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It seems as though there is a flood of Macintosh software hitting the market
these days, most of it written in Pascal on a Lisa (the Macintosh’s now defunct big
brother, most recently known as the Macintosh XL) or in assembly language on
either a Lisa or a Macintosh. Some commercial software developers are also
beginning to work in Forth and C. No language, however, gives a programmer
more control over the Macintosh than assembly language.

People who learn to program the Macintosh in assembly language gain in four
ways:

They learn the basic principles of microcomputer architecture;
They learn how computers store and manipulate numbers;

They learn the basics of using an assembly language instruction set;

H 0o

They learn to focus on creating applications with a standard, user-friendly
interface.

This book was written to teach the four areas listed above to both students in a
classroom situation and an individual working alone. It is designed to take some-
one who knows Pascal and get that person functioning in an assembly language
environment. It assumes no background in computer architecture or assembly
language. By the same token, itis not a definitive work. One of its primary goalsis to
give a programmer the tools needed to understand documentation so that he or
she can independently go beyond what this book covers. Therefore, while it
presents material common to assembly language programming on all computers,
this is also a practical book, aimed at doing assembly language programming on
the Macintosh. It was designed to teach assembly language programming specifi-
cally on the Macintosh and is not intended to be a general 68000 assembly
language text.

Programming the Macintosh in assembly language isn't an easy task. In fact, it
can be complex and tedious since access to the Macinotsh's internal ROM routines

ix
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is really designed for Pascal, and assembly language programmers must simulate
the Pascal syntax. Nonetheless, working in assembly language does give a
programmer computing power that no other language can deliver.

Learning to program in assembly language on the Macintosh presents two
challenges: A person must not only master the microprocessor’s instruction set,
but also must be able to interact with the ToolBox and operating system routines
that reside in Macintosh's ROM. All I/O is done through those routines. In fact,
Macintosh assembly language programs are often little more than a series of calls
to the ROM routines. The instruction set itself takes a back seat; it is used primarily
to set up parameters before issuing a call.

Because assembly language on the Macintosh is a rather complex task, this
book is not intended to be an exhaustive treatment of the subject, but it will:

Provide the technical background needed to function in assembly language
2. Introduce the commonly used instructions in the Macintosh’s instruction set

Demonstrate how to use the ToolBox and operating system routines neces-
sary to create basic assembly language applications.

This book does not deal specifically with producing Macintosh graphics.
Creating spectacular graphics takes two kinds of knowledge: knowing how to use
the ROM graphics routines and knowing how to sequence calls to those routines to
draw the desired images. This book teaches the former, how to read the documen-
tation that describes the graphics routines, and provides the skills needed to call
the routines from assembly language. Sequencing calls to graphics routines to
produce some particular picture, however, is beyond the scope of this book. The
effective use of Macintosh graphics is an extensive subject that deserves a book all
its own.

Resources for Learning

This book is based on Apple’s Macintosh 68000 Development System (MDS),
a package of software tools that supports the development of either stand-alone
assembly language applications or assembly language routines that can be called
by high-level language programs. While it is not the only such package available
for the Macintosh, it is the most complete and the most convenient to use. If not
available from your regular software supply house, it can be ordered directly from
Apple:

Macintosh Technical Support
Apple Computer

MS 4-T

20525 Mariani Avenue
Cupertino, CA 95014

To obtain an exact price and details on ordering, call the customer service line
at 408-973-2222 between 9:30 A.M. and 1:30 P.M. Pacific time.
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Complete documentation for all Macintosh ROM routines can be found in
Inside Macintosh, now available at computer retailers and bookstores or through
direct order from Apple. Though the book you are reading right now is indepen-
dent of Inside Macintosh, programmers inevitably will wish to go beyond what this
book presents and it may be difficult to teach a course in Macintosh assembly
language without at least one copy of that manual available for reference. This
book teaches people how to interpret what they find in Inside Macintosh, how to
decipher the Pascal syntax for the ToolBox and operating system calls and turn it
into assembly language. It also focuses on understanding the sequence in which
they should use the ROM routines.

There is one other reference that students should use in conjunction with this
book and Inside Macintosh—The MC68000 Programmers Reference Manual
(hereafter referred to as the PRM). The PRM, which is included with the Macintosh
68000 Development System, is a reference work detailing the instruction set of the
Macintosh’s 68000 microprocessor.

Developing assembly language programs is much easier with the aid of a
number of utility programs that Apple has written. These include programs that
dump the contents of a disk file in hexadecimal, print a spooled print file, and aid in
creating screen formats and alert and dialog boxes. For a while Apple was
distributing these utilities with the Software Supplement to /Inside Macintosh. Now
that Inside Macintosh is available in bookstores, however, the utilities can be
downloaded from a number of dial-up information systems, such as CompuServe,
and from public bulletin boards. They are also available from most Macintosh
users groups.

Reader Background

This book assumes that the reader has knowledge equivalent to a one-
semester course in Pascal, though not necessarily on the Macintosh. It also
assumes that the reader has some experience working with the Macintosh itself. In
particular, he or she should have used a Macintosh word processor such as
MacWrite. Though Chapter 1 discusses in detail the characteristics of the Macin-
tosh user interface, the book assumes that people are familiar with mouse-driven
applications that use pull-down menus and overlapping windows.

Overview of the Book

The introduction found in Chapter 1 lays a foundation for the Macintosh
assembly language environment. It discusses the differences between assembly
language and high-level languages and explains what is to be gained by working
in assembly language. The chapter also examines the characteristics of the
standard Macintosh user interface, emphasizing that all successful Macintosh
software adheres to that interface.
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Chapter 2 presents technical background information. This includes a look at
the binary, octal and hexadecimal numbering systems, the architecture of the
Macintosh’s microprocessor (in particular, its registers), how the Macintosh uses its
available RAM (including the stack), and addressing memory from assembly
language.

Chapter 3 contains a short assembly language program to type in. This will
provide practice in using the Macintosh 68000 Development System. Working
through the exercise early in the course will make it easier for students to concen-
trate on programming without worrying about how to use the Editor, Assembler,
and Linker.

Chapters 4 and 5 present an introduction to the assembly language instruc-
tions that form the backbone of a Macintosh assembly language program. This
chapter has numerous blocks of sample code, each of whichisto beinsertedintoa
ToolBox “shell” that is created out of the program in Chapter 3.

Although this book deals with assembly language, it's a fact of life that access to
ToolBox and operating system routines is based in Pascal. If people are going to
be able to read the documentation of those routines in Inside Macintosh, they must
understand Pascal data types, data structures, and procedures and functions.
Therefore, Chapter 6 reviews the necessary Pascal concepts. It also describes the
structure of the ToolBox and operating system routines and how an assembly
language program gains access to them.

The remainder of the book deals with the ToolBox and operating system
routines that are needed to create a Macintosh assembly language application.
Chapter 7 dicussses setting up the desktop (managing windows and pull-down
menus). Chapter 8 discusses managing program operation by monitoring the
keyboard and mouse. Chapter 9 handles entering and editing text. Printing from
an application (tedious but not difficult) is presented in Chapter 10. File /O (not as
complicated as it looks) is discussed in Chapter 11.

Chapter 12 discusses floating point arithmetic. Even if an application does no
significant amount of math, it will at least need to use the routines that convert a
string of numeric characters into a binary number and a binary number to a string
of characters for numeric I/O.

The Video Tape Index
Program

- The major application that is developed throughout most of the book is a video
tape index. The program is a specialized database system that could be used ina
home to catalog which program has been recorded on which video tape or in a
video rental outlet for inventory control. The video tape index program first appears
in Chapter 5 in the discussion of handling arrays in main memory and is used to
explore sorting and searching techniques for such arrays. It is presented in bits
and pieces throughout the book. Complete source code for the program can be
found in Appendix A.
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To most students the source code for the video tape index program may look a
bit forbidding at first. Itislong — about 3,000 lines of code — far longer than most
of the Pascal programs that are written in programming classes. Nonetheless, it
assembles to only about 12K and uses another 12K of space for data storage. It will
therefore run on a 128K Mac.

Why use such a large example? Certainly the sample programs that come with
the Macintosh 68000 Development System are much shorter. First, the very
simplicity of those examples creates a problem. The features of a Macintosh
application interact in many unexpected ways. While Apple provides a sample
program that creates a window, the video tape index uses multiple, overlapping
windows to demonstrate more extensive window management. One of Apple’s
sample programs demonstrates text editing, but only in one window. The video
tape index uses multiple windows for text editing to explore a more complex,
meaningful environment.

Secondly, meaningful Macintosh assembly language programs do become
very large, generally occupying 25 to 400K. Apple’s short examples really don't do
any meaningful work. The video tape index program is a complete, useful applica-
tion that can easily be customized to meet individual needs. It is also available,
along with other sample programs, on disk from the publisher of this book.
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Chapter Objectives

1. Toexplore the advantages and disadvantages of programming in assembly
language

2.  To become familiar with the characteristics of the standard Macintosh user
interface

Assembly Language:
Why Bother?

Back in the early days (that means anything before 1964), people who wanted
to learn about computers studied logical circuit design and then a mysterious
language called “assembly.” Once they had mastered assembly language pro-
gramming, they moved on to high-level languages like FORTRAN.

It doesn't work that way any more. For most people today, their first exposure to
programming is through a high-level (English-like) language, usually BASIC or
Pascal. Pascal doesn't require much knowledge about the internal workings of
your computer; not necessarily a bad thing, since knowing the internal organiza-
tion of a microprocessor doesn't automatically make you a good programmer.

There are, though, some things that assembly language can do better than
BASIC, Pascal and other high-level languages. Primarly, assembly language
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programs run faster than high-level language programs. To understand why, you
must first realize that there is only one language that a computer can run directly —
machine language. Machine language consists of a series of binary codes (0's and
1's) which make perfect sense to a computer but very little sense to a human.

Assembly language was created to free programmers from having to program
in machine language. Each command that the computer could understand (an
instruction) was given a short mnemonic code consisting of two to five letters.
Programmers could then use the mnemonics rather than the complex binary.
Once the source code was finished, it had to be translated into machine language
so the computer could run it. The translation was (and still is) accomplished by a
program called an assembler. The resulting machine language version is called
object code and can be run directly by the computer.

High-level languages also require translation to object code. Most versions of
BASIC are interpreted. That means that the conversion to object code occurs line
by line as the program is being run; no permanent machine language version of
the program is ever created. If you have a FOR/NEXT loop that repeats 100 times,
every statement in that loop will be translated to machine language 100 times.
Intepreted BASIC programs are just about the slowest programs around.

Most other high-level languages are compiled. All of the translation to machine
language occurs at one time. Just like an assembler, a compiler gives you a
machine language version of your program. Object code derived from a compiler
usually cannot be run alone, though. It needs to be linked to run-time libraries (a
collection of standard programs that handle functions such as input and output).
While compiled programs can run almost as fast as assembled programs, they
tend to be bigger. This becomes a major concern when you are writing software for
a machine with limited RAM such as the first edition Macintosh (with only 128K).

In addition to increasing the speed of program execution, assembly language
gives you more control over your computer than high-level language. When you
use an interpreted language, you have little opportunity to determine where your
program or its variable tables are placed in main memory. Though some compilers
do allow you to specify where large blocks of code should begin (e.g., your
program’s object code and run-time libraries), you are still extremely limited. With
assembly language, you can access RAM locations directly and determine exactly
what will be placed in each location. A well-written assembly language program is
generally more efficient than an interpreted or compiled program; in other words, it
makes better use of available main memory.

In order to gain the speed and efficiency of assembly language programs, you
must in turn know something about the internal physical organization of your
computer. You need to know not only how RAM is used, but you must also have
some knowledge of the “architecture” of its microprocessor.

Assembly language has one major drawback, assuming that you don't con-
sider having to acquire technical knowledge about your computer a drawback.
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High-level languages are more or less portable between different computers.
Consider, for example, all the different microprocessors and operating systems
that run Microsoft BASIC. Languages such as Pascal and FORTRAN differ only
minimally between computers. Assembly language, however, is specific to one
particular microprocessor; the mnemonics are different for each one. Therefore,
learning assembly language on one computer does not automatically prepare you
to write assembly language programs on another. Each microprocessor has its
own instruction set (the entire group of instructions that a microprocessor can
understand).

Nonetheless without programming in assembly language it is very difficult to
do serious program development on a Macintosh. With BASIC you are limited to
very small, very slow programs. For example, after the Microsoft interpreter is
loaded, you have only 14K left in the 128K machine for programs. Though this
limitation has no relevance for the 512K Macintosh, a significant number of 128K
machines have been purchased and much software is designed to run in that
more restrictive environment.

Many Macintosh programs have been written in Pascal, but they were devel-
oped on a Lisa. Lisa Pascal for the Macintosh is very different from MacPascal.
MacPascal is interpreted, like BASIC. That means that while it is an excellent tool
for learning about Pascal, programs written in MacPascal will run nearly as slowly
as interpreted BASIC programs.

There is another disadvantage to developing Macintosh applications com-
pletely in a high-level language which relates to the nature of Macintosh software.
Successful Macintosh applications are designed around the standard Macintosh
user interface (discussed in the second part of this chapter). To implement that
interface, the Macintosh uses a set of over 500 prewritten routines. Some are in
ROM (read only memory); others are on disk as part of the system files. The
routines fall into two major groups: those that are part of the operating system and
those that constitute the ToolBox. (For an overview of Macintosh’s built-in routines,
see Chapter 6.)

No language currently available gives you access to all of the ToolBox and
operating system routines within the standard language environment. (Lisa Pascal
can call all of the Macintosh’s internal routines, but MacPascal cannot.) Some, like
Microsoft BASIC 2.0, allow a programmer to build assembly language libraries
that can be called from the high-level language program. Others, like MacPascal,
have an interface to many of the routines which require assembly language
knowledge to set up the calls. A programmer who wishes to exploit a Macintosh
high-level language to its maximum must therefore have at least some knowledge
of the Macintosh assembly language interface.

What it all boils down to is this — if you want to be able to tap the full power of a
Macintosh, then you will find that being able to use assembly language is the most
valuable tool available.
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The Standard
Macintosh User
Interface

The Macintosh has made most of us redefine what it means when we say a
program is easy to use. When we open a brand-new piece of Macintosh software,
we expect to be able to run it by simply double-clicking on its icon from the Finder.
We also expect to find that program actions are controlled by menus and that the
mouse controls placement of the cursor. These are all characters of the standard
Macintosh user interface. They have the effect of making Macintosh applications
programs very easy to learn and use. By the same token, they increase the burden
on the programmer.

Macintosh software packages that stray from the standard user interface have
not fared well with reviewers or users. During the first six to nine months after
Macintosh was released, many independent software developers rushed to mar-
ket Macintosh versions of software that was running on other systems without
completely adapting it to the Macintosh environment. Few of those early efforts are
still being sold; most have been significantly upgraded to adhere to the Macintosh
interface. The moral of the story is. . .if you're going to program the Macintosh, do it
Apple’s way when it comes to the user interface. In terms of that interface, creativity
wins few prizes.

The Macintosh standard user interface is characterized by the following:

1. Use of the mouse as the primary input device to control menu selections,
window manipulation, cursor placement and text selection

Pull-down menus, including the standard Apple, File, and Edit menus
Multiple, overlapping windows

Text editing with cut, copy, paste and clear functions

o > 0D

Control of program actions with alert and dialog boxes

Macintosh Cursors

The Macintosh's mouse is *hard wired” to a moveable cursor that appears on
the screen; it lays on top of everything else that is displayed. The cursor's shape will
vary with particular program actions. It may be:

1. Anarrow (used when making menu selections, dragging windows, closing
windows, sizing windows, scrolling windows contents, etc.)
A straight line (used to mark the place where text characters will be inserted)

An I-beam (used to aid in positioning the cursor in text documents)
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4, A wrist watch (used to indicate long waits)

Other special cursors include the cross for sizing and positioning graphics objects,
and an outlined cross used for making array selections. Applications may also
design their own cursors.

Menus

Menus were certainly not invented by the Macintosh development team; they
are used in a great deal of commerical software. Most users consider menu-driven
software as easier to learn and easier to use than software that requires learning a
set of commands. Menus on other computers, however, not only look different
from Macintosh menus but accept input about menu selections in a very different
way.

A typical non-Macintosh menu appears in Figure 1.1. A program using this
menu will usually clear the screen, print the menu, and issue an input statement
(e.g., a Pascal read). The user makes a selection by entering a number that
corresponds to the appropriate menu option. Program execution is suspended
until the menu selection is made; the user has no way to escape from making a
menu choice, save perhaps resetting the computer.

File Menu -

. New

. Open

. Close

. Save

. Save As
. Print

. Quit

N DAON=-

Enter option number:

Figure 1.1 A Standard Microcomputer Menu

Macintosh menus also present the user with a list of options. Figure 1.2
presents the Macintosh version of the menu from Figure 1.1 The menu’s title
appears above the part of the screen where program actions take place; this is
known as the menu bar. To see the menu options, the user positions the arrow
cursor on the menu title, presses the mouse button, and drags the arrow down.
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Options are highlighted (displayed in inverse video—white letters on a black
background) as the arrow cursor is dragged. The user indicates a menu selection
by releasing the mouse button when the cursor is positioned on the appropriate
option.

The Menu Bar

Edit Search Format Font Style

New E——= untitled
Dpea...
Close
Save
Save fs... % This menu is “pulled-down~. It may
Page Setup temporarily cover part of the main
Print window, but when the menu is

e released, the main window's contents
Quit are unaltered.

Figure 1.2 The Macintosh’s Standard File Menu

Two things make the Macintosh menu selection process very different from
standard menu selections. In the first place, the user can escape from the menu by
either returning the arrow cursor to the menu title or by dragging the cursor off the
bottom of the menu. Secondly, pulling down the menu doesn't require erasing
what appears on the main portion of the screen, though part of the screen may be
temporarily covered by the menu options. Selections from Macintosh menus can
therefore be made while text and/or graphics are present on the Macintosh
screen.

Most Macintosh applications will support three standard menus plus any
additional menus the application requires. The leftmost menu in the menu bar has
the silhouette of an apple with a bite out of it for atitle. This “Apple” menu (see Figure
1.3) supports the Macintosh desk accessories and may also include an “about”
feature that describes the software in which the menu appears. A desk accessory
is a stand-alone program that can be run at any time without exiting the major
application (e.g., MacWrite or MacPaint) being executed.
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The second menu from the left is the File menu (see Figure 1.2). A standard file
menu provides options for opening new and existing files, saving files, closing files,
printing files, and exiting the program. The third standard menu, the Edit menu
(Figure 1.4), implements editing operations: cut, paste, copy, and clear (delete).
Note that clear is often not supported as a menu item (that is the case in Figure 1.4).

" File Edit Search Format Font Style X
Ybout MaclWrite... Untittede"ee0m————————

Choose Printer
Scrapbook
Alarm Clock
Note Pad
Calculator

Key Caps
Control Panel
Puzzle

The standard Apple menu contains an “about” option that
describes the application as well as the desk accessories.
The specific desk accessories can be changed by using a
utility program known as the Desk Accessory Mover.

