@8
OsborneMcGraw-Hill t“”ng-— Richard Norling

Macintosh BASIC

B177-XXT

| SUPERMARKET

Using Macintosh™ BASIC

Richard Norling

Osborne McGraw-Hill
Berkeley, California

Published by

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710

For information on translations and book distributors outside
of the U.S.A., please write to Osborne McGraw-Hill at the
above address.

The manuscript for this book was written using MacWrite™ running
on 512K Macintosh and a Lisa 2/5 with MacWorks™.

Macintosh, MacWrite, MacPaint, Lisa, The Finder, and MacWorks
are trademarks of Apple Computer, Inc.

Apple is a registered trademark of Apple Computer, Inc.

Microsoft is a registered trademark of Microsoft Corp.

USING MACINTOSH™ BASIC

Copyright @ 1985 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright
Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the excep-
tion that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

11234567890 DODO 9989765
ISBN 0-07-88157-0

Karen Hanson, Acquisitions Editor
Dave Ushijima, Technical Editor
Ted Gartner, Copy Editor

Nancy Leahong, Text Design
Donna Behrens, Composition
Yashi Okita, Cover Design

Library of Congress Cataloging in Publication Data

Norling, Richard, 1943-
Using Macintosh BASIC.

Includes index.

1. Macintosh (Computer) — Programming. 2. Basic
(Computer program language) I. Title.
QA76.8.M3N67 1985 001.64'2 85-2934
ISBN 0-07-88157-0

Contents

Introduction vi
Part One Fundamentals of Macintosh BASIC
Chapter 1 Getting Started 1
Chapter 2 Creating Programs 11
Chapter 3 Statements and Operators 21
Chapter 4 Editing Programs 35
Chapter 5 Making Decisions 53
Chapter 6 Organizing Your Program 69
Chapter 7 Using Functions 81
Chapter 8 Manipulating Strings and Text 95
Part Two Intermediate Techniques 111
Chapter 9 Variables, Data, and Arrays 113
Chapter 10 Formatting Program Output 137
Chapter 11 Defining Your Own Functions 159
Chapter 12 Using Files 173
Chapter 13 Files, Volumes, and Devices 195
Chapter 14 Using the Interactive Debugger 223

Chapter 15 Advanced Control Structures 233

Part Three
Chapter 16
Chapter 17
Chapter 18

Part Four

Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23

Part Five
Chapter 24

Appendix A

Appendix B
Appendix C
Appendix D
Appendix E

Special Macintosh Techniques
Graphics and Shapes

Using the Mouse

Making Music

The Macintosh Toolbox
Using the Macintosh Toolbox
Windows and Menus

Using Controls

QuickDraw Graphics

Using Resources

Programming Style

Professional Polish

Macintosh BASIC Commands and
Functions

Error Messages and Codes

ASCII Codes and Keyboard Characters

Toolbox Routines Accessible From BASIC

Solutions to Practice Exercises

Index

247
249
269
283

297
299
313
331
347
363

383
385

393
405
411
417
437
451

Acknowledgments

I want to thank all the people who worked on Apple Computer’s
team to develop the Macintosh BASIC language, without which
this book would not have been possible.

Three of these people made special contributions. Donn Den-
man, the chief creator of the language, was informative, patient,
and understanding even when I managed to interrupt his work.
Edward Spiegel answered many questions and helped me get all
the technical details right as new features were added to the lan-
guage. Marianne Hsiung helped me understand several points.
Their contributions have made this a better book.

RDN

Introduction

This book is a comprehensive guide to Apple Computer’s Macin-
tosh BASIC language. It is a complete reference to Macintosh
BASIC that progresses from a simple one-line program to compli-
cated programs using advanced computer concepts.

BASIC is the most widely used programming language on
microcomputers because it is the easiest language to learn. Macin-
tosh BASIC is even easier to learn and use than the versions of
BASIC found on most other machines. It is an interactive language
that displays corrective messages as soon as you enter a line that
contains an error. The messages are written in normal English
instead of computer jargon and are usually clear enough to enable
you to correct the error without referring to written documentation.

Macintosh BASIC is incrementally compiled, a technique that
makes it faster than most other versions of BASIC. Its program-
ming environment includes a full-program editor that allows you
to use all of the normal Macintosh editing techniques.The built-in
interactive debugger is an effective learning and programming tool
that is fun to use.

A concerted effort has been made to use normal English in this
book. Many books about computers use technical terms and com-
puter jargon so frequently that it is difficult for the non-expert to
understand the concepts being discussed. This book discusses con-
cepts in English, using technical terms and jargon only where they
add to understanding.

o vi

HOW TO USE THIS BOOK

You do not have to finish reading this book before you write a
computer program in Macintosh BASIC. Computer programming
is best learned by doing. The most important part of learning to
program computers is the experience you gain by actually writing
programs. So start using commands in your programs as soon as
you read about them. You will learn much more quickly if you do.

This book was organized to present the concepts of computer
programming and the Macintosh BASIC language in a logical
manner, laying the foundation carefully with simple concepts
before building up to advanced concepts. If you want to proceed
carefully and cautiously, you should start with Chapter 1 and work
through the book.

The explanations, guidance, help, suggestions, reference infor-
mation, and practice exercises in the book are designed both to
make your learning experience go smoothly and to serve as refer-
ence materials once you have started to write programs. If you are
particularly curious about a particular command or subject, feel
free to jump ahead and read about it. Just keep in mind that a
complete understanding of it may depend on something you
skipped earlier in the book.

HOW THIS BOOK IS ORGANIZED

This book is organized into five parts. Part One, Fundamentals of
Macintosh BASIC, contains eight chapters that explain the fun-
damentals of Macintosh BASIC. The topics include a description
of Macintosh BASIC’s windows and menus, operators, program
editing techniques, conditional statements, simple control struc-
tures, functions, and string manipulations. By the time you finish
these chapters, you will be able to write a variety of BASIC
programs.

The seven chapters in Part Two, Intermediate Techniques,
introduce subjects that will help you write more complicated pro-
grams. These subjects include defining data arrays, formatting
output, defining your own functions, reading and writing data
files on disk, using Macintosh BASIC’s interactive debugger, and
passing parameters to subroutines.

Part Three, Special Macintosh Techniques, describes the Macin-

vii

tosh BASIC commands that let you handle graphics, the mouse,
and sound. While many commands are identical or similar from
one version of BASIC to another, the commands described in these
chapters are unique to Macintosh BASIC because they were specif-
ically designed for use with Macintosh hardware.

Part Four, The Macintosh Toolbox, describes how to use the
routines in the Macintosh toolbox. The features of Macintosh
BASIC described in Part Four are not described in the Macintosh
BASIC reference manual published by Apple Computer. These
undocumented features of Macintosh BASIC allow you to use the
Macintosh toolbox routines to handle windows, menus, controls,
graphics objects, resources, and assembly language programs.

The last part, Programming Style, briefly discusses some of the
things involved in polishing your program to professional quality.

A NOTE TO EXPERIENCED PROGRAMMERS

If you are an experienced programmer, you may be surprised to see
what has happened to BASIC. Macintosh BASIC is a structured
programming language. It gives you the ability to use either labels
or line numbers, and provides new control structures like CASE
and DO/LOOQOP, re-entrant subroutines with parameter passing,
and separate programs with parameter passing and local variables.

This book teaches structured programming techniques. Stan-
dard BASIC GOTO statements are used in Chapter 5 to introduce
the concept of flow of control, but appear nowhere else in the
book. POP is listed in Appendix A for completeness, but is omit-
ted from the text.

DISK OF PROGRAMS

If you prefer not to type long programs, the programs labeled as
Figures in this book are available on a single Macintosh disk. The
programs are intended for educational purposes only. For more
information about ordering one of these disks, write to:

Language Systems Corp.

1217 E Street, S.E.

Washington, DC 20003

viii

Jort Gne

Fundamentals of
Macintosh BASIC

Chapler 1
Getting Started

You have a disk that contains Macintosh BASIC and are ready to
start programming. But where do you begin? In this chapter you
will start by reviewing some elementary concepts. You will learn
what a computer program does and will get an overview of how
Macintosh BASIC translates programs that you write into a form
that the machine can understand. Finally, a quick look at Mac-
intosh BASIC’s programming environment, including windows
and menus, will get you started. '

PROGRAMS

A computer is a collection of electronic parts based on simple
yes/no or on/off logic. Included in the computer are a central pro-
cessing unit (CPU) and random-access memory, which holds
instructions and data while the computer is operating.

2 Using Macintosh BASIC

The central processing unit is the center of the computer’s oper-
ation. It is an integrated circuit that could fit in the palm of your
hand. This component performs calculations and makes logic
decisions; it also sends electronic signals to the other parts of the
computer to tell them when to act. The central processor chip in
the Macintosh is a Motorola 68000 chip.

The computer’s memory is made up of a series of units called
bits that can store either a 1 or a 0. The bits are grouped into bytes
(8 bits per byte). Each byte has its own address and can be accessed
by using its address at any time.

While it is the center of the computer’s nervous system, the cen-
tral processor does not really have a mind of its own; it can only
follow a strict regimen of repeatedly executing one instruction
from memory and then looking for the next instruction. The series
of instructions is called a computer program.

Once a program has been entered into the computer’s memory, it
can later be stored on a diskette or a hard disk. You can then reload
the program at any time and tell the computer to execute it. Even-
tually you will write and develop a library of computer programs.
When you want the computer to do something, all that will be
required will be to select the proper program from your library.
You will only have to write a new program when you want to do
something you have not done before.

THE BASIC PROGRAMMING LANGUAGE

The instructions the central processor understands are a series of
I's and 0’s called machine language. Only a few people directly
write machine language. Instead, most people use higher-level
languages that are closer to everyday spoken language. One of
these higher-level languages, BASIC, has become the most popular
language on small computers because it is so flexible and easy to
learn. The name BASIC is an acronym of the words Beginner’s
All-purpose Symbolic Instruction Code.

The version of the BASIC language described in this book allows
you to harness the many capabilities of the Macintosh with a total
vocabulary of less than 250 words. Macintosh BASIC includes all
of the standard commands of the original BASIC language. It con-
tains new commands specially written for the Macintosh and some

Getting Started 3

of the best features of another popular language, Pascal.

To allow a computer to understand programs written in
BASIC, another program is needed to translate from BASIC into
the machine language that the computer’s central processor
understands. The program labeled Macintosh BASIC does the
translating.

Until recently, language translation programs could be divided
into two types: compilers and interpreters. A compiler does its
translating and error checking after the entire program has been
entered. A typical compiler produces a binary or object code file, a
collection of low-level machine language instructions. The binary
file is executed when you run the program.

When new hardware enabled people to interact with computers
on-line, interpreters appeared. An interpreter does not go through
the intermediate step of creating a binary or object file; instead, the
interpreter reads and translates each line of program text just
before it is executed. This makes the interpreted program run more
slowly than the equivalent compiled program. The advantage of
an interpreter, however, is that it is much more convenient to use
for program development because program changes can be tested
without waiting for the entire program to be compiled. Most ver-
sions of the BASIC language are interpreted.

Macintosh BASIC is one of the first of a new breed of program-
ming languages that combine the best features of compilers and
interpreters. Instead of waiting until the entire program has been
entered, Macintosh BASIC compiles each program line into a spe-
cially compressed form of code right after the line is entered. This
reduces the time required by BASIC to compile the program before
execution begins. When you run the program, the precompiled,
compressed code allows Macintosh BASIC to run substantially fast-
er than versions of BASIC that interpret everything while you run
the program.

Compiling each program line just after it is entered also allows
Macintosh BASIC to make programming a little easier. BASIC
checks each line for simple spelling or syntax errors and notifies
you immediately, so you can fix them while the program line is
still fresh in your mind. (However, some types of errors that
involve several lines of code can only be discovered when the pro-
gram is running. You find out about these errors when they
happen.)

4 Using Macintosh BASIC

A BASIC PROGRAM

Let’s take a quick look at a short program written in Macintosh
BASIC:

10 PRINT "Let's add 3 and 5 together.”

20LETA=3+5
30 PRINT "3 and S make "; A
40 END

For the moment, you don’t need to worry about how this program
works —you just want to become familiar with how a program
looks. In this example, each line contains a separate instruction, or
program statement. No special punctuation is used at the end of
the line. Each line is labeled with an identifying number. These
line numbers are required in many versions of BASIC. They are
optional in Macintosh BASIC —you may use line numbers if you
wish, but they are not required.

This first example of a program written in Macintosh BASIC is
traditional in its format. The program in Figure 1-1 shows some of

do
for i=1to 500
paint rect i 30;i+ 120,150
invert oval i,.30;i+ 120,150
next i

for i = 500 to | step - !
paint oval i 40;i+100,140
invert rect i,40;i+ 100,140
next i
loo0p

Figure 1-1. Sample graphics program

Getting Started 5

& File Edit Search Fonts
Text of Sample Graphics

o ==
furléD
[]

d

Sample Graphics

Figure 1-2. Output from sample graphics program

the differences in style that Macintosh BASIC allows and also
shows off some of the graphics capabilities of the Macintosh. If
you were to type this program into your Macintosh and run it, you
would see that it moves an object back and forth across the screen,
leaving a varied trail behind it. Figure 1-2 shows a picture of the
program’s output on the Macintosh screen.

STARTING MACINTOSH BASIC

If you have already purchased Macintosh BASIC and have a
Macintosh computer handy, just insert the Macintosh BASIC disk
so you can use the computer to follow along with the rest of this
introductory discussion.

When the initial whirring of the disk drive stops, your screen
should look something like Figure 1-3. The icon Macintosh
BASIC represents the Macintosh BASIC programming language.
The narrower icon with a similar design represents an individual

6 Using Macintosh BASIC

6 File Edit Diew Speual

Mucmtosh BﬂSIC Disk
4 items 228K in disk

Macintosh BASIC Sample Graphics

Empty Folder «z“g:
i §‘3§;§é’¥&‘§§§§3§§%§’é§‘§’§%
L

— ;«mss;msssmmsxuxumms;(mm:msmsm&m»; 5

L ;WW%%

%ﬁ’%’gﬁé
i ?M%,,%é%?% ?i i ski»s%? gﬁ :s %; ;,%g%”ss,;,

Figure 1-3. Screen after inserting Macintosh BASIC disk

program written in Macintosh BASIC. If you move the mouse so
that the cursor points to the Macintosh BASIC icon and double-
click the mouse button, the Macintosh BASIC program will start
running. If you put the cursor on the icon of a program written in
Macintosh BASIC and double-click, the Macintosh BASIC language
and the program whose icon you clicked will be loaded into memory.

SURVEYING BASIC’S WINDOWS

Macintosh BASIC uses two major kinds of windows. One kind dis-
plays the text of your program, and the other displays the material
generated by your program while it is running. Figure 1-4 shows a
Macintosh screen that contains both of these kinds of windows.

Macintosh BASIC’s windows have the standard Macintosh fea-
tures. You can move a window by dragging its title bar and change
its size by dragging the size box. If you have several windows open,
you can click on a window to make it active.

Getting Started 7

® File Edit Search Fonts Program

Text of Sample Graphics
do
fori=1to 500
paint rect i,30;i+120,1
invert oval i,30;i+120,
next i

Sample Graphics

fori=>500to 1 step -1
paint oval i,40;i+100,1
invert rect i,40;i+100,

next i

loop

Figure 1-4. Macintosh BASIC windows

The windows have vertical and horizontal scroll bars, which
become active if there is information beyond the visible area of the
window. You can use the arrows at the ends of a scroll bar to scroll
slowly through the document, click in the gray area to scroll one
window at a time, or drag the scroll box to move directly to the
part of the document you want to see.

Text Windows and Output Windows

The window on the left in Figure 1-4 is a text window. As its name
implies, it displays the text of a program. When a program is
opened, the words “Text of”’ precede the name of the program in
the title bar of the text window. You can use all the standard
Macintosh editing techniques on the program in the text window.
You can type a new program directly into an untitled text window.
Chapter 4 describes program entry and editing techniques.

The window on the right in Figure 1-4 is a program output

8 Using Macintosh BASIC

Program is running
Waiting for input
Program has been halted

Debugger is on

(] [= [~ [2]

Program is finished

Figure 1-5. Status box designs

window, or output window for short. Macintosh BASIC uses out-
put windows to display any text or graphics that your program
produces. The title at the top of the output window is the name of
the program file, with no extra words added.

The little square at the top of the vertical scroll bar is called the
status box. Its purpose is to tell you the current status of your pro-
gram. Figure 1-5 shows the different status box designs and their
meanings. The circling design means that the program is running.
The question mark indicates that the program is waiting for input
from the keyboard or the mouse. An open hand indicates that you
have halted the program, and the “bug” indicates that you are
using the interactive debugger. (Operation of the debugger is
explained in Chapter 14.) Finally, the solid rectangle indicates that
your program has finished running.

THE BASIC MENUS

Now let’s take a first look at the menus that define the environ-
ment in which you will work using Macintosh BASIC. Macintosh
BASIC includes six full menus of commands. These are the Apple,
File, Edit, Search, Fonts, and Program menus. You select items on
these menus either with the mouse or with the COMMAND key
options.

Getting Started 9

The Apple menu contains the About Macintosh BASIC option
and lists the names of all the available desk accessories. Selecting
the first option presents a dialog box about Macintosh BASIC
including the author’s name and the version you are using. Macin-
tosh BASIC fully supports the desk accessories, both while you are
writing a program and while your BASIC program is running. If a
program that is running needs input from the keyboard or the
mouse while you are using a desk accessory, the program stops and
waits until you make the program’s output window active again so
it can receive the input.

The File menu contains commands for handling program files.
The Edit and Search menus provide full editing, search, and
replacement options for use in editing programs. The Fonts menu
allows you to change the display font in any of Macintosh BASIC’s
windows. The Program menu contains options related to running,
compiling, and finding errors in your programs. The items on
these menus are described in the next three chapters.

Chaplei- 2

Creating Programs

In this chapter you will see what it takes to write a simple Macin-
tosh BASIC program. Once you have entered the program, you
will run it and save it on disk. Several of the Macintosh’s menus
will be indispensable in helping you create programs. In particu-
lar, the Program menu allows you to run your programs, the Fonts
menu allows you to change the way your programs look, and the
File menu allows you to save your programs on disk.

A SIMPLE PROGRAM

No matter how long or short a program is, it must communicate if
it is to be useful. A program that predicts interest rates, the next
hot stock, or the winner of Saturday’s eighth race is of no use at all
if it fails to communicate its results in time for you to act.

11

12 Using Macintosh BASIC

There are many ways in which a program can communicate. It
can generate sound, draw pictures, print on a piece of paper, or
save information on disk. The simplest way for a program to
communicate, however, is to display text on the screen. That is
what you will do in your first Macintosh BASIC program.

When you are ready to start, insert the Macintosh BASIC disk
and double-click on the Macintosh BASIC icon. Let’s write a pro-
gram to print the word “Hello” on the screen. Just type in

print 'Hello'

and press the RETURN key. Now, using the mouse, move the cursor
to the Program menu and select Run. If your typing was correct,
the screen looks like Figure 2-1. Macintosh BASIC created the out-
put window labeled “Untitled” to hold the program’s output, and
then the program printed “Hello” in the window.

Macintosh BASIC’s vocabulary contains special words that are
sometimes called keywords or reserved words. The word “print” is

& File Edit Search Fonts Program

Test of Untitled [J==k=——— Untitled
print "Hello”

Figure 2-1. First Macintosh BASIC program

Creating Programs

one of those words. When Macintosh BASIC recognizes one of its
keywords while compiling a program line, it displays that word in
boldface type in the text window. The boldface makes it easier to
locate keywords in your program’s text.

The word in quotation marks, “Hello”, is called a string. A
string is a collection of characters such as letters, digits, and punc-
tuation marks. Strings are often used to hold words and sentences.
You can enclose a string in either single or double quotation
marks as long as you use the same type of quotation mark at both
the beginning and the end of the string.

Now select the New command from the File menu, and you are
ready to write another program. You do not have to close the win-
dows from the first program before you start, because Macintosh
BASIC will allow you to work on several programs at once. The
only limit to the number of programs you can work on simultane-
ously is the amount of memory the programs occupy in the
machine.

First you should decide what message you want your program to
print. Once you have decided, type print, a space, a quotation
mark, the string you want to print, and a quotation mark match-
ing the first one. Then press the RETURN key. If you want to print
more than one line, use a separate PRINT statement for each line.
To see your program run, select Run from the Program menu.

PROGRAM FORMAT

Each line in your program should contain only one program
statement. Macintosh BASIC allows you to put several statements
on the same line if you separate them with colons. However, there
is almost never any reason to put more than one statement on a
line. Your program will be much easier to read if you start each
program statement on a new line.

You can insert blank lines or leave extra spaces anywhere in a
line to improve readability. There is no limit to the length of a
statement in a program line; however, you will usually want the
line to fit within the width of your text window.

You may have noticed that the word “print’”’ in the program in
this chapter is in lowercase (small) letters, while it was in upper-
case (capital) letters in the first program in Chapter 1. You can use

13

14 Using Macintosh BASIC

either convention. If you wish, you can even mix upper- and lower-
case letters together like this:

pRiNt

The only time Macintosh BASIC pays attention to whether a letter
is in upper- or lowercase is when the letter is part of a string value.
Keywords can contain any mixture of upper- and lowercase letters.
For consistency, Macintosh BASIC commands or keywords, like
PRINT, will appear in all capital letters in most of the programs
in this book.

WORKING WITH PROGRAM FILES

Figure 2-2 shows the File menu. The items on this menu are
selected most often while writing and editing programs. The New
command opens a new text window for entry of a new program.
The window is labeled “Untitled.” The Open Program file com-
mand presents a dialog box from which you may select an existing
program to be retrieved from disk and displayed in a text window.

& I edit _search Fonts Program

New 8N
Open Program file... $0
Close 8K
Save Text %S
Save a Copy In... |
Print Quick 30
Quit

Figure 2-2. The File menu

Creating Programs

Once in the window, the program can be edited or executed. When
you open a long program, there may be a short delay before the
listing of the program appears in the text window. Macintosh
BASIC checks the program for errors and compiles it into a shorter
form during this delay.

The Close command closes the active window. If a text window
is active and the program has not been saved since it was last
changed (or if it is a new program that has never been saved at all),
a dialog box asks whether you want to save the changes before
closing. If you answer no, the latest version of the program will
not be saved, and the copy of the program on the disk will not
include any changes made since the last time the program was
written to the disk.

The Save Text command copies the program in the active text
window to the disk with the same file name that appears at the top
of the window. If the window is untitled, Save Text will present a
dialog box that asks you to give the program a name. The name
you assign is given to the disk file, and at the same time it is dis-
played at the top of the text window. The Save a Copy In com-
mand allows you to save a copy of the program in the active text
window under a different name. Save a Copy In does not change
the title of the text window. The two Save commands work only
when a text window is active. Both Save commands leave your
program in the text window unchanged.

RUNNING YOUR PROGRAM

The Program menu, shown in Figure 2-3, contains the commands
to run a program once it has been written. The Run command
opens an output window and starts program execution from the
beginning. If an output window is already open for the program,
Run starts the program again from the beginning in the same
window.

You can run several programs at once in Macintosh BASIC. You
can even run more than one copy of the same program. The price
you pay is that each program runs more slowly. The only limit on
the number of programs running at the same time is the amount
of memory in your machine. You can also edit a program while
another program, or a copy of the same program, is running.

15

16 Using Macintosh BASIC

& File Edit Search Fonts_

Run

Run Another

Hait #H
Go #06

Save Binary
Check Syntar 33U
Turn Checking 0ff

Debug 0D
fan =i
frane =Y
Bipnk fraos =i

Shap Bariablas

Figure 2-3. The Program menu

Macintosh BASIC accomplishes this feat by dividing up the avail-
able time among all the competing tasks, switching from one task
to another as often as sixty times a second. The Run Another
command opens a new output window and runs another copy of
the program whose window is active.

The Halt command interrupts program execution, and the Go
command resumes it. Both commands affect the program whose
output window is active. If you select Go when a program text
window 1is active, Go starts program execution just like the Run
command.

The Save Binary command saves a program to disk in a compact
form that cannot be translated back into the original program text.
This is the form in which programs are saved once they appear to
be working properly. A binary program file occupies less space on
the disk than a normal text file, and it also loads faster because
compilation and error checking do not need to be performed every
time the program is read from disk. Save Binary appends the letters
“.Bin” to the program’s file name to give the binary file a different
name on the disk. The design on a binary file’s icon is outlined
instead of solid. Even though you may be absolutely convinced

Creating Programs

that a program has been perfected, you should always keep at least
one copy of the full text of the program in case further changes are
needed.

The Check Syntax command lets you scan a program for errors
whenever you wish and also lets you update a running program.
The Turn Checking Off command turns off BASIC’s automatic
error checking. When checking is off, the command on the menu
toggles to Turn Checking On. The Debug command turns on the
Macintosh BASIC debugger, a tool that helps locate program
errors. The Step, Trace, Block Trace, and Show Variables com-
mands are all part of the debugger, which is described thoroughly
in Chapter 14.

CHANGING FONTS IN A WINDOW

The Fonts menu lists the seven most common font sizes plus all of
the type fonts currently available. The list of fonts in the menu
depends upon which fonts are in the System file on the Macintosh
BASIC disk. The System file on the disk for Figure 2-4 contained
four fonts. The Font Mover program on the Macintosh System

& File Edit Search i Program
¢ noint
10 peimt

vi12 poind
14 point
18 point
20 peint
24 point

Athens

Chicago
vbeneva

Monaco

Figure 2-4. The Fonts menu

17

18 Using Macintosh BASIC

Disk will move fonts in and out of the System file. If a font you
want to use is missing from the menu, you can copy it into the
System file with the Font Mover program. If the list on the Fonts
menu contains any fonts that you never use, you can save space on
your diskette by using the Font Mover to remove any unwanted
fonts.

The Fonts menu allows you to change the appearance of text
displayed in any window, whether it is a program’s output win-
dow, a text window, or even the Clipboard. To change the font or
size of text in a window, first make that window active by clicking
the mouse button while the cursor is inside the window. Now any
selections from the Fonts menu will affect the font and size of text
in that window. Checkmarks appear on the menu alongside the
font and size that are currently selected. Unless you change the font
or type size, Macintosh BASIC uses the Geneva font in the 12 point
size for all windows.

If you change the font or type size for a window that already
contains text, BASIC will erase the text and redraw it in the font
and size you specify. Any non-text material in the window, such as
a graphics design drawn by a program, will be erased from the
display and will not be redrawn. This erasure affects only the dis-
play of the information, not the information itself. Thus, if the
information was in a place like the Clipboard, you would still be
able to retrieve it, even though it no longer appeared on the
display.

PRINTING YOUR PROGRAM

If you own a printer, you can use the Print Quick command on the
File menu. Print Quick gives a draft-quality printout that includes
ordinary text but no graphics. Print Quick is often used to print
listings of program text. You can also use it to print text from a
program’s output window. The command works on the entire
document, not just the portion of it that is visible in the window.
In addition to Print Quick, you can press the key combinations
shown in Table 2-1 at any time to print an image of the active
window or the full screen, or to copy the screen to disk for use with
the MacPaint program.

Creating Programs

Table 2-1. Finder Commands to Print or Copy

COMMAND-SHIFT-3 Copy screen to disk
COMMAND-SHIFT-4 Print active window

CAPS LOCK-COMMAND-SHIFT-4 Print entire screen

QUITTING MACINTOSH BASIC

The Quit command on the File menu provides an exit from
BASIC back to the Finder where you will see the familiar desktop.
If you have made changes to a program since it was last saved,
BASIC presents a dialog box and gives you an opportunity to save
the latest version of the program.

19

Chapler 3

Statements and Operators

Commands:
s LET, PRINT, ?, INPUT, REM, !
m END, END PROGRAM, END MAIN

Operators:
m= -+ — % /, " DIV, MOD

This chapter introduces several of the most common BASIC com-
mands and shows you how to organize them into statements in a
working program. The first step in writing a computer program is
deciding what you want the computer to do. Simple programs that
do only one thing are easy to write. For more complicated pro-
grams, however, deciding what you want the computer to do is
often the most difficult part of writing a program.

In addition to introducing the simple commands and operators
that are used in almost every program, this chapter begins the

21

22

Using Macintosh BASIC

practice of specifying what a program does before it is written.
This simple habit will make planning and writing programs eas-
ier later on when you tackle more complex programming problems.

ASSIGNING VALUES TO VARIABLES
m LET, =

Variables are useful in programs because variables can hold values
for future reference. However, each variable can hold only one type
of value; thus the variables are classified by their content. The two
most common types are numeric variables (which hold numbers)
and string variables (which hold strings). Each variable holds only
one value. When a new value is stored in the variable, it replaces
the previous value. As shown in Figure 3-1, variables can be visu-
alized as specialized mailboxes that hold only a single piece of mail
at a time. If you attempt to store a value such as a string into a
numeric variable or a number into a string variable, Macintosh
BASIC will present you with a “Type Mismatch” message.

Each variable has a name, which refers to the value stored in the
variable. A variable name starts with a letter and may contain let-
ters, numbers, and some special characters. However, the name of a
variable cannot contain certain characters used in Macintosh
BASIC statements as operators, commands, or punctuation marks.

Numbers
Only

A|BIC|D|E|F|G|H

Figure 3-1. Numeric variable “mailboxes”

Statements and Operators

Table 3-1. Characters to Avoid in Variable Names

Character Function
(space) Word separator
, 5 () Punctuation

Statement separator
= Replacement operator
String delimiters

! Remark character

+ — %/ " Arithmetic operators

& String operator

<>=#=2= Relational operators

@ Two-way parameter marker

? PRINT statement abbreviation
Channel designator

Table 3-1 lists characters that may not be used in variable names.

A variable name may contain a Macintosh BASIC reserved
word, but the name may not be identical to the word. Macintosh
BASIC treats upper- and lowercase letters the same in variable
names, so even though varname and VARNAME look different,
they are in fact different ways of writing the same variable name.
Variable names will usually be lowercase in this book.

Macintosh BASIC allows variable names to be as short as one
letter or as long as 255 characters. This improves a program’s
readability because descriptive and easy-to-understand variable
names can be used. Statements like

pr=rcts-c
can become

profit = receipts - cost

23

24 Using Macintosh BASIC

If you use descriptive variable names, your programs will be easy
to improve or modify should the need arise.

Because variable names can be long but must be all one word
with no spaces, people have invented different ways of writing
long names. These include running the words together or using
some special character like a period to replace spaces. Thus,
depending on your style, a variable that contains the value of a test
score might be labeled testscore, testScore, or test.score. As a practi-
cal matter, names longer than eight or ten characters can lead to
errors because they are difficult to remember and can be difficult to
type accurately every time.

Several characters have special meaning when used as the last
character of a variable name. The most common of these is the
dollar sign ($), which marks the name of a string variable. Any
variable that does not have a special character at the end of its
name is a numeric variable.

The most common way to assign a value to a variable is with the
replacement statement, LET. The statement

LETa=3

creates a numeric variable named a and puts the value 3 in it.
When a variable name is used in a formula or a BASIC statement,
Macintosh BASIC wuses the value of the variable. Thus, the
sequence

LETa=3
PRINT a

sets the variable a equal to 3 and then prints the number 3 in the
program’s output window. The LET command works just the
same for string variables. The program

message$ = "Hello"
PRINT message$

prints the word “Hello” in the output window just like the pro-
gram you saw in Chapter 2.

PRINT "Hello"

The replacement operation is used very frequently in BASIC
programs. To save keystrokes when typing in programs, the use of

Statements and Operators

the word LET is entirely optional. A statement that starts with a
variable name followed by an equal sign has the same effect as if it
started with LET. Thus,

a=7
PRINT a

prints the number seven in the output window just as

LETa=7
PRINT a

would do. Whether or not you actually type the word LET is up to
you.

DOING CALCULATIONS
m+, —, % /, " DIV, MOD

Four of the arithmetic operators —the signs for addition, subtrac-
tion, multiplication, and division —are probably familiar to you.
The other arithmetic operators —exponentiation, integer division,
and modulo —may not be nearly as well known. All seven opera-
tors are summarized in Table 3-2.

Table 3-2. Arithmetic Operators

Operator Operation Example
a5 Addition 3+2=5
= Subtraction d—2=1
* Multiplication 3%x2=26
7 Division 3/2=15
4 Exponentiation & =1
DIV Integer division 5 DIV 2 =2

MOD Modulo 5 MOD 2 =1

25

26 Using Macintosh BASIC

Note that while a formula such as a=3b+2 is allowed in
mathematics, in BASIC the formula must be written a=3*b+2
with the multiplication operator used instead of implied.

Exponentiation is sometimes described as ‘‘raising a number to a
power.”” The normal mathematical notation for exponentiation is
x", which would be read as “x raised to the nth power.” To avoid
the difficulties in trying to use superscripts, Macintosh BASIC uses
the notation x"n. The * symbol is above the 6 on the Macintosh
keyboard and can be obtained by typing 6 while holding the SHIFT
key down.

The n in x” is called an exponent, which is where exponentia-
tion gets its name. The value of x” is x multiplied by itself n times.
For example, the value of 3”2 is 3%3, or 9. The value of 2"3 is
2%2%2, or 8. Exponentiation is not as common as other arithmetic
operators, but it does show up in a number of useful formulas.

DIV and MOD are integer operators. DIV is called the integer
division operator. It does a normal division and then returns the
integer portion of the result. The modulo operator, MOD, returns
the remainder of an integer division.

a=7DIV2 |Puts3ina
b=7MOD2 !Putslinb

Evaluating Expressions

An expression is any combination of values, operators, variables,
and parentheses that can be evaluated to produce a single value. A
numeric expression can be a simple number or numeric variable
name, or it can be a complicated formula. This section discusses
how BASIC evaluates formulas.

If a formula contains more than one arithmetic operation, it is
important to know in what order the operations will be performed.
The formula a=7+3%4"2—6/2 would set a to 797 if every opera-
tion were done in a strict left-to-right order, but in BASIC, the
formula yields 52 because BASIC follows the rules of mathematics
regarding which operations get performed first (officially called
the order of precedence).

Table 3-3 lists the order of precedence for the seven arithmetic
operators. Exponentiation is always performed first. Multiplication,

Statements and Operators

Table 3-3. Order of Precedence

Operator Operation Order
A Exponentiation First
* / DIV MOD Multiplication, division, Second
integer division, modulo
+ - Addition, subtraction Third

division, integer division, and modulo are done next. Addition
and subtraction are done after all the other arithmetic operations.
Thus, in the formula in the previous paragraph, the exponentia-
tion 4”2 is performed first, giving a value of 16. Now the formula
can be reduced to a=7+3%16—6/2, which contains one multipli-
cation and one division. Since those two operations are equal in
precedence, they are performed in a left-to-right order. Complet-
ing the multiplication and division reduces the formula to a=7+48—3,
and the calculation can be completed by doing the addition and
subtraction in left-to-right order to give the answer 52.

Using Parentheses in Formulas

You can force BASIC to evaluate a formula in the order you desire,
regardless of the rules of precedence, by using parentheses in your
formula. BASIC evaluates everything inside a set of parentheses
before proceeding with a calculation. If several sets of parentheses
are nested inside each other, the calculations in the innermost set
of parentheses are performed first. If the formula you evaluated
earlier is changed to a=((7+3)*4)"2—6/2, then the expression in
the innermost set of parentheses, 7+ 3, is evaluated first, producing
10. The remaining set of parentheses forces the computation 10%4
to be performed next. This reduces the formula to a=40"2—6/2,
which can now be evaluated by the normal order of precedence to
1600— 3, or 1597.

27

28 Using Macintosh BASIC

Even when it is not necessary to change the computation order,
parentheses are sometimes used to clarify the order of calculations.
It also may be easier to use parentheses in a formula than to look
up the official order of precedence. If an attempt is made to enter a
formula that has a different number of left and right parentheses,
BASIC will present an error message.

MORE ABOUT PRINT
m PRINT, ?

You have already used the PRINT statement in your first program,
but there is still more to learn about it. You can print as many
numbers and strings as you want in a single PRINT statement, or
you can use more than one PRINT statement to print things on
the same line of the output window. The statement

(53]

PRINT “Testing... *; 1;" ":2;" ™

prints the string “Testing. .. immediately followed by the number
1, the spaces in the next string, the number 2, the final string, and
the number 3.

Items to be printed must be separated from each other by semi-
colons or commas. Semicolons, as used in this example, cause the
items to be printed adjacent to each other. Macintosh BASIC
creates tab stops in the output window a little more than an inch
apart. When a comma is used as a separator, the comma causes the
next item to be printed at the next tab stop.

A simple PRINT statement with nothing listed after it prints a
blank line. Occasionally, you need to use more than one PRINT
statement for things on the same output line. Using either a semi-
colon or a comma at the very end of the PRINT statement will
cause the next PRINT statement to print on the same line. A trail-
ing semicolon will cause the next character to be printed just after
the last item printed. A trailing comma will cause the next charac-
ter to be printed at the next tab stop.

An average output window will hold about fifteen lines of
information printed in the 12 point font size. When the window
becomes full, Macintosh BASIC starts scrolling the information
vertically so that the last line printed is visible in the bottom of the

Statements and Operators

window. You can view the lines that were scrolled off the top of the
window by using the scroll bar along the right side of the window.

The items to be printed can be any valid BASIC expression —as
simple as the actual numbers and strings in the previous example
or as complex as you want. The statement

PRINT ((7+3)%4)~2-6/2
prints the number 1597 just as surely as
PRINT 1597

does. BASIC allows you to use a question mark instead of the word
PRINT if you wish.

