
OsborneMcGraw·Hill

Game Animation

Macintosh TM Game Animation

Macintosh TM Game Animation

Ron Person

Osborne McGraw-Hill
Berkeley, California

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please
write to Osborne McGraw-Hill at the above address.

Macintosh is a trademark of Apple Computer, Inc.

Macintosh •M Game Animation

Copyright© 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 898765

ISBN 0-07-881127-9

Paul Hoffman, Technical Editor
Cheryl Creager, Composition
Judy Wohlfrom, Text Design
Yashi Okita, Cover Design

Animation of a Bouncing Ball

Table of Contents

Introduction ix

Chapter 1

An Animation Primer 1

Chapter 2

Programming Style 11

Chapter 3

Macintosh ROM Routines
and Picture Animation 19

Chapter 4

Image Animation 39

Chapter 5

MacPaint 55

Chapter 6

Background Animation 75

Chapter 7

Collision Detection
and Identification 93

Chapter 8

Program Presentation and Control 111

Chapter 9

Special Effects 143

Chapter 10

Developing Your Program 169

Chapter 11

Demonstration Programs 177

Appendix A

Animation Toolkit 197

Appendix B

MacBASIC Animation 227

Appendix C

MacPascal Animation 237

Appendix D

Additional Sources 245

Index 247

Introduction

M acintosh Game Animation shows you how to create, animate, and
manipulate figures, draw and animate backgrounds, use MacPaint draw
ings in your programs, and program a variety of special effects. Using

the material you learn in Macintosh Game Animation, you will be able to program
training simulators, animated storyboards for advertising, and games.

In addition to the extensive animation and graphics demonstrations included in
Macintosh Game Animation, four software utilities are given: the Pattern Maker, the
Cursor Maker, the MacPaint-to-BASIC Converter, and the Animation Maker.
These software programs allow you to create and test your own pattern and cursor
designs and to convert MacPaint drawings stored in the Clipboard or Scrapbook
into BASIC PICTUREs. The Animation Maker lets you test, edit, and save sequen
ces of animated figures for use in your own programs.

The programs provided in this book will work with either a 128KB or 512KB
Macintosh with either one or two disk drives. The programs are written for
MS-BASIC version 2.0 or later versions. Earlier versions of Microsoft BASIC can
run many of these programs, but line numbers must be added, and GOTO and
GOSUB label references must be changed to reference these line numbers.

This book will being with a one-chapter primer on animation. This is followed,

ix

x Macintosh Game Animation

in Chapter 2, by an explanation of how programs should be constructed with
structured programming.

The use of the Macintosh ROM drawing functions is described at the beginning
of Chapter 3. The latter half of the chapter explains PICTURE motion and anima
tion. Chapter 4 describes a second form of animation that uses image arrays. Image
arrays produce faster animation of complex figures than is possible with BASIC
PICTURE animation.

Two different types of background animation are explained in Chapter 5. One
type animates rectangular screen sections as though displaying a movie behind the
animated figures. This method allows backgrounds to display complex, repetitive
motion. The second background animation method scrolls background scenes past
the display. Scrolling the background allows figures to cover a much larger back
ground area than that enclosed by a single display screen.

Chapter 6 demonstrates how to draw sequences of figures and backgrounds
with MacPaint so that the figures and backgrounds can be used in your BASIC
programs. MacPaint drawings can be very complex and detailed, but they will
animate at the same speed as simple drawings.

Computer animation has the advantage of making the figure react to player
input and events onscreen. Figures must be able to detect and identify other figures
and backgrounds they collide with. Chapter 7 demonstrates how to detect colli
sions, identify the object collided with, and give a reaction that is unique to the
object struck.

In MS-BASIC version 2.0 and later, your programs can control Macintosh
windows, dialog boxes, menus, buttons, and edit fields. The discussion and pro
gram in Chapter 8 demonstrate how to use these Macintosh features and simul
taneously animate figures in multiple windows. You can even move, resize, and
change the display order of the windows.

Chapter 9 shows how special visual effects add pizazz to your programs. The
effects range from those as simple as a ball bouncing under gravity to more
complex effects, such as transforming an image array as the image figure moves.
You are also introduced to the Macintosh multi-voice capability.

Many of the book's techniques and special effects are brought together in the
two demonstration programs of Chapter 11. The first program, "Satellite Intercep
tor," demonstrates how to detect collisions, animate a rotating satellite, control
motion with the mouse, and animate a background. The second program, "The
Four-Stroke Engine," simulates the internal operation of an engine. It demon
strates, on a simple level, how you can use animation in training and education.
Users control engine operation by sliding gas flow and mixture control bars to new
levels. The program reacts to these new levels by changing animation speed or
presenting performance notes.

Appendix A of this book includes four tools that will help you greatly when you

Introduction xi

are programming animation and drawing. These four utilities are the Pattern
Maker, the Cursor Maker, the MacPaint-to-BASIC converter, and the Animation
Maker.

Creating new Fill and Draw patterns with the Pattern Maker is easy. You turn
pixels in the pattern on and off by pointing to them with the mouse cursor and
pressing the mouse button. The number code for each pattern you create displays
onscreen.

Creating a cursor shape by hand is long, tedious, and liable to error. The Cursor
Maker allows you to create both a Cursor Data pattern and Mask Cursor pattern by
pointing the mouse cursor and clicking the button. You can create and test new
cursors rapidly and easily. The resulting cursor array data can be printed to an
Imagewriter or saved to disk and merged with your BASIC programs.

MacPaint produces superior sequences of complex and detailed figures and
backgrounds. The Converter program changes MacPaint drawings stored in the
Clipboard or Scrapbook into BASIC PICTUREs. These PICTUREs can be stored
on disk and used in your BASIC programs and the Animation Maker.

Creating sequences of realistically animated figures would be difficult without
the Animation Maker. The Animation Maker lets you convert BASIC PICTUREs
into animation sequences of up to nine eels per sequence. You select the size of the
animation eel. Sequences can be tested animating at different speeds, directions,
and timing delays. When your figures animate the way you want, you can save them
to disk as PICTUREs or images. Storing figures on disk gives your programs access
to more and higher quality figures.

The four tools listed in Appendix A and the two demonstration programs from
Chapter 11 are available on a Macintosh formatted disk. They require binary
MS-BASIC version 2.0 or a later version.

To purchase your disk, send $19.95 (check or money order) to:

Animation Magic Macintosh
Box 552

Suisun City, CA 94585

Please indicate that you wish to purchase the ANIMATION MAGIC Toolkit
Disk for the Macintosh. California residents, please add state sales tax.

Chapter 1

An Animation Primer

0 ur eyes can be tricked into seeing lifelike movement by viewing rapidly
changing sequences of still images. This is how animation works. In this
chapter you will be introduced to the concepts of animation as a foundation

for creating the figures used in computer games. Once you learn the basics, you
will be ready to create animation sequences with MacPaint or the Image Maker
utility described in Appendix A.

A History of Animation

Animation had its beginnings in flip books, which are composed of a series of
drawings illustrating each step in the action of a motion sequence. By quickly
flipping through the pages, the viewer could animate the drawings in the book.

During the 1880s, Eadweard Muybridge made photographic studies of human
and animal motion. Each sequence was photographed frame by frame and then
projected with the zoetrope, an instrument that rapidly moved the sequence to
produce animation. Muybridge's work established the basis for modern film ani
mation and continued to serve as a source of information for animators.

With the advent of motion pictures, cartoonists like Walt Disney were able to

1

2 Macintosh Game Animation

produce realistic animation. In traditional film animation, each single image of a
sequence is called a eel. Rapidly displaying these individual units produces eel-by-eel
animation. Cels are drawn with pen, paint, or other media and then photographed.
The images can then be projected in rapid sequence.

A computer can be used to animate images in a manner similar to film anima
tion. A series of eels is stored in memory and then rapidly displayed on the screen,
rather than projected as in film animation.

Most computer graphics images are created with pixels, the"dots" that make up
the display screen. An image created with pixels has jagged edges because it is
composed of dots rather than smooth, hand-drawn lines. Because a line of pixels
looks very different from a pen or pencil line, the fine detail and realism of film
animation is not available with computer graphics animation. However, the high
degree of resolution in the Macintosh produces images that appear much smoother
than those of other personal computers.

