
•
OsborneMcGraw+lill """~/ffJI- Richard Norling

acintos ™

. " ,.

/

/

•

/

8177-tXT
· . S'oFTWARE

SUPERMARKET

·$17 95

Using Macintosh™ BASIC

Richard Nor ling

Osborne McGraw-Hill
Berkeley, California

...
i

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710

For information on translations and book distributors outside
of the U.S.A., please write to Osborne McGraw-Hill at the
above address.

The manuscript for this book was written using MacWrite™ running
on 512K Macintosh and a Lisa 2/5 with MacWorks™.

Macintosh, MacWrite, MacPaint, Lisa, The Finder, and MacWorks
are trademarks of Apple Computer, Inc.

Apple is a registered trademark of Apple Computer, Inc.

Microsoft is a registered trademark of Microsoft Corp.

USING MACINTOSH™ BASIC

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright
Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the excep­
tion that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

11234567890 DODO 9989765

ISBN 0-07-88157-0

Karen Hanson, Acquisitions Editor
Dave Ushijima, Technical Editor
Ted Gartner, Copy Editor
Nancy Leahong, Text Design
Donna Behrens, Composition
Yashi Okita, Cover Design

Library of Congress Cataloging in Publication Data

Norling, Richard, 1943-
Using Macintosh BASIC.

Includes index.
I. Macintosh (Computer)- Programming. 2. Basic

(Computer program language) I. Title.

QA76.8.M3N67 1985 001.64'2 85-2934

ISBN 0-07-88157-0

Contents

Introduction Vl

Part One Fundamentals of Macintosh BASIC

Chapter I Getting Started 1
Chapter 2 Creating Programs 11

Chapter 3 Statements and Operators 21
Chapter 4 Editing Programs 35
Chapter 5 Making Decisions 53
Chapter 6 Organizing Your Program 69
Chapter 7 Using Functions 81
Chapter 8 Manipulating Strings and Text 95

Part Two Intermediate Techniques 111
Chapter 9 Variables, Data, and Arrays 113
Chapter JO Formatting Program Output 137
Chapter 11 Defining Your Own Functions 159
Chapter 12 Using Files 173
Chapter 13 Files, Volumes, and Devices 195
Chapter 14 Using the Interactive Debugger 223
Chapter 15 Advanced Control Structures 233

Part Three Special Macintosh Techniques 247
Chapter 16 Graphics and Shapes 249
Chapter 17 Using the Mouse 269
Chapter 18 Making Music 283

Part Four The Macintosh Toolbox 297
Chapter 19 Using the Macintosh Toolbox 299
Chapter 20 Windows and Menus 313
Chapter 21 Using Controls 331
Chapter 22 QuickDraw Graphics 347
Chapter 23 Using Resources 363

Part Five Programming Style 383
Chapter 24 Professional Polish 385

Appendix A Macintosh BASIC Commands and
Functions 393

Appendix B Error Messages and Codes 405
Appendix C ASCII Codes and Keyboard Characters 411
Appendix D Toolbox Routines Accessible From BASIC 417
Appendix E Solutions to Practice Exercises 437

Index 451

Acknowledgments

I want to thank all the people who worked on Apple Computer's
team to develop the Macintosh BASIC language, without which
this book would not have been possible.

Three of these people made special contributions. Donn Den­
man, the chief creator of the language, was informative, patient,
and understanding even when I managed to interrupt his work.
Edward Spiegel answered many questions and helped me get all
the technical details right as new features were added to the lan­
guage. Marianne Hsiung helped me understand several points.
Their contributions have made this a better book.

RDN

Introduction

This book is a comprehensive guide to Apple Computer's Macin­
tosh BASIC language. It is a complete reference to Macintosh
BASIC that progresses from a simple one-line program to compli­
cated programs using advanced computer concepts.

BASIC is the most widely used programming language on
microcomputers because it is the easiest language to learn. Macin­
tosh BASIC is even easier to learn and use than the versions of
BASIC found on most other machines. It is an interactive language
that displays corrective messages as soon as you enter a line that
contains an error. The messages are written in normal English
instead of computer jargon and are usually clear enough to enable
you to correct the error without referring to written documentation.

Macintosh BASIC is incrementally compiled, a technique that
makes it faster than most other versions of BASIC. Its program­
ming environment includes a full-program editor that allows you
to use all of the normal Macintosh editing techniques.The built-in
interactive debugger is an effective learning and programming tool
that is fun to use.

A concerted effort has been made to use normal English in this
book. Many books about computers use technical terms and com­
puter jargon so frequently that it is difficult for the non-expert to
understand the concepts being discussed. This book discusses con­
cepts in English, using technical terms and jargon only where they
add to understanding.

vi

HOW TO USE THIS BOOK

You do not have to finish reading this book before you write a
computer program in Macintosh BASIC. Computer programming
is best learned by doing. The most important part of learning to
program computers is the experience you gain by actually writing
programs. So start using commands in your programs as soon as
you read about them. You will learn much more quickly if you do.

This book was organized to present the concepts of computer
programming and the Macintosh BASIC language in a logical
manner, laying the foundation carefully with simple concepts
before building up to advanced concepts. If you want to proceed
carefully and cautiously, you should start with Chapter 1 and work
through the book.

The explanations, guidance, help, suggestions, reference infor­
mation, and practice exercises in the book are designed both to
make your learning experience go smoothly and to serve as refer­
ence materials once you have started to write programs. If you are
particularly curious about a particular command or subject, feel
free to jump ahead and read about it. Just keep in mind that a
complete understanding of it may depend on something you
skipped earlier in the book.

HOW THIS BOOK IS ORGANIZED

This book is organized into five parts. Part One, Fundamentals of
Macintosh BASIC, contains eight chapters that explain the fun­
damentals of Macintosh BASIC. The topics include a description
of Macintosh BASIC's windows and menus, operators, program
editing techniques, conditional statements, simple control struc­
tures, functions, and string manipulations. By the time you finish
these chapters, you will be able to write a variety of BASIC
programs.

The seven chapters in Part Two, Intermediate Techniques,
introduce subjects that will help you write more complicated pro­
grams. These subjects include defining data arrays, formatting
output, defining your own functions, reading and writing data
files on disk, using Macintosh BASIC's interactive debugger, and
passing parameters to subroutines.

Part Three, Special Macintosh Techniques, describes the Macin-

vii

tosh BASIC commands that let you handle graphics, the mouse,
and sound. While many commands are identical or similar from
one version of BASIC to another, the commands described in these
chapters are unique to Macintosh BASIC because they were specif­
ically designed for use with Macintosh hardware.

Part Four, The Macintosh Toolbox, describes how to use the
routines in the Macintosh toolbox. The features of Macintosh
BASIC described in Part Four are not described in the Macintosh
BASIC reference manual published by Apple Computer. These
undocumented features of Macintosh BASIC allow you to use the
Macintosh toolbox routines to handle windows, menus, controls,
graphics objects, resources, and assembly language programs.

The last part, Programming Style, briefly discusses some of the
things involved in polishing your program to professional quality.

A NOTE TO EXPERIENCED PROGRAMMERS

If you are an experienced programmer, you may be surprised to see
what has happened to BASIC. Macintosh BASIC is a structured
programming language. It gives you the ability to use either labels
or line numbers, and provides new control structures like CASE
and DO/LOOP, re-entrant subroutines with parameter passing,
and separate programs with parameter passing and local variables.

This book teaches structured programming techniques. Stan­
dard BASIC GOTO statements are used in Chapter 5 to introduce
the concept of flow of control, but appear nowhere else in the
book. POP is listed in Appendix A for completeness, but is omit­
ted from the text.

DISK OF PROGRAMS

If you prefer not to type long programs, the programs labeled as
Figures in this book are available on a single Macintosh disk. The
programs are intended for educational purposes only. For more
information about ordering one of these disks, write to:

Language Systems Corp.
1217 E Street, S.E.
Washington, DC 20003

viii

---&filne--­
Fundamentals of
Macintosh BASIC

- - - - --·-

---cluif-W!--­

Getting Started

You have a disk that contains Macintosh BASIC and are ready to
start programming. But where do you begin? In this chapter you
will start by reviewing some elementary concepts. You will learn
what a computer program does and will get an overview of how
Macintosh BASIC translates programs that you write into a form
that the machine can understand. Finally, a quick look at Mac­
intosh BASIC's programming environment, including windows
and menus, will get you started.

PROGRAMS

A computer is a collection of electronic parts based on simple
yes/no or on/off logic. Included in the computer are a central pro­
cessing unit (CPU) and random-access memory, which holds
instructions and data while the computer is operating.

1

2 Using Macintosh BASIC

The central processing unit is the center of the computer's oper­
ation. It is an integrated circuit that could fit in the palm of your
hand. This component performs calculations and makes logic
decisions; it also sends electronic signals to the other parts of the
computer to tell them when to act. The central processor chip in
the Macintosh is a Motorola 68000 chip.

The computer's memory is made up of a series of units called
bits that can store either a 1 or a 0. The bits are grouped into bytes
(8 bits per byte). Each byte has its own address and can be accessed
by using its address at any time.

While it is the center of the computer's nervous system, the cen­
tral processor does not really have a mind of its own; it can only
follow a strict regimen of repeatedly executing one instruction
from memory and then looking for the next instruction. The series
of instructions is called a computer program.

Once a program has been entered into the computer's memory, it
can later be stored on a diskette or a hard disk. You can then reload
the program at any time and tell the computer to execute it. Even­
tually you will write and develop a library of computer programs.
When you want the computer to do something, all that will be
required will be to select the proper program from your library.
You will only have to write a new program when you want to do
something you have not done before.

THE BASIC PROGRAMMING LANGUAGE

The instructions the central processor understands are a series of
l's and O's called machine language. Only a few people directly
write machine language. Instead, most people use higher-level
languages that are closer to everyday spoken language. One of
these higher-level languages, BASIC, has become the most popular
language on small computers because it is so flexible and easy to
learn. The name BASIC is an acronym of the words Beginner 's
All-purpose Symbolic Instruction Code.

The version of the BASIC language described in this book allows
you to harness the many capabilities of the Macintosh with a total
vocabulary of less than 250 words. Macintosh BASIC includes all
of the standard commands of the original BASIC language. It con­
tains new commands specially written for the Macintosh and some

Getting Started 3

of the bes t features of another popular language, Pascal.
To allow a computer to understand programs written in

BASIC, another program is needed to translate from BASIC into
the machine language that the computer's central processor
understands. The program labeled Macintosh BASIC does the
translating.

Until recently, language translation programs could be divided
into two types: compilers and interpreters. A compiler does its
translating and error checking after the entire program has been
entered . A typical compiler produces a binary or object code file, a
collection of low-level machine language instructions. The binary
file is executed when you run the program.

When new hardware enabled people to interact with computers
on-line, interpreters appeared. An interpreter does not go through
the intermediate step of creating a binary or object file; instead, the
interpreter reads and translates each line of program text just
before it is executed. This makes the interpreted program run more
slowly than the equivalent compiled program. The advantage of
an interpreter, however, is that it is much more convenient to use
for program development because program changes can be tested
without waiting for the entire program to be compiled. Most ver­
sions of the BASIC language are interpreted.

Macintosh BASIC is one of the first of a new breed of program­
ming languages that combine the bes t features of compilers and
interpre ters. Instead of waiting until the entire program has been
entered, Macintosh BASIC compiles each program line into a spe­
ciall y compressed form of code right after tfie line is entered. This
reduces the time required by BASIC to compile the program before
execution begins. When you run the program, the precompiled,
compressed code allows Macintosh BASIC to run substantially fast­
er than versions of BASIC that interpret every thing while you run
the program.

Compiling each program line just after it is entered also allows
Macintosh BASIC to make programming a little easier. BASIC
checks each line for simple spelling or syntax errors and notifies
you immediately, so you can fix them while the program line is
still fresh in your mind. (However, some types of errors that
involve several lines of code can only be discovered when the pro­
gram is running. You find out about these errors when they
happen.)

4 Using Macintosh BASIC

A BASIC PROGRAM

Let's take a quick look at a short program written in Macintosh
BASIC:

10 PRINT "let's acid 3 and 5 together."
20 LET A= 3 + 5
30 PRINT "3 and 5 make"; A
40END

For the moment, you don't need to worry about how this program
works-you just want to become familiar with how a program
looks. In this example, each line contains a separate instruction, or
program statement. No special punctuation is used at the end of
the line. Each line is labeled with an identifying number. These
line numbers are required in many versions of BASIC. They are
optional in Macintosh BASIC-you may use line numbers if you
wish, but they are not required.

This first example of a program written in Macintosh BASIC is
traditional in its format. The program in Figure 1-1 shows some of

do
for i = 1 to 500

paint rect i ,30 ;1 + 120, 150
invert oval i .30 ;i + 120. 150

nexti

for i = 500 to 1 step - 1
paint oval i ,40 ;i + 100, 140
invert reel i ,40 ;i + 100, 140

nexti
loop

Figure 1-1. Sample graphics program

Getting Started 5

.. a File Edit Search Fonts Program

TeHt of Sample Graphics

Figure l-2. Output from sample graphics program

the differences in style that Macintosh BASIC allows and also
shows off some of the graphics capabilities of the Macintosh. If
you were to type this program into your Macintosh and run it, you
would see that it moves an object back and forth across the screen,
leaving a varied trail behind it. Figure 1-2 shows a picture of the
program's output on the Macintosh screen.

STARTING MACINTOSH BASIC

If you have already purchased Macintosh BASIC and have a
Macintosh computer handy, just insert the Macintosh BASIC disk
so you can use the computer to follow along with the rest of this
introductory discussion.

When the initial whirring of the disk drive stops, your screen
should look something like Figure 1-3. The icon Macintosh
BASIC represents the Macintosh BASIC programming language.
The narrower icon with a similar design represents an individual

6 Using Macintosh BASIC

r • File Edit Uiew Speciol
...

0 Mocintosh BRSIC Disk
4 items 228K ;n d;sk

~ ~
Macintosh BAS IC Sample Graphics

D
System Folder

D
Empty Folder

Figure 1-3. Screen after inserting Macintosh BASIC disk

program written in Macintosh BASIC. If you move the mouse so
that the cursor points to the Macintosh BASIC icon and double­
click the mouse button, the Macintosh BASIC program will start
running. If you put the cursor on the icon of a program written in
Macintosh BASIC and double-click, the Macintosh BASIC language
and the program whose icon you clicked will be loaded into memory.

SUR VE YING BASIC'S WINDOWS

Macintosh BASIC uses two major kinds of windows. One kind dis­
plays the text of your program, and the other displays the material
generated by your program while it is running. Figure 1-4 shows a
Macintosh screen that contains both of these kinds of windows.

Macintosh BASIC's windows have the standard Macintosh fea­
tures. You can move a window by dragging its title bar and change
its size by dragging the size box. If you have several windows open,
you can click on a window to make it active.

Getting Started 7

r S File Edit Search Fonts Program
..,

do
TeH t of Sample Graphics i]o~~~i'Js~a~m~p~l;e]G~r;ap~h~i~c!s ij~~~

for i = 1 to 500
paint reel i ,30; i+ 120, 1
invert oval i ,30; i+120,

next i

for i = 500 to 1 step -1
paint ovol i ,40;i+ 100, 1
invert reel i,40;i + 100,

next i
loop

Figure 1-4. Macintosh BASIC windows

The windows have vertical and horizontal scroll bars, which
become active if there is information beyond the visible area of the
window. You can use the arrows at the ends of a scroll bar to scroll
slowly through the document, click in the gray area to scroll one
window at a time, or drag the scroll box to move directly to the
part of the document you want to see.

Text Windows and Output Windows

The window on the left in Figure 1-4 is a text window. As its name
implies, it displays the text of a program. When a program is
opened, the words "Text of" precede the name of the program in
the title bar of the text window. You can use all the standard
Macintosh editing techniques on the program in the text window.
You can type a new program directly into an untitled text window.
Chapter 4 describes program en try and editing techniques.

The window on the right in Figure 1-4 is a program output

/

8 Using Macintosh BASIC

1'01 Program is running

I? I Waiting for input

~ Program has been halted

lihl Debugger is on

l•I Program is finished

Figure 1-5. Status box designs

window, or output window for short. Macintosh BASIC uses out:;
put windows to display any text or graphics that your program
produces. The title at the top of the output window is the name of
the program file, with no extra words added.

The little square at the top of the vertical scroll bar is called the
status box . Its purpose is to tell you the current status of your pro­
gram. Figure 1-5 shows the different status box designs and their
meanings. The circling design means that the program is running.
The question mark indicates that the program is waiting for input
from the keyboard or the mouse. An open hand indicates that you
have halted the program, and the "bug" indicates that you are
using the interactive debugger. (Operation of the debugger is
explained in Chapter 14.) Finally, the solid rectangle indicates that
your program has finished running.

THE BASIC MENUS

Now let's take a first look at the menus that define the environ­
ment in which you will work using Macintosh BASIC. Macintosh
BASIC includes six full menus of commands. These are the Apple,
File, Edit, Search, Fonts, and Program menus. You select items on
these menus either with the mouse or with the COMMAND key
options.

Getting Started 9

The Apple menu contains the About Macintosh BASIC option
and lists the names of all the available desk accessories. Selecting
the first option presents a dialog box about Macintosh BASIC
including the author's name and the version you are using. Macin­
tosh BASIC fully supports the desk accessories, both while you are
writing a program and while your BASIC program is running. If a
program that is running needs input from the keyboard or the
mouse while you are using a desk accessory, the program stops and
waits until you make the program's output window active again so
it can receive the input.

The File menu contains commands for handling program files.
The Edit and Search menus provide full editing, search, and
replacement options for use in editing programs. The Fonts menu
allows you to change the display font in any of Macintosh BASIC's
windows. The Program menu contains options related to running,
compiling, and finding errors in your programs. The items on
these menus are described in the next three chapters.


~~~cleafter2~~~ 

Creating Programs 

In this chapter you will see what it takes to write a simple Macin­
tosh BASIC program. Once you have entered the program, you 
will run it and save it on disk. Several of the Macintosh's menus 
will be indispensable in helping you create programs. In particu­
lar, the Program menu allows you to run your programs, the Fonts 
menu allows you to change the way your programs look, and the 
File menu allows you to save your programs on disk. 

A SIMPLE PROGRAM 

No matter how long or short a program is, it must communicate if 
it is to be useful. A program that predicts interest rates, the next 
hot stock, or the winner of Saturday's eighth race is of no use at all 
if it fails to communicate its results in time for you to act. 

11 



12 Using Macintosh BASIC 

There are many ways in which a program can communicate. It 
can generate sound, draw pictures, print on a piece of paper, or 
save information on disk. The simplest way for a program to 
communicate, however, is to display text on the screen. That is 
what you will do in your first Macintosh BASIC program. 

When you are ready to start, insert the Macintosh BASIC disk 
and double-click on the Macintosh BASIC icon. Let's write a pro­
gram to print the word "Hello" on the screen. Just type in 

print 'Hello' 

and press the RETURN key. Now, using the mouse, move the cursor 
to the Program menu and select Run. If your typing was correct, 
the screen looks like Figure 2-1. Macintosh BASIC created the out­
put window labeled "Untitled" to hold the program's output, and 
then the program printed "Hello" in the window. 

Macintosh BASIC's vocabulary contains special words that are 
sometimes called keywords or reserved words. The word "print" is 

,.. s File Edit Search Fonts 

TeHt of Untitled 
print "Hello" 

Figure 2-l. First Macintosh BASIC program 

., 

• 



Creating Programs 13 

one of those words. When Macintosh BASIC recognizes one of its 
keywords while compiling a program line, it displays that word in 
boldface type in the text window. The boldface makes it easier to 
locate keywords in your program's text. 

The word in quotation marks, "Hello", is called a string. A 
string is a collection of characters such as letters, digits, and punc­
tuation marks. Strings are often used to hold words and sentences. 
You can enclose a string in either single or double quotation 
marks as long as you use the same type of quotation mark at both 
the beginning and the end of the string. 

Now select the New command from the File menu, and you are 
ready to write another program. You do not have to close the win­
dows from the first program before you start, because Macintosh 
BASIC will allow you to work on several programs at once. The 
only limit to the number of programs you can work on simultane­
ously is the amount of memory the programs occupy in the 
machine. 

First you should decide what message you want your program to 
print. Once you have decided, type print, a space, a quotation 
mark, the string you want to print, and a quotation mark match­
ing the first one. Then press the RETURN key. If you want to print 
more than one line, use a separate PRINT statement for each line. 
To see your program run, select Run from the Program menu. 

PROGRAM FORMAT 

Each line in your program should contain only one program 
statement. Macintosh BASIC allows you to put several statements 
on the same line if you separate them with colons. However, there 
is almost never any reason to put more than one statement on a 
line. Your program will be much easier to read if you start each 
program statement on a new line. 

You can insert blank lines or leave extra spaces anywhere in a 
line to improve readability. There is no limit to the length of a 
statement in a program line; however, you will usually want the 
line to fit within the width of your text window. 

You may have noticed that the word "print" in the program in 
this chapter is in lowercase (small) letters, while it was in upper­
case (capital) letters in the first program in Chapter 1. You can use 



14 Using Macimosh BASIC 

either convention. If you wish, you can even mix upper- and lower­
case letters together like this: 

pRiNt 

The only time Macintosh BASIC pays attention to whether a letter 
is in upper- or lowercase is when the letter is part of a string value. 
Keywords can contain any mixture of upper- and lowercase letters. 
For consistency, Macintosh BASIC commands or keywords, like 
PRINT, will appear in all capital letters in most of the programs 
in this book. 

WORKING WITH PROGRAM FILES 

Figure 2-2 shows the File menu. The items on this menu are 
selected most often while writing and editing programs. The New 
command opens a new text window for entry of a new program. 
The window is labeled "Untitled." The Open Program file com­
mand presents a dialog box from which you may select an existing 
program to be retrieved from disk and displayed in a text window. 

· Edit Search Fonts Program 
New ~N 

Open Program file... ~o 

Close ~K 

Saue Te11t ~s 

Saue a Copy In... ~I 

Print Quick 

Quit 

Figure 2-2. The File menu 



Creating Programs 15 

Once in the window, the program can be edited or executed. When 
you open a long program, there may be a short delay before the 
listing of the program appears in the text window. Macintosh 
BASIC checks the program for errors and compiles it into a shorter 
form during this delay. 

The Close command closes the active window. If a text window 
is active and the program has not been saved since it was last 
changed (or if it is a new program that has never been saved at all), 
a dialog box asks whether you want to save the changes before 
closing. If you answer no, the latest version of the program will 
not be saved, and the copy of the program on the disk will not 
include any changes made since the last time the program was 
written to the disk. 

The Save Text command copies the program in the active text 
window to the disk with the same file name that appears at the top 
of the window. If the window is untitled, Save Text will present a 
dialog box that asks you to give the program a name. The name 
you assign is given to the disk file, and at the same time it is dis­
played at the top of the text window. The Save a Copy In com­
mand allows you to save a copy of the program in the active text 
window under a different name. Save a Copy In does not change 
the title of the text window. The two Save commands work only 
when a text window is active. Both Save commands leave your 
program in the text window unchanged. 

RUNNING YOUR PROGRAM 

The Program menu, shown in Figure 2-3, contains the commands 
to run a program once it has been written. The Run command 
opens an output window and starts program execution from the 
beginning. If an output window is already open for the program, 
Run starts the program again from the beginning in the same 
window. 

You can run several programs at once in Macintosh BASIC. You 
can even run more than one copy of the same program. The price 
you pay is that each program runs more slowly. The only limit on 
the number of programs running at the same time is the amount 
of memory in your machine. You can also edit a program while 
another program, or a copy of the same program, is running. 



16 Using Macinwsh BASIC 

s File Edit Search Fonts 'll£1 !WJJJ..m 

Run 
Run Another 
Holt :":H 
Go ~G 

Saue Binary 
Check SyntaH ~U 

Turn Checking Off 

Oebug ~o 

S1ep :..:1 
·rrnce : .. :r 
Block lrM i' :<H 
Stiow ll<1ri<1tde t 

Figure 2-3. The Program menu 

Macintosh BASIC accomplishes this feat by dividing up the avail­
able time among all the competing tasks , switching from one task 
to another as of ten as sixty times a second. The Run Another 
command opens a new output window and runs another copy of 
the program whose window is active. 

The Halt command interrupts program execution, and the Go 
command resumes it. Both commands a ffect the program whose 
output window is ac tive. If you select Go when a program text 
window is active, Go starts program execution just like the Run 
command. 

The Save Binary command saves a program to disk in a compact 
form that cannot be translated back into the original program texL. 
This is the form in which programs are saved once they appear to 
be working properly. A binary program file occupies less space on 
the disk than a normal text fil e, and it also loads faster because 
compilation and error checking do not need to be performed every 
time the program is read from disk. Save Binary appends the letters 
". Bin" to the program 's fil e name to give the binary file a different 
name on the disk. The design on a binary fil e 's icon is outlined 
instead of solid. Even though you may be absolutely convinced 



Creating Programs 17 

that a program has been perfected, you should always keep at least 
one copy of the full text of the program in case further changes are 
needed. 

The Check Syntax command lets you scan a program fm errors 
whenever you wish and also lets you update a running program. 
The Turn Checking Off command turns off BASIC's automatic 
error checking. When checking is off, the command on the menu 
toggles to Turn Checking On. The Debug command turns on the 
Macintosh BASIC debugger, a tool that helps locate program 
errors. The Step, Trace, Block Trace, and Show Variables com­
mands are all part of the debugger, which is described thoroughly 
in Chapter 14. 

CHANGING FONTS IN A WINDOW 

The Fonts menu lists the seven most common font sizes plus all of 
the type fonts currently available. The list of fonts in the menu 
depends upon which fonts are in the System file on the Macintosh 
BASIC disk. The System file on the disk for Figure 2-4 contained 
four fonts . The Font Mover program on the Macintosh System 

s File Edit Seorch Program 

~ [JlmDrnll 
TI 00 [JlmDrnll 

vTI~ [JlmDrnll 
14 point 
18 point 
~rn [JlmDrnll 
24 point 

Rt hens 
Chicogo 

vGeneuo 
Monoco 

Figure 2-4. The Fonts menu 



18 Using Macintosh BASIC 

Disk will move fonts in and out of the System file. If a font you 
want to use is missing from the menu, you can copy it into the 
System file with the Font Mover program. If the list on the Fonts 
menu contains any fonts that you never use, you can save space on 
your diskette by using the Font Mover to remove any unwanted 
fonts. 

The Fonts menu allows you to change the appearance of text 
displayed in any window, whether it is a program's output win­
dow, a text window, or even the Clipboard. To change the font or 
size of text in a window, first make that window active by clicking 
the mouse button while the cursor is inside the window. Now any 
selections from the Fonts menu will affect the font and size of text 
in that window. Checkmarks appear on the menu alongside the 
font and size that are currently selected. Unless you change the font 
or type size, Macintosh BASIC uses the Geneva font in the 12 point 
size for all windows. 

If you change the font or type size for a window that already 
contains text, BASIC will erase the text and redraw it in the font 
and size you specify. Any non-text material in the window, such as 
a graphics design drawn by a program, will be erased from the 
display and will not be redrawn. This erasure affects only the dis­
play of the information, not the information itself. Thus, if the 
information was in a place like the Clipboard, you would still be 
able to retrieve it, even though it no longer appeared on the 
display. 

PRINTING YOUR PROGRAM 

If you own a printer, you can use the Print Quick command on the 
File menu. Print Quick gives a draft-quality printout that includes 
ordinary text but no graphics. Print Quick is of ten used to print 
listings of program text. You can also use it to print text from a 
program's output window. The command works on the entire 
document, not just the portion of it that is visible in the window. 
In addition to Print Quick, you can press the key combinations 
shown in Table 2-1 at any time to print an image of the active 
window or the full screen, or to copy the screen to disk for use with 
the MacPaint program. 



Crealing Programs 19 

Table 2-1. Finder Commands lo Prim or Copy 

COMMAND-SHIFT-3 

COMMAND-SHIFT-4 

CAPS LOCK-COMMAND-SHIFT-4 

QUITTING MACINTOSH BASIC 

Copy screen to disk 

Print active window 

Print entire screen 

The Quit command on the File menu provides an exit from 
BASIC back to the Finder where you will see the familiar desktop. 
If you have made changes to a program since it was last saved, 
BASIC presents a dialog box and gives you an opportunity to save 
the latest version of the program. 



~~~cltaftir3~~~ 

Statements and Operators

Commands:

• LET, PRINT, ?, INPUT, REM,

• END, END PROGRAM, END MAIN

Operators:

• =, +, -, *, /, " DIV, MOD

This chapter introduces several of the most common BASIC com­
mands and shows you how to organize them into statements in a
working program. The first step in writing a computer program is
deciding what you want the computer to do. Simple programs that
do only one thing are easy to write. For more complicated pro­
grams, however, deciding what you want the computer to do is
often the most difficult part of writing a program.

In addition to introducing the simple commands and operators
that are used in almost every program, this chapter begins the

21

22 Using Macinwsh BASIC

practice of specifying w hat a progra m does before it is written .
This simple habit will make planning and writing programs eas­
ier later on when you tackle more complex programming problems.

ASSIGNING VALUES TO VARIABLES

• LET,=

Variables are useful in programs because variables can hold values
for future reference. However, each variable can ho ld only one type
of value; thus the variabl es are classified by their content. The two
most common types are numeric variables (which hold numbers)
and string variables (w hich no strings). Each variable holds only
one value. When a new value is stored in the variable, it replaces
the previous value. As shown in Figure 3 -1 , varia bles can be visu­
alized as specialized mailboxes that hold only a single piece of mail
a t a time. If yo u attempt to store a value such as a string into a
numeric variable or a number into a string variable, Macintosh
BASIC will present you with a "T ype Mismatch " message.

Each variable has a name, which refers to the value stored in the
variable. A variable name starts with a letter and may contain let­
ters, numbers, and some special characters. However, the name of a
variable cannot contain certain characters used in Macintosh
BASIC statements as operators, commands, or punctuation marks.

Figure 3-l. Numeric variabl e " mailboxes"

Statements and Operators 23

Table 3-1. Characters to Avoid in Variable Names

Character

(space)

, ; ()

=

&

<>=#;::::::::;

@

?

Function

Word separator

Punctuation

Statement separator

Replacement operator

String delimiters

Remark character

Arithmetic operators

String operator

Relational operators

Two-way parameter marker

PRINT statement abbreviation

Channel designator

Table 3-1 lists characters that may not be used in variable names.
A variable name may contain a Macintosh BASIC reserved

word, but the name may not be identical to the word. Macintosh
BASIC treats upper- and lowercase letters the same in variable
names, so even though varname and VARNAME look different,
they are in fact different ways of writing the same variable name.
Variable names will usually be lowercase in this book.

Macintosh BASIC allows variable names to be as short as one
letter or as long as 255 characters. This improves a program's
readability because descriptive and easy-to-understand variable
names can be used. Statements like

pr= rcts- c

can become

profit= receipts.,. cost

24 Using Macintosh BASIC

If you use descriptive variable names, your programs will be easy
to improve or modify should the need arise.

Because variable names can be long but must be all one word
with no spaces, people have invented different ways of writing
long names. These include running the words together or using
some special character like a period to replace spaces. Thus,
depending on your style, a variable that contains the value of a test
score might be labeled testscore, testScore, or test.score. As a practi­
cal matter, names longer than eight or ten characters can lead to
errors because they are difficult to remember and can be difficult to
type accurately every time.

Several characters have special meaning when used as the last
character of a variable name. The most common of these is the
dollar sign ($), which marks the name of a string variable. Any
variable that does not hav a special characte at the end of its
name is a numeric variable.

The most common way to assign a value to a variable is with the
replacement statement, LET. The statement

LET a= 3

creates a numeric variable named a and puts the value 3 in it.
When a variable name is used in a formula or a BASIC statement,
Macintosh BASIC uses the value of the variable. Thus, the
sequence

LET a= 3
PRINT a

sets the variable a equal to 3 and then prints the number 3 in the
program's output window. The LET command works just the
same for string variables. The program

message$ = "Hello"
PRINT message$

prints the word "Hello" in the output window just like the pro­
gram you saw in Chapter 2.

PRINT "Hello"

The replacement operation is used very frequently in BASIC
programs. To save keystrokes when typing in programs, the use of

Statements and Operators 25

the word LET is entirely optional. A statement that starts with a
variable name fo llowed by an equal sign has the same effect as if it
started with LET. Thus,

a=7
PRI NT a

prints the number seven in the output window just as

LET a= 7
PRINT a

would do. Whether or not you actuall y type the word LET is up to
you.

DOING CALCULATIONS

• +, -, *, /, A ' DIV, MOD

Four of the arithmetic operators - the signs for addition, subtrac­
tion, multiplication, and division - are probably familiar to you.
The other arithmetic operators - exponentiation, integer division ,
and modulo - may not be nearly as well known . All seven opera­
tors are summarized in Table 3 -2.

Operator

+

*
I

A

DIV

MOD

Table 3-2. Arithmetic Operawrs

Operation Example

Addition 3+2=5

Subtraction 3 - 2 = 1

Multiplication 3 * 2 = 6

Division 3 I 2 = 1.5

Exponentiation 3 A 2 = 9

Integer division 5 DIV 2 = 2

Modulo 5 MOD 2 = 1

26 Using Macintosh BASIC

Note that while a formula such as a=3b+2 is allowed in
mathematics, in BASIC the formula must be written a=3*b+2
with the multiplication operator used instead of implied.

Exponentiation is sometimes described as "raising a number to a
power." The normal mathematical notation for exponentiation is
x", which would be read as "x raised to the nth power." To avoid
the difficulties in trying to use superscripts, Macintosh BASIC uses
the notation x"'n. The "' symbol is above the 6 on the Macintosh
keyboard and can be obtained by typing 6 while holding the SHIFT

key down.
The n in x" is called an exponent, which is where exponentia­

tion gets its name. The value of x" is x multiplied by itself n times.
For example, the value of 3"'2 is 3*3, or 9. The value of 2"'3 is
2*2*2, or 8. Exponentiation is not as common as other arithmetic
operators, but it does show up in a number of useful formulas.

DIV and MOD are integer operators. DIV is called the integer
division operator. It does a normal division and then returns the
integer portion of the result. The modulo operator, MOD, returns
the remainder of an integer division.

a= 7 DIV 2 ! Puts 3 in a
b = 7 MOD 2 ! Puts 1 in b

Evaluating Expressions

An expression is any combination of values, operators, variables,
and parentheses that can be evaluated to produce a single value. A
numeric expression can be a simple number or numeric variable
name, or it can be a complicated formula. This section discusses
how BASIC evaluates formulas.

If a formula contains more than one arithmetic operation, it is
important to know in what order the operations will be performed.
The formula a=7+3*4"' 2-6/ 2 would set a to 797 if every opera­
tion were done in a strict left-to-right order, but in BASIC, the
formula yields 52 because BASIC follows the rules of mathematics
regarding which operations get performed first (officially called
the order of precedence).

Table 3-3 lists the order of precedence for the seven arithmetic
operators. Exponentiation is always performed first. Multiplication,

Statements and Operators 27

Table 3-3. Order of Precedence

Operator Operation Order
A Exponentiation First

•I DIV MOD Multiplication, division, Second
integer division, modulo

+- Addition, .subtraction Third

division, integer division, and modulo are done next. Addition
and subtraction are done after all the other arithmetic operations.
Thus, in the formula in the previous paragraph, the exponentia­
tion 4"2 is performed first, giving a value of 16. Now the formula
can be reduced to a=7+3•16-6/2, which contains one multipli­
cation and one division. Since those two operations are equal in
precedence, they are performed in a left-to-right order. Complet­
ing the multiplication and division reduces the formula to a= 7 + 48- 3,
and the calculation can be completed by doing the addition and
subtraction in left-to-right order to give the answer 52.

Using Parentheses in Formulas

You can force BASIC to evaluate a formula in the order you desire,
regardless of the rules of precedence, by using parentheses in your
formula. BASIC evaluates everything inside a set of parentheses
before proceeding with a calculation. If several sets of parentheses
are nested inside each other, the calculations in the innermost set
of parentheses are performed first. If the formula you evaluated
earlier is changed to a=((7+3)•4)"2-6/2, then the expression in
the innermost set of parentheses, 7+ 3, is evaluated first, producing
10. The remaining set of parentheses forces the computation 10•4
to be performed next. This reduces the formula to a=40"2-6/2,
which can now be evaluated by the normal order of precedence to
1600- 3, or 1597.

28 Using Macintosh BASIC

Even when it is not n ecessary to chan ge the com putation order,
parentheses are som etimes used to clarify the order o f calcula tions.
It also m ay be easier to use p arentheses in a for mula than to look
up the o fficial order o f p recedence. If an attempt is made to enter a
formul a tha t has a different number of left and right parentheses,
BASIC will present an error message.

MORE ABOUT PRINT
• PRINT, ?

You h ave already used the PRI NT statement in your first program ,
but there is still more to learn about it. You can p rint as many
numbers and strin gs as you want in a single PRINT statement, or
you can use more than one PRI NT statement to print things on
the same line o f the output window. The statemen t

PR I NT "Testing... " ; 1 ; " .. ; 2 ; .. " ; 3

prints the string "Tes ting ... " immediately foll owed by the number
1, the spaces in the next string, the number 2, the fin a l string, and
the number 3.

ILems to be printed must b separated fro m each o ther by semi­
colons or commas . Semicolons, as used in this exam p le, cause the
items to be printed adj acent to each o ther. Macintosh BASIC
creates tab stops in the ou tput window a littl e more than an inch
apart. When a comma is used as a separator, the comma causes the
next item to be p rinted at the next tab stop.

A simple PRINT sta tement with no thing listed after it prints a
blank line. Occasiona lly, you need to use more than one PRINT
statement for things o n the same output line. Using either a semi­
colon or a comma at the very end of the PRINT statement will
cause the next PRINT statem ent to print o n the same line. A trail­
ing semicolo n will cause the next charac ter to be printed just after
the las t item printed . A trailing comma will cause the next charac­
ter to be printed at the next tab stop.

An average output window will hold abo ut fifteen lines of
information printed in the 12 point font size. When the window
becomes full , Macintosh BASIC star ts scrolling the information
vertically so that the last line printed is visible in the bottom of the

Statements and Operators 29

window. You can view the lines that were scrolled off the top of the
window by using the scroll bar along the right side of the window.

The items to be printed can be any valid BASIC expression-as
simple as the actual numbers and strings in the previous example
or as complex as you want. The statement

PRINT ((7 + 3) * 4) ~ 2 - 6 I 2

prints the number 1597 just as surely as

PRINT 1597

does . BASIC allows you to use a ques tion mark instead of the word
PRINT if you wish.

GETTING INFORMATION FROM THE KEYBOARD

• INPUT

INPUT is the command that allows a program to receive informa­
tion typed from the keyboard and place it in a variable for further
use. The statement

INPUT a

puts the value typed from the keyboard into the variable named a.
The information typed at the keyboard must be of the same type as
the variable which is to receive the information. Thus,

INPUT a$

will receive a string of information and store it in the variable a$,
while

INPUT a

will receive a number and store it in the variable a. If a non­
numeric character is typed when the INPUT statement requires a
number, Macintosh BASIC will refuse the keyboard input and give
an "Expected a Number" message.

30 Using Macintosh BASIC

You need to receive some indication when a program is waiting
for you to type something. To meet this need, BASIC allows you to
specify a prompt string as part of your INPUT statement. The
format is

INPUT "Prompt"; variable

BASIC prints the specified prompt string before waiting for the
typed input. The prompt specified in the INPUT statement must
be an actual string, not the name of a string variable. If you do not
supply a prompt string, the INPUT statement prints a question
mark. The statement

INPUT "Type your age, please:"; age

prints the prompt string "Type your age, please:" and then waits
for you to type a number. You can backspace, cut, paste, retype,
and use all of the Macintosh editing techniques while you are
entering the number. You press the RETURN key to tell BASIC to
accept your input line.

If you do not want either a prompt string or the question mark,
you can use an empty string (just a set of quotation marks with
nothing between them) as the prompt. Thus,

INPUT""; a$

does not print anything; it just waits for a string to be typed. You
should not use this technique unless you have already used a
PRINT statement to display an appropriate prompt message.

LEAVING NOTES TO YOURSELF
•REM,!

REM, which is short for "remarks," allows you to leave comments
in the text of a program without affecting the way the program
operates. Anything you put on a program line after REM will be
kept in the program text as a note, but will be ignored during
compilation and execution. Many programmers put several REM
statements at the beginning of each program to describe what the

Statements and Operators 31

program does, when it was last updated, the author's name, and
other pertinent information. Comments are also used frequently to
identify major sections of a long program. When REM is used , it
must be preceded by a colon and followed by a space.

REM h as an abbreviation, the exclamation point(!) . The excla­
mation point can be used anywhere REM can be used, and it can
also be used where REM cannot be-on a progra m line to add
comments after another BASIC statement, for example. The
exclamation point does not have to be followed by a space.

REM This is a comment
! This is a comment also
a=3 !Use ! but not REM here

ENDING THINGS NEATLY

• END, END PROGRAM, END MAIN

The END statement is used to mark the end of a BASIC program.
If END is not included, a program will stop executing when it
runs out of instructions. This does not usually cause any difficulty,
but it is still a good idea to use END in every program to mark the
point where execution stops.

END PROGRAM and END MAIN are alternate ways of writing
the END statement. END does not have to appear on the last line
of a program. If it is executed earlier in the program, execution
stops instantl y. This feature is sometimes used to end a program
earl y.

END ! Ends the program
END PROORAM ! Also ends it
END MAIN ! Another Wf!Y to end 1t

EXAMPLE PROGRAMS

Your Macintosh BASIC vocabulary now includes commands that
allow you to write programs that get data from the keyboard, use
formulas to make calculations from that data, and display the

32 Using Macintosh BASIC

answers on the screen. An example of the type of program that you
can write (shown in Figure 3-2) converts a distance from kilome­
ters to miles.

The first line is a remark that describes what the program does.
It is ignored during program execution. The INPUT statement in
the second line prints the prompt string "Kilometers:" and then
waits for you to enter a number to store in the variable named
kilometers. The LET statement in the third line divides the
number in kilometers by 0.62 and stores the result in a new vari­
able, miles. The formula to the right of the exclamation point is
the programmer's note and will not be executed. The first PRINT
statement skips a line, and the next PRINT statement displays the
answer in the output window along with the appropriate mea­
surement units. The END PROGRAM statement concludes the
program.

The example program in Figure 3-3 calculates gasoline mileage.
After the initial remark statement that tells you what the program
does, this program prints a title in the output window and then
skips a line to separate the title from the questions that will be
asked next. Two INPUT statements ask you to enter the present
and past mileage readings from the car's odometer. The program
skips another line and then requests the number of gallons of gas­
oline to fill the tank.

The next line contains an implied LET statement. The paren­
theses around the expression "now- then" force the subtraction to
be performed before the division. Finally, the program skips a line

! Convert kilometers to miles
INPUT "Kilometers:"; kilometers
LET miles= kilometers I 0.62 ! 1 kilometer= 0.62 miles
PRINT
PRINT kilometers;" kilometers="; miles;" miles."
END PROORAl'1

Figure 3-2. Convert kilometers to miles

! Calculate gasoline mileage
PRINT "eASOLINE 1"11LEA6E CALCULATOR"
PRINT

Statements and Operators 33

INPUT "What is your odometer mileage right now?"; now
INPUT "What was it last time you bought gasoline?"; then
PRINT
INPUT "How many gallons did it take to fill your tanlc:? ";gas
mileage= (now - then) I gas
PRINT
PRINT "Your car traveled"; mileage;" miles per gallon."
END PR06RAM

Figure 3-3. Calculate gasoline mileage

and displays the answer in a clear manner that includes the units of
measurement.

Notice that only one of the eleven lines in this program actually
performed a calculation. The other ten lines helped to make the
program easily understandable and to request and display informa­
tion in a clear and friendly manner. This ratio is not unusual.
Your programs should communicate with people in clear language
instead of computer jargon. This may result in programs that are
slightly longer, but they will be useful to a much larger group of
people.

34 Using Macintosh BASIC

PRACTICE EXERCISES

1. Which of the following will be accepted by Macintosh BASIC
as names for numeric variables? for string variables?

a. Total sales

b. answer$

c. streetNumber

d. White-Cell.Count

e. bachelor# 1

£. The. total.amount.of.money.I.made.last. year

g. 4teen

2. What value is stored in each of these variables?

a. amount= 3 + 3 • 2

b. size = 6 - 3 /\ 2 + 7

c. number = 2 I (3 - 1) • 8

d. rate= 3 • (2 + 1) /\ 2

3. Write a program that asks you for your name and then greets
you by name.

4. Write a program that converts meters to inches (hint: each
meter contains 39.37 inches). Don't forget to have the pro­
gram ask you for the number of meters to convert and display
the results.

---~4--­

Editing Programs

This chapter describes the techniques used to enter and edit pro­
grams in Macintosh BASIC. If you have experience with MacWrite
or another Macintosh word processing program, the text selection
and editing techniques will be familiar. You could, if you wished,
type your program into a word processing program and then let
Macintosh BASIC read the program from the text file created by
the word processor. However, Macintosh BASIC provides a full set
of text-editing commands, including global search and replace, so
typing your program directly into a Macintosh BASIC text win­
dow is the best and simplest way to enter it.

SELECTING TEXT WITH THE MOUSE

When you open a new listing window, the insertion point is
located in the first character position. The insertion point is

35

36 Using Macintosh BASIC

"" s File Edit Search Fonts Program
.,

TeHt of Untitled
This is whet en insertion p int looks like.

Figure 4-l. Insertion point in text

marked by a blinking vertical line. Figure 4-1 shows an insertion
point between the "o" and "i" in the word "point." Any text that
you type at the keyboard or transfer with the Paste command will
be inserted into your program at the insertion point.

To select a portion of a program line, or to select several lines,
move the mouse until the cursor is at either the beginning or the
end of the area you want to select. Then press and hold the mouse
button down while you move the cursor to the opposite end of the
area you want to select (this is called dragging). As you move the
mouse, the selected area is displayed as white letters on a black
background. Release the mouse button to mark the end of your
selection. Figure 4-2 shows a program line in which the word
"example" has been selected.

You can select parts of your program that extend beyond the
edge of the window, as long as you can see the beginning of the
area you want to select. When you drag the cursor slightly outside
the edge of the text window, the text will automatically scroll.

The SHIFT-click technique is an excellent way to select a large
block of your program. To select text with SHIFT-click, set the

Editing Programs 37

r s File Edit Search Fonts Program
.,

Figure 4-2. Selected text

insertion point at one end of the area you want to select. Then you
can scroll the window to position the cursor at the other end of the
block. Hold the SHIFT key down while you click the mouse button,
and you will select the portion of your program between the inser­
tion point and the cursor.

Two additional shortcuts can help select parts of your program
text. To select a single word, you can place the cursor anywhere on
that word and double-dick the mouse button. This is usually faster
than dragging the cursor over the word. To select the entire pro­
gram in the active listing window, you can use the Select All
command on the Edit menu.

Once you have selected part of your program, you can delete or
copy it. Selected text can be deleted by typing on the keyboard or
by selecting the Cut, Paste, or Clear command from the Edit menu.
You can copy the selected block with the Copy command. Because
selected text can be easily deleted, it is not wise to leave important
portions of your program selected for any length of time. Deselect
text by clicking the mouse button in the text window to reposition
the insertion point.

38 Using Macintosh BASIC

ENTERING AND DELETING TEXT

The simplest way to enter text is to start typing. If part of your
program is selected when you begin to type, that part will be
replaced. Any characters that you type with the COMMAND key held
down are interpreted by BASIC as commands and are not inserted
into your text.

Every time you press the RETURN key during text entry, Macin­
tosh BASIC inspects the line you have just entered for any errors. If
you want this error checking to be postponed until after you have
entered all of your program text, you can select Turn Checking Off
from the Program menu. Error checking also occurs when you
paste material into your program from the Clipboard.

The most common way to delete program text you have selected
is to press the BACKSPACE key located in the upper-right corner of
the keyboard. The CLEAR key on the optional numeric keypad also
deletes selected text. If you want to replace the selected text with
new text, you do not have to delete it first. It is deleted automati­
cally as soon as you type the first character of the replacement text.
Several of the edit commands introduced in the next section-Cut,
Paste, and Clear - also delete text that has been selected.

THE EDITING COMMANDS

Figure 4-3 shows the Edit menu. When a command appears in
gray type instead of black, it is disabled and cannot be used at that
particular time. Many of the edit commands can be issued from the
keyboard as well as from the menu. The COMMAND-key codes are
listed to the right of the command names in the menu.

Cut

Cut moves the selected text from the program to the Clipboard.
The insertion point remains at the location where the selected text
was removed. The previous contents of the Clipboard are com­
pletely replaced. If no text is selected, Cut empties the Clipboard.
COMMAND-Xis the keyboard command for Cut.

Cut is used most often to move a block of text from one place to

• Fiie Search Fonts Program
Undo xz

Cut llH
Copy ICC
Peste XU
Clear

Select All llR
Show Clipboard
Cop Picture

Figure 4-3. The Edit menu

Editing Programs 39

another. First you cut the text from its old location; then you paste
it into its new location. The Clipboard is merely the place that
holds the text on its way to the new location.

Copy

Copy moves a copy of the selected text to the Clipboard. The
selected text completely replaces the previous contents of the Clip­
board. If no text is selected, Copy empties the Clipboard. Copy
does not change the text in the listing window. The keyboard
command for Copy is COMMAND-C.

Like Cut, Copy is used with Paste to move information to a new
location. However, Copy does not delete the text from its original
location.

Paste

Paste replaces the selected text with the contents of the Clipboard.
If no text was selected, Paste inserts the contents of the Clipboard
at the insertion point. COMMAND-V is the keyboard command for
Paste.

40 Using Macintosh BASIC

There must be some text on the Clipboard, or the Paste com­
mand will have no effect. The most common ways to transfer text
to the Clipboard are by using the Cut or Copy commands. Text
can also be transferred to the Clipboard by another application
program. Paste works only with text in Macintosh BASIC and does
nothing if the Clipboard contains a picture.

Clear

Clear removes the selected text from the listing window. The Clear
command has no effect on the Clipboard. Selecting the Clear
command is the same as pressing the BACKSPACE key (or the CLEAR
key on the numeric keypad) while text is selected.

Select All

Select All selects your entire program. Once the program is
selected, you can copy it to the Clipboard or delete it with Cut or
Clear. The keyboard abbreviation for Select All is COMMAND-A.

Undo

Undo restores both the text in the active listing window and the
Clipboard to the status they had just before you executed the last
edit command. Insertion points and selected text are also restored.
Undo works after typing or after selecting the Cut, Copy, Paste,
Clear, or Replace commands. However, Undo does not have the
ability to reverse the effects of Replace All.

Events in another window may prevent the use of Undo. Typing
or editing commands in another window can affect the command
to be undone in the original window and may also change the
contents of the Clipboard. The best rule is to use Undo imme­
diately after the event you want to undo, without any intervening
actions.

If you choose Undo twice in a row, the second Undo command
reverses the effects of the first. This leaves your program and the
Clipboard as they were before you used Undo. The keyboard com­
mand for Undo is COMMAND-Z.

Editing Programs 41

Show Clipboard

The Show Clipboard command changes to suit the situation. If the
Clipboard is not visible, the Show Clipboard command appears in
the Edit menu. If the Clipboard is showing, the command becomes
Hide Clipboard. When Show Clipboard is selected, Macintosh
BASIC opens the Clipboard window in the lower-left corner of the
screen. Hide Clipboard has the same effect as clicking on the Clip­
board to make it the active window and then closing it by clicking
on the close box or selecting Close from the File menu. The advan­
tage of Hide Clipboard is that you do not have to make the Clip­
board window active before you close it.

Copy Picture

Copy Picture makes a copy of the graphics portion of the currently
active window and puts the copy on the Clipboard. Any text in the
window that was printed with the PRINT command will not be
copied onto the Clipboard. Even when the Clipboard contains a
picture, the Clipboard window on the screen will display its
contents-you will see the picture itself. Once a picture has been
copied onto the Clipboard, it can be pasted into the Scrapbook
desk accessory or into any Macintosh application that accepts
pictures.

USING THE SEARCH MENU

Figure 4-4 shows the Search menu. The commands on this menu
give you the ability to find a specified string and to replace it. The
string can be a variable name, a label, a marker you left for some
special reason, or any other arbitrary set of characters.

What to Find

The What to Find dialog box, shown in Figure 4-5, allows you to
specify the parameters to be used by the Find, Replace, and
Replace All commands. This dialog box appears whenever you
select What to Find or whenever you invoke a command from the

42 Using Macintosh BASIC

s File Edit Fonts Program
Find XF
Replace XR
Replace All
What to Find XW

Figure 4-4. The Search menu

Search menu for which the parameters have not yet been set. Once
the parameters have been set, they remain set until you change
them, even if you begin editing a different program.

You enter the string you want to find on the top line. On the
second line you enter the replacement string. The TAB key moves
the cursor between the search and replace fields. You can enter as
long a string as you wish on either line. To delete a previous entry,
select it with the mouse and then press BACKSPACE or type a new
string. You do not need to specify the Replace With string unless
you will be using the Replace or Replace All command.

The most common search is for a whole word, such as a variable
name or label. For this reason, you will usually set the Separate
Words option. The search string "dim" will not be found in
"dimple" if Separate Words is set, but it will be found if Include

Search for

Replace with

®Separate Words ®Ignore Case

O Include Embedded Words O Match Case

Figure 4-5. The What to Find dialog box

OK

Cancel

Editing Programs 43

Embedded Words is set. To change the setting, just click on the
circle next to the option you want.

You can require the case of the search string as well as the letters
to be matc;hed by clicking on Match Case. When Match Case is
selected, the search routine looking for the string "Print" treats
"PRINT" as a different string and does not stop. When Ignore
Case is selected, the search routine treats the two as equal. The
search parameters are normally set to ignore the difference between
upper- and lowercase when determining whether a match has been
found.

You should usually use Ignore Case because Macintosh BASIC
ignores the case of the letters in BASIC commands, variable names,
labels, and comments. The only time case really matters to BASIC
is when the text is a string inside quotation marks.

Clicking on the OK button records the selections you have made
and executes the Find or Replace command if it was previously
selected. Pressing the RETURN key has the same effect as clicking
the OK button. Clicking on the Cancel button cancels any changes
you have just made and restores the parameters to the settings they
had when the box first appeared. If the box appeared as the result
of a Find, Replace, or Replace All command, clicking on the Can­
cel button cancels that command as well.

Find

Find allows you to locate a program line or string of characters in
a program. Find starts at the current insertion point in the text and
stops when it finds the string for which it is searching. Find leaves
the text of the target string selected and highlighted. You can spec­
ify the string to search for (the target string) in two ways: by select­
ing a string in the text before you invoke Find or by typing the
string in the What to Find dialog box. If any text is selected, the
Search menu contains the Find Selection command as shown in
Figure 4-6. Find Selection locates the next match for the selected
text string.

You can invoke Find from the keyboard by typing COMMAND-F.
Repeatedly typing COMMAND-Fis a quick way to flip through the
text to check every reference to a specified string.

One very practical way to use the search capability is to develop
your own system of markers for special locations in your programs.

44 Using Macintosh BASIC

r S File Edit

~D~ TeHt of Find Selection
do Replace Selection

for D = 1 to Replace Rll
point re._W_h_a_t_t_o_F_in_d-.-­
i nvert ovol i ,30 ;i+120 ,

next i

for i = 500 to 1 step -1
point OYOl i,40;i+100, 1
invert reel i ,40 ;i+100 ,

next i
loop

Figure 4-6. Search menu with text selected

..,

Markers, for instance, can be used to mark program locations that
need more work or that need to be rechecked later. With the excla­
mation point, you can leave a comment containing your marker on
any program line. The marker can be your initials or any other
combination of characters that is unlikely to be used for another
purpose. Instead of keeping notes on separate pieces of paper or
waiting for the Note Pad desk accessory, you can leave your notes
in the program itself. Then, when you think the program is com­
plete, you can search for your marker to find any notes about
things you may have forgotten.

Replace

The Replace command replaces the target string with the replace­
ment string that was set with the What to Find command. If any
text is selected when you choose Replace, the selected text will be
replaced. If no text is selected, Replace uses the target string from
the What to Find dialog box.

Editing Programs 45

Like Find, Replace starts at the insertion point in the text and
stops after it finds the target string. You can reverse the effect of the
Replace command with Undo as long as you use Undo right away.
The keyboard sequence for Replace is COMMAND-R.

Replace All

Replace All searches the program in the active listing window and
replaces every occurrence of the target string. Both the target string
and the replacement string for Replace All must be set in the What
to Find dialog box. The Replace All command presents that dialog
box if either the search string or the replacement string has not
been specified.

There is no automatic way to undo a Replace All operation. The
Undo editing command does not work with Replace All. The only
way to put the text into its previous form is to find the places that
may need to be changed and examine them one by one. Because of
this, Replace All should be used very carefully, especially if you
have set the Include Embedded Words option. For safety's sake, it is
a good idea to make an extra copy of your program before you start
to use Replace All.

ERROR CHECKING

Because the largest number of errors involve mistyping or simple
mistakes in the syntax for a single command, BASIC can detect
most errors by examining a single program line as soon as it has
been entered. Other errors, such as those involving the flow of
program execution, cannot be detected until the program is run.
Most error messages occur when you are entering program lines.

Turning Checking On and Off

Usually you want to be notified of an error as soon as it occurs so
that you can correct the error while the line is still fresh in your
mind. However, sometimes error checking after each line becomes
bothersome, as it might to a touch typist with a long program to
enter. In such situations, line-by-line error checking can be turned

46 Using Macintosh BASIC

,. S File Edit Search

TeHt of Untitled

Figure 4-7. Turning checking off

off by choosing Turn Checking Off from the Program menu, as
shown in Figure 4-7. Once Turn Checking Off is selected, the entry
on the menu changes to Turn Checking On to allow you to turn
the line-by-line checking back on.

Selecting Turn Checking Off does not prevent the error checking
from occurring; rather, the checking is deferred until you run the
program. The ability to switch line-by-line error checking off and
on allows you to shape the BASIC environment to match your own
programming style.

Correcting Errors

Figure 4-8 shows an error message box. Most of the Macintosh
BASIC error messages are reasonably clear and easy to understand.

Once an error message box appears, you have only two choices.
You can choose OK, or you can choose Cancel. As is the case with
most Macintosh dialog boxes, pressing the RETURN key on the
keyboard has the same effect ·as clicking on the OK button. The

Editing Programs 47

"" a File Edit Search Fonts Program
.,

TeKt Of Untitled
Thi s i s en error.

Can't recognize statement

«-» This is an error.

t OK

Figure 4-8. A ty pical error message box

Cancel button stops line-by-line error-checkin g o f the tex t you just
entered .

When you click the OK button, BASIC returns you to the win­
dow into which you were entering text, and the line that contained
the error is selected, as shown in Figure 4 -9. If you want to retype
the entire line, just start typing- your first keypress wi ll delete the
selected text. If you want to edit the line, position the cursor and
click to position the insertion point.

Using Check Syntax

The Check Syntax command on the Program menu performs any
deferred error checking and allows you to update a running pro­
gram. Check Syntax does not ch ange the Turn Checking On/ Turn
Checking Off setting. You can use Check Syntax as of ten as you
want to receive your delayed error messages without changing the
program entry environment. The keyboard sequence for Check
Syntax is COMMAND - U.

48 Using Macintosh BASIC

r s File Edit Search Fonts Program

~D TeHt of Untitled

I

Figure 4-9. Text selected after error message

Updating a Running Program

Macintosh BASIC allows you to edit a program while it is run­
ning. This capability is especially valuable when programming
graphics or sound routines. You can write a program, watch it run,
and keep making changes until the program produces the graphics
or sounds that you want.

When editing a program while it is running, you need to

remember that there are two versions of your program in the
machine: one is the program source listing you see in the text
window, the other is the compiled version of your program main­
tained by Macintosh BASIC. The compiled version is the one that
is executed when you run the program.

Once you make editing changes to the source program in the
text window, you need to use Check Syntax to tell BASIC to update
the compiled version. The update process will incorporate your
changes into the running program, and you can watch your
changes take effect in the output window.

Editing Programs 49

PROGRAM EDITING SHORTCUTS

If you need to refer to one part of your program while you are
wri ting another part, you could scroll to the p lace you need to
check and then scroll back to the place where you are working. A
faster way is to keep a second copy of your program in another
window. Figure 4-10 shows the screen arranged with three copies
of the same program.

The safe way to work with more than one copy of the same
program is to have only the version of the program that you are
modifying in a listing window that bears the program 's name. All
of the remaining copies should be in untitled windows so that you
can easily tell which copy of the program you are changing. T h is
way, when you fin ish, you will have only one copy of the program
to save.

To make more than one copy of the same program, fi rs t load the
program. T hen choose Select All from the Edit menu fo llowed by
Copy. This p laces a copy of your entire program on the Clip board

,.. a File Edit Search Fonts Program

~D TeHt of Figure 1- 1 __ TeHt of Untitled
do do

for i = 1 to 500 for i = 1 to 500
point rect i,30; i + 120, 1
invert ovol i ,30;i +1 20,

nexti

for i = 500 to 1 step - 1
point ovol i ,40; i + 100, 1
invert rect i ,40; i+1 00,

next i
loop

I

point re ct i,30; i + 120, 150
invert ovol i ,30;i + 120, 150

next i

TeHt of Untitled
next i

for i = 500 to 1 step -1
point ovol i,40;i +1 00, 140
invert rect i,40; i+ 100, 140

next i

Figure 4-10. Several copies of the same program

..,

50 Using Macintosh BASIC

P do
P for i = 1 to 500

point rect i,30;i+ 120, 1
invert ovol i,30;i+1 20,

next i

for i = 500 to 1 step -1
point OYOI i,40;i+ 100, 1
invert re ct i ,40 ;i + 1 00,

nexti
loop

I

Figure 4-11. Several programs opened from the Finder

.,

Click the mouse button once in the text window to deselect your
program. Now use the New command from the File menu to make
an untitled window. Choose Paste from the Edit menu to transfer
the copy to the untitled window.

If there are other programs you want to refer to or copy from
during your program editing session, you can select the appropri­
ate program icons in the Finder and double-click on one of them
to enter Macintosh BASIC. All of the programs you selected will be
opened at once and displayed in text windows, ready for you to

begin editing, as shown in Figure 4-ll. You can move the windows
around to arrange them while you are editing.

If you save more than one version of a program, be sure you
label them. Put the version number or the date and time (or a ll
three) in a comment near the beginning of the program's text. In
addition, it is a good idea to use the version or date as part of the
file name so you can immediately identify the most recent version
without having to open up all the files.

Editing Programs 51

PRACTICE EXERCISES

1. Open a new listing window and type in the Macintosh sam­
ple graphics program from Chapter 1. If you had error check­
ing turned off while you typed, check for syntax errors. Save
the text of the program on disk.

2. Open MacWrite and type a Macintosh BASIC program.
When you are finished, select the Save As command from
MacWrite's File menu, and click on the Text Only option in
the dialog box. After you have saved the program, quit Mac­
Write. Now click on the program's icon to select it; then hold
down the SHIFT key and click on the Macintosh BASIC icon.
With the two icons selected, double-dick on the Macintosh
BASIC icon to load the program into a text window. Fix any
errors BASIC identifies while reading and compiling the
program. Which way of entering programs do you prefer?

3. Type a program in a listing window and experiment with the
editing commands. Select Show Clipboard so you can watch
what each command does to the contents of the Clipboard.
Try Undo after each editing command to observe its effect.

4. Open the sample graphics program. Open a new, untitled
window and copy the program into the new window. Close
the original window. With the program in the untitled win­
dow, experiment with Search, Replace, and Replace All. Try
these commands with and without the Include Embedded
Words and Match Case options. When you are finished exper­
imenting, do not save the untitled program unless you give it
a name different from the original program.

