
Volume II
. M · · ng the Toolbox Using

T ®

Macintosh®C
Programming
Primer
Volume II
Mastering the Toolbox
Using THINK C®

Dave Mark

• TT
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sidney Singapore Tokyo Madrid San Juan Paris
Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters.

Under the copyright laws, this book may not be copied, photo
copied, reproduced, translated, modified, or reduced to any
electronic medium or machine-readable form, in whole or in
part, without the prior written consent of the publisher.

Library of Congress Cataloging-in-Publication Data
(Revised for vol. 2)

Mark, Dave.
Macintosh programming primer.

Includes index.
Bibliography: p.
Vol. 2 has title: Macintosh C programming primer.
Contents: [1] Inside the toolbox using THINK's

Lightspeed C - v. 2. Mastering the toolbox using
THINKC.

1. Macintosh (Computer) - Programming.
2. C (Computer program language). I. Reed,
Cartwright. II. Title.
III. Title: Macintosh C programming primer.
QA76.8.M3M368 1989 005.265 88-34992
ISBN 0-201-15662-8
ISBN 0-201-57016-5

Copyright© 1990 by Dave Mark

All rights reserved. Printed in the United States of America.
Published simultaneously in Canada.

ISBN 0-201-57016-5
5 6 7 8 9 10 - MW - 949392

Fifth printing, July 1992

7b Deneen and my father,
both of whom reached milestones this year.

Contents

Foreword by Scott Knaster ix

Preface xi

Acknowledgments xiii

1 Welcome Back 1
Volume I in Review 3
Volume II Topics 5

Chapter 2-Toolbox Techniques 5
Chapter 3-Code Resources 6
Chapter 4-Color QuickDraw 8
Chapter 5-TextEdit 11
Chapter 6-0bject Programming 12
Appendix A-Glossary of Terms 13
Appendix B-Source Code Listing 13

How to Use This Book 14
Ready, Set . . . 15

2 Toolbox Techniques 17
All About Pointers 19

Pointers Are Never Relocatable 22
The Macintosh Memory Layout 22

The System Space 23
The Application Space 23

v

vi Macintosh Programming Primer

The Stack 25
The Application Heap 27

Handles, At Last! 29
Careful With That Handle, Eugene!
When To Use Handles 34

Miscellaneous Tips and Techniques 34
MoreMasters() and MoveHHI() 35
Purgeable Blocks 35
Keeping Your Applications 32-bit Clean
Piggybacking Data on Your Windows
Calling Them, So They Can Call You

In Review 39

3 Code Resources 41
Specialized Code 43

The Common Thread 44
Chapter Programs 45

AFI, the Application Font INIT 46
AFI Resources 48
Creating the AFI Project 53
Walking Through the AFI Source Code

The AFI cdev 60
AFI cdev Resources 61
The cdev Source Code 67
Checking Out the AFI edev 73

32

35
36
38

56

Walking Through the cdev Source Code 7 4
Writing Your Own MDEF 82

The MDEF Project and Source Code 83
Building Your MDEF 87
Building the MDEF Tester 88
Walking Through the PICT MDEF Source Code 100

Dialog Filter Procedures 106
Creating the DLOG Resources 107
Walking Through the DLOG Source Code 115

In Review 121

4 Color QuickDraw 123
The Evolution of QuickDraw 125
Color QuickDraw and Indexed Devices 126

The CGrafPort and the CWindowPtr 128
What Machine Is the Program Running On? 129

Keeping Track of Graphic Devices 131
The Pixel Image 132

Contents vii

The First Program: Colorlnfo 133
Colorlnfo Resources 133
Setting Up the Project 135
Running Colorlnfo 140
Walking Through the Colorlnfo Source Code 141

The Palette Manager 149
Using the Palette Manager 150

Palette 152
Palette Resources 152
Setting Up the Project 152
Running Palette 159
Walking Through the Palette Source Code 159

Using the Arithmetic Color Modes 167
Color'futor: Hands-on Color 167

Color'futor Resources 169
Setting Up the Project 170
Running Color'futor 184
Walking Through the Color'futor Source Code 185

Working with Off-screen Drawing Environments 202
GWorld 203

GWorld Resources 203
Setting Up the Project 203
Running GWorld 208
Walking Through the GWorld Source Code 208

In Review 215

5 TextEdit 217
Exploring TextEdit 219
Using TextEdit 221

TextEdit Record 221
TextEdit Routines 224
Scrolling Text in TextEdit 227
Resizing the DestRect 228
TextEdit's Private Scrap 230

FormEdit 230
FormEdit Resources 232
The Code 242
Running FormEdit 270
Walking Through the FormEdit Source Code 271

In Review 311

viii Macintosh Programming Primer

6 Object Programming 313
About Object Programming 315
The Shaper Application 316

An Object View of Shaper 316
An Example 317
Instance Variables and Methods 318
Creating Some Shape Objects 319
Object References 320
Shape's Methods 322
Adding Subclasses to Shaper 323
CreateSquare () versus CreateShape (324
A Second Shape Subclass 324
Object Classes Exist on Levels 326
More about Methods 327

The THINK Class Library 329
TCL Organization 330
The Visual Hierarchy 330
The Chain of Command 333
The Switchboard and the Bartender 335

Building an Application with the TCL 335
Art Class 336
Tiny Edit 337
The Starter Application 338

MyStarter 340
Creating a Folder for MyStarter 341
Changing CStarterDoc.c 342
Replacing CStarterPane.c 344
Replacing CStarterPane.h 34 7
Creating CDragPane.c 34 7
Creating CDragPane.h 350
Creating CMouse.c 351
Creating CMouse.h 354
Checking Your Work 355
Walking Through the MyStarter Source Code 357
The CMouse Object Class 366

In Review 371

Appendix A Glossary 373

Appendix B Code Listing 395

Index 497

Foreword
Scott Knaster

Back in 1984, just after the end of the Pleistocene Era, it was
actually possible for one person to know just about everything there
was to know technically about a Macintosh. There was, after all, just
one model, the venerable but not venerated Macintosh 128K. In fact,
calling the Macintosh 128K the first member of a product line was
pretty much wishful thinking; after all, they didn't say ''World War I"
until the sequel came out.

But I digress (or just think of it as hypertext). For all its 64K of
ROM, several hundred routines, and many storage options (you could
connect an external at inch disk drive, or not), the Macintosh
programmer's world was well-defined, and by today's standards, it
was graspable-you could get your head around it, as they used to
say here in California.

Things around here are a little bit different now, of course.
Chances are your Macintosh knows how to talk to one or two across
the room, and if you're really cool, probably a few hundred more
located somewhere between here and Indonesia. There are now well
over a thousand routines defined in the many versions of the ROMs
that Apple's genius engineers have cranked out over the past few
years in between cans of Jolt cola and occasional minutes of sleep. It's
a rich and complex world for programmers of all stripes, both pro
fessional and hobby varieties.

ix

x Macintosh Programming Primer

And that, at last, is where this book comes in. Not too long ago, I
was wondering (electronically) aloud why no one had written a
practical, up-to-date book about programming the Macintosh in C,
currently the most popular language among Macintosh programming
gurus. The answer, of course, was that there was a book like that.
Hiding behind the innocent guise of a primer was just such a volume,
with friendly presentation, thoroughness, and fun. That was Volume
I of the Macintosh Programming Primer, predecessor of this book.

(Digression again: as you probably know, the folks who invented
the Macintosh planned on programmers using Pascal or assembly
language. At that time, C was for UNIX hackers and employees of
huge telephone companies. Pretty soon, though, the clamor for C
started, and the rest is history. If you have practical reasons for
avoiding C, such as the need for features available in another
language, you probably have no reason to switch. To those of you who
resist C for religious reasons, I'll point out that Pascal and C really
aren't so different. It's a little like those two guys with black and
white faces on Star Trek; they hated each other, but nobody else
could tell them apart. Language religion wars don't really help
anyone, but writing great software does.)

Anyway, Dave Mark sees all the neat new stuff in the Macintosh
world as his playground, and he invites us to play, too. In this
wonderful volume, we get to go exploring with Dave as he takes us on
a tour of many of the things that our new and improved Macintoshes
can do. Some of my favorite discussions include the ones about cdevs,
object programming, and the world of living color with Color
QuickDraw, but they're all entertaining. By choosing THINK C as
the learning tool, we can all easily sing along with Dave as we go.

This book is full of fun and good learning. With the vast landscape
of Macintosh programming as your goal and Dave Mark as your
friend, you'll soon feel the awe and mystery of commanding your
Macintosh to do great things.

Scott Knaster

Preface

From the sounds of it, Macintosh C Programming Primer, Volume I was
well received. Cartwright Reed and I got lots of letters, phone calls,
and AppleLinks, and all were much appreciated. People also sent us
personal letters relating their own programming experiences. We
even got Christmas cards!

We also received a bunch of letters from people with suggestions
for Volume II of the Primer. These letters were the primary factor in
determining the table of contents for this book. Color QuickDraw,
Object Programming, and TextEdit all made the cut-you asked for
it, you got it!

I am very interested in hearing from you. Though you can write to me
in care of Addison-Wesley, the best way to get in touch with me is via
CompuServe's Learn Programming forum. Log in to CompuServe,
type:

GOMACDEV

then check out Section 11. Whether you have questions or comments
about the Primer or just want to say hello, the Learn Programming
forum is the place to be.

One more thing. Please join me and millions of others in the cam
paign to save our planet's natural resources. Recycling, conservation
of water and gasoline, and reduced consumption of non-biodegradable
products are vital to that goal. I believe that together we can make a
difference.

D.M.
Arlington, VA

xi

Acknowledgments

Macintosh C Programming Primer, Volume II is the result of much
hard work by many people. I am truly grateful to all of them for sharing
in my dream.

First and foremost, I'd like to thank my wife and best friend,
Deneen Melander, for all her patience and understanding.
YMBFITWWOK?

Thanks to Dave Allcott, Mark Geschelin, Greg Howe, Darrell
LeBlanc, Philip Borenstein, Guillermo Ortiz, Jim Reekes, Phil
Shapiro, Forrest Tanaka, and Jon Zap for all the time and energy
they put into the technical review process. These guys made all the
difference in the world (and kept my imagination from taking
complete control of the facts). Thanks to Wayne Correia for getting
me in touch with such great tech reviewers!

A special thanks to my brother, Stu Mark, for all of his help in
getting this book off the ground (especially for typing in and testing
all the programs).

I'd also like to thank Julie Stillman (my wicked editor), Elizabeth
Grose, and Diane Freed, the folks at Addison-Wesley who dragged
this book, kicking and screaming, out of me. They made the process a
true pleasure (well, most of the time!).

Finally, thanks to Steve Baker antl"Cartwright Reed, there for me
through thick and thin.

xiii

Welcome
Back

The first volume of the Macintosh
Programming Primer presented the

fundamental concepts involved in
programming the Macintosh using

THINK C and the Macintosh Toolbox.
Ready for more?

1

_J

_J

Welcome Back?

The Macintosh C Programming Primer is a tutorial in the art of
Macintosh programming. In Volume I you learned the basic skills for
creating your own Macintosh applications. Volume II, Mastering the
Toolbox Using THINK C builds on those skills, covering more
advanced topics. By the time you finish this book you will understand
the fundamental toolbox concepts such as memory management
using handles and pointers. You'll be able to write specialized code
such as MDEFs, INITs, cdevs, and filter procedures. You'll have
mastered the intricacies of Color QuickDraw and TextEdit. You'll even
have your first object oriented program under your belt.

Volume I in Review

Before moving on to new topics, it may be useful to review some of
the key areas covered in Volume I. Being relatively comfortable with
these topics will really make a difference in your understanding of
Volume II.

Volume I of the Macintosh Primer started off with a discussion of
Macintosh programming tools. By now, you should be an old hand at
using THINK C, Symantec's excellent development environment. You
should also be pretty comfortable with the THINK C source level
debugger. The programs in this volume were all developed using
THINK C version 4. If you're using a newer version of THINK C, check
out the changes on page 508.

Volume I also spent a considerable amount of time discussing
ResEdit, Apple's graphical resource editor. For the most part, this
volume assumes that you know how to create all the standard
resource types, how to change a resource, and how to change a
resource's ID. All of the resources in this book were created with
ResEdit version 1.2.

You should definitely understand the major differences between C
and Pascal, which were covered in Volume I. For example, you should
know when to use the & operator when passing arguments to a
Toolbox function. You should know the size of all the popular C types
as well (you know, shorts and lnts are 2 bytes, but Longs are 4
bytes).

You should also feel pretty comfortable with the process of looking
things up in Inside Macintosh. Many of the topics covered in Volume

3

4 Macintosh Programming Primer

II of the Macintosh Programming Primer are described only in
Volume V of Inside Macintosh, so you might want to buy a copy.
Having the complete set of Inside Macintosh volumes (including the
XR,ef) definitely will enhance your coding experience.

The first actual Mac programming topics covered in Volume I were
QuickDraw and window management. Volume I presented several
programs that created windows based on WIND resources, drawing
both text and graphics in the windows. You should be an old hand
with routines such as Get New W ; n do w C >, Show W i n do w C > , and
SetPortC>.

The first book introduced event processing along with Toolbox
routines like Get Ne x t Even t C > and W a ; t Next Event C >. You
should understand the process of calling these routines to retrieve
events, as well as the steps involved in processing each of the basic
event types once you've retrieved events.

Volume I introduced the concepts of pull-down and pop-up menu
handling. The creation of menu bars from MB AR resources was
discussed, as well as the addition of individual menus built from
MENU resources. You should understand how to add command-key
equivalences to your menus, as well as the general mechanism of
enabling, disabling, and allowing selection from your menus and
menu items. You should be able to add special characters (such as
check marks) to your menu items.

Volume I introduced the Dialog Manager and the Control
Manager, using Toolbox routines such as Mod a l Di a log C) ,
G e t D I t em C) , and G e t C t l Va l u e C > . You should feel comfortable
creating dialog and alert templates using resource types such as
ALRTs, DLOGs, and DITLs. You should understand the basic concept
of controls and control values.

Volume I also discussed the basics of scrap (clipboard)
management, printing, file access, scroll bars, pictures (and PI c T
resources), sounds (and ' s n d ' resources), and basic error handling.
A chapter on ResEdit and the creation of custom application icons
was also presented.

Each of these topics is important. If you feel a little fuzzy on one of
them, review that material in Volume I. One skill that you'll
definitely want to have is the ability to read the descriptions of the
Toolbox routines found in Inside Macintosh and translate those
descriptions from Pascal into C.

_J
Volume II Topics

Volume I of the Macintosh Programming Primer generated a lot of
mail. Most of the mail was positive (thanks!), and chock-full of
suggestions for a second volume. Many of the suggestions involved
fundamental programming concepts such as pointers, handles, and
memory allocation. People asked questions about the proper usage of
Toolbox routines such as H Lo c k C) and HU n l o c k C) • Several people
asked for a discussion on the best way to connect window-related
information to the parent window, so that the information could be
accessed directly from the W i n do w Pt r. Two of the most popular
topics were Color QuickDraw and object-oriented programming.

You'll find every one of these topics inside this book. Here's a
bird's-eye view of Volume II.

Chapter 2 - Toolbox Techniques

This chapter contains a potpourri of Toolbox tidbits. For starters,
the Macintosh memory model is presented, with special emphasis on
addresses and pointers. The roles of the compiler and the Macintosh
Memory Manager are discussed, and the Mac's mechanism for
allocating space is described.

Next, the difference between relocatable and nonrelocatable
memory is covered, leading up to an explanation of handles.
Although handles were used in many of the programs found in
Volume I, they never were covered in much detail. If you are going to
make effective use of handles in your own programs, you'll need a
thorough understanding of them. Chapter 2 should do the trick.

Chapter 2 also includes a section on memory management under
MultiFinder. Although your application will never know if it's
running under MultiFinder, it is important that you have a basic
understanding of MultiFinder. This section also discusses your
application's interface with the Finder.

The remainder of the chapter is dedicated to miscellaneous tips
that will make your life a little easier. Concepts such as 32-bit clean
Macintosh programming and issues specific to THINK C, such as the
use of routine and variable prototypes, are discussed. The difference
between C and Pascal's calling conventions are covered, as well as
the aforementioned W i n do w Pt r piggybacking techniques.

There's something for everyone in Chapter 2. You'll probably want
to read it once to get familiar with the contents, then refer back to it
as the concepts come up in subsequent chapters.

5

6 Macintosh Programming Primer

Chapter 3 - Code Resources

Chapter 3 introduces alternatives to the world of double-clickable
applications. The chapter starts with a description of several
different code forms, from the cdev that makes the modular Control
Panel possible to the filter procedures that allow you to customize
and expand Toolbox entities such as the Dialog Manager, TextEdit,
and the List Manager.

Chapter 3's first program takes the form of an INIT, a code
resource that gets executed at system start-up. This particular !NIT
loads a font number from a resource and sets the default application
font to that font. The !NIT makes use of a special piece of code that
plots the INIT's icon (see Figure 1.1) while the !NIT is running. You
can use this special code when you write your own INITs.

Chapter 3's second program is a cdev designed to work with the
!NIT. A cdev is a special file that contains resources recognized by
the Control Panel. When you open the Control Panel, all the cdevs
in your system folder will appear in a scrolling list on the left-hand
side. The cdev developed in this chapter (pictured in Figure 1.2)
allows you to set the default application font from a pop-up menu
drawn in the Control Panel's window.

Chapter 3's third program is an MDEF that allows you to create
menus made up of pictures instead of text. An MDEF is the menu
definition procedure used by the toolbox to create and allow selection
from pull-down and pop-up menus. Your MDEF (see Figure 1.3) will
create its menu from a set of PI CT resources you'll provide in the
calling application's resource fork.

Figure 1.1 Chapter 3's INIT icon.

Welcome Back

~
General

m
f!ii••

~
Color

1~::~·:·:·:·:·:·:·:·:::~1

Keyboard Q

3.3.2

Control Panel

Geneva

(Default)

...........
Figure 1.2 Chapter 3's cdev in action.

r S File Edit Pic:tures

Figure 1.3 PI c T MDEF in action!

7

8 Macintosh Programming Primer

Name it: Name it:

II jThe Loue Shack!

(OK] (Cancel) I OK J) (Cancel J

Figure 1.4 A dialog box, with the OK button disabled and enabled.

Chapter 3's final program shows you how to use a filter procedure
with the Dialog Manager to filter events as they occur in a dialog box.
Figure 1.4 shows a dialog box with an editable text field. Notice that
the OK button is dimmed when the text field is empty. That's the
work of the filter procedure.

Chapter 3 gives you four specific instances of specialized code that
you can use in your own programs. More importantly, these examples
will give you a leg up on creating any stand-alone code. For example,
you can use the techniques presented here to create your own CDEF
(control definition procedure), WDEF (window definition procedure),
or LDEF (list definition procedure, for use with the List Manager).

Chapter 4 - Color QuickDraw

None of the programs presented in Volume I were written to take
advantage of the fantastic color capabilities of the Macintosh.
Because of the Mac's black-and-white screen, you may not be aware
that even the first Macintoshes supported color via QuickDraw calls
such as F o r e C o l o r C > and Ba c k C o l o r C > . These calls are part of
Classic QuickDraw, which supports only eight colors (including black
and white).

When the Macintosh II was introduced (along with Inside
Macintosh, Volume V) the world of Color QuickDraw was born.
Chapter 4 covers the data structures and Toolbox routines you'll use to
program with Color QuickDraw and its cousin, 32-Bit QuickDraw.
There's a section on the Palette Manager, a set of Toolbox routines
that allows you to build and draw with your own custom palette of
colors. There's even a section on off-screen drawing environments.

Chapter 4's first program starts by checking to see whether Color
QuickDraw is currently installed. If not, it puts up the alert shown in
Figure 1.5.

Welcome Back 9

If Color QuickDraw is installed, the program steps through each of
the currently installed graphic devices and, if the device represents
an active screen, displays the color table for that device, centered on
the devices screen. Figure 1.6 shows the color table for a monochrome
screen.

This machine does not support
Color QuickDraw!

n OK J

Figure 1.5 The "I don't support Color QuickDraw" Alert.

§§ Deuice Colors~

Figure 1.6 Color table for a monochrome device.

10 Macintosh Programming Primer

Chapter 4's second program demonstrates the Palette Manager.
The program creates three palettes, one made up entirely of shades
of red, one made up of shades of gray, and one composed of a variety
of bright colors. Next, three windows are created and one of the three
palettes is assigned to each window. When a window receives an
update Ev t , its update routine draws a series of concentric
rectangles, using all the colors of that window's palette. If the
program is run on an 8-bit display, only 256 different colors can be
displayed at a single time. If each window requires 100 colors (for a
total of 300), somebody's going to lose! The Palette Manager makes
sure that the frontmost window gets what it needs, even to the
detriment of some of the other windows. This program will give you a
real feel for the Palette Manager.

Chapter 4's third program, ColorTutor, is perhaps the most
useful program in the chapter. ColorTutor uses copy B; ts <) to
demonstrate the 16 transfer modes available under Color
QuickDraw. Figure 1. 7 shows the ColorTutor window in glorious
black and white.

The source code used to create ColorTutor may be interesting, but
the program itself will prove more useful yet. ColorTutor provides a

Source Background

(OpColor ... J Mode

Figure 1. 7 ColorTutor in action.

Welcome Back 11

color lab, enabling you to try out the different color transfer modes in
the comfort and privacy of your own home.

Chapter 4's final program demonstrates 32-Bit Quick.Draw's off
screen drawing environments (also know as gworlds). You'll create a
gworld, then draw a gray ramp and a color ramp inside the gworld.
You'll then use C op y B i t s <) to copy the gworld's pixels to windows
of varying sizes. Gworlds are invaluable for producing flicker-free
color animation.

Chapter 5 - TextEdit

It's hard to imagine a Mac scenario that doesn't include some form
of TextEdit. When you change the name of an icon in the Finder or
type in a dialog's text field, you're using TextEdit. There have been
lots of requests for a comprehensive TextEdit application. Well, here
it is!

Chapter 5 starts with a thorough examination of the TextEdit
Toolbox routines. Chapter 5 then presents FormEdit, a complete
TextEdit application. FormEdit is chock-full of special features. As
you can see in Figure 1.8, FormEdit consists of two fields, a Name
field and a Misc field. Both fields support all the usual TextEdit
features (such as cut, copy, and paste). The Misc field supports
automatic scrolling when its scroll bar is active. This means that if

r a Fiie Edit
.,

Figure 1.8 FormEdit in action.

12 Macintosh Programming Primer

you click the mouse in the middle of the Misc field and then drag the
mouse, extending the selection above (or below) the top (or bottom) of
the window, the scroll bar will scroll automatically.

FormEdit will provide you with a good TextEdit reference when
you build your own TextEdit applications. You can reuse as much of
FormEdit's code as you like.

Chapter 6 - Object Programming

One of the most requested topics for Volume II of the Macintosh
Programming Primer was that of object programming (formerly
known as object-oriented programming, or just plain OOP). Apple
has gone to great lengths to get its developers up to speed on object
programming, calling it "the future of Macintosh development."
Apple's MacApp development environment is a completely object
orien ted development environment. The commitment and the
direction is there. The future of Macintosh development definitely
lies with object programming.

The people at Symantec have built their own object programming
environment. THINK C (version 4.0 and later) comes with a set of
libraries that enable you to create and manipulate objects within
your own programs. The Think Class Library (or TCL) contains all
the objects you'll need to build powerful Macintosh programs. The
TCL contains scroll bar objects, push-button objects, even window
objects. These objects will greatly simplify your development cycle
and make your code much more maintainable.

Chapter 6 starts with an introduction to object programming,
explaining the major concepts you'll need to use the TCL and to
design your own objects. Next, the major elements of the Think Class
Library are presented, along with some pointers on how to get
started with your own projects.

Finally, Chapter 6 presents an object program that you can use as
a starter kit. The program creates rectangular objects that you can
drag around in a window. Each object has its own set of properties
(such as pattern, size, and stacking depth) and will be redrawn
automatically when an update Ev t occurs. The window can be
scrolled using either a horizontal or a vertical scroll bar (see Figure
1.9).

Welcome Back

r ! I
~ ~
! ~ !
~ ~
l !

Figure 1.9 Chapter 6's object program in action.

Appendix A - Glossary of Terms

13

The glossary of terms presented in Volume II is a superset of the
one in Volume I. Most of the terms presented come from the glossary
found in Inside Macintosh X-Ref and have been r eprinted with
permission.

Appendix B - Source Code Listing

The source code of every program presented in this book is listed
for reference in Appendix B. Several of the programs listed in this
appendix are somewhat different than their chapter counterparts.
For example, the source code to the MDEF listed in Chapter 3 does
not perform scrolling or pop-up functions. Both the scrolling and the
pop-up code have been added to the source code listing found in the
appendix. If you notice a discrepancy between the code listed in a
chapter and the code in Appendix B, use the version in Appendix B.
In addition, several source code listings provided in Appendix B are
not found anywhere else in the book. For example, the ShowINIT
code that displays icons at !NIT time is found only in Appendix B.

14

_J

Macintosh Programming Primer

Volume II follows Volume I's method of presentation pretty closely.
Each topic is presented as a whole, with descriptions of all the
important Toolbox routines as well as related tips and techniques.
Once the topic is laid out, an example program is presented from
stem to stern. The resource file is created (if necessary), as well as
the THINK C project and source code files. The process of compiling
and running the program is described, with screen shots included
wherever possible.

How to Use This Book

Each Macintosh Programming Primer chapter is made up of the
main text and tech blocks. The main text is the narrative portion of
this text. Read this first. It contains the information you need to
input and run the example programs. Because we've placed a
premium on getting you going immediately, we have you run the
program before discussing how the code works . Impatient pro
grammers are invited to go directly to Appendix B, which contains
commented listings of all the programs discussed in the book. If you
have questions after typing in the programs, refer to the chapter in
which the program is discussed. If you prefer a more sedate pace,
read a chapter at a time, type in the programs and test them as you
go. Try the variants to the program if they sound interesting.

At some points , the narrative is expanded with a tech block,
indicated by a distinctive gray background. It's OK to ignore them
during your first read-through.

There are several important terms and conventions used through
out the Macintosh Programming Primer.

Tech blocks will have this appearance in the main text. If you feel
comfortable with the subject discussed in the main text, read the
tech blocks for more detail. Otherwise, come back to them later.

All of the source code is presented in a special font. For example:

whi Le (i < 20)
PassTheParametersC>;

Welcome Back

_J

15

Toolbox routines and C functions are also in the code font when
they are described in the text. Code should be typed in the same case
as presented in the text. C is a case-sensitive language. Please note
the similarity between the upper case L and the lower case l, and be
careful to type in the correct choice.

Whenever we refer to a function or procedure call, a pair of
parentheses is placed at the end of the procedure or function name.
Get NewWi ndow C > is an example of a function call.

Finally, boldface type is used to point out the first occurrence of
new terms and file names.

Ready, Set ...

At this point, you should be ready to go. Make sure you at least
skim through Chapter 2 before you dive into your favorite subject.
You'll probably want to refer to Chapter 2 a time or two as you read
through the rest of the book. Oh, yes, one more thing. If you like, you
can send in the coupon found in the back of the book for a floppy disk
containing all the source code found in this volume.

Go!

Toolbox
Techniques

This chapter discusses some of the
techniques that are fundamental to
Macintosh software development. It

covers issues ranging from basic
memory management to the

differences between C and Pascal
calling conventions.

2

_J

After the publication of the first volume of the Macintosh
Programming Primer, many people sent suggestions regarding topics
they wanted to see covered in the second volume. This chapter covers
some of the most requested topics, which also happen to be among
the most important. The Macintosh memory model is discussed, as is
the importance of being 32-bit clean. Pointers and handles are
covered, and strategies for dealing with each are presented. Also
included is a tips and techniques section full of useful tidbits, such as
piggybacking techniques for tying your window's data to your
windows.

There's something for everyone in Chapter 2. You'll probably want
to read it once to get familiar with the contents, then refer back to it
as the concepts come up in subsequent chapters.

To start off, the next section discusses pointers and handles.

All About Pointers

Those of you who are already pointer masters might want to skip
ahead to the next section while the topic of pointers is addressed
briefly.

The Macintosh's random access memory (or RAM) is arranged as a
contiguous series of address locations, starting with the address 0
and ending with an address one less than the total number of bytes
of RAM. The RAM on a !-megabyte Mac Plus ranges from 0 to
1,048,575 in decimal, or from 0 to OxOOOFFFFF in hex.

· The notation Ox F FJ i= is standard C syntax for the hex number
F F F F. The ox tells the C compiler that the rest of the number
should be interpret$.d a$ h~x~

The Macintosh uses 32-bit (4-byte) addresses. The highest number
that can be represented in 32 bits is OxFFFFFFFF (hex) or
4,294,967,296 (that's four billion) in decimal. This means that the
Macintosh architecture is limited to a maximum of 4,294,967 ,296
bytes (4 gigabytes) of RAM. That's 4,096 megabytes. Wow!

Figure 2.1 shows a memory layout for a 4,096-megabyte machine.
The address of each byte appears to its left.

19

20

OxFFFFFFFF-+t====:
OxFFFFFFFE-+t ___ _

• • •
OxOOOO 1001---+I:=====:
OxOOOO 1000-+t ___ _

• • •
Ox00000003~:====
Ox00000002.-.i====:
OxOOOOOOO 1 ~:=====:
OxOOOOOOOO~---~

Macintosh Programming Primer

Figure 2.1 Memory layout for 32-bit machine.

Pointers are nothing more than addresses. A pointer to a specific
byte of memory is the 4-byte address of the byte. For example, a
pointer to the very first byte of memory has a value of 0 L.

Here's another conventional tidbit for you to try at home. Wh~n the
compiler encounters the letter L immediately following a de,cimal
constant, the compiler treats that constant as a Long i n t, taking
up 4 bytes. Thus, the constant o L is equivalent to the constant
OxOOOOOOOO.

When you think of a byte, think of a constant like Ox E.3. Twf;t hex:
digits represent a number ranging from o to·255 (or from -1a:.8 ·tb
127, in the case of a signed byte). When you think of two ~ytes,
think of a short or an int, or a constant like OxA287. :

Because addresses are always 4 bytes long, pointers are always 4
bytes long. Consider the following code:

Ptr myPtr;
int num;

myPtr = #
*myPtr = 42;

When the MacOS runs this code, 4 bytes will be allocated for
my Pt r (because it's a pointer/address) and 2 bytes will be allocated
for nu m (because it's an i n t). Take a look at Figure 2.2.

Toolbox Techniques

Ox00002A20.....-} num
• • •

OxOOOO 1F24--} myPlr

Figure 2.2 A pointer and its variable.

21

In this drawing, my Pt r 's 4 bytes start at Ox00001 F24 and num's
2 bytes start at Ox00002A20. Why were they allocated so far apart?
They could well have been allocated in 6 consecutive bytes. The point
is, you shouldn't count on a particular memory configuration, and you
shouldn't really care whether or not your variables are close together.

In C, the notation &num represents the 4 byte address of num,
also known as a pointer to nu m. Thus, the statement:

myPtr = #

is the same as saying:

myPtr = Ox 00002A20;

The notation *my Pt r represents the memory locations pointed to
by my Pt r. Because my Pt r was declared as a pointer to an i n t,
*my Pt r represents an int s worth of memory (2 bytes). The
statement:

*myPtr = 42;

will write the number 42 in the two bytes starting at Ox00002A20,
just as if we had said:

num = 42;

Get used to thinking of pointers as 4-byte numbers. When you
pass a parameter with an & in front of it, you are actually passing a
pointer to the parameter. For example:

PaintRect(&myRect >;

passes exactly 4 bytes to Pai n t Rec t < >. Specifically, it passes a
pointer to the 8-byte data structure my Rec t (a.k.a, the address of the
first byte of my Rec t).

22

_J

Macintosh Programming Primer

Pointers Are Never Relocatable

When you pass the address of a data structure to a routine, you had
better make sure that the data structure stays in the same place in
memory at least until that routine returns. In the previous example,
if you pass 0 x 0 0 0 0 2 A 2 0 to Pa i n t Re c t C > as the address of
myRect, myRect had better stay at Ox00002A20 until
Pa i n t Re c t C > returns.

Why would anyone ever move things around in memory? This is a
good question, and it forms the basis for our explanation of handles.
For now, just remember that pointers are always 4 bytes long and are
never relocatable.

The Macintosh Memory Layout

Before discussing handles, let's step through a bird's-eye view of the
Mac's memory layout. Look at Figure 2.3, the Macintosh memory
map.

RS
(RS)

System Buffers

Application Misc.
----------------------Application Globals

QuickDraw Globals
----------------------Stack

.i

t
Rpplication Heap

System Heap
----------------------System Globals

Figure 2.3 Macintosh memory map.

Application
Space

System
Space

Toolbox Techniques 23

The System Space

The system space starts at address OxOOOOOOOO and is dedicated
to the Macintosh operating system. The beginning of the system
space is dedicated to system globals. These globals are described in
Appendix C of the Inside Macintosh X-Ref For example, the global
Caret Time defines TextEdit's caret blink interval in ticks (60ths of
a second). ca re t T i me is a long and takes up the 4 bytes starting
at Ox 000002 F 4.

Take a look at the X-Ref's Appendix C. If you need access to one
of these globals, chances are good that Apple provides a Toolbox
routine specifically designed to return (and possibly to change) that
global's value. Conversely, if no access routine exists, you should
think long and hard before you manipulate that global. Although
Apple tries not to change the meaning and location of the system
globals, sometimes circumstances force such changes to be made.
When the Mac II was introduced, the global Ghost w i n do w
cox A 8 4 > was no longer supported. Several major applications
that had taken advantage of this global no longer worked properly
on the Mac II.

Above the system globals lies the system heap. The system heap
is a block of memory u sed by the system for its own memory
allocation. F or the most part, you won't need to worry abou t the
syst em heap. The memory used by your application will reside in the
application space.

The Application Space

When an application is launched , the MacOS a llocates a block of
memory called the application space. Under MultiFinder, several
application spaces exist at the same time. Even though an applica
tion is in t he background, it may still be active, accessing memory in
its own application space.

As shown in Figure 2.3, near the top of your application's space,
directly above the stack, lies your app lication's copy of the
QuickDraw globals. The QuickDraw globals include a pointer to the
current port (the Port), a set of patterns (w hi t e, black, gray,
ltG ray, and d kGray), the standard arrow cursor (a rrow), the
bitmap of the main screen (sc reen Bi ts), and the seed for the
random number generator (rand Seed).

24 Macintosh Programming Primer

At the heart of every Mac is a central processing unit (CPU). All
Mac CPUs are members of the Motorola 68000 family. Mac Pluses,
SEs, and portables sport a 68000, Mac lls a 68020, and SE/30s,
llXs, llci's, llcx's and llfx's a 68030. Every 68000 family CPU has
16 32-bit registers. Eight of these registers are called address
registers (known as AO through A7) and eight are called data
registers (known as DO through 0 7).

Several of the CPU's registers play well-defined roles for the
MacOS. For example , the address in the A5 register contains a
pointer to the boundary between the current application's copy of the
QuickDraw globals and the application's own globals. Applications
use this pointer (known in assembly language as (A5)) to access their
copies of the QuickDraw globals by decrementing (A5). Applications
access their own globals by incrementing (A5). Figure 2.4 shows a
sample MultiFinder layout with two applications open.

Under MultiFinder, applications take turns being active. Even if an
application is in the background, it can still get its share of CPU
time. When the MacOS makes an application active, it updates AS
to point into that application's space, allowing the application to
find its QuickDraw globals.

- - - - MultiFinder -- - AS ~ - - - - MultiFinder - - -
Partition: Partition:

Application #2 Application #2

AS -+ - - - - MultiFinder - - - - - - - Multi Finder - - -
Partition: Part i t ion:

Application # 1 Application # 1

Figure 2.4 The A5 register points to application #l's globals when
it is active and to application #2's globals when it is active.

Toolbox Techniques 25

In addition to the QuickDraw globals, copies of some of the system
globals are also stored in the application's space. One example is the
global Menu Li st, which contains a handle (don't worry, we'll get to
handles in a minute) to the list of menus available to the current
application. Because each application has its own set of menus,
MultiFinder makes sure that the official Menu Li st is a duplicate of
the current foreground application's local Menu Li st handle.

In addition, any parameters passed into the application by the
launching application are stored here. For example, when you
double-click a HyperCard stack in the Finder, the Finder launches
HyperCard, passing the name of the stack as a parameter (for more
info on Finder parameters, see Inside Macintosh , Volume I, pages
57-58).

The Stack

Every data structure and variable used by your program has a size,
and thus takes up space in memory. A s h o r t and an i n t both take
up 2 bytes of memory. A Long takes up 4 bytes. A pointer to a s ho rt
(or to anything for that matter) also takes up 4 bytes.

When your application is active, register A 7 holds a pointer to the
first free byte of stack space. Figure 2.5a shows an empty stack, with

R7 ~1------1

R7

(a) (b) (c)

(d) (e)

Figure 2.5 An empty stack (a), a Long pushed on the stack (b), an
i n t pushed on top of the Long (c), the int popped off (d), and,
finally, the Long popped off (e).

26 Macintosh Programming Primer

A 7 pointing to the first available byte on the stack. Figure 2.5b shows
a long pushed on the stack, A 7 being decremented by 4 bytes to
make room for the l o n g. The reason A 7 gets decremented is that the
stack grows down, from higher memory towards lower memory.

Figure 2.5c shows another two bytes (the size of an i n t) pushed
on the stack. In Figure 2.5d, the i n t has been popped off the stack
and A 7 has been incremented by two bytes. Finally, the l on g is
popped off the stack (Figure 2.5e), and A 7 again points to the first
available byte on the stack.

When your application is first loaded, space for your application 's
globals is allocated on your application's stack.

When THINK C compiles your application, it replaces references to
your globals with the appropriate offset from A5. Under normal
circumstances (when you are writing an application), this
information is not that important to you. However, when you write
stand-alone code (such as an INIT or an MDEF), A5 will point to
the calling application's globals (which have no relation to the
stand-alone code's globals). If you want to use globals in your
stand-alone code, THINK Chas just the thing! Basically, when you
use THINK C to build a stand-alone code resource, you can access
your globals off of register A4 instead of A5. This technique is
described in the THINK C User's Manual (at least in the one that
came with v4.0), starting at the bottom of page 86.

When a routine is called, each of its parameters is pushed on the
stack. Next, each of the local variables in the routine is pushed on the
stack. For example, consider the following code:

MakeWind ow(resID)
int resID;
{

WindowPtr w. ,

w = GetNewWindow (resID, NIL_POINTER,
MOVE_TO FRONT);

}

Before Make W i n d o w <) is called, the stack is set up as pictured in
Figure 2.6a, with the space needed by any nested calls leading up to
the call to Make Wind o w<) at t he base of the stack. When

Toolbox Techniques 27

RS ""'1 globols RS ""'1 globols RS ""'1 globols
& nested & nested & nested

col ls CCI I Is CCI I Is
R7 res ID res ID

R7 - w

R7
(a) (b) (c)

Figure 2.6 Parameters and local variables allocated on the stack.

Ma k e W i n do w <) is called, the parameter re s I D is pushed onto the
stack, as shown in Figure 2.6b. Notice that A7 is decremented by 2
because r e s I D is a 2-byte i n t. Next, the local variables are pushed
on the stack. In this case, A 7 is decremented by 4 to make room for
the 4 byte local variable w (see Figure 2.6c).

• When a routine is called, the parameters and then the local
routine variables are pushed onto the stack.

• When the routine exits, the locals and the parameters are popped
off the stack and the return value (if any) Is pushed onto the stack.

The Application Heap

A critical part of your application's space is your application's heap.
The heap starts out as a big block of contiguous memory. As you need
it, you make requests for this space.

When you declare a variable, you're using stack space. When you
allocate space with a call to New Pt r c > or NewHand le<>, you're
using heap space. You are also using heap space when you call a
Toolbox routine that allocates memory for you. Check out the three
different calls to Ge t New w i n do w c > that follow and see if you can
predict where the new W i n do w Rec o rd is allocated.

28 Macintosh Programming Primer

Sometimes memory requests come in the form of explicit calls to
Toolbox routines such as Ne w Pt r C > and New Ha n d l e C > . Sometimes
the requests are made as the result of a call to a Toolbox routine.
Consider the following code:

w = GetNewWindow (resID, NIL_POINTER,
MOVE_TO_FRONT >;

By passing NI L_P O I NT ER as the second parameter, this code
asked GetNewWi ndowC >to allocate a non-relocatable block the size
of a W i n do w Re co rd on the application's heap. The nice thing about
this approach is that it is easy. The disadvantage is that you have no
control over where in the heap that memory is allocated. Why is this
important? Suppose you had a heap that was 10 bytes in size. Now,
allocate 3 bytes on the heap, as shown in Figure 2.7a. Next, allocate a
second block, this time 4 bytes in size (Figure 2.7b). You now have 3
bytes free in the heap, right at the top. Now deallocate the first block,
leaving your heap looking like Figure 2.7c. You have a nonrelocatable
block of 4 bytes locked smack-dab in the middle of your heap. Now
suppose you need a contiguous block of 4 bytes from the heap.
Although you have 6 bytes of unused heap space, there is no way to
allocate a block bigger than 3 bytes. You are the unwitting victim of
heap fragmentation!

Before talking about handles (Apple's antiheap fragmentation
device) let's look at two alternative methods of W i n do w Record
allocation.

Ptr wStorage;

wStorage = NewPtrC sizeofC WindowRecord) >;
w = GetNewWindow C resID, wStorage,

MOVE_TO_FRONT >;

Block #2 Block •2

(Block •1 J Block #1

(a) (b) (c)

Figure 2. 7 The horror of heap fragmentation.

Toolbox Techniques 29

_J

This piece of code accomplishes almost exactly the same thing as
the previous example. The space for the W i n do w Record is still
allocated on the application heap. This time, however, the code
allocated the space in a specific location. If you know your application
will need only a single window, you could make your call to
New Pt r <) at the very beginning of your program, while the heap is
still relatively empty, thus keeping the nonrelocatable block all the
way at the bottom of the heap, minimizing fragmentation. This
technique is even more important if you know you'll be making use of
lots of nonrelocatable blocks.

The more sophisticated your application, the more likely you'll be
hit by heap fragmentation and the more important your own
approach to memory management becomes!

The third approach to window allocation is extremely simple:

WindowRecord wRecord, *w;

w = GetNewWindow(resID, &wRecord,
MOVE_ TO_FRONT);

This example declares W i n do w Record as a local variable. This
means that the space gets allocated on the stack instead of on the
heap. Although this approach promises never to fragment the heap,
it promotes unsightly stack build-up. The stack was not intended for
dynamic memory allocation. That's the heap's job!

Handles, At Last!

Handles were invented to give programmers an alternative to heap
fragmenting, nonrelocatable blocks. The basic concept is simple.
When your application starts up, a block of 64 master pointers is
allocated at the base of the heap. Although these master pointers are
nonrelocatable pointers, because they are at the base of the heap,
they do not fragment the heap.

A handle is a pointer to one of these master pointers. When you
allocate a relocatable block on the heap, a master pointer is set to
point to the block and a handle is set to point to the master pointer.

30 Macintosh Programming Primer

The memory manager can now move the data block, updating its
master pointer with the new address of the block. Throughout this
process, the block's handle remains valid because it remains pointing
to the same exact address, that of the nonrelocatable master pointer.

Here's an example that should make this a little clearer:

Handle handleTo8, handleTo16;

handleTo8 = NewHandle(8);
handleTo16 = NewHandle(16);

Figure 2.8 shows the memory layout after this code is executed.
When the application started up, 64 master pointers were allocated
at the base of the heap. One of these will become handle To B's
master pointer. The next master pointer will become handle To 16's
master pointer. The first call to New Hand l e <) allocates a block of 8
bytes and makes h a n d l e To 8 a handle to that block. This is the
same thing as saying that handle To B's master pointer now points
to this 8-byte block.

~ OxOOOOF208

r- - OxOOOOF200

16-
byte

Block

8-
byte

Block

:= Master
~ Pointer

~ Master
~ Pointer

• • •

I-
I-
~ hondleTo16
I-
I-
"i+- hond leTo8

Figure 2.8 Two handled blocks on the heap.

Toolbox Techniques 31

The second call to New Hand le< > allocates a block of 16 bytes
(right on top of the 8-byte block) and makes hand l e To 1 6 a handle
to this block. This means that hand le To 1 6 points to its master
pointer and hand le To 1 6 's master pointer points to the 16-byte
block.

The next piece of code releases the 8-byte block, creating a hole in
the heap:

DisposHandle(handleTo8 >;

Di s po s Ha n d l e () frees up the handled block but does not change
the value in the master pointer. It's up to the program to remember
that hand le To 8 is no longer valid. Figure 2.9 shows the result of
the call to D i s po s Hand l e () . Notice the 8-byte hole in the middle of
the heap.

16-
byte

Block

r-- OxOOOOF208-+
.
.

H Master-~
Hp . t ~
'""' 01 n e f' I-I.- hand I e To 15

I-' Master H
"""p·t I-I- om er 1-

• • •

Figure 2.9 Deallocating the first handled block.

32

,..... OxOOOOF200

Macintosh Programming Primer

16-
byte

Block

~ Master- I-
t-

1- Pointer- t-i... hcmdleTo16
t- Master- t-
"""p - t t-t- om er- t-

• • •

Figure 2.10 The Memory Manager compacts the heap.

Now comes the interesting part. At certain well-defined times, the
Memory Manager will attempt to compact the heap. Basically, this
means moving all relocatable blocks as far toward the base of the
heap as they will go and updating their master pointers. Figure 2.10
shows the sample heap after compaction.

Even though the value of hand Le To 1 6's master pointer has
changed (it was decremented by 8 bytes), hand L e To 1 6 remains the
same. It still points to the same location in memory and is still a
handle to the same 16 bytes of data.

Careful With That Handle, Eugene!

A little while ago it was said that the Memory Manager compacts the
heap at well-defined times. Appendix A in Inside Macintosh X-Ref
contains a list of Toolbox routines that may move or purge memory.
Anytime you call one of these routines, your heap is a candidate for
compaction.

Why should you care? Take a look at this piece of code:

Toolbox Techniques

Handle myRectHandle;

myRectHandle = NewHandle(8);
SetRect(*myRectHandle, 10, 10, 50, 50 >;
PaintRect(*myRectHandle);

33

This code allocates an 8-byte block of m emory u sing
N e w H a n d l e () , placing the handle in my Re c t H a n d l e.

Normally, when you want a Re c t, you declare one as a local
variable. This piece of code accomplishes the same thing (almost)
by allocating 8 bytes (the size of a Re c t) directly on the heap.
Why almost? The difference is this. This code allocated the
memory on the heap. When you declare a local variable, you're
allocating the memory on the stack (remember?). Although this
technique works, it is not recommended. It is shown here purely for
demonstration.

When t he code just shown called Set Re ct <) , it passed t he
master pointer to the 8-byte block instead of a poi nter to a Re c t.
Hey! A pointer to an 8-byte block is a pointer to an 8-byte block, isn't
it? As it turns out, Set Rec t <) is not on the list of routines that may
move memory, so this call i s perfectly val id. The call to
Pa i n t Rec t <) is a different story entirely.

Suppose the heap wer e compacted in the middle of the call to
Paint Rec t <) . The code passed a s pecific 4-byte value to
Pa i n t Rec t <) . When the heap moves, this value remains the same.
The pointer that was passed in does not change, but the data has just
moved in memory. The pointer is no longer valid and Pa i n t Re c t <)
is likely to crash or at least start acting a little funny.

This problem is a real show-stopper. Luckily, there is an easy
solution. ~nter H lock<) and HU n lo ck () . H Lock () locks a handle,
so that the h a ndled block becomes nonrelocatable. HU n lock<)
makes the handled block relocatable again. Take a look at this code:

Handle myRectHandle;

myRectH a ndle = NewHandle(8);
SetRect(*myRectHandle, 10, 10, 50, 50);
HLock(myRectHandle >;
Pain t Re ct(*myRectHandle);
HUnlock< my RectHandle >;

34

_J

Macintosh Programming Primer

H Lo c k C > and H u n l o c k C > give you all the power and efficiency of
handles with the protection of nonrelocatable blocks. Although it's
tempting, try not to submit to the lock-it-always syndrome. Minimize
your calls to H Lo c k C >, because a locked handle is a heap
fragmenting handle. Remember, you need to lock a handle only if you
are going to dereference it in a routine that moves memory. If you
pass a handle as a parameter, there is no need to lock it. If you are
unsure, go ahead and call H Lock C >. Just remember to call
H Un l o c k C > as soon as possible.

When To Use Handles

In general, you should use handles instead of pointers for your
dynamic memory allocation. The overhead for master pointers is
relatively small compared to the benefits of relocatable blocks.
Sometimes, however, you have to use pointers. Wi ndowRecords, for
example, must always be nonrelocatable. They were designed that
way by Apple from the very beginning. For this reason, if you allocate
your own Window Records, you'll do it with a call to NewPt r C >.

Resources, for the most part, are relocatable. Routines like
G e t R e s o u r c e C) , G e t P i c t u r e C > , and G e t S t r i n g C > return
handles to their respective resources. Remember, if you pass the
address of a handled block (i.e., a dereferenced handle) to a routine
that may move memory, you'd better lock it first. The address of a
field in a handled struct must follow the same rules:

PicHandle pie;

pie = GetPicture(400 >;
HlockC pie >;
FrameRectC &CC**pic).picFrame) >;
HUnlockC pie >;

The address of the p i c F r a me field will not be valid anymore if the
entire pi c moves while we're in Frame Rec t C).

Miscellaneous Tips and Techniques

The remainder of this chapter is dedicated to tips and techniques
that will make your life a lot easier. It starts off with a discussion of
the memory management routines More Masters C > and

Toolbox Techniques 35

Move H Hi <) . These routines are described in Inside Macintosh,
Volume II, Chapter 1. Read this section. You'll be glad that you did.

MoreMasters() and MoveHHi()

When your application starts up, its heap is created with a block of
master pointers at the base of the heap. The routine
Mo r e Ma s t e r s <) allocates an additional block of master pointers.
Call More Masters <) during the initialization phase of your
program. You will get 64 master pointers per call.

Move H H i < > moves a handled block as high in the heap as it can
until the block hits either the top of the heap or a nonrelocatable (or
a locked relocatable) block. Call Move H H i C > immediately before you
call H Lock C >. This will help minimize the fragmentation of your
heap while the handle is locked.

Purgeable Blocks

All handles are marked as either purgeable or nonpurgeable. When
you create a block with New H a n d l e < > , the handle is automatically
marked as nonpurgeable. When you load a resource with
Ge t Res o u r c e <) or a similar routine, however, the block created for
the resource may be purgeable (depending on a flag set in the
resource itself).

If the Memory Manager needs to allocate a block of memory and
there is not a big enough block of free space available on the heap,
the Memory Manager tries to compact the heap. It starts by moving
relocatable blocks around, trying to create bigger blocks of free space.
If the Memory Manager still cannot fulfill its request, it starts
purging purgeable blocks, until it has enough room.

If a block is purged, its handle is said to be empty. Before you work
with the handle to any purgeable resource, call Lo ad Res o u r c e C >.
Lo ad Res o u r c e < > will reload the resource if it was purged. You can
mark a handle as nonpurgeable and purgeable with the routines
H No Pu r g e C > and H Pu r g e C >.

Keeping Your Applications 32-bit Clean

Though addresses are commonly thought of as 4-byte values, they are
actually much more complex. For example, several of the 32 bits that
make up a handle are actually flags that mark the handle as
purgeable, locked, or as belonging to a resource.

36 Macintosh Programming Primer

Most Macintoshes run in 24-bit mode. This means that every 4 byte
address dedicates 3 bytes to the actual address with 1 byte
remaining free for use as flags. Some Macs (the Mac llci, for one)
can switch between 24 and 32-bit modes. In 32 bit mode, all 32 bits
are used as addresses. A/UX, Apple 's version of the Unix
operating system, always runs in 32-bit mode.

Don't make any assumptions about the internal structure of an
address. If you need access to a handle's purge bit, use the routines
provided by the Toolbox, H Pu r g e C > and H No Pu r g e C > . Don't access
raw data structures when the Toolbox provides a way to access the
information via a routine. Apple provides these access routines so
that your programs will not break when Apple changes the format of
a field or data structure.

Piggybacking Data on Your Windows

Suppose you have an application that supports multiple windows,
each window having two scroll bars and two pop-up menus
(remarkably like the window in Figure 2.11). When you detect a
mouse Down in a particular window, how do you tell if the
mouse Down was in one of the controls or in one of the menus? You
could keep a linked list of all the Cont r o L Hand Les and
Menu Hand L es, but that would be cumbersome. If only there were a
simple way to link a window's data right to the window, so the data
could be accessed directly from the W i n do w Pt r. Hmmm ...

D Untitled

Font Style

Figure 2.11 Piggyback window.

Toolbox Techniques 37

There are several ways to solve this problem. This book uses
something called the piggyback technique. This technique is used
in Chapter S's TextEdit program and in most of the real-world
applications in the book.

Here's the piggyback technique for allocating the example window
shown in figure 2.11.

typedef struct
{

}

WindowRecord
int
MenuHandle
ControlHandle

MyWindRecord, *MyWindPeek;

theWindow;
windowType;
fontMenu, styleMenu;
vScroll, hScroll;

WindowPtr piggyWindow;
Ptr wStorage;

wStorage = NewPtrC sizeofC MyWindRecord) >;

piggyWindow = GetNewWindowC 400,
wStorage, MOVE_TO_FRONT >;

This chunk of code starts by creating a piggyback window struct.
The struct includes room for a type field (in case several different
types of windows are needed in the application), two menus, and two
scroll bar handles.

Instead of allocating just enough room for a window, the code
allocates the extra room for the piggyback information. When the
program returns from Ge t New W i n do w C > , p i g g y W i n do w will point
to this bigger block of space, whose first 156 bytes look exactly like a
regular Wi ndowRecord. This means pi ggyWi ndow can be passed
to routines like Set Port C > with the expected results. If an
up d a t e Ev t for p i g g y W i n do w is received, the program can retrieve
p i g g y W i n do w by casting g Th e Even t • me s s a g e to a W i n do w Pt r
as usual. In this case, however, the program will also have access to
the menus and scroll bars:

ControlHandle aScrollBar;

aScrollBar = CCMyWindPeek)
gTheEvent.message>->vScroll;

The w i n do w Type field can be accessed the same way. This field is

38 Macintosh Programming Primer

used when multiple window types are used in an application. A
d e f i n e is created for each window type and the w i n do w Type field
is set to the appropriate # d e f i n e as soon as the window is created.
When a program wants to check the type of a window, it first must
check whether it's a desk accessory or a normal window. This
technique is illustrated in Chapter 5's FormEdit program.

Because part of every w i n do w Re co rd is a linked list of c0ntrols
belonging to that window, there is an alternative to the piggyback
technique. If the only data you are trying to piggyback is a)set of
cont r o l Hand l es, you can place some #defined constant I in the
control's cont r l Rf con field. Then, when you want to ret~eve a
window's data, walk through the window's control list until y~u find
a control whose cont r L Rf con field is the one you're lookinb for.

Calling Them, So They Can Call You

Sometimes you will provide a pointer to one of your routines (a
procPtr) as a parameter to a Toolbox routine so that the Toolbox
routine can call your routine. Your routine (the one the procPtr points
to) is called a callback routine. Callbacks provide hooks into
normally unreachable processes. A common callback is the filter
proc, used by Modal Di a log C >. You pass a filter proc to
Modal Di al og C) and Modal Di al og C > calls your filter proc every
time it handles an event.

Filter procs (as well as other types of callbacks) are discussed in
Chapter 3. That chapter also presents a complete filter proc (code
and all) that gets called from Mod a l D i a l o g C >. The important point
here is that sometimes you write code that you want to be called by
the Toolbox. The Toolbox expects all routines it calls to follow the
Pascal calling conventions.

The Pascal calling conventions work like this. The calling routine
pushes the arguments on the stack from left to right, then calls the
routine. When the routine returns, any return value can be found on
the stack. Because most C programmers do not particularly care
about details like this, the THINK C programmers provided an
alternative. If you declare your functions and procedures to be of type
pascal, THINK C will automatically generate code that meets Pascal
calling conventions. Here's an example of a function that returns a
BOOLEAN:

Toolbox Techniques

pascal Boolean myFunc(myArg)
int myArg;
{

}

Here's the declaration of a procedure with no parameters:

pascal void myProc ()
{

}

39

On the other hand, suppose you have a pointer to a Pascal routine
that you'd like to call yourself. In Chapter 3, a standalone piece of
code is built into a resource of type PROC. Next, a program is
written that loads the resource (with Get Resource ()) and calls the
standalone code with a call to the THINK C routine Ca l l Pas ca l () .
Ca l l Pascal <) is used to call a procedure (a v o i d function). Pass
to Ca l l Pas ca l <) the parameters that you want passed to the
function, passing the function pointer as the very last parameter.

If ca l l Pas ca l c > is still a little fuzzy to you, take a look at the
IN IT presented in Chapter 3.

THINK C provides additional routines to call other types of Pascal
functions. Use ca l l Pa s ca l B <) to call a function that returns a
BOOLEAN. Use CallPascalW() to call a function that returns
either an INT E G ER or a CH AR. Finally, use Ca l l Pas ca l L <) to call
a function that returns a LONGIN T, a Pt r , or a Hand l e .

In Review

A lot of important topics were covered in this chapter. Every concept
presented here will come up again later on in the book. If you like,
take some t ime now and r eview some of the referenced Inside
Macintosh chapters. This stuff really is important, especially if you 'r e
planning on writing applications that will be used by other people or
that will be sold for big profits.

Look out! You're about to burst out of the world of double-clickable
applications. Chapter 3 digs into s tand-alone code design and
developmen t and presents lots of examples.

Code
Resources

Every program developed in
Macintosh Programming Primer,
Volume I has taken the form of a

double-clickable application. This
chapter shows you how easy it is to use

the same programming techniques
to create specialized chunks of code
such as INITs, cdevs, MDEFs and

filter procs.

3

_J
Specialized Code

Not all useful Macintosh software comes in the form of a double
clickable application. How many of these types do you recognize?

INITs are also known as Startup documents. They are usually
found in your System folder. At startup (or boot) time, the Macintosh
operating system checks each file in the System folder for a resource
of type INIT. Every time an INIT resource is found, it is loaded into
memory, locked, and executed. INITs can be used to launch a piece of
standalone code that will run in the background (like an alarm clock
or a screen dimmer). They can also allocate and initialize some
memory to be used later by an application.

cdevs are more commonly known as Control Panel documents.
When the Control Panel desk accessory starts up, it looks through
the System folder for files of type cdev. The Control Panel displays a
scrolling list of each cdev file's icon, as pictured in Figure 3.1. When
you click on a cdev's icon, the Control Panel looks in the cdev file for
a resource of type cdev with a resource ID of -4064 (in order for a
cdev to run properly, it must have this resource). When the cdev
resource is found, it is loaded into memory, locked, and executed. The

• After Dark

Keyboard

3 .3.2

Control Panel

•
Rate of Insertion

Point Blinking

Desktop Pattern O®O
Slow

Menu Blinking Time (9
11 :07:21 AM

@ 12hr. Q 24hr.

Q Q Q @ Date II{IJ
1/30/90

Oon
@Off

Fast

Speaker
Volume

Figure 3.1 Some scrolling cdevs.

43

44 Macintosh Programming Primer

cdev uses the area to the right of the scroll bar to put up its own
TextEdit fields, buttons, scroll bars, etc. As you enter text and change
settings, the cdev writes the changes to its resource fork and/or
makes whatever other adjustments are needed.

MDEFs, WDEFs, and CDEFs are examples of code resources you
use all the time. They implement custom menus, windows, and
controls. Figure 3.2 shows an MDEF in action. Every Macintosh
menu has a pro c I D associated with it. This pro c I D determines
which MDEF will be used to implement the menu. Most Macintosh
menus have a pro c ID of 0. This means that when the Menu
Manager wants to draw and allow selection from that menu, it must
look for an MDEF resource with an ID of 0. Once it finds the
appropriate resource, it (guess what!) loads the resource, locks it, and
executes it. Later on in the chapter, you'll write your own MDEF and
call it from within an application.

Undo 8€Z

Cut 88H
Copy 8€C
Paste KU
Clear

Figure 3.2 An MDEF in action.

There are many examples of specialized Macintosh code. The goal
of this chapter is to make you comfortable with the process of
producing your own. Several different examples are presented,
showing you in each case where we got the specifications for writing
the code and exactly how we built the final product.

The Common Thread

You may have noticed a common link among the examples in the
previous section. In each instance, some form of code resource was
loaded, locked, and executed. The support of standalone, executable
code resources gives the Macintosh (and the Macintosh programmer)
a great deal of power and flexibility. Just imagine. You can write an
MDEF that builds a color menu, based on the number of colors
available on that particular machine. You can then use that MDEF in

Code Resources 45

all five of your brand new, best-selling color applications, just by
copying and pasting the MDEF resource using ResEdit. Better still,
once you build the MDEF, you can reuse it again and again, without
ever having to muck with its source code.

Chapter Programs

Every program in this chapter will explore a new alternative to the
rigid world of double-clickable applications:

• AFI (pronounced affy) -AFI, or Application Font INIT, sets the
default application font. The application font determines the
default applications used by most applications. For example, if
AFI sets the default application font to Monaco, the next time
you run MacPaint -and select the text tool, you'll be drawing in
Monaco. The AFI demonstrates the use of an icon at INIT time,
painting it on the screen in line with all the other INIT icons.

• AFI cdev - AFI cdev provides a Control Panel interface for AFI.
When the AFI icon is selected, a pop-up menu of available fonts is
displayed in the Control Panel. When a font is selected, the low
memory global that stores the default application font is updated,
and a resource within the cdev file is updated as well, saving the
value for next time.

• MDEF and MDEF Tester - This pair of programs represents
an MDEF and a program that tests the MDEF. The MDEF takes
a specified set of PICT resources and builds a menu from them.
The menu is as wide as the widest picture, and each cell is as tall
as the tallest picture.

• DLOG Filter Proc - Several of the Toolbox managers offer
special filter procs or callbacks built into the Toolbox routines.
Using these callbacks can sometimes make your programming
infinitely easier. For example, you can pass a pointer to a
procedure to Mod a l D i a l o g C > and Mod a l D i a l o g C > will call
your procedure every time it gets an event. We'll demonstrate a
filter proc that dims a dialog's OK button as long as the TextEdit
field has no text in it.

Feel free to use these programs as shells for your own INITs,
cdevs, MDEFs, and filter procs. In addition, you are welcome to use
the PICT MDEF in your own applications.

_J

46

AFI, the Application Font INIT

AFI actu ally consists of two separate pieces of code. The first,
ShowINIT, displays an icon on the screen at !NIT t ime. This piece of
code is the standard used by most Macintosh INITs. ShowINIT.c will
be compiled into a code resource of type PROC . Within the !NIT,
G e t Re s o u r c e <) is used to load the PRO C into memory. Next, the
P R 0 C is locked then executed via a call to C a L L Pa s c a L () .

Although routines like Get Picture C > and Get NewW i ndow C >
are limited to a single resource type (PI c T and w IND) ,
Get Resource c > can be used to load any resource . The
relocatable code resource was given the name PR o c, but it could
have been called w I z z or even x 9; J.

As was discussed in Chapter 2, ca L l Pa s ca l c > is used to call a
routine using the Pascal calling conventions. Because PR o c will
have no inherent association with either C or Pascal, it is important
to make sure the correct calling conventions are used.

Start by building a project for the Show !NIT PRO C.
Create a folder in your development folder called ShowINIT f.

Remember, you can create the f character (which is used here as a
substitute for t he word files) by typing Option-f. Inside this folder,
create a new project called ShowINIT.7t (the 7t is actually an Option
p). Then, add MacTraps to the project.

This is a strategy change from Volume l's naming convention. In
Volume I, the source code file is called xxx.c, the project is called
xxx Pro) and the resource file is called xxx Proj.Rsrc. The folks
who developed THINK C used a different strategy, which is used in
this volume. From now on, if the source code file is named xxx.c,
the project file will be named xxx.n (you type the n by holding down
the Option key and typing p), and the resource file will be named
xxx.n.rsrc. THINK C is case-insensitive regarding the name of the
resource file.

Next, select Set Project Type ... from the Project menu. Set the
parameters in the Project Type dialog box as they appear in Figure
3.3. First, click the Code Resource radio button. Then, change the

Code Resources

0 Application

O Desk Accessory

O Deuice Driuer

®Code Resource

Name

Type lmi!:ml
D Custom Header

OK

File Type l rsrc

Creator I RSED

D Multi-Segment

ml....._ 1_2e_

Rttrs ~ §]

(Cancel J

Figure 3.3 Set Project Type dialog box for Show INIT.

47

File Type to r s r c and the Creator to R S E D. This will force the
Finder to launch ResEdit when you double-click on the file you create
when you build this project. Change the Type field to PRO C and the
ID field to 1 2 8. When you build the code resource, you want to create
a PRO C resource with an ID of 1 2 8. There's nothing special about the
number 128. You can use any resource ID you like. Finally, change
the A t t r s field to 5 0. This forces the space for the resource to be
allocated on the System Heap and makes sure the resource gets
locked after it is loaded into memory. Because this resource is needed
at INIT time, you have no choice but to allocate space on the System
Heap. No applications (such as the Finder) have been launched yet,
so there are no application heaps from which to steal space.

Click OK to save the Project Type dialog box settings. Next, you'll
enter the ShowINIT source code. Create a new file by selecting New
from the File menu. Enter the source code for ShowINIT.c (you can
find it at the beginning of Appendix B). Save the file as ShowINIT.c.
Add the file to the project.

48 Macintosh Programming Primer

,_

This chapter does not wa.lk through ShowlNIT's sourpe; c0~'1J~ ·,
Some of .the.conoep~,.it u~~ are. pre~ ':dV~~.~~t~":>~@•H~· ·
not appropriate .to this section. Thls·.ls the only p~r;&m ·th.lf:,wlll '•fl$,
treated this way, however. It is included in the bGok as a :Pre>jaet
because there was no othQr way to get you t~e$fiow.INIT P •. o,c.

Now you're ready to build the code resource. Select Build Code
Resource ... from the Project menu. Answer Yes when asked to Bring
the project up to date?. THINK C will try to compile the code
resource. If you run into problems, check for typos. Once you get the
program to compile, the Save code resource as: dialog will appear.
Save the code resource as ShowINIT.

AFI Resources

Great! Now you're ready to create AFI, your INIT. Create a new
folder in your development folder called AFI f. Launch ResEdit and
open windows until the AFI f window is open. Select New from the
File menu to create a new file in the AFI f folder. Name the file
AFl.1t.rsrc (see Figure 3.4).

New file name

I RF I. n .rs re

D Folder

t OK I (Cancel)

Figure 3.4 Creating AFI's resource file.

The first resource you will place in AFI's resource file is the PRO C
you created earlier. Keeping the AFl.1t.rsrc window open, open the
resource file Show INIT you created earlier. You should see the single
resource type PRO C in Show INIT's resource type window. Select
PRO C (it should be highlighted) and then select Copy from the Edit
menu. Bring the AFl.1t.rsrc window to the front and select Paste from

Code Resources 49

the Edit menu. The resource type PRO c should appear in the
AFI.x.rsrc window.

Next, you will C?reate some I C N #s. These will ultimately be plotted
on the screen by the Show !NIT PROC. You will create a total of nine
IC N # resources. The first eight (numbers 128 through 134, and
-4064) represent an animation sequence. You create the illusion of
animation by plotting several icons, one right after the other, each
one slightly different than the one before it. Your animation sequence
will indicate that AFI is changing the default application font to
something other than Geneva.

'.::-~~u, :tn~y-·. t1•r w()nr!ff)A,rig ·abo1;.tf thfl llt:t~su~f.pb~fce of the I.~ N:#
:·.~lf>l:l"~fr-i~, ·nt;rmb&r -4.b6 4. _A mqre0 t(Jgicat_ re$QUr~· .fl)· .(such '$$

-·_J$1>,. --~'Yid- llave: been · (as·aaJ, but bec*1us'8 tnis-_resource wm· be
·-,$~~: WIU), a· -c;de'-v Ul ttae .. t'l~~ .project,_ it m~d~- :sense. 1to pick_~·
>f~ur~~:.J~:.that· falls, withiri :Ult;t· ,r~TI,g~' o.t· ttl'2~' ff1Q~gnize_tl. ·()y
· ·_·-~-~;',~~:~E>T8J~O this.A.atet.. · -·· · -- - -

I C N # 1 3 6 is the icon you will plot if the default application font is
to be left as Geneva. Figure 3.5 shows the IC N #s used in this
example. Create all nine. You can change the pictures, but make sure
you keep the same resource IDs .

•••••••••••••••••••••••••••••••
• • •• •• • • • • • • • • ••••• • • • •••• •••• • • • ••• ••• ••••• • • • ••••••••••• •••• • • • ••• •••• •• • ••• • •••• • • • • • • • • •••• • •••••• ••••••• •• •• • •••••• •••••• • ••••••• •••••• • • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • 11•••••••••••••••• ••

•••• ••• • • •• • • • • • • • • • • • • • • • •• •• • ••• • •••
•••••••••••••• • •••••••••••••

ICN# 128

Figure 3.5 AFI's ICN#s.

................................
• • •• •• • • • • •••• ••••• • • • •••• •••• • • • ••• ••• ••••• • • • •••• •• • ••• • •••• • • • • • • • • •••• • ••••••

·====== ·=··==· .. ••••••• •••••• • • ••••••• ••••• • • • •••••••••••• • ••••• •••••• • ••• •••• •••• • •••• •••••••••••••••• ••
=·· = ·==· =·· .· • • • • • • • • • • • • ••• • • • • • • • •• •• • ••••• ••• • ••• • ••••••••••••••• • •••••••••••••

ICN# 129

50

••••••••••••••••••••••••••••••
• • •• •• • • • • • • • • ••••• • • ·=· 11=1. ·=·· . . . ··=· ••••••••••• •••• • • • ••• ·~

=···. ·. ..
•••••••••••••• ••••••• 111111. •11111. I • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • ••••••••••• • •••••••• • • • •••• • ••••

• •••• • ••• •
• • • • • •••• • • • • •••••••••
=··············

• • • • • • • • •• • ••••
•••••••••••••••

ICN# 130

••••••••••••••••••••••••••••••••
• • •• •• • • • • ••••• •• • • •• ••• ••••• • • • 1111••••11• ••••• .. ••

=···· ··. .· • • •••• • •••••• ••••••• •• •• • •••••• •••••• • ••••••• •••••• • • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • •••• • •••••••••••• •••• •
= = =·· .. •••••• • • • • • •••••• • • • • • • • •••• • • • • • • •• • • •••••••••••• • ••• •

ICN# 132

..............................
• • •• •• • • • • ••••• •• • • •• • •••• •••• • • • •••

·===··===·= ·=·· . . . ··=· •••• •• • ••• • •••• • • • • • • • • •••• • ••••••
•111111 ·=··==· .. ••••••• •••••• • • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • ••••• •• ••••••• •••••• • ••••••••••• • • • •••• • 11111111111111 I I I • • •••• • • • •• • • • ••• • ••••••••••• 1..............

ICN# 134

Figure 3.5 (continued)

Macintosh Programming Primer

••••••••••••••••••••••••••••••
• • •• •• • • • • • • • • ••••• • • ·=· 1111. ·=·· . . . ··=· ••••••••••• •••• • • • ••• •••• •• • ••• • •••• • • • • • • •••••••••••••• ••••••• •••••• •••••• • ••••••• •••••• • • ••••••• ••••• • • ••••• •••••• • ••• •••• •••• •

••••••••••••• •• • •• •••• • •• • • • •• • • • •• •••• • •• •

•••••••• • •••• • ••• • • • • • • • • • •• • • ••• • •••••••••••• • ••••••••••••••• ··············=
ICN# 131

• ••••••••••••••••••••••••••••••
1. • • • .·1

••••• • ••• •• •• • •• .1. 1111. • • • ··=· ••••••••••• •••• • • • ••• 1111 •• •• ••• •• • • • • • • •••• • •••••• •111111 ·1 •• 11. •• ••••••• •••••• • • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • ••••• • ••••• •••••••••••• • ••••• • • • • •••• • •••••••••• • • • ••••••••••• • • • I • I •••• I •. • •• •••••••••••• • • • ••••••••••••••• • ••••••••••••••
ICN# 133

• ••••••••••••••••••••••••••••• • • •• •• • • • • ••••• •• • • ••
·=· ====· ·=·· . . . ··=· ••••••••••• •••• • • • ••• •••• •• • ••• • •••• • • • • • • • • •••• • •••••• •111111 ·=··==· •• ••••••• •••••• • • ••••••• ••••• • • •••••• ••••• • • ••••• •••••• • ••• •••• •••• • ••••• • ••••• • •••••• • •••••

111111111111111111i i •• i i
• • •••• • • • •• • • • ••••••••••••••• • ••••••••••••••

ICN# -4064

Code Resources

ICN# 136

Figure 3.5 (continued)

51

If you create color icons (cicn resources) with the same ID as the
I c N # resources, Show I NIT will attempt to plot the color icons on
Macintoshes that sport Color QuickDraw. You must provide the
black and white I c N #s in any case. Several public domain cicn
editors are available on the bulletin boards. As of this writing,
ResEdit doesn't support graphic editing of color icons. You can try
to create clcn resources in hexadecimal using ResEdit, but we
wouldn't recommend it (unless, of course, you're the kind of person
who gets a kick out of doing 10,000-piece, monochromatic jigsaw
puzzles).

Finally, you will create a resource to keep track of the current
application font. Creat e a new resource type with the name of word
(see Figure 3.6).

Select New Type

actb
a cur
RLRT
RPPL
BNDL
cctb
cicn

n OK D

Cancel

Figure 3.6 Creating a word resource.

52 Macintosh Programming Primer

Select New from the File menu to create a new word resource. The
general resource editor will appear. You will use this editor in a
second. First, select Get Info from the File menu and give this new
resource a resource ID of - 4 0 4 8.

Once again, a resource ID like 128 could have been used, but the
word resource will be shared with the c de v as well.

Now, use the general (or hexadecimal) resource editor to specify
the w o r d resource. Make sure you click on the left side of the editor
Uust to the right of the line number reading 0 0 0 0 0 0) before you
start typing. Enter the four hexadecimal digits 0001. Your window
should look like Figure 3. 7.

Excellent! The file AFI.7t.rsrc should now contain three different
resource types: nine ICN#s, one PROC, and one word. You are now
ready to create the project and enter the source code for your !NIT.

EDE word ID= -4048 from RFl.n.rsrc --
000000 0001 I aa ~ 000008
000010
000018
000020
000028
000030
000038
000040
000048
000050
000058

~ 000060
000068 121

Figure 3. 7 Entering the word resource.

ATTENTION!! IMPORTANT NOTICElll
The programs in this book were tested using version 4.0 of THINK C.
If you are using THINK C 5.0 or later, you'll need to make a few
changes to your code. These changes are completely described
starting on page 508.

I

Code Resources 53

Creating the AFI Project

Inside the AFI f folder, create a new project named (what else?)
AFl.Jt. Add MacTraps to the project. Next, select Set Project Type
from the Project menu and change the settings to reflect the
specifications in Figure 3.8.

First click the Code Resource radio button. Change the File Type
to INIT and the Creator to RSED. The RSED will allow you to
double-click the INIT file and go right into ResEdit. The type of INIT
tells the MacOS to open this file at start-up time and to execute any
INIT resources found in the file. Because the MacOS will open any
INIT resource it finds in the file, you could use any resource ID for
the INIT; 0 is used here by convention. Just as you did for your PROC
resource, set the At t r s field to 50.

0 Application

O Desk Accessory

O Deuice Oriuer

® Code Resource

Name

Type I INIT

D Custom Header

OK J)

File Type I INIT

Creator I RSED

D Multi-Segment

ml _o __
Attrs ~ lso I

(Cancel J

Figure 3.8 Setting the Project Type.

Next, create a new source code file, save it as AFI.c, and add it to
the project. Type the following source code into AFl.c:

#define BASE_ ICON - ID 128
#define LAST_ ICON - ID -4064
#define PROC_ ID 128
#define WORD_ RES _ID -4048
#define NUft'I_ ICONS 8
#define NORMAL_APP_ FONT applfont
#define DELAY 30L

54 Macintosh Programming Primer

main()
{

}

Handle procH, wHandle;
i, fontNumber;

dummy;
int
Long

if C C wHandle = GetResourceC 'word', WORD_RES_ID)) •
OL >

{

}

fontNumber = *C (short *>C*wHandle) >;

*C <short *> Ox0204 = fontNumber - 1;

WriteParamC>;

if C C procH = GetResourceC 'PROC', PROC_ID)) !=
OL)

{

}

HLockCprocH>;

if fontNumber -- NORMAL_APP_FONT)
{

}

else
{

}

CallPascalC BASE_ICON_ID + NUM_ICONS, -
1, *procH>;

CallPascalC BASE_ICON_ID, 0, *procH);

Delay(DELAY, &dummy >;

for C i=1; i<NUM_ICONS-1; i++)
CallPascalC BASE_ICON_ID + i, 0,
*procH>;

CaLLPascalC LAST_ICON_ID, -1, *procH);

HUnlockCprocH>;

Code Resources 55

OK. Now comes Miller time. Select Build Code Resource ... from the
Project menu. Click Yes when prompted to Bring the project up to
date?. Once the code compiles, you'll be prompted for a file name for
your code resource. Save the INIT as AFI. The messages Linking AFI
and Copying AFl.7t.rsrc should appear as the INIT is built. The
message Copying AFl.7t.rsrc is especially important because it means
that THINK C found the resource file. If in doubt, open the newly
created AFI using ResEdit. The three resource types you created
should be there. In addition, you should also find an INIT resource
with the name AFI and a resource ID of 0.