When designing your animation, remember that you will be drawing with
pixels, not pencil or paint. In this chapter, figures are drawn with both lines and
pixel shapes. By comparing the two types of drawings, you will more easily see how
to generate animation figures on the Macintosh. In some instances it is easier to
think of "sculpting" figures made of pixels than to think of drawing with pixels.

Macintosh Animation Methods

The Macintosh computer can utilize two different methods for creating and
animating images:

• Picture Animation
• Image Animation

The first method, Picture Animation, rapidly draws sequences with the Macintosh
drawing routines stored in Read-Only Memory (ROM). They are drawn so fast
that they appear to the eye as one image that is changing or moving.

The second method used with the Macintosh is Image Animation. In Image
Animation, a rectangular image of any size or pixel pattern is stored as numeric
information in an array. The stored image can then be redisplayed anywhere on the
screen with the PUT statement. Rapidly displaying sequences of different images
with PUT can create animation. Image Animation has the advantage of being able
to manipulate images and the backgrounds they cover to produce special effects.

Depending upon the type of program, the Macintosh can animate figures by
displaying sequences of eels generated with Picture or Image Animation. But there
is more to creating good animation than simply drawing a sequence of eels and
displaying it on the screen. You must first understand how movements are broken
up into sequences and how figures are designed to move realistically.

An Animation Primer 3

Principles of Animation

To learn how to animate movement-dividing motion into a sequence of eels-you
must learn how to see in a new way. For instance, when watching a human or
animal walk, try to notice such details as the angle of the body, the path of
movement, the shifting of weight, and where body motions are fast or slow.

As mentioned earlier, Eadweard Muybridge made extensive, frame-by-frame
studies of human and animal motion. The photographs were taken against a ruled
black background that provided a clear delineation of motion paths and body angles.
Muybridge's books, The Human Figure in Motion and Animals in Motion (New York:
Dover Publications, 1955, 1957), are excellent resources for the novice animator.

The following sections discuss some of the details of motion you should be
aware of when you are creating animation sequences.

Motion Paths and Body Angles

Motion path is the line created by the figure as it passes through a series of
movements. Body angle shows where the figure is leaning, indicating the direction of
travel. Motion path and body angle are critical in designing animated sequences.
Because computer animation on the Macintosh does not allow as much detail as
film animation, the motion path and body angle in a figure are very important
elements for successfully creating figures that move realistically.

Either the head or the center of gravity is a good point to use when plotting the
motion path of a human. Motion paths for animals are often indicated by their
center of gravity, through the chest. In Figure 1-1, the motion path is based on the
movement of the head during running and jumping.

Exaggerating the motion path adds emphasis to a movement. For example, a
human's head stays nearly level during running, so the runner's head in Figure 1-1
does not move up or down. Some figures may run with a bounding motion, so their
motion path has a wavelike pattern.

Body angle, the way a figure is leaning, is often close to the angle of the
backbone, although not always. Body angle is important in animation because it is
the most obvious clue to a figure's direction of travel. Almost any change in
direction or speed requires a change in body angle. The faster the motion or change
of direction, the more acute the body angle.

Extremes

When you watch or imagine a motion, you are probably most aware of extremes. The
extremes are the positions that indicate the major movements during a sequence,
when a body part reaches the most exaggerated points of its motion. Understand-

4 Macintosh Game Animation

Motion
Path

Angle

Figure 1-1. Huma n running and jumping -mo/ion path and body angles

ing which eels in a sequence are extremes is important, as they are guideposts
around which the rest of the animation is built. Exaggeration must also be consid
ered when determining the extremes in a figure's movement, since it can be used to
emphasize critical actions. Figure 1-2 shows extremes for a human running and
jumping. Notice how the extremes define the key points of motion or the key points
where action is changing.

Repetitive or cyclic motion such as walking may have two or more repeated
extremes. The extremes of walking, for example, are where the legs and arms are
fully extended forward and backward and where they are directly next to the body.
Nonrepetitive motion can have extremes at any point where a major change of
body position or gesture occurs.

An Animation Primer 5

I

In-Betweens

After the extremes in a sequence are defined, the in-between positions must be
added. The in-betweens smooth the transition from one extreme to another. While
extremes are important for carrying the primary action, the in-betweens make the
entire movement look smooth and believable .

To create the in-between eels in animation, each subsequent eel in the sequence
is changed slightly to continue the indicated type of movement. Such changes must
be small in order to produce continuous movement.

One advantage of computer animation is that it allows you to duplicate images
easily so you don't have to draw a new figure for each eel. In order to create
in-betweens, the figure in a previous eel can be duplicated and modified to create

6 Macintosh Game Animation

Two Extreme Positions in Running

/ Two Extreme Positions in Jumping

I

Figure 1 -2. Human running and jumping-extreme positions (the lines th rough the figure
indicate the body angle)

An Animation Primer 7

the next movement in the sequence. This procedure can be repeated for each eel in
the sequence. The Image Maker utility can create, duplicate, and make simple
changes to figures in a sequence. MacPaint can also create and change figures.

Cycles

Cycles are the repetitions of movement that animated figures make in a sequence.
If you want to show a figure walking across the screen, it isn't necessary to draw
160 different eels, each showing the figure in a different position. Since the figure
repeats the movement over and over, you only need to identify the major repetitive
cycle of the motion and draw that cycle. Thus, instead of drawing 160 eels, you draw
only five or six, which represent the key cycle of movement.

Tempo

Every animation sequence has a particular tempo, depending upon the type of figure
and motion being depicted. The tempo in animation is similar to the tempo in
music: it is the speed at which the eels are shown. When you break a movement
down into extremes, in-betweens, body angle, and so on, tempo must be consid
ered. Keep in mind that body parts may move with the same tempo but have speeds
that vary inside that tempo. The swinging arm of a walking figure, for example,
moves faster as it passes the hip than when it is outstretched.

Marking a body's location on the motion path at specific times can help you draw
animation that moves with varying speed and that is not repeated in cycles. Figure
1-3 shows a series of tempo marks representing a runner. As the runner runs and
jumps, the marks are evenly spaced because the runner is moving at a constant
speed. When the figure touches down and begins to slow, the marks are closer
together.

Preparing an Animation Sequence

Once you have defined the purpose of your animation or game concept, you should
draw a storyboard. A storyboard is a s.eries offrames that breaks down the action of a
visual story. Drawing a storyboard helps you d.efermine the necessary sequences
and the eels that will make up those sequences. .

Creating animation sequences on the Macintosh is easier if you prepare by
following these steps:

1. In order to create an animated character, you must have an idea about who
or what it is and how it should behave. You can design and draw a figure.only
if you know what you want the figure to convey. ·

8 Macintosh Game Animation

-+----Constant Speed- Running and Jumping---~ Lose Speedf--Resume-+
Landing Running

Figure 1-3. Motion path, body angle, and tempo marks for human running and jumping

2. After deciding upon a figure and its personality, determine whether the
actions are cyclic (repeating over and over again) or noncyclic (occurring only
once). The action of the figure may be a combination of both cyclic and
noncyclic movements. For example, a long jumper could be animated using a
repetitive, cyclic sprint that ends with a noncyclic jump and landing.

3. Draw a motion path and put body angles and tempo marks where the figure
will be when moving. Refer to Figure 1-3 for guidelines in determining
motion path, body angle, and tempo.

4. Draw stick figures at the extreme positions in the sequence using the tempo
marks and body angles as guides. Figure 1-4 shows a running and a walking
figure. The sequences show the body angle in some eels, with the stick
figure in others. The sequences are cyclic, with the motion restarting in eel 1
after eel 6 has been displayed.

5. After sketching the stick figures that represent the extremes, sketch the
in-between stick figures so that the figure moves from one extreme to the
next. These stick figures needn't be exact or highly detailed, but they should
convey a feeling of how the figure moves.

6. The number of in-between eels you draw depends on the speed of the
figure's movements within the sequence, the smoothness of motion, and the
speed of the program. If it is a fast figure, there may be as few as four eels per
cyclic sequence. If the figure moves slowly and needs very smooth motion, a
cyclic sequence may have seven or eight eels. You can adjust the actual
number of in-between eels when you create the figure on the Macintosh.