GETTING INFORMATION FROM THE KEYBOARD
m INPUT

INPUT is the command that allows a program to receive informa-
tion typed from the keyboard and place it in a variable for further
use. The statement

INPUT a

puts the value typed from the keyboard into the variable named a.
The information typed at the keyboard must be of the same type as
the variable which is to receive the information. Thus,

INPUT a$

will receive a string of information and store it in the variable a8,
while

INPUT a

will receive a number and store it in the variable a. If a non-
numeric character is typed when the INPUT statement requires a
number, Macintosh BASIC will refuse the keyboard input and give
an “Expected a Number” message.

29

30 Using Macintosh BASIC

You need to receive some indication when a program is waiting
for you to type something. To meet this need, BASIC allows you to
specify a prompt string as part of your INPUT statement. The
format is

INPUT "Prompt"; variable

BASIC prints the specified prompt string before waiting for the
typed input. The prompt specified in the INPUT statement must
be an actual string, not the name of a string variable. If you do not
supply a prompt string, the INPUT statement prints a question
mark. The statement

INPUT "Type your age, please: "; age

prints the prompt string “Type your age, please:”” and then waits
for you to type a number. You can backspace, cut, paste, retype,
and use all of the Macintosh editing techniques while you are
entering the number. You press the RETURN key to tell BASIC to
accept your input line.

If you do not want either a prompt string or the question mark,
you can use an empty string (just a set of quotation marks with
nothing between them) as the prompt. Thus,

INPUT **; a$

does not print anything; it just waits for a string to be typed. You
should not use this technique unless you have already used a
PRINT statement to display an appropriate prompt message.

LEAVING NOTES TO YOURSELF
= REM, !

REM, which is short for “remarks,” allows you to leave comments
in the text of a program without affecting the way the program
operates. Anything you put on a program line after REM will be
kept in the program text as a note, but will be ignored during
compilation and execution. Many programmers put several REM
statements at the beginning of each program to describe what the

Statements and Operators

program does, when it was last updated, the author’s name, and
other pertinent information. Comments are also used frequently to
identify major sections of a long program. When REM is used, it
must be preceded by a colon and followed by a space.

REM has an abbreviation, the exclamation point (!). The excla-
mation point can be used anywhere REM can be used, and it can
also be used where REM cannot be —on a program line to add
comments after another BASIC statement, for example. The
exclamation point does not have to be followed by a space.

REM This is a comment
I This is a comment also
a=3 !Use ! but not REM here

ENDING THINGS NEATLY
= END, END PROGRAM, END MAIN

The END statement is used to mark the end of a BASIC program.
If END is not included, a program will stop executing when it
runs out of instructions. This does not usually cause any difficulty,
but it is still a good idea to use END in every program to mark the
point where execution stops.

END PROGRAM and END MAIN are alternate ways of writing
the END statement. END does not have to appear on the last line
of a program. If it is executed earlier in the program, execution
stops instantly. This feature is sometimes used to end a program
early.

END ! Ends the program
END PROGRAM !Alsoends it
END MAIN ! Another way to end it

EXAMPLE PROGRAMS

Your Macintosh BASIC vocabulary now includes commands that
allow you to write programs that get data from the keyboard, use
formulas to make calculations from that data, and display the

31

32 Using Macintosh BASIC

answers on the screen. An example of the type of program that you
can write (shown in Figure 3-2) converts a distance from kilome-
ters to miles.

The first line is a remark that describes what the program does.
It is ignored during program execution. The INPUT statement in
the second line prints the prompt string ‘‘Kilometers:”’ and then
waits for you to enter a number to store in the variable named
kilometers. The LET statement in the third line divides the
number in kilometers by 0.62 and stores the result in a new vari-
able, miles. The formula to the right of the exclamation point is
the programmer’s note and will not be executed. The first PRINT
statement skips a line, and the next PRINT statement displays the
answer in the output window along with the appropriate mea-
surement units. The END PROGRAM statement concludes the
program.

The example program in Figure 3-3 calculates gasoline mileage.
After the initial remark statement that tells you what the program
does, this program prints a title in the output window and then
skips a line to separate the title from the questions that will be
asked next. Two INPUT statements ask you to enter the present
and past mileage readings from the car’s odometer. The program
skips another line and then requests the number of gallons of gas-
oline to fill the tank.

The next line contains an implied LET statement. The paren-
theses around the expression ‘“now—then” force the subtraction to
be performed before the division. Finally, the program skips a line

| Convert kilometers to miles

INPUT “Kilometers: “; kilometers

LET miles = kilometers 7 0.62 ! 1 kilometer= 0.62 miles
PRINT

PRINT kilometers; " kilometers = “; miles; * miles.”
END PROGRAM

Figure 3-2. Convert kilometers to miles

Statements and Operators

I Calculate gasoline mileage

PRINT “GASOLINE MILEAGE CALCULATOR™

PRINT

INPUT "What is your odometer mileage right now? “; now
INPUT "What was it last time you bought gasoline? “; then
PRINT

INPUT "How many gallons did it take to fill your tank? “; gas
mileage = (now - then) / gas

PRINT

PRINT "“Your car traveled "; mileage; " miles per gallon.”
END PROGRAM

Figure 3-3. Calculate gasoline mileage

and displays the answer in a clear manner that includes the units of
measurement.

Notice that only one of the eleven lines in this program actually
performed a calculation. The other ten lines helped to make the
program easily understandable and to request and display informa-
tion in a clear and friendly manner. This ratio is not unusual.
Your programs should communicate with people in clear language
instead of computer jargon. This may result in programs that are
slightly longer, but they will be useful to a much larger group of
people.

33

34

Using Macintosh BASIC

PRACTICE EXERCISES

1. Which of the following will be accepted by Macintosh BASIC
as names for numeric variables? for string variables?

a
b
C.
d.
e
.
g.

. Total sales
. answer$

streetNumber
White-Cell.Count

. bachelor#1

The.total.amount.of.money.I.made.last.year
4teen

2. What value is stored in each of these variables?

a.
b.
C.
d.

amount = 3 + 3 * 2
size=6—3"2+7
number =2 /(3 — 1) * 8
rate =3 % (2+ 1)~ 2

3. Write a program that asks you for your name and then greets
you by name.

4. Write a program that converts meters to inches (hint: each
meter contains 39.37 inches). Don’t forget to have the pro-
gram ask you for the number of meters to convert and display
the results.

Chapler 4

Editing Programs

This chapter describes the techniques used to enter and edit pro-
grams in Macintosh BASIC. If you have experience with MacWrite
or another Macintosh word processing program, the text selection
and editing techniques will be familiar. You could, if you wished,
type your program into a word processing program and then let
Macintosh BASIC read the program from the text file created by
the word processor. However, Macintosh BASIC provides a full set
of text-editing commands, including global search and replace, so
typing your program directly into a Macintosh BASIC text win-
dow is the best and simplest way to enter it.

SELECTING TEXT WITH THE MOUSE

When you open a new listing window, the insertion point is
located in the first character position. The insertion point is

35

36 Using Macintosh BASIC

€ File Edit Search Fonts Program

{EC]=—— Text of Untitled
This is what an insertion pdint looks like.

Figure 4-1. Insertion point in text

marked by a blinking vertical line. Figure 4-1 shows an insertion
point between the “o” and ‘1’ in the word “point.” Any text that
you type at the keyboard or transfer with the Paste command will
be inserted into your program at the insertion point.

To select a portion of a program line, or to select several lines,
move the mouse until the cursor is at either the beginning or the
end of the area you want to select. Then press and hold the mouse
button down while you move the cursor to the opposite end of the
area you want to select (this is called dragging). As you move the
mouse, the selected area is displayed as white letters on a black
background. Release the mouse button to mark the end of your
selection. Figure 4-2 shows a program line in which the word
“example” has been selected.

You can select parts of your program that extend beyond the
edge of the window, as long as you can see the beginning of the
area you want to select. When you drag the cursor slightly outside
the edge of the text window, the text will automatically scroll.

The SHIFT-click technique is an excellent way to select a large
block of your program. To select text with SHIFT-click, set the

Editing Programs

® File Edit Search Fonts Program

Figure 4-2. Selected text

insertion point at one end of the area you want to select. Then you
can scroll the window to position the cursor at the other end of the
block. Hold the SHIFT key down while you click the mouse button,
and you will select the portion of your program between the inser-
tion point and the cursor.

Two additional shortcuts can help select parts of your program
text. To select a single word, you can place the cursor anywhere on
that word and double-click the mouse button. This is usually faster
than dragging the cursor over the word. To select the entire pro-
gram in the active listing window, you can use the Select All
command on the Edit menu.

Once you have selected part of your program, you can delete or
copy it. Selected text can be deleted by typing on the keyboard or
by selecting the Cut, Paste, or Clear command from the Edit menu.
You can copy the selected block with the Copy command. Because
selected text can be easily deleted, it is not wise to leave important
portions of your program selected for any length of time. Deselect
text by clicking the mouse button in the text window to reposition
the insertion point.

37

38 Using Macintosh BASIC

ENTERING AND DELETING TEXT

The simplest way to enter text is to start typing. If part of your
program is selected when you begin to type, that part will be
replaced. Any characters that you type with the COMMAND key held
down are interpreted by BASIC as commands and are not inserted
into your text.

Every time you press the RETURN key during text entry, Macin-
tosh BASIC inspects the line you have just entered for any errors. If
you want this error checking to be postponed until after you have
entered all of your program text, you can select Turn Checking Off
from the Program menu. Error checking also occurs when you
paste material into your program from the Clipboard.

The most common way to delete program text you have selected
is to press the BACKSPACE key located in the upper-right corner of
the keyboard. The CLEAR key on the optional numeric keypad also
deletes selected text. If you want to replace the selected text with
new text, you do not have to delete it first. It is deleted automati-
cally as soon as you type the first character of the replacement text.
Several of the edit commands introduced in the next section — Cut,
Paste, and Clear —also delete text that has been selected.

THE EDITING COMMANDS

Figure 4-3 shows the Edit menu. When a command appears in
gray type instead of black, it is disabled and cannot be used at that
particular time. Many of the edit commands can be issued from the
keyboard as well as from the menu. The COMMAND-key codes are
listed to the right of the command names in the menu.

Cut

Cut moves the selected text from the program to the Clipboard.
The insertion point remains at the location where the selected text
was removed. The previous contents of the Clipboard are com-
pletely replaced. If no text is selected, Cut empties the Clipboard.
COMMAND-X is the keyboard command for Cut.

Cut is used most often to move a block of text from one place to

Editing Programs

& File Search Fonts Program
Undo %2
Cut %H
Copy %C
Paste %V
Clear

Select Al %A
Show Clipboard
Copg Picture

Figure 4-3. The Edit menu

another. First you cut the text from its old location; then you paste
it into its new location. The Clipboard is merely the place that
holds the text on its way to the new location.

Copy

Copy moves a copy of the selected text to the Clipboard. The
selected text completely replaces the previous contents of the Clip-
board. If no text is selected, Copy empties the Clipboard. Copy
does not change the text in the listing window. The keyboard
command for Copy is COMMAND-C.

Like Cut, Copy is used with Paste to move information to a new
location. However, Copy does not delete the text from its original
location.

Paste

Paste replaces the selected text with the contents of the Clipboard.
If no text was selected, Paste inserts the contents of the Clipboard
at the insertion point. COMMAND-V is the keyboard command for
Paste.

39

40

Using Macintosh BASIC

There must be some text on the Clipboard, or the Paste com-
mand will have no effect. The most common ways to transfer text
to the Clipboard are by using the Cut or Copy commands. Text
can also be transferred to the Clipboard by another application
program. Paste works only with text in Macintosh BASIC and does
nothing if the Clipboard contains a picture.

Clear

Clear removes the selected text from the listing window. The Clear
command has no effect on the Clipboard. Selecting the Clear
command is the same as pressing the BACKSPACE key (or the CLEAR
key on the numeric keypad) while text is selected.

Select All

Select All selects your entire program. Once the program is
selected, you can copy it to the Clipboard or delete it with Cut or
Clear. The keyboard abbreviation for Select All is COMMAND-A.

Undo

Undo restores both the text in the active listing window and the
Clipboard to the status they had just before you executed the last
edit command. Insertion points and selected text are also restored.
Undo works after typing or after selecting the Cut, Copy, Paste,
Clear, or Replace commands. However, Undo does not have the
ability to reverse the effects of Replace All.

Events in another window may prevent the use of Undo. Typing
or editing commands in another window can affect the command
to be undone in the original window and may also change the
contents of the Clipboard. The best rule is to use Undo imme-
diately after the event you want to undo, without any intervening
actions.

If you choose Undo twice in a row, the second Undo command
reverses the effects of the first. This leaves your program and the
Clipboard as they were before you used Undo. The keyboard com-
mand for Undo is COMMAND-Z.

Editing Programs

Show Clipboard

The Show Clipboard command changes to suit the situation. If the
Clipboard is not visible, the Show Clipboard command appears in
the Edit menu. If the Clipboard is showing, the command becomes
Hide Clipboard. When Show Clipboard is selected, Macintosh
BASIC opens the Clipboard window in the lower-left corner of the
screen. Hide Clipboard has the same effect as clicking on the Clip-
board to make it the active window and then closing it by clicking
on the close box or selecting Close from the File menu. The advan-
tage of Hide Clipboard is that you do not have to make the Clip-
board window active before you close it.

Copy Picture

Copy Picture makes a copy of the graphics portion of the currently
active window and puts the copy on the Clipboard. Any text in the
window that was printed with the PRINT command will not be
copied onto the Clipboard. Even when the Clipboard contains a
picture, the Clipboard window on the screen will display its
contents —you will see the picture itself. Once a picture has been
copied onto the Clipboard, it can be pasted into the Scrapbook
desk accessory or into any Macintosh application that accepts
pictures.

USING THE SEARCH MENU

Figure 4-4 shows the Search menu. The commands on this menu
give you the ability to find a specified string and to replace it. The
string can be a variable name, a label, a marker you left for some
special reason, or any other arbitrary set of characters.

What to Find

The What to Find dialog box, shown in Figure 4-5, allows you to
specify the parameters to be used by the Find, Replace, and
Replace All commands. This dialog box appears whenever you
select What to Find or whenever you invoke a command from the

41

42 Using Macintosh BASIC

& File Edit

Fonts Program
Find 38F
Replace 3R
Replace All

What to Find 38

Figure 4-4. The Search menu

Search menu for which the parameters have not yet been set. Once
the parameters have been set, they remain set until you change
them, even if you begin editing a different program.

You enter the string you want to find on the top line. On the
second line you enter the replacement string. The TAB key moves
the cursor between the search and replace fields. You can enter as
long a string as you wish on either line. To delete a previous entry,
select it with the mouse and then press BACKSPACE or type a new
string. You do not need to specify the Replace With string unless
you will be using the Replace or Replace All command.

The most common search is for a whole word, such as a variable
name or label. For this reason, you will usually set the Separate
Words option. The search string “dim” will not be found in
“dimple” if Separate Words is set, but it will be found if Include

LI R { T Type what you want to search for here...

Replace with |Type what you want to replace it with herel

@ Separate Words @ Ignore Case
| O Include Embedded Words (O Match Case

Figure 4-5. The What to Find dialog box

Editing Programs

Embedded Words is set. To change the setting, just click on the
circle next to the option you want.

You can require the case of the search string as well as the letters
to be matched by clicking on Match Case. When Match Case is
selected, the search routine looking for the string ‘“Print” treats
“PRINT” as a different string and does not stop. When Ignore
Case is selected, the search routine treats the two as equal. The
search parameters are normally set to ignore the difference between
upper- and lowercase when determining whether a match has been
found.

You should usually use Ignore Case because Macintosh BASIC
ignores the case of the letters in BASIC commands, variable names,
labels, and comments. The only time case really matters to BASIC
is when the text is a string inside quotation marks.

Clicking on the OK button records the selections you have made
and executes the Find or Replace command if it was previously
selected. Pressing the RETURN key has the same effect as clicking
the OK button. Clicking on the Cancel button cancels any changes
you have just made and restores the parameters to the settings they
had when the box first appeared. If the box appeared as the result
of a Find, Replace, or Replace All command, clicking on the Can-
cel button cancels that command as well.

Find

Find allows you to locate a program line or string of characters in
a program. Find starts at the current insertion point in the text and
stops when it finds the string for which it is searching. Find leaves
the text of the target string selected and highlighted. You can spec-
ify the string to search for (the target string) in two ways: by select-
ing a string in the text before you invoke Find or by typing the
string in the What to Find dialog box. If any text is selected, the
Search menu contains the Find Selection command as shown in
Figure 4-6. Find Selection locates the next match for the selected
text string.

You can invoke Find from the keyboard by typing COMMAND-F.
Repeatedly typing COMMAND-F is a quick way to flip through the
text to check every reference to a specified string.

One very practical way to use the search capability is to develop
your own system of markers for special locations in your programs.

43

44 Using Macintosh BASIC

€ File Edit BLEIgdM Fonts Program

i Text of | Find Selection 8F
do Replace Selection 3R
forf=1to Replace All
paint re|_WhattoFind &
invert oval i,30;i+120,
next i

fori=>500to 1 step -1
paint oval i,40;i+100,1
invert rect i,40;i+100,

next i

loop

Figure 4-6. Search menu with text selected

Markers, for instance, can be used to mark program locations that
need more work or that need to be rechecked later. With the excla-
mation point, you can leave a comment containing your marker on
any program line. The marker can be your initials or any other
combination of characters that is unlikely to be used for another
purpose. Instead of keeping notes on separate pieces of paper or
waiting for the Note Pad desk accessory, you can leave your notes
in the program itself. Then, when you think the program is com-
plete, you can search for your marker to find any notes about
things you may have forgotten.

Replace

The Replace command replaces the target string with the replace-
ment string that was set with the What to Find command. If any
text is selected when you choose Replace, the selected text will be
replaced. If no text is selected, Replace uses the target string from
the What to Find dialog box.

Editing Programs

Like Find, Replace starts at the insertion point in the text and
stops after it finds the target string. You can reverse the effect of the
Replace command with Undo as long as you use Undo right away.
The keyboard sequence for Replace is COMMAND-R.

Replace All

Replace All searches the program in the active listing window and
replaces every occurrence of the target string. Both the target string
and the replacement string for Replace All must be set in the What
to Find dialog box. The Replace All command presents that dialog
box if either the search string or the replacement string has not
been specified.

There is no automatic way to undo a Replace All operation. The
Undo editing command does not work with Replace All. The only
way to put the text into its previous form is to find the places that
may need to be changed and examine them one by one. Because of
this, Replace All should be used very carefully, especially if you
have set the Include Embedded Words option. For safety’s sake, it is
a good idea to make an extra copy of your program before you start
to use Replace All.

ERROR CHECKING

Because the largest number of errors involve mistyping or simple
mistakes in the syntax for a single command, BASIC can detect
most errors by examining a single program line as soon as it has
been entered. Other errors, such as those involving the flow of
program execution, cannot be detected until the program is run.
Most error messages occur when you are entering program lines.

Turning Checking On and Off

Usually you want to be notified of an error as soon as it occurs so
that you can correct the error while the line is still fresh in your
mind. However, sometimes error checking after each line becomes
bothersome, as it might to a touch typist with a long program to
enter. In such situations, line-by-line error checking can be turned

45

46 Using Macintosh BASIC

€ File Edit Search Fonts JEGLIE A
{E0J= Text of Untitled =— Run
Run Another
il wH
Go %6

IF=N

Save Binary
Check Syntax 38U
Turn Checking Off

Debug
Stan RN
frave RN
Bioek Trace wn |
Shaw Hartabies

Figure 4-7. Turning checking off

off by choosing Turn Checking Off from the Program menu, as
shown in Figure 4-7. Once Turn Checking Off is selected, the entry
on the menu changes to Turn Checking On to allow you to turn
the line-by-line checking back on.

Selecting Turn Checking Off does not prevent the error checking
from occurring; rather, the checking is deferred until you run the
program. The ability to switch line-by-line error checking off and
on allows you to shape the BASIC environment to match your own
programming style.

Correcting Errors

Figure 4-8 shows an error message box. Most of the Macintosh
BASIC error messages are reasonably clear and easy to understand.

Once an error message box appears, you have only two choices.
You can choose OK, or you can choose Cancel. As is the case with
most Macintosh dialog boxes, pressing the RETURN key on the
keyboard has the same effectas clicking on the OK button. The

Editing Programs 47

& File Edit Search Fonts Program
Text of Untitled

This is an error.
|E Can't recognize statement

«-» This is an error.

Figure 4-8. A typical error message box

Cancel button stops line-by-line error-checking of the text you just
entered.

When you click the OK button, BASIC returns you to the win-
dow into which you were entering text, and the line that contained
the error is selected, as shown in Figure 4-9. If you want to retype
the entire line, just start typing — your first keypress will delete the
selected text. If you want to edit the line, position the cursor and
click to position the insertion point.

Using Check Syntax

The Check Syntax cominand on the Program menu performs any
deferred error checking and allows you to update a running pro-
gram. Check Syntax does not change the Turn Checking On/Turn
Checking Off setting. You can use Check Syntax as often as you
want to receive your delayed error messages without changing the
program entry environment. The keyboard sequence for Check
Syntax is COMMAND-U.

48 Using Macintosh BASIC

& File Edit Search Fonts P

Text of Untitle
S @n error

Figure 4-9. Text selected after error message

Updating a Running Program

Macintosh BASIC allows you to edit a program while it is run-
ning. This capability is especially valuable when programming
graphics or sound routines. You can write a program, watch it run,
and keep making changes until the program produces the graphics
or sounds that you want.

When editing a program while it is running, you need to
remember that there are two versions of your program in the
machine: one is the program source listing you see in the text
window, the other is the compiled version of your program main-
tained by Macintosh BASIC. The compiled version is the one that
is executed when you run the program.

Once you make editing changes to the source program in the
text window, you need to use Check Syntax to tell BASIC to update
the compiled version. The update process will incorporate your
changes into the running program, and you can watch your
changes take effect in the output window.

Editing Programs

PROGRAM EDITING SHORTCUTS

If you need to refer to one part of your program while you are
writing another part, you could scroll to the place you need to
check and then scroll back to the place where you are working. A
faster way is to keep a second copy of your program in another
window. Figure 4-10 shows the screen arranged with three copies
of the same program.

The safe way to work with more than one copy of the same
program is to have only the version of the program that you are
modifying in a listing window that bears the program’s name. All
of the remaining copies should be in untitled windows so that you
can easily tell which copy of the program you are changing. This
way, when you finish, you will have only one copy of the program
to save.

To make more than one copy of the same program, first load the
program. Then choose Select All from the Edit menu followed by
Copy. This places a copy of your entire program on the Clipboard

€ File Edit Search Fonts Program
{E0J= Text of Figure 1-1

Text of Untitled

|

do do
fori=1to 500 fori=1to 500
paint rect i,30;i+120,1 paint rect i,30;i+120,150
invert oval i,30;i+120, invert oval i,30;i+120,150
next i next i
fori=500to 1 step -1
paint oval i,40;i+100,1 Text of Untitled
invert rect i,40;i+100, next i
next i
loop fori=500to 1 step -1
I paint oval i,40;i+100,140
invert rect i,40;i+100,140
next i
1
(=]

Figure 4-10. Several copies of the same program

49

50 Using Macintosh BASIC

® File Edit Search Fonts P

Text of Figure 3-2
g Text of Figure 3-3
IN'I E0= T1ent of Figure 1-1
Ehip [do
'F,' P fori= 1 to 500
2 IN paint rect i,30;i+120,1
IN invert oval i,30;i+120,
P next i
IN
m fori=>500to 1 step -1
P paint oval i,40;i+100,1
P invert rect i,40;i+100,
Ef next i
loop

Figure 4-11. Several programs opened from the Finder

Click the mouse button once in the text window to deselect your
program. Now use the New command from the File menu to make
an untitled window. Choose Paste from the Edit menu to transfer
the copy to the untitled window.

If there are other programs you want to refer to or copy from
during your program editing session, you can select the appropri-
ate program icons in the Finder and double-click on one of them
to enter Macintosh BASIC. All of the programs you selected will be
opened at once and displayed in text windows, ready for you to
begin editing, as shown in Figure 4-11. You can move the windows
around to arrange them while you are editing.

If you save more than one version of a program, be sure you
label them. Put the version number or the date and time (or all
three) in a comment near the beginning of the program’s text. In
addition, it is a good idea to use the version or date as part of the
file name so you can immediately identify the most recent version
without having to open up all the files.

Editing Programs

PRACTICE EXERCISES

. Open a new listing window and type in the Macintosh sam-
ple graphics program from Chapter 1. If you had error check-
ing turned off while you typed, check for syntax errors. Save
the text of the program on disk.

. Open MacWrite and type a Macintosh BASIC program.
When you are finished, select the Save As command from
MacWrite’s File menu, and click on the Text Only option in
the dialog box. After you have saved the program, quit Mac-
Write. Now click on the program’s icon to select it; then hold
down the SHIFT key and click on the Macintosh BASIC icon.
With the two icons selected, double-click on the Macintosh
BASIC icon to load the program into a text window. Fix any
errors BASIC identifies while reading and compiling the
program. Which way of entering programs do you prefer?

. Type a program in a listing window and experiment with the
editing commands. Select Show Clipboard so you can watch
what each command does to the contents of the Clipboard.
Try Undo after each editing command to observe its effect.

. Open the sample graphics program. Open a new, untitled
window and copy the program into the new window. Close
the original window. With the program in the untitled win-
dow, experiment with Search, Replace, and Replace All. Try
these commands with and without the Include Embedded
Words and Match Case options. When you are finished exper-
imenting, do not save the untitled program unless you give it
a name different from the original program.

. Open the sample graphics program from exercise 1, and
make a copy of it in a new window. Close the original pro-
gram’s window, and use the copy for the rest of this exercise.
Run the copy. Use the editing techniques in this chapter to
change the numbers in the running program. When you are
finished experimenting, do not save the untitled program
unless you give it a name different from the original program.

51

Chapler 5

Making Decisions

Statements:
m GOTO, IF/THEN/ELSE/ENDIF
m SELECT/CASE/CASE ELSE/END SELECT

Operators:
m =, # >, <, = <, AND, OR, NOT

A program is much more useful when it is able to react in different
ways to different situations. The commands explained in this
chapter allow a program to test whether a predefined condition is
met and to execute a different sequence of instructions for each
different condition. This is the foundation on which all interactive
programs are based.

LABELS AND BRANCHING
s GOTO

The order in which the instructions in a computer program are
executed is called the flow of control. The flow of control normally

53

54 Using Macintosh BASIC

starts with the first line of a program and proceeds from one line
to the next until an END statement is encountered or there are no
more lines in the program.

The GOTO statement changes the flow of control every time it
is executed by branching, or transferring control, to the line desig-
nated in the GOTO statement. The line to which a GOTO state-
ment transfers control must start with either a label or a line
number. Here are some examples of lines starting with labels and
line numbers:

90 a=3 | 90 is a line number

Newline: a=4 ! Newline is a label

880 PRINT "This line has a l1ine number”
L33: PRINT "“This line has the label ‘L33""

In the following program,

Do.it: PRINT "l love apple pie.”
0070 Do.it

the GOTO statement transfers program execution to the line
labeled ““Do.it”, which prints “I love apple pie.” and then executes
the GOTO statement again. This is called an infinite loop,
because it will continue for an infinite amount of time if left alone.
The program cannot get out of the loop by itself. The loop will
end only if you stop the program by closing the output window or
choosing the Halt command from the Program menu.

You can use either line numbers or labels, and you can mix the
two in the same program. A line number or label must be the first
thing (except for spaces) on a new line. Failure to follow these
rules is likely to result in an error message when the line contain-
ing the incorrect line number or label is entered.

Here is a summary of the requirements for labels. A label must
start with a letter and may contain letters, digits, and some special
characters. The characters that cannot be used in a label are the
same as the characters that cannot be used in a variable name.
They are listed in Table 3-1. A label must be followed by a colon.

Making Decisions

Rules for Labels

Must be the first thing on a line

* Must start with a letter

* May not contain spaces or other special characters
* Must be followed by a colon (:)

A line number may contain only the digits zero through nine
and must be followed by a space. Macintosh BASIC treats line
numbers as specialized labels and does not require numbered lines
to be in numerical order. Thus, you can move lines from one pro-
gram to another or to a new location within the same program
without having to change the sequence of line numbers.

Rules for Line Numbers

» Must be the first thing on a new line

+ May contain only the digits 0 through 9

» Must be followed by a space

+ Lines do not need to be in numerical order

A program that contains too many GOTO statements can be
very hard to read and understand. In addition, erroneous use of
GOTO statements can result in infinite loops and other problems
that are hard to find and correct. You need to understand the
GOTO command, but you should avoid using it if at all possible.
Macintosh BASIC provides all the additional control structures
you will need to write your programs without using GOTO. Some
of these control structures are described in the next chapter.

MAKING COMPARISONS

The commands discussed in the remainder of this chapter are con-
ditional branches —that is, they-change the normal flow of control

55

56 Using Macintosh BASIC

only if a specified condition is met. The ability to test whether or
not a condition is satisfied is what makes it possible for a program
to make decisions. Conditions to be tested are specified with rela-
tional and logical operators.

Relational Operators
. :7 ¢’ >’ <’ Z} S

Relational operators test the relationship between two numbers,
strings, or other expressions. Table 5-1 lists all of the relational
operators. These include the familiar concepts of equality and
inequality and greater than or less than. You can also use the com-
binations greater than or equal to and less than or equal to.

The Macintosh keyboard can generate the one-character symbols
for the operators ‘“not equal to,” “‘greater than or equal to,” and
“less than or equal to.”” These characters are produced by holding
down one of the two OPTION keys while pressing the equal,
comma, or period keys. Table 5-2 summarizes the special key-
strokes for these three characters. As shown in Table 5-1, the “not
equal to” operator can also be represented by combining the
greater than and less than symbols in either order. Similarly, the
compound operators ‘‘greater than or equal to’’ and “less than or
equal to” can be represented by combining the operators for the
two parts, again in either order.

When an expression containing relational operators is evaluated,

Table 5-1. Relational Operators

Symbol Meaning

Equal to

Not equal to

Greater than

Less than

=, = Greater than or equal to
=, =< Less than or equal to

NIV AV R
A
Y
v
A

AV

Making Decisions

Table 5-2. Keystrokes for Special Characters

Character Keystroke Meaning
#* OPTION = Not equal to
= OPTION , Less than or equal to
= OPTION . Greater than or equal to

the result is either true or false. The expression 4>3 evaluates as
true because 4 is greater than 3, and the expression 4=3 evaluates
as false because 4 is not equal to 3. The expression a=5 is true
only when variable a is set to the value 5; it is false for any other
value of a.

Relational operators can also be used to compare strings. Each
character in a string is represented inside the computer by a code
between 0 and 255. Appendix C contains a complete listing of
these codes. Two strings can be compared by looking at them one
character at a time and comparing the codes for each character. If
the first parts of two strings are equal, but one string has more
characters, the shorter string is determined to be less than the
longer string. Thus, the expression “BERT”<“BERTRAM” is
true because, while the first four characters are identical, the short-
er string runs out of characters.

You should exercise caution when comparing or sorting strings
that contain numbers. A string comparison will find that “33” <“9”
is true, because the first character (3) of the first string is less than
the first character (9) of the second string. If you need to compare
numbers that are contained in strings, you should either check the
lengths of the strings first or convert the strings to numbers, as
will be described in Chapter 7.

Logical Operators
s AND, OR, NOT

Expressions that have a value of either true or false, like relational
expressions, are called logical expressions. The simple logical

57

58 Using Macintosh BASIC

Table 5-3. Logical Operators and Their Effects

Operator Operation Result
NOT NOT TRUE FALSE
NOT FALSE TRUE

AND TRUE AND TRUE TRUE
TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

OR TRUE OR TRUE TRUE
TRUE OR FALSE TRUE

FALSE OR TRUE TRUE

FALSE OR FALSE FALSE

expressions can be combined into more complex expressions by
use of special words called logical operators. There are only three
of these in Macintosh BASIC: AND, OR, and NOT. The results
of their use with the different possible combinations of logical
values are summarized in Table 5-3.

The use of AND and OR in BASIC follows the rules of Boolean
algebra. The logical operator AND returns a value of true only if
both expressions are true. The logical operator OR returns a value
of true if either of the expressions is true. The NOT operator
changes true to false and false to true. If used twice, the NOT
operator leaves a variable in its original state.

Order of Precedence

The three logical operators can be combined with relational and
arithmetic expressions to make very complex logical expressions.
Just as with the arithmetic operators, rules of precedence determine
the order in which operations are performed when evaluating a
complex expression. Table 5-4 lists the arithmetic, relational, and
logical operators in a descending order of precedence.

The operations at the top of Table 5-4 are performed before

Making Decisions

Table 5-4. Order of Precedence

Operator Operation
A Exponentiation
+ — NOT Unary operators
* / DIV MOD Multiplication, division, modulo
+ — Addition, subtraction
=#F><==< Relational operators
AND Logical AND
OR Logical OR

operations farther down the table. Operations on the same line of
the table are performed in the order they occur in the expression
being evaluated. Parentheses may be used to override the normal
order of precedence for relational and logical operators, just as
with the arithmetic operators.

If no parentheses are present, the first operation performed is
exponentiation. After exponentiation come the unary operators,
which operate on only one expression. The plus and minus signs
do double duty: they are unary operators in expressions with only
one number, like —4 and (+5), and they are arithmetic operators
in expressions with two numbers, like 3—4 and 3+5. When all
the unary operations are completed, the multiplications and div-
isions are performed followed by additions and subtractions. Eva-
luation of the expression then continues with the relational oper-
ators, followed by the logical ANDs, and finally the logical ORs.

Parentheses and extra white space can often make long expres-
sions more understandable. For example, the expression a <= 3
OR a > 9 AND b =5 OR b = 10 is much easier to read when you
write it as (a <= 3) OR (a > 9 AND b = 5) OR (b=10).

ACTING ON COMPARISONS
= IF/THEN

If the expression following the keyword IF is true, the statement
following the keyword THEN is executed. If the expression is

59

60

Using Macintosh BASIC

false, the statement immediately following the keyword THEN is
not executed, and execution continues at the beginning of the next
program statement. For example,

IF interest.rate > .10 THEN PRINT "Too high!”

does not print anything if the variable interest.rate is less than 0.10
and prints “Too high!” if interest.rate is greater than or equal to
0.10.

Note that if the IF test is false and more than one statement is on
the same line, Macintosh BASIC skips only the first statement after
the keyword THEN. Execution of the line

IFa=3THEND =4 PRINT b

will always print the value of b in Macintosh BASIC, no matter
whether a is 3 or not. The simplest way to avoid any confusion is
to put only one statement on each program line.

PUTTING TWO ACTIONS IN ONE STATEMENT
m |[F/THEN/ELSE

In some situations, your program needs to take one action if a test
is true and another action if the test is false. This kind of situation
is best handled with an IF/THEN/ELSE statement. The statement
following the keyword ELSE is executed only when the IF test is
false.

If the variables coin and heads contain equal values when the
statement

IF coin = heads THEN PRINT "Heads!” ELSE PRINT "Tails!”

is executed, the program prints “Heads!”’ and does not execute the
statement after the keyword ELSE. If coin and heads are not equal,
the program skips the statement after THEN and prints “Tails!”.
This statement is shorter and simpler than the two-statement
sequence

IF coin = heads THEN PRINT "Heads!"
IF coin <> heads THEN PRINT "Tails!"

and the result is exactly the same.

Making Decisions

Note that there can be no colons, commas, or other punctuation
separating the parts of a simple IF/THEN/ELSE statement. Only
one statement can appear between the keywords THEN and ELSE,
and only one statement can appear after the keyword ELSE.

MULTIPLE-LINE TESTS
® IF/THEN/ELSE/ENDIF

The simple IF/THEN/ELSE statement is useful, but its limit of
only one statement after each THEN and ELSE is very restrictive.
The multiple-line IF/THEN/ELSE/ENDIF statement removes
this restriction. The keywords IF, THEN, and ELSE are the same
as before. The difference here is that the THEN and ELSE phrases
can contain many statements.

The example from the previous section looks like this when it is
rewritten in the form of a multiple-line statement:

IF coin = heads THEN
'PRINT “Heads!"
EL3E
PRINT “Tails!"
ENDIF

The indication that this is a multiple-line IF statement is that
nothing appears after the word THEN on the first line. If the test
is true, Macintosh BASIC executes statements starting with the
next line until it encounters either an ELSE or an ENDIF key-
word. Any statements between ELSE and ENDIF are not executed.
If the test is false, Macintosh BASIC skips all the statements
between THEN and ELSE and executes any statements located
between ELSE and ENDIF.

Figure 5-1 shows a two-dimensional diagram of the flow of pro-
gram control during execution of a multiple-line IF statement.
Such diagrams, called flowcharts, are often drawn as part of the
written documentation for large programs. Figure 5-1 is two-
dimensional,but a program listing has only one dimension, run-
ning from top to bottom. For this reason, programmers commonly
use indentation to make the different portions of the multiple-line
IF statement easy to identify. This is a good practice to follow in
your programs. It becomes even more essential when your program
contains a series of consecutive IF statements.

