file: an I-Beam (resource ID= 1), a cross (resource ID= 2), a plus sign that looks like
an outlined cross (resource ID= 3), and the wristwatch (resource ID= 4). A handle
to the resource definition is returned by a routine from the ToolBox utilities -
GetCursor:

FUNCTION GetCursor (cursorlD: INTEGER); CursHandle;

cursorlD refers to the resource ID of one particular cursor.
The following code will set the cursor to the wrist watch:

CLR.L -(SP)
MOVE #4, - (SP)
_GetCursor

;space for cursor handle result
;resource ID for wristwatch

340 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

MOVE.L (SP)+ AO
MOVE.L (AO),AO
MOVE.L AO, - (SP)
_SetCursor

;retrieve cursor handle
;de-reference to get pointer
;put pointer on stack
;change arrow to wristwatch

The cursor can be returned to the arrow cursor with a call to lnitCursor.

Managing Disk Changes
and Choosing File

Names - the Standard
File Package

Many Macintosh applications will have a standard File menu with options that
allow a user to open, close and save files. Opening and saving files should allow
the user to enter a file name and to change disks and drives if necessary. The
application should also take care of initializing disks if an uninitialized disk is
inserted. The Standard File Package (package #3) provides routines that collect
information from predefined dialog boxes and take care of initializing disks.

The two routines that most programmers will use are SFGetFile (routine #2 in
the package) and SFPutFile (routine #1). SFGetFile is used to open files and
SFPutFile to save files. Both routines return information to the application in a
standard file reply record:

SFReply = RECORD
good:
copy:
fType:
vRefNum:
version:
fName:

BOOLEAN;
BOOLEAN;
OSType;
INTEGER;
INTEGER;
STRING[63];

set FALSE if user cancels
unused
file type or unused
drive number
file version number
file name

The first five fields occupy 10 bytes. Therefore, an application should allocate a
total of 7 4 bytes of space for the file reply record. Offsets for the fields in the reply
record are assigned symbolic addresses in the Package equates file, which
should be INCLUDEd in the application's source code.

Selecting a File to Open
The dialog box displayed by SFGetFile appears in Figure 11.1. It allows the

user to change disks and the default drive, lists all files on the default drive that can
be opened, and accepts a command to either open a file or cancel the request.

PrDump.ASM
PrEqu.THt
Tapes.A SM
Tapes.JOB
Tapes.LINK
Tapes.Map
Tapes.A

Opcrn

Cancel~

Eject

Driue

example was taken from the MDS Editor. It therefore filters file types to
select only those files on Tapes .Index that were created by the MDS Editor.

Figure 11.1 "Get File" Dialog Box from the Standard File Package

This is a stack-based routine:

PROCEDURE SFGetFile (where: Point; prompt: Str 255; fileFilter:
ProcPtr; numTypes: INTEGER; typelist: SFTypelist; dlgHook:
ProcPtr; VAR reply: SFReply);

FILE 1/0 341

The parameter where contains, in global coordinates, the location of the upper
left-hand corner of the dialog box. The prompt is ignored.

The next three parameters specify what types of files should be presented to
the user as candidates for opening. numTypes contains an integer indicating the
number of types of files that should be selected. The maximum value is four; a
value of -1 will select all files on the default volume. The actual types to be selected
are loaded into typelist. typelist is large enough to hold 16 characters (it is a
packed array, 16 bytes long). Since it is larger than a longword, a pointer to
typelist is pushed onto the stack. fileFilter is a pointer to a function that can
perform additional file filtering. For example, files could be filtered by last date of
modification. In most cases though, no additional filtering is necessary and
fileFilter is set to 0.

dlgHook is a pointer that allows an application to display a dialog box other
than the standard seen in Figure 11.1. Normally, it will be set to 0. The final
parameter, reply, is a poi'nter to the reply record.

342 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

SFGetFile requires two data structures, one for the reply record and one for
the file type list:

ReplyRecord
TypeList

DS.B
DS.B

74
16

The code below will select all TEXT files:

MOVE.L
MOVE
MOVE
CLR.L
CLR.L
MOVE
PEA
CLR.L
PEA
MOVE
_Pack3

'TEXT' Typelist(A5)
#50,-(SP)
#50,-(SP)
-(SP)
-(SP)
#1, -(SP)
Typelist(A5)
-(SP)
ReplyRecord(A5)
#SFGetFile, - (SP)

;load one file type
;top coordinate
;left coordinate
;place for unused prompt
;no filter procedure
;one file type
;address of type list
;use standard dialog
;address of reply record
;routine#
;invoke the package

SFGetFile monitors events and automatically takes care of ejecting disks and
changing drives when the user clicks the appropriate button. If an uninitialized disk
is inserted, the Standard File Package calls the Disk Initialization Package and
handles the entire initialization process. The dialog box is closed when the user
chooses Cancel or when a file is selected. A file can be selected by one click on the
file name and a second click in the Open button, or by a double-click on the file
name.

Once the dialog box has been removed, it is up to the application to retrieve
information from the reply record and continue with the file operation. The first
action is generally to check the good field to determine whether the file request has
been canceled.

Naming a File
SFPutFlle provides a standard dialog box (Figure 11.2) that permits a user to

name a file as well as to eject a disk and change the default drive:

PROCEDURE SFPutFlle (where: Point; prompt: Str 255; origName:
Str255; dlgHook: ProcPtr; VAR reply: SFReply);

Most of the parameters are the same as those for SFGetFile. In this case,
though, prompt has meaning; it is displayed above the window where the file
name is entered and usually has a value like 'Save current file as:'. orlgName
determines what will be displayed within the file name window when the dialog box
first appears. If the current file has a name that should be assigned to orig Name;

FILE 1/0 343

otherwise, origName should be set to the null string . To indicate the null string as a
literal, type two single quotes or two double quotes right next to each other.

· Edit Search Format Font Size Transfer

tape.indeH:PrDump.ASM

Saue document as tape.indeH

Eject

Cancel Driue

The dialog box above i3 di3pleyed end managed by a cell to
SFPutFile . SFPutFile 'Will handle 3electin9 a file name,
changing di3k3, and changing the default drive.

Figure 11.2 "Put File" Dialog from the Standard File Package

If we assume that a user has selected Save As from a File menu to save a new
text file, the assembly language code would appear as:

MOVE
MOVE
PEA
PEA
CLR.L
PEA
MOVE
_Pack3

#50,-(SP)
#50,-(SP)
'Save current file as'

-(SP)
Reply Record
#SFPutFlle, - (SP)

;top coordinate
. ;left coordinate
;prompt
;file name (null string)
;use standard dialog
;address of reply record
;routine#
;invoke the package

Pointers to the text of the prompt and the file name can be pushed as literals (as
above) or by symbolic addresses. Since their data type is Str255, they must have a
length byte. Pushing them as literals will automatically ensure thatthe length byte is
present.

SFPutFile will continue to monitor events until the user either:

1. clicks the Cancel button

344 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

2. types a file name and clicks the Save button or

3. types a file name and hits the Enter or Return key.

If the Cancel button has been clicked, control returns immediately to the applica­
tion.

In either of the latter two applications, SFPutFile verifies the file name before
returning. If the file name already exists, SFPutFile displays the alert that asks
whether the existing file should be overwritten. If the user clicks the Yes button,
control returns to the application with a value of TRUE in good. If the user clicks the
No button, good is set FALSE.

SFPutFile also checks to see if a disk is locked, either by hardware or
software. If a disk is locked, an alert box informs the user of the situation and
cancels the file operation. good receives a value of FALSE.

When control is returned to the application, the program must then retrieve the
appropriate information (usually the file name and drive number) from the reply
record and proceed to save the file with a write operation as described earlier in
this chapter.

Questions and
Problems

1 . Assume that an 1/0 parameter block has been allocated with the statement:

ioParamBlock DS ioQEISize

where ioQEISize is defined in the system equates file as equal to the number
of bytes in an 1/0 parameter block. Using the offsets into the parameter block
defined in the system equates file, write assembly language code to load the
following data:

A. a path reference number that has been stored in the applications globals
area under the symbolic address of PathRefNum

B. a version number of O
C. an 1/0 buffer in the applications globals area identified by the symbolic

address MyBuffer
D. write only permission
E. the appropriate values for ioPosMode and ioPosOffset so that new

records will be appended to the end of the file.

FILE 1/0 345

2. A. Write assembly language code to create a file named TextFile.txt on the
internal drive. Remember to collect all the information needed by the Finder
as well as simply creating the file. Allocate any data structures your code will
use.

B. At the end of your block of code, is Testfile.txt ready for read and write
operations? Why or why not?

Problems 3 -8 refer to the BookStuff array first introduced in problem 5. The
structure of the array is defined as:

Title
Author
Publisher
Date

EQU 0
EQU 30
EQU 50
EQU 75

The total length of a record is 80 bytes. The file BookStuff.data holds the
same data as the array in RAM.

3. Write assembly language code to open BookStuff .data for input and output
on the external drive. Be sure to allocate required data structures. Use the
RAM array as an 1/0 buffer.

4. Write assembly language code to write the entire BookStuff array sequen­
tiallyto BookStuff .data. Assume that the total number of records in the array
is stored in DO. Assume also that the file has just been opened by the code
you wrote for problem 3.

5. Write a block of code to perform a direct access write for one record from
BookStuff to BookStuff .data. The record number is stored in DO. Assume
the file has been opened by the code you wrote for problem 3.

6. Write a block of code to read the entire BookStuff.data file into the
BookStuff array in main memory. The total number of records in the file is
stored in DO. Assume the file has just been opened by the code you wrote for
problem3.

7. Write a block of code to close BookStuff .data.

8. Assume now that BookStuff .data has been opened with write-only permis­
sion and that the data for a single record has been stored in the applications
globals area with a symbolic address of OneRecord. Write a block of code to
append the new record to BookStuff .data.

346 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

9. Assume that a standard file reply record ha$ been defined in the applications
globals area with a symbolic address of ReplyRecord. Write a block of code
that will display the standard "get file" dialog box and then retrieve the name
and drive number of the file the user selects. Anchor the top left corner of the
dialog box at 100,80. Display the names of all files of type TEXT and MAGA
(MacWrite version 4.5) in the dialog box. Allocate any other data structures
your code will use.

10. Assume that a standard file reply record has been defined in the applications
globals area with a symbolic address of ReplyAecord. Write a block of code
that will display the stand~rd "save as" dialog box and then retrieve the file
name and drive number from the reply record. The top left corner of the
dialog box is at 75, 100. Select an appropriate prompt for the dialog box.
Allocate any necessary data structures.

c H A p T E R T W E L V E

IARITH~AETIC If():
FLGATlf\JG PGINT

ARITHMETle

Chapter Objectives

1. To understand the problems associated with numeric 1/0

2. To understand the Macintosh's floating point formats

3. To learn to do binary/decimal conversions for integers and floating point
numbers

4. To learn to use the Macintosh's arithemetic packages to perform advanced
mathematical operations

5. To learn to use separately assembled subroutines

6. To learn to create macros to simplify program code

Introduction
While microprocessor instruction sets contain instructions that perform integer

arithmetic, they make no provision for adthemetic with numbers that contain
fractional portions. Integer arithmetic is also limited to quantities that will fit into a
single register (32 bits). As well as manipulating fractions and very large and very
small numbers, it would also be useful to have routines that evaluate logarithmic

347

348 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

and trigonometric functions. Most microcomputers, therefore, have software that
provides for a variety of advanced mathematic operations. Because the numbers
processed by these routines have decimal points that move, they are referred to as
floating point numbers and operations on them as floating point arithmetic. The
Macintosh has a powerful floating point arithmetic package called FP68K. Trig­
onometric, exponential and logarithmic functions are provided by the elementary
functions package, ELEMS68K.

The format of floating point numbers closely resembles scientific notation,
where a mantissa is multiplied by 10 raised to a power {the exponent). For example,
3.98 * 10-1s is a very small number (.00000000000000398). The mantissa is 3.98;
the exponent is -15. The exact format in which floating point numbers are stored
by computers differs from machine to machine. The Macintosh format is described
below.

Arithmetic, whether it be floating point or integer, presents a significant 1/0
problem. All input from the keyboard is in ASCII; numbers enter the system as a
string of ASCII character codes. That means that the ASCII codes must be
converted from a string of decimal characters into a binary quantity before any
math can be done. Integer conversion is handled by the Binary-Decimal Conver­
sion Package. Floating point conversion is a two-step process; the ASCII character
string must first be put into an intermediate format {the canonical decimal format)
which is then used by the decimal-to-binary conversion routines. The Pascal
implementation of FP68K provides routines that will convert directly from an ASCII
string to binary and back again. Unfortunately, those routines are not available
from assembly language. An application must therefore provide the code that puts
the ASCII string into the intermediate format. After discussing the integer conver­
sion routines, this chapter will look in detail at a subroutine that will properly
reformat strings of decimal characters.

The Binary- Decimal
Conversion Package

The Binary-Decimal Conversion Package contains only two routines: one to
translate a string of ASCII decimal characters into a binary integer and another to
take a binary integer and convert it to a string.

NumToStrlng is the routine that converts a longinteger into a string of characters:

PROCEDURE NumToStrlng (theNum: LONGINT; VAR theString:
Str255);

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 349

Since the data type of the string produced by this routine is Str255, it will have a
length byte.

Before calling this routine, a pointer to a storage location for the string is placed
in AO. The number that is to be converted is loaded into DO. NumToStrlng will
place the string at the location specified by the address in AO. The string can then
be displayed with Drawstring, for example, or incorporated into a text edit record.

The code below will convert an integer to a string:

MOVE.L
LEA
MOVE
_Pack7

StringStorage

#134599,DO
StringStorage(A5),AO
#0, - (SP) ;select the NumToString routine

;invoke the package

DS.B 20

StringToNum is the exact opposite of NumToString; it converts a string with
the data type Str255 into a longinteger:

PROCEDURE StringToNum (theString: Str255; VAR theNum:
LONGINT);

A pointer to the string to be converted is loaded into AO. The number will be
returned in DO. The system determines the number of characters in the string by
examining its length byte:

LEA # '123456' ,AO
MOVE #1, - (SP)
_Pack7

;select the StrlngToNum routine
;invoke the package

StringToNum does not check to be sure that all characters in the string are
digits. The routine is based on the fact that the ASCII codes for the digits are $30
through $39. If it looks just at the four low-order bits of the ASCII code, it has the
quantity for the digit. This procedure, assuming that the four low-order bits contain
the quantity, can be applied to any other character as well as a digit without
creating a system error. Therefore, any character checking must be performed by
the application.

350 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Floating Point Decimal­
to-Binary Conversions

The FP68K decimal-to-binary conversion routines work from a canonical deci­
mal format that is defined as:

TYPE
SigDig = Strlng[20]
Decimal= record

sgn: 0 .. 1;

end;

exp: INTEGER;
sig:SlgDlg

The numbers described by the decimal record are stored as a string of up to 20
significant digits that are multiplied by 10 raised to some power (the exponent). For
example, inthe number34567*10·6, 34567 arethesignificantdigitsand -6 is the
exponent. The decimal point is always directly to the right of the most significant
digit: that is, the mantissa is always presented as if it were an integer. The decimal
point is not stored in the decimal record but its presence is inferred. The exponent
is stored as an integer; the significant digits are a string of ASCII characters
preceeded by a length byte (their data type is Str20). The sign (sgn) is stored in bit
8 of the sign word. A value ofO indicates a positive number; a value of 256(a1 in bit
8) indicates a negative number.

There is one major problem with Macintosh's canonical decimal format -
user's don't enter data that way. An application must therefore have some way to
convert strings of digits with embedded decimal points into that format. Listing 12.1
is an example of a subroutine that will "parse" (break down into constituent parts)
character strings and reformat them into the canonical decimal format.

Listlng12.1 Parsing Numeric Strings

;------------------- Simple Parser -------------------
I

; Register Usage
; A0 starting address of numeric string (load before calling routine)

A2 starting address of decimal record (result will go here)
00 starting character position in string
05 exponent
06 number of significant digits
07 total length of string (load before calling routine)

;~---------------------------------- (continued)

Parser

Positive

XDEF Parser

MOVE D7,D6
MOVE #0,D0
MOVE.B (A0),D2
CMP.B #'-',D2
BNE Positive
MOVE #256,(A2)
ADDO #1,D0
SUBO #1,D6
BRA Parse

MOVE #0,(A2)
CMP.B #'+',D2
BNE Parse
ADDO #1,D0
SUBO #1,D6

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 351

;inltialize significant digits
;initialize starting character position
;get first character
;negative number?

;store negative sign
;skip sign
;don't include sign in significant digit count

;store positive sign
;is there a positive sign?

;skip sign
;don't include sign in significant digit count

Parse MOVE D0,D3 ;save position of beginning character position

NoDecimal
MOVE.B (A0,D3),D2
CMP.B #'.',D2
BEO DecimalPoint
ADDO #1,D3
CMP D3,D7
BGT NoDecimal

;get a character
;decimal point found?

;skip to next character
;past last character?
;not decimal point or end of string

;This block handles number of the form XXXXXXXX - No decimal point present
;at all (i.e., they're integers)

MOVE #0,D5

MOVE.B D6,4(A2)
BRA FillRecord

Decimal Point

;set exponent (decimal point at right of#)

;load length byte

CMP D3,D0 ;is decimal point in first position?
BNE GreaterThanOne

;This block takes care of numbers of the form .XXXXXXXXXXXX
;The next step is to get rid of zeros between the decimal point and the
;first significant digit.

ADDO #1, D0 ;skip over decimal point

MoreZeros
MOVE.B (A0,D0),D2 ;get character
CMP.B #'0',D2 ;isltazero?
BNE SetExponent
ADDO #1,D0
CMP D0,D7 ;at end of string?
BGT MoreZeros

Set Exponent
SUBO #1,DS
MOVE D6,D5
MULU #-1,D5

;don't include decimal point in sig. digits

;final exponent value (continued)

352 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 12.1 (continued)

;note - D0 has position of first significant digit

SUB D0,D7
MOVE D7,D6
MOVE.B D6,4(A2)
BRA FillRecord

;number of significant digits

;load length byte

;This block handles numbers that are greater than 1 and contain a decimal
;point. They translated to XXXXXXXXX. (note that decimal point is implied and not stored)

GreaterThanOne
SUBO #1,D6
MOVE D3,D1
MOVE D6,D5
MOVE (A0),D2
BEO NoAdjustment
SUBO #1,D1

No Adjustment

Shift

SUB D1,D5
MULU #-1,D5
MOVE D3,D1

ADDO #1,D1
CMP D7,D1
BGT Done
BLT Continue
MOVE.B (A0,D1),D2
CMP.B #'.',D2
BEO Done

Continue

;don't include decimal J:10int in sig. digits
;get position of decimal point
;move sig. digits to sign register
;get sign word again

;adjust for presence of sign

;subtract position of decimal point
;make it negative
;reload position of decimal point

;beyond last character?
;beyond last character
;before last character

;decimal point in last position?
;ignore trailing decimal point - otherwise move last digit

MOVE.B (A0,D1),(A0,D3)
ADDO #1,D3

;shift character one position to the left

BRA Shift

Done MOVE.B D6,4(A2)

Fill Record
MOVE D5,2(A2)
MOVE #0,D1
MOVE #5,D2
ADDO #1,D6

;load length byte

;load exponent
;initialize loop counter
;starting offset of string in decimal record
;include length byte in co'unt

Top MOVE.B (A0,D0),(A2,D2) ;move one character
ADDO #1,01
CMP D1,D6
BEO Return ;all characters moved
ADDO #1,00
ADDO #1,02
BRA Top

Return RTS

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 353

The Parser
The parser subroutine, like any routine that examines strings and makes

decisions based on the characters that are present, works on a set of rules that
describe possible character sequences and the actions to be taken when those
sequences are found. There are three general formats in which numbers might be
entered from the keyboard: XXXX (an integer without a decimal point); .OOOXXX (a
fraction less than one, with or without zeros between the decimal point and the
significant digits); and XXXX.XX (a combination of integer and fraction). This simple
parser does not handle numbers entered in scientific notation (e.g., 1.345E+06),
though it could certainly be expanded to do so.

To better understand the logic of the parser, take a look at the pseudocode in
Figure 12.1. This presents an English-like version of the subroutine's logic. The
general strategy is to first examine the string for a plus or minus sign in the first
character position, at which point the sign of the number can be determined and
stored directly into the data structure set aside to hold the canonical decimal
format. The second step is to determine which of the three forms described in the
previous paragraph (integer, fraction, or combination) fits the character string.

Figure 12.1 Parser Pseudocode

Initialize number of significant digits as equal to total characters in string.

Get the first character in the source string.

If the first character is a minus sign then

Store value for negative number directly into canonical data structure;

Decrement the number of significant digits by 1 (sign doesn't count)

Else

If first character is a plus sign then

Decrement the number of significant digits by 1;

Store value for positive number directly into canonical data structure.

Get the "next" chracter. {will be first character again if no sign was present}

While the character being examined is not a decimal point do

Get another character.

354 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Figure 12.1 (continued)

If no decimal point is found then {number is an integer}

Else

Set 0 as the exponent value;

Store number of significant digits in canonical data structure

If the decimal point is in the first position then {number is all fraction}

Else

Get next character;

While the character being examined is not a 0 do

Get next character;

Decrement number of significant digits by 1 to ignore decimal point;

Compute exponent by subtracting position of first non-zero digit from number of
significant digits and mulitplying by-1;

Store number oi significant digits in canonical data structure

{number has integer and fraction parts}

Decrement number of significant digits by 1 to ignore decimal point;

Compute exponent by subtracting position of decimal point from number of
significant digits and multiplying by -1 ;

Set a pointer to the first character to the right of the decimal point;

While the pointer less than the last character do

Move the character one place to the left; {eliminates decimal point from
source string}

Increment the pointer;

If the last character is not a decimal point then

Move the last character;

Store in number of significant digits in the canonical data structure.

Store the exponent in the canoncial data structure.

Initialize a counter to 0.

(continued)

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 355

While the counter is less than or equal to the1 number of signficant digits do

Move one characterfrom the source string to the canonical data structure;

Increment the counter.

Stop.

Handling integers is straightforward; the decimal point is already in the correct
place. Though it is not stored with the number, all integers have implied decimal
points directly to the right of the number. The exponent for an integer is always 0.

If the decimal point is in the first position (after the sign, if one is present), then
the number is a fraction. Fractions must be converted to integers with no leading
zeros and the exponent adjusted accordingly. A factional exponent will be equal to
the number of digits in the original number (including leading zeros) multiplied by
-1; a negative exponent indicates that the decimal point should be moved to the
left. The number of significant digits for the canonical decimal format is determined
by finding the left-most non-zero digit. All characters from that point to the end of
the string are considered significant digits.

Numbers that contain both integer and factional portions have an exponent
equal to the number of fractional digits multiplied by -1. The string must also be
adjusted to remove the decimal point; each digit in the fractional portion of the
string is moved one position to the left. The number of significant digits is equal to
the number of characters in the string less one for the decimal point and one for a
sign, if present.

Programming
Technique - Using

Separately Assembled
Subroutines

The parser just described is designed so that it can be used by many different
applications. It appears to an application much like one of Macintosh's operating
system routines in that parameters are passed to it in registers - AO contains the
address of the source string, A2 the address of the destination data structure, and
07 the total number of characters in the source string. An application loads the
registers and then does a JSR to call the routine.

356 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

It would be inefficient to include the code for the parser in each application that
needs to do decimal-to-binary conversions. Instead, the parser is assembled
separately and kept in its own .Rel file that can be used whenever needed. As you
write many applications, you may develop an entire library of utilities like the parser
that can be used whenever needed without duplicating their code.

In order to use separately assembled subroutines, three things must happen:

1. The source code of the subroutine must indicate that it will be called by
another program (an external definition);

2. The source code of any application calling the subroutine must indicate that
the subroutine is not part of the application's code (an external reference);

3. The subroutine must be linked to the application during the linking process.

The assembler directive XDEF (external definition) is used whenever a sym­
bolic address in a piece of code will be referenced by another program. For
example, the first line in the parser subroutine is:

XDEF Parser

which indicates that some other piece of code will be using that symbolic address.
The assembler directive XREF (external reference) alerts the Assembler that a

specific symbolic address cannot be found in the code being assembled but can
be found in some other program. Any application that uses the parser must
therefore include the directive:

XREF Parser

before it executes a JSR to the code. The XREF will prevent the Assembler from
returning an "undefined label" error.

External references are satisfied by the Linker, which provides the actual
addresses of all external routines. Therefore, the names of any .Rel files that
contain symbolic addresses defined in XREF directives must be included in the
Linker control file. If a program called Math uses the parser, its Linker control file
will include:

Math.Rel
Parser.Rel

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 357

Formats Available
Through FP68K's

Conversion Routines
FP68K has routines to generate six different numeric formats from the can­

onical decimal format:

1. Extended - an 80- bit floating point number

2. Double - a 64- bit floating point number

3. Single - a 32- bit floating point number

4. Integer - a 16- bit integer

5. Longinteger - a 32- bit integer

6. Computational (also known as Accounting) - a 64- bit integer

Arithmetic operations return their results in the extended format. That format
looks somewhat like a binary version of the canonical decimal format. Bit 79 is
reserved as a sign bit for the mantissa; it holds 0 for a positive number and 1 for a
negative number. The exponent is 15 bits long, stored in bits 64 through 78. Bits 0
th rough 63 are reserved for the mantissa.

Floating point exponents are stored as binary integers. They are the power to
which 2 is raised and then multiplied by the mantissa. One way to store them would
be to allocate one exponent bit as a sign bit and use two's complement notation.
The resulting 14-bit exponent would have the range ± 116,383. Exponents,
though, are stored without a sign bit using a technique known as excess notation.

Excess notation means that some fixed quantity is added to every value of the
exponent. The exact value of the excess varies from computer to computer, but it is
always enough to make the smallest exponent value 0-. The Macintosh uses an
excess factor of $3FFF, or 16,383. That means that the smallest possible exponent
that can be stored in 15 bits is -16,383 and the largest + 16,384. The Macintosh
can therefore store floating point numbers in the range 2-16,383 through 2+16,384.
This is an enormous range, well beyond that demanded by all but the most
intensive scientific and statistical applications.

The mantissa is also a binary number. The first bit (bit 63) always has the value
one. There is an implied decimal point directly between bits 62 and 63; bits 0
through 62 contain the fractional portion of the mantissa.

As an example, consider the decimal number 32. It is passed to FP68K's
decimal to binary conversion routines with a sign of 0, an exponent of 0, and two
significant digits (3 and 2). After being converted, it will appear in memory as

358 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

$4004 8000 0000 0000 0000. The leftmost word contains the sign and the
exponent: %0100 0000 0000 0100. Note that the high-order bit, the sign bit, is 0 to
indicate a positive mantissa. The other 15 bits are the exponent. To determine the
true value of a Macintosh floating point exponent for a positive number, subtract
$3FFF (or subtract $4000 and add 1): $4004 - $3FFF leaves $0005. The mantissa
will therefore be multiplied by 25. If we expand the first word of the mantissa to
binary, we get % 1000 0000. Since the decimal place is directly to the right of the
high-order bit, the mantissa is actually %1.0000000. The complete value of the
number is %1.000 0000 * 25 or 32.

Any floating point number with a positive exponent and and positive mantissa
will have an exponent word with a value between $4000 and $7FFF. It is useful to
become accustomed to viewing floating point representations in hexadecimal,
since that is how the contents of memory locations are displayed by the debugger.

As a second example, lefs include a fraction with the test number and make it
32.5. Like 32, .5 is an even power of 2, 2-1. The canonical decimal format will
contain a O for the sign bit, a -1 for the exponent, and a 3 for the number of
significant digits (3, 2, and 5). FP68K will convert 32.5 to $4004 8200 0000 0000
0000. The exponent is the same as that for the even value 32; it is the mantissa that
is different. If we expand the first word of the mantissa to binary, we get %1000
0010 0000 0000 or %1.000 0010 0000 0000 * 25. Moving the decimal point in the
mantissa five places to the right, produces% 100000.1, which is precisely 32.5.