Running

Cel 2,_.._____,_......,

Cel 3 '-T-....._ __,

Cel4~~-
c.IS I

c.16 I
C•II f
~,, I

An Animation Primer 9

Walking

Cel 1,....___.{___.._,

Cel2~/_.._,
Cel3,__,__/_

Cel 4 ~~.......__._,
Cel5~/-...,

Cel 6,_......../-:c----.

Cel 1,.___,__f_

Cel2 .._!__..
Figure 1-4. Body angles and stick figure running and walking

10 Macintosh Game Animation

7. Once you have sketched the sequence, pixel-built images can be drawn using
the Image Maker utility or MacPaint. You may find it easier to create figures
on the computer if you sketch one extreme figure on graph paper to
determine the correct pixel height and width.

Chapter 2

Programming Style

P lanning and developing programs so they are easy to correct and enhance
should be the programmer's foremost goal. Many of the programs in this
book use structured programming, in which a master control program calls subrou

tines that have been specifically created to perform assigned tasks. Structured
programming breaks a big project down into smaller, more manageable pieces.

This chapter presents an outline, subroutines, and a description of a program
called the Slide Show program to show how structured programs are developed.

Another programming technique, known as straight-line programming, is used in
short examples in this book. In straight-line programming, code is written in the
same order as it is used by the program, and there are few subroutines designed for
specific tasks. Consequently, straight-line programming often creates convoluted
programs with many GOTO statements and redundant sections. As a straight-line
program becomes longer, keeping track of the variables and the currently active
part of the program becomes increasingly more difficult. Real confusion can occur
when one or two minor changes cause problems to appear elsewhere. Once a large
straight-line program is complete, it is difficult to make changes, debug, or test.

Structured programming eliminates such straight-line programming problems

11

12 Macintosh Game Animation

by using subroutines to perform jobs within the framework established by the
master control program. Structured programming can be compared to building a
house. After the type of house is decided, a plan is made for construction, including
everything from laying the foundation to putting up the walls. With structured
programming, the master control program coordinates tasks, while subroutines
execute the tasks. A subroutine can perform one large task, such as "put up the
walls," or it can repeat a smaller job over and over, such as "hammer in the nail."
Subroutines can also be saved to disk and used in other programs.

Building a Structured Program

To begin a structured program, first write a thumbnail description of the
program you want to create. Imagine it running. As you see it in your mind, ask
yourself, What different jobs are being done? What large and small jobs are done
again and again? Many of the actions, calculations, and displays will probably use
the same subroutines. For example, think how many times you would use the
"hammer the nail" subroutine when building a house.

As you develop your job list, additional jobs and enhancements will come to
mind. Write down the subroutines needed for these programs as they occur to you.
They can be organized later. Where necessary, add a reminder of what a specific
subroutine could do. Figure 2-1 describes the Slide Show program. In the first
draft represented by Figure 2-1, the subroutines are not necessarily listed in the
order used in the program. Figures 2-2 and 2-3 also include subroutines that were
added as the program outline was built.

Master Control Program

Your list of subroutines is now like a construction site full of building materials and
a crew of workers. However, one additional element is needed before work can
begin - a foreman to coordinate all the tasks required to complete the building.
The master control program acts as your program's foreman, organizing when and
for what purpose each subroutine is used. In addition, the master control program
enables subroutines to work together by pitching in when necessary and doing
work that they aren't designed for.

Imagine yourself doing the computer's work. List the subroutines in the order
they are used. If one subroutine uses another, make lists that show, for example,
the minor subroutines used by a major subroutine.

After listing all the subroutines needed in the program, as shown in Figure 2-1,
you should outline them in their order of use. This outline can provide the
structure for developing the master control program. When the outline is finished,
you should be able to see what the program can do simply by reading it. The outline

Programming Style 13

Description of the program:

The Slide Show program displays sequences of MacPaint or BASIC pictures under
timer and mouse control. The timer automatically switches pictures at time intervals
set by the operator. The operator may also select manual operation, displaying pictures
in forward or backward sequence as directed by the mouse. Operators can load
MacPaint documents from the Clipboard or from BASIC pictures and store them in
the sequence used by the Slide Show program. Display sequences can be edited and
rearranged. Once arranged, complete shows can be saved to disk for later use.

Subroutines for the program:

Initialize
Polling loop
Menu creation
Presentation control
Update window 1
Display the show
Set manual display
Set timer display
Create a show sequence
Update the creation window
Select a picture to add
Insert a name and picture in the sequence
Delete a name and picture from the sequence
Convert Clipboard pictures to BASIC files
Save a completed show
Load a completed show

Figure 2 -1. Description and subroutines of the Slide program

should make clear when to begin or end an action, when to skip something, when to
check an item, and so on. As you make the outline, leave room for subroutines that
you need to add later.

Figure 2-2 shows an outline for the Slide Show program. When writing the
outline you can keep the order of major and minor subroutines clear by indenting
the different levels and types.

The outline in Figure 2-2 makes reference to Microsoft BASIC's ability to call
subroutines by name. The program does not use line numbers. By wisely selecting
your subroutine names so that they explain their functions, you can write a master
control program that is self-explanatory. With some experience you will be able to
write a master control outline that can be used directly as the master control
program.

14 Macintosh Game Animation

Master Control

Initialize
Enter polling loop

(Continuous loop until menu selection)
Check menu number selected and item number
If menu number is not zero, GOSUB to selected function:

Presentation, Create, Clipper, Saver, Loader, or Quit
Restart polling loop

Major Subroutines

Initialize
Define variables, dimension arrays
Display window 1
Redefine menu

Presentation
Depending on item number selected, GOSUB DisplayShow,

StopShow, Manual, Timer
Update window 1

Create
Display window 2, update it, and activate buttons
Check button activity loop:

Check button activity and button number
If buttons 1 through 4 are pressed, then GOSUB

SelectSlide, Insert, Delete, Quit
If buttons greater than 4 are pressed, then set BUTTONNUM

and SLIDENUM to that button (SLIDENUM selects slide
name and picture)

Set button status appropriately
Restart button activity loop

Close window 2
Update window 1

Clipper
Display window 2
Reset menu to BASIC and activate only "Edit"

(Gives access to Clipboard and routines)
Wait to load Clipboard from Scrapbook
Load Clipboard into BASIC picture
If desired save BASIC picture as a sequential file
Close window 2
Update window 1

Saver
Use FOR/NEXT loop to save SLIDES$ and SLIDENAME$ arrays into disk files

Figure 2-2. Outline of the Slide Show program

Loader
Load SLIDES$ and SLIDENAME$ arrays from diskette

(Use FILES$ to select loading file name)

Quit
Ask for verification before exiting

Minor Subroutines

DisplayShow
Clear window 1 and set variables
If timer is to be used, then ON TIMER
Display loop

Programming Style 15

If SLIDES$ doesn't hold PICTURE, then do next one until all done
Display PICTURE covering full screen
If timer in operation, then wait until time up
If mouse button pressed once, choose forward direction, then -do next slide
If mouse button pressed twice, choose backward direction,

then do previous slide
Restart loop

Clear screen, turn off timer

(Continue describing what each subroutine does and the subroutines it uses)

Figure 2-2. Outline of the Slide Show program (continued)

Subroutines can be placed in any order in the program, although they are easier
to find if grouped by type or in their order of use. For example, all special effects
subroutines can be listed together. Use a REM statement or an apostrophe(') to
indicate where subroutines and headings are placed in the program.

Figure 2-3 shows the master control program and subroutine listings for the
Slide Show program. In the Slide Show, the master control program enters a
continuous loop that polls for menu selections. Menu selection determines which
subroutine executes. In addition to coordinating subroutines, master control pro
grams can handle functions such as condition checking, branching, and short math
manipulations.

With a master control program entered in the Macintosh, you can add BASIC
code to the subroutines and master control functions. Building a simple version of
your program first and then adding more complex features as previous versions are
debugged is often the easiest way to organize your program. When you want only
selected portions of the program to run, stop unneeded GOSUB and subroutine
calls by putting an apostrophe (') in front of them. Later you can delete these calls

16 Macintosh Game Animation

·Slide Show Program

·Mester Control
GOSUB Initialize

Po 11 i ngloop:
MenuNum:l1ENU(O): ltemNum:l1ENU(1)
ON MenuNum &OSUB Presentation, Create, Clipper, Seyer,

Loader, Quit
&OTO Pollingloop

'MAJOR SUBROUTINES

Initialize:
Presentation:

DisplayShow:
StopShow:
Manuel Show:
TimerShow:

Create:
SelectSHde:
lnsertSlide:
DeleteSHde:

Clipper:
LoedFromCHp:
SeYePicToBesic:

Seyer:
Loader:
Quit:

' OTHER SUBROUTINES

MainMenu:
UpdeteMeinWindow:
UpdeteCreeteWindow:
TimerDone:

Figure 2 -3. The Slide Show code

Programming Style 17

when you want that line to execute. If you use line numbers in your programs, do
not address GOTO and GOSUB commands to the remark heading of a subroutine.