5. Open the sample graphics program from exercise 1, and
make a copy of it in a new window. Close the original pro­
gram's window, and use the copy for the rest of this exercise.
Run the copy. Use the editing techniques in this chapter to
change the numbers in the running program. When you are
finished experimenting, do not save the untitled program
unless you give it a name different from the original program.


~~~cltafters~~~ 

Making Decisions 

Statements: 

• GOTO, IF/THEN/ELSE/ENDIF 

• SELECT /CASE/CASE ELSE/END SELECT 

Operators: 

• =,#,>,<,>,~,AND,OR, NOT 

A program is much more useful when it is able to react in different 
ways to different situations. The commands explained in this 
chapter allow a program to test whether a predefined condition is 
met and to execute a different sequence of instructions for each 
different condition. This is the foundation on which all interactive 
programs are based. 

LABELS AND BRANCHING 
•GOTO 

The order in which the instructions in a computer program are 
executed is called the flow of control. The flow of control normally 

53 



54 Using Macintosh BASIC 

starts with the first line of a program and proceeds from one line 
to the next until an END statement is encountered or there are no 
more lines in the program. 

The GOTO statement changes the flow of control every time it 
is executed by branching, or transferring control, to the line ciesig­
nated in the GOTO statement. The line to which a GOTO state­
ment transfers control must start with either a label or a line 
number. Here are some examples of lines starting with labels and 
line numbers: 

90 a=3 I 90 is a line number 
Newline: a=4 ! NewJtne is a label 
860 PRINT "Thts ttne has a 11ne number" 
L33: PRINT "This line has the label 'L33"' 

In the following program, 

Do.it: PRINT "I love apple pie." 
&OTO Do.it 

the GOTO statement transfers program execution to the line 
labeled "Do.it", which prints "I love apple pie." and then executes 
the GOTO statement again. This is called an infinite loop, 
because it will continue for an infinite amount of time if left alone. 
The program cannot get out of the loop by itself. The loop will 
end only if you stop the program by closing the output window or 
choosing the Halt command from the Program menu. 

You can use either line numbers or labels, and you can mix the 
two in the same program. A line number or label must be the first 
thing (except for spaces) on a new line. Failure to follow these 
rules is likely to result in an error message when the line contain­
ing the incorrect line number or label is entered. 

Here is a summary of the requirements for labels. A label must 
start with a letter and may contain letters, digits, and some special 
characters. The characters that cannot be used in a label are the 
same as the characters that cannot be used in a variable name. 
They are listed in Table 3-1. A label must be followed by a colon. 



Making Decisions 55 

Rules for Labels 

• Must be the first thing on a line 

• Must start with a letter 

• May not contain spaces or other special characters 

• Must be followed by a colon (:) 

A line number may contain only the digits zero through nine 
and must be followed by a. space. Macintosh BASIC treats line 
numbers as specialized labels and does not require numbered lines 
to be in numerical order. Thus, you can move lines from one pro­
gram to another or to a new location within the same program 
without having to change the sequence of line numbers. 

Rules for Line Numbers 

• Must be the first thing on a new line 

• May contain only the digits 0 through 9 

• Must be followed by a space 

• Lines do not need to be in numerical order 

A program that contains too many GOTO statements can be 
very hard to read and understand. In addition, erroneous use of 
GOTO statements can result in infinite loops and other problems 
that are hard to find and correct. You need to understand the 
GOTO command, but you should avoid using it if at all possible. 
Macintosh BASIC provides all the additional control structures 
you will need to write your programs without using GOTO. Some 
of these control structures are described in the next chapter. 

MAKING COMPARISONS 

The commands discussed in the remainder of this chapter are con­
ditional branches - that is, they-change the normal flow of control 



56 Using Macintosh BASIC 

only if a specified condition is met. The ability to test whether or 
not a condition is satisfied is what makes it possible for a program 
to make decisions. Conditions to be tested are specified with rela­
tional and logical operators. 

Relational Operators 
• =, ¥:-, >, <, 2::, :::; 

Relational operators test the relationship between two numbers, 
strings, or other expressions. Table 5-1 lists all of the relational 
operators. These include the familiar concepts of equality and 
inequality and greater than or less than. You can also use the com­
binations greater than or equal to and less than or equal to. 

The Macintosh keyboard can generate the one-character symbols 
for the operators "not equal to," "greater than or equal to," and 
"less than or equal to." These characters are produced by holding 
down one of the two OPTION keys while pressing the equal, 
comma, or period keys. Table 5-2 summarizes the special key­
strokes for these three characters. As shown in Table 5-1, the "not 
equal to" operator can also be represented by combining the 
greater than and less than symbols in either order. Similarly, the 
compound operators "greater than or equal to" and "less than or 
equal to" can be represented by combining the operators for the 
two parts, again in either order. 

When an expression containing relational operators is evaluated, 

Table 5-1. Relational Operators 

Symbol 

=F-, <>, >< 
> 
< 
2:, >=, => 
::;, <=, =< 

Meaning 

Equal to 
Not equal to 
Greater than 
Less than 
Greater than or equal to 
Less than or equal to 



Making Decisions 57 

Table 5-2. Keystrokes for Special Characters 

Character Keystroke Meaning 

=F OPTION= Not equal to 
::::; OPTION, Less than or equal to 
;::: OPTION. Greater than or equal to 

the result is either true or false. The expression 4>3 evaluates as 
true because 4 is greater than 3, and the expression 4= 3 evaluates 
as false because 4 is not equal to 3. The expression a=5 is true 
only when variable a is set to the value 5; it is false for any other 
value of a. 

Relational operators can also be used to compare strings. Each 
character in a string is represented inside the computer by a code 
between 0 and 255. Appendix C contains a complete listing of 
these codes. Two strings can be compared by looking at them one 
character at a time and comparing the codes for each character. If 
the first parts of two strings are equal, but one string has more 
characters, the shorter string is determined to be less than the 
longer string. Thus, the expression "BERT"< "BERTRAM" is 
true because, while the first four characters are identical, the short­
er string runs out of characters. 

You should exercise caution when comparing or sorting strings 
that contain numbers. A string comparison will find that "33" <"9" 
is true, because the first character (3) of the first string is less than 
the first character (9) of the second string. If you need to compare 
numbers that are contained in strings, you should either check the 
lengths of the strings first or convert the strings to numbers, as 
will be described in Chapter 7. 

Logical Operators 
• AND, OR, NOT 

Expressions that have a value of either true or false, like relational 
expressions, are called logical expressions. The simple logical 



58 Using Macintosh BASIC 

Table 5-3. Logical Operators and Their Effects 

Operator Operation Result 

NOT NOT TRUE FALSE 
NOT FALSE TRUE 

AND TRUE AND TRUE TRUE 
TRUE AND FALSE FALSE 
FALSE AND TRUE FALSE 
FALSE AND FALSE FALSE 

OR TRUE OR TRUE TRUE 
TRUE OR FALSE TRUE 
FALSE OR TRUE TRUE 
FALSE OR FALSE FALSE 

expressions can be combined into more complex expressions by 
use of special words called logical operators. There are only three 
of these in Macintosh BASIC: AND, OR, and NOT. The results 
of their use with the different possible combinations of logical 
values are summarized in Table 5-3. 

The use of AND and OR in BASIC follows the rules of Boolean 
algebra. The logical operator AND returns a value of true only if 
both expressions are true. The logical operator OR returns a value 
of true if either of the expressions is true. The NOT operator 
changes true to false and false to true. If used twice, the NOT 
operator leaves a variable in its original state. 

Order of Precedence 

The three logical operators can be combined with relational and 
arithmetic expressions to make very complex logical expressions. 
Just as with the arithmetic operators, rules of precedence determine 
the order in which operations are performed when evaluating a 
complex expression. Table 5-4 lists the arithmetic, relational, and 
logical operators in a descending order of precedence. 

The operations at the top of Table 5-4 are performed before 



Operator 

/\ 

+-NOT 

Table 5-4. Order of Precedence 

Operation 

Exponentiation 
Unary operators 

Making Decisions 59 

•I DIV MOD 
+­
=#><;:::::::; 
AND 

Multiplication, division, modulo 
Addition, subtraction 
Relational operators 
Logical AND 

OR Logical OR 

operations farther down the table. Operations on the same line of 
the table are performed in the order they occur in the expression 
being evaluated. Parentheses may be used to override the normal 
order of precedence for relational and logical operators, just as 
with the arithmetic operators. 

If no parentheses are present, the first operation performed is 
exponentiation. After exponentiation come the unary operators, 
which operate on only one expression. The plus and minus signs 
do double duty: they are unary operators in expressions with only 
one number, like -4 and (+5), and they are arithmetic operators 
in expressions with two numbers, like 3-4 and 3+5. When all 
the unary operations are completed, the multiplications and div­
isions are performed followed by additions and subtractions. Eva­
luation of the expression then continues with the relational oper­
ators, followed by the logical ANDs, and finally the logical ORs. 

Parentheses and extra white space can often make long expres­
sions more understandable. For example, the expression a <= 3 
OR a > 9 AND b = 5 OR b = 10 is much easier to read when you 
write it as (a<= 3) OR (a> 9 AND b = 5) OR (b=IO). 

ACTING ON COMPARISONS 

• IF/THEN 

If the expression following the keyword IF is true, the statement 
following the keyword THEN is executed. If the expression is 



60 Using Macintosh BASIC 

false, the statement immediately following the keyword THEN is 
not executed, and execution continues at the beginning of the next 
program statement. For example, 

IF interest.rate~ .10 THEN PRINT "Too high!" 

does not print anything if the variable interest. rate is less than 0.10 
and prints "Too high !" if interest.rate is greater than or equal to 
0.10. 

Note that if th.e IF test is fa lse and more than one statement is on 
the same line, Macintosh BASIC ski son ly the first statement after 
th keywor THEN. Execution of the line 

IF a= 3 THEN b = 4: PRINT b 

will a lways print the value of b in Macintosh BASIC, no matter 
whether a is 3 or not. The simplest way to avoid any confusion is 
to put only one statement on each program line. 

PUTTING TWO ACTIONS IN ONE STATEMENT 

• IF / THEN/ ELSE 

In some situations, your program needs to take one action if a test 
is true and another action if the test is fa lse . This kind of situation 
is best handled with an IF / THEN/ ELSE statement. The statement 
fo llowing the keyword ELSE is executed only when the IF test is 
fa lse. 

If the variables coin and heads contain equal values when the 
statement 

IF coin= heads THEN PRINT "Heads!" ELSE PRINT "Tails!" 

is executed , the program prints "Heads!" and does not execute the 
statement after the keyword ELSE. If coin and heads are not equal, 
the program skips the statement after THEN and prints "Tails! ''. 
This statement is shorter and simpler than the two-statement 
sequence 

IF coin= heads THEN PRINT "Heads!" 
IF coin<> heads THEN PRINT "Tails!" 

and the result is exactly the same. 



Making Decisions 61 

Note that there can be no colons, commas, or other punctuation 
separating the parts of a simple IF/THEN/ELSE statement. Only 
one statement can appear between the keywords THEN and ELSE, 
and only one statement can appear after the keyword ELSE. 

MULTIPLE-LINE TESTS 
• IF/THEN/ELSE/ENDIF 

The simple IF/THEN/ELSE statement is useful, but its limit of 
only one statement after each THEN and ELSE is very restrictive. 
The multiple-line IF/THEN/ELSE/ENDIF statement removes 
this restriction. The keywords IF, THEN, and ELSE are the same 
as before. The difference here is that the THEN and ELSE phrases 
can contain many statements. 

The example from the previous section looks like this when it is 
rewritten in the form of a multiple-line statement: 

IF coin = heads THEN 
PRINT "Heads! 0 

ELSE 
PRINT "Tails!" 

ENDIF 

The indication that this is a multiple-line IF statement is that 
nothing appears after the word THEN on the first line. If the test 
is true, Macintosh BASIC executes statements starting with the 
next line until it encounters either an ELSE or an ENDIF key­
word. Any statements between ELSE and ENDIF are not executed. 
If the test is false, Macintosh BASIC skips all the statements 
between THEN and ELSE and executes any statements located 

-· between ELSE and ENDIF. 
Figure 5-1 shows a two-dimensional diagram of the flow of pro­

gram control during execution of a multiple-line IF statement. 
Such diagrams, called flow charts, are often drawn as part of the 
written documentation for large programs. Figure 5-1 is two­
dimensional, but a program listing has only one dimension, run­
ning from top to bottom. For this reason, programmers commonly 
use indentation to make the different portions of the multiple-line 
IF statement easy to identify. This is a good practice to follow in 
your programs. It becomes even more essential when your program 
contains a series of consecutive IF statements. 



62 Using Macintosh BASIC 

THEN 

(TRUE) 

THEN 
statements 

ELSE 

(FALSE) 

ELSE 
statements 

Figure 5-1. Fiowchart of an IF statement 

NESTING TESTS 

IF statements can be nested, one inside another, as long as you 
follow the syntax rules. However, it is of ten very difficult to read a 
series of nested IF statements on a single line, particularly if any of 
the IF statements contain ELSE clauses. Nested IF statements 
should usually be written as multiple-line statements to improve 
readability. You must make sure the ELSE and ENDIF keywords 
match the correct IF statements. The statement 

IF a=b THEN IF c=d THEN IF d=a THEN x= 1 ELSE x=2 ELSE x=3 

is much clearer when it is written as 

IF a= bTHEN 
IF c = dTHEN 

IF d= a THEN 
x•t 

ELSE 



x=2 
ENDIF 

ELSE x = 3 
ENDIF 

ENDIF 

Making Decisions 63 

Nested IF statements are often a desirable substitute for com­
pound tests. Any time you have a compound test connected by the 
AND operator, you can replace it with nested IF statements -
particularly when the second half of the test will produce nonsense 
or an error condition if the first half of the test is false. For exam­
ple, the statement 

IF a <> 0 AND b/a = 6 THEN d = c 

tests whether two things are both true. If a is zero, the first test is 
false, and the compound test will always be false. In this situation 
it is unnecessary to have the computer spend time performing the 
second test. The second test involves a division by zero, an error 
condition that is handled gracefully by Macintosh BASIC (it 
returns the value infinity). 

Using nested IF statements, the previous example can be rewrit­
ten as either 

or 

IF a<> 0 THEN IF b/a = 6 THEN d = c 

IF a<> 0 THEN 
IF b/a = 6 THEN d = c 

ENDIF 

MULTIPLE TESTS IN A SINGLE COMMAND 
• SELECT/CASE/CASE ELSE/END SELECT 

The IF/THEN/ELSE construct is really designed to handle situa­
tions with only one or two choices. Now we come to a statement 
that can handle multiple choices. In Figure 5-1 the flowchart 
shows that an IF/THEN/ELSE statement allows two alternate 
pathways from f~e beginning to the end of the structure. The 



64 Using Macintosh BASIC 

SELECT/ CASE statement offers multiple pathways. H ere is what a 
simpl SE ECT/ O \SE statement looks like: 

! Days in a month 
SELECT month 

C/\SE 1 ,3,5,7,8,10, 12 
days= 31 

CASE 2: days = 28 
CASE 4, 6, 9, 1 1 

days~ 30 
C/\SE ~ 12 

PRINT "You're kidding!" 
CASE ELSE 

END SELECT 

The first line of each SELECT/ CASE statement contains the 
keyword SELECT followed by the expression that is to be evalu­
ated to determine which path will be taken. The expression can be 
a single variable name or any legal BASIC expression. The 
optional word CASE may be added between SELECT and the 
expression, if you wish. 

Each pathway begins with the CASE keyword followed by a de­
scription of the cases for which that pa thway is to be taken. The 
descriptions can include actua l values, ca lled constants or lit eral 
va lues, but they must not use any variables or require any calcula­
tions during program execution. Each description can take the 
form o f a single literal value, a range of values with the low and 
high values separated by the keyword TO, a range of values de­
scribed by a relational operator followed by a literal value, or any 
combination o f these with the individual items separated by 
commas . You ca n u se the o p tiona l word IS in front of a relational 
operator if you wish. The following example uses all of the types 
of case descriptions: 

SELECT w*8 
C/\SE < 0: x= 1 
Cl\3E 13 < '5: x=2 
CASE 6 : x-3 
CASE 7 TO 12: x=4 
C/\SE 13 .15 TO 18,>20: x=5 
C/\SE 14, 19: x=6 

ENO SELECT 



Making Decisions 65 

When a SELECT statement is executed, BASIC eva luates the 
expression after Lhe word SELECT and then starts looking for a 
CASE statement that matches the value of the express ion. When it 
finds the first matching CASE description, BASIC begins executing 
the instructions af ter that CASE statement. The instructions may 
begin on the nex t line after Lhe CASE statement or on the same 
line if the colon is used at the end o f the description to separate the 
two statements. You can use several statem ents for each case, as in 
the multipl e-line IF statement, or you can leave a case empty by 
following it immediately with another CASE description. 

Once a CASE descriptio n has been matched, execution o f the 
sta tem ents assoc iated wiLh that description continues until another 
CASE statement or a n END SELECT statement is reached . At that 
time, execution branches to the next statement after END SELECT. 
It is important to remember that the SELECT/ CASE statement 
takes one-and only one - of the multiple paths. Even if there is a 
second CASE description that m atches the SELECT expression, 
the statements associated with tha t second CASE description will 
no t be executed. 

CASE ELSE is an optional case description that can be included 
to trap all cases that are not matched by previous CASE descrip­
tions. When it is used, CASE ELSE should a lways appear as the 
last CASE descriptio n because no descriptions after CASE ELSE 
will ever be reached during program execution. When a SELECT/ 
CASE structure is executed, Macintosh BASIC displays an error 
message if the SELECT express ion is not matched by any of the 
CASE descriptions. You can prevent this error message from occur­
ring by using CASE ELSE to handle erroneous values. 

EXAMPLE PROGRAM 

The program in Figure 5-2 calcula tes the amount of paint you 
need to paint interior rooms . It calculates and prints the amount of 
paint required for each room and then prints the tota l amount of 
paint required at the end. The number of square feet of coverage 
per gallon, which is set in the third line of the program, can· vary 
depending o n the type of paint and the surface to be painted. An 
es tim ate of this number is usually printed on the paint can . 



66 Using Macintosh BASIC 

.:(·=~~lijt~sof Pairif • i<t 

PR.INT "Paint Estimator" 
LET sqft.per .gallon = 400 
totol.wolls"' O ! Two variables for running totals 
total.ceilings= 0 

1·1·/. . .. 

~~~~-1r99m: . 
1

1 1.J.G¢t Input · ... 1 ... 1 . 1 ·
1.1:.•:1i:•1 L: 1)~~·:t4J .·. 1• 1;.... ! I !1 1y•11j.i :1:

1 ·: ..•. ,. ·...... 11;: 1 ;:1.;11 1/ 1:·

• ·· 1 11 PRINT "Please:giye room dimensions in f~t"
PRINT "or type Oto quit:"
P.RINT
INPUT "Length of room: "; length
IF length= 0 THEN GOTO Finish:

I : 1 • INPU'r "W1dthofroom: .",w.idth
·I :.1 •• ;

1.1. IMPUT "H~i~ht.()~1~~m: "\height
: : !>Do Calculations ·• ••· ··.1·1··
I 1:·j.11 ·1 1 .wa11.area1~ 2·~l1enotti* height+ 2 * width'if height

• I celling.area= lengtt{* Width I • I • • •

wall.paint = wall.ar.~ I sqft.per.ga11on
. ceiling.paint = ceilJtig.area I sqft.per.gallon

......... · room.paint= waltpaint + ceiling,paint
.... ·.·. ; > .total.wans= totatw~Hs + wall.paint

·.. ;:,~i"':.:~·:i ::::tota t:cf:iu 111~ = ~cf · · · · 11 o'JS. + -·'- ··~··"'"·'"""'"' ·
·· · ·)~Answers t·

ftlNT I ::;;· .. I

PR.INT "Walls reqgife 1'; wall.paint; "gal~lons of paint.'·
PRINT "Ceiling r~uires ";ceiling.paint; ''gallons of paint."
PRINT "Tota1 for this room is"; room.paint;" gallons."

GOTO Next.room

.F.inisb: .
.. 1;:;:·;;~~!~:~,l~T ·. . :>. ·: :

:;?>;l;»,~INT "Total wallpa1rjl~····:total.walls; "galloris~"
· · · .. ·· 'j>'RINT "Tota1 ceillngp~int, "; total.ceilfngs; "gallons."

PRINT "Grand total, ''; total.wa11s+total.ceilings; "gallons."
END PROGRAM

Figure 5-2. Gallons of paint

Making Decisions 67

The first line of the program is a comment that contains a brief
description of the program. The second line prints the title "Paint
Estimator" at the top of the output window. Then a LET state­
ment sets the variable sqft.per.gallon to a value of 400. The fourth
and fifth lines set variables to zero to start the running totals.

The portion of the program labeled Next.room is indented
slightly to set it apart from the rest of the program. This routine
prints a blank line followed by the prompt to use feet as the units
for the room dimensions and then another blank line. Finally, this
routine requests and waits for you to enter values for the length,
width, and height of the room.

As soon as the length has been entered, an IF statement tests
whether its value is zero; if so, program execution branches to the
line labeled Finish to print the totals.

The next five lines contain implied LET statements. They calcu­
late the wall and ceiling area, the amount of paint required for the
walls and ceiling, and the total amount of paint required to paint
the room. The next two lines update the running totals. After
printing a blank line to separate the answers from the input state­
ments, the program prints the amount of paint needed to cover the
walls, ceiling, and the whole room. The GOTO statement then
branches back to the label Next.room. The Finish section of the
program prints the running totals and ends the program.

68 Using Macintosh BASIC

PRACTICE EXERCISES

1. Does the following program print anything?

a: CfOTOc
b:GOTOa
c: BOTO b
PRINT "Hello·

2. Evaluate the following expression to see whether v- is true or
false:

v- = 4 * 2) 5 OR 3 A 2 + 3' 7 AND NOT (3 = 7 I 2)

3. This one-line IF statement is hard to read. Try rewriting it as
a multiple-line IF statement:

IF a=6 THEN IF b=g THEN x=8 ELSE x=5 ELSE x= 1

4. Rewrite the following series of IF statements as a SELECT
CASE statement:

b = 10
IF i = 1 THEN b = 3
IF 1 = 2 THEN b = 5
If i < 0 THEN b • 0
IF i = 4 OR i = 6 THEN b = 7


~~~dtaftir6~~~ 

Organizing Your Program 

Statements: 
• DO/EXIT DO/LOOP 

• FOR/TO/STEP/EXIT FOR/NEXT 

• GOSUB/RETURN 

This chapter introduces loops and subroutines -methods of making 
your program take repetitive actions. Loops are a series of program 
statements that are repeatedly executed. Subroutines are groups of 
program statements you can execute from any location in your 
program. When a subroutine finishes executing, it returns control 
to the place from which your program called the subroutine. 

USING LOOPS 

Every loop has a definite beginning and a definite end. When a 
loop is encountered in a program, BASIC repeatedly executes the 

69 



70 Using Macintosh BASIC 

statements between the loop's beginning and end until an exit 
condition is met. When the program does exit from a loop, execu­
tion continues with the statement immediately following the end 
of the loop. 

While the GOTO statement from the previous chapter can be 
used to make loops, the DO/LOOP and FOR/NEXT statements 
described in this chapter are much more efficient. The statements 
inside a DO loop are executed until a condition forces an exit from 
the loop. The statements inside a FOR/NEXT loop are executed 
for the number of times you specify when you define the loop. 

Continuous Loops 

• DO/EXIT DO/LOOP 

The DO/LOOP structure is the primary way to create an infinite 
loop in Macintosh BASIC. The program statements between DO 
and LOOP are executed repeatedly. The program segment 

DO 
PRINT "This is a loop." 

LOOP 

is a complete DO/LOOP structure. The PRINT statement is exe­
cuted repeatedly until you stop the program by closing the pro­
gram's output window, selecting Halt from the Program menu, or 
selecting Quit from the File menu. (Quit will, of course, exit from 
Macintosh BASIC in addition to halting all programs.) The state­
ment that initiates a continuous loop is simply DO. The statement 
that marks the end of the loop is LOOP. 

The EXIT DO statement ends the DO loop by transferring con­
trol to the program statement after LOOP. EXIT DO is usually 
used in an IF statement that tests the condition at which you want 
to end the loop. Here is the previous loop with an EXIT DO 
statement added: 

DO 
PRINT "This is a loop." . 
count = count + 1 
IF count • 5 THEN EXIT DO 

LOOP 
ENDPR08RAM 



Organizing Your Program 71 

The program prints "This is a loop" five times. The variable 
count is increased by one each time the loop is executed. When the 
IF statement finds that the count is equal to five, the EXIT DO 
statement is executed. The EXIT DO statement transfers control to 
the statement after the end of the loop, END PROGRAM. 

BASIC allows you to use just EXIT instead of EXIT DO. As you 
will see later, however, there are several types of EXIT statements. 
To avoid confusion between EXIT DO and the other EXIT state­
ments, you should always use the long version, EXIT DO. 

The exit condition can be anything that can be tested in an IF 
statement. Often it is some special input, such as a command from 
the person using the program. It could just as easily be the result 
of a calculation, an interval of time, or some other type of condi­
tion. The following loop works like an adding machine. 

sum =0 
PRINT "ADD NUMBERS" 
DO 

INPUT "Next number (0 for totel): ";e 
IF a = 0 THEN EXIT DO 
sum= sum+ a 

LOOP 
PRINT "Tatel ... "; sum 
ENDPR08RAM 

This loop adds each typed number to a running total. When you 
type zero, the EXIT DO command transfers control to the state­
ment after LOOP, which prints the total. 

Now you can modify this short program to make it compute the 
average of a series of numbers. Since the average is the sum divided 
by the number of addends, this program must keep track of the 
number of addends in the sum. The program in Figure 6-1 uses a 
variable named n to store the number of addends. 

Note that in this program, the locat~on of the IF statement con­
taining the EXIT DO is important. The test must be performed 
before n is incremented or the calculation of the average will be 
wrong. In general, put the exit test at the end of the loop if you 
want to execute the other statements in the loop at least once, and 
put the exit test first if you do not want to execute the entire loop 
at least once. 



72 Using Macintosh BASIC 

Figure 6-1. Computing an average 

Nesting DO Loops 

You can nest DO loops, as long as you remember that DO and 
LOOP statements must be paired with each other. You will receive 
an error message during program execution if a LOOP statement 
is encountered without a preceding DO statemeqt. An error mes­
sage also occurs if a LOOP statement is missing, but a missing 
LOOP statement usually causes other noticeable problems. 

As with other control structures, indenting lines to mark the 
contents of a DO loop helps to make your program easier to read 
and understand, particularly if the loops are nested. 

Each EXIT statement gets you out of only one DO loop. If you 
want to get out of an entire nest of DO loops, you must use a 
separate EXIT statement for each loop. The following example 
shows the averages program inserted inside a second DO loop·: 

DO 
sum= O 
n=O 
PRINT "AVERAGE NUMBERS" 
DO 



Organizing Your Program 73 

INPUT "Next number ( O for average): "; a 
IF a= 0 THEN EXIT DO 
sum= sum+ a 
n=n+I 

LOOP 
PRINT "Average="; sum/ n 

LOOP 
ENDPR08RAM 

This program keeps computing new averages until you stop the 
program. The entire program is one large DO loop. Inside this 
loop is the averages program from Figure 6-1. The EXIT DO 
statement in the inner DO loop exits from only one DO loop. 
When you type zero, the EXIT DO statement transfers control to 
the statement that prints the average. Then BASIC executes the last 
LOOP statement, causing the entire program to repeat itself. The 
program does not contain an EXIT statement for the outer loop, 
so the program ends only when you stop it with a menu selection 
or by closing its output window. 

Loops With Counters 

• FOR/TO/STEP/EXIT FOR/NEXT 

The FOR/NEXT loop is a very common control structure in 
BASIC programs. It is designed for situations in which you know 
(or can compute) how many times you want to repeat a block of 
program statements. Here is a FOR/NEXT loop that prints "This 
is a loop" five times: 

FOR count = 1 TO 5 STEP 1 
PRINT ''This is a loop." 

NEXT count 

The FOR statement specifies the name of a numeric variable 
(count in the previous example) that controls the number of times 
the loop is executed. This counter is called the loop's index vari­
able. The FOR statement must also specify the index variable's 
starting value, its ending value, and the amount by which the 
index will change each time through the loop. The same variable 



74 Using Macintosh BASIC 

name must be used in the matching NEXT statement that ends the 
loop. The amount by which the index variable will change each 
time through the loop is specified after the optional word STEP. If 
STEP is not specified, the index variable is incremented by 1 each 
time through the loop. Here is a FOR/NEXT loop that prints the 
numbers 1 through 10: 

FOR i = 1TO10 
PRINT i 

NEXT 1 

In this example, the FOR statement names i as the index vari­
able and specifies the starting value of i as 1 and the ending value 
as 10. A STEP value of 1 is assumed. The index variable name 
must be a numeric variable name. The starting, ending, and step 
values, however, can be any legal BASIC numeric expression. 
When the FOR statement is encountered, Macintosh BASIC sets 
the index variable to the starting value. Then it compares the start­
ing value to the ending value. If the starting value is already past 
the ending value (in the direction specified by STEP), control is 
immediately transferred to the statement after the end of the loop. 
Note that when this happens the statements inside the loop are not 
executed. 

In the more normal case, the statements inside the loop are exe­
cuted until the NEXT i statement is reached. Then the STEP 
amount is added to the value of i. The new value of i is compared 
to the prescribed ending value to determine whether the statements 
inside the loop are to be executed again. This process is repeated 
until the value of the index variable has passed the ending value. If 
the STEP value is negative, the index variable is decremented 
instead of incremented, as in the following example: 

FOR i = 1 0 TO 0 STEP - 1 
PRINT i 

NEXT i 

The index variable of a FOR/NEXT loop is an ordinary vari­
able. It can be used inside the loop just like any other variable. 
However, any statement inside the loop that changes the value of 
the index variable will interfere with the operation of the loop. 



Organizing Your Program 75 

Changing the value of the index variable from inside the loop is 
very risky and is not recommended as a good programming 
practice. 

Once in a while you will have a situation in which you will need 
to provide for premature exit from a FOR/NEXT loop. The state­
ment EXIT FOR transfers control to the statement just after the 
loop's NEXT statement. EXIT FOR is almost always used in an IF 
statement that tests for a condition that is to cause an early exit 
from the loop. The EXIT FOR statement in the following exam­
ple is executed when i is equal to 3, transferring control to END 
PROGRAM. 

j=3 
FOR i = 1105 

IF i=j THEN EXIT FOR 
PRINT i 

NEXT i 
ENDPROORAM 

The EXIT FOR statement is the approved way to leave a FOR/ 
NEXT loop early. It is much safer than tampering with the index 
variable or using a GOTO statement. BASIC allows you to use 
EXIT instead of EXIT FOR, but you should always use the full 
wording to avoid confusion between EXIT FOR and EXIT DO. 

After completion of a FOR/NEXT loop, your program should 
not rely upon the index variable to contain any specific value. In 
normal operation, the index will be one step past the ending value 
after a FOR/NEXT loop. This will not be the case, however, if an 
EXIT statement caused an early end to the loop or if the distance 
between the starting and ending values is not evenly divisible by 
the STEP value. The best programming habit is to reset the index 
variable to the new value if you want to use it again later in your 
program. 

Nesting FOR/NEXT Loops 

FOR/NEXT loops may be nested. One loop should be entirely 
contained in the other, as in this example: 



76 Using Macintosh BASIC 

FOR i = 1TO3 
FORj = 1 TOS 

PRINT'i * j 
NEXTj 

NEXT i 

Failure to nest the loops properly is likely to lead to an error mes­
sage and will interfere with your program's operation. 

USING SUBROUTINES 
• GOSUB, RETURN 

A subroutine is a block of program statements that is set up so that 
it can be executed from any point in your program. The way your 
program transfers control to the statements in the subroutine is 
referred to as calling the subroutine. Subroutines are often used to 
perform actions that need to be done several times during a pro­
gram. They are also useful for breaking long programs into 
smaller, more manageable blocks of code. 

The GOSUB statement calls a subroutine. You follow the com­
mand GOSUB with the name of the subroutine you want to exe­
cute. The name of the subroutine is the label or line number that 
marks the beginning of the subroutine in your program. 

GOSUB help ! Calls subroutine named 'help' 
GOSUB 99 ! Calls subroutine starting at line number 99 

When a GOSUB statement is executed, BASIC records the cur­
rent location in your program and transfers control to the first 
statement of the subroutine. Once the statements in the subroutine 
are executed, a RETURN statement in the subroutine returns con­
trol to your program. Execution resumes with the statement fol­
lowing the GOSUB statement. 

Each subroutine must begin with a label or a line number to 
identify it when it is called from other locations in the program. 
You are allowed to use line numbers, but labels make a program 
easier to follow. "GOSUB Get.input" conveys more meaning than 
"GOSUB 90." Each subroutine must end with a RETURN state­
ment to send control back to the program that called it. 



Organizing Your Program 77 

Since subroutines are blocks of code that should be executed only 
when called by GOSUB statements, they need to be protected from 
inadvertently being executed. One way to provide this protection is 
to put all of the subroutines at the end of a program after the END 
PROGRAM or END MAIN statement. That practice will be fol­
lowed in the example programs in this book. 

Here is an example of a main program and the subroutine it 
calls to ha11dle input from the keyboard. 

! Main program 
FOR i = 1TO10 

6QSUB Ost.input 
PRINT number 

NEXTi 
END PR08RAtl 

! Subroutine 
Get.input: 

DO 
INPUT "Please type a number: ";number 
IF number> OAND number< 101 THEN EX•T DO 
PRINT "$<wry, it must be between 1and100" 
LOOP . 

RETURN 

The main program in this example executes a FOR/NEXT loop 
that calls the subroutine Get.input. The subroutine gets a typed 
number between 1 and 100 and then prints the number. When the 
loop has been executed for the tenth time, the loop ends and the 
ENP :PROGRAM statement stops execution. Without the END 
PROGRAM statement, the main program would not end and exe­
cution would continue into the subroutine. 

The Get.input subroutine contains a DO loop that waits until a 
number between l and 100 is received. The INPUT statement 
receives the typed number, and the IF statement tests to see if the 
number is in the required range. If the number is acceptable, the 
EXIT DO command transfers· control to the RETURN statement, 
which ends the subroutine and transfers control back to the 
PRINT statement in the main program. If the number is outside 
the prescribed range, the subroutine prints an error message and 



78 Using Macintosh BASIC 

the LOOP statement causes the subroutine to be executed again. 
This type of DO loop is a good way to check for input errors. 

A major benefit of using a subroutine is that the code needs to be 
written only once. After the subroutine is written and checked for 
proper operation, you can use it over and over again. You can keep 
"library" files containing the subroutines you use frequently. 
Whenever you need one of these subroutines in a new program, 
you can copy it from your library file into the Clipboard and from 
the Clipboard into your new program. 

Nesting Subroutine Calls 

Subroutines can be called from other subroutines in the same way 
they are called from main programs. Whenever a GOSUB state­
ment is executed, Macintosh BASIC stores the location of the pro­
gram statement following the GOSUB in a special place called the 
stack. The stack is what is called a "last in, first out" device. Each 
RETURN statement causes control to transfer to the last address 
placed in the stack. As long as each subroutine ends properly with 
a RETURN statement, control will eventually return to the pro­
gram statement following the first GOSUB. 

EXAMPLE PROGRAM 

The program in Figure 6-2 uses a subroutine call inside nested 
FOR/NEXT loops to generate a multiplication table. The main 
program in this example consists of two FOR/NEXT loops. The 
outer loop, whose index is i, counts the rows of the multiplication 
table, and the inner loop with j counts the columns. Note that the 
inner loop is completed before the end of the outer loop. The END 
PROGRAM statement marks the end of the main program. Its 
main purpose is to separate the program from the subroutine. 

Note that the PRINT statement inside the subroutine ends with 
a comma, which causes the next number to be printed on the same 



! Make multiplication table 
FOR i = 1 T05 

FORJ = 1 T05 
OOSUB Prinlcell 

NEXTj 
PRINT 

NEXT i 
END PR08RAl't 
Print.cell: 

PRINT i * j, 
RETURN 

Organizing Your Program 79 

Figure 6-2. Multiplication table 

line at the next tab stop. The PRINT statement after NEXT j 
issues a carriage return, which causes the next entry to be printed 
at the beginning of the next row. 



80 Using Macintosh BASIC 

PRACTICE EXERCISES 

1. When will the word "Hello" be printed m the following 
program? 

DO 
INPUT "Enter e number: ";e 
If e > 1 AND e < 5 THEN EXIT DO 

LOOP 
PRINT "Hello" 
ENDPR08RAM 

2. How many times will the statements inside the following 
loop be executed? 

FOR i = 0 TO 1 00 STEP 10 
a=j 
k = 47 
PRINT i 

NEXT i 

3. Write a loop that prints all the odd numbers from 3 to 37. 

4. Write a program that prints "This is a test." ten times. Use a 
subroutine to do the actual printing. 



~~~cliafter7~~~ 

Using Functions

Functions:

• ABS, SGN, SIGNNUM, COPYSIGN

• INT, TRUNC, RINT, ERR

• SOR, Pl, SIN, COS, TAN, ATN

• LOG, EXP, LOGP1 I EXPM 1

• LOG2, EXP2, LOGB, SCALB

• RELATION, COMPOUND, ANNUITY

• TICKCOUNT, RND, RANDOMIZE, RANDOMX

A function is like a simple subroutine that returns a single result.
All of the information needed to calculate the result is passed to the
function as arguments, that is, values that appear in parentheses
after the function's name. An argument can be any legal BASIC
expression; however, the number and type (number or string) of
arguments passed in a function call must match the number and
type specified in the function's definition, or an error message will

81

82 Using Macintosh BASIC

occur. Most functions require one or two arguments; some require
no arguments at all.

Functions are very powerful parts of the BASIC language
because you can use function calls as you use variables. In fact, you
can even include a function call in the argument of another func­
tion call.

Macintosh BASIC provides a large selection of predefined func­
tions. Many of them are described in this chapter. In addition to
using the predefined functions, you can expand the language by
defining your own functions. That is described in Chapter II.

MANIPULATING THE SIGN OF A NUMBER

Macintosh BASIC has four functions that help you manipulate the
sign of a number. These functions determine the absolute value of
a number, record its sign, and copy a sign from one number to
another.

Absolute Value

•ABS

The absolute value of a number is the number with no sign. The
ABS function takes one numeric argument and returns the abso­
lute value of that number. The result of the ABS function is always
a positive number. Here are some examples of the ABS function:

y = ABS(-3) ! Puts +3 in y
j =ABS(3*4-14) ! Puts+ 21n j
e =ABS(4) ! Puts +41n e
5 - ABS{ 0) ! Pub 0 in 5

Checking the Sign

• SGN, SIGNNUM

The SGN and SIGNNUM functions help you use the sign of a
number in a formula. Each function requires one numeric argu-

Using Funclions 83

ment. The SG N function returns + 1 if the sign of the argument is
positive, -1 if the sign of the argument is negative, and 0 if the
value of the argument is zero. Here are some examples of the SGN
function:

a= S8N(99) ! Puts+ 1 in a
PRINT S8N(-30) ! Prints -1
b = S8N(O) ! Puts o tn b

The SIGNNUM function returns +l if the sign of the argument
is negative and 0 if the sign of the argument is positive or the value
of the argument is zero.

a= Sl8NNUM(99) I Puts 0 in a
PRINT SIBNNUM(-30) ! Prints+ 1
b = Sl6NNUM(0) ! Puts 0 In b

The SGN function accepts a logical expression as well as a
number for its argument. SGN returns+ 1 if the logical expression
is true and 0 if the logical expression is false. The SIGNNUM
function does not accept logical expressions.

a= S8N(TRUE) ! Puts+ 1 in a
b = S8NCFALSE) ! Puts 0 in b
c =SON(4>3) ! Puts + 1 tn c

Copying the Sign

• COPYSIGN

The COPYSIGN function copies the sign of one numeric expres­
sion to a second numeric expression. COPYSIGN takes two argu­
ments. The sign of the first argument is copied to the value in the
second argument. COPYSIGN returns the value of the second
argument with its new sign.

a= COPYSl8N(1 ,-9) ! Puts+ 9 in a
b = COPYSl8N(-1,-9) ! Puts -9 in b
c = COPYSl8N(0,-9) ! Puts +91n c
d = COPYSIBN(-3,9) ! Puts-9 ind

84 Using Macintosh BASIC

ROUNDING AND TRUNCATING FRACTIONS
• INT, TRUNC, RINT

Macintosh BASIC provides three functions that convert fractional
numbers into whole numbers. The integer function, INT, returns
the next integer lower than its argument if the argument contains
a fractional part. The truncate function, TRUNC, returns the inte­
ger portion of the argument. The rounded integer function, RINT,
rounds its argument to an integer.

The INT and TR UNC functions provide the same results when
the arguments are positive numbers. However, when the argument
is a negative number and contains a fractional part, the INT func­
tion returns the next integer lower than the argument, while the
TRUNC function returns the next integer higher than the argu­
ment. These examples illustrate the difference:

a=INT(55.8) !Puts55ina
b = TRUNC(55.8) ! Puts 55 in b
c = INT(-55.8) ! Puts -56 fn c
d = TRUNC(-55.8) ! Puts -55 ind

The RINT function returns the value of its argument rounded
to an integer. Unless you change the rounding direction with the
SET ROUND statement described in Chapter 9, RINT follows
normal rounding rules and rounds the value of its argument to the
nearest integer. When the value is exactly halfway between two
integers, RINT rounds to the even integer.

a= RINT(55.8)
c = RINTC -55.8)
e = RINT(55.3)
f = RINT(-55.3)
g = RINT(55.5)
h = RINTC -55.5)

Puts 56 fn a
Puts-56 inc
Puts 55 fn e
Puts-55 inf
Puts 56 in g
Puts-56 in h

IDENTIFYING ERRORS
•ERR

Macintosh BASIC also has several functions that require no argu­
ments. Instead of acting on data, these functions report on some

Using Functions 85

aspect of the system's operation. Functions like these are called sys­
tem functions.

The ERR function is a system function that returns the coded
number of the most recent error that has been encountered in the
program. If no error has been encountered since you first started
the program running, ERR will return zero. Identifying errors
enables you to take special actions, such as giving more detailed
instructions. A list of error codes and their causes is included in
Appendix B.

IF ERR= 182 THEN
PRINT "Expected a Number"
PRINT "Please type only numbers, not letters"

ENDIF

USING THE MATHEMATICAL FUNCTIONS

The mathematical functions in BASIC include square root; sine,
cosine, and other trigonometric functions; and functions for
handling logarithms and exponentials in complex formulas. In
addition to the standard functions, Macintosh BASIC provides
functions to manipulate powers of 2 and several unusual functions
for logarithmic and exponential applications.

Squar~ Root

ii SOR

To obtain the square of a number, you multiply the number by
itself. The square root function, SQR, works in just the opposite
direction. It returns the number that when multiplied by itself
results in the argument. For example, the square root of 9 is 3, and
the square root of 16 is 4. If the argument of the SQR function is
negative, the square root is not a real number. In this case the
function returns the value NAN, which stands for Not A Number.

a = SQR(4) ! Puts 2 in a
b=SQR(2) !Puts1.414inb
c = SQR(9*9) ! Puts 9 in c
d = SQR(-100) ! Puts 'NAN' ind

86 Using Macintosh BASIC

Pl

Iii Pl

The constant pi (3.14159) is used in several common mathematical
formulas, including the formulas for the area and circumference of
a circle. Pi is usually represented by the Greek letter rr in mathe­
matical formulas. In Macintosh BASIC, PI is a system function
that requires no arguments. Since the PI function always returns
the same value, you can use it as if it were a constant. If you wish,
you can use the Greek letter (OPTION-p or OPTION-SHIFT-P)
instead of the word Pl.

area= Pl* radius"' 2
circumference = 2 * PI * diameter
area= lT * rad1US ... 2 ! rr 1s OPTION-p
aree ... n * r8dius"' 2 ! n is OPTION-SHIFT-P

Trigonometric Functions

• SIN, COS, TAN, ATN

Macintosh BASIC provides the sine, cosine, tangent, and arctan­
gent trigonometric functions. The single numeric argument for
the sine (SIN), cosine (COS), and tangent (TAN) functions is an
angle, expressed in radians. Most people are used to working with
angles in degrees instead of radians, so it will be necessary for your
program to convert an angle from degrees to radians before using
these functions. The formula for converting from degrees to radi­
ans is

radians = (Pl/180) • degrees

The arctangent function (ATN), sometimes called the inverse tan­
gent, takes the tangent of an angle as its argument and returns the
size of the angle in radians. Here are some examples of the trigo­
nometric functions:

degrees= 60
radians= (Pl I 180) *degrees ! 1.047 radians
a= SIN (rad1ans) ! Puts .866 1n a
b = COS (radians) ! Puts .5 in b
c =TAN (rt:dians) ! Puts 1. 732 inc
d = ATN (1.732) ! Puts 1.047 ind

Using Functions 87

Logarithmic Calculations

• LOG, EXP,·LOGP1, EXPM1

In addition to the standard natural logarithm (LOG) and exponen­
tial (EXP) functions, Macintosh BASIC provides the logarithm of
the argument plus one (LOGPI) and exponential minus one
(EXPMl) functions. Natural logarithms and exponentials are to
the base e, where e equals 2.718281828. If the LOG or LOGPl
function is used to take the logarithm of a negative number, the
function will return NAN (Not A Number). LOGPI(x) and
EXPMI(y) return more accurate results than LOG(x+ 1) and
EXP(y)-1, respectively, when the values of x and EXP(y) are close
to zero.

a= LOO(37) ! Puts 3.61 in a
b =LOOP 1(36) ! Puts 3.61 in b
c = EXP(3.61) ! Puts 371n c
d = EXPM 1 (3.61) ! Puts 36 ind

Powers of Two

• LOG2, EXP2, LOGB, SCALB

The LOG2 function returns the base 2 logarithm of its argument.
The base 2 logarithm is the power to which the number 2 should
be raised to produce a result equal to the argument. The EXP2
function returns the value 2 raised to the power specified in the
function's argument. Both functions require a numeric expression
as an argument.

a= L002(8)
b = EXP2(3)

! Puts 3 in a
! Puts 8 in b

The LOGB function returns the exponent of the largest power
of 2 that does not exceed the magnitude of its argument. The
argument must be a numeric expression. The SCALB function
requires two arguments, an integer expression and a numeric
expression. SCALB returns the value of the second argument (the
numeric expression) multiplied by 2 to the power of the first
argument (the integer expression). Here are some examples:

a= LOOB(9) ! Puts 3 in a
b = SCAL8(3,7) ! Puts 56 in b

88 Using Macintosh BASIC

Table 7-I. Results of the RELATION Function

Ordering Relation Value Constant

argl > arg2 0 GREATERTHAN
argl < arg2 1 LESSTHAN
argl = arg2 2 EQUAL TO
argl and/or arg2 = NAN 3 UNORDERED

USING ORDERING RELATIONS IN CALCULATIONS

• RELATION

The RELATION function provides a way to let your program take
multiple branches depending on whether one number is greater
than, less than, or equal to a second number. The function takes
two arguments, both of which are numeric expressions. RELA·
TION returns an integer that corresponds to the ordering relation­
ship between the two arguments, as shown in Table 7-1.

If the value of the first argument is greater than the value of the
second argument, RELATION returns the number 0. If the first
atgument is less than the second argument, RELATION returns
the number 1. The function returns the number 2 if the two argu·
ihents are equal in value. RELATION returns the number 3 if one
or both of the arguments has the value NAN (NAN usually results
from trying an impossible operation such as taking the square root
of a negative number).

BASIC recognizes the names in the rightmost column of Table
7-1 as constants. You can use the names instead of the numbers
that RELATION returns to make your program more understand­
able. Here are some examples using RELATION:

a= RELATION(4,5) I Puts 1 1n a
SELECT CASE RELATIONCa,b)

Cl\3E LE33THAN: PRINT "Less"
CASE 6REATERTHAN: PRINT "Greater"
CASE EQUALTO: PRINT "They're equal"

END SELECT

Using Functions 89

MAKING FINANCIAL CALCULATIONS

Macintosh BASIC has two functions that handle financial calcula­
tions relating to compound interest, annuities, and loans. These
functions allow you to make common financial calculations by
simply using the function name followed by a list of arguments in
parentheses.

Compound Interest

•COMPOUND

The COMPOUND function calculates compound interest. The
function takes two numeric arguments. The first argument is the
interest rate for each time period, and the second argument is the
number of time periods over which interest is to be compounded.

The interest rate should be expressed as a fraction. If the rate is
11 %, for instance, it should appear as 0.11 in the function's first
argument. The result of the COMPOUND function can be multi­
plied by the principal to calculate the total value of the principal
and compound interest at the end of the stated number of periods.
Here are sample calls to COMPOUND:

value= 2000 *COMPOUND (. 11 ,3) I Puts 2735.26 in value
value= 2000 *COMPOUND (.11/12,3*12) ! Puts 2777.76 in value

In the first example, COMPOUND calculates the value of three
years of compound interest at an 11 % annual interest rate. The
value of the hypothetical investment of $2000 for three years at this
rate is calculated as $273:J.26 at the end of the three years. The
second example uses the same dollar amount and annual interest
rate, but the interest rate and the number of periods are modified to
calculate the interest compounded monthly. With monthly com­
pounding, the original investment is worth $2777.76 at the end of
three years. How much more would it be worth if the interest were
compounded daily?

Loans and Annuities

•ANNUITY

The ANNUITY function can be used to calculate annuities, loans,
and mortgage payments. This function also takes two arguments,

90 Using Macintosh BASIC

I Celculate loan payment
I NP UT "Amount of loan: s· .. ; amou.nt
INPUT "Number of years for loan; ";Years
INPUT "Annueil interest rMe: "; int.reite
IF.int.rate >I THEN iot.r;ate. :;.Int.I'~~ / IOQ ··.•·· ·.·•
piWlnent ·~ 8intluht 1~.IJvlrY:c~.61:'.r~e n2;;.:vears*t~i: ..
payment = RINT (1 OO*p8yment)/ 1 oo ! round off
PRINT "MOf)thJy pcsyment is ment

.. ·~~~PR~tl ; ·:.

Figure 7-1. Calculate loan payment

the interest rate for each period and the number of periods.
ANNUITY returns a number that, when divided into the amount
of a loan or the capital amount of an annuity, gives the size of each
payment. You can use it to calculate payments on a home mort­
gage or car loan that uses the normal compound interest rate for­
mula. The program in Figure 7-1 uses the ANNUITY function to
calculate monthly payments on a loan.

WATCHING TIME

• TICKCOUNT

The TICKCOUNT function is used to measure small time inter­
vals. It is a system function and requires no argument. The TICK­
COUNT function returns a positive number. TICKCOUNT starts
at zero when you switch on the Macintosh or use the programmer's
switch to restart it. The value of TICKCOUNT increases by one
every 1160 of a second.

When you use TICKCOUNT, you need to remember that it is
constantly changing at a rate of 60 times per second. This means
that two successive references to TICKCOUN~~ even in the same
program statement, may return different answers. If you need to
use the result of TICKCOUNT in several places, store it in a vari­
able instead of calling TICKCOUNT more than once.

! Time something
time1 = TICKCOUNT

! Here I put whatever ,I'm timing.
time2 = TICKCOUNT
seconds.elapsed= (time2 - time1) / 60
PRINT seconds.elapsed

GENERATING RANDOM NUMBERS

• RND, RANDOMIZE, RANDOMX

Using Functions 91

Random numbers can be used to create simulated data sets for
complicated computer simulations or just to inject an element of
chance into an activity like dealing a deck of cards. BASIC provides
ways to generate both repeatable and non-repeatable sets of random
numbers.

The RND function accepts one optional numeric argument. If
you use it without an argument, RND returns a random number
between 0 and 1. If you provide the optional argument, RND
returns a random number between z.ero and that argument. The
number RND returns will always have the same sign as the argu­
ment. If the argument is zero, RND returns zero. The number
RND returns is a real number. If you want an integer, you will
have to round it or truncate it.

Like almost all computerized random number generators, the
RND function returns numbers that are not entirely random. They
are random in the sense that any number in the requested range
has an equal probability of occurring if enough random numbers
are generated. However, the random numbers are calculated from a
starting number, which is always the same every time a BASIC
program starts to execute. This means that the same series of ran­
dom numbers will be generated each time you run your program.

The RANDOMIZE statement calculates a new starting number
for RND from the value of TICKCOUNT. Since the value of
TICKCOUNT changes sixty times a second, you are not likely to
see the same series of random numbers very frequently after using
RANDOMIZE. If you do not want your program to generate the
same series of random numbers each time it runs, you should use
the RANDOMIZE statement to pick a random starting point.

92 Using Macintosh BASIC

RANDOMIZE ! sets random seed
a= RND (9) ! number between 0 and 9
a= RND (9) + 1 ! number between 1 and 1 o
a= INT(RND(9)) + 1 ! integer between 1 and 10
a = RND I number between 0 and 1
a= RND (-4) ! number between -4 and 0

The RANDOMX function is another random number generator.
RANDOMX generates random integers ranging from I to 231 - 2.
RANDOMX requires one argument, which must be the name of a
numeric variable (the variable must be double-precision, extended,
or computational, as described in Chapter 9). The RANDOMX
function puts its result in the numeric variable in addition to
returning the result in the normal way.

x=9
a= RANDOMX(x) ! Puts new value in both a and x

EXAMPLE PROGRAM

The example program in Figure 7-2 uses random numbers as the
basis of a simple guessing game. Your object in playing the game
is to guess the random number from 1 to 10 that the program has
generated. Each game consists of 25 guesses.

This program starts with a RANDOMIZE statement to initialize
the random number generator. The rest of the program is a single
DO loop that keeps playing new games until you stop the program
by closing its output window or selecting the Halt or Quit com­
mand from the menu. After printing a blank line and setting the
score to zero, a FOR/NEXT loop runs the game for 25 guesses.

The call to the RND function gets a number between 0 and 10.
The INT function turns that number into an integer, and I is
added to it. Note that one function call can be used as the argu­
ment for another. This property of functions allows efficient and
concise program coding.

At this point in the program there is a very slight chance that
the number might be 11. This happens only if the number
returned by the RND function is exactly 10. The DO loop causes
the number to be recalculated if it is in fact 11.

I R811(1c1m Number Guessing
! T ecomputer

···re =g } stertgame witll!l.'?·.~
try ~;!1\TO 2~ ! 21:10plays per!g&me

..

DO . .;! ~ IQ~~r Jroll!.][ti;to 1 O
· nu~ber =.J + INT ~;\tNDC I 0))
IF numbet <> 11 THEN EXIT DO

LQQe

Figure 7-2. Random Number Guessing Game

Using Functions 93

The second DO loop receives the input from the keyboard and
repeats the request for a guess if the number typed is not within
the required range. A multi-line IF/THEN/ELSE statement is
then used to test whether the answer is right or wrong and gives
the appropriate response.

94 Using Macintosh BASIC

PRACTICE EXERCISES

1. What is the value of each of these expressions?

a. ABS(3-8)

b. SGN(-9) * ABS(-12)

2. What is the value of each of these expressions?

a. INT(3.7)

b. TRUNC(3.7)

c. RINT(3. 7)

d. INT(- 3. 7)

e. TRUNC(-3.7)

£. RINT(- 3. 7)

3. Assume you want to borrow $5000 for 4 years. Can you write
a program to print a table of your monthly payments at var­
ious interest rates? Print the values for interest rates from 93
to 123, using increments of one half of a percent.

4. To get the performance you need from a program, it is some­
times desirable to have the program wait for a specified time
before taking the next action. Can you write a loop that waits
exactly one and a half seconds?

5. Write a subroutine that returns a random integer between -5
and -10.


~~~cluifter8~~~ 

Manipulating Strings and Text 

Commands: 

• LINE INPUT 

• OPTION COLLATE STANDARD, 

OPTION COLLATE NATIVE 

Operator: 

• & 

Functions: 

• LEN, LEFT$, RIGHT$, MID$ 

• VAL, STR$, ASC, CHR$ 

• KBD, IN~FY$, DATE$, TIME$ 

• UPSHIFT$, DOWNSHIFT$ 

String variables can contain any sequence of characters. They most 
often contain letters, words, sentences, or other pieces of text. This 
chapter introduces commands and functions that allow your pro­
gram to manipulate strings and the text they contain. 

95 



96 Using Macintosh BASIC 

WORKING WITH STRINGS 

Much of the work that you will be doing with strings will involve 
locating and replacing certain portions of a string. To allow you to 
accomplish this easily, Macintosh BASIC contains three functions 
(LEFT$, MID$, RIGHT$). You can use them to extract portions of 
a string as well as to locate and replace a particular sequence of 
characters within a string. 

The ability to find the length of a string and an qperator to 
allow you to add (concatenate) one string to the end of another are 
also essential in allowing you to easily manipulate text stored in 
strings. 

Checking the Length of a String 

•LEN 

The length of a string is the number of characters it contains, 
whether those characters are visible or not when printed. LEN is a 
numeric function that returns the length of its string argument. 
The LEN function is of ten used to calculate arguments for other 
string-related functions. A string that contains no characters is 
called an empty string or a null string. Since a null string contains 
no characters, its length is zero. 

lgth = LEN ('test string') 
lgth = LEN ("Rah! Rah!n) 
lgth ;;: LEN ( '32. 9') 
a$ = 'testing' 
lgth =LEN (a$) 

Selecting Part of a String 

• LEFT$, RIGHT$, MID$ 

I Puts 11 1n lgth 
! Puts 9 in lgth 
! Puts 4 in lgth 

I Puts 1 in lgth 

The three functions LEFT$, RIGHT$, and MID$ return part of a 
string. LEFT$ and RIGHT$ each require two arguments. The first 
argument is the string from which the part is to be taken, and the 
second argument is the number of characters to be taken. LEFT$ 
returns the number of characters specified from the left end of the 



Manipulating Strings and Text 97 

string, and RIGHT$ returns the number of characters specified 
from the right end of the string. 

b$ = LEFTS ('test string', 3) 
b$ =RIGHTS ('test string'. 3) 
a$= '32.9' 
b$ =LEFTS (a$, LEN(a$)-1) 
b$ =RIGHTS (a$, LEN(a$)-1) 

I Puts 'tes' in b$ 
! Puts 'ing' in b$ 

! Puts '32.' in b$ 
! Puts '2.9' in b$ 

The MID$ function returns any part of a string and can accept 
either two or three arguments. The first argument is the string 
from which the part is to be taken. The second argument specifies 
the character position from which the return string will be taken. 
The third argument, which is optional, is the number of characters 
to be taken. If you do not include the third argument, the MID$ 
function returns all the characters from the position specified by 
the second argument to the end of the string. 

a$ = t11D$( 'test' ,2, 1) I Puts 'e' in a$ 
a$= t11DS('test',2,2) ! Puts 'es' in a$ 
a$ = t11D$( 'test',2) ! Puts 'est' 1n a$ 

The LEFT$, RIGHT$, and MID$ functions expect their numeric 
arguments to be integers. Any fractional number passed as an 
argument is rounded to an integer. If the number of characters to 
be taken exceeds the number of characters available in the string 
argument, these functions return theremaining characters without 
adding any extra blanks. If the number of characters to be taken is 
zero, the null string will be returned. If the starting position you 
give to the MD$ function is 0 or a negative number, it starts with 
the first character instead. 

Finding One String Inside Another 

Of ten you need to know whether or not one string contains a spe­
cific character or another string. This example shows how to use 
the MID$ function to locate a decimal point: 

a$ - .... - . 
bS = 'ihis is a test" 
PRINT b$ 
FOR i"" 1 TO LEN(b$) 



98 Using Macimosh BASIC 

IF t11D$(b$,i, 1) =a$ THEN 
PRINT"'"; a$;"' found at position"; i 

ENDIF 
NEXTi 

The FOR/NEXT loop points the index variable i successively at 
each character of b$, the string being searched, from the first char­
acter to the last. The IF statement inside the loop takes the single 
character from string b$ that is pointed to by the index variable 
and compares it to a period, the character being sought. If you 
were looking for a string longer than one character, you would 
replace the third MID$ parameter of 1 with the length of the string 
you were seeking. 

Here is an example of a more general string search that will 
search for a string of any length: 

a$= 'find' 
b$ = 'Will 1t find the string?' 
PRINT b$ 
FOR i = 1 TO LEN(b$)+ 1-LEN(ei$) 

IF t11DS(b$, i, LEN(a$)) =a$ THEN 
PRINT'""; a$; ... found at position"; i 

ENDIF 
NEXT i 

This example differs in two important ways from the previous 
example. First, the third argument of the MID$ function is now set 
at the length of string a$. The part of string b$ being compared to 
a$ must equal the length of a$, or no match will be found. Second, 
the end of the FOR/NEXT loop is set at LEN(b$)+1-LEN(a$). 
The loop could go all the way to LEN(b$), but no match for a$ 
could possibly be found at the end of that loop because the strings 
being extracted by the MID$ function would all be shorter than a$. 

Adding One String to Another 
• & 

The operator that adds one string to the end of another is called 
the concatenation operator. Its symbol in Macintosh BASIC is the 
ampersand. The string following the concatenation operator is 



Manipulating Strings and Text 99 

added to the end of the string before the concatenation operator. 
Thus, if a$ contains the value "concat" and b$ contains the value 
"enation," the statement 

c$ =a$ & b$ 

puts the string "concatenation" in c$. 

Replacing Part of a String 

Sometimes finding one string inside another is not enough. Once 
you have found a string, you may need to replace it. To replace a 
substring, you need to handle three different pieces of the string: 
the beginning, the substring being replaced, and the end. This 
example replaces the word "true" with the word "fair": 

a$ = 'This is a true test.' 
PRINT a$ 
a$= LEFT$(a$, 10) & 'fatr' & R18HT$(a$ ,6) 
PRINT a$ 

The LEFT$ function returns the first 10 characters, and the 
RIGHT$ function returns the last 6 characters. Both of these func­
tions work on the original contents of a$ because the implied LET 
statement evaluates the entire expression on the right of the equal 
sign before storing the result in a$. 

This example demonstrates a more general way to replace a por­
tion of a string: 

a$= 'find' 1 string to find and replacB 
c$ = 'eat' ! the replacement 
b$ = 'Will it find the string?' 
PRINT b$ 
FOR i = 1 TO LEN( b$) + 1-LEN(a$) 

IF MIDS(b$, i, LEN(a$)) =a$ THEN 
b$=LEFT$(b$,i-1) & c$ & MID$(b$,i+LEN(a$)) 
EXIT FOR 

ENDIF 
NEXT i 
PRINT b$ 



100 Using Macintosh BASIC 

In this example, the number of characters returned by the LEFT$ 
function is not specified directly but is calculated as one less than 
the position where the first character of the target string was 
found. The MID$ function is used instead of the RIGHT$ func­
tion to get the right end of the original string, because it is simpler 
in this case to calculate the starting location of the desired sub­
string than it would be to calculate the number of characters 
desired. Only two arguments are passed to the MID$ function, so it 
returns everything from its starting position to the end of the 
string. The EXIT FOR statement stops execution of the FOR/ 
NEXT loop after the replacement is completed. 

CONVERTING BETWEEN STRINGS AND NUMBERS 
•VAL, STR$ 

The VAL function converts a string into a number, and the STR$ 
function converts a number into a string. VAL stops evaluating the 
number contained in its string argument if it encounters a non­
numeric character. If the first character is non-numeric, VAL 
returns zero. Here are several examples: 

a= VAL ('56.9') 
a= VAL ('43years') 
b$ = STRS (21.8) 
b$ ... '34.7' 
a= VAL (b$) 

I Puts 56.9 in a 
! Puts 43 in a 
! Puts '21.8' 1n b$ 

I Puts 34.7 in a 

USING ASCII CHARACTERS 
• ASC, CHR$ 

Characters are stored inside the computer using numeric codes 
from 0 to 255. The coding system is called the American Standard 
Code for Information Interchange, abbreviated ASCII. The ASC 
function takes one string argument and returns the ASCII code for 
the first character of that argument. If the argument is the empty 
or null string, the ASC function returns -1. 

The CHR$ function accepts one numeric argument, an ASCII 
code from 0 to 255, and returns the corresponding character. If the 



Manipulating Strings and Text 101 

numeric argument contains a fraction, it will be rounded to the 
nearest integer. If it is less than 0 or greater than 255, an error 
message is presented. The CHR$ function is most often used in 
programs to introduce a character that cannot be typed from the 
keyboard. Here are some examples of ASC and CHR$: 

a= ASC ('A') ! Puts 65 in a 
a= ASC ("a") ! Puts 97 in a 
a= ASC ('awesome') ! Puts 971n a 
a = ASC ( "") ! Puts -1 in a 
a$ = CHR$ ( 65) I Puts 'A' in a$ 
a$ = CHRS ( 97) ! Puts 'a' in a$ 

Appendix C contains a list of all the ASCII codes and their corres­
ponding characters. 

On the Macintosh, each type font includes a separate character 
set that can be printed. This makes unusual characters possible. In 
fact, each Macintosh font and size prints a different pictorial char­
acter for ASCII value 217 (OPTION-SHIFT--). The program in Fig­
ure 8-1 prints a reference chart for the type font currently in effect, 
so you can identify any unusual or non-standard characters in the 
font. Select the font and size you want from the Fonts menu when 
the program pauses, and then press RETURN to display the font's 
characters. 

if>:fint AScl I nt.unReir~ ~~rac~rs 
! Use to display ' 'h ,,, sin a font 
PRINT "Select a ·.·' .· .· 
INPUT "Then pr~ R IJBN to stort.", a$ 
FOR i = 0 TO 25S ........ ~ 

PRINT t .• Qtt~:S <n:G::> 
"9EXT1. ·~ .· 

Figure 8-1. Print ASCII numbers and characters 



102 Using Macintosh BASIC 

READING KEYBOARD CHARACTERS 

Characters that you type at the keyboard can be received by your 
program one character at a time using the string function 
INKEY$. If you need to know the ASCII value of a typed character, 
you can use the KBD function. 

You will often need to read an entire line of keyboard input, that 
is, a line of characters followed by a carriage return character. In 
this case, you can use the LINE INPUT statement. LINE INPUT 
allows you to read punctuation marks like the comma and quota­
tion marks, which you would not be able to read with a standard 
INPUT statement. 

Getting Single Characters 

• KBD, INKEY$ 

The KBD and INKEY$ functions report on keyboard activity in 
different ways. KBD returns the ASCII value of the most recently 
typed character. INKEY$ returns the next character typed from the 
keyboard. Neither function requires an argument. 

The KBD function is initialized to zero when your program first 
starts running and thereafter returns the ASCII value of the last 
character typed. KBD keeps returning the same value until another 
character is typed, no matter how many times the KBD function is 
called. The KBD function does not respond to the modifier keys 
(COMMAND, OPTION, SHIFT, CAPS LOCK) unless another key is 
pressed at the same time. ' 

.· The INKEY$ function returns the next available character from 
the keyboard. If no character is available, INKEY$ returns the null 
character ( "") instead of waiting. INKE Y$ does not print the typed 
character. 

INKEY$ actually gets its characters from a temporary storage 
area called the keyboard buffer. BASIC maintains the keyboard 
buffer to make certain that no characters are lost when you type 
very fast. As soon as you press a key on the keyboard, BASIC puts 
the corresponding ASCII value into the keyboard buffer. The 
buffer stores 29 characters in the order they were typed. When 
BASIC needs a character from the keyboard, it takes the character 
that was typed first from the keyboard buffer. If you manage to 



Manipulating Strings and Text 103 

type fast enough to fill the keyboard buffer, BASIC discards the 
first character that was placed in the keyboard buffer to make room 
for each new character you type. 

When your program calls INKEY$, INKEY$ gets the next char­
acter from the keyboard buffer. If the buffer is empty, INKEY$ 
returns the null character. You can observe the differences between 
KBD and INKEY$ for yourself by running this short program: 

DO 
PRINT CHRSCKBD), INKEYS 

LOOP 

Getting a Whole Line of Input 

• LINE INPUT 

The INPUT command described in Chapter 3 places the values 
you type at the keyboard into variables whose names are listed in 
the INPUT statement. In order to accept several values from one 
line of input, the INPUT command interprets commas and quota­
tion marks as delimiters separating one value from another. If you 
are typing strings that contain commas or quotation marks, how­
ever, you want BASIC to treat the entire line as a single string 
value. 

The LINE INPUT command treats everything you type on an 
input line as a single value, even if your typing.contains commas 
and quotation marks. Each LINE INPUT statement places a value 
in only one variable. You can use a prompt string in the LINE 
INPUT statement just as you can in an INPUT statement. A 
comma after the prompt string moves the insertion point to the 
next BASIC tab stop, and a semicolon leaves the insertion point at 
the end of your prompt string. The variable used to receive the 
input should, of course, be a string variable. The statement 

LINE INPUT a$ 

puts whatever is typed into the variable a$. 
You will receive an error message if you type a non-numeric 

character when the INPUT statement contains a numeric variable. 
Here is an example that uses LINE INPUT instead to check for an 



104 Using Macintosh BASIC 

incorrect character when your program is expecting a number 
from the keyboard: 

DO 
LI NE I NP UT "Please type a number: "; a$ 
number= VAL (a$) 
IF STR$(numoer) = e$ THEN EXIT DO 
PRINT "Type numeric characters <lnly" 
LOOP 

This block of code uses a LINE INPUT statement to get a typed 
line in a$ and then uses the VAL function to convert that string to 
a number. The STR$ function converts the number back to a 
string and compares that string with the original. If they are equal, 
the typed input was a number. If the typed line included any non­
numeric characters, the two strings will not be equal, the loop will 
continue1 and the program will ask you to retype the number. 

UPPER- AND LOWERCASE 

• UPSHIFT$, DOWNSHIFT$ 

The UPSHIFT$ and DOWNSHIFT$ functions each take one 
string argument. UPSHIFT$ returns the argument with every 
character in uppercase letters, and DOWNSHIFT$ returns the 
argument with every character in lowercase letters. Here are some 
examples: 

a$= UPSHIFTS ('Yes') 
a$ = DOWNSHIFTS ('Yes') 
name$= 'rlCHARD' 

! Puts 'YES' in a$ 
! Puts 'yes' in a$ 

a$= UPSHIFT$(LEFTS(name$, 1 )) & DOWNSl:llfT$(MID$(neme$ ,2)) 
! Puts 'Richar·d' in a$ 

These functions are handy for formatting output from strings. 
They also save program code when checking input. The fact that 
lowercase and uppercase letters are not eqtial leads to complica­
tions when strings are being compared. A simple task such as 
checking to see whether the word "yes" was typed could be very 
complicated without these functions, because the program would 



Manipulating Strings and Text 105 

have to look for all eight combinations of upper- and lowercase 
letters: YES, YEs, YeS, Yes, yES, yEs, yeS, and yes. By using the 
UPSHIFT$ or DOWNSHIFT$ function, you can check all of these 
possibilities at once: 

IF UPSHIFTS (answer$) ='YES' THEN PRINT "Yes, OK." 

CHANGING THE STRING SORT ORDER 

• OPTION COLLATE STANDARD, OPTION COLLATE NATIVE 

Macintosh BASIC allows you to change the rules that govern com­
parisons between strings. Standard comparisons between strings 
compare the ASCII codes of the characters in the two strings. But 
comparing ASCII codes is not very useful when alphabetizing 
strings that contain both capital and lowercase letters. The ASCII 
codes for all of the capital letters are less than the ASCII codes for 
the lowercase letters; thus, in a standard string comparison, "Z" is 
less than "a". 

The OPTION COLLATE NATIVE statement tells Macintosh 
BASIC to make its string comparisons using normal alphabetical 
order. After BASIC executes the OPTION COLLATE NATIVE 
statement, it uses alphabetical ordering until you execute an 
OPTION COLLATE STANDARD statement. 

a- = "baby" < "Jane" I Puts FALSE in a­
OPTION COLLATE NATIVE 
b- = "baby" < "Jane" ! Puts TRUE 1n b­
OPTION COLLATE STANDARD 
C = "baby" < "Jane" I Puts FALSE in C 

HANDLING THE DATE AND TIME 

The Macintosh automatically maintains the date and time of day. 
The DATE$ and TIME$ functions gives Macintosh BASIC pro­
grams access to this information. Neither of these functions uses an 
argument, and both return strings. If the date or time returned by 
these functions is incorrect, you should use the Alarm Clock or 
Control Panel desk accessory to reset it. 



106 Using Macintosh BASIC 

If you are going to manipulate the DATE$ or TIME$ strings in 
your program, you should store the returned string in a variable of 
your own and manipulate that variable instead of repeatedly call­
ing the DATE$ or TIME$ function during a calculation. This will 
avoid the possibility of errors caused by the date or time changing 
during the calculation. 

Date 

• DATE$ 

The DATE$ function returns a string representing the current date. 
The format of the string varies according to the country setting in 
the System file on your start-up disk. Table 8-1 shows some of the 
formats used to portray the date in different countries. 

In the United States, the date takes the form of the month, day, 
and last two digits of the year separated by slashes. The month and 
day can each contain one or two digits. This variability in length 
makes it more difficult to extract the three individual parts of the 
date if you need them in your program. Here is one way to extract 
them from the DATE$ string: 

I Get month, day, and year 
claS = DATES ! copy so it can't change 
month = YAL ( da$) 
year= 1900 + YAL (Rl8HTS(cla$,2)) 
dd$ = R18HTS(da$,5) I dd/yy 
IF LEFTSCcldS, 1) ='/'THEN d1$ = Rl8HTSCcldS,4) ! d/yy 
day= YAL (d1$) 

Table 8-1. Formats for DATE$ 

Country January 23, 1985 

United States 1123/85 
France 23.1.85 
Germany 23.1.1985 
Great Britain 23/0111985 
Italy 23-01-1985 



Time 

•TIME$ 

Manipulating Strings and Text 107 

The TIME$ function returns a string representing the current 
time. The TIME$ string changes once each second. For measuring 
more precisely, use the TICKCOUNT function described in Chap­
ter 7. Like the date, the format of the TIME$ string also varies 
according to the setting in the System file on your start-up disk. 
Table 8-2 shows some of the different formats used to portray the 
time in different countries. 

In the United States, the time takes the format of the hour, min­
ute, and second, separated by colons, and followed by a space and 
either AM or PM. The minute and second always contain two dig­
its, but the hour may be either one or two digits. As with the 
DATE$ function, this variability in length makes it harder to 
extract the three individual parts of the time if you need them in 
your program. Here is one way to extract them from the TIME$ 
string: 

! Oet hour. minute, and second 
ti$ = Tl HES ! copy so it can't change 
hour = YAL { t1$) 
tm$ = Rl8HTS {ti$, 8) ! mm:ss ?M 
minute= VAL Ctm$) 
second = VAL ( Rl8HTSC tmS, 5)) 
IF MIDS (tm$, 7, 2) ='PM' THEN hour= hour+ 12 

Table 8-2. Formats for TIME$ 

Country 

United States 
France 
Germany 
Great Britain 
Italy 

Time 

11:27:00 PM 
23:27:00 
23:27:00 Uhr 
23:27:00 
23:27:00 



108 Using Macintosh BASIC 

EXAMPLE PROGRAM 

The example in Figure 8-2 is a program for a timer that uses the 
TIME$ function to measure any length of time up to 24 hours. 

Figure 8-2. Timer program 



Manipulating Strings and Text 109 

The program uses three subroutines: one to start the timer, one to 
stop it, and one to convert the time into seconds. 

The main timer program consists of a single DO loop that gets 
input from the keyboard. If the input is the single letter "b" in 
either upper- or lowercase, the program executes a GOSUB to the 
TStart subroutine. If the input is either an upper- or lowercase 
"e," the program executes a GOSUB to the TStop subroutine. 

All the TStart subroutine does is record the value of TIME$ in 
the variable t$ and return. When the TStop subroutine is called to 
stop timing, it records the value of TIME$ in a different variable, 
te$, and then uses the subroutine Convert to change the two time 
strings into seconds. 

Note that the Convert subroutine takes its starting value from t$ 
and returns its result in timeC. The value in timeC after the first 
GOSUB Convert had to be saved in another variable, or it would 
have been changed during the second execution of the subroutine. 
Before the second GOSUB, t$ is set to the new value to be con­
verted. The Convert subroutine uses several of the string functions 
to read the components of the time from a TIME$ string. The 
result in seconds is placed in timeC. 

Once the program has converted· the starting and ending times 
into numbers, it compares the two numbers, If the ending time is 
less than the starting time, the clock must have moved past mid­
night, so 24 hours' worth of seconds is added to the ending time. 
Once the elapsed time is stored in the variable time, the program 
uses the INT function to break the time down into hours, minutes, 
and seconds. When the results are printed, the IF statements pre­
vent a zero from being printed as the first unit of time . ... 



110 Using Macintosh BASIC 

PRACTICE EXERCISES 

1. What results are returned by the following function calls? 

a. LEFT$('abcdefg', 4) 

b. RIGHT$('yes, there are bananas', 6) 

c. MID$("public policy", 8, 3) 

d. MID$('banana split', 2) 

2. Can you evaluate these expressions? 

a. LEFT$('Police',4) & RIGHT$('Attics',4) 

b. MID$('aspects',2,5) & MID$('trumpets',2,3) 

3. Try writing a loop that uses LINE INPUT to read a typed 
number into a string variable, turns the string into an 
integer, and checks whether the input contains any extra 
characters. 

4. Often you want your program to wait until the person using 
the program has pressed a key on the keyboard. INKEY$ 
returns a null string instefld of waiting for the keypress if no 
key has been pressed. Can you write a subroutine that waits 
for a keypress and then returns the typed character in a vari­
able named c$? 

5. Write an "alarm clock" that asks for a time setting and prints 
"RING" when that time arrives. Allow the setting to be to 
the nearest minute. 



---&ftWo--­

lntermediate Techniques 
--- -·- -



~~~-cl'zatter9~~~­

Variables, Data, and Arrays

Commands:

• DIM, UNDIM

• DATA, READ, RESTORE, FREE

• SET/ASK EXCEPTION, SET/ASK HALT

• SET/ASK PRECISION, SET/ASK ROUND

System Function:

• FREE

This chapter describes the types of variables you use in Macintosh
BASIC and the types of data each variable can hold. The chapter
then introduces arrays and data statements.

The concluding section contains information that will be pri­
marily of interest to programmers writing sophisticated numerical
programs. It provides a brief introduction to some of the technical
aspects of the Macintosh's numeric computation environment.

113

114 Us ing Macintosh BASIC

VARIABLE TYPES

Macintosh BASIC has a rich variety of vari able types. Each type
holds a sp ecific kind of data. There are ten variable types in all -
fi ve for numbers and fi ve for different kinds of non-numeric data .
The type of a variable is determined by the las t charac ter of the
variable's name. Because the character that specifies the type of
da ta is part of the variable's name, you can use the sa me word for
the names of variables o f different types withou t confusing the
BASIC compiler.

Numeric Variables

T able 9-1 lists the five types of numeric variables in Macintosh
BASIC. Rea l numbers, or reals, can have numeric values that
include frac tions. Integers can have only whole number values .
Integers can have plus and minus signs, but they can never have
decimal points or frac tion s. When you create a numeric variable, it
contains the value zero until you store a different value in it.

Numbers that are very large or very small are often expressed as a
number times a power of ten . The number 4000, fo r instance, can
be expressed as 4*103

. The form at is often sh ortened a bit by

Table 9-1. Numeric Variable Types

Type Symbol Digits of Range Example
Accuracy

REALS
Do uble p recisio n no ne) 15 ± 1£ 308 nam e
Single precisio n I 7 ± 1£ 38 nam e J
Extended precisio n 19 ± I £4932 n am e\

INTEGERS
Shon integer % 5 ±32767 na m e%
Computatio na l # 18 ± 1£ 18 na m e#

Variables, Data, and Arrays 115

omitting the multiplication sign and replacing the 10 with E (for
exponent). With those changes, 4000 is expressed as 4E3. The first
part of the number (4 in our example) is called the mantissa; the
part of the number after the E is called the exponent.

When a real number is stored inside a computer, the mantissa
and the exponent are stored separately. The amount of space
reserved for the mantissa determines how many digits can be stored
and retrieved accurately. The amount of space reserved for the
exponent determines the maximum (and minimum) size of the
value that can be stored in the variable. A double-precision vari­
able, for example, has enough space to have 15 digits of accuracy
in the mantissa, and the space reserved for its exponent is enough
to handle exponents as large as 308.

A variable whose name does not end in a special character is a
double-precision real. The 15-digit accuracy of a double-precision
real variable is sufficient for most purposes. If you need greater
precision or need to store numbers greater than 1E308 (I with 308
zeros after it), you can use an extended-precision variable, which
provides 19 digits of accuracy. An extended-precision variable's
name ends with the \ character, which is located on the key
between BACKSPACE and RETURN at the right of the keyboard. With
SHIFT held down, the same key produces the I character that signi­
fies the name of a single-precision real variable. BASIC performs
internal calculations in extended precision and then rounds to the
precision of the variable that is to receive the result.

Short integers hold values between -32767 and + 32767. Their
names end with the % sign, SHIFT-5 on the keyboard. If your pro­
gram tries to store a larger or smaller value than the short integer
variable can hold, you will receive an Integer Overflow error
message.

Computational variables are sometimes called comp variables or
long integers. They have names ending with the# sign, SHIFT-3 on
the keyboard, and hold integer values up to 18 digits long.

