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Preface 

C is undoubtedly the most popular language for seri9us software 
development on microcomputers today. C's syntax is direct, compact, and 
easy to learn, and is well suited to an efficient, modular style of program 
development. Because of its syntax, and because it is a compiled language, 
C translates into programs that run quickly and use a minimum of memory. 
C's modularity also makes it easy to adapt a particular program to run on 
many different computers. On the Macintosh, C provides a direct and 
efficient way to access the Mac's built-in Toolbox and Quickdraw routines, 
which are essential for writing "Mac-like" programs that make use of the 
Mac's outstanding graphics and features such as windows, menus, and the 
mouse. 

This book is written for two groups of readers. If you have never 
programmed in C before, this book provides a complete introduction to the 
language, using simple examples and a step-by-step approach. You'll find it 
helpful to have at least a nodding familiarity with some other computer 
language such as BASIC or Pascal - it is possible to learn C as a first 
language, but Chas so many advanced features it's helpful if you've gotten 
your feet wet with a less complete language. If you are already experienced 
in C, this book will teach you how to use the language effectively in the 
Macintosh environment. The Mac is so different from other computers that 
using C to access the Mac's advanced features forms a major part of the 
book; C programmers will find it a whole new world. 

The program examples in this book are based on the Hippo C Level 1 
compiler, which is a product of Hippopotamus Software, Inc. of Los 
Gatos, CA. As we discuss more fully in Chapter 1, we chose Hippo C 
because we found it to be an excellent first choice for anyone learning to 
program in C. It is easy to use, provides a full implementation of C, has a 
superior method of dealing with error messages, provides direct access to 
the Toolbox routines, and uses an easy MacWrite-style editor. However, 
we should emphasize that this book will work with any of the popular 
C compilers on the Mac. Where there are differences between Hippo and 
standard C, such as the use of floating point, we point them out, and 
explain how the standard version works. 
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This book covers the complete C language, with many program 
examples that draw extensively upon the Macintosh's own built-in Toolbox 
routines. Certain topics that are essential to using the Toolbox, such as 
functions, pointers, and structures, are emphasized more heavily than in an 
introductory C book. By the time you finish this book you will have 
learned the C language, and you will also have seen enough of the Toolbox 
to be comfortable using it, and to be able to figure out how to use those 
routines not covered here. Thus, if your goal is to learn C, this book will 
meet that goal. If your goal is to develop large-scale Macintosh programs, 
this book will give you the background you need and point you in the right 
direction. 



1 
Casa Macintosh 
Programming Language 

In this chapter you will learn about: 

• Libraries 
• The Macintosh toolbox 
• Compiled languages 
• Using Hippo C 

The Macintosh is a fascinating and innovative device. Its system of 
mouse-driven menus, windows, and integrated graphics has redefined how 
a computer should work. Once you have experienced the ease of using a 
Mac, it is difficult to go back to the staid keyboard-input approach of most 
other computers. The natural response of many o.f us after using the Mac is 
to want to write programs for it. But if using the Mac is simpler than using 
most computers, programming for it is more difficult, at least if you want 
your programs to have the Macintosh look to them. Fortunately, the Mac 
memory banks contain a fabulous selection of built-in software specifically 
designed to place the Mac's unique features at the programmer's service. 

One of the best ways to program for the Macintosh is to use the 
C language. C certainly is the choice of the majority of the independent 
software developers working on Macintosh programs. If you know a little 
about the Macintosh history, you may find this a bit surprising, for an 
extended form of Pascal was the original development language for the 
Macintosh. Also, the built-in software routines are written to be accessed as 
Pascal procedures and functions. But Pascal originally was developed as a 
teaching language, while C was developed as a working programmers' 
language. To make Pascal into a suitable development tool, Apple had to 
extend and modify the language so that it could accomplish things that C 
does naturally. Thus, Macintosh Pascal is not the same as standard Pascal, 
but C on the Macintosh is no different, on the whole, from C on any other 
computer. And C programs can use the built-in Macintosh software. 
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Pascal and C Roots 

Pascal and C, two of the most successful computer languages, are 
each the result of the work of one man (but not the same man!) rather than 
of a committee. This gives them a sharper focus than what a diffuse 
consensus usually produces. 

Niklaus Wirth, the Swiss computer scientist, developed Pascal to 
teach sound programming practices. It emphasizes an organized, 
disciplined, modular programming style. It uses the structured control 
statements favored by computer science, and offers great flexibility in the 
representation of data. Because it is meant to teach good programming 
technique, Pascal is intolerant of deviations from its standards. 

Dennis Ritchie, a system software specialist at Bell Labs, developed C 
as part of the UNIX operating system development program. Thus, C is a 
working programmer's language. It offers many of the same features as 
Pascal (both are ultimately descend from the European computer language 
ALGOL), but it is a little more tolerant. It gives the programmer more 
control than Pascal, but it also requires that the programmer exercise more 
responsibility. 

C and You 

What makes C a good programming language? It has a modular design that 
makes it easy to break down a complex program into easily manageable 
parts. It has a rich selection of operators that allow you to express yourself 
succinctly. Its structured statements guide you into structured 
programming, a technique that increases program readability and reliability. 
It lets you store a large program package over .several files without any 
special effort. It offers you a fine control over program details. And it 
produces compact, efficient programs that run swiftly. 

We've established that the Mac is a desirable computer and that C is a 
desirable language. This book aims to show you how to program in C on 
the Macintosh; we hope that makes this a desirable book. The discussion of 
C begins in Chapter 2, but first we have some preliminary matters to deal 
with. One of the most important is outlining what we expect of you. 

This Book Is For ... 

As you must have guessed, this book is for someone who wishes to learn 
C on the Macintosh. But this general description includes many 

2 MACINTOSH C PRIMER PLUS 



possibilities. You might be expert in C, but a Macnovice. Or you could be a 
Macintosh programmer in some other language who wants to see how to do 
it in C. Or you might be unpacking your first Macintosh while wondering 
what a programming language is. Here's what we assume about you: 

1. You have used a Macintosh. You know how to move the mouse 
cursor around, how to select menu items and windows, how to 
change a window size, how to make minimal use of an editor, such 
as Macwrite. 

2. You are not familiar with Macintosh's built-in software routines. 

3. You may have done some programming but don't know C. 

4. You have access to a Macintosh and to a C compiler for the 
Macintosh. Our examples use the Hippo C, Level 1 compiler. You 
may have to make some adjustments if you use another compiler. 

The main emphasis of the book is presenting the C language, and the 
secondary emphasis is exploring the Macintosh's built-in software routines. 
We will cover all the essentials of C, but only cover part of the Macintosh 
software. Since it would take at least two books this size to present the 
whole Macintosh package, this limited coverage is necessary. The parts we 
do cover, however, are interesting and lay the groundwork for 
understanding the whole. 

Let's look more closely now at what makes learning C on a Macintosh 
different from learning C in another environment. 

Macintosh C Versus Generic C 

Language designers face two conflicting demands. First, a language should 
be portable. That is, it should let you write programs that can run on a 
variety of machines. Second, a language should let you use the special 
capabilities of a particular computer. A Mac program, for instance, should 
be able to use the mouse. 

C has an admirable record for portability. It has done so by keeping 
the core language limited. The number of "keywords," words reserved to 
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have special meaning to the language, is much smaller for C than for Pascal 
or modem BASIC. Many things that are built-in statements for other 
languages are handled in C by "functions." A function is just a separate 
programming module that can be incorporated easily into a program. C 
implementations come with libraries of functions to handle many basic 
tasks, including taking input from the keyboard and printing output on the 
screen. When C is moved to a new system, the language is left intact, and 
the library is rewritten as necessary in order to function on the new system. 

The function system used by C makes it easy to incorporate the special 
capabilities of the Macintosh. All that is necessary is to make the Macintosh 
software routines available as C functions. 

In brief, then, the C language you will learn in this book is the same C 
you would learn anywhere else. There are no new keywords, no need for 
nonstandard extensions. However, with the inclusion of its software 
routines as functions, the Macintosh offers an incredibly rich library from 
which C programs can draw. Programs that use only the standard library 
should be quite portable. Programs that use the special Macintosh software 
routines are not portable. Let's look further at the library. 

The Function Library 

First, there is a standard library of C functions that can be found in all 
but the smallest implementations of C. At present, the library is standard in 
the sense that it represents a common consensus among the many 
C implementations; eventually we may have an official committee­
legislated standard. Not all implementations offer exactly the same library, 
but the agreement is good. The Hippo C, Level 1 implementation, for 
example, offers about 50 library functions that would be found in other 
implementations. 

What do these functions do? They handle input and output in a variety 
of manners: a character at a time, a line at a time, formatted numbers, and 
so on. They manipulate "character strings," which are sequences of 
characters treated as a unit. They open and close files and handle file input 
and output. They manage computer memory, print error messages, and 
determine the nature of individual characters. You'll see many of these 
functions as you go through the book. These are portable functions; you 
should be able to use them (most of them, at least) on any C system. 

Next, we have the Macintosh built-in software routines. There are 
approximately 500 of them. The majority of them belong to what is called 
the "Macintosh Toolbox." The remaining ones belong to the Operating 
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system. We'll loosely refer to all the routines as the Toolbox, for both 
groups are equally accessible as C functions. 

c c 

Macintosh 
Toolbox 

590 routines, 
managers, & 

functions cover 

Figure 1.1 Macintosh has superior resources 

These functions are intended to provide the programming tools you 
need to produce programs in the Macintosh style. They are subdivided 
according to use into several packages, typically called managers. For 
example, the Window Manager is a group of routines used to control 
windows, and the Menu Manager relates to menus. This book concentrates 
on Quickdraw (sometimes called the Screen Manager) for examples. 
Quickdraw handles output to the screen, both text and graphics, making it 
an interesting and important package to deal with. Also, it offers 
illustrations of many concepts basic to Macintosh programming. 

In addition to these two large sources of functions, Macintosh C 
implementations will offer a few special purpose functions. For instance, 
C and Pascal use different formats for storing character strings, so C 
implementations generally provide functions to convert one format to the 
other. 
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There is an important technical difference between the standard C 
library and the Toolbox. The C library comes with the C compiler and is 
stored on a disk. (The compiler is the program that converts your written C 
code to code the computer can use. We'll soon discuss it further.) When the 
compiler puts a program together, it searches through the library, pulling 
out the particular code you need and inserting it into your program. 

The Toolbox, however, is built into the Macintosh as ROM (read only 
memory). Because they are always available, Toolbox routines aren't 
copied into your program. Instead, when a Toolbox routine is called, the 
computer jumps from your program to the Toolbox section of memory, 
then jumps back when finished. About the only practical consequence of 
this difference is that Toolbox routines do not add to the size of your 
program, while C library functions do. However, both are used in the 
same fashion. 

In this book function names will be printed in boldface when they 
first appear. Thereafter they will appear as normal text. 

How Computer Languages Work 

To appreciate C, you should know a little about the history of programming 
languages, and that is what we present next. 

To get a computer to do anything, you need to give it very specific 
instructions. These instructions must first be stored in the computer 
memory. The basic unit of computer memory is called a "bit," and it can 
store either a 1 or a 0. That's not much, but computers have oodles of bits, 
so they can store lots of ls and Os. Anyway, this implies that the 
instructions we give to a computer have to consist of some sort of code 
formed from Os and ls. For example, you might tell a computer to 
"00010010 01010010." This may sound like a tiresome, grungy, error­
prone ("Did I say 01010010? I meant 01001010!"), time-consuming 
process. It is, but it was what the first programmers had to do. It's called 
"machine-language" programming, and, as you might expect, different 
machines have different languages. 

The next step up was to replace machine-language code with 
mnemonic representations, using terms like CLR, MOVE, and JMP to 
stand for particular machine codes. Instructions in this new form were 
called "assembly language." A special program, called the "assembler" was 
devised to convert assembly language to machine language. Now 

6 MACINTOSH C PRIMER PLUS 



programmers would write a program in assembly language and submit it to 
the assembler to get the machine-language equivalent. The resulting 
machine code was called "object code." A full program might consist of 
several blocks of object code that would be "linked" together by another 
program, called the "linker" to produce the final machine-language 
program. 

This is still a lot of work, and assembly language is just as machine­
dependent as machine language. Still, even today, many programmers use 
assembly language because it provides the most compact and efficient 
programs. 

The next great step towards making programming less machine­
dependent and easier to use was the development of the "compiled" 
language. Here FORTRAN led the way. The idea is to develop a language 
that is problem-oriented instead of machine-oriented. FORTRAN allows 
programmers to set up programs more along the lines of algebraic equations 
and formulas than as specific computer instructions. Then a special 
program called the "compiler" translates the program to assembly language. 

The compiled language approach has two tremendous advantages. 
First, it makes programming easier, since the language relates more directly 
to problems being solved. Secondly, a compiled language can be used on 
many different varieties of computer. All that is necessary is to write a 
separate compiler for each type of computer. Examples of compiled 
languages are FORTRAN, COBOL, Pascal (except Macintosh Pascal), and 
c. 

One other strategy has been developed, that of the "interpreter." This 
is the approach used by BASIC and Logo, for example. Like the compiler, 
the interpreter is a program. However, it does not translate language 
statements into assembly language. Instead, it acts upon them directly. For 
example, if you say PRINT "HOWDY" in BASIC, the interpreter sees the 
word PRINT and then prints the word "Howdy" itself. Compared to the 
compiled approach, the interpreter is much more direct. To print "Howdy" 
in a compiled language, you would write a simple program, compile, 
assemble, link, and run the program. This might take a couple of minutes 
on a MAC. However, once they are put together, compiled programs run 
much faster than interpreted ones. In short, interpreters make program 
development simpler because you get immediate feedback, but compilers 
produce a superior final product C uses the compiler approach. 
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Pre-assembled 
Object Code for 

C functions 

Your C language code 

2. The C compiler produces 
assembly code 

3. Assembly code ls 
fed to the Assembler 

Assembly 
Code 

6. linker combines 
C originated object 
code with C Library 
object code 

4. The assembler makes 
relocatable object code 

5. Object code 
ready to be 
linked 

Executable 
code 

7. FINAL OBJECT CODE .__ ___ .,,,, 

Figure 1.2 Using a compiled language 

Which C Compiler? 

Currently several companies make C compilers for the Macintosh. They all 
implement pretty much the same standard C language, but there are 
differences in the processes you must go through to set up and run a 
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program, as well as differences in some language aspects that C leaves 
open. In order to develop consistent examples. we had to choose one 
compiler to work with. After looking at several possibilities, the Waite 
Group staff chose Hippo C, Level 1. That doesn't mean you have to use 
the same compiler, but you may have to make some adjustments if you 
don't. Let's look first at the reasons for our choice, then at some of the 
differences between compilers. 

Most of the C compilers for the Macintosh are intended as 
development systems for application programmers. That is, the projected 
user is an experienced software programmer with some prior knowledge of 
the Macintosh. Putting together even a simple program often involves going 
through several steps. Hippo C, Level 1, on the other hand, is much more 
suitable as a learning vehicle for C. Many steps are done automatically, so 
that it only takes a push of the mouse button to prepare an executable 
program. Also, it is one of the least expensive compilers. 

Level 1 does have some limitations. For example, it doesn't access 
about 100 Toolbox routines. Since that still leaves about 400 to play with, 
that is no real problem for someone learning C. Second, it doesn't offer 
floating-point numbers, that is, numbers like 3.14159 or 2.5. The Toolbox 
mainly uses integer numbers, so the lack of floating-point is not a problem 
for the examples we use. (Hippo C also offers Level 2, which is a complete 
application-level development system accessing the whole Toolbox and 
allowing floating-point numbers.) 

What differences can you expect if you are using another compiler? 
Probably the main difference will be the steps you have to go through to 
run a program. We'll run through the steps for Hippo C, but you will have 
to check the manual for other compilers. A second difference may be in the 
names used for the Toolbox routines. The Pascal descriptions used in the 
Apple manuals use names like DrawChar. Hippo C and many other C 
compilers transliterate these to pure lowercase: drawchar. Others retain the 
mixed uppercase and lowercase of the original. Third, different compilers 
may provide slightly different implementations of the C library functions. 
Fourth, the library contents are not exactly the same; one compiler may 
offer functions missing from another. Fifth, C leaves some choices, such 
as how many bits of memory will be used to store a number, open to the 
implementer; and not all have made the same choices. 

We will point out where compiler differences might matter as they 
come up in the text. 
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Starting Off in Hippo C 

Let's quickly run through the steps you would go through to prepare and 
run a program using Hippo C, Level 1. First, you would tum the Mac on 
and load the Hippo disk. You should obtain the typical Macintosh contents 
window showing what is on the disk. Select the Hippo C icon (the hippo 
face labeled "Hippo C" -you can't miss it). Eventually, you get a window 
called "Untitled." This is a blank area in which you can write your program. 
Just type it in from the keyboard. You can move the cursor with the mouse, 
and you can use the Edit menu to make editing changes. The Hippo manual 
describes the editor more fully, but if you've used Macwrite, you can use 
the Hippo editor. When finished, you can use the File menu to select 
SA VE. This gives you an opportunity to choose a name for the file, and it 
stores the file on disk. The name you choose must end with a ".c" so that 
the compiler can recognize it as an official C program. C distinguishes 
between upper and lower case, so make sure you use a lowercase c. At this 
point, the screen may look like Figure 1.3. 

Next, use the mouse to open the Programs menu. Move the mouse 
down to the program title (greet.c, in this case) and click it. This puts a 
check by greet.c, identifying it as the file you wish to compile. Figure 1.4 
shows this stage. 

s File Edit Tutorial Compile Debug Windows Programs 

m1Jin() 
{ 

printf("Howdy!\n"); 

- greet.c 

I 

Figure 1.3 The greet.c program 
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There are two points to remember about selecting a file. First, the 
effect is cumulative. If you later select another file, the original file is still 
selected also, unless you click it to remove the check mark. (This feature 
makes it possible to compile a multi-file program.) Second, you are 
selecting the saved file, not the one showing on the screen. That is, if you 
change the screen without saving it, that has no effect on the compilation 
process. When you correct or modify a program, always save it before 
compiling it. If you get a message saying that a.out is up to date, you 
probably forgot to save your modifications. 

Now it is time to compile. Actually, the computer must go through 
several steps. First, the greet.c file is compiled into an assembly code file 
called greet.s. This file is assembled into a machine language, or object, 
file called greet.o, and the greets file is removed. Then the greet.o file is 
linked with any library routines required, and the resulting executable 
program is placed in a file called a.out. If we started with just one file, as in 
this case, the object file is erased. 

printf("Howdy!\n"); 

Figure 1.4 Selecting greet.c for Compilation 
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With Hippo C, we accomplish this entire sequence by pulling down 
the Compile menu and selecting the COMPILE choice. The process will 
take a minute or so. Every now and then, you will see one of the 
intermediate commands appear near the bottom of the screen. When it 
finishes, the screen will look like Figure 1.5. 

s File Edit Tutorial Com~~le Debug Windows Programs 
g,·eet.c 

main() 
{ 

printf("Howdy!\n"); 
} 

-D Hippo~c Command Window 

~ 
Hippo-c Level 1 copyright 1964 by Hippopotamus Software, Inc. J H:41/1152 H:247/6240 L: 1 /46 T: 0/96 s: 1 /46 TT:26/304 ST: 1 /960 E:2/96 
C:0/266 CT: 0/1440 I * as -Z < greet.s > greet.o 

* Id -Z -o a.out greet.o 

* IQ 
fQT J2 121 

Figure 1.5 After compilation 

Note the Hippo Command Window at the bottom of the page. It shows 
all the separate commands that went into preparing the final program, and it 
provides the area of action for the program. You can run the program three 
ways. First, you can pull down the Compile menu and select RUN. 
Second, you can hit [CO:Ml\1AND]-i (hold down the [COMMAND] key and 
strike the [i] key). Third, you can type a.out. This will appear in the 
command window, and the program will run, as shown in Figure 1.6. 

Instead of using the Compile menu to put the program together, you 
can use the Window menu to select the Hippo Command Window and then 
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type out the commands shown in Figure 1.5. This approach allows you to 
select other compiler options discussed in the Hippo C manual. 

As you can see, it is pretty simple to prepare and run a program using 
Hippo C. We'll refer to this mode as the "Hippo C environment." This 
environment conforms to the traditional Macintosh pattern with its use of 
windows, menus, and mouse. 

Hippo C offers another environment for program development. It's 
called HOS (for Hippo Operating System), and is accessed from the File 
menu by selecting QUIT TO HOS. (There is also a QUIT TO FINDER 
choice for returning to the regular Macintosh environment.) 

c File Edit Tutorial Comnile Debug 
g~·eet.c 

Windows Programs 

main() 
{ 

printf("Howdy!\n"); 
} 

0 Hippo-c Command Window 
C:0/288 CT:0/1440 ~ 
* as -Z < greet.s > greet.o I * Id -Z -o a.out greet.o 

* a.out 
Howdy! ~ 

* I 
12.I J2 '2l 

Figure 1.6 Running the program 

HOS provides the old-fashioned keyboard-screen environment. You 
can't edit programs in it, but you can compile and run them, and you can 
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use several HOS commands described in the manual. These imitate certain 
UNIX commands, such as cat, which shows and combines files, and mv, 
which changes the name of a file. These commands can also be run from the 
Hippo Command Window in the Hippo C environment. 

We won't use HOS too often, for the Hippo environment is much 
more convenient. However, the Hippo environment also takes up much 
more of the Macintosh's memory, so a program that produces an out-of­
memory system failure in the Hippo C environment may run in HOS. 

Again, if you are using another compiler, you will have to use its 
manual to guide you. 

What's Ahead 

The following chapters present the C programming language. Initially, we 
will present both portable examples and examples that draw upon the 
Macintosh Toolbox. As we progress, the emphasis will shift from learning 
C to seeing how to program the Macintosh in C. Thus the last two chapters 
are concerned mainly with exploring the Toolbox and gaining a basic 
understanding of how to use it. 

To use the Toolbox, you need to know about functions, pointers, and 
structures. Therefore we introduce these topics earlier than is usual. 
Pointers and structures are considered advanced topics, but the rich rewards 
they provide when used with the Toolbox make it foolish to defer them to 
the closing chapters. And there is nothing like regular contact to make an 
"advanced" topic seem everyday. 

So let's get started! 

A Note About Style 

Throughout this book, you are going to encounter samples of C 
program code. Because C is a free-form language, and has few rules about 
how to lay out a program, we have tried to emphasize the advantages of 
using an easily readable program structure. As you will find, a good 
structure makes maintenance and understanding of a program much easier. 
Unfortunately, our book pages could not present as many characters per 
program line as you can display directly on the Macintosh's screen. 
Consequently, in bringing some of the program examples into book form, 
certain lines of program code were longer than we could easily fit on a page, 
so they had to be wrapped over two lines. Where a break in a line of code 
might cause a syntax error, we have marked the line with an arrow which 
curves down to the next line like this: 
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printf ("In this last example there were %d-, 
characters.\n", count); ~ 

In some cases, comment lines have wrapped around as well. As you 
will see later, comments are set off from code with slashes and asteriskes 
(/*, */). While putting the comments on two lines as you try out the 
programming examples won't affect how the program runs, you will find 
that the structure of a program is generally more apparent if you keep your 
comments lined up, and on a single line. Here is an example of a wrapped 
comment line: 

int ch; I* This is the preferred declaration 
for EOF check */ 

Finally, you should note that we sometimes use special block sepa­
rators like these: 

From Mac's Toolbox: New Routines 

to indicate special points of interest or additional background information. 
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2 
C Basics 

In this chapter you will learn about: 

• The role of functions 
• Using standard, Macintosh, and user-designed 

functions 
• C variables: declarations and types 
• Expressions and statements 
• C operators 
• Function arguments and return values 

The best way for most people to learn a language (computer or spoken) is to 
use it; but to use it, one needs to know at least a little about several different 
aspects of the language. For example, to speak English, it is much more 
useful to know a few nouns, verbs, prepositions, and adjectives than it is to 
have mastered two thousand verbs and nothing else. In this chapter, we'll 
introduce several features of C. Many will require deeper study later, but 
you will see enough to let you write simple, yet instructive, programs. 

C and Functions: The Modular Approach 

One of the most influential and useful methods to emerge from computer 
science is top-down programming. Top-down programming is the rather 
sensible approach of breaking a large programming job into smaller, more 
manageable tasks. Each of these tasks, if necessary, can be further 
subdivided until one large programming problem is broken down into many 
simpler, easily programmable modules. One module, perhaps, may deal 
with getting input from the user, another may sort the data, another may 
process the data, and another may present the results in an attractive 
manner. If one part of a program doesn't work satisfactorily, then the 
relevent module can be modified, leaving the rest of the program 
unchanged. This greatly aids the development and maintenance of healthy 
programs. 
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Some languages, such as C and Pascal, are particularly well suited to 
the top-down approach because they allow and encourage the development 
of separate programming modules. In C these modules are termed 
functions. A typical C program would consist of several functions along 
with some programming to tie them together. These functions may be 
created by the programmer, or they may come from a library of functions 
provided with the language. A large number of functions have become 
accepted as part of the standard C package. Beyond that, functions are the 
key to harnessing the special powers of the Macintosh, for Macintosh C 
systems provide hundreds of special functions for that purpose. Therefore 
it is a good idea to get familiar with the ideas of functions as quickly as 
possible. 

The main() Function 

A C program consists of one or more functions, and every C program 
contains a function called main(). In C, function names are followed by 
parentheses. The parentheses may be empty, as in this example, or they 
may contain information to be used by the function. The main() function is 
written by the programmer. When a program uses more than one function, 
main() is the first function activated. It typically provides the overall 
organization for a program, calling up other functions as they are needed. 
Here is a simple example; note that we use lowercase. C distinguishes 
between UPPERCASE and lowercase, so that a function called Main() or 
MAINO is not the same as main(). 

main () 
{ 

printf("Hey! Meet my main function!\n"); 

Braces ({and}), sometimes called "curly brackets," are used to mark 
the beginning and end of a function definition, so this main() function 
consists of just one statement. In this case, the statement is a standard C 
output function, printf(). The semicolon at the end of the line identifies it 
as a complete C statement. We say that main() calls or invokes the printf() 
function. 

The printf() (the "f' stands for "formatted") function then prints on the 
screen the message contained between the double quotes. printf() is called a 
"library function," meaning it is part of the C implementation. This is an 
example in which the function parentheses contain information used by the 
function. The \n at the end is not printed literally; instead, it causes the 
printer or screen cursor to move to the next line. For this reason, \n is called 
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Note that each statement ends with a semicolon. Here, the parentheses are 
all empty, for these functions, unlike printf(), need no further information to 
do their jobs. 

We've used program "comments" here for the first time. In C, I* 
indicates the start of comment and */ marks the end of a comment. 
Comments are aids to the programmer and are ignored by the compiler. In 
C, a comment can be on the same line as code or on its own line or spread 
over several lines. 

If you run this program, the hiding and showing happen so rapidly that 
they are hard for the eye to catch. We can slow the process down by using 
the getchar() function. This function, which is part of the standard C 
library, gets a character from keyboard input. When getchar() is 
encountered in a program, the program will halt until you hit a keyboard 
key. Once you hit a key, the getchar() function fetches it, and the program 
continues. Normally, the program will use the fetched character, and we 
will show how to do that later. For the present, however, we just use 
getchar() as a convenient way to halt a program until we are ready to move 
on. Here, then is the modified version: 

main() 
{ 

showcursor(); 
getchar(); /*program halts until a key is struck*/ 
hidecursor(); 
getchar(); 
showcursor(); 

Try this version. The cursor will show, and the program will wait 
until you strike a character key. The getchar() function will fetch the 
character, and hidecursor() will make the cursor disappear. Type another 
character, and the cursor reappears. Then the program ends. 

Look at the program code again. All we have in it are functions! The 
main() function we defined, the getchar() function, came from the standard 
C library, and the showcursor() and hidecursor() functions came from the 
special Macintosh library of functions. With Hippo C we merely had to use 
the function name. Other C compilers may use other names (HideCursor() 
instead of hidecursor(), for example) and require additional steps to locate 
the functions, but they would still use the same basic program. Also, many 
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C implementations require that you include the file stdio.h before getcharO 
can be used; we'll discuss this file in Chapter 3. 

One aspect of the hidecursor() function that didn't show up in this 
example is that there are different degrees of being hidden. If you use 
hidecursor() twice, it takes two calls to showcursor() to make the cursor 
visible, and so on. 

User-Generated Functions 

Suppose we want a program to use a function of our own design? The 
simplest way is to include the code for the new function in the same file as 
mainQ. Here is an example of what we mean: 

main() 
{ 

printf (11 I am about to invoke the fabulous gronk-, 
function ! \n 11 ) ; +..J 

gronk(); /*a user-defined function*/ 
gronk(); 
printf( 11Perhaps fabulous overstates the case.\n11 ); 

/* Here we define the gronk function */ 
gronk () 
{ 

printf ( 11GRONK ! GRONK ! 11 ) ; 

Running this program produces the following output: 

I am about to invoke the fabulous gronk function! 
GRONK! GRONK! GRONK! GRONK! Perhaps fabulous overstates-, 
the case. +..J 

Note that omitting a newline character in gronk() results in several printfO 
outputs being printed on the same line. 

Looking back at the program, we see that gronk() is defined in the 
same manner as main(). The function name is followed by a parentheses 
pair. Braces mark the beginning and end of the body of the function. One 
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difference is that the compiler expects to find a main() function, but that it 
doesn't know about the gronk() function until it runs into it. Secondly, as 
we stated earlier, program execution starts with main(). We could, for 
instance write the program this way: 

I* Here we define the gronk function */ 

gronk () 
{ 

printf ("GRONK! GRONK! "); 

/* the order in which functions are defined doesn't 
matter */ 

main() 
{ 

printf ("I am about to invoke the fabulous gronk--, 
function! \n"); ~ 

gronk(); 
gronk(); 
printf("Perhaps fabulous overstates the case.\n"); 

The program still would start with main(), using gronk() only when main() 
calls it 

Try to put together a simple program of two or more functions for 
yourself to make sure you see how to do it. 

There is much more to functions than we've seen so far, but functions 
are not the whole C story. Let's move on to other fascinating facets of the 
language. 
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Variables and Declarations 

Programs often work with numbers or letters that get stored, altered, and 
otherwise manipulated. (Such is the fate of computer data!) This is usually 
done through the use of variables. A variable is simply a quantity whose 
value we can change (or vary). In C, as with most computer languages, a 
variable is represented by a memory storage location that is assigned a 
particular name or "identifier" by a program. If we give a variable the name 
x, then the statement 

x = 22; 

causes the numerical value of 22 to be stored in the corresponding memory 
location. 

C requires that you "declare" variables. This means that you provide a 
list of variables that the program uses. The compiler can then scan the list 
and set up the appropriate storage locations in memory. C variables are 
"typed". This means we need to state what kind or type each variable is: 
will it store a number, a letter, or something else? This information is 
included in the variable declaration. Here is an example illustrating the 
declaration and use of variables: 

main () 
{ 

int x; /* declaring an integer variable */ 
char ch; /* declaring a character variable */ 

printf("I will now reveal the sum of 2 and 2: "); 
x = 2 + 2; 
printf("%d\n", x); /*form for printing an integer*/ 
printf("Here is how I grade my performance: "); 
ch = 'A'; 
printf ("%c\n", ch); I* form for printing a character-, 

*/ +J 
} 
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Notice again how each program statement is terminated with a 
semicolon. Running the program produces this smug output: 

I will now reveal the sum of 2 and 2: 4 
Here is how I grade my performance: A 

Now let's look at some of the statements in more detail. 

int x; /* declaring an integer variable */ 
char ch; /* declaring a character variable */ 

Each of these two lines is a declaration. The words int and char are 
C "keywords". A keyword is a word reserved for use as part of the 
language. You shouldn't try to use one for another purpose, such as a name 
for a variable or a function. These particular two keywords represent two of 
C's variable types. The int keyword is used to identify variables that hold 
integer (whole number) values, values such as 3, 5,-5, and 127. The char 
keyword indicates variables that hold character values. A character can be a 
letter, a digit, some other typographical character, such as &, #,or], or a 
nonprinting character, such as the space character or the newline character. 
Appendix A contains a complete list of C keywords. 

A simple C declaration consists of a type identification followed by a 
list of one or more variable names, using commas to separate the variable 
names from each other. For example, if we needed two integer variables, 
we could use this declaration: 

int x,y; 

Or we could declare each variable separately: 

int x; 
int y; 

In either case, we inform the compiler that we want it to set up two memory 
storage locations, each suitable for storing an integer. 
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The parentheses contain two distinct entries. The second is x, the name of 
the variable whose value we wish to print. The first is "%d\n"; this is a 
"format specifier". It tells in what form the variable is to be printed. This 
format specifier may look peculiar at first, but it is quite straightforward 
once you get used to it The %dis code for "print an integer", and the \n is, 
again, the newline character, meaning to start a new line after the number is 
printed. Similarly, in the statement 

printf("%c\n", ch); /*form for printing a character*/ 

the % c is code for "print a character". In the next chapter we will run 
through these format codes in detail. 

Finally, note the following statement: 

ch = 'A'; 

The point to note here is that the character A is enclosed in single quotes. In 
C, single quotes are used to identify a letter as being a character. If we had 
omitted them, the compiler would have thought that A was the name of a 
variable - in this case, of one that we forgot to declare. 

In standard C, only a single character can be assigned to a char 
variable at a time. That is, we can have statements like 

ch 'E'; 

or 

ch = '! '; 

but not the following: 

ch 'donut'; I* illegal donut */ 
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Series of letters are handled by "character strings", a topic that we will 
return to more than once. (Some implementations allow a character constant 
of two or even four characters, but we will ignore those variants.) 

Let's continue our quick scan of C and turn to the topic of operators. 

Operators 

Operators "do things to stuff." More technically, operators operate on 
operands. For example, consider the statement 

ch = 'A'; 

Here there is one operator, the assignment operator, represented by the = 
symbol. It has two operands, the variable ch and the character A. The 
action or operation performed by the assignment operator is that the value to 
its right is assigned to the variable on its left. 

C has an unusually long list of operators, and we'll look at a few of the 
more basic ones now. 

The Assignment Operator: = 
We've just discussed that one. Keep in mind that it works from right 

to left. That is, the operand on the left must be the name of the variable that 
receives the value. Thus 

my_bonus = 2000; 

is correct (but, unfortunately, a bit of a daydream). On the other hand, 

2000 = my_bonus; 

is invalid in syntax as well as in fact. 
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One tricky feature of the C assignment operator is that it can be used 
sequentially. For example, if you wish to set the variables dick, jerry, 
jimmie, and ronnie all to 0, you can do this: 

dick = jerry = jimmie = ronnie = O; 

Again, the action is from right to left; first ronnie is assigned 0, then jimmie 
is assigned ronnie's value, and so on. 

The assignment operator is a "binary" operator; that means it is an 
operator that talces two operands. 

The Addition Operator: + 

The addition operator is also a binary operator, and it generates the 
sum of its two operands. Here are two sample examples: 

x = 2 + 2; 
y = x + 5; 

/* add two constants */ 
I* add a variable and a constant */ 

The Subtraction Operator: -

Use the subtraction operator to find the difference between two 
quantities: 

x = 23000 - 8000; 
y x - 23; 

The second operand is subtracted from the first. Since this operator has 
two operands, it, too, is a binary operator. 
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The Sign Operator: -

The same symbol that is used for subtraction is also used to indicate or 
change the algebraic sign of a quantity: 

x = -23; 
Y = -x; 

Although the sign operator uses the same symbol as does the 
subtraction operator, the two operators are considered distinct from one 
another. One difference is that the sign operator is a "unary" operator, 
meaning that it operates upon a single operand or value. 

The Multiplication Operator: * 
Use the * symbol to indicate multiplication: 

income = hours * payrate; 
inches = 12 * feet; 

This binary operator causes the operand to its left to be multiplied by 
the operand to its right. 

The Division Operator: I 

This binary operator causes the operand to its left to be divided by the 
operand to its right For example, the statement 

her_share = 120 I 10; 

results in the value 12 being assigned to her_sbare. 

When integer values are used, the results are truncated, that is, 
rounded down to the nearest whole number. 
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INTEGER DIVISION 

7/4 
8/4 
914 

11/4 

TRUNCATED RESULT 

1 
2 
2 
2 

In C, the same operator is used for both integer and floating-point 
division. The result depends on the operand types. If both operands are 
integers, as above, then integer division is performed. If one or both 
operands are floating-point, then division is floating point. This means , for 
instance, that 7.0/4 (floating-point 7 divided by integer 4) is evaluated as 
1. 75. That is, the division is carried out to as many decimal places as the 
system allows; the answer is not truncated to the nearest integer. 

The Modulus Operator: % 

This is another binary operator. Both operands should be integers. The 
result is the remainder obtained when the first operand is divided by the 
second: 

MODULUS OPERATION 

7%4 
8%4 
9%4 

11 %4 

RESULT 

3 
0 
1 
3 

The modulus operator will not work with floating-point numbers. 

Operator Precedence 

Often expressions involve more than one operator, and the answer that 
one gets may depend on the order in which the operations are performed. 
For example, consider this statement: 

answer = 6 * 2 + 8; 

If we first multiply 6 by 2, we get 12; adding the 8 then gives an answer of 
20. But if we first add 2 and 8, then multiply by 6, the answer is 60. 
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Computers are not tolerant of ambiguity, so C has a series of 
"precedence" rules to determine what gets done first For familiar situations 
like the example above, C follows the usual conventions of algebra, 
namely, multiplication and division are performed before addition and 
subtraction. Thus 20, and not 60, is the correct answer for the preceding 
example. Table 2.1 ranks some operators by precedence. 

OPERATORS 

( ) 
- (unary) 
* I % 
+ - (subtraction) 
= 

ASSOCIATIVITY 

left to right 
left to right 
left to right 
left to right 
right to left 

Table 2.1 Operators In Order Of Decreasing Precedence 

We'll talk about associativity later. Meanwhile, note that we have 
added parentheses to our list of operators. We have already used 
parentheses in conjunction with functions, but those parentheses are not 
operators. The parentheses in Table 2.1, however, are "precedence" 
operators, and they modify the ordinary precedence of operations. 
Suppose, for instance, that in our example we wanted the addition to take 
place before multiplication. Then we could say this: 

answer= 6 * (2 + 8); 

Again, C usage is like that of ordinary algebra. 

How does a C compiler know whether you are using parentheses for 
grouping purposes or as part of a function statement? It tells by context. If 
you write 

beans= jack ( 2 + 5); /*parentheses indicate a-, 
function *I +J 
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the compiler assumes jack is a function name because there is no operator 
between the name and the first parenthesis. So, unlike algebra, you must 
use the multiplication sign if you want multiplication: 

beans= jack* ( 2 + 5); /*parentheses for grouping*/ 

What if two operators have the same precedence? In some cases it 
makes no difference: 

peas = 20 + 10 - 8; 

You get the same answer whether you add first or subtract first But in other 
cases it does make a difference. Consider this statement: 

figs = 12 I 4 * 3; 

How do we evaluate it? 

12 I 4 * 3 -> 3 * 3 -> 9 ? (division first) 

or 

12 I 4 * 3 -> 12 I 12 -> 1 ? (multiplication first) 

This is where the associativity information in Table 2.1 is used. Division 
and multiplication associate from left to right, so in this two-operator 
statement, the left-most operation is performed first. In this case, division 
is left-most, so the correct answer is 9. If you want the multiplication to take 
place first, use parentheses to enforce your desires: 

figs= 12 I (4 * 3); 

We will see many more C operators as we go along. Appendix B 
contains a complete listing of C operators and their precedences. 
Meanwhile, let's take on some terminology. 
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Expressions and Statements 

Expressions are combinations of values, operators, and other expressions. 
The simplest expression is just a single value, and you can build from there. 
Here are some expressions: 

13 
figs 
figs + 13 
(figs + 13) * (peas -3) 
pears = 3 + 2 

In C every expression has a value. For. an expression using the 
assignment operator, the value of the expression is the same as the value 
assigned to the variable. Thus, the value of the last expression in the list 
is 5. 

Because every expression has a value, it can be assigned to a variable. 
Thus, instead of writing 

x = 3 + 5; 
y 2 * x; 

we could write this: 

y = 2 * (x = 3 + 5); 

Here 3 and 5 are combined to 8, and 8 is assigned to x. Then the entire 
expression x = 3 + 5 has the value 8, so 8 is multiplied by 2, and 16 is 
assigned toy. This may not be the clearest usage, but it is legal. If you 
delight in producing obscure-looking code, keep this feature in mind; 
however, we won't use it again. 

A statement is the primary building block of a function. It represents a 
complete instruction to the computer, an action for the computer to perform. 
So far we have seen three kinds of statements. 

C BASICS 33 



The first kind of statement we have seen is the function call, like this: 

hidecursor(); 

Here the computer is instructed to activate a particular function. 

The second kind of statement we have seen is the declaration, such as: 

int legs; 

It instructs the computer to set aside and label a memory location to hold a 
variable of the given type. 

The third form is the assignment statement, like the following: 

legs = 2 * noses; 

Here the computer action is to find a value and assign it to a variable. 

We will encounter other forms of statements later. 

As you surely have noticed by now, C statements are terminated with a 
semicolon. (Certain forms may end with a brace; we'll point them out when 
they show up.) The usage is different from that of Pascal. In Pascal, the 
semicolon separates one statement from the next and may be omitted after 
the last statement. In C, the semicolon is part of the statement and cannot be 
omitted. 

We have been using one statement per line, but that is not really a 
C requirement. You may put several statements on one line, or one 
statement on several lines, for the compiler uses semicolons to tell where 
one statement ends and another begins. Spaces and newlines are ignored 
except as separators. Thus, the following is legal (but ugly) C: 
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main ( 
) { int legs, noses; noses 

2 

* 
noses; 
printf("%d\n", 

legs); } 

5; legs 

About the only troublesome practice would be to break a line between 
an opening and closing double quote in a printf() statement We'll return to 
that matter in the next chapter. 

This flexible formatting is called "free formatting". You should regard 
it as an opportunity to format your programs for maximum clarity, not as 
license to see what you can get away with. 

Now let's go back to functions. 

More on Functions: Arguments and Return Values 

Breaking a program into separate functions is a great technique for 
promoting modular, readable, serviceable programs. But it does create new 
problems. For example, often one function needs information from another 
function; we need communication between functions. Sometimes the calling 
function needs to pass information to the called function, and sometimes the 
called function needs to pass information back. In C, we can use arguments 
and return values to meet these needs. 

Arguments 

When we call a function, we can pass information to it by placing the 
information within the function parentheses. An item so passed is called an 
argument. For example, in the function call 

printf("La di da!\n"); 

the argument is "La di da!\n". The printf() function prints what it is told, 
but the program has to tell it exactly what is to be printed. 
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Some functions require more than one argument. In this case, we can 
use an argument list, which is a series of arguments separated by commas. 
For example, the function call 

printf("%d", legs); 

has an argument list of two arguments. The first is "%d" and the second is 
legs. Incidentally, printf() is a bit unusual in that the number of arguments 
it takes is not fixed at one value. Typically, a function will take only one 
argument, or only two, but not both. 

For a more typical usage of arguments, let's look at a couple of 
examples from the Macintosh library of functions. 

A Graphics Example 

We'll look at an example using two functions from the Macintosh 
Quickdraw package. This package contains those functions used to control 
the Macintosh screen, so it is a good package to know. The Macpaint 
program, for example, is based on the Quickdraw package. 

Using Quickdraw is one situation in which compiler differences 
appear. According to Inside Macintosh, the official Apple description of 
Toolbox functions, the initgraf() function must be called before using 
Quickdraw. In Hippo C, Level 1, this is done automatically, so you can go 
ahead and use the Quickdraw functions without further preparation. In fact, 
you'll get in trouble if you do try to call initgraf(). Other compilers may 
require you to call initgraf() explicitly or, may make calling it a compiler­
option choice. If you are using a different compiler, try checking its 
documentation to see what to do. Or look for an example using Quickdraw. 
Does it use initgraf()? If so, check how its argument is declared and what 
#include files are used. If you can't find an answer, try running the 
programs as shown in this book. If that doesn't work, write or call you 
implementer for further instructions. 

The use of intgraf() is the most important compiler-dependent matter 
you will face in this book. Clear up that problem, if it is one, and the rest of 
the book should be clear sailing. 

The two Quickdraw functions we'll look at are moveto(), which 
moves the pen to a specified location, and lineto(), which draws a line 
from the current pen position to an indicated position. 
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From Mac's Toolbox: New Routines 

Line To 
MoveTo 

Here is the sample program: 

main() 
{ 

int horiz, vert; 

horiz = 50; 
vert = 50; 

Draws a line to the indicated point 
Moves pen to point without drawing 

moveto(horiz,vert); /*move to start of box*/ 
lineto( 5 * horiz, vert); /*draw top side*/ 
lineto( 5 * horiz, 3 * vert); /*right side*/ 
lineto( horiz, 3 * vert); /*bottom */ 
lineto ( 50, 50 ); /*left side*/ 

First, understand that on a Macintosh screen position is measured from 
the upper left-hand corner of the window. The full screen measures 512 
units horizontally by 342 units vertically. Figure 2.1 shows the output of 
this program. You may have to use the mouse to move and enlarge the 
Hippo Command Window first, so that the box will fit. 

The first function call is this: 

moveto(horiz,vert); 

The first argument (horiz) to moveto() indicates the horizontal coordinate 
for locating the pen, and the second argument (vert) indicates the vertical 
position. In this case, both have the numerical value of 50, so the pen is 
placed 50 units down and 50 units to the right ofthe upper left-hand corner 
of the window. 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Hippo-c Command Window 

* a.out 

* 

Figure 2.1 Drawing a Box 

The second function call is this: 

lineto( 5 * horiz,vert); 

This time the pen draws a line as it is moved from its original position 
(50,50) to its new position (250,50). In this case, the expression 5 * horiz 
is evaluated to 250, and then that value is transmitted as an argument. 

The remaining function calls complete the job of drawing a rectangle. 
In each case a line is drawn from the current position to the new position 
described by the function arguments. 

A very important point to note is that the arguments to a C function can 
be variables, as in the first call, constants, as in the last call, or any other 
expression. In each case the value of the variable, constant, or other 
expression is evaluated and passed on to the function. This is called 
"passing by value". For those familiar with Pascal, C arguments correspond 
to Pascal value parameters rather than to Pascal variable parameters. 
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What if we want to write a function that uses arguments? We'll save 
that topic for a later chapter. For the present, we will content ourselves with 
using functions with arguments. However, to satisfy at least some of your 
curiosity, we can note a couple of points now. First, when defining a 
function that uses arguments, we need to include declarations for new 
variables that receive the passed values. Second, functions expect passed 
arguments to correspond in number and in type to arguments described in 
the function definition. For example, both moveto() and lineto() expect two 
integer arguments. Passing the wrong number of arguments or arguments 
of the wrong type can lead to program failure. 

The Function Return Value 

Now let's see how functions can communicate values back to the 
calling program. A C function has the potential to "return" a single value to 
a program. For example, recall that we mentioned the getchar() function, 
which gets the next keyboard input character. To find out what the 
character is, we can use a statement like this: 

ch= getchar(); 

We would say that ch is assigned the value returned by the getchar() 
function. 

Here is a primitive example: 

main() 
{ 

char ch; 

printf("Type a character\n"); 
ch= getchar(); /*returned value is assigned-, 

to ch */ +J 
printf("\nThat was a %c\n", ch); 
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A run looks like this: 

Type a character 
y 

That was a Y 

In this case, getchar() performed an action (finding the next input 
character) and returned a value (the value of that character). We used a 
fancier form of printf(), which we will explain in detail in Chapter 3. 
Basically, the %c acts as a place holder showing where and in what form ch 
will be printed. 

The Hippo C version of getchar() has it "echo" its input. That means 
the characters appear on the screen as you strike the keys. For instance, in 
the last example, the Y appears on the screen. Some implementations use a 
non-echoing getchar(); the character entered from the keyboard is processed 
by the program, but not shown on the screen. In Hippo C the echo feature 
can be turned off by using the function call echo_off(); the call 
echo_on() will restore echoing. 

Setting up a function to return a value is simple enough; we just use the 
keyword return in the function definition. Here is a short example 
illustrating the technique: 

main () 
{ 

int value; 

value= always2(); 
printf("%d\n", value); 
printf("%d\n", always2()); 

/* simple function that always returns 2 */ 
always2 () 

printf("Processing ... \n"); 
return 2; 
printf("This is a feeble function.\n"); 
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The output looks like this: 

Processing ... 
2 
Processing ... 
2 

There are a few points to note. First, when a function reaches a return 
statement, it returns whatever value follows the keyword return. This can 
be a constant, a variable, or any other form of expression. The expression is 
evaluated, and the value is returned to the calling program. 

Second, when a function executes a return statement, it quits, and 
control returns to the calling program. Thus, the final printf() statement in 
always2() is never executed. 

Third, upon return to the calling program, the return value can be used 
the same way as any other value. Thus, in this program, one time we 
assign the return value to a variable, and one time we use it as an argument 
to printf(). We also could have used it as part of an expression, as in 

y = 3 * (4 + always2() ); 

You can think of the function call as being replaced by the corresponding 
return value. 

The Function as a Black Box 

Once you learn a function's argument list, its action, and its return 
value, you know all that you need to know about that function. Sometimes 
this is referred to as the "black box" view of a function. The term is 
borrowed from electronics, where a black box would be characterized by its 
electronic input and output characteristics, with the interior of the box 
hidden away. Similarly, with a function, we know what goes in, we know 
what comes out, but we can be entirely ignorant of the internal 
programming. 
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The black box view is more than an analogy, it is a design goal. The 
idea is that if a function's only interactions with another function are 
through its input (argument list) and output (return value), then the function 
won't produce some unexpected side effect on other parts of the program. 

Summary 

C is a modular language. C programmers break down a complex problem 
into simpler tasks and then write separate modules called functions to handle 
these tasks. There is a large library of C functions available on most C 
implementations, and this library is currently being standardized by a 
standards committee. Macintosh C, however, goes far beyond standard C, 
offering hundreds of functions to access the Macintosh environment and 
facilities. Thus, using functions is the key to using C on a Macintosh. 

A C program consists of one or more functions. One function must be 
called main(), and this is the first function executed in any program. It can 
then call, or invoke, other functions. 

The body of each function consists of a series of statements. 
Declaration statements announce the names and types of the variables to be 
used in a function. Common types are integer (int) and character (char). 
Assignment statements assign values to variables. Function call statements 
activate functions. 

Information is communicated to a function through an argument list, 
which is a list of values to be used by the function. In tum, a function can 
use a return statement to provide a value for the calling program. 

To be able to use a function properly, you should know three things 
about it: the argument list it expects, the action(s) it performs, and the value, 
if any, it returns. 
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3 
1/0 Functions and Types 

In this chapter you will learn about: 

• Input and Output (1/0) 
• Character 1/0 
• Formatted 1/0 
• Fundamental C types 
• The #include and #define preprocessor directives 
• Using a simple loop 
• Using functions 

A computer is well-suited for making rapid, repetitive calculations, but its 
innate ability to communicate with humans is much less spectacular. Often 
the longest, most involved part of a program turns out to be the handling of 
the computer-user interface. Sometimes, for example, you may wish to 
instruct a program or provide it information as it is running. In C this 
involves using some sort of "input" function, that is, a function that gathers 
information, or input, while the program runs. In turn, a program can 
communicate back to you by using "output" functions. Input and output 
functions are referred to collectively as I/O functions, and they are one of 
the main topics of this chapter. 

Traditional I/O functions do such things as read input from the 
keyboard and print characters on the screen. Much of the special flavor of 
the Macintosh, however, stems from its innovative I/O forms, such as the 
mouse, icons, and windows. We must type before we can mouse, 
however, so we will concentrate on traditional forms in this chapter. 

Standard C has a wide variety of I/O functions. Here we will look at 
four of the most heavily used examples: getchar(), putchar(), printf(), 
and scanf(). We will also look at some related I/O functions from the 
Macintosh Toolbox. En route, we will take a first look at the C if ... else 
and while statements. 
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The second major topic for this chapter is the C scheme of data types. 
1/0 functions are either tied to particular data types or else need to specify 
the type of data being used. Hence the topic of data types ties in to the topic 
ofl/O. 

We will be looking at specific functions, but much of what we do will 
be good practice for functions in general. As we go along, note how 
function arguments and return values are used. 

Character 1/0 

Many C programs are built around processing input a character at a time. C 
has two functions explicitly designed for character processing: getchar() and 
putchar(). 

Character Input: getchar() 

You met getchar() in Chapter 2, but let's review it now. We can 
describe a function by three things: its argument list, the action it performs, 
and its return value. For getchar(), these are rather simple. It has no 
arguments, it obtains the next input character, and it returns the value of that 
character. 

There are a couple of points that need elaboration, however. One is the 
question of where the input comes from. C programs take input from 
something called the "standard input." On most systems, including the 
Macintosh, the standard input is the keyboard by default. ("By default" 
means that this particular choice is made automatically unless you override 
it.) However, C implementations typically allow you to change the standard 
input from the keyboard to, say, a file, at the time a program is run, causing 
the program to take input from the file instead of the keyboard. Macintosh 
applications usually do not make use of this "redirection" feature, so we 
won't discuss it further. 

The second point to note is when keyboard input is read. Many 
systems use a "buffered" system in which the keystrokes are stored in an 
intermediate memory area called a "buffer." The contents of the buffer get 
sent to the program when the buffer gets full or when the user strikes the 
[RETURN] key. (The [RETURN] key itself generates the newline 
character, which serves as a sign to empty the buffer.) Hippo Con the 
Macintosh, however, uses an unbuffered system. As soon as a key is 
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struck, the character is transmitted to the program; it is not necessary to 
strike the [RETURN] key for that purpose. 

Here is a short aptitude test using getchar(). This program introduces 
the if...else statement. We'll explain it briefly after the program, and more 
fully in Chapter 4. 

main() 
{ 

char ch; 

printf("Enter the letter 's'\n"); 
ch= getchar(); 
if ( ch== 's' ) 

printf("\nYou are hired!\n"); 
I* do if ch is 's' *I 

else /* do if ch is not 's' */ 
printf("\nUnfortunately, we have many fine-, 

applicants ... \n"); ~ 
} 

Here is a sample run, one made by a talented applicant: 

Enter the letter 's' 
s 
You are hired! 

The if...else statement makes a test and performs one action if the test 
is true and an alternative action if it is false. Here the test is to see if the 
input character (the variable ch) is the same as the desired character (the 
letters). Note that C uses a double equals sign (==) for comparing two 
items for equality. The indentation used with the if statement, although not 
obligatory, is good programming style. 

You should also note the use of newlines. The \n at the end of the first 
printf() statement moves the cursor down to the next line, so that when the 
testee types an s, it appears on the next line and not at the end of the first 
line. The \n at the beginning of the other printf() statements causes those 
lines to be printed on a line following the user's answer. Otherwise the 
printing would begin immediately to the right of the response. This initial 
newline would not be needed on a buffered system, for there you have to 
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strike the [RETURN] key after your answer, and that key starts a newline 
anyway. 

Character Output: putchar() 

The putchar() function takes one argument, a character value. Its action 
is to print the character on the screen. More exactly, it sends the character to 
the "standard output." For the Macintosh, the standard output is the screen. 
Most C systems offer a redirection system that lets you replace the screen 
with a file at run time for catching the output, but we will ignore that 
feature. In most implementations (but not Hippo C) putchar() also has a 
return value. In that case, the return value is just the printed character, or, if 
there is an I/O error, the return value is a -1. Often, the return value is not 
used, but a careful program would use it to check for I/O errors. Here is an 
example in which the program repeats an input character. 

main() 
{ 

char ch; 

ch= getchar(); 
putchar(ch); 

A sample run could look like this: 

HH 

The user typed the first H, and the program produced the second one. 
With a C implementation using buffered input, the program run would look 
like this: 

H[RETURN] 
H 

In this case, you need to strike the [RETURN] key to transmit the character, 
and that advances the screen to the next line for the output. 
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Actually, the variable ch is expendable in this program. The following 
version works just as well: 

main() 
{ 

putchar( getchar () ); 

In this version, the return value for getchar() is used directly as the 
argument for putchar(). This illustrates again the concept of passing 
arguments by value. The actual argument in this case is not the function 
getchar() itself; it is the return value of the function. 

One more point to note is that output for Hippo C is buffered. That 
means the output is directed to an intermediate memory location called a 
buffer. The contents of the buffer, in turn, are sent to the screen when the 
buffer is "flushed." This flushing occurs whenever 1) the buffer fills (80 
characters for Hippo C), 2) the program ends, 3) a newline is printed, or 4) 
a special flushing function is called. This function is called, fittingly 
enough, fflush() and is mentioned in Chapter 10. 

A Brief Whirl Through the while Loop 

It is boring to work with a program that just reads or writes a single 
character. The getchar() and putchar() functions are useful because you can 
write programs that use them repeatedly to process lots of characters. One 
method is to use the while loop. We'll study loops more fully in the next 
chapter, but we'll look at the basics now. 

A loop is a section of program that can be cycled through repeatedly. 
One way to create a loop in C is to use the while structure. Here is an 
example of a loop: 

while ( ch == 's') /* keyword "while" marks start of 
loop */ 

putchar(ch); 

As with the if statement, there is a test enclosed in parentheses 
followed by a statement. In the while, the following statement is performed 
if the test is true. Then the test is made again; if it is still true, the statement 
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is executed again. Then the test is made again, and so on. The program 
cycles or "loops" through the while statement over and over again until the 
the test fails. 

If, in our example, ch did equal 's', then this fragment would repeat 
indefinitely, printing s after s, for nothing in this :fragment changes the value 
of ch. Loops that don't quit are called infinite loops; usually they are not 
considered desirable. Normally, however, there is some action within the 
loop that has the potential to change the result of the test. Consider, for 
instance, this program fragment: 

ch= getchar(); /* get a character *I 
while ( ch == s) I* check if character is 

an 's' *I 

putchar (ch) ; I* print character */ 
ch= getchar(); /* get a new character *I 
} 

Here the brackets indicate a "compound" statement. They indicate the 
extent of the loop. Without the brackets, only the first statement following 
the while test would be part of the loop. With the brackets, everything 
between the brackets is included in the loop. The brackets play much the 
same role as begin and end in Pascal. 

