Dave Mark Cartwright Reed

Wlelelgiie)inl &
Hfo gramming

volume. |

Secona Eaiiion

1

Inside the Toolbox Using THINK C'

Macintosh C
Programming

Primer

Inside the Toolbox

Using THINK C™

Volume I, Second Edition

Dave Mark Cartwright Reed

A
v

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam
Bonn Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

The authors and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial capital letters.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.
Macintosh C programming primer / Dave Mark, Cartwright Reed. —
2nd ed.
p. cm,
Includes bibliographical references and index.
Contents: v. 1. Inside the toolbox using THINK C.
ISBN 0-201-60838-3 (v. 1)
1. Macintosh (Computer)—Programming. 2. C (Computer program
language) I. Reed, Cartwright. II. Title.
QA76.8.M3M368 1992
005.265—dc20 92-4299
CIpP

Copyright © 1992 by Dave Mark and Cartwright Reed

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in
Canada.

Cover Concept: Doliber/Skeffington
Set in 10/12 Palatino by ST Associates, Wakefield, MA

123456789-MW-9695949392
First printing, May 1992

This book is dedicated to Deneen and Kate.

Contents

Source Code Disk for the Mac Primer ix
Preface XL

Acknowledgments xiii

Introduction 1

The Macintosh Way 3

About the Book 8

Writing Macintosh Applications 11
How to Use This Book 19

What You Need to Get Started 20
Ready, Set . . . 21

Setting Up 23

Installing THINK C 5 25
Accessing the Toolbox with C 29
The Hello, World Program 40

In Review 48

Drawing on the Macintosh 49

Introduction 51

Window Management 56

Drawing in Your Window: The QuickDraw Toolbox Routines 62
The QuickDraw Programs 69

Hello2 69

Macintosh C Programming Primer

Walking Through the Hello2 Code 79
Variants 83

Mondrian 88

Walking Through the Mondrian Code 92
Variants 98

ShowPICT 103

Walking Through the ShowPICT Code 109
Variants 113

Screen Saver: The FlyingLine Program 113
Walking Through the FlyingLine Code 119
In Review 126

Events 127

Understanding Events 129

The Event Manager 129

A New Structure for Macintosh Programming (Part 1) 133
A New Structure for Macintosh Programming (Part 2) 139
EventTracker 143

Walking Through the EventTracker Code 154

Handling mouseDown Events in EventTracker 165
Building the EventTracker Application 167

Updater: The Return of ShowPICT 168

Walking Through the Updater Code 177

Handling mouseDown Events in Updater 184
EventTrigger: Sending Apple Events 190

The Event Trigger Algorithm 192

Walking Through the EventTrigger Code 196

In Review 199

Menu Management 201

Menu Components 203

The Hierarchical Menu 206

The Pop-up Menu 206

Adding Menus to Your Programs 208
WorldClock 209

Walking Through the WorldClock Code 235
In Review 258

Working with Dialogs 259
How Dialogs Work 262

Dialog Items: Controls 263

Other Dialog Items 266

Modal Dialogs 267

Modeless Dialogs 267

Contenté

Adding Dialogs to Your Programs 268
Working with Alerts 275

The Notification Manager 278

Using the Notification Manager 279

The Process Manager 281

Reminder 284

Resources 285

Running Reminder 328

Walking Through the Reminder Code 335
In Review 361

Toolbox Potpourri 363

Writing Out Resources 365

ResWriter 365

Walking Through the ResWriter Code 373
Scroll Bars! We're Gonna Do Scroll Bars! 379
Pager 382

Walking Through the Pager Code 393

The Scrap Manager 404

Walking Through the ShowClip Code 411
The Sound Manager 416

SoundMaker 416

Walking Through the SoundMaker Code 420
Working with Macintosh Files 424

The Standard File Package 425

The File Manager 427

Walking Through the OpenPICT Code 436
The Printing Manager 443

PrintPICT 444

Walking Through the PrintPICT Code 450
In Review 456

Finishing Touches 457

Building a Standalone Application 459

More Finder Resources 471

The Help and Edition Managers 478
Responding to the Required Apple Events 480
In Review 489

The Final Chapter 491
Macintosh Periodicals 493

The Essential Inside Macintosh 493
Apple Technical References 496
Apple’s Developer Programs 497

viii

Macintosh C Programming Primer

Macintosh Developer Technical Support and Applelink 498
Software Development Tools 499
Source Code Bounty 501

To Boldly Go

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

502

Glossary 503

Code Listings 521

THINK C Command Summary 603

The Debugger Command Summary 615
Debugging Techniques 623

Building HyperCard XCMDs 629
Bibliography 639

New Inside Macintosh Series 643

Index 647

Source Code Disk
for the |
Mac C Primer

IF you wouLDp like the source code presented in the Macintosh C
Programming Primer on disk, please send in the coupon on the last
page (or a copy of the coupon; we're not picky). If you like, you can
order the disk by calling (215) 387-6002.

We hope you like the Macintosh C Programming Primer. If you
have any comments or suggestions drop us a line on CompuServe.
When you log on to CompuServe, type GOMACDEV, then stop by the
Learn Programming area (Section 11) and say hello.

Preface

ARE YOU INTERESTED in creating your very own Macintosh applications?
Is the next great Macintosh software miracle tucked away in your
brain? If so, you've come to the right place.

With this new edition of the Macintosh C Programming Primer in
hand and a copy of THINK C on your hard drive, you’ve got everything
you need to enter the wonderful world of Macintosh programming. The
Mac Primer uses step-by-step approach that shows you how to add
each element of the Macintosh user interface to your programs. You'll
start by learning how Macintosh windows are created. Next, you’'ll
learn how to draw text and graphics inside your windows. As you
progress through the book, you'll learn about events, menus, dialog
boxes, and much, much more.

The Mac Primer is chock-full of reusable sample code. Each program
is discussed in detail. Nothing is left as an exercise for the reader.
There’s no better way to learn the art of Macintosh programming.

For readers of the first edition, this edition of the Mac Primer pre-
sents a boatload of brand-new material. All the source code has been
rewritten and specifically designed with System 7 in mind. You’ll
learn how to create System 7-savvy programs using the latest versions
of THINK C and ResEdit. You'll also get the inside scoop on the new
additions to the Inside Macintosh family.

Get yourself a copy of THINK C, grab your Mac Primer, and we'll
meet you inside.

Dave Mark Cartwright Reed
Arlington, VA Philadelphia, PA

Acknowledgments

WE’D LIKE TO express our appreciation to the people who helped make
this book possible, or at least coexisted with us harmoniously during
its development.

First and foremost, we’'d like to thank our wives, Deneen Melander
and Kate Joyce, who know us and still smile.

A special thanks to Elizabeth Rogalin and Julie Stiliman for
loyalty, late nights, and much-needed moral support. Thanks also to
Kathy Traynor, Diane Freed, and the rest of Addison-Wesley’s finest!
Thanks also to Jackie Cowlishaw, copyeditor extraordinaire.

A special note of thanks to Andy Richter of Intelligence At Large.
Andy was a critical factor in making the code both clean and exciting.
Thanks, Andy!

Thanks to Jim Reekes, Richard Clark, and Phil Shapiro for much-
needed technical support. These guys kept us from going down for the
compatibility count.

Finally, thanks to Apple and Symantec, whose products are the
finest in the land.

Introduction

The Macintosh Programming Primer
is a complete course in the art of
Macintosh programming. With this

book and Symantec’s THINK C, you
can learn to program the Macintosh.

No OTHER COMPUTER is like the Macintosh. Some computers look like
it, others claim they work like it, but the Mac remains unique. Writing
programs for the Macintosh is also a unique process, and the
Macintosh Programming Primer is the shortest, best path toward
becoming a good Mac programmer.

At the heart of the Macintosh is the Toolbox, a collection of over
1,400 procedures and functions that give you access to the Macintosh
environment. The Mac Primer will teach you how to use the Toolbox;
that is, how to add the power of pull-down menus, windows, and scroll
bars to your programs.

This book serves as a bridge to the Macintosh way of programming.
If you can’t wait to code, and you've already installed THINK C on
your hard drive, skip to the beginning of Chapter 3 to get started on
your first Macintosh application. If you have the time, though, keep
right on reading.

If you've read the first edition of the Macintosh Programming
Primer, welcome back! One of the most important changes you'll find
in this edition is the comprehensive coverage of System 7, Apple’s
exciting new operating system. All of the sample programs presented
in this book were written with System 7 in mind. You'll learn how to
send and receive Apple events, record and play sounds, use the
Notification Manager, and much more. With the Mac Primer in hand,
you’'ll be able to add System 7 savvy to your own applications.

If you're new to Macintosh programming, and wonder what “Apple
events” are, or what the “Notification Manager” is, the Mac Primer is
the perfect place to start. By way of concise source code examples,
you’ll quickly master the basics and the newest aspects of the
Macintosh operating system. The concepts in this book are presented
side by side with a complete set of source code examples. We don’t skip
the basics in bringing you up to speed.

The Macintosh Way

Nowadays, the Macintosh line is successful, highly praised, emulated,
and affordable. From the PowerBooks to the high-powered Quadra
workstation, the Macintosh is on everyone’s A-list. When the first
Macintosh was introduced in 1984, however, people were perplexed: It
was like no computer they had ever seen—a beige box with a little
screen and a mouse. People called the Macintosh a toy because it had
a graphical user interface, and pictures were not the way normal
computers communicated.

Macintosh C Programming Primer

We've come a long way since the ’80s. Microsoft, Hewlett-Packard,
and finally IBM have made their way to Apple’s door. Graphical User
Interfaces (GUIs) are a dime a dozen, mice are legion, and hardware
standards espoused by Apple, such as NuBus and SCSI (Small
Computer Systems Interface) have propagated throughout the indus-
try. Apple naysayers have disappeared, replaced by company reps who
claim their computers work “just like a Mac.” They might be right, if
the Mac were just another pretty interface.

The Mac’s elegance, ease of use, and power stem from a combina-
tion of interface, Toolbox, and resources.

* The Macintosh interface. Anyone who’s ever used a Macintosh is
familiar with the Mac interface. Pull-down menus, movable win-
dows, scroll bars, and graphics all combine to make the Macintosh
one of the friendliest computers ever designed.

* The Toolbox. Comprehensive routines were defined in the
Macintosh ROM that drove the interface and allowed software
designers to write powerful, easy-to-use applications. Whether
you're building a Sanskrit word processor, or just need to find out
what time zone you're in, the Mac Toolbox designers have prepared
the path for you.

* The use of resources. The building blocks for all software on the
Macintosh, resources store program information in a series of
templates in the program file, simplifying the creation and modifi-
cation of Mac programs.

These three ingredients—interface, Toolbox, and resources—com-
bine to make the Macintosh the most versatile computer ever made.
Advanced capabilities, such as recording and playing back video (a
kind of “MacTV”), virtual memory, and personal file-sharing are not
only featured in the new Macs of the ’90s, but are also available in
Macs made almost a decade ago by installing new versions of the
Macintosh operating system. The careful planning that went into the
original Mac has paid off handsomely, as the Mac line continues to
evolve and improve.

To write successful applications for the Macintosh, the would-be
Mac programmer must understand how the interface, the Toolbox, and
resources work together. First, let’s look at the most visible of the
three: the Macintosh user interface.

Introduction

The Macintosh Graphical User Interface

The Macintosh makes a great first impression on new users with its
sophisticated user interface. Figure 1.1 shows some of the distinctive
elements of the Mac “look.” Because neophytes understand and use
the windows and menus of Mac applications intuitively, the Macintosh
interface represents an impressive improvement over both “command-
based” interfaces, such as MS-DOS, and windowed interfaces, such as
Microsoft Windows, which is built on top of MS-DOS. Each element of
the interface—windows, menus, dialog boxes, and icons—has a specific
function associated with it, and extensive guidelines exist for the
proper use of each element. With the implementation of System 7, the
interface became more visually exciting, with brightly colored icons
and friendly balloons of text that appear when you click the mouse on
something you want to know about.

Of course, pretty pictures aren’t enough. The beauty of the Mac
interface lies in how it is created. Each part of the interface is
manipulated by a series of routines in the Macintosh ROM. For
example, you can create an application’s window with one call to the
Macintosh ROM.

The routines that underlie the interface—that build windows,
control printing, and draw menus—are known collectively as the
Macintosh Toolbox.

=
L3

File Edit Uiew 1[abe! EYEE]
Ualhalla Clean Up Window

Heatly arranges the icons
in the active window.

4 items 155.5 M8 in disk
it

Ejeet Disk
Erase fisk...

Tip: for other cleanup
commands , hold down the
Applications Shift or Option key while

choosing this command.

Restart
Shut Down

Utilities
" INTEROFFICE MEMO
Development
L Interoffice Memo
Siater Fokdse i To: Bill]. Craig, V.P. R&D
k | From: Jill Dickson, V.P. Marketing
G m_ Re: Product Launch

January 20/ gjyy.
Sun MonTue WedTh
L |2 | [* | Justa note to let you now that we've completed the

7 |8 |9 [0 |11] marketing plans for our three new product lines. Jim in
graphics has done some logos and t-shirts.

17

Since we've announced a shipping date in January
think you could start hiring some programmers?

Figure 1.1 The Macintosh desktop (circa 1992).

Macintosh C Programming Primer

The Macintosh Toolbox

The Toolbox can be thought of as a series of libraries that make it easy
for you to create the features indigenous to Macintosh applications.
For example, the Macintosh Toolbox routine GetNewWindow {) creates
a new window for use in your application.

Using Toolbox calls to create your applications gives the results a
distinctive Macintosh look and feel. Operations common to most appli-
cations, such as cutting, copying, and pasting, are always handled in
the same way, which makes it easier to learn a new application.

The Toolbox routines are grouped functionally into Managers, each
of which is responsible for one part of the Macintosh environment
(Figure 1.2).

The Macintosh Toolbox undergoes constant updating and modifica-
tion; each new system revision gives you some shiny new tools as well
as the old standbys to work with. As new routines are added to the
Toolbox, Apple cleans up problems with older routines.

This brings us to System 7.

Apple has provided new Toolbox calls that revolutionize the pro-
grammer’s ability to control text, audio, animation, and even real-time
video on the Mac screen. These functions can all be incorporated into
your program with just a few lines of code. At the same time, lower-
level routines allow you to fine-tune any of these new features. Later
in the book, we’ll talk more about the revolution in Mac programming
these new system tools provide.

The Macintosh graphic interface and the Toolbox are two of the
features that make the Mac unique. A third is the concept of
resources.

Sound Notification Printing
Manager Manager Manager
Dialog Menu Window Font
Manager Manager Manager Manager
Control I Resource I . I Toolbox .
Manager Manager QuickDraw Utilities
Scrap Event File
Manager Manager Manager

Figure 1.2 Parts of the Toolbox.