In ResEdit, close the file AFI so you are looking at the list of files
in the folder AFI f . Select the file AFI and select Get Info from the
File menu. Make sure that AFI has a type of INIT and a creator of
RSED.

Quit ResEdit. Now, copy the file AFI into your System folder and
reboot.

Danger, Will Robinsonlll Before you go too far, you might want to
create an INIT tester. Because of cosmic human frailty (screw-ups),
your INIT might not work properly (it might even crash). The trouble
is, if the INIT is in your System folder, every time you reboot, you'll
bail out before you can get to the Finder to remove the INIT from
the System folder.

Enter the INIT tester. Originally invented in 1926 by Carlo
Quatious, the INIT tester is simply a floppy copy of a standard
System disk {preferably the same System version as that of your
boot disk). Instead of placing your INIT in the System folder on
your hard drive, gently slide the INIT into the System folder on the
floppy disk (be sure to grasp it firmly on both sides). If the INIT
fails, simply reboot, hold down the mouse button, and the brain
damaged System disk will eject, leaving your hard drive pure and
clean. Thanks, Carlo!

If your INIT went kablooey, open the INIT resource using ResEdit
and select Get Info from the File menu. Make sure the locked
checkbox is checked (THINK C should have done this for you). If all
went well, the IC N # with the big X through it should have appeared
underneath the Welcome To Macintosh window. The X indicates
that AFI will leave the application font at its normal setting, Geneva.
When you created the w o rd resource, you entered a 2-byte integer

56 Macintosh ProgrammingPrimer

E Af' l.1J.T.R"C

Figure 3.9 Zapf Chancery as application font.

with a value of 1. Your INIT retrieves this integer and compares it
with the predefined constant, a pp l Font (which happens to be 1).
The constant a pp l Fon t is defined as a member of an enumerated
set in the Mac #include Quickdraw.h.

Try editing the AFl's word resource using ResEdit (edit the copy
of AFI in the INIT tester's System folder). Make sure you leave it at 2
bytes. Change the 1 to a 4. This represents the font mo n a co. Save
your changes and reboot your INIT tester. You should see some
animation this time. If not, are you sure you edited the correct AFI
file? Did you reboot from the floppy?

The animation indicates that the application font has been
changed. Fire up ResEdit. Do you notice anything different? The lists
should all be displayed using Monaco instead of Geneva. Figure 3.9
shows a ResEdit window with the application font set to 0012 (Zapf
Chancery).

Note that if you set the word resource to an undefined font,
Geneva will appear as the application font. Experiment.

Walking Through the AFI Source Code

This section takes a look at the source code for AFI. BA s E_I co N_I D
is the resource ID of the first I c N # in the animation sequence. The
program draws the first seven I C N # s, one on top of the other, leaving
the INIT icon-drawing cursor in the same place. Finally, it draws the
ICN# with resource ID LAST_ICON_ID. This time, however, it
moves the INIT icon drawing cursor to the next icon position. Doing
this ensures that when the next INIT draws its icon, it won't appear
on top of this INIT's icon.

#define BASE_ICON_ID128
#define LAST_ICON_ID-4064

Code Resources 57

PRO C _I D is the resource ID of the PRO C. WO R D _ R E s _I D is the
resource ID of the w o rd resource. NU M_ I CONS determines the
number of ICN#s (irrcluding LAST_ICON_ID) to be used in the
animation sequence. NORM A L_A PP_ FONT is the normal application
font. If the word resource designates this font, the I c N # with the big
X through it will be drawn in place of the animation sequence.
Finally, D EL A Y indicates the number of ticks (60ths of a second) the
program waits between drawing the first I c N # in the animation, and
drawing the last seven. Increasing the delay gives the viewer more
time to realize that an animation is going on.

#define PROC_ID 128
#define WORD - RES - ID -4048
#define NUM ICONS 8 -
#define NORMAL_APP_ FONT applfont
#define DELAY 30L

AFI consists of a single routine, named ma i n <) . Any number of
routines could have been used, as long as main<) was the first one
in the file. pro c H will be used as a handle to the PR o C when it is
loaded with Get Resource<). Similarly, wHa nd le will handle the
word resource.

main()
{

Handle procH, wHandle;
i, fontNumber;

dummy;
int
long

The w o rd resource is loaded first. If this loading is successful, the
program locks the resource and dereferences it to get at the first two
bytes addressed by the handle, placing the results in the i n t
font Number. After unlocking the handle, the program writes
font Numb e r -1 out to the two bytes that start at memory location
Ox0204. Then, the program writes this change to Parameter-RAM
via a call to W r i t e Pa r am () .

58 Macintosh Programming Primer

Important noticel Do not disregard!

Parameter-RAM (P-RAM) is a chunk of 20 bytes of memory on the
Macintosh clock chip that is backed up by your Mac's battery.
Because of the battery, this memory stays around even if your Mac
is powered down.

At boot time, the 20 bytes of P-RAM are copied into low memory, at
the location pointed to by the global sys Par am. To change
P-RAM, change the appropriate low memory byte, then call
w r i t e Pa ram C >. W r i t e Pa ram C > copies all 20 bytes back to the
cloekchip.

The two bytes starting at ox o 2 o 4 are the low memory copy of the
default application font. Because this copy is -1 based instead of o
based, always subtract 1 before writing to this location. This means
that Geneva, known as 3 to the rest of the world, is stored in
~RAM~a~ .

Now comes the important notice. Don't mess with Parameter
RAM. Although P-RAM is well documented (Inside Macintosh,
Volume II, pp. 38()-382), Apple is likely to change the functionality
of individual bytes within P-RAM without telling anyone. This
means that any application built around P-RAM is likely to break in
the near future. P-RAM is included in this book's examples for
demonstration purposes only. Caveat Programmus.

if ((wHandle = GetResource('word', WORD RES_ID)) !=
OL)

{

fontNumber = *((short *)C*wHandle));

*((short *) Ox0204) = fontNumber - 1;

WriteParamO;

Once the application font is set, the program is ready to draw its
icons. First, it loads the PR o c. Once the PRO c has been loaded, the
program locks it so that it won't move around during execution. If the
font is set to Geneva , the program draws the IC N # with the big X

Code Resources 59

}

through it. The program calls the PRO C by passing its pointer to
C a l l Pa s ca l C > . The first two parameters to C a l l Pa s c a l C) will
be passed on to the PRO C. The first parameter specifies the resource
ID of the I C N #, and the second parameter specifies the number of
pixels to move the INIT icon cursor after the icon is drawn. Passing 0
tells the PRO C to leave the cursor in place. This results in the next
icon being drawn on top of this one. Passing -1 tells the PRO C to
move to the beginning of the next icon space. This results in the next
icon appearing to the right of the current icon.

if C C procH = GetResourceC 'PROC', PROC ID)) != OL)
{

}

HLockCprocH>;

if C fontNumber == NORMAL_APP_FONT)
{

}

}

CallPascalC BASE_ICON_ID + NUM_ICONS, -1,
*procH>;

If the font is anything but a pp l Font the INIT performs the
animation sequence. It draws the first icon, then delays about half a
second. The dummy parameter is not used. Next, all but the last icon
are drawn in place. Then the program draws the last icon, moving
the INIT icon cursor as a courtesy to the next INIT. Finally, the INIT
unlocks the PRO C and exits.

else
{

}

CallPascalC BASE_ICON_ID, 0, *procH);

Delay(DELAY, &dummy >;

for C i=1; i<NUM_ICONS-1; i++)
CallPascalC BASE_ICON_ID + i, O,
*procH>;

CallPascalC LAST_ICON_ID, -1, *procH);

HUnlockCprocH>;

_J

60

TheAFlcdev

The next program is a cdev, or Control Panel device. This cdev will
appear in the Control Panel's scrolling list of icons. When you click on
the icon, a pop-up menu label and a push button will appear in the
body of the Control Panel (see Figure 3.10).

The pop-up menu lets you select the new default application font.
The Default button sets the font back to a pp l Font. Pretty straight
forward, right? Let's get started.

Create a new folder in your development folder called cdev f. Now
you'll create the project resources.

-o
rn
~

General

Keyboard

3.3.2

Figure 3.10

Control Panel

Geneva

(Default J

......... ·:·:·:·:
~·~·~·~ ~:~:~:~:~ ~:~:~:~:
: : : : : : : : : ::::::::
: : : : : : : : : ::::::::
: : : : : : : : : :::::::: ·:·:·:·:
:.:-:-: : : : : : : : : :
: : : : : : : : : :-:-:-:
: : : : : : : : : :::::::: ·.·.·.· ·.·.·.· ·.·.·.·
: : : : : : : : : ::::::::
:-:-:.: : : : : : :::::::: ·.·.·.· ·.·.·.·

............. ·.·.·.·
The AFI cdev in action.

Code Resources 81

AFI cdev Resources

You will create seven different resources for this project, as well as
borrowing the I N IT, I C N #, w o rd, and PRO C resources from your
INIT project. Start by copying the file AFl.1t.rsrc into the cdev f
folder. Rename the copy to cdev.1t.rsrc. Open the file in ResEdit. You
should see something like Figure 3.11.

Now, open up the file AFI (your INIT, probably in the System
folder). Copy the INIT and paste it into cdev.1t.rsrc. You should now
see something like ~gure 3.12. Now you're ready to create some new
resources.

cdevs are required to provide the following seven resources:

• DITL -4064 - The dialog items that will appear when your cdev
icon is clicked.

• mach -4064 - A description of the types of machines on which
your cdev will run (for example, Mac Ils with Color QuickDraw
only).

• nrct -4064 - The rectangle, in Control Panel local coordinates,
that will be dedicated to your cdev. The area outside this area
will be painted gray.

~D cdeu. fl' .rsrc
ICN#
PROC
word

Figure 3.11 A copy of AFl.7t.rsrc.

:o cdeu. fl' .rs re
ICN#
INIT
PROC
word

-·
hd:

~ I-"-

121
Figure 3.12 cdev.1t.rsrc with the INIT resource from AFI.

62 Macintosh Programming Primer

• ICN# -4064 - The icon that will appear in the Control Panel's
scrolling icon list.

• BNDL -4064 - The B ND L resource linking the FR E F and the
I c N #, allowing the icon to appear in both the Control Panel and
the Finder.

• FREF -4064 - The F R E F links the file to the B N D L _

• cdev -4064 - The cdev resource is the code resource that
implements t he cdev. THINK C will create t his r esource by
compiling your source code.

In addition to these resources (and the ones that have already
been copied into the resource file), you will need a creator resource
(so that the Finder will display your icon) and a MENU resource (for
the font pop-up). The creator ' F NT? ' is registered with MacDTS.

c de v resource IDs are limited to the range -4033 through -4064.
The Control Panel reserves the resource IDs from -4049 through
-4064. Resource IDs from -4033 through -4048 are available for
use by your cdev.

Return to the window associated with the file cdev.1t.rsrc. Cr eate a
DI TL with a resource ID of -4064. Create two DI TL it ems according
to the specifications in Figure 3.13.

Next, create a BN D L resource according to the specifications in
Figure 3.14. Make sure you change the B ND L's resource ID to -4064.

Next, create an FR E F according to the specifications in Figure
3.15. Change the FR E F resource ID to -4064.

Now create an F NT? resource with a resource ID of 0. The sample
program's F NT? 0 resource is shown in Figure 3.16. If you need a
r efresher course on creator resources, go back to Chapter 8 in
Macintosh Programming Primer, Volume I. Edit the first byte (the
size byte) u sing the hexadecimal (left) side of ResEdit's general
editor. The sample program's size byte is set to hex 14 (which, as you
know, is equal to decimal 20). Following the size byte, the sample
program has 20 bytes of text. Remember, if you change the message,
change t he size byte accordingly.

Code Resources

Edit Dill Item #1

®Button
0 Check boH
0 Radio control

O Static teHt
O Editable teHt

O CNTL resource
0 I CON resource
0 PI CT resource

0 User item

Te Ht

®Enabled
0 Disabled

top 40 -----left 125
1---------1

bottom 60

right ·185 ._ ___ ___,

Edit 0 ITL I tern #2

O Button ®Enabled
O Check boH 0 Disabled
O Radio control

O Static teHt top 12
O Editable teHt

left 103 O CNTL resource
O ICON resource bottom 28
O PICT resource right 207
®User item

Figure 3.13 DITL item specifications.

63

64 Macintosh Programming Primer

BNDL ID - 4064 from cdeu.n.rsrc

OwnerHame l~HT ?
~====--.

Owner ID ~lo~~~~~
Hum Types

Type I 1 CHU

~--~

ii of type 0

Loco 110 I 0
:=====:

Rsrcl D 1-4064

Type .__I F_R E_F _ __.

ii of type 0

Loco 110 I 0
:=====:

Rsrc lD 1-4064

Figure 3.14 BNDL specification.

_o FREF ID 4064 from cdeu. n .rsrc

Fi le Type llcdev

Icon local ID lo
Fi leHame l

Figure 3.15 FREF specifications.

J

Code Resources 65

§0 FNT? ID = O from cdeu. n .rsrc
000000 I 145~ 5F75 7220 5055 DYour me IQ 000008 7373 5157 5520 5855 ssage he
000010 7255 2121 21 re!!!
000018
000020

~ 000028
000030 121

Figure 3.16 The sample creator resource.

Next, create a mac h resource with an ID of -4064 according to the
specs in Figure 3.17. A table of legal mac h specifications appears at
the bottom of page 328 of Inside Macintosh, Volume V. The speci
fications used in this sample indicate that this cdev should be made
available on all machines.

Create a MEN u resource for the Font pop-up. Use the specifications
in Figure 3.18. Notice that this resource ID should be set to -4048.
Because the MEN U is not a required cdev resource, its resource ID is
limited to the range -4033 through -4048.

§0§ mach ID= -4064 from cdeu.n .rsrc
000000 f FFF 0000 aaaa JQl
000008
000010
000018
000020

~ 000028
000030

Figure 3.17 mach specifications.

D MENU "Font" ID 4048 from cdeu. n .rsrc

Menu ID -4048

Proc lO 0

EnableFlgs $FFFFFFFF

Title Font

***** 0

Figure 3.18 MENU specifications.

66 Macintosh Programming Primer

Finally, create an n r ct with a resource ID of -4064. The n r ct
specifies the top, left, bottom, and right of a Rec t. Figure 3.19 shows
the sample program's n r ct in both the template format and in the
general, hexadecimal format (for those of you with older versions of
ResEdit). Notice that the left coordinate is set at 87. This will place
the left edge of the cdev rectangle just to the right of the Control
Panel scroll bar.

Well, that's it for resources! Your list of resources should look like
the one in Figure 3.20. Save that resource file and move on.

0 nrct ID -4064 from cdeu:n.rsrc

NumOfRects
jQj

Rectangle 11-1 1187 1175 11223 I CfilJ

~

EDE nrct ID = -4064 from cdeu. TI .rsrc
000000 0001 FFFF 0057 0048 aaaaawaK ~ 000008 OODF aa
000010
000018
000020

~ 000028
000030 Q]

Figure 3.19 nrct specifications, in template and in general format.

0
BNDL
DITL
FNT?
FREF
ICN#
INIT
mach
MENU
nrct
PROC
word

Figure 3.20

cdeu. TI .rsrc

The resources in cdev.Jt.rsrc.

Code Resources 67

The cdev Source Code

Create a new project in the cdev f folder. Call the project cdev.Jt.
Next, add MacTraps to the project. Select New from the File menu to
create a new source code file and save the file as cdev.c. Add cdev.c
to the project. Here's the source code for cdev.c. Type it in and then
save it:

#define DEFAULT_ITEM
#define USER_ITEM

#define RUN_ON_ALL_MACHINES
#define ERROR_STATE
#define WORO_RES_ID
#define FONT_MENU_ID

#define NORMAL_APP_FONT

typedef struct
{

short curFontNum;
} FontNumlnfo, **FontNumH;

1
2

1L
OL
-4048
-4048

applFont

pascal longmainC message, item, numltems, cPanelID, e,
cDevValue, cpDialog >

int message, item, numltems, cPanelID;
EventRecord
long
DialogPtr

*e;
cDevValue;
cpDialog;

{

int
Handle
Re ct
MenuHandle
Str255

itemType, fontNumber, choice;
itemH, tempHandle;
itemRect;
f ontMenu;
tempStr;

if C message == macDev
return(RUN_ON_ALL_MACHINES >;

else if C message == initDev >
{

tempHandle = NewHandleC sizeofC FontNumlnfo) >;
fontNumber = FindFontNumberC>;
C**CCFontNumH)tempHandle)).curFontNum = fontNumber;

68 Macintosh Programming Primer

return(Clong)tempHandle >;
}

if < CcDevValue != cdevUnset) && CcDevValue !=
ERROR_STATE))

{

switch(message >
{

case hitDev:
if (item == DEFAULT_ITEM + numltems)
{

}

GetDitemC cpDialog, USER_ITEM + numltems,
&itemType, &itemH, &itemRect >;

fontNumber = NORMAL_APP_FONT;
SetAppFont(fontNumber >;
DrawFontNameC fontNumber, &itemRect >;
C**CCFontNumH>cDevValue>>. curFontNum =

fontNumber;
FixResourceC fontNumber >;

else if C item == USER_ITEM + numltems >
{

}

GetDitemC cpDialog, USER_ITEM + numltems,
&itemType, &itemH, &itemRect >;

fontMenu = GetMenuCFONT_MENU_ID >;
InsertMenuC fontMenu, -1 >;
AddResMenuC fontMenu, 'FONT' >;
itemRect.right += 1;
choice = DoPopupC &itemRect, fontMenu >;

if C choice != 0 >
{

}

GetltemC fontMenu, choice,&tempStr >;
GetFNumC tempStr, &fontNumber >;
SetAppFontC fontNumber >;
DrawFontNameC fontNumber, &itemRect >;
C**CCFontNumH)cDevValue)).curFontNum =

fontNumber;
FixResourceC fontNumber >;

DeleteMenuC FONT_MENU_ID >;
ReleaseResourceC fontMenu >;

Code Resources

}

}

break;
case closeDev:

DisposHandleC CHandle>cDevValue >;
break;

case nulDev:
break;

case updateDev:
GetDitemC cpDialog, USER_ITEM+numltems,

&itemType, &itemH, &itemRect >;
FrameRectC &itemRect >;

69

MoveToC itemRect.left + 1, itemRect.bottom >;
LineToC itemRect.right, itemRect.bottom >;
LineToC itemRect.right, itemRect.top + 1 >;
fontNumber = C**CCFontNumH)cDevValue>>.curFontNum;
DrawFontNameC fontNumber, &itemRect >;
break;

case activDev:
break;

case deactivDev:
break;

case keyEvtDev:
break;

case macDev:
return(1L >;
break;

case undoDev:
break;

case cutDev:
break;

case copyDev:
break;

case pasteDev:
break;

case clearDev:
break;

return(cDevValue >;
}

70 Macintosh Programming Primer

!******************************** FixResource*******/

FixResource(fontNumber
short
{

fontNumber;

}

Handle wHandle;

if C (wHandle = GetResource('word', WORD_RES_ID > > !=
OL)

{

}

*C (short *>C*wHandle)) = fontNumber;
ChangedResourceC wHandle >;
WriteResourceC wHandle >;

/********************************DoPopup*******/

int DoPopupC popupRectPtr, theMenu)
Re ct *popupRectPtr;
MenuHandle theMenu;
{

}

Point
long

popupUpperLeft;
theChoice = OxOOOO;

popupUpperleft.h = popupRectPtr->left + 2;
popupUpperleft.v = popupRectPtr->bottom;

LocalToGlobal(&popupUpperleft >;

InvertRectC popupRectPtr >;
theChoice = PopUpMenuSelectC theMenu, popupUpperleft.v,

popupUpperleft.h, 0 >;
InvertRectC popupRectPtr >;
return< LoWordC theChoic~) >;

/******************************* FindFontNumber */

short FindFontNumberC)
{

Handle wHandle;
short fontNumber;

Code Resources 71

}

if C C wHandle = GetResourceC 'word', WORD_RES_IO >) !=
OL >

{

}

else

fontNumber = *C (short *>t*wHandle) >;
return(fontNumber >;

return(NORMAL_APP_FONT >;

!************************************* SetAppfont */

SetAppfontC fontNum)
short fontNum;
{ .

*C <short *) Ox0204) = fontNum - 1;

WriteParamC>;
}

!************************************* DrawfontName */

OrawfontNameC fontNum, rPtr >
short fontNum;
Rect *rPtr;
{

}

Str255
int
Re ct

tempStr;
w;
tempRect;

tempRect = *rPtr;
InsetRectC &tempRect, 2, 2 >;
EraseRectC &tempRect >;
if CfontNum == 1)

GetfontName Cgeneva, & tempStr>;
else

GetfontNameC fontNum, &tempStr >;
w = rPtr->right - rPtr->left - StringWidthC tempStr >;
MoveToC rPtr->left + w/2, rPtr->bottom - 4 >;
Drawstring(tempStr >;

72 Macintosh Programming Primer

Next, set the project type parameters to settings appropriate for a
cdev. The sample program's Set Project Type dialog box is shown in
Figure 3.21. Click the Code Resource radio button. Set the File Type
to cdev. This tells the Control Panel that this file contains resources
that make up a c de v. In addition, at boot time the MacOS will open
files of type cdev and execute any INIT resources it finds. That's why
the AFI INIT resource was copied into the resource file. If you stick
the cdev file in the System folder, you no longer need the AFI INIT
file.

Set the Creator to FNT?. You'll use this information to B ND L an
icon to your cdev in both the Control Panel and the Finder. Set the
Type to cdev and the ID to - 4 0 6 4. Finally, set the Attrs field to 2 0.
Click the OK button to save your changes.

Now you are ready to build the cdev. Select Build Code Resource ...
from the Project menu. When prompted to Bring the project up to
date?, click Yes. Once you get cdev.c to compile, save the cdev as AFI
cdev. Now try it out!

0 Application

0 Desk Accessory

0 Deuice Driuer

®Code Resource

File Type I cdeu

Creator I FNT?

D Multi-Segment

Nome 1 --------------J
Type 1-1
D Custom Header

OK J)

ID 1-4064
Attrs ~ §]

(Cancel J

Figure 3.21 Set Project Type dialog box.

Code Resources 73

Checking Out the AFI cdev

Copy the AFI cdev to your System folder. Before you go any further,
see if the Finder recognizes your cdev. Go back to the Finder, open
the System folder, and select by Name from the View menu (see
Figure 3.22).

Figure 3.23 shows the sample System folder viewed by name. The
Kind field associated with AFI cdev should say Control Panel doc. If
yours doesn't say this, your file type is not set correctly. The file type
should be cdev.

by Small I con
by Icon

../by Name
by Date
by Size
by Kind
by Color

Figure 3.22 View by Name.

System Folder

11 miliM
I) After Dark

[J After Dark mes

A lel ;nk Out Basket

s;ze Kind

6K Contro 1 Pane 1 doc .. .

74K Control Panel doc .. .

folder

folder

Figure 3.23 The sample Control Panel document.

74 Macintosh Programming Primer

Now verify that the INIT still works. Make sure that A.FI cdev is
in the System folder, and that AFI (the INIT you built earlier in the
chapter) has been removed from the System folder. Reboot your Mac.
Depending on the setting of the w o rd resource within AFI cdev, you
should see either the animation sequence or the icon with the big X
through it. If not, use ResEdit to make sure the INIT resource is
inside AFI cdev.

Now take a deep breath and compose yourself. Slowly (savoring
the moment), select the Control Panel from the S menu. Did your
cdev icon appear in the scrolling list? If not, carefully check your
B ND L, F R E F, and F NT ? resources. If these look good, drag the cdev
file onto the desktop. Did its icon appear? If not, check your resources
again. Once you get the icon to appear on the desktop, your icon will
probably appear in the Control Panel.

Next, click on the AFI icon in the Control Panel's scrolling icon list.
Your Control Panel should look something like Figure 3.9. Click on
the pop-up font menu. Select a new application font. Close the
Control Panel and open ResEdit. ResEdit's lists should be drawn in
the selected font.

Walking Through the cdev Source Code

This section takes a look at the source code for this cdev. It starts off
with some #defines. DEFAULT _ITEM is the D IT L item number of the
reset button. u SER ITEM is the DI TL item number of the user item.
The user item determines where the pop-up font menu will appear.

#define DEFAULT_ITEM
#define USER ITEM

1
2

The sample cdev introduces the concept of code resource
messages. Unlike normal applications or even INITs, which run
from start to finish and then exit, cdevs are called repeatedly. Each
time a cdev gets called, one of its parameters (message) gets set
to a value, telling the cdev what action to take. For example, when
the Control Panel first calls the cdev, it will pass lnltDev in the
message parameter, asking the cdev to allocate any private
storage It may need, and to initialize the settings of any controls. A
complete list of all legal cdev messages can be found in Inside
Macintosh, Volume V, page 333.

Code Resources 75

RUN_ON_ALL_MACHINES is a response to the mac Dev message.
Actually, the sample cdev will never receive a mac Dev message,
because ma c Dev messages are sent only to cdevs with a ma ch
resource set to 0 0 0 0 F F F F. The code is included here just as an
example.

One of the cdev parameters is c D e v Va l u e. c D e v Va l u e serves
several purposes. If it is set to a value of ERR o R_S TATE when the
cdev is called, there is a problem, possibly the result of a lack of
memory. When you allocate your private data structure (see
Fon t N um I n f o, below), you'll return a handle to the data structure.
On subsequent calls of the cdev, the Control Panel will pass the
handle back in the parameter c Dev Va l u e.

#define RUN_ON_ALL_MACHINES
#define ERROR_STATE
#define WORD_RES_ID
#define FONT_MENU_ID

#define NORMAL_APP_FONT

1L
OL
-4048
-4048

applFont

The data structure Font Nu m Info holds the current font number
setting. Instead of going to all the trouble of allocating (and keeping
around) a data structure, the program could have just checked the
location Ox0204, or the contents of the word resource. This method
was used here to illustrate the technique of allocating and retrieving
a data structure in a cdev, because most of your cdevs will need this
technique.

typedef struct
{

short curFontNum;
} FontNumlnfo, **FontNumH;

The specifications for main C > and its parameters were obtained
from Inside Macintosh, Volume Vat the bottom of page 329.
Remember, whenever you write a routine that will get called by the
Toolbox, the routine must be declared as pascal. Because the
calling sequence in Inside Macintosh specified main C > as a function
returning a long, the sample program declares ma i n C > as a pa s ca l
long.

i t em tells you the O IT L item number that was hit, when you
receive a h i t Dev message. Because the D I TL in the sample program
is appended to the Control Panel's D I TL, nu m I t ems (the number of

76 Macintosh Programming Primer

items in the Control Panel's DI TL) must be subtracted from i t em
before it can be used.

c Pane l I D is the base resource ID of the Control Panel's own
resources. It is not used here. e is a pointer to the Event Rec o rd
associated with a h i t Dev, nu l Dev, a c t i v Dev, de Ac t i v Dev,
update Dev, and keyEvt Dev.

Finally, c p D i a l o g is the Control Panel's D i a l o g P t r.

pascal long main C message, item, numltems,cPanelID, e,
cDevValue, cpDialog >

int
Event Record
long
DialogPtr

message, item, numltems, cPanelID;
*e;
cDevValue;
cpDialog;

{

int itemType, fontNumber, choice;
Handle itemH, tempHandle;
Rect itemRect;
MenuHandle fontMenu;
Str255 tempStr;

If the program gets a ma c Dev message, it tells the Control Panel
to go ahead and use this cdev. When an i n i t Dev message is
received, the program allocates a Font Nu m I n f o struct, gets the
current font number, updates the cur Font Nu m field, and returns
the handle to the Control Panel, so the program gets it back in
cDevValue.

if C message == macDev)
return(RUN_ON_ALL_MACHINES >;

else if C message == initDev)
{

}

tempHandle = NewHandleC sizeof C FontNumlnfo) >;
fontNumber = FindFontNumberC>;
C**CCFontNumH)tempHandle)).curFontNum = fontNumber;
return(Clong)tempHandle >;

c de v Unset is passed continually in c Dev Va l u e until the
program responds to an i n i t Dev message. Once it has processed an
i n i t Dev message, assuming that no error state exists, the program
can process all messages.

Code Resources 77

if C CcDevValue != cdevUnset) && CcDevValue != ERROR_STATE))
{

switch(message)
{

On a h i t Dev of the reset button, the program sets the font to
NORM A L_A PP_ FONT, redraws the pop-up label, updates its private
storage, and writes the new font value into its w o rd resource.

case hitDev:
if C item == DEFAULT_ITEM + numltems)
{

}

GetDitemC cpDialog, USER_ITEM + numltems,
&itemType, &itemH, &itemRect >;

fontNumber = NORMAL_APP_FONT;
SetAppfontC fontNumber >;
DrawFontNameC fontNumber,

&itemRect >;
C**CCFontNumH)cDevValue)).curfontNum =
fontNumber;
FixResourceC fontNumber >;

On a hi tDev in the USER_ITEM, the program loads the menu,
adds all the current fonts to it, and implements the pop-up.

else if < item == USER_ITEM + numltems)
{

GetDitemC cpDialog, USER_ITEM + numltems,
&itemType, &itemH, &itemRect >;

fontMenu = GetMenuC FONT_MENU_ID >;
InsertMenuC fontMenu, -1 >;
AddResMenuC fontMenu, 'FONT') ;
itemRect.right += 1;
choice = DoPopupC &itemRect, fontMenu >;

If a choice was made from the menu, the program converts the
item to a s t r 2 5 5, then converts the S t r 2 5 5 to a font Numb e r.
Next, it sets the application font to that font number, redraws the
pop-up label, updates its private storage, and writes the word
resource.

78 Macintosh Programming Primer

if C choice != 0 >
{

}

Getltem(fontMenu, choice, &tempStr >;
GetFNumC tempStr, &fontNumber >;
SetAppfontC fontNumber >;
DrawfontNameC fontNumber, &itemRect >;
C**CCFontNumH)cDevValue)).curfontNum =

fontNumber;
FixResourceC fontNumber >;

Whether or not a choice was made from the pop-up, the program
still must delete the menu from the menu list, as well as free up the
storage held by the MENU resource.

DeleteMenuC FONT_MENU_ID >;
ReleaseResourceC fontMenu >;

}

break;

On a c lose Dev message, the program frees up the memory that
was allocated at initialization.

case closeDev:
DisposHandleC CHandle>cDevValue >;
break;

case nulDev:
break;

On an update Dev message, the program draws the outline of the
button label and then draws the font name in the label.

case updateDev:
GetDltemC cpDialog, USER_ITEM+numltems,

&itemType, &itemH, &itemRect >;
FrameRectC &itemRect >;
MoveToC itemRect.left + 1, itemRect.bottom >;
LineToC itemRect.right, itemRect.bottom >;
LineToC itemRect.right, itemRect.top + 1 >;
fontNumber = C**CCFontNumH)cDevValue)).

curfontNum;
DrawfontNameC fontNumber, &itemRect >;
break;

case activDev:

Code Resources

}

}

break;
case deactivDev:

break;
case keyEvtDev:

break;
case macDev:

return(1L >;
break;

case undoDev:
break;

case cutDev:
break;

case copyDev:
break;

case pasteDev:
break;

case clearDev:
break;

79

No matter what the message was, the program always returns
c Dev Va l u e. This keeps the handle to the program's private storage
around for the next call.

return(cDevValue >;
}

F i x R e s o u r c e C > loads the w o r d resource. Next, the resource
data (the first two bytes) is set to the f o n t N u m b e r passed as a
parameter. The call to c h a n g e d Re s o u r c e < > marks the resource as
having been changed. The call to W r i t e Res our c e C > checks the
resource's changed flag and, if the resource was changed, writes out
its new value to the resource fork.

This technique is fundamental to Macintosh software
development. Read the description of ch a n g e d Re sou r c e C) on
page 123 of Inside Macintosh, Volume I.

/********************************FixResource*******/

FixResourceC fontNumber
short
{

fontNumber;

80

}

Macintosh Programming Primer

Handle wHandle;

if CC wHandle = GetResourceC •word', WORD_RES_ID)) != OL>
{

}

*C (short *>C*wHandle> > = fontNumber;
ChangedResourceC wHandle >;
WriteResourceC wHandle >;

Do Pop up C > implements a pop-up menu using the Menu. The
label inside the Rec t pointed to by pop up Rec t Pt r will be inverted
and the pop-up will be hung right below the label. Once a selection is
made, the label is reinverted and the selected item number returned.

/********************************DoPopup*******/

int DoPopupC popupRectPtr, theMenu >
Re ct *popupRectPtr;
MenuHandle theMenu;
{

Point
long

popupUpperlef t;
theChoice = OxOOOO;

popupUpperleft.h = popupRectPtr->left + 2;
popupUpperleft.v = popupRectPtr->bottom;

LocalToGlobalC &popupUpperleft >;

InvertRectC popupRectPtr >;
theChoice = PopUpMenuSelectC theMenu, popupUpperleft.v,

popupUpperleft.h, 0 >;
InvertRectC popupRectPtr >;
return(LoWordC theChoice > >;

}

Fi ndFontNumberC > loads the word resource. If it was loaded
successfully, the first two bytes of the resource are returned. If the
resource could not be loaded, NORM A L_A PP_ FONT is returned.

!******************************** FindFontNumber */

short FindFontNumber<>
{

Code Resources 81

}

Handle wHandle;
short fontNumber;

if ((wHandle = GetResourceC 'word', WORD_RES_ID)) != OL)
{

}

else

fontNumber = *C (short *)C*wHandle));
return(fontNumber >;

return(NORMAL_APP_FONT);

Set App Font () writes the specified f on t Nu m to the two bytes
starting at location 0 x 0 2 0 4. W r i t e Pa ram () updates Parameter
RAM.

Remember, if you work directly with Parameter-RAM your
applications are likely to break in the near future.

!************************************ SetAppfont */

SetAppfont(fontNum
short fontNum;
{

}

*(<short *) Ox0204) = fontNum - 1;

Wr iteParam () ;

Draw Font Name C) erases the pop-up menu label (the call to
Inset Rec t C) ensures that the lines of the label are not erased, just
the text). Then, the current font name is calculated and drawn,
centered in the label.

Because Geneva is the Macintosh default application font, the font
name Geneva is displayed when fontNum is equal to 1. Note that
this setting will cause ShowlNIT to display the INIT icon with an X
drawn aeross it, while the normal Genev setting will cause
ShowlNIT to animate the startup icon.

82 Macintosh Programming Primer

/************************************ DrawFontName */

DrawFontNameC fontNum, rPtr >
short fontNum;
Re ct *rPtr;
{

}

Str255
int
Re ct

tempStr;
w;
tempRect;

tempRect = *rPtr;
InsetRect(&tempRect, 2, 2 >;
EraseRectC &tempRect >;
if CfontNum==1)
GetFontName C geneva,&tempStr).
else
GetFontNameC fontNum, &tempStr >;
w = rPtr->right - rPtr->left - StringWidthC tempStr >;
MoveToC rPtr->left + w/2, rPtr->bottom - 4 >;
Drawstring(tempStr >;

Wasn't that fun? cdevs and INITs were made for each other. Well,
on to the next topic, MDEFs

_J Writing Your Own MDEF

The next project involves the Menu Manager. You are going to create
a custom menu definition procedure (MDEF) that displays pictures
instead of text. This is one of my favorites.

PICT MDEF takes a series of P I CT resources and uses their
pi c F ram es to calculate the size of a pop-up menu. The widest of the
PI C Ts determines the width of the pop-up, and the tallest of the
PI c Ts determines the height of each cell of the pop-up. Figure 3.24
shows the PICT MDEF in action.

Code Resources 83

r --'-• File Edit

Figure 3.24 PICT MDEF in action.

The MDEF Project and Source Code

First, you'll create the MDEF resource. Later on, you'll build an
MDEF tester.

Create a folder in your development folder called MDEF f. Create
a new project inside the MDEF f folder called MDEF.7t . Add
MacTraps to the project.

Next, select Set Project Type ... from the Project menu. Figure 3.25
shows the sample program's Set Project Type ... dialog box. Click the
Code Resource radio button. Set the File Type to rsrc and the Creator
to RSED. This asks the Finder to start up ResEdit when you double
click on the resource file. Set the Name to PICT (not really
needed- for readability in ResEdit only) and the Type to MDEF. Set
the ID to 400 and the Attrs to 20.

Next, select New from the File menu to create a new source code
file. Save the file as MDEF.c and add the file to the project. Here's
the source code. Start typing

84

0 Application

O Desk Accessory

O Deuice Driuer

®Code Resource

Macintosh Programming Primer

File Type I rsrc

Creator I RSED

D Multi-Segment

Name .._I P_IC_~ ________ ___.

Type IMDEF

D Custom ~eader

OK l)

ml 4_oo _ __..

Httrs ~ ~

(Cancel J

Figure 3.25 The MDEF Set Project Type dialog box.

#define MARGIN 2

!*** main ***/

pascal voidmainC message, theMenu, menuRectPtr, hitPt,
whichltemPtr)

int
MenuHandle
Re ct

message;
theMenu;
*menuRectPtr;
hitPt;
*whichltemPtr;

Point
int
{

short
PicHandle
Re ct
int

PICTResID, numPicts, maxH, maxV, i;
myPicture;
r, tempRect;
new Item;

switch< message >
{

case mDrawMsg:
GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;

Code Resources

r.top = menuRectPtr->top + MARGIN/2;
r.left = menuRectPtr->left +MARGIN;
r.bottom = r.top + maxV;
r.right = r.left + maxH;

for C i=O; i<numPi~ts; i++)
{

myPicture = GetPictureC PICTResID + i >;
tempRect = r;
CenterPictC myPicture, &tempRect >;
DrawPictureC myPicture, &tempRect >;
OffsetRectC &r, 0, maxV + MARGIN >;

}

break;
case mChooseMsg:

GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;

if C PtinRectC hitPt, menuRectPtr >)
{

}

newitem = C ChitPt.v - menuRectPtr->top) I
CmaxV + MARGIN)) + 1;

if C C *whichltemPtr > 0) && C *whichitemPtr
!= newitem))

{

}

r = *menuRectPtr;
r.top += C C*whichitemPtr-1) * (MARGIN+

maxV> >;
r.bottom = r.top + maxV + MARGIN;
InvertRectC &r >;

if C *whichitemPtr != newitem)
{

}

*whichitemPtr = newitem;
r = *menuRectPtr;
r.top += C C*whichitemPtr-1) * (MARGIN +

maxV>) ;
r.bottom = r.top + maxV + MARGIN;
InvertRectC &r >;

else if C *whichitemPtr > 0)
{

85

86

}

}

Macintosh Programming Primer

r = *menuRectPtr;
r.top += CC*whichltemPtr-1) * (MARGIN+ maxv>>;
r.bottom = r.top + maxV + MARGIN;
lnvertRectC &r >;
*whichltemPtr = O;

}

break;
case mSizeMsg:

GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
C**theMenu>.menuWidth = maxH + 2 * MARGIN;
C**theMenu).menuHeight = CmaxV + MARGIN> *

numPicts;
break;

!******************************** CenterPict *********/

CenterPictC thePicture, myRectPtr)
PicHandle thePicture;
Re ct *myRectPtr;
{

}

Re ct windRect, pictureRect;

windRect = *myRectPtr;
pictureRect = C**C thePicture)).picFrame;
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))
I 2 + windRect.top;

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top>;

myRectPtr->left = CwindRect.right - windRect.Left -
CpictureRect.right - pictureRect.Left))

I 2 + windRect.Left;
myRectPtr->right = myRectPtr->left + (pictureRect.right -

pictureRect.Left);

Code Resources 87

/*** CalcMaxHV ***/

CalcMaxHVC PICTResID, numPicts, hPtr, vPtr)
short PICTResID, numPicts, *hPtr, *vPtr;
{

}

short i;
Re ct
PicHandle

r;
myPicture;

*hPtr = O;
*vPtr = O;
for C i=O; i<numPicts; i++ >
{

}

myPicture = GetPicture(PICTResID + i >;
r = C**myPicture).picframe;

if (r.bottom - r.top > *vPtr
*vPtr = r.bottom - r.top;

if C r.right - r.left > *hPtr
*hPtr = r.right - r.left;

/*** GetNumPicts ***/

GetNumPicts(theMenu, baseIDPtr, numPictsPtr)
MenuHandle theMenu;
short *baseIDPtr, *numPictsPtr;
{

}

*baselDPtr = HiWordCC**theMenu).enableflags);
*numPictsPtr = LoWordCC**theMenu).enableFlags>;

Building Your MDEF

Once the source code is typed in and saved, it's time to build the
MDEF code resource. Select Build Code Resource ... from the Project
menu. Click Yes to Bring the project up to date?, and fix any bugs
picked up by the compiler. Once your code compiles, save it in the
MDEF f folder as PICT MDEF.

88 Macintosh Programming Primer

Building the MDEF Tester

Before walking through the MDEF source code, let's create an
application to test the MDEF. This application, MDEF Tester, is a
simple application with a main event loop, a single window with no
close box, and a menu bar consisting of menus entitled S, File, Edit,
and Pictures. The File menu supports a single item, Quit. The
Pictures menu u ses the newly created MDEF (as opposed to
MDEF 0, the standard MDEF) to display and allow selection from a
series of PI CT resources.

Start by creating a resource file for the MDEF tester project.
Launch ResEdit and create a new file within the MDEF f folder. Call
the file Tester.n.rsrc.

Next, open the file PICT MDEF, select the MDEF resource, and
select Copy from the Edit menu. Close the PICT MDEF window and
open the newly created Tester.n.rsrc window. Select Paste from the
Edit menu to add the MDEF resource to the MDEF tester's resource
file.

The next step is to create an MB AR resource and set its resource ID
to 400. Click on the asterisks, then select New from the File menu to
add a M EN U resource ID to the MB A R. The sample program's MB A R is
shown in Figure 3.26.

D MORR ID 400 from Tester. n .rsrc

u of menus 4

I*****
Menu res ID 1100

Menu res ID 1101

Menu res ID 1102

Menu res ID 1403

***** IQ]

Figure 3.26 MBAR resource for MDEF Tester.

Code Resources 89

Next, you'll cr eate the four MENU r esources. Create a MENU
resource with a resource ID of 400, according to the specs in Figure
3.27. The title of this menu should be the S character.

D MENU "Rpple" ID 400 from Tester.11.rsrc

Menu ID 400

ProclD 0

EnobleFlgs $FFFFFFFB

Title D

Menu Item I Ab out MDEF Tester

Icon# lo
Key equiv D
Mork Chor D
Style 1$00

Menu 1 tem l-]
lconu lo
Key equ iv D
Mork Chor D
Sty le I $01

***** 0

Figure 3.27 Specifications for MEN u 400.

90 Macintosh Programming Primer

Next, create the File MENU according to the specifications in
Figure 3.28.

Next, create the Edit MEN u according to the specifications in
Figure 3.29.

-o MENU "File" ID 401 from Tester.n.rsrc

Menu ID 401

ProclD 0

EnableFlgs $FFFFFFFF

Ti tie Fi I e

Menu Item louit

Icon• lo

Key equi v [OJ
Mark Char D
Style 1$00

***** 0

Figure 3.28 Specifications for MENU 401.

Code Resources 91

MENU 11 Edit 11 ID = 402 from Tester.11.rsrc

Menu ID 402

ProclD 0

EnableFlgs $FFFFFFFF

Title Edit

Menu I tern I undo

Icon# lo
Key equiv []
Mark Char D
Style 1$00

Menu I tern I-
Icon# EJ
Key equiv D
Mark Char D
Style 1$00

Menu I tern I Cut

Icon# lo
Key equiv ~
Mark Char D
Style 1$00

Figure3.29 Specifications for MENU 402.

92 Macintosh Programming Primer

Menu I tern I copy

Icon# lo
Key equiv @]
Mark Char D
Style 1$00

Menu I tern I Paste

Icon# lo I
Key equiv @]
Mark Char D
Style 1$00

Menu I tern I clear

Icon# lo I
Key equiv D
Mark Char D
Style 1$00

***** 0

Figure 3.29 (continued)

Next, create the Pictures MENU according to the specifications in
Figure 3.30. This MEN u holds the key to interfacing a MEN u with the
custom MDEF. The ProcID field normally holds the value 0. This
tells the Menu Manager to implement this menu by calling MDEF 0.
Setting the ProcID field to 4 0 0 tells the Menu Manager to call your
MDEF (MDEF 400).

The MDEF shown here uses the EnableFlgs field to specify which
PI CT resources to include in the pull-down menu. The first two bytes
of the EnableFlgs specify the resource ID of the first P I CT in the
menu. In Figure 3.30, the first two bytes are set to Ox0190 in
hexadecimal, or 400 in decimal.

The second two bytes specify the number of PI C Ts to include in
the menu. In Figure 3.30, the second two bytes are set to Ox0005 in

Code Resources 93

hexadecimal, or 5 decimal. This means you'll include 5 PI C Ts in the
menu. The PICTs tobe loadedarethosewithresourceIDs 400, 401,
402 , 403, and 404.

One final point about the sample MDEF. Because the EnableFlgs
field is used to specify the PICTs, it can't be used to tum on and off
specific menu items. Consider this point when you are designing your
own MDEFs.

If you are using ResEdit 2.0 or later, you'll have to use the hex editor
to get at the Pictures menu's Enable Flags field. Create a Pictures
MEN u with no menu items. Select Get Resource Info from the
Resource menu and set the resource ID of the menu to 403. Close
the Get Info window and close the MEN u window. Now comes the
tricky part.

In the list of MENUS, single-click on the newly created MENU 403.
Select Open Using Hex Editor from the Resource menu. The
resource will open using the hex ecfrtor instead of the normal MEN u
editor. The hex portion of the window should show 3 lines, each with
4 sets of digits. Edit the hex side (doni mess with the ASCII digits on
the right side) so the three lines read:

0193 0000 0000 -0190
0000 0190 0005 0850
6963 7475 7265 7300

This procedure will also set the MD E F field to 400. For more info, check
out IM:364 for a complete desaiption of the MENU resource fonnat.

Next , create five PI CT resources, with IDs of 400, 401 , 402, 403,
and 404 . Figure 3.31 shows the five PI C Ts created for this example.
The floppy disk is 4 0 4 , the Mona Lisa is 4 0 3, the house 4 0 2, the
dog-cow (Moof ™!) is 401 , and the musical note is 400.

D MENU 11 Picture 11 ID 403 from Tester. n .rsrc

MenulO 11103

Proc lO 1100

Enob leFlgs 1$01900005

Title !Pi ct ures

***** 0

Figure 3.30 Specifications for MENU 403.

94 Macintosh Programming Primer

The final resource is the WIND that will be used as a template for
the picture window. Create a W I N D according to the specifications in
Figure 3.32.

PICTs from Tester.11.rsrc
r····--····-···-·····-·····-·····--·--·····-···1 ·--·--···-···---·-·-·····-···-···] ~

I BJ IS
..! l .. . JlllllllMl------.....-r·-"""""'="""""'""'"l .. i

H .P :

... .!l ____ .. ,_..J
Figure 3.31 Sample PI CT resources.

§0§ WI ND "Picture 11 ID = 400 from Tester.11.rsrc §

Window title:

Selected Picture

top

left

proclD

~bottom~
LJright ~
14 j refCon I O j

D Uisible D goHwayFlag

Figure 3.32 Specifications for W I N o 4 O O.

Code Resources 95

Now that you've created all the resources for the MDEF tester,
create a new project in the MDEF f folder called Tester.1t. Add
MacTraps to the project. Select New from the File menu to create a
new source code file. Save the file as Tester.c and add the file to the
project. Enter the following source code in Tester.c.

#define BASE_RES ID 400
#define APPLE_MENU_ID 400
#define NIL_POINTER OL
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

#define WNE_TRAP_NUM Ox60
#define UNIMPL_TRAP_NUM Ox9F
#define MIN_SLEEP 60L
#define NIL_MOUSE_REGION OL

#define FILE_MENU_ID 401
#define F_QUIT_ITEM 1

#define PICT_MENU_ID 403

Boolean
Event Record
MenuHandle
PicHandle
WindowPtr

main()
{

gDone, gWNEimplemented;
gTheEvent;
gAppleMenu;
gCurPicture;
gTheWindow;

ToolBoxinitC>;
MenuBarinitC>;

}

gTheWindow = GetNewWindowC BASE_RES_ID, NIL_POINTER,
MOVE_TO_FRONT >;

SetPortC gTheWindow >;
ShowWindowC gTheWindow >;

gCurPicture = GetPicture(BASE_RES_ID >;

MainloopC>;

96 Macintosh Programming Primer

!*********************************** ToolBoxlnit */

ToolBoxlnit()
{

}

lnitGrafC &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TElnitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

!*********************************** MenuBarlnit*/

MenuBarlnitC>
{

}

Handle myMenuBar;

myMenuBar = GetNewMBarC BASE_RES_ID);
SetMenuBarC myMenuBar >;
gAppleMenu = GetMHandleC APPLE_MENU_ID >;
AddResMenuC gAppleMenu, 'DRVR' >;
DrawMenuBarC>;

/******************************** MainLoop *********/

MainLoop()
{

}

gDone = FALSE;
gWNEimplemented = C NGetTrapAddressC WNE_TRAP_NUM,

ToolTrap) !=
NGetTrapAddressC UNIMPL_TRAP_NUM,
ToolTrap) >;

while C gDone == FALSE)
{

HandleEventC>;
}

Code Resources

/************************************* HandleEvent *I

HandleEventC>
{

}

char theChar;

if gWNEimplemented
WaitNextEventC everyEvent, &gTheEvent, MIN_SLEEP,

NIL_MOUSE_REGION >;
else
{

}

SystemTaskC>;
GetNextEventC everyEvent, &gTheEvent >;

switch
{

gTheEvent.what

}

case mouseDown:
HandleMouseDownC>;
break;

case keyDown:
case autoKey:

theChar = gTheEvent.message & charCodeMask;
if CC gTheEvent.modifiers & cmdKey > != 0)

HandleMenuChoiceC MenuKeyC theChar) >;
break;

case updateEvt:
BeginUpdateC gTheEvent.message >;
DrawMyPictureC gCurPicture, gTheWindow >;
EndUpdateC gTheEvent.message >;
break;

!************************************* HandleMouseDown */

HandleMouseDown()
{

WindowPtr
short int
long int

whichWindow;
thePart;
menuChoice, windSize;

97

98

}

Macintosh Programming Primer

thePart = FindWindowC gTheEvent.where, &whichWindow >;
switch C thePart)
{

}

case inMenuBar:
menuChoice = MenuSelectC gTheEvent.where >;
HandleMenuChoiceC menuChoice >;
break;

case inSysWindow
SystemClickC &gTheEvent, whichWindow >;
break;

case inDrag :
DragWindowC whichWindow, gTheEvent.where,

&CscreenBits.bounds) >;
break;

!************************************* HandleMenuChoice */

HandleMenuChoiceC menuChoice)
long int
{

menuChoice;

}

int theMenu;
int theltem;

if C menuChoice != 0)
{

}

theMenu = HiWordC menuChoice >;
theltem = LoWordC menuChoice >;
switch C theMenu)
{

}

case FILE_MENU_ID :
if C theltem == F_QUIT_ITEM)

gDone = TRUE;
break;

case PICT_MENU_ID :
EraseRectC &gTheWindow->portRect >;
InvalRectC &gTheWindow->portRect >;
gCurPicture = GetPictureC BASE_RES_ID + theltem

- 1) ;
break;

HiliteMenuC 0 >;

Code Resources 99

/******************************** OrawMyPicture *********!

DrawMyPictureC thePicture, pictureWindow)
PicHandle thePicture;
WindowPtr pictureWindow;
{

}

Re ct myRect;

myRect = pictureWindow->portRect;
CenterPictC thePicture, &myRect >;
OrawPictureC thePicture, &myRect >;

!******************************** CenterPict *********/

CenterPictC thePicture, myRectPtr
PicHandle thePicture;
Re ct *myRectPtr;
{

}

Re ct windRect, pictureRect;

windRect = *myRectPtr;
pictureRect = C**C thePicture)).picframe;
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))
I 2 + windRect.top;

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top>;

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))

I 2 + windRect.left;
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left);

Save your code and then select Run from the Project menu. Once
you get the code to compile, you should see something similar to
Figure 3.24 when you click on the Pictures menu. Select a picture
from the menu. MDEF Tester should draw the selected PI CT in the
window.

MDEF Tester is basically a combination of the ShowPICT program
and the basic approach to event loop programming found in most of
the applications in Volume I of the Macintosh Primer. Because the

100 Macintosh Programming Primer

techniques presented in MDEF Tester have already been presented
many times, this section will focus on the MDEF source code only.

Walking Through the PICT MDEF Source Code

MARG I N defines the number of pixels that should be left on each side
of each menu item.

#define MARGIN 2

The calling sequence for an MDEF is defined on page 362 of Inside
Macintosh, Volume I. Because the Macintosh 'lbolbox will be calling
this code resource, its entry point must be defined to be of type
pa s ca l. The call is defined as a P r o c e du re, not as a F u n c t i on
returning a specific type, so ma i n C > will be declared as a v o i d. This
yields the definition of ma i n C > as a pa s c a l v o i d.

The message parameter specifies which message this MDEF is
reacting to. The m D r a w Ms g asks the program to draw the menu
within the Re ct specified by menuRectPt r. The mChooseMsg asks
the program to use the current mouse location (specified by h i t Pt),
the menu's Rec t (menu Rec t Pt r), and the last selected item
(w h i ch I t em Pt r) to draw the menu appropriately and implement a
selection. The m S i z e Ms g asks the program to specify the menu's
height and width (used by the Menu Manager to calculate the menu's
Rec t).

!** main ***/

pascal voidmainC message, theMenu, menuRectPtr, hitPt,
whichltemPtr >

int
MenuHandle
Re ct
Point
int
{

message;
theMenu;
*menuRectPtr;
hitPt;
*whichltemPtr;

short PICTResID, numPicts, maxH, maxV, i;
PicHandle myPicture;
Rect r, tempRect;
int new Item;

Code Resources 101

When the program receives the m Draw Ms g, it calls
Get Nu m Pi ct s < > to retrieve the first PICT resource ID, as well as
the total number of PI CT s from the menu's En ab l e F l gs field. That
information is then passed on to Ca l c Ma x H V < > to calculate the
height and width of each cell of the menu.

switch(message)
{

case mDrawMsg:
GetNumPicts(theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;

Because the Menu Manager has already drawn the shadowed
menu rectangle, all the program has to do is draw each item. It uses
the routine c en t e r P i c t < > to calculate a Re c t the size of the
current PI CT that's centered in the Re c t provided as an input
parameter. For more on C e n t e r P i c t < > , see S h o w P I C T from
Macintosh Programming Primer, Volume I.

r.top = menuRectPtr->top + MARGIN/2;
r.left = m~nuRectPtr->left +MARGIN;
r.bottom = r.top + maxV;
r.right = r.left + maxH;

for (i=O; i<numPicts; i++)
{

myPicture = GetPicture(PICTResID + >;
tempRect = r;
CenterPictC myPicture, &tempRect >;
DrawPicture(myPicture, &tempRect >;
OffsetRectC &r, 0, maxV + MARGIN >;

}

break;

When the program receives the m Choose Ms g, it calls
Get NumP i ct s C > to retrieve the first PI c T ID and the number of
PI C Ts. It then calls Ca l c Max H V < > to calculate the height and width
of each menu item.

102

maxV) >;

Macintosh Programming Primer

The program has to call Get Nu m P i ct s C > and ca l c Ma x H v c >
each time the MDEF is called with a message, because no global
variables are provided in this code resource to use as long-term
storage. Because these routines are pretty fast, they don't affect
performance. If you need to, however, you can use the techniques
described in Chapter 2 to add globals to your MDEF.

case mChooseMsg:
GetNumPicts(theMenu, &PICTResID, &numPicts);
CalcMaxHV< PICTResID, numPicts, &maxH, &maxV >;

If the mouse cursor is inside the menu rectangle, the program first
figures out which item the cursor is in. If there is a currently selected
item and it is not the current item, the previous item must be
deselected using a call to I n v e r t Re c t C > .

if (PtinRect(hitPt, menuRectPtr))
{

}

newitem = (ChitPt.v - menuRectPtr->top) I
(maxV + MARGIN)) + 1;

if (< *whichitemPtr > 0) && (*whichitemPtr
!= newitem))

{

}

r = *menuRectPtr;
r.top += (C*whichitemPtr-1) * (MARGIN+

maxV));
r . bottom = r.top + maxV + MARGIN;
InvertRect< &r >;

After the program has taken care of any needed deseleotion, it's
time to select the current item. Again, Invert Rec t <) is used to
select the appropriate item.

if (*whichitemPtr != newitem)
{

}

*whichitemPtr = newitem;
r = *menuRectPtr;
r.top += (C*whichitemPtr-1) * (MARGIN +

r.bottom = r.top + maxV + MARGIN;
InvertRect(&r >;

Code Resources 103

If the cursor is outside the menu rectangle and an item is
currently selected, the program needs to deselect the item and set the
item pointed to by * w h i c h I t em Pt r to 0. Once this has been done,
the next time through, no item selection will be indicated.

else if C *whichitemPtr > 0)
{

r = *menuRectPtr;
r.top += CC*whichitemPtr-1> * (MARGIN+ maxv>>;
r.bottom = r.top + maxV + MARGIN;
InvertRectC &r >;
*whichitemPtr = O;

}

break;

When the program receives the m Si z e Ms g message, it calls
Get Nu m Pi ct s C > to retrieve the first PI CT ID and the number of
PI c Ts. It then calls ca l c Ma x H V C > to calculate the height and width
of each menu item. Next, the program sets the men uW id th and
menu He i g ht field of the menu data structure to the desired size for
the menu rectangle. This message is received before the draw
message.

case mSizeMsg:

}

}

GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
C**theMenu).menuWidth = maxH + 2 * MARGIN;
C**theMenu).menuHeight = CmaxV + MARGIN>.*

numPicts;
break;

Center Pi ct C > is identical to the routine used in Show PICT in
Volume I.

!******************************** CenterPict *********/

CenterPictC thePicture, myRectPtr
PicHandle thePicture;
Re ct *myRectPtr;
{

104

}

Macintosh Programming Primer

Re ct windRect, pictureRect;

windRect = *myRectPtr;
pictureRect = C**C thePicture)).picframe;
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))
I 2 + windRect.top;

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top);

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))

I 2 + windRect.left;
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left);

Ca l c Ma x H V C > looks at the width and height of each P I c T and
returns the height of the tallest PI CT and the width of the widest
PICT.

/***
* CalcMaxHV ***/

CalcMaxHVC PICTResID, numPicts, hPtr, vPtr)
short PICTResID, numPicts, *hPtr, *vPtr;
{

}

shoi't i;
Re ct
PicHandle

r;
myPicture;

*hPtr = O;
*vPtr = O;
for C i=O; i<numPicts; i++)
{

}

myPicture = GetPictureC PICTResID + >;
r = C**myPicture).picFrame;

if C r.bottom - r.top > *vPtr)
*vPtr = r.bottom - r.top;

if C r.right - r.left > *hPtr >
*hPtr = r.right - r.left;

Code R esources 105

Get Nu m Pi ct s <) returns the first two bytes of the
e n a b L e F L a g s field as the base P I CT resource ID and the second
two bytes of the en ab Le F Lags field as t he number of PICT
resources.

/********* *** ***
* GetNumPicts ***/

GetNumPicts(theMenu, baseIDPtr, numPictsPtr
MenuHandle theMenu;
short
{

*baseIDPtr, *numPictsPtr;

*baseIDPtr = HiWord((**theMenu).enableFLags);
*numPictsPtr = LoWord((**theMenu).enableFLags);

}

Here's a tip for you pop-up menu programmers. Macintosh
Programming Primer, Volume I, Chapter 5 showed you how to add
pop-up menus to your own programs. When Apple added pop-up
menus to the Toolbox, the company also added a new message to
the list of standard MDEF messages. The message m Pop up Ms g
asks your MDEF to calculate the menu rectangle of your pop-up.
Note the difference between m Pop up Ms g and ms ; z e Ms g , which
asks your MDEF to calculate the height and width of your menu.
Read about the m Pop up Ms g in Inside Macintosh, Volume 5,
page ~48.

If you are going to write your own MDEF, you'll want to add
scrolling capabilities. This MDEF won't work properly if there are
more PICTs than will fit on the Macintosh screen. Adding pop-up
and scrolling features to your MDEF can get pretty complex. The
listing of MDEF.c found in Appendix B handles both pop-ups and
scrolling. If you're going to develop your own MDEF, start with the
listing in Appendix B.

_J

106

Dialog Filter Procedures

The final topic addressed in this chapter is that of filter procedures,
specifically those for dialog boxes. What exactly is a filter procedure
(affectionately known as a filter proc)? A filter proc is a procedure
or function you write, called repeatedly by the Toolbox to filter events
that are normally not accessible to you.

For example, consider the two dialogs shown in Figure 3.33. Both
dialogs allow the user to enter a password. The dialog on the left does
not make use of a filter proc. As the user types his or her password,
the characters appear normally.

The dialog on the right uses a filter proc. Before Mod a l D i a l o g C >
processes an event, it calls the filter proc, passing the event to the
filter proc as a parameter. If the event was a key Down, the filter proc
saves the character typed in a global string variable, then substitutes
the • character for the typed character in the Event Record. When
the filter proc returns to Mod a l D i a l o g C) , the event looks like a
keyDown with a character of•. Modal Di a Log C > processes the
event as usual, and the • appears instead of the typed character.

The final program for this chapter is a simple filter proc that
works with the dialog box pictured in Figure 3.34. In this dialog loop,
before the filter proc calls Mod a l D i a l o g C > , it checks the contents of
the editable text field. If the field is empty, the filter proc dims the
OK button. If the field isn't empty, the filter proc enables the OK
button.

What's the Password,
Mac?

I EHtra Cheese!

I OK 3

What's the Password,
Mac?

I ••••••••••••I
[OK 3

Figure 3.33 Dialogs with echoed and filtered password fields.

Code Resources 107

Name it: Name it:

II I The Loue Shack!

([OK)J (Cancel) n OK)J (Cancel J

Figure 3.34 The Name it dialog box, with the OK button disabled
and enabled.

Mod a l D i a l o g C > calls this filter proc before it processes an event.
Each time it gets called, the filter proc checks to see if either the
Enter key or the Carriage Return was pressed. If one of these keys
was pressed and the text field is empty, the filter proc tells
Mod a l D i a l o g C > to ignore the event. To the user, this means that
his or her keyDown was ignored. This makes sense, because the OK
button was dimmed when the key was pressed.

If the field wasn't empty when the user pressed Enter or Carriage
:Jleturn, the filter proc tells Mod a l D i a l o g C > that the OK button
was pressed. Mod a l D i a log C > returns to the filter proc, telling it
that the OK button was pressed (otherwise ignoring the event).

- ' . ' ~,;_,..:...~. -=~---- .

Creating the DLOG Resources

Create a new folder in your development folder called DLOG f.
Using ResEdit, create a new file in the DLOG f folder called
DLOG.7t.rsrc. You11 create two resources in DLOG.7t.rsrc, a D LOG
and a DITL.

108 Macintosh Programming Primer

Create a D LOG with a resou rce ID of 4 0 0 according to the
specifications in Figure 3.35.

Next, create a DITL with a resource ID of 400. The DITL will
have four items. Build them according to the specifications in Figures
3.36, 3.37, 3.38, and 3.39.

§0 Dialog ID= 400 from DLOG.11.rsrc

Window title:

top ~bottom~
left ~right ~

proclD I 1 lrefCon lo I
itemslD 1400 I

D Uisible D goRwayFlag

Figure 3.35 Specifications for D LOG 400.

Edit Dill Item #1

@Button
0 Check boK
0 Radio control

O Static teKt
0 Editable teKt

0 CNTL resource
O I CON resource
0 PICT resource

O User item

Te Kt

@Enabled
0 Disabled

top 70
~-----I

left 20
~-----'

bottom 90
f--------1

right 80 .____ ____ _.

Figure 3.36 DI TL Item #1.

Code Resources 109

Edit Dill Item #2

@Button @Enabled
0 Check bOH O Disabled
O Radio control

O Static teHt top 70
O Editable teHt

left 100 O CNTL resource
O I CON resource bottom 90

O PICT resource right 160
0 User item

TeHt Cancel

Figure 3.37 DI TL Item #2.

Edit D Ill I tern #3

O Button @Enabled
O Check boH O Disabled
O Radio control

@ Static teHt top 8
O Editable teHt

left 8 O CNTL resource
O ICON resource bottom 28

O PICT resource right 80
O User item

TeHt

I

.

Figure 3.38 DI TL Item #3.

110 Macintosh Programming Primer

§0 Edit Dill Item #4

O Button ®Enabled
O Check boH 0 Disabled
O Radio control

0 Static teHt top 35
@ Editable teHt

left 30 O CNTL resource
0 ICON resource bottom 51
O PI CT resource right 150
O User item

Te Ht

Figure 3.39 DI TL Item #4.

Both the DLOG and the DITL should be marked as purgeable {click
on the purgeable check box in the Get Info window of each). When
a dialog and its items are loaded, the Dialog Manager makes a
copy of each. If the two resources aren't marked as purgeable,
they'll hang around until the program exits (unless you release the
resource first with ReleaseResource()).

Note that DisposDialog{) disposes the Dialog Manager's copy of
the DLOG and DITL and does not affect the resource itself.

Quit ResEdit, making sure to save the resources you just created.
Create a new project in the folder DLOG f called DLOG.n. Select Set
Project Type ... from the Project menu a nd set the project type
according to the specifications in Figure 3.40.

Code Resources

® Application

O Desk Accessory

O Deuice Driuer

0 Code Resource

File Type l APPL

Creator I????

D Separate STRS

Partition (K) ~

MF Attrs ~ l 0000 I

((OK J) (Cancel J

Figure 3.40 Set Project Type ... dialog box.

111

Add Mac'I'raps to the project. Next, select New from the File menu
to create a new source code window. Save the window as DLOG.c
and add it to the project. Enter the following source code:

#define BASE_RES ID 400
#define NIL_POINTER OL
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

#define OK_ITEM 1
#define CANCEL_ITEM 2
#define TEXT_ITEM 4

#define TE_ENTER_KEY 3
#define TE_TAB_CHAR 9
#define TE_CARRIAGE_RETURN 13

pascal Boolean DLOGFi lterC>;

main()
{

112

}

DialogPtr
Boolean
int
Handle
Re ct
Str255

theDialog;
done;
itemHit, itemType;
OKHandle, textHandle;
itemRect;
theText;

ToolBoxlnitC>;

Macintosh Programming Primer

theDialog = GetNewDialogC BASE_RES_ID, NIL_POINTER,
MOVE_TO_FRONT >;

GetDitemC theDialog, OK_ITEM, &itemType, &OKHandle,
&itemRect >;

GetDitemC theDialog, TEXT_ITEM, &itemType, &textHandle,
&itemRect >;

CenterDialogC theDialog >;
ShowWindowC theDialog >;
SetPortC theDialog >;
DrawOKButtonC theDialog >;

done = FALSE;
while C ! done)
{

}

GetITextC textHandle, &theText >;
if C theText[0 J == 0 >

HiliteControlC OKHandle, 255 >;
else

HiliteControlC OKHandle, 0 >;
ModalDialogC DLOGFilter, &itemHit >;
done = C C i t em H i t = = 0 K_ I TE M > I I ' i t em H i t - -

CANCEL_ITEM) >;

!*********************************** ToolBoxlnit */

ToolBoxlnit()
{

InitGraf C &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS);

Code Resources

}

InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursor<>;

!*************************************** DLOGFilter *****/

pascal Boolean DLOGFi lterC theDialog, e, iPtr >
DialogPtr theDialog;
EventRecord*e;
int *iPtr;
{

int
Re ct
Handle
Str255
char

itemType;
itemRect;
item;
tempStr;
theChar;

GetDltemC theDialog, TEXT_ITEM, &itemType, &item,
&itemRect >;

GetITextC item, &tempStr >;

if Ce->what == keyDown)
{

theChar = <e->message & charCodeMask>;
if (CtheChar == TE_CARRIAGE_RETURN) I I (theChar -

TE_ENTER_KEY>)
{

if C tempStr[0 J != 0 >
{

*iPtr = OK_ITEM;

113

GetDitem< theDialog, OK_ITEM, &itemType, &item,
&itemRect >;

}

else
{

HiliteControlC item, 1 >;
return(TRUE >;

114

}

}

}

}

*iPtr = TEXT_ITEM;
return(TRUE >;

return(FALSE >;

Macintosh Programming Primer

/*************************************** DrawOKButton *****/

DrawOKBµttonC theDialog >
DialogP~r theDialog;
{

}

int
Re ct
Handle
Graf Ptr

itemType;
itemRect;
item;
oldPort;

GetDitemCtheDialog, OK_ITEM, &itemType, &item, &itemRect);
GetPortC &ol~Port >;
SetPortC theDialog >;

PenSize~ 3, 3 >;
InsetRectC &itemRect, -4, -4 >;
FrameRoundRectC &itemRect, 16, 16 >;
PenNormalC>;

SetPortC oldPort >;

!*************************************** CenterDialog *****/

CenterDialogC theDialog)
DialogPtr theDialog;
{

Rec t r;
int width, height, sWidth, sHeight, h, v;

r = theDialog->portRect;

Code Resources 115

}

width = r.right - r.left;
height = r.bottom - r.top;

sWidth = screenBits.bounds.right - screenBits.bounds.left;
sHeight = screenBits.bounds.bottom - screenBits.

bounds.top;

h = CsWidth - width) I 2;
v = CsHeight - height) I 2;

MoveWindowC theDialog, h, v, FALSE >;

When you have entered and saved the code, select Run from the
Project menu. Once you get the source to compile, you should see
something similar to Figure 3.34. Type some text in the text field.
The OK button should light up. Select all the text in the text field
and delete it by pressing the Delete or Backspace key. The OK button
should dim. While the OK button is dimmed, press the Carriage
Return. Nothing should happen. Type in some text, enabling the OK
button. Press the Carriage Return. The dialog box should exit with
the OK button selected.

Walking Through the DLOG Source Code

This section takes a look at the source code. DLOG.c starts with some
pretty standard #defines. This program won't need many of the
standard #defines because it does not include things like an event
loop and a menu bar.

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

OK_ITEM, CANCEL_ITEM, and TEXT_ITEM represent the DITL
item numbers of the two buttons and the text field.

#define OK_ITEM
#define CANCEL_ITEM
#define TEXT_ITEM

1
2
4

116 Macintosh Programming Primer

TE_ENTER_KEY, TE_TAB_CHAR, and TE_CARRIAGE_
RE Tu RN represent the character codes for the Enter key, the Tab key,
and the Carriage Return key.

#define TE_ENTER_KEY 3
#define TE_TAB_CHAR 9
#define TE_CARRIAGE_RETURN 13

The Toolbox routine Modal Di al og C > is described on page 415, of
Inside Macintosh, Volume I. Take a minute to look at the description
of the f i l t er Pro c parameter. Basically, the filter proc is a
Fu N c T I ON that returns a BO o LE AN. Following the rules established
in this book, this filter proc must be declared as type pas ca l
because it will be called by the Toolbox. It must be declared as type
Boolean because the FUNCTION returns a BOOLEAN.

pascal Boolean DLOGFilterC>;

main()
{

DialogPtr
Boolean
int
Handle
Re ct
Str255

theDialog;
done;
itemHit, itemType;
OKHandle, textHandle;
itemRect;
theText;

ToolBoxlnitC>;

After initializing the Toolbox, the filter proc loads the D Lo G from
the resource file. Next, it uses Get D Item C > to get a handle to the
OK button and a handle to the editable text item.

theDialog = GetNewDialog(BASE_RES_ID,
NIL_POINTER, MOVE_TO_FRONT >;

GetDltemC theDialog, OK_ITEM, &itemType,
&OKHandle, &itemRect >;

GetDltemC theDialog, TEXT_ITEM, &itemType,
&textHandle, &itemRect >;

C e n t e r D i a l o g C > takes a D i a l o g P t r as a parameter and
centers it on the main screen. After the dialog window is centered,
visible, and the current port, a ring is drawn around the OK button
with D raw 0 KB u t ton C >.

Code Resources

CenterDialogC theDialog >;
ShowWindowC theDialog >;
SetPortC theDialog >;
DrawOKButtonC theDialog >;

117

Now that the dialog is all set up, it's time to enter the dialog loop.
If the text field is empty, the filter proc dims the button; otherwise, it
enables the button.

done = FALSE;
while C ! done
{

GetITextC textHandle, &theText >;
if C theText[0 J == 0)

HiliteControlC OKHandle, 255 >;
else

HiliteControLC OKHandle, 0 >;

When the filter proc calls Mod a L D i a log C > , it passes it a pointer
to the filter proc. The filter proc drops out of the loop if either the OK
or the Cancel button was pressed.

}

}

ModalDialogC DLOGFilter, &itemHit >;
done = C CitemHit == OK_ITEM) I I

CitemHit == CANCEL_ITEM> >;

There's nothing new about Tool Box In it C >.

/*********************************** ToolBoxlnit
*I

ToolBoxlnit()
{

}

InitGrafC &thePort >;
InitfontsO;
FlushEvents(everyEvent, REMOVE_ALL_EVENTS);
InitWindows<>;
InitMenusO;
TEini t ();
InitDialogsC NIL_POINTER);
InitCursorO;

118 Macintosh Programming Primer

Filter procs take three parameters. The first is a D i a log Pt r,
pointing to the dialog being filtered. Second is a pointer to the
E v e n t R e c o r d being processed. This parameter is used here to
decide whether an Enter or Carriage Return key Down has occurred.
The third parameter is a pointer to the item in which the event
occurred. This parameter will be changed only if an Enter or
Carriage Return key Down is received.

/*****************************DLOGFilter *****/

pascal Boolean DLOGFilterC theDialog, e, iPtr)
DialogPtr theDialog;
EventRecord*e;
int *iPtr;

int
Re ct
Handle
Str255
char

itemType;
itemRect;
item;
tempStr;
theChar;

First, the filter proc gets a handle to the text field, and then it
retrieves the text in t em p S t r.

GetDitemC theDialog, TEXT_ITEM, &itemType, &item, &itemRect >;
GetITextC item, &tempStr >;

If the event was a key Down, check for either a Carriage Return or
an Enter key.

if Ce->what == keyDown>
{

theChar = Ce->message & charCodeMask>;
if CtheChar -- TE_CARRIAGE_RETURN> I I

CtheChar == TE_ENTER_KEY))
{

If a Carriage Return or an Enter key was pressed, check the
length of the text field. If the text field is not empty, the filter proc
sets the item pointer to the OK button's item number and then
highlights (inverts) the OK button (just for effect). If TRUE is
returned, the filter proc tells Mod a l D i a log C > to ignore the event
and just pass the item number back to the application.

Code Resources 119

if C tempStr[0 J != 0
{

}

else

*iPtr = OK_ITEM;
GetDitemC theDialog, OK_ITEM, &itemType,

&item, &itemRect >;
HiliteControlC item, 1 >;
return(TRUE >;

If the text field was empty, the filter proc sets the item number to
the text field (anything other than the Cancel or OK button numbers
would do); then it tells Modal Di al o g C > to ignore the event by
returning T RU E.

}

}

{

}

*iPtr = TEXT_ITEM;
return(TRUE >;

If the event wasn't a Carriage Return or Enter key Down, the filter
proc returns FA LS E, telling Mod a l D i a l o g C > to handle the event
normally.

return(FALSE >;
}

D raw o KB u t t on C > gets the OK button's Re c t, sets the Pen S i z e,
makes the Re c t 3 pixels larger, and then frames a rounded rectangle
around the OK button. Finally, the pen and port are returned to their
old values.

/************************************* DrawOKButton *****/

DrawOKButtonC theDialog
DialogPtr theDialog;
{

int
Re ct
Handle
Graf Ptr

itemType;
itemRect;
item;
oldPort;

120

>;

}

Macintosh Programming Primer

GetDltemC theDialog, OK_ITEM, &itemType, &item, &itemRect

GetPortC &oldPort >;
SetPort(theDialog >;

PenSize< 3, 3 >;
InsetRectC &itemRect, -4, -4 >;
FrameRoundRect(&itemRect, 16, 16 >;
PenNormalC>;

SetPort(oldPort >;

c e n t e r D i a l o g C > uses Move W i n do w < > to move the given dialog
so that it is centered with respect to the main screen. The QuickDraw
global s c re e n B i t s • b o u n d s describes the R e c t surrounding the
main display.

/************************************* CenterDialog *****/

CenterDialog(theDialog
DialogPtr theDialog;
{

}

Rec t r;
int width, height, sWidth, sHeight, h, v;

r = theDialog->portRect;

width =
height =

sWidth =

r.right - r.left;
r.bottom - r.top;

screenBits.bounds.right - screenBits.bounds.
left;

sHeight = screenBits.bounds.bottom - screenBits.bounds.
top;

h = CsWidth - width) I 2;
v = CsHeight - height) I 2;

MoveWindowC theDialog, h, v, FALSE >;

_J
In Review

You've covered a lot in this chapter. You learned how to create
various code resources, including one, a PRO C, that you loaded and
ran from inside another program. We also illustrated the proper
technique for declaring the main code routines, based on the calling
sequence described in Inside Macintosh.

The next topic is Color Quick.Draw. Chapter 4 shows you how you
can add color to your applications while maintaining compatibility
with the black-and-white world. It also covers the changes introduced
by 32-bit Quick.Draw.

121

Color
QuickDraw

The next topic is Color QuickDraw.
This chapter shows you how to add

color to your applications while
maintaining compatibility with the

black-and-white world. It also covers
the changes introduced by 32-Bit

QuickDraw.

4

_J

When the Macintosh was first introduced (way back in 1984) life
was simple. Ronald Reagan was in the White House, and Classic
QuickDraw was king.