Figure 1.3 The Macintosh Standard Apple Menu

€ File Search Format Font Style

lan'tinda 3%2 Untitled
Cut BR | €&— .
Copy $8C | €1 Keyboard equivalents
Paste R | €&

Show Clipboard

Figure 1.4 The Macintosh Standard Edit Menu
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Users who are very familiar with a piece of software often prefer to issue menu
selections from the keyboard. To make this possible, an application can associate
a pair of keystrokes with any or all options in a menu. Known as keyboard
equivalents, they appear to the right of the menu options as the cloverleaf symbol
followed by a single key. Keyboard equivalents for the File and Edit menus are
standard and should not be changed. Note that identifying which option has been
selected from which menu, regardless of whether the selection is made by mouse
or keyboard equivalent, is not automatic; it must be programmed into an applica-
tion.

An application has complete control over which menus appear in the menu
bar. The three standard menus should usually be present. Nonetheless, there are
times when it makes no sense interms of program function to allow selection from a
particular menu. In that case, an application should disable that menu. Titles of
windows that have been disabled appear dimmed; their titles are printed in light
grey rather than black (Figure 1.5). If it makes sense to disable only specific options
rather than an entire menu, the application should do so. Options that have been
disabled appear dimmed, while the menu title is still printed in black (Figure 1.6).

Details on creating menus, manipulating the menu bar, and disabling and
enabling menus can be found in Chapter 7. Information of identifying menu
selections is part of Chapter 8.

" & tile Form design
EN=———— Macfile

The title of the File menu above is dimmed.
That means that the menu is disabled and its
options not available to the user.

Figure1.5 A Disabled Menu
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Form design )
N@ E—— MacfFile _ |
Bl

Save fs...

fuit

The New, 01d, and Quit options in this File menu are
dimmed. That means that those particular options are
not available to the user. On the other hand, the Save As
option is available. Only the options that are not
appropriate at the time are dimmed.

Figure1.6 A Macintosh Menu with Disabled ltems

Windows

Windows are rectangles that appear on the Macintosh screen. They are used
to display text and graphics, to collect data essential to program function, and to
warn the user about the consequences of specific actions.

The Macintosh supports six different types of windows. Depending onits type,
a window may have one or more of the following features (see Figure 1.7):

1 Atitle displayed in a title bar

2. Adrag region (the entire title bar except for the GoAway box)

3. A GoAway box (at the left of the title bar)

4. Controls (e.g., scroll bars, push buttons, radio button, check buttons)
5

A grow icon (located in the lower right corner of the window) - note that an
icon is nothing more than a small picture that represents an object or a
function within the computer.

A window that accepts user input, regardiess of whether that input is text or
graphics, has the same title as the document file which contains the material on
disk. If the document has not yet been saved, the window title is “Untitled.” Other
windows, such as the desk accessories, have titles that reflect their function. For
example, the note pad desk accessory’s window has the title “Note Pad.” Windows
that warn users (alerts) and windows that collect data (dialogs) have no titles.
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EX

—

The GoAway Box

The Window Title
The Title Bar

A Yertical Scroll Bar
(some windows also have
horizontal scroll bars) The Grow Icon

Figure 1.7 The Parts of a Macintosh Window

The drag region consists of the entire title bar except the GoAway box. It allows
the user to move the window around the screen. When a user positions the cursor
in the drag region and presses the mouse button, an outline of the window will
follow the arrow cursor as the user drags it around the screen. The final position of
the window is determined by the location of the arrow cursor when the mouse
button is released.

A GoAway box is the small rectangle that appears in the left-hand corner of the
title bar. If the mouse button is clicked while the arrow cursor is within the GoAway
box, the application should close the window. If the window contains a document
that has been modified since it was last saved to disk, the application will ask the
user whether or not the document should be saved before closing.

The term “controls” refers to a group of things that can appear in a window.
They include scroll bars, push buttons, radio buttons, and check boxes. (The latter
three are illustrated in Figure 1.8.) Scroll bars are used to change the portion of a
large document that is visible at any time within a window. Scrolling is discussed in
Chapters 7 and 8. The other types of controls appear primarily in dialog and alert
boxes (see Chapter 9).

A grow icon appears in the lower right-hand corner of document windows. It
allows a user to change the size of a window. When the user positions the arrow
cursor inthe grow icon and presses the mouse button, an outline of the window will
follow the cursor as it is dragged about the screen. The final size of the window is
determined by the position of the cursor when the mouse button is released. Sizing
windows is discussed in Chapter 8.

Windows are not restricted to changing their size and position within a single
plane. They can change positions relative to any other windows present on the
screen. If we assume that windows are stacked on the screen like sheets of paper
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might be piled on a desk, then we can say that windows c{? change their location
in that pile. In Macintosh terminology, windows move from front to back. Like
pieces of paper, Macintosh windows can overlap. Windows to the back may be
obscured by those in front of them.

A Push Button

Check Boxes

Radio Buttons

®@ O KO

Figure 1.8 Macintosh Controls

The front-most window on the screen is the active window; an application can
only work in an active window. Active windows are highlighted in some way,
though the actual details of the highlighting depend on the type of window. For
example, the highlighting in standard document windows like the one in Figure 1.7
includes horizontal lines in the title bar and a pattern in the scroll bars. When a
standard document window is inactive, its title bar will contain only the title.

Text Editing

Throughout a Macintosh application, entry and modification of text is managed
in a single, consistent manner. The place where new characters are added
(indicated by a single, straight-line cursor) is known as the insertion point.

Cut, paste, copy, and clear — the editing operations — affect one or more
contiguous characters in a block known as the selection {range. The selection
range is highlighted (see Figure 1.9) by displaying white characters on a black
background.

A user selects text in two major ways:

1. By holding down the mouse button and dragging the gursor across the text.
(In this case, if a selection goes beyond what is curreptly visible in the text
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window, the text should scroll.) All text over which the cursor is dragged will
be included in the selection range.

2. By clicking the mouse button while the shift button is down (known as shift-
clicking). All text between the current position of the cursor and the place
where the shift-click occurred will be selected.

EO=—————— untitled =—— |

This is an example of how the Macintosh displays

the IGEIMEACMADNGIDE. The characters in
the selection range are displayed in inverse
video.

Figure 1.9 The Selection Range in a Text Document

The editing operations (cut, paste, and copy) affect what is known as the
clipboard. The clipboard is a holding area for text and/or graphics images. It may
be kept in main memory or may be saved to disk if it becomes very large.
Executing a cut deletes the current selection range and places it on the clipboard;
copy merely places the selection range on the clipboard without deleting it from
the document. Paste takes whatever is on the clipboard and places it in the
document just after the current selection range. Generally, the selection range for
paste operations will simply be an insertion point. Note that the clipboard can only
hold one thing at atime. While paste does not disturb the contents of the clipboard,
each cut or copy replaces what was previously there.

Clear does not affect the clipboard. It merely deletes the current selection
range. The backspace key has the same effect as clear.

The implementation of Macintosh text editing is discussed in detail in Chapter 9.
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Alerts and Dialog Boxes

Alerts and dialog boxes are specialized windows. They are used by an applica-
tion to either warn the user about the consequences of a particular action (an alert)
or to collect information essential to program function (dialog boxes).

Alerts contain the text of a warning and one or more push buttons (see Figure
1.10). One button is selected as the default button; it is heavily outlined. Pressing
either the Enter or Return key will have the same effect as positioning the arrow
cursor over the button and clicking the mouse button. Most alert boxes have an OK
button which simply closes the alert and continues with program action. Some also
have a Cancel button which permits a user to escape from some action he or she
may have inadvertantly requested.

Untitled

Save changes before quitting?

Characteristics of an alert:
1. Contains text and push buttons
2. The default button is heavily outlined. It will be selected when the
the user presses Enter or Return
3. The alert is the active window (note that the text window in the
background has been unhighlighted)

Figure 1.10 An Alert

Dialog boxes come in two varieties: modal and modeless. A modal dialog box
prevents the user from working anywhere but within the box. They are used to
collect information that the application must have before it can continue. For
example, a modal dialog box is used to collect that name of a file before savingitto
disk for the first time. Modal dialog boxes display messages, have areas for
entering text, and can contain push buttons, radio buttons, and check boxes (see
Figure 1.11). They are removed completely from the screen when the user has
finished with them.
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Modeless dialog boxes are much more like other windows. They permit the
user to work outside the dialog box while the dialog box is still on the screen.
Modeless dialog boxes are most commonly used to implement Find and Search
operations (see Figure 1.12).

Alerts and dialog boxes are discussed in Chapter 9.

ImagelWriter (Standard or Wide)
Paper: @ US Letter QO A4 Letter

Q US Legal Q International Fanfold

QO Computer Paper
Orientation: @ Tall QTall Adjusted O Wide
Pagination: @ Normal pages O No breaks between pages
Reduction: @® None O 50 percent

Characteristics of a modal dialog box:
1. User can work only in the dialog box
2. Contains display text, fields for editing text, and controls
3. The default button (the button selected by Enter or Return) is
heavily outlined

i

Figure 1.11 A Modal Dialog Box

|  EfN=—————— (hange08—+——"17————|
Find what |SearchString

Change to

(Find Next]) (fhange. Thea find)  (Cheoage) (Change All)
@® Whole Word QO Partial Word

Charsacteristics of @ modeless dialog box
1. User can work outside the dialog box while the box is still on the
screen
2. Contains display text, text that can be edited, and controls
3. The default button (the button selected when the user presses Enter
or Return) may or may not be heavily outlined

Figure 1.12 A Modeless Dialog Box
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Chapter Objectives
1. Tolearn the three major numbering systems used to represent instructions,
characters, and quantities in a computer

2. To understand the organization of the Macintosh’s microprocessor and, in
particular, its registers

To understand the purpose of a stack and how it works

4.  Tounderstand how the Macintosh’s main memory is distributed between the
operating system and an application program

5. To get an overview of the ways in which a Macintosh assembly language
program specifies the location of data in main memory (addressing modes)

6.  Tounderstand the use of symbolic addresses

Computer
Numbering Systems
and How Information

is Represented in
a Computer’'s Memory

When we talk about a computer's memory, we use either the hexadecimal
(base 16) or octal (base 8) numbering systems. Both are used as a shorthand for

15
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binary numbers, which get very clumsy very quickly. To understand hexadecimal
and octal, we must first look at binary numbers.

Binary Numbers

Base 2 (binary) is a natural for describing the internal state of a computer.
Anything we want to put in a computer must be represented by groups of
integrated circuits. Each one of those circuits can carry either a high voltage (by
convention, assigned a value of 1) or a low voltage (assigned a value of 0). As it so
happens, 0 and 1 are the digits that make up the binary numbering system.

As you probably remember from junior-high math, binary numbers work on a
place-value system, just like the base 10 numbers we use every day. Instead of
representing a power of 10, though, each binary place represents a power of 2.

Figure 2.1 shows you a sample binary number and the base 10 value of each
place. There is one group of 128, one group of 64, one group of 32, one group of 8,
and a single 1. In base 10, this number would be 233. To convert a binary number
to a base 10 number, all you have to do is add up the base 10 place values of each
binary place thathasatinit.

1 1 1 1%} 1 1%} 4] 1 a binary number

27 26 25 24 23 22 21 20 Base Two place values

128 64 32 16 8 4 2 1  BaseTenequivalents

To covert Base Two (binary) to Base Ten (decimal):

Add up the decimal place values of each binary place that
contains a one:

128 +64+32+8+1=233
Figure 2.1 A Binary Number

Each binary place is called a binary digit, or bit. A bit can stand for one of two
different things and therefore takes a value of either 0 or 1.

We certainly need to be able to have more than two values in the computer
(there are 53 letters, 10 digits, and a number of punctuation marks and special
characters), so we group a series of bits together. Eight bits are called a byte. A
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byte can represent the binary equivalent of O through 255 (you get 255 when you
put a 1in each of the eight places). Those values are used as codes for whatever
we want to store in the computer. The bits in a byte are numbered from 0 through 7,
starting at the right.

Though there are anumber of coding schemes, most microcomputers (includ-
ing the Macintosh) use ASCI/ code to represent characters and instructions.
(Numbers intended for mathematical operations are usually not coded, but stored
as binary quantities.) ASCII stands for American Standard Code for Information
Interchange.

When you studied Pascal, one important thing you had to know was the
difference between storing a digit as a CHAR or as an INTEGER or a REAL. If you
stored the digit in a CHAR variable, then you couldn't do arithmetic operations with
it unless you first converted it to an INTEGER or a REAL. You are now in a position
to understand why.

The binary ASCII codes for the digits 0 through 9 are 0110000 (48 in base 10) to
0111001 (57 in base 10). That's what will be stored in main memory when you assign
a digit to a CHAR variable. The value of these codes bears no relation to the actual
quantity the digits represent, and trying to use them in arithmetic operations would
certainly produce ridiculous results. On the other hand, storing one of the quan-
tities 0 through 9 in a numeric variable stores 0000 to 1001, the exact binary
equivalent of the digit.

Storing digits as a CHAR requires one byte per digit. For example, “28” would
be stored as 0011010 and 0111000. Numbers, though, can hold up to 255 in a single
byte. 28 would be 00011100.

You've probably noticed that the ASCII codes for the digits are only 7 bits long.
Standard ASCll is a 7-bit code. The eighth bit in the byte is usually not used.

The Macintosh, though, uses an extended ASCII code which lets you use a
combination of the shift and option keys to generate characters which are not
usually available from the keyboard. These additional characters are created by
using bit seven (the eighth bit) to provide additional code combinations. Standard
ASCII codes end at 01111111, but Macintosh codes go all the way through 10001001.
You can see Macintosh’s character codes in Table 2.1

Most assembilers, including the MDS Assembler, will accept binary numbers
as part of the source code. To indicate that a quantity is binary, preface it with a
percent sign (%). For example, the Assembler will recognize % 1100011 as a binary
number having the decimal value 99. Without the percent sign, the number will be
interpreted as base 10 with the value of one hundred ten thousand and eleven.

The binary system is used in computers for one other major purpose besides
specifying ASClI codes; itis used to count the bytes in the computers memory. The
number given to each byte is called its address. In the 128K Macintosh, there are
131,072 bytes of RAM (one kilobyte = 1024 bytes), so the binary equivalent of the
maximum address is 11111111111111111. Such a number is too long for most people to
handle easily. Therefore, we use hexadecimal as a shorthand.
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Table 2.1 Macintosh Extended ASCII Character Set

NON-PRINTING CHARACTERS*

What you Binary Hex Meaning of

Press Code Code  thecode
101%]06]%,%]%1%,%] 1%]%] Null
DODDDDD1 o1 Start of header
DODIDD1D @2 Start of text

Enter key DRDD2D11 23 Enter
Q22DD12D o4 End of tape
DDD1D1 25 Enquiry
Q020119 6 Acknowledge
2002D111 Q7 Bell

Backspace key 0021200 a8 Backspace

Tab key D22D10D1 29 Horizontal tab
QD2D1010 QA Line feed
2001211 oB Vertical tab
20221109 ac Form feed

Return key 22221101 oD Carriage return
Q22D1119 OE Shift out
20031111 OF Shift in
QO21000D 19 Data link escape
DOD102D1 11 Open Apple
010210 12 Check mark
20210211 13 Filled diamond
22912102 14 Filled circle
20210101 15 Closed Apple
20010110 16 Synchronous idle
Q2212111 17 End transmission block
20211009 18 Cancel
22911001 19 End of medium
229011019 1A Substitute

Clear keyt 20011211 1B Clear

Left arrowt 02011100 iC Move left

Right arrowt 20211101 iD Move right

Up arrowt 20211119 1E Move up

Down arrowt Q0011111 1F Move down

*Non-printing characters generally cannot be generated from the keyboard (exceptions are noted in the
"What you Press" column).
1These keys appear on the Macintosh keypad.

(continued)
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PRINTING CHARACTERS

What you What you Binary Hex What you What you Binary Hex
Press ~ See  Code =~ Code Press  See  Code  Code
Space bar Aspace QQ100000 20 SHIFT-2 @ 01000000 49
SHIFT-1 ! 20100001 21 SHIFT-a A 01000001 41
SHIFT- " 00100010 22 SHIFT-b B 1000010 42
SHIFT-3 # 20100211 23 SHIFT-c Cc 01000211 43
SHIFT-4 $ 00100100 24 SHIFT-d D 01000100 44
SHIFT-5 % 2122101 25 SHIFT-e E 01002101 45
SHIFT-7 & o120110 26 SHIFT- F 21000110 46
' ' 22122111 27 SHIFT-g G 01002111 47
SHIFT-9 ( 00101000 28 SHIFT-h H 21001000 48
SHIFT-0 ) 2211091 29 SHIFT-i | 21001031 49
SHIFT-8 * oo101010  2A SHIFT-j J 1021010 4A
SHIFT-= + 201019311 2B SHIFT-k K 010019011 4B
, , 00101100  2C SHIFTH L 01001190 4C
- - 00101101 2D SHIFT-m M 91001191 4D

. 20121119 2E SHIFT-n N 212901110  4E
/ / 00191111 2F SHIFT-o0 (0] 01021111 4F
0 0 20110000 30 SHIFT-p P 21010000 50
1 1 0211201 31 SHIFT-q Q 21010001 51
2 2 o21102010 32 SHIFT-r R 91010910 52
3 3 29112911 33 SHIFT-s S 21019911 53
4 4 20112100 34 SHIFT+ T Q1010100 54
5 5 22112101 35 SHIFT-u u 21010191 55
6 6 20112110 36 SHIFT-v \" 21019110 56
7 7 22112111 37 SHIFT-w W 219618111 57
8 8 00111000 38 SHIFT-x X 01011000 58
9 9 22111001 39 SHIFT-y Y 21011001 59
SHIFT-; : 201112019 3A SHIFT-z V4 21011918 5A
; ; 292111011 3B [ [ 21211911 5B
SHIFT-, < 20111100 3C \ \ 21211100 5C
= = 2211111 3D ] ] 21911191 5D
SHIFT-. > 20111110 3E SHIFT-6 A 21911110 5E
SHIFT-/ ? 22111111 3F SHIFT-- _ 21211111 5F

(continued)
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Table 2.1 (continued)

PRINTING CHARACTERS
What you What you Binary Hex What you What you Binary Hex
Press Code _ Press See Code Code
‘ ‘ 21100000 60 OPT-u/SHFT-a At 10000000 89
a a 21100001 61 SHFT-OPT-a A 10000021 81
b b 21100010 62 SHFT-OPT-c o 10000010 82
c c 21100211 63 OPT-e/SHFT-e E 10000211 83
d d 21100190 64 OPT-n/SHFT-n N 10000100 84
e e 21102101 65 OPT-u/SHFT-0 O 10000101 85
f f 2911200110 66 OPT-ulu u 10000110 86
g g 21120111 67 OPT-e/a a 10000111 87
h h 21101000 68 OPT-Ya a 100010900 88
i i 21191001 69 OPT-i/a a 10001001 89
i j 21101219 6A OPT-u/a a 10001010 8A
k k 21101911 6B OPT-n/a a 10001011 8B
I | 21101100 6C OPT-a a 10001100 8C
m m 2110111 6D OPT-c G 10021191 8D
n n 21101110 6E OPT-ele é 10001119  8E
0 o 21101111 6F OPT-7e é 10001111 8F
p p 21110000 79 OPT-i/le é 10010000 99
q q 21110901 Al OPT-u/e é 10010001 91
r r 21110910 72 OPT-efi i 10010010 92
s s 211109011 73 OPT-Yi i 10010211 93
t t 21110100 74 OPT-i/i i 12010100 94
u u 21110101 75 OPT-u/i i 10012101 95
v v 211190119 76 OPT-n/n fi 12010110 96
w w 21119111 77 OPT-elo 6 109010111 97
X X 21111200 78 OPT-Y0 o 10011000 98
y y 21111001 79 OPT-i/lo 6 12011001 99
z z 211119010 7A OPT-u/o 6 190110190 9A
SHIFT{ { 2111191 7B OPT-n/o 6 10011911 9B
SHIFT- | 21111100 7C OPT-e/u u 10011100 9C
SHIFT-] } 2111111 7D OPT-‘u u 10911191 9D
SHIFT- ~ 21111110 7E OPT-ilu a 199011118 9E
delete* 21111111 7F OPT-u/u u 19011111 9F

*A non-printing character

tAccented characters which are useful for foreign languages are generated by a two-key sequence. You
must first press the OPTION key and the modifier (',i,u,n, or ) together; nothing will appear on the screen.
Then press the key above which you wish the accent to appear.