And what does this fragment do? The user enters a character. If it is an 
s, the program echoes it and prints the next character. If that character is an 
s, it prints it and reads the next character. This goes on until a non-s is 
entered, then the fragment is finished. The output could look like this: 

ssshsss 

Each of three input s's was repeated, and the loop stopped when an h was 
typed. 

Note that the printing of the three s's was delayed until the h was 
typed. This is an example of the output buffering we mentioned earlier. 
Here the output (sss) was saved until the program terminated. 

The key point in this example is that the while loop lets a program 
process characters until some sign to quit pops up. The fact that a new value 
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for ch is obtained each cycle of the loop provides an opportunity to change 
the result of the loop test. 

Here is a program that uses a loop to count the number of characters 
entered on a line: 

main() 
{ 

char ch; 
int count; 

count = O; 
ch= getchar(); 
while ( ch != '\n') 

{ 

I* initialize count to 0 *I 
/* read first character */ 
I* continue until end of line */ 

count = count + 1; 
ch= getchar(); 

I* increase count by one */ 
/* get next character */ 

} 
printf ("There were 

Here is a sample run: 

I* end of loop */ 
%d characters.\n", count); 

I* report results */ 

I'll have some ultra chocolate. 
There were 31 characters. 

Note that spaces and punctuation count as characters. 

Recall that hitting the [RETURN] key generates a newline character, 
symbolically represented by \n in C. This program, after initializing the 
count variable to 0, fetches a character. If it is not the newline character, the 
program adds one to the count and gets the next character. (In C, the 
symbolism!= means "not equal to.") This continues to the end of the input 
line, indicated by a newline character, then the program reports the count. 

The indentation of the while loop is not required, but it is highly 
recommended in order to make the program more readable. The indentation 
shows at a glance the extent of the loop section of the program. 

The printf() statement is slightly more involved than the ones we have 
seen so far, and we will explore the matter later this chapter. 
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Although this program is valid C, it is not stylish C. A more 
experienced programmer might rewrite the program this way: 

main () 
{ 

char ch; 
int count O; 

while ( (ch = getchar() ) != '\n') 
count++; 

printf ("There were %d characters.\n", count); 

This may look weird, but all we have done is combine a few steps 
together and bring in a new operator. First, we have the following modified 
declaration statement: 

int count = 0; 

This declares the int-type variable count and also sets it to zero. Thus, 
when the computer sets aside space for the count variable, it also places a 
value in it. We say that the variable count was "initialized." 

The next modification is more complex: 

while ( (ch = getchar () ) ! = • \n •) 

The outer pair of parentheses mark the extent of the while loop test 
condition. Thus the test condition itself is this: 

(ch = getchar() ) != '\n' 

This looks odd, but keep in mind that parentheses can be used to indicate 
the precedence of operations. Hence the first thing that gets done is what is 
within the inner group of parentheses: 

ch get char () 
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That is, a character is fetched and assigned to the variable ch. Now, (ch = 
getchar() ) as a whole is an assignment expression and has the same value 
as ch. This means that the next level of parentheses boils down to checking 
to see if ch is a newline: 

ch ! = '\n' 

In brief, the expression 

(ch = getchar() ) != '\n' 

is short for 

ch= getchar(); 
ch != '\n' 

Because the short form is a single expression, it can be used as a test for the 
while loop, whereas the two-expression version cannot. You should 
become comfortable with this sort of expression (combined assignment and 
comparison), for it is a very common idiom in C. 

Finally, we have this as-yet mysterious statement: 

count++; 

The ++ is the C "increment" operator, and it increases the value of its 
operand (here count) by one. So it is a shorter form of 

count = count + l; 

The increment operator version is, however, easier to type, and it is usually 
implemented more efficiently on the computer. We'll come back to 
increment and decrement operators in Chapter 4. 
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Here is a slight variation of the example. Instead of counting each 
character on a line, it reprints each character: 

main() 
{ 

char ch; 

while( (ch= getchar() 
putchar (ch) ; 

! = I \n I) 

Again each character in a line is read and printed until the newline 
character produced by the [RETURN] key shows up. Here is a sample run: 

Don't repeat this! [RETURN] 
Don't repeat this! 

Again, the output of putchar() was collected in a buffer, then sent to 
the screen when the program ended. If we had typed more than 80 
characters before hitting the return key, the buffer would have printed out 
the first 80 as soon as that block had been typed, since the buffer would be 
filled at that point. 

The Character Type 

Because we have been dealing with character 1/0, now is a good time to 
look further at type char. In particular, we will investigate how characters 
are stored on a computer and look at various ways to represent characters 
in C. 

Character Storage 

Everything in computer memory, be it text, numerical data, or program 
code, is stored in what we can think of as an electronic pattern of Os and ls. 
The smallest unit of computer memory is called a "bit," and it can hold a 
single 0 or 1. Using a single bit is much like counting with one finger. 
Fortunately, computers have many fingers. The next largest unit of 
computer memory is called a "byte," and it consists of 8 bits. Thus it can 
hold any combination of eight Os and ls; there are 256 possible 
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combinations. The next largest unit of memory is called a "word," and it is 
the natural storage unit for a given machine. The size of the word depends 
on the hardware. For example, the original Apple had an 8-bit word (one 
byte), which is why it is termed an 8-bit machine. The IBM PC uses a 16-
bit word, and the Macintosh has 32 bits at its disposal. 

How does this relate to storing characters? Clearly, since a computer 
stores everything as a pattern of Os and ls, it needs to use a code of Os and 
ls to represent characters. The most widespread code, and the one used on 
the Macintosh, is the ASCII code shown in Appendix E. In this code, for 
instance, 01000001 represents the character 'A', 00101011 represents '+', 
and so on. Altogether, the code represents 128 different characters, 
including several nonprinting characters used to control printers and the 
like. This implies that a single byte of memory (which can hold 256 
different combinations) is large enough to store any character code. 
C utilizes this fact, so that when we declare a variable to be type char, just 
one byte of memory is allotted for its storage. (Some languages simply use 
the word size, but this would be wasteful on a Macintosh, for the Macintosh 
word is large enough to hold 4 characters.) 

Let's take a closer look at the code. The representation 01000001 is an 
example of a "binary number," a number written using just ls and Os. 
Appendix C discusses binary numbers further, but what we should note 
here is that a binary number can also be expressed as an ordinary decimal 
number. The 01000001 binary number, for example, is equivalent to the 
decimal number 65. Thus, we can also speak of the character 'A' as being 
represented in ASCII code by the number 65, understanding that in actual 
storage the 65 is in binary form. Appendix E shows not only the binary 
code, but also the decimal code, octal code (base 8), and hexadecimal code 
for the ASCII character set. If you are not familiar with these other number 
forms, you may wish to read the section of Appendix C that describes them. 

The ASCII code encompasses the numerical values 0 through 127. 
The Macintosh modifies it in two ways. First, it extends the code by using 
the numbers 128 through 217 to represent some additional characters, such 
as accented vowels and Greek letters. (The list of extra characters may be 
expanded even more.) Second, several of the "control characters" (codes 0 
though 31) are printed using the "missing character" symbol (a vertical, 
rounded rectangle in the regular font) when sent to the screen. These control 
characters (so called because they were generated using the [CONTROL] 
key found on many keyboards) normally are used do to things like ring 
bells, cause formfeeds to a printer, and the like. The Imagewriter, 
however, does acknowledge several of these characters. 
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Character Constants 

As we have seen, we declare a character variable with a statement like 
this: 

char ch; 

This sets aside one byte of storage for the variable ch. This variable may 
acquire a value from the keyboard via an input function, or we may assign it 
a value within a program: 

ch = 'D'; 

In this example, 'D' is a "character constant," just as, say, 7 is an integer 
constant. The usual way to represent a character constant in C is to enclose 
the character in single quotes, as we did above. The quotes inform the 
compiler that the Dis a character constant and not, say, a variable named D. 

Special Character Constants. Some characters are not easily typed or 
else have unwanted side effects, so C has special mechanisms for 
representing special characters. One is to use the ASCII code more or less 
directly. For example, the character whose ASCII code is 14 is the 
formfeed character. It causes the printer to advance one page. The 
Macintosh terminal doesn't respond except for printing the missing 
character symbol. If we had a type char variable named down, we can 
assign it this character with this statement: 

down= '\014'; 

The single quotes alert the compiler that we have a character constant. The 
backslash(\), which slants opposite the ordinary slash(/), indicates that we 
are using a representation of the character rather than the character itself. 
Finally, the 14 is the ASCII code, in octal, for the character. 

This form can be used for any ASCII character, not just the unprintable 
ones. For example, the ASCII code for 'A' is 65 decimal, or 101 in octal~ 
Thus, we can represent the letter 'A' with the notation '\101 ',if we like. 
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Certain special characters have, in addition to the octal representations, 
their own individual representations, sometimes termed "escape sequences." 
Here is a list of these representations, along with the ASCII representation: 

\n newline \012 
\t tab \011 
\b backspace \010 
\r carriage return \015 
\f form feed \014 
\\ backslash \134 
\' single quote \054 
\" double quote \042 

The tab character makes the cursor or printer move to the next tab 
position. In the Hippo C environment, tab marks are set every 4 character 
widths; the first tab moves you to column 5, the second to column 9, and so 
on. 

The Mac ignores the backspace and formfeed characters when sent to 
the screen, but the printer does recognize them. 

The carriage return defers from the newline in that the carriage return 
moves the cursor to the beginning of the same line, while the newline 
moves the cursor to the beginning of the next line. 

These escape sequences can be used in the same fashion as regular 
characters. For example, if you wish to set a character variable to be the 
newline character, you could say 

ch = '\n'; 

or 

ch= '\012'; 

The first form is more easily remembered and recognized. It is also 
more portable, since it would still be true on machines that do not use the 
ASCII code. 
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A special notation is needed for the single quote because enclosing a 
regular single quote in single quotes("') would look confusing to the the 
compiler, while the notation '\"poses no problem. Similarly, the special 
notation for the double quote will be needed for character strings, which use 
ordinary double quotes to mark their beginnings and ends. 

The integer 27 

The character '\033' 

Figure 3.1 27 vs '\033 

Characters and Integers 

The Imagewriter uses the [ESCAPE] character to initiate many special 
instructions, such as those that set the type size, underlining, and boldface. 
The Macintosh keyboard lacks this key, but C programs can use the ASCII 
code representation '\033' for the character. The corresponding decimal 
code is 27; can we then do something like this? 

char esc; 
esc = 27; 

Yes, we can! So why bother with the more cumbersome form '\033'? The 
answer has to do with storage. The '\033' form is a character constant, 
meaning that one byte of memory is used to store it. The 27, however, is 
an integer constant, and in Hippo C on the Macintosh, an integer is stored in 
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a word, or four bytes. Thus the 27 uses up four times as much storage as 
'\033', with three of the bytes being all Os. Figure 3.1 shows this. Also, 
because c is a char type and 27 is an integer type, the assignment process 
involves "type conversion," in which one type is converted to the other. 
This is another topic we will return to later. 

End-of-File 

We've used the idiom 

while ( (ch = getchar() ) != '\n' ) 

to read input to the end of a line, using the fact that the newline character 
marks the end of line. Many programs, however, are intended to read a file 
of text input. Is there a special character in C that marks the end of the file? 

The answer is, sort of. C uses the symbolism EOF to indicate End­
Of-File, and we can use it just as we used '\n'. There is an important 
conceptual difference we will discuss soon, but first, here is an example that 
counts the number of characters in a file: 

#include "stdio.h" /* information used by our program */ 
main() 
{ 

char ch; /* bad C -- see text */ 
int ct = 0; 

while ( (ch getchar() ) != EOF 
ct++; 

printf("\nNumber of characters %d\n", ct); 

Before looking at some of the details, let's see what this program does. 
It reads input a character at a time, incrementing the count, until EOF shows 
up. Then the program reports the count and ends. And when does EOF 
show up? If the program is reading a file (which we haven't yet shown 
how to do), EOF shows up, naturally, at the end of the file, after all the 
characters have been read. If the program is reading input from the 
keyboard, we have to use a special keystroke to indicate we are finished 
supplying input. With Hippo C on the Macintosh, the terminating 
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keystroke is [OPTION]-d, that is, holding the [OPTION] key down while 
striking the [d] key. Thus, a run could look like this: 

I love 
to 
input. [OPTION]-d 
Number of characters = 16 

Note that the two newline characters (after love and to) are included in 
the count, as are the spaces and punctuation. 

Now, let's talk EOF. EOF is not a special character used to mark the 
end of a file. Instead, it is a signal returned by getchar() when it reaches the 
end of the file. How does getchar() know? That depends on the system. 
Some systems do have a special character or combination of characters to 
mark the end of a file. Other systems maintain a file record recording the 
size of the file; when the number of characters read reaches the size of the 
file, that's the end. 

Regardless of the means by which it detects the end of file, getchar() 
then returns the value EOF. With Hippo C and most other 
C implementations, EOF has the numerical value -1. Why -1? Because 
this value does not correspond to any ASCII character. Thus no character in 
the input can accidentally trigger the end-of-file condition. 

The value of -1 does pose a problem in many C implementations with 
the assignment ch = getchar(), where ch is type char. The problem is that 
often the char type is set up to hold the values 0 to 255, so that -1 is an 
impossible value for ch. The solution is to declare ch to be type int. This 
entails more storage space, but makes -1 a permissible value. C makes the 
necessary type conversions to allow an int ch to work as well as a char ch. 

The Hippo C version works with char ch because the Hippo C char 
type is set up to hold the values -128 to 127; thus -1 is a possible value for 
ch. However, it is better to use int anyway in programs that check for EOF, 
in case you ever move your program to another system. 

One new feature in this program is the opening line: 

#include "stdio.h" 
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This is an example of a C "preprocessor" directive. Having used it, we'd 
better discuss it 

The C Preprocessor - A First Look 

The C preprocessor is a program that processes your C program before 
actual compilation takes place. It is invoked automatically when you compile 
a program. The intent of the preprocessor is to make life simpler for you. 
We'll look at its two most important capabilities, the #define directive and 
the #include directive. 

The #define Directive 

Instructions to the preprocessor are identified by an initial# symbol. 
Also, a directive should begin at the beginning of a line. The #define 
directive, as you might expect, lets you set up definitions. Often it is used 
to set up symbolic definitions for constants. Here are some example 
directives: 

#define NO 0 
#define STOP 'q' 
#define MESSAGE "\nVery good! Do it again!\n" 

In each case, the first symbolism following the #define becomes a 
symbolic representation of the rest of the line. Here we have defined NO to 
represent the integer 0, STOP to represent the character 'q', and MESSAGE 
to represent a character string. Using capital letters for the names is not 
required, but it is a common convention. It lets you spot definitions at a 
glance when they are used in a program. You can use your definitions 
when writing a program; and when you compile the program, the pre­
processor replaces your definitions with the corresponding values. Here is 
an example: 

#define STOP 'q' 
#define MESSAGE "\nVery good! Do it again! \n"main () 
{ 

char response; 
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printf("Enter a character other than %d:\n", STOP); 
while ( (response = getchar() ) != STOP ) 

printf(MESSAGE); 
printf("\nWasn't that great fun!\n"); 

Every time STOP appears in the program, the preprocessor replaces it 
with an 'q'. 

Here is a sample run: 

Enter a character other than q: 
w 
Very good! Do it again! 
h 
Very good! Do it again! 
y 
Very good! Do it again! 
q 
Wasn't that great fun! 

What's the point to the #define directive? There are several. First, 
using a defined constant can make the meaning of a particular constant 
clearer. In our example, using the name STOP indicates the role played by 
the letter 'q'. Such definitions help document a program, particularly if we 
include a comment We could, for instance do something like this: 

#define DAY TO SEC 86400 /* seconds in a day */ 

Second, using a series of define directives lets us gather in one place 
the constants used by a program. This, too, helps document the program. 

Third, a defined constant makes it easier to modify the program. If, for 
instance, we wished to change the loop terminator from 'q' to 's', we 
would just change the define directive, leaving the body of the program 
unchanged. This is particularly useful if the constant is used in several 
different places in a program. 

Fourth, a defined constant makes a program more portable. EOF is an 
example of a defined constant. On most systems it has a value of -1, but on 
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some systems it has a different value. We merely· use EOF in our programs, 
and let the definition take care of the differences between systems. 

But where is EOF defined? Its definition is part of a special file named 
stdio.h. The name stands for "standard input/output header." A header is 
something that goes at the top of something else, and that is what is 
accomplished by the #include "stdio.h" directive. Let's look at it next. 

The #include Directive 

The #include directive instructs the compiler to include the named file 
at the beginning of the program. Thus, the line 

#include "stdio.h" 

produces the same effect as physically typing out the entire contents of the 
stdio.h file at that location. You can use <stdio.h> instead of "stdio.h" if 
you prefer. This particular file is part of the standard C package. The actual 
contents vary from implementation to implementation, but in general they 
concern input/output matters. In particular, the file generally includes the 
definition for EOF. Thus, if you look in the Hippo C version of stdio.h, 
you will find this line: 

#define EOF (-1) 

You will also find several other define directives concerning I/O and file 
operations. Many C implementations also include definitions of getchar() 
and putchar() in stdio.h; these versions of C require that you include the 
stdio.h file in any program using those functions. We will include stdio.h 
only when Hippo C requires its use. 

The include directive is not confined to system files. You can create 
your own files of definitions and use them in the same fashion. Just place 
the filename in double quotes or in angle brackets. It is not necessary that 
the filename end in .h, but that is the usual practice. It tells you the nature of 
the file. 

The preprocessor has other abilities, and we will unveil them as they 
are needed. 
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Other C Types 

We have discussed character I/O, but other types of I/Oare possible. We 
may wish to read or write numerical data or character strings, for example. 
Before discussing these forms of I/O, however, we need to discuss the 
corresponding types. 

Integer Types 

An integer, as we have seen, is a whole number, one with no fractional 
part or decimal point. The basic C type for integer values is int, but C offers 
several variations on the integer theme. There are two facets that are varied: 
the memory size used to store the integer and whether or not negative 
numbers are permitted. 

Integer Sizes. The basic integer type is declared using the keyword int. 
The amount of storage used for int depends upon the computer and upon the 
discretion of the implementer. Hippo C uses 32 bits, meaning a pattern of 
32 Os and ls is used. This makes for 4,294,967,296 possible 
combinations! The basic int type is "signed," meaning that both positive 
and negative numbers are allowed. In Hippo C, the int type is set up so that 
the possible range of values is -2,147,483,648 to +2,147,483,647. Several 
Macintosh implementations, on the other hand, use a 16-bit int, making the 
range -32,768 to +32,767. 

Does your program use integers in the billions? If it only uses integers 
in the hundreds or thousands, it it wasteful to set aside such large storage 
spaces for integers. C allows you to modify the basic storage size by using 
the keyword short to modify a declaration. In Hippo C, a short int uses 
just 16 bytes, providing a range of -32,768 to +32,767. You can declare a 
variable to be this type by either of the following methods: 

short int estines; 
short fingers; 

I* full form */ 
/* shortened form */ 

On Macintosh implementations using a 16-bit int, short is the same as 
int. 

If you deal with really small numbers, less than 128, you can use type 
char to store them, for char uses just one byte. 
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C also has a keyword long. It, too, can be used as an adjective or as a 
stand-alone word in declaring variables: 

long int repid; 
long faces; 

/* full form */ 
I* shortened form */ 

For Hippo C, the long type is the same as regular int, the idea being that int 
is big enough anyway. Macintosh implementations using a 16-bit int, 
however, use a 32-bit long. 

C guarantees that short will be no longer than int and that int will be no 
longer than long. Small implementations may make all three the same size, 
but more typically two are the same, and one different, with either long 
bigger than the other two types or with small smaller than the others. 

Unsigned Integers. The three classes of integer we have discussed are 
all signed integers. By using the keyword unsigned, we can create types 
that only hold nonnegative numbers. For example, in Hippo C, the type 
unsigned int covers the range 0 to 4,294,967,295. Similarly, unsigned 
short covers the range 0 to 65,535. Using unsigned alone, as in 

unsigned stars; 

is interpreted to mean unsigned int. 

Unsigned types are useful for quantities that are intrinsically 
nonnegative, such as computer memory addresses, and for values a bit too 
large for a signed integer, such a 3, 155,692,597 - the number of seconds 
in a century. 

Table 3.1 summarizes these integer types for Hippo C on the 
Macintosh. We include char as an integer type, for the integers stored in it 
can be interpreted as numbers rather than as ASCII code. And if you think 
this profusion of types is overwhelming, keep in mind that you usually can 
get by just using type int. The other varieties, for the most part, are there for 
fine-tuning your programs. 
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TYPE 

int 
long int or long 
short int or short 
char 
unsigned int or unsigned 
unsigned long 
unsigned short 
unsigned char 

RANGE 

-2,147,483,648 to 2,147,483,647 
-2,147,483,648 to 2,147,483,647 
-32,768 to 32,767 
-128 to 127 
0 to 4,294,967 ,295 
0 to 4,294,967 ,295 
0 to 65,535 
0 to 255 

Table 3.1 Integer Types on the Macintosh (Hippo C) 

Integer Representation 

C allows you to express integers in decimal, octal, or hexadecimal 
form. This is for your convenience as a programmer; no matter what form 
you use to express the number, it is stored in binary form. 

Octal Numbers. The octal, or base 8 system, uses the digits 0 to 7 to 
express numbers. This is how you would count to decimal 10 in octal: 1, 
2, 3, 4, 5, 6, 7, 10, 11, 12. C interprets numbers with an initial digit 0 to be 
octal numbers. Thus, in a C program, 12 would be an ordinary dozen, but 
012 would be the octal expression for decimal 10. See Appendix C for a 
further discussion of the octal system. 

One exception to the required initial 0 is when the character constant 
notation is use. Thus, in '\10 l ', the 101 is interpreted to be octal even 
though there is no initial 0. 

Hexadecimal Numbers. The hexadecimal system is base 16. This 
requires more digits than 0 through 9, so the letters A through F (or a 
through f) are pressed into duty to represent the numbers 10 through 15. 
Again, see the Appendix C for further details. To indicate a hexadecimal 
number in C program code, precede the number with Ox (zero x) or OX 
(zero X). Thus, OX12 is the hexadecimal number 1x16 + 2 x I, or 18. 
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Keep in mind that these special notations are for your convenience so 
that you needn't make conversions. As far as the computer is concerned, 
the following statements all have the same effect: 

x = 22; /* 22 in decimal form */ 
x = 026; /* 22 in octal form */ 
x = Ox16; /* 22 in hexadecimal form */ 

Each places the binary equivalent of 22 in the x storage location. 

Long Constants. On systems where long is different from int, it is 
sometimes necessary to indicate that a constant is to be stored as a long 
integer. This is done by appending a 1 or an L to the number's end. Thus, 
on a typical 16-bit system, the integer 34 would be stored in 16 bits of 
storage, but 34L would be stored in 32 bits. The capital L is preferable to 
the lowercase 1 because it is less likely to be confused with the digit 1. 

Floating-Point Types 

The other main class of basic types is the floating-point number. 
These are numbers with decimal points, like 3.14159 or 2.00. Sometimes 
they are written in "exponential notation," such as 1.86E5, which means 
1.86 times 10 to the fifth power. Level 1 of Hippo C doesn't support 
floating-point numbers, so we will discuss them only briefly. One point to 
note is that they are stored differently. A floating-point number is still 
stored as a pattern of 1 s and Os, but some of the bits are interpreted to be a 
fraction and some are interpreted to be a power of 2 that is multiplied by the 
fraction. It is quite important for the computer to know whether a memory 
location holds a floating-point number or an integer, for the identical bit 
pattern will be interpreted quite differently. 

The basic floating-point type is called float. For example, this 
declaration says the variable mpg is of type float: 

float mpg; 

The second floating-point type is called double, for double precision. 
Typically, it uses more storage bits than float so that it can store more 
decimal places. 
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Character Strings 

The integer family (including char) and the floating-point family 
constitute the basic C types. Besides them, there are many derived types. 
One of the most important is the character string. We'll just talk about 
character string constants here, deferring character string variables until we 
introduce arrays. 

Character String Constants. The program code representation of a 
character string constant is just a sequence of characters enclosed in double 
quotes. Our main use of them so far has been as arguments to the printf() 
function: 

printf("Behold a character string!"); 

The tricky thing about character strings is that they come in all sizes. If 
the program has to store an int or char variable or constant, it knows exactly 
how much storage is needed. For a character string, however, the computer 
needs some way of keeping track of how much storage is required for each 
storage string. C does this by using a special character to mark the end of 
each string. This "string-termination" character is called the "null 
character," for its ASCII code number is 0. Thus, the C representation for 
this character is '\O'. 

Consider our example above: "Behold a character string!" It contains 
26 characters, including spaces and punctuation. It would be stored as 27 
characters, the original 26 followed by a null character. See Figure 3.2 

Figure 3.2 C String Storage 
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Note that we don't have to explicitly write out the null character. 
When the compiler sees a series of characters between double quotes, it 
knows to add the null character when storing the string. 

A very important point to note is that the Macintosh Toolbox uses a 
different system for storing strings. Instead of using an end marker, it 
precedes the string with a character count showing the length of the string. 
See Figure 3.3. 

H+l+l+I H H+l+l+l+l 1+1+1+1,1 
l_ Number of characters 

Figure 3.3 Toolbox String Storage 

As a consequence, C programs using Toolbox functions sometimes 
have to convert from one form to the other. Fortunately, Hippo C provides 
functions to do just that, and we will discuss them when they become 
needed. 

Formatted Output: printf() 

We've seen how to print a character using putchar(). How do we go about 
printing other forms of data? In standard C, the printf() function handles a 
variety of types. This is an unusual function in that it can take a variable 
number of arguments. The trick is that if there are more than one argument, 
the first argument indicates how many additional arguments are present. 
Let's start with the one argument case. 

Printing A Character String 

Printing a character string is simple with printf(); just use the desired 
string as the argument. We've done that several times already. There are a 
some points to keep in mind. First, the printf() function doesn't 
automatically start a new line. The usual practice is to include a newline 
character at the end of each string so that the next output will start on a new 
line. With the nonbuffered input used by Hippo C, it is often convenient to 
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use an initial newline in order to separate a string response from the user's 
input Again, we've done this in our examples. 

Second, you can use the various alternate character representations as 
part of a string. We've often used \n at the end of a string, of course, but 
you could, for example, use it in the middle of a string: 

printf("Twinkle twinkle\nLittle star!\n"); 

This produces the following output: 

Twinkle twinkle 
Little star! 

Note that when a character is part of a string, we don't enclose it in single 
quotes. The double quotes alert the computer that everything within them 
represents a character. 

Third, special care is needed for some characters. For example, the 
following won't work: 

printf("Sally said, "See me run!""); 

The problem is that the computer would think the string ended at the second 
double quote, the one before See. This is where the backslash version is 
handy. The correct form is this: 

printf("Sally said, \"See me run!\""); 

Now the outer quotes mark the string, and the inner backslashed, quotes get 
printed as ordinary double quotes. 
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The backslash alerts the compiler that some special attention is needed. 
But what if you wish to print a backslash? Use a double backslash to get a 
single one: 

printf("/ These walls slope in. \\ "); 

prints as 

I These walls slope in. \ 

One more difficult character to print is %, for, as we discuss next, it 
has a special meaning to the printf() function. To print a single %, you must 
use two: 

printf("I'll give you 4%%.\n"); 

yields 

I'll give you 4%. 

Let's move on to more involved usages ofprintf(). 

Multiple Arguments 

If printf() has more than one argument, the first argument should be a 
string. This string will contain a % symbol for each additional argument. 
The location of the % shows where the corresponding argument gets 
printed, and a code following the % indicates the form in which the value 
gets printed. An example will make this clear. 

main() 
{ 

int num = 5; 
char ch = 'V'; 

printf ("Here is a number: %d\n", num); 
printf("The Roman version of %dis %c.\n", num, ch); 
printf("Here are two numbers: %d %d\n", num, num + 5); 
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Here is the output: 

Here is a number: 5 
The Roman version of 5 is V. 
Here are two numbers: 5 10 

In the first print statement, the %d shows where in the string the value 
of num will be printed; the din %d indicates that num is an integer to be 
printed in decimal (base 10) form. 

The second print statement has two additional arguments, so it needs 
(and has) two% entries. Once again, the %d indicates a decimal number is 
to be printed, while the %c form indicates a character will be printed. 

The third print statement illustrates (again) that C functions pass 
arguments by value; what gets printed for the final argument is the value of 
10 and not the literal 5 + 5 that appears in the argument list. 

We call %d a "format specifier." Table 3.2 lists the basic format 
specifiers used by printf(). 

SPECIFIER 

%cl 
%c 
%0 
%x 
%u 
%f 
%e 
%g 
%s 

Table 3.2 

OUTPUT 

decimal integer 
single character 
octal integer 
hexadecimal integer 
unsigned integer 
floating-point, decimal notation 
floating-point, exponential notation 
use the shorter of %for %e 
character string 

Basic Format Specifiers 

We'll take up the string format later. 
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The various integer formats correspond to the appearance of the 
output, not to the exact integer type. That is, if we want a decimal number, 
we would use %d for any of the integer types. Similarly, we can print the 
same integer using both %d and %0 if we want to see decimal and octal 
versions of the same number. Here, for example, is an interactive program 
that prints out the ASCTI code for input letters in decimal, octal, and 
hexadecimal: 

finclude "stdio.h" /* program uses EOF */ 
main() 
{ 

int ch; I* preferred declaration for EOF check */ 

printf("This program prints ASCII codes. Enter a\n"); 
printf("character and see the code in decimal,--, 

octal, \n") ; +.J 
printf ("and hexadecimal. Strike [OPTION] d to-, 

quit.\n"); +.J 
while ( ( ch = getchar () ) != EOF ) 

printfC"\n%c dee: %d oct: %0. hex: %x\n", 
ch, ch, ch, ch); 

Note that it is okay to spread a printf() statement over more than one 
line as long as the breaks occur between arguments. Here is a sample run: 

This program prints ASCII codes. Enter a 
character and see the code in decimal, octal, 
and hexadecimal. Strike [OPTION]-d to quit. 
K 
K dee: 75 oct: 113 hex: 4b 
a 
a dee: 97 oct: 141 hex: 61 
t 
t dee: 116 oct: 164 hex: 74 
e 
e dee: 101 oct: 145 hex: 65 
[OPTION]-d 
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Field Widths 

In the examples you've seen so far, printf() uses however much space 
is needed to print a number or character. The number of character widths 
used in printing a value is the "field width," so the printf() default is that the 
field width matches the size of the number. You can choose a field width, 
however, by including the desired width in the format specifier. For 
example, to cause 5 spaces to be set aside for a number, use the format 
specifier %5d. If the number is bigger than that, then the field is expanded 
automatically. 

Normally, numbers are "right-justified" in a field; that is, they are 
aligned with the right side of the printing field. Using a - sign in the format 
specifier causes the number to be "left-justified." For example, suppose we 
have this statement: 

printf("**%5d**%-5d**\n", 12, 12); 

Then the output would be this: 

** 12**12 ** 

In each case, a field 5 spaces wide was used, with the 12 printed in the 
right of the first field and the left of the second. 

Printing Long Integers 

In Hippo C, since long is the same as int, no special steps need be 
taken to print long integers. In implementations having long longer than int, 
however, you need to use the 1 modifier to print long integers. The modifier 
would come just before the format specifier. Here are two examples: 

printf("Here is a long integer: %ld\n", alongint); 
printf("Here is another look: %-15lx\n", alongint); 

The second example prints the integer in hexadecimal form, left-justified in 
a field 15 characters wide. 
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Floating-Point Types 

C offers three format specifiers for float and double values. The first 
is %f. It causes a value to be printed using decimal fractions. By default, 
six places to the right of the decimal are printed. Suppose, for instance, we 
have the following code on a system that supports floating-point values: 

float cost = 259.99; 
printf("The cost is $%f\n", cost); 

The output would look like this: 

The cost is $259.990000 

The field width can be specified by placing the desired field width after 
the %. Also, the number of places to the right of the decimal can be 
indicated by placing a period followed by the desired number of places just 
before the f. Thus, the specifier % 10.2f means to use a field width of ten 
with two places to the right of the decimal. Hence the following code 

float cost = 259.99; 
printf("The cost is $%10.2f\n", cost); 

produces this output: 

The cost is $ 259.99 

Note that the decimal counts as one character width. As with the other 
specifiers, the field width is expanded to accomodate the number if the 
specified width is too small. The hyphen modifier can be used to make the 
number left-justified in its field. 
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The %e format is used to produce the power-of-ten notation. The 
exponent is selected so that there is one digit to the left of the decimal; by 
default, six digits are displayed to the right of the decimal. The exponent is 
written as a signed, two-digit number. Consider this example: 

float cost = 259.99; 
printf("The cost is $%e\n", cost); 

The output would look like this: 

The cost is $2.599900E+02 

The field width and the number of decimals can be specified in the 
same manner as for %f: 

float cost = 259.99; 
printf("The cost is $%10.2e\n", cost); 

produces this output: 

The cost is $ 2.60E+02 

If you use the %g format, the computer uses the %e or the %f format, 
whichever is the shorter. 

Formatted Input: scanf() 

The scanf() function is the input counterpart to printf(). It, too, uses a 
format string to describe how many and what type values to read. For 
instance, the format string "%d %d" would tell the function to read two 
integers in decimal form. Here is an example using scanf(); look for 
something unusual: 

main () 
{ 
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int numl, num2; 

printf("Please enter two integers:\n"); 
scanf("%d %d", &numl, &num2); 
printf("That was %d and %d.\n", numl, nurn2); 

Here is a sample run: 

Please enter two integers: 
39 124[RETURN] 
That was 39 and 124. 

Well, it seems to work fine, but why are there ampersands in front of 
numl and num2? The ampersand (&) is yet another C operator, the 
"address operator." The combination &numl represents the address, or 
memory location, of the numl variable. What this means is that instead of 
using numl for an argument, we used its address. The reason we did this 
is important to Understanding C, so let's take a moment or two to discuss 
it. 

Address Arguments: Pointers 

Suppose we used this function call: 

scanf("%d %d", numl, num2); /*naive, incorrect usage*/ 

What would it do? As we have emphasized before, it will pass the 
numerical values ofnuml and num2 to the scanf(). At this point, numl and 
num2 don't even have values yet. More importantly, scanf() doesn't want 
to know what the values of numl and num2 are. Its purpose is to give 
values to those variables. 

Providing address arguments allows scanf() to perform its giving. 
Let's see how that works. In our example, scanf() obtained the values 39 
and 124 from the keyboard. It knows the addresses of numl and num2, 
because those are the arguments we passed to it. The function then takes the 
numbers it gathered and places them into the specified memory locations. 
Voila! The memory locations labeled numl and num2 now contain the 
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values 39 and 124. Giving a function the address of a variable allows the 
function to change the value of a function. For those of you familiar with 
Pascal, using the address operator in an argument is similar to declaring a 
Pascal argument to be a variable parameter. 

In C, the symbolic representation of an address is called a pointer. 
Many Toolbox functions use pointers as arguments, so learning pointers is 
essential to programming for the Macintosh in ·c. We will discuss them 
throughout this book. 

Later, when you study functions further, you'll see how to write code 
using pointer arguments. Meanwhile, we will just note which standard C 
and Toolbox functions require address arguments. In general, these will be 
functions whose purpose is to alter the value of variables in the calling 
program. 

Specifying scan/() Formats 

Like printf(), scanf() has several possible format specifiers. Table 3.3 
lists them. 

SPECIFIER 

o/od 
%0 
%x 
%s 
%eor%f 

Table 3.3 

INPUT INTERPRETATION 

decimal integer 
octal integer 
hexadecimal integer 
character string 
floating-point number 

scanf() Format Specifiers 

We'll discuss string input later. The various integer forms of input do 
not expect you to use the in-program rules for representing integer 
constants. That is, if you wish to enter the hexadecimal number Ox38, you 
just type 38, and the %x specifier insures that it is interpreted as 
hexadecimal rather than as decimal. 
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In Hippo C, if you wish to read a value into a short variable, you need 
to include an h modifier in the format specification: 

scanf("%hd", &iq); 
scanf("%hx", &temp); 

Implementations having short and int the same don't need to do this. 

Similarly, implementations that have long longer than int should use 
the 1 modifier when using scanf() to read an integer destined to stored in a 
long variable: 

scanf("%ld", &population); 

It causes no harm to use the 1 or h modifiers in implementations that do 
not require them. 

Either the %e or the %f formats can be used to read values into type 
float variables. The two are equivalent; both can read fixed decimal point or 
power-of-ten notation. To read values for a type double variable, use the 
1 modifier. Thus, %le or %If can be used for that purpose. 

How scan/() Scans 

Except in the %c mode, scanf() skips over spaces, blanks, and 
newlines. Thus, when our program asked for two numbers, we could have 
answered this way: 

39[RETURN] 
[RETURN] 

12 8 [RETURN] 

How does scanf() know to read two digits for the first number and three 
digits for the second? It scans the input characters one at a time until it finds 
a digit. That starts the number-reading process. Then it continues reading 
until it finds a nondigit. That tells scanf() it has reached the end of the 
number. Then scanf() places the nondigit back in the input queue. The next 
input call, be it getchar() or scanf(), will start with that character. Note 
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that our program will not continue until you strike one more key after the 8 
in 128; until a nondigit shows up, scanf() has no way of knowing that you 
are done. We hit the [RETURN] key, but any other regular key would 
work. However, hitting, say, a [V] key would cause problems if the 
program were supposed to read another number later, for it would then try 
(and fail) to read V as a number. 

In the %c mode, scanf() works pretty much like getchar(); that is, it 
will read the next character, be it letter, space, newline, or whatever. 

What scan/() Returns 

The scanf() function, as we have seen, uses pointers to transport 
keyboard input to variables. The function also has a return value, which we 
didn't use in our program. It uses the return value to provide a status report 
on its efforts. Normally, it returns the number of items read. That would 
be two in our program. But suppose we had responded to the request for 
two integers by typing the following: 

two integers 

Then scanf() would have balked because it would have found the character t 
instead of a digit. In this case, it would stop reading, put the t back in the 
input queue, and return a value of 0. 

Another possibility is that the first thing we typed could be the end-of­
file signal ([OPTION]-d). When it encounters end-of-file, as in that case, 
scanf() returns a value of -1. This lets you use the return value to control a 
loop, as we will soon see. 

scan/() versus getchar() 

Both scanf() and getchar() can be used to read input characters. The 
approach is different. Getchar() uses the return value to communicate the 
character to the calling program: 

ch= getchar(); 
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Scanf(), on the other hand, uses an address, or pointer, to communicate the 
value back: 

scanf("%c", &ch); 

These are the two chief ways in which a function can communicate 
values to the calling program. The return value method is the simpler and 
the more direct, but it is limited in that it can provide just one value at a time. 
The pointer method, however, can provide several values at a time through 
the expedient of using several pointer arguments. 

On a more practical level, getchar() is much more efficient for single­
character input than scanf() because getchar() is designed solely for that 
task. 

Toolbox Examples 

Now that you have seen some of the standard C techniques for 1/0, let's 
look at some specifically Macintosh examples. One difference between 
Macintosh screen text output and that for traditional screens is that the 
Macintosh offers typesetting options: various fonts, faces, and character 
sizes. Naturally, it also must provide functions for controlling these 
choices. We'll look at one of these functions now. 

Font Size: textsize() 

The function that controls the font size is called textsize(). It takes 
one argument, an integer representing the text size. The integers correspond 
to the sizes listed in the Style menu for, say, Macwrite. Thus, 12 is the 
standard (default) size, with larger numbers corresponding to larger types. 
You can specify any size, but the best results come from using one of the 
Style menu selections. One special case is that an argument of 0 produces 
the regular system size. Below is an interactive program demonstrating the 
use of this function. Note that we use the return value of the scanf() 
function to control the while loop. Entering a nonnumerical character (other 
than a space, tab, or newline) makes the return value 0, and an end-of-file 
causes a -1 to be returned; either condition stops the loop. 
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From Mac's Toolbox: New Routines 

main() 
{ 

TextSize 

int size; 

Sets type size 

printf("Enter font size; to quit, enter EOF or a"); 
printf("nondigit.\n"); 
while ( scanf("%d", &size) == 1 ) 

I* successful read */ 
textsize(size); /*set font size*/ 

printf("This is font size %d.\n", size); 
} 

Note that the while loop test examines the return value of scanf() (the 
status report) and not the value of size for its continuation test. That is, 
entering a numerical value other than 1 won't stop the loop, but entering a 
letter or signaling EOF (either of which return a non-1 status) will stop the 
loop. Figure 3.4 shows a sample run. Note that once a font size is set, the 
new size stays in effect until the font size is reset. 

We used a standard C output function in ow: example, but the Toolbox 
has its own output functions. For example, to print a single character, we 
can use drawchar(). It works like putchar() with some minor differences. 
First, it has no return value. Second, it is not buffered. Compare the 
following two programs and their outputs; the program is a slight variant of 
one earlier in this chapter. 

First, use putchar(): 

#include "stdio.h" 
main() 
{ 

int ch; 
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* 
* 

while ( (ch= getchar()) != EOF) 
putchar (ch) ; 

Here is a sample run: 

Don't repeat this! [OPTION]-d 
Don't repeat this! 

Hippo-c Command Window 

* a.out 
Enter font sizes; to quit, enter EOF or a non-digit. 
10 
Thio io font oize 10 
12 

This is font size 12 
18 
This is font size 18 

6h i s i s font s i ze 24 
This is font size 0 
d 

* 

Figure 3.4 Sample Run of Font Size Program 

Now replace putchar() with drawchar(): 

#include "stdio.h" 
main() 
{ 

int ch; 
while ( (ch= getchar()) != EOF) 

drawchar (ch); 

I 
1111!1 

1/0 FUNCTIONS AND TYPES 81 



From Mac's Toolbox: New Routines 

DrawChar Draw a character on the screen 

Here is a sample run: 

Ddoonn''tt rreeppeeaatt tthhiiss! ! [OPTION]-d 

Here, each character (including spaces) is repeated as it is entered. 
With the putchar() version, output was saved in a buffer, then flushed when 
the program ended. 

String Output: drawstring() and strctop() 

The drawstring() function takes a string as an argument and prints it. 
However, because it is a Toolbox function, it uses Macintosh's augmented 
Pascal strings, and not C strings. As we mentioned before, these two 
strings are stored differently. The C string has its end marked by the null 
character, while a Pascal string uses the initial byte to store the string length. 
Writers of Macintosh C compilers supply conversion functions to bridge the 
gap. In Hippo C, the conversion function is called strctop(), for "string: 
C to Pascal." Other compilers may implement the conversion differently or 
not at all, but it is simple enough (once you know enough) to write your 
own function to do it. The next example shows how to use these functions: 

#define STRING "Tie me kangaroo down, boys ... " 
main () 
{ 

printf(STRING); 
drawstring( strctop(STRING) ); 

From Mac's Toolbox: New Routines 

Drawstring Draws a string of characters on the screen 
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Running it produces this output: 

Tie me kangaroo down, boys .•• Tie me kangaroo down,-, 
boys... +.J 

Each 110 function did its job properly. One difference, as we noted, is 
that drawstring() cannot use STRING as an argument. But it can and does 
use the return value of strctop() as an argument. Second, drawstring() 
ignores formatting instructions such as the newline character; instead it 
prints the missing-character symbol. 

Summary 

C programs use a variety of functions to handle input and output The 
getchar() and putchar() functions are designed to handle character I/O 
output efficiently, while printfO and scanf() are multimode 110 functions, 
capable of dealing with numbers and strings as well as with single 
characters. The scanf() function uses address, or pointer, arguments to 
indicate which variable locations are to have data placed into them. Thus, to 
read in a value for the variable x, we would use &x as an argument, where 
& is the address operator. 

The two basic classes of storage are integer and floating-point. 
Both use patterns of Os and ls, but they are interpreted differently. 
Macintosh C provides three sizes of integer storage: int (4 bytes), short (2 
bytes), and char (1 byte). A fourth C type (long) is identical to int in Hippo 
C's Macintosh implementation. In addition, each of these types can hold 
positive and negative values, or, if preceded by the keyword unsigned, just 
nonnegative integers. 

The character string is a derived type. AC string has its end marked 
by the null character, '\O'. Toolbox strings, on the other hand, use the 
initial byte to provide the length of a string. 

C provides a preprocessor that processes program code before it is 
compiled. One key preprocessor directive is #define, which allows you to 
define symbolic constants. A second important directive, #include allows 
you to easily incorporate information from other files into your program. 

Toolbox 1/0 functions can be used to control the rather flexible 
Macintosh output environment. The textsize() function, for example, 
controls the font size. 
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4 
Control Statements 

In this chapter you will learn about: 

• Three loops: while, do ... while, and for 
• Choosing with if and if ••. else 
• Relational operators 
• Logical operators 
• Switch and other jump statements 
• The conditional and comma operators 

The simplest form of program is a sequence of instructions that the 
computer follows in order with no variation. Such a program does not take 
full advantage of a computer's strengths and abilities. C, like most other 
programming languages, offers a class of instructions, called "control 
statements", that put much more of the computer's power at your disposal. 
Control statements make it possible for a computer to deviate from a simple 
sequential execution of instructions, making programs more flexible and 
powerful. One group of control statements allows "branching". This 
means at certain points a program can choose among two or more alternative 
paths, depending on conditions at those times. A second group of control 
statements allows "looping", which means running through the same 
instruction set repeatedly. 

In C, the branching statements are the if statement, the if ... else 
statement, and the switch statement. There is also a "conditional operator" 
which serves the same purpose. Looping is provided by the while 
statement, the do ... while statement, and the for statement. We will look at 
all of them in this chapter. 

These control statements (aside from the switch statement) share in 
common the use of conditional expressions that are checked for truth or 
falsehood. We will discuss conditional expressions and the associated 
operators. 
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The while Loop 

You've already met this loop informally. More formally, its general form is 
this: 

while ( condition ) 
statement 

If the condition is true, the statement is executed and the condition 
rechecked. This continues until the condition becomes false. Once this 
happens, program flow continues on to whatever follows the while 
statement. 

The statement section must be a single statement or else a block of 
statements contained between braces. Suppose we have a program fragment 
like this: 

count = 0; 
while ( count != 10 ) 

printf("The count is %d.\n"); 
count++; /* don't be fooled by the 

indentation */ 
printf("Done!\n"); 

We've indented it to imply that count++; (increasing count by 1) is part of 
the loop. But the compiler ignores extra spaces, and it thus does not include 
the count++; statement as part of the while statement. Indeed, we have 
created a dread infinite loop, one that prints 

The count is 0. 

endlessly. Only the first statement following the condition is part of the 
loop. 

Compound, or Block, Statements 

The key to including several actions within a loop is to use a 
"compound statement", also known as a "block". This, as you saw earlier, 
is a sequence of statements enclosed within a pair of braces. The block 
counts as a single statement, so all the statements within a block can be 
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included within the loop. Thus, the proper way to write the preceding 
example is this: 

count = O; 
while ( count != 10 ) 

{ I* start of block */ 
printf("The count is %d.\n"); 
count++; /* end of block */ 
} 

printf("Done!\n"); 

Some programmers prefer to place the opening brace on the same line 
as the while. Because C is a free-format language, the choice is purely a 
matter of stylistic preference. 

A Graphics Loop 

Let's try out the loop structure using some of the Macintosh graphing 
functions. Here is a program that draws nested squares; it uses the 
movetoO and linetoO functions that we introduced in Chapter 2: 

/* box.c -- a program that draws nested boxes */ 

#define HO 256 /* horizontal screen center */ 
#define VO 171 I* vertical screen center */ 
#define LIMIT 100 I* size factor for largest box 
#define START 10 I* initial size factor */ 
#define INCREASE 10 I* size increase */ 
main() 
{ 

int scale = START; I* size scale */ 

while ( scale <= LIMIT) 
{ 
moveto(HO - scale, VO + scale); 
lineto(HO + scale, VO + scale); 
lineto(HO + scale, VO - scale); 
lineto(HO - scale, VO - scale); 
lineto(HO - scale, VO + scale); 

*I 

scale = scale + INCREASE; /* increase size *I 
I* loop end */ 
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Before running this program, use the mouse to move and expand the 
Hippo C Command Window to approximately full screen. Figure 4.1 
shows the output of this program. 

Hippo-c Command Window 

* I 

Figure 4.1 Output of Box-drawing Loop 

The <= symbol means "less than or equal to". Note that we used 
#define directives for all the constants within the program. Again, this is a 
matter of recommended programming style. Another recommended 
documentation step is to include a program name and brief description in 
opening comments. This heading can be expanded to include such items as 
author, version, and date of writing. 

The do ... while Loop 

The while loop is an "entry condition loop". That means the condition is 
checked before the statements in the loop are executed. It's a matter of 
looking before you loop. If the condition is false to begin with, then the 
loop may be skipped entirely. 

C also offers an "exit condition loop", in which the condition is 
checked after each loop execution. This form of loop must be executed at 
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least once, for one execution comes before the first test. This loop is the 
do ... while statement, and its general form is this: 

do 
statement 
while ( condition ); 

The statement is a single statement, which can be a block. Note the 
terminal semicolon after the condition test 

This form of loop is used much less frequently than the others. One 
circumstance in which it is used is when you wish to process input up to 
and including some particular character. For example, if you wanted to read 
and reprint a sentence, you could have a program: fragment process material 
up to and including a period: 

do { 
ch= getchar(); 
putchar(ch); 
} while ( ch ! = ' . ' ) ; 

By the time this fragment finds that ch is a period, it already has printed it. 
But that was what we wanted, and the loop stops there. 

Another situation in which the do ... while loop is used is when the user 
is given a list of acceptable responses (such as "y" or "n"). A do ... while 
loop can fetch an answer and test its worthiness, recycling until a valid reply 
is made. Because the response has to be obtained before it is checked, an 
exit condition loop makes sense. You'll see an example later in this chapter. 

The for Statement 

C has one more loop, the for loop. The C for loop is very flexible; it can 
do anything a while loop does, and vice versa. Typically, however, the for 
loop is used when the number of iterations is know before the loop begins, 
while a while loop is typically used when the number of iterations is not 
known in advance, as in our character-counting program in Chapter 3. 
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Here is a for loop that prints the first five integers and their squares: 

main() 
{ 

int n; 

for ( n = 1; n <= 5; n++ ) 
printf("%2d %4d\n", n, n*n); 

Here is the output; note that by using field width specifiers in the 
printf() format, we achieve uniform columns: 

1 1 
2 4 
3 9 
4 16 
5 25 

Note that the loop's control instructions (the part in parentheses) 
contain three distinct expressions separated by semicolons. The first 
expression (n = 1) is an initialization expression. It is performed once, 
before the loop is started. The second expression (n <= 5) is a test 
condition. It is evaluated before each cycle of the loop. The for loop is an . 
entry-condition loop, so once the test condition becomes false, the loop 
stops before cycling again. The third expression (n++) is executed at the 
end of each loop cycle. Here it serves to update the value of n by increasing 
it by 1. Here is the general form for the for loop: 

for (initialization; test condition; update) 
statement 

As with other loops, the statement section is a single statement that may be a 
block. 
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The most typical use for a for loop is to run a process through a fixed 
number of cycles. Here are two common idioms for cycling a fixed number 
of times: 

for ( n = 1; n <= 10; n++) 
• • • I 

for n = O; n < 10; n++) 
• • • I 

Both go through 10 cycles. The first cycles n from 1 through 10, and 
the second cycles n from 0 to 9. The second form will come in handy for 
arrays, whose elements are numbered starting at 0. 

One advantage of the for loop is that it gathers together in one place all 
the expressions that control the behavior of the loop. Our example, for 
instance, shows the initial and final values of n and that n increases by 1 
each cycle. This makes the for loop much less susceptible to "one-off' 
counting errors than are loops like the following: 

n = 1; 
while ( ++n < 10 ) 

printf("%d", n); 

n = 1; 
while ( n++ < 10 ) 

printf ("%d", n); 

The first prints the integers 2 through 9 and the second prints the integers 2 
through 10, but it takes a moment or two of inspection to make that clear to 
a reader. 

We don't have to plod along increasing n by 1 each time. We can just 
as easily add 2 or 3 to n or even multiply it each cycle. Here is an example 
that prints out powers of two less than 2000. The variable n starts out with a 
value of 1 and is doubled each cycle: 

#define BASE 2 
main() 
{ 
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int n; 

for ( n = 1; n <= 2000; n = n * BASE ) 
printf("%4d\n", n); 

Here is the output: 

1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 

After printing the value 1024 the loop updates n to 2048, notices that 
this is larger than 2000, and quits. 

Because the for loop gathers together several conditions in one place, 
it's often useful to express the conditions as concisely as possible. C has 
several operators that allow you to express yourself succinctly. You've seen 
the increment operator already. Now let's look at another class of space­
saving operators. 

Other C Assignment Operators 

In the powers-of-two example, we used this expression: 

n = n * BASE 

C has a shorthand notation for this operation: 

n *= BASE 
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The *= combination represents the "multiplicative assignment" operator. It 
means take the variable at the left, multiply it by the value to the right, and 
assign the product to the variable. 

This form is more compact to type and typically is implemented more 
efficiently on a computer. C has several such operators. Here is a list of 
the arithmetic ones. 

OPERATOR MEANING 

+= Add value on the right to variable on the left 
Subtract value on the right from variable on the left 

*= Multiply value on the right times variable on the left 
I= Divide value on the right into variable on the left 
%= Take modulus of variable on the left with respect to the 

value on the right 

In each case, the resulting value is assigned to the variable on the left. 
For example, the statement 

finger -= 2; 

decreases the value of finger by 2. 

Nested Loops 

The statement section of a loop can include another loop. A loop inside 
another is said to be nested. What happens in a nested loop is that each 
single cycle of the outer loop causes the inner loop to go through its entire 
sequence of loop cycles. Let's study an example. We'll start with a single 
loop, one that prints a row of big asterisks: 

*define HSTEP 30 
*define HMAX 450 
*define BIGFONT 24 
main() 
{ 

I* horizontal movement steps */ 
I* horizontal limit */ 
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int h; 
textsize(BIGFONT); 
for ( h = HSTEP; h 

{ 

/* horizontal position */ 
I* set large font size */ 

<= HMAX; h += HSTEP) 

moveto ( h, 20); 
drawchar ( '*'); 
} 

One interesting feature of this program is that we use the moveto() 
function to position the screen "pen" for making. a character rather than for 
drawing a figure. With the Quickdraw package, graphics and text are 
integrated. 

The program moves the pen in horizontal steps of 30 across the screen, 
drawing a large asterisk at each step. We used the additive assignment 
operator described earlier to increase the value of h each cycle. 

To get several rows of asterisks we can nest the original loop in one 
that adjusts the vertical position. Here is that modification: 

I* stars.c -- makes 
#define HSTEP 30 
#define HMAX 450 
#define VSTEP 20 
#define VMAX 240 
#define BIGFONT 24 
main() 

large asterisks (using Quickdraw) */ 
I* horizontal movement steps */ 

{ 

I* horizontal limit */ 
I* vertical movement steps */ 
I* vertical limit */ 

int h,v; I* horizontal, vertical positions */ 

textsize(BIGFONT); /*set large font size*/ 
for ( v = VSTEP; v <= VMAX; v += VSTEP) 

for ( h = HSTEP; h <= HMAX; h += HSTEP) 
{ 
moveto( h, v); 
drawchar ( '*'); 
} 

Figure 4.2 shows a sample run. Note that the a.out command we gave 
to start the program remains visible. In Chapter 8 you '11 learn how to clear 
the part of the screen used by the program. 
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D Hippo-c Command Window 

* a ·:it~t * * * * * * * * * * * * * * lQ 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I * I 
l9J ]QJ 121 

Figure 4.2 Field of Asterisks 

At first a whole line of asterisks is printed with v (the vertical 
coordinate) equal to 20; that is one complete cycle set for the inner loop. 
When the inner loop finishes, v is increased, and the second cycle of the 
outer loop is begun. This results in another complete cycle set for the inner 
loop, this time printing a row with v equal to 40. 

The entire inner loop is a single for statement, so it is not necessary to 
enclose that loop in braces. 

This program prints the asterisks a row at a time; by reversing the 
order of the loops, you can make it print a column at a time. 

Let's move now from looping to choice-making. 
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Two if Statements 

An if statement lets a program choose among options, depending on 
conditions at the time the choice is made. C has two varieties of if 
statements: the simple if and the if ••• else. 

The if Statement 

The general form of the if statement is this: 

if ( condition ) 
statement 

The statement part can be a single statement or a block. If the 
condition is true, then the statement is executed. Otherwise, the program 
skips on to the next statement Here is an example: 

I* spacecount.c -- counts spaces up to EOF *I 
#include "stdio.h" /* for EOF definition *I 
main() 
{ 

int ch; 
int spaces = 0; 

while ( (ch= getchar()) != EOF) 
if ( ch == ' ') /* is ch a space? */ 

spaces++; /* if so, count it *I 
printf("\nSpace count= %d\n", spaces); 

As indicated, it counts spaces in input. Note that the complete if 
statement is a single statement, so that we did not have to include it in braces 
to show that it all was part of the while loop. The spaces variable gets 
incremented every time a space shows up. Remember that == is the C 
operator for comparing for equality. We'll run down all the comparison 
operators soon. 
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The if ... else Statement 

The if ... else statement offers two choices. One is done only if the test 
condition is true, and the other is done only if it is false. The general form 
is this: 

if ( condition ) 
statement 1 

else 
statement 2 

Statement 1 is executed if the condition is true, and statement 2 is 
executed if the condition is false. Each can be a single statement or a block. 