Structured programming makes adding features and enhancements simple
because it is only necessary to insert one or two lines of BASIC in the master
control program and then add the new subroutine at the end of the program. Many
programs can be built in this stepwise fashion, starting with a simple framework
and adding enhancements.

Writing Subroutines

When writing new subroutines, especially for animation sequences or special
effects, develop and debug them as small straight-line programs. When they work,
add them to your program. Whenever adding new segments to a program, be sure
to check that the program works correctly before the addition. Working forward in
this manner aids you in finding errors that occur after the new subroutine is added.

If you save your commonly used subr~utines on diskette in ASCII format, you'll
be able to add them to new programs without rewriting. When using such a library
of stored program segments, make sure that the variables and GOTO and GOSUB
statements are changed to work with the new program. Refer to the discussion of
the MERGE statement in the BASIC manual for an explanation of saving and
merging program segments.

Check that newly added program segments work correctly in the main program
before inserting any others. In addition to developing your own subroutines, you
may be able to obtain commonly used routines from Macintosh magazines and user
groups.

Testing

Your program is finished. You think it is complete, but one important task remains:
you must test it.

There are two levels of testing: alpha and beta. In alpha testing you run your
program, trying to predict any mistakes that other players might make. One
drawback of alpha testing is that you know your own program very well and may
not be objective about it. The alpha test should be used to modify design flaws and
correct obvious bugs. For true user objectivity, beta testing is needed. With beta
testing, others use your program.The people chosen for this test should be from
the program's target audience.

Many computer users assume that problems result from their own lack of
knowledge- they may not know that something is wrong with a part of the
program. As your program is being tested, watch what the users do, listen to what
they say, and observe their responses and reactions. Let the test progress with a

18 Macintosh Game Animation

minimum of help or explanation. One of the important questions to be answered
with the beta test is whether the controls and screen prompts are easy to under
stand and use. All controls and menus should follow standard Macintosh proce
dures as demonstrated in MacPaint and MacWrite. Programming to meet these
standards is explained in Chapter 8.

Make sure you keep notes on the beta test. Many programmers and game
writers go through 20 or more revisions to improve quality. Additional changes
and refinements are part of the process of good programming.

Chapter 3

Macintosh ROM Routines
And Picture Animation

~···· ~ ..
••• ··-

T he Macintosh computer contains special Read-Only Memory (ROM)
routines that can be useful in your BASIC animation programs. Many of
these ROM routines give the Macintosh its excellent graphics capabilities.

In addition to drawing with the ROM routines, BASIC can use them to create
figures for Picture Animation. Picture Animation brings drawings to life by rapidly
redrawing picture sequences so that they appear to move and change.

This chapter demonstrates how to

• Create patterns for background, pen, and paint routines.

• Use many of the Macintosh ROM drawing routines.

• Move pictures under mouse control.

• Store and animate picture sequences with the use of multidimensional string
arrays.

Macintosh ROM Drawing Routines

BASIC has two types of drawing abilities: BASIC statements and ROM functions.
The BASIC statements LINE, CIRCLE, PSET, and PRESET for Macintosh MS-

19

20 Macintosh Game Animation

BASIC are the same as other MS-BASIC statements, but they are too slow for
animation. The Macintosh ROM drawing functions are more versatile and faster.

BASIC includes CALL functions that directly control five types of ROM rou
tines: text characteristics, cursor design, patterns, pen drawing, and figure draw
ing. The following sections describe and demonstrate how to use patterns, pen
drawing, and geometric figure drawing. Text control and cursor design are dis
cussed later.

Patterns

You can shade figures and paint backgrounds with MacPaint-like patterns of your
own design. The following paragraphs demonstrate how patterns are created. The
Pattern Maker utility, shown in Appendix A, enables you to draw and see new
patterns.

Creating Patterns

The Macintosh uses patterns when drawing with the pen, replacing the back
ground, and filling geometric shapes. These patterns are defined in an 8 by 8 bit
pattern that corresponds to an 8 by 8 pixel pattern on the screen. Each bit in the
pattern corresponds to a pixel on the screen.

Each bit within the pattern has one of two states, 0 or 1. When a bit's value is 1,

its corresponding pixel is black; when it is 0, its pixel is white. Changing the value of
a bit in the bit pattern changes the corresponding pixel on the screen.

A bit pattern, such as the one shown in Figure 3-1, can be reduced to four
integer numbers. Each two rows in the pattern (16 bits) can be reduced to a single
MS-BASIC integer. To calculate this number, add together all the values of bit
positions that are black (a bit status of 1). The integer value for each position is also
shown in Figure 3-1.

The maximum value that two rows in a pattern can have is 65536; however, the
value must be stored in an integer variable and integer variables only store
numbers between -32767 and 32767. Numbers greater than 32767 must have
65536 subtracted before being stored. For example, two rows in a bit pattern that
evaluate to 60403 must be stored as 60403 - 65536, which is - 5133.

Converting bit patterns to integer values by hand is simple, but can be tedious.
With the Pattern Maker utility in Appendix A, you can design and see new patterns
with their integer values.

Changing a Pattern

The first four elements of an integer array, elements 0 through 3, store the pattern
values. Because pattern arrays have only four elements, they do not have to be

ROM Routines and Picture Animation 21

BX B BIT
PATTERN

PATTERN ARRAY
ELEMENTS

pott8rn%(0)

pot t8rn%(2)

pottBrn%(3)

ARRAY ELEMENT CALCULATION

128 64 32 16 8 4 2

p8ttern'R.(O) = 4096 + 256 + 32 + 2 = 4386

Figure 3 -1. Calculating bit pattern values

dimensioned; however, the array must be specified as integer with either the
DEFINT statement or with the % suffix.

Macintosh ROM drawing routines retrieve some of their values directly from
memory. The VARPTR(integer%(0)) function finds the memory address for the first
byte in the array integer% and passes it to the ROM routine. The ROM drawing
function can then go directly to that location in memory and retrieve the four array
elements holding the bit pattern. Other ROM drawing routines use the VARPTR
function to find the address of other data stored in arrays.

The BACKPAT ROM routine changes the pattern used to clear the screen, draw

22 Macintosh Game Animation

LIGHT GREY PATTERN

CROSSHATCH PATTERN

4386

17544

4386

17544

BASKETWEAVE PATTERN

Figure 3-2. Three background patterns

-1932

8775

-28905

8817

ROM Routines and Picture Animation 23

borders, and erase shapes. The format for the BACKPAT routine is

CALL BACKPAT(VARPTR(pattern%(0)))

The bit pattern must be stored in the pattern% array before using BACKPAT
BACKPAT changes the background pattern only when it is followed by the CLS
statement. To return to a normal white background and border, set all four
elements in the pattern% array to 0, which is white, and call BACKPAT again.

Figure 3-2 shows three patterns and their integer values. You can use these
patterns in your programs.

Changing Background Pattern

Program 3 -1 changes the background pattern to the crosshatch pattern stored
in PATNEW%. The PATCLR% array loads a white background so that the screen
and borders can be cleared to white when the program finishes.

Try the different patterns shown in Figure 3-2 by substituting their integer
values for the values in the PATNEW% array.