The Evolution of QuickDraw

Classic QuickDraw (also known as plain old QuickDraw) consists of a
well-defined set of drawing routines operating on Graf Port data
structures, using a palette of eight colors (black, white, red, green,
blue, cyan, magenta, and yellow). Classic QuickDraw proved more
than adequate for the small, black-and-white screens of the early
Macintoshes.

In early 1987, things got more complicated. Apple introduced the
Macintosh II and, with it, Color QuickDraw. Classic QuickDraw's
Toolbox is largely black and white. Although you can specify one of
the eight Classic QuickDraw colors while drawing, the resulting
screen image appears in black and white.

· lt-y.oqr·.~9pii(;atiob: dt.a~~,ftj_,Q.()IQr .using ___ Cl~~sic QuickDraw,
Ji~~~~~~':;~LQ~~ ·,wilt _~p~,'1f:~,~~~-'~a :,atj.,¥. m~~hine that doesn:t
'UP~tl ~l«llr .Qy_lei<,Oraw•_ ·f{9~~'le.r? .-e1~~c: Q~1Cj(Draw colors win
appeer·i,r;i;-'Q.Jl.lQ·r .oo,:t!JQif;t_aiQot9r;Q~lckPl1lW-:ma,chine and a color
,prlnt$r~ c• ' - '

Color QuickDraw allows you to colorize all aspects of the user
interface. You can add color to windows, controls, menus, and even
the menu bar itself. Every drawing operation supported by Classic
QuickDraw can be performed in color by Color QuickDraw.

Classic QuickDraw allows only a single display device. The
memory that drives the display (called the screen buffer) is part of
main memory. Color QuickDraw supports multiple display devices,
each driven by its own video card. Color QuickDraw is currently
supported by the entire Macintosh II family as well as the SE/30.

125

_J

126

Color QuickDraw and Indexed Devices

The images that appear on your monitor are made up of pixels. The
Mac Plus screen is 512 pixels wide and 342 pixels tall. Some
Macintosh models (such as the Mac Plus and SE) dedicate a portion
of their main memory (or RAM) to the ls and Os that define each
pixel. Other Macs (such as the Mac II and Ilcx) store this information
in RAM mounted on a separate video card. The Mac Ilci supports
both methods.

Most video cards store pixel information as indices into a color
table and thus, are called indexed devices. On an indexed device,
each index is made up of either 8, 4, 2, or 1 bits. This index size is
also known as the device's depth. If the video card supports multiple
depths, the current depth is determined by the user via the Monitors
cdev, found in the Control Panel.

The color table on a video card typically contains 24 bits per entry
(8 bits red+ 8 bits green+ 8 bits blue). This approach lets you choose
some small number (256, 16, 4, or 2) of colors out of a large set of
possible colors for display at any one time. This cuts the amount of
video RAM you need (thus lowering costs), as well as reducing the
amount of data you need to send to the card to make changes (thus
improving performance).

Color QuickDraw maintains its own structures, separate from the
video cards, which contain color information specified by your
application. Color QuickDraw's color tables use 48 bits to specify each
color (16 bits red+ 16 bits green+ 16 bits blue):

typedef struct RGBColor
{

unsigned short red;
unsigned short green;
unsigned short blue;

} RGBColor;

The R GB co lo r C > is tied together with an index to form a
ColorSpec:

typedef struct ColorSpec
{

short value;
RGBColor rgb;

} ColorSpec;

/*index or other value*/

Color QuickDraw 127

Finally, a sequential list of Co l o r S p e cs (along with some header
information) makes up a Co l or Tab l e:

typedef struct ColorTable
{

long ctSeed; /*unique identifier for
table*/

short ctFlags;
short ctSize; /*number of entries in

CTTable*/
CSpecArray ctTable; /*array [0 •• 0J of

ColorSpec*/
} ColorTable;

These three data structures may seem complex, but don't panic.
You'll probably never need to work with anything but the red,
g r e en, and b l u e fields of the R GB Co l o r data structure.

Each R GB Color is 6 bytes (or 48 bits) long. By varying the
intensities of red, green, and blue, you can describe 248 possible
colors. That's an awful lot of colors. Each of the fields red, green,
and b l u e are unsigned shorts and can take on values from 0 to
65535.

Figure 4.1 shows a sample color table, starting with 8 bytes of
header information, followed by a C S p e c A r ray consisting of a list of
v a l u es and associated R GB Colo rs. When it comes time to paint a
particular pixel, Color QuickDraw looks up the pixel's value in the
device's color table, retrieving an R G B Co l o r. The processor paints
the pixel with the R GB Co lo r and moves on to the next pixel.

ctSeed ctflags ctSize
i::: ::::::: -::1 ::: ::::::: : I: : : : : : : : : : : : I: : : : : : : : : : I

ualue red green blue
2~0 0-6§535 0-65535 0-6~535
1~5 0-6§535 0-6~535 0-6~535
tI3 0-6~535 0-6~535 0-6~535

• • • I::::: :3p:: : : : I::: 97$~~i~ : : : : I : : : 97$~~35 : : : : I : : : 97$~~~~ : : : : I

Figure 4.1 A table of R GB colors.

128 Macintosh Programming Primer

The CGratPort and the CWindowPtr

In Classic QuickDraw, you create a new window using
New Window C > or Get New Window C >, both of which return a
W i n do w Pt r. In Color QuickDraw, you'll create your color window
using New CW i n do w C > or G e t N e w CW i n do w C >. These routines also
return a W i n do w Pt r, which points to a window structure that
contains a C G r a f Po r t data structure instead of a G r a f Po r t data
structure. Note that a CGraf Port and a Graf Port are the same
size and that a window created by New W i n do w C > can be used
interchangeably with one created by New CW i n do w C > . This is true as
long as you are not using calls that are specific to Color QuickDraw,
which may not work correctly in a window created by
NewWi ndow C >.

Remember, the routines New CW i n do w C > and Get New C
W i n do w C > will work only on machines that support Color
QuickDraw. How does your application tell whether the machine it is
currently running on supports Color QuickDraw? That will be
covered in a minute. First, let's talk about drawing in a color window.

Ignoring the Palette Manager for now, the simplest way to draw in
a color window is by using the routines R GB Fore Co lo r C > and
R GB Ba c k Co l o r C > . Both of these routines take an R GB Co l o r as a
parameter, changing the foreground or background color of the
current port to the specified color. The next drawing operation per
formed on that port will be performed using the new background or
foreground color. Here's a code fragment that will create a new color
window (based on a WIND resource) and paint a blue box right in the
middle of it:

BlueWindowC>
{

WindowPtr
RGBColor

window;
myBlueColor;

window = GetNewCWindowC 400, NIL_POINTER,
MOVE_TO_FRONT >;

SetPortC window >;
ShowWindowC window >;

myBlueColor.blue = 65535;
myBlueColor.red = O;
myBlueColor.green = O;
RGBForeColorC &myBlueColor >;

Color QuickDraw

}

SetRectC &r, 50, 50, 100, 100 >;
PaintRectC &r >;

129

As you can see, things haven't changed much. The only thing
added is a call to R GB F o r e c o l o r C > to change the drawing color.
Notice that the foreground color was never changed back to its
customary black (red=green=blue=O). That was actually pretty
impolite. The next drawing operation performed will come out in
bright blue. Keep track of your foreground and background colors.
You might want always to return the foreground color to black and
the background color to white (red=green=blue=65535) before you
return from a drawing routine. Either way, be careful with that
paintbrush!

What Machine Is the Program Running On?

As was mentioned earlier, you can't always count on Color
QuickDraw being available. Fortunately, Apple provides a Toolbox
utility that tells your programs whether Color QuickDraw is
available. You'll want to add the following routine to your repertoire:

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return(mySE.hasColorQD >;

Is co lo r C > returns TRUE if Color QuickDraw is available and
returns FA LS E otherwise. At the heart of I s Co l o r C > is the call to
sys En vi r on s C >. Sys En vi r on s C > is described in Inside
Macintosh, Volume V, Chapter 1. It takes a version number as an
input parameter (as of this writing, version number 2 is the latest)
and returns a filled-out sys E n v Rec in return. Here's the declaration
of a s y s E n v R e c:

130 Macintosh Programming Primer

typedef struct SysEnvRec
{

short
short
short
short

·aoolean
Boolean
short
short
short

} SysEnvRec;

environsVersion;
machineType;
systemVersion;
processor;
hasFPU;
hasColorQD;
keyBoardType;
atDrvrVersNum;
sysVRef Num;

The S y s E n v R e c fields are described on pages 6-8 of Inside
Macintosh, Volume V.

Having routines like Sys En v i r on s C > and I s Co l o r C > doesn't
solve all of your problems, though. Suppose you're writing a super
duper graphics application and you want it to run on both a Mac Plus
and a Mac II. Your application will have to adopt different techniques
for each platform. For example, you won't be able to draw in color on
the Mac Plus. On the Mac II, you may not want to draw in color if the
Monitors cdev is set to two colors (if the pixel depth is 1).

Although there is no strategy that will work for all applications,
here are some tips that might help. First of all, you'll want to divide
your approach between color and black and white. You'll have to
decide if your application will be responsive to changes in the color
environment. For example, a color drawing package had better be
aware if the user used the Monitors cdev to turn off color. At the
beginning of your program, set a Boo l ea n global to T RU E or F A LS E,
depending on whether Color QuickDraw is installed. You might want
to keep another global around that contains the pixel depth (bits per
pixel). Because the user can change the pixel depth on the fly, this
last global should be updated whenever there is an up d a t e Ev t.
Finally, every time your program wants to make a QuickDraw call,
check these globals, making one set of calls in a color world and
another in a monochrome world. Never, ever call a Color QuickDraw
routine if Color QuickDraw is not installed!

_J
Keeping Track of Graphic Devices

The system maintains a separate data structure for each of its
graphic devices (typically, one for each monitor). The data structure
is called a G Dev i c e:

typedef struct GDevice
{

short
short
short
ITabHandle
short
SProcHndl
CProcHndl
short
PixMapHandle
long
struct GDevice
Re ct
long
short
short
Handle
Handle
long

gdRef Num;
gdID;
gdType;
gdlTable;
gdResPref;
gdSearchProc;
gdCompProc;
gdFlags;
gdPMap;
gdRef Con;
**gdNextGD;
gdRect;
gdMode;
gdCCBytes;
gdCCDepth;
gdCCXData;
gdCCXMask;
gdReserved;

} GDevice, *GDPtr, **GDHandle;

The fields of a GDevi ce are described on pages 120-121 oflnside
Macintosh, Volume V. For the most part, you won't need to access a
GD e vi c e directly. Color QuickDraw provides several layers on top of
the device layer that give you most of what your programs will need
to do even the most sophisticated color graphics. Just so you know,
however, here's how to access the G Dev i c es that describe the
graphics devices connected to yotir Mac.

The function G e t D e v i c e L i s t C > returns a handle to the first
device in Color QuickDraw's device list. Get Next Dev i c e C > takes a
handle to the current device as an argument and returns a handle to
the next device. When you get back a NI L handle, you've reached the
end of the list. G e t Ma i n D e v i c e C > returns a handle to the main
device (the device that the menu bar is drawn on). Get Max
Device C > takes a global Rec t as an argument and returns a

131

132 Macintosh Programming Primer

handle to the deepest device (the device with the highest number of
bits per pixel) that intersects that Re c t or a NIL handle if the
intersection is empty.

The Pixel Image

Classic QuickDraw supports BitMaps; Color QuickDraw supports
PixMaps:

typedef struct PixMap
{

Ptr
short
Re ct
short
short
long
Fixed
Fixed
short
short
short
short
long
CTabHandle
long

} PixMap, *PixMapPtr,

baseAddr;
rowBytes;
bounds;
pmVersion;
packType;
packSize;
hRes;
vRes;
pixel Type;
pixelSize;
cmpCount;
cmpSize;
planeBytes;
pmTable;
pmReserved;

**PixMapHandle;

A P i x Ma p's b a s e Add r field points to a contiguous block of bytes
that define a color image. Each G Dev i c e contains a handle to a
Pi xMap in the gdPMap field. If the GDevi ce is a screen device, the
b a s e Add r field of its P i x Ma p points to the video RAM containing
the pixels for the screen. Although you should not access a device's
pixels directly, you can use other fields in the G Dev i c e's P i x Ma p to
find out a little more about the device. For example, the p i x e l s i z e
field tells you the depth of each pixel in bits. The first program in this
chapter, Color Info, makes use of this feature. The fields of a Pi x Map
are described in detail in Inside Macintosh, Volume V, pages 53-54.

By the way, this brings up the point that a device's existence in the
device list does not necessarily mean that it is a screen device. It is

Color QuickDraw 133

definitely abnormal to find a nonscreen device in the ljst, but it is a
good idea for you to check this bit using Te s t D e v i c e A t t r i bu t e < >
(Inside Macintosh, Volume V, p. 124.):

activeScreen = FALSE;

if (TestDeviceAttribute< myDevice, screenDevice) >
if (TestDeviceAttribute(myDevice, screenActive > >

activeScreen = TRUE;

if < activeScreen >
{

}

_J
The First Program: Colorlnfo

Let's take a break from the theoretical and have a little fun. The first
Color QuickDraw program in this chapter is called Colorlnfo.
Colorlnfo starts by checking whether Color QuickDraw is installed. If
it is, Colorlnfo will step through every installed graphics device,
displaying the color table for each device (at that device's current
pixel depth) centered on the device's screen.

Colorlnfo Resources

Create a folder in your development folder called Colorlnfo f.
Launch ResEdit and create a new file inside the Colorlnfo f folder.
Call the file Colorlnfo.Jt.rsrc. You'll need only two resources for this
program - an AL RT and a D IT L for the AL RT. The program will use
the AL RT to display messages to the user.

First, create a new D IT L with a resource ID of 4 0 0. Select New
from the File menu to create a new DI TL item according to the
specifications in Figure 4.2.

Next, create another new item according to the specifications in
Figure 4.3.

134 Macintosh Programming Primer

=D~~~~ Edit D ITL Item # 1 =

®Button ®Enabled
0 Check bOH 0 Disabled
O Radio control

O Static teHt top 71
O Editable teHt

left 1 1 1 O CNTL resource
O ICON resource bottom 91
O PICT resource right 171
O User item

Te Ht
IOK

Figure 4.2 Specifications for item 1 of D IT L 400.

Edit DITL Item #2

O Button ®Enabled
O Check boH 0 Disabled
0 Radio control

® Static teHt top 7
O Editable teHt

left 64 O CNTL resource
O ICON resource bottom 57
0 PICT resource right 275
0 User item

Te Ht
IAO

Figure 4.3 Specifications for item 2 of DI TL 400.

Color QuickDraw 135

§0 Alert ID = 400 from Colorl nf o. n .rs re

top ~bottom~
left ~right ~

items I DI 400 I sound

stage 1 D 2 bold 181 drawn 1

stage 2 D 2 bold 181 drawn 1

stage 3 D 2 bold 181 drawn 1

stage 4 D 2 bold ~ drawn 1

Figure 4.4 Specifications for AL RT 400.

Finally, create an AL RT resource according to the specifications in
Figure 4.4. Set the AL R T's resource ID to 400. Excellent! The file
Colorlnfo.7t.rsrc should now contain two resources - an ALRT and a
D IT L, both with resource IDs of 400. Save your changes and quit
ResEdit.

Setting Up the Project

Inside the Colorlnfo f folder, create a new project called Colorlnfo.7t.
Then add MacTraps to the project. Create a new source code file and
save it as Colorlnfo.c. Add Colorlnfo.c to the project. Type the
following source code into Colorlnfo.c:

136

#include "ColorToolbox.h"

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define INVISIBLE

400
OL
"\p"
FALSE

Macintosh Programming Primer

#define NO_GOAWAY
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS
#define INDEX_DEVICE
#define DIRECT_DEVICE

FALSE
CWindowPtr)-1L
0
TRUE
FALSE

Boolean IsColorC>;

main()
{

int
GDHandle
Re ct

pixDepth;
curDev;
bounds;

ToolBoxlnitC>;

if C IsColorO >
{

curDev = GetDeviceListC>;

while(curDev != NIL_POINTER)
{

bounds = C**curDev).gdRect;

pixDepth = GetPixelDepthC curDev >;
switch< pixDepth >
{

case 1:
DisplayColorsC &bounds, 1, 2, 128,

INDEX_DEVICE >;
break;

case 2:
DisplayColorsC &bounds, 2, 2, 128,

INDEX_DEVICE >;

Color QuickDraw

}

break;
case 4:

DisplayColorsC &bounds, 4, 4, 64,
INDEX_DEVICE >;

break;
case 8:

DisplayColorsC &bounds, 16, 16, 24,
INDEX_DEVICE >;

break;
default:

DisplayColorsC &bounds, 48, 48, 8,
DIRECT_DEVICE >;

break;

curDev = GetNextDeviceC curDev >;
}

while(! Button() > ;
}

else
DoAlert

137

C 11 \pThis machine does not support Color QuickDraw!" >;
}

/*********************************** ToolBoxlnit */

ToolBoxlnitC>
{

}

InitGrafC &thePort >;
Initfonts<>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
lnitWindowsC>;
lnitMenusO;
TElnitO;
lnitDialogsC NIL_POINTER >;
lnitCursorC>;

138 Macintosh Programming Primer

/******************************** GetPixelDepth *********/

int GetPixelDepthC theDevice >
~DHandle theDevice;
{

}

PixMapHandle
int

screenPMapH;
pixel Depth;

screenPMapH = C**theDevice).gdPMap;
pixelDepth = C**screenPMapH).pixelSize;
return(pixelDepth >;

/******************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return< mySE.hasColorQD >;

!*********************************** DisplayColors */

DisplayColorsC boundsPtr, width, height, pixPerBox, islndex)
Rect *boundsPtr;
int width, height, pixPerBox;
Boolean islndex;
{

Re ct
int
WindowPtr
RGBColor
HSVColor
long

r;
row, col;
cWindow;
curColor;
hsvColor;
colorNum;

hsvColor.value = hsvColor.saturation = 65535;

r.top = O;
r.left = O;
r.right = width * pixPerBox;
r.bottom = height * pixPerBox;

Color QuickDraw 139

cw;ndow = Newcw;ndowC NIL_POINTER, &r, 11 \pDev;ce Colors",
INVISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

}

Centerw;ndowC cw;ndow, boundsPtr >;
Showw;ndowC cw;ndow >;
SetPortC cw;ndow >;

for C row=O; row<he;ght; row++ >
{

}

for C col=O; col<width; col++ >
{

}

r.top = row * p;xPerBox;
r.left =col * pixPerBox;
r.bottom = r.top + p;xPerBox;
r.right = r.left + pixPerBox;

H C hlndex >

else
{

}

Index2ColorC Clong)Crow*width + col>, &curColor >;

colorNum = Clong)Crow*width + col>;
hsvColor.hue = 65535 * colorNum I (width * height >;
HSV2RGBC &hsvColor, &curColor >;

RGBForeColorC &curColor >;
PaintRectC &r >;

/*********************************** CenterWindow */

CenterWindowC w, boundsPtr >
Rect *boundsPtr;
WindowPtr
{

Re ct
int

w. ,

r;
w;dth, height, sWidth, sHeight, h, v;

r = w->portRect;

140

}

width= r.right - r.left;
height = r.bottom - r.top;

Macintosh Programming Primer

sWidth = boundsPtr->right - boundsPtr->left;
sHeight = boundsPtr->bottom - boundsPtr->top;

h = boundsPtr->left + <<sWidth - width> I 2>;
v = boundsPtr->top + ((sHeight - height) I 2);

MoveWindowC w, h, v, FALSE >;

/*********************************** DoAlert */

DoAlert< s)
Str255 s;
(

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlert(BASE_RES_ID, NIL_POINTER >;

}

Running Colorlnfo

OK. Let's run this sucker. Save your changes and select Run from the
Project menu. If the compiler points out any typos or other errors, fix
them.

If you try to run Colorlnfo on a machine that doesn't support Color
QuickDraw (such as a Mac Plus or an SE), the dialog pictured in
Figure 4.5 will appear and the program will exit.

This machine does not support
Color QuickDraw!

I OK D

Figure 4.5 The "I don't support Color QuickDraw" Alert.

Color QuickDraw 141

~ Deuice Colors§

Figure 4.6 Colorlnfo on a 1-bit monitor.

If your machine does support Color QuickDraw, a window will
appear centered on each monitor attached to the Macintosh,
displaying the colors available on that monitor at the current
settings. Figure 4.6 shows the window that appears on a monitor
that is set to two colors.

Walking Through the Colorlnfo Source Code

The source code starts off by including the file ColorToolbox.h.
ColorToolbox.h contains some of the basic definitions necessary to
call Color QuickDraw.

Because YOll'll probaf>ly be, inc;lµding thi~ flit in lots of your code
from now 'on, you might want Jo, recompile M~Header$ to include

. ColorToolb.ox.h.- alJtom~tically •. See the THINK C User's Guide for
rnore. information. -

142 Macintosh Programming Primer

#include 11 ColorToolbox.h 11

Most of the program's #defines should be old hat to you by now.
The last two, IND E X_D Ev I c E and DIRE c T _DE v I c E, relate to
32-Bit QuickDraw, an extension to Color QuickDraw that Apple
released in 1989. Whereas Color QuickDraw supports only index
devices, 32-Bit QuickDraw additionally supports direct devices. A
direct device holds the actual R GB co lo r value in the pix.el itself
(instead of an index into a color table). This approach lets you choose
almost any of the possible colors for display all at one time (the
number of possible colors is realistically limited by the number of
pixels available). This increases the amount of required video RAM
(which makes the system more expensive - but memory prices
drop!), as well as increasing the amount of data you need to send to
the card to make changes (which makes this method slower than the
indexed method). The 32-Bit QuickDraw INIT is available from
APDA or comes with System 6.0.5 (or later systems). It is built into
the Mac llci and llfx (and later machines that use Color QuickDraw).

For the most part, you won't care whether a direct or an indexed
device is used. Color QuickDraw hides all that from you. Because this
program is trying to draw each color available on a video card (as
opposed to a particular R G BC o l o r), it needs more information than
you ordinarily would. You'll see how the program gets that
information in the routine D i s p l a y co l o r s C > , described a little
later.

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define INVISIBLE
#define NO_GOAWAY
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS
#define INDEX_DEVICE
#define DIRECT_DEVICE

400
OL
"\p"
FALSE
FALSE
CWindowPtr>-1L
0
TRUE
FALSE

Because the routine I s Co lo r C > returns a Boo l ea n, as opposed
to an i n t, Colorlnfo must declare the routine before it can call it.

Boolean IsColor<>;

The program starts, as usual, with a call to Too l Box I n i t C > .
Next, it checks to see whether Color QuickDraw is installed.

Color QuickDraw

main()
{

int
GDHandle
Re ct

pixDepth;
cur Dev;
bounds;

ToolBoxlnitO;

143

If Color QuickDraw is installed, Color Info uses Get Device
L i s t < > to fetch the first device in Color QuickDraw's device list. The
"while list" steps through each device in the list.

if < IsColor<> >
{

curDev = GetDevicelistC>;

while(curDev != NIL_POINTER)
{

The device's g d Re c t field contains the device's bounding Re c t, in
global coordinates. You can count on the fact that devices won't
overlap.

bounds = C**curDev).gdRect;

Next, Colorlnfo fetches the device's pixel depth and calls
Display Colors C > with arguments based on this depth. The
second, third, and fourth arguments to D i s p l a y c o l o r s C > define
the arrangements of color squares that appear on the device. For
example, an 8-bit device supports 28 or 256 different colors. In this
case, D i s p l a y Co l o r s C > will create a window big enough to hold
256 squares arranged in <2nd a r gum en t > columns and < 3 rd
argument> rows, with each square being <4th argument> pixels
on a side. The program arranges its 8-bit window as a 1 6-by-1 6
array of 6 4 pixel squares. The last argument tells Di splay
Co lo rs < > whether it's drawing on an index device.

pixDepth = GetPixelDepthC curDev >;
switch< pixDepth)
{

case 1:
DisplayColors< &bounds, 1, 2, 128,

INDEX_DEVICE >;

144

else

}

}

}

break;
case 2:

Macintosh Programming Primer

DisplayColorsC &bounds, 2, 2, 128,
INDEX_DEVICE >;

break;
case 4:

DisplayColorsC &bounds, 4, 4, 64,
INDEX_DEVICE >;

break;
case 8:

DisplayColorsC &bounds, 16, 16, 24,
INDEX_DEVICE >;

break;
default:

DisplayColorsC &bounds, 48, 48, 8,
DIRECT_DEVICE);

break;

curDev = GetNextDeviceC curDev >;

Once Colorlnfo has drawn a window on each device, it waits for a
mouse click before it drops out of ma i n C > •

while< ! Button<>) ;
}

If Color QuickDraw isn't installed, Colorlnfo puts up an alert and
drops out of ma i n C > .

DoAlertC 11 \pThis machine does not support Color QuickDraw!" >;

No ·changes here:

!********************************* ToolBoxlnit */

ToolBoxlnit()
{

InitGrafC &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;

Color QuickDraw

}

InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogs(NIL_POINTER >;
InitCursorC>;

145

G e t P i x e L D e p t h C > returns the p i x e L S i z e field from the
current device's P i x Ma p.

!********************** GetPixeLDepth *********/

int GetPixelDepthC theDevice)
GDHandle theDevice;
{

}

PixMapHandle
int

screenPMapH;
pixelDepth;

screenPMapH = C**theDevice).gdPMap;
pixelDepth = C**screenPMapH).pixelSize;
return(pixelDepth >;

As was described earlier, I s c o l o r C > calls Sy s En v i r on s C > and
returns the ha s C o l o r Q D field.

!*************************** IsColor *********/

Boolean IsColor()
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return(mySE.hasColorQD >;

The parameters to Di s p l a y co l o r s C > were mentioned in the
description of ma i n C > , above.

!******************************* DisplayColors */

DisplayColorsC boundsPtr, width, height,
pixPerBox, islndex >

146

Re ct
int
Boolean
{

Re ct
int
WindowPtr
RGBColor
HSVColor
long

Macintosh Programming Primer

*boundsPtr;
width, height, pixPerBox;
islndex;

r;
row, col;
cWindow;
curColor;
hsvColor;
colorNum;

R Ge co Lor, the basic currency of Color QuickDraw, was de$cribed
earlier. Every R Ge co Lor is based on values of red, green, and
blue that range from O to 65535. Actually many other color models
describe the exact same colors. One of these, the Hsvto Lor
model, describ~s color!? in terms of brightness, hue, and sat11Jratlon.
By setting briqhtness and saturation to 65535, you can v~ry the
hue and· produce .a· spectrum of only very bright, brilliant (colors.
This approach· is illustrated throughout the chapter.

The point of thl~ note is this: Experiment with the differer)t color
models, b.uilding . up a set of techniques for the produc.tion of
particular families of colors. A routine exists fpr translating each
model's ccilors to the· identical R Ge co Lor. ·

hsvColor.value = hsvColor.saturation = 65535;

Color Info defines a Rec t that's the appropriate size for the
current parameters and then creates a new color window with
NewCWi ndow(>.Notice that cWi ndow is declared as a Wi ndowPt r.

r.top = O;
r.left = O;
r.right = width * pixPerBox;
r.bottom = height * pixPerBox;

cWindow = NewCWindowC NIL_POINTER, &r,
11 \pDevice Colors",

Color QuickDraw 147

INVISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

Once the window is created, the program centers it in the device's
R e c t with C e n t e r W i n do w C > , makes it visible with S h ow
Window C >,and makes it the current port with set Port C >.

CenterWindowC cWindow, boundsPtr >;
ShowWindowC cWindow >;
SetPortC cWindow >;

Next, Colorlnfo starts the drawing process. It draws one row at a
time, drawing each square in the row before moving on to the next
row. The program sets up the Rec t r to define the current square.

for C row=O; row<height; row++ >
{

for C col=O; col<width; col++ >
{

r.top = row * pixPerBox;
r.left =col * pixPerBox;
r.bottom = r.top + pixPerBox;
r.right = r.left + pixPerBox;

If the device is an index device, Color Info can fetch the current
RGBCo lo r by passing an index into I ndex2 Color C >. On an 8-bit
device, the pro~am can pass in an index from 0 to 255.

if C isindex >
lndex2ColorC Clong)Crow*width

+ col>, &curColor >;

If the device is a direct device, Colorlnfo can display virtually any
color it wants. This example uses the index to select a bright color.
Because the hue of an HS V Co lo r can range from 0 to 65535, the
program divides the range by the total number of color squares
requested. It then translates the h s v co lo r to an R GB Co lo r via a
call to H S V 2 R GB C).

148 Macintosh Programming Primer

else
{

}

colorNum = Clong)(row*width + col>;
hsvColor.hue = 65535 * colorNum I (width * height >;
HSV2RGBC &hsvColor, &curColor >;

Once an R GB Co lo r for the current square has been selected, the
program sets the foreground color to that color and draws the Rec t
with Pa i n t Re c t C > •

}

}

}

RGBForeColorC &curColor >;
PaintRectC &r >;

Cent e rWi ndow C > uses MoveWi ndow C > to center the specified
window in the specified R e c t . Notice that Mo v e W i n do w C > only
moves the window and doesn't change the window's size.

/*********************************** CenterWindow */

CenterWindowC w, boundsPtr
Rect *boundsPtr;
WindowPtr w;
{

}

Re ct r;
int width, height, sWidth, sHeight, h, v;

r = w->portRect;

width= r.right - r.left;
height = r.bottom - r.top;

sWidth = boundsPtr->right - boundsPtr->left;
sHeight = boundsPtr->bottom - boundsPtr->top;

h = boundsPtr->left + CCsWidth - width) I 2>;
v = boundsPtr->top + CCsHeight - height> I 2>;

MoveWindowC w, h, v, FALSE >;

Color QuickDraw 149

Do A l e r t C > displays the specified Pascal string in the program's
A L RT, by first passing it as an argument to Pa r a m T e x t C > • This
routine is used throughout the chapter.

/*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE~RES_ID, NIL_POINTER >;

}

_J
The Palette Manager

The next program introduces an important companion of Color
QuickDraw, the Palette Manager. The Palette Manager allows you
to build a list of custom colors and attach that list to a specific
window. When that window is in the front, the Palette Manager will
do everything possible to ensure that those colors are available to the
window.

For example, suppose you are using a Mac Hex with an 8-bit video
card and a color monitor. The video card is set at 8 bits, thus
supporting 256 different colors (starring the two permanent colors,
white, as color 0, and black, as color 255). Now suppose you wanted
to display two different windows, one with 200 shades of red and one
with 200 shades of green. Your first problem is with the video card's
default color table. Odds are, the video card isn't set up with your 200
shades of red. You know it isn't set up with 200 shades of red and 200
shades of green because there's roo~ for only 254 custom colors (not
counting black and white).

By using the Palette Manager, you can set up a palette of 200 red
colors and a separate palette of 200 green colors. You can then assign
the red palette to one window and the green palette to another. When
your red window is in front, the Palette Manager makes sure that
your 200 shades of red are placed somewhere in the video card's color
table. Note that this may mean the deletion of some nonpalette colors
from the video card's color table. To access the palette colors, pass the
palette color number to either Pm Fore Co lo r C > or Pm Back
Co l o r C > and then make your regular Color QuickDraw calls.

150 Macintosh Programming Primer

The great thing about the Palette Manager is that you can create
20 different palettes, assign each to a different window, and then sit
back and let the Palette Manager do all the hard work of optimizing
the device's color table so your frontmost window is drawn with colors
as close as possible to your original request.

Using the Palette Manager

Create a new palette by calling either New Palette<) or
Get New Pa l e t t e () . New Pa l e t t e () takes four arguments. The
first specifies the number of entries in your palette. The second is a
handle to a co lo r Table, used to initialize your palette. In the
example program, N I L_P o INTER is passed as the second argument.
This tells the Palette Manager to set all colors to black. This is a fine
approach, as you can step through every entry in a palette, setting
the colors individually.

If you are interested in setting up your own color table, the data
structure is described in Volume V of Inside Macintosh, on the
bottom of page 48. Before you try creating a color table, stop and
ask yourself, "Could I have used a palette instead?"

Probably the best way to create a color table is by creating ~ c L u t
resource and then loading it with Ge t c Tab l e < > . You can create
a palette from a color table by calling c Tab 2 Pa l et t e < > . You can
also create a color table from a palette by calling Pa L e t t e
2CTab().

The third argument to New Pa let t e <) is s r c Usage , an i n t
that describes how these colors should be used. There are four legal
color usage settings. By far, the most useful of these is pm To le rant.
You will almost always create palettes of tolerant colors.

If the frontmost window requests a tolerant color, the Palette
Manager will try to find a color in the color table that matches ,
within that tolerance (see the tech block below for the tolerance
formula). If the Palette Manager can't find a match, it throws the

Color QuickDraw 151

unmatched color into the Color Table and continues. When it
finishes, the Co lo r Tab l e will have colors within tolerance for all
the front window's colors. The back windows will match as best they
can with whatever is there.

Here's something for you math hounds. The Palette Manager
computes the difference between two colors as the maximum of
these three:

• abs(color1 .red - color2.red)

• abs(color1 .green - color2.green)

• abs(color1 .blue - color2.blue)

A tolerance of Ox5000 will yield a reasonably close color match.
Use a tolerance value of OxOOOO for the closest possible color
match. All tolerance values greater than o and less than Ox1000
are reserved by Apple and shouldn't be used.

You specify the color tolerance via the fourth argument to
N e w Pa l e t t e C) , s r c To l e r a n c e. The three other color usages are
pm C o u r t e o u s , pm A n i ma t e d , and pm E x p l i c i t . pm C o u r t e o u s
colors are there for reference only. You can draw using a
pm Courteous palette color, but it will never cause the Palette
Manager to adjust the color environment.

pm An i mated colors are a novelty. If you draw in a particular
pm An i mated color, you can animate that color using calls to
An i mate Pa l et t e C) and An i ma t e Entry C) . Animating a
particular palette entry will affect every pixel drawn in that color. If
you animate a red palette entry to blue, all the pixels drawn in that
particular red will instantly (during the next screen refresh) be
repainted in the animated color.

pm Ex p l i c i t colors are used to access the video card color table.
Colors specified in a pm Exp l i c i t palette are ignored. The index
provided to Pm Fore Co lo r C) will cause the forecolor to be set to the
corresponding index into the video card's color table. A palette of
pmExplicit colorsalongwithcallsto PmForeColorC) could have
been used in the last program to draw each device's color table.

152

_J

Macintosh Programming Primer

If you create a palette with New Pa l e t t e C > , each entry in the
palette is set to the usage specified in s r c U s age and the tolerance
specified in s r c To l e r a n c e. You can set and get an entry's usage
with s e t En t r y U s a g e C > and Ge t En t r y Us a g e C > . You can set
and get an entry's color with Set Ent r y Co lo r < > and
Get Ent ryCo lo r C >. You can attach a palette to a window with
set.Palette C >. Finally, you can dispose of a palette with
DisposePalette<>.

Palette

The next program, Palette, demonstrates the Palette Manager in
action. Palette creates three color windows, each with its own palette.
Palette demonstrates what happens when multiple palettes vie for a
limited number of colors. Each palette consists of 100 colors, for a
total of 300 requested colors. In 8-bit mode, only 254 colors available
to the Palette Manager (you can't change black and white). This
program shows how well the Palette Manager handles both the front
window, which should get all its colors, and the back windows, which
won't.

Palette Resources

Palette uses the exact same resources as the last program, Colorlnfo.
Create a folder in your development folder called Palette f. Copy the
file Colorlnfo.1t.rsrc into the Palette f folder. Change the name of the
resource file to Palette.1t.rsrc.

Setting Up the Project

Inside the Palette f folder, create a new project called Palette.ft.
Next, add MacTraps to the project. Create a new source code file and
save it as Palette.c. Add Palette.c to the project. Type the following
source code into Palette.c:

Color QuickDraw

#include "ColorToolbox.h"

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define NIL_STRING II\ p"
#define VISIBLE TRUE
#define HAS_GOAWAY TRUE
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0
#define MIN _SLEEP OL
#define NIL_MOUSE_REGION OL

#define PRECISE_TOLERANCE OxOOOO
#define NUM_SQUARES 150

Boolean
WindowPtr
PaletteHandle

IsColorC>;
CreateColorWindowC>;

main()
{

MakeRedPaletteC>, MakeBrightPalette(),
MakeGrayPaletteC>;

corner; Point
WindowPtr window;
PaletteHandle pal;

ToolBoxinitC>;

if C ! IsColor())

153

DoAlertC 11 \pThis machine does not support Color QuickDraw! 11 >;
else
{

corner.h = 10;
corner.v = 40;
window = CreateColorWindowC corner, 11 \pRed Palette" >;
pal = MakeRedPaletteC>;
SetPaletteC window, pal, TRUE >;

154

}

}

corner.h = 17Q;
corner.v = 177;

Macintosh Programming Primer

window = CreateColorWindowC corner, "\pBright Palette" >;
pal = MakeBrightPaletteC>;
SetPaletteC window, pal, TRUE >;

corner.h = 330;
corner.v = 40;
window = CreateColorWindowC corner, "\pGray Palette" >;
pal = MakeGrayPaletteC>;
SetPaletteC window, pal, TRUE >;

DoEventloopC);

!*********************************** ToolBoxlnit */

ToolBoxlnitC>
{

}

InitGrafC &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsO;
InitMenusO;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

!*********************************** DoEventloop */

DoEventloopC)
{

Boolean
Event Record
short
WindowPtr

done;
e;
part;
window;

done = FALSE;
while C ! done >
{

Color QuickDraw 155

WaitNextEventC everyEvent, &e, MIN_SLEEP, NIL_MOUSE_REGION >;

}

}

switch(e.what >
{

}

case mouseDown:
part = FindWindowC e.where, &window >;
if C part == inGoAway)

done = TRUE;
else if C part == inDrag >

DragWindowC window, e.where,
&screenBits.bounds >;

else if C part == inContent >
{

if C window != FrontWindowC>
SelectWindowC window >;

}

break;
case updateEvt:

BeginUpdateC CWindowPtr>e.message >;
SetPortC CWindowPtr)e.message >;
DrciwBullseyeC>;
EndUpdateC CWindowPtr}e.message >;
break;

/*********************************** DrawBullseye */

DrawBullseye()
{

inti, center;
Rec t r;

center = NUM_SQUARES;

for C i=1; i<=NUM_SQUARES; i++)
{

156

}

}

PmForeColorC i - 1 >;
r.top = center - i;
r.left =center - i;
r.bottom = center + i;
r.right = center + i;

FrameRectC &r >;

Macintosh Programming Primer

!******************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return< mySE.hasColorQD >;

!******************************** MakeRedPalette *********/

PaletteHandle
{

MakeRedPaletteC>

}

RGBColor
long
PaletteHandle

c;
i;
redPalette;

redPalette = NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

c.green = O;
c.blue = O;

for C i=O; i<NUM_SQUARES; i++)
{

}

c.red = Ci * 65535) I NUM_SQUARES;
SetEntryColorC redPalette, i, &c >;

return(redPalette >;

Color QuickDraw 157

/******************************** MakeBrightPalette *********/

PaletteHandle MakeBrightPaletteC>
{

}

PaletteHandle
long
RGBColor
HSVColor

brightPalette =

brightPalette;
i;
rgbColor;
hsvColor;

NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for C i=O; i<NUM_SQUARES; i++
{

}

hsvColor.hue = Ci * 65535) I NUM_SQUARES;
HSV2RGBC &hsvColor, &rgbColor >;
SetEntryColorC brightPalette, i, &rgbColor >;

return(brightPalette >;

!******************************** MakeGrayPalette *********/

PaletteHandle MakeGrayPaletteC>
{

Pa letteHand le
long
RGBColor

grayPalette =

grayPalette;
i;
rgbColor;

NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

for C i=O; i<NUM_SQUARES; i++)
{

158

}

}

Macintosh Programming Primer

rgbColor.red = Ci * 65535) I NUM_SQUARES;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;
SetEntryColorC grayPalette, i, &rgbColor >;

return(grayPalette >;

/*********************************** CreateColorWindow */

WindowPtr
Point
Str255

CreateColorWindowC corner, title)
corner;
title;

{

}

WindowPtr cWindow;
Re ct r;

SetRectC &r, corner.h, corner.v, corner.h + C2 *
NUM_SQUARES>,

corner.v + C2 * NUM_SQUARES) >;

cWindow = NewCWindowC NIL_POINTER, &r, title,
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
HAS_GOAWAY, NIL_POINTER);

return(cWindow >;

!*********************************** DoAlert */

DoAlert(s
Str255 s;
{

}

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER >;

Color QuickDraw 159

Running Palette

Now it's time to see how it turned out. Save your changes and select
Run from the Project menu. If the compiler points out any typos or
other errors, track them down and make them right.

Once again, if you try to run Palette on a machine that doesn't
support Color QuickDraw (such as a Mac Plus or an SE), the dialog
pictured in Figure 4.5 will appear and the program will exit.

Once the program runs, three windows should appear. All three
should feature a series of concentric squares, each window painted
using a different palette. One window will use a red palette, one a
gray palette, and one a palette made up of a range of bright colors.

Click on each window in tum. When a window moves to the front,
it should be redrawn using its requested colors. When a window
moves towards the back, it also receives an update event and is
redrawn. Notice that a window doesn't look quite as nice when it is in
back as it does when it is in front. The Palette Manager is doing the
best job it can to keep your reds red and your brights bright.

Click on any window's close box to exit Palette. The next section
takes a look at the source code.

Walking Through the Palette Source Code

Just as in Colorlnfo, the file ColorToolbox.h is included in Palette.
You should recognize most of the #defines.

#include 11 ColorToolbox.h"

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define NIL_ STRING II \p"
#define VISIBLE TRUE
#define HAS_ GO AWAY TRUE
#define MOVE _TO_ FRONT -1L
#define REMOVE_ALL_ EVENTS 0
#define MIN_ SLEEP OL
#define NIL MOUSE REGION OL - -

The program creates its palettes with a very precise tolerance
requirement. Once you've played with Palette for a while, try
changing PRECISE_ TOLERANCE to Ox 1000 and then to Ox 5 000.

160 Macintosh Programming Primer

This should give you a real feeling for palette tolerances ..
Nu M_S Q u ARES specifies both the number of concentric squares
drawn in each window and the size of each window.

#define PRECISE_TOLERANCE
#define NUM_SQUARES

OxOOOO
150

Boolean
WindowPtr
PaletteHandle

IsColorO;
CreateColorWindowC>;
MakeRedPaletteC>, MakeBrightPaletteC>,
MakeGrayPaletteC>;

ma i n C > starts by checking for the presence of Color QuickDraw. If
it's there, the program continues.

main()
{

Point
WindowPtr
PaletteHandle

corner;
window;
pal;

ToolBoxlnitC);

if C ! IsColorC> >
DoAlertC "\pThis machine does not support Color QuickDraw!'' >;

Palette creates a color window with an upper left corner at
corner. It then creates a red palette and attaches the palette to the
window.

else
{

corner.h = 10;
corner.v = 40;
window = CreateColorWindowC corner,

"\pRed Palette" >;
pal = MakeRedPaletteC>;
SetPaletteC window, pal, TRUE >;

Next, the program creates a second color window. It creates a
palette of bright colors and attaches it to this second window.

Color QuickDraw

corner.h = 170;
corner.v = 177;
window = CreateColorWindowC corner,

11 \pBright Palette" >;
pal = MakeBrightPaletteC>;
SetPaletteC window, pal, TRUE >;

161

Finally, Palette creates a third window. It creates a palette of
grays and attaches the palette to this third window. The program
then drops into its event loop.

}

}

corner.h = 330;
corner.v = 40;
window = CreateColorWindowC corner,

11 \pGray Palette" >;
pal = MakeGrayPaletteC);
SetPaletteC window, pal, TRUE >;

DoEventloopC>;

The next section is the same as it ever was.

!********************************* ToolBoxlnit */

ToolBoxlnit()
{

}

InitGraf C &thePort);
InitFontsO;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenus<>;
TEini t ();
InitDialogsC NIL_POINTER);
InitCursorC>;

The program's simple event loop handles only two events.

162 Macintosh Programming Primer

!*********************************** DoEventloop */

DoEventloop()
{

Boolean
Event Record
short
WindowPtr

done;
e;
part;
window;

done = FALSE;
while C ! done >
{

WaitNextEventC everyEvent, &e, MIN_SLEEP, NIL_MOUSE_REGION >;

switch(e.what)
{

A mo u s e Down in any window's close box exits the program. A
mouse Down in a window's drag region lets you drag the window
around the screen. A mo u s e Down in a window's content region
brings that window to the front.

case mouseDown:
part = FindWindow< e.where, &window >;
if C part == inGoAway)

done = TRUE;
else if C part == inDrag >

DragWindowC window, e.where,
&screenBits.bounds >;

else if C part == inContent)
{

if C window != FrontWindowC> >
SelectWindowC window >;

)

break;

When the program receives an update Ev t for a window, it simply
redraws the window's contents.

Color QuickDraw 163

case updateEvt:

}

}

}

BeginUpdateC CWindowPtr)e.message >;
SetPortC CWindowPtr)e.message >;
DrawBullseyeC>;
EndUpdate(CWindowPtr)e.message >;
break;

DrawBul lseyeC >draws a series of NUM_SQUARES concentric
squares in the current port. The first square is drawn with the first
palette entry as the foreground color, the second square is drawn
using the second palette entry, etc. Note that this works because each
palette was created with NU M_S Q u ARES entries. Note also that the
program changed the foreground color with Pm Fore co lo r C >.

/******************************* DrawBullseye */

DrawBullseyeC>
{

}

int
Re ct

i, center;
r;

center = NUM_SQUARES;

for i=1; i<=NUM_SQUARES; i++)
{

}

PmforeColorC i - 1 >;
r.top = center - i;
r.left =center - i;
r.bottom = center + i;
r.right = center + i;

FrameRect(&r >;

164 Macintosh Programming Primer

Is Co lo r C > is the same as its counterpart in Color Info.

/**************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return(mySE.hasColorQD >;

The next three routines are almost identical. Ma k e Red
Pa l e t t e C > creates a new palette with a call to New Pa l et t e C > .
Each entry is a tolerant color with a tolerance of PRE c Is E_
To LERA N c E. Each color in the palette has a green and a blue value
of 0. The red values range from 0 in the first entry to just below
65535 on the final entry.

/******************************** MakeRedPalette *********/

PaletteHandle MakeRedPaletteC>
{

}

RGBColor c;
long
Pa letteHand le

i;
redPalette;

redPalette = NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

c.green = O;
c.blue = O;

for C i=O; i<NUM_SQUARES; i++)
{

}

c.red = Ci * 65535) I NUM_SQUARES;
SetEntryColorC redPalette, i, &c >;

return(redPalette >;

Color QuickDraw 165

The bright palette was created using the HSV color model
described in Colorlnfo. Instead of ranging the red colors, the program
sets the value and saturation to 65535 and ranges the hues,
producing only bright, saturated colors.

/******************************** MakeBrightPalette *********/

Palett~Handle MakeBrightPalette()
{

}

PaletteHandle
long

brightPalette;
i;

RGBColor
HSVColor

rgbColor;
hsvColor;

brightPalette = NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for C i=O; i<NUM_SQUARES; i++)
{

}

hsvColor.hue = Ci * 65535) I NUM_SQUARES;
HSV2RGBC &hsvColor, &rgbColor >;
SetEntryColorC brightPalette, i, &rgbColor >;

return(brightPalette >;

The gray palette was created by ranging the red, green, and blue
colors together, always keeping them equal. As in the previous two
functions, the Pa l e t t e Ha n d l e is returned as the function value.

/******************************** MakeGrayPalette *********/

PaletteHandle MakeGrayPalette()
{

PaletteHandle
long
RGBColor

grayPalette;
i;
rgbColor;

166 Macintosh Programming Primer

>

grayPalette = NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

for C i=O; i<NUM_SQUARES; i++)
{

>

rgbColor.red = Ci * 65535) I NUM_SQUARES;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;
SetEntryColorC grayPalette, i, &rgbColor >;

return(grayPalette >;

Create Color Window C > uses New CW i n do w C > to create a
color window. The window is positioned with an upper left
corner at corner. The width and height are both equal to
2 * NUM_SQUARES. As in Colorlnfo, the Wi ndowPt r is returned as
the function value.

!*********************************** CreateColorWindow */

WindowPtr
Point
Str255

CreateColorWindowC corner, title)
corner;
title;

{

}

WindowPtr cWindow;
Rect r;

SetRectC &r, corner.h, corner.v, corner.h + C2 * NUM_SQUARES>,
corner.v + C2 * NUM_SQUARES) >;

cWindow = NewCWindowC NIL_POINTER, &r, title,
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
HAS_GOAWAY, NIL_POINTER >;

return< cWindow >;

Color QuickDraw 167

Do A l e r t C > is the same as its counterpart in Color Info.

/*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER);

}

_J
Using the Arithmetic Color Modes

Classic QuickDraw supports eight transfer modes; copy, o r, X or,
B i c , n o t C o p y, n o t O r , n o t X o r, and n o t B i c . These transfer
modes apply to all of the QuickDraw calls, most notably to the
routine for copying Bi t Maps, Copy Bi ts C > and to the routines
Pen Mode C > and Tex t Mode C >. Color QuickDraw has introduced
eight new transfer modes: b l end, add Pi n, add Over, sub Pi n,
t r a n s pa re n t, a d Ma x, s u b O v e r, and a d M i n. These modes don't
replace the Classic QuickDraw transfer modes, but rather
supplement them. Each of these new modes is described in Inside
Macintosh, Volume V, pages 59-60.

Another change brought on by the introduction of Color
QuickDraw is the ability of Copy B i t s to copy P i x Ma p s as well as
Bit Maps. Because color windows store their pixels in a Pi xMa p, you
can use Copy Bi t s C > to copy rectangular areas from a color window
to a plain window and vice versa.

The next program, ColorTutor, demonstrates the use of
Copy Bi ts C > with both the old and the new transfer modes.

Color'futor: Hands-on Color

To truly understand the QuickDraw transfer modes, you have to see
them in action. ColorTutor, demonstrates all sixteen transfer modes
in conjunction with copy Bi ts C >. Figure 4. 7 shows a black-and
white rendering of the ColorTutor window.

168 Macintosh Programming Primer

Colorlutor

Source Background

(OpColor ... Mode

Figure 4. 7 Color'Tutor in action.

Color'futor builds a window divided into four areas. In the upper
left corner is the source pane, with the Source pop-up menu
underneath it. In the upper right is the background pane, with the
Background pop-up menu underneath it. In the lower left comer is
the opColor pane, with the OpColor ... pushbutton menu underneath
it. In the lower right comer is the destination pane, with the Mode
pop-up menu underneath it.

Color'Tutor uses Copy B i t s <) to copy the background pane onto
the destination pane, using the s r cc op y transfer mode. Next ,
ColorTutor uses Copy Bi ts <) to copy the source pane onto the
destination pane, using the mode selected from the Mode pop-up
menu. This process is repeated any time an u pd a t e Ev t occurs, or
any time a change is made to any of the settings.

Three of the transfer modes (blend, addPin, and subPin)
require an R GB co Lor called the op co Lor , which you set by
pressing the OpColor ... pushbutton. Pressing this button brings up
the Macintosh Color Picker, a piece of the Toolbox that allows you to
specify any R GB Co L or. The Color Picker is documented in Inside
Macintosh, Volume V, Chapter 8.

Color QuickDraw

Y""Black Pattern
Gray Pattern

Color Ramp
Gray Ramp

v' Single Color ...

Figure 4.8 The Source and Background pop-up menu.

169

You can change both the source and the background panes in
several ways by selecting from the Source or Background pop-up
menu shown in Figure 4.8.

Selecting Black Pattern or Gray Pattern will draw the source or
background after first setting the pen pattern to b l a c k or g r a y.
Selecting Color Ramp draws a range of bright colors instead of just a
single color. Selecting Gray Ramp draws a range of grays instead of
just a single color. Selecting Single Color... brings up the Macintosh
Color Picker and draws the selected R GB Co l or.

ColorTutor Resources

ColorTutor uses the same resources as the previous program, as well
as a few others. Create a folder in your development folder called
ColorTutor f. Copy the file Palette.n.rsrc into the ColorTutor f
folder. Change the name of the resource file to ColorTutor.1t.rsrc.
Open ColorTutor.7t.rsrc using ResEdit.

You'll need to create two MEN Us to add to your resource file. MENU
4 0 0 has the items in Figure 4.8. Don't forget to give the line its own
item. Set Me n u I D to 4 0 0, P r o c I D to 0, and the Enable Flags to
$ F F F F F F F 7. You won't need a Ti t le. Don't use any mark
characters or command key equivalents. Set all the Styles to $00.

The second MENU has a resource ID of 401 and has the items in
Figure 4.9. Again, don't forget to give the line its own item. Set the
Menu I D to 4 0 1 , P r o c I D to 0 , and the Enable Flags to $ F F F F F D FF.
You won't need a T i t l e. Don't use any mark characters or command
key equivalents. Set all the styles to $00.

170

../Copy
Or
Hor
Ric
NotCopy
Notor
NotHor
NotBic

blend
add Pin
addOuer
subPin
transparent
adMaH
sub Duer
odMin

Figure 4.9 Items for MENU 401.

Macintosh Programming Primer

That's it. Save your changes and quit ResEdit. Next, you'll set up
the project and type in the source code.

Setting Up the Project

Inside the ColorTutor f folder, create a new project called
ColorTutor.1t. Next, add MacTraps to the project. Create a new
source code file and save it as ColorTutor.c. Add ColorTutor.c to the
project. Type the following source code into Color'futor.c:

Color QuickDraw

#include 11 ColorToolbox.h"

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define VISIBLE
#define HAS_GOAWAY
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS
#define MIN_SLEEP
#define NIL_MOUSE_REGION
#define NOT_A_NORMAL_MENU

#define PRECISE_TOLERANCE

#define BLACK_PATTERN
#define GRAY_PATTERN
#define COLOR_RAMP
#define GRAY_RAMP
#define SINGLE_COLOR

#define SRC_AND_BACK_MENU
#define MODE_MENU

400
OL
"\p"
TRUE
TRUE
-1L
0
OL
OL
-1

OxOOOO

1
2
4
5
6

400
401

Boolean IsColor(), PickColor<>;

Rect gSrcRect, gBackRect, gDestRect,
gSrcMenuRect, gBackMenuRect, gModeMenuRect,
gOpColorRect;

int gSrcPattern, gBackPattern, gCopyMode,
gSrcType, gBackType;

RGBColor gSrcColor, gBackColor, gOpColor;
MenuHandle gSrcMenu, gBackMenu, gModeMenu;
WindowPtr gColorWindow;

171

172

main()
{

Point
PaletteHandle

ToolBoxlnitC>;

corner;
pal;

if C ! IsColorC) >

Macintosh Programming Primer

DoAlertC 11 \pThis machine does not support Color QuickDraw!" >;

}

else
{

}

SetUpWindowC>;
SetUpGlobalsC>;

DoEventloopC>;

!*********************************** ToolBoxlnit */

ToolBoxlnitC>
{

}

InitGrafC &thePort >;
InitfontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

/*********************************** SetUpWindow */

SetUpWindowC>
{

Re ct r;

SetRectC &r, 5, 40, 225, 275 >;

Color QuickDraw 173

gColorWindow = NewCWindowC NIL_POINTER, &r, 11 \pColorTutor",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,

}

HAS_GOAWAY, NIL_POINTER >;

SetRectC &r, 15, 207, 95, 225);
NewControLC gColorWindow, &r, "\pOpColor •.. ",

VISIBLE, O, 0, 1, pushButProc, NIL_POINTER >;

SetPortC gColorWindow >;
TextfontC systemfont >;

/*********************************** SetUpGlobals */

SetUpGlobalsO
{

SetRectC &gSrcRect, 15, 6, 95, 86 >;
SetRectC &gBackRect, 125, 6, 205, 86 >;
SetRectC &gDestRect, 125, 122, 205, 202 >;
SetRectC &gOpColorRect, 15, 122, 95, 202 >;

SetRectC &gSrcMenuRect, 7, 90, 103, 108);
SetRectC &gBackMenuRect, 117, 90, 213, 108 >;
SetRectC &gModeMenuRect, 117, 206, 213, 226 >;

gSrcPattern = BLACK_PATTERN;
gBackPattern = BLACK_PATTERN;

gCopyMode = srcCopy;

gSrcColor.red = 65535;
gSrcColor.green = gSrcColor.blue = O;
gSrcType = SINGLE_COLOR;

gBackColor.blue = Oxffff;
gBackColor.red = gBackColor.green = O;
gBackType = SINGLE_COLOR;

gOpColor.green = 32767;
gOpColor.red = 32767;
gOpColor.blue = 32767;
OpColorC &gOpColor >;

174

}

Macintosh Programming Primer

gSrcMenu = GetMenuC SRC_AND_BACK_MENU >;
InsertMenuC gSrcMenu, NOT_A_NORMAL_MENU >;

gBackMenu = GetMenuC SRC_AND_BACK_MENU >;
InsertMen~C gBackMenu, NOT_A_NORMAL_MENU >;

gModeMenu = GetMenuC MODE_MENU >;
InsertMenuC gModeMenu, NOT_A_NORMAL_MENU >;

!*********************************** DoEventloop */

DoEventloopC)
{

Boolean
Event Record
short
WindowPtr
Point

done;
e;
part;
window;
p;

done = FALSE;
while C ! done
{

WaitNextEvent< everyEvent, &e, MIN_SLEEP, NIL_MOUSE_REGION >;

switch(e.what)
{

case mouseDown:
part = FindWindowC e.where, &window >;
if < part == inGoAway >

done = TRUE;
else if C part == inDrag

DragWindowC window, e.where, &screenBits.bounds >;
else if C part == inContent >
{

p = e.where;
GlobalTolocalC &p >;
DoContentC p >;

}

break;
case updateEvt:

BeginUpdateC CWindowPtr)e.message >;

Color QuickDraw

}

}

}

SetPortC CWindowPtr)e.message >;
DrawWindowC>;
DrawControlsC CWindowPtr)e.message >;
EndUpdateC CWindowPtr)e.message >;
break;

!*********************************** DoContent */

DoContentC p >
Point p;
{

int
ControlHandle
RGBColor

choice;
control;
rgbColor;

if C FindControlC p, gColorWindow, &control > >
{

}

if C TrackControlC control, p, NIL_POINTER))
{

}

rgbColor = gOpColor;
if C PickColorC &rgbColor > >
{

}

gOpColor = rgbColor;
InvalRectC &gOpColorRect >;
InvalRectC &gDestRect >;
OpColorC &gOpColor >;

else if C PtlnRectC p, &gSrcMenuRect >)
{

}

UpdateSrcMenuC>;
choice = DoPopupC gSrcMenu, &gSrcMenuRect >;
if C choice > 0)
{

}

DoSrcChoiceC choice >;
InvalRectC &gSrcRect >;
InvalRectC &gDestRect >;

175

176

}

Macintosh Programming Primer

else if C PtlnRectC p, &gBackMenuRect > >
{

}

UpdateBackMenuC>;
choice = DoPopupC gBackMenu, &gBackMenuRect >;
if C choice > 0)
{

}

DoBackChoiceC choice >;
InvalRectC &gBackRect >;
InvalRectC &gDestRect >;

else if C PtlnRectC p, &gModeMenuRect))
{

}

UpdateModeMenuC>;
choice = DoPopupC gModeMenu, &gModeMenuRect >;
if C choice > 0 >
{

}

DoModeChoiceC choice >;
InvalRectC &gDestRect >;

/*********************************** DrawWindow */

DrawWindowC>
{

RGBColor
Re ct

rgbBlack;
source, dest;

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;

if C gSrcPattern == BLACK_PATTERN
PenPatC black >;

else
PenPatC gray >;

if C gSrcType == COLOR_RAMP)
DrawColorRampC &gSrcRect >;

else if C gSrcType == GRAY_RAMP
DrawGrayRampC &gSrcRect >;

else
{

Color QuickDraw

}

RGBForeColorC &gSrcColor >;
PaintRectC &gSrcRect >;

if C gBackPattern -- BLACK_PATTERN)
PenPatC black >;

else
PenPatC gray >;

if c gBackType == COLOR_RAMP)
DrawColorRampC &gBackRect >;

else if C gBackType == GRAY_RAMP)
DrawGrayRampC &gBackRect >;

else
{

}

RGBForeColorC &gBackColor >;
PaintRectC &gBackRect >;

PenPatC black >;

RGBForeColorC &gOpColor >;
PaintRectC &gOpColorRect >;

RGBForeColorC &rgbBlack >;
DrawlabelC &gSrcMenuRect, 11 \pSource" >;
DrawLabelC &gBackMenuRect, "\pBackground" >;
DrawlabelC &gModeMenuRect, "\pMode" >;

PenSizeC 2, 2 >;
FrameRectC &gSrcRect >;
FrameRectC &gBackRect >;
FrameRectC &gDestRect >;
FrameRectC &gOpColorRect >;

PenNormalC>;

source = gBackRect;
InsetRectC &source, 2, 2 >;

dest = gDestRect;
InsetRectC &dest, 2, 2 >;

177

178

}

Macintosh Programming Primer

CopyBits(&CCCGrafPtr)gColorWindow)->portPixMap,
&CCCGrafPtr)gColorWindow)->portPixMap,
&source, &dest, srcCopy, NIL_POINTER >;

source = gSrcRect;
InsetRect(&source, 2, 2 >;

CopyBitsC ~CCCGrafPtr)gColorWi~dow)->portPixMap,
&CCCGrafPtr)gColorWindow)->portPixMap,
&source, &dest, gCopyMode, NIL_POINTER >;

!*********************************** DrawColorRamp */

DrawColorRampC rPtr)

Re ct
{

}

*rPtr;

long numColors, i;
HSVColor hsyColor;
RGB~olor rgbColor;
Re ct r;

r = *rPtr;
InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2) I 2;
hsvColor.value = hsvColor.saturation = 65535;

for C i=O; i<numColors; i++ >
{

}

hsvColor.hue = i * 65535 I numColors;
HSV2RGBC &hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
FrameRectC &r >;
InsetRectC &r, 1, 1 >;

/*********************************** DrawGrayRamp */

DrawGrayRampC rPtr >
Rect *rPtr;
{

Color QuickDraw

}

long
RGBColor
Re ct

numColors, i;
rgbColor;
r;

r = *rPtr;
InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2> I 2;

for C i=O; i<numColors; i++ >
{

}

rgbColor.red = i * 65535 I numColors;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;
RGBForeColorC &rgbColor >;
FrameRectC &r >;
InsetRectC &r, 1, 1 >;

/*********************************** Drawlabel */

DrawlabelC rPtr, s
Re ct *rPtr;
Str255 s;
{

}

Re ct
int

tempRect;
size;

tempRect = *rPtr;
tempRect.bottom -= 1;
tempRect.right -= 1;
FrameRectC &tempRect >;

MoveToC tempRect.left + 1, tempRect.bottom >;
LineToC tempRect.right, tempRect.bottom >;
LineToC tempRect.right, tempRect.top + 1 >;

size = rPtr->right - rPtr->left - StringWidthC s >;
MoveToC rPtr->left + size/2, rPtr->bottom - 6 >;
Drawstring(s >;

179

180 Macintosh Programming Primer

!*********************************** UpdateSrcMenu */

UpdateSrcMenuC>
{

}

int i;

for C i=1; i<=6; i++ >
CheckltemC gSrcMenu, i, FALSE >;

if C g S.r c Pattern == BLACK_PATTERN)
CheckltemC gSrcMenu, BLACK_PATTERN, TRUE >;

else
CheckltemC gSrcMenu, GRAY_PATTERN, TRUE >;

if C gSrcType == COLOR_RAMP)
Checkltem(gSrcMenu, COLOR_RAMP, TRUE >;

else if C gSrcType == GRAY_RAMP)
CheckltemC gSrcMenu, GRAY_RAMP, TRUE >;

else if C gSrcType == SINGLE_COLOR)
CheckltemC gSrcMenu, SINGLE_COLOR, TRUE >;

/*********************************** UpdateBackMenu */

UpdateBackMenuC>
{

}

int i;

for C i=1; i<=6; i++ >
CheckltemC gBackMenu, i, FALSE >;

if C gBackPattern == BLACK_PATTERN)
Checkltem(gBackMenu, BLACK_PATTERN, TRUE >;

else
CheckltemC gBackMenu, GRAY_PATTERN, TRUE >;

if C gBackType == COLOR_RAMP)
CheckltemC gBackMenu, COLOR_RAMP, TRUE >;

else if C gBackType == GRAY_RAMP)
Checkltem(gBackMenu, GRAY_RAMP, TRUE >;

else if C gBackType == SINGLE_COLOR)
CheckltemC gBackMenu, SINGLE_COLOR, TRUE >;

Color QuickDraw

!*********************************** UpdateModeMenu *I

UpdateModeMenuC>
{

}

int i;

for C i=1; i<=17; i++ >
CheckltemC gModeMenu, i, FALSE >;

if C C gCopyMode >=0) && C gCopyMode <= 7 >)
CheckltemC gModeMenu, gCopyMode + 1, TRUE >;

else
CheckltemC gModeMenu, gCopyMode - 22, TRUE >;

!*********************************** DoSrcChoice *I

DoSrcChoiceC item)
int
{

}

item;

RGBColor rgbColor;

switch(item)
{

}

case BLACK_PATTERN:
gSrcPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gSrcPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gSrcType = COLOR_RAMP;
break;

case GRAY_RAMP:
gSrcType = GRAY_RAMP;
break;

case SINGLE_COLOR:
gSrcType = SINGLE_COLOR;
rgbColor = gSrcColor;
if C PickColorC &rgbColor >)

gSrcColor = rgbColor;
break;

181

182 Macintosh Programming Primer

/*********************************** DoBackChoice */

DoBackChoiceC item)
int
{

}

item;

RGBColor rgbColor;

switch< item)
{

}

case BLACK_PATTERN:
gBackPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gBackPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gBackType = COLOR_RAMP;
break;

case GRAY_RAMP:
gBackType = GRAY_RAMP;
break;

case SINGLE_COLOR:
gBackType = SINGLE_COLOR;
rgbColor = gBackColor;
if C PickColorC &rgbColor)

gBackColor = rgbColor;
break;

!*********************************** DoModeChoice */

DoModeChoiceC item)
int
{

}

if (

else

item;

(item >=
gCopyMode =

gCopyMode =

1) &&
item -

item +

(item <= 8))

1;

22;

Color QuickDraw

/********************************DoPopup*******/

int DoPopupC menu, rPtr
MenuHandle menu;
Re ct
{

*rPtr;

Point corner;
long theChoice = OL;

corner.h = rPtr->left;
corner.v = rPtr->bottom;

LocalToGlobalC &corner >;

InvertRectC rPtr >;

)

183

theChoice = PopUpMenuSelectC menu, corner.v - 1, corner.h
+ 1, 0 >;

InvertRectC rPtr >;

return(LoWordC theChoice > >;
}

/******************************** PickColor *********/

Boolean PickColorC colorPtr >
RGBColor *colorPtr;
{

}

Point where;

where.h = -1;
where.v = -1;

return(GetColorC where, 11 \pChoose a color ••• ", colorPtr,
colorPtr > >;

184 Macintosh Programming Primer

/******************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnv;rons< 2, &mySE >;
return< mySE.hasColorQD >;

!*********************************** DoAlert */

DoAlertC s)
Str255 s;
{

}

ParamText(s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlert(BASE_RES_ID, NIL_POINTER >;

Running Color'futor

Say, that was pretty good. You typed that program much faster than
everyone else. Save your changes and select Run from the Project
menu. If the compiler points out any typos or other errors, fix the
problems.

AB always, if you try to run Color'futor on a machine that doesn't
support Color QuickDraw (such as a Mac Plus or an SE), the dialog
pictured in Figure 4.5 will appear and the program will exit.

Once the program runs, the Color'futor window pictured in Figure
4. 7 will appear. Because the default transfer mode is Copy, the
destination pane should look exactly like the source pane. Play with
all sixteen modes, reading about each mode in Inside Macintosh,
Volume V, pages 58-60. AB we mentioned before, the opColor affects
the a d d P ; n, s u b P i n, and b l e n d modes. You can change the
opColor by pressing the OpColor ... pushbutton. When you're finished,
click the close box and Color'futor will exit.

Color'futor is an ideal environment for learning about the color
transfer modes. You may want to build Color'futor as an application so
that you can experiment with color without having to run THINK C.

Color QuickDraw 185

Walking Through the ColorTutor Source Code

Like Palette, Color'futor includes the file ColorToolbox.h. Most of the
#defines should be self-explanatory.

#include 11 ColorToolbox.h"

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define VISIBLE
#define HAS_GOAWAY
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS
#define MIN_SLEEP
#define NIL_MOUSE_REGION
#define NOT_A_NORMAL_MENU

#define PRECISE_TOLERANCE

#define BLACK_PATTERN
#define GRAY_PATTERN
#define COLOR_RAMP
#define GRAY_RAMP
#define SINGLE_COLOR

#define SRC AND BACK_MENU
#define MODE_MENU

400
OL
11\p"

TRUE
TRUE
-1L
0
OL
OL
-1

OxOOOO

1
2
4
5
6

400
401

Boolean IsColorC>, PickColorC>;

g S r c Rec t defines the source pane in local coordinates.
gBackRect, gDestRect, gSrcMenuRect, gBackMenuRect,
g M o d e Me n u R e c t , g o p C o l o r R e c t do the same thing for the
background pane, the destination pane, the Source popup, the
Background pop-up menu, the Mode pop-up menu, and the opColor
pane.

g S r c Pa t t e r n and g Ba c k Pa t t e r n store the current pattern
(g ray versus b la ck) of the source and background panes.
g copy Mode stores the current Mode pop-up setting. g S r c Type and
g Back Type store the type of color (COLO R_R AMP versus

186 Macintosh Programming Primer

GRAY_RAMP versus SINGLE_COLOR) in the source and background
panes.

g s r c Co l o r, g Ba c k Co l o r, and g Op Co l o r store the current
source, background, and opColor R GB Co lo rs.

g S r c Me n u, g Ba c k Me n u, and g Mod e Me n u are handles to their
respective menus.

g c o l o r W i n do w is the ColorTutor color window.

Re ct

int

RGBColor
MenuHandle
WindowPtr

gSrcRect, gBackRect, gDestRect,
gSrcMenuRect, gBackMenuRect,
gModeMenuRect, gOpColorRect;
gSrcPattern, gBackPattern, gCopyMode,
gSrcType, gBackType;
gSrcColor, gBackColor, gOpColor;
gSrcMenu, gBackMenu, gModeMenu;
gColorWindow;

As usual, the program initializes the Toolbox and checks to see if
Color QuickDraw is installed. If so, the program creates the
ColorTutor window, initializes all the globals, and drops into the
event loop.

main()
{

}

Point
PaletteHandle

corner;
pal;

ToolBoxlnitC>;

if C ! IsColorC>)

else
{

}

DoAlertC "\pThis machine does not support Color QuickDraw!" >;

SetUpWindowC>;
SetUpGlobalsC>;

DoEventloopC>;

Color QuickDraw 187

/*********************************** ToolBoxlnit */

ToolBoxlnitC>
{

}

InitGrafC &thePort >;
InitFontsO;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

Set Up w i n do w C > creates the color window and then creates the
OpColor ... pushbutton control. The program changes the window's
font to sys t em Font so that the pop-up labels will be drawn in
Chicago.

/*********************************** SetUpWindow */

SetUpWindowC)
{

}

Re ct r • ,

SetRectC &r, 5, 40, 225, 275 >;

gColorWindow = NewCWindowC NIL_POINTER, &r, 11 \pColorTutor",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
HAS_GOAWAY, NIL_POINTER);

SetRectC &r, 15, 207, 95, 225 >;
NewControlC gColorWindow, &r, 11 \pOpColor •.. ",

VISIBLE, O, O, 1, pushButProc, NIL_POINTER >;

SetPortC gColorWindow >;
TextFontC systemfont >;

s e t Up G l ob a l s C > initializes all the globals and loads the menus
from the resource fork. Note that gSrcMenu and gBackMenu are
both initialized from the same MENU resource.

188 Macintosh Programming Primer

/******************************* SetUpGlobals */

SetUpGlobalsC>
{

>;

}

SetRectC &gSrcRect, 15, 6, 95, 86 >;
SetRectC &gBackRect, 125, 6, 205, 86 >;
SetRectC &gDestRect, 125, 122, 205, 202 >;
SetRectC &gOpColorRect, 15, 122, 95, 202 >;

SetRectC &gSrcMenuRect, 7, 90, 103, 108 >;
SetRectC &gBackMenuRect, 117, 90, 213, 108 >;
SetRectC &gModeMenuRect, 117, 206, 213, 226

gSrcPattern = BLACK_PATTERN;
gBackPattern = BLACK_PATTERN;

gCopyMode = srcCopy;

gSrcColor.red = 65535;
gSrcColor.green = gSrcColor.blue = O;
gSrcType = SINGLE_COLOR;

gBackColor.blue = OxFFFF;
gBackColor.red = gBackColor.green = O;
gBackType = SINGLE_COLOR;

gOpColor.green = 32767;
gOpColor.red = 32767;
gOpColor.blue = 32767;
OpColorC &gOpColor >;

gSrcMenu = GetMenuC SRC_AND_BACK_MENU >;
InsertMenuC gSrcMenu, NOT_A_NORMAL_MENU >;

gBackMenu = GetMenuC SRC_AND_BACK_MENU >;
InsertMenuC gBackMenu, NOT_A_NORMAL_MENU >;

gModeMenu = GetMenuC MODE_MENU >;
InsertMenuC gModeMenu, NOT_A_NORMAL_MENU >;

Color QuickDraw 189

Do Even t Loop C > is remarkably similar to its Palette counterpart.
The difference lies in the handling of the up d a t e Ev t.

/*********************************** DoEventLoop */

DoEventloop()
{

Boolean done;
EventRecorde;
short part;
WindowPtr window;
Point p;

done = FALSE;
while C ! done >
{

WaitNextEvent(everyEvent, &e, MIN_SLEEP, NIL_MOUSE_REGION >;

switch< e.what >
{

case mouseDown:
part = FindWindowC e.where, &window >;
if C part == inGoAway)

done = TRUE;
else if C part == inDrag >

DragWindowC window, e.where, &screenBits.bounds >;

If the program detects a mouse Down in the content region, it
converts the mouse location to local coordinates and then passes the
point on to Do Content C >.

else if C part == inContent >
{

p = e.where;
GlobalTolocalC &p >;
DoContentC p >;

}

break;

When the program gets an update Ev t, it redraws the ColorTutor
window and then redraws the OpColor ... pushbutton menu with a
call to DrawControlsC >.

190

}

}

}

Macintosh Programming Primer

case updateEvt:
BeginUpdate(CWindowPtr)e.message >;
SetPort< CWindowPtr>e.message >;
DrawWindow<>;
DrawControlsC CWindowPtr)e.message >;
EndUpdate< CWindowPtr>e.message >;
break;

When the program gets a mouse click in the content region, it
needs to find out if the click was in the OpColor ... pushbutton menu
or possibly in one of the three pop-up menus.

/*********************************** DoContent */

DoContentC p >
Point p;
{

int
ControlHandle
RGBColor

choice;
control;
rgbColor;

If the click was in the pushbutton menu, the program calls
Track Cont r o l C > to track the mouse until the mouse button is
released. If the button was released with the mouse still in the
control, Pi c kc o l o r C > is called to put up the Color Picker. If the
user pressed the Picker's OK button, the program updates
g Op Co l o r, forces an u pd a t e Ev t, and calls Op C o l o r C > to let Color
QuickDraw know about the new opColor.

if C FindControlC p, gColorWindow, &control > >
{

}

if C TrackControlC control, p, NIL_POINTER))
{

}

rgbColor = gOpColor;
if C PickColorC &rgbColor) >
{

}

gOpColor = rgbColor;
InvalRectC &gOpColorRect >;
InvalRectC &gDestRect >;
OpColorC &gOpColor >;

Color QuickDraw 191

}

If the click was in one of the three pop-up menus, the program
calls Up d a t e S r c Me nu < > , U pd a t e Ba c k Me nu < > , or Up d a t e Mode
ft'I en u < > to update the appropriate menu's check marks and then
calls Do Pop up < > . If c ho i c e is nonzero (if an item was chosen), the
program calls the appropriate handling routine and then forces an
update Ev t with Inv a l Rec t < >.

else if < PtinRect< p, &gSrcMenuRect > >
{

}

UpdateSrcMenu<>;
choice = DoPopup(gSrcft'lenu, &gSrcft'lenuRect >;
if < choice > 0)
{

}

DoSrcChoice< choice >;
InvalRect< &gSrcRect >;
InvalRect< &gDestRect >;

else if < PtlnRect(p, &gBackMenuRect > >
{

}

UpdateBackft'lenu<>;
choice = DoPopup(gBackMenu, &gBackMenuRect >;
if < choice > 0)
{

}

DoBackChoiceC choice >;
InvalRectC &gBackRect >;
InvalRect< &gDestRect >;

else if C PtinRect< p, &gModeft'lenuRect))
{

}

UpdateModeMenuC>;
choice = DoPopupC gModeMenu, &gft'lodeMenuRect >;
if < choice > 0 >
{

}

DoModeChoiceC choice >;
InvalRectC &gDestRect >;

D r a w W i n do w C > performs all of ColorTutor's drawing operations. It
starts by creating its own black R GB Co l o r.