Here is an example that selectively modifies its input 

#include "stdio.h" 
main() 
{ 

int ch; 

while ( (ch= getchar()) 
{ 

if ( ch == 'o') 
putchar ( 'a' ) ; 

else 
putchar(ch); 

Here is a sample run: 

Love a hog[RETURN] 
Lave a hag 
[OPTION]-d 

!= EOF ) 
/* nonessential brace */ 
I* be sure to use == *I 
/* substitute a letter */ 

/* or print as is */ 

Note that the entire if ... else statement counts as a single statement, 
even though each statement section within it has its own semicolon. Thus 
no braces are needed to show the extent of the loop. However, when a 
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single loop statement gets that long, it is a good idea to use braces anyway. 
The compiler may not need them, but they may be useful to a reader. 

We included the caution to not use = when == is intended. The == is a 
comparision operator; it asks if ch and 'o' have the same value. The =, on 
the other hand, is the assignment operator, and it would assign the value 'o' 
to ch so that every ch would be converted to an 'o'. The complier will not 
catch the misuse of = for ==, because = can also be used legally in a test 
condition. We'll return to this topic soon, but first let's look at one further 
extension of the if family. 

Multiple Choice 

The basic if ... else statement offers two choices. But the second choice 
can be another if ... else statement, and so on. This allows you to encompass 
many choices. Here is a program fragment illustrating how to set up 
multiple choices. 

printf("How many legs does your pet have?\n"); 
scanf("%d", &legs); 
if (legs == 2) 

printf("I think your pet may be a turkey.\n"); 
else if (legs == 4) 

printf ("I think your pet may be a mutant --, 
turkey. \n"); +J 

else 
printf("I think your pet is unusual.\n"); 

The indentation scheme makes it simple to scan the list of choices, here 
2 legs, 4 legs, or some other number of legs. You could also format the 
fragment this way: 

printf("How many legs does your pet have?\n"); 
scanf("%d", &legs); 
if (legs == 2) 

printf("I think your pet may be a turkey.\n"); 
else 

if (legs == 4) 
printf ("I think your pet may be a mutant--, 
turkey.\n"); +J 

else 
printf("I think your pet is unusual.\n"); 
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This emphasizes the fact that the actual form is one if ... else using a 
second if ... else as its second alternative action. One disadvantage is that it 
keeps pushing successive if ... elses farther to the right on the screen. 

Conditional Expressions 

The loop structures and if structures we've seen have all used "conditional 
expressions" to control the program flow. (They can also use arithmetic 
expressions, but that's a matter for later discussion.) Conditional 
expressions are ones we can think of as being "true" or "false", and they are 
created by using relational operators, which compare expressions; and 
logical operators, which combine expressions. We've already seen most of 
the relational operators, but let's gather them together now and introduce 
them formally. 

Relational Operators 

Relational operators examine the comparative values of two 
expressions. Is one bigger than the other? Are they the same? Table 4.1 
summarizes C's relational operators. 

OPERATOR MEANING 

< is less than 
<= is less than or equal to 

is equal to 
>= is greater than or equal to 
> is greater than 
!= is not equal to 

Table 4.1 Relational Operators 

The relational operators have lower precedence than the arithmetic 
operators but higher precedence than the assignment operators. For 
example, we have been using the idiom 

(ch = getchar() ) != EOF 
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The parentheses around the first part of the expression are necessary, for 
without them, the relational comparison gets done first. That is, omitting 
the parentheses has the same effect as parenthesizing in the following 
fashion: 

ch = ( getchar() != EOF) 

First, this asks if the return value of getchar() is EOF or not. Then the 
answer to this question ("true" or "false") is assigned to ch. Remember, 
every expression in C has a value, and in this case ch is assigned the value 
of the relational expression getchar() != EOF. 

True and False in C 

This raises an important point: what is the value of a relational 
expression? We've been terming the values "true" and "false", but how is 
that expressed in C? Unlike, say, Pascal, C does not have a special 
"Boolean" type restricted to just "true" and "false" values. Instead, "true" 
and "false" are represented by integer values. Let's run a short program to 
see what they are: 

main() 
{ 

int true, false; 

true= ( 100 > 4); 
false= ( 4 > 20); 
printf("TRUE is %d and FALSE is %d\n", true, false); 

And the answer is ... 

TRUE is 1 and FALSE is 0 

These are the values used by Hippo C and most other C compilers. 
(Some use other values for true, but we will stick with the standard values.) 
Thus the numerical value of a relational expression is either 1 (true) or 0 
(false). 
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Other Truths 

When we use a relational expression as a test condition for a loop or if 
statement, the condition has a value of 1 or 0. However, the test condition 
can be any expression, not just a relational one. In general, any nonzero 
value is interpreted as true. This is both a blessing and a curse. First, let's 
look at the curse aspect. Earlier we had this program fragment: 

if ( ch == 'o' ) 
put char ('a') ; 

else 
putchar(ch); 

This was part of a loop that replaced each o with an a, leaving the other 
characters unchanged. Now replace the == with a = operator: 

if ( ch = 'o' ) /* an easily made error */ 
putchar ('a') ; 

else 
putchar (ch); 

Here, the test condition assigns 'o' to ch. The value of the test expression 
becomes the value of ch, which is now the ASCII value of the character 'o' 
which is 111. But 111 is "true", so no matter what the original value of ch 
was, the putchar('a') choice is executed; every letter is replaced with an a. 

The use of = instead of == is a subtle error to detect. It can escap~ a 
quick visual scan of the program, and the compiler thinks it's just fine. If 
you find a program is always making the same choice, regardless of the data 
it's fed, look for this sort of error. 
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Notes About C : Increment and Decrement Operators 

The increment operator ( ++) adds one to its operand, and the decrement 
operator (--) subtracts one from its operand. Each comes in two forms: the 
prefix form, as in ++x, and the postfix form, as in x++. The two forms have 
the same effect when used as a stand-alone statement. That is, each of the 
following two complete statements produces the same result, increasing x by 
one: 

++x; 
x++; 

The difference between the two forms becomes apparent when they are used 
as part of an expression. The distinction is this: in the prefix form, the 
incrementation takes place before the expression is evaluated, and in the 
postfix form, the incrementation takes place after the expression is evaluated. 

Let's look at some specific examples. Suppose we start with the variable 
x having the value 5 and that we have the statement 

y = 10 * x++; 

For this case, 10 is multiplied times x (which has the value 5), and then xis 
incremented. Thus, after this statement is executed, x is 6 and y is 50. 

Now, starting with x equals 5 again, consider the prefix form: 

y = 10 * ++x; 

In this case,first xis incremented to 6, and then x is multiplied by 10. This 
statement results in x being 6, as before, and in y being 60, not as before. 

Once again, for the prefix form, the order is increment and evaluate, while 
for the postfix form, the order is evaluate and increment. 

On the other hand, the fact that all nonzero values are true can be used 
to simplify your programming. For example, here is one common idiom: 

while ( i-- ) ... 

The -- is the "decrement" operator. It subtracts 1 from the value of its 
operand, here the integer variable i. This loop, assuming i initially has 
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some positive value, will continue until i reaches zero. In other words, the 
loop works the same as the following example: 

while ( i-- != 0) ... 

In the first case, the loop ends when i itself becomes zero. In the second 
case, the loop ends when the expression i-- != 0 becomes zero ("false"). 
Since both conditions happen simultaneously, the two forms work the 
same. 

Once again, we've introduced something new: using the decrement 
operator as part of a larger expression. See the box for more on this topic. 

Truth and Functions 

Since true and false are treated as integer values, it is possible to use 
integer-returning functions as Boolean (true-false) functions. These 
functions return 0 if the condition they test for is false, and nonzero 
otherwise. 

I 

Suppose, for example, we want a program to count characters in input 
(as we have done before) and also to count alphabetic letters. We could use 
52 if statements (one for each lowercase and one for each uppercase letter) 
to identify all the possible letters, but that borders on the foolish-and from 
the wrong side. We could use logical operators to define a range of 
characters, but we haven't discussed that yet. Best of all, we can use the 
isalpha() function, which tells us whether or not its argument is a member 
of the alphabet. Here's how to do it with Hippo C: 

/* chspct.c -- counts characters and spaces */ 
#include "stdio.h" 
main() 
{ 

int ch; 
int chars = 0; 
int letters = 0; 

while ( (ch = getchar () 
{ 
if ( isalpha(ch) ) 

!= EOF) 
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letters++; 
chars++; 
} 

printf("\nchars 
letters); 
} 

Here is a sample run: 

I* only for letters */ 
I* for all characters */ 

%d and letters = %d\n", chars, 

See this work. [RETURN] 
[OPTION]-d 
chars = 15 and letters 11 

Note again that spaces, punctuation, and newlines are characters and are 
part of the character count 

Standard C has a flock of is functions. The exact list varies from 
implementation to implementation, but Table 4.2 lists the most common 
ones. 

NAME 

is alpha() 
is upper() 
islower() 
isdigit() 
isalnum() 
isspace() 
ispunct() 

Table 4.2 

TRUE IF ARGUMENT IS 

alphabetic 
uppercase 
lowercase 
a digit 
alphanumeric 
a space, tab ('\t'), or newline ('\n') 
punctuation 

Common "Boolean" Functions 

On many systems these functions are actually "macros", 
pseudofunctions created with #define statements. We will discuss macros 
in Chapter 5. One point to note now, however, is that macro definitions are 
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typically stored in a file named ctype.h, and that this file has to be 
#included. However, with Hippo C, this isn't necessary. 

Logical Operators 

Often it is convenient to combine two or more test conditions together. 
Was the response a y or a Y? Is the boxer's weight above the minumum 
and below the maximum? Or perhaps you wish to modify a condition so 
that it tests for nonletters instead of for letters. Logical operators give us the 
means to express such combined conditions and modifications. C has three 
such operators: the NOT operator, the AND operator, and the OR 
operator. 

The NOT Operator: ! The NOT operator is a contrary one. It makes 
true false and false true. It takes a single operand, which it precedes. For 
example, earlier we used 

if ( isalpha(ch) 

to test if ch is an alphabetic character. If we wanted to test to see if ch is 
not an alphabetic character, we would use this fragment: 

if ( !isalpha(ch) ) 

Because isalpha(ch) is true when ch is a letter, the expression 
!isalpha(ch) is not true when ch is a letter, hence true when ch is not a letter. 

Let's do a Toolbox example. The Toolbox includes the button() 
function. This function returns "true" if the mouse button is being pushed 
down, and "false" otherwise. 

From Mac's Toolbox: New Routines 

Button Returns "true" if the mouse button is down 
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Here is an example that performs an uncalibrated reaction time test: 

/* reaction.c -- primitive reaction time test */ 
#define DELAY 50000 
main() 
{ 

int i = DELAY; 

printf("When I say \"GO\", push the mouse button.\n"); 
while ( i--) 

/* time delay loop -- does nothing */ 
if ( button() ) /* don't push button early */ 

printf("Not yet ... \n"); 
i = DELAY; 
while (i--) 

/* more delay */ 
while ( !button() ) 

printf("GO\n"); 
printf("Done"); 

And here is a sample run: 

When I say "GO", push the mouse button. 
GO 
GO 
GO 
GO 
GO [MOUSE BUTTON] 
Done 

We had to put in a time delay loop; otherwise, the GO message would 
start printing before you had time to read the instructions. We used the 
while(i--) form we mentioned before; the loop cycles until i reaches 0. The 
loop syntax requires a statement for the loop to execute, so we used the 
"null statement", which does nothing and is represented by a lone 
semicolon. One side benefit of this program is that it shows you how fast 
the Macintosh can count to 50,000 twice. 

Note that the final loop keeps printing GO as long as the mouse button 
is not pushed, thanks to the use of the NOT operator. 
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If you would like a more quantitative measure of your reaction time, 
you can modify the program to use the Toolbox function tickcount(). This 
function returns the elapsed time in "ticks" (a tick= l/60th second) since 
the system was last started up. We leave this modification as a not too 
difficult exercise for you. 

The AND Operator: && The AND operator (written &&) is used when 
we want two conditions to be true simultaneously. Suppose, for instance, 
that the sole qualifying standard for acceptance to Mediocre University is a 
combined SAT score in the range 600 to 1000. lfwe use the variable sat to 
represent a score, the standard amounts to two conditions: sat >= 600 and 
sat <= 1000. Here's how to incorporate the two into one expression: 

if ( sat >= 600 && sat <= 1000) 
printf("Welcome to Mediocre University.\n"); 

The if condition is true only if both subexpressions are true. The logical 
operators have a lower precedence than the relational operators, so the two 
relational expressions are evaluated first, and then the results are combined 
logically. 

Note that you must use a logical operator to combine the two tests. 
You cannot borrow from mathematics and do the following: 

if ( 600 <= sat <= 1000) I* unsatisfactory */ 

Actually, this construction is valid C; it just doesn't mean what it 
appears to mean. The relational operators associate from left to right, so 
first the expression 600 <= sat is evaluated. It has a value of 1 if true and 0 
if false. Then this value of 1 or 0 is compared with 1000. Either is less than 
1000, so the entire expression is always true, regardless of the value of sat. 

The OR Operator: II Sometimes it's a matter of one or another condition 
sufficing. Suppose to get into Status University one needs a parental income 
of $100,000 or else the ability to run 40 yards in full football gear in 5 
seconds or less. With the OR operator (written II), we can combine the two 
conditions this way: 

if ( income >= 100000 I I time40 <= 5) 
printf("Welcome to Status University.\n"); 
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Satisfying either subcondition (or both) causes the whole condition to be 
satisfied. 

Logical Evaluations You can use several logical operators in the same 
expression. For instance, to look for lowercase vowels, you could do this: 

if ( ch == 'a' I I ch == 'e' I I ch == 'i' I I ch == 'o' 
I I ch == 'u') 

vowels++; 

Note how C's free format feature lets us spread a long expression over two 
lines. 

An important feature of the C language is that it evaluates logical 
expressions from left to right, stopping as soon as it gets a definite result for 
the whole expression. In the preceding example, for instance, if ch is an 
'e', the program won't bother going on to do the rest of the comparisons in 
the list. 

The NOT operator has the highest precedence of the three, followed by 
AND, then by OR. Suppose, for instance, that Statusplus University 
incorporates Status University's standards plus an SAT requirement of 900 
or better. We can express that condition this way: 

if ( (income >= 100000 I I time40 <= 5) && sat >= 900 
printf("Welcome to Statusplus University.\n"); 

The OR section is enclosed in parentheses; if we left them out, the meaning 
of the test would be changed. The higher priority of && would link the time 
test to the SAT test. Thus, the new standard would be 1) income of 
$100,000 or more, or 2) a time less than or equal to 5 seconds and a score 
of 900 or better. With the parentheses, the standard is 1) income of 
$100,000 or more and a time less than or equal to 5 seconds, and 2) a score 
of 900 or better. If you can't keep the correct precedences in mind or else 
don't trust other program readers to do so, just use parentheses to make 
your groupings clear. 
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Other Jumps 

One thing that loops and if statements have in common is that they use 
Boolean test conditions. We've just discussed those. A second point in 
common is that they involve "jumps." That is, the program, instead of 
going step by step through the code will skip or jump to another location in 
the code. In a loop, the program skips back to the beginning of the loop, 
and in an if statement, the program skips (possibly) to a particular 
alternative. 

C has several other statements that involve jumps, but that do not use 
Boolean test conditons. We'll look them over now. 

The goto Statement 

The most freewheeling, the most abusable, and the least recommended 
jump statement is goto. Its use is simple, yet avoidable. Here is the general 
form: 

goto label 

label : statement 

Here label is a user-selected name. When the keyword goto is encountered, 
program control jumps to the statement following the corresponding label. 
The colon after the label name identifies it as a label and not just some stray 
name. 

Suppose, for instance, that you didn't know about C's loop 
statements. Then you could construct a loop along these lines: 

i = 0; 
loopstart printf("Counting: %d\n", i); 

i++; 
if ( i < 10 ) 

goto loopstart; 
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So long as i is less than 10, program flow keeps returning to the line labeled 
loopstart. Of course, a for loop can do the same task: 

for ( i = 0; i < 10; i++) 
printf("Counting: %d\n", i); 

The problem with the goto statement, as demonstrated through 
countless FORTRAN and BASIC programs, is that it can be used to create a 
maze-like program flow. Such "spaghetti" programs are very difficult to 
debug, maintain, and modify. By sticking to C's built-in structured 
statements, you help avoid those problems. 

The continue and break Statements 

The continue statement is a much more controlled jump. It is used 
inside a loop. When it is executed, it causes a program to skip to just after 
the last statement in the current cycle of the loop. Then the loop resumes. If 
it is a while or do ... while loop, execution goes to the test condition. For a 
for loop, the "update" expression is executed first 

The continue statement is not that useful, for it generally can be 
avoided by rewording the program slightly. Here is an example using it: 

for( i = -2; i <= 2; i++) 
{ 

if (i == 0) 
continue; 

printf("%d\n", i); 
} 

It prints the integers -2 to 2, skipping 0. But the following is simpler: 

for ( i = -2; i <= 2; i++) 
if (i != 0) 

printf("%d\n", i); 

110 MACINTOSH C PRIMER PLUS 



The break statement, too, is used in loops. More commonly, it is used 
in the switch statement, which we come to next. Its effect is to break out of 
the loop (or switch) entirely. Here is an example: 

for ( i = 0; i < 100; i++) 
{ 
printf("Enter the score:\n"); 
scanf("%d", &score); 
if (score < 0 ) 

break; 
sum += score; 
} 

This fragment keeps a running total of scores. It stops after 100 scores 
have been entered (the loop control) or else after a negative score is entered 
(the break statement). If we had used continue instead of break, then 
negative scores would have been skipped, and the loop would have 
continued until 100 nonnegative scores were entered. 

The switch Statement 

The switch statement can be an efficient alternative to a multiple 
if ... else statement in certain cases. It allows a program to select from a list 
of choices. Thus, it means "switch" in the sense of a railway or electrical 
"switch" and not in the sense of "swap". Its form is this: 

switch ( expression ) 
{ 
case labell : statementl 
case label2 : statement2 

} 

The expression's value should be one of the integer types (including 
char), and the labels are constants (or constant expressions) of the same 
type as the expression. We can think of the switch as offering a menu of 
choices, with the expression selecting one of them. Here is an example 
using a char variable called ch : 

/* foolish.c -- questions the user */ 
main() 
{ 
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char ch; 

printf("Enter your first initial:\n"); 
ch= getchar(); 
switch ( ch ) 

{ 

case 'a' printf("Are you an aardvark'?\n"); 
break; 

case 'b' printf("Are you a baboon'?\n"); 
break; 

case 'c' printf("Are you a capricorn?\n"); 
break; 

default printf("Are you sure'?\n"); 
} 

If the user responds with, say, the character 'b', then the switch 
transfers the program flow to the line labeled case 'b'. Note the default 
entry. Program control jumps to here if ch doesn't match any of the other 
labels in the list. What happens if there is no default label and if there is no 
match? Then program control skips to the next statement following the 
switch statement. 

What about all those breaks? The switch is just a fancy (but 
disciplined) goto, so once program flow jumps to the labeled statement, it 
would then pass on through the rest of the statements in the switch, 
executing each statement from the first one selected to the end of the switch. 
The subsequent labels would be ignored. By using a break, we ensure that 
only the statements associated with the label are executed. The break then 
causes program flow to jump out of the switch. If this is not clear to you, 
try removing the breaks from f oolish.c and running the program that way. 

More than one label can be attached to each case. Do you recall the 
long if condition we used to set up a vowel-counting fragment? We can 
accomplish the same end with this: 

switch (ch) 
{ 
case 'a' 
case 'e' 
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} 

case 'i' 
case 1 0 1 

case 'u' vowels++; 

Here all 5 labels take the program to the same statement 

switch and if ... else 

Often either a switch or an if ... else statement can be used to solve a 
programming problem. Our first switch example, for instance, could be 
replaced by this: 

printf("Enter your first initial:\n"); 
ch= getchar(); 
if (ch == 'a') 

printf("Are you an aardvark?\n"); 
else if (ch== 'b') 

printf("Are you a baboon?\n"); 
else if (ch == 'c') 

printf("Are you a capricorn?\n"); 
else 

printf("Are you sure?\n"); 

Which is better? From the standpoint of computer efficiency, the 
switch statement is better than the if ... else if several choices are involved. 
However, the if ... else is much more flexible and can do things impossible 
for the switch. The key point here is that the switch statement is limited to 
comparing an expression to a integer constant for equality. That constitutes 
three limitations. First, you can't directly compare the expression to a 
variable. Thus, 

if (ch = responsel) 

is valid, even if both ch and response! are variables. But response! cannot 
be used as a case label. 
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Second, a switch is not intended to deal with inequalities or complex 
logical expressions. Something like · 

if ( weight > 120 && weight < 135 ) 

has no reasonable switch equivalent. (If reasonability is not your guide, 
you could use 14 separate labels corresponding to the integers between 120 
and 135.) 

Third, a switch can't use floating-point numbers as labels, so it is not 
equipped to handle situations involving those numbers. 

A Menu switch 

One situation that is best handled with a switch is a menu-selection 
process. A menu offers a set of individual choices, so each choice can be 
made a case label for the switch. In a full-fledged Macintosh program, 
menu selections are usually handled using the mouse. We'll stick to the 
more primitive method of keyboard input, but the principles involved in 
using the switch are the same. 

Our program will offer the user three choices of font size and then print 
a message in the selected size. If the user doesn't make one of the offered 
choices, he or she will be asked to choose again until one of the permissible 
choices is made. This is one case in which an exit-condition loop like the 
do ... while loop is appropriate, for the loop must wait until after getting a 
response before judging whether or not to continue. Here is the program: 

I* menu.c -- illustrates a simple keyboard-driven menu 
*I 
main() 
{ 

char response; 

printf("Enter 
choice:\n"); 

printf("s 
printf("m 
printf("l 
do { 

response 

/* holds the user's reply */ 

the letter marking your font~ 

small font\n"); 
medium font\n"); 
large font\n"); 

/* loop until valid response */ 
getchar(); 
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switch ( response ) 
{ 

case 's' 

case 'm' 

case 1 1 1 

textsize(9); 
break; 
textsize(l2); 
break; 
textsize(l8); 
break; 

default 
} 

printf("\nPlease select again:\n"); 

while 

choices */ 

response != 's' && response != 'm' 
&& response != 'l' ) ; /* screen 

printf(ri\nThank you for your chdice.\n"); 

Note that the switch statement is contained inside the do ... while loop. 
The loop continues until one of the three valid letters is chosen. The switch 
itself tends to the setting of the text size and to prompting for new input. 
Figure 4.3 shows some sample output. 

Hippo-c Command Window 

* 
* 
* 
* a . out 
Enter the letter marking your font choice: 
s sma I I font 
m medium font 

large font 

Please se lect again: 
i 
Please select again: 
I 
Thank you for your choice. 

* 

Figure 4.3 Output from menu.c 
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More Operators 

Two more C operators fit into this chapter's themes. One, the comma 
operator, is often used in for statements to squeeze more information into 
the control section. The second is c;alled the conditional operator and offers 
a compact alternative to some forms of if statements. 

The Comma Operator: , 

The comma operator allows us to combine two expressions into one. 
When two expressions are separated by a comma, the lefthand expression is 
evaluated first, then the righthand expression is evaluated. The value of the 
entire expression is just the value of the righthand component. Consider, 
for instance, this statement: 

x = (y = 6, y * 2); 

Here y is set to 6, then the expression y * 2 is evaluated to 12, and finally 
12 is assigned to x. 

This bizzare example shows how the operator works, but does not 
represent its typical use. Here is a more representative example: 

/* factorial.c */ 
main() 
{ 

int value, factor; 

for (value=l, factor=l; factor < 10; factor++,value 
factor) 

printf("%2d %6d\n", factor, value); 

This program generates a weird sequence of numbers: 

1 1 
2 2 
3 6 
4 24 
5 120 

116 MACINTOSH C PRIMER PLUS 

*=~ 



6 720 
7 5040 
8 40320 
9 362880 

Actually this is a list of "factorials"; 3 factorial is the product of the 
integers 1 through 3, and so on. The program uses the comma operator 
twice. First, it lets the two expressions value = 1 and factor = 1 to be 
combined into one expression to fit into the for format. This combined 
expression then serves to initialize two separate values. 

The update portion of the control statement is interesting. First, factor 
is increased by 1, then value is multiplied by the new value of factor. Here 
the comma operator serves two purposes. First, it lets us squeeze two 
operations into the update section. Second, it ensures that factor is updated 
before value is. Because of that, we can use either the prefix or postfix form 
of the increment operator. 

If we desire further conciseness, we can replace the update portion 
with this single expression: · 

value *= ++factor 

Here we use the prefix form of the increment operator to ensure that factor 
is incremented before any other operations are performed. 

The Conditional Operator: ?: 

The conditional operator is a "trinary" operator, one with three 
operands. An expression using the conditional operator has this form: 

condition ? expression] : expression2 

If the condition is true, the value of the entire expression is set equal to the 
value of expression]. Otherwise the entire expression is set to the value of 
expression2. 
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Here is an example that assigns the larger of two values to a variable 
called bigger: 

bigger = x > y ? x : y; 

If xis greater than y, then the entire expression has x's value, which gets 
assigned to bigger. Otherwise y's value is assigned. 

Summary 

C offers three statements for looping, or running through a segment of 
program repetetively. The while and for statements set up entry-condition 
loops, in which a test condition is checked before cycling through a loop. 
The less-used do ••• while loop is an exit-condition loop, in which the test 
condition is checked at the end of each cycle. The for and while loops are 
sufficiently flexible to be used interchangeably; however, the for loop is 
usually used when the number of iterations is determined before the loop 
starts, while a while loop is preferred when the number of iterations is not 
known in advance, as in a letter-counting program. 

For choosing alternatives, C offers the if and if ... else statements, the 
switch statement, and the conditional operator. The if family is the most 
versatile, allowing a program to make decisions on the bases of relational 
and logical expressions of arbritrary complexity. The switch is useful for 
selecting from a labeled list of choices. The conditional operator is useful 
for assigning a variable one of two values. 

Most of these forms use test conditions. These conditions may be any 
sort <:>f expression. A zero value for the expression is treated as "false", and 
a nonzero value as "true". Most commonly; the expressions use relational 
operators, which compare magnitudes of quantities, and logical operators, 
which serve to combine or modify relational expressions. 
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5 
Functions 

In this chapter you will learn about: 

• Function arguments 
• Function return values 
• Function types 
• Type conversions 
• Pointers as arguments 
• Pointer arithmetic 
• Scope: local and global variables 
• Recursion 
• Preprocessor macros 

We have seen how vital functions are to C programming. So far we have 
concentrated on using existing functions, but now we are ready to 
investigate more deeply the writing of functions. We will look into how a 
function makes use of its arguments. Also, we will investigate the "scope" 
of a variable, that is, the question of to which functions a variable is known. 
Finally, we will look at macros, the preprocessor cousins to functions. 

First, let's review what we have learned so far. 

Review 

Functions are the modular programming units of C. Every program must 
contain a function called main(), which then becomes the first function 
executed in the program. A function calls or invokes another function by. 
using its name. Information is communicated to a function through is 
argument list, which is a list of one or more expressions separated by 
commas and enclosed in parentheses following the function name. 
Communication is by value, meaning that each argument expression is 
evaluated and then that value is sent on to the function. In tum, a function 
can "return" a value to the calling function. Or, through using the address 
of a variable as an argument, a function can modify the value of that 
variable. 
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The simplest way to incorporate a user-defined function into a program 
is to include the function definition in the same file as main(). Here is a 
simple example illustrating that technique: 

main() 
{ 

I* defining the main() function */ 

printf("This message is from main(): hello. \n"); 
comment(); 

comment() /*defining the comment function */ 
{ 

printf("That main() is sure a dull function!\n"); 

Running it, of course, produces this output: 

This message is from main(): hello. 
That main() is sure a dull function! 

Notice how the definition of the comment() function parallels that of 
main(). First comes the function name, followed by a parentheses pair. 
This constitutes the "head" of the function. Note that no semicolon follows 
the function name when it is used as a heading for a function definition. 
Next comes a section enclosed between braces. This constitutes the "body" 
of the function. 

An important point is that all C functions are defined on the same level. 
This contrasts to Pascal usage, in which functions and procedures are 
defined inside a program block or inside other functions and procedures. In 
C, you cannot define one function inside the body of another. 

This sample used neither a return value nor an argument. Let's go on 
to examples that do use them. 

Arguments 

How does a function make use of an argument passed to it? The easiest 
way to see the answer is to look at an example. To highlight the mechanics, 
let's use a very simple one, a function called twice() that returns twice its 
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argument. It is easy enough to foresee how to use the function. For 
instance, if we need to find what twice 5 is (perhaps we have all misplaced 
our pocket calculators), we would use a call like this: 

y = twice(S); 

Here 5 is the argument passed to the twice() function. But how do we write 
the twice() function so that it will accept and use the 5? Here's one way: 

/* function that doubles a number */ 
twice(x) /*xis the "formal" argument */ 
int x; /* and is of type int */ 
{ 

x = 2 * x; 
return x; 

Now the parentheses following the function name are no longer empty. 
They contain one variable name (x, in this case) to indicate that this function 
takes one argument. Then the next line declares that the argument should be 
of type int. Note that this declaration occurs in the head section of the 
function definition, before the brace that marks the start of the body of the 
function. 

C allows you to omit the declaration statement if the argument is of 
type int, but we will declare all arguments. 

What happens, then, when we make a function call like this? 

y = twice (5); 

When twice() is invoked, the function head tells the computer to assign 
. storage for an int variable called x. Then x is assigned the value of the 

argument (here 5) used in the function call. Thus the function call serves to 
create the variable x and to initialize it to the value provided by the function 
call. 

We have used the term "argument" two different ways. First, we've 
used it to mean the value used in the function call. Second, we've used it to 

FUNCTIONS 121 



mean the variable used in the function definition. To get around this 
ambiguity, C calls the value in the function invocation the "actual 
argument", while the variable used in the function definition is called the 
"formal argument". So we can say that a function call results in the actual 
argument value being assigned to the formal argument. (Or, if we feel the 
need for variety, we can use the word "parameter" instead of argument.) 
One extremely important point is that the formal arguments for a function 
are "local" variables. That means they are known and used only by the 
function in which they are defined. If we called twice() from a main() 
function that also hadan x variable, the two x's would be independent of 
one another. Each would have its own storage location. In fact, all the 
variables we have used so far are local. This helps compartmentalize the 
functions. If you have a large program and are writing a new function, you 
don't have to worry about whether or not you've used a variable name in a 
previous part of the program. If you call a variable x in a function, it will 
not be confused with an x anywhere else. 

Let's put together and run a complete program to illustrate some of the 
points we have made: 

main() 
{ 

int x,y; 

x = 10; 
y =twice x + 2); /*function call*/ 
printf("x = %d, y = %d\n", x, y); 

twice (x) 
int x; 
{ 

x = 2 * x; 
return x; 

Here is the program output: 

x is 10, y is 24 

I* function definition */ 

Let's run through some of the points illustrated by this example. The actual 
argument is x + 2, or 12. This value gets assigned to the formal argument, 
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x of twice(). This x is distinct from the x of main(), just as Salem, Oregon 
is distinct from Salem, Massachusetts. In twice(), x gets doubled, and that 
value (24) is returned to main() and assigned toy. When the results are 
printed, we see that x in main() is still 10, totally unaffected by what 
happened to the x in twice(). 

Multiple Arguments 

Suppose we need more than one argument. Then we must list however 
many arguments are needed and declare their types. Here is an example that 
takes two arguments: a character and an integer. The function then prints 
the character the indicated number of times and starts a new line: 

/* prints a character c n times */ 
chartimes( c, n) /*provide an argument list*/ 
char c; 
int n; /* declare them in the order listed */ 
{ 

int count; /* a local variable */ 

for (count O; count < n; count++) 
putchar(c); 

putchar ( '\n') ; 

Note that the arguments are declared in the same order as they appear 
in the formal argument list. This program uses a variable (count) in addition 
to the formal arguments. Any such additional variables are declared inside 
the body of the function. Only the arguments are declared before the 
opening brace. Like the arguments, count is a local variable, private to the 
chartimes() function. 

When the function is called, the actual arguments must come in the 
same order as the formal arguments. Don't try making a call like 
chartimes(lO, 'T') and expect the function to sort out what you mean. 

Let's look at a short example using this function. It also serves to 
refresh our memories about for loops and the comma operator: 

main () 
{ 

int i; 
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char ch; 
for ( i = 1, ch= 'a'; i <=5; i++, ch +=2) 

chartimes(ch,i); 

I* prints a character c n times */ 
chartimes( c, n) 
char c; 
int n; 
{ 

int count; 

for (count = 0; count < n; count++) 
putchar(c); 

putchar ( '\n' ) ; 

Here is the output: 

a 
cc 
eee 
gggg 
ii iii 

Look at the for loop in mainQ. It uses the comma operator to initialize 
both i and ch. The third expression in the control section also uses a comma 
operator to allow both i and ch to be updated. Recall that += is the additive 
assignment operator; in this case it adds 2 to ch. But how can you add 
integers and characters? In C, easily. What happens here is that 2 is added 
to the ASCII code for ch, so the new ch is the character whose code number 
is bigger by 2. Since the letters come alphabetically in the ASCII sequence, 
the program just moves two letters down the alphabet. Thus our example 
prints every other letter until it reaches the limit for i. 

Adding 2 to a is an example of mixing types in an expression. C 
provides a set of rules governing mixed type operations, and we will 
discuss them later this chapter. 
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Return Values 

We've looked at the flow of information into a function, now let's look at 
the flow out. The standard channel for communicating back to the calling 
program is to use the return facility, as we did in the twice() example. This 
works a bit like arguments in reverse. Just as only the value of an argument 
is transmitted to a called function, so is only the value c:>f the return 
expression made available to the calling function. For instance, suppose the 
dork() function looks like this: 

dork ( x, y ) 
int x, y; 
{ 

return (3*x + y*y*(S*x -y) ); 

It takes two arguments, plugs their values into the expression, and boils the 
expression down to a single number. A call like 

doug = dork(a,b); 

causes this return value to be assigned to doug. 

A function can have at most one return value. If more than one value is 
required, we need to use pointer arguments; that, too, we will cover later in 
the chapter. 

Having only one return value, however, doesn't mean that a function 
can't use return more than once. The function will terminate as soon as it 
reaches a return. Here, for example, is one way to code an absolute value 
function: 

abs (x) 
int x; 
{ 

}. 

if x < 0 
return (-x); 

return (x); 
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If x is less than zero, the first return is executed, and the function 
terminates. Otherwise, the first return is skipped and the second is 
executed. (The parentheses are optional.) However, it is considered better 
programming practice to have just one return right at the end of the function. 
We could, for example, use an intermediate variable to store various 
choices: 

abs (x) 
int x; 

int y; 

if x < 0 
y -x; 

else 
y x; 

return y; 

In this particular case, of course, we could condense the function by using 
the conditional operator: 

abs (x) 
int x; 
{ 

return x < 0 ? (-x) x; 

If this seems obscure, you may wish to reread the paragraphs in Chapter 4 
on the conditional operator. 

Return Values and Function Types 

Our examples so far have returned an integer value, type int, to be precise. 
C functions, however, can return types char, short, float, and any other 
single-valued type. To return these other types, we must properly define the 
function and properly prepare the calling function. Let's look at these two 
steps in tum. 
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Defining a Function Type 

Defining a function type is simple; we just precede the function name 
with the desired type. For example, suppose we want a function that. 
returns type char. Here is one that takes an integer argument and converts it 
to an uppercase letter: 

char inttochar(n) 
int n; 

/* declare function type */ 
/* declare argument type */ 

{ 

return 'A' + n % 26; 

Note that the function type and argument type need not match. The function 
type refers to the type returned, not to the argument type(s). This example 
uses the modulus operator(%) to convert n to an integer in the range 0 to 
25. Thus the return value is always in the range A to Z. 

Why didn't we have to declare types for the other functions we used?. 
Actually, the best programming practice would have been to explicitly 
declare the functions type int However, C tolerates a bit of sloppiness and 
assumes that any function of undeclared type is type int. Since many 
functions are indeed of that type, this scheme is a timesaving one. 

Using a Non-int Function 

An additional complication arises when we go to use a non-int 
function. We must declare the function type in the calling function, just as 
we declare variable types. Here, for example, is a program designed to try 
out the inttochar() function. 

main() 
{ 

int i; 
char ch; 
char inttochar(); /*declare function type*/ 
while ( scanf("%d", &i) == 1 ) 

{ 

ch= inttochar(i); 
printf("%c\n", ch); 
} 
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char inttochar(n) 
int n; 
{ 

return 'A' + n % 26; 

Note that when we declare the inttochar() function in main(), we omit the 
argument list. All that this declaration describes is the value returned. Only 
the formal definition of the function includes the formal argument list. 

Here is a sample run: 

2[RETURN] 
c 
26 [RETURN] 
A 
234567[RETURN] 
v 
[OPTION]-d 

We hit the [RETURN] key to let scanf() know we were finished typing in a 
number. 

What happens if you forget to declare the function type in the calling 
function? The compiler will assume that any undeclared function is type int. 
Then, when the compiler discovers the same function to be declared, say, 
type char in the function definition, it decides you've made an error (you 
have) and halts compilation. 

Type void 

A function can be of any type that corresponds to a single value. This 
includes all the basic types we've discussed and many of the derived types 
we will introduce later. Some functions, however, do not even return one 
value. They just perform some action and quit. An example would be the 
lineto() function we used in some of the graphics examples. Historically, 
such functions have been taken to be the default type, int. More recently, 
however, a new type has been introduced for just such functions. The type 
identifier is the word void; it implies the function has no return value. 
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Suppose we want a function that draws a box shape. The Macintosh 
Toolbox has such a function, but it uses structures, a topic we haven't come 
to yet. So let's write our own. Because this function (call it box()) 
performs an action rather than returning a value, we can make it type void. 
Here it is, contained in a program to test it: 

I* boxes.c -- uses box() to draw several boxes */ 
main() 
{ 

int ulx,uly,lrx,lry; /*upper-left and lower-right x. 
and y */ 

void box(); /*declare any non-int 
function */ 

for (ulx=40,uly=80;ulx < 256 && uly < 170; ulx += 10, 
uly +=3 ) 

{ 

lrx = 512 - ulx; /* set lower-right x */ 
lry = 300 - uly; 
box(ulx,uly,lrx,lry); /*draw a box*/ 
} 

void box( xl, yl, x2, y2) 
int xl, yl, x2, y2; 
{ 

moveto(xl,yl); 
lineto(x2,yl); 
lineto(x2,y2); 
lineto(xl,y2); 
lineto(xl,yl); 

Notice that the loop uses the comma operator to process the x and y 
coordinates in parallel. Figure 5.1 shows the output for this program. The 
Hippo C Command Window was expanded to nearly full screen before the 
program was run. 
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Figure 5.1 Output of boxes.c 

The void type is unusual because it can be applied only to functions 
and not to variables. Also, the type need not be used. We could have left 
the type for box() undeclared, both in the calling program and in the 
function heading. Then the compiler would assume box() was type int, and 
the program would work. This, historically, is the way such functions were 
handled. The main reason for using the void declaration is for logical 
consistency. 

The Macintosh Toolbox and Function Types 

The Macintosh Toolbox routines were written as Pascal functions and 
procedures. Pascal functions correspond to C functions with return values. 
In particular, a Pascal function returns a single value, and the function is 
characterized by the type of its return value. Thus, it is a straightforward 
matter to set up the function type for a C call to the Toolbox: Pascal 
functions that return, say, a char value are a char-type function for a C call. 
There are minor differences. For example, the button() function we used in 
Chapter 4 is a Boolean function in Pascal, returning true or false. But since 
these values are represented internally by nonzero and zero values 
respectively, we can make the C representation type int. 
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Pascal procedures differ from Pascal functions in that the procedures 
do not have a return value. Thus, they correspond conceptually to a type 
void C function. Logically, then, Toolbox procedures could be represented 
by void functions. Unfortunately, this would require that all these 
procedures be declared void explicitly in each program using them. Hippo 
C avoids that problem by representing procedures implicitly as type int 
functions. Because that is the default type assumed for functions, Toolbox 
procedures can be used without declaring them. 

Type Conversions and Type Casts 

Now that we have revived the topic of types, lets look into type conversion. 
Although C is a typed language, it is not strongly typed. Unlike, say, 
Pascal, Callows you to mix types in expressions. We've already mixed int 
and char types in expressions a few times. C has a systematic set of rules 
for the process. 

Integer Conversions 

When you have an expression with more than one integer type, the 
values are converted to largest type present, then, if there is an assignment 
operator, the result is forced' to fit the type for receiving variable. 
Generally, this causes no problems going from smaller to larger types but 
can be troublesome going the other direction. Let's look at some examples. 

Suppose we have this expression, where ch is type char: 

ch = 'A' + 3; 

The character 'A', which is stored as an 8-bit number, is converted to 
type int. This means, for Hippo C, that it is copied into a 32-bit location. 
Then it is combined with 3, which is already stored in a 32-bit location. The 
result is a 32-bit integer. Since the answer is to be assigned to a char type, 
the 32-bit number is truncated to 8 bits, and the 8-bit number is placed in 
ch. The truncation discards the "high-order" bits, that is, the ones used· to 
express larger numbers. For this example, they were all zeros anyway, so 
we had no problems. Adding 2000 instead of 2, however, would have 
resulted in an answer larger than 8 bits. In that case, some of the bits would 
be lost during truncation, changing the value of the number. 
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According to the C standard, char and short types are always converted 
to int when evaluating expressions, even if no larger type is present. Some 
compilers, however, don't follow that particular standard. 

Floating-Point Types 

Type float numbers are converted to double in expressions. This 
ensures maximum precision for the calculations. (It also ensures maximum 
time of calculation, and there is some talk of relaxing this feature.) If the 
result is assigned to a float variable, it is rounded down to the proper 
precision. 

When float or double types are mixed with integer types, everything is 
converted to double. First, consider pure integer calculations: 

int intvar; 
float flvar; 

intvar = 11 I 5; 
flvar = 11 I 5; 

The rules for integer division yield 2 as the result. This integer is assigned 
to intvar. The float variable flvar, however, is assigned the value 2.0. That 
is, the integer 2 is converted to its floating-point equivalent. 

Now suppose we replace 11 with 11.0: 

int intvar; 
float flvar; 

intvar = 11.0 I 5; 
flvar = 11.0 I 5; 

This time the expression 11.0 I 5 is evaluated as if both numbers were 
floating-point. Thus the value of the expression is 2.2, which is stored as a 
double value. In the assignment for intvar, the value is converted to the 
integer 2. For the assignment to flvar, the double value is converted to 
float, meaning fewer bytes are used. 
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Conversion from integer types to floating point causes no problems, 
but conversion from floating point to integer can produce results too large 
for successful conversion. Another point to keep in mind is that decimal 
fractions are truncated when converted to an integer type. This means they 
are always rounded down. Thus 1.9 would convert to 1, not 2. 

Type Casts 

Sometimes it is necessary to be explicit about what type conversions 
you want. Perhaps the automatic conversion rules don't meet your needs, or 
the compiler doesn't exactly follow the standard, or a system function may 
return the wrong type for your needs. Then you can use the type cast. This 
is accomplished by enclosing the type name in parentheses and preceding 
the value to be converted with this combination. For instance, to explicitly 
convert a char value to int, you can use the expression 

(int) 'K' 

This would result in the ASCII code for 'K' being stored in a 32-bit 
location. 

First, let's look at an example that uses automatic conversion. Let fries 
be an int variable. Then the statement 

fries = 12.7 + 13.6; 

results in fries being assigned the value 26. First, the two floating-point 
numbers are added to get 26.3, then the result is truncated to 26. 

Now let's use type casts to force the conversions to take place before 
addition: 

fries = (int} 12.7 + (int} 13.6; 

In this case fries is assigned 25. First, 12.7 is truncated to 12, then 13.6 is 
truncated to 13, producing a sum of 25. 
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Eventually, we'll have to use type casts for certain function return 
values. 

Now let's move on to another topic. 

Using Addresses and Pointers 

Sometimes we want a function to alter the values of variables in the calling 
program. As we have mentioned many a time, the arguments to a function 
are new variables, and altering them has no effect on the original variables. 
The C solution, as we have seen in using scanf() , is to provide the address 
of the variables to a function. The function, knowing the location of the 
variable, can then fiddle with its contents. To use this technique, we need 
to know how to obtain the address of a variable, and we need to know how 
to represent that address as a formal argument. In C this is done using 
pointers, so let's take an excursion into pointer land. We'll start by 
looking at addresses. 

Obtaining Addresses: the & Operator 

If x is a variable, then &x is the address of that variable. The & is the 
address operator. Typically, such addresses are used as function argu­
ments, but you can use the operator to print out addresses. Use the %u 
(unsigned integer) format. Here is an example: 

main () 
{ 

int x = 5; 

printf("x is %d and is stored at %u.\n", x, &x); 

The output is this: 

x is 5 and is stored at 106820. 

In C, addresses are called pointers. We say that &x points to the 
variable x. The address operator yields a pointer constant, for even if we 
change the value of x, the location where xis stored (&x) stays unchanged. 
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Pointer Variables 

C also has pointer variables. These are variables which can be 
assigned addresses as values. For example, if pi is a proper pointer variable 
(we'll discuss what "proper" means soon), we can make statements like 
this:. 

pi = &x; /* assign an address to a pointer variable */ 

If this is the x of the preceding value, then pi is assigned the valu~ 106820, 
the address of x. The difference. between &x and pi is that the first is a 
constant and the second is a variable. We can't assign values to &x any 
more than we can assign values to other constants. We can assign values to 
pi, and we can change the value of pi. 

How do we declare a pointer variable? An address is an integer, so it 
would seem that an integer form, such as unsigned long might be suitable. 
But if a program works with an address, it needs to know more than the 
numerical value of the address. It also has to know the data type of the 
contents. After all, the address of a char looks just like the address of an int 
or float; it is just the numerical value of the first byte holding a data item. 
Only by knowing the data type will the computer know how many bytes to 
use and how to interpret them. For these reasons, there are a variety of 
pointer types. A pointer that points to a type int value is called a "pointer-to­
int". Similarly, a "pointer-to-char" points to a c~ar type, and so on. 

To declare a pointer, then, we need to show that the variable is a 
pointer, and we have to indicate the type it points to. Here is how it is done 
inC: 

char *pc; 
int *pi; 

/* pc is a pointer to type char */ 
I* pi is a pointer to type int */ 

. The asterisk is used to indicate that pc and pi are pointers, and the usual 
C type names indicate what each can point to. Thus, pc can be assigned the 
addres!ieS of type char values, and pi can be assigned the addresses of type 
int values. 
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The asterisk does more than indicate that pc and pi are pointers; it can 
be used to access the values contained in the pointed-to addresses. Let's 
look at that next 

The Unary * Operator: 

What is *pi? It represents the value stored at the pointed-to location. 
That is, if pi points to x, then we have the following equalities: 

pi == &x 
*pi == x 

/* pi equals the address of x */ 
/* *pi equals the value of x */ 

This "indirect value" operator is a unary operator (one operand), and the 
compiler uses the context to distinguish it from the multiplication operator. 

The operand for* should be a pointer (an address). The expression *pi 
means "go to the indicated address and use the value there." Here is a 
program that clarifies the meaning and use of the * operator: 

main() 
{ 

2; 
10; 

int faces 
int heads 
int *pi; I* pi is a pointer-to-int */ 
pi = &faces; 
printf("pi = %u; 
pi = &heads; 
printf("pi = %u; 
*pi = 30; 

/* assign faces's address to pi */ 
*pi= %d\n", pi, *pi); 

/*now have_ pi point to heads*/ 
*pi= %d\n", pi, *pi)~ 

I* change heads */ 
faces = *pi * 2; 
printf("pi = %u; *pi= %d\n", pi, *pi); 
printf("heads = %d; tails = %d\n", heads, 

Here's the output: 

pi = 106872; *pi = 2 
pi = 106868; *pi = 10 
pi = 106868; *pi = 30 
heads = 30; faces = 60 

136 MACINTOSH C PRIMER PLUS 

faces); 



Let's go through the program step by step. First, the declarations 
establish heads and faces as type int and pi as a pointer-to-int. Next, the 
address of faces is assigned to pi. Both &faces and pi are type pointer-to­
int, since &faces is the address of an int, and an address is a pointer. The 
first printf() statement reveals that the address of faces is 106872 and that 
the value stored at that address (*pi) is 2. Figure 5.2 illustrates these 
relationships. 

Program Statements 
int 
int 
pi 

faces = 2; 
*pi; 

= &faces; 

Address of 
variable faces 

Memory Locations 

~ -----

Value stored in 
variable faces 

Figure 5.2 Pointers and Indirect Values 

Next, the address of heads is assigned to pi. As the associated printf() 
statement shows, pi is the new address, and *pi is the value stored at that 
address. 

Then we have the line 

*pi 30; 
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This means, "go to the location pointed to by pi and change the value there 
to 30". As the subsequent printfO statements show, this leaves the value of 
pi unchanged; it still points to heads. But it does change the contents of the 
pointed-to location. Now *pi and heads are 30. In other words, if pi points 
to heads, then 

*pi = 30; 

has the same effect as saying 

heads = 30; 

More generally, if pi points to a variable, then *pi can be used as a. 
synonym for the variable itself. The last operation in the program illustrates 
the same point, for 

faces = *pi * 2; 

has the same effect as 

faces = heads * 2; 

This is such an important point, we'll repeat it one more time. If pi is a 
pointer variable assigned the address of the variable x, then *pi can be used 
as a synonym for x itself. 

The way we have used pointers so far makes this fact an interesting 
novelty. Sure, we can use *pi instead of heads or faces, but we don't have 
to. We could more easily use heads or faces directly. But what if we have 
a function call in a program using these variables? Because these variables 
are local to the calling program, the called program won't be able to use 
heads or faces directly. But if we pass, say, the address of heads and 
assign it to a pointer in the called program, then the called program can use 
the * operator to alter heads. We take up this approach next. · 
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Pointer Arguments 

Suppose we want a function whose effect is to double a variable. We 
could do that using a return value, but let's try doing it using a pointer 
instead. First, let's construct a calling program: 

main() 
{ 

int x = 5; 
void double it(); /*our new function to be*/ 
printf ( "x is %d and is stored at %u. \n", x, &x) ; 
double it (&x) ; 
printf("x is %d and is stored at %u. \n", x, &x); 

The double_it function takes one argument, the address of an integer. 
It will use this address to modify the contents of the x variable in the calling 
program. How should we set double_ it() up? It should have one formal 
argument, a variable that can pold the address of a type int value; that would 
be a pointer-to-int. Thus the head of our function definition should look like 
this: 

void double it( p) 
int *p; -/* argument p is a pointer-to-int */ 

This informs the compiler that the function expects one argument, the 
address of an int value. Note that p, and not *p, is the pointer. 

What about the body of the program? The program is supposed to 
double x. The function call 

double_ it (&x); 

assigns the address &x to the pointer variable p. As we just discussed, this 
makes *p synonomous with x, so whatever we want done to x we can do to 
*p instead. So to double x, we can use the multiplicative assignment 
operator and say: 

*p *= 2; I* double whatever p points to */ 
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Now we can finish our program and test it: 

main() 
{ 

int x = 5; 
void double_it(); 

printf("x is %d and is stored at %u.\n", x, &x); 
double it (&x); 
printf("x is %d and is stO'red at %u.\n", x, &x); 

I* a function using a pointer */ 
void double_it( p ) 
int *p; 
{ 

*p *= 2; /* double what's stored at p */ 

Running the program, we get this: 

x is 5 and is stored at 106820. 
x is 10 and is stored at 106820. 

Pointers actually do work, especially when used correctly. A 
common error is to pass an ordinary variable instead of an address to a 
function designed to work with pointers. For example, when wishing to 
read in a value of the integer x, we might use scanf("%d", x) instead of the 
proper scanf("%d", &x). What happens if we do the former? Whatever 
value x has (and it may be garbage if x hasn't been assigned a value yet) is 
interpreted to be an address. That address may correspond to, say, part of 
your program code, but most likely it will lie outside the program 
boundaries. In either case, it spells death to your program. 
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A Two-Pointer Example 

We. could have used a return value instead of the pointer approach for 
the last example. Let's look at an example for which a return value will not 
suffice. . · 

A common manipulation in programming is exchanging values 
between two variables. Since two variables are affected, a simple return 
value from a function does not suffice. But we can use a pointer to each 
variable to effect the switch: 

I* a function that exchanges two int values */ 
void exchange(a,b) 
int *a, *b; 
{ 

int temp; 

temp = *a; 
. *a = *b; 

*b = temp; 

/* temporary storage */ 

I* save value pointed to by a */ 
/* move *b to *a */ 
I* move former *a to *b */ 

Let's go over a few points. First, note that the program works with *a 
and *b, not with a and b. This is because we wish to change the values of 
the pointed-to variables; using a and b would mean changing the addresses 
that a and b point to, a meaningless operation in this context. 

Second, note that we need a temporary variable. The problem is similar 
to having a glass of water and a glass of milk. If we wish to exchange the 
contents, we need a third, empty glass in which to place the water before we 
pour milk into the water glass. Here, temp is that glass. Note that we use 
temp, not *temp. The reason is that temp is not a pointer; it already is of 
type int. 

Finally, how do we use the function? Suppose we have int variables x 
and y; what is the proper function call? If your answer is 

exchange (x, y); 
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you need a little more practice. Remember, the arguments to exchange() 
should be pointers. Thus, the correct call is this: 

exchange ( &x, &y) ; 

Pointer Types 

On the Macintosh all addresses, whether of int, char, float, or any 
other type of value, are stored in a 32-bit word. Why, then, do we need to 
distinguish between different types of pointers? 

One reason is that the address is the address of the first byte of the 
value. Thus the address by itself does not tell the compiler how many bytes 
the value takes up. But that information is needed for the * operator. By 
declaring pl to be a pointer-to-char, we inform the compiler that *pl refers 
to a single byte of memory. If, however, we declare p2 to be a pointer-to­
int, we tell the compiler that *p2 refers to four bytes of memory. 

A second reason is that knowledge of the type pointed to is needed for 
"pointer arithmetic." Let's look at that topic now. 

Pointer Arithmetic 

C allows you to to add and subtract values from pointers and to take 
the difference· between two pointers; these operations constitute pointer 
arithmetic. 

Since a pointer is a memory address, it has a numerical value. But 
adding 1 to a pointer is not necessarily the same as adding 1 to the numerical 
address. Let's look at a short program to see what actually happens: 

/* pointer.c -- print results of pointer arithmetic */ 
main() 
{ 

char ch, *pc; /* declare various variables */ 
short stop, *ps; /* and pointers */ 
int oto, *pi; 
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pc = &ch; /* assign values to pointers */ 
ps = &stop; 
pi = &oto; 
printf("pc is %u and pc+ 1 is %u\n", pc, pc+ l); 
printf("ps is %u and ps + 1 is %u\n", ps, ps + l); 
printf("pi is %u and pi+ 1 is %u\n", pi, pi+ l); 
printf("--pi is %u\n", --pi); 

We've set up three variables, then assigned the addresses of these variables 
to pointers of the proper type. Here is the output: 

pc is 106823 and pc + 1 is 106824 
ps is 106816 and ps + 1 is 106818 
pi is 106808 and pc + 1 is 106812 
--pi is 106804 

See how clever C is! Adding 1 to a pointer changes the address by the 
size of the pointed-to type. For instance, adding 1 to a pointer-to-short 
changes the address value by 2, since a short occupies two bytes. This is 
very handy when you have an array of values. An array is a bunch of 
adjacent memory units all of the same type, so adding 1 to a pointer moves 
it to the next member of the array. We'll get into that topic in Chapter 6. In 
the meantime, note that if the program doesn't know what type a pointer 
points to, it won't know how much to add to the address when 1 is added to 
the pointer. 

Another point to know is that in Hippo C, the difference between two 
pointers is type int. Two pointers must point to the same type if one is to be 
subtracted from the other. The result is the actual address difference divided 
by the number of bytes in the pointed-to type. 

Finally, be aware that when you add a number to a pointer, there is no 
guarantee, other than your programming, that the new address actually 
points to an object of the same type you started with. For example, in the 
preceding program, after applying the decrement operator, the value of pi is 
106804. We could then say this: 

pi += 3; 
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This would add 3 int-sized chunks, or 12 bytes, to pi, making its value 
106816, which is the address of the short variable stop. Or you could 
subtract 18000 from pi and have it point Mac-knows-where. The moral is . 
that it is your responsibility to see that pointer values make sense. 

Now let's turn from pointers to a discussion of different storage 
schemes for variables. 

Scope: Local and Global Variables 

So far we have discussed arguments, return values, and pointers as means 
for interfunction communication. There is one more approach, the use of 
"global" variables. A global variable is one that is shared by more than one 
function. Thus, when it is changed by one function, it is changed for all the 
functions that share that variable. 

If this is possible, why bother with arguments? Just make all the 
variables global, and all functions can access whatever variables they need. 
This approach may sound attractive, but it usually leads to all sorts of 
problems in larger programs. The programmer forgets which variable is 
what, or uses the same name for two different uses, or devises a subroutine 
that inadvertently changes the value of an innocent variable, and so on. 
Experience has shown conclusively that it is much better to use local 
variables whenever possible. That is why C uses local variables by default. 
Yet sometimes a program will need a shared· set of data of the sort global 
variables can provide, so C does allow for their use. In fact, C has several 
different storage classes for variables. The storage class determines the 
scope of a variable (which functions know of it) and the persistence of a 
variable. · 

The four storage classes are automatic (local) variables, external 
(global) variables, static (persistent) variables, and external static 
(global to a single file) variables. The exact storage class is determined by 
where a variable is declared and by the use of certain keywords. We'll look 
at the four classes in tum. 

Automatic Variables 

All the variables we've used so far have been automatic variables. 
This means that they are local to the function in which they are defined. It 
also means that storage for the variable is allocated each time the containing 
function is called and released each time the function terminates. Thus, if a 
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function is called twice in a program, the automatic variables it uses are 
undefined between calls. A function using only automatic vanables has no 
memory of what happened the preceding call. 