61

62 Using Macintosh BASIC

(FALSE)

w L J
THEN ELSE
statements statements

v v

v
N

Figure 5-1. Flowchart of an IF statement

NESTING TESTS

IF statements can be nested, one inside another, as long as you
follow the syntax rules. However, it is often very difficult to read a
series of nested IF statements on a single line, particularly if any of
the IF statements contain ELSE clauses. Nested IF statements
should usually be written as multiple-line statements to improve
readability. You must make sure the ELSE and ENDIF keywords
match the correct IF statements. The statement

IF a=b THEN IF c=d THEN IF d=a THEN x=1 ELSE x=2 ELSE x=3

is much clearer when it is written as

IFa=bTHEN
IFc=dTHEN
IFd=aTHEN
Xx=1
ELSE

Making Decisions

x=2
ENDIF
ELSEx=3
ENDIF
ENDIF

Nested IF statements are often a desirable substitute for com-
pound tests. Any time you have a compound test connected by the
AND operator, you can replace it with nested IF statements —
particularly when the second half of the test will produce nonsense
or an error condition if the first half of the test is false. For exam-
ple, the statement

IFa<>0OANDb/a=6 THENd=cC

tests whether two things are both true. If a is zero, the first test is
false, and the compound test will always be false. In this situation
it is unnecessary to have the computer spend time performing the
second test. The second test involves a division by zero, an error
condition that is handled gracefully by Macintosh BASIC (it
returns the value infinity).

Using nested IF statements, the previous example can be rewrit-
ten as either :

IFa<>OTHENIFb/a=6 THENd=c
or

IF a ¢©> 0 THEN
IF b/a=6 THENd=c
ENDIF

MULTIPLE TESTS IN A SINGLE COMMAND
m SELECT/CASE/CASE ELSE/END SELECT

The IF/THEN/ELSE construct is really designed to handle situa-
tions with only one or two choices. Now we come to a statement
that can handle multiple choices. In Figure 5-1 the flowchart
shows that an IF/THEN/ELSE statement allows two alternate
pathways from Lhe beginning to the end of the structure. The

63

64 Using Macintosh BASIC

SELECT/CASE statement offers multiple pathways. Here is what a
simple SELECT/CASE statement looks like:

! Days in a month
SELECT month
CASE 1,3,5,7,8,10,12
days = 31
CASE 2: days = 28
CASE 4,6,9, 11
days = 30
CASE » 12
PRINT “"You're kidding!”
CASE ELSE
END SELECT

The first line of each SELECT/CASE statement contains the
keyword SELECT followed by the expression that is to be evalu-
ated to determine which path will be taken. The expression can be
a single variable name or any legal BASIC expression. The
optional word CASE may be added between SELECT and the
expression, if you wish.

Each pathway begins with the CASE keyword followed by a de-
scription of the cases for which that pathway is to be taken. The
descriptions can include actual values, called constants or literal
values, but they must not use any variables or require any calcula-
tions during program execution. Each description can take the
form of a single literal value, a range of values with the low and
high values separated by the keyword TO, a range of values de-
scribed by a relational operator followed by a literal value, or any
combination of these with the individual items separated by
commas. You can use the optional word IS in front of a relational
operator if you wish. The following example uses all of the types
of case descriptions:

SELECT w*8
CASE < 0: x=1
CAJSE 13 < 5: x=2
CASE 6: x=3
CASE 7T0 12: x=4
CASE 13,1570 18,>20: x=5
CASE 14,19: x=6
END SELECT

Making Decisions

When a SELECT statement is executed, BASIC evaluates the
expression alter the word SELECT and then starts looking for a
CASE statement that matches the value of the expression. When it
finds the first matching CASE description, BASIC begins executing
the instructions after that CASE statement. The instructions may
begin on the next line after the CASE statement or on the same
line if the colon is used at the end of the description to separate the
two statements. You can use several statements for each case, as in
the multiple-line IF statement, or you can leave a case empty by
following it immediately with another CASE description.

Once a CASE description has been matched, execution of the
statements associated with that description continues until another
CASE statement or an END SELECT statement is reached. At that
time, execution branches to the next statement after END SELECT.
It i1s important to remember that the SELECT/CASE statement
takes one —and only one —of the multiple paths. Even if there is a
second CASE description that matches the SELECT expression,
the statements associated with that second CASE description will
not be executed.

CASE ELSE is an optional case description that can be included
to trap all cases that are not matched by previous CASE descrip-
tions. When it is used, CASE ELSE should always appear as the
last CASE description because no descriptions after CASE ELSE
will ever be reached during program execution. When a SELECT/
CASE structure is executed, Macintosh BASIC displays an error
message if the SELECT expression is not matched by any of the
CASE descriptions. You can prevent this error message from occur-
ring by using CASE ELSE to handle erroneous values.

EXAMPLE PROGRAM

The program in Figure 5-2 calculates the amount of paint you
need to paint interior rooms. It calculates and prints the amount of
paint required for each room and then prints the total amount of
paint required at the end. The number of square feet of coverage
per gallon, which is set in the third line of the program, can vary
depending on the type of paint and the surface to be painted. An
estimate of this number is usually printed on the paint can.

65

66 Using Macintosh BASIC

, syof Paint
‘ PRINT "Paint Estimator”
LET sqft.per.gallon = 400

totel.walls = O | Two variables for running totals
total.oeﬂmgs 0

Next mom

~ PRINT "Plesse give room dlmensmns in feet
 PRINT “or type O to quit:”
PRINT ;
INPUT “Length of room: *: length
IF length = 0 THEN 6070 Finish:
__INPUT "Width of room: *; width.
o _ INPUT "Height of room "+ height
l Do Calculations .
. wallarea=2 * length * height + 2 * mdtn * height
ceiling.area = length * width
wall.paint = wall.area / sqft.per.galion
ceiling.paint = ceiling.area / sqft.per.gallon
room.paint = wall.paint + ceiling.paint
total.walls = total.walls + wall.paint
~ total. ceilings = tota! ceilings + ceiling. pamt
| stplay Answers
- PRINT
PRINT “Walls require “; wall.paint; " gallons of paint.”
PRINT "Ceiling requires "; ceiling.paint; " gallons of paint.”
PRINT "Total for this room is “; room.paint; " gallons.”
G0TO Next.room

Fim‘°h
 PRINT :
 PRINT "Total wallpamt, *; total.walls; " gallons.”

~ PRINT "Total ceiling paint, "; total.ceilings; " gallons.”

PRINT “Orand total, ”; total.walls+total.ceilings; ” gallons.”
END PROGRAM.

Figure 5-2. Gallons of paint

Making Decisions

The first line of the program is a comment that contains a brief
description of the program. The second line prints the title ‘“Paint
Estimator” at the top of the output window. Then a LET state-
ment sets the variable sqft.per.gallon to a value of 400. The fourth
and fifth lines set variables to zero to start the running totals.

The portion of the program labeled Next.room is indented
slightly to set it apart from the rest of the program. This routine
prints a blank line followed by the prompt to use feet as the units
for the room dimensions and then another blank line. Finally, this
routine requests and waits for you to enter values for the length,
width, and height of the room.

As soon as the length has been entered, an IF statement tests
whether its value is zero; if so, program execution branches to the
line labeled Finish to print the totals.

The next five lines contain implied LET statements. They calcu-
late the wall and ceiling area, the amount of paint required for the
walls and ceiling, and the total amount of paint required to paint
the room. The next two lines update the running totals. After
printing a blank line to separate the answers from the input state-
ments, the program prints the amount of paint needed to cover the
walls, ceiling, and the whole room. The GOTO statement then
branches back to the label Next.room. The Finish section of the
program prints the running totals and ends the program.

67

68 Using Macintosh BASIC

PRACTICE EXERCISES

1. Does the following program print anything?

a 60T0c
b: 60T0 e
c: GOTO b
PRINT "Hello"

2. Evaluate the following expression to see whether v~ is true or
false:

Vi=4%2550R3"2+3<7ANDNOT (3=7/2)

3. This one-line IF statement is hard to read. Try rewriting it as
a multiple-line IF statement:

IF a=6 THEN IF b=g THEN x=8 ELSE x=5 ELSE x=1

4. Rewrite the following series of IF statements as a SELECT
CASE statement:

b= 10

IFi=1THENb=3
IFi=2THEND=5
IFi<OTHENDbL=0
IFi=40Ri=6THENb=7

Chapler 6

Organizing Your Program

Statements:

s DO/EXIT DO/LOOP

s FOR/TO/STEP/EXIT FOR/NEXT
s GOSUB/RETURN

This chapter introduces loops and subroutines —methods of making
your program take repetitive actions. Loops are a series of program
statements that are repeatedly executed. Subroutines are groups of
program statements you can execute from any location in your
program. When a subroutine finishes executing, it returns control
to the place from which your program called the subroutine.

USING LOOPS

Every loop has a definite beginning and a definite end. When a
loop is encountered in a program, BASIC repeatedly executes the

69

70 Using Macintosh BASIC

statements between the loop’s beginning and end until an exit
condition is met. When the program does exit from a loop, execu-
tion continues with the statement immediately following the end
of the loop.

While the GOTO statement from the previous chapter can be
used to make loops, the DO/LOOP and FOR/NEXT statements
described in this chapter are much more efficient. The statements
inside a DO loop are executed until a condition forces an exit from
the loop. The statements inside a FOR/NEXT loop are executed
for the number of times you specify when you define the loop.

Continuous Loops
s DO/EXIT DO/LOOP

The DO/LOOP structure is the primary way to create an infinite
loop in Macintosh BASIC. The program statements between DO
and LOOP are executed repeatedly. The program segment

DO
PRINT "This is a loop.”
LOOP

is a complete DO/LOOP structure. The PRINT statement is exe-
cuted repeatedly until you stop the program by closing the pro-
gram’s output window, selecting Halt from the Program menu, or
selecting Quit from the File menu. (Quit will, of course, exit from
Macintosh BASIC in addition to halting all programs.) The state-
ment that initiates a continuous loop is simply DO. The statement
that marks the end of the loop is LOOP.

The EXIT DO statement ends the DO loop by transferring con-
trol to the program statement after LOOP. EXIT DO is usually
used in an IF statement that tests the condition at which you want
to end the loop. Here is the previous loop with an EXIT DO
statement added:

DO
PRINT "This is a loop.”
count = count + 1
IF count = S THEN EXIT DO
LooOP
END PROGRAM

Organizing Your Program

The program prints “This is a loop” five times. The variable
count is increased by one each time the loop is executed. When the
IF statement finds that the count is equal to five, the EXIT DO
statement is executed. The EXIT DO statement transfers control to
the statement after the end of the loop, END PROGRAM.

BASIC allows you to use just EXIT instead of EXIT DO. As you
will see later, however, there are several types of EXIT statements.
To avoid confusion between EXIT DO and the other EXIT state-
ments, you should always use the long version, EXIT DO.

The exit condition can be anything that can be tested in an IF
statement. Often it is some special input, such as a command from
the person using the program. It could just as easily be the result
of a calculation, an interval of time, or some other type of condi-
tion. The following loop works like an adding machine.

sum =0
PRINT "ADD NUMBERS"
DO

INPUT "Next number (O for total): “;a
IF a = O THEN EXIT DO
sum =sum +a

LOOP

PRINT “Total = "; sum

END PROGRAM

This loop adds each typed number to a running total. When you
type zero, the EXIT DO command transfers control to the state-
ment after LOOP, which prints the total.

Now you can modify this short program to make it compute the
average of a series of numbers. Since the average is the sum divided
by the number of addends, this program must keep track of the
number of addends in the sum. The program in Figure 6-1 uses a
variable named 7 to store the number of addends.

Note that in this program, the location of the IF statement con-
taining the EXIT DO is important. The test must be performed
before n is incremented or the calculation of the average will be
wrong. In general, put the exit test at the end of the loop if you
want to execute the other statements in the loop at least once, and
put the exit test first if you do not want to execute the entire loop
at least once.

71

72 Using Macintosh BASIC

RINT "AVERAGE NUMBERS

Figure 6-1. Computing an average

Nesting DO Loops

You can nest DO loops, as long as you remember that DO and
LOOP statements must be paired with each other. You will receive
an error message during program execution if a LOOP statement
is encountered without a preceding DO statement. An error mes-
sage also occurs if a LOOP statement is missing, but a missing
LOOP statement usually causes other noticeable problems.

As with other control structures, indenting lines to mark the
contents of a DO loop helps to make your program easier to read
and understand, particularly if the loops are nested.

Each EXIT statement gets you out of only one DO loop. If you
want to get out of an entire nest of DO loops, you must use a
separate EXIT statement for each loop. The following example
shows the averages program inserted inside a second DO loop:

DO
sum =0
n=0
PRINT "AVERAGE NUMBERS"
DO

Organizing Your Program 73

INPUT “Next number (O for average): “; a
IF a=0 THEN EXIT DO
sum = sum + a
n=n+1
LOoOP
PRINT “Average = ";sum / n
LooP
END PROGRAM

This program keeps computing new averages until you stop the
program. The entire program is one large DO loop. Inside this
loop is the averages program from Figure 6-1. The EXIT DO
statement in the inner DO loop exits from only one DO loop.
When you type zero, the EXIT DO statement transfers control to
the statement that prints the average. Then BASIC executes the last
LOOP statement, causing the entire program to repeat itself. The
program does not contain an EXIT statement for the outer loop,
so the program ends only when you stop it with a menu selection
or by closing its output window.

Loops With Counters
® FOR/TO/STEP/EXIT FOR/NEXT

The FOR/NEXT loop is a very common control structure in
BASIC programs. It is designed for situations in which you know
(or can compute) how many times you want to repeat a block of
program statements. Here is a FOR/NEXT loop that prints ‘“This
is a loop” five times:

FOR count= 1 TOS STEP 1
PRINT "This isaloop.”
NEXT count

The FOR statement specifies the name of a numeric variable
(count in the previous example) that controls the number of times
the loop is executed. This counter is called the loop’s index vari-
able. The FOR statement must also specify the index variable’s
starting value, its ending value, and the amount by which the
index will change each time through the loop. The same variable

74 Using Macintosh BASIC

name must be used in the matching NEXT statement that ends the
loop. The amount by which the index variable will change each
time through the loop is specified after the optional word STEP. If
STEP is not specified, the index variable is incremented by 1 each
time through the loop. Here is a FOR/NEXT loop that prints the
numbers 1 through 10:

FORi=1T010
PRINT i
NEXT 1

In this example, the FOR statement names ¢ as the index vari-
able and specifies the starting value of 7 as 1 and the ending value
as 10. A STEP value of 1 is assumed. The index variable name
must be a numeric variable name. The starting, ending, and step
values, however, can be any legal BASIC numeric expression.
When the FOR statement is encountered, Macintosh BASIC sets
the index variable to the starting value. Then it compares the start-
ing value to the ending value. If the starting value is already past
the ending value (in the direction specified by STEP), control is
immediately transferred to the statement after the end of the loop.
Note that when this happens the statements inside the loop are not
executed.

In the more normal case, the statements inside the loop are exe-
cuted until the NEXT : statement is reached. Then the STEP
amount is added to the value of . The new value of ¢ is compared
to the prescribed ending value to determine whether the statements
inside the loop are to be executed again. This process is repeated
until the value of the index variable has passed the ending value. If
the STEP value is negative, the index variable is decremented
instead of incremented, as in the following example:

FORi=10TOO STEP -1
PRINT i
NEXT i

The index variable of a FOR/NEXT loop is an ordinary vari-
able. It can be used inside the loop just like any other variable.
However, any statement inside the loop that changes the value of
the index variable will interfere with the operation of the loop.

Organizing Your Program 75

Changing the value of the index variable from inside the loop is
very risky and is not recommended as a good programming
practice.

Once in a while you will have a situation in which you will need
to provide for premature exit from a FOR/NEXT loop. The state-
ment EXIT FOR transfers control to the statement just after the
loop’s NEXT statement. EXIT FOR is almost always used in an IF
statement that tests for a condition that is to cause an early exit
from the loop. The EXIT FOR statement in the following exam-
ple is executed when i is equal to 3, transferring control to END
PROGRAM.

j=3

FORi=1T05
IF i=j THEN EXIT FOR
PRINT i

NEXT i

END PROORAM

The EXIT FOR statement is the approved way to leave a FOR/
NEXT loop early. It is much safer than tampering with the index
variable or using a GOTO statement. BASIC allows you to use
EXIT instead of EXIT FOR, but you should always use the full
wording to avoid confusion between EXIT FOR and EXIT DO.

After completion of a FOR/NEXT loop, your program should
not rely upon the index variable to contain any specific value. In
normal operation, the index will be one step past the ending value
after a FOR/NEXT loop. This will not be the case, however, if an
EXIT statement caused an early end to the loop or if the distance
between the starting and ending values is not evenly divisible by
the STEP value. The best programming habit is to reset the index
variable to the new value if you want to use it again later in your
program.

Nesting FOR/NEXT Loops

FOR/NEXT loops may be nested. One loop should be entirely
contained in the other, as in this example:

76 Using Macintosh BASIC

FORi=1T03
FORj = 1 TO5
PRINT i *j
NEXT j
NEXT i

Failure to nest the loops properly is likely to lead to an error mes-
sage and will interfere with your program’s operation.

USING SUBROUTINES
8 GOSUB, RETURN

A subroutine is a block of program statements that is set up so that
it can be executed from any point in your program. The way your
program transfers control to the statements in the subroutine is
referred to as calling the subroutine. Subroutines are often used to
perform actions that need to be done several times during a pro-
gram. They are also useful for breaking long programs into
smaller, more manageable blocks of code.

The GOSUB statement calls a subroutine. You follow the com-
mand GOSUB with the name of the subroutine you want to exe-
cute. The name of the subroutine is the label or line number that
marks the beginning of the subroutine in your program.

GOSUB help ! Calls subroutine named ‘help’
G0SUB 99 ! Calls subroutine starting at line number 99

When a GOSUB statement is executed, BASIC records the cur-
rent location in your program and transfers control to the first
statement of the subroutine. Once the statements in the subroutine
are executed, a RETURN statement in the subroutine returns con-
trol to your program. Execution resumes with the statement fol-
lowing the GOSUB statement.

Each subroutine must begin with a label or a line number to
identify it when it is called from other locations in the program.
You are allowed to use line numbers, but labels make a program
easier to follow. “GOSUB Get.input” conveys more meaning than
“GOSUB 90.” Each subroutine must end with a RETURN state-
ment to send control back to the program that called it.

Organizing Your Program

Since subroutines are blocks of code that should be executed only
when called by GOSUB statements, they need to be protected from
inadvertently being executed. One way to provide this protection is
to put all of the subroutines at the end of a program after the END
PROGRAM or END MAIN statement. That practice will be fol-
lowed in the example programs in this book.

Here is an example of a main program and the subroutine it
calls to handle input from the keyboard.

| Main program

FORi=1TO10
GOSUB Get.input
PRINT number

NEXT i

END PROGRAM

| Subroutine

Get.input:
DO
INPUT “Please type 8 number: “; number
IF number > 0 AND number < 101 THEN EXIT DO
PRINT "Sorry, it must be between 1 and 100"
LooP

RETURN

The main program in this example executes a FOR/NEXT loop
that calls the subroutine Get.input. The subroutine gets a typed
number between 1 and 100 and then prints the number. When the
loop has been executed for the tenth time, the loop ends and the
END :PROGRAM statement stops execution. Without the END
PROGRAM statement, the main program would not end and exe-
cution would continue into the subroutine.

The Get.input subroutine contains a DO loop that waits until a
number between 1 and 100 is received. The INPUT statement
receives the typed number, and the IF statement tests to see if the
number is in the required range. If the number is acceptable, the
EXIT DO command transfers control to the RETURN statement,
which ends the subroutine and transfers control back to the
PRINT statement in the main program. If the number is outside
the prescribed range, the subroutine prints an error message and

77

78 Using Macintosh BASIC

the LOOP statement causes the subroutine to be executed again.
This type of DO loop is a good way to check for input errors.

A major benefit of using a subroutine is that the code needs to be
written only once. After the subroutine is written and checked for
proper operation, you can use it over and over again. You can keep
“library” files containing the subroutines you use frequently.
Whenever you need one of these subroutines in a new program,
you can copy it from your library file into the Clipboard and from
the Clipboard into your new program.

Nesting Subroutine Calls

Subroutines can be called from other subroutines in the same way
they are called from main programs. Whenever a GOSUB state-
ment is executed, Macintosh BASIC stores the location of the pro-
gram statement following the GOSUB in a special place called the
stack. The stack is what is called a “last in, first out’’ device. Each
RETURN statement causes control to transfer to the last address
placed in the stack. As long as each subroutine ends properly with
a RETURN statement, control will eventually return to the pro-
gram statement following the first GOSUB.

EXAMPLE PROGRAM

The program in Figure 6-2 uses a subroutine call inside nested
FOR/NEXT loops to generate a multiplication table. The main
program in this example consists of two FOR/NEXT loops. The
outer loop, whose index is 7, counts the rows of the multiplication
table, and the inner loop with j counts the columns. Note that the
inner loop is completed before the end of the outer loop. The END
PROGRAM statement marks the end of the main program. Its
main purpose is to separate the program from the subroutine.
Note that the PRINT statement inside the subroutine ends with
a comma, which causes the next number to be printed on the same

Organizing Your Program 79

| Make multiplication table
FORi=1T05
FORj=1T05
G0SUB Print.cell
NEXT j
PRINT
NEXT i
END PROGRAM
Print.cell:
PRINT i *j,
RETURN

Figure 6-2. Multiplication table

line at the next tab stop. The PRINT statement after NEXT j
issues a carriage return, which causes the next entry to be printed
at the beginning of the next row.

80 Using Macintosh BASIC

PRACTICE EXERCISES

1. When will the word “Hello” be printed in the following
program?

DO
INPUT “Enter a number: “;a
IFa> 1 ANDa<S THEN EXIT DO
LooP
PRINT “Hello"
END PROGRAM

2. How many times will the statements inside the following
loop be executed?

FOR i=0TO0 100 STEP 10
a=j
k=47
~ PRINT i
NEXT i

3. Write a loop that prints all the odd numbers from 3 to 37.

4. Write a program that prints ‘“This is a test.”’ ten times. Use a
subroutine to do the actual printing.

Chapler 7

Using Functions

Functions:

m ABS, SGN, SIGNNUM, COPYSIGN

INT, TRUNC, RINT, ERR

SQR, PI, SIN, COS, TAN, ATN

LOG, EXP, LOGP1, EXPM1

LOG2, EXP2, LOGB, SCALB

RELATION, COMPOUND, ANNUITY
TICKCOUNT, RND, RANDOMIZE, RANDOMX

A function is like a simple subroutine that returns a single result.
All of the information needed to calculate the result is passed to the
function as arguments, that is, values that appear in parentheses
after the function’s name. An argument can be any legal BASIC
expression; however, the number and type (number or string) of
arguments passed in a function call must match the number and
type specified in the function’s definition, or an error message will

81

82 Using Macintosh BASIC

occur. Most functions require one or two arguments; some require
no arguments at all.

Functions are very powerful parts of the BASIC language
because you can use function calls as you use variables. In fact, you
can even include a function call in the argument of another func-
tion call.

Macintosh BASIC provides a large selection of predefined func-
tions. Many of them are described in this chapter. In addition to
using the predefined functions, you can expand the language by
defining your own functions. That is described in Chapter 11.

MANIPULATING THE SIGN OF A NUMBER

Macintosh BASIC has four functions that help you manipulate the
sign of a number. These functions determine the absolute value of
a number, record its sign, and copy a sign from one number to
another.

Absolute Value
m ABS

The absolute value of a number is the number with no sign. The
ABS function takes one numeric argument and returns the abso-
lute value of that number. The result of the ABS function is always
a positive number. Here are some examples of the ABS function:

vy =ABS(-3) {Puts +3iny

i =ABS(3*4-14) |Puts+2inj
e=ABS(4) 'Puts+4ine
s=ABS(0) !PutsOins

Checking the Sign
® SGN, SIGNNUM

The SGN and SIGNNUM functions help you use the sign of a
number in a formula. Each function requires one numeric argu-

Using Functions

ment. The SGN function returns +1 if the sign of the argument is
positive, —1 if the sign of the argument is negative, and 0 if the
value of the argument is zero. Here are some examples of the SGN
function:

a=86N(99) |Puts+1ina
PRINT SBN(-30) !Prints-1
b=S8OBN(0) !PutsOinb

The SIGNNUM function returns +1 if the sign of the argument
is negative and 0 if the sign of the argument is positive or the value
of the argument is zero.

a = SIBNNUM(99) | PutsOina
PRINT SIBNNUM(-30) !Prints +1
b = SIGNNUM(0) !PutsOinb

The SGN function accepts a logical expression as well as a
number for its argument. SGN returns +1 if the logical expression
is true and 0 if the logical expression is false. The SIGNNUM
function does not accept logical expressions.

a=SON(TRUE) !Puts+1ina
b =SON(FALSE) !PutsOinb
c=S80N(4>3) 'Puts+1inc

Copying the Sign
= COPYSIGN

The COPYSIGN function copies the sign of one numeric expres-
sion to a second numeric expression. COPYSIGN takes two argu-
ments. The sign of the first argument is copied to the value in the
second argument. COPYSIGN returns the value of the second
argument with its new sign.

a=COPYSIBN(1,-9) |Puts+9ina
b =COPYSION(-1,-9) !Puts-9inb
¢ = COPYSION(0,-9) 'Puts+9inc
d = COPYSION(-3,9) !Puts-9ind

83

84 Using Macintosh BASIC

ROUNDING AND TRUNCATING FRACTIONS
= INT, TRUNC, RINT

Macintosh BASIC provides three functions that convert fractional
numbers into whole numbers. The integer function, INT, returns
the next integer lower than its argument if the argument contains
a fractional part. The truncate function, TRUNGC, returns the inte-
ger portion of the argument. The rounded integer function, RINT,
rounds its argument to an integer.

The INT and TRUNC functions provide the same results when
the arguments are positive numbers. However, when the argument
is a negative number and contains a fractional part, the INT func-
tion returns the next integer lower than the argument, while the
TRUNC function returns the next integer higher than the argu-
ment. These examples illustrate the difference:

a=INT(55.8) 1Puts 55 ina
b = TRUNC(55.8) !'PutsS55inb
c=INT(-55.8) !Puts-56inc
d = TRUNC(-55.8) ! Puts -55 ind

The RINT function returns the value of its argument rounded
to an integer. Unless you change the rounding direction with the
SET ROUND statement described in Chapter 9, RINT follows
normal rounding rules and rounds the value of its argument to the
nearest integer. When the value is exactly halfway between two
integers, RINT rounds to the even integer.

a=RINT(55.8) |Puts 56 ina
c=RINT(-55.8) !Puts-56inc
e = RINT(55.3) 1Puts55ine
f=RINT(-55.3) IPuts-55inf
g = RINT(55.5) 1Puts 56 ing
h=RINT(-55.5) !Puts-56inh

IDENTIFYING ERRORS
= ERR

Macintosh BASIC also has several functions that require no argu-
ments. Instead of acting on data, these functions report on some

Using Functions

aspect of the system’s operation. Functions like these are called sys-
tem functions.

The ERR function is a system function that returns the coded
number of the most recent error that has been encountered in the
program. If no error has been encountered since you first started
the program running, ERR will return zero. Identifying errors
enables you to take special actions, such as giving more detailed
instructions. A list of error codes and their causes is included in
Appendix B.

IF ERR = 182 THEN

PRINT “Expected a Number"

PRINT "Please type only numbers, not letters”
ENDIF

USING THE MATHEMATICAL FUNCTIONS

The mathematical functions in BASIC include square root; sine,
cosine, and other trigonometric functions; and functions for
handling logarithms and exponentials in complex formulas. In
addition to the standard functions, Macintosh BASIC provides
functions to manipulate powers of 2 and several unusual functions
for logarithmic and exponential applications.

Squaré Root
= SQR

To obtain the square of a number, you multiply the number by
itself. The square root function, SQR, works in just the opposite
direction. It returns the number that when multiplied by itself
results in the argument. For example, the square root of 9 is 3, and
the square root of 16 is 4. If the argument of the SQR function is
negative, the square root is not a real number. In this case the
function returns the value NAN, which stands for Not A Number.

a=SQR(4) IPuts 2ina

b = SQR(2) Puts 1.414inb
c =SQR(9%9) !Puts9inc
d=SQR(-100)! Puts 'NAN' ind

85

86 Using Macintosh BASIC

PI
m Pl

The constant pi (8.14159) is used in several common mathematical
formulas, including the formulas for the area and circumference of
a circle. Pi is usually represented by the Greek letter 7 in mathe-
matical formulas. In Macintosh BASIC, PI is a system function
that requires no arguments. Since the PI function always returns
the same value, you can use it as if it were a constant. If you wish,
you can use the Greek letter (OPTION-p or OPTION-SHIFT-P)
instead of the word PI.

area = Pl * radius "~ 2

circumference = 2 * P * diameter

area =1 * radius~ 2 ! m iSOPTION-p

area =T * radius *~ 2 ! T i3 OPTION-SHIFT-P

Trigonometric Functions
= SIN, COS, TAN, ATN

Macintosh BASIC provides the sine, cosine, tangent, and arctan-
gent trigonometric functions. The single numeric argument for
the sine (SIN), cosine (COS), and tangent (TAN) functions is an
angle, expressed in radians. Most people are used to working with
angles in degrees instead of radians, so it will be necessary for your
program to convert an angle from degrees to radians before using
these functions. The formula for converting from degrees to radi-
ans is

radians = (P1/180) * degrees

The arctangent function (ATN), sometimes called the inverse tan-
gent, takes the tangent of an angle as its argument and returns the
size of the angle in radians. Here are some examples of the trigo-
nometric functions: '

degrees = 60

radians = (Pl / 180) * degrees ! 1.047 radians
a = SIN (radians) !Puts 866 ina

b = COS (radians) !Puts.5inb

c = TAN (radians) !Puts 1.732inc
d=ATN(1.732) 1Puts 1.047 ind

Using Functions

Logarithmic Calculations
m LOG, EXP,-LOGP1, EXPM1

In addition to the standard natural logarithm (LOG) and exponen-
tial (EXP) functions, Macintosh BASIC provides the logarithm of
the argument plus one (LOGPI) and exponential minus one
(EXPM1) functions. Natural logarithms and exponentials are to
the base e, where e equals 2.718281828. If the LOG or LOGPI
function is used to take the logarithm of a negative number, the
function will return NAN (Not A Number). LOGPI(x) and
EXPMI1(y) return more accurate results than LOG(x+1) and
EXP(y)—1, respectively, when the values of x and EXP(y) are close
to zero.

a=L0B(37) |!Puts3.61ina
b=LOOP1(36)! Puts3.61inb
c=EXP(3.61) 1Puts37inc

d=EXPM1(3.61) {Puts36ind

Powers of Two
m LOG2, EXP2, LOGB, SCALB

The LOG2 function returns the base 2 logarithm of its argument.
The base 2 logarithm is the power to which the number 2 should
be raised to produce a result equal to the argument. The EXP2
function returns the value 2 raised to the power specified in the
function’s argument. Both functions require a numeric expression
as an argument.

a=L0082(8) !Puts3ina
b=EXP2(3) !Puts8inb

The LOGB function returns the exponent of the largest power
of 2 that does not exceed the magnitude of its argument. The
argument must be a numeric expression. The SCALB function
requires two arguments, an integer expression and a numeric
expression. SCALB returns the value of the second argument (the
numeric expression) multiplied by 2 to the power of the first
argument (the integer expression). Here are some examples:

a=L08B(9) !Puts3ina
b =SCALB(3,7) !Puts56inb

87

88 Using Macintosh BASIC

Table 7-1. Results of the RELATION Function

Ordering Relation Value Constant
argl > arg2 0 GREATERTHAN
argl < arg2 1 LESSTHAN
argl = arg2 2 EQUALTO
argl and/or arg2 = NAN 3 UNORDERED

USING ORDERING RELATIONS IN CALCULATIONS
= RELATION

The RELATION function provides a way to let your program take
multiple branches depending on whether one number is greater
than, less than, or equal to a second number. The function takes
two arguments, both of which are numeric expressions. RELA-
TION returns an integer that corresponds to the ordering relation-
ship between the two arguments, as shown in Table 7-1.

If the value of the first argument is greater than the value of the
second argument, RELATION returns the number 0. If the first
dtgument is less than the second argument, RELATION returns
the number 1. The function returns the number 2 if the two argu-
ments are equal in value. RELATION returns the number 3 if one
or both of the arguments has the value NAN (NAN usually results
from trying an impossible operation such as taking the square root
of a negative number).

BASIC recognizes the names in the rightmost column of Table
7-1 as constants. You can use the names instead of the numbers
that RELATION returns to make your program more understand-
able. Here are some examples using RELATION:

a = RELATION(4,5) |Puts 1 ina
SELECT CASE RELATION(a,b)
CASE LES3THAN: PRINT “Less"
CASE OREATERTHAN: PRINT "Greater"
CASE EQUALTO: PRINT “They're equal”
END SELECT

Using Functions

MAKING FINANCIAL CALCULATIONS

Macintosh BASIC has two functions that handle financial calcula-
tions relating to compound interest, annuities, and loans. These
functions allow you to make common financial calculations by
simply using the function name followed by a list of arguments in
parentheses.

Compound Interest
s COMPOUND

The COMPOUND function calculates compound interest. The
function takes two numeric arguments. The first argument is the
interest rate for each time period, and the second argument is the
number of time periods over which interest is to be compounded.

The interest rate should be expressed as a fraction. If the rate is
11%, for instance, it should appear as 0.11 in the function’s first
argument. The result of the COMPOUND function can be multi-
plied by the principal to calculate the total value of the principal
and compound interest at the end of the stated number of periods.
Here are sample calls to COMPOUND:

value = 2000 * COMPOUND (.11,3) ! Puts 2735.26 in value
value = 2000 * COMPOUND (.11/12,3%12) 1 Puts 2777.76 in value

In the first example, COMPOUND calculates the value of three
years of compound interest at an 11% annual interest rate. The
value of the hypothetical investment of $2000 for three years at this
rate is calculated as $2755.26 at the end of the three years. The
second example uses the same dollar amount and annual interest
rate, but the interest rate and the number of periods are modified to
calculate the interest compounded monthly. With monthly com-
pounding, the original investment is worth $2777.76 at the end of
three years. How much more would it be worth if the interest were
compounded daily?

Loans and Annuities

= ANNUITY

The ANNUITY function can be used to calculate annuities, loans,
and mortgage payments. This function also takes two arguments,

89

90 Using Macintosh BASIC

| Calculate loan payment

INPUT “Amount of loan: $“; amount
INPUT “Number of years for loan: “; years
INPUT "Annual interest rate: “; int.rate

IF int.rete >1 THEN int.rate -"n} rate /100
payment = amount / ANNUITY (int.rete /12, years*12)
payment = RINT (100%payment) / 100 ! round off
PRINT “Monthly puyment is $"; payment

Figure 7-1. Calculate loan payment

the interest rate for each period and the number of periods.
ANNUITY returns a number that, when divided into the amount
of a loan or the capital amount of an annuity, gives the size of each
payment. You can use it to calculate payments on a home mort-
gage or car loan that uses the normal compound interest rate for-
mula. The program in Figure 7-1 uses the ANNUITY function to
calculate monthly payments on a loan.

WATCHING TIME
m TICKCOUNT

The TICKCOUNT function is used to measure small time inter-
vals. It is a system function and requires no argument. The TICK-
COUNT function returns a positive number. TICKCOUNT starts
at zero when you switch on the Macintosh or use the programmer’s
switch to restart it. The value of TICKCOUNT increases by one
every 1/60 of a second.

When you use TICKCOUNT, you need to remember that it is
constantly changing at a rate of 60 times per second. This means
that two successive references to TICKCOUNT, even in the same
program statement, may return different answers. If you need to
use the result of TICKCOUNT in several places, store it in a vari-
able instead of calling TICKCOUNT more than once.

Using Functions

! Time something
time1 = TICKCOUNT

! Here | put whatever |'m timing.
time2 = TICKCOUNT
seconds.elapsed = (time2 - timel) / 60
PRINT seconds.elapsed

GENERATING RANDOM NUMBERS
= RND, RANDOMIZE, RANDOMX

Random numbers can be used to create simulated data sets for
complicated computer simulations or just to inject an element of
chance into an activity like dealing a deck of cards. BASIC provides
ways to generate both repeatable and non-repeatable sets of random
numbers.

The RND function accepts one optional numeric argument. If
you use it without an argument, RND returns a random number
between 0 and 1. If you provide the optional argument, RND
returns a random number between zero and that argument. The
number RND returns will always have the same sign as the argu-
ment. If the argument is zero, RND returns zero. The number
RND returns is a real number. If you want an integer, you will
have to round it or truncate it.

Like almost all computerized random number generators, the
RND function returns numbers that are not entirely random. They
are random in the sense that any number in the requested range
has an equal probability of occurring if enough random numbers
are generated. However, the random numbers are calculated from a
starting number, which is always the same every time a BASIC
program starts to execute. This means that the same series of ran-
dom numbers will be generated each time you run your program.

The RANDOMIZE statement calculates a new starting number
for RND from the value of TICKCOUNT. Since the value of
TICKCOUNT changes sixty times a second, you are not likely to
see the same series of random numbers very frequently after using
RANDOMIZE. If you do not want your program to generate the
same series of random numbers each time it runs, you should use
the RANDOMIZE statement to pick a random starting point.

91

92 Using Macintosh BASIC

RANDOMIZE | sets random seed

a=RND (9) ! number between O and 9
a=RND(9) + 1 ! number between 1 and 10
a=INT(RND(9)) + 1 | integer between 1 and 10
a=RND | number betwesn 0 and 1

a= RND (-4) ! number between -4 and O

The RANDOMX function is another random number generator.
RANDOMX generates random integers ranging from 1 to 2% —2.
RANDOMX requires one argument, which must be the name of a
numeric variable (the variable must be double-precision, extended,
or computational, as described in Chapter 9). The RANDOMX
function puts its result in the numeric variable in addition to
returning the result in the normal way.