CLS

'CROSSHATCH PATTERN
PATNEW1(0):4366: PATNEWI(1)=17544
PATNEWl(2)=4366: PATNEWl(3)= 17544

'CLEAR PATTERN
PATCLRl(O):O: PATCLRI(1):0
PATCLR1(2)=0: PATCLRl(3):0

LOCATE 5, 14: PRINT "PRESS THE RETURN KEV TO CLEAR THE SCREEN"
LOCATE 6, 14: PRINT "WITH A CROSSHATCH PATTERN:
GOSUB Pause

'CHANGE BACKGROUND TO CROSS HATCH
CALL BACKPAT(YARPTR(PATNEWl(O))) 'LOAD CROSSHATCH PATTERN
CLS

LOCATE 5, 14: PRINT "PRESS THE RETURN KEV TO RETURN"
LOCATE 6, 14: PRINT 'THE BACKGROUND TO WHITE."
GOSUB Pause

'CHANGE BACKGROUND BACK TO WHITE
CALL BACKPAT(YARPTR(PATCLRl(O))) 'LOAD CLEAR PATTERN
CLS

24 Macintosh Game Animation

LOCATE 5, 15: PRINT "PRESS THE RETURN KEV ONE MORE TIME:
GOSU8 Pause
END

Pause:
WHILE INKEY$<>CHR$(13): WEND
RETURN

Pen-Drawing Routines

BASIC allows you to define a pen using different heights and widths. You can even
select different patterns of "ink" for the pen.

There are three routines that define the pen:

CALL PENPAT(VARPTR(pattern%(0)))
PENPAT uses the same method as BACKPAT to give the pen a new pattern.
Areas that the pen moves over take on the new pattern.

CALL PENSIZE (Width, Height)
PENSIZE changes the pixel width and height of the pen. A larger pen size
covers more area.

CALL PENNORMAL
PENNORMAL returns the pen to the default setting of 1by1 pixel, black
pattern, and Copy mode. The Copy mode completely replaces the area
covered with the pen pattern.

Three other routines move the pen in the drawing area:

CALL MOVETO (X, Y)
MOVETO positions the pen to a new location specified by X and Y.

CALL LINETO (X, Y)
LINETO draws a line with the current pen from the last pen location to the
specified coordinate.

CALL LINE .(Xdelta, Ydelta)
LINE draws from the current pen location to the location (Xcurrent+ Xdelta,
Y current+ Ydelta).

Shape-Drawing Routines

Shape-drawing routines perform five drawing tasks on five different types of
geometric shapes. The following table shows you the routines. The shapes available
are rectangles, rectangles with round corners, ovals, arcs, and polygons.

Routine

FRAME

PAINT

ERASE

INVERT

FILL

ROM Routines and Picture Animation 25

Action

Outline a shape

Paint a solid shape with the current pen pattern

Erase a shape using the current background pattern

Reverse the white and black pixels within a shape

Fill a shape with a pattern you specify

A shape's characteristics (its height, width, or pattern) are defined in integer
arrays. The VARPTR function returns the memory address of the first array
element. For example,

CALL FILLARC (VARPTR(rectangle%(0)),startangle,
arcangle,VARPTR(pattern%(0)))

draws a wedge taken from a filled oval. The rectangle% array describes the size of the
rectangle that the complete oval fits inside of. The rectangle array elements are

rectangle%(0) = Yl (upper Y limit or top)

rectangle%(1) = Xl (left X limit or left side)

rectangle%(2) = Y2 (lower Y limit or bottom)

rectangle%(3) = X2 (right X limit or right side)

The VARPTR function passes the memory address of the rectangle% array's first
element to the FILLARC function.

The angle variables, startangle andarcangle, specify the start and size of the wedge.
Angles are given in degrees and are numbered like a clock, from 0 to 360, with 0 at
the 12:00 o'clock position.

Patterns filling the wedge are defined in the same way as in BACKPAT.

Using Pen- and Shape-Drawing Routines

Program 3-2 demonstrates different examples of pen- and shape-drawing rou
tines. It begins by setting an integer array, CORNER, to the size of the rectangle
used in all the drawings. The PATP and PATF integer arrays are then loaded with
the pen and fill patterns.

The first demonstration in the program draws a screen border with two sizes
and patterns of pen. Each press of the RETURN key demonstrates a different ROM
drawing function. Remarks in the program give additional explanation.

'INITIALIZE
CLS
DEFINT A-Z

26 Macintosh Game Animation

WINDOW 1,"DRAWING WITH ROM ROUTINES",(0,36)-(511,342), 1

'SHAPE OF RECTANGLE OUTLINE
CORNER(O)= 100 ' V COORDINATE OF UPPER LEFT CORNER
CORNER(1)=100 ')(COORDINATE OF UPPER LEFT CORNER
CORNER(2)=200 'Y COORDINATE OF LOWER RIGHT CORNER
CORNER(3)=400 ')(COORDINATE OF LOWER RIGHT CORNER

'PEN PATIERN, USED BY PAINT ROUTINES
PATP(0)=4386
PATP(1)=17544
PATP(2)=4386
PATP(3)=17544

'FILL PATIERN, USED BY FILL ROUTINES
PATF(0)=-1932
PATF(1):6775
PATF(2)=-28905
PATF(3):8817

'DRAWING BORDERS WITH THE PEN
LOCATE 2,20: PRINT "DRAW BORDER WITH PEN"
CALL PENSIZE (4,8) 'PEN 4 PIXELS WIDE, 8 HIGH
CALL PENPAT(YARPTR(PATP(O))) 'PEN AS CROSSHATCH
CALL HOYETO (50,50) 'POSITION PEN
CALL LINETO (50,250) 'LINE FROM 50,50 TO 50,250
CALL LINE (410,0) 'LINE FROM 50,250 TO 460,250
CALL PENNORt1AL 'RETURN TO BLACK PEN
CALL LINE (0,-200) 'LINE FROM 460,250 TO 460,50
CALL LINETO (50,50) 'LINE FORM 460,50 TO 50,50
GOSUB Pause: CLS

'RECTANGLES
LOCATE 2,25: PRINT "FRAMERECT"
LOCATE 3, 12: PRINT "DRAW ONLY THE OUTLINE OF A RECTANGLE"
CALL FRAt1ERECT(YARPTR(CORNER(O))}
GOSUB Pause: CLS

LOCATE 2,26
PRINT "PAINT ARC"
LOCATE 3,6
PRINT "PAINT A WEDGE OF AN ARC WITH THE NEW PEN PATIERN"
START=90: WEDGE=270 'START AT 90 DEGREES, END AT120 DEGREES

ROM Routines and Picture Animation 27

CALL PENPAT(VARPTR(PATP(O))) 'SET PEN PATIERN
CALL PAINT ARC(VARPTR(CORNER(O)) ,ST ART I WEDGE)
GOSUB Pause: CLS

LOCATE 2,26: PRINT .FILLOVAL.
LOCATE 3, 12: PRINT .FILL AN OVAL WITH A SPECIFIED PATTERN"
CALL FILLOVAL(VARPTR(CORNER(O)),VARPTR(PATF(O)))
GOSUB Pause

LOCATE 2,26: PRINT "INVERTRECT"
LOCATE 3, 12: PR INT "INVERT All PIXELS INSIDE THE RECTANGLE"
CALL INVERTRECT(VARPTR(CORNER(O)))
GOSUB Pause

LOCATE 2,24
PRINT .ERASERECT"
LOCATE 3,6
PRINT "ERASE EVERYTHING WITHIN A RECTANGLE BY PAINTING IT"
LOCATE 4,14
PRINT "IN THE BACKGROUND PATIERN"
CALL ERASERECT(VARPTR(CORNER(O)))
GOSUB Pause: CLS
END

Pause:
LOCATE 18, 13: PRINT .PRESS THE RETURN KEV TO CONTINUE"
WHILE INKEY$<>CHR$(13): WEND
RETURN

Picture Motion

We see animated motion because the eye momentarily retains an image. While the
eye sees that image, the image-producing picture disappears and moves to a new
location. When the eye again sees the picture, it appears that the picture has moved
smoothly from one location to the next. If the picture disappears from the-screen
for too long, the picture begins to flicker. If the moves between pictures are too
great, jumpy motion results.

This gives rise to two rules for animation:

• The picture's absence from the screen must be as short as possible.

• Animation must run as fast as possible so that the position changes can be
made in small increments.

28 Macintosh Game Animation

Although pictures can be drawn, erased, and redrawn using ROM drawing func
tions, there are faster and more efficient BASIC statements for redrawing the
picture each time.

The PICTURE Statement

BASIC records the graphics commands in PICTURE statements. Pictures can be
redrawn from stored data instead of from the commands. The PICTURE function
and statements record all drawings on the screen, text, and drawing statements as a
sequence of codes. The codes are stored in string variables and are used to duplicate
the drawing. Because string variables and string arrays hold these codes, your
programs can refer to pictures by their variable name.