192 Macintosh Programming Primer

!********************************* DrawWindow */

DrawWindow<>
{

RGBColor
Re ct

rgbBlack;
source, dest;

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;

Before drawing the source pane, the program has to set the
pattern to the currently selected pattern.

if C gSrcPattern == BLACK_PATTERN)
PenPatC black >;

else
PenPatC gray >;

Next, the program draws a color ramp, a gray ramp, or a solid
color, depending on the setting of g s r c Type.

if C gSrcType == COLOR_RAMP)
DrawColorRampC &gSrcRect >;

else if C gSrcType == GRAY_RAMP)
DrawGrayRampC &gSrcRect >;

else
{

}

RGBForeColor(&gSrcColor >;
PaintRectC &gSrcRect >;

This procedure is repeated for the background pane. When this
has been done, the pen pattern is returned to black, so that the
remainder of the routine will draw correctly.

if C gBackPattern == BLACK_PATTERN)
PenPat(black >;

else
PenPat(gray >;

if C gBackType == COLOR_RAMP)
DrawColorRampC &gBackRect >;

else if C gBackType == GRAY_RAMP)
DrawGrayRampC &gBackRect >;

Color QuickDraw

else
{

}

RGBForeColorC &gBackColor >;
PaintRectC &gBackRect >;

PenPatC black >;

193

Next, the program paints the opColor pane using the R GB Co lo r,
gOpColor.

RGBForeColorC &gOpColor >;
PaintRectC &gOpColorRect >;

Now the program draws the Source, Background, and Mode pop
up labels.

RGBForeColorC &rgbBlack >;
DrawlabelC &gSrcMenuRect, 11 \pSource" >;
DrawlabelC &gBackMenuRect, 11 \pBackground" >;
DrawlabelC &gModeMenuRect, 11 \pMode" >;

The program draws a 2-pixel border around all four panes and
then returns the pen to its normal 1-pixel-by-1-pixel state.

PenSize(2, 2 >;
FrameRectC &gSrcRect >;
FrameRectC &gBackRect >;
FrameRect< &gDestRect >;
FrameRectC &gOpColorRect >;

PenNormalC>;

Next, the program sets up source and destination Rec ts. It insets
each by 2 pixels all around so that it doesn't copy Bi t s C > the frame.
This is both for speed and aesthetics.

source = gBackRect;
InsetRectC &source, 2, 2 >;

dest = gDestRect;
InsetRectC &dest, 2, 2 >;

This first call of co p y B i t s C > copies the background pane onto
the destination pane using plain old s r c Copy.

194 Macintosh Programming Primer

CopyBitsC &CCCGrafPtr)gColorWindow)->portPixMap,
&CCtGrafPtr)gColorWindow)->portPixMap,
&source, &dest, srcCopy, NIL_POINTER >;

Next, the program sets the source Rec t so that copying is done
from the source pane. Once again, the program insets the Rec t so
that the frame is not copied.

source = gSrcRect;
InsetRectC &source, 2, 2 >;

This call to Copy B i t s C > is where all the action is. As before, the
program is copying from the color window's Pi x Map back to itself,
but this time it is using the currently selected transfer mode. See!
C op y B i t s C > is easy!

) ;
}

CopyBitsC &CCCGraf Ptr)gColorWindow)->portPixMap,
&CCCGrafPtr)gColorWindow)->portPixMap,
&source, &dest, gCopyMode, NIL_POINTER

The program draws the color ramp using the HSV bright colors, as
was done in the other programs.

/*********************************** DrawColorRamp */

DrawColorRampC rPtr)

Re ct
{

*rPtr;

long numColors, i;
HSVColor hsvColor;
RGBColor rgbColor;
Re ct r;

r = *rPtr;
InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2) I 2;
hsvColor.value = hsvColor.saturation = 65535;

for C i=O; i<numColors; i++ >
{

Color QuickDraw 195

}

}

hsvColor.hue = i * 65535 I numColors;
HSV2RGBC &hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
FrameRectC &r >;
InsetRectC &r, 1, 1 >;

The program draws the gray ramp as it did before, by keeping the
red, green, and blue components of the R GB Co L o r equal, varying
their value from 0 to 6 5 5 3 5.

/*********************************** DrawGrayRamp */

DrawGrayRampC rPtr >
Rect *rPtr;
{

}

long
RGBColor
Re ct

numColors, i;
rgbColor;
r;

r = *rPtr;
InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2) I 2;

for C i=O; i<numColors; i++)
{

}

rgbColor.red = i * 65535 I numColors;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;
RGBForeColorC &rgbColor >;
FrameRectC &r >;
InsetRectC &r, 1, 1 >;

D raw Lab e l C > draws a pop-up menu frame around the Rec t
pointed to by r Pt r. It then uses S t r i n g W i d t h C > to calculate the
proper centering for the string s and then draws the string.

196 Macintosh Programming Primer

/*********************************** DrawLabel */

DrawLabelC rPtr, s
Rect *rPtr;
Str255 s;
{

}

Re ct tempRect;
int size;

tempRect = *rPtr;
tempRect.bottom -= 1;
tempRect.right -= 1;
FrameRectC &tempRect >;

MoveToC tempRect.left + 1, tempRect.bottom >;
Linero< tempRect.right, tempRect.bottom >;
LineToC tempRect.right, tempRect.top + 1 >;

size = rPtr->right - rPtr->Left - StringWidthC s >;
MoveToC rPtr->left + size/2, rPtr->bottom - 6 >;
Drawstring< s >;

Up d a t e S r c Menu C > starts off by removing all the check marks
from the Source pop-up menu. It then adds a check mark to either
the BLACK_PATTERN or the GRAY_PATTERN item, depending on the
value of g Sr c Pattern. Next, it adds a check mark to the
COLOR_RAMP, the GRAY_RAMP, or the SINGLE_COLOR item,
depending on the value of g S r c Type.

/*********************************** UpdateSrcMenu */

UpdateSrcMenu<>
{

int i;

for C i=1; i<=6; i++ >
CheckltemC gSrcMenu, i, FALSE >;

if C gSrcPattern == BLACK_PATTERN
CheckltemC gSrcMenu, BLACK_PATTERN, TRUE >;

else
CheckltemC gSrcMenu, GRAY_PATTERN, TRUE);

Color QuickDraw 197

}

if C gSrcType == COLOR_RAMP)
Checkltem(gSrcMenu, COLOR_RAMP, TRUE >;

else if C gSrcType == GRAY_RAMP)
Checkltem(gSrcMenu, GRAY_RAMP, TRUE >;

else if C gSrcType == SINGLE_COLOR)
Checkltem(gSrcMenu, SINGLE_COLOR, TRUE >;

Up d a t e Back Menu C > works the same way as
U p d a t e S r c M e n u C > , using the values of g B a c k P a t t e r n and
g Ba c k Type to determine the position of the check marks.

/*********************************** UpdateBackMenu */

UpdateBackMenu()
{

}

int i;

for C i=1; i<=6; i++ >
CheckltemC gBackMenu, i, FALSE >;

if C gBackPattern == BLACK_PATTERN)
Checkltem(gBackMenu, BLACK_PATTERN, TRUE >;

else
Checkltem(gBackMenu, GRAY_PATTERN, TRUE >;

if C gBackType == COLOR_RAMP)
Checkltem(gBackMenu, COLOR_RAMP, TRUE >;

else if C gBackType == GRAY_RAMP)
Checkltem(gBackMenu, GRAY_RAMP, TRUE >;

else if C gBackType == SINGLE_COLOR)
CheckltemC gBackMenu, SINGLE_COLOR, TRUE >;

UpdateModeMenuO starts by unchecking all of gModeMenu,s
items. Next, if g CopyMode is one of the first eight modes, it places
the check mark using this formula: item = mode + 1. If g Copy Mode
is one of the arithmetic modes, it sets the check mark using this
formula: item = mode - 22. This method takes advantage of the
declaration of the modes in the include file and the fact that each

·block of modes consists of eight consecutive values.

198 Macintosh Programming Primer

!*********************************** UpdateModeMenu */

UpdateModeMenuC>
{

}

int i;

for C i=1; i<=17; i++ >
Checkltem(gModeMenu, i, FALSE >;

if C C gCopyMode >=0 > && C gCopyMode <= 7 > >
CheckltemC gModeMenu, gCopyMode + 1, TRUE >;

else
Checkltem(gModeMenu, gCopyMode - 22, TRUE >;

Once a selection is made from the Source pop-up menu, it gets
passed on to Do S r c C ho i c e C > • Do S r c C ho i c e C > updates the
appropriate global, depending on the item selected.

!*********************************** DoSrcChoice *I

DoSrcChoiceC item >
int item;
{

RGBColor rgbColor;

switch(item
{

case BLACK_PATTERN:
gSrcPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gSrcPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gSrcType = COLOR_RAMP;
break;

case GRAY_RAMP:
gSrcType = GRAY_RAMP;
break;

If s INGLE_ COLOR was selected, the program brings up the Color
Picker. If the OK button was clicked, the program updates the source
pane's R GB C o l o r.

Color QuickDraw 199

}

}

case SINGLE_COLOR:
gSrcType = SINGLE_COLOR;
rgbColor = gSrcColor;
if C PickColorC &rgbColor))

gSrcColor = rgbColor;
break;

Do Ba c k C h o i c e C > workS in the same way as Do S r c C ho i c e C >.
It should, because both pop-up menus use the same MENU resource.

/******************************* DoBackChoice */

DoBackChoiceC item >
int item;
{

}

RGBColor rgbColor;

switch(item)
{

}

case BLACK_PATTERN:
gBackPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gBackPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gBackType = COLOR_RAMP;
break;

case GRAY_RAMP:
gBackType = GRAY_RAMP;
break;

case SINGLE_COLOR:
gBackType = SINGLE_COLOR;
rgbColor = gBackColor;
if C PickColorC &rgbColor))

gBackColor = rgbColor;
break;

200 Macintosh Programming Primer

Do Mode Choi c e C > converts the item number into a mode
constant and updat.es g Copy Mode.

/*********************************** DoModeChoice */

DoModeChoiceC item)
int
{

>

item;

if ((item >= 1) && (item <= 8))

gCopyMode = item - 1;
else

gCopyMode = item + 22;

Do Pop up C > inverts the label, brings up the specified pop-up
menu, uninverts the label, and returns the selected item number.
Pop Up Menu S e l e c t C > (and thus, Do Pop up C >) returns 0 if no item
is selected.

/********************************DoPopup*******/

int
MenuHandle
Re ct

DoPopupC menu, rPtr >
menu;
*rPtr;

{

}

Point
long

corner;
theChoice = OL;

corner.h = rPtr->left;
corner.v = rPtr->bottom;

LocalToGlobalC &corner >;

InvertRectC rPtr >;
theChoice = PopUpMenuSelectC menu, corner.v - 1, corner.h

+ 1, 0 >;
InvertRectC rPtr >;

return< LoWordC theChoice > >;

P i c kc o l o r C > calls Ge t co l o r C > , which brings up the Color
Picker at the point, w he re. If w he re is set to (0, 0), the Color Picker
will appear centered on the main display (the display with the menu

Color QuickDraw 201

bar). If where is set to (-1, -1), the Color Picker will appear
centered on the deepest display (the display with the highest number
of bits per pixel).

Get Co lo r C > returns TRUE if the user exited by clicking the OK
button; it returns FA Ls E otherwise.

!******************************** PickColor *********/

Boolean PickColorC colorPtr)
RGBColor *colorPtr;
{

}

Point where;

where.h = -1;
where.v = -1;

return< GetColorC where, 11 \pChoose a color ••• ", colorPtr,
colorPtr) >;

You've seen the routines I s c o l o r C > and Do A l e r t C > before.

!******************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;
return< mySE.hasColorQD >;

/*********************************** DoAlert */

DoAlertC s)
Str255 s;
{

}

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER >;

202

Working with Off-screen Drawing
Environments

In addition to support for direct video devices, 32-Bit QuickDraw
introduced a set of routines that make it easy for you to create and
manipulate off-screen drawing environments. Why would you want
to use an off-screen drawing environment? There are several reasons.

One of the primary uses for off-screen environments is in the
production of flicker-free animation. If you were writing a game, for
example, and you wanted X-wing fighters to zip across the screen,
you'd first create an off-screen environment of the graphic
background, leaving the X-wing out of the picture. Then you'd create
an off-screen environment depicting the X-wing, making it as
detailed as you like. When it comes time for the fighters to fly across
the screen, you'd call CopyB its C > to copy the image of the X-wing
from the X-wing off-screen environment onto the game window. You'd
then enter a loop, using C opyB its C > to overdraw the X-wing image
from the background off-screen environment and then copy the
X-wing from its off-screen environment to its new location in the
game window.

Producing flicker-free animation is actually a bit more complex
than this, but you get the basic idea. The next program, GWorld,
demonstrates the new 32-Bit QuickDraw off-screen graphic world
routines. You create an offscreen graphics world (gworld) by calling
New G W o r l d C >. When you're ready to draw in your gworld, save the
old drawing environment by calling Ge t G w or l d C > and then make
your gworld the current world by passing it to Set G W or l d C >.
Because gworlds are relocatable, you'll have to lock the pixels down
with Lo c k Pi x e l s C > before you do any drawing. Make sure you
unlock the pixels with a call to Un lo c k Pi x e l s C) when you're done
drawing.

-.~~_Bit Qufck~raw is d,$Crlbed in detail in: :ttl!;r 32 .. Bit Qi!lctcOraw
, :Crll#'!eloper N()f(J available from ~PDA. Thi$V~onJs intem4e9 ta,
' .J'.pt:roduce -you ·to _-32-Bit QUiekDraw't .~-ff~$cr~~h g·tE\P'h'ifcs -

~illtles.-Get the note. You'll be glad yoitigfd.

_J GWorld

#include
#inc.lude

#define
#define
#define
#define
#define
#define
#define

GWorld, takes a look at off-screen graphic worlds in action. It creates
an off-screen graphics world, filling it with both a gray and a color
ramp. GWorld then uses Copy Bi ts< > to copy the off-screen
graphics world to a color window using four different magnifications.

GWorld Resources

GWorld uses the exact same resources as the first program,
Colorlnfo. Create a folder in your development folder called GWorld
f. Copy the file Colorlnfo.7t.rsrc into the GWorld f folder. Change the
name of the resource file to GWorld.7t.rsrc.

Setting Up the Project

Inside the GWorld f folder, create a new project called GWorld.x.
Next, add MacTraps to the project. Create a new source code file and
save it as QuickDraw32Bit.h. Do not add this file to the project. It
is an include file that will give GWorld access to the 32-Bit
QuickDraw routines. The source code for QuickDraw32Bit.h can be
found in Appendix B. Type in the file (or copy it into GWorld f if you
already have a copy) and save it.

Create another new source code file and save it as GWorld.c. Add
GWorld.c to the project. Type the following source code into GWorld.c:

11 ColorToolbox.h"
11 QuickDraw32Bit.h"

BASE_RES_ID 400
N IL_PO I NT ER OL
NIL_STRING II \p"
VISIBLE TRUE
NO_GOAWAY FALSE
MOVE _TO_ FRONT -1L
REMOVE_ALL_EVENTS 0

203

204 Macintosh Programming Primer

#define MAX_PIXEL_DEPTH 32
#define WORLD_WIDTH 100
#define WORLD_HEIGHT 100
#define NO - FLAGS OL

#define QD32TRAP OxAB03
#define UNIMPL_TRAP OxA89F

Boolean
GWorldPtr
WindowPtr

Is32Bit0;
MakeGWorldC>;
CreateColorWindowC>;

main()
{

WindowPtr
GWorldPtr
Re ct

window;
world;
worldBounds, windowRect, destRect;

ToolBoxinitC>;

if C ! Is32BitC))
DoAlertC 11 \pThis machine does not support 32-Bit QuickDraw!" >;

else
{

SetRectC &worldBounds, O, O, WORLD_HEIGHT, WORLD_WIDTH >;
world = MakeGWorldC &worldBounds >;
window = CreateColorWindowC>;

SetRectC &destRect, 0, O, 4 * WORLD_WIDTH, 4 *
WORLD_HEIGHT >;

CopyWorldBits(world, window, &destRect >;

SetRectC &destRect, O, O, 2 * WORLD_WIDTH, 2 *
WORLD_HEIGHT);

CopyWorldBitsC world, window, &destRect >;

SetRectC &destRect, O, O, WORLD_WIDTH, WORLD_HEIGHT >;
CopyWorldBitsC world, window, &destRect >;

Color QuickDraw 205

SetRectC &destRect, O, 0, WORLD_WIDTH I 2, WORLD_HEIGHT
I 2 >;

}

}

CopyWorldBitsC world, window, &destRect >;

SetRectC &destRect, O, 0, WORLD_WIDTH I 4, WORLD_HEIGHT
I 4 >;

CopyWorldBitsC world, window, &destRect >;

while C ! Button<> > ;

!*********************************** ToolBoxinit */

ToolBoxinitC)
{

}

InitGrafC &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
I ni tMenus 0;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

/*********************************** CreateColorWindow */

WindowPtr CreateColorWindowC>
{

}

WindowPtr cWindow;
Re ct r;

SetRectC &r, 10, 40, 10 + C4 * WORLD_WIDTH),
40 + C4 * WORLD_HEIGHT) >;

cWindow = NewCWindowC NIL_POINTER, &r, 11 \pColor Test",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

SetPortC cWindow >;

return< cWindow >;

206 Macintosh Programming Primer

!*********************************** MakeGWorld */

GWorldPtr MakeGWorldC boundsPtr)
Re ct
{

*boundsPtr;

GDHandle
GWorldPtr
HSVColor
RGBColor
long

oldGD;
oldGW, newWorld;
hsvColor;
rgbColor;
i;

Re ct
QDErr

r;
errorCode;

GetGWorldC &oldGW, &oldGD >;

errorCode = NewGWorldC &newWorld, MAX_PIXEL_DEPTH,
boundsPtr, NIL_POINTER,
NIL_POINTER, NO_FLAGS);

if C errorCode != noErr >
{

}

DoAlertC 11 \pMy call to NewGWorld died! Bye ••• " >;
ExitToShellO;

LockPixelsC newWorld->portPixMap >;
SetGWorldC newWorld, NIL_POINTER >;

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for< i=boundsPtr->left; i<=boundsPtr->right; i++)
{

hsvColor.hue = i * 65535 I C boundsPtr->right - 1 >;
HSV2RGBC &hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
MoveToC i, boundsPtr->bottom I 2 >;
LineTo(i, boundsPtr->bottom >;

rgbColor.red = i * 65535 I C boundsPtr->right - 1 >;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;

Color QuickDraw

}

}

RGBForeColorC &rgbColor >;
MoveToC i, 0 >;
LineToC i, boundsPtr->bottom I 2 >;

SetGWorldColdGW,oldGD);
UnlockPixelsC newWorld->portPixMap >;

return(newWorld >;

/*********************************** CopyWorldBits *I

CopyWorldBitsC world, window, destRectPtr >
GWorldPtr world;
WindowPtr window;
Rect *destRectPtr;
{

}

RGBColor rgbBlack;

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;
RGBForeColorC &rgbBlack >;

LockPixelsC world->portPixMap >;
CopyBitsC &world->portPixMap, &thePort->portBits,

&world->portRect, destRectPtr, ditherCopy, 0 >;
UnlockPixelsC world->portPixMap >;

!******************************** Is32Bit *********/

Boolean Is32BitC>
{

}

SysEnvRec mySE;

SysEnvironsC 2, &mySE >;

if C ! mySE.hasColorQD
return(FALSE >;

return(NGetTrapAddressC QD32TRAP, ToolTrap) !=
NGetTrapAddressC UNIMPL_TRAP, ToolTrap) >;

207

208 Macintosh Programming Primer

/*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

}

ParamText(s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlert(BASE_RES_ID, NIL_POINTER >;

Running GWorld

Now you're ready to save your changes and select Run from the
Project menu. If the compiler points out any typos or other errors, get
rid of them.

If you try to run GWorld without 32-Bit QuickDraw installed, an
error alert will appear and the program will exit. If 32-Bit
QuickDraw is present, a color window will appear. The off-screen
graphic will be drawn five times. The first time it will be drawn so
that it fills the window. Each successive time it will be drawn at half
the previous size, always pinned to the upper left comer.

Each of the five drawings is a Copy Bi t s < > copy of the original
off-screen graphic. The only difference between the calls to
Copy B i t s C > is the size of the destination Re c t.

Walking Through the GWorld Source Code

GWorld includes the file Color'lbolbox.h as well as the new include
file QuickDraw32Bit.h.

#include 11 ColorToolbox.h"
#include 11 QuickDraw32Bit.h"

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define NIL_ STRING II\ p II

#define VISIBLE TRUE
#define NO_GOAWAY FALSE
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

Color QuickDraw

main()
{

WindowPtr
GWorldPtr
Re ct

209

MAX_PIXEL_DEPTH determines the maximum depth device the
program supports. The higher the number, the more memory the off
screen graphic will take up. The off-screen world for this program
will be WORLD_WIDTH pixels wide and WORLD_HEIGHT pixels tall.
The program uses no unusual flag settings when it creates the off
screen world. This is done by passing No_ FL AG s as the last
argument to New G W o r l d C > . The flags are described in detail in the
32-Bit QuickDraw Developer Note.

#define MAX_PIXEL_DEPTH
#define WORLD_WIDTH
#define WORLD_HEIGHT
#define NO_FLAGS

32
100
100
OL

The #defines Q D 3 2 TRAP and UN IMP L_ TRAP are used to
determine whether 32-Bit QuickDraw is installed.

#define QD32TRAP
#define UNIMPL_TRAP

OxAB03
OxA89F

Boolean
GWorldPtr
WindowPtr

Is32BitC);
MakeGWorldC);
CreateColorWindowC>;

ma i n C > starts off with a call to I s 3 2 B i t C > to determine whether
32-Bit QuickDraw is installed. If not, an alert is displayed and the
program exits.

window;
world;
worldBounds, windowRect, destRect;

ToolBoxlnitC>;

if C ! Is32Bit())
DoAlertC 11 \pThis machine does not support 32-Bit QuickDraw!" >;

If 32-Bit QuickDraw is installed, the program defines the
boundary of the off-screen world and then creates it by calling
Ma k e G w or L d C >. Next, it creates a color window by calling
CreateColorWindowC>.

210

}

Macintosh Programming Primer

else
{

}

SetRectC &worldBounds, Q, 0, WORLD_HEIGHT, WORLD_WIDTH >;
world = M~~eGWorldC &worldBounds >;
window = CreateColorWindowC>;

N ~xt, the off-screen world is put to work. Each call to s et Re c t C >
sets up the destination Re c t within the color window. The calls to
c op y W o r l dB i t s < > do the actual copying of the off-screen world to
the specified Re c t in the specified window.

SetRectC &destRect, O, 0, 4 * WORLD_WIDTH, 4 *
WORLD_HEIGHT >;

CopyWorldBitsC world, window, &destRect >;

SetRectC &destRect, O, O, 2 * WORLD_WIDTH, 2 *
WORLD_HEIGHT >;

CopyWorldBitsC world, window, &destRect >;

SetRectC &destRect, 0, 0, WORLD_WIDTH, WORLD_HEIGHT >;
CopyWorldBitsC ~orld, window, &destRect >;

Se~RectC &destRect, O, 0, WORLD_WIDTH I 2, WORLD_HEIGHT
I 2 >;

CopyWorldBitsC world, window, &destRect >;

S~tRectC &destRect, 0, O, WORLD_WIDTH I 4, WORLD_HEIGHT
I 4 >;

CopyWorldBitsC world, window, &destRect >;

Once the copies are made, the program waits for a mouse click.

while C ! Button<> > ;

Next is yet another copy of Tool Box In it C >.

Color QuickDraw

/*********************************** TooLBoxlnit */

TooLBoxlnitC>
{

}

InitGrafC &thePort >;
InitfontsO;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS);
InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

211

C r e a t e Co L o r W i n do w C > creates a color window big enough to
accommodate a bitmap four times wider and four times taller than
the off-screen graphic.

!*********************************** CreateColorWindow */

WindowPtr CreateColorWindowC>
{

}

WindowPtr cWindow;
Rec t r;

SetRectC &r, 10, 40, 10 + C4 * WORLD_WIDTH),
40 + (4 * WORLD_HEIGHT) >;

cWindow = NewCWindowC NIL_POINTER, &r, 11 \pColor Test",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

SetPortC cWindow >;

return(cWindow >;

Ma k e G W o r l d C > creates an off-screen graphics world using the
specified Re c t as a bounding rectangle.

212 Macintosh Programming Primer

!********************************* MakeGWorld */

GWorldPtr MakeGWorldC boundsPtr >
Rect *boundsPtr;
{

GDHandle oldGD;
GWorldPtr oldGW, newWorld;
HSVColor hsvColor;
RGBColor rgbColor;
long i;
Re ct r;
QDErr errorCode;

The program calls Ge t G W o r l d C > to save the current graphics
world for later restoration.

GetGWorldC &oldGW, &oldGD >;

New G W o r l d C > returns an error code, describing any problems
encountered in creating the off-screen graphics world. The most
typical error occurs when 32-Bit QuickDraw can't allocate enough
memory to create the off-screen graphics world. If an error occurs,
the program puts up an error message and bails out.

errorCode = NewGWorldC &newWorld, MAX_PIXEL_DEPTH,
boundsPtr, NIL_POINTER,
NIL_POINTER, NO_FLAGS >;

if C errorCode != noErr)
{

}

DoAlertC "\pMy call to NewGWorld died! Bye ••• " >;
ExitToShellC>;

Lo c k P i x e l s C > locks the pixels down so that the program can
draw on them. Set G W or l d C > makes the newly created world the
current world.

LockPixelsC newWorld->portPixMap >;
SetGWorldC newWorld, NIL_POINTER >;

The program uses the HS V Co lo r model to create a bright color
ramp across the bottom half of the off-screen graphics world. It uses
the R GB C o l o r model to create a gray ramp across the top of the off
screen world.

Color QuickDraw 213

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for< i=boundsPtr->left; i<=boundsPtr->right; i++)
{

}

hsvColor.hue = i * 65535 I (boundsPtr->right - 1 >;
HSV2RGBC &hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
MoveToC i, boundsPtr->bottom I 2 >;
LineToC i, boundsPtr->bottom >;

rgbColor.red = i * 65535 I C boundsPtr->right - 1 >;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;

RGBForeColorC &rgbColor >;
MoveToC i, 0 >;
LineToC i, boundsPtr->bottom I 2 >;

When done, the program restores the graphics world to its original
state, unlocks the pixels, and returns new W or l d.

SetGWorldColdGW,oldGD);
UnlockPixelsC newWorld->portPixMap >;

return(newWorld >;
}

Inside Macintosh recommends that you set the background color to
white and the foreground color to black before you call C op y B i t s C >,
because copy Bi t s < > applies the foreground and background colors
to an image during the call.

/******************************* CnpyWorldBits */

CopyWorldBits< world, window, destRectPtr >
GWorldPtr world;
WindowPtr
Re ct
{

RGBColor

window;
*destRectPtr;

rgbBlack;

214

}

Macintosh Programming Primer

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;
RGBForeColor(&rgbBlack >;

The call to Copy Bi t s C > illustrates the use of a newly defined
mode, di therCopy. di therCopy was defined in the new include
file QuickDraw32Bit.h. Try running the program using s r c Copy
instead of di the rCopy. dither Copy uses a dithering technique to
smooth the transitions between colors that are pretty different.
Because the dithering algorithm is complex, d i the r Copy tends to
slow things down a bit. As always, the program locks the pixels
before it accesses them and unlocks them when it's done.

LockPixelsC world->portPixMap >;
CopyBits(&world->portPixMap, &thePort->portBits,

&world->portRect, destRectPtr, ditherCopy, 0 >;
UnlockPixelsC world->portPixMap >;

Is 3 2 Bi t C > first checks to see whether Color QuickDraw is
available. If not, it returns FA Ls E, because 32-Bit QuickDraw can't
exist without Color QuickDraw. If Color QuickDraw is present,
Is 3 2 Bi t C > checks for the existence of the 32-Bit QuickDraw trap,
returning T Ru E if the trap exists.

!******************************** Is32Bit *********/

Boolean Is32BitC>
{

}

SysEnvRec mySE;

SysEnvirons(2, &mySE >;

if C ! mySE.hasColorQD)
return(FALSE >;

return(NGetTrapAddressC QD32TRAP, ToolTrap) !=
NGetTrapAddressC UNIMPL_TRAP, ToolTrap) >;

Color QuickDraw 215

Do A l e r t C > has survived intact.

!*********************************** DoAlert */

DoAlertC s
Str255 s;
{

}

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER >;

_J
In Review

This chapter has made every effort to cover Color Quick.Draw from
all angles. However, there's no substitute for a thorough reading of
Inside Macintosh, Volume V. You'll find lots of important information,
probably even one or two morsels that were overlooked here. If you
can, get a copy of the official Apple Color disk, the one that includes
32-Bit QuickDraw. The disk also includes the include file
QuickDraw32Bit.h. Also highly recommended is Apple's excellent
technical publication, develop, which debuted in January, 1990. The
premier issue contains several articles that focus on Color
Quick.Draw. The magazine also comes with a CD containing all the
programs in the magazine, as well as the text and graphics of the
magazine itself. How recursive!

The next chapter deals with TextEdit, the powerful text editor
built into every single Macintosh.

Text Edit
This chapter explains the use of

TextEdit within your programs. First,
the chapter discusses the Toolbox

routines that make up TextEdit. Next,
it presents a program that makes

extensive use of TextEdit and that can
be used as a basis for your own

applications. The text also touches on
the changes that have occurred since

TextEdit was first introduced.

5

_J

It's hard to imagine a Mac scenario that doesn't include some form of
TextEdit. When you rename an icon in the Finder, you make use of
TextEdit. When you edit the file name in a Standard File dialog box,
you also use TextEdit. The next section takes a look at some
examples of TextEdit in action.

Exploring TextEdit

Take a look at the dialog box in Figure 5.1. This is a classic example
of the use of TextEdit in an application. When your application calls
Mod a l D i a l o g C > to bring up a dialog box containing an editable
text field, the Dialog Manager uses TextEdit to allow editing in that
field. If a key Down event occurs while the dialog is still up, the
dialog manager fir~t checks to see if the key pressed was either the
Return or the Enter key. If neither, the Dialog Manager passes the
character code of the key on to TextEdit. TextEdit is in charge of
adding (or deleting) the new character to the text field and drawing
(or erasing) the new character.

If the mouse is clicked in the text field, the Dialog Manager passes
the location of the mouse on to TextEdit, and TextEdit takes care of
the detailed work, such as moving the insertion point and selecting
text as the mouse is dragged over it.

Here's another example. Figure 5.2 shows a THINK C source code
window. Note that the window has both a horizontal and a vertical
scroll bar. When the mouse is clicked in a scroll bar, THINK C first
works with the Control Manager to determine how far and in which

What will you name your
new Planet?

Clarit_y

n OK J (Cancel)

Figure 5.1 TextEdit field in dialog box.

219

220 Macintosh Programming Primer

direction the text should be scrolled. Next, THINK C calls TextEdit to
actually scroll the text.

When the cursor is moved over an area of editable text, THINK C
changes the cursor to an I-Beam cursor. TextEdit never changes the
cursor. That's the job of the application.

Dear Apple,

Why doesn't the Dialog Manager change the cursor to the I-Beam
cursor when the cursor is moved over an editable text field in a
dialog box? Just wondering. .

Dave

D FormEdit.c

/************************/
/* Typedefs */
/************************/

typedef struc::t
{

WindowRec::ord w;
int wType;
Contro lHandle vSc::rol I;

~ !ITT
~

IT
I-----1 I-Beam

Cursor

TEHandle nameTE, misc::TE,
} FormRec::ord, *FormPeek; I

c::urTE;

Figure 5.2 TextEdit source code editor.

Thxt Edit

_J

221

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16

ls1

h
1a1d) 1

C
1

h
1a.e1r1sl

Figure 5.3 TextEdit selection range.

Text is entered at the blinking insertion point. The insertion point
always occurs between two character positions, and it doesn't occupy
a character position itself. The selection range is also aligned
between character positions. In Figure 5.3, the selection range goes
from position 9 to position 13. If the insertion point occurred at
position 0, new characters typed would appear at the beginning of
the text. Likewise, if the insertion point were at position 16, new
characters would appear at the end of the text.

Using TextEdit

As is the case with the rest of the Toolbox, to use TextEdit you need
to know about two things: TextEdit data structures and the TextEdit
routines.

TextEdit Record

All TextEdit revolves around a single data structure, the TE Rec.
You'll need a separate TE Rec for each piece of text you want to edit.
For example, if you were writing a small text editor, you'd want one
TE Rec for each open document. The first program in this chapter,
FormEdit, displays a two-part form in a window. FormEdit allows
more than one window to be open at a time. This means that
FormEdit will require two TE Recs for every open window. (FormEdit
is discussed later in the chapter.) Here's the THINK C declaration for
a TERec:

typedef struct
{

Re ct destRect;
Re ct viewRect;
Re ct selRect;

222

int
int
Point
int
int
int
ProcPtr
ProcPtr
long
int
long
int
int
int
Handle
int
int
int
int
int
char
int
int
Graf Ptr
ProcPtr
ProcPtr

lineHeight;
f ontAscent;
selPoint;
selStart;
selEnd;
active;
wordBreak;
clikloop;
clickTime;
clickloc;
caretTime;
caretState;
just;
telength;
hText;
recalBack;
recallines;
clikStuff;
crOnly;
txfont;
txface;
txMode;
txSize;
inPort;
highHook;
caret Hook;

int nlines;

Macintosh Programming Primer

int lineStarts[J;
} TERec, *TEPtr, **TEHandle;

Most of the fields in the TE Rec either are internal to TextEdit or
are accessed via TextEdit routines. The first field, des t Re c t,
defines in local coordinates a Re c t that is used to hold all the text,
even text that's currently scrolled out of view. The des t Rec t
determines where the text is word-wrapped. Figure 5.4 shows some
text word-wrapped to a des t Rec t.

Text Edit 223

The second field, v i e w Re ct, also defines a Re c t in local
coordinates. This Rec t determines what portion of the des t Rec t is
visible. Figure 5.4 shows a vi ewRect laid on top of a destRect.
Figure 5.5 shows the text as it would appear on the screen.

The actual text is stored off of the handle h Text. The text in a
TE Rec is limited to 32K characters. This should prove more than
adequate for most applications. The remaining TE Rec fields will be
discussed as they are encountered.

destRect

he final pl an calls for a great deal of courage
and in enuit . First, we'll remove the small
rectangular plate from the underside of the
shaft. Next, Hopkins wi 11 at ta ch one of his
special jamming devices to the wire core that
runs · ust over the 1 ate. If we're 1 uck we
might just get out of this in one p · ece.

uiewRect

Figure 5.4 Sample vi ewRect and destRect.

rectangular plate from the underside of the
shaft. Next, Hopkins wi 11 attach one of his
spec i a 1 j am mi n g devices to the wire co re that
runs just over the pl ate. If we're lucky, we

Figure 5.5 Text showing through the vi e w Rec t.

224 Macintosh Programming Primer

Inside Macintosh, Volume V introduces a new version of TextEdlt,
now available for Mac Pluses on up, running system 4.1 or higher.
What's the major difference between old and new TextEdlt? Well,
old TextEdit limited a TE Rec to a single style, determined by the
fields tx Font, t xFace, t xMode, and txs i ze. New TextEdit
allows your application to associate a specific style with the current
selection. This means that the user of your appllcatlon can select
some text, choose Bold from your application's Style menu, and
have the selected text appear in bold-face. They can then choose
other text within the same TextEdit record, select Underline from
the Style menu, and have that text appear underlined. New
TextEdit means that 12-point Geneva Bold can live in the same
TextEdit record as 24-point llmes Shadow.

Before working on the sample application, let's take a look at the
toolbox routines that make up TextEdit.

TextEdit Routines

Before you can use any other TextEdit routine, you must initialize
TextEdit via a call to TE In i t <) • Once that's done, you'll want to
allocate a TE Rec using TEN e w <) . You provide the viewRect and the
destRect as parameters to TEN e w <) . TEN e w () re turns a
TE Hand l e, which is a handle to a TE Rec. One of the nice things
about TextEdit is that you never have to allocate memory for
dynamically changing blocks of text. TextEdit takes care of this for
you!

If you want to take advantage of new TextEdit, use the function
TE sty l New c > to allocate your TE Rec. Before you do, though,
you'd better read Inside Macintosh, Volume V, Chapter 14. You
might want to get your feet wet with old (classic?) TextEdit before
you dive into new TextEdit. New TextEdit is more of a supplement
than a replacement.

Once you're done with the TE Rec, dispose of it (free up any
memory allocated for it) by passing its TE Handle to TED i s p ' > s e <) .
You can get at the text of a TE Rec directly by accessing its h Text
field. A cleaner way is to use the handle returned by TE Get Text <) .

Text Edit 225

Both methods give you a handle to the actual text. TE Get Text <)
does not make a copy of the data!

There are several ways to change the text of a T E Re c. You can use
T E S e t T e x t (l e n g t h , t e x t , my T E H a n d l e) to copy l e n g t h
bytes of the text pointed to by t ext into the T ER e c handled by
my TE Hand l e . This approach doesn't free up any text that might
have been in the T E Re c before the call to TES e t Tex t <) , however,
so make sure you do some housekeeping before you call
TESetText().

Use TE Ac t i v a t e () to tell TextEdit which TE Re c is currently
active. The currently active TE Rec will have its selection highlighted
or, if there is no current selection, will have a blinking caret at the
insertion point. TED ea ct i vat e <) tells TextEdit to unhighlight any
selection or, if there is no selection, not to draw a caret at the
insertion point.

Typical applications will call TE Ac t i v a t e c > when they receive
an activate event for a window, passing a handle to the TE Rec
associated with that window. They'll call TED ea ct i vat e c > when
they receive a deactivate event.

If your application has more than one TE Rec associated with each
window (as does FormEdit, the sample application presented later
in this chapter}, you'll have to decide on a TE Activate C >
strategy. Form Edit calls TED ea c t ; v a t e c > when it gets a
deactivate event, when the mouse is clicked in a TE Rec other than
the current one, or when a Tab character Is typed. Each
TED ea c t i v a t e c > not associated with a deactivate event Is
coupled with a TE Act i vat e o .

TE Id le <) takes a handle to the currently active TE Rec and, if
the minimal blink interval has passed, it blinks the caret at the
insertion point. TE Id le <) should be called as frequently as possible.
T E I d l e <) won't blink the caret until the blink interval has passed,
no matter how frequently you call it. If you don't call it frequently
enough, however, the caret will stutter.

226 Macintosh Programming Primer

The blink interval is tied to a byte in memory that gets loaded from
Parameter-RAM. You can access the value via the system global
s Pc l i kc a ,. et , found at Ox209 in memory. Four bits of the byte
determine the blink interval; the other four determine the maximum
time between clicks in a double-click. Just thought you'd like to
know

When your application gets a mouseDown event inside the
vi e w Rec t of a TE Rec, pass the click on to TextEdit by calling
T E c l i c k <) • T E c l i c k C) takes a Po i n t , a Bo o l e a n, and a
TE Hand l e as parameters. Convert the mouse location (passed in
the Event • w he re) to local coordinates and pass it as the Poi n t
parameter. Determine whether the Shift key was down:

shiftDown = C gTheEvent.modifiers & shiftKey) != O;

and pass the result in the Boo le an parameter. Finally, as the third
parameter, pass the TE Hand l e in which the mouse was clicked.

In exchange for these three parameters, T E C l i c k C) will do the
right thing. If the Shift key was down, TE C l i ck C) will extend the
current selection. If the Shift key wasn't down, TE c l i c k C) will
unhighlight the current selection and move the insertion point as
close as it can to where the mouse click occurred. While the mouse
button remains pressed, TE C L i c k < > will track the movement of the
mouse, changing the selection to match. If the mouse movement
started with a double-click, TE c l i ck <) will extend the selection a
word at a time (I'll bet even you didn't know that!).

You can set the selection yourself by calling TES e t S e l e c t C) . To
select all the text in the TE Rec , use this line:

TE SetSelectC 0, 32767, myTEHandle >;

The first parameter is the character position of the start of the
selection (see Figure 5.3). The second parameter is the character
position of the end of t he selection.

When a key Down event occurs, first check for a command-key
equivalent such as 3€0. You should also check for special keys, such
as Return, Enter, or Tab, if they hold special meaning for your
application. If the key Down makes it through this, pass it on to
TextEdit via a call to TE Key <) • If there is a current selection,

Text Edit 227

TE Key C > replaces the selected text with the character passed in the
first parameter. If there is no selection, TE Key C > inserts the
character at the insertion point. if you pass the delete character,
T EK e y C > will delete the selection, if there is one, or the character to
the left of the insertion point, if there is no selection.

TES et Just C > sets the justification of the TE Re e's text to
t e Just Left, t e Just Center, or t e Just Right. The default
setting is t e J u s t Le f t.

When your application gets an update Ev t for a window
associated with a TE Re c, first call E r a s e Re c t C > to erase the
T E Re c 's v i e w Re c t (sometimes TextEdit is messy and leaves a caret
around after a T E D e a c t i v a t e C >) and then call T EU pd a t e C > •
TEUpdateC > will redraw the TERec's text in the vi ewRect.
Remember to call Beg i n Up d a t e C) and End Up d a t e C > •

Scrolling Text in TextEdit

When a mo u s e Down occurs in a scroll bar associated with a TE Re c,
first calculate how far you need to scroll. You'll probably need to
access the TE Re c field l i n e He i g h t to figure out exactly how many
pixels you'll need to scroll (figure l i n e H e i g h t pixels for every click
in a scroll bar arrow). Now pass the horizontal and vertical deltas (in
pixels) to TE s c r o l l C >. TES c r o l l C > effectively slides the
v i e w Re c t up and down and side to side on the de s t Re c t (sounds
perverse, doesn't it?). What the user sees is exactly what you want
them to see: the text scrolling up and down and side to side in
response to their clicking the mouse in the scroll bar.

T EA u t o V i e w C > turns on and off the automatic scrolling of text.
Automatic scrolling occurs when the user clicks the mouse in the
vi e w Rec t and drags the mouse outside the vi e w Rec t. For
example, if the user clicked on the text in Figure 5.6 and dragged
down below the bottom of the v i e w R e c t , the text would
automatically scroll up. This is great if you don't have a scroll bar
associated with your T E Re c. If there is a scroll bar associated with
your T E Re c, you have no way of telling TextEdit to scroll the scroll
bar in tandem with the automatic scrolling of text. In other words,
TE Auto V i e w C > knows about your TE Rec but doesn't know about
your scroll bars. Although your text may scroll automatically, your
scroll bar will sit there as dumb as a disabled radio button.

228 Macintosh Programming Primer

There .. on the edge of town .. sat
Godzi 11 a. Boy was he mad!!! No
one had the slightest idea why.

Figure 5.6 AutoScroll() example.

As you might have guessed, there is an alternative for those times
when you need automatic scrolling and have to maintain a scroll bar
as well. The c l i k Loop field in a T E Re c points to a routine to be
called continuously, as long as the mouse is held down in the
v i e w Re c t. By default, c l i k Loop points to a routine that works
well with T EA u t o V i e w C > but doesn't know about things like scroll
bars. You can write your own routine (the sample application shows
you how) to replace the default c l i k Loop. You install the new
c l i k Loop by calling S e t c l i k Loop C > , passing a pointer to your
new cl i kloop as a parameter.

A similar mechanism is available for installing a custom word
break routine in a TE Rec. The default word-break routine takes a
text pointer and a character position as input and returns TRUE if
the character at that position is a legal word-break character (in this
case, any value less than or equal to Ox20 causes a return value of
TRUE). Install your routine by passing a pointer to the routine to
SetWordBreakC).

Resizing the Dest Rec t

If your application supports resizable windows, you'll need a strategy
for dealing with changing des t Rec ts. Figure 5. 7 shows a window
with a single, vertical scroll bar. The text in the window is associated
with a TE R e c. The d es t Re c t of this window is just big enough to fit
around the top and two sides of the text. The bottom of the
des t Rec t goes down several inches below the bottom of the window.
The v i e w Re c t is just big enough to fit around the text on all four
sides.

Text Edit 229

When the window is resized, you have a decision to make. Figure
5.8 shows one approach. In this window, vi e w Rec t • r i g ht was
made smaller to coincide with the left side of the scroll bar. The
des t Re c t was left unchanged. This has the effect of clipping the
text, leaving its word-wrap the same.

Figure 5.9 shows a different approach. In this v:indow, both the
v i e w Re c t and the de s t Re c t were made skin.l.J.~.:·. The v i e w Re c t
changed as before, but this time the des t Rec t changed as well.
This had the effect of changing the word-wrap of the text to coincide
with the size of the window.

The prototron dealership on
Gamma 5 turned qulte a proflt
that year. They say you never
forget your f1 rst prototron... l2J

Figure 5.7. Textwindow with grow box.

The prototron dealershi
Gamma 5 turned qulte a
that year. They say you
forget your first pro tot

Figure 5.8. Resized text window, no change to des t Rec t.

~D Did Gramps
The prototron dealership
on Gamma 5 turned
quite a profit that year.
They say you never forget
your first prototron... l2J

Figure 5.9. Resized text window, des t Rec t changed.

230

_J

Macintosh Programming Primer

The approach in Figure 5.8 is good for applications such as source
code editing, in which you don't want the word-wrap to change when
you resize the window. In this case, you may want to add a horizontal
scroll bar on the bottom of the window so you can still reach the text
clipped on the right.

The approach in Figure 5.9 is good when you want to minimize the
clipping of text. This is especially true when you care about the
contents of the text but not the format. An example of this might be a
note pad application, or a dictionary. This approach allows you to
make the most efficient use of your desk space.

TextEdit's Private Scrap

If you aren't familiar with the Scrap Manager, now is a good time to
go back and review it. TextEdit maintains its own, private scrap and
has a set of routines to access that scrap. T E C u t C > and T E C op y C >
cut and copy the selection range to the TextEdit scrap. T E Pa s t e C >
pastes the text in the TextEdit scrap, either replacing the selection
or, if there is no selection, inserting the text ·before the insertion
point. T E D e l et e C > is analogous to the Clear item under the Edit
menu. It deletes the selection, if there is one, but doesn't copy it to
the scrap. If there is no selection, TE De l e t e C > does nothing.

T E I n s e r t C > inserts a copy of the specified text immediately
before the selection, if there is one. Note that TE Insert C > has no
effect on the selection. If there is no selection, TE I n s e r t C > inserts
the text immediately before the insertion point.

TE F r om S c rap C > and TE To S c r a p C > copy the TextEdit scrap
from and to the desk scrap, respectively.

FormEdit

Now that you've seen the routines that make up TextEdit, you're
ready to take a look at them in action. The sample program for this
chapter is called FormEdit. FormEdit creates a menu bar with three
menus:· ei, File, and Edit. The File menu will allow you to create and
close a form window, as shown in Figure 5.10.

Text Edit 231

,. S File Edit
.,

Figure 5.10 FormEdit.

As you can see, the form has two fields, Name and Misc. When
more text is typed in the Misc field than can be seen at once, the
scroll bar to the right of the field is activated, allowing you to scroll
through the text. When you type in the Name field, the title of the
window is changed to reflect the text in the field. Anytime there is no
text in the Name field, the window's title is changed back to
<Untitled>.

The File menu's New option allows you to create an unlimited
number of windows. The Close option lets you close the windows and
is dimmed when no open windows belonging to your application are
left on the screen.

The Edit menu items Cut, Copy, Paste, and Clear are fully
supported. The Undo item is present but remains dimmed
throughout the application.

Although the Undo command is an important part of any Macintosh
application, it does not represent a programming problem specific
to the Toolbox. As you design your application, you must decide
what form of Undo you will support. Will you support Undos of an
Undo? Will your Undos be limited to text operations involving
TextEdit? Once you resolve these design issues, you can design
your program's data structures specifically to support this Undo
approach. The point is, there is no universal Undo strategy.

To keep the programs in this book as focused as possible, no
specific Undo strategy is presented. If you are interested in a
chapter on Undo strategies, please let me know.

232 Macintosh Programming Primer

In addition, desk accessories are fully supported. In the programs
presented in Macintosh Programming Primer, Volume I the Edit
menu items Cut, Copy, Paste, and Clear were not fully supported.
You can use FormEdit as a model for your own applications.

Now that you know what to expect, it's time to create the resources
FormEdit will use.

I

Before you go any further, you should be familiar with the
techniques of creating resources for your programs. If you need a
refresher, you might want to step through Chapter 8 of the
Macintosh Programming Primer, Volume I.

Form.Edit Resources

Create a folder called FormEdit in your source code folder. Then use
ResEdit to create a new file inside the new folder called
WindowMaker.7t.rsrc.

Create a WIND resource according to the specifications in Figure
5.11. Set the w IN D's resource ID to 4 00.

§0§ WIND ID= 400 from FormEdit.11.rsr

Window title:

<Untitled>

top

left

proclD

~bottom~
~right ~

14 I re fC on I O I

D Uisible f8I goAwayflag

Figure 5.11 Specification for WIND 4 0 0.

Text Edit 233

Next, build the 'STR' resources used by ErrorHandlerO as
error messages. Remember to include the space after the three
letters 'STR'. Create three 'STR' resources (numbered 400, 401, and
4 0 2) according to the specifications in Figure 5.12.

Next, build an MBAR resource as shown in Figure 5.13. Change the
MBAR resource ID to 400.

Next, build the three M EN U resources. First, build the S M EN U
according to the specification in Figure 5.14. Remember to type the
Apple Character (S) in the Title field. You can do this by typing
Control-t (if you don't have a Control key on your key board, use
ResEdit to copy an S from another application's MENU). Because
ResEdit doesn't display the Title field using the Chicago font, a
rectangle will appear instead of the S. Don't worry; the S will
appear when you run the program. Make sure you change the
resource ID of the S MENU to 400.

:D STR ID 400 from F ormEdit. 'TT .rs re

TheStr I can't load the MBAA resource!!! I ~

Data $l J
IQJ

_o STR ID 401 from F ormEdit. 'TT .rs re

TheStr I can't load a MENU resource !!! I IQj

Data $[J
~

-D STR ID 402 from F ormEdit. 'TT .rs re

TheStr I can't load the WIND resource!!! I ~

Data $l J
~

Figure 5.12 Specification for the three ' ST R ' resources.

234 Macintosh Programming Primer

D MBRR ID 400 from FormEdit.lf.rsrc

of menus 3
IQ

Menu res ID I ·mo

Menu res ID 1401

Menu res ID 1402

Figure 5.13 Specification for MB A R 4 0 O.

Build the File MEN u resource according to Figure 5.15. Change the
resource ID of the File M EN U to 401 .

Build the Edit MENU resource according to Figure 5.16. Change the
resource ID of the Edit MENU to 4 0 2.

Next, you'll create the DI TL resources for your error and About
AL R Ts. First, create the About D IT L. Create a new D IT L with two
items that match the specifications in Figures 5.17 and 5.18. Change
the About D IT L's resource ID to 4 0 0 .

Text Edit 235

MENU 11 Apple 11 ID - 400 from FormEdit.n.rsrc

Menu ID iOO

ProclD 0

EnableFlgs $FFFFFFFB

Title a

Menu Item jAbout FormEdit

Icon# lo
Key equiv D
Mark Char D
Style 1$00

Menu Item I-
Icon# lo
Key equiv D
Mark Char D
Style 1$00

***** 0

Figure 5.14 Specification for M EN u 4 O O.

236 Macintosh Programming Primer

::D MENU "File" ID 401 from FormEdit.11.rsrc

Menu ID 101

ProclO 0

EnableFlgs $FFFFFFFF

Ti t le Fi le

Menu Item I New

lcon1 D
Key equiv EJ
Mark Char D
Style 1$00

Menu Item I close

Icon# lo I
Key equiv EJ
Mark Char D
Sty le 1$00

Menu It em lou it

lcon1 lo
Key equi v @]
Mark Char D
Sty le 1$00

***** 0

Figure 5.15 Specification for MEN u 401 .

Text Edit

§0 MENU "Edit" ID= 402 from FormEdit.11.rsrc

Menu ID

ProclO

EnableFlgs

Title

Menu Item

Icon#

Key equiv

Mark Char

Style

Menu Item

11102

jo
l$FFFFFFFB

jEdit

jundo

lo
[]
D

Icon# ~'O~~~
Key equiv D
Mark Char D
Sty I e ..-, $-00---------~

Menu Item !cut

:::::====::::::::;-~~~~~~~~~~---'

Icon# ~'O==~~
Key equiv ~

Mark Char ~
Style ~,$=0=0"--~~~~~~~~~~~

Figure 5.16 Specification for MENU 4 O 2.

237

238 Macintosh Programming Primer

Menu I tern jcopy

Icon# EJ
Key equiv @]
Mark Char D
Style 1$00

Menu I tern I Paste

Icon# lo I
Key equiv ~
Mark Char D
Style 1$00

Menu I tern I clear

Icon# lo I
Key equiv D
Mark Char D
Style 1$00

***** 0

Figure 5.16 (continued)

Thxt Edit

Edit Dill Item #1

®Button
0 Check bOH
O Radio control

O Static teHt
O Editable teHt

O CNTL resource
O ICON resource
O PICT resource

0 User item

TeHt

®Enabled
0 Disabled

top 71 ____ ____.

left 117
1----------1

bottom 91_ ___ _____.

right 177__ ___ ____.

Figure 5.17 DI TL 400, Item #1.

Edit 0 ITL I tern #2

0 Button ®Enabled
O Check boH 0 Disabled
O Radio control

® Static teHt top 7
O Editable teHt

left 70 0 CNTL resource
O ICON resource bottom 61

O PICT resource right 280
0 User item

TeHt Another fine program from the Mac
Programming Primer! ©1990, Oaue
Mark •• ~

Figure 5.18 D IT L 400, Item #2.

239

240 Macintosh Programming Primer

Now create the Fatal Error D IT L. Create a new D IT L with two
items that match the specifications in Figures 5.19 and 5.20. Change
the Fatal Error DI TL 's resource ID to 4O1 .

Finally, you'll create the two AL RT resources. Create a new AL RT
that matches the specifications in Figure 5.21. Change this AL R T's
resource ID to 4 0 0.

Create a second AL RT that matches the specifications in Figure
5.22. Change this AL R T's resource ID to 4O1 .

Edit Dill Item #1

®Button ®Enabled
0 Check boH 0 Disabled
0 Radio control

0 Static teHt top 86
O Editable teHt

left 117
0 CNTL resource
0 ICON resource bottom 106

0 PICT resource right 177
O User item

Te Ht Gasp!

Figure5.19 DITL 4t:' Item#l.

Text Edit

Edit DITL Item #2

0 Button ®Enabled
O Check boH 0 Disabled
0 Radio control

® Static teHt top 5
0 Editable teHt

left 67 O CNTL resource
0 ICON resource bottom 71
0 PICT resource right 283
0 User item

Te Ht Rn incredibly fatal error has just
occurred: ""'O

Figure 5.20 DI TL 401 , Item #2.

§0§ Alert "About" ID= 400 from FormEd

top ~bottom~
left ~right E=:J
items ml 400 I sound

stage 1 D 2 bold 181 drawn 1

stage 2 D 2 bold 181 drawn 1

stage 3 D 2 bold 181 drawn

stage 4 D 2 bold 181 drawn

Figure 5.21 AL RT 4 0 0, viewed as text.

241

242 Macintosh Programming Primer

§0§ Alert "Fatal Error" ID= 401 from Fo

-bottom~
left ~right ~
top

itemsrnl 401 I sound

stage 1 D 2 bold 181 drawn 1

stage 2 D 2 bold 181 drawn 1

stage 3 D 2 bold 181 drawn 1

stage 4 D 2 bold 181 drawn 1

Figure 5.22 AL RT 401 , viewed as text.

That's it for resources! Now comes the fun part - typing in the
code (see the coupon on back page for a time-saving offer). This is a
pretty long program (probably the longest in the book), so you might
want to get your CD player cranked up and put on your typing
slippers.

The Code

Start up THINK C and create a project (in the same folder as your
resource file) called FormEdit.7t. Add the MacTraps library to the
project. Create a new source code window and save it as
FormEdit.c. Add this window to your project. Now you're ready to
type in the code. Here goes:

Text Edit

/********************/
I* MENUs */
/********************/

#define APPLE_MENU_ID
#define A_ABOUT_ITEM

#define FILE _MENU_ID
#define F _NEW_ITEM
#define F _CLOSE_ITEM
#define F _QUIT_ITEM

#define EDIT _MENU_ID
#define E_UNDO_ITEM
#define E_CUT_ITEM
#define E _COPY_ITEM
#define E _PASTE_ITEM
#define E_CLEAR_ITEM

/********************/
I* Window Types */
/********************!

400
1

401
1
2
3

402
1
3
4
5
6

#define NIL_WINDOW 0
#define UNKNOWN_WINDOW 1
#define DA_WINDOW 2
#define FORM_WINDOW 3

/********************/
I* ALRTs */
/********************!

#define ABOUT_ALERT 400
#define ERROR_ALERT_ID 401

/********************/
I* Error STRs */
/********************/

#define NO_MBAR
#define NO_MENU
#define NO_WIND

BASE_RES_ID
BASE_RES_ID+1
BASE_RES_ID+2

243

244

!********************/
I* Text Edit */
/********************/

#define TE_NAME_AREA 0
#define TE_MISC_AREA 1

#define TE_ENTER_KEY 3
#define TE_DELETE_CHAR 8
#define TE_TAB_CHAR 9
#define TE_CARRIAGE_RETURN 13

!************************/
I* General Defines */
!************************!

#define BASE_RES_ID
#define NIL_POINTER
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS

#define DRAG_THRESHOLD

#define WINDOW_HOME_LEFTS
#define WINDOW_HOME_TOP
#define NEW_WINDOW_OFFSET

#define MIN_SLEEP
#define NIL_MOUSE_REGIONOL

#define LEAVE_WHERE_IT_IS

#define WNE_TRAP_NUM
#define UNIMPL_TRAP_NUM
#define SUSPEND_RESUME_BIT
#define RESUMING

400
OL
-1L
0

30

45
20

60L

FALSE

Ox60
Ox9F
Ox0001
1

#define NIL_STRING 11 \p"

Macintosh Programming Primer

#define UNTITLED_STRING 11 \p<Untitled>"
#define VISIBLE TRUE
#define HOPELESSLY_FATAL_ERROR "\pGame over, man!"

Th.rt Edit 245

/************************/
I* Useful Macros *I
/************************/

#define TopleftC myRect >
#define BotRightC myRect >

/************************/
I* Typedefs */
!************************/

typedef struct
(

WindowRecord w;
int wType;
ControlHandle vScroll;

C* (Point *) &CmyRect.top))
C* (Point *> &CmyRect.bottom> >

TEHandle nameTE, miscTE, curTE;
} FormRecord, *FormPeek;

!************************/
I* Globals */
/************************/

Boolean
EventRecord
MenuHandle

int

Re ct

gDone, gWNEimplemented, glnBackground;
gTheEvent;
gAppleMenu,
gfileMenu,
gEditMenu;
gNewWindowleft = WINDOW_HOME_LEFT,
gNewWindowTop = WINDOW_HOME_TOP;
gNam,Rect = { 3, 43, 19, 250 },
gMiscRect = { 22, 43, 150, 231 },
gScrollBarRect = { 22, 234, 150, 250 >;

246 Macintosh Programming Primer

/************************/
I* Routines */
!************************/

void
void
void
void

void
void

void
void
void
void
void
void
void
void
void
void
void
void
void

AdjustCursorC Point mouse, RgnHandle region >;
AdjustMenusC void >;
AdjustScrollBarC FormPeek form >;
CommonActionC ControlHandle control, short

*amount >;
CreateWindowC void >;
DoActivateC WindowPtr window, Boolean

becomingActive >;
DoCloseWindowC WindowPtr window >;
DoContentClickC WindowPtr window, Point mouse >;
DoldleC void >;
DoTEKeyC char c >;
DoUpdateC WindowPtr window >;
DrawFormC WindowPtr window >;
ErrorHandlerC int stringNum >;
HandleAppleChoiceC int theltem >;
HandleEditChoiceC int theltem >;
HandleEventC void >;
HandleFileChoiceC int theltem >;
HandleMenuChoiceC long int menuChoice >;
HandleMouseDownC void >;

void MainloopC void >;
void MenuBarlnitC void >;
pascal Boolean NewClikloopC void >;
void StartTextEditC FormPeek form >;
void SwitchToNewAreaC FormPeek form, int newArea >;
void ToolBoxinitC void >;
void TurnOffTextAreaC FormPeek form, int whichArea >;
void TurnOnTextAreaC FormPeek,form, int whichArea >;
pascal void VActionProc(ControlHandle control, int part >;
int WindowTypeC WindowPtr window >;

Text Edit

/******************************** main *********/

main()
{

ToolBoxlnitC>;
MenuBarlnitC>;

MainloopC>;
}

!*********************************** ToolBoxlnit */

void
{

ToolBoxlnitC>

InitGrafC &thePort >;
InitFontsC>;
FlushEvents(everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TEinitO;

}

InitDialogsC NIL_POINTER >;
InitCursorC>;

/*********************************** MenuBarlnit*/

void
{

MenuBarlnit()

Handle myMenuBar;

if C C myMenuBar = GetNewMBarC BASE_RES ID)) -
NIL_POINTER

ErrorHandlerC NO_MBAR >;
SetMenuBarC myMenuBar >;

if C C gAppleMenu = GetMHandle(APPLE_MENU_ID)) -
NIL_POINTER)

ErrorHandlerC NO_MENU >;
AddResMenuC gAppleMenu, 'DRVR' >;

247

248

}

Macintosh Programming Primer

if C C gFileMenu = GetMHandle(FILE_MENU_ID)) -
N IL_POI NT ER)

ErrorHandlerC NO_MENU >;

if C C gEditMenu = GetMHandle(EDIT MENU_ID)) -
NIL_POINTER)

ErrorHandlerC NO_MENU >;

DrawMenuBarC>;

!******************************** MainLoop *********/

void
{

MainLoop()

RgnHandle
Boolean

cursorRgn;
got Event;

gDone = FALSE;
glnBackground = FALSE;

cursorRgn = NewRgnC>;

gWNEimplemented = C NGetTrapAddressC WNE_TRAP_NUM,
ToolTrap > !=
NGetTrapAddressC UNIMPL_TRAP_NUM,
ToolTrap > >;

while C gDone == FALSE)
{

if < gWNEimplemented >
gotEvent = WaitNextEventC everyEvent, &gTheEvent,

MIN_SLEEP, cursorRgn >;
else
{

}

SystemTaskC>;
gotEvent = GetNextEventC everyEvent, &gTheEvent >;

AdjustCursorC gTheEvent.where, cursorRgn >;

Thxt Edit 249

}

}

if C gotEvent)
HandleEvent<>;

else
DoldleO;

!************************************* HandleEvent */

void
{

char

HandleEvent()

c. ,

switch C gTheEvent.what >
{

case nullEvent:
DoldleO;
break;

case mouseDown:
HandleMouseDownC>;
break;

case keyDown:
case autoKey:

c = gTheEvent.message & charCodeMask;
if CC gTheEvent.modifiers & cmdKey) != 0)
{

AdjustMenusC>;
HandleMenuChoiceC MenuKeyC c > >;

}

else
DoTEKeyC c >;

break;
case activateEvt:

DoActivateC CWindowPtr)gTheEvent.message,
CgTheEvent.modifiers & activeflag) != 0 >;

break;
case updateEvt:

DoUpdateC CWindowPtr)gTheEvent.message >;
break;

case app4Evt:
if C C gTheEvent.message & SUSPEND_RESUME_BIT) -

RESUMING)
{

250

}

}

Macintosh Programming Primer

ginBackground = (gTheEvent.message & Ox01) == O;
DoActivateCFrontWindowC>, !ginBackground>;

}

else
DoldleC>;

break;

/************************************* DoTEKey */

void
char
{

DoTEKeyC c)
c;

WindowPtr
FormPeek
int
CharsHandle
Str255

window;
form;
wType, length, i;
text;
tempStr;

window = FrontWindowC>;
wType = WindowTyp~C window >;

if C wType == FOR~_WINDOW)
{

form = CFormPeek)window;

if (c == TE_TAB_CHAR)
{

}

else
{

if (form->curTE == form->nameTE)
SwitchToNewArea(form, TE_MISC_AREA >;

else
{

}

Swit~hToNewAreaC form, TE_NAME_AREA >;
TESetSelectC O, 32767, form->curTE >;

TEKeyC c, form->curTE >;
if C form->curTE == form->nameTE)
{

Thxt Edit

length = C*form->nameTE>->telength;
if C length == 0 >

SetWTitleC window, UNTITLED_STRING >;
else
{

text = TEGetTextC form->nameTE >;
tempStrC 0 l = length;

251

for C i=O; C Ci<length) && Ci<256> >; i++ >
{

}

}

}

}

else

}

tempStrC i+1 l = <*text)[i l;
}

SetWTitleC window, tempStr >;

AdjustScrollBarC form >;

!************************************* Doldle */

void
{

Dold le<>

WindowPtr window;
int wType;

window = FrontWindowC>;
wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
TEidleC CCFormPeek)window>->curTE >;

}

!************************************* HandleMouseDown */

void
{

HandleMouseDownC>

WindowPtr window;
short int thePart;
long int menuChoice, windSize;

252

}

Macintosh Programming Primer

thePart = FindWindowC gTheEvent.where, &window >;
switch C thePart)
{

}

case inMenuBar:
AdjustMenusC>;
menuChoice = MenuSelectC gTheEvent.where >;
HandleMenuChoice(menuChoice >;
break;

case inSysWindow:
SystemClickC &gTheEvent, window >;
break;

case inContent:
if C window != FrontWindowC> >
{

}

else

SelectWindowCwindow>;

DoContentClickC window, gTheEvent.where >;
break;

case inDrag:
DragWindowC window, gTheEvent.where,

&CscreenBits.bounds) >;
break;

case inGoAway:
if C TrackGoAwayCwindow, gTheEvent.where))

DoCloseWindowC window >;
break;

!************************************* DoCloseWindow */

void DoCloseWindowC window)
WindowPtr window;
{

}

HideWindowC window >;
DisposeControlC CCFormPeek>window)->vScroll >;
TEDispose(CCFormPeek)window>->nameTE >;
TEDisposeC CCFormPeek)window)->miscTE >;
CloseWindowC window >;
DisposPtr(window >;

Thxt Edit

/************************************* AdjustMenus */

void
{

AdjustMenusC>

WindowPtr
int
int
TEHandle

window;
wType;
off set;
te;

window = FrontWindowC>;
wType = WindowTypeC window >;

if C window == NIL_POINTER)
{

DisableltemC gFileMenu, F_CLOSE_ITEM >;

}

DisableltemC gEditMenu, E_UNDO_ITEM >;
DisableltemC gEditMenu, E_CUT_ITEM >;
DisableltemC gEditMenu, E_COPY_ITEM >;
DisableltemC gEditMenu, E_PASTE_ITEM >;
DisableltemC gEditMenu, E_CLEAR_ITEM >;

else if C wType == DA_WINDOW)
{

}

DisableltemC gfileMenu, F_CLOSE_ITEM >;

EnableltemC gEditMenu, E_UNDO_ITEM);
EnableltemC gEditMenu, E_CUT_ITEM >;
EnableltemC gEditMenu, E_COPY_ITEM >;
Enableltem(gEditMenu, E_PASTE_ITEM >;
EnableltemC gEditMenu, E_CLEAR_ITEM);

else if C wType == FORM_WINDOW)
{

EnableltemC gfileMenu, F_CLOSE_ITEM >;

DisableltemC gEditMenu, E UNDO ITEM) . - ,
DisableltemC gEditMenu, E_ CUT _ITEM >;
DisableltemC gEditMenu, E_ COPY ITEM) . - ,
DisableltemC gEditMenu, E PASTE ITEM) . , - -
DisableltemC gEditMenu, E_CLEAR_ ITEM) ;

te = CCFormPeek>window)->curTE;
if C C*te>->selStart < C*te)->selEnd >
{

253

254

}

}

}

Macintosh Programming Primer

EnableltemC gEditMenu, E_CUT_ITEM >;
EnableltemC gEditMenu, E_COPY_ITEM >;
Enableltem(gEditMenu, E_CLEAR_ITEM);

if C GetScrapC NIL_POINTER, 'TEXT', &offset) > 0)
EnableltemC gEditMenu, E_PASTE_ITEM >;

!************************************* WindowType */

int WindowTypeC window
WindowPtr window;
{

}

if C window -- NIL_POINTER
return(NIL_WINDOW >;

if C CCWindowPeek)window)->windowKind < 0)
return(DA_WINDOW >;

if C CCFormPeek)window)->wType -- FORM_WINDOW
return(FORM_WINDOW >;

return(UNKNOWN_WINDOW >;

/************************************* HandleMenuChoice */

void HandleMenuChoiceC menuChoice >
long int menuChoice;
{

int theMenu;
int theltem;

if C menuChoice != 0 >
{

theMenu = HiWordC menuChoice >;
theltem = LoWordC menuChoice >;
switch C theMenu >
{

case APPLE_MENU_ID
HandleAppleChoiceC theltem >;
break;

Text Edit

}

}

}

case FILE_MENU_ID :
HandleFileChoiceC theltem >;
break;

case EDIT_MENU_ID :
HandleEditChoiceC theltem >;

HiliteMenuC 0 >;

255

/********************************HandleAppleChoice *******/

void HandleAppleChoiceC theltem)
int theltem;
{

}

Str255
int

accName;
accNumber;

switch C theltem)
{

}

case A_ABOUT_ITEM
NoteAlertC ABOUT_ALERT, NIL_POINTER >;
break;

default :
GetltemC gAppleMenu, theltem, accName >;
accNumber = OpenDeskAccC accName >;
break;

/********************************HandleFileChoice

void HandleFileChoiceC theltem >
int theltem;
{

w;ndowPtr window;
switch C theltem >
{

case F_NEW_ITEM
CreateWindowC>;
break;

*******/

256 Macintosh Programming Primer

case F_CLOSE_ITEM
if C C window = FrontWindowC)) != NIL_POINTER)

DoCloseWindowC window >;

}

}

break;
case F_QUIT_ITEM :

gDone = TRUE;
break;

/********************************HandleEditChoice

void HandleEditChoiceC theltem)
int theltem;
{

TEHandle te;
WindowPtr window;
int wType, length, i;
CharsHandle text;
Str255 tempStr;
FormPeek form;

if C ! SystemEditC theltem - 1) >
{

window = FrontWindowC>;
wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

form = CFormPeek>window;
te = f orm->curTE;
switch C theltem >
{

case E_UNDO_ITEM:
break;

case E_CUT_ITEM:
if C ZeroScrapC) -- noErr >
{

}

TECutCte>;
AdjustScrollBarC form >;
if C TEToScrapC> != noErr >

ZeroScrapC>;

*******/

Text Edit 257

}

}

}

}

break;
case E_COPY_ITEM:

if C ZeroScrap() -- noErr)
{

TECopyCte>;
if C TEToScrapC) != noErr >

ZeroScrapC>;
}

break;
case E_PASTE_ITEM:

if C TEFromScrapC) -- noErr)
{

TEPasteCte>;
AdjustScrollBarC form >;

}

break;
case E_CLEAR_ITEM:

TEDeleteCte>;
AdjustScrollBarC form >;
break;

if C te == form->nameTE >
{

}

length = C*form->nameTE)->teLength;
if C length == 0)

else
{

}

SetWTitleC window, UNTITLED_STRING >;

text = TEGetTextC form->nameTE >;
tempStr[0] = length;
for C i=O; C Ci<length> && Ci<256) >; i++ >
{

tempStr[i+1] = <*text)[i J;
}

SetWTitleC window, tempStr >;

258 Macintosh Programming Primer

/********************************DoContentClick *******/

void DoContentClickC window, mouse >
WindowPtr window;
Point
{

int
int

mouse;

Boolean

wType, value;
thePart;
shiftDown;
locMouse;
control;
form;

Point
ControlHandle
FormPeek

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

form = CFormPeek)window;
locMouse = mouse;
GlobalToLocalC &locMouse >;

if C C thePart = FindControlC locMouse, window,
&control)) != 0)

{

switch(thePart)
{

case inUpButton:
case inDownButton:
case inPageUp:
case inPageDown:

value = TrackControlC control, locMouse,
CProcPtr) VActionProc >;

break;
case inThumb:

value = GetCtlValueC control >;
thePart = TrackControlC control, locMouse,

NIL_POINTER >;
if C thePart != 0 >
{

}

value -= GetCtlValueC control >;
if C value != 0 >

TEScrollCO, value * C*form->curTE>
>lineHeight, form->miscTE >;

Text Edit

break;
}

}

else if C PtlnRectC locMouse, &gNameRect >)
{

if C form->curTE == form->nameTE)
{

259

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->nameTE >;

}

}

}

}

else
{

SwitchToNewAreaC form, TE_NAME_AREA >;
TEClickC locMouse, FALSE, form->nameTE >;

}

else if C PtlnRectC locMouse, &gMiscRect > >
{

}

if C form->curTE == form->miscTE >
{

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->miscTE >;

}

else
{

}

SwitchToNewAreaC form, TE_MISC_AREA >;
TEClickC locMouse, FALSE, form->miscTE >;

/************************************* VActionProc */

pascal voidVActionProcCcontrol, part>
ControlHandle control;
int part;
{

short amount;
WindowPtr window;
TEPtr te;

260

}

Macintosh Programming Primer

if C part ! = 0)
{

}

window = C*control)->contrlOwner;
te = *CCFormPeek)window)->miscTE;
switch C part > {

}

case inUpButton:
case inDownButton: /* one line */

amount = 1;
break;

case inPageUp: /* one page */
case inPageDown:

amount = Cte->viewRect.bottom - te
>viewRect .top) I te->lineHeight;

break;

if (part == inDownButton) I I (part -- inPageDown))
amount = -amount;

CommonActionCcontrol, &amount>;
if C amount != 0)

TEScrollC O, amount * te->lineHeight,
CCFormPeek)window)->miscTE >;

!************************************* CommonAction */

void CommonActionC control, amount)
ControlHandle control;
short
{

short

*amount;

value, max;

value = GetCtlValueC control >;
max = GetCtlMaxC control >;
*amount = value - *amount;
if C *amount < 0 >

*amount = O;
else if C *amount > max >

*amount = max;
SetCtlValueC control, *amount >;

I* get current value */
I* and maximum value */

*amount = value - *amount; I* calculate the real change */
}

7ext Edit 281

/************************************ DoActivate */

void DoActivateC window, becomingActive)
WindowPtr window;
Boolean becomingActive;
{

}

FormPeek
int

form;
wType;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

form = CFormPeek)window;
if < becomingActive >
{

SetPort< window >;
if C form->curTE == form->miscTE >

TurnOnTextArea(form, TE_MISC_AREA >;
else

TurnOnTextAreaC form, TE_NAME_AREA >;
HiliteControl(form->vScroll, 0 >;

}

.else
{

}

if (form->curTE == form->miscTE >
TurnOffTextArea(form, TE_MISC_AREA >;

else
TurnOffTextArea(form, TE_NAME_AREA >;

HiliteControlC form->vScroll, 255 >;

/******************************** AdjustCursor *********/

void AdjustCursor(mouse, region >
Point
RgnHandle
{

mouse;
region;

262 Macintosh Programming Primer

window; WindowPtr
RgnHandle
Re ct

arrowRgn, iBeamRgn, tempRgn;
tempRect;

int wType;
Graf Ptr oldPort;

window = FrontWindowC>;
wType = WindowTypeC window >;

if C glnBackground I I C wType != FORM_WINDOW >)
{

}

SetCursorC &arrow >;
return;

GetPort{ &oldPort >;
SetPort{ window >;

arrowRgn = NewRgnC);
iBeamRgn = NewRgnC>;
tempRgn = NewRgnC>;

SetRectRgn{ arrowRgn, -32700, -32700, 32700, 32700 >;

tempRect = gNameRect;
LocalToGlobal{ &Topleft(tempRect) >;
LocalToGlobalC &BotRightCtempRect) >;
RectRgnC tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

tempRect = gMiscRect;
LocalToGlobalC &TopleftCtempRect) >;
LocalToGlobalC &BotRightCtempRect) >;
RectRgnC tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

DiffRgnC arrowRgn, iBeamRgn, arrowRgn >;

if C PtlnRgnC mouse, iBeamRgn))
{

}

SetCursorC *GetCursorC iBeamCursor) >;
CopyRgnC iBeamRgn, region >;

Text Edit

}

else
{

}

SetCursorC &arrow >;
CopyRgnC arrowRgn, region >;

DisposeRgnC arrowRgn >;
DisposeRgnC iBeamRgn >;
DisposeRgnC tempRgn >;

SetPortC oldPort >;

/************************************ DoUpdate */

void DoUpdateC window)
WindowPtr window;
{

}

FormPeek
int

form;
wType;
oldPort; Graf Ptr

GetPortC &oldPort >;
SetPortC window >;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

BeginUpdateC window >;
EraseRectC &window->portRect >;
DrawformC window >;
EndUpdateC window >;

SetPortC oldPort >;

263

264 Macintosh Programming Primer

!************************************ Drawform */

void DrawformC window >
WindowPtr window;
{

}

FrameRectC &gNameRect >;
FrameRectC &gMiscRect >;
DrawControlsC window >;

TextFontC geneva >;
TextFaceC bold >;

MoveToC gNameRect.left - 34, gNameRect.top + 12 >;
Drawstring(11 \pName" >;
MoveToC gMiscRect.left - 34, gMiscRect.top + 12 >;
Drawstring(11 \pMisc. 11 >;

TextFontC monaco >;
TextfaceC 0 >;

TEUpdateC &window->portRect, CCFormPeek)window)->nameTE >;
TEUpdateC &window->portRect, CCFormPeek)window)->miscTE >;

!************************************ CreateWindow */

void
{

CreateWindowC>

WindowPtr
Ptr
FormPeek

wStorage

theNewestWindow;
wStorage;
form;

= NewPtrC sizeofCFormRecord) >;

if C C theNewestWindow = GetNewWindowC BASE_RES_ID,
wStorage, MOVE_TO_FRONT)) == NIL_POINTER)
ErrorHandlerC NO_WIND >;

if < C CscreenBits.bounds.right - gNewWindowleft) <
DRAG_THRESHOLD) 11
(< screenBits.bounds.bottom - gNewWindowTop) <
DRAG_THRESHOLD))

Text Edit

}

{

}

gNewWindowleft = WINDOW_HOME_LEFT;
gNewWindowTop = WINDOW_HOME_TOP;

MoveWindowC theNewestWindow, gNewWindowleft,
gNewWindowTop, LEAVE_WHERE_IT_IS >;

gNewWindowleft += NEW_WINDOW_OFFSET;
gNewWindowTop += NEW_WINDOW_OFFSET;

form = CFormPeek>theNewestWindow;
form->wType = FORM_WINDOW;

form->vScroll = NewControlC theNewestWindow,
&gScrollBarRect, NIL_STRING,

VISIBLE, 0, O, 0, scrollBarProc, OL>;

ShowWindowC theNewestWindow >;
SetPortC theNewestWindow >;
TextFontC monaco >;
TextFaceC 0 >;
TextSize(9 >;
StartTextEditC form >;

/******************************** StartTextEdit *********/

void
FormPeek
{

StartTextEditC form)
form;

}

Re ct r;

r = gNameRect;
InsetRectC &r, 2, 2 >;
form->nameTE = TENewC &r, &r >;

r = gMiscRect;
InsetRectC &r, 2, 2 >;
form->miscTE = TENewC &r, &r >;
SetClikloop(NewClikloop, form->miscTE >;

TEAutoViewC TRUE, form->miscTE >;

form->curTE = form->nameTE;

265

266 Macintosh Programming Primer

/******************************** NewClikloop *********/

pascal Boolean NewClikloop()
{

WindowPtr
FormPeek
TEHandle
Re ct
Point
Graf Ptr
int
RgnHandle

window;
form;
te;
tempRect;
mouse;
oldPort;
amount;
oldClip;

window = FrontWindowC>;
if C WindowTypeC window) != FORM_WINDOW)

return< FALSE >;

form = CFormPeek)window;
te = form->curTE;

GetPortC &oldPort >;
SetPortC window >;
oldClip = NewRgnC>;
GetClipC oldClip >;

SetRectC &tempRect, -32767, -32767, 32767, 32767 >;
ClipRectC &tempRect >;

GetMouseC &mouse >;

if C mouse.v < gMiscRect.top
{

}

amount = 1;
CommonActionC form->vScroll, &amount >;
if C amount != 0 >

TEScrollC O, amount * CC*te)->lineHeight>, te >;

else if C mouse.v > gMiscRect.bottom >
{

}

amount = -1;
CommonAction< form->vScroll, &amount >;
if C amount != 0 >

TEScrollC O, amount * CC*te)->lineHeight>, te >;

Text Edit

}

SetClipC oldClip >;
DisposeRgnC oldClip >;
SetPortC oldPort >;
return(TRUE >;

267

!******************************** SwitchToNewArea *********/

void
FormPeek
int

SwitchToNewAreaC form, newArea >
form;
newArea;

{

}

if C form->curTE == form->nameTE >
{

TurnOffTextAreaC form, TE_NAME_AREA >;
TurnOnTextAreaC form, TE_MISC_AREA >;

}

else
{

}

TurnOffTextAreaC form, TE_MISC_AREA >;
TurnOnTextAreaC form, TE_NAME_AREA);

/******************************** TurnOnTextArea *********/

void
FormPeek
int

TurnOnTextAreaC form, whichArea)
form;
whichArea;

{

TEPtr te;

if C whichArea == TE_MISC_AREA)
{

te = *form->miscTE;
te->viewRect.bottom = CCCte->viewRect.bottom - te-

>viewRect.top) I te->lineHeight)
* te->lineHeight> + te-

>viewRect.top;

}

te->destRect.bottom = te->viewRect.bottom;
AdjustScrollBarC form >;
form->curTE = form->miscTE;

268 Macintosh Programming Primer

else
form->curTE = form->nameTE;

TEActivateC form->curTE >;
}

/******************************** TurnOffTextArea *********/

void
FormPeek
int

TurnOffTextAreaC form, whichArea)
form;
whichArea;

{

}

if C whichArea == TE_MISC_AREA
TEDeactivateC form->miscTE >;

else
TEDeactivateC form->nameTE >;

!******************************** AdjustScrollBar *********/

void
FormPeek
{

short
short
TEPtr

AdjustScrollBarC form >
form;

value, lines, max;
oldValue, oldMax;
te;

oldValue = GetCtlValueC form->vScroll >;
oldMax = GetCtlMaxC form->vScroll >;
te = *Cform->miscTE>;

lines = te->nlines;
if C *C*te->hText + te->telength - 1> -

TE_CARRIAGE_RETURN)
lines += 1;

max = lines - CCte->viewRect.bottom - te->viewRect.top) I
te->lineHeight>;

if C max < 0) max = O;
SetCtlMaxC form->vScroll, max>;

Text Edit

}

te = *Cform->miscTE>;
value = Cte->viewRect.top - te->destRect.top) I te

>lineHeight;

if (value < 0) value = O;
else if C value > max value = max;

SetCtlValue(form->vScroll, value>;

TEScrollC O, Cte->viewRect.top - te->destRect.top) -
(GetCtlValueC form->vScroll > * te
>lineHeight>, form->miscTE >;

/******************************** ErrorHandler *********/

void ErrorHandlerC stringNum >
int stringNum;
{

StringHandle errorStringH;

if (C errorStringH = GetStringC stringNum > > ==
NIL_POINTER)

ParamTextC HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING >;

else
{

HLockC errorStringH >;
ParamTextC *errorStringH, NIL_STRING, NIL_STRING,

NIL_STRING >;

}

HUnlockC errorStringH >;
}

StopAlert(ERROR_ALERT_ID, NIL_POINTER >;
ExitToShellO;

269

270 Macintosh Programming Primer

Running Form.Edit

Whew! That was a long one. Now you're ready to see ifit runs. Select
Run from the Project menu. When asked to "Bring the project up to
date?", click the Yes button. THINK C will try to compile FormEdit.c.
If you run into problems, check for typos and missing code. Once
FormEdit.c compiles, THINK C will try to load MacTraps (did you
remember to add MacTraps to the project?). If you haven't saved your
source code, THINK C will give you a chance to save just before it
runs the program. Always save before you run. Wouldn't you just
hate to lose all that typing because your program crashed and you
had forgotten to save? Do it.