Negative mantissas produce a change in the value of the exponent word. For
example, - 32.5 is stored as $C004 8000 0000 0000 0000. In binary, the expo­
nent word is %1100 0000 0000 0100. The high-order bit is set, representing a
negative mantissa. To determine the true value of the exponent, first subtract
$8000 to strip off the sign bit and then subtract $3FFF to get rid of the excess. For
example, $C004 - $8000 = $4004; $4004 - $3FFF = $0005. Numbers with
negative mantissas and positive exponents will have exponent word values
between $COOO and $FFFF.

Numbers with positive mantissas and negative exponents produce exponent
word values in the range $0000 - $3FFF. For example, the quantity .5 generates
an exponent of -1. It is stored by adding -1 to $3FFF, which produces an
exponent of $3FFE. Numbers with negative mantissas and negative exponents
have exponent word values in the range $8000 - $BFFF; - .5 has an exponent
word of $BFFE.

Macintosh's other two floating point formats (with 32 and 64-bit mantissas) are
stored exactly like the extended format. They simply have less accuracy in the
mantissa, since they store fewer bits.

The 16- and 32-bit integer formats are the same as those manipulated by the
integer arithmetic instructions that are part of the 68000 instruction set. The 64-bit
integer format can be used to obtain extra accuracy and range when doing
computations. It is, however, too long for conversion with the Binary-Decimal
Conversion Package.

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 359

Executing a Binary-to­
Decimal Conversion

The FP68K routines are part of Package 4. Like all packages, its routines are
called by pushing the routine identifier onto the stack and then calling the package
with _Pack4. The packages we have discussed previously, though, have had a
relatively small number of routines, while FP68K has somewhere around 120. For
most FP68K routines, the routine identifier is the sum of the operation code
(identifying the type of operation the routine will perform) and an operand format
code that identifies the format of the source operand.

The operation code for converting from decimal to binary is $0009. To produce
an extended floating point result, $0000 is added to the operation code. If the
conversion should produce a longinteger result, $2800 is added to the operation
code. Each of the six available formats has a unique operand format code.

Most FP68K routines, including decimal to binary conversions, require the
following actions:

1. Push a pointer to the source operand onto the stack.

2. Push a pointer to the destination operand onto the stack.

3. Push the routine identifier onto the stack.

4. Invoke the package.

To convert from the canonical decimal format to an extended floating point
number, you might use this code:

PEA DecimalRecord(AS)
PEA BinaryNumber(AS)
MOVE #$0009, - (SP)
_Pack4

Decimal Record
BinaryNumber

DS
OS

24
5

Doing the actual conversion is really quite straightforward. The biggest prob­
lem facing a programmer is generating the appropriate routine identifier. The
Macintosh 68000 Development System has simplified the process by providing a
file (SANEMacs.Txt) containing equates and macros.

360 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Programming
Technique -
Using Macros

A macro is a short block of code that is assigned a name. The name of the
macro is then used within an application to represent the entire macro. During
assembly, the macro name is replaced by the block of code associated with the
macro's name. Note that this is very different from using a subroutine. If a sub­
routine is called repeatedly, the program merely branches to where the·subroutine
is located and executes it; the code of the subroutine appears only once in the
program. A macro name is a place holder that will be replaced by the body of the
macro when the program is assembled; a macro that is used repeatedly in the
same program will generate repeated code. Macros are therefore generally short,
less than 10 lines of code.

Macros must be defined before they can be used. Macintosh macros can have
one to two formats. Either:

or

.MACRO NameOfMacro [Argumentlist]
[body of macro goes here - any executable code is allowed}

.ENDM

MACRO NameOfMacro [Argumentlist =]
[body of macro goes here - any executable code is allowed}

I

The first format is referred to as a "Lisa-style" macro, the second as a "Macintosh­
style" macro. Both work equally well with the MOS.

Macros can contain arguments, data that are passed to the macro from the
application. Macro arguments work very much like the arguments passed to
Pascal functions and procedures. The arguments used in the macro definition are
dummy arguments. When the program containing the macro is assembled, the
arguments are substituted by position. Consider, for example, a macro that will
compute the position of a single field within TapeArray:

MACRO AddressCompute R1 ,R2,R3 =
MULU #64,[R1}
ADD [R1},[R2}
ADD [R3},[R2}
I

In this particular macro, R1 is a place holder for some register that contains the
record number. R2 stands for an address register containing the starting address

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 361

of TapeArray. R3 is a constant that stands for the byte offset into a TapeArray
record. Each dummy argument is surrounded by braces.

When this macro is used in an application, the programmer will write:

MOVE
LEA
MOVE
AddressCompute

TotalRecords,DO
TapeArray, AO
#oRatlng,D1
DO,AO,D1

When the program is assembled, this code will be generated:

MOVE
LEA
MOVE
MULU
ADD
ADD

Total Records, DO
TapeArray ,AO
#oRatlng,D1
#64,DO
DO,AO
D1,AO

The arguments specified after the name of the macro in the program code will be
substituted by position tor the dummy arguments in the macro's argument list.

The file SANEMacs.Txt can be found on MDS2. It contains equates for the
FP68K and ELEMS68K operand format codes and operation codes. More impor­
tantly, it also contains one macro for each FP68K and ELEMS68K routine. The
macros compute the appropriate routine identifier, push it onto the stack, and then
invoke the package. SANEMacs.Txt should be INCLUDEd in any application that
uses FP68K or ELEMS68K.

The macro for converting from the canonical decimal format to the extended
floating point format is:

.MACRO
MOVE.W
JSRFP
.ENDM

FDEC2X
#FFEXT + FOD2B, - (SP)

where FFEXT has previously been equated to $0000 and FOD2B to $0009.
JSRFP is another macro defined within SANEMacs.Txt. It takes care of invoking
the package. If you look at the definition of JSRFP, you will see that the package is
invoked with _FP68K, but if disassembled by the debugger, it appears as
_Pack4. Both have the same trap value and are equivalent. _ELEMS68K is
also equivalent to _Packs.

There is an important naming convention to be aware of in the operation code
macros. The last character of most of the macro names identifies the type of source
operand the operation will handle. For example, FADDX will look for an extended
source operand to add to an extended destination operand. FADDD will add a
double source operand to an extended destination operand. The suffix S indicates

362 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

a single source operand, Ca computational, La longinteger, and I an integer. For
each type of operation (e.g., addition, subtraction, comparison, etc.) there are six
routines, one for each possible type of source operand.

The binary to decimal conversion can be simplified by using the pre-defined
macro:

PEA
PEA
FDEC2X

DecimalRecord(AS)
BinaryNumber(AS)

The discussion in the rest of this chapter assumes that SANEMacs.txt has been
INCLUDED in the application source code and that the pre-defined macros are
available.

An Overview of the
FP68K and ELEMS68K

Routines
FP68K routines fall into two major groups - arithmetic routines and those that

provide non-arithmetic utility functions.

The Arithmetic Routines
The arithmetic routines include:

1. Addition(oneforeachtypeofsourceoperand - FADDX, FADDD, FADDS,
FADDI, FADDL, FADDC)

2. Subtraction (one for for each type of source operand - FSUB + the letter
that identifies the operand type)

3. Multiplication (one for each type of source operand - FMUL + operand
type identifier)

4. Division (one for each type of source operand - FDIV +operand type
identifier)

5. Square root (FSQRTX - works only with an extended operand)

6. Round to integer (FRINTX - works only with an extended operand)

7. Truncate to integer (FTINTX - works only with an extended operand)

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 363

8. Remainder - returns the remainder of a division operation (one for each
type of source operand - FREM + operand type identifier)

9. Base 2 logarithm - returns the exponent (FLOBX - works only with an
extended operand)

10. Base 2 exponentiation - the source operand is the power to which 2 is
raised and then multiplied by the destination operand (FSCALBX - works
only with an extended source operand)

Calls to arithmetic routines (with the exception of numbers 4 - 7 and 8 - 10
above) have the following general form:

PEA source operand
PEA destination operand
OperationMacroName

The result of the operation is placed in the destination operand. That means the
original contents of the destination operand is erased by the result. For example, a
FADD operation has the same effect as the Pascal statement:

A:=A+B

Therefore, if the destination operand must be retained for further use, it should be
copied to another storage location before being passed to the FP68K routine.

Code to add a longinteger to an extended floating point number appears as:

PEA
PEA
FADDL

LonglntegerNumber
ExtendedNumber

LonglntegerNumber(AS)
ExtendedNumber(AS)

DS.L 1
OS 5

Note that all operands are passed as pointers to main memory locations where the
operands are actually stored.

· The other routines, including square root and rounding, require only one
operand:

PEA source operand
OperationMacroName

The result replaces the source operand. In the case of square root, it has the effect
of executing the Pascal statement:

A:= SQRT(A)

364 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

To actually compute a square root:

PEA
FSQRTX

Extended Number

ExtendedNumber(AS)

DS 5

The Utility Routines
FP68K non-arithmetic routines include:

1. Negation (FNEGX - works only with an extended operand)

2. Absolute value (FABSX - works only with an extended operand)

3. Conversion from all six formats to extended (FX2X, FD2X, FS2X, Fl2X,
FL2X, FC2X)

4. Conversion from extended to the other five formats (FX2D, FX2S, FX21,
FX2L, FC2X)

5. Decimal to binary conversion (FDEC2 + operand type identifier, as dis­
cussed above)

6. Binary to decimal conversion (F?2DEC, where? is replaced by the operand­
type identifier).

7. Comparison between two floating point numbers (FCMP + operand-type
identifier or FCPX + operand-type identifier). These comparisons can be
used where it makes logical sense to use the CMP instruction.

8. Branching based on the result of floating point comparisons (FBEQ, FBL T,
FBLE, etc.). These macros contain instructions that test the condition codes.
They assume that the appropriate floating point comparison has been per­
formed. They should be used in place of a Bee instruction.

Negation and absolute value each require only one operand. For example, to
obtain the absolute value of some floating point number:

PEA
FABSX

SomeNumber

SomeNumber(AS)

OS 5

As with the single operand arithmetic routines, the result of a single operand utility
routine will overwrite the source operand.

The internal conversion routines, the decimal-to-binary conversion routines,
and the comparison routines require two operands. As discussed earlier, the
pointer to the source operand goes deepest in the stack, followed by the pointer to

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 365

the destination operand. Note that while the first two sets of routines replace the
destination operand with the result of the operation, the comparison operations do
not affect either operand; they merely set the flags in the status register.

Binary-to-decimal conversions are the only routines that use three operands.
Performing these conversions is discussed later in the chapter.

The floating point branch instructions are used exactly like any other Bee
instruction. For example:

FBEQ Nextlabel

assumes that two floating point numbers have just been compared. The program
will branch to Nextlabel if the two numbers were equal. Note that FBEQ is not a
new instruction; it is a macro with an argument. Nonetheless, the floating point
branch macros can be used as if they were actual instructions.

The ELEMS68K Routines
ELEMS68K contains a number of advanced logarithmic, trigonometric, and

exponential functions. Most work only with extended operands. The following
routines require one extended operand and replace it with the result:

1. Natural (base e) logarithm (FLNX)

2. Base 2 logarithm (FLOG2X)

3. Natural logarithm of 1 + extended operand (FLN1 X)

4. Base 2 logarithm of 1 + extended operand (FLOG21 X)

5. Raising e to a power specified by the extended operand (FEXPX)

6. Raising 2 to a power specified by the extended operand (FEXP2X)

7. Raising e to a power specified by the extended operand -1 (FEXP1X)

8. Raising 2 to a power specified by the extended operand - 1 (FEXP21 X)

9. Sine (FSIX)

10. Cosine (FCOSX)

11. Tangent (FTANX)

12. Arctangent (FAT ANX)

13. Random number generator (FRANDX)

366 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

For example, to find the sine of a number:

PEA
FSINX

ExtendedNumber

ExtendedNumber(A5)

DS 5

The two exponential routines require two operands:

1. Raise an extended operand (the destination operand) to an integer power
(the source operand) (FXPWRI)

2. Raise an extended operand (the destination operand) to an extended power
(the source operand) (FXPWRY)

Note that even when using an integer operand, a pointer to that operand is pushed
onto the stack rather than value of the operand itself. For example, to perform an
integer exponentiation:

PEA
PEA
FXPWRI

lntegerExponent
Extended Number

DS
DS

lntegerExponent(A5)
ExtendedNumber(A5)

1
5

ELEMS68K also contains routines to compute compound interest and
annuities. Each requires three extended operands - two source (the interest rate
and the number of compounding periods) and one destination (the starting princi­
ple). A pointer to the interest rate is deepest in the stack, followed by a pointer to the
number of compounding periods and a pointer to the destination operand:

1. Compound interest (FCOMPOUND)

2. Annuity (FANNUITY)

For example, this code will compute compound interest:

PEA
PEA
PEA
FCOMPOUND

lnterestRate
NumbOfPds
StartPrlnc

DS
DS
DS

lnterestRate(A5)
NumbOf Pds(A5)
StartPrlnc(A5)

5
5
5

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 367

Finishing the Task -
Doing Binary to Decimal

Conversions and
Formatting Output

Converting from a binary number back to the canonical decimal format is not
precisely the opposite of converting from decimal to binary. There are two possible
output formats - floating point and fixed point, both of which are delivered in the
canonical decimal format record.

To see the difference, consider the number 32.5. As noted earlier, the
extended floating point format of 32.5 is $4004 8200 0000 0000 0000. If converted
to a floating point number with three significant digits, the canonical decimal format
will appear as $FFFF 0333 3235 or 325 * 10-1. A floating point version of the
number (assuming that the conversion requests three digits to the right of the
decimal point) appears as $FFFD 0533 3235 3030 ... which is 32500 * 10-3 or
32.500. Floating point numbers are designed to be displayed in the mantissa and
exponent format (e.g., 3.25E1) while fixed point numbers have their decimal points
embedded in the number itself, as in 32.500.

The output format of a binary-to-decimal routine is controlled by a tormat
record:

TYPE Decform = RECORD
style : (0, 256); (0 = float; 256 = fixed}
digits : INTEGER
END;

The style word stores the flag for the style in bit 8. Therefore, a value of 0 indicates
that the number should be converted to a floating point number, while a value of
256(a1 in bit 8) indicates that the conversion should be to fixed point.

The meaning of the digits field depends on whether the conversion is to float or
fixed. For a floating point number, digits indicates the total number of significant
digits that should be stored in the canonical decimal format. For a fixed point
number, the same field contains the number of fractional digits (those to the right of
the decimal point) that are to be stored.

Doing a Binary to Decimal
Conversion

The macro for binary to decimal conversions is F?2DEC, where? is replaced
by the letter which indicates the format of the source binary number. For example,

368 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

FX20EC will convert an extended operand while Fl2DEC will convert an integer
operand. Note that while the FP68K routines will handle integer and longinteger
operands, they can more easily be converted by using the Binary-Decimal Con­
version Package.

The binary-to-decimal conversion routines require three operands. A pointer to
the format record is deepest in the stack, followed by a pointer to the source
operand and finally a pointer to the destination data structure (the canonical
decimal format). Assuming that a binary number in extended floating point format
is stored in BinaryNumber(AS), the following code will convert that binary
number to its floating point representation in the canonical decimal format with six
significant digits (the number of significant digits in the example is arbitrary):

LEA
MOVE
MOVE
MOVE.L
PEA
PEA
FX20EC

FormatRec
BinaryNumber
OecimalRec

FormatRec(A5),AO
#0,(AO)
#6,2(AO)
AO,-(SP)
BinaryNumber(A5)
Oecima1Rec(A5)

OS
OS
OS

2
5
23

;style = float
;six significant digits
;put pointer on stack
;pointer to source operand
;destination data structure
;routine macro

Converting the same extended binary number to a fixed point format with an
arbitrary three digits to the right of the decimal point is only slightly different:

LEA
MOVE
MOVE

MOVE.L
PEA
PEA
FX20EC

FormatRec(A5),AO
#256,(AO)
#3,2(AO)

AO,-(SP)
BinaryNumber(A5)
Oeclma1Rec(A5)

;style = fixed
;three digits to right of
decimal point
;pointer to format record
;pointer to source operand
;destination data structure
;routine macro

;uses same data structures as example immediately above

The question remains as to when binary numbers should be converted to fixed
point and when they should be converted to floating point. The answer lies in how
the numbers will be displayed.

Displaying Numbers from a
Canonical Decimal Format

Numbers that are to be displayed in fixed point format (i.e., with embedded
decimal points) should be converted to fixed and numbers that are to be displayed

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 369

in floating point format (i.e., with mantissa and exponent) should be converted to
float. The decision generally rests on the size of the number; that is, there comes a
point where numbers contain too many digits for effective display. For example,
3. 78E44 is the digits 378 followed by 42 zeros. Most applications will choose to
display such a large number in its floating point form. On the other hand, 37.8 is
conveniently displayed as a floating point number and makes more sense to the
user than 3. 78E1. The actual point at which any given application will switch from
fixed to floating point display will vary from application to application.

Whichever format an application chooses to use, there still remains the prob­
lem of taking the number from the canonical decimal format and reformatting it into
a string of ASCII characters that can be either printed with Drawstring or incorpo­
rated into a text edit record. The task is more or less the opposite of the function
provided by the parser subroutine, which converts strings to the canonical decimal
format.

Listing 12.2 contains two subroutines that will convert floating and fixed point
numbers to ASCII strings for output. Like the parser, the formatter routines are
designed as utility routines to be assembled separately from program code and
then called as external references. Each subroutine requires two parameters as
input - a pointer to the string containing the number in canonical decimal format
(in A1) and a pointer to the output string (in A2). To call either routine (assuming it
has been properly linked to the main program code), load the pointers in the
address registers and do a JSR to the appropriate symbolic address (FormatFloat
or FormatFixed).

Listing 12.2 Formatting Numeric Strings for Output

;----------------------- Numeric Output Formatter -----------------

' ; Parameters on entry:
A 1 ;pointer to record containing canonical decimal format
A2 ;pointer to output string

;---

XDEF FormatFloat
XDEF FormatFixed
.TRAP _Pack? $A9EE

FormatFloat
MOVE.L #0,00
MOVE #1,D3

MOVE #0,DS
MOVE.B 4(A1),D1
MOVE 2(A1),D2
MOVE D1,D0
ADD D2,D0
SUBQ #1,D0

;initialize register
;character pointer in output string
;starts at one to leave room for length byte
;initialize character counter
;number of significant digits
;exponent in canonical decimal format
;place for output exponent

;final output exponent (exp.+ sig. digits -1)

(continued)

370 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 12.2 (continued)

MOVE (A1),D6
CMP #0,D6
BEO NoSignNeeded
MOVE.B #'-',(A2,D3)
ADDO #1,D3

NoSignNeeded
MOVE #5,D4
MOVE.B (A1 ,D4).(A2,D3)
ADDQ #1,D3
ADDQ #1,05
CMP.B D1,05
BEQ lnsertExponent
MOVE.B #'.',(A2,03)

More Digits
ADDO #1,D3
ADDQ #1,D4
MOVE.B (A1 ,D4),(A2,D3)
ADDO #1,D5
CMP.B D1,D5
BNE MoreDigits

Insert Exponent

ADDQ #1,D3
MOVE.B #'E',(A2,D3)
ADDO #1,D3

;get sign

;positive number
;load a negative sign

;offset into canonical decimal format
;move first character
;move pointer
;count the character
;is there only one digit?

;insert decimal point

;increment pointer
;increment offset into canonical decimal format
;move a character
;count the character
;all characters moved?

LEA ExponentString(A5),A0
EXT.L D0 ;propagate sign through high-order word of register
MOVE #0,-(SP)

Pack7
MOVE.B (A0),D1
MOVE #1,D0

More Exponent
MOVE.B (A0,D0),(A2,D3)
CMP.B D1,D0
BEQ SetLength
ADDO #1,D0
ADDO #1,03
BRA MoreExponent

Setlength
MOVE.B D3,(A2)

RTS

FormatFixed
MOVE.B 4(A1),D1
MOVE 2(A1),D2
MOVE.B D1 ,D5
MOVE D2,D7
BGE OK
MULU #-1,D7

;convert integer to string
;length of exponent string
;starting offset into exponent string

;move one exponent character

;all characters moved

;install length byte in first position

;number of significant digits
;exponent
;save significant digits to fool with
;save exponent to fool with

;make negative exponent positive

(continued)

OK SUB D7,D5
BLE Fraction

ADD.B D1,D2
MOVE #1,03
MOVE #0,D4
MOVE #5,05
MOVE (A1),D6
BEO CopyLoop
MOVE.B #'-',(A2,D3)

Copy Loop
CMP.B D2,D4
BNE MoveOne
ADDO #1,D3
MOVE.B #'.',(A2,D3)

Move One
ADDO #1,D3
MOVE.B (A1 ,D5),(A2,D3)
ADDO #1,04
ADDO #1,D5

Fraction

CMP D4,D1
BNE CopyLoop

MOVE.B D3,(A2)

RTS

MOVE #1,D3
MOVE (A1),D6
BEO None
MOVE.B #'-',(A2,D3)
ADDO #1,D3

None MOVE.B #'0',(A2,D3)
ADDO #1,D3
MOVE.B #'.',(A2,D3)

MOVE #0,D0
MOVE D5,D4
BGT AnotherZero
MULU #-1,D5

Another Zero
CMP D0,D5
BEO GetDigits
ADDO #1,D3
MOVE.B #'0',(A2,D3)
ADDO #1,D0
BRA AnotherZero

GetDigits
MOVE #0,D0

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 371

;number is a fraction - mus~ handle separately

;number of digits to left of decimal point
;position pointer in output string
;digit counter
;initial offset into canonical decimal record
;get sign
;positive number
;load a negative sign

;insert decimal point

;move one character

;load length byte

;initialize position pointer
;get sign

;load negative sign

;loading leading zero and decimal point
;must be two steps because of possibility of
;uneven starting address

;count zeros
;this move is just to affect status register

;get absolute value

;enough 0's added?

;to count significant digits

(continued)

372 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing 12.2 (continued)

MOVE #5,D5
AnotherDigit

ADDO #1,D3
MOVE.B (A1 ,D5),(A2,D3)
ADDO #1,D5
ADDO #1,D0
CMP D0,D1
BGT AnotherDigit

MOVE.B D3,(A2)

RTS

ExponentString DS.B 6

END

;offset into canoncial decimal format

;load length byte

Formatting Floating Point Numbers
Pseudocode for FormatFloat, the floating point formatter, can be found in Figure
12.2. The routine must first compute the exponent for output. This is different from
the exponent stored in the canonical decimal format, since the significant digits are
stored as an integer but will be displayed in the form X.XXXX.... In fact, the
exponent for output is equal to:

Exponent from canonical decimal format - # sig. digits + 1

This exponent is an integer and must ultimately be converted to a string. For­
matFloat uses NumToString from the Binary-Decimal Conversion Package for
that purpose. NumToStrlng is very convenient, since it will insert a minus sign at
the head of its output string if the integer being converted is negative.

Figure 12.2 Floating Point Formatter Pseudocode

Initialize pointer to output string {set to 0 if no length byte; set to 1 if length byte is
required}

Get number of significant digits from canonical decimal format.

Get exponent from canonical decimal format.

Compute exponent for output as Exponent from canoncial decimal format - Number of Significant
Digits+ 1.

Get sign from canonical decimal format.
(continued)

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 373

If number is negative then

Put negative sign in first position of output string;

Increment pointer to output string.

Move first significant digit from canonical decimal format to output string.

Increment pointer to output string.

Move decimal point to output string.

Increment pointer to output string.

Repeat

Move one significant digit from the canonical decimal format to the output string;

Increment pointer to output string

Until no significant digits remain.

Put "E" in output record.

Increment pointer to output string.

Convert integer value of exponent for output into a string.

While exponent characters remain do

Move one exponent character to the output string;

Increment pointer to output string.

Load length byte at beginning of output string (equal to pointer to output string)
{the length byte is optional - leave it out if output
string will be incorporated into a text edit record}

FormatFloat checks the first word of the canonical decimal format to determine
the sign of the number. If the number is negative, a minus sign is stored in the first
position of the output string. Then the first significant digit is moved from the
canonical decimal format record to the output record, followed by a decimal point.
The remaining significant digits are placed immediately after the decimal point.
The next character is an 'E'. Finally, the exponent, as converted by NumToStrlng,
is moved to the output string.

FormatFloat also places a length byte at the beginning of the output string. If
the string is to be displayed by Drawstring, then the length byte is required, but if
the output string is to be incorported into a text edit record, then there should be no

374 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

length byte. To modify FormatFloat to format without a length byte, do the follow­
ing:

1. Initialize the output string position pointer to 0 rather than 1 (register D3)

2. Remove the instruction that loads the lengths byte (MOVE.B D3,(A2))

The same holds true for FormatFixed, the fixed point formatter, since it too was
designed to include a length byte.

If you look closely at the assembly language code for FormatFloat in Figure
Listing 12.2, you will see one 68000 instruction that we haven't discussed: EXT.
EXT stands for "extend"; it takes one operand - a data register. If the instruction is
word-sized, it will copy, or extend, the value of bit 7 into bits 8 through 15. A
longword-sized operation will copy the value of bit 15 into bits 16 through 31.

Why is EXT important? When the exponent is retrieved from the canonical
decimal format it is word-sized. The operations that compute the final exponent are
also word-sized. That means that the exponent is stored in DO as $0000XXXX,
where the X's represent the magnitude of the exponent. A problem arises if the
word-sized exponent is passed to NumToString. NumToString expects a long­
word operand. It makes a decision as to the sign of the number on the value in bit
31. The value of bit31, therefore, also determines whether the number in DO will be
interpreted as true magnitude or two's complement form.

Consider an exponent of - 3. In its word-sized form it will be stored as
$0000FFFC. NumToString, though, will pick up the zero in bit 31 and assume that
the register contains a positive number. The $FFFC will be interpreted as the true
magnitude of a positive number, or 65533. The solution is to extend the sign bit of
the word-sized operand (bit 15) into the high-order word of the register. Assuming
that the contents of DO are $0000FFFC, the instruction:

EXT.L DO

will produce a result of $FFFFFFFC. Since bit 31 is set, NumToString will correctly
interpret the contents of DO as a negative number in two's complement form.

Formatting Fixed Point Numbers
Pseudocode for FormatFixed appears in Figure 12.3. Formatting fixed point
numbers is slightly more complex than formatting floating point numbers, since
numbers that are all fraction must be handled separately from numbers that have
both integer and fractional parts. Numbers that are all fraction can be detected by
subtracting the absolute value of the exponent in the canonical decimal format
from the number of significant digits; any number that has to have its decimal point
moved more places to the left than there are significant digits is less than one.

For numbers that have both integer and fractional parts, the first task is to
determine how many of the significant digits lie to the right of the decimal point by

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 375

summing the exponent and the number of significant digits. Though this pro­
cedure may at first seem a bit odd, consider that since the significant digits are
stored in the canonical decimal format as if they were an integer, the exponent will
always be negative or zero.

Figure 12.3 Fixed Point Formatter Pseudocode

Get number of significant digits from canonical decimal format.

Get exponent from canonical decimal format.

Make negative exponent positive. {need absolute value of exponent}

Subtract absolute value of exponent from number of significant digits.

If subtraction gives positive result then {number is integer or integer and fraction}

Else

Initialize pointer to output string; {0 for no length byte; 1 for length byte}

Compute number of digits to left of decimal point by adding exponent to number of
significant digits;

Get sign of number from canonical decimal format;

If number is negative then

Put a negative sign in output string;

Increment output string pointer;

While significant digits remain do

If place for decimal point found then

Put decimal point in output string;

increment output st~ing pointer;

Move on significant digit from the canonical decimal format to the output string;

Increment output string pointer;

Load length byte at beginning of output string {optional}

{number is all fraction}

Initialize pointer to output string;

Get sign of number from canonical decimal format; (continued)

376 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Figure 12.3 (continued)

If number is negative then

Put negative sign in output string;

Increment output string pointer;

Put leading zero in output string;

Increment output string pointer;

Put decimal point in output string;

Increment output string pointer;

Compute number of zeros needed between decimal point and first significant digit as
absolute value of difference between number of significant digits and exponent

While zeros remain do

Put zero in output string;

Increment output string pointer;

Repeat

Move a significant digit from canonical decimal format to output string;

Increment output string pointer

Until all significant digits have been moved;

Load length byte as equal to output string pointer. {optional}

FormatFixed then checks the sign of the number by looking at the first word of
the canonical decimal format record and moves a minus sign to the ouput string if
appropriate. It then begins to move the significant digits, checking after each digit
is moved to determine if the place to insert the decimal point has been found. The
decimal point is inserted and the remaining significant digits are transferred.