Introduction

Although the Macintosh line has expanded greatly, the basic
compatibility of the different Macintosh models has been preserved.
Yet, more powerful machines always provide more choices—and
more decisions. When the only available Mac workstations were the
Macintosh and the Mac Plus, software developers thought they had
a certain flexibility in the way they followed the Mac programming
guidelines provided by Apple. Now, in the midst of portables,
workstations, and midline Mac CPUs that have widely differing
capabilities, the successful developer hews closely to the Macintosh
standards. '

Resources

If the Toolbox is the library of routines that make up the Macintosh
interface, resources are the data your program uses to execute these
library calls. GetNewWindow (), the Toolbox call that creates a new
window, requires you to specify window parameters, such as size,
location, and window type. To do this, you create a resource containing
that information, passing the resource to GetNewWindow().
GetNewWindow () uses the resource information to build the
requested window.

Resources come in various types, each relating to a particular
element of the Macintosh interface. For example, a resource of type
WIND contains all the information necessary to build a window. There
may be a number of resources of type winD, but there is only one winp
type, which is identical for all Mac applications.

Resources are integrated into the design of the Macintosh. Each Mac
application file may possess dozens of resources. This simplifies many
of the tasks of the applications programmer. For example, resources
make it easy to localize a program for a different area. If you want to
sell your program in France, say, it is relatively easy to replace
resources containing English text with their French equivalents.

Resources are also essential in developing the complex code that
drives the Macintosh interface and hardware. Because they can easily
be copied from one program to another, menus and dialog boxes need
not be created more than once. After you have built up a collection of
programs, creating new ones may begin with a cut-and-paste session
with your existing programs.

To edit resources, Apple developed a program called ResEdit,
which allows you to edit any of the resources in Maciniosh Primer
programs. You can also use ResEdit to explore other Macintosh appli-
cations—even system files! Because these resources exist as part of
the completed application, they can be edited without recompilation.

Macintosh C Programming Primer

We make extensive use of version 2 of ResEdit throughout the
Mac Primer, and describe the new resources required for successful
System 7 programming. Even if you've never worked with ResEdit,
you'll find the instructions in the Macintosh Primer complete and easy
to follow.

The Macintosh interface, Toolbox, and resources are the three
intertwined subjects we’ll cover using THINK C and ResEdit to create
standalone Macintosh applications. The next sections discuss our
approach to learning about these issues.

About the Book

Most Macintosh reference books, such as Inside Macintosh and
Macintosh Revealed, are excellent texts for those who already under-
stand Macintosh programming. They can be frustrating, however, if
you're new to the Macintosh programming world. The Mac Primer
bridges the gap for those of you who are just learning the basics of Mac
programming.

Our aim is to help you write properly structured Mac applications.
If you're used to programming on an MS-DOS computer or a UNIX
system, the Mac Primer is the perfect place to start your Mac pro-
gramming education. Our formative years were spent programming
under UNIX on machines like the PDP-11 and the VAX-11/780; we’ve
also spent a lot of time with IBM PCs and compatibles. We wrote the
Macintosh Programming Primer with you in mind.

If you’ve programmed on the Macintosh before, but haven’t checked
out System 7, you'll find a lot of solid code in the Primer that
should help you implement new System 7-friendly versions of your
applications.

What You Need to Know

There are only two prerequisites for reading this book. Before starting
the Macintosh Primer, you should already have basic Mac experience:
You should be able to run Macintosh applications and have a good feel
for the Mac user interface. In addition, you should have some experi-
ence with a programming language, such as C, Pascal, or BASIC. If
you have no programming experience, or if your computer language
skills are rusty, get a book on the C language to supplement this book.
Learn C on the Macintosh by Dave Mark is designed for this purpose
and comes with a custom version of the THINK C language on disk.
The Macintosh C Programming Primer examples are all written in
C, using the THINK C development environment. Our general

Introduction

9

approach, however, emphasizes the techniques involved in program-
ming with the Mac Toolbox. The skills you learn will serve you no
matter what programming language or environment you intend to use
in the future.

Why We Chose THINK C

Many development environments are available to the Mac program-
mer. The Macintosh Programmer’s Workshop (MPW) is a
complex and powerful development system written and marketed by
Apple. Most of Apple’s internal development is done with MPW, and
many of the large Macintosh software development houses have made
MPW their first choice. MPW uses an “everything but the kitchen
sink” approach to software development. The basic system consists of
an editor shell that allows you to edit your source code as well as build
and execute complex command scripts. You can do just about anything
in MPW, but it is definitely not a system for beginners. In addition to
learning the editor and shell, you have to install, configure, and (oh,
yes) pay for your choice of compilers. You can buy C, Pascal, and even
FORTRAN compilers for MPW. MPW is ideal for complex,
multilanguage development efforts, but not for learning to program
the Macintosh.

THINK C is a powerful and friendly development environment. It
has concise, accurate documentation. For those inevitable bugs, it has
the best debugging utilities on the market. It also has excellent
support for programmers who write exclusively for System 7.

Finally, THINK C is still reasonably priced (Figure 1.3).

80 Lunches

30 Lunches

THINK Macintosh
Cc Programmer's
Workshop (MPW)

Figure 1.3 Lunch economics.

10

Macintosh C Programming Primer

Using THINK C

THINK C is an integrated development environment. The source code
editor follows all the standard Macintosh conventions and is very easy
to use. The compiler is smart: It keeps track of the files you’re cur-
rently working with, noting which have been changed since they were
last compiled. THINK C recompiles only what it needs to.

THINK C has a well-thought-out Macintosh interface. For example,
to build a standalone application, pull down the Project menu and
select Build Application. Installation is simple: Just pull the floppies
out of the box, copy the files onto your hard drive, and go!

THINK C also comes with integrated debugging utilities that allow
you to test-drive your program while monitoring its progress in other
windows. The debugging utilities also work with other Macintosh
debugging tools, such as MacsBug and TMON.

Inside THINK C

The project file is unique to Symantec’s C and Pascal development
environments. It contains the names of all of your source code files, as
well as the name you’'ll eventually give to your application. The project
file also contains compilation information about each source file, such
as the size of the compiled code (Figure 1.4).

THINK C comes with class libraries similar to MacApp, Apple’s
ready-made library of user interface routines. THINK C debugging
facilities are without peer. You can use THINK C to write programs
that will take full advantage of the most advanced features of the Mac
OS. All of these features are supported in the way Apple intended.
THINK C also provides routines to support extensions to Apple’s
HyperCard, or Silicon Beach’s SuperCard.

WorldClock.m
Name obj size
MacTraps ' 8342 |{>
éwormmock-c 1642 | |

<]

Figure 1.4 Think C Project Window.

Introduction

11

THINK C also comes with a full complement of utilities, including
ResEdit, the resource editor mentioned earlier, and useful code on
various types of Mac projects, including text editors, control panel
devices (cdevs), and desk accessories.

Writing Macintosh Applications

Most Macintosh applications share a basic structure (Figure 1.5). They
start off by initializing the Toolbox data structures and routines that
support the Macintosh user interface. Then the application enters an
event loop and patiently waits for the user to do something—hit a key,
move the mouse, or some other action. Events outside the application
are also checked: Desk accessories may be used, or disks may be
inserted. No matter how complex the Macintosh program, this simple
structure is maintained.

At the heart of the Macintosh Programming Primer is a set of
seventeen sample applications. Each builds on the basic program
structure to provide successively more sophisticated use of the

Initialize
Toolbox
Retrieve
Event
Process
Event

Quit
Selected p.

Exit
Application

Figure 1.5 How a Macintosh application works.

12

Macintosh C Programming Primer

Macintosh Toolbox. Each new chapter constructs a more powerful
implementation of the basic program structure. Chapter 3 programs
show how to create windows and draw inside them. Chapter 4 illus-
trates how to handle events (including Apple events). Chapter 5
implements menus, and Chapter 6 makes use of dialogs. Chapter 7
presents a potpourri of Macintosh applications, each designed to
showcase a different part of the Macintosh Toolbox.

Each Mac Primer example program is presented as completely as
possible, and each program listing is discussed extensively. Nothing is
left as an “exercise for the reader.” Each chapter contains complete
instructions and figures for entering, compiling, and running the
programs using THINK C.

Chapter Synopses

The Macintosh Primer is made up of nine chapters and seven
appendices. This introductory chapter provides an overview and starts
you on your way. Chapter 2 starts by stepping through the installation
of THINK C and ResEdit. Then THINK C basics are introduced. We
present the standard C approach to the classic Hello, World program
(Figure 1.6), and discuss drawbacks. We then go on to illustrate the
programming conventions we’ll use in the Primer.

press «returny to exit

e
il

Hello, world!|

Figure 1.6 Hello, World.

Introduction

13

Chapter 3 starts with an introduction to the fundamentals of
drawing on the Macintosh using QuickDraw. The Window Manager
and windows are discussed. We then introduce resources and the
Resource Manager.

QuickDraw, the Window Manager, and resources are closely
related. Windows are drawn using QUICkDfaW commands from
mformatson stored in resource files.

Four programs are introduced in Chapter 3. The Hello2 program
introduces some of the QuickDraw drawing routines related to text;
the Mondrian program (Figure 1.7) demonstrates QuickDraw shape-
drawing routines. ShowPICT (Figure 1.8) illustrates how easy it is to
copy a picture from a program like MacDraw or MacPaint into a
resource file, then draw the picture in a window of your own. Finally,
as a bonus for completing the first three programs, you can try the
FlyingLine (Figure 1.9), an intriguing program that can be used as a
screen saver.

Mondrian

Figure 1.7 Mondrian.

14

Macintosh C Programming Primer

ShowPICT

Figure 1.8 ShowPICT.

Chapter 4 introduces one of the most important concepts in
Macintosh programming: events. Events are the Mac’s mechanism for
describing the user’s actions to your application. When the mouse
button is clicked, a key is pressed, or a disk is inserted into the floppy
drive, the operating system lets your program know by queueing an
event. The event architecture can be found in almost every Macintosh

Figure 1.9 FlyingLine.

Introduction

15

application written. This chapter presents the architecture of the main
event loop and shows how events should be handled. EventTracker,
Chapter 4’s first program (Figure 1.10), provides a working model of
the event architecture. It also demonstrates how to receive Apple
events from other applications. Updater, the second program,
demonstrates the proper way to handle update events in windows
(Figure 1.11). The final Chapter 4 program, EventTrigger, demon-
strates how to send Apple events to other applications (Figure 1.12).

Chapter 5 shows you how to add the classic pull-down, hierarchical,
and pop-up menus to your own programs. Chapter 5's program,
WorldClock (Figure 1.13), uses all three kinds of menus.

Chapter 6 introduces dialogs and alerts. Dialog boxes are another
intrinsic part of the Macintosh user interface. They provide a vehicle
for customizing your applications as you use them. Alerts are simpli-
fied dialogs, used to report errors and give warnings to the user.

The Reminder program in Chapter 6 (Figure 1.14) uses dialogs,
alerts, and the Notification Manager to allow you to set an alarm. The
application then starts a countdown and notifies you when it goes
off—even if you're running another application.

S====— 05 Fvents ===
activateEvt

High Level Event: Apple event: Open Application
updateEvt

keyDown

keyDown

keyDown

autoKey

autoKey

autoKey

rouseDown

mousellp

mouseDown

mouselp

mouseDown

rmouselp

osEvt: Suspend event
osEvt: Resume event
mousellp

osEvt: Suspend event
osEvt: Resume event
keyDown

keyDown

osEvt: Suspend event
osEvt: Resume event
updateEvt
mouseDown

Figure 1.10 EventTracker.

Macintosh C Programming Primer

Figure 1.11 Updater.

S[[== 0S Events

activateEvt

High Level Event: Apple event:Open Application
updateEvt

mouselown

mouselp

mouseDown

mouselp

keyDown

keyDown

autoKey

osEvt: Suspend event

osEvt: Resume event

keyDown

osEvt: Suspend event

osEvt: Resume event

mouseDown

mousellp

mouseDown

mousellp

osEvt: Suspend event

osEvt: Resume event

High Level Event: Apple event:Open Application
High Level Event: Apple event:Open Document < These events were

High Level Event: Apple event:Print Document caused by EventTrigger.
High Level Event: Apple event:Quit Application

Figure 1.12 EventTrigger sends events to EventTracker.

17

Introduction

Special

(T I 4+ Plain
Bold
lialic

Underline
(0lujtilliinle]

ﬁ]l!l

= WorldCloc ==
:30:25 AM

Time Zone: | Moscow v |

Figure 1.13 WorldClock.

" N File tdit

Zounds!!! It's time...

Figure 1.14 Reminder.

18

Macintosh C Programming Primer

Chapter 7, the final programming chapter, contains a potpourri of
programs illustrating concepts, such as error-checking, memory
management, printing, recording and generating sound, adding scroll
bars to windows, and file management. Each program explores a
single topic and provides a working example of reusable code.

Chapter 8 will teach you how to add a custom icon to your applica-
tion. Then, you'll learn how to create files that will automatically
launch your application when they’re clicked on.

After you have a handle on the essentials of Macintosh program-
ming, what’s next? Chapter 9 talks about some of the tools available to
help you with your development efforts. It looks at Inside Macintosh
and some of the other Mac technical documentation, such as the Apple
Event Registry and other new technical documentation on System 7. It
also looks at software tools, from compilers to debuggers, as well as
Apple’s Developer Program and other Macintosh technical resources.

Appendix A is a glossary of the technical terms used in the
Macintosh Primer.

Appendix B contains a complete listing of each of the Mac Primer
applications, presented in the same order in which they appear in the
book.

Appendix C contains a THINK C command summary. Each THINK
C menu item is introduced, along with any accompanying dialog boxes
and alerts. We also discuss some of the changes in version 5 of
THINK C.

Appendix D summarizes the THINK C debugger. The operation of
the debugger is discussed, and each menu item and window is detailed.

Appendix E covers some debugging techniques that may be helpful
in the THINK C environment.

Appendix F contains a short discussion of HyperCard 2.1 XCMDs,
along with a sample XCMD written in THINK C.

'f-..Fer non~HyperCard aficionados, XCMDs are procedures written in
~ C or Pascal that can be called from within HyperCard. XCMDs allow
- you to go beyond the limits of HyperCard, perfermmg functions not
normal ,hvailable from within HyperCard.

Appendix G is a bibliography of Macintosh programming references.
Appendix H features The New Inside Macintosh series coming soon
from Addison-Wesley Publishing Company.