Once FormEdit starts running, the s, File, and Edit menus should
appear on the menu bar. If your program crashes at this point,
THINK C may not have been able to locate your resource file. Select
About FormEdit from the S menu. The About Alert should appear.
Click the OK button. Now select New from the File menu. A form
window should appear, much like the one in Figure 5.10.

Notice that the cursor changes to an I-Beam cursor when you
move it over either of the two TextEdit fields. The cursor should
change back to the arrow cursor when it is not over either the Name
or the Misc field.

Type your name in the Name field. The title of the window should
change to agree with the text in the Name field. Type enough text in
the Misc field to cause the scroll bar to appear. Select some text in
the Misc field. You should see something like Figure 5.23.

,. S File Edit
.,

iO Doue Mork

Figure 5.23 Some text selected in the scrolling field.

Thxt Edit 271

Try selecting some text in the Misc field, dragging the cursor both
above and below the boundaries of the Misc field. The text should
scroll automatically up and down to the end of the field. Test the
scroll bar. Click in the up and down arrows as well as the page areas
and the thumb of the scroll bar.

Select some text, select Copy from the Edit menu, click somewhere
else, and select Paste from the Edit menu. Press the Tab key a few
times. TextEdit will switch between the two fields. When TextEdit
switches into the Name field, the entire name field is selected. When
TextEdit switches into the Misc field, the selection remains as it was
the last time you were in the Misc field.

Finally, create some extra windows by selecting New from the File
menu. Experiment with activate and update events by selecting
different windows and by covering one window with another.

Walking Through the Form Edit Source Code

If you've read the first volume of the Macintosh Programming
Primer, much of FormEdit's code will seem familiar. The descriptions
that follow don't spend a lot of time going over old concepts; instead,
they focus on the new stuff.

As usual, the program starts off with the #def i n es. Notice the
naming convention used for menu items.

!********************!
I* MENUs *I
/********************!

#define APPLE_MENU_ ID 400
#define A_ABOUT_ITEM 1

#define FILE - MENU - ID 401
#define F _NEW_ITEM 1
#define F_CLOSE_ ITEM 2
#define F_QUIT_ ITEM 3

#define EDIT_MENU_ ID 402
#define E_UNDO_ ITEM 1
#define E_CUT_ ITEM 3
#define E_COPY_ ITEM 4
#define E_PASTE_ITEM 5
#define E_CLEAR_ ITEM 6

272 Macintosh Programming Primer

These four window types are the legal returns by the function
Wi ndowType C >.

/********************/
I* Window Types *I
/********************/

#define NIL_WINDOW 0
#define UNKNOWN_WINDOW 1
#define DA_WINDOW 2
#define FORM_WINDOW 3

These are the resource IDs for the ALRT and 'STR' resources.

/********************/
I* ALRTs */
/********************/

#define ABOUT_ALERT
#define ERROR_ALERT_ID

/********************/
I* Error STRs */
/********************/

#define NO_MBAR
#define NO_MENU
#define NO_WIND

400
401

BASE_RES_ID
BASE_RES_ID+1
BASE_RES_ID+2

TE_NAME_AREA and TE_MISC_AREA are used to refer to the two
fields in a form window. Following these are defines for some
standard TextEdit keys.

/********************/
I* TextEdit *I
/********************/

#define TE - NAME _AREA 0
#define TE_ru s C_AREA 1

#define TE_ENTER_KEY 3
#define TE_DELETE_CHAR 8
#define TE - TAB _CHAR 9
#define TE_CARRIAGE_RETURN 13

Text Edit 273

These general defines should be familiar to you. If not, go back to
Volume I of this book.

!************************/
I* General Defines *I
/************************/

#define BASE_RES_ID
#define NIL _POINTER
#define MOVE _TO_FRONT
#define REMOVE_ALL_EVENTS

#define DRAG_THRESHOLD30

#define WINDOW_HOME_LEFT
#define WINDOW_HOME_TOP
#define NEW_WINDOW_OFFSET

#define MIN SLEEP -
#define NIL MOUSE_REGION

#define LEAVE_WHERE_IT_IS

#define WNE_TRAP_NUM
#define UNIMPL_TRAP_NUM
#define SUSPEND_RESUME_BIT
#define RESUMING

#define NIL_STRING
#define UNTITLEO_STRING
#define VISIBLE

400
OL
-1L
0

5
45
20

60L
OL

FALSE

Ox60
Ox9F
Ox0001
1

"\p"
11 \p<Untitled> 11

TRUE
#define HOPELESSLY_FATAL_ERROR 11 \pGame over, man!"

The macros T o p L e f t C > and Bo t R i g h t < > take a R e c t as a
parameter and convert it to a Poi n t. They both rely on the
relationship between the Re c t and Po i n t data structures, counting
on the fact that the first two fields of the R e c t struct are exactly
identical to the Po i n t struct.

274 Macintosh Programming Primer

Many Macintosh programs use these macros. It's probably all right
to use them in your programs, too, but be aware; you are counting
on Apple's never changing the relationship between Points and
Rec ts. If they ever do, your program will break. Don't worry, Apple
won't change this relationship. But your •oanger, Will Robinson•
alarm should go off every time you use a technique like ttils. For
more comments on this topic, see the notes on being 32-blt clean
in Chapter 2.

!************************!
I* Useful Macros *I
/************************!

#define TopLeft(myRect)
#define BotRightC myRect >

<* (Point *) &CmyRect.top))
(* (Point *> &CmyRect.bottom))

Remember the discussion on the window piggybacking technique
in Cha,pter 2? This is exactly the basis behind F o rm Records and
F o rm Pee ks. By casting a F o rm Pee k as a W i n do w Pt r , you can give
routines like set Port C > access to your form as a window, yet by
passing the F o rm Pee k directly, you can access the scroll bar and the
TEHandles .

vs c r o L L is a handle for the scroll bar adjacent to the Misc field.
name TE is a handle to the Name field's TextEdit data and mi s c TE

is a handle to the Misc field's TextEdit data. We use cur TE as a
temporary variable. It will be set to either name TE or mi s c TE.

!************************/
I* Typedefs */
!************************/

typedef s tru c t
{

WindowRecord
int
ControLHandle
TEHandle

} FormRecord,

w;
wType ;
vScr o ll;
nameTE, miscTE, curTE;
*FormPeek;

Text Edit 275

Most of these globals should be familiar to you from Macintosh
Programming, Volume I of this book. The new globals, g Name Rec t,
g M i s c Re c t, and g S c r o l l Re c t, hold the local coordinates for the
rectangles defining the Name field, the Misc field, and the scroll bar.

!************************/
I* Globals */
/************************/

Boolean
Event Record
MenuHandle

int

Re ct

gDone, gWNEimplemented, glnBackground;
gTheEvent;
gAppleMenu,
gFileMenu,
gEditMenu;
gNewWindowleft = WINDOW_HOME_LEFT,
gNewWindowTop = WINDOW_HOME_TOP;
gNameRect = { 3, 43, 19, 250 >,
gMiscRect = { 22, 43, 150, 231 },
gScrollBarRect = { 22, 234, 150, 250 >;

The use of routine and parameter prototypes was discussed in
Chapter 2. For quick programs, these prototypes probably aren't
necessary. Once your programs get to any size and complexity,
however, prototypes will really save the day.

/************************/
I* Routines */
!************************/

void
void
void
void

void
void

void
void
void
void
void
void

AdjustCursorC Point mouse, RgnHandle region >;
AdjustMenusC void >;
AdjustScrollBarC FormPeek form >;
CommonActionC ControlHandle control, short

*amount >;
CreateWindowC void >;
DoActivateC WindowPtr w;ndow, Boolean

becomingActive >;
DoCloseWindowC ~indowPtr window >;
DoContentClickC WindowPtr window, Point mouse >;
DoldleC void >;
DoTEKeyC char c >;
DoUpdate(WindowPtr window >;
DrawformC WindowPtr window >;

276 Macintosh Programming Primer

void
void
void
void
void
void
void

ErrorHandlerC int stringNum >;
HandleAppleChoiceC int theltem >;
HandleEditChoiceC int theltem >;
HandleEventC void >;
HandlefileChoiceC int theltem >;
HandleMenuChoiceC long int menuChoice >;
HandleMouseDownC void >;

void MainloopC void >;
void MenuBarlnitC void >;
pascal Boolean NewClikloopC void >;
void StartTextEditC FormPeek form >;
void SwitchToNewAreaC FormPeek form, int newArea >;
void ToolBoxlnitC void >;
void TurnOffTextAreaC FormPeek form, int whichArea >;
void TurnOnTextAreaC FormPeek form, int whichArea >;
pascal void VActionProcC ControlHandle control, int part >;
int WindowTypeC WindowPtr window >;

ma i n C > initializes the toolbox, loads the menu bar, and starts the
main event loop.

/******************************** main *********/

main<>
{

}

ToolBoxlnitC>;
MenuBarlnitC>;

MainloopC>;

There's nothing new in Too l Box I n i t C > .

/*********************************** ToolBoxlnit */

void
{

ToolBoxlnitO

InitGrafC &thePort >;
InitfontsO;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusO;
TEinitO;

}

InitDialogsC NIL_POINTER);
InitCursorC);

Text Edit 277

Menu Ba r I n i t C > is pretty much the same as always. You'll need
g App l e Menu for desk accessory management, g F i l e Menu to
disable the Close item when there are no open windows, and
g Ed i t Menu to disable and enable the Cut, Copy, Paste, and Clear
items as appropriate.

!*********************************** MenuBarlnit */

void
{

MenuBarlnitO

Handle myMenuBar;

}

if C C myMenuBar = GetNewMBar(BASE_RES_ID)) -
NIL_POINTER)
ErrorHandlerC NO_MBAR >;

SetMenuBarC myMenuBar >;

if C C gAppleMenu = GetMHandleC APPLE_MENU_ID)) -
NIL_POINTER)
ErrorHandlerC NO_MENU >;

AddResMenu C gApp l eMenu, 'DRVR') ;

if ((gfileMenu = GetMHandle(FILE MENU ID)) ---
NIL_POINTER)

ErrorHandlerC NO - MENU >;

if ((gEditMenu = GetMHandleC EDIT_MENU_I D)) --
NIL_POINTER)

ErrorHandlerC NO - MENU) . ,

DrawMenuBar<>;

Now things start to get interesting. The variable cursor R g n
defines the region appropriate to the current cursor. FormEdit makes
use of two basic regions. The first is the union of g Name Re c t and
g M i s c Re c t. When the cursor is inside this region, it is set to the
I-Beam cursor normally used for TextEdit fields. The second region
consists of the biggest Re c t that can be defined with holes punched
in it, leaving out gNameRect and gMi scRect. When the cursor is
in this region, it is set to the standard arrow cursor.

278 Macintosh Programming Primer

!*************************** MainLoop *********/

void Mainloop()
{

RgnHandle c ursorRgn;
Boolean got Event;

gDone = FALSE;
glnBa c kground = FALSE;

Before the call to New R g n <) , cu r so r R g n is an uninitialized
variable. After the call, cu rs or R g n is a handle to a nil region. The
difference is that after the call, cur s or R g n can be passed to region
operations such as Set Rec t R g n C) and Uni on R g n C) .

cursorRgn = NewRgnC);

As usua l , t he program finds out if Wai t Ne x t Event C) i s
available. If it is, the program calls it. Notice that cur so r R g n is
passed as a parameter to W a i t Ne x t Eve n t C > .

One of the events discussed in Macintosh Programming Primer,
Volume I was the a pp 4 Ev t. The Event Manager uses the
app4Evt to pass several new event types to your program. The
first two are the suspend and resume events you should already be
familiar with (check out EventTutor from Volume I if you're not). The
suspend/resume events are indicated by a high-byte value of Ox01
in the event.message field of an app4Evt. Bit O of the
event.message field indicates either a suspend (0) or a resume (1)
event. Bit 1 of the event.message field indicates whether (1) or not
(0) scrap-conversion should be performed by your application on a
resume event.

A high-byte value of OxFA in the event.message field of an app4Evt
indicates a mouse-moved event. The mouse-moved event tells
your application that the cursor has been moved out of the last
cursorRgn passed to w a i t Ne x t Event < > . As long as the cursor
stays within the bounds of the current cursorRgn, no mouse-moved
event will be generated.

r

Text Edit 279

The techniques used in this program were distilled from several
applications distributed by Apple to developers, as well as from the
Programmer's Guide to Mult/Finder (available from APDA).
Although FormEdit doesn't make full use of the scrap-conversion
bit or the mouse-moved events, both of these features are
supported within the program. Feel free to use FormEdlt's
approach to cursor support and scrap conversion or to develop
your own method designed more specifically around the mouse
moved event and the scrap-conversion bit.

gWNEimplemented = (NGetTrapAddres~(WNE_TRAP_NUM,
ToolTrap) != NGetTrapAddress
(UNIMPL_TRAP_NUM, ToolTrap) >;

while (gDone == FALSE)
{

if (gWNEimplemented)
gotEvent = WaitNextEvent(everyEvent, &gTheEvent,

MIN_SLEEP, cursorRgn);
else
{

}

SystemTaskC>;
gotEvent = GetNextEvent(everyEvent, &gTheEvent >;

Once the appropriate event routine has been called, the program
makes its periodic call to Adjust Cursor< > to make sure the
correct cursor is in place.

AdjustCursor(gTheEvent.where, cursorRgn >;

If this call received an event, the program handles it. If not, it calls
Do Id l e <) to take care of any housekeeping chores, such as blinking
the caret at the text insertion point.

}

}

if (gotEvent)
HandleEvent<>;

else
Dold le<>;

280 Macintosh Programming Primer

The basic structure of Hand le Event C > remains the same. On a
nu l l Event , the program takes care of housekeeping chores with
D o I d l e C > . It handles mo u s e D ow n s via a call to to
HandleMouseDownC>.

!***************************** HandleEvent */

void HandleEventC>
{

char c;

switch C gTheEvent.what)
{

case nullEvent:
DoldleC>;
break;

case mouseDown:
HandleMouseDownC>;
break;

On key Down and autoKey events, if the 38 key was held down
the program calls Ad j u s t Me n u s C > to disable and enable the
appropriate menus. Then it calls Menu Key C > and
Ha n d l e Men u C h o i c e C > to handle the command key equivalents. If
the 38 key was not held down, the program passes the key on to
TextEdit, which will use the key to edit the currently activated
TE Handle.

case keyDown:
case autoKey:

c = gTheEvent.message &
charCodeMask;

) ! = Q)

)) ;

if CC gTheEvent.modifiers & cmdKey

{

}

else

AdjustMenusC>;
HandleMenuChoiceC MenuKeyC c

DoTEKeyC c >;
break;

Text Edit

}

}

281

On an a c t i v a t e Ev t, the program calls Do Ac t i v a t e C > ,
passing as the second parameter a BOO LE AN set to TR U E if the
window is becoming active, FA LS E otherwise. On an up d a t e Ev t,
the program passes the W i n do w P t r to D o Up d a t e C > • Finally, the
program handles the a pp 4 Ev ts. If the event is a suspend/resume
event, the global g I n Ba c kg round is set to TR U E if the application
is running in the foreground and FA LS E otherwise. If the event
wasn't an a pp 4 Ev t, the program treats it like a nu l l Ev t and uses
the time to do its periodic housekeeping chores.

case activateEvt:
DoActivateC CWindowPtr)gTheEvent.message,

CgTheEvent.modifiers & activeFlag) != 0 >;
break;

case updateEvt:
DoUpdateC CWindowPtr>gTheEvent.message >;
break;

case app4Evt:
if C C gTheEvent.message & SUSPEND_RESUME_BIT) -

RESUMING)
{

}

glnBackground = CgTheEvent.message & Ox01) == O;
DoActivateCFrontWindowC>, !glnBackground>;

else
Doldle<>;

break;

Do T E Key C > starts out with a call to W i n do w T y p e C > to make
sure that the window receiving the keystroke is of type
F o R M_W I ND ow. If the program didn't check this, it would be taking a
real risk when it casts the Window Pt r to a Form Peek to access the
F o rm Re co rd fields.

282 Macintosh Programming Primer

/************************************* DoTEKey
*I

void
char
{

DoTEKey(c)
c;

WindowPtr
FormPeek
int
CharsHandle
Str255

window;
form;
wType, length, i;
text;
tempStr;

window = FrontWindowC>;
wType = WindowTypeC window >;

if wType == FORM_WINDOW)
{

form = CFormPeek)window;

Once the program knows it is looking at a FORM_WINDOW, the
next step is to process the character. If the character is a Tab, the
user wants to switch TextEdit fields. If the cursor is in the name
field, the program calls S w i t ch To New Are a C > to switch to the misc
field.

If the cursor is in the misc field, the program switches to the name
field, but this time it highlights all the characters in the name field
with a call to TE set Se l e c t C > . Because a TextEdit field is limited
to 32K characters, passing 0 as the start of the selection and 32767
as the end of the selection guarantees that all available text will be
selected.

The same technique could be used to select the entire Misc field
when the program switches to it, but this approach leaves the
selection as it was the last time the user was in the Misc field.
Experiment.

if c == TE TAB_CHAR)
{

}

if (form->curTE == form->name~E >
SwitchToNewAreaC form, TE_MISC_AREA);

else
{

}

SwitchToNewAreaC form, TE_NAME_AREA >;
TESetSelectC 0, 32767, form->curTE >;

Text Edit

else
{

283

If the character is not a tab key, the program passes the key to
TextEdit, letting TextEdit do its thing. If the key was pressed in the
Name field, the program adjusts the window's title to reflect the
contents of the name field. If the field is empty (perhaps as the result
of a Delete key press), the program sets the tile of t he window to
whatever was #defined in UNTITLED_STRING . If the field is not
empty, the program converts t he number of bytes designated by the
TE Hand Le's t e Length field into a Pascal string and passes the
result to Set WT i t L e <) .

Remember, Pascal strings consist of a length byte followed by up
to 255 consecutive bytes of characters. The T EH and l e can't use
Pascal strings, as it must handle up to 32K characters. The
t e Leng t h field determines how many bytes are handled by the
h Text field. The routine TE Get Text c > returns a handle that is
functionally equivalent to the h Text field. In other words,
TE Get Text c > returns, not a copy of the text, but a handle to the
actual text.

TE Key(c, form->curTE);
if (form->curTE == form->nameTE
{

}

Length = (*form->nameTE)->telength;
if (Len gth == 0)

else
{

}

SetWTitle(window, UNTITLED_STRING);

text = TEGetText(form->nameTE >;
te mpStr[0 J = Length;
for < i =O; < Ci<Length) && Ci<256)); i++
{

tempStr[i+1 J = <*text)[i J;
}

Set WTitle (window, tempStr >;

284 Macintosh Programming Primer

If the key is destined for the Misc field, the only thing the program
needs to do is adjust the value in the scroll bar in case the number of
lines in the text field has changed. Note that the number of lines can
be changed through the addition of a single character, as well as
through the deletion of a character (or many selected characters).

else
AdjustScroLLBar(form >;

}

}

}

Do Id l e <) calls TE Id le <) if the Front W i n do w <) is a
F o RM_ W I N Do W. T E I d L e <) blinks the caret at the insertion point of
the currently active TextEdit record if a C!:!rtain amount of time has
passed since the last blink. The program always keeps the cu r TE
field set to the currently active TextEdit record. This means the value
of cu rTE will always be equal to either nameTE or mi scTE.

By the way, the blinking time is determined by the four bytes
starting at Ox2F4 in low memory. You can access this value using
the low-memory global ca re tT i me.

/************************************ Dold le */

void Dold le()
{

WindowPtr window;
int wType;

window = FrontWindowC);
wType = WindowType(window >;

if (wType == FORM_WINDOW)
TEidle(((formPeek)window)->curTE);

}

H a n d l e Mou s e Down C) should be pretty familiar to you. There a re
a few changes, however. When a mouseDown occurs in the menu bar,
the program calls Adj us t Menus C) before it pulls down the menu

Thxt Edit 285

with Men u Se l e c t C >. As was mentioned before, Ad j u s t Me nu s C)
enables and disables the appropriate menus before every menu
selection.

/*************************************
HandleMouseDown *I

void
{

HandleMouseDownC>

WindowPtr
short int
long int

window;
thePart;
menuChoice, windSize;

thePart = FindWindowC gTheEvent.where, &window >;
switch C thePart)
{

case inMenuBar:
AdjustMenusC>;
menuChoice = MenuSelectC

gTheEvent.where >;
HandleMenuChoiceC menuChoice >;
break;

case inSysWindow:
SystemClickC &gTheEvent, window >;
break;

If the in Content event occurs in a window that isn't the
frontmost window, the program brings the window to the front with
S e l e c t W i n do w C > . If the window is already in front, the program
passes the W i n do w Pt r and the mouse location to
DoContentClickC>.

case inContent:
if C window != FrontWindowC> >
{

}

else

SelectWindowCwindow>;

DoContentClickC window,
gTheEvent.where >;

break;

286 Macintosh Programming Primer

case inDrag:
DragWindowC window, gTheEvent.where,

&CscreenBits.bounds) >;
break;

Finally, if the mouse is clicked in a window's close box (also known
as the goAway box), the program calls Tr a c k Go Aw a y < > to animate
the close box and, if the mouse is released in the close box, it calls
DoCloseWindow<>.

}

}

case inGoAway:
if < TrackGoAwayCwindow,

gTheEvent.where))
DoCloseWindowC window >;

break;

When the program closes a window, it must properly dispose of the
elements that make up the window (such as controls, TextEdit
records, etc.). First, the program hides the window so the user doesn't
see things disappear one by one as they are freed.

For example, when the program calls D i s pose Cont r o l < >, the
memory occupied by the scroll bar we allocated with New Con t r o l < >
is freed. If the window weren't hidden when this was done, the scroll
bar would disappear while the window were still up. If a lot of
housekeeping needed to be done before the window were finally
closed, the window contents would disappear, one at a time, giving
the process a jerky feel. Not good!

T E D i s po s e < > frees up the text handled by the T E Re co rd and
the TE Rec o rd itself. C lose W i n do w < > frees up the window-related
data structures (closing the window, if necessary) and adjusts the
application's window list to reflect the loss of a window.
C l o s e W i n do w < > does not free up the memory that was allocated (or
that will be allocated) within the call to C r e a t e W i n do w < > • If the
program had allocated the window normally, it could just call
Di s pose W i n do w < > to free up the window. Because it used
New Pt r < > to allocate the window's memory (to take advantage of
the window piggybacking technique described in Chapter 2), the
program must free up the window's memory itself using
Di sposPtr < >.

Text Edit 287

!******************************* DoCloseWindow */

void DoCloseWindowC window >
WindowPtrwindow;
{

}

HideWindowC window >;
DisposeControlC CCFormPeek)window)->vScroll >;
TEDisposeC CCFormPeek)window)->nameTE >;
TEDisposeC CCFormPeek)window)->miscTE >;
CloseWindowC window >;
DisposPtrC window >;

Ad j u s t M e n u s C > is responsible for disabling and enabling the
appropriate menu items in the menu bar. For starters, if there is no
front window, the program disables the File menu's Close item
(because there's no window to close). In addition, it disables all the
items in the Edit menu (because there's no active TextEdit record, so
there is nothing to cut, copy, paste, or clear).

!********************************* AdjustMenus */

void
{

AdjustMenus<>

WindowPtr
int
int
TEHandle

window;
wType;
off set;
te;

window = FrontWindow<>;
wType = WindowTypeC window >;

if (window -- NIL_POINTER)

{

DisableltemC gfileMenu, F_CLOSE_ ITEM) ;

DisableltemC gEditMenu, E_UNDO_ITEM) ;
DisableltemC gEditMenu, E_CUT_I TEM) . ,
DisableltemC gEditMenu, E _COPY_ITEM) . ,
Disableltem< gEditMenu, E _PASTE_ ITEM >;
Disableltem< gEditMenu, E_CLEAR_ ITEM) ;

}

288 Macintosh Programming Primer

If there is a front window and the window belongs to a desk
accessory, the program disables the File menu's Close item. If the
program left the Close item enabled, some code would have to be
added to H a n d l e F i l e C h o i c e C > to handle the closing of a desk
accessories. The program also enables all of the Edit menu items,
making them available to the DA.

else if C wType == DA_WINDOW)
{

}

Disableltem(gFileMenu, F_CLOSE_ITEM);

Enableltem(gEditMenu, E_UNDO_ITEM >;
EnableltemC gEditMenu, E_CUT_ITEM >;
EnableltemC gEditMenu, E_COPY_ITEM >;
EnableltemC gEditMenu, E_PASTE_ITEM);
EnableltemC gEditMenu, E_CLEAR_ITEM);

If the front window belongs to this application (if its type is
F o RM_ WI N Do W), the program enables the File menu's Close item.
Next, it (temporarily) disables all the Edit items. If at least one
character is selected, the program enables the Cut, Copy, and Clear
items. If the scrap isn't empty, the program enables the Paste item.

}

else if C wType == FORM_WINDOW)
{

}

EnableltemC gFileMenu, F_CLOSE_ITEM >;

DisableltemC gEditMenu, E_UNDO_ITEM >;
Disableltem(gEditMenu, E_CUT_ITEM >;
Disableltem(gEditMenu, E_COPY_ITEM);
DisableltemC gEditMenu, E_PASTE_ITEM);
Disableltem(gEditMenu, E_CLEAR_ITEM >;

te = CCFormPeek)window)->curTE;
if C*te)->selStart < C*te)->selEnd
{

}

Enableltem(gEditMenu, E_CUT_ITEM);
Enableltem(gEditMenu, E_COPY_ITEM >;
EnableltemC gEditMenu, E_CLEAR_ITEM);

if (GetScrap(NIL_POINTER, 'TEXT',
&offset> > 0)
EnableltemC gEditMenu, E_PASTE_ITEM >;

Text Edit 289

W i n do w Type <) returns one of the four window type constants:
NIL_WINDOW, DA_WINDOW, FORM_WINDOW, or, if it doesn't match
one of these, UNKNOWN_WINDOW. All desk accessories have a
negative value in the w i n do w Ki n d field of the W i n do w Rec o rd.
When the program creates a new window, it declares it as a
FormRecord and sets the wi ndowType field to FORM_WINDOW
(check out Crea t eWi ndow <) below).

Why does the program cast the w i n do w to w i n do w Peek to get
at the wi ndowKi nd field? Good question! When programmers
work with windows, they normally work with Vi ndowPt rs. tt you
turn to Inside Macintosh, Volume I, page 275, you'll see that
VindowPtrs are really just Graf Pt rs, which are pointers to
Graf Ports, not VindowRecords. Most of the fields that are
associated with windows are really part of the G r a f Port declared
at the top of every Vi ndowRecord.

Remember the window piggybacking technique from Chapter 2?
Well, w; n do w Re cords piggyback their window data on top of a
Gr a f Port • w i n do w Pee ks are pointers to W i n do w Records
and thus give you access to extra fields like w i ndowK ind.

!************************************* WindowType */

int WindowType(window
WindowPtr window;
{

}

if (window -- NIL_POINTER)
return(NIL_WINDOW);

if (((WindowPeek>window)->windowKind < 0 }
return(DA_WINDOW);

if (((FormPeek)window) -> wType -- FORM WINDOW
return(FORM_WINDOW);

return(UNKNOWN_WINDOW >;

290 Macintosh Programming Primer

Ha n d l e Menu C ho i c e C > dispatches menu selections to one of the
three menu-handling routines.

/************************************* HandleMenuChoice */

void HandleMenuChoiceC menuChoice >
long int menuChoice;
{

}

int theMenu;
int theltem;

if (menuChoice != 0 >
{

}

theMenu = HiWordC menuChoice >;
theltem = LoWordC menuChoice >;
switch C theMenu >
{

}

case APPLE_MENU_ID
HandleAppleChoiceC theltem >;
break;

case FILE_MENU_ID :
HandleFileChoiceC theltem >;
break;

case EDIT_MENU_ID :
HandleEditChoiceC theltem >;

HiliteMenuC 0 >;

You should recognize Hand le Apple Choi c e C > from Macintosh
Programming, Volume I.

!**************************** HandleAppleChoice *******/

void HandleAppleChoiceC theltem >
int theltem;
{

Str255
int

accName;
accNumber;

Text Edit 291

}

switch C theltem >
{

}

case A_ABOUT_ITEM
NoteAlertC ABOUT_ALERT, NIL_POINTER >;
break;

default :
GetltemC gAppleMenu, theltem, accName >;
accNumber = OpenDeskAccC accName >;
break;

H a n d l e F i l e C h o i c e C > calls C re a t e W i rid ow C > when the File
menu's New item is selected. If the Close item is selected,
Ha n d l e F i l e C ho i c e C > calls Do C l o s e W i n do w < > . If the Quit item
is selected, the global g Done is set to TRUE, allowing FormEdit to
exit gracefully.

!***************************** HandleFileChoice *******/

void HandleFileChoiceC theltem)
int theltem;
{

}

WindowPtr window;
switch C theltem >
{

}

case F_NEW_ITEM
CreateWindowC>;
break;

case F_CLOSE_ITEM :
if ((window = FrontWindow()) != NIL_POINTER)

DoCloseWindowC window >;
break;

case F_QUIT_ITEM
gDone = TRUE;
break;

Ha n d l e Ed i t C ho i c e C > starts off with a call to Sys t em Ed i t C > .
The parameter represents one of these Edit menu commands: Undo,
Cut, Copy, Paste, or Clear. If the frontmost window belongs to a desk
accessory (DA), sys t em Ed i t C > passes the Edit command to the DA

292 Macintosh Programming Primer

and returns TRUE. In this case, the program is done, as the Edit
command wasn't meant for this application.

If the frontmost window doesn't belong to a DA (or doesn't exist),
Sys t em Ed i t C > will return FALSE. In this case, the menu selection
was intended for this application and the program must handle it.

/******************************** HandleEditChoice *******/

void HandleEditChoiceC theltem >
int theltem;
{

TEHandle
WindowPtr
int
CharsHandle
Str255
FormPeek

te;
window;

wType, length, i;
text;
tempStr;
form;

if C ! SystemEditC theltem - 1))
{

window = FrontWindowC>;
wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

form = CFormPeek)window;
te = form->curTE;
switch C theltem >
{

The sample program shown here doesn't support an Undo strategy,
but your programs should. You'll have to decide on an Undo strategy
that makes sense, given the specifics of your application. Are you
using TextEdit? If so, you may want to keep the last set of keystrokes
since the last delete in a buffer, in preparation for an Undo command.
If your application focuses on graphics, you might want to build a
table of undoable graphics commands, keeping the most recent in a
global variable or struct.

Whatever you decide, lay out your Undo strategy early on in your
development cycle. This is important, even if you don't plan on
supporting Undo in Version 1.0. Trying to retrofit an Undo strategy
can be extremely difficult.

case E_UNDO_ITEM:
break;

ThxtEdit 293

You should also settle on a clipboard strategy early in your
development strategy. Because TextEdit maintains its own scrap, the
sample program's strategy is quite simple. Whenever it does a Cut or
Copy, it calls the appropriate TextEdit routine (either TE cut C > or
TE Copy C >) and then exports TextEdit's private scrap to the Mac's
main scrap, making the selection available to other programs.

If you need some review on the Scrap Manager, go back
to Macintosh Programming Primer, Volume I, Chapter 7.
Z e r o S c rap C > clears the Mac's main scrap. If the program had no
problem clearing the scrap, it calls either T E copy C > or T E c u t C > (in
which case it also calls Ad j u s t S c r o l l Ba r C > , because the number
of lines in the TextEdit record could be changed). Then, the program
calls T ET o S c r a p C > to keep the main scrap current with TextEdit's
scrap. If the program had a problem exporting the TextEdit scrap, it
cleans up as best as it can by calling Z e r o S c r a p C > again.

case E_CUT_ITEM:
if C ZeroScrap() -- noErr)
{

TECutCte);
AdjustScrollBarC form >;
if C TEToScrap() != noErr

ZeroScrap();
}

break;
case E_COPY_ITEM:

if C ZeroScrapC) -- noErr >
{

TECopyCte>;
if C TEToScrap() != noErr)

ZeroScrapC>;
}

break;

On a Paste, the program imports the main scrap to TextEdit's
scrap, does a TEP as t e C >, and then adjusts the scroll bar.

case E_PASTE_ITEM:
if C TEFromScrap() -- noErr >
{

}

TEPasteCte>;
AdjustScrollBarC form >;

break;

294

}

}

}

}

Macintosh Programming Primer

On a Clear, the program deletes the current selection with
T ED e l e t e C > and then adjusts the scroll bar to compensate for any
lost lines of text.

case E_CLEAR_ITEM:
TEDeleteCte);
AdjustScrollBarC form >;
break;

You may have noticed when you ran FormEdit that the title of
each window is changed so that it always reflects the contents of its
name field. If the Name field is empty, the program changes the title
to <Untitled>. This next bit of code (in conjunction with DoTEKey C >)
handles this situation.

If the current length of the name TE TextEdit record is 0, change
the window title to <Untitled>. If not, call T E Ge t Tex t C > to get a
handle to the text, copy it into a Pascal string (making sure to create
a Pascal string length byte first), then set the window's title.

if C te == form->nameTE >
{

}

length = C*form->nameTE)->teLength;
if C length == 0)

else
{

}

SetWTitleC window, UNTITLED_STRING >;

text = TEGetTextC form->nameTE >;
tempStr[0 J = length;
for C i=O; C Ci<length> && Ci<256) >; i++)
{

tempStr[i+1 J = C*text)[i J;
}

SetWTitleC window, tempStr >;

Doc on t e n t c l i c k C > handles a mouse click in the content region
of a F o R M_W IND OW. For a refresher course in window structure,
check out Macintosh Programming Primer, Volume I, Chapter 3.

Text Edit 295

/********************************DoContentClick *******!

void DoContentClickC window, mouse)
WindowPtr window;
Point
{

int
int
Boolean

mouse;

Point
ControlHandle
FormPeek

wType, value;
thePart;
shiftDown;
locMouse;
control;
form;

wType = WindowTypeC window >;

if (wType == FORM_WINDOW
{

The program is interested in three different categories of content
region mouse clicks: a click in the scroll bar, a click in the name field,
and a click in the misc field. First, the program gets the mouse
location and converts it to this window's local coordinate system.

form = CFormPeek)window;
locMouse = mouse;
GlobalTolocalC &locMouse >;

Because only one control exists in this program's window,
F i n d C on t r o l C > will return TRUE only if the mouse click was in the
scroll bar. If the click was in the scroll bar, F i n d C on t r o l C > will
return a part code, indicating whether the click was in the up arrow,
down arrow, page up gray region, page down gray region, or in the
thumb of the scroll bar.

If the click was in the up arrow, down arrow, page up, or page
down region, the program needs to scroll the contents of the misc
field continuously, as long as the mouse button is held down. It is not
good enough just to scroll once and then wait for the next
mo u s e Down. This would force the user to constantly click-click-click
the mouse to scroll using the up arrow.

Passing a procedure pointer to Track Cont r o l C > causes this
procedure to be called again and again, as long as the mouse button
is held down in the tracked control part. If the user presses and holds
the mouse button in the up arrow, for example, this procedure

296 Macintosh Programming Primer

(VA ct ion Pro c C >) will be called again and again until the user
either releases the mouse button or moves the cursor out of the up
arrow. In this case, v A c t i on P r o c C > will scroll the text up one line
every time it is called.

if C C thePart = FindControlC locMouse, window,
&control) > != 0 >

{

switch(thePart >
{

case inUpButton:
case inDownButton:
case inPageUp:
case inPageDown:

value = TrackControlC control, locMouse,
CProcPtr> VActionProc >;

break;

If the mouse click was in the thumb of the scroll bar, there's no
need to scroll continuously, so the program passes a N I L_P O I NT ER
for an action procedure, asking T r a c k Con t r o l C > not to call an
action procedure. Instead, the program gets the current value of the
scroll bar, tracks the movement of the scroll bar thumb, and then, if
the mouse button was released in the thumb, gets the new value of
the control. If the thumb has moved, the program calls
TES c r o l l C > , telling it the line to which the Misc field should be
scrolled. Notice that the program doesn't call T E S c r o l l C > if the
scroll bar doesn't change value. You should also note that the
program allows the Misc field to scroll, even if the Name field is the
current field.

This l•t :p9int is not. Intend~ .to be a demonstration of prop'r text
t:ttlque,ut.. · Textl;Pi! g;ves you the fre~om to design your pr~~r~ms··
any wqy ·you Jike .. FormEdit could have been deslgnfed to
deactivate the scroll bar when the Misc field wasn't the current
TextEdit record. It seems better this way, though. :

case inThumb:
value = GetCtlValueC control >;
thePart = TrackControlC control, locMouse,

NIL_POINTER);

Text Edit

}

}

if C thePart != 0 >
{

value -= GetCtlValueC control >;
if C value != 0 >

297

TEScrollCO, value * C*form->curTE)
>lineHeight, form->miscTE >;

}

break;

If the mouse was clicked in the Name field and the Name field is
the current field, the program checks to see whether the Shift key
was held down. That information is then passed to T E C l i c k C > •
T E c l i c k C > handles the mouse click, extending the selection and
moving the insertion point as appropriate.

If the Name field isn't the current field, the program makes it the
current field (via a call to S w i t c h To N e w A r ea C >) and then passes
the mouse click to T E c l i c k C > .

else if C PtlnRectC locMouse, &gNameRect))
{

}

if C form->curTE == form->nameTE >
{

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->nameTE >;

}

else
{

}

SwitchToNewAreaC form, TE_NAME_AREA >;
TEClickC locMouse, FALSE, form->nameTE >;

A mouse click in the Misc field is handled in exactly the same way
as a click in the Name field.

else if C PtlnRectC locMouse, &gMiscRect) >
{

if C form->curTE == form->miscTE)
{

}

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->miscTE >;

298

}

}

}

Macintosh Programming Primer

else
{

}

SwitchToNewAreaC form, TE_MISC_AREA >;
TEClickC locMouse, FALSE, form->miscTE >;

· As was described in the section about Do Content C l i c k C >,
VA c t i on P r o c C > scrolls the M i s c field once in one direction,
depending on the part code.

/********************************* VActionProc */

pascal void
ControlHandle
int

VActionProcCcontrol, part)
control;
part;

{

short amount;
WindowPtr window;
TEPtr te;

if C part ! = 0)
{

Every window contains a list of controls. Conversely, every control
has an owning window. This fact conveniently allows the program to
conjure up a misc T E Ha n d l e given a handle to the Misc scroll bar.

The program sets amount to 1 for a click in the up or down arrow,
or to the number of lines on a page if the click was in the page up or
page down area.

window = C*control)->contrlOwner;
te = *CCFormPeek>window)->miscTE;
switch C part > {

case inUpButton:
case inDownButton: I* one line */

amount = 1;
break;

case inPageUp:
case inPageDown:

I* one page */

Text Edit 299

}

}

}

amount = Cte->viewRect.bottom - te
>viewRect.top) I te->lineHeight;

break;

If the click was in a down arrow or page area, the program
multiplies amount by -1 so that the scroll happens in the opposite
direction.

if C (part -- inDownButton> I I Cpart -- inPageDown>)
amount = -amount;

C om mo n A c t i o n C > checks whether the scroll bar can indeed be
scrolled by amount without exceeding its limits in either the
minimum or maximum settings. Common Act i on C > sets amount to
allow as much of the requested change as possible. Finally, amount
is converted from lines to pixels, and the result is passed to
TEScrollC).

CommonActionCcontrol, &amount>;
if C amount != 0)

TEScrollC O, amount * te->lineHeight,
CCFormPeek)window)->miscTE >;

!************************************* CommonAction *I

void CommonActionC control, amount)
ControlHandle control;
short
{

*amount;

}

short value, max;

value = GetCtlValue(control >;
max = GetCtlMaxC control >;
*amount = value - *amount;
if C *amount < 0)

*amount = O;
else if C *amount > max)

*amount = max;
SetCtlValueC control, *amount >;
*amount = value - *amount;

I* get current value */
I* and maximum value */

I* calculate the real
change *I

300 Macintosh Programming Primer

Do Activate C > is called on both an activate event (with
becomingActive set to TRUE) and a deactivate event (with
becoming Active set to FALSE). On an activate event, the current
TextEdit area is turned on and the scroll bar is activated. On a
deactivate event, the current TextEdit area is turned off and the
scroll bar is deactivated.

!************************************ DoActivate */

void
WindowPtr
Boolean

DoActivateC window, becomingActive)
window;
becomingActive;

{

}

FormPeek
int

form;
wType;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

form = CFormPeek>window;
if C becomingActive >
{

}

else
{

}

SetPortC window >;
if C form->curTE == form->miscTE)

TurnOnTextAreaC form, TE_MISC_AREA >;
else

TurnOnTextAreaC form, TE_NAME_AREA);
HiliteControlC form->vScroll, 0 >;

if C form->curTE == form->miscTE >
TurnOffTextAreaC form, TE_MISC_AREA >;

else
TurnOffTextAreaC form, TE_NAME_AREA);

HiliteControlC form->vScroll, 255 >;

Ad j us t Curs o r C > sets the cursor to an I-beam cursor if the
cursor is in either g M i s c Re c t or g Na me Re c t and to an arrow
cursor otherwise.

Thxt Edit 301

/******************************** AdjustCursor *********/

void
Point
RgnHandle
{

AdjustCursorC mouse, region >
mouse;
region;

WindowPtr
RgnHandle
Re ct
int
Graf Ptr

window;
arrowRgn, iBeamRgn, tempRgn;
tempRect;
wType;
oldPort;

window = FrontWindowC>;
wType = WindowTypeC window >;

If FormEdit is in the background (under MultiFinder) or if the
frontmost window is not a FOR M_W I ND OW, the program just sets the
cursor to an arrow and returns.

if glnBackground I I C wType != FORM_WINDOW >)
{

}

SetCursorC &arrow >;
return;

Just to be safe, the program does a set Port C > to the frontmost
window. Then, it allocates three new regions. The program sets the
a r row R g n to the largest possible Re c t.

GetPortC &oldPort >;
SetPortC window >;

arrowRgn = NewRgnC>;
iBeamRgn = NewRgnC>;
tempRgn = NewRgnC>;

SetRectRgnC arrowRgn, -32700, -32700, 32700,
32700 >;

Next, the program creates a t em p R g n the size of g Na me Re c t,
copies it into i BeamRg n, creates a t empRgn the size of gM is c Rec t,
and unions it into i BeamRgn. Now, i BeamRgn is a noncontiguous
region the shape of the Misc field plus the Name field. Next, the

302 Macintosh Programming Primer

program calls D i f f R g n C > to punch a hole in a r r o w R g n using
i BeamRgn.

tempRect = gNameRect;
LocalToGlobalC &Topleft(tempRect> >;
LocalToGlobalC &BotRight<tempRect> >;
RectRgnC tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

tempRect = gMiscRect;
LocalToGlobalC &TopleftCtempRect> >;
LocalToGlobalC &BotRightCtempRect> >;
RectRgnC tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

D i f f R g n C a r row R g n , i Be am R g n , a r r o w.R g n) ;

If the mouse is in the i Be am R g n, the program sets the cursor to
the i Be am Cursor. If not, it sets the cursor to the a r row. The
program also sets the return parameter reg i on to the appropriate
region to pass to the next call to W a i t N e x t Eve n t C > . Finally, it
frees up the three allocated regions and sets the port back to the
saved value.

}

if C PtlnRgn(mouse, iBeamRgn > >
{

}

else
{

}

SetCursorC *GetCursor(iBeamCursor) >;
CopyRgnC iBeamRgn, region >;

SetCursorC &arrow >;
CopyRgnC arrowRgn, region >;

DisposeRgnC arrowRgn >;
DisposeRgnC iBeamRgn >;
DisposeRgnC tempRgn >;

SetPortC oldPort >;

On an up d a t e Ev t, the program calls Beg i n Up d a t e C > , erases
the window, draws the window contents, and calls End Up d at e < >.

Thxt Edit 303

!************************************ DoUpdate */

void DoUpdateC window
WindowPtr window;
{

}

FormPeek
int

form;
wType;
oldPort; Graf Ptr

GetPortC &oldPort >;
SetPortC window >;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

BeginUpdateC window >;
EraseRectC &window->portRect >;
DrawFormC window >;
EndUpdateC window >;

SetPortC oldPort >;

Draw Form C > starts by framing the outline of the Name and Misc
TextEdit fields and then drawing the scroll bar.

/************************************ Drawform */

void DrawFormC window)
WindowPtr window;
{

FrameRectC &gNameRect >;
FrameRectC &gMiscRect >;
DrawControlsC window >;

Because the words "Name" and "Misc" will appear in bold Geneva,
the program first calls Te x t Fon t C > and Tex t Fa c e C > , then draws
the two strings, and then resets the font and style to plain Monaco.

304

TextfontC geneva >;
TextFaceC bold >;

Macintosh Programming Primer

MoveToC gNameRect.left - 34, gNameRect.top + 12 >;
Drawstring(11 \pName" >;
MoveToC gMiscRect.left - 34, gMiscRect.top + 12 >;
Drawstring(11 \pMisc." >;

TextFontC monaco >;
TextFaceC 0 >;

Finally, the program asks TextEdit to redraw the contents of the
Misc. and Name fields with calls to T EU pd a t e C > •

}

TEUpdateC &window->portRect, CCFormPeek)
window>->nameTE >;

TEUpdateC &window->portRect, CCFormPeek)
window)->miscTE >;

The program creates a new F o R M_W IND o W using the piggyback
method described in Chapter 2. It starts off by allocating a
Form Record using New Pt r C >. It then passes this storage as a
parameter to Get New W i n do w C > . Remember, because the program
allocated the storage itself, it is responsible for deallocating the
memory later with Dis pose Pt r C >.

The use of the globals g New W i n do w Le f t and g New W i n do w Top
should be familiar to you (if not, see WindowMaker in Macintosh
Programming Primer, Volume I, Chapter 7).

/************************************ CreateWindow */

void
{

CreateWindowC>

WindowPtr theNewestWindow;
Ptr wStorage;
FormPeek form;

wStorage = NewPtrC sizeofCFormRecord) >;

if C C theNewestWindow = GetNewWindowC BASE_RES_ID,
wStorage, MOVE_TO_FRONT)) == NIL_POINTER)
ErrorHandlerC NO_WIND >;

Text Edit 305

if C C CscreenBits.bounds.right - gNewWindowLeft) <
DRAG_THRESHOLD) I I

{

}

C C screenBits.bounds.bottom - gNewWindowTop) <
DRAG_THRESHOLD))

gNewWindowleft = WINDOW_HOME_LEFT;
gNewWindowTop = WINDOW_HOME_TOP;

MoveWindowC theNewestWindow, gNewWindowleft,
gNewWindowTop, LEAVE_WHERE_IT_IS);

gNewWindowleft += NEW_WINDOW_OFFSET;
gNewWindowTop += NEW_WINDOW_OFFSET;

Next, the program sets the w Ty p e field of the F o rm Re co rd to
FORM_W IN DOW. After that, it creates a scroll bar for the Misc field
using New Con t r o l C > .

form = CFormPeek)theNewestWindow;
f orm->wType = FORM_WINDOW;

form->vScroll = NewControlC theNewestWindow,
&gScrollBarRect, NIL_STRING,
VISIBLE, 0, O, O, scrollBarProc, OL>;

Finally, the program makes the window visible, makes it the
current port, sets the default font for the port (which will be used
automatically by TextEdit), and starts up TextEdit for this window.

}

ShowWindowC theNewestWindow >;
SetPortC theNewestWindow >;
TextfontC monaco >;
Textface< 0 >;
TextSize< 9 >;
StartTextEdit(form >;

S t a rt Tex t Ed i t < > calls TEN e w < > to create two new TextEdit
records, one for the Name field and one for the Misc field.

S e t C l i k Loop < > gives TextEdit the address of a routine to call
continuously, as long as the mouse is held down in the associated
TextEdit field (in this case, the Misc field). The program passes a
pointer to the routine New c l i k Loop< >. New C l i k Loop< >

306 Macintosh Programming Primer

automatically will scroll both the text and the scroll bar if the mouse
is scrolled either above or below the boundary of the Misc field while
the mouse button is still down.

TEA u to V i e w C > ensures that the TextEdit field scrolls when a
new line is created that appears below the lower boundary of the
Misc field. Try commenting the call to TE Auto V i e w C > and type
enough text to enable the scroll bar.

/******************************** StartTextEdit *********/

void StartTextEditC form >
FormPeek form;
{

}

Re ct r;

r = gNameRect;
InsetRectC &r, 2, 2 >;
form->nameTE = TENewC &r, &r >;

r = gMiscRect;
lnsetRectC &r, 2, 2 >;
form->miscTE = TENewC &r, &r >;
SetClikloopC NewClikloop, form->miscTE >;

TEAutoViewC TRUE, form->miscTE >;

form->curTE = f orm->nameTE;

Ne w C l i k Loop C) sets the C l i p Re c t of the current window to
ensure that wlten the value of the scroll bar is changed, the scroll bar
can be redrawn appropriately.

/******************************** NewClikloop *********/

pascal Boolean NewClikloopC)
{

WindowPtr
FormPeek
TEHandle
Re ct
Pp int
Graf Ptr
int
RgnHandle

window;
form;
te;
tempRect;
mouse;
oldPort;
amount;
oldClip;

Text Edit 307

window = FrontWindowC>;
if C WindowTypeC window != FORM_WINDOW) return(FALSE >;

form = CFormPeek)window;
te = form->curTE;

GetPortC &oldPort >;
SetPortC window >;
oldClip = NewRgnC>;
GetClipC oldClip >;

SetRectC &tempRect, -32767, -32767, 32767, 32767 >;
ClipRectC &tempRect >;

Next, the program gets the mouse location and compares it to the
top and bottom of the Misc TextEdit field. If the mouse is above that
field, the program scrolls the text down one line. If the mouse is
below that field, the program scrolls the text up one line.

GetMouseC &mouse >;

if C mouse.v < gMiscRect.top
{

}

amount = 1;
CommonActionC form->vScroll, &amount >;
if C amount != 0)

TEScrollC O, amount * CC*te)->lineHeight), te >;

else if C mouse.v > gMiscRect.bottom)
{

}

amount = -1;
CommonActionC form->vScroll, &amount >;
if C amount != 0 >

TEScrollC 0, amount * CC*te)->lineHeight>, te >;

After restoring the c l i p Rec t, disposing of the temporary clipping
region, and setting the port to its saved value, New C l i k Loop C >
returns T RU E, telling TextEdit that it handled the scrolling with no
problems. If the program returned FALSE, TextEdit would stop
calling it, as if the user had released the mouse button.

308

}

SetClipC oldClip >;
DisposeRgnC oldClip >;
SetPortC oldPort >;
return< TRUE >;

Macintosh Programming Primer

S w i t c h To New A re a C > turns off the current area and turns on
the other area, alternating between the Name and Misc TextEdit
fields.

/******************************** SwitchToNewArea *********/

void SwitchToNewAreaC form, newArea)
FormPeek form;
int
{

}

if
{

newArea;

form->curTE == form->nameTE)

TurnOffTextAreaC form, TE_NAME_AREA >;
TurnOnTextAreaC form, TE_MISC_AREA >;

}

else
{

}

TurnOffTextAreaC form, TE_MISC_AREA >;
TurnOnTextAreaC form, TE_NAME_AREA >;

If the text area to be turned on is the Misc field,
Tu r non Tex t A re a C > starts by adjusting the bottom of mi s c TE 's
v i e w Re c t and d e s t Re c t so that the bottom of the Rects ends just
below a complete line of text. This will prevent a partially obscured
line of text from appearing at the bottom of the misc field. Next, the
scroll bar is adjusted, and c u r T E is set to the misc field.

If the text area to be turned on is the name field, the program just
sets cu r TE to the name field. In both cases, TE Act i vat e C > is
called to activate the current TextEdit field.

!******************************** TurnOnTextArea *********/

void TurnOnTextAreaC form, whichArea)
FormPeek
int
{

form;
whichArea;

Thxt Edit 309

TEPtr te;

{

if C whichArea == TE_MISC_AREA)

te = *form->miscTE;
te->viewRect.bottom = CCCte->viewRect.bottom - te

>viewRect.top) I te->lineHeight)
* te->lineHeight> + te-

>viewRect.top;

}

te->destRect.bottom = te->viewRect.bottom;
AdjustScrollBarC form >;

}

else

form->curTE = form->miscTE;

form->curTE = f orm->nameTE;

TEActivateC form->curTE >;

Tu r n O f f Tex t A re a C > deactivates the current TextEdit area with
a call to TEDeactivateC >.

/******************************** TurnOf fTextArea *********/

void TurnOffTextAreaC form, whichArea)
FormPeek form;
int whichArea;
{

if (

else

}

whichArea -- TE MISC AREA) - -
TEDeactivateC form->miscTE) ;

TEDeactivateC f orm->nameTE) . ,

Adj us ts c r o l l Ba r C > starts by saving the current value and
maximum value of the misc scroll bar. Next, it calculates the number
of lines in the Misc field and sets ma x to the number of lines not
currently in view. This should be the max setting of the scroll bar.

310 Macintosh Programming Primer

!******************************** AdjustScrollBar *********/

void AdjustScroLLBarC form >
FormPeek form;
{

short
short
TEPtr

value, Lines, max;
oldValue, oldMax;
te;

oldValue = GetCtLValueC form->vScroll >;
oldMax = GetCtLMaxC form->vScroll >;
te = *Cform->miscTE>;

Lines = te->nlines;
if C *C*te->hText + te->telength - 1> -

TE_CARRIAGE_RETURN)
Lines += 1;

max = lines - CCte->viewRect.bottom - te->viewRect.top) I
te->LineHeight>;

if C max < 0 > max = O;
SetCtLMaxC form->vScroll, max>;

Using a similar calculation, the program comes up with a current
value for the scroll bar. Once the ma x and v a L u e for the scroll bar
have been set, the program makes sure the Misc field is scrolled to
the setting indicated by the scroll bar by calling T E S c r o L L C > .

te = *Cform->miscTE>;
value = Cte->viewRect.top - te->destRect.top) I te

>LineHeight;

if C value < 0 > value = O;
else if C value > max > value = max;

SetCtLValueC form->vScroll, value>;

TEScroLLC O, Cte->viewRect.top - te->destRect.top) -
CGetCtLValueC form->vScroll > * te

>LineHeight>, form->miscTE >;
}

Text Edit 311

E r r o r H a n d l e r C > remains the same as the routine presented in
Macintosh Programming Primer, Volume I.

/******************************** ErrorHandler *********/

void ErrorHandlerC stringNum)
int stringNum;
{

}

StringHandle errorStringH;

if C C errorStringH = GetStringC stringNum)) ==
NIL_POINTER)

else
{

}

ParamTextC HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING >;

HlockC errorStringH >;
ParamTextC *errorStringH, NIL_STRING, NIL_STRING,

NIL_STRING >;
HUnlockC errorStringH >;

StopAlertC ERROR_ALERT_ID, NIL_POINTER >;
ExitToShelLC>;

_J In Review

Congratulations. That was a long one! You can use FormEdit as the
basis for your own TextEdit-based applications. You should definitely
read up on the Styled TextEdit described in Inside Macintosh,
Volume V. If you understand the basics of FormEdit, you should have
no trouble mastering the few extra routines involved in supporting
multiple styles within a single TextEdit field.

The next chapter introduces you to the world of object-oriented
programming, also known as OOP.

Object
Programming

Object programming is definitely
the future of Macintosh development.
Apple is making a big investment in

the technology, and is asking its
developers to do the same. This

chapter presents the concepts you'll
need to get started with THINK's

object environment.

6

_J

For the last year or so, object-oriented programming has been an
extremely hot topic in the Macintosh development community. Apple
has made no secret of the fact that it expects developers to move in
this direction. The company encourages the use of MacApp, Apple's
object-oriented development environment that runs with the
Macintosh Programmer's Workshop (MPW). If Apple has its way,
someday all Macintosh development will be object-oriented.

This doesn't mean you should junk your college programming texts
and burn your back issues of MacTutor. Instead, take a gradual
approach. Sharpen your Macintosh programming techniques. Even in
an object-oriented world, knowledge of the Macintosh Toolbox is
essential. Fortunately, THINK C will let you program both ways. As
you'll see in this chapter, the THINK Class Library (TCL) extends
the THINK C environment you're used to, allowing you to program
using both object-oriented and procedural techniques.

About Object Programming

Throughout this chapter, you may notice the use of the term
object programming, as opposed to object-oriented program
ming. Object programming is the term preferred by Apple; it refers
to programming using a specific set of objects, like those found in the
THINK Class Library or in MacApp. Object-oriented programming
has traditionally referred to programming in an object-oriented
language such as C++, without the benefit of prebuilt object classes.

This chapter focuses on object programming, making use of the
incredible benefits offered by the THINK Class Library. The THINK
Class Library is a set of objects that implements the entire
Macintosh interface. Without it, you'd have two problems to solve.
First, you'd have to learn the techniques of object programming.
Then, you'd have to develop your own set of objects to implement
pull-down menus, event-handling, printing, MultiFinder friendliness,
etc. A good class library is worth its weight in gold.

This chapter introduces the basics of object programming, using
an imaginary application called Shaper. It will also walk you through
the THINK Class Library, starting with the sample TCL applications
found on your THINK C disks and ending with a new application
built completely with TCL objects.

315

316

_J

Macintosh Programming Primer

Shaper 1.0

D
1111

D

Figure 6.1 Dragging a shape in Shaper.

The Shaper Application

Imagine a Macintosh application called Shaper, made up of a single
window, with scroll bars on the right and bottom sides of the window.
Shaper allows you to create shapes by clicking the mouse in the
content region of the window. When you click the mouse inside a
shape, the shape is highlighted and follows the mouse around the
window. If you drag a shape outside the window, the window will
autoscroll (if it can) to follow the mouse. When you release the
mouse, the shape stays where you left it.

Version 1.0 of Shaper supports only a single shape, the square.
Figure 6.1 shows a Shaper window. The three squares in the Shaper
window were created via mouse clicks. The highlighted square is
being dragged inside the window.

An Object View of Shaper

How does this relate to object programming? Good question! The next
few sections of this chapter concentrate on laying out the elements

Object Programming 317

necessary to create the Shaper application using an object-oriented
approach. The first step is designing the necessary object classes.

An object class can be thought of as a category of objects. Imagine
the Shaper window filled with lots of different shapes-some
squares, some circles, but all of them shapes. Each of the individual
shapes can be thought of as an object, with its own individual
properties, such as height or position. Every one of the objects, no
matter how big or how small, belongs to the shape category. Each
object is said to be a member of the shape class.

Some shapes might have a different set of properties than others.
Circles have a radius; squares have a width. Both squares and circles
have a position, however. These properties are implemented as the
instance variables of a class. The circle class might have a rad i us
instance variable, whereas the square class would have a w i d t h
instance variable. Both the circle class and the square class would be
subclasses of the shape object class.

An Example

The following example translates some of this theory into code. It
starts simply, with the world defined by Shaper 1.0 (as seen in Figure
6.1). This example begins with a single object class, called Sh ape.
Each of the squares shown in Figure 6.1 is an instance of the Sh ape
class.

The following C code defines our S h a p e object class:

struct Shape
{

indirect

};

Re ct

void

void
void

bounds;

!Shape(Point corner, int width,
int height >;

Draw<>;
DoClickC Point hitPt >;

Object classes are declared to look remarkably like a normal
st r u ct. Don't be fooled! Object classes are not the same as
st r u ct s. Object class declarations always take this form:

struct class : superclass
{

instance variables •••

method declarations •..
};

318 Macintosh Programming Primer

In this case, the class declared is s h a p e. There is nothing special
about the name S ha p e. You may give names to classes, instance
variables, and methods just as you would any variable or procedure.
Because s ha p e is not based on a previous class, it doesn't have a
superclass.

Classes that don't. have superclasses are called root cl•sses.
Root classes use the keywords d; rec t or ; n d; rec t in plkce of
a superclass. Direct classes ~se pointers to implement their.k>bject
data structures. Indirect classes use handles to . implement their
object data structures. If an object's superclass is definjJd as
indirect, the object is defined as indirect. The same is true for,direct
object classes.

All the examples pre~ented io this book use indirect classes.; All of
the classes defined in THINK's Class Library are defin$d as
indirect. Don.'t use direct classes unless you have a specific "~on
to d0$0.

Instance Variables and Methods

Inside a class declaration, the first things you'll encounter are any
instance variables that might be declared. An instance variable holds
a value for a specific instance of an object. For example, the S hap e
object class has a single instance variable, the Re c t called bound s,
which defines the bounding rectangle of a Sh a p e. Each of the
squares in Figure 6.l's window are Shapes, and each one will have
its own copy of bounds, defining its location in the window.

Following the declaration of any instance variables are the
method declarations. The methods of an object allow access to that
object by other objects. For example, each shape object has a
D r a w C > method. The D r a w C > method is nothing more than a
routine for drawing a Sh ape object. If you had a list of Sh ape
objects and you wanted to draw them all, you'd step through your
list, calling each S ha p e's D r a w C > method.

OaUlng. an object~ ,met~od .i~' ~1.5Q f(nown as p~irlQ: or s~n.iiliig .~.
nie$~~ge ·t~ ·that:Q~J~ct~. For ·e~~n,ip'~i ~alllng ~?~~ti::~'.i~e',ts . Dl!:,;Wxl>
metbOd' is 'aXidtJy, trr.e $ame· as sending a .. :D ra ~O.· ;message;·~tb"Jlat, - . ·: .· - . ' :"!:·.··· .,

Sha·p;,_... (. .

Object Programming 319

In general, most object classes support an initialization method. In
Sh ape's case, the initialization method is I Sh ape <) . By convention,
the initialization method for an object class is always an uppercase I
followed by the class name.

I S ha p e C) takes three parameters: c o r n e r is a Po i n t, defining
the upper left corner of the shape, defined in the window's local
coordinate system; w i d t h and he i g ht are i n ts, defining the width
and height of the shape; and I Sh ape < > uses these parameters to set
the instance variable bounds. Because bounds is an instance
variable, it can be accessed by any of the object's methods. Used this
way, instance variables are like globals, limited to a single object.

The D raw <) method gets called whenever the Sh ape needs to be
redrawn (in response to an update Ev t , for example). As you might
expect, Draw() draws the Shape. So far, it's been assumed that the
shape is a square. For the moment, that's a valid assumption, but,
as you'll soon see , there are circles on the horizon. For now, the
Draw C) method draws its Sh ape with a call to Frame Rec t <).

The Do C l i ck<) method gets called whenever a mouse Down
occurs within an object's bounds rectangle. The parameter is a
Po i n t that defines where the mouse click occurred.

The 1 sh a p e c > method is called by the object that creates the
shape object. The or aw c > and o o c l i c k c > methods are called
from within the application's main eveht loop. As you'll see (when
the THINK Class Library is discussed), you can arrange your
program so that these methods are called for you automatically.

Creating Some Shape Objects

The last section concentrated on designing the Sh ape object class.
This section shows you how to create an instance of a shape object
from within your program.

Suppose for the moment that you had a routine (call it
CreateShape<)) that got called whenever a mouse Down occurred
in the content region of the Shaper window. The routine would be
passed a Poi n t in the window's local coordinates, where the
mo u s e Down occurred. The new S h a p e would use this Po i n t as its
upper left corner. Take a look at this code:

320

#define SQUARE_SIDE 15

struct Shape: indirect
{

Re ct bounds;

Macintosh Programming Primer

void !Shape(Point corner, int width,
int height >;

void Draw<>;
void DoClickC Point hitPt >;

};

void
Point
int
int
{

CreateShapeC corner, height, width >
corner;
height;
width;

Shape *newShape;

newShape = new(Shape >;
newShape->IShapeC corner, height, width >;

}

The shape object remains as declared above. The #define
SQ UAR E_S IDE defines the default size of a square side, in pixels. To
create a square (such as the ones shown in the Shaper window in
Figure 6.1), you'd call Create Sh ape C > with identical values for
h e i g h t and w i d t h, like this:

CreateShapeC myPoint, SQUARE_SIDE, SQUARE_SIDE >;

Object References

Things start to get interesting when you look at the local variable
declared within the routine Create Sh ape C >. The variable
news hap e looks like a regular pointer. When the compiler encoun
ters a variable declared as if it were a pointer to an object, the
compiler knows that the variable is actually an object reference.
Object references are similar to struct pointers. Imagine a pointer to
a Re ct:

Re ct *rectPtr;

Object Programming 321

To access the fields of rec t Pt r's Rec t, you'd use something like
this:

rectPtr->top = 20;

To access an object's instance variable, you'd use a line like:

newShape->bounds.top = 20;

To call an object's method, you'd use a similar technique:

newShape->IShape(corner, SQUARE_SIDE,
SQUARE_SIDE >;

It's important to realize that although object references might look
like (and even behave a bit like) pointers to structs, they are not the
same. Object references are not pointers. This is especially true for
indirect classes, which are based on handles, not pointers. The
compiler is smart enough to translate:

newShape->bounds.top = 20;

into the appropriate level of indirection. This means that you'd use
the same notation whether your class is declared as indirect or a
direct (based on handles or based on pointers).

Return to the routine C re a t e Sh ape < > , declared above. A new
S h a p e object is created by passing the class name S h a p e to the
routine new < > . n e w < > is a function that returns an object reference
and that can be used to create a new object of any class. To delete an
object, call the routine de l et e < >, like this:

delete< newShape >;

Both of these functions can be found in the oops library. Just as
you add MacTraps to your project to access the Toolbox, you'll need to
add oops to your project to use these routines.

Once C re ate Sh ape < > creates the new Sh ape, it calls the
object's initialization method:

newShape->IShape(corner, width, height >;

322 Macintosh Programming Primer

Shape's Methods

Let's take a look at Sh ape's initialization routine, IS hap e C >:

void !Shape(corner, width, height >
Point corner;
int width;
int height;
{

}

SetRectC &bounds, corner.h, corner.v,
corner.h + width, corner.v + height >;

I S h a p e C > uses the . upper left comer (specified by the c o r n e r
parameter), along with the width and height parameters, to
calculate the S h a p e's bounding rectangle. The result is stored in the
Shape's instance variable, bounds. Because IShapeC >is one of
Shape's methods, it automatically has access to all of Shape's
instance variables.

THINK C automatically creates an object reference called t h i s,
making it available to all of an object's methods. Within a method,
the object reference this is set automatically to reference the
method's object. You can use this to access an object's instance vari
ables and methods. I Sh ape's call to Se t Re c t C > could have been
written as:

SetRectC &C this->bounds >, corner.h,
corner.v, corner.h + width, corner.v + height >;

Both calls to Set Rec t C > will work. Take a look at S hap e • s
D raw C > method:

void Draw<>
{

Re ct r;

r = bounds;
FrameRectC &r >;

}

Notice that D raw C > made a copy of the instance variable bounds
and then passed the copy to F ram e Rec t < > • This has to do with the
compiler's use of pointers to access instance variables. Treat an

Object Programming 323

instance variable as you would a dereferenced handle. Don't pass the
address of an instance variable to a routine that can move or purge
memory. Because you can't use H Loe k C > and HUn lock C > to lock
and unlock the instance variables (they're not handles), you'll have to
make a copy of the variable and pass the copy.

Before the instance variable bound s was passed to s et Re c t C > ,
Set Rec t C > was checked against the routines in Appendix A of the
Inside Macintosh X-Ref, the routines that may move or purge
memory. Because S e t R e c t C) isn't on the list, it's fine to pass the
address of bound s to it. Because F ram e Re c t C > is on the list, a copy
of bounds had to be used.

Adding Subclasses to Shaper

Version 1.0 of Shaper supported a single object class, Shape. Now,
two subclasses of S ha p e are created. Here's the declaration for a
subclass called Sq u a r e:

struct Square : Shape
{

};

void

void
void

!Square(Point corner,
int width >;
Draw<>;
DoClickC Point hitPt >;

Subclasses inherit the instance variables of their ancestors. An
ancestor of a class is any superclass of that class, any superclass of a
superclass of that class, ad infinitum. Because Square was made a
subclass of Sh ape, any Squares that are created automatically
have their own bounds instance variable.

Subclasses also inherit their ancestor's methods. In part, this
means that within I Sq u a r e C > , I S ha p e C > can be called. Here's
the code for I s q u a r e C > :

void !Square(corner, width)
Point corner;
int width;
{

!Shape(corner, width, width >;
}

324 Macintosh Programming Primer

Before the object class sq u a r e was defined, a new shape was
created by calling C r e a t e S h a p e C > • C r e a t e S h a p e C > created a
square by creating a S h a p e object and then passing I S ha p e C > the
same value for the width and the height parameters. Now that the
sq u a re class has been defined, there's another way to create a shape:

void
Point
int

CreateSquareC corner, width)
corner;
width;

{

}

Square *newSquare;

newSquare = new(Square >;
newSquare->ISquareC corner, width >;

Before, a square was created by calling C re a t e S h a p e C > :

CreateShapeC myPoint, SQUARE_SIDE, SQUARE_SIDE >;

Now, a square can be created by calling c re a t e Sq u a r e C > :

CreateSquareC myPoint, SQUARE_SIDE >;

CreateSquare() versus CreateShape()

There are some important differences between creating a square with
c re a t e S qua r e C > and creating a square with C r e a t e S h a p e C >.
The most obvious difference is in the number of parameters, and this
is exactly as it should be. Because squares always have equal sides, it
makes sense to specify the size of the square with a single parameter.
In a sense, Sq u a res are customized or specialized S ha p es. On the
flip side, Shapes are generalized Squares. You'll run into this
specialization and generalization frequently when defining your own
object classes.

Notice also that the code was able to call IS hap e C > from within
I sq u a re C > as if it were a local routine. This is method inheritance
at work.

A Second Shape Subclass

Here's the declaration of a second shape subclass, called Ci r c l e:

Object Programming

struct Circle : Shape
{

325

void
void
void

1c;rcleC Point center, int radius >;
DrawC>;
DoClickC Point hitPt >;

};

c i r c l e defines a circle, based on a center and a radius. Like the
Square class, Circle is a subclass of Sh ape. Here's the source
code for I C i r c l e C) :

void !Circle(center, radius >
Point center;
int radius;
{

}

Point corner;

corner.h = center.h - radius;
corner.v = center.v - radius;

!Shape(corner, 2 * radius, 2 * radius >;

I C i r c l e C > is pretty similar to I Sq u a r e C > . Unlike I Sq u a r e C > ,
I Ci r c l e C > has to convert its two parameters to another form before
passing them on to I S ha p e C > . The c e n t e r is converted to a corner,
and the r a d i u s is doubled to achieve the size of one side of the
bounding rectangle.

Here's a routine for creating a C i r c l e object:

void CreateCircleC center, radius)
Point
int
{

center;
radius;

Circle *newCircle;

}

newCircle = new(Circle >;
newCircle->ICircleC center, radius >;

If you wanted to maintain a list of C i r c l es, you might have
designed c r e a t e C i r c l e C > as a function returning a C i r c l e
object reference:

Circle *CreateCircleC center, radius >;

326 Macintosh Programming Primer

This same logic holds true for C re ate Sh ape C > and
C r ea t e S qua r e C > . You'll make these decisions as you lay out your
program's design.

Object Classes Exist on Levels

Why would you want to create three different object classes (Sh ape,
sq u a re, and Ci r c le) when you could get away with only creating
two (Sq u a re and C i r c l e)? There's an important object program
ming lesson here. Object classes exist on different levels, sharing a
hierarchical relationship. In the previous example, every object is
represented by a S hap e. If you maintained a list of every S ha p e
created, you could redraw all the shapes by sending a Draw C >
message to every object on the list. By doing this, you'd be focused on
drawing, without regard for the type of object you're drawing.

On the other hand, you might want to perform some function on a
particular shape. For example, suppose you added a method to the
c i r c l e class that returned the area of the object (area of a circle = 7t

* radius2). By stepping through a list of Circles and calling each
circle's area method, you could calculate the average area of all
the c i r c l es.