X=9
a = RANDOMX(x) ! Puts new value in both a and x

EXAMPLE PROGRAM

The example program in Figure 7-2 uses random numbers as the
basis of a simple guessing game. Your object in playing the game
is to guess the random number from 1 to 10 that the program has
generated. Each game consists of 25 guesses.

This program starts with a RANDOMIZE statement to initialize
the random number generator. The rest of the program is a single
DO loop that keeps playing new games until you stop the program
by closing its output window or selecting the Halt or Quit com-
mand from the menu. After printing a blank line and setting the
score to zero, a FOR/NEXT loop runs the game for 25 guesses.

The call to the RND function gets a number between 0 and 10.
The INT function turns that number into an integer, and 1 is
added to it. Note that one function call can be used as the argu-
ment for another. This property of functions allows efficient and
concise program coding.

At this point in the program there is a very slight chance that
the number might be 11. This happens only if the number
returned by the RND function is exactly 10. The DO loop causes
the number to be recalculated if it is in fact 11.

Using Functions

! Random Number euewng eame '

0 lstartgmnewrthnom
=1T025 l25playspergame

INPUT 'Type numher from 1 to 10: *; guess
| AN <= 10 THEN EXIT Do

PRINT “Sdrry, my number was ; number

Figure 7-2. Random Number Guessing Game

The second DO loop receives the input from the keyboard and
repeats the request for a guess if the number typed is not within
the required range. A mult-line IF/THEN/ELSE statement is
then used to test whether the answer is right or wrong and gives
the appropriate response.

93

94 Using Macintosh BASIC

PRACTICE EXERCISES

1. What is the value of each of these expressions?
a. ABS(3—8)
b. SGN(—9) * ABS(—12)
2. What is the value of each of these expressions?
INT(3.7)
TRUNC(3.7)
RINT(3.7)
INT(—3.7)
TRUNC(—3.7)
f. RINT(—3.7)
3. Assume you want to borrow $5000 for 4 years. Can you write
a program to print a table of your monthly payments at var-

ious interest rates? Print the values for interest rates from 9%
to 12%, using increments of one half of a percent.

oo oo

4. To get the performance you need from a program, it is some-
times desirable to have the program wait for a specified time
before taking the next action. Can you write a loop that waits
exactly one and a half seconds?

5. Write a subroutine that returns a random integer between — 5
and —10.

Chapler 8
Manipulating Strings and Text

Commands:

s LINE INPUT

= OPTION COLLATE STANDARD,
OPTION COLLATE NATIVE

Operator:
&

Functions:

m LEN, LEFTS, RIGHTS, MID$
m VAL, STRS, ASC, CHRsS

s KBD, INI§§Y$, DATES, TIMES
s UPSHIFT$, DOWNSHIFTS

String variables can contain any sequence of characters. They most
often contain letters, words, sentences, or other pieces of text. This
chapter introduces commands and functions that allow your pro-
gram to manipulate strings and the text they contain.

95

96 Using Macintosh BASIC

WORKING WITH STRINGS

Much of the work that you will be doing with strings will involve
locating and replacing certain portions of a string. To allow you to
accomplish this easily, Macintosh BASIC contains three functions
(LEFTS$, MID$, RIGHTS$). You can use them to extract portions of
a string as well as to locate and replace a particular sequence of
characters within a string.

The ability to find the length of a string and an gperator to
allow you to add (concatenate) one string to the end of another are
also essential in allowing you to easily manipulate text stored in
strings.

Checking the Length of a String
s LEN

The length of a string is the number of characters it contains,
whether those characters are visible or not when printed. LEN is a
numeric function that returns the length of its string argument.
The LEN function is often used to calculate arguments for other
string-related functions. A string that contains no characters is
called an empty string or a null string. Since a null string contains
no characters, its length is zero.

Igth = LEN (‘test string’) 1 Puts 11 inigth
lgth = LEN ("Rah! Rah!") 1 Puts 9 in Igth

-1gth = LEN('32.9") 1 Puts 4 in Igth
a$ = "testing’
Igth = LEN (a$) 1 Puts 7 in Igth

Selecting Part of a String
m LEFTS, RIGHTS, MID$

The three functions LEFT$, RIGHTS$, and MID$ return part of a
string. LEFT$ and RIGHT$ each require two arguments. The first
argument is the string from which the part is to be taken, and the
second argument is the number of characters to be taken. LEFT$
returns the number of characters specified from the left end of the

Manipulating Strings and Text

string, and RIGHT$ returns the number of characters specified
from the right end of the string.

b$ = LEFT$ (‘test string’, 3) | Puts 'tes' in b$
b$ = RIGHT$ ('test string’, 3) 1 Puts ing’ in b$
a$ ='32.9'

b$ = LEFTS (a$, LEN(a$)-1) | Puts'32.' inb$
b$ = RIGHTS (af, LEN(a$)-1) Puts’'2.9'inb$

The MID$ function returns any part of a string and can accept
either two or three arguments. The first argument is the string
. from which the part is to be taken. The second argument specifies
the character position from which the return string will be taken.
The third argument, which is optional, is the number of characters
to be taken. If you do not include the third argument, the MID$
function returns all the characters from the position specified by
the second argument to the end of the string.

a$ = MID$('test’',2,1) | Puts ‘e’ ina$
a$ = MID$('test',2,2) ! Puts'es ina$
a$ = MID$('test',2) ! Puts'est' ina$

The LEFTS$, RIGHTS$, and MID$ functions expect their numeric
arguments to be integers. Any fractional number passed as an
argument is rounded to an integer. If the number of characters to
be taken exceeds the number of characters available in the string
argument, these functions return the remaining characters without
adding any extra blanks. If the number of characters to be taken is
zero, the null string will be returned. If the starting position you
give to the MD$ function is 0 or a negative number, it starts with
the first character instead.

Finding One String Inside Another

Often you need to know whether or not one string contains a spe-
cific character or another string. This example shows how to use
the MID$ function to locate a decimal point:

a$=""

b$ = “This isa test.”
PRINT b$

FOR i=1TOLEN(bS)

97

98 Using Macintosh BASIC

IF MID$(b$,i,1) = a$ THEN
PRINT ™"; a$; ™ found at position *; i
ENDIF
NEXT i

The FOR/NEXT loop points the index variable ¢ successively at
each character of 4§, the string being searched, from the first char-
acter to the last. The IF statement inside the loop takes the single
character from string 5§ that is pointed to by the index variable
and compares it to a period, the character being sought. If you
were looking for a string longer than one character, you would
replace the third MID$ parameter of 1 with the length of the string
you were seeking.

Here is an example of a more general string search that will
search for a string of any length:

a$ = ‘find'
b$ = 'Will it find the string?"
PRINT b$

FORi=1TOLEN(b$)+1-LEN(a$)
IF MID$(b$, i, LEN(a$)) = a$ THEN
PRINT ""; a$; ™ found at position ;i
ENDIF
NEXT i

This example differs in two important ways from the previous
example. First, the third argument of the MID$ function is now set
at the length of string a$. The part of string b§ being compared to
a$ must equal the length of af§, or no match will be found. Second,
the end of the FOR/NEXT loop is set at LEN(b$)+1—LEN(a$).
The loop could go all the way to LEN(b$), but no match for af
could possibly be found at the end of that loop because the strings
being extracted by the MID$ function would all be shorter than a$.

Adding One String to Another
&

The operator that adds one string to the end of another is called
the concatenation operator. Its symbol in Macintosh BASIC is the
ampersand. The string following the concatenation operator is

Manipulating Strings and Text

added to the end of the string before the concatenation operator.
Thus, if a§ contains the value “‘concat’”’ and b§ contains the value
“enation,” the statement

c$ =a$ & b$

puts the string “concatenation” in c§.

Replacing Part of a String

Sometimes finding one string inside another is not enough. Once
you have found a string, you may need to replace it. To replace a
substring, you need to handle three different pieces of the string:
the beginning, the substring being replaced, and the end. This
example replaces the word “‘true” with the word “fair’:

a$ = 'This is a true test.’

PRINT a$

a$ = LEFT$(a$,10) & 'fair' & RIOGHT$(a$,6)
PRINT a$

The LEFT$ function returns the first 10 characters, and the
RIGHTS$ function returns the last 6 characters. Both of these func-
tions work on the original contents of a§ because the implied LET
statement evaluates the entire expression on the right of the equal
sign before storing the result in a§.

This example demonstrates a more general way to replace a por-
tion of a string: '

a$ = 'find' !stringto find and replane
c$ ='eat’ | the replacement
b$ = "Will it find the string?"
PRINT b$
FOR i=1TOLEN(b$)+1-LEN(8})
IF MID$(bS, i, LEN(a$)) = a$ THEN
b$ =LEFT$(b$,i-1) & c$ & MID$(bY, i+LEN(a$))
EXIT FOR
ENDIF
NEXT i
PRINT b}

99

100 Using Macintosh BASIC

In this example, the number of characters returned by the LEFT§
function is not specified directly but is calculated as one less than
the position where the first character of the target string was
found. The MID$ function is used instead of the RIGHTS$ func-
tion to get the right end of the original string, because it is simpler
in this case to calculate the starting location of the desired sub-
string than it would be to calculate the number of characters
desired. Only two arguments are passed to the MID$ function, so it
returns everything from its starting position to the end of the
string. The EXIT FOR statement stops execution of the FOR/
NEXT loop after the replacement is completed.

CONVERTING BETWEEN STRINGS AND NUMBERS
s VAL, STR$

The VAL function converts a string into a number, and the STR$
function converts a number into a string. VAL stops evaluating the
number contained in its string argument if it encounters a non-
numeric character. If the first character is non-numeric, VAL
returns zero. Here are several examples:

a=VAL ('56.9") |Puts 56.9 ina
a=VAL (‘43 years’) !Puts43ina

b$ = STR$ (21.8) 1 Puts'21.8' inb$
b$ ='34.7

a=VAL (b$) IPuts 34.7 ina

USING ASCII CHARACTERS
m ASC, CHR$

Characters are stored inside the computer using numeric codes
from 0 to 255. The coding system is called the American Standard
Code for Information Interchange, abbreviated ASCII. The ASC
function takes one string argument and returns the ASCII code for
the first character of that argument. If the argument is the empty
or null string, the ASC function returns —1.

The CHR$ function accepts one numeric argument, an ASCII
code from 0 to 255, and returns the corresponding character. If the

Manipulating Strings and Text

numeric argument contains a fraction, it will be rounded to the
nearest integer. If it is less than 0 or greater than 255, an error
message is presented. The CHR$ function is most often used in
programs to introduce a character that cannot be typed from the
keyboard. Here are some examples of ASC and CHR$:

a=ASC('A’) 1Puts65ina
a=ASC("a") 'Puts97ina
a=ASC (‘awesome') !Puts97ina
a=ASC("") IPuts-1ina

a$ = CHRS$ (65) | Puts'A' ina$
a¥ = CHRS (97) !Puis'a’ ina$

Appendix C contains a list of all the ASCII codes and their corres-
ponding characters.

On the Macintosh, each type font includes a separate character
set that can be printed. This makes unusual characters possible. In
fact, each Macintosh font and size prints a different pictorial char-
acter for ASCII value 217 (OPTION-SHIFT-~). The program in Fig-
ure 8-1 prints a reference chart for the type font currently in effect,
so you can identify any unusual or non-standard characters in the
font. Select the font and size you want from the Fonts menu when
the program pauses, and then press RETURN to display the font’s
characters.

Figure 8-1. Print ASCII numbers and characters

101

102 Using Macintosh BASIC

READING KEYBOARD CHARACTERS

Characters that you type at the keyboard can be received by your
program one character at a time using the string function
INKEY$. If you need to know the ASCII value of a typed character,
you can use the KBD function.

You will often need to read an entire line of keyboard input, that
is, a line of characters followed by a carriage return character. In
this case, you can use the LINE INPUT statement. LINE INPUT
allows you to read punctuation marks like the comma and quota-
tion marks, which you would not be able to read with a standard
INPUT statement.

Getting Single Characters
m KBD, INKEY$

The KBD and INKEY$ functions report on keyboard activity in
different ways. KBD returns the ASCII value of the most recently
typed character. INKEYS$ returns the next character typed from the
keyboard. Neither function requires an argument.

The KBD function is initialized to zero when your program first
starts running and thereafter returns the ASCII value of the last
character typed. KBD keeps returning the same value until another
character is typed, no matter how many times the KBD function is
called. The KBD function does not respond to the modifier keys
(COMMAND, OPTION, SHIFT, CAPS LOCK) unless another key is
pressed at the same time. i

. The INKEY$ function returns the next available character from
the keyboard. If no character is available, INKEY$ returns the null
character (‘") instead of waiting. INKEY$ does not print the typed
character. '

INKEY$ actually gets its characters from a temporary storage
area called the keyboard buffer. BASIC maintains the keyboard
buffer to make certain that no characters are lost when you type
very fast. As soon as you press a key on the keyboard, BASIC puts
the corresponding ASCII value into the keyboard buffer. The
buffer stores 29 characters in the order they were typed. When
BASIC needs a character from the keyboard, it takes the character
that was typed first from the keyboard buffer. If you manage to

Manipulating Strings and Text

type fast enough to fill the keyboard buffer, BASIC discards the
first character that was placed in the keyboard buffer to make room
for each new character you type.

When your program calls INKEY$, INKEY$ gets the next char-
acter from the keyboard buffer. If the buffer is empty, INKEY$
returns the null character. You can observe the differences between
KBD and INKEY$ for yourself by running this short program:

DO

PRINT CHRS(KBD), INKEYS
Loop

Getting a Whole Line of Input
m LINE INPUT

The INPUT command described in Chapter 3 places the values
you type at the keyboard into variables whose names are listed in
the INPUT statement. In order to accept several values from one
line of input, the INPUT command interprets commas and quota-
tion marks as delimiters separating one value from another. If you
are typing strings that contain commas or quotation marks, how-
ever, you want BASIC to treat the entire line as a single string
value.

The LINE INPUT command treats everything you type on an
input line as a single value, even if your typing.contains commas
and quotation marks. Each LINE INPUT statement places a value
in only one variable. You can use a prompt string in the LINE
INPUT statement just as you can in an INPUT statement. A
comma after the prompt string moves the insertion point to the
next BASIC tab stop, and a semicolon leaves the insertion point at
the end of your prompt string. The variable used to receive the
input should, of course, be a string variable. The statement

LINE INPUT a$

puts whatever is typed into the variable a$.

You will receive an error message if you type a non-numeric
character when the INPUT statement contains a numeric variable.
Here is an example that uses LINE INPUT instead to check for an

103

104 Using Macintosh BASIC

incorrect character when your program is expecting a number
from the keyboard:

DO

LINE INPUT "Please type a number: “; ad
number = VAL (a$)

IF STR$(number) = a$ THEN EXIT DO
PRINT "Type numeric characters only”
Loop

This block of code uses a LINE INPUT statement to get a typed
line in a$ and then uses the VAL function to convert that string to
a number. The STR$ function converts the number back to a
string and compares that string with the original. If they are equal,
the typed input was a number. If the typed line included any non-
numeric characters, the two strings will not be equal, the loop will
continue, and the program will ask you to retype the number.

UPPER- AND LOWERCASE
s UPSHIFT$, DOWNSHIFT$

The UPSHIFT$ and DOWNSHIFTS$ functions each take one
string argument. UPSHIFT$ returns the argument with every
character in uppercase letters, and DOWNSHIFTS$ returns the
argument with every character in lowercase letters. Here are some
examples:

a$ = UPSHIFTS ('Yes') | Puts 'YES' in a$

a$ = DOWNSHIFTS ('Yes") 1 Puts 'yes' in a$

name$ = 'rICHARD'

a$ = UPSHIFT$(LEFT$(neme$,1)) & DOWNSHIFT$(MID$(name$,2))
| Puts ‘Richard’ in a$

These functions are handy for formatting output from strings.
They also save program code when checking input. The fact that
lowercase and uppercase letters are not equal leads to complica-
tions when strings are being compared. A simple task such as
checking to see whether the word “‘yes” was typed could be very
complicated without these functions, because the program would

Manipulating Strings and Text

have to look for all eight combinations of upper- and lowercase
letters: YES, YEs, YeS, Yes, yES, yEs, yeS, and yes. By using the
UPSHIFT$ or DOWNSHIFTS$ function, you can check all of these
possibilities at once:

IF UPSHIFTS$ (answer$) = 'YES' THEN PRINT “Yes, 0K."

CHANGING THE STRING SORT ORDER
m OPTION COLLATE STANDARD, OPTION COLLATE NATIVE

Macintosh BASIC allows you to change the rules that govern com-
parisons between strings. Standard comparisons between strings
compare the ASCII codes of the characters in the two strings. But
comparing ASCII codes is not very useful when alphabetizing
strings that contain both capital and lowercase letters. The ASCII
codes for all of the capital letters are less than the ASCII codes for
the lowercase letters; thus, in a standard string comparison, “Z” is
less than “a”.

The OPTION COLLATE NATIVE statement tells Macintosh
BASIC to make its string comparisons using normal alphabetical
order. After BASIC executes the OPTION COLLATE NATIVE
statement, it uses alphabetical ordering until you execute an
OPTION COLLATE STANDARD statement.

a~ = "baby" < "Jane" | Puts FALSE ina™
OPTION COLLATE NATIVE

b~ = "baby" < "Jane" ! Puts TRUE in b™
OPTION COLLATE STANDARD

¢~ = "baby" < "Jane" | Puts FALSE inc™

HANDLING THE DATE AND TIME

The Macintosh automatically maintains the date and time of day.
The DATE$ and TIMES$ functions gives Macintosh BASIC pro-
grams access to this information. Neither of these functions uses an
argument, and both return strings. If the date or time returned by
these functions is incorrect, you should use the Alarm Clock or
Control Panel desk accessory to reset it.

105

106 Using Macintosh BASIC

If you are going to manipulate the DATE$ or TIMES strings in
your program, you should store the returned string in a variable of
your own and manipulate that variable instead of repeatedly call-
ing the DATE$ or TIMES$ function during a calculation. This will
avoid the possibility of errors caused by the date or time changing
during the calculation.

Date
m DATES

The DATES function returns a string representing the current date.
The format of the string varies according to the country setting in
the System file on your start-up disk. Table 8-1 shows some of the
formats used to portray the date in different countries.

In the United States, the date takes the form of the month, day,
and last two digits of the year separated by slashes. The month and
day can each contain one or two digits. This variability in length
makes it more difficult to extract the three individual parts of the
date if you need them in your program. Here is one way to extract
them from the DATES string:

| Get month, day, and year

da$ = DATES I copy so it can't change

month = VAL (da$)

year = 1900 + VAL (RIGHT$(da$,2))

dd$ = RIBHT$(da$,5) |dd/yy

IF LEFT$(dd$,1) ='/' THEN dd$ = RIGHT$(dd$,4) !d/yy

day = VAL (dd$)
Table 8-1. Formats for DATE$
Country January 23, 1985
United States 1/23/85
France 23.1.85
Germany 23.1.1985
Great Britain 23/01/1985

Italy 23-01-1985

Manipulating Strings and Text

Time
m TIMES

The TIMES$ function returns a string representing the current
time. The TIMES$ string changes once each second. For measuring
more precisely, use the TICKCOUNT function described in Chap-
ter 7. Like the date, the format of the TIMES$ string also varies
according to the setting in the System file on your start-up disk.
Table 8-2 shows some of the different formats used to portray the
time in different countries.

In the United States, the time takes the format of the hour, min-
ute, and second, separated by colons, and followed by a space and
either AM or PM. The minute and second always contain two dig-
its, but the hour may be either one or two digits. As with the
DATES$ function, this variability in length makes it harder to
extract the three individual parts of the time if you need them in
your program. Here is one way to extract them from the TIME$
string:

| Get hour, minute, and second

ti$ = TIMES ! copy so it can't change

hour = YAL (ti$)

tm$ = RIBHTS (1i$,8) !mm:ss?M

minute = VAL (tm$)

second = VAL (RIGBHT$(tm$, 5))

IF MID$ (tm$, 7, 2) = 'PM" THEN hour = hour + 12

Table 8-2. Formats for TIME$

Country Time
United States 11:27:00 PM
France 23:27.00
Germany 23:27:00 Uhr

Great Britain 23:27:00
Italy 23:27:00

107

108 Using Macintosh BASIC

EXAMPLE PROGRAM

The example in Figure 8-2 is a program for a timer that uses the
TIME$ function to measure any length of time up to 24 hours.

| Timer program -
DO ! main program
" _INPUT a$ ~
IF UPSHIFTS(B$) = "B" THEN @OSUB TStart
IF UPSHIFTS(G” = "E" THEN 60SUB TStop
- LoOP
END PROBRM‘I | protect subroutinas

Tstart: | remember sterting value
t$ =]‘IHES‘ ,
" RETURN
TStop: - I'stop and calculate time elapsed
te$ = TIMES
©0SUB Convert ! convert startmg time to seconds
st1 = timeC
t$ = te$! ready to convert ending time
B0SUB Convert | convert ending time to seconds
IF timeC < st1 THEN timeC = timeC + 24*%60%60
time = timeC - st1 4
hours = INT(time / 3600) ! number of whole hours
~ minutes = INT((time-hours*3600) / 60) ! number of minutes
seconds = time - hours*3600 - minutes®*60
' PRINT "The elapsed time was:"
IF hours > O THEN PRINT hours; " hours”
IF hours+minutes > 0 THEN PRINT minutes; " minutes”
PRINT seconds; * seconds”
RETURN
Convert:
! Get TIMES from t$
| Return number of seconds since midnight in timeC
timeC = 60*60*VAL(t$) ! convert hours
timeC = timeC + 60*VAL(MID$(t$, LEN(t$)-7)) | minutes
timeC = timeC + VAL(MID$(t$, LEN(t$)-4)) | seconds
IF RIBHT$(t$,2) = "PM" THEN timeC = timeC + 12%60%60
RETURN

Figure 8-2. Timer program

Manipulating Strings and Text

The program uses three subroutines: one to start the timer, one to
stop it, and one to convert the time into seconds.

The main timer program consists of a single DO loop that gets
input from the keyboard. If the input is the single letter “b” in
either upper- or lowercase, the program executes a GOSUB to the
TStart subroutine. If the input is either an upper- or lowercase
““e,” the program executes a GOSUB to the TStop subroutine.

All the TStart subroutine does is record the value of TIME$ in
the variable t§ and return. When the TStop subroutine is called to
stop timing, it records the value of TIMES$ in a different variable,
te$, and then uses the subroutine Convert to change the two time
strings into seconds.

Note that the Convert subroutine takes its starting value from ¢§
and returns its result in ¢timeC. The value in timeC after the first
GOSUB Convert had to be saved in another variable, or it would
have been changed during the second execution of the subroutine.
Before the second GOSUB, t§ is set to the new value to be con-
verted. The Convert subroutine uses several of the string functions
to read the components of the time from a TIME$ string. The
result in seconds is placed in timeC.

Once the program has converted the starting and ending times
into numbers, it compares the two numbers, If the ending time is
less than the starting time, the clock must have moved past mid-
night, so 24 hours’ worth of seconds is added to the ending time.
Once the elapsed time is stored in the variable time, the program
uses the INT function to break the time down into hours, minutes,
and seconds. When the results are printed, the IF statements pre-
vent a zero from being printed as the first unit of time.

109

110 Using Macintosh BASIC

PRACTICE EXERCISES

1. What results are returned by the following function calls?
a. LEFT$(‘abcdefg’, 4)

b. RIGHT$(‘yes, there are bananas’, 6)
c. MID$(“public policy”, 8, 3)
d. MID$(‘banana split’, 2)

2. Can you evaluate these expressions?
a. LEFT§(‘Police’,4) & RIGHT$(‘Attics’,4)

b. MID$(‘aspects’,2,5) & MID$(‘trumpets’,2,3)

3. Try writing a loop that uses LINE INPUT to read a typed
number into a string variable, turns the string into an
integer, and checks whether the input contains any extra
characters.

4. Often you want your program to wait until the person using
the program has pressed a key on the keyboard. INKEY$
returns a null string instead of waiting for the keypress if no
key has been pressed. Can you write a subroutine that waits
for a keypress and then returns the typed character in a vari-
able named c§?

5. Write an “‘alarm clock” that asks for a time setting and prints
“RING” when that time arrives. Allow the setting to be to
the nearest minute.

Grt two

Intermediate Techniques
g

Chapler 9

Variables, Data, and Arrays

Commands:

= DIM, UNDIM

s DATA, READ, RESTORE, FREE

m SET/ASK EXCEPTION, SET/ASK HALT
m SET/ASK PRECISION, SET/ASK ROUND

System Function:
m FREE

This chapter describes the types of variables you use in Macintosh
BASIC and the types of data each variable can hold. The chapter
then introduces arrays and data statements.

The concluding section contains information that will be pri-
marily of interest to programmers writing sophisticated numerical
programs. It provides a brief introduction to some of the technical
aspects of the Macintosh’s numeric computation environment.

113

114

Using Macintosh BASIC

VARIABLE TYPES

Macintosh BASIC has a rich variety of variable types. Each type
holds a specific kind of data. There are ten variable types in all —
five for numbers and five for different kinds of non-numeric data.
The type of a variable is determined by the last character of the
variable’s name. Because the character that specifies the type of
data is part of the variable’s name, you can use the same word for
the names of variables of different types without confusing the
BASIC compiler.

Numeric Variables

Table 9-1 lists the five types of numeric variables in Macintosh
BASIC. Real numbers, or reals, can have numeric values that
include fractions. Integers can have only whole number values.
Integers can have plus and minus signs, but they can never have
decimal points or fractions. When you create a numeric variable, it
contains the value zero until you store a different value in it.
Numbers that are very large or very small are often expressed as a
number times a power of ten. The number 4000, for instance, can
be expressed as 4%10°. The format is often shortened a bit by

Table 9-1. Numeric Variable Types

Type Symbol Digits of Range Example
Accuracy
REALS
Double precision (none) 15 +1E308 name
Single precision | 7 +1E38 name |
Extended precision \ 19 +£1E4932 name\
INTEGERS
Short integer % 5 £32767 name%

Computational # 18 +1E18 name#

Variables, Data, and Arrays

omitting the multiplication sign and replacing the 10 with E (for
exponent). With those changes, 4000 is expressed as 4E3. The first
part of the number (4 in our example) is called the mantissa; the
part of the number after the E is called the exponent.

When a real number is stored inside a computer, the mantissa
and the exponent are stored separately. The amount of space
reserved for the mantissa determines how many digits can be stored
and retrieved accurately. The amount of space reserved for the
exponent determines the maximum (and minimum) size of the
value that can be stored in the variable. A double-precision vari-
able, for example, has enough space to have 15 digits of accuracy
in the mantissa, and the space reserved for its exponent is enough
to handle exponents as large as 308.

A variable whose name does not end in a special character is a
double-precision real. The 15-digit accuracy of a double-precision
real variable is sufficient for most purposes. If you need greater
precision or need to store numbers greater than 1E308 (1 with 308
zeros after it), you can use an extended-precision variable, which
provides 19 digits of accuracy. An extended-precision variable’s
name ends with the \ character, which is located on the key
between BACKSPACE and RETURN at the right of the keyboard. With
SHIFT held down, the same key produces the | character that signi-
fies the name of a single-precision real variable. BASIC performs
internal calculations in extended precision and then rounds to the
precision of the variable that is to receive the result.

Short integers hold values between —32767 and + 32767. Their
names end with the % sign, SHIFT-5 on the keyboard. If your pro-
gram tries to store a larger or smaller value than the short integer
variable can hold, you will receive an Integer Overflow error
message.

Computational variables are sometimes called comp variables or
long integers. They have names ending with the # sign, SHIFT-3 on
the keyboard, and hold integer values up to 18 digits long.

Here are some examples of statements that use numeric variables:

LET a\ = 78E100 ! extended precision
LET s| = .07 ! single precision

a= 8800 | double precision

ag =77 I short integer

a¥ = 77000 | comp (long integer)

115

116 Using Macintosh BASIC

Special Numeric Values
= INFINITY, NAN

Several mathematical operations —dividing a number by zero or
taking the square root of a negative number, for example —give an
answer that cannot be expressed as a real number. When one of
these operations is performed, Macintosh BASIC returns either
INFINITY or NAN (Not A Number) as the result. INFINITY
represents a number larger than any definable number. You get
INFINITY when you divide a positive number by zero. —INFIN-
ITY is smaller than any definable number. You get —INFINITY
when you divide any negative number by zero. NAN is the answer
if you take the square root of a negative number or do some other
invalid operation.

PRINT SQR(-1) ! Displays 'NAN(1)
PRINT 5/0 ! Displays 'INFINITY'
PRINT -5/0 ! Displays '-INFINITY

You can set a numeric variable equal to one of these values if
you wish. For infinity, you can use either the word INFINITY or
the symbol % (OPTION-5 on the keyboard). If your program tries to
store a number into a real variable that is too large or too small to
fit, BASIC changes the number to plus or minus INFINITY. If
your program tries to store a number into a normal integer vari-
able that is too large or too small to fit, BASIC gives you an Inte-
ger Overflow error message. If your program tries to store too large
a number into a computational (long integer) variable, BASIC
changes the number to NAN. ‘

When BASIC prints a NAN value, it includes a number in paren-
theses. The number tells you what kind of invalid operation caused
the NAN result. Table 9-2 lists the types of NANSs you are likely to
encounter and their causes.

Non-Numeric Variables

Table 9-3 lists the five non-numeric variable types: string, charac-
ter, Boolean, pointer, and handle. A string is a series of characters

Variables, Data, and Arrays

Table 9-2. Types of NANs

NAN

NAN(1)
NAN(®)
NAN(4)
NAN(8)
NAN(9)
NAN(20)

NAN(21)
NAN(33)
NAN(36)
NAN(37)
NAN(38)

Operation Causing
the NAN

Square root

Addition or subtraction

Division

Multiplication

MOD or REMAINDER

Comp type value out of
range

NAN typed from keyboard

Trigonometric function
Logarithmic function
Exponentiation

ANNUITY or
COMPOUND

Example

SQR(—1)

—INFINITY + INFINITY
0/0

0 * INFINITY
REMAINDER(v,0)

vit = 8E100

a = NAN

SIN(INFINITY)

LOG(—5)

(—1)~ 0.5
COMPOUND(0,INFINITY)

(letters, digits, punctuation marks, and special characters). When
a string value is entered directly in a program, it is called a string
literal and is enclosed in either single or double quotation marks.
In Macintosh BASIC a string may contain as many as 65,535 char-
acters. The name of a string variable ends with the § symbol,

Table 9-3.

Non-Numeric Variable Types

Type Symbol
String $
Character ©
Boolean ~
Pointer

Handle }

Example

name$
name®
name~
name]
name}

117

118 Using Macintosh BASIC

SHIFT-4 on the keyboard. When you first create a string variable, it
contains a null or empty string.

a$ = "test string” !stringvariable
b$ =af &' #2
PRINT b$

A character variable holds the ASCII value of a character. ASCII
values range from 0 to 255. The name of a character variable ends
with the © symbol, OPTION-g on the keyboard.

If you try to store a number larger than 255 into a character
variable, the variable will hold the value of the number MOD 256.
If you try to store a negative number into a character variable, the
variable will hold the value of the number MOD 256 + 256. When
you first create a character variable, it contains the value zero.

a® = ASC('**)
b® = 65 ! ASCIi value of ‘A’
PRINT CHR$(a®); CHR$(b®)

Boolean variables can hold only the two logical values — TRUE
and FALSE. A Boolean variable’s name ends with the ~ character
(tilde). You can type the tilde by pressing the leftmost key in the
top row while the SHIFT key is held down. When you create a
Boolean variable, it contains the value FALSE until you store a
different value in it.

a~ = TRUE
b~ = (index > 4)
PRINT 8™, b™

Pointers and handles are special types of variables. They are
used primarily when calling Macintosh toolbox procedures and
functions. A pointer holds the address of a location in the Macin-
tosh’s memory, and a handle holds the address of a pointer. The
name of a pointer variable ends with the character], and the name
of a handle variable ends with the character }. These two types of
variables are discussed more fully in Chapter 19.

Variables, Data, and Arrays

Mixing Variables of Different Types

If you attempt to use a variable of an inappropriate type in a pro-
gram statement, BASIC gives you a Type Mismatch error message.
The Type Mismatch message is usually caused by trying to store a
value from one variable into another variable that cannot accept
that type of value. You cannot, for example, store a number into a
Boolean variable, because a Boolean variable can only hold the
value TRUE or FALSE.

All of the numeric variable types are compatible with each other
and can be used in the same program statement without causing a
Type Mismatch error. Because a character variable holds a number,
it can also be used in calculations with numeric variables without
causing a Type Mismatch error. The other four variable types —
string, Boolean, pointer, and handle —do not mix with each other
or with numeric variables. You can store a string, Boolean, pointer,
or handle value only in its own type of variable.

USING ARRAYS

An array is a way of grouping several variables under a single
name so you can access them efficiently. If you had a list of three
numbers that you wanted to multiply by 10 and you put each
number in a separate variable, your program might look some-
thing like Figure 9-1. You would get very tired before you finished
typing this kind of program if your list had several hundred
numbers instead of only three.

A better way to write this program would be to organize the
values in a list. Then you could refer to each number as the first
number in the list, second number in the list, and so forth. If you
went a step further, you could use a variable —called an index
variable —to keep track of your place in the list. That way you
could use a FOR/NEXT loop and an index variable to reference
each value in the list. Your program would require only one state-
ment to multiply and one statement to print.

The kind of indexed list just described is an example of an array.
You can refer to an individual value in the array by using the array
name and the index that tells where the value is located in the

119

120 Using Macintosh BASIC

o n
O g W

a
b
c
a=8% 10
b=b* 10
c=c*10
PRINT a
PRINT Db
PRINT c

END PROGRAM

Figure 9-1. Using separate variables

array. If you used an array, your program might look something
like Figure 9-2.

Creating Arrays
a DIM

When you create an array, you need to specify the maximum
dimension of the array so BASIC will know how much space to set
aside in your machine’s memory to store each of the values. The

DIM a(3)
a(1)=3
a(2) =7
a(3)=9

FOR index = 1 TO0 3
a(index) = a(index) * 10
PRINT a(index)

NEXT index

END PROGRAM

Figure 9-2. Using an array

Variables, Data, and Arrays

DIM or dimension statement serves this purpose. The keyword
DIM is followed by the array name, with the maximum size of the
dimension in parentheses. The dimension can be a number or any
legal numeric expression. It can have any value from 0 to 32767.
An array you dimension at 9 contains 10 elements because Macin-
tosh BASIC always allocates the Oth element.

You can dimension more than one array in the same statement if
you separate the array names with commas.

DIMarray1(15)
DIM array2(60), array3(30)

Array names follow the same rules as the names of simple varia-
bles. The same ten variable types shown in Tables 9-1 and 9-3 also
apply to arrays. The last letter of an array name specifies the type
of variables that can be stored in the array.

DIM array(70), array™(30), array$(50)
DIM array%(40), array®*(80)

You can have an array with the same name as a simple variable, if
you are willing to risk getting them mixed up in your own mind.

The DIM statement for an array must be executed before you
attempt to reference any element of the array, or BASIC will give
you an error message. Because of this, DIM statements are often
grouped together near the beginning of a program. If the names of
your arrays are not self-explanatory, it is a good idea to put a
comment near the beginning of your program describing the
values each array will hold.

If you attempt to reference an element of an array with an index
that is negative or an index that is larger than the size of the array,
BASIC will give you an error message.

Arrays With More Than One Dimension

You can define an array with as many dimensions as you like. All
you do is use commas to separate each dimension inside the paren-
theses in the DIM statement. Two-dimensional arrays are often

121

122 Using Macintosh BASIC

used for data that can be displayed in tables with rows and
columns.

An address list can be displayed on paper with each horizontal
line made up of first name, last name, street address, city, state, and
ZIP code columns, as shown in Figure 9-3. If the list contains 50
addresses, the statement

DIM address.list$(50,6)

creates an array that can hold the address list. It dimensions an
array with 50 rows and 6 columns.

To access a particular element of an array, you use the array
name followed by indexes in parentheses to indicate which element
you want. You need to supply one index for each of the array’s
dimensions. In the previous example, the first dimension repre-
sents the row that holds a particular address, and the second
dimension represents a specific column or part of the address. If
you wanted to sort the list into alphabetical order by names, you
would first sort on the last name in the second column. In the
event of a tie in the second column, you would sort on the first
name in column 1.

Whenever you refer to an element of an array in your program,
you must use the correct number of dimensions. If you do not, you
will receive an error message. You cannot use the same name for

First Nome Last Name RAddress City State Zip
Jane Doe 123 2 Street fAnytown HI 90000
John Smith 456 EZ2 Lane fAnytown CA 90099

Figure 9-3. Address list

Variables, Data, and Arrays

two arrays of the same data type, even if they have a different
number of dimensions.

Copying Arrays

You can copy values from one array into another by using index
variables in FOR/NEXT loops. If you want to copy an entire
array, however, Macintosh BASIC allows you to do it with a single
program statement. You can use the normal LET statement to
assign the values of one array to another, without using any values
inside the parentheses:

array1() =array2() |copyentirearray

If the arrays have more than one dimension, the appropriate
number of commas must be included inside the parentheses, as in
the following example of two-dimensional arrays:

array1(,) = array2(,) !copy 2-dimensional array

If the two arrays do not have the same number of dimensions,
you will receive an error message. The size of each dimension does
not, however, have to be identical in the two arrays. As long as the
number of dimensions is the same, BASIC changes the dimensions
of the destination array to match the dimensions of the array being
copied.