How to Use This Book

Each Macintosh Primer chapter is made up of the main text and tech
blocks. The main text is the narrative portion of the book. Read this
first. It contains the information you need to input and run the
example programs. Because we've placed a premium on getting you
going immediately, we have you run the program before discussing
how the code works. Impatient programmers are invited to go directly
to Appendix B, which contains listings of all the programs discussed in
the book. If you have questions after typing in the programs, refer to
the chapter in which the program is discussed. If you prefer a more
sedate pace, read a chapter at a time, type in the programs, and test
them as you go.

At some points, we expand on the narrative with a tech block,
indicated by a distinctive gray background. It’s OK to ignore them
during your first read-through. An icon at the left of a tech block tells
you what the tech block subject matter is. For example:

Sometimes System 7 provides a way of doing things that is
incompatible with earlier systems. This kind of tech block shows you
how to handle these incompatibilities.

This kind of tech block continues the current issue being discussed
at a deeper, more bit-twiddly level. Such tech blocks can be passed
by in your first reading.

This kind of tech block gives historical perspective to why a certain
feature is the way it is, or discusses the way earlier versions of the
Mac OS handled specific situations. Forward-looking, healthy-
minded individuals unconcerned \mth the past can sklp these tech
blocks. *

This final kind of tech block contains a warning about a technigue or
coding situation where novice Mac programmers may go astray.
Read these carefully. _

19

20

Macintosh C Programming Primer

Several important terms and conventions are used throughout the
Macintosh Primer. Whenever you see a notation like this:

(VI:256-272)

it refers to a volume of Inside Macintosh and a set of pages within that
volume. The example here refers to Volume VI, pages 256 to 272.
References to Tech Notes, documentation from Apple’s Macintosh
Developers Technical Support Group, are annotated like this: (TN:78)
(referring to Tech Note 78). (See Chapter 9 to find out how to get Tech
Notes.) These references to Inside Macintosh and Tech Notes are
intended to help readers who are interested in a further discussion of
a topic.
All of our source code is presented in a special font. For example:

i = 0;
MakeItSo ()

Toolbox routines and C functions are also in the code font when
they are described in the text. Menu titles, menu items, and
dialog items appear in the book in Chicago font just as they do on
the screen.

Finally, boldface is used to point out the first occurrence of
important new terms.

What You Need to Get Started

First, you'll need THINK C from Symantec. The examples from the
book use version 5. You'll also need a Toolbox reference manual.
Apple’s Inside Macintosh series is the authoritative reference on
Macintosh software development. We suggest you purchase Volumes I,
V, and VI of Inside Mac. Volume I contains a description of a majority
of the Toolbox routines used in this book. Volume V contains color
QuickDraw information that also affects the Window and Menu
Managers. Volume VI is your authoritative reference to System 7.

Buy Volumes LV, and VI with your lunch money. Buy Volumes II
through IV with somebody else’s lunch money. _

Those of you who have been getting by with your 1 megabyte floppy-
based Mac Plus should grit your teeth and fork over the cash for some
memory and a hard drive. This book assumes you’ll be using System 7
with THINK C: you'll need (at least!) a Mac Plus or Classic with 2
megabytes of RAM and a few megabytes of space on a hard drive.

Introduction

21

This book uses THINK C version 5. Get this version. Version 4 of
THINK C works somewhat differently than version 5 and, more
importantly, doesn’t work as well with System 7. If you're not sure
how to put THINK C on your Mac’s hard drive, read Chapter 2 for the
installation procedure.

Finally, use the latest system files with Mac Primer programs. We
will be working with System 7 throughout the book, although we will
occasionally discuss possible code workarounds for computers still
using System 6. Since Apple no longer supports System 6 for its new
Macs, you should get on the stick and upgrade if you plan to do
development work. Certainly, don’t use any systemn software older
than version 6.07.

and the 128K Macs. Since these models are museum pieces, you
probably don't have fo worry about suppomng them when WF“FQ
] t

Macintoshes out there, in any case. . !< |

Ready, Set ...

When you finish this book, you'll be able to create your own Macintosh
applications.

Get all your equipment together, take the phone off the hook, and
fire up your Mac.

Go!

Setting Up

This chapter introduces you to the
software tools used in this book. It also
examines some issues that are specific
to the implementation of C on the
Macintosh.

THINK C Is THE programming environment we’ll use throughout the
Macintosh Primer. First, we’ll show you how to install it. Then, we’ll
look at how to type in and run a sample program. We'll talk about the
programming conventions used in this book and some of the rules you
need to follow when using the Mac and THINK C together.

If you've already installed THINK C on your Mac, skip to the next
section of this chapter.

Installing THINK C 5

Before you copy THINK C onto your hard drive, there are a few
preparations you'll need to make. For starters, make backup copies of
the four floppy disks that came with your copy of THINK C. Tuck your
original disks back into the box and use the backup floppies for the
actual installation.

Next, delete any old versions of THINK C you might have on your
hard drive. Make sure you don’t delete any of your source code or
project files. You may want to place these in an out-of-the-way folder.
Once you've installed the new version of THINK C, you can move your
source code files back into place.

Now, create a folder named Development at the top level of your
hard drive. This folder will contain all of your source code, as well as
all of the files that make up THINK C.

Finally, make sure you have at least 5 megabytes (5Mb) of free
space on your hard drive. Once you've freed up enough space on your
hard drive, you're ready to go.

I you don't have 5Mb available on your hard drive, don't panic. The
instructions in this chapter show you how to install the seven pieces
that make up the full THINK C development environment. Page 22
of the THINK C User Manual tells you what's in each of the. seven
pieces, so you can leave out pieces you may not need right away. If
there’s any way you can come up with the 5Mb, though, install the
whole shebang.

Insert the disk labeled THINK C Disk 2 into your floppy disk drive.
A window similar to the one shown in Figure 2.1 should appear. Each
of the three files shown in Figure 2.1 is known as a self-extracting
archive.

25

26

Macintosh C Programming Primer

An archive is a file containing other files, but in a compressed
format. A self-extracting archive is an archive that knows how to
convert the archived files from their compressed format back into

- their normal format. Self-extracting archives are what enable 5Mb of

THINK C to fit onto four 800K floppy disks.

[THINK C 2 EE‘
@ 3 items 626K in disk 159K available
[s _7 _ﬁ_
= l
Headers & Libs.sea THINK C 5.0 Demos.sea
% _*
8,
D& fedev Tools.sea]
k%
@l ||

Figure 2.1 THINK C Disk 2.

Double-click on the self-extracting archive labeled Headers =&
Libs.sea. A dialog box similar to the one in Figure 2.2 will appear.
The dialog is asking you where you'd like to place the files extracted
from the archive. Use the normal Macintosh file-navigation techniques
to guide the dialog box inside your newly created Development folder.
Make sure the name Development appears in the pop-up menu at the
top of the dialog box, as it does in Figure 2.2.

Once inside the Development folder, press the Edtract button. An
AutoExtractor window will appear, telling you how many files remain
to be extracted (Figure 2.3). Once all of the files in the archive are
extracted, move on to the next archive.

Double-click on the self-extracting archive labeled THINK C 5.0
Demos.sea. Again, a dialog box similar to the one in Figure 2.2 will
appear. Just as you did before, guide the dialog into the Development
folder, making sure the name Development appears in the pop-up
menu toward the top of the dialog box. Now click the Extract button.
An AutoExtractor window will appear. Once all the files from THINK
C 5.0 Demos.sea are extracted, the window will disappear.

Repeat this process to extract all of the files from the third self-
extracting archive on this disk, DA/cdev Tools.sea.

Setting Up 27

Select Destination Folder:
&3 Development v

G| = Hard Drive

Desktop

Figure 2.2 Click the Extract button to save the compressed files in the
Development folder.

AutoExtractor™ =i
Extracting: console.c
I]
Files remaining to be extracted: 149
Compacted by Compact Pro™ AutoExtractor © 1991 Bill Goodman

Figure 2.8 A self-extracting archive in action.

Eject the disk labeled THINK C Disk 2, and place the floppy labeled
THINK C Disk 3 into the floppy drive. A window similar to the one
shown in Figure 2.4 should appear. The window contains two self-
extracting archives. First, double-click on the archive named THINK
Class Library 1.1.sea. When the familiar dialog box appears,
move into the Development folder and press the Extract button.

Once the files are extracted from THINK Class Library 1.1.sea,
double-click on the archive named TCL 1.1 Demos.sea. When the
dialog box appears, move into the Development folder and press the
Extract button.

Once the files are extracted from TCL 1.1 Demos.sea, gject the
disk labeled THINK C Disk 3, and place the floppy labeled THINK C
Disk 4 into the floppy drive. A window similar to the one shown
in Figure 2.5 should appear. The window contains two self-extracting

28

Macintosh C Programming Primer

archives. Double-click on the archive named Resource
Utilities.sea. When the dialog box appears, move into the
Development folder and press the Extract button.

Once the files are extracted from Resource Utilities.sea,
double-click on the archive named THINK C Utilities.sea. When the
dialog box appears, move into the Development folder and press the
Exttract button. OK, one more disk to go!

Eject the disk labeled THINK C Disk 4, and place the floppy labeled
THINK C Disk 1 into the floppy drive. A window similar to the one
shown in Figure 2.6 should appear. Drag the files THINK C 5.0 and
THINK C Debugger 5.0 into the THINK C 5.0 Folder located inside
the Development folder.

That’s it! Congratulations, you've just completed the grueling
THINK C 5 installation process.

=0 THINK C 3 =—=FF
@ 2items 610K in disk 175K
» N ﬁ

]

L3
THINK Class Library 1.1.sea

¥
4,
TCL 1.1 Demos.sea
Y
<] |2l

Figure 2.4 THINK C Disk 3.

S THINKC 4 =———0TF
@ 2items 753K in disk 33K available
% _¥ "3 uts
- =
Resource Utilities.sea THINK C Utilities.sea
O
@l [

Figure 2.5 THINK C Disk 4.

Setting Up

29
S[I==——= THINK C 1 %Bél
& 4 items 600K in disk 185K awvailable
i i
THINK C 5.0 THINK C Debugger S.0

READ ME Installing THINK C

«l =

Z[<]

Figure 2.6 THINK C Disk 1.

]]

These mstructtons Were spec_lcall desugned to heip you mﬁtall;
'THINK C 5. If you are installing anything other than THINK C 5 P

read the mstructlons ms:de._ ur THINKGUser Manuat el [

Accessing the Toolbox with C

Built into every Macintosh, regardless of model, is a set of more than
1,400 routines, collectively known as the Mac Toolbox. These include
routines for drawing windows on the screen, routines for handling
menus, even routines for changing the date on the real-time clock built
into the Mac. The existence of these routines helps explain the
consistency of the Mac user interface. Everyone uses these routines.
When you pull down a menu in Claris MacDraw, youre calling a
Toolbox routine. When you pull down a menu in Deneba’s Canvas,
you're calling the same routine. That's why the menus look alike from
application to application, which has a rather soothing effect on users.
This same principle applies to scroll bars, windows, lists, dialog boxes,
alerts, and so on.

If you look at Toolbox calls in the pages of Inside Macintosh, you'll
notice that the calling sequences and example code presented in each

30

Macintosh C Programming Primer

chapter are written in Pascal. For instance, the calling sequence for
the function GetNewWindow () (I:283) is listed as:

FUNCTION GetNewWindow (windowID: INTEGER; wStorage: Ptr;
behind: WindowPtr) : WindowPtr;

Each calling sequence starts with either the word FUNCTION or the
word PROCEDURE. FUNCTIONSs return values; PROCEDUREs don’t. In the
example, the function GetNewWindow () returns a value of type
WindowPtr. Here’s an example of a call to GetNewWindow () from
within a program:

WindowPtr myNewWindow, myOldWindow;
Ptr myStorage = nil;
int myWindowID = 400;

myNewWindow = GetNewWindow(myWindowID, myStorage,
myOldWindow);

In the Pascal calling sequence, the function GetNewWindow ()
returns a value of type WindowPtr. In our code, we receive the value
returned by GetNewWindow () in the variable myNewWindow, which is
declared as a WindowPtr. Most of the data types found in Inside
Macintosh are automatically available to you in THINK C. (If you're
feeling adventurous, check out the folder Mac #includes inside the
THINK C 5.0 Folder, where all of these types are defined.) The
exceptions are summarized in the following table:

Pascal Data Type C Equivalent
INTEGER short
LONGINT long

CHAR short
BOOLEAN Boolean

For example, the Pascal BOOLEAN data type corresponds to the
THINK C data type Boolean. The Pascal calling sequence for the
Button () function can be found on (1:259):

FUNCTION Button : BOOLEAN;

Here’s an example of a call to Button () in C:
Boolean isButton;
isButton = Button();

if (isButton == TRUE)
SysBeep(20);

Setting Up

31

Although Pascal is not case-sensitive, C is: Boolean and BOOLEAN
are different. THINK C provides this Pascal type as a convenience to
the programmer. Even though Button () has no parameters, you
must use the parentheses. If you forget them, your program won’t
compile correctly.

You can also pass literals directly as parameters. For example, our
call to GetNewWindow () can be rewritten as:

WindowPtr newWindow, oldWindow;
myNewWindow = GetNewWindow(400, nil, oldWindow);

This code will work fine. Passing literals as parameters, however,
doesn’t necessarily make for readable code. At the very least, we
suggest limiting your literal parameters to #defined constants. This
brings up the next topic.

#include, #define, and extern statements

The #include statement tells the C compiler to substitute the source
code in the specified file in place of the #include statement. Here’s an
example:

#include "BigFile.h"

The #define statement tells the C compiler to substitute the
second argument for the first argument throughout the rest of the
source code file. For example:

#define MAXFILES 20

Most C compilers use two passes to compile source code. During the
first pass through a source code file, the compiler pulls in #include
files and performs all #define substitutions. The actual compilation
occurs during the second pass through the source code.

extern is a C key word used in variable and procedure declara-
tions. Here’s an example of an extern variable declaration:

extern Boolean done;

This extern declaration doesn’t cause any space to be allocated for
the variable done. Instead, references to done inside the extern
declaration’s file are replaced with pointers to the “real” declaration of

done:

Boolean done;

32

Macintosh C Programming Primer

The absence of the extern keyword tells the compiler to allocate
space for the variable and tie all the extern references to the variable
to this allocated space. In the code of this book, each program keeps its
source code in a single file, so extern is not used. Once your programs
reach a certain size, you'll want to break your source into multiple files
(for example, the WorldClock program in Chapter 5 could easily be
broken down into three or four files).

C and Pascal Strings

C and Pascal use different techniques to implement their basic string
data types. Pascal strings start with a single byte, called the length
byte, which determines the length of the string. For example, in
Pascal, the string "Hello, world!" would be stored as a single byte
with the value 13, followed by the 13 bytes containing the string:

13|H|e]l1|1]o], Wlolr|i1}jd]!