In order to format a number that is less than one, FormatFixed must determine
how many zeros must be inserted between the decimal point and the first signifi­
cant digit. The number of zeros is equal to the difference between the absolute
value of the exponent from the canonical decimal format and the number of
significant digits.

As with formatting fixed point numbers greater than one, the procedure for
numbers less than one first handles the sign of the number by checking the first
word of the canonical decimal format record. A minus sign is moved to the output

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 377

string if appropriate. Then a leading zero and a decimal point are inserted in the
output string; the leading zero is, of course, not required, but simply creates a
nicer-appearing number.

The zeros which come between the decimal point and the significant digits are
the next characters that are inserted in the output string. Finally, the significant
digits themselves are moved.

Like the parser, the formatters are intended as examples. Feel free to enhance
and modify them to suit the needs of your particular application.

Questions and
Problems

1. What will be stored in register DO after the execution of the following block of
code:

LEA # '3000000000' ,AO
MOVE #1, - (SP)
_Pack7 ;convert to longinteger

Hint: consider the maximum quantity that can be stored in a longinteger
location and what happens when it overflows.

2. For each floating point number below, indicate the value of the sign, expo­
nent, and significant digits as they would be stored in Macintosh's canonical
decimal format.

a. 84867 d. - 48.88 * 1012
b. 363.985 e. -3.1313 * 10·9

c. -.00126 f. .011927 * 1043

3. Convert the following decimal floating point numbers to Macintosh's 80-bit
extended floating point format. Express your answer in hexadecimal.

a. 32,767 d. -10.33 * 10-10
b. -32,767 e .. 003 * 10-s1
c. 8.99 * 1038 f. - .0101 * 1067

4. Convert each 80-bit floating point number below to decimal. For base 10
exponents between 4 and - 4 produce a fixed-point number; otherwise,
produce a decimal floating point number.

a. $400A 32AO 0000 0000 0000
b. $6888 1246 0000 0000 0000

378 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

c. $001C 32AO 0000 0000 0000
d. $F010 AAAO 0000 0000 0000
e. $2004 9684 1000 0000 0000
f. $FF34 8111 3131 3100 0000
g. $0001 1246 1444 0000 0000
h. $3FA147666120 0000 0000

5. Write a Macintosh-style macro that computes the area of a circle. Pass the
radius of the circle to the macro in a data register. Return the answer in a
different data register.

6. Write a Macintosh-style macro that compares two characters and returns
whichever character is alphabetically greater. Pass the characters to the
macro in DO and 01. Return the result in D2.

7. Using the macros defined in SANEMacs.Txt, write code to perform the
floating point conversions below. Assume the canonical decimal format is
stored in the applications globals area under DecimalFormat; storage for
the result has been allocated as ConvertedNumber.

a. canonical decimal format to double precision (64-bit) floating point
b. canonical decimal format to longinteger
c. canonical decimal format to computational

8. Using the macros defined in SANEMacs.Txt, write code to perform the
floating point operations below. A destination operand in extended floating
point format is stored in the applications globals area as DesExtended.
Source operands are stored as DoubleSource (64-bit floating point),
SingleSource (32-bit floating point), lntSource (integer), LongintSource
(longinteger) an(j CompSource (computational).

a. add a double-precision source operand to the destination operand
b. multiply an integer source operand by the destination operand
c. round the destination operand to an integer
d. invert the sign of the destination operand
e. find the cosine of the destination operand
f. generc~te a random number

9. Write a block of code that compares two operands in extended floating point
format and then puts a pointer to the larger operand in AO and a pointer to the
smaller operand in A1. Use the macros defined in SANEMacs.Txt and
allocate any necessary data ~tructures.

10. Write a block of code that will create a format record for a binary-to-decimal
conversion that will produce a floating point number with eight significant
digits.

ARITHMETIC 1/0: FLOATING POINT ARITHMETIC 379

11. Write pseudocode that summarizes the procedure for doing a binary to
decimal conversion, assuming that you are starting with a string of ASCII
characters.

12. Using the subroutines Parser and FormatFloat, write a subroutine that:

A. accepts a pointer to a source operand string in AO and a pointer to a
destination operand string in A 1;

B. converts both operands to the extended floating point format;
C. subtracts the source operand from the destination operand; and
D. returns the result as a floating point number properly formatted for output

A p p E N D x A

IN[)EX PRe6RAM

The Video Tape Index Program is a specialized database program that main­
tains listings and annotations of tapes. It can also be used to handle, for example,
audio tapes, records, and video discs.

To run the program, double-click on its icon from the Finder. It will automatically
create and open any necessary files. You may then select from the Options menu
to update the database (entering, changing, deleting), do on-screen data display,
or print the database.

The program does have some limitations. Those limitations and suggested
modifications to overcome them are:

1. The program will support up to 100 titles. To increase this, increase the size of
the TapeArray storage area. A 512K Mac will support as many as 500 titles,
though if that much memory is used for the RAM array, there may not be
enough left to image a spooled print file. In that case, you must always draft
print.

2. Search hits are based only on equality of the search data with data in
TapeArray. To implement searches on equalities, allow the user to enter a
symbol for the inequality (e.g., <, > =, etc.) at the beginning of the search
text. Then add code to the binary and sequential search routines that
identifies the search criteria and, based on that criteria, makes the appropri­
ate comparisons.

3. All TapeArray data are stored in a file named TAPE.MASTER. All annota­
tions are stored in ANNOTATIONS. To allow the user to have multiple sets of
master and annotation files, use the standard "get file" dialog box twice, once
to select a tape file and once to select an annotation file.

4. The program will print only the entire file, either with or without annotations.

380

To print only selected records, allow the user to enter selection criteria and
verify each record against that criteria before printing.

APPENDIX A 381

5. The program will print only in tape-name order. It can be easily sorted to
change that sequencing. Since the file must be maintained in tape-name
order for the binary search to work, it is probably best to sort the array to a
copy in RAM. The same straight-insertion sort that inserts new records can
be used for that purpose.

6. Deleting a record from the tape master file does not delete its annotation.
Deleting annotations requires a routine that completely re-writes the annota­
tion file. It should read sequentially through TapeArray, retrieving each
record's annotation and writing it out to the new annotation file.

Listing A.1 Source Code of the Video Tape Index Program

Include Mao Traps .D
Include ToolEqu.D
Include SysEqu.D
Include QuickEqu.D
Include PrEqu.Txt

;Includes <lddresses of ToolBox routines
;Includes the ToolBox equates
;Includes the System equates
;the QuickDr av equates
;printer equates

; ----------------------------EQUATES-----------------------------
;-------(must go at the top or program won't asstmblt!)--------------

0 T apeName EQU .0' ;offsets in tape record
oProductr EQU 3.0'
oReltastDatt EQU 5.0'
oRating EQU 54
o TapeNumbtr EQU 58
oAnnotNum EQU 62

; --------------------- Initialize managers ---------------------------
PEA -4(A5)
_lnitGraf
_lnitfonts
_lnWtlindows
_lnitMenus
CLR.L -(SP)
_lnitDialoqs
_TElnit

; lnitia lizes QuickDr aw
;ln;tializes th• Font Manager
; lnitia lizes the Window Manager
; lnitia lizes the Menu Manager
;no restart procedure
;initializes dialog manager
; lnitia lizes Text Edit

; This section gets all eight menus from the resource fil• and makes them
; available to the program through their handles

CLR.L -(SP)
MOVE •1 ,-(SP)
-6etRMenu

;Clear space for menu handle
;This vill be menu 1
;Apple menu comes in from resource file

LEA AppleHandle ,A.0' ;Get address for handle
MOVE.L (SP)+ ,A 1 ;Pull handle off stack
MOVE .L A 1 ,(Ail) ;Store handle

(continued)

382 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

LEA AppleHandle ,A 1
MOVE.l (A1),-(SP)
MOVE.l •'ORVR" ,-(SP)
_AddResMenu

CLR.l -(SP)
MOVE •2,-(SP)
...GetRMenu

LE A EditHandle, AS
MOVE.L (SP)+ ,A 1
MOVE.L A1 ,(Am

CLR.L -(SP)
MOVE •!,-(SP)
...GetRMenu

;Plrt handle back on stack
; ldentffy desk accessories
;Get desk accessories from system

;Clear space for handle
;menu •2
;Edit menu

;Get address for handle
;Pull handle off stack
;Store handle

;Cltar space for handle
;menu S!
;Options menu

LEA OptionsH.andle ,AB ;Get address for handle
MOVE.L (SP)+,A1 ;Pullhindleoffst1ok
MOVE.L A1 ,(Am ;Store handle

CLR.L -(SP)
MOVE •4,-(SP)
...GetRMenu

LE A EnterH.andle, AB
MOVE.l (SP)+ ,A 1
MOVE.L A 1 ,(Am

CLR.L -(SP)
MOVE •s,-(SP)
...GetRMenu

LE A Ch.angeH.andle ,AB
MOVE.L (SP)+,A1
MOVE.L Al,(~

CLR.L -(SP)
MOVE •6,-(SP)
...GetRMenu

LEA DeleteH.andle ,AB
MOVE.L (SP)+,A1
MOVE.l Al ,(Am

CLR.l -(SP)
MOVE •1,-(SP)

;Enter menu

;Change menu

;Delete menu

...GetRMenu ;Select menu

LEA SelectHandle ,AB
MOVE.L (SP)+ ,A 1
MOVE.L Al ,(Am (continued)

CLR.L -(SP)
MOVE •e,-(SP)
-GetRMenu

LEA PrintHandle ,AB
MOVE.L (SP)+,A1
MOVE.L A1 ,(All{)

;Print menu

; This section gets the seven windows from the resource file and allocates
; their st or age. They are invisible at this point.

CLR .L -(SP) ;space for window handle
MOVE •1,-(SP) ;Annotation window
PEA Annotation'w'indowStorage(AS) ;address for window record
MOVE.L •-1,-(SP) ;put windov in front
...GetNe'\\''w'indow

LEA Annotation\'t'indowPtr ,AB ;destination address for pointer
MOVE.L (SP)+ ,A 1 ;get pointer from stack
MOVE .L A 1 ,(Af/) ;save pointer

CLR.L -(SP) ;space for windo'\\' handle
MOVE •6,-(SP) ;Tape Number window
PE A Numbtr\'/indowStor age(AS) ;address for window record
MOVE.L •-1,-(SP) ;put window in front
...GetNtw\'/indow

LEA Number\'/indowptr ,AB ;destination address for pointer
MOVE.L (SP)+ ,A 1 ;retrieve pointer from stack
MOVE.L A 1 ,(Af/) ;save· pointer

CLR.L -(SP)
MOVE •:5,-(SP) ;Rating window
PE A Rating'w'indowStor age(AS)
MOVE.L •-1,-(SP)
...GetNew'w'indow

LE A Rating\'t'indowPtr, AB
MOVE.L (SP)+ ,A 1
MOVE .L A 1 ,(Af/)

CLR.L -(SP)
MOVE •4 ,-(SP) ;Date window
PE A Date\'t'indowStor age(AS)
MOVE.L •-1 ,-(SP)
...GetNew'w'indow

LEA Date\'t'indowPtr ,AB
MOVE.L (SP)+,A1
MOVE .L A 1 ,(Af/)

CLR.L -(SP)

APPENDIX A 383

(continued)

384 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE •3, -(SP) ;Producer window
PE A ProduoerWindowStor age(A5)
MOYE.L •-1 ,-(SP)
...GetNewWindow

LEA ProduoerWindowPtr ,AB
MOYE.L (SP)+,A1
MOYE.L Al ,(Ag'J

CLR.L -(SP)
MOYE •2,-(SP) ;Tape Name windov
PE A Name\y'indowStor age(A5)
MOYE.L •-t ,-(SP)
...GetNewWindow

LEA Name\y'indowPtr ,AB
MOVE.L (SP)+ ,A 1
MOYE.L A1 ,(Ag'J

CLR.L -(SP) ;make space for window handle
MOYE •1,-(SP) ;this is window •1
PEA Main\y'indowStorage(A5) ;address for window record storage
MOYE .L •-1 ,-(SP) ;put this window in front
...GetNew\y'indow ;get window·definitfon from resource file

LEA MainWindowPtr ,AB ;load destination address for pointer
MOVE.L (SP)+ ,A 1 ;get pointer from stack
MOVE .L A 1 ,(Ag'J ;put pointer into 'w'indowPtr

; --------------- Allocate T extEdit Records ---------------------------­
MOVE.L Name'vtindowPtr ,-(SP)
....setPort
CLR.L -(SP) ;clear space for text handle
PE A NameDestRect
PE A NameYievRect
_TENev ;allocate text record
LEA
MOVE.L

Name TextHandle, AB ;get address for text handle
(SP)+ ,(Ag'J ;take handle from stack and store

MOVE .L Produoer'w'indowPtr, -(SP)
....SetPort
CLR.L -(SP)
PE A ProducerDestRect
PE A ProducerViewRect
_TENew
LEA ProduoerTextHandlt ,AB
MOVE.L (SP)+ ,(Ag'J

MOYE.L DateWindovPtr ,-(SP)
-5etPort
CLR.L -(SP)
PE A DateDestRect

(continued)

PE A DateViewRect
_TENew
LE A Date TextHandle, AS
MOVE.L (SP)+ ,(A.0)

MOVE.L Ratin9WindowPtr ,-(SP)
..SetPort
CLR.L -(SP)
PE A Ratin9DestRect
PEA Ratin9ViewRect
_TENew
LEA RatingTextHandl& ,A}:J
MOVE.L (SP)+ ,(AflfJ

MOVE .L Number'w'indowPtr, -(SP)
..SetPort
CLR.L -(SP)
PE A NumberDestRect
PE A NumberViewRect
_TENew
LEA NumberTextHandle ,AS
MOVE.L (SP)+ ,(A.0)

MOVE.L Annotation'Ylindo'W'Ptr ,-(SP)
..Set Port
CLR.L -(SP).
PEA AnnotationDestRect
PE A AnnotationVi1wR1ot
_TENew
LEA Annotation T extHandle, AS
MOVE.L (SP)+ ,(AflfJ

; ---------------Change cursor to watch for file operations--------------
CLR.L -(SP) ;space for cursor handle result
MOVE •4 ,-(SP) ;indicates the watch cursor for long wait
....GetCursor ;get handle to cursor definition

MOVE.L (SP)+ ,AS
MOVE .L (A.0), AZ
MOVE.L AS,-(SP)
..SetCursor

;de-reference the handle to get pointer
;put pointer on stack
;set cursor to watch

; -----------------Load TapeArray or create new file----------------------
LE A 'Tape .Master', AS ;file name
MOVE .L A.0', ioPar amB1ock+1oFileName(A5)
MOVE • 1 , ioP ar amBlock+ioDrvNum(A5) ;on drive 1
MOVE.B •s,ioParamB1ock+ioFileType(A5) ;version number S
LE A ioP ar amBlock(A5) ,AS
...Create ;attempt to create file

CMP •-48,DS ;duplicate file name
BEQ OpenT~ilt

APPENDIX A 385

(continued)

386 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

CMP •B,DfJ
BEQ Tapefilelnfo
JMP Filttrror

T apeFile Info
LE A 'Tape .Master' ,AS

;name
;drive
;version•

MOVE .L AS ,fiP ar amBlock+ioFileName(A5)
MOVE •1,fiParamBlook+ioDrvNum(AS)
MOVE .B • B ,fiP ar amBlock+ioFile Type(AS)
MOVE •s ,fiPar amBlock+ioFDirlndex(AS) ;use name and drive to find file
LEA fiPar amB1ock(A5) ,AS
-.GetFilelnfo

MOVE .L it 'TEXT' ,fiPar amBlock+ioFlUsr'w'ds(AS)
LEA fiParamBlock(AS) ,AB
....SetFilelnfo

LE A Tota !Records ,A.0"
MOVE • .0" ,(Aff'J
BRA CloseTapeFile

Open T apeFile
LEA 'Tape.Master' ,AB
MOVE .L A.0" ,ioParamBlock+ioFi1eNam1(A5)
MOVE •1 ,ioParamBlock+ioDrvNum(AS)
MOVE .B • .0" ,ioParamBlock+ioFile Type(AS)

;file type

MOl/E.B •1,ioParamBlock+ioPermssn(AS) ;read only permission
CLR .L ioP ar amBlock+ioOwnBuf(AS)
LE A ioP ar amBlock(AS), A.0'
....Open

CMP
BNE

LEA
MOVE.L
MOVE.L
MOVE
LEA
..Read

MOVE.L
LEA
MOVE
SWAP
LEA
MOVE

LEA
MOVE.L
MOYE
M!..ILU

•.0,D.0'
FileError

DataBuffer(A5) ,AfJ
AB ,ioParamBlock+ioBuffer(AS)
•4 ,ioParamBlock+ioByteCount(A5) ;just get tape & annot. totals
• B, ioPar amBlock+ioPosMode(AS) ;read from mark
ioParamBlock(A5) ,AS

DataBuffer(AS) ,DB
LastAnnotNumb,AS
D.0',(Aff'J
D.0'
TotalRecords ,A.0'
D.0',(Aff'J

;get numbers just read

;recover last annotation number
;put tot a 1 records in lo"Wer half

;recover tota 1 records

Tape Array (AS), A.0' ;destination for tape records
A.0', ioP ar amBlock+ioBuffer(AS)
TotalRecords ,DB
•64 ,DB ;number of bytes to read (continued)

MOVE.L DB ,ioPar amB1ock+ioB1:1teCount(A5)
MOVE •B,ioParamB1ock+ie!PosMode(A5) ;read from mark
LEA ioParamB1ock(A5) ,AB
...Read

Close T aptFilt
LEA ioParamBlock(A5) ,AB
...Close

; ----------------- Open Annotations file or create nev file ------------------

LE A 'Annotations', A.0'
MOVE.L AB, ioPar amBlock+ioFileName(A5)
MOVE •1,ioParamBlock+ioDrvNum(A5)
MOYE.B •B, ioParamBlock+ioFile T1:1pe(AS)
LE A ioP ar amBlock(AS) ,AB
...Create

CMP
BEO
CMP
BEO
JMP

AnnotF ilt Info

•-48,0B
Open AnnotFile
•B,os
AnnotFilelnfo
FileError

LEA ·Annotations', AB
MOVE.L AB ,fiParamBlock+ioFileName(AS)
MOVE •1 ,fiParamBlock+ioDrvNum(AS)
MOYE.B •s ,fiParamBlook+ioFileT1:1pe(AS)
MOVE • B, fiP ar amBlock+ioFDir Index(AS)
LEA fiP ar amBlock(AS) ,AS
....GetFile Info

;file name
;on drive 1
;version number of .0'
;point to parameter block

;dup lie ate file name

;file successfully created

MOVE.L •'TEXT' ,fiParamBlock+ioF1UsrWds(A5)
LEA fiParamBlock(AS) ,AB
....SetFile Info

LEA LastAnnotNumb, AB
MOVE •-1,(A.0)

OpenAnnotFile
LE A ·Annotations·, AB
MOVE .L AS ,ioP ar amBlock+ioFileName(AS)
MOVE •1 ,ioParamBlock+ioDrvNum(A5)
MOVE .B •B ,ioParamBlook+ioFile T1:1pe(AS)
MOVE .B •3 ,ioParamBlock+ioPermssn(A5)
CLR.L ioPar amB1ock+ioOvnBu1(A5)
LE A ioP ar amBlock(A5) ,AB
....Dpen

cMP •B,os
BNE FileError

; load file name
;load drive number
;a version number of S
;a llov reading and vriting
;use volume access path buffer

;point to parameter block

;result code in OS

APPENDIXA 387

(continued)

388 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

fiRefNum, A.9' LEA
MOVE
BRA

ioParamB1ock+ioRefNum(A5),(A.0) ;save reference number
BeginProgr am ;file open and a 11 's we 11

FileError
CLR
MOVE
CLR.L
-Alert
MOVE

RTS

-(SP)
•6,-(SP)
-(SP)

(SP)+ ,D.9'

;returns to Finder

; --------------Make main window visible and bring to front----------­
BeginProgr am

MOVE.L MainWindowPtr ,-(SP)
..Se lect"w'indow

MOVE.L Main"w'indowPtr ,-(SP)
..5etPod
_lnitCursor ;set the cursor to the arrow

MOVE.L everyEvent,D.9' ;Mask to select all events
JlushEvents ;Clear the event queue

JSR MainMenuBar ;Set up and draw main menu bar

;--------------- Main Event Loop ------------------------

Event ..SystemTask

CLR -(SP)
MOVE •-1 ,-(SP)
PEA EventRecord
.....GetNextEvent

MOVE
CMP
BEQ

(SP)+ ,D.9'
•B,D.9'
Event

;update desk accessories

;Space for boo lean result
;Mask for keyboard - select all events
;Place to receive event info
;Get next event from queue

;Recover event result

; If no event, branch to look again

MOVE "w'hat ,D.9' ;Recover event ID
CMP •msutDwnEvt,D.9' ;"w'as mouse button pressed?
BEQ MouseEvent

CMP •keyDwnEvt,D.9' ;"w'as key pressed?
BEQ Key Event

BRA Event ;Look for another event

(continued)

Key Event
MOYE.B Modify /)B ;Recover modifier bytes
CMP B •$B1 PB ;'vlas command key pressed
BEQ KeyboardCommand

BRA Event

KeyboardCommand
CLRl -(SP) ;space for menu item selection
MOYE Message+2,-(SP) ;put char~ter pressed on stack
....MenuKey ;figure out what key was pressed
BR A Selections

MouseEvent
CLR -(SP)
MOYE.L Point,-(SP)
PE A Which WindowPtr
J ind'w'indow

MOYE (SP)+ ,DB

;Place for "what" result
;Point = mouse coordinates
;Push place for window handle of window
;'vlhere was button pushed?

;Recover Find\v'indow result

CMP •inMenuBar ,DB ;Was mouse clicked in menu bar?
BEQ MenuBar ;Mouse clicked in menu bar
CMP •inSysWindow ,DB ;Was mouse clicked in system window?
BEQ SysEvent ;Mouse clicked in system window

BRA Event ;go back to check for another event

SysEvent
PEA EventRecord ;Event record goes on stack
MOYE .L Which 'w'indowPtr, -(SP) ;Window pointer goes on stack, too
_sy stemClick ;Sy stem handles tt

BRA E-vent

MenuBarCLR.L -(SP)
MOYE.L Point,-(SP)
....MenuSe lect

Selections
MOYE.L (SP)+ ,D2

LE A WhichMenu, AB
MOVE .L D2 ,(A.0)

CLR -(SP)
..Hil iteMenu

;Place for menu ID and Menu item
;Push mouse coordinates
;Find out exactly where mouse was clicked

;Recover result

;get address for high-order byte of result
;Store result

;get set to unhigh light a 11 menus
;Unhigh light the menus

MOYE WhichMenu ,DB ;Put menu number in DB

CMP •1 ,DB ;In apple menu?

APPENDIX A 389

(continued)

390 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BNE
JSR

Menu2
AppleMenu

Menu2 CMP
BNE
JSR

•2 ,D.0" ; In edit menu?
Menu3
EditMenu

Menu3 CMP
BNE
JSR

•3 ,D.0" ; In options menu?
NoMenu
Options

NoMenu BRA Event

AppleMenu
LE A App leHandle, A/6
MOVE .L (A.0), -(SP)
MOVE \v'hatltem,D/6
MOVE D/6,-(SP)
PE A Desk AccName
...Getltem

CLR -(SP)
PEA DeskAccName
....OpenDeskAcc
MOVE (SP)+ ,D/6

CLR -(SP)
JliL iteMenu

MOVE •9,D/6
RTS

EditMenu
MOVE \v'hatltem ,D.0"
SUBQ •1,D/6
CLR -(SP)
MOVE D/6,-(SP)
...SysEdit
MOVE (SP)+ ,01
MOVE •9,D.0'
RTS

Options MOVE Whatltem,D/6

CMP •1,DflJ
BNE ltem2
JSR Enter

ltem2 CMP
BNE
JSR

•2,D/6
ltem3
Change

;Return to look for another event

;Get address of menu handle
;Put menu handle of stack

;Put 10• of item clicked on stack
;Push address where desk acc. name should go
;Figure out which one was selected

;Leave space for reference number
;Put address of name on stack
;Open the desk accessory
;Pull reference number off stack

; Unhigh light the menu tit le

;Figure out which command is selected
;ad just number to pass to Sy sEdit
;space for result if there's a problem
;let system know what item was chosen
; let the system handle the edit
;clear problem result from stack

;Move item selected to D/6

;Enter new tapes

;Modify existing tapes

(continued)

ltem3

ltem4

ltem5

ltem6

Quit

CMP •3 ,DH
BNE ltem4
JSR Delete ;Delete tapes

CMP •4 ,DH
BNE ltem5
JSR Select ;Retrieve info

CMP •5,oH
BNE ltem6
JSR Print ;Print lists

CMP •6 ,DH
BEQ Quit ;Exit the proqr am

MOVE.L Main'w'indowPtr ,-(SP)
...Se lect'w'indow

MOVE.L Main'w'indowPtr ,-(SP)
....SetPort

PEA Main'w'indowRect
..EraseRect ;clears out text window prompts

JSR ReDrawMainMenu ;put options menu back in menu bar

MOVE.L EditHandle ,-(SP)
MOVE •t ,-(SP) ;"UnDo"

..Enable Item ;highlight "UnDo", since systems windows use it

MOVE.L Main'w'indowPtr ,-(SP)
PE A 'Video Tape Index'
....Set'w'Title

RTS

CLR.L -(SP)
MOVE •4,-(SP)
...Get Cursor
MOVE.L (SP)+ ,AH
MOVE .L (Al!), AH
MOVE.L A.0' ,-(SP)
....SetCursor

;Return to main program

;space for cursor handle
;ID for watch cursor

;recover handle
;de-reference handle to get pointer

;pointer to cursor definition
;set "'atch cursor for file operations

MOVE fiRefNum ,ioPar amBlock+ioRefNum(A5)
LE A ioPar amBlock(A5), A.0'
_(;Jose ;close the annotations file

LEA 'Tape.Master' ,A.0'
MOVE .L A.0' ,ioParamBlock+iof ileName(A5)
MOVE •1 , ioParamBlock+ioDrvNum(A5)

APPENDIXA 391

(continued)

392 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE .B •s, ioP ar amBlock+ioFile Type(AS)
MOVE .B •2 ,ioP ar amBlock+ioPermssn(A5) ;write only permission
CLR .L ioP ar amBlock+ioOwnBuf(AS)
LEA ioParamBlock(AS) ,AS
...Dpen

CMP
BNE
MOVE
S'v/AP
AND.L
MOVE
MOVE.L
LEA
MOVE.L
MOVE.L
MOVE
LEA
_Write

•S,DS
FileError
TotalRecords ,DS
D.IJ
•$FFFF S.IJ.0".0" ,D.0"
Last AnnotNumb ,D .0"
D.0" ,Dat.aBuffer(AS)
D.ataBuffer(A5) ,A.0"

;put tot.a 1 records in high order bits
;clear out low order bits

AS, ioP .ar .amBlock+ioBuff er(AS)
•4 ,ioP.aramBlock+ioByteCount(A5) ;write just the he.ader info
•g, ioP ar .amBlock+ioPosMode(AS) ;write .at current position of m.ark
ioP ar .amBlock(A5), A.0"

LEA
MOVE.L
MOVE
MULU
MOVE.L
MOVE
LEA
_'v/rite

Tape Array (AS), AS ;t.ape .arr .ay loc.ation doubles as buffer
A.IJ, ioP ar amBlock+ioBuffer(A5)
Tota !Records ,D.0"
•64 ,D.0" ;tot.al number of bytes to move
D.0", ioP .ar .amBlock+ioB\j teCount(AS)
• S, ioP .ar amBlock+ioPosMode(AS) ;sequenti.a 1 write
ioP .ar .amBlock(AS), AS

LE A ioP ar .amBlock(A5), A.0"
...Close ;close the t.ape master file
_lnitCursor

MOVE.L (SP)+ ,D.0"
RTS

;re-set to arrow cursor

;pop subroutine return .address off stack
;This return goes back to the Finder

;-------------------- Enter New Titles ----------------------

Enter
MOVE.L Main'vlindowPtr ,-(SP)
PE A "Enter New Titles and Annot.ations ·
....Set'v/T it le

JSR Displ.ayPrompts ;m.ake text window prompts visible

JSR Displ.ay'vlindows: ;m.ake the text entry windows: visible

MOVE •3,-(SP)
-.De leteMenu ;Remove Options menu from menu list

LEA EnterHandle ,A.0" ;get address for Enter menu's handle
MOVE.L (A.0'),-(SP) ;put handle on stack (continued)

CLR -(SP) ;this menu will go at the end of the list
_lnsertMenu

..Dr awMenuBar ;Re-draw the menu bar

MOVE.L EditHandle ,-(SP)
MOVE #1,-(SP) ;"UnDo" is not supported
..Disableltem ;make "UnDo" appear dimmed

EnterEvent
MOVE.L ActiveTextHandle ,-(SP)
_TEldle ;make a blinking cursor appear

_system Task

CLR -(SP)
MOVE •-1,-(SP)
PEA EventReoord
...OetNextEvent

MOVE
CMP
BEQ

(SP)+ ,DH
•JJ,DJJ
EnterEvent

;update desk accessories

;space for boo lean result
;mask to select all events
;p laoe to accept event
;get next event from queue

;recover event result

;no event encountered - keep checking

MOVE 'v/hat,DJJ ;recover event ID
CMP •mButDwnEvt,DJJ ;mouse button pressed?
BEQ EnterMouseEvent

CMP •keyDwnEvt,DH ;was key pressed?
BEQ EnterKeyEvent

CMP •aotivateEvt,DJJ ;activate event posted?
BEQ EnterActivateEvent

CMP •updatEvt,DJJ ;text window needs updating?
BEQ EnterUpdateEvent

BRA EnterEvent ; look for another event

Enter AotivateEvent
JSR ActivateText'W'indow

BRA EnterEvent

EnterUpdateEvent
JSR Update T extWindows

BRA EnterEvent

EnterKeyEvent
MOVE.B Modify ,DH ;recover modifier byte

APPENDIXA 393

(continued)

394 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

CMP.B •$.0'1,D.0' ;was command key pressed?
BEQ EnterKeyboardCommand

MOVE Message+2,-(SP) ;character that was pressed
MOVE.L ActiveTextHandle,-(SP) ,:·,;;~.:!;;handle to current text record
_ TEKey ;insert the character

BRA EnterEvent

EnterKeyboardCommand
CLR.L -(SP) ;place for menu item selection
MOVE Message+2,-(SP) ;put character pressed on stack
.J"lenuKey
BRA [nterSelections

EnterMouseEvent
CLR -(SP) ;space for "'\'/hat" resu 1t
MOVE.L Point,-(SP) ;put mouse coordinates on stack
PEA \v'hich\v'indowPtr ;push pointer to window record
Jind\v'indow ;where was buttom pressed?