(continued)
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What you Binary
See

PRINTING CHARACTERS
What you What you Binary Hex What you
Press See Code Code  Press
OPT-t 1 101000090 AQD SHFT-OPT-/
SHFT-OPT-8 ° 10100021 A1 OPT-1
OPT-4 ¢ 10100019 A2 OPT-l
OPT-3 £ 10190311 A3 OPT-v
OPT-6 § 10190100 A4 OPT-f
OPT-8 . 1919311 A5 OPT-x
OPT-7 1 10190119 A6 OPT+j
OPT-s B 19199111 A7 SHFT-OPT-\
OPT-r ® 101901009 A8 OPT-\
OPT-g © 10191021 A9 OPT-;
OPT-2 ™ 1010190190 AA (unused)
OPT-e : 10101911 AB OPT-Y/SHFT-a
OPT-u - 12191100 AC OPT-n/SHFT-a
OPT-= # 19101101 AD OPT-n/SHFT-0
SHFT-OPT- A 121901119 AE SHFT-OPT-q
SHFT-OPT-0 @ 19191111 AF OPT-q
OPT-5 o 12110009 BO OPT--
SHFT-OPT-= + 10110021 B1 SHFT-OPT--
OPT-, < 12110010 B2 OPT-[
OPT-. p-] 10110911 B3 SHFT-OPT{
OPT-y ¥ 129119109 B4 OPT-]
OPT{ “ 10119101 B5 SHFT-OPT-]
OPT-d 9 19110110 B6 OPT-/
OPT-w z 19119111 B7 SHFT-OPT-v
SHFT-OPT-p II 10111020 B8 OPT-uly
OPT-p T 12911101 B9 SHFT-OPT-*
OPT-b I 10111910 BA
OPT-9 2 19111911 BB
OPT-0 9 10111109 BC
OPT-z Q 19111101 BD
OPT-' & 12111119 BE
OPT-o0 [} 19111111 BF

*The picture that appears on the screen varies with the type font in use.

2t DRl ] —o

8 RO>>

Code

11000000
11020201
11000219
11000311
11000100
11020121
11022110
11000111
11021000
11091221
11091910
11921911
11001100
11901101
11001110
11001111

110100090
11010021
11010010
11010011
11010100
112120101
11010119
11210111
11911000
11211021
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Hexadecimal Numbérs

Base 16 (hexadecimal or simply ‘hex’) presents a unique challenge to we
human beings. This numbering system should be able to express the quantities 0
through 15 in a single place, but we only have ten digits available (0 through 9).
Therefore, we use the letters A-F to represent 10 through 15 respectively. Figure
2.2 shows some hexadecimal place values. The sample number has a decimal
(base 10) value of 77,631.

1 2 F 3 F a hexadecimal number
164 163 162 161 162 Base Sixteen place values
65,536 4096 256 16 1 Base Ten equivalents

- To covert Base Sixteen (Hexadecimal) to Base Ten (decimal):

Multiply each hexadecimal digit by its decimal equivalent
and add:

(65,536 * 1) + (4096 * 2) + (256 * 15) + (16 * 3) + 15 = 77,631

Figure 2.2 A Hexadecimal Number

How hex can give us a shorthand for large binary numbers is probably not
instantly obvious, but consider this: the maximum quantity that a four-digit binary
number can represent is 15 (in binary, 1111), which, “by coincidence,” is the
maximum value of a single hex digit.

Converting a binary to hex number becomes very simple. First, divide the
binary number into groups of 4 digits, working from the right. Then substitute the
hexadecimal equivalent for each group of 4 binary digits. That's all there is to it.

As we saw above, the maximum RAM address in the 128K Macintosh is
1111111111111 in binary. Figure 2.3 shows its conversion to hexadecimal. Now the
maximum address appears as $1FFFF. The $ in front of the number alerts us (and
the Assembler) that what follows is hexadecimal. The hex figure is certainly more
manageable than that string of seventeen 1's. Though the MDS assembler will
accept quantities and codes in binary, octal (Base 8), decimal, and hex, we
generally specify addresses and character codes in hexadecimal and quantities in
base 10.

Hexadecimal is also used as a shorthand for binary when representing ASCII
codes. The digits have codes of $30 through $39; 0 has a code of $30, 1 of $31, 2 of
$32, and so on. The hexadecimal values of the codes seem much more logical
than the base 10 codes of 48-57.



NUMBERING SYSTEMS: MACINTOSH'S MICROPROCESSOR AND MEMORY 23

To do the conversion:

1. Divide the binary number into groups of four , starting
from the right.
2. Substitute the corresponding hexadecimal digit for each group
of four binary digits.

Figure 2.3 Converting Binary to Hexadecimal

By this point it has probably occurred to you that if the maximum RAM address
is $1FFFF, there is no way to specify such an address in one byte (the maximum
hex value for one byte is $FF); it will take three bytes. We also would like to be able
to do arithmetic on numbers more than one byte in length (e.g., with values greater
than 255, occupying more than eight binary places). The microprocessor used in
the Macintosh conveniently allows us to work with words and longwords.

A word refers to two bytes (16 bits) and always begins on a byte with an even
address. For example, a word could occupy the bytes at $33AA and $33AB but
not the bytes at $33AB and $33AC. We number the bits in a word 0-15, starting
from the right. Bits 0-7 are referred to as the “low-order” byte; 8-15 are called the
“high-order” byte.

Alongword s 4 bytes (32 bits). Like a word, it must begin on a byte with an even
address. The bits are numbered 0-31, starting at the right. Bits 0-15 are the low-
order bits and 16-31 the high-order bits.

Octal Numbers

The octal numbering system (also known as base 8) has been around com-
puters as long as hex, but it isn't used a great deal any more. Like hex, octal
became popular as a shorthand for binary. It was useful when the largest bit
grouping was a byte and when data codes were only 6 bits. Why resurrect octal
here, then? Because the MDS assembler will accept octal numbers as well as
binary, decimal, and hexadecimal numbers.
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Since octal is base 8, it uses the digits 0 through 7. Each octal place therefore
represents a power of 8 (just like binary places are powers of 2 and hex places are
powers of 16). A sample octal number can be found in Figure 2.4. Its decimal value

is 36,545.
1 1%} 7 3 1%} 1 an octal number
85 g4 83 82 81 89 Base Eight equivalents
32,768 4096 512 64 8 1 Base Ten equivalents

To convert Base Eight (octal) to Base Ten (decimal):

Multiply each octal digit by its decimal equivalent
and add:

(32,768 * 8) + (4096 * @) + (512" 7) + (64" 3) + (8 * @) + 1 = 36,545

Figure 2.4 An Octal Number

Converting binary to octal is very much like converting binary to hex. While it
takes four binary places to represent the full range of hex digits (0-F), it takes only
three binary places to get the octal digits (111 base 2 = 7 base 8). Therefore, to do
the conversion, divide a binary number into groups of three (starting from the right,
just as when converting to hex), then substitute the appropriate octal digit for each
group of three binary digits. An example of a binary to octal conversion appearsin
Figure 2.5.

To do the conversion:

1. Divide the binary number into groups of three, starting
from the right.

2. Substitute the corresponding octal digit for each group
of four binary digits.

Figure 2.5 Converting Binary to Octal
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Macintosh’s
Microprocessor

A microprocessor is not a microcomputer. The term microcomputer refers to
the whole machine, while the microprocessor is only a part of a microcomputer. In
fact, a microcomputer needs not only a microprocessor, but also some RAM,
enough code in ROM to boot the machine, pathways—known as buses —to carry
data and addresses from one place to the other, some provision for I/O, and a
clock.

The microprocessor, though, is truly the brain of the computer. The Macin-
tosh’s microprocessor is Motorola’s MC68000 (or just “680007). You may read in
some publicity releases that it is a “32-bit microprocessor.” That assertion is not
completely true. While the 68000 has 32-bit registers (we'll get to registers shortly),
its buses are smaller.

The 68000's data bus is only 16 bits wide (this is the path along which data travel
between RAM, ROM, and the microprocessor). The address bus (the path along
which addresses travel from the microprocessor to RAM and ROM) is 24 bits wide.

The 24-bit address bus sets the limit on the maximum amount of memory
Macintosh can address directly. These 24 bits (3 bytes) allow us to have a
maximum address of $FFFFFF — 16 megabytes. Not all of this can be used for
RAM, though. In order to access anything stored in ROM, the ROM must have its
own address range, distinct from RAM. Macintosh has 64K of ROM which resides
at $400000-$40FFFF.

Registers

Registers are special storage locations within a microprocessor. Almost all the
actions a program performs on data occur while the data or their addresses are in
the registers. The Macintosh’s 68000 microprocessor has four different kinds of
registers: eight data registers, eight address registers, one status register, and one
program counter (see Figure 2.6).

The data registers (numbered D0O-D7) are used primarily for data manipula-
tion. Because they are 32 bits wide, they can accommodate byte, word, and
longword operations. The address registers (numbered A0-A7) are also 32 bits
wide. In addition to allowing the data manipulation (though only on words and
longwords), they can be used for addressing RAM (much more on this to come).
Register A7 also has a special use with regard to the stack (see next section).

The status register is an extremely useful tool. While it is only 16 bits wide, it
carries more than two bytes worth of information; the bits act individually as flags.

We say a bit is set if it has a value of 1; when we clear a bit, we make sure its
value is 0. The bits in the status register are set at the end of many microcomputer
operations. A program can check the condition of the bits in the status register to
discover the result of executing an instruction.
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Figure 2.6 Macintosh 68000 Registers
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Figure 2.7 shows the 68000's status register. The eighth high-order bits are
used by the computer itself and are therefore called the system byte. It contains a
supervisor bit, a trace bit, and three bits which form an interrupt mask. Macintosh
assembly language programmers will rarely use the system byte.

System Byte 8 7 User Byte g

7

Carry bit

/
Extend bit /
Negative bit

Zero bit
Overflow bit

Figure 2.7 Macintosh 68000 Status Register

The supervisor-state bit is unnecessary because the Macintosh uses its Micro-
processor in a slightly unusual way. The standard 68000 micrdprocessor has two
‘modes”: a user mode and a supervisor mode. A program running in the user
mode is prohibited from using some of the microprocessor’s instructions. The
Macintosh, however, runs only in the supervisor mode. Therefore, the bit in the
system byte which would ordinarily be used to switch between the user and
supervisor modes is irrelevant.

The Macintosh does not recognize the 68000's trace mode. In fact, if the trace
bit is set, the Macintosh will consider it a system error. (See Chapter 3 for more
details on system errors.)

The interrupt mask bits are used to control which peripheral device (e.g., disk
drives) can signal the CPU that they are in need of attention. The signal sent from
the device is known as an interrupt, since it forces the CPU to interrupt whatever it
is doing and take care of the device. Macintosh programs do not need to control
interrupts through the system byte of the status register; they have a more powerful
way to monitor what happens to the system. These are what the Macintosh calls
events (discussed in detail in Chapter 8). Though some events are caused by
hardware interrupts (e.g., inserting a disk into a disk drive, clicking the mouse
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button, striking a key on the keyboard), others are generated by the operating
system. The event mechanism is therefore more powerful and flexible than relying
on an interrupt mask in the status register.

While a Macintosh application will probably never look at the system byte of the
status register, it is virtually impossible to write an assembly language program
without, at some time, consulting the user byte of the status register; the user byte is
comprised of the eight low-order bits of the status register.

In the user byte, bit 0 is the carry bit. It is affected by integer addition and
subtraction instructions as well as some other, less frequently used instructions. If
the execution of an arithmetic instruction causes a carry out of the left-most bit
(known as the most significant bit), the carry flag will be set. If there is no carry out,
then the flag will be cleared.

To understand how the carry flag works, let's consider some simple binary
addition. The binary addition table is very simple:

0+0=0

0+1=1

1 + 1 = Owithacarry out of 1
1+ 1+ 1=1withacarryoutof 1

Computers add only two numbers together at a time, working from the right-most
(least significant) bit to the left, just as we do when performing decimal addition. A
carry out from one bit position will cause a carry in to the bit position directly to its
left. Therefore, the fourth expression above is the result of adding two 1’s with a
carry in from the previous bit.

Assume that a computer is executing the following addition:

101010 Value 1
+010010 Value?2

111100 Result

When the addition is peformed on bit 1 (the second bit from the right) a carry is

generated into bit 2, but this operation will nevertheless clear the carry bit. The

most significant bit, bit 5 (since this is only a six-bit number), doesn't generate a

carry. The carry bit will be set only if the carry is out of the most significant bit.
Consider, however, a slight modification to the problem:

101010 Value 1
+110010 Value?2

1011100 Result

The only change was in the most significant bit of Value 2 (itis a 1 ratherthana0in
this case). Now there is a carry out of the most significant bit. The carry flag will be
set.

Another way to think of the carry bit is to visualize it as holding the value of a
carry. In the first addition example above, there was actually a carry out of 0.
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Therefore the carry bit is cleared. The second example caused a carry out of 1,
setting the bit.

The second bit in the status register (bit 1) is the overflow flag. It is set whenever
the result of an integer addition, subtraction, or division is too large to fit in the
location where the result of the operation was to be stored. Other, less frequently
used instructions also affect the overflow bit. While this at first may seem to be the
same as the carry bit, itis not. The major difference is that the carry flag holds the
value of a carry, while the overflow flag is a true flag, signaling the fact that an
overflow occurred.

In many microprocessors, by the way, the distinction between the operation of
the carry and overflow flags is different from that of the 68000. The carry bit is
affected by operations on unsigned numbers, while the overflow flag monitors
operations on signed numbers. That is not true with the 68000. The 68000's
addition and subtraction instructions work only on signed numbers and affect both
overflow and carry flags. While there are separate instructions for signed and
unsigned multiplication and division, the multiplication instructions always clear
the overflow and carry flags, regardless of the result of the operation. The division
instructions, both signed and unsigned, clear the carry flag and affect the overflow
flag based on the result of the operation.

Bit 2 is called the negative flag. It is set (i.e., gets a value of 1) whenever an
operation produces a negative result. Note that other operations besides arith-
metic ones can produce negative results. This most importantly includes com-
parison operations where you are trying to decide whether one quantity or
character is larger than another.

The zero bit (bit 3) works very much like the negative bit. It is set whenever an
operation gives a result of zero. Though it may seem a bit confusing at first, you
need to remember that when bit 3 is 1, the result was 0; when bit 3 is 0, the result
was non-zero. (You need to check bit 2, the negative bit, to know whether the result
was negative or positive.)

Bit 4 is known as the extend bit. The extend bit functions, in most cases, just like
the carry bit. It is used primarily for multiple-precision arithmetic operations (com-
putations that span more than one longword).

Different instructions affect the status register differently. Therefore, as you
learn the 68000 instruction set, you must not only be aware of what the instruction
does, but also how it changes the user byte of the status register.

The Stack

As well as the registers just described, the 68000 microprocessor uses a
special sort of storage area in RAM known as a stack. (Actually, the 68000 has two
stacks, but the Macintosh uses only one.)

You can think of the stack as a tall silo that is 32 bits wide. Many pieces of data
and address can be stored in the stack, one on top of the other (see Figure 2.8).
Access to the stack isin last in, first out order.
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The only path in and out is from the top!

31 gl «—— bit number
Last longword in - first one out
Stack pointer (SP)
points here - the
top of the stack

First longword in - last one out

Figure 2.8 The Stack

Register A7 is used as the stack pointer. It contains the address of the last item
stored on the stack (called the “top” of the stack) so that you don't need to keep
track of where the stack is physically or how many items are stored there. When
writing programs, the stack pointer can be referred to as A7 or SP.

What is the stack used for? Often, the stack is used as an extra register for
quick, temporary storage. (You push something onto the stack and pullit off, which
sometimes leads to the image of the stack as a spring-loaded tube.) The stack is
also the place where the microprocessor stores subroutine return addresses.

Have you ever wondered how a Pascal program knows where to return to
when a procedure ends? Every time the program encounters a statement that calls
aprocedure, it pushes the address of the statement just after the call onto the top of
the stack. Everytime it finds the END that finishes a procedure, it pulls the top
address of the stack and resumes execution at that address. The last in, first out
access to the stack ensures that nested procedures will return properly.

Assembly language subroutines affect the stack in exactly the same way.
Whenever you issue a JSR (jump to subroutine) instruction, the address of the next
program instruction is pushed onto the stack. The RTS (return from subroutine)
instruction causes the address to be pulled from the stack and Iets the system
know where to resume the main program.
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The Program Counter

The final register that an application uses is the program counter. The program
counter contains the main memory address of the beginning of the statement
following the one currently being executed. In other words, itis a 32-bit register that
contains the address of the next program instruction. In fact, it is the contents of the
program counter, often abbreviated to “PC,” that gets pushed onto the stack when
you jump to a subroutine.

How Macintosh’s RAM
is Used

It may sound like a lot—128K RAM — but only a portion of that space is actually
available to a program. Figure 2.9a shows how the Macintosh’s RAM is divided
between the user and the system in a 128K machine.

The bottom of RAM ($00-$FF) is used by the 68000 microprocessor for
hardware exception vectors. These are rarely of concern to assembly language
programmers. The next $300 bytes ($100-$3FF) are used by the operating system
to store global variables that are shared by various parts of the system. (This is
called the “system communication area.”) There are more system globals in
$800-$AFF.