What qualifies a variable to be automatic? It is automatic by default if it 
is a function argument or if it is defined within the body of a function. We 
can explicitly declare such a variable to be automatic by using the keyword 
auto in the variable definition: 

auto int goo; 

Since it would be an automatic variable by default anyway, the main use of 
this keyword is documentation. The need for this will be clearer after we 
discuss the external storage class. 

C does provide for variables whose scope is even more.restricted than 
a single function. Up to now, we have declared variables after the opening 
brace of a function. It is legal, however, to declare variables at the begin­
ning of any statement block. (A statement block, recall, is a group of 
statements enclosed within braces.) The scope of such a variable is 
restricted to the block in which it is declared. We won't use this feature. 

The Register Storage Class The register variable is a special case of 
automatic variable. The difference is that a regular automatic variable is 
stored in the computer memory, while a register variable is kept in a register 
in the Central Processing Unit. This speeds up processing the variable. To 
request a register variable called quickx, do this: 

register int quickx; 

As indicated, this is just a request. There are a limited number of registers, 
so none may be available. In that case, the variable is made into a regular 
automatic variable. We won't use this feature, but we mention it so you 
won't be shocked if you see it somewhere. 
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The Ex(ernal Storage Class 

To create a variable that can be shared by several functions, place the 
variable declaration outside of, or external to, all functions. All functions in 
the same file following the declaration will have access to that variable. 
Here is an example: 

int x = 27; 

main() 
{ 

/* an external variable */ 

printf("main() knows that xis %d.\n", x); 
fap () ; 

fap () 
{ 

printf("fap(), too, knows that xis %d\n.", x); 

And the output: 

main() knows that xis 27. 
fap(), too, knows that xis 27. 

If we had placed the declaration between main() and fap(), only fap() would 
know of x, for the compiler does not look ahead for external definitions 
unless instructed to do so. We'll get to how to do that soon. 

What happens if we declare, inside a function, an automatic variable 
with the same name as an external variable? Then the local definition 
overrides the external definition within that function. A slight alteration of 
the last example illustrates this point: 

int x = 27; I* an external variable */ 

main() 
{ 

int x = 42; /* an automatic variable */ 
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printf ("main() knows that x is %d. \n", x); 
fap (); 

fap() 
{ 

printf("fap(), too, knows that xis %d\n.", x); 

And the output: 

main() knows that x is 42. 
fap(), too, knows that xis 27. 

As you can see, main() uses the local x, while fap() uses the global x. 

To document your programs better, you can use the keyword extern 
to identify those variables used in a function but defined externally. That 
is, a better way to write the initial scope example would be this: 

int x = 27; 

main() 
{ 

I* creates x */ 

extern int x; /* use the external x */ 

printf ("main() knows that x is %d. \n", x); 
fap (); 

fap () 
{ 

extern int x; /* use the external x */ 

printf ( "fap () , too, knows that x is %d\n. ", x) ; 

Using the extern keyword makes your intentions clear. And if you 
want to use a local variable with the same name as an external variable, you 
can use the keyword auto to emphasize that you are deliberately reusing a 
variable name. 
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Note that the keyword extern is only used to identify a variable already 
defined elsewere. Do not use it in the initial definition of the variable. 

One further effect of using the keyword extern is that the compiler will 
then search the whole file for an external definition, so the definition could 
come later in the file. 

One minor point: if you simply declare a variable to be extern instead 
of extern char or extern int, etc., the compiler will assume you mean extern 
int. 

Because an external variable is defined outside of any function, it 
exists from the time the program starts to when the program ends-unlike 
automatic variables, which come and go as individual functions are called 
and terminated. 

The Static Storage Class 

Some functions benefit from knowing what they did the preceding call. 
A random number generator, for instance, has to move along one more 
number from the preceding call. Otherwise it would always return the same 
random number, which is not that useful. Using the static keyword in a 
declaration causes the variable and its value to be retained in memory 
between function calls. Here is an illustrative, if not illustrious, example: 

main() 
{ 

int ct; 

for ( ct = 0; ct < 4; ct++) 
statictest(); /*call function 4 times*/ 

statictest () 
{ 

int fade = 1; 
static int nofade 

I* an ordinary variable */ 
1; /* a static variable */ 

printf("fade = %d, nofade = %d.\n", fade++, 
nofade++); 
} 
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Here is the output: 

fade = 1, nofade 1. 
fade= 1, nofade 2. 
fade = 1, nofade = 3. 
fade = 1, nofade = 4. 

Notice how the increment operator increments fade and nofade after 
each printing, but only nofade "remembers" that fact on the next function 
call. Another point to note is that if a static variable is initialized in the 
declaration statement, that initialization takes place only once. Automatic 
variables, if initialized, get initialized every time the function is called. 

A static variable defined within a function, then, combines the local 
nature of the automatic variable with the persistence of the external variable. 

The External Static Storage Class 

The keyword static can be applied to externally defined variables, too. 
Since external variables already last the duration of the program, this might 
seem to be gilding the lily. However, in this context, the keyword static 
plays a role other than extending the lifetime of a variable. When used with 
an external variable, static limits the scope of the variable to a single file. 
Regular external variables, on the other hand, can be shared over several 
files. Clearly, we need to discuss multiple-file programs now. 

Multiple-File Programs 

Up to now we have assumed that the entire program is contained in 
one file. But it is not necessary nor even always desirable to use just one 
file. Any one function should be confined to one file, but a multifunction 
program can spread the functions through several files. Sometimes this has 
to be done because of size limitations to the largest compilable chunks of 
program. Or it can be a matter of convenience; one file can hold an 
integrated package of functions that you use in several programs. 

How do you compile programs spread over more than one file? In 
general, each file is compiled individually, then the results are "linked" -
together into a single program. In Hippo C, use the pull-down Programs 
menu to identify the files to be used, and Hippo C takes care of the rest. 
We won't go into the details of the process. Instead, let's look into the 
question of variable scope in multiple-file programs. 
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Suppose we have two files. The first looks like this: 

I* the file scopea.c */ 
int world = 3; I* an external variable */ 
main() 
{ 

printf("In main(), world 
notmain(); 

The second looks like this: 

I* the file scopeb.c */ 
notmain () 
{ 

%d.\n", world); 

printf("In notmain(), world =%d.\n", world); 

Can these two files be compiled successfully together? No. The 
problem is that the variable world is known only in file scopea.c and not in 
file scopeb.c. But this need not be the case. We merely need to redeclare 
world in the second file, using the keyword extern. We can do this either 
inside the notmain() function or outside of it. Thus, either of the following 
two versions will compile successfully with scopea.c: 

/* the file scopeb.c, version 1.1 */ 
notmain () 
{ 

extern int world; 

printf("In notmain(), world =%d.\n", world); 

/* the file scopeb.c, version 1.2 */ 
extern int world; 

notmain () 
{ 

printf("In notmain(), world =%d.\n", world); 
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Either version informs the compiler to search elsewhere for the original 
definition of world. 

External variables are often used in large, multifile programs. 
Sometimes, one of those files will need a set of variables private to that file 
but global to all the functions within that file. That is when the external static 
storage class is used The file format could look like the following: 

static short flags; 
static int gl, g2, g3; 
extern int bigflags; 

void function!() 

int function2() 

void function3() 

I* global to this file */ 
I* ditto */ 
I* defined ·in another file */ 

As indicated, the variables flags, gl, g2, and g3 are shared by and 
restricted to the functions in the file, while bigflags comes from another file. 

In short, automatic and local static variables are limited in scope to a 
single function. An external static variable is limited in scope to a single file, 
and an external variable can have its scope extended to several files. The 
keyword extern must be used to declare a variable used in one file but 
defined externally in another file. The original definition does not use the 
extern keyword. 

Recursion 

One notable property of a C function is that it can call itself. This is called 
recursion. Of course, if a function calls itself, then the new call will call 
itself again, and so on, ad infinitum, unless the function incorporates some 
test to terminate the calling. 

Each time the function is called, a new set of variables is created for it, 
so the x of one call is not the x of a subsequent recursive call. Here is a 
short sample that illustrates how recursive functions behave. 
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main() 
{ 

int i; 
void recur(); 

printf("Enter an integer:\n"); 
scanf("%d", &i); 
recur(i); /*call a recursive function*/ 

void recur(n); 
int n; 
{ 

printf("Going in: %d\n", n); 
if(n>O) 

recur ( n - i' ); /*the recursive call */ 

Here is an annotated sample run: 

Enter an integer: 
2[RETURN] 
Going in: 2 <-Level 1 call 
Going in: 1 <-Level 2 call 
Going in: 0 <-Level 3 call 

Is it clear what is happening? Here is a summary. When the recur() 
function is first called (Level 1 ), memory is alloted for the variable n, and 
then the value 2 is assigned ton. Next, the value of n is printed. Then, since 
n is greater than 0, the recur() function is called again (Level 2), this time 
with an argument of 1 less than before. A new, distinct n is created and 
assigned the value 1. It, too, is printed, and recur() is called again (Level 3). 
One more n is created and printed. However, at this level, the if test fails, 
so there are no more recur() calls. 

The program doesn't stop when the third level call to recur() ends. 
Whenever a function terminates naturally, control returns to the function that 
called it. The calling function then resumes its progress at the statement 
following the function call. Thus, when Level 3 ends, control returns to 
Level 2. But the function call was the last statement of Level 2, so it, too, 
comes to an end, returning control to Level I, which then returns control to 
main(). The important point here is that in a recursive chain, each call to a 
function is balanced by a return to the calling function. 
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Is that perfectly clear? See if you can predict what the following 
modification of our program will print; you may have to master the desire to 
look ahead at the output: 

main() 
{ 

int i; 
void recur(); 

printf("Enter an integer:\n"); 
scanf("%d", &i); 
recur(i); 

void recur(n); 
int n; 
{ 

printf("Going in: %d\n", n); 
if ( n > 0 ) 

recur ( n - 1 ) ; 
printf("Coming out: %d\n", n); /*the modification*/ 

Suppose we once again enter 2. The program will start out as before, 
creating and printing a series of variables (all named n) until a 0 value is 
reached. At that point, the final call to recur() will skip the if statement and 
proceed to the final printf() statement. Thus, it prints the 0 value twice. 
Then control returns to Level 2. This level resumes at the statement 
following the function call; that would be the final printf() statement. Thus, 
Level 2 will print out its n value, which is still 1. Control passes to Level 1, 
which prints a 2, then control passes to main(), at which point the program 
ends. 

Here is an annotated sample run: 

Enter an integer: 
2[RETURN] 
Going in: 2 
Going in: 1 
Going in: 0 
Coming out: 0 
Coming out: 1 
Coming out: 2 

<-Level 1 call 
<-Level 2 call 
<-Level 3 call 
<-Level 3 call 
<-Level 2 call 
<-Level 1 call 

FUNCTIONS 153 



You should remember these two points about recursive calls: each level 
of call maintains its own variables, and each level, when it finishes, returns 
control to the preceding level. Figure 5 .3 offers a visual presentation of 
these ideas. 

main () 
{ 

int i; 
void recur () ; 
printf ("Enter an integer: \n"), 
scanf("%d", &i); 
recur(i);~--~-

Level O 
i = 1 

void recur (n); Level 1 
int n; 

printf("Going in: %d\n", 
if (n > 0 ) 

recur ( n - 1 ) ; 
~--- printf ("Coming out: %d\n" 

i =2 
n. = 2 n); · 1 

n) I 

.__-+-1 void recur (n); 
---- int n; 

printf("Going in: %d\n", 
if (n > 0 ) 

n); 

Level 2 

i =2 
n1 =2 
n2 =1 

recur ( n - 1 ); 
printf ("Coming out: %d\n" n), 

void recur (n) ; 
int n; 

printf ("Going in: %d\n", n); 
if (n > 0 ) 

recur ( n - 1 ); 
printf("Coming out: %d\n", n), 

Figure 5.3 Recursive Calls 

Level 3 
i =2 
n1 =2 
n2 =1 
n =0 

3 

Recursive programming is useful for certain situations. It raises the 
possibility, however, of running out of memory, for each recursive call 
generates a new set of function variables while the old sets still remain in 
memory. 
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Macros 

One advantage of functions is that they can be used for code segments that 
are used repeatedly in a program. By placing such code in a function 
instead of "in-line", we need type it but once. Furthermore, only one copy 
is stored in memory, so functions reduce the amount of memory needed to 
hold a program. However, using functions instead of in-line code increases 
the running time of a program because it takes time to shift to the function, 
create its variables, and return to the calling program. 

C offers an alternative method for handling repetitive code, one that 
produces in-line code with its faster run-time and greater memory 
requirements. The method is to use the preprocessor #define directive to 
create "macros". The macro gives us a shorthand way to express a 
functional relationship. For example, suppose we have a program that often 
requires the absolute value of a quantity. Earlier in this chapter we saw 
three ways to write a function for this purpose. Here's the third version: 

abs (x) 
int x; 
{ 

return x < 0 ? (-x) :x; 

Here is how we would set up a macro to perform the same task: 

tdefine ABS(X) ( (X) < 0 ? -(X) : (X) ) 

The use of uppercase is common usage, but it isn't mandatory. This 
example is similar to the past #defines we've used, but it adds an argument 
to the definition. When the macro is used, this argument is replaced literally 
by the actual argument appearing in the program. Note: there must be no 
spaces in the first expression following the #define. That is, don't use an 
expression such as ABS( X ). Why not? We'll get to that soon. 
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We then can use ABS() much the same as we would use a function, 
providing it with arguments which are then used in place of X. (We'll come 
back to the multitude of parentheses later.) For examples, we can have 
program lines like the following: 

x = ABS (y); 
z =ABS( q*r - 3); 

The mechanism, however, is quite different from that of a regular C 
function. For instance, if we use the function call 

z =abs ( q*r - 3); 

then, during run time, the expression q*r - 3 is evaluated, and the value is 
passed on to the abs() function. But if we use the macro call 

z =ABS ( q*r - 3); 

then, prior to compilation, the preprocessor replaces the macro with the 
corresponding code. The code actually submitted for compilation for this 
example would be this: 

z = ( ( q* r - 3 ) < 0 ? - ( q* r - 3 ) : ( q * r - 3 ) ) ; 

Every occurrence of X in the macro definition is replaced with the 
expression q*r - 3. That code appears in the program at the same location 
previously occupied by the macro. Thus, a macro is not a function call; 
rather, it is shorthand for in-line code. 
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M aero Oddities 

The fact that a macro results in a substitution rather than a function call 
necessitates all the parentheses we used in the above example. To take a 
simpler example, suppose we used this macro definition: 

tdefine SQR(X) X*X 

Now look at some of the possible substitutions resulting from using 
this macro: 

x = SQR(5); 
x = SQR(y+2); 
x = z/SQR(y); 

-> x = 5*5; 
-> x = y+2*y+2; 
-> x = z/y*y; 

Only the first example produces the required result! For the other two, 
operator precedence warps the intended meaning. The safest thing to do to 
avoid this sort of problem is to use the following rules: 

1. Enclose each instance of an argument in parentheses. 

2. Enclose the entire defining expression in parentheses. 

Thus a better definition of SQR(X) is this: 

tdefine SQR (X) ( (X) * (X) ) 

You may wish to check that this handles the earlier examples correctly. 

Another point is to avoid using the increment operators when using a 
macro. For instance, suppose we used this: 

y = SQR(x++); 
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This would be translated to the following: 

y = ( (x++)*(x++)); 

Ugh! Not only does x get incremented twice instead of once, but one 
incrementation takes place between evaluating expressions, so that the actual 
value produced is x*(x+l). 

The prohibition against spaces in the first expression following #define 
also stems from the way substitution works. Suppose we defied advice and 
made this definition: 

#define SQR( X) ((X)*(X)) 

and then made this call: 

y = SQR ( z ) ; 

A #define directive takes the first contigious group of nonspace 
characters as the pattern to be substituted for. The rest of the line becomes 
that which is substituted. Thus, our attempt would produce this butchered 
code: 

y = X ) ((X) * (X)) z); 

Only the SQR( portion is replaced. 

Another macro oddity is that they are typeless. Our ABS() macro can 
be used with floating-point or with integer variables. The type of the 
expression depends on the type of the argument present when the macro is 
used. 
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As a final oddity, macro argument symbols that appear inside of 
double quotes are substituted for by the preprocessor but not during run­
time. Consider this macro: 

#define PR(X) printf("The value of X is %d\n", X) 

Suppose we use this in a program: 

y = 5; 
PR(y); 

The substituted code for the macro is this: 

printf("The value of y is %d\n", y).; 

Running the program produces this output: 

The value of y is 5 

The value 5 was used for the second y, but the first y, being in double 
quotes, remained a literal y. 

Multiple Arguments 

Macros allow for multiple arguments. Just provide an argument list 
with the arguments separated by commas and without spaces. For example, 
we can define a maximum value macro this way: 

#define MAX (X, Y) ( (X) > (Y) '? (X) (Y) ) 

Note the use of parentheses. 
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Summary 

When a program is broken into separate modules, communication between 
the modules is usually necessary. C provides three mechanisms for 
communication between functions. The first is the argument list of a 
function. This is a list of local variables created when a function is called. 
These variables (the formal arguments) are then assigned the values from 
the corresponding expressions that constitute the actual argument list in the 
function call. 

The argument list mechanism is a one-way communication channel 
from calling function to called function. However, by using addresses as 
actual arguments and pointer variables as formal arguments, we can 
construct functions that manipulate values in the calling program. 

The second communication channel is the return mechanism. It, too, 
is a one-way channel, providing for a value to be sent back to the calling 
program. Only one value can be returned, and the type of the returned value 
is the type of the function. Functions are assumed to be type int by default. 
If a function is of some other type, this type must be declared in the function 
definition and in the calling program. Functions that do not return a value 
may be declared type void. 

The third communication device is to establish global, or shared, 
variables. An external variable is one declared outside of any function. Its 
scope may be extended to several files. A static external variable can be 
accessed by all the functions in a single file. Variables declared within a 
function are, by default, automatic, or local variables and are limited in 
scope to the function containing them. A local declaration overrides an 
external definition within the confines of the function. 

If a function is to alter the value of a variable, it should be passed the 
address of the variable. The corresponding formal argument in the function 
should be declared as a pointer to whatever type the original variable is. A 
pointer variable is a variable whose value is an address. If p is a pointer, 
then *prefers to the value stored at the indicated address. Thus, if pis, say, 
a pointer-to-int, then *p can be used as an int. 

Pointer arithmetic allows you to add to or subtract from a pointer. 
Adding 1 to a pointer increases its value by the size of the pointed-to type in 
bytes. A pointer can be subtracted from a pointer of the same type. The 
actual difference in bytes is divided by the number of bytes in the pointed-to 
type. 
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C functions are all on the same level; that is, no function is defined 
inside of another. Thus, any function can call any other function. Even 
main() can be called, should you care to try it. Also, a function can call 
itself. This sets up recursion. A function designed to call itself should also 
be designed to have some sort of mechanism to halt the sequence of 
recursive calls. 

The C preprocessor offers a macro facility that is used much like a 
function. Instead of producing function calls, however, a macro results in 
code being substituted for the macro before compilation. Macros run faster 
than functions but may require more storage if used several times. 
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6 
Arrays and Structures 

In this chapter you will learn about: 

• Defining and using arrays 
0 Pointers and arrays 
• Arrays as function arguments 
• Defining and using structures 
• Functions and structures 
• Quickdraw structures 

A program is a blend of action and information. In C, the operators generate 
the action, and various forms of data structures store the information. The 
simplest way to store data is to use a single-valued variable, as we have 
been doing all along. We'll call this data form a simple variable. Often, 
however, a program deals with a wealth of related data, and it becomes 
desirable to store several items of information in a single data structure of 
some sort. In this chapter, we will look at two C forms for storing data: the 
"array" and the "structure". 

There is a bit of terminology we should mention. The term "data 
structure" is used in computer science to denote a variety of data forms, 
including the array. C uses the word "structure" to denote a particular 
variety of data structure. This makes the use of the word "structure" a bit 
ambiguous in C; however, the context should make the meaning clear. 

An array is a device for storing several items of the same data type in 
adjacent memory locations. For instance, if we were developing a program 
for W ormtech, Inc., we might use an array to store the monthly worm sales 
over a three-year period. 

A C structure is also used for storing several items of data. In this 
case, they need not be of the same type. Typically, a structure is used to 
hold several diverse items of information pertaining to the same entity or 
object. For example, a payroll program might use a structure to store the 
name, social security number, pay rate, and other such information about a 
particular employee. The C structure corresponds closely to the Pascal 

163 



record. The Toolbox depends heavily upon structures, so understanding 
them is essential to programming for the Macintosh. Indeed, structures 
provide the key to digging more deeply into the Toolbox,which we will do 
in this chapter. We'll use several Quickdraw routines based on structures. 

These basic forms can be extended. We can use arrays of structures, 
structures containing arrays and other structures, arrays of arrays, and so 
on. But before getting too carried away, let's explore the fundamentals first. 

The Array 

An array consists of a sequence of identical storage elements. We can have 
an array of ints, an array of chars, an array of pointers-to-char, and so on. 
Each individual unit within the array is an "element" of the array. 

To create an array, we declare it, indicating the number and the type of 
elements. For instance, to create an array of 12 ints, we would use this 
declaration: 

int tapesales[12]; /* tapesales is an array of 
12 ints */ 

The square brackets announce that the identifier is an array name; the 
number within the brackets gives the number of elements. You must use 
square brackets; parentheses or braces will not do. This particular 
declaration instructs the computer to set aside 12 contigious locations for 
storing ints. 

We need a method to refer to the individual elements of an array. One 
way is to use the "index", or "subscript", notation. In this notation 
tapesales[O] would be the first element of the array, tapesales[l] would be 
the second element, and so on. Note that the numbering always starts with 
0. Thus, the last element of a 12-element array has a subscript of 11. Figure 
6.1 shows the correspondence between array elements and subscripts. 
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int florp[6]; 
f----- Each integer array element 

requires 4 bytes 

r """ 

F orp[O] F orp[1] Florp[2] Florp[3] Florp[4] Florp[S] 

Figure 6.1 Array Elements 

Each element in an array essentially is a variable of the array type, int 
in this case. Thus we can use, say, tapesales[3] as an argument to a 
function that takes an int argument Or we can make assignment statements 
like this: 

tapesales[8] = 341; 

Arrays are often used with for loops, with a loop variable serving as an 
index for the array. For instance, this programette would serve to read data 
into a waiting array and then print the data back: 

main() 
{ 

int tapesales[12]; 
int index; 

printf("Please enter the monthly tape sales for last 
year:\n"); 

for ( index = 0; index < 12; index++) 
scanf("%d", &tapesales[index]); 

printf("Okay, this is what you entered:\n"); 
for (index = O; index < 12; index++) 

printf("%4d ", tapesales[index] ); 
putchar ('\n'); 

Each of the two loops processes each element of the tapesales array in 
turn. Note that we can use the address operator with an array element just 
as with a simple int variable. That is, &tapesales[5] is the address at which 
the sixth element is stored. 
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We could have placed the scanf () and printf() statements in the same 
loop. In that case, each figure would be echoed as it was entered. With the 
present form, the figures aren't reprinted until all the entries have been 
made. As a matter of programming method, it is better to place distinct 
activities in separate sections of code. That way, you can modify one aspect 
without getting involved in the other. 

Here is a sample run: 

Please enter the monthly tape sales for last year: 
22 27 36 33 44 12l[RETURN] 
88 92 60 102 101 143[RETURN] 
Okay, this is what your entered: 

22 27 36 33 44 121 88 
143 

92 60 102 lOl:J 

Remember, the scanf() function skips over spaces and newlines, so we 
can spread the input data over as many lines as we like. 

Incidentally, don't take this example as a model for user-friendly 
interactive input. Typing an incorrect character anywhere along the 12-
number input sends the program into a tizzy. But we are illustrating arrays 
now, not input-verification techniques. 

An easy error to fall into is forgetting that the maximum index size is 1 
less than the array size and using a test such as index<= 12. Fortunately, 
we did not make that mistake. Because the final index of an array is one less 
than the array size, the correct condition is index < 12. Another possibility 
is index <= 11, but that makes it less obvious that we are working with 12 
elements. 

Rather than using a number like 12, however, try using a defined 
constant for the arrc;.y size and in the loop controls. One advantage is that 
you can test the program for a small array size. Once you work the bugs 
out, you then can redefine the constant once and not need to go through the 
whole program changing array sizes and loop limits. Here is a short 
program using a defined constant for the array size; it also illustrates that we 
can access the elements of an array in any order we want. 

#define SIZE 10 
main () 
{ 
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char chs[SIZE]; 
int i; 
printf("Please enter %d characters:\n", SIZE); 
for ( i = 0; i < SIZE; i++) 

chs[i] = getchar(); /*assign input to 
successive array members */ 

printf("\nHere they are in reverse order: "); 
for ( i = SIZE - 1; i >=0; i--) 

putchar(chs[i]); 
putchar ( ' \n' ) ; 

Here is a sample run: 

Please enter 10 characters: 
ostensible 
Here they are in reverse order: elb.isnetso 

Once again, note that an array member (here chs) is used just like a 
simple variable of the same type (char). 

A"ays and Pointers 

In C, there is a strong connection between arrays and pointers, and C 
programmers often use pointers to process arrays. The connection begins 
with the fact that the name of an array also serves as a pointer to the first 
element of the array. Thus, for the tapesales array, we have the following 
identity: 

tapesales == &tapesales[O] 

Recall that the address operator(&) yields the address of its operand; thus 
&tapesales[O] is the address of the array element tapesales[O]. 

That an array name is a pointer to the array is the most important aspect 
of the array-pointer connection to remember. As we'll see, functions that 
manipulate an array typically require a pointer to the array. Calls to these 
functions, then, would use array names (without the & operator) as actual 
arguments. 
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One consequence of this property of an array name is that we can use 
pointer notation instead of array notation to describe an array. Let's see 
how this works. We know tapesales is a pointer to the first array element. 
By using pointer addition, we can obtain pointers to the other elements. 
Recall that adding 1 to a pointer increases the actual address size by the size 
of the type pointed to. Since tapesales points to type int, tapesales + 1 will 
point 4 bytes (for a Hippo C int) farther down the line. That's the next 
element of the array! That is, tapesales + 1 points to tapesales[l]. In 
general, tapesales +index is a pointer to tapesales[index]. We can express 
that relationship by this equality: 

tapesales +index== &tapesales[index] 

If we use the indirect value operator to obtain the value a pointer points 
to, we can re-express the preceding relationship this way: 

*(tapesales +index) == tapesales[index] 

In other words, we can use pointers instead of array notation to access array 
members. 

In this example, we had to use parentheses because the * operator has 
higher precedence than +. Suppose we leave them off; what does the 
following expression mean? 

*tapesales + 3 

Well, *tapesales is the value of the first element, so this means add 3 to the 
value of the first element With parentheses, we were adding to the address, 
not to the value. Figure 6.2 illustrates these points. 
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tapesales~ 

100244 123 tapesales[O] 

100248 211 tapesales[1] 

100252 506 tapesales[2] 

100256 423 tapesales[3] 

100260 319 tapesales[4] 

Pointer addition 
followed by 
indirect value 

Indirect value 
followed by 
ordinary addition 

tapesales == 100244 
tapesales + 3 == 1 0256 
* (tapesales+3) == 423 

tapesales == 100244 
* tapesales == 123 
* tapesales + 3 == 126 

Figure 6.2 Pointers and Arrays 

As an exercise, let's rewrite the last program, this time using pointer 
notation instead of array notation. All we need to do is replace each 
reference to tapesales[index] with *(tapesales+index) and each reference to 
&tapesales[index] with tapesales+index. Thus the program would look like 
this: 

#define MONTHS 12 
main() 
{ 

int tapesales[MONTHS]; /*still use array notation to 
declare */ 

int index; 

printf("Please enter the monthly tape sales for last 
year:\n"); 

for ( index = O; index < MONTHS; index++) 
scanf("%d", tapesales +index); 

printf("Okay, this is what you entered:\n"); 
for (index = 0; index < MONTHS; index++) 

printf("%4d ", *(tapesales +index) ); 
putchar ( ' \n' ) ; 
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It's instructive to know that we can use pointer notation instead of 
array notation, but is it useful? After all, tapesales[3] is easier to type and 
simpler to interpret than the equivalent *(tapesales + 3). One point to keep in 
mind is that C uses pointers itself; during compilation, the array forms are 
converted to pointer forms. Thus, using the pointer forms may make you 
feel like an insider. A second point is that many C programmers prefer 
pointers, so that if you wish to read their programs, you need to know 
about the pointer forms. A third point is that you do need to use pointers in 
one form or another when you use functions to process arrays. 

Arrays and Functions 

Suppose we want a function that does something with an array. Can 
we pass an array as an argument? Not exactly. In C, each argument must 
be a single value. If you wanted a function to process an array with 365 
elements, you could use 365 separate arguments, but that is no fun at all. Is 
there a simpler way to represent an array? Certainly there is; you can 
describe an array by providing a pointer to the first element of the array (you 
can use the array name for that!) and by providing the number of elements. 
Then the function can start at the first address and keep going until all the 
elements are processed. 

Once again, let's resort to a simple example to illustrate the mechanics. 
Let's create a daytosec() function that converts an array of day values to an 
array of second values. The function needs two arguments, a pointer to the 
first array element and the number of elements. Suppose the original array 
is of type int; then the first argument will be a pointer to int. The number of 
elements can be type int, although unsigned short might be more 
appropriate, unless you anticipate enormous array sizes. Anyway, the 
function can look like this: 

void daytosec( parray, n) 
int *parray; /* pointer to first array element */ 
int n; /* number of elements in array */ 
{ 

int index; 

for ( index = O; index < n; index++) 
*(parray +index) *= 86400; 
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The key line here is 

*(parray +index) *= 86400; 

Let's paraphrase it. Go to the location pointed to by parray. Move index 
locations further over. Find the number there, multiply it by 86400, and 
assign this new value to the same location. By letting index vary, the 
function performs this operation upon each array member in turn. 

Note the convenience offered by the multiplicative assignment 
operator. The statement we used is much more compact than the following: 

*(parray +index) = *(parray +index) * 86400; 

True, the expression *(parray + index) is odd-looking; just keep in 
mind that parray + index is just a way to point to the successive members of 
the array, so the complete expression indicates the successive values stored 
in the array. Indeed, if you feel resistant towards using pointers, you can 
write the program using array notation instead: 

void daytosec( parray, n) 
int parray[]; /* parray is a pointer to first array 

element */ 
int n; /* number of elements in array */ 
{ 

int index; 

for ( index = 0; index < n; index++) 
parray [index] *= 86400; 

This may look different, but it is the same program! The declaration 

int parray[]; 

is just an alternative way of saying parry is a pointer-to-int. Although it uses 
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brackets, no size value is enclosed. This form is used instead of 

int *parray; 

when you wish to emphasize to a reader that the integer that parray points to 
is an element of an array. As far as the compiler is concerned, however, the 
two forms are equivalent. Similarly, we've already seen that parray[index] 
and *(parray +index) are equivalent, so the two programs are the same. 
Indeed, you can switch the parray declarations between the two versions 
without affecting the workings of the function. 

We will usually use the array notation because it seems more obvious, 
but be aware that when you use that notation, you are really using pointers 
in a disguised form. 

It is important to realize that neither version creates a new array. Both 
use pointers to let the function manipulate the contents of the original array. 
If you want the function to work on a copy of the original array, you will 
have to program the function to create a copy. That involves using memory 
management functions, so we won't get into that now. 

Another important point is that the approach we have used (passing an 
array pointer and an array size) allows the function to work on arrays of 
different sizes. This makes C different from (and most would say superior 
to) standard Pascal, in which a given procedure works only for arrays of 
one size. (In Pascal, arrays of different sizes actually represent different 
types, and Pascal is very strict about not letting you mix types.) 

Let's try out one version so that we can see an actual function call. For 
checking the function, it would be convenient to start off with an initialized 
array so that we don't have to type in values. Because array initialization is a 
new topic, we will show the example in the next section. 
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Array Initialization 

A simple variable can be initialized when declared, using statements 
like this: 

int planets = 9; 

Not all storage classes of arrays, however, can be initialized similarly. In 
particular, automatic arrays (the default type for in-function declarations) 
can not be initialized. But the other classes can be. To test our function, we 
will use a static array so that the array can be initialized. The following 
example shows how that is done. 

*define DTOS 86400 
*define SIZE 4 
main() 

I* number of seconds in a day */ 
I* elements in test array */ 

{ 

int cheese; /* cheese batch */ 
static int ages[SIZE] = {10, 24, 15, 60}; 

I* declaring and initializing an array */ 
void daytosec(); 

printf("The cheese ages in days are\n"); 
for( cheese = 0; cheese < SIZE; cheese++) 

printf ("Batch %d: %d days\n", cheese+l, I 
ages[cheese]); +J 

daytosec(ages, SIZE); /*pointer and 

printf("The cheese ages 
for( cheese = O; cheese 

printf("Batch %d: %d 
ages[cheese]); 

element number */ 
in seconds are\n"); 
< SIZE; cheese++) 
secs \n", cheese+ 1, ~ 

} 

void daytosec( parray, n) 
int parray[]; /* parray is a pointer to first array 

element */ 
int n; /* number of elements in array */ 
{ 

int index; 

for ( index = O; index < n; index++) 
parray [index] *= DTOS; 
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Notice the actual arguments: the array name ages is a pointer to the 
array, and SIZE is the number of elements, both as required by the 
function. We use cheese+ 1 in the printout so that the zero subscript will 
correspond to batch 1. Here is the output: 

The cheese ages in days are 
Batch 1: 10 days 
Batch 2: 24 days 
Batch 3: 15 days 
Batch 4: 60 days 
The cheese ages in seconds are 
Batch 1: 864000 secs 
Batch 2: 2073600 secs 
Batch 3: 1296000 secs 
Batch 4: 5184000 secs 

The form we've used for initializing nonaut()matic arrays is this: 

type arrayname [size] = {list}; 

Here list represents a list of comma-separated values. The list can have 
fewer entries than the array has elements, but not vice versa. Elements of 
nonautomatic arrays that are not explicitly initialized get initialized to zero. 

C allows a lazy form of initialization that looks like this: 

static short sizes[) = {30, 32, 34, 36, 38}; 

You can leave out the array size when you initialize an array, and the 
compiler will match the array size to the number of initialization entries. In 
the above case, sizes would be made into a 5-element array. 
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If you need to assign values to an automatic array, you can have the 
program read them in or else you can assign values to each element 
individually. For instance, this fragment creates an automatic array and 
initializes its elements to 0: 

int lettercounts[26]; 
int i; 

for (i = 0; i < 26; i++) 
lettercounts[i] = O; 

Copying Arrays 

In Pascal, if orig and workcopy are two arrays of the same type (which 
in Pascal also implies arrays of the same size), you can copy one entire 
array to another with a single Pascal statement: 

workcopy := orig 

Can the same be done in C? No, it cannot. In C, the name of an array is a 
pointer constant. A constant can't be assigned a value (try sneaking 
3 = 4+2; by the computer), and even if it could, you would wind up with 
two pointers to the same array rather than two arrays. 

We raise this point so that those of you with Pascal backgrounds don't 
try something foolish. Also, it gives us the opportunity to get more practice 
with functions using arrays. So let's write a function that copies one array 
into another. The function will assume that both arrays already have been 
created. 

First, what arguments would this function need? It should have a 
pointer to each array, of course, and it should have the number of elements 
to be copied. That's all that's needed, so let's write the function. We'll 
begin with perhaps the most obvious version; it's also a correct version: 

I* copies n elements from array a to array b */ 
void arraycopy( a,b,n) 
int a[], b[]; /* a,b are pointers to an array*/ 
int n; /* number of elements to be copied */ 
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int i; 

for(i = 0; i < n; i++) 
b [i] = a [i]; 

This program sets the first element of one array equal to the first 
element of the next, then continues the process to the end of the array. Here 
is a sample program using it: 

main() 
{ 

static int old[4] 
int new[4]; 
int i; 
void arraycopy(); 

= { 2, 4, 8, 16}; 
I* old and new are genuine arrays */ 

arraycopy(old,new,4); 
printf(" old new\n"); 
for (i = 0; i < 4; i++) 

printf("%5d %5d\n", old[i], new[i]); 

void arraycopy( a,b,n) 
int a[], b[]; /* a,b are pointers to an array*/ 
int n; /* number of elements to be copied */ 
{ 

int i; 

for(i = O; i < n; i++) 
b[i]=a[i]; 

Here is the output: 

old new 
2 2 
4 4 
8 8 

16 16 
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The function does work. 

There is an important difference between old and new on the one hand 
and a and b on the other. As we saw earlier, old and new are pointer 
constants, incapable of change. But a and b are pointer variables. Thus, 
while old++ is no more valid than 3++, a++ is valid. In fact, it advances the 
pointer a so that it points to the next array member. Our function added a 
different i to the original a value to march through the array, but we can use 
the increment operator to the same effect. Here is a more compact version 
of the copy function: 

I* copies n elements of array a into array b */ 
arycpy(a,b,n) /* even the name is more compact */ 
int *a, *b, n; /* a, b pointers and n an int */ 
{ 

while ( n-- ) /* count down until no elements left to 
copy */ 

*b++ = *a++; /* copy element, advance pointer */ 

For a picture of what's happening, visualize two arrays. Think of a as 
a finger pointing to the first element of one array, and of b as a finger 
pointing to the first element of the other. What b points to gets copied to 
where a is pointing, then each finger moves on to the next element. In the 
meantime, the while loop keeps track of how many elements we have 
copied. Recall that a zero value is false, so the while loop keeps going until 
n reaches 0. If n starts at, say, 10, then we get 10 cycles. We save a 
variable by counting n down instead of having an additional variable 
increase up to n. 

Let's take a closer look at the expression *a++. The precedence table 
says * and ++ have the same precedence, but it also says these operators 
associate from right to left. Thus, *a++ is the same as *(a++), meaning 
"use what a points to, then move a to point to the next element". That is, 
the pointed-to value is used, but the pointer is incremented. On the other 
hand, (*a)++ would mean "take the value pointed to by a and increase the 
value by one." And, while we are at it, *++a would mean "make a point to 
the next element and use the value of that element." Thank heavens we 
didn't use either of those. As you can see, this compact version 
encompasses many subtle points. Understand it well, and you have gone a 
long way towards understanding pointers and the increment operators. 
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We'll return to arrays later; now let's move on to that mainstay of the 
Toolbox, the structure. 

Structures 

A C structure is a data form capable of holding several items of data of 
different types. FORTRAN and BASIC have no analogous form, but the 
structure is essentially the same as a Pascal record. In C, each individual 
component of a structure is called a "member". We'll look at how to define 
a structure and how to access its members. 

Defining a Structure 

A structure definition has, in general, four parts: the keyword struct, 
followed by an identifying "tag", followed by the body of the definition 
(enclosed in braces), followed by the name(s) of the structure(s) created. 
Sometimes the tag or the name portion (but not both) will be missing. 
Before entering further explanations, let's look at a sample declaration: 

struct grades 
int quizave; 
int examave; 
char grade; 
} stilton; 

Here we have defined a structure having the name stilton. The 
structure has 3 members: quizave, examave, and grade. The type for each 
member is declared in the same manner that we've used for ordinary 
variables. The tag is grades, and it provides a shorthand way to refer to the 
structure "template" we've set up. If, for example, you want to create other 
structures of the same form, you could now make declarations of this sort: 

struct grades jessup, flatney; 
I* creates 2 structures *I 

struct grades class86[30]; I* creates array of 30 
structures *I 

struct grades *gp; I* creates a pointer to a 
structure */ 
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The phrase struct grades acts as a type name. The structures them­
selves are named stilton, jessup, and so on. In short, the tag grades 
identifies a pattern, or template, while stilton and flatney identify particular 
structure variables that conform to that template. 

If you are creating just one structure of a certain form, you can omit the 
tag portion. Or, if you wish to create a template to be used for several 
functions, you can define the structure form externally, using a tag and 
omitting any names. Then you can use the tag within each function to 
define the structures you want. Before going into these elaborations, 
however, let's see how to use a structure. 

Accessing Structure Members 

Suppose we want to assign an 'A' to the grade member of the stilton 
structure. We can do it this way: 

stilton.grade = 'A'; 

The period between stilton and grade is the C "membership" operator, and 
the term stilton.grade means "the grade member of the stilton structure." It 
is important to realize that stilton.grade is a variable of type char, the 
declared type for grade. Since it is important, we'll reword the thought: 
stilton is of type struct grade, but stilton.grade is of type char. Similarly, 
stilton.quizave is of type int. In other words, the final identifier in a 
structure membership phrase determines the type. 

Figure 6.3 illustrates the memory layout of the stilton structure. 

\.. ____ _ 
stilton.quizave stilton.examave 

stilton.grade 

Figure 6.3 The stilton structure 
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Using a Structure in a Program 

Let's put together a short program illustrating how a structure can be 
used in a program. We'll do the following: 

Set up a structure template 

Declare a structure variable 

Assign a value to a structure member 

Read a value into a structure member 

Manipulate structure members 

Print the contents of a structure 

One key point to keep in mind is that each structure member can be 
used the same way as a simple variable of the same type. Here, then, is our 
simple program: 

struct bills 
int denom; 
int number; 
int value; 
}; /* sets up template with the tag 

main() 
{ 

"bills" */ 

struct bills tens; /* establishes variable 
"tens" */ 

tens.denom = 10; /* assign value to "denom" 
member */ 

printf("How many $%d bills do you have on you?\n",--, 
tens.denom); /*use member as int argument*/ +J 

scanf("%d", &tens.number); /*use member 
address */ 

tens.value = tens.denom * tens.number; 
printf ("Your %d $%d bills are worth $%d. \n",--, 

tens.number, +J 
tens.denom, tens.value); 
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Here is a sample run: 

How many $10 bills do you have on you? 
123[RETURN] 
Your 123 $10 bills are worth $1230. 

One important point to remember is to use the variable name, not the 
tag name, when specifying members. Thus, we used tens.value and not 
bills. value. Also, note that &tens.number is the address of the number 
member of the structure. The expression &tens would be the address of the 
beginning of the whole structure. 

Now let's turn to the Toolbox for more examples of a structure and its 
uses. 

A Quickdraw Structure 

The Quickdraw package includes many functions that use structures. One 
structure used by several functions is the rect structure. The structure 
template can be defined this way: 

struct rect 
short top; 
short left; 
short bottom; 
short right; 
} ; 

The four members are all type short. The top member represents the 
coordinate of the top of the rectangle, while the bottom represents the 
rectangle's lower coordinate. Similarly, left and right delimit the left and 
right ends of a rectangle. The coordinate system is the same as before, with 
a full screen ranging from 0 to 342 top to bottom, and from 0 to 512 left to 
right, measured from the upper left of the current window. Because the 
four members are all the same type, the same information could have been 
placed in an array. However, the fact that they represent four distinct 
attributes of a single object make it more logical to place them in a structure. 
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To illustrate how such a structure is used, let's try an example. It uses 
four Quickdraw routines based on the rect structure. Here's a quick 
rundown using the Toolbox names: 

From Mac's Toolbox: New Routines 

EraseRect 
SetRect 
FrameRect 
FrameOval 

Erases interior of a rectangle 
Sets rectangle boundaries 
Draws rectangular shape 
Draws oval shape 

The program, of course, uses the Hippo C representation of the 
function names. When you read the program and the following com­
mentary, you'll note that most of these functions take just the address of a 
type struct rect variable as an argument. Only occasionally will you, as a 
programmer, refer to the individual members of a Quickdraw structure. The 
Quickdraw functions themselves do most of the actual manipulation of 
structure members, while you work with the structure as a unit. 

/* boxoval.c -- use Quickdraw routines to draw oval in a 
box */ 

#define TOP 0 
#define BOTTOM 342 
#define LEFT 0 
#define RIGHT 512 
struct rect { short top, left, bottom, right }; /* short 

form */ 
main () 
{ 

struct rect box; /* box is a rect structure */ 
box.top = TOP; /* set box to full screen */ 
box.left = LEFT; 
box.bottom = BOTTOM; 
box.RIGHT = RIGHT; 
eraserect(&box); /*set everything inside box to 

background */ 
setrect(&box,50,50,300,200); /*another way to set 

bounds */ 
framerect(&box); /*draw a rectangle as described by 

box */ 
frameoval(&box); /*draw an oval bounded by box*/ 
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Before running this program from the Hippo C Command Window, 
use the mouse to expand the window to approximately full screen. Figure 
6.4 shows the program's output. 

Hippo-c Command Window 

II 
* 

Figure 6.4 Output from boxoval.c 

Now we have some comments to make. First, since all four members 
of the rect template are short, we lumped their declarations together. We 
defined the template externally, in case we ever expand the program to more 
than one function. Inside main() we define a struct rect variable called box, 
and then we set the limits of box to correspond to the screen limits. (Note 
that we have to say struct rect and not just rect.) At this point, the program 
has a mathematical description of the box, but it has not yet been told to do 
anything with it. Simply setting the box values does not cause a rectangle to 
be drawn. 

The first graphics command is eraserect(). It takes a pointer-to­
struct rect as an argument, so we provide it with the address of box. Note: 
unlike the case for arrays, the name of a structure is not a pointer to the 
beginning of the structure. We need to use the address operator explicity to 
get the address. Once eraserect() gets the address of a rect structure, it 
looks into the structure to see boundaries of the area it is to affect. Then it 
sets everything within those boundaries to the screen background pattern, 
effectively erasing everything within the confines of the rectangle. We set 
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the boundaries to erase the whole screen, but only that part of the screen 
revealed by the current window is affected. 

The next command we meet is setrect(). It talces a pointer-to-struct 
rect and four short integers as argument. The setrect() function offers an 
alternative way to assign values to the members of the structure. The order 
of the setting arguments is left, top, ,right, bottom -- slightly different from 
the order used in defining the rect structure, which was top, left, bottom, 
right. Using this function requires more computer time but less typing than 
assigning values individually, as we did at first. 

The next command, framerect(&box), instructs the computer to 
draw a rectangle fitting the boundries given by box. Actually, the frame is 
drawn just inside the mathematical boundaries of the box. Thus, an 
eraserect() call for the same rectangle will erase a frame. Once again, a 
structure address is required as an argument. Also, once again, only that 
portion of the figure that lies within the current window is drawn, which is 
why you should first expand the Hippo C Command Window. 

Finally, frameoval() works much the same as framerect(), except 
that it inscribes an oval within the indicated boundaries. Note that it makes 
use of the rect structure; no new structure type is needed. 

Note the power of these commands. We can duplicate the effect of 
framerect() by using moveto() and drawto(), but why bother? And 
frameoval() and eraserect() add new abilities. Let's run another example and 
learn a few more Toolbox functions. Here are the new routines we'll use; 
the first three are Quickdraw routines: 

From Mac's Toolbox: New Routines 

OffsetRect 
InsetRect 
InvertOval 
Tick Count 

Shift rectangle boundaries 
Shrink or expand rectangle boundaries 
Invert interior of oval 
Returns a time value 

We also define a function of our own called wait(); it uses tickcount() 
to provide a time delay. 

/* ovals.c -- use Quickdraw routines to draw ovals */ 
#define TOP 0 
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#define BOTTOM 340 
#define LEFT 0 
#define RIGHT 512 
struct rect { short top, left, botto~, right }; 

/* short form */ 
main() 
{ 

struct rect box; 
void wait () ; 

setrect(&box, TOP, LEFT, BOTTOM, RIGHT); 
eraserect(&box); 
setrect(&box,50,50,300,200); 
frameoval (&box) ; 
while ( box.top < box.bottom && box.left < box.right) 

{ 
wait(15); /*wait 1/4 second */ 
invertoval(&box); /*invert interior of oval*/ 
offsetrect(&box,10,5); /*move conceptual oval*/ 
insetrect(&box,15,10); /*shrink conceptual oval*/ 
frameoval(&box); /*draw the new oval*/ 
} 

void wait(ticks) 
int ticks; /* one tick 
{ 

int start; 

1/60th of a second */ 

start= tickcount(); /*set start time*/ 
while ( (tickcount() - start) >ticks); 

/* do nothing until alloted time passes */ 

This program starts off like the last one, except that the first figure it 
draws is an oval. Then a loop prints additional ovals. To help the viewer see 
what happens, we've put in a time delay loop in the form of a wait() 
function. The argument of this function is the time delay in "tick" units, 
where one tick is one-sixtieth second. The wait() function uses the 
tickcount() function from the Toolbox. This function returns the number of 
ticks since the system started up. The wait() function is not exact, for it fails 
to take into account the time needed to run itself, but it is close enough for 
our purposes. We'll use it several more times in this book. 

After a wait of about 1/4 second, the invertoval() function is activated. 
It inverts the contents of the currently defined oval, making bright pixels on 
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the screen dark, and dark pixels bright. Since we start with a bright screen, 
we wind up with a completely dark oval. 

Then the offsetrect() function changes the elements of box in such a 
way as to shift the boundary rectangle over. The first argument is a pointer 
to the rectangular region to be shifted. The second argument is horizontal 
displacement (positive to the right, negative to the left). The third argument 
is vertical displacement (positive down, negative up). This function does 
not change the screen; it just changes the box structure. 

Similarly, the insetrect() function changes the size of the boundary, 
keeping the center in the same position. Again, the first argument is a 
pointer to the rect structure to be affected. The second argument is the 
amount each vertical side is moved in, and the third argument is the amount 
each horizontal side is moved in. Negative values produce outward 
movement. Still, the screen is not affected. 

Finally, frameoval() is used to draw an oval according to the modified 
specifications in box. Since it is drawn on a black background, it doesn't 
show. But the invertoval() at the start of the next loop cycle converts its 
interior back to white, so it does show. The loop continues until the 
adjustments try to make the top below the bottom or left to the right of right. 

Figure 6.5 shows the final figure, but not the inversions that take place 
as the program runs. 

Another Look at the Quickdraw Functions 

You may have noticed that the rectangle functions we've discussed 
come in two classes. First, there are those that set up or modify the 
mathematical description of a rectangle: setrect(), offsetrect(), and 
insetrect(). Second, there are those that use the mathmatical description as a 
guide to some graphics action on the screen: eraserect(), framerect(), 
frameoval(), and invertoval(). Only those in the second class affect the 
screen. For instance, if you use framerect() to draw a rectangle and then use 
off setrect() to move the conceptual rectangle, the rectangle that was already 
drawn stays put. 

A second point is that the coordinates used for these functions are 
measured from the upper-left comer of the current window. Thus, the 
position of the window affects the actual screen location of drawn figures. 
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Hippo-C Command Window 

* 

Figure 6.5 Output of ovals.c 

Third, those functions that affect the screen only affect the parts inside 
the current window. Thus, if the program tries to draw a rectangle 300 
pixels tall in a window that is only open 200 pixels in height, only part of 
the rectangle will show. 

Hippo C and Quickdraw 

It's probably time to remind you of what we said in Chapter 3, 
namely, that Quickdraw has to be initialized before its routines are used. In 
Hippo C, this is done for you in both the Hippo C environment (the Hippo 
C Command Window) and in the HOS operating system. In each case, your 
program takes over the environment set up by Hippo C. In HOS, the whole 
screen is provided. In the Hippo C environment, the Hippo C Command 
Window is provided. By default, it occupies about the lower half of the 
screen. You can use the mouse to move the window about and to alter its 
size. For many of our programs, you should expand the Command 
Window first. Alternatively, you can run the program from HOS. 

In Chapter 9, you will learn how to let a program set up its own 
drawing area independent of the current Hippo C Command Window. 
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Functions, Structures, and Pointers 

Functions like insetrect() make manipulating the rect structure convenient. 
Suppose, though, that we didn't have this function at our disposal. How 
would we go about writing one? In general, how do we write a function that 
uses a structure? 

To answer the specific question, first consider how we could shrink 
down the contents of a given rect structure using in-line code. Then we can 
see how to convert that programming to a generalized function. Suppose, 
then, that we have a rect structure called box and that we want to move in 
the vertical sides by an amount dh and the horizontal sides by dv. Then we 
would adjust the structure members this way: 

box.left += dh; 
box.right -= dh; 
box.top += dv; 
box.bottom -= dv; 

I* move left side to right */ 
I* move right side to left */ 
I* move top side down */ 
I* move bottom side up */ 

All we needed to do was to use the membership operator to access each 
member of the structure variable box. We used the additive and subtractive 
assignment operators. Of course, if you want your programming to look 
more like other languages, you could use the following expressions: 

box.left = box.left + dh; 
box.right = box.right - dh; 
box.top = box.top + dv; 
box.bottom = box.bottom - dv; 

Most people coming to C from other languages find this form more 
comfortable. Yet the additive and subtractive assignment operators probably 
make more sense. Certainly, a statement like 

x = x + 6; 

is poor algebra and translates to clumsy English: "Take x, add 6 to it, and 
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assign the result to x". On the other hand, the statement 

x += 6; 

comes closer to how one might express the thought in English: "Take x and 
increase it by 6 ." If the form looks odd, that's just a matter of exposure. 
Use C's unusual operators, and soon they seem usual. 

Now suppose we wish to convert the in-line programming to a 
function. As you recall, a function that needs to change values in a calling 
function does so by using a pointer to the variable(s) in the calling function. 
Thus we need to pass a pointer to a rect structure as one argument. Two 
more arguments can pass the horizontal and vertical changes; these can be 
type short. Fine, those are exactly the arguments used by insetrect(), so we 
must be on the right track. The head of our function (call it shrinkrect()) 
should look like this: 

shrinkrect( rp, dh, dv) 
struct rect *rp; /* pointer to a rect structure */ 
short dh, dv; /* horizontal, vertical shrinkage */ 

Now comes the tricky part: how do we access members of a structure 
when we have a pointer-to-structure instead of a structure name to work 
with. Actually, we have two choices. The clumsy choice goes along these 
lines: if rp is a pointer-to-structure, then *rp is the semantic equivalent of a 
structure name. Thus, the top member of the structure pointed to by rp can 
be expressed this way: 

( *rp) . top /* the top member of the pointed-to 
structure */ 

The parentheses are needed because the period has a higher precedence 
than*. 
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The elegant way is to use the "indirect membership" operator,->. It is 
produced by typing a hyphen(-) followed by a "greater than" symbol(>). 
It is used just like the membership operator, but with a pointer-to-structure 
instead of a structure name. Here is how to represent the top member in this 
notation: 

rp->top I* top member of structure pointed to 
by rp */ 

In short, use the membership operator (.) when working with a 
structure name, and use the indirect membership operator (->) when 
working with a pointer-to-structure. With this knowledge, we can complete 
the function: 

shrinkrect( rp, dh, 
struct rect *rp; 
short dh, dv; 
{ 

rp->left += dh; 

rp->right -= dh; 
rp->top += dv; 
rp->bottom -= dv; 

dv) 
I* pointer to a rect structure */ 

/* left member of pointed-to 
structure */ 

And that is how to use pointers-to-structures in functions designed to 
modify structures. 

Passing Structures by Value 

Originally, using a structure address was the only way to pass 
structure information to a function. However, many recent implementations 
of C, including Hippo C, allow a structure variable to be passed by value in 
the same manner as a simple variable. For example, if box is a structure, 
you can have a function call of this form: 

afunction(box); 
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In this case, the function head would look like this: 

afunction( bx ) 
struct rect bx; 

The argument this time is a structure instead of a pointer-to-structure. A new 
structure variable is created by a call to this function, and it is filled with the 
values held in the structure used in the function call. 

Passing by value for structures has the same advantages as passing by 
value for simple variables: compartmentalizing functions and preventing 
inadvertent alteration of data. However, the pointer-passing technique is 
required for the Toolbox functions we've been using, since that is how they 
were set up. In any case, the pointer form is necessary for functions that 
alter the original structure. 

Friendly Advice 

This chapter has covered much new material: arrays, pointers, structures, 
functions using arrays and structures, and new Toolbox routines. Just 
reading the chapter is most likely not enough to make you comfortable with 
the new ideas. You need hands-on experience to really learn them. Thus, 
you should work through the examples, not just read them. Next, you 
should fiddle with the examples, modifying them to test your 
understanding. Finally, you should write some programs of your own. For 
example, by using framerect(), eraserect(), offsetrect(), and some form of 
time delay, such as wait(), you can write a loop that makes a rectangle 
appear to move about the screen. The Hippo C manual provides a brief 
description of several other rectangle-related functions; try using some of 
them. Write functions of your own using arrays and structures. It's 
possible you may make an occasional error, but that's okay. You probably 
can learn more from your mistakes than your successes, for mistakes make 
you think more about what is going on. 

The next chapter elaborates upon this one, so make sure you have at 
least a workable mastery of this chapter before moving on. The next section 
gives a summary of the main points you should know. 
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Summary 

C offers a variety of data forms. Two forms that can hold more than one 
data item are the array and the structure. An array holds a sequence of 
elements all of the same type. An index, or subscript, is used to indicate 
particular elements. To declare an array of 10 chars, do this: 

char fishname[lO]; 

The brackets identify fishname as an array name, and the 10 indicates the 
number of storage locations alloted to the array. Subscripts start at zero, so 
the first element of the array is fishname[O], the second element is 
fishname[l], and so on. 

In C the name of an array also serves as a pointer to the first element of 
the array. In our example, for instance, fishname can be considered a 
named constant whose value is the address of the first byte of the array. 

The structure, like the array, can hold several separate values. 
However, the structure is capable of holding a mixture of types. In general, 
a structure definition contains four parts: the keyword struct, a "tag" to 
act as a shorthand description for the structure, a member-definition 
section enclosed in braces, and a list of structure variables declared to 
be that type. Here is a sample structure declaration: 

struct thetag { 
int socsecno; 
int years; 
char name[25]; 
} headman, assistant; 

The tag thetag can be used to declare subsequent structure variables of 
the same type. It is a template tag. 

The individual parts of a structure are called members. To access a 
member, follow the structure name with the membership operator, which is 
a period, and then the member name. Thus, headman.years and 
assistant.socsecno access individual members. The type for such 
expressions is the type of the right-most identifier. 
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Members can also be accessed using pointers to a structure. Suppose, 
we have this sequence: 

struct thetag *ps; I* a pointer to a structure */ 

ps = &headman; /* assign structure address to 
pointer */ 

Then the years member of headman can be referred to as ps->years, where 
-> is the indirect membership operator. 