Removing an Array
= UNDIM

The UNDIM command ‘“undimensions” an array. UNDIM frees
all the memory occupied by the array. You lose the values stored in
the array unless you save them somewhere else before you use
UNDIM. The word UNDIM must be followed by the array name
and a set of parentheses. The parentheses must contain the appro-
priate number of commas if the array has more than one dimen-
sion. If you have more than one array to undimension, you can

123

124 Using Macintosh BASIC

separate the array names with commas in a single UNDIM
statement.

DIM array1(300) ,array2(50,3) array3(4,2,2)
| Program statements using the arrays

UNDIM array3(,,)

UNDIM array1,array2(,)

When you use UNDIM, you remove the array from memory. It
no longer exists, and any later references to the array in your pro-
gram will cause error messages.

PUTTING DATA IN YOUR PROGRAM
m DATA, READ

The program in Figure 9-2 used an array to handle the multiplica-
tion and printing of a series of numbers more efficiently than the
program in Figure 9-1. However, the program in Figure 9-2 still
contained a separate program statement to set the value of each
element of the array. Those separate statements can be replaced
with the more efficient DATA and READ statements, as shown in
the following program:

DIM&a(3)

DATA 3,79

FOR index=1TO0 3
READ a(index)
a(index) = a(index) * 10
PRINT a(index)

NEXT index

END PROGRAM

READ works very much like INPUT, but READ takes the input
values from DATA statements embedded in the program instead of
from the keyboard. After the keyword READ, you list the variables
whose values are to be taken from the DATA statements. If you
have more than one variable name in the same READ statement,
separate them with commas. Each variable in the READ command

Variables, Data, and Arrays

must be compatible with the type of data in the DATA statement,
or you will receive a Type Mismatch error message. Here are some
examples:

DATA 8 test,TRUE,9
READ ab$,c™,d ! Yes, types all match
READ a,b% c™~,d ! No, b% cannot receive a string

Values in a DATA statement are separated by commas. Each
value must be an actual, or literal, value, not an expression. DATA
statements can be located anywhere in your program. If a DATA
statement is encountered during program execution, BASIC skips
the DATA statement and resumes execution with the next program
line.

String values in DATA statements do not have to be surrounded
by quotation marks unless they contain a comma or quotation
marks. If you want to include either single or double quotation
marks inside a string in a DATA statement, use the opposite kind
of quotation mark at both ends of the string, as in these examples:

DATA "This a fine day, isn't it?"
DATA 'The " marks are in this string.’

The READ statement ignores spaces at the beginning of an
unquoted string in the DATA statement, but includes spaces at the
end of the string. If you want it to include one or more spaces at
the beginning of a string, you should enclose the string in quota-
tion marks.

READ and DATA statements are often used to initialize the
values of an array, as in this example:

DIM days$(7)
DATA Monday, Tuesday, Wednesday
DATA Thursday, Friday, Saturday, Sunday
FOR day=1T0O7
READ days$(day)
NEXT day

125

126

Using Macintosh BASIC

MOVING THE DATA POINTER
m RESTORE

BASIC maintains a pointer to the next DATA item to be read.
When execution of your program begins, the pointer points to the
first item in the first DATA statement in your program. Each time
a data item is read by a READ statement, BASIC advances the
pointer to the next data item. You can change the pointer with the
RESTORE command.

RESTORE by itself moves the data pointer back to the first
DATA item in your program. RESTORE followed by a line
number or label moves the data pointer to the first DATA item in
your program following the occurrence of the line number or
label. The RESTORE command comes in handy when you need to
use the same data more than once in your program.

DATA 1,2,3

label: DATA 5,8,9
RESTORE

READ a ! reads 1
RESTORE 1absel
READ a !reads S

UTILIZING THE AVAILABLE MEMORY
m FREE

Many things can occupy space in Macintosh’s random access
memory: the operating system, Macintosh BASIC itself, desk
accessories, open windows, pictures, and other programs. Your
program cannot control all of these, but it can control its own use
of the machine’s memory. FREE is a system function that takes no
arguments. It returns the number of bytes that are not being used.
You can print the value of FREE to find out how much room is
left, or you can use FREE in a program that needs to know the
amount of room left in memory.

IF FREE < 1000 THEN
PRINT "Warning: "
PRINT "Running out of memory."
PRINT FREE; " bytes left.”
ENDIF

Variables, Data, and Arrays

Of all the things that can take up large amounts of memory, the
one over which you have the most control is the array. An array
dimensioned (9,9) has ten times ten (don’t forget, space is reserved
for element 0), or 100, elements. You can multiply the number of
elements by the number of bytes each element occupies to calculate
the minimum amount of memory space required for the array.
Table 9-4 lists the number of bytes required to store a single ele-
ment of each variable type.

An array with 100 double-precision elements needs 100 times 8,
or 800, bytes of memory in which to store the elements. When stor-
ing a string value, Macintosh BASIC uses two bytes to store the
length of the string and then uses one additional byte for each
character in the string. You can, if you wish, base your program'’s
dimension statements on the amount of free memory. If you do, be
sure to leave plenty of extra bytes free for other uses. Here is one
way you could do this:

| Make array of double precision reals

number = (FREE-10000) / 8 ! 8 bytes per element
DIM array(number)

PRINT “Array has “; number; “ elements.”

Table 9-4. Variable Storage Requirements

Variable Type Bytes per Value
Double Precision 8
Single Precision 4
Extended Precision 10
Short Integer 2
Computational (long integer) 8
String 2 + length of string
Character 1
Boolean 1
Pointer 4
Handle 4

127

128 Using Macintosh BASIC

THE NUMERIC ENVIRONMENT

The Macintosh has a numeric calculation environment that
exceeds the precision used in calculations on many large main-
frame computers. The Macintosh’s numeric environment is called
the Standard Apple Numeric Environment (SANE). It meets the
standards promulgated by The Institute of Electrical and Electron-
ics Engineers, Inc., which is an industry organization that sets
standards for things related to computing.

The commands described in this section allow you to change
several features of the SANE environment. Most programmers do
not need to use these commands; they are useful for persons doing
advanced numeric programming. If you want to delve into these
matters more deeply than the very brief discussion here, you can
find more information in the Apple Numerics Manual published
by Apple Computer, Inc.

When Calculations Don’t Work
m SET/ASK EXCEPTION, SET/ASK HALT

The numerics environment allows you to find out if any unusual
events happened during numeric calculations. Table 9-5 lists the
five conditions for which you can check. These conditions are
called exceptions.

To check for an exception, use the command ASK EXCEPTION
followed by the name or number of the exception, a space, and the

Table 9-5. Exception Conditions

Exception Value Cause
INVALID 0 Invalid operation, result is NAN
UNDERFLOW Result so small it rounded to zero

1
OVERFLOW 2 Result so large it became INFINITY
DIVBYZERO 3 Division by zero, result INFINITY
INEXACT 4 Calculation result had to be rounded

Variables, Data, and Arrays

name of a Boolean variable. To check whether a division by zero
has occurred, you could use the statement

ASK EXCEPTION DIVBYZERO variable™

which would set your Boolean variable to TRUE if the condition
has occurred and to FALSE if it has not. Once it becomes TRUE,
the exception will always return TRUE until you use a SET
EXCEPTION statement to reset it to FALSE. You follow the
command SET EXCEPTION with the exception name or number
and the Boolean value TRUE or FALSE.

HALT determines whether or not your program stops when an
exception occurs. Follow the command SET HALT with the name
or number of an exception, a space, and a Boolean expression that
evaluates to TRUE or FALSE. To find out whether a halt is
already set, use ASK HALT followed by the name or number of the
exception, a space, and a Boolean variable to receive the answer.

The statement

SET HALT 2 TRUE

causes your program to halt with an error message if a calculation
causes an overflow condition. All of the exceptions and halts are
initialized as FALSE when you begin to run your program.

Controlling Precision and Rounding
m SET/ASK PRECISION, SET/ASK ROUND

The numerics environment also allows you to set or ask the degree
of precision being used in BASIC’s internal calculations and the
direction in which rounding of decimal fractions will occur, Table
9-6 lists the choices of precision. You can change the precision by
using SET PRECISION followed by the appropriate word or
number from the table. If you follow ASK PRECISION with the
name of a numeric variable, BASIC puts the precision number in
the variable. When your program begins, PRECISION is set to
EXTPRECISION.

129

130 Using Macintosh BASIC

Table 9-6. Calculation Precision

Constant Value Precision

EXTPRECISION 0 Extended precision, 80 bits
DBLPRECISION 1 Double precision, 64 bits
SGLPRECISION 2 Single precision, 32 bits

You use SET ROUND and ASK ROUND to change the round-
ing direction for the RINT function and all other internal calcula-
tions that require rounding a real number to a certain number of
decimal places or to an integer. Table 9-7 lists the possible round-
ing directions. Follow ASK ROUND with the name of a numeric
variable to learn the current rounding direction. To change the
rounding direction, use SET ROUND followed by the name or
number of the direction you want. ROUND is set to TONE-
AREST when your program begins.

Here are a few short examples using PRECISION and ROUND:

ASK PRECISION what® ! puts O in what® if extended
SET ROUND TowardZero ! sets rounding toward zero
SET ROUND O ! sets rounding back to ToNearest

ASK ROUND where ! puts O in where if ToNearest

Table 9-7. Rounding Directions

Direction Value

TONEAREST 0
UPWARD 1
DOWNWARD 2
TOWARDZERO 3

Variables, Data, and Arrays

Commands for Numerics Experts

Macintosh BASIC provides twelve additional commands that give
you access to the most sophisticated features of the Apple numerics
environment. You are not likely to use these commands unless you
are involved in extremely sophisticated numerical programming.
They are listed here so you will know they exist. Table 9-8 sum-
marizes these additional numerics environment commands. You
will need to refer to the Apple Numerics Manual for the details for

these commands.

Table 9-8. Additional Numerics Environment Commands

ASK ENVIRONMENT

SET ENVIRONMENT

PROCENTRY

PROCEXIT

REMAINDER

CLASSCOMP

Followed by a numeric variable name, saves one
number that describes the entire numerics envi-
ronment.

Followed by a number obtained from ASK, restores
that numerics environment. 0 restores the default
numeric environment.

Followed by a numeric variable name, saves the cur-
rent numeric environment in that variable and sets
the default numeric environment.

Followed by an environment number saved by
PROCENTRY or ASK ENVIRONMENT, resets
that environment. Use SET EXCEPTION INVALID
FALSE after using PROCEXIT.

Function takes two numeric arguments and returns
an integer remainder derived from the result of the
first argument divided by the second argument, as
explained in the Apple Numerics Manual.

Function takes one numeric argument and returns
the class number of the argument as if it were con-
verted to type comp. Classes are 0 for SNAN, 1 for
QNAN, 2 for INFINITE, 3 for ZeroNum, 4 for Nor-
malNum, 5 for DenormalNum. For an explanation
of these types, see the Apple Numerics Manual.

131

132 Using Macintosh BASIC

Table 9-8. Additional Numerics Environment Commands (continued)

CLASSDOUBLE

CLASSEXTENDED

CLASSSINGLE

NEXTDOUBLE

NEXTEXTENDED

NEXTSINGLE

Function takes one numeric argument and returns the
class number of the argument as if it were converted to
type double. Classes are 'isted under Classcomp.

Function takes one numeric argument and returns the
number class of the argument as if it were converted to
type extended. Classes are listed under Classcomp.

Function takes one numeric argument and returns the
number class of the argument as if it were converted to
type single. Classes are listed under Classcomp.

Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as double-precision.

Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as extended-precision.

Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as single-precision.

EXAMPLE PROGRAMS

The two example programs in this section use many of the features
introduced in this chapter. The first program creates, sorts, and
displays an array of 50 integers. The second example program
prints a list of names and addresses in alphabetical order.

The sorting example in Figure 9-4 uses a DIM statement to
dimension an integer array. The array will hold 51 elements (0
through 50), but the program does not use the Oth element. A
FOR/NEXT loop stores a random integer between 1 and 1000 into
each element of the array.

Variables, Data, and Arrays

Figure 9-4. Sort an array of integers

The sort routine begins with a FOR/NEXT loop that points in
turn to each position in the array, from lowest to highest. While
the first FOR/NEXT loop points to one element of the array, a
second FOR/NEXT loop searches from that element to the end of
the array. An IF statement inside the second loop tests whether the
element pointed to by the second loop is smaller than the element
pointed to by the first. If so, the elements are exchanged. After the
second loop is finished, the element pointed to by the first loop is
now the smallest one in the array, so the program can look for the
next larger element.

This sorting method is not always the fastest, but it is easier
to understand than many of the other methqds. You can scroll
through the listing in the output window to confirm that the array
has been sorted correctly. '

133

134 Using Macintosh BASIC

The example in Figure 9-5 uses a two-dimensional array to store
an address list similar to the one in Figure 9-3. This program dis-
plays the address list in alphabetical order, but it does not actually

1splay address list in name ordsr o
DIM address.list$(50, 6)
~ 1:2nd dimension is first name,last name street ity state ZIP
'DATA Jane,Doe, 125 Z Street Anytown,HI 90000
- DATA John,Smith,456 EZ Lane Anytown ,CA,90099
_DATA Shawn ORemy,“Z 0'Hara Street" ,Midtown,|A,88888
DATA Bobbie 0regon,1 Evrystreet Bigcity,NY, 10000
' TA Sam,Spade,3 Nowhere Lane, Somewhere MD ,20000
il Read the data into the array
’,FOR address=1TO0S
; ‘FOR item=1T06
READ address.list$(address, ltem)
- NEXT item- y
_;)NEXT address
~ !lnitialize for the display routine
 OPTION COLLATE NATIVE
~LName.done$ = “* | Lastnemedunesoweduntrepeat
address.1ist$(0,2) = CHR$(255) ! Larger than any name's first letter
FOR times =1 TOS !5 names toprint
- | Select the next name in order :
. next. to.print = 0 ! Start by pomtmg to somethmg larger than any name
" FORaddress=1T05
‘ IF address.list$(address,2) > LName.done$ THEN
IF address. hst$(adtﬁ'ess 2) < address.list$(next.to.print,2) THEN
next.to.print = address
ENDIF
; ENDIF
~ NEXT eddress =~ : o
. !Wehave the next one, so print it
~ FORi=1T06
PRINT address.list$(next.to, prim 1
NEXT i
PRINT | End the display line ’
LName.done$ = address.list$(next.to.print,2)
IIEXT times
END PROGRAM

Figure 9-5. Display address list in name order

Variables, Data, and Arrays

move the elements of the array. The program uses a DIM statement
to dimension the string array address.list§ for 50 rows and 6
columns. Two nested FOR/NEXT loops control a READ state-
ment that reads strings from the DATA statements into elements of
the array. The DATA statements could have been located anywhere
in the program.

An OPTION COLLATE NATIVE statement tells BASIC to sort
strings in normal alphabetical order (see Chapter 8 for a review of
this statement). A variable that will be used to store the most
recently printed last name is initialized with a null string, and the
last name position in the 0th row of the array is filled with
CHR$(255), a value larger than any alphabetic character. The pro-
gram points to this element when it begins searching for the next
last name to print.

A FOR/NEXT loop finds and prints the next name and address
five times. The variable named next.to.print is set to 0, so the
expression address.list§(next.to.print,2) will return the CHR$(255)
value stored earlier. A FOR/NEXT loop looks at each entry to see
if the last name of that person is greater than the previous name
printed (if it is not greater, the name being examined has already
been printed) and also less than the name pointed to by the vari-
able next.to.print. If the name meets both of these conditions, the
row number containing that name is stored in next.to.print.
Initializing next.to.print to point to CHR$(255) ensures that the
row number of the first name not already printed will be stored in
next.to.print. When the loop ends, next.to.print contains the row
number of the name lowest in alphabetical order that has not yet
been printed. A final FOR/NEXT loop prints the six strings that
make up the full name and address.

If you examine Figure 9-5 closely, you may notice that the pro-
gram as written will only print one address for each last name,
even if several people in the list have the same last name. You can
correct this by adding statements to compare the first names if the
entry in the array has the same last name as the one just printed.

135

136 Using Macintosh BASIC

PRACTICE EXERCISES

1. How many elements of what data type can be stored in each
of the following arrays?

Variable(44)

Iftest~(8)

Bigtime \(900,2)

Whoknows%(99)

Name$(9,2)

2. What is the dimension of the array named q$ when this pro-
gram reaches the END PROGRAM statement:

DIM a$(3), q$(9)

q$(9) = "how do you like this?"
PRINT g$

g$() =a$()

END PROGRAM

NS

3. Which of the following statements will cause error messages?
a. a§ =8

b. a() = b(,)

c. test~=20

d. string = ‘value’
e. a% = 50000

4. What is wrong with this READ/DATA combination:

DATA 4,test,5,test
READ a,a$,b.c

&/iap@» 70

Formatting Program Output

Commands:

PRINT, SET/ASK VPOS, SET/ASK HPOS
GPRINT, SET/ASK PENPOS

SET/ASK FONT, SET/ASK FONTSIZE
SET/ASK GTEXTFACE, SET/ASK GTEXTMODE
GTEXTNORMAL, SET/ASK SHOWDIGITS
CLEARWINDOW, SET/ASK TABWIDTH
DOCUMENT PRINT

Functions:
m TAB FORMATS$

This chapter describes the commands that affect the arrangement
and appearance of the text printed in the output window. First
some of the fine points about the PRINT command, which you
have been using since your first BASIC program, are covered. Then
the chapter discusses GPRINT, the second print command in
Macintosh BASIC. The GPRINT command controls the font, size,

137

138 Using Macintosh BASIC

and appearance of text in the output window. Next, this chapter
describes the FORMAT$ function and the ways it can help you
arrange information. Lastly, this chapter describes how to print a
copy of the ouptput window on paper.

PRINTING NORMAL TEXT

Normal text is printed with the PRINT command. The output
window displays only a portion of the output document. You can
think of the output document under the window as a sheet of
paper 8 1/2 by 11 inches in size. With a 12 point font size, the out-
put document will hold 48 lines of text.

The original size of the output window allows you to see a por-
tion of the output document that is approximately 15 lines high by
30 characters wide if you are using a 12 point font size (the exact
number of characters varies because most fonts are proportional).
If your program prints more lines of text than fit in the window,
the text scrolls upward so that the most recently printed text is
visible. You can change the font and size of normal text output by
using the Fonts menu as described in Chapter 2, but 'you cannot
change these attributes from your program.

A PRINT Command Refresher
® PRINT

You follow the PRINT command with a list of numbers and
strings separated by semicolons or commas. The numbers and
strings can be literal values or expressions. If the separator is a
semicolon, PRINT displays one value immediately after another,
with no intervening spaces. If the separator is a comma, PRINT
moves to the next tab stop before displaying the next value. The
position where the next character is printed is called the text inser-
tion point.

BASIC issues a carriage return character at the end of each
PRINT statement so the next PRINT statement will begin print-
ing at the start of the next line. You can suppress the carriage
return character by ending your PRINT statement with a semi-
colon or a comma.

Formatting Program Output

Before the PRINT command starts printing on a new line, it
erases everything else on that line. That action, of course, destroys
any graphics you may have drawn there. You can use PRINT with
graphics in the same window if you are careful to print before you
draw the graphics. However, you may get a surprise if you try to
use the Copy Picture command to save a copy of your completed
output window. You will get a copy of all your graphics informa-
tion, but none of the text displayed with the PRINT command
will appear on the copy. This is because output from the PRINT
command is kept in text format and is never converted to graphics
format. You will get much better results if you use the GPRINT
command whenever you have any graphics in the output window
and restrict your use of the PRINT command to those times when
you only want to display text.

Positioning Normal Text
m SET/ASK VPOS, SET/ASK HPOS

VPOS and HPOS are special variables that control the location
where your next PRINT or INPUT statement will begin. VPOS is
the vertical position or line of text in the output document, and
HPOS is the horizontal character position within the line of text.

You can change the vertical position by using the SET VPOS
command followed by a number or numerical expression. You can
find out the current setting by following the ASK VPOS command
with the name of a numeric variable. BASIC will store the value of
VPOS in that variable.

SET YPOS 3 ! Sets to PRINT on line 3
ASK YPOS v0ld ! Gets VPOS in vOid
SET YPOS vOld+3 ! Sets to line vOld+ 3

BASIC accepts values for VPOS ranging from 1 to the number
of the last line of the document. With a 12 point font size, 48 lines
fit in a normal size output document. You can get more lines in
your output document by using a smaller font size or enlarging the
document with the SET DOCUMENT command described in
Chapter 16.

ASK HPOS followed by a numeric variable name returns the

139

140 Using Macintosh BASIC

number of characters between the text insertion point and the left
edge of the output document. You use SET HPOS to specify the
position where you want the next character printed. BASIC accepts
values in the range 1 to 256 for SET HPOS. If you set the number
too high, however, the insertion point may be past the right edge
of the document, where you will not be able to see it.

PRINT "The story “;

ASK YPOS v0ld ! Gets YPOS in vOld

ASK HPOS hOld ! Gets HPOS in hOld
SETVPOS 10

PRINT "At a new location”

SET YPOS vOid ! Restore old line

SET HPOS hOld ! Restore character position
PRINT "continues.”

When your SET HPOS value requires BASIC to count character
positions on an empty line or on part of a line where text has not
been printed, BASIC uses the width of a numeric digit in the cur-
rent type font for the width of each character position. Digits are
eight pixels (screen dots) wide in most 12 point fonts (seven pixels
for 12 point Monaco), and six pixels wide in most 9 point fonts. If
you set VPOS or HPOS to a location that is beyond the area visible
in the output window, BASIC scrolls the window’s contents to
display the insertion point.

Using the Tab Function
s TAB

The TAB function is used within a PRINT statement to move the
text insertion point to a specific character position to the right.
This makes it possible for you to move the insertion point between
each item you print and still print several items with one PRINT
statement. You follow the word TAB with parentheses containing
your new HPOS setting and then with a semicolon.

PRINT “testing";TAB(10);"1,2,3." | TAB skips 2 characters
PRINT “testing";TAB(5);"1,2,3." | TAB does not move

Formatting Program Output

The TAB function moves the text insertion point only to the
right, never to the left. If you have already printed past the new
HPOS setting, TAB has no effect. If you have not printed as far as
the new HPOS setting, TAB skips enough blank character posi-
tions to move to your new setting. You can use TAB as often as
you wish in the same PRINT statement.

PRINTING GRAPHICS TEXT

The GPRINT command prints graphics text. Graphics text is
merged with any information that is already in the output window
and text may appear on top of whatever was already in the docu-
ment. Nothing is erased unless you use a separate command to do
so. The location of graphics text in the window is measured in
pixels (the dots on the screen) instead of in lines and characters.
The original size of the output window is 240 pixels high and 240
pixels wide. The full Macintosh 9-inch screen is 342 pixels high by
512 pixels wide.

The GPRINT Command
m GPRINT

You should use the GPRINT, or graphics print, command instead
of PRINT when you have both text and graphics to print in the
same output document. You can write GPRINT statements just
like PRINT statements. Commas and semicolons have the same
effects in GPRINT statements as they do in PRINT statements.

GPRINT does not mix well with either the PRINT or INPUT
command. Both PRINT and INPUT erase graphics from the line
to be printed, which makes it difficult to use them with any graph-
ics already in the window. If you are using any fancy type, you will
probably find it much easier to do all your printing with GPRINT
and to put all necessary INPUT statements before your graphics
output routine.

OPRINT a,b | Printsvaluesof aand b
GPRINT "a";"b" ! Prints ‘b’ immediately after ‘a’
OPRINT “8","b" ! Prints 'a’, tabs, then prints ‘b’

141

142

Using Macintosh BASIC

It is important to remember to set the printing location for the
first GPRINT command in your program. If you do not set it, the
first GPRINT statement will print your text outside the visible
part of the output document.

Positioning Graphics Text
m SET/ASK PENPOS

GPRINT has its own commands to set the position of the text in
the output document. VPOS and HPOS do not affect the location
of the text GPRINT displays. BASIC allows you to use TAB in
GPRINT statements, but the results are not guaranteed.

While GPRINT appears to print text, it is really a graphics
command. You learned earlier about the insertion point BASIC
maintains to keep its place in text output. BASIC also maintains a
separate pointer, called the graphics pen, to keep its place in
graphics output. Each time the graphics pen is used by a graphics
command (including GPRINT), BASIC updates the location of
the graphics pen. The GPRINT command always begins its next
display at the current location of the graphics pen.

You express the location of the graphics pen as a pair of
numbers separated by a comma. The first number is the number of
pixels to the right of the left edge of the window. The second
number is the number of pixels down from the top of the window.
When your program starts, the graphics pen is located at pixel
0,0 —the top left corner of the output window. The coordinates
become larger the farther you move down or to the right. For
example, the pen coordinate 10,20 is 10 pixels to the right and 20
pixels down from the top left corner of the output window.

To move the graphics pen to a new location, you can use the
SET PENPOS command. A SET PENPOS statement looks like

SET PENPOS a,b
where a and b are the horizontal and vertical coordinates of the

location where you are setting the graphics pen. Both a and b are
numeric expressions, and they are separated by a comma. SET

Formatting Program Output

PENPOS 7,12 sets the pen so GPRINT will begin printing in the
same place as PRINT would.

ASK PENPOS gets the current graphics pen location. Follow the
command ASK PENPOS with two numeric variable names separ-
ated by commas. BASIC puts the horizontal position into the first
variable and the vertical position into the second variable. Here are
a few examples of SET PENPOS and ASK PENPOS:

SET PENPOS 7,12 | Sets pen for first line
ASK PENPOSh,v !Puts7inh, 12inv

You can also set the graphics pen position within the GPRINT
statement. To do that, use GPRINT AT followed by the coordi-
nates, a semicolon, and the items you want GPRINT to display.
You can use AT only at the very beginning of a GPRINT state-
ment, not after any item has been printed.

OPRINT AT x,y; "Hello" | Sets pen to x,y and prints “Hello"
OPRINT AT 7,12; 8% ! Prints a$ on first line

ASK PENPOS h, v ! Save pen position

SET PENPOS h, v ! Sets pen back for GPRINT

When you print graphics text, the text is displayed to the right of
the graphics pen position with the base of the characters even with
the pen position. Thus, the text appears above and to the right of
the graphics pen position. This means that when the pen starts at
location 0,0, any text printed will be above the output window.
That is why you have to use SET PENPOS or GPRINT AT to set
the location for the first GPRINT command in your program.

GPRINT remembers the most recent horizontal position speci-
fied by SET PENPOS or GPRINT AT and uses that position as its
left margin until another SET PENPOS or GPRINT AT com-
mand changes it. GPRINT ignores carriage return characters
(CHR$(13)) when they are embedded in strings longer than one
character, but it prints them in one-character strings. You will need
to use either SET PENPOS or GPRINT AT to reset the location
for your GPRINT commands whenever you have used PLOT,
CLEARWINDOW, or any other commands that might cause the
graphics pen to be moved.

143

144 Using Macintosh BASIC

Controlling the Graphics Text Font
m SET/ASK FONT, SET/ASK FONTSIZE

With GPRINT, you control the font, size, and appearance of
graphics text. You cannot change these attributes later with the
Fonts menu. SET FONT changes the font used by GPRINT to the
font whose number you specify. When you use the command ASK
FONT followed by the name of a numeric variable, BASIC puts
the number of the current font into the variable. The SET FONT
and ASK FONT statements use the font numbers shown in Table

10-1.
SET FONT O 1 Sets Chicago font
ASK FONT oldfont® ! Gets font number
PRINT | Sets to application font

SET FONT oldfont® ! Resets font for GPRINT

Table 10-1 shows the most generally available fonts, their font
numbers, and the sizes in which each font is available. You can

Table 10-1. Generally Available Fonts and Sizes

Font Number Name Sizes
0 System (Chicago) 12
1 Application (Geneva) 12
2 New York 9, 10, 12, 14, 18, 20, 24, 36
3 Geneva 9, 10, 12, 14, 18, 20, 24, 36
4 Monaco 9, 12
5 Venice 14
6 London 18
7 Athens 18
8 San Francisco 18
9 Toronto 9, 12, 14, 18, 24
10 Seattle 10, 20
11 Cairo 18
12 Los Angeles 12, 24

Formatting Program Qutput

learn whether a font is present on your BASIC disk by looking to
see if it is listed in the Fonts menu.

Unless you change them, the font and size used by GPRINT are
set to the standard Application font, Geneva 12. If your program
requests a font that is not available, BASIC uses the Geneva font.
The PRINT and INPUT commands always use the Geneva 12 font
unless you have made a selection from the Fonts menu to change
them.

Setting the font size is done separately from setting the font
itself. SET FONTSIZE followed by a number sets the font to that
size, and ASK FONTSIZE puts the current font size in the numeric
variable whose name you include in the ASK FONTSIZE state-
ment. You use the actual font size in SET FONTSIZE and ASK
FONTSIZE statements.

SET FONTSIZE 9 ! Sets for 9-point type
ASK FONTSIZE size ! Gets font size
SET FONTSIZE size+3 ! Sets to a larger size

The most common sizes are 12 point and 9 point. In the 12 point
size, the base of each line of text is 16 pixels below the base of the
line above it; in the 9 point size, the distance is 12 pixels. Your type
fonts look best if you display them in sizes that are present on your
disk. If you request a size that is not available, BASIC attempts to
scale the font to your requested size. The result is likely to be
unappealing, or even unreadable, if the requested size is not an
even multiple of an available size.

Controlling the Appearance of Graphics Text
m SET/ASK GTEXTFACE, SET/ASK GTEXTMODE

GTEXTFACE and GTEXTMODE are two more characteristics
that you can change with the SET keyword and query with the
ASK keyword. GTEXTFACE governs the style of the text, and
GTEXTMODE governs the interaction between the text and any
background design. Here are a few short examples:

SET OTEXTFACE 9 ! Set for boldface cutline type

SET OTEXTMODE 10 ! Make text visible on any background
ASK OTEXTFACE face ! Get GTEXTFACE in face

ASK 6TEXTMODE mode ! Get GTEXTMODE in mode

145

146 Using Macintosh BASIC

Table 10-2. GTEXTFACE Settings

Style Value
Plain 0
Boldface 1
Italic 2
Underline 4
Outline 8
Shadow 16
Condense 32
Extend 64

Table 10-2 shows the possible GTEXTFACE style characteristics
and their values. You calculate the GTEXTFACE setting by adding
together the values of the style characteristics you want to use. SET
GTEXTFACE 3, for example, produces boldface italic type. If the

€ File Edit Search Fonts Program

Text of Show GTEHTFACE =——— Show GTEXTFACE
| Show GTEXTFACE effects
SET PENPOS 7,20
FOR index =0 T0O 7
face = EXP2(index) DIV 2
SET GTEXTFACE face
GPRINT "This shows text face
NEXT index
END PROGRAM

This shows text face 0.
This shows text face 1.
This shaws lext rece &

This shows text face 4.

This shows text fece B.
Thie shows tenk fase 16.
This shows text face 32.

This shows text face 64.

Figure 10-1. GTEXTFACE samples

Formatting Program Output

condense and extend options are both selected, they cancel each
other out and you get normal spacing between letters.

Figure 10-1 shows a short program that displays each of the
GTEXTFACE style characteristics in the Geneva 12 font. Some of
the style characteristics look better when combined with other
characteristics than they do alone (italics tend to look better in
boldface, for instance). Experiment with various combinations of
characteristics until you find some combinations that you like.

The GTEXTMODE settings range from 8 to 11, as shown in
Table 10-3. The normal graphics text mode is 9, in which letters
are displayed in black and no changes are made to the background
of the letters. GTEXTMODE 8 erases the background before dis-
playing black letters. Text mode 10 is handy when you want to see
text on any color background, because it prints each letter in the
opposite color from the background. GTEXTMODE 11 displays
the letters in white, so it is useful only when you know the back-
ground is already black.

The program in Figure 10-2 demonstrates the basic differences
between the four GTEXTMODE settings. The GTEXTMODE set-
tings are very similar to the PENMODE settings that govern the
way the graphics pen draws designs. If you want to explore
GTEXTMODE in more detail, you might want to refer to the dis-
cussion of SET/ASK PENMODE in Chapter 16.

Clearing the Graphics Text Settings
s GTEXTNORMAL

GTEXTNORMAL provides a quick way to reset all four graphics
text characteristics to their original settings. It sets the text font to

Table 10-3. GTEXTMODE Settings

Setting Name Effect
8 Copy Black text with white around it
9 OR Black text without disturbing background
10 XOR Text color is opposite of background color

11 Clear White text without disturbing background

147

148

Using Macintosh BASIC

" & File Edit Search Fonts Program

Text of Show GTEHTMODE
| Show GTEXTMODE effects
PAINT RECT 100,0,200,100
SET PENPOS 7,20
FOR mode =8 TO 11
SET GTEXTMODE mode
GPRINT "This shaows text mods
NEXT mode
END PROGRAHM

Show GTEHTMODE

This shows text mode 8.
This shows tey
This shows te:a@ll-REeR

t mode 11.

Figure 10-2. GTEXTMODE samples

the Application font (Geneva), size 12. It also resets the GTEXT-
FACE setting to 0 (plain text) and the GTEXTMODE setting to 9.
GTEXTNORMAL does not have any effect on PENPOS or any of
the other settings that directly affect the graphics pen. To reset
those settings, you can use the PENNORMAL command that is
described in Chapter 16.

GTEXTNORMAL ! Reset GPRINT font, size, face, and mode

PRINTING NUMBERS
m SET/ASK SHOWDIGITS

When you display a number with a PRINT or GPRINT state-
ment, Macintosh BASIC normally prints up to ten digits, with the
last digit rounded if necessary. The count includes digits both to
the left and to the right of the decimal point.

If a number is too large to display in ten digits, BASIC switches
to scientific notation, where it displays up to ten significant digits

Formatting Program Output

plus an exponent. The number ten billion (10,000,000,000) has a
total of eleven digits (a one and ten zeros). Because the number has
more than ten digits, BASIC displays it as 1E10.

You can change the number of significant digits BASIC displays
by using the SET SHOWDIGITS command followed by a number
or numeric expression. You can set SHOWDIGITS as low as 1 and
as high as 19. BASIC sets SHOWDIGITS to ten at the beginning of
each program. You can find the current value of SHOWDIGITS
with the statement ASK SHOWDIGITS followed by the name of a
numeric variable.

SET SHOWDIGITS 5 | Set to show only 5 digits
ASK SHOWDIOITS digs ! Get SHOWDIOGITS in digs
SET SHOWDIOITS digs+2 ! Show 2 more digits

SPECIFYING FORMATS
= FORMATS

FORMATS is a string function that is most frequently used in
PRINT and GPRINT statements to change the format of numbers
and strings before they are printed. You give FORMATS$ two
arguments:

» A format image or “picture”’ of the way you want the number or
string to look

« The number or string that is to be made to fit the format image.

In the statement

PRINT FORMATS("### ## . num)

the string “###t. ##” is a format image, and num is a variable whose
value is to be formatted and printed. Notice that the arguments to
the FORMATS$ function are separated by a semicolon, not a
comma.

The format image may be either a string literal or a string
expression. Every character in the format image represents the
location of a character in the output string. If the format image is
seven characters long, the output string will be seven characters

149

150 Using Macintosh BASIC

Table 10-4. Summary of FORMATS$ Characters

For numbers and strings
Placeholder for one character

For numbers

$ At beginning of image string, causes leading $ sign

+ At beginning of image string, causes leading + to be printed
Decimal point

, Used before decimal point (if any), inserts a , every three
positions

— At end of image string, causes trailing minus signs

A Holds place for digit of exponent in scientific notation

For strings
| Causes string to be centered in field
> Causes string to be right-justified in field

long. With FORMATS, any necessary extra blank spaces are added
to the left end of the output string unless you specify otherwise.

The symbol # (SHIFT-3) is used to occupy a character position in
the format image without conveying any other special meaning.
Table 10-4 is a quick reference to the characters that have special
meaning when included in a format image. The next few pages
describe how to use these characters.

Formatting Numbers

The format image for a number starts with the # sign, a dollar
sign, or a plus sign. It should, of course, include enough positions
to allow the number, its sign, and any other characters specified in
your format to be displayed. If a decimal point is included in the
image, the number will be displayed with a decimal point in that
exact position. Formatting 123.4 with the image “### . ###"’ results
in the string “123.400”.

FORMAT# fills any extra positions to the left of the number
with blank spaces and any extra positions to the right of the
decimal point with zeros. If you use a dollar sign in the field’s first

Formatting Program Output

position, a dollar sign will appear just before the beginning of the
number. If you use a plus sign in the first character position, a
plus sign will appear at the beginning of positive numbers
(minus signs, of course, are always printed). Using the image
“$##iH - ##° when formatting 55.2 results in the string “ $55.20.”

FORMAT$ will insert commas at every third position to the left
of the decimal point if you put a comma in your format image.
The comma must be located after the first position of the image. If
your image includes a decimal point, the comma must be located
before the decimal point. A single comma in the format image will
cause insertion of several commas in a large number, so be sure
you allow enough character positions in the field for them. For-
matting 1343900 with the image ‘“‘# ######.#" results in
“1,343,900.0".

You can get FORMAT$ to put minus signs at the end instead of

the beginning of negative numbers by using a minus sign in the
last position of your format image. Scientific notation, with an
exponent, is specified by using several * (SHIFT-6) symbols to mark
the location of the exponent in the field.