The $400 bytes spanning $400-$7FF contain the System Dispatch Table. This
table is the entry way to the ROM ToolBox routines. As a programmer, you don't
need to know the exact address in ROM of any ToolBox routine you want to use.
Instead, the assembler translates your call into a reference to the Dispatch Table (a
“‘trap”), where the actual ROM addresses are stored. The table itself is stored in
ROM and loaded into RAM when you start up the system.

At first this may seem like an extra, unnecessary step. Why look up the address
in a table when a program could go to it directly just as easily? Because this
arrangement gives added flexibility. If at some time in the future you upgrade your
Macintosh and change the ROM, you won't have to modify any programs that use
ToolBox routines. Using the Dispatch Table will also let you substitute a program of
your own for any ToolBox routine. All you have to do is replace the address in the
Dispatch Table with the starting address of your program (this is known as
applying a patch). Since ROM can't be patched, it is essential that the Dispatch
Table be in RAM in order to have the ability to change it.

The top of RAM (i.e., the high addresses $1FD0O0-$1FFE3) is used as a buffer
for the Sound Driver. The Sound Driver is the part of the operating system that
controls the sounds that come from the Macintosh’s speaker. Just below the sound
buffer ($1A700-$1FC7F) lies the main screen buffer. This areas is used to map out
what will be displayed on the screen.
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Figure 2.9(a) 128K Macintosh RAM
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When you use a debugger to help develop assembly language programs, it
installs just below the screen buffer. (See Chapter 3 for a definition of a debugger
and how to use one.) The region just below the debugger is set aside to hold data
(called application globals) for an application program. The size of the area is not
fixed; itis initialized when the program is loaded to allow only as much space as the
program actually requires.

The remaining space, from $B00 to the beglnnmg of the application globals, is
under-programmer control. At system startup, the area $B00 to $4CFF is initialized
as the system heap. This area is used by the operating system when a program is
running.

Under most circumstances, programs running on a 128K machine begin at
$4D00, the start of the applications heap, and grow up in memory; the stack
begins at the top of the application heap (below the application globals) and grows
downinmemory. Ifthe program and the stack meet, then application has run out of
memory. Program execution will stop, for example, if the program attempts to add
anything else to the stack.

One of the most important things to understand from the preceding discussion
is that there is nowhere near 128K for an application program. There are $15A00
bytes between the bottom of the application heap and the bottom of the screen
buffer (about 71K), but part of this is lost to application globals and the stack. The
space for source code is therefore rather limited, especially if a program needs
tables of text stored in RAM.

Memory use in a 512K Macintosh is very similar to that in the 128K machine. If
you look at Figure 9.2b, youll see that the extra memory is concentrated in the
application areas and the system heap. Instead of a 16.5K system heap like the
128K machine, the 512K Mac has a 46K system heap. Programs therefore gener-
ally begin at $C000 rather than at $4D00 as they do on a 128K machine. The
remainder of the extra RAM is allocated to the application heap, the stack, and the
various parameters and global values.

Addressing RAM

When programming in Pascal, you don't have to worry about where data are
stored in RAM. You use variable names as labels on storage locations; the
loading/linking process assigns the actual addresses to the variable names,
allowing a program to retrieve the data stored previously by simply specifying the
particular variable wanted.

Assembly language, being closer to machine language, requires that the
programmer keep track of where everything is stored in RAM. That includes not
only the program itself but any data the program may need to use. Therefore,
assembly languages provide a variety of ways of specifying where a data item is
stored. The 68000 has thirteen different ways that fall into five general groups;
these methods are known as addressing modes.
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Figure 2.9(b) 512K Macintosh RAM
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The purpose of the rest of this chapter is to introduce you to the 68000's
addressing modes. Though, at this point, it may seem like overkill to have so many
ways to indicate a main memory location, you will discover as you learn the
instruction set and how to use the ToolBox and operating system routines that the
flexibility that comes with these thirteen modes is essential to a well-written pro-
gram.

To understand addressing, you must first know a little about the format of an
assembly language statement. The format of assembly language statements is far
more rigid than the format of high-level language statements. Statements are
broken up into four fields. The first field, which may be left blank, is used for
statement labels, known often as symbolic addresses. The second field contains
the instruction mnemonic. The third field specifies either the data to be operated on
or the address of where the data can be found. It often also indicates where the
results of the operation should be placed. The data item itself is called the operand.
The place where the operand can be found is its effective address. The fourth field
is, like the label field, optional; it can be used for comments. Comment fields begin
with a semicolon. Figure 2.10 shows a 68000 assembly language statement and its
fields.

Event MOYE.L A1,-(SP) ; put the pointer on the stack
Instruction Comment
Mnemonic
Symbolic Address Effective Address*

*This effective address field has two operands. The first, A1, is the effective
address of the source operand. The second, -(SP), is the effective address
of the destination operand.

Figure 2.10 Format of a 68000 Assembly Language Instruction

Theinstruction in Figure 2.10 takes the contents of register A1 and movesiit onto
the stack. The instruction therefore has two operands, one specifying the source of
the data, and the other the destination. The two operands are separated by a
comma. The comment (“put the pointer on the stack’) is preceded by a semicolon.

To make addressing easier to understand, let's create a very simple com-
puter—the “Extremely-Micro Computer’—to use in some of the examples. This
computer has only two registers: a data register called D and an address register
called A. It also has ten RAM locations, numbered in base 10 from 0 to 9.
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Register Direct Modes

In register direct modes, the operand itself is loaded into either a data register
or an address register.

Mode #1: Data Register Direct

Figure 2.11 shows the state of the Extremely-Micro Computer just before an
operation using Data Register Direct addressing. The value 224, which is stored in
RAM location 7, has been copied into the data register D. The effective address of
that value is specified by simply coding:

D

Whatever operation is indicated by the assembly language instruction will act
on the value that has been stored in register D.

To do Data Register Direct addressing using the 68000 microprocessor,
replace D in the Extremely-Micro Computer statement with Dn, where n is the
number of the data register.

A 126 a

116 |

224 D 11 2
N 309 2

Tosced nto the 522 4

data register. 122 5

269 6

224 7

239 8

250 g

Figure 2.11 Using Data Register Direct Addressing
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Mode #2: Address Register Direct

Address Register Direct addressing works exactly like Data Register Direct
addressing. The only difference is that the operand is contained in one of the
address registers rather than in a data register. The assembly language format for
an address register direct effective address is:

An

where n is the number of the address register.

Never use register A7 for direct addressing or for any sort of addressing that
requires changing the value in a register, since it is used as the stack pointer.
Register A5 always contains the address of the top of the applications globals area.
It too should never be used for any sort of addressing that requires a change in the
quantity stored in the register.

Register Indirect
Addressing

The basic principle behind register indirect addressing is that instead of putting
the operand itself into a register, a program loads the register with the address
where the operand can be found. Register Indirect addressing can be done only
with the address registers.

Mode #3: Address Register Indirect

To perform Address Register Indirect addressing, store the location of the operand
in an address register. For example, Figure 2.12 shows the Extremely-Micro
Computer just before execution of a statement using Address Register Indirect
addressing.

The operand is still the quantity 224, but the contents of the address register A
is 7. The 7 is a pointer to the RAM location where 224 is stored. The effective
address would appear as:

(A)

The parentheses are required. They can be read as ‘the contents of.” Therefore, (A)
translates to ‘the effective address is the contents of register A.”

For the 68000, add the number of the address register to the Extremely-Micro
format:

(An)

Be sure to replace the n with the number of the specific address register being
used.
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Figure 2.12 Using Address Register Indirect Addressing

Mode #4: Address Register Indirect
with Postincrement

When a program needs to process a series of data items, such as when data are
stored in an array, Pascal makes life easy by allowing the program to step through
the array by using a variable as a subscript. Since you can't use variable names in
assembly language, you might have to process the series of data values as follows:
1.  Store the address of the first data value in an address register.

Process the value.

Increment the address so that it now reflects the location of the next data
value.

4. Repeat steps 3 and 4 until all data values have been processed.

Address Register Indirect with Postincrement addressing, more simply called
“Postincrement” addressing, is one way to do steps 2 and 3 with only one assembly
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language statement. The format for the Extremely-Micro Computer will be:
(A)+

Prior to executing this statement, load the location of the first data value into
register A. Suppose, for example, we want to process the values in RAM locations
0-4. Figure 2.13 shows the state of the Extremely-Micro Computer just before
beginning that processing; 0 has been stored in register A, since it is the lowest
address in the series we want to process.

l

A
a A 126

116 {

D 11 2

309 3

aperand fo e processed i 322 1
placed in the address register. 122 5
269 6

224 7

239 8

250 9

Figure 2.13 Using Address Register Indirect with Postincrement Addressing

When the computer executes the statement that processes the data, not only
will the operation specified by the instruction be performed, but the address in
register A will be increased by one, so that register A will then contain the address
of the next value. First the operation is performed, then the address isincremented
(thus the word “postincrement” in the name of this addressing mode).

While we've been using the Extremely-Micro Computer, we haven't worried
about the size of the operands. The precise operation of Postincrement address-
ing, though, does depend on operand size. When the instruction specifies an
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operation on one byte, the increment will be only one byte. For word operations,
the increment will be two bytes; for longword operations, the increment will be four
bytes.

InstructionMnemonic.B (An)+

describes an operation on a byte. (As always, the n should be replaced by the
number of the address register being used.) Note that this is not a complete
assembly language statement; many statements include not only the effective
address of an input (source) operand, but the destination location for the results of
the operation.

InstructionMnemonic.W (An)+ = operation on a word
InstructionMnemonic.L (An)+ = operation on alongword

We will discuss when to use which extension (.B, .W, or .L) as we discuss the
individual 68000 instructions.

Mode #5: Address Register Indirect with Predecrement

Address Register Indirect with Predecrement addressing (‘Predecrement” for

short) is very similar to Postincrement addressing. When you use Predecrement

addressing, the address found in the address register is decremented (decreased)

prior to performing the operation specified by the assembly language instruction.

The size of the decrement (byte, word, or longword) depends on the extension you

put on the instruction mnemonic, just like it does with Postincrement addressing.
Predecrement addressing is specified by:

—(An) where n = address register number.

Mode #6: Address Register Indirect with Displacement

The two types of Displacement addressing available on the 68000 are additional
ways to easily address data in a series of memory locations. Suppose (for whatever
reason) your data are placed in every other location, as they are in the Extremely-
Micro Computer example in Figure 2.14. Predecrement and Postincrement
addressing will only let a program move one location at a time, but in this case you
want to move two. What can you do?

Address Register Indirect with Displacement addressing allows you to specify
a quantity (the displacement) which will be added to the contents of the address
register. In a general form, we would use:

d(A) whered = the displacement.
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In Figure 2.14, we want to move two memory locations. Therefore, the displace-
ment is 2 and the general form becomes:

2(A)

When the computer executes a statement using the effective address specifica-
tion, the displacement (2) will be added to the contents of register A (0) to give us
the effective address (2). This statement will process the operand in location 2.

When Address Register Indirect with Displacement addressing is used with the
68000, there are two restrictions on the value of the displacement. First, it must be
an integer, though it can be either positive or negative. Secondly, it must occupy
no more than 16 binary digits, which translates to a value of $7FFF. (That means
that bit15 is not used as a part of the quantity; itis reserved to indicate the sign of the
displacement.) The 68000 format is:

d(An) where d = 16-bit displacement
n = address register number

7 A 122 g
D 116 2
If we use 2(A) to specify the
effective address, the displacement 111 ‘1
of 2 will be added to the contents
of A to generate the location of 5
the operand
309 6
269 8

Figure 2.14 Using Address Register Indirect with Displacement Addressing
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Really, then, what good is Address Register Indirect with Displacement address-
ing? It comes in handy when you want to access data in file structures.

Assume, for example, that you are working with a direct access file. The file will
have a fixed number of bytes allocated for each field. (Without fixed field lengths
you can't do direct access.) The file might have the following fields:

Name 25 bytes
Age 1 byte
Sex 1 byte

You want to read an entire 27-byte record at one time from the disk into main
memory. How, then, can you retrieve one particular field? If you know how many
bytes any given field is offset from the beginning of the record, you can use
Address Register Indirect with Displacement addressing to locate the field you
want.

Tolocate the Age field, firstload the starting address of the record into address
register A2. Then specify the effective address of the Age field by using:

25(A2)

Note that while Age is the 26th byte of the record, it is offset only 25 bytes from the
first byte in the record.

Wel'll see much more of this technique when we talk about the File Manager in
Chapter 11.

Mode #7: Address Register Indirect with Index

Address Register Indirect with Index addressing (the other form of displacement
addressing) adds an additional wrinkle. The effective address will not only be the
sum of the contents of an address register and a displacement, but the contents of
an index register will also be needed. An index register is any data or address
register that you decide to use to hold an index value. That, by the way, isn't as
much a circular definition as it might seem at first glance.

Consider the Extremely-Micro Computer example in Figure 2.15. Suppose we
want to process the values in locations 3-6. We load the address 3 into register A.
We load a stdrting index value of 0 into register D. (In this case, we don't have any
choice of what register to use as an index register since we only have two and we
must use the address register to hold the memory address.) The effective address
is computed as shown in 2.15(a). The address in register A (3) is added to the
displacement (in this example, 0) which is added to the value in register D (also 0).
This instruction will therefore process the value stored in memory location 3.

In order to process the next memory location, all we need to do isincrement the
value in register D. (As you'll see in Chapter 4, the incrementing can be done with a
single 68000 statement.) In 2.15(b) register D contains a value of 1. When we repeat
the same instruction, the effective address becomes 4. Note that though this
example used a displacement of zero; in practice you may use other values.
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(a)
3 A a
{
g D 126 2
312 3
()
A 3 2(A,D) 104 4
d 2
L) B 196 9
3 = effective address 94 b
[remember that () means 7
“contents of "] ”
8
9
3 A (b)
(A) 3 2(A,D)
d g
1 D +(D) 1
4 = effective address

Figure 2.15 Using Address Register Indirect with Index Indexing

The 68000 form of Address Register Indirect with Index addressing is:

d(An,Rn) d = displacement
n = register number
R = either “A” or ‘D’

When using this addressing mode, you are limited to an 8-bit displacement (a
range of —128to +127). The R above should be replaced by either an A if you are
using an address register, or D if you are using a data register for the index register.

We'll see this mode in action at the end of Chapter 5 when we discuss the
handling of arrays.
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Absolute Data Addressing

Absolute Data addressing allows you to follow the instruction mnemonic with
the actual address of the operand. No registers are needed.

Mode #8: Absolute Short Address

To use Absolute Short addressing, follow an instruction mnemonic with 16-bit
address:

InstructionMnemonic.W 16-bit address (Remember that there may also
be a destination specified in the
68000 statement along with the
address of the operand)

The assembler “extends” this address to a 24-bit effective address by copying bit 15
into bits 16-31 of the next word. (Though the extension is to a full 32 bits, only 24 can
be used for an address since the 68000 has that 24-bit address bus.)

The extension means that when a program uses absolute short addresses of
$0000 to $7FFF, the effective address will be in the range $000000 to $007FFF. To
understand why, we need to look at the binary equivalent of these addresses.

$7FFF = %0111 1111 1111 1111
Bit15is 0. When we extend that value, we get an effective address of:

%0000 0000 0111 1111 1111 1111 or $O07FFF.

But look at what happens if we specify an address of $8000:

$8000 = %1000 0000 0000 0000.

After the extension we get:

%1111 11111000 0000 0000 0000 or $FF8000.

In other words, when a program uses Absolute Short addressing on an
address in the range $8000 to $FFFF, the assembler generates an effective
address of $FF8000 to $FFFFFF. But the 128K Macintosh has a maximum RAM
address of $1FFFFF and the 512K Mac a maximum of $7FFFFF. For all practical

purposes, then, this addressing mode is only good for addresses in the lower
portion of memory — $0000 to $7FFFF.

Mode #9: Absolute Long Address

You can still use absolute addressing, even though Absolute Short addressing
wont access the entire address range, by using Absolute Long addressing.
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Absolute Long addressing has the form:
InstructionMnemonic.L  32-bit address

The .L following the instruction mnemonic tells the assembler not to extend
whatever address follows. Therefore, the address specified will be used as the
effective address without any changes.

Symbolic Addresses

In most applications, you will never use either absolute addressing mode. In
fact, it is not only possible, but desirable to write programs without reference to
absolute addresses. Instead, you will use what are known as symbolic addresses.

A symbolic address is a name (or label) assigned to either a program instruc-
tion or a main memory location where some data are sorted. Through the assem-
bly and linking processes, the symbolic addresses are translated into absolute
addresses in object code. But when writing the program, you need not worrry
about specific RAM locations. You can refer to the address of any instruction in the
program by simply using its label; you can refer to the storage location of a piece of
data by using the name you assigned to it. You can also assign symbolic
addresses to data structures. There is much, much more about this in Chapters 4
and 5.

For example, suppose a program has just performed a comparison operation
to determine if two quantities are equal. If they are not equal, the program should
branch to another portion of the program. The mnemonic for an unconditional
branch is BRA. You could write the instruction using an absolute address:

BRA $A123

This statement assumes that you know exactly what program instruction begins at
memory location $A123. If you change your program (perhaps you had an error to
correct), it’s likely that many of the instructions will shift their places in RAM. What
you originally expected to find at $A123 will no longer be there.

- If however, you write the statement as:

BRA Labell

then the program will branch to whatever instruction has Label in its label field.
Labell is a symbolic address. It will be replaced by an absolute address in the
object code when the program is assembled and linked.

Symbolic addresses can be used anywhere an absolute address is required.
There are rules for constructing legal symbolic addresses:

1.  If the symbolic address does not begin in column 1 (at the far left of the
Editor's input window), you must follow it with a colon.
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2. Thereis no limit to the number of characters in a symbolic address, but for
practical considerations, attempt to keep them to under 15 characters. All
characters are significant.

The first character must be a letter, period (.), or under bar (_).

All other characters must be selected from among letters, numbers, periods,
underbars, and dollar signs. Blanks are not allowed.

5.  Symbolic addresses must not be the same as 68000 instructions, nor can
they duplicate the names of ToolBox or operating systems routines.

Program Counter Relative
Addressing

As you remember, the program counter is a special register that holds the main
memory address of the start of the next program instruction to be executed. The
68000 microprocessor has two addressing modes that let you specify effective
addresses as relative to the current contents of the program counter.

- Mode #10: Program Counter with Displacement

Program Counter with Displacement addressing works very much like Address
Register Indirect with Displacement addressing (mode #6). The 68000 format for
specifying an effective address is:

d(PC) d = displacement

The assembler computes the effective address by adding the displacement to the
current contents of the program counter.

As with displacement addressing using an address register, the displacement
must be a 16-bit integer. You should also note that the expression (PC) is used
exactly as shown. (Remember that the parentheses mean ‘the contents of,” so
(PC) means “the contents of the program counter.)