An array cannot be passed en masse as a function argument, but a 
pointer to an array element (such as an array name) is a valid function 
argument. In this case, the formal argument in the function definition must 
be declared as a pointer to the corresponding element type. The net result is 
a function that operates upon the elements in the original array. 

Many newer compilers, including Hippo C, do allow a structure to be 
passed as a function argument. In that case, a copy of the entire structure is 
created and used within a function. More typically, structure-oriented 
functions are designed to accept a pointer to a structure as an argument. 
These functions would then use the original structures for their 
manipulations. 
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7 
Compound Data Structures 

In this chapter you will learn about: 

• Arrays of structures 
• Structures of arrays 
• Arrays of arrays 
• Complex declarations and typedef 
• Pointers to functions 

You have seen how arrays and structures can be constructed from 
fundamental data types, such as int and char variables. However, the 
members of a structure and the elements of an array need not be simple 
variables. They can be structures, arrays, pointers, structures of arrays of 
pointers, and so on. We'll look at some of the more common combined 
forms in this chapter, seeing how to define and use them. We will also 
investigate how to write functions that work with such combined data types. 
En route, we'll work some more with Quickdraw functions. 

Declaring these forms can get complicated, so we will review the rules 
for making declarations. Also, we will investigate the typedef facility for 
creating easily used abbreviations for complex types. Finally, we'll make a 
side trip to view pointers to functions. 

Arrays of Structures 

Consider this declaration: 

struct rect boxes[3]; 

This creates an array with 3 elements. Each element of the array is a 
structure of the rect type. Figure 7 .1 illustrates how it is stored in memory. 
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boxes[O] boxes[1] boxes[2] 
I I I .-------------· Pi ______ ._ ____ ... ,P.-------------. 

Figure 7.1 An array of structures 

When you have a data form with components, a natural question is, 
how do you access the individual elements and members? With an array of 
structures, we have two levels of access. First, we should be able to access 
each structure as a unit. Second, we should be able to access each member 
within a given structure. The solution is to use both array and structure 
member notation. For instance, if you wish to use the second structure of 
the array, refer to it this way: 

boxes[l] 

After all, boxes[l] is the second element of the boxes array (remember that 
subscripts start at zero), and·each element of the array is a structure. 

Continuing, to access the top member of the second structure in the 
array, you would use this notation: 

boxes[l] .top 

Here the membership operator has been applied to the structure called 
boxes[l]. 

Let's look at the various stages involved in building up this identifier. 
There are three: boxes, boxes[l], and boxes[l].top. 

boxes: The identifier boxes is the name of an array, not of a 
structure. Following the usual C convention for arrays, boxes is a 
pointer to the first element of the array; that is, it points to the first 
structure in the array. Its numerical value is the address of the first byte 
of the structure. Its type is pointer-to-struct rect. 
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boxes[l]: Because each array element is a structure, the subscripted 
identifiers, such as boxes[O] and boxes[l], are structure names. Thus, 
they can be used whenever structure names are required. For example, 
you can use them with the address operator when you use a function 
that requires the address of a structure: 

framerect( &boxes[l]); 

The argument here is just the address of the second structure in the 
array. The brackets have a higher precedence than the & operator, so 
the address operator applies to whole expression boxes[l]. Array 
elements also can be used with the membership operator, as we see 
next The type for boxes[l] is the array type, struct rect. 

boxes[l].top: Combining the structure name (boxes[l]) with the 
membership operator and member name yield an individual member of 
the structure called boxes[l].top. The whole identifier is the same 
type as declared for the member, here short. The expression can be 
used in any fashion that an ordinary variable of the same type can. For 
instance, 

boxes[2] .top= 200; 

. assigns the value 200 to the top member of the third structure in the 
array. 

A Graphic Example. Here is a program that uses an array of structures. 
It also shows how to initialize a structure and introduces some new Toolbox 
functions. 

From Mac's Toolbox: New Routines 

InvertRect 
PaintRect 

Inverts interior of a rectangle 
Fills interior of a rectangle 

The program brings back two functions from the past. One is the 
Toolbox function button(), which returns "true" if the mouse button is 
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down and "false" otherwise. The second is the wait() function we 
introduced in Chapter 6 to provide a time delay. 

I* checkpat.c -- a blinking pattern */ 
#define TOP 50 
#define BOTTOM 100 
#define LEFT 56 
#define RIGHT 456 
struct rect { short top,left,bottom,right; }; 
main() 
{ 

static struct rect box 
struct rect boxes[8]; 
int i; 
void wait(); 

eraserect(&box); 

{ O, O, 512, 342}; 

setrect(&box, LEFT, TOP, RIGHT, BOTTOM); 
framerect(&box); /*outline graphics area*/ 
for ( i = O; i < 8; i++) 

setrect(&boxes[i],LEFT + 50*i,TOP,LEFT + 50*(i+l), 
BOTTOM); 

/* set array boxes to side-by-side rectangles */ 
for ( i = 0; i < 8; i++) 

if ( i % 2 == 0) 
framerect(&boxes[i]); /*draw outline*/ 

else 
paintrect(&boxes[i]; /*fill solid figure*/ 

while( !button() ) { /* interesting visual effect */ 
wait(30); 
invertrect(&box); 
} 

First, we initialized a structure. The rules are the same as for arrays. 
Only nonautomatic structures can be initialized, which is why we used the 
static storage class. The list of values is placed between braces, with the 
values separated by commas. 

We've introduced another Toolbox function, paintrect(). It fills in 
the boundaries of the specified rectangle with the current paint pattern, 
which is normally solid black by default (In Chapter 9 we will indicate how 
to reset such parameters.) By using the modulus operator(%), we instruct 
the program to draw the rectangles having an even index and to paint the 
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odd ones. This produces a row of checkerboard pattern, as shown in Figure 
7.2. 

Hippo-c Command Winc;fow 

I 
* 

Figure 7.2 c)leckpat.c output 

The box rectangle contains all the boxes' rectangles, and the closing 
while loop in main() makes use of this fact to invert the pattern every 30 
ticks until you push the mouse button. This loop produces an interesting 
visual effect. 

And where is the wait() function defined? We placed the one we wrote 
earlier in a separate file, then compile,d the two files together, using the 
process described in Chapter 5. 

A Structure in a Structure 

A structure member can itself be a structure. Consider this definition: 

struct !box { 
char letter; 
struct rect box; 
} tess; 
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Here the second member of tess is a structure. This definition assumes that 
rect structure has been defined earlier. You know how to access the letter 
member; just call it tess.letter. But how do you access, say, the top member 
of the box member? 

The answer is the logical one: use the membership operator twice. 
Thus, the top member of the box member of the tess structure is this: 

tess.box.top 

Let's review the steps leading to this identifier. 

tess: This is the name of a structure of the lbox type. Hence this 
identifier is of type struct tess. 

tess.box: This is a member of the tess structure. The type for 
tess.box is the type declared for box, which is struct rect. Hence 
tess.box also is a structure name, this time a type rect structure. The 
identifier tess.box can be used in the same manner as any other 
structure name of that type. In particular, we can use the membership 
operator to obtain its members. 

tess.box.top: This is the name of the top member of the tess.box 
structure. The entire name tess.box.top, then, represents a variable of 
the type declared for top, which is short. 

In short, with nested structures, keep using the membership operator 
to work down to individual members. 

An Array in a Structure 

An array, too, can be a structure member. Here is a declaration that 
creates just such a marvel: 

struct rain 
int year; 
int rainfall[12]; 

} bandon; 
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Here the year member would hold a year date, while the rainfall array would 
hold monthly totals. 

Again, a logical approach suffices to establish proper identifiers. The 
name rain is the name of a structure. The name rain.rainfall is a member of 
the structure, and this member is an array of 12 ints. Thus, rain.rainfall is 
an array name, hence is a pointer to the first element of the array. The 
names of the individual array members, then, are rain.rainfall[O], 
rain.rainfall[l], and so on. 

Note that when we had an array of structures, the array brackets were 
to the left of the membership operator, unlike the case here. 

The next declaration takes us a step further to an array of structures 
containing an array: 

struct rain 
int year; 
int rainfall[l2]; 
} cities [200]; 

The cities array holds data for 200 cities. If you want access to the 3rd 
month's rainfall of the 87th city, merely combine the various rules to get 
cities[86].rainfall[2]. (Don't forget that array numbering always starts 
with 0.) 

Arrays of Arrays 

Our next selection of compound data type is the array of arrays. This 
is an array whose elements themselves are arrays. Here is how to declare 
such a critter: 

int grid[3] [4]; 

This states that grid is a three-element array, and that each element is an 
array of 4 ints. 

Often, such arrays are visualized as "two-dimensional" arrays, since 
we can arrange the final elements in a two-dimensional pattern. For 
instance, we can picture grid as consisting of three rows, each with four 
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elements. To indicate any one element, use two subscripts. For instance 
grid[2][3] would be the element in third row, fourth column. Again, keep in 
mind that array numbering starts with 0. Figure 7 .3 illustrates this 
representation. 

int grid[3][4] 

grid[O] 

grid[1] 

grid[2] 

grid[O][O] 

grid[1 ][O] 

grid[2][0] 

Figure 7.3 

grid[0][1] grid[0][2] grid[0][3] 

grid[1 ][1] grid[1 ][2] grid[1 ][3] 

grid[2][1] grid[2][2] grid[2][3] 

A two-dimensional array 

It's worth going over the various identifiers involved with a two-
dimensional array. 

grid: This is an array name. As such, it is a pointer to the first 
element of the array, which, we've seen, is itself a four-element array. 
We can term its type "pointer-to-array-of-four-ints. 

grid[O]: This is the first element of grid, so grid[O] also is an array 
name. In Figure 7.3, it is the name of the first row. Because it is an 
array name, grid[O], too, is a pointer. In this case, grid[O] points to Us 
first element, grid[O][O]. Similarly, grid[l] is an array name for the 
second row, and it points to the element grid[l][O]. Since that element 
is type int, grid[l] and its fellows are type pointer-to-int 

grid[O][O]: This is an element of the grid[O] array. It is of type int 
and can be treated as any other type int variable. 

In short, grid points to grid[O], and grid[O] points to grid[O][O]. Thus, 
grid is a pointer to a pointer, our first example of such. 

Conceptually, the difference between grid and grid[O] is clear; grid is a 
two-dimensional array and grid[O] is a one-dimensional array, the first row 
of grid. In pointer terms, grid points to a whole array of four integers, 
while grid[O] points to a single integer. (Perhaps you've heard this before: 
the name of an array is a pointer to the first element of the array.) But, since 
both the array and the single element start at the same location in memory 
(see Figure 7.3), grid and grid[O] have the same numerical value, the 
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address of the first byte of the whole array. What, then, is the practical 
distinction between pointing to an array and pointing to an int? Check out 
this next little program and its output: 

main () 
{ 

int grid[3] [4]; 

printf("grid: %u; grid[O]: %u\n", grid, grid[O]); 
printf("grid+l: %u; grid[O]+l: %u\n", 
grid+l,grid[O]+l); 

The output: 

grid: 106776; grid[O]: 106776 
grid+l: 106792; grid[O]+l: 106780 

As promised, both grid and grid[O] have the same value. But look 
what happens when 1 is added to each. Since grid[O] points to type int, 
adding 1 to the pointer makes it point to the next int, which is four bytes 
more. But grid points to an array of four in ts, an entity that is sixteen bytes 
long. Thus, adding 1 to grid means adding sixteen bytes so that it would 
point to the next array. Remember, pointer addition is always in units of 
whatever object is pointed to. 

Initializing Two-Dimensional Arrays 

Only arrays of the static or the external storage class can be initialized. 
As with one-dimensional arrays, braces are used to enclose the initialization 
values. You can use additional braces to mark off each subarray, but they 
are not required. Thus, the following statements initialize the arrays twink 
and twonk to the same values: 

static int twink[2] [3] 

static int twonk[2] [3] 

{10, 12, 13}, 
{22, 34, 15} } ; 
10, 12, 13, 22, 34, 15}; 
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The first form emphasizes that we are initializing an array of two arrays 
of three ints. Each subset of braces corresponds to a row. Note that a 
comma is used to separate one subset from the next. When using the second 
form, keep in mind that the right-most array index varies most rapidly. That 
is, the first 4 values are twonk[O][O], twonk[O][l], and twonk[0][2], then 
twonk[ 1] [O]. 

The main functional difference comes when you supply fewer values 
than the array can hold. When you use just one set of braces, the array 
elements are filled up in the order in which they are stored. Consider the 
following statement: 

static twunk [2] [3] = { 5, 6, 7, 8}; 

This results in 5 being assigned to twunk[O][O], 6 to twunk[O] 1 [], 7 to 
twunk[0][2], and 8 to twunk[l][O]. Using subbraces lets you fill up the 
subarrays just partially: 

static twenk[2] [3] {5,6} , 
{7,8} }; 

This initializes the first two elements of the array twenk[O] to 5 and 6 
and the first two elements of the array twenk[l] to 7 and 8. 

Using a Two-Dimensional Array 

It's time for an example using a two-dimensional array. Earlier, the 
checkpat.c program used a one-dimensional array to construct a row of 
squares. A natural extension is to use a two-dimensional array to create 
more than one row, and that is what we will do. This time we have an array 
of an array of structures. Also, just as a for loop is often used to process a 
one-dimensional array, nested for loops are often used for two-dimensional 
arrays. That will be the case here. Also, we'll use our wait() function to 
slow down the display so you can visually check the order in which the for 
loops execute. Once again we'll assume that wait() is in a separate file that 
gets compiled along with the main program. 
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/* cboard.c -- makes a checkerboard-like pattern */ 
#define TOP 50 
#define LEFT 56 
#define SIZE 50 /* sides of individual boxes */ 
struct rect {short top,left,bottom,right;}; 
main () 
{ 

static struct rect screen 
struct rect boxes[4] [8]; 
int row, col; 

{0,0,512,342} 
/* 4 rows, 8 columns */ 

void wait () ; 

eraserect(&screen); /*clear screen*/ 
for( row= 0; row< 4; row++) /* for each row */ 

for (col = O; col < 8; col++) /* and each column */ 
setrect(&boxes[row] [col], LEFT+ col*SIZE, 

TOP+ row*SIZE, LEFT+ (col+ l)*SIZE, 
TOP+ (row+ 1)* SIZE); 

/* that sets bounds for all 32 rectangles */ 
/* now draw them all */ 

for( row= 0; row< 4; row++) 
{ 

for ( col = 0; col < 8; col++) 
{ 
if( (col+row) % 2 == 0) 

framerect(&boxes[row] [col]); 
else 

paintrect(&boxes[row] [col]); 
wait(15); 
} 

wait(30); 

Be sure to provide adequate window room for the display. Running 
this program produces the splendid pattern shown in Figure 7.4 

Note that boxes[row][col] is a structure name, so that 
&boxes[row][col] is a proper argument for the Quickdraw functions. The 
first nested for loop uses the values of row, col, and SIZE to describe boxes 
that are displaced progressively one box size to the right and down from the 
first box. The second nested loop produces framed boxes if the sum of row 
and col is even, and filled-in squares otherwise. 

In drawing, the inner loop processes boxes in the same row. The next 
cycle of the outer loop lets the inner loop cycle through the next row. The 
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pauses in the program let you see this development visually. If you like, 
you can exchange the two for lines and see the pattern drawn by columns 
instead of by rows. 

Hippo-c Command lllindow 

* 

Figure 7.4 Output of cboard.c 

Functions and Two-Dimensional Arrays 

You've seen how to write a function that takes a one-dimensional array 
name as an argument. How would you go about writing one that takes a 
two-dimensional array name as an argument? The trickiest point is 
declaring the argument. For instance, suppose we add a function to the 
preceding program, one called shrinkboxes() that serves to shrink all the 
boxes down. The function call would look like this: 

shrinkboxes(boxes, dh, dv); 

The first argument (boxes), being an array name, is a pointer-to-array-of­
eight-rect-structures. How do we declare that mess? Let's start by calling 
the formal argument bp. Then, to indicate it is a pointer, we would use the 
expression *hp in the declaration. It points to an array of eight things; that 
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expands the expression to (*bp)[8]. (The parentheses are used to counteract 
the higher precedence of the brackets.) The "thing" is a rect structure, so the 
entire declaration becomes this: 

struct rect (*bp) [8]; 

The remaining arguments, which represent the size adjustments, are short 
integers and pose no problems. 

Here is a revised version of the last program. It uses not only a 
shrinkboxes() function, but a drawboxes() and an invertovals() function; all 
use the same form of argument. 

I* sqcir.c -- makes a pattern of squares and circles */ 
#define TOP SO 
#define LEFT S6 
#define SIZE SO /* sides of individual boxes */ 
struct rect {short top,left,bottom,right;}; 
main() 
{ 

static struct rect screen 
struct rect boxes[4] [8]; 
int row, col; 

{0,0,S12,342} 
I* 4 rows, 8 columns */ 

void wait(), drawboxes(); 
invertovals(); 

shrinkboxes(), 

eraserect(&screen); /*clear screen*/ 
for( row = 0; row < 4; row++) /* for each row */ 

for (col = 0; col < 8; col++) /* and each column */ 
setrect(&boxes[row] [col], LEFT+ col*SIZE, 

TOP+ row*SIZE, LEFT+ (col+ l)*SIZE, 
TOP+ (row+ l)* SIZE); 

drawboxes(boxes); 
shrinkboxes(boxes, SIZE/4, SIZE/4); 
invertovals(boxes); 

void drawboxes(bp) 
struct rect (*bp) [8]; 
{ 

int row,col; 
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for( row= 0; row< 4; row++) 
{ 
for ( col = 0; col < 8; col++) 

{ 
if( (col+row) % 2 == 0) 

framerect(&bp[row] [col]); 
else 

paintrect(&bp[row] [col]); 
wait(15); 
} 

wait(30); 
} 

void shrinkboxes(bp, dh, dv) 
struct rect (*bp) [8); 
short dh, dv; 
{ 

int row,col; 

for( row= 0; row< 4; row++) 
for ( col = 0; col < 8; col++) 

insetrect(&bp[row] [col], dh, dv); 

void invertovals(bp) 
struct rect (*bp) [8]; 
{ 

int row,col; 

for( row= 0; row< 4; row++) 
for ( col = O; col < 8; col++) 

invertoval(&bp[row] [col]; 

Figure 7.5 presents the output. 

As usual, there are some points to note. First, since the variable hp 
used in the functions is the same type as the array name boxes used in 
main(), it can be used in the same manner. Thus, bp[row][col] is, like 
boxes[row][col], a particular structure in the array. Therefore, we can use 
the expression &bp[row][col] to pass the address of that particular structure 
to the Quickdraw routines. If you find this point a bit obscure, don't worry, 
we'll come back to it later. 
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Hippo-c Command Window 

* 
' 

Figure 7.5 Output of sqcir.c 

Second, all four functions in our program (including main()) make use 
of the rect structure definition. It is for cases like this that using an external 
template definition is worthwhile. 

Third, the declaration 

struct re ct bp [] [ 8] ; 

is supposed to be equivalent to the one we used; however, it didn't work 
with the Hippo C version we used. 

Fourth, note that the Quickdraw invertoval() function can be used 
without prior drawing of an oval. The function inverts those points within 
the conceptual oval bounded by the current values in the indicated rect 
structure. 

Pointer and Array 

In shrinkboxes(), bp is used in the same manner as boxes is in main(), 
yet the declarations appear (and are) different. It all works out for reasons 
we've discussed already, but it won't hurt to review the relevant facts. 
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Let's start by looking at the following two declarations: 

struct rect boxes[4] [8]; 
struct rect *bp[8]; 

The first declaration does two things. First, it causes the computer to 
allocate sufficient memory to hold 4 * 8, or 32, rect structures. Since a rect 
structure consists of four shorts, or eight bytes, that's a total of 256 bytes. 
Second, it establishes boxes as the name of an array of an array of 
structures. As such, it is a pointer constant. Since the first element of 
boxes is an array of eight rect structures, boxes is a pointer-to-array-of­
eight-rect-structures. It is constant because C doesn't allow us to change the 
address of a declared array. 

The second declaration also does two things. First, it causes the 
computer to allocate sufficient memory for one pointer (bp ). That would be 
4 bytes. Secondly, it establishes bp as a pointer variable that is of type 
pointer-to-array-of-eight-rect-structures. 

Comparing types for bp and boxes, we see they are exactly the same. 
That is why they can be used in the same manner. One difference is that 
boxes is associated with an actual array, while bp starts out as a pointer 
without an associated array. But bp is a variable, and the function call 
shrinkboxes(boxes) serves to assign boxes' value (the beginning of the 
array) to bp, so that bp now becomes associated with the boxes array. 
Thus, bp[2][4] would designate the same structure as boxes[2][4]. The first 
uses a pointer variable to indicate which array, and the second uses a pointer 
constant (of the same value) to indicate the same array. 

~omplex Declarations and typedef 

We have seen a few less than simple types, so perhaps it is a good time to 
look at the topic of making declarations. The aim of a declaration is to 
associate a name (more technically, an identifier) with a particular type of 
data form. Sometimes all that is needed is a fundamental data type and an 
identifier, as in the next declaration: 

char cuterie; 
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To this basic form can be added various modifiers, such as unsigned, 
storage class keywords, the indirection operator(*) to indicate a pointer, 
brackets to indicate an array, and parentheses to indicate a function. We'll 
look at the last three now. 

The indirection operator can be used alone or repeatedly. Consider 
these declarations: 

char *frip; 
char **fnip; 

The first, as you well know by now, says frip is a pointer-to-char. The 
second declares that fnip is a pointer-to-pointer-to-char. The pointer-to­
pointer form is common in Macintosh application programming. In that 
context, it even has its own name, to wit, the "handle." 

Because the handle is important to the Macintosh, let's take a quick 
look at using a handle. Suppose we have this statement: 

**fnip = 'H'; 

We can paraphrase the statement this way. "Go to the memory location 
called fnip. In there, you will find an address stored. Go, then, to that 
address in memory. There you will find another address stored. Go to that 
address, and stuff an 'H' into it." This is an example of "double 
indirection". It may seem like a bunch of unnecessary trouble, but it turns 
out to be needed to work effectively with the Macintosh "heap" system of 
memory management We11 say more about that in Chapter 10. 

The bracket pair, too, can be used once or several times. You've 
experienced one- and two-dimensional arrays, and the process can be 
extended to three-dimensional arrays and beyond, should you need them. 

Jl.fixed Jtf odifiers 

Declarations become trickier when you use more than one type of 
modifier. Fortunately, the rules of precedence let us unravel the meanings. 
There are two points to keep in mind in interpreting declarations. First, 
modifiers closest to the identifier are applied first. Second, brackets and 
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parentheses have a higher precedence than the indirect value operator. Let's 
see how this works out with a few examples. 

Consider these declarations: 

char *fez(4]; 
char (*fuz) [4]; 

/* array of 4 pointers to char */ 
I* a pointer to array of 4 char */ 

In the first case, the * and the [ 4] are equidistant from fez, so the precedence 
order says to apply the bracket modifier first. Thus, fez is an array of 4 
somethings. Next, we apply the* operator, learning that fez is an array of 4 
pointers. Finally, char tells us that fez is an array of 4 pointers to char. 

In the second example, grouping parentheses tell us to apply the * 
modifier first. Thus fuz is a pointer to something. Next, we go to the 
brackets, and then to char to get the rest of the declaration. Notice that the 
parentheses make a significant difference. The first declaration creates four 
pointers in one array, while the second creates one pointer and no array. 

Similarly, we have the following two examples: 

char *bear(); /*function returning pointer-to-char*/ 
char (*boar)(); /*pointer to function returning char*/ 

Our example of function return values up to now have been basic types, but 
functions can also return pointers to various types. Here, bear() is a 
function returning a pointer-to-char. 

The second example introduces the concept of a pointer to a function. 
A pointer to a function can be used as an argument to another function to tell 
that function what function it can use. We'll supply a brief example later. 

So far operator precedence was all that we needed to interpret a 
declaration. Let's go beyond that now. Look at these examples: 

char *groucho[2] [4]; /*array of pointers to 
array of char */ 
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char (*harpo) [2] [4]; /*pointer to array of 
arrays of char */ 

char *(chico[2] [4]); /*array of arrays of 
pointers to char */ 

The first example illustrates the natural order of modifiers. First, comes [2], 
then *. They tie for proximity, but brackets have a higher precedence. 
Then comes [4], because it is more distant from groucho than either of the 
other two. Applying the modifiers in sequence, we get that groucho is an 
array of two pointers to an array of four chars. It's a several-step process, 
but it is logical. The other two examples use grouping parentheses to alter 
the order of applying the modifiers. 

In short, observing the rules of proximity and precedence should allow 
you to construct and interpret the declarations of C. 

typedef 

Although the rules let us interpret declarations unambiguously, the 
meaning of a declaration is not always quickly obvious. Then, too, if you 
have to declare a complex type several times, you increase the odds of 
making an error. To simplify and clarify declarations, C offers the typedef 
facility. It allows you to create a convenient abbreviation for a complex 
type. 

Here is how it works. Suppose you want the term "string" to mean 
pointer-to-char. Then you declare string as if it were a variable of type 
pointer-to-char, but you precede the declaration with the keyword typedef: 

typdef char *string; 

The presence of typedef instructs the compiler that string identifies a type, 
not a variable. You can then use string to declare variables: 

string catname, bossman; 
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This states that catname and bossman are both type pointer-to-char. In other 
words, this declaration has the same effect as the following: 

char *catnarne, *bossrnan; 

Similarly, if you wanted to create a type identifier for a pointer to an 
array of 10 rect structures, you could do this: 

typedef struct rect (*pointrects) [10]; 

Then the declaration 

pointrects sorneboxes; 

would mean that someboxes is a pointer to an array of 10 rect structures. 

In short, to create a type identifier, declare it as if it were a variable 
identifier, and precede the declaration with typedef. 

The scope of a typedef is the range of a program over which the typdef 
definition is recognized. The scope rules are the same as for variables. A 
typedef set up within a function is local to the function, and one set up 
external to any function is global. 

Often typedef definitions are placed in a .header file which then is 
brought into a program via the #include directive. For example, we did not 
have to define the rect structure in our Hippo C programs. Instead, we 
could have begun our programs with this directive: 

finclude "data.h" 
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This vast file includes the following two definitions: 

typedef short integer; 
typedef struct 
{ 

integer top, left, bottom right; 
} rect; 

The first definition allows you to use the word integer instead of short to 
declare short ints. The reason for this is that Quickdraw is based on 
Macintosh Pascal, in which the basic Pascal integer type is a 16-bit integer. 
(To provide a 32-bit integer, Macintosh Pascal uses a nonstandard type 
called longint, which corresponds to the Hippo C int.) 

The second definition lets rect denote the structure type we used. 
Thus, instead of making declarations like 

struct rect box; 

we could have used #include data.h and declarations like this: 

rect box; 

This, too, makes the declarations look more like the Pascal equivalents. 

Function Pointers 

Aside from this section, this book doesn't use function pointers, but 
because we have shown you how to declare a pointer to a function, it is 
only fair that we show you how to use one. In C, a function can be passed a 
function pointer telling the first function which function to use. This may 
sound odd, but it is not too different from passing an array pointer to tell a 
function which array to use. 
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Let's look at the mechanics. First, the name of a function serves as a 
pointer to the function, just as the name of an array serves as a pointer to the 
array. Normally, this is the form of function pointer that would be used as 
the actual argument in a function call. Second, a function whose name is 
used as a function call argument must be declared. Third, the function 
pointer used as the formal argument must be declared as a pointer-to­
function of the proper type. 

An example should make these points clearer. Here is one in which the 
diff() function takes three arguments: a function pointer, and two ints. It 
evaluates the pointed-to function for the two integers and returns the 
difference: 

/* ptfun.c -- uses a function pointer */ 
main() 
{ 

int answer; 
int square(); /*declare pointed-to function*/ 

answer= diff(square, 2, 10); 
printf("The answer to the Great Question is %d\n", 

answer); 

int square(n) 
int n; 

/* define a squaring function */ 

{ 

return n * n; 

I* here comes the function that uses 
a function pointer */ 

int diff(f, x, y) 
int (*f) (); /* f a pointer to an int-returning 

function */ 
int x, y; 
{ 

return (*f) (y) - (*f) (x); 

Here's what happens when diff() is called. It is passed the identifier 
square, which serves as a pointer to the square() function. This pointer is 
assigned to f, which is a pointer to a function that returns type int. Because f 
is a pointer to the function, the value of f is the function, so the expression 
(*f)(x) is interpreted to be square(x). Since x is 2, the expression evaluates 
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to 4. Similarly, (*f)(y) means square(y), which evaluates to 100. Thus the 
diff() function returns 96 in this case. 

We had to declare square() even though it is of type int. Normally, 
C uses the following parentheses pair to tell that a name is a function name, 
but the parentheses are omitted when the name is used as a pointer. 
Explicitly declaring square() lets the compiler know that square is a function 
pointer, and not, say, an undeclared variable name. 

Within diff(), (*f)() serves as a function. Some within the C com­
munity don't like this usage, arguing that f() should be used instead. This 
would make the usage more like that for arrays. Some compilers accept both 
forms. 

Note that the actual argument (square) and the formal argument (f) 
describe functions that must agree in the type of return value and in the 
number and types of arguments. 

The value of a function like diff() is that it can be used with a variety of 
functions. For example, suppose we needed to know differences between 
the values of several functions. Then diff() could be called several times, 
using a different function name in the argument list each time. 

Summary 

C allows you to construct data forms of arbritrary complexity. You can 
define arrays of structures, structures of arrays, structures of 
structures, and arrays of arrays, to give just a few possibilities. 

An array of structures is declared like this: 

struct rect boxes[S]; 

This allots storage for 5 structures of the rect type. The array name, boxes, 
is a pointer to the first of the 5 structures. The array elements are structures 
called boxes[O], boxes[l], and so on. You can use the membership operator 
with these structure names to obtain individual members. Thus, 
boxes[O].top would be the top member of the first structure. 

Here is a set of declarations that creates a structure containing another 
structure and an array: 
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struct date { 
int month, day, year; 
}; /* a structure template */ 

struct report { 
struct date duedate; 
int monthsales[12]; 
} defargo; 

To access members of a structure within a structure, use the membership 
operator twice. Thus, defargo.duedate.year would be the year member of 
the structure defargo.duedata, which, in turn, is a member of the structure 
defargo. 

To access array elements, use expressions like defargo.monthsales[4]; 
here defargo.monthsales serves as an array name, so adding the brackets 
and subscript yields an array element. 

An array of arrays, or a two-dimensional array, can be created by 
using two sets of brackets. Thus, the declaration 

int sales[lO] [12]; 

creates an array with 10 elements, each element of which is an array of 12 
ints. In this construction, sales is a pointer to the subarray sales[O], which is 
the first array of 12 ints. The identifier sales[O], in tum, is a pointer to the 
element sales[O][O]. Individual elements are accessed using two subscript 
values. Thus, the fifth element in the third array is sales[2][4]. 

The C typedef facility simplifies making repeated complicated 
declarations by establishing a one-word identifier to represent any 
combination of type identifiers and modifiers. To use this facility, declare 
the identifier as if it were a variable of the desired type, and precede the 
declaration with the keyword typedef. For example, the following 
statement establishes rectpoint as an identifier for the type pointer-to-struct 
rect: 

typedef struct rect *rectpoint; 
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This definition enables you to use declarations such as 

rectpoint prl, pr2; 

instead of the following: 

struct rect *prl, *pr2; 

This is particularly convenient when the declaration form has to be 
used several times. 
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8 
Character Strings 

In this chapter you will learn about: 

• The C string format 
• String constants 
• String variables 
• Character arrays and pointers 
• String 1/0 
• String functions 
• The Macintosh Pascal string format 
• Quickdraw string functions 

Many programs deal in part or in entirety with data in the form of words and 
phrases. For instance, an interactive program might ask you for your name 
so that it can address you by name later. C handles this kind of data with a 
data form called a "character string," or, for short, just "string." The 
Macintosh Toolbox also uses character ·strings for data of this kind. As we 
mentioned long ago in a distant chapter, the Toolbox character string is 
different from the C character string, but simple functions allow us to 
convert one form to the other. 

In this chapter we will begin by studying C strings and examining 
some standard C library functions that deal with strings. Then, sensibly 
enough, we'll move on to the Toolbox treatment of strings. 

Character Strings 

As with other data types, there are both constant and variable forms of 
C character strings. Both constants and variables are stored the same way, 
so let's begin with that 

A character string is a series, or string, of characters stored 
sequentially in memory. Different strings require different amounts of 
memory, so a program needs some way to keep track of how long each 
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string is. The method used in C to do this is to mark the end of a string with 
a special character. The special character chosen for this role is the "null" 
character. This is the character whose ASCII code number is 0. In character 
notation, it is written '\O'. Don't confuse it with the digit 0 cha.racter, which 
is 48 (decimal) in ASCil code. 

String Constants 

Character string constants in C are written as a string of characters 
enclosed in quotes. We've often used them as arguments for printfQ. Here 
are two examples: 

printf("Hi, guy!\n"); 
printf("x = %d\n", x); 

The first string is an ordinary message. The second string contains 
formatting instructions for printfO; but it, too, is a string, for it consists of a 
bunch of characters enclosed in double quotes. 

When writing a string using double quotes, you don't include the null 
character. The compiler uses the closing double quote to detect the end of 
the string, and it then inserts the null character when storing it. For 
example, Figure 8.1 shows how the first printf() argument above is stored. 

"Hi, guy! \n" 

Figure 8.1 Storing a string constant 
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String Variables and Character Arrays 

When you read about how a string is stored, you probably were 
reminded of arrays. Good, for a character array is one way to represent a 
string. By now you know quite a bit about arrays, so we don't need to 
spend much more time on the topic. There are a couple of points to 
examine, however. 

First, how do you assign a particular string to an array of char? One 
method, which we will return to later, is to use input functions to read a 
string in from the keyboard. A second method is to initialize the array when 
declaring it. This can be done, recall, only if the array is of a static or 
external storage class. Here is an example: 

static char msg[6] = {'N', 1 0 1 , 1 1 ,'g', 1 0 1 , 1 \0'}; 

This initializes the array to the string "No go". Each character is enclosed in 
single quotes to identify it as being a character constant and not, say, the 
name of a variable. 

All the quotes and commas make this tough to type. Therefore C 
offers a simpler initialization formjust for strings. It goes like this: 

static char msg[6] = "No go"; 

When you use this form, the null character is inserted automatically. 

Because of the null character, the array must have at least one more 
element than the number of characters in the quoted string. It's okay to have 
more elements than that, for the extra array elements just get set to ASCII 
zero, the null character. 

If you don't feel like counting the number of characters in the string, 
you can make the declaration this way: 

char words [] = "Fools rush in where wise men fear to-, 
tread."; +J 
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The compiler will count up the number of characters, add one for the null 
character, and allot the appropriate amount of memory. (Because we did not 
use the keyword static, this declaration would have to be made externally.) 

Another point to note is that not all char arrays are strings. Consider 
this example: 

static char name[4] = {'f','i','d', 'o'}; 

This may be a string of characters, but it is not a character string, for it does 
not contain the null character. A program may use this form when it needs 
to store several unrelated characters in an array. 

Finally, the initialization forms we've shown can only be used in a 
declaration. Consider the following: 

static char words[lO]; 

words[5] = '!'; 
words = "Try it"; 
words[] ="Oh yeah!"; 

I* this part is fine */ 

I* so is this */ 
I* but this is no good */ 
I* and neither is this */ 

The first assignment statement assigns a char constant ('!') to a char 
variable (words[5]) and is perfectly valid. The second assignment statement 
tries to assign a string to words. But words, being an array name, is a 
pointer constant, and cannot be assigned any kind of value. In the final 
statement, wordsO is meaningless in C except in a declaration statement. 

String Variables and Pointers 

Values can be assigned to pointer variables, and that offers another 
way to handle strings. Consider this program fragment: 

char *pc; /* pc is a pointer to char */ 
static char words[] = "This works."; /*words is array 

of 12 ,char *I 

pc words; 
pc "This is a valid operation."; 
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The first declaration creates a pointer pc that be can assigned the address of 
any char value. The second declaration creates an array and initializes it to 
the indicated string. The next statement assigns the address of the first 
element of the words array to pc. This is valid because words, too, is a 
pointer-to-char. (Yes, once again the name of an array is the address of its 
first member.) The final statement is also valid; it assigns the address of the 
beginning to the string "This is a valid operation." to pc. 

The last example uses the fact that in Ca quoted string is a pointer. 
Just as words pointed to its first element, so "This is a valid operation." 
points to its first element. The whole quoted string acts like an array name. 
To show that we are not joshing you, here is an example that prints 
addresses: 

main() 
{ 

static char ho[] = "Ho ho ho!"; 

printf("array: %u; string %u\n", ho, "Ho ho ho!"); 

And here is the output: 

array: 36136; string 36168 

Note that the two strings are stored in different locations, even though they 
have the same contents. 

A pointer-to-char can also be initialized to a quoted string; in that case 
storage is created for the pointer, and then the address of the quoted string is 
assigned to it. The next section contains an example. 

String 1/0 

Now that we have seen how to set up strings within a program, let's turn to 
input and output. C offers several functions for string input and output. The 
output functions are slightly simpler to use, so let's start with them. 
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String Output: print/() 

We've used printf() many a time to print a string constant, but it can 
also be used to print string variables. The method is to make use of the %s 
format specifier in the control string. Just as %dis a place holder for an 
integer, %s is a place holder for a string. When the compiler finds a %s in 
the control string, it expects to find a pointer to a string in the argument list. 
Since arrays of char names, declared pointers-to-char, and quoted string 
constants all are pointers to strings, they all can be used as function 
arguments for printf(). The next little program demonstrates these points: 

main() 
{ 

static char ml[] = "I am"; /* initialized array */ 
char *m2 = "what I"; /* initialized pointer */ 

printf("%s %s %s be.\n", ml, m2, "must"); 

Here is the output: 

I am what I must be. 

In the printf() argument list, ml, m2, and "must" all are string 
pointers. Note that we used spaces within the control string to provide 
spaces between the separate strings. Also, we initialized the pointer m2 
when we declared it. 

The %s format is executed in an interesting fashion. The actual 
argument is a pointer to the beginning of the string. The computer goes to 
that location, prints the character it finds there, goes on to the next location 
and prints it, and keeps on with this process until it finds a null character. If 
the argument points to a character array that is not a string (i.e., to one 
lacking a null character), the computer will keep on going, printing byte 
after byte until it finds a null character somewhere in your program. That 
might be the very next byte, or it might be a long way. 
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You can use a field width specifier and the left-justification specifier 
(the - sign) with the %s format, just as we did with the other formats in 
Chapter 3. Here are some examples: 

main () 
{ 

char *msg = "Tennis, anyone?"; 

printf("\"%s\"\n", msg); 
printf("\"%20s\"\n", msg); 
printf("\"%-20s\"\n", msg); 

The quotes inside the control string (the \"s) aren't necessary; we inserted 
them to show the size of the printing field. Here is the output: 

"Tennis, anyone?" 
" Tennis, anyone?" 
"Tennis, anyone? " 

String Output: /puts() 

The printf() function is quite versatile. It allows you to print strings, 
characters, and numbers in a specified format. Because it does so much, it 
is not that efficient for any one task. Therefore C offers another output 
function, fputs() that only prints strings. It is much more limited than 
printf(), but it is more efficient at the one thing it does. 

Like printf(), fputs() uses a string pointer as an argument to tell it what 
string to print. Unlike printf(), fputs() can handle only one string at a time. 
Also, fputs() takes a second argument that tells it in which file to put the 
string. We haven't discussed files yet, but all we need to know at this point 
is that stdio.h defines stdout to be the standard output, which, by default, 
is the screen. Here is an example showing its use: 

#include "stdio.h" 
main() 
{ 

char *m = "Is this clear?"; 
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fputs(m, stdout); /*send string m to the screen*/ 
fputs(m, stdout); 

And here is the output: 

Is this clear?Is this clear? 

Note that fputs() does not start a new line unless you tell it to by placing a 
newline character in the string. 

If you just need to print strings, fputs() is more efficient than printf(). 
But if you need to format a string or combine a string with other output, you 
probably will need to use printf (). 

String Output: puts() 

Many C compilers (but not Hippo C) offer a function called puts() 
that differs from fputs() in two respects. First, it doesn't take a file 
argument, for it always uses the standard output. Second, it automatically 
inserts a newline character at the end of the string when printing it. Hippo 
C's stdio.h contains this macro: 

#define puts(s) fputs(s,stdout) 

This version of puts() doesn't require a file argument, but it doesn't put in 
the newline character. 

It's not that difficult to write a function that behaves like the standard 
puts(), and doing so would give us more experience with strings and 
pointers. So let's do it. 

First, let's think about what's needed. (This important step is neglected 
surprisingly often.) 

1. The function should take a pointer-to-char as an argument (call it 
pc). 

2. It should print the pointed-to character (that would be *pc). 
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line 

3. Then it should advance the pointer to the next character (pc++). 

4. It should continue printing characters as long as the pointer doesn't 
point to a null character (while ( *pc != '\0') ). 

5. Then it should print a newline and end. 

We've practically written the program. Here is a first draft: 

puts (pc) 
char *pc; 
{ 

while ( *pc != '\0') 
{ 

} 

put char (*pc) ; 
pc++; 

putchar ( ' \n' ) ; 

The draft is fine, but we can make some C-like shortcuts. First, the 

while (*pc != '\0') 

can be replaced by this: 

while ( *pc ) 

Remember, a while loop continues as long as the test expression is 
nonzero. Since *pc is the ASCII value of the pointed-to character, it is 
nonzero unless it is the null character. Thus the loop stops when the null 
character is reached. This construction is common in string-processing 
functions. 

Second, we can combine the two loop statements (printing and 
incrementing) into one. The next test program incorporates these changes. 
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main() 
{ 

char *m = "I am a rock."; 

puts(m); 
* (m + 7) 
puts(m); 

's'; /*value of pointer to 8th element */ 

puts (pc) 
char *pc; 
{ 

while (*pc) 
putchar(*pc++); 

putchar ( ' \n' ) ; 

To add a tad of variety, we changed one of the string characters between 
puts() calls. Here is the output: 

I am a rock. 
I am a sock. 

Note that puts() succeeded in giving each string its own line. 

Note that we have used the compact pointer notation favored by 
C programmers. For comparison, here is the more pedestrian array version: 

puts(s) 
chars(]; 
{ 

int index = 0; 

while ( s [i] ) 

putchar( s[i++J ); 
putchar ( '\n') ; 
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It has to use one more variable, the array subscript. Instead of moving the 
pointers from one character to the next, it keeps s fixed and varies the 
subscript. Aside from that, s[i] plays the same role that *s did in the 
preceding version. 

String Input: scan/() 

The multipurpose scanf() function uses the %s format to read strings. 
Reading a string is trickier than printing one. When the computer prints a 
string, it has the null character to tell it when to stop. But, for input, there is 
no exact equivalent to the null character. Therefore, the input function 
design has to use some other sign to indicate the end of a string. Scanf() 
uses "whitespace" (a space, tab, or newline) to indicate the boundaries of a 
string. Thus, scanf() begins reading a string at the first nonwhitespace 
character and continues reading until the next whitespace character. The 
argument matching the %s format, as for the other formats, should be a 
pointer to the target storage area. Scanf() places the input into the target 
storage area and appends a null character, making it into a C string. Here is 
a sample usage: 

main() 
{ 

char name[lO]; /* target array */ 

fputs("Enter a name:\n"); 
while ( scanf("%s", name) == 1 ) 

{ 
printf("Hello, %s, and good luck.\n", name); 
fputs("Enter another name:\n"); 
} 

Recall that scanf() always takes a pointer argument to indicate where 
the input should be placed. Because name is an array name and a pointer, 
we don't need to use the address operator in the scanf() argument; name 
already is an address. Here is a sample run: 

Enter a name: 
Fritzi[RETURN] 
Hello, Fritzi, and good luck. 
Enter another name: 
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Cleo[SPACE]Hello, Cleo, and good luck. 
Enter another name: 
[OPTION]-d 

Notice that the moment we struck a whitespace key, the program 
terminated reading the string and went on to the next statement Remember, 
Hippo C uses unbuffered input. A buffered system would still read in Cleo 
but wouldn't get around to processing it until a [RETURN] was struck. 

There are some important facts about scanf() you should know. One, 
which should be obvious from the example, is that the %s format just reads 
in a single word. It can't read a string containing spaces because it stops at 
the first space. 

Second, space must be alloted to hold the input string. Do not emulate 
the following example: 

char *pc; 

scanf ("%s", pc); I* big trouble *I 

There are two problems here. First, the declation creates storage for pc, a 
pointer. Thus it sets aside one 4-byte memory unit suitable for storing an 
address. It doesn't create storage space to hold a string. Second, although 
it creates storage for pc, it doesn't assign a value to pc. Thus, when the 
program executes the scanf() statement, it will attempt to place the input 
string at whatever address happens to be lying in the pc memory location. 
Chances are the program will crash quickly. 

Not only should there be storage, there should be enough storage. 
What happens if, say, you respond with the name Theophilocrates? If you 
do, scanf() will read in the whole word. When it runs out of array space, it 
will keep going into the memory cells following the array. This may wipe 
out other data or even overwrite program code, depending on the storage 
class and the compiler. 
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There is a way to prevent this disaster. You can use a field width 
modifier in the %s format. Then, scanfO will read to the end of the field or 
to the first whitespace character, whichever comes first. The field width 
should be one less than the array size. in order to leave room for the 
terminating null character. Here is a modified version of the last program: 

main() 
{ 

char name[lO]; I* target array */ 

fputs("Enter a name:\n"); 
while ( scanf("%9s", name) == 1 ) 

{ 
printf("Hello, %s, and good luck.\n", name); 
fputs("Enter another name:\n"); 
} 

And here is sample output: 

Enter a name: 
TheophilocHello, Theophilo, and good luck. 
Enter another name: 
rates[SPACE] 
Hello, crates, and good luck. 
Enter another name: 
[OPTION]-d 

Once the "c" of "Theophilocrates" was typed, scanfO knew it had 
enough. It processed the first nine letters, and after the rest of the name was 
typed, the program processed the rest of the name. Note that the second call 
of scanf() resumed where the first left off, at the letter c. 

String Input: /gets() 

The scanfQ function reads one word and converts it to a C string. The 
f getsQ function reads a whole line and converts it to a C string. The signal it 
uses to mark the end of an input string is the newline character generated by 
the [RETURN] key. 

CHARACTER STRINGS 233 



The f gets() function takes three arguments. The first is a pointer-to­
char to identify where the input should be placed. The second is an int that 
specifies the maximum allowable size of the input string. The function will 
read up to one less than the maximum size (leaving space for the null 
character to be added) or up through the first newline, whichever comes 
first. The third argument indicates the source file. All we need to know at 
this point is that the file stdio.h defines stdio as the standard input, which, 
by default is the keyboard. Here is a sample use: 

#include "stdio.h" 

#define MAXSIZE 70 
main () 
{ 

I* needed for stdin,stdout 
definitions */ 

char phrase[MAXSIZE]; 

fputs("Enter a phrase:\n", stdout); 
fgets(phrase,MAXSIZE,stdin); 
fputs(phrase,stdout); 
fputs(phrase,stdout); 

Here is the output from a run: 

Enter a phrase: 
A glitch in Time saves nine. [RETURN] 
A glitch in Time saves nine. 
A glitch in Time saves nine. 

Note that the phrase was reprinted on separate lines. That's because 
fgets() includes the newline character as part of the input string. 

We didn't use it in the last example, but fgets() has a return value. The 
function returns its first argument, unless it encounters end-of-file, in which 
case it returns something called NULL. What is NULL? First, note that 
the function fgets() must be of type pointer-to-char, if it is to return its first 
argument. (We got away without declaring the function type because we 
didn't use the return value.) Thus, NULL is a pointer, also. It is, in fact, a 
constant pointer whose value is 0, that is, it is a pointer to memory address 
0. The definition of NULL is in stdio.h. C is set up to recognize NULL as 
an invalid value for a decent pointer, so it is often used as a negative signal 
for functions that return pointers. Do not confuse the NULL pointer with 
the null character. Although each has the numerical value zero, the former is 
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the null character. Although each has the numerical value zero, the former is 
a memory location, while the latter is a character value. 

Here is an example making use of the return value as part of a test 
condition for a loop. Because we use the return value, we need to declare 
the function type. 

#include "stdio.h" 
#define MAXSIZE 70 
main () 

I* needed for definitions */ 

{ 
char phrase[MAXSIZE]; 
char *fgets(); /*declare function type*/ 
fputs("Enter a phrase:\n", stdout); 
while ( fgets(phrase,MAXSIZE,stdin) !=NULL); 

{ 
fputs(phrase,stdout); 
fputs("More, please.\n",stdout); 

This program will repeat phrases you type until you hit [OPTION]-d to 
generate the end-of-file signal. 

You now know a few ways of getting strings into and out of 
programs. C offers several library functions to work on strings within a 
program. We'll look at them next 

String Functions 

The Hippo C library contains several useful string-oriented functions. They 
perform such feats as comparing two strings to see if they are the same, 

. copying a string into an array, adding a string to an existing string, and 
determining the length of a string. Here is a list and brief description of 
these functions; in its and t represent string pointers. 

strcat(s,t) 
strcmp(s,t) 
strcpy(s,t) 
strlen(s) 

strncpy(s,t,n) 

Appends string t to string s 
Compares string s to t, returns 0 if the same 
Copies string t into s 
Returns the length of s, not counting the null 
character 
Copies t to s, maximum of n characters 
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The functions strcat(), strcpy(), and strncpy() return their first 
arguments; hence they must be declared type pointer-to-char if their return 
values are used. 

The strcmp() function returns 0 if the two strings are identical. The 
comparision is made out to the null characters, so two strings can be the 
same even if stored in different sized arrays. If the strings are not the same, 
the difference in ASCII value for the first differing characters is returned. A 
positive value means the first string comes after the second string in ASCII 
ordering, and a negative value indicates the opposite order. This fact can be 
used, for example, in writing a function to put strings in alphabetical order. 

The strcmp() function is necessary, for the relational operators(== and 
so on) work with single-valued variables, not with strings and other arrays. 

Because strncpy() may copy only part of the string, it does not 
necessarily copy the terminating null character. We'll see an example later in 
this chapter. 

The isalpha() family of functions we discussed in Chapter 4 are often 
useful for string handling. Two other useful functions are tolower() and 
toupper(). The first converts uppercase to lowercase, and the second does 
the opposite. In Hippo C, tolower() only executes the conversion if its 
argument is, in fact, uppercase. Not all implementations of this function 
check first, however, so it is safest to use this function along with the 
isupper() function. A similar situation holds for tolower(). 

We can use some of these functions to write a simple guessing game 
program. It prints a question, reads the user's response and uses strcmp() to 
compare the response to the true answer. To facilitate comparison, a lower() 
function uses tolower() to convert the whole response string to lowercase. 
Also, the question and answer strings are expressed as #defined constants, 
so they can be altered easily. Here is the program: 

.Jloinclude "stdio.h" /* needed for stdout definition */ 

.Jlodefine MAXSIZE 30 
#define QUESTION "What talking pig lived on the Bean--, 
Farm? \n" +-' 
.Jlodefine HINT "He was a poet, editor, banker, and--, 
detective. \n" +-' 
#define ANSWER freddy /* A Walter Brooks creation */ 
main() 
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char response[MAXSIZE]; 
int len; 
void lower(); /*converts string to lower case*/ 

fputs(QUESTION, stdout); 
fputs(HINT,stdout); 
scanf("%29s", response); 
lower(response); 
while ( strcrnp(ANSWER, response) 

{ 
if ( (len = strlen(response) - strlen(ANSWER) 
0 ) 

fputs("Your answer is too long.\n", stdout); 
else if ( len < 0 ) 

fputs("Your answer is too short.\n", stdout); 
else 

fputs("That's the right length!\n", stdout); 
fputs("Now make another guess:\n", stdout); 
scanf("%29s", response); 
lower(response); 
} 

fputs("Congratulations, that's it!\n", stdout); 

void lower(s) /* converts string to lower case */ 
char *s; 
{ 

while ( *s ) /* cycle until the null character */ 
{ 
*s = isupper(*s) ? tolower(*s) : *s; 
s++; /* advance to next character */ 
} 

>~ 

The while loop in main() will continue until strcmp() returns 0, which 
it will do when the correct answer is entered. The strlen() function compares 
the length of the response to the length of the answer so that the program 
can help out the user a bit. 

The lower() function converts the response to lowercase. That way, 
even if the user types Freddy or FREDDY or freDDy, the string is 
converted to freddy before being compared to the answer. Note the 
construction while( *s ). This is a common idiom in string processing 
functions. We used it earlier in puts(), and we will use it again. The variable 
s initially points to the first element of the string passed to the function. 
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Thus, *s is the first character of the string. Each cycle of the loop increases 
s by one, making *s assume the value of each character in tum. The loop 
continues as long as *s is nonzero. Eventually, *s becomes the null 
character, which has the numerical value of zero, and the loop ends. Within 
the loop, the conditional operator (Chapter 4) causes *s to be converted to 
lowercase if it is uppercase. 

Here is a sample run: 

What talking pig lived on the Bean Farm? 
He was a poet, editor, banker, and detective. 
Porky 
Your answer is too short. 
Now make another guess. 
Practical 
Your answer is too long. 
Now make another guess. 
Freddy 
Congratulations, that's it! 

We could have used fgets() instead of scanf(). If we did, however, we 
either would have to strip the newline from the string fetched by fgets, or 
else we would have to change the correct answer to "freddy\n". Later, we 
will show how to strip the newline from an input string. 

String Construction 

The strcpy(), strcat(), and strncat() functions are often used to 
construct a single string from smaller pieces. Here is an example showing 
how they are used: 

#include "stdio.h" 
#define MAXSIZE 70 
#define WORDSIZE 15 
main() 
{ 

char sentence[MAXSIZE], word[WORDSIZE]; 

strcpy(sentence, "The"); 
fputs("Give me an adjective:\n", stdout); 
scanf("%14s", word); 
strcat(sentence,word); 
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strcat(sentence," gazed sadly upon its priceless"); 
fputs("Give me a noun:\n", stdout); 
strcat(sentence, word); 
printf("%s.\n", sentence); 

Here is a sample run: 

Give me an adjective: 
drunken[RETURN] 
Give me a noun: 
buffoon[RETURN] 
The drunken swan gazed sadly upon its priceless buffoon. 

First, strcpy() place the word The in the string sentence. Then, calls to 
strcat() added new characters to the string. Note that even though word is a 
15-element array, only the characters up to the null character are appended. 
Streat() also has to remove the null character at the end of the old string, for 
it is the first null character in an array that signals. the end of the string. 

The functions strcat(), strcpy(), and strncpy() do not check to see if the 
target array has enough room for the incoming string. It's your 
responsibility as a programmer to check for that. 

There is one more function used in constructing strings from 
fragments. It's called sprintf(), and, as you might expect, it is closely 
related to printf(). The difference is that it writes its output in a target string 
instead of on the screen. Its general form is this: 

sp rintf(targe tstring,controlstring ,argument( s)) 

Here, targetstring is a pointer to where the string is to be placed, and the 
remaining arguments are as for printf(). 

Here is an example illustrating the mechanics of using sprintf(); we've 
included a couple macros to help keep them fresh in your mind: 

#include "stdio.h" 
#define MAXSIZE 70 
#define WORDSIZE 15 
#define PUTS(X) fputs(X,stdout) 
#define GETWD(X) scanf("%14s", X) 
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main() 
{ 

char target[MAXSIZE], fname[WORDSIZE],--, 
!name [WORDSIZE]; +.J 

int age; 

PUTS("Enter your first name:\n"); 
GETWD(fname); 
PUTS("Enter your last name:\n"); 
GETWD(lname); 
PUTS("Enter your age:\n"); 
scanf("%d", &age); 
sprintf(target,"%s %s claims to be 
%d!\n",fname,lname,age); 
PUTS(target); 

Here is some output: 

Enter your first name: 
Jack[RETURN] 
Enter your last name: 
Benny[RETURN] 
Enter your age: 
39[RETURN] 
Jack Benny claims to be 39! 

Note how sprintf() lets you combine character and numerical 
information in a string. For example, the numerical value for age was 
converted to the character sequence "39". 

Writing C String Functions 

You may need string functions beyond those provided by the library. The C 
string format makes writing string functions relatively simple. For example, 
a function does not need to know in advance how long a string is; it can 
process each character in tum until the null character shows up. Because 
the value of the null character (zero) is also the value that terminates a while 
loop, it is natural to use a while loop to control string processing, just as we 
did with the lower() function a few pages ago. 
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For another example of this technique, let's see how the strlen() 
function could be written. To avoid confusion with the library function, 
let's use the name stringlen(): 

I* stringlen.c 
int stringlen(s) 
char *s; 
{ 

int length = 0; 

example of string processing */ 

while ( *s++) /* go until null character */ 
length++; /* count characters */ 

return length; 

Here, nothing within the loop used the value of the character (*s), so 
we could use the increment operator to advance the pointer after the value of 
the pointed-to character was tested. When *s becomes the null character, the 
loop terminates, and the function returns the value of length. 

The index() Function 

Many C libraries (but not Hippo C) contain a function called index() 
or, sometimes, strchr(). It tells you if a given character is in a string. More 
specifically, it takes a string pointer and a character as arguments and 
returns a pointer to the first occurrence of the character within the string. If 
the character is missing, the function returns a pointer to NULL. Since this 
is a useful function, let's write our own version. 