MOVE (SP)+ ,D.0' ;recover FindWindow result

CMP •inMenuBar ,D.0' ;was mouse clicked in menu bar?
BEQ EnterMenuBar ;mouse clicked in menu bar

CMP •inSys\v'iildow ,D.0' ;was mouse clicked in a desk accessory ?
BEQ EnterSysEvent

CMP •inContent,D.0' ;mouse clicked in content area of user window?
BEQ Enterln\v'indow

BRA EnterEvent

EnterSy sEvent

PEA EventRecord ;pointer to event record goes on stack
MOVE .L Which \v'indowPtr, -(SP) ;window pointer on stack, too
....SystemClick ;let the system handle it

BRA EnterEvent

EnterMenuBar
CLR.L -(SP)
MOVE.L Point,-(SP)
.J"lenuSe le ct

EnterSelections
MO\IE.L (SP)+ ,D2

;place for menu ID a!'\d menu item
;push mouse coordinates
;which menu?

;recover result

LE A WhichMenu, A.0' ;get address for high-order byte of result
MOVE .L D2 ,(A.0) ;store resu 1t

(continued)

CLR -(SP)
Jill 1teMenu

;mask to indicate all menus
;unh1gh11ght the menus

MOVE WhichMenu,DJJ ;put menu number in DJJ

CMP •1,DB ;in App le menu?
BNE EnterMenu2
JSR AppleMenu

EnterMenu2
CMP •2,DB ;in edit menu?
BN~ EnterMenu4

JSR EditMenu ;was edit command in system vindow?
CMP •B,D1
BNE EnterEverit ;edit was in system vindow and system han~led it

JSR DoEditing
BRA EnterEvent

EnterMenu4
CMP •4,og
BNE ~nt9rE v~mt

EnterMe~uOptions

MOVE Whatltem,DB ;Move item selected to DB

CMP •1,DflJ ; Add a nev item?
BNE Other One
JSR AddNev Tit le

OtherOne
CMP •2,DflJ
BNE EnterEvent

;Quit?
;not what ve vant - look for another event

MOVE •4,-(SP)
....DeleteMenu ;remove enter menu

MOVE •9,DflJ
RTS ;return to options block

Enter In Window

CLR.L -(SP) ;make room for pointer as result
....FrontWindow ;find out which window is in front (i.e., active)
MOVE.L (SP)+ ,AB ;recover FrontWindow result
CMP .L WhichWindowPtr ,AS ;is front window same as clicked window?
BNE MustAct1vate ;v1nd0w 1s 1nact1ve

PEA Point
..GlobalTolocal

;place where mouse buttom was clicked
;convert coordinates to local system

APPENDIX A 395

(continued)

396 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE.L Point,-(SP) ;coordinates now local
BTST •shiftKey ,Modify ;shiftkey bit set?
SNE D.0' ;set true if shift key was held down
MOVE.B D.0',-(SP) ;moving byte puts boolean in high order byte
MOVE.L ActiveTextHandle,-(SP) ;this will be currently active window
_TEClick

BRA EnterEvent

MustActiv ate
JSR SelectText'IY'indow
BRA EnterEvent

AddNewTitle
; ---------------- assemble an input record -------------------------

JSR ClearNewRecord
JSR MoveName
JSR MoveProducer
JSR MoveDate
JSR MoveRating
JSR MoveNumber

MOVE LastAnnotNumb ,D.0'
ADDQ •1,D.0'
MOVE DEJ,NewRecord+o AnnotNum(A'5)
LE A Last AnnotNumb, A.0'
MOVE DEJ,(A.0)

;----------------- Str aight-lnsertion Sort -------------------

Checking

MOVE
LEA
CMP
BEQ
SUBQ

Tota !Records ,D1
TapeArray(A5),A2
•.s,D1
lnsertNew
•1,D1

JSR ComputeAddressl
MOVE.L D1 ,-(SP)
CLR.'IY' -(SP)
MOVE .L A3 I -(SP)
PEA NewRecord(A5)
MOVE.W •3EJ,-(SP)
MOVE.W •3.0,-(SP)
MOVE.W •tEJ,-(SP)
....Pack6
MOVE.W (SP)+ ,DEJ
MOVE.L (SP)+ ,Dl

CMP •s,DEJ

;iffirst record, insert immediately
;otherwise, adjust for record •·s beginning with .0'

; Address returned in A3
;save D 1 on stack
;space for result
;pointer to record in array
;pointer to new record
;char aoters to look at in first string
;ohar aoters to look at in second string
; ID for IUMagString
;invoke the package
;recover result
;recover former contents of D 1

BLE JustBeforelnsert ;found place to insert record
BGT MoveOld ;move existing record down (continued)

MoveOld
MOVE
ADOQ
JSR
JSR

D1 ,05
•1,05
Compute Address I
Compute Address2

;record • to move to
;offset returned 1n A3
;offset returned in A4

MO\IE.L A3,AfiJ
MO\IE.L A4,A1
MOVE.L •64 ,DfiJ
..BlockMove

;source pointer for block move
;destination pointer for block move

;64 b11tes will be moved
;move an entire record

SUBQ
CMP
BEQ
BRA

JustBefore Insert

•1 D1
•-i 01 I

JustBefore Insert
Checking

ADDQ •1,01

lnsertNew
MOVE
JSR

D1,05
ComputeAddress2

LE A NewRecord(A5) ,AB
MOVE.L A4,A1
MO\IE.L •64 ,DB
..BlockMove

LEA
ADDQ

Tota lRecords, AfiJ
•1,(Am

;move back a record
;does new record go in first position?

;insert just below where comparing

;pointer to source (the new record)
;pointer to destination
;number of b\I tes to move
;move a record

;increment number of records

;------------------ 'w'rite the annotation direotl\I to the Annotation file ------
LEA AnnotReoMask,AfiJ
LE A Dat.aB•Jffer(AS), A 1
MOVE •256 ,DfiJ
..BlockMove ;fill first half of buffer with blanks

CLR.L -(SP) ;place for CharsHandle result
MOVE .L Annotation T extHandle, -(SP)
_ TEGetT ext ;get handle to text in AnnotaUon record
MOVE.L (SP)+ ,A2 ;recover CharsHandle
MO\IE.L (A2) ,AB ;de-referencing handle to get pointer
LEA DataBuffer(A5),A1 ;text goes into disk buffer
MO\IE .L Annotation TextHandle, A3
MOVE.L (A3),A4
MO\IE teLength(A4),DfiJ
..BlockMove

MOVE
MULU

•256,DfiJ
Last AnnotNumb ,OfiJ

;de-reference again
;number of characters to move
;puts annotation in disk output buffer

;characters per annotation record
;offset into annotations file

APPENDIX A 397

(continued)

398 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

LE A DataBuffer(A5) ,AB
MOYE .L A.0' ,ioParamBlock+ioBuffer(A5)
MOVE.L •256,ioParamB1ock+ioByteCount(A5) ;vrite 256 bytes:, blanks: and all
MOVE •1,toParamBlock+ioPos:Mode(A5) ;offset is: relative to beginning offile
MOYE.L D.0',ioParamB1ock+ioPos:Offs:et(A5) ;offset in bytes:
MOYE fiRefNum ,ioParamBlock+ioRefNum(A5) ;file reference number
LEA ioParamBlock(A5) ,A.0'
_'y(rite

JSR Dis:play'y(indovs:

RTS

Compute Address: 1
MOVE.L D1 ,D6
MULU •64,06
MOVE.L A2 ,A3
ADDA.L D6 ,A3
RTS

ComputeAddres:s:2
MOYE.L D5,D7
MULU •64,D7
MOYE.L A2,A4
ADDA.L D7,A4
RTS

;clear vindovs: and text edit records:

;return

;offset= record• * 64 bytes:

;---------------------- Change Existing Data --------------------------

Change MOVE.L MainW'indovPtr ,-(SP)
PE A 'Change Existing Titles: and Annotations:'
..SetW'Title

JSR Dis:playPrompts:
JSR Display 'w'indovs

MOVE •3, -(SP)
...De leteMenu ;remove Options menu from menu list

LEA ChangeHandle ,A.0' ;get address for Change menu's handle
MOYE.L (AS),-(SP) ;put handle on stack

CLR -(SP) ;this: menu goes at the end
_lnsertMenu

..DravMenuBar

MOVE.L EditHandle ,-(SP)
MOVE •1,-(SP)
...Disibltltem

(continued)

ChangeEvent
MOVE.L ActiveTextHandle ,-(SP)
_TE Idle

....System Task

CLR -(SP)
MOVE •-t ,-(SP)
PEA EventRecord
-1letNextEvent

MOVE
CMP
BEQ

(SP)+,D.0"
•B,D.0"
ChangeEvent

;update desk accessories

;space for boo lean resu 1t
;mask to select a 11 events
;place to accept event
;get an event from the queue

;recover event record

;no event - keep looking

MOVE 'v{hat,D.0" ;recover event ID
CMP •mButDwnEvt,D.0' ;mouse button pressed?
BEQ ChangeMouseEvent

CMP •keyDwnEvt,D.0" ;key pressed?
BEQ ChangeKeyEvent

CMP •aotivateEvt,D.0" ;activate event posted?
BEQ ChangeActivateEvent

CMP •updatEvt,D.0' ;text window needs updating?
BEQ ChangeUpdateE vent

BR A ChangeE vent

Chan9" Activ ateE vent
JSR Act iv ate Text'v{indow
BRA Chan9"Event

ChangeUpdateEvent
JSR Update Text'v{indows
BRA ChangeEvent

ChangeKey Event
MOVE .B Modify ,D.0' ;recover modifier byte
CMP.B •t ,DB ;was command key pressed?
BEQ ChangeKey boardCommand

MOVE Message+2,-(SP)
MOVE.L ActiveTextHandle ,-(SP)

_TEKey

BRA ChangeEvent

ChangeKey boardCommand
CLR.L -(SP) ;place for menu item selection

APPENDIX A 399

(continued)

400 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE Message+2,-(SP) ;put character pressed on stack
J'lenuKey
BR A ChangeSe lections

ChangeMouseEvent
CLR -(SP) ;space for '"v/hat" result
MOVE.L Point,-(SP) ;put mouse coordinates on stack
PEA Which\v'indowPtr ;push pointer to window record
..Find\v'indow ;where was mouse button pushed?

MOVE (SP)+ ,DfJ ;recover Find\v'indow result

CMP •;nMenuBar ,DfJ ;was mouse clicked in menu bar?
BEQ ChangeMenuBar

CMP •insys\v'indow ,DfJ ;was mouse clicked in a desk accessory?
BEQ ChangeSysEvent

CMP •;ncontent,DfJ
BEQ Changeln\v'indow

BRA ChangeEvent

ChangeSy sEvent
PEA EventRecord ;pointer to event record goes on stack
MOVE.L WhichWindowPtr ,-(SP) ;window pointer goes on stack, too
--5ystemClick ;let the system handle it

BRA ChangeEvent

ChangeMenuBar
CLR.L -(SP)
MOVE.L Point,-(SP)
J'lenuSelect

ChangeSelecticns
MOVE.L (SP)+,02

;place for menu ID and menu item
;push mouse coordinates
;which menu? which item?

;recover result

LEA WhichMenu,AfJ ;get address for high order byte of result
MOVE.L 02,(A.0) ;store result

CLR -(SP)
Jiil iteMenu

;mask to indicate all menus
;unhigh light a 11 menus

MOVE WhichMenu,DfJ ;put menu number in D.0'

CMP •1,D.0' ;in Apple menu?
BNF ChangeMenu2
JSR App leMenu

(continued)

ChangeMenu2
CMP
BNE

JSR
CMP
BNE

•2,0.0'
ChangeMenu5

EditMenu
•.0',01
ChangeEvent

JSR DoEditing
BRA ChangeEvent

ChangeMenu5
CMP
BNE

•5 ,D/lJ
ChangeEvent

Ch.angeMenuOptions
MOVE 'llhatltem,D.0'

;in Edit menu?

;was edit request in system window?

;edit was in system window and system handled it

;in Change menu?

;move 1tem selected to D.0'

CMP •1 ,D.0' ;find a record?
BNE Change ltem2
MOVE •1 ,ReturnFlag(A5) ;set return flag to show origin of call
JSR SelectOneTitle ;note: record number returned in RecordCounter(A5)
BRA ChangeEvent

Change ltem2
CMP •2,D.0' ;save .a change?
BNE Change ltem3
JSR Changes.ave
BRA ChangeEvent

Change ltem3

CMP •3,D.0' ;abandon a change?
BNE Change ltem4
JSR Display Windows ;clear text windows
BRA ChangeEvent

Change ltem4
CMP •4,D.0' ;quit?
BNE ChangeEvent ;get .another event

MOVE •5,-(SP)
....DeleteMenu ;remove Change menu

MOVE •9,D.0'
RTS ;return to options block

Change In Window
CLR.L -(SP)
JrontWindow
MOVE.L (SP)+ ,AJiJ
CMP.L Which\\"indowPtr ,A.0'

APPENDIX A 401

(continued)

402 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BNE ChangeMustActiv ate

PEA Point
....Globa IT oLoca 1

MOVE.L Point,-(SP)
BTST •shiftkey ,Modify
SNE D.0'
MOVE.B DiJ,-(SP)
MOVE.L Active T extHandle, -(SP)

;window is inactive

_ TEClick ;re-position the cursor

BRA ChangeEvent

ChangeMust Activate
JSR Se leotT exWindow
BRA ChangeEvent

ChangeSave

JSR ClearNewRecord
JSR MoveName
JSR MoveProducer
JSR MoveDate
JSR MoveRating
JSR MoveNumber

LE A Tape Array (A5), A2 ;start of Tape Array
LE A RecordCounter, A.0'
MOVE (A.0),D5 ;record number
JSR Compute Address2 ;get address ofrecord - returned in A4

LEA NewRecord(A5) ,A.0'
MOVE.L A4,A1

;source of data
;destination of data

MOVE.L •62,D.0'
...BlockMove

;move only 62 bytes so annotation • isn"t disturbed

;------------------- re-write the annotation -------------------------------
LE A AnnotRecMask,AiJ
LE A DataBuffer(A5), A 1
MOVE •256,DiJ
...BlookMove ;fill first half of buffer with blanks:

CLR.L -(SP) ;place for Chars:Handle result
MOVE .L Annotation TextHandle, -(SP)
_TEGetText ;get handle to text in Annotation record
MOVE.L (SP)+ ,A2 ;recover CharsHandle
MOVE .L (A2), AfJ ;de-referencing handle to get pointer
LE A DataBuffer(A5), A 1 ;text goes into disk buffer
MOVE .L Annotation T extHandle, A3
MOVE .L (A3). A4 ;de-reference aqain

(continued)

MOYE teLength(A4) ,D.0'
....BlockMove

LEA
MOY~
MULU
ADD
LEA
ADD.L
MOYE
MULU

RecordCounter, A.0'
(A.0) ,DS
•64,DS
•oAnnotNum ,OS
T~peArray(AS) ,A.0'
05,A.0'
(A.0) ,D.0'
•2s6,D.0'

DataBuffer(AS), A.0'

;number of characters to move
;puts annotation in disk output t>uff"r

;offset into tape array

;offset into file

Alli, ioPar amBlock+ioBuffer(A5)

APPENDIX A 403

LEA
MOYE.L
MOYE.L
MOYE
MOYE.L
MOYE
LEA
_\\'rite

•2s6 ,ioParamBlock+ioByteCount(AS) ;write 256 bytes, blanks and all
•1 ,ioParamBlock+ioPosMode(A5) ;offset is relative to beginning offile
D.0',ioParamBlock+ioPos0ffset(A5) ;offset in bytes
ffRefNum ,ioPar amBlock+ioRefNum(AS) ;file reference number
ioParamBlock(A5) ,A.0' · ·

JSR Display Windows

RTS

; ------------------- Delete Titles -----------------------------------

D~tlt 1'10YE.L Main\rfindowPtr ,-(SP)
PEA 'Delete Existing Titles'
....Set'w'Title

JSR Display Prompts
JSR Display Windows

MOYE •3,-(SP)
...De leteMenu

LEA DeleteHandle,Al
MOYE.L (Al),-(SP)
CLR -(SP)
_fnsertMenu

..pr awMenuBar

MOVE .L EditHandle ,-(SP)
MOVE •1 ,-(SP)
....Disable Item

DeleteEvent

;remove options menu from menu list

;get address for Delete menu's handle
;put handle on stack ·
;this menu will go at the end of the list
;put Delete menu into menu list

;re-draw the menu bar

MOYE.L ActiveTextHandle ,-(SP)
_TE Idle

(continued)

404 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

...Sy stem Task ;update desk accessories

CLR -(SP)
MOVE •-1 ,-(SP)
PEA EventRecord

....13etNextEvent ;get next event from queue

MOVE
CMP
BEQ

(SP)+ ,Df6
•16,Df6
DeleteEvent ;no event encountered - keep looking

MOVE
CMP
BEQ

CMP
BEQ

What,Df6
•mButDwnEvt ,Df6
De leteMouseEvent

•keyDwnEvt,Df6
DeleteKey Event

CMP •activateEvt,Df6
BEQ DeleteActivateEvent

CMP •updatEvt,Df6
BEQ DeleteUpdateEvent

;mouse button pressed

;key pressed

BRA DeleteEvent ; look for another event

Delete Act iv ateE vent
JSR Activate TextWindow
BRA DeleteEvent

De leteUpdateEvent
JSR Update T extWindows
BRA DeleteEvent

De leteKeyEvent
MOVE.B Modify ,Df6
CMP.B •1,Df6
BEQ DeleteKeyboardCommand ;command key was held down

MOVE Message+2,-(SP)
MOVE.L ActiveTextHandle ,-(SP)
_TEKey

BRA DeleteEvent

De leteKey boardCommand
CLR.L -(SP)
MOVE Message+2,-(SP)
...MenuKey ;figure out what key was pressed
BR A De letese lections

(continued)

DeleteMouseEvent
CLR -(SP)
MOVE.L Point,-(SP)
PE A 'w'hich'w'indowPtr
Jind'w'indow ;where was mouse button pushed?

MOVE (SP)+ ,DB
CNP •inMenuBar ,DB
BEQ DeleteMenuBir ;mouse button pushed in the menu bar

CMP •msys'w'indow ,DB
BEQ DeleteSysEvent ;mouse button pushed in desk accessory

CMP •inContent,DB
BEQ Deleteln'w'indo'W'

BRA DeleteEvent

De leteSy sEvent
PEA EventRecord
MOVE.L 'w'hich'w'indowPtr ,-(SP)
..SystemClick ;tet the system handle it

BRA DeleteEvent

De leteMenuBar
CLR.L -(SP)
MOVE.L Point,-(SP)
..MenuSelect

De leteSe lections
MOVE.L (SP)+ ,D2

LEA 'w'hichMenu,AB
MOVEl D2,(A9)

CLR -(SP)
JliliteMenu

MOVE 'w'hichMenu,DB

CMP •1,DfJ
BNE DeleteMenu2
JSR AppleMenu

De 1eteMenu2
CMP •2,D.0'
BNE DeleteMenu6

JSR EditMenu
CMP •s,01

;which menu?

;unhighlight the menus

;in Apple menu?

;in Edit menu?

APPENDIX A 405

(continued)

406 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BNE
JSR
BRA

De 1eteMenu6
CMP
BNE

De leteEvent
DoEditing
DeleteEvent

0 6 ,D.0'
DeleteEvent

DeleteMenuOptions
MOVE 'w'hatltem,D.0'

;system edit - has already been handled

;in Delete menu?
;get another event

CMP •1,D.0' ;Find a title?
BNE De 1ete0ption2
MOVE •1,ReturnFlag(AS)
JSR SelectOneTitle
BRA DeltteEvent

De 1ete0ption2
CMP
BNE
JSR
BRA

•2 ,D .0' ;Delete a title?
De 1ete0ption3
DoTheDelete
De leteE vent

De 1ete0ption3
CMP
BNE
JSR
BRA

•3,D.0' ;Cancel a delete?

Delete0ption4
CMP
BNE

De 1ete0ption4
Display Windows
De leteE vent

•4 ,D .0' ;Quit?
De leteE vent

MOVE •6,-(SP)
.J)eleteMenu ;remove Delete menu from menu list

MOVE •9 ,D.0'
RTS

Delete In 'w'indow
CLR.L -(SP)
Jront'w'indow
MOVE.L (SP)+ ,A.0'
CMP .L 'w'hich 'w'indowPtr, A.0'
BNE De leteMust Activate

PEA Point
....Globa IT oloca 1

MOVE.L Point,-(SP)
BTST •shiftkey ,Modify
SNE D.0'

;window is inactive

(continued)

MOVE.B D.0",-(SP)
MOVE .L Active T extHandle, -(SP)
_ TEClick ;reposition the cursor

BRA DeleteEvent

DeleteMust Activate
JSR Se lectT extWindow
BRA DeleteEvent

DoTheDelete
LEA TapeArray(A5) ,A2
LEA RecordCounter ,A.0"
MOVE (Aa),D5
ADDQ •t ,D5
JSR Compute Address2
MOVE.L A4 ,A.0"

LE A RecordCounter, A.0"
MOVE (Aa) ,D5
JSR ComputeAddress2
MOVE.L A4,A1

MOVE TotalRecords,D.0"
LEA RecordCounter ,A.0"
SUB (Aa),D.0"
MULU •64 ,D.0"
..BlockMove

LE A Tota !Records, A.0"
SUBQ •1,(Ai/)
JSR Display Windows

RTS

;start of Tape Array

;number ofrecord to be deleted
;record number of source

;get address of source

;address of destination of move

;number of bytes to move

;--------------------- Select Titles ----------------------------------

Select MOVE.L MainWindowPtr ,-(SP)
PE A 'Se le ct Titles and Annotations'
..SetWTitle

JSR DisplayPrompts
JSR Display Windows

MOVE •3,-(SP)
...De leteMenu ;remove Options menu from list

LE A Se lectHandle, A 1
MOVE.L (A1),-(SP)
CLR -(SP)
_lnsertMenu ;put Select menu after a 11 others

APPENDIX A 407

(continued)

408 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

...DrawMenuBar ;re-draw menu bar

MOVE .L EditHandle, -(SP)
MOVE •1 ,-(SP)
...Disable Item

Se lectE vent
MOVE.L ActiveTextHandle ,-(SP)
_TE Idle

....System Task ;update desk accessories

CLR -(SP)
MOVE •-1,-(SP)
PEA EventRecord
...GetNextEvent ;get next event from queue

(SP)+ ,DB
•s,Ds

MOVE
CMP
BEQ Se lectE vent ;no event encountered

MOVE What,DS
CMP •mButDwnEvt,DS
BEQ Se lectMouseEvent

CMP •key DW'nEvt ,D 18
BEQ SelectKeyEvent

CMP • activ ateEvt ,DH
BEQ Se le ct Activ ateE vent

CMP •updatEvt,DH
fst:Q Se lectUpdateEvent

BRA Se lectE vent

Select Act iv ateE vent
JSR Activate T ext\\"indow
BRA SelectEvent

Se lectUpdateEvent
JSR UpdateText\\"indows
BRA SelectEvent

SelectKey Event
MOVE.B Modify ,DB
CMP.B •1 pg

;mouse button pressed

;key pressed

;text W'indoW' needs act iv a ting

;window needs updating

BEQ SelectKeyboardCommand ;command key pressed

MOVE Message+2,-(SP)
MOVE .L Active TextHandle, -(SP)

(continued)

APPENDIX A 409

_TEKey

BRA SelectEvent

Se lectKey boardCommand
CLR.L -(SP)
MOVE Message+2,-(SP)
..MenuKey ;find out what key was pressed
BR A Se lectSe lections

Se lectMouseEvent
CLR -(SP)
MOVE.L Point,-(SP)
PEA WhichWindowPtr
J' ind'w'indow ;where was mouse button pressed?
MOVE (SP)+ ,D.0'

CMP •inMenuBar ,D.0'
SEQ SelectMenuBar ;mouse buUon pressed in menu bar

CMP •inSysWindow ,D.0'
SEQ SelectSysEvent ;mouse button pressed in desk accessory

CMP •inContent ,D .0' ;mouse button pressed in content area of text window?
BEQ Select In Windo"w'

BRA SelectEvent

Se lectSysEvent
PEA EventRecord
MOVE.L WhichWindowPtr ,-(SP)
_sy stemClick ;let the system handle it

BRA SelectEvent

Se lectMenuBar
CLR.L -(SP)
MOVE.L Point,-(SP)
...MenuSelect

Se lectSe lections
MOVE .L (SP)+ ,02

LE A WhichMenu, A.0'
MOVE.L D2,(A.0)

CLR -(SP)
..Hil iteMenu

MOVE 'w'hichMenu ,D .0'

CMP •1,D.0'

j"w'hich menu?

;unhigh light a 11 menus

(continued)

410 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BNE SelectMenu2
JSR AppleMenu

Se lectMenu2
CMP •2,D.0'
BNE SelectMenu7
JSR EditMenu

SelectMenu7
CMP •7 ,DflJ
BNE SelectEvent

Se lectMenuOptions
MOVE yt~atltem ,P.0'

CMP
BNE
MOVE
JSR

Se lect0ptions2
CMP
BNE
MOVE
JSR

•1,DS'
Se 1ect0ptions2
•1,D4
Select All ·,

•2,D.0'
Seltct0ptions3
•s,D4
Select All

;in Apple menu

;in Edit menu

;in Select menu?

;Display a 11?

;flag says "display amotations"

;Display all titles?