Mode #11: Program Counter with index

This second program counter mode is also analogous to an address register mode
— Address Register Indirect with Index addressing (mode #7). The effective
s is the sum of the contents of the program counter, a 16-bit displacement,
3 contents of an index register. (You may use either a data or an address
r)
e effective address specification must indicate whether the index value is 16
Jits. Therefore, the 68000 format has two possible forms:

PC,R.W) or
(PC,Rn.L) d = displacement
R = eitherAorD
n = register number.
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Just like other addressing modes that use a displacement, the displacement may
be a positive or negative integer.

The Macintosh has a variation on Program Counter with Index addressing that
is not standard for the 68000 microprocessor. If you specify an effective address
as:

d(Dn) d = displacement
it will assemble as if you had written:
d(PC,Dn)

Though this shorthand for Program Counter with Index addressing looks like a
Data Register Indirect with Displacement mode, itis not. There is no Data Register
Indirect with Displacement addressing available with the MC68000 chip; that form
of addressing can be performed only with an address register.

Immediate Data

Using immediate data doesn't qualify as addressing RAM, though it's usually
discussed along with the other address modes. When you use immediate data, the
operand itself is part of the assembly language statement.

Mode #12: Immediate

The major problem when using immediate data is finding a way to indicate the
difference between immediate data and absolute addressing. In other words, how
will the assembler know the difference between:

SFF
when the $FF refers to RAM location $0000FF and:
$FF

when the $FF refers to the quantity 2557 To avoid the confusion, all immediate
data is preceded by a #. Therefore, the quantity 255 should be written:

#$FF

If you have assigned symbolic addresses to data, you can use those symbolic
addresses instead of the actual values. For example, to set the output type font you
need to give the TextFont routine a code number that represents the font you
want. Remembering the codes is difficult, so each one is assigned a symbolic
address. The font called Geneva is coded as 3. We could specify that font as #3.
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But if we assign the value 3 to the symbolic address geneva, then we ‘can use
#geneva to represent the actual quantity associated with that address.

Immediate data can be character (or string) data as well as quantities. Strings
are surrounded by paired single or double quotes. For example:

#' AB’ or#”AB”

will assemble as the ASCI! codes of the characters A and B. Strings occupy one
byte of space per character.

Mode #13: Quick Inmediate

The expression “quick immediate” refers to a special type ofimmediate data. Some
of the 68000 instructions have a variation that embeds the operand into the
machine language instruction code (the op code) itself upon assembly, though the
specification of the operation in the source code is the same as standard immedi-
ate data.

Because the operand becomes a part of the op coae, quick iImmeaiate qata Is
limited to very small operands. Just how small depends on the individual instruc-
tion.

Why are quick immediate instructions of any use? They save space. A state-
ment using immediate data takes a minimum of two words when assembled (one
for the op code and one for the data); if there is a destination for the result specified
in the instruction then at least three words will be needed. Quick immediate
instructions use one less word of space, since op code and data assemble into a
single word rather than two.

Questions and
Problems

1. Convert the following decimal numbers to binary. Then convert the binary to
octal and hexadecimal.

a. 8 d. 136 g. 1023
b. 19 e. 506 h. 1028
c. 67 f. 695

2. Convert the following hexadecimal numbers to binary.

a. 00FC d. FFAD g. O1AE
b. 0AO3 e. CC12 h. D333
c. E216 f. 2390
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3. A. Consider the user byte of the 68000's status register. Assuming that the
unused bits (5-7) are always cleared, show the contents of the user byte
when the execution of a word-sized instruction produces a result of:

a. -6 d. 40,000
b. 28 e. —65,000
c. 0

B. It's difficult to determine the value of one of the five flags without knowing
exactly what kind of instruction was executed. Which flag is it?

4. A. If a microcomputer has a 16-bit address bus, what is the maximum
address that bus can carry? Express your answer in hexadecimal.

B. What is the maximum address that a 32-bit address bus can carry?

Problems 5 and 6 refer to the Extremely-Micro Computer. As you will remember, it
has an address register, A, and a data register, D. Main memory consists of
storage locations numbered 0 through 9.

5.  Assume that A contains 6 and D contains 2.

A. What location is indicated by each of the address specifications below?

a. 6 d. (A g D
b. #6 e. 2(A) h. —(A)
c. A f. 1(AD)

B. Which of the 68000's addressing modes is being used?

6.  Assume now that A contains A, D contains 3, and the program counter (PC)
contains 2. Repeat questions A and B from problem 5 for the following
effective address specifications.

a 2 d. 2(PC) g. 2(PCA)
b. (A) e. 2(PC,D) h. #2
c. —(A) f. (D)

7. A. What effect will the effective address specification (SP)+ have on the
68000 register A77?

B. What effect will — (SP) have on register A7?
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8. Indicate whether the following are legal or illegal 68000 effective address
specifications. For each illegal specification, state why it is illegal.

a. D6 d. A0 g. (Ad)- . —8(Ad)
b. D8 e. (A)+ h. (DO) k. —256(Ad)
c. (D3)+ f. (Ad)+ i, B6(Ad) . —256(A4,D3)

9.  Assumingthataprogram is performing word-sized operations, what address
will be generated by the assembler from the following absolute short
addresses?

a. 0023 c. FF39
b. A100 d. EESB



ISING THE MACINTOSH
68000- FOPMEN
SYSTEM
Chapter Objectives

1. To learn the steps needed to create a Macintosh Assembly language
application

To acquire proficiency in using the Macintosh 68000 Development System

To understand the purpose of a debugger and how it is used to aid program
development

Introduction

This chapter is designed to familiarize you with the software that supports
assembly language programming on the Macintosh. Though you can work with
this software with only the internal disk drive, you will find that adding the external
drive will save a great deal of disk-swapping and file-moving frustration. The
figures in this chapter assume that you are using a two-disk system, though you will
find instructions for shuffling files for operating with only one.

The software will run quite acceptably on a 128K Macintosh with one exception
(see the discussion on debugging toward the end of this chapter). The 128K will,
however, severely limit the size of application that can be developed. If you intend
to pursue Macintosh program development beyond the course you are now
taking, you should seriously consider upgrading a 128K.

51
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Regardless of what size machine you are using, you should install the pro-
grammer's switch. That's the mysterious little piece of plastic that came with your
Mac but without instructions. The programmer's switch snaps into place through
the slots on the left hand side of the machine, all the way back and down. Placeit so
that the switch labeled RESET is toward the front of the machine. Pressing the
RESET button will allow you to restart the system after a system error or when it is
‘hung” without having to turn the power off and on again. The other button,
INTERRUPT, can be used to invoke the debugger.

To get the most out of the rest of this book, practice using the software now,
before you become concerned with the 68000 instruction set. A sample program
to be entered, assembled, linked and run appears in Listing 3.1. This program
opens a window, prints a line of text, and then waits for the user to hit any key or
click the mouse button before returning to the Finder.

Listing 3.1 Sample Assembly Language Program

Include MacTraps.D ;Includes addresses of ToolBox routines
Include ToolEqu.D ;includes the ToolBox equates

Include SysEqu.D ;Includes the System equates

PEA -4(A5)

_InitGraf ;Initializes QuickDraw

_InitWindows ;Initializes the Window Manager
_InitMenus ;Initializes the Menu Manager

_InitFonts ;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result

PEA  StoragePointer ;Window Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA 'MAL Output Window' ;Title

ST -(SP) ;Make the window visible

MOVE #documentProc,-(SP) ;Make it a standard document window
MOVE.L #-1,-(SP) ;Put the window in front

ST -(SP) ;Draw a go-away box

CLR.L -(SP) ;Place for window's reference value
_NewWindow ;Draw a standard document window

LEA  WindowPtr,AD ;load destination address for pointer

MOVE.L (SP)+,(AQ) ;retrieve pointer

MOVE.L WindowPtr,-(SP)

_SelectWindow

MOVE.L WindowPtr,-(SP) ;put pointer back on the stack
_SetPort ;make this window the current grafport

_InitCursor ;set the cursor to the arrow (continued)
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MOVE.W #7,-(SP) ;7 = athens
_TextFont ;Set the text font

MOVE.W #18,-(SP) ;18 for 18-point type
_TextSize ;Set the text size

MOVE.W #65,-(SP) ;Horizontal coordinate
MOVE.W #100,-(SP)  ;Vertical coordinate
_MoveTo ;Move the pen

PEA 'HOORAY!!! Youdid it!

_DrawString

MOVE.L everyEvent,D@ ;Mask to select all events
_FlushEvents ;Clear the event queue

Event CLR -(SP) ;Space for boolean result

MOVE #%92900099222111110,-(SP) ;Mask for keyboard and mouse
PEA EventRecord ;Place to receive event info

_GetNextEvent ;Get next event from queue

MOVE (SP)+,D2 ;Has a keyboard or mouse event occurred?
CMP #0,D0

BEQ Event ;If no event, branch to look again

RTS ;Return to the Finder

WindowPtr DCL ©
BoundsRect DC.W 40,20,309,350
everyEvent DCL $ODDOFFFF

EventRecord :where GetNextEvent Puts its result
What DC (%]
Message DCL ©

When DCL O
Point DCL ©
Modify BC (%]

StoragePointer DCB.W windowSize @
END

The Macintosh 68000 Development System (the MDS) is the formal name for
the set of programs that enable a programmer to enter, assemble, link, and run
assembly language programs. It also includes a family of debuggers, programs
that, among other things, display what's happening in the Macintosh’s registers
while a program is running.
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On the disk named MDS1 (Figure 3.1) you will find:

1. the Editor (Edit) — allows you to enter assembly language source programs.
2. the Executive (Exec) — automates the assembling and linking process

the Assembler (Asm) — translates source code created by the Editor into
binary object code

4.  the Linker (Link) — links separately assembled modules of source code into
an executable application

5. the Resource Compiler (RMaker) — creates files that define windows,
menus, etc.

6. Debug Nubs — files used by some of the debuggers
7. Assembler Support Files (in the folder ASM Stuff)

MDS| =————————
362K in disk 37K available

B o @ R |

Asm Link Exec RMaker

" & File Edit Uiew Special &

PackSyms  MacDB Nubs Empty Folder System Folder

Figure 3.1 The Disk MDS 1

The disk named MDS2 (Figure 3.2) contains:

1.  the Macintosh Debuggers (in the folder Debuggers)

2. the Equates Files (in the Equ Files folder) — handy definitions that the
ToolBox uses

3.  the Symbol Packer (PackSyms) — a program that compacts Equates Files so
they will take up less room in your source files
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4.  Packed Symbol Files (in the .D Files folder) — what you get when you put
Equates Files through the Symbol Packer

5.  Trap Files (in the Trap Files folder) — files that assign names to the instruc-
tion words that reference the ToolBox Dispatch Table

6. some Sample Programs

389K in disk 11K available

(>

Empty Folder Sample Programs Debuggers

Trap Files Equ Files

Figure 3.2 The Disk MDS 2

Using the Editor

The Macintosh 68000 Development System comes with its own text editor for
creating program source files. You may also use MacWrite, but save the document
as text only, without any formatting information. The MDS editor is “disk based.”
That means you can edit files much larger than what will fit in RAM; the editor
shuffles bits and pieces of text between the disk and RAM as needed.

Invoke the editor by double-clicking on its icon. (There are two other ways to
get into the editor, but this will do for now.)

Assembly language source files are more or less free form (i.e., there are no set
columns in which particular parts of the statements must appear). The only rules
are:

1. Thefirst field is reserved for symbolic addresses. If a statement doesn't have
a symbolic address, then it must begin with at least one blank. Symbolic
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addresses don't necessarily have to start in column one (the far left-hand
position on the screen), but if they dont, they must be followed by a colon (:).

2. The second field is reserved for the instruction mnemonic. It must be sepa-
rated from the symbolic address (if one is present) by at least one space.

3.  Thethird field holds one or more operands (either the operands themselves
or their effective addresses). The operand field must be separated from the
mnemonic by at least one space.

4.  The fourth field may contain a comment. Comments begin with semicolons
(;) and must be separated from the operand field by at least one space. You
may also have a line in your source file that is all comment. In that case you
must either have a semicolon or an asterisk (*) in column one.

For readability, we usually line up the fields. The MDS editor comes with preset
tab stops which can be changed by using the FORMAT menu (see Figure 3.3).

To make indentation to the mnemonic field easier, the editor also provides
automatic indentation. Once you have tabbed to a particular spot without entering
text in any preceding tab zone, the RETURN key will place the cursor at that tab
stop instead of in column one. To type something to the left, hit the BACKSPACE
key. Automatic indentation can be turned off from the FORMAT menu (Figure 3.3).

Siz

Set Tabs
Auto Indent Off

Include MacTrap| Show Invisibles fdresses of ToolBox routines
Include ToolEqu he ToolBox equates
Include SysEqu. he System equates
Printing Format

PER -4(AS)
~InitGraf ;Initializes QuickDraw
—Initlindows ;Initializes the Window Manager
~InitMenus ;Initializes the Menu Manager
~InitFonts ;Initializes the Font Manager

—Debugger

CLR.L -(SP) ;Clear space for HindouwPtr result
PEA StoragePointer ;Window Storage pointer
PERA BoundsRect ;Exterior coordinates of window
‘MAL Output Window' ;Title
=(SP) ;Make the window visible
rDocProc,-(SP) ;Make it a standard document window
#-1,-CSP) ;Put the window in front
-(SP)> ;Draw a go—away box
-(SP)> ;Place for window's reference value
—NeuwH i ndow ;Draw a standard document window

Figure 3.3 The MDS Editor's Format Menu

The editor provides some basic features for changing source code. Cut, copy,
and paste work just as they do in MacWrite. You can also align all the text in a
selected block (select with the mouse as when using MacWrite) with options
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available from the EDIT menu (see Figure 3.4). The SEARCH menu (Figure 3.5)
provides standard find and change capabilities.

When you have finished entering the sample program, save itto disk. The FILE
menu (Figure 3.6), just like the MacWrite FILE menu, allows you to name the file
before you save it.

& File

E00

i1 Search Format Font Size Transfer y
Lant Uabo
AL.files:PROG1.ASM
Cut $BH ; Includes addresses of ToolBox routines
; Includes the ToolBox equates
COD'J ®C ;Includes the System equates
Paste 8U
: ;Initializes QuickDraw
Align %A ;Initializes the Window Manager
Move Left 8L ;Initializes the Menu Manager
s ;Initializes the Font Manager
Move Right R
;Clear space for HindowPtr result
X " er  ;Window Storage pointer
Hide Clipboard ;Exterior coordinates of window
utput Window' ;Title
ST -(SP)> ;Make the window visible
MOVE rDocProc,-(SP) ;Make it a standard document window
MOVE.L #-1,-(SP) ;Put the window in front
ST -(SP> ;Draw a go—-away box
CLR.L  —-(sP> ;Place for window's reference value
—Newlindow ;Draw a standard document window
LEA HindowPtr, RO ;load destination address for pointer
MOVE.L (SP)+,A1 ;get pointer from stack

Figure 3.4 The MDS Editor's Edit Menu

&€ File

Edit fBY:1id | Format Font Size Transfer

Find ®F E
Change %§ |L.files:PROG2.ASM
Inclug ;Includes addresses of ToolBox routines

Includ Hide ¢ ] ;Includes the ToolBox equates
Inclu tae Fing ;Includes the System equates

PEA -4(A5)

~InitGraf ;Initializes QuickDraw
~Initlindows ;Initializes the Window Manager
—InitMenus ;Initializes the Menu Manager
—InitFonts ;Initializes the Font Manager

_Debugger

CLR.L  -(sP) ;Clear space for WindowPtr result
StoragePointer ;Window Storage pointer
BoundsRect ;Exterior coordinates of window
‘MAL Output Hindow' ;Title
=(SP) ;Make the window visible
rDocProc,—(SP)> ;Make it a standard document window
*-1,-CSP)> ;Put the window in front
-(SP> ;Draw a go—away box
-(SP) ;Place for window's reference value
—Newlindow ;Draw a standard document window

Figure 3.5 The MDS Editor's Search Menu
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" & TfM £dit Search Format Font Size Transfer

New 8N E
Open... %0
fpen ®{} Jncludes addresses of ToolBox routines
" 5 ncludes the ToolBox equates
Close MAL.files:PROG1.ASM | 0\ (dee the Sistem equates
Sapa
Save as... e nitializes QuickDraw
Reuerl to Drigiaal nitializes the Window Manager
Print nitializes the Menu Manager
¥ nitializes the Font Manager
Quit
CLR.LC . —CSP). sClear space for WindowPtr result
PEA StoragePointer ;Window Storage pointer
PEA BoundsRect ;Exterior coordinates of window
PEA ‘MAL Output Window' ;Title
ST -(SP) ;Make the window visible

MOVE rDocProc,-(SP) ;Make it a standard document window

MOVE.L #-1,-(SP> ;Put ‘the window in front

ST -(SP) ;Draw a go—away box

CLR.L ~(SP) ;Place for window's reference value
—NewH indow ;Draw a standard document window

LEA HindowP tr, A0 ;load destination address for pointer
MOVE.L (SP)>+,A1 ;get pointer from stack

Figure 3.6 The MDS Editor’s File Menu

How you name your file is important. The various programs that make up the
Macintosh 68000 Development System look for files with specific extensions to
their names. Assembly language source files should have the extension .ASM.
You could, for example, name the sample program Sample.Asm.

The Assembler

There is very little unused space on the disk MDS1. Therefore, if you are
working with a single disk system, you will have to create a special disk for the
assembly process. On it you should put your source file, any equates and trap files
it uses (for the sample program in Listing 3.1 copy Mactraps.D, ToolEqu.D, and
SysEqu.D from MDS2), the Assembler, and the folder ASM Stuff.

With a two-drive system, copy the equates and trap files onto the text disk
which also holds your source file. Put the text disk in the external drive and leave
MDS1 in the internal drive.

If you are in the Editor and using a two-drive system, you can invoke the
Assembler from the Editor's TRANSFER menu (Figure 3.7). With a single-disk
system you must copy your source file onto your special Assembler disk. You can
then enter the Assembler by double-clicking on its icon from the Finder (this
method will obviously also work for a two-drive system).

The Assembler will present a list of the files which it can identify as possible
candidates for assembly (Figure 3.8). If you have a large number of source files on
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& File Edit Search Format Font Size

MAL.files:PROG2.A.....

Include MacTraps.D ;Includes addreg Box routines
Include ToolEqu.D ;Includes the 7] es
Include SysEqu.D ;Includes the g s

PER -4(A5)

—InitGraf ;Initializes QY
~Initlindows ;Initializes tl
~InitMenus ;Initializes tH
—InitFonts ;Initializes th RMAKER

—Debugger

CLR.L  —(SP) ;Clear space for WindowPtr result
StoragePointer ;Window Storage pointer
BoundsRect ;Exterior coordinates of window
‘MAL Output Window' ;Title
-(SP)> ;Make the window visible
rDocProc,—(SP)> ;Make it a standard document window
#-1,-CSP) ;Put the window in front
-(SP> ;Draw a go—away box
-(SP> ;Place for window's reference value
—Newlindow ;Draw a standard document window

Figure 3.7 The MDS Editor’'s Transfer Menu

& File Options Transfer

FPEqu.Txrt

PROG1.ASM Assemble ) | MAL.files
PROG2.ASM :

Cancel Lgriue

Figure 3.8 Assembler File Select Screen
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your disk, select the Filter by Time option from the FILE menu (Figure 3.9). This
will display only those files that have been modified since they were last
assembled. Double-click on the file name and the assembly process will begin.
The assembled version of the program is written to a file with the extension .REL
(e.g., assembling Sample.Asm will produce Sample.REL).