The PICTURE ON and PICTURE OFF statements start and end the recording
of a picture. The code that describes that picture is stored in the string called
PICTURE$. Program 3-3 demonstrates how a starburst pattern is recorded and
put in the variable STARBURST$. PICTURE ON starts recording information
even though the drawing is not visible. After recording the drawing, STAR
BURST$ is drawn at its original location. The last part of the program draws
STARBURST$ at random locations around the screen. Each new location is speci
fied by the X and Y coordinates following the PICTURE statement.

DEFINT A-Z
WINDOW 1, IHE PICTURE ST ATEMENTs· ,(0,36)-(511,341), 1
CLS

'RECORD A ST ARBURST PATIERN IN THE STRING ST ARBURST$
PICTURE ON 'START RECORDING OF DRAWING COMMANDS
FOR 1=0 TO 50 STEP 5 'STEP AROUND A SQUARE

CALL ttOVETO(l,50): CALL LINETO (50-1,0) TOP TO BOTIOM LINES
CALL ttOVET0(50,I}: CALL LINET0(0,50-1) 'SIDE TO SIDE LINES

NEXT I
PICTURE OFF 'STOP RECORDING OF DRAWING COMMANDS
ST ARBURST$:PICTURE$ TRANSFER RECORDING INTO STRING VARIABLE
PICTURE, ST ARBURST$ 'DRAW FIRST ST ARBURST AT ORIGINAL LOCATION
LOCATE 4, 1: PRINT ·onginar .
LOCATE 1o,12: PRINT ·press the space bar to continue:
WHILE INKEYS = •• : WEND
CLS

ROM Routines and Picture Animation 29

Another:
'CONTINOUSLV DISPLAY STARBURST AT RANDOM LOCATIONS
X:511*RND(TlttER): Y:341*RND(TlttER)
PICTURE (X,Y),STARBURST$
GOTO Another

Picture Motion Techniques

Two different techniques generate motion with the PICTURE statement. Each has
advantages and disadvantages.

The first technique follows these steps:

1. Erase the entire picture or figure in the old location.

2. Display the new picture or figure in the new location.

3. Calculate the next location.

4. Pause, if necessary, and start again.

This entire-erase technique removes the picture or figure with a similar picture
painted in the background pattern. The actual picture can then be displayed in the
next location.

With the entire-erase technique, pictures or figures can move at any speed and
in any direction. One disadvantage is that the erase cycle can often be seen. As a
result, pictures with large areas of black will flicker. Another disadvantage is that
the moving picture erases the background as it crosses.

The second technique, called masked-motion, can reduce flicker by erasing only
selected portions of the old pictures. Backgrounds that are crossed are still erased,
however. Masked-motion animation is more difficult to draw, and the program may
run slower than you like.

With masked-motion the areas that are erased are those of the old picture that
are not covered by the new picture. These "leftovers" can be erased with a mask
designed to cover the selected areas.

The speed and direction of a picture dictates the size and shape of its mask.
Masks must be on the trailing side of black pixels, and the mask must be at least as
wide as the largest move. If a mask is too narrow, it leaves some of the old picture
visible.

Complex masks drawn in BASIC may reduce animation speed because of the
extra drawing time. Chapter 5 describes how to draw highly detailed MacPaint
pictures and figures that work with masked-motion and animation.

A third Picture Animation technique, XOR animation, is slower than the other
two techniques, but it has the advantage of restoring backgrounds that animated
pictures cross. Appendix B describes how to program XOR PICTURE motion.

30 Macintosh Game Animation

Using Entire-Erase and Masked-Motion

The flying saucers in Program 3-4 demonstrate both methods of picture motion.
The saucer on the upper part of the screen uses entire-erase motion. The entire
erase saucer flickers, while the masked-motion saucer does not. When the lower
saucer moves into the black half of the screen, you can see the mask surrounding it.
Both types of picture motion destroy the backgrounds they cross over. The saucers
demonstrate that pictures can move outside screen boundaries, a useful effect
when figures must enter or exit at the edge of the screen.

Master Control and Animation Loop

The first subroutine of Program 3-4 includes the master control and animation
loop. The master control calls subroutin~s that prepare the program for operation.
The animation loop uses a FOR/NEXT loop to determine the next X location for the
saucers.

'MASTER CONTROL
GOSUB Initialize
GOSUB Ship
GOSUB WholeErase
GOSUB MaskShip
LOCATE 5,5: PRINT .ENTIRE-ERASE.
LOCATE 11,5: PRINT .MASKED MOTION.
LINE (256,0)-(511,341),33,BF 'BACKGROUND

Antmationloop:
FOR X= 1 TO 515 STEP 2 'TWO PIXELS PER MOVE

PICTURE (XOLD, 100),ERASESAUCERS
PICTURE (X, 100),SAUCERS 'ENTIRE ERASE
l<OLD=l< 'SAVE LOCATION FOR ERASING WITH ERASESAUCER$
PICTURE (X,200),MASKSAUCERS 'MASKED MOTION

NEXT)(
CLS
LOCATE 5,5: PRINT .ENTIRE-ERASE.
LOCATE 11,5: PRINT .MASKED MOTION.
LINE (256,0)-(511,341),33,BF
GOTO Animationloop

After each step in the X value, the old picture at location (XOL0,100) is erased by
ERASESAUCER$. The new picture, SAUCER$, is then drawn. The time the
saucer is absent from the screen is minimal because the new picture begins on the

ROM Routines and Picture Animation 31

same line and immediately follows the erasing picture. The current picture's
location is then stored in XOLD for use in erasing.

Because the MASKSAUCER$ erases its own trail, only one picture needs to be
drawn. As the MASKSAUCER$ image moves into the black half of the screen, you
can see the mask that surrounds it.

The pixel width of a mask limits the speed of the picture. For instance, increas
ing the STEP value for the FOR/NEXT statement so that

FOR X=l TO 515 STEP 3

will move the saucers in increments of three pixels. The upper saucer continues to
erase its trail; however, the lower saucer leaves a trail. It has exceeded the width of
its mask.

Initializing

The Initialize subroutine prepares the screen and then stores the drawing sizes
and pattern.

Initialize:
CLS
DEFINT A-Z
WINDOW 1,"PICTURE MOTION",(0,36)-(511,341), 1
XOLD=l

'SHAPE OF SAUCER RECTANGLE
CORNERSCR(0)=2' Y COORDINATE OF UPPER LEFT CORNER
CORNERSCR(1)=2' X COORDINATE OF UPPER LEFT CORNER
CORNERSCR(2)= 1 O' Y COORDINATE OF LOWER RIGHT CORNER
CORNERSCR(3)=30' X COORDINATE OF LOWER RIGHT CORNER

'FIRST MASK - LARGER RECTANGLE
CORNE RM 1 (0)= 1 : CORNE RM 1 (1)= 1
CORNERM 1 (2)= 11 : CORNERM 1 (3):31

'SECOND MASK - LARGEST RECTANGLE
CORNERM2(0):0: CORNERM2(1):0
CORNERM2(2)= 12: CORNERM2(3):32

'PEN PATIERN - ALL WHITE, USED TO ERASE
PATCLR(O):O: PATCLR(l):O: PATCLR(2)=0: PATCLR(3)=0
RETURN

32 Macintosh Game Animation

Drawing the Pictures

The following three subroutines draw the saucer, the entire-erase saucer, and
the saucer with a two-pixel mask. In these subroutines and variables it's apparent
that descriptive names can help debug and understand large or forgotten
programs.

Ship:

'DRAW AND SAVE SAUCER WITH PICTURE
PICTURE ON

CALL PAINTOYAL(VARPTR(CORNERSCR(0)))
PICTURE OFF
SAUCERS=P ICTURES
RETURN

WholeErase:
'ERASE ENTIRE SHIP
PICTURE ON

CALL ERASEOVAL(VARPTR(CORNERSCR(om
PICTURE OFF
ERASESAUCER$:PICTURE$
RETURN

MaskShip:
'DRAW SHIP AND ERASE TWO PIXEL MASK AROUND IT
PICTURE ON

CALL PA INTOVAL(VARPTR(CORNERSCR(0)))
CALL PENPAT(VARPTR(PATCLR(O))) 'MAKE PEN WHITE
CALL FRAHEOVAL(VARPTR(CORNERM1(0})) 'FIRST MASK
CALL FRAHEOVAL(VARPTR(CORNERM2(0))) 'SECOND MASK
CALL PENNORHAL 'RETURN PEN TO BLACK

PICTURE OFF
MASKSAUCERS:PICTURES
RETURN

The Ship subroutine fills an oval with the existing pen color, black, and stores the
oval in SAUCER$. In Whole Erase the same oval is drawn again, but this time in the
background color, white. The erasing oval is stored in ERASESAUCER$.