By maintaining general (S h a p e) and specific (C i r c l e, Sq u a r e)
views of the same objects, you can take advantage of the view that
makes sense for the current task. It's important to note that routines
like CreateSquareC >·and CreateCi re le(> (which represent
the programmer's interface) get the benefits of both levels in the
object hierarchy even though they themselves only work at one level.
The programmer calling Create Square C > is intent only on
creating a sq u a re object. Because of the way the object methods
were designed, that programmer gets the benefits of two object
classes (sq u a r e and s h a p e) with the creation of a single object.

The benefit of object class typecasting should also be considered.
For example, if you had a C i r c l e and you wanted to add it to a list
of shapes, you could just typecast the Ci r c le to look like a Sh ape:

Shapelist->AddShapeTolistC (Shape *>myCircle >;

In this example, a list object class called S h a p e L i s t supports a
method called Add S h a p e To L i s t C > . Add S h ape To L i s t C > takes a
single parameter, a s h a p e object reference. By casting the C i r c l e
reference my C i r c l e to look like a S h a p e reference, you can pass the
typecast c i r c l e to Add S ha p e To L i s t C >.

Object Programming 327

Another benefit of object programming is the openness and
maintainability of the program architecture. Think about the process
of adding rectangles or ovals to Shaper. Rather than rewriting the
program, modifying the data structures that form the basis of the
program architecture, you merely create a new class, providing the
declarations and methods for the class. The routines that work on all
objects within a class don't change at all!

For example, say that you create a new oval class as a subclass of
S hap e. As long as you provide a D r a w < > method with your new
class, the routine that draws all Sh apes will pass a Draw<>
message to each Ova l, because each Ova l is a subclass of Sh ape.
Even more importantly, the routine that draws all Shapes did not
have to be modified.

More about Methods

An interesting property of object methods is their inheritance
mechanism. One example of this involves the D raw < > methods
described earlier. Shaper sends a D r a w < > message to the lowest
objects in the shape class hierarchy. As shown in Figure 6.2, the
lowest objects in Shaper's object hierarchy are Ci r cl es and
Squares.

When a message is sent to an object, the object's method matching
that message is executed. If the object doesn't have a method that
matches the message, the object's superclass is checked for a
matching method. This process is repeated until either a match is

Shape

- IShapeO
- Draw()

l
l I

Circle Square

- ICircleO - ISquareO
- Draw() - Draw()

Figure 6.2 Shaper's object hierarchy.

328 Macintosh Programming Primer

found and a method is executed, or the last class checked was a root
class. Of course, sending a message to an object that doesn't support
a corresponding method is an error that will be detected at compile
time.

Ifa Draw<> messageissenttoa Circle, the Circle's Draw<>
method is executed. Suppose a new subclass, called Ova l, is created
under S ha p e. Suppose also that Ova l does not support a D r a w < >
method. The object hierarchy described is pictured in Figure 6.3.

If a D r a w < > message is sent to an Ova l , no matching method will
be found. When this happens, ova l's superclass will be searched for
a matching method. This means that Sh ape's Draw< > method will
be executed. If you design shape's Draw< > method to draw a square
with a question mark in the middle of it when called, the result will
look something like Figure 6.4.

If a new shape is added to Shaper and the new shape doesn't come
with its own Draw<> method, Sh ape's draw method will be
executed, and the square/question mark combination will be drawn.

Notice that no code had to be written to handle this case.
Technically, a subclass with a method that matches a method in its
superclass is said to override its superclass's method. The concepts of
inheritance and method-overriding are a big part of what makes
object programming such a valuable technique.

Shape

- IShape()
- Draw()

I
l l l

Circle Square Dual

- ICircleO - ISquareO - IOual
- Draw() - Draw()

Figure 6.3 An Ova l class with no D raw C > method ..

Object Programming 329

_J

=D Shaper 2.0

0

~

I D

Figure 6.4 An Oval drawn with Shape's Draw<) method.

The THINK Class Library

Another valuable facet of object programming is the reusability of
object classes. Once you build an object class and all its methods, it is
easy to reuse the class in another program. A great example of this is
the THINK Class Library, or TCL. The TCL is an extensive set of
object classes, complete with methods, that implements a large part
of the Macintosh interface.

The TCL has classes that take care of things like event handling,
menu processing, clipboard management, printing, desk accessories,
and even MultiFinder compatibility. Think about that for a second.
By taking advantage of the TCL, your program will automatically
have a complete, standard, Macintosh user interface. You won't have
to worry about MultiFinder friendliness-it's already there. You
won't have to deal with the clipboard unless you want to do so. TCL
even supports TextEdit.

330 Macintosh Programming Primer

TCL Organization

The TCL is organized in three different ways. The class hierarchy
represents all of the classes found in the TCL, organized as shown in
Figure 6.5.

Each of the TCL classes start with the letter C. To make things a
little easier to read, the letter C was left off the class names in
Figure 6.5. For example, the name of the highest level class is
actually c ob j e c t, not ob j e c t.

The relationships shown in Figure 6.5 are strictly subclass- and
superclass-oriented; they are inheritance relationships, like those
described by a family tree. For example, the CO b j e ct class is a root
class (it has no superclass). The c Di rector class is a subclass of the
CBureaucrat class and a superclass of the CDocument and
cc l i p boa rd classes.

The Visual Hierarchy

Each TCL program has a visual hierarchy, which may change
dynamically as the program runs. The visual hierarchy lays objects
out in relationships based on visual events, such as mou se Downs,
act i vat eEvt s, and update Ev ts. Take a look at the sample appli
cation window shown in Figure 6.6. The top of the visual hierarchy in
this picture is the gray area representing the Macintosh desktop. The
Macintosh desktop is modeled by the CDesktop class. mouse Downs,
act i vat e Ev ts , and update Ev t s that involve the Macintosh
desktop are sent to a c Des kt op object.

Next in the visual hierarchy is the window, modeled by the
C w i n do w class. The window is said to be enclosed by the desktop. A
c W i n do w object most likely would be enclosed by a CD es kt op
object.

The window is divided into areas called panes. At the top of the
window is a pane that contains two subpanes, one for each of t wo
pop-up menus. Each of these areas is modeled by the C Pane class.
The bottom half of the window is a scrolling pane-a pane with
vertical and hori zontal scroll bars that enable scrolling of a larger

Object Programming 331

Bureaucrat EditText

CheckBox

Object RadioButton

sw;tchboard

me

Chore

Bartender

Co1lecUon Cluster Ust

Decorator

Env;ronment

Error

Printer

Task Mouse Task

Figure 6.5 The TCL classes. Note the omission of the leading C in
each class name.

332 Macintosh Programming Primer

Circles

Figure 6.6 A sample application window.

pane, called a panorama. The scroll bars each are modeled by the
CS c r o L LB a r class. Together with the scrolling pane, the scroll bars
make up an object of the c Scro L LP an e class. The larger pane (the
pane in which all the shapes a re drawn) is a C Panorama object. If a
program draws directly in a c Panoram a, scrolling is handled auto
matically. When a mouse Down occurs in a CS c r o L L Pane ' s scroll
bar, the C Panorama associated with that cs c r o L L Pane is scrolled
automatically. This m eans that a ny panes enclosed by t he
c Panorama (such as the circles, ovals, and rectangles shown in
Figure 6.6) will be scrolled as well.

Figure 6.7 shows a portion of the sample application window's
visual hierarchy. As is usually the case, a c Des kt op object is the
highest-level enclosure. Next comes the CWi ndow , followed by the
C Pa n e from the top half of the window and the two C Pa n es that
implement the pop-up menus.

Just as the TCL classes handle mou se Down events, they a lso
handle up d a t e Ev ts and a c t i vat e Ev t s. In the example shown in
Figure 6.6, each of the pattern-filled shapes drawn in the window is

Object Programming

CDesktop

CWindow

Macintosh
Desktop

Application
window

CP ane between
CPane window's drag

region and CScro 11 Pane

CPane CPane

Shapes Pattern
pop-up menus pop-up menus

Figure 6. 7 Part of the sample application window's visual
hierarchy.

333

an individual C Pane, enclosed by the c Pa no ram a associated with
the c s c r o l l Pa n e. When the C Pa no r a ma scrolls so that a piece of
one of its enclosed C Panes is revealed, the TCL will receive an
up d a t e Ev t and will automatically send a D r a w C > message to that
C Pane. You'll see an example of this when the sample object program
is presented later in the chapter.

The Chain of Command

A TCL program is also organized as a chain of command. Just as
the visual hierarchy is driven by visual messages, the chain of
command is driven by direct commands. A direct command is a
request that an object perform an action, usually as a result of a
menu selection. The chain of command specifies which object handles
which direct command.

Under the chain of command, objects are organized according to a
hierarchy of supervisors. If a direct command is passed to an object

334 Macintosh Programming Primer

CRpplication

CDocument CDirector

CWindow

•
•
•

C:Window

•
•
•

Figure 6.8 Typical chain of command.

and the object can't handle the command, it passes the command on
to its supervisor. The CA pp l i c a t i on is the highest object class in
the chain of command and is the only class that doesn't have a
supervisor.

Every object in the chain of command is a descendant of the
C Bureaucrat class and is thus called a bureaucrat. Every bureau
crat has a ·o o Comm and C > method that can be overridden by any of
its subclasses. The default Do Comm and C > method sends a
Do Comm and C > message to its supervisor. The various bureaucrats in
your program will support DoCommand C > methods that handle your
program's commands. Many of the TCL classes come with built-in
Do Comm and C > methods to handle parts of the Macintosh interface.

Figure 6.8 shows a chain of command organization for a typical
Macintosh application. As always, a c App l i ca t i on object is in
charge. Every one of your application's windows will report to either
a C D i r e c t o r or to a C D o c urn e n t . Windows reporting to a
c Doc urn en t always have a file associated with them. Window
reporting to a C D i recto r don't have a file associated with them.
CD i re ct o r windows are typically status or palette windows. Below
the Cw i n do w in the chain of command you'd find objects such as
C Pa n es and C Pa no r a rn as, as described earlier. Because these are all
subclasses of CB u re au c r a t, they all support the Doc om man d C >
method.

The object that will get the first chance to handle a command is
called the gopher. Your application must set the global variable

Object Programming 335

__J

g Go p h e r to reference the gopher object. If the gopher can't handle
the command, it will pass ,the command to its supervisor. This
completes the chain of command.

The Switchboard and the Bartender

The main event loop in a TCL application is implemented by an
object called the switchboard. Naturally enough, the switchboard is
an object in the cs w i t ch boa rd class. The switchboard calls
W a i t N e x t Eve n t C > or Ge t N e x t Eve n t C > and routes the retrieved
event (in the form of a message) to the appropriate object. Every
application has one (and only one) s~itchboard.

Some of these events get routed to an object called the bartender
(of class CB a rte n de r). The bartender is in charge of the menu bar
("menu bar," "bartender" ... get it?). This is a pretty far-reaching
responsibility. When a command-key equivalent is typed, or when a
mouse Down occurs in the menu bar, the bartender has to make sure
that every menu and menu item is enabled or disabled properly
before the user gets to use the menu bar. Whenever a menu selection
is imminent, the bartender sends a message to the chain of command
(starting at the gopher), asking the bureaucrats to update their menu
items. The nice thing about this approach is that menu items that
don't make sense at the moment are disabled. It's important that you
program with this in mind.

Building an Application with the TCL

Although you can build a complete TCL application from scratch,
there's really no need to do so. Version 4.0 of THINK C shipped with
several sample applications that you can use as building blocks for
your own applications. If you start off with an application that
supports printing, you won't have to create your own print-handling
objects. You'd be amazed at how much functionality can be reused in
even the simplest of the THINK C sample programs. The next
sections take a look at some of them.

336 Macintosh Programming Primer

Art Class

One of the most sophisticated of the THINK C TCL sample
applications is called Art Class. Art Class, shown in Figure 6.9, is a
MacPaint-like painting program. It features full paint support, full
printing support, and tear-off tool and pattern palette menus. The
Art Class project is so big, it had to be broken down into five separate
segments. The first segment contains source code specific to the Art
Class project. The last four segments contain source code from the
THINK Class Library. These last are files such as CApplication.c,
CBartender.c, etc. When you build your own projects, you'll add
these same TCL source files.

If you look inside the Art Class Folder that comes with THINK C,
you'll see one folder called Art Class Sources and another called
Art Class Headers. Figure 6.10 shows a Finder listing of both of
these folders. The Art Class Sources folder contains the sources from
the first Art Class segment. The Art Class Headers folder contains
one header file for every one of the source files . This one-to-one
correspondence is pretty typical. Although you may not maintain

,. ...
,.. File Edit TeHt Lines Patterns Tools

Untitled-1

Figure 6.9 An Art Class screen shot.

Object Programming 337

§0 Art Class Sources 0§ i~U Art Class Headers 0§
H!m! Size Kir Name Size Kir

[) Art Class .c 1K IQ
[) CAboutBox.c 6K

D ArtClassCmds.h 2K Q
D C AboutBox .h 1K

[) CArtClassApp.c 10K D CArtClassApp.h 1K

[) CArtClassDoc.c 121< [) CArtclassDoc.h 2K

[) CCaption.c 6K D CCaption.h 1K

[) CClearTask.c 3K [) CClearTask.h 1K

[) CDr agger .c 9K [) CDr agger .h 1K

[) CPaintPane.c 16K [) CPaintPane.h 2K

[) CPaintTask.c 3K [) CPaintTask.h 1K

[) CPatternsDir .c 4K [) CPatternsDir .h 1K

[) CSe lectionRect .c 4K [) CSelectionRect.h 1K

[) CToolPens.c 12K [) CToolPens.h 2K

[) CToolsDir .c 3K [) CToolsDir.h 1K

[) CToolShapes.c 10K Cl CToolShapes.h 3K

[) CToolText.c 4K IQ
lQl jg 12:!

Cl CToolText.h tK Q
[QI 10 12:1

Figure 6.10 Art Class source and header files.

separate source and header folders, you'll probably end up with one
header file for every source file you provide.

Notice that the majority of the source files in the Art Class project
are not found in the Art Class Folder. Instead, both the sources and
the include files for the TCL classes can be found inside the THINK
Class Library folder, which is inside the THINK C Folder in your
development folder. You'll use these same sources in your own
projects.

Tiny Edit

TinyEdit is actually a full-fledged text editor, based completely on
TextEdit. Figure 6.11 shows a screen shot of TinyEdit in action. If
you're going to write an object-based TextEdit application, TinyEdit
is definitely the place to start.

Once again, the first segment of the TinyEdit project contains the
TinyEdit-specific files. The other segments contain TCL-specific files.

338 Macintosh Programming Primer

The Starter Application

The Starter application that comes with THINK C is exactly what its
name implies: a starting point for your own (non-TextEdi t)
applications. Figure 6.12 shows a Starter screen shot, with its three
menus and an open window. Of all the TCL sample applications,
Starter is the simplest; it is the best application to work with while
you are learning object programming.

Before you go any further, now would be a good time to install the
Starter project on your hard drive. If you're running without a hard
drive, or with less than two megabytes of RAM, you might want to
think about upgrading your system. Programming with objects is a
memory- and disk-intensive proposition.

If you are running with THINK C version 4.0, you might want to
check out AutoWeave, the THINK C upgrade program available on
the Symantec BBS (and others as well).

Autoweave uses scripts to update selected parts of your THINK C
environment. For instance, one AutoWeave script is designed to
update the THINK C program, and a separate one is designed to
update the TCL demo programs. Download the whole package and
update as much as you can. The sample programs in this chapter
ar~ based on THINK C, version 4.02. Some of the source code
may contain references to Autoweave in the form of comments.
Ypur code should work whether or not you run Autoweave.

The Symantec BBS is a service of Symantec Corporation, 10201
Torre Avenue, Cupertino, CA 95014. !t is provided primarily for
customers of Symantec, although anyone may browse and make
use of this BBS. There are no subscription or use charges. The
phone number for the BBS is 1-408-973-9598. The BBS supports
300-, 1,200-, and 2,400-baud rates and the download protocols
supported are XMODEM, YMODEM and KERMIT. The primary use
of the bulletin board is to provide a quick and cheap way for users
to obtain free upgrades to Symantec software.

1

Object Programming

r
File Edit Font Size Style

Untitled

Here's some text, typed into Ti nyEdi t!!!

Figure 6.11 A TinyEdit screen shot.

r .&.
• File Edit

Untitled 1

Figure 6.12 The TCL Starter application.

339

340

_J

Macintosh Programming Primer

Once your Starter project is installed, launch THINK C and open
Starter.7t. Select Run from the Project menu and then go do the
dishes while the project compiles. If you encounter any problems
getting Starter to run, check your THINK C User's Guide. If you
really run into a wall, try calling THINK C's technical support line.

Once you get Starter running, you should see something like
Figure 6.12. The open window represents a CDocument, linking a
CW i n do w and a c F i l e. Because the window hasn't been saved yet,
the file hasn't been specified. Try saving to and opening up files. The
mechanisms are in place for performing these operations, but no data
is being saved or read. Starter is like a blank canvas. You'll customize
Starter by adding your own objects to it. Some of these objects will
define the file format and the data to be saved in Starter's files. Still
other objects will refine the window, adding pop-up menus, tool
palettes, or whatever helps to make your application unique.

Starter will form the basis for your first object program, called
MyStarter.

My Starter

MyStarter behaves much like Starter, the sample TCL application.
MyStarter's windows, however, are much more interesting. First of
all, MyStarter's windows are designed to scroll. The window is based
on a C Pa no ram a controlled by a C S c r o l l Pa n e.

When your mouse cursor is over a blank portion of the window, it
changes into a three-dimensional plus sign (like the one shown in
Figure 6.13).

lf you click the three-dimensional plus sign cursor in the window, a
random rectangle, filled with a random pattern, will appear. This
rectangle is an instance of a C D r a g Pa n e object. (The C D r a g Pa n e
class is defined a bit later in the chapter.) When your mouse cursor
moves over a c D rag Pane it changes automatically into an arrow
cursor. If you click the mouse in a C D r a g Pa n e, an outline of the
CD rag Pane appears, and you can drag the object around the

Figure 6.13 The 3D plus sign cursor.

Object Programming 341

! m! I
~ ~
: ~ :
l ~
1 ~

Figure 6.14 MyStarter in action.

window. If you drag the object beyond the window boundaries, the
CS c r o l LP an e scrolls automatically until either you release the
mouse button or the scroll bar hits its limit. The dragging operation
is implemented by a CMouse object. Figure 6.14 shows MyStarter in
action.

Creating a Folder for MyStarter

Make a copy of the Starter folder and place it in your development
folder. Rename the folder to MyStarter f. Figure 6.15 shows a
Finder listing of the files in MyStarter f. The. files CStarterApp.c
and CStarterApp.h define the Starter's CA pp l i ca t i on object
class , called cs tarter App. The fi les CStarterDoc.c and
CStarterDoc.h define Starter's CD o cum en t object class , called
CS ta rt e r Doc . The files CStarterPane.c and CStarterPane.h
define Starter's C Pane object class, called cs ta r t e r Pane. You'll
make a slight change to the CStarterDoc files and completely replace
the CStarterPane files. This is pretty much how you'll start most of
your Starter-based development efforts.

342 Macintosh Programming Primer

§0§ MyStarter f §§0§
Name

Cl CStarter App .c

Cl CStarter App .h

Cl CStarterDoc .c

Cl CStarterDoc .h

Cl CStarterP ane .c

Cl CStarterP ane .h

Cl Starter .c

Cl Starter.11

Cl Starter .11.rsrc

Figure 6.15 A copy of the Starter folder.

The file Starter.c contains a single routine, ma i n < >, which
creates a new CS ta r t e r App object and starts it running. The file
Starter.1t contains the Starter project. The file Starter.1t.rsrc
contains the project resources. You won't be making any changes to
these three files.

You'll be adding two new .c files and two new include files to the
project. The files CDragPane.c and CDragPane.h implement the
c Drag Pane described previously. The files CMouse.c and
CMouse.h implement the CM o use, also described previously.

Changing CStarterDoc.c

The file CStarterDoc.c contains the methods for the C St a rte r Doc
object class. One of these methods, Bu i l d W i n do w < > , creates a new
window and also creates the objects associated with that window. The
Bu i l d W i n do w < > that comes with Starter doesn't know about the
extensions planned for this example, so the routine will be replaced.

Launch THINK C by double-clicking on the file Starter.1t in the
MyStarter f folder. Now open the file CStarterDoc.c. About two-

Object Programming 343

thirds of the way down in CStarterDoc.c, you'll find the routine
Bu i l d W i n do w < > • Replace the existing Bu i l d W i n do w < > with the
following code:

/***
* BuildWindow

*
* Replace the old BuildWindow with this one •••

*
***/

void CStarterDoc::BuildWindow (Handle theData)
{

CScrollPane
CStarterPane
Re ct

*theScrollPane;
*thePanorama;
pan Frame;

itsWindow = new< CWindow >;
itsWindow->IWindow< WINDStarter, FALSE, gDesktop, this >;

theScrollPane = new< CScrollPane >;

theScrollPane->IScrollPane< itsWindow, this,
O, O, 0, O,
sizELASTIC, sizELASTIC,
TRUE, TRUE, TRUE >;

theScrollPane->FitToEnclFrame(TRUE, TRUE >;
theScrollPane->SetSteps(10, 10 >;

thePanorama = new(CStarterPane >;
thePanorama->IStarterPaneC theScrollPane, this,

O, O, O, 0,
sizELASTIC, sizELASTIC >;

thePanorama->FitToEnclosureC TRUE, TRUE >;
theScrollPane->lnstallPanoramaC thePanorama >;

itsMainPane = thePanorama;
itsGopher = thePanorama;

344

}

Macintosh Programming Primer

itsWindow->ZoomCinZoomOut>;
thePanorama->GetframeC&panframe>;
thePanorama->SetBoundsC&panframe>;

gDecorator->PlaceNewWindowC itsWindow >;

That's the only change you'll need to make to CStarterDoc.c. Close
the file and save your changes.

Replacing CStarterPane.c

The next step is completely replacing the contents of the file
CStarterPane.c. Open the file CStarterPane.c and delete all of its
contents. One way to do this is to select Select All from the Edit
menu and then press the Delete or Backspace key. Once you've
deleted the contents of the file, type in the following replacement
code:

#include "CStarterPane.h"
#include "CDragPane.h"
#include "CMouse.h"

!** IStarterPane */

void CStarterPane::IStarterPaneC anEnclosure,
aSupervisor,

CView
CBureaucrat
short
SizingOption
{

*anEnclosure;
*aSupervisor;

aWidth, aHeight,
aHEncl, aVEncl,
aHSizing, aVSizing >

aWidth, aHeight, aHEncl, aVEncl;
aHSizing, aVSizing;

CPanorama::IPanoramaC anEnclosure, aSupervisor,
aWidth, aHeight,
aHEncl, aVEncl,
aHSizing, aVSizing >;

Object Programming

Get Da t eT i me (unsigned Long*) &randSeed);

SetWantsClicksC TRUE >;
}

/******************************** DoClick *********/

void CStarterPane::DoClickC hitPt, modifierKeys, when
Point
short
long
{

}

hitPt;
modifierKeys;
when;

int width, height, patNum;
CDragPane *myDragPane;

width = Randomize(MAX_PANE_SIZE);
height = Randomize(MAX_PANE_SIZE >;
patNum = Randomize(NUM_PATS >;

myDragPane = new(CDragPane >;
myDragPane->IDragPane(hitPt, height, width,

patNum, this, this >;

!******************************** AdjustCursor *********/

void CStarterPane::AdjustCursorC where, mouseRgn >
Point where;
RgnHandle mouseRgn;
{

SetCursorC *GetCursor(plusCursor) >;
}

/******************************** DoDrag *********/

void CStarterPane::DoDragC objWidth, objHeight,

int
Point
Re ct

hitPt, startlocation, endlocation
objWidth, objHeight;
hitPt;
startlocation, *endlocation;

345

346

{

}

CMouse
Re ct
Point p;

*aMouseTask;
boundsRect;

glsScrolling = TRUE;

boundsRect = bounds;

aMouseTask = new(CMouse >;

Macintosh Programming Primer

aMouseTask->IMouseC NO_UNDO_STRING, objWidth,
objHeight, hitPt, startlocation, this >;

Prepare<>;

GetMouseC &p >;
TrackMouseC aMouseTask, p, &boundsRect >;

glsScrolling = FALSE;

aMouseTask->GetlocationC endlocation >;

Refresh<>;

!******************************** Randomize *********/

Randomize(range)
int range;
{

}

long rawResult;

rawResult = Random<>;
if C rawResult < 0) rawResult *= -1;
return< CrawResult * range) I 32768 >;

Once the code is typed in, save the changes and close the file.

Object Programming 347

Replacing CStarterPane.h

Next, replace the contents of the include file CStarterPane.h. Open
the file CStarterPane.h and, just as you did with CStarterPane.c,
delete the contents. Once you've deleted the contents of the file, type
in the following replacement code:

#define _H_CStarterPane
#include <CPanorama.h>

#define MAX_PANE_SIZE 200
#define NUM_PATS 4
#define NO_UNDO_STRINGO

struct CStarterPane : CPanorama
{

void

void

void

void

};

IStarterPaneC CView *anEnclosure,
CBureaucrat *aSupervisor,
short aWidth, short aHeight,
short aHEncl, short aVEncl,
SizingOption aHSizing,
SizingOption aVSizing);

DoClick(Point hitPt,
short modifierKeys, long when >;

AdjustCursor< Point where,
RgnHandle mouseRgn >;

DoDrag(int objWidth, int objHeight,
Point hitPt, Rect frame,
Rect *endlocation >;

Once the code is typed in, save the changes and close the file.

Creating CDragPane.c

The last four steps in this process involve the creation of four new
source files. Create a new source code file by selecting New from the
File menu. Save the file as CDragPane.c and add the file to the

348 Macintosh Programming Primer

project. Make sure you add the file to the first code segment. You can
do this by clicking on any file in the first code segment (such as
Starter.c) and then adding the file CDragPane.c to the project. Once
the file is added, type in the following code:

#include 11 CStarterPane.h"
#include 11 CDragPane.h"

Boolean glsScrolling = FALSE;

!******************************** IDragPane *********/

void CDragPane::IDragPaneC corner, height, width,
patNum, anEnclosure, aSupervisor

Point
int
int
int

corner;
height;
width;

CView
CBureaucrat
{

patNum
*anEnclosure;
*aSupervisor;

}

Rect r;

CCCPanorama *>anEnclosure)->GetBoundsC &r >;

if CCcorner.h + width) > r.right)
corner.h -= corner.h + width - r.right;

if CCcorner.v + height) > r.bottom)
corner.v -= corner.v + height - r.bottom;

!Pane(anEnclosure, aSupervisor,
width, height,
corner.h, corner.v,
sizFIXEDSTICKY, sizFIXEDSTICKY >;

patNumber = patNum;

SetWantsClicksC TRUE >;
Refresh<>;

Object Programming

/******************************** Draw *********/

void CDragPane::DrawC rPtr >
Rect *rPtr;
{

if (
{

glsScrolling

Prepare<>;

switch< patNumber
{

case 0:
Pen Pat<
break;

case 1 :
PenPat(
break;

case 2:

ltGray) ;

gray) ;

PenPatC dkGray >;
break;

}

}

}

default:
PenPatC black >;
break;

PaintRect< rPtr >;

!******************************** DoClick *********/

void CDragPane::DoClickC hitPt, modifierKeys, when)
Point hi tPt;
short modifierKeys;
long when;
{

Rec t r;
Rect endlocation;

r = frame;
EraseRectC &r >;

349

350

}

Macintosh Programming Primer

FrameToEnclRC&r>;

CCCStarterPane *)itsEnclosure)->DoDragC width,
height, hitPt, r, &endLocation >;

Place(endLocation.left, endlocation.top, TRUE >;

Save the changes and close the file.

Creating CDragPane.h

Select New from the File menu to create a new source code file. Save
the file as CDragPane.h. Add the file to the project, making sure
you add it to the first code segment. Type the following code into
CDragPane.h:

#define _H_CDragPane

#include 11 CPane.h"

extern Boolean glsScrolling;

struct CDragPane CPane
{

};

int patNumber;

void IDragPaneC ~oint corner, int height,
int width, int patNum,
CView *anEnclosure,
CBureaucrat *aSupervisor >;

void Drawe Rect *area >;

void DoClickC Point hitPt,
short modifierKeys, long when >;

Save the changes and close the file.

Object Programming 351

Creating CMouse.c

Select New from the File menu to create a new source code file. Save
the file as CMouse.c. Add the file to the project, making sure you
add it to the first code segment. Type the following code into
CMouse.c:

#include 11 CMouse.h 11

/******************************** !Mouse *********/

void CMouse::IMouseC strID, objWidth, objHeight,
hitPt, theloc, theRama >

int
int
int
Point

strID;
obj Width;
obj Height;
hitPt;

Re ct
CPanorama
{

the Loe;
*theRama;

}

Rect r;

IMouseTaskC strID >;

thePanorama = theRama;
thelocation = theloc;

thePanorama->GetBoundsC &r >;
r.left += hitPt.h;
r.top += hitPt.v;
r.right -= (objWidth - hitPt.h >;
r.bottom -= C objHeight - hitPt.v >;
theBounds = r;

/******************************** BeginTracking *********/

void CMouse::BeginTrackingC startPt >
Point *startPt;
{

352 Macintosh Programming Primer

}

Rect r;

PenModeC patXor >;
PenPatC gray >;

r = thelocation;
FrameRectC &r >;

!******************************** KeepTracking *********/

void CMouse::KeepTrackingC currPt, prevPt, startPt)
Point *currPt;
Point *prevPt;
Point *startPt;
{

Re ct
Long
Point
RgnHandle

r, f;
curTicks;
startPosit, newPosit, cp, pp;
clipRgn;

thePanorama~>GetPositionC &startPosit >;

clipRgn = NewRgnC>;

if thePanorama->AutoScrollC *currPt)

{

I I ! EqualPtC *currPt, *prevPt >

thePanorama->GetPositionC &newPosit >;

GetClipC clipRgn >;
r = C**clipRgri).rgnBBox;
OffsetRectC &r, startPosit.h - newPosit.h,

startPosit.v - newPosit.v >;

thePanorama->GetFrameC&f >;
PinlnRectC&f, &Cr.top));
PinlnRectC&f, &Cr.bottom));

ClipRectC &r >;

Object Programming

}

}

r = thelocation;

curTicks = TickCountC>;
while C curTicks == TickCountC) > ;
FrameRectC &r >;

cp = *currPt;
pp = *prevPt;
PinlnRectC&theBounds, &cp);
PinlnRectC&theBounds, &pp);

OffsetRectC&r, cp.h - pp.h, cp.v - pp.v);

SetClipC clipRgn >;

curTicks = TickCountC>;
while C curTicks == TickCount()) ;
FrameRectC &r >;

thelocation = r;

DisposeRgnC clipRgn >;

/******************************** EndTracking *********/

void CMouse::EndTrackingC currPt, prevPt, startPt)
Point *currPt;
Point *prevPt;
Point *startPt;
{

}

Rect r;

r = thelocation;
FrameRectC &r >;
PenNormalC>;

353

354 Macintosh Programming Primer

!******************************** Getlocation *********/

void CMouse::Getlocation(theloc)
Rect *theloc;
{

}

*theloc = thelocation;

Save the changes and close the file.

Creating CMouse.h

Select New from the File menu to create a new source code file. Save
the file as CMouse.h. Add the file to the project, making sure you
add it to the first code segment. Type the following code into
CMouse.h:

#define _H_CMouse

#include 11 CMouseTask.h 11

#include <CPanorama.h>

struct CMouse : CMouseTask
{

} . ,

CPanorama
Re ct

void

void

void

void

void

*thePanorama;
thelocation, theBounds;

!Mouse(int strID,
int objWidth, int objHeight,
Point hitPt, Rect theloc,
CPanorama *theRama >;

BeginTrackingC Point *startPt >;

KeepTrackingC Point *currPt,
Point *prevPt, Point *startPt >;

EndTrackingC Point *currPt,
Point *prevPt, Point *startPt >;

GetlocationCRect*>;

Save the changes and close the file.

Object Programming 355

Checking Your Work

That's it! Now that you've entered all the source code, you might
want to check your project window against the project window in
Figure 6.16. There should be a total of four segments in the project.
All the new files you created should be in the first segment.

You should also compare your Finder listing of the folder
MyStarter f with the Finder listing in Figure 6.17. Make sure you're
not missing any files.

OK. Ready to run? In THINK C, select Rim from the Project menu.
Fix any compilation errors that come up and save any changes before
you run. You may want to run AutoWeave (described earlier in the
chapter) to bring your copy of the TCL up to date).

Once the program runs, a blank window should appear, and the
menus S, File, and Edit should appear on the menu bar. When you
move your cursor over the content region of the window, the cursor
should change to the three-dimensional plus sign shown earlier in
Figure 6.13.

Starter. 11
N.am• obj siz•
CDngP.an•.c 384 Q
CHoun.c 636

1§~·---~I
H.acTnps 9458
oops
OSCh.cks .c

CBord•r .c
CButton .c

CControl.c
CD•sktop.c
CEditT•xt .c

CP.anor.am.a.c
CPiotur•.c
CR.adioButton.c
CScro 118.ar .c
CScrollP.an• .c

240
228

614
420
168

1534
2508
2098
4348

:m Ill~
Figure 6.16 MyStarter's project file.

~~;:;~c0;~:t.c 2;:ri liJ1li
CY1•v .c 2276 :!il!i

.... ~~.~.!!.~.!!.!..:!'. ... 3.? .. ~.3. .. iliii!
Cllpplic.ation.c 3358 lilili

~=:~::::;:~~c 3:~~ 11!11!

CChoru 24 !iii!:
CClipbo.ard.c 1756 ,,!J!.

~~~~::: . ;E Ill, 
Cbinctor .c 674 iiiiii 
CDocum•nt.c 2020 ili!i! 
CEnvironm.nt .c 26 !jlii! 

~~~;.~: .c 
1 !:: 11111·

CUst.c 1724 !J,1;.
CHounT.ask .c 108 !!!Ii

~=:~~:~:up .c 1 !~; !lllit
CSvitchbo.ard .c 1644
CT.ask.c 142

l2J

356

§0§ MyStarter f §E!l§
Name

[) CDr agP ane .c
[) CDr agP ane .h
[) CMouse.c

[) CMouse.h

[) CStarter App .c

[) CStarter App .h

[) CStarterDoc .c
[) CStarterDoc .h
[) CStarterP ane .c

[) CStarterP ane .h

[) Starter .c

[) Starter .11

[) Starter .11.rsrc

Macintosh Programming Primer

Figure 6.17 These files should be in the folder MyStarter f.

Click the mouse in the window. A rectangle should appear, filled
with one of the gray patterns (or black). As you move the mouse over
the rectangle, the cursor should change back into an arrow. Click the
mouse inside a rectangle. A gray outline should appear in place of the
rectangle. The outline should follow the mouse. When you release the
mouse button, the rectangle should reappear in the new position.

Try dragging a rectangle outside the window boundaries. If the
window can scroll in that direction, it will. If it can't, the rectangle
will be pinned to the edge of the rectangle.

Experiment. Try opening multiple windows. Fill a window with
rectangles, then drag a piece of the window off screen, then on-screen
again. All the rectangles should be redrawn. When you're ready, quit
by selecting Quit from the File menu.

The next section takes a look at the source code.

Object Programming 357

Walking Through the MyStarter Source Code

Because of the complexity of the THINK Class Library, this section
doesn't attempt to walk through all the source code involved in this
program. That's one of the beauties of object programming: you don't
necessarily have to understand the inner workings of the TCL to take
full ad~antage of it.

The Routine BuildWindow(

To start with, look at the routine Bui l d W i n do w C > that was
replaced in the file CStarterDoc.c. Notice the way it is declared. The
two colons preceding a method name are a convention used
throughout the TCL. You should definitely read through as much of
the TCL source as you can. A good place to start is with the original
version of CStarterDoc.c.

The routine Bu i l d W i n do w C > is called whenever the application
wants to create a new window. The parameter t he D a ta is a handle
to the data that will be associated with the window. Although
t h e D a t a is not used in this particular program, it is an important
part of the C Do c um en t 's Open F i l e C > method.

void CStarterDoc::BuildWindow (Handle theData>
{

CScrollPane
CStarterPane
Re ct

*theScrollPane;
*thePanorama;
pan frame;

First, a new CW i n do w object is created and initialized.
i t s W i n do w is a C D i r e c t o r instance variable. C D o c um e n t is a
subclass of C D i r e c t o r, so it inherits the instance variable. While
you are coming up to speed, it is a good idea to look up everything
you can in the THINK C User's Guide. The major classes are
described alphabetically in chapters 17-53. Each chapter lists a
single class, along with the class's instance variables and methods.

itsWindow = new< CWindow >;
itsWindow->IWindowC WINDStarter, FALSE,

gDesktop, this >;

Once the C W i n do w is initialized, a C S c r o l l Pa n e is created and
initialized. When you look up a class in the User's Guide, it's a good

358 Macintosh Programming Primer

idea to look at the parameters of the class's initialization method. If
you can't find a method or an instance variable referred to by a class,
try looking in the documentation for the class's superclass.

theScroLLPane = new(CScroLLPane >;

theScrollPane->IScroLLPaneC itsWindow, this,
O, 0, O, 0,
sizELASTIC, sizELASTIC,
TRUE, TRUE, TRUE >;

F i t To En c L F r a me C) makes the C S c r o L L Pa n e the same size as
its enclosure, which, in this case, is the CW i n do w just created.
Set Steps C > sets the resolution of the CS c ro LL Pan e's scroll bars.

theScrolLPane->FitToEncLFrameC TRUE, TRUE >;
theScrollPane->SetStepsC 10, 10 >;

t h e Pa n o r am a is the C Pa no r am a that slides around under the
C S c r o L l P a n e . t h e Pa n o r a ma is actually declared as a
C S t a r t e r Pa n e, one of the new object classes you created yourself.
The parameters to IS ta rte r Pane C) will be used to call
I Pano ram a 0 within IS ta rt e r Pane 0. Look up I Pano ram a 0
in the User's Guide.

thePanorama = new< CStarterPane >;
thePanorama->IStarterPaneC theScrolLPane, this,

o, 0, 0, 0,
sizELASTIC, sizELASTIC >;

Calling Fi t To Enc lo sure C > is not the same as calling
F i t To E n c L F r a me C) . F i t To E n c l o s u r e C > will make the visible
part of the panorama coincide with the interior (not the frame) of the
panorama's enclosure (t h e S c r o l l Pa n e). I n s ta l l Pa no ram a C >
tells t hes c roll Pane that the Pa no ram a is its panorama.

thePanorama->FitToEnclosureC TRUE, TRUE >;
theScrollPane->InstalLPanoramaC thePanorama >;

i t s Ma i n Pa n e is a C Do c um e n t instance variable. i t s Go p h e r is
a C D i re c t o r instance variable.

itsMainPane = thePanorama;
itsGopher = thePanorama;

Object Programming 359

Zoom C > will zoom the window so that it is the size of the main
display. Next, the panorama's bounds are set to equal the size of the
panorama's frame. The frame of the panorama is like a picture frame
sliding around on top of the panorama. The bounds of the panorama
define the outer boundaries of the panorama. The frame of the
panorama (set earlier) is used to set the bounds of the panorama.

itsWindow->ZoomCinZoomOut>;
thePanorama->GetframeC&panframe>;
thePanorama->SetBoundsC&panframe>;

Finally, the window is added to the desktop. For more information
on how this was accomplished, read about the C De c o r a t o r class.

gDecorator->PlaceNewWindowC itsWindow >;

}

The CStarterPane Object Class

The panorama created by Bu i L d W i n do w C > was actually a newly
defined subclass of C Panorama called CS ta rte r Pane.
CStarterPane.h defines three constants, as well as the four methods
that make up CStarterPane. The #define of _H_CStarterPane
at the beginning of the file sets a flag so that the compiler doesn't
include this file more than once. The file CPanorama.h is included
in this file to provide access to the C Pa no ram a class definition. What
if CPanorama.h included the file CStarterPane.h? Without the
H CS t a rte r Pa n e flag, the compiler would enter an infinite loop,
first including one file, then including the other. Every time you
define a new class, you'll create a .c file and a corresponding .h file.
At the beginning of the .h file, always #define something of the form
_H_x xx x, where the xx xx is the class name.

#define _H_CStarterPane
#include <CPanorama.h>

Within the file CStarterPane.c, the methods for the CS ta rte r -
Pa n e class are defined. First, the .h files corresponding to the classes
referenced by C S t a r t e r Pa n e are included.

360

#include 11 CStarterPane.h"
#include 11 CDragPane.h"
#include "CMouse.h"

Macintosh Programming Primer

I S t a r t e r Pa n e C > initializes the panorama and then seeds the
random number generator. S e t W a n t s c l i c ks C T RU E > tells the
switchboard that the panorama wants its Doc l i c k C > method to be
called when a mo u s e Down occurs inside itself.

!** IStarterPane */

void CStarterPane::IStarterPaneC anEnclosure,
aSupervisor,
aWidth, aHeight,
aHEncl, aVEncl,
aHSizing, aVSizing)

CView
CBureaucrat
short
SizingOption
{

*anEnclosure;
*aSupervisor;
aWidth, aHeight, aHEncl, aVEncl;
aHSizing, aVSizing;

}

CPanorama::IPanoramaC anEnclosure, aSupervisor,
aWidth, aHeight,

• aHEncl, aVEncl,
aHSizing, aVSizing >;

GetDateTimeC &randSeed >;

SetWantsClicksC TRUE >;

The CS tarter Pan e's Do Cl i ck C > method creates a new
CD rag Pane and initializes it with a call to I D rag Pane C > .

!******************************** DoClick *********/

void CStarterPane::DoClickC hitPt, modifierKeys, when)
Point
short
long
{

hitPt;
modifierKeys;
when;

int width, height, patNum;
CDragPane *myDragPane;

'--

Object Programming 361

}

width = Randomize(MAX_PANE_SIZE >;
height = Randomize(MAX_PANE_SIZE >;
patNum = Randomize(NUM_PATS >;

myDragPane = new(CDragPane >;
myDragPane->IDragPaneC hitPt, height, width,

patNum, this, this >;

The default Adj us t Cursor C > method sets the cursor to an
arrow. C S t a r t e r Pa n e's Ad j u s t C u r so r C) method sets the cursor
to the three-dimensional plus sign shown earlier in Figure 6.13. Isn't
cursor manipulation easy with object programming?

!******************************** AdjustCursor *********/

void CStarterPane::AdjustCursorC where, mouseRgn)
Point where;
RgnHandle mouseRgn;
{

}
SetCursorC *GetCursorC plusCursor > >;

The DoDrag C > method is called by a CDragPane's Doc lick(>
method. The global g I s Sc r o l l i n g is set to TRUE so that the
c Drag Pan es won't try to redraw themselves. If they did, they might
screw up the gray rectangle outline that's being dragged around the
screen. Try setting the global to FA LS E instead of T RU E and then
cause the panorama to autoscroll by dragging a rectangle outside the
panorama's bounds.

!******************************** DoDrag *********/

void CStarterPane::DoDragC objWidth, objHeight,

int
Point
Re ct
{

hitPt, startlocation, endlocation)
objWidth, objHeight;
hitPt;
startlocation, *endlocation;

CMouse
Re ct
Point

*aMouseTask;
boundsRect;
p;

362 Macintosh Programming Primer

glsScrolling = TRUE;

boundsRect = bounds;

The c Mouse Ta s k class implements mouse tracking. CM o use is a
subclass of CM o u s e Ta s k • Do D r a g C) creates a new CM o u s e and
then initializes it. Read up on CM o use Task in the User's Guide.

aMouseTask = new< CMouse >;

aMouseTask->IMouseC NO_UNDO_STRING, objWidth,
objHeight, hitPt, startlocation, this >;

The Prep a re C > method is similar to a Set Po rt C > • Call it
before you draw in a pane to make sure the drawing environment is
set up properly for drawing in that pane.

Prepare<>;

T r a c k Mou s e C) starts the mouse task running. T r a c k Mou s e C >
is passed the mouse position returned by Ge t Mou s e C) .

GetMouseC &p >;
TrackMouseC aMouseTask, p, &boundsRect >;

Once the mouse task completes (that is, once the mouse button is
released), g I s S c r o l l i n g is set back to FALSE. The parameter
end Lo cat i on is set to the last location of the dragged gray
rectangle.

glsScrolling = FALSE;

aMouseTask->GetlocationC endlocation >;

The call to Re f re s h C > is pretty powerful. It will cause a D raw C >
message to be sent to all the panes enclosed by the C S ta r t e r Pa n e C) .
This call is made because use of the global g I s S c r o l l i n g may have
caused some drawing to be missed.

Refresh();
}

Object Programming 363

R a n d om i z e C > is exactly the same as the version in the first
volume of the Macintosh Programming Primer.

!******************************** Randomize *********/

Randomize(range)
int range;
{

}

long rawResult;

rawResult = Random<>;
if C rawResult < 0) rawResult *= -1;
return(CrawResult * range) I 32768 >;

The CDragPane Object Class

The file CDragPane.h defines the flag _H_CDragPane, includes its
superclass definition file CPane.h, and defines access to the global
g I s Sc r o l l i n g with an ex t e r n declaration. Any file that includes
this file will have access to that global.

Next, the file defines the instance variable pa t Numb e r , which
defines the fill pattern for this CD rag Pane. Finally, CDragPane.h
defines the interfaces for the three access methods I D rag Pane C >,
D r a w C > , and D o C l i c k C > •

The file CDragPane.c includes the CS tarter Pane and
CD rag Pane include files. The global g Is Sc r o l l i n g is defined and
autoinitialized here.

#include "CStarterPane.h"
#include "CDragPane.h"

Boolean glsScrolling = FALSE;

The method I Drag Pane C > gets the bounds of its enclosure (the
C S t a r t e r Pa n e) and puts them in the local variable r.

364 Macintosh Programming Primer

!******************************** IDragPane *********/

void CDragPane::IDragPaneC corner, height, width,

Point
int
int
int
CView
CBureaucrat
{

Rect r;

patNum, anEnclosure, aSupervisor
corner;
height;
width;
patNum;
*anEnclosure;
*aSupervisor;

CCCPanorama *)anEnclosure)->GetBoundsC &r >;

The two if statements make sure the c D rag Pa n e is created
within the bounds of the enclosure.

if CCcorner.h + width) > r.right)
corner.h -= corner.h + width - r.right;

if CCcorner.v + height) > r.bottom)
corner.v -= corner.v + height - r.bottom;

Next, the pane is initialized with a call to IP an e C >. Read about
IP an e C > in the User's Guide. You'll want to get comfortable with
I Pane C > 's parameters and how they work.

IPaneC anEnclosure, aSupervisor,
width, height,
corner.h, corner.v,
sizFIXEDSTICKY, sizFIXEDSTICKY >;

The instance variable pat Number is initialized using the
parameter patNum. The method SetWantsClicks<> is called to
enable clicks in the C D r a g Pa n e. The Re f r es h < > method is called
to force the C D r a g Pa n e to draw itself.

}

patNumber = patNum;

SetWantsClicks(TRUE >;
Refresh<>;

Object Programming 365

The Draw C > method paints the CD rag Pane with the correct
pattern only if the g Is Scro l l i n g flag is set to FALSE.

/******************************** Draw *********/

void CDragPane::DrawC rPtr)

Re ct *rPtr;
{

if c ! glsScrolling
{

Prepare<>;

switch(pat Number)

{

case 0:
PenPatC ltGray >;
break;

case 1 :
PenPatC gray) ;
break;

case 2:
PenPat(dkGray >;
break;

default:
PenPatC black) ;
break;

}

PaintRectC rPtr >;
}

}

The Do C l i c k C > method erases the C D r a g Pa n e and then
converts the local variable r from local coordinates to the enclosure's
coordinates. Then, r is passed to the enclosure's Do D rag C > method.
When Do D rag C) returns the new end Lo ca t i on, the pane is moved
to the new position and redrawn.

/******************************** DoClick *********/

void CDragPane::DoClickC hitPt, modifierKeys, when >
Point hitPt;
short modifierKeys;
long when;

366

{

}

Macintosh Programming Primer

Rec t r;
Rect endlocation;

r = frame;
EraseRectC &r >;

FrameToEnclRC&r>;

CCCStarterPane *)itsEnclosure)->DoDragC width,
height, hitPt, r, &endlocation >;

Place(endlocation.left, endlocation.top, TRUE >;

The CMouse Object Class

The file CMouse.h starts by defining _H_ CM o use and including the
CM o use Task and C Panorama object class include files. The
instance variable t h e Pa no r a ma holds a reference to the panorama
that started the mouse task. The instance variable t h e Lo c a t i on
marks the current location of the dragged rectangle. The instance
variable t h e Bounds defines the boundary used to constrain the
dragging of the rectangle. CMouse.h then defines the calling
sequences for the methods I ft1 o u s e C) , Beg i n T r a c k i n g C > ,
KeepTracking(),EndTracking(),andGetlocationC>.

CMouse.c contains the methods for the object class CM o use. It
includes the file CMouse.h.

#include "Cft'louse.h"

Read about the CM o use Task object class in the THINK C User's
Guide. The s t r I D passed to I Mou s e Ta s k C > is defined there. The
undo string referenced by s t r I D will be ignored in this program, but
the description in the User's Guide tells you how to use the undo
mechanism.

/******************************** !Mouse *********/

void CMouse::IMouseC strID, objWidth, objHeight,
hitPt, theloc, theRama)

Object Programming 367

int
int
int
Point
Re ct
CPanorama
{

strID;
objWidth;
obj Height;
hitPt;
the Loe;
*theRama;

Rect r;

IMouseTaskC strID >;

The instance variables t h e Pa n o r a ma and t h e Lo c a t i o n are
initialized from the parameters t he Ram a and t he Lo c.

thePanorama = theRama;
thelocation = theloc;

The next few lines adjust the instance variable t h e Bo u n d s to
reflect the enclosing panorama's bounds, inset to account for the
mouse's position within the CD rag Pane. To see the effect this has,
try commenting out the four lines that set r's l e f t, t op, r i g h t,
and bot tom and dragging the CD rag Pane outside the bounds of the
panorama.

}

thePanorama->GetBoundsC &r >;
r.left += hitPt.h;
r.top += hitPt.v;
r.right -= C objWidth - hitPt.h >;
r.bottom -= C objHeight - hitPt.v >;
theBounds = r;

Beg i n T r a c k i n g C > sets the current port up for drawing a gray,
Xored rectangle. The initial gray rectangle is drawn.

!******************************** BeginTracking *********/

void CMouse::BeginTrackingC startPt)
Point *startPt;
{

Rect r;

368

}

PenModeC patXor >;
PenPat(gray >;

r = thelocation;
FrameRect(&r >;

Macintosh Programming Primer

Keep T r a c k i n g C > starts by calling Ge t Po s i t i on <) to get the
position of the scroll bars.

!******************************** KeepTracking *********/

void CMouse::KeepTracking(currPt, prevPt, startPt)
Point *currPt;
Point *prevPt;
Point *startPt;
{

Rect r, f;
Long curTicks;
Point start Posit, newPosit, cp, pp;
RgnHandle clipRgn;

thePanorama->GetPositionC &startPosit >;

The c L i p R g n is set to handle a brand new region. It will be used
to hold the window's clipping rectangle.

clipRgn = NewRgnC>;

If the mouse position is causing an autoscroll or if the mouse has
moved, the gray rectangle will be drawn once in its old position (to
erase it) and once in its new position (to create a new one).

if C thePanorama->AutoScroLLC *currPt)
I I ! Equal Pt(*currPt, *prevPt >)

{

Next, Ge t Po s i t i on C > is called to get the new position of the
scroll bars. Subtracting the new position from the old position
produces an offset. If the panorama was autoscrolled, the offset will
indicate the difference (in number of pixels) between where the gray
rectangle appears to be and where it actually is.

Object Programming 369

thePanorama->GetPositionC &newPosit >;

GetClipC clipRgn >;
r = C**clipRgn).rgnBBox;
OffsetRectC &r, startPosit.h - newPosit.h,

startPosit.v - newPosit.v >;

Pi n I n Rec t C > is a utility routine provided by THINK C that can
be found in the file TBUtilities.c. It pins a point inside a rectangle.
This call to Pi n I n Re c t C > pins the top left and the bottom right
points of r inside the panorama's frame. Because r is going to be
used as a clipping rectangle, it's important not to allow any drawing
to occur outside the panorama's frame (on the scroll bar, for
example). If you're not comfortable with this algorithm, try
commenting out the call to C l i p Rec t C > and causing an autoscroll
by dragging a CD rag Pane outside the window's boundary. The
algorithm itself has little to do with object programming, so don't get
distracted by its details.

thePanorama->GetframeC&f>;
PinlnRectC&f, &Cr.top>>;
PinlnRectC&f, &Cr.bottom>>;

ClipRectC &r >;

Next, the gray rectangle is drawn at the old location to erase the
old position.

r = theLocation;

curTicks = TickCountC>;
while C curTicks == TickCountC) ;
FrameRectC &r >;

After that, the new position is pinned inside t he Bounds, the
clipping region is restored, and the gray rectangle is drawn at the
new position.

cp = *currPt;
pp = *prevPt;
PinlnRectC&theBounds, &cp>;
PinlnRectC&theBounds, &pp);

370 Macintosh Programming Primer

OffsetRectC&r, cp.h - pp.h, cp.v - pp.v>;

SetClipC clipRgn >;

curTicks = TickCountC>;
while C curTicks == TickCount()) ;
FrameRectC &r >;

Finally, the program updates the Lo ca t i on to the new position
and disposes of c l i p R g n.

thelocation = r;
}

DisposeRgn(clipRgn >;
}

End T r a c k i n g C > erases the gray rectangle and restores the pen
to its normal settings.

!************************ EndTracking *********/

void CMouse::EndTrackingC currPt, prevPt, startPt >
Point *currPt;
Point *prevPt;
Point *startPt;
{

}

Re ct r • ,

r = thelocation;
FrameRectC &r >;
PenNormaLC>;

G e t Lo c a t i o n C > returns the value stored in the instance
variable the Lo cat i on. This brings up an important point. A
routine that has access to the Ge t Lo c a t i on C > method also has
~ccess to the instance variable t h e Lo c a t i on. Whenever possible,
provide a method if a nonrelated class needs to access an instance
variable.

Object Programming 371

_J

/************************ GetLocation *********/

void CMouse::GetLocationC theLoc)
Re ct *theLoc;
{

*theLoc = theLocation;
}

In Review

There's a lot more to learn about object programming. Hopefully,
you've seen the value of a good class library. Spend some time curled
up with your THINK C User's Guide-it will be time well spent. Don't
let the sheer size of the TCL overwhelm you. Start with the sample
program provided in this chapter and add some of your own features.
Read about the CB a rte n de r class and add your own menus to the
program. How about a menu that allows you to select the shape that
gets plotted? You'll want to work out the program's chain of command
and establish a methodology for setting the global variable g Go p h e r.
If you take things one step at a time, you can do it!

I hope you've enjoyed this volume of the Macintosh Programming
Primer. If you have any suggestions for the third volume, please
write. I'd love to hear from you. Ciao, for now ...

Appendix A

Glossary
access path: A description of the route that the File Manager

follows to access a file; created when a file is opened.
access path buffer: Memory used by the File Manager to transfer

data between an application and a file.
action procedure: A procedure, used by the Control Manager

function TrackControl, that defines an action to be performed
repeatedly for as long as the mouse button is held down.

activate event: An event generated by the Window Manager when a
window changes from active to inactive or vice versa.

active control: A control that will respond to the user's actions with
the mouse.

active end: In a selection, the location to which the insertion point
moves to complete the selection.

active window: The frontmost window on the desktop.
ADB device table: A structure in the system heap that lists all

devices connected to the Apple DeskTop Bus.
address: A number used to identify a location in the computer's

address space. Some locations are allocated to memory, others to
1/0 devices.

alert: A warning or report of an error, in the form of an alert box,
sound from the Macintosh's speaker, or both.

alert box: A box that appears on the screen to give a warning or
report an error during a Macintosh application.

alert template: A resource that contains information from which the
Dialog Manager can create an alert.

Source: Inside Macintosh X-Ref © 1988 Apple Computer, Inc. Reprinted with
permission of Addison-Wesley Publishing Company.

373

374 Macintosh Programming Primer

alert window: The window in which an alert box is displayed.
allocate: To reserve an area of memory for use.
application font: The font your application will use unless you

specify otherwise-Geneva, by default.
application heap: The portion of the heap available to the running

application program and the Toolbox.
application heap limit: The boundary between the space available

for the application heap and the space available for the stack.
application heap zone: The heap zone initially provided by the

Memory Manager for use by the application program and the
Toolbox; initially equivalent to the application heap, but may be
subdivided into two or more independent heap zones.

application list: A data structure, kept in the Desktop file, for
launching applications from their documents in the hierarchical
file system. For each application in the list, an entry is maintained
that includes the name and signature of the application, as well as
the directory ID of the folder containing it.

application parameters: Thirty-two bytes of memory, located
above the application globals, reserved for system use. The first
application parameter is the address of the first QuickDraw global
variable.

application space: Memory that's available for dynamic allocation
by applications.

application window: A window created as the result of something
done by the application, either directly or indirectly (as through
the Dialog Manager).

asynchronous execution: After calling a routine asynchronously,
an application is free to perform other tasks until the routine is
completed.

auto-key event: An event generated repeatedly when the user
presses and holds down a character key on the keyboard or
keypad.

auto-key rate: The rate at which a character key repeats after it's
begun to do so.

auto-key threshold: The length of time a character key must be
held down before it begins to repeat.

auxiliary control record: A Control Manager data structure
containing the information needed for drawing controls in color.

auxiliary window record: A Window Manager data structure that
stores the color information needed for each color window.

background activity: A program or process that runs while the
user is engaged with another application.

bit image: A collection of bits in memory that have a rectilinear
representation. The screen is a visible bit image.

Appendix A: Glossary 375

bit map: A set of bits that represent the position and state of a
corresponding set of items; in QuickDraw, a pointer to a bit image,
the row width of that image, and its boundary rectangle.

block: A group regarded as a unit; usually refers to data or memory
in which data is stored. See allocation block and memory
block.

block contents: The area that's available for use in a memory block.
boundary rectangle: A rectangle, defined as part of a QuickDraw

bit map, that encloses the active area of the bit image and imposes
a coordinate system on it. Its top left corner is always aligned
around the first bit in the bit image.

bundle: A resource that maps local IDs of resources to their actual
resource IDs; used to provide mappings for file references and icon
lists needed by the Finder.

button: A standard Macintosh control that causes some immediate
or continuous action when clicked or pressed with the mouse. See
also radio button.

caret-blink time: The interval between blinks of the caret that
marks an insertion point.

caret: A generic term meaning a symbol that indicates where
something should be inserted in text. The specific symbol used is a
vertical bar (I).

catalog tree file: A file that maintains the relationships between
the files and directories on a hierarchical directory volume. It
corresponds to the file directory on a flat directory volume.

cdev: A resource file containing device information, used by the
Control Panel.

cGrafPort: The drawing environment in Color QuickDraw, including
elements such as a pixel map, pixel patterns, transfer modes, and
arithmetic drawing modes.

channel: A queue that's used by an application to send commands to
the Sound Manager.

character code: An integer representing the character that a key or
combination of keys on the keyboard or keypad stands for.

character key: A key that generates a keyboard event when
pressed; any key except Shift, Caps Lock, Command, or Option.

character style: A set of stylistic variations, such as bold, italic, and
underline. The empty set indicates plain text (no stylistic
variatioris).

character width: The distance to move the pen from one character's
origin to the next character's origin.

check box: A standard Macintosh control that displays a setting,
either checked (on) or unchecked (oft). Clicking inside a check box
reverses its setting.

376 Macintosh Programming Primer

Chooser: A desk accessory that provides a standard interface for
device drivers to solicit and accept specific choices from the user.

chunky: A pixel image in which all of a pixel's bits are stored con
secutively in memory, all of a row's pixels are stored consecutively,
and row Bytes indicates the offset from one row to the next.

clipping: Limiting drawing to within the bounds of a particular
area.

clipping region: Same as clipRgn.
clipRgn: The region to which an application limits drawing in a

grafPort.
closed file: A file without an access path. Closed files cannot be read

from or written to.
Color Look-Up Table (CLUT): A data structure that maps color

indices, specified using QuickDraw, into actual color values. Color
Look-Up Tables are internal to certain types of video cards.

Color Look-Up Table device: This kind of video device contains
hardware that converts an arbitrary pixel value stored in the
frame buffer to some actual RGB video value, which is changeable.

Color Manager: The part of the Toolbox that supplies color-selection
support for Color QuickDraw on the Macintosh II.

Color QuickDraw: The part of the Toolbox that performs color
graphics operations on the Macintosh II.

color table animation: Color table animation involves changing the
index entries in the video device's color table to achieve a change
in color, as opposed to changing the pixel values themselves. All
pixel values corresponding to the altered index entries suddenly
appear on the display device in the new color.

color table: A set of colors is grouped into a QuickDraw data
structure called a color table. Applications can pass a handle to
this color table in order to use color entries.

compaction: The process of moving allocated blocks within a heap
zone in order to collect the free space into a single block.

completion routine: Any application-defined code to be executed
when an asynchronous call to a routine is completed.

content region: The area of a window that the application draws in.
control: An object in a window on the Macintosh screen with which

the user, using the mouse, can cause instant action with visible
results or change settings to modify a future action.

Control Manager: The part of the Toolbox that provides routines for
creating and manipulating controls (such as buttons, check boxes,
and scroll bars).

control definition function: A function called by the Control
Manager when it needs to perform type-dependent operations on a
particular type of control, such as drawing the control.

Appendix A: Glossary 377

control definition ID: A number passed to control-creation routines
to indicate the type of control. It consists of the control definition
function's resource ID and a variation code.

control list: A list of all the controls associated with a given window.
control record: The internal representation of a control, where the

Control Manager stores all the information it needs for its
operations on that control.

control template: A resource that contains information from which
the Control Manager can create a control.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid
coordinates are integers ranging from -32767 to 32767, and all
grid lines are infinitely thin.

current heap zone: The heap zone currently under attention, to
which most Memory Manager operations implicitly apply.

current resource file: The last resource file opened, unless you
specify otherwise with a Resource Manager routine.

cursor: A 16-by-16 bit image that appears on the screen and is
controlled by the mouse; called the "pointer" in Macintosh user
manuals.

cursor level: A value, initialized by InitCursor, that keeps track of
the number of times the cursor has been hidden.

data fork: The part of a file that contains data accessed via the File
Manager.

data mark: In a sector, information that primarily contains data
from an application.

date/time record: An alternate representation of the date and time
(which is stored on the clock chip in seconds since midnight,
January 1, 1904).

default button: In an alert box or modal dialog, the button whose
effect will occur if the user presses Return or Enter. In an alert
box, it's boldly outlined; in a modal dialog, it's boldly outlined or
the OK button.

default directory: A directory that will be used in File Manager
routines whenever no other directory is specified. It may be the
root directory, in which case the default directory is equivalent to
the default volume.

default volume: A volume that will receive 1/0 during a File
Manager routine call, whenever no other volume is specified.

dereference: To refer to a block by its master pointer instead of its
handle.

Desk Manager: The part of the Toolbox that supports the use of
desk accessories from an application.

378 Macintosh Programming Primer

desk accessory: A "mini-application," implemented as a device
driver, that can be run at the same time as a Macintosh appli
cation.

desk scrap: The place where data is stored when it's· cut (or copied)·
and pasted among applications and desk accessories.

desktop: The screen as a surface for doing work on the Macintosh.
Desktop file: A resource file in which the Finder stores the version

data, bundle, icons, and file references for each application on the
volume.

destination rectangle: In TextEdit, the rectangle in which the text
is drawn.

device driver event: An event generated by one of the Macintosh's
device drivers.

device driver: A program that controls the exchange of information
between an application and a device.

dial: A control with a moving indicator that displays a quantitative
setting or value. Depending on the type of dial, the user may be
able to change the setting by dragging the indicator with the
mouse.

dialog: Same as dialog box.
dialog box: A box that a Macintosh application displays to request

information it needs to complete a command, or to report that it's
waiting for a process to complete.

Dialog Manager: The part of the Toolbox that provides routines for
implementing dialogs and alerts.

dialog record: The internal representation of a dialog, where the
Dialog Manager stores all the information it needs for its
operations on that dialog.

dialog template: A resource that contains information from which
the Dialog Manager can create a dialog.

dialog window: The window in which a dialog box is displayed.
dimmed: Drawn in gray rather than black.
direct device: A video device that has a direct correlation between

the value placed in the video card and the color you see on the
screen.

directory ID: A unique number assigned to a directory, which the
File Manager uses to distinguish it from other directories on the
volume. (It's functionally equivalent to the file number assigned to
a file; in fact, both directory IDs and file numbers are assigned
from the same set of numbers.)

directory: A subdivision of a volume that can contain files as well as
other directories; equivalent to a folder.

Appendix A: Glossary 379

disabled: A disabled menu item or menu is one that cannot be
chosen; the menu item or menu title appears dimmed. A disabled
item in a dialog or alert box has no effect when clicked.

Disk Initialization Package: A Macintosh package for initializing
and naming new disks; called by the Standard File Package.

disk-inserted event: An event generated when the user inserts a
disk in a disk drive or takes any other action that requires a
volume to be mounted.

display rectangle: A rectangle that determines where an item is
displayed within a dialog or alert box.

dithering: A technique for mixing existing colors together to create
the illusion of a third color that may be unavailable on a particular
device.

document window: The standard Macintosh window for presenting
a document.

double-click time: The greatest interval between a mouse-up and
mouse-down event that would qualify two mouse clicks as a
double-click.

draft printing: Printing a document immediately as it's drawn in
the printing grafPort.

drag delay: A length of time that allows a user to drag diagonally
across a main menu, moving from a submenu title into the
submenu itself without the submenu disappearing.

drag region: A region in a window frame. Dragging inside this
region moves the window to a new location and makes it the active
window unless the Command key was down.

drive number: A number used to identify a disk drive. The internal
drive is number 1, the external drive is number 2, and any
additional drives will have larger numbers.

edit record: A complete editing environment in TextEdit, which
includes the text to be edited, the grafPort and rectangle in which
to display the text, the arrangement of the text within the
rectangle, and other editing and display information.

empty handle: A handle that points to a NIL master pointer,
signifying that the underlying relocatable block has been purged.

end-of-file: See logical end-of-file or physical end-of-file.
entity name: An identifier for an entity, of the form object:type@zone.
event: A notification to an application of some occurrence that the

application may want to respond to.
event code: An integer representing a particular type of event.
Event Manager: See Toolbox Event Manager or Operating

System Event Manager.

380 Macintosh Programming Primer

event mask: A parameter passed to an Event Manager routine to
specify which types of events the routine should apply to.

event message: A field of an event record containing information
specific to the particular type of event.

event queue: The Operating System Event Manager's list of
pending events.

event record: The internal representation of an event, through
which your program learns all pertinent information about that
event.

exception: An error or abnormal condition detected by the processor
in the course of program execution; includes interrupts and traps.

external reference: A reference to a routine or variable defined in a
separate compilation or assembly.

file: A named, ordered sequence of bytes; a principal means by which
data is stored and transmitted on the Macintosh.

file catalog: A hierarchical file directory.
file control block: A fixed-length data structure, contained in the

file-control-block buffer, where information about an access path is
stored.

file directory: The part of a volume that contains descriptions and
locations of all the files and directories on the volume. There are
two types of file directories: hierarchical file directories and flat
file directories.

File Manager: The part of the Operating System that supports file
1/0.

file name: A sequence of up to 255 printing characters, excluding
colons (:), that identifies a file.

file number: A unique number assigned to a file, which the File
Manager uses to distinguish it from other files on the volume. A
file number specifies the file's entry in a file directory.

file reference: A resource that provides the Finder with file and
icon information about an application.

file type: A four-character sequence, specified when a file is created,
that identifies the type of file.

Finder information: Information that the Finder provides to an
application upon starting it up, telling it which documents to open
or print.

font: A complete set of characters of one typeface, which may be
restricted to a particular size and style, or may comprise multiple
sizes, or multiple sizes and styles, as in the context of menus.

Font Manager: The part of the Toolbox that supports the use of
various character fonts for QuickDraw when it draws text.

font number: The number by which you identify a font to
QuickDraw or the Font Manager.

Appendix A: Glossary 381

font size: The size of a font in points; equivalent to the distance
between the ascent line of one line of text and the ascent line of
the next line of single-spaced text.

fork: One of the two parts of a file; see data fork and resource
fork.

free block: A memory block containing space available for
allocation.

full pathname: A pathname beginning from the root directory.
gamma table: A table that compensates for nonlinearities in a

monitor's color response.
gDevice: A QuickDraw data structure that allows an application to

access a given device. A gDevice is a logical device, which the
software treats the same whether it is a video card, a display
. device, or an offscreen pixel map.

global coordinate system: The coordinate system based on the top
left corner of the bit image being at (0,0).

go-away region: A region in a window frame. Clicking inside this
region of the active window makes the window close or disappear.

grafPort: A complete drawing environment, including such elements
as a bit map, a subset of it in which to draw, a character font,
patterns for drawing and erasing, and other pen characteristics.

graphics device: A video card, a printer, a display device, or an
offscreen pixel map. Any of these device types may be used with
Color QuickDraw.

GrayRgn: The global variable that in the multiple screen desktop
describes and defines the desktop, the area on which windows can
be dragged.

grow image: The image pulled around when the user drags inside
the grow region; whatever is appropriate to show that the
window's size will change.

grow region: A window region, usually within the content region,
where dragging changes the size of an active window.

grow zone function: A function supplied by the application
program to help the Memory Manager create free space within a
heap zone.

handle: A pointer to a master pointer, which designates a relo
catable block in the heap by double indirection.

heap: The area of memory in which space is dynamically allocated
and released on demand, using the Memory Manager.

heap zone: An area of memory initialized by the Memory Manager
for heap allocation.

hierarchical menu: A menu that includes, among its various menu
choices, the ability to display a submenu. In most cases the
submenu appears to the right of the menu item used to select it,
and is marked with a filled triangle indicator.

382 Macintosh Programming Primer

highlight: To display an object on the screen in a distinctive visual
way, such as inverting it.

hotSpot: The point in a cursor that's aligned with the mouse
location.

icon: A 32-by-32 bit image that graphically represents an object,
concept, or message.

icon list: A resource consisting of a list of icons.
icon number: A digit from 1 to 255 to which the Menu Manager

adds 256 to get the resource ID of an icon associated with a menu
item.

inactive control: A control that won't respond to the user's actions
with the mouse. An inactive control is highlighted in some special
way, such as dimmed.

inactive window: Any window that isn't the frontmost window on
the desktop.

indicator: The moving part of a dial that displays its current
setting.

insertion point: An empty selection range; the character position
where text will be inserted (usually marked with a blinking caret).

interface routine: A routine called from Pascal whose purpose is to
trap to a certain Toolbox or Operating System routine.

International Utilities Package: A Macintosh package that gives
you access to country-dependent information such as the formats
for numbers, currency, dates, and times.

invalidation: When a color table is modified, its inverse table must
be rebuilt, and the screen should be redrawn to take advantage of
this new information. Rather than being reconstructed when the
color table is changed, the inverse table is marked invalid, and is
automatically rebuilt when next accessed.

inverse table: A special Color Manager data structure arranged in
such a manner that, given an arbitrary RGB color, the pixel value
can be very rapidly looked up.

invert: To highlight by changing white pixels to black and vice versa.
invisible control: A control that's not drawn in its window.
invisible window: A window that's not drawn in its plane on the

desktop.
item: In dialog and alert boxes, a control, icon, picture, or piece of

text, each displayed inside its own display rectangle. See also
menu item.

item list: A list of information about all the items in a dialog or alert
box.

item number: The index, starting from 1, of an item in an item list.
IWM: "Integrated Woz Machine"; the custom chip that controls the

3 t inch disk drives.

Appendix A: Glossary 383

job dialog: A dialog that sets information about one printing job;
associated with the Print command.

jump table: A table that contains one entry for every routine in an
application and is the means by which the loading and unloading
of segments is implemented.

key code: An integer representing a key on the keyboard or keypad,
without reference to the character that the key stands for.

key-down event: An event generated when the user presses a
character key on the keyboard or keypad.

key-up event: An event generated when the user releases a char
acter key on the keyboard or keypad.

keyboard equivalent: The combination of the Command key and
another key, used to invoke a menu item from the keyboard.

keyboard event: An event generated when the user presses,
releases, or holds down a character key on the keyboard or keypad;
any key-down, key-up, or auto-key event.

leading: The amount of blank vertical space between the descent
line of one line of text and the ascent line of the next line of single
spaced text.

ligature: A character that combines two letter~.
line-height table: A TextEdit data structure that holds vertical

spacing information for an edit record's text.
List Manager: The part of the Operating System that provides

routines for creating, displaying, and manipulating lists.
local coordinate system: The coordinate system local to a grafPort,

imposed by the boundary rectangle defined in its bit map.
local ID: A number that refers to an icon list or file reference in an

application's resource file and is mapped to an actual resource ID
by a bundle.

localization: The process of adapting an application to different
languages, including converting its user interface to a different
script.

lock: To temporarily prevent a relocatable block from being moved
during heap compaction.

lock bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently locked.

locked file: A file whose data cannot be changed.
locked volume: A volume whose data cannot be changed. Volumes

can be locked by either a software flag or a mechanical setting.
logical end-of-file: The position of one byte past the last byte in a

file; equal to the actual number of bytes in the file.
luminance: The intensity of light. Two colors with different

luminances will be displayed at different intensities.

384 Macintosh Programming Primer

main event loop: In a standard Macintosh application program, a
loop that repeatedly calls the Toolbox Event Manager to get events
and then responds to them as appropriate.

main screen: On a system with multiple display devices, the screen
with the menu bar is called the main screen.

main segment: The segment containing the main program.
master pointer: A single pointer to a relocatable block, maintained

by the Memory Manager and updated whenever the block is
moved, purged, or reallocated. All handles to a relocatable block
refer to it by double indirection through the master pointer.

Memory Manager: The part of the Operating System that dynami
cally allocates and releases memory space in the heap.

memory block: An area of contiguous memory within a heap zone.
menu: A list of menu items that appears when the user points to a

menu title in the menu bar and presses the mouse button.
Dragging through the menu and releasing over an enabled menu
item chooses that item.

menu bar: The horizontal strip at the top of the Macintosh screen
that contains the menu titles of all menus in the menu list.

menu definition procedure: A procedure called by the Menu
Manager when it needs to perform type-dependent operations on a
particular type of menu, such as drawing the menu.

menu entry: An entry in a menu color table that defines color values
for the menu's title, bar, and items.

menu ID: A number in the menu record that identifies the menu.
menu item: A choice in a menu, usually a command to the current

application.
menu item number: The index, starting from 1, of a menu item in a

menu.
menu list: A list containing menu handles for all menus in the menu

bar, along with information on the position of each menu.
Menu Manager: The part of the Toolbox that deals with setting up

menus and letting the user choose from them.
menu record: The internal representation of a menu, where the

Menu Manager stores all the information it needs for its opera
tions on that menu.

menu title: A word or phrase in the menu bar that designates one
menu.

modal dialog: A dialog that requires the user to respond before
doing any other work on the desktop.

modeless dialog: A dialog that allows the user to work elsewhere on
the desktop before responding.

Appendix A: Glossary 385

modifier key: A key (Shift, Caps Lock, Option, or Command) that
generates no keyboard events of its own, but changes the meaning
of other keys or mouse actions.

mounted volume: A volume that previously was inserted into a disk
drive and had descriptive information read from it by the File
Manager.

mouse-down event: An event generated when the user presses the
mouse button.

mouse-up event: An event generated when the user releases the
mouse button.

network event: An event generated by the AppleTalk Manager.
newline character: Any character, but usually Return (ASCII code

$OD), that indicates the end of a sequence of bytes.
nonbreaking space: The character with ASCII code $CA; drawn as

a space the same width as a digit, but interpreted as a nonblank
character for the purposes of word wraparound and selection.

nonrelocatable block: A block whose location in the heap is fixed
and can't be moved during heap compaction.

null event: An event reported when there are no other events to
report.

null-style record: A TextEdit data structure used to store the style
information for a null selection.

offspring: For a given directory, the set of files and directories for
which it is the parent.

on-line volume: A mounted volume with its volume buffer and
descriptive information contained in memory.

open file: A file with an access path. Open files can be read from and
written to.

open permission: Information about a file that indicates whether
the file can be read from, written to, or both.

Operating System: The lowest-level software in the Macintosh. It
does basic tasks such as 110, memory management, and interrupt
handling.

Operating System Event Manager: The part of the Operating
System that reports hardware-related events such as mouse
button presses and keystrokes.

Operating System Utilities: Operating System routines that
perform miscellaneous tasks such as getting the date and time,
finding out the user's preferred speaker volume and other
preferences, and doing simple string comparison.

page rectangle: The rectangle marking the boundaries of a printed
page image. The boundary rectangle, portRect, and clipRgn of the
printing grafPort are set to this rectangle.

386 Macintosh Programming Primer

palette: A collection of small symbols, usually enclosed in rectangles,
that represent operations that can be selected by the user. Also, a
collection of colors provided and used by your application according
to your needs.