Before beginning assembly, you can make some choices about the kind of
output the assembler will produce. By default you will get no listing of the
assembled version of your program. If you want a listing, select it from the
OPTIONS menu (Figure 3.10). The listing can be displayed on the screen or
written to a file. If you choose afile listing (the smart choice, since screen listings will
rapidly scroll out of sight), the listing will be written to a file with the extension .LST
(e.g., asource file named Sample.Asm will generate a listing file named Sample.
LST). Note that assembling with a listing significantly lengthens the time it takes to
assemble a program.

The Assembler listing for the Sample program appears in Listing 3.2. The
leftmost column is a line number for your reference only. The second column from
the left contains the hexadecimal RAM address where each program line begins.
By default, the Assembiler starts all programs at $0000. This is not where the
program will end up in RAM when the program is run. The operating system will
add all the program locations to a fixed base address at run time.

The remaining numbers are the hexadecimal equivalents of the instruction
mnemonics and their operands. You will have noticed that there are X's in some
places rather than hexadecimal numbers. The X's fill in places for absolute
addresses which the assembler was unable to identify. They will be replaced with
addresses by the Linker when space for storage locations the applications globals
area is allocated.

You can also specify that what is written to the .REL file should be the minimum
necessary to create a working application (Normal Output) or that the .REL file
should include extra information to permit creation of a Linker listing (Verbose
Output). Verbose Output will lengthen both the assembly and linking processes.

If any errors are detected during assembly, they will be stored in a file with
extension .ERR (e.g., if your source file is Sample.Asm, then the errors will be
listed in Sample.ERR). The error file will be placed on the same disk as your
source file. The errors will also display on the screen as they are discovered, but
they generally scroll by too fast for you to read and remember them.

Though a .REL file is created for an assembly in which errors were detected,
you will not be able to successfully link or execute any program with errors.
Therefore, if your program has errors, return to the Editor. There you can examine
the .ERR file at your leisure (printing it out if necessary) and then make the needed
changes to your source file.

If you are using a two-disk system, you can return to the Editor through the
Assembler's TRANSFER menu (Figure 3.11). With a single-disk system, you must
transfer the .ERR file back to the disk that contains the Editor and then enter the
Editor from the Finder.
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Listing 3.2 Assembler Listing of Sample Program

1%.%/% 3
D12
2016
OD1A
2a1C

486D FFFC
AB6E
A912
AS3D
ASFE

42A7

4840 x0xx
4840 xxxx
4840 xoxx
5QE7

3F3C 9000

document window

D20
D226
o028
DDA
a22C
a02C
pointer
23D
232
2032
2236
238
2038
stack
Qa3C
OA3E
DA3E

2F3C FFFF FFFF
5Q0E7
42A7
A913
41CD xxxx
200F

2F3A xxxx
A91F

2F3A xxxx
A873

A85D

3F3C 9007
A887

3F3C @312
A88A

3F3C 2041
3F3C 2064
A393
4840 x00x
A884

2@3A 00

Include MacTraps.D ;Includes addresses of ToolBox
routines
Include ToolEqu.D ;Includes the ToolBox equates
Include SysEqu.D ;includes the System equates
PEA -4(A5)

_InitGraf ;Initializes QuickDraw

_InitWindows ;Initializes the Window Manager

_InitMenus ;Initializes the Menu Manager

_InitFonts ;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result
(PX) PEA  StoragePointer ;Window Storage pointer
(PX) PEA BoundsRect ;Exterior coordinates of window
(PX) PEA 'MAL Output Window' ;Title

ST -(SP) :Make the window visible

MOVE #documentProc,-(SP) ;Make it a standard
MOVE.L #-1,-(SP) ;Put the window in front

ST -(SP) ;Draw a go-away box

CLR.L -(SP) ;Place for window's reference value

_NewWindow ;Draw a standard document window
(PX) LEA  WindowPtr,AQ ;load destination address for

MOVE.L (SP)+,(AQ) ;retrieve pointer

(R) MOVE.L WindowPtr,-(SP)
_SelectWindow
(R) MOVE.L WindowPtr,-(SP) ;put pointer back on the
_SetPort ;make this window the current grafport
_InitCursor ;set the cursor to the arrow
MOVEW #7,-(SP) ;7 = athens
_TextFont ;Set the text font
MOVE.W #18,-(SP) ;18 for 18-point type
_TextSize ;Set the text size
MOVE.W #65,-(SP) ;Horizontal coordinate
MOVE.W #100,-(SP)  ;Vertical coordinate
_MoveTo ;Move the pen
(PX) PEA 'HOORAY!! You did it!
_DrawString
R) MOVE.L everyEvent,D@ ;Mask to select all events

(continued)
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060 AD32 _FlushEvents’ ;Clear the event queue
D62
D62 4267 Event CLR -(SP) ;Space for boolean result
@064 3F3C 9Q3E MOVE #%99992292222111110,-(SP) ;Mask for
keyboard and mouse
D68 484D x0x (PX) PEA EventRecord ;Place to receive event info
MQQGCE A970 _GetNextEvent ;Get next event from queue
QD6E 301F MOVE (SP)+,D9 ;Has a keyboard or mouse event
occurred?
Q070 QCAD DD CMP #0,D0
2074 67EC P) BEQ Event ;1If no event, branch to look again
076
QD76 4E75 RTS ;Return to the Finder
D78
078
Q078 LRDD DBDD WindowPtr DC.L O
Q@Q7C Q028 D314 B12C D15E BoundsRect DCW 40,20,300,350
0084 ©ODD FFFF everyEvent DCL $ODDDFFFF
288 EventRecord where GetNextEvent Puts its result
2288 DODD What DC 1]
O08A QDD DDDD Message DCL ©
OO8E Q000 000D When DCL ©
0092 Q00 DD Point DCL @
2% 00D Modify DC %]
D298
DDIB  XXXX XXXX XXXX (R) StoragePointer DCB.W windowSize,d
2109
Q1DG 114D 414C204F 7574707574 20 57 69 6E 64 6F 77 ;
MAL Output Window'
D1E2 1648 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21 ;
'‘HOORAY!I! You did it!
21F9 09

The Linker

A .REL file contains an object code that is relocatable (capable of being moved

around in main memory). Though it is in the binary, machine language form that

the

computer will understand, itis not an executable application since many of the

absolute addresses are missing. The Linker provides the final step in the process.
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The Linker generates two types of output. Assuming that no errors are
detected during the linking process, you will get an executable application
(appears on the desktop as a diamond with a hand holding a pen) and a file with a
.MAP extension. A .MAP file contains a symbol table (exactly where everything is
when your program is in RAM) and also the Linker listing, if you requested one.

The operation of the Linker is determined by a Linker control file. A control file
contains the names of the .REL files to be linked (you can assemble a large
program in small parts and then have the Linker combine them into a single
application) and, optionally, a symbolic address that indicates which instruction in
your source code is the start of your program; instructions on how the program can
be segmented (it is possible to break a program which is too large to fit into
memory into segments which are then loaded as needed); and options that control
the contents of the Linker output file.

Linker control files are text files that are created with the Editor. They must be
given the extension .LINK (e.g., the Linker control file for the Sample program
should be called Sample.LINK). At a minimum, a Linker control file must contain
the name of the program to be linked and a $ that marks the end of the file.

For the Sample program, create a text file that contains:

Sample

The [ will turn on the listing to the .MAP file and is therefore optional.

If you are working with a two-drive system, save the Linker control file on your
text disk. With a single-drive system, put the .REL file, the Linker control file, and
the Linker on one disk before beginning the linking process.

You can enter the Linker from the Finder, or from the Assembler's TRANSFER
menu (Figure 3.11). The Linker displays a list of Linker control files on the current
disk (Figure 3.12). Double-clicking on the file name will then begin the linking
process.

If the Linker encounters any errors, they will be stored in a file with a .LERR
extension (e.g., for the Sample program, Linker errors will be written to Sample.
LERR). A .LERR file can be examined from the Editor, just like .ERR files.

If you include a [ in a Linker Control file, the .MAP file will include a program
listing like the one in Listing 3.3. This listing differs from an Assembler listing in one
important way: the X's in the Assembler listing have been replaced with absolute
addresses. This is the version of the program that will actually run.
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Listing 3.3 Linker Listing of Sample Program

Sample.Rel

1%.%%.% %] %%

10,%%,%,% %3

19,%9.%,%,%%)

%,%,%.%,%,%%

D2D2DD: 48 6D FF FC
DDODD4: A8 6E
QDDDD6: A9 12
QODD8: A9 30
ODODDA: A8 FE
1%,%.%,%,% OX

1%,%%,%,% 0%

QAODDC: 42 A7
QDDDDE: 487A D88
DDDD12: 487A D68
Q00D 16. 487A D1B8
QOOD1A: 50 E7
0DD1C: 3F 3C 9D 9D
window

LLDD2D. 2F 3C FF FF FF FF

DODD26.50 E7
00DD28: 42 A7
QODD2A: A9 13
DD2C:

OODD2C: 41FA OD4A
DODD3D: 20 9F
DODD32:

DODD32: 2F 3A 0D 44
QODA36: A9 1F
QDD38:

- Q02D38: 2F 3A 90 3E
QODD3C: A8 73
ODDA3E:

DODNI3E: A8 52
10,0,%%% 0}

10,%,%%% 1%}

DOAD4D: 3F 3C D D7
QODD44; A8 87

1%.% %% 3

202246 3F 3C O 12
OODDAA: A8 8A
DODDAC:

20DD4C: 3F 3C 90 41
QODD5D: 3F 3C O 64
DODD54: A8 93
DDD56:

DODD56: 487A D18A
CODD5A: A8 84
DODD5C:

QODD5C: 20 3A DD 26

Include MacTraps.D
Include ToolEqu.D
Include SysEqu.D

;Includes the ToolBox equates
;Includes the System equates

PEA -4(A5)

_InitGraf ;Initializes QuickDraw
_InitWindows ;Initializes the Window Manager
_InitMenus ;Initializes the Menu Manager
_InitFonts ;Initializes the Font Manager
CLR.L -(SP) ;Clear space for WindowPtr result

PEA StoragePointer ;Window Storage pointer

PEA BoundsRect ;Exterior coordinates of window

PEA 'MAL Output Window' ;Title

ST -(SP) ;Make the window visible

MOVE #documentProc,-(SP) ;Make it a standard document

MOVE.L#-1,-(SP) ;Put the window in front

ST -(SP) ;Draw a go-away box
CLR.L -(SP) ;Place for window's reference value
_NewWindow ;Draw a standard document window

LEA  WindowPtr,AQ ;load destination address for pointer
MOVE.L(SP)+,(AQ) ;retrieve pointer

MOVE.LWindowPir,-(SP)
_SelectWindow

MOVE.LWindowPtr,-(SP)
_SetPort

;put pointer back on the stack
;make this window the current grafport

_InitCursor ;set the cursor to the arrow

MOVE.W #7,-(SP) ;7 = athens
_TextFont ;Set the text font

MOVE.W #18,-(SP) ;18 for 18-point type
_TextSize ;Set the text size

MOVE.W #65,-(SP) ;Horizontal coordinate
MOVE.W #100,-(SP)  ;Vertical coordinate
_MoveTo :Move the pen

PEA 'HOORAY!! You did it!'

_DrawString

MOVE.LeveryEvent,DD;Mask to select all events
(continued)

;Includes addresses of ToolBox routines
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O20D6D: AD 32 _FlushEvents ;Clear the event queue -
DORD62:

o00D62: 42 67 Event CLR -(SP) ;Space for boolean result
202264: 3F 3C O IE MOVE #%2929202092111110,-(SP) ;Mask for
keyboard and mouse

DD2D68: 487A CD1E PEA EventRecord ;Place to receive event info
ODBD6C: A9 70 _GetNextEvent ;Get next event from queue
DODD6E:

OBDD6E: 3D 1F MOVE (SP)+,D@ ;Has a keyboard or mouse event
occurred?

DODD79: OC 42 B0 D CMP #0Q,00

DODD74: 67 EC BEQ Event ;i no event, branch to look again
DOD76:

©RRD76:4E 75 RTS ;Return to the Finder

ODDD78:

DOVD78:

DVD78: DD VD DD OD WindowPtr DCL ©
PRVD7C: 0D 28
DODDTE: 0D 14
PO008D: @1 2C

200282: D1 5E BoundsRect DC.W 40,20,300,350

D00284: D @D FF FF everyEvent DCL $000Q0FFFF

QDDD88: EventRecord ;where GetNextEvent Puts its result
00088 0D DD What DC (%]

QDDDBA: 0D DD DD DD Message DCL ©

OOVD8E: D 0D DD DD When DCL @

DLOD92: OO 0D OD DD Point DCL @

DLLDY6: DD DD Modify DC o

QODD8:

020298: 00 00 20 B2 D O 00 02 D B0 00 00 B3 DD DD B0 D0 B DD DD DD
00 20 0 2D 0D DD DD DV DD DD DD DD DD DD 2D DD DA DD DD DD DD DD 0D DD
00 00 D0 00 DD DD DD DD DD DD DD DD DD DD DD DD DD B BD DD DD DD DD DD
00 00 00 00 VD DD D DD DD DD DD DD VD DD B 2D DD DD DD DD DD DD DD DD
00 0D O V0 VD BV DD DD DD DD D DD DD DD 2D VD DD VD VD VD VD 0D DD DD
20 9 00 PV V0 DD DD VD DD D DD DD DD 0D VD DD DA DD B VD DD DD DD DD
00 00 00 B VD DD DD DD DD DD DD DD VD DD B BV DD VD DD VD DD DD DD DD
00 02 VO P VO B0 DD DD DD DD D DD DD 0D 3D VD DD DD DD BB VD 0D DD DD
20 0 L DV VY DD DD DD DD DD B DD DD 0D DD DD B 0D VD 0D DD DD DD DD
00 00 00 D0 OO DD DD DD DD DD DD DD DD B 0D 0D B 0D VD DD DD DD DD DD
00 00 00 VD 00 VD DD B B B3 VD DD DD VD B B 0D DD DD DD DD DD BD DD
00 00 20 B0 DD DD DD DD DD VD DD DD 0D DD DD 0D DA DD DD DD 0D DD DD DD
00 DD DO VD 0D DD VD VD VD VR DD DD DD DD DD 0D DD B0 DD DR DD DD 0D DD
00 00 0D

2XD10Q:
©2D1DD: 11 4D 41 4C 20 4F 7574 79 75 74 20 57 69 6E 64 6F 77

StoragePointer DCB.W windowSize,d

ODD1E2: 16 48 4F 4F 52 41 59 21 21 21 20 20 59 6F 75 20 64 69 64 20 69 74 21
O2D1F9: 0D
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A caveat is in order with regard to the Linker. If your attempt at linking gives
system error #28, then the Finder has run out of memory (the stack has runinto the
heap) and cannot place your application file in the disk directory. A disk should
theoretically hold somewhere near one hundred files, but if you are working with a
128K Mac you may see this error with less than 20 files on your disk. If this occurs,
delete some files or transfer just the few files you absolutely need to another disk to
successfully complete the linking. (.MAP, .ERR, .LST and .LERR files are good
candidates for deletion.)

Running an Application

After a successful linking, there are two ways to execute an application. The
successful linking will add an extra option to the Linker's TRANSFER menu (Figure
3.13). You can run the program by selecting that option. You can also run any
application at any time by double-clicking its icon from the Finder.

Assuming that you have successfully entered, assembled, and linked the
Sample program, your output will appear as in Figure 3.14

Run-Time System
Errors

There are some errors that the Assembler’s error-checking capabilities will not
catch. These often don't show up until an application is running and appear as
system errors that require resetting the system to recover (such as error #28
mentioned above).

For example, assume that you wanted to specify an operand as immediate
data. To correct, you should have used:

InstructionMnemonic #SomeQuantity,D0
Unfortunately, you left off the # which means that your source code contained:
InstructionMnemonic SomeQuantity,D0
The Assembler interpreted the quantity as an absolute address; what was in the
source file was a totally correct use of Absolute addressing. The problem, though,
is that you don't want what is stored at whatever address the quantity represents;

you want the quantity itself. Nonetheless, since the syntax of the statement is
correct, the Assembler won't pick up the error.
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When you run the application, all sorts of strange things can happen. More
often than not, a system error #02 (bad address) will occur.

Youll find the error messages associated with the system errors in Table 3.1.
Though such errors are extremely difficult to interpret, the table includes some
suggestions as to causes of the more common ones and their solutions.

Table 3.1 Macintosh'’s System Error Codes

EmorCode  Emor Message Comments
01 Bus Error Not applicable on the Macintosh
02 Address Error Your program has attempted to use

an address which makes no sense to the
operating system (a word or longword reference
has been made to an odd address). Can be
caused when an immediate operand is missing
its #.

03 llegal Instruction The code in an instruction field does not
represent any instruction in the
6800d's instruction set. Check immediate
addressing for missing #.

04 Zero divide Just what is says -- your program has
attempted to do a division by zero.

05 Range Check Error Failure of one particular 68@3@ instruction --
CHK (checks one word of a data register against
an upper - bound value).

06 Overflow Failure of one particular 6832Q instruction --
TRAPV (executes a trap if the overflow flag
in the status register is set).

07 Privilege violation Not terribly important since all assembly
language programs run in the "supervisor”
mode, where you have access to all
instructions.

08 Trace Mode Error Trace mode is initiated by setting one of
the bits in the user byte of the status
register. The Macintosh never uses trace mode;
therefore, this error will occur whenever the
trace-mode bit is accidentally set.

09 Line 121@ Trap "Line 191@ Trap" has to do with calling
ToolBox routines (see Chapter 6).

(continued)
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Error Code Error Message

10

11

12

13

14

15

16

17-24

25

26

27
28
29
30

Comments

Line 1111 Trap

Hardware Exception Error

Unimplemented Core Routine

Uninstalled Interrupt

I/O Core Error

Segment Loader Error

Floating Point Error

Packages ©-7 missing

Memory Full

Bad Program Launch

File System Map Trashed
Stack Ran Into Heap
not used

Disk Insertion Error

Another trap not used on the Macintosh. Line
1111 traps are reserved for further expansion
of the instruction set (details are in Chapter 6).

The system thinks some other sort of trap has
occurred. This usually means that the machine
is seeing some sort of illegal binary instruction
code. If you get this, check for addresses and/or
operands that are the wrong size.

Can occur when a program invokes the
debugger when the debugger isn't
present in memory.

Can occur when a program invokes the
debugger when the debugger isn't
present in memory.