The C version of this string starts with the 13 bytes containing the
string and is terminated with a single byte with the value 0:

Hle|ll]1]o], Wlolr]1]dl!]O

The Macintosh Toolbox uses Pascal strings, embodied by the
Str255 data type. Since 1 byte can only hold values from 0 to 255,
Pascal strings can be at most 255 bytes in length (not counting the
length byte).

Using Pascal strings in THINK C is easy. The THINK C compiler
will automatically convert C strings that start with the characters
"\p" to Pascal format. Consider the calling sequence for the Toolbox
routine DrawString () (1:172):

PROCEDURE DrawString(s: Str255);

You can call brawString () in C like this:

DrawString("\pHello, world!");

You can also use the two routines CToPstr() and PtoCstr() to

translate between C and Pascal formats. These routines are provided
as part of THINK C. They are not part of the Macintosh Toolbox.

Setting Up 33

Passing Parameters: When to Use the &

Here are the rules to guide your use of the & operator in Toolbox calls:
1. If a parameter is declared as a VAR parameter in the Pascal
calling sequence, precede it by an &. Here’s the Pascal calling

sequence for GetFNum () (1:223):

PROCEDURE GetFNum(fontName: Str255; VAR theNum:
INTEGER) ;

Here'’s a C code fragment that calls Get FNum () :

short myFontNumber;

GetFNum("\pGeneva", &myFontNumber);

2. If the parameter is bigger than 4 bytes (as is the case with most
Pascal and C data structures), precede it by an & whether or not it
is declared as a VAR parameter. Here’s the Pascal calling sequence

for UnionRect () (I:175):

PROCEDURE UnionRect (srcl, src2: Rect; VAR dstRect:
Rect });

Here’s a C fragment that calls UnionRect () :

Rect srcl, src2, dstRect;

+ / assign values to srcl and src2 */

UnionRect (&srcl, &src2, &dstRect):;

 If you're wondering where Rect came from, it's one of the data
structures defined in Inside Macmtosh (I:141). A Rect ho!ds the
upper left and lower right points of a rectangie Welll see rnore QI‘

- these “predefined” Mac data s‘tructures later it gl ,:

34

Macintosh C Programming Primer

3. If the parameter is 4 bytes or smaller and is not declared as a
VAR parameter, pass it without the &. This rule applies even if the
parameter is a struct. This is the Pascal declaration of the routine
PtToAngle () (I:175):

PROCEDURE PtToAngle(r: Rect; pt: Point; VAR angle:
INTEGER) ;

Here’s a C fragment that calls Pt ToAngle ():

Rect r;
Point pt:
short angle;

+ /* assign values to r and pt */

PtToAngle(&r, pt, &angle);

Notice that pt was passed without a leading &. This is because
Points are only 4 bytes in size. Most of the predefined Mac types
are larger than 4 bytes. Point is one of the few exceptions.

4. If the parameter is a Str255, do not use an &, even if the
parameter is declared as a VAR. This is the Pascal declaration of the
routine GetFontName () (1:223):

PROCEDURE GetFontName(fontNum: INTEGER; VAR theName:
Str255);

Here is an example of a Pascal string used in a Toolbox call:

Short fontNum;
Str255 fontName;

fontNum = 4;
GetFontName (fontNum, fontName);

Note that fontName was passed without a leading &.

Setting Up

35

Conventions

The purpose of any standard is to ensure consistency and quality.
With that in mind, we present our standard for writing C code. We use
this standard and feel comfortable with it. Feel free to use your own
standard or adapt ours to your own personal style. Most important is
to pick a standard and stick with it.

When discussing (as in, arguing over) C standards, people fight
most over indentation style. Here’'s an example of our indentation
standard:

main ()
{

int i;

for (i=0; i<10; i++)
{
DoNastyStuff ():
)
WrapItUp():
}

DoNastyStuff ()
{

DoOneNastyThing() ;
}

Notice that all of our curly brace pairs ({ with its corresponding })
line up in the same column. Some people like to put the open curly
brace at the end of the previous line, like this:

main() {
int i;

for (i=0; 1i<10; i++) {
DoNastyStuff ();
}

DoNastyStuff () {
DoOneNastyThing() ;
)

Hmmmm.
Well, do what you like, but be consistent.

36

Macintosh C Programming Primer

Another standard adopted by the Mac Primer concerns the naming
of variables and routines. Generally, we name our variables and
routines according to the standards in Inside Macintosh, This means
that the names look like Pascal names. The advantage of this is that
you can use the same variable names used by Inside Macintosh. This
makes your code much easier to debug and compare with Inside
Macintosh. Our general rules for variable and routine names are as
follows:

* If youre naming a variable, start with a lower-case letter and
capitalize the first letter of every subsequent word. This yields
variables named i, myWindow, and bigDataStructure.

¢ If you're naming a global variable, start the name with a lower-case
g. This yields variables named gCurrentWindow and gDone.

¢ If you're creating a #define, start the name with a lower-case k.
This yields #defines like this one:

#define kNumRecords 20

¢ If you're naming a routine (function, procedure, subroutine, and so
on), start with a capital letter and capitalize the first letter of every
subsequent word. This yields routines named MainLoop(),
DeleteEverything (), and PutThatDown ().

Adherence to a good set of standards will make your code more
robust and easier to maintain. Why? Most of the Toolbox routines
are built right into the Macintosh in read-only memory, or ROM. The
original Macintosh came with 64K of ROM; the Mac Plus comes
with 128K of ROM; the Mac SE, |l, and lIx have 256K of ROM. The
Quadra series has a massive 1 megabyte of ROM. Many of the
routines built into the newer Macs are not found in the original Mac,
Mac Plus, or SE. Likewise, many routines found in the Mac Plus
were not found in the original Macintosh. The paint is, things
change. If you carefully follow Apple's programming guidelines, the
program you write on today’'s machine will continue to work on
tomorrow’s.

ResEdit

Inside your Development folder, in the folder labeled THINK C 5.0
Utilities, youll find a folder containing ResEdit, the popular

Setting Up

37

resource editor from Apple. In the Finder, click on the ResEdit icon,
then select Get Info from the File menu. A ResEdit Info window
should appear, similar to the one in Figure 2.7. Make sure you are
working with ResEdit version 2.1 or later.

It’s a good idea to increase the amount of memory ResEdit uses to
edit resources. In the lower-right corner of the ResEdit Info window,
increase the current size: to at least 1500K to avoid memory
problems.

ResKEdit is free, and you can usually find the latest version on your
favorite BBS. If you purchase ResEdit from the Apple Programmers
and Developers Association (APDA), you’ll also receive additional
documentation. See Chapter 9 for more information about APDA.
ResEdit versions consistently improve, so use the latest version you
can find.

You'll make extensive use of ResEdit as you create and customize
your program’s resources. The next section explores some of the

resources you'll be working with in this book.

[ECJ=—— ReskEdit Info =—8—=

%,
= ResEdit
ResEdit 2.1

Kind : application program
Size : 622K on disk (636,448 bytes used)

¥here : Hard Drive : Development: THINK C
5.0 Utilities : ResEdit 2.1:

Created: Thu, Dec 6, 1990, 12:00 PM
Modified: Thu, Dec 6, 1990, 12:00 PM
Yersion: 2.1, ®Apple Computer, Inc.

1984-1990
Comments :
..... Memorg [——
Suggested size: 500 K
D Locked Current size: K

Figure 2.7 The ResEdit Info window.

38

Macintosh C Programming Primer

Resources

As we mentioned in Chapter 1, much of a program’s descriptive infor-
mation is stored in resources. Resources may be defined by their type
and either their resource ID number or their name.

Each resource has a certain type, and each type has a specific
function. For example, the resource type WIND contains the descriptive
information needed to create a window; MENU resources describe the
menus at the top of the screen. Figure 2.8 shows some of the resource
types you'll see in this book.

Each resource type comprises four characters. Case is not ignored:
WIND and wind are considered different resource types. Occasionally,
resource types may include a space. For example, 'STR ', where the
fourth character is a space.

Actually, resource types are just long ints (4 bytes) represented
in ASCIl format. Usually, the types are selected so the ASCII
version is readable (like WIND, MENU, and so on).

=S J=—— Primer Resource Types =—=0|
. i
‘ &pB en caer B i)
B B B e
ALRT ENDL CODE DITL FREF

g[ﬁ oD

icl4 il ICH* ics® =
] 2010 1001
GERE e G allolold
& - @ A ﬂ ois00000
sl MB AR MENU PICT Prmr
e a=rie=
SIZE STR WIND

=[]

Figure 2.8 Some resource types used in this book.

Setting Up

39

Sample Resource File

%W IND
DLOGs from Sample Resource File
[Size Mamne
128 21 “0One DLOG”
129 21 “Another DLOG”
S[J= WINDs from Sample Resource File 05|
D Size Narne
128 26 “Just One” 43
=
|

Figure 2.9 Sample resource file with two DLOGs and one WIND resource.

Resources of the same type, residing in the same file, must have
unique resource IDs. For example, an application may have several
resources of type DLOG, as long as each DLOG has a unique resource ID.
The resource file shown in Figure 2.9 contains two DLOGs, one with an
ID of 128, and one with an ID of 129. The file also contains a single
WIND resource with an ID of 128, Thus, each resource is uniquely
identified by ID number and type.

If you prefer, you may also name your resources. Each of the three
resources shown in Figure 2.9 has a type, an ID, and a name. All of
the examples presented in the Mac Primer use the resource type and
resource ID to uniquely specify a resource. When you create your
resources, however, you might want to specify resource names, as well
as resource IDs. This will make your resource files easier to read in
ResEdit.

Resource ID numbers follow these conventions:

Range Use ;
—32,768 to —16,385 Reserved by Apple |
—16,384 to 127 Used for system resources
128 to 32,767 Free for use ;

In certain situations, there may be additional restrictions placed
on resource |Ds; check Inside Macintosh for more information. |

40

Macintosh C Programming Primer

In this book, CODE resources will be created in THINK C; most of
the other resources will be created using ResEdit.

CODE resources contain your application’s compiled object code.
You may be used to an operating environment that allows you to
- segment your executable code. The Mac supports segmentation as
‘wel h_igsegment is stored in a separate CODE resource and is
~ loaded and unloaded as necessary. If you are. interested in learmng
"'mare ‘about code segmentation, an’ mformatlve discussion begins
on page 97 of the THINK C User Manual.

Data Forks and Resource Forks

Each Macintosh file, unlike files on most other operating systems,
contains two parts: a data fork and a resource fork. The resource fork
stores the resources, and the data fork contains everything else. Some
word processors store a document’s text in the document’s data fork
and use the resource fork for storing the document’s formatting
information. HyperCard stacks, interestingly enough, have most of
their information on the data fork side. The THINK C projects in this
book will use the resource fork exclusively.

Now that we've covered these weighty and important topics, let’s
get on with the fun stuff: our first THINK C program.

The Hello, World Program

Our first program is a classic you may have encountered before: Hello
draws the text "Hello, world!"in a window on the screen.

Just to keep things orderly, create a folder named Hello inside
your Development folder. Keep each of the files associated with the
Hello project inside this folder.

Create a New Project
To create your first program, double-click on the THINK C application

in the THINK C 5.0 Folder. The first thing you'll see is the Open
Project dialog box (Figure 2.10).

Setting Up

41

[€3 THINK C 5.0 Folder ¥ |
O C Libraries > Hard Drive
0O cdev stuff
0 DA stuff tjed
0 Mac #includes

O Mac Libraries

O oops Libraries

O THINK Class Library 1.1

Desktop

Figure 2.10 The Open Project dialog box.

Click on the New button. The Name Project dialog box will appear
(Figure 2.11). Use the standard Macintosh mechanisms to guide the
dialog into the Hello folder you just created (move up once to the
Development folder, and down once more into the Hello folder).
Type Hello.rn (key Option-p for n) in the Name new project: field,
then click the Save button.

When you click Save, the project window (titled Hello.r) will
appear (Figure 2.12). As you add files to your project, their names will
appear in the project window. At this point, the project window is
empty because you have not yet added any files to the project.

= Hard Drive

Fjeet

Name new project:

[Helio.] |

Figure 2.11 The Name Project dialog box.

42

Macintosh C Programming Primer

Hello. "a—7|
[Hame obj size

&

I

Figure 2.12 The Hello.n project window.

The pro;ect flle acts as an mformatlon center for all files involved in
‘building an appl;catlon In addition, the project file contains infor-
mation about the THINK e'nvzronment such as the preferred font
and font size for dlsptaymg and printing source code. Projects are a
THINK C concept, not a Macmtosh concept.

As you compile your source code, the object code generated will be
stored in the project file as a CODE resource. The obj size column in
the project window reflects the current size of the object code
associated with each file in the project. An uncompiled file will have
an obj size of 0.

As you may have noticed, we've managed to sneak in another
naming convention. This one came directly out of the THINK C
User Manual. To stay true to THINK C, name your source code
files xxx.e, your project files xxx.mw, and your resource files
xxx.M,rsrc. The m character is created by keying Option-p.

Now, you're ready to type in your first program.

Setting Up

43

The Code

Pull down the File menu and select New. An untitled source code
window will appear. Type in the following program:

/**********i***** Hello.c ***t/

#include <stdio.h>

main ()
{

printf("Hello, world!");
}

The THINK C compiler doesn’t care how you use white space, such
as tabs, blanks, and spaces. Be generous with your white space—don’t
be afraid to throw in a blank line or two if it will improve the
readability of your code.

Check the code for typing errors. If everything looks all right, select
Save As... from the File menu. Save the file as Hello.c. Next, select
Add (make sure you select Add, not Add...) from the Source menu to
add the file Hello. c to the project. Add adds the frontmost window to
the project, whereas Add... allows you to select one or more files to
add to the project.

A common mistake at this point is to save the file as Hello. é"' :
(note the period after the c), instead of as Hello.c (Wlthout'the
trailing period). To repeat: source code files should be nam
xxx.c, project files should be named xxx.rn, and resource
(when we get to them in Ghapter 3) should be named xxx. 7. re re
and that's it. Periods are nat used at the end of any file namef Iﬁ
this book. ,

Running Hello, World

Note that as soon as you added Hello.c to the project, the name
Hello.c appeared in the project window (Figure 2.13). Since Hello.c
has not been compiled yet, its 0bj size is 0. Try running the program
by choosing Run from the Project menu, or by keying 3R. Respond to
the Bring the project up to date? dialog box by clicking the Yes
button.

44

Macintosh C Programming Primer

-}

For readers who have a tendency to get depressed if you get an
error on the computer: The first time you run this program, it's not
going to work. It's OK, it's not your fault. We'll show you why in a
moment.]