Palette Manager: The part of the Toolbox that establishes and
monitors the color environment of the Macintosh II. It gives pref
erence to the color needs of the front window, making the assump
tion that the front window is of greatest interest to the user.

pane: An independently scrollable area of a window, for showing a
different part of the same document.

panel: An area of a window that shows a different interpretation of
the same part of a document.

parameter RAM: In the clock chip, 20 bytes where settings such as
those made with the Control Panel desk accessory are preserved.

part code: An integer between 1 and 253 that stands for a particular
part of a control (possibly the entire control).

partial pathname: A pathname beginning from any directory other
than the root directory.

path reference number: A number that uniquely identifies an
individual access path; assigned when the access path is created.

pathname: A series of concatenated directory and file names that
identifies a given file or directory. See also partial pathname and
full pathname.

pattern: An 8-by-8 bit image, used to define a repeating design (such
as stripes) or tone (such as gray).

pattern transfer mode: One of eight transfer modes for drawing
lines or shapes with a pattern.

physical end-of-file: The position of one byte past the last alloca
tion block of a file; equal to 1 more than the maximum number of
bytes the file can contain.

physical size: The actual number of bytes a memory block occupies
within its heap zone.

picture: A saved sequence of QuickDraw drawing commands (and,
optionally, picture comments) that you can play back later with a
single procedure call; also, the image resulting from these
commands.

picture frame: A rectangle, defined as part of a picture, that
surrounds the picture and gives a frame of reference for scaling
when the picture is played back.

pixel: A dot on a display screen. Pixel is short for picture element.
pixel map: Color QuickDraw's extended data structure, containing

the dimensions and content of a pixel image, plus information on
the image's storage format, depth, resolution, and color usage.

Appendix A: Glossary 387

pixel pattern: The pattern structure used by Color QuickDraw, one
of three types: old-style pattern, full color pixel pattern, or RGB
pattern.

pixel value: The bits in a pixel, taken together, form a number
known as the pixel value. Color QuickDraw represents each pixel
on the screen using one, two, four, or eight bits in memory.

plane: The front-to-back position of a window on the desktop.
point: The intersection of a horizontal grid line and a vertical grid

line on the coordinate plane, defined by a horizontal and a vertical
coordinate; also, a typographical term meaning approximately 1/72
inch.

polygon: A sequence of connected lines, defined by QuickDraw line
drawing commands.

pop-up menu: A menu not located in the menu bar, which appears
when the user presses the mouse button in a particular place.

port: See grafPort.
portBits: The bit map of a grafPort.
portRect: A rectangle, defined as part of a grafPort, that encloses a

subset of the bit map for use by the grafPort.
post: 'lb place an event in the event queue for later processing.
print record: A record containing all the infbrmation needed by the

Printing Manager to perform a particular printing job.
Printer Driver: The device driver for the currently installed printer.
printer resource file: A file containing all the resources needed to

run the Priilting Manager with a particular printer.
Printing Manager: The routines and data types that enable

applications to communicate with the Printer Driver to print on
any variety of printer via the same interface.

printing grafPort: A special grafPort customized for printing
instead of drawing on the screen.

purge: To remove a relocatable block from the heap, leaving its
master pointer allocated but set to NIL.

purge bit: A bit in the master pointer to a relocatable block that
indicates whether the block is currently purgeable.

purge warning procedure: A procedure associated with a particu
lar heap zone that's called whenever a block is purged from that
zone.

purgeable block: A relocatable block that can be purged from the
heap.

queue: A list of identically structured entries linked together by
pointers.

QuickDraw: The part of the Toolbox that performs all graphic
operations on the Macintosh screen.

388 Macintosh Programming Primer

radio button: A standard Macintosh control that displays a setting,
either on or off, and is part of a group in which only one button can
be on at a time.

RAM: The Macintosh's random access memory, which contains
exception vectors, buffers used by hardware devices, the system
and application heaps, the stack, and other information used by
applications.

reallocate: To allocate new space in the heap for a purged block,
updating its master pointer to point to its new location.

reference number: A number greater than 0, returned by the
Resource Manager when a resource file is opened, by which you
can refer to that file. In Resource Manager routines that expect a
reference number, 0 represents the system resource file.

region: An arbitrary area or set of areas on the QuickDraw coor
dinate plane. The outline of a region should be one or more closed
loops.

relative handle: A handle to a relocatable block expressed as the
offset of its master pointer within the heap zone, rather than as
the absolute memory address of the master pointer.

release: To free an allocated area of memory, making it available for
reuse.

release timer: A timer for determining when an exactly-once
response buffer can be released.

relocatable block: A block that can be moved within the heap
during compaction.

resource: Data or code stored in a resource file and managed by the
Resource Manager.

resource attribute: One of several characteristics, specified by bits
in a resource reference, that determine how the resource should be
dealt with.

resource data: In a resource file, the data that comprises a
resource.

resource file: The resource fork of a file.
resource fork: The part of a file that contains data used by an

application (such as menus, fonts, and icons). The resource fork of
an application file also contains the application code itself.

resource header: At the beginning of a resource file, data that gives
the offsets to and lengths of the resource data and resource map.

resource ID: A number that, together with the resource type,
identifies a resource in a resource file. Every resource has an ID
number.

Resource Manager: The part of the Toolbox that reads and writes
resources.

Appendix A: .Glossary 389

resource map: In a resource file, data that is read into memory
when the file is opened and that, given a resource specification,
leads to the corresponding resource data.

resource name: A string that, together with the resource type,
identifies a resource in a resource file. A resource may or may not
have a name.

resource reference: In a resource map, an entry that identifies a
resource and contains either an offset to its resource data in the
resource file or a handle to the data if it's already been read into
memory.

resource specification: A resource type and either a resource ID or
a resource name.

resource type: The type of a resource in a resource file, designated
by a sequence of four characters (such as 'MENU' for a menu).

result code: An integer indicating whether a routine completed its
task successfully or was prevented by some error condition (or
other special condition, such as reaching the end of a file).

resume procedure: A procedure within an application that allows
the application to recover from system errors.

RGB space: How Color QuickDraw represents colors. Each color has
a red, a green, and a blue component, hence the name RGB.

RGB value: Color QuickDraw represents color using the RGBColor
record type, which specifies the red, green, and blue components of
the color. The RGB color record used by an application specifies
the colors it needs. The translation from the RGB value to the
pixel value is performed at the time the color is drawn.

ROM: The Macintosh's permanent read-only memory, which contains
the routines for the Toolbox and Operating System, and the
various system traps.

root directory: The directory at the base of a file catalog.
Scrap Manager: The part of the Toolbox that enables cutting and

pasting between applications, desk accessories, or an application
and a desk accessory.

scrap: A place where cut or copied data is stored.
scrap file: The file containing the desk scrap (usually named

"Clipboard File").
screen buffer: A block of memory from which the video display

reads the information to be displayed.
SCSI: See Small Computer Standard Interface.
SCSI Manager: The part of the Operating System that controls the

exchange of information between a Macintosh and peripheral
devices connected through the Small Computer Standard Interface
(SCSI).

390 Macintosh Programming Primer

segment: One of several parts into which the code of an application
may be divided. Not all segments need to be in memory at the
same time.

selection range: The series of characters (inversely highlighted), or
the character position (marked with a blinking caret), at which the
next editing operation will occur.

signature: A four-character sequence that uniquely identifies an
application to the Finder.

Small Computer Standard Interface (SCSI): A specification of
mechanical, electrical, and functional standards for connecting
small computers with intelligent peripherals such as hard disks,
printers, and optical disks.

solid shape: A shape that's filled in with any pattern.
Sound Driver: The device driver that controls sound generation in

an application.
sound procedure: A procedure associated with an alert that will

emit one of up to four sounds from the Macintosh's speaker. Its
integer parameter ranges from 0 to 3 and specifies which sound.

source transfer mode: One of eight transfer modes for drawing text
or transferring any bit image between two bit maps.

stack: The area of memory in which space is allocated and released
in LIFO (last-in-first-out) order.

Standard File Package: A Macintosh package for presenting the
standard user interface when a file is to be saved or opened.

startup screen: When the system is started up, one of the display
devices is selected as the startup screen, the screen on which the
"happy Macintosh" icon appears.

structure region: An entire window; its complete "structure."
style: See character style. .
style dialog: A dialog that sets options affecting the page dimen

sions; associated with the Page Setup command.
style record: A TextEdit data structure that specifies the styles for

the edit record's text.
style scrap: A new TextEdit scrap type, 'styl' is used for storing style

information in the desk scrap along with the old "TEXT" scrap.
style table: A TextEdit data structure that contains one entry for

each distinct style used in an edit record's text.
subdirectory: Any directory other than the root directory.
submenu delay: The length of time before a submenu appears as a

user drags through a hierarchical main menu; it prevents rapid
flashing of submenus.

System Error Handler: The part of the Operating System that
assumes control when a fatal system error occurs.

Appendix A: Glossary 391

system error alert: An alert box displayed by the System Error
Handler.

system error ID: An ID number that appears in a system error alert
to identify the error.

system event mask: A global event mask that controls which types
of events get posted into the event queue.

system font: The font that the system uses (in menus, for example).
Its name is Chicago.

system font size: The size of text drawn by the system in the system
font; 12 points.

system heap: The portion of the heap reserved for use by the
Operating System.

system heap zone: The heap zone provided by the Memory Manager for
use by the Operating System; equivalent to the system heap.

system resource: A resource in the system resource file.
system resource file: A resource file containing standard resources,

accessed if a requested resource wasn't found in any of the other
resource files that were searched.

system window: A window in which a desk accessory is displayed.
target device: An SCSI device (typically an intelligent peripheral)

that receives a request from an initiator device to perform a
certain operation.

text styles: TextEdit records used for communicating style
information between the application program and the TextEdit
routines.

TextEdit: The part of the Toolbox that supports the basic text entry
and editing capabilities of a standard Macintosh application.

TextEdit scrap: The place where certain TextEdit routines store the
characters most recently cut or copied from text.

theGDevice: When drawing is being performed on a device, a handle
to that device is stored as a global variable theGDevice.

thumb: The Control Manager's term for the scroll box (the indicator
of a scroll bar).

tick: A sixtieth of a second.
Toolbox: Same as User Interface Toolbox.
Toolbox Event Manager: The part of the Toolbox that allows your

application program to monitor the user's actions with the mouse,
keyboard, and keypad.

Toolbox Utilities: The part of the Toolbox that performs generally
useful operations such as fixed-point arithmetic, string
manipulation, and logical operations on bits.

transfer mode: A specification of which Boolean operation Quick
Draw should perform when drawing or when transferring a bit
image from one bit map to another.

392 Macintosh Programming Primer

trap dispatch table: A table in RAM containing the addresses of all
Toolbox and Operating System routines in encoded form.

trap dispatcher: The part of the Operating System that examines a
trap word to determine what operation it stands for, looks up the
address of the corresponding routine in the trap dispatch table,
and jumps to the routine.

trap number: The identifying number of a Toolbox or Operating
System routine; an index into the trap dispatch table.

trap word: An unimplemented instruction representing a call to a
Toolbox or Operating System routine.

type coercion: Many compilers feature type coercion (also known as
typecasting), which allows a data structure of one type to be
converted to another type. In many cases, this conversion is simply
a relaxation of type-checking in the compiler, allowing the
substitution of a differently-typed but equivalent data structure.

unimplemented instruction: An instruction word that doesn't
correspond to any valid machine-language instruction but instead
causes a trap.

unlock: To allow a relocatable block to be moved during heap
compaction.

unmounted volume: A volume that hasn't been inserted into a disk
drive and had descriptive information read from it, or a volume
that previously was mounted and has since had the memory used
by it released.

unpurgeable block: A relocatable block that can't be purged from
the heap.

update event: An event generated by the Window Manager when a
window's contents need to be redrawn.

update region: A window region consisting of all areas of the
content region that have to be redrawn.

User Interface Toolbox: The software in the Macintosh ROM that
helps you implement the standard Macintosh user interface in
your application.

version data: In an application's resource file, a resource that has
the application's signature as its resource type; typically a string
that gives the name, version number, and date of the application.

vertical blanking interval: The time between the display of the
last pixel on the bottom line of the screen and the first one on the
top line.

view rectangle: In TextEdit, the rectangle in which the text is
visible.

virtual key codes: The key codes that appear in keyboard events.
(See also raw key codes.)

Appendix A: Glossary 393

visible control: A control that's drawn in its window (but may be
completely overlapped by another window or other object on the
screen).

visible window: A window that's drawn in its plane on the desktop
(but may be completely overlapped by another window or object on
the screen).

visRgn: The region of a grafPort, manipulated by the Window
Manager, that's actually visible on the screen.

volume: A piece of storage medium formatted to contain files;
usually a disk or part of a disk. A at inch Macintosh disk is one
volume.

volume attributes: Information contained on volumes and in
memory indicating whether the volume is locked, whether it's busy
(in memory only), and whether the volume control block matches
the volume information (in memory only).

volume name: A sequence of up to 27 printing characters that
identifies a volume; followed by a colon(:) in File Manager routine
calls, to distinguish it from a file name.

window: An object on the desktop that presents information, such as
a document or a message.

window class: In a window record, an indication of whether a
window is a system window, a dialog or alert window, or a window
created directly by the application.

window definition function: A function called by the Window
Manager when it needs to perform certain type-dependent opera
tions on a particular type of window, such as drawing the window
frame.

window definition ID: A number passed to window-creation
routines to indicate the type of window. It consists of the window
definition function's resource ID and a variation code.

window frame: The structure region of a window minus its content
region.

window list: A list of all windows ordered by their front-to-back
positions on the desktop.

Window Manager: The part of the Toolbox that provides routines
for creating and manipulating windows.

Window Manager port: A grafPort that has the entire screen as its
portRect and is used by the Window Manager to draw window
frames.

window record: The internal representation of a window, where the
Window Manager stores all the information it needs for its opera
tions on that window.

394 Macintosh Programming Primer

window template: A resource from which the Window Manager can
create a ~ndow.

word wraparound: Keeping words from being split between lines
when text is drawn.

working directory: An alternative way of referring to a directory.
When opened as a working directory, a directory is given a working
directory reference number that's used to refer to it in File
Manager calls.

working directory control block: A data structure that contains
the directory ID of a working directory, as well as the volume
reference number of the volume on which the directory is located.

working directory reference number: A temporary reference
number used to identify a working directory. It can be used in
place of the volume reference number in all File Manager calls; the
File Manager uses it to get the directory ID and volume reference
number from the working directory control block.

AppendixB

Code
Listings

The following pages contain complete
listings of all the source code

presented in this book. The listings
are presented in order by Chapter.

Remember, you can send in the coupon
in the back of the book for a disk

containing the complete set of
Macintosh Programming Primer,

Volume II projects.

Appendix B: Code Listings

Chapter 3, ShowINIT.c

/*************************
Fi L ename: CShowINIT_PROC.c
Color ShowINIT, for use with LightspeedC
This translation by Ken Mcleod Cthecloud@dhw68k.cts.com)
Version of: Thursday, April 6, 1989 3:30:00 PM

INIT notification routine by Paul Mercer, Darin Adler,
and Paul Snively from an idea by Steve Capps

Version of: Friday, July 15, 1988 12:08:09 AM C1.1B1)
-revved back to previous calling interface.
-you only need to call ShowINIT now and due

to popular demand, deltaX is back!
-also due to popular demand, color icons are

now done automatically.
-note that the color icon is only used if 4

bits or more is available on
the main graphics device; the normal #ICN

is used for all other cases.

397

Build & save this file as a 'PROC' resource, and include it
in your INIT's resource file. Use the following code within
your INIT to load the 'PROC' and call CShowINIT:

Handle procH;

if CCprocH = GetResourceC'PROC', PROC_ID)) != OL)
{

}

HLockCprocH>;
CallPascaLCICON_ID, -1, *procH);
HUnlockCprocH);

************************-*/

#include <Color.h>

typedef struct QuickDraw
{ /* struct to hold QuickDraw globals */

char private[76J;
Long randSeed;
BitMap screenBits;

398 Macintosh Programming Primer

Cursor arrow;
Pattern dkGray;
Pattern ltGray;
Pattern gray;
Pattern black;
Pattern white;
Graf Ptr thePort;

} QuickDraw;

extern short myH : Ox92C;
extern short myCheck: Ox92E;

#define firstX 8
I* left margin -

#define bottomEdge 8
I* this far from

#define iconWidth 32

I* CurApName+28
I* CurApName+30

offset to first icon

bottom of screen *I

I* size of icon (square normally) */
#define defaultMoveX 40

I* default amount to move icons *I
#define checksumConst Ox1021

*I
*I

*I

I* constant used for computing checksum */
#define minColorDepth 4

I* min. bits/pixel for drawing color icons */
#define maskOffset 128

I* offset to mask in ICN# resource *I
#define iconRowBytes 32/8

I* 32/8 bits */
#define hasCQDBit 6

I* bit in ROMBS cleared if CQD available*/

/*************************-
Display the ICN# Ccicn when in 4 bit mode or higher) specified
by iconID and move the pen horizontally by moveX. Pass a -1
in moveX to move the standard amount C40 pixels).

pascal void ShowlNITCiconID, moveX)
short iconID, moveX;
extern;

************************-*/

Appendix B: Code Listings

pascal void mainCiconID, moveX)
short iconID, moveX;
{

Handle thelconHdl;
I* handle to the icon Cor cicn> */

short dh;
I* for calculating horizontal offset */

short colorf lag;
I* set if drawing a color icon *I

short theOepth;
I* depth of main screen; used for CQO only */

GOHandle theMainOevice;
I* handle to main screen device; CQO only */

Rect srcRect, destRect;
I* source & destination rectangles */

BitMap myBitMap;
I* icon bitmap; used for b/w icon only */

Graf Port myPort;
I* port we draw into */

QuickOraw qdGlobals;
I* our own personal QO globals ••• *I

Ptr localAS;
I* pointer to qdGlobals.thePort */

Ptr savedAS;
I* storage for saved contents of AS */

asm
{

}

move.l

lea

move.l

AS,savedAS
I* save 11 real" QO globals ptr */

localAS,AS
I* set up AS to point to our globals */
AS,CurrentAS

InitGrafC&qdGlobals.thePort>;
I* initialize our qdGlobals structure *I

OpenPortC&myPort>;
colorFlag = O;

I* default: no color */

if C!CBitTstC&ROM85, 7-hasCQOBit)))
{ /* does CQO exist? */

theMainDevice = MainDevice;

399

400

}

Macintosh Programming Primer

I* yes; get handle to main device */
theDepth = C*C*theMainDevice)->gdPMap)->pixelSize;
if CtheDepth >= minColorDepth)
{ /* deep enough to draw in color? */

}

if CCthelconHdl = CHandle)GetCiconCiconlD)) != OL>
colorflag = 1;

I* found a color icon; set flag */

if C!Ccolorflag))
{ /* no CQD, insufficient depth, or lack of 'cicn' */

if C!CthelconHdl = GetResourceC'ICN#',iconlD)))
{

}

}

SysBeepC3>;
I* can't get b/w icon */
I* signal error and bail out *I
goto out;

dh = CmyH << 1) A checksumConst;
I* checksum to find dh */

myH = CCdh == myCheck) ? CmyH>:CfirstX>>;
I* reset if necessary */

I* notice that we stored the new horizontal value directly
back into the low-memory 'myH' location, rather than using a
temporary variable.

This is the way the original ShowINIT works, and lconWrap
relies on it. *I

destRect.bottom = myPort.portRect.bottom - bottomEdge;
destRect.left = myPort.portRect.left + myH;
destRect.top = destRect.bottom - iconWidth;
destRect.right = destRect.left + iconWidth;

if Ccolorflag)
{ /* draw color icon */

PlotCiconC&destRect,CCiconHandle)thelconHdl>;
DisposCiconCCClconHandle)thelconHdl);

}

else
{ /* draw b/w icon */

HLockCthelconHdl);

Appendix B: Code Listings

}

srcRect.top = srcRect.left = O;
srcRect.bottom = srcRect.right = iconWidth;
myBitMap.rowBytes = iconRowBytes;
myBitMap.bounds = srcRect;
myBitMap.baseAddr = *theiconHdl + maskOffset;
I* punch hole with mask */
CopyBitsC&myBitMap, &myPort.portBits,

&srcRect, &destRect, srcBic, OL>;
myBitMap.baseAddr = *thelconHdl;
I* now draw the icon */
CopyBitsC&myBitMap, &myPort.portBits,

&srcRect, &destRect, srcOr, OL>;
HUnlockCtheiconHdl>;
ReleaseResourceCtheiconHdl);

myH += CCmoveX == -1) ? CdefaultMoveX):CmoveX>>;
I* advance for next time */

myCheck = CmyH << 1) A checksumConst;
I* calc new checksum */

out:

}

ClosePortC&myPort>;
asm
{

}

move.l savedAS,AS
move.l AS,CurrentAS

Chapter 3, AFI.c

#define
#define
#define
#define
#define
#define
#define

main()
{

BASE - ICON - ID 128
LAST _I CON_I D -4064
PROC_ID 128
WORD _RES_ ID -4048
NUM - ICONS 8
NORMAL_APP_FONT
DELAY 30L

Handle procH, wHandle;

applfont

401

402

}

int
long

i, fontNumber;
dummy;

Macintosh Programming Primer

if wHandle = GetResourceC 'word', WORD_RES_ID >) !=

{

}

OL)

fontNumber = *< (short *>C*wHandle) >;

*C (short *) Ox0204) = fontNumber - 1;

WriteParam<>;

if C C procH = GetResource('PROC', PROC_ID)) != OL)
{

}

HLockCprocH>;

if C fontNumber -- NORMAL_APP_FONT)
{

}

else
{

}

CallPascalC BASE_ICON_ID + NUM_ICONS, -1,
*procH>;

CallPascalC BASE_ICON_ID, O, *procH>;

Delay(DELAY, &dummy >;

for (i=1; i<NUM_ICONS-1; i++)
CallPascalC BASE_ICON_ID + i, 0, *procH>;

CallPascalC LAST_ICON_ID, -1, *procH);

HUnlockCprocH>;

Appendix B: Code Listings

Chapter 3, cdev.c

#define DEFAULT_ITEM 1
#define USER_ITEM 2

#define RUN_ON_ALL_MACHINES 1L
#define ERROR_STATE OL
#define WORD_RES_ID -4048
#define FONT_MENU_ID -4048

#define NORMAL_APP_FONT

typedef struct
{

applfont

short
} FontNumlnfo,

curfontNum;
**FontNumH;

pascal longmainC message, item, numltems, cPanelID, e,
cDevValue, cpDialog)

int message, item, numltems, cPanelID;
EventRecord*e;
long cDevValue;

cpDialog; DialogPtr
{

int
Handle
Re ct
MenuHandle
Str255

itemType, fontNumber,
itemH, tempHandle;
itemRect;
f ontMenu;
tempStr;

if C message == macDev >

choice;

return(RUN_ON_ALL_MACHINES >;
else if C message == initDev >
{

}

tempHandle = NewHandleC sizeof C FontNumlnfo > >;
fontNumber = FindFontNumberC>;
C**CCFontNumH)tempHandle)).curFontNum = fontNumber;
return< Clong)tempHandle >;

403

if C CcDevValue != cdevUnset) && CcDevValue != ERROR_STATE))
{

404 Macintosh Programming Primer

switch(message)
{

case hitDev:
if C item == DEFAULT_ITEM + numltems)
{

}

GetDitemC cpDialog, USER_ITEM + num!tems,
&itemType, &itemH, &itemRect >;

fontNumber = NORMAL_APP_FONT;
SetAppfontC fontNumber >;
DrawfontNameC fontNumber, &itemRect >;
C**CCFontNumH)cDevValue>>.curfontNum =

fontNumber;
FixResourceC fontNumber >;

else if C item == USER_ITEM + num!tems >
{

}

GetDitemC cpDialog, USER_ITEM + num!tems,
&itemType, &itemH, &itemRect >;

fontMenu = GetMenuC FONT_MENU_ID >;
InsertMenuC fontMenu, -1 >;
AddResMenu C f ontMenu, •FONT• >;
itemRect.right += 1;
choice = DoPopupC &itemRect, fontMenu >;

if C choice != 0)
{

}

GetltemC fontMenu, choice, &tempStr >;
GetFNumC tempStr, &fontNumber >;
SetAppfontC fontNumber >;
DrawfontNameC fontNumber, &itemRect >;
C**CCFontNumH)cDevValue)).curfontNum =

fontNumber;
FixResourceC fontNumber >;

DeleteMenuC FONT_MENU_ID >;
ReleaseResourceC fontMenu >;

break;
case closeDev:

DisposHandleC CHandle)cDevValue >;
break;

case nulDev:
break;

Appendix B: Code Listings 405

}

}

}

case updateDev:
GetDltemC cpDialog, USER_ITEM+numltems,

&itemType, &itemH, &itemRect >;
FrameRectC &itemRect >;
MoveToC itemRect.left + 1, itemRect.bottom >;
LineToC itemRect.right, itemRect.bottom >;
LineToC itemRect.right, itemRect.top + 1 >;
fontNumber = C**CCFontNumH)cDevValue)).curFontNum;
DrawFontNameC fontNumber, &itemRect >;
break;

case activDev:
break;

case deactivDev:
break;

case keyEvtDev:
break;

case macDev:
return< 1L >;
break;

case undoDev:
break;

case cutDev:
break;

case copyDev:
break;

case pasteDev:
break;

case clearDev:
break;

return(cDevValue >;

/********************************FixResource*******/

FixResourceC fontNumber >
short fontNumber;
{

Handle wHandle;

406 Macintosh Programming Primer

if C C wHandle = GetResourceC 'word', WORD_RES_ID) > !=
OL)

{

}

}

*C (short *>C*wHandle)) = fontNumber;
ChangedResourceC wHandle >;
WriteResourceC wHandle >;

/********************************DoPopup*******/

int DoPopupC popupRectPtr, theMenu)
Re ct *popupRectPtr;
MenuHandle theMenu;
{

}

Point
long

popupUpperlef t;
theChoice = OxOOOO;

popupUpperleft.h = popupRectPtr->left + 2;
popupUpperleft.v = popupRectPtr->bottom;

LocalToGlobal(&popupUpperleft >;

InvertRectC popupRectPtr >;
theChoice = PopUpMenuSelectC theMenu, popupUpperleft.v,

popupUpperleft.h, 0 >;
InvertRectC popupRectPtr >;
return< LoWordC theChoice > >;

!************************************** FindfontNumber */

short FindFontNumber()
{

Handle wHandle;
short fontNumber;

if (C wHandle = GetResource('word', WORD_RES_ID)) != OL)
{

}

fontNumber = *C (short *>C*wHandle) >;
return(fontNumber >;

Appendix B: Code Listings 407

else
return(NORMAL_APP_FONT >;

}

!** SetAppfont */

SetAppfontC fontNum)
short fontNum;
{

*C (short *> Ox0204) = fontNum - 1;

WriteParamC>;
}

!** DrawfontName */

DrawfontNameC fontNum, rPtr >
short f ontNum;
Re ct *rPtr;
{

}

Str255
int
Re ct

tempStr;
w;
tempRect;

tempRect = *rPtr;
InsetRectC &tempRect, 2, 2 >;
EraseRectC &tempRect >;
if C fontNum == 1)

GetfontNameC geneva, &tempStr >;
else

GetfontNameC fontNum, &tempStr >;
w = rPtr->right - rPtr->left - StringWidthC tempStr >;
MoveToC rPtr->left + w/2, rPtr->bottom - 4 >;
Drawstring< tempStr >;

Chapter 3, MDEF.c (With scrolling)

#include 11 ColorToolbox.h 11

#define MARGIN 2
#define UP 1
#define DOWN 2

408 Macintosh Programming Primer

/** main ***/

pascal void main(message, theMenu, menuRectPtr, hitPt,

int
MenuHandle
Re ct

whichltemPtr)
message;
theMenu;
*menuRectPtr;
hitPt;
*whichitemPtr;

Point
int
{

short PICTResID, numPicts, maxH, maxV, i, sWidth,

PicHandle
Re ct

sHeight;
myPicture;
r, tempRect;

int

Boolean
RgnHandle

cellNum, cellsBelowMenu, cellsOnScreen,
cellsVisible, itemNum, numScrolled;

hasUpArrow, hasDownArrow;
updateRgn;

switch(message >
{

case mDrawMsg:
GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
cellsVisible = CmenuRectPtr->bottom - menuRectPtr-

>top) I CmaxV + MARGIN>;

r.top = menuRectPtr->top + MARGIN/2;
r.left = menuRectPtr->left +MARGIN;
r.bottom = r.top + maxV;
r.right = r.left + maxH;

for C i=O; i<cellsVisible-1; i++)
{

}

myPicture = GetPictureC PICTResID + >;
tempRect = r;
CenterPictC myPicture, &tempRect >;
DrawPictureC myPicture, &tempRect >;
OffsetRectC &r, O, maxV + MARGIN >;

if C cellsVisible < numPicts)
DrawArrowC &r, DOWN >;

Appendix B: Code Listings

else
{

}

PlotPictureC PICTResID + i, &r >;
OffsetRectC &r, 0, maxV + MARGIN >;

TopMenultem = menuRectPtr->top;
AtMenuBottom = TopMenultem + CCmaxV + MARGIN) *

numPicts>;
break;

case mChooseMsg:

409

GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
cellsVisible = CmenuRectPtr->bottom - menuRectPtr-

>top)
I CmaxV + MARGIN>;

hasUpArrow = CTopMenultem < menuRectPtr->top);
hasDownArrow = CAtMenuBottom > menuRectPtr->bottom>;
cellNum = C ChitPt.v - menuRectPtr->top) I CmaxV +

MARGIN>) + 1;/* cells are 1-based */

if PtlnRectC hitPt, menuRectPtr))
{

if

{

CcellNum == 1) && hasUpArrow
scroll down 1 item */

I* then

TopMenultem += maxV + MARGIN;
AtMenuBottom += maxv + MARGIN;
itemNum = ChitPt.v - TopMenuitem) I CmaxV +

MARGIN);/* items are 0-based *I

if *whichitemPtr > 0) /* Is there a

{

}

selected cell? If so, deselect it */

numScrolled = CmenuRectPtr->top -
TopMenuitem) I CmaxV +
MARGIN);

r = *menuRectPtr;
r.top += C C*whichltemPtr - numScrolled -

2) * (MARGIN + maxV) >;
r.bottom = r.top + maxV + MARGIN;
InvertRectC &r >;
*whichitemPtr = O;

410

}

Macintosh Programming Primer

r = *menuRectPtr;
if C ! hasDownArrow
{

}

r.top = r.bottom - maxV - MARGIN;
EraseRectC &r >;
DrawArrowC &r, DOWN >;

r.top = menuRectPtr->top + maxV + MARGIN;
r.bottom = menuRectPtr->bottom - maxV -

MARGIN;
updateRgn = NewRgnC>;
ScrollRectC &r, O, maxV + MARGIN, updateRgn >;
DisposeRgnC updateRgn >;

r.top = menuRectPtr->top + maxV + MARGIN;
r.bottom = r.top + maxV + MARGIN;
PlotPictureC PICTResID + itemNum + 1, &r >;

if C itemNum == 0) /* replace up-arrow with
first pict */

{

}

r = *menuRectPtr;
r.bottom = r.top + maxV + MARGIN;
PlotPictureC PICTResID + itemNum, &r >;

else if C CcellNum == cellsVisible> &&
hasOownArrow) /* then scroll up 1 item */

{

TopMenuitem -= maxV + MARGIN;
AtMenuBottom -= maxV + MARGIN;
itemNum = ChitPt.v - TopMenuitem> I CmaxV +

MARGIN);/* items are 0-based */

if *whichitemPtr > 0 /* Is there a

{

selected cell? If so, deselect it */

numScrolled = CmenuRectPtr->top -
TopMenuitem) I CmaxV +
MARGIN>;

r = *menuRectPtr;
r.top += C C*whichltemPtr - numScrolled) *

(MARGIN + maxV));

Appendix B: Code Listings 411

r.bottom = r.top + maxV + MARGIN;
InvertRectC &r >;
*whichitemPtr = O;

}

r = *menuRectPtr;
if C ! hasUpArrow)
{

}

r.bottom = r.top + maxV + MARGIN;
EraseRect C &r) ;
DrawArrowC &r, UP >;

r.top = menuRectPtr->top + maxV + MARGIN;
r.bottom = menuRectPtr->bottom - maxV -

MARGIN;
updateRgn = NewRgnC>;

}

else
{

ScrollRectC &r, 0, -maxV - MARGIN, updateRgn >;
DisposeRgnC updateRgn >;

r.top = menuRectPtr->bottom - 2 * CmaxV +
MARGIN);

r.bottom = r.top + maxv + MARGIN;
PlotPictureC PICTResID + itemNum - 1, &r >;

if C itemNum == numPicts - 1) /* replace
down-arrow with last pict */

{

}

OffsetRect(&r, 0, maxV + MARGIN >;
PlotPictureC PICTResID + itemNum, &r >;

itemNum = ChitPt.v - TopMenuitem) I CmaxV +
MARGIN);/* items are 0-based *I

numScrolled = CmenuRectPtr->top - TopMenuitem)
I CmaxV + MARGIN>;

if C C *whichitemPtr > 0) && C *whichitemPtr
!= itemNum + 1))

{

r = *menuRectPtr;
r.top += C C*whichitemPtr - numScrolled -1>

* (MARGIN + maxV> >;

412

}

}

}

Macintosh Programming Primer

r.bottom = r.top + maxV + MARGIN;
InvertRect(&r >;

if C *whichitemPtr != itemNum + 1
{

}

*whichitemPtr = itemNum + 1;
r = *menuRectPtr;
r.top += C C*whichitemPtr - numScrolled -1)

* (MARGIN + maxV) >;
r.bottom = r.top + maxV + MARGIN;
InvertRect(&r >;

else if C *whichitemPtr > 0)
{

numScrolled = CmenuRectPtr->top - TopMenuitem>
I CmaxV + MARGIN>;

r = *menuRectPtr;
r.top += (C*whichitemPtr - numScrolled -1) *

(MARGIN + maxV} >;
r.bottom = r.top + maxV + MARGIN;
InvertRect(&r >;
*whichitemPtr = O;

}

break;
case mSizeMsg:

GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
GetScreenSizeC &sHeight, &sWidth >;
cellsOnScreen = CsHeight - MBarHeight) I CmaxV +

MARGIN);
HlockC theMenu >;
C**theMenu).menuWidth = maxH + 2 * MARGIN;
if C cellsOnScreen > numPicts >

else

C**theMenu).menuHeight = CmaxV +MARGIN} *
numPicts;

C**theMenu>.menuHeight = CmaxV + MARGIN) *
cellsOnScreen;

HUnlockC theMenu >;
break;

case mPopUpMsg:

Appendix B: Code Listings 413

}

}

I* cellsBelowMenu is the number of cells that will fit
below the menu. cellsOnScreen is the number of cells
that will fit between the bottom of the menu bar and
the bottom of the screen. Note that the Toolbox (for
very arcane reasons> switches hitPt.h and hitPt.v on
the popup message only. Don't worry, this code is
correct •••

*I
GetNumPictsC theMenu, &PICTResID, &numPicts >;
CalcMaxHVC PICTResID, numPicts, &maxH, &maxV >;
GetScreenSizeC &sHeight, &sWidth >;
cellsBelowMenu = CsHeight - hitPt.h) I CmaxV +

MARGIN);
cellsOnScreen = CsHeight - MBarHeight> I CmaxV +

MARGIN);

if C cellsOnScreen > numPicts)
{

if C cellsBelowMenu > numPicts)
{

menuRectPtr->top = hitPt.h;
menuRectPtr->bottom = hitPt.h + C CmaxV +

MARGIN) * numPicts >;
}

else
{

}

menuRectPtr->bottom = sHeight;
menuRectPtr-~top = menuRectPtr->bottom -

C CmaxV + MARGIN) * numPicts >;

}

else
{

I* We have to scroll, use entire screen */

}

menuRectPtr->bottom = sHeight;
menuRectPtr->top = menuRectPtr->bottom -

C CmaxV + MARGIN) * cellsOnScreen >;

menuRectPtr->Left = hitPt.v;
menuRectPtr->right = hitPt.v + maxH + 2 * MARGIN;
*whichltemPtr = O;
br~ak;

414 Macintosh Programming Primer

!******************************** PlotPicture *********/

PlotPictureC reslD, rPtr >
int
Re ct
{

}

res ID;
*rPtr;

PicHandle pie;
Reet tempReet;

pie = GetPietureC resID >;
tempReet = *rPtr;
EraseReetC &tempReet >;
CenterPietC pie, &tempRect >;
DrawPictureC pie, &tempReet >;

!******************************** DrawArrow *********/

DrawArrowC rPtr, upOrDown)
Re ct *rPtr;
int upOrDown;
{

int top, mid, i;

top = CrPtr->bottom - rPtr->top) I 2 + rPtr->top - 3;
mid = CrPtr->right - rPtr->left) I 2 + rPtr->left;

if C upOrDown == UP)
{

for C i=O; i<6; i++)
{

Move To(mid - i -
LineToC mid + i,

}

}

else
{

for c i=O; i<6; i++)

{

1,
top

Move To(mi"d (6-i),
LineToC mid + CS-i>,

}

}

top + i >;
+ i) ;

top + i) ;
top +) . ,

Appendix B: Code Listings 415

/******************************** CenterPict *********/

CenterPictC thePicture, myRectPtr)
PicHandle thePicture;
Re ct *myRectPtr;
{

}

Re ct windRect, pictureRect;

windRect = *myRectPtr;
pictureRect = C**C thePicture)).picFrame;
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))
I 2 + windRect.top;

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top);

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))
I 2 + windRect.left;

myRectPtr->right = myRectPtr->left + CpictureRect.right -
pictureRect.left>;

/** CalcMaxHV ***/

CalcMaxHVC PICTResID, numPicts, hPtr, vPtr)
short PICTResID, numPicts, *hPtr, *vPtr;
{

}

short i;
Re ct
PicHandle

r;
myPicture;

*hPtr = O;
*vPtr = O;
for C i=O; i<numPicts; i++)
{

}

myPicture = GetPicture(PICTResID + >;
r = C**myPicture).picframe;

if (r.bottom - r.top > *vPtr >
*vPtr = r.bottom - r.top;

if C r.right - r.left > *hPtr
*hPtr = r.right - r.left;

416 Macintosh Programming Primer

!** GetScreenSize ***/

GetScreenSizeC heightPtr, widthPtr)
short *heightPtr, *widthPtr;
{

}

SysEnvRec
GDHandle
Re ct
WindowPtr

my SE;
mainDev;
dummyRect;
dummyWindow;

SysEnvironsC 2, &mySE >;
if C mySE.hasColorQD >
{

mainDev = GetMainDeviceC>;
HLockC mainDev >;
*heightPtr = C**mainDev).gdRect.bottom -

C**mainDev).gdRect.top;
*widthPtr = C**mainDev).gdRect.right -

C**mainDev).gdRect.left;
}

else
{

}

SetRectC &dummyRect, 0, O, 100, 100 >;
dummyWindow = NewWindowC OL, &dummyRect, 11 \p", FALSE,

O, -1L, FALSE, OL >;
*heightPtr = dummyWindow->portBits.bounds.bottom -

dummyWindow->portBits.bounds.top;
*widthPtr = dummyWindow->portBits.bounds.right -

dummyWindow->portBits.bounds.left;
DisposeWindowC dummyWindow >;

!** GetNumPicts ***/

GetNumPictsC theMenu, baseIDPtr, numPictsPtr
MenuHandle theMenu;
short *baseIDPtr, *numPictsPtr;
{

}

HLockC theMenu >;
*baseIDPtr = HiWordCC**theMenu).enableflags);
*numPictsPtr = LoWordCC**theMenu).enableFlags);
HUnlockC theMenu >;

Appendix B: Code Listings

Chapter 3, Tester.c (For MDEF)

#define BASE_ RES ID 400
#define APPLE_MENU_ID 400
#define NIL POINTER OL -
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

#define WNE_TRAP _NUM Ox60
#define UNIMPL_TRAP _NUM Ox9F
#define MIN_SLEEP 60L
d e f i n e N IL_M 0 U S E - REGION OL

#define FILE_MENU_ID 401
#define F _QUIT_ITEM 1

#define PICT_MENU - ID 403

Boolean
EventRecord
MenuHandle
PicHandle
WindowPtr

gDone, gWNEimplemented;
gTheEvent;
gAppleMenu;
gCurPicture;
gTheWindow;

main()
{

}

ToolBoxinit<>;
MenuBarinitC>;

gTheWindow = GetNewWindow(BASE_RES_ID, NIL_POINTER,
MOVE_TO_FRONT >;

SetPort(gTheWindow >;
ShowWindowC gTheWindow >;

gCurPicture = GetPictureC BASE_RES_ID >;

MainloopC);

417

418 Macintosh Programming Primer

!*********************************** ToolBoxlnit */

ToolBoxlnit()
{

}

InitGrafC &thePort >;
InitFontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER);
InitCursorC>;

!*********************************** MenuBarlnit*/

MenuBarlnitC)
{

}

Handle myMenuBar;

myMenuBar = GetNewMBarC BASE_RES_ID);
SetMenuBarC myMenuBar >;
gAppleMenu = GetMHandleC APPLE_MENU_ID >;
AddResMenuC gAppleMenu, 'DRVR') ;
DrawMenuBarC>;

!******************************** Mainloop *********/

MainloopC)
{

gDone = FALSE;
gWNEimplemented =

while C gDone ==
{

NGetTrapAddressC WNE_TRAP_NUM,
TooLTrap > !=
NGetTrapAddressC UNIMPL_TRAP_NUM,
TooLTrap > >;

FALSE)

HandleEvent<>;
}

}

Appendix B: Code Listings

!************************************* HandleEvent *I

HandleEvent()
{

}

char theChar;

if C gWNEimplemented)

else
{

}

WaitNextEvent(everyEvent, &gTheEvent, MIN_SLEEP,
NIL_MOUSE_REGION >;

SystemTaskC);
GetNextEventC everyEvent, &gTheEvent >;

switch C gTheEvent.what)
{

}

case mouseDown:
HandleMouseDownC>;
break;

case keyDown:
case autoKey:

theChar = gTheEvent.message & charCodeMask;
if CC gTheEvent.modifiers & cmdKey) != 0)

HandleMenuChoice(MenuKey(theChar > >;
break;

case updateEvt:
BeginUpdate(gTheEvent.message >;
DrawMyPictureC gCurPicture, gTheWindow >;
EndUpdateC gTheEvent.message >;
break;

!************************************* HandleMouseDown */

HandleMouseDownC>
{

WindowPtr whichWindow;
short int thePart;
long int menuChoice, windSize;

419

420

}

Macintosh Programming Primer

thePart = FindWindowC gTheEvent.where, &whichWindow >;
switch (thePart >
{

}

case inMenuBar:
menuChoice = MenuSelectC gTheEvent.where >;
HandleMenuChoiceC menuChoice >;
break;

case inSysWindow
SystemClickC &gTheEvent, whichWindow >;
break;

case inDrag :
DragWindowC whichWindow, gTheEvent.where,

&CscreenBits.bounds) >;
break;

!************************************* HandleMenuChoice */

HandleMenuChoiceC menuChoice)
long int
{

menuChoice;

}

int thel't'lenu;
int the Item;

if C menuChoice != 0 >
{

}

thel't'lenu = HiWordC menuChoice >;
theltem = LoWordC menuChoice >;
switch C theMenu >
{

}

case FILE_MENU_ID :
if C theltem == F_QUIT_ITEM

gDone = TRUE;
break;

case PICT_MENU_ID :
EraseRectC &gTheWindow->portRect >;
InvalRect(&gTheWindow->portRect >;
gCurPicture = GetPicture(BASE_RES_ID + theltem - 1 >;
break;

HiliteMenu(0 >;

Appendix B: Code Listings

/******************************** DrawMyPicture *********/

DrawMyPictureC thePicture, pictureWindow)
PicHandle thePicture;
WindowPtr pictureWindow;
{

}

Re ct myRect;

myRect = pictureWindow->portRect;
CenterPictC thePicture, &myRect >;
DrawPictureC thePicture, &myRect >;

/******************************** CenterPict *********/

CenterPictC thePicture, myRectPtr
PicHandle thePicture;
Re ct *myRectPtr;
{

Re ct windRect, pictureRect;

windRect = *myRectPtr;
pictureRect = C**C thePicture)).picframe;
myRectPtr->top = CwindRect.bottom - windRect.top -

421

CpictureRect.bottom - pictureRect.top))
I 2 + windRect.top;

}

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top);

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))

I 2 + windRect.left;
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left);

Chapter 3, DLOG.c

#define BASE_RES_ID
#define NIL_POINTER
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS

400
OL
-1L
0

422 Macintosh Programming Primer

#define OK ITEM 1 -
#define CANCEL ITEM 2 -
#define TEXT _ITEM 4

#define TE ENTER KEY 3 - -
#define TE - TAB - CHAR 9
#define TE CARRIAGE RETURN 13 - -
pascal Boolean DLOGFi lterO;

main<>
{

DialogPtr
Boolean
int
Handle
Re ct
Str255

theDialog;
done;
itemHit, itemType;
OKHandle, textHandle;
itemRect;
theText;

ToolBoxlnitC>;

theDialog = GetNewDialogC BASE_RES_ID, NIL_POINTER,
MOVE_TO_FRONT >;

GetDltemC theDialog, OK_ITEM, &itemType, &OKHandle,
&itemRect >;

GetDltemC theDialog, TEXT_ITEM, &itemType, &textHandle,
&itemRect >;

CenterDialogC theDialog >;
ShowWindowC theDialog >;
SetPortC theDialog >;
DrawOKButtonC theDialog >;

done = FALSE;
while C ! done)
{

GetITextC textHandle, &theText >;
if C theText[0 J == 0)

HiliteControlC OKHandle, 255 >;
else

HiliteControlC OKHandle, 0 >;
ModalDialogC DLOGFilter, &itemHit >;

Appendix B: Code Listings

}

}

done = C CitemHit == OK_ITEM) I I CitemHit -
CANCEL_ITEM)) ;

!*********************************** ToolBoxlnit */

ToolBoxlnitO
{

}

InitGrafC &thePort >;
InitFontsO;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindows<>;
InitMenusC>;
TEinitO;
InitDialogs(NIL_POINTER >;
InitCursorC>;

423

/*** DLOGFilter *****/

pascal
DialogPtr
EventRecord
int

BooleanDLOGFilterC theDialog, e, iPtr)
theDialog;

{

int
Re ct
Handle
Str255
char

*e;
*iPtr;

itemType;
itemRect;
item;
tempStr;
theChar;

GetDitem(theDialog, TEXT_ITEM, &itemType, &item,
&itemRect >;

GetlTextC item, &tempStr >;

if Ce->what == keyDown>
{

theChar = Ce->message & charCodeMask>;
if C CtheChar == TE_CARRIAGE_RETURN> I I

TE_ENTER_KEY>)
CtheChar

424

}

{

}

}

Macintosh Programming Primer

if C tempStr[0 J != 0)
{

}

else
{

}

* i Pt r = 0 K_IT EM;
GetDitemC theDialog, OK_ITEM, &itemType, &item,

&itemRect >;
HiliteControlC item, 1 >;
return(TRUE >;

*iPtr = TEXT_ITEM;
return(TRUE >;

return(FALSE >;

!*************************************** DrawOKButton *****/

DrawOKButtonC theDialog
DialogPtr theDialog;
{

}

int
Re ct
Handle
Graf Ptr

itemType;
itemRect;
item;
oldPort;

GetDitemC theDialog, OK_ITEM, &itemType, &item, &itemRect >;
GetPortC &oldPort >;
SetPortC theDialog >;

PenSizeC 3, 3 >;
InsetRectC &itemRect, -4, -4 >;
FrameRoundRectC &itemRect, 16, 16 >;
PenNormaLC>;

SetPortC oldPort >;

Appendix B: Code Listings 425

/*************************************** CenterDialog *****/

CenterDialogC theDialog)
DialogPtr theDialog;
{

)

Re ct
int

r;
width, height, sWidth, sHeight, h, v;

r = theDialog->portRect;

width = r.right - r.left;
height = r.bottom - r.top;

sWidth = screenBits.bounds.right - screenBits.bounds.left;
sHeight = screenBits.bounds.bottom - screenBits.bounds.top;

h = CsWidth - width) I 2;
v = CsHeight - height) I 2;

MoveWindowC theDialog, h, v, FALSE >;

Chapter 4, Colorlnfo.c

#include 11 ColorToolbox.h"

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define INVISIBLE
#define NO_GOAWAY

400
OL
II \p"
FALSE
FALSE

#define MOVE_TO_FRONT CWindowPtr)-1L
#define REMOVE_ALL_EVENTS 0
#define INDEX_DEVICE TRUE
#define DIRECT_DEVICE FALSE

Boolean IsColorC>;

426 Macintosh Programming Primer

main()
{

int
GDHandle
Re ct

pixDepth;
cur Dev;
bounds;

ToolBoxlnitC>;

if C IsColorO)
{

curDev = GetDevicelistC>;

while(curDev != NIL_POINTER
{

bounds = C**curDev).gdRect;

pixDepth = GetPixelDepth(curDev >;
switch(pixDepth >
{

case 1 :
DisplayColorsC &bounds, 1, 2, 128,
break;

case 2:
DisplayColors(&bounds, 2, 2, 128,
break;

case 4:
DisplayColors(&bounds, 4, 4, 64,
break;

case 8:
DisplayColorsC &bounds, 16, 16, 24,
break;

default:

INDEX_DEVICE

INDEX_DEVICE

INDEX_DEVICE

INDEX_DEVICE

DisplayColorsC &bounds, 48, 48, 8,
DIRECT_DEVICE >;

break;
}

curDev = GetNextDeviceC curDev >;
}

while(! Button() > ;
}

else

) . ,

) . ,

) . ,

>;

DoAlertC 11 \pThis machine does not support Color GuickDraw!" >;
}

Appendix B: Code Listings

/*********************************** ToolBoxlnit */

ToolBoxlnit()
{

}

lnitGraf C &thePort >;
lnitfonts<>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
lnitWindowsC>;
InitMenusC>;
TEini t ();
InitDialogsC NIL_POINTER >;
InitCursorC>;

/******************************** GetPixelDepth *********/

int GetPixelDepthC theDevice
GDHandle theDevice;
{

}

PixMapHandle
int

screenPMapH;
pixel Depth;

screenPMapH = C**theDevice).gdPMap;
pixelDepth = C**screenPMapH).pixeLSize;
return< pixeLDepth >;

/******************************** IsColor *********/

Boolean lsColor()
{

}

SysEnvRec mySE;

SysEnvironsC 1, &mySE >;
return< mySE.hasColorQD >;

427

428 Macintosh Programming Primer

/*********************************** DisplayColors */

DisplayColorsC boundsPtr, width, height, pixPerBox, isindex >
Re ct
int
Boolean
{

Re ct

*boundsPtr;
width, height, pixPerBox;
isindex;

r;
int
WindowPtr
RGBColor
HSVColor
long

row, col;
cWindow;
curColor;
hsvColor;
colorNum;

hsvColor.value = hsvColor.saturation = 65535;

r.top = O;
r.left = O;
r.right = width * pixPerBox;
r.bottom = height * pixPerBox;

cWindow = NewCWindowC NIL_POINTER, &r, 11 \pDevice Colors",
INVISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

CenterWindowC cWindow, boundsPtr >;
ShowWindowC cWindow >;
SetPortC cWindow >;

for C row=O; row<height; row++ >
{

for C col=O; col<width; col++
{

r.top = row * pixPerBox;
r.left =col* pixPerBox;
r.bottom = r.top + pixPerBox;
r.right = r.left + pixPerBox;

if C isindex >

else
{

Index2Color(Clong)(row*width + col>, &curColor >;

colorNum = Clong)Crow*width + col>;

Appendix B: Code Listings 429

hsvColor.hue = 65535 * colorNum I (width * height >;
HSV2RGBC &hsvColor, &curColor >;

}

}

}

}

RGBForeColorC &curColor >;
PaintRectC &r >;

!*********************************** CenterWindow */

CenterWindowC w, boundsPtr >
Re ct *boundsPtr;
WindowPtr w;
{

}

Rec t r;
int width, height, sWidth, sHeight, h, v;

r = w->portRect;

width = r.right - r.left;
height = r.bottom - r.top;

sWidth = boundsPtr->right - boundsPtr->left;
sHeight = boundsPtr->bottom - boundsPtr->top;

h = boundsPtr->left + CCsWidth - width) I 2>;
v = boundsPtr->top + CCsHeight - height) I 2>;

MoveWindowC w, h, v, FALSE >;

/*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

}

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER >;

430

Chapter 4, Palette.c

#include "ColorToolbox.h"

#define BASE_RES_ID 400
#define NIL POINTER OL -
#define NIL - STRING "\p"
#define VISIBLE TRUE
#define HAS GOAWAY TRUE -
#define MOVE_ TO - FRONT -1L
#define REMOVE_ALL_EVENTS 0
#define MIN SLEEP OL -
#defineNIL_MOUSE_REGION OL

#define PRECISE_TOLERANCE OxOOOO
#define NUM_SQUARES 150

IsColorO;
CreateColorWindowC>;

Macintosh Programming Primer

Boolean
WindowPtr
PaletteHandle MakeRedPalette(), MakeBrightPalette(),

MakeGrayPaletteC>;

main()
{

Point
WindowPtr
PaletteHandle

ToolBoxinitC>;

corner;
window;
pal;

if C ! IsColorC> >

else
{

DoAlertC "\pThis machine does not support Color QuickDraw! 11 >;

corner.h = 10;
corner.v = 40;
window = CreateColorWindow(corner, 11 \pRed Palette" >;
pal = MakeRedPaletteC>;
SetPaletteC window, pal, TRUE >;

Appendix B: Code Listings

corner.h = 170;
corner.v = 177;

431

window = CreateColorWindowC corner, 11 \pBright Palette 11

) ;

}

}

pal = MakeBrightPaletteC>;
SetPaletteC window, pal, TRUE >;

corner.h = 330;
corner.v = 40;
window = CreateColorWindowC corner, 11 \pGray Palette" >;
pal = MakeGrayPaletteC>;
SetPaletteC window, pal, TRUE >;

DoEventloopC>;

!*********************************** ToolBoxlnit */

ToolBoxlnitO
{

}

InitGrafC &thePort >;
InitfontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
InitWindowsC>;
InitMenusC>;
TEinitO;
InitDialogsC NIL_POINTER >;
InitCursorC>;

/*********************************** DoEventloop */

DoEventloopC)
{

Boolean
Event Record
short
WindowPtr

done;
e;
part;
window;

432

}

Macintosh Programming Primer

done = FALSE;
while C ! done>
{

}

WaitNextEventC everyEvent, &e, MIN_SLEEP,
NIL_MOUSE_REGION >;

switch(e.what
{

}

case mouseDown:
part = FindWindowC e.where, &window >;
if C part == inGoAway >

done = TRUE;
else if C part == inDrag

DragWindowC window, e.where,
&screenBits.bounds >;

else if C part == inContent >
{

if C window != FrontWindowC> >
SelectWindowC window >;

}

break;
case updateEvt:

BeginUpdateC CWindowPtr)e.message >;
SetPortC CWindowPtr)e.message >;
DrawBullseyeC>;
EndUpdateC CWindowPtr>e.message >;
break;

/*********************************** DrawBullseye */

DrawBullseyeC>
{

int
Re ct

i, center;
r;

center = NUM_SQUARES;

for C i=1; i<=NUM_SQUARES; i++)
{

Appendix B: Code Listings

}

}

PmForeColor(i - 1 >;
r.top = center - i;
r.left =center - i;
r.bottom = center + i;
r.right = center + i;

FrameRectC &r >;

/******************************** lsColor *********/

Boolean IsColor()
{

}

SysEnvRec mySE;

SysEnvirons< 1, &mySE >;
return< mySE.hasColorQD >;

/******************************** MakeRedPalette *********/

PaletteHandle MakeRedPalette()
{

}

RGBColor
long
PaletteHandle

c;
i;
redPalette;

redPalette = NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

c.green = O;
c.blue = O;

for C i=O; i<NUM_SQUARES; i++)
{

}

c.red = Ci * 65535) I NUM_SQUARES;
SetEntryColorC redPalette, i, &c >;

return< redPalette >;

433

434 Macintosh Programming Primer

!******************************** MakeBrightPalette *********/

P~letteHandle MakeBrightPaletteC>
{

}

PaletteHandle
long
RGBColor
HSVColor

brightPalette

brightPalette;
i;
rgbColor;
hsvColor;

= NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for C i=O; i<NUM_SQUARES; i++
{

hsvColor.hue = Ci * 65535) I NUM_SQUARES;
HSV2RGBC &hsvColor, &rgbColor >;
SetE~tryColorC brightPalette, i, &rgbColor >;

return(brightPalette >;

!******************************** MakeGrayPalette *********/

PaletteHandle MakeGrayPalette()
{

PaletteH~ndle

long
RGBColor

grayPalette =

grayPalette;
i;
rgbColor;

NewPaletteC NUM_SQUARES, NIL_POINTER,
pmTolerant, PRECISE_TOLERANCE >;

for C i=O; i<NUM_SQUARES; i++)
{

rgbColor.red = Ci * 65535) I NUM_SQUARES;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;

Appendix B: Code Listings 435

SetEntryColor(grayPalette, i, &rgbColor >;
}

return(grayPalette >;
}

/*********************************** CreateColorWindow */

WindowPtr
Point
Str255

CreateColorWindow(corner, title)
corner;
title;

{

WindowPtr cWindow;
Rect r;

SetRect(&r, corner.h, corner.v, corner.h + (2 * NUM_SQUARES),
corner.v + (2 * NUM_SQUARES) >;

cWindow = NewCWindow(NIL_POINTER, &r, title,
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
HAS_GOAWAY, NIL_POINTER >;

return(cWindow >;
}

/*********************************** DoAlert */

DoAlert(s)
Str255 s;
{

ParamText(s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER);

}

Chapter 4, ColorTutor.c

#include 11 ColorToolbox.h"

#define BASE_RES_ID
#define NIL_POINTER
#define NIL_STRING
#define VISIBLE

400
OL
"\p"
TRUE

436

#define HAS_GOAWAY TRUE
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0
#define MIN_SLEEP OL
#def i n e NI L_M 0 US E_R E GI 0 N 0 L
#define NOT_A_NORMAL_MENU -1

#define PRECISE_TOLERANCE OxOOOO

#define BLACK_PATTERN 1
#define GRAY_PATTERN 2
#define COLOR_RAMP 4
#define GRAY _RAMP 5
#define SINGLE_COLOR 6

#define SRC AND BACK_MENU 400
#define MODE_MENU 401

Boolean lsColorC>, PickColorC>;

Macintosh Programming Primer

Re ct gSrcRect, gBackRect, gDestRect,
gSrcMenuRect, gBackMenuRect, gModeMenuRect,
gOpColorRect;

int

RGBColor
MenuHandle
WindowPtr

main()
{

gSrcPattern, gBackPattern, gCopyMode,
gSrcType, gBackType;
gSrcColor, gBackColor, gOpColor;
gSrcMenu, gBackMenu, gModeMenu;
gColorWindow;

Point
PaletteHandle

corner;
pal;

ToolBoxlnitC>;

if C ! IsColorC> >
DoAlertC "\pThis machine does not support Color QuickDraw!" >;

else

Appendix B: Code Listings

{

}

}

SetUpWindowC>;
SetUpGlobalsC>;

DoEventLoopC);

!*********************************** ToolBoxlnit */

ToolBoxlnit()
{

}

lnitGrafC &thePort >;
InitfontsC>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS >;
lnitWindowsC>;
lnitMenusO;
TEinitO;
lnitDialogsC NIL_POINTER >;
InitCursorC>;

/*********************************** SetUpWindow */

SetUpWindowC>
{

Re ct r;

SetRectC &r, 5, 40, 225, 275 >;

437

gColorWindow = NewCWindowC NIL_POINTER, &r, 11 \pColorTutor",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,

}

HAS_GOAWAY, NIL_POINTER);

SetRectC &r, 15, 207, 95, 225 >;
NewControlC gColorWindow, &r, 11 \pOpColor ... ",

VISIBLE, O, O, 1, pushButProc, NIL_POINTER >;

SetPortC gColorWindow >;
TextfontC systemfont >;

438 Macintosh Programming Primer

/*********************************** SetUpGlobals */

SetUpGlobalsC>
{

}

SetRectC &gSrcRect, 15, 6, 95, 86 >;
SetRectC &gBackRect, 125, 6, 205, 86 >;
SetRectC &gDestRect, 125, 122, 205, 202 >;
SetRectC &gOpColorRect, 15, 122, 95, 202 >;

SetRectC &gSrcMenuRect, 7, 90, 103, 108 >;
SetRectC &gBackMenuRect, 117, 90, 213, 108 >;
SetRectC &gModeMenuRect, 117, 206, 213, 226 >;

gSrcPattern = BLACK_PATTERN;
gBackPattern = BLACK_PATTERN;

gCopyMode = srcCopy;

gSrcColor.red = 65535;
gSrcColor.green = gSrcColor.blue = O;
gSrcType = SINGLE_COLOR;

gBackColor.blue = OxFFFF;
gBackColor.red = gBackColor.green = O;
gBackType = SINGLE_COLOR;

gOpColor.green = 32767;
gOpColor.red = 32767;
gOpColor.blue = 32767;
OpColorC &gOpColor >;

gSrcMenu = GetMenuC SRC_AND_BACK_MENU >;
InsertMenuC gSrcMenu, NOT_A_NORMAL_MENU >;

gBackMenu = GetMenuC SRC_AND_BACK_MENU >;
lnsertMenuC gBackMenu, NOT_A_NORMAL_MENU >;

gModeMenu = GetMenuC MODE_MENU);
lnsertMenuC gModeMenu, NOT_A_NORMAL_MENU >;

Appendix B: Code Listings

!*********************************** DoEventloop */

DoEventloopC)
{

Boolean
Event Record
short
WindowPtr
Point

done;
e;
part;
window;
p;

done = FALSE;
while C ! done)
{

439

WaitNextEventC everyEvent, &e, MIN_SLEEP, NIL_MOUSE_REGION >;

}

}

switch< e.what)
{

}

case mouseDown:
part = FindWindowC e.where, &window >;
if C part == inGoAway)

done = TRUE;
else if C part == inDrag)

DragWindowC window, e.where,
&screenBits.bounds >;

else if C part == inContent)
{

p = e.where;
GlobalTolocalC &p >;
DoContentC p >;

}

break;
case updateEvt:

BeginUpdateC CWindowPtr)e.message >;
SetPortC CWindowPtr)e.message >;
DrawWindow<>;
DrawControlsC CWindowPtr)e.message >;
EndUpdateC CWindowPtr)e.message >;
break;

440 Macintosh Programming Primer

!*********************************** DoContent *I

DoContentC p)
Point p;
{

int
ControlHandle
RGBColor

choice;
control;
rgbColor;

if C FindControlC p, gColorWindow, &control))
{

}

if C TrackControlC control, p, NIL_POINTER))
{

}

rgbColor = gOpColor;
if C PickColorC &rgbColor))
{

}

gOpColor = rgbColor;
lnvalRectC &gOpColorRect >;
InvalRectC &gDestRect >;
OpColorC &gOpColor >;

else if C PtlnRectC p, &gSrcMenuRect >)
{

}

UpdateSrcMenuC>;
choice = DoPopupC gSrcMenu, &gSrcMenuRect >;
if C choice > 0)
{

}

DoSrcChoiceC choice >;
InvalRect(&gSrcRect >;
InvalRectC &gDestRect >;

else if C PtlnRectC p, &gBackMenuRect) >
{

}

UpdateBackMenuC>;
choice = DoPopupC gBackMenu, &gBackMenuRect >;
if C choice > 0)
{

}

DoBackChoiceC choice >;
InvalRectC &gBackRect >;
InvalRectC &gDestRect >;

Appendix B: Code Listings

}

else if C PtinRectC p, &gModeMenuRect >)
{

}

UpdateModeMenuC>;
choice = DoPopupC gModeMenu, &gModeMenuRect >;
if C choice > 0 >
{

}

DoModeChoiceC choice >;
InvalRectC &gDestRect >;

/*********************************** DrawWindow */

DrawWindowC)
{

RGBColor
Re ct

rgbBlack;
source, dest;

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;

if C gSrcPattern == BLACK_PATTERN
PenPatC black);

else
PenPatC gray >;

if C gSrcType == COLOR_RAMP)
DrawColorRampC &gSrcRect >;

else if C gSrcType == GRAY_RAMP)
DrawGrayRampC &gSrcRect >;

else
{

}

RGBForeColorC &gSrcColor >;
PaintRectC &gSrcRect >;

if C gBackPattern -- BLACK_PATTERN
PenPatC black >;

else
PenPatC gray >;

if C gBackType == COLOR_RAMP)

441

442

}

DrawColorRampC &gBackRect >;
else if C gBackType == GRAY_RAMP)

DrawGrayRampC &gBackRect >;
else
{

}

RGBForeColorC &gBackColor >;
PaintRectC &gBackRect >;

PenPatC black >;

RGBForeColorC &gOpColor >;
PaintRectC &gOpColorRect >;

RGBForeColorC &rgbBlack >;

Macintosh Programming Primer

DrawlabelC &gSrcMenuRect, 11 \pSource" >;
DrawlabelC &gBackMenuRect, "\pBackground" >;
DrawlabelC &gModeMenuRect, 11 \pMode" >;

PenSizeC 2, 2 >;
FrameRectC &gSrcRect >;
FrameRectC &gBackRect >;
FrameRectC &gDestRect >;
FrameRectC &gOpColorRect >;

PenNormalC>;

source = gBackRect;
InsetRectC &source, 2, 2 >;

dest = gDestRect;
InsetRectC &dest, 2, 2 >;

CopyBitsC &CCCGraf Ptr)gColorWindow)->portPixMap,
&CCCGrafPtr)gColorWindow)->portPixMap,
&source, &dest, srcCopy, NIL_POINTER >;

source = gSrcRect;
InsetRectC &source, 2, 2 >;

CopyBitsC &CCCGraf Ptr)gColorWindow)->portPixMap,
&CCCGrafPtr)gColorWindow)->portPixMap,
&source, &dest, gCopyMode, NIL_POINTER >;

Appendix B: Code Listings

/*********************************** DrawColorRamp */

DrawColorRampC rPtr) -
Rect *rPtr;
{

}

long
HSVColor
RGBColor
Re ct

r = *rPtr;

numColors, i;
hsvColor;
rgbColor;
r;

InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2) I 2;
hsvColor.value = hsvColor.saturation = 65535;

for C i=O; i<numColors; i++ >
{

}

hsvColor.hue = i * 65535 I numColors;
HSV2RGB(&hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
FrameRect(&r >;
InsetRectC &r, 1, 1 >;

/*********************************** DrawGrayRamp */

DrawGrayRampC rPtr >
Re ct *rPtr;
{

long
RGBColor
Re ct

r = *rPtr;

numColors, i;
rgbColor;
r;

InsetRectC &r, 2, 2 >;
numColors = CrPtr->right - rPtr->left - 2> I 2;

for (i=O; i<numColors; i++)
{

rgbColor.red =
rgbColor.green

* 65535 I numColors;
= rgbColor.red;

443

444

}

}

rgbColor.blue = rgbColor.red;
RGBForeColorC &rgbColor >;
FrameRectC &r >;
InsetRectC &r, 1, 1 >;

Macintosh Programming Primer

/*********************************** Drawlabel */

DrawlabelC rPtr, s)

Re ct *rPtr;
Str255 s;
{

}

Re ct tempRect;
int size;

tempRect = *rPtr;
tempRect.bottom -= 1;
tempRect.right -= 1;
FrameRectC &tempRect >;

MoveTo(tempRect.left + 1, tempRect.bottom >;
LineToC tempRect.right, tempRect.bottom >;
LineToC tempRect.right, tempRect.top + 1 >;

size = rPtr->right - rPtr->left - StringWidthC s >;
MoveToC rPtr->left + size/2, rPtr->bottom - 6 >;
Drawstring(s >;

/*********************************** UpdateSrcMenu *I

UpdateSrcMenu()
{

int i;

for C i=1; i<=6; i++)
CheckltemC gSrcMenu, i, FALSE >;

if C gSrcPattern == BLACK_PATTERN)
CheckltemC gSrcMenu, BLACK_PATTERN, TRUE >;

Appendix B: Code Listings

}

else
CheckltemC gSrcMenu, GRAY_PATTERN, TRUE >;

if C gSrcType == COLOR_RAMP)
CheckltemC gSrcMenu, COLOR_RAMP, TRUE >;

else if C gSrcType == GRAY_RAMP)
Checkltem(gSrcMenu, GRAY_RAMP, TRUE >;

else if C gSrcType == SINGLE_COLOR)
CheckltemC gSrcMenu, SINGLE_COLOR, TRUE >;

/*********************************** UpdateBackMenu */

UpdateBackMenu()
{

}

int i;

for C i=1; i<=6; i++)
CheckltemC gBackMenu, i, FALSE >;

if C gBackPattern == BLACK_PATTERN)
CheckltemC gBackMenu, BLACK_PATTERN, TRUE >;

else
CheckltemC gBackMenu, GRAY_PATTERN, TRUE >;

if C gBackType == COLOR_RAMP)
CheckltemC gBackMenu, COLOR_RAMP, TRUE >;

else if C gBackType == GRAY_RAMP)
CheckltemC gBackMenu, GRAY_RAMP, TRUE >;

else if (gBackType == SINGLE_COLOR)
CheckltemC gBackMenu, SINGLE_COLOR, TRUE);

!*********************************** UpdateModeMenu */

UpdateModeMenuC>
{

int i;

for C i=1; i<=17; i++ >
Checkltem(gModeMenu, i, FALSE >;

445

446

}

Macintosh Programming Primer

if C C gCopyMode >=0 > && C gCopyMode <= 7))
CheckltemC gModeMenu, gCopyMode + 1, TRUE >;

else
CheckltemC gModeMenu, gCopyMode - 22, TRUE >;

/*********************************** DoSrcChoice */

DoSrcChoiceC item >
int item;
{

}

RGBColor rgbColor;

switch(item)
{

}

case BLACK_PATTERN:
gSrcPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gSrcPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gSrcType = COLOR_RAMP;
break;

case GRAY_RAMP:
gSrcType = GRAY_RAMP;
break;

case SINGLE_COLOR:
gSrcType = SINGLE_COLOR;
rgbColor = gSrcColor;
if C PickColorC &rgbColor > >

gSrcColor = rgbColor;
break;

/*********************************** DoBackChoice */

DoBackChoiceC item >
int item;
{

Appendix B: Code Listings 447

}

RGBColor rgbColor;

switch< item)
{

}

case BLACK_PATTERN:
gBackPattern = BLACK_PATTERN;
break;

case GRAY_PATTERN:
gBackPattern = GRAY_PATTERN;
break;

case COLOR_RAMP:
gBackType = COLOR_RAMP;
break;

case GRAY_RAMP:
gBackType = GRAY_RAMP;
break;

case SINGLE_COLOR:
gBackType = SINGLE_COLOR;
rgbColor = gBackColor;
if C PickColorC &rgbColor) >

gBackColor = rgbColor;
break;

/*********************************** DoModeChoice */

DoModeChoiceC item)
int item;
{

if ((item >= 1) && (item <= 8))

gCopyMode = item - 1 • ,
else

gCopyMode = item + 22;
}

/********************************DoPopup*******/

int
MenuHandle
Re ct
{

DoPopupC menu, rPtr)
menu;
*rPtr;

448

}

Point
long

corner;
theChoice = OL;

corner.h = rPtr->left;
corner.v = rPtr->bottom;

LocalToGlobalC &corner >;

InvertRectC rPtr >;

Macintosh Programming Primer

theChoice = PopUpMenuSelectC menu, corner.v - 1, corner.
h + 1, 0 >;

InvertRectC rPtr >;

return< LoWordC theChoice > >;

!******************************** PickColor *********/

Boolean PickColorC colorPtr)
RGBColor *colorPtr;
{

}

Point where;

where.h = -1;
where.v = -1;

return(GetColorC where, 11 \pChoose a color •.. 11
, colorPtr,

colorPtr) >;

!******************************** IsColor *********/

Boolean IsColorC>
{

}

SysEnvRec mySE;

SysEnvironsC 1, &mySE >;
return< mySE.hasColorQD >;

Appendix B: Code Listings

!*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

}

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlert(BASE_RES_ID, NIL_POINTER >;

Chapter 4, QuickDraw32Bit.h

449

!**

Created: Thursday, March 23, 1989 at 7:25 PM by Jean-Charles
Mourey

QuickDraw32Bit.h
C Interface to the Macintosh Libraries

Copyright Apple Computer, Inc. 1985-1989
All rights reserved

**/

#ifndef ~QuickDraw32Bit~
#define ~QuickDraw32Bit

#ifndef ~QUICKDRAW~

#endif

I* New Constants for 32-Bit QuickDraw */

#define ditherCopy 64
I* Dither mode for Copybits */

#define RGBDirect 16
I* 16 & 32 bits/pixel pixelType value*/

I* New error codes */

450 Macintosh Programming Primer

#define rgnOverf lowErr -147
I* Region accumulation failed.