The number being formatted is rounded, if necessary, to the
number of decimal places your format specifies. If the number does
not fill the entire field, it is right-justified so your decimal points
will be lined up if you are printing a column of numbers. If the
number or its exponent do not fit in the number of character posi-
tions you specify, the entire field is filled with question marks.
Here are some more examples:

PRINT FORMATS$("## ##", 3) |Prints 3.00

OPRINT FORMATS$("$* ##", 1.888) |Prints $1.89
PRINT FORMATS('+# ### #'.4567) |Prints +4,567.0
OPRINT FORMATS$('## ##~°**;, 9888) | Prints 9.89E+03
PRINT FORMATS("$## ##_", -3.2) |Prints $3.20-
PRINT FORMATS("## #"; 478) |Prints 27?7

Formatting Strings

FORMAT$ gives you three choices for strings. They can start at the
left end of the format image field (left-justified), be centered, or be
all the way to the right with leading blanks (right-justified). If you

151

152 Using Macintosh BASIC

give no special instruction, FORMAT$ returns your string
left-justified.

To center the string in the field, include the symbol | in your
format. To type the | symbol, hold down the SHIFT key while you
press the key at the right edge of the keyboard just above the
RETURN key. To right-justify the string, include the symbol >
(SHIFT-.) in your format. If your string is too long to fit in the field
you specify, FORMATS$ drops the right end of the string without
issuing an error message.

PRINT FORMATS(##|#wxx%". "Test") |Centers ‘Test’
OPRINT FORMATS('#>####' . "Test") |Right-justified
PRINT FORMAT$("###" Test string”) !Prints ‘Tes'

Using the Same Format for Both Numbers and Strings

You can format strings with the same format images you use for
numbers. For example, you can use the same format image for a
column of numbers and the title above it. When the value to be
formatted is a string, FORMATS treats each special number-
formatting character (§, +, —, *, comma, or decimal point) as if it
were a # sign. When the value being formatted is a number, FOR-
MAT$ treats each spec1al string-formatting symbol (| or >) as if it
were a # sign. If your format includes a decimal point, the | or >
symbol must be in one of the positions to the left of the decimal
point.

OPRINT FORMAT$(‘§|# ##*, "Test")
I Prints 'Test' centered in 6-character field
GPRINT FORMATS('$|# ##*.37) | Prints ‘'$37.00°

Using Multiple Format Fields

You can specify more than one field in the same format string, and
you can include as many numbers and strings after the semicolon
in a FORMATS call as you wish. The first item to be formatted is
matched with the first format field, and the second item is matched
with the second field. If there are more numbers and strings than
format fields, the function cycles through the existing format fields
until it runs out of numbers and strings to format.

Formatting Program Output

Each field in a format image starts with #, $, or +. A field ends
with a space or any other character that is not a format character.
Non-format characters are taken as literals and are included “‘as is”
in the string returned by FORMATS. Formatting the number 12
with the image “T-##X" results in the string “T-12X".

A comma is only valid as a special formatting character when it
is to the left of the decimal point. If a comma is encountered to the
right of the decimal point, it is taken to be a literal, and it ends the
field. Plus signs and dollar signs are only used as the first character
of a format field, so a new field begins whenever one is encoun-
tered in your format image.

PRINT FORMATS$("##% " 11 12,13) | Prints "1 1% 12% {3% "
PRINT FORMATS("## g# =2 . 20 3 30 .4)
! Prints ‘20 $3.00 30 $4.00°
PRINT FORMATS$("Z|p ###x22".99999) | Prints 'ZIP 99999'
PRINT FORMATS('$## >## =&, “Amount”, 1299.95)
!Prints’ Amount $1.299.95'

ERASING THE OUTPUT DOCUMENT
m CLEARWINDOW

The CLEARWINDOW command erases the entire document in
the output window. No distinction is made between text and
graphics; everything is erased. If you want to erase only a part of
the document, you can use the ERASE command that is described
in Chapter 16. In addition to erasing the output document,
CLEARWINDOW resets HPOS to 1, VPOS to 1, and PENPOS to
0,0. Thus, CLEAR WINDOW resets the page so new text will start
at the top in addition to erasing the page.

CLEARWINDOW | Erases window and resets

CHANGING THE WIDTH OF THE TAB FIELD
s SET/ASK TABWIDTH

When you use either a comma or the TAB key (CHR$(9)) in
a PRINT or GPRINT statement, the printed output resumes at
the beginning of the next tab field. When your program starts

153

154 Using Macintosh BASIC

running, those tab fields occur at every 100 pixels, beginning at the
left edge of the output window. You can change the width of the
tab fields by using the SET TABWIDTH command followed by
the number or numeric expression that gives the new width. For
example, SET TABWIDTH 50 sets the tab fields at every 50 pixels.
The command ASK TABWIDTH, followed by the name of a
numeric variable, sets the numeric variable to the current setting of
TABWIDTH.

SET TABWIDTH 33 | Sets tabs every 33 pixels
ASK TABWIDTH tabs® ! Puts TABWIDTH in tabs®

While your program is running, each line of text is displayed
according to the setting of TABWIDTH at that point in your pro-
gram. But if you use the scroll bars to look through the output
document, any text displayed with the PRINT command is refor-
matted to match the last setting of TABWIDTH. Text displayed
with the GPRINT command always stays where you put it and is
not rearranged later no matter how many times you change TAB-
WIDTH. The tab fields in your program’s listing window are set
at every 20 pixels and are not affected by the TABWIDTH setting.

Printing on Paper
s DOCUMENT PRINT

The DOCUMENT PRINT statement copies the output window to
a piece of paper —assuming you have an Imagewriter or Laser-
Writer printer attached to your Macintosh. Everything displayed in
the output window appears on the printed copy, no matter whether
the information was put in the output window by a PRINT or
GPRINT command or by one of the graphics commands described
in Chapter 16.

Technically, DOCUMENT PRINT copies the entire document
behind the output window, not just the visible area, to the printer.
If you can see additional information by scrolling the output win-
dow, that information will be copied to the printer along with the
information displayed in the visible area of the window.

Formatting Program Output 155

PRINT "Thisisatest.” ! Prints in output window
DOCUMENT PRINT ! Copies output document to printer

EXAMPLE PROGRAM

The example program in Figure 10-3 uses many of the commands
introduced in this chapter to demonstrate a procedure for centering
strings in the output window. The program takes a string typed
from the keyboard and uses it to construct a string ‘“‘tree,” with
each successive printed line containing one more character of the
string until the entire string is printed.Each of the strings is cen-
tered in the output window, giving the overall look of a tree com-
posed of the different-length strings. Figure 10-4 shows a sample of
the program’s output using the input string “the string tree.”

Figure 10-3. Print a string tree

156 Using Macintosh BASIC

r

% File Edit Search Fonts Program

Texut of Figure 10-3 Figure 10-3
I Print a string tree t
LINE INPUT "Type a string: *; th
CLEARWINDOW the
SET PENPOS 7,12 the
FOR count = 1 TO LEN(string$) the s
a$ = LEFT$(string$,count) the st
GOSUB GetLength the str
h =120 - length/2 the stri
GPRINT AT h,v; a$ the strin
NEXT count the string
END PROGRAM the string
GetLength: the string t
ASK PENPOS h, v the string tr
SET PENPOS 0,-30 the string tre
GPRINT a$; the string tree

Figure 10-4. String tree output

First the program asks you to type a string from the keyboard. It
uses the LINE INPUT command so you can include a comma or
quotation mark in the string if you wish. Then the CLEARWIN-
DOW command erases the input prompt and the string you typed,
and the statement SET PENPOS 7,12 sets the initial location for
GPRINT to the beginning of the first line of text in the output
window.

A FOR/NEXT loop with the variable count as its index prints
the string ““tree.” The loop starts by setting the variable af§ equal to
the first character of the string you typed. Next the program does a
GOSUB to the subroutine GetlLength, which puts the length of a§
in the variable named length. Each time through the loop, one
more character of the string is added to a§ until, in the final pass
through the loop, af contains the entire string.

Since the output window is 240 pixels wide, the center of the
window is at pixel 120. The program sets the variable A to the
value that will cause a$ to be centered horizontally in the window,
120 minus half the length of af. The GPRINT AT statement sets
the pen to the position just calculated and prints af. The FOR/
NEXT loop is repeated until the program is finished.

Formatting Program Output

The key to this program is the subroutine GetLength, which
obtains the length of the string a$. Because different characters are
not the same width in any type font except Monaco (and even in
Monaco the widths can vary depending on the type size chosen),
the width of the string cannot be calculated directly from the
number of characters in the string.

The method used is to print the string using GPRINT at an
invisible location and then check the pen location to see how long
the string is. SET PENPOS 0,—30 puts the pen above the output
window, and ASK PENPOS length,b gets the length of the string
after printing. The ASK PENPOS h,v statement at thé start of the
subroutine saves the original pen location, and the SET PENPOS
h,v statement at the end restores the pen. Saving and restoring the
pen location ensures that the subroutine can be used safely from
any point in your program without causing any change in the loca-
tion of your printed output.

157

158 Using Macintosh BASIC

PRACTICE EXERCISES

1. What statement would you use with the PRINT command to
cause the next output to be at the beginning of line 3? What
statement would you use with the GPRINT command
(assume 12 point type)?

2. Can you write a routine to print the integers from 1 to 5 on a
single line spaced 20 pixels apart? Have your routine save and
restore the values of any system parameters that are changed.

3. Write a short program that prints ‘“Hello” in 24 point Out-
line type in the New York font.

4. Can you specify a format that prints dollar amounts up to $10
million? The format should provide for insertion of commas
where they aré appropriate and should also center any text if
it is used to print a string.

Chapler 17

Defining Your Own Functions

Commands:
= DEF, FUNCTION
m EXIT FUNCTION, END FUNCTION

In addition to the large variety of predefined functions described
throughout this book, Macintosh BASIC has an extremely power-
ful capacity to handle user-defined functions. This is your chance
to redefine the BASIC language to include all the special functions
you always thought a language should have. With a little imagina-
tion, you can even use defined functions to create your own
language.

Macintosh BASIC provides a simple way to define functions in a
single line and a slightly more complicated way to define funetions
as miniature programs using more than one line. Most of the rules
about defined functions apply equally to both types.

159

160 Using Macintosh BASIC

SINGLE-LINE FUNCTIONS
a DEF

Any formula that can be written in one line and that gives a single
result can be defined as a single-line function. The definition of a
single-line function begins with the keyword DEF followed by a
space, the name of the function, an equal sign, and the formula
that determines the value of the function. If the function takes
arguments, variable names representing the data types of the
arguments are listed in parentheses just after the function name.
The names in parentheses are called parameters. The following
function named Celsius takes one argument, represented by the
parameter x:

DEF Celsius(x) = (x-32)*5/9

You can use a defined function in your program by using its
name in a program statement, just as you use the functions that are
already a part of the BASIC language. If the function definition
has parameters, you replace each parameter with the value you
want the function to use. Each time you use the function in a
program statement, BASIC executes your function definition and
then returns to your program. In Figure 11-1, the main program
calls the function Celsius with the variable degrees as the argu-
ment. When BASIC executes the function Celsius, it substitutes the
value of the degrees in the formula for the parameter x.

| Convert degrees Fahrenheit to Celsius
DO
INPUT “Degrees Fahrenheit: “; degrees
PRINT "That's "; Celsius(degrees) ; " Celsius.”
LOOP
END PROORAM
DEF Celsius(x) = (x-32) *5/9

Figure 11-1. Convert degrees Fahrenheit to Celsius

Defining Your Own Functions

It doesn’t matter where you put the function definitions in your
program. If a function definition is encountered in the flow of
program execution, BASIC jumps around the function definition
and continues executing the next valid program statement. Func-
tion definitions are processed when the program is compiled and
do not need to be executed to become operative.

FUNCTION NAMES

Function names are governed by the same rules as variable names,
including the use of special characters at the end of the name to
indicate the type of the function’s value. The function Celsius, for
example, returns a double-precision real value. If you want it to
return a short integer value, you could add % to make its name
Celsius%. You cannot use the identical name for both a variable
and a function. For safety, you should not use the name of a func-
tion for either a simple variable or an array variable.

When a function or variable name is encountered while execut-
ing your program, BASIC checks whether the name matches a
function. If the name does match, BASIC executes the function. If
there is a variable with the same name as the function, BASIC may
execute the function when you want to access the variable, or it
may store the function result in the variable. In either case, you
will not get the correct result.

PARAMETER PASSING

A function receives information from the rest of your program
through the parameters that are listed in parentheses after the func-
tion’s name. Only one piece of information, the function result, is
passed from the function back to the program that called it.
When you are writing a function definition, you can use the
value of any variable from the calling program, with the exception
of variables with the same name as those appearing in the parame-
ter list. If you use variables that are not parameters, you should
place a comment just after the function definition to remind your-
self that the function depends on variables that are not in the
parameter list. One of the significant benefits of defining your own

161

162 Using Macintosh BASIC

functions is that you can use them in other programs. However, if
your function uses variables that are not parameters, the function
may not work in another program unless that program also sets
the same variables.

Defined functions in Macintosh BASIC can accept any number
of parameters. You specify the data type of each parameter in the
function’s definition by using the appropriate last character for the
parameter’s name. You can, of course, define a function that uses
no parameters. When you use a function in your program, you
will receive an error message if you use an incorrect number of
arguments or if any of the arguments is of a data type that is
incompatible with the corresponding parameter in the function’s
definition.

When BASIC executes a defined function, the values of all the
arguments being passed to the function are copied. Any references
to the parameters from inside the function are to these copies, not
to the original variables in the main program. This ensures that no
program statement inside the function can inadvertently affect the
value of any variables outside the function. The copies are erased
when execution returns to the main program.

MULTIPLE-LINE FUNCTIONS
m FUNCTION, END FUNCTION

Single-line functions can do little more than compute a value and
return. Multiple-line functions, however, can use all of the BASIC
commands. If you redefined the Celsius function from Figure 11-1
as a multiple-line function, it would look like this:

FUNCTION Celsius(x)
Celsius = (x-32)*5/9
END FUNCTION

The definition of a multiple-line function begins with the key-
word FUNCTION, and the first line of the definition contains
nothing else except for the function’s name and parameters. The
last line of a multiple-line function definition is the statement
END FUNCTION. Between these two lines, you can use as many
program statements as you wish. One of those statements must set

Defining Your Own Functions

the function’s name equal to a value. If no statement gives a value
to the function, a numeric function will return 0, a string function
will return the null string, and a Boolean function will return
false.

Figure 11-2 shows a program that uses a multiple-line function.
This function finds the maximum of two numbers. The name of
the function, Max, does not end in a special character so the func-
tion returns a double-precision real number.

The mechanics of the function definition are relatively simple.
The function has two numeric parameters. An IF/THEN/ELSE/
ENDIF statement tests whether the first argument is larger than
the second and sets the value of the function equal to the larger
argument. Note that when you set the value of the function, you
do not include any parentheses or parameters with the function
name on the left of the equal sign.

Multiple-line functions communicate with programs as single-
line functions do. Programs can pass information to the function
through the parameters, and the only value passed back to the call-
ing program is the function result. The function has access to the
calling program’s variables, but not to any variable with the same
name as one of the parameters in the function definition statement.

| Find the maximum of two numbers
DO
INPUT "Please type a number: ";x
INPUT "Please type another: "y
PRINT "The maximum is *; Max(x,y)
LOOP
END PROGRAM
FUNCTION Max(a,b)
IFa>b THEN
Max =8
ELSE
Max = b
ENDIF
END FUNCTION

Figure 11-2. Find the maximum of two numbers

163

164 Using Macintosh BASIC

You can include any legal BASIC statement as part of a
multiple-line function. If the statements in a function definition
print, use sound, store a value in a variable, or write to a file, those
actions will occur every time the function name is mentioned in
the main program.

Getting Out Early
m EXIT FUNCTION

Macintosh BASIC includes an EXIT FUNCTION statement.
When executed, this statement causes an immediate exit back to the
program that called the function. Be sure you set the value of the
function before executing the EXIT FUNCTION statement. If you
do not, the function will return the same value it returned the last
time you called it.

Like the EXIT DO and EXIT FOR statements, EXIT FUNC-
TION can be abbreviated as just EXIT. However, if you use the
short form EXIT inside a DO loop or FOR/NEXT loop, it will
cause an exit from only that loop instead of from the entire func-
tion. To eliminate a source of potential confusion and program
errors, you should always use the long form, EXIT FUNCTION.
Here is an example of an early exit from a function that calculates
the number of hours remaining until midnight:

FUNCTION time.left(hour)

time.left = 0

IF hour > 24 THEN EXIT FUNCTION
time.left = 24 - hour

END FUNCTION

Using Variables in Functions

You can use LET statements and implied LET statements to
assign values to variables inside multiple-line functions. However,
you should be careful. The variables that receive values in the
function affect your main program unless they are listed as
parameters in your function definition statement. Parameters are

Defining Your Own Functions

local to the function; all other variables are global, that is, they
affect other parts of your program.

If your main program uses a variable named x and a function
stores a value in x, the next time the main program uses x it will
be using the value stored by the function. To minimize the likeli-
hood that programs could have variable names identical to those
used by a function, the names of variables used in the functions in
this book will all start with the letter “‘z.” '

Do not make the mistake of using the function name as if it were
a variable name. It is not. Even though you store a value in the
function name (just as you do into a variable name), you should
not try to read that value while still in the function. If you need to
save a value, use a parameter or variable name.

Writing a Recursive Function

A recursive function is a function that calls itself. Sometimes this is
the most concise or clear way to define a particular function. For
instance, the factorial of a number is defined in mathematics as the
number multiplied by all integers smaller than itself down to 1.
The factorial of the number N is N times the factorial of (N—1).
The factorial of three can be expressed as

31 = 3%2
= 3%2x]
= 6

This is the kind of relationship that you can easily define with a
recursive function. Figure 11-3 shows a program that uses a factor-
ial function that is defined recursively. The function and its
parameter are declared as extended-precision because factorials can
be very large numbers.

Note that the definition of a recursive function always contains
actions to be taken in two cases: the recursive case, which is usual-
ly executed, and the non-recursive case, which is executed when the
function reaches its simplest value. If the ending case is not
included in its definition, a recursive function will keep calling
itself and never return to the program that called it. The function

165

166 Using Macintosh BASIC

INPUT a

PRINT factorial\(a)

END PROGRAM

FUNCTION factorial\(x\)

IF x\ > 1 THEN factorial\ = x\ * factorial\{(x\-1)
IF x\ < 2 THEN factorial\ = x\

END FUNCTION

Figure 11-3. Factorial function defined recursively

will keep calling itself until it uses all of the computer’s available
memory or until you grow tired of waiting and stop the program.

Recursive functions provide an excellent way to learn about the
concept of recursion and can provide a reasonably neat and under-
standable way to define some functions. However, recursive func-
tions often require more memory and execution time than simpler
functions.

In order to be recursive, a function must allocate space for copies
of its parameters each time it is called. If the function is called a
hundred times, as the function in the factorial example in Figure
11-3 would be if you typed “101” in response to the prompt, the
recursive function calls would use enough space in the computer’s
memory for 100 copies of the function’s parameters. A function
that calls itself hundreds of times can fill up the available memory
in a hurry.

In addition to causing an Out of Memory condition if the recur-
sive function calls itself too many times, the copying of the func-
tion’s parameters and the overhead involved in repetitively entering
and exiting the function take time. The program in Figure 11-4
uses a FOR/NEXT loop instead of a recursive statement to define a
factorial function. It uses extended precision, just like the program
in Figure 11-3. The recursive function in Figure 11-3 takes well
over five seconds to calculate and print the factorial of 400, while
the non-recursive function in Figure 11-4 takes less than one
second to print the same value.

Defining Your Own Functions

INPUT a

PRINT factorial\(a)

END PROGRAM

FUNCTION factorial\(x\)

Y\ =x\

FOR zindex = x\-1 TO 1 STEP -1
Y\ =W\ * zindex

NEXT zindex

factorial\ = y\

END FUNCTION

Figure 11-4. Factorial function defined with FOR/NEXT loop

SOME EXAMPLE FUNCTIONS

The rest of this chapter provides a series of example functions that
you can use in your own programs. You can keep these and other
functions you write in a special program file on your disk. When
you need one of the functions in a program you are writing, you
can copy it from that “function library” file and paste it into your
program. Let the functions defined here spark your imagination.
You can write a defined function for almost any formula or series
of actions you may need in your programs.

String Functions

You often need to search for one string inside another. Instead of
writing code to do each individual search, you can use the function
InStr, shown in Figure 11-5. This function is similar to the string
search function found in several other versions of BASIC.

The first parameter, startpos%, is an integer that indicates the
character position in the longer string where you will start search-
ing. A value of 1 for startpos% will tell the function to search the
entire string. The second parameter is the string to be searched,

167

168 Using Macintosh BASIC

FUNCTION InStr(startpos® ,string$,lookfor$)
InStr =0
IF LEN(lookfar$) < 1 THEN InStr = startpos®
FOR 2zposn = startpos® TO LEN(string$) + 1 -LEN(lookfor$)
IF lookfor$ = MID$(string$ zposn,LEN(lockfor$)) THEN
InStr = zposn
EXIT FUNCTION
ENDIF
NEXT zposn
END FUNCTION

Figure 11-5. String search function

and the third parameter is the string you want to find. The func-
tion returns the character position at which the string being
sought begins, or zero if that string was not found. The function
call InStr(1,“test.please”,”.”’) returns 5, the character position of
the period in the string ‘“test.please.”

Another common function is one that generates a string of iden-
tical characters such as spaces or asterisks. The function String$ in
Figure 11-6 is a function that fulfills this need. Its arguments are
the length of the string you want and the character it is to contain.

The call String$(5,* ’) returns a string containing five spaces.

FUNCTION String$(length® ther$)
2c$ = LEFT$(char$,1) ! Make sure only one character
zstr$ = *° | Start with empty string
IF length® > O THEN

FOR zcounter = 1 TO length®

zstr$ = zstr§ & zc$

NEXT zcounter
ENDIF
String$ = zstr$
END FUNCTION

Figure 11-6. String$ function

Defining Your Own Functions

DEF area.circle(radius) = P1*radius*radius
DEF circumference(radius) = 2*P1*radius
DEF area.triangle(width,height) = width*height/2

Figure 11-7. Three numeric functions

Numeric Functions

Many short formulas are easily converted into functions. Using the
function name instead of a formula in the main program makes
the logic of the program easier to follow. Figure 11-7 shows three

! Conversion from degrees to radians
DEF radians(degrees) = (P1/180)%*degrees
! Normal trigonometric functions
DEF secant(x) = 1/C0S(x)
DEF cosecant(x) = 1/SIN(x)
DEF cotangent(x) = 1/TAN(x)
DEF arcSin(x) = ATN(X/SQR(1-x*x))
DEF arcCos(x) = 1.5708-ATN(x/SQR(1-x*x))
DEF arcSecant(x) = ATN(x/SQR(x*x-1))+SON(SGN(x)-1)*1.5708
DEF arcCosecant(x) = ATN(x/SQR(x*x-1))+(SON(x)-1)*1.5708
DEF arcCotangent(x) = ATN(x)+ 1.5708
| Hyperbolic functions
DEF sinh(x) = (EXP(x)-EXP(-x))/2
DEF cosh(x) = (EXP(x)+EXP(-x))/2
DEF tanh(x) = EXP(x)/(EXP(x)+EXP(-x))%*2+1
DEF secanth(x) = 2/(EXP(x)+EXP(-x))
DEF cosecanth(x) = 2/(EXP(x)-EXP(-x))
DEF cotangenth(x) = EXP(x)/(EXP(x)-EXP(-x))*2+1
DEF arcSinh(x) = LOB(x+SQR(x*x+1))
DEF arcCosh(x) = LOB(x+SQR(x*x-1))
DEF arcTanh(x) = LOB({ 1+x)/(1-x))/2
DEF arcSecanth(x) = LOB((SQR(1-x%*x)+1)/x)
DEF arcCosecanth(x) = LOB((SBN(x)*SQR(x*x+1)+1)/x)
DEF arcCotangenth(x) = LOB((x+1)/(x-1))/2

Figure 11-8. Useful trigonometric functions

169

170

Using Macintosh BASIC

FUNCTION LeapYear™(year)
IF year MOD 4 = 0 THEN
LeapYear™ = TRUE
ELSE
LeapYear™ = FALSE
ENDIF
END FUNCTION

Figure 11-9. Leapyear~ function

functions that return the area and circumference of a circle and the
area of a triangle.

The only trigonometric functions built into the BASIC language
are sine, cosine, tangent, and arctangent. All of the other trigono-
metric functions can be defined from these four functions and
other predefined BASIC functions. Figure 11-8 gives definitions for
these additional trigonometric functions.

Boolean Functions

When your program needs to take different actions depending on
the result of some test, a Boolean function is often appropriate. For
example, your main program would be much easier to understand
if a test read IF LeapYear~(1983) than if it read IF 1983 MOD 4 =
0. The function LeapYear~ as defined in Figure 11-9 makes the
first phrasing possible.

Defining Your Own Functions

PRACTICE EXERCISES

. Figure 11-1 defines a function that converts the temperature
from degrees Fahrenheit to degrees Celsius. Can you define a
function that converts from degrees Celsius to degrees
Fahrenheit?

. Figure 11-2 defines a function that returns the maximum of
two numbers. Can you write an integer function that returns
the smaller of two integers?

. Write a string function that has one string parameter and
replaces all periods in the string with commas.

. Can you write a recursive function that takes one integer
argument and returns a string of asterisks the length specified
by the argument?

171

Chapler 12
Using Files

Statements:

s OPEN #, CREATE #

INPUT #, LINE INPUT #, PRINT #

READ #, WRITE #, REWRITE #
SET/ASK CURPOS #, SET/ASK HPOS #
SET/ASK EOF #

CLOSE #, CLOSE

Functions:
m TYP (#), ATEOF (#)

Positions:
m BEGIN, END, RECORD, SAME, NEXT

Contingencies:
= IF MISSING~, IF THERE~, IF EOR~, IF EOF~

This chapter describes the BASIC statements that your program
uses to store data in disk files. Before you start to use the com-
mands presented in this or the next chapter, be sure to copy all of

173

174 Using Macintosh BASIC

your important files to a backup disk. Never put a disk with your
only copy of an important file into the disk drive while you are
experimenting with commands that write on disks.

WHAT IS A FILE?

A file is a collection of information arranged in a preestablished
format. Files usually reside on a disk or some other device outside
your machine. The name of each file is stored in a directory on the
disk and is displayed under the file’s icon in the directory window
when you are in the Finder.

The data in some files is subdivided into smaller units called
records. If records are divided into even smaller units, those units
are called fields.

Organization of a File

Macintosh BASIC allows you to organize each file in one of three
ways: as a series of data that is ordered from beginning to end
(sequential), as a sequence of numbered records (random-access), or
as a continuous stream of .data (stream). This chapter describes
sequential and random-access files, which are used to store data.
Stream files are most often used to communicate with another
computer or an external device like a modem or printer. They are
discussed in the next chapter.

A sequential file, sometimes called a serial file, contains infor-
mation stored one byte after another. It is the most common type
of file because its structure is simple. A sequential file structure
contains no gaps in the middle of the stored information, so it is
relatively compact. Figure 12-1 shows the organization of fields
and records in a typical sequential file.

Macintosh BASIC assumes that a file is organized as a sequential
file unless you tell it otherwise. You should use sequential file
organization whenever you plan to read the information in the
same order in which you wrote the information to the file.

A random-access (RECSIZE) file is a sequence of fixed-length,
numbered records. It is called a random-access or relative file
because you can get to any record directly by using its index

Using Files

<--Record =-->|<==----- Record ------ >| <---Record =--->

[| | | |
NV B N S S S S S

Figure 12-1. Fields and records in a sequential file

number. You declare the size of the fixed-length records when you
open the file. The length of the file on disk is always the fixed
length times the number of records in the file, even if all the
records are empty. Figure 12-2 shows the organization of records
and fields in a typical random-access file.

Randome-access files are less compact than sequential files. When
you write information to a record, Macintosh BASIC always writes
the full length of the record, padding it with ASCII 0 characters if
necessary. In addition, if you write a record with an index number
past the end of the file, Macintosh BASIC creates empty records to
fill the gaps in the file. For example, if the last record in your file
is record 3 and you write record 50, Macintosh BASIC creates
empty records for records 4 through 49. Random-access files are
appropriate when you need instant access to information in any
part of your file.

Macintosh BASIC uses a file pointer to keep its place in each
sequential or random-access file. The pointer tells BASIC where in
the file the next read or write operation is to take place. Macintosh
BASIC updates the pointer after each operation; it also provides

Field 1' Field2 'Field 3 Field 1’ Field2 'Field3

Figure 12-2. Fields and records in a RECSIZE file

175

176 Using Macintosh BASIC

33 3237 36 37 0D |]
‘3276 7 RETURNY

Figure 12-3. TEXT data format

commands that let you change the pointer if you want to move to a
different place in the file for your next operation.

Types of Data in Files

Files differ from each other in the type of data they hold. The two
major types of file data are text (TEXT) and binary (BINY).
Macintosh BASIC assumes you want a file to hold text data unless
you tell it otherwise. Figure 12-3 shows a short text file that con-
tains the integer 32767.

Text data in a file is made up of any series of characters. Each
character is stored in the file as an ASCII code, so each character
takes one byte of storage space. A text file may be subdivided into
records and fields. Records are separated from each other by car-
riage return characters, ASCII 13. Fields within records are separ-
ated from each other by commas or Tab characters, ASCII 9. When
calculating the length of a file or record, you need to remember
that the Tab and carriage return characters occupy a byte each time
they occur.

Binary (BINY) data is a series of bytes. When BASIC writes to a
binary file, data from the Macintosh’s internal memory is copied to
the file without any field or record markers. You are responsible
for keeping track of the types of the variables from which the
information comes. You can read information from the file into

- any type of variable, but it won't make any sense unless you read it
into the same type of variable from which it came.

Figure 12-4 shows a short binary file that contains the integer
32767. Binary data is usually more compact than text data, so it

Using Files

{7 |

2-byte binary representation of 32767

Figure 12-4. BINY data format

usually takes less time to read or write a binary file than a text file
with the same amount of information. When you write a variable
to a binary file, BASIC copies the variable exactly as it is stored in
memory. In text format, the number 32767 occupies five bytes, one
for each character, as shown in Figure 12-3. In binary format, the
same number occupies only two bytes if it is stored in an integer
variable. You can use a binary file whenever you have information
of a fixed length that you want to store in a compact fashion.

A DATA type file is a special kind of binary file with a one-byte
code before each item. The code is called a type tag, and its value
identifies the type of variable for the next item in the file. Except
for the fact that you can examine the type tag to learn what type of
value is stored next, you handle DATA files just like BINY files.
You can use a DATA type file any time you can use a BINY file.
Figure 12-5 shows a DATA file that contains the integer 32767.

[80 |7 Fr|

Type 2-buyte binary representation of 32767
tag

Figure 12-5. DATA data format

177

178 Using Macintosh BASIC

CREATING A FILE

Macintosh BASIC lets you create a file or using an existing file. In
order for you to be able to write or read information to and from
the file, the file must be open. Opening a file is analogous to open-
ing the drawer of a file cabinet and pulling out a folder. In this
section you will see how to create a file and open it for use by your
program.

Communications Channels

When you open or create a file, Macintosh BASIC establishes a
communications channel between your program and the file. Each
communications channel has a number, which you assign when
you open the channel. You use the channel number to identify the
file in every program statement that gets information from the file
or sends information to it.

You can have as many as seven channels to different files open at
the same time. You give each channel a number from 1 to 32767.
Channel 0 is reserved for input from the Macintosh keyboard and
output to your program’s output window. It is always open and
does not count as one of your seven channels.

File Names

File names can be 63 characters long. You can use any printable
character except the colon (:) in the name of a file. When looking
for a file name, Macintosh BASIC ignores any differences between
upper- and lowercase letters.

Files are organized into groupings called volumes. Each diskette
contains one volume. The volume’s name is the title that appears
under the diskette’s icon on the desktop. The files on larger storage
devices, such as hard disks, may be divided among several volumes.
A volume name can be 27 characters long and can contain any
printable character except the colon. You can include the name of
the disk volume on which the file is located as the first part of a
file name if you wish. If you do include the volume name, use a
colon to separate the volume name from the file name.

Using Files

Here are some example file names:

theFile
Volumel:theFile
master file

Opening a File
m OPEN #, CREATE #

The OPEN# and CREATE# commands open files. OPEN# opens a
file that already exists, and CREATE# opens a new file. The two
commands use the same syntax:

OPEN #channel : "filename” | Opens existing file
CREATE #channel : "filename” ! Opens new file

Follow the word OPEN or CREATE with a space, the # sign,
and a channel number. The channel number can be a number, a
numeric variable, or a more complicated numeric expression. You
use a colon after the channel number and then supply the file’s
name. The file name can be a string literal or a string expression.

The OPEN# and CREATE# statements establish a communica-
tions channel to a file and set the characteristics of both the chan-
nel and the file. After the file name you may include optional key-
words to set the file’s organization, the type of data, and the
direction of information flow in the channel. Each optional key-
word that you use is preceded by a comma. You can use optional
keywords in any order.

The optional keywords for the file’s organization are SEQUEN-
TIAL, RECSIZE, and STREAM, which correspond to the three
ways of organizing a file that were discussed earlier in this chapter.
(Stream files are discussed in the next chapter.) When you specify a
randome-access file, you declare the size of the fixed-length records
by putting the length just after the keyword RECSIZE. The
optional keywords for type of data are TEXT, BINY, and DATA,
which correspond to the types of data described earlier in this
chapter. If you do not specify the type of data, Macintosh BASIC
opens the file as a sequential file holding text data.

179

180 Using Macintosh BASIC

OPEN #1: "theFile”, SEQUENTIAL, TEXT

OPEN #33: “old file", RECSIZE 40, BINY

CREATE *9: "new file” ! Assumes sequential text
OPEN #8: "reading file” | Assumes input sequential text

The direction of information flow in each communications
channel is set when you open the channel. You can set the channel
to allow your program to read or to both read and write. The key-
word INPUT sets the channel to read only. The keywords OUTIN
and APPEND set the channel to handle information flow in both
directions. If you do not use an access keyword, Macintosh BASIC
opens the file with access INPUT.

The access keywords also determine the initial setting of the file
pointer that BASIC uses to keep its place in each file. INPUT and
OUTIN set the file pointer to the beginning of the file. APPEND
sets the file pointer to the end of the file, which is where you want
it if you are going to add more information to an existing sequen-
tial file.

OPEN #1: "theFile", SEQUENTIAL, TEXT, APPEND

OPEN #33: "old file", RECSIZE 40, BINY, OUTIN
CREATE #9: "new file", APPEND ! Assumes sequential text
OPEN #8: "reading file" ! Assumes input sequential text

READING AND WRITING FILES

Macintosh BASIC provides two sets of commands that transfer
information between a file and your program. You use INPUTH#,
LINE INPUTH#, and PRINT# with text data (of type TEXT). You
use READ#, WRITE#, and REWRITE# with binary data (either
BINY or DATA type).

Reading Information From a Text File
m INPUT #, LINE INPUT #

INPUT# works like the INPUT command that handles the text
you type on the keyboard. After the word INPUT, a space, and the
sign you supply the channel number that you assigned to the file

Using Files

in the OPEN# statement, followed by a colon and then the name of
the variable that is to receive a value. You can list more than one
variable in a single INPUTH# statement if you separate the variable
names by commas.

INPUT #8: itam1
INPUT #8: item1, item2, item3$

As with the regular INPUT statement, the types of variables you
list must match the data being input or BASIC will generate an
error message. The INPUT# statement fills one variable from each
field in the file. Fields end with commas, Tab characters, or Return
characters.

As it fills each variable, Macintosh BASIC advances the file
pointer to the beginning of the next field in the file. When it has
filled all the variables listed in an INPUT# statement, Macintosh
BASIC checks whether the file pointer is at the beginning of a
record. If the pointer is not already at the beginning of a record,
Macintosh BASIC moves the file pointer to the beginning of the
next record in the file unless the input list ends with a comma. (If
the list ends with a comma, Macintosh BASIC leaves the file point-
er in its current position.) If an INPUTH# statement tries to read
values past the end of a record or past the end of a file, Macintosh
BASIC generates an error message.

LINE INPUTH# is very similar to INPUTH#. After the # sign you
supply the channel number you assigned to the file in the OPEN#
statement, followed by a colon and then the name of the variable
that is to receive a value. The LINE INPUT# statement can con-
tain only one variable name. Each LINE INPUTH# statement reads
an entire record, including any commas and Tab characters it may
contain,

LINE INPUT #8: line1$

Putting Information in a Text File
m PRINT #

To add information to a text file, use the keyword PRINT followed
by a space, the # sign, the file’s channel number, and a colon. The
rest of the PRINTH# statement is the same as the PRINT statement

181

182 Using Macintosh BASIC

that displays information in your program’s output window. In
fact, the PRINT statement is just a PRINT# statement that always
sends its information to channel 0.

PRINT #1: item1
PRINT #1: item1 ,item2,item3$
PRINT #1: "Input sees this";" as one string.”

In the standard PRINT statement, you use a comma to move
across the screen to the next tab setting. When the PRINT# state-
ment encounters a comma, a Tab character (ASCII 9) is stored in
the file and becomes a field separator. The field separator is used
by subsequent INPUT# statements to separate the items being read
from the file. Just as an extra comma in a PRINT statement skips
an extra tab field in the output window, an extra comma in a
PRINTH# statement creates an extra empty field in the file.

You use semicolons to separate items in a PRINT statement list.
Just as a semicolon in a regular PRINT statement does not write
any characters to the output window, a semicolon in a PRINT#
statement does not send any characters to the file. Thus, if you
print two items separated by semicolons, there will be nothing in
the file to separate them. A subsequent INPUT# statement will
attempt to read these two items as a single item.