;flag says "don"t print annotations"

Se lect0ptions3
CMP
B!iE
MOVE
JSR

•3 ,DS' ;Display one title?
Select0ptions4
• S ,Returnflag(AS) ;return flag (ca 11 is from Select)
Se lectOne Title

Select0ptions4
GMP •4 ,DB ;Select by producer
8NE Se lect~tions5
MOVE .L ProducerTextHafldle, A 1
MOVE.L (A 1) ,e,2
MOYE telength(A2) ,DS
CMP •S,DfiJ
BEQ Se lectr;loof
MOVE •oProdueer ,D4 ;offset into record
MOYE •2g ,D6 ;number of characters in field
JSR ClearNewRecord
JSR MoveProducer
JSR Sequentia !Search

Se lect0ptions5
CMP
BNE
MOVE.L
MOYE.L

•5 ,b S' ;Select by date
Select0ptions6
DateT extHandle ,A 1
(A1),A2

(continued)

MOVE telength(A2) ,D.0'
CMP •.0',D.0'
BEQ SelectGoof
MOVE •oReleaseDate ,04
MOVE •4,D6
JSR ClearNewReoord
JSR MoveDate
JSR SequentialSearch

St 1eot0ptions6
CMP •6 ,D .0' ;Select by rating
BNE Select0ptions7
MOVE .L RatirigT extHandle, A 1
MOVE.L (A 1) ,A2
MOVE telength(A2) ,D 1lJ
CMP •.0',DS
BEQ SelectGoof
MOVE •oRating ,D4
MOVE •4,D6
JSR ClearNewRecord
JSR MoveRating
JSR Sequentia 1Search

St ltctOptions 7
CMP •7 ,DJ?J ;Select by tape number
BNE Se 1ect0ptions8
MOVE .L NumberTextHandle, A 1
MOVE.L (A1),A2
MOVE telength(A2) ,DflJ
CMP •.0',D.0'
BEQ Se lectGoof
MOVE •o T apeNumber ,D4
MOVE •4,D6
JSR ClearNewRecord
JSR MoveNurnber
JSR Sequentia1$earch

Se 1ect0ptions8
CMP
BNE

•s,D.0'
SelectEvent

MOVE •7 ,-(SP)
...DeleteMenu

MOVE •9 ,DflJ
RTS

Select ln\v'indow
CLR.L -(SP)
..Front'Ylindow
MOVE.L (SP)+ ,A.0'

;Quit

APPENDIXA 411

(continued)

412 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

CMP .L 'v/hich 'v/indovPtr, AB
BNE SelectMustActivate

PEA Point
...G~lToLooal

MOIJE.L Point,-(SP)
BTST •sMflKe\j ,Modif\I
SNE DB
MOYE .B D.0', -(SP)
MOIJE.L AotiveTextHandle,-(SP)
_TEClick

BRA SelectEvent

Se lectMustActivate
JSR SelectText'vlindov
BRA SelectEvent

Select All
RecordCounter ,ARI'
•B,(Alf) ;initialize record number

LEA
MOYE
MOYE TotalReoords ,StopNumber(AS)

AllLoop
JSR
CMP
BNE
JSR

Box LEA
ADDQ
MOYE
CMP
BEQ
JSR
CMP
BEQ
BRA

AlmostDone
JSR

Cancelled
JSR
MOYE
RTS

SelectOne Title

DisplayOneRecord
•1,D4
Box
Display Annotation
ReoordCounter ,AB
•1,(Ai/)
StopNumber(AS) ,DB
(Ail) ,D.0'
AlmostDone
DisplayDialog2
•2p1
Cancelled
Al1Loop

DisplayDialog3

Display 'v/indows
•9pg

MOIJE.L Name TextHandle ,A 1
MOYE.L (A1),A2
MOYE teLength(A2) ,D.0'
CMP •B,DB
BEQ SelectGoof

;displays "find more?· dia1og box
;did user oanoel?

;displa\js "find & wait" dia1og box

;clear text records & windows

;if text length is .0', no selection criteria

(continued)

JSR
JSR

ClearNewRecord
MoveName ;put selected tape name into NewRecord

;-----------------------------Binary Search-----------------------------

MidPoint

LEA
MOYE
SUBQ
MOYE
SUBQ
MOYE

MOYE
ADD
DIYU
AND.L
CMP
BLE
CMP
BLE

TapeArray(A5),A2
Tota lRecords ,D 1

;start of tape array

•1,D1
D1 ,D3
•1,D3
•.EJ,D2

;bottom pointer

;save last record-1 • for future reference
;top pointer

D2 ,DS ;find middle record •
D1 ,DS
•2,DS
•$.0".0".0".0FFFF ,DS ;mask off remainder
•1,DS
T opRec ;handle first two records
D5,D3
BottomRec ;handle last two records

JSR Compute Address2
MOYEM .L D 1-DS /A 1-A2, -(SP) ;save registers
CLR.W -(SP) ;space for result
MOYE.L A4, -(SP) ;pointer to record in tape array
PEA NewRecord(AS) ;pointer to search string
MOYE.W •3.0',-(SP) ;number of characters to compare
MOVE .W •3g ,-(SP) ;number of characters to compare
MOYE.W •1 s,-(SP)
_pack6 ;invoke the package
MOYE.W (SP)+ ,D.0' ;recover result
MOYEM.L (SP)+ ,D1-D5/ A 1-A2 ;restore registers

CMP •.0',D.0" ;check result of string compare
;array greater than search string
;array less than search string

BGT TopHalf
BLT BottomHalf

LEA
MOVE
JSR
MOYE
CMP
BEQ
RTS

i.:ecordCounter, AJJ
DS,(A.0)
DisplayOneRecord ;must be equal - record has been found
ReturnFlag(AS) ,D.0"
•s,D.0" ;which module called this routine?
KeepGoing ;ca 11 was from Se le ct

;ca 11 was from Change or Delete

KeepGoing
JSR
JSR
RTS

Display Dia log3 ;display find & wait dialog box
DfsplayWindows ;clear text edit windows

;return to Select menu

APPENDIX A 413

(continued)

414 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BottomHalf
MOVE 05,02 ;move top pointer down
BRA NoFindCMck

TopHalf
MOVE 05,01 ;move bottom pointer up

02,D1
NoFindCheck

CMP
BMI
BRA

NoFind ;pointers have crossed
MidPoint ;find new middle record and go again

NoFind
JSR
JSR
RTS

DisplayDialog1 ;displays "none found" dialog box
DisplayWindows ;clear screen and text edit records

;return to Select menu

TopRec MOYE
JSR
MOYE
JSR
BRA

BottomRec
MOYE
JSR
ADDQ
MOVE
JSR
BRA

•s,05
OneCheck
•1,05
OneCheck
NoFind

03,05
OneCheck
•1,03
03,05
OneCheck
NoFind

OneCheck
JSR ComputeAddress2

MOYEM.L D1-D5/A1-A2,-(SP)
CLR.\\I -(SP)
MOYE.L A4,-(SP)
PEA Ne'A'Record(A5)
MOYE.W •3.EJ,-(SP)
MOVE.\\' •3.EJ,-(SP)
MOYE.'W' •1.0,-(SP)

;space for result
;pointer to array
;pointer to search string
;number of characters to compare
;number of characters to compare

..Pack6 ;invoke the package
MOYE.'W' (SP)+ ,DB ;recover result
MOYEM.L (SP)+ ,01-05/ A 1-A2

CMP •s,os
BNE 'W'rongOne ;correct record not found

LEA RecordCounter ,AB
MOYE 05 ,(AS)
JSR DisplayOneRecord
MOVE ReturnFlag(A5) ,DB
CMP •.o pg ;where does this call originate?
BEQ OneCheckContinues ;call comes from Select

(continued)

MOVE .L (SP)+ ,D .0'
RTS

;pull extra subroutine return address from stack
;call comes from Change or Delete

OneCheckContinues
JSR DisplayDialog!
JSR Display Windows
MOVE •9 ,D.0'
MOVE.L (SP)+ ,07
RTS

;pop subroutine return address off stack
;return direct 1y to "Se le ct" routine

'v/rongOne
MOVE •9 ,D.0'
RTS ;return to Top or Bottom

SelectGoof
JSR
MOVE
RTS

Nose lectionCriteria
•9,D.0'

; -------Sequential Search for equality on Producer, Rating, Date, or Number----­
SequentialSearch

LEA
LEA
ADD.L
MOVE
SUBQ
LEA
MOVE

TapeArray(A5),A2
NewRecord(A5) ,A 1
D4,A1
Tota !Records ,D 1
•1,01
RecordCounter,A.0'
•.0',(A!OJ

Sequentia !Search 1
LE A RecordCounter, A.0'
MOVE (A!O) ,05
JSR Compute Address2
ADD.L D4,A4

;adds offset into NewRecord

;number of last records

;initialize record counter

;finds start of Tape Array record
;adds offset into TapeArray record

MOVEM.L D1 /A1 /A2,-(SP) ;save critical n19isters
CLR.'v/ -(SP)
MOVE.L A4 ,-(SP)
MOl/E.L Al ,-(SP)
MOVE.\\' 06,-(SP) ;characters to compare
MOVE.'v/ 06 ,-(SP)
MOVE.\\' •1.0',-(SP) ;IUMagString
...Pack6
MOVE.\\' (SP)+ ,D.0'
MOVEM.L (SP)+ ,01IA1 / A2 ;restore critical registers

CMP • .0' ,D .0'
BEQ Sequentia 1Disp lay

LE A RecordCounter, A.0'
CMP (A.0') ,Dl

APPENDIXA 415

(continued)

416 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

BEQ EndofArray
ADDQ •1 ,(Ail)

SequenUa !Display
MOVEM.L D1/A1/A2,-(SP)
JSR DisplayOneRecord
MOVEM.L (SP)+,01 /At /A2

LEA
CMP
BNE
JSR
JSR
MOVE
RTS

RecordCounter ,AB
(Ail) ,01
Sequentia1Display2
Disp1ayDialog3
Display"w'indovs
•9,DB

Sequentia1Display2
MOVEM.L D1 /A1 /A2,-(SP)
JSR DisplayDialog2
MOVEM.L (SP)+,Dt/A1/A2
LEA RecordCounter ,AB
ADDQ •1 ,(Ail)
BRA Sequentia1Searoh1

EndofArr<1y
JSR
JSR

MOVE
RTS

Display "w'indovs
Display Dia log 1

;last record?

;--------------------- Print Lists------------------------------------

Print MOVE.L Main"l(indowPtr ,-(SP)
PEA 'Print Titles and Annotations'
..Set"w'Title

MOVE •3,-(SP)
...DeleteMenu ;remove Options menu from list

LEA PrintHandle ,A 1
MOVE.L (A1),-(SP)
CLR -(SP)
_lnsertMenu ;put Print menu in list

MOVE .L EditHandle, -(SP)
MOVE •B,-(SP)
...Disableltem ;disable entire edit menu

..DravMenuBar ;re-drav menu bar

(continued)

PrintEvent
_system Task

CLR -(SP)
MOYE •-1,-(SP)
PEA EventRecord
....GetNextEvent

MOVE
CMP
BEQ

(SP)+,08
•8,0/iJ
PrintEvent

;update desk accessories

;get next event from queue

;no event encountered - keep checking

MOVE
CMP
BEQ

\v'hat,08
•mButOwnEvt,OliJ
PrintMouseEvent

;mouse button pressed?

CMP •keyOwnEvt,08 ;key pressed?
BEQ PrintKeyEvent

BRA PrintEvent ;look for another event

PrintKeyEvent
MOVE.B Modify ,08
CMP.B •1,DliJ ;command key pressed?
BEQ PrintKey boardCommand

BRA PrintEvent

PrintKeyboardCommand
CLR.L -(SP)
MOVE Message+2,-(SP)
...MenuKey ;what key was pressed?
BR A PrintSe lections

PrintMouseEvent
CLR -(SP)
MOVE.L Point,-(SP)
PE A 'v/hich'v/indowptr
...find'v/indow ;where was mouse button pressed?
MO\IE (SP)+ ,DliJ

CMP •;nMenuBar ,OliJ ;pressed in menu bar?
BEQ PrintMenuBar

CMP •1nsys\v'indow ,08 ;pressed in desk accessory ?
BEQ PrintSysEvent

BRA PrintEvent

PrintSysEvent
PEA EventRecord

APPENDIXA 417

(continued)

418 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

LlstlngA.1 (continued)

MOVE.L :Which 'w'indowPtr, -(SP)
....Sy stemClick ;let the system handle it

BRA PrintEvent

PrintMenuBar
CLR.L -(SP)
MOVE.L Point,-(SP)
..MenuSelect ;which menu?

PrintSelections
MOVE.L (SP)+,D2

LEA WhichMenu, AB
MOVE.L 02,(A.0)

CLR -(SP)
..Hil iteMenu ;unlightlight all menus

MOVE WhichMenu ,DB

CMP •1,DB ;in Apple menu?
BNE PrintMenu2
JSR AppieMenu

PrintMenu2
CMP •2,D.0 ;in Edit mtnu?
BNE PrintMenu8
JSR EditMenu

PrintMenu8
CMP •S,D.0" ;in Print menu?
BNE PrintEvent

PrintOptions
MOVE Whatltem,D.0

CMP •1,os ;Print all?
BNE Print0ption2
JSR PrinV.11

Print0ption2
CMP •2,0.0' ;Print a 11 titles?
BNE PrintOption::
JSR PrintA11Titles

Print0ption3
CMP •3,DPJ ;quit?
BNE PrintEvent

MOVE •S,'-(SP)
....De leteMenu ;remove Print menu (continued)

Print All

MOVE.L EditHandle ,-(SP)
MOVE •.0',-(SP)
...Enableltem ;enable entire edit menu

MOVE •9 ,0.0'
RTS

JSR PrOpen ;open printing manager
MOVE .L •iPrintSize ,0.0' ;size of print record
..1'ewHandle ;allocate heap space for print record
LEA PrintRecordHandle ,A2
MOVE .L A.0' ,(A2) ;store handle to print record

MOVE.L A.0',""(SP) ;handle back on stack
JSR PrintDefault ;fill defau It info into print record

CLR
LEA
MOVE.L
JSR
MOVE
BEQ

-(SP) ;space for boolean result
PrintRecordHandle, A2
(A2) ,-(SP)
Pr JobDia log
(SP)+ ,D.0'
PrintF inish

;draft or spooled?
;remove result
;user clicked cance 1 - close up shop

JSR Print A le rt ;te 11 user to ready the printer
CLR .L -(SP) ;space for pointer to printer port
LE A PrintRecordHandle, A2
MOVE.L (A2),-(SP)
CLR.L -(SP) ;let system allocate new port
CLR.L -(SP) ;use system 1/0 buffer
JSR prOpenDoc ;allocate custom printer port
MOVE.L (SP)+ ,PrPortPtr(A5) ;retrieve pointer

MOVE.L
MOVE.L
LEA
MOVE

• .0' ,D 7 ;initialize a record counter
• .0' ,D2 ;clear register
Tota !Records, A.0'
(A.0) ,02

AnnotAnotherPage
JSR AnnotPrintOnePage
CMP 02,07
BLT AnnotAnotherPage
MOVE.L PrPortPtr(A5), -(SP)
JSR PrCloseDoc ;close the document
BR A PrintFinish ;all done

AnnotPrintOneP age
MOVEM.L 02/D7 ,-(SP) ;save record counter
MOVE .L PrPortPtr(A5) ,-(SP) ;pointer to printer port
CLR .L -(SP) ;no sea ling
JSR PrOpenPage ;open a new page
MOVEM.L (SP)+ ,02/D7 ;restore record counters

APPENDIXA 419

(continued)

420 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE •monaco, -(SP)
_Textfont

MOVE •12,-(SP)
_TextSize

MOVEM.L 02/07 ,-(SP)
PE A Font lnfoStor age(A:5)
-6etF ont Info
MOYEM.L (SP)+ ,02/07
MOYE F ontlnfoStorage+ascent(A5) ,04
ADD Font lnfoStor age+descent(A5) ,D4
ADD Font lnfoStor age+ leading(A5) ,04 ;height of line

LEA
MOYE.L
MOYE.L
MOYE
SUB

PrintRecordHandle ,A2
(A2),A.0'
(Aft'J,A.0'
pr lnfo+rPage+bottom(Alt'J ,D6
F ontlnfoStor age+descent(A5) ,06

MOVE 04,03

JSR ClearPrintL ine
ADD D4,D3
ADO 04,03

MOVEM.L 02/07 ,-(SP)
JSR PrintHead1ngs
MOVEM.L (SP)+ ,02/07

AnnotReoordPrint
MOVE D7,Df6
MULU •64,0.0'

;de-reference to get pointer
;page bottom coordinate

;one blank 11ne
;another blank line

ADD •oAnnotNum,D.0' ;offset into tape array
LEA TapeArray(A5),A.0'
ADD D.0',A.0
MOVE (Aft'J,OS

MOVE.L •s,-(SP)
MOVE.L •256,-(SP)

;start of record in array
;retrieve annotation number

MOVE.L Annotation T extHandle, -(SP)
_ TESetSe lect
MOVE.L AnnotationTextHandle ,-(SP)
_TeCut ;clear out the text edit record

fiRefNum, A.0 LEA
MOVE
LEA
MOVE.L
MOYE.L
MOVE

(Alt'J,ioParamBlook+ioRefNum(A5) ;somehow Printing Manager trashes param block
DataBuffer(A5) ,A.0'
AS, ioP ar amBlook+ioBuffer(A5)
•256, ioP ar amBlock+ioBy teCount(A5)
•1,ioParamB1ook+ioPosMode(A5) ;read relative to start of file

(continued)

MOVE
MULU
ADD
LEA
ADD.L
MOVE
MULU
MOVE.L

D7,D5
•64,DS
•o AnnotNum ,D5
Tape Array (A5), AfiJ
D5,A.0"
(A.0) ,D.0"
8 256,D.0"
DfiJ, ioP ar amBlock+ioPosOffset(A5)

LEA ioParamBlock(A5) ,A.0'
..Read

LE A DataBuffer(AS), A.0'
MOVE.L A.0",-(SP)
MOVE.L •256,-(SP)
MOVE .L Annotation TextHandle ,-(SP)
_TE Insert

CLR.L -(SP)
MOVE.L AnnotationTextHandle ,-(SP)
_TEGetText
MOVE.L (SP)+ ,A6
MOVE.L (A6) ,A6

MOVE •4,D1
LE A Annotation TextHandle, A.0'
MOVE .L (A.0) I A.0'
MOVE.L (A.0) ,A.0'
MOVE teNLines(A.0) ,D.0'
ADD DfiJ,Dl

;number of current record
;offset into tape array

; A.0" has location of annot. number
;retrieve annot. number

;offset into file

;annotation now in text edit record

;9et handle to annotation text
;retrieve handle
;de-reference to get pointer

;get handle

APPENDIX A 421

;de-reference to get pointer
;number of lines of text
;tota 1 number of. lines in this entry

MULU
ADD
CMP
BLT
BRA

D4,D1
D3,D1
D6,D1
Enou9hRoom
Pa9efinish

;where you will end up if this is printed
;will this one fit on the page?

EnoughRoom
MOVEM.L D2/D7 ,-(SP)
JSR PrintOneRecord
JSR ClearPrintl ine
ADD D4 ,D3 ;9et a blank line
MOVEM.L (SP)+ ,D2/D7

LE A Annotation T extHandle, A2
MOVE.L (A2) ,A2
MOVE.L (A2),A2
MOVE teNLines(A2) ,D.0' ;get number of lines again
MOVE •.a,D1

(continued)

422 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

Anothtrl ine
MO\IEM.L 02/04 ,-(SP)
AOOQ •1,01

;save 04 (line height) & 02 (total records)
;look at next line

Lastline

CMP 01,0.0'
BEQ Lastl ine
SUBQ •1,01
MOVE •2,04
MULU 01 ,04
MOVE telines(A2 ,04) ,02
AOOQ •2,04
MOVE tel ines(A2 ,04) ,05
SUB 02,05
MOVE •2.0',-(SP)
MO\IE 03 ,-(SP)
Jo'loveTo

;at last line?

;restore current line •

;line starts are stored as integers
; line start of this line

;start of next line
;05 has number of bytes
;annotation is indented 2.0' pixels

MOVEM.L D.9/D1 /D7/A2/A6,-(SP)
MO\IE.L A6,-(SP) ;pofnter to text
MOVE D2,-(SP) ;starting position
MO\IE 05,-(SP) ;number of bytes to print
..DraYText
MOVEM.L
MOVEM.L

(SP)+,OS'/01 /07/A2/A6
(SP)+ ,D2/D4

ADOQ •1,01
ADD 04P3
BRA Anotherline

;increment line counter
;space to next line

SUBQ •1,01
MO\IEM.L
MULU •2,01

;restore current line •
01 /03/07/ A2/A6,-(SP)

MOVE telines(A2,01)p5
MOVE •257 ,D.0'
SUB 05,0S'

MOVE •w,-(SP)
MOVE D3,-(SP)
Jo'loveTo

;start of last line
;to ta 1 characters + 1

;characters left to print

MOVE.L A6,-(SP)
MOVE 05,-(SP)
MOVE OS',-(SP)
...Drawl ext
MOVEM.L
MOVEM.L

(SP)+ ,D1 /03/07 / A2/ A6
~;:;:::-)+ ,02/04

ADD D4,03

JSR ClearPrintline
ADO 04,03
ADD D4,D3

;one blank line
;another blank line

(continued)

I

AOOQ
CMP
BEQ
BRA

•1,01
02,07
Pagefinish
AnnotRecordPrint

;a 11 records printed

; ------------------- print without annotations -------------------------

Print A 11Titles
JSR PrOpen ;open printing manager (on disk - not in ROM)
MOVE .L •iPrintSize ,Of!J ;size of print record
....Ne'W"Handle ;allocate heap space for print record
LEA PrintRecordHandle ,A2
MOYE .L AS,(A2) ;store handle to print record

MOVEl AS,-(SP) ;put handle on stack
JSR PrintOefault ;fill default info into print record

CLR -(SP) ;space for boolean result
LEA PrintReoordHandle ,A2
MOVE.L (A2),-(SP)
JSR. PrJobDialog
MOYE (SP)+ ,Of!J
BEQ Printfinish

;draft or spooled?
;remove result
;user clicked CANCEL - must close up shop

JSR PrintAlert ;tell user to ready the printer
CLR.L -(SP) ;space for pointer to printer port
LEA PrintRecordHandle ,A2
MOYE.L (A2),-(SP)
CLR.L -(SP) ;let system allocate new port
CLR.L -(SP) ;use system 1/0 buffer
JSR prOpenDoc ;allocate custom printer port
MOYE.L (SP)+ ,PrPortPtr(A5) ;retrieve pointer

MO\IE.L •s,07 ;initialize a record counter
MOYE.L •s,02 ;clear out register
LEA TotalRecords ,Af!J
MOVE (Ag") ,D2

AnotherPage
JSR PrintOnePage
CMP 02,07
BLT AnotherPage
MO\IE.L PrPortPtr(A5),-(SP)
JSR PrCloseDoc ;close the document

PrintF inish
MO\IE.L •f!J,DB ;clear out register
LEA PrintRecordHandle ,A2
MOYE.L (A2),Af!J
MOYE.L (Ag"),AS ;get pointer
MOVEB prJob+bJDocLoop(Ag") ,DS
BEQ Closeup ;draft printing was done

APPENDIX A 423

(continued)

424 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

Closeup

LEA
MOVE.L
CLR.L
CLR.L
CLR.L
PEA
JSR

PrintRecordH.andle ,A2
(A2) ,-(SP)
-(SP) ; let spooler set up its own printing port
-(SP) ;let spooler use its own buffer
-(SP) ; let spooler use its own device buffer
PrinterStatusRec(A5)
PrPicF ile ;image and print spoo 1 file

MOVE .L PrintRecordHandle, A/J
...DisposHandle ;free space taken by print record

JSR
MOVE
RTS

PrClose
•9 ,D/J

;close print manager

PrintOnePage
MOVEM.L D2/D7 ,-(SP) ;save record counter
MOVE .L PrPortPtr(A5), -(SP) ;pointer to printer port
CLR .L -(SP) ;no sea ling
JSR PrOpenP age ;begin a new page
MOVEM.L (SP)+ ,D2/D7 ;restore record counter
MOVE •monaco, -(SP)
_ T extF ont ;printing will be in monaco font

MOVE •12,-(SP)
_TextSize

MOVEM.L D2/D7,-(SP)
PEA FontlnfoStorage(AS) ;pointer to font info record
...GetFontlnfo ;font characteristics needed to calculate end of page
MOVEM.L (SP)+ ,D2/D7
MOVE Font lnfoStor age+ ascent(AS) ,D4
ADD Font lnfoStor age+descent(AS) ,D4
ADD Font lnfoStor age+ leading(AS) ,D4 ;calculates height of line

LEA
MOVE.L
MOVE.L
MOVE
SUB

MOVE

JSR
ADD
ADD

PrintRecordHandle ,A2
(A2) ,A!J
(Am,Af6
pr lnfo+rP age+bottom(Afif"J ,D6
Font lnfoStor age+descent(AS) ,D6

D4,D3

ClearPrintL ine
D4,D3
D4,D3

MOVEM.L D2/07 ,-(SP)
JSR PrintHeadings
MOVEM.L (SP)+ ,D2/D7

;get pointer from handle
;page bottom coordinate
;ad just for font descent

;initia 1 vertica 1 position

;blank line
;blank line

(continued)

RecordPrint
MOVEM.L 02/07 ,-(SP)
JSR PrintOneRecord
MOVEM.L (SP)+ ,02/07
AOOQ •1,07
CMP 02,07
BEQ PageFinish
CMP 06,03

;a 11 records printed - close up shop
;at bottom of page?