The function should compare the character to each string element in 
tum until the character is found in the string, or until the null character 
shows up. We can use a compound condition in a while loop to accomplish 
that. The value of the pointed-to character when the loop ends will 
determine whether a pointer to the character or a NULL pointer is returned. 
Here is one possible implementation: 

I* index.c -- finds if character ch is in string s */ 
char *index(s,ch) /* returns a pointer to a character */ 
char *s; /* pointer to the string to be 

scanned */ 
char ch; /* desired character */ 
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while ( *s && *s != ch ) /* not null and not ch */ 
s++; /* advance to next array element */ 

return *s ? s : (char *) 0; 

First look at the loop condition: *s is nonzero, or true, as long as 
s doesn't point to the null character. The second expression, *s != ch, is 
true as long as the pointed-to character isn't ch. The body of the loop (s++) · 
advances the pointer to the next character in the string. This continues until 
one or the other condition becomes false. Then the function reaches the 
return statement. 

When the function reaches the return statement, there are two 
possibilities for s. First, it may point to the first occurrence of ch in the 
string s. In this case, the value of *s is the designated character, hence 
nonzero, or true. This causes the conditional operator to choose the first 
value after the ?; namely, s. Thus the function returns a pointer to the first 
occurrence of the character in the string, as specified. 

Suppose, however, the loop went to the end of the string before 
stopping. In this case, s points to the null character, and the value of *sis 
zero, or false. This causes the conditional operator to return its second 
choice, which is the NULL pointer. 

Now all we have to explain is why (char*) 0 is the NULL pointer. A 
pointer, we've said has an address as a value, and the value of NULL 
pointer is O; it points to address location 0. 

So all the function needs to return is the numerical value 0. The 
(char*) is added for logical consistency. It is a type cast saying that the 0 is 
the address of a char. Eliminating the type cast doesn't affect the program, 
but including it shows that the 0 is the same data type as s. 

If we had included the stdio.h file, we could have used NULL instead 
of (char*) 0. However, the main program may have already included that 
file, and we didn't want to waste space by including it twice. 
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We can write the function using array notation at the cost of using one 
more variable to handle the subscript. Here is the array version; if you find 
the pointer version obscure, perhaps compariiig the two versions will 
illuminate matters for you: 

I* indexa.c -- array version of index.c */ 
char *indexa( s, ch ) 
char *s; 
char ch; 
{ 

int i 0; /* array subscript */ 

while s[i] != '/0' && s[i] !=ch) 
i++; /* next element */ 

return s [i] ? (s + i) : (char *) 0; 

Here s[i] plays the same role that *s did in the pointer version. Instead 
of increasing the pointer each loop cycle, this version keeps s constant and 
increases the index i. Thus, at the end, it returns s + i instead of s. Since we 
are trying to make this version very clear, we explicitly compared s[i] to the 
null character. 

Using index() 

We claimed that index() is a useful function, so let's look at some 
examples. 

The f gets() function, we revealed, reads in a whole line of input into a 
string. It identifies the end of the line by the newline character produced 
when you hit the [RETURN] key, and that newline character is stored as 
part of the string. Suppose, as is often the case, that you don't want the 
newline character stored. Then you can use the index() function to locate the 
newline and replace it. Here is a simple, but flawed, approach; it assumes 
that name is a character array and that pc is a pointer-to-char: 

fgets(name, 80, stdin); 
pc= index(name, '\n'); 
*pc = '\0') ; 

/* find the address */ 
I* change the value */ 
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First, f gets() fetches the input Recall that its second argument is a limit 
to the number of characters to be read. Next, index() returns a pointer to the 
location of the first newline character in name. Thus, pc is assigned the 
address of the newline in the string. The third line places the null character 
into that address, making it the new end of the string. 

This sounds fine; what is the flaw? The trouble is that the code 
assumes that the string name contains a newline character. Normally it 
would, but if you enter a string longer than allowed by the second argument 
to f gets(), only the first part of the string gets assigned to the array. In 
Hippo C, f gets() does not begin processing until the [RETURN] key is hit 
and the newline character transmitted; f gets() quits placing characters into 
the array when it reaches the newline or the specified limit, whichever 
occurs first. See Figure 8.2. Thus, the program should check to see if the 
array contains a newline before trying to replace it. This is easily 
accomplished by using the return value from index(). If it is not the NULL 
pointer, a newline character was found, and the substitution can be made. 
Therefore we can use an if statement like the following: 

if ( (pc = index ( name, '\n') ) ! = NULL) 
I* found a newline */ 

*pc= '\0'; I* substitute a null character for it*/ 

Here we've used the common C idiom of combining an assignment 
statement with a comparison. It assigns a value to pc, and then the value is 
compared to NULL. The code assumes stdio.h is included to provide the 
NULL definition. 

What if pc is NULL? Then no newline character was found. This 
implies that there are still some characters hanging around in the input 
queue. If the program reads any more input, these characters should be 
cleared away first. We can do this by adding an else clause to the code: 

if ( (pc = index( name, '\n') ) !=NULL) 
/* found a newline */ 

*pc= '\0';/* substitute a null character for it */ 
else /* no newline */ 

while ( get char () ! = '\n') 
/* skip through end of line */ 
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The while loop reads and discards input characters until the newline 
character is reached. This clears the line, giving the next input statement a 
clean slate to work from. 

Input queue before function call: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Function call takes 12 characters: 

fgets(name,12,stdin); 

Array following function call: 

0 1 2 3 4 5 6 7 8 9 10 11 

Input Queue following function call: 

Id I 0 Is I k I a l\nl 
1 2 3 4 5 6 

Figure 8.2 Effects of fgets() 

Another Example 

A common string-handling problem is to copy part of one string to 
another. Suppose, for instance, that an array contains someone's full name, 
and you want to copy just the first name into a second array. One approach 
is to use index() to find the first space in the array and to then use strncpy() 
to copy the part up to that space. There are some possible pitfalls to this 
approach, so let's develop it step-by-step. 
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We can start by assuming we have these declarations: 

char full[20], first[20], *pc, *index(); 
int n; 

The first step is to find the space in full, the array holding the full 
name: 

pc= index( full, ' '); 

This assumes that there is a space; we'll remove that assumption later. 

To use the strncpy() function, we need to know how many elements to 
copy. We can figure that out using pointer arithmetic. The array name full 
points to the first element of the array (subscript 0), and pc points to the 
element with the space. The difference gives the number of characters up to, 
but not including, the space: 

n = full - pc;/* find number of elements before space */ 

It's easy to make a one-off counting error in these situations, so you should 
convince yourself that this formula is correct. 

Now we can use strncpy() to copy the first n elements of full into first: 

strncpy( first, full, n); 

Recall that the third argument for strncpy() tells how many characters to 
copy. 

Are we done? No, because when strncpy() copies less than the whole 
string, the null character isn't copied. In this case, we know less than the 
whole string was copied, for everything from the space onward was 
omitted. This means that first lacks a terminating null character, and hence it 
is not a string. So we need to add on the null character. We copied n 
characters; because array subscripts start at 0, the last character copied was 
placed in first[n-1]. Therefore, we can do this: 
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first[n] = '\0'; 

This places a null character immediately after the last copied character, 
making first into a proper string. 

Finally, we can use an if statement similar to the one in the last 
example to check to see if a space is found. If one is, procede with the steps 
we just gave. If not, full contains just one name. 

We've put together a program incorporating these programming 
elements along with the newline example we gave earlier. It also includes a 
new ploy that we will explain later. The program assumes that index() is in 
a separate file that is compiled along with the one containing this code. Here 
is the program: 

#include "stdio.h" 
#define MAX 20 

/* use NULL, stdin definitions */ 
/* use short maximum string for 

testing */ 
main () 
{ 
char full[MAX], first[MAX], rest[MAX]; 
int n; 
char *pc, *index(); 

printf("Please enter your full name:\n"); 
fgets(full, MAX, stdin); 
if ( (pc = index( full, '\n') ) != NULL) /* newline? */ 

*pc= '\0'; I* replace it */ 
else 

while( getchar() != '\n') 
; I* skip to end of line */ 

printf("You say %sis your full name.\n", full); 
if ( (pc = index ( full, ' ') ) ! = NULL) 

{ 

n = full - pc; 
strncpy(first, full, 
first[n] = '\0'; 
strcpy(rest, pc); 
} 

else 
{ 
strcpy(first, last); 
rest [ 0] = '\ 0' ; 
} 

n); 

/* new stuff */ 

/* just one name */ 

/* copy whole name */ 
I* set rest to empty string */ 

CHARACTER STRINGS 247 



printf("Oh! Not %s \"Big Byte\"%s, the famous-, 
programmer ! \n", +J 

first, rest); 

Here is a sample run: 

Please enter your full name: 
Gladys Pips 
You say Gladys Pips is your full name. 
Oh! Not Gladys "Big Byte" Pips, the famous programmer! 

It works, and it also handles single name entries, such as Sophocles, 
and overly long entries, such as Jennifer Elisabeth Longwoman. It is not 
completely foolproof (it doesn't handle replies like Smith, Joe sensibly), but 
it is fool-resistant. 

The new bit of programming is storing the rest of the full array in the 
array rest. The second argument to strcpy() is supposed to be a pointer to 
the string to be copied. In this case, we used pc, which points to the first 
space in full. Thus, the copying starts with the space character instead of the 
beginning of the array. The pointers used as arguments by strcpy() and 
strncpy() don't have to point to the beginnings of strings. In this case, we 
used a pointer to somewhere in the middle of the original string. Similarly, 
the first argument can be a pointer to the middle of the destination array. In 
that case, only the array elements at and after that location are affected. 

This flexibility of arguments allow strcpy() and strncpy() to do more 
than copy one entire string to another. Suppose, for instance, you wish to 
copy the fifth through tenth characters of the string s 1 (subscripts 4 through 
9) into the string s2, starting at its third element (subscript 2). You can do 
this: 

strncpy( s2 + 2, sl + 4, 6); 

Because sl points to the first element of the sl array, the expression sl + 4 
points to the fifth element. Thus, copying will start at that element. 
Similarly, the expression s2 + 2 points to the third element of the array s2, 
so the fifth element of s2 will be copied to that location. Finally, the fifth 
through tenth characters constitute six characters, so 6 is the third argument. 
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Perhaps it is time to tum to examples more specific to the Macintosh, 
so let's look at Macintosh Toolbox strings. 

Macintosh Pascal Strings 

In Chapter 2, we mentioned that the Toolbox used a string format different 
from the C format. We'll look more closely at that difference now. Standard 
Pascal uses something called a "packed array of char" to hold strings, but 
this mechanism has not proven to be all that useful. For example, a Pascal 
function or procedure designed to work with this form of string will work 
only for the particular array size chosen by the designer. As a result, many 
Pascal implementations use extensions to Pascal to handle stings more 
effectively. Macintosh Pascal is one such implementation; it uses a 
nonstandard Pascal type called STRJNG. 

Suppose the string 'Eureka' (Pascal uses single quotes for strings) is 
stored in a STRING variable. Then, as in C, the characters are stored in 
adjacent bytes of memory. However, there is no special character to mark 
the end of the string. Instead, the byte preceding the first character is used to 
store the length of the string, 6 in this case. Figure 8.3 shows the string 
storage. 

6 E u r 

L Number of chacters in string 

Figure 8.3 Storing a Pascal String 

The largest number that can be stored in a byte is 255, so the largest 
possible Pascal string is 255 characters long. Toolbox functions dealing 
with strings assume strings are of the maximum size, but because they only 
process the number of characters indicated in the first byte, the actual strings 
can be shorter. 

String Format Conversion 

It's a simple matter to convert from the C format to Pascal and vice 
versa. For example, to convert from Pascal to C, note the number of 
characters, move that number of characters one position earlier in the array, 

CHARACTER STRINGS 249 



and put a null character at the end. Since each form is one element longer 
than the number of characters, there is no problem with storage size 
incompatabilities. 

To make the conversion even easier, Hippo C provides two functions 
to do the actual work. The first is called strctop(). It takes a C string as an 
argument (an array name, a pointer-to-char, etc.), converts the string to the 
Pascal format, and returns a pointer to the string. Thus the function should 
be declared type pointer-to-char if the return value is used. The seconc;l is 
called strptoc(), and, of course, it converts a Pascal format to a C format in 
a similar fashion. 

An important point about these functions is that both alter the original 
string. Once you make, say, the call strctop(myname), the string myname 
remains in the Pascal format. If you need the C form later, you will have to 
use strptoc() to convert it back. 

A second point is that both functions not only alter the original string, 
they return a pointer to the string. This gives us two ways in which to use 
the functions. First, we can call the function, then use the altered string: 

strctop(myname); 
drawstring(myname); 

I* convert string */ 
/* use Pascal format */ 

Or we can use the return value directly to save a line of code: 

drawstring( strctop(myname) ); /*use return value*/ 

In either case, the string myname is permanantly altered and can be used 
directly with drawstring() henceforth. 

A program using the second form should, in principle, declare 
strctop() as type pointer-to-char. You may recall, however, that in Chapter 
2 we snuck through an example that failed to do so. Obviously, we didn't 
want to frighten a beginner by throwing in pointer notation so soon, but 
why did the program work? Well, because we didn't declare the function, 
the program assumed the return value was of type int Fortunately, in Hippo 
C both int and pointer types use 4 bytes of memory. The pointer types are 
unsigned, but as long as an address is less than the maximum signed value 
(2,147,483,647) a pointer can be successfully read as type int. Note: this is 
an explanation and not a recommendation. 
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Quickdraw Functions 

Output to the screen can be handled by the Quickdraw part of the Toolbox. 
Here is a list of several of the text drawing functions, including those we 
mentioned earlier in Chapter 2. 

textfont() 
textmode() 
textface() 
textsize() 
drawchar() 
drawstring() 
drawtext() 
charwidth() 
textwidth() 
getfontinfo() 

Sets font 
Sets "transfer" mode (overwrite,etc) 
Sets style (BOLD, ITALIC, etc.) 
Sets type size 
Draws a character 
Draws a Pascal string 
Draws portion of a string 
Returns width of character in screen units 
Returns width of section of text 
Supplies information about font 

We haven't the space to explain all of these functions in detail. Instead, 
we will present an example using some of them, and explain these more 
fully. 

From Mac's Toolbox: New Routines 

Text Width Returns width of a line of text 

It's been a while since we last used a Toolbox example, so let's 
mention the Toolbox functions we have used before: eraserect(), setrect(), 
framerect(), invertrect(), moveto(), textsize(), and drawstring(). The 
example also pulls in a global quantity called theport, which we will have 
to explain, too. Here's the program: 

I* space epic.c */ 
#include-"data.h" 
#include "stdio.h" 
#define TIMES 5 
#define CYCLES 20 
main() 
{ 

/* holds many typedefs */ 
I* defines theport */ 

char *title "WAR OF THE SPACE TWITS"; 
int count, i; 
integer left, right, horiz, vert, size, width; 
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rect boxes[TIMES); 
integer textwidth(); 

eraserect(&theport->portrect); /*clear window*/ 
left = theport->portrect.left; /* window left */ 
right = theport->portrect.right 
strctop(title); /*convert title format*/ 
vert = 20; /* initialize vertical position */ 
for(count = 1; count <= TIMES; count++ ) 

{ 

size = 9 + count * count; /* font size */ 
textsize(size); 
width textwidth(title,1,title[O)); 
horiz = (left + right - width ) I 2; 

I* centering */ 
vert += 3 * size I 2; I* increment vertical 

position */ 
moveto(horiz,vert); /*locate pen */ 
drawstring(title); /*draw title*/ 
setrect(&boxes[count-1),horiz - 1, vert - size -
2, 

horiz +width+ 2, vert + 3); 
framerect(&boxes[count-1)); /*box title*/ 
} 

for ( count 0; count < CYCLES; count++) 
for ( i O; i < TIMES; i++) 

{ 
wait (20); 
invertrect(&boxes[i)); 
} 

First, let's see what the program does. It prints the stirring title 4 
times, each time in larger type. Program instructions center the title 
horizontally and box each printing. Figure 8.4 shows the appearance of the 
screen after the first for loop is finished. Then the final portion of the 
program inverts the boxes in sequence, producing a sense of epic drama. 
The inversion is repeated several times to impress upon the viewer a sense 
of ineffable grandeur. Figure 8.5 shows one of the intermediate stages. 

Now let's look at some of the details: 
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Hippo-c Command Window 

iuAR OF THE SPACE TU ml 3 
~AR OF THE SPACE TUITij 

WAR OF THE SPACE TWITSI 

llJAR OF THE SPACE TU I rsl 
ll.JAFI DF THE SPACE T~J I TS! 

Figure 8.4 space_epic.c output 

Hippo-c Command Window 

UAR OF THE SPACE TUITS 
I I 

WAR OF THE SPACE TWITS 

l~J AR OF THE SPACE TU IT sl 
ll.JAFI DF THE SPACE Tl-JI TS! 

Figure 8.5 Further space_epic.c output 

CHARACTER STRINGS 253 



theport 

Probably the most mysterious element of the program is the 
unannounced appearance of theport. It has this unappealing definition in 
stdio.h: 

#define theport (*(grafptr *) jt_theport()) 

All we need to know at this point is that theport points to a structure that 
describes the graphics environment. In our case, this structure is set up by 
Hippo C when it creates the Hippo C and HOS environments. Our program 
just takes over the environment. In particular, one member of the structure 
is a rect structure called portrect that describes the dimensions of the current 
window. Thus the expression theport->portrect is the name of a rect 
structure. This structure contains the boundaries of the current window, so 
the function call 

eraserect(&theport->portrect); 

serves to clear the inside of the window. The indirect membership operator 
has higher precedence than the address operator, so no parentheses are 
needed to make the & apply to the whole expression and not just the theport 
part. Since the expression theport->portrect is a structure name, we can use 
the membership operator to obtain the left and right limits of the screen, 
which we did, with expressions like theport->portrect.left. 

If you must know more about the theport definition, here's the 
lowdown. Clearly, jt_theport() is a function, making theport a 
representation of some modification of the return value of the function. 
What happens to the return value? First, it is subjected to a typecast: 
(grafptr *).This means the return value is to be interpreted as a pointer-to­
grafptr. Then the initial * yields the value stored at this pointer, meaning the 
final type (value of pointer-to-grafptr) is just grafptr. This type, in tum, is 
defined in the file data.h as being a pointer-to-type grafport, also defined in 
data.h. This type is a structure storing information about the graphics 
environment. We'll take up grafport further in Chapter 9. Meanwhile, the 
net result, as we indicated, is that theport is a pointer to a structure existing 
outside of our program. This structure was set up early when the Hippo C 
environment was created, and now our program takes over that 
environment. 
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Functions in the Program 

The strctop() function makes an early appearance, converting the title 
to a string in the Pascal format. 

We use textsize() as we did in Chapter 2, providing it with an integer 
value for the font size. The unit is the "point," a typesetting unit of 
approximately 1172 inch. However, an argument of 0 means to use the 
system size (generally 12 points). The font size describes the vertical 
distance from the bottom of a line to the bottom of the next line. Any 
integer size is acceptable, but the results can look poor if the size does not 
correpond to a font size in stock or to a multiple thereof. 

On the Macintosh, the point is taken to correspond to the "pixel" unit 
that describes screen resolution. Recall that the screen is 512 units across by 
342 units down. A pixel has dimensions of 1 unit by 1 unit, and it is the 
smallest picture element on the screen. When fonts are scaled to various 
sizes, the results don't always come out in even pixels. But since the 
computer must use either a whole pixel or none at all, the fonts can have the 
actual proportions change a bit when shown on the screen. In the figures 
you can note small differences in how the titles fit in their boxes; the inexact 
rendition of font sizes is the reason. 

To center a line, we need to know how wide it is. The width changes 
as the font size and font styles change, but the Toolbox provides functions 
to do the calculations. The charwidth() function takes a character as its 
argument and returns its width. We could have used that to make a function 
that returns the width of a whole string, but the Toolbox already furnishes 
two functions for that purpose. One, called stringwidth(), unfortunately 
is bug-ridden at the present. Therefore we used the more awkward one, 
textwidth(). 

The textwidth() function takes three arguments. The first is type 
pointer-to-char and indicates which string is to be processed. The second 
argument is an integer indicating how far into the string the count should 
start. The final argument is the number of characters to be measured. 
Because this function lets you choose the starting and ending points, it can 
be used for either format of string. In our case, title is in the Pascal 
argument, so we used 1 as the second argument. That is, we instruct the 
function to start 1 element over from the beginning, i.e., at title[l]. For the 
third argument we used title[O] because, in the Pascal format, that contains 
the number of characters in the string. If title had been in C format, we 
would have used 0 and strlen(title) for the final two arguments. 
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Using the left and right borders and the stringwidth, the program 
calculates the correct horizontal coordinate for starting the string. Next, an 
arbritrary formula is used to calculate the vertical position. The moveto() 
function moves the pen there, and the drawstring() function, which 
expects and gets a Pascal-format string, draws the title from there. 

The drawstring() function does not recogize formatting instructions 
such as the newline character. Thus, you should use moveto() to position 
the text where you want it. 

We did not use the drawtext() function, but it is much like 
drawstring(), except that it talces the same argument set as textwidth(). 
Thus, like textwidth(), it can be used with either string format, so long as 
you choose the arguments wisely. 

The remaining functions concern rectangles, and you have met them 
before in Chapter 6. 

Now that you know how it works, you can go back and fool around 
with the program, perhaps augmenting the screen with a 

"STARRING ____ " (fill in the blanks). 

Perhaps the most interesting aspect of this example is that there exists a 
structure describing and controlling the graphics environment. We will take 
a more organized look at that topic the next chapter. 

Programming With Pascal-Formatted Strings 

We mentioned that stringwidth() seems to have a bug. (This is third-hand 
information.) It is simple enough to write a C function to talce the place of 
stringwidth(). The Toolbox function charwidth() returns the width of a 
single character, so we can apply the function to each character in the string 
and keep a running total of the widths. Here is a version using array 
notation: 

short stringwidth( s ) 
chars[]; /* s a pointer to beginning of a char array*/ 
{ 

short i, width, charwidth(); 
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for ( i = 1, width= 0; i < s[O]; i++ ) 
width+= charwidth(s[i]); 

return width; 

This function makes use of the facts that, in the Pascal format, s[O] is 
the length of the string and s[l] is the first character in the string. Thus the 
for loop starts with i set to 1 instead of the usual 0. The s[O] value, in turn, 
serves to tell the loop how many elements to process. 

Because the Pascal format provides the string length as the first byte, it 
is natural to use a for loop to process the string. The C format, with a null 
string at the end, makes the while loop more natural for that format. It's a 
matter of whether or not the length of the string is known before the loop 
starts. 

Summary 

A character string is a sequence of characters stored as a unit. In C, a 
string is identified by a pointer to the first character, and the end of the 
string is marked by the null character, '\O', or ASCII zero. The pointer to 
the first character can be the name of the type char array storing the string, 
or it can be a declared pointer-to-char that has been assigned that address, or 
it can be a string constant, which is a sequence of characters in the program 
code enclosed in double quotes. 

String output in C commonly is handled using the printf() and 
fputs() functions. The %s specifier allows printf() to format the string and 
to combine it with other output. The fputs() function prints just one string at 
a time. 

String input is accomplished using scanf() and fgets(). The scanf() 
function uses the %s specifier to read single words, while f gets() reads 
entire lines. 

The standard C library contains several string processing functions. 
They perform functions such as finding the length of a string, copying a 
string, combining strings, and comparing strings. 

The Macintosh Pascal format for a string consists of one byte holding 
the string length followed by the characters of the string. The maximum 
length for such a string is 255 characters. Hippo C functions convert strings 
from one format to the other. 
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The Quickdraw functions drawstring() and drawtext() print 
strings. Formatting guides such as newlines are ignored, but the moveto() 
function can be used to control string placement. Other Quickd.raw functions 
control the size and style of the type and provide information about strings. 
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9 
C and the Macintosh Toolbox 

In this chapter you will learn about: 
• Toolbox subroutines as Pascal procedures and 

functions 
• Converting Pascal descriptions to C usage 
• Variable and value parameters 
0 Pascal types 
• Pascal-C equivalents 
• Grafport, pattern, and cursor structures 

The Macintosh Toolbox includes hundreds of subroutines that you can use 
as C functions. To describe them all would take a book of tremendous size. 
Fortunately, such a book exists; it is issued by Apple, and is called Inside 
Macintosh. (We'll suggest some alternatives at the end of Chapter 10.) 

A problem (for C programmers, at least) with Inside Macintosh is that 
the subroutines are described in Pascal terms. As a C programmer, you will 
need to translate the Pascal descriptions of arguments and of function types 
to C equivalents. We will discuss how to do that. 

Up to now we have been using Toolbox functions in a grab-bag 
fashion. They are, however, organized into coherent packages. We will take 
a more thorough look at our favorite package, Quickdraw. 

Pascal Procedures and Functions 

Pascal subroutines come in two varieties: procedures and functions. The 
procedure performs an action, but does not have a return value. The 
function does have a return value. Aside from that, the two are similar. 
Like C functions, Pascal procedures and functions take an argument list, 
termed a "parameter" list in Pascal. The procedure and function definitions 
declare the type of each parameter, and a function is typed according to the 
type of value it returns. This is all quite similar to C, but the form and some 
of the type names are different. 
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Let's look at a couple of excerpts from the manual. First, here is a 
procedure description: 

PROCEDURE DrawChar (ch: CHAR); 

DrawChar places the given character to the right of the pen location, with the 
left end of its baseline at the pen's location, and advances the pen accordingly. 
If the character is not in the font, the font's missing symbol is drawn. 

The description is in clear English; we will concentrate on the 
procedure declaration. First, the reserved word "PROCEDURE" announces 
that DrawChar is a procedure. The parentheses contains the parameter list, 
which includes the type as well as the name of each parameter. Here, there 
is one parameter called ch, and it is of type CHAR. Note that in a Pascal 
declaration, the variable name comes first, followed by a colon, then the 
type. If more than one variable has the same type, the names can be listed 
together, separated by a comma, as in this hypothetical declaration: 

PROCEDURE pchars( chfirst, chlast : CHAR); 

If the procedure uses arguments of more than one type, a semicolon is 
used to separate declarations of different types: 

PROCEDURE pnchar( ch: CHAR; n: INTEGER); 

As in C, the actual parameters used in a procedure call must be in the 
same order as the formal parameters in the procedure definition. 

FUNCTION CharWidth (ch : CHAR) : I NI'EGER; 

CharWidth returns the value that will be added to the pen horizontal 
coordinate if the specified character is drawn. CharWidth includes the effects of 
the stylistic variations set with TextFace; if you change these after 
determining the character width but before actually drawing the character, the 
predetermined width may not be correct. If the character is a space, CharWidth 
also includes the effect of SpaceExtra. 
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A function is defined much like a procedure, except that a type 
declaration for the function itself comes at the end. 

The function declaration tells us that CharWidth is a function name, 
that it takes one type CHAR argument, and that it returns a type INTEGER 
value. 

Value Parameters and Variable Parameters 

The procedure and function parameters we've shown so far are called 
"value parameters." They work just like regular C function arguments. That 
is, they are local variables that are created when the routine is called and are 
assigned the values passed on by the procedure or function call. Once again, 
we have parameter passing by value, hence the name. 

However, in Pascal, just as in C, it is sometimes desirable to let a 
routine work with the original variables in the calling program. In C we did 
this by providing a pointer, or address, as an argument. In Pascal, it is 
done by declaring a parameter to be a "variable parameter" instead of a 
"value parameter." This means that the actual variable instead of its value is 
passed on to the routine. Thus, any changes made to the variable by the 
routine carry over to the calling program. 

Here is a sample declaration using a variable parameter: 

PROCEDURE InsetRect( VAR r: Rect; dh, dv: INTEGER); 

The reserved word VAR identifies r as a variable parameter of type Rect, 
which is Pascal record corresponding to the rect structure you've used. The 
effect of a VAR extends only to the next semicolon; the variables dh and dv 
are ordinary value parameters. Here r had to be a variable parameter so that 
the procedure could alter the members in the original structure. 

Pascal to C 

As a C programmer, your concern is translating the Pascal routine 
description to instructions which will call the routine from a C program. 
Let's start with procedures. 
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First, look at the name of the procedure. In Hippo C, use the same 
name, but with lowercase letters only. (Some Macintosh C compilers retain 
the occasional uppercase letters used in the Pascal description.) 

Next, look at the argument list. Use the same number of arguments in 
the same order, matching the type declarations. If the argument is a value 
parameter, you can use constants, variables, or other expressions of the 
same type in the procedure call. If the argument is a variable parameter, use 
the address of a variable as in the procedure call. Thus, the following is a 
valid Hippo C call to the InsetRect procedure described above: 

insetrect(&box, 25, dh); 

Here, box is of type struct rect and dh is a short variable. 

Next, consider Pascal functions. The only point to add here is that the 
function should be declared according to its return value type. This step can 
be omitted if the return value is compatible with the C int type. 

Some procedures and functions take no arguments. An example is the 
HideCursor procedure, which hides the cursor. In Pascal, such procedures 
and functions are called using the name alone without any parentheses. In 
C, however, you must use empty parentheses for argumentless functions. 
Thus, the Pascal call of HideCursor becomes hidecursor() in C. 

What would rules be without exceptions? Let's look at some now. 
First, if the Pascal parameter is a structured type (a structure or an array), 
the C call usually should use the address of the variable regardless of 
whether the Pascal procedure uses a value parameter or a variable 
parameter. Thus, the manual describes FrameRect this way: 

PROCEDURE FrameRect( r: Rect); 

Nonetheless, the proper C call is framerect(&box); and not framerect(box);. 
The reason for this is that the computer really can't pass a whole structure or 
array by value anyway. When a Toolbox procedure calls for a value 
parameter for an ordinary variable, it expects a numerical value. When it 
calls for a value parameter for a structured variable, it actually expects an 
address. It then uses the address to copy the original structure into a new 
one. 
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As the "usually" in the last paragraph suggests, there is an exception to 
this exception. A structure that occupies 4 bytes or less is passed by value 
and not address when that is what the routine requests. For example, the 
function PtinRect, which determines if a point is in a rectangle, is defined 
this way: 

FUNCTION PtinRect(pt: Point; r: Rect) : Boolean; 

Here Point is a record of two INTEGER values, so it occupies 4 bytes. In 
Hippo C, the corresponding structure is typedefed as point. Now, if 
position is a point structure and box is a rect structure, the Hippo C call is 
this: 

inside= ptinrect(position, &box); 

One structure uses the address operator, and one doesn't, even though both 
are declared as value parameters in the Pascal description. On the other 
hand, the getmouse() procedure, which provides mouse coordinates to its 
point argument, does use the address operator: 

getmouse(&position); 

This case calls for a variable parameter. The moral here is to be wary. 
Fortunately, the point structure is the only Toolbox structured type that falls 
in the 4-byte catagory. 

One problem with translating the Pascal descriptions to C versions is 
getting the types right. Let's look at that topic now. 
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Pascal Types 

Like C, Pascal is a typed language. Pascal has 4 fundamental types, to 
which Macintosh Pascal adds one nonstandard type. We list them with the 
closest Hippo C equivalent; all uppercase indicates a standard Pascal type: 

Pascal Hippo C 

INTEGER 
CHAR 
REAL 
BOOLEAN 
Longlnt 

short 
char 
float 
short 
int or long 

The correspondence is not exact. For example, in Macintosh Pascal, 
each CHAR is actually allocated two bytes of memory, even though only 
the "high-order" byte is used to store the character. (If you visualize the bits 
in a two-byte unit as numbered from 15 to 0, reading from left to right, the 
high-order byte consists of bits 15 through 8, and the low-order byte 
consists of bits 7 through 0.) However, Pascal strings use just one byte per 
character. 

The BOOLEAN type in Pascal refers to values that are either true or 
false. Internally, it is represented by 1 for true and by 0 for false, so it is 
compatible with C integer types. But this type uses only the high byte of a 
two-byte memory unit, so the 1 is placed in bit 8, and gets followed by 
eight Os in the low byte. This makes the two-bit number have the value 256 
when interpreted as a C short. This is no problem for functions returning a 
BOOLEAN value, for, in C, 256 is just as "true" as 1. (The Hippo C 
implementation converts Boolean values returned from Toolbox calls to 1 or 
0, but this is not a universal practice.) However, if a Toolbox function 
expects a BOOLEAN argument, you must provide a short integer with at 
least some of the left-most bits set to 1. One way to do this is to provide a 
value of -1, which is represented internally by all ls. Another is to do 
something like this: 

#define PTRUE 256 

Then you can use PTRUE as an argument 

Pascal offers one more BOOLEAN surprise. A BOOLEAN record 
member occupies just one byte, instead of two, so in that case the C 
equivalent is char. 
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Declaring Variables 

Variables in Pascal programs are declared just as they are in parameter 
lists. For instance, 

i,j : INTEGER; 
hairdye : BOOLEAN; 

creates two INTEGER variables and one BOOLEAN variable when 
declared in the appropriate section of a Pascal program. The C equivalent, 
using typedefs from the Hippo C data.h file would be this: 

integer i,j; 
boolean hairdye; 

Strings 

Strings in Macintosh Pascal are an extension to standard Pascal. The 
following declaration creates a string with room to hold 40 characters: 

fullnarne : _ STRING [ 4 0] ; 

The C equivalent would be this: 

char fullnarne[40]; 

Keep in mind, however, that these two strings use different formats. 

Arrays and Records 

These types can be used to construct arrays and records. Pascal arrays 
are much like C arrays, and Pascal records are much like C structures. 
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Here is a sample Pascal array declaration: 

stuff : ARRAY [0 .. 15] OF INTEGER; 

The 0 .. 15 indicates the subscript range for the array. Since there are 16 
elements, the corresponding C declaration is this:· 

short stuff[16]; 

Unlike C arrays, Pascal arrays are not constrained to have subscripts 
beginning at zero. What counts, however, is the size of the array, so a 
Pascal array with a subscript range of 2 .. 6 would be represented by a C 
array of 5 elements. 

Next, here is a sample Pascal record declaration: 

fonty RECORD 
ascent: 
descent: 
widMax: 
leading: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 

The individual components (ascent, et al) are called fields of the record and 
correspond to C structure members. Thus, the equivalent C structure would 
be defined this way: 

struct 
short ascent; 
short descent; 
short widmax; 
short leading; 
} fonty; 

You will not, however, find array and structure definitions in the 
parameter lists of Pascal routines. Instead, Pascal uses TYPE definitions to 
create single-word identifiers for these and other types. 
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Pascal TYPE Definitions 

Pascal programs have a TYPE section in which new types are defined. 
The format is the new type name followed by an equals sign followed by 
the type description. Here is a sample: 

TYPE Str255 = STRING[255]; 
Bitsl6 =ARRAY [0 .. 15] OF INTEGER; 
Fontinfo = RECORD 

ascent: 
descent: 
widMax: 
leading: 

END; 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER, 

Once this is done, Bits16 and its fellows can be used to declare 
variables in the program and to declare parameter types for functions and 
procedures. 

The Pascal TYPE feature is similar to the C typedef feature, but there is 
an important difference. The typedef feature creates new names for the basic 
types and their manifold modifications. The TYPE feature creates new 
types. This may seem to be a subtle difference, but there is a practical 
aspect. Suppose you say this in C: 

typdef short integer; 

This makes integer synonymous with short; the two are the same type, and 
the compiler won't complain if you assign a short to an integer. 

Now suppose you say this in Pascal: 

TYPE short : INTEGER; 

This creates a new type called short. It is identical in properties to 
INTEGER, but if you try to pass a short variable to a procedure expecting 
an INTEGER variable, the compiler will tell you that you have a type clash. 
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Fortunately, we don't have to worry about Pascal's picky nature, for 
we are using a C compiler, not a Pascal compiler, even when we use the 
Toolbox. As long as we pass arguments that agree in nature, even if not in 
type name, we 're all right. 

Variant Records and Unions 

In Pascal, you can set up a "variant record," which is one that can be 
used in more than one way. Here, for example, is the definition of the 
Toolbox Point type: 

Toolbox Definition: Point type 

Point = RECORD CASE INTEGER OF 

0: (v: INTEGER; 
h: INTEGER); 

1: (vb: ARRA Y[VHSelect] OF INTEGER) 

END; 

Earlier, VHSelect was defined to be the symbol v or h. 

This definition means that a Point record can be either a record with 
two INTEGER fields or else a record with one field consisting of a two­
element array. Suppose, for example, that position is a variable of type 
Point. Then, in a Pascal program, we could refer to the vertical component 
of the point as position.v (the v field) or else as position.vh[v] (the v 
element of the array position.vb). 

How do we handle this bimodal form in C? One way, (the one used in 
Hippo C, Level I) is to select just one variant. Thus, the Hippo C data.h file 
contains this definition: 

typedef struct 
{ 

integer v,h; 
} point; 
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Thus, in Hippo C programs, you would refer to the vertical component of 
point variable position as position.v. 

The second method is to use a C data structure called a "union." A 
union definition is set up much like a structure definition, except the list of 
types within the braces is a list of choices rather than a list of members. For 
instance, consider this declaration: 

union justone 
char init; 
int flop; 
char name[8]; 

} data; 

This says the variable data is of type union justone, where justone is a 
tag, just as for structures. If this were a structure definition, the structure 
would hold one char, one int, and one array of char. But it is a union, and 
this means that data can hold one char or one int or one array of char. The 
union is made large enough to hold the largest single choice. Then that 
memory location can be used to hold several types of data, but not 
simultaneously. References use the membership operator. For example, to 
assign an integer to the union, do this: 

data.flop = 94562345; 

What happens if we follow up with this command? 

data.init = 'R'; 

Then that portion of the union memory required to hold a char is overwritten 
with the code for 'R'. 

Now we can apply this concept to defining the point type. We can 
make it the union of two members, one corresponding to the two-element 
record, and one corresponding to the array record: 

typedef struct 
typedef union 

integer v, h} pointl; 
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integer vh[2]; 
pointl st; 
} point; 

#define V st.v 
#define H st.h 

Then, if position is of type point, we can refer to the vertical com­
ponent as position. vh[O] or as position.st. v or as position. V. In this case, 
the two descriptions occupy the same amount of space, so that information 
stored in one form can be referred to by the other form. 

Setting Up Types 

The most convenient way to handle the C-Pascal interface for type 
matters is to set up a file containing appropriate typedefs. For instance, we 
can use the following definitions in order to work more easily with some of 
the Pascal types we've mentioned in this chapter: 

typedef short boolean; 
typedef short integer; 
typedef int longint; 
typdef struct 
{ 

integer ascent,descent,widmax,leading; 
} fontinfo; 

This is just what Hippo Chas done. The file data.h contains these 
and many, many more definitions. By including this file with your 
program, you can use the same type names used in the Toolbox, making it 
much simpler to keep track of type matches in procedure and function calls. 

If you find that you are using just a certain subset of the definitions, 
you may wish to extract them and place them in a smaller file. Several 
C compilers for the Macintosh already have divided the definitions among 
several files. 
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Constants 

Many Toolbox routines use predefined constants. For example, 
Quickdraw uses redColor to stand for red. This concerns functions that 
await color hardware. The Hippo C file defs.h contains .hundreds of such 
constants set up using the C #define facility. Again, this allows your 
programs to use the same nomenclature that the Apple manual does. 

Back to Quickdraw 

Now that we have a better understanding of the official Toolbox 
descriptions, let's return to Quickdraw. The Quickdraw package uses many 
specially defined types. Already, you have seen the rect and point types. 
Now we'll look at some other types used by the package. Not only will this 
give you practice interpreting data types, but it will also give you more 
insight into the workings of the package. 

The Grafport Structure 

The most important structure for the operation of Quickdraw is the 
Graf port structure. It contains a wealth of information describing the screen 
environment. We'll give its full definition now, although we will discuss 
only parts of it. Several of its members are of types we haven't mentioned 
yet, but we will eventually get to many of them. For the present, our main 
intent is to indicate the general nature of a Grafport structure. So here is its 
definition: 

struct Grafport 
{ 

integer device; /* identifies output device */ 
bitmap portbits; /* describes "bit image" */ 
rect portrect; /* writeable area of screen */ 
rgnhandle visrgn,cliprgn; 
pattern bkpat,fillpat; 

/* background, fill patterns */ 
point pnloc, pnsize; /* pen location, size */ 
integer pnmode; 
pattern pnpat; /* paint pattern */ 
integer pnvis; 
integer txfont; /* text font */ 
char txface; /* style */ 
integer txmode,txsize,spextra; 

/* text characteristics */ 
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} ; 

int fgcolor,bkcolor; 
integer colrbit,patstrech; 
qdhandle picsave,rgnsave,polysave; 
qdprocsptr grafprocs; 

typedef struct Grafport grafport, *grafptr; 

Without going into detail, we can see that a. Grafport structure holds 
information about the screen size, pen parameters, background and fill 
patterns, text characteristics, and other matters. 

One important point to understand conceptually is what the portbits 
member is about. It contains the location of the screen "bit image" and 
information about its size. The bit image is a representation in memory of 
the screen. A full screen consists of a grid of 512 by 342 "pixels." A pixel 
is a small element of the screen, and it can either be on (white) or off 
(black). All together, there are 175,104 pixels, and each is represented by a 
bit in computer memory. If a pixel is white, then its corresponding bit is set 
to O; black pixels have bits set to 1. If you change the value of one of the 
bits, then the corresponding pixel changes, too. The screen is said to be "bit 
mapped." 

In general, before using Quickdraw, you need to initialize the graphics 
package and set up a grafport. In Hippo C, Level 1, this is done 
automatically, which is why we've been able to use Quickdraw routines 
without any special preparation. In particular, if you run a program from 
the Hippo C Command Window, the program inherits the grafport used by 
the window. Similarly, if you run a program from HOS, the program 
inherits the HOS grafport. 

Once you have a grafport, you can examine and alter its characteristics 
by using the corresponding structure. We already did so when we used 
theport in Chapter 8. Before going further, let's discuss theport. 

the port 

In Macintosh programming, the name theport denotes a pointer to the 
current grafport. Thus, its type should be pointer-to-struct Grafport, or, 
using the typedef notations, pointer-to-grafport or, most simply, grafptr. 
Typically, theport is a global variable. In the Hippo C, Level 1, 
implementation, however, theport is the return value of a function. Perhaps 
you recall its definition from stdio.h: 
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#define theport (*(grafptr *) jt_theport() ) 

The return value from the Hippo C jt_theport() system function is type 
cast to "value of pointer-to-grafptr," which reduces to the required grafptr 
type. More specifically, the #define directive says, "Take the return value 
from jt_ theport(), interpret it as the address of a pointer to a grafptr, find the 
value pointed to by that address, and assign it to theport." C is a concise 
language. We can use the value of theport to see where in memory the 
current grafport is kept, and we also can use theport to access the structure. 
We'll do that in the next example. 

Creating a Grafport 

The procedure openport() creates and initializes a grafport, but it needs 
a grafptr argument. It's easy to create a variable of the right type: 

grafptr gp; 

However, it is not enough to create gp, for it is just a pointer to where the 
grafport structure is to be stored. We must also allocate memory to hold the 
structure. Then we can assign the address of the first byte of the structure to 
gp, and only then are we ready to hand gp over to openport(). 

Here's the obvious way to create memory for the grafport itself: 

grafport apart; 

Then we could say gp = &aport; and be on our way. But it would be a 
bumpy way, leading (with Hippo C, at least) to a system failure when the 
program ends. No, we can not use the obvious way. 

If we can't use the obvious way, what's left? The answer is "dynamic 
memory allocation." We'll discuss this topic more fully in the next chapter, 
but here is the essence. The Macintosh uses three storage areas for memory. 
Static and external variables are assigned memory locations in a "global" 
area when the program is compiled and loaded into a.out. Automatic 
variables are assigned memory locations when the function containing them 
is called. They are stored in an area called the "stack." Dynamic memory 
allocation occurs when a program explicitly requests memory as it is run. 
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This time a memory area called the "heap" is used. The Macintosh is 
unusually heap-oriented, and grafports are one form expected to be stored 
there. 

Memory Allocation. In C, we can use the malloc() (memory allocation) 
function to request memory. Its argument is the number of bytes desired. Its 
return value is a pointer to the first byte of the assigned memory. The 
malloc() function is defined to return a pointer-to-char; and then a typecast, 
if necessary, is used to convert it to a pointer of the proper type. 

To obtain the number of bytes needed, we can use the C operator 
sizeof. This operator yields the size, in bytes, of a particular variable or 
data structure or of a data type. When finding the size of a type, enclose the 
type name in parentheses. Thus, sizeof (int) would be the number of bytes 
in the int type. 

Here, then, is the combination of statements that assigns to gp the 
address of enough heap memory to hold a grafport: 

grafptr gp; /* declare pointer */ 
char *malloc(); /*declare function type*/ 
gp = (grafptr) malloc ( sizeof(grafport) ); 

The malloc() function locates a sufficiently large hunk of memory and 
returns a pointer to it. The typecast converts the pointer to the grafptr type, 
suitable for assignment to gp. 

Using a Grafport 

With this background, we can now write a program that starts with the 
grafport it inherits, then creates a new grafport, and finally returns to the 
original grafport. 

From Mac's Toolbox: New Routines 

OpenPort 
TextFont 
ClosePort 
SetPort 
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Opens a new grafport 
Sets type face 
Closes a grafport 
Restores previously opened grafport 



Here is the program: 

I* firstport.c -- makes a new port */ 
#include "s'tdio.h" 
#include "data.h" 
main() 
{ 

grafptr gp, gpsave; /* two pointers to grafports */ 
integer right; 
char *malloc(); /*memory allocation function*/ 

right = theport->portrect.right; 
/* current screen right */ 

printf("The right screen limit is %d.\n", right); 
gpsave = theport; /* save old grafport address */ 
printf("The grafport is at %u.\n", gpsave); 
printf("Hit the mouse button to continue.\n"); 
while ( !button() ); /*wait for button*/ 
gp = (grafptr) malloc( sizeof (grafport) ); 

openport(gp); /*open new 
eraserect(&gp->portrect); 
framerect(&gp->portrect); 
moveto(20,50); 

I* create space */ 
grafport */ 

I* clear screen */ 
I* outline screen */ 

printf("gp and theport are %u and %u\n", gp, 
theport); 

printf("Now the right limit is %d\n", 
gp->portrect.right); 

printf("The font is the system font, "); 
textfont(l); /*alter grafport setting*/ 
textsize(lO); /*alter grafport setting*/ 
printf("but we can change that.\n"); 
printf("Hit the mouse button.\n"); 
while ( !button() ); 
eraserect(&gp->portrect); 
closeport (&gp) ; 
free (gp) ; 
setport(&gpsave); /*restore original port */ 
framerect(&gpsave->portrect); /*frame it*/ 
moveto(20,50); 
printf("Well, here we are back at %d\n", theport); 
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Figures 9.1, 9.2, and 9.3 show the output of this program at different 
stages. 

* 
* * a.out 

Hippo-c Command Window 

The right screen I imit is 339. 
The gra f port is at 113116. 
Hit the mouse button to continue. 

Figure 9.1 firstport.c output #1 

gp and theport are 115618 and 115618 
Now the right limit is 512 
The font is the system font, but we can change that 
Hit the mouse button. 

Figure 9.2 firstport.c output #2 
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Wei I, here we are back again at 113116 
1111111 

1111111 

* 

Figure 9.3 firstport.c output #3 

As you can see in Figure 9.1, the program starts out using the Hippo 
C Command Window grafport. We adjusted the window before running 
the program to be narrower than usual. Figure 9.2 shows what happens 
when we create a new grafport. Note that theport, like gp, is the address of 
the new grafport. The openport() procedure initializes the grafport members 
to default values. In particular, the portrect member is set to cover the 
whole screen. Also, the font is set to the bold system font. 

We used textfont() and textsize() to change the appearence of the font. 
These functions alter the contents of the txfont and the txsize members of 
the grafport. We could, instead, have done this: 

gp->txfont 1; 
gp->txsize 10; 

However, Apple recommends using the function calls, since they are 
specifically designed to avoid unexpected side effects. For textfont(), 0 
selects the system font, and 1 selects the application program font. 

The closeport() function frees some memory areas reserved by 
openport() for the use of the grafport. The C function free() returns the 
grafport memory area itself back to the memory pool. Then setport() 
restores the original port as active port. As Figure 9.3 shows, theport once 
again has its original value. If we had used openport() instead of setport() 
here, the grafport parameters would have been reinitialized to the same 
system values provided to gp's grafport. 

Let's look at a few more aspects of a grafport. 
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Pen Parameters 

Several grafport members ref er to the "pen." The pen is the imaginary 
implement that leaves real lines behind as it is manipulated by the various 
drawing commands. The pnloc member holds the current location of the 
pen; this member is type point, meaning it is a structure with the vertical 
position and horizontal position as its two members. The pnsize describes 
the track left by the pen. It, too, is type point. The vertical component 
describes the width of a vertical line, and the horizontal component gives the 
width of a horizontal line; the default values are both 1. The upper left-hand 
comer of the pen aligns with the coordinates given in drawing instructions. 
The pnmode member indicates the drawing mode. The mode determines, 
for example, what happens when the pen tries to draw across a black area. 
Does the pen mark remain black or tum white? There are several modes to 
cover different possibilities. The pnpat indicates what mark the pen makes 
when drawing. By default, it leaves a black mark, but that can be changed. 
We'll talk about patterns shortly. The pnvis member determines whether or 
not the pen draws as it moves. A negative value renders the pen invisible. 

These members can be accessed directly, but the preferred practice is to 
use Quickdraw routines designed for the purpose. Here is an example 
illustrating pen control. It also introduces the random() function, which in 
Hippo C returns a number in the range 0 to 65535. Incidently, due to the 
nature of how negative numbers are stored, (see Appendix C) random() will 
return numbers in the range -32768 to 32767 if we declare it to be type 
short. We use the modulus operator (%) to restrict the range to values 
needed in the program. 

From Mac's Toolbox: New Routines 

PenSize 
Random 
Line 
PenNormal 

Sets pen size 
Provides a random number 
Draws a line 
Restores standard pen settings 

/* rwalk.c -- a random square takes a random walk */ 
finclude "stdio.h" 
finclude "data.h" 
main () 
{ 

short hor, ver, dhor, dver, signh, signv; 
short topb, leftb, rightb, bottomb; 
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short psize, loop; 

eraserect(theport->portrect); 
topb = theport->portrect.top; 
leftb = theport->portrect.left; 
bottomb = theport->portrect.bottom; 
rightb = theport->portrect.right; /* store bounds */ 
while ( !button() ) 

{ 

pnsize = random() % 8 + 3; /* choose pen size */ 
pensize(psize,psize); /*set pen size*/ 
hor = leftb +random() % (rightb -leftb); 
ver = topb +random() % (bottomb - topb); 
dhor =random() % ( (right - left) I 10 ); 
dver =random() % ( (bottom - top) I 10 ); 
moveto(hor,ver); /*move to random position*/ 
for ( loop 0; loop < 500; loop ++ ) 

{ 

signh (random() - 32767) > 0 ? 1 -1; 
/* 1 or -1 */ 

signv (random() - 32767) > 0 ? 1 -1; 
hor += signh * dhor; /* shift position */ 
if (hor < left I I hor > right ) 

I* if too far */ 
hor -= 2 * signh * dhor; /* back up */ 

ver += signv * dver; 
if (ver < top I I ver > bottom 

ver -= 2 * signv *dver; 
moveto(hor,ver); /*move to new position*/ 
line(0,0); /*leave pen mark there*/ 
} 

eraserect(&theport-portrect); 
pennormal(); /*restore standard pen setting*/ 

Figure 9.4 shows a sample output, although it doesn't capture the 
dynamic visual effect of the running program. 
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Now let's discuss some points about the program. The pen can be 
thought of as having a rectangular footprint. The pensize() function sets the 
width and height of the pen mark, and stores the information in the pnsize 
member of the grafport. The program chooses and sets pensizes randomly, 
but at the end it uses the pennormal() command to restore the standard pen 
values. Otherwise, the Hippo C Command Window will be left using the 
final pen size chosen by the program! 

The moveto() command moves the pen from its current location (which 
is stored in the pnloc member of the grafport) to the indicated location. It 
makes no mark (pnvis gets set to a negative number), and pnloc is updated 
to the new position. 

The line() function takes two arguments; the first tells it how far to 
move the pen horizontally from the current position, and the second details 
the vertical movement. The zero arguments used in the program mean the 
pen stays fixed. Nonetheless, a pen mark is made. Since the pen hasn't 
moved, the basic rectangular footprint of the pen is revealed. As mentioned 
earlier, the upper left comer is situated at the specified coordinates. 

The program scales the pen movement to the size of the current 
window, using theport to obtain current values. If the position shift would 
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take the pen beyond the portrect boundries, the program reverses the last 
motion in order to bring the pen back in. The signh and signv variables are 
used to change the direction of motion randomly, since there is a 50-50 
chance that the random number returned by random() will be larger or 
smaller than 32767. 

Patterns 

Let's look at another data type used in grafports and other parts of 
Quickdraw: the pattern. In Hippo C, the pattern type is defined this way: 

struct Pattern 
{ 

char bytes[8]; 
} ; 
typedef struct Pattern pattern, *patptr; 

Hence pattern means type struct Pattern, and patptr indicates a pointer to that 
type of structure. 

Since a char type is 8 bits, a pattern is a 64-bit structure. Think of it as 
representing an 8 by 8 grid, with bytes[O] being the top row and bytes[O][O] 
being the first element in the top row. Each 1 in that grid represents a dark 
pixel on the screen, while a 0 in that grid represents a white pixel. By 
assigning the values to the grid members, we can create a pattern which then 
can be used in various places. The bkpat and fillpat members of the 
grafport are just such patterns. Certain Quickdraw commands use them, 
too. For instance, eraserect() fills the rectangle with the bkpat pattern, while 
paintrect() fills it with the fillpat. Rather than alter the grafport parameters, 
however, we will use fillrect() to show how patterns work. This function 
takes a pattern address as an argument and fills the rectangle using that 
pattern. Here is a short program showing how it works and looks: 

From Mac's Toolbox: New Routines 

FillRect Fill rectangle with pattern 

I* heart.c -- a head start for Valentine's Day */ 
#include "stdio.h" 
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#include "data.h" 
main() 
{ 

rect box; 
static pattern newf ill "Try me" } ; 

I* haphazard try */ 
static pattern heart = 

{Ox44,0xEE,OxBA,Ox92,0x44,0x6c,Ox38,0xl0}; 
/* planned patternhood */ 

eraserect(&theport->portrect); 
setrect(&box,50,50,200,200); 
fillrect(&box,&newfill); 
invertoval(&box); 
offsetrect(&box, 210,0); 
fillrect(&box,&heart); 
invertoval(&box); 

If you run this program from the Hippo C Command Window, first 
expand the window to accommodate the boxes. Figure 9.5 shows the 
output. 
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The trickiest part is initializing the patterns; we'll come back to that 
soon. First, however, let's note a few things about the Quickdraw functions 
that we haven't really emphasized before. 

The setrect() function creates a mathematical representation of a 
rectangle. The various rectangle-related functions then act upon the interior 
of this rectangle. For example, framerect() draws a frame just inside the 
mathematical boundaries. The fillrect() function, which we use here, fills 
the interior with the specified pattern. The offsetrect() function moves the 
mathematical rectangle, but has no effect on what has been drawn on the 
screen. That is, it does not move the previously filled rectangle. 

Note, too, how the invertoval() function works. Previously, we 
converted great white expanses to great black expanses, but Figure 9.5 
shows how each pixel within the affected area is inverted individually. 
Thus, the dark hearts on white become white hearts on dark. 

Pattern Construction 

Now let's look at the patterns. A pattern is a structure containing one 
array of 8 bytes. A single character in C occupies one byte, so we used an 
8-character object to initialize newfi.11: 

static pattern newfill = { "Try me" }; 
I* haphazard try */ 

Thus newfill.bytes[O] was assigned the character 'T'. If you only see seven 
characters, recall that the null character terminates a C string, so 
newfill.bytes[7] was assigned the null character-all Os. As the comment 
suggests, this was a haphazard attempt. It is technically correct, for it 
assigns values to all the bits; but it does not produce a pattern that one might 
deliberately design. 

The heart definition, however, is deliberate. It looked like this: 

static pattern heart = 
{0x44,0xEE,OxBA,Ox92,0x44,0x6C,Ox38,0xl0}; 

/* planned patternhood */ 
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Here, instead of using a character string, we have initialized each element 
individ,ually with a hexadecimal number. How did we arrive at these 
values? We drew an 8-by-8 grid, darkened squares to represent the pattern 
we wanted, converted the pattern of dark and light to a pattern of ls and Os, 
then interpreted each row as a hexadecimal number. This is easier than it 
sounds, for each row is represented by a two-digit hexadecimal number. 
(Appendix C discusses hexadecimal numbers.) The first (left) digit 
represents the left four squares, and the right digit represents the right four 
squares of a row. Figure 9.6 illustrates the scheme. 

bytes[O] 

bytes[1] 

bytes[2] 

bytes[3] 

bytes[4] 

bytes[S] 

bytes[6] 

bytes[?] 

upper nibble 
I 

ii 
1 8 

lower nibble 
I 

4 1 

Ox44 

Ox EE 
8 + 4 + 2 :14 = E 

Figure 9.6 Setting up a pattern 

Note that in the figure we've placed 8 over the first column from the 
left, 4 over the second, 2 over the third, and 1 over the fourth. Then we 
repeat the process for the next four columns. To obtain the first hexadecimal 
digit, add up the heading values for those first four elements in a row 
containing a 1. If the answer is 10 or larger, convert it to the hexadecimal 
equivalent: A is 10, Bis 11, and so on. For example, in the second row, 
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there are ls in the columns headed 8, 4, and 2. Those numbers sum to 14, 
which is E in hexadecimal. Thus the first digit is E. In this case, the second 
digit also is E, so the complete number is OxEE; recall that C uses the Ox 
prefix to denote hexadecimal notation. 

Grafport Patterns and stuffhex() 

Several members of the grafport structure are patterns. The bkpat 
member is the pattern used for the background and for the various erase 
commands. The openport() call initializes it to white. The fillpat member is 
used to store the pattern currently being used for a fill call (such as 
filloval()). The pnpat member holds the pattern made by the pen as it draws; 
openport() initializes it to black. 

Suppose you wish to change one of the patterns. You can't use the 
static variable initialization technique of the last example, for the structure 
members aren't variables declared in the program. And it would be tiresome 
to set each byte separately. Fortunately, the Quickdraw stuffhex() function 
offers a simple way to assign values to a pattern. 