Problem with file access.

Caused by failure of an attempt to load a program
segment into main memory.

The problem lies in whatever

part of the program calls FP68K, the
Macintosh's floating point arithmetic
package.

Packages are self- contained routines
present in the system (see Chapters 6, 11
and 12 for more information).

You have two options -- upgrade to 512K or
segment your program into portions that
don't need to be memory co-resident.

Usually caused by an attempt to launch a file
that isn't an executable application.

Something is wrong with a disk’s directory.

Another sort of out-of-memory error.

Generates the "Please insert the disk:" alert.
(continued)
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Table 3.1 (continued)

EmorCode  Error Message Comments

31 not used

32-56 Memory Manager Errors. Indicate problems with the routines that
manage the use of Macintosh RAM.

41 No Finder The Finder isn't on any disk currently in the
system's drives.

100 Bad startup disk System can't boot because something is wrong

with the startup disk. Causes a blank screen
with a disk icon in the center. The disk icon
contains a question mark.

The Executive

If you have been working along with this chapter, you may have decided that
transferring from the Editor to the Assembler to the Linker and back again is a giant
pain. There is a way, though, to “automate” most of the tedious steps in the process
by using the Executive.

The actions of the Executive are controlled by a file created with the Editor and
given the extension .JOB. A .JOB file has four fields, separated by tabs. The first
field contains the names of the application to be executed (e.g., ASM or LINK).
The second field contains what input the application requires (usually a file name).
The third field is the application to which the Executive should return if the
execution of the application in the first field is successful (usually the Executive).
The fourth field is the application that should be executed if the execution of the
application in the first field is not successful (usually the Editor).

An Executive control file for the Sample program might appear as:

ASM Sample.Asm Exec Edit
LINK Sample.Link text.Disk:Sample Edit

When setting up Executive control files, you need to pay attention to what disk
your files are on. All applications should be on the startup disk (i.e., the internal
drive). Source files (source code and Linker control files) should be on the same
disk as the .JOB file (preferably on a text disk in the external drive). Because of disk
space considerations, it will be very difficult to use the Executive with a single-drive
system.

If you want the Executive to automatically run your program after it finishes
linking (assuming your source files and the completed application are on atext disk
in the external drive), precede the program’s name with the name of the disk. For
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example, if your text disk is named Text.Disk as in the sample .JOB file above,
specify the name of the application to be created by the Linker as:

Text.Disk:Sample

The name of the application is separated from the name of the disk by a colon.

To initiate the actions specified in an Executive control file, enter the Executive.
Usually, you will do so by either double-clicking on its icon from the Finder or
transferring to it from the Editor.

The Executive's file select screen (Figure 3.15) lets you select the .JOB file to
execute. Once you double-click on the file name, the process becomes automatic.

Execute Transfer

PROG1.job

PROG2.job B | MBAL.files

| | (_cancel ][ Drive

Figure 3.15 The Executive’s File Select Screen

The two-line .JOB file above will perform the following actions:

1.  Assemble the file Sample.Asm
2. Ifthe Assembler detects errors, execute the Editor

a. Make the file Sample.ERR the active window
b. When Sample.ERR is closed, make Sample.Asm the active window
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3.  After a successful assembly, link the file Sample.REL, using Sample.LINK
as the Linker control file

4. Ifthe Linker detects errors, execute the Editor

a. Make the file Sample.LERR the active window
b. When Sample.LERR is closed, make Sample.LINK the active window

5.  Ifthelinking is successful, execute the completed application, Sample

Though using the Executive does not speed up the processes required to
prepare an assembly language program (the Editor, Assembler and Linker still
have to be loaded into memory every time you need them), it will decrease the
amount of work you have to do. Set the Executive running and go get a soda. . .

The time it takes to prepare an assembly language program for execution is
severely constrained by the Macintosh’s disk access speed. When using the
68000 Development System as it is distributed by Apple there is no way to keep the
Editor, Assembler, and Linker continuously in RAM. There are, however, two ways
to get around the problem. The first addresses the problem by keeping the Editor,
Assembiler, and Linker in RAM; the second deals with disk access speed.

If you have a 512K Mac you can use a portion of that memory as a RAM disk. To
do so, purchase Mac Memory Disk by Assimilation Process (available for about
$30). Thereis just enough room on the RAM disk for the system files and the Editor,
Assembler, and Linker. There is no room for the Executive; the editing, assem-
bling, and linking process must be managed manually. That is far less of a
disadvantage than it might seem. Since all three programs are in RAM, transfer
between them is almost instantaneous. The major drawback to using the RAM disk
is that it doesn't leave enough room in memory for a debugger.

The only way to speed up disk access time is to use a hard disk. In terms of
cost, ahard disk is not always a viable option. In fact, upgrading a 128K machine to
512K and purchasing the RAM disk software will cost far less than purchasing a
hard disk.

When you use the Executive, you no longer have access to the Assembler and
Linker OPTIONS menus (e.g., to control listings). You must therefore specify the
options you want in your source file (see the section on Assembler Directives in
Chapter 4).

Debugging

An assembiler, like an interpreter or compiler, checks for syntax errors as it
translates source code to object code. None of the three translation programs,
however, can catch logic errors; they simply aren't capable of “understanding”
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what a programmer intended. Finding logic errors is therefore the toughest part of
the programming. A debugger is a program designed to help the assembly
language programmer with that task.

When debugging a Pascal program you may have placed writeln statements
at strategic places in the code to display the contents of important variables. This
allowed you to monitor the contents of the variables as they changed and helped
you pin-point the exact spot in a program where something went wrong. The same
strategy isn't sufficient, however, when you are working in assembly language.

Assembly language programs have much greater control over the computer
than high-level language programs in the sense that as well as manipulating data
storage locations (i.e., variables) they have direct access to the CPU'’s registers.
Therefore, in order to find the source of an error it is usually necessary to see what
is happening within the registers while the program is running.

A debugger is a program that, among other things, will do the following:

Run an assembly language program one instruction at a time
Display the contents of the CPU’s registers after each instruction is executed
Display the contents of main memory locations

A Do

Disassemble program instructions from either RAM or ROM.

It is generally very difficult to successfully complete an assembly language pro-
gram without at some point employing a debugger.

If you open the Debuggers folder on MDS2, you will find not one, but six
debuggers. The best one is MacDB. Unfortunately, you need two Macintosh’s
hooked together to use it (one runs the program and the other runs the debugger).
Of the other five, two require external terminals (TermBugA and TermBugB) and
one runs on the Lisa (LisaBug). Both MidiBug and MaxBug, though, will run on a
single, free-standing Macintosh.

MaxBug will run only on a 512K machine. MidiBug will run with 128K, but (and
thisis a very big “but’) once MidiBug is installed, there is no room in memory for any
other application (the Editor, Linker, etc.). Why is this such a problem? Debuggers
can't be executed like other applications (j.e., by clicking an icon from the Finder).
Instead, whenever you boot a disk containing a file called MacsBug (regardless of
whether that file was originally MidiBug or MaxBug), that debugger will be auto-
matically placed in memory. It will sitin memory until invoked by an “exception” in
your program.

This means that whenever you want to run a program and use MidiBug with a
128K machine, you must:

1. Create a special debugging disk with a file named MacsBug on it. (Be sure
the fileis a renamed MidiBug since MaxBug won't fit, no matter how hard you

try.)
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2. Use MDS1 to boot your Macintosh and complete the assembly and linking
process

Copy the completed application to the debugging disk
Reboot the system with the debugging disk as the startup disk

This long procedure would appear to be the only way to use a debugger with a
128K machine.

The presence of a debugger in memory does not necessarily mean that the
debugger will be activated when you run an application. The debugger must be
“‘invoked.” Though there are several ways to do so, the easiest is to include the
instruction:

__Debugger

in your source code at the point you wish the debugger to take over.

MidiBug and MaxBug provide the same kind of display; with MaxBug you
simply get more of it. Figure 3.16 shows the information you receive after the
execution of a single instruction.

>

OQDCCFE: PC MOVE.W #$QQ3E,-(A7)
PC=0QQQOCCFE SR=0000AD14

DO=00000000 D1=000DDAFF D2=003FR2000 D3=0002903D
D4=00000018 D5=00000000 D6=P00DVIDD D7=000DDDDD
AD=000022CO A1=0000D21F A2=0001437TA  A3=00070364
Ad=000D142AF A5=00070E42 A6=00070680 A7=00270D3C

>

Figure 3.16 MidiBug and MaxBug Display

The debugger first prints the starting address of the instruction in main memory
(in Figure 3.16, $00CCFE). It then disassembles and prints the instruction itself. Itis
important to remember that what is being disassembled is the object code that is
stored in RAM. That means that the symbolic addresses that you used in your
source code will not appear; instead you will see the absolute addresses that were
substituted for the symbolic addresses during the assembly and linking process.
All addresses and quantities are expressed in hexadecimal, regardless of the
numbering system used in your source code. The stack pointer disassembles as
A7, even though it may have been referred to as SP in the original program.
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The remainder of the debugger's output displays the contents of the 68000’s
registers. PC refers to the program counter, SR to the status register, DO-D7 to the
eight data registers, and AO-A7 to the eight address registers. All register contents
are in hexadecimal.

Once a debugger is invoked, it will print its > prompt, display information
aboutthe currentinstruction, print another >, and wait for your command. Though
there are many commands to control action of the debugger, two will be of the
most use. T (for Trace) executes a single instruction. Traps (calls to ToolBox and
operating system routines) are handled as if they were one instruction; the debug-
ger will not trace the instructions that are part of the ToolBox or operating system
routine.

S (for Step) when used alone, will also execute one instruction. Traps, though,
are not treated as single instructions; the debugger will display each step in any
ToolBox or operating system routines. You can also execute a series of instructions
with Step by appending a quantity to the command that represents the number of
commands to be executed. For example,

S6

will execute six instructions, printing the debugging information about each one.

MidiBug replaces the very bottom of the screen with output for one instruction.
The rest of the screen displays the output from the program being executed. As
you execute successive instructions, the display for the previous instruction will
scroll out of sight.

MaxBug replaces the entire screen with its own output and can therefore
display information for up to five instructions at one time. If a program affects
Macintosh’s screen, then MaxBug will briefly show program output each time the
screen changes and then return to the debugging display. The ’ key (the key
above and to the left of the TAB) will also toggle between the application’s screen
and the debugger's screen.

Using a debugger does present one problem. Since the debugger is monitor-
ing the keyboard for your commands, it effectively prevents a program from
getting input from either the keyboard or the mouse. If a program expects input to
stop a loop, then when you run the program from within the debugger, you won't
be able to stop the loop the same way you would if the program were running on its
own. The situation can be somewhat distressing, since a disk drive may be
spinning continually when you are using the debugger. (There is a process for
stopping a drive while using a debugger; see the MDS manual.)

Ultimately, most loops stop by checking one of the flags in the status register.
For example, the Sample program uses an instruction that checks the zero flag (bit
2). Ifthe zero bit is set, the loop continues; if the bit is clear, the loop willend and the
program stop. The solution, then, is to trick the program into thinking that it has
required input by manually clearing the zero bit.
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In Figure 3.16, the contents of the status register is $0000A014, which means
that the zero bit is set. How in the world can you tell? Remember that each
hexadecimal digit represents four binary digits. Therefore, the 4 in the right-most
position actually represents $0100. The zero bit is bit 2 (the third bit from the right).
What we need to do is replace the 4 with the hexadecimal representation of any of
the following code groups: %0000, %0001, %0010, %0011, %1000, %1001,
%1010, or %1011 (in hexadecimal: 0,1, 2, 3, 8, 9, A, or B). The trick is that the third
bit must be zero; the contents of the others is irrelevant.

The command:

SR 0000A010

will replace the contents of the status register with whatever follows SR. Give the
debugger this command just before executing the instruction that tests the zero bit.
The debuggers allow you to change the contents of any register at any time.

Dn new contents
will replace the contents of data register n.
An new contents

will do the same for address register n.
To replace the contents of the program counter, use:

PC new contents

Be very careful when changing the program counter, since the instruction
executed after a Trace or Step instruction will be whatever instruction begins at the
address in the program counter.

To see the assembly language version of an application’s instructions as they
are stored in memory, use ID (instruction disassemble). Used alone, ID will
disassemble the instruction at the current contents of the program counter. Follow
ID with an address and it will disassemble the instruction at that address.

The debugger command SM (set memory) will change the contents of a
memory location. I's general form is:

SM main memory address new contents
For example:
 SM1A2B 33

will place $33 in location $1A2B. Note that the debugger expects all addresses and
quantities to be expressed in hexadecimal; no leading $ is necessary.
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In some cases, you may wish to trace a few steps of a program and then let it
run on its own again. The command G, for GO, will resume normal program
execution, sending the debugger back into the background. It is therefore possi-
ble to place the trap that invokes the debugger at several placesin a program. This
will allow you to trace a few steps at whatever parts of the program are of interest.

If a program is so full of bugs that it cannot terminate successfully on its own,
there are two ways to exit the debugger. The debugger command ES (exit to shell)
will generally return to the Finder (note that some program errors will cause this
command to fail and your only recourse is to reboot). RB (reboot) will reset the
machine.

The successful use of a debugger is something that cannot be directly taught;
it's something that comes from practice. To begin to understand what a debugger
does, insert __debugger in the Sample program just below the __initFonts
statement. Copy the appropriate debugger onto a disk that also contains a System
Folder. For a single drive system, place the final version of the Sample program on
this disk as well; in a two-drive system, the Sample program should be on a text
disk in the external drive. Boot the system to install the debugger and then run the
Sample program by double-clicking on its icon. The debugger screen will appear
almost instanteously.

Monitor the progress of the program using the T command. Keeping a printed
listing of the program handy will also aid in understanding what appears on the
screen. Look primarily at how each instruction changes the contents of the CPU’s
registers. Experiment with the other debugger commands. When you are finished,
type G to return control to Sample so that it can terminate with a click of the mouse
button or a key press.
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Chapter Objectives

1. To create an I/O shell program that can be used to explore the 68000
instruction set

To understand the purpose and use of assembler directives
To understand data manipulation instructions (MOVE, LEA, PEA)

To understand instructions used to make comparisons in assembly lan-
guage programs

5. Totake afirst look at creating a loop within an assembly language program,
including instructions which execute unconditional branches

Creating an I/O Shell

Since all Macintosh /O is done exclusively through the ToolBox, if you are
going to see the result of executing even the simplest 68000 instruction, you'll need
to be able to use the ToolBox right away. That would seem to mean that you must
learn how to use the ToolBox at the same time you are learning the instruction set.

If, though, you modify the Sample program from Chapter 3 so that it appears as
in Listing 4.1, you will have a ToolBox “shell” into which you can insert bits of 68000
code. The shell will display the results of executing those instructions. You can
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then, for the most part, leave worrying about the ToolBox until you understand the
instruction set. Therefore, many of the program listings in this chapter are
designed to be inserted into the shell (as indicated in Listing 4.1) before they are
run.

Listing 4.1 Sample Macintosh Assembly Language Program

Include MacTraps.D  ;Includes addresses of ToolBox routines
Include ToolEqu.D ;Includes the ToolBox equates

Include SysEqu.D ;Includes the System equates

PEA -4(A5)

_InitGraf ;Initializes QuickDraw

_InitWindows ;Initializes the Window Manager
_InitMenus ;Initializes the Menu Manager

_InitFonts ;Initializes the Font Manager

CLR.L -(SP) ;Clear space for WindowPtr result

PEA StoragePointer ;Window Storage pointer

PEA BoundsRect ;Exterior coordinates of window

PEA 'MAL Output Window' ;Title

ST -(SP) ;Make the window visible

MOVE #documentProc,-(SP) ;Make it a standard document window
MOVE.L #-1,-(SP) ;Put the window in front

ST -(SP) ;Draw a go-away box
CLR.L -(SP) :Place for window's reference value
_NewWindow ;Draw a standard document window

LEA  WindowPtr,A@ ;load destination address for pointer
MOVE.L (SP)+,(AQ) ;retrieve pointer

MOVE.L WindowPtr,-(SP)

_SelectWindow

MOVE.L WindowPtr,-(SP) ;put pointer back on the stack
_SetPort ;make this window the current grafport
_InitCursor ;set the cursor to the arrow

MOVE.W #7,-(SP) ;7 = athens
_TextFont ;Set the text font

MOVE.W #18,-(SP) ;18 for 18-point type
_TextSize ;Set the text size

MOVE.W #65,-(SP) :Horizontal coordinate
MOVE.W #1900 ,-(SP) ;Vertical coordinate
_MoveTo ;Move the pen (continued)
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Listing 4.1 (continued)

REMOVE THESE STATEMENTS
PEA 'HOORAY!!! Youdid it!' TO CREATE THE TOOLBOX
SHELL
_DrawString

MOVE.L everyEvent,D@;Mask to select all events
_FlushEvents :.Clear the event queue

Event CLR -(SP) :Space for boolean result
MOVE #%090900000002111110,-(SP) :Mask for keyboard and mouse
PEA EventRecord ;Place to receive event info

_GetNextEvent ;Get next event from queue

MOVE (SP)+,DQ@ ;Has a keyboard or mouse event occurred?
CMP #0Q,D0

BEQ Event ;If no event, branch to look again

RTS ;Return to the Finder

WindowPtr DCL ©
BoundsRect DC.W 49,20,309,350
everyEvent DCL $O00QFFFF

EventRecord :where GetNextEvent Puts its result
What DC (%]
Message DCL ©

When DCL O
Point DCL O
Modify DC 1%}

Assembler Directives

lacintosh assembly language source file may contain more than just 68000

ions. It can also include assembler directives. Assembler directives are
| mnemonics that give the assembler directions that are to be followed

the assembly process. Most of them involve setting aside space for storage.
;an also assign values to symbolic addresses and cause external source files
ncluded as a part of the file being assembled.
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EQU (Equate)

One of the most useful assembler directives is EQU (equate). EQU assigns a
permanent value to a symbolic address. For example:

Name EQU 0

assigns the value 0 to the symbolic address Name. Then, instead of using 0 in
source code, use Name. When the program is assembled, the value 0 will be
substituted for Name everywhere it appears.

An equate is directly equivalent to assigning a constant value to an identifier in
the const block of a Pascal program. Like Pascal constants, the values assigned
to symbolic addresses by EQU cannot be changed during program execution.

To handle equates and other symbolic addresses, the assembler builds a
symbol table. Think of a symbol table as a two-dimensional array keptin RAM while
the assembler is running. One column holds the symbolic addresses; there is
therefore one row in the symbol table for each symbolic address. A second column
in the table identifies the type of symbolic address (e.g., whether itis an equate ora
statement label). The assembler enters a symbolic address into the symbol table
when it is first encountered. For an equate, a third column in the array holds the
value assigned to the symbolic address. For statement labels, the third column
holds the address of the program statement to which the label refers.

Each time the assembler recognizes a reference to a symbolic address in the
program being assembled, it checks the symbol table to see if it can find an entry
for that symbolic address. If the symbolic address is an equate, then the assembler
merely substitutes the value of the equate in the table for the symbolic address in
the source code.