The final subroutine, MaskShip, draws a black saucer, changes the pen color to
white, and draws two white masks around the edges of the saucer. Because the
mask surrounds the saucer, the saucer can move in one-pixel increments in any
direction and still erase its own trail. PENNORMAL changes the pen pattern back
to black.

ROM Routines and Picture Animation 33

Picture Animation

In the picture motion subroutine, two unchanging pictures moved across the
screen. Displaying the next picture in a sequence after each move is made will
animate the picture. Linking the picture's direction and speed to the Macintosh
mouse location produces a way to control motion.

Displaying Pictures in Sequence

Displaying pictures in the proper sequence is an easy matter if the pictures are
numbered and if the picture's location in each eel is also recorded. For example, we
can number the pictures and store each number in a variable (SEQ for sequence,
for example); and place the picture's location in another variable, CEL. Look back at
the runner sequences in Chapter 1. This series needs a sequence for each direction.
Let SEQ=o and SEQ=l represent the direction and CEL=O to 5 the six eels.

Storing all of the runner eels, or pictures, in a string array makes selection of the
correct eel easy. Defining RUNNER$(SEQ,CEL) as a two-dimensional string array
lets the program retrieve any picture by specifying SEQ and CEL.

Origins-Keeping the Animation Centered

All parts of a picture that do not move during animation should be drawn in the
same location in each eel. When comparing the locations of objects in a eel or
picture, specify their locations relative to the origin, the upper-left corner of the
picture. For example, if a runner's body and head do not move when running, the
body and head should be located exactly the same X and Y distance from the origin
in each picture.

The X and Y coordinates specified when redrawing a picture help position the
origin on the screen. If pictures are shifted with respect to the origin or if different
pictures in the sequence use different origins, the animated picture will appear to
jerk because of the shifts in location.

Controlling Motion With the Mouse

One of the easiest ways of controlling a picture's location onscreen is by setting its
location according to the values returned by the MOUSE function. Unfortunately,
animated pictures cannot take their next location directly from the mouse, since
the mouse may move too far or fast for smooth animation.

As an alternative, use the mouse to control the picture's rate and direction of
motion instead of its actual location. In Program 3-5, the picture moves toward the
mouse cursor with a speed proportional to the cursor's distance.

34 Macintosh Game Animation

Boundary Limits

In many cases animated figure locations must be limited to specific screen areas. If
those areas are rectangular, IF/THEN statements and Boolean algebra can limit the
figure's motion. If the areas have unusual shape, the Target Identification Grid,
which will be described in a later chapter, is more appropriate.

After a picture's next location is calculated, the location must be checked to be
sure it has not entered a restricted area. An IF/THEN statement, such as

IF (X<100 OR X>400) THEN X= -1oo•(X<100)-400*(X>400)

checks if an X location value is outside of screen location 100 or 400. If it is, Xis set
equal to the value of the boundary exceeded. For example, if a picture's origin
attempts to move to X=95, the Boolean expression evaluates to

x = -100•(-1)-400*(0) = 100

As a result, the picture is drawn at X=lOO, within the boundary limits.
Be sure to consider the height and width of the picture and its mask when

calculating boundaries. The location specified by X, Y when a picture is displayed is
the picture origin, the upper-left corner. The right and lower parts of the picture
will go beyond limits placed on X,Y.

Using Picture Animation With Mouse Control

Program 3-5 rolls a rotating wheel around the screen under mouse control. When
the mouse button is pressed, the wheel rolls toward the mouse cursor at a speed
proportional to the cursor's distance from the wheel. Chapter 4 will explain how to
make the wheel rotate according to its forward speed.

Program 3-5 demonstrates entire-erase Picture Animation. Appendix B
includes modifications to Program 3-5 that generate a rolling wheel with XOR
animation. XOR animation allows the wheel to cross backgrounds without destroy
ing them.

The wheel rotates both right and left depending upon the direction of travel.
The direction of travel determines which sequence of eels displays.

A rotating wheel is one of the easiest ROM routine pictures to draw that
adequately demonstrates animation. However, you aren't limited to simple draw
ings. Very detailed MacPaint pictures can be animated using this same BASIC code.
Chapter 5 explains how to use MacPaint pictures in your BASIC animation
programs.

Master Control and Animation Loop

The master control section runs the subroutines that prepare the program.
After initializing the windows, variables, and arrays, it executes subroutines that

ROM Routines and Picture Animation 35

draw and load the wheels and the erasing wheel. It then draws the screen instruc
tions and background.

The animation loop demonstrates the entire-erase Picture Animation, eel and
sequence selection, mouse speed and direction control, and boundary checking.

'MASTER CONTROL
GOSUB Initialize
606UB DrawWheels
60SUB DrawErase
LOCATE 2, 12: PRINT .MOVE CURSOR WHERE YOU WANT WHEEL TO GO."
LOCATE 3, 12: PRINT .DISTANCE AWAY DETERMINES WHEEL SPEED."
LOCATE 5, 12: PRINT .PRESS MOUSE BUTTON TO CHANGE SPEED."
'BOUNDARIES ADJUSTED FOR WHEEL HEIGHT AND WIDTH
LINE (90, 100)-(256+WIDE,250+HIGH),33,B
LINE (255, 100)-(406+WIDE,250+HIGH),33,BF 'BLACK HALF

Animationloop:
PICTURE (XOLD,YOLD),ERASEWHL$: PICTURE (X,Y),WHEELS$(SEQ,CEL)
CEL:CEL + 1: IF CEL>5 THEN CEL=O 'WHEEL CONTINUES TO ROLL
IF X>XOLD THEN SEQ:O ELSE SEQ= 1 'SET SEQUENCE BY DIRECTION
XOLD:X: YOLD=Y 'STORE LOCATION TO ERASE
'READ MOUSE LOCATION AND CALCULATE SPEED
'AFTER ANY MOUSE BUTTON ACTION
IF HOUSE(O):O THEN GOTO SettingsOk
X:HOUSE(1): Y:HOUSE(2)
XSPD:(X-XOLD)/SCALE: YSPD:(Y-YOLD)/SCALE
SettingsOk:
X:XOLD+l<SPD: Y:YOLD+YSPD 'CALCULATE NEW POSITION
'CHECK BOUNDARIES
IF X<90 OR X>406 THEN X:-90*(l«90)-406*(X>406)
IF Y<100 OR Y>250 THEN Y=-100*(Y<100)-250*(Y>250)
GOTO AnimationLoop

After displaying the new wheel, the CEL variable is incremented so the next wheel
in the sequence will be displayed. Comparing the old and new X locations of the
wheel determines whether it's rolling forward or backward and therefore whether
the left (SEQ= 1) or right (SEQ= 0) spin sequence should be used.

Mouse location values are checked only after the mouse button is pressed.
When the button is pressed, the mouse X location is read from MOUSE(l) and the
Y location is read from MOUSE(2). XSPD and YSPD wheel speeds depend upon
the difference between the current wheel location and the mouse cursor location.
Increasing the SCALE variable decreases the wheel's speed range.

The program calculates the next wheel location by adding the speed variables to

36 Macintosh Game Animation

the old, XOLD and YOLO, wheel locations. The wheel origin stays between 90 and
406 on the X-axis and 90 and 250 on the Y-axis.