As its name implies, stuffhex() requires using the same hexadecimal 
code we used before. The function takes two arguments. The first is the 
address of the data form to be stuffed, and the second is a Pascal-format 
string consisting of the hexadecimal digits. Here is how to set up the heart 
pattern using stuffhex(): 

pattern heart; /* declare a pattern variable */ 
char *hearts = "44EEBA92446C3810"; 

I* create pointer to hex string */ 

strctop(hearts); /*convert string to Pascal format*/ 
stuffhex(&heart,hearts); /*stuff the pattern into 

heart */ 

There are several points to note. First, because we are not initializing 
the pattern heart, it can be an automatic variable instead of static or external. 
Second, stuffhex() expects all the characters in the string to be hex digits, so 
it is not necessary to use the Ox prefix. Third,. hearts doesn't have to be 
static or external to be initialized because it is a pointer, not an array. 
Fourth, the strctop() function converts the pointed-to string to the Pascal 
format. Finally, the stuffhex() arguments are the address of the pattern 
(&heart) and a pointer to the string (hearts). 
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This method requires more steps than the initialization method, but it 
has three advantages. First, the representation of the pattern is more 
compact, for no commas and no hex prefixes are needed. Second, it can be 
used at any time to give a value to a pattern structure; it's not confined to the 
declaration section. Third, because the representation is a string, it can 
easily be copied and altered. 

Let's use stuffhex() to alter the background and pen patterns. We'll 
open a new port, set the patterns, and see what happens. 

From Mac's Toolbox: New Routines 

StuffHex Puts hex-coded bits into a data structure 

I* newpats.c -- alter grafport patterns */ 
:#:include "stdio.h" 
:#:include "data.h" 
main() 
{ 

grafptr gp; 
rect box; /* use for drawing */ 
char *newpen "99667ebdbd7e6699"; 

char *back "991818ffff181899"; 
char *white "0000000000000000"; 
char *malloc(); 

I* hex code for 
pen pat */ 

strctop(newpen); I* convert the strings to 
Pascal format */ 

strctop(back); 
strctop (white); 
gp = (grafport) malloc( sizeof (grafport) ); 
openport (gp); 
stuffhex(&gp->bkpat, back); /*set grafport 

stuffhex(&gp->penpat, newpen); 
eraserect(&gp->portrect); 

bkgrnd pat */ 

I* draw in new 
background */ 

setrect(&box, 50, 50, 450, 300); 
paintoval(&box); /*uses new pen pattern*/ 
insetrect(&box, 64, 40); /*reduce box size*/ 
invertoval(&box); /*invert new pen pattern*/ 
insetrect(&box, 64, 40); 
eraseoval(&box); /*uses new background pattern*/ 
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while ( !button() ); /*wait 
stuffhex(gp->bkpat, white); 

for mouse button */ 
I* blank background */ 
/* clear screen */ eraserect(gp->portrect); 

closeport(gp); I* develop tidy habits */ 

Figure 9. 7 shows the appearance on the screen before the mouse 
button is pushed . 
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Figure 9. 7 Output of newpats.c 

Since gp is a pointer to the grafport, gp->bkpat is the bkpat member of 
the structure, and &gp->bkpat is the address of that member. The first call 
to stuffhex() sets the new background pattern. For variety, we used 
lowercase hex letter-digits; C recognizes either case. The screen does not 
change until the first eraserectO call. At that point, the screen is filled with 
the new background pattern. The paintoval() call paints in the oval using the 
new pen pattern. The invertovalO call, operating withiri a smaller rectangle, 
inverts the pen pattern. The eraseoval() call reminds us that this call doesn't 
really erase the affected area; it just paints it with the background pattern. 
Note that each pattern obliterates the one before it; the patterns are not 
superimposed. 
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Designing patterns is fun, but let's move on to a larger form of pattern, 
the cursor. 

The Cursor 

The cursor is the screen marker that represents mouse movement. You can 
design and set your own cursor if you like. Here is the Hippo C definition 
of the cursor type: 

typedef char bits16[32]; 

struct Cursor 
{ 

} ; 

bits16 data,mask; 
point hotspot; 

typedef struct Cursor cursor, *cursptr; 

The hotspot is the active part of the cursor, the part that has to be 
positioned over a location when you wish to click it. The data member is an 
array of 32 bytes, or 256 bits. It should be thought of as a 16-by-16 grid in 
which to set up an image of the cursor. Its the same idea as the pattern, only 
bigger. The mask member also is a 16-by-16 grid. Each element of the 
mask determines what happens to the corresponding data bit as it passes 
over light and dark backgrounds. We'll return to that, but first, let's design 
a cursor. 

This time we draw a 16-by-16 grid and fill it in with light and dark 
squares. (Graph paper is handy for this purpose.) We divide each row into 
4 parts, each with an 8-4-2-1 heading like the one we used for pattern 
design. Again, each 4 element section is translated into one hexadecimal 
digit. Each two-digit combination then is assigned to one byte. 

What about the mask? The mask, too, is a 16-by-16 grid. The value of 
the mask bit determines what happens when the corresponding cursor bit 
passes over different backgrounds. Here is the scheme: 
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data bit mask bit Resulting pixel on screen 

0 1 white 
1 1 black 
0 0 same as pixel under cursor 
1 0 inverse of pixel under cursor 

A mask of 1 means that the black part of a cursor will become invisible 
if the cursor passes over a black field. A mask of 0 makes the cursor 
visible, for the 1 bits always appear the opposite of the background, while 
the 0 bits always blend in. 

The next program shows the outcome of this process of creating a 
design and a mask. In it, we initialize a cursor variable newcur. The cursor 
type, we saw, is a structure of three structures, so we initialize each 
structure. The first structure (newcur.data) is initialized to the first clump of 
data; the numbers were generated by the graphic process we just described. 
Then we initialize the mask section. We arbitrarily set the upper half of the 
mask to all Os and the lower half to all ls. Then we set the hotpoint to 7,7. 
The setcursor() function uses the address of newcur to set the cursor for 
that pattern. 

In the program we introduce a very useful Quickdraw function called 
ptinrect(). As you might guess, it determines whether or not a point lies 
within a rectangle. Its arguments are the name of a point variable, and the 
address of a rect variable. We use it in conjunction with the getmouse() 
function, which determines the mouse position. This function takes as an 
argument the address of the point variable used to store the information. By 
using these functions along with button(), we can use mouse clicks to 
control the progress of the program. 

We also introduce the initcursor() function, which sets the cursor to 
the standard arrow. Otherwise, as you perhaps have noted, the program 
gets stuck with whatever the last cursor was, usually the clock. 

From Mac's Toolbox: New Routines 

PtlnRect 
InitCursor 
Set Cursor 
Get Mouse 

Determines if a point is in a rectangle 
Set the arrow cursor 
Set cursor to indicated form 
Obtain the mouse location 
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Here is the program; try it out and see what happens to the cursors 
as they pass over light and dark areas; that will show how the mask works. 
If you are running the program from the Hippo C Command Window, 
expand the window to nearly full screen before running the program. 

#include "data.h" 
#include "stdio.h" 
main() 
{ 

static cursor newcur = { /* first, define pattern */ 
{ OxOO,OxOO,OxOO,OxOO,Ox21,0x08,0xl3,0x90, 

OxOE,OxEO,OxOC,Ox60,0x19,0x30,0x33,0x98, 
Ox19,0x30,0xOC,Ox60,0xOE,OxEO,Oxl3,0x90, 
Ox21,0x08,0xOO,OxOO,OxOO,Ox0010xOO,OxOO }, 

/* now comes the mask */ 
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO, 
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO, 
OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,OxFF, 
OxFF,OxFF,OxFF,OxFF,OxFF,OxFF,0xFF,0xFF}, 

/* and now the hotpoint */ 
{ 7, 7} 

} ; 
rect mesgbox, boxl, box2; 
point mouse; /* mouse position */ 

eraserect(&theport->portrect); 
framerect(&theport->portrect); 
setrect(&mesgbox,20,50,300,100); 
setrect(&boxl, 320, SO, 400, 100 ); 
setrect(&box2, 320, 150,400, 200 ); 
framerect(&mesgbox); 
framerect(&boxl); 
framerect(&box2); 
textsize(18); 
moveto(340,80); 
drawchar('l'); /*label boxl */ 
moveto(340,180); 
drawchar('2'); /*label box2 */ 
textsize(12); 
moveto(30,65); 
drawstring (strctop ("You now see the leftover I 

cursor.") ) ; +..J 
moveto(30,80); 
drawstring (strctop ("Click box 1 to initialize 1 

cursor.") ) ; +..J 
getmouse(&mouse); 
while ( !button() I I !ptinrect (mouse, &boxl) 

getmouse(&mouse); 
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initcursor(); /*activate standard cursor*/ 
eraserect(&mesgbox); 
framerect(&mesgbox); 
moveto(30,65); 
drawstring(strctop("This is the standard cursor." )); 
moveto(30,80); 
drawstring(strctop("Click box 2 to see a new cursor."-, 

)) ; +-' 
invertrect(&mesgbox); 
while ( !button() I I !ptinrect(mouse,&box2) ) 

getmouse(&mouse);/* continue until click in box*/ 
eraserect(&mesgbox); /*erase old message*/ 
framerect(&mesgbox); 
setcursor(&newcur); /*activate new cursor pattern*/ 
moveto(30,65); 
drawstring(strctop("Great! Click this box to stop."-, 

)) ; +-' 
invertrect(&mesgbox); 
while ( !button() I I !ptinrect(mouse,&mesgbox) 

getmouse(&mouse) ; 
eraserect(&theport->portrect); 

One More Example 

Now that we know more about Quickdraw, let's do one more example. 
This program produces a grid (we're bullish on rectangles) in which you 
can cause circles to appear by clicking the mouse in the chosen box. The 
circles come out alternately light and dark, making the screen look a bit like 
a game board for the ancient game of Go. To stop the program, click the 
mouse outside of the game board. Note that the program contains two new 
functions of our own: makeboxes() and mouseinbox(). 

From Mac's Toolbox: New Routines 

UnionRect Make smallest rectangle containing 2 
others 

Here is the program listing (once again, the wait() function is compiled 
separately): 
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#include "data.h" 
#include "stdio.h" 
#define ROWS 4 
main () 
{ 

grafptr gp; 
rect boxes[ROWS] [8]; 
static point upperleft = { 50, 56}; 
static pattern heart = 

{0x44,0xEE,OxBA,Ox92,0x44,0x6C,Ox38,0xlO }; 

char *malloc(); 
void makeboxes(), mouseinbox(); 

initcursor () ; 
gp = (grafptr) malloc(sizeof(grafport)); 
openport (gp); 
fillrect(&gp->portrect,&heart); /*fill screen with 

hearts */ 
pensize(4,4); 
makeboxes(boxes,upperleft,50,ROWS);/* create boxes*/ 
mouseinbox(boxes,ROWS); /*mouse work*/ 
eraserect(&gp->portrect); 
closeport (gp); 
free(gp); 

void makeboxes(bp,ul,size,rows) 
rect (*bp) [8]; /*pointer to row of 8 boxes*/ 
point ul; /* upper left corner of grid */ 
integer size; /* box size */ 
integer rows; /* number of rows */ 

int row, col; 

moveto(ul.h,ul.v); 
for ( row = 0; row < rows; row++) 

for (col = 0; col < 8; col++) 
{ 

/* each row */ 
/* each column */ 

setrect(&bp[row] [col],ul.h + col*size,ul.v + "";:> 
row*size, ul.h + (col+ l)*size, ul.v + (row+--, 
1) *size); +J 

eraserect(&bp[row] [col]); /*erase hearts*/ 
framerect(&bp[row] [col)); 

} 
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void mouseinbox(bp,rows) rect (*bp) [8]; 
integer rows; 
{ 

integer row, col; 
point mouse; /* mouse location */ 
rect stop; 
int pebble = 0; 

unionrect(&bp[O] [0],&bp[rows-1] [7], &stop); 
invertrect(&stop); 
insetrect(&stop, -10, -10 ); 
invertrect(&stop); 
framerect(&stop); 
do 

getmouse(&mouse); 
for (row = 0; row < rows; row++) 
for (col = O; col < 8; col++ ) 

if ( ptinrect( mouse, &bp[row] [col]) && button()) 
{ 

if ( ++pebble % 2 == 1) 
{ 
eraseoval(&bp[row] [col] ); 
frameoval(&bp[row] [col] ); 
} 

else 
paintoval(&bp[row] [col] ); 

wait(40); 
} 

while ( !button() I I ptinrect (mouse, &stop)); 

Figure 9.8 shows the screen appearence. 

We've used one new Quickdraw routine. It's called unionrect(), and it 
finds the smallest rectangle enclosing two rectangles. The three arguments 
are pointers to the two rectangles and the address of the rectangle to include 
them. We took a box to enclose the upperleft and lowerright boxes. We did 
this so that we only have to check if the mouse is outside this one box rather 
than check each of the smaller boxes individually. 
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Figure 9.8 Screen appearence for go.c 

The rest of the program uses familiar techniques, including passing a 
two-dimensional array of structures as a function argument. One point of 
interest is the use of the wait() function in mouseinbox(). Without it, the 
inner loop will cycle several times before you can release the mouse button, 
leading to unpredictable results. This is a bit of a kludge. In Chapter 10 
we'll show a better way to handle this problem. 

In mouseinbox(), the nested for loops check each box in tui;n to see if 
the mouse is in the box and if the mouse button is being pushed. If so, a 
circle is drawn. The variable pebble acts as counter; depending on whether it 
is odd or even, a white or black circle is drawn. 

The stop rectangle is set up to be slightly larger than the board grid. 
Note the condition for the loop control variable for the outer do ... while 
loop: 

!button() I I ptinrect (mouse, &stop); 
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It remains true as long as either the mouse button is up or the mouse is in 
the rectangle stop. Thus, to halt the program, you must press the button 
while the mouse is out of the large rectangle. 

Summary 

The Toolbox is described in Pascal terms, which the C programmer must 
convert to the appropriate C idioms. Pascal procedures correspond to 
C functions without return values, while Pascal functions correspond to 
C functions with return values. AC function call must match the Pascal 
description of arguments in both type and number; also, the type of a 
C function should match the return value of a Pascal function. Pascal value 
parameters correspond to regular C arguments, while Pascal variable 
parameters correspond to passing an address in C. An exception occurs for 
arrays and structures, in which case the C call should pass an array or 
structure address when either a variable or value parameter is called for. The 
Point structure is an exception to the exception and follows the same rules 
as ordinary variables. The Toolbox utilizes a host of Pascal Type 
definitions. These can be converted to C equivalents using #defines and 
typedefs. Hippo C provides a header file data.h, which contains such 
definitions. 

Using data.h makes using Quickdraw easier. This package makes 
heavy use of predefined structures and pointers to structures. One can use 
the included definitions to facilitate using routines to create and modify 
grafports, to create new patterns and cursors, to control the pen appearence, 
and to monitor the location of the mouse, among other possibilities. 
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10 
A Mac Miscellany 

In this chapter you will learn about: 

• Macintosh managers 
• Memory management 
• Stacks and heaps 
• Relocatable and nonrelocatable blocks 
• Pointers and handles 
• Quickdraw regions 
• The event manager 
• Files 
• The sound driver 

Programming in C for the Macintosh takes a lot of knowledge. You have to 
know C, of course, and you have to know about the Macintosh. We have 
concentrated on presenting C, but in this chapter we will look more at 
Macintosh matters. The topic is too vast for a book of this size, let alone a 
chapter, so this chapter will give a quick overview, then concentrate on 
concepts that lay the groundwork for future development. In particular, we 
will look at memory management, events, and files. Once more, we'll draw 
upon Quickdraw for examples. 

The Macintosh Software System 

The Macintosh has a large selection of built-in software, with nearly 500 
routines stored in its ROM (read only memory). The routines can be 
subdivided into two classes: the operating system and the Toolbox. These 
classes are divided further into modules called "managers." Here are the 
major managers. 
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Toolbox Managers 

Quick draw 
Toolbox Utilities 
Font Manager 
Event Manager 
Resource Manager 
Window Manager 
Control Manager 
Dialog Manager 
Menu Manager 
Desk Manager 
Text Edit 
Scrap Manager 
Package Manager 

Operating System Managers 

Event Manager 
Operating System Utilities 
Memory Manager 
File Manager 
Segment Loader 
Vertical Retrace Manager 

The division between the two groups is somewhat fuzzy, as the 
appearance of the Event Manager in each group testifies. Each package has 
an area of responsibility, although the areas sometimes overlap. The 
Quickdraw package, for example, essentially is the screen manager, and the 
Window Manager must draw upon Quickdraw to do its work of controlling 
windows. 

Each package is described in a separate section of Apple's Inside 
Macintosh volumes. The discussions there explain the concepts behind 
each package and present a description of the included routines along the 
lines of the Quickdraw excerpts you saw in Chapter 9. 

We'll study the Memory Manager and the Event Manager in more 
detail. Let's begin by looking into how the Macintosh handles memory. 

l\1acintosh l\1einory l\1anageinent 

The Macintosh uses three techniques and three different memory areas for 
storing program data. We outlined them in Chapter 9, but it won't hurt to 
repeat them now. 

Variables that are declared externally or that are declared to be storage 
class static are placed in a "static" memory area. The memory space they 
need is allocated when the program is compiled and loaded. Automatic 
variables have their memory needs allocated when the function using them 
is called; they are placed in an area called the stack. Finally, storage space 
explicity requested during run time (for example, by the malloc() function) 
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is allocated from an area called the heap. Let's examine each type more 
carefully now. 

Static Memory 

The term static is used to indicate that these memory locations stay 
assigned as long as the program runs. In Hippo C, the static memory 
locations are stored in the same general area as the program code, which is 
in a memory section called the "application heap." Once a program is 
finished, all its memory locations are liberated, so the "static" variables of 
the program are not truly permanent. The Macintosh system, however, has 
its own set of global variables that are really static, for they persist even 
after your program quits. They are stored in the system static memory 
locations, which occupy a little over 2000 memory addresses at the very 
beginning of memory. For example, the tickcount (the number returned by 
the tickcount() function) is obtained through using location 362. (You don't 
need to know the address, for the function takes care of matters for you.) 
Figure 10.1 outlines the location of these memory locations and of others 
we will discuss. 

Stack 

Grows downward 

Free Memory 
Grows upward 

Applications heap 

System heap 

Low addresses 

Figure 10.1 Memory in the Macintosh 
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The Stack 

The stack, used for automatic variables, starts near the top (large 
addresses) of memory, just below the area holding the bit mapping for the 
screen. Each time a function is called from a program, its automatic 
variables are added to the stack, and when a function quits, its automatic 
variables are removed. The actual contents of a memory location aren't 
erased, but they are no longer accessed by the variable name. Also, the 
location is freed for the next variable needing it. On the Macintosh, the 
stack actually grows downward from large addresses to smaller ones. So 
here, the phase "top of the stack" refers to the low-memory end of the stack. 
Figure 10.2 illustrates the process . 

._ bottom of stack ~ ..------.. 
22 22 

13528 13528 

16 16 

101012 101012 

• top of stack~ 
385 

Before After 
Figure 10.2 Adding a new value to the stack 

To get a more concrete view of what's happening, let's look at a 
program that creates some static and some automatic variables, calls some 
functions with automatic variables, and prints out the addresses for all the 
variables. Here is the program. 

I* addressesl.c shows addresses of variables */ 
char extl, ext2; /* two external variables -

main () 
{ 

- static storage */ 

char autol,auto2; /* two stack variables */ 
void functl(), funct2(); 

300 THE MACINTOSH C PRIMER 



printf("The address of extl is %u\n", &extl); 
printf("The address of ext2 is %u\n", &ext2); 
printf("The address of autol is %u\n", &autol); 
printf("The address of auto2 is %u\n", &auto2); 
autol = 22; 
functl(autol); 
funct2(auto2); 

void functl(a) 
char a; /* formal argument */ 
{ 

char b; I* local variable */ 

printf("The address of a is %u\n", &a) ; 
printf("The address of b is %u\n", &b); 

void funct2(c) 
char c; 
{ 

printf("The address of c is %u\n", &c); 
functl(c); 

Here is the output; note how the static variables are in one area, while 
the automatic variables (including the formal function arguments) are in 
another. Note, too, how successive static variables come later in memory, 
while successive automatic variables come earlier in memory. 

The address of extl is 36448 
The address of ext2 is 36450 
The address of autol is 106823 
The address of auto2 is 106822 
The address of a is 106819 
The address of b is 106807 
The address of c is 106816 
The address of a is 106805 
The address of b is 106793 

The stack memory process is very orderly. Memory assignments 
operate on a "last in, first out" (or "lifo") basis. Note how funct2() uses a 
memory location in the midst of the memory area used by the first call of 
functl(). Also, see how the second call to functl() results in different 
locations being assigned to a and b, for now they are added to the stack on 
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top of funct2()'s assignments. Gaps between the addresses shown indicate 
that the stack is being used for matters in addition to the declared variables. 

The orderly stack is well suited for handling automatic variables. Add 
memory when a function is called, and remove memory when the function 
finishes. Additions and subtractions are always made at the top of the stack, 
in the same order that functions are called and dismissed. A function that 
has called another function doesn't quit before the called function quits, so 
there is no necessity to free memory in the middle of a stack. However, not 
all memory demands are as well-ordered as those created by automatic 
variables. Sometimes we need the heap. 

Heap Memory 

Just as the name "stack" suggests an orderly arrangement, the name 
"heap" suggests a greater degree of disarray. In a heap, memory is assigned 
in blocks, and assigned blocks can be freed even if they are in the middle of 
the heap. So the heap can wind up having a jumbled mixture of assigned 
and unassigned memory. This is what some programming situations need. 

For instance, consider the Macintosh window system. You can open 
several windows at once, shift back and forth between them, and dismiss 
them in any order you want. There is no last-in, first-out restriction here. 
Each window has its own memory requirements, for which the stack is 
unsuited, but for which the heap is ideal. The key advantage to the heap is 
that it lets a program allocate and deallocate memory in the order needed, not 
just on a lifo basis. 

The disadvantage of the heap is that it can wind up in fragmented 
chunks. At some point a program might need more memory than is left in 
one chunk. To combat this possibility, the Memory Manager can move 
around remaining blocks of memory, consolidating them and creating larger 
blocks of unassigned memory. See Figure 10.3. The Memory Manager can 
only do this shuffling for a variety of heap memory called a "relocatable 
block." A second type of heap memory, called a "nonrelocatable block," 
stays put as long as your program runs. Of the two, the nonrelocatable 
block is the simpler, so we'll look at it first. 
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Fragmented 
heap 

Figure 10.3 

N onrelocatable Blocks 

Heap after 
consolidation 

Consolidating relocatable blocks 

A nonrelocatable block of heap memory is described by a pointer to the 
beginning of the block. Since the block remains put, the pointer remains 
valid for the duration of the program or until the program frees that block. 
C's malloc() (memory allocation) function can be used to obtain a block of 
the desired size and to return the address of the block. We had an example 
in Chapter 8, when we used these statements: 

grafptr gp; /* declares a pointer */ 
char *malloc(); /*gives function type*/ 

gp = (grafptr) malloc( sizeof (grafport) ); 
I* allocates memory and returns address value */ 

The malloc() function takes one argument: the number of bytes of 
memory required. It returns the address of the first byte of the assigned 
block of heap memory. The function type is pointer-to-char, as that is the 
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most elemental pointer type, pointing to just one byte. If the pointer is 
supposed to describe a larger unit, then you should use a type cast to 
convert the return value to a pointer to the correct type. The numerical value 
of the pointer is unchanged, but the interpretation of the pointer is altered. 
For example, the typecast above makes gp a pointer to a grafport structure, 
thus permitting the use of constructions like gp->portrect. 

The sizeof operator is very useful for memory allocation, for it yields 
the size, in bytes, of the following operand. The operand can be the name of 
a particular variable or the identifier for a type; if it is a type identifier, it 
should be enclosed in parentheses, as in the example above. 

The Memory Manager has a function (unimplemented in Level l Hippo 
C) called newptr() that works just like malloc(). 

It is important to realize that the program's only link to the allocated 
block of memory is the pointer. If you assign a new value to the pointer 
without saving the old value, the program will have no way to use what is 
in the block, even though the memory is still there. 

Let's look at a simple example illustrating where heap stuff gets 
placed. Here is another program that prints out addresses: 

char ext; 
main () 
{ 

char aut; 
char *pl, *p2; 
char *malloc(); 

I* two pointers to char */ 

pl= malloc( sizeof (char) ); /*allocate memory*/ 
p2 = malloc( sizeof (char) ); 
*pl= *p2 = 'Q'; 
printf("Addresses for ext,aut,pl,p2 = %u %u %u %u\n", 

&ext,&aut,&pl,&p2); 
printf("Addresses assigned to pl,p2 = %u %u\n", 

pl,p2); 
printf("Stored values= %c %c\n", *pl,*p2); 

Note the differences between &pl, pl, and *pl. The first is the 
address of the pl variable. Since pl is declared at the program head, it is an 
automatic variable, just like aut. But pl is the value stored at that location, 
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and it is the address of the newly allocated memory. Finally, *pl is the 
value stored in that newly allocated location. Now check out the printout: 

Addresses for ext,aut,pl,p2 36252 106823 106818 106814 
Addresses assigned to pl,p2 81476 81488 
Stored values = Q Q 

The heap area lies between that used for the external variable and the 
stack. Note that the heap addresses grow larger as new space is requested. 
The stack, recall, grows downward. See Figure 10.1. When the two meet, 
your program is out of memory. 

The preceding example was run from the Hippo C Command Window. 
Note what happens if we run it from HOS (the Hippo Operating System) 
instead: 

Addresses for est,aut,pl,p2 36336 106727 106722 106718 
Addresses assigned to pl,p2 36674 36686 
Stored values = Q Q 

The statically stored ext has the same address as before; the automatic 
variables have slightly different addresses, and the heap addresses are quite 
changed. Recall that the program itself is stored in the heap. When we run 
the program from HOS, the free part of the heap comes right after the end of 
the program, so the values returned by malloc() are only slightly bigger than 
the address of ext. When we run the program from the Hippo Command 
Window, however, a large section of heap is used up for programs and files 
used in that mode. In that case, the free area of the heap starts at a much 
larger memory location. 

When your program is done with using allocated memory, it should 
free it. In C this is done using the free() function. Its argument is a pointer 
previously assigned a value through malloc(). (The Memory Manager 
equivalent is disposeptr().) Thus, to free the memory assigned in the 
preceding example, we would use these statements: 

free(pl); 
free(p2); 
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Then later calls to malloc() could reuse those memory locations. The 
locations are said to be returned to the memory pool. 

Once again, the problem with nonrelocatable blocks of heap memory is 
that they can lead to a fragmented heap structure as memory is allocated and 
freed. So let's look at relocatable memory in the heap. 

Relocatable Blocks and Handles. The Macintosh uses a clever 
scheme to keep track of relocatable memory blocks in the heap. At the same 
time the relocatable block is alloted, a "master pointer" is also allocated in 
the heap. The master pointer contains the address of the block, but it (the 
pointer) is not relocatable. Finally, the address of the master pointer is 
assigned to a "handle" in the program requesting the memory. A "handle" is 
just a pointer to a pointer. 

What happens if the memory manager decides to move the relocatable 
block of memory? It moves the block, and places the new address in the 
master pointer. Note that both the master pointer and the memory block, like 
other memory locations in the heap, are nameless. The only way to access 
the block is to use the master pointer, and the only way to access the master 
pointer is to use the handle. By now, you probably have three questions on 
your mind. How do you declare a handle in C? How do you access the 
memory block using a handle? How do you request memory allocation 
using a handle? Whether or not those questions are actually on your mind, 
we will answer them now. 

First, how do you declare a handle? Suppose, for example, that we 
have allocated memory for a Pattern structure using relocatable memory. 
Then the handle would be type pointer-to-pointer-to-struct Pattern. We 
could declare the handle this way: 

struct Pattern **handlepat; /* pointer-to-pointer-to­
structure */ 

Or we could make use of Hippo C's data.h file, which includes this typedef: 

typedef struct Pattern pattern,*patptr,**patternhandle; 

This sets up pattern to represent the struct Pattern type, patptr to represent 
the type pointer-to-struct Pattern, and patternhandle to represent the type 
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pointer-to-pointer-to-struct Pattern. Then we could declare the handle this 
way: 

patternhandle handlepat; 

In both approaches, the double asterisk (**) ultimately is used to identify a 
pointer-to-pointer, or handle. 

That's how to define a handle in C, but how do we use it? First, 
suppose we have a handle for a simple type: 

int **inthndle; 

If inthndle has been made a handle to some particular integer value (i.e., if 
inthandle points to a pointer to an int), then we use double indirection to get 
the value. That is, we can have statements like this: 

finalscore = oldscore + **inthandle; 

Thus, **inthandle is the stored value. Also, *inthandle would be the 
address stored in the master pointer, inthandle would be the address of the 
master pointer, and &inthandle would be the address where inthandle itself 
is stored. If the block is moved, then the value *inthandle changes. Figure 
10.4 shows the effect on these values of relocating the block. 

More typically, the Macintosh system uses handles to structures. 
Suppose we have this declaration: 

pathandle spider; 
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This makes spider a handle to type pattern. Next, as discussed below, 
spider should be assigned a relocatable block. Now, since spider is a 
handle, *spider is syntactically the same as a pointer-to-pattern. We can use 
the indirect membership operator to obtain a structure element using a 
pointer, so we can refer to, say, the hotpoint member of the pattern structure 
as follows: 

(*spider)->hotpoint 

The-> operator has higher priority than*, so we use parentheses to indicate 
the proper sequence of operators. 

108200 108200 inthandle 

6239 6 

61480 **inthandle 

60400 *inthandle 60400 61480 *inthandle 

Before After 

Figure 10.4 Handle, master pointer and block 
before and after relocation 
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Finally, how do you get a handle? You need to work through the 
Toolbox Memory Manager, either directly or indirectly. The direct method 
involves using the newhandle() procedure, which fetches a handle for an 
arbitrary type. The indirect method is to use Toolbox functions that fetch 
handles for particular types. For instance, the newrgn() function returns a 
handle to a particular structure type called a region. Because Level 1 of 
Hippo C does not access newhandle(), we will illustrate handles using the 
second approach. For a context, we will tum once again to Quickdraw. 

First, however, let's summarize the methods of accessing heap 
memory. The first method is to request a pointer to a memory block. In C 
this is done with malloc(). This function allocates a nonrelocatable block of 
memory in the heap, and returns the beginning address of the block to the 
calling program; this address is assigned to the pointer. The second method 
is to request a handle to a memory block. Several Toolbox functions serve 
this purpose. Each allocates a relocatable block of memory in the heap and a 
master pointer in the heap. The address of the master pointer is returned to 
the calling program, where it is assigned to the handle. If the memory block 
gets moved, the master pointer gets updated. 

Handles sound complicated because so much has to be done. But most 
of the work is done by the Memory Manager, and programming using 
handles turns out to be quite simple. A good example is provided by the 
Quickdraw treatment of regions. Let's talk about them next. 

Regions 

The region is a more talented cousin to the rectangle. Recall that in 
Quickdraw, a rectangle structure is used to describe a rectangular area on the 
screen. Two kinds of functions are used with the rect structure. One set 
controls the parameters, or attributes, of the rectangle. For instance, 
setrect() sets the coordinates, offsetrect() shifts the coordinates, and 
insetrect() modifies the size of the rectangle. A second set of functions 
causes things to happen on the screen within the confines of the defined 
rectangle. For instance, framerect() draws a boarder, paintrect() paints 
in the rectangle, and eraserectO erases the interior of the rectangle. 

The region is a similar concept, except that a region is not limited to a 
rectangular shape. You can create whatever shape you like, within reason, 
for a region, and then you can manipulate it much as a rectangle is 
manipulated. That is, a region can be moved, altered in size, framed, 
painted, erased, and so on. 
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Because a rectangle is a simple figure, the definition of the rect 
structure was simple: 

typedef struct 
{ 

integer top,left, bottom,right; 

rect; 

But how can you define a structure to describe an as yet unspecified shape? 
On the Macintosh, it is done this way in Hippo C: 

struct Region 
{ 

} ; 

integer rgnsize; 
rect rgnbox; 

I* more data if not rectagular */ 

typedef struct Region *rgnptr,**rgnhandle,region; 

The first structure member, rgnsize, is the size of the structure in 
bytes. The second member is a rect structure that encloses the region. Then 
comes the tricky part, "more data if not rectangular." The Quickdraw 
package has a method of describing a nonrectangular region with a series of 
numbers. The Region structure gets expanded (or shrunk) as necessary to 
include that series of numbers. This changing structure size is why the first 
member of the structure provides the size explicitly. It's much like the 
Pascal string format, in which the first byte tells how long the whole string 
is. Here the first member tells how long the whole structure is. 

Special Quickdraw procedures generate the numbers to describe a 
particular region as a program is run. Thus the amount of memory needed 
for a Region structure is determined and can be changed during run time. 
This is exactly the type of situation for which relocatable heap memory and 
handles were intended. Consequently, the Quickdraw region functions are 
written using handles, not regions or pointers to regions. Let's look at some 
of these functions now. 
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Creating Regions 

To create a region, you need to go through three steps. First, you need 
to declare a region handle variable. In Hippo C you use the typedef type 
rgnhandle. Next, you allocate and assign a relocatable block of heap 
memory to hold the region. This is done using the newrgn() function. It 
takes no argument, allocates the memory space initially needed for the 
region, and returns a region handle value. Third, you create a description 
for the region. A selection of Quickdraw routines makes this simpler than 
what you might expect Let's look at an example that illustrates some of the 
simpler possibilities. The following program creates a region having the 
shape of a sideways T. It then performs such operations as painting, 
offsetting, shrinking, and inverting the region. Naturally, it uses several 
new Toolbox routines. 

From Mac's Toolbox: New Routines 

NewRgn 
SetRectRgn 
FrameRgn 
PtlnRgn 
UnionRgn 
DisposeRgn 
PaintRgn 
InsetRgn 
lnvertRgn 

Here's the program: 

Creates region and returns handle to it 
Set rectangle bounding a region 
Frame a region 
Returns true if mouse is in region 
Combine two regions 
Dispose of a region 
Paint a region 
Shrink a region 
Invert contents of a region 

/* regions.a -- make some simple regions */ 
:lf:include "data.h" 
:lf:include "stdio.h" 
main() 
{ 
rgnhandle first,second,third; /* declare 3 handles */ 
point mouse; 
rect mesg; 
rgnhandle newrgn(); /*declare type for 

newrgn() function */ 

initcursor (); I* set arrow cursor */ 
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eraserect(&theport->portrect); /*clear screen*/ 
setrect(&mesg,15,180,215,205); /*message box*/ 
first= newrgn(); /*allocate first region structure*/ 
second= newrgn(); 
third= newrgn(); 
setrectrgn(first,50,50,100,150); /* set first to a 

rectangle */ 
show region */ 
also set to a 
rectangle */ 

framergn(first); /* 
setrectrgn(second,100,80,180,120); /* 

framergn(second); 
moveto(20,200); 

I* show it */ 

drawstring(strctop("Click the left box")); 
getmouse(&mouse); 
while ( !button() I I !ptinrgn (mouse, first)) 

getmouse(&mouse); /*wait for mouse 
in region */ 

unionrgn(first,second,third); /*third combines 
2 rgns */ 

/* free memory */ 

click 

disposergn(first); 
disposergn(second); 
paintrgn (third) ; 
eraserect(&mesg); 
framerect(&mesg); 

I* show new region */ 

moveto(20,200); 
drawstring(strctop("Click this box") ); 
getmouse(&mouse); 
while ( !button() I I !ptinrect (mouse, &mesg) 

getmouse(&mouse); 
offsetrgn(third,150,0); 
paintrgn(third); 
insetrgn(third,20,5); 
invertrgn(third); 
eraserect(&mesg); 
moveto(20,200); 

I* shift region to 
I* show it */ 
I* modify region */ 
I* show it */ 

right */ 

printf("Structure third occupied %d bytes\n", 
(*third)->rgnsize); 
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Figures 10.5, 10.6, and 10. 7 show three stages of output from the 
program. Before running the program, we expanded the Hippo C 
Command Window to accommodate the expected output. 

Hippo~c Command Window 

J 

Click the left box 

Figure 10.5 Output from regions.c 

Let's discuss the new functions we have used. First, as promised, the 
newrgn() function returns a region handle and allocates space for the 
region structure. Note that we declared the function to be type rgnhandle, 
which is the typedef equivalent of pointer-to-pointer-to-struct Region. 

Next, the setrectrgn() function sets the named region, represented by 
its handle, to the rectangle described by the next four arguments. If the 
region were previously defined, the previous definition is wiped out. The 
rectangle arguments come in the same order as used in the setrect() function: 
left, top, right, bottom. The program sets up the regions first and second to 
be two adjacent rectangles. (Technically, first is not the name of the 
region-it is, in fact, nameless-but the handle to the region. But it is much 
simpler to say "region first" than it is to say "the region whose handle is 
first." We'll take the simpler way and trust you to understand what we 
really mean.) The rgnsize member of each structure would have the value 
10. The rgnsize member is one integer itself, and the rect structure is 
another 4 integers. Each integer is 2 bytes, making a total of 10. 
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Hippo-c Command Window 

I CI i ck this box 

Figure 10.6 Output from regions.c 

Hippo-c Command Window 

Structure third occupies 44 bytes 

Figure 10.7 Output from regions.c 
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The framergn() function talces a region handle as argument, and 
draws a border just inside the region boundary. Figure 10.5 shows the 
program at this stage. 

The ptinrgn() function works much like the ptinrect() function, 
except that its second argument is a region handle instead of a pointer-to­
rect The function returns a "true" (nonzero) value if the first argument (type 
point) is in the region, and "false" otherwise. We use it as part of the loop 
to freeze the screen until the user is ready to advance to the next stage of the 
program. 

Next, the unionrgn() function makes third into a region that is the 
union of first and second. The function talces three arguments. The first two 
are handles to the regions to be combined, and the third argument is a 
handle to resulting region. Note that this function does not create storage for 
the new region; it requires that we had used newrgn() earlier for that 
purpose. Also, the function does not alter first and second. They were used 
as a source of information for putting together the Region structure for 
third. 

This is our first nonrectangular region and it has the shape of a 
sideways T. The paintrgn() function, which talces a region handle as an 
argument, fills in the region so that you can see it on the screen. Figure 10.6 
captures this stage. 

The new region third can be manipulated. For example, the offsetrgn() 
function is used to move it 150 units to the right. This function talces three 
arguments: a region handle, a horizontal offset, and a vertical offset 

The program uses paintrgn() to show the new region location. Then 
insetrgn() is used to change the size of the region. It talces three arguments: 
a region handle, the horizontal inset, and the vertical inset. All points on the 
region boundary are moved inward vertically by the vertical inset and 
horizontally by the horizontal inset. Negative numbers indicate expansion. 

Then the program uses invertrgn() to invert the new region, malcing 
it show up as white against the black background of the preceding version 
of the region. Figure 10. 7 shows the program at this stage. 

The figure also exhibits the output of the printf() statement, revealing 
that the structure referred to by third occupies 44 bytes. Indeed, the 
structure has grown beyond the minimum of 10 bytes needed for a simple 
rectangular region. The Quickdraw system and the Memory Manager have 
done all the work for us. 
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Finally, the disposergn() function releases the allocated blocks of 
memory back to the memory pool. The memory is released anyway when 
the program ends, but it is a good idea to dispose of a region when you are 
done with it. That way, your program can use the memory for other needs 
later. 

The setrectrgn() and unionrgn() functions let you compose regions 
from rectangles. The arguments to unionrgn() need not be limited to 
contiguous rectangles. For instance, a region could consist of two 
nontouching rectangles. Or a third could be used as one of the initial 
arguments to unionrgn() and be combined with another region. 

Other routines that combine regions are sectrgn(), diffrgn(), and 
xorrgn(). All, like unionrgn(), take three arguments: handles to two 
"source" regions and a handle to a "destination" region. The sectrgn() 
routine provides a region that is the intersection (or overlap) of the first two 
regions. The diffrgn() function produces the region that results from 
subtracting the second source region from the first. The xorrgn() procedure 
produces the region consisting of everything that is in one source region or 
the other, but not in both. All of these procedures require that newrgn() be 
used first to provide memory space for the destination region. 

Another useful function is copyrgn(). It takes two region handles as 
arguments and copies the structure of the first into the second. Again, 
newrgn() should be used prior to this function to provide memory space. 

These various functions give you many ways to manipulate and 
modify regions. The most interesting approach, however, is provided by 
the openrgn() and closergn() functions. 

Designing Regions with openrgn() and closergn() 

The openrgn() function, which takes no arguments, announces your 
intention to create a region definition. You then can use line(), lineto(), and 
the various framing functions, such as framerect(), frameoval(), and 
framergn() to create one or more closed loops. These lines and shapes are 
saved, not drawn on the screen (unless you invoke pendown()). Then, a 
call to closergn() organizes the collection of lines and shapes into a region 
definition. The resulting region is saved in the region indicated by the region 
handle used as the argument to closergn(). 
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The next example uses this approach. 

From Mac's Toolbox: New Routines 

OpenRgn 
CloseRgn 

Prepare to define a region 
Use prior instructions to define region 

I* puff.c uses openrgn() to define a disjoint region */ 
#include "data.h" 
#include "stdio.h" 
main() 
{ 

rgnhandle sample; 
rect box; 
point mouse; 
rgnhandle newrgn(); 

initcursor (); 
eraserect(&theport->portrect); 
sample= newrgn(); 
openrgn(); /*prepare to define region*/ 

setrect(&box,40,50,100,90); 
frameoval (&box); 
offsetrect(&box,0,50); 
frameoval (&box); 
moveto(20,200); 
lineto(70,150); 
lineto(120,200); 
lineto(20,200); 

closergn(sample); /*set up region, assign to 
sample */ 

paintrgn(sample); /*see what it looks like*/ 
offsetrgn(sample); /*move region*/ 
paintrng(sample); 
getmouse(&mouse); 
while ( !button() 11 !ptinrgn(mouse,sample) ) 

getmouse(&mouse); 
insetrgn(sample, -10, 5); /*alter shape*/ 
offsetrgn(sample, 120, 5); 
paintrgn(sample); 
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Figure 10.8 shows the appearence of the screen after running this 
program. 

~o Hippo~c Command Window 

* 

Figure 10.8 puff.c output 

iii!!: 

I 
I 

We indented the portion of the program between openrgn() and 
closergn() to make the limits of the defining section obvious. Note that all 
three parts of the region are affected by the offsetrgn() and insetrgn() 
functions. Also, the ptinrgn() function will work if the mouse is in any one 
of the three parts. If you run the program, you'll note that the mouse has to 
be in one of the parts; simply being inside the boundary rectangle is not 
enough. 

The insetrgn() can alter the shape of a region. For example, insetting 
all boundary points vertically by 5 units while moving each point 
horizontally by 10 units results in the point of the triangle being truncated. 

The main point to notice is how simple it is to use the handles. 

Regions are very important to Macintosh programming. For instance, 
the structure region (include window and frame) of a window is a region, as 
is the content region, in which the text and graphics appear. If you 
understand regions, you will find it simple to use the Quickdraw picture and 
polygon structures, for they are developed along similar lines. 
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Describing a Region 

To use regions you don't really need to know how they are described 
internally, for the Quickdraw routines take care of the messy details. Still, 
most of us feel better when we have some idea of what is going on, so we'll 
describe the method now. 

A region is described in terms of its corners. Ultimately, each screen 
figure is made up of straight line segments. With a curved line, these 
segments might be only 1 or 2 pixels long, but they are still straight lines. 

The descriptive scheme goes like this. Start from the top of the region 
frame and move down row by row of pixels until you find a row containing 
one or more corners. Store the vertical coordinate of that row and the 
horizontal coordinates of all the corners on that row. Then store a 32767 to 
indicate no more corners in that row. Procede downward until the next row 
containing one or more corners, and repeat the process. Continue until you 
reach the end of the region shape, and store one additional 32767 to mark 
the end of all the data 

Let's see how this scheme applies to the sideways T we created for 
region third in regions.c. The first row with corners is row 50. The 
horizontal coordinates of the two corners are 50 and 100. Thus the region 
structure is expanded to hold the sequence 50 50 100 32767. Going down, 
the next row with corners has a vertical coordinate of 80. The horizontal 
corner coordinates are 100 and 180, so the sequence 80 100 180 32767 is 
stored. Next comes the sequence 120 100 180 32767, and finally the end of 
the region is represented by 150 50 100 32767 32767. Altogether, that 
makes 17 integers, or 34 bytes. Add that to the basic 10 bytes any region 
structure has, and you get 44 bytes, exactly the number reported back by the 
regions.c program when we ran it. Oh yes, the rgnbox member of the 
structure was set by the unionrgn() command to the smallest rectangle 
containing the actual region. 

Events 

In these last two programs, as well as others, we've used a while loop 
based on the mouse position to control the stopping and starting of program 
action. That approach has weaknesses that we've tried to conceal. For 
example, in regions.c, we used two separate areas in which to click the 
mouse. If, instead, we had used the left box for both click attempts, the 
program would run so fast that by the time you took your finger off the 
mouse button, the program would have passed though both click loops. As 
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a result, the program would go through to the end, and you would miss the 
intermediate halt. This particular programming can be solved by a more 
elaborate test that makes sure the button has to be up between while loops, 
but the Macintosh provides a better approach to controlling the program. 
That approach is to use the Event Manager. 

The "event" is one of the basic concepts in programming for the 
Macintosh. An event, according to Inside Macintosh, is a "notification to an 
application program of some occurrence that the program must respond to." 
The occurrences that get reported are happenings such as the mouse button 
being pressed, the mouse button being released, a key being depressed, a 
key being released, a window being activated or deactivated, a disk being 
inserted, an abort message, and a few others. 

The event itself is not the occurrence, but a Pascal record (or C struc­
ture) created to describe the particular occurrence. Each time you press a key 
or the mouse button, an event record is created. These are placed in the 
"event queue," which is the Event Manager's list of pending events waiting 
to be processed. Each event record contains several items of information, 
including the time and the type of event. A program can take events off the 
queue and process the ones relevant to the program. 

One motivation for developing the event queue system is the fact that 
the Macintosh takes input from both the keyboard and from the mouse. The 
event queue system lets a program deal with both sources of input in a 
unified fashion. 

The key Event Manager function for our purposes is getnextevent(). It 
procures the next event from the system. As each event is processed (or 
passed over, if unwanted), it is discarded from the queue. If getnextevent() 
fails to find an event when called, it returns a 0 ("false") value; otherwise it 
returns a true value. But before we can understand its use, we need to 
understand something about its arguments. Its first argument is type integer 
and represents an "event mask." That is, it describes the particular events 
the program wishes to process. The second argument is a pointer to an 
event record. When an event of a specified type shows up, information 
about it is transferred to the pointed-to record. We'll look at these two 
topics (event masks and event records) next. 

The Event Mask 

The event mask argument is a single number of Pascal type 
INTEGER, equivalent to Hippo C short or to integer as typedefed in the 
data.h file. Since this type is a 2-byte number, we can think of it as 16 1-bit 
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numbers. That, in fact, is what getnextevent() does. Each bit is a "flag" for 
a particular event; if a particular flag is set to 1, getnextevent() will look for 
the corresponding type of event. Figure 10.9 shows a two-byte integer 
considered as a mask. It follows the usual computer tradition of numbering 
the bits 0 to 15, from right to left. Note, for example, that bit 1 is the flag 
for detecting a "mouse down" event, while bit 3 is the flag for a "key down" 
event These will be the only two we will work with. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I I I I I I I I I I I I I 
\ )~ .llr: - CD 'O CD >- a. c a. c ... ... - CD - CD :::J ;: :::J ;: 0 0 ca - ca .llr: :::J 

I ·.:: ;: .Q > ... 'O >- 0 0 z c < ·- CD 0 'O CD 'O 
.~ 'O 

c - - 0 a. CD 0 () - ~ CD < c ::::> :::J >- :::J CD 
- CD 0 z < CD 0 ca c 0 
() ·- :::: .llr: ~ :E :::J ·-- 0 0 - CD :E a.,, ·-a. c 
< 

Figure 10.9 The event mask 

Next, let's see how to set a flag. When we look at the bit pattern as a 
binary number, each bit corresponds to a power of two. For example, bit 1 
corresponds to 2 to the first power (2), bit 2 corresponds to 2 to the second 
power (4), bit 3 corresponds to 2 to the third power (8), and so on. So, if 
eventmask is an integer, we can tum on the mouse-down flag by saying 

eventmask = 2; 

and we can use 

eventmask = 8; 

to turn the key-down flag on. But that also resets bit 1 to 0, turning the 
mouse-down flag back off. To tum on two or more flags simultaneously, 
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add their codes together. Thus, to turn on both the mouse-down and the 
key-down flags, do this: 

eventmask = 10; 

This works because 10 in binary (see Appendix C) is 1010, which sets bits 
3 and 1to1. 

To make the system a bit more mnemonic, the defs.h file supplies a list 
of definitions to use for the different flag settings. Here is a partial list from 
that file: 

#define NULLMASK 1 
#define MDOWNMASK 2 
#define MUPMASK 4 
#define KEYDOWNMASK 8 
#define KEYUPMASK 16 

Then, to detect both key-down and mouse-down events, we could use this 
statement: 

eventmask = MDOWNMASK + KEYDOWNMASK; 

The eventrecord Structure 

Next, let's look at the structure that getnextevent() fills. Here is its 
Hippo C definition: 

typdef struct 
{ 

integer what; 
longint message,when; 
point where; 
integer modifiers; 

event record; 

The longint type is a data.h equivalent for int. 
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The first member of the structure is the what member; it describes the 
type of event. Again a numerical code is used to indicate the type of event, 
and again, the Hippo C defs.h file provides mnemonic equivalents. Here are 
the first few: 

#define NULLEVENT 0 
#define MOUSEDOWN 1 
#define MOUSEUP 2 
#define KEYDOWN 3 
#define KEYUP 4 

Note that the event code is not the same as the event mask code. One 
reason for this is that the event code is supposed to indicate just one type of 
event, while the event mask code must be able to indicate several types of 
events simultaneously. There is a close connection between the two codes, 
however. The event code for a particular event is just the bit number of the 
corresponding event mask flag. 

Next in the structure comes the message member. It contains infor­
mation that depends on the type of event For window-related events, it 
contains a pointer to the window. For disk-drive events it specifies the 
drive. For keyboard events, it indicates which key is involved. The low­
order byte (bits 0 through 7) contains the character code for the key or key 
combination. The next byte (bits 8 through 15) contains a key code as 
defined by Apple. The remaining two bytes are empty. The message mem­
ber is not used for mouse events. 

The when member contains the time in ticks (one-sixtieth second) since 
system startup. 

The where member contains the position of the mouse when the event 
occurred. The position is in "global" coordinates rather than in the "local" 
coordinates used in Quickdraw. Without going into the differences, we will 
note that getmouse(), which is also part of the Event Manager, supplies 
local coordinates. Hence it is better to use getmouse() than the where 
member when you check to see if the mouse is in a rectangle or in a region. 

The modifiers member indicates the state of the mouse button and of 
the modifier keys ([OPTION], [CAPSLOCK], [SHIFT], and 
[COMMAND]) when the event is recorded. This member also uses the bit 
flag approach, with a 1 indicating the key or button that is down. Here is the 
mapping: 
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Bit Key 

11 [OPflON] 
10 [CAPSLOCK] 
9 [SHI.FT] 
8 [COMMAND] 
7 Mouse Button 

As you can see, the event record contains a wealth of information. 
Usually, however, your program will need to use only some of the 
information. 

Using getnextevent() 

Let's make a very elementary use of getnextevent(). Suppose we want 
a program to wait for the mouse button to be pushed down. Then we can 
ask getnextevent() to look only for mouse down events. For example, we 
can use the following elements: 

#include "data.h" /* definition of eventrecord */ 
#include "defs.h" /* event and event mask definitions */ 

eventrecord event; 

while ( !getnextevent(MDOWNMASK, &event) ) 
; I* wait for next mousedown */ 

The getnextevent() function will keep examining and discarding events 
until a mouse-down event reaches the head of the queue. When the next 
event is not a mouse-down event or when the event queue is empty (the null 
event), the function returns a "false" value, and the loop continues to cycle. 
The only use this makes of event is to provide getnextevent() with the 
proper arguments. Instead, the return value of the function is used to control 
the program flow. 
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Let's try out this construction. 

From Mac's Toolbox: New Routines 

GetNextEvent Screens event queue for selected events 

#include "data.h" 
#include "defs.h" 
main () 
{ 

rect box; 
eventrecord event; 
int loop; 

initcursor(); 
eraserect(&theport->portrect); 
setrect(&box,20,20,490,300); 
framerect(&box); 
for ( loop = 0; loop < 10; loop++) 

{ 
insetrect(&box,20,10); 
while ( !getnextevent(MDOWNMASK, event) 

I* wait for mouse down */ 
framerect (&box); 
} 

This program draws a sequence of nested rectangles; you should 
expand the Hippo C Command Window to full screen to accommodate the 
largest rectangle. The point of the exercise is that after drawing each 
rectangle, the program stops and doesn't continue until you push the mouse 
button. Thus, each push of the mouse button produces a new rectangle until 
the program ends. 

Suppose we had used our old standby instead: 

while ( !button() ) 
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The first time you push the button, all the remaining rectangles get drawn. 
The reason, as we said earlier, is that the Macintosh is much faster than 
your fingers. Before you release the mouse button, the Mac manages to go 
through the entire for loop. Every time it reaches the while loop, the button 
is still down. 

With the getnextevent() approach, we avoid that problem. As long as 
you hold the button down, no more mouse events are created. Mouse events 
only occur when you press the button and when you release the button. 
Thus the next mouse-down event is generated only after you release the 
button and press it again. One way of expressing the difference is that 
getnextevent() reports events, or changes of state, while button() reports a 
condition. 

Using the what Member 

One important method of utilizing getnextevent() is to use the what 
member of the event structure to guide the program flow. For instance, the 
program can take one course of action if the mouse button is pushed, and a 
separate course if a key is pushed. Here is a template for this approach: 

#include "data.h" 
#include "defs.h" 

eventrecord event; 
integer eventmask = MDOWNMASK + KEYDOWNMASK; 

while ( !getnextevent(eventmask, &event) ) 
{ 
switch (event.what) 

{ 
case MOUSEDOWN: 

case KEYDOWN: 

default: 
} 

break; 

break; 

When an event selected by the event mask shows up, the switch 
statement selects a course of action based on the value of the what member. 
There should be a case selection for each kind of event specified in the event 
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mask. The default case shouldn't show up, but it is good practice to 
program defensively. 

The next program uses this device. It places a framed circle in the 
middle of the screen. When you click the mouse button, the program paints 
in the circle, draws a new framed circle at the location of the mouse, and 
connects the two with a straight line. This continues until you strike a key. 
It's a simple-minded concept, but it illustrates how to blend mouse and 
keyboard input to control a program. The program creates its own grafport 
so that it will have the whole screen to work with. Here is the listing: 

I* balldraw.c -­
#include "data.h" 
#include "defs.h" 
#include "stdio.h" 
#define HALFH 10 
#define HALFV 10 
#define PENW 4 
#define FALSE 0 
#define TRUE 1 
main () 

chase the cursor */ 

I* half width of ball */ 
/* half height of ball */ 

/* pen size */ 

{ 

integer hor,ver; 
integer eventmask 
eventrecord event; 
rect box; 
grafptr gp, gpsave; 
point mouse; 

I* coordinates */ 
MDOWNMASK + KEYDOWNMASK; 

integer done = FALSE; /* is the program done? */ 
char *malloc(); 
gpsave = theport; 
gp = (grafptr) malloc 
openport (gp); 
initcursor () ; 
pensize(PENW,PENW); 

I* save Hippo C's grafport */ 
( sizeof (grafport) ); 
I* set up own grafport */ 

eraserect(&gp->portrect); 
framerect(&gp->portrect); 
hor = (gp->portrect.left + gp->portrect.right) I 2 
ver = (gp->portrect.top + gp->portrect.bottom) I 2 
setrect (&box, hor-HALFH, ver- --, 

HALFV,hor+HALFH,ver+HALFV); ~ 
moveto(hor-PENW/2,ver-PENW/2); /*offset for pen 

width */ 
frameoval(&box); 

while ( ! done ) 
{ 

/*draw initial circle at screen 
center */ 
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while ( !getnextevent(eventmask, &event) ) 
/* wait for an event */ 

switch (event.what) 
{ 
case MOUSEDOWN: getmouse(&mouse); 

hor = mouse.h; 
ver = mouse.v; 
lineto(hor-PENW/2,ver-PENW/2); 
paintoval(&box); /*fill in old ball*/ 
setrect(&box,hor-HALFH,ver-HALFV, 

hor+HALFH,ver+HALFV); 
frameoval (&box); 
break; /* break from switch */ 

case KEYDOWN : done = TRUE; /* sign to quit */ 
eraserect(&gp->portrect); 
break; 

case default : done = TRUE; 
eraserect(&gp->portrect); 
moveto(20,50); 
drawstring( 

strctop("Something's wrong!") ); 
break; 

closeport (gp) ; 
setport(gpsave); 

Figure 10.10 shows some sample output from the program. 

The program uses elements that we have discussed before, so there is 
not much that needs to be said. One point that may seem obscure is the 
PENW /2 offset we used for the moveto() and lineto() statements. The 
reason for this usage is that the upper left comer of the pen is aligned with 
the coordinates in a lineto() or moveto() call. The offset is used to bring the 
center rather than the corner of the pen pattern near the center of the circle. 

In discussing the Event Manager, we have concentrated on 
getnextevent(). We have, however, used other functions from that 
manager: button(), getmouse(), and tickcount(). This is not a complete list; 
but, as we have confessed before, we just can't hope to cover the whole 
Toolbox. 
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Figure 10.10 Output from balldraw.c 

Files 

Files are another topic we can't discuss in entirety. Macintosh files store 
many varieties of material, including programs, text documents, and 
graphics documents. Apple chose to structure each file into two parts: a 
"data fork" and a "resource fork." Although both parts are always present, 
one or both can be empty. 