(= Hello.n |
Name obj size
e Hello.c 0 |{¢

]

Figure 2.13 Hello.c appears in the project window.

THINK C will now compile Hello.c. If the compiler encounters an
error, it will do its best to describe the problem to you. If you make any
typing mistakes, correct them, then type 3R again.

Once the program compiles correctly, THINK C will try to link your
code. Basically, THINK C is trying to make sure that all of the
functions you call are available somewhere in the project. When a link
fails, THINK C displays a link failed error message (Figure 2.14). At
the same time, THINK C creates a Link Errors window, telling you
which functions could not be resolved (Figure 2.15).

link failed

Figure 2.14 The link failed error dialog box.

Setting Up

45

E[1=——= Link Errors §—|

=

undefined: printf

(<]

Figure 2.15 The Link Errors window.

In this case, THINK C couldn’t find the function printf (). Don’t
worry—this is a simple problem to fix. You need to add the library
containing printf () to your project.

Click anywhere on the screen to make the link failed dialog box
disappear. Next, select Add... from the Source menu. The Add Files
dialog box will appear. The library containing print£ () is located in
the C Libraries folder. To get there from the Hello folder, move up
once to get to the Development folder, down into the THINK C 5.0
Folder, and down again into the C Libraries folder (Figure 2.186).

— —

|@ C Libraries v|
= Hard Drive

O ANSI-A4 _
O ANSI—small Lipnt
(] heac!ers Deskiop
O profile
S
D unix

(Cancel)

2] [<]

Add All

<@

Hamape

Figure 2.16 The Add Files dialog box.

46

Macintosh C Programming Primer

The library you want to add to the project is called ANSI. Select
ANSI, then click on the Add button (do not click on the Add All
button). Once you do this, the name ANS| will move from the top half
of the dialog box to the bottom half (Figure 2.17). The bottom half of
the dialog box acts as a staging area, allowing you to add more than
one file at a time to the project. In this case, well just add one file to
the project, the library named ANSI. To do this, click on the Done
button.

You’ll know you were successful if the name ANSI appears in the
project window, just above Hello.c (Figure 2.18). Now the project is
complete.

Select Run from the Project menu. Respond to the Bring the
project up to date? dialog box by clicking Yes. First, THINK C
will load the RNSI library’s object code. Then, assuming everything

[E3C Libraries v |
D ANSI-A4 {+ e Hard Drive
D ANSI-small _
[headers
D profile Deskiop
0O sources
o untx
| | Cancel)
ANSI 5] ;
Add Al
35 Hamape

Figure 2.17 ANSI is now in the bottom half of the Add Files dialog box,
ready to be added to the project.

Setting Up

47

D= Hello.n ——
Name obj size
ity
H Hello ¢ 12
o
|

Figure 2.18 HANSI has been successfully added to the project.

else went smoothly, THINK C will run the program. A window should
appear on the screen, containing the text Hello, world!
(Figure 2.19).

To exit the program, either type return or select Quit from the File
menu.

=—————————— press «returny» to exit

Hello, world!|

Figure 2.19 Hello.n in action.

48

Macintosh C Programming Primer

The Problem with Hello, World

We don’t want to get you too excited about this version of Hello.
Although it does illustrate how to use THINK C, it does not make use
of the Macintosh Toolbox. The first program in Chapter 3 is a
Macintized version of Hello, called Hello2.

In Review

In Chapter 2, you installed THINK C and created your first project.
Chapter 3 looks at the basics of Mac programming: QuickDraw,
windows, and resources. It also presents four applications that
demonstrate the versatility of the Macintosh.

It’s almost too late to turn back. To all of those who have come from
other environments: beware! QuickDraw is addictive!

Drawing on the
Macintosh

Now that you have installed THINK C,
you can start programming. A good
starting point is the unique routines

that define the Macintosh graphic
interface. On the Macintosh, the
Toolbox routines that are responsible
for all drawing are known collectively
as QuickDraw.

Introduction

QUICKDRAW Is THE MACINTOSH drawing environment. With it, you can
draw rectangles and other shapes and fill them with different
patterns. You can draw text in different fonts and sizes. The windows,
menus, and dialogs displayed on the Macintosh screen are all created
using QuickDraw routines.

In this chapter, we'll show you how to create your own windows and
draw in them with QuickDraw. Let’s start by examining the
QuickDraw coordinate system, the mathematical basis for QuickDraw.

The QuickDraw Coordinate System
QuickDraw drawing operations are all based on a two-dimensional

grid coordinate system. The grid is finite, running from (-32,767,
-32,767) to (82,7617, 32,767), as shown in Figure 3.1.

(-32,767, -32,767)

(32,767, 32,767)

Figure 3.1 The grid.

51

Macintosh C Programming Primer

Figure 3.2 The Macintosh screen on the grid.

Every Macintosh screen is actually an array of pixels aligned to the
grid. The lines of the grid surround the pixels. The grid point labeled
(0,0) is just above, and to the left of, the upper left-hand corner of the
Mac screen (Figure 3.2).

A screen measuring 32,768 pixels x 32,768 pixels with a screen
resolution of 1 pixel = 1/72 inch would be 38 feet wide and 38 feet
tall. The Mac Classic, Plus, and SE monitors are 512 x 342 plxels
Apple’'s Mac 13" color moenitor is 640 x 480 pixels.

The grid is also referred to as the global coordinate system. Each
window defines a rectangle in global coordinates. Every rectangle has
a top, left, bottom, and right. For example, the window in Figure 3.3
defines a rectangle whose left is 20, top is 20, right is 160, and bottom

is 180.

Interestingly, the window does not have to be set up within the
boundaries of the screen. You can set up a window whose left is
—50, top is 100, bottom is 200, and right is 800. On a Classic, this
window would extend past the left and right sides of the screen
(Figure 3.4). This is known as the Big Long Window Technique.

Use of the Big Long Window Technique is discouraged.

Drawing on the Macintosh 53

(160, 180)

Figure 3.3 A window on the grid.

Big Long Window

Figure 3.4 A big, long window.

When drawing inside a window, you'll always draw with respect to
the window’s local coordinate system. The upper left-hand corner of
a window lies at coordinate (0,0) in that window’s local coordinate

system (Figure 3.5).

54

Macintosh C Programming Primer

(0,0) in Window’s Local
Coordinate System

Figure 3.5 Local coordinates.

To draw a rectangle inside your window, specify the top, left,
bottom, and right in your window’s local coordinates (Figure 3.6). Even
if you move your window to a different position on the screen, the
rectangle coordinates stay the same. This is because the rectangle was
specified in local coordinates.

(0, 0) in Window’s Local
Coordinate System, (20, 20) in
Global Coordinates

(20, 30) in Window’s Local
Coordinate System, (40, 50) in
Global Coordinates

Figure 3.6 Rectangle drawn in window’s local coordinates.

Drawing on the Macintosh

55

position (Figure 3.8).

in the window's local coordinates.

Local coordinates are handy! Suppose you write an application"tl{at
puts up a window and draws a circle in the window (Figure 3. 7)
Then, the user of your application drags the window to a new

You still know exactly where that circle is, even though its
window has been moved. That's because you specified your carcle

{E00=== prawing Windo

=

Figure 3.7 Circle drawn in window’s local coordinates.

rawing Windo

Figure 3.8 When window moves, local coordinates stay the same.

56

Macintosh C Programming Primer

On the Macintosh, text and graphics created by your programs will
be displayed in windows. Windows are the devices that Macintosh
programs use to present information to a user.

Because we need windows to draw in, let’s look more closely at
windows and the Window Manager.

Window Management

When you draw graphics and text on the Macintosh, you draw them
inside a window. The Window Manager is the collective name for all
the routines that allow you to display and maintain the windows on
your screen. Window Manager routines are called whenever a window
is moved, resized, or closed.

Window Parts

Although windows can be defined to be any shape you choose, the
standard Macintosh window is rectangular. Figure 3.9 shows the
components of a typical window.

The close box (also known as the go-away box) is used to close the
window. The drag region is where you grab the window to move it

Close Box Title Bar or Drag Region Zoom Box

Window

|E> i

ScrollBars | — g

Thumb Grow Box

Figure 3.9 Window components.

Drawing on the Macintosh 57

around the screen; this region also contains the window’s title. Scroll
bars are used to examine contents of the window not currently in
view. The thumb is dragged within the scroll bar to display the
corresponding section of the window. The grow box (also known as
the size box) lets you resize the window. The zoom box toggles the
window between its standard size and a predefined size, normally
about the size of the full screen.

There are several types of windows. The window in Figure 3.9 is
known as a document window. When you use desk accessories or
print documents, you will notice other kinds of windows. These
windows may not have all of the same components as the standard
window, but they operate the same way.

Window Types

Six standard types of windows are defined by the Window Manager.
Each type has a specific use. In this section, each type is described and
its use is discussed.

The documentProc window (Figure 3.10) is the standard window
used in applications. This one has a size box, so it is resizable; it also
has a close box in the upper left-hand corner that closes the window.

The noGrowDocProc window (Figure 3.11) is the standard window
without scroll bars or a grow box. Use this window for information
that has a fixed size. The rDocProc window (Figure 3.12) has a black
title bar; it has no scroll bars or grow box. This window is most often
used with desk accessories.

BT Window VV0Fce0———

&>

Qi<

<l =

Figure 3.10 The documentProc window.

58

Macintosh C Programming Primer

S(e—i—— Window —noe—=——|

Figure 3.11 The noGrowDocProc window.

Figure 3.12 The rDocProc window.

The remaining three types of windows are dialog box windows:
dBoxProc, plainDBox, and altDBoxProc (Figure 3.13). Dialog boxes
will be discussed in Chapter 6.

Drawing on the Macintosh 59

Figure 3.13 The dBoxProc, plainDBox, and altDBoxProc windows.

Setting Up a Window for Your Application

If you plan to use one of the standard window designs for your
applications, creating a window is easy. First, build a WIND resource
using ResEdit (we'll show you how a little later in the chapter). Figure
3.14 shows ResEdit’s WIND editor. Like all resources, each WIND has its
own unique resource ID. As you'll see, this resource ID is used to fetch
the WIND resource from the resource file. Later in the chapter, we’ll
walk through the WIND creation process in detail.

60

Macintosh C Programming Primer

WIND ID = 128 from Sample WIND.r

win =00}

n- Bl Riource_Giedou R Color: (@ Default
- : (O Custom

[Initially visible

Height:
Left: Width:

(4 Close bou

Figure 3.14 ResEdit's WIND editor.

Once your WIND resource is built, you're ready to start coding. One
of the first things your program will do is initialize the Toolbox. The
Window Manager is initialized at this point.

Next, load your WIND resource from the resource file, using the
GetNewWindow () Toolbox routine:

short windowID;
Ptr wStorage;
WindowPtr window, behind;

window = GetNewWindow(windowID, wStorage, behind);

GetNewWindow () loads the WIND resource that has a resource ID of
windowID. The WIND information is stored in memory at the space
pointed to by wStorage. The Window Manager will automatically
allocate its own memory if you pass nil as your wStorage parameter.
For now, this technique is fine. As your applications get larger, you'll
want to consider developing your own memory management scheme.

The parameter behind determines whether your window is placed
in front of or behind any other windows. If the value is nil, the new
window is placed behind the rest of your application’s windows. If

Drawing on the Macintosh 61

(WindowPtr)-1L is passed as the third parameter, the new window
appears in front of all other windows. For example:

window = GetNewWindow(400, nil, (WindowPtr)-1L):

loads a WIND with a resource ID of 400, asks the Window Manager to
allocate storage for the window record, and puts the window in front of
all other windows. A pointer to the window data is returned in the
variable window.

The expression (WindowPtr)-1L is a typecast, asking the
compiler to convert the constant -1L (a 1ong with a value of -1) to
the type windowPtr before passing it as a parameter. Depending

- on the options you have set for your projects, THINK C may or may
not require you to typecast your parameters to match the type of the
receiving parameter. The programs in this book were designed to
work with THINK C's factory settings. For more information on the
THINK C options dialog, see page 179 in the THINK C User
Manual.

When you create the WIND resource with ResEdit, you are given a
choice of making the window visible or not. Visible windows appear as
soon as they are loaded from the resource file with GetNewWindow ().
If the visible flag is not set, you can use ShowWindow () to make the
window visible:

ShowWindow (window);

where window is the pointer you got from GetNewWindow (). Most
applications start with invisible windows and use ShowWindow ()
when they want the window to appear. The Window Manager routine
HideWindow () makes the window invisible again. In general, you'll
use ShowWindow () and HideWindow () to control the visibility of
your windows.

At this point, you've learned the basics of the Window Manager.
You can create a WIND resource using ResEdit, load the resource using
GetNewWindow (), and make the window appear and disappear using
ShowWindow () and HideWindow (). This technique will be illustrated
shortly. After you have put up the kind of window you want, you can
start drawing in it. The next section shows you how to use QuickDraw
routines to draw in your window.

Drawing in Your Window: The QuickDraw
Toolbox Routines

62

There are many QuickDraw drawing routines. They can be conve-
niently divided into four groups: routines that draw lines, shapes, text,
or pictures. These routines do all of their drawing using a graphics
“pen.” The pen’s characteristics affect all drawing, whether the
drawing involves lines, shapes, or text.

Before starting to draw, you have to put the pen somewhere
(MoveTo ()), define the size of the line it will draw (PenSize()),
choose the pattern used to fill thick lines (Penpat ()), and decide how
the line you are drawing changes what’s already on the screen
(PenMode ()). Figure 3.15 shows how changing the graphics pen
changes the drawing effect.

Every window you create has its own pen. The location of a
window’s pen is defined in the window’s local coordinate system. Once
a window’s pen characteristics have been defined, they will stay
defined until you change them.

i LN e &0 W fp N0
Lines drawn with 4-pixels-wide graphics pen, using pen patterns
- 7 7 9) T

Source patCopy patOr patXor patBic
Pattern

Destination notPatCopy notPatOr notPatXor notPatBic
Pattern

Copy source pattern onto destination pattern using
one of eight graphics pen modes

Figure 3.15 Graphics pen characteristics.

Drawing on the Macintosh 63

Setting the Current Window

Because your application can have more than one window open at a
time, you must first tell QuickDraw which window to draw in. This is
done with a call to SetPort ():

window = GetNewWindow(400, nil, (WindcwPtr)-1L);
SetPort (window)

In this example, SetPort () made window the current window.
Until the next call to setPort (), all QuickDraw drawing operations
will occur in window, using window’s pen. Once you've called
SetPort () and set the window’s pen attributes, you're ready to start
drawing.