Here are some examples of statements that use numeric variables:

LET a\ = 7 8E 1 00 ! extended precision
LET al = .07 ! single precision
a= 8800 ! double prectston
ass = 77 ! short integer
a# = 77000 ! comp (long integer)

116 Using Macintosh BASIC

Special Numeric Values

• INFINITY, NAN

Several mathematical operations-dividing a number by zero or
taking the square root of a negative number, for example-give an
answer that cannot be expressed as a real number. When one of
these operations is performed, Macintosh BASIC returns either
INFINITY or NAN (Not A Number) as the result. INFINITY
represents a number larger than any definable number. You get
INFINITY when you divide a positive number by zero. -INFIN­
ITY is smaller than any definable number. You get - INFINITY
when you divide any negative number by zero. NAN is the answer
if you take the square root of a negative number or do some other
invalid operation.

PRINT SQR(-1) ! Displays 'NAN(1)'
PRINT 5/0 ! Displays 'INFINITY'
PRINT -5/0 ! Displays '-INFINITY'

You can set a numeric variable equal to one of these values if
you wish. For infinity, you can use either the word INFINITY or
the symbol 00 (OPTION-5 on the keyboard). If your program tries to
store a number into a real variable that is too large or too small to
fit, BASIC changes the number to plus or minus INFINITY. If
your program tries to store a number into a normal integer vari­
able that is too large or too small to fit, BASIC gives you an Inte­
ger Overflow error message. If your program tries to store too large
a number into a computational (long integer) variable, BASIC
changes the number to NAN.

When BASIC prints a NAN value, it includes a number in paren­
theses. The number tells you what kind of invalid operation caused
the NAN result. Table 9-2 lists the types of NANs you are likely to
encounter and their causes.

Non-Numeric Variables

Table 9-3 lists the five non-numeric variable types: string, charac­
ter, Boolean, pointer, and handle. A string is a series of characters

Variables, Data, and Arrays 117

Table 9-2. Types of NANs

NAN Operation Causing Example
the NAN

NAN(l) Square root SQR(-1)
NAN(~) Addition or subtraction - INFINITY + INFINITY
NAN(4) Division 010
NAN(8) Multi plication 0 *INFINITY
NAN(9) MOD or REMAINDER REMAINDER(v,O)
NAN(20) Cotnp type value out of v# = 8El00

range
NAN(21) NAN typed from keyboard a= NAN
NAN(33) Trigonometric function SIN (INFINITY)
NAN(36) Logarithmic function LOG(-5)
NAN(37) Exponentiation (-1) /\ 0.5
NAN(38) ANNUITY or COMPOUND(O,INFINITY)

COMPOUND

(letters, digits, punctuation marks, and special characters). When
a string value is entered directly in a program, it is called a string
literal and is enclosed in either single or double quotation marks.
In Macintosh BASIC a string may contain as many as 65,535 char­
acters. The name of a string variable ends with the $ symbol,

Table 9-3. Non-Numeric Variable Types

Type Symbol Example

String $ name$
Character © name©
Boolean name-
Pointer name]
Handle name}

118 Using Macintosh BASIC

SHIFT-4 on the keyboard. When you first create a string variable, it
contains a null or empty string.

a$ = "test string" ! string variable
b$ =a$ & '#2'
PRINT b$

A character variable holds the ASCII value of a character. ASCII
values range from 0 to 255. The name of a character variable ends
with the © symbol, OPTION-g on the keyboard.

If you try to store a number larger than 255 into a character
variable, the variable will hold the value of the number MOD 256.
If you try to store a negative number into a character variable, the
variable will hold the value of the number MOD 256 + 256. When
you first create a character variable, it contains the value zero.

a@ = ASC('*')
b© = 65 ! ASCII value of 'A'
PRINT CHRS(a©); CHRS(b©)

Boolean variables can hold only the two logical values - TRUE
and FALSE. A Boolean variable's name ends with the - character
(tilde). You can type the tilde by pressing the leftmost key in the
top row while the SHIFT key is held down. When you create a
Boolean variable, it contains the value FALSE until you store a
different value in it.

a"'= TRUE
b"" =(index> 4)
PRINT a"', b""

Pointers and handles are special types of variables. They are
used primarily when calling Macintosh toolbox procedures and
functions. A pointer holds the address of a location in the Macin­
tosh's memory, and a handle holds the address of a pointer. The
name of a pointer variable ends with the character], and the name
of a handle variable ends with the character}. These two types of
variables are discussed more fully in Chapter 19.

Variables, Data, and Arrays 119

Mixing Variables of Different Types

If you attempt to use a variable of an inappropriate type in a pro­
gram statement, BASIC gives you a Type Mismatch error message.
The Type Mismatch message is usually caused by trying to store a
value from one variable into another variable that cannot accept
that type of value. You cannot, for example, store a number into a
Boolean variable, because a Boolean variable can only hold the
value TRUE or FALSE.

All of the numeric variable types are compatible with each other
and can be used in the same program statement without causing a
Type Mismatch error. Because a character variable holds a number,
it can also be used in calculations with numeric variables without
causing a Type Mismatch error. The other four variable types -
string, Boolean, pointer, and handle-do not mix with each other
or with numeric variables. You can store a string, Boolean, pointer,
or handle value only in its own type of variable.

USING ARRAYS

An array is a way of grouping several variables under a single
name so you can access them efficiently. If you had a list of three
numbers that you wanted to multiply by 10 and you put each
number in a separate variable, your program might look some­
thing like Figure 9-1. You would get very tired before you finished
typing this kind of program if your list had several hundred
numbers instead of only three.

A better way to write this program would be to organize the
values in a list. Then you could refer to each number as the first
number in the list, second number in the list, and so forth. If you
went a step further, you could use a variable-called an index
variable - to keep track of your place in the list. That way you
could use a FOR/NEXT loop and an index variable to reference
each value in the list. Your program would require only one state­
ment to multiply and one statement to print.

The kind of indexed list just described is an example of an array.
You can refer to an individual value in the array by using the array
name and the index that tells where the value is located in the

120 Using Macintosh BASIC

a= 3
b=7
c= 9
a=a*lO
b=b* 10
c=c*lO
PRINT a
PRINT b
PRINT c
ENDPROBRAM

Figure 9-l. Using separate variables

array. If you used an array, your program might look something
like Figure 9-2.

Creating Arrays

•DIM

When you create an array, you need to specify the maximum
dimension of the array so BASIC will know how much space to set
aside in your machine's memory to store each of the values. The

DIM a(3)
a(1)=3
a(2) = 7
a(3) = 9
FOR index = 1 TO 3

a(lnclex) =a(index) * 10
PRINT a(index)

NEXT index
ENDPROBRAM

Figure 9-2. Using an array

Variables, Data, and Arrays 121

DIM or dimension statement serves this purpose. The keyword
DIM is followed by the array name, with the maximum size of the
dimension in parentheses. The dimension can be a number or any
legal numeric expression. It can have any value from 0 to 32767.
An array you dimension at 9 contains 10 elements because Macin­
tosh BASIC always allocates the 0th element.

You can dimension more than one array in the same statement if
you separate the array names with commas.

011'1array1(15)
DIM array2(60), array3(30)

Array names follow the same rules as the names of simple varia­
bles. The same ten variable types shown in Tables 9-1 and 9-3 also
apply to arrays. The last letter of an array name specifies the type
of variables that can be stored in the array.

011'1array(70), array-(30), array$(50)
DIM array~(40). array#(80)

You can have an array with the same name as a simple variable, if
you are willing to risk getting them mixed up in your own mind.

The DIM statement for an array must be executed before you
attempt to reference any element of the array, or BASIC will give
you an error message. Because of this, DIM statements are often
grouped together near the beginning of a program. If the names of
your arrays are not self-explanatory, it is a good idea to put a
comment near the beginning of your program describing the
values each array will hold.

If you attempt to reference an element of an array with an index
that is negative or an index that is larger than the size of the array,
BASIC will give you an error message.

Arrays With More Than One Dimension

You can define an array with as many dimensions as you like. All
you do is use commas to separate each dimension inside the paren­
theses in the DIM statement. Two-dimensional arrays are often

122 Using Macintosh BASIC

used for data that can be displayed in tables with rows and
columns.

An address list can be displayed on paper with each horizontal
line made up of first name, last name, street address, city, state, and
ZIP code columns, as shown in Figure 9-3. If the list contains 50
addresses, the statement

Dlt1 address.1ist$(50,6)

creates an array that can hold the address list. It dimensions an
array with 50 rows and 6 columns.

To access a particular element of an array, you use the array
name followed by indexes in parentheses to indicate which element
you want. You need to supply one index for each of the array's
dimensions. In the previous example, the first dimension repre­
sents the row that holds a particular address, and the second
dimension represents a specific column or part of the address. If
you wanted to sort the list into alphabetical order by names, you
would first sort on the last name in the second column. In the
event of a tie in the second column, you would sort on the first
name in column 1.

Whenever you refer to an element of an array in your program,
you must use the correct number of dimensions. If you do not, you
will receive an error message. You cannot use the same name for

First Ha•e Last Ha•e Address

Jane
John

Doe
S•ith

123 Z Street
'f 56 EZ Lane

City State Zip

Anyt•n HI
Anyto•n CA

90000
90099

Figure 9-3. Address list

Variables, Data, and Arrays 123

two arrays of the same data type, even if they have a different
number of dimensions.

Copying Arrays

You can copy values from one array into another by using index
variables in FOR/NEXT loops. If you want to copy an entire
array, however, Macintosh BASIC allows you to do it with a single
program statement. You can use the normal LET statement to
assign the values of one array to another, without using any values
inside the parentheses:

array1 () = array2() I copy entire array

If the arrays have more than one dimension, the appropriate
number of commas must be included inside the parentheses, as in
the following example of two-dimensional arrays:

array1 (,) = array2(,) ! copy 2-dimensional array

If the two arrays do not have the same number of dimensions,
you will receive an error message. The size of each dimension does
not, however, have to be identical in the two arrays. As long as the
number of dimensions is the same, BASIC changes the dimensions
of the destination array to match the dimensions of the array being
copied.

Removing an Array

• UNDIM

The UNDIM command "undimensions" an array. UNDIM frees
all the memory occupied by the array. You lose the values stored in
the array unless you save them somewhere else before you use
UNDIM. The word UNDIM must be followed by the array name
and a set of parentheses. The parentheses must contain the appro­
priate number of commas if the array has more than one dimen­
sion. If you have more than one array to undimension, you can

124 Using Macintosh BASIC

separate the array names with commas m a single UNDIM
statement.

DI" array 1 (300) ,array2(50 ,3) ,array3(4 ,2 ,2)
! Progrem statements using the arrays

UND1t1 array3(.. >
UNDI" array1 ,array2(.>

When you use UNDIM, you remove the array from memory. It
no longer exists, and any later references to the array in your pro­
gram will cause error messages.

PUTTING DATA IN YOUR PROGRAM
•DATA, READ

The program in Figure 9-2 used an array to handle the multiplica­
tion and printing of a series of numbers more efficiently than the
program in Figure 9-1. However, the program in Figure 9-2 still
contained a separate program statement to set the value of each
element of the array. Those separate statements can be replaced
with the more efficient DATA and READ statements, as shown in
the following program:

DI" a(3)
DATA3,7,9
FOR index = 1 TO 3

READ a(index)
a(index) =a(index)* 10
PRINT a(index)

NEXT index
ENDPR08RN1

READ works very much like INPUT, but READ takes the input
values from DATA statements embedded in the program instead of
from the keyboard. After the keyword READ, you list the variables
whose values are to be taken from the DATA statements. If you
have more than one variable name in the same READ statement,
separate them with commas. Each v.ariable in the READ command

Variables, Data, and Arrays 125

must be compatible with the type of data in the DATA statement,
or you will receive a Type Mismatch error message. Here are some
examples:

DATA 8,test,TRUE,9
READ a,bS ,c- ,d ! Yes, types all match
READ a,bs ,c- ,d ! No, bll cannot rece1ve a str1ng

Values in a DATA statement are separated by commas. Each
value must ~e an actual, or literal, value, not an expression. DATA
statements tan be located anywhere in your program. If a DATA
statement is encountered during program execution, BASIC skips
the DATA statement and resumes execution with the next program
line.

String values in DATA statements do not have to be surrounded
by quotation marks unless they contain a comma or quotation
marks. If you want to include either single or double quotation
marks inside a string in a DATA statement, use the opposite kind
of quotation mark at both ends of the string, as in these examples:

DATA "This a fine day, isn't it?"
DATA 'The" marks are in this string.'

The READ statement ignores spaces at the beginning of an
unquoted string in the DATA statement, but includes spaces at the
end of the string. If you want it to include one or more spaces at
the beginning of a string, you should enclose the string in quota­
tion marks.

READ and DATA statements are often used to initialize the
values of an array, as in this example:

Dlt1days$(7)
DATA Monday, Tuesday, Wednesday
DATA Thursday, Friday, Saturday, Sunday
FOR day = 1 TO 7

READ days$(day)
NEXT day

126 Using Macintosh BASIC

MOVING THE DATA POINTER
• RESTORE

BASIC maintains a pointer to the next DATA item to be read.
When execution of your program begins, the pointer points to the
first item in the first DATA statement in your program. Each time
a data item is read by a READ statement, BASIC advances the
pointer to the next data item. You can change the pointer with the
RESTORE command.

RESTORE by itself moves the data pointer back to the first
DATA item in your program. RESTORE followed by a line
number or label moves the data pointer to the first DATA item in
your program following the occurrence of the line number or
label. The RESTORE command comes in handy when you need to
use the same data more than once in your program.

DATA 1,2,3
label: DATA 5,8,9
RESTORE
READ a ! reads 1
RESTORE label
READ a ! reads 5

UTILIZING THE AVAILABLE MEMORY
•FREE

Many things can occupy space m Macintosh's random access
memory: the operating system, Macintosh BASIC itself, desk
accessories, open windows, pictures, and other programs. Your
program cannot control all of these, but it can control its own use
of the machine's memory. FREE is a system function that takes no
arguments. It returns the number of bytes that are not being used.
You can print the value of FREE to find out how much room is
left, or you can use FREE in a program that needs to know the
amount of room left in memory.

IF FREE < 1000 THEN
PRINT "Warning: "
PRINT "Runn1ng out of memory."
PRINT FREE; "bytes left."

ENDIF

Variables, Data, and Arrays 127

Of all the things that can take up large amounts of memory, the
one over which you have the most control is the array. An array
dimensioned (9,9) has ten times ten (don't forget, space is reserved
for element 0), or 100, elements. You can multiply the number of
elements by the number of bytes each element occupies to calculate
the minimum amount of memory space required for the array.
Table 9-4 lists the number of bytes required to store a single ele­
ment of each variable type.

An array with 100 double-precision elements needs 100 times 8,
or 800, bytes of memory in which to store the elements. When stor­
ing a string value, Macintosh BASIC uses two bytes to store the
length of the string and then uses one additional byte for each
character in the string. You can, if you wish, base your program's
dimension statements on the amount of free memory. If you do, be
sure to leave plenty of extra bytes free for other uses. Here is one
way you could do this:

I Make array of double precision reals
number = (FREE-10000) I 8 ! 8 bytes per element
DIM array(number)
PRINT "Arrft(hBS "; number; " elements."

Table 9-4. Variable Storage Requirements

Variable Type

Double Precision
Single Precision
Extended Precision
Short Integer
Computational (long integer)
String
Character
Boolean
Pointer
Handle

Bytes per Value

8
4

10

2
8

2 + length of string
1
1
4
4

128 Using Macintosh BASIC

THE NUMERIC ENVIRONMENT

The Macintosh has a numeric calculation environment that
exceeds the precision used in calculations on many large main­
frame computers. The Macintosh's numeric environment is called
the Standard Apple Numeric Environment (SANE). It meets the
standards promulgated by The Institute of Electrical and Electron­
ics Engineers, Inc., which is an industry organization that sets
standards for things related to computing.

The commands described in this section allow you to change
several features of the SANE environment. Most programmers do
not need to use these commands; they are useful for persons doing
advanced numeric programming. If you want to delve into these
matters more deeply than the very brief discussion here, you can
find more information in the Apple Numerics Manual published
by Apple Computer, Inc.

When Calculations Don't Work

• SET I ASK EXCEPTION, SET I ASK HALT

The numerics environment allows you to find out if any unusual
events happened during numeric calculations. Table 9-5 lists the
five conditions for which you can check. These conditions are
called exceptions.

To check for an exception, use the command ASK EXCEPTION
followed by the name or number of the exception, a space, and the

Table 9-5. Exception Conditions

Exception Value Cause

INVALID 0 Invalid operation, result is NAN
UNDERFLOW I Result so small it rounded to zero
OVERFLOW 2 Result so large it became INFINITY
DIVBYZERO 3 Division by zero, result INFINITY
INEXACT 4 Calculation result had to be rounded

Variables, Data, and Arrays 129

name of a Boolean variable. To check whether a division by zero
has occurred, you could use the statement

ASIC. EXCEPTION DIVBYZERO variable"'

which would set your Boolean variable to TRUE if the condition
has occurred and to FALSE if it has not. Once it becomes TRUE,
the exception will always return TRUE until you use a SET
EXCEPTION statement to reset it to FALSE. You follow the
command SET EXCEPTION with the exception name or number
and the Boolean value TRUE or FALSE.

HALT determines whether or not your program stops when an
exception occurs. Follow the command SET HALT with the name
or number of an exception, a space, and a Boolean expression that
evaluates to TRUE or FALSE. To find out whether a halt is
already set, use ASK HALT followed by the name or number of the
exception, a space, and a Boolean variable to receive the answer.

The statement

SET HALT 2 TRUE

causes your program to halt with an error message if a calculation
causes an overflow condition. All of the exceptions and halts are
initialized as FALSE when you begin to run your program.

Controlling Precision and Rounding

• SET/ASK PRECISION, SET/ASK ROUND

The numerics environment also allows you to set or ask the degree
of precision being used in BASIC's internal calculations and the
direction in which rounding of decimal fractions will occur. Table
9-6 lists the choices of precision. You can change the precis.ion by
using SET PRECISION followed by the appropriate word or
number from the table. If you follow ASK PRECISION with the
name of a numeric variable, BASIC puts the precision number in
the variable. When your program begins, PRECISION is set to
EXTPRECISION.

130 Using Macintosh BASIC

Table 9-6. Calculation Precision

Constant Value Precision

EXTPRECISION 0 Extended precision, 80 bits
DBLPRECISION 1 Double precision, 64 bits
SGLPRECISION 2 Single precision, 32 bits

You use SET ROUND and ASK ROUND to change the round­
ing direction for the RINT function and all other internal calcula­
tions that require rounding a real number to a certain number of
decjmal places or to an integer. Table 9-7 lists the possible round­
ing directions. Follow ASK ROUND with the name of a numeric
variable to learn the current rounding direction. To change the
rounding direction, use SET ROUND followed by the name or
number of the direction you want. ROUND is set to TONE­
AREST when your program begins.

Here are a few short examples using PRECISION and ROUND:

ASK PRECISION whats I puts 0 in whats if extended
SET ROUND Towardlero ! sets rounding toward zero
SET ROUND 0 ! sets roundtng back to ToNearest
ASK ROUND where I puts O in where if ToNearest

Table 9-7. Rounding Directions

Direction Value

TO NEAREST 0
UPWARD 1
DOWNWARD 2
TOWARDZERO 3

Variables, Data, and Arrays 131

Commands for Numerics Experts

Macintosh BASIC provides twelve additional commands that give
you access to the most sophisticated features of the Apple numerics
environment. You are not likely to use these commands unless you
are involved in extremely sophisticated numerical programming.
They are listed here so you will know they exist. Table 9-8 sum­
marizes these additional numerics environment commands. You
will need to refer to the Apple Numerics Manual for the details for
these commands.

Table 9-8. Additional Numerics Environment Commands

ASK ENVIRONMENT Followed by a numeric variable name, saves one
number that describes the entire numerics envi­
ronment.

SET ENVIRONMENT Followed by a number obtained from ASK, restores
that numerics environment. 0 restores the default
numeric environment.

PROCENTRY

PROCEXIT

REMAINDER

CLASSCOMP

Followed by a numeric variable name, saves the cur­
rent numeric environment in that variable and sets
the default numeric environment.

Followed by an environment number saved by
PROCENTRY or ASK ENVIRONMENT, resets
that environment. Use SET EXCEPTION INVALID
FALSE after using PROCEXIT.

Function takes two numeric arguments and returns
an integer remainder derived from the result of the
first argument divided by the second argument, as
explained in the Apple Numerics Manual.

Function takes one numeric argument and returns
the class number of the argument as if it were con­
verted to type comp. Classes are 0 for SNAN, I for
QNAN, 2 for INFINITE, 3 for ZeroNum, 4 for Nor­
malNum, 5 for DenormalNum. For an explanation
of these types, see the Apple Numerics Manual.

132 Using Macintosh BASIC

Table 9-8. Additional Numerics Environment Commands (continued)

CLASSDOUBLE Function takes one numeric argument and returns the
class number of the argument as if it were converted to
type double. Classes are listed under Classcomp.

CLASSEXTENDED Function takes one numeric argument and returns the
number class of the argument as if it were converted to
type extended. Classes are listed under Classcomp.

CLASSSINGLE Function takes one numeric argument and returns the
number class of the argument as if it were converted to
type single. Classes are listed under Classcomp.

NEXTDOUBLE Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as double-precision.

NEXTEXTENDED Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as extended-precision.

NEXTSINGLE Function takes two numeric arguments and returns the
next representable value after the first argument in the
direction of the second argument with all numbers
treated as single-precision.

EXAMPLE PROGRAMS

The two example programs in this section use many of the features
introduced in this chapter. The first program creates, sorts, and
displays an array of 50 integers. The second example program
prints a list of names and addresses in alphabetical order.

The sorting example in. Figure 9-4 uses a DIM statement to
dimension an integer array. The array will hold 51 elements (0
through 50), but the program does not use the 0th element. A
FOR/NEXT loop stores a random integer between 1 and 1000 into
each element of the array.

Variables, Data, and Arrays 133

an array of integer$
.', ~ltt arrayz·c So> ! Create .the array

1 JU tt wtth totegers l!etwfli:m 1 and 1 ooo
. i .. 1T0.'50 . . .
irrayg'.(fa = INT(RNQ(.1'000)) + 1 T.i · . l."C

.. . . S1Jrt tllfJ1'1tegerS I . . ·.

·1:.~.tt'OSO ·! .booket,eechnu1111Jer in turn ·
!F9Rl~1;~o so'.J;,t1~J~ofe:tN~10W8Slcme iett
· 1Far · · zcl<arr ·sen ttff:N .~1"8V · J ·.· .J!t ·. · . I.··· .

. !;J"8 numbers tJ:'• Places
.,~PS =er; ... (il
·'~£~~H)J9:. ,;1f~(j)··' 11

~rav•<f>¥ienips < , ·
ENl)iF . .

''?Ti
/·il1i·. ·.·I ;fi;i;. . . ·1•· I.I; ..

·, llOr~. l\l:JW prin' it1)j.tt.
l=.1T050 I

t»1t1· · .ars<n

Figure 9-4. Sort an array of integers

The sort routine begins with a FOR/NEXT loop that points in
turn to each position in the array, from lowest to highest. While
the first FOR/NEXT loop points to one element of the array, a
second FOR/NEXT loop searches from that element to the end of
the array. An IF statement inside the second loop tests whether the
element pointed to by the second loop is smaller than the element
pointed to by the first. If so, the elements are exchanged. After the
second loop is finished, the element pointed to by the first loop is
now the smallest one in the array, so the program can look for the
next larger element.

This sorting method is not always the fastest, but it is easier
to understand than many of the other methqgs. You can scroll
through the listing in the output window to confirm that the array
has been sorted correctly. '

134 Using Macintosh BASIC

The example in Figure 9-5 uses a two-dimensional array to store
an address list similar to the one in Figure 9-3. This program dis­
plays the address list in alphabetical order, but it does not actually

Figure 9-5. Display address list in name order

Variables, Data, and Arrays 135

move the elements of the array. The program uses a DIM statement
to dimension the string array address.list$ for 50 rows and 6
columns. Two nested FOR/NEXT loops control a READ state­
ment that reads strings from the DATA statements into elements of
the array. The DATA statements could have been located anywhere
in the program.

An OPTION COLLATE NATIVE statement tells BASIC to sort
strings in normal alphabetical order (see Chapter 8 for a review of
this statement). A variable that will be used to store the most
recently printed last name is initialized with a null string, and the
last name position in the 0th row of the array is filled with
CHR$(255), a value larger than any alphabetic character. The pro­
gram points to this element when it begins searching for the next
last name to print.

A FOR/NEXT loop finds and prints the next name and address
five times. The variable named next.to.print is set to 0, so the
expression address.list$(next.to.print,2) will return the CHR$(255)
value stored earlier. A FOR/NEXT loop looks at each entry to see
if the last name of that person is greater than the previous name
printed (if it is not greater, the name being examined has already
been printed) and also less than the name pointed to by the vari­
able next.to.print. If the name meets both of these conditions, the
row number containing that name is stored in next.to.print.
Initializing next.to.print to point to CHR$(255) ensures that the
row number of the first name not already printed will be stored in
next.to.print. When the loop ends, next.to.print contains the row
number of the name lowest in alphabetical order that has not yet
been printed. A final FOR/NEXT loop prints the six strings that
make up the full name and address.

If you examine Figure 9-5 closely, you may notice that the pro­
gram as written will only print one address for each last name,
even if several people in the list have the same last name. You can
correct this by adding statements to compare the first names if the
entry in the array has the same last name as the one just printed.

136 Using Macintosh BASIC

PRACTICE EXERCISES

1. How many elements of what data type can be stored in each
of the following arrays?

a. Variable(44)

b. Iftest-(8)

c. Bigtime \(900,2)

d. Whoknows%(99)

e. Name$(9,2)

2. What is the dimension of the array named q$ when this pro­
gram reaches the END PROGRAM statement:

Dlr1a$(3). q$(9)
q$(9) = "how ck> you like this?"'
PRINT q$
q$() =a$()
END PR08RAt1

3. Which of the following statements will cause error messages?

a. a$= 8

b. a() = b(,)

c. test-= 0

d. string =:= 'value'

e. a%= 50000

4. What is wrong with this READ/DATA combination:

DATA 4,test,5,test
READ a,aS ,b ,c

---cltaf'!ir /0--­

Formatting Program Output

Commands:

• PRINT, SET I ASK VPOS, SET I ASK HPOS

• GPRINT, SET I ASK PENPOS

• SET I ASK FONT, SET I ASK FONTSIZE

• SET I ASK GTEXTFACE, SET I ASK GTEXTMODE

• GTEXTNORMAL, SET I ASK SHOWDIGITS

• CLEARWINDOW, SET I ASK TABWIDTH

• DOCUMENT PRINT

Functions:

• TAB FORMAT$

This chapter describes the commands that affect the arrangement
and appearance of the text printed in the output window. First
some of the fine points about the PRINT command, which you
have been using since your first BASIC program, are covered. Then
the chapter discusses GPRINT, the second print command in
Macintosh BASIC. The GPRINT command controls the font, size,

137

138 Using Macintosh BASIC

and appearance of text in the output window. Next, this chapter
describes the FORMAT$ function and the ways it can help you
arrange information. Lastly, this chapter describes how to print a
copy of the ouptput window on paper.

PRINTING NORMAL TEXT

Normal text is printed with the PRINT command. The output
window displays only a portion of the output document. You can
think of the output document under the window as a sheet of
paper 8 112 by 11 inches in size.With a 12 point font size, the out­
put document will hold 48 lines of text.

The original size of the output window allows you to see a por­
tion of the output document that is approximately 15 lines high by
30 characters wide if you are using a 12 point font size (the exact
number of characters varies because most fonts are proportional).
If your program prints more lines of text than fit in the window,
the text scrolls upward so that the most recently printed text is
visible. You can change the font and size of normal text output by
using the Fonts menu as described in Chapter 2, but you cannot
change these attributes from your program.

A PRINT Command Refresher

• PRINT

You follow the PRINT command with a list of numbers and
strings separated by semicolons or commas. The numbers and
strings can be literal values or expressions. If the separator is a
semicolon, PRINT displays one value immediately after another,
with no intervening spaces. If the separator is a comma, PRINT
moves to the next tab stop before displaying the next value. The
position where the next character is printed is called the text inser­
tion point.

BASIC issues a carriage return character at the end of each
PRINT statement so the next PRINT statement will begin print­
ing at the start of the next line. You can suppress the carriage
return character by ending your PRINT statement with a semi­
colon or a comma.

Formatting Program Output 139

Before the PRINT command starts printing on a new line, it
erases everything else on that line. That action, of course, destroys
any graphics you may have drawn there. You can use PRINT with
graphics in the same window if you are careful to print before you
draw the graphics. However, you may get a surprise if you try to
use the Copy Picture command to save a copy of your completed
output window. You will get a copy of all your graphics informa­
tion, but none of the text displayed with the PRINT command
will appear on the copy. This is because output from the PRINT
command is kept in text format and is never converted to graphics
format. You will get much better results if you use the GPRINT
command whenever you have any graphics in the output window
and restrict your use of the PRINT command to those times when
you only want to display text.

Positioning Normal Text

• SET/ASK VPOS, SET/ASK HPOS

VPOS and HPOS are special variables that control the location
where your next PRINT or INPUT statement will begin. VPOS is
the vertical position or line of text in the output document, and
HPOS is the horizontal character position within the line of text.

You can change the vertical position by using the SET VPOS
command followed by a number or numerical expression. You can
find out the current setting by following the ASK VPOS command
with the name of a numeric variable. BASIC will store the value of
VPOS in that variable.

SET YPOS 3 ! Sets to PRINT on line 3
ASK YPOS vOld ! Gets VPOS in vOld
SET VPOS vOld+ 3 ! sets to line vOld+ 3

BASIC accepts values for VPOS ranging from 1 to the number
of the last line of the document. With a 12 point font size, 48 lines
fit in a normal size output document. You can get more lines in
your output document by using a smaller font size or enlarging the
document with the SET DOCUMENT command described in
Chapter 16.

ASK HPOS followed by a numeric variable name returns the

140 Using Macintosh BASIC

number of characters between the text insertion point and the left
edge of the output document. You use SET HPOS to specify the
position where you want the next character printed. BASIC accepts
values in the range 1 to 256 for SET HPOS. If you set the number
too high, however, the insertion point may be past the right edge
of the document, where you will not be able to see it.

PRINT "The story";
ASIC YPOS vOld ! Gets VPOS in vOld
ASIC HPOS hOld ! Gets HPOS in hOld
SETYPOS 10
PRINT "At a new location"
SET YPOS vOld ! Restore old line
SET HPOS hOJd ! Restore chara::ter position
PRINT "continues."

When your SET HPOS value requires BASIC to count character
positions on an empty line or on part of a line where text has not
been printed, BASIC uses the width of a numeric digit in the cur­
rent type font for the width of each character position. Digits are
eight pixels (screen dots) wide in most 12 point fonts (seven pixels
for 12 point Monaco), and six pixels wide in most 9 point fonts. If
you set VPOS or HPOS to a location that is beyond the area visible
in the output window, BASIC scrolls the window's contents to
display the insertion point.

Using the Tab Function

•TAB

The TAB function is used within a PRINT statement to move the
text insertion point to a specific character position to the right.
This makes it possible for you to move the insertion point between
each item you print and still print several items with one PRINT
statement. You follow the word TAB with parentheses containing
your new HPOS setting and then with a semicolon.

PRINT "testing" ;TAB(10) ;" 1, 2, 3."
PRINT "testing";TAB(5);"1, 2, 3."

I TAB skips 2 characters
! TAB does not move

Formatting Program Output 141

The TAB function moves the text insertion point only to the
right, never to the left. If you have already printed past the new
HPOS setting, TAB has no effect. If you have not printed as far as
tpe new HPOS setting, TAB skips enough blank character posi­
tions to move to your new setting. You can use TAB as often as
you wish in the same PRINT statement.

PRINTING GRAPHICS TEXT

The G PRINT command prints graphics text. Graphics text is
merged with any information that is already in the output window
and text may appear on top of whatever was already in the docu­
ment. Nothing is erased unless you use a separate command to do
so. The location of graphics text in the window is measured in
pixels (the dots on the screen) instead of in lines and characters.
The original size of the output window is 240 pixels high and 240
pixels wide. The full Macintosh 9-inch screen is 342 pixels high by
512 pixels wide.

The GPRINT Command
• GPRINT

You should use the GPRINT, or graphics print, command ins~ead
of PRINT when you have both text and graphics to print in the
same output document. You can write GPRINT statements just
like PRINT statements. Commas and semicolons have the same
effects in GPRINT statements as they do in PRINT statements.

GPRINT does not mix well with either the PRINT or INPUT
command. Both PRINT and INPUT erase graphics from the line
to be printed, which makes it difficult to use them with any graph­
ics already in the window. If you are using any fancy type, you will
probably find it much easier to do all your printing with GPRINT
and to put all necessary INPUT statements before your graphics
output routine.

&PRINT a, b I Prints values of a and b
8PRI NT "e" ;"b" ! Prints 'b' immediately 8fter 'e'
&PRINT "e" ,"b" l Prtnts ·a·, tabs, then prints 'b'

142 Using Macintosh BASIC

It is important to remember to set the printing location for the
first GPRINT command in your program. If you do not set it, the
first GPRINT statement will print your text outside the visible
part of the output document.

Positioning Graphics Text

• SET /ASK PENPOS

GPRINT has its own commands to set the position of the text in
the output document. VPOS and HPOS do not affect the location
of the text GPRINT displays. BASIC allows you to use TAB in
GPRINT statements, but the results are not guaranteed.

While GPRINT appears to print text, it is really a graphics
command. You learned earlier about the insertion point BASIC
maintains to keep its place in text output. BASIC also maintains a
separate pointer, called the graphics pen, to keep its place in
graphics output. Each time the graphics pen is used by a graphics
command (including GPRINT), BASIC updates the location of
the graphics pen. The GPRINT command always begins its next
display at the current location of the graphics pen.

You express the location of the graphics pen as a pair of
numbers separated by a comma. The first number is the number of
pixels to the right of the left edge of the window. The second
number is the number of pixels down from the top of the window.
When your program starts, the graphics pen is located at pixel
0,0-the top left corner of the output window. The coordinates
become larger the farther you move down or to the right. For
example, the pen coordinate 10,20 is 10 pixels to the right and 20
pixels down from the top left corner of the output window.

To move the graphics pen to a new location, you can use the
SET PENPOS command. A SET PENPOS statement looks like

SET PENPOS a,b

where a and b are the horizontal and vertical coordinates of the
location where you are setting the graphics pen. Both a and b are
numeric expressions, and they are separated by a comma. SET

Formauing Program Output 143

PENPOS 7, 12 sets the pen so GPRINT will begin printing in the
same place as PRINT would.

ASK PENPOS gets the current graphics pen location. Follow the
command ASK PENPOS with two numeric variable names separ­
ated by commas. BASIC puts the horizontal position into the first
variable and the vertical position into the second variable. Here are
a few examples of SET PENPOS and ASK PENPOS:

.i .i •

SET PENPOS 7. 12 I Sets pen for f1rst line
ASK PENPOS h, v ! Puts 7 in h, 12 in v

You can also set the graphics pen position within the GPRINT
statement. To do that, use GPRINT AT followed by the coordi­
nates, a semicolon, and the items you want GPRINT to display.
You can use AT only at the very beginning of a GPRINT state­
ment, not after any item has been printed.

SPRINT AT x,y; "Hello" I Sets pen .to x,y and prints "Hello"
&PRINT AT 7, 12; a$! Prints a$ on first line
ASK PENPOS h, v ! Save pen ~ition
SET PENPOS h, v ! Sets pen back for GPRINT

When you print graphics text, the text is displayed to the right of
the graphics pen position with the base of the characters even with
the pen position. Thus, the text appears above and to the right of
the graphics pen position. This means that when the pen starts at
location 0,0, any text printed will be above the output window.
That is why you have to use SET PENPOS or GPRINT AT to set
the location for the first GPRINT command in your program.

GPRINT remembers the most recent horizontal position speci­
fied by SET PENPOS or GPRINT AT and uses that position as its
left margin until another SET PENPOS or GPRINT AT com­
mand changes it. GPRINT ignores carriage return characters
(CHR$(13)) when they are embedded in strings longer than one
character, but it prints them in one-character strings. You will need
to use either SET PENPOS or GPRINT AT to reset the location
for your GPRINT commands whenever you have used PLOT,
CLEAR WINDOW, or any other commands that might cause the
graphics pen to be moved.

144 Using Macintosh BASIC

Controlling the Graphics Text Foilt

• SET/ASK FONT, SET/ASK FONTSIZE

With GPRINT, you control the font, size, and appearance of
graphics text. You cannot change these attributes later with the
Fonts menu. SET FONT changes the font used by GPRINT to the
font whose number you specify. When you use the command ASK
FONT followed by the name of a numeric variable, BASIC puts

•f.

the number of the current font into the variable. The SET FONT
and ASK FONT statements use the font numbers shown in Table
10-1.

SET FONT O ! Sets Chicago font
! Oets font number ASK FONT oldfontZ

PRINT
SET FONT oldfontSI

! sets to app11cat1on font
! Resets font for GP RI NT

Table 10-1 shows the most generally available fonts, their font
numbers, and the sizes in which each font is available. You can

Table 10-1. Generally Available Foms and Sizes

Font Number Name Sizes

0 System (Chicago) 12
I Application (Geneva) 12
2 New York 9, IO, 12, 14, 18, 20, 24, 36
3 Geneva 9, IO, 12, 14, 18, 20, 24, 36
4 Monaco 9, 12
5 Venice 14
6 London 18
7 Athens 18
8 San Francisco 18
9 Toronto 9, 12, 14, 18, 24

IO Seattle IO, 20
II Cairo 18
12 Los Angeles 12, 24

Formatting Program Output 145

learn whether a font is present on your BASIC disk by looking to
see if it is listed in the Fonts menu.

Unless you change them, the font and size used by GPRINT are
set to the standard Application font, Geneva 12. If your program
requests a font that is not available, BASIC uses the Geneva font.
The PRINT and INPUT commands always use the Geneva 12 font
unless you have made a selection from the Fonts menu to change
them.

Setting the font size is done separately from setting the font
itself. SET FONTSIZE followed by a number sets the font to that
size, and ASK FONTSIZE puts the current font size in the numeric
variable whose name you include in the ASK FONTSIZE state­
ment. You use the actual font size in SET FONTSIZE and ASK
FONTSIZE statements.

SET FONTSIZE 9 ! Sets for 9-point type
ASK FONTSIZE size I Gets font size
SET FONTSIZE s1ze+ 3 ! Sets to a larger size

The most common sizes are 12 point and 9 point. In the 12 point
size, the base of each line of text is 16 pixels below the base of the
line above it; in the 9 point size, the distance is 12 pixels. Your type
fonts look best if you display them in sizes that are present on your
disk. If you request a size that is not available, BASIC attempts to
scale the font to your requested size. The result is likely to be
unappealing, or even unreadable, if the requested size is not an
even multiple of an available size.

Controlling the Appearance of Graphics Text

• SET/ASK GTEXTFACE, SET/ASK GTEXTMODE

GTEXTFACE and GTEXTMODE are two more characteristics
that you can change with the SET keyword and query with the
ASK keyword. GTEXTFACE governs the style of the text, and
GTEXTMODE governs the interaction between the text and any
background design. Here are a few short examples:

SET 8TEXTFACE 9 ! Set for boldface outline type
SET BTEXTMODE 10 ! Make text visible on any background
ASK. 8TEXTFACE face ! eet eTEXTFACE 1n face
ASK. 8TEXTMODE mode! eet eTEXTMOOE in mode

146 Using Macintosh BASIC

Table 10-2. GTEXTFACE Seuings

Style Value

Plain 0

Boldface 1

Italic 2
Underline 4

Outline 8
Shadow 16

Condense 32
Extend 64

Table 10-2 shows the possible GTEXTFACE style characteristics
and their values. You calculate the GTEXTFACE setting by adding
together the values of the style characteristics you want to use. SET
GTEXTFACE 3, for example, produces boldface italic type. If the

,.. s File Edit Search Fonts

TeHt of Show GTEHTFRCE
! Show GTEXTFACE effects
SET PENPOS 7,20
FOR index = 0 TO 7
face= EXP2(inde x) DIV 2
SET GTEXTFACE face
GPR I NT "This shows text face
NEXT index
END PROGRAM

Show GTEHTFRCE

Thi s shows text face 0.
This shows text face L
This sllmvs text fece 2

This shows text face 4.
'U'llil~i iil!l®'!lll'§ II.HI!. fi'f!I@@ ®·
'ii'li:IU 11 lllil~'!'lt'il iltilfllil ll~iitil U IJ.
This shows text face 32.
This shows text face 64.

Figure 10-l. GTEXTFACE samples

.,

•

illl
111111

Formatting Program Output 147

condense and extend options are both selected, they cancel each
other out and you get normal spacing between letters.

Figure 10-1 shows a short program that displays each of the
GTEXTFACE style characteristics in the Geneva 12 font. Some of
the style characteristics look better when combined with other
characteristics than they do alone (italics tend to look better in
boldface, for instance). Experiment with various combinations of
characteristics until you find some combinations that you like.

The GTEXTMODE settings range from 8 to 11, as shown in
Table 10-3. The normal graphics text mode is 9, in which letters
are displayed in black and no changes are made to the background
of the letters. GTEXTMODE 8 erases the background before dis­
playing black letters. Text mode 10 is handy when you want to see
text on any color background, because it prints each letter in the
opposite color from the background. GTEXTMODE 11 displays
the letters in white, so it is useful only when you know the back­
ground is already black.

The program in Figure 10-2 demonstrates the basic differences
between the four GTEXTMODE settings. The GTEXTMODE set­
tings are very similar to the PENMODE settings that govern the
way the graphics pen draws designs. If you want to explore
GTEXTMODE in more detail, you might want to refer to the dis­
cussion of SET I ASK PENMODE in Chapter 16.

Clearing the Graphics Text Settings

• GTEXTNORMAL

GTEXTNORMAL provides a quick way to reset all four graphics
text characteristics to their original settings. It sets the text font to

Table 10-3. GTEXTMODE Settings

Setting Name Effect

8 Copy Black text with white around it
9 OR Black text without disturbing background

10 XOR Text color is opposite of background color
11 Clear White text without disturbing background

148 Using Macintosh BASIC

,,. s File Edit Search Fonts Program

TeHt of Show GTEHTMODE ~ Show GTEHTMODE

! Show GTEXTMODE effects
PAINT RECT I 00,0;200, 100
SET PENPOS 7,20
FOR mode = B TO 1 1
SET GTEXTMODE mode
GPRINT "This shows te xt mod
NEXT mode
END PROGRAM

This shows te
This shows te

B

·l rno1je 1 O
t rno1je 1 1

Figure 10-2. GTEXTMODE samples

•

the Application font (Geneva), size 12. It also resets the GTEXT­
FACE setting to 0 (plain text) and the GTEXTMODE setting to 9.
GTEXTNORMAL does not have any effect on PENPOS or any of
the other settings that directly affect the graphics pen. To reset
those settings, you can use the PENNORMAL command that is
described in Chapter 16.

6TEXTNORMAL ! Reset GPRINT font, size, face, and mode

PRINTING NUMBERS

• SET/ASK SHOWDIGITS

When you display a number with a PRINT or GPRINT state­
ment, Macintosh BASIC normally prints up to ten digits , with the
last digit rounded if necessary. The count includes digits both to
the left and to the right of the decimal point.

If a number is too large to display in ten digits, BASIC switches
to scientific notation, where it displays up to ten significant digits

Formauing Program Output 149

plus an exponent. The number ten billion (10,000,000,000) has a
total of eleven digits (a one and ten zeros). Because the number has
more than ten digits, BASIC displays it as lEIO.

You can change the number of significant digits BASIC displays
by using the SET SH.OWDIGITS command followed by a number
or numeric expression. You can set SHOWDIGITS as low as 1 and
as high as 19. BASIC sets SHOWDIGITS to ten at the beginning of
each program. You can find the current value of SHOWDIGITS
with the statement ASK SHOWDIGITS followed by the name of a
numeric variable.

SET SHOWDl81TS 5 I Set to show only 5 digits
ASK SHOWDl81TS digs ! eet SHOWDIGITS in digs
SET SHOWDl81TS digs+ 2 ! Show 2 more diglts

SPECIFYING FORMATS
•FORMAT$

FORMAT$ is a string function that is most frequently used in
PRINT and GPRINT statements to change the format of numbers
and strings before they are printed. You give FORMAT$ two
arguments:

• A format image or "picture" of the way you want the number or
string to look

• The number or string that is to be made to fit the format image.

In the statement

PRINT FORl1AT$("###.##"; num)

the string "###. ##" is a format image, and num is a variable whose
value is to be formatted and pdrited. Notice that the arguments to
the FORMAT$ function are separated by a semicolon, not a
comma.

The format image may be either a string literal or a string
expression. Every character in the format image represents the
location of a character in the output string. If the format image is
seven characters long, the output string will be seven characters

150 Using Macintosh BASIC

Table 10-4. Summary of FORMAT$ Characters

For numbers and strings
Placeholder for one character

For numbers
$ At beginning of image string, causes leading $ sign
+ At beginning of image string, causes leading + to be printed

Decimal point

/\

Used before decimal point (if any), inserts a , every three
positions
At end of image string, causes trailing minus signs
Holds place for digit of exponent in scientific notation

For strings
I Causes string to be centered in field
> Causes string to be right-justified in field

long. With FORMAT$, any necessary extra blank spaces are added
to the left end of the output string unless you specify otherwise.

The symbol# (SHIFT-3) is used to occupy a character position in
the format image without conveying any other special meaning.
Table 10-4 is a quick reference to the characters that have special
meaning when included in a format image. The next few pages
describe how to use these characters.

Formatting Numbers

The format image for a number starts with the # sign, a dollar
sign, or a plus sign. It should, of course, include enough positions
to allow the number, its sign, and any other characters specified in
your format to be displayed. If a decimal point is included in the
image, the number will be displayed with a decimal point in that
exact position. Formatting 123.4 with the image "###. ###" results
in the string "123.400".

FORMAT$ fills any extra positions to the left of the number
with blank spaces and any extra positions to the right of the
decimal point with zeros. If you use a dollar sign in the field's first

Formatting Program Output 151

position, a dollar sign will appear just before the beginning of the
number. If you use a plus sign in the first character position, a
plus sign will appear at the beginning of positive numbers
(minus signs, of course, are always printed). Using the image
"$#### • ##" when formatting 55.2 results in the string " $55.20."

FORMAT$ will insert commas at every third position to the left
of the decimal point if you put a comma in your format image.
The comma must be located after the first position of the image. If
your image includes a decimal point, the comma must be located
before the decimal point. A single comma in the format image will
cause insertion of several commas in a large number, so be sure
you allow enough character positions in the field for them. For­
matting 1343900 with the image "#,######. #" results in
"1,343,900.0".

You can get FORMAT$ to put minus signs at the end instead of
the beginning of negative numbers by using a minus sign in the
last position of your format image. Scientific notation, with an
exponent, is specified by using several /\ (SHIFT-6) symbols to mark
the location of the exponent in the field.

The number being formatted is rounded, if necessary, to the
number of decimal places your format specifies. If the number does
not fill the entire field, it is right-justified so your decimal points
will be lined up if you are printing a column of numbers. If the
number or its exponent do not fit in the number of character posi­
tions you specify, the entire field is filled with question marks.
Here are some more examples:

PRINT FORMATS("##.##"; 3) ! Prints3.00
BPRINT FORMATS("$#,##"; 1.888) ! Prints $1.89
PRINT FORMATS('+#,###.#'; 4567) ! Prints +4,567.0
&PRINT FORMATS('##.##AAM•; 9888) ! Prints9.89E+03
PRINT FORMATS("$##.##-"; -3.2) ! Prints $3.20-
PRINT FORMATS("##.#"; 478) ! Prints????

Formatting Strings

FORMAT$ gives you three choices for strings. They can start at the
left end of the format image field (left-justified), be centered, or be
all the way to the right with leading blanks (right-justified). If you

152 Using Macintosh BASIC

give no special instruction, FORMAT$ returns your string
left-justified.

To center the string in the field, include the symbol I in your
format. To type the I symbol, hold down the SHIFT key while you
press the key at the right edge of the keyboard just above the
RETURN key. To right-justify the string, include the symbol >
(SHIFT-.) in your format. If your string is too long to fit in the field
you specify, FORMAT$ drops the right end of the string without
issuing an error message.

PRINT FORMATS("##1#####"; "Test") I Centers 'Test."
&PRINT FORMATS('#>####'; "Test") ! Right-justified
PRINT FORMATS("###"; "Test string") ! Prints 'Tes'

Using the Same Format for Both Numbers and Strings

You can format strings with the same format images you use for
numbers. For example, you can use the same format image for a
column of numbers and the title above it. When the value to be
formatted is a string, FORMAT$ treats each special number­
formatting character ($, +, -, ", comma, or decimal point) as if it
were a# sign. When the value being formatted is a number, FOR­
MAT$ treats each special string-formatting symbol (I or>) as if it
were a # sign. If yoiir format includes a decimal point, the I or >
symbol must be in one of the positions to the left of the decimal
point.

0PRINT FORMAT$('$1# ##';"Test")
! Prints 'Test' centered in 6-character field

0PRINT FORMAT$('$!#.##'; 37) ! Prints '$37.00'

Using Multiple Format Fields

You can specify more than one field in the same format string, and
you can include as many numbers and strings after the semicolon
in a FORMAT$ call as you wish. The first item to be formatted is
matched with the first format field, and the second item is matched
with the second field. If there are more numbers and strings than
format fields, the function cycles through the existing format fields
until it runs out of numbers and strings to format.

Formatting Program Output 153

Each field in a format image starts with #, $, or +. A field ends
with a space or any other character that is not a format character.
Non-format characters are taken as literals and are included "as is"
in the string returned by FORMAT$. Formatting the number 12
with the image "T-##X" results in the string "T-12X".

A comma is only valid as a special formatting character when it
is to the left of the decimal point. If a comma is encountered to the
right of the decimal point, it is taken to be a literal, and it ends the
field. Plus signs and dollar signs are only used as the first character
of a format field, so a new field begins whenever one is encoun­
tered in your format image.

PRINT FORMATS(''##*"; 11,12,13) !Prints'11* 12* 13*'
PRINT FORMATS("##$#.##": 20.3,30.4)

! Prints '20 $3.00 30 $4.00 ·
PRINT FORMATS("ZIP #####"; 99999) ! Prints 'ZIP 99999'
PRINT FORMATS('$••,>•###'; "Amount", 1299. 95)

! Prints' Amount $1.299.95'

ERASING THE OUTPUT DOCUMENT

• CLEARWINDOW

The CLEAR WINDOW command erases the entire document in
the output window. No distinction is made between text and
graphics; everything is erased. If you want to erase only a part of
the document, you can use the ERASE command that is described
in Chapter 16. In addition to erasing the output document,
CLEARWINDOW resets HPOS to 1, VPOS to 1, and PENPOS to
0,0. Thus, CLEAR WINDOW resets the page so new text will start
at the top in addition to erasing the page.

CLEARWINDOW ! Erases window and resets

CHANGING THE WIDTH OF THE TAB FIELD

• SET/ASK TABWIDTH

When you use either a comma or the TAB key (CHR$(9)) in
a PRINT or GPRINT statement, the printed output resumes at
the beginning of the next tab field. When your program starts

154 Using Macintosh BASIC

running, those tab fields occur at every 100 pixels, beginning at the
left edge of the output window. You can change the width of the
tab fields by using the SET TABWIDTH command followed by
the number or numeric expression that gives the new width. For
example, SET TABWIDTH 50 sets the tab fields at every 50 pixels.
The command ASK TABWIDTH, followed by the name of a
numeric variable, sets the numeric variable to the current setting of
TAB WIDTH.

SET TABWIDTH 33 ! Sets tabs f!Very 33 p1xels
ASK TABWIDTH tabs! ! Puts TABWIDTH 1n tabs!

While your program is running, each line of text is displayed
according to the setting of TABWIDTH at that point in your pro­
gram. But if you use the scroll bars to look through the output
document, any text displayed with the PRINT command is refor­
matted to match the last setting of TABWIDTH. Text displayed
with the GPRINT command always stays where you put it and is
not rearranged later no matter how many times you change TAB­
WIDTH. The tab fields in your program's listing window are set
at every 20 pixels and are not affected by the TABWIDTH setting.

Printing on Paper

• DOCUMENT PRINT

The DOCUMENT PRINT statement copies the output window to
a piece of paper-assuming you have an Imagewriter or Laser­
Writer printer attached to your Macintosh. Everything displayed in
the output window appears on the printed copy, no matter whether
the information was put in the output window by a PRINT or
GPRINT command or by one of the graphics commands described
in Chapter 16.

Technically, DOCUMENT PRINT copies the entire document
behind the output window, not just the visible area, to the printer.
If you can see additional information by scrolling the output win­
dow, that information will be copied to the printer along with the
information displayed in the visible area of the window.

Formatting Program Output 155

PRINT "This is a test." ! Prints in output window
DOCUMENT PRINT ! Copies output document to printer

EXAMPLE PROGRAM

The example program in Figure 10-3 uses many of the commands
introduced in this chapter to demonstrate a procedure for centering
strings in the output window. The program takes a string typed
from the keyboard and uses it to construct a string "tree," with
each successive printed line containing one more character of the
string until the entire string is printed.Each of the strings is cen­
tered in the output window, giving the overall look of a tree com­
posed of the different-length strings. Figure 10-4 shows a sample of
the program's output using the input string "the string tree."

Figure 10-3. Print a string tree

156 Using Macintosh BASIC

'" s File Edit Search Fonts

TeKt of Figure I 0-3
! Print a string tree
LINE INPUT "Type a string:";
CLEARWINDOW
SET PENPOS 7, 12
FOR count = 1 TO LEN(stri ng$)

a$ = LEFTS(string$,count)
GOSUH Getlength
h = 120 - length/2
GPRINT AT h,v; a$
NEXT count

END PROGRAM
Getlength:

ASK PENPOS h, v
SET PENPOS 0,-30
GPRINT a$;

Figure I 0-3
t
th

the
the

the s
the st

the str
the stri

the st ri n
the string
the string
the st ring t
the string tr
the string tre

the string tree

Figure 10-4. String tree output

.,

•

First the program asks you to type a string from the keyboard. It
uses the LINE INPUT command so you can include a comma or
quotation mark in the string if you wish. Then the CLEARWIN­
DOW command erases the input prompt and the string you typed,
and the statement SET PENPOS 7, 12 sets the initial location for
GPRINT to the beginning of the first line of text in the output
window.

A FOR/ NEXT loop with the variable count as its index prints
the string "tree." The loop starts by setting the variable a$ equal to

the first character of the string you typed. Next the program does a
GOSUB to the subroutine GetLength, which puts the length of a$
in the variable named length. Each time through the loop, one
more character of the string is added to a$ until, in the final pass
through the loop, a$ contains the entire string.

Since the output window is 240 pixels wide, the center of the
window is at pixel 120. The program sets the variable h to the
va lue that wi ll cause a$ to be centered horizontally in the window,
120 minus half the length of a$. The GPRINT AT statement sets
the pen to ' the position just calcu lated and prints a$. The FOR/
NEXT loop is repeated until the program is finished.

Formatting Program Output 157

The key to this program is the subroutine GetLength, 'Yhich
obtains the length of the string a$. Because different characters are
not the same width in any type font except Monaco (and even in
Monaco the widths can vary depending on the type size chosen),
the width of the string cannot be calculated directly from the
number of characters in the string.

The method used is to print the string using GPRINT at an
invisible location and then check the pen location to see how long
the string is. SET PENPOS 0,-30 puts the pen above the output
window, and ASK PENPOS length,b gets the length of the string
after printing. The ASK PENPOS h, v statement at th~ start of the
subroutine saves the original pen location, and the SET PENPOS
h,v statement at the end restores the pen. Saving and restoring the
pen location ensures that the subroutine can be used safely from
any point in your program without causing any change in the loca­
tion of your printed output.

158 Using Macintosh BASIC

PRACTICE EXERCISES

l. What statement would you use with the PRINT command to
cause the next output to be at the beginning of line 3? What
statement would you use with the GPRINT command
(assume 12 point type)?

2. Can you write a routine to print the integers from I to 5 on a
single line spaced 20 pixels apart? Have your routine save and
restore the values of any system parameters that are changed.