If you end a PRINT# statement with a comma or a semicolon,
the current record will remain open, and the next PRINTH# state-
ment will add to the same record. If the PRINT# statement does
not end with a comma or semicolon, Macintosh BASIC sends a
carriage return character to end the record. If your file was opened
as a RECSIZE file, BASIC generates an error message if a PRINT#
statement tries to output more text than will fit in a single fixed-
length record.

When you send information to a file that already contains
information, you need to be aware of the location of the file
pointer. When you open a file with access OUTIN, the file pointer
is at the beginning of the file. If you print text without moving the
file pointer from the beginning of the file, you will overwrite the
existing information. It is much safer to open the file with access
APPEND, which puts the pointer at the end of the file where it is
safe to add information.

Using Files

Reading and Writing Binary Information
m READ #, WRITE #, REWRITE #

READ# is used instead of INPUT# to read binary information.
WRITE# and REWRITE# are used instead of PRINT# to write
binary information. You can use WRITE# to send BINY or DATA
information to a sequential file or to write a new random-access
record. You use REWRITE# to write to a previously written
random-access record. If you have several values to read or write,
you separate the items in' the value list with commas. The number
of bytes taken from or sent to the file matches the number of bytes
occupied by the type of variable used.

READ #33: item1 | Reads 8 bytes (double precision)

READ #33: item 1% ,item2% ! Writes 4 bytes (2 for each integer)
WRITE #33: item1\,item2%8 ! Writes 12 bytes (10 extended, 2 integer)
REWRITE #33: item1 ! Writes 8 bytes (double precision)

When you are working with a random-access file, you must use
WRITE# only for new records and REWRITE# to replace the
information in existing records. WRITE# gives an error if you try
to use it on an existing record, and REWRITE# gives an error if
the record is not already there. Macintosh BASIC makes this dis-
tinction to protect you from inadvertently overwriting existing
information. Each WRITE# or REWRITE# statement in your
program writes a separate record to the file unless you end the
statement with a comma. When you end your WRITE# or
REWRITE# statement with a comma, you keep the current record
open, and the next WRITE# or REWRITE# statement will add to
the same record.

DATA Type Binary Files
m TYP(#)

The DATA type file contains binary data with a special one-byte
type tag before each value to indicate the type of variable from
which it came. If you use the DATA format in a random-access file,
remember to allow an extra byte for each value’s type tag. The

183

184 Using Macintosh BASIC

Table 12-1. DATA File Type Tags

Type Tag Type of Data Symbol Number of Bytes

0 Integer % 2

2 String $ length+2

4 Extended-precision real \ 10

5 Single-precision real | 4

6 Double-precision real (none) 8

7 Computational # 8

(long integer)
12 Boolean ~ 1
13 Character © 1

possible values for type tags and the corresponding variable types
are listed in Table 12-1. Each record in a DATA type file ends with
an ASCII 0.

You can use a DATA file in the same way you use a BINY file.
Use the READ# command to read data from the file and the
WRITE# and REWRITE# commands to write data to the file. The
only difference is that with a DATA file Macintosh BASIC checks
the type tags against the variable names when reading data and
generates a type mismatch error if the types do not match. You can
use this type checking to help find subtle programming errors.

DATA type files can also be used in a more sophisticated way to
allow different types of data to be mixed together in the same file
without a predefined ordering. You could store each different type
of data in a different type of variable. When you write to the file,
each type of data would have its own unique type tag.

When you read data from such a file, you need to look at the
type tag before reading each item to find out which kind of data it
contains. You use the TYP function to do this. TYP is followed by
parentheses containing the # sign and the channel number. It
returns the type tag number for the next value in the file. The TYP
function returns a value of —1 if the file pointer is not pointing to
a type tag (this happens at the end of a random-access record or at
the end of the file). You can use an IF or CASE statement to check

Using Files

the type tag and read the value into a variable of the appropriate
type.

IF TYP(#33) = -1 THEN PRINT “Out of data"
IF TYP(#33) = 12 THEN READ #33; Boolean™
SELECT CASE TYP(#33)

CASE 0: READ #33: integer %

CASE 2: READ #33; string$
END SELECT

CHANGING POSITION IN A FILE

You can change the position of the file pointer at the beginning of
any of the input or output statements. As an example, the format
of an INPUTH# statement that positions the file pointer looks like

INPUT #1, position : variable$

where position is one of the positioning keywords described in the
following sections. Macintosh BASIC repositions the file pointer
before it executes the input or output command. You can move the
file pointer in any sequential or random-access file.

Moving to the Beginning or End
s BEGIN, END

BEGIN and END can be used with any command that sends or
receives information through a channel. BEGIN moves the file
pointer to the beginning of a file, and END moves the pointer to
the end of a file. BASIC moves the file pointer as specified before it
executes the rest of the program statement.

INPUT #8, BEGIN: item 1
PRINT #1,END: item1, item2

BEGIN is most commonly used in INPUT#, LINE INPUTH#, or
READ# statements to reread a file from the beginning. END is
most commonly used in PRINT# or WRITE# statements to add to
a file after reading part of its contents.

185

186 Using Macintosh BASIC

Choosing a Record in a Random-Access File
s RECORD

RECORD is used only with random-access (RECSIZE) files. You
use it in file-handling statements the same way you use BEGIN
and END. RECORD, followed by the index number of a record,
positions the file pointer to the beginning of that record. Calculat-
ing a record number and using it with RECORD is the normal
way to find a record in a random-access file.

READ #33, RECORD 17: item 1
REWRITE #33, RECORD 17: item3

Choosing a Specific Record
s SAME, NEXT, SET/ASK CURPOS #

SAME moves the file pointer back to the start of the most recently
referenced record. If the file pointer is not already at the beginning
of a record, NEXT moves it to the beginning of the next record.
NEXT does not move the file pointer if it is already at the begin-
ning of a record. You use SAME and NEXT in file-handling
statements the same way you use BEGIN and END.

READ #33, SAME: item 1 ,item2
REWRITE #33, SAME: item 1 ,item3
READ #33, NEXT: item 1

You can find out the present location of the file pointer by using
the ASK CURPOS followed by a space, the # sign, the file’s chan-
nel number, a comma, and a numeric variable name. The SET
CURPOS# command provides an alternative way to move the file
pointer. Both of these commands are used in separate program
statements, not in the file-handling statement. CURPOS is short
for CURrent POSition. CURPOS for a random-access file is the
index number of the current record; for a sequential file, it is the
byte position in the file, with the first byte located at position 0.
You can use SET CURPOS# only if the file’s channel is set for
access OUTIN or APPEND.

ASK CURPOS #33, variable
SET CURPOS #1, byte

Using Files

Locating Data Within a Record
m SET/ASK HPOS #

HPOS# is the character position within a file record. The first
character in a record is in position 0. SET HPOS# is only useful
when you have fields of known length inside the records of a
random-access file and you want to access a field without reading
all the fields that precede it. Follow SET HPOS with a space, the #
sign, the channel number, a comma, and the number of the char-
acter position you want to set. You can use SET HPOS# only if the
file’s channel is set to allow output (access OUTIN or APPEND).
ASK HPOS is followed by a space, the # sign, the file’s channel
number, a comma, and the name of the numeric variable in which
you want Macintosh BASIC to store the HPOS value.

ASK HPOS #33, byte
SET HPOS # 1, byte

Length of the File
m SET/ASK EOF #

You can use EOF# to obtain or set the length of a file. The Key-
word EOF is followed by a space, the # sign, and the number of an
open channel. With ASK EOF#, you follow the channel number
with a comma and a numeric variable name. With SET EOF, you
follow the channel number with a comma and a numeric expres-
sion for the new file length. When you want to change the length
of a file, you will first need to use ASK EOF# to get the current
length of the file and then use SET EOF# to set the new length.

ASK EOF #33, records
SET EOF #33, records-1 ! Cuts off last record

The length of a sequential file is the number of characters or
bytes in the file. The length of a random-access file is the number
of records in the file. If you use a number smaller than the current
file length with SET EOF#, you will truncate the file and lose all
the information after the new file ending. If you use a higher
number, you lengthen the file. You can only use SET EOF# if the
channel to the file was opened with access OUTIN or APPEND.

187

188 Using Macintosh BASIC

CHECKING FOR SPECIAL CONDITIONS

You can specify an action for Macintosh BASIC to take if certain
special conditions, called contingencies, arise during file opera-
tions. This allows your program to retain control instead of having
BASIC generate an error message and stop the program.

To specify a contingent action in a file-handling statement,
insert a comma, the test for the contingency, and the statement to
be executed if the test is true just before the colon. The format of
the contingency test in READ# and WRITE# statements looks like
this:

READ #1, IF contingency THEN statement: income$
WRITE #38, position, IF contingency THEN statement: outgo$

The statement to be executed if the condition is true must be a
single Macintosh BASIC statement. The only colon in the pro-
gram line should be the colon before the beginning of the values
list.

If you are setting the file pointer and testing for a contingency,
the contingency should be second, since that is the order in which
they are executed. Macintosh BASIC first executes any positioning
keyword, then checks the contingency, and finally performs the
input or output operation. If you have more than one value or
variable listed after the colon, BASIC checks the contingency
before each individual input or output operation. If the contin-
gency test is true, BASIC executes your contingency statement,
skips the rest of the input/output statement, and continues with
the next program statement. None of the contingencies are used
with PRINTH.

Conditions Related to Records
a IF MISSING~, IF THERE~

IF MISSING~ and IF THERE~ are contingencies that test
whether a value is present in the field or record pointed to by the
file pointer. You use IF MISSING~ with INPUTH#, LINE INPUTH#,
READ#, and REWRITE# to check whether the field or record
required by the file statement is missing. You use IF THERE~

Using Files

with WRITE# to prevent WRITE# from overwriting existing data.
These two tests cannot be used with a BINY sequential file because
that kind of file does not contain identifiable fields or records.

READ #33, IF MISSINO™ THEN PRINT “Help!": item
WRITE #33, IF THERE™ THEN CALL DoRewritelnstead: item
| Read a whole text file
DIM item$(size)
DO
INPUT # 1, IF MISSINO™ THEN EXIT DO: item$(i)
i=i+]
LOOP

Checking for End of Record
m [F EOR~

IF EOR~ tests whether the file pointer is located at the end of a
record. You can use it with INPUT# or READ#. You cannot use IF
EOR~ with LINE INPUT#. LINE INPUT# always reads an entire
record and always leaves the file pointer at the beginning of the
next record.

READ #33, IF EOR™ THEN 60SUB HandleError: item 1

Checking for End of File
m [F EOF~, ATEOF~(#)

IF EOF~ is used with INPUT#, LINE INPUT#, READ#, and
REWRITE# to check for an end of file error before performing the
input or output operation. If the file pointer is at the end of the
file, your contingency statement is executed.

LINE INPUT #1, IF EOF™ THEN 60SUB FileEnd: line$

ATEOF~ is a Boolean system function. Unlike all the other con-
tingencies described in this section, ATEOF~ can be used in any
program statement except file-handling statements. ATEOF~
returns TRUE if the file pointer is at the end of the file and

189

190 Using Macintosh BASIC

FALSE if it is not. ATEOF~ takes one argument, the channel
number of the file to be tested, in parentheses with the # sign.

IF ATEOF~(#*1) THEN PRINT "Done.”

PUTTING FILES AWAY
m CLOSE #, CLOSE

CLOSE, followed by a space, the # sign and a channel number,
closes the file, updates the file on the disk if it has been changed,
updates the disk directory, and releases the channel. You can close
all your open files and channels at once by using CLOSE with no
channel number. BASIC does not close channel 0 (input from the
keyboard and output to the output window). To reuse a closed file,
open it again with another OPEN statement.

CLOSE #1 | Closes channel 1
CLOSE | Closes all open files

EXAMPLE PROGRAM

The Note Pad desk accessory is handy for keeping lists. Sometimes
it would be handier, however, if you could read the entire contents
of the Note Pad into another program all at once instead of cutting
and pasting it one page at a time through the Clipboard. The
example program in Figure 12-6 makes this possible.

The Note Pad desk accessory stores the information you type in
a separate file named the Note Pad File. The icon for this file is
usually located in the System Folder in your directory window.

The Note Pad File has a slightly unusual organization, which
does not exactly match either the SEQUENTIAL or the RECSIZE
formats used by Macintosh BASIC. The Note Pad File contains a
record 256 bytes long for each of the Note Pad’s eight pages. Each
record contains everything you have typed on the corresponding
page of the Note Pad, including any Returns or other unusual
characters. A byte containing the ASCII code 0 is stored in each
record just after the end of the valid information.

Using Files

1 Note Pad Copler

Figure 12-6. Note Pad copier

The program in Figure 12-6 copies the Note Pad File to a regu-
lar sequential text file. When it starts, the program asks you to type
the name of the file you want to create to hold the copy of the Note
Pad File. The program then opens the Note Pad File as a random-
access file with 256-byte records containing TEXT data. The pro-
gram uses a CREATE statement to open your output file so you
will not destroy any existing file with the same name. It uses access
OUTIN because you will put information into the file.

The statements inside the FOR/NEXT loop are executed once
for each of the Note Pad’s eight pages. The LINE INPUT#1
statement positions the file at each page’s record (the record
numbers start at 0, so the record is one less than the page number)
and then reads the entire record into the string variable line.

The program then uses a FOR/NEXT loop to look at each
character starting at the beginning of the string in line§. When the

191

192 Using Macintosh BASIC

0 that indicates the end of the valid information is found, the pro-
gram truncates the string in linef at that point and executes the
PRINT #2 statement.

The PRINT #2 statement puts the entire string in linef into
your copy file. Note that the LINE INPUT# statement reads the
entire 256-byte RECSIZE record into the string variable line§, no
matter what that record contains. In fact, the variable will include
everything you typed on that page, including the carriage return
characters that mark the end of a line. The PRINT# statement
writes all of these characters to the sequential text file. When you
read the sequential text file later with LINE INPUT# statements,
the carriage return characters will cause Macintosh BASIC to put
each line from the Note Pad into a separate variable.

Using Files

PRACTICE EXERCISES

. What statement wonld vou use to oper a channel to add
information at the end of an existing sequential text file
named “‘gift list”’?

. How would you open a new random-access file named “new-
file” with text records 30 characters long?

. How wonld you get the value of ar: “tcger named integer%
and a string named string$ from record 23 of a binary REC-
SIZE file named ‘‘datafile”’?

. Can you write a loop that searches for and reads the first
record that begins with a string in a DATA RECSIZE type
file? Assume the file is connected to channel 12 and was
opened for access OUTIN.

193

&ﬂa,oﬁ}» 73

Files, Volumes, and Devices

Commands:

s RENAME, DELETE, LOCK, UNLOCK
m GETFILEINFO, SETFILEINFO

s SETVOL, EJECT, GETVOLINFO

s DEVCONTROL #, DEVSTATUS #

Functions:
m GETFILENAMES, GETVOLNAME

Devices:
m .AIN, .AOUT, .BIN, .BOUT, .SOUND, .PRINTER

This chapter describes how you use Macintosh BASIC to manipu-
late whole files and the volumes on which files are stored. It also
shows how you can use the file-handling commands to open
channels and communicate with physical devices like printers and
modems attached to the ports on the back of your Macintosh.

195

196 Using Macintosh BASIC

OPERATIONS ON FILES

Macintosh BASIC makes it very easy to perform operations like
renaming and deleting files from a BASIC program. In addition to
those operations, you can get a list of all the files on a disk volume,
move a file from one Macintosh application program to another,
and change some of the file information that the Finder keeps.

Renaming a File
= RENAME

You can change the name of a file by using the RENAME com-
mand followed by the name of the existing file, a comma, and the
new name for the file. Both names can be string literals, string
variables, or string expressions. If the new file name is already
being used, BASIC generates an error and does not rename the file.

RENAME "o0ld", "new" ! Changes the name of file “old" to "new"

Deleting a File
m DELETE

The DELETE command followed by a file name removes the file
with that name from the disk or volume directory. The file name
can be a string literal, variable, or expression. BASIC generates an
error if it cannot find the file.

DELETE “oldfile" ! Throws oldfile away

When it executes the DELETE statement, Macintosh BASIC
deletes the file immediately. You do not get a chance to change
your mind, as you do in the Finder. BASIC’s DELETE command
is the same as putting the file in the trash and emptying the trash
all in a single statement. BASIC does not provide any way to recov-
er a deleted file. The only files you are likely to delete from within
a program are temporary files that the program creates.

Files, Volumes, and Devices

Locking and Unlocking Files
m LOCK, UNLOCK

Locking a file is a way to protect it from being destroyed inadvert-
ently. You can lock a file from the Finder by selecting the file’s
icon, choosing Get Info from the File menu, and clicking on the
box labeled Locked. Once you lock a file that way, the Finder will
not let you put the file in the trash unless you unlock the file first.
However, that method of locking a file does not prevent you from
changing the file by writing in it.

BASIC provides an even better way to lock a file. When you lock
a file from BASIC, you cannot throw the file in the trash from the
Finder, delete the file from a BASIC program, or write anything
into the file from a BASIC program. Locking a file prevents you
from executing operations that might destroy or change the infor-
mation in the file. You can still open, read, and copy a locked file
just as you would any other file.

To lock a file from BASIC, just use the keyword LOCK followed
by the name of the file. To unlock the file, use the word UNLOCK
followed by the file name. The file name can be a string literal,
string variable, or string expression.

LOCK “file1" ! Locks the file named filel

LOCK a$! Locks the file whose name is in a$
UNLOCK “file1” ! Unlocks the file named file1
UNLOCK a$! Unlocks the file whose name is in a$

If you want to change the status of a file from the keyboard
while you are running Macintosh BASIC, you can type the LOCK
or UNLOCK command in an untitled program window and run it
without affecting anything else.

If you open a locked BASIC program file and make changes in
the program, you cannot save the changes in the same file until
you unlock it. This allows you to protect the master copy of your
program. You can, of course, select Save a Copy In to save the
changed version of the program in another file.

197

198 Using Macintosh BASIC

Listing Existing Files
s GETFILENAMES

GETFILENAMES is a string function that returns the name of a
file. The most common uses of GETFILENAMES$ are to list the
files on a volume and to search for a file with a particular name.
GETFILENAMES takes one argument, which is a number rang-
ing from 1 to the number of files in the volume directory. GET-
FILENAMES returns an empty string if you give it an argument
that is larger than the number of files.

filename$ = GetFileName$(count)
PRINT OetFileName$(1)

The matching between numbers and file names is quite arbitrary
and does not always stay the same. The order of the files can
change whenever your program executes a CREATE, RENAME, or
DELETE statement.

Since GETFILENAMES$ returns an empty string when its
argument exceeds the number of file names, you can obtain the
names of all the files on a volume by starting with GETFILE-
NAME$(1) and incrementing the argument by 1 until the function
returns an empty string. When you get the empty string, you have
obtained the names of all files on that volume. The program in
Figure 13-1 lists all files on the current volume.

| Display List of Files on Disk
Do

file$ = GetFileName$(count)
IF file$ =" THEN EXIT DO
PRINT file$
count =count + 1|
LoOOP
END PROGRAM

Figure 13-1. Display list of files on disk

Files, Volumes, and Devices

Getting Information on a File
m GETFILEINFO

GETFILEINFO obtains information that the Macintosh operating
system keeps about a file and places that information in 48 consec-
utive bytes in memory. You reserve space for the information by
dimensioning an array large enough to hold the 48 bytes. Integers
occupy two bytes each, so an integer array with a dimension of 23
is large enough if you use the Oth element.

You follow GETFILEINFO with the name of the file, a comma,
the @ sign, and the name of an array element. The Oth element of
the array is frequently used as the beginning of the storage area,
but that is not required. You must, however, have at least 48 bytes
in the array.

The @ sign creates a pointer that gives the GETFILEINFO rou-
tine the address of the array element. A thorough discussion of
pointers is contained in Chapter 19. For now, you can think of the
@ sign followed by the array element as meaning “put the infor-
mation into memory starting with the address of the specified array
element.”

DIM a®(23) | Integer array with 48 bytes
GETFILEINFO "whatfile", @a%(0)

The block of data stored in the 48-byte area by GETFILEINFO
actually contains several different data types. GETFILEINFO puts
information there as a single block of binary data, and you have to
do the calculations necessary to get each part of the data into a
usable form. The array you dimension to reserve space can actually
be of any variable type, but you can retrieve and interpret the data
most easily if you use an integer array. Table 13-1 lists the contents
of the data block with the number of bytes occupied by each item.

The program in Figure 13-2 decodes and displays the informa-
tion in the GETFILEINFO data block. In addition to displaying
the information, the program in Figure 13-2 serves as an example
of a way to extract information from the data block so you can use
it in your BASIC programs.

The first two items of information about each file are its file type
and creator. These are codes made up of four letters. File types and
creator codes are discussed in detail later in this chapter.

199

200 Using Macintosh BASIC

Table 13-1. GETFILEINFO Information

Byte Length
Offset (bytes) Description
0 4 File type
4 4 Creator
8 2 File attribute flags
10 2 Icon’s vertical location
12 2 Icon’s horizontal location
14 2 Folder class code
16 4 * File number in directory
20 2 * Block number on disk where data starts
22 4 * Data logical EOF — (same as ASK EOF(#)
26 4 * Data physical EOF (actual file length)
30 2 * First block in resource fork
32 4 * Logical EOF of resource fork
36 4 * Physical EOF of resource fork
40 4 Date and time file created
44 4 Date and time file modified

* Items marked with asterisks cannot be changed with SETFILEINFO.

! Dlsplay GetFllelnfo lnformatwn

DIMag(23)

'INPUT "Get infoon what file . file$

OI.EARWINDOW
« PRINT "Flle i flle$

OE'I'FII.EINFO flle$ @a%(0)

PRINT. “Ffle type ”; Letters4$(0)

PRINT *, Creetur" - Letter34$(2)

PRINT "File attributes word is *; Num2(4)
IF LOBB(Num2(4)) =15 THEN PRINT " 'The file is locked."
IF (Num2(4) DIV 16384) MOD 2 = 1 THEN PRINT “ Thefile is invisible.”

Figure 13-2. Display GetFileInfo information

Files, Volumes, and Devices

PRINT "icon location:”
PRINT " Vertical *; a®(S);
PRINT “, Horizontal *; a%(6)
- PRINT “Folder code "; a%(7);
SELECT CASE a%(?)
CASE < 0: PRINT " (on the dwktop)
* CASE = 0: PRINT " (indirectory window) "
GASE > 0: PRINT " (in a folder)”
“'END SEI.EOT
. PRINT “File number “; Num4(8)
. PR’I‘N,T»" ‘Data starts at block *; Num2('10)
“. . PRINT "Data logical EOF is *; Num4(11)
_ PRINT, "Data actual EOF is *; Num4(13)

- PRINT "Resources start at block *; Num2(15)
__ PRINT “Resources logical EOF is “; Num4(16)
~ PRINT “Resources physical EOF is “; Num4(18)

" PRINT “File Creation *; Num4(20) :
. PRINT “File Modlfieatlon ; Num4(22);
END PROBRAM
- FUNCTION Letters2$(first)
~ Letters2$ = CHRS$(a®(first) DIV 256) & CHR$(a® (first) MOD 256)
_END FUNCTION
- FUNCTION Letters4$(first)
~ Letters4$ = Letters2$(first) & LettersZ$(first+ 1)
END FUNCTION
_ FUNCTION Num4(first)
_ Num4 = Num2(first) * 65536 + Num2(first+ 1)
¢ ’END FUNCTION :
FUNCTION Num2(first)
- IF a®(first) <O THEN
" Num2 =8®&(first) + 65536
~ELSE Num2 = a®(first)
- ENDIF
- END FUNCTION

Figure 13-2. Display GetFileInfo information (continued)

After the file type and creator code, the data block contains two
bytes that contain coded information about the file.This coded
information is technically referred to as the file attribute flags.

201

202 Using Macintosh BASIC

Only two pieces of this information are very useful to the BASIC
programmer. One piece tells you whether or not the file was locked
from the Finder. The other useful piece of coded information tells
you whether the file is an invisible one. When a file is marked as
invisible, the Finder does not display any information about it and
will not open it. The DeskTop file, whose name often appears as
the result of the function call GETFILENAMES$(1), is an example
of an invisible file.

The next two fields of the data block are the vertical and hori-
zontal coordinates of the file’s icon in the directory window. The
top left corner of the directory window is (0,0), and the coordinates
increase as the icon moves down and to the right. If the file is
located in a folder, the coordinates correspond to the icon’s location
in the folder’s directory window.

The sixth field is the file’s folder class code. If the folder class
code is 0, the file is located in the main directory window. If the
folder class code is less than zero, the file’s icon is located on the
desktop, not in any window. If the folder class code is greater than
zero, the file 1s in a folder, and the code is the number of the folder
in which the file is located. Folder numbers seem to be assigned at
random; however, all the files in a single folder have the same
folder number.

The next field in the data block is the file’s number in the
volume directory. This number corresponds to the argument for
GETFILENAMES. If you supply the file number as an argument
to GETFILENAMES, you get the file’s name.

After the file number there are three fields that describe the loca-
tion and length of the file’s data on the disk. The first field indi-
cates the location on the disk where the file’s data starts. The next
field gives the total length of the data, that is, the position of what
is called the logical end of file. This number is the same number
you retrieve with the ASK EOF# statement. The third field con-
tains the total amount of space on the disk reserved for the file’s
data, which corresponds to the position of the physical or actual
end of file. Disk space is allocated in 512-byte blocks. If the logical
end of file is not an integer multiple of 512, the physical end of file
will be the next higher integer multiple of 512.

The next three fields contain the first disk location, the position
of the logical end of file, and the position of the physical end of
file for the file’s resource fork, the hidden portion of a file used by

Files, Volumes, and Devices

the operating system. You will not need this information unless
you are making very sophisticated use of the Macintosh toolbox
routines described in Part Four of this book. Resources are de-
scribed in Chapter 23.

The last two fields contain the raw data from which the Finder
calculates the dates and times the file was created and last modi-
fied. Each of these fields contains a large positive integer. The in-
teger is the ni -~ ber of seconds between the creation or modifica-
tion time and 12:00 A.M. January 1, 1904.

File Types and Creators

The file type and creator codes you can read with GETFILEINFO
connect data files with the application programs that created them.
Each application program has a unique four-letter creator code
assigned to it by Apple. This creator code is contained in the cre-
ator field of the application program file and in all the files the
program creates.

When you work with file types and creators, be sure to copy
upper- and lowercase letters exactly. For two file types or creators
to be equal, the case of each letter must match exactly. The file
type “TeXT”, for instance, is not the same as the file type
“TEXT”, because the first type contains a lowercase “‘e.”

The Finder uses the creator codes to determine which icon shape
to display for each file. The Finder also uses the creator code when
you open a data file to determine which application program to
load with the file. You can change a data file’s icon and the appli-
cation program that is loaded with it by changing the creator field.
You should never change the creator field of an application pro-
gram file because doing so would interfere with the program iden-
tification system and might prevent the program from opening its
own data files.

Major application programs often have several different types of
files associated with them. Macintosh BASIC, for instance, stores
BASIC program files in both text and binary formats and lets
BASIC programs create three types of data files (TEXT, BINY, and
DATA). The file type field that you can read with GETFILEINFO
allows application programs to distinguish between the different
types of files.

203

204 Using Macintosh BASIC

Most application programs use the file type field to select the file
names that are displayed in the dialog window when you select
Open from the File menu. Macintosh BASIC, for instance, displays
the names of its program files (types BTXT and BCOD), but does
not display any of the three types of data files. Table 13-2 lists the
file types and creators used by some of the most common Macin-
tosh applications.

Changing File Information
® SETFILEINFO

SETFILEINFO changes information about a file. SETFILEINFO
uses a 48-byte data block, just as GETFILEINFO does.
SETFILEINFO uses the information from the 48-byte block you
supply to update the file information. The best way to get the cor-
rect information in the 48-byte block is to use GETFILEINFO first
to put the existing file information into your array. Then you can
modify the values in the array and use SETFILEINFO to make the
necessary changes to the file information.

DIM a%(23) | Integer array with 48 bytes
GETFILEINFO “whatfile", @a%(0)

! Here is where you make your changes
SETFILEINFO “whatfile”, @a%(0)

BASIC does not allow SETFILEINFO to change the file
number, the starting blocks of the data and resource portions of the
file, or the logical and physical end of file values. These fields are
marked with asterisks in Table 13-1. You must include these fields
in the 48-byte data block you supply for SETFILEINFO, but
BASIC does not change the existing information. You can change
the data logical end of file value with the SET EOF# command.

If you make a mistake using SETFILEINFO, you can make a
file inaccessible, so it is a good idea to make a backup copy of your
disk before you start experimenting with SETFILEINFO.

Files, Volumes, and Devices

Table 13-2. Some File Types and Creators

File Type

APPL
BTXT
BCOD

TEXT
BINY
DATA

APPL
TEXT

APPL
WORD
TEXT

APPL
PNTG

APPL
TEXT or MSBA
MSBB

MSBP
TEXT or (blank)

APPL
TEXT
MSBC

MSBD
ZSYS

APPL
FFIL

Creator

DONN
DONN
DONN

DONN
DONN
DONN

PASC
PASC

MACA
MACA
MACA

MPNT
MPNT

MSBA
MSBA
MSBA

MSBA
(blank)

MSBB
MSBB
MSBB

MSBB
MACS

FMOV
FMOV

Description of File

Macintosh BASIC

Macintosh BASIC Program Text
Macintosh BASIC Program Binary
Format

Macintosh BASIC Text File
Macintosh BASIC Binary File
Macintosh BASIC Binary DATA
File

Macintosh Pascal

Macintosh Pascal Program Text

MacWrite ‘
MacWrite “Entire Document” File
MacWrite “Text Only” File

[

MacPaint
MacPaint document

Microsoft BASIC (decimal math)
Microsoft BASIC Program Text
Microsoft BASIC Program Com- i
pressed (Binary)

Microsoft BASIC Program Protected
Microsoft BASIC Text File

Microsoft BASIC (binary math)
Microsoft BASIC Program Text
Microsoft BASIC Program
Compressed

Microsoft BASIC Program Protected

Note Pad File

FontMover
Font File

205

206 Using Macintosh BASIC

Moving Files Between Applications

Often you will create a file with one application and then want to
use it with another. Perhaps you received the text of a program via
a modem and now want to run the program in Macintosh BASIC.
Or perhaps your BASIC program created a text file that you now
want to edit using MacWrite. Or perhaps you want to display a
plain document using the official System file icon.

You can handle all of these situations by changing the file type
and creator of the file, provided the file meets one additional
requirement: the organization of the file and the data in it must be
compatible with the new file type and creator. The file type de-
scribes the file’s organization and data. It does no good to change
the file to a new creator and file type if the file does not contain
information in the format the new application can read.

Many applications use ordinary text files. Even many applica-
tions that use other file formats allow you to save the information
in a simple text file. If this alternative is available, you should use
it before you try to change the file type or creator. You should be
able to change a normal text file from one application to another
without suffering any complications, as long as the new applica-
tion is capable of reading an ordinary text file.

Ordinary text files often have the file type TEXT. By looking at
the file types in Table 13-2, you can see that Macintosh BASIC,
Macintosh Pascal, MacWrite, and Microsoft BASIC are all capable
of generating and reading files of this type. In addition, the file
type BTXT that Macintosh BASIC uses for program files is the
same as a TEXT file except that it may contain a few extra charac-
ters to remind BASIC when to turn the boldface on and off.

When you change a file’s type or creator, you are responsible for
knowing whether the contents of the file are compatible with the
new file type and creator. BASIC does not warn you if you are
about to make an error, so it is a good idea to work with a copy of
the file so you will not lose the information if you make a mistake.

The program in Figure 13-3 is a general purpose program that
changes a file’s file type and creator. To use the program, you need
to type three things: the name of the file, the new file type, and the
new creator.

After you type the file name, the program uses GETFILEINFO
to fill the 48-byte data block. Then it displays the file’s current file

Files, Volumes, and Devices 207

| Change File Typse and Creator
DIM a%(23) ! Integer array with 48 bytes
PRINT "CHANGE FILE TYPE AND CREATOR"
INPUT "Wheat file to change: "; file$
PRINT “File *; file$
GETFILEINFO file$, @a%(0)
PRINT “File type “; Letters4$(0);
PRINT “, Creator “; Letters4$(2)
DO
INPUT “New file type: "; type$
INPUT "New creator: “; creator$
IF LEN(type$)=4 AND LEN(crestor$)=4 THEN EXIT DO
" PRINT "4 letters in each answer, please!”
Loor
| Store new type and creator .
a%(0) = ASC(LEFT$(type$, 1)) * 256 + ASC(MIDS$(type$ 2,1))
ag (1) =ASC(MID$(type$,3,1)) * 256 + ASO(RIOHTS(WDSS 1))
a%(2) = Asc(LEFTt(creatorS,l)) * 256 + ASC(MID$(creator$,2,1))
a%(3) = ASC(MID$(creator$,3,1)) * 256 + ASC(RIGHT$(creator$,1))
SETFILEINFO file$, @a%(0)
PRINT “File type and crestor have”
PRINT “been changed to *; type$; “ *; creator$
END PROGRAM
FUNCTION Letters2$(first)
Letters2$ = CHR$ (8% (first) DIV 256) & CHR$(a (first) MOD 256)
END FUNCTION
FUNCTION Letters4$(first)
Letters4$ = Letters2$(first) & Letters2$(first+1)
END FUNCTION

Figure 13-3. Change file type and creator

type and creator. If you do not want to change either the file type
or creator, reenter the type or creator exactly as it is displayed
(remember, you must match the upper- and lowercase letters).

The only error checking the program does is to make certain
that your new file type and creator each contain exactly four letters.
Once you have correctly entered the type and creator, the program
stores the characters that make up the type and creator names into
the first eight bytes of the data block and uses SETFILEINFO to
change the file.

208 Using Macintosh BASIC

To change a plain text file into a Macintosh BASIC program
file, you type BTXT for its file type and DONN for its creator. To
turn a text file created by BASIC into a MacWrite document, use
file type TEXT and creator MACA. To display a plain document
file using the System file icon, you make its creator MACS. If you
enjoy working with file types and creatdts, you will probably want
to supplement Table 13-2 by keeping your own list of file types
and creators for different types of files and applications.

Saving a Damaged MacWrite File

If you are lucky, you will never receive the message ‘“This docu-
ment can’t be opened.” If you are not so lucky, however, you may
see this message when you try to reopen a document you saved
earlier. MacWrite versions 2.20 and earlier display this message
when your Macintosh does not have enough memory to open a
document and also when the MacWrite control codes in the docu-
ment have been damaged.

You can often open a damaged MacWrite file by changing the
file type from WORD to TEXT. Try this change as a last resort to
avoid retyping all the information in the file. Essentially, you are
telling MacWrite to read everything in the file as text, ignoring the
distinction between MacWrite control codes and text. If you suc-
ceed in convincing MacWrite to read the file as a text file, you will
then need to manually delete all of the odd control code characters.

WORKING WITH VOLUMES

Macintosh BASIC provides several commands to help you manipu-
late volumes, which contain groups of files. It is common to think
of files as residing on disks with each disk containing one volume.
If you have a hard disk or other mass storage device, however, you
will learn that there can be more than one volume on the same
device. If you use file and volume names, you do not usually need
to know what kind of physical device actually contains the stored
information.

When you turn on your Macintosh and insert a disk, the operat-
ing system records the name of the disk volume from which the

Files, Volumes, and Devices

system 1is started. This volume becomes the first preset, or default,
volume. It remains the default volume until you change it. Unless
you include a volume name as the first part of a file name, every
file operation is performed on the current default volume.

Listing the Volumes
m GETVOLNAMES

GETVOLNAMES is a string function that returns the name of a
volume. It takes one argument, a number that tells BASIC which
volume name you want. Table 13-3 lists the particular volumes
that correspond to each argument. An argument of 0 causes GET-
VOLNAMES$ to return the name of the current default volume. An
argument of 1 gets the name of the volume in the internal disk
drive, 2 gets the name of the volume in the external disk drive, and
3 gets the name of the first volume on a hard disk or other mass
storage device. If a hard disk contains more than one volume, the
remaining volumes will be numbered sequentially from 4 upward.

GETVOLNAMES returns an empty string if there is no volume
available on the device for the given argument. You can use this
fact to learn whether a particular storage device is currently avail-
able. To find out whether there is a disk in an external disk drive,
for instance, call GETVOLNAMES$ with the argument of 2. If the
function returns a volume name with length greater than 0, a disk
is available in an external drive. The program in Figure 13-4 dis-
plays a list of volumes and devices. This list will not include a disk
drive that has no disk inserted.

Table 13-3. GETVOLNAMES$ Volume Numbers

Number Device

0 Default volume

1 Volume in internal disk drive
2 Volume in external disk drive
3 First volume on hard disk

209

210 Using Macintosh BASIC

| List On-1line Volumes
PRINT "Default Yolume", BetVoll!ameS(O)‘
PRINT “Internal Drive" e;tvmmet(t) :
PRINT “External Drive", BetVolmeQ(Z) .
iF eotVoINauoS(S) <> " THEN .
PRIN‘I “Mass Storau& ‘
indsx 3 'i, L
DO
nameS htVolllmoS(mdax)
IF neme$ = THEN EXIT UE
PRINT name$
mtb.x = mdex + I ,
I.OOP o ‘
END!F

Figure 13-4. List on-line volumes

Setting the Default Drive
s SETVOL

SETVOL changes the preset, or default, volume or disk drive.
SETVOL is short for SET VOLume. You can supply either a
number or a string after the word SETVOL. If you supply a
number or numeric expression, BASIC assumes it is a volume
number corresponding to the numbers in Table 13-3. If you supply
a string or string expression, BASIC assumes it is a volume name.
In either case, BASIC generates a ‘““No such volume” error if it
cannot find a volume with the specified name or in the specified
drive.