BLT RecordPrint ;not at bottom - print another record

PageFinish
MOVEM.L 02/07 ,-(SP) ;save record counter
MOVE.L PrPortPtr(A5) ,-(SP)
JSR PrCloseP age
MOVEM.L (SP)+ ,02/07 ;restore record counter
RTS

ClearPrintline ;fill print line with blanks
LE A PrintL ineMask, Allf
LEA Printline(A5) ,A 1
MOVE •11l12,Dllf
..BlockMove

MOVE .B • 1 ss ,PrintL ine(A5)

RTS

PrintHeadings
LE A P ageHead, Allf
LEA Printline+41lf(A5) ,A 1
MOVE •11,Dllf
..BlockMove
MOVE •llJ,-(SP)
MOVE D3,-(SP)
....Move To
MOVEM.L D1 /D2/D7 ,-(SP)
PEA Printline(A5)
...Dr awString
MOVEM.L (SP)+ ,Dl /D2/D7
ADD D4,D3

JSR ClearPrintline
ADD D4,D3
ADD D4,D3

MOVE •4,-(SP)
_TextFace
LEA TitleHead,AllJ
LE A Printline+ 12(A5), A 1
MOVE •S,D.0"
..BlockMove

;set length of print line

;blank line
;blank line

;und.erline the column headings

APPENDIX A 425

(continued)

426 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

LEA ProducerHead,A.0
LEA Printline+44(AS) ,A 1
MOVE •s,D.0
LE A DateHead, AS
LEA PrintL ine+66(A5), A 1
MOVE •4,DS
-81ockMove

LE A RatingHead, A.0
LE A Printline+ 72(AS) ,A 1
MOVE •4,og
..BlockMove

LEA NumberHead,A.0
LEA Printline+ 78(AS) ,A 1
MOVE •4,DS
..BlockMove

MOVE •.e,-(SP)
MOVE D3,-(SP)
.J1oveTo
MOVEM.L D1 /D2/D7 ,-(SP)
PE A Printline(AS)
..Drawstring
MOVEM.L (SP)+ ,D1 /D2/D7

ADD D4,D3

MOVE •.e,-(SP) ;back to norma 1
_TextFace

JSR ClearPrintL ine
ADD D4 ,D3 ;blank line

RTS

PrintOneRecord
JSR
LEA

ClearPrintL ine
TapeArray(AS),A2

MOVE.L D7 ,-(SP)
MOVE D7,DS
JSR ComputeAddress2
MOVE.L (SP)+ ,D7

MOVE.L A4 ,AS
LE A Printlihe+ 1 2(AS), A 1
MOVE •36,D!J
-81ockMove

MOVE .L A4, AfiJ
ADD .L •oProducer, A.0

;save record counter

;address returned in A4
;restore record counter

;start of record

;moves T apeName

(continued)

LEA Printline+44(A5) ,A 1
MOVE •2.0',D.0'
...BlockMove
MOVE .L A4, A.0'

;moves Producer

ADD .L •oRe leaseDate, A.0'
LEA PrintLine+66(A5) ,A 1
MOVE •4 ,D.0'
...BlockMove ;moves Date

MOYE .L A4, A.0
ADD .L •oRating, A.0'
LE A Printliile+ 72(A5) ,A 1
MOVE •4 ,D.0'
...BlockMove ;moves Rating

MOYE.L A4 ,A.0"
ADD .L •o T apeNumber, A.0'
LE A PrintL ine+ 78(A5), A 1
MOYE •4,D.0'
...BlockMove ;moves Tape Number

MOYE •S",-(SP)
MOVE D3,-(SP)
J1oveTo
MOVEM.L Dl /D2/D7 ,-(SP)
PEA Printline(A5)
....Drawstring
MOYEM.L (SP)+ ,DI /D2/D7

ADD D4,D3

RTS

Print Alert
CLR
MOYE
CLR.L
_Alert
MOVE

RTS

-(SP)
•5 ,-(SP)
-(SP)

(SP)+ ,DfiJ

;space for integer result
;alert ID
;use st~ndard filter procedure

;pop result

; ----:------------------- Set up the mam menu -------------------------

MainMenuear
LEA
MOYE.L
CLR

AppleHandle, A 1
(A 1),-(SP)
-(SP)

_JnsertMenu

LE A EditHandle , A 1
MOVE.L (A 1) ,-(SP)

;Put handle on stack again
;shows that this menu is after a 11 others
;Puts menu in list

;Put handle on stack again

APPENDIXA 427

(continued)

428 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

CLR -($P)
_lnsertMenu

ReDr awMainMenu
LE A Options Handle, A 1

;Put menu after the first one
;Put menu in list

MOVE.L (Al),-(SP) ;Put handle on stack again

CLR -(SP) ;This menu is after the other two
_lnsertMenu ;Put menu in list

....Dr awMenuBar
RTS

;Dr aw the menu bar

; ------------- Make the text windows visible --------------------------

Display Windows
MOVE.L Annotation'W'indowPtr ,-(SP)
....5e lect'W'indow
MOVE.L Annotation'W'indowPtr ,-(SP)
...SetPort
MOVE.L #.IJ,-(SP)
MOVE.L •256,-(SP)
MOVE.L AnnotationTextHandle ,-(SP)
_ TESetSe le ct ;select a 11 the text in the window
MOVE.L AnnotationTextHandle ,-(SP)
_ TECut ;cut out text from previous use

MOVE .L AnnotationWindowptr ,-(SP)
SF -(SP)
....HiliteWindow ;get rid of high lighting in this window

MOVE.L NumberWindowPtr ,-(SP)
...Se lect'vfindow
MOVE.L NumberWindowPtr ,-(SP)
...SetPort
MOVE.L •s,-(SP)
MOVE.L 2.0',-(SP)
MOVE .L NumberT extHandle, -(SP)
_TESetSelect
MOVE .L NumberT extHandle ,-(SP)
_TECut

MOVE .L RatingWindowPtr, -(SP)
...Se lectWindow
MOVE.L Rating'vfindowPtr ,-(SP)
...Set Port
MOVE.L •.1J,-(SP)
MOVE.L •4 ,-(SP)
MOVE.L RatingTextHandle ,-(SP)
_TESetSelect
MOVE .L RatingTextHandle, -(SP)
_TECut

(continued)

MOVE.L Date'vi'indowPtr ,-(SP)
-8e lectWindow
MOVE.L Date'vi'indowPtr ,-(SP)
-8etPort
MOVE .L •g ,-(SP)
MOVE.L •5,-(SP)
MOVE.L DateTextHandle ,-(SP)
_TESetSe lect
MOVE.L DateTextHandle ,-(SP)
_TECut

MOVE .L ProducerWindowPtr, -(SP)
-8e lectWindow
MOVE.L ProducerWindowPtr ,-(SP)
-8etPort
MOVE.L •g,-(SP)
MOVE.L •22,-(SP)
MOVE.L ProducerTextHandle ,-(SP)
_ TESetSelect
MOVE.L ProducerTextHandle ,-(SP)
_TECut

MOVE.L $.0'.0'.0'.0'.0'1.0'B ,D.0' ;mask to remove activate events
....FlushE vents

MOVE.L NameWindowPtr ,-(SP)
-8e lectWindow ;name window is activated at start
MOVE.L NameWindowPtr ,-(SP)
-8etPort
MOVE.L a .0', -(SP)
MOVE.L •32,-(SP)
MOVE.L NameTextHandle ,-(SP)
_TESetSelect
MOVE.L NameTextHandle ,-(SP)
_TECut

LEA Active T extHandle, A.0'
MOVE .L Name TextHandle ,(Aft) ;for TE Idle

RTS

; ----------------- Select the appropriate text window -------------------­
Se lectT extWindow

LE A Active Text Handle, A 1
MOVE .L Which WindowPtr, A.0'

CMP.L
BNE
MOVE.L
BRA

Name WindowPtr, A.0'
Select!
NameTextHandle ,(A 1)
Select6

;check to idenUfy specific window

;pass appropriate handle to TE Idle

APPENDIX A 429

(continued)

430 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

Select! CMP.L
BNE
MOVE.L
BRA

ProducerW'indowPtr ,AJJ
Select2
Producer T extHandle ,(A 1)
Select6

Se 1ect2 CMP .L
BNE
MOVE.L
BRA

Date \v'indowPtr , A!lJ
Select3
Date T extHandle ,(A 1)
Select6

S1.> 1ect3 CMP .L
BNE
MOVE.L
BRA

Select4 CMP.L
BNE
MOVE.L
BRA

RatingW'indowPtr .AJJ
S1.>lect4
Rating Text Handle,(A 1)
Select6

NumberW'indowPtr, A!lJ
Selects
NumberT extHandle ,(A 1)
Select6

Select5 CMP.L Annotation'w'indowPtr ,A.0'
BNE Select 7 ;not a text window
MOVE .L Annotation T extHandle ,(A 1)

Select6 MOVE.L W'hichW'indowPtr ,-(SP)
-5e lect'y{indow

Select7 RTS

; --------- Handle activate events in text windows ------------------­
Activate TextW'indow

MOVE .L Message, A.0' ;get pointer to window which posted event
MOVE Modify ,D!lJ
BTST • activeflag ,D !lJ ;activate bit set?
BEQ De Activate ;if not set, window was deadivated

Activatel
CMP .L NameW'indowPtr ,A!lJ ;name window event?
BNE Activate2
MOVE.L NameTextHandle ,-(SP)
_TE Activate
BRA Activate99

Activate2
CMP .L ProducerWindowPtr , A!lJ
BNE Activate3
MOVE.L ProducerTextHandle ,-(SP)
_TE Activate
BRA Activate99

Activate!
CMP .L DateW'indowPtr ,AJJ
BNE Activate4

(continued)

MOVE.L DateTextHandle ,-(SP)
_TE Activate
BRA Activate99

Activate4
CMP .L RatingWindowPtr ,AH
BNE Activates
MOVE.L RatingT extHandle, -(SP)
_TE Activate
BRA Activate99

Activates
CMP.L NumberWindowPtr ,AH
BNE Activate6
MOVE.L NumberTextHandle ,-(SP)
_TE Activate
BRA Activate99

Activate6
CMP .L Annotation \'/indowPtr, AH
BNE Activate98 ;not one of our text windows
MOVE .L Annotation T extHandle ,-(SP)
_TE Activate

Activate99
MOVE .L Message, -(SP) ;make this the current gr afport
--5etPort

Activate98
RTS

De Activate
CMP .L NameWindowPtr, AH
BNE De Activate 1
MOVE.L NameTextHandle ,-(SP)
_T eDeActivate
RTS

De Act iv ate 1
CMP .L Producer'w'indowPtr, AH
BNE DeActivate2
MOVE.L ProducerTextHandle ,-(SP)
_ TeDe Activate
RTS

DeActivate2
CMP .L DateWindowPtr ,AH
BNE De Activate!
MOVE .L Date TextHandle ,-(SP)
_ TeDeActivate
RTS

APPENDIX A 431

(continued)

432 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

DeActivate3
CMP .L RatingWindowPtr, AIJ
BNE De Activ ate4
MOVE .L RatingT extHandle ,-(SP)
_ TeDe Activate
RTS

DeActivate4
CMP .L NumberWindowPtr ,AIJ
BNE De AcUv ate5
MOVE.L NumberTextHandle,-(SP)
_TeDeActivate
RTS

De Activ ate5
CMP .L AnnotationWindowPtr ,AIJ
BNE DeActivate6 ;not a text window
MOVE .L Annotation T extHandle ,-(SP)
-TeDe Activate
RTS

DeActivate6
RTS

; ------------------------ Update Text Windows -------------------------­
; This updates all windows, regardless of whioh one was active
Update T ext'W'indows

MOVE.L MainWindowPtr ,-(SP)
..BeginUpdate
MOVE.L Main'W'indowPtr ,-(SP)
....SetPort
PEA MainWindowRect
....EraseRect
JSR Display Prompts
MOVE.L MainWindowPtr, -(SP)
....EndUpdate

MOVE .L NameWindowPtr, -(SP)
..BeginUpdate
MOVE.L NameWindowPk ,-(SP)
....SetPort
PE A NameViewRect
....EraseRect
PE A NameViewRect
MOVE .L Name TextHandle ,-(SP)
_TEUpdate
MOVE.L NameWindowPtr,-(SP)
....EndUpdate

MOVE.L Producer'W'indowPtr ,-(SP)
..BeginUpdate

;re-draw window·s contents

(continued)

MOVE.L Producer'w'indowPtr ,-(SP)
....SetPort
PE A ProducerViewRect
....Era:s:eReot
PEA ProducerViewRect
MOVE.L ProducerTextHandle ,-(SP)
_TEUpdate
MOVE.L ProduoerWindowPtr ,-(SP)
....EndUpdate

MOVE.L DateWindowPtr ,-(SP)
...BeginUpdate
MOVE.L Date'w'indowPtr ,-(SP)
...Set Port
PE A DateViewRect
....ErueReot
PEA DateViewRect
MOVE .L Date TextHandle ,-(SP)
_TEUpdate
MOVE.L DateWindowPtr ,-(SP)
....EndUpdate

MOVE .L RatingWindowPtr, -(SP)
...BeginUpdate
MOVE.L RatingWindowPtr ,-(SP)
...Set Port
PEA RatingViewRect
....ErueReot
PEA Rat1ngViewRect
MOVE.L RatingTextHandle ,-(SP)
_TEUpdate
MOVE.L Rating'w'indowPtr ,-(SP)
....EndUpdate

MOVE.L NumberWindowPtr ,-(SP)
...BeginUpdate
MOVE.L NumberWindowPtr ,-(SP)
....SetPort
PE A NumberViewRect
....Era:s:eReot
PE A NumberViewRect
MOVE.L NumberTextHandle ,-(SP)
_TEUpdate
MOVE.L NumberWindowPtr, -(SP)
....EndUpdate

MOVE.L Annotat1onW'1ndowPtr ,-(SP)
...BeginUpdate
MO\IE.L AnnotationW'indowPtr ,-(SP)
....SetPort
PEA AnnotationViewRect
....Era:s:eReot

APPENDIX A 433

(continued)

434 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

PE A AnnotationViewRect
MOVE .L Annotation T extHandle, -(SP)
_TEUpdate
MOVE.L Annotation'WindowPtr ,-(SP)
...EndUpdate

RTS

;----------------- Display prompts for text entry windows --------------­
DisplayPrompts

MOVE •sysFont,-(SP)
_TextFont

PEA Name Title
MOVE.L •11,-(SP)
PE A NamePromptBox
MOVE •-t ,-(SP)
_TextBox

PEA Producer Title
MOVE.L •22,-(SP)
PEA ProducerPromptBox
MOVE •-1 , -(SP)
_TextBox

PEA Date Title
MOVE.L •17 ,-(SP)
PE A DatePromptBox
MOVE •-1 , -(SP)
_TextBox

PEA Ratin9Title
MOVE.L •s ,-(SP)
PE A Ratin9PromptBox
MOVE •-1,-(SP)
_TextBox

PEA Number Title
MO\IE.L •13,-(SP)
PE A NumberPromptBox
MOVE •-1,-(SP)
_TextBox

RTS

;text to print
;number of characters to print
;rectan9 le where text should be printed
;to right justify text

; -------------- Do ttie text edit functions ----------------------­
DoEditing

MOVE Whatltem,D.0" ;9et set to fi9ure out what was selected

CMP •3 ,D.0" ;cut?
BNE DoEditing 1
MOVE.L ActiveTextHandle ,-(SP)

(continued)

_TECut
RTS

D0Editin91
CMP •4 ,D.0' ;copy?
BNE D0Editin92
MOVE.L ActiveTextH.andle ,-(SP)
_TECopy
RTS

D0Editin92
CMP •5 ,D .0' ;p.aste?
BNE DoEditing3
MOVE.L ActiveTextH.andle ,-(SP)
_TEP.aste
RTS

D0Editin93
CMP •6 ,D.0' ;cle.ar?
BNE D0Editin94 ;not .a reco9niz.ab le item
MOVE.L ActiveTextH.andle ,-(SP)
_TEDelete

DoEditin94
RTS

; ----------------- Cle.ar the NewRecord stor .age .are.a ----------------------­
Cle.arNewRecord

LE A NewRecordM.ask, A.0' ;a II blanks
LE A NewReoord(A5), A 1
MOVE.L •64 ,p.0'
...BlockMove
RTS

; --------------- Move dat.a from text edit records to dat.a record ----------­
MoveN.ame

CLR.L -(SP) ;space for CharsH.andle result
MOVE.L N.ame TextHandle ,-(SP)
_TEGetText ;get handle to text in N.ame edit record
MOVE.L (SP)+ ,A2 ;recover Ch.arsH.andle
MOVE.L (A2) ,A.0' ;source pointer for block move
LE A NewRecord+o T .apeName(A5), A 1 ;destination of block move
MOVE .L N.ame TextH.andle ,A3
MOVE.L (A3) ,A4
MOVE teLength(A4) ,D.0' ;number of ch.ar acters to move
...BlockMove
RTS

MoveProducer
CLR.L -(SP)
MOVE.L ProducerTextHandle ,-(SP)
_TEGetText

APPENDIX A 435

(continued)

436 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE.L (SP)+ ,A2
MOVE.L (A2),AS
LEA· NewRecord+oProducer(A5) ,A 1
MOVE .L ProducerT extHandle, A3
MOVE.L (A3) ,A4
MOVE teLen9th(A4) ,DB
..Block Move
RTS

MoveDate
CLR.L -(SP)
MOVE.L DateTextHandle ,-(SP)
_TEGetText
MOVE.L (SP)+ ,A2
MOVE.L (A2),AS
LE A NewRecord+oReleaseDate(AS), A 1
MOVE.L DateTextHandle ,A3
MOVE.L (A3),A4
MOVE teLen9th(A4) ,D .0"
...BlockMove
RTS

MoveRatin9
CLR.L -(SP)
MOVE.L Ratin9TextHandle ,-(SP)
_TEGetText
MOVE.L (SP)+ ,A2
MOVE .. L (A2), AS
LE A NewRtcord+oRatin9(AS) ,A 1
MOVE.L Ratin9TextHandle ,A3
MOVE.L (A3),A4

. MOVE teLen9th(A4) ,DB
...BlockMove
RTS

Mov1Number
CLR.L -(SP)
MOVE.L NumberTextHandle ,-(SP)
_TEGetText
MOVE.L (SP)+ ,A2
MOVE .L (A2), A.0"
LE A NewRecord+o TapeNumber(AS), A 1
MOVE.L NumberTextHandle ,A3
MOVE.L (A3) ,A4
MOVE teLen9th(A4) ,D.0"
...BlockMove
RTS

; --------------- Alert box processing for no selection criteria-----------­
NoSe lectionCriteria

CLR -(SP) ;space for alert Item result
MOVE •4 ,-(SP) ;alert item ID (continued)

MOVE.L •g,-(SP)
_Alert

;use standard filter procedure

MOVE (SP)+ ,DB ;pull result from stack
RTS

; ----------------Display one record from array ----------------------­
Display OneRecord

JSR Display'\'/indows ;clears out text edit records
LE A RecordCounter, A.0'
MOVE (A.0) ,DS
MULU •64,D5

MOVE.L Name'\'/indowPtr ,-(SP)
...Set Port
LEA TapeArray(A5),A.0'
ADD D5,A.0"
MOVE.L A.0',-(SP)
MOVE.L •3.0",-(SP)
MOVE.L NameTextHandle ,-(SP)
_TE Insert

MOVE.L Producer\\"indowPtr ,-(SP)
...SetPort
LEA TapeArray(A5) ,A.0"
ADD D5,A.0'
ADD.L •oProducer ,A.0"
MOVE.L A.0',-(SP)
MOVE.L •w,-(SP)

;pointer to text
;•of characters to get
;edit record which will get characters
;incorporate text into record

MOVE.L ProducerTextHandle,-(SP)
_TE Insert

MOVE.L Date\\"indowPtr ,-(SP)
...SetPort
LEA TapeArray(AS),A.0"
ADD D::S,AB
ADD.L •oReleaseDate ,A.0'
MOVE.L A.0',-(SP)
MOVE.L •4,-(SP)
MOVE .L Date TextHandle, -(SP)
_TE Insert

MOVE.L Rating'\'/indowPtr ,-(SP)
...SetPort
LEA TapeArray(AS) ,A.0"
ADD D5,A.0'
ADD.L •oRating,A.0"
MOVE.L A.0',-(SP)
MOVE.L •4 ,-(SP)
MOVE.L RatingTextHandle ,-(SP)
_TE Insert

APPENDIX A 437

(continued)

438 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

MOVE.L Number"w'indowPtr ,-(SP)
...SetPort
LEA TapeArray(AS) ,A.0'
ADD DS,A.0'
ADD .L •o T apeNumber, A.0'
MOVE.L A.0',-(SP)
MOVE.L •4,-(SP)
MOVE .L NumberTextHandle, -(SP)
_TE Insert

RTS

; ------------- Retrieve and display an annotation -----------------------­
Display Annotation

LEA DataBuffer(AS),A.0'
MOVE .L A.0', ioP ar amBlock+ioBuffer(A5)
MOVE .L •2s6, ioP ar amBlock+ioBy teCount(AS)
MOVE •1,ioParamBlock+ioPosMode(AS) ;read relative to start of file

LEA
MOVE
MULU
ADD
LEA
ADD.L
MOVE
MULU
MOVE.L
LEA
...Read

RecordCounter, A.0'
(Ag'J,DS
•64,DS
•oAnnotNum ,DS
TapeArray(AS) ,A.0'
DS,A.0'
(Ag'J,D.0'
•2s6,D.0'
D.0', ioP ar amBlock+ioPosOffset(AS)
ioParamBlock(A5) ,A.0'

MOVE.L AnnotaUon"w'indowPtr ,-(SP)
...SetPort

LE A DataBuffer(AS) ,A.0'
MOVE.L A.0',-(SP)
MOVE.L •256 ,-(SP)
MOVE.L AnnotationTextHandle ,-(SP)
_TE Insert

RTS

;number of current record
;offset into tape array

; A.0' has location of annot. number
;retrieve annot. number

;offset into file

; -----------Display and handle "'Find and Wait"' dialog box--------------­
Display Dia log3

CLR.L -(SP) ;space for dialog pointer
MOVE •3,-(SP) ;dialog ID
PEA Dialog'Vt'indRec(A5) ;storage for dialog record
MOVE.L •-t ,-(SP) ;put this dialog box in front
....GetNewDia log

MOVE.L (SP)+ ,Dialog'Vt'indPtr(A5) ;recover dialog pointer
(continued)

Dialog3a

MOVE.L Dialog\v'indPtr(AS),-(SP)
...SetPort

MOVE.L •.0',-(SP)
PE A \v'hat Item
....Moda lDia log

MOVE
CMP
BNE

\v'hatltem,D.0'
•okButton ,D.0'
Dialog3a

;use standard event filter
;place to put number of item selected
;let system monitor dialog box

;OK button pressed?

MOVE.L Dialog\v'indPtr(AS) ,-(SP) ;put dialog pointer on stack
_c1oseDialog ;remove dialog

RTS

; ------------Display and handle "Find More?" dialog box---------------­
Display Dia log2

Dialog2a

Dtalog2b

CLR .L -(SP) ;space for dialog pointer
MOVE •2,-(SP) ;for dialog box •2
PEA Dialog\'/indRec(AS) ;storage for dialog record
MOVE.L •-1 ,-(SP) ;put dialog box in front
-6etNewDia log

MOVE.L (SP)+ ,Dialog\'/indPtr(AS) ;recover pointer

MOVE.L Dialog\'/indPtr(AS),-(SP) ;put back on stack
...SetPort

MOVEl •.0',-(SP)
PEA \'/hatltem
....Moda !Dialog

MOVE \'/haUtem,07
CMP •okButton,07
BEQ Dialog2b

CMP •cance1Button,D7
BNE Dia 1og2a

;use standard filter procedure
;space for item that was pressed

MOVE .L Dialog\'/indPtr(AS), -(SP)
_cioseDia log

RTS ;if cancelled, returns to Select menu control

; ------------Display and handle "No Find" dialog box-------------------­
DisplayDialog 1

CLR.L -(SP)
MOVE •1,-(SP)

;space for dialog pointer
;this is dialog box 1

APPENDIX A 439

(continued)

440 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued}

PEA Dialog\v'indRec(A5) ;storage for dialog record
MOVE.L •-1 ,-(SP) ;put dialog box in front
.JJetNewDia log ;get the dialog box

MOVE.L (SP)+ ,Dialog\v'indPtr(A5) ;recover pointer

MOVE.L Dialog\v'indPtr(A5) ,-(SP) ;put back on stack
...SetPort

Dialog1 a
MOVE.L •g,-(SP)
PE A What Item
J1oda lDia log

MOVE Whatltem,D.0'
CMP •okButton ,DfJ
BNE Dialog1 a

;use standard filter procedure
;space for item that was pressed

MOVE.L Dialog\v'indPtr(A5) ,-(SP)
.£1oseDia log

RTS

; ----------Pointers and storage for the seven window records--------------

Main 'v/indowPtr DC.L .0'
Name\v'indowPtr DC.L .0'
ProducerWindowPtr DC.L fJ
Date\v'indowPtr DC.L fJ
RatingWindowPtr DC.L fJ
NumberWindowPtr DC.L .0'
Annotation\v'indowPtr DC.L .0'

MainWindowStor age DS WindowSize
NameWindowStor age DS WindowSize
ProducerWindowStorage DS WindowSize
Date WindowStor age DS WindowSize
Rating'vtindowStor age DS WindowSize
NumberWindowStor age DS WindowSize
Annotation'vtindowStor age DS WindowSize

Which WindowPtr DC.L .0' ;place for F ind'vtindow result

; ---------------- Data Structures for T extEdit -------------------

NameViewRect DC 1,1,19,249
NameDestRect DC 1,1,19,249
Name T extHandle DC.L fJ
NamePromptBox DC 12,11i5,32,2fi5.0'
Name Title DC 'Tape Name : '

(continued}

APPENDIXA 441

ProducerVieW'Rect DC 1,1,19,175
ProducerDestRect DC · 1,1,19,175
ProducerT extHandle DC.L /(j

ProducerPromptBox DC 37'1 .0',57 ,2.0'.0'
Producer Title DC 'Producer /D;stributor : '

DateVieW'Rect DC 1'1'19 ,42
DateDestRect DC 1'1'19 ,42
Date T extHandle DC.L /(j

DatePromptBox DC 62, 1 .0',82,2.0'/8
Date Title DC 'Date of Release:'

RatingVieW'Rect DC 1,1,19,28
RatingDestRect DC 1,1,19,28
RatingT extHandle DC .L /(j

RatingPromptBox DC 87, 1B,1.07 ,2B.0'
Rating Tit le DC 'Rating:'

NumberVieW'Rect DC 1,1,19,35
NumberDestRect DC 1,1,19,35
NumberTextHandle DC.L g

NumberPromptBox DC 112,1.0',132,2.0'/8
Number Title DC 'Tape Number:'

AnnotationVieW'Rect DC 4 ,3 '72 ,46/iJ
AnnotationDestRect DC 4,3,72,46/8
Annotation TextHandle DC.L .0'

ActiveTextHandle DC.L /iJ ;holds text handle of active text W'indo\¥' for TEldle
Main WindoW'Rect DC .0' ,B ,24 /iJ, 4 9 .0' ;for Er aseRect
; ---------------- Defintions for trapping ev~mts -----------------

everyEvent DCl $.0S.0.9FFFF
EventRecord ;W'here GetNextEvent Puts its result
What DC .0
Message DC 1 B
When DC.L .0
Point DC.L B
Modify DC .0

; ---------- These are the handles for the eight menus -------------

AppleHandle DC.L .0
EditHandle DC.L 16
OptionsHandle DC.L .0
EnterHandle DC.L g
Change Handle DC.L .0
De leteHandle DC.L g
Se lectHandle DC.L g

PrintHandle DC.L g

(continued)

442 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.1 (continued)

.'w'hichMenu DC a
'w'hatltem DC .0'

Desk AccName DCB.'w' 16,.0'

Tape Array DS.B 64.0'.0'

NewRecord DS.B 64

NewRecordMask DCB.B 64,""

TotalRecords DC .0'

AnnotRecMask DCB.B 256,""

LastAnnotNumb DC .0'

RecordCounter DC a

StopNumber DS.'w'

Dia log'w'indRec OS d'w'indlen
Dia log'w'indPtr DS.L 1

; --------------- Data structures and storage for file operations ------------
DataBuffer DS.B 256 ;need maximum 256 bytes for annotation

ioP ar amBlock
fiP ar amBlock
vParamBlock

Returnflag

DS.B ioQElSize
DS.B ioFQElSize
DS.B ioVQElSize

OS

; 110 parameter blocks are 5.0' bytes
;file info parameter blocks are ea bytes
;volume paramter blocks are 64 bytes

;source of call to SelectOneTitle

fiRefNum DC .0' ;place for file reference number
; -------------- Data structures and constants for printing -------------------------
PrintRecordHandle DC .L .0'
PrinterStatusRec OS .B iPrStatSize ;printer status record
Printline DS.B 1 fS2
PrintlineMask DCB.B 1.0'.0'," "

PrPortPtr
F ontlnfoStor age

PageHead
TitleHead
ProducerHead
DateHead
RatingHead
NumberHead

END

DS.L 1
DS.W 4

DC
DC
DC
DC
DC
DC

'Video Tapes'
'Title'
'Producer'
'Date'
'Ratg'
'Numb'

;place to put font info for printing

APPENDIX A 443

Listing A.2 Resource File for the Video Tape Index Program

tape .index :T apesRsrc.REL

TYPE MENU

'1
\14

,2
Edit
Undo/Z
(­
Cut/X
Cop!J/C
Paste IV
Clear

,3
Options
Enter
Change
Delete
Select
Print
Quit/Q

,4
Enter
Add/A
Quit/Q

,'5
Change
Find Record/F
Sa\'e Change /S
Abandon Change I A
Quit/Q

,6
Delete
Find Record/F
Delete ID
Cancel/C
Quit/Q

,7
Select
Displa!J All
Display All Titles
Select One Title
Select by Producer

;; Apple menu

;; Edit menu

; ; Options menu

; ; Enter menu (add new tit Jes)

; ; Change menu (modif!J existing data)

;; Delete menu (delete a tape master record)

; ; Se tect menu (search the tape master file)

(continued)

444 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.2 (continued)

Select bl,! Date
Se le ct by Rating
Select by Tape Number
Quit/Q

,8
Print
Print All
Print All Titles
Quit/Q

TVPE WIND
I 1

Video Tape Index
4 .0' 1 .0' 3.0'.0' 5.0'.0'
visible NoGoAway
.0'
.0'

,2
Tape Name
5.0' 24.0' 7.0' 49.0'
visible NoGoAway
2
.0'

,3
Producer
75 24.0'95 415
visible NoGoAway
2
.0'

,4
Date
1.0'.0' 24.0' 1 2.0' 283
visible NoGoAway
2
.0'

,5
Rating
125 24.0' 145 269
visible NoGoAway
2
.0'

; ; Print menu (print a coup le of lists)

; ; Main window

; ; Tape name window

; ; Producer /Distributor window

; ; Date window

; ; Rating window

(continued)

,6
Tape Number
15.0' 24 .0' 1 7.0' 276
visible NoGoAway
2
.0'

,7
Annotation
2.05 2.0' 28.0' 49.0'
visible NoGoAway
fiJ
.0'

TYPE DLOG

'1
Dialog box for "None Found" condition
1.0'.0' 3.0'.0 17.0' 49.0'
Visibile NoGoAway
2
flJ
1

,2
Dialog box for "One Found/Find More?" condT
1flJ.0'3.0'.0' 17.0' 49flJ . 11on

Visible NoGoAway
2
flJ
2

,3
Dia log box for "One Found .. condition
1 .0'.0' 3.0.0' 17.0" 4 9 .0
Visible NoGoAway
2
.0'
3

TYPE ALRT
,4

1.0'.0" 3.0.0" 17.0 49.0"
4
7765

,5
5.0' 14.0' 12.0' 39.0'
5
4444

APPENDIX A 445

; ; Tape number window

; ; Annotation window

;; None Found dialog box

; ; Find More dialog box

; ; One Found dialog box

; ; No Selection Criteria a le rt

; ; Ready Printer a le rt

(continued)

446 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Listing A.2 (continued)

,6
5.0' 14.0' 12.0'39.0'
6
5555

TYPE DITL
I 1

2

button
4.0' 11.0' 60' 17.0'

OK

static Text
1.0'413.0'149
None Found

,2
3

button
4.0' 11.0'6.0' 17.0'
OK

button
4.0'2.0'6.0'8.0'
Cancel

static Text
1.0'41 3.0'149
Find More?