3. Write a short program that prints "Hello" in 24 point Out­
line type in the New York font.

4. Can you specify a format that prints dollar amounts up to $10
million? The format should provide for insertion of commas
where they are appropriate and should also center any text if
it is used to print a string.


~~~cftofter11~~~­

Defining Your Own Functions 

Commands: 

• DEF, FUNCTION 

• EXIT FUNCTION, END FUNCTION 

In addition to the large variety of predefined functions described 
throughout this book, Macintosh BASIC has an extremely power­
ful capacity to handle user-defined functions. This is your chance 
to redefine the BASIC language to include all the special functions 
you always thought a language should have. With a little imagina­
tion, you can even use defined functions to create your own 
language. 

Macintosh BASIC provides a simple way to define functions in a 
single line and a slightly more complicated way to define functions 
as miniature programs using more than one line. Most of the rules 
about defined functions apply equally to both types. 

159 



160 Using Macintosh BASIC 

SINGLE-LINE FUNCTIONS 

• DEF 

Any formula that can be written in one line and that gives a single 
result can be defined as a single-line function. The d~finition of a 
single-line function begins with the keyword DEF followed by a 
space, the name of the function, an equal sign, and the formula 
that determines the value of the function. If the function takes 
arguments, variable names representing the data types of the 
arguments are listed in parentheses just after the function name. 
The names in parentheses are called parameters. The following 
function named Celsius takes one argument, represented by the 
parameter x: 

DEF Celsius(x) = (x-32) * 5 / 9 

You can use a defined function in your program by using its 
name in a program statement, just as you use the functions that are 
already a part of the BASIC language. If the function definition 
has parameters, you replace each parameter with the value you 
want the function to use. Each time you use the function in a 
program statement, BASIC executes your function definition and 
then returns to your program. In Figure 11-1, the main program 
calls the function Celsius with the variable degrees as the argu­
ment. When BASIC executes the function Celsius, it substitutes the 
value of the degrees in the formula for the parameter x. 

! Convert degrees Fahrenheit to Celsius 
DO 

INPUT "Degrees FahreRhe1t: ";degrees 
PRINT "That's"; Celsius( degrees); "Celsius." 

LOOP 
ENDPR08RAM 
DEF Celsius(x) = (x-32) * 5 / 9 

Figure 11-1. Convert degrees Fahrenheit to Celsius 



Defining Your Own Functions 161 

It doesn't matter where you put the function definitions in your 
program. If a function definition is encountered in the flow of 
program execution, BASIC jumps around the function definition 
and continues executing the next valid program statement. Func­
tion definitions are processed when the program is compiled and 
do not need to be executed to become operative. 

FUNCTION NAMES 

Function names are governed by the same rules as variable names, 
including the use of special characters at the end of the name to 
indicate the type of the function's value. The function Celsius, for 
example, returns a double-precision real value. If you want it to 
return a short integer value, you could add % to make its name 
Celsius%. You cannot use the identical name for both a variable 
and a function. For safety, you should not use the name of a func­
tion for either a simple variable or an array variable. 

When a function or variable name is encountered while execut­
ing your program, BASIC checks whether the name matches a 
function. If the name does match, BASIC executes the function. If 
there is a variable with the same name as the function, BASIC may 
execute the function when you want to access the variable, or it 
may store the function result in the variable. In either case, you 
will not get the correct result. 

PARAMETER PASSING 

A function receives information from the rest of your program 
through the parameters that are listed in parentheses after the func­
tion's name. Only one piece of information, the function result, is 
passed from the function back to the program that called it. 

When you are writing a function definition, you can use the 
value of any variable from the calling program, with the exception 
of variables with the same name as those appearing in the parame­
ter list. If you use variables that are not parameters, you should 
place a comment just after the function definition to remind your­
self that the function depends on variables that are not in the 
parameter list. One of the significant benefits of defining your own 



162 Using Macintosh BASIC 

functions is that you can use them in other programs. However, if 
your function uses variables that are not parameters, the function 
may not work in another program unless that program also sets 
the same variables. 

Defined functions in Macintosh BASIC can accept any number 
of parameters. You specify the data type of each parameter in the 
function's definition by using the appropriate last character for the 
parameter's name. You can, of course, define a function that uses 
no parameters. When you use a function in your program, you 
will receive an error message if you use an incorrect number of 
arguments or if any of the arguments is of a data type that is 
incompatible with the corresponding parameter in the function's 
definition. 

When BASIC executes a defined function, the values of all the 
arguments being passed to the function are copied. Any references 
to the parameters from inside the function are to these copies, not 
to the original variables in the main program. This ensures that no 
program statement inside the function can inadvertently affect the 
value of any variables outside the function. The copies are erased 
when execution returns to the main program. 

MULTIPLE-LINE FUNCTIONS 

• FUNCTION, END FUNCTION 

Single-line functions can do little more than compute a value and 
return. Multiple-line functions, however, can use all of the BASIC 
commands. If you redefined the Celsius function from Figure 11-1 
as a multiple-line function, it would look like this: 

FUNCTION Celsius(x) 
Celsius= (x-32) * 5 I 9 
END FUNCTION 

The definition of a multiple-line function begins with the key­
word FUNCTION, and the first line of the definition contains 
nothing else except for the function's name and parameters. The 
last line of a multiple-line function definition is the statement 
END FUNCTION. Between these two lines, you can use as many 
program statements as you wish. One of those statements must set 



Defining Your Own Functions 163 

the function's name equal to a value. If no statement gives a value 
to the function, a numeric function will return 0, a string function 
will return the null string, and a Boolean function will return 
false. 

Figure 11-2 shows a program that uses a multiple-line function. 
This function finds the maximum of two numbers. The name of 
the function, Max, does not end in a special character so the func­
tion returns a double-precision real number. 

The mechanics of the function definition are relatively simple. 
The function has two numeric parameters. An IF/THEN/ELSE/ 
ENDIF statement tests whether the first argument is larger than 
the second and sets the value of the function equal to the larger 
argument. Note that when you set the value of the function, you 
do not include any parentheses or parameters with the function 
name on the left of the equal sign. 

Multiple-line functions communicate with programs as single­
line functions do. Programs can pass information to the function 
through the parameters, and the only value passed back to the call­
ing program is the function result. The function has access to the 
calling program's variables, but not to any variable with the same 
name as one of the parameters in the function definition statement. 

! Find the maximum of two numbers 
DO 

INPUT "Please type a number: ";x 
INPUT "Please type another: "-:y 
PRINT "The maximum is"; Max(x,y) 

LOOP 
ENDPR08RAM 
FUNCTION Max(a,b) 
IF a> b THEN 

Max =a 
ELSE 

Max mb 
ENDIF 

END FUNCTION 

Figure 11-2. Find the maximum of two numbers 



164 Using Macintosh BASIC 

You can include any legal BASIC statement as part of a 
multiple-line function. If the statements in a function definition 
print, use sound, store a value in a variable, or write to a file, those 
actions will occur every time the function name is mentioned in 
the main program. 

Getting Out Early 

• EXIT FUNCTION 

Macintosh BASIC includes an EXIT FUNCTION statement. 
When executed, this statement causes an immediate exit back to the 
program that called the function. Be sure you set the value of the 
function before executing the EXIT FUNCTION statement. If you 
do not, the function will return the same value it returned the last 
time you called it. 

Like the EXIT DO and EXIT FOR statements, EXIT FUNC­
TION can be abbreviated as just EXIT. However, if you use the 
short form EXIT inside a DO loop or FOR/NEXT loop, it will 
cause an exit from only that loop instead of from the entire func­
tion. To eliminate a source of potential confusion and program 
errors, you should always use the long form, EXIT FUNCTION. 
Here is an example of an early exit from a function that calculates 
the number of hours remaining until midnight: 

FUNCTION time. left( hour .l 
time. left = 0 
If hour) 24 THEN EXIT FUNCTION 
time. left -= 24 - hour 
END FUNCTION 

Using Variables in Functions 

You can use LET statements and implied LET statements to 
assign values to variables inside multiple-line functions. However, 
you should be careful. The variables that receive values in the 
function affect your main program unless they are listed as 
parameters in your function definition statement. Parameters are 



Defining Your Own Functions 165 

local to the function; all other variables are global, that is, they 
affect other parts of your program. 

If your main program uses a variable named x and a function 
stores a value in x, the next time the main program uses x it will 
be using the value stored by the function. To minimize the likeli­
hood that programs could have variable names identical to those 
used by a function, the names of variables used in the functions in 
this book will all start with the letter "z." 

Do not make the mistake of using the function name as if it were 
a variable name. It is not. Even though you store a value in the 
function name (just as you do into a variable name), you should 
not try to read that value while still in the function. If you need to 
save a value, use a parameter or variable name. 

Writing a Recursive Function 

A recursive function is a function that calls itself. Sometimes this is 
the most concise or clear way to define a particular function. For 
instance, the factorial of a number is defined in mathematics as the 
number multiplied by all integers smaller than itself down to l. 
The factorial of the number N is N times the factorial of (N-1). 
The factorial of three can be expressed as 

This is the kind of relationship that you can easily define with a 
recursive function. Figure 11-3 shows a program that uses a factor­
ial function that is defined recursively. The function and its 
parameter are declared as extended-precision because factorials can 
be very large numbers. 

Note that the definition of a recursive function always contains 
actions to be taken in two cases: the recursive case, which is usual­
ly executed, and the non-recursive case, which is executed when the 
function reaches its simplest value. If the ending case is not 
included in its definition, a recursive function will keep calling 
itself and never return to the program that called it. The function 



166 Using Macintosh BASIC 

INPUT a 
PRINT factorial\( a) 
END PR08RAl'1 
FUNCTION fectorial\( x\) 
IF x\) t THEN factorial\= x\ * factorial\(x\- t) 
IF x\ < 2 THEN factorial\= x\ 
END FUNCTION 

Figure 11-3. Factorial function defined recursively 

will keep calling itself until it uses all of the computer's available 
memory or until you grow tired of waiting and stop the program. 

Recursive functions provide an excellent way to learn about the 
concept of recursion and can provide a reasonably neat and under­
standable way to define some functions. }-Iowever, recursive func­
tions often require more memory and execution time than simpler 
functions. 

In order to be recursive, a function must allocate space for copies 
of its parameters each time it is called. If the function is called a 
hundred times, as the function in the factorial example in Figure 
11-3 would be if you typed "101" in response to the prompt, the 
recursive function calls would use enough space in the computer's 
memory for 100 copies of the function's parameters. A function 
that calls itself hundreds of times can fill up the available memory 
in a hurry. 

In addition to causing an Out of Memory condition if the recur­
sive function calls itself too many times, the copying of the func­
tion's parameters and the overhead involved in repetitively entering 
and exiting the function take time. The program in Figure 11-4 
uses a FOR/NEXT loop instead of a recursive statement to define a 
factorial function. It uses extended precision, just like the program 
in Figure 11-3. The recursive function in Figure 11-3 takes well 
over five seconds to calculate and print the factorial of 400, while 
the non-recursive function in Figure 11-4 takes less than one 
second to print the same value. 



INPUT a 
PRINT factorial\( a) 
ENDPROBRAM 
FUNCTION factorial\(x\) 
y\ = x\ 

Defining Your Own Functions 167 

FOR zinclex = x\-1 TO 1 STEP - I 
y\ = y\ * zinclex 
NEXT zinclex 
f~torial\ = y\ 
END FUNCTION 

Figure 11-4. Factorial function defined with FOR/NEXT loop 

SOME EXAMPLE FUNCTIONS 

The rest of this chapter provides a series of example functions that 
you can use in your own programs. You can keep these and other 
functions you write in a special program file on your disk. When 
you need one of the functions in a program you are writing, you 
can copy it from that "function library" file and paste it into your 
program. Let the functions defined here spark your imagination. 
You can w'rite a defined function for almost any formula or series 
of actions you may need in your programs. 

String Functions 

You often need to search for one string inside another. Instead of 
writing code to do each individual search, you can use the function 
InStr, shown in Figure 11-5. This function is similar to the string 
search function found in several other versions of BASIC. 

The first parameter, startpos%, is an integer that indicates the 
character position in the longer string where you will start search­
ing. A value of l for startpos% will tell the function to search the 
entire string. The second parameter is the string to be searched, 



168 Using Macintosh BASIC 

FUNCTION lnStr(startpos!I: ,string$,1ookfor$) 
lnStr =O 
IF LEN( 1ookfor$) < I THEN lnStr = startposl! 
FOR zposn = startposlf> TO LEN( string$)+ I -LEN( look for$) 

IF look for$ = MIDS (string$ ,zposn ,LEN( look for$)) THEN 
Instr = zposn 
EXIT FUNCTION 

ENDIF 
NEXT zposn 
END FUNCTION 

Figure 11-5. String search function 

and the third parameter is the string you want to find. The func­
tion returns the character position at which the string being 
sought begins, or zero if that string was not found. The function 
call InStr(l,"test.please'',".") returns 5, the character position of 
the period in the string "test. please." 

Another common function is one that generates a string of iden­
tical characters such as spaces or asterisks. The function String$ in 
Figure 11-6 is a function that fulfills this need. Its arguments are 
the length of the string you want and the character it is to contain. 
The call String$(5,' ') returns a string containing five spaces. 

FUNCTION String$( length!I: ,t:har$) 
zc$ =LEFTS( char$, I) ! Make sure only one character 
zstr$ = "" ! Start with empty string 
IF lengthlK > 0 THEN 

FOR zcounter = 1 TO length!I: 
zstr$ = zstr$ & zc$ 

NEXT zcounter 
ENDIF 
String$ = zstr$ 
END FUNCTION 

Figure 11-6. String$ function 



Defining Your Own Functions 169 

DEF area.circle{ radius) = P l*radius*radius 
DEF circumference( radius) = 2*Pl*rad1us 
DEF area.tr1angle(w1ctth.height) = w1clth*he1ght/2 

Figure 11-7. Three numeric functions 

Numeric Functions 

Many short formulas are easily converted into functions. Using the 
function name instead of a formula in the main program makes 
the logic of the program easier to follow. Figure 11-7 shows three 

! Conversion from degrees to radians 
DEF rad1ans(degrees) = (Pl/180)*degrees 

! Normal tripometric funct1ons 
DEF secent(x) = 1/COS(x) 
DEF cosecanJ( x) = 1 /SIN( x) 
DEF~t(x) = 1flAN(x) 
DEF arCS1!1( x) = ATN( x/SQR( 1-x*x)) 
DEF arcQ,s(x) = 1.5708-ATN(x/SQR( 1-x*x)} 
DEF arcSecant( x) = ATN( x/SQR( x*x-1)) +S8N( S8N( x)-1 )* 1.5708 
DEF arcCoseaint(x) = ATN(x/SQR(x*x-1 )}+(SON(x)-1)*1.5708 
DEF arc:Qrtangent(x) = ATN(x)+ 1.5708 

! Hyperbolic functions 
DEF sinh(x) = (EXP(x)-EXP(-x))/2 
DEF cosh(x) = (EXP(x)+EXPC-x))/2 
DEF tenh(x) = EXP(x)/(EXP(x)+EXP(-x))*2+ 1 
DEF secenth(x) = 2/(EXP(x)+EXP(-x)) 
DEF cosecanth( x) = 2/( EXP( x)-EXP( -x)) 
DEF cotengenth(x) = EXP(x)/(EXP(x)-EXP(-x))*2+ 1 
DEF arCS1nh(x) = LOB(x+SQR(x*x+ 1)} 
DEF arcCosh(x) = LOB(x+SQR(x*x-1)} 
DEF arcTanh(x) =LOB(( 1 +x)/( t-x))/2 
DEF arcSecanth(x) = LOB((SQR( 1-x*x)+ 1 )/x) 
DEF arcCosecanth(x) = LOB( ( S8N( x )*SQR( x*x+ 1 ) + 1 ) /x) 
DEF arcCotangenth(x) = LOB((x+ 1 )/(x-1 ))/2 

Figure 11-8. Useful trigonometric functions 



170 Using Macintosh BASIC 

FUNCTION LeapYear-(year) 
IF year MOD 4 = 0 THEN 

Leapvear- = TRUE 
ELSE 

LeapYear- = FALSE 
ENDIF 
END FUNCTION 

Figure 11-9. Leapyear- function 

functions that return the area and circumference of a circle and the 
area of a triangle. 

The only trigonometric functions built into the BASIC language 
are sine, cosine, tangent, and arctangent. All of the other trigono­
metric functions can be defined from these four functions and 
other predefined BASIC functions. Figure 11-8 gives definitions for 
these additional trigonometric functions. 

Boolean Functions 

When your program needs to take different actions depending on 
the result of some test, a Boolean function is of ten appropriate. For 
example, your main program would be much easier to understand 
if a test read IF Leap Year-(1983) than if it read IF 1983 MOD 4 = 
0. The function LeapYear- as defined in Figure 11-9 makes the 
first phrasing possible. 



Defining Your Own Functions 171 

PRACTICE EXERCISES 

I. Figure 11-1 defines a function that converts the temperature 
from degrees Fahrenheit to degrees Celsius. Can you define a 
function that converts from degrees Celsius to degrees 
Fahrenheit? 

2. Figure 11-2 defines a function that returns the maximum of 
two numbers. Can you write an integer function that returns 
the smaller of two integers? 

3. Write a string function that has one string parameter and 
replaces all periods in the string with commas. 

4. Can you write a recursive function that takes one integer 
argument and returns a string of asterisks the length specified 
by the argument? 



---?ltafW.12--­

Using Files 

Statements: 

• OPEN #, CREATE # 

• INPUT #, LINE INPU'f #, PRINT # 

• READ #, WRITE #, REWRITE # 

• SET/ASK CURPOS #, SET/ASK HPOS # 

• SET/ASK EOF # 

• CLOSE #, CLOSE 

Functions: 

• TYP ( # ), ATEOF (#) 

Positions: 

• BEGIN, END, RECORD, SAME, NEXT 

Contingencies: 

• IF MISSING-, IF THERE-, IF EOR-, IF EOF-

This chapter describes the BASIC statements that your program 
uses to store data in disk files. Before you start to use the com­
mands presented in this or the next chapter, be sure to copy all of 

173 



174 Using Macintosh BASIC 

your important files to a backup disk. Never put a disk with your 
only copy of an important file into the disk drive while you are 
experimenting with commands that write on disks. 

WHAT IS A FILE? 

A file is a collection of information arranged in a preestablished 
format. Files usually reside on a disk or some other device outside 
your machine. The name of each file is stored in a directory on the 
disk and is displayed under the file's icon in the directory window 
when you are in the Finder. 

The data in some files is sµbdivided into smaller units called 
records. If records are divided into even smaller units, those units 
are called fields. 

Organization of a File 

Macintosh BASIC allows you to organize each file in one of three 
ways: as a series of data that is ordered from beginning to end 
(sequential), as a sequence of numbered records (random-access), or 
as a continuous stream of q;ita (stream). This chapter describes 
sequential and random-access files, which are used to store data. 
Stream files are most often used to communicate with another 
computer or an external device like a modem or printer. They are 
discussed in the next chapter. 

A sequential file, sometimes called a serial file, contains infor­
mation stored one byte after another. It is the most common type 
of file because its structure is simple. A sequential file structure 
contains no gaps in the middle of the stored information, so it is 
relatively compact. Figure 12-1 shows the organization of fields 
and records in a typical sequential file. 

Macintosh BASIC assumes that a file is organized as a sequential 
file unless you tell it otherwise. You should use sequential file 
organization whenever you plan to read the information in the 
same order in which you wrote the information to the file. 

A random-access (RECSIZE) file is a sequence of fixed-length, 
numbered records. It is called a random-acce~s or relative file 
because you can get to any record directly by using its index 



Using Files 175 

1 <--Record -->I <------Record ------>I <---Record ---> I 

I I I I I I I I I I 
Fields i 1 1 1 1 1 1 1 t 

Figure 12-1. Fields and records in a sequential file 

number. You declare the size of the fixed-length records when you 
open the file. The length of the file on disk is always the fixed 
length times the number of records in the file, even if all the 
records are empty. Figure 12-2 shows the organization of records 
and fields in a typical random-access file. 

Random-access files are less compact than sequential files. When 
you write information to a record, Macintosh BASIC always writes 
the full length of the record, padding it with ASCII 0 characters if 
necessary. In addition, if you write a record with an index number 
past the end of the file, Macintosh BASIC creates empty records to 
fill the gaps in the file. For example, if the last record in your file 
is record 3 and you write record 50, Macintosh BASIC creates 
empty records for records 4 through 49. Random-access files are 
appropriate when you need instant access to information in any 
part of your file. 

Macintosh BASIC uses a file pointer to keep its place in each 
sequential or random-access file. The pointer tells BASIC where in 
the file the next read or write operation is to take place. Macintosh 
BASIC updates the pointer after each operation; it also provides 

1<------Record1------> 1 <------Record 2------> I 

I I I I I I 1_-
1 Field 11 Field 2 1Field 3 1 Field 11 Field 2 1Field 31 

Figure 12-2. Fields and records in a RECSIZE file 



176 Using Macintosh BASIC 

133 32 37 36 37 OD I 
'3' '2' '7' '6' 'T 'RETURN' 

Figure 12-3. TEXT data format 

commands that let you change the pointer if you want to move to a 
different place in the file for your next operation. 

Types of Data in Files 

Files differ from each other in the type qf data they hold. The two 
major types of file data are text (TEXT) and binary (BINY). 
Macintosh BASIC assumes you want a file to hold text data unless 
you tell it otherwise. Figure 12-3 shows a short text file that con­
tains the integer 32767. 

Text data in a file is made up of any series of characters. Each 
character is stored in the file as an ASCII code, so each character 
takes one byte of storage space. A text file may be subdivided into 
records and fields. Records are separated from each other by car­
riage return characters, ASCII 13. Fields within records are separ­
ated from each other by commas or Tab characters, ASCII 9. When 
calculating the length of a file or record, you need to remember 
that the Tab and carriage return characters occupy a byte each time 
they occur. 

Binary (BINY) data is a series of bytes. When BASIC writes to a 
binary file, data from the Macintosh's internal memory is copied to 
the file without any field or record markers. You are responsible 
for keeping track of the types of the variables from which the 
information comes. You can read information from the file into 
any type of variable, but it won't make any sense unless you read it 
into the same type of variable from which it came. 

Figure 12-4 shows a short binary file that contains the integer 
32767. Binary data is usually more compact than text data, so it 



Using Files 177 

2-byte binary representation of 32767 

Figure 12-4. BINY data format 

usually takes less time to read or write a binary file than a text file 
with the same amount of information. When you write a variable 
to a binary file, BASIC copies the variable exactly as it is stored in 
memory. In text format, the number 32767 occupies five bytes, one 
for each character, as shown in Figure 12-3. In binary format, the 
same number occupies only two bytes if it is stored in an integer 
variable. You can use a binary file whenever you have information 
of a fixed length that you want to store in a compact fashion. 

A DATA type file is a special kind of binary file with a one-byte 
code before each item. The code is called a type tag, and its value 
identifies the type of variable for the next item in the file. Except 
for the fact that you can examine the type tag to learn what type of 
value is stored next, you handle DATA files just like BINY files. 
You can use a DATA type file any time you can use a BINY file. 
Figure 12-5 shows a DATA file that contains the integer 32767. 

Type 1 2-byte bi nary representation of 3276 7 
tag 

Figure 12-5. DATA data format 



178 Using Macintosh BASIC 

CREATING A FILE 

Macintosh BASIC lets you create a file or using an existing file. In 
order for you to be able to write or read information to and from 
the file, the file must be open. Opening a file is analogous to open­
ing the drawer of a file cabinet and pulling out a folder. In this 
section you will see how to create a file and open it for use by your 
program. 

Communications Channels 

When you open or create a file, Macintosh BASIC establishes a 
communications channel between your program and the file. Each 
communications channel has a number, which you assign when 
you open the channel. You use the channel number to identify the 
file in every program statement that gets information from the file 
or sends information to it. 

You can have as many as seven channels to different files open at 
the same time. You give each channel a number from 1 to 32767. 
Channel 0 is reserved for input from the Macintosh keyboard and 
output to your program's output window. It is always open and 
does not count as one of your seven channels. 

File Names 

File names can be 63 characters long. You can use any printable 
character except the colon (:) in the name of a file. When looking 
for a file name, Macintosh BASIC ignores any differences between 
upper- and lowercase letters. 

Files are organized into groupings called volumes. Each diskette 
contains one volume. The volume's name is the title that appears 
under the diskette's icon on the desktop. The files on larger storage 
devices, such as hard disks, may be divided among several volumes. 
A volume name can be 27 characters long and can contain any 
printable character except the colon. You can include the name of 
the disk volume on which the file is located as the first part of a 
file name if you wish. If you do include the volume name, use a 
colon to separate the volume name from the file name. 



Here are some example file names: 

Opening a File 
• OPEN #, CREATE # 

the File 
Volume 1 :theFile 
master file 

Using Files 179 

The OPEN# and CREATE# commands open files. OPEN# opens a 
file that already exists, and CREATE# opens a new file. The two 
commands use the same syntax: 

OPEN #channel : "filename" ! Opens existing file 
CREATE '*channel: "filename" ! Opens new file 

Follow the word OPEN or CREATE with a space, the # sign, 
and a channel number. The channel number can be a number, a 
numeric variable, or a more complicated numeric expression. You 
use a colon after the channel number and then supply the file's 
name. The file name can be a string literal or a string expression. 

The OPEN# and CREATE# statements establish a communica­
tions channel to a file and set the characteristics of both the chan­
nel and the file. After the file name you may include optional key­
words to set the file's organization, the type of data, and the 
direction of information flow in the channel. Each optional key­
word that you use is preceded by a comma. You can use optional 
keywords in any order. 

The optional keywords for the file's organization are SEQUEN­
TIAL, RECSIZE, and STREAM, which correspond to the three 
ways of organizing a file that were discussed earlier in this chapter. 
(Stream files are discussed in the next chapter.) When you specify a 
random-access file, you declare the size of the fixed-length records 
by putting the length just after the keyword RECSIZE. The 
optional keywords for type of data are TEXT, BINY, and DATA, 
which correspond to the types of data described earlier in this 
chapter. If you do not specify the type of data, Macintosh BASIC 
opens the file as a sequential file holding text data. 



180 Using Macintosh BASIC 

OPEN # 1: "theFiJe", SEQUENTIAL, TEXT 
OPEN #33: "old file", RECSIZE 40, BINY 
CREATE 411'9: "new ftle" ! Assumes sequential text 
OPEN '*'8: "reading file" ! Assumes input sequential text 

The direction of information flow in each communications 
channel is set when you open the channel. You can set the channel 
to allow your program to read or to both read and write. The key­
word INPUT sets the channel to read only. The keywords OUTIN 
and APPEND set the channel to handle information flow in both 
directions. If you do not use an access keyword, Macintosh BASIC 
opens the file with access INPUT. 

The access keywords also determine the initial setting of the file 
pointer that BASIC uses to keep its place in each file. INPUT and 
OUTIN set the file pointer to the beginning of the file. APPEND 
sets the file pointer to the end of the file, which is where you want 
it if you are going to add more information to an existing sequen­
tial file. 

OPEN # 1: "theFile", SEQUENTIAL, TEXT, APPEND 
OPEN #33: "old file", RECSIZE 40, BINY, OUTIN 
CREATE •9: "new file", APPEND ! Assumes sequent1al text 
OPEN '*'8: "reeding file" ! Assumes input sequenUal text 

READING AND WRITING FILES 

Macintosh BASIC provides two sets of commands that transfer 
information between a file and your program. You use INPUT#, 
LINE INPUT#, and PRINT# with text data (of type TEXT). You 
use READ#, WRITE#, and REWRITE# with binary data (either 
BINY or DATA type). 

Reading Information From a Text File 

• INPUT #, LINE INPUT # 

INPUT# works like the INPUT command that handles the text 
you type on the keyboard. After the word INPUT, a space, and the 
# sign you supply the channel number that you assigned to the file 



Using Files 181 

in the OPEN# statement, followed by a colon and then the name of 
the variable that is to receive a value. You can list more than one 
variable in a single INPUT# statement if you separate the variable 
names by commas. 

INPUT #8: item 1 
INPUT #8: item 1, item2, item3$ 

As with the regular INPUT statement, the types of variables you 
list must match the data being input or BASIC will generate an 
error message. The INPUT# statement fills one variable from each 
field in the file. Fields end with commas, Tab characters, or Return 
characters. 

As it fills each variable, Macintosh BASIC advances the file 
pointer to the beginning of the next field in the file. When it has 
filled all the variables listed in an INPUT# statement, Macintosh 
BASIC checks whether the file pointer is at the beginning of a 
record. If the pointer is not already at the beginning of a record, 
Macintosh BASIC moves the file pointer to the beginning of the 
next record in the file unless the input list ends with a comma. (If 
the list ends with a comma, Macintosh BASIC leaves the file point­
er in its current position.) If an INPUT# statement tries to read 
values past the end of a record or past the end of a file, Macintosh 
BASIC generates an error message. 

LINE INPUT# is very similar to INPUT#. After the# sign you 
supply the channel number you assigned to the file in the OPEN# 
statement, followed by a colon and then the name of the variable 
that is to receive a value. The LINE INPUT# statement can con­
tain only one variable name. Each LINE INPUT# statement reads 
an entire record, including any commas and Tab characters it may 
contain. 

LINE INPUT #8: line1 $ 

Putting Information in a Text File 

• PRINT# 

To add information to a text file, use the keyword PRINT followed 
by a space, the# sign, the file's channel number, and a colon. The 
rest of the PRINT# statement is the same as the PRINT statement 



182 Using Macintosh BASIC 

that displays information in your program's output window. In 
fact, the PRINT statement is just a PRINT# statement that always 
sends its information to channel 0. 

PRINT # 1: item 1 
PRINT# 1: item 1,item2,item3$ 
PRINT #1: "lnputseesthis";"asonestrtng:· 

In the standard PRINT statement, you use a comma to move 
across the screen to the next tab setting. When the PRINT# state­
ment encounters a comma, a Tab character (ASCII 9) is stored in 
the file and becomes a field separator. The field separator is used 
by subsequent INPUT# statements to separate the items being read 
from the file. Just as an extra comma in a PRINT statement skips 
an extra tab field in the output window, an extra comma in a 
PRINT# statement creates an extra empty field in the file. 

You use semicolons to separate items in a PRINT statement list. 
Just as a semicolon in a regular PRINT statement does not write 
any characters to the output window, a semicolon in a PRINT# 
statement does not send any characters to the file. Thus, if you 
print two items separated by semicolons, there will be nothing in 
the file to separate them. A subsequent INPUT# statement will 
attempt to read these two items as a single item. 

If you end a PRINT# statement with a comma or a semicolon, 
the current record will remain open, and the next PRINT# state­
ment will add to the same record. If the PRINT# statement does 
not end with a comma or semicolon, Macintosh BASIC sends a 
carriage return character to end the record. If your file was opened 
as a RECSIZE file, BASIC generates an error message if a PRINT# 
statement tries to output more text than will fit in a single fixed­
length record. 

When you send information to a file that already contains 
information, you need to be aware of the location of the file 
pointer. When you open a file with access OUTIN, the file pointer 
is at the beginning of the file. If you print text without moving the 
file pointer from the beginning of the file, you will overwrite the 
existing information. It is much safer to open the file with access 
APPEND, which puts the pointer at the end of the file where it is 
safe to add information. 



Reading and Writing Binary Information 

• READ #, WRITE #, REWRITE # 

Using Files 183 

READ# is used instead of INPUT# to read binary information. 
WRITE# and REWRITE# are used instead of PRINT# to write 
binary information. You can use WRITE# to send BINY or DATA 
information to a sequential file or to write a new random-access 
record. You use REWRITE# to write to a previously written 
random-access record. If you have several values to read or write, 
you separate the items iff the value list with commas. The number 
of bytes taken from or sent to the file matches the number of bytes 
occupied by the type of variable used. 

READ •33: item 1 I Reads 8 bytes (double precision) 
READ •33: item 1 I ,item21 ! Writes 4 bytes C 2 for each integer) 
WRITE •33: item 1\,1tem2:t: ! Writes 12 bytes ( 1 o extended, 2 integer) 
REWRITE *"33: item 1 ! Writes 8 bytes (double precision) 

When you are working with a random-access file, you must use 
WRITE# only for new records and REWRITE# to replace the 
information in existing records. WRITE# gives an error if you try 
to use it on an existing record, and REWRITE# gives an error if 
the record is not already there. Macintosh BASIC makes this dis­
tinction to protect you from inadvertently overwriting existing 
information. Each WRITE# or RE.WRITE# statement in your 
program writes a separate record to the file unless you end the 
statement with a comma. When you end your WRITE# or 
REWRITE# statement with a comma, you keep the current record 
open, and the next WRITE# or REWRITE# statement will add to 
the same record. 

DATA Type Binary Files 

• TYP(#) 

The DATA type file contains binary data with a special one-byte 
type tag before each value to indicate the type of variable from 
which it came. If you use the DATA format in a random-access file, 
remember to allow an extra byte for each value's type tag. The 



184 Using Macintosh BASIC 

Table 12-1. DATA File Type Tags 

Type Tag Type of Data Symbol Number of Bytes 

0 Integer % 2 

2 String $ length+2 
4 Extended-precision real \ 10 

5 Single-precision real I 4 

6 Double-precision real (none) 8 

7 Computational # 8 
(long integer) 

12 Boolean 
13 Character © 

possible values for type tags and the corresponding variable types 
are listed in Table 12-1. Each record in a DATA type file ends with 
an ASCII 0. 

You can use a DATA file in the same way you use a BINY file. 
Use the READ# command to read data from the file and the 
WRITE# and REWRITE# commands to write data to the file. The 
only difference is that with a DATA file Macintosh BASIC checks 
the type tags against the variable names when reading data and 
generates a type mismatch error if the types do not match. You can 
use this type checking to help find subtle programming errors. 

DATA type files can also be used in a more sophisticated way to 
allow different types of data to be mixed together in the same file 
without a predefined ordering. You could store each different type 
of data in a different type of variable. When you write to the file, 
each type of data would have its own unique type tag. 

When you read data from such a file, you need to look at the 
type tag before reading each item to find out which kind of data it 
contains. You use the TYP function to do this. TYP is followed by 
parentheses containing the # sign and the channel number. It 
returns the type tag number for the next value in the file. The TYP 
function returns a value of -1 if the file pointer is not pointing to 
a type tag (this happens at the end of a random-access record or at 
the end of the file). You can use an IF or CASE statement to check 



Using Files 185 

the type tag and read the value into a variable of the appropriate 
type. 

IF TYP( #33) = -1 THEN PRINT "Out of data" 
IF TYP( #33) = 12 THEN READ #33: Boolean­
SELECT CASE TYP( •33) 

CASE 0: READ *33: integers 
CASE 2: READ *33: string$ 

END SELECT 

CHANGING POSITION IN A FILE 

You can change the position of the file pointer at the beginning of 
any of the input or output statements. As an example, the format 
of an INPUT# statement that positions the file pointer looks like 

INPUT #1, position : variable$ 

where position is one of the positioning keywords described in the 
following sections. Macintosh BASIC repositions the file pointer 
before it executes the input or output command. You can move the 
file pointer in any sequential or random-access file. 

Moving to the Beginning or End 

• BEGIN, END 

BEGIN and END can be used with any command that sends or 
receives information through a channel. BEGIN moves the file 
pointer to the beginning of a file, and END moves the pointer to 
the end of a file. BASIC moves the file pointer as specified before it 
executes the rest of the program statement. 

INPUT #8, BEGIN: item 1 
PRINT* 1, END: ltem 1, item2 

BEGIN is most commonly used in INPUT#, LINE INPUT#, or 
READ# statements to reread a file from the beginning. END is 
most commonly used in PRINT# or WRITE# statements to add to 
a file after reading part of its contents. 



186 Using Macintosh BASIC 

Choosing a Record in a Random-Access File 

• RECORD 

RECORD is used only with random-access (RECSIZE) files. You 
use it in file-handling statements the same way you use BEGIN 
and END. RECORD, followed by the index number of a record, 
positions the file pointer to the beginning of that record. Calculat­
ing a record number and using it with RECORD is the normal 
way to find a record in a random-access file. 

READ #33, RECORD 17: item 1 
REWRITE #33. RECORD 17: item3 

Choosing a Specific Record 

• SAME, NEXT, SET/ASK CURPOS # 

SAME moves the file pointer back to the start of the most recently 
referenced record. If the file pointer is not already at the beginning 
of a record, NEXT moves it to the beginning of the next record. 
NEXT does not move the file pointer if it is already at the begin­
ning of a record. You use SAME and NEXT in file-handling 
statements the same way you use BEGIN and END. 

READ #33, SAHE: item 1,item2 
REWRITE #33, SAME: item 1,item3 
READ •33, NEXT: item 1 

You can find out the present location of the file pointer by using 
the ASK CURPOS followed by a space, the# sign, the file's chan­
nel number, a comma, and a numeric variable name. The SET 
CURPOS# command provides an alternative way to move the file 
pointer. Both of these commands are used in separate program 
statements, not in the file-handling statement. CURPOS is short 
for CURrent POSition. CURPOS for a random-access file is the 
index number of the current record; for a sequential file, it is the 
byte position in the file, with the first byte located at position 0. 
You can use SET CURPOS# only if the file's channel is set for 
access OUTIN or APPEND. 

ASK CURPOS #33, variable 
SET CURPOS # 1 • byte 



Locating Data Within a Record 

• SET/ASK HPOS # 

Using Files 187 

HPOS# is the character position within a file record. The first 
character in a record is in position 0. SET HPOS# is only useful 
when you have fields of known length inside the records of a 
random-access file and you want to access a field without reading 
all the fields that precede it. Follow SET HPOS with a space, the # 
sign, the channel number, a comma, and the number of the char­
acter position you want to set. You can use SET HPOS# only if the 
file's channel is set to allow output (access OUTIN or APPEND). 
ASK HPOS is followed by a space, the # sign, the file's channel 
number, a comma, and the name of the numeric variable in which 
you want Macintosh BASIC to store the HPOS value. 

ASIC. HPOS •33, byte 
SET HPOS # 1 • byte 

Length of the File 

• SET/ASK EOF # 

You can use EOF# to obtain or set the length of a file. The Key­
word EOF is followed by a space, the # sign, and the number of an 
open channel. With ASK EOF#, you follow the channel number 
with a comma and a numeric variable name. With SET EOF, you 
follow the channel number with a comma and a numeric expres­
sion for the new file length. When you want to change the length 
of a file, you will first need to use ASK EOF# to get the current 
length of the file and then use SET EOF# to set the new length. 

ASIC. EOF •33, records 
SET EOF •33. records-1 ! Cuts off last record 

The length of a sequential file is the number of characters or 
bytes in the file. The length of a random-access file is the number 
of records in the file. If you use a number smaller than the current 
file length with SET EOF#, you will truncate the file and lose all 
the information after the new file ending. If you use a higher 
number, you lengthen the file. You can only use SET EOF# if the 
channel to the file was opened with access OUTIN or APPEND. 



188 Using Macintosh BASIC 

CHECKING FOR SPECIAL CONDITIONS 

You can specify an action for Macintosh BASIC to take if certain 
special conditions, called contingencies, arise during file opera­
tions. This allows your program to retain control instead of having 
BASIC generate an error message and stop the program. 

To specify a contingent action in a file-handling statement, 
insert a comma, the test for the contingency, and the statement to 
be executed if the test is true just before the colon. The format of 
the contingency test in READ# and WRITE# statements looks like 
this: 

READ #1, IF contingency THEN statement: income$ 
WRITE #3, position, IF contingency THEN statement: outgo$ 

The statement to be executed if the condition is true must be a 
single Macintosh BASIC statement. The only colon in the pro­
gram line should be the colon before the beginning of the values 
list. 

If you are setting the file pointer and testing for a contingency, 
the contingency should be second, since that is the order in which 
they are executed. Macintosh BASIC first executes any positioning 
keyword, then checks the contingency, and finally performs the 
input or output operation. If you have more than one value or 
variable listed after the colon, BASIC checks the contingency 
before each individual input or output operation. If the contin­
gency test is true, BASIC executes your contingency statement, 
skips the rest of the input/output statement, and continues with 
the next program statement. None of the contingencies are used 
with PRINT#. 

Conditions Related to Records 
• IF MISSING-, IF THERE-

IF MISSING- and IF THERE- are contingencies that test 
whether a value is present in the field or record pointed to by the 
file pointer. You use IF MISSING- with INPUT#, LINE INPUT#, 
READ#, and REWRITE# to check whether the field or record 
required by the file statement is missing. You use IF THERE-



Using Files 189 

with WRITE# to prevent WRITE# from overwriting existing data. 
These two tests cannot be used with a BINY sequential file because 
that kind of file does not contain identifiable fields or records. 

READ #33, IF MISSINO-THEN PRINT "Help!": item 
WRITE #33, IF THERE-THEN CALL DoRewritelnsteacl: item 
! Read a whole text file 
DIM item$(size) 
DO 

INPUT# 1, IF MISSIN8-THEN EXIT DO: item$( i) 
i = i + 1 

LOOP 

Checking for End of Record 

• IF EOR-

IF EOR- tests whether the file pointer is located at the end of a 
record. You can use it with INPUT# or READ#. You cannot use IF 
EOR- with LINE INPUT#. LINE INPUT# always reads an entire 
record and always leaves the file pointer at the beginning of the 
next record. 

READ #33, IF EOR- THEN OOSUB HandleError: item 1 

Checking for End of File 

• IF EOF-, ATEOF-(# ) 

IF EOF- is used with INPUT#, LINE INPUT#, READ#, and 
RE WRITE# to check for an end of file error before performing the 
input or output operation. If the file pointer is at the end of the 
file, your contingency statement is executed. 

LINE INPUT # 1, IF EOF- THEN OOSUB FileEnd: line$ 

ATEOF- is a Boolean system function. Unlike all the other con­
tingencies described in this section, ATEOF- can be used in any 
program statement except file-handling statements. ATEOF­
returns TRUE if the file pointer is at the end of the file and 



190 Using Macintosh BASIC 

FALSE if it is not. ATEOF- takes one argument, the channel 
number of the file to be tested, in parentheses with the # sign. 

IF ATEOF-( # 1) THEN PRINT "Done." 

PUTTING FILES AWAY 

• CLOSE #, CLOSE 

CLOSE, followed by a space, the # sign and a channel number, 
closes the file, updates the file on the disk if it has been changed, 
updates the disk directory, and releases the channel. You can close 
all your open files and channels at once by using CLOSE with no 
channel number. BASIC does not close channel 0 (input from the 
keyboard and output to the output window). To reuse a closed file, 
open it again with another OPEN statement. 

CLOSE # 1 I Closes channel 1 
CLOSE ! Closes all open files 

EXAMPLE PROGRAM 

The Note Pad desk accessory is handy for keeping lists. Sometimes 
it would be handier, however, if you could read the entire contents 
of the Note Pad into another program all at once instead of cutting 
and pasting it one page at a time through the Clipboard. The 
example program in Figure 12-6 makes this possible. 

The Note Pad desk accessory stores the information you type in 
a separate file named the Note Pad File. The icon for this file is 
usually located in the System Folder in your directory window. 

The Note Pad File has a slightly unusual organization, which 
does not exactly match either the SEQUENTIAL or the RECSIZE 
formats used by Macintosh BASIC. The Note Pad File contains a 
record 256 bytes long for each of the Note Pad's eight pages. Each 
record contains everything you have typed on the corresponding 
page of the Note Pad, including any Returns or other unusual 
characters. A byte containing the ASCII code 0 is stored in each 
record just after the end of the valid information. 



Using Files 191 

Figure 12-6. Note Pad copier 

The program in Figure 12-6 copies the Note Pad File to a regu­
lar sequential text file. When it starts, the program asks you to type 
the name of the file you want to create to hold the copy of the Note 
Pad File. The program then opens the Note Pad File as a random­
access file with 2~6-byte records containing TEXT data. The pro­
gram uses a CREATE statement to open your output file so you 
will not destroy any existing file with the same name. It uses access 
OUTIN because you will put information into the file. 

The statements inside the FOR/NEXT loop are executed once 
for each of the Note Pad's eight pages. The LINE INPUT#l 
statement positions the file at each page's record (the record 
numbers start at 0, so the record is one less than the page number) 
and then reads the entire record into the string variable line$. 

The program then uses a FOR/NEXT loop to look at each 
character starting at the beginning of the string in line$. When the 



192 Using Macintosh BASIC 

0 that indicates the end of the valid information is found, the pro­
gram truncates the string in line$ at that point and executes the 
PRINT #2 statement. 

The PRINT #2 statement puts the entire string in line$ into 
your copy file. Note that the LINE INPUT# statement reads the 
entire 256-byte RECSIZE record into the string variable line$, no 
matter what that record contains. In fact, the variable will include 
everything you typed on that page, including the carriage return 
characters that mark the end of a line. The PRINT# statement 
writes all of these characters to the sequential text file. When you 
read the sequential text file later with LINE INPUT# statements, 
the carriage return characters will cause Macintosh BASIC to put 
each line from the Note Pad into a separate variable. 



Using Files 193 

PRACTICE EXERCISES 

1. What statemPnt wn11lcl vou use to opPr a channel to add 
information at the end of an existing sequential text file 
named "gift list"? 

2. How would you open c:t new random-access file named "new­
file" with text records 30 characters long? 

3. How wnuld you get the value of ar: · Hl ;;er named integer% 
and a string named string$ from record 23 of a binary REC­
SIZE file named "datafile"? 

4. Can you write a loop that searches for and reads the first 
record that begins with a string in a DATA RECSIZE type 
file? Assume the file is connected to channel 12 and was 
opened for access OUTIN. 



----cltafter /3--­

Files, Volumes, and Devices 

Commands: 

• RENAME, DELETE, LOCK, UNLOCK 

• GETFILEINFO, SETFILEINFO 

• SETVOL, EJECT, GETVOLINFO 

• DEVCONTROL #, DEVSTATUS # 

Functions: 

• GETFILENAME$, GETVOLNAME 

Devices: 

• .AIN, .AOUT, .BIN, .BOUT, .SOUND, .PRINTER 

This chapter describes how you use Macintosh BASIC to manipu­
late whole files and the volumes on which files are stored. It also 
shows how you can use the file-handling commands to open 
channels and communicate with physical devices like printers and 
modems attached to the ports on the back of your Macintosh. 

195 



196 Using Macintosh BASIC 

OPERATIONS ON FILES 

Macintosh BASIC makes it very easy to perform operations like 
renaming and deleting files from a BASIC program. In addition to 
Lhose operations, you can get a list of all the files on a disk volume, 
move a file from one Macintosh application program to another, 
and change some of the file information that the Finder keeps. 

Renaming a File 

•RENAME 

You can change the name of a file by using the RENAME com­
mand followed by the name of the existing file, a comma, and the 
new name for the file. Both names can be string literals, string 
variables, or string expressions. If the new file name is already 
being used, BASIC generates an error and does not rename the file. 

RENAME "old", "new" ! Changes the name of file "old" to "new" 

Deleting a File 

• DELETE 

The DELETE command followed by a file name removes the file 
with that name from the disk or volume directory. The file name 
can be a string literal, variable, or expression. BASIC generates an 
error if it cannot find the file. 

DELETE "oldfile" ! Throws oldfile WNfltl 

When it executes the DELETE statement, Macintosh BASIC 
deletes the file immediately. You do not get a chance to change 
your mind, as you do in the Finder. BASIC's DELETE command 
is the same as putting the file in the trash and emptying the trash 
all in a single statement. BASIC does not provide any way to recov­
er a deleted file. The only files you are likely to delete from within 
a program are temporary files that the program creates. 



Locking and Unlocking Files 

• LOCK, UNLOCK 

Files, Volumes, and Devices 197 

Locking a file is a way to protect it from being destroyed inadvert­
ently. You can lock a file from the Finder by selecting the file's 
icon, choosing Get Info from the File menu, and clicking on the 
box labeled Locked. Once you lock a file that way, the Finder will 
not let, you put the file in the trash unless you unlock the file first. 
However, that method of locking a file does not prevent you from 
changing the file by writing in it. 

BASIC provides an even better way to lock a file. When you lock 
a file from BASIC, you cannot throw the file in the trash from the 
Finder, delete the file from a BASIC program, or write anything 
into the file from a BASIC program. Locking a file prevents you 
from executing operations that might destroy or change the infor­
mation in the file. You can still open, read, and copy a locked file 
just as you would any other file. 

To lock a file from BASIC, just use the keyword LOCK followed 
by the name of the file. To unlock the file, use the word UNLOCK 
followed by the file name. The file name can be a string literal, 
string variable, or string expression. 

LOCK "file 1 " ! Locks the file named file 1 
LOCK a$ ! Locks the file whose name is in aS 
UNLOCK "file1" ! Unlocks the file named met 
UNLOCK a$ ! Unlocks the file whose name is in a$ 

If you want to change the status of a file from the keyboard 
while you are running Macintosh BASIC, you can type the LOCK 
or UNLOCK command in an untitled program window and run it 
without affecting anything else. 

If you open a locked BASIC program file and make changes in 
the program, you cannot save the changes in the same file until 
you unlock it. This allows you to protect the master copy of your 
program. You can, of course, select Save a Copy In to save the 
changed version of the program in another file. 



198 Using Macintosh BASIC 

Listing Existing Files 

• GETFILENAME$ 

GETFILENAME$ is a string function that returns the name of a 
file. The most common uses of GETFILENAME$ are to list the 
files on a volume ;ind to search for a file with a particular name. 
GETFILENAME$ takes one argument, which is a number rang­
ing from I to the number of files in the volume directory. GET­
FILENAME$ returns an empty string if you give it an argument 
that is larger than the number of files. 

filename$= 8etfi1eNameS(count) 
PRINT OetFHeNameS( 1) 

The matching between numbers and file names is quite arbitrary 
and does not always stay the same. The order of the files can 
change whenever your program executes a CREATE, RENAME, or 
DELETE statement. 

Since GETFILENAME$ returns an empty string when its 
argument exceeds the number of file names, you can obtain the 
names of all the files on a volume by starting with GETFILE­
NAME$(1) and incrementing the argument by 1 until the function 
returns an empty string. When you get the empty string, you have 
obtained the names of all files on that volume. The program in 
Figure 13-1 lists all files on the current volume. 

I Display Ust of Files on Disk 
count= 1 
DO 

file$ = 8etfileN81DeS( count) 
IF file$ = '"'THEN EXIT DO 
PRINT file$ 
count = count + 1 

LOOP 
ENDPR08RAM 

Figure 13-1. Display list of files on disk 



Getting Information on a File 
• GETFILEINFO 

Files, Volumes, and Devices 199 

GETFILEINFO obtains information that the Macintosh operating 
system keeps about a file and places that information in 48 consec­
utive bytes in memory. You reserve space for the information by 
dimensioning an array large enough to hold the 48 bytes. Integers 
occupy two bytes each, so an integer array with a dimension of 23 
is large enough if you use the 0th element. 

You follow GETFILEINFO with the name of the file, a comma, 
the @ sign, and the name of an array element. The 0th element of 
the array is frequently used as the beginning of the storage area, 
but that is not required. You must, however, have at least 48 bytes 
in the array. 

The@ sign creates a pointer that gives the GETFILEINFO rou­
tine the address of the array element. A thorough discussion of 
pointers is contained in Chapter 19. For now, you can think of the 
@ sign followed by the array element as meaning "put the infor­
mation into memory starting with the address of the specified array 
element." 

Dlt1 aS(23) I Integer array with 48 bytes 
8ETFILEINFO "whetfile", @laS(O) 

The block of data stored in the 48-byte area by GETFILEINFO 
actually contains several different data types. GETFILEINFO puts 
information there as a single block of binary data, and you have to 
do the calculations necessary to get each part of the data into a 
usable form. The array you dimension to reserve space can actually 
be of any variable type, but you can retrieve and interpret the data 
most easily if you use an integer array. Table 13-1 lists the contents 
of the data block with the number of bytes occupied by each item. 

The program in Figure 13-2 decodes and displays the informa­
tion in the GETFILEINFO data block. In addition to displaying 
the information, the program in Figure 13-2 serves as an example 
of a way to extract information from the data block so you can use 
it in your BASIC programs. 

The first two items of information about each file are its file type 
and creator. These are codes made up of four letters. File types and 
creator codes are discussed in detail later in this chapter. 



200 Using Macintosh BASIC 

Table 13-1. GETFILEINFO Information 

Byte Length 
Offset (bytes) Description 

0 4 File type 
4 4 Creator 
8 2 File attribute flags 

10 2 Icon's vertical location 
12 2 Icon's horizontal location 
14 2 Folder class code 
16 4 * File number in directory 
20 2 * Block number on disk where data starts 
22 4 * Data logical EOF -(same as ASK EOF(#) 
26 4 * Data physical EOF (actual file length) 
30 2 * First block in resource fork 
32 4 * Logical EOF of resource fork 
36 4 * Physical EOF of resource fork 
40 4 Date and time file created 
44 4 Date and time file modified 

" Items marked with asterisks cannot be changed with SETFILEINFO. 

•:::1.'.>.'': '·i·i·«f: 
::,'\!'"·":, ·~:.«":~J:1,1 .... '.\.. ?· 

IDi~play 0etFilelnfo Information 
. ~,0~1 a~l23) ;.'. .·.· 
·~~OJ' 1foet 1nfcion wl)8t file:"; file$ 
CLEARWINDOW 
~QIN'f'.:l:File ~·.;file$ 
BETFILEJNFOfile$,@a~(O) 
~.ltlt4T·i:i=ne type ";L~tters'4$C o>; 
P~INT''.'· cr~tor "; Letters-4$(2) 
PIUNT ''.File ett'ributeS· word is "; Num2( -4) 
:i~.il.OQB( Num2( '4)) = 15 THEN PRINT .. 'The file is l~ked." 
lf.(Num2( '4) OIY 1638'4) MOD 2=·1 THEN PRINT .. The file Is Invisible." 
"\c , 

Figure 13-2. Display GetFilelnfo information 



Files, Volumes, and Devices 201 

t) :i~7,. . /~~~~;. .. >"! 
) & letteri~2$( tt.rst + t 

i.1) 

Figure 13-2. Display GetFilelnfo information (continued) 

After the file type and creator code, the data block contains two 
bytes that contain coded information about the file.This coded 
information is technically referred to as the file attribute flags. 



202 Using Macintosh BASIC 

Only two pieces of this information are very useful to the BASIC 
programmer. One piece tells you whether or not the file was locked 
from the Finder. The other useful piece of coded information tells 
you whether the file is an invisible one. When a file is marked as 
invisible, the Finder does not display any information about it and 
will not open it. The DeskTop file, whose name often appears as 
the result of the function call GETFILENAME$(1), is an example 
of an invisible file. 

The next two fields of the data block are the vertical and hori­
zontal coordinates of the file's icon in the directory window. The 
top left corner of the directory window is (0,0), and the coordinates 
increase as the icon moves down and to the right. If the file is 
located in a folder, the coordinates correspond to the icon's location 
in the folder's directory window. 

The sixth field is the file's folder class code. If the folder class 
code is 0, the file is located in the main directory window. If the 
folder class code is less than zero, the file's icon is located on the 
desktop, not in any window. If the folder class code is greater than 
zero, the file is in a folder, and the code is the number of the folder 
in which the file is located. Folder numbers seem to be assigned at 
random; however, all the files in a single folder have the same 
folder number. 

The next field in the data block is the file's number in the 
volume directory. This number corresponds to the argument for 
GETFILENAME$. If you supply the file number as an argument 
to GETFILENAME$, you get the file's name. 

After the file number there are three fields that describe the loca­
tion and length of the file's data on the disk. The first field indi­
cates the location on the disk where the file's data starts. The next 
field gives the total length of the data, that is, the position of what 
is called the logical end of file. This number is the same number 
you retrieve with the ASK EOF# statement. The third field con­
tains the total amount of space on the disk reserved for the file's 
data, which corresponds to the position of the physical or actual 
end of file. Disk space is allocated in 512-byte blocks. If the logical 
end of file is not an integer multiple of 512, the physical end of file 
will be the next higher integer multiple of 512. 

The next three fields contain the first disk location, the position 
of the logical end of file, and the position of the physical end of 
file for the file's resource fork, the hidden portion of a file used by 



Files, Volumes, and Devices 203 

the operating system. You will not need this information unless 
you are making very sophisticated use of the Macintosh toolbox 
routines described in Part Four of this book. Resources are de­
scribed in Chapter 23. 

The last two fields contain the raw data from which the Finder 
calculates the dates and times the file was created and last modi­
fied. Each of these fields contains a large positive integer. The in­
teger is the rn -- , ber of seconds between the creation or modifica­
tion time and 12:00 A.M. January 1, 1904. 

File Types and Creators 

The file type and creator codes you can read with GETFILEINFO 
connect data files with the application programs that created them. 
Each application program has a unique four-letter creator code 
assigned to it by Apple. This creator code is contained in the cre­
ator field of the application program file and in all the files the 
program creates. 

When you work with file types and creators, be sure to copy 
upper- and lowercase letters exactly. For two file types or creators 
to be equal, the case of each letter must match exactly. The file 
type "TeXT", for instance, is not the same as the file type 
"TEXT", because the first type contains a lowercase "e." 

The Finder uses the creator codes to determine which icon shape 
to display for each file. The Finder also uses the creator code when 
you open a data file to determine which application program to 
load with the file. You can change a data file's icon and the appli­
cation program that is loaded with it by changing the creator field. 
You should never change the creator field of an application pro­
gram file because doing so would interfere with the program iden­
tification system and might prevent the program from opening its 
own data files. 

Major application programs often have several different types of 
files associated with them. Macintosh BASIC, for instance, stores 
BASIC program files in both text and binary formats and lets 
BASIC programs create three types of data files (TEXT, BINY, and 
DATA). The file type field that you can read with GETFILEINFO 
allows application programs to distinguish between the different 
types of files. 



204 Using Macintosh BASIC 

Most application programs use the file type field to select the file 
names that are displayed in the dialog window when you select 
Open from the File menu. Macintosh BASIC, for instance, displays 
the names of its program files (types BTXT and BCOD), but does 
not display any of the three types of data files. Table 13-2 lists the 
file types and creators used by some of the most common Macin­
tosh applications. 

Changing File Information 

• SETFILEINFO 

SETFILEINFO changes information about a file. SETFILEINFO 
uses a 48-byte data block, just as GETFILEINFO does. 
SETFILEINFO uses the information from the 48-byte block you 
supply to update the file information. The best way to get the cor­
rect information in the 48-byte block is to use GETFILEINFO first 
to put the existing file information into your array. Then you can 
modify the values in the array and use SETFILEINFO to make the 
necessary changes to the file information. 

DIM al(23) ! Integer array with 48 bytes 
8ETFILEINFO "whatfile". @lal(O) 
! Here 1s where you make your changes 
SETFILEINFO "whatfile", E!lalK(O) 

BASIC does not allow SETFILEINFO to change the file 
number, the starting blocks of the data and resource portions of the 
file, or the logical and physical end of file values. These fields are 
marked with asterisks in Table 13-1. You must include these fields 
in the 48-byte data block you supply for SETFILEINFO, but 
BASIC does not change the existing information. You can change 
the data logical end of file value with the SET EOF# command. 

If you make a mistake using SETFILEINFO, you can make a 
file inaccessible, so it is a good idea to make a backup copy of your 
disk before you start experimenting with SETFILEINFO. 



Files, Volumes, and Devices 205 

Table 13-2. Some File Types and Creators 

File Type Creator Description of File 

APPL DONN Macintosh BASIC 
BTXT DONN Macintosh BASIC Program Text 
BCOD DONN Macintosh BASIC Program Binary 

Format 
TEXT DONN Macintosh BASIC Text File 
BINY DONN Macintosh BASIC Binary File 
DATA DONN Macintosh BASIC Binary DATA 

File 

APPL PASC Macintosh Pascal 
TEXT PASC Macintosh Pascal Program Te:i.ct 

!.: 

APPL MACA Mac Write 
WORD MACA MacWrite "Entire Document" File . 
TEXT MACA MacWrite "Text Only" File 

APPL MPNT MacPaint 
PNTG MPNT MacPaint document 

APPL MSBA Microsoft BASIC (decimal math) 
TEXT or MSBA MSBA Microsoft BASIC Program Text 
MSBB MSBA Microsoft BASIC Program Com-

pressed (Binary) 
MSBP MSBA Microsoft BASIC Program Protected 
TEXT or (blank) (blank) Microsoft BASIC Text File 

APPL MSBB Microsoft BASIC (binary math) 
TEXT MSBB Microsoft BASIC Program Text 
MSBC MSBB Microsoft BASIC Program 

Compressed 
MSBD MSBB Microsoft BASIC Program Protected 

ZSYS MACS Note Pad File 

APPL FMOV FontMover 
FFIL FMOV Font File 



206 Using Macintosh BASIC 

Moving Files Between Applications 

Often you will create a file with one application and then want to 
use it with another. Perhaps you received the text of a program via 
a modem and now want to run the program in Macintosh BASIC. 
Or perhaps your BASIC program created a text file that you now 
want to edit using MacWrite. Or perhaps you want to display a 
plain document using the official System file icon. 

You can handle all of these situations by changing the file type 
and creator of the file, provided the file meets one additional 
requirement: the organization of the file and the data in it must be 
compatible with the new file type and creator. The file type de­
scribes the file's organization and data. It does no good to change 
the file to a new creator and file type if the file does not contain 
information in the format the new application can read. 

Many applications use ordinary text files. Even many applica­
tions that use other file formats allow you to save the information 
in a simple text file. If this alternative is available, you should use 
it before you try to change the file type or creator. You should be 
able to change a normal text file from one application to another 
without suffering any complications, as long as the new applica­
tion is capable of reading an ordinary text file. 

Ordinary text files of ten have the file type TEXT. By looking at 
the file types in Table 13-2, you can see that Macintosh BASIC, 
Macintosh Pascal, MacWrite, and Microsoft BASIC are all capable 
of generating and reading files of this type. In addition, the file 
type BTXT that Macintosh BASIC uses for program files is the 
same as a TEXT file except that it may contain a few extra charac­
ters to remind BASIC when to turn the boldface on and off. 

When you change a file's type or creator, you are responsible for 
knowing whether the contents of the file are compatible with the 
new file type and creator. BASIC does not warn you if you are 
about to make an error, so it is a good idea to work with a copy of 
the file so you will not lose the information if you make a mistake. 

The program in Figure 13-3 is a general purpose program that 
changes a file's file type and creator. To use the program, you need 
to type three things: the name of the file, the new file type, and the 
new creator. 

After you type the file name, the program uses GETFILEINFO 
to fill the 48-byte data block. Then it displays the file's current file 



I Chal'lge File Type and qreator ..•... · ....... . 
DIM ali(23) ! Integer array with 48 ~ 
PRINT "CHANCE FILE TYPE AND CREATOR" 
INPUT "Whet filetoclllinge: ";file$ 
PRINT "File"; file$ 
8ETFILEHIFO file$.@ii:tlC 0) 
PRINT ·rne type"; Letters4$( 0); 
PRINT", Creetor "; Letters4$(2) 
DO 

INPUT "New file type: ";Jype$ 
INPUT "New creator: ";creator$ 

Files, Volumes, and Devices 207 

IF L01(type$)=4~ND LEN(creator~.)=4 THEN EXITDO 
PRINT"4 letters in each answer, pl.!" 

LOOP 
! Store new.type and craotor . ·.•· 
alll(O) .. ASC(LEFTS(type$, 1))*256 t'ASC{t110$(type$ ,2, 1 )) 
all:( 1) =~(t11D$(type$,3, 1 ))~25~·rt~(Rl81:'TS(type$,1.)) .·· 
ali(2) =ASCCLEFTSCcreatorS, I))* 256+ASC(t11DSCqreator$,2,1J) 
alt: (3) = ASC( HI OS( creator$ ,3., I)) ~ 2~6 + ASC( Rl8HT.ffcr~~QJ"S ,1;)) 
SETFILEINFOfile$,oell(O) .· ... 
PRINT "File type and creatorJ;iave" 
PRINT "been chariged to"; type$;""; creator$ 
END PR08RAt1 
FUNCTION Letter's2$ (first) 
Letters2$ = CHRS( all{ first) DIV 256) & CHRS( all:Ctirst) HOD 256) 
END FUNCTION ·· · 
FUNCTION Letters4$( first) 
Letters4$ .. Letters2$(.first)& Letters2$(fir~.fl) i•/ 
END FUNCTION 

Figure 13-3. Change file type and creator 

type and creator. If you do not want to change either the file type 
or creator, reenter the type or creator exactly as it is displayed 
(remember, you must match the upper- and lowercase letters). 

The only error checking the program does is to make certain 
that your new file type and creator each contain exactly four letters. 
Once you have correctly entered the type and creator, the program 
stores the characters that make up the type and creator names into 
the first eight bytes of the data block and uses SETFILEINFO to 
change the file. 



208 Using Macintosh BASIC 

To change a plain text file into a Macintosh BASIC program 
file, you type BTXT for its file type and DONN for its creator. To 
turn a text file created by BASIC into a MacWrite document, use 
file type TEXT and creator MACA. To display a plain document 
file using the System file icon, you make its creator MACS. If you 
enjoy working with file types and creatdts, you will probably want 
to supplement Table 13-2 by keeping your own list of file types 
and creators for different types of files and applications. 

Saving a Damaged MacWrite File 

If you are lucky, you will never receive the message "This docu­
ment can't be opened." If you are not so lucky, however, you may 
see this message when you try to reopen a document you saved 
earlier. MacWrite versions 2.20 and earlier display this message 
when your Macintosh does not have enough memory to open a 
document and also when the MacWrite control codes in the docu­
ment have been damaged. 

You can often open a damaged MacWrite file by changing the 
file type from WORD to TEXT. Try this change as a last resort to 
avoid retyping all the information in the file. Essentially, you are 
telling MacWrite to read everything in the file as text, ignoring the 
distinction between MacWrite control codes and text. If you suc­
ceed in convincing MacWrite to read the file as a text file, you will 
then need to manually delete all of the odd control code characters. 

WORKING WITH VOLUMES 

Macintosh BASIC provides several commands to help you manipu­
late volumes, which contain groups of files. It is common to think 
of files as residing on disks with each disk containing one volume. 
If you have a hard disk or other mass storage device, however, you 
will learn that there can be more than one volume on the same 
device. If you use file and volume names, you do not usually need 
to know what kind of physical device actually contains the stored 
information. 

When you turn on your Macintosh and insert a disk, the operat­
ing system records the name of the disk volume from which the 



Files, Volumes, and Devices 209 

system is started. This volume becomes the first preset, or default, 
volume. It remains the default volume until you change it. Unless 
you include a volume name as the first part of a file name, every 
file operation is performed on the current default volume. 

Listing the Volumes 

• GETVOLNAME$ 

GETVOLNAME$ is a string function that returns the name of a 
volume. It takes one argument, a number that tells BASIC which 
volume name you want. Table 13-3 lists the particular volumes 
that correspond to each argument. An argument of 0 causes GET­
VOLNAME$ to return the name of the current default volume. An 
argument of l gets the name of the volume in the internal disk 
drive, 2 gets the name of the volume in the external disk drive, and 
3 gets the name of the first volume on a hard disk or other mass 
storage device. If a hard disk contains more than one volume, the 
remaining volumes will be numbered sequentially from 4 upward. 

GETVOLNAME$ returns an empty string if there is no volume 
available on the device for the given argument. You can use this 
fact to learn whether a particular storage device is currently avail­
able. To find out whether there is a disk in an external disk drive, 
for instance, call GETVOLNAME$ with the argument of 2. If the 
function returns a volume name with length greater than 0, a disk 
is available in an external drive. The program in Figure 13-4 dis­
plays a list of volumes and devices. This list will not include a disk 
drive that has no disk inserted. 

Table 13-3. GETVOLNAME$ Volume Numbers 

Number 

0 
l 

2 
3 

Device 

Default volume 
Volume in internal disk drive 
Volume in external disk drive 
First volume on hard disk 



210 Using Macintosh BASIC 

9~;J~~Volyf1!"8 
~ ~~g~~ltV~tume". 8etYeJ_..eSe~) 
T "ln,.Srnal [)r1ve", 8etYoHlame$(l) 

ive~J;e.t.Yol"-eS(.2) 
) 0 ~l'i\ THtN1'1 . . . . L 1:'' ( 

PRINT ~MasS'Storaae:. 

Figure 13-4. List on-line volumes 

Setting the Default Drive 

• SETVOL 

SETVOL changes the preset, or default, volume or disk drive. 
SETVOL is short for SET VOLume. You can supply either a 
number or a string after the word SETVOL. If you supply a 
number or numeric expression, BASIC assumes it is a volume 
number corresponding to the numbers in Table 13-3. If you supply 
a string or string expression, BASIC assumes it is a volume name. 
In either case, BASIC generates a "No such volume" error if it 
cannot find a volume with the specified name or in the specified 
drive. 

SETYOL 1 I Sets internal drive as default 
SETYOL "Master disk" 

Changing Disks 

• EJECT 

The EJECT command ejects a disk from the internal or external 
disk drive. You can follow the word EJECT with a drive number (1 



Files, Volumes, and Devices 211 

for the internal drive, 2 for the external drive) or the name of the 
volume you want to eject. You cannot eject a volume from a hard 
disk or other mass storage device. 

EJECT 1 ! Ejects disk from internal drive 
EJECT "Master disk" 

Getting Information About a Volume 

• GETVOLINFO 

The GETVOLINFO statement is very similar to the GETFILE­
INFO statement. GETVOLINFO obtains information about a 
volume instead of a file. You follow GETVOLINFO with the 
name of the volume, a comma, and a pointer to an array element. 
The array must contain at least 36 bytes beginning with the ele­
ment to which you point. 

DIM all ( t 7) I Integer array with 36 bytes 
8ETYOLINFO "whatvol", @al(O) 

Macintosh BASIC lets you use any type of array, but an integer 
array is best for interpreting the data. If you do not know the name 
of the volume, you can get the name with the GETVOLNAME$ 
function. Table 13-4 lists the items of information that GETVOL­
INFO stores in your array. 

The program in Figure 13-5 decodes and displays the informa­
tion in the GETVOLINFO data block. In addition to displaying 
the information, the program serves as an example of how to 
extract information from the data block so you can use it in your 
BASIC programs. 

The descriptions in Table 13-4 adequately describe most of the 
items in the GETVOLINFO data block. Only a few of these items 
appear to be useful in BASIC programs. The dates and times the 
volume was initialized and last modified are expressed in seconds 
since 12:00 A.M. January 1, 1904. Two useful bits of information 
you can extract from the volume attributes word indicate whether 
the volume was locked by software or write-protected. If you know 
how many bytes a new file will occupy, you can find out whether 
there is room for it on the volume by dividing the file length by 



212 Using Macintosh BASIC 

Table 13-4. GETVOLINFO Information 

Byte # 
Offset Bytes Description 

0 2 Volume index number assigned by system 

2 4 Date and time volume was initialized 
6 4 Date and time volume directory last modified 

10 2 Volume attributes 
12 2 Number of files listed in volume directory 
14 2 First block of volume directory 
16 2 Number of blocks in volume directory 
18 2 Number of blocks on entire volume 
20 4 Number of bytes in each block 
24 4 Minimum bytes to allocate for a file 
28 2 Block where data storage begins 
30 4 Number for the next file created 
34 2 Number of unused blocks on the volume 

! Dfaplay aetvollnf9(nform~tion 
DI ti ali < 17) ! ll)teger array with 36 bytes 
v$ = 8ETYOLNA~~J( 1) 
8ETYOLINFO v$ ;iiial ( 0) 
PRINT "Volume ";aS(O); ", ";v$ 
PRINT "Createi:f ''.;.~4rn4(J) 
PRINT "Mcx:lif1ed "; Num4(3) 
PRINT "Attributes.wordis "; Num2(5). 
IF LOBB( Num2( S}) = J!5.JHEN eR.INT "Volume is lock~~~ 
IF LOBB( Num2( 5) MOD 256) = 7 THEN PRINl "Volume is 
PRINT Num2( 6); " f1le!J. ()!" the V()l~me." 
PRINT "Directory.starts ~bloc~ 1~rNum2( 7) 
PRINT Num2( 8) ; " blocks in the directory." 
PR.I.NT Num2( 9J; :- b.ltll%;~(JO tM:~~lumt;: .· .. · .• 
PR.INT "Site of 88Ch blo0lc;;15 "; N41Jt4( 10}; • ~:" 
PRINT "Minimum nllocatiOn is "; Num402); "bytes." 

Figure 13-5. Display GetVo!Info information 



PR18l "f1l~ stOJ'.agEI ~rts at bloek/'; Nu.ro2( 
PRINT "Next fife number 1s ";Num4( 15) 
PRINT N~m~( 17); "free bloeks. 0 

END PR08RN1• · 
FUNCTION Num4(first) 
Num4 = N~m2Utrst).•,65536 + Num2Uirst+ll 
END FUNCTION 

• ·FUNCTION Num2(first) 
IF aSK(first) < 0 THEN 

N1Jm2 = alE Cfi rst) + 6f)f)36. 
ELSENum2 = aZ(f1rst) ···· ·. 
ENDIF. 

ENDFUNCTloN 

Files, Volumes, and Devices 213 

Figure 13-5. Display GetVollnfo information (continued) 

the block size and comparing the result to the number of unused 
blocks. 

The volume information is maintained by the operating system. 
Changing it without the system's knowledge could jeopardize the 
integrity of the system and cause you to lose all the files on the 
disk. For that reason BASIC does not provide any command to 
change the volume information. 

COMMUNICATING WITH DEVICES 

You can connect external devices to the Macintosh through several 
plugs, or ports, on the back of the machine. This section shows 
how you can use the file-handling commands to open channels 
and communicate with those devices from your BASIC programs. 

Standard Macintosh Devices 

• .AIN, .AOUT, .BIN, .BOUT, .SOUND, .PRINTER 

Table 13-5 lists the standard Macintosh devices available from 
Macintosh BASIC. The modem port (labeled with the telephone 



214 Using Macintosh BASIC 

Table 13-5. Standard Macintosh Device Drivers 

Device Driver Access 

Modem port .AIN INPUT or OUTIN 
.AOUT OUTIN or APPEND 

Printer port .BIN INPUT or OUTIN 
.BOUT OUTIN or APPEND 

Sound .SOUND OUTIN or APPEND 

Printer .PRINTER OUTIN or APPEND 

icon) and the printer port (labeled with the printer icon) are some­
times called serial ports A and B, respectively. The A and B ports 
are each treated as two devices, one for input and another for 
output. 

.SOUND controls both the device inside the Macintosh that gen­
erates sound and the plug on the back of the machine that is 
labeled with the music note. If you have a printer connected to the 
printer port, you can use it from BASIC by referring to it as the 
.PRINTER device. 

Each port is controlled by a small software program called a 
device driver. The drivers fdt most of the ports are contained in the 
Macintosh's permanent memory. You can control an external 
device from a BASIC program by opening a channel to its driver. 

The last column of Table 13-5 shows the access direction you 
must use for each device. The access for .AIN and .BIN must be 
INPUT or OUTIN, and the access for .AOUT and .BOUT must 
be APPEND or OUTIN. Access for .SOUND and .PRINTER 
should always be APPEND or OUTIN. 

Using Devices as Stream Files 

A stream file is a continuing flow of information. With a stream 
file, you see only the flow of information. You do not know 



Files, Volumes, and Devices 215 

whether the information is being stored at the other end of the 
communications channel or not. You do not have access to a file 
pointer and you cannot change your position in the stream of 
information. 

You open a stream file to a device just as you would open any 
other file. Use the device name instead of a file name. The 
statement 

OPEN #3: ".AIN", STREAM, TEXT 

opens a channel to receive binary data from serial port A, the 
modem port. The statement 

OPEN #4: ".PRINTER", STREAM, TEXT, OUTIN 

opens a channel to send text data to the printer. 
You use INPUT# and PRINT# with text data, and you use 

READ# and WRITE# with binary data, just as you do with regular 
files. Because stream files have no file pointer, you cannot use any 
of the file position or contingency keywords that you use with 
sequential or relative files. 

OPEN #3: ".AIN", STREAM, BINY 
READ #3: byte© ! Receive 1 BINY byte 
OPEN #4: ".AOUT", STREAM, BINY, OUTIN 
WRITE #4: byte© ! Send 1 BINY byte 

OPEN #8: ".BIN", STREAM, TEXT, INPUT 
INPUT #8: char$ ! Receive 1 TEXT character 
OPEN #9: ".BOUT", STREAM, TEXT, OUTIN 
PRINT #9: char$ ! Send 1 TEXT character 
CLOSE 

Controlling a Device 

• DEVCONTROL # 

DEVCONTROL# sends control information to a device. The most 
common use of DEVCONTROL# is to change the communica­
tions protocol (transmission speed, data bits, parity, and stop bits) 
used by the software drivers that run the serial ports. Both the 



216 Using Macintosh BASIC 

modem port and the printer port are preset to operate at a speed of 
9600 baud (bits per second), using 8 data bits, no parity, and 2 stop 
bits. You can use DEVCONTROL# to change those settings. 

To use DEVCONTROL#, first dimension a 2-element integer 
array. You store the number 8 in the first element of the array and a 
code that represents the new protocol setting in the second element 
of the array. The code is constructed by adding together the values 
from Table 13-6 that correspond to the protocol settings you want. 

Table 13-6. Control Values for Serial Ports 

Protocol Setting Value 

Baud rate 300 380 
600 189 

1200 94 
1800 62 
2400 46 
3600 30 
4800 22 
7200 14 

9600* 10 
19200 4 
57600 0 

Data bits 5 0 
6 2048 
7 1024 

8* 3072 

Parity None* 0 
Odd 4096 
Even 12288 

Stop bits 0 0 
1 16384 

1.5 -32767 
2* -16384 

•Asterisks mark the settings used by BASIC if you do not use DEVCONTROL# 
to change the settings. 



Files, Volumes, and Devices 217 

The code for 1200 baud, 8 data bits, no parity, and I stop bit 
(which is a common protocol for modem communications) is 94 
for 1200 baud, plus 3072 for 8 data bits, 0 for no parity, and 16384 
for l stop bit, for a total of 19550. 

The DEVCONTROL# statement itself consists of the keyword 
DEVCONTROL followed by a space, the channel designator sign 
#, the channel number, a colon, the @ sign, and the name of the 
first element of the integer array. The following example shows a 
complete DEVCONTROL# statement: 

! Set moclem port for 1200 baud modem 
DIM settinglf> ( 1 ) ! 2-element array 
OPEN #3: ".AIN'', STREAM, BINY 
settingSf> ( 0) = 8 ! Always use 8 to set protocol 
I 1200 baud, 8 data bits, no parity, 1 stop bit 
setting51: ( 1) = 94 + 3072 + O + '16384 
DEVCONTROL #3: @setting~ ( 0) 

Checking Status of a Device 

• DEVSTATUS # 

DEVSTATUS# obtains status information from a device. The most 
common use of DEVSTATUS# is to find out if any data has been 
received. The device driver for each serial input port (.AIN or 
.BIN) maintains a buffer in which it stores data that is received 
from the device that is plugged into the port. Your program needs 
to use DEVSTATUS# to make certain there is data in this buffer 
before the program tries to get the data with a READ# or INPUT# 
statement. 

To use DEVSTATUS#, you need to dimension a 3-element inte­
ger array and store the number 2 in the first element of the array. 
The DEVSTATUS# statement itself consists of the keyword DEV­
STATUS followed by a space, the channel designator number, the 
channel number, a colon, the @ sign, and the name of the first 
element of the integer array. When the DEVSTATUS# statement is 
executed, BASIC puts the number of bytes of data you can read 
from the buffer into the third element of the integer array, as 
shown in the following example. 



218 Using Macintosh BASIC 

! Use DEVSTATLIS # 

DIM status~(2) 
OPEN #3: ".AIN",STREAM, BINY 
status~ ( 0) = 2 ! Always use 2 to get# bytes 
DEVSTATUS #3: @statuslft(O) 
bytes. to. read = status% ( 2) ! get # from 3rd element 

Using .PRINTER 

The .PRINTER driver is more convenient to use than the .BOUT 
driver if you have a printer connected to the printer port of your 
Macintosh. The .PRINTER driver handles a number of printer­
related details for you, while the .BOUT driver does not. Specifi­
cally, the .PRINTER driver sends the proper instructions to 
initialize the attached printer, sends a line feed character to move 
the paper whenever printing reaches the end of a line, starts a new 
line after 75 characters, automatically skips six lines when you 
reach the bottom of a page, and sets tab stops every four characters. 

In addition to taking care of these housekeeping matters for you, 
the .PRINTER driver also changes some characters in your output 
into characters that make sense to the printer. The characters that 
are changed by the .PRINTER driver are listed in Table 13-7. 

Table 13-7. Characters Changed by the .PRINTER Device 

Character You Send 

© 

00 

CHR$(253) 
CHR$(254) 

What .PRINTER Prints 

pl 
PI 

<= 
>= 
<> 
(*) 
INFINITY 
turns on boldface)* 
turns off boldface)* 

*.PRINTER does boldfacing only with the Apple Imagewriter printer. 



Files, Volumes, and Devices 219 

When your printer is operating in ASCII mode, it does not re­
organize some of the special Macintosh characters. To compensate 
for this, the .PRINTER driver changes the following characters 
into strings the printer can print: the Greek letter rr (lowercase and 
uppercase), the three one-character relational operators, the charac­
ter variable designator, and the infinity sign. In addition, the 
.PRINTER driver changes CHR$(253) into the control code that 
tells the printer to start printing in boldface and changes 
CHR$(254) into the control code that tells the printer to stop using 
boldface. The two boldface control characters and the tab settings 
every four character positions work only if you are using the Apple 
Imagewriter printer. 

EXAMPLE PROGRAMS 

The example program shown in Figure 13-6 lists all of the files on 
your disk along with their file types and creator codes. After setting 
tab stops in the output window and dimensioning a 24-element 
integer array, the program initializes the variable count at 1 and 
enters a DO loop that is executed once for each file that is on the 
disk. 

The first statement in the DO loop gets the name of a file by 
using the variable count as an argument to GETFILENAME$. If 
the name returned is the empty string, the program exits from the 
loop and ends. If GETFILENAME$ returned a file name, the pro­
gram calls GETFILEINFO with that file name and the address of 
the first element of the 24-element integer array as arguments. 

The program uses the defined function Letters4$ to decode 
information from the data array. First the file's type and then its 
creator are decoded, stored in strings, and printed alongside the file 
name. Then the program increments the variable count and 
repeats the loop until all the files are listed. 

The example program in Figure 13-7 prints the data that comes 
in over a 1200 baud modem. The program starts by dimensioning 
two integer arrays for use later with the DEVCONTROL# and 
DEVSTATUS# commands. Then the program opens channel l for 
input of binary data from the modem port, and opens channel 2 
for output of text data to the printer. 



220 Using Macintosh BASIC 

Figure 13-6. List file types and creators 

The program uses DEVCONTROL# to set the modem port for a 
1200 baud modem, as shown in the example earlier in this chapter. 
The settings are 1200 baud, 8 data bits, no parity, and I stop bit. 
Two PRINT# statements send a title line (including the date) and 
a blank line to the printer. 

The program then enters a DO loop in which the program 
repeatedly uses DEVSTATUS#. If ready%(2) contains a positive 
number, indicating that data has been received, the program exe­
cutes a FOR/NEXT loop that reads each byte from the modem 
into a character variable and then converts the byte to a one­
character string and prints it on the printer. Note that the READ# 
command is used to receive the binary information and the 
PRINT# command is used to send the text. 

After each character is read from the modem, the program checks 
to see if the character is CHR$( 4), the character commonly used to 



Files, Volumes, and Devices 221 

1:'::i:1 

! Print 1nf6~mation from ihe mbtirtt 
Dlr'I ct1~(·'1 l.r~t;(2) .. · .. · ,. : .· .. > 

1~; , o~~J!':f:"l·~;f~'""!',-1:n1t~~·,• ~, .. ii:,. r:1:·ii. · ••: 
0PEN*2:''\PRINTER" ·sTREAl"l'.'TEXT OUTIN 

;-;·" ,'-·<'.;-. ,_ ·,,- '--·_-,"~:t.:;;.-?~>;~::'-· --'-·"-~ ··· .. -. 

If~® '*''if~]. 
P.RINT.#2;'c;ff. 

. .. . NgJ couvt ··i· 

· ·, 'lNDff~ 
L(M)P . 

!~·''~··"Em!,ottr;~m)ssj~. 

ENO•PRQQRAM 

Figure 13-7. Print modem data 

signal the end of a transmission. If the character is CHR$(4), the 
program displays "End of transmission." in the output window 
and ends. This program does not save a machine-readable copy of 
the information that comes in through the modem. You may want 
to modify it to write the information to a disk file. 



222 Using Macintosh BASIC 

PRACTICE EXERCISES 

1. The program in Figure 13-1 uses GETFILENAME$ to list all 
the files on a volume. How would you modify that program 
so that it will not print out the name of any files marked as 
invisible? 

2. How would you write a BASIC program that moves the file 
"Macintosh BASIC" into the System folder? You may assume 
that the System folder is the folder that contains the file 
named "System." 

3. What BASIC commands would you use to open a channel to 
receive data from the modem port at 300 baud with 8 data 
bits, no parity, and 1 stop bit? 

4. How would you change the program in Figure 13-l to make 
the program print the list of files on a printer instead of in 
the output window? 



~~~cltaftir~~~~ 

Using the Interactive Debugger

Command:

•STOP

Macintosh BASIC has an interactive debugger to help you locate
any trouble spots in your programs. The debugger is also an excel­
lent learning tool. You can follow your program line by line and
see what each line does. You can see which lines change the values
of your variables and what each line does to the output window. If
something odd is happening in your program but you can't figure
out what it is, the debugger can be an indispensable tool.

You will get the most from this chapter if you run the debugger
while reading the text. The examples provided use the sorting pro­
gram, Figure 9-4, from the end of Chapter 9.

TURNING ON THE DEBUGGER

When you use the debugger, you need to let Macintosh BASIC
know what program you are going to debug. You do that by mak­
ing the program's text window active before starting the debugger.

223

224 Using Macintosh BASIC

If your program is not a lready running, make its text window
active before you turn on the debugger. If your program is run­
ning, you can start the debugger with either the text or the output
window active. You turn on the debugger by selecting the Debug
option from the Program menu or by pressing the keyboard com­
bination COMMAND-cl.

To fo llow the examples in this chapter, start up Macintosh
BASIC and open a text window with the sorting program in Fig­
ure 9-4. Then select Debug from the Program menu to start the
debugger.

Figure 14-1 shows what your screen looks like just after you turn
on the debugger. When you turn it on, the debugger shifts the text
of your program to the right to make room for a hand with a
pointing finger. The finger points to the program line that is ready
to be executed. If your program was not already running, the
debugger also opens an output window and prepares to execute the
program. A little bug appears in the output window's program
status area to indicate that the program is running under the con­
trol of the debugger.

,,. s File Edit Search Fonts

TeHt of Figure 9-4
! Sort en errey of i ntege
DIM erray%(50) ! Creet
1 Fi 11 it with integers be
FOR i = 1 TO 50

errey%(i) = I NT(RND(
NEXT i
! Now sort the integers
FOR i = 1 TO 50 ! Look e

FOR j = i TO 50 I Me
IF errey%(j) < err

! The numbers
temp% = errey
erray%(i) = err
errey%(j) = te

ENDIF

Figure 9-4

Figure 14-1. Starting the debugger

.,

i:::::

1111

111111

Using the Interactive Debugger 225

TeHt of Figure 9-4
! Sort an array of i ntege
DIM array%(50) ! Creat
! Fi 11 it with integers be
FOR i = 1 TO 50

array%(i) = INT(RND(
NEXT i
! Now sort the integers
FOR i = 1 TO 50 ! Look a

FOR j = i TO 50 ! Ma
IF array%(j) < arr

! The numbers
temp% = array
array%(i) = arr
array%(j) = te

ENDIF

Go

Saue Binary

8€H
8€G

[hPCK) l_l!\ t!IH '.•:U
Turn Checking Off

Turn Debugging Off 8€0
Step 8€ 1
Trace 8€T

8€8

Figure 14-2. The debugger's menu items

.,

4

Turning on the debugger enables several debugging options at
the bottom of the Program menu. Figure 14-2 shows the Program
menu just after the debugger has been turned on. The debugger's
Step, Trace, Block Trace, and Show Variables command options
are all enabled. In addition, the Debug option changes to Turn
Debugging Off. Both options use the same keyboard shortcut,
COMMAND-d.

STEPPING THROUGH A PROGRAM

When you first turn it on, the debugger is in what is called single­
step mode. In this mode the debugger executes your program one
line at a time. The pointing finger points to the line that will be
executed next. You execute each line by selecting Step from the
Program menu or by typing either the COMMAND-I or the
COMMAND-SPACE combination from the keyboard. Once you
become familiar with the debugger, you will probably find that
using one of the keyboard combinations is easier.

226 Using Macintosh BASIC

If you are following the example on your Macintosh, step
through five lines to the line that reads NEXT i. Now when you
execute this line, the tracing finger does not continue down
through the listing. Instead, it goes to the line above, array%(i) =
INT(RND(1000)) + l. This is appropriate, because the program is
executing a FOR/ NEXT loop. The tracing finger follows the pro­
gram execution faithfu lly through functions, subroutines, loops,
and other control structures.