SETVYOL 1 | Sets internal drive as default
SETYOL "Master disk"

Changing Disks
m EJECT

The EJECT command ejects a disk from the internal or external
disk drive. You can follow the word EJECT with a drive number (1

Files, Volumes, and Devices 211

for the internal drive, 2 for the external drive) or the name of the
volume you want to eject. You cannot eject a volume from a hard
disk or other mass storage device.

EJECT 1 | Ejects disk from internal drive
EJECT "Master disk"

Getting Information About a Volume
m GETVOLINFO

The GETVOLINFO statement is very similar to the GETFILE-
INFO statement. GETVOLINFO obtains information about a
volume instead of a file. You follow GETVOLINFO with the
name of the volume, a comma, and a pointer to an array element.
The array must contain at least 36 bytes beginning with the ele-
ment to which you point.

DIMa%(17) ! Integer array with 36 bytes
GETYOLINFO “"whatvol”, @a%(0)

Macintosh BASIC lets you use any type of array, but an integer
array is best for interpreting the data. If you do not know the name
of the volume, you can get the name with the GETVOLNAME$
function. Table 13-4 lists the items of information that GETVOL-
INFO stores in your array.

The program in Figure 13-5 decodes and displays the informa-
tion in the GETVOLINFO data block. In addition to displaying
the information, the program serves as an example of how to
extract information from the data block so you can use it in your
BASIC programs.

The descriptions in Table 13-4 adequately describe most of the
items in the GETVOLINFO data block. Only a few of these items
appear to be useful in BASIC programs. The dates and times the
volume was initialized and last modified are expressed in seconds
since 12:00 A.M. January 1, 1904. Two useful bits of information
you can extract from the volume attributes word indicate whether
the volume was locked by software or write-protected. If you know
how many bytes a new file will occupy, you can find out whether
there is room for it on the volume by dividing the file length by

212 Using Macintosh BASIC

Table 13-4. GETVOLINFO Information

Byte #
Offset Bytes Description
0 2 Volume index number assigned by system
2 4 Date and time volume was initialized
6 4 Date and time volume directory last modified
10 2 Volume attributes
12 2 Number of files listed in volume directory
14 2 First block of volume directory
16 2 Number of blocks in volume directory
18 2 Number of blocks on entire volume
20 4 Number of bytes in each block
24 4 Minimum bytes to allocate for a file
28 2 Block where data storage begins
30 4 Number for the next file created
34 2 Number of unused blocks on the volume

| Display GetVolinfo Information

DIMa%®(17) !lInteger array with 36 byles

v$ = GETYOLNAMES(1)

GETVOLINFO v$,@a%(0)

PRINT “Volume ";a8(0); ", "; v$

PRINT “Created “; Num4(1)

PRINT “Modified " Num4(3)

PRINT "Attr'lbutes word is "; Num2(5).

IF LOGB{Num2(5)) = 15 THEN PRINT "Volume is locked in software
IF LOGB(Num2(5) MOD 256) = 7 THEN PRINT "Volume is wr'lts-protected :
PRINT Num2(6); " files on the volume.”

PRINT “Directory starts at block “; Num2(7)

PRINT Num2(8); " blocks in the directory."

PRINT Num2(9); " blocks on the volume."

PRINT “Size of each block is “; Num4(10); “ bytes.”
PRINT "Minimum allocation is "; Num<4(12); “ bytes."

Figure 13-5. Display GetVolInfo information

Files, Volumes, and Devices 213

- PRINT “Fﬂe storage starts et block * Num2(14)
PRINT “Next file number is * Num4(15)
PRINT Num2(17) y free blocks
END PROGRAM ‘

~ FUNCTION Num4(first)

Num4 = Num2(first) * 65536 + Num2(ﬁrst+ 1)
END FUNCTION
- FUNCTION Num2(first)
IFag(first) <OTHEN
. Num2= aS(flrst) + 65536
ELSE Num2 = a% (first)
~ _ENDIF
~ END FUNCTION

Figure 13-5. Display GetVolInfo information (continued)

the block size and comparing the result to the number of unused
blocks.

The volume information is maintained by the operating system.
Changing it without the system’s knowledge could jeopardize the
integrity of the system and cause you to lose all the files on the
disk. For that reason BASIC does not provide any command to
change the volume information.

COMMUNICATING WITH DEVICES

You can connect external devices to the Macintosh through several
plugs, or ports, on the back of the machine. This section shows
how you can use the file-handling commands to open channels
and communicate with those devices from your BASIC programs.

Standard Macintosh Devices
m _AIN, .AOUT, .BIN, .BOUT, .SOUND, .PRINTER

Table 13-5 lists the standard Macintosh devices available from
Macintosh BASIC. The modem port (labeled with the telephone

214 Using Macintosh BASIC

Table 13-5. Standard Macintosh Device Drivers

Device Driver Access
Modem port AIN INPUT or OUTIN
AOUT OUTIN or APPEND
Printer port .BIN INPUT or OUTIN
.BOUT OUTIN or APPEND
Sound .SOUND OUTIN or APPEND
Printer .PRINTER OUTIN or APPEND

icon) and the printer port (labeled with the printer icon) are some-
times called serial ports A and B, respectively. The A and B ports
are each treated as two devices, one for input and another for
output.

.SOUND controls both the device inside the Macintosh that gen-
erates sound and the plug on the back of the machine that is
labeled with the music note. If you have a printer connected to the
printer port, you can use it from BASIC by referring to it as the
PRINTER device.

Each port is controlled by a small software program called a
device driver. The drivers for most of the ports are contained in the
Macintosh’s permanent memory. You can control an external
device from a BASIC program by opening a channel to its driver.

The last column of Table 13-5 shows the access direction you
must use for each device. The access for .AIN and .BIN must be
INPUT or OUTIN, and the access for .AOUT and .BOUT must
be APPEND or OUTIN. Access for .SOUND and .PRINTER
should always be APPEND or OUTIN.

Using Devices as Stream Files

A stream file is a continuing flow of information. With a stream
file, you see only the flow of information. You do not know

Files, Volumes, and Devices

whether the information is being stored at the other end of the
communications channel or not. You do not have access to a file
pointer and you cannot change your position in the stream of
information.

You open a stream file to a device just as you would open any
other file. Use the device name instead of a file name. The
statement

OPEN #3: "AIN", STREAM, TEXT

opens a channel to receive binary data from serial port A, the
modem port. The statement

OPEN #4: " PRINTER", STREAM, TEXT, OUTIN

opens a channel to send text data to the printer.

You use INPUT# and PRINT# with text data, and you use
READ# and WRITE# with binary data, just as you do with regular
files. Because siream files have no file pointer, you cannot use any
of the file position or contingency keywords that you use with
sequential or relative files.

OPEN #3: "AIN", STREAM, BINY

READ #3: byte® ! Receive 1 BINY byte
OPEN #4: " AOUT", STREAM, BINY, OUTIN
WRITE #4: byte® ! Send 1 BINY byte

OPEN #8: "BIN", STREAM, TEXT, INPUT
INPUT #8:char$! Receive 1 TEXT character
OPEN #9: " BOUT", STREAM, TEXT, OUTIN
PRINT #9: char$! Send 1 TEXT character
CLOSE

Controlling a Device
m DEVCONTROL #

DEVCONTROL# sends control information to a device. The most
common use of DEVCONTROL# is to change the communica-
tions protocol (transmission speed, data bits, parity, and stop bits)
used by the software drivers that run the serial ports. Both the

215

216 Using Macintosh BASIC

modem port and the printer port are preset to operate at a speed of
9600 baud (bits per second), using 8 data bits, no parity, and 2 stop
bits. You can use DEVCONTROL# to change those settings.

To use DEVCONTROLH#, first dimension a 2-element integer
array. You store the number 8 in the first element of the array and a
code that represents the new protocol setting in the second element
of the array. The code is constructed by adding together the values
from Table 13-6 that correspond to the protocol settings you want.

Table 13-6. Control Values for Serial Ports

Protocol Setting Value
Baud rate 300 380
600 189
1200 94
1800 62
2400 46
3600 30
4800 22
7200 14
9600* 10
19200 4
57600 0
Data bits 5 0
6 2048
7 1024
8* 3072
Parity None* 0
Odd 4096
Even 12288
Stop bits 0 0
1 16384
1.5 —32767
2% —16384

*Asterisks mark the settings used by BASIC if you do not use DEVCONTROL#
to change the settings.

Files, Volumes, and Devices

The code for 1200 baud, 8 data bits, no parity, and 1 stop bit
(which is a common protocol for modem communications) is 94
for 1200 baud, plus 3072 for 8 data bits, 0 for no parity, and 16384
for 1 stop bit, for a total of 19550.

The DEVCONTROL# statement itself consists of the keyword
DEVCONTROL followed by a space, the channel designator sign
#, the channel number, a colon, the @ sign, and the name of the
first element of the integer array. The following example shows a
complete DEVCONTROL# statement:

| Set modem port for 1200 baud modem

DIM setting8(1) | 2-element array

OPEN #3: "AIN", STREAM, BINY

setting®(0) =8 1| Always use 8 to set protocol
! 1200 baud, 8 data bits, no parity, 1 stop bit
setting®(1) =94+ 3072+ 0 + 16384
DEVCONTROL #3: @setting® (0)

Checking Status of a Device
m DEVSTATUS #

DEVSTATUSH# obtains status information from a device. The most
common use of DEVSTATUS# is to find out if any data has been
received. The device driver for each serial input port (.AIN or
.BIN) maintains a buffer in which it stores data that is received
from the device that is plugged into the port. Your program needs
to use DEVSTATUS# to make certain there is data in this buffer
before the program tries to get the data with a READ# or INPUTH#
statement.

To use DEVSTATUSH#, you need to dimension a 3-element inte-
ger array and store the number 2 in the first element of the array.
The DEVSTATUS# statement itself consists of the keyword DEV-
STATUS followed by a space, the channel designator number, the
channel number, a colon, the @ sign, and the name of the first
element of the integer array. When the DEVSTATUS# statement is
executed, BASIC puts the number of bytes of data you can read
from the buffer into the third element of the integer array, as
shown in the following example.

217

218 Using Macintosh BASIC

| Use DEVSTATUS #

DIM status$(2)

OPEN #3: "AIN", STREAM, BINY

statusB (0) = 2 | Always use 2 to get # byles
DEVSTATUS #3: @status8(0)

bytes.to.read = status®(2) !get # from 3rd element

Using .PRINTER

The .PRINTER driver is more convenient to use than the . BOUT
driver if you have a printer connected to the printer port of your
Macintosh. The .PRINTER driver handles a number of printer-
related details for you, while the .BOUT driver does not. Specifi-
cally, the .PRINTER driver sends the proper instructions to
initialize the attached printer, sends a line feed character to move
the paper whenever printing reaches the end of a line, starts a new
line after 75 characters, automatically skips six lines when you
reach the bottom of a page, and sets tab stops every four characters.
In addition to taking care of these housekeeping matters for you,
the .PRINTER driver also changes some characters in your output
into characters that make sense to the printer. The characters that
are changed by the .PRINTER driver are listed in Table 13-7.

Table 13-7. Characters Changed by the .PRINTER Device

Character You Send What .PRINTER Prints
T pi
I PI
= <=
= >=
<>
© (*)
o INFINITY
CHR$(253) turns on boldface)*
CHR$(254) turns off boldface)*

*PRINTER does boldfacing only with the Apple Imagewriter printer.

Files, Volumes, and Devices

When your printer is operating in ASCII mode, it does not re-
organize some of the special Macintosh characters. To compensate
for this, the .PRINTER driver changes the following characters
into strings the printer can print: the Greek letter = (lowercase and
uppercase), the three one-character relational operators, the charac-
ter variable designator, and the infinity sign. In addition, the
.PRINTER driver changes CHR$(253) into the control code that
tells the printer to start printing in boldface and changes
CHR$(254) into the control code that tells the printer to stop using
boldface. The two boldface control characters and the tab settings
every four character positions work only if you are using the Apple
Imagewriter printer.

EXAMPLE PROGRAMS

The example program shown in Figure 13-6 lists all of the files on
your disk along with their file types and creator codes. After setting
tab stops in the output window and dimensioning a 24-element
integer array, the program initializes the variable count at 1 and
enters a DO loop that is executed once for each file that is on the
disk.

The first statement in the DO loop gets the name of a file by
using the variable count as an argument to GETFILENAMES$. If
the name returned is the empty string, the program exits from the
loop and ends. If GETFILENAMES returned a file name, the pro-
gram calls GETFILEINFO with that file name and the address of
the first element of the 24-element integer array as arguments.

The program uses the defined function Letters4$ to decode
information from the data array. First the file’s type and then its
creator are decoded, stored in strings, and printed alongside the file
name. Then the program increments the variable count and
repeats the loop until all the files are listed.

The example program in Figure 13-7 prints the data that comes
in over a 1200 baud modem. The program starts by dimensioning
two integer arrays for use later with the DEVCONTROL# and
DEVSTATUS# commands. Then the program opens channel 1 for
input of binary data from the modem port, and opens channel 2
for output of text data to the printer.

219

220 Using Macintosh BASIC

Figure 13-6. List file types and creators

The program uses DEVCONTROL# to set the modem port for a
1200 baud modem, as shown in the example earlier in this chapter.
The settings are 1200 baud, 8 data bits, no parity, and 1 stop bit.
Two PRINT# statements send a title line (including the date) and
a blank line to the printer.

The program then enters a DO loop in which the program
repeatedly uses DEVSTATUS#. If ready%(2) contains a positive
number, indicating that data has been received, the program exe-
cutes a FOR/NEXT loop that reads each byte from the modem
into a character variable and then converts the byte to a one-
character string and prints it on the printer. Note that the READ#
command is used to receive the binary information and the
PRINT# command is used to send the text.

After each character is read from the modem, the program checks
to see if the character is CHR$(4), the character commonly used to

Files, Volumes, and Devices 221

R", STREAM, TEXT, OUTIN

Figure 13-7. Print modem data

signal the end of a transmission. If the character is CHR$(4), the
program displays “End of transmission.” in the output window
and ends. This program does not save a machine-readable copy of
the information that comes in through the modem. You may want
to modify it to write the information to a disk file.

222 Using Macintosh BASIC

PRACTICE EXERCISES

1. The program in Figure 13-1 uses GETFILENAMES to list all
the files on a volume. How would you modify that program
so that it will not print out the name of any files marked as
invisible?

2. How would you write a BASIC program that moves the file
“Macintosh BASIC” into the System folder? You may assume
that the System folder is the folder that contains the file
named ‘“‘System.”

3. What BASIC commands would you use to open a channel to
receive data from the modem port at 300 baud with 8 data
bits, no parity, and 1 stop bit?

4. How would you change the program in Figure 13-1 to make
the program print the list of files on a printer instead of in
the output window?

&/ia,o@ 14

Using the Interactive Debugger

Command:
m STOP

Macintosh BASIC has an interactive debugger to help you locate
any trouble spots in your programs. The debugger is also an excel-
lent learning tool. You can follow your program line by line and
see what each line does. You can see which lines change the values
of your variables and what each line does to the output window. If
something odd is happening in your program but you can’t figure
out what it is, the debugger can be an indispensable tool.

You will get the most from this chapter if you run the debugger
while reading the text. The examples provided use the sorting pro-
gram, Figure 9-4, from the end of Chapter 9.

TURNING ON THE DEBUGGER

When you use the debugger, you need to let Macintosh BASIC
know what program you are going to debug. You do that by mak-
ing the program’s text window active before starting the debugger.

223

224

Using Macintosh BASIC

If your program is not already running, make its text window
active before you turn on the debugger. If your program is run-
ning, you can start the debugger with either the text or the output
window active. You turn on the debugger by selecting the Debug
option from the Program menu or by pressing the keyboard com-
bination COMMAND-d.

To follow the examples in this chapter, start up Macintosh
BASIC and open a text window with the sorting program in Fig-
ure 9-4. Then select Debug from the Program menu to start the
debugger.

Figure 14-1 shows what your screen looks like just after you turn
on the debugger. When you turn it on, the debugger shifts the text
of your program to the right to make room for a hand with a
pointing finger. The finger points to the program line that is ready
to be executed. If your program was not already running, the
debugger also opens an output window and prepares to execute the
program. A little bug appears in the output window’s program
status area to indicate that the program is running under the con-
trol of the debugger.

% File Edit Search Fonts Program
g Teut of Figure 9-4 S(J=— Figure 9-4

I Sort an array of integer] ik
DIM array®(S0) !Creatq
I Fill it with integers be
FORi=1T0O50
array®(i) = INT(RND(

NEXT i
| Now sort the integers
FORi=1TOS50 !Look g

FOR j =i TO 50 | Mak

IF array®(j) < arrs

| The numbers {

temp® = arrayf

array®(i) = arr

array®(j) = ten
ENDIF

Figure 14-1. Starting the debugger

Using the Interactive Debugger

r

® File Edit Search Fonts JERLIL

§ Text of Figure 9-4 Run

w I'Sort an array of integer | Run Another
DIM array®(50) | Creatq | Halt %H
I'Fill it with integers be Go %0

FORi=1TO 50 ;
array®(i) = INT(RND(| | Save Binary

NEXT i f ok Syntay w4
I Now sort the integers Turn Checking Off
FORi=1TO5S50 !Look a :
FOR j =i TO 50 ! Mag | Turn Debugging Off 38D
IF array®(j) < arrq | Step 81
I The numbers { | Trace 8T
temp® = arrayy | Block Trace %®B

array®(i) = arrq | Show Uariables

array®(j) = ten|
ENDIF

Figure 14-2. The debugger’s menu items

Turning on the debugger enables several debugging options at
the bottom of the Program menu. Figure 14-2 shows the Program
menu just after the debugger has been turned on. The debugger’s
Step, Trace, Block Trace, and Show Variables command options
are all enabled. In addition, the Debug option changes to Turn
Debugging Off. Both options use the same keyboard shortcut,
COMMAND-d.

STEPPING THROUGH A PROGRAM

When you first turn it on, the debugger is in what is called single-
step mode. In this mode the debugger executes your program one
line at a time. The pointing finger points to the line that will be
executed next. You execute each line by selecting Step from the
Program menu or by typing either the COMMAND-1 or the
COMMAND-SPACE combination from the keyboard. Once you
become familiar with the debugger, you will probably find that
using one of the keyboard combinations is easier.

225

226 Using Macintosh BASIC

If you are following the example on your Macintosh, step
through five lines to the line that reads NEXT i. Now when you
execute this line, the tracing finger does not continue down
through the listing. Instead, it goes to the line above, array%(i) =
INT(RND(1000)) + 1. This is appropriate, because the program is
executing a FOR/NEXT loop. The tracing finger follows the pro-
gram execution faithfully through functions, subroutines, loops,
and other control structures.

DISPLAYING VARIABLES

Show Variables, the last selection on the Program menu, opens a
new window that displays the values of your program’s simple
variables and functions. It does not display the values of array ele-
ments. Figure 14-3 shows the variables window for the example
program. The window lists all of your program’s simple variables
and functions, even if execution has not reached the statements
that use them. The variables] and TEMP%, which have not been

€ File Edit Search Fonts Program

Text of Figure 9-4 Figure 9-4

| Sort an array of integen ik
DIM array®(50) ! Creatgq
I'Fill it with integers be

FORi=1TO50
array®(i) = INT(RND(
NEXT i

I Now sort the integers
FORi=1TOS50 !Looka E[J= Variables from Figure 9-4
FOR j =1 T0O 50 ! MaK | 2,
IF array®(j) < arrg J 0 K
I The humbers TEMPZ 0
temp® = arrayf
array®(i) = arr
array®(j) = ten
ENDIF

sl

K2

Figure 14-3. Debugging with Show Variables active

Using the Interactive Debugger

used yet, are displayed with their initial values of zero. The vari-
able I, which is being used, is 2.

Names are listed in the variables window in all capital letters
because BASIC does not pay any attention to the case of the letters
when it is working with variable and function names. If your pro-
gram uses the variable names temp% and TEMP%, BASIC assumes
they are the same variable. Listing the names in all capital letters
in the variables window helps remind you of that fact.

The debugger updates the variables window display every time a
program statement changes the value of a variable or function. If
you continue to single-step through the example program, you
will see that the value of I increases by one each time you execute
the NEXT i statement.

TRACING EXECUTION

You do not have to single-step through all fifty iterations of the
FOR/NEXT loop to get to the rest of the example program. The
Trace command on the Program menu will step through the pro-
gram for you. The tracing finger still points to each program line
as it is executed, and the values of variables and functions are still
updated in the variables window. The keyboard combination for
Trace is COMMAND-t.

The debugger traces through a program quickly. If you watch
carefully, you can still see which statements are being executed, but
things are moving too fast to see the effects of any single com-
mand. When you want to stop the automatic tracing, give one of
the single-step commands, COMMAND-1 or COMMAND-SPACE. Then
you can continue to single-step through a section of the program,
or you can use COMMAND-t to resume the automatic tracing.

If you want to trace, but don’t want things to move quite as fast
as they do with the Trace command, you can try holding down
one of the keyboard combinations for single-stepping. On the
Macintosh keyboard, every key is a repeating key when it is held
down. You can use this feature of the keyboard to make repeated
single-step commands look like a slightly slower version of the
Trace command. Any time you want to stop, all you have to do is
take your finger off the key. You can adjust the repetition rate of
the keyboard with the Control Panel desk accessory.

227

228 Using Macintosh BASIC

USING BLOCK TRACE

Block Trace is the speed champion of the debugging commands. It
executes a single control structure at full speed. You can select
Block Trace from the Program menu or by pressing COMMAND-b.
Block Trace is most useful when you are single-stepping or tracing
through a program and reach a loop or subroutine call that you do
not want to trace. One execution of the Block Trace command will
execute the entire control structure and then stop at the end of the
structure so you can resume tracing or single-stepping.

The control structures that can be entirely executed by a single
Block Trace command are IF/ENDIF, DO/LOOP, FOR/NEXT,
SELECT CASE/END SELECT, GOSUB, CALL, PERFORM, and
WHEN/END WHEN. The last three kinds of control structures
are described in the next chapter. While the debugger is executing
a block trace, it does not move the tracing finger or update the
values in the variables window. It updates both when the block
trace is finished.

To experiment with Block Trace, close the output window and
restart the program in Figure 9-4 from the beginning by turning
on the debugger. Single-step to the line that reads FOR i =1 TO
50. Then press COMMAND-b. When the block trace is finished, the
pointing finger reappears at the comment line “Now sort the
integers.” The first FOR/NEXT loop has been executed, and you
are ready to sort the array. Single-step once to get to the next line
that reads FOR i = 1 TO 50. Press COMMAND-b to block trace
again. When the finger reappears after a few seconds, the sort has
been done.

Now you are ready to execute the FOR/NEXT loop that prints
the sorted numbers. For variety, use COMMAND-t to start a normal
trace, and then press COMMAND-b after a few numbers have been
printed. You have just demonstrated that you can start a block trace
from a normal trace as well as from single-stepping.

TURNING OFF THE DEBUGGER

To turn off the debugger, you can select Turn Debugging Off from
the Program menu or press COMMAND-d on the keyboard. If your
program was already running when the debugger was switched on,

Using the Interactive Debugger

your program resumes normal execution. If you do not want your
program to continue executing when you turn off the debugger,
you can click on the output window’s close box — that will turn off
the debugger, stop execution, and return you to the text window of
your program.

SETTING A BREAK POINT
m STOP

If you have a problem area in your program and you want to use
the debugger, you could start the program normally and then turn
the debugger on just before the problem area. This will work, but
you might have to do it several times before you can start the
debugger at just the right place.

A more precise way to turn on the debugger part way through
your program is to insert a STOP statement at the appropriate
place in your program. The STOP statement stops program execu-
tion and turns on the debugger. Its effect is the sarhe as pressing
COMMAND-d while BASIC is executing that line of your program.
You can use STOP alone, or you can use STOP as oné course of
action in an IF or CASE statement.

STOP
IF a> limit THEN STOP
IF wrong™ THEN STOP

You can insert STOP commands into your program in as many
places as you wish. When you have finished debugging, however, it
is a good idea to use the Find command in the Search menu to
locate all occurrences of STOP and then remove them from your
finished program.

DEBUGGING EXAMPLES

This section gives a few suggestions about ways you can use
Macintosh BASIC’s programming tools to help you write and cor-
rect programs. It is not exhaustive. If you use the debugger and the

229

230 Using Macintosh BASIC

Find command regularly, you will undoubtedly find other ways
and situations in which to use these versatile tools.

(" Your program has been working well for six weeks, but
when you use a new set of data, the program seems to “freeze up.”
The symbol in the output window indicates that the program is
executing, but nothing is printed. This situation is fairly common,
although it can sometimes be hard to diagnose. The program may
be executing some type of an infinite loop.

The best way to check for the possibility of an infinite loop is to
let your program run until it appears to be in the infinite loop.
Then turn on the debugger and begin to trace or single-step to see
what the program is doing. Most infinite loops are fairly short if
the overall program is well organized. Once you have discovered
the location of the loop, you can single-step with the variables
window open to see why the program is stuck in the loop. You
may notice a variable that takes on an unexpected value. Pay par-
ticular attention to variables that cause your program to end or exit
from the loop.

(3@ The value of a multiple-line function does not seem to be
getting set properly. The simplest way to solve this problem is to
insert a STOP statement immediately after the first line of the
function’s definition and then run the program. When the function
is called, BASIC stops the program and turns on the debugger. You
can then open the variables window and single-step through the
function.

If single-stepping shows that you are executing the line that
assigns a value to the function, check to see that the name of the
function in that line is spelled correctly. If it is not, you may be
assigning the value to some variable you will never use again.

If the assignment seems to be correct but has the wrong value,
check to be sure your function is getting the correct data and that
the parameter names are spelled correctly each time they are used
in the function definition. When you have finished stepping
through the function definition, you can let your program resume
nprmal execution by typing COMMAND-d.

Using the Interactive Debugger

[(3® Your GOSUB statement generates an “Undefined label”
error message, and you are sure you used that name for a subrou-
tine. For this situation, the global search capability of the Find
command may be more helpful than the debugger. Use Find to
look for the colon character (:), and check the Include Embedded
Words option. The search may find a few colons in lines that do
not contain labels, but it will absolutely find every label that is
correctly defined in your program. You will certainly notice if the
label you defined was slightly different from what you remembered.

[Z° One of your variables is not set or is being set to an incor-
rect value. Find the line where your variable is supposed to be set,
and examine it carefully. If you can’t find any errors in that line,
the cause may be an error in a calculation earlier in your program.
Turn on the debugger and select Show Variables.

Look through the variables list carefully. If you see any variable
names you don’t remember using in your program, use Find on the
Search menu to look at the lines containing that name. If you do
this carefully, you should find all m}sgyped variable names that
could cause wrong results. If checking the variable names does not
identify the cause of the problem, you may need to trace or single-
step through your program with the variables window open to dis-
cover when one of your variables is first set to an incorrect value.

I3 The text output from your program is not being printed. If
you are using GPRINT, text may be printed outside the visible
area. To check this, put a STOP statement just before or just after
the GPRINT statement; then run the program. If the program
stops and the debugger comes on, your GPRINT statement is
being executed, so you need to use an AT command in the
GPRINT statement to position the output in its correct location. If
the program does not stop, your GPRINT statement is not being
executed. You will need to check the flow of program execution by
single-stepping or tracing to find out why the program is skipping
around the GPRINT statement.

231

&lia,aé}- 75

Advanced Control Structures

Commands:

m CALL, SUB, END SUB, EXIT SUB

m PERFORM, PROGRAM, END PROGRAM,
EXIT PROGRAM

» WHEN ERR, WHEN KBD, END WHEN,
IGNORE WHEN

This chapter explains several advanced topics involving the flow
of control in your programs. First you will be introduced to a new
kind of subroutine, one that allows you to pass parameters. Then
you will see how one program can summon another. That is fol-
lowed by a description of interrupts, which provide a way to han-
dle events like errors and keypresses without interfering with the
execution of your main program. The chapter concludes with a
discussion of how to run several programs at once.

233

234 Using Macintosh BASIC

SUBROUTINES WITH PARAMETERS
= CALL, SUB, END SUB

A subroutine whose beginning is marked with a SUB statement
and whose ending is marked with an END SUB statement is
invoked with the CALL statement rather than the GOSUB state-
ment (explained in Chapter 6). You can pass arguments to this
kind of subroutine, and you can receive values in return. Here is an
example:

SUB AreaRect(width height)

PRINT "Now we're in the subroutine.”
PRINT "The area i3 "; width * height
END SUB

This subroutine begins with a SUB command followed by the
name of the subroutine, AreaRect. The name is followed by a list
of parameters in parentheses with the parameters separated by
commas. You can define as many parameters as you wish in the
SUB statement. You can use any of the ten data types for parame-
ters, and you can use arrays as well as single variables. When you
use an array, you must include parentheses after the name with a
comma for each dimension after the first.

You use a CALL statement to start execution of a subroutine
defined with SUB. If the SUB statement specified parameters for
the subroutine, the CALL statement must include the correct
number of arguments in the proper order and with the proper data
types to match the parameters. If an array is passed to a subroutine,
it must have the same number of dimensions in the subroutine and
the calling program. Here is a short program that uses the CALL
statement:

| Main program

CALL AreaRect(9,3%*8)

! Control comes here after END SUB
PRINT "Back in the main program.”
END PROGRAM

SUB AreaRect(width,height)

PRINT "Now we're in the subroutine.”
PRINT "The area is "; width * height
END SUB

Advanced Control Structures

When you only want to pass a value from the calling program to
the subroutine, you can use any BASIC expression of the proper
data type in the CALL statement. When you want to return a value
to the calling program, the corresponding argument in the CALL
statement must be the name of a variable of the proper type. In this
case, the variable receives the value of the corresponding subrou-
tine parameter when execution of the subroutine is finished.

If you do not want a value passed back from the subroutine to
one of your variables in the calling program, you can use an
expression instead of a variable name in the CALL statement. For
instance, instead of using a variable named testY in the CALL
statement, you could use the expression testY+ 0 to prevent a value
from being passed back to the calling program.

END SUB must be the last statement in the subroutine. When
BASIC reaches this statement, it copies any values being returned
to the calling program into the proper variables. Then control is
transferred to the statement in the calling program following the
CALL statement that invoked the subroutine.

Exiting Subroutines
s EXIT SUB

You can exit a subroutine early with an EXIT SUB command,
which transfers control to the END SUB statement, copying any
return parameters to the calling program. BASIC does not require
the word SUB in the EXIT SUB statement, but you should use
both words to avoid confusion among EXIT SUB, EXIT FOR, and
EXIT DO.

SUB AreaRect(width,height)

PRINT “Now we're in the subroutine.”

IF width * height <= O THEN EXIT 3UB ! Leave early
PRINT "The area is "; width * height

END SUB

CALLING ANOTHER PROGRAM

= PERFORM, PROGRAM, END PROGRAM

One program can be summoned and executed from another just
like a special kind of subroutine. Unlike subroutines, programs

235

236 Using Macintosh BASIC

reside in files separate from the program that calls them. The pro-
gram being summoned can be in a disk file, or it can be in memory
if you have opened it earlier.

The program to be summoned is defined with PROGRAM and
END PROGRAM statements. The PROGRAM statement must be
the first statement in the program. If values will be passed to the
program or back to the program that called it, they must be speci-
fied in a parameter list in the PROGRAM statement.

The program being summoned does not have access to variables
from the calling program unless they are passed as parameters.
The following program, AreaTriangle, receives two values (width
and height) from the calling program and uses the values to calcu-
late the area of a triangle.

PROORAM AreaTriangle(width, height)
PRINT "Now we're in the summoned program.”
PRINT “Area = “; width * height / 2

END PROGRAM

Programs that are written to be called with a PERFORM state-
ment reside in the same kind of disk files as other programs.
Because there is no way to tell without opening the file whether
the program starts with a PROGRAM statement and requires
parameters, it is a good idea to adopt your own naming conven-
tion for programs that must be called with parameters.

The END PROGRAM statement is normally the last statement
of a program. It returns control to the program containing the
PERFORM statement. If the END PROGRAM statement is miss-
ing, BASIC returns to the calling program when it runs out of
statements to execute.

You use PERFORM to execute one program from another. The
keyword PERFORM is followed by the name of the program to be
executed. If the program to be executed requires parameters, you
put the arguments, separated by commas, in parentheses after the
program name. Do not type any spaces between the program name
and the left parenthesis that begins the parameter list.

Arguments that will receive values from the summoned program
must be variable names preceded by the @ character; other argu-
ments can be expressions that match the type of parameter in the
PROGRAM statement. Otherwise, all of the rules for passing

Advanced Control Structures

parameters in subroutines apply. No value will be returned to the
calling program unless you use the @ character in the PERFORM
statement. The following example shows a PERFORM statement
that calls a program named AreaRect, which calculates the area of
a rectangle. The @ character in the PERFORM statement causes a
value to be returned in the variable area. The @ character in the
PROGRAM statement has no effect; it is included only as a
reminder that the value is being returned to the calling program.

| First program:

PERFORM AreaRect(9, 3*8, @area)

! Control comes here when AreaRect is done.
PRINT "Theareais "; area

END PROGRAM

| Second program, separate file:

PROBRAM AreaRect(width, height, @result)
result = width * height

END PROGRAM

You can use the same name for a function, a subroutine, and a
program if you can keep them straight. When one program exe-
cutes another, BASIC preserves the variables of the original. After
control returns from the summoned program, all the calling pro-
gram’s variables will have their previous values except those whose
values were passed from the summoned program.

When BASIC executes a PERFORM statement in your program,
it looks for a file that matches the program name you specify. If the
program is not already in memory, BASIC looks on the default
disk drive. You can specify a particular drive by using a volume
name as the first part of thé file name in the PERFORM statement.

Because programs are stored in disk files, there will usually be a
delay while your program reads a file during a PERFORM state-
ment. To avoid constant delays during program execution, you
should either use PERFORM only for segments of your program
that you use infrequently or open the program to be performed
prior to executing the calling program. Code segments that you
use frequently should be included as subroutines in your main
program file.

237

238 Using Macintosh BASIC

Exiting Programs
s EXIT PROGRAM

You can terminate the execution of a program at any point with
the statement EXIT PROGRAM. If the program was summoned
with a PERFORM statement from another program, parameters
are passed and control is returned to the other program as if an
END PROGRAM statement had been encountered. If you started
executing the program from BASIC’s programming environment,
you are returned to the programming environment. Both words of
the EXIT PROGRAM command are required.

| Second program, separate file

PROBGRAM AreaRect(width,height)

PRINT “Now we're in the second program.”

IF width * height <= O THEN EXIT PROORAM ! Leave early
PRINT "The area is "; width * height

END PROGRAM

USING INTERRUPTS

An interrupt is an event that causes an interruption in your pro-
gram’s normal activities. If you enable, or allow, interrupts for a
particular type of event, whenever that event occurs your program
is suspended while another small program (called an interrupt-
handling routine) is executed. When the interrupt-handling rou-
tine is finished, your program resumes execution. If you do not
enable any interrupts, your program proceeds normally without
interruptions. Macintosh BASIC allows you to enable interrupts
and write your own interrupt-handling routines for two types of
events: errors and keypresses.

The real power of interrupts comes from the fact that you can
enable and disable interrupts and change your interrupt-handling
routines as often as you wish while your program is executing.
When your program is reading files, for instance, you might want
to use an interrupt-handling routine that takes special actions if
there is a file-related error. At another point in your program, you
might want to create an interrupt-handling routine that handles
errors in input typed from the keyboard.

Advanced Control Structures

Trapping Errors
® WHEN ERR, END WHEN

The WHEN ERR statement allows your program to handle errors.
WHEN ERR serves two purposes: it enables interrupts for errors,
and it also marks the beginning of your interrupt-handling rou-
tine. The END WHEN statement is requlred to mark the end of an
interrupt-handling routine.

When BASIC reaches a WHEN ERR statement, it does not
immediately execute the instructions between WHEN ERR and
END WHEN. Instead, BASIC records the location of the WHEN
ERR, enables the error interrupt, and continues executing your
program beginning with the statement immediately following the
END WHEN.

When an error occurs, for whatever reason, BASIC immediately
suspends execution of your program and begins executing the
interrupt-handling routine beginning with the WHEN ERR
statement. When the END WHEN statement is reached, BASIC
resumes execution of your program at the place where it was
suspended.

The interrupt-handling routine you supply between the WHEN
ERR and END WHEN statements replaces the actions BASIC
normally takes when an error occurs. That makes you responsible
for handling the error or presenting a message describing the error.
Usually you will want to use the ERR system function (described
in Chapter 7) to find out what type of error occurred. A complete
list of error messages and codes is listed in Appendix B. Generally,
error codes from 66 to 97 are system errors, codes from 98 to 153 are
errors related to files, and codes from 154 up are related to your
program and its execution.

If BASIC encounters a second WHEN ERR statement in your
program, it replaces the first error interrupt-handling routine with
the second one. The interrupt remains enabled until it is turned off
with an IGNORE WHEN ERR statement. WHEN ERR traps syn-
tax errors in your program as well as errors from other causes, so
until you know that you have found and removed any syntax errors
in your program, you should use it with caution. A syntax error
between a WHEN ERR and an END WHEN statement will cause
the error-handling routine to keep interrupting itself until BASIC
runs out of memory.

When an INPUT statement in your program requir