The basic data structure behind all QuickDraw operations is the
GrafPort. When you call SetPort (), you are actually setting the
current GrafPort (1:271) . Since every window has a GrafPort
data structure associated with i, in effect you are setting the current
window. The GrafPort data structure contains fields such as
pnSize and pnLoc, which define the GrafPort pen’s current size
and location. QuickDraw routines such as PenSize () modify the
appropriate field in the current GrafPort data structure. i

|

Drawing Lines

The LineTo () routine allows you to draw lines from the current pen
position (which you have set with MoveTo ()) to any point in the
current window. For example, a call to:

window = GetNewWindow(400, nil, (WindowPtr)-1L);

SetPort (window) ;

MoveTo(39, 47):
LineTo(407, 231)

would draw a line from (39, 47) to (407, 231) in window’s local
coordinate system (Figure 3.16).

64

Macintosh C Programming Primer

Figure 3.16 Drawing a line with QuickDraw.

It is perfectly legal to draw a line outside the current boundary of a
window. QuickDraw will clip it automatically so that only the portion
of the line within the window is drawn. QuickDraw will keep you from
scribbling outside of the window boundaries. This is true for all
QuickDraw drawing routines.

The last program in this chapter is the FlyingLine, an extensive
example of what you can do using the QuickDraw line-drawing
routines.

Drawing Shapes

QuickDraw has a set of drawing routines for each of the following
shapes: rectangles, ovals, rounded-corner rectangles, and arcs. Each
shape can be filled, inverted, or drawn as an outline (Figure 3.17).

The current pen’s characteristics are used to draw each shape
where appropriate. For example, the current fill pattern will have no
effect on a framed rectangle. The current PenMode () setting,
however, will affect all drawing. The second program in this chapter,
Mondrian, shows you how to create different shapes with QuickDraw
(Figure 3.18). It also demonstrates the different pen modes.

Drawing on the Macintosh 65

= Mondrian

Figure 3.18 Mondrian.

Drawing Text

QuickDraw allows you to draw different text formats easily on the
screen. QuickDraw can vary text by font, style, size, spacing, and
mode. Let’s examine each of the text characteristics.

Font refers to the typeface of the text you are using. Courier,
Helvetica, and Geneva are some of the typefaces available on the

66

Macintosh C Programming Primer

Macintosh. Style refers to the appearance of the typeface (bold, italic,
underline, and so on). The size of text on the Macintosh is measured
in points, where a point is equal to 1/72 inch. Spacing defines the
average number of pixels in the space between letters on a line of text.
Figure 3.19 shows some of the characterics of QuickDraw text.

& File Edit Format Font Document Utilities Window
{EfJ=——=—=——=—— (uickDraw Text Variations

|As the center of the United Worlde, New York

was growing qUIiCcK1Y. This was underlined by the fact that many of
the poorer planets were unable to find space for their embassies. New
York landlords boldly demanded a rental of 1 million credits a day.

As a result, ambassadors set up shop in two other cities.

Chicago had the biggest spaceport on earth and ended up with many
statesmen.

Geneva was a favorite with those worlds that had been colonized by
European nations.

47?6 Chars

Figure 3.19 Examples of QuickDraw text and derivative science fiction
writing.

The mode of text is similar to the mode of the pen. The text mode
defines the way drawn text interacts with text and graphics already
drawn. Text can be defined to overlay the existing graphics (srcor);
text can be inverted as it is placed on the existing graphics (srcxXor);
or text can simply paint over the existing graphics (srcCopy). The
other modes (srcBic, notSrcCopy, notSrcOr, and so on) are
described in Inside Macintosh (1:157). Figure 3.20 demonstrates the
two most popular text modes.

Drawing on the Macintosh

67

v A
e e
r r
Horizontal Horidontal
1 i
c c
a a
1 1
srcCopy srcOr

Figure 3.20 The two most popular QuickDraw modes.

Drawing Pictures

QuickDraw can save text and graphics created with the drawing
routines as picture resources called PICTs. You can create a picture
(using a program such as Canvas or MacDraw), copy the picture to the
clipboard, and paste it into a PICT resource using ResEdit. Later in
the chapter, you'll see how to make use of PICT resources in the
ShowPICT program.

About Regions

QuickDraw allows you to define a collection of lines and shapes as a
region. You can then perform operations on the entire region (Figure
3.21).

By now most of you are probably itching to start coding. First, let’s
look at the basic Mac programming structure used in this chapter’s
programs. Then we’ll hit the keyboards!

68

Macintosh C Programming Primer

OffsetRgn InsetRgn

Figure 3.21 Two QuickDraw region operations.

Basic Mac Program Structure

We've looked at a general outline of the QuickDraw and Window
routines needed to make a Macintosh application go. The basic
algorithm used in each of the Chapter 3 programs goes something like
this:

main ()

{
ToolBoxInit ()
OtherInits();
DoPrimeDirective();

while (! Button()) :

Like most C programs, our program starts with the routine main (),
which first initializes the Toolbox. It then takes care of any program-
specific initialization, such as loading windows or pictures from the
resource file. Next, the program performs its prime directive. In the
case of the Hello, World! program, the prime directive is drawing a
text string in a window. Finally, the program waits for the mouse
button to be clicked. This format is very basic: Except for clicking the
button, there is no interaction between the user and the program. This
will be added in the next chapter.

Drawing on the Macintosh 69

%

Danger! Will Robinsont Normal Macmtosh appllcatlons do 5
with a click of the mouse button. Mac. programs: are interactive. -
They use menus, dialogs,,. and events. We'll add these ffeatur‘es
later. For the purpose of: demonstrat:ng QuickDraw, howev
bend the rules a bit.

| The QuickDraw Programs

Each of the following programs demonstrates different parts of the
Toolbox. The Hello2 program demonstrates some of the QuickDraw
routines related to text; Mondrian displays QuickDraw shapes and
modes; ShowPICT loads a PICT resource and draws the picture in a
window. Finally, you'll code the FlyingLine, an intriguing program
that can be used as a screen saver.

Let’s look at another version of the Hello, World! program presented
in Chapter 2.

Hello2

The Hello2 program will do the following:

¢ Initialize the Toolbox;

¢ Load a resource window, show it, and make it the current port;
¢ Draw the text string “Hello, world!” in the window;

* Quit when the mouse button is clicked.

To get started, create a folder inside the Development folder and
name it Hello2. This is where you’ll build your first Macintosh
application. The next few sections will show you how to create the
three files you'll need for this project. First, you'll create a resource file
to hold Hello2’s resources. Next, you’ll create a project file, just as you
did with Hello2’s predecessor in Chapter 2. Finally, you'll create a
source code file for Hello2’s source code and add the source code file to
the project.

70

Macintosh C Programming Primer

Hello2 Resources

As we discussed in Chapter 2, at the heart of every THINK C program
is a project file. A typical project file has a name like xxx.7n, where
xxx is the name of the program. When you open a project named
xxx.%t, THINK C automatically looks for a file named xxx.m.rsrc
and makes any resources in this file available to your program.

In a bit, you'll create a project file named Hello2.x. Before you do
that, you'll use ResEdit to create a file named Hello2.m.rsrc and,
inside Hello2.®.rsrc, you'll create a single WIND resource.

Find your copy of ResEdit (make sure you use version 2.1 or later)
and double-click on its icon. Then click the mouse and ResEdit will
prompt you for a resource file to open. Click on the New button. When
the Save File dialog box appears, use the standard Mac navigation
techniques to move into the Hello2 folder you just created. Type
Hello2.m.rsrc in the New File Name: field and click the New
button (Figure 3.22).

S Hello2 ¥

{3 = Hard Drive

el

New File Name: -!E‘.‘-
| [Heno2.w.rsrc | (cancer)

Figure 3.22 Create a new resource file in the He 1102 folder.

ResEdit will create an empty resource file named Hello2.x.rsrc
and open a window listing of all that file’s resources. Since the file is
empty, no resources are listed. You'’re about to change that.

Select Create New Resource from the Resource menu. When
prompted to select a resource type, select WIND from the scrolling list
and click 0K (you could also have typed in WIND and clicked 0K). Two
new windows should appear, a window listing all of the WIND
resources (Figure 3.23) and, on top of that, a window showing the
newly created WIND (Figure 3.24).

Drawing on the Macintosh 71

S[J= WINDs from Hello2.7v.rsrc =015
D Size MNarne

128 29 <

(=[]

Figure 3.23 ResEdit’s list of WIND resources for Hello2.w. rsrc.

SCI=——= IIND ID = 128 from Hello2.7.rsrc D0—————|
= =8 m
- ? ? ?

€ Fiia_Edl_escurs Window Color: (@ Default
P !) Custom

(<] Initially visible

Top: Height:

Left: Width: & Close box

Figure 3.24 ResEdit’s wIND editor.

The WIND resource you've just created will act as a template for the
Hello2 program, telling Hello2 the type and size of window in which to
display the Hello, World! text.

The icons toward the top of the winD editor allow you to select the
window’s type. Click on the second icon from the left, choosing the
window with no grow box and no zoom box.

72

Macintosh C Programming Primer

Next, edit the Left: field, changing its value to 5. This will cause
the window to appear 5 pixels from the left edge of the screen. Also,
change the value in the Width: field to 300. Figure 3.25 shows what
your WIND editor should look like at this point.

]

If the field names Bottom: and Right: appear instead of the field
names Height: and Width: in the WIND editor, select Show
Height & Width from the IWWIND menu.

You can use the MiniScreen menu to see what your window will
look like on various Macintosh screens. By default, ResEdit shows
your WIND on a Mac Classic screen (512 pixels wide, 342 pixels tall).

Next, select Set 'WWIND' Characteristics... from the WIND menu
(Figure 3.26). Change the Window title: to My First Window. The
refCon: field is a 4-byte integer reserved for use by your application.
You can use this field for anything you want. Feel free to type a
number in the refCon: field if you like, though we won’t make use of
it in this program.

The ProclD: field contains a number that corresponds to the
window’s type. If you like, click the DK button, returning to the WIND
editor, and select a different window type from the icons at the top of

S[J&=——————= WIND ID = 128 from Hello2.7.rsrc DV0—————|

o e I] 0 RN

& Fllg Edil Basource Window
- T

T Color: @ Default
(O Custom

Height:
Left: Iz] Width: [Close box

Initially visible

Figure 3.25 The WIND editor, after a few changes have been made.

Drawing on the Macintosh 73

'WIND' Characteristics

Window title: [My First Windouy

refCon: |0 —|

ProciD: 4 |

Figure 3.26 The 'WIND' Characteristics dialog box.

the window. Go back to the 'WIND' Characteristics window and
check out the ProclD: field. Notice the change? Make sure you change
the ProclD: back to 4, then click the 0K button to return to the WIND
editor.

Next, select Preview at Full Size from the WIND menu. A model
of your window will appear in the proper position on the screen. Click
the mouse to make the test window disappear.

Next, select Get Resource Info from the Resource menu. When
the resource information window appears (Figure 3.27), make sure the
WIND’s resource ID is set to 128. The resource ID is the number you'll
pass to GetNewWindow () to retrieve this WIND from the resource file.

74

Macintosh C Programming Primer ”

1= Info for WIND 128 from Hello2.7.rsrc =73
Type: WIND Size: 36
114 128 |
Name: |Text Window| |
Owner type
owner ID: DRUR i<
] WOEF

Sub ID: MDEF [
Attributes:
[Osystem Heap []Locked O Preload
Purgeable [0 Protected []Compressed

Figure 3.27 Resource Info window for WIND 128.

Next, make sure the Purgeable checkbox is checked. This allows
the Macintosh Memory Manager to purge the WIND resource from
memory once it’s not needed anymore. This approach maximizes the
amount of memory available for your application.

If you like, name your WIND by typing some text in the Name: field.
While this won’t affect your program, assigning a name to a resource
can make it easier to tell one WIND resource from another in a list of
resources. In general, when you have more than one resource of a
given type, assign each resource a name, so you can tell them apart at
a glance. Figure 3.28 shows how the name appears in the list of WINDs
first shown in Figure 3.23.

O

iiiiii

WINDs from Hello2.%w.rsrc

=

il

Size Name

~|F

28

36 “Text Window”

=<

Figure 3.28

WIND 128 appears in the list of WIND resources. Notice the

resources’ name appearing on the right side of the window.

Drawing on the Macintosh 75

Next, choose Save from the File menu, saving the changes you've
made to the resource file. Finally, choose Quit from the File menu.
Now you're ready to start up THINK C.

The Hello2 Project File

Start up THINK C by opening the THINK C 5.0 Folder and double-
clicking on the THINK C 5.0 icon. When the dialog box appears, click
on the New button. When the next dialog box appears, navigate into
the Hello2 folder and save the new project file as Hello2.n (Figure

3.29).
0 Hetto29%.rere 4¥ = Hard Drive

<l

Name new project:

Hello2.m | (cancer)

Figure 3.29 Save the new project file as Hel1lo2.m.

76

Macintosh C Programming Primer

Next, select New from the File menu and type the following source
code into the window that appears:

#define kBaseResID 128
#define kMoveToFront (WindowPtr)-1L

#define kHorizontalPixel 30
#define kVerticalPixel 50

/**‘k************/

/* Functions */
/***************/

void ToolBoxInit (void);
void WindowInit (void);

/****************** main ***************************/

void main(void)
{
ToolBoxInit () ;
WindowInit ():

while (!Button()) ;

JREFKKR KKKk Kkkk kK kk*k*x TOOIBOXINLIL ***xkkkxkkkkkkkhkkhkxk /

void ToolBoxInit (void)
{
InitGraf(&thePort);
InitFonts();
InitWindows ()
InitMenus{();
TEInit ()
InitDialogs(nil);
InitCursor():

/****************** WlndOWInlt ***********************/

void WindowInit (void)

{
WindowPtr window;

Drawing on the Macintosh 77

window = GetNewWindow(kBaseResID, nil, kMoveToFront);

if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!! */
ExitToShell () :
}

ShowWindow (window);
SetPort (window)

MoveTo(kHorizontalPixel, kVerticalPixel);
DrawString("\pHello, world!");

When you've typed that in, select Save As... from the File menu
and save your source code (in the Hello? folder) as HelloZ.c. Select
Add from the Source menu to add HelloZ.c to the project. The
name Hello?2.c should appear in the project window.

Next, you'll need to add a file called MacTraps to your project.
MacTraps is a precompiled file that contains everything your project
will need to access the Macintosh Toolbox routines. Select Add... from
the Source menu. Find MacTraps inside the THINK C 5.0 Folder,
inside the Mac Libraries folder. In the Add... dialog, double-click on
MacTraps to move it from the top half of the dialog to the bottom half.
Once MacTraps (and nothing but MacTraps) appears in the bottom
half of the dialog, click on Done.