DISPLAYING VARIABLES

Show Variables, the las t selection on the Program menu, opens a
new window that displays the values of your program's simple
variables and functions. It does not display the values of array ele­
ments. Figure 14-3 shows the variables window for the example
program. The window lists all of your program's simple variables
and functions, even if execution has not reached the statements
that use them. The variables] and TEMP%, which have not been

r s File Edit Search Fonts Program ~~~~~~~~~~~~~
TeHt of Figure 9-4 Figure 9-4
! Sort an array of i ntege
DIM array%(50) ! Creal
1 Fill it with integers be
FOR i = 1 TO 50

array%(i) = I NT(RND(
NEXT i
! Now sort the integers
FOR i = 1 TO 50 ! Look a

FOR j = i TO 50 I Ma
IF array%(j) <arr

1 The numbers
temp% = array
array%(i) =arr
array%(j) = te

ENDIF

~D~ Uariables from Figure 9-4 ~
I 2

J 0 ~
TEMP% 0

Figure 14-3. Debugging with Show Variables active

.,

Using the Interactive Debugger 227

used yet, are displayed with their initial values of zero. The vari­
able I, which is being used, is 2.

Names are listed in the variables window in all capital letters
because BASIC does not pay any attention to the case of the letters
when it is working with variable and function names. If your pro­
gram uses the variable names temp% and TEMP%, BASIC assumes
they are the same variable. Listing the names in all capital letters
in the variables window helps remind you of that fact.

The debugger updates the variables window display every time a
program statement changes the value of a variable or function. If
you continue to single-step through the example program, you
will see that the value of I increases by one each time you execute
the NEXT i statement.

TRACING EXECUTION

You do not have to single-step through all fifty iterations of the
FOR/NEXT loop to get to the rest of the example program. The
Trace command on the Program menu will step through the pro­
gram for you. The tracing finger still points to each program line
as it is executed, and the values of variables and functions are still
updated in the variables window. The keyboard combination for
Trace is COMMAND-t.

The debugger traces through a program quickly. If you watch
carefully, you can still see which statements are being executed, but
things are moving too fast to see the effects of any single com­
mand. When you want to stop the automatic tracing, give one of
the single-step commands, COMMAND- I or COMMAND-SPACE. Then
you can continue to single-step through a section of the program,
or you can use COMMAND-t to resume the automatic tracing.

If you want to trace, but don't want things to move quite as fast
as they do with the Trace command, you can try holding down
one of the keyboard combinations for single-stepping. On the
Macintosh keyboard, every key is a repeating key when it is held
down. You can use this feature of the keyboard to make repeated
single-step commands look like a slightly slower version of the
Trace command. Any time you want to stop, all you have to do is
take your finger off the key. You can adjust the repetition rate of
the keyboard with the Control Panel desk accessory.

228 Using Macintosh BASIC

USING BLOCK TRACE

Block Trace is the speed champion of the debugging commands. It
executes a single control structure at full speed. You can select
Block Trace from the Program menu or by pressing COMMAND-b.
Block Trace is most useful when you are single-stepping or tracing
through a program and reach a loop or subroutine call that you do
not want to trace. One execution of the Block Trace command will
execute the entire control structure and then stop at the end of the
structure so you can resume tracing or single-stepping.

The control structures that can be entirely executed by a single
Block Trace command are IF /END IF, DO/LOOP, FOR/NEXT,
SELECT CASE/END SELECT, GOSUB, CALL, PERFORM, and
WHEN/END WHEN. The last three kinds of control structures
are described in the next chapter. While the debugger is executing
a block trace, it does not move the tracing finger or update the
values in the variables window. It updates both when the block
trace is finished.

To experiment with Block Trace, close the output window and
restart the program in Figure 9-4 from the beginning by turning
on the debugger. Single-step to the line that reads FOR i = l TO
50. Then press COMMAND-b. When the block trace is finished, the
pointing finger reappears at the comment line "Now sort the
integers." The first FOR/NEXT loop has been executed, and you
are ready to sort the array. Single-step once to get to the next line
that reads FOR i = l TO 50. Press COMMAND-b to block trace
again. When the finger reappears after a few seconds, the sort has
been done.

Now you are ready to execute the FOR/NEXT loop that prints
the sorted numbers. For variety, use COMMAND-t to start a normal
trace, and then press COMMAND-b after a few numbers have been
printed. You have just demonstrated that you can start a block trace
from a normal trace as well as from single-stepping.

TURNING OFF THE DEBUGGER

To turn off the debugger, you can select Turn Debugging Off from
the Program menu or press COMMAND-cl on the keyboard. If your
program was already running when the debugger was switched on,

Using the Interactive Debugger 229

your program resumes normal execution. If you do not want your
program to continue executing when you turn off the debugger,
you can click on the output window's close box - that will turn off
the debugger, stop execution, and return you to the text window of
your program.

SETTING A BREAK POINT
•STOP

If you have a problem area in your program and you want to use
the debugger, you could start the program normally and then turn
the debugger on just before the problem area. This will work, but
you might have to do it several times before you can start the
debugger at just the right place.

A more precise way to turn on the debugger part way through
your program is to insert a STOP statement at the appropriate
place in your program. The STOP statement stops program execu­
tion and turns on the debugger. Its effect is the same as pressing
COMMAND-d while BASIC is executing that line of your program.
You can use STOP alone, or you can use STOP as one course of
action in an IF or CASE statement.

STOP
IF a> llmit THEN STOP
IF wrong"' THEN STOP

You can insert STOP commands into your program in as many
places as you wish. When you have finished debugging, however, it
is a good idea to use the Find command in the Search menu to
locate all occurrences of STOP and then remove them from your
finished program.

DEBUGGING EXAMPLES

This section gives a few suggestions about ways you can use
Macintosh BASIC's programming tools to help you write and cor­
rect programs. It is not exhaustive. If you use the debugger and the

230 Using Macintosh BASIC

Find command regularly, you will undoubtedly find other ways
and situations in which to use these versatile tools.

((7 Your program has been working well for six weeks, but
when you use a new set of data, the program seems to "freeze up."
The symbol in the output window indicates that the program is
executing, but nothing is printed. This situation is fairly common,
although it can sometimes be hard to diagnose. The program may
be executing some type of an infinite loop.

The best way to check for the possibility of an infinite loop is to
let your program run until it appears to be in the infinite loop.
Then turn on the debugger and begin to trace or single-step to see
what the program is doing. Most infinite loops are fairly short if
the overall program is well organized. Once you have discovered
the location of the loop, you can single-step with the variables
window open to see why the program is stuck in the loop. You
may notice a variable that takes on an unexpected value. Pay par­
ticular attention to variables that cause your program to end or exit
from the loop.

n7 The value of a multiple-line function does not seem to be
getting set properly. The simplest way to solve this problem is to
insert a STOP statement immediately after the first line of the
function's definition and then run the program. When the function
is called, BASIC stops the program and turns on the debugger. You
can then open the variables window and single-step through the
function.

If single-stepping shows that you are executing the line that
assigns a value to the function, check to see that the name of the
function in that line is spelled correctly. If it is not, you may be
as~igning the value to some variable you will never use again.

If the assignment seems to be correct but has the wrong value,
ch~ck to be sure your function is getting the correct data and that
the parameter names are spelled correctly each time they are used
iJ1 the function definition. When you have finished stepping
through the function definition, you can let your program resume
qormal execution by typing COMMAND-d.

Using the Interactive Debugger 231

~ Your GOSUB statement generates an "Undefined label"
error message, and you are sure you used that name for a subrou­
tine. For q-~is situation, the global search capability of the Find
command may be more helpful than the debugger. Use Find to
look for t.Qe ~o~on character (:), and check the Include Embedded
Words option. The search may find a few colons in lines that do
not contain labels, but it will absolutely find every label that is
correctly defined in your program. You will certainly notice if the
label you defined was slightly different from what you remembered.

~ One of your variables is not set or is being set to an incor­
rect value. Find the line where your variable is supposed to be set,
and examine it carefully. If you can't find any errors in that line,
the cause may be an error in a calculation earlier in your program.
Turn on the debugger and select Show Variables.

Look through the variables list carefully. If you see any variable
names you don't remember using in your program, use Find on the
Search menu to look at the lines contf:l;~Jling that name. If you do
this carefully, you should find all mf§ffped variable names that
could cause wrong results. If checking the variable names does not
identify the cause of the problem, you may need to trace or single­
step through your program with the variables window open to dis­
cover when one of your variables is first set to an incorrect value.

~ The text output from your program is not being printed. If
you are using GPRINT, text may be printed outside the visible
area. To check this, put a STOP statement just before or just after
the GPRINT statement; then run the program. If the program
stops and the debugger comes on, your GPRINT statement is
being executed, so you need to use an AT command in the
GPRINT statement to position the output in its correct location. If
the program does not stop, your GPRINT statement is not being
executed. You will need to check the flow of program execution by
single-stepping or tracing to find out why the program is skipping
around the GPRINT statement.


~~~aui,rer~~~~ 

Advanced Control Structures 

Commands: 

• CALL, SUB, END SUB, EXIT SUB 

• PERFORM, PROGRAM, END PROGRAM, 

EXIT PROGRAM 

• WHEN ERR, WHEN KBD, END WHEN, 

IGNORE WHEN 

This chapter explains several advanced topics involving the flow 
of control in your programs. First you will be introduced to a new 
kind of subroutine, one that allows you to pass parameters. Then 
you will see how one program can summon another. That is fol­
lowed by a description of interrupts, which provide a way to han­
dle events like errors and keypresses without interfering with the 
execution of your main program. The chapter concludes with a 
discussion of how to run several programs at once. 

233 



234 Using Macintosh BASIC 

SUBROUTINES WITH PARAMETERS 

• CALL, SUB, END SUB 

A subroutine whose beginning is marked with a SUB statement 
and whose ending is marked with an END SUB statement is 
invoked with the CALL statement rather than the GOSUB state­
ment (explained in Chapter 6). You can pass arguments to this 
kind of subroutine, and you can receive values in return. Here is an 
example: 

SUB AreaRec:t( width ,height) 
PRINT "Now we're in the subroutine." 
PRINT "The area is"; width* height 
END SUB 

This subroutine begins with a SUB command followed by the 
name of the subroutine, AreaRect. The name is followed by a list 
of parameters in parentheses with the parameters separated by 
commas. You can define as many parameters as you wish in the 
SUB statement. You can use any of the ten data types for parame­
ters, and you can use arrays as well as single variables. When you 
use an array, you must include parentheses after the name with a 
comma for each dimension after the first. 

You use a CALL statement to start execution of a subroutine 
defined with SUB. If the SUB statement specified parameters for 
the subroutine, the CALL statement must include the correct 
number of arguments in the proper order and with the proper data 
types to match the parameters. If an array is passed to a subroutine, 
it must have the same number of dimensions in the subroutine and 
the calling program. Here is a short program that uses the CALL 
statement: 

I Main program 
CALL AreaRect( 9 ,3* 8) 
! Control comes here after END SUB 
PRINT "Back in the main program." 
END PR08RAt1 

SUB AreaRect( width ,height) 
PRINT "Now we're in the subroutine." 
PRINT "The area is"; width* height 
END SUB 



Advanced Control Structures 235 

When you only want to pass a value from the calling program to 
the subroutine, you can use any BASIC expression of the proper 
data type in the CALL statement. When you want to return a value 
to the calling program, the corresponding argument in the CALL 
statement must be the name of a variable of the proper type. In this 
case, the variable receives the value of the corresponding subrou­
tine parameter when execution of the subroutine is finished. 

If you do not want a value passed back from the subroutine to 
one of your variables in the calling program, you can use an 
expression instead of a variable name in the CALL statement. For 
instance, instead of using a variable named testY in the CALL 
statement, you could use the expression testY+ 0 to prevent a value 
from being passed back to the calling program. 

END SUB must be the last statement in the subroutine. When 
BASIC reaches this statement, it copies any values being returned 
to the calling program into the proper variables. Then control is 
transferred to the statement in the calling program following the 
CALL statement that invoked the subroutine. 

Exiting Subroutines 

• EXIT SUB 

You can exit a subroutine early with an EXIT SUB command, 
which transfers control to the END SUB statement, copying any 
return parameters to the calling program. BASIC does not require 
the word SUB in the EXIT SUB statement, but you should use 
both words to avoid confusion among EXIT SUB, EXIT FOR, and 
EXIT DO. 

SUB AreaRect( widlh,height) 
PRINT "Now we're in the subroutine." 
If w1cn.n"" ne1gnt <= o THfN fXIT 3UB ! Leave early 
PRINT "The area is"; width* height 
END SUB 

CALLING ANOTHER PROGRAM 
• PERFORM, PROGRAM, END PROGRAM 

One program can be summoned and executed from another just 
like a special kind of subroutine. Unlike subroutines, programs 



236 Using Macintosh BASIC 

reside in files separate from the program that calls them. The pro­
gram being summoned can be in a disk file, or it can be in memory 
if you have opened it ear lier. 

The program to be summoned is defined with PROGRAM and 
END PROGRAM statements. The PROGRAM statement must be 
the first statement in the program. If values will be passed to the 
program or back to the program that called it, they must be speci­
fied in a parameter list in the PROGRAM statement. 

The program being summoned does not have access to variables 
from the calling program unless they are passed as parameters. 
The following program, AreaTriangle, receives two values (width 
and height) from the calling program and uses the values to calcu­
late the area of a triangle. 

PR08RAH AreaTriangle( width, height) 
PRINT "Now we're in the summoned program." 
PRINT "Area= .. ; Width* height I 2 
END PR08RAH 

Programs that are written to be called with a PERFORM state­
ment reside in the same kind of disk files as other programs. 
Because there is no way to tell without opening the file whether 
the program starts with a PROGRAM statement and requires 
parameters, it is a good idea to adopt your own naming conven­
tion for programs that must be called with parameters. 

The END PROGRAM statement is normally the last statement 
of a program. It returns control to the program containing the 
PERFORM statement. If the END PROGRAM statement is miss­
ing, BASIC returns to the calling program when it runs out of 
statements to execute. 

You use PERFORM to execute one program from another. The 
keyword PERFORM is followed by the name of the program to be 
executed. If the program to be executed requires parameters, you 
put the arguments, separated by commas, in parentheses after the 
program name. Do not type any spaces between the program name 
and the left parenthesis that begins the parameter list. 

Arguments that will receive values from the summoned program 
must be variable names preceded by the @ character; other argu­
ments can be expressions that match the type of parameter in the 
PROGRAM statement. Otherwise, all of the rules for passing 



Advanced Control Structures 237 

parameters in subroutines apply. No value will be returned to the 
calling program unless you use the @ character in the PERFORM 
statement. The following example shows a PERFORM statement 
that calls a program named AreaRect, which calculates the area of 
a rectangle. The @ character in the PERFORM statement causes a 
value to be returned in the variable area. The @ character in the 
PROGRAM statement has no effect; it is included only as a 
reminder that the value is being returned to the calling program. 

! First program: 
PERFORt1AreaRect(9, 3*8, @area) 
! Control comes here when AreaRect is done. 
PRINT "The er88 is"; area 
END PR08RAt1 

! second program, separate file: 
PR06RAM Ar88Rect( width, height, •result) 
result= width* height 
ENDPR08RAM 

You can use the same name for a function, a subroutine, and a 
program if you can keep them straight. When one program exe­
cutes another, BASIC preserves the variables of the original. After 
control returns from the summoned program, all the calling pro­
gram's variables will have their previous values except those whose 
values were passed from the summoned program. 

When BASIC executes a PERFORM statement in your program, 
it looks for a file that matches the program name you specify. If the 
program is not already in memory, BASIC looks on the default 
disk drive. You can specify a particular drive by using a volume 
name as the first part of th~ file name in the PERFORM statement. 

Because programs are stored in disk files, there will usually be a 
delay while your program reads a file during a PERFORM state­
ment. To avoid constant delays during program execution, you 
should either use PERFORM only for segments of your program 
that you use infrequently or open the program to be performed 
prior to executing the calling program. Code segments that you 
use frequently should be included as subroutines in your main 
program file. 



238 Using Macintosh BASIC 

Exiting Programs 

• EXIT PROGRAM 

You can terminate the execution of a program at any point with 
the statement EXIT PROGRAM. If the program was summoned 
with a PERFORM statement from another program, parameters 
are passed and control is returned to the other program as if an 
END PROGRAM statement had been encountered. If you started 
executing the program from BASIC's programming environment, 
you are returned to the programming environment. Both words of 
the EXIT PROGRAM command are required. 

! Second program, separate file 
PROORAM AreaRect( width ,height) 
PRINT "Now we're in the second program." 
IF width* height<= 0 THEN EXIT PROGRAM ! Leave early 
PRINT "The area is"; width* height 
END PROORAM 

USING INTERRUPTS 

An interrupt is an event that causes an interruption in your pro­
gram's normal activities. If you enable, or allow, interrupts for a 
particular type of event, whenever that event occurs your program 
is suspended while another small program (called an interrupt­
handling routine) is executed. When the interrupt-handling rou­
tine is finished, your program resumes execution. If you do not 
enable any interrupts, your program proceeds normally without 
interruptions. Macintosh BASIC allows you to enable interrupts 
and write your own interrupt-handling routines for two types of 
events: errors and keypresses. 

The real power of interrupts comes from the fact that you can 
enable and disable interrupts and change your interrupt-handling 
routines as often as you wish while your program is executing. 
When your program is reading files, for instance, you might want 
to use an interrupt-handling routine that takes special actions if 
there is a file-related error. At another point in your program, you 
might want to create an interrupt-handling routine that handles 
errors in input typed from the keyboard. 



Advanced Control Structures 239 

Trapping Errors 

• WHEN ERR, END WHEN 

The WHEN ERR statement allows your program to handle errors. 
WHEN ERR serves two purposes: it enables interrupts for errors, 
and it also marks the beginning of your interrupt-handling rou­
tine. The END WHEN statement is required to mark the end of an 
interrupt-handling routine. 

When BASIC reaches a WHEN ERR statement, it does not 
immediately execute the instructions between WHEN ERR and 
END WHEN. Instead, BASIC records the location of the WHEN 
ERR, enables the error interrupt, and continues executing your 
program beginning with the statement immediately following the 
END WHEN. 

When an error occurs, for whatever reason, BASIC immediately 
suspends execution of your program and begins executing the 
interrupt-handling routine beginning with the WHEN ERR 
statement. When the END WHEN statement is reached, BASIC 
resumes execution of your program at the place where it was 
suspended. 

The interrupt-handling routine you supply between the WHEN 
ERR and END WHEN statements replaces the actions BASIC 
normally takes when an error occurs. That makes you responsible 
for handling the error or presenting a message describing the error. 
Usually you will want to use the ERR system function (described 
in Chapter 7) to find out what type of error occurred. A complete 
list of error messages and codes is listed in Appendix B. Generally, 
error codes from 66 to 97 are system errors, codes from 98 to 153 are 
errors related to files, and codes from 154 up are related to your 
program and its execution. 

If BASIC encounters a second WHEN ERR statement in your 
program, it replaces the first error interrupt-handling routine with 
the second one. The interrupt remains enabled until it is turned off 
with an IGNORE WHEN ERR statement. WHEN ERR traps syn­
tax errors in your program as well as errors from other causes, so 
until you know that you have found and removed any syntax errors 
in your program, you should use it with caution. A syntax error 
between a WHEN ERR and an END WHEN statement will cause 
the error-handling routine to keep interrupting itself until BASIC 
runs out of memory. 

When an INPUT statement in your program requires a number 



240 Using Macintosh BASIC 

and you type text instead, BASIC displays a dialog box containing 
the message "Expected a number." T.he following example re­
places this dialog box with a messag~ ih the output window, but it 
does not report the nature of any other error. 

WHEN ERR 
IF ERR= 182 THEN! Expected a number 

PRINT "Please retype us1ng numbers only:" 
ENDIF 

END WHEN 

Trapping Keyboard Input 

• WHEN KBD, END WHEN 

WHEN KBD works similarly to WHEN ERR, except that the 
statements between WHEN KBD and END WHEN are executed 
whenever a character key (any key other than SHIFT, CAPS LOCK, 

OPTION, and COMMAND) is pressed on your keyboard. If you hold 
down a key long enough to repeat, the WHEN KBD statements are 
executed pnce for each repetition. Your interrupt-handling routine 
can us.e the KBD function described in Chapter 7 to get the ASCII 
value dl the key that was pressed. 

Some uses of WHEN KBD are to check for a particular key 
stroke, to ignore certain keys altogether, to allow only numbers to 
be input; or to make a sound whenever a key is pressed. The fol­
lowing loop waits for a key to be pressed. The program stays in the 
DO loop until a keypress causes the WHEN KBD statements to be 
executed, setting the variable key to 1. 

! Wait for keypress 
key= 0 
WHENKBD 

key= 1 
END WHEN 
DO 
IF key= 1 THEN EXIT DO 
LOOP 
PRINT "A key was pressed." 



Turning Interrupts Off 

• IGNORE WHEN 

Advanced Control Structures 241 

IGNORE WHEN clears an interrupt setting so BASIC will not 
attempt to execute an interrupt-handling routine. The statement 
IGNORE WHEN ERR clears the WHEN ERR setting. IGNORE 
WHEN KBD clears the WHEN KBD setting. 

IGNORE WHEN K.BD ! Turns off KBD interrupts 
IGNORE WHEN ERR ! Turns off ERR interrupts 

RUNNING SEVERAL PROGRAMS 

Macintosh BASIC allows you to run several programs at once by 
dividing the time between programs. The first program executes 
for a fraction of a second, the second program executes for a frac­
tion of a second, and so on. As a result, each program runs slower 
than when it is running by itself. 

The interrupt-handling routines in your program are only active 
when your program's output window is active. Things like key­
presses and mouse button clicks only affect the program with the 
active output window, so several programs will not all react to the 
same action. If your program must always keep track of interrupt 
events, it will not work properly if more than one program is 
running. 

Another thing to keep in mind when writing programs that may 
share time with other programs is that programs may compete for 
access to the same data file, serial port, or display screen. For 
example, if two programs both enlarge their output windows to 
cover the entire screen, only one of the windows will be visible. Or 
if two programs use the same data file, one of them will get there 
first, and the second, when it tries to access the same file, will 
probably stop with an error message because the file is already in 
use. If you plan for this when you write your programs, you can 
use WHEN ERR to trap the error and have each program wait 
until the file or device is available. 



242 Using Macintosh BASIC 

EXAMPLE PROGRAM 

The Quicksort Demo program in Figure 15-1 demonstrates re­
cursive use of the PERFORM command. The Quicksort Demo 
program creates and displays an array of 30 integers with random 
values from 0 to 100. A PERFORM statement summons the Quick­
sort program shown in Figure 15-2 to sort the array. The@ sign in 
front of the array name in the parameter list indicates that the 
values in the array will be returned to the Demo program from the 
Quicksort program. 

The interesting part of the example is the Quicksort program 
(Figure 15-2). Note the match between the parameters in the 
PROGRAM statement and the arguments in the PERFORM 
statement that calls the program . 

.. '!"'' 

. iii:',i!tli< rQµi¢kSort Demo 

size= 30 
··::: J>lf':!u~lE(s1ze) ....... /.,,, 

PRllttT "ORIGINAL AR.RAY: 11 ' 

FOR index= 1 TO size 
,,,11 •.. , ~i;Cin~) = INT( .• ~N.q~~,:.~())l,:.;1,· 

., ~RINT FORMATS("#~"'''; a!ll1
'( index)>; 

If index t10D 7 = 0 THEtf PRINT . 
i/:~r:i1:1J:,;:;,l;,gi~;~::: 1,nclex l:it1 

PRINT ·· 
< PERf ORl"I QutckSort( .1, size, (!lell ()) 

1iti,i1H•1·i!;PRllttT "SORTED AR~V:.". · . :: 
FOlflridex = t TO size . 

.. ~.,RINT FORl"IAT~·'·'''··("•~~. 1."; ell( index)); 
1

11 : >.t:f Index MOD 7 ::. 0 Tl:f~'(t l>RltfT 
NEXT index 

.... ,.PRl~T 
... ' ENO!PR08RA1'1 

Figure 15-1. Quicksort Demo program 



Advanced Control Structures 243 

PR08RAM Quicksort(start, end, @bll()) 
pivotposition = (start+end) DIY 2 
p1votnumber = bl!: ( pivotpos1t1on) 
L "'start 
R=end 
DO 

IF L >= R THEN EXIT DO 
DO 

IF bl(L) >= pivotnumber THEN EXIT DO 
L=L+I 

LOOP 
DO 

IF bl ( R) <= pivotnumber THEN EXIT DO 
R=R-1 

LOOP 
IF L <= R THEN 

templl = bl(L) ! Swap Land R elements 
bl(L) = bl(R) 
bl(R) = templl 
L=L+I 
R=R-1 

ENDIF 
LOOP 
IF start< R THEN PERFORM Quicksort(start, R, @bl()) 
IF L < end THEN PERFORM Quicksort( L, end, @bl ()) 
ENDPR08RAM 

Figure 15-2. Quicksort 

The quicksort procedure is slightly more complicated than the 
bubble sort procedure you saw earlier. Quicksort works by repeat­
edly subdividing segments of the array until each segment is either 
sorted or has less than two elements in it. Each time a segment is 
divided, all of the numbers in one segment are higher than any of 
the numbers in the other segment. 

The Quicksort program starts by picking an arbitrary point, 
called the pivot position, in the middle of the segment. The vari­
able L starts at the low end of the segment and skips past all the 
other elements that are lower than the pivot number. Starting the 



244 Using Macintosh BASIC 

variable R from the high end of the segment, the program skips 
past all the numbers that are higher than the pivot number. If the 
variables L and R meet at the pivot number, the segment can be 
subdivided at the pivot number. If not, the program swaps the 
values pointed to by L and R and repeats the checking operation. 

The Quicksort program further divides the segments on each 
side of the pivot number by executing itself twice, once for the new 
smaller segment below the pivot number and once for the new 
smaller segment above the pivot number. These calls are recursive, 
which makes this Quicksort program a good example. The quick­
sort algorithm is usually faster than the bubble sort algorithm, but 
the recursive PERFORM statements use a lot of memory. 



Advanced Control Structures 245 

PRACTICE EXERCISES 

1. Try your hand at writing a subroutine that takes t4e average 
of two numbers and passes the result back to the main pro­
gram through a parameter. The program will have three 
parameters: the two numbers to be averaged and the result. 
Write the CALL statement as well. 

2. Rewrite the subroutine and CALL statement from the first 
exercise as a separate program and a PERFORM statement. 

3. Can you write a loop that prints "Is that a Lisa diskette?" 
whenever error number 102 ("Not a MAC Diskette") is eticoun· 
tered? 

4. Try writing a loop that prints "See page 40 in the manual" 
whenever a question mark is typed from the keyboard. 



~~-&f t!ir£e~~­

Special 
Macintosh Techniques 

- - - --



---cl!taftir /6--­

Graphics and Shapes 

Commands: 

• PLOT, FRAME, PAINT, ERASE, INVERT 

• SET /ASK PENPOS, SET /ASK PEN SIZE 

• SET/ASK PENMODE, SET/ASK PATTERN 

• SET/ASK OUTPUT, SET/ASK DOCUMENT 

• SET /ASK SCALE, SET /ASK LOCATION 

• SET /ASK PICSIZE 

Shapes: 

• RECT, OVAL, ROUNDRECT /WITH 

The Macintosh is a superb graphics machine. This chapter de­
scribes the graphics commands that are in the Macintosh BASIC 
language. In addition to these commands, Macintosh BASIC 
allows you to use the QuickDraw routines found in the Macintosh 
toolbox to perform more specialized functions. Some of the 
QuickDraw routines are described in Chapter 22. 

249 



250 Using Macintosh BASIC 

In order to get the full benefit of this chapter, you will need to 
understand how the Macintosh screen is divided into pixels, how 
to specify a location in the coordinate system of your program's 
output window, and how to use the SET/ ASK PENPOS command 
to position the pen on the graphics screen. These subjects were 
covered in the discussion of the GPRINT command in Chapter 10. 
If you are not familiar with them, you should read the relevant 
portions of Chapter 10 before reading the rest of this chapter. 

DRAWING POINTS AND LINES 
•PLOT 

The PLOT command allows you to draw both points and lines. If 
you specify a single point, PLOT draws that point. If you specify 
two or more points, PLOT draws the first point and then draws a 
line to the next point. A line is drawn from one point to the next 
until there are no remaining points. You could draw an en tire pic­
ture using one PLOT statement by supplying the coordinates of 
each dot in the picture. 

Each point is specified by two numbers: the horizontal and ver­
tical coordinates at which the point is located in the output win ­
dow. Use a comma to separate the two numbers. The value of a 
coordinate may be a ny number between -32767 and +32767. If the 
value of a coordinate is not already an integer, BASIC rounds it to 
the nearest integer. 

Negative coordinate positions can be plotted, but you cannot see 
them because they will be beyond the left edge or above the top of 
the window. Positive coordinates greater than 240 will not be vis­
ible unless you enlarge the normal output window or scroll to 
examine a different part of the document behind the window. You 
can use the SET OUTPUT command described later in this chap­
ter to enlarge the window. 

Semicolons separate the points in a PLOT statement. You can 
use an extra semicolon at the end of a list of points, where its effect 
is similar to that of a semicolon at the end of a PRINT statement. 
The ending semicolon allows the next PLOT statement to resume 
drawing where the last one stopped. In other words, the next 
PLOT statement will start drawing from the current position of 
the graphics pen to the first point in the list. You can cancel the 



Graphics and Shapes 251 

effect of a trailing semicolon by using a statement consisting of 
only the word PLOT. 

PLOT h,v 
PLOT 1.3: 8 .90 
PLOT 9,30; 
PLOT 30,30; 
PLOT 

SHAPES 

1 Plots one point at h,v 
! Line from I .3 to 8 .90 
! Plot point to start line 
! Line from previous semicolon 
1 C'.ancels previous semicolon 

• RECT, OVAL, ROUNDRECT/WITH 

In addition to points and lines, Macintosh BASIC provides you 
with three basic shapes: the rectangle, the oval, and the rectangle 
with rounded corners. The keywords for these shapes are RECT, 
OVAL, and ROUNDRECT, respectively. Figure 16-1 shows exam­
ples of all three shapes. 

You specify the size and location of each shape by using two 
points to designate the top left and bottom right corners of the 
rectangle that contains the shape. This rectangle is sometimes 
called the bounding rectangle. Squares and circles are merely those 
special cases of rectangles and ovals in which the sides of the 
bounding rectangle are of equal length. 

The ROUNDRECT shape requires a third set of coordinates, 
preceded by the keyword WITH, to indicate the degree of round­
ness to be used for the corners of the rectangle. The curve used for 

D D 
FR AME RECT 10,10; 1 00 ,60 FR AME ROUNDRECT 230, 1 0 ;320 ,60 WITH 25 ,25 

PAINT OVAL 120,10;210,60 

Figure 16-1. Shapes in Lheir reCLangles 



252 Using Macintosh BASIC 

PAINT ROUNDRECT 50,100;150,150 WITH 40,40 

Figure 16-2. ROUNDRECT 

the corners of the rounded rectangle is the curve of the oval that 
fits in a rectangle whose top left corner is at the point 0,0 and 
whose bottom right corner is the point specified by the third set of 
coordinates. Figure 16-2 shows a rounded rectangle and the hypo­
thetical rectangle that defines the degree of roundness. 

DISPLAYING SHAPES 
• FRAME, PAINT, ERASE, INVERT 

The four commands that display a shape are FRAME, PAINT, 
ERASE, and INVERT. To display a shape, use one of these four 
commands followed by the name of the shape you want to display 
(RECT, OVAL, or ROUNDRECT) and the coordinates that de­
scribe the shape. The shape display commands do not affect the 
location of the graphics pen used by PLOT and GPRINT. 

FRAME draws the outline of the prescribed shape with the 
graphics pen. The statement 

FRAME OVAL 30,30; 90,90 ! left.top; right.,bottom 

draws the outline of an oval inside the bounding rectangle with its 
top left corner at 30,30 and its bottom right corner at 90,90. 



Graphics and Shapes 253 

PAINT draws a solid shape filled with the graphics pen pattern 
(solid black unless you use the SET PATTERN command to 
change it). The statement 

PAINT RECT 10,20; 90, 110 ! 1eft,top; right.,bottom 

draws a solia black rectangle with the top left corner at 10,20 and 
the bottom right corner at 90,110. 

ERASE fills the shape with the background pattern. The back­
ground p~ttern is solid white unless you use the toolbox routine 
BackPat described in Chapter 22 to change it. The statement 

ERASE RECT 1, 1; 200,200 ! 1eft,top; right,bottom 

erases all graphics and text from the rectangle whose top left 
corner is at 1,1 and whose bottom right corner is at 200,200. 

INVERT reverses the color of every pixel in the shape - black 
pixels become white, and white pixels become black. The statement 

INVERT RECT 30,40; 90, 100 ! 1eft,top; right,bottom 

reverses the color of every pixel in the rectangle whose top left 
corner is at 30,40 and whose bottom right corner is at 90, 100. 

CHANGING THE GRAPHICS PEN 

The graphics pen is the imaginary pen that moves around the 
screen carrying out your drawing instructions. Usually, the graph­
ics pen acts like an ordinary pencil or pen -it draws a thin black 
line on top of whatever was already there. By now ·you should 
know, though, that very few things about the Macintosh are ~uly 
ordinary. The graphics pen can grow or shrink, change itg shape, 
draw with ink of different colors and patterns (including invisible 
ink), and it can change the way the ink interacts with what is 
already on the paper. 

The graphics pen does all these things, of course, under the con­
trol of the program you write. You can be realistic and stick close 
to the rules of the ordinary world, or you can be bold and experi­
ment with new sets of rules to see what they do. 



254 Using Macintosh BASIC 

Pen Width and Height 

• SET /ASK PEN SIZE 

When the pen draws a simple line, it is tempting to think of the 
tip of the pen as tapering to a "point." That "point,'' however, 
does have dimensions. It is one pixel wide and one pixel tall. When 
Macintosh BASIC begins executing a new program, it sets the 
PENSIZE to l,l. 

You can change the size of the pen's "point" with the SET PEN­
SIZE command. The command should be followed by the desired 
width and height in pixels, both numeric expressions, with a 
comma between them. You can use the same number for both 
dimensions to keep the pen square, or you can make one dimen­
sion larger than the other to get a different effect. Making both 
dimensions zero makes the pen invisible. 

i· 

SET PENSIZE 3 ,5 ! Sets pen 3 pixels wide by 5 high 
SET PENSIZE 0,0 ! Makes it invisible 
SET PENSIZE t , t ! sets pen back to normal size 

The change in pen size will affect all PLOT and FRAME com­
mands. It will not affect GPRINT, PAINT, ERASE, or INVERT. 
When the pen size is larger than one pixel in either direction, the 
pen is centered on the coordinates you give in the PLOT com­
mand. If you set the pen size to 5,5, the statement PLOT 9,9 draws 
a solid square 5 pixels on a side with its center on the point 9,9. 

When you use the FRAME command to draw a shape, the coor­
dinates you give are the coordinates of the rectangle that encloses 
the shape. A larger pen size will make FRAME draw a wider line, 
but the line will still be entirely inside the bounding rectangle. In 
other words, the shape you draw with FRAME stays the same size, 
and the extra width of the pen comes entirely from the area inside 
the shape's outer boundary. 

You can use an ASK PENSIZE statement to find the current size 
of the graphics pen. ASK PENSIZE must be followed by the names 
of two numeric variables separated by a comma. When it executes 
this command, BASIC places the width of the graphics pen in the 
first variable and the height of the graphics pen in the second vari­
able. Executing the statement 

ASIC. PENSIZE a,b 



Graphics and Shapes 255 

1111 
0 2 3 4 5 6 7 8 9 

~···-~m~11···· ~·.·.·.·. . 
~:::::::: Utt 

30. ~~- -~~- 33 34 35 36 37 

Figure 16-3. Pattern reference chart 

saves the width of the graphics pen in the variable a, and the 
height of the pen in b. 

Pen Pattern 

• SET/ASK PATIERN 

Normally, the "ink" from the graphics pen produces a solid black 
pattern. The SET PATTERN command allows you to select any 
one of 38 predefined patterns. They are numbered from 0 to 37 and 
are the same patterns included in MacPaint. Figure 16-3 is a refer­
ence chart of the patterns and their numbers. Solid black is pattern 
0, and solid white is pattern 19. Pattern 3 is a uniform gray that 
produces a dotted line when you use the normal pen size of l,1. 

Macintosh BASIC allows you to use names instead of numbers 
for five of the most commonly used patterns. As shown in Table 
16-1, these are BLACK (pattern 0), DKGRAY (pattern 2), GRAY 
(pattern 3), WHITE (pattern 19), and LTGRAY (pattern 22). These 
names are actually predefined constants that BASIC turns into the 
appropriate pattern numbers when you use them in a SET PAT­
TERN statement. 



256 Using Macintosh BASIC 

Table 16-1. Names for Common Patterns 

Name Pattern number 

BLACK 0 
DKGRAY 2 
GRAY 3 
WHITE 19 
LTGRAY 22 

To change the pattern, you use the SET PATTERN command 
followed by one of the five predefined pattern names or a numeric 
expression representing the pattern number. If the number you 
supply is not an integer, BASIC rounds it to the nearest integer. 
The PATTERN setting affects the PLOT, FRAME, and PAINT 
commands. A pattern number less than 0 or higher than 37 will 
result in an unpredictable pattern. 

SET PATTERN 3 
SET PATTERN &RAY 
SET PATTERN 11 
SET PATTERN 0 

! Sets pattern to gray 
! Also sets it to gray 
! Sets brtck wall pattern 
! B8Ck to Q!Jll b18Ck. 

You can use an ASK PATTERN statement to obtain the number 
of the pen's current pattern. Follow the words ASK PATTERN 
with the name of a numeric variable. BASIC puts the number of 
the current pattern into the variable. Executing the statement 

ASIC. PATTERN pat ! Puts pattern number in pat 

puts the number of the current pattern in the variable pat. 

Pen Mode 

• SET/ASK PENMODE 

The pen mode refers to the way the "ink" from the graphics pen 
interacts with the design already in the output window. The official 



Graphics and Shapes 257 

values of PENMODE range from 8 to 15, but integer multiples of 
these values often produce the same result. The normal setting for 
PENMODE when execution of a program begins is 8. The PEN­
MODE setting affects the PLOT, FRAME, and PAINT commands. 
It has the same effects for shapes as GTEXTMODE does for graph­
ics text. 

Figure 16-4 shows the effect of each of the eight pen modes. To 
read the figure, assume that the design in the top row (horizontal 
stripe) already appears in the output window and that the design 
in the middle row (vertical stripe) is the graphics pen pattern being 
drawn. The design in the bottom row is what results from the 
operation for that pen mode setting. The final design is determined 
pixel by pixel, using logical operators, with black pixels corre­
sponding to TRUE and white pixels corresponding to FALSE. 

Pen mode 8 is called the copy mode. It ignores the design already 
in the window and copies the pen pattern exactly. This is the nor­
mal mode setting when a program begins execution. Pen mode 9 is 
the OR mode. A pixel in the result is black if that pixel was black 
in either the original design or the new pattern. 

Pen mode 10 corresponds to the exclusive OR operation (abbre­
viated XOR). A pixel is black if the background and the new pat­
tern are opposite colors, and it is white if the background and the 
new pattern are the same color. This mode allows the black portion 
of the pen pattern to be discernible on a background of any color. 

8 9 10 11 12 13 14 15 

Figure 16-4. Effects of the pen modes 



258 Using Macintosh BASIC 

Writing the same pattern for a second time in XOR mode restores 
the background design to its original state. XOR mode is of ten 
used for dotted lines with the GRAY pen pattern. 

Pen mode 11 is a clear or erase mode. The pixels behind the 
white areas in the pen pattern do not change, but the pixels that 
are beneath black pixels are changed to white. The results of modes 
12 through 15 appear close to the results of modes 8 through 11. 
Modes 12 through 15 are called inverted modes. Their results are 
obtained by reversing the color of every pixel in the pen pattern 
and then applying the rules for modes 8 through 11. 

Here are some samples of the syntax for SET PENMODE and 
ASK PENMODE: 

SET PENHODE 1 O ! Sets pen to XOR mode 
ASK PENHODE x ! Puts 10 in x 
SET PENMODE 14 ! Sets pen to 1nverse XOR mode 
SET PENHODE 8 ! Restores normetl copy mode 

Resetting the Pen 

• PENNORMAL 

When you start your BASIC program running, the pen pattern is 
BLACK (pattern 0), the pen mode is 8 (copy mode), and the pen 
size is 1,1. Those three settings are used for most normal drawing. 
You can use the PENNORMAL command to restore all three set­
tings at once. The effect of using PENNORMAL is the same as 
executing the three statements SET PATTERN BLACK, SET 
PENMODE 8, and SET PENSIZE 1,1. 

SET PENSIZE 3,3 
PENNORHAL 
SET PATTERN 18 
SET PENHODE 9 
PENNORMAL 

MOVING SHAPES 

! Makes the pen large 
! Resets PENSIZE to 1 , 1 

I Resets PATTERN to 0 and PENMODE to 8 

You can move graphics shapes or even text by erasing and redraw­
ing. FOR/NEXT loops are especially handy for controlling 



Graphics and Shapes 259 

continuous movement. You now know all the commands to under­
stand the following graphics program (first shown in Figure 1-1). 

I Make moving design 
DO 

FOR t = 1 TO 500 
PAINT RECT i,30;i+ 120, 150 
INVERT OVAL i ,30;i+ 120, 150 

NEXT i 

FOR i = 500 TO I STEP -1 
PAINT OVAL i,40;i+ 100, 140 
INVERT RECT i,40;i+ 100,140 

NEXT i 
LOOP 

The time it takes to draw large graphics on the screen, even at 
QuickDraw's impressive speed, slows down the program. Try 
reducing the size of the moving shapes and see how much faster 
the program runs. Start the debugger and use the Step and Trace 
commands to see what each statement does and how the statements 
combine to form a moving pattern. 

ALTERING THE DISPLAY 

Macintosh BASIC allows you to change four fundamental settings 
that govern your program's output display. You can change the 
location and size of the output window, the document behind the 
output window, and the graphics area within the output docu­
ment. You can also change the scale of your graphics output. 

Changing the Output Window 
• SET/ASK OUTPUT 

The SET OUTPUT command determines the size and location of 
your program's output window. The statement SET OUTPUT 
TOSCREEN enlarges the output window to occupy the full screen 
below the menu bar. The edges of the window remain visible on 
the screen so you can use the title bar, close box, size box, and 



260 Using Macintosh BASIC 

scroll bars. The statement SET OUTPUT without any additional 
words resets the output window to its original size and location. 

SET OUTPUT TOSCREEN 
! Enlarges output window to full screen size 

3ETOUTPUT 
! Resets window to original size and location 

If you want to choose a different window size or location, you 
need to supply two points. The punctuation is the same as you use 
for FRAME RECT and other shape-drawing commands, but the 
points you supply for SET OUTPUT are different. SET OUT­
PUT requires the bottom left and top right points instead of the 
top left and bottom right used by the drawing commands. In addi­
tion, the coordinates of the points for SET OUTPUT must be 
given in inches - not in pixels-from the upper left corner of the 
screen. There are 72 pixels per inch on the normal 9 inch Macin­
tosh screen. 

SET OUTPUT left,bottom; right,top 
SET OUTPUT 0,3; 4, 1 

! Makes window 4" wide and 2" high 
! Positioned on left edge of screen 

When you use SET OUTPUT to move or resize your program's 
output window, the window first appears in its regular size and 
location and then moves to its new size and location. If the SET 
OUTPUT command changes the size of the output window, the 
contents of the window are erased. The coordinates of the original 
output window on the 9-inch screen are 3.333,3.889 and 6.667,0.556, 
and the coordinates that are supplied if you use SET OUTPUT 
TOSCREEN are 0,4.528 and 6.889,0.527. 

ASK OUTPUT followed by two pairs of numeric variable 
names gets the screen coordinates of the current output window in 
inches. The variable names in each pair are separated by commas, 
and a semicolon is used between the pairs: 

ASIC. OUTPUT left,bottom; right,top 
! eets window coordinates 



Dimensioning the Output Document 

• SET/ASK DOCUMENT 

Graphics and Shapes 261 

SET DOCUMENT resets the size and location of the document 
that lies behind the output window, and ASK DOCUMENT saves 
the current settings in variables for you. The order of the coordi­
nates is just like SET OUTPUT, with each coordinate measured in 
inches. When your program begins, the document is set at 0, 11; 
8.5,0 for the size of a normal sheet of paper. You can reset it to this 
size by using just the words SET DOCUMENT. If a SET DOCU­
MENT command changes the size of the output document, the 
contents of the document are erased. 

In addition to limiting the area in which your program can 
draw graphics, SET DOCUMENT also affects the number of lines 
of text the output document can hold. If your program prints more 
lines than the document can hold, BASIC cuts off a line from the 
top of the document to make room for each new line printed. The 
original document height of 11 inches holds about 49 lines of 12 
point'type. 

SET DOCUttENT 0,23; 8.5,0 
! Enlarges clocument to hold 100 lines of 12-point text 

ASK DOCUMENT left,bottom; r1ght,top 
! 'Gets document coordinates 

SET DOCUttENT 
,, ! Restores document to original size 

Setting the Graphics Area 

• SET/ASK LOCATION 

SET LOCATION sets the area of the output document in which 
graphics are drawn. ASK LOCATION puts those coordinates intq 
variables. Both commands use coordinates measured in inches in 
the order left, bottom, right, top. The graphics area is set automat~ 
ically to the full size of the output document when your program 
begins and whenever a SET OUTPUT statement changes the size 
of the output window. SET LOCATION TOWINDOW sets the 
graphics area to match the output window's size and position. SET 



262 Using Macintosh BASIC 

LOCATION without any other words resets the graphics area to 
coincide with the output document. 

You can think of the edges of the graphics area as if they were a 
picture frame. That frame is used when you copy a picture to the 
Clipboard. If your picture is to fit into the Scrapbook desk acces­
sory, the location into which you draw the picture cannot be more 
than 2.5 inches high or 4.5 inches wide. If you want to paste the 
picture into MacPaint, the locatioq. cannot be more than 3.5 inches 
high or 5 inches wide. 

SET LOCATION 0,4; 4,0 
! Sets graphics area to a 4" square at upper left of document 

ASIC LOCATION left,bottom; right.top 
! Gets the current location of the graphics area in inches 

SET LOCATION TOWINDOW 
! Sets the graphics area to the output window 

SET LOCATION 
! Sets the graphics area to the entire document 

Setting Your Own Graphics Scale 

• SET/ASK SCALE 

SCALE specifies the logical picture frame your program uses when 
it draws a picture. Unless you are doing something fancy, SCALE 
is set to the same coordinates as the output document. The coordi­
nates for SET/ASK SCALE are written in the same order as the 
coordinates for SET/ASK LOCATION. SCALE's coordinates, how­
ever, are measured in screen pixels instead of inches. 

When your program begins, scale is set to 0, 792; 612,0, which is 
the equivalent in pixels of 8 112 by 11 inches. If you use SET 
SCALE without coordinates, BASIC resets SCALE to the original 
0, 792; 612,0 setting. 

SCALE's coordinates describe the picture frame that the graphics 
commands in your program use when drawing. If the SCALE 
coordinates are different from the LOCATION coordinates, BASIC 
shifts SCALE's picture frame until its top left corner matches the 
same corner of the location picture frame and then expands or con­
tracts the dimensions of SCALE's frame until they match the frame 
specified by LOCATION. All of the graphics inside the scaled 



Graphics and Shapes 263 

frame expand or contract along with the frame. After locations 
inside the frame are rescaled, they are rounded to integers if 
necessary. 

To enlarge a drawing without changing its proportions, make 
the width and height of the graphics area proportional to the 
width and height of the drawing's scale. If you switch the two 
horizontal coordinates or the two vertical coordinates, SCALE will 
flip the picture in that direction. 

SET SCALE left,bottom; right,top 
! Dimensions in pixels, not inches 

SET SCALE 0,72; 72,0 
! Causes drawing in upper left 1" of 
I document to be scaled to the grapMcs location 

ASK SCALE left,bottom; right.top 
! Gets the current scale setting in pixels 

SET SCALE left,top; right,bottom 
! Flips the picture vertically 

HOW BASIC HANDLES PICTURES 
• SET/ASK PICSIZE 

BASIC stores the graphics portion of your program's output doc­
ument as a picture. Technically, a QuickDraw picture is not a copy 
of what you see on the screen, but a record of the actions necessary 
to recreate that image. For each running program, BASIC allocates 
an area of memory 2048 bytes long. This area is called the picture 
buffer. 

Each time your program uses GPRINT or a graphics-drawing 
command, a record of the command is added to the information 
stored in the picture buffer. When the picture buffer is filled, 
BASIC still executes graphics commands but stops adding new 
information to the picture buffer. The CLEAR WINDOW com­
mand erases the picture buffer in addition to the output document. 

When part of the output document is hidden and then becomes 
visible again, BASIC uses the information in the picture buffer to 
redraw the picture. If your program uses a lot of graphics com­
mands, you will notice that sometimes only part of the picture is 
redrawn. That is because the picture buffer had room for only part 



264 Using Macintosh BASIC 

of your picture. The same thing can happen when you use Copy 
Picture in the Edit menu to copy a picture to the Clipboard. 

You can change the size of the picture buffer with the SET PIC­
SIZE command followed by a numeric expression that gives the 
number of bytes you want included in the buffer. If you try to set 
the buffer smaller than 2048 bytes, BASIC will set the buffer size to 
2048. You can set the picture buffer size as large as 32, 767 bytes. 
The ASK PICSIZE statement followed by the name of a numeric 
variable tells BASIC to put the size of the existing buffer in that 
variable. 

SET PICSIZE 4096 
! Doubles original size of picture buffer 

ASK PICSIZE sze 
! Puts picture buffer size in sze 

SET PICSIZE 32767 
! Sets picture buffer as large as possible 

SET PICSIZE 2048 
! Restores original picture buffer size 

EXAMPLE PROGRAMS 

The examples in this section are the programs that produced the 
pattern and pen mode reference charts in Figures 16-3 and 16-4. In 
addition to demonstrating many of the commands introduced in 
this chapter, these programs will allow you to make extra copies of 
the reference charts so you can always have them handy. 

The Make Pattern Chart program in Figure 16-5 draws each 
sample pattern by using the PLOT command to plot one point 
with an oversized pen. After using a SET OUTPUT TOSCREEN 
statement to enlarge the output window to full screen size, the 
program sets the pen size to a square 30 pixels on each side. 

A FOR/NEXT loop steps through the patterns from 0 to 37. 
The DIV operator is used to calculate the row in which the pattern 
should appear. The MOD operator is used to calculate the number 
of the column in which the pattern should appear. If the pattern 
number is less than 10, the result of pat DIV 10 will be zero, so the 



1 l'1alce Pattern .Chart 
SET O•JTPUT TOSCREEN 
3ET PEN31ZE 30,30 
f'.OR pat • 0 TO 37 

SET PATTERN pat 
NNI ~ P4St DIY I 0 
column = pat HOD to 
PLOT 18 + 32*co1umn, 18 + 60*row 

Graphics and Shapes 265 

SET PENPOSl 1+32*co1umn,45+60*row 
&PRINT pat .. 

NEXT pat 
END PR08RAl"I 

Figure 16-5. The Make Pattern Chart program 

rows are numbered from 0 to 2. The lowest result of pat MOD IO is 
also zero, so the columns are numbered from 0 to 9. 

The PLOT statement calculates the location in the output win­
dow for each pattern by starting at the point 18, 18 (a 3 pixel mar­
gin from the edge of the window plus 15 to get to the center of the 
first 30 pixel square). The number 32 is added to the horizontal 
coordinate for each column, and 60 is added to the vertical coordi­
nate for each row. Those numbers include room for the 30 pixel 
square pattern plus the desired amount of white space between 
patterns. After each pattern "point" is plotted, the SET PENPOS 
statement positions the graphics pen under the pattern and the 
GPRINT statement prints the pattern number. 

The Make PENMODE Demonstration Chart program in Figure 
16-6 is slightly longer, but not much more complicated. The loop 
that starts with FOR mode= 8 TO 15 controls the printing of the 
reference chart. The loop is executed once for each column in the 
reference chart. The first statement inside the loop calculates the 
horizontal displacement of the column to be printed, with each 
column allocated 48 pixels. The displacement is calculated once 
for each column and stored in the variable horiz instead of being 
calculated in every graphics statement in the loop. 



266 Using Macintosh BASIC 

I Make PENMODE Demonstration Chart 
SET OUTPUT TOSCREEN 
! Prtnt the mustratton 
FOR mode= 8 TO 15 

horiz = 48. :* (mods - 8) 
I Print sideways background pattern 
PAINT RECT 8+horiz,8;48+horiz,28 
PAINT RECT 8+horiz,104;48+horiz,124 
I Print black half of vertical mode pattern 
PAINT RECT 8+horiz,56;28+horiz,96 
SET PENl"IODE inode 
PAINT RECT 8+horiz, 104;28+horiz, 144 
I Print white half of vertical mode pattern 
SET PATTERN WHITE 
PAINT RECT 28+horiz, 104 ;48+ hortz, 144 
I Drew frames DrOIJnd ell the squares 
PENNORl1Al ! Back to black end copy mode 
FRAME RECT 7+horiz,7;49+horiz,49 
F~ME RECT 7+horiz,55;49+hortz,97 
FRAME RECT 7+horiz, 103;49+horiz, 145 
I Print the mode numbers 
&PRINT AT 20+horiz,160; mode 

NEXT mode 
ENDPRO&AAM 

Figure 16-6. The Make PENMODE Demonstration Chan program 

This program leaves the pen at its normal size 1, 1 and uses 
PAINT RECT to draw the patterns in three rectangles in each 
column. The top row represents the background design, the mid­
dle row represents the pattern drawn with each pen mode setting, 
and the bottom row represents the result. The first two PAINT 
RECT statements draw horizontal black stripes to represent the 
background design in the upper half of the top and bottom rect­
angles. Then another PAINT RECT statement draws a vertical 
stripe in the left half of the rectangle in the middle row to repre­
sent the pattern being drawn with the pen mode setting. 



Graphics and Shapes 267 

After drawing the stripe in the middle row, the program uses a 
SET PENMODE statement to set the pen mode to the mode being 
demonstrated. Then it uses that pen mode to paint black on the left 
half and white on the right half of the rectangle in the bottom row. 

Now the program has only a little straightening up to do before 
repeating the loop for the next column. The PENNORMAL 
statement sets the pen mode and pattern back to normal before the 
program draws frames around the three designs in the column. 
The frames are drawn after the contents of the rectangles so the 
frames will not be affected by the unusual pen modes. 

GPRINT is used, once again, to print the proper identification 
under the column. The printing location is specified by the AT 
clause in the GPRINT statement. 



268 Using Macintosh BASIC 

PRACTICE EXERCISES 

l. Write a program to draw a line 5 pixels wide from 30,30 to 
90,12. 

2. Can you write statements to outline an oval with a gray line 6 
pixels wide? Let the top left corner of its bounding rectangle 
be 10, 10 and the bottom right corner 80,200. 

; . 3. Draw a black square bounded by a rectangle whose top left 
corner is at 10, 10 and whose bottom right corner is at 200,200 
and put a white circle inside it. The circle can be bounded by 
the rectangle whose top left corner is at 30,30 and whose bot­
tom right corner is at 180, 180. 

4. How would you erase text that is located in a rectangle whose 
bottom right corner is 200,90 and whose top left corner is 
10,10? 



---cliaf!Fr /7--­

Using the Mouse 

Command: 

• STNWAIT 

System functions: 

• MOUSEH, MOUSEV, MOUSES, MOUSES~ 

The mouse is one of the key elements of the Macintosh user inter­
face. It is most useful as a pointing device. To select a command 
from a menu, you point to it instead of typing the command. To 
mark a position on the screen, you point to it instead of µsing 
control keys to move the cursor. · 

Using the mouse in your programs is not difficult. You need to 
know only two pieces of information about the mouse: where on 
the screen the mouse's pointer, the cursor, is located, and whether 
its button is up or down. This chapter shows you how to get that 
information and how to use it in your programs. 

269 



270 Using Macintosh BASIC 

FINDING THE MOUSE 

• MOUSEH, MOUSEV 

MOUSEH and MOUSEV are numeric system functions that tell 
you where the cursor is located in your program's output window. 
Both take no arguments. MOUSEH gives the horizontal position 
of the cursor, and MOUSEV gives the vertical position. Both posi­
tions are given as the number of screen pixels from the upper left 
corner of the window's output document. 

Unless you change it, the size of Macintosh BASIC's output 
window is 240 pixels in each direction. If MOUSEH is greater than 
240, the cursor will probably be located to the right of the win­
dow's normal viewing area. If MOUSEH is less than zero, the cur­
sor is located to the left of the window. Similarly, if MOUSEV is 
greater than 240, the cursor is probably below the window, and if 
MOUSEV is less than zero, the cursor is above the top of the win­
dow. If you use a SET OUTPUT statement to change the size of 
the output window, the window's new height and width is mea­
sured in pixels (72 pixels per inch). 

You should keep in mind that the output window has scroll 
bars. What you see in the window frame is only a portion of the 
output document. If you have used the scroll bars or if your pro­
gram has printed something outside the original viewing area, the 
upper left corner of the output document may not coincide with 
the upper left corner of the window frame. When the two do not 
coincide, the MOUSEH and MOUSEV functions return the posi­
tion of the cursor with respect to the upper left corner of the doc­
ument behind the window, even if that corner has been scrolled 
outside the visible area. 

The following short example uses MOUSEH, MOUSEV, and 
the PLOT command to turn the cursor into a drawing tool. The 
semicolon at the end of the PLOT command makes your drawing 
a continuous line by plotting a line instead of a single point. 
Without the semicolon, the program would leave gaps whenever 
you moved the cursor faster than BASIC could plot all the individ­
ual points. 

! Draw with mouse pointer 
DO 

PLOT MOUSEH, MOUSEY; 
LOOP 



Using the Mouse 271 

TESTING FOR PROXIMITY 

Your program needs to know more than just the location of the 
cursor in the window. It also needs to know whether the cursor is 
within a specific area, like a rectangle, or close to a certain point. 
If, for instance, you want to give the program instructions by click­
ing the mouse button with the cursor in a specific location, the 
program should not require the click to be at a single point 
because you could waste time trying to position the cursor on a 
single screen pixel. Instead, the program should accept clicks 
within a reasonably sized area of the screen. 

Because tests of the cursor location are used so of ten, it makes 
sense to define them as functions. The function InRect- in Figure 
17-1 is a Boolean function that tests whether or not the cursor is 
located inside the rectangle whose top left point is at hl ,vl and 
whose bottom right point is at h2,v2. 

The first line after the function definition sets the value of the 
function to true. The second line tests whether the horizontal posi­
tion, MOUSEH, is in the rectangle and changes the value of the 
function to false if it is not. The third line changes the value of the 
function to false if MOUSEV is not in the rectangle. 

The InRect- function returns a value of true if the cursor is 
located within the specified rectangle and false if it is not. You can 
use the returned value in additional function definitions as well as 
in your main program. For instance, the statement in Figure 17-2 
uses the InRect- function in the definition of a new function 
In Window-, which returns the value true if the cursor is in the 
normal output window and false if it is not. 

FUMC'flON lnRect"'(h1,vl,h2,v2) c 

,fnRect ... = TRUE .•.. ··•··· .. < • 
. If (MOUSfitl <b1) OR (MO' 

IF (MOUSEY< vi) OR (MOU 
11~) TtlfN In .. > =' FALSE 

··v2}Tt1EN lnReht~·,;, FALsE 
END FUNCTION 

Figure 17-1. In Rect - function 



272 Using Macintosh BASIC 

Figure 17-2. InWindow function 

The shape most appropriate for measuring the proximity to a 
single point is a circle centered on the point. The radius of the 
circle is the number of pixels away from the point you will accept 
as a "hit" or a "match" for that point. The Boolean function 
MouseNear- in Figure 17-3 returns true if the cursor is less than 10 
pixels away from the target point and returns false if the cursor is 
10 or more pixels from the point. 

You can, of course, use a different number in place of 10 in the 
MouseNear- function if you want to require greater or less preci­
sion in the positioning of the cursor. You can also let your pro­
gram perform calculations with the actual distance of the cursor 
from your target point. If you want to do this, use the numeric 
function MouseNear in Figure 17-4, which returns the distance 
between the two points. 

GETTING INPUT FROM THE MOUSE 
• MOUSES, MOUSES-

MOUSEB and MOUSEB- are system functions that tell your pro­
gram whether or not the mouse button is down. Neither function 
takes any arguments. MOUSEB returns a number, and MOUSEB-

Figure 17-3. MouseNear - function 



Using the Mouse 273 

FUNCTION MouseNear( x ,y) 
MouseNeer = SQR((HOUSEH-x)A2 + (HOUSEY-y)A2) 
END FUNCTION 

Figure 17 -4. MouseNear function 

returns a Boolean value. When the mouse button is down, 
MOUSEB returns 1 and MOUSEB- returns true. When the mouse 
button is not down, MOUSEB returns 0 and MOUSEB- returns 
false. You can use either function when you want to test whether 
the button is down: 

IF MOUSEB= 1 THEN PRINT "The button is tbwn." 
IF MOUSEB- THEN PRINT "The button is cbwn." 

The processing speed inside the Macintosh is much faster than 
the reponse time of either people or mechanical devices like mouse 
buttons. If you are writing a program that is supposed to take an 
action like plotting a point each time the mouse button is pressed, 
your program will be fast enough to take the action several times 
during a single press of the mouse button. To ensure that the 
action is recorded only once for each press of the mouse button, 
your program needs to wait for the mouse button to return to the 
up position after it completes the action. 

Your program can use either MOUSEB or MOUSEB- to test 
whether the mouse button has been released. The loops 

DO 
IF NOT MOUSEB- THEN EXIT DO 

LOOP 

and 

DO 
IF MOUSEB = 0 THEN EXIT DO 

LOOP 



274 Using Macintosh BASIC 

Figure 17-5. WaitButtonUp subroutines 

are equivalent ways to wait for the mouse button to be released. 
The appropriate structure to use for these loops is a subroutine, 
not a function, because the loops actually wait for an action to 
occur instead of merely returning a value. The subroutine Wait­
Button Up in Figure 17-5 can be called from your main program 
with the statement CALL WaitButtonUp. 

WAITING FOR THE MOUSE BUTTON 
• BTNWAIT 

The BTNWAIT command is a shortcut. It causes the program to 
wait until the mouse button is pushed in the program's output 
window. If the mouse button is already down when BTNWAIT is 
executed, it waits until the button is released and pushed again. 
BTNWAIT is a shorter way to execute this program segment: 

! Wait for mouse click in window 
IF MOUSEB- THEN 

DO ! Wa1t for button up 1f 1t was oown 
IF NOT t10USEB- THEN EXIT DO 

LOOP 
ENDIF 
DO 

IF MOUSEB- AND lnWindow-THEN EXIT DO 
LOOP 
ENDPR08RAM 



FUNCTION lnWindow-
1 nWindow- = TRUE 

Using the Mouse 275 

IF CMOUSEH<O) OR (MOUSEH>240) THEN lnWindow-=FALSE 
IF (MOUSEY<O) OR (MOUSEV>240) THEN lnWindow-=FALSE 

END FUNCTION 

The BTNWAIT command can be inserted into your program at 
any point where you want the program to wait for the mouse but­
ton to be pushed. Your program should, of course, print a message 
to tell you why it is waiting instead of just stopping abruptly with 
no warning. Since a message should be printed every time 
BTNWAIT is used, the two actions can be combined in a subrou­
tine. This subroutine can then be called with a single statement 
whenever the PRINT /BTNWAIT combination is desired. The 
subroutine in Figure 17-6, which can be executed by the statement 
CALL Button Wait, is one way to do this. 

EXAMPLE PROGRAMS 

The Pattern Changer program in Figure 17-7 changes the pattern 
of a rectangle if the mouse button is clicked while the cursor is 
inside the rectangle. The program combines the use of 
MOUSEB-, the function InRect-, and the subroutine WaitButtonUp. 

The program begins by setting the variables hi, vi, h2, and v2 to 
the values that define the rectangle to be displayed. Then it initial­
izes the variable pat at zero, uses a SET PATTERN statement to 
initialize the graphics pattern, and paints the display rectangle. 

SUB ButtonWait 
PRINT "Click mquse blJttorl to continue ... " 
BTNWAIT 

END SUB 

Figure 17-6. ButtonWail subroutine 



276 Using Macintosh BASIC 

I Pattern changer 
! Changes pattern if mouse button is clicked 
! 1ns1de the rectangle. 
ht= 20 
v1=20 
h2 = 100 
v2 = 100 
pet= 0 
SET PATTERN pat 
PAINT RECT hl ,vl; h2,v2 
SET PENPOS 20, 130 
&PRINT "Click in pattern to change it." 
DO 

IF MOUSEB- THEN 
IF lnRecr(hl,Yl ,h2,Y2) THEN 

pat•pet+I 
IF pat > 37 THEN pat = 0 
SET PATTERN pat 
PAINT RECT h1 ,YI ;h2,Y2 

ENDIF 
CALL WaitButtonUp 

ENDIF 
LOOP 
ENDPROSRAM 
FUNCTION lnRecr(hl ,vi ,h2,v2) 

lnRecr =TRUE 
IF ( MOUSEH < h 1 ) OR ( MOUSEH > h2) THENJnRecr = FALSE 
IF (MOUSEY < v 1) OR (MOUSEY > v2) THEN !l'lf\ect"' 

END FUNCTION 
SUB WaitButtonUp 

DO 
IF NOT MOUSEB- THEN EXIT DO 

LOOP 
END SUB 

Figure 17-7. Pattern changer 

The SET PENPOS statement positions the graphics pen 30 pixels 
below the left edge of the rectangle, and the GPRINT statement 
prints a message there so you know what the program is waiting 
for you to do. 



Using the Mouse 277 

The rest of the program, with the exception of the function 
definition, is contained in a single DO loop that in turn contains a 
multiple-line IF statement. The statements inside the multiple-line 
IF statement are executed only if MOUSEB- is true-that is, if the 
mouse button is down. If the mouse button is not down, the loop 
just keeps repeating until the button is pressed. 

When the mouse button is pressed, the statements inside the IF 
MOUSEB- statement are executed. The first of these is another 
multiple-line IF statement that uses the InRect- function to test 
whether the cursor is inside the display rectangle. If the cursor is 
inside the rectangle, the program adds one to the variable pat, sets 
the new pattern, and repaints the rectangle. Note that if the vari­
able pat reaches 37, the number of the last defined pattern, the 
program resets it to pattern 0. The CALL to the subroutine Wait­
Button Up then causes the program to wait until the mouse button 
has been released before repeating the loop. 

The Roundrect Changer program in Figure 17-8 allows you to 
see the effects of various WITH coordinates on the shape of a 
rounded rectangle. The program displays a painted ROUNDRECT 
plus the rectangle that defines the roundness of the ROUND­
RECT's corners. When you use the mouse to drag the bottom right 
corner of the roundness rectangle to a different location, the pro­
gram redraws both rectangles and displays the new coordinates of 
the bottom right corner of the roundness rectangle. Figure 17-9 
shows two output windows with the roundness rectangle set to 
different shapes. 

After initializing variables and drawing the objects in their start­
ing locations, the program enters a DO loop, which tests whether 
the mouse button is down. If the button is down, the program uses 
the function Mousenear- to test whether the mouse is close to the 
movable corner of the rectangle. If the mouse is close enough to 
the point, the program executes a DO loop that keeps erasing and 
redrawing the rectangle and oval until the mouse button is 
released, and then the program repaints the rounded rectangle. If 
the mouse is not close enough to the starting point, an ELSE 
statement calls the subroutine WaitButtonUp to wait for the mouse 
button to be released. 

Note that the MouseNear- function tests whether the cursor is 
within ten pixels of the point passed as an argument to the func­
tion. Ten pixels is a fairly long distance. It was chosen in this 



278 Using Macintosh BASIC 

I ROUNDRECT changer' 
! Lets the mouse dreg right bottom corner 

Of therectangle to Change the shape. 
h• so::v-.·so 
rh1=50: rv1=100: rh2 = 150: rv2 = 150 
FRAME RECT o.o; h.v 
FRAME~~ 0,0; h,V 
PAINT RGµNDREc:IT rh1 ,rv 1; rh2,rv2 WITQ h,v 
DO 

IF HOUSEB- THEN 
If Mousenear'"'(h,v) THEN 

oO ... 
hOld=h 
v01d •V 

h = HOUSEH: v = HOUSEY 
IF v <> .vOld Oil.I\.~> hOld THEN 

ct.EARWINQQw. 
FllAl'IE RECT 0,0; h,v 
fRAftE OYAL 0,0; h,v 
SETPENPOSh,v 
~-IMT h; ",";v; 

. ENDIF 
IF NOT HOUSEB- THEN EXIT DO 

LOOP 
•.•.... PAINT ROUNDRE«;l':tM ,ry 1.;.rh2,rv2 WITH h,v 

El.$£ I MoUseNer"' is FAl$E 
CALL WattButtonUp 

£11DIF I MOUSllNear ... 
ENDtf I M0USE:8 ... 

LOOP 
DID Pacawt . 
FUNCTIGll MCIUWW .... ( x ,y) 
MGU81Nar ... • SQR((t10US£H-x)"2 • ( HOUS£Y-y )"2)} .10 
EliD FUNCTION . . 
SUB WeltButtonUp 

DO 
IF NOT "OUSEB- THE• EXIT DO 

. LOOP 
END au•· 

Figure 17 -8. Roundrect changer 

instance to make the program easy to use. You can, if you wish, 
select a shorter distance. 



r a File Edit Search Fonts Program 

TeHt of Roundrect Changer 
! ROUNDRECT change 
! Lets the mouse d ra ,.1-.,.......,--,.---------',.__-.== 

! of the rectangle t 
h = 50: v = 50 
rh 1 = 50: r v 1 = 1 00: 
FRAME RECT 0,0; h, 
FRAME OVAL 0,0; h, 
PAINT ROUNDRECT 
DO 

IF MOUsrn- TH 
IF Mousenear­

DO 
hOld = h 
vOld = v 
h =MOU 

Usi ng the Mouse 279 

Figure 17-9. Running the Roundrect Changer program 

The exam pie in Figure 17-10 shows how you can use the mouse 
to drag an object from one loca~ion to another in the output win­
dow. A dotted outline of the object follows the mouse movements 
while you hold the button down, and the entire obj ect follows as 
soon as you release the button. The impression that the dotted line 
is moving is created by erasing and redrawing it very quickly, 
changing the location each time to match the movement of the 
mouse. 

The program fram es a rectangle ar1d paints an oval in it to 
create th e object to be moved. Then it enters the familiar DO ldop 
with multiple-line IF sta tements. If the mouse button is pressed in 
the rectangle, the program saves the original mouse position in 
variables named oldmouseh and o ldmousev. These variables are 
used later to calculate how far the mouse has been moved from its 
original position. The distance the mouse h as been moved is kept 
in incrh and incrv, so they are initia lized to zero. The program sets 
the graphics pen pa ttern to gray to get a dotted line and sets the 
pen mode to 10 so the dots in the line will be visible against any 
background. 



280 Using Macintosh BASIC 

I Object mover 
! Shows how you can let the mouse drag 
! obJ ects around tn your output wtnmw. 
h 1 = 10: v 1 = 10 ! "original" location of object 
h2 = 70: v2 = SO 
FRAttE RECT hl .vl; h2,v2 
PAINT OVAL h1 ,vt; h2,v2 
DO 

IF MOU$EB- THEN 
! Is the mouse in the rectftrigle? 
IF lnRecr(ht ,Vt ,h2,v2)THEN 

. ! Yes, so let it drag the obj eel 
oldmotiseh = MOUSEH. 
oldmolJSe'\I = MOUSEY• 
1ncrh ,;, O: incrv = · o · 
SET PATTERN GRAY ! Set to 0rcry w get clotted line 
SET PENMODE 10 tset to XOR tO.tiee line every\Yhei"e 

DO IF!~:i~~~l~3:.~":h=~ ~:a't'~ THEN 
FRAME RECT h 1 + incrh ,v 1 + incrv; h2+ incrh ,v2+ incrv 

I Draw clotted line in new location 
FRAME RECT hl +incrh,vl+incry; h2+inc:rh.v2+incrv 
.·.> • 1 X()R on top of ttle 11ne to er&Se 1t · 
.incrh = MOUSEJI - oldmOuseh 
incrv = MOUSEY - oldmousev 

ENDIF 
IF Nol MOUSEi- THE.N EXIT DO 

LOOP . . .· ..• ·.· 
! Mouse buttbn is up no¥i, so move the object. 
ERASE RECT hi ,vi; h2,v2 
ht =ht+ tncrh 
h2 == h2 + incrh 
v t = v I t>incrv 
v2 = v2 + incrv 
PENHOR"AL 
FRAME RECT ht ,v t ; h2 ,v2 
PAINT O!AL hi ,vi; h2,y2 ·· 

ELSE CALL wanForMouseUp 
ENDIF I lnRecr 

ENDIF ! MOUSES-

Figure 17-10. Object mover 



Using the Mouse 281 

LOOP 
END PROBRAtt 
FUNCTION lnRect;"'(h1 ;vi ,h2,v2) ;• ... •c· · 

lnRect"' ==TRUE . . .··· ... ····•. > .} > • • 
IF (HOUSEH<.hl) OR (HOUSEH> h2) THENI~~ .... ~ FALSE 
IF (HOUSEY < v 1) OR C HOUSEY > v2) THEN I~~- = FALSE 

END FUNCTION . 
SUB W~itForM~p 

DO 
IF NOT . B ... THEN EXIT DO 

LOOP 
END SUB 

Figure 17-10. Object Mover (continued) 

A DO loop then controls the erasing and redrawing of the dotted 
outline until releasing the mouse button causes an exit from the 
loop. An IF statement allows the erasing and redrawing to occur 
only if the mouse has been moved from its original position. This 
prevents the dotted outline from appearing until the movement 
begins. The first FRAME RECT statement in the loop draws a 
dotted· outline, and the second FRAME RECT statement imme­
diately erases it. The program then calculates a new location from 
MOUSEH and MOUSEV and repeats the process until the mouse 
button is released. 

Releasing the mouse button allows the program to move past 
the end of the DO loop. An ERASE RECT statement erases the 
original rectangle, using the carefully preserved variables that 
marked the original rectangle's corners. Then the program adds 
incrh to the horizontal values and incrv to the vertical values to 
change the "original" location to the new location. 

The program uses a PENNORMAL statement to reset the pen 
pattern to black and the pen mode to 8 (normal copy mode) before 
drawing the object in its new location. Because the variables that 
contain the original position of the rectangle (hl ,vl; h2,v2) are 
updated to reflect the new "original" position of the rectangle, the 
loop can be executed and the object moved again without any fur­
ther preparations. 



282 Using Macintosh BASIC 

PRACTICE EXERCISES 

1. Write a loop that puts a dot at each place where the mouse 
button is pushed down. Don't worry about erasing any of 
the dots. 

2. Write a loop that draws a line from each place where the 
mouse button is clicked to the next place the mouse button is 
clicked. This loop will allow you to draw a design by click­
ing the mouse button in different locations in the output 
window. 

3. Can you write a subroutine with a loop that waits until either 
the mouse button or a key on the keyboard is pressed? You 
should exit from the subroutine if either event occurs. Have 
your main program print something after the call to the sub­
routine so that you can tell when control returned from the 
subroutine to the main program. 

4. The loop 

DO 
PLOT MOUSEH. MOUSEY; 

LOOP 

keeps drawing all the time. Can you change it to make it 
draw only while the mouse button is being held down? Don't 
forget to tell the PLOT command to end the line when the 
mouse button is released. 



---cltaftir 18--­

Making Music 

Commands: 

• SOUND, STOPSOUND 

Functions: 

• TONES, SOUNDOVER-

The Macintosh has three different sound synthesizers: a square­
wave synthesizer, which generates single-voice sound; a four-tone 
synthesizer, which generates four different sounds simultaneously; 
and a free-form synthesizer, which can make more complex sound 
effects. Macintosh BASIC contains commands designed to help you 
use the square-wave synthesizer. You can use the four-voice and 
free-form synthesizers only if you supplement BASIC with routines 
written in assembly language using the Apple 68000 Development 
System. 

283 



284 Using Macintosh BASIC 

USING SINGLE-VOICE SOUND 

•SOUND 

The simplest sound is a single beep. You can make a beep by using 
the simple statement SOUND. 

SOUND ! Beeps 

To make a sound more musical than a beep, follow the word 
SOUND with a group of three numbers called a triplet. The three 
numbers define the sound's frequency, volume, and duration. You 
can use any type of numeric variable or expression in the triplets, 
but each must have a value in the range 0 to 32767 so BASIC can 
convert the number to an integer. The numbers are separated from 
each other by commas. 

SOUND 1 00 ,200, 1 20 I Low, loud note 2 seconds long 
SOUND 4000,50,30 ! H1gh, soft note half a second long 

The first number is the frequency of the desired sound, measured 
in cycles per second, or Hertz. A low frequency produces a low tone 
and a high frequency, a high tone. You can supply your own fre­
quency number if you wish, but it is usually more convenient to 
use the TONES function described in the next section. 

The second number is the volume. Volume is measured on an 
arbitrary scale ranging from 0 (silence) to 255 (loudest). If you 
supply a number outside that range, BASIC brings your number 
inside the proper range by performing a MOD 256 operation on it. 
A value of 255 for volume produces the loudest sound consistent 
with the volume setting in the Control Panel desk accessory. 

The last of the three numbers is the duration of the sound in 
60ths of a second. A duration number of 60 produces a sound one 
second long, and the maximum duration number of 32767 produ­
ces a sound lasting a little over 9 minutes. You can specify a period 
of silence between sounds by giving the duration of the silence as 
the third number and using zero (no volume) for the second 
number. 

You can specify more than one sound in the same SOUND 
statement. In order to do so, give a complete triplet (all three 
numbers) for each sound you want, and separate the triplets from 



Making Music 285 

each other with semicolons. For example, 

SOUND 100,200, 1 O; 1100,200, 10 ! Plays two short notes 
SOUND 1200,200, 1O;1,0,30; 1200,200, 10 

! Two notes separated by half a second of silence 

GETTING THE RIGHT NOTES 

•TONES 

TONES is a function that returns the frequency corresponding to a 
note in the musical scale. TONES uses the chromatic scale, which 
is the scale corresponding to a piano keyboard. TONES(O) returns 
the frequency for Middle C. 

Each increase or decrease in the argument of TONES represents 
a half step, or one key (counting both white and black keys) on the 
piano keyboard. For instance, TONES(-1) returns the frequency 
for B below Middle C, and TONES(l) returns the frequency of C#, 
a half step above Middle C. There are twelve keys in an octave 
(seven white keys and five black keys), so an increase of 12 in the 
argument of TONES returns the frequency of the note an octave 
higher than the previous note. The TONES function is frequently 
used as part of a SOUND statement. 

freq = TONES( 0) I Puts frequency of Mictlle C in freq 
SOUND TONES( 0),200,60 ! Plays Middle C for 1 second 
SOUND TONES( - 1 ) ,200 ,60 ! Plays 8 below M1ck11e c 
SOUND TONES( 1) ,200,60 ! Plays C# just above Mi011e C 
SOUND TONES( 12) ,200,60 I Plays C above Mictlle C 

TONES returns valid frequencies for arguments ranging from 
-36 to +48. Thus, TONES covers a range of seven octaves, three 
below Middle C and four above it. Table 18-1 shows the notes 
whose frequencies are returned by TONES for each argument 
within this range. 

Figure 18-1 shows notes in the treble clef labeled with their 
TONES numbers. If you already have sheet music for the song you 
want to enter, you can locate the correct TONES number for each 
note by comparing the music with the figure. 



286 Using Macintosh BASIC 

Table 18-1. Tones 

Note Tones 

c -36 -24 -12 0 12 24 36 48 
C# -35 -23 -11 l 13 25 37 
D -34 -22 -10 2 14 26 38 
D# -33 -21 -9 3 15 27 39 
E -32 -20 -8 4 16 28 40 
F -31 -19 -7 5 17 29 41 
F# -30 -18 -6 6 18 30 42 
G -29 -17 -5 7 19 31 43 
G# -28 -16 -4 8 20 32 44 
A -27 -15 -3 9 21 33 45 
A# -26 -14 -2 10 22 34 46 
B -25 -13 -1 11 23 35 47 

Figure 18-1. Notes on the treble clef with TONES numbers 



Making Music 287 

TAKING SOUND VALUES FROM AN ARRAY 

You can tell BASIC to take the sound triplets directly from an inte­
ger array. This is especially convenient when you want to play a 
long tune or want to play the same tune more than once. When 
you have the triplet values in an integer array, you follow the key­
word SOUND with the number of tones, a space, and a pointer to 
the element of the array that contains the beginning of the first 
triplet. 

SOUND 10 otr~psZ(O) I Play 10 notes 

You must separate the two items by a space, not a comma. If you 
use a comma, you will receive an error message. The@ sign tells 
BASIC to pass a pointer to the address in memory that is occupied 
by the array element you specify. The array must be an integer 
array (with the% sign as the last character of its name) and should 
have only one dimension, so the triplet values are stored in adja­
cent memory locations. 

You will usually get the values to put in the array from DATA 
statements in your program or from a disk file. Remember that the 
first of the three triplet values is the frequency, not the note 
numbers used by TONES. If your data has note numbers, you need 
to use TONES to get the frequency as you put the data in the array. 
The @ pointer does not have to point to the first element of the 
array, as long as it points to the beginning of the first triplet to be 
played. Here is a short example that puts triplets from a DATA 
statement into an array and then plays the tune: 

Dltt arrayZ( 12) 
DATA 1484 ,200,20, 1177 ,200 ,20 
DATA 990,200,20, 1484, 190,40 
FOR count= 1TO12 

READ arrayZ (count) 
NEXT count 
SOUND 4 •arrays ( 1 ) 
END PROGRAM 



288 Using Macintosh BASIC 

THE SOUND BUFFER 

Macintosh BASIC maintains a single area in memory to hold the 
data that describes sounds waiting to be generated by the sound 
synthesizer. This memory area is called the sound buffer. It operates 
just like a line at the supermarket or the post office. The first one 
in line is the first one out. Technically, this is called a "first-in 
first-out" buffer. 

When BASIC executes a SOUND statement in your program, it 
adds the sounds requested by your statement to the list in the sound 
buffer. Then it starts the sound synthesizer if the synthesizer is not 
already playing. Once these two tasks are done, BASIC starts exe­
cuting the next statement in your program. Thus, your program 
can be doing other things while the music is playing. The sound 
keeps playing until it is finished, or you close your program's out­
put window. 

If the sound synthesizer is already in use when BASIC executes a 
SOUND statement in your program, the sounds requested by your 
statement are played after all the other sounds \:.hat were already in 
the buffer. Once a sound description is added to the buffer, BASIC 
does not know or care what program sent the sound data. If you 
have two BASIC programs trying to generate sound at the same 
time, sounds will be placed into the sound buffer from each of the 
two programs. Because of this, the sounds requested by one pro­
gram's SOUND statement may occur between sounds requested by 
SOUND statements in the other program. 

STOP}!ING SOUND EARLY 
• STOPSOUND 

STOPSOUND stops all sound generation instantly. It turns off the 
sound synthesizer and empties the sound buffer. If several BASIC 
programs are runging simultaneously, STOPSOUND stops the 
sound from all of them. Sound starts again when one of the pro­
grams executes a SOUND statement. 

t· ... 1· 

STOPSOUND I Stops the sound 



SUB WaitSoundOver 
DO 

If SOUNDOVER- THEN EXIT DO 
LOOP 
END SUB 

Figure 18-2. WaitSoundOver subroutine 

DETECTING SILENCE 
• SOUNDOVER-

Making Music 289 

SOUNDOVER- is a Boolean system function that takes no argu­
ments. It returns true when no sound is being generated and false if 
sound is being generated. When SOUNDOVER- returns true, the 
SOUND buffer is empty. 

IF SOUNDOYER-THEN PRINT "Sound is done." 
IF NOT SOUNDOYER- THEN PRINT "Still playing." 

Sometimes you may want your program to wait until the sound 
is finished. You will need to do this if you use a musical introduc­
tion to your program or if you are making graphics move with the 
sound. If your program might be running simultaneously with 
another program that generates sound, you might want to make 
certain the other program's sound has finished before this one 
starts. The subroutine WaitSoundOver in Figure 18-2 can be used 
for this purpose. 

EXAMPLE PROGRAMS 

The program in Figure 18-3 is a fairly simple example of a pro­
gram that converts note numbers to frequencies in the SOUND 
statement itself. The program plays one verse of a traditional song, 
"Gaudeamus Igitur." 



290 Using Macintosh BASIC 

! Gau 
~1Jmt-4B ·''~~i !'62~£~ ..... , 
DIM not~:t;JnumNotef>t~dur~ ( numNotes) 
! Notes ' · ······ · 

" . ~~TAJ 
j::ii::i::: /::DATA" , 

DATAl 
DATAr 

Figure 18-3. Gaudeamus Igitur 

The first program statement sets the variable numNotes equal to 
62, the number of notes in the DATA statements. The number of 
notes does not change during this program, so it does not have to 
be in a variable. It is put there, though, as a programming conven­
ience, so if you change the number of notes in the DATA state­
ments, you only have to change the number once instead of five 
times in the program. 

The first four DATA statements in this program hold the note 
numbers for the song, and the second four DATA statements hold 
the durations of the notes. This program uses the same volume 



Making Music 291 

setting for all the notes, so it does not need to keep volume settings 
in DATA statements or an array. After the DATA statements, the 
program has two FOR/NEXT loops that read the DATA items and 
store them in arrays. The first loop puts the note numbers in an 
array named note%, and the second loop puts the duration 
numbers in an array named dur%. 

Repeated execution of the SOUND statement in the last FOR/ 
NEXT loop plays the song. The SOUND statement takes the note 
number for each note from the note% array and uses the TONES 
function to convert it to a frequency. The statement uses a volume 
setting of 200 (fairly loud) for all notes and takes the duration of 
each note from the dur% array. 

The Mini-piano program in Figure 18-4 provides a way to get 
note and duration numbers for a tune. It simulates a piano key­
board with Middle C located at the G key and C an octave higher at 
the RETURN key. Holding the SHIFT key down while you press a 
letter key makes the note an octave higher. Each time you press a 
key, the program looks at TICKCOUNT and records the time since 
the previous keypress. You will need to refine the resulting dura­
tion numbers later by hand to allow for rests between notes. 

! Mini- piano 
! Record Tones ani:I Durations 
DIM trans( 255) ,tZ(200) ,length~~?~10) 
PRINT "MINt-·PtANO" 
PRINT "Remembers the tuneyouplay" 
PRINT "Press BACKSPACEtoei'11;fy0ur tune," 
! 'g' on the keyboard is Middle C · . . .. 
DATA a,w,s,e,d,r ,f,g,y,h,u,j ,k,o,l,p,;,[ ,';,,, · • 
DATA A,W ,S,E ,D,R,F ,a,v ,H,U,J,K,O;l.)>;:if/:';·;~ 
! Put data in translation arriiy . . . 
FOR i = 1 TO 19 . '.'(:~ .. 
READ temp$ 

Figure 18-4. Mini-piano 



292 Using Macintosh BASIC 

trans(ASC(temp$)) = i+4 ! First octave 
NEXT i 
FOR i = 1TO19 
READ temp$ 
trans(ASC(temp$)) = i + ~6 ! SHIFT ~.ey octave 
NEXT i 
trans( 13) = 24 ! Data for RETURN key 
n = I . ! Start with ~otenumber· one · 
! SaveandplaynotesuritilBACKSPACE key ispr·essed 
DO 

a$ = INKEY$ T Check keys 
IF a$ <>"THEN ! Test if key was pressed 

tc = TICKCOUNT ! Get the time 

LOOP 

1th= tc - tcOld ! Subtract previous time 
If 1th< o THEN 1th= lth + 32768 ! Wrap-around 
lengthlll(n-1) = 1th ! Save length of note 

· tcOld = tc ! Save the time 
If a$= CHR$(8) THEN EXIT DO ! Exit if BACKSPACE 
note = tra~ASC( a$)) !Translate key to note·. 
tll; ( n) = note ! Storethe note 
SOUND TONES( note) ,200, 10 ! Play it 
n = n + 1 ! Setfor next n.ote 
ENDIF 

! Rep lay the tune 
FOR i = 1 TO n- 1 

SOUND TONES( t:g ( 0) ,200 ,length :g ( I) 
NEXT i 
! Save the triplets to a disk me 
OPEN # 1 : "Song", APPEND 
PRINT # 1: n-1 ! Number of triplets 
FOR i = 1 

Figure 18-4. Mini-piano (continued) 



Making Music 293 

The program keeps recording notes until you press the BACK­

SPACE key. At that time it replays the stored tune and then writes 
the sound triplets for the tune to a sequential disk file named 
"Song." Musicians will find many ways to improve this program. 
It does, however, provide a slightly better way than trial and error 
to find the right notes. 

The first statement dimensions three arrays. The array trans is 
used to store note numbers that correspond to the ASCII value 
resulting from a keypress, so it is dimensioned to cover the ASCII 
range, 0 to 255. The arrays t% and length% are used to record the 
tones and lengths of your notes. You can dimension the arrays to 
hold more than 200 notes if you wish. Three PRINT statements 
display brief instructions in the output window. 

The first DATA statement contains the characters of the Macin­
tosh keys that represent piano keys in ascending order. The single 
quotation mark is enclosed in double quotation marks so BASIC 
will treat it as data instead of the beginning of a string. The second 
DATA statement contains the characters of the same keys with the 
SHIFT key held down. 

Two FOR/NEXT loops read each DATA item, conveq the char­
acter to its ASCII value, and use the ASCII value as an index to the 
location in the trans array to store the number of the note the char­
acter represents. The note number 24 for the ~ETURN key, ASCII 
13, is stored in a separate statement because thi: RETURN key can­
not be typed as a character in a DATA statement. 

The recording portion of the program consist~ of a DO loop that 
continually checks the INKEY$ £u11ction. When a key is pressed, 
the program records TICKCOUNT, calculates the number of ticks 
that have passed since the previous key was pressed, and stores the 
result at the previous note's location in the length% array. When 
you press the first key, the length value is stored in element 0 of the 
array, which is never used again. Then the tick count is saved in 
tcOld so it can be used in the next time calculation. 

If the BACKSPACE key was pressed, the program exits from the 
DO loop. If another key was pressed, the program obtains the cor­
responding note by using the ASCII value of the keypress character 
as an index into the array trans. The rest of the loop then stores the 
note number in the t% array, plays the note for a short time, and 
increases the index n for the next note. 



294 Using Macintosh BASIC 

After completion of the main recording loop, the program uses a 
SOUND statement in a FOR/NEXT loop to replay the tune using 
the duration numbers it calculated and then stores the data in a 
disk file. Note that the program uses TONES to convert the note 
numbers to frequencies as it writes them to the disk file, so the 
numbers in the file are triplets ready to be read and played. 



Making Music 295 

PRACTICE EXERCISES 

1. Sometimes only numeric digits are acceptable when your 
program is getting input from the keyboard. Instead of wait­
ing until the entire entry is typed to check for improper char­
acters, it is more informative to beep as soon as the improper 
key is pressed. Can you write a WHEN KBD loop that beeps 
whenever a character other than the digits 0 through 9 is 
entered? 

2. What statement would you write to play the note G above 
Middle C at half volume for half a second? 

3. If sound triplets are stored beginning with element 1 of an 
array named trips%, what statement would you write to play 
nine notes starting with the second note stored in the array? 

4. What combination of statements would you use at the begin­
ning of your program to stop any sound that might already 
be playing and to guarantee that there is at least one second 
of silence before your music begins? 



---&tjour--­

The Macintosh Toolbox 
- - --- ---·-



---cltaftir!9--­

Using the Macintosh Toolbox 

Command Identifier: 

•TOOLBOX 

Function Identifier: 

•TOOL 

Functions: 

• VALPOINTER, HIGHWORD, LOWWORD 

• INDIRECT], ADDRESS] 

Much of the power and flexibility of Macintosh software comes 
from the routines contained in the Macintosh's read-only memory 
(ROM). These routines are called the Macintosh toolbox. This 
chapter describes how to use the Macintosh toolbox routines from 
BASIC. It provides a general background and then describes the 
methods for calling and passing arguments to the toolbox routines. 

Apple Computer's Macintosh BASIC manual does not describe 
how to access the toolbox routines, and Apple does not provide any 
official support for the use of these routines from BASIC. You 
should treat these routines as an undocumented feature and use 
them with caution. 

299 



300 Using Macintosh BASIC 

THE TOOLBOX 

The Macintosh contains over 400 subroutines and functions in its 
read-only memory. These routines provide the foundation for all 
the major programs that are written for the machine, including 
BASIC and other high-level languages. The ROM routines include 
QuickDraw graphics (the high-speed calculations and 
display of graphics on the screen), the low-level portions of the 
Macintosh operating system, and utilities to create and manipulate 
windows, menus, controls, and other aspects of the Macintosh user 
interface. While only this last group of utilities is properly called 
the Macintosh toolbox, the term "toolbox" has come to be applied 
to all the routines in the machine's read-only memory. 

The descriptions of toolbox routines in this book are only a brief 
introduction to some of the most useful routines in the toolbox. 
Appendix D contains a complete list of the toolbox routines recog­
nized by BASIC. If you want to explore the toolbox in greater 
detail, you should purchase a copy of Apple's book, Inside Macin­
tosh (Apple Computer Corporation, Cupertino, Calif.: 1985). 

TOOLBOX SUBROUTINES AND FUNCTIONS 
• TOOLBOX, TOOL 

Apple Computer has given Macintosh BASIC the ability to recog­
nize the names of the most useful toolbox routines. To use one of 
these toolbox routines, you must precede the name of the routine 
with a special keyword and use the correct arguments. You use the 
word TOOLBOX in front of subroutine names and the word 
TOOL in front of function names. 

In the following listing, the first line calls the toolbox routine 
DrawMenuBar, which draws the menu bar across the top of the 
screen. The second line calls the toolbox function StringWidth, 
which returns the width of a string in screen pixels. 

Tool Box DrawMenuBar ! Call to toolbox subroutine 
width= Tool StringWidth (string$) ! Call to toolbox function 

At this point you do not need to be concerned about what the 
individual toolbox routines do, only about the way you call them. 



Using the Macintosh Toolbox 301 

LEAVING BASIC'S PROTECTED ENVIRONMENT 

When you use the toolbox routines, you leave BASIC's "safe" pro­
gramming environment and enter a harsher environment where an 
error is usually fatal. If you like the safety of BASIC's error check­
ing, you may not want to venture into the toolbox at all. But if you 
enjoy solving puzzles and experimenting to see what works, you 
may enjoy exploring the toolbox. 

Most of the individual toolbox routines are quite simple. The 
difficulty in using them is that there are so many of them. You have 
to learn how to use them together -in what order and in what 
combinations. In addition, you have to learn which things are 
taken care of by BASIC and which things you need to do yourself. 

Your BASIC program is not in complete control of the machine. 
Your program operates in an environment that is created and 
maintained by Macintosh BASIC. When you use toolbox routines, 
you need to keep in mind that BASIC is also using the toolbox to 
maintain its programming environment. The next few chapters of 
this book will describe some of the things you need to know to 
keep your toolbox calls from interfering with BASIC. 

One of the reasons the toolbox routines are so fast is that they do 
not spend any time checking for errors. If you make an error using 
a toolbox routine, your program will fail or crash. Instead of an 
explanatory error message written in English, you will see a dialog 
box with a picture of a bomb and an error number. The system 
error numbers and explanations are listed in Appendix B, but the 
error number may not help you find the problem. If you venture 
out of BASIC's protected environment into the toolbox, the dialog 
box with the picture of a bomb will become familiar. 

An excellent habit when using the toolbox is to save the text of 
your program on disk and' then eject the disk every time you make 
any changes. If you save your program before you try to execute it, 
you will have a copy on disk if a fatal error occurs. Be prepared for 
a crash every time. 

BASIC does only a little bit of checking on your calls to toolbox 
routines. It checks for the right number of bytes in the arguments 
you are passing to the toolbox routine. This is an important check 
and will help you catch many errors. However, BASIC does not 
check the content of the arguments you are passing. You are 
responsible for that yourself. 



302 Using Macintosh BASIC 

PARAMETER PASSING 

If all you do is use a few of the examples in the next few chapters 
exactly as they are written, you may not need to learn the details of 
variable types and parameter passing. However, if you want to 
make extensive use of toolbox routines, you will need to under­
stand the different types of variables you can use and how to pass 
them as parameters. 

Toolbox Variable Types 

The routines in the Macintosh toolbox were not designed to be 
called from BASIC. They were designed to be called from another 
high-level language, Pascal. As a consequence, the toolbox uses 
several variable types that are different from the variable types you 
use in BASIC. 

When you pass arguments from BASIC to a toolbox routine, you 
need to make your arguments look like the kinds of variables the 
toolbox routine expects. When you receive a block of data from a 
toolbox routine, you may have to manipulate the data to turn it 
into a format that matches a BASIC variable type. The methods 

. you use to do this are similar to the methods used in Chapter 13 to 
call GETFILEINFO, SETFILEINFO, and GETVOLINFO. 

Toolbox Data Types 

Table 19-1 lists the data types most often used in calls to toolbox 
routines. Integer, pointer, handle, character, and Boolean data 
types are essentially the same for BASIC and the toolbox routines. 
A pointer is a 4-byte value that points to the address of a variable 
or an array element. A handle is a 4-byte value that points to the 
address of a pointer (a pointer to a pointer, if you want to think of 
it that way). You can think of pointers and handles as performing a 
similar function. However, they are separate data types and cannot 
be mixed. 

You receive a pointer or handle when you call a toolbox function 
that allocates storage space in memory for data related to a new 



Using the Macintosh Toolbox 303 

Table 19-1. Common Toolbox Data Types 

Data Type Bytes Description 

integer 2 integer 
ptr 4 pointer 
handle 4 handle 
char I character 
Boolean Boolean 
str255 256 255-character string 
longint 4 long integer 
point 4 two integers 
re ct 8 four integers 
packed array 4 four characters, one per byte 

[ 1. .4] of char 

object, such as a new window or menu. You save the pointer or 
handle in a BASIC variable and then use it as an argument for 
other toolbox routines that require a pointer or handle. 

The toolbox data type str255 is a string of up to 255 characters. 
When this string is stored in memory, the first byte of the storage 
area gives the number of characters in the string. 

The data type longint is an integer, called a long integer, which 
is twice as large as a normal BASIC integer. The long integer 
occupies 4 bytes, while a normal integer occupies 2 bytes. 

The data type point used by toolbox routines is really a combi­
nation of two integers. The first integer is the vertical coordinate of 
a point and the second, the horizontal coordinate. The data type 
rectangle consists of two points (the top left and bottom right 
corners of a rectangle), so it is really a group of four integers. 

The last of the common toolbox data types, a packed array [1 .. 4) 
of char, is a sequence of four characters. It does not have a length 
byte at the beginning, so it is not interchangeable with the string 
data type. The packed array of characters is used for file types and 
creators and for resource type identifiers, which will be introduced 
in Chapter 23. 



304 Using Macintosh BASIC 

Passing Parameters by Value and by Reference 

I 

A toolbox routine will respond correi::tly as long as it receives the 
correct number of bytes and the information in those bytes fits the 
type of data the routine needs. The toolbox routine does not know 
or care what type of variable you use to generate the information. 

The normal way to pass arguments is by passing their actual 
values. However, if the size of a parameter is more than 4 bytes, the 
toolbox expects to receive a pointer to an address in memory where 
the values are located. Passing a poiµter instead of the value itself 
is sometimes called passing a parameter by reference. 

You use the @ sign before the name of an array element to pass a 
pointer to that element. For example, in the statement ToolBox 
GetWTitle(w],@array(O)), the sequence @arrayO) tells BASIC to 
pass a pointer to the address in memory occupied by element 0 of 
the array named array. Usually it is easiest to put information into 
an array if the array consists of either integer or character variables. 

You must also pass a pointer to a variable or array element when 
the toolbox routine changes the value of the argument you supply. 
In normal toolbox notation, this type of parameter is preceded by 
the letters VAR. The arguments in the list of toolbox routines in 
Appendix D use the @ notation when you need to pass a pointer 
instead of" a value. 

Table. 19-2 summarizes how each of the common data types is 
passed a~ a parameter. The first column lists the names of the most 
common toolbox data types. The second column lists the length of 
each typ,e in bytes, and the third column shows the corresponding 
data type in BASIC. 

The column titled "By Value" illustrates how to pass a parame­
ter of a particular data type by value, and the column titled "By 
Reference" illustrates the way to pass that data type by reference. 
The column titled "Array Size" shows an array dimensioned to the 
number of bytes required to hold a particular data type. 

The integer, pointer, and handle data types are straightforward. 
To pass a value, you supply any expression of the appropriate type. 
If you supply any type of numeric expression, BASIC converts the 
number to an integer for the toolbox call. If the toolbox routine 
returns a value, you must supply a pointer to either a simple vari­
able or an array element. 



Using the Macintosh Toolbox 305 

The character and Boolean data types are each one byte long. 
Toolbox routines discard the extra byte when they receive a charac­
ter or Boolean value. When a toolbox routine expects a character 
value, you can use a character variable or any numeric expression, 
as long as the value is an integer in the range 0 to 255. When a 
toolbox routine expects a Boolean value, you can use any Boolean 
expression. 

Strings are an exception to the 4-byte rule. You can use them 
directly as arguments unless the string is to be changed by the 
toolbox routine. Toolbox routines accept strings from BASIC, but 
you must take special care in BASIC to allocate a full 256 bytes 
whenever you are receiving a string back from the toolbox. You can 
do this by dimensioning a 256-element character array or a 128-
element integer array (remember, integers are two bytes each). 

Rectangle data types, since they occupy eight bytes, are always 
passed by reference. To do this, you need to dimension a four­
element integer array and store the rectangle's coordinates in the 
array in the order top, left, bottom, right. 

Table 19-2. Toolbox Routine Parameter Passing 

Toolbox Type Bytes BASIC Type By Value By Reference Array Size 

integer 2 integer a% @a% 

ptr 1 pointer a] @a] 

handle 4 handle al @al 

char 1• character a© @a© 

Boolean 1• Boolean a- @a-

str255 256 character array a$ @str©(O) dim str©(255) 

longint 4 two integers lowHalf%,hiHalf% @num%(0) dim num3(1) 

point 4 two integers h3,v% @point%(0) dim point%(!) 

reel 8 integer array @rect%(0) @rect%(0) dim rect%(3) 

packed array 

(1 .. 4] of char 4 two integers last2%,first2% @type©(O) dim type©(3) 

•The char and Boolean types each occupy 1 byte, but a minimum of 2 bytes is always passed 

to the toolbox routines. The extra byte is ignored. 



306 Using Macintosh BASIC 

Data types that occupy four bytes get special treatment when you 
pass them by value. You must pass them as two BASIC integers, 
with the second integer first. For example, a point data type occu­
pies four bytes. The first two bytes are the point's vertical coordi­
nate and the second two bytes are the point's horizontal coordinate. 
When you pass a point by value, you pass the last two bytes with 
the horizontal coordinate first, as in this example: 

! Pass a point by value and by reference 
Dlt1ptl(1) ! 2 integers 
ToolBox 61oba1Toloca1 (@pt~(O)) ! by reference 
! pt 5S ( 0) contei ms the vertical coordi nete 
I pt!& ( 1 ) contains the horizontal coordinate 
ToolBox t1oveTo (ptl( 1 ).ptl(O)) ! by value 

This reversed ordering occurs only when passing a 4-byte type by 
value. The four bytes occur in their normal order when you pass by 
reference. 

Very few toolbox routines require long integers. For those that 
do use long integers, however, you can use a sequence like the fol­
lowing to pass a long integer by value: 

1 P~ss a longint 
! Assume a\ contains a oositive longint value 
hi1,. = TRUNC(a\ I 65536) 
lo# =- a\ - hi# * 65536 
1 Adj ust a very large number for different. 
! storage format in BASIC and toolbox. 
! Adjustment not necessary for numbers under 32767. 

IF hi#~ 32767 THEN hi#=- hi# - 65536 
IF lo#> 32767 THEN lo#= lo# - 65536 

! BASIC converts Jo# and h1# to short integers before it oasses them. 
Toolbox Secs2Date( lo# ,hi# ,@daterec% ( 0)) 

With the 4-character data type, you first pass an integer contain­
ing the last two characters and then an integer containing the first 
two characters. You build the integers from the ASCII values of the 
characters, as in the following example. 



Using the Macintosh Toolbox 307 

! Pack 4 chars into 2 integers 
! The value that gets packed is 'FONT' 
ResTypeF1rst2li = 256 * ASC ('F') + ASC ('O') 
ResTypelast2Z = 256 * ASC ( 'N') + ASC ( 'T') 
I Last2, then First2 
ToolBox AddResMenu (Menu} ,ResTypelest2Jg ,ResTypef irst2Jg) 

Sometimes you need to pass a handle or pointer with a value of 
nil to a toolbox routine. A nil pointer or handle is simply two 
words containing all zeros, so you can pass a nil pointer by passing 
0,0. Some routines take a special action when they receive the value 
pointer(-!). You can pass the value of pointer(-!) by passing the 
two integers -I, -I. 

CONVERTING FROM ONE TYPE TO ANOTHER 

Macintosh BASIC provides five functions that you can use to con­
vert from one variable type to another. The VALPOINTER, 
HIGHWORD, AND LOWWORD functions help you decode 
results returned by toolbox functions. The INDIRECT] and 
ADDRESS] functions allow you to manipulate pointers and 
handles. 

Treating Pointers as Numbers 

• VALPOINTER, HIGHWORD, LOWWORD 

Macintosh BASIC does not have a 4-byte long integer data type to 
match the toolbox longint data type. So when a toolbox function 
returns a 4-byte long integer, Macintosh BASIC stores it in a dif­
ferent 4-byte variable, a pointer. Storing the longint in a pointer 
variable simplifies BASIC's internal operations -but your pro­
gram then has to read the value in the pointer as a number. 

The VALPOINTER function gives you the numeric value of a 
pointer. It requires one argument, the pointer whose value you 
want to read as a number. Because the value stored in the pointer 
was a 4-byte long integer, the value may be too large to store in 
BASIC's 2-byte integer variables. If you need to store the value in a 



308 Using Macintosh BASIC 

variable, you should store it in a double-precision or extended­
precision real variable or in a computational (8-byte long integer) 
variable. 

a]= Tool TickCount 
ticks= YALPTR(a]) 
PRINT "TickCount is"; ticks 

A few of the toolbox functions pack two integers into a single 
longint before returning the 4-byte long integer in a pointer vari­
able. After using one of these functions, you usually need to separ­
ate the result into the two integers. The HIGHWORD function 
returns the integer value contained in the high half of the longint 
and LOWWORD returns the integer value contained in the low 
half of the longint. Both functions take one argument, the pointer 
or number that contains the value you want to unpack. 

p] =Tool PinRect (@rectZ ( 0), hZ, vZ) 
PRINT "h = "; LOWWORD(p]); ", v = "; Hl6HWORD(p]) 
a = Hl8HWORD( n) ! same as n DIV 65536 
b = LOWWORD( n) ! same as n MOD 65536 

The results returned by VALPOINTER, HIGHWORD and 
LOWWORD make sense with a pointer as the argument only if 
the pointer contains a longint value from a toolbox routine. 

Converting Pointers and Handles 

• INDIRECT], ADDRESS] 

A pointer points to the address of a variable or an array element, 
and a handle points to the address of a pointer. You cannot mix 
handles and pointers in the same expression. However, you can 
obtain the pointer to which a handle points and the address or 
value to which a pointer points. This ability is very helpful when 
working with toolbox routines, because some use pointers to refer 
to data and others use handles to ref er to the same data. 

The INDIRECT] function requires one argument. If the argu­
ment is a handle, INDIRECT] returns the pointer to which the 
handle points. If the argument is a pointer, INDIRECT] returns 



Using the Macintosh Toolbox 309 

the 4 bytes to which the pointer points. If you supply a string 
variable, INDIRECT] returns a pointer to the string. 

p] = INDIRECT](h}) 
al = INDIRECT]( p]) 

! Handle to pointer 
! eets the 4 bytes pointed to 

The ADDRESS] function also requires one argument-'-a handle, 
pointer, string, or number. While the INDIRECT] function 
returns the value to which its argument points, the ADDRESS] function 
returns a memory address that you can store in a pointer variable. 
You can use ADDRESS] in combination with VALPOINTER to 
perform arithmetic on pointer values and store the results back 
into a pointer variable as in this example: 

! Make pointer point 8 bytes·higher in memory: 
p] =ADDRESSJ(YALPOINTER(p])+8) ! Adds 8 to pointer 

EXAMPLE PROGRAM 

The example program in Figure 19-1 calls the toolbox routine 
Secs2Date. This routine converts the number of seconds since 12:00 
A.M., January 1, 1904, into the actual date and time. 

According to Apple's Inside Macintosh, Secs2Date requires two 
arguments, a longint and a pointer to a data type called a Date­
TimeRec. The DateTimeRec is actually an array of seven integers 
that contain the year, month, day, hour, minute, second, and day of 
the week. Comments in the program listing describe the record in 
detail. 

From BASIC, you use two integers to simulate the long integer 
and an integer array to simulate the DateTimeRec. The example 
program starts by dimensioning a 7-element integer array for the 
DateTimeRec. The number of seconds to be converted is received 
from the keyboard and stored in an extended-precision variable (in 
case it is a very large number). 

The program calculates the high half of the number by dividing 
by 65536 and truncating the result. The low half is the original 
number less 65536 times the high half. If either half of the number 



310 Using Macintosh BASIC 

! Call Secs2Date 
! lnsiQe Macintosh says:Secs2Date C~:honQtn~ ;yAR dat~: pate Time~~); 
! DateTlmeRec = RECORD . . . 

year: integer; {four-digit year} · 
month: integer ; { 1 to 12 for January to December} 
day: . tn.t~r; { 1. t9 ~JJ 
hour: il'!~ei;ier; (Oto ;2~} 
minute: integer; {Oto 59} 
second: integer; {Oto 59} 
dayOfWeek: iq!~r; {Lt() ?Jor Sun~toSaturc:lo/} ! END; ······· ·... .. . ..· .. ··· ..... ·. .. . . ... · .. 

! From BASIC: Secs2Date ( secslo:g ,secshi:g ,@daterec:g ( o)) 
DIM daterec:g ( 6) ! 7 integers 
INPUT "Type# of seconds: .. ; a\ 

·hi#.;. TRUNC(a\ / 655:S6). 
lo# = a\ - hi ... * 65536 
IF hi#> 32767 THEN hJ# = hl# ... 65536 
IFJo# > 32767 THEtt lo#= lo# ...... ~553~ 
TQOJbox ~2Date( lo# ,hi# ,@l~~erec:gf~.~~ 
.(>~INT "Year:-: "; daterec:g < o > · · 

···1>RINT "Month: ";~tetec:l( I) 
. I NT "Day: .. ; elater .. ( 2) 

I NT ""'()~~,~·; da ( 3) ;, .. ~~~ 
• INT .;Minute: .. ; > :g ( '4) 

<.PRINT "Setorid: "; daterec:g ( 5) 
f~INT.".[)tr.'J>fweek:.'\.d8terec!lf6J 

·i'fND PRQtJM.M . . .... :.;. ,' -;~~p 
:-.c, 

)~~:r:0;:'~~J:',T, 

Figure 19-1. Call Secs2Date 

1:,, 

,-----" 

1;r--~:;:_'.~':11'' 

is greater than 32767, that half is reduced by 65536, which makes it 
a negative number. This ensures that each half of the longint will 
be a short integer in the range +32767 to -32767. The toolbox rou­
tine Secs2Date converts the negative numbers back into positive 
ones. 

The argument list for the toolbox routine Secs2Date consists of 
the low half and then the high half of the longint followed by a 
pointer to the array that is to receive the answer. The last part of 
the program merely displays each element of the array along with 
a label that describes its meaning. 



Using the Macintosh Toolbox 311 

PRACTICE EXERCISES 

l. How many bytes in memory do each of the following BASIC 
arrays occupy? 

a. DIM a%( 10) 

b. DIM b©(S) 

c. DIM c(3) 

2. How many bytes in memory do each of the following toolbox 
data types occupy? 

a. integer 

b. point 

c. str255 

d. rect 

3. How large should you dimension an integer array to receive a 
rect value from a toolbox routine? To receive a str255 value? 
How large should you dimension a character array to receive 
a str255 value? 