,3
1

button
40' 11.0" 6.0' 17.0'
OK

,4
2

button
4.0' 11.0'6.0' 170'
OK

static Text
1.0'5 3.3185
Selection criteria?

; ; File Error alert

; ; Item list for None Found dialog box

;; Item list for Find Mort dialog box

;; Item list for One Found dialog Box

; ; Item list for No Selection Criteria a le rt

(continued)

,5
2

button
4.0' 18.0'6.0'24.0'
OK

static Text
1.0' 1.0'3.0'24.0'
Turn on printer. Press "Enter".

,6
2

button
4.0' 18.0' 6.0' 24.0'
OK

static Text
1.0'1.0'3.0'24.0'
Unexpected file error!

APPENDIX A 447

;; Item list for Ready Printer alert

; ; Item list for File Error A le rt

A P P E N D I X B

SUMMAR'f eF ePERATIN6
SYSTEM AJsJD TOOLBOX

R8UTINES QISGUSSEQ IN
THISBeeK

The names of ToolBox and operating system routines discussed in this book
are presented below, grouped by function to help when you know what you want
to do but not what you need to do it with. Each routine is followed by a short
description of what it does. Once you know the name of the routine you wish to use,
the quickest way to locate details about it is to look in the index under the name of
the routine.

1. INITIALIZING THE
SYSTEM

Calls to the initialization routines should be made at the beginning of every
program in the order in which they are listed below:

lnitGraf: Initializes QuickDraw. (Chapter 7)

. lnltFonts: Initializes the Font Manager. (Chapter 9)

FlushEvents: Flushes events from the event queue. (Chapter 8)

lnltWlndows: Initializes the window manager. (Chapter 7)

lnitMenus: Initializes the menu manager. (Chapter 7)

lnitDialogs: Initializes the Dialog Manager. (Chapter 9)

TElnlt: Initializes Text Edit. (Chapter 9)

lnitCursor: Initializes the arrow cursor.

448

APPENDIX B 449

1.a Managing the Cursor

GetCursor: Retrieves the 16x16 pixel image of a cursor from the system resource
file. (Chapter 11)

SetCursor: Changes the shape of the cursor. (Chapter 11)

2. USING A RESOURCE
FILE

OpenResFile: Opens a resource file for program use. This routine is needed
when resource definitions are kept in a file separate from the application's source
code. (Chapter 7)

3. CREATING
WINDOWS

GetNewWindow: Creates a new window from parameters contained in a
resource file template. (Chapter 7)

NewWlndow: Creates a new window from parameters contained in the function
call. (Chapter 7)

DrawGrowlcon: Draws a grow icon and the outline of scroll bars in a standard
document window. (Chapter 7)

GetNewControl: Defines a control for one particular window, using parameters
from a resource file. This routine is used to define scroll bars. (Chapter 7)

4. MANIPULATING
WINDOWS

4.a Activating Windows

SelectWindow: Activates a window, making it the frontmost window on the
screen. This is the preferred way to activate a window. (Chapter 7)

SetPort: Makes a window the current grafport. This is an essential routine, since
the Macintosh can only draw in the current grafport. (Chapter 8)

450 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

4.b Manipulating Window
Position in the Plane

BringToFront: Changes the position of a window in the plane, making it the
frontmost window on the screen. This routines does not affect whether or not a
window is visible and does not make it active. (Chapter 7)

SendBehlnd: Changes a window's position in the plane, sending it either behind
all other windows on the screen or some other specific window on the screen. This
routine does not affect whether or not a window is visible. (Chapter 7)

4.c Manipulating Window
Appearance

SetWTitle: Changes the title of a window. (Chapter 7)

ShowWindow: Makes a previously invisible window visible. If the window is
already visible, the routine has no effect. (Chapter 7)

HideWindow: Makes a previously visible window invisible. If the window is
already invisible, the routine has no effect. (Chapter 7)

4.d Manipulating Window
Regions

lnvalRect: Incorporates a part of a window into the update region, indicating that
something has disturbed the appearance of that part of the window and that it must
be redrawn. (Chapter 8)

4.e Manipulating Controls

ShowControl: Makes a control visible. (Chapter 8)

HldeControl: Makes a control invisible. (Chapter 8)

5. CLOSING WINDOWS

CloseWlndow: Removes the window from the screen and deletes it from the
application's window list. Should be used when storage for the window record was
allocated by the application. (Chapter 7)

APPENDIX B 451

DlsposWlndow: Removes the window from the screen and deletes it from the
application's window list. Should be used when storage for the window record was
placed on the application heap. (Chapter 7)

6. CREATING MENUS

GetRMenu: Defines a menu, using parameters from a resource file. (Chapter 7)

· AddResMenu: Adds resources of a given type to a menu. This routine is used
primarily to add the desk accessories to an "Applem menu. (Chapter 7)

7. MANIPULATING
MENUS

7 .a Managing the Menu Bar

lnsedMenu: Inserts a menu into the menu list, but does not re-draw the menu bar.
(Chapter 7)

DeleteMenu: Removes a menu from the menu list, but does not re-draw the menu
bar. (Chapter 7)

DrawMenuBar: Draws the menu bar, displaying the titles of all menus currently in
the menu list. (Chapter 7)

7 .b Manipulating Menu
Appearance

Dlsableltem: Disables either one menu item or an entire menu. Disabled items
appear immediately, but the menu bar mustrbe re-drawn before a disabled menu
will appear with its title dimmed. (Chapter 7)

Enableltem: Enables either one menu item or an entire menu. Enabled items
appear immediately, but the menu bar must be re-drawn before a newly enabled
menu will appear with its title in boldface. (Chapter 7)

HiLiteMenu: Removes highlighting from a menu title. (Chapter 8)

452 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

8. IDENTIFYING
EVENTS

GetNextEvent: Retrieves an event from the event queue. (Chapter 8)

8.a Mouse Down Events

FindWindow: Returns a code indicating the general location of where a mouse
down event occurred. If the mouse down event was in a window, it also returns a
pointer to that window. (Chapter 8)

MenuSelect: Returns the menu ID and the item number of a menu selection made
with the mouse. (Chapter 8)

Getltem: Returns the text of a selected menu item. (Chapter 8)

FrontWindow: Returns a pointer to the frontmost window on the screen. (Chapter 8)

FindControl: Identifies which control, if any, was the site of a mouse down event.
This routine also returns the part of the control that posted the event. (Chapter 8)

8.b Key Down Events

MenuKey: Returns the menu ID and menu item selection by the keyboard
equivalent of a menu item. (Chapter 8)

8.c Update Events

EraseRect: Erases the contents of a rectangle. Can be used to clear the contents
of a window before re-drawing them during the update process. (Chapter 8)

BeginUpdate: Called at the beginning of any code that updates a window.
(Chapter 8)

EndUpdate: Called at the end of any code that updates a window. (Chapter 8)

APPENDIX B 453

9. HANDLING EVENTS

9.a The Desk Accessories

SystemTask: Updates the desk accessories. This routine must be called repeat­
edly and is therefore generally part of a main event loop. (Chapter 8)

OpenDeskAcc: Opens a desk accessory and turns its execution over to the
system. (Chapter 8)

SysEdit: Handles editing requests in system windows, and in particular, the desk
accessories. It should be called whenever an application detects an edit request. If
the system cannot process the edit (i.e., the request wasn't tor a system window),
the function will return a result of false. In that case, the application can process the
edit. (Chapter 8)

SystemClick: Handles any type of mouse down event in a system window (i.e., a
desk accessory). (Chapter 8)

9.b Controls

TrackControl: Used to process mouse down events in scroll bars. If the mouse
down event has occured in the thumb of a scroll bar, this routine will continue to
drag that thumb as long as the mouse button is held down. If the mouse button was
pressed in the up or down arrow, the routine will highlight the arrow until the mouse
button is released. Returns a code for the part of the control posting the event.
(Chapters)

9.c GoAway Boxes

TrackGoAway: Highlights the GoAway box as long as the mouse button is
depressed in the box. Should be called whenever a mouse down event is detected
in a GoAway box. (Chapter 8)

454 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

9.d Drag Regions

DragWlndow: Drags an outline of a window around the screen until the mouse
button is released. The window will be redrawn in its new location. Should be called
whenever an application detects a mouse down event in a drag region. (Chapter 8)

9.e Grow Regions

GrowWlndow: Drags an outline of the window about the screen as long as the
mouse button is held down in the grow icon. Returns the coordinates of the new
bottom right of the window. (Chapter 8)

SlzeWlndow: Re-draws a window with a new size, using the bottom right coordi­
nates returned by GrowWlndow. This routine only re-draws the outline of a
window; it does not take care of controls or other window contents. (Chapter 8).

MoveControl: Moves a control to a new location in its window. (Chapter 8)

SlzeControl: Changes the size of a control. (Chapter 8)

10. HANDLING TEXT

10.a Establishing a Text
Edit Record

TENew: Creates a new text edit record. This routine attaches the text edit record to
whatever window is the current grafport. (Chapter 9)

10.b Managing Text Edit
Windows

TEldle: Makes the straight-line cursor blink in the active text edit window. Must be
called repeatedly for the cursor to blink regularly and should therefore be part of an
event loop. (Chapter 9)

TEActlvate: Activates a text edit window, making the straight-line cursor appear.
(Chapter9)

APPENDIX B 455

TEDeActivate: Deactivates a text edit window, removing the straight-line cursor.
(Chapter 9).

TEUpdate: Re-draws the text specified by a boundary rectangle, generally the
text edit window's view rectangle. (Chapter 9)

10.c Setting the Selection
Range

TECllck: Positions the straight-line cursor in a text edit window based on the
location of a mouse down event. The routine also takes care of extended selections
made by dragging the mouse across text or by shift-clicking. (Chapter 9)

TESetSelect: Establishes the selection range in a text edit record based on
starting and ending character positions passed to the routine as parameters.
(Chapter9)

10.d Character Display

TEKey: Inserts one character into a text edit record at the current insertion point
and displays it on the screen. The character to be inserted generally comes from
the keyboard. Therefore, this routine is called in response to a key down event that
was not a keyboard equivalent for a menu selection. (Chapter 9)

TElnsert: Inserts one or more characters into a text edit record at the current
insertion point and displays the new text on the screen. This routine is used, for
example, to display text that has been read in from a disk file. (Chapter 9)

TESetJust: Sets the justification of the text in the current text edit record. The text
edit window should be updated after changing the justification to re-draw the text.
(Chapter9)

10.e Editing

TECut: Deletes the text in the current selection range and copies it to the Clip­
board. (Chapter 9)
TEDelete: Deletes the text in the current selection range. The text is not copied to
the Clipboard. (Chapter 9)

TECopy: Copies the contents of the current selection range onto the Clipboard
without deleting it from the text edit record. (Chapter 9)

456 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

TEPaste: Inserts the current contents of the Clipboard into a text edit record at the
current selection point. (Chapter 9)

10. f Scrolling

TEScroll: Scrolls the text in a text edit window. (Chapter 9)

11. DIALOG BOXES

GetNewDialog: Creates a dialog box and displays it on the screen, using a
template and an item list from a resource file. (Chapter 9)

CloseDialog: Removes a dialog box from the screen and deletes its data struc­
tures from memory. (Chapter 9)

ModalDlalog: Monitors and handles events in modal dialog boxes. (Chapter 9)

12. ALERTS

Alert: Creates an alert from a template and item list in a resource file, monitors and
handles events in the alert, and removes the alert from the screen when the user
clicks on a push button. (Chapter 9)

13. PRINTING

NewHandle: Returns a handle to a block of memory in the application heap. This
routine is used to allocate space for a print record. (Chapter 10)

DisposHandle: Releases the block of memory referenced by a handle. This
routine is used to delete a printer record. (Chapter 10)

PrOpen: Opens the printer resource file. This call must be issued once, before any
other Printing Manager calls. (Chapter 10)

APPENDIX B 457

PrClose: Closes the printer resource file. This call is issued once, at the end of all
printing activity. (Chapter 10)

PrlntDefault: Fills a printer record with default information stored in the printer
resource file. (Chapter 10)

PrStlDialog: Displays the standard Style dialog box, allows the user to make
selections within the dialog box, and fills the printer record with that information.
Data from the dialog box is also stored in the printer resource file. (Chapter 10)

PrJobDialog:. Displays the standard Job dialog box, allows the user to make
selections within the dialog box, and fills the printer record with that information.
Data from the dialog box is also stored in the printer resource file. (Chapter 10)

PrOpenDoc: Opens a printing port and makes it the current grafport. This routine
is called once before beginning to print a document. (Chapter 10)

PrCloseDoc: Closes a printing port. If draft printing, it issues a form feed to the
printer. If spool printing, it closes the spool file. This routine is called once at the end
of printing a single document. (Chapter 10)

PrOpenPage: Opens a single page for printing. This routine is called before
printing one page. (Chapter 10)

PrClosePage: Closes a single page. If draft printing, the routine issues a form feed
to the printer. If printing with single sheets, it prompts the user to insert anoth~r
sheet of paper. (Chapter 10)

PrPicFile: Images and prints a spool file. (Chapter 10)

14. MANAGING
COORDINATES

GlobalTolocal: Translates a set of global screen coordinates into coordinates in
the local coordinate system of the current grafport. (Chapter 8)

LocalToGlobal: Translates a set of coordinates expressed in the local coordinate
system of the current grafport into global screen coordinates. (Chapter 9)

15. DRAWING

MoveTo: Moves the pen in the current grafport. If the application is printing, this
routine affects the print head. (Chapter 10)

458 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

DrawChar: Draws a single character on the screen at the current pen position.
(Chapter6)

Drawstring: Draws a string of characters, beginning at the current pen position
and moving to the right. This routine does no text formatting. (Chapter 10)

DrawText: Draws a block of text that is stored in main memory, beginning at the
current pen position and moving to the right. This routine does no text formatting.
(Chapter 10)

TextBox: Draws a line of static text in a window. Though the text can be justified in
its boundary rectangle, it is not stored in a text edit record and therefore cannot be
edited. (Chapter 9)

16. MOVl~G TEXT

BlockMove: Moves a block of text stored in main memory to another main
memory location. (Chapter 6)

17. STRING
COMPARISON

IUMagString: Compares two strings of ASCII characters and returns a 0 if the two
strings are equal, a -1 if the first string is less than the second and a + 1 if the first
string is greater than the second. (Chapter 6)

18. FONT
CHARACTl;RISTICS

TextFont: Sets the text font. (Chapter 9)

TextFace: Sets the text style (e.g., boldface, underlined, etc.). (Chapter 9)

TextSlze: Sets the size of the current text font. (Chapter 9)

Getfontlnfo: Returns information about the current font in the current grafport.
(Chapter 10)

APPENDIX B 459

19. FILE PROCESSING

Create: Creates a new disk file. This routine does not open a file. (Chapter 11)

GetFllelnfo: Retrieves information stored by the Finder about a specific file. This
routine is always called immediately after creating a fiie. (Chapter 11)

SetFllelnfo: Sets information about a file for the Finder. The routine is generally
called during the file creation sequence, immediately after Getfllelnfo. (Chapter
11)

Write: Writes data from a data buffer in RAM onto a disk file. (Chapter 11)

Read: Reads data from a disk file into a data buffer in RAM. (Chapter 11)

Close: Closes a file. (Chapter 11)

SFGetFlle: Displays the standard "get file" dialog box and allows the user to
choose between the files listed. The user can also change disks and drives. The
entire process is handled by this routine until the user selects "OK" or "Cancel".
(Chapter 11)

SFPutFile: Displays the standard "save as" dialog box and allows the user to enter
a file name. The user can also change disks and drives. The entire process is
handled by this routine until the user selected "OK" or Cancel." (Chapter 11)

Flushflle: Forces the contents of the access path buffer to be written to disk.
(Chapter 11)

20. ARITHMETIC
(All routines can be found in Chapter 12)

20.a Integer Binary/Decimal
Conversions

NumToString: Converts an integer or longinteger into a string of ASCII charac­
ters.

StringToNum: Converts a string of ASCII characters in an integer or longinteger.

20.b Floating Point
The names of the FP68K and ELEMS68K routines are presented below as the

macros defined for them in SANEMacs.Txt.

460 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

20.b.1 Addition (A:= A + B)

FADDX: Add an extended source operand to an extended destination operand.

FADDD: Add a double precision source operand to an extended destination
operand.

FADDS: Add a single precision source operand to an extended destination
operand.

FADDC: Add a 64-bit (computational) integer source operand to an extended
destination operand.

FADDI: Add an integer source operand to an extended destination operand.

FADDL: Add a longinteger source operand to an extended destination operand.

20.b.2 Subtraction (A : = A - B)

FSUBX: Subtract an extended source operand from an extended destination
operand.

FSUBD: Subtract a double precision source operand from an extended destina­
tion operand.

FSUBS: Subtract a single precision source operand from an extended destination
operand.

FSUBC: Subtract a 64-bit integer source operand from an extended destination
operand.

FSUBI: Subtract an integer source operand from an extended destination oper­
and.

FSUBL: Subtract a longinteger source operand from an extended destination
operand.

20.b.3 Multiplication (A : = A * B)

FMULX: Multiply an extended source operand by an extended destination oper­
and.

FMULD: Multiply a double precision source operand by an extended destination
operand.

FMULS: Multiply a single precision source operand by an extended destination
operand.

FMULC: Multiply a 64-bit integer source operand by an extended destination
operand.

FMULI: Multiply an integer source operand by an extended destination operand.

APPENDIX B 461

FMULL: Multiply a longinteger source operand by an extended destination oper­
and.

20.b.4 Division (A:= A I B)

FDIVX: Divide an extended destination operand by an extended source operand.

FDIVD: Divide an extended destination operand by a double precision source
operand.

FDIVS: Divide an extended destination operand by a single precision source
operand.

FDIVC: Divide an extended destination operand by a 64-bit integer source oper­
and.

FDIVI: Divide an extended destination operand by an integer source operand.

FDIVL: Divide an extended destination operand by a longinteger source operand.

20.b.5 Remainder (A : = A mod B)

FREMX: Find the remainder of the division of an extended destination operand by
an extended source operand.

FREMD: Find the remainder of the division of an extended destination operand by
a double precision source operand.

FREMS: Find the remainder of the division of an extended destination operand by
a single precision source operand.

FREMC: Find the remander of the division of an extended destination operand by
a 64-bit integer source operand.

FREMI: Find the remainder of the division of an extended destination operand by
an integer source operand.

FREML: Find the remainder of the division of an extended destination operand by
a longinteger source operand.

20.b.6 Rounding

FRINTX: Round an extended operand to an integer.

FTINTX: Truncate an extended operand to an integer.

20.b. 7 Arithmetic functions

FSQRTX: Find the square root of an extended operand. (A : = sqrt(A))

462 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

FLOGBX: Find the base 10 logarithm of an extended operand. (A : = log10A)

FSCALBX: Multiply an extended destination operand by 2 raised to an integer
power. (A : = A * 20)

FCPYSGNX: Replace an extended operand with the sign of the operand. (A: =
sign of A)

FNEGX: Negate an extended operand (A : = - A)

FABSX: Take the absolute value of an extended operand. (A:= IAI>

20.b.8 Internal type conversion and arithmetic
assignment (A : = B)

FX2X: Move an extended source operand to an extended destination operand.

FD2X: Move a double precision source operand to an extended destination
operand.

FS2X: Move a single precision source operand to an extended destination oper­
and.

Fl2X: Move an integer source operand to an extended destination operand.

FL2X: Move a longinteger source operand to an extended destination operand.

FC2X: Move a 64-bit integer source operand to an extended destination operand.

FX2D: Move an extended source operand to a double precision destination
operand.

FX2S: Move an extended source operand to a single precision destination oper­
and.

FX21: Move an extended source operand to an integer destination operand.

FX2L: Move an extended source operand to a longinteger destination operand.

FX2C: Move an extended source operand to a 64-bit integer destination operand.

20.b.9 Binary to decimal conversions (A : = B)

FX2DEC: Convert an extended operand to the canonical decimal format.

FD2DEC: Convert a double precision operand to the canonical decimal format.

FS2DEC: Convert a single precision operand to the canonical decimal format.

FC2DEC: Convert a 64-bit integer operand to the canonical decimal format.

Fl2DEC: Convert an integer operand to the canonical decimal format.

FL2DEC: Convert a longinteger operand to the canonical decimal format.

APPENDIX 8 463

20.b.10 Decimal to binary conversions (A : = B)

FDEC2X: Convert from the canonical decimal format to an extended operand.

FDEC2D: Convert from the canonical decimal format to a double precision
operand.

FDEC2S: Convert from the canonical decimal format to a single precision oper­
and.

FDEC2C: Convert from the canonical decimal format to a 64-bit integer operand.

FDEC21: Convert from the canonical decimal format to an integer operand.

FDEC2L: Convert from the canonical decimal format to a longinteger operand.

20.b.11 Comparisons (use in place of CMP)

FCMPX and FCPXX: Compare two extended operands and set the condition
codes.

FCMPD and FCPXD: Compare an extended operand with a double precision
operand and set the condition codes.

FCMPS and FCPXS: Compare an extended operand with a single precision
operand and set the condition codes.

FCMPC and FCPXC: Compare an extended operand with a 64-bit integer oper­
and and set the condition codes.

FCMPI and FCPXI: Compare an extended operand with an integer operand and
set the condition codes.

FCMPL and FCPXL: Compare an extended operand with a longinteger operand
and set the condition codes.

20.b.12 Branch on condition codes (use in place of
B~c instructions)

FBEQ and FBEQS: Branch if equal.

FBL T and FBL TS: Branch if less than.

FBLE and FBLES: Branch if less than or equal.

FBGT and FBGTS: Branch if greater than.

FBGE 'and FBGES: Branch if greater than or equal.

FBNE and FBNES: Branch if not equal.

464 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

20.b.13 Elementary functions

FLNX: Find the natural logarithm of an extended operand. (A : = lnA)

FLOG2X: Find the base 2 logarithm of an extended operand. (A : = log2A)

FLN1X: Find the natural logarithm of an extended operand plus 1. (A : = In (1 + A))

FLOG21X: Find the base 2 logarithm of an extended operand plus 1. (A : = log2 (1
+A))

FEXPX: Raise e to an extended operand power. (A : = eA)

FEXP2X: Raise 2 to an extended operand power. (A : = 2A)

FEXP1X: Raise e to an extended operand power and subtract 1. (A : = eA - 1)

FEXP21X: Raise 2 to an extended operand power and subtract 1. (A : = 2A - 1)

FXPWRI: Raise an extended operand to an integer operand power. (A : = AB)

FXPWRY: Raise an extended operand to an extended operand power. (A:= AB)

FCOMPOUND: Use extended operands to compute compound interest. (A : = (1
+ Rate) #Periods)

FANNUITY: Use extended operands to compute an annuity. (A : = (1 - (1 +
Rate)-#Periods)/ Rate)

FSINX: Find the sine of an extended operand. (A : = sin(A))

FCOSX: Find the cosine of an extended operand. (A : = cosine(A))

FT ANX: Find the tangent of an extended operand. (A : = tan(A))

FATANX: Find the arctangent of an extended operand. (A:= atan(A))

FRANDX: Find the next random number, using an extended operand as a seed.
(A : = rand(A))

A p p E N D x c

C3LOSSAR¥

Absolute Address: A main memory address specified by its numeric address.
For example, $001A is an absolute address. While an application can only
work from absolute addresses, programmers can use symbolic addresses in
their source code, leaving the translation to absolute addresses to the
assembler and linker.

Access path: A data structure describing how the Macintosh should find a disk
file. An access path is created every time a file is opened. The Macintosh will
support 12 access paths at any one time, though only one access path per file
can be open for writing.

Access path buffer: A RAM buffer that is used as temporary storage by the
access path.

Active window: The front-most window on the screen. An application can only
work in an active window. Active windows are highlighted in some way.

Address: The location of a byte in a computer's main memory. The bytes in a
computer's main memory are numbered sequentially beginning with 0. Each
byte therefore has a unique number known as its address.

Address register: A general purpose register within the Macintosh's micro­
processor. The Macintosh has eight address registers, though some are
used by the system for special purposes. AS holds the start of the applica­
tions globals area; A7 is used as the stack pointer.

Addressing mode: A method for specifying the main memory address of a piece
of data. The Macintosh has 13 addressing modes.

465

466 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Alert: A Macintosh window that is displayed to warn the user that continuation of a
particular action could cause damage or that some error has already
occurred. Alerts contain text, icons, and buttons to either continue or cancel
the action.

Applications globals area: A portion of RAM used tor an application's data
storage. The size of the appiication globals area is not fixed. Rather, it is set
during the linking process so that only the exact amount of space the
program requires will be allocated at run-time. Assembly language program­
mers should allocate space tor all read/write data in the applications globals
area.

Application heap: The portion of RAM available to an application program and its
constants. Though it is possible to place read/write data storage in the
application heap, it is better to avoid doing so whenever possible. (Interac­
tions with the Printing Manager may cause exceptions to this rule.)

ASCII: The American Standard Code tor Information Interchange. ASCII is a
binary coding scheme that is used to represent characters within a com­
puter. Standard ASCII requires 7 bits to represent the full range of alpha­
numeric characters. The Macintosh generates extra characters by using 8
bits.

Assembler: A program that translates a programmer's assembly language
source code into machine language.

Assembler directive: An instruction in an assembly language source program
that gives directions to the assembler. Assembler directives control the
assembly process; they do not become a part of the object code.

Assembly language: A programming language that uses mnemonic codes to
substitute tor the machine language version of a computer's instruction set.

Asynchronous file operations: File operations that permit the application to
continue with other activities while the tile operation is in progress.

Band: A strip from a printed page. Since it takes a great deal of memory to image
and print a spooled print tile, each page is broken up into bands which can
then be printed separately. Bands may run horizontally or vertically across
the page, depending on the orientation of the printed page.

Binary:The base 2 numbering system used to represent quantities, instructions,
and characters in a computer.

Bit: A contraction of "binary digit." A bit represents one binary place in a code or
quantity. It can take only two values - 0or1.

APPENDIX C 467

Boot (a computer): To start the computer, either by turning on the power or
pressing the Reset switch. It is also possible to reboot the Macintosh by
issuing a RB (reboot) command to a debugger.

Boundary rectangle: A set of four coordinates that describe the top left and
bottom right corners of a rectangle. The coordinates may be expressed in
terms of the screen's global coordinate system or in terms of the local
coordinate system of a specific window, depending on the situation. For
example, window definitions require global coordinates, but control defini­
tions require the local coordinates of the window in which the controls will
appear.