Resulting region may be currupt */
#define pixmapTooDeepErr -148

I* Pixmap is not 1-bit/pixel for
BitmapToRegion */

#define insufficientStackErr -149
I* QuickDraw could not complete

the operation */
#define cDepthErr -157

I* invalid pixel depth passed to NewGWorld
or UpdateGWorld */

I* Flag bits passed to or returned by Offscreen routines */

enum <

} . ,

pixPurgeBit = O,
noNewDeviceBit = 1,
pixelsPurgeableBit = 6,
pixelslockedBit = 7,

mapPixBit = 16,
I* set if color table mapping occurred */

newDepthBit = 17,
I* set if pixels were scaled to a

different depth */
alignPixBit = 18,

I* set if pixels were realigned to
screen alignment */

newRowBytesBit = 19,
I* set if pixmap was reconfigured

in a new rowBytes */
reallocPixBit = 20,

I* set if offscreen buffer had to be
reallocated *I

clipPixBit = 28,
I* set if pixels were or are to be

clipped */
stretchPixBit = 29,

I* set if pixels were or are to be
stretched/shrinked */

ditherPixBit = 30,
gwf lagErrBit = 31

Appendix B: Code Listings

typedef enum {
pixPurge = 1 << pixPurgeBit,
noNewDevice = 1 << noNewDeviceBit,
pixelsPurgeable = 1 << pixelsPurgeableBit,
pixelslocked = 1 << pixelslockedBit,
mapPix = 1 << mapPixBit,
newDepth = 1 << newDepthBit,
alignPix = 1 << alignPixBit,
newRowBytes = 1 << newRowBytesBit,
reallocPix = 1 << reallocPixBit,
clipPix = 1 << clipPixBit,
stretchPix = 1 << stretchPixBit,
ditherPix = 1 << ditherPixBit,
gwflagErr = 1 << gwFlagErrBit

}GWorldf lag;

typedef long GWorldFlags;

I* Type definition of a GWorldPtr */

typedef CGrafPtr GWorldPtr;

#ifdef ~safe_link
extern 11 C" {
#endif

pascal OSErr BitmapToRegionCRgnHandle region, BitMap *bMap)
= {0xA8D7};

pascal QDErr NewGWorld CGWorldPtr *offscreenGWorld, short
pixelDepth,

451

Rect *boundsRect, CTabHandle cTable, GDHandle aGDevice,
GWorldFlags flags)

= {0x7000,0xAB1D};
pascal Boolean LockPixels CPixMapHandle pm)

= {0x7001,0xAB1D};
pascal void UnlockPixels CPixMapHandle pm)

= {Qx7002,0xAB1D};
pascal GWorldFlags UpdateGWorld CGWorldPtr *offscreenGWorld,
short pixelDepth,

452 Macintosh Programming Primer

Rect *boundsRect, CTabHandle cTable, GDHandle aGDevice,
GWorldFlags flags)

= {Qx7003,0xAB1D};
pascal void DisposeGWorld CGWorldPtr offscreenGWorld>

= {0x7004,0xAB1D};
pascal void GetGWorld CCGrafPtr *port, GDHandle *gdh)

= {Qx7005,0xAB1D};
pascal void SetGWorld CCGraf Ptr port, GDHandle gdh)

= {0x7006,0xAB1D};
pascal void CTabChanged (CTabHandle ctab)

= {0x7007,0xAB1D};
pascal void PixPatChanged CPixPatHandle ppat)

= {0x7008,0xAB1D};
pascal void PortChanged CGraf Ptr port)

= {0x7009,0xAB1D};
pascal void GDeviceChanged CGDHandle gdh)

= {Qx700A,OxAB1D};
pascal void AllowPurgePixels CPixMapHandle pm)

= {Qx700B,OxAB1D};
pascal void NoPurgePixels CPixMapHandle pm)

= {Qx700C,OxAB1D};
pascal GWorldFlags GetPixelsState CPixMapHandle pm)

= {0x700D,OxAB1D};
pascal void SetPixelsState CPixMapHandle pm, GWorldFlags
state)

= {Qx700E,OxAB1D};
pascal Ptr GetPixBaseAddr CPixMapHandle pm)

= {0x70QF,OxAB1D};
pascal QDErr NewScreenBuffer CRect *globalRect, Boolean
purgeable, GDHandle *gdh,

PixMapHandle *offscreenPixMap)
= {Qx7010,0xAB1D};

pascal void DisposeScreenBuffer CPixMapHandle offscreenPixMap)
= {Qx7011,0xA81D};

pascal GDHandle GetGWorldDevice CGWorldPtr offscreenGWorld)
= {0x7012,0xAB1D};

#ifdef ~safe_Link
}

#endif

#endif

Appendix B: Code Listings

Chapter 4, GWorld.c

#include 11 ColorToolbox.h"
#include 11 QuickDraw32Bit.h"

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define NIL_STRING 11 \p"
#define VISIBLE TRUE
#define NO_GOAWAY FALSE
#define MOVE_TO_FRONT -1L
#define REMOVE_ALL_EVENTS 0

#define MAX_PIXEL_DEPTH
#define WORLD_WIDTH
#define WORLD_HEIGHT
#define NO_FLAGS

#define QD32TRAP
#define UNIMPL_TRAP

32
100
100
OL

OxAB03
OxA89F

Boolean
GWorldPtr
WindowPtr

Is32Bit0;
MakeGWorldC>;
CreateColorWindowC>;

main()
{

WindowPtr
GWorldPtr
Re ct

window;
world;
worldBounds, windowRect, destRect;

ToolBoxlnitO;

if C ! Is32Bit0

453

DoAlertC 11 \pThis machine does not support 32-Bit QuickDraw!" >;
else
{

SetRectC &worldBounds, O, O, WORLD_HEIGHT, WORLD_WIDTH >;
world = MakeGWorldC &worldBounds >;
window = CreateColorWindowC);

454

}

}

Macintosh Programming Primer

SetRect(&destRect, O, O, 4 * WORLD_WIDTH, 4 *
WORLD_HEIGHT >;

CopyWorldBits(world, window, &destRect >;

SetRect(&destRect, O, O, 2 * WORLD_WIDTH, 2 *
WORLD_HEIGHT);

CopyWorldBits< world, window, &destRect >;

SetRectC &destRect, 0, 0, WORLD_WIDTH, WORLD_HEIGHT >;
CopyWorldBits< world, window, &destRect >;

SetRect(&destRect, 0, O, WORLD_WIDTH I 2, WORLD_HEIGHT
I 2 >;

CopyWorldBits(world, window, &destRect >;

SetRectC &destRect, 0, 0, WORLD_WIDTH I 4, WORLD_HEIGHT
I 4 >;

CopyWorldBits(world, window, &destRect >;

while < ! Button()) ;

/*********************************** ToolBoxlnit */

ToolBoxlnit<>
{

}

InitGraf C &thePort >;
InitfontsO;
FlushEvents(everyEvent, REMOVE_ALL_EVENTS >;
InitWindows<>;
InitMenus<>; •
TEinitO;
InitDialogs(NIL_POINTER >;
InitCursor<>;

!*********************************** CreateColorWindow */

WindowPtr CreateColorWindow<>
{

Appendix B: Code Listings

}

WindowPtr cWindow;
Rec t r;

SetRectC &r, 10, 40, 10 + C4 * WORLD_WIDTH),
40 + (4 * WORLD_HEIGHT) >;

cWindow = NewCWindowC NIL_POINTER, &r, 11 \pColor Test",
VISIBLE, noGrowDocProc, MOVE_TO_FRONT,
NO_GOAWAY, NIL_POINTER >;

SetPortC cWindow >;

return(cWindow >;

/*********************************** MakeGWorld */

GWorldPtr MakeGWorldC boundsPtr >
Re ct
{

*boundsPtr;

GDHandle
GWorldPtr
HSVColor
RGBColor
long
Re ct
QDErr

oldGD;
oldGW, newWorld;
hsvColor;
rgbColor;
i ;
r;
errorCode;

GetGWorldC &oldGW, &oldGD >;

errorCode = NewGWorld(&newWorld, MAX_PIXEL_DEPTH,
boundsPtr, NIL_POINTER,
NIL_POINTER, NO_FLAGS >;

if C errorCode != noErr >
{

}

DoAlertC 11 \pMy call to NewGWorld died! Bye ... " >;
ExitToShellC>;

LockPixelsC newWorld->portPixMap >;
SetGWorldC newWorld, NIL_POINTER >;

455

456

}

Macintosh Programming Primer

hsvColor.value = 65535;
hsvColor.saturation = 65535;

for< i;boundsPtr->left; i<;boundsPtr->right; i++ >
{

}

hsvColor.hue = i * 65535 I C boundsPtr->right - 1 >;
HSV2RGBC &hsvColor, &rgbColor >;
RGBForeColorC &rgbColor >;
MoveToC i, boundsPtr->bottom I 2 >;
LineToC i, boundsPtr->bottom >;

rgbColor.red = i * 65535 I C boundsPtr->right - 1 >;
rgbColor.green = rgbColor.red;
rgbColor.blue = rgbColor.red;

RGBForeColorC &rgbColor >;
MoveToC i, 0 >;
LineToC i, boundsPtr->bottom I 2 >;

SetGWorldColdGW,oldGD>;
UnlockPixelsC newWorld->portPixMap >;

return(newWorld >;

!*********************************** CopyWorldBits */

CopyWorldBitsC world, window, destRectPtr >
GWorldPtr world;
WindowPtr window;
Re ct *destRectPtr;
{

}

RGBColor rgbBlack;

rgbBlack.red = rgbBlack.green = rgbBlack.blue = O;
RGBForeColorC &rgbBlack >;

LockPixelsC world->portPixMap >;
CopyBitsC &world->portPixMap, &thePort->portBits,

&world->portRect, destRectPtr, ditherCopy, 0 >;
UnlockPixelsC world->portPixMap >;

Appendix B: Code Listings

/******************************** Is32Bit *********/

Boolean Is32BitC>
{

SysEnvRec mySE;

SysEnvironsC 1, &mySE >;

if C ! mySE.hasColorQD >
return< FALSE >;

return(NGetTrapAddressC QD32TRAP, ToolTrap > !=
NGetTrapAddressC UNIMPL_TRAP, ToolTrap) >;

}

/*********************************** DoAlert */

DoAlertC s >
Str255 s;
{

ParamTextC s, NIL_STRING, NIL_STRING, NIL_STRING >;
NoteAlertC BASE_RES_ID, NIL_POINTER >;

}

Chapter 5, FormEdit.c

/********************/
I* MENUs *I
/********************/

#define APPLE - MENU - ID 400
#define A ABOUT - ITEM 1 -
#define FILE - MENU - ID 401
#define F NEW - ITEM 1 -
#define F _CLOSE_ITEM 2
#define F QUIT - ITEM 3 -

#define EDIT - MENU - ID 402
#define E_UNDO_ITEM 1
#define E CUT - ITEM 3 -

457

458

#define E_COPY_ITEM
#define E_PASTE_ITEM
#define E_CLEAR_ITEM

/********************/
I* Window Types */
!********************/

#define NIL_WINDOW
#define UNKNOWN_WINDOW
#define DA_WINDOW
#define FORM_WINDOW

!********************/
I* ALRTs */
!********************/

#define ABOUT_ALERT
#define ERROR_ALERT_ID

/********************/
I* Error STRs */
!********************/

4
5
6

0
1
2
3

400
401

Macintosh Programming Primer

#define NO_MBAR
#define NO_MENU
#define NO_WIND

BASE_RES_ID
BASE_RES_ID+1
BASE_RES_ID+2

!********************/
I* TextEdit */
!****~***************/

#define TE_NAME_AREA 0
#define TE_MISC_AREA 1

#define TE_ENTER_KEY 3
#define TE_DELETE_CHAR 8
#define TE_TAB_CHAR 9
#define TE_CARRIAGE_RETURN 13

Appendix B: Code Listings

/************************/
I* General Defines */
/************************!

#define BASE_RES_ID
#define NIL_POINTER
#define MOVE_TO_FRONT
#define REMOVE_ALL_EVENTS

#define DRAG_THRESHOLD

#define WINDOW_HOME_LEFT
#define WINDOW_HOME_TOP
#define NEW_WINDOW_OFFSET

#define MIN_SLEEP
#define NIL_MOUSE_REGION

#define LEAVE_WHERE_IT_IS

#define WNE_TRAP_NUM
#define UNIMPL_TRAP_NUM
#define SUSPEND_RESUME_BIT
#define RESUMING

#define NIL_STRING
#define UNTITLED_STRING
#define VISIBLE
#define HOPELESSLY_FATAL_ERROR

/************************/
I* Useful Macros */
!************************!

#define TopleftC myRect)
#define BotRightC myRect)

400
OL
-1L
0

30

5
45
20

OL
OL

FALSE

Ox60
Ox9F
Ox0001
1

II\ pll
11 \p<Untitled>"
TRUE
11 \pGame over, man!"

459

C* (Point *) &CmyRect.top))
C* (Point *) &CmyRect.bottom))

460 Macintosh Programming Primer

/************************/
I* Typedefs */
!************************/

typedef struct
{

WindowRecord
int
ControlHandle
TEHandle

w;
wType;
vScroll;
nameTE, miscTE, curTE;
*FormPeek; } FormRecord,

/************************/
I* Globals */
/************************/

Boolean
Event Record
MenuHandle

int

Re ct

gDone, gWNEimplemented, glnBackground;
gTheEvent;
gAppleMenu,
gFileMenu,
gEditMenu;
gNewWindowleft = WINDOW_HOME_LEFT,
gNewWindowTop = WINDOW_HOME_TOP;
gNameRect = { 3, 43, 19, 250 },
gMiscRect = { 22, 43, 150, 231 },
gScrollBarRect = { 22, 234, 150, 250 };

/************************/
I* Routines */
/************************/

void
void
void
void

void
void

void
void

AdjustCursorC Point mouse, RgnHandle region >;
AdjustMenusC void >;
AdjustScrollBarC FormPeek form >;
CommonActionC ControlHandle control, short

*amount >;
CreateWindowC void >;
DoActivateC WindowPtr window, Boolean

becomingActive >;
DoCloseWindowC WindowPtr window >;
DoContentClickC WindowPtr window, Point mouse);

Appendix B: Code Listings

Doldle(void >;
DoTEKey(char c >;
DoUpdate(WindowPtr window >;
DrawformC WindowPtr window >;
ErrorHandler(int stringNum >;
HandleAppleChoice(int theltem
HandleEditChoiceC int theltem
HandleEventC void >;

>;
) . ,

void
void
void
void
void
void
void
void
void
void
void

HandlefileChoiceC int theltem >;
HandleMenuChoiceC long int menuChoice >;
HandleMouseDownC void >;

void Mainloop(void >;
void MenuBarlnit(void >;
pascal Boolean NewClikloopC void >;
void StartTextEditC FormPeek form >;

461

void SwitchToNewArea< FormPeek form, int newArea >;
void ToolBoxlnitC void >;
void TurnOffTextAreaC FormPeek form, int whichArea >;
void TurnOnTextArea< FormPeek form, int whichArea >;
pascal void VActionProcC ControlHandle control, int part >;
int WindowTypeC WindowPtr window >;

/******************************** main *********/

main()
{

}

ToolBoxlnitC>;
MenuBarlnitC>;

MainloopO;

/*********************************** ToolBoxlnit */

void
{

ToolBoxlnit()

InitGraf(&thePort >;
Initfonts<>;
FlushEventsC everyEvent, REMOVE_ALL_EVENTS);
InitWindows<>;

462

}

InitMenusO;
TEinitO;
InitDialogsC NIL_POINTER);
InitCursorC>;

Macintosh Programming Primer

/*********************************** MenuBarlnit*/

void
{

MenuBarlnitC>

}

Handle myMenuBar;

if C C myMenuBar = GetNewMBarC BASE_RES_ID)) -
NIL_POINTER)
ErrorHandlerC NO_MBAR >;

SetMenuBarC myMenuBar >;

if (C gAppleMenu = GetMHandleC APPLE_MENU_ID) > -
NIL_POINTER >
ErrorHandlerC NO_MENU >;

AddResMenu(gAppleMenu, 'DRVR •) ;

if ((gfileMenu = GetMHandleC FILE_MENU_ID)) --
NIL_POINTER)

ErrorHandlerC NO - MENU >;

if ((gEditMenu = GetMHandleC EDIT_MENU_ ID)) --
NIL _POINTER)

ErrorHandlerC NO_MENU >;

DrawMenuBarC>;

/******************************** MainLoop *********/

void
{

MainLoopO

RgnHandle
Boolean

cursorRgn;
got Event;

gDone = FALSE;

Appendix B: Code Listings 463

}

glnBackground = FALSE;

cursorRgn = NewRgnC>;

gWNElmplemented = C NGetTrapAddressC WNE_TRAP_NUM,
ToolTrap > !=
NGetTrapAddressC UNIMPL_TRAP_NUM,

ToolTrap) >;
while C gDone == FALSE)
{

}

if C gWNEimplemented)

else
<

}

gotEvent = WaitNextEventC everyEvent, &gTheEvent,
MIN_SLEEP, cursorRgn >;

SystemTaskC>;
gotEvent = GetNextEventC everyEvent, &gTheEvent >;

AdjustCursorC gTheEvent.where, cursorRgn >;

if C gotEvent >
HandleEventC>;

else
DoldleC>;

/************************************* HandleEvent */

void HandleEventC)
{

char c;

switch C gTheEvent.what >
{

case nullEvent:
Dold le<>;
break;

case mouseDown:
HandleMouseDownC>;
break;

464

}

}

case keyDown:
case autoKey:

Macintosh Programming Primer

c = gTheEvent.message & charCodeMask;
if CC gTheEvent.modifiers & cmdKey > != O>
{

AdjustMenusO;
HandleMenuChoiceC MenuKeyC c) >;

}

else
DoTEKeyC c >;

break;
case activateEvt:

DoActivateC CWindowPtr)gTheEvent.message,
CgTheEvent.modifiers & activeflag) != 0 >;

break;
case updateEvt:

DoUpdateC CWindowPtr)gTheEvent.message >;
break;

case app4Evt:
if C C gTheEvent.message & SUSPEND_RESUME_BIT) -

RESUMING)
{

}

glnBackground = CgTheEvent.message & Ox01) == O;
DoActivateCFrontWindowC>, !glnBackground>;

else
DoldleO;

break;

!************************************* DoTEKey */

void
char
{

DoTEKeyC c)
c;

WindowPtr
FormPeek
int
CharsHandle
Str255

window;
form;
wType, length, i;
text;
tempStr;

Appendix B: Code Listings 465

}

window = FrontWindowC>;
wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

form = CFormPeek)window;

if c == TE_TAB_CHAR)
{

}

else
{

if C form->curTE == form->nameTE)
SwitchToNewAreaC form, TE_MISC_AREA >;

else
{

}

SwitchToNewArea(form, TE_NAME_AREA >;
TESetSelectC O, 32767, form->curTE >;

TEKeyC c, form->curTE >;

}

if C form->curTE == form->nameTE >
{

length = C*form->nameTE)->telength;
if C length == 0 >

else
{

}

}

else

SetWTitleC window, UNTITLED_STRING >;

text = TEGetTextC form->nameTE >;
tempStr[0 J = length;
for C i=O; C Ci<length> && Ci<256) >; i++)
{

tempStr[i+1 J = (*text)[i J;
}

SetWTitleC window, tempStr >;

AdjustScrollBarC form >;

466 Macintosh Programming Primer

!************************************* Doldle */

void
{

Dold le()

WindowPtr window;

}

int wType;

window = FrontWindowC);
wType·= WindowTypeC window >;

if C wType == FORM_WINDOW)
TEidleC CCFormPeek)window)->curTE >;

!************************************* HandleMouseDown */

void
{

HandleMouseDownC>

WindowPtr
short int
long int

window;
thePart;
menuChoice, windSize;

thePart = FindWindowC gTheEvent.where, &window >;
switch C thePart >
{

case inMenuBar:
Adj us tMenus ();
menuChoice = MenuSelectC gTheEvent.where >;
HandleMenuChoiceC menuChoice >;
break;

case inSysWindow:
SystemClickC &gTheEvent, window >;
break;

case inContent:
if C window != FrontWindowC> >
{

}

else

SelectWindowCwindow>;

DoContentClickC window, gTheEvent.where >;
break;

case inDrag:

Appendix B: Code Listings

}

}

DragWindowC window, gTheEvent.where,
&CscreenBits.bounds) >;

break;
case inGoAway:

if C TrackGoAwayCwindow, gTheEvent.where))
DoCloseWindowC window >;

break;

/************************************* DoCloseWindow */

void DoCloseWindowC window)
WindowPtr window;
{

}

HideWindowC window >;
DisposeControlC CCFormPeek)window)->vScroll >;
TEDisposeC CCFormPeek>window)->nameTE >;
TEDisposeC CCFormPeek)window)->miscTE >;
CloseWindowC window >;
DisposPtrC window >;

/************************************* AdjustMenus *I

void
{

AdjustMenusO

WindowPtr
int
int
TEHandle

window;
wType;
offset;
te;

window = FrontWindowC>;
wType = WindowTypeC window >;

if C window == NIL_POINTER)
{

DisableltemC gFileMenu, F_CLOSE_ITEM >;

DisableltemC gEditMenu, E_UNDO_ITEM >;
DisableltemC gEditMenu, E_CUT_ITEM >;

467

468

}

}

Macintosh Programming Primer

Disableltem(gEditMenu, E_COPY_ITEM >;
Disableltem(gEditMenu, E_PASTE_ITEM >;
Disableltem(gEditMenu, E_CLEAR_ITEM >;

else if C wType == DA_WINDOW)
{

}

Disableltem(gfileMenu, F_CLOSE_ITEM >;

Enableltem(gEditMenu, E_UNDO_ITEM >;
EnableltemC gEditMenu, E_CUT_ITEM >;
Enableltem(gEditMenu, E_COPY_ITEM >;
Enableltem(gEditMenu, E_PASTE_ITEM >;
EnableltemC gEditMenu, E_CLEAR_ITEM >;

else if C wType == FORM_WINDOW)
{

}

EnableltemC gFileMenu, F_CLOSE_ITEM >;

Disableltem< gEditMenu, E - UNDO - ITEM) ;
Disableltem(gEditMenu, E _CUT_ITEM) ;
Disableltem(gEditMenu, E - COPY _ITEM
Disableltem(gEditMenu, E_PASTE_ITEM
Disableltem< gEditMenu, E _c LEA R_ITEM

te = CCFormPeek)window)->curTE;
if < C*te)->seLStart < <*te)->selEnd
{

) ;
) ;
) ;

Enableltem(gEditMenu, E_CUT_ITEM >;
Enableltem(gEditMenu, E_COPY_ITEM >;
Enableltem(gEditMenu, E_CLEAR_ITEM >;

}

if (GetScrap(NIL_POINTER, 'TEXT', &offset) > 0)
Enableltem(gEditMenu, E_PASTE_ITEM >;

/************************************* WindowType */

int WindowType(window)
WindowPtr window;
{

if (window -- NIL_POINTER
return(NIL_WINDOW >;

Appendix B: Code Listings

}

if C CCWindowPeek)window>->windowKind < 0 >
return(DA_WINDOW >;

if C CCFormPeek)window)->wType -- FORM_WINDOW)
return(FORM_WINDOW >;

return(UNKNOWN_WINDOW);

/************************************* HandleMenuChoice */

void Handl~MenuChoiceC menuChoice)
long int menuChoice;
{

}

int theMenu;
int theltem;

if C menuChoice != 0 >
{

}

theMenu = HiWordC menuChoice >;
theltem = LoWordC menuChoice >;
switch C theMenu)
{

}

case APPLE_MENU_ID :
HandleAppleChoiceC theltem >;
break;

case FILE_MENU_ID :
HandleFileChoiceC theltem >;
break;

case EDIT_MENU_ID :
HandleEditChoiceC theltem >;

HiliteMenuC 0 >;

469

/********************************HandleAppleChoice *******/

void HandleAppleChoiceC theltem)
int theltem;
{

470 Macintosh Programming Primer

}

Str255
int

accName;
accNumber;

switch C theltem)
{

}

case A ABOUT_ITEM
NoteAlertC ABOUT_ALERT, NIL_POINTER >;
break;

default :
GetltemC gAppleMenu, theltem, accName >;
accNumber = OpenDeskAccC accName >;
break;

/********************************HandlefileChoice

void HandlefileChoiceC theltem)
int theltem;
{

WindowPtr window;
switch C theltem)
{

case F_NEW_ITEM
CreateWindowC>;
break;

case F_CLOSE_ITEM :

*******/

if C C window = FrontWindow()) != NIL_POINTER)
DoCloseWindowC window >;

}

}

break;
case F_QUIT_ITEM :

gDone = TRUE;
break;

/********************************HandleEditChoice

void HandleEditChoiceC theltem >
int theltem;
{

*******/

Appendix B: Code Listings

TEHandle
WindowPtr
int
CharsHandle
Str255
FormPeek

te;
window;
wType, length, i;
text;
tempStr;
form;

if C ! SystemEdit(theltem - 1))
{

window = FrontWindow<>;
wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

form = CFormPeek)window;
te = form->curTE;
switch C theltem)
{

case E_UNDO_ITEM:
break;

case E_CUT_ITEM:
if C ZeroScrap() -- noErr >
{

TECutCte);
AdjustScrollBar(form >;
if C TEToScrap() != noErr >

ZeroScrapC>;
}

break;
case E_COPY_ITEM:

if C ZeroScrapC) -- noErr)
{

TECopy(te);
if C TEToScrap() != noErr)

ZeroScrapC>;
}

break;
case E_PASTE_ITEM:

if (TEFromScrap() -- noErr)
{

}

TEPasteCte>;
AdjustScrollBar(form >;

471

472 Macintosh Programming Primer

}

}

}

}

break;
case E_CLEAR_ITEM:

TEDeleteCte>;
AdjustScrollBarC form >;
break;

if C te == form->nameTE >
{

}

length = C*form->nameTE)->telength;
if C length == 0)

SetWTitleC window, UNTITLED_STRIN& >;
else
{

}

text = TEGetTextC form->nameTE >;
tempStr[0 J = length;
for C i=O; C Ci<length> && Ci<256) >; i++ >
{

tempStr[i+1 J = (*text)[i J;
}

SetWTitleC window, tempStr >;

!******************************** DoContentClick *******/

void DoContentClickC window, mouse >
WindowPtr window;
Point mouse;
{

int
int
Boolean
Point
ControlHandle
FormPeek

wType, value;
thePart;
shiftDown;
locMouse;
control;
form;

wType = WindowTypeC window >;

Appendix B: Code Listings

if C wType == FORM_WINDOW)
{

form = CFormPeek)window;
locMouse = mouse;
GlobalTolocalC &locMouse >;

if C C thePart = FindControlC locMouse, window,
&control > > != 0 >

{

switch< thePart >
{

case inUpButton:
case inDownButton:
case inPageUp:
case inPageDown:

473

value = TrackControlC control, locMouse,
CProcPtr) VActionProc >;

}

}

break;
case inThumb:

value = GetCtlValueC control >;
thePart = TrackControlC control, locMouse,

NIL_POINTER >;
if C thePart != 0)
{

value -= GetCtlValueC control >;
if C value != 0 >

}

break;

TEScrollCO, value * C*form->curTE>
>lineHeight, form->miscTE >;

else if C PtlnRectC locMouse, &gNameRect > >
{

if C form->curTE == form->nameTE)
{

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->nameTE >;

}

else
{

SwitchToNewAreaC form, TE_NAME_AREA >;
TEClickC locMouse, FALSE, form->nameTE >;

474

}

}

Macintosh Programming Primer

}

}

else if C PtinRectC locMouse, &gMiscRect > >
{

}

if C form->curTE == form->miscTE >
{

shiftDown = C gTheEvent.modifiers & shiftKey) != O;
TEClickC locMouse, shiftDown, form->miscTE >;

}

else
{

}

SwitchToNewAreaC form, TE_MISC_AREA >;
TEClickC locMouse, FALSE, form->miscTE >;

!************************************* VActionProc */

pascal voidVActionProcCcontrol, part)
ControlHandle control;
int
{

short
WindowPtr
TEPtr

part;

amount;
window;
te;

if C part != 0 >
{

window = C*control)->contrlOwner;
te = *CCFormPeek)window)->miscTE;
switch C part) {

case inUpButton:
case inDownButton:

amount = 1;
break;

I* one line */

case inPageUp: /* one page */
case inPageDown:

amount = Cte->viewRect.bottom - te
>viewRect.top) I te->lineHeight;

break;
}

Appendix B: Code Listings 475

if C Cpart == inDownButton) I I (part -- inPageDown))
amount = -amount;

}

}

CommonActionCcontrol, &amount>;
if C amount != 0)

TEScrollC O, amount * te->lineHeight,
CCFormPeek)window)->miscTE >;

/************************************* CommonAction */

void CommonActionC control, amount)
ControlHandle control;
short *amount;
{

short value, max;

value = GetCtlValueC control >;
max = GetCtlMaxC control >;
*amount =.value - *amount;
if C *amount < 0)

*amount = O;
else if C *amount > max)

*amount = max;
SetCtlValueC control, *amount >;

I* get current value */
I* and maximum value */

*amount = value - *amount; /* calculate the real change */
}

!************************************ DoActivate */

void
WindowPtr
Boolean

DoActivateC window, becomingActive >
window;
becomingActive;

{

FormPeek
int

form;
wType;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

476

}

}

Macintosh Programming Primer

form = CFormPeek)window;
if C becomingActive)
{

}

else
{

SetPortC window >;
if C form->curTE == form->miscTE >

TurnOnTextAreaC form, TE_MISC_AREA >;
else

TurnOnTextAreaC form, TE_NAME_AREA >;
HiliteControlC form->vScroll, 0 >;

if C form->curTE == form->miscTE)
TurnOffTextAreaC form, TE_MISC_AREA >;

else

}

TurnOffTextArea(form, TE_NAME_AREA >;
HiliteControlC form->vScroll, 255 >;

!******************************** AdjustCursor *********/

void
Point
RgnHandle
{

AdjustCursorC mouse, region)
mouse;
region;

WindowPtr
RgnHandle
Re ct
int
Graf Ptr

window;
arrowRgn, iBeamRgn, tempRgn;
tempRect;
wType;
oldPort;

window = FrontWindowC>;
wType = WindowTypeC window >;

if < glnBackground I I < wType != FORM_WINDOW))
{

}

SetCursorC &arrow >;
return;

Appendix B: Code Listings

}

GetPortC &oldPort >;
SetPort(window >;

arrowRgn = NewRgnC>;
iBeamRgn = NewRgnC>;
tempRgn = NewRgnC>;

SetRectRgn(arrowRgn, -32700, -32700, 32700, 32700 >;

tempRect = gNameRect;
LocalToGlobalC &TopleftCtempRect> >;
LocalToGlobalC &BotRightCtempRect) >;
RectRgn(tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

tempRect = gMiscRect;
LocalToGlobalC &Topleft(tempRect) >;
LocalToGLobaLC &BotRightCtempRect) >;
RectRgnC tempRgn, &tempRect >;
UnionRgnC iBeamRgn, tempRgn, iBeamRgn >;

DiffRgn(arrowRgn, iBeamRgn, arrowRgn >;

if C PtlnRgn(mouse, iBeamRgn >)
{

SetCursor(*GetCursorC iBeamCursor > >;
CopyRgnC iBeamRgn, region >;

}

else
{

}

SetCursorC &arrow >;
CopyRgn(arrowRgn, region >;

DisposeRgnC arrowRgn >;
DisposeRgnC iBeamRgn >;
DisposeRgn(tempRgn >;

SetPortC oldPort >;

477

478 Macintosh Programming Primer

/************************************ DoUpdate */

void DoUpdateC window >
WindowPtr window;
{

}

FormPeek
int

form;
wType;
oldPort; Graf Ptr

GetPortC &oldPort >;
SetPortC window >;

wType = WindowTypeC window >;

if C wType == FORM_WINDOW)
{

}

BeginUpdateC window >;
EraseRectC &window->portRect >;
DrawformC window >;
EndUpdateC window >;

SetPortC oldPort >;

!************************************ Drawform */

void DrawformC window)
WindowPtr window;
{

FrameRectC &gNameRect >;
FrameRectC &gMiscRect >;
DrawControlsC window >;

TextfontC geneva >;
TextfaceC bold >;

MoveToC gNameRect.left - 34, gNameRect.top + 12 >;
Drawstring(11 \pName" >;
MoveToC gMiscRect.left - 34, gMiscRect.top + 12 >;
Drawstring< 11 \pMisc." >;

Appendix B: Code Listings 479

}

TextfontC monaco >;
Textface(0 >;

TEUpdateC &window->portRect, CCFormPeek)window>->nameTE >;
TEUpdateC &window->portRect, CCFormPeek)window>->miscTE >;

/************************************ CreateWindow *I

void
{

CreateWindowC>

WindowPtr
Ptr
FormPeek

theNewestWindow;
wStorage;
form;

wStorage = NewPtrC sizeof CFormRecord) >;

if C C theNewestWindow = GetNewWindowC BASE_RES_ID,
wStorage,

MOVE_TO_FRONT)) == NIL_POINTER)
ErrorHandlerC NO_WIND >;

if C C CscreenBits.bounds.right - gNewWindowLeft) <
DRAG_ TH RES HOLD) I I

{

}

C screenBits.bounds.bottom - gNewWindowTop) <
DRAG_THRESHOLD))

gNewWindowLeft = WINDOW_HOME_LEFT;
gNewWindowTop = WINDOW_HOME_TOP;

MoveWindowC theNewestWindow, gNewWindowleft,
gNewWindowTop, LEAVE_WHERE_IT_IS >;

gNewWindowleft += NEW_WINDOW_OFFSET;
gNewWindowTop += NEW_WINDOW_OFFSET;

form = CFormPeek)theNewestWindow;
form->wType = FORM_WINDOW;

form->vScroll = NewControlC theNewestWindow,
&gScrollBarRect, NIL_STRING,

VISIBLE, O, O, 0, scrolLBarProc, OL>;

480

}

ShowWindowC theNewestWindow >;
SetPortC theNewestWindow >;
TextFontC monaco >;
TextFaceC 0 >;
TextSizeC 9 >;
StartTextEditC form >;

Macintosh Programming Primer

/******************************** StartTextEdit *********/

void
FormPeek
{

StartTextEditC form >
form;

}

Re ct r;

r = gNameRect;
InsetRectC &r, 2, 2 >;
form->nameTE = TENewC &r, &r >;

r = gMiscRect;
InsetRectC &r, 2, 2 >;
form->miscTE = TENewC &r, &r >;
SetClikloopC NewClikloop, form->miscTE >;

TEAutoViewC TRUE, form->miscTE >;

form->curTE = form->nameTE;

/******************************** NewClikloop *********/

pascal Boolean NewClikloop()
{

WindowPtr
FormPeek
TEHandle
Re ct
Point
Graf Ptr
int
RgnHandle

window;
form;
te;
tempRect;
mouse;
oldPort;
amount;
oldClip;

Appendix B: Code Listings 481

}

window = FrontWindowC>;
if C WindowTypeC window) != FORM_WINDOW)

return(FALSE >;

form = CFormPeek)window;
te = form->curTE;

GetPortC &oldPort >;
SetPortC window >;
oldClip = NewRgnC>;
GetClipC oldClip >;

SetRectC &tempRect, -32767, -32767, 32767, 32767 >;
ClipRectC &tempRect >;

GetMouseC &mouse >;

if C mouse.v < gMiscRect.top)
{

}

amount = 1;
CommonActionC form->vScroll, &amount >;
if C amount != 0 >

TEScrollC O, amount * CC*te)->lineHeight>, te >;

else if C mouse.v > gMiscRect.bottom >
{

}

amount = -1;
CommonActionC form->vScroll, &amount >;
if C amount != 0 >

TEScrollC 0, amount * CC*te)->lineHeight>, te >;

SetClipC oldClip >;
DisposeRgnC oldCLip >;
SetPortC oldPort >;
return< TRUE >;

/******************************** SwitchToNewArea *********/

void
FormPeek
int
{

SwitchToNewAreaC form, newArea)
form;
newArea;

482

}

if C form->curTE == form->nameTE)
{

Macintosh Programming Primer

TurnOffTextAreaC form, TE_NAME_AREA >;
TurnOnTextAreaC form, TE_MISC_AREA >;

}

else
{

}

TurnOffTextAreaC form, TE_MISC_AREA >;
TurnOnTextAreaC form, TE_NAME_AREA >;

!******************************** TurnOnTextArea *********/

void
FormPeek
int

TurnOnTextAreaC form, whichArea)
form;
whichArea;

{

}

TEPtr te;

if C whichArea == TE_MISC_AREA)
{

}

else

te = *form->miscTE;
te->viewRect.bottom = CCCte->viewRect.bottom - te

>viewRect.top) I te->lineHeight)
* te->lineHeight) + te->viewRect.top;

te->destRect.bottom = te->viewRect.bottom;
AdjustScrollBarC form >;
form->curTE = form->miscTE;

form->curTE = form->nameTE;

TEActivateC form->curTE >;

/******************************** TurnOffTextArea *********/

void
FormPeek
int

TurnOffTextAreaC form, whichArea)
form;
whichArea;

Appendix B: Code Listings 483

{

; f (whichArea -- TE_MISC_AREA)

TEDeactivateC form->miscTE) . ,
else

TEDeactivateC f orm->nameTE) ;
}

/******************************** AdjustScrollBar *********/

void
FormPeek
{

AdjustScrollBarC form)
form;

}

short
short
TEPtr

value, lines, max;
oldValue, oldMax;
te;

oldValue = GetCtlValueC form->vScroll >;
oldMax = GetCtlMaxC form->vScroll >;
te = *Cform->miscTE);

lines = te->nlines;
if C *C*te->hText + te->telength - 1) == TE_CARRIAGE_RETURN)

lines += 1;
max = lines - CCte->viewRect.bottom - te->viewRect.top) I

te->lineHeight>;

if C max < 0 > max = O;
SetCtlMaxC form->vScroll, max>;

te = *Cform->miscTE>;
value = Cte->viewRect.top - te->destRect.top) I te

>LineHeight;

if C value < 0 > value = O;
else if C value > max) value = max;

SetCtlValueC form->vScroll, value>;

TEScrollC 0, Cte->viewRect.top - te->destRect.top) -
CGetCtLValueC form->vScroll) * te
>LineHeight>, form->miscTE >;

484 Macintosh Programming Primer

/******************************** ErrorHandler *********/

void
int
{

ErrorHandlerC stringNum)
stringNum;

}

StringHandle errorStringH;

if C C errorStringH = GetStringC stringNum) > ==
NIL_POINTER)

else
{

}

ParamTextC HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING >;

HlockC errorStringH >;
ParamTextC *errorStringH, NIL_STRING, NIL_STRING,

NIL_STRING >;
HUnlockC errorStringH >;

StopAlertC ERROR_ALERT_ID, NIL_POINTER >;
ExitToShelLC>;

Chapter 6, BuildWindow(), (from CStarterDoc.c)

I***
* BuildWindow
*
* Replace the old BuildWindow with this one ..•
*
***/

void CStarterDoc::BuildWindow (Handle theData)
{

CScrollPane
CStarterPane
Re ct

*theScrollPane;
*thePanorama;
pan Frame;

itsWindow = new(CWindow >;
itsWindow->IWindowC WINDStarter, FALSE,

gDesktop, this >;

theScrollPane = new(CScrollPane >;

Appendix B: Code Listings

}

theScrollPane->IScrollPane(itsWindow, this,
0, 0, 0, O,
sizELASTIC, sizELASTIC,
TRUE, TRUE, TRUE);

theScrollPane->FitToEnclframe< TRUE, TRUE >;
theScrollPane->SetSteps(10, 10 >;

thePanorama = new(CStarterPane >;
thePanorama->IStarterPaneC theScrollPane, this,

O, O, O, 0,
sizELASTIC, sizELASTIC);

thePanorama->FitToEnclosureC TRUE, TRUE >;
theScrollPane->InstallPanoramaC thePanorama >;

itsMainPane = thePanorama;
itsGopher = thePanorama;

itsWindow->ZoomCinZoomOut>;
thePanorama->GetframeC&panframe>;
thePanorama->SetBoundsC&panframe);

gDecorator->PlaceNewWindow(itsWindow >;

Chapter 6, CDragPane.c

#include 11 CStarterPane.h"
#include 11 CDragPane.h"

Boolean glsScrolling = FALSE;

!******************************** IDragPane *********/

void CDragPane::IDragPaneC corner, height, width,
patNum, anEnclosure, aSupervisor)

Point
int
int

corner;
height;
width;

485

486 Macintosh Programming Primer

int
CView
CBureaucrat
{

patNum;
*anEnclosure;
*aSupervisor;

}

Rect r;

CCCPanorama *)anEnclosure)->GetBoundsC &r >;

if CCcorner.h + width) > r.right)
corner.h -= corner.h + width - r.right;

if CCcorner.v + height) > r.bottom)
corner.v -= corner.v + height - r.bottom;

IPaneC anEnclosure, aSupervisor,
width, height,
corner.h, corner.v,
sizFIXEDSTICKY, sizFIXEDSTICKY >;

patNumber = patNum;

SetWantsClicksC TRUE >;
Refresh();

/******************************** Draw *********/

void CDragPane::DrawC rPtr)
Re ct *rPtr;
{

if C ! glsScrolling)
{

Prepare();

switch(patNumber)
{

case 0:
PenPatC ltGray >;
break;

case 1:
PenPatC gray >;
break;

Appendix B: Code Listings

}

}

}

case 2:
PenPatC dkGray >;
break;

default:
PenPat(black >;
break;

PaintRectC rPtr >;

/******************************** DoClick *********/

void
Point
short
long
{

CDragPane::DoClickC hitPt, modifierKeys, when >
hitPt;
modifierKeys;
when;

}

Re ct
Re ct

r;
endLocation;

r = frame;
EraseRectC &r >;

FrameToEnclRC&r>;

CCCStarterPane *)itsEnclosure>->DoDragC width,
height, hitPt, r, &endLocation >;

Place{ endLocation.left, endLocation.top, TRUE >;

Chapter 6, CDragPane.h

#define _H_CDragPane

#include "CPane.h"

extern Boolean glsScrolling;

487

488

struct CDragPane : CPane
{

int patNumber;

Macintosh Programming Primer

void IDragPaneC Point corner, int height,
int width, int patNum,
CView *anEnclosure,
CBureaucrat *aSupervisor >;

void Draw(Rect *area >;

void DoClickC Point hitPt,
short modifierKeys, long when >;

};

Chapter 6, CMouse.c

#include "CMouse.h"

/******************************** !Mouse *********/

void CMouse::IMouseC strID, objWidth, objHeight,
hitPt, theloc, theRama)

int strID;
int
int
Point

obj Width;
obj Height;
hitPt;
theloc;
*theRama;

Re ct
CPanorama
{

Rect r;

IMouseTaskC strID >;

thePanorama = theRama;
thelocation = theloc;

thePanorama->GetBoundsC &r >;
r.left += hitPt.h;
r.top += hitPt.v;
r.right -= C objWidth - hitPt.h >;

Appendix B: Code Listings

}

r.bottom -= C objHeight - hitPt.v >;
theBounds = r;

/******************************** BeginTracking *********/

void CMouse::BeginTrackingC startPt)
Point *startPt;
{

}

Re ct r;

PenModeC patXor >;
PenPatC gray >;

r = thelocation;
FrameRect(&r >;

/******************************** KeepTracking *********/

void CMouse::KeepTrackingC currPt, prevPt, startPt >
Point *currPt;
Point *prevPt;
Point *startPt;
{

Re ct
long
Point
RgnHandle

r, f;
curTicks;
startPosit, newPosit, cp, pp;
clipRgn;

thePanorama->GetPosition< &startPosit >;

clipRgn = NewRgnC>;

if C thePanorama->AutoScrollC *currPt)
I I ! EqualPtC *currPt, *prevPt > >

{

thePanorama->GetPositionC &newPosit >;

GetClipC clipRgn >;
r = C**clipRgn).rgnBBox;

489

490

}

}

Macintosh Programming Primer

OffsetRectC &r, startPosit.h - newPosit.h,
startPosit.v - newPosit.v >;

thePanorama->GetframeC&f >;
PinlnRectC&f, &Cr.top>>;
PinlnRectC&f, &Cr.bottom>>;

ClipRectC &r >;

r = thelocation;

curTicks = TickCountC>;
while C curTicks == TickCountC> ;
FrameRectC &r >;

cp = *currPt;
pp = *prevPt;
PinlnRectC&theBounds, &cp);
PinlnRectC&theBounds, &pp);

OffsetRectC&r, cp.h - pp.h, cp.v - pp.v);

SetClipC clipRgn >;

curTicks = TickCountC>;
while C curTicks == TickCountC)) ;
FrameRectC &r >;

thelocation = r;

DisposeRgnC clipRgn >;

/******************************** EndTracking *********/

void CMouse::EndTrackingC currPt, prevPt, startPt)
Point *currPt;
Point *prevPt;
Point *startPt;
{

Re ct r;

Appendix B: Code Listings

}

r = thelocation;
FrameRectC &r >;
PenNormalC>;

!******************************** Getlocation *********/

void CMouse::GetlocationC theloc >
Re ct *theloc;
{

*theloc = thelocation;
}

Chapter 6, CMouse.h

#define _H_CMouse

#include 11 CMouseTask.h 11

#include <CPanorama.h>

struct CMouse : CMouseTask
{

CPanorama
Re ct

*thePanorama;
thelocation, theBounds;

void

void

void

void

void

!Mouse(int strID,
int objWidth, int objHeight,
Point hitPt, Rect theloc,
CPanorama *theRama >;

BeginTrackingC Point *startPt >;

KeepTrackingC Point *currPt,
Point *prevPt, Point *startPt >;

EndTrackingC Point *currPt,
Point *prevPt, Point *startPt >;

GetlocationCRect*>;

491

492

Chapter 6, CStarterPane.c

#include 11 CStarterPane.h 11

#include 11 CDragPane.h 11

#include 11 CMouse.h 11

Macintosh Programming Primer

!** IStarterPane */

void CStarterPane::IStarterPaneC anEnclosure,
aSupervisor,
aWidth, aHeight,
aHEncl, aVEncl,

CView
aHSizing, aVSizing

*anEnclosure;
CBureaucrat
short
SizingOption
{

*aSupervisor;
aWidth, aHeight, aHEncl, aVEncl;
aHSizing, aVSizing;

}

CPanorama::IPanoramaC anEnclosure, aSupervisor,
aWidth, aHeight,
aHEncl, aVEncl,
aHSizing, aVSizing >;

GetDateTimeC &randSeed >;

SetWantsClicksC TRUE >;

!******************************** DoClick *********/

void CStarterPane::DoClickC hitPt, modifierKeys, when
Point
short
long
{

hitPt;
modifierKeys;
when;

int
CDragPane

width, height, patNum;
*myDragPane;

width = Randomize(MAX_PANE_SIZE >;
height = Randomize(MAX_PANE_SIZE >;
patNum = Randomize(NUM_PATS >;

Appendix B: Code Listings

}

myDragPane = new(CDragPane >;
myDragPane->IDragPaneC hitPt, height, width,

patNum, this, this >;

!******************************** AdjustCursor *********/

void CStarterPane::AdjustCursorC where, mouseRgn)
Point where;
RgnHandle mouseRgn;
(

SetCursorC *GetCursorC plusCursor) >;
}

!******************************** DoDrag *********/

void CStarterPane::DoDragC objWidth, objHeight,

int
Point
Re ct
{

hitPt, startlocation, endlocation >
objWidth, objHeight;
hitPt;
startlocation, *endlocation;

CMouse
Re ct
Point

*aMouseTask;
boundsRect;
p;

glsScrolling = TRUE;

boundsRect = bounds;

aMouseTask = new(CMouse >;

aMouseTask->IMouseC NO_UNDO_STRING, objWidth,
objHeight, hitPt, startlocation, this >;

Prepare<>;

GetMouseC &p >;
TrackMouseC aMouseTask, p, &boundsRect >;

glsScrolling = FALSE;

493

494 Macintosh Programming Primer

aMouseTask->GetLocationC endLocation >;

Refresh<>;
}

/******************************** Randomize *********/

Randomize(range >
int range;
{

}

long rawResult;

rawResult = Random<>;
if C rawResult < 0 > rawResult *= -1;
return< CrawResult * range) I 32768 >;

Chapter 6, CStarterPane.h

#define _H_CStarterPane
#include <CPanorama.h>

#define MAX_PANE_SIZE 200
#define NUM_PATS 4
#define NO_UNDO_STRING 0

struct CStarterPane : CPanorama
{

void

void

void

IStarterPaneC CView *anEnclosure,
CBureaucrat *aSupervisor,
short aWidth, short aHeight,
short aHEncl, short aVEncl,
SizingOption aHSizing,
SizingOption aVSizing);

DoClickC Point hitPt,
short modifierKeys, long when >;

AdjustCursorC Point where,
RgnHandle mouseRgn >;

Appendix B: Code Listings 495

void DoDragC int objWidth, int objHeight,
Point hitPt, Rect frame,
Rect *endlocation >;

};

Index
ActivateEvt,281
ActivateEvts,332
Act iv Dev, 76
AddPin,184
Addresses, bytes of, 20
Address registers, 24
AddShapeTolist,326
AdjustCursor,279,300,361
AdjustMenus,280,284,285,287
Ad j u s t S c r o l l Ba r, 293, 309-310
AFI, 46-59

code segments of, 46
show INIT, 46-48

creating AFI project, 53-56
creating resource file, 48-52
function of, 45
ID number, 49, 52
source code, 56-59, 401-407

AFI cdev, function of, 45
ALRT,135,240,241,242
Ancestors, classes, 323
AnimateEntry,151
AnimatePalette,151
Animation, flicker-free, 202
App4Evt,278,281
Applfont,56,59,60
Application Font INIT. See AFI

Application heap, in memory, 27-29
Application space, in memory, 23-25
Architecture, Mac, 19-20
Ar rowRgn, 302
Art Class, 336-337
AutoKey,280
AutoWeave upgrade program, 339

Background pane, 168, 169, 192
Bartender, THINK Class Library,

335
BaseAddr,132
BecomingActive,300
BeginTracking,366,367
BeginUpdate,227,302
BitMaps, QuickDraw, 132
Black, 23
Bl end, 184
Blink interval, 226, 284
BNDL, 62
Bo t R i g h t, 273
BuildWindow,342-343,357,359
Byte, 20

CalcMaxHV, 101, 102,103
Callback routine, 38-39

filter proc, 38

497

498

CallPascal,39,46,59
C a l l Pa s ca l B, 39
CallPascalL,39
CallPascalW,39
CApplication,334
CaretTime,23
Carriage Return key, 116
Case insensitivity, THINK C, 46
CDEFs,44
CD es k top, 332
Cdev, 60-82

checking cdev, 73-74
creating resources file, 61-67
ID number, 62
resource ID, 62
resources provided by, 61-62
scrolling types of, 43
source code, 67-72, 7 4-82

CdevUnset,76
CDevValue,75,76,79
CDirector,334,357
CDocument,334,357
CDocument 's Open Fi le, 357
CDragPane,340,360,361,364,

365,367
CenterDialog,11~120

CenterPict,101,103
CenterWindow,147,148
Central processing unit (CPU),

Mac, 24
CGraf Port, 128
Chain of command, THINK Class

Library, 333-335
ChangedResource,79
Characters, insertion point, 221
C i r c l e ' s D r a w, 328
Classes

ancestors, 323
direct classes, 318
indirect classes, 318
object classes, 317-318, 326-327
root classes, 318
subclasses, 317, 323-324, 325-326

Index

Class hierarchy, THINK Class
Library,

330-331
Cl i kloop, 228
ClipRect,306,307,369
Cl i pRgn, 368, 370
CloseDev,78
Clos eWi ndow, 286
CMouse, 341, 362
CMouseTask,362,366
Code resource messages, 7 4
Color icons, 51
Color Info, 133-149

creating project, 135-140
creating resource file, 133-135
running program, 140-141
source code, 136-140, 141-149,

425-429
Color Picker, 168
Color Q D, 145
Color QuickDraw

bits to specify color, 126
C G r a f Po r t, 128
checking availability of, 129-130
Color Info, 133-149
ColorTable,127
Color Tutor, 167-201
creating color windows, 128
device list, 131-132
evaluation of, 125
indexed devices and, 126-127
off-screen drawing
environments,202

GWorld, 203-215
Palette, 152-167
Palette Manager, 149-152
Pi xMaps support, 132, 167
SysEnvRe c and, 129-130
32 Bit QuickDraw, 142
transfer modes, 167

Co l o r Spec, 126-127
ColorTable,127
Color tables, creating, 150

Index

ColorTutor, 167-201
creating project, 170-184
creating resource file, 169-170
panesofwindows,168
running program, 184
souri:e code, 171-184, 185-201,

435-449
transfer modes and, 167-169

CommonAct;on,299
Compaction of heap, ~emory

Manager, 32-34,35
Compiler, and letter L, 20
ControLHandLes,36
Control Manager, 4
Control Panel documents, 43
CopyBits,167,168,i93,194,203,

208,213,214
CopyWorLde;ts,210
CPane,333,334,341
CPane LID, 76
CPanorama,332,333,334,340,

358,366
CpDiaLog,76
CreateCircLe,325,326
CreateCoLorWindow,166,209,211
C reateShape, 210, 319, 321, 324,

326
CreateSquare,326
CreateWindow,286,291
C S c r o L L Ba r, 332
Cs c ro LL Pane, 332, 333, 340, 341,

357,358
CSpecArray,127
CStarterDoc,342
CStarterPane,358,359,362,363
CursorRgn, 278
CurTE, 284
cw;ndow,332,334,357,358

Data registers, 24
Data structure, passing address to

routine, 22
DeActivDev,76

DEFAULT~ITEM,74

#define,38,74,159,115
DELAY,57
Depth of device, 126
Desk accessory, 291-292
Destiriation pane, 168
DestRect,228,229

resizing of, 228-230

499

Device list, Color QuickDraw, 131-132
Dialog Manager, 4

TextEdit and, 219
DiaLogPtr,76,116,118
Di f fRgn, 302
Direct classes, 318
Direct commands, THINK Class

Library; 333
Direct devices, 147, 149
DispLayCoLors,142,143,145
DisposeControL,286
DisposePaLette,152
DisposePtr,304
DisposeWindow,286
DisposHandLe,31
DisposPtr,286
DitherCopy,214
DI TL, 61, 240, 241

item specifications, 63
as purgeable, 110
specifications, 108-110

DkGray, 23
DLOG filter proc

creat~ng resource file, 107-115
function of, 45, 106
ID number, 108
parameters of, 118
as purgeable, 110
source code, 111-115

DoActivate,281,300
DoALert, 149, 201
DoBackChoice,199
DoCLick,319,363,365
DoCLoseWindow,291,286
DoCommand,334

500

DoContent,189
DoContentClick,285,294,298
DoDrag,361,362,364
DoEventloop, 189
Doidle,279,280,284
DoModeChoice,200
DoPopup,80,191,200
DoSrcChoice,198,199
DoTEKey,281
DoUpdate,281
Draw,318,319,322,326,327,328,

333,362,363,365
DrawBullseye,163
DrawControls,189
DrawFontName,81
DrawForm,303
Drawlabe l, 195
DrawOKButton, 116, 119
DrawWi ndow, 191-192
Dummy,59
Dynamic memory allocation, 34

EnableFlgs,101,105
MDEF, 93

Endlocation,362
EndTracking,366,370
EndUpdate,227,302
Enter key, 116
EraseRect,227
ErrorHandler,311
Event Manager, 278
EventRecord,76,106

Filter procedures, 38, 106-120
disabling buttons and, 107
example of use, 106-107
function of, 45
See also DLOG filter proc.

F i n d C on t r o l , 295
FindFontNumber,80
FitToEnclFrame,358
FitToEnclosure,358
FixResource,79

Font
default font, 81
number setting, 75

FontNum,81
Font Number, 57, 79
FontNuminfo,75
F o rm Ed i t, 230-311

Index

creating project, 242-269
creating resource file, 232-242
fields of, 231
running program, 270-271
source code, 242-269, 271-311,
457-484

FormPeek, 274
FormRecord,274,281,304
FrameRect,34,319,322,323
FRE F, 62

item specifications, 64
FrontWindow,284

GA pp l eMenu, 277
GB a ck Color, 186
GBackMenu,186,187
GBackMenuRect,185
GBackPattern,185,197
GB a c k R e c t , 185
GBackType,185,197
GColorWindow,186
GCopyMode,185,197,200
G D e s t R e c t, 185
GDevi ce, 131, 132
G Ed i t Me n u' 277
Geneva, default font, 81
GetColor,200,201
GetDeviceList,131,143
Get DI t em, 116
GetEntryUsage,152
GetGWor ld, 212
Get Info, 55
Getlocation,366,370
GetMainDevice,131
GetMouse, 362
GetNewCWindow,128

Index

GetnewPalette,150
GetNewWi ndow, 27, 28, 37, 128,

304
GetNextDevice,131
GetNextEvent,335
GetNumPicts,101,102,103,105
Ge t P i c t u r e, 34
GetPixelDepth,145
Get Po s i ti on, 368
GetResource,34,35,46,57
GetString,34
GFileMenu,277
GinBackground,281
GisScrolling,361,362,363,365
Globals, in stand alone code, 26
GMiscRect,275,277,300,301
GModeMenu, 186
GModeMenuRect,185
GNameRect,275,277,300,301
GNewWindowLeft,304
GNewWindowTop,304
GoAway box, 286
GOpColor,186,190,193
GOpColorRect,185
Gopher, THINK Class Library,

334-335
G r a f Po r t s, 289
Graphic devices

device list, 131-132
direct devices, 147, 149

Gray,23
GScrol lRect, 275
GS r c Color, 186
GS r cMenu, 186, 187
GSrcMenuRect,185
GS r c Pa t t e r n, 185
G S r c Re c t, 185
GSrcType, 185
GTheEvent,37
GWorld, 203-215

creating project, 203-208
creating resource file, 203
running program, 208

501

source code, 203-215, 449-457
32 Bit Quick Draw and, 202,

208,209

HandleAppleChoice,290
HandleEditChoice,291
HandleEvent,280
HandlefileChoice,288,291
HandleMenuChoice,280,290
HandleMouseDown,280,284
Handles, 29-34

DisposHandle,31
functions of, 29-30
making nonrelocatable and

relocatable, 33-34
time for use of, 34
two handled blocks on heap, 30-31

HandleTo8,30
HandleTo16,31
Heap fragmentation, 28-29

and fragmentation approaches,
28-29

Heap space
Memory Manager and, 32
use of, 27

H i t Dev, 76, 77
HLock, 33-34, 323
HNoPu rge, 35, 36
HPu rge, 35, 36
HSV2RGB, 147
HSVColor, 147
HText, 223, 283
HUn lock, 33-34, 323
HyperCard, 25

I Be am cu rs or, 302
IBeamRgn,301,302
I C i r c l e, 325
ICN#,49,51,52,56,57,58,59,62
Icons, color, 51
ID number

AFI, 49, 52
cdev,62

502

DLOG filter proc, 108
MDEF,88

IDragPane,360,363
IMouse,366
IMouseTask, 366
I n C on t en t, 285
Index2Color, 147
Indexed devices, 126
Indirect classes, 318
Inheritance, subclasses, 323, 328
INIT, start-up and, 43
InitDev,76
Initialization routine, object

programming, Shaper
application, 322

INIT tester, creation of, 55
Insertion point, characters, 221
InsetRect,81
InstallPanorama,358
Instance variables, object

programming,
Shaper application, 317, 318,
319, 322-323

Int,25,26
InvalRect,191
I n v e r t Re c t , 102
I Pane, 364
I Pa nor am a, 358
Is32Bi t, 209, 214
IsColor,129,130,142,145,201
IShape,319,322,323,324,325
ISquare,323,324,325
IStarterPane,358,360
Item,75
ItsMainPane,358
ItsWindow,357

KeepTracking,366,368
KeyDown, 280
KeyEvtDev, 76

LoadResource,35
LockPixels,212

Long, 25, 26
L tGray, 23

MacApp, 315
Mac Dev message, 75
Mach, 61

item specifications, 65
Macheaders, 141

Index

MacTraps, 95, 111
Main,57,75,100,144,145,160,209
MakeGWorld,209,211
MakeRedPalette,164
Ma keWi ndow, 26-27
MChooseMsg,100,101
MDEF, 44, 45, 82-105

creating MDEF project, 83-87
creating resource file, 87
Enable flgs field and, 93
function of, 45
ID number, 88
scrolling, 105
source code, 84-87, 96-99,

100-105, 407-425
testing MDEF, 88-100

MDEF tester, function of, 45
MDrawMsg,100,101
Memory

dynamic memory allocation, 34
layout of, 22-29

application heap, 27-29
application space, 23-25
memory map, 22
stack, 25-27
system heap, 23
system space, 23

Parameter-RAM (P-RAM), 58, 81
32 bit machine, 19-20

Memory management
Memory Manager, 32-35
MoreMasters,35
MoveH Hi, 35

Memory Manager
compaction of heap, 32-34, 35

Index

heap space and, 32
Menu, 191

item specifications, 65
Men u Ba r I n i t , 277
Menu definition procedure. See MDEF
MenuHandle,36
MenuKey,280
Menu L i s t , 25
Menu Rec t Pt r, 100
MenuSelect,285
MenuWi dth, 103
Message parameter, 100
Method declarations, 318
Methods, object programming,
Shaper

application, 318-319, 327-328
Modal Di al og, 38, 45, 106-107, 116,

117, 118, 119, 219
MoreMasters,35
Mouse Down, 36, 162, 189, 280,

284,332
Mouse moved event, 278, 279
MoveHH i, 35
MoveWindow,120,148
MSizeMsg,100,103
MultiFinder, 23-25

activity of applications and, 23, 24
MyRectHandle,33
MyStarter, 340-371

CDragPane.c, creating, 34 7-350,
485-487

CDragPane.h, creating, 350,
487-488

CMouse.c, creating, 351-354,
488-491

CMouse.h, creating, 354, 491
creating resource file, 341-342
CStarterDoc.c, changing of,

342-344
CStarterPane.c, replacing of,

344-346
source code, 357-370
testing program, 355-356

503

NameTE, 274
Naming conventions, 46
New,321
NewClikloop,305,306,307
NewControl,286,305
NewCWindow,128,146, 166
NewGWorld,209,212
NewHandle,27,28,30,31,33,35
NewPalette,150,151,152,164
NewPtr,27,28,29,286,304
NewRgn, 278
NewShape,320
New Shape, 321
NewWindow,128
NewWor ld, 213
NORMAL~APP~FONT,77

Nrct, 61
item specifications, 66

Nu l Dev, 76
Nu l l Even t, 280
Numl terns, 75

Object classes, object programming,
Shaper application, 317-318,

326-327
Object programming

MyStarter, 340-371
Shaper application

creating shape objects,
319-320

creating square, 324
initialization routine, 322
instance variables, 317, 318,

319, 322-323
methods, 318-319, 327-328
object classes, 317-318,

326-327
object references, 320-321, 322
subclasses, 317, 323-324,

325-326
THINK Class Library, 329-340

Art Class application, 336-337
bartender, 335

504

chain of command, 333-335
class hierarchy, 330-331
Starter application, 338-340
switchboard, 335
TinyEdit application, 337
usefulness of, 329
visual hierarchy, 330-333

Object references, object
programming, Shaper

application, 320-321, 322
Off-screen drawing environments, 202

GWorld, 203-215
OpColor, 168, 190
OpColor pane,168
Oval, 328
OxFFFF notation, 19

Pa;ntRect,21,22,33,148
Palette, 152-167

creating project, 152-158
creating resource file, 152
running of, 159
source code, 153-158, 159-167,

430-435
PaletteHandle,165
Palette Manager, 149-152

creating program, 150-152
usefulness of, 149-150

Panes, window, 330, 332
Panorama, 332
Parameter-RAM (P-RAM), caution

about,58,81
Pa ramTex t, 149
Pascal, 75, 116
Pascal calling conventions, 38-39
Pascal strings, 283, 294
Pa s c a l v o ; d, 100
Passing message to object, 318
PatNum,364
Pat Numb e r, 364
Pens;ze,119
PickColor,190,200
Piggyback techniques, 36-38, 274,

289,304

p;ggyWindow,37
P i n I n R e c t, 369
Pixels, 126

pixel depth, 130-143
PixelSize,132,145
PixMap,132,145,167,194

Index

Color QuickDraw, 132, 167
PmAnimated,151
PmCourteous,151
PmExplicit,151
PmforeColor,151,163
PmTolerant,150
Pointers, 20-22

bytes of, 20, 22, 25
master pointers, 29-31
as non-relocatable, 22

Pop-up menus, 105
PopUpMenuSelect,200
PopupRectPtr,80
Prep a re, 362
PROC_I D, 57
Purgeable blocks, 35

QuickDraw, 4
Bit Maps, 132
capabilities of, 125
globals, 23, 24, 25
32 Bit Quick Draw, 142
See also Color QuickDraw.

Random access memory (RAM), 19
Randomize, 363
RandSeed, 23
Rect,100,101,194
RectPtr' s Re ct, 321
Refresh, 362, 364
ResEdit,3,4,55,83, 133
Resources

ID number, 49, 52
loading, 46
as relocatable, 34
review of, 232

RGBBackColor,128
RGBColor, 126, 142, 146, 148,

Index

168,169
RGBForeColor,128,129
Root classes, 318
Routines, call of and stack, 26-27
RUN~ON~ALL~MACHINES,75

Scrap, TextEdit scrap, 230
Scrap conversion, 279
Scrap Manager, 230, 293
ScreenBits,23,120
Screen buffer, 125
Scrolling, MDEF, 105
Scrolling text

automatic scrolling, 227-228
Text Edit, 227-228

SelectWindow,285
SetAppfont,81
SetClikloop,228,305
SetEntryUsage,152
SetGWor ld, 212
Set Palette, 152
SetPort,37,147,274,301,362
Set Project Type

AFI, 46-4 7, 53
cdev, 72
DLOG, 110-111
MDEF,83-84

SetRect,33,210,322,323
SetRectRgn,278
SetUpGlobals,187
SetUpWindow,187
SetWantsClick,360,364
SetWTitle,283
Shape,319
Shaper

creating shape objects, 319-320
creating square, 324
initialization routine, 322
instance variables, 317, 318,

319, 322-323
methods, 318-319, 327-328
object classes, 317-318, 326-327
object references, 320-321, 322
subclasses, 317, 323-324, 325-326

Shape's Draw, 318, 328
Short,25
Show INIT, 46-48

source code, 397-401
ShowPICT, 101
ShowWi ndow, 147
Source pane, 168, 169, 192
S PC l i k C a r e t, 226
SrcCopy,168,193,214
SrcTolerance,151,152
Stack

505

active application and, 25-26
calling of routine and, 2G-27
declaring variables and, 27
in memory, 25-27

Starter, 338-340
StartTextEdit,305
Startup documents. See !NITS
St r i n g W i d th, 195
Subclasses

inheritance,323,328
object programming, Shaper

application, 317, 323-324,
325-326

Sub Pin, 184
Supervisors, THINK Class Library,

333-334
Switchboard, THINK Class

Library, 335
SwitchToNewArea,282,297,308
Symantec BBS, 338
SysEnvirons,129,145
SysEnvRec, 129-130
Sys Pa ram, 58
SystemEdit,291,292
Systemfont,187
System globals, 23

accessing, 23
in application space, 25

System heap, in memory, 23
System space, in memory, 23

Tab key, 116
TEAutoVi ew, 227

506

T EA c t i v a t e ·, 225
TEAutoView,228,306
TEC lick, 226, 297
TE Copy, 230, 293
TECut, 230, 293
TEDeactivate,225,227,309
TEDelete,230,294
TEDispose,224,286
TEFromScrap,230
TEGetText,224,283,294
TEHandle,224,226
TE Idle, 225, 284
TEini t, 224
TEinsert,230
TEKey, 227, 294
TELength,283
TempRgn,301
TENew, 224, 305
TEPaste, 230, 293
TE Rec, 224, 225
TERec data structure,

221-223, 225
TEScroll,227,296,299,310
TES e t J us t, 227
TESetSelect,226,282
TE set T ex t, 225
TE Sty l New, 224
TEToScrap,230,293
TEUpdate,227
Text Edit

data structure of, 221-224
examples of use, 219-221
FormEdit, 230-311
new/old versions of, 224
private scrap, 230
resizing destRects, 228-230
routines of, 224-227
scrolling in, 227-228

T e x t F a c e, 303-304
T e x t Fon t , 303-304
TheData,357
The Port, 23
THINK Class Library, 329-340

Index

Art Class application, 336-337
bartender, 335
chain of command, 333-335

direct commands, 333
gopher, 334-335
supervisors, 333-334

class hierarchy, 330-331
Starter application, 338-340
switchboard, 335
TinyEdit application, 337
usefulness of, 329
visual hierarchy, 330-333

THINKC, 3
AutoWeave upgrade program,

339
case insensitivity, 46
globals in stand alone code, 26
Pascal functions and, 38-39

32 bit addresses, 19-20
32-bit clean applications, 35-36
32 bit mode, 36
32 Bit Quick Draw, 202

GWorld program and, 202,
208,209

TinyEdit, 337
ToolBoxlnit,117,142,210
Toplef t, 273
TrackControl,190,295,296
T r a c k Go Aw a y, 286
TrackMouse,362
Transfer modes

Color QuickDraw, 167
Color Tutor and, 167-169

TurnOffTextArea,309
TurnOnTextArea,308
24 bit mode, 36

Undo command, 231, 292
UnionRgn,278
UpdateBackMenu,191,197
UpdateDev, 76, 78
UpdateEvt,37,162,189,191,227,

281, 302,319,332,333

Index

Upda t eMode, 191
UpdateModeMenu,197
UpdateScrMenu,191
UpdateSrcMenu,196,197
USER_ITEM, 74

VAcationProc,298
VA c t i on P r o c, 296
Variables, stack space and, 27
Video card, 126
ViewRect,223,227,228,229
Visual hierarchy, THINK Class

Library, 330-333
VS c r o l l , 27 4

WaitNextEvent,278,302,335
WDEF,44
WHandle,57
W h i c h I t em P t r, 103

White,23
WIND, 94
WindowKind,289
WindowPeeks,289
Wi ndowPtr, 36, 128, 146, 166,

285,289
Wi ndowRecord, 27, 28-29, 34,

37,289

507

Windows, piggyback technique, 36-38
Wi ndowType, 37-38, 272, 281, 289
Word, 77, 79, 80
Word-break routine, 228
WriteParam,57,58,81
WriteResource,79
WType, 305

Z e r o S c rap, 293
Zoom, 359

_J Working with THINK C 5.0

cdev.c:

When Symantec introduced version 5.0 of THINK C, they really made some
changes. In fact, they practically rewrote the whole thing. Needless to say,
you'll need to make some changes to your source code to keep up with these
changes. For starters, read Appendix A in the THINK C User Manual. This
will give you a good sense of what basic changes have occurred.

As you type in each of the Primer's programs, find the corresponding entry
in the following pages. For example, the first entry discusses the changes
you11 need to make to the source code file cdev. c, to make the program
compatible with THINK C 5.0. Most of the book's programs are fairly easy to
modify. By far, the largest percentage of changes must be made to the object
programming example in Chapter 6. This is because of the extensive changes
made to the THINK Class Library between versions 4.0 and 5.0 of THINK C.

You can find an electronic version of these changes on America Online, in
the Macintosh Developer's library and on CompuServe, in the Macintosh
Developer's library (GO MACDEV) in section 11 (Learn Programming). Good
luck ...

1) (p. 67) Insert line, just after the last #define:
short FindFontNumber<>;

Tester.c:
1) (p. 95)Replace #define MOVE_TO_FRONT from

-1L
to

CWindowPtr>-1L

2) (p. 97) Change Begi nUpdateC gTheEvent .message >to
BeginUpdateC CWindowPtr)gTheEvent.message >

3) (p. 97) Change End Up d a t e C g The Event • message > to
EndUpdateC CWindowPtr>gTheEvent.message

DLOG.c:
1) (p. lll)Replace #define MOVE_TO_FRONT from

-1L
to

CWindowPtr>-1L

Colorlnfo.c:
1) (p. 136) Replace the line:

#include "ColorToolbox.h"
with

#include "Picker.h"

Palette.c:
1) (p. 153) Replace the line:

#include "ColorToolbox.h"
with the two lines:

#include "Palettes.h"
#include "Picker.h"

2) (p.153)Replace #define MOVE_TO_FRONT from
-1L

to
CWindowPtr)-1L

508

Working with THINK C 5.0

Color'I\itor.c:
1) (p. 171) Replace the line:

#include "ColorToolbox.h"
with the two lines:

#include "Palettes.h"
#include "Picker.h"

2) (p. 171) Replace #def i n e MOVE_ TO_ FRONT from
-1L

to
CWindowPtr)-1L

GWorld.c:
1) (p. 203) Replace the two lines:

#include "ColorToolbox.h"
#include "QuickDraw32Bit.h"

with the two lines:
#include "Picker.h"
#include "QDOffscreen.h"

2) (p. 203) Replace #define MOVE_TO_FRONT from
-1L

to
CWindowPtr>-1L

FormEdit.c:
1) (p. 244) Replace #def i n e M 0 VE_ TO_ FR 0 NT from

-1L
to

CWindowPtr>-1L

2) (p. 251) In the function Do TE Key C >, replace the line:
tempStr[i+1 J = C*text>C i J;

with the line:
tempStrC i+1 J = C*Cchar **>text>C i J;

3) (p. 257) In the function Ha n d l e Ed i t C ho i c e C >, replace the line:
tempStrC i+1 J = C*text>C i J;

with the line:
tempStrC i+1 J = C*Cchar **>text)[i J;

4) (p. 266) In the function New c l ; k Loop C > , replace the declaration:
int amount;

with the line:
short amount;

Starter.1t (p. 341):

509

1) Make a copy of the "Starter Folder" found in the "TCL 1.1 Demos" folder in your
"Development" folder. Next, copy the following files from your old "MyStarter" folder into this
new folder:

- CDragPane.c
- CDragPane.h
- CMouse.c
- CMouse.h
- CStarterDoc.c
- CStarterDoc.h
- CStarterPane.c
- CStarterPane.h
- Starter.c

You should be copying 9 files, replacing their counterparts in the new folder. Do NOT copy
the files CStarterApp.c and CStarterApp.h!!!!!
Start up THINK C by double-clicking the file Starter.7t in this new folder.

510 Macintosh Programming Primer

2) Select Add ... from the Source menu and add the files CDragPane.c and CMouse.c to the
project. Make sure you add the two files to the first segment in the project window. 'lb select
the first segment, click on the file name CStarterApp.c (in the project window) before you
select Add ...

3) Select Options ... from the Edit menu.
- Select "Language Settings" from the popup menu.
- Make sure that the "Language Extensions" check box is checked.
- Select the "THINK C + Objects" radio button.
- Make sure the "Strict Prototype Enforcement" check box is checked.
- Select the "Infer Prototypes" radio button.

4) Edit each of the functions in the files CDragPane.c, CMouse.c, and CStarterPane.c. Change
each function's parameter declarations from the old style to the new style of parameter
declaration. Make sure you edit every single function!!! Old style declarations look like this:

void COragPane: :OoClickC hitPt, modifierKeys, when>
Point hit Pt;
short modifierKeys;
long when;
{
}

New style declarations look like this:
void COragPane::OoClickC Point hitPt,

short modifierKeys, long when
{
}

5) (p. 348) In the file CDragPane.c, in the function I D rag Pane C >, ch~ge the declaration:
Rect r;

to
LongRect r;

6) (p. 349-350) Also in CDragPane.c, in the function Do C l i ck C >, change the first five lines from:
Rect r;
Rect endlocation;

r = frame;
EraseRectC &r >;

FrameToEnclRC&r>;
to these eight lines:

Re ct
Re ct
Long Re ct

r;
endlocation;
longR;

FrameToQDRC &frame, &r >;
EraseRectC &r >;

QOTolongRectC&r,&longR);
FrameToEnclRC&longR>;
LongToQDRectC &longR, &r >;

7) (p. 354) In the file CMouse.h, change the three lines:
void BeginTrackingC Point *startPt >;
void KeepTrackingC Point *currPt, Point *prevPt,

Point *startPt >;
void EndTrackingC Point *currPt, Point *prevPt,

Point *startPt >;
t.o:

void BeginTrackingC struct LongPt *startPt >;
void KeepTrackingC struct LongPt *currPt, struct LongPt

*prevPt, struct LongPt *startPt >;

Working with THINK C 5.0 511

voidEndTracking(struct LongPt *currPt, struct LongPt *prevPt,
struct LongPt *startPt >;

8) (p. 351) In the file CMouse.c, in the function IM o use< >, change the declaration:
Rect r;

to
LongRect r;

9) (p. 351) Also in the file CMouse.c, in the function IM o use< >, change:
theBounds = r;

to
LongToQDRect< &r, &theBounds >;

10) (p. 351) Also in the file CMouse.c, in the function Begi nTracki ng <>,change the function
declaration from:

void CMouse::BeginTracking(Point *startPt >
to

void CMouse: :BeginTracking< struct LongPt *startPt >

11) (p. 352-353) Also in the file CMouse.c, replace the function Keep Track i n g < > with the
following:

{

void CMouse::KeepTracking(struct LongPt
*currPt, struct LongPt *prevPt,
struct LongPt *startPt >

Long Re ct
Re ct

r, f;
shortR;
curTicks; long

Long Pt
RgnHandle

startPos;t, newPosit, cp, pp;
clipRgn;

thePanorama->GetPosition< &startPosit >;

clipRgn = NewRgn<>;

if < thePanorama->AutoScroll< currPt >

{
I I ! EquallongPt(currPt, prevPt

thePanorama->GetPosition< &newPosit >;

GetClip(clipRgn >;
QDTolongRect< &<C**clipRgn).rgnBBox>, &r >;
OffsetLongRect< &r, startPosit.h - newPosit.h,

startPosit.v - newPosit.v >;

thePanorama->GetFrame<&f >;
PininRect<&f, (LongPt *><&Cr.top)));
PininRect<&f, <LongPt *><&Cr.bottom>>>;

LongToQDRectC &r, &shortR >;
ClipRect(&shortR >;

shortR = thelocation; /* Erase old gray rect *I

curTicks = TickCountC>;
while C curTicks == TickCount() > ;
FrameRect< &shortR >;
QDTolongRectC &shortR, &r >;

cp = *currPt;
pp = *prevPt;
QDTolongRectC &theBounds, &f >;
PininRect<&f, &cp);
PininRect<&f, &pp);

512

}

}

Macintosh Programming Primer

OffsetLongRectC&r, cp.h - pp.h, cp.v - pp.v>;
SetClipC clipRgn >;

curTicks = TickCountC>;
while C curTicks == TickCountC) > ;

LongToQDRectC &r, &shortR >;
FrameRectC &shortR >; I* Draw new gray rect *I
thelocation = shortR; I* update thelocation

instance var */

DisposeRgnC clipRgn >;

12) (p. 353) Also in the file CMouse.c, Replace the declaration of the function
End T r a c k i n g C > with:

void CMouse::EndTrackingC struct LongPt *currPt,
struct LongPt *prevPt, struct LongPt *startPt

13) Add these three lines to the list of include files in the file CStarterDoc.c:
#include "TBUtilities.h"
#include "CWindow.h"
#include <Packages.h>

14) In the file CStarterDoc.c, in the function Open F i l e C > , replace the line:
theError = thefile->OpenCfsRdWrPerm>;

with the line
thefile->OpenCfsRdWrPerm>;

15) In the file CStarterDoc.c, in the function Open F i l e C >, comment out each of the lines:
gApplication->RequestMemoryCFALSE, TRUE);
thefile->ReadAllC&theData>;

and
gApplication->RequestMemoryCFALSE, FALSE>;

16) (p. 343) In the file CStarterDoc.c, in the function Bui l d W i n do w C >, change the line:
Re ct pan Frame;

to
Long Re ct pan Frame;

17) (p. 346) In the file CStarterPane.c, in the function Do D rag C >, change the declaration:
Re ct boundsRect;

to
LongRectboundsRect;

18) (p. 346) In the file CStarterPane.c, in the function Do D rag C >, add the new declaration:
LongPt longP;

19) (p. 346) In the file CStarterPane.c, in the function Do Drag C >, change the line:
TrackMouseC aMouseTask, p, &boundsRect >;

to
QDTolongPtC p, &longP >;
TrackMouseC aMouseTask, &longP, &boundsRect >;

ShowINIT.c:
1) (p. 397) Delete the line:

#include <Color.h>

Macintosh C Programming
Primer, Volume II:

The Disk!
If you'd like to receive a complete set of source code, projects, and
resources from Volume II of the Mac Primer:

1) Fill out the coupon. Print clearly.

Primer
2) Attach a check for $30. Make the

check out to M/MAC. Make sure that
the check is in U.S. dollars, drawn on
a U.S. or Canadian bank. If you'd like
the disk shipped outside the United
States, please add $5.

Disk,

D 3) Send the check and the coupon to:
Intelligence at Large
3508 Market Street

Philadelphia, PA 19104

Here's my $30!
Send me the Primer Disk II,
quick!!! Mail the disk to:

Name --------------
Company ____________ _

Address -------------
City _____ _ State __ Zip __ _

No Credit Cards, Please!

Praise for Volume I of the Macintosh C Programming Primer

"One of the easiest-reading Mac programming books ever written ... a first-rate
guide to learning THINK C." -Macworld

"We recommend Macintosh C Programming Primer." -Mac User

"Goes straight to the matter of writing real Macintosh applications in
Symantec's THINK C." -Mac WEEK

"A lush addition to the barren Macintosh C programming library."

...:_Bay Area Computer Currents

The Macintosh C Programming Primer quickly established itself as the guide co learning C program
ming on the Macintosh~. The Primer 's clear presentation of complex material has started thousands on
their way to becoming accomplished Macintosh programmers. T he Macintosh C Programming Primer,
Volume II picks up where the first book left off, and covers more advanced T oolbox topics.

Volume II includes:
• A thorough explanation of che daca scructures and Toolbox routines that make up Color

Quick Draw'" . You'll learn how to use the Palette Manager, the Color Manager, and 32-Bic
QuickDraw.

• An extensive introduction to object-oriented programming. You'll learn how to build your
own objects and use them in combination with the T HINK Class Library. The tu torial
includes a complete object-oriented application.

• A comprehensive treatment of TextEdit, the set of text processing Toolbox routines built
inside every Macintosh.

• An overview of the Macintosh Memory Manager, including explanations of pointers and
handles.

"This book is full of fun and good learning. With the vast landscape of Macintosh programming as
your goal, and Dave Mark as your friend, you 'II soon feel the awe and mystery of commanding your
Macintosh to do great things. " From the Foreword by Scott Knasrer

Dave Mark is the author of the bestselling Learn Con the Macintosh and a columnist for MacTutor.
His company, M/ MAC, does Macintosh consulting.

Also Available: Macintosh C Programmir - · -- ·
Second Edition, and Macintosh Pascal P1 MAC INT 0 SH C

MARK
PRVGRANM

193A-WT1

0-201-57016-5
PCM'

p
Cover design by Doliber Skeffington 9 780201 570168

5 26 9 ~

Addison-Wesley Publishing Company, Inc. ISBN 0-201-57016-5
57016