~~~cluifter20~~~ 

Windows and Menus

Commands:

• WHEN WINDOW, WHEN MENU

System Functions:

• OUTPUTWINDOW], MENU}, MENUID MENUITEM

This chapter describes how to use toolbox routines to create and
manipulate windows and menus. In addition to describing the
toolbox routines, the chapter also discusses how to keep your tool­
box calls from interfering with the windows and menus that
BASIC maintains.

WORKING WITH WINDOWS

When you use BASIC's standard output window, BASIC takes care
of all the details involved in maintaining the window. If you make
your own window, you have to watch out for some of the details

313

314 Using Macintosh BASIC

yourself. For example, if your window has a size box, you need to
use the toolbox to change the window's size when the size box is
dragged. In addition, you are responsible for closing the extra
window when your program is finished with it.

Finding the Right Window

• OUTPUTWINDOW]

When you call a routine that manipulates a window, you need to
tell the routine which window to manipulate. You do this by
including a window pointer as one of your arguments. If you
create the window yourself, you will already have a pointer to the
window. Usually, however, you can use one of the two standard
window pointers returned by OUTPUTWINDOW] and Front­
Window.

BASIC's system function OUTPUTWINDOW] returns a pointer
to the current program's output window. The toolbox function
FrontWindow returns a pointer to the frontmost, or active, win­
dow. FrontWindow is less useful than OUTPUTWINDOW]. Since
BASIC allows you to run several programs at once, the front win­
dow may belong to another program. It could even be your pro­
gram's text window if you clicked on it while the program was
running. Using BASIC's OUTPUTWINDOW] function ensures
that your window operations are being performed on the output
window.

w] = OutputWindow] I Pointer to output window
wl =Tool FrontWindow ! Pointer to frontmost window

Making Your Own Windows

You can use the toolbox function NewWindow to create additional
windows. Remember, though, that operating your own windows
can become complicated. It may just be simpler to use your pro­
gram's standard output window. The next example shows how to
call NewWindow.

DIM rectll:(3)
rectll: (0) = topll:
rectjg (1) = leftjg
rectll: (2) = bottomll!
rectll! (3) = rightll!

Windows and Menus 315

W]=Too1 NewWindow (0,0,@rect:f;(0) ,title$,vis- ,prcx:IDlf> ,-1 ,- I ,goAway- ,0,0)

The first two zeros in the argument list tell NewWindow to find
its own storage space in memory. Do not try to allocate storage
space yourself from BASIC. The next argument is a pointer to an
array in your program that contains the four coordinates of the
rectangle in which the window is to appear. You store the coordi­
nates in the array in the order top, left, bottom, right. The next
argument is the title of the window. It is followed by a Boolean
expression that tells NewWindow whether the window will be vis­
ible. This Boolean expression should always be true unless you
really have use for a window nobody can see.

NewWindow's sixth parameter is a procedure ID that tells
NewWindow what kind of window you want. Figure 20-1 shows
the six predefined window types. Type 0 is a regular document

s File Edit Search Fonts Program

Figure 20-1. Types of windows

316 Using Macintosh BASIC

window. It has a close box and may have a size box if you call the
toolbox routine DrawGrowlcon to draw the size box. Type 4 is a
document window without a size box. Type 1 is the double­
bordered window used for alerts and some dialog boxes. Type 2 is a
simple, plain box, and type 3 is the same box with a little shadow.
Type 16 is the rounded-corner window used for the Calculator and
Puzzle desk accessories.

After the window procedure ID, you use two integers to tell
NewWindow whether the new window is to be in front of or
behind other windows. Values of -1,-1 cause your window to be
in front, and values of 0,0 cause it to be behind all others. Nor­
mally, you should use -1,-1 to make the newest window appear
in front.

The next Boolean expression tells NewWindow whether the
window will have a close box. It is usually true for types 0, 4, and
16 and false for the other three types. The last two arguments are
normally zeros. Here are some more examples using NewWindow:

DIM rectll:(3)
rectlK (0) = toplK
rectlK (1) = left:t;
rectlK (2) "' bottom lK
rectll: (3) = rightll:
! Normal document window
W]=Tool NewWindow (0,0,@rect:t;(0) ,title$,TRUE,0,-1 ,-1,TRUE,O,O)
! Rounded corners window
W]=Tool NewWindow (0,0,@rectll(O) ,title$,TRUE, I G,-1,-1,TRUE,O,O)
! Alert dialog window
W]=Tool NewWindow (0,0,@rect)g(Q) ,"",TRUE, 1 ,-1 ,-1 ,FALSE,0,0)

Once you have called NewWindow, you need to call the toolbox
routines SetPort and ClipRect (described in Chapter 22) so you can
draw in your new window.

Moving a Window

You can use BASIC's SET OUTPUT command described in
Chapter 16 to move or change the size of your program's output
window. If, however, you prefer to specify locations in pixels
instead of inches, you can use the toolbox routine MoveWindow
instead. You also need MoveWindow if you want to move a win­
dow that is not your program's output window.

Windows and Menus 317

MoveWindow requires four arguments. The first is a pointet to
the window you want to move. The second and third arguments
are the new horizontal and vertical locations of the window's top
left corner. The location is measured in pixels from the top left
corner of the screen. For example, the position 8, 12 is eight pixels
to the right and twelve pixels downward from the top left corner of
the screen.

The last argument is a Boolean expression that tells Move­
Window whether to make this window the active window. If the
Boolean expression is true and the window is not already active,
MoveWindow makes this window the active window. If the win­
dow being moved is already the active window, the setting of the
fourth argument makes no difference. MoveWindow does not
change the window's size or contents.

Tool Box MoveWindow (OutputWindow] ,8, 12,TRUE)
ToolBox MoveWindow Cw], leftjg, topjg, front-)

Changing the Size of a Window

Using BASIC's SET OUTPUT command is an easy way to change
the size of the standard output window. However, if you want to
move a window that is not your program's output window or you
want to specify locations in pixels instead of inches, you can use
the toolbox routine SizeWindow.

SizeWindow requires four arguments. After a pointer to the
window that you want to change, you supply the new width and
height of the window in pixels. The last argument is a Boolean
expression that tells SizeWindow whether you want the contents of
the changed area to be redrawn. You should almost always use a
value of true for this argument.

ToolBox SizeWindow (OutputWindow] ,widthll: ,heightll: ,fUpclate-)
Tool Box SizeWindow (w] ,200,200,TRUE)

If the window you are resizing contains a size box or scroll bars,
you need to handle those items separately after calling Size­
Window. Redraw the size box using the toolbox routine Draw­
Grow Icon, which requires the window pointer as an argument.

318 Using Macinwsh BASIC

The toolbox routines for moving, res1zmg, and drawing
scroll bars and other controls are described in Chapter 21.

ToolBox SizeWindow (W], 100,200,TRUE)
ToolBox Draw6rowlcon (W]) ! redraw size box

Changing a Window's Title

The toolbox contains two routines that allow you to change and
obtain the title of a window. To change a window's title, you use
the toolbox routine SetWTitle. Its parameters are a pointer to the
window that is to display the rlew title and a string that contains
the new title.

ToolBox SetWTitle (W], title$)
ToolBox SetWTitle (OutputWindow) ,'Window Title')

To get a copy of the current title of a window, use GetWTitle. In
additioh to the appropriate window pointer, GetWTitle needs a
pointer to an array with 256 bytes into which it can put the string
that.contains the window's title. After calling GetWTitle, you will
need to translate the data in the array into a string that BASIC can
understand. This is most easily done from an array of characters.

DIM title@(255) I 256 bytes with 0th element
ToolBox 6etWTit1e (OutputWindow] ,@title©(0))
length = title©(O)
t;tle$ =
FOR count = 1 TO length

title$= title$ & CHRS(title©(c:ount))
NEXT count
PRINT "The window's title is:"
PRINT title$

Closing Your Own Windows

If your program creates its own window, your program is also
responsible for closing the window when you are finished with it.

Windows and Menus 319

The toolbox routine DisposeWindow closes a window and frees up
the memory areas occupied by the data that describes the window.
It takes only one argument, a pointer to the window to be closed.
Use DisposeWindow only on windows you have opened yourself.
If you use it to close one of the windows opened by BASIC, you
may cause BASIC to crash.

ToolBox DiaposeWindow (w]) I Closes your window
ToolBox DisposeWindow (OutputWindow)) ! BASIC will crash

Learning When to Close Windows

• WHEN WINDOW

When you click on the close box of one of BASIC's windows,
BASIC closes the window. However, if you click on the close box
of a window your program created, your program needs to inter­
cept the request and close the window itself.

You can enable a WHEN WINDOW interrupt in your program
to intercept the request to close a window. Use the command
WHEN WINDOW followed by a pointer to the window. The
statements between the WHEN WINDOW statement and its END
WHEN statement will be executed whenever you click on the win­
dow's close box.

WHEN WINDOW myWindow]
close~ = TRUE

END WHEN
! At appropriate places in your main program:
IF close- THEN

18NORE WHEN WINDOW myWindow]
Tool Box DisposeWindow (myWindow])

ENDIF

The WHEN WINDOW interrupt routine should usually set a
Boolean variable to tell your main program to close the window.
The main program needs to know when the window is closed so it
will not try to pr~nt or draw in a window that does not exist.

You can use WHEN WINDOW OutputWindow] to find out
when the output window's close box is clicked. When this

320 Using Macintosh BASIC

happens, you should close your own windows before BASIC ter­
minates the program. If you want to intercept closing requests for
more than one window, use a separate WHEN WINDOW structure
for each window as in the following example:

WHEN WINDOW OutputWindow)
CALL Quit

END WHEN
WHEN WINDOW myWindow]

CALL Quit
END WHEN
! At appropr1ate place 1n ma1n program:
SUB Quit

18NORE WHEN WINDOW myWincbw]
ToolBox DisposeWindow (myWincbw])
ENDPR08RAM

END SUB

WORKING WITH MENUS

There are two ways to identify menus when using toolbox rou­
tines. Some of the routines use a menu identification number, and
other routines use a handle to a menu (called a menu handle for
short). Identification numbers are assigned when the menus are
first created. If you know a menu's number, you can use that
number as an argument to the toolbox function GetMHandle to
obtain a menu handle.

theMenu} =Tool OetMHandle(1) ! Gets handle to menu ID# 1

With menus, as with windows, you need to avoid interfering
with BASIC's operation. Specifically, you should not tamper with
the items in BASIC's menus or try to use any menus of your own
with the same menu ID numbers used by BASIC. BASIC's menus
are numbered from 1 through 6, starting from the left end of the
menu bar.

Windows and Menus 321

Removing a Menu

Your program can safely remove an entire menu if you are willing
to do without the commands on that menu. You cannot tell BASIC
to execute the commands on a menu when the menu is not on the
menu bar. To delete a menu from the menu bar, you use the tool­
box routine DeleteMenu. DeleteMenu takes only one argument,
the ID number of the menu to be deleted. After you have deleted
the menu, you call Draw Menu Bar, which takes no arguments, to
redraw the menu titles. Otherwise, the titles on the menu bar will
not truly reflect the menus that are present.

ToolBox Deletetlenu(4) I Deletes Search menu
ToolBox Deletel'1enu(5) ! Deletes Fonts menu
ToolBox Deletet1enu(6) ! Deletes Program menu
ToolBox Drawt1enuBer ! Redrew chmlged menu bDr

If you wish, you can remove BASIC's Search, Fonts, and Pro­
gram menus while your program is executing. You should not,
however, remove the Apple and Edit menus. Both the Apple and
Edit menus must be present for desk accessories like the Note Pad
and Scrapbook to work. In addition, these menus are an important
part of the Macintosh user interface.

Inserting a Menu

To add a new menu to the menu bar, you use the toolbox routine
InsertMenu. The first argument for InsertMenu is a menu handle
that specifies what menu to add. The routine takes a second argu­
ment, which is an integer that tells InsertMenu where on the menu
bar to put the new menu. If the integer is 0, the new menu follows
the existing menus. If the integer is the ID number of a menu that
is already on the menu bar, the new menu is inserted just before
that menu.

Tool Box ln•rtt1enu (myMenu} ,0) I AdB at end of menu bar
ToolBox lnsertt1enu (myMenu},2) ! Inserts before menu ID #2
Too18ox Drawt1enu8ar

322 Using Macintosh BASIC

The short program in Figure 20-2 shows one way to have your
program delete BASIC's Search, Fonts, and Program menus while
it is running. Before the program deletes each menu from the
menu bar, it uses the GetMHandle function to get the menu's
handle. Then, just before the end of the program, the saved menu
handles are used to restore the three menus to the menu bar, leav­
ing BASIC's normal menus in place.

Handling Menu Items

Once a menu is installed, you cannot remove or rearrange the
items listed on it. You can, however, make a number of changes to
individual items. The toolbox contains routines that allow you to
change the item's text, add or remove checkmarks, enable or dis­
able the item, and change the style of the item's text.

The items OH each menu are numbered from top to bottom,
starting with the number I. All of the toolbox routines that work

! Rem~ove Men!J~ duri.ng Program
Dtrff1enus}(6} · · ·· .·· ..

! Save handles and delete menus
FOR count= 4 TO 6

Menus}(c:i:iunt) = tool eet'°1Handla(count)
ToolBox Deletettenu(count)

NEX!'CQUOt
ToalBax DrawHenupar

! Restore menus before program ends
FOR.count= 4; TO 6 .

ToolBox lnsertMenu(Menus}Ccount) ,0)
NEXT count
Toal Box. DrawHenuBar
END PROORAH

Figure 20-2. Remove menus during program

Windows and Menus 323

on individual menu items have the same first two parameters, the
menu handle and the item number, on which to operate. The tool­
box routines Disableltem and Enableltem require no other argu­
ments. When an item is disabled, its name appears in gray instead
of black, and you cannot select it. When you enable the item, its
name appears in black and you can select it once again. Programs
usually disable an item when selecting it from the menu would be
inappropriate.

FontsMenu} =Tool BetMHandle(5)
Tool Box Disableltem (FontsMenu} ,4) ! Disables fourth fontsize
Tool Box Enableltem (FontsMenu} ,4) ! Enables it again

The toolbox routines Setltem and Getltem operate on the text of
an item. Setltem's third parameter is a string that becomes the new
text of the item. Generally, you should not change the entire text of
an item, but sometimes changing a portion of the text (such as
switching between Show Clipboard and Hide Clipboard) increases
ease of use. Getltem requires a pointer to an array in which to store
the current text of the specified item. The array must be dimen­
sioned to hold at least 256 bytes.

FontsMenu} =Tool BetMHandle(5)
Tool Box Setltem (FontsMenu} ,7 ,'Too Big')
DIM item©(255) ! 256 bytes with Oth element
ToolBox 0etltem (FontsMenu},9,@item©(O))
length = item©(0)
name$=
FOR count = 1 TO length

name$= name$ & CHR$(item©(count))
NEXT count
PRINT "The font name is:"
PRINT name$

The toolbox routine Checkltem is used both to add and to delete
a checkmark in front of a menu item. Its third argument, a
Boolean expression, indicates whether the checkmark is to be
added (true) or removed (false).

The toolbox routine SetltemStyle takes as its third argument an
integer that defines the style to be used for the item. The integer is

324 Using Macintosh BASIC

derived in the same way as the style number for GPRINT. You add
together the values for each style characteristic you want to use: 0
for plain text, 1 for boldface, 2 for italics, 4 for underlined text, 8
for outline type, and 16 for shadow type. SetltemStyle's counter­
part, GetltemStyle, needs a pointer to an integer variable for its
third argument. It puts the item's current style value into the inte­
ger variable. SetltemStyle is of ten used to change the available font
sizes to outline type in the Fonts menu.

FontsMenu} = Too16etMHandle(5)
Tool Box Check Item (FontsMenu}, 1 ,TRUE) ! Checks first size
ToolBox Checkltem (FontsMenu}, 1 ,FALSE) ! Removes the check
ToolBox SetltemStyle (FontsMenu},2,8) ! Outlines 2nd item
Tool Box 0etltemStyle (FontsMenu} ,2 ,@looksS&) ! Gets style

Making a New Menu

To make a new menu of your own, first use the toolbox function
NewMenu to allocate space for a new, empty menu and to get the
menu's handle. NewMenu takes two arguments, a menu ID that
you make up and the title you want the menu to have on the menu
bar. Your menu ID can be any positive number from 7 to 255
(BASIC is already using the numbers 1 through 6).

myMenu} =Tool NewMenu (99,'New Choices')

You need to save the handle returned by NewMenu to use when
installing the menu. The toolbox routine AppendMenu puts item
names into the empty menu. It requires two arguments- the han­
dle of the menu and a string containing the names of items to be
added to the end of the menu. You can use AppendMenu to add
each item individually, or you can combine the items in a single
string and add them all at once. If you have more then one item in
the string, use a semicolon to separate the items. You can assign a
COMMAND-letter combination to a menu item by following its
name with a slash (/) and the letter you are assigning. If you start
an item with a left parenthesis, the item is disabled.

Windows and Menus 325

ToolBoxAppendMenu (myMenu},'ltem 1')
ToolBoxAppendMenu (myMenu},'ltem 2;1tem 3') ! 2 items
Tool Box AppendMenu (myMenu} ,'(-') ! Disabled ootted line
ToolBox AppendMenu (myMenu},'ltem 5/W') ! CMD-w = # 5
ToolBox lnsertMenu (myMenu},O)
ToolBox DrawMenuBar

Once you have filled the menu with items, you need to finish the
installation by inserting the menu into the menu bar and redraw­
ing the menu bar. Later, when your program finishes, you're
responsible for removing your menu from the menu bar and dis­
posing of the storage that New Menu allocated to it. To do this, you
use the toolbox routines DeleteMenu and DisposeMenu.

Tool Box DeleteMenu (99)
Tool Box DisposeMenu (myMenu})
ToolBox DrawMenuBar

Selecting From Your Own Menu

• WHEN MENU, MENU}, MENUID, MENUITEM

When you select an item from a menu, BASIC first checks to see
whether the menu from which you made the selection was one of
its own. If so, BASIC performs the action requested by your selec­
tion. If the selection was not made from one of BASIC's menus,
BASIC allows your program to find out what menu and item were
selected.

To receive menu selection information from BASIC, your pro­
gram needs to install an interrupt, using a WHEN MENU state­
ment. The WHEN MENU interrupt works similarly to the WHEN
ERR and WHEN KBD interrupts described in Chapter 15. You
enable the menu selection interrupt by executing a WHEN MENU
statement followed by a handle to the menu for which you want to
enable selections. If you want to enable selections for more than
one menu, you can use more than one WHEN MENU statement.
You can disable an interrupt by using an IGNORE WHEN
MENU command followed by the handle of the menu whose inter­
rupt you wish to disable.

326 Using Macintosh BASIC

WHEN t1ENU menu8} ! Enable interrupt for menu8}
! Statements here are executed
! when selection is made from menus)
END WHEN ! BBCk to where we came from
IGNORE WHEN t1ENU menu8} I Turn off interrupt

When an item from the menu specified in the WHEN MENU
statement is selected, BASIC executes the program instructions that
follow the WHEN MENU statement until it encounters an END
WHEN statement; then control returns to the place where the
menu selection interrupt occurred.

In your interrupt-handling routine, you can use the system func­
tions MENUID, MENU}, and MENUITEM, MENUID returns the
ID number of tht: menu from which the item was selected, and
MENU} returns a handle to that menu. MENUITEM returns the
number of the item that was selected. None of these functions
requires any arguments. When your program has finished acting
on a menu selection, it should call the toolbox routine HiliteMenu
with an argument of 0 to turn off the inverting of the menu's title.

WHEN MENU myMenu} ! Enable interrupt for myMenu)
PRINT "Item "; MENU ITEM ; "was selected"
PRINT "from menu number"; MENUID
Tool Box 6etltem (MENU}, MENU ITEM, @title©(0))
ToolBox HiliteMenu (0) ! Make menu title normal again

END WHE"' ! Back to where we came from

EXAMPLE PROGRAMS

The Window Shrinker program in Figure 20-3 uses BASIC's
pointer to the output window and three toolbox routines. First the
value of BASIC's OUTPUTWINDOW] function is assigned to the
program's own window pointer variable, w]. This allows you to
use a shorter name for the window pointer in subsequent state­
ments. A call to SetWTitle changes the title of the output window
to "Shrinking Window."

The program concludes with a loop that calls MoveWindow and
then Size Window. Each time through the loop, the program

Windows and Menus 327

! Wil'!dow Shrinker
w] ·:::=: OutpllJ_Window]
Too1Box SetWT1tle (w) ,'Shr1nk1rlg W1ndoW')
FOR .i = 1 TO 240>STEP 2·· ··.·
T ooJBox 1'1qveWjndow(w1~;239ijj~;40:..1·~~RUE}>
Too1Box SizeWindowCwl ,240-i,240-i,FALSE)
NEXTi
ENffPROO~M

Figure 20-3. Window shrinker

moves the top left corner of the window two more pixels right and
downward and reduces the size of the window by two pixels in
each direction. The combined effect is that the window slowly col­
lapses into the bottom right corner until it reaches its smallest pos­
sible size, a narrow vertical bar.

The program in Figure 20-4 shows how to structure a program
so that it responds to menu selections. The program replaces
BASIC's File menu with a File menu of its own, removes the
Search and Program menus, and puts up a new menu labeled
Choices.

! Menu Driven Program
oJdFHet;: Tool8etMHandle C2,). ! Take down some of BASIC's menus
o1dSe8rch} = Tool 8etMHand1•(4)
oldProgram} =Tool 8etMHandle(6)
ToolBoxDeleteMenu (2)
ToolBoxDeleteMenu (4)
TliolBox DeleteMenu (6)
f11YFile} =Tool NewMenu (98,"fiJe") !gutup ei new File men,u
a$= "Stop/K;(-:- ;Print Documenf/P ;(-;Fu11Window/F ;Small Window/S"
IoolBox AppendMenu (myfile}, a$)
IoolBux. lnserl,'1enu (myfile},3)
myChoices} =Tool NewMenu (99,"Choices") ! Put up a second new menu

Figure 20-4. Menu-driven program

328 Using Macintosh BASIC

T~lBOlf:~PP~.n~M.ttn~.~.~yCh~i~} •. "To~;Mu~~c;Picture")
Tool Box lllsert~~nu ff!}VChoices},0)> .• · ·
ToolBox DrawMenuBar ·
WHEN MEl'fU my,fHe} ... ·.

SELECT CA&[.HEtlQITEM
CASE I: CAI..(Reset

·,< END •• MAIN .• . < r•. , .•• , . '\i
c,(s£3:·[···~~~~tttj~"'Ni
~ES.: ~······sEt;()tJTPtJ~JOSCREEN
GAS£16i;.:;.:,••6£:Jt.DUTPQr' ••··

END st::1.tcr·· ::u···
ToolBGx.Hi' Melli.< O) .. lJurn offjnverted title

' ENDWHEN ··~~·;: .. : .••
WHEN MENU m)/Choices}

SELECT CASf:.MENlJITEM
'CASE I TT6ne ' ..
' SOUND TONES(12),200,10Cl

CASE 2 ! ~~sic < · ·· < :;
sou111pJON~S(6) ,200, 1 O; i,o,2.;JONES(6),200, 10; 1 ,0,2
SOUNOJON,~S(6) ,200, 10; 1 ,0 ,2; JONES(2) ,200 ,50

GASE.31.,~Jc.tur~ .· • ••t . . /·
PAINTRECT 10, 10~485,280
INV~~J OV~I,. ~g,5 ·• 145,210
ASK P'AHERN pat; · ~4MERN pet+ I
PAINT RECT 100, ;3~~{190

END :iELECT . ····... .•: .. • . •. :·
/ ToolBox HlllteMenu (0) !Jurntjf~ll'lVert~tltle

END WHEN

Wtl.EN \VINDOW Outpu~Y/i~l·· · ;:;n., CALL Reset . .. ·• ·.

END WHEN
QO · ! ~rogrem waits tier:e rcmf~ menu§election LOOI> ., ... , · , •.. · ... ·· ... •...:;·· ,,
ENOPROQRAM
S08Reset'
Tool Box DeleteMenu (98)
ToolBox l)eleteMenu (99)
ToCllBox lnsertMenu (olclfile};:S)
ToolBox lnsertMenu (oldSearch},5)
TfJC11BoxJnsertMenu (oldProocem},0).,
ToolBox DrawManuBar · · ·
END SUB

Figure 20-4. Menu-driven program (continued)

Windows and Menus 329

The program starts by saving handles to BASIC's File, Search,
and Program menus and removing those three menus from the
menu bar (remember, BASIC's menus are numbered 1 to 6 from
left to right). Then the program creates a new File menu (ID 98),
puts items on the menu, and uses the toolbox routine InsertMenu
to insert the new File menu in the menu bar. The number 3 in the
argument list of the InsertMenu is the ID number of the Edit
menu. The new File menu is inserted just before the Edit menu.

After inserting the new File menu, the program creates and
inserts its second new menu, Choices, and redraws the menu bar.
Two WHEN MENU structures, for the File and Choices menus,
process your selections from the menus. Each WHEN MENU
structure contains a SELECT CASE statement that uses the
MENUITEM function. The statements for each case carry out the
menu commands.

The program also contains a WHEN WINDOW OutputWin­
dow] interrupt routine. If you try to close the output window
while the program is running, this interrupt routine allows the
program to put BASIC's menus back on the menu bar before con­
trol returns to BASIC. Your program should always remove its
menus from the menu bar and restore BASIC's menus before
quitting.

Each time you select a command from the File or Choices
menus, the corresponding WHEN MENU structure acts on your
selection and returns control to the DO loop. The program ends
when you close the program's output window or select Quit from
the File menu.

330 Using Macintosh BASIC

PRACTICE EXERCISES

1. What statement would you use to change the size of the out­
put window to 400 pixels wide and 300 pixels tall?

2. How would you create an alert window with its top left
corner at 100, 100 and its bottom right corner at 300,300?

3. How would you change "About Macintosh BASIC" on the
Apple menu to read "About My Program"?

4. Can you create a menu labeled "Choice" with two items
named "Yes" and "No," a disabled dotted line, and an item
named "Maybe"? Allow COMMAND-Y to be used to select
"Yes." Let your new menu be the last one on the menu bar.

---t:ltaftir 21--­

Using Controls

The Macintosh is so easy to use because it has been designed to let
you select and point-instead of typing long sentences or lines of
special codes on the keyboard. Controls like buttons and scroll bars
are key components of the Macintosh user interface. This chapter
describes how you can use these controls in your programs.

TYPES OF CONTROLS

Scroll bars are the controls you see most often. There are, however,
several different types of controls. All of them can be used in your
programs whenever you can give an instruction or an answer by
pointing. One of the most useful characteristics of a control is that
it can save a numeric setting. The setting of a button is saved as on
(1) or off (0), and scroll bars save the position of the scroll box.

331

332 Using Macintosh BASIC

Button

D Check BoH

O Radio Button

Figure 21-1. Types of controls

Controls always appear in windows, never directly on the desk­
top. Each control's location and size is defined by a surrounding
(boundary) rectangle. Figure 21-1 shows illustrations of the four
predefined kinds of controls: the button, check box, radio button,
and scroll bar.

Buttons

You use buttons to trigger actions. Buttons always appear with
rounded corners with the title centered inside the outline of the
button. When you click a button, the program takes the action
indicated by the button's title. If the title is too large to fit inside
the button, the title is truncated at both ends. Buttons look best if
their surrounding rectangles are 20 pixels tall.

Check Boxes

You use check boxes when you want to modify or control some
future action. A check box retains one of two settings. The control
is on (checked) with a setting of I and off (not checked) with a
setting of 0. Each time you click the control, the setting is reversed.

Using Controls 333

When toolbox routines draw the check box, they draw an "X" in
the check box if it is on and leave the box empty if it is off.

The title of a check box appears to the right of the box itself, but
still inside the rectangle that defines the control. If the enclosing
rectangle is not large enough, you lose the right end of the title.
Your program is responsible for reversing the check box's setting
when you click it. You should reverse the setting for a click any­
where inside the enclosing rectangle. The enclosing rectangle for a
check box is usually 20 pixels tall.

Radio Buttons

Radio buttons are very much like check boxes, except that they
should be used in groups. Each radio button in a group represents
a mutually exclusive choice. Pressing one button should turn all
the others off, just like the buttons on a car radio. A radio button is
on with a setting of 1 and off with a setting of 0. Your program is
responsible for turning on the radio button that has been clicked
and turning off all the other radio buttons in that group. When
toolbox routines draw the radio button, they draw a solid circle if
the radio button is on or an empty circle if the button is off.

The title of a radio button appears to the right of the button
itself but is still inside the rectangle that defines the control. If the
enclosing rectangle is not large enough, you lose the right end of
the title. The enclosing rectangle for a radio button is usually 20
pixels tall.

Scroll Bars

Scroll bars are one example of a larger category of controls: dials.
Dials are capable of displaying a continuous range of settings. You
can set the minimum and maximum of the scroll bar's range to
any number from - 32767 to + 32767. The minimum, maximum,
and actual settings must all be integers. If you try to set the scroll
bar to a value below the minimum or above the maximum, it will
be set to the minimum or the maximum, respectively. Scroll bars
look best when the enclosing rectangle is 16 pixels wide.

334 Using Macintosh BASIC

MAKING A NEW CONTROL

You make a new control with the toolbox function NewControl.
NewControl is a function that returns a handle to the control it
creates. NewControl requires ten arguments, but that is not as
complicated as it sounds. Here is a sample call to NewControl:

c}=Tool NewControH w) ,@rect:t t OJ ,title$,vis~· ,vallt ,min5.li ,max jg ,proclDll> ,0 ,0)

The first argument you give to NewControl is a pointer to the
window in which you want to create the control. If you want to
position the control in your program's normal output window,
you can use OUTPUTWINDOW]. The second argument is a
pointer to the first element of an integer array that defines the con­
trol's boundary rectangle. You store the coordinates of the bound­
ary rectangle in the order top, left, bottom, and right. The third
argument is the control's title, and the fourth is a Boolean expres­
sion that specifies whether you want the control to be visible. This
value should almost always be true.

The fifth, sixth, and seventh arguments to NewControl are the
values for the control's current setting, the minimum value, and
the maximum value. The initial values for buttons, check boxes,
and radio buttons should be 0,0, 1. If you want a particular check
box or radio button to be on as soon as it is created, use 1 instead
of 0 for the first of the three values.

The eighth argument is a procedure ID number that tells New­
Control which type of control to draw. Table 21-1 lists the pro­
cedure ID numbers corresponding to the four predefined controls.

Table 21-l. Control Definitions

Control Type ProcID Normal Width

Button 0 20
Check Box 1 20
Radio Button 2 20
Scroll Bar 16 16

Using Controls 335

The procedure ID number is 0 for buttons, 1 for check boxes, 2 for
radio buttons, and 16 for scroll bars. You can make the control's
title appear in the type font being used in the current window
(instead of in the system font, Chicago) by giving NewControl a
number that is 8 larger than the control's usual procedure ID
number.

The last two arguments to NewControl should be zeros to substi­
tute for a long integer data type. Here are several examples that
create different types of controls:

! Button
cntrl} =Tool NewControl (w].@rectjg (0) ,"OK'',TRUE ,0 ,0, 1 ,0 ,0,0)
! Check box ,
cntrl} =Tool NewControl (w],@rectjg (O) ,'Check Me', TRUE ,0,0,1 , 1 ,0 ,0)
I Radio button
cntrl} =Tool NewControl (w].@rectjg (0) ,title$.TRUE .o .0.1 ,2 ,O ,0)
! Scroll bar
cntrl} =Tool NewControl (w] ,@rectlt: (0) ,"'',TRUE ,0 ,0, I 00, 16 ,0 ,0)

MODIFYING A CONTROL

Once yoti have created a control, there are several toolbox routines
that allow you to modify the control. You can move a control to a
new position in the window, change the size of a control, or
change the control's title by simply calling the appropriate toolbox
routine.

While you are modifying a control, you can hide it so that it is
not visible. Making a control invisible prevents the screen image
from blinking each time the control is redrawn.

You can also read or change the value of a control by calling the
appropriate toolbox routine. This allows you to turn a button on
or off or change the position of the scroll box in the scroll bar.

Moving a Control

You can move an existing control to a different place in the win­
dow by calling the toolbox routine MoveControl. MoveControl

336 Using Macintosh BASIC

takes three arguments. You first specify the handle returned from
New Control and then the horizontal and vertical pixel locations
where you want to move the control. The pixel locations are
expressed in the coordinate system of the window in which the
controls are located. For example, the location 8, 12 is 8 pixels to
the right and 12 pixels down from the top left corner of the
window.

ToolBox MoveControl (cntrl}.8, 12)

MoveControl is often used to move scroll bars after a window is
resized. When this happens, the call to MoveControl is usually fol­
lowed by a call to SizeControl. MoveControl redraws the control at
its new location.

Changing a Control's Size

The toolbox routine SizeControl changes the size of an ex1stmg
control. You give it three arguments: the control handle, the con- .
trol's new width, and the control's new height. SizeControl
redraws the control at its new size.