Because the assembler expects to find an entry for an equate in the symbol
table, EQU statements must appear before their symbolic addresses are used in
program instructions; otherwise, the program simply will not assembile. It is there-
fore good programming to group all EQU statements together (along with com-
ments explaining what they reference) immediately after the INCLUDE directives
(discussed directly below) at the very beginning of the program.

You can EQU addresses as well as constant numeric data. For example, if you
include:

Address_ 1 EQU $1A3B

in source code, you can use Address__1 in any place where you need to
reference the address $1A3B. Itis acceptable in any of the Macintosh’s addressing
modes that accept absolute addressing.

What, then, is in those equates files (e.g., ToolEqu.D and SysEqu.D) that came
with your Macintosh 68000 Development System? If you look at the source listings
(ToolEqu.Txt and SysEqu.Txt) you'll see that both files are nothing more than a
series of EQU statements. They set up constants that are useful when working with
ToolBox and operating system routines.
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INCLUDE

To make the symbolic addresses available in the equates file to any program
you write, INCLUDE the equates files. INCLUDE is another assembler directive. It
instructs the assembler to seek another source file which is to be inserted into a
program. To use INCLUDE, specify:

INCLUDE fname

where fname is the name of the source file to be included in the program being
assembled.

Data Allocation

There are two assembiler directives that fall into the classification “data alloca-
tion directives.” These set up symbolic addresses for storage locations in either the
program itself or the applications globals area of RAM. You can think of them as
analogous to variable names (i.e., the symbolic address represents the location of
one or more pieces of data). The contents of storage locations identified by such
symbolic addresses can be changed while the program is running.

DC (define constant) assigns one or more values to a symbolic address. The
statement:

Label DC 0
will, for example, cause the following actions during assembly:

1. An address for Label will be selected at the end of the source code. (If you
look at the bottom of the assembler listing for the Sample program, you will
see the space that has been allocated for each DC directive.

Label will be associated with that address.

The address associated with Label will be given an initial value of 0.

There are four variations on the define constant directive: DC, DC.B, DC.W,
DC.L. The extensions determine whether the data will be aligned on byte, word, or
longword boundaries. If no extension is present, the data will be aligned on word
boundaries by default.

At first glance, it might seem that DC isn't much different from EQU.
Remember, though, that EQU assigns a permanent value to a symbolic address,
whereas values assigned by DC are only initial values and can be changed by the
instructions within a program.

The fact that DC allows changing the value associated with a symbolic address
does not mean that you should necessarily do so. It is good practice to use DC only
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to store constants and not as locations for data that will change (i.e., consider a
location established by DC as if it were in ROM, useful for read-only operations).
The major exception to this rule occurs when an application does printing (see
Chapter 10 for details).

DC is also used to assign a series of storage locations, each with its own unique
value, to a single symbolic address. The statement:

Label DC 0,16,’ A Sample Window’

reserves enough storage to store the values 0, 16, and the string “A Sample
Window.” Use of the symbolic address Label will reference the two numeric values
and the string. This capability is important when preparing data for use with
ToolBox routines.

DCB (define constant block) sets aside a block of memory locations, all of
which will be initialized to the same value. (Notice that this is not the same as using
DC to reference a series of values, since the DC values can be different from one
another.) To use DCB, you must not only specify the initial value for the storage
locations, but the length of the block of locations to be reserved. For example:

Label DCB 12,0

will reserve twelve words of storage, beginning at the symbolic address Label.
Each location will be given the initial value 0.
The general form of the DCB assembler directive is:

Symbolic address DCB length of block, initial value

The actual number of bytes reserved depends on the extension applied to the
DCB directive. If there is no extension, or if you use an extension of .W, the “length
of block” parameter will refer to the number of words to be set aside. An extension
of .Bindicates that the length is expressed in bytes; .L specifies alength in number
of longwords.

DS (define storage) also reserves a block of storage locations. This storage
does not become a part of an assembled program. Rather, it is allocated in the
applications globals area at run time. This form of storage allocation should be
used for all read/write operations (i.e., a program should avoid writing into its own
code, as it would if you wrote to a DC location).

The applications globals area begins at $ —100(A5) and grows down in mem-
ory. All storage locations allocated by DS must therefore always be referenced
relative to A5 with what looks like Address Register Indirect with offset addressing.
Since A5 always contains the starting location of the applications globals area, its
contents should never be changed during program execution.

The general form of the statement is:

Symbolic address DS length of block
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Therefore, the statement:
Label DS 12

will set aside twelve words of storage. No initial value is given to the storage.

As with the DCB directive, how the length parameter is interpreted depends on
the extension affixed to the mnemonic. No extension or an extension of .W refersto
words, .B to bytes, and .L to longwords.

Access to the storage set aside by Label above appears as:

Labei(A5)

The amount of space needed for DS locations appears on the Linker screen
during the linking process beside the label “Data Size.”

End of Source

Another essential assembler directive is END. END is the last statement in a
source code file. Any statements after END will be ignored by the assembler. It is
important to remember that END is the physical end of the source code. It has
nothing to do with the logical end of a program.

Printing Control Directives

If you are using the Executive, you cannot control listing options from the
OPTIONS menusin the Assembler and Linker. You can, though, specify the same
choices in your source code.

.EJECT will cause the printer to start a new page. This directive will take effect
when creating a hard copy of either an assembiler or linker listing.

.Verbose, ListToFile, and .ListToDisp have the same effect as selecting
those commands from the OPTIONS menus (see Chapter 3). To turn off verbose
assembly or a listing use .NoVerbose or .NoList respectively.

Data Manipulation
Instructions

An important part of any microprocessor's instruction set is concerned with
moving data around in memory. Arithmetic instructions require that at least one
operand be located in a data or address register. Even more importantly, the
Macintosh’s ToolBox routines look for parameters which have been placed on the
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stack; operating system routines expect their parameters to be pointed to by
addresses in registers.

The most frequently used 68000 data manipulation instructions used in Macin-
tosh assembly language programs are MOVE, PEA, LEA.

MOVE

The MOVE instruction takes a piece of data and shifts it from one location to
another. Like an assignment statement in a high-level language (e.g., C=A), the
data in the source location is copied into the destination location; the contents of
the source location are not altered.

The format of the MOVE instruction is:

MOVE source address, destination address
For example:
MOVE #12,D1

will put the decimal quantity 12 into data register D1. (Remember that when #
precedes a number it will be interpreted as a quantity rather than as an address.)

The size of the operand transferred by a MOVE statement depends on the
extension given the instruction. MOVE or MOVE.W will move one word of data.
WORD.B will move a byte and MOVE.L will move a longword.

Source and destination addresses can be specified using most of the 68000’s
addressing modes. The examples which follow will show you the ones most
commonly used.

In order to see the results of MOVE statements, let's use a ToolBox routine to
display a single character on the screen. This routine is called DrawChar and it
expects to find the ASCII code for the character to be printed on the top of the
stack. Therefore, the step that immediately precedes the call to DrawChar must
MOVE a character onto the stack.

All ToolBox routines are called by their names. To let the assembler know that
the statement is a call, an underbar (__) is put in front of the routine name.
Therefore, if you put the line:

__DrawChar

into your source code, it will execute the DrawChar routine. More detail on how
such calls work appears beginning in Chapter 6.

The ASCII code for a character is placed on top of the stack using Address
Register Indirect with Predecrement addressing. (In fact, putting things on the
stack is a very common use of this addressing mode.) For example:

MOVE source address, — (SP)
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This statement will cause the Mac to first decrement the contents of the stack
pointer (SP or A7). The data pointed to by the source address will then be moved to
the new address contained in the stack pointer.

Why is the address decremented rather than incremented? Remember that
the stack starts high in memory and grows down (i.e., the bottom of the stack has a
high address; the top of the stack will always have an address lower than the
bottom). Therefore, each time we put somethmg on the stack, the address of the
top must first be decreased.

Insert these statements into the ToolBox shell:

MOVE #$0040,— (SP)
__DrawChar

When you assemble, link, and run the program, the character “@" will print on the
screen (see Figure 4.1). $0040 is the ASCII code for ‘@". Because $0040 is
preceded by #, the quantity $0040 is moved to the stack. This is an example of
using immediate data as the source address in a MOVE statement. (Note: The
DrawChar routine expects to find an entire word of data on the stack. Though
ASCII codes occupy only a single byte, you must nevertheless move a word onto
the stack with the ASCII code in the low-order byte. Thus we move $0040 onto the
stack, forcing the ASCII code into bits 0-7.)

MAL Output Window

Figure 4.1 Output From a Single Call to DrawChar
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It is also possible to use MOVE to take things off the stack. This is important
because many of the ToolBox routines return information needed later in a
program. That information is placed on the top of the stack. If you use the
instruction:

MOVE (SP)+,D1

the contents of the RAM location pointed to by the contents of the stack pointer will
be moved to data register D1. Then the stack pointer will be incremented.

As we have previously discussed, when an operand or address is placed on
the stack, the contents of the stack pointer must be decremented. Similarly, when
something is taken off the stack and effectively “removed” from the stack, the stack
pointer must be incremented. Therefore, the example above uses Address Regis-
ter Indirect with Postincrement addressing. The contents of the stack pointer are
incremented after the instruction is executed. This is probably the most common
situation in which this particular addressing mode is used.

Other addressing modes are also commonly used with the MOVE statement.
Remove the two statements you previously placed in the ToolBox shell and insert
the following:

MOVE #$0040,D1
MOVE D1,-(SP)
__DrawChar

Running the program should still print that “@.” (If you're getting tired of ‘@,”
substitute the hexadecimal equivalent of any other ASCII code Macintosh uses.)

The first MOVE uses Data Register Direct addressing to specify the destination
address. The $0040 will be stored in data register D1.

The second MOVE uses the same addressing mode to specify the source
address. The contents of data register D1 are moved onto the top of the stack (after,
of course, the contents of the stack pointer [A7] are decremented).

You can also move data stored under symbolic addresses. For example, try
this in the shell:

Data EQU $0040
MOVE #Data, - (SP)
__DrawChar

The EQU permanently associates the symbolic address Data with the value
$0040. Using the symbolic address in the MOVE statement has the same effect as
using $0040 as immediate data. Notice that just like the number $0040, the
symbolic address was preceded by a # so that the assembler realized that the
quantity stored as Data was to be used as immediate data rather than as an
address.
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Symbolic addresses assigned values by EQU can be used anywhere you
would use data. For example:

Data EQU  $0040
MOVE #Data,D1
MOVE D1,-(SP)
__DrawChar

will put $0040 into data register D1 and then move it onto the stack. If you put the
above code into the ToolBox shell, you should still see “@” printed in the output
window.

MOVE can also be used to transfer data between registers. The third line of the
following code will move the contents of data register D1 to data register D2.

Data EQU $0040
MOVE #Data,D1

MOVE D1,D2
MOVE D2,-(SP)
__DrawChar

The source address in a MOVE statement can be specified using any of the
68000's addressing modes. The destination address, however, cannot be spec-
ified with immediate addressing nor can it use either of the program counter
addressing modes.

The reason immediate addressing cannot be used should be obvious. The
destination must be a location, a place to put something. It's simply not possible to
store something in a piece of data.

Why the program counter modes can't be used may not be so clear. But
consider this: if you store a piece of data in the program counter, you will destroy
the previous contents of the program counter. Since the program counter keeps
track of which instruction is to be executed next, erasing that address will com-
pletely disrupt program execution.

The MOVE instruction, like most other instructions, affects the flagsin the status
register. The extend bit is unaffected. The carry and overflow bits always get a
value of 0. (We say that they are cleared.)

What happens to the negative and zero bits depends on the value being
moved. If the value is equal to zero, the zero flag will be set (given a value of 1) and
the negative bit will be cleared. If the value is negative, the negative bit will be set
and the zero bit cleared. If the value is positive, both bits will be cleared.

PEA

The letters PEA stand for Push Effective Address. This instruction is not
commonly used in many 68000 machines, but because it pushes addresses onto
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the stack and then automatically decrements the stack pointer, it is extremely
useful for setting up parameters for ToolBox routines.

Take a look at the two statements you removed from the Sample program to
create the shell:

PEA 'HOORAY!!! Youdidit’
__DrawsString

This use of the ToolBox routine DrawString displays the string that you see as the
operand for the PEA instruction. Like DrawChar, DrawString looks for its oper-
and on the stack. The string itself, though, is not placed on the stack; during
assembly and linking it is placed at the end of the program code. Therefore, when
you want to display a string, push a pointer to the start of the string.

What's a pointer? A pointer is an address that corresponds to the starting
address of a series of storage locations. Usually, a pointer will be the starting
address of a string or a data structure in main memory.

The general form of the instruction is:

PEA effective address of source data
PEA can use any addressing mode except immediate, simply because immediate

data isnt an address. This instruction does not affect the codes in the status
register.

LEA

LEA stands for Load Effective Address. It moves an address into an address
register. The general form of the instruction is:

LEA source address, destination address register
LEA is most useful for retrieving the absolute address assigned to a symbolic

address. To see how it works, let's look at the data structure used to pass
parameters to the operating system routines that provide access to disk files.

paramBlock
Link DC.L 0
Type DC 5
Trap DC O
CmdAddr DC.LO
Complete DC.L 0
Result DC O
NamePtr DC.L O
VRefNum DC 2



92 MACINTOSH ASSEMBLY LANGUAGE: AN INTRODUCTION

These eight parameters are common to all file manager routines. (The complete
parameter block contains 8 to 16 additional fields, depending on the specific
routine.) The first four fields are used by the File Manager. The other four, though,
are of concern to the programmer.

For example, NamePtr must contain the address of the location where the
name of a file is stored. The pointer must be loaded into NamePtr before calling
the File Manager routine. Assume that the file name is stored under a symbolic
address:

Fname DC ‘SampleFile.Text’
The instruction:
LEA Fname,Al

will store the starting address of the string SampleFile.Text in Al. This is an
example of absolute addressing, since Fname represents a specific RAM loca-
tion.

To put that address into NamePtr, the address of NamePtr must also be
available in an address register:

LEA NamePtr,A2
Then, a program can execute:
MOVE.L A1,(A2)

This statement takes whatever is stored in A1 (the address of Fname) and stores it
at the address stored in A2 (the address of NamePtr).

There are some things that are important to remember about LEA. The
destination of the instruction is always an address register. The mnemonic does
not take any extensions; LEA always transfers a full longword (even though the
addresses are only 24 bits).

The source address can be either in an address register, the program counter,
or can be an absolute address. Three address register indirect addressing modes
are acceptable: Address Register Indirect, Address Register Indirect with Dis-
placement, and Address Register Indirect with Displacement and Index. Both of
the program counter modes can also be used for the source address.

LEA does not affect any of the flags in the status register.

LOOPING

Executing a series of statements repeatedly is rather easy in a high-level
language. In Pascal for example, you can use WHILE/DO,REPEAT/UNTIL, and
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FOR to implement iteration. With 68000 assembly language, though, there are no
built-in looping instructions. To understand the sequence of instructions necessary
to create a loop, consider the steps required to repeat a set of instructions a fixed
number of times.

Initialize the counter to 1.

n

Compare the counter with the quantity that represents the number of times
the loop is to be executed.

If the counter equals the ending value, then terminate the loop.
Otherwise, execute the instructions that form the body of the loop.

Increment the counter.

o o &~ w

Return to step 2.

To program a loop in assembly language, you must execute each step above.
To see aloop in action, insert the following instructions into your 1/O shell:

MOVE #1,D1 ;counter

MOVE #5,D2 ;number of times to execute loop
Again CMP D1,D2 ;check the counter

BMI Done ;end the loop

MOVE #$0040,—(SP)

__DrawChar

Add #1,D1 ;increment the counter

BRA Again ;continue the loop

In order to get this code to work (it should print a series of six “@’s as in Figure 4.2),
place the symbolic address Done in the label field of the statement:

MOVE.L everyEvent,DO
so that the statement appears as:

Done MOVE.L everyEvent,DO

This sequence introduces four new instructions: CMP (used to make deci-
sions), BMI (one way to check the flags in the status register), ADD (integer
addition), and BRA (one way to do an unconditional branch). Once you are familiar

with these instructions and their variations you will, believe it or not, know most of
the instructions used in Macintosh assembly language programs.
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MAL Output Window

@@ @D ED

Figure 4.2 Output From Multiple Calls to DrawChar

Making Comparisons

The 68000 instruction set has one generalized instruction for making com-
parisons — CMP. (There are others, but they are more specialized and less
commonly used.) The general form of the instruction is:

CMP address of source operand, destination data register

CMP subtracts the source operand from the quantity in the destination data
register. The result of the subtraction isn't stored anywhere. The instruction does,
though, set the codes in the status register according to that resuilt.

For example, consider this series of instructions:

MOVE #6,D1
MOVE #10,D2
CMP D1,D2

The CMP instruction will perform the subtraction “10 — 6.” The result (4) is not stored
anywhere. The negative bit in the status register is cleared (the result was positive).
The zero bit is also cleared (the result was non-zero). Since no overflow occurred
and no borrow was required, both the overflow and carry bits are cleared. CMP
does not affect the extend bit.
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Now, look at these instructions:

MOVE #12,D1
MOVE #10,D2
CMP D1,D2

Theresult of the subtractionis — 2. Therefore, the negative and carry bits will be set
and the others cleared.

After executing:

MOVE #5,D1
MOVE #5,D2
CMP D1,D2

only the zero bit will be set; all the others will be cleared.

CMP will work with characters as well as quantities. If you think about ASCII
codes for a moment, you'll notice that letters that come alphabetically first have
numerically lower codes than those that come later (e.g., A = $41,B = $42,C =
$43, etc.). Therefore, when CMP performs a subtraction using ASCII codes, a
program is actually testing for alphabetical order.

For example:

MOVE #$0043,D1
MOVE #$0046,D2
CMP D1,D2

tests whether C comes before F in an alphabetical sequence. Remember that
lower-case letters have different codes from upper-case letters so, for example, h
will be greater than H.

You can specify the source operand using any addressing mode.

Testing the Condition
Codes

CMP is conceptually only part of an IF/THEN statement. It compares the
operands in question and sets the status register so you can actually test the
condition. Testing the condition requires a separate instruction.

In Pascal, any executable statement, including a compound statement, can
follow THEN for execution if the condition is true. In assembly language, you are
much more limited. Though you can test for a variety of relationships between the
quantities being compared (e.g., equal to, not equal to, greater than, less than,
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plus, etc.), there are only two possible actions: you can branch to another instruc-

tion (the branch will take place if the condition is true; otherwise program execution

continues with the next statement); or you can set or clear a destination byte (the

byte will be set if the tested condition is true, cleared if the condition is false).
Using Pascal, you would write:

IF condition is true THEN GOTO symbolic address
or

IF condition is true THEN destination byte = $FF
ELSE destination byte = $00;

Regardless of whether you decide to branch or set a byte, you will still be
testing the condition codes that were set during a previous operation.