The data fork contains the text in a text file, data for a spreadsheet 
program, and the like. The resource fork contains programming, if any, in 
the 68000 machine language used by the Macintosh. It may contain other 
resources, such as font information or window data, to be used by a 
program. 

The File Manager handles the creation and manipulation of files, and it 
does so to a degree of detail that we don't wish to go into. Instead, we will 
look at the basics of opening and using a file in C, and not worry about the 
elaborations required to make a program work like a standard Macintosh 
application. 
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Our simple-minded goal is to write a program that requests the user to 
supply a filename and then counts the number of bytes in that file. To do 
that, we need to learn about C's file-handling system. 

C and Files 

Most C implementations provide a package of file-related functions 
called the standard I/O package; the standard file stdio.h supports this 
package with shared definitions used by the functions. A key definition is of 
type FILE. In Hippo C, it is defined this way: 

typedef struct 
{ 

int *file; 
char flag, type; 

FILE; 

The key point is that FILE is a structure containing information about a 
file. For instance, the members file and type identify which file and what 
kind of file it is. Many C I/O functions, when dealing with a file, identify it 
not by name, but by a pointer to a FILE structure. Fortunately, we don't 
have to specify the structure contents ourselves; that's taken care of by the 
function that opens the file. 

Let's get more specific. Suppose you want your program to open the 
data fork of a file called myfile and read what is in it. Then you use the 
fopen() function. It takes two arguments. The first is a pointer to the name 
of the file to be opened, and the second is a string indicating what is to be 
done with the file. Here are the choices for the second argument: 

Argument 

"r" 
"r+ .. 
"w" 
"w+" 
"a+" 
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Meaning 

read only (no modifications allowed) 
read/write 
delete existing file and open write only 
delete existing file and open read/write 
append in read/write mode 



The fopen() function has a return value, a pointer-to-a-FILE structure 
set up to describe the requested file. If fopen() fails to open a file, it returns 
a pointer-to-NULL. 

The basic call to fopen(), then, would have these elements: 

FILE *fp, *fopen(); /*declare pointer, function type*/ 

fp = fopen("myfile","r"); 

Usually, the value of fp will be compared with NULL to see if the file was 
opened successfully. 

Once a file is opened for reading, it can be read by file input functions. 
The input functions we've used before all have file-reading equivalents. The 
names are changed slightly, and an argument (a pointer-to-FILE) is added to 
specify the file to be read. For example, in Hippo C we could use any of 
these statements for the "myfile" file: 

ch= fgetc(fp); /* getchar() analog*/ 
fscanf(fp,"%d", &number); /* scanf() analog*/ 
fgets(line,81,fp); /*we've seen this one already*/ 

We've used fgets() before, using stdin to specify that it read the 
standard input. It turns out that stdin and stdout are predefined (in stdio.h) 
identifiers of type pointer-to-FILE. Thus, all these functions can be used 
with standard input, too, just by using stdin as the file identifier. 

Incidentally, many implementations use the name getc() instead of 
f getc() for the character-reading function. For compatibility, Hippo C 
defines the two names as being equivalent in stdio.h. 

After processing a file, use f close() to close the file. Again, the 
argument should be the pointer provided by fopen(). 

Here is a short program illustrating these fundamental points. 

/* bytecount.c -- counts bytes in a file */ 
#include "stdio.h" /* absolutely essential */ 
main() 
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int bytes = 0; 
char filename[Bl]; 
FILE *fp; 
FILE *fopen(); 

fputs("Enter name of file whose bytes are to be 
counted:\n",stdout); 

scanf("%80s", filename); 
if ( (fp = fopen (filename, "r")) == NULL ) 

{ 
printf("Can't open the file %s\n", filename); 
exit(); /*quit if in trouble*/ 
} 

while ( fgetc(fp) != EOF ) 
bytes++; /* count bytes till EOF */ 

close(fp); 
printf("File %s contains %d bytes\n", 

filename,bytes); 
} 

In interpreting the if condition, recall that the value of an assignment 
expression is the value of the left-hand member. Thus, the if condition first 
assigns a value to the pointer fp and then compares that value to NUIL. If it 
is NULL, then fopen() failed. In that case, the program prints a message 
and exits. (The exit() function causes a program to terminate in a tidy 
fashion. Any opened files get closed) 

Since the program doesn't do anything with the bytes it reads aside 
from checking for EOF, we didn't assign fgetc()'s return value to a 
variable. 

Here is a sample run: 

* a.out 
Enter name of file whose bytes are to be counted: 
data.h 
File data.h contains 4731 bytes 

Notice that we had to run the program from a keyboard-oriented 
environment. A truly Mac-like program would use windows and menus to 
arrange file selection and to report output, but the inner core of the program 
could be the same. 
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We sampled the file input functions, now let's list the output functions 
briefly, indicating the arguments; fp will indicate a pointer-to-FILE. 

fprintf(fp,format,arguments) /*works like printf() */ 
fputs(line,fp) /*a familiar function*/ 
fflush(fp) /* flushes output buffer 

to fp */ 

We discussed buffered output back in Chapter 3. Normally, the output 
functions send output to an intermediate buffer. The contents of the buffer 
are sent on to the file when the buffer fills or when a newline is transmitted. 
The fflush() function lets you force transmission at any time. 

Binary 110 

The I/O functions we've discussed do text 1/0. The character functions 
transmit a single character, and the other functions transmit strings of 
characters. Even when you use printf() or scanf() in the %d mode, they 
work with characters. For instance, when you enter the number 234, you 
separately type the characters "2", "3", and "4". The scanf() function reads 
them as a character string, then converts them to the binary number that 
finally gets stored. Similarly, the printf() function sends a series of charac­
ters to the screen. 

When the file output functions we've discussed are used to write to 
files, they create text files, files consisting of a sequence of characters. 
Similarly, the input functions we've discussed are designed to read text 
files. However, C also offers functions to let a program read and write 
binary files. 

A binary file is one that stores data in the same form that it is stored in 
a program. For a character, there is no difference, since a character occupies 
one byte in either case. For numerical data, however, there is a difference. 
For example, all short integers on a Macintosh occupy two bytes of 
memory. If we store a short integer in a binary file, it will occupy two bytes 
of file space. If we store a short integer in a text file, however, it can occupy 
from one byte (as does the number "3") to six bytes (as does the number 
"-23224"), depending on the number of characters needed to represent the 
number. 

The C binary output function is called fwrite(). It takes four argu­
ments. The first argument is a pointer to the location in program memory 
from which it is to start taking data. The second argument is the size, in 
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bytes, of the chunk of memory it is to write. The third argument is the 
number of chunks, and the final argument is a pointer-to-FILE identifying 
the target file. Suppose, for instance, we wanted to store the contents of an 
array of ints. We could do something like this: 

int nights[lOOl]; 
FILE *fp, *fopen(); 

fp = fopen("scheher", "w"); /*ignore error checking*/ 

fwrite(nights, sizeof(int), 1001, fp); 

First, nights, being the name of an array, is a pointer to the first element of 
the array. Next, sizeof(int) indicates the size of the unit to be read. Then 
1001 indicates how many of these units, and fp specifies the file. If this 
fragment were run under an implementation that used a different size for int, 
it would still run because it explicitly checks for the int size. Incidentally, 
instead of using 1001 int chunks we could have used just one huge chunk: 

fwrite(nights, 1001 * sizeof(int), 1, fp); 

One advantage of using a binary file is that data can be recovered easily 
by using the same format for reading that was originally used to write the 
file. (This is not the case when you use fprintf() and scanf().) The binary 
read function is called (surprise!) fread(). It, too, takes four arguments with 
more or less the same significance. The main difference is that the first 
argument is a pointer to the initial address of the block of program memory 
where the data is to be placed. For example, to recover data from the 
scheher file, we could do this: 

int tales[lOOl]; 
FILE *pf, *fopen(); /*no law says you have to use fp */ 

pf= fopen("scheher", "r"); 
fread(tales, sizeof(int), 1001, pf); 

Just be sure that you have allocated enough memory to hold what is read. 
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Sound Programming 

An interesting aspect of the Macintosh is that it treats device drivers 
(programs that run devices) as files. For example, if we wish to run the 
speaker, we do so by opening a "file" called .sound. Once the file is open, 
we can use fwrite() to send instructions to sound the speaker. Before we 
rush to open that file, however, we should look into what kind of 
instructions we can send. 

The sound driver expects a sequence of short (INTEGER) integers. 
These are normally arranged in a structure, but the form of the structure is 
variable. In all cases, however, the first member of the structure is a mode 
integer instructing the driver which sound mode to use. 

Sound Modes. The sound driver has three modes: square wave, free 
form, and four tone. These are indicated by negative mode number, zero 
mode number, and positive mode number, respectively. 

The square wave mode produces a buzzy sound quality that many 
associate with electronic noise makers. It is the simplest kind for the 
computer to produce. It just has to provide a constant voltage for fixed 
periods of time to the speaker. 

The four tone mode produces a more musical tone. In fact, it produces 
four of them simultaneously, each with its own distinct characteristics. 
Since each tone requires the computer to provide rapidly varying voltages, 
this mode demands more time of the computer. It also requires more 
programming effort. 

The free form mode lets you design the sound quality. It is intended to 
synthesize music and speech. It, too, is more demanding of the computer 
and of the programmer. 

The Square Wave Structure. We'll follow the simplest path for 
computer and programmer and develop a square wave example. The 
appropriate structure begins with the mode integer, which should be 
negative; -1 will do fine. Next, the structure should contain one or more 
packets of three short integers. This can be handled by a substructure of the 
following form: 

struct tone 
{ 

short count, amplitude, duration; 
} ; 
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Here count determines the pitch of the note, amplitude determines the 
loudness, and duration determines the duration. We'll return to the scaling 
of these parameters in a moment. But first, here are two possible structure 
forms for transmitting to the sound driver: 

struct squarewave 
{ 

short mode; 
struct tone shape; 

}; /* sends one note to the sound driver */ 

struct squarewaves 
{ 

short mode; 
struct tone shapes[24]; 

}; /* sends 24 notes to the sound driver */ 

We'll use both forms soon. First, however, let's examine the three 
members of the tone structure. 

First, the count member determines the pitch, or frequency of the 
note-that's the number of oscillations per second. Human hearing covers 
the range from 20 Hertz to 20,000 Hertz. (The Hertz is a frequency unit 
corresponding to what used to be called a cycle per second.) Voice sounds 
are usually in the range 200 Hertz to 800 Hertz. The count determines the 
speaker frequency according to this formula: 

frequency = 783360 I count 

However, the speaker can't reproduce some extreme frequencies that you 
may feed it 

Next, the amplitude member can range from 0 to 255, with the larger 
numbers being louder. 

Finally, the duration member gives the note duration in ticks; 
remember that 1 tick is one-sixtieth of a second. 

Using Square Waves. We've put together a program that makes naive 
use of the sound driver. Instead of carefully selecting count values to 
represent specific notes, it uses a loop to assign progressively increasing 

336 THE MACINTOSH C PRIMER 



values; this translates to progressively lower notes. The loop index is also 
used to vary the amplitude and duration members to add variety. 

We've run the driver in two ways. First, we use the squarewave 
structure to describe a single note. A for loop revises the description and 
uses fwrite() to send a sound request each cycle of the loop. Meanwhile, the 
loop also stores up the separate descriptions in the array of tone members of 
the squarewaves structure. Then, after the loop is finished, all 24 notes are 
sent in one fwrite() call. Although the 24 fwrite() calls in the loop and the 
single fwrite() call after the loop send the same note information to the 
driver, the results sound different. The reason is that in the first case various 
program steps, including separate fwrite() calls, are executed between each 
note. 

Here is the program; run it and hear it: 

I* soundoff.c -- make some noises */ 
:#:include "stdio.h" 
:#:define SWMODE (-1) /* square wave */ 
:#:define TIMES 24 
struct tone 
{ 

short count,amplitude,duration; 
} ; 

struct squarewave 
{ 

short mode; 
struct tone shape; 

} ; 
struct squarewaves 
{ 

short mode; 
struct tone shapes[TIMES]; 

} ; 
main() 
{ 

short loop; 
struct squarewave wave; 
struct squarewaves waves; 
FILE *fp, *fopen(); 

if ( (fp = fopen (".sound", "w") ) == NULL 
{ 
printf("Can't open sound driver\n"); 
exit(); 
} 
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waves.mode 
for ( loop 

{ 

wave.mode = SWMODE; 
l; loop <= TIMES; loop++) 

waves.shapes[loop - 1) .amplitude = 
wave.shape.amplitude= 80 * (loop% 3 + l); 

waves.shapes[loop - 1) .duration= 
wave.shape.duration= loop; 

waves.shapes[loop - 1) .count= 
wave.shape.count = 350 * loop; 

fwrite(&wave, sizeof(struct squarewave), 1, fp); 
} 

fwrite(&waves,sizeof(struct squarewaves), 1, fp); 
fclose(fp); 

Note that we made use of the fact that C allows us to use the 
assignment operator more than once in a statement. Note, too, that each call 
to fwrite() sends just one structure to the driver; the final call, however, 
sends a larger structure. 

A Soundmouse Experiment 

Let's tie some of the elements of this chapter together by using the mouse to 
control sounds. Here is the plan. Create a new grafport with a nice clean 
screen. Use getnextevent() to look for mouse-down and key-down events. 
If the mouse button is pressed down, find out where the mouse is and use 
its coordinates to control the loudness and pitch of the sound. Have the 
sound continue as long as the button is held down. If a key is pressed, have 
the program halt. 

We have already developed nearly all the necessary elements for this 
approach. The one missing ingredient is the waitmouseup() function from 
the Event Manager. It is called after a mouse-down event and returns "true" 
if the mouse button is still down as a result of that particular mouse event. If 
the button is not down, the function removes the corresponding mouse-up 
event from the queue and returns "false." 

From Mac's Toolbox: New Routines 

Wai tMouse Up True if button still down after last mouse 
event 
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Here is the program listing: 

#include "data.h" 
#include "defs.h" 
#include "stdio.h" 
#define SWMODE (-1) 
#define QUARTERSECOND 15 
#define FALSE 0 
#define TRUE 1 

struct tone 
{ 

short count,amplitude,duration; 
} ; 
struct squarewave 
{ 

short mode; 
struct tone shape; 

} ; 

main() 
{ 

integer eventmask = MDOWNMASK + KEYDOWNMASK; 
eventrecord event; 
grafptr gp, gpsave; 
point mouse; 
boolean done = FALSE; 
FILE *fp, *fopen(); 
char *malloc(); 
void soundmouse(); 

gpsave = theport; 
gp = (grafptr) malloc( sizeof(grafport) ); 
openport (gp) ; 
eraserect(&gp->portrect); 
initcursor(); 
if ( (fp = fopen(".sound", "w") ) ==NULL 

{ 
printf("Can't open sound driver\n"); 
exit(); 
} 

while ( ! done) 
{ 
while ( !getnextevent(eventmask,&event) ) 

; I* wait for mouse down or key down */ 
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switch(event.what) 
{ 

case MOUSEDOWN : while ( waitmouseup() ) 

case KEYDOWN 
default 

{ 
getmouse(&mouse); 
soundmouse(mouse.h,mouse.v,fp); 
} 

break; 

done = TRUE; 
break; 

I* end of switch */ 
} /* end of while */ 

fclose(fp); 
closeport (fp); 
setport(gpsave); 

void soundmouse(h,v,fp) 
short h,v; 
FILE *fp; 
{ 

struct squarewave wave; 

wave.mode = SWMODE; 
wave.shape.duration = QUARTERSEC; 
wave.shape.amplitude = 255 - v * 30 /41; 
wave.shape.count= 400 + 7 * (512 - h); 
fwrite(&wave,sizeof (struct squarewave), 1, fp); 

Note that we opened the sound driver in the main program rather than 
in soundmouse(). Thus we had to pass the FILE pointer to soundmouse() 
so that it would know where to write. Putting the file opening in 
soundmouse() would require opening and closing the file every function 
call, a rather inefficient way of doing things. 

The formulas used to assign values to the amplitude and count 
members were devised to produce reasonable values for possible mouse 
positions. With this setup, low pitch comes from mouse to the left, and low 
volume comes from mouse to the bottom of the screen. 

If you move the mouse while keeping the button pressed, the pitch will 
change, updating the mouse position (and hence note) before each call to 
soundmouse(). Or you can move with the button up, producing separate 
noises. 
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This program gives you plenty of opportunity for play. You can 
superimpose a pattern of keys on the screen and set the pitch according to 
which key the cursor is in. You can alter the cursor to a note or a finger tip. 
You can have a small circle indicate the current and previous note. You can 
develop your own possibilities. 

The earlier versions of the Macintosh Toolbox did not include routines 
for the sound driver, but the later versions do. However, at the time this is 
written, Hippo C, Level 1 does not support those Toolbox routines. 
Nonetheless, the standard C fwrite() function lets you make music anyway. 

Summary 

The Macintosh software system is organized into several managers, each 
with particular areas of responsibilities. Three managers often drawn upon 
by the others are Quickdraw (the screen manager), the Memory 
Manager, and the Event Manager. 

Macintosh programs use three kinds of memory: static, stack, and 
heap. Static memory is set at compilation time and is used for external and 
static variables. Stack memory is used for the automatic variables generated 
by functions as they are called. When a function dies, the stack memory it 
used is freed. Heap memory is used for memory allocated dynamically as 
the program runs. Nonrelocatable heap memory is referenced using a 
pointer value returned by C's malloc() function. Relocatable heap memory 
is referenced through a handle value returned by an appropriate Toolbox 
function. When heap memory gets too fragmented, the Memory Manager 
rearranges relocatable blocks to open up larger blocks of free memory. Thus 
relocatable blocks are the preferred form for many kinds of structures. 

The Quickdraw region structure offers a good example of the use of 
handles. It is also of interest because it lets you define regions of arbitrary 
shape and perform operations upon them. 

The Event Manager keeps track of various input events (mouse, 
keyboard, disk drive, and so on), places them in a queue and makes them 
available to a program in an organized, coordinated fashion. The 
getnextevent() function lets a program screen events, accepting only those 
that concern it. 

Files can be open, read, and written to using the C standard I/O 
library. Device drivers, such as the sound driver, are treated as files. 
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Conclusion 

You have come a long way, both in C and in Macintosh lore, since starting 
this book. You have seen most of the major features of the C language. The 
only major topic not covered is C's ability to operate directly on individual 
bits. Since Pascal lacks that ability, it is not required for the use of Toolbox 
routines. If you are interested in the subject, please read Appendix D, which 
covers C's bit operations. 

What you have seen of the Macintosh, however, only scratches the 
surface of its wealth of routines. But the parts you have seen are perhaps 
the most essential ones, and understanding them greatly facilitates learning 
the rest of the system. 

What comes next? You can study Apple's Inside Macintosh manual. 
Not only does it describe all the toolbox routines, it also discusses each of 
the event managers. Other books, such as S. Chemicoff's Macintosh 
Revealed, (volumes one and two) (Hayden, 1985) provide a condensed 
version of the manual. These books, however, do not go deeply into 
describing how to put the pieces together to program the Macintosh. For a 
guide to Macintosh programming, you can try Christopher L. Morgan's 
Hidden Powers of the Macintosh (New American Library, 1985). This 
book uses a small subset of Toolbox routines, but systematically develops 
the use of the various managers and shows how to put programs together. 

These books are written from a Pascal viewpoint. But the experience 
you've gained in working with the Toolbox and the guidelines we've 
provided for making the transition from Pascal to C put you in a good 
position to continue your education. Good luck, and good programming! 
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A 
Keywords in C 

The keywords of a language are the words used to express the actions of 
that language. The keywords of C are reserved; that is, you can't use them 
for other purposes, such as for the name of a variable. 

Program Flow Keywords 

Loops: for while do 

Decision and Choice: if else switch case default 

Jumps: break continue goto 

Data Types 

char int short long unsigned 
float double struct union typedef 

Storage Classes 

auto extern register static 

Miscellaneous 

return sizeof asm endasm 
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B 
Operators 

C is rich in operators. Here we will present a list grouping them by class. 
Next, we will summarize the operators except for the bitwise operators, 
which are discussed in Appendix D. Finally, we present a table of 
operators, indicating the priority ranking of each and how each operator is 
associated. 

The C Operators 

Arithmetic Operators: + * I % ++ 

Assignment Operators: = += -= /= *= %= 

Relational Operators: < <= == >= > != 

Logical Operators: '' 11 

Pointer-related Operators: ' * 

Structure and Union Operators: -> 

Bitwise Operators: ' 
A >> << I= &= 

"'== >>= <<= 

Grouping Operators: () {} 

Miscellaneous Operators: sizeof , (type) ? : 
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I. Arithmetic Operators 

+ Adds value at its right to the value at its left 

Subtracts value at its right from the value at its left 

As a unary operator, changes the sign of the value to its 
right 

* Multiplies value at its right by the value at its left 

/ Divides value at its left by the value at its right. Answer is 
truncated if both operands are integers 

% Yields the remainder when the value at its left is divided 
by the value to its right (integers only) 

++ Adds 1 to the value of the variable to its right (prefix 
mode) or of the variable to its left (postfix mode) 

Like ++, but subtracts 1 

II. Assignment Operators 

= Assigns value at its right to the variable at its left 

Each of the following operators updates the variable at its left by the 
value at its right, using the indicated operation. We use r-h for right-hand, 
1-h for left-hand. 

+= adds the r-h quantity to the 1-h variable 

-= subtracts the r-h quantity from the 1-h variable 

*= multiplies the 1-h variable by the r-h quantity 

/= divides the 1-h variable by the r-h quantity 

% = gives the remainder from dividing the 1-h variable by the 
r-h quantity. 
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Here is an example: 

frogs *= 2; is the same as frogs = frogs * 2; 

III. Relational Operators: 

Each of these operators compares the value at its left to the value at its 
right. The relational expression formed from an operator and its two 
operands has the value 1 if the expression is true and the value 0 if the 
expression is false. 

< less than 

<= less than or equal to 

== equal to 

>= greater than or equal to 

> greater than 

!= unequal to 

IV. Logical Operators 

Logical operators normally take relational expressions as operands. 
The! operator takes one operand, and it is to the right. The rest take two: 
one to the left, one to the right. 

& & Logical AND: the combined expression is true if both 
operands are true, and it is false otherwise. 

I I Logical OR: the combined expression is true if one or both 
operands are true, and it is false otherwise. 

Logical NOT: the expression is true if the operand is false, 
and vise versa. 
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VI. Pointer-Related Operators 

& The address operator: when followed by a variable name, 
gives the address of that variable: 

&nanny is the address of the variable nanny 

* The indirection operator: when followed by a pointer, gives 
the value stored at the pointed-to address: 

nanny = 22; 
ptr = &nanny; /* pointer to nanny */ 
val = *ptr; 

The net effect is to assign the value 22 to val. 

VI. Structure and Union Operators 

The membership operator (the period) is used with a 
structure or union name to specify a member of that 
structure or union. If name is the name of a structure and 
member is a member specified by the structure template, 
then name .member identifies that member of the structure. 
The membership operator can also be used in the same 
fashion with unions. 

Here is an example: 

struct 
int code; 
float cost; 
} item; 

item.code = 8472; 

This assigns a value to the code member of the structure 
item. 

-> The indirect membership operator is used with a pointer to a 
structure or union to identify a member of that structure or 
union. Suppose ptrstr is a pointer to a structure and that 
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member is a member specified by the structure template. 
Then ptrstr .member identifies that member of the pointed­
to structure. The indirect membership operator can be used 
in the same fashion with unions. 

Here is an example: 

struct { 
int code; 
float cost; 
} item, *ptrst; 

ptrst = &item; 
ptrst->code = 8281; 

This assigns a value to the code member of item. The 
following three expressions are equivalent: 

ptrst->code item.code (*ptrst) .code 

VII. Grouping Operators 

( ) Override precedence; expressions inside parentheses are 
evaluated first 

{ } Block delimiters; statements within a brace pair constitute a 
"block", or compound statement, which is treated as a 
single statement. 

VIII. Miscellaneous Operators 

sizeof Yields the size, in bytes, of the operand to its right The 
operand can be a type-specifier in parentheses, as in sizeof 
(float), or it can be the name of a particular variable or 
array, etc., as in sizeof foot. 

(type) Cast operator: converts following value to the type specified 
by the enclosed keyword(s). For example, (float) 9 
converts the integer 9 to the floating-point number 9.0. 
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The comma operator links two expression into one and 
guarantees that the left-most expression is evaluated first. A 
typical use is to include more information in a for loop 
control expression: 

for ( step = 2, fargo = 0; 
fargo < 1000; step *= 2) 

fargo += step; 

? : The conditional operator takes three operands, each of 
which is an expression. They are arranged this way: 

expressionl ? expression2 : expression3 

The value of the whole expression equals the value of 
expression2 if expressionl is true, and equals the value 
of expression3 otherwise. 

Here are some examples: 

5 > 3 ? 1 2 has the value 1 

3 > 5 ? 1 2 has the value 2 

a > b > ? a : b has the value of the larger of a or b 
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Table of Operators 

OPERATORS ASSOCIATIVITY 
(from high to low priority) 

o { l -> L-R 
! - ++ -- - (type) * & sizeof (all unary) R-L 
* I % L-R 
+ - L-R 
<< >> L-R 
< <= > >= L-R 

!= L-R 
& L-R 

L-R 
L-R 

&& L-R 
11 

?: 
+= *= /* %= 

L-R 
L-R 
R-L 
L-R 
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c 
Binary, Octal, 
and Hexadecimal Numbers 

Binary Numbers 

The way we usually write numbers is based on the number 10. Perhaps 
you were once told that the number like 4652 has a 4 in the thousand's 
place, a 6 in the hundred's place, a 5 in the ten's place and a 2 in the one's 
place. This means we can think of 4652 as being 

4 x 1000 + 6 x 100 + 5 x 10 + 2 x 1. 

But 1000 is 10 cubed, 100 is 10 squared, 10 is 10 to the first power, and, 
by convention, 1 is 10 ( or any positive number) to the zero power. So we 
also can write 4652 as 

4 x 10 3 + 6 x 102 + 5 x 101 + 2 x 10°. 

Because our system of writing numbers is based on powers of ten, we say 
that 4652 is written in base JO. 

Presumably, we developed this system because we have 10 fingers. A 
computer bit, in a sense, only has 2 fingers, for it can be set only to 0 or 1, 
off or on. This makes a base 2 system natural for a computer. How does it 
work? It uses powers of 2 instead of powers of ten. For instance, a binary 
number such as 1101 would mean 

1 x 23 + 1 x 22 + o x 21 + 1 x 2°. 
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In decimal numbers this becomes 

1 x 8 + 1 x 4 + 0 x 2 + 1 x 1 = 13. 

The base 2 (or "binary") system lets one express any number (if you 
have enough bits) as a combination of ls and Os. This is very pleasing to a 
computer, especially since that is its only option. Let's see how this works 
for a 1-byte integer. 

A byte contains 8 bits. We can think of these 8 bits as being numbered 
from 7 to 0, left to right. This "bit number" corresponds to an exponent of 
2. Imagine the byte as looking like this: 

bit number 7 6 5 4 3 2 1 0 

value 128 64 32 16 8 4 2 1 

Here 128 is 2 to the 7th power, and so on. The largest number this 
byte can hold is one with all bits set to 1: 11111111. The value of this 
binary number is 

128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255. 

The smallest binary number would be 00000000, or a simple 0. A byte can 
store numbers from 0 to 255 for a total of 256 possible values. Or, if it is a 
signed byte, it can store the values -128 to 127. 

Signed Integers 

How does the computer represent a negative number? Perhaps the most 
obvious way would be to use the left-most bit to represent the sign, with 0 
indicating a positive number, and 1 a negative number. This has been done, 
but the method is inconvenient in practice. For one thing, it produces two 
zero values: plus zero and minus zero. The Macintosh uses a different 
system, one called the "two's complement". 
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To see how the scheme works, let's work with a single byte example. 
With the two's complement approach, the numbers 0 through 127 represent 
themselves, while the numbers 128 through 255 represent the negative 
numbers -128 through -1. Note that in this scheme that a 1 in the left-most 
bit does indicate a negative number, for the numbers 128 to 255 all have that 
bit set to 1. So, if we have a signed byte, and if the left-most bit is a one, 
we subtract 256 from the stored number to get the actual value. Thus, if 255 
is stored (all ls), we subtract 256, getting a value of -1. Going the other 
direetion, if you want to store a value of -30, the computer will subtract 30 
from 256 and store 226. In general, the absolute value is subtracted from 
one plus the maximum unsigned number. Thus, if -30 were to be stored in a 
short integer, the actual value stored would be 65536 - 30, or 65506. 

One consequence of this approach is that the same bit pattern could 
mean -30 or 65506, depending on whether the computer thinks a location 
holds a signed or unsigned quantity. To check out the system, assign a 
negative number to a signed short integer, then print it out using both the 
%d and the %u modes. 

Other. Bases 

Computer workers often use number systems based on 8 and on 16. Since 
8 and 16 are powers of 2, these systems are more closely related to a 
computer's binary system than is the decimal system. 

Octal 

"Octal" refers to a base 8 system. In this system, the different places 
in a number represent powers of 8. We use the digits 0 to 7. For example, 
the octal number 451(written0451 in C) represents 

4 x g2 + 5 x gl + 1 x gO = 297 (base 10) . 

Hexadecimal 

"Hexadecimal" (or "hex") refers to a base 16 system. Here we use 
powers of 16 and the digits 0 to 15. But since we don't have single digits 
to represent the values 10 to 15, we use the letters A to F for that purpose. 
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For instance, the hex number A3F (written OxA3F or Oxa3f in C) represents 

10 x 162 + 3 x 161 + 15 x 160 = 2623 (base 10) . 

Conversions to and from Binary 

Converting from binary to octal or hexadecimal and back is simple 
because the various bases are all powers of two. Because eight is the third 
power of two, each octal digit corresponds to three binary digits. Similarly, 
because sixteen is the fourth power of two, each octal digit corresponds to 
four binary digits. Let's see how this works. 

For octal numbers, the rule is to convert each octal digit to the 
corresponding three binary numbers. Suppose we have the octal number 
06. This is 6 in decimal and 110 in binary. Okay, now consider 066. Each 6 
is represented by the same binary pattern, 110, so the binary equivalent is 
110110. What about 061? We must remember to represent the octal 1 by a 
three-digit binary number; that is, we must use 001, and not just 1. Thus the 
binary equivalent of 061 is 110001. 

To go from binary, to octal, just reverse the process. Starting from the 
right, break up the binary number into groups of three digits and translate 
each group of three to the corresponding octal digit. Suppose a byte 
contains the pattern 01011101. Think of the number as looking like this: 

001 011 101 

We added an extra 0 to the left to make the final group three digits. Well, 
001 is just 1 in octal, 011 is 2 + 1, or 3, and 101 is 4 + 1, or 5. This makes 
the octal equivalent 0135. 

With hexadecimal, we use the same general method, except each digit 
corresponds to a four-digit binary number. For example, Ox6 becomes 
0110. This really is the same value as octal 06, but now consider Ox66. 
This becomes 01100110, which is quite different from octal 066 
(00110110), for now one of the extra Os comes in the middle of the 
number. 
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Keep in mind that hexadecimal has the extra digits A,B,C,D,E, and F. 
Try converting OxC4. C is 12 in decimal, or 8 + 4, making it 1100 in 
binary. The 4 is 0100, so OxC4 becomes 11000100 in binary. 

Going from binary to hex, break up the number into groups of four 
digits. Let's go back to 01011101 and convert it this time to hex instead of 
octal. First, break it up into groups of four: 

1011 0011 

The pattern 1011 is 8 + 2 + 1, or 11 in decimal, and Bin hex. Similarly, 
0011 is 3, so 10110011 becomes OxB3 in hex. 

The following table shows the relationship between decimal, binary, 
octal, and hexadecimal numbers. 

Decimal Binary Octal Hexadecimal 

0 00000000 0 0 

1 00000001 1 1 

2 00000010 2 2 

3 00000011 3 3 

4 00000100 4 4 

5 00000101 5 5 

6 00000110 6 6 

7 00000111 7 7 

8 00001000 10 8 

9 00001001 11 9 

10 00001010 12 A 

11 00001011 ll B 

12 00001100 14 c 
13 00001101 15 D 

14 00001110 16 E 

15 00001111 17 F 

Table C.1 Conversion Table 
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D 
Bit Fiddling 

Some programs need (or, at least, appreciate) an ability to manipulate 
individual bits in a byte or word. For example, often 1/0 devices have their 
options set by a byte in which each bit acts as an on-off flag. C has two 
facilities to help you manipulate bits. The first is a set of 6 "bitwise" 
operators that act on each bit of a number individually. The second is the 
field data form, which gives you access to bits within an int. We will out­
line these C features here. 

Bit Operators 

C offers bitwise logical operators and shift operators. In the following, we 
will write out values in binary notation so you can see the mechanics. In an 
actual program, you would use integer variables or constants written in the 
usual forms. For instance, instead of (00011001), you would use 25 or 
031 or Ox19. For our examples, we will use 8-bit numbers, with the bits 
numbered 7 to 0, left to right. 

Bitwise Logical Operators 

These four operators work on integer-class data, including char. They 
operate on each bit independently of the bit to the left or right. 

One's complement, or bitwise negation. This unary 
operator changes each 1 to a 0 and each 0 to a 1. Thus 

-(10011010) == (01100101). 

& Bitwise AND. This binary operator makes a bit-by-bit 
comparison between two operands. For each bit ppsition, 
the resulting bit is 1 only if both corresponding bits in the 
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operands are 1. (In terms of true-false, the result is true 
only if each of the two bit operands is true.) Thus 

(10010011) & (00111101) == (00010001) 

since only bits 4 and 0 are 1 in both operands. 

·I Bitwise OR. This binary operator makes a bit-by-bit 
comparison between two operands. For each bit position, 
the resulting bit is 1 if either of the corresponding bits in the 
operands are 1. (In terms of true-false, the result is true if 
one or the other bit operands is true or if both are true.) 
Thus 

Usage 

(10010011) I (00111101) == (101111111) 

since all bit positions but bit 6 have the value 1 in one or the 
other operands. 

Bitwise EXCLUSIVE OR. This binary operator makes a 
bit-by-bit comparison between two operands. For each bit 
position, the resulting bit is 1 if one or the other (but not 
both) of the corresponding bits in the operands are 1. (In 
terms of true-false, the result is true if one or the other bit 
operands -- and not both.-- is true.) Thus 

(1-0010011) A (00111101) == (10101110) 

Note that since bit position 0 has the .value 1 in both 
operands, that the resulting 0 bit has value 0. 

These operators often are used to set certain bits while leaving others 
unchanged. For example, suppose we #define MASK to be 2, i.e., binary 
00000010, with only bit number 1 being nonzero. Then the statement 

flags = flags & MASK; /* set all but MASK bits to 0 *I 
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would cause all the bits of flags (except bit 1) to be set to 0, since any bit 
combined with 0 via the & operator yields 0. Bit number 1 will be left 
unchanged. (If the bit is 1, then 1 & 1 is 1, and if the bit is 0, then 0 & 1 
is 0. 

Incidentally, the bitwise operators also have an assignment version. 
That is,· the preceding statement could be replaced with this: 

flags &= MASK; 

Similarly, either 

or 

flags = flags I MASK; 

I* set MASK bit, leaving others unchanged */ 
flags I= MASK; 

will set bit number 1 to 1 and leave all the other bits unchanged. This 
follows because any bit combined with 0 via the I operator is itself, and any 
bit combined with 1 via the I operator is 1. 

Suppose you want to tum a particular bit off. We can do this: 

I* turn MASK bit off, leave others unchanged */ 
flags &= -MASK; 

Here the negation operator turns all the Os of MASK to 1, and the the 1 to 0. 
A 1 ANDed with any bit is just the bit, so all those bits are unchanged. A 0 
ANDed with any bit is 0, so the bit originally corresponding to the MASK 1 
(and -MASK o) is set to 0. 

Our examples used a mask with a single 1, but they apply equally well 
to masks with multiple ls. 
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Bitwise Shift Operators 

These operators shift bits to the left or right. Again, we will write 
binary numbers explicitly to show the mechanics. 

<< Left Shift. This operator shifts the bits of the left operand 
to the left by the number of places given by the right 
operand. The vacated positions are filled with Os and bits 
moved past the end of the left operand are lost. Thus 

(10001010) << 2 == (00101000) 

where each bit is moved 2 places to the left. 

>> Right Shift. This operator shifts the bits of the left oper­
and to the right by the number of places given by the right 
operand. Bits moved past the right end of the left operand 
are lost. For unsigned types the places vacated at the left 
end are replaced by Os. For signed types, the result is 
machine dependent. The vacated places may be filled with 
Os, or they may be filled with copies of the sign (left-most) 
bit. The Macintosh uses the second approach. Thus, a 
negative number remains negative when right-shifted, for 
there is still a one in the left-most bit.. 

Usage 

For an unsigned value, we have 

(10001010) >> 2 == (00100010) 

where each bit is moved 2 places to the right, and Os are 
shifted into the two left-most bits. 

For a signed value, we have 

(10001010) >> 2 == (11100010) 

where each bit is moved 2 places to the right, and the two 
left-most bits are filled with the original left-most bit. 

These operators provide swift, efficient multiplication and division by 
powers of2: 
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number << n multiplies number by 2 to the nth power. 

number >> n divides number by 2 to the nth power if number is 
not negative. 

This is analogous to the decimal system procedure of shifting the 
decimal point to multiply or divide by 10. 

When the bits represent pixels, these operators let you shift patterns on 
the screen from left to right and vise versa. Of course, bits disappear when 
they reach the end of the integer. 

Fields 

The second method of manipulating bits is to use a field. A field is just 
a set of neighboring bits within an int or unsigned int. A field is set up via a 
structure definition, which labels each field and determines its width. The 
following definition sets up four 1-bit fields: 

struct { 
unsigned autfd 1; 
unsigned bldfc 1; 
unsigned undln 1; 
unsigned itals 1; 
} prnt; 

The variable prnt now contains 4 1-bit fields. The usual structure 
membership operator can be used to assign values to individual fields: 

prnt.itals 0; 
prnt.undln l; 

Because each field is just 1 bit, 1 and 0 are the only values we can use 
for assignment. 

The variable prnt is stored in an int-sized memory cell, but only 4 bits 
are used in this example. 
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Fields aren't limited to 1-bit sizes. We can do this: 

struct { 
unsigned codel 2; 
unsigned code2 2; 
unsigned code3 8; 
} prcode; 

This creates 2 2-bit fields and 1 8-bit field. We can make assignments 
such as 

prcode.codel 0; 
prcode.code2 3; 
prcode.code3 102; 

Just make sure that the value doesn't exceed the capacity of the field. 

What if the total number of bits you declare exceeds the size of an int? 
Then the next int storage location is used. A single field is not allowed to 
overlap the boundry between two ints; the compiler automatically shifts an 
overlapping field definition so that the field is aligned with the int boundry. 
If this occurs, it leaves an unnamed hole in the first int. 

You can "pad" a field structure with unnamed holes by using unnamed 
field widths. Using an unnamed field width of 0 forces the next field to 
align with the next integer: 

struct { 
fieldl 1; 

2; 
field2 l; 

0; 
field3 l; 
} stuff; 

Here, there is a 2-bit gap between stuff. fieldl and stuff. field2; 
and stuff. field3 is stored in the next int. 
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One important machine dependency is the order in which fields are 
placed into an int. On some machines the order is left-to-right, and on 
others it is right-to-left. For this reason, bit fields can cause problems when 
transporting a program from one machine to another. 
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E 
Macintosh ASCII Table 

Dec Hex Oct Binary ASCII 

0 00 00 00000000 HUL 
0 I 0 I 00000001 SOH 

2 02 02 00000010 STX 
3 03 03 00000011 ETX 
4 04 04 00000100 EOT 
5 05 05 00000101 EHQ 
6 06 06 00000110 ACK 
1 01 01 00000111 BEL 
B OB 1 0 00001000 BS 
9 09 11 00001001 HT 
1 0 OR 1 2 00001010 LF 
11 OB 1 3 00001011 UT 
1 2 oc 1 4 00001100 FF 
1 3 OD I 5 00001101 CR 
1 4 OE 1 6 00001110· so 
1 5 OF 17 00 O 0 I 111 SI 
1 6 1 0 20 00010000 OLE 
1 7 11 21 00010001 OCI 
1 B I 2 22 00010010 OC2 
1 9 1 3 23 00010011 OC3 
20 1 4 24 00010100 OC4 
21 1 5 25 00010101 NAK 
22 1 6 26 00010110 SYH 
23 17 27 0 0 0 I 0 I I 1 ETB 
24 1 B 30 00011000 CRH 
25 1 9 31 00011001 EM 
26 1 A 32 00011010 SUB 
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Dec Hex Oct Binary ASCII 

27 1 6 33 0 0 0 I I 0 I I ESC 

26 I C 34 00011100 FS 

29 1 0 35 0001 1 I 01 GS 

30 1 E 36 0001 I 1 1 0 RS 

31 I F 37 0 0 0 I 1 I 1 1 us 
32 20 40 00100000 SP 

33 21 4 I 00100001 

34 22 42 00100010 

35 23 43 00100011 IS 

36 24 ii 00100100 $ 

37 25 45 00100101 % 

38 26 46 00100110 & 

39 27 47 00100 I I 1 

40 28 50 00101000 

4 I 29 .51 00101001 

42 2A 52 00101010 * 
43 26 53 0 0 I 0 I 0 I I + 

44 2C 54 00101100 

45 20 55 00I01 1 0 I 

46 2E 56 00101110 

47 2F 57 0 0 I 0 I 1 1 I I 
48 30 60 00110000 0 

49 31 61 00110001 

50 32 62 00110010 2 

51 33 63 0 0 I 100 I I 3 

52 34 64 00110100 4 
53 35 65 001 1 0 I 0 I 5 

54 36 66 0 0 I 1 0 I I 0 6 

55 37 67 0 0 I I 0 I I I 7 

56 38 70 00111000 8 

57 39 71 0 0 I 1100 I 9 

58 3A 72 0 0 I 1 I 0 I 0 

59 36 73 0 0 I I 1 0 1 1 

60 3C 74 0 0 I I I I 0 0 < 
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Dec Hex Oct Binary ASCII 

61 30 7S 001 1 11 O 1 = 

62 3E 76 o·o 1 1 11 1 0 > 
63 3F 77. 0 0 1 1 1 111 ? 

6i iO 1 0 O 01000000 @ 

6S i 1 101 01000001 A 

66 i2 1 02 01000010 B 

67 i3 103 01000011 c 
6B ii 1 0 i 01000100 0 

69 iS 1 OS 01000101 E 

70 i6 106 01000110 F 

71 i7 1 07 01000111 G 

72 iB 11 0 01001000 H 

73 i9 111 01001001 I 

7i iA 11 2 01001010 J 

7S iB 11 3 01001011 K 

76 iC 1 1 i 01001100 L 

77 iO 11 s 01 001 1 01 M 

7B iE 1 1 6 010011 1 0 H 

79 iF 11 7 01OO1111 0 

BO so 1 2 0 01010000 p 

B 1 S 1 1 21 01010001 Q 

B2 S2 122 01010010 R 

B3 S3 1 2 3 01010011 s 
Bi Si 12i 01010100 T 

BS SS 12S 01 O 1 01 O 1 u 
B6 S6 1 2 6 0101011 0 u 
B7 S7 127 01 0 1 0 1 1 1 u 
BB SB 130 01011000 x 
B9 S9 1 31 O 1 O 1 1 001 y 

90 SA 1 32 0 1 0 1 1 01 0 2 

91 SB 1 3 3 01011011 [ 

92 SC 1H 0 1 0 1 1 1 0 0 \ 
93 so 1 3S 01 0 1 11 0 1 ] 

9i SE 136 0 1 0 1 1 1 1 0 
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Dec Hex Oct Binary ASCII 

95 SF 1 37 0 1 0 1 1 1 1 1 

96 60 1 4 0 01100000 

97 61 1 4 1 01100001 Cl 

96 62 142 01100010 b 

99 63 1 4 3 01100011 c 

1 0 0 64 144 01100100 d 

101 65 145 01100101 e 

1 0 2 66 1 4 6 01100110 f 

103 67 147 01 1 001 1 1 g 

1 O 4 66 150 01101000 h 

1 05 69 1 5 1 01101001 

106 6A 152 01101010 j 

1 0 7 6B 153 01101011 k 

1 06 6C 154 01101100 

109 60 1 5 5 01101101 m 

1 1 0 6E 1 5 6 011 0111 0 n 

1 1 1 6F 157 01 1 0 1 1 1 1 0 

11 2 70 1 6 0 01110000 p 

11 3 71 1 61 01110001 q 

11 4 72 1 6 2 0111001 0 r 

11 5 73 1 6 3 01 1 1 001 1 s 

1 I 6 74 1 6 4 011101 0 O t 

1 I 7 75 1 6 5 0111 01 01 u 

1 I 6 76 1 6 6 0 I 11011 0 u 

1 1 9 77 1 6 7 01110111 w 

1 2 0 76 1 7 0 01 1 I IC 0 0 x 

. I 21 79 I 71 011 I 1001 y 

122 7A 1 72 O 1111O1 0 z 
I 2 3 7B 173 011 11011 { 

1 2 4 7C 174 01111100 I 
125 70 1 7 5 011 I 1101 } 

126 7E 1 7 6 011 1111 0 

1 2 7 7F 1 7 7 0 1 1 1 1 1 1 1 DEL 

1 26 60 200 10000000 R 
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Dec Hex Oct Binary ASCII 

129 B 1 201 10000001 ~ 
1 3 0 B2 202 10000010 c 
1 31 B3 203 1 0000011 ~ 

1 32 B4 204 10000100 R 
133 B5 205 100001 01 0 
1 34 B6 206 10000110 0 
1 35 B7 207 1 000011 1 6 

136 BB 210 10001000 cl 

1 37 B9 2 1 1 10001001 a 
1 3B BA 21 2 10001010 a 
1 3 9 BB 213 10001011 a 
140 BC 21 4 10001100 a 
1 41 BO 21 5 10001101 9 
1 4 2 BE 21 6 1O0O111 O e 
1 4 3 BF 21 7 1 0 0 0 1 1 1 1 e 
144 90 220 10010000 e 
1 4 5 91 221 10010001 e 
1 4 6 92 222 10010010 

1 4 7 93 223 10010011 

1 4 B 94 224 10010100 

1 4 9 95 225 10010101 

150 96 226 1001O11 O n 
1 51 97 227 1 0 0 1 0 1 1 1 6 

152 9B 230 10011000 0 

1 5 3 99 2 31 10011001 0 

1 5 4 9A 232 1001101 0 0 

1 55 9B 233 10011011 0 

156 9C 234 10011100 u 
157 90 235 10011101 u 
1 5 B 9E 236 1 0 0 1 11 1 0 u 
159 9F 237 1 0 0 1 1 1 1 1 Q 

160 AO 2 41 01000000 

1 61 A 1 2 4 1 10100001 0 

1 62 A2 242 10100010 ¢ 
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Dec Hex Oct Binary ASCII 

I 6 3 A3 243 I 0 I 0 00 I I £ 

I 6 4 A4 244 I O 00100 § 

I 65 AS 245 I 0 0 0 I 0 I • 
166 A6 246 I 0 0 0 I I 0 Ill 
I 6 7 A7 247 I 0 0 0 I I I 0 
I 6 B AB 250 I 0 01000 Ql 

169 A9 2 51 I 0 0 I 0 0 I (8 

170 AA 252 1 0 01 0 1 0 

1 7 1 AB 253 1 O 01011 

I 7 2 AC 254 IO 0 I I 0 0 

173 AO 255 I O 0 I I 0 I ;e 

174 RE 256 IO 0 1 I 1 0 fE 

175 AF 257 1 0 01111 0 

176 BO 260 10 10000 

1 7 7 B 1 261 I 0 I 0001 ± 

1 7 B B2 262 10110010 i 

I 7 9 B3 263 10110011 ~ 

I B 0 B4 264 10110100 ¥ 
1B1 BS 265 10110101 µ 

I B 2 66 266 10110110 i) 

I B 3 B7 267 10110111 ~ 

1 B 4 BB 270 10111000 II 

1B5 B9 271 10111001 Tr 

I B 6 BA 272 I 0 I 1 1 0 I 0 f 
I B 7 BB 273 10111011 g 

I BB BC 274 10111100 Q 

I B 9 BO 275 10111101 Q 

I 9 0 BE 276 10111110 

I 91 BF 277 10111111 0 

I 92 co 300 I 1000000 l 
I 9 3 CI 301 11000001 

I 9 4 C2 302 11000010 

1 95 C3 303 I I 0 0 0 0 I I .J 

1 9 6 C4 304 11000100 f 
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Dec Hex Oct Binary AS CTI 

I 97 cs 305 1000I01 ~ 

1 96 C6 306 100O11 O 6 

1 99 C7 307 000111 « 
200 ca 31 0 001000 , 
201 C9 311 001001 
202 CA 312 00101 0 

203 CB 31 3 001011 ~ 
2 01 cc 311 0011 00 R 
2 05 co 315 001101 0 
206 CE 31 6 00111 0 IE 

207 CF 31 7 001111 18 

206 00 320 010000 

209 01 321 01O001 
2 I 0 02 322 01001 0 " 
21 I 03 323 010011 " 
21 2 01 321 010I00 

21 3 05 325 11010I01 
211 06 326 1101011 0 + 

215 07 327 11010111 • 
216 06 330 11011000 g 
21 7 09 331 11011.001 ~ 
216 DA 332 1101101 0 

219 OB 333 II 011011 

220 DC 331 1101110 0 

221 00 335 11011101 
222 OE 336 1101111 0 

223 OF 337 11011111 
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Index 

! 105 
!= 49,99 
#define59 
#include 61 
% 30 
%=93 
&& 107 
& 75, 134 
* 29, 136 
*=93 
++ 51 
+ 28 
+=93 
'116 
-28-29 
-= 93 
-> 190 
I 29 
I= 93 
< 99 
<= 88, 99 
=27 
== 45, 99 
> 99 
>=99 
? 117 
\0 222 
\n 19 
11107 

address operator 75, 134 
AND operator 107 
arguments 35, 120-124 
array in a structure 200-201 
array initialization 173 
array 164-177 
arrays and functions 170-177 
arrays and pointers 167-170 
arrays and records 265-266 
arrays of arrays 201-209 

arrays, 
functions and two-dimensional 

206-210 
initializing two-dimensional 203 
two-dimensional 201-209 

ASCII code 53 
assembly language 6 
assignment operators 93-93 
auto 145 
automatic variables 144 

binary JJO 333-334 
binary numbers 53, 355 
bit 52 
bitwise operators 361-368 
bkpat 281 
block 86 
branching 85 
break 111 
buffer 44, 47 
button() 105 
byte 52 

c preprocessor 59-61 
case 111 
char24 
char 52-57 
character arrays 223 
character constants 54 
character storage 52 
character strings 66, 221-258 
charwidth() 251, 255 
closeport() 277 
closergn() 316 
comma operator 116 
comments 20 
compiled language 7 
compound statement 48, 86 
conditional expressions 99-118 
conditional operator 117 
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continue 110 
control statements 85-118 
copyrgn() 316 
cursor() 288-291 
cursor, 

hotspot 288 
mask 288 

data fork 329 
data.h 270 
declaring variables 23-25 
default 112 
defs.h 271 
diffrgn() 316 
disposeptr() 305 
disposergn() 316 
do ... while loop 88-89 
double 65 
drawchar() 80, 251 
drawstring() 82, 251, 256 
drawtext() 251, 256 
dynamic memory allocation 273 

end-of-file 57 
entry condition loop 88 
eof57 
eraserect() 183 
escape sequences 55 
event mask 320-322 
eventrecord structure 322 
events 319-328 
exit condition loop 88 
expressions 33 
extern 147 
external static storage class 149 
external static variables 144 
external storage class 146-148 
external variables 144 

false 100 
fclose{) 331 
fflush{) 333 
fgetc() 331 
fgets() 233 
fgets() 331 
FILE 330 
files 329-334 
fillpat 281 
fillrect() 281 
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float 25, 65 
floating point types 65 
flushing 47 
fopen() 330 
for loop 89-93 
format specifier 70, 76 
fprintf{) 333 
fputs() 227, 333 
frameoval() 184 
framerect() 184 
framergn() 315 
fread() 334 
free() 277, 305 
fscanf() 331 
function pointers 215-217 
function types 126-131 
functions 4, 18-22, 35-42, 119-161 
fwrite() 333 

getc() 331 
getchar() 20, 44 
getfontinfo{) 251 
getmouse{) 289 
getnextevent() 320, 324 
global variables 144 
goto 109 
Grafport 271-291 

handles 306-309 
heap 274, 299 
heap memory 302-309 
heap, 

nonrelocatable blocks 303 
relocatable blocks 306-309 

hexadecimal 358 
hidecursor() 19 
Hippo C, using 10-14 

identifiers 25 
if...else 45, 97-99 
if96 
increment operator 51, 102 
index() 241 
index 164 
indirect membership operator 190 
indirect value operator 136 
initcursor() 289 
initializing variables 50 
insetrect() 186 



int 24, 62 
integer division 30 
integer representation 64 
integer types 62-65 
invertoval() 185 
invertrectO 198 
invertrgn() 315 
IJO functions 43-52 
isalnum() 104 
isalpha() 103, 104, 236 
isdigit() 10-~ 
islower() 104 
ispunct() 104 
isspace() 104 
isupper() 104 

jt_theport 273 

keywords 3, 345 

line() 280 
logical operators 105-108 
long 63, 65 
looping 85 

machine language 6 
Macintosh Toolbox 4 
macros 155-159 
main() 18, 119 
malloc() 274, 303 
managers 5 
master pointer 306 
membership operator 179 
memory allocation 274 
memory management 298-309 
menu-selection 114 
moveto() 280 
multiple-file programs 149-151 

nested loops 93-95 
newhandle() 309 
newline character 19 
newptrO 304 
newrgn() 309, 311 
newrgn()313 
NOT operator 105 
NULL234 
null character 222 
numbers 53 

octal 357 
offsetrect 186 
openport() 277 
openrgn() 316 
operators 27-35, 347 
operator precedence 30 
operators, table of 353 
OR operator 107 

paintrgn() 315 
Pascal TYPE definitions 267 
Pascal procedures and functions 

259-263 
Pascal to C 261-277 
Pascal types 264 
passing by value 38 
pattern construction 283-285 
patterns 281-287 
pen parameters 278-280 
pennormal() 280 
pensize() 280 
pintrect() 198 
pnmode278 
pnpat 278 
pnsize 278 
pnvis 278 
pointer and array 209-210 
pointer arithmetic 142-144 
pointers as arguments 139-142 
pointers 76, 134-144 
portbits 272 
postfix form 102 
prefix form 102 
printf() 18, 67-74, 226 
ptinrect() 289 
ptinrgn() 315 
putchar()46 
puts() 228 

random() 278 
rect structure 181 
recursion 151-154 
regions 309-319 
register variable 145 
relational operators 99 
resource fork 329 
return value 39, 125-130 
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scanf() 74-79, 231 
scope 144-151 
sectrgn() 316 
setcursor() 289 
setport() 277 
setrect() 184 
setrectrgn() 313, 316 
short 62 
showcursor() 19 
sizeof274 
.sound 335 
sound driver 335-340 
sprintf() 239 
stack 273, 298, 300-302 
standard input 44 
standard library 4 
statements 33 
static memory 298, 299 
static storage class 148 
static variables 144 
stdin 234 
stdio.h 21, 58, 61 
stdout227 
strcat() 235, 238 
strcmp() 235-236 
strcopy() 238 
strcpy() 235 
strctop() 82, 250 
string 110 225-235 
string constants 222 
string format conversion 249-250 
string functions 235-249 
string pointers 224 
string variables 223 
strings, 

Macintosh Pascal 249-257 
initialization 223 

stringwidth() 255-256 
strlen() 235 
strncat() 238 
strncpy() 235 
strptoc() 250 
struct 178 
struct rect 181 
structure in a structure 199-200 
structure member, type of 179 

380 MACINTOSH C PRIMER PLUS 

structures 178-191 
structures, 

arrays of 195-98 
passing by value 190 
pointers to 188-190 

stuffhex() 285 
subscript 164 
switch 111-114 

tag 178 
testsize() 255 
textface() 251 
textfont() 251, 277 
textmode() 251 
textsize() 79, 251 
textwidth() 251, 255 
theport 251, 254, 272 
tickcount() 185 
tolower() 236 
Toolbox 297 
top-down programming 17 
toupper() 236 
true 100 
two's complement 356 
type casts 133 
type conversions131'-133 
typedef210-215 

unionrect() 293 
unionrgn() 315-316 
unions 268-270 
unsigned 63 

value parameter 261 
variable parameter 261 
variables 23 
variant records 268-270 
void 128 

wait() 185 
waitmouseup() 338 

. while loop 47 
while loop 86-87 
word53 

xorrgn() 316 
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UNLEASHING THE POWER OF YOUR MACINTOSH 

The Macintosh C, Primer Plus is the first book to 
present the specifics of the C programming language 
on the Macintosh .. .for novice programmers who sim­
ply want to learn C. and for advanced users who enjoy 
developing large-scale Macintosh programs. 
This primer covers the essentials of C. the language 
favored by those who program on the Mac because of 
Cs power and flexibility. Learn all about C and its imple­
mentation on the Macintosh including: 
DC and the Macintosh: Explaining the basics of Macin­
tosh operations and C functions. 
D Control Statements: Telling the computer how to 
follow orders. 
D Functions: Defining and invoking C's modular pro­
gramming units. 
D Rrrays and Structures: Classifying and storing data _a,_ 
in your program. ~r. ~ 
D Character Strings: Using stored data for your L____J__ ii"' I " 
purpose. .----.--. 
D All this and more! If') 
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Waite Group, has been involved in the computer Industry 
since 1976 when he bought his first Apple I computer from 
Stev!!r Jobs. 
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