ToolBox SizeControl (cntrl},80,20) ! Makes it 80 wide and 20 tall

Changing a Control's Title

Buttons, check boxes, and radio buttons have titles. You can
change the title of one of these controls by using the SetCTitle
routine. SetCTitle requires the handle of the control and the new
title you want it to display. If your new title is too large to fit in the
tontrol's boundary rectangle, the title will be truncated.

ToolBox SetCTitle (cntrl},'New Title')

GetCTitle allows your program to get the title of a control. You
give this toolbox routine a handle to the control whose title you
want and a pointer to a 256-byte array in which to store the title.
Then you convert the title into a BASIC string.

DIM title©(255) ! 256 bytes with Oth element
ToolBox 6etCTitle (cntrl),@title©(O))
length= title©(O)
title$

FOR count = 1 TO length
tit1e$ = title$ & CHRSC tit1e©(count))

NEXT count
PRINT "The control's title is:"
PRINT title$

Making a Control Invisible

"

Using Controls 337

HideControl makes a control invisible. It takes one argument, the
control's handle. HideControl fills the area occupied by the control
with the window's background pattern. ShowControl, which also
takes the handle as an argument, makes the control visible again
and draws it in the window.

Tool Box HideControl (cntrl})
ToolBox ShowControl (cntrl})

HideControl is usually used to make a control invisible while
you make changes to it. Because MoveControl and SizeControl
both redraw the control, the control blinks when you call these
routines. A simple way to avoid the blinking is to call HideControl
before you move and resize the control. Then you can call Show­
Control to make it visible and redraw it.

ToolBox HidaControl (cntrl}) I Hides the control
! Make the changes to it here
Tool Box ShowControl (cntrl}) ! Makes it visible again

Changing a Control's Values

You can change or find a control's current value, maximum value,
or minimum value. To make a change, use the toolbox routines
SetCtlValue, SetCtlMax, or SetCtlMin. Each routine takes two
arguments: the control's handle and the new value you are setting.

338 Using Macintosh BASIC

ToolBox SetCUMin (ctl},O) ! Sets minimum to O
ToolBox SetCUMax (ctl},99) ! Sets maximum to 99
ToolBox SetctlYalue (ctl} ,3) ! Sets value to 3

To get the current value, maximum value, or minimum value of
a control, use one of the three toolbox functions GetCtlValue,
GetCtlMax, and GetCtlMin. Each of these functions requires the
control's handle as an argument and returns the requested value.

minimumlf; =Tool OetCtlMin (ctl})
maximum:g =Tool OetCtlMax (ctl})
setting$ =Tool 6etct1Yalue (ctl))

TESTING FOR CURSOR POSITION

TestControl combines two purposes in a single function. You can
use it to test whether a point is in a specific control and also to tell
you in what part of the control the point is lo.cated. The point you
want to test is usually the location of the cursor when the mouse
button is pressed or released. TestControl takes three arguments:
the first is the handle of the control you want to check, the second
is the vertical coordinate of the point, and the third is the horizon­
tal coordinate of the point. As is usua'l, you specify the vertical and
horizontal coordinates in pixels from the top left corner of the
window.

numbersg =Tool TaatControl (ctrl},vll ,hsg)
number:g =Tool TestControl (ctl),MOUSEY ,MOUSEH)

TestControl returns a number that depends on where the point
you specify is located. It returns a different number for each control
or part of a control. Buttons, check boxes, and radio buttons have
only one part. TestControl returns the number IO if the point is in
a button and 11 if the point is in a check box or radio button.
TestControl returns 0 if the point is not in an active control.

Scroll bars have five different parts. Figure 21-2 indicates the
parts of a scroll bar and the numbers TestControl returns for each
part. TestControl returns 20 for the up arrow, 21 for the down
arrow, 22 for the page-up area, 23 for the page-down area, and 129

20 Up ArroW"

22 Page- Up Area

1 29 Scroll Box

23 Page-DoW"n Area

21 DoW" n A rroW"

Figure 21-2. Parts of a scroll bar

Using Controls 339

if the point is in the scroll box. If the scroll bar is horizontal, the
up areas are left and the down areas are right.

PUTTING THINGS AWAY

When you are finished with a control, use DisposeControl to close
the control and free the memory space it occupies. DisposeControl
takes one argument, the handle to the control. When you are fin­
ished, be sure to dispose of any controls you created, but do not
dispose of any controls that BASIC created. If you fail to dispose of
controls your program creates, you may cause problems for BASIC.

ToolBox DisposeControl (myControl))

EXAMPLE PROGRAMS

The example program in Figure 21-3 uses a scroll bar as a speed
control to let you change the speed of the moving graphics you
saw in Chapters 1 and 16. The value of the control is used as the

340 Using Macintosh BASIC

! Speed Control
SET OUTPUT TOSCREEN
w] = OutputW1ndow]
Too18ox SetWTit1e (w] ,'Speed Control')
DIM rect!I: (3)
rectlK (0) = 220 ! top
rectlK(1) = 160 ! left
rectlfl(2) = rect!K(O)+ 16 ! bottom
rectlK(3) = rectl!;(1)+180 ! right
speed} =Tool NewControl(w] ,@rectl!; (0) ,"",TRUE, 10, 1, 101, 16,0,0)
DO

CALL SetSpeed
FOR i = 1TO500 STEP step:t:

PAINT RECT i,30; i+ 120,150
INVERT OVAL i ,30; i+ 120, 150

NEXT i

CALL SetSpeed
FOR i = 500 TO 1 STEP -step:t:

PAINT OVAL i,40; i+ 100,140
INVERT RECT i,40; i+ 100,140

NEXTi
LOOP
ENDPROORAM
SUB SetSpeed

step:t: =Tool 8etCtlYalue (speed})
ERASE RECT 160 ,240; 340 ,270
0PRINT AT 240,260; steplf:

END SUB

Figure 21-3. Speed Control

step increment in the two FOR/NEXT loops that draw the moving
graphics. When the step is small, the graphics move slowly. When
the step is large, they move very quickly. The program only recog­
nizes the scroll box and takes no action when you press the mouse
button in the other four parts of the scroll bar.

The program starts with a SET OUTPUT TOSCREEN state­
ment that enlarges the output window. Then a copy of the pointer

Using Controls 341

to the output window is saved in the variable w], and the toolbox
routine SetWTitle is called to put the title "Speed Control" on the
output window. The program then dimensions an integer array
named rect% to hold the control's boundary rectangle and puts the
values that define the rectangle into the array.

The toolbox function NewControl creates the scroll bar and
returns the control handle that the program stores in speed}. The
NewControl arguments give an empty string as the control's title,
since titles are not displayed for scroll bars. The initial control
value is 10, the minimum 1, and the maximum 101. A more com­
mon range is 0 to 100, but 1 to 101 is used in this instance because
the program would never get out of the FOR/NEXT loop if a step
value of zero were chosen.

The moving graphics portion of the program looks almost as it
did in Chapters 1 and 16. The only differences are that the variable
step% is used for the step size, and the program now calls the sub­
routine SetSpeed just before each FOR/NEXT loop. The SetSpeed
subroutine sets step% equal to the current control value and prints
the new value underneath the scroll bar. The scroll bar value is
updated as soon as you release the mouse button, but the program
waits until the end of the loop to update the variable step% because
BASIC does not allow you to change the step value of a FOR/
NEXT loop from inside the loop.

The program in Figure 21-4 is an example that uses buttons.

1 Show Buttons
DIM rectlE(3)
SET FONT 0
BPRINT AT 30, 150; "Ready to eat?"
w]= OutputWindow]
rect%(0) = 200 ! top
rect:t;(1) = 30 ! left
recU~ (2) -= rect)!; (0) + 20 ! bottom
rect%(3)=rect\1:(1)+70 !right
OK}= Tool NewControl (w],@rect~(O) ,"OK",TRUE,0,0, 1,0,0.0)

Figure 21-4. Show buttons

342 Using Macintosh BASIC

rect:f: (1) = rectlf; (3) + 30 ! Left is 30 pixels from OK button
rect%(3) = rect%(1)+70 ! Right is left+ 70
Cancel} =Tool NewControl(w],@rect~ (0) ,"Cancel" ,TRUE,0,0, 1 ,0,0,0)
DO

If MOUSEB-THEN
h = MOUSEH
v =MOUSEY
If Tool TestControl (OK},h,v) = 10 THEN

CALL WaitButtonUp
If Tool TestControl (OK},MOUSEH,MOUSEY) = 10 THEN

PRINT "Then let's eat!"
EXIT DO
END If

€ND If
IF Tool TestControl (Cancel},h,v) = 10 THEN

CALL WaitButtonUp
If Tool TestControl (Cancel} ,MOUSEH ,MOUSEY) = 10 THEN

PRINT "No food for you, then!"
EXIT DO
ENDIF

ENDIF
SOUND
CALL WaitButtonUp
ENDIF

LOOP
Too18ox DisposeControl(OK})
Too18ox DisposeControl(Cancel})
ERASE RECT 0, 130; 200 ,200 ! Erase "Ready to eat?"
ENDPROORAM
SUB WaitButtonUp
DO

IF NOT MOUSED- THEN EXIT DO
LOOP
END SUB

Figure 21-5. Show buttons (continued)

After displaying the question "Ready to eat?" and setting up the
rectangle dimensions, the program uses two NewControl calls to
create buttons labeled "OK" and "Cancel." The program saves the
control handles in variables named OK} and Cancel}, respectively.

Using Controls 343

Both the OK and Cancel buttons are created with an initial value
of 0, or off.

The program's main DO loop waits until the mouse button is
pressed. Then it uses the toolbox function TestControl to test
whether the cursor is in the OK button or the Cancel button. If the
button was pressed in~ide the OK or Cancel button, the program
waits until the mouse button is released and then calls TestControl
again. If the cursor was released inside the same button, the pro­
gram prints an appropriate message and exits from the DO loop.

If the cursor has moved out of the button in which the mouse
was first pressed or the mouse was pressed outside the two controls,
the program sounds a beep, waits for the mouse to be released, and
goes through the loop again. After it exits from the DO loop, the
program calls DisposeControl to dispose of each control before
ending.

The program in Figure 21-5 shows one way to operate a group
of radio buttons. Because this program will have three controls to
handle, it uses an array named rBtns} to store the control handles.
Another array, c$, contains the control titles. After the arrays are set
up, the FOR/NEXT loop calculates the location rectangle from
the loop's index and uses NewControl to create each of the three
radio buttons. Each of the radio buttons is created with a control
value of 0, off.

1 Radio Buttons
DIM rectll! (3). rBtns}(3). e${3)
w]= OutputWindow]
c$(1) "' 'Yes'
c${ 2) ='No'
c$(3) = 'Mavbe'
FOR i = 1TO3.,
rectll!(O) = 50+20*i ! top

· rectlll (1) = 30 1 left
rectll!(2) = reCtll!(0)+20 i bottom
rect~(3) = rect~(1)+80 ! right ·,
rBtns}(i)=Tuol NewControl (w],@rectll!(O) ,c$(i) ,TRUE,0,0, 1,2,0,0)

Figure 21-5. Radio buttons

344 Using Macintosh BASIC

NEXT i
DO

ff MOUSEB- THEN .
F()f\J=:lT03 (<' i·

. IF Tool TestControl.(rBtns}(i) ,MOQSEH,MOlfSEV)=l HTHEN
CALL WaitButtonUp .
IF Tool TestControl(rBtns}(j),MOUSE.tl,t'OUSEV}~lJ THEN

FORj = I TO 3 i3::. . .Ji/. .
TO(t1,oJ(~t~tlYahie(:r'Btns}(J>;fl9

NEXTi
TooJBox SetCUYalue (rBtns}(i), 1)

ENDIF
EXIT .. FOR

ENDIF
NEXT i
CALL WaitButtonUp
ENDIF

LOOP
ENDPROORAM
SUB WaitButtonUp
DO

lfNOTMOUSEB-THENEXH DO
LOOP·
END SUB

(\'_,;,,

Figure 21-5. Radio buuons (continued)

The program's main DO loop once again keeps circling until the
mouse button is pressed. When the button is pressed, a FOR/
NEXT loop uses TestControl on each radio button in succession.
If TestControl indicates that the mouse button was pressed in that
control, the controi is tested again when the mouse button is
released. If the cursor is still in the same control, the program calls
SetCtlValue twice, once in a loop that turns all the radio buttons
off and once to turn on the radio button that was selected.

You can avoid the need to use a FOR/NEXT loop to turn all the
radio buttons off each time if you use a separate variable to keep
track of which button is on. In that case you can simply call
SetCtlValue to turn off the button that is on before you turn on the
new button.

Using Controls 345

PRACTICE EXERCISES

1. How would you create a radio button titled "push me" in the
boundary rectangle whose top left corner is at 20,20? Make it
visible and 100 pixels wide.

2. What statements would you use to create a button labeled
"Cancel" in the boundary rectangle whose top left corner is
at 30,30? Make the button visible and 80 pixels wide.

3. Change the Cancel button in Exercise 2 so that it is only 60
pixels wide, and change its title to "Quit." Be sure to hide the
button during the changes so you won't see it blinking.

4. Can you write a statement that increases a scroll bar's value
by 1 if the mouse is located in the up arrow area of the scroll
bar? Assume scroll} is the name of the scroll bar's handle.


~~~cftoftir22~~~ 

QuickDraw Graphics 

The QuickDraw graphics routines produce the high-speed calcula­
tions and display of graphics information on the Macintosh screen. 
QuickDraw underlies almost everything that happens on the 
Macintosh. The QuickDraw routines total about 145 in number 
and occupy approximately one third of the machine's read-only 
memory. 

Like all other Macintosh programs, BASIC uses QuickDraw 
extensively. BASIC's GPRINT command and all of the graphics 
commands in Chapter 16, for instance, rely heavily on QuickDraw. 
This chapter introduces a few of the QuickDraw routines that you 
can call directly from your BASIC programs. By no means does it 
describe more than just a tiny bit of QuickDraw. If you want to 
know more about QuickDraw, you may want to get a copy of 
Inside Macintosh, published by Apple Computer, Inc. 

347 



348 Using Macintosh BASIC 

SETTING THE GRAPHICS PORT 

Every QuickDraw activity takes place within what is known as a 
graphics port, or grafport. Each window has its own grafport. 
Once a particular grafport has been set, QuickDraw continues 
using that grafport until it is changed. Technically, the location of 
the graphics pen is measured from the upper left corner of the 
grafport, not of the window. If QuickDraw is not set to use the 
correct grafport, graphics output will probably appear in the 
wrong window. 

The SetPort routine tells QuickDraw which grafport to use. Set­
Port takes one argument, a pointer to a window or to another type 
of graf port. 

ToolBox SatPort ( myWindow]) 
Too18ox SetPort (OutputWindow]) 

BASIC calls SetPort every time it needs to draw in a different 
window. The only time you need to call SetPort is when you have 
called NewWindow to create your own window. Because BASIC 
does not know about the window that you created, BASIC does not 
call SetPort for you. If you try to draw in the window without 
calling SetPort, the information will not appear in that window 
and may appear instead in another window. 

When you call SetPort, you change an important part of the 
environment in which BASIC operates. To avoid causing prob­
lems, you should restore BASIC's grafport setting after you have 
finished your drawing. You can use the GetPort routine to obtain 
BASIC's grafport pointer before you use SetPort and then use Set­
Port after your drawing is done to restore BASIC's setting. GetPort 
requires a pointer to a pointer variable where it will store the graf­
port pointer. 

Tool Box 6etPort (@oldport]) ! Save BASIC's port 
ToolBox SetPort (myWindow]) 
! Drawing commands here 
ToolBox SetPort (oldport]) ! Restore BASIC's port 



QuickDraw Graphics 349 

CLIPPING THE DRAWING AREA 

The toolbox routine ClipRect "clips" your graphics output within 
the boundaries of a rectangle that you specify. Any graphics output 
drawn within the rectangle will be visible, but graphics outside the 
boundary rectangle will not be visible. ClipRect takes one argu­
ment, a pointer to the first element of the array that defines the 
boundary rectangle to which the output is to be clipped. You store 
the coordinates of the boundary rectangle in the array in the order 
top, left, bottom, right. 

You can use ClipRect to help you draw unusual shapes. To draw 
half a circle, for instance, you can set ClipRect so only half the 
area drawn by PAINT OVAL will be visible. If you use ClipRect 
this way, you should reset ClipRect to the size of the window when 
you are finished so you won't interfere with BASIC's environment. 

DIM rectZ(3) 
rectZ(0)=120 !top 
rect:E( 1) = o ! left 
rectZ ( 2) = 240 ! bottom 
rectll(3) = 240 I right 
! Show drawing only in bottom half of.screen 
ToolBox ClipRect(@rectZ ( O)) 
rectll(O)=O !newtop 
! Reset cliprect to whole window 
ToolBox ClipRect(@rectZ(O)) 

DRAWING IN YOUR OWN WINDOW 

This section brings together the different toolbox calls you need to 
make if you want to create and draw in your own window, separate 
from your program's normal output window. The listing in Fig­
ure 22-1 shows the series of steps to follow to display information 
in your own window. After you create your window with the 
NewWindow routine (as described in Chapter 21), you need to call 
SetPort to point QuickDraw to the correct grafport. Then you 
should call ClipRect to set the clipping area equal to the visible 



350 Using Macintosh BASIC 

! ToolBox calls for drawing in your own window 
DIM rectZ(3) 
rect:l:(O) = 50 ! top 
rect:l:( 1) = 50 ! left 
reet:g(2) = 300 ! bottom 
rect:l:(3) = 300 ! right . 
w] =Tool NewWlndow (0,0,@rect!i( 0) ,"" ;TRUE,0,-1 ,-1,FALSE,0,0) 
ToolBox SetPort(w]) · 
rect)g(O) = 0 ! top 
rect!i( 1) = 0 ! left 
rect:l: ( 2) = 250 ! bottom 
rectZ(3) = 250 ! right 
ToolBox 8etPort ( @oldport]) ! save BASIC's 0rafport 
ToolBox SetPort (w]) 
Tool Box CllpRect(@rect:;£ ( O)) ! set Gl1pRect to.the whole window 
!'Of-8W:ih the windoWhere · 
ToolBox Draw8rowlcon (w]) ! draw size botc for type 0 window 
! Clean up after we have finished drawing ·:-:, 
Tool Box SetPort ( oldport)) ! restore BASIG's erafport 
ToolBt)xDisposeWjndow (w)) ! close the winck:lw 
ENDPR08RAM 

Figure 22-1. ToolBox calls for drawing in your own window 

area of your window. This step is necessary because BASIC is not 
aware of your window and thus cannot set the ClipRect for you. If 
you do not set it, some of the information you display in your 
window could get clipped. 

To display information in your own window, you can use direct 
calls to QuickDraw or any of BASIC's commands that rely heavily 
on QuickDraw. These include the GPRINT, PLOT, FRAME, 
ERASE, PAINT, and INVERT commands. You should avoid BA­
SIC's PRINT, INPUT, and CLEAR WINDOW commands because 
they are likely to interfere with the graphics environment you have 
established for your special window. 

When you finish drawing in your window, remember to reset 
BASIC's grafport and close the window, as in Figure 22-1, when 
you are finished with it. 



QuickDraw Graphics 351 

ARCS 

The three shapes implemented in BASIC (rectangles, ovals, and 
rectangles with rounded corners) are not all the graphics shapes 
that QuickDraw provides. Another one that is fairly easy to use is 
the arc. An arc is a piece of an oval. QuickDraw provides routines 
that let you frame, erase, paint, and invert arcs. If you frame an arc, 
the graphics pen moves along the circumference of the oval for the 
prescribed distance. If you erase, paint, or invert an arc, the shape 
looks like a wedge or a piece of pie. 

Figure 22-2 shows several examples of arcs. The first part of the 
shape's definition is the rectangle that surrounds the oval. You 
define the rectangle in an integer array just as you do for all other 
toolbox routines that use rectangles. Then you supply two angles 
to define the beginning and extent of the arc. The angles are mea­
sured in degrees, as shown in Figure 22-2. 

A starting angle of 0 is straight up, 180 is straight down, 90 is 
horizontal to the right, and 270 is horizontal to the left. The 
corners are assumed to be midway between these points, even if the 
rectangle is not a square, and QuickDraw adjusts the angles 
accordingly. Thus, the upper right corner of the rectangle is 
labeled 45 degrees in Figure 22-2, even though the rectangle is not 
square and the angle does not look like a 45-degree angle. 

0 

-90 90 
270 -270 

225 180 135 Paint Aro 0,-45 
-180 Frame Aro 45, 45 

Figure 22-2. Illustrations of arcs 



352 Using Macintosh BASIC 

The second extra number you give to define the arc is the extent 
of the arc. The extent is not the ending point, but the angle of 
movement along the circumference of the arc from the starting 
point. The sign of the extent specifies the direction of the move­
ment. A positive number indicates clockwise movement; a negative 
number indicates counterclockwise movement. An extent of 90 
moves one-quarter of the way around the oval from the starting 
point. You can calculate the angle of the second end of the arc by 
adding the starting angle and the extent together. 

You can frame, erase, paint, or invert an arc by calling the tool­
box routine FrameArc, EraseArc, PaintArc, or lnvertArc. Each rou­
tine takes three arguments - the boundary rectangle, the starting 
angle, and the angle of movement that defines the shape of the arc. 
Here are some examples of their use: 

DIM rectZ(3) 
rectlt;(O) = O ! top 
rect:g( 1) = O ! left 
rectJg ( 2) = 100 ! bottom 
rect!l(3) = 100 I right 
ToolBox FrameArc (@rectlt;(O) ,0,45) 
ToolBox PaintArc (@rect~(O) ,90,-45) 
ToolBox EraseArc (@rectlE ( 0), 180,-60) 
Tool Box lnvertArc (@rect~( 0) ,270,-90) 

PATTERNS 

A pattern is a design that is defined in an area 8 pixels square. You 
can visualize the way a pattern is drawn into a window by imagin­
ing that the 8-pixel square is a floor tile. Once the first patterned 
tile is placed in the upper left corner of the output window, identi­
cal tiles are laid next to it to spread the pattern throughout the 
window. 

The pattern definition contains eight rows with eight pixels 
each. You can store the pattern definition in an 8-element character 
array with each element of the array representing one row of the 
pattern. Figure 22-3 shows a magnified pattern definition. 

To calculate the value of a row, add together the numbers 
beneath the columns that contain black pixels. For example, in 



QuickDraw Graphics 353 

0 
32 + 16 + 4 + 2 = 54 
64 + B + 1 = 73 
64 + 1 = 65 
64 + 1 = 65 
32 + 2 = 34 
16 + 4 = 20 
B 

Figure 22-3. Calculating a pattern's values 

Figure 22-3, the top row contains no black pixels, so the value of 
the first element of the character array is 0. The second row con­
tains four black pixels. They are in the columns labeled 32, 16, 4, 
and 2. Adding those numbers together gives a row value of 54 for 
the second row. 

Each pattern occupies eight bytes, so you always store a pattern 
in an array and pass it by reference when using it as an argument 
to a toolbox routine. The example program at the end of this 
chapter will calculate the values in the array for you. 

Setting Your Own Patterns 

The toolbox routine PenPat allows you to assign any pattern you 
want to the graphics pen. PenPat takes one argument, a pointer to 
the first element of an array that contains the pattern. Another 
toolbox routine, BackPat, allows you to set the background pattern 
in a grafport. The background pattern is plain white unless you 
change it. BackPat also takes a single argument, a pointer to the 
first element of an array containing the pattern definition. 

DIM pat@( 7) I 8 bytes for pattern 
! Put values in pat© 
ToolBox PenPat (@pat©(O)) 
ToolBox BackPat (@pat©( 0)) 



354 Using Macintosh BASIC 

Using a Pattern Without Changing the Pen 

QuickDraw has a group of routines that let you use a new pattern 
without changing the pattern to which the graphics pen is set. The 
term for this activity is fill. A shape that is filled looks just like a 
shape that is painted. The only difference is that painting uses the 
pattern of the graphics pen, while filling uses a pattern you 
supply. 

You can use toolbox routines to fill any of the standard shapes. 
FillRect fills a rectangle and FillOval fills an oval. The first argu­
ment for these routines is a pointer to an array that defines the 
shape's boundary rectangle. The second argument is a pointer to 
the first element of a character array that defines the pattern you 
want to use. 

DIM rectJg(3), pat®(7) 
! Put values in rectlf> and pat© 
Tool Box f111Rect (@rect~ ( O) ,@pat©( O)) 
ToolBox Fi110va1 (@rectjg(0),@p8l©(O)) 

In addition to the boundary rectangle, FillRoundRect requires 
two integers. After the pointer to the boundary rectangle, Fill­
RoundRect requires the width and height of the rectangle that 
defines the roundness of the corners. Finally, you need to supply a 
pointer to the character array that defines the pattern you want to 
use. 

DIM rectll( 3), pat©( 7) 
! Put values in rect~ and pat© 
ToolBox f111RoundRect (@rect~(O) ,20,20,@pat©(O)) 

FillArc requires a pointer to the array that defines the arc's 
boundary rectangle, two integers representing the starting angle 
and the angle that defines the extent of the arc, and a pointer to the 
character array that defines the pattern you want to use. 

DIM rectll(3), pat©(7) 
! Put values in rectlf> and pat© 
Tool Box f111Arc ( @lrect:g ( o) ,o, 90 ,@I pat©( o)) 



QuickDraw Graphics 355 

The fill routines can be handy if you are already defining your 
own pattern. If you are using one of the standard patterns available 
in BASIC, however, you may find it just as easy to use SET PAT­
TERN, PAINT, and then follow with PENNORMAL to reset the 
graphics pen after drawing. 

PICTURES 

A picture is really a record of operations performed by QuickDraw. 
Making a QuickDraw picture is like using a tape recorder. You 
turn the recorder on when you want to start recording, and you 
turn it off when you want to stop recording. You can play the 
recording back whenever you want to, and you can erase the tape 
to make room for something else. 

You call OpenPicture to start recording QuickDraw commands 
as part of a picture, and you call ClosePicture to stop recording 
commands. Draw Picture redraws the picture, and Kill Picture 
deletes the record of the picture and releases the memory it occu­
pied for other uses. 

OpenPicture is a function that returns a handle to the picture 
that is being defined. You use this handle with DrawPicture and 
KillPicture to specify what picture to use. When you call the func­
tion OpenPicture, you specify a rectangle that is to be the picture 
frame. QuickDraw records all of the actions that affect the area 
inside the picture frame and does not record actions outside the 
picture frame. When you later call DrawPicture to redraw the pic­
ture, you specify a new rectangle in which QuickDraw puts the 
picture. If the two rectangles are not the same size, QuickDraw 
automatically scales the picture from the size of the original frame 
to the size of the destination rectangle. 

DIM rectll(3) 
rectJg ( 0) = O ! top 
recur;( 1) = o ! left 
rectsg ( 2) = 240 ! bottom 
rectll ( 3) = 240 I right 
! Create your own window and set up here 
! (See Figure 22- 1 ) 



356 Using Macintosh BASIC 

pie} =Tool OpenPicture ( @rect~ ( O)) 
! Draw the picture here 
ToolBox ClosePicture 
! Now you can redraw the picture in any rectangle 
ToolBox DrawPicture (pie}) 
! Delete the picture from memory when all done 
Tool Box Ki11Picture (pie}) 

Pictures can be very handy when you want to draw something 
several times or in different sizes. However, there are limitations. 
QuickDraw can record only one picture at a time. Unfortunately, 
BASIC is recording a picture every time it puts graphics informa­
tion in the output window. That means you cannot use the output 
window to record your own picture. You must create your own 
window to get a grafport in which you can record your picture 
without any interference from BASIC. Once you have called 
ClosePicture, however, you can safely play the picture back in any 
grafport, including the output window. 

COLOR 

QuickDraw contains two routines that allow you to specify colors 
for output devices such as color printers and color plotters. Each 
grafport has a background color, which is assumed to be white 
unless you change it. In addition, you can draw in one foreground 
color at a time in a grafport. QuickDraw can handle 32 different 
colors, but codes are predefined for only eight. The foreground 
color is black unless you change it. 

You can use the ForeColor routine to change the foreground 
color and the BackColor routine to change the background color 
of the current grafport. Each routine takes two integers that are 
codes for the color you want. Table 22-1 lists the eight predefined 
colors and their codes. The color codes contain two integers each 
because the ForeColor and BackColor routines expect their argu­
ment to be a 4-byte long integer data type. 

ToolBox BackColor ( 409,0) ! blue back.ground 
ToolBox ForeColor (69,0) ! draw in yellow 
ToolBox ForeColor (205,0) ! now draw in red 



QuickDraw Graphics 357 

Table 22-1. Predefined Color Codes 

Color Code 

White 30,0 
Black 33,0 
Yellow 69,0 
Magenta (purple) 137,0 
Red 205,0 
Cyan (green blue) 273,0 
Green 341,0 
Blue 409,0 

Even if you put color calls in your program, you will not be able 
to see the colors unless you have a plotter, printer, or other device 
that handles color output. When you are using a black and white 
device, every color except white appears black. 

WIDTH OF A STRING 

QuickDraw contains a reasonably broad selection of text-handling 
routines. You can call them directly, if you wish, but it is usually 
easier to use BASIC's GPRINT command to display text. You will, 
however, find one of the toolbox routines particularly handy if you 
need to center text in your output displays. 

BASIC keeps track of the length of strings in characters. How­
ever, Monaco is the only standard Macintosh font in which all 
characters have the same width. All of the other fonts are propor­
tional, with letters like "m" wider than letters like "i." To center 
text in a proportional font, you need to be able to measure the 
width of a string in pixels. The StringWidth function returns a 
string's width in pixels. The string to be measured is the function's 
only parameter. You can use any string or string expression up to a 
maximum string length of 255 characters. 



358 Using Macintosh BASIC 

width~ =Tool StringWidth ('String to center') 
PRINT width";' pixels wide.' 
SET PENPOS ( 240-width~) DIY 2 ,30 ! center it 
&PRINT 'String to center' 

The value StringWidth returns is the width of the string in the 
current font, size, and style. StringWidth adds up the widths of the 
characters in the string. If you call StringWidth after any SET 
FONT, SET FONTSIZE, or SET GTEXTFACE commands, the 
width you get from StringWidth will be the same as the string's 
width when you display it with GPRINT. 

Finding Whether a Pixel Is Black or White 

If you want to know whether a particular pixel is black or white, 
you can use the GetPixel function to find out. You give GetPixel 
the horizontal and vertical positions of the pixel whose color you 
want. GetPixel is a Boolean function. It returns true if the pixel is 
black and false if the pixel is white. 

a~= Tool 8etPixel( 1, 1) 
IF Tool BetPixel( 1, 1) THEN PRINT "It's block!" 

GetPixel returns the value of the pixel as it actually looks on the 
screen. Do not expect GetPixel to return the value of the point in 
your window if the location of the pixel is outside the visible area 
of your current grafport or if the location of the pixel is covered by 
another window. Since your program does not always know 
whether you have moved another window on top of the output 
window, you may sometimes be surprised if you rely too heavily on 
GetPixel. 

EXAMPLE PROGRAM 

The Make Pattern program in Figure 22-4 displays patterns and 
the values that you use to define them when calling QuickDraw 
routines. You can use the program as a tool to help you design 
new patterns to use in your programs. 



! Make Pattern 
DIM big~·(7, 7), pat©( 7) 
1 = 30 ! Left of magnified pattern 
t = ;;o ! "fop ofniajnlfied pattern 
FOR i = 9TO 65 STEP 8 

FRAS1E.RE(.:T l,t;l+i,t+65 
FRAt'IE RECT l,t; 1+65,t+i 

NEXT i 

DO . •.>i . . ···••· .. • ... •. . •••... 
IF MQUSEB ... AND inrecr THEN 

DO ..... . 
..•. h = (MOlJSEH-1) DI Y 

v = (MOIJSEY-t) PIY 8 
·• big"'(,t,h) =NOTbig~(V.~J •.... • t >t 

QuickDraw Graphics 359 

INVERT RECT 1+8*h+ 1,t+8*v+ 1; l+8*h+8,t+8*v+8 
CAL~ OoPattern > , . ..· .•.• 

IF NOT MOUSER_. THEN•EXITDO 
LOOP 

ENDlf? 
LOOP 
END PRQ6RAM ! 
SUB DoPattern 

! Pack the pattern into pat© 
FOR row= OTO 7 

byte!f. = O 
FOR col7 0 TO 7 

If big~(row,col) THEN byte:g :::.bytei + 2~ (7-col) 
NEXT col 
pat©( row) = byte jg 

NEXT row 
! Draw the patt1irn 
TooJBox PenPat (@pat©( 0)) 
PAINT RECT 0, I 04; 232 ,200 
! Erase andredisplay pat© values 
ERASE RECT 0,201; 300,230 
SET PENPOS·.10,220 
FOR row = 0 TO 6 

6PRINT pat©( row);","; 
NEXT row 
&PRINT pat©( 7) ! No comma for the last one 

END SUB 
FUNCTION lnRecr 

lnRecr =TRUE 
IF (MOUSEH < 1) OR (MOUSEH > 1+63) THEN lnRect- =FALSE 
IF (MOUSEY ( t) OR (MOUSEY) t+63) THEN lnRecr =FALSE 

END FUNCTION 

Figure 22-4. Make Pattern program 



360 Using Macintosh BASIC 

Clicking on a spot in the magnified pattern definition area at the 
top of the output window turns that spot on or off. After each 
change, the program displays the new pattern at normal size in the 
middle of the window. When it displays each pattern, the program 
also calculates and displays the eight values you can put into a 
character array to define the pattern from your BASIC programs. 
Figure 22-5 shows a sample of the program's output. 

The program uses two arrays: big~, to hold the magnified ver­
sion of the pattern, and pat©, to hold the final packed version used 
to set the pen pattern. The variables l and t, representing the left 
and top of the magnified pattern, are both set to 30. The two 
FRAME RECT statements inside the FOR/NEXT loop draw the 
squares in the magnified pattern area. Each pixel in the magnified 
pattern is a square, 8 normal pixels on a side. 

The main loop of this program waits until the mouse button is 
pressed inside the magnified pattern definition area. When this 
happens, the program calculates the row and column in which the 
cursor is located by subtracting the location of the edg~ of the 

§0 Make Pattern 

Figure 22-5. Output from Make Pattern 



QuickDraw Graphics 361 

magnified pattern and dividing by 8. The DIV operator truncates 
the result of the division, so the result is an integer from 0 to 7. 
The program then inverts the appropriate element of the big­
array and uses an INVERT RECT statement to invert the square 
representing that pixel in the magnified display. 

The subroutine DoPattern packs the information in big- into 
the pattern format in pat© and displays the new pattern and the 
values in its array. The nested FOR/NEXT loops at the beginning 
of the subroutine pack the eight items of information in big- for 
each row into a single byte for pat©. Once this is done for each of 
the eight rows, the program calls the toolbox routine PenPat to set 
the graphics pen to the new pattern and uses PAINT RECT to 
display an area filled with the pattern. If you put the rectangle's 
definition into an integer array, you could call FillRect instead of 
using the PenPat and PAINT RECT statements. 

The final statements in the subroutine DoPattern print the 
values in pat©, the array that defines the pattern. When you find a 
pattern you like, you can use these eight numbers to define the 
pattern in your programs. 



362 Using Macintosh BASIC 

PRACTICE EXERCISES 

1. How would you clip the drawing area so your program could 
draw only in the top 50 pixels of the window? 

2. What statements would you use to draw a solid wedge that is 
the upper right corner of a circle contained in the rectangle 
0,0; 100, 100? 

3. Can you write statements to center the string "Title" in the 
leftmost 100 pixels of the output window? 

4. What statements would you use in your program to set the 
graphics pen to the pattern displayed in Figure 22-5? 



~~~cltafllr23~~~ 

Using Resources

Command:

• PERFORM

This chapter concludes the discussion of the undocumented features
of Macintosh BASIC. It describes the toolbox routines that handle
a second set of "hidden" files on the Macintosh. These hidden files
contain packets of information called resources. Any kind of
information can be filed as a resource, as long as it has a resource
type and identification number. Common types of resources
include fonts, menus, dialog box descriptions, and program code.
You can retrieve, alter, and use these resources in your BASIC
programs.

Two of the system resources that let you open a file and choose a
name for a new file can be used easily in any BASIC program. The
example programs late~ in this chapter demonstrate how to use
these resources. Much of the other information in this chapter is of
use primarily to advanced programmers and to others who are
curious about the inner workings of the Macintosh.

363

364 Using Macintosh BASIC

This chapter also includes a description of how a BASIC pro­
gram can call a program written in assembly language. If you
want to create your own assembly language programs or create
your own resources, you should obtain the Apple 68000 Develop­
ment System. In addition to assembly language programming
tools, that product includes a program that you can use to make
new resources and put them in resource files.

RESOURCES AND RESOURCE FILES

The term computer files usually refers to the kinds of data file that
were discussed in Chapters 12 and 13. These are the only kinds of
file on most computers. The Macintosh, however, has a set of hid­
den files called resource files. Every file on the Macintosh has one
part in the visible data file format and another part in the hidden
resource format. The two parts of a file are sometimes called forks.
Figure 23-1 illustrates the way a file is divided into a data fork and
a resource fork.

You can use the commands described in Chapters 12 and 13 to
read and write the data fork of a file. You use the toolbox routines
described in this chapter to read and write the resource fork.

Identifying Resources

Almost anything can be a resource. All you have to do to specify a
resource is give it a resource type and identification number. You

Data fork - contains data
File

Resource fork - contains resources

Figure 23-1. Data and resource forks of a file

Using Resources 365

can give it a name as well, if you wish. A resource type consists of
four characters in which spaces and case are significant. Table 23-1
lists some of the most common resource types. Types of resources
include such standard items as fonts, desk accessories, icons, strings,
and segments of program code. You can define new resource types
of your own as long as you do not duplicate the name of any exist­
ing resource type.

The resource identification number is an integer. The number
must not duplicate the number of another resource of the same
type. The range of resource numbers that is reserved for system
resources varies from one resource type to another. To be safe, you
should assign resource numbers higher than 256 to any resources
you create.

Table 23-1. Common Resource Types

Type Description

'ALRT' Alert template
'CNTL' Control template
'CODE' Program code segment
'DITL' Dialog or alert item list
'DLOG' Dialog template
'DRVR' Desk accessory or 1/0 driver
'FONT' Font
'ICON' Icon
'ICN#' Icon list
'INTL' International resource
'KEYC' Keyboard configuration
'MENU' Menu
'PACK' Package
'PAT' Pattern
'PAT#' Pattern list
'PICT' Picture
'STR' String
'STR#' String list
'WIND' Window template

366 Using Macintosh BASIC

You can also assign a name to a resource. The name can be any
legal string. Use of resource names is fairly common for fonts and
desk accessories, but not very common for other types of resources.
The toolbox routines that search for a resource by name do not
distinguish between upper- and lowercase when looking for the
resource name.

Handling Resource Files

Any special resources that a program needs are normally stored in
the resource fork of that program's file. Standard resources such as
fonts, desk accessories, cursors, and patterns are contained in the
resource fork of the System file. While your BASIC program is
running, two resource files are usually open. They are the System
resource file and the resource fork of Macintosh BASIC's file.

·when you request a resource, the toolbox routines search the
open resource files beginning with the most recently opened file. If
there is a resource in Macintosh BASIC's file with the same
number as a system resource, the toolbox routines will use the one
in BASIC's file instead of the one in the System file, since BASIC's
file was opened after the System file.

You can open additional resource files, and you can also change
the way in which the toolbox routines search resource files. To
open a new resource file, use the toolbox function OpenResFile.
This function takes the name of the file as its only argument and
returns a reference number for the file. If the resource file is already
open, OpenResFile only returns its reference number.

refnum:f: =Tool OpenResfile ('My resource file')
refnum25f: = Too1 OpenResfi1e ('Resource file 2')

To change the way the toolbox routines search files for a
resource, you can use the toolbox routine UseResFile. UseResFile
tells the toolbox routines to begin searching for resources with a
particular file. UseResFile takes one argument, the reference
number of the first file to be searched. The reference number of the
System resource file is zero. Calling UseResFile does not change
the order in which files are searched.

Using Resources 367

ToolBox UseResfile (refnum~)
ToolBox UscResfile (0) ! Use System file only

Using a Resource Type as an Argument

To pass a resource type as an argument to a toolbox routine, you
must pack the four characters into two integers. You use BASIC's
ASC function to convert each character into a number, multiply
the leftmost character for each integer by 256, and add the values of
the two characters for each integer together as in the following
example:

! Example for type 'FONT'
flrst2:t; = ASC('f')*256 + ASC('O')
second2lf> = ASC('N')*256 + ASC('T1)

! As peremeter use second2m ,first2m

In the argument list to a toolbox routine you must first list the
integer variable that contains the last two letters followed by the
integer variable that contains the first two letters. This is required
because BASIC does not have a special variable type to match the
packed array of four characters required by the toolbox routines.

Getting a Resource

The toolbox functions GetResource and GetNamedResource pro­
vide ways for your program to get any available resource. You use
GetResource if you want to search for a resource by its ID number
and GetNamedResource if you want to look for it by name. Both
functions require you to supply the resource type first and then the
ID number or name. Both functions search the open resource files,
load the resource into memory (under normal circumstances), and
return a handle to the resource. You can use the handle to refer to
the resource when you call other toolbox routines.

first2ll = ASC('P')*256 + ASC('I')
second2jg = ASC('C')*256 + ASC('T')
h} =Tool 6etRe8ource (second2lt; ,first2lt; ,350) ! Bets PICT 350
h} =Tool 8etNamedResource (second2st: ,first2SI: ,'scene')

368 Using Macintosh BASIC

Listing Resource Types

The toolbox contains routines that let you find out what resources
are present in the open resource files. CountTypes is a function
that returns the number of different resource types present in the
open resource files. CountTypes requires no arguments.

GetlndType is a toolbox routine that returns the name of the
resource type specified by an index from 1 to CountTypes. The two
toolbox calls are usually used in combination. GetlndType requires
two arguments: a pointer to the first element of a 4-byte array
where the resource type name will be stored, and the index of the
resource type to be stored. The following example shows how you
can use the two toolbox calls to display a list of all types of re­
sources contained in the open resource files.

! List available resource types
DIM type©(3)
FOR count= 1 TO Tool CountTypes

ToolBox 0etlndlype (@type©(0) ,count)
string$=""
FOR index = 0 TO 3

string$ =string$ & CHRS(type©(index))
NEXT index
PRINT string$

NEXT count

Listing Individual Resources

The toolbox function CountResources returns the number of
separate resources present of a given type. This function requires
you to supply the resource type as an argument. The function
GetlndResource returns a handle to the resource that matches the
resource type and index number you supply as arguments. These
two functions are usually used together. The following example
uses CountResources and GetlndResource to fill an array with
handles to all of the FONT resources available:

! Get handles to all available fonts
first2% = ASC('F')*256 + ASC('O')
second2~ = ASC("N")*256 + ASC("T")
total= Tool CountResources (second2m ,first2%)

DIM h}(total) ! dimension array for the handles
FOR count= 1 TO total

Using Resources 369

h}(count) =Tool 8etlndResource (second2jg ,first2:g ,count)
NEXT count

Having a handle to a resource does not tell you very much about
it. If you used GetlndResource with an index to get the handle,
you usually want to know the resource's ID and name. You can use
the toolbox routine GetResinfo to get them.

GetReslnfo requires four arguments. First you supply the handle
of the resource about which you want information. Then you
supply a pointer to an integer variable into which GetReslnfo will
store the resource ID number. Finally you must supply pointers to
arrays into which GetReslnfo will store the resource type (4 bytes)
and name (256 bytes). The example in Figure 23-2 lists all of the

! List av13ilabl~.desk 8CCe$SOri!S
·· Dlt1 type©(3}, name©(255}
,, J~rst21) :'~.:ASC;,(~·.,.D~.:);:~·~,~-R.',;,+,: ,.('8:~:i>r,,,_,__~::c

5econd2lK • ASC("V")*256 + ASC("R
f()Q ClCllJIJ.l= l.;fe> 19"'~ ~~ .. ~~~~ C·d~lt ,f\~st2it)

h} = Toot8et1ndR'10ur1:t (1,i1'.rst21.count>
ToolBox eetRitslnfo c h}~@IDI, ·.. . e'(:p)~t'naq\e©UQ)) i. ··¥0 ·

lf CH.RS{nalJl~(1}) <~0 •.• .• "J).J~ft. lN(Jla~·actessory if.it.is ... ·;.
. ! eat resouri~ type in•a str~fl{J . •··• \ ;;

rtypeS =
FOR. thdex ~ o rd 3 ..
rtype$ = rfype$ & cHRS(type~(in~x)).
NEXT index .
! ~ resoul'(Je n8me in .. 8 stp~no rname$ = ·. . . · .• .

FOR index= 1 TO name©(O)
rname$ = rname$ & cttRS(name©(iodex))

NEXT index ' . . .
PRINT rtype$;" ";IOI ,rn{lme$

ENDIF •:;
NEXT count
END PROORAt1

Figure 23-2. List available desk accessories

370 Using Macintosh BASIC

available desk accessories (a desk accessory is resource type DR VR
with a name that does not start with a period).

RESOURCES YOU CAN USE

In many cases, you can shorten your programs by using resources.
For instance, you can have most aspects of windows and menus
defined in a resource. Instead of specifying the entire set of argu­
ments every time that you create a window, you can use a toolbox
function with a much shorter parameter list to get the window
specifications from a resource. If the resource you need does not
already exist in a resource file, you need to create it with a program
from the Apple 68000 Development System.

Windows

The toolbox function GetNewWindow allows you to create a new
window from a window template (type WIND) in a resource file. It
requires fewer arguments than the NewWindow function described
in Chapter 20. GetNewWindow requires the resource ID number of
the WIND resource, two zeros to tell the toolbox routines to allo­
cate their own storage area, and the number - I twice to tell the
toolbox routine that this new window will be in front of all others.
After it creates the new window, GetNewWindow returns a win­
dow pointer.

w] =Tool GatNewWlndow (300,0,0,-1 ,-1)

Menus

The toolbox function GetMenu creates a new menu from a MENU
resource. You provide a single argument, the ID number of the
MENU resource. GetMenu returns a handle to the new menu. If
you have all of the individual items already defined in the resource,
GetMenu gives you a menu that is ready to install in the menu bar.

myMenu} = Too18etMenu (333)
ToolBox lnsertMenu (myMenu},0)
ToolBox DrawMenuBar

Pictures

Using Resources 371

You can get a picture (resource type PICT) from a resource file
with GetResource or GetNamedResource and then give the resource
handle to DrawPicture to draw the picture. This allows you to
make the picture once and to read it from disk and redraw it
quickly any time you run your program.

ftrst2~ = ASC("P")*256 + ASC("I")
second2ig = ASC("C")*256 + ASC("T")
pie)= Tool 8etResource (second2~ ,f1rst2~ ,333) ! Get PICT 333
Tool Box DrawPicture (pie})

Alert Boxes

Macintosh programs often use alert boxes to tell you when some­
thing cannot be done or to alert you when you are about to do
something that could cause you to lose information. Alert boxes
can contain text, icons, and controls, as in this example:

n OK

This is an alert boH. Put your message
here with ParamTeHt.

ll

Because alert boxes can be very complex, the only reasonable
way to use them is to have them stored as resources in a resource
file. Luckily, two of the alert resources (type ALRT) in Macintosh

372 Using Macintosh BASIC

BASIC's resource file are general enough for you to use in your
BASIC programs. This is a diagram of the resource ALRT 10:

[ID First message.

Second lma<><>~g.p __ _Jll

--•
[(OK JI

The two areas outlined in gray are text display areas. You use the
toolbox routine ParamText to set the text to be displayed in these
areas. The gray outlines are not displayed. ParamText takes four
strings as arguments, even if (as in this example) the alert does not
have that many text display areas. If you do not want to display a
message in one of the text areas, you can supply an empty string
for that area.

Tool Box Paramlext ("First message." ,"Second message.","'',"")
Tool Box ParamText ("Only one message","","",''")
a$= "Olve this message"
Tool Box Paramlext (a$,"","",'"')

After you have used ParamText to set the text, you call the tool­
box function Alert to display the alert box. This function requires
three arguments: the number of the ALRT resource and two zeros.
This sequence displays the alert shown previously:

I Display ALR.T 10
Tool Box ParamText ("First message." ,"Second message.","","")
1temHit:t: = Tool Alert (1 o ,0 ,0) ! displays the alert ALRT 10
! itemHitjg will always be 1 in this example

The Alert function displays the alert box and handles everything
related to the operation of the alert. It does not return control to
your program until the RETURN key is pressed or a button in the
alert box is clicked. The function returns an integer that tells you

Using Resources 373

which button was clicked. In this first example, there is only one
button (the OK button) and the function Alert always returns the
number 1. When an alert box contains more than one button,
pressing the RETURN key has the same effect as clicking on the
button that is boldly outlined.

Because the ALRT 10 box just shown contains only one button,
it is useful only to deliver a message. If you need an answer to a
question, you need an alert box with two buttons. The ALRT 1
box in BASIC's resource file looks like the ALRT 10 box with the
addition of a second button, labeled Cancel.

[lIJ First message.

Second - Jill

•
[OK JI (Cancel)

The routine to display the ALRT 1 box is similar to the code for
ALRT 10:

! Display ALRT 1
ToolBox ParamText ("First message." ,"Second message."" ,"")
1temH1t!C = Tool Alert (I ,0 ,0) ! displays the alert ALRT I
IF itemHitst: = 1 THEN PRINT "Selected 'OK' or pressed RETURN"
IF itemHitlC = 2 THEN PRINT "Selected ·cancel"'

This alert box contains two buttons. Your program can find out
which button was chosen by testing the number returned by the
Alert function. The number is I for the OK button or the RETURN

key and 2 for the Cancel button.

CALLING CODE FROM A RESOURCE FILE

Segments of program code can be filed as resources and called from
your BASIC programs. The ability to execute code from a resource
file makes BASIC a truly flexible and expandable language.

374 Using Macintosh BASIC

Calling an Assembly Language Routine

• PERFORM

As it was described in Chapter 15, BASIC's PERFORM command
executes another BASIC program and then returns to the next state­
ment after the PERFORM statement. In addition to this, PER­
FORM has an extra, undocumented capability that lets you execute
any assembly language subroutine that receives its parameters
according to the toolbox parameter-passing conventions. Advanced
programmers can use this feature of PERFORM to call assembly
language subroutines written with the assembler in Apple's 68000
Development System.

The assembly language subroutine you want to execute should
be located in a resource file. If the file is not already open, you can
use OpenResFile to open it. Then you use GetResource with the
subroutine's resource type and ID to get a handle to it. You execute
the subroutine by using the command PERFORM followed by the
resource handle you received from GetResource.

! Gall Assembly Language C.ode
! For example, assume it is in resource CODE 333
t1 :g = ASC("C")*256 + ASC("O")
t2l!S "'ASC("0")*256 + ASC("E")
h} =Tool 0etR~urce(t2lf: ,t 1 lf: ,333) ! reads code and returns handle
PERFORM h} (p 1 lf> ,p2lf>) ! Call the code, using two integer parameters
Tool Box ReleaseResource(h}) ! release ccxle from memory

If the subroutine requires arguments, put them in parentheses
just after the handle. Use the same parameter-passing procedures
you use to pass parameters to toolbox routines. After the subrou­
tine has been executed, you can call ReleaseResource with the
handle as an argument to remove the subroutine from memory.
Call ReleaseResource only if no other program uses the resource.

You do not get any help from BASIC in checking your argu­
ments to the assembly language subroutine. As with most assembly
language programming, you are on your own. If the arguments
you supply occupy more or fewer bytes than required by the
assembly language subroutine, your program will almost certainly
stop with a fatal error. Other programming mistakes may cause
fatal errors or more subtle problems.

Using Resources 375

Packages

Packages are sets of toolbox-like routines that are not in your
machine's read-only memory. Instead, the code for these routines is
located in the resource fork of the System file qn your disk. Pack­
ages have the resource type PACK. Each package contains the code
for several related routines.

Table 23-2 shows the standard list of packages and the types of
routines contained in each. BASIC calls the Disk Initialization,
Floating-Point Arithmetic, Transcendental Functions, and Binary­
Decimal Conversion packages whenever they are needed. You
should not need to call them directly. The Standard File package
contains two routines, SFGetFile and SFPutFik, that you can use
from BASIC. Example programs that use SFGetFile and SFPutFile
are described in detail at the end of this chapter.

The International Utilities package contains utilities that con­
vert the time and date to the proper format for each country. It also
contains utilities that handle string comparisons according to each
country's normal usage. When you use the OPTION COLLATE
NATIVE command described in Chapter 8, BASIC uses the Inter­
national Utilities package routines to perform string comparisons.

Table 23-2. The Macintosh System Packages

Resource ID

'PACK' 2

'PACK' 3

'PACK' 4

'PACK' 5

'PACK' 6

'PACK' 7

Description

Disk Initialization

Standard File

Floating-Point Arithmetic

Transcendental Functions

International Utilities

Binary-Decimal Conversion

376 Using Macintosh BASIC

Using the Packages From BASIC

To use a routine from one of the packages in your BASIC pro­
gram, you have to load the package and then use PERFORM to
execute the routine you want. Since BASIC does not recognize the
names of the individual package routines, you need to supply an
extra argument in the PERFORM statement to indicate which rou­
tine in the package you wish to select. You add this selector code to
the end of the routine's normal argument list. Table 23-3 shows
the selector codes for each of the routines in the Standard File and
International packages.

Do not call ReleaseResource when you are finished using a
package resource. You may not be the only one using the package.
If you call ReleaseResource for a package BASIC had loaded into
memory, a fatal error will result the next time BASIC tries to call a
routine in that package.

Table 23-3. Package Routine Selector Codes

Routine Code

Standard File (PACK 3)
SFPutFile 1
SFGetFile 2

International (PACK 6)
IUDateString 0

IUTimeString 2
IUMetric 4
IUGetlntl 6
IUSetlntl 8
IUMagString 10

IUMagIDString 12
IUDatePString 14
IUTimePString 16

Using Resources 377

EXAMPLE PROGRAMS

This chapter's example programs show you how to use two of the
most useful Macintosh resources, SFGetFile and SFPutFile, which
control the dialog boxes to open and name files.

SFGetFile presents and manages the standard dialog box that
every Macintosh application is supposed to present when you ask
it to open a file.

p:111::1:11:elgl:212~1l11•li
Listing 22-1 O
Listing 22-2
Listing 22-3
Listing 22-4 I

Open

Cancel

Chapter 22

Eject

Driue

You call SFGetFile by using GetResource to load the resource
PACK 3 and calling the resource with selector code 2 at the end of
your argument list. The program in Figure 23-3 is an example that
uses SFGetFile.

This example program looks long, but it is not much more
complicated than previous examples. It uses the GetResource func­
tion to load PACK 3, as described earlier in this chapter. The PER­
FORM statement in the middle of the program actually executes
the SFGetFile code. The first two arguments are the horizontal and
vertical coordinates of the pixel where the top left corner of the
dialog box is to be located on the screen. The location is followed
by an empty string and two zeros.

The next two arguments for SFGetFile are the number of file
types you want the routine to select for display in the scrolling box
and a pointer to an integer array that contains the packed file
types. The packed file types must be stored in the array before you
attempt to use SFGetFile. This example tells SFGetFile to display
files of two types, TEXT and BINY. If you specify -1 for the
number of file types, SFGetFile displays all files on the disk regard­
less of their file types.

378 Using Macintosh BASIC

Figure 23-3. Call SFGetFile

You should always use two zeros after the pointer to the list of
file types and follow the zeros with a pointer to an array that con­
tains at least 74 bytes. SFGetFile stores a reply record in this array
that contains information you will need. The last argument, the
number 2, is the selector code that tells PACK 3 to execute
SFGetFile.

Table 23-4 lists the items that SFGetFile stores in the reply
record. The 0th element of the array is a Boolean variable. If the
value of this element is 0, the Boolean variable is false, meaning
that the Cancel button in the SFGetFile dialog box was pressed. In

Using Resources 379

Table 23-4. SFGetFile Reply Record

Number
Start Of Bytes Data Type Description

0 Boolean True (>O) if OK, False if
Cancel

1 1 Boolean Not used
2 4 4 characters File type
6 2 Integer Volume reference number
8 2 Integer File's version number

(usually 0)

10 l Number Length of file name
11 63 Characters File name

this case, your program should not open a file. If the 0th element
is greater than 0, the Open button was pressed and your program
can open a file. The example program ends with an END PRO­
GRAM statement if the Cancel button was pressed.

The length of the file name is contained in the tenth byte of the
reply array. The FOR/NEXT loop at the end of the example pro­
gram in Figure 23-3 shows how you can assemble the file name.
Once you have the name of the chosen file, your program can
open the file and do its work.

SFPutFile presents the "Save As" dialog box that lets you spec­
ify a new file's name.

Eject

Name for the copy?

I 11

Chapter 23

Saue Cancel Driue

The steps you use to call SFPutFile are similar to those used for

380 Using Macintosh BASIC

Figure 23-4. Call SFPutFile

SFGetFile, but a little bit simpler. Figure 23-4 is an example pro­
gram that shows how to call SFPutFile. Once again, you use
GetResource to give you a handle to PACK 3. Then you call it in a
PERFORM statement with a selector code of 1 to specify SFPutFile.

The first two arguments for SFPutFile are the horizontal and
vertical coordinates where you want the dialog box located on the
screen. Then you supply two strings: a prompt line for the dialog
box and the file name that is to be displayed when the dialog box
first appears. After two required zeros, the program once again
supplies a pointer to a 74-byte array for a reply record. The final 1
is the SFPutFile selector code.

SFPutFile fills most of the reply record, but it does not store the
file type information. If the first byte of the reply record is zero, the
Cancel button was selected and the program ends without creating
and writing a file.

Using Resources 381

PRACTICE EXERCISES

l. Can you write a short program that opens a resource file
named "MoreResources" and then lists for each type of
resource the number of available resources of that type?

2. How would you display an alert box that warns "There is not
enough room on the disk to save that file"? That type of alert
does not require a choice, so it does not need any buttons
other than the OK button.

3. How would you display an alert box with the message "The
percentages add to less than 1003. Do you want to continue
the calculations anyway?"

4. Assume your program has its own menu and one of the items
on the menu lets you rename a file. If the present name of the
file is in the variable name$, how might you present a dialog
box to get the new name for the file?

---&tfive--­

Programming Style
--- -·- -


~~~c!taft£r24~~~ 

Professional Polish 

Throughout this book, you have been both the programmer and 
the program user. Now it is time to separate those two roles. This 
chapter discusses some of the special considerations involved in 
giving your programs a professional polish. 

Most discussions of good programming practices focus on the 
goal of making things easy for programmers. Those practices 
include using variable and subroutine names that are self­
explanatory, structuring a program so it is easy to follow, using 
comments to explain parts of the program where the code may be 
unclear, and using modular code that you can debug once and then 
use again in other programs. All of those practices are important, 
particularly when more than one programmer is working on the 
same program. 

This chapter, however, is about two additional goals that come 
to the fore when you look at a program from the point of view of 
the person who uses it. The first goal is naturalness of use. The 
second goal is speed. 

385 



386 Using Macintosh BASIC 

NATURALNESS 

There is no reason why anyone should have to change work habits 
to match a machine. It is much better for designers of the machines 
and of the programs that run on machines to design their products 
to match the habits and styles of people. 

In the early days of the computer industry, people expected to 
spend hours learning how to use a computer program. Programs 
often required arcane codes and provided cryptic messages. Com­
puter programs were expected to take a person through a problem 
or process from beginning to end in the most "logical" fashion. 
What was logical to the computer programmer who designed the 
computer program was not necessarily logical to the person using 
the program. 

It may have been acceptable for computer programs to behave 
that way when access to computers was limited to a small cadre of 
the technical elite. Learning all those things was just part of the 
price of admission to the elite. But as powerful computers like the 
Macintosh become widely available, that kind of program behavior 
becomes totally unacceptable. 

The design of the Macintosh and its user interface is based on 
years of research to determine the most natural ways for computers 
to interact with people. You can take advantage of that research by 
using the standard Macintosh user interface-including the mouse, 
windows, menus, controls, alert boxes -in your programs. 

The best way to learn how to use the parts of the Macintosh user 
interface in your programs is to study the way they are used in 
programs like MacWrite and MacPaint. If your program looks and 
works like those programs, you have probably used the elements of 
the interface correctly. If you plan to write programs for the com­
mercial market, you might want to read Apple Computer's publi­
cation, Inside Macintosh, which includes a detailed specification 
for the use of each element of the Macintosh user interface. 

The overall effect you should try to achieve in your program's 
user interface is to make everything seem natural, with no sur­
prises. The program's appearance and behavior should be consist­
ent with the way people normally work and with other Macintosh 
programs. If you take the trouble to use the mouse, menus, con­
trols, windows, and other elements of the Macintosh user interface 
properly, you will be rewarded with programs that take almost no 



Professional Polish 387 

time to learn and are easy (even fun) to use. 

INPUT CHECKING 

When you are writing a program just for yourself, you do not 
always need extensive input checking. After all, you know what 
input you wrote the program to handle, so you are not very likely 
to try to type things the program will not accept. Besides, you are a 
programmer, so if the program stops with some error, you can 
always look at the program, fix it, and then restart. 

One of the steps involved in giving a program professional pol­
ish is making certain that the program will be able to handle any 
type of input correctly, no matter how unexpected the input is. 
Two techniques are available: you can use controls to limit the 
input to things the program can handle, or you can allow any 
input and have the program present an error message if it cannot 
handle the input. 

Your program can avoid error message situations by providing 
gentle guidance. If, for example, the only possible answers to a 
question are yes and no, the program should offer buttons reading 
"Yes" and "No." The buttons serve two purposes: their appear­
ance tells the person using the program that a choice needs to be 
made, and they limit the range of choices to the two the program is 
prepared to handle. Most problems with input arise in programs 
that require all input to be typed on the keyboard. You can avoid 
these problems (and make your program easier to use) by using the 
Macintosh controls. 

Whenever it must receive input from the keyboard, your pro­
gram needs to check that input very carefully. If a number needs to 
be less than 100, the program should check that the number is 
below 100. When the program receives a ZIP code or telephone 
number, it should check to see that it contains the correct number 
of digits. If the input is incorrect, the program should respond 
with a message that explains what is needed. 

The messages your program displays when it receives incorrect 
input should clearly tell the operator what is expected. Once com­
puter programs gave cryptic messages like "Illegal input" or 
"BDOS error on A." That kind of message causes puzzlement and 



388 Using Macintosh BASIC 

frustration. Instead of "Illegal input," your message should clearly 
say "Please type a number" or "Expected a number" if that is what 
you mean. 

TESTING 

Test your program completely. Try every path. Watch others use it. 
Ask other people to help you test it. After you fix any problems the 
testing uncovers, test it again. 

Test for errors in the user interface as well as for more obvious 
errors like incorrect answers. Look for places in the program where 
people may not know what to do next. Does the program make a 
person do routine tasks that could be done automatically by the 
program? Are there any shortcuts you could provide to reduce the 
number of steps a person has to take to get results? 

Once your program works for the easy cases, try some unex­
pected things. Your testing goal is to eliminate potential problems. 
If your program is used by a large number of people, it will even­
tually receive almost every possible combination of instructions. 
You cannot try every one during testing. You can, though, deliber­
ately try unusual combinations and extreme cases to make certain 
your program handles them correctly. 

As the programmer, you know your program better than anyone 
else. If you don't know what it will do in a particular situation, 
then you need to find out. Try all the unusual cases. If the pro­
gram takes input from the keyboard, see what happens if you press 
the RETURN key without typing anything. Try pressing unusual 
keys at random to see if the program handles them correctly. If 
some of the keyboard input is supposed to be numbers, go through 
your entire program at least once, typing letters at every prompt to 
make certain the program handles all the errors properly. 

When your program performs calculations, test the calculation 
routines to be sure they work with unusual data. What happens 
with a very large number or a very small number? Does the pro­
gram work with positive numbers but fail if you give it a negative 
number? If it expects an integer, what happens if you give it a 
fraction? Does the program give the correct results with zero and 
plus and minus infinity? Are inappropriate input values stopped 
with an appropriate corrective message? 



Professional Polish 389 

PROGRAM SEGMENTATION 

If your program is very large, you may have to break it into pieces 
(called segments) to fit it into the machine. Try to find logical 
places to split the program where it shifts from one activity to 
another. Many programs follow a sequence of setup, data acquisi­
tion, calculation, and displaying results. The place where the pro­
gram switches from one of those activities to the next is a logical 
place to divide the program. 

When you split a program, you should add a PROGRAM state­
ment (described in Chapter 15) at the beginning of each part of the 
program and save the parts in separate disk files. Each part of your 
original program is now a separate program, which can be exe­
cuted with BASIC's PERFORM command. 

SPEED, TIMING, AND RHYTHM 

A program that is slow can be almost as frustrating as a program 
with an old-fashioned user interface. This section discusses a few 
techniques you can use to identify the slow portions of your pro­
gram and to increase their speed. It also discusses two subtle 
aspects of program speed: modifying the order in which the pro­
gram does things (timing), and matching the time during which 
the program does things to the way people work (rhythm). 

If you think your program operates too slowly, the first thing to 
do is to identify the places in the program that you think may 
cause the problem. Run your program all the way through, mak­
ing notes every time you think something happens too slowly. If 
you have trouble identifying the part of the code that causes the 
slow response, using the debugger's Trace command may help you 
find the problem area. 

Now look at the slow parts of your program. If the slowness is 
caused by file operations or drawing graphics, there may not be a 
lot you can do. Large graphics do take longer to draw than small 
graphics. Be sure you are drawing only what you need. 

One of the common causes of slowness that you can often 
remedy is loops. A loop that executes unnecessary statements a 
hundred or more times can slow a program. Check the loop to 
make sure ~very statement in the loop has to be there. If you can, 



390 Using Macintosh BASIC 

move some of the statements in the loop to outside the loop, where 
they will be executed only once. 

If reducing the contents of loops does not provide all the speed 
improvement you need, you may need to rewrite some of the pro­
gram. BASIC takes slightly less time to reference a simple variable 
than it does to reference an array variable. The first 64 variables 
that your program uses (including labels and defined functions) 
are referenced slightly faster than other variables. Computations 
take less time with integers than with reals, and similarly, take less 
time with extended-precision than with double-precision variables. 

You can make additional speed improvements by using global 
variables instead of parameters in calls to subroutines and defined 
functions. Subroutines and functions without parameters run 
faster than those with parameters. FOR/NEXT and DO loop 
structures run faster than IF/THEN and SELECT CASE struc­
tures. Multiplication and the SQR function are both much faster 
than exponentiation. 

If you want to compare the speed of two different statements to 
add your own findings to the speed guidelines listed here, a stan­
dard way to do the comparison is to put one of the statements you 
want to compare inside a FOR/NEXT loop that will execute the 
statement 5000 or 10,000 times. Then time the program. Now 
replace the statement inside the FOR/NEXT loop with the state­
ment you want to compare it with, and ~ime it again. The state­
ment that was in the version that ran in the fastest time is the one 
you want to use in time-sensitive parts of'your programs. 

Timing refers to when your program does things. If your pro­
gram seems to respond too slowly, you might want to examine the 
way it is being used. If you can locate any spots where people tend 
to pause (perhaps to read a screenful of information the program 
has just displayed or to listen to music or sound effects), those 
spots are places where the program can do time-consuming opera­
tions without any delays being noticed. 

Many rough spots that sem to be caused by speed problems can 
be cured by improving program timing. Consider, for example, a 
program that needs to write the results of its calculations to a disk 
file and also display the results in the program's output window. If 
the program writes the results to the file before putting them in the 
output window, the person who wants to see those results has to 
wait for the file operation. If th~ program displays the results in 



Professional Polish 391 

the output window first, the person is busy reading the results and 
may not even notice that the file operations are taking place. 

If your program uses the PERFORM statement to execute other 
programs, you need to make certain that the delay while your pro­
gram loads a new segment occurs at a time that is as unobtrusive as 
possible. You may need to change the place where you originally 
split the program in order to obtain smooth, unobtrusive per­
formance. 

The ultimate timing goal is to fine-tune until the program per­
forms in a rhythm that feels natural to the person using it. Good 
rhythm is seldom noticed. Bad rhythm, however, can ruin an other­
wise wonderful program. 

As a hypothetical example of bad rhythm, imagine a program 
that requires you to type a long list of paired words. For some 
reason, the program takes longer to process the first word in each 
pair than it takes to process the second word. Most people would 
find the rhythm of this program unnatural, because it pauses in 
the middle rather than at the end of each pair of words. 

A program with an extremely unnatural rhythm like the one in 
this example is likely to make the user frustrated, tense, and ner­
vous. The person may not realize the exact cause of this agitated 
state, but will probably associate the negative experience with the 
program or the computer and refuse to use them again. 

The only sure way to identify an unnatural rhythm in a program 
is to use it. Different people may have slightly different expecta­
tions, so it is ~ good idea to watch other people use the program as 
well. You should make notes of places where people seem to be 
frustrated or have to wait for the program, and then ask them 
about those places afterwards. With a little care, you can make cer­
tain that your program has a natural and pleasing rhythm. 

PROFESSIONAL APPEARANCE 

Why not make your program look as good as possible? If the 
internal workings of your program are truly professional, it is 
worth the time to polish the program's appearance as well. This 
means making sure all the spelling and grammar in the displays 
~nd mes~ages are_ correct, arranging oum~t ~ttractively, and center­
ing text m the wmdow or over a colurrnnf a looks better that way. 

' . ~ ~ 



392 Using Macintosh BASIC 

It also means making judicious use of graphics and sound if they 
are appropriate to the program. 

DOCUMENTATION 

If your program will be used by other people, you need to provide 
some written documentation. The written documentation serves as 
an introduction to the program and its capabilities and as a refer­
ence while the program is being used. If your program is so self­
explanatory that it does not need any pictures with the written 
documentation, you may be able to provide the documentation as a 
text file on the program disk. 

You may have noticed that some people learn more quickly 
when they read material on a printed page, others learn more 
quickly by listening, and still others learn more quickly by doing. 
If the nature of your program makes it possible, you might consid­
er offering all three methods for learning how to use your pro­
gram. If you examine the Guided Tour materials that Apple Com­
puter enclosed with your Macintosh, you will see that they have 
provided adequate help for all three ways of learning. 

IMPONDERABLES 

When everything else is done, why do people like some programs 
and dislike others? What gives one program a pleasing character? 
What makes other programs aggravating to use? If you find a way 
to get exact answers to these questions, you have a great future in 
product selection and marketing. 

In the absence of certainty, you can do some experiments. Watch 
other people use your program. If they look puzzled or frustrated, 
note where they were in the program and what they were trying to 
do. Use the program yourself. If you find yourself waiting for the 
program or getting irritated, you have some work to do. Rewrite or 
redesign the parts of your program that seem to be troublesome. 
Test it again and again if necessary. 

Once everything works correctly and you have eliminated trouble 
spots, look at your program as a whole. Does it present a consistent 
design? Do the parts fit together into a coherent whole? Even if it is 
not a game, is your program just a little bit fun to use? If so, you 
may have the makings of a great commercial product. 



~~~Apfuu:llxA~~~­

Macintosh BASIC
Statements and Functions

This appendix presents formal descriptions of the syntax of all
statements and functions in Macintosh BASIC. In these descrip­
tions the Macintosh BASIC keywords are in boldface type. Items
you need to supply are in plain type. Items in square brackets are
optional, while items that are not in square brackets are a required
part of the syntax. For example, in the syntax description

GOSUB label[:]

the word GOSUB is a BASIC keyword, and you supply the label
when you write the program statement. The colon is enclosed in
square brackets, so its use is optional.

For many BASIC statements, you have a choice of words or syn­
tax. The set of choices is enclosed in curly braces ({ }) and the

393

394 Using Macintosh BASIC

choices are separated from each other by a vertical bar (I). The
vertical bar means "or." For example, the syntax description

OPTION COLLATE {NATIVE I STANDARD}

indicates that you can use either OPTION COLLATE NATIVE or
OPTION COLLATE STANDARD.

An ellipsis (...) just before a closing bracket or brace means that
you can repeat the portion of the syntax that is inside the brackets
or braces. The description

READ variable [, variable ...]

indicates that a READ statement must always have one variable
name and may have any number of additional variable names pre­
ceded by commas. The comma and variable name inside the square
brackets must always be used together because there are no curly
braces or vertical lines to indicate that a choice is allowed.

A slash (/) indicates the end of a statement in a multiple­
statement control structure. Usually, the end of a statement is the
same as the end of a line. You can, however, use a colon to end a
statement if you want to put more than one statement on a line.
The syntax description

DO I [statements /] LOOP

indicates that you have the option of including additional state­
ments between the DO statement and the LOOP statement.

Any punctuation other than square brackets ([]), curly braces
({}), a vertical bar (I), an ellipsis (...), or a slash (/) is a part of the
punctuation of the BASIC statement or function.