When you're done, the Project window should look like Figure 3.30.

B Hello2.n ==

obj size

H Hello2.c
: MacTraps

@Gl

Figure 3.30 The project file after Hello2. c has been added.

78

Macintosh C Programming Primer

Running Hello2

Now you're ready to run Hello2. Select Run from the Project menu.
When asked to Bring the project up to date?, click Yes. You may
get a complaint about a syntax error or two. If so, just retype the line
the compiler highlights.

If you make any changes to Hello2.c, you'll be asked whether
you'd like to Save changes before running? Click Yes.

Once you've gotten Hello2 to compile without a hitch, it will
automatically start running, as shown in Figure 3.31. Voila. Hello2
should display a window with the text Hello, world! in it. Quit the
program by clicking the mouse button.

[1H]

O=——=— My First Window =~

Hello, world!

Figure 3.31 Hello2 in action.

!

If Hello2 compiles, but the Hello2 window fails to appear; it may
indicate a problem with the resource file. If you heard a beep when:
THINK G ran your program, THINK C could not find your resource:
file. Make sure your project file is named Hello2.w and your
resource file is hamed Hello2.m.rsrc (no spaces in either
name). Also, make sure both files are in the same He11l02 folder.
Another common reason why Hello2 doesn't work is that code
font left the Hello2.®.rsrc window open in ResEdit. Close and
save your resource file before running projects! "

Walking Through the Hello2 Code

We'll be walking through the source code of each of the programs
presented in the Mac Primer. We'll start with each program’s #defines
and global wvariables, then dig into every one of the program’s
functions.

The first few lines of He1102.c are #defines. THINK C #defines
are the same as those found in other C programming environments.
During compilation, THINK C takes the first argument of the
#define, finds each occurrence in the source code, and substitutes the
second argument. For example, in the first #define, the number 128
will be substituted for each occurrence of kBaseResID.

#defines don't actually modify your copy of the source clocie
THINK C creates its own copy of the source code and makeq the
substitution on its copy. 1 ; , '

!

#define kBaseResID 128
#define kMoveToFront (WindowPtr)-1L

#define kHorizontalPixel 30
#define kVerticalPixel 50

The constants kHorizontalPixel and kVerticalPixel describe,
in the window’s local coordinates, where the text string will be drawn.

Next come the function prototypes. Each program in this book
uses function prototypes at the top of each source code file. While not
strictly necessary, function prototypes will make your source code
easier to read, and will aid in ensuring that each function is called
with parameters of the correct type.

void ToolBoxInit (void):
void WindowInit (void);

main () calls ToolBoxInit () to initialize the Macintosh Toolbox,

then WindowInit () to load a window from the resource file then
draw some text in the window.

79

80

Macintosh C Programming Primer

/****************** main ***************************/

void main(void)
{
ToolBoxInit () ;
WindowInit ()

while (!Button()) ;

ToolBoxInit () will remain unchanged throughout the book.
Although you won’t always use all the data structures and variables
initialized by ToolBoxInit (), you are perfectly safe in doing so. It is
much easier and safer to initialize each of the Macintosh Toolbox
managers than to try to figure out which ones you’ll need and which
you won't.

/****************** TOOlBOXInit ************‘k********/

void ToolBoxInit (void)
{
InitGraf(&thePort);
InitFonts ()
InitWindows () ;
InitMenus () ;
TEInit ()
InitDialogs(nil);
InitCursor():;

Each call initializes a different part of the Macintosh interface. The
call to InitGraf () initializes QuickDraw.

InitFonts() initializes the Font Manager and loads the system
font into memory. Since the Window Manager uses the Font Manager
(to draw the window’s title, for example), you must initialize fonts
first. InitWindows () initializes the Window Manager and draws the
desktop and the empty menu bar. InitMenus () initializes the Menu
Manager so you can use menus. (Chapter 5 shows how to use the
Menu Manager). InitMenus () also draws the empty menu bar.

TEInit () initializes TextEdit, the Text-Editing Manager that
MiniEdit uses (discussed in the THINK C User Manual and in Inside
Macintosh). InitDialogs () initializes the Dialog Manager (demon-
strated in Chapter 6). InitCursor() sets the cursor to the arrow
cursor and makes the cursor visible.

Drawing on the Macintosh 81

The following global variables are initialized by TnitGras() and
can be used in your routines:

* thePort always points to the current GrafPort. Because it is
the first QuickDraw global, passing its address to TnitGraf ()
tells QuickDraw where in memory all of the other QuickDraw
globals are located.

* white is a pattern variable set to a white fill; black, gray,
1tGray, and dkGray are initialized as different shades between
black and white.

® arrow is set as the standard cursor shape, an arrow. You can
pass arrow as an argument to QuickDraw's cursor-handling
routines. .

* screenBits is a data structure that describes the main Mac
screen. The field screenBits.bounds is declared as a Rect
and contains a rectangle that encloses the main Mac screen.

* randSeed is used as a seed by the Macintosh random number
generator (we'll show you how to use the random number
generator in this chapter).

InitWindows () and InitMenus () both draw the empty menu
bar. This is done intentionally by the ROM programmers for a
reason that is such a dark secret they didn't even document |t m
Inside Macintosh.

As we said, it’s not necessary to call each of these routines in every
program you'll ever write. Why, then, should you call TnitMenus (),
for example, if you don’t use menus? Well, suppose you decide to add
menus later. Calling InitMenus () now means you won’t spend time
later wondering why your program is crashing when all you did was
add a new menu-handling routine.

You may take advantage of an external procedure that does use
menus. As we discussed earlier, some managers require the use of
information in other managers. If one manager is not initialized, your
program may not work. Use the ToolboxInit () routine in all your
programs.

82

Macintosh C Programming Primer

/*****************‘k Windowlnit ***********************/

void WindowInit(void)

{

WindowPtr window;
window = GetNewWindow(kBaseResID, nil, kMoveToFront);

WindowInit () calls GetNewWindow () to load the WIND resource
with a resource ID of kBaseResID from your resource file. The first
parameter specifies the resource ID. The second parameter tells the
Toolbox how memory for the new window data structure should be
allocated. Because you passed nil as the second parameter, the
Toolbox will allocate the memory for you. Finally, the third parameter
to GetNewWindow () tells the Window Manager to create this window
in front of any of the application’s open windows.

if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!! */
ExitToShell () ;

GetNewWindow () returns a pointer to the new window data struc-
ture in the variable window. GetNewWindow () will return a value of
nil if it can’t create the window for some reason. GetNewWindow ()
can fail for several reasons. On one hand, since we passed nil as the
second parameter, we've asked GetNewWindow () to allocate memory
for the window’s data structure. If GetNewWindow () can’t allocate
enough memory to create the window, it will fail and return nil.

Even more likely, if GetNewWindow () returns nil, it's because it
couldn’t load the WIND resource from the resource file. If this is the
case, check to make sure the resource has the proper resource ID, and
that the resource file is named correctly.

If window is nil, both SysBeep () and ExitToShell () are called.
SysBeep () will emit a single beep (or whatever sound passes for a
beep on your Mac). The value passed to SysBeep () is ignored. Make
sure you pass a value, though, as SysBeep() expects one.
ExitToShell () will immediately exit the program, returning to
whatever program spawned it (in this case, THINK C).

ShowWindow(window);
SetPort(window);

Drawing on the Macintosh 83

MoveTo (kHorizontalPixel, kVerticalPixel);
DrawString ("\pHello, world!");

Next, WindowInit () calls ShowWindow () to make the window
visible. If the WIND resource’s visible check box was not checked, it is
at this point that the window actually appears on the screen. The call
to SetPort () makes window the current window. All subsequent
QuickDraw drawing operations will take place in window. Next,
window’s pen is moved to the local coordinates 50 down and 30 across
from the upper left-hand corner of window, and DrawString() is
used to draw the string Hello, world! starting at the current pen
coordinates.

(using the Ieadmg !ength byte) as opposed to C form (mth a " ing
nil byte). Use thus technlque whenever you pass a quoted stnrig tO-

Hello2 can easily be turned into a standalone application. Pull down
the Project menu and select Build Application.... When the Build
Application dialog box appears, type Hello2 in the Save
application as: field, then click Save. THINK C will turn the
projects compiled code into a standalone application, copying all of the
resources from the project resource file (Hello2.m.rsrc) into the
application’s resource fork. Take your new application out for a test
drive by double-clicking its icon in the Finder. You'll find out how to
add a custom icon to your applications in Chapter 8.

Variants

This section presents some variants to the Hello2 program. We'll start
by changing the font used to draw Hello, world!. Next, we'll modify
the style of the text, using boldface, italics, and so on. We'll also show
you how to change the size of your text. Finally, we'll experiment with
different window types.

84

Macintosh C Programming Primer

Changing the Font

Every window has an associated font. You can change the current
window’s font by calling TextFont (), passing an integer that repre-
sents the font you’d like to use:

short myFontNumber;
TextFont (myFontNumber);

Macintosh font numbers start at 0 and count up from there. THINK
C has predefined a number of font names with which you can
experiment. For example, monaco is defined as 4, times as 20. If you
want to check out the whole list, open the file Fonts.h in the Apple
#includes folder, which is inside the Mac #includes folder.

The best way to make use of a specific font is to pass its name as a
parameter to the Toolbox routine GetFNum (). GetFNum () will return
the font number associated with that name. You can then pass the
font number to TextFont ().

Did someone in the back ask, ° 'ow can you tell Wthh fonts have :
been installed in the system‘?” An excellent questlenl Not every Mac
has the same set of fonts installed. Some folks have the
LaserWriter font set; others a set of fonts for their StyleWriter. Some
people might even have a complete set of foreign language fonts.
For the most part, your applications shouldn’t care which fonts are
installed. There are, however, two exceptions to this rule. All dialog
boxes and menus are drawn in the system font, which defaults to
font number 0. The default font for applications is called the
application font, usually font number 1. In the United States, the
system font is Chicago, and the application font is Geneva.

For now, put the GetFNum () and TextFont () calls before your call
to MoveTo () and after your call to SetPert (), and try different font
names (use the Key Caps desk accessory for a list of font names on
your Mac). GetFNum() will set fontNum to O if it can’t find the
requested font. Don't forget to declare fontNum at the top of
WindowInit ().

Drawing on the Macintosh 85

Jrrkkkkkkkkxkkkxkk* WindowINit **rxxkkkkkkk kX kkxkkkk* /

void

{

}

WindowInit (void)
WindowPtr window;
short fontNum;

window = GetNewWindow(kBaseResID , nil,
kMoveToFront);

if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!! *x/
ExitToShell();

ShowWindow(window);
SetPort (window);
GetFNum("\pMonaco", &fontNum);

if (fontNum != 0)
TextFont (fontNum);

MoveTo(kHorizontalPixel, kVerticalPixel);
DrawString ("\pHello, world!");

Changing Text Style

The Macintosh supports seven font styles: bold, italic, underlined,
outline, shadow, condensed, and e xtended, or any combination of
these. Chapter 5 shows you how to set text styles using menus. For
now, try inserting the call TextFace(style) before the call to
DrawString (). Here’s one example:

/*****************’k Windowlnlt ***********************/

void

{

WindowInit (void)

WindowPtr window;

86

Macintosh C Programming Primer

window = GetNewWindow (kBaseResID , nil,

kMoveTcoFront);
if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!! */
ExitToShell () :

ShowWindow(window) ;
SetPort{ window);

TextFace(bold); /* Try the other styles */

MoveTo (kHorizontalPixel, kVerticalPixel);
DrawString ("\pHello, world!"):

Some predefined styles taken from the #include file
QuickDraw.h: (==

bold shadow
italic condense
underline extend
outline

You can also combine styles; try TextFace (bold + italic) or
some other combination.

Changing Text Size

It’s also easy to change the size of the fonts, using the TextSize ()
Toolbox routine:

short myFontSize;
TextSize(myFontSize);
The number you supply as an argument to TextSize () is the font

size that will be used the next time text is drawn in the current
window. The Font Manager will draw the smoothest text it can in the

Drawing on the Macintosh 87

Window

These Characters Aren't Scaled

These Characters
Are Scaled

Figure 3.32 Font scaling with a non-TrueType font.

font size you specify. TrueType fonts (Apple’s new font technology
available under System 7) will yield the best results. If the current
font is not a TrueType font, and the requested size is not available, the
Font Manager will scale the font to the requested size; this may result
in jagged characters (Figure 3.32).

Try this variation in your code:

/****************** WindowInit #****kkkkkkkkdkhkhrhxkkrrn /

void WindowInit (void)

{

WindowPtr window;

window = GetNewWindow(kBaseResID , nil,

kMoveToFront);
if (window == nil)
{
SysBeep (10); /* Couldn’t load the WIND
resource!!! */
ExitToShell () ;

}

ShowWindow (window);
SetPort (window)

88

Macintosh C Programming Primer

TextSize(24); /* Try some other sizes... */

MoveTo (kHorizontalPixel, kVerticalPixel);
DrawString ("\pHello, world!"):;
}

Changing the Hello2 Window

Another modification you can try involves changing Hello2’s window
type. Use ResEdit to edit the WIND resource in Hello2.n.rsrc. Click
on one of the other window types, save your changes, and run
Hello2.r again to check out your results.

Now that you have mastered QuickDraw’s text-handling routines,
you're ready to exercise the shape-drawing capabilities of QuickDraw
with the next program: Mondrian.

Mondrian

The Mondrian program opens a window and draws randomly gen-

erated ovals, alternately filled with white or black. Like Hello2,

Mondrian waits for a mouse click to exit. The program, with its vari-

ants, demonstrates most of QuickDraw’s shape-drawing functionality.
Mondrian is made up of three steps:

¢ As always, start by initializing the Toolbox;

¢ Next, initialize the drawing window;

¢ Finally, draw random QuickDraw ovals in a loop until the mouse
button is clicked.

Create a new folder called Mondrian in the Development folder.
Just as you did with Hello2, you'll use this folder to collect all the files
associated with the Mondrian program. Start by creating the
Mondrian resource file.

Resources

The Mondrian program needs a WIND resource, just as Hello2 did. Use
ResEdit to create a new resource file called Mondrian.®.rsrc inside
the Mondrian folder. Next, use ResEdit to create a new WIND
resource, matching the specifications in Figure 3.33. Select $Set
'IWIND' Characteristics... from the WIND menu and change the

Drawing on the Macintosh 89

ECJ==—————— WIND ID = 128 from Mondrian.m.rsrc ———-—or——=|

[b=F] =

Ei []| - ?
[Il 2

& Flln Edil Basgurca Window

oo Color: (® Default
(O Custom

Top: Height: > [Initially visible
teft:[s | width: [Close box

Figure 3.33 The WIND resource from Mondrian.m.rsrec.