Buffer: A temporary holding area for data. Buffers are generally used to reconcile
the speed differences between slow 1/0 devices and the much faster CPU.
For input, for example, a disk drive fills a main memory buffer at its own
speed. The CPU can be doing other things while the disk is working. When
the buffer is full, the CPU empties it at electronic speeds.

Bus: An electronic pathway that connects the parts of a computer. Buses carry
data, addresses, and control signals between the CPU, main memory, and
peripheral devices such as disk drives and printers.

Byte: Eight bits viewed as a whole.

Canonical decimal format: An intermediate numeric format used by the Macin­
tosh. It is produced by scanning an ASCII string of characters. Numbers
expressed in the canonical decimal format can then be converted into a
variety of binary numbers which can be used in mathematical operations.

Clear: 1) Give a bit or a group of bits a value of 0-2) a text editing operation that
deletes the contents of the current selection range from the document
without affecting the clipboard.

Clipboard: A temporary storage area used by text editing routines to hold text
from cut operations. Cut takes the contents of the current selection range and
places it on the clipboard, deleting it from the document and erasing the
previous contents of the clipboard. Copy also places the current selection
range on the clipboard, but does not delete it from the document. Paste takes
the contents of the clipboard and inserts it into the document at the current
insertion point; the contents of the clipboard are not disturbed.

Compiled language: A programming language (usually a high-level language)
that is translated to object code prior to run-time. Compiler output is a
machine language file which generally must be linked to run-time libraries
before execution.

468 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Condition codes: see Status register.

Conditional branch: An assembly language instruction that checks one or more
flags in the status register and executes a branch ifthe condition specified by
the particular instruction is true. If the condition is false, program execution
continues with the next sequential instruction. 68000 conditional branch
instructions have the general form Bee, where the cc is replaced with two
letters that represent the condition to be tested.

Control: A graphic device that helps to regulate program function. Controls
include scroll bars, push buttons, radio button, and check boxes.

Copy: A text editing operation that takes the contents of the current selection
range and writes it to the clipboard. The document itself is unaffected.

CPU (central processing unit): The brain of a computer. The CPU is the site of
instruction decoding and execution. When the CPU is placed on a single
silicon chip, it is referred to as a microprocessor.

Creator: The type of application that created a file. A file's creator is a four­
character string stored with the file itself. Unless a file type is explicitly set, an
application created by the MDS will have a file type of APPL. The creator for
all files created by such an an application will therefore be APPL.

Cursor: In general, some character on a computer screen (e.g., a blinking line,
underbar, or box) that indicates where the next input will appear. On the
Macintosh, the cursor is attached to the mouse. Moving the mouse moves
the cursor. Macintosh cursors take a variety of shapes, including an arrow,
an I-beam, and a wrist watch.

Cut: A text editing operation that takes the contents of the current selection range
and copies itto the clipboard, atthe same time deleting it from the document.

Data fork: The part of a Macintosh file that contains data.

Data register: A general purpose register within the Macintosh's microprocessor.
The Macintosh has eight data registers.

Debugger: A program designed to aid a programmer in identifying logic errors
within an assembly language program. A debugger permits step-by-step
program execution, displays the contents of the CPU's registers, disassem­
bles instructions, etc.

Decrement: To decrease by some fixed quantity. If the quantity is not specified, it
is assumed to be 1.

APPENDIX C 469

Dialog box: A Macintosh window used to collect information from the user or to
freeze program action until the user is ready to continue.

Direct access: A method of file processing. Files created for direct access have
fixed field lengths, allowing an application to go directly to any record at any
time, regardless of the location of the record most recently read or written.
Records can be processed in random order.

Direct cursor addressing: Having the capability of moving the cursor anywhere
on the screen or printed page at any time, regardless of the cursor's previous
position.

Drag region: The title bar of a window except the GoAway box. It is used to move
a window around the Macintosh screen.

Edittext: Textthat can be edited using any of the Macintosh's editing routines: cut,
copy, paste, or clear.

Effective address: The main memory location of an operand for an assembly
language instruction. Effective addresses are specified by using one of the
Macintosh's 13 addressing modes.

Equates file: A text file that contains a set of EQU statements. Each EQU
associates a symbolic address with a constant that is useful in Macintosh
programming.

Event: A system activity that the Macintosh can recognize. Events include press­
ing and releasing the mouse button, pressing and releasing keys, inserting
disks, etc.

Event mask: A word whose bits can be selectively set to control which types of
events are retrieved from the event queue.

Event queue: An ordered list of events as they occur. The event queue is
maintained by the operating system in first in, first out order. In other words,
the first event posted to the event queue will be the first event processed.

Excess notation: A method of storing floating point exponents. An excess value
is selected so that when added to the smallest possible exponent, it will raise
that exponent value to 0. All exponents are then stored with the excess value
added to them. All exponents can therefore be kept as positive integers
without having to resort to 2's complement representation.

Exponent: The power to which some base number is raised. For example, in the
expression 10497, 10 is the base number and 497 is the exponent.

470 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

Fixed point number: A number that includes a decimal point (or binary point if the
number is in base 2) that does not move. For example, 3.44 is a fixed point
number.

Floating point number: A number expressed as a mantissa multiplied by a base
raised to some power. For example, 3.333 * 1099 is a floating point number.
Because the exponent can change, the decimal point (or binary point, if the
base is 2) is said to "float."

Fork: Part of a Macintosh file. Macintosh file's have two forks - a data fork for
storing data and a resource fork for storing resources and program code.

GoAway box: A box that appears at the left of a title bar. Clicking the arrow cursor
in the GoAway box will close the window.

Grafport: A contraction of "graphics port." A graphics port is a rectangle in which
the Macintosh can draw. Grafports form the basis for Macintosh windows.

Hexadecimal: The base 16 numbering system. Since four binary digits can be
represented by a single hexadecimal digit, hexadecimal is often used as a
shorthand for binary.

High-level language: A programming language that looks very much like Eng­
lish. BASIC, Pascal, FORTRAN, PU1, and COBOL are all high-level lan­
guages.

Highlighting: Changing the standard coloration of something on the Macintosh
screen to draw attention to it in some way. For example, text editing selection
ranges are highlighted by displaying them as white characters on a black
background.

High-order: The upper-half of a group of bits. For example, in a word where the
bits are numbered Othrough 15, bits ?through 15 arethe high-order byte. In a
longword where the bits are numbered 0 through 31, bits 16 through 31 are
the high-order word.

Hung: A state in which the computer appears to sit still and do nothing. Many
things can cause a computer to hang, but most often it is some sort of infinite
loop.

1/0 Buffer: see Buffer

Icon: A small picture that the Macintosh uses to represent an object or program
function.

APPENDIX C 471

Increment: To increase by some fixed quantity. If the quantity is not specified, it is
assumed to be 1.

Insertion point: The place in a document where new characters and/or graphic
images are inserted.

Instruction: A single command that a computer can understand and execute.

Instruction set: All the commands that a computer can understand and execute.
Each type of microprocessor has its own unique instruction set.

Interpreted language: A programming language (usually a high-level language)
that is translated to machine language while the program is being run. No
permanent object code is ever generated. Statements that are executed
repeatedly are translated each time they are executed.

Interrupt: A signal generated by a peripheral device such as a disk drive and sent
to the CPU. The interrupt tells the CPU that the device is in need of attention.
The CPU will stop whatever it is doing to take care of the device.

Keyboard equivalents: The pairing of the cloverleaf key with any other printing
key on the keyboard as a substitute for using the mouse to make a selection
from a pull-down menu.

Launch: To run a Macintosh application.

Least significant digit: In an integer, the digit in the one's place. When a number
contains a factional portion, the least significant digit is the right-most non­
zero digit.

Linker: A program that pulls together the various parts of an application to create
an executable application. The Linker also completes the process of setting
the size of the applications globals area.

Longword: On the Macintosh, a group of 32 bits.

Low-order: The lower-half of a group of bits. For example, in a word where the bits
are numbered O through 15, bits O through 7 are the low-order byte. In a
longword where the bits are numbered 0 through 31, bits 0through15 are the
low-order word.

Machine language: A computer can only understand instructions that are written
in machine language. Machine language consists of a sequence of binary
codes. Since it is so very difficult for humans to write programs that are

472 ~ACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

comprised of nothing but a series of O's and 1's, most programs are written in
either assembly language or a high-level language. The programs must then
be translated into machine language before they can be executed by a
computer.

Macro: A short block of code defined within a program and given a name. The
name of the macro is then used in the source program instead of the macro
code. During assembly, the macro code is inserted everywhere the name of
the macro appears.

Mantissa: The significant digits of a floating point number. The first digit of a
mantissa will always be non-zero. For example, in the floating point number
3.9746123 * 101s, 3.9746123 constitutes the mantissa. The number, there­
fore, has eight significant digits.

Mark: A pointer in a Macintosh file that indicates the position of the next byte to be
read from or written to.

Menu: A list of options from which a user can select. Macintosh menus descend,
or "pull-down", from the menu bar.

Menu bar: The top line on the Macintosh screen. It contains the names of all
menus currently available to the user. The left-most menu is the Apple menu
which supports the standard desk accessories. Directly to its right will be
found the File and Edit menus.

Menu list: A list maintained by the Macintosh that contains all menus that are
displayed in the menu bar. Menus are displayed in their order in the list. An
application can control which menus appear in the menu bar by inserting
and deleting menus from the menu list.

Microcomputer: Commonly, a computer small enough to fit on a desk top. A
microcomputer must have a microprocessor, RAM, enough ROM to boot the
machine, buses for data and address transfer, a clock, and some provision
for 1/0.

Microprocessor: A CPU (central processing unit) contained on a single chip. The
microprocessor is the place where instructions are decoded and executed. It
is often called the "brain" of the computer.

Mnemonic: A group of two to five letters that stand for a machine language
instruction. The collection of letters has some relationship to the name of the
instruction. For example, JSR stands for Jump to Subroutine.

Modal dialog box: A dialog box that restricts the user to working within the box
while the box is present on the screen, such as the dialog boxes that appear
when a user selects Print from a File menu.

APPENDIX C 473

Modeless dialog box: A dialog box that permits the user to work outside the
dialog box while the box is present on the screen. An example is the dialog
box that appears when a user selects Find from a Search menu.

Most significant digit: The left-most non-zero digit in a number.

Object code: The machine language version of an assembly or high-level lan­
guage program.

Octal: The base 8 numbering system. Since three binary digits can be repre­
sented by one octal digit, octal can be used as a shorthand for binary. It is
less commonly used than hexadecimal.

Op code: A binary code that represents an assembly language instruction.

Operand: A piece of data required by an assembly language instruction.

Operating system: A program that controls the operation of the computer.
Generally, operating systems for single-user microcomputers provide the
means to boot the computer, execute programs, and manage files (delete,
re-name, etc.).

Parameter: A piece of data used as input to or output from a Pascal subprogram.

Parse: To break a sentence down into its constituent parts. In computers, parsing
generally refers to analyzing a program statement to determine its elements.
It also refers to scanning and breaking down a string of ASCII characters so
they can be transformed into some other format (i.e., the canonical decimal
format).

Path reference number: A quantity that identifies an access path to a file.

Paste: A text editing operating that takes the contents of the clipboard and inserts
it into a document at the current selection point. The contents of the clipboard
are unaffected.

Patch: To modify existing program code by changing a small portion of it.
Patching usually refers to making modifications to the binary (machine
language) version of a program.

Pixel: Short for "picture element." A pixel is one dot on the Macintosh's screen.

Program counter: A 32-bit register in the Macintosh's microprocessor. The
program counter always holds the main memory address of the next pro­
gram instruction to be executed.

Prompt: A piece of static text that tells the user what data should be entered.

474 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

RAM (random access memory): A computer's main memory. An application
can both read from and write to RAM. RAM is volatile - when electrical
power is removed its contents are lost.

Region: An area within a grafport that can be bounded by a rectangle but is not
necessarily rectangular in shape.

Register: A special storage location within a microprocessor. The Macintosh's
general purpose registers are 32 bits wide; each can hold a longword.

Relocatable code: A block of object code that is independent of any fixed main
memory location. Relocatable programs can theoretically be run regardless
of where they are loaded into memory. The MOS Assembler creates a
relocatable object code module which is then tied to a specific place in
memory by the Linker.

Resource: An entity used by the Macintosh. In some instances, the Macintosh
views the code of an application as a single resource; but more generally, the
term refers to something much smaller, such as a window, a menu, an icon, a
desk accessory, etc.

Resource file: A file that contains definitions and templates for resources.
Resource files are created with a text editor and then translated to machine
language by the resource compiler, RMaker.

Resource fork: The part of a Macintosh file that stores resource definitions and
program code.

Resource template: An entry in a resource file that contains the parameters that
describe a particular resource. The resource type must already have been
defined. For example, the resource type WIND is pre-defined to describe a
window. A resource file therefore contains only a window template - the
data necessary to generate a window.

ROM (read only memory): A type of computer memory from which an applica­
tion can only read. ROM cannot be modified and is non-volatile - it retains its
contents when electrical power is removed.

Run-time library: A set of standard programs, usually handling 1/0, that are used
by compiled programs. The object code produced by compiler cannot be
executed without first being linked to one or more run-time libraries.

Scroll: To move text or graphics so that a different portion of a large document
appears in a window on the Macintosh screen.

Selection range: A group of contiguous characters in a block that will be affected

APPENDIX C 475

by editing operations such as cut, copy, and paste. The selection range is
highlighted by displaying white characters on a black background.

Sequential access: A method of file processing. Files created for sequential
access have either variable or fixed record lengths. The records are pro­
cessed in order, generally beginning at the start of the file. Sequential
processing proceeds either to the "nexf' or "prior'' record; it is not possible to
move randomly through the file.

Set: Give a bit or group of bits a value of 1.

Significant digits: The part of a number that conveys value rather than magni­
tude. For example, in the number 0.00009994, the significant digits are
9994. The leading zeros contribute only to the magnitude of the number, not
to its exact value. The first significant digit in a number is most often the first
non-zero digit from the left. Generally, the more significant digits retained in a
number, the greater the accuracy of that number.

Source code: The version of a program created by a programmer, regardless of
the language in which it is written. Source code must be translated to object
code (machine language) before it can be executed.

Spooling: In general, using some form of auxiliary storage (usually a disk) as
intermediate storage for an 1/0 operation. In particular, the Macintosh uses
spooling for printing. An image of a printed document is stored on disk to be
printed at a later time.

Stack: A special area in RAM used for temporary storage. The Macintosh's stack is
32 bits wide. Longwords are placed on top of one another on the stack;
access is in last in, first out order. Many of the Macintosh's built-in routines
take their parameters from the stack.

Stack pointer: A register that contains the address of the top of the stack (the
address of the last longword placed on the stack). The Macintosh uses
register A 7 for that purpose.

Static text: Text that is for display purposes only. It cannot be edited.

Status register: A 16-bit register within the Macintosh's microprocessor. The bits
in a status register function independently as flags to signal a variety of
conditions within the computer. The flags in the status register are also
referred to as "condition codes".

Symbolic address: In an assembly language program, a group of characters
used in place of an absolute main memory address. Symbolic addresses can
be attached to program instructions, constants, and storage locations. The

\

476 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

assembly and linking process translates the symbolic addresses into abso­
lute addresses.

Synchronous file operations: File operations that force the application to wait
for the file operation to finish before proceeding.

System byte: The high-order byte of the Macintosh's status register. Bits 8
through 15 of the status register are used only by the operating system and
are not referenced by application programs.

System Dispatch Table: An array in RAM that contains the actual location of
ToolBox and Operating System routines. When the Macintosh traps calls to
those routines, it translates them into references to the System Dispatch
Table where the address is found. The Table is kept in ROM but loaded into
RAM at system start-up. Because the Table is in RAM when the system is
running, it can be patched to install custom routines.

Title bar: The top of a window. The window's title is centered in the title bar. An
optional GoAway box may appear atthe very left.

ToolBox: A collection of programs supplied with the Macintosh that support
graphics and the features of the Macintosh user interface. Most of the
ToolBox is in ROM.

Trap: A function of the Macintosh operating system that catches ("traps') binary
instruction codes that are not a part of the standard 68000 instruction set. The
Macintosh uses the trap mechanism to extend the Macintosh's instruction set
by adding instructions which call the Tool Box and operating system routines.

True magnitude form: A representation of an integer quantity where the binary
value stored in the computer is the same as the actual value of the number.

Two's complement: The number which, when added to a binary number, will
produce a result of 2.

Two's complement form: A representation of an integer quantity where the
binary value stored in the computer is the two's complement of the actual
value of the number.

Two's complement system: A method for representing integer quantities within
a computer. Negative numbers are stored in their two's complement form;
positive numbers are not converted but are left in their true magnitude form.

Unconditional branch: An assembly language instruction that executes a
branch under all circumstances. No condition codes are checked. The
68000 has two unconditional branch instructions - BRA and JMP.

APPENDIX G 477

User byte: The low-order byte of the Macintosh's status register. An application
often consults the bits in the user byte to determine the result of a particular
program instruction.

Value parameter: A parameter that is used only as input to a Pascal program.
Even the value of the parameter is changed in the subprogram, it will
nonetheless retain its original value as far as the main program is concerned.

Variable parameter: A parameter that can be used for both input to and output
from a Pascal subprogram. Any data that are to be returned to a main
program must be declared as variable parameters. The only exception to this
rule is for the results of functions, which in Pascal are returned across an
assignment operator. Assembly language function results are either
returned on the stack or in a data register.

Volume: Either a single floppy disk or a partition on a hard disk.

Window: A rectangle on the Macintosh screen. Windows are used to display text
and graphics, to collect data essential to program function, and to warn the
user about the consequences of specific actions. Virtually all user interaction
with an application takes place within windows.

Word: On the Macintosh, a group of16 bits. Word size does vary from computer to
computer.

\
478

A p p E N D x D

MATERIALS FOR
EURTI IER REFERENCE

To learn more about microcomputers and how they work:

Tocci, Ronald J. and Laskowski, Lester P. Microprocessors and microcom­
puters: Hardware and Software. 2nd ed. Prentice-Hall, 1982.

To learn more about the 68000 microprocessor and how to program it:

M68000 16132-bit Microprocessor Programmer's Reference Manual. 4th ed.
Prentice-Hall, 1984.

Kane, Gerry, Doug Hawkins and Lance Leventhal. 68000 Assembly Lan­
guage Programming. Osborne/Mc-Graw-Hill, 1981.

To learn more about the Macintosh Tool Box and operating system routines:

Inside Macintosh. Apple Computer, 1985.

Index
A

absolute data addressing 44-45
absolute long address addressing

44-45
absolute short address addressing 44
activate events

defined 194
in application windows 223
in text edit windows 239-243

ADD106-107
address register direct addressing 37
address register indirect addressing

37-38
address register indirect with

displacement addressing 40-42
address register indirect with index

addressing 42-43
address register indirect with

postincrement addressing 38-40
address register indirect with

predecrement addressing 40
address registers 25-26
addressing modes 33-48
AddRMenu 187
Alert271
alerts

creating/disposing 271-272
definition 13
handling events in 271-272
item lists 266-269
resource file template 265-266

AND110-112
Apple Talk Manager 147
arithmetic

floating-point numbers 362-366
integers (see: ADD, SUB, MULU,
MULS, DIVU, DIVS)

arrays
in RAM 118-120
user-defined data type 138-139

ASCII codes 18-21
Assembler 58-61
assembler directives 82-86
assembling a program 58-61
automatic program assembly and

linking 72-74

B

Bcc96-97
BeglnUpdate 214, 216, 222
Binary-Decimal Conversion package

146, 348-349
binary numbering system 16-17

binary search 123-129, 150-156
BlockMove 151-152, 155
boolean data 137
BRA97-98
BringToFront 177
BSR115
BTST 239-240
buttons

definition 10-11
in alerts and dialog boxes 266-269

c
character data 136-137
check boxes

definition 10-11
in alerts and dialog boxes 266-269

Close339
CloseDlalog 270
CloseWlndow 182
CLR99
CMP94-95
compiled languages 2
Control Manager 145
controls

definition 10
in alerts and dialog boxes 266-269
scroll bars 179-182, 209-212,
214-220

Create330
cursors

definition 4-5

D

moving 243-245, 291-292
setting 339-340

data register direct addressing 36
data registers 25-26
DC84-85
DCB85
debugging 7 4-79
DeleteMenu 187
desk accessories

adding to a menu 187
defining a menu for 186-187
editing in 206-207
identifying menu selections for
205-206

mouse down events in 208
Desk Manager 145
destination rectangle 238
device drivers 146, 147
Device Manager 146

dialog boxes
creating/disposing 269-270
definition 13-14
handling events in 270-271
item lists 266-259
resource file template 264

Dialog Manager 145
Disableltem 189
Disk Initialization Package 14 7
displaying text (see also: editing text)

291-299
DisposHandle 301
DisposWlndow 182
DIVS 109-110
DIVU 109-110
draft printing 275-276
drag region

definition 9-10
mouse down events in 213-214

DragWlndow 213
DrawChar86
DrawGrowlcon 179
DrawMenuBar 188
Drawstring 292-293
DrawText 295-296
DS85-86

E

editing text (see: text editing)
Editor 55-58
Enableltem 189
END86
EndUpdate 214, 220, 222
entering source code 55-58
EOR114
EQU83
EqualString 150
equates

event types 196
FindWindow result codes 202
fonts 258
modify word 196

equates files, packing 283-284
EraseRect 214, 217
error codes

File Manager 325
Printing Manager 286
system 70-71

events
and program structure 201
definition 193
event loop 198-201
event masks 196-197

-479
I

480 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

event queue 194, 196-197 GetNewDlalog 269 L
event record 194-195, 198 GetNewWlndow 173 LEA91-92
retrieving 198 GetNextEvent 198-199 line 1010 unimplemented instructions
types 193-194 GetRMenu 186 149

Executive 72-7 4 GlobalToLocal 143-144, 210, 244 Linker 63-65, 68
goAwaybox linking a program 63-65, 68

F definition 9-10 LocalToGlobal 244
mouse down events in 212-213 looping 92-93, 105 File Manager

grafports 160, 222
definition 146

grow icon
error codes 325 M

definition 9-10
files

mouse down events in 214-220 machine language 2
closing 339

GrowWlndow 215 Macintosh 68000 Development
creating 330-332 System 53-55
direct access

H macros 360-362
definition 322-323 Memory Manager 146
reading 338-339 handles 137-138, 284, 301 MenuKey221
writing 325-336 hexadecimal numbering system Menu Manager 145

opening 332-333, 340-342 22-23 menus
parameter blocks 323-328 HideControl 217 and program structure 190
saving 342-344 HideWlndow 177 creating 186-187
sequential access HiliteMenu 204 definition 4-9

definition 322-323 disabling/enabling items 189
reading 337-338 highlighting/unhighlighting 204
writing 332-325

immediate data 4 7-48 menu bar
FlndControl 210

INCLUDE84 adding/deleting menus 187-189
FindWindow 202

lnltCursor 237, 240 displaying 188
Floating-Point Arithmetic Package

lnitDialogs 237, 261-262 mouse down events in 203-205,
147, 350-355, 357-369

lnltFonts 237 207-208
floating-point numbers

lnitGraf 160 resource file template 183
arithmetic operations 362-366

initialization sequence 237 MenuSelect 143, 203-204
conversions

lnltMenus 186 microprocessors 2
from ASCII string to canonical

lnltWindows 160 ModalDlalog 271
350-355

lnsertMenu 142, 187 mouse down events 193, 202-220
from binary to canonical 367-368

integers 104, 134-135 MOVE87-90
from canonical to ASCII string

International Utilities Package 146, MoveControl 218
368-377

150-151 MOVEM148
from canonical to binary 359

interpreted languages 2 MoveTo292
format of 357-359

lnvalRect 215 MULS109
FlushEvents 197

iteration 92-93, 105 MULU109
Font Manager 145

IUIDMagStrlng 150
fonts

IUMagStrlng 150 N
font description 290
font size 258 NewHandle 283

font style 258 J NewWlndow 168

fonttype 257-258 JMP97-98 NOT113

FrontWindow 209 JSR115 null events 193

functions 141-144 NumToString 348

K
G keyboard equivalents 220-221

0

GetCursor 339 Key down events object code 2

GetFilelnfo 330-331 as equivalents for menu selections octal numbering system 23-24

GetFontlnfo 290 220-221 Open 332-333

Getltem205 defined194 OpenDeskAcc 206

GetNewControl 181 OpenResFile 172

\,

Operating System Event Manager 146
Operating System Utilties 147
OR 112-113

p

Package Manager 146
packing an equates file 263-264
parameters 141-144
PEA90-91
pointers 137-138
PrClose287
PrCloseDoc 289
PrClosePage 299
PrintDefault 287
printing

access to Printing Manager routines
276-279

closing a page 299
computing page size 290-291
draft {definition) 275-276
imaging and printing a spool file
300-301

job dialog 288
moving the pen 291-292
opening a page 289
opening/closing a document
288-289

opening/closin9 Printing Manager
287

printer record 279-283, 284,
287-288, 301

sequence of Printing Manager
routines 285-286

spooled (definition) 275-276
style dialog 288

printing control directives 86
Printing Manager147, 276-279

error codes 286
PrJobDialog 288
procedures 141-144
program counter 31
program counter relative addressing

modes46-47
program counter with displacement

addressing 46
program counter with index

addressing 46-47
Pr0pen287
PrOpenDoc 288
PrOpenPage 289
PrStlDlalog 288
push buttons {see: buttons)

Q

QuickDraw
definition 145
initializing 160

quick immediate data 48

R

radio buttons {see: buttons)
Read 336-338
real numbers 135
records

user defined data type 139-141
register direct addressing modes

36-37
register indirect addressing modes

37-43
registers 25-29
resource files 171, 175-176, 180,

183-184
Resource Manager 144-145
RTS115
running an application 68
run time libraries 2
run time system errors 68, 70-72

s
Scc98-99
Scrap Manager 145
scroll bars

creating 181-182
mouse down events in 209-212
moving 214-220
resource file template 180

searching 123-129, 150-156
Segment Loader 146
SelectWlndow 178
SendBehind 177
SetCursor 339
SetFllelnfo 331-332
SetPort222
SetWlndowTltle 176-177
SF99
SFGetFile 340-342
SFPutFile 342-344
ShowControl 220
ShowWindow 177
SignedByte 137
SlzeControl 219
SizeWlndow 216
sorting 117-118, 120-123, 150-156
spooled printing 275-276, 300-301
ST99
stack29-30
Standard File Package 340-344

INDEX 481

Standard Utilities Package 146
statement format 55-56
status register 25, 27-29
straight insertion sort 117-118, 120-123
string data 136-137
STRING_ FORMAT 136-137
StringToNum 349
SUB107-108
subroutines 114-115, 355-356
SWAP112
symbolic addresses 45
SysEdit 206-207
SystemClick 208
system dispatch table 31, 149
System Error Handler 14 7
system errors 68, 70-72

T

TElnit237
TEActivate 240
TECllck244
TECopy248
TECut248
TEDeActivate 240
TEDelete 248
TEDispose 251
TEldle243
TElnsert 246
TEKey246
TEPaste248
TEScroll 260-261
TESetJust 259
TESetSelect 245
TEUpdate 255
text editing

activating/deactivating 239-243
blinking cursor 243
character insertion 245-248
copy248
cut248
definition 11-12
delete248
justification 259
paste248
selection range 243-245
scrolling 260-261
static text 251-254
text edit record 235-236, 238-239,

251
updating 255-257

TextBox 252-253
TextEdit 145, 235-261
TextFace 258
TextFont 257-258
TextSize 258-259

j

482 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

ToolBox Event Manager 145
ToolBox routines144·146
Too!Box Utilities 145
TrackControl 211
TrackGoAway 212-213
Transcendental Functions Package

147
TRAP 149-150
traps149·150
two's complement 103-105

u
unimplemented instructions 149
update events

defined194

in application windows 221·223
in text edit windows 255-257

user-defined data types 137-138

v
Vertical Retrace Manager 147
view rectangle 238

w
Window Manager145
windows

boundary rectangles 160-163
changing titles 176-177
closing 182-183, 212-213

creating 168-175
definition 9-11
making active 178
making visible/invisible 177
mouse down events in 209-212
moving in the plane 177-178
moving on the screen 213-214
resource file template 171
scrolling 179-182
sizing 178-179, 214-220
types 163-166
window record 167-168

Write 333-336

ISBN 0-03-00083~-6