Descriptive names are used in the syntax descriptions for the
items you must supply. A literal is an actual value, not the name of
a variable. A string literal should include matching quotation
marks at the beginning and end of the string value.

Variable means the name of a variable, not its value. Numvar is
an abbreviation for numeric variable. Integer Array means the name
of an array of integers. Handle means the name of a variable of type
handle and pointer means the name of a variable of type pointer.

Macintosh BASIC Statements and Functions 395

An expression is any combination of values, variables, functions,
and operators that results in a single value when it is evaluated.
Numexpr is an abbreviation for numeric expression. The words
left, top, bottom, and right refer to numeric expressions unless the
syntax description specifically says they are numeric variables. The
word element means a numeric expression that evaluates to the
index of an array element. The word channel means a numeric
expression that evaluates to the number of a communications
channel.

The word statement means a single program statement, and the
word statements means one or more program statements.

Comments, labels, function names, subroutine names, and tool­
box names are part of your program statements. You cannot use
variables or expressions for them. On the other hand, you can use
string literals, string variables, or any legal string expressions for
file names, device names, and volume names.

MACINTOSH BASIC STATEMENTS

The following is an alphabetic list of Macintosh BASIC statements.

ASK CURPOS #channel, numvar

ASK DOCUMENT numvarLeft, nuqivarBottom; numvarRight,
numvarTop

ASK ENVIRONMENT numvar

ASK EOF # channel, numvar

ASK EXCEPTION {numexpr I INVALID I UNDERFLOW I
OVERFLOW I DIVBYZERO I INEXACT} Boolean Variable

ASK FONT numvar

ASK FONTSIZE numvar

ASK GTEXTFACE numvar

ASK GTEXTMODE numvar

ASK HALT {numexpr I INVALID I UNDERFLOW I
OVERFLOW I DIVBYZERO I INEXACT} Boolean Variable

396 Using Macintosh BASIC

ASK HPOS numvar

ASK HPOS # channel, numvar

ASK LOCATION numvarLeft, numvarBottom; numvarRight,
numvarTop

ASK OUTPUT numvarLeft, numvarBottom; numvarRight,
numvarTop

ASK PATTERN numvar

ASK PEN numvarl, numvar2

ASK PENMODE numvar

ASK PENPOS numvarl, numvar2

ASK PENSIZE numvar 1, numvar2

ASK PICSIZE numvar

ASK PRECISION numvar

ASK ROUND numvar

ASK SCALE numvarLeft, numvarBottom; numvarRight,
numvarTop

ASK SHOWDIGITS numvar

ASK TABWIDTH numvar

ASK VPOS numvar

BTNWAIT

CALL subroutineName [({expression I variable} [, {expression I
variable} ...])]

CLEAR WINDOW

CLOSE [# channel]

CREATE# channel: filename[, {APPEND I OUTIN}]
[, {BINY I DATA I TEXT}] [, {RECSIZE numexpr I
SEQUENTIAL I STREAM}]

DATA literal[, literal ...]

DEF functionName [(variable[, variable ...])]

DELETE filename

DEVCONTROL #channel: @ integerArray (element)

Macintosh BASIC Statements and Functions 397

DEVSTATUS #channel: @ integerArray (element)

DIM array (numexpr I [, numexpr2 ...]) [, array (numexpr3
[, numexpr4 ...]) ...]

DO I [statements /] LOOP

DOCUMENT PRINT

EJECT {numexpr I volumename}

END [{FUNCTION I MAIN I PROGRAM I SELECT I SUB I
WHEN}]

ERASE {{OVAL I RECT} left,top; right,bottom I
ROUNDRECT left,top; right,bottom WITH
numexpr l,numexpr2}

EXIT [{DO I FOR I FUNCTION I PROGRAM I SUB}]

FOR numvar = numexprl TO numexpr2 [STEP numexpr3] I
[statements /] NEXT numvar

FRAME { {OVAL I RECT} left,top; right,bottom I
ROUNDRECT left,top; right,bottom WITH
numexpr l,numexpr2}

FUNCTION functionName [(variable [, variable ...])] I
[statements /] functionName = expression I [statements /]
END FUNCTION

GETFILEINFO filename, @ integerArray (element)

GETVOLINFO volumename, @ integerArray (element)

GOSUB label [:]

GOTO label [:]

GPRINT [AT numexprl,numexpr2;] [expression [{;I ,}
[expression] ...]]

GTEXTNORMAL

IF BooleanExpression THEN statement [ELSE statement]

IF BooleanExpression THEN I statements I [ELSE I
statements /] ENDIF

IGNORE WHEN { ERR I KBD I MENU handle I WINDOW
pointer }

398 Using Macintosh BASIC

INPUT [stringLiteral {; I ,}] variable [, variable ... J

INPUT# channel[, {BEGIN I NEXT I RECORD numexpr I
SAME}] [, {IF EOF- I IF EOR- I IF MISSING-} THEN
statement]: variable [, variable ...]

INVERT { {OVAL I RECT} left, top; right, bottom I
ROUNDRECT left,top; rigta,bottom WITH
numexpr l,numexpr2}

[LET] variable = expression

LINE INPUT [stringLiteral {; I ,}] variable

LINE INPUT# channel[, {BEGIN I END I NEXT I RECORD
numexpr I SAME}] [, {IF EOF- I IF MISSING- } THEN
statement]: variable

LOCK filename

NEXT numvar

OPEN #channel: {filename I deviceName} [, {APPEND I
INPUT I OUTIN}] [, {BINY I DATA I TEXT}][, {RECSIZE
numexpr I SEQUENTIAL I STREAM}]

OPTION COLLATE {NATIVE I STANDARD}

PAINT { {OVAL I RECT} left,top; right, bottom I
ROUNDRECT left,top; right,bottom WITH
n umexpr 1, n umexpr2}

PEN NORMAL

PERFORM progname[({expression I @variable} [, {expression I
@variable} ...])]

PERFORM handle [({expression I @variable} [, {expression I
@variable} ...])]

PLOT [numexprl, numexpr2 [; [numexpr3, numexpr4] ...]]

POP

PRINT [expression [{; I ,} [expression] ...]]

PRINT # channel [, {BEGIN I END I NEXT I RECORD
numexpr I SAME}] : [expression [{; I , } [expression] ...]]

PROCENTRY numvar

PROCEXIT numexpr
!··'

Macintosh BASIC Statements and Functions 399

PROGRAM programName [([@]variable[, [@]variable ...])]

RANDOMIZE

iiEAD variable [, variable ...]

READ# channel[, {BEGIN I END I NEXT I RECORD
numexpr I SAME}][, {IF EOF-1 IF EOR-1 IF MISSING-}
THEN statement]: variable [, variable ...]

REM comments

RENAME filename!, filename2

RESTORE [label[:]]

RETURN

REWRITE# channel[, {BEGIN I END I NEXT I RECORD
numexpr I SAME}] [, {IF EOF- I IF MISSING-} THEN
statement]: [expression [{; I , } [expression] ...]]

SELECT [CASE] expression I [CASE { [[IS] relational Operator]
literal I literal TO literal} [, { [[IS] relational Operator] literal I
literal TO literal} ...] I statements I] [CASE ELSE I
statements/] END SELECT

SET CURPOS #channel, numexpr

SET DOCUMENT {TOWINDOW I left, bottom; right, top}

SET ENVIRONMENT numexpr

SET EOF # channel, numexpr

SET EXCEPTION {numexpr I INVALID I UNDERFLOW I
OVER.FLOW I DIVBYZERO I INEXACT} BooleanExpression

SET FONT numexpr

SET FONTSIZE numexpr

SET GTEXTFACE numexpr

SET GTEXTMODE numexpr

SET HALT {numexpr I INVALID I UNDERFLOW I
OVERFLOW I DIVBYZERO I INEXACT} BooleanExpression

SET HPOS numexpr

SET HPOS # channel, numexpr

SET LOCATION left, bottom; right, top

400 Using Macintosh BASIC

SET OUTPUT {TOSCREEN I left, bottom; right, top}

SET PATTERN {numexpr I BLACK I DKGRAY I GRAY I
LTGRAY I WHITE}

SET PEN numexprl, numexpr2

SET PENMODE numexpr

SET PENPOS numexprl, numexpr2

SET PENSIZE numexprl, numexpr2

SET PICSIZE numexpr

SET PRECISION {numexpr I EXTPRECISION I
DBLPRECISION I SGLPRECISION}

SET ROUND {numexpr I DOWNWARD I TONEAREST I
TOWARD ZERO I UPWARD}

SET SCALE left, bottom; right, top

SET SHOWDIGITS numexpr

SET TABWIDTH numexpr

SET VPOS numexpr

SETFILEINFO filename, @ integerArray (element)

SETVOL {numexpr I volumename}

SOUND numexprl,numexpr2,numexpr3
[; numexprl,numexpr2,numexpr3 ...]

SOUND numexpr @integerArray (element) [; numexpr
@integerArray (element) ...]

STOP

STOP SOUND

SUB subroutineName [(variable [,variable ...])] I END SUB

TOOLBOX tool box Su broutineN ame WithParameters

UNDIM array ([, ...]) [, array ([, ...]) ...]

UNLOCK filename

WHEN ERR I statements I END WHEN

WHEN KBD I statements I END WHEN

WHEN MENU handle I statements I END WHEN

Macintosh BASIC Statements and Functions 401

WHEN WINDOW pointer I statements I END WHEN

WRITE# channel[, {BEGIN I END I NEXT I RECORD
numexpr I SAME}][, IF THERE- THEN statement]:
[expression [{; I ,} [expression] ...]]

MACINTOSH BASIC FUNCTIONS

The following is a list of functions available in Macintosh BASIC:

ABS (numexpr)

ADDRESS] ({ handle I pointer I stringexpr I numexpr })

ANNUITY (numexpr l, numexpr2)

ASC (stringExpression)

ATEOF- (#channel)

ATN (numexpr)

CHR$ (numexpr)

CLASSCOMP (numexpr)

CLASSDOUBLE (numexpr)

CLASSEXTENDED (numexpr)

CLASSSINGLE (numexpr)

COMPOUND (numexprl, numexpr2)

COPYSIGN (numexpr 1, numexpr2)

COS (numexpr)

DATE$

DOWNSHIFT$ (stringExpression)

ERR

EXP (numexpr)

EXP2 (numexpr)

EXPMI (numexpr)

FORMAT$ (stringExpression; expression [, expression ...])

FREE

402 Using Macintosh BASIC

GETFILENAME$ (numexpr)

GETVOLNAME$ (numexpr)

HIGHWORD ({pointer I numexpr})

INDIRECT] ({handle I pointer I stringexpr})

INKEY$

INT (numexpr)

KBD

LEFT$ (stringExpression, numexpr)

LEN (stringExpression)

LOG (numexpr)

LOG2 (numexpr)

LOGB (numexpr)

LOGPI (numexpr)

LOWWORD ({pointer I numexpr})

MENU}

MENUID

MENU ITEM

MID$ (stringExpression, numexpr [, numexpr2])

MOUSER

MOUSEB-

MOUSEH

MOUSEV

NEXTDOUBLE (numexprl, numexpr2)

NEXTEXTENDED (numexprl, numexpr2)

NEXTSINGLE (numexprl, numexpr2)

OUTPUTWINDOW]

PI

RANDOMX (numvar)

RELATION (numexprl, numexpr2)

Macintosh BASIC Statements and Functions 403

REMAINDER (numexprl, numexpr2)

RIGHT$ (stringExpression, numexpr)

RINT (numexpr)

RND [(numexpr))

SCALB (numexprl, numexpr2)

SGN ({ numexpr I BooleanExpression})

SIGNNUM (numexpr)

SIN (numexpr)

SOUNDOVER-

SQR (numexpr)

STR$ (numexpr)

TAB (numexpr)

TAN (numexpr)

TICKCOUNT

TIME$

TONES (numexprl)

TOOL toolboxFunctionN ame WithParameters

TRUNC (numexpr)

TYP (#channel)

UPSHIFT$ (stringExpression)

VAL (stringExpression)

VALPOINTER ({pointer I numexpr})


~~~-ApfendlxB~~~­

Error Messages and Codes 

There are three different kinds of error messages you may encoun­
ter while you are working in Macintosh BASIC. The first kind of 
message occurs just after you have entered a new program line. If 
BASIC detects an error in the line, it displays a message to help 
you correct the error. Those messages are self-explanatory and are 
not listed in this appendix. 

The second type of error message you may encounter is a Macin­
tosh BASIC run-time error message. If it encounters a condition it 
cannot handle, BASIC displays one of these messages while it is 
executing your program. 

The final type of message you may encounter is a Macintosh 
system error. When one of these occurs, all you receive is a number. 
The last part of this appendix explains the meaning of the most 
common system error numbers. 

405 



406 Using Macintosh BASIC 

MACINTOSH BASIC RUN-TIME ERROR MESSAGES 

You can trap run-time errors using the WHEN ERR statement de­
scribed in Chapter 15. The system function ERR returns a numeric 
code corresponding to the appropriate message when a run-time 
error has occurred. The run-time messages and codes follow. 

98 File not open for output 
99 Bad master directory block 

100 File system error 
101 External File System Error 
102 Not a MAC diskette 
103 No such drive 
104 Volume already on-line 
105 File is locked 
106 Volume not on-line 
107 (no message) 
108 Refnum error 
109 Error in user parameter list 
110 File already open 
111 Filename already exists 
112 Can't delete an open file 
113 Volume is locked 
114 File is locked 
115 Disk is write protected 
116 File not found 
117 Too many files open 
118 Memory full 
119 Tried to position to before start of file (r/w) 
120 End of file 
121 File not open 
122 Bad file name 
123 Disk 110 error 
124 No such volume 
125 Disk full 
126 Directory full 
127 Channel already exists 
128 Channel not in range 0 .. 32767 
129 Array is too small 
130 File is not a Data file 



131 No such channel 
132 Index must be >O 

Error Messages and Codes 407 

133 Record only works with Relative files 
134 Stream files may not be positioned 
135 Data exceeds record length 
136 Not enough values in record 
137 Rewrite must be used to write an existing record 
138 Record is empty 
139 Channel 0 implies a Text file 
140 Last output was not finished 
141 Index must be>= 0 
142 This call does not work with channel 0 
143 Print/Input are used with Text files 
144 This call doesn't work with a Stream file 
145 1/0 System Error 
146 Driver 1/0 Error 
14 7 Read/Write are used with Data or Biny files 
148 Recsize must be >O 
149 Position exceeds record length 
154 Undefined label, Function, or Sub 
155 Illegal quantity 
156 Syntax error 
157 Undimensioned array reference 
158 Dimension too big 
159 Negative subscripts not allowed 
160 Subscript out-of-bounds 
161 Type mismatch 
162 Next without For 
163 Loop without Do 
164 Endif not found 
165 Loop not found 
166 Integer overflow 
167 Return without Gosub 
168 Not enough memory for that operation 
169 Deleting text only allowed on the line containing the Input 

prompt 
170 Parameters don't match 
171 Missing End Select statement 
172 Couldn't find a Case that matched 
173 Missing End When statement 



408 Using Macintosh BASIC 

174 Couldn't find matching When 
175 Too many arguments for this toolbox routine 
176 Not enough arguments for this toolbox routine 
177 Something wrong with arguments calling this toolbox 

routine 
178 For without Next 
179 Already a Dim for this array 
180 Can't assign string to this type of variable 
181 Not enough values for Input list 
182 Expected a number 
183 Expected a Boolean 
184 Too many values for Input list 
185 Out of DATA to READ 
186 You must move the insertion point back to the Input 

prompt line 
187 Floating point halt 
188 End Sub or End Function missing 
189 Can't use parenthesis when assigning to a function 
190 Bad range in Set Location 
191 Low on memory. Please close some windows or Quit. 
192 Bad range in Set Output 
193 Can't assign function result here 
194 Cannot run without listing 

MACINTOSH SYSTEM ERRORS 

There is almost never anything you can do to correct a Macintosh 
system error. When you receive a message reporting a system error, 
you should save a copy of your program and exit from BASIC. The 
condition that caused the system error may have damaged the copy 
of Macintosh BASIC or the Finder in your machine's memory. To 
avoid complications, you should restart by booting from a start-up 
disk. Even though there is rarely anything you can do to recover 
from these errors, explanations of the most common system error 
codes are included here to satisfy your curiosity. Some software er­
rors can result in the display of incorrect system error ID numbers. 

01 Bus error-an internal communication error in the machine. 
This should never happen on a Macintosh, but might occur 
rarely when running MacWorks on a Lisa. 



Error Messages and Codes 409 

02 Illegal address - the central processor chip received a word or 
long-word reference to an odd-numbered address, which is 
not permitted. 

03 Illegal instruction - the central processor chip received an 
instruction it did not recognize. 

04 Division by zero- the central processor chip executed a 
divide instruction (DIVS or DIVU) with a divisor of zero. 

05 Check trap- the central processor chip executed a "check 
register against bounds" (CHK) instruction that found an 
improper value. 

06 Overflow trap- the central processor chip executed a "trap 
on overflow" (TRAPV) instruction that detected numerical 
overflow (a number too large). 

07 Privilege violation - the central processor chip executed a 
"return from exception" (RTE) or other inappropriate 
instruction. 

08 Trace mode - the trace bit in the central processor chip's sta­
tus register is set. 

09 Line 1010 trap - the 1010 trap dispatcher portion of the sys­
tem software used for Macintosh toolbox calls has been 
damaged. 

10 Line 1111 trap - usually means that a breakpoint left by a 
systems programmer was reached. 

11 Miscellaneous hardware exception - the central processor 
chip detected an error condition not covered by error numbers 
01 through 10. 

12 Unimplemented core routine-a trap number was encoun­
tered that does not correspond to a toolbox routine. 

13 Uninstalled interrupt-an interrupt vector table entry is 0 
when it should not be. 

14 IO core-an error occurred while processing input or 
output. 

15 Segment loader error -a call to GetResource to read a seg­
ment of BASIC into memory failed (this usually means you 
are out of room in memory). 



410 Using Macintosh BASIC 

16 Floating point error-the halt bit on a floating point envi­
ronment word was set. 

17 Package 0 not present- the resource PACK 0 is not on the 
disk or there is not enough room for it in memory. 

18 Package 1 not present - the resource PACK 1 is not on the 
disk or there is not enough room for it in memory. 

19 Package 2 not present-the resource PACK 2 is not on the 
disk or there is not enough room for it in memory. 

20 Package 3 not present - the resource PACK 3 is not on the 
disk or there is not enough room for it in memory. 

21 Package 4 not present-the resource PACK 4 is not on the 
disk or there is not enough room for it in memory. 

22 Package 5 not present- the resource PACK 5 is not on the 
disk or there is not enough room for it in memory. 

23 Package 6 not present- the resource PACK 6 is not on the 
disk or there is not enough room for it in memory. 

24 Package 7 not present- the resource PACK 7 is not on the 
disk or there is not enough room for it in memory. 

25 Out of memory - there is no room for any more program 
instructions or data in your machine's random-access memory. 

26 Can't launch file-a call to GetResource to read segment 0 
into memory failed. The file probably does not contain an 
executable program. 

27 File system map has been damaged- the file system map 
contains a logical block number that is too big or too small 
to be a correct logical block on this volume. 

28 Stack has moved into application heap - the two storage 
areas used by BASIC in its internal operations have collided 
(out of memory). 



~~~-ApfendlxC~~~ 

ASCII Codes
And Keyboard Characters

This appendix shows the character that is printed for each ASCII
code and the arrangement of the characters on the Macintosh key­
board. The characters are shown in the Chicago 12 font, which has
the most complete character set. Some of the more unusual charac­
ters may not be present in every font and every font size. One char­
acter, ASCII 217, is different in every font and size. You can type
this character from the keyboard with the combination OPTION­

SHIFT--.

411

412 Using Macintosh BASIC

000 032 064 @ 096 '
001 D 033 065 8 097 a
002 D 034 II 066 B 098 b
003 D 035 # 067 c 099 c
004 D 036 $ 068 0 100 d
005 D 037 3 069 E 101 e
006 D 038 ft 070 F 102 f
007 D 039 I 071 G 103 g
008 D 040 (072 H 104 h
009 041) 073 I 105 i
010 D 042 * 074 J 106 j
011 D 043 075 K 107 k
012 D 044' 016 L 08 I
013 045 - 077 M 09 m
014 D 046 . 078 N 10 n
015 D 047 I 079 0 11 0

016 D 048 0 080 p 12 p
017 • 049 1 081 Q 13 q
018 ./ 050 2 082 R 14 r
019 • 051 3 083 s 15 s
020 • 052 4 084 T 16 t
021 D 053 5 085 u 17 u
022 D 054 6 086 u 18 lJ

023 D 055 1 087 w 19 w
024 D 056 8 088 H 20 H
025 D 051 9 089 y 121 y
026 D 058 : 090 z 122 z
027 D 059 ; 091 (123 {
028 D 060 < 092 \ 124 I
029 D 061 ""' 093) 125 }
030 D 062 > 094 ... 126 -
031 D 063 1 095 - 127

ASCII Codes and Keyboard Characters 413

128 ii 160 t 192 l 224 0
129 A 161 ° 193 i 225 0
30 ~ 162 t 194 ... 226 0
31 t 163 £ 195 v 227 0
32 N 164 § 196 f 228 0
33 ii 65 • 197 ~ 229 0
34 ii 66 'I 198 /:J. 230 0
35 ii 67 8 199 « 231 0
36 8 68 @I 200 » 232 0
37 i 69 @ 201 233 0
38 i 70 TM 202 234 0
39 i 71 , 203 ti 235 0
40 I 72 -· 204 ii 236 0
41 ~ 73 .. 205 ii 237 0
42 e 14 II 206 ((238 0
43 e 75 B 207 m 239 0
44 e 76 00 208 - 240 0
45 e 11 :!: 209 - 241 0
46 i 78 ! 210 " 242 0
41 i 79 k 211 " 243 0
48 i 80 ¥ 212 ' 244 0
49 "i 181 JI 213 ' 245 0
50 ii 182 a 214 + 246 0
51 6 183 :I 215 1) 247 0
52 0 184 n 216 y 248 0
53 0 185 1f 217 0 249 0
54 ti 186 J 218 0 250 0
55 0 187 I 219 0 251 0
56 u 188 ! 220 0 252 0
57 u 189 0 221 D 253 0
58 u 190 m 222 0 254 0
59 ii 191 II 223 0 255 0

414 Using Macintosh BASIC

ASCII Codes and Key boa rd Characters 415

!![!i'li~,!l!ill[: '::::::::,:::::~:~·:~::':~'~'~::~~':'~ii'.:~~!:: ,:: ,::: , ::;;;;: :']i'l,,!"l l ,'llf '!!
11::to---...-...... -..-....... _....,,-..,_ -..-....... _....,,-..,_ __.~


~~~-AffuuilxD~~~ 

Toolbox Routines 
Accessible From BASIC 

Macintosh BASIC allows you to call a large number of the toolbox 
routines built into the machine's read-only memory. This appen­
dix shows sample calls to the routines BASIC recognizes. Only the 
routines preceded by an asterisk (*) are described in this book. 

Experienced programmers should refer to Apple Computer's 
Inside Macintosh for descriptions of all of the toolbox routines. 
The general procedures for calling toolbox routines are described 
in Chapter 19 of this book. The dimensions of the data types used 
in the example calls are appName©(31), bitMap©(l3), cursor%(33), 
dateTimeRec%(6), eventRecord%(7), fina1Ticks%(1), Fontlnfo%(3), 
GrafPort%(52), offset%(1), point%(1), pattern©(7), penState©(l 7), 
rect%(3), reply©(73), ResType©(3), seconds%(!), string©(255). 

417 



418 Using Macintosh BASIC 

QUICKDRAW 

Graf Port Routines 

ToolBox OpenPort (GrafPort]) 

ToolBox InitPort (GrafPort]) 

ToolBox ClosePort (Graf Port]) 

• ToolBox SetPort (GrafPort]) 

• ToolBox GetPort (@Gra£Port%(0)) 

ToolBox GraIDevice (device%) 

ToolBox SetPortBits (@bitMap©(O)) 

ToolBox PortSize (width%, height%) 

ToolBox MovePortTo (leftGlobal%, topGlobal%) 

ToolBox SetOrigin (h%, v%) 

ToolBox SetClip (Region}) 

ToolBox GetClip (Region}) 

• ToolBox ClipRect (@rect%(0)) 

• ToolBox BackPat (@pattern©(O)) 

Cursor Handling 

ToolBox InitCursor 

ToolBox SetCursor (@cursor%(0)) 

ToolBox HideCursor 

ToolBox ShowCursor 

ToolBox ObscureCursor 

Pen and Line Drawing 

ToolBox HidePen 

ToolBox Show Pen 

ToolBox GetPenState (@penState©(O)) 

ToolBox SetPenState (@penState©(O)) 



Toolbox Routines Accessible From BASIC 419 

• ToolBox PenPat (@pattern©(O)) 

ToolBox MoveTo (h%, v%) 

ToolBox Move (dh%, dv%) 

ToolBox Line To (h %, v%) 

ToolBox Line (dh%, dv%) 

Text Drawing 

ToolBox TextFont (fontnum%) 

ToolBox TextFace (style%) 

ToolBox TextMode (mode%) 

ToolBox TextSize (fontsize%) 

ToolBox SpaceExtra (extra%) 

ToolBox DrawChar (char©) 

ToolBox DrawString (string$) 

ToolBox DrawText (@text©(O), firstByte%, byteCount%) 

width% = Tool CharWidth (char©) 

* width% = Tool StringWidth (string$) 

width%= Tool TextWidth (@text©(O), firstByte%, byteCount%) 

ToolBox GetFontlnfo (@Fontlnfo%(0)) 

Drawing in Color 

• ToolBox ForeColor (color%, 0) 

• ToolBox BackColor (color%, 0) 

ToolBox ColorBit (whichBit%) 

Calculations With Rectangles 

ToolBox SetRect (@rect%(0), left%, top%, right%, bottom%) 

ToolBox OffsetRect (@rect%(0), dh%, dv%) 



420 Using Macintosh BASIC 

ToolBox InsetRect (@rect%(0), dh%, dv%) 

ans- = Tool SectRect (@sourceRectA%(0), @sourceRectB%(0), 
@destRect%(0)) 

ToolBox UnionRect (@sourceRectA%(0), @sourceRectB%(0), 
@destRect%(0)) 

ans- = Tool PtlnRect (pt.h%, pt. v%, @rect%(0)) 

ToolBox Pt2Rect (ptA.h%, ptA.v%, ptB.h%, ptB.v%, 
@destRect%(0)) 

ToolBox PtToAngle (@rect%(0), pt.h%, pt.v%, @angle%) 

ans- = Tool EqualRect (@rectA%(0), @rectB%(0)) 

ans- = Tool EmptyRect (@rect%(0)) 

Graphics Operations on Shapes 

* ToolBox FillRect (@rect%(0), @pattern©(Q)) 

* ToolBox FillOval (@rect%(0), @pattern©(O)) 

* ToolBox FillRoundRect (@rect%(0), ova1Width%, ova1Height%, 
@pattern©(O)) 

* ToolBox FrameArc (@rect%(0), startAngle%, arcAngle%) 

* ToolBox PaintArc (@rect%(0), startAngle%, arcAngle%) 

* ToolBox EraseArc (@rect%(0), startAngle%, arcAngle%) 

* ToolBox InvertArc (@rect%(0), startAngle%, arcAngle%) 

* ToolBox FillArc (@rect%(0), startAngle%, arcAngle%, 
@pattern©(O)) 

Calculations With Regions 

Region}= Tool NewRgn 

ToolBox DisposeRgn (Region}) 

ToolBox Copy Rgn ( sourceRegion}, des tRegion}) 

ToolBox SetEmptyRgn (Region}) 

ToolBox SetRectRgn (Region}, left%, top%,right%, bottom%) 



Toolbox Routines Accessible From BASIC 421 

ToolBox RectRgn (Region}, @rect%(0)) 

ToolBox OpenRgn 

ToolBox CloseRgn (Region}) 

ToolBox OffsetRgn (Region}, dh%, dv%) 

ToolBox InsetRgn (Region}, dh%, dv%) 

ToolBox SectRgn (sourceRegionA}, sourceRegionB}, 
destRegion}) 

ToolBox UnionRgn (sourceRegionA}, sourceRegionB}, 
destRegion}) 

ToolBox DiffRgn (sourceRegionA}, sourceRegionB}, 
destRegion}) 

ToolBox XORRgn (sourceRegionA}, sourceRegionB}, 
destRegion}) 

ans- = Tool PtlnRgn (pt.h%, pt.v%, Region}) 

ans- = Tool RectlnRgn (@rect%(0), Region}) 

ans- = Tool EqualRgn (Regionl}, Region2}) 

ans-= Tool EmptyRgn (Region}) 

Graphics Operations on Regions 

ToolBox FrameRgn (Region}) 

ToolBox PaintRgn (Region}) 

ToolBox EraseRgn (Region} ) 

ToolBox InvertRgn (Region}) 

ToolBox FillRgn (Region}, @pattern©(O)) 

Bit Transfer Operations 

ToolBox ScrollRect (@rect%(0), dh%, dv3, updateRegion}) 

ToolBox CopyBits (@srcBitmap©(O), @destBitmap©(O), 
@srcRect%(0), @destRect%(0), mode%, maskRgn}) 



422 Using Macintosh BASIC 

Pictures 

* Picture} = Tool OpenPicture (@picframeRect%(0)) 

ToolBox PicComment (kind%, dataSize%, Data}) 

* ToolBox ClosePicture 

* ToolBox Draw Picture (Picture}, @destRect%(0)) 

* ToolBox KillPicture (Picture}) 

Calculations With Polygons 

Polygon} =Tool OpenPoly 

ToolBox ClosePoly 

ToolBox KillPoly (Polygon}) 

ToolBox OffsetPoly (Polygon}, dh%, dv%) 

Graphics Operations on Polygons 

ToolBox FramePoly (Polygon}) 

ToolBox PaintPoly (Polygon}) 

ToolBox ErasePoly (Polygon}) 

ToolBox InvertPoly (Polygon}) 

ToolBox FillPoly (Polygon}, @pattern©(O)) 

Calculations With Points 

ToolBox AddPt (sourcePt.h%, sourcePt.v%, @destPoint%(0)) 

ToolBox SubPt (sourcePt.h%, sourcePt. v%, @destPoint%(0)) 

ToolBox SetPt (@point%(0), h%, v%) 

ans- = Tool EqualPt (ptA.h%, ptA.v%, ptB.h%, ptB.v%) 

ToolBox LocalToGlobal (@point%(0)) 

ToolBox GlobalToLocal (@point%(0)) 



Toolbox Routines Accessible From BASIC 423 

Miscellaneous Utilities 

num3 = Tool Random 

* ans- = Tool GetPixel (h%, v%) 

ToolBox StuffHex (@array©(O), hexstring$) 

ToolBox ScalePt (@point3(0), @sourceRect3(0), @destRect3(0)) 

ToolBox MapPt (@point3(0), @sourceRect3(0), @destRect3(0)) 

ToolBox MapRect (@rRect3(0), @sourceRect3(0), 
@destRect3(0)) 

ToolBox MapRgn (Region}, @sourceRect3(0), @destRect3(0)) 

ToolBox MapPoly (Polygon}, @sourceRect3(0), @destRect3(0)) 

RESOURCE MANAGER 

Opening and Closing Resource Files 

ToolBox CreateResFile (filename$) 

* refnum3 = Tool OpenResFile (filename$) 

ToolBox CloseResFile (refnum3) 

Checking for Errors 

num3 =Tool ResError 

Setting the Current Resource File 

refnum3 =Tool CurResFile 

refnum% =Tool HomeResFile 

* ToolBox UseResFile (refnum%) 

Getting Resource Types 

* num% = Tool CountTypes 

* ToolBox GetlndType (@ResType®(O), index%) 



424 Using Macintosh BASIC 

Getting and Disposing of Resources 

ToolBox SetResLoad (load-) 

• num% = Tool CountResources (ResTypeLast2%, ResTypeFirst2%) 

• Resource} = Tool GetlndResource (ResTypeLast2%, 
ResTypeFirst2%, index%) 

• Resource} = Tool CetResource (ResTypeLast2%, 
ResTypeFirst2%, ResID%) 

•Resource} = Tool GetNamedResource (ResTypeLast2%, 
ResTypeFirst2%, name$) 

ToolBox LoadResource (Resource}) 

• ToolBox ReleaseResource (Resource}) 

ToolBox DetachResource (Resource} ) 

Getting Resource Information 

ResID% =Tool UniqueID (ResTypeLast2%, ResTypeFirst2%) 

• ToolBox GetReslnfo (Resource}, @ResID%, @ResType®(O), 
@nameString© (0)) 

attrs% = Tool GetResAttrs (Resource}) 

Modifying Resources 

ToolBox SetReslnfo (Resource}) 

ToolBox SetResAttrs (Resource}, ahrs%) 

ToolBox ChangedResource (Resource}) 

ToolBox AddResource (Data}, ResTypeLast2%, ResTypeFirst2%, 
ResID%, name$) 

ToolBox RmveResource (Resource}) 

ToolBox AddRefereilce (Resource}, ResID%, Iiame$) 

ToolBox RmveReference (Resource}) 



Toolbox Routines Accessible From BASIC 425 

ToolBox UpdateResFile (refnum%) 

ToolBox WriteResource (Resource}) 

ToolBox SetResPurge (install-) 

Advanced Routines 

attrs% = Tool GetResFileAttrs (refnum%) 

ToolBox SetResFileAttrs (refnum%, attrs%) 

WINDOW MANAGER 

Initialization and Allocation 

• W] = Tool NewWindow (0, 0, @rect%(0), title$, visible-, 
procID%, -1, -I, goAway-, 0, 0) 

ToolBox Close Window (W]) 

• W] =Tool GetNewWindow (ResID%, 0, 0, -1, -I) 

• ToolBox DisposeWindow (W]) 

Window Display 

• ToolBox SetWTitle (W], title$) 

• ToolBox GetWTitle (W], @string©(O)) 

ToolBox SelectWindow (W]) 

ToolBox HideWindow (W]) 

ToolBox Show Window (W]) 

ToolBox HiliteWindow (W], Hilite-) 

ToolBox BringToFront (W]) 

ToolBox SendBehind (W], behindW]) 

* W] =Tool FrontWindow 

• ToolBox DrawGrowlcon (W]) 



426 Using Macintosh BASIC 

Mouse Location 

num% = Tool FindWindow (pt.h%, pt.v%, @W]) 

Window Movement and Sizing 

• ToolBox MoveWindow (W], h%, v%, front-) 

• ToolBox SizeWindow (W], width%, height%, £Update-) 

Update Region Maintenance 

ToolBox InvalRect (@badRect%(0)) 

ToolBox ValidRect (@goodRect%(0)) 

ToolBox lnvalRgn (badRegion} ) 

ToolBox ValidRgn (goodRegion} ) 

Miscellaneous Utilities 

ToolBox SetWRefCon (W], p]) 

p] =Tool GetWRefCon (W]) 

ToolBox SetWindowPic (W], Pie}) 

Pie}= Tool GetWindowPic (W]) 

longint] = Tool PinRect (@rect%(0), pt.h%, pt.v%) 

MENU MANAGER 

Initialization and Allocation 

• M} =Tool NewMenu (newmenuResID%, title$) 

• M} = Tool GetMenu (menuResID%) 

• ToolBox DisposeMenu (M}) 

• ToolBox AppendMenu (M}, itemName$) 



Toolbox Routines Accessible From BASIC 427 

ToolBox AddResMenu (M}, ResTypeLast2%, ResTypeFirst2%) 

ToolBox InsertResMenu (M}, ResTypeLast2%, 
ResTypeFirst2%, afterltem%) 

Forming the Menu Bar 

• ToolBox InsertMenu (M}, beforeID%) 

• ToolBox Draw MenuBar 

• ToolBox DeleteMenu (menuResID%) 

ToolBox Clear MenuBar 

MenuBar} =Tool GetNewMBar (menubarResID%) 

MenuBar} = Tool GetMenuBar 

ToolBox SetMenuBar (MenuBar}) 

Choosing From a Menu 

longint] =Tool MenuSelect (pt.h%, pt.v%) 

longint] = Tool MenuKey (char©) 

• ToolBox HiliteMenu (menuResID%) 

Controlling Appearance of Items 

• ToolBox Setltem (M}, item%, string$) 

• ToolBox Getltem (M}, item%, @string© (0)) 

• ToolBox Disableltem (M}, item%) 

• ToolBox Enableltem (M}, item%) 

• ToolBox Checkltem (M}, item%, checked-) 

ToolBox Setltemlcon (M}, item%, iconResID%) 

ToolBox Getltemlcon (M}, item%, @iconResID%) 

• ToolBox SetltemStyle (M}, item%, style%) 



428 Using Macintosh BASIC 

• ToolBox GetltemStyle (M}, item%, @style%) 

ToolBox SetltemMark (M}, item%, char©) 

ToolBox GetltemMark (M}, item%, @char©) 

Miscellaneous Utilities 

ToolBox SetMenuFlash (M}, item%) 

ToolBox CakMenuSize (M}) 

num% = Tool CountMitems (M}) 

• M} =Tool GetMHandle (menuResID%) 

ToolBox FlashMenuBar (menuResID%) 

CONTROL MANAGER 

Initialization and Allocation 

• Control} = Tool NewControl (W ], @rect%(0), title$, visible-, 
value%, min%, max%, procID%, 0, 0) 

Control}= Tool GetNewControl (ctrlResID%, W]) 

• ToolBox DisposeControl (Control} ) 

Control Display 

• ToolBox SetCTitle (Control}, title$) 

• ToolBox GetCTitle (Control}, @string© (0)) 

• ToolBox HideControl (Control}) 

• ToolBox ShowControl (Control}) 

ToolBox DrawControls (W]) 

ToolBox HiliteControl (Control}) 



Toolbox Routines Accessible From BASIC 429 

Mouse Location 

* num% = Tool TestControl (Control}, pt.h%, pt.v%) 

num% = Tool FindControl (pt.h%, pt.v%, W], @Control}) 

num% = Tool TrackControl (Control}, startPt.h%, 
startPt. v%, 0, 0) 

Control Movement and Sizing 

* ToolBox MoveControl (Control}, hloc%, vloc%) 

ToolBox DragControl (Control}, startPt.h%, startPt.v%, 
@limitRect%(0), @slopRect%(0), axis%) 

* ToolBox SizeControl (Control}, width%, height%) 

Control Setting and Range 

* ToolBox SetCtlValue (Control}, value%) 

* ToolBox SetCtlMin (Control}, minValue%) 

* ToolBox SetCtlMax (Control}, maxValue%) 

*value% = Tool GetCtlValue (Control}) 

*min Value% = Tool GetCtlMin (Control}) 

*max Value% = Tool GetCtlMax (Control}) 

Miscellaneous Utilities 

ToolBox SetCRefCon (Control}, p)) 

p) = Tool GetCRefCon (Control}) 



430 Using Macintosh BASIC 

DIALOG MANAGER 

• itemHit% = Jool Alert (alertResID%, 0, 0) 

itemHit% =Tool CautionAlert (alertResID%, 0, 0) ,. 

ToolBox CloseDialog (D]) 

hit-= Tool DialogSelect (@eventRecord%(0), @b], @itemHit%) 

ToolBox DisposDialog (D]) 

ToolBox GetDitem (D ],item%, @type%, @itemHdl}, @rect%(0)) 

ToolBox GetIText (itemHdl}, @string©(O)) 

D] =Tool GetNewDialog (dia~ogResID%, 0, 0, -I, -I) 

ans-= Tool IsDialogEvent (@~ventRecord%(0)) 

ToolBox ModalDialog (0, 0, @itemHit%) 

D] =Tool NewDialog (0, 0, @rect%(0), title$, visible-, procID%, 
-I, -1, goAway-, 0, 0, items}) 

itemHit% = Tool NoteAlert (al~rtResID%, 0, 0) 

• ToolBox ParamText (string0$, string!$, string2$, string3$) 

ToolBox SellText (D], item%, startSel%, endSel%) 

ToolBox SetDitem (D], item%, type%, itemHdl}, @rect%(0)) 

ToolBox SetlText (itemHdlL string$) 

itemHit% =Tool StopAlert {alertResID%, 0, 0) 

DESK MANAGER 

ToolBox CloseDeskAcc (accRefnum%) 

accRefnum% =Tool OpenDeskAcc (accName$) 

ToolBox SystetnClick (@eventRecord%(0), W]) 

done- = Tool SystemEdit (editCmd%) 

ToolBox SystemTask 



Toolbox Routines Accessible From BASIC 431 

EVENT MANAGER 

down - = Tool Button 

avail- = Tool EventAvail (eventMask%, @eventRecord%(0)) 

ToolBox FlushEvents (eventMask%, stopMask%) 

ToolBox GetMouse (@point%(0)) 

myEvent- = Tool GetNextEvent (eveptMask%, 
@eventRecord%(0)) 

down,,..., = Tool StillDown 

ticks] = Tool T,ickCount 

down-= Tool WaitMouseUp 

FONT MANAGER 

ToolBox GetFNum (fontName$, @fontNum%) 

ToolBox GetFontName (fontNum%, @string©(O)) 

real- = Tool RealFont (fontNum%, fontSize%) 

MEMORY MANAGER 

ToolBox BlockMove (source], dest], countlo%, counthi%) 

ToolBox DisposHandle (handle}) 

ToolBox OisposPtr (pointer]) 

size] = Tool GetHandleSize (handle J) 
size] =Tool GetPtrSize (pointer]) 

ToolBox HLock (handle J) 
ToolBox HUnLock (handle}) 



432 Using Macintosh BASIC 

ToolBox HPurge (handle}) 

ToolBox HNoPurge (handle}) 

ToolBox MoreMasters 

hdl} = Tool NewHandle (sizeLo%, sizeHi%) 

ptr] = Tool NewPtr (sizeLo%, sizeHi%) 

ToolBox SetHandleSize (hdl}, sizeLo%, sizeHi%) 

ToolBox ~etPtrSize (ptr}, sizeLo%, sizeHi%) 

OPERATING SYSTEM UTILITIES 

TooJBox Delay (numTicksLo%, numTicksHi%, @fina1Ticks%(0)) 

errorNum% = Tool ReadDateTime (@seconds%(0)) 

* ToolBox Secs2Date (secsLo%, secsHi%, @dateTimeRec%(0)) 

ToolBox SysBeep (duration%) 

ToolBox UprString (@string©(O), marks~) 

ToolBox Date2Secs (@dateTimeRec%(0), @seconds%(0)) 

SCRAP MANAGER 

longint] = Tool GetScrap (hDest}, resTypeLast2%, 
resTypeFirst2%, @offset%(0)) 

pScrapStuff] = Tool InfoScrap 

longint] = Tool LoadScrap 

longint] =Tool UnloadScrap 

longint] =Tool PutScrap (lengthLo%, lengthHi%, 
resTypeLast2%, resTypeFirst23, @text©(O)) 

longint] =Tool ZeroScrap 



Toolbox Routines Accessible From BASIC 433 

SEGMENT LOADER 

ToolBox ExitToShell 

ToolBox UnloadSeg (routineAddr]) 

ToolBox GetAppParms (@appName©(O), @apRefNum3, 
@apParam}) 

TEXT EDIT 

ToolBox TEActivate (h TE}) 

ToolBox TECalText (hTE}) 

ToolBox TEClick (pt.h3, pt.v3, extend-, hTE}) 

ToolBox TECopy (h TE}) 

ToolBox TECut (hTE}) 

ToolBox TEDeactivate (hTE}) 

ToolBox TEDelete (hTE}) 

ToolBox TEDispose (h TE}) 

CharsHandle} = Tool TEGetText (h TE} ) 

ToolBox TEI die (h TE}) 

ToolBox TEinsert (@text©(O), lengthLo3, lengthHi3,hTE}) 

ToolBox TEKey (char©, hTE}) 

hTE} = Tool TENew (@destRect3(0), @viewRect3(0)) 

ToolBox TEPaste (hTE}) 

ToolBox TEScroll (dh%, dv%, hTE}) 

ToolBox TESetJust (j%, hTE}) 

ToolBox TESetSelect (selStartLo3, selStartHi3, selEndLo3, 
selEndHi3, hTE}) 

ToolBox TESetText (@text©(O), lengthLo3, lengthHi3, hTE}) 



434 Using Macintosh BASIC 

ToolBox TEUpdate (@updateRect%(0), hTE}) 

ToolBox TextBox (@text)(O), lengthLo%, lengthHi%, 
@boxRect%(0), j%) 

TOOLBOX UTILITIES 

longint] =Tool BitAnd (long1Lo%, long1Hi%, long2Lo%, 
long2Hi%) 

longint] =Tool BitOr (long1Lo%, long1Hi%, long2Lo%, 
long2Hi%) 

longint] =Tool BitXor (long1Lo%, long1Hi%, long2Lo%, 
long2Hi%) 

longint] =Tool BitNot (longintLo%, longintHi%) 

longint] =Tool BitShift (longintLo%, longintHi%, count%) 

set- = Tool BitTst (@byte©, bitnumLo%, bitnumHi%) 

ToolBox BitSet (@byte©, bitnumLo%, bitnumHi%) 

ToolBox BitClr (@byte©, bitnumLo%, bitnumHi%) 

fixed] = Tool FixRatio (numerator%, denominator%) 

fixed]= Tool FixMul (aLo%, aHi%, bLo%, bHi%) 

num% = Tool FixRound (xLo%, xHi%) 

CursHandle} = Tool GetCursor (cursorResID%) 

IconHandle} = Tool Gedeon (iconResID%) 

PatHandle} = Tool GetPattern (patternResID%) 

StringHandle} = Tool GetString (stringResID%) 

longint] =Tool Munger (h}, offsetLo%, offsetHi%, @textl©(O), 
len1Lo%, len1Hi%, @text2©(0), len2Lo%, len2Hi%) 

StringHandle} = Tool NewString (string$) 

ToolBox Plotlcon (@rect%(0), IconHandle}) 

ToolBox SetString (StringHandle}, string$) 



Toolbox Routines Accessible From BASIC 435 

ToolBox PackBits (@srcPtr], @destPtr], srcBytes%) 

ToolBox UnpackBits (@srcPtr], @destPtr], dstBytes%) 

ROUTINES IN PACKAGES 

PACK 3 (load PACK 3 first) 

• SFPutFile - PERFORM h} (pt.h%, pt.v%, prompt$, origName$, 
0, 0, @reply©(O), 1) 

• SFGetFile - PERFORM h} (pt.h%, pt.v%, "'', 0, 0, numTypes%, 
@types©(O), 0, 0, @reply©(O), 2) 

PACK 6 (load PACK 6 first) 

IUDateString - PERFORM h} (loword%, hiword%, form%, 
@string©(O), 0) 

IUTimeString - PERFORM h} (loword%, hiword%, 
inclSeconds-, @string©(O), 2) 

IUSetlntl - PERFORM h} (refnum%, ID%, data}, 8) 

IUDatePString - PERFORM h} (loword%, hiword%, form%, 
@string©(O), parm}, 14) 

IUTimePString - PERFORM h} (loword%, hiword%, seconds-, 
@string©(O), parm}, 16) 



~~~-~ffendix£~~~­

Solutions to Practice Exercises

This appendix presents solutions to the practice exercises that
appear at the end of many chapters. When an exercise involves
writing a program, only one solution will be shown, even though
many different answers are possible.

Chapter 3

1. Numeric variables: c and£. String variables: b. Name a contains
an illegal space, d contains an arithmetic operator (the minus
sign), e ~ontains the # sign, and g does not start with a letter.
Numbers and periods are allowed in variable names as long as
they'are not the first character. b is the only string variable name
because it is the only one that ends with a dollar sign.

2. Amount= 9, size= 4, number= 8, and rate = 27.

437

438 Using Macintosh BASIC

3. ! Greeter
INPUT "Please type your name:"; name$
PRINT "Well,hello, ";name$
ENDPROORAM

4. ! Convert meters to inches
PRINT "METERS TO INCHES CONVERTER"
PRINT
INPUT 'How many meters?·; meters
inches = 39.37 * meters
PRINT
PRINT meters;" meters contain"; inches;" inches."
ENDPROORAM

Chapter 4

The practice exercises in Chapter 4 use the editing, search, and
replace commands. They do not lend themselves to written
solutions.

Chapter 5

1. The program does not print anything. It goes into an infinite
loop branching from a to c to b to a.

2. v- = 4 * 2) 5 OR 3 A 2 + 3 i 7 AND NOT (3 = 7 I 2)
v- = 4 * 2 > 5 OR 6 + 3 i 7 AND NOT (3 = 7 I 2)
v- = 8 > 5 OR 6 + 3 i 7 AND NOT (3 = 3.5)
v- = 8 > 5 OR 6 + 3 i 7 AND NOT FALSE
v- = 8) 5 OR 9 ~ 7 AND TRUE
v- = TRUE OR FALSE AND TRUE
v- = TRUE OR FALSE
v- =TRUE

3. IF a=6 THEN
IF b=gTHEN

x=8
ELSE

x=5
ENDIF

ELSE
x=l

ENDIF

4. SELECT CASE i
CASE 1

b=3
CASE2

b=5
CASE< 0

b=O
CASE 4, 6

b=7
CASE ELSE

b=lO
END SELECT

Chapter 6

Solutions to Practice Exercises 439

1. The program will exit from the DO loop and print "Hello"
when a number between 1 and 5 is typed.

2. The loop will be executed 11 times, for the following values of
i: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

3. FOR i = 3 TO 37 STEP 2
PRINT i

NEXT i

4. FOR COUl'lt ~ 1 TO l 0
oosu:B Print.it

NEXT co4nt
END PROORAM
Print.it:

PRINT "This is a test. ..
RETURN

440 Using Macintosh BASIC

Chapter 7

1. (a)·S; (b) -12.

2. (a) 3; (b) 3; (c) 4; (d) -4; (e) -3; (f) -4.

3. I Print payment table
FOR int.rate = 9 TO 12 STEP .5

PRINT int.rate, 5000/ANNUITY(int.rate/ 100/ 12,4* 12)
NEXT int.r~
EN~PR08RAP1

4. ! Wait 90 ticks
tstart = TIClCOUNT
tend = t.start + 90
DO ! Wait for TICKCOVNT

IF TICKCOUNT >=tend THEN EXIT DO
LOOP

5. I Random subroutine
Makernd:
DO

a= RND (6) ! rengeof 6
a = I NT (a) ! make integer
IF a<> 6 THEN EXIT QO.

LOOP
a=a-10
RETURN

Chapter 8

1. (a) 'abed'; (b) 'ananas'; (c) 'pol'; (d) 'anana split'.

2. (a) 'Politics'; (b) 'spectrum'.

3. DO
LINE INPUT aS
a= YAL (a$)

, IF STRS(a) •a$ THEN EXIT DO
LOOP

4. ! eet keyboard character
Getchar:

DO
c$ = INKEY$
IF c$ o "" THEN EXIT DO

LOOP
RETURN

5. ! Alarm clock
PRINT "What time should I ring?"
INPUT "Please use Macintosh format: ";t$

! This is the right place in the
I program to check for correct input.

DO

Solutions to Practice Exercises 441

IF LEFT$(t$,5) = LEFT$(TIME$,5) THEN
IF Rl6HT$(TIMES ,2) = Rl6HT$(t$,2) THEN EXIT DO

ENDIF
LOOP
PRINT "RING!"
END PROORAM

Chapter 9

1. (a) 45 double-precision real numbers; (b) 9 Booleans; (c) 901
times 3 = 2703 extended-precision reals; (d) 100 short integers;
(e) 30 strings.

2. When a$() is copied into q$(), the dimension of q$ changes
to 3.

3. All of them: (a) tries to put a number into a string variable; (b)
tries to copy arrays with a different number of dimensions; (c)
tries to put a number into a Boolean variable; (d) tries to put a
string into a numeric variable (the last character of the name is
what counts); and (e) tries to put a number larger than 32767
into a short integer variable.

4. The fourth element of the DATA statement is a string, but the
READ statement tries to put it into a numeric variable.

442 Using Macintosh BASIC

Chapter 10

1. SET VPOS 3 ! For PRINT command
SET PENPOS 7 ,44 ! For GPRINT with 12-point type

2. ASIC. TAB WIDTH oldtable ! Save old value
SET TABWIDTH 20
PRINT 1 ,2,3,4,5
SET TABWIDTH oldtabsti ! Restore old value

3. SET FONT 2 ! New York
SET FONTSIZE 24 ! 24-point
SET OTEXTFACE 8 ! ournne type
SET PENPOS 7 ,50 ! Picks et spot
&PRINT "Hello"

4. PRINT FORMATS("$## ,###j###.##";amount)

Chapter 11

1. ! Convert degrees Celsius to Fahrenheit
DO

INPUT "Degrees Celsius: ";degrees
PRINT "Theit's "; Fahrenheitll (degrees); "Fahrenheit."

LOOP
ENDPR00RAM
DEF Fahrenheit I (x) = 9 * x I 5 + 32

2. ! Find the smaller of two integers
FUNCTION Minlf: (alfl ,blfl)
IF a~ <big THEN

Minlf: = alt:
ELSE

Minli = bli
ENDIF

END FUNCTION

3. FUNCTION Comma$(string$)
zstrS = "" ! Start with empty string
FOR zchar = 1 TO LEN(str1ng$)

zch$ = HID$(string$,zcher, 1)
IF 2ch$ = '.'THEN 20h$ = ','
zstr$ = zstr$ & zch$

NEXT zchar
Comma$ = zstr$
END FUNCTION

4. FUNCTION Stars$(length~)
IF length!i < 1 THEN

Stars$=""
ELSE

Solutions to Practice Exercises 443

Stars$= Stars$(length:i-1) & '*'
ENDIF
END FUNCTION

Chapter 12

1. OPEN # 1: "gift list", APPEND

2. CREATE• 1: "newfile", RECSIZE 30, OUTIN

3. READ #3, RECORD 23: integerll, string$

4. DO
IF TYP(• 12) = 2 THEN EXIT DO
ASK CURPOS # 12,. record
SET CURPOS • 12, record+ 1 ! Try next record
LOOP
READ• 12: string$

Chapter 13

1. ! Display List of Visible Files
DIM a%(23) ! 48 bytes
count= 1

444 Using Macintosh BASIC

DO
rnei = 0etF ilaNamaS(count)

IF file$= THEN EXIT DO
6ETFILEINFO file$, @a:l (0)
IF (Num2(4) DIV 16384) MOD 2 <> 1 THEN

! If it's not 1, file is visible
PRINT file$
ENDIF

count = count + 1
LOOP
END PROORAM
FUNCTION Num2(first)

IF asg(first) < 0 THEN
Num2 = a:l (first) + 65536

ELSE Num2 =a~ (first)
ENDIF

END FUNCTION

2. DIM a~(23) ! 48 bytes
6ETFILEINFO "System", @ajg(Q)
folder :g = a:g (7) ! Save system 'folder number
6ETFILEINFO "MBCintosh BASIC", @aj;g(Q)
aSl (7) =folder~ ! Set to system folder
SETFILEINFO "Macintosh BASIC", @alt C 0)
END PROGRAM

3. ! Set up 300 baud modem
DIM setupi(1)
OPEN #4: ".AIN", OUTIN
setup~(O) = 8 ! always 8

! 300 baud, 8 data bits, 1 stop bit
setupjg(Q) = 380 + 3072 + 16384
DEYCONT ROL # 4: @I setup m (0)

! Now you can use the modem here
CLOSE # 4 ! Close before quitting
END PROORAM

4. ! Print List of Files on Disk
OPEN #5: ".Printer", APPEND
count= 1
DO

file$= 0etFi1eName$(count)
IF file$= THEN EXIT DO
PRINT #5: file$
count = count + I

LOOP
CLOSE #5
END PR06RAM

Chapter 15

1. CALL Average(3, 9 ,answer)
PR I NT answer
ENDPR06RAM
SUB Average(a,b,result)
result= (a+b)/2
END SUB

2. PERfORM Average(3, 9 ,@answer)
PR I NT answer
ENDPR06RAM

! Separate program in a separate file:
PROORAM Average(a.b.@lresult)
result= (a+b)/2
END PROORAM

3. WHEN ERR

Solutions to Practice Exercises 445

IF ERR= 102 THEN PRINT "is that a Lisa diskette?"
END WHEN

4. WHEN KBD
IF KBD = ASC("?") THEN PRINT "See page 40 in the manual"
END WHEN

Chapter 16

1. SET PENSIZE 5 ,5
PLOT 30,30; 90, 12

446 Using Macintosh BASIC

2. SET PATTERN 3 ! Gray
SET PENSIZE 6,6
FRAMEOVAL 10,10;80,200

3. PAINT RECT 10, 1 O; 200,200
ERASE OVAL 30 .30; 180, 180
! INVERT could be used instead of ERASE here.

4. ERASE RECT 10, 1 O; 200,90

Chapter 17

1. DO
IF MOUSEB-THEN

PLOT MOUSEH, MOUSEV
DO ! Wait for button to come up

IF NOT MOUSEB- THEN EXIT DO
LOOP

ENDIF
LOOP

2. DO
If MOUSEB- THEN

If MOUSEH > 0 AND MOUSEY> 0 THEN
PLOT MOUSEH, MOUSEY;! Draw line
DO I Wait for button to come up

If NOT MOUSEB- THEN EXIT DO
LOOP

ENDIF
ENDIF

LOOP

3. CALL WaitforUser
PRINT "Out of the subroutine."
END PROORAM
SUB WaitforUser
DO

If LEN(INKEYS) > 0 OR MOUSEB- THEN EXIT SUB
LOOP
END SUB

4. DO
IF MOUSEB- THEN

PLOT MOUSEH, MOUSEY;
ELSE

Solutions to Practice Exercises 447

PLOT I Button is up, so end the I ine.
ENDIF

LOOP

Chapter 18

1. WHEN KBD
key = KBD ! Get it once so it can't change
If key<ASC('O') OR k.ey>ASC('9') THEN SOUND
END WHEN

2. SOUND TONES(7) , 1 27, 30

3. SOUND 9 @trips5f> (4) ! triplet is 3 integers

4. STOP SOUND ! Stop all existing sound
SOUND O ,0 ,60 ! One second of silence

Chapter 19

1. (a) 11 elements times 2 bytes each = 22; (b) 9 elements times 1
byte each = 9; (c) 4 elements times 8 bytes each = 32.

2. (a) integer is 2 bytes; (b) point is 2 integers for 4 bytes; (c) str255
is 256 bytes; (d) rect is 4 integers for 8 bytes.

3. The integer array should have 4 elements for a rect, so it should
be dimensioned at 3 or greater. Integers occupy 2 bytes, so a
dimension of 127 (128 elements times 2 = 256, bytes) is big
enough for a str255 value. Each element of a character array
occupies 1 byte, so a character array needs to be dimensioned at
255 or greater to have 256 bytes available for a str255 value.

448 Using Macintosh BASIC

Chapter 20

1. ToolBox SizeWindow (OutputWindow] ,400,300,TRUE)

2. DIM rectll:(3)
rectl(O) = 100
rectll:(1) = 100
rectll:(2) = 300
rectll:(3) = 300
w] =Tool NewWindow (0,0,@rectl(O)."",TRUE, I ,-I ,-1,FALSE,0,0)

3. Applemenu} =Tool GetMenu(1)
ToolBox Setltem (App1emenu}, 1,'About My Program')

4. myMenu} =Tool NewMenu (98,'Choice')
Tool Box AppendMenu (myMenu} ,'Yes/Y ;No;(- ;Maybe')
Too1Box lnsertMenu (myMenu},O)
ToolBox DrawMenuBar

Chapter 21

1. DIM rectlll(3)
rectl (0) = 20 ! top
rectll: (1) = 20 !left
rectlll(2) = rectlB(O) + 20 ! bottom
rectlll(3) = rectll:(1) .. 100 ! right
cntl} =Tool NewControl (OutputWindowJ,@rect:l:(O) ,'push me' ,TRUE,O,O, I ,2,0,0)

2. DIMrectlll(3)
rectZ(O) = 30 ! top
rectlll(1) = 30 ! left
rectll!(2) = rectl&(O) + 20 ! bottom
rectlf>(3) = rectlll(1) .. 80 I right
cntl} =Tool NewControl COutputWindow] ,@rectlB(O).'Cenc:el' ,TRUE,0,0, I ,0,0,0)

3. ToolBox HideControl (cntl})
ToolBox SizeControl (cntl},60,20)
ToolBox SetCTitle (cntl},'Quit')
Tool80x ShowControl (cntl})

4. IF Tool TestControl(scroll},MOUSEH,MOUSEY) = 20 THEN
Toolbox SetctlValue (scroll} ,Tool 8etct1Yalue(scroll})+ 1)
ENDIF

Chapter 22

1. DIM recU;(3)
rectjg (0) = O ! top
rectjf) (1) = o ! left
rectjg (2) = 50 ! bottom
rectlC(3) = 240 I right
Tool Box ClipRect (@rect~ (0))

2. DIM rect1'(3)
rectjg(O) = O ! top
rect%(1) = O ! left
recU& (2) = 1 00 ! bottom
rect~(3) = 100 ! right
Tool Box PaintArc (@rect~(0) ,0,90)

Solutions to Practice Exercises 449

3. width1' = Tool StringWidth ('Title')
6PRINT AT (100-widthjg) DIV 2,30;'Title'

4. DIM pat©(7)
DATA 0,54.73,65,65,34,20.8
FOR count = 0 TO 7

READ pat©(count)
NEXT count
Tool Box PenPat (@pat©(0))

Chapter 23

1. DIM type@(3)
refnumjg =Tool OpenResfile ("MoreResources")
FOR count = 1 TO Tool CountTypes

Tool Box 6etlndlype (@type©(0) ,count)
type$=
FOR index = 0 TO 3

type$ =type$ & CHR$(type©(index))
NEXT index
t 1 :« = type©(O) *256 + type©(1)
t2:t =type©(2)*256 + type©(3)

450 Using Macintosh BASIC

PRINT type$,Tool CountResources(t2~ ,t I~)
NEXT count
END PR08RAM

2. s$ = "There is not enough room on the disk to save that file."
ToolBox Paramlext (s$,"","" ,"")
itemHit:g =Tool Alert (10,0,0) ! displays the alert ALRT 1 o

3. s 1 $ = "The percentages add to less than 100~."
s2$ = "Do you want to continue the calculations anyway?"
ToolBox ParamText(s1$,s2$,"","")
item Hit~ = Tool Alert (1 ,0 ,0) ! displays the alert ALRT 1
IF itemHit~ = 2 THEN OOSUB GetData I Cancel was selected

4. ! Call SFPutFile
DIM reply©(73) ! result goes here
name$ = "test"
! l08dPACK 3
t 1 ~ = ASC("P")*256 + ASC("A")
t2jg = ASC("C")*256 + ASCC "K")

h} =Tool OetResource(t2SK ,t 1 ~ ,3) ! reads PACK 3 code into h}
! Call SFPutFile
PERFORM h} (100,80,'Rename it to:' ,name$,O,O,@reply©(O), I)
IF reply©(0) = 0 THEN END P R08RAM ! Cance 1 was selected
length= reply©(1 O)
newname$ = ""
FOR i= 11 TO IO+ length

new name$ = new name$ & CHRS (rep Jy©(i))
NEXT i
RENAME name$, newname$
ENDPR08RAM

A
ABS, 82
ADDRESS], 308-09
Alerts, 371-73
AND, 57-59
ANNUITY, 89-90
APPEND, 180
Arcs, 351-52
Arrays, 119-24
ASC, 100-01

ASCII, 176, 240, 306, 411-13
Assembly language, 373-74
ATEOF-, 189-90
ATN, 86

B
Baud rate, 215-17
Beep, 284
Binary code, 3, 16
BINY files, 176-77, 179
BTNWAIT, 274-75

c
CALL, 234-35
CASE, 63-65
Channel, 178, 214
Character, 118, 305
CHR$, 100-01
CLEAR WINDOW, 153, 263
CLOSE, 190
Color, 356-57
Comments, 30-31
COMPOUND, 89

Index

Concatenation, 98-100
Constants, 64

Contingencies, file, 188-90
Controls, 331-44
COPYSIGN, 83
COS, 86
CREATE#, 179-80

Creawr, 203-08, 219-20
CURPOS#, SET/ASK, 186

D
DATA, 124-25
DATA files, 177, 179, 183-85

DATE$, 106

Debugger, 223-31
DEF, 160-62
DELETE, 196
Desk accessory, 9, 190-92, 369-70

DEVCONTROL#, 215-17
Devices, 213-21

DEVSTATUS#, 217-18
DIM, 120-23
Disk drive. See Volume
DIV, 25-27
DO/LOOP, 70-73
DOCUMENT PRINT, 154-55
DOCUMENT, SET/ASK, 261
DOWNSHIFT$, 104-05

E
Edit menu, 38-41
EJECT, 210-11
Empty string, 96

451

452 Using Macintosh BASIC

END PROGRAM, 31, 77, 235-37
EOF#, SET/ASK, 187, 202
EOF-, 189
EOR-, 189
ERASE, 252-53
ERR, 84-85, 239-40
Error checking, 45-47, 301
Errors, 239-40, 387-88, 405-10
EXCEPTION, SET/ASK, 128-29
EXIT, 71, 75, 164, 235, 238
Exponential functions, 87
Exponentiation, 26
Expressions, 26-28

F
File menu, 14-15
File names, 178-79, 196
File position, 175-76, 181, 185-87
File types, 203-08, 219-20
Financial functions, 89-90
Flow of control, 53
Flowchart, 61
FONT, SET/ASK, 144-45, 148
Fonts, 17-18, 144-45
FONTSIZE, SET/ASK, 144-45, 148
FOR/NEXT, 73-76
FORMAT$, 149-53. See also

SHOWDIGITS
FRAME, 252-53
FREE, 126-27
FUNCTION, 161-64
Functions, 81-92, 159-70, 230, 300,

401-03

G
GETFILEINFO, 199-203
GETFILENAME$, 198
GETVOLINFO, 211-13
GETVOLNAME$, 209
GOSUB, 76-78
GOTO, 53-55
GPRINT, 141-48
Graphics pen, 142, 253-58
GTEXTFACE, SET/ASK, 145-48

GTEXTMODE, SET/ASK, 145-48
GTEXTNORMAL, 147-48

H
HALT, SET/ASK, 128-29
Handle, Jl8, 302-03, 307-09
HIGHWORD, 307-08
HPOS, SET/ASK, 139-40
HPOS#, SET/ASK, 187

I
IF/THEN, 59-63
IGNORE WHEN, 241
Index variable, 73-75, 119
INDIRECT], 308-09
Infinite loop, 54, 230
Infinity, Jl6
INKEY$, 102-03
INPUT, 29-30
INPUT#, 180-81
Input checking, 387-88
Insertion point, 35-36, 138
INT, 84
Interrupts, 238-41
INVERT, 252-53

K
KBD, 102-03, 240
Keyboard buffer, 102-03
Keywords, 12-14

L
Labels, 54-55
LEFT$, 96-97
LEN, 96
LET, 24-25
LINE INPUT, 103-04
LINE INPUT#, 180-81
Line numbers, 54-55
Literals, 64, JI 7
Loans, 89-90
LOCATION, SET/ASK, 261-62
LOCK, 197

Logarilhmic funclions, 87
Logical expressions, 56-59
Long imeger, 115, 303, 306-09
Loops, 69-76, 389
LOWWORD, 307-08

M
MacWrile, 208
Memory usage, 126-27
MENUID, 326
MENUITEM, 326
Menus, 8-9, 320-29, 370-71, 426-28
MID$, 96-98
MISSING-, 188-89
MOD, 25-27
Modem, 213-121
MOUSEB, 272-74
MOUSEH, 270-72
MOUSEV, 270-72

N
NAN, 116-17
NOT, 57-59
Nole Pad, 190-92
Null slring, 96

0
OPEN#, 179-80
Operawrs, 24-27, 56-59, 98-99
OPTION COLLATE, 105

OR, 57-59
Order of precedence, 26-28, 58-59
OUTIN, 180
OUTPUT, SET/ASK, 259-60
Oulpul window, 7-8, 259-60, 314
OUTPUTWINDOW], 314
OVAL, 251-53

p

Packages, 375-76, 435
PAINT, 252-53
Paramelers, 160-65, 234-37, 302-07
PATTERN, SET/ASK, 255-56, 264-65

Index 453

f'auerns, 275-77, 352-55, 358-61
PENMODE, SET/ASK, 256-58,

265-67
PENNORMAL, 258
PENPOS, SET/ASK, 142-43
PENSIZE, SET/ASK, 254-55
PERFORM, 235-37, 374-76, 391
PI, 86
PICSIZE, SET/ASK, 263-64
Piclures, 41, 263-64, 355-56, 371
PLOT, 250-51
Poinlet, 118, 302-03, 307-09
Precision, 114-15

PRECISION, SET/ASK, 129-30
PRINT, 13, 28-29, 138-39. See also

FORMAT$; see also GPRINT
PRINT#, 181-82
Priming, 18, 213-14, 218-19. See also

DOCUMENT PRINT
PROGRAM, 235-38
Program formal, 13-14
Program menu, 15-17

Q
QuickDraw, 347-61, 418-23
Quicksorl, 242-44

R
Radians, 86
Random numbers, 91-93
Random-access file, 174-75, 186
RANDOMIZE, 91-92
RANDOMX, 91-92
READ, 124·25
READ#, 183
RECORD, i86
RECSIZE, 174-75, 179
RECT, 251-53
Recursion, 165-66, 242-44
RELATION, 88
REM, 30-31
RENAME, 196
Resources, 363-80, 423-25

454 Using Macintosh BASIC

RESTORE, 126
RETURN, 76-78
REWRITE#, 183
RIGHT$, 96-97
RlNT, 84
RND, 91-92
ROUND, SET/ASK, 129-30
ROUNDRECT, 251-53, 277-79
Running several programs, 241

s
SANE, 12.8-32
SCALB, 87
SCALE, SET/ASK, 262-63
Scientific notation, 114-15, 148-49
Scroll bars, 7, 333, 338-41
Search menu, 41-45
SELECT CASE, 63-65
SEQUENTIAL, 174, 179
Serial file, 174
Serial ports, 213-14
SETFILEINFO, 204-08
SETVOL, 210
SFGetFile, 375, 377-79
SFPutFile, 375, 379-80
SGN, 82-83
Shapes, 251-53, 258-59
SHOWDIGITS, SET/ASK, 148-49
SIGNNUM, 82-83
SIN, 86
Sorting, 105, 132-35, 242-44
Sound, 214, 283·94
SOUND, 284-88
SOUNDOVER-, 289
Speed, 389-90
SQR, 85
Statements, 4, 13, 393-40i
Status box, 8
STEP, 74
STOP, 229
STOPSOUND, 288
STR$, 100
STREAM, 179, 214-15
Strings, 13, 57, 105, 116-18, 125

String width, 357-58
SUB, 234-35
Subroutines, 69, 76-78, 234-35

T
TAB, 140-41
TABWIDTH, SET/ASK, 153-54
TAN, 86
Testing, 388-89
TEXT files, 176, 179
THERE-, 188-89
TICKCOUNT, 90-91
Time, 90-91, 309-10
TIME$, 107
Timing, 108-09, 390-91
TONES, 285-86
TOOL, 300
TOOLBOX, 300
Trigonometric functions, 86, 169-70
TRUNC, 84
TYP, 177, 183-85
Type mismatch, 22, 119, 125, 184

u
UNDIM, 123-24
UNLOCK, 197
Updating a program, 47-49
UPSHIFT$, 104-05
User interface, 386-88

v
VAL, 100
VALPOINTER, 307-09
Variables, 22-24, 113-19, 226-27
Volumes, 178, 208-13
VPOS, SET/ASK, 139-40

w
WHEN, 239-40, 319-20, 325-26
Windows, 6-8, 313-20, 326-27, 349-50,

370, 425-26
WRITE#, 183

Using Macintosh™ BASIC

Apple Computer, Inc., has now developed a new version of the BASIC programming language
uniquely suited to the remarkable Macintosh™ system. Author Richard Norling shares with you
his keen insights into the many capabilities of Macintosh BASIC. Thorough descriptions of all
Macintosh BASIC statements. functions. and operations are presented. with special emphasis
given to graphics and sound. You'll learn how to create Macintosh windows and menus. how
to program the mouse. and how to use Macintosh's toolbox commands. Clear and concise. Using
Macintosh™ BASIC will enable you to complete your programming projects with confidence.

Richard Norling has spent more than twenty years working with computers and computer
languages. Currently, he is president of Language Systems Corporation, a company that
specializes in the development of computer software. Norling has written a variety of systems
and application software and is co-author of a new statistics package for the Apple®
Macintosh™ computer.

• A·pple is a registered trademark of Apple Computer. Inc.
•Macintosh is a trademark licensed to Apple Computer, Inc.

ISBN 0-07-881157-0