Window Title: field to Mondrian. Next, select Get Resource Info
from the Resource menu, set the I1D: field to 128, and check the
Purgeable checkbox. Quit ResEdit, saving your changes.

Next, go into THINK C and create a new project called Mondrian.n
inside the Mondrian folder. Use Add... from the Source menu to add
MacTraps to the project. You'll find MacTraps inside the
Development folder, inside the THINK C 5.0 Folder, inside the Mac
Libraries folder.

Once MacTraps is added, open a new source code window, as you
did with Hello2, and enter the program:

#define kBaseResID 128
#define kMoveToFront (WindowPtr)-1L
fdefine kRandomUpperLimit 32768

/*************[

/* Globals */

/*************/

long gFillColor = blackColor;

90

Macintosh C Programming Primer

[RExkkhkkkkhkkkhkk [

/* Functions */
/***************/

void ToolBoxInit (void);

void WindowInit (void);

void MainLoop(void);

void DrawRandomRect (void);
void RandomRect (Rect *rectPtr);
short Randomize (short range):;

/****************** main ***************************/

void main(void)
{
ToolBoxInit ()
WindowInit ()
MainLoop () ;

/****************** ToolBoxInit *********************/

void ToolBoxInit (void)
{
InitGraf(&thePort);
InitFonts();
InitWindows () ;
InitMenus();
TEInit ()
InitDialogs(nil);
InitCursor();

/****************** WindOWInit ***********************/

void WindowInit (void)

{

WindowPtr window;

Drawing on the Macintosh

91

window = GetNewWindow(kBaseResID , nil,
kMoveToFront);

if (window == nil)

{
SysBeep(10); /* Couldn’t load the WIND

resource!!! */
ExitToShell():

ShowWindow (window);
SetPort (window);

/****************** MainLoop ***********************/

void MainLoop(void)

{
GetDateTime((unsigned long *) (&randSeed)):;

while (! Button())

{
DrawRandomRect () ;

if (gFillColor == blackColor)
gFillColor = whiteColor;
else
gFillColor = blackColor;

JrEkKkkKkkk KKk kK kkxk*x DrawRandomRect **xxkkxxkkkxkkkkkx /

void DrawRandomRect (void)

{

Rect randomRect ;

RandomRect (&randomRect) ;
ForeColor(gFillColor);
PaintOval (&randomRect);

Macintosh C Programming Primer

JrEx KKK K KKK KKKk Kk x* RandOmRecCt ***kxkkkxkkkkkxkxkkkxk /

void RandomRect (Rect *rectPtr)
{

WindowPtr window;
window = FrontWindow () ;

rectPtr->left = Randomize(window->portRect.right
- window->portRect.left);
rectPtr->right = Randomize(window->portRect.right
- window->portRect.left);
rectPtr->top = Randomize (window->portRect.bottom
- window->portRect.top);
rectPtr->bottom = Randomize(window->portRect.bottom
- window->portRect.top):

/****************** Randomize **********************/

short Randomize (short range)

{
long randomNumber;

randomNumber = Random();

if (randomNumber < 0)
randomNumber *= -1;

return((randomNumber * range) / kRandomUpperLimit);

)
Running Mondrian

Once you've finished typing in the code, save it as Mondrian.c and
add it to the project using Add (not Add...) from the Source menu.
Next, select Run from the Project menu, clicking ¥es to the question
Bring the project up to date? If the source code compiles
correctly, you should see something like Figure 3.34. The Mondrian
window will appear, filled with black and white randomly generated
ovals. Click the mouse button to exit Mondrian. If you get a different
result, check out your resource; make sure the WIND resource has the
correct resource ID; make sure your resource file is named correctly. If
your resource file appears to be all right, go through the code for
typing errors.
Now let’s look at the Mondrian code.

Drawing on the Macintosh 93

Mondrian I

Figure 3.34 Running Mondrian.

‘ Walking Through the Mondrian Code

The Mac Primer uses the convention of starting resource ID numbers
at 128, adding one each time a new resource ID is needed. Use any
number you want (as long as it's between 128 and 32,767).

Remember, if you change the number of the starting resource 1D,
you'll need to change the resource ID of all the resources in your
.rsrc files, too.

The #defines kBaseResID and kMoveToFront are identical to
those used in Hello2. The global variable gFillColor determines the
color used to draw each oval. As each oval is drawn, gFillColor is
alternated between blackColor and whiteColor.

#define kBaseResID 128
#define kMoveToFront (WindowPtr)-1L
#define kRandomUpperLimit 32768

94

Macintosh C Programming Primer

JRxkkkkkhkkkkkk [/

/* Globals */

/*x***********/

long gFillColor = blackColor;

Next come Mondrian’s function prototypes:

/***************/

/* Functions */
/******’k********/

void ToolBoxInit (void);

void WindowInit (void);

void MainLoop(void);

void DrawRandomRect (void);

void RandomRect (Rect *rectPtr);
short Randomize (short range);

The main routine is exactly the same as it was in Hello2:

/****************** main **‘k************’k*‘k*******k**/

void main(void)
{
ToolBoxInit ()
WindowInit ()
MainLoop () ;

The Toolbox initialization routine is also the same as in Hello2.

[REK KKKk kKKK K KKKk POOLBOXINLIE *hrrrkkkhhhkh X kXXX KKKk /

void ToolBoxInit (void)
{
InitGraf(&thePort);
InitFonts();
InitWindows () ;
InitMenus () ;
TEInit ():
InitDialogs(nil);
InitCursor():;

Drawing on the Macintosh 95

WindowInit () loads WIND number 128 from the resource file,
storing a pointer to it in myWindow. If the window couldn’t be created
for some reason, GetNewWindow () will return a value of nil. In that
case, Mondrian issues a beep, then exits to the Finder.

[XE KKk kR Ak KRk Kk xkxkk* WindowInit F*** XX dkkxkxkkxkhkrrkxxk /

void WindowlInit (void)
{
WindowPtr window;

window = GetNewWindow(kBaseResID , nil,
kMoveToFront);

if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!l! */
ExitToShell () ;
}

If GetNewWindow () was able to create the window, window is
made visible and is made the current port.

ShowWindow (window)
SetPort (window);

MainLoop () starts by using the current time (in seconds since
January 1, 1904) to seed the Mac random number generator. The
QuickDraw global randSeed is used as a seed by the random number
generator. If you didn’t modify randSeed, you'd generate the same
patterns every time you ran Mondrian.

The GetDateTime () Toolbox routine requires a pointer to an

unsigned long integer. That's why (Unsigned long *) is put in

front of randSeed in MainLoop (). Although providing this

information is not required for Toclbox calls by THINK C, it will ?a\‘m
I |

you plenty of debugging time later on.

|
|

96

Macintosh C Programming Primer

JRIKIRKK KKK RKX KKK K* MainLoop *KXKKAKKKRKKKKK KA KK KAK K /

void MainLoop(void)

{
GetDateTime((unsigned long *) (&randSeed));

MainLoop () then sets up a loop that falls through when the mouse
button is pressed. In the loop, DrawRandomRect () is called, first
generating a random rectangle inside the window, then drawing an
oval in the rectangle. Next, gFillColor is flipped from black to white
or from white to black.

while (! Button())

{
DrawRandomRect () ;

if (gFillColor == blackColor)
gFillColor = whiteColor;
else
gFillColor = blackColor;

DrawRandomRect () controls the actual drawing of the ovals in the
window. RandomRect () generates a random rectangle bounded by the
Mondrian window, ForeColor () sets the current drawing color to
gFillColor, and PaintOval () paints the oval inside the generated
rectangle.

/****************** DrawRandomRect *****************/

void DrawRandomRect (void)

{

Rect randomRect;

RandomRect (&randomRect);
ForeColor(gFillColor);
PaintOval (&randomRect);

RandomRect () uses the FrontWindow() Toolbox routine to
retrieve a pointer to the frontmost window. Since Mondrian only uses
one window, FrontWindow () is guaranteed to return a pointer to the
window we want.

Drawing on the Macintosh 97

/***t*****ttt*t**i* RandomRect ***x%xxkkkkkkkkhkkhkkkk /

void RandomRect (Rect *rectPtr)

{

WindowPtr window;
window = FrontWindow();

Next, RandomRect () sets up the rectangle to be used in drawing
the oval. Each of the four sides of the rectangle is generated as a
random number between the right and left (or top and bottom, as
appropriate) sides of the window pointed to by window.

The notation structPtr->aField refers to the field aField in
the struct pointed to by structPtr. For example:

rectPtr->left

refers to the field named left in the struct pointed to by
rectPtr. Struct pointer notation is specific to C, not peculiar to the
Macintosh. t'u

Every window data structure has a field named portRect (of type
Rect) that defines the boundary of the content region of the window.
Because window is a pointer to a window data structure, you use
window->portRect to access this rectangle.

rectPtr->left = Randomize(window->portRect.right
- window->portRect.left);
rectPtr->right = Randomize(window->portRect.right
- window->portRect.left);
rectPtr->top = Randomize(window->portRect.bottom
- window->portRect.top);
rectPtr->bottom = Randomize (window->portRect.bottom
- window->portRect.top);

Randomize () takes an integer argument and returns a positive
integer greater than or equal to 0, and less than the argument. You
may find Randomize () helpful in your own applications.

98

Macintosh C Programming Primer

/****************** Randomize **********************/

short Randomize(short range)

{

long randomNumber;

Randomize () starts by calling Random (), a Toolbox utility that
returns a random number between —32,767 and 32,767.

randomNumber = Random();

If the value returned is negative, multiply it by -1. This creates a
number between 0 and 32,767.

if (randomNumber < 0)
randomNumber *= -1;

Finally, multiply that number by the input parameter, then divide
by kRandomUpperLinit (which was defined earlier to be 32,768). This
creates a number greater than or equal to 0 and less than the input
parameter.

return((randomNumber * range) / kRandomUpperLimit);

Variants

Here are some variants of Mondrian. The first few change the shape of
the repeated figure in the window from ovals to some other shapes.

Your first new shape will be a rectangle. This one’s easy: Just
change the PaintOval () call to PaintRect (). When you run this,
you should see rectangles instead of ovals.

Your next new shape is the rounded rectangle. You'll need two new
parameters for PaintRoundRect (): ovalWidth and ovalHeight.
These two parameters affect the curvature of the corners of the
rectangle (1:179). Try the following values for ovalWidth and
ovalHeight:

#define kOvalWidth 20
#define kOvalHeight 20

Drawing on the Macintosh 99

Now, change DrawRandomRect () as follows:

/****************** DrawRandomRect ***‘k*************/

void DrawRandomRect (void)
{

Rect randomRect;

RandomRect (&randomRect };
ForeColor(gFillColor);
PaintRoundRect (&randomRect, kOvalWidth, kOvalHeight);

When you run this variation, you should see something like
Figure 3.35.

Mondrian

Figure 3.35 Mondrian with rounded rectangles.

Instead of filling the rectangles, try using FrameRoundRect () to
draw just the outline of your rectangles:

/****************** DrawRandomRect khkkkkkrhkkxkhkkhkkhx [/

void DrawRandomRect (void)
{
Rect randomRect ;

100

Macintosh C Programming Primer

RandomRect (&randomRect);
ForeColor{(gFillColor);
FrameRoundRect (&randomRect, kOvalWidth, kOvalHeight):

The framing function is more interesting if you change the state of
your pen: The default setting for your pen is a size of 1 pixel wide by 1
pixel tall, and the pattern used to fill drawn lines is black. Start by
adding #defines of PEN_WIDTH and PEN HEIGHT:

#define kPenWidth 10
#define kPenHeight 2

Change the pen state by modifying WindowInit () as follows:

/**x****'k********** WindOWInit *********************x*/

void WindowInit (void)
{

WindowPtr window;

window = GetNewWindow(kBaseResID , nil,

kMoveToFront);
if (window == nil)
{
SysBeep(10); /* Couldn’t load the WIND
resource!!! */

ExitToShell ();

ShowWindow (window);
SetPort (window);

PenSize(kPenWidth, kPenHeight):
PenPat(gray):

Here, you changed the pen pattern to gray, the pen width to
kPenWidth, and the pen height to kPenHeight. Your result should
look something like Figure 3.36.

While youre at it, try using InvertRountRect() instead of
FrameRoundRect (). InvertRoundRect () will invert the pixels in
its rectangle. The arguments are handled in the same way (Figure
3.37).

Drawing on the Macintosh 101

=—————————— Mondrian %I

Figure 3.36 Mondrian with framed, rounded rectangles.

=———— Mondriane0bn—————————|

S

Figure 3.37 A ’60s Mondrian with inverted, rounded rectangles.

Next, try using FrameArc() in place of InvertRoundRect ().
FrameArc () requires two new parameters. The first defines the arc’s
starting angle, and the second defines the size of the arc. Both are
expressed in degrees (Figure 3.38).

102

Macintosh C Programming Primer

00

90°

Figure 3.38 Figuring your arc.

Change DrawRandomRect () as follows:

/****************** DrawRandomRect *****************/

void DrawRandomRect (void)

{
Rect randomRect;

RandomRect (&randomRect):;
ForeColor(gFillColor);
FrameArc(&randomRect, kStartDegrees, kArcDegrees);

Don’t forget to #define kStartDegrees and kArcDegrees. Try
using values of 0 and 270. Experiment with PaintArc() and
InvertArc().

We’ll do one final variation with QuickDraw, which is useful only on
color monitors. If you change the ForeColor () arguments in
MainLoop (), you can see colored filled ovals (or whatever your
program is currently producing). Change the declaration of the global
gFillColor as follows:

long gFillColor = redColor;
Modify MainLoop () as follows:

/****************‘k* MainLOOp *k**********************/

void MainLoop (void)
{
GetDateTime (&randSeed);

Drawing on the Macintosh 103

while (! Button())
{
DrawRandomRect () ;

if (gFillColor == redColor)
gFillColor = yellowColor;
else
gFillColor = redColor;

Finally, make sure DrawRandomRect () calls a Paint () function to
do its drawing (as opposed to a Frame () or Invert () function):

/****************** DrawRandomRect *****************/

void DrawRandomRect (void)
{

Rect randomRect;

RandomRect (&randomRect);
ForeColor(gFillColor):;
PaintArc(&randomRect, kStartDegrees, kArcDegrees);

The following colors have already been defined for you:
blackColor, whiteColor, redColor, yellowColor, greenColor,
blueColor, cyanColor, and magentaColor. These colors are part of
Classic QuickDraw—the original, eight-color QuickDraw model that
was part of the original Macintosh. Newer Macs support a new version
of QuickDraw called Color QuickDraw, which supports m