Initializing

The initializing subroutine prepares a window for the animation and sets the
program variables. It also sets the array values that dictate the wheel size and the
erasing pattern.

lnitla1ize:
CLS
DEFINT A-Z
DIH WHEELS$(1,5) 'DIMENSIONED FOR TWO SEQUENCES OF SIX CELS
WINDOW 1,-PICTURE ANIMATION·,co,36)-(511,341), 1
SEQ:O: CEL:O 'ST ART ING WHEEL LOCATION
WIDE:lB: HIGH:lB 'SIZE OF WHEEL CHANGES VISUAL BOUNDARY LINES
X:256: Y= 170: XOLD=X: YOLD=Y 'WHEEL STARTING LOCATION
SCALE=40 'SPEED CONTROL, INCREASE SCALE TO DECREASE SPEED

' RECTANGLE - SHAPE OF WHEEL
CORNERWHL(0)=2' Y COORDINATE OF UPPER LEFT CORNER
CORNERWHL(1):2' X COORDINATE OF UPPER LEFT CORNER
CORNERWHL(2):18' Y COORDINATE OF LOWER RIGHT CORNER
CORNERWHL(3):18' X COORDINATE OF LOWER RIGHT CORNER

'PATIERN- ALL WHITE, USED TO ERASE
PATCLR(O):O: PATCLR(1):0: PATCLR(2):0: PATCLR(3)=0
RETURN

Draw Wheels

The final subroutine draws two sequences of six wheels each and an erasing
picture. The wheel shapes are all circles, but each has a spoke drawn at a different
angle. The starting coordinates of the spoke, XSPKl,YSPKl, and ending coordi
nates, XSPK2,YSPK2, are stored in DATA statements. MOVETO and LINETO
functions draw a line between the spoke's beginning and end.

DrawWheels:
'DRAW SIX WHEELS AND SAVE TO A MULTIDIM. STRING ARRAY
'SEQUENCE 0 HOLDS RIGHT SPINS, SEQUENCE 1 HOLDS LEFT SPINS
FOR LSEQ=O TO 1

FOR LCEL:O TO 5
PICTURE ON

CALL FRAHEOVAL(VARPTR(CORNERWHL(O))) 'WHEEL

READ XSPK 1, YSPK 1,XSPK2, YSPK2
CALL HOYETO(XSPK 1, YSPK 1)
CALL LINETO(XSPK2,YSPK2) 'SPOKE

PICTURE OFF
WHEELS$(LSEQ,LCEL):PICTURE$
NEXT LCEL

NEXT LSEQ
RETURN

'SPOKE DAT A - XSPK 1, YSPK 1,XSPK2, YSPK2
'SEQ=O
DATA 2,10,16,10
DATA 4,6,16,14
DATA 6,3, 12, 16
DATA 10,2,10,17
DATA 12,2,6, 16
DATA 16,6,3, 14
'SEQ=1
DATA 16,6,3, 14
DATA 12,2,6, 16
DATA 10,2,10,17
DATA 6,3,12,16
DATA 4,6, 12, 16
DATA 2,10,16,10

DrawErase:
PICTURE ON

ROM Routines and Picture Animation 37

CALL FI LLOYAL(YARPTR(CORNERWHL(O)), VARPTR(PATCLR(0)))
PICTURE OFF
ERASEWHL$=P I CTURE$
RETURN

Hints and Tips for Picture Animation

There are many important points to remember when programming with Picture
Animation:

• Pictures using entire-erase motion will display with less flicker if the erasing
PICTURE statement precedes the displaying PICTURE statement on the
same BASIC line and no other statements come between them.

• Masked-motion figures should use the smallest mask possible when drawn
with ROM routines. MacPaint masked-motion pictures generally run faster
than figures drawn with BASIC.

38 Macintosh Game Animation

• Perform calculations and pauses in the animation loop while pictures are
displayed to prevent flicker.

• Use the minimum number of calculations possible in the animation loop to
prevent slowing the animation. Precalculate information whenever possible
and store it in variables and arrays.

• Entire-erase pictures that cross over each other increase their flicker.
Masked-motion pictures that cross also flicker where a mask crosses the
other picture.

• Animation speed can be increased by removing remarks from the animation
loop, putting as many PICTURE statements as possible on one line, using
binary BASIC, and storing all numbers in variables.

Storing Pictures on Disk

Storing pictures on disk gives your programs access to more pictures than could be
drawn in the program. Pictures stored on disk can also be more complex and
detailed. Chapter 5 explains how to use MacPaint pictures with your BASIC
programs. Appendix A contains utilities that will help you create animated pictures
from MacPaint drawings.

A picture stored in the string variable THISPIC$ can be stored in the diskette
file HOLDPIC with a subroutine like

SavePic:
OPEN "HOLDPIC" FOR OUTPUT AS 1

PRINT #1,THISPIC
CLOSE#l
RETURN

The picture can be retrieved from diskette with a subroutine like

LoadPic:
OPEN "HOLDPIC" FOR INPUT AS 1

THATPIC$= INPUT$(LOF(l),l)
CLOSE#l
RETURN

The FILES statement and function will help you select a diskette file name from
within your program. The Animation Maker utility in Appendix A contains exam
ples of saving and loading PICTURE files to and from disk.

Chapter 4

Image Animation

I mage Animation works much the same as Picture Animation by rapidly
displaying a sequence of eels so that a single image appears to move and
change. The difference between the two methods is the way eels are stored

and displayed.
The examples in this chapter, like those of the preceding chapter, use simple

figures drawn from BASIC statements and calls. However, both Picture and Image
Animation can work on the complex figures and backgrounds created with
MacPaint.

Image Statements

Image Animation uses the GET and PUT statements to store and display images.
GET saves a rectangular portion of any display in an array. Images saved with GET
can be redisplayed anywhere on the screen with the PUT statement.

GET and PUT Statements

Unlike the PICTURE statement, GET can save selected rectangular portions of
larger pictures, but the picture must be visible on the screen. GET stores any type
of screen image, whether it is text or drawing.

39

40 Macintosh Game Animation

Images are stored in integer, single-precision, or double-precision numeric
arrays. All programs in this book use integer arrays because images in integer
arrays are easier to manipulate.

PUT restores images to the screen by combining the image array data with the
screen display data. One of five different bit-level actions, PSET, AND, PRESET,
XOR, or OR, combines the image and the rectangular screen area being replaced.
Each of these actions combines the image and the background in a different way. Of
these five actions, PSET and XOR can erase previously displayed images. (For
information on AND, PRESET, and OR actions, refer to your BASIC manual.)

Dimensioning Image Arrays

Arrays storing an image must be dimensioned for the image size. Array dimen
sions also depend upon the type of numeric array used.

The formula to calculate an image array's size in bytes is

4 + (((Y2-Y1)+1) * 2 * INT(((X2-X1) + 16)/16))

where Xl and X2 are the sides of the rectangle, and Yl and Y2 are the top and
bottom, respectively.

The number of bytes per array element depends upon the type of numeric array
used. The bytes per element are

• 2 bytes for integer

• 4 bytes for single precision

• 8 bytes for double precision.

The dimension of an image array is its size in bytes divided by the bytes per
element. As an example, an image requiring 60 bytes of storage needs 30 elements
in an integer array. The DIM statement for it would be DIM arrayname%(29). Table
4-1 lists integer array dimensions for different image sizes. Reducing the image
height increases animation speed because the array is smaller. The image width,
X2- Xl, must be reduced so that INT((X2- Xl)/16) becomes a smaller integer
before the array size decreases.

Image Motion

There are two types of image motion, PSET and XOR. Image motion with PSET
action uses a border, or mask, to erase its previous image. Motion with XOR erases
the entire eel, just as in entire-erase Picture Animation. However, XOR Image
Animation preserves backgrounds it passes over.

Table 4-1. Elements of Integer Image Arrays

1 8

1 4 4

8 11 11

HEIGHT
16 19 19

(Y2-Yl)
24 27 27

32 35 35

48 51 51

PSET Motion

WIDTH
(X2-Xl)

16

6

20

36

52

68

100

24

6

20

36

52

68

100

Image Animation 41

32 48

8 10

29 38

53 70

77 102

101 134

149 198

Images displayed with PSET replace the screen area they cover. They can also
replace the previously displayed eel in the animation sequence. Moving images
must have a border similar to the PICTURE masks, which covers the area moved
away from. For example, if an image's largest move to the right is three pixels, the
image must have a three-pixel border of background pattern on its left side.
Borders must leave the same pattern as the background if the trail is to be invisible.

PSET motion has these advantages:

• A single PUT with PSET both erases the old image and displays the new,
resulting in greater speed in the animation loop.

• PSET images do not flicker.

• PSET images retain their pattern regardless of the background pattern they
travel over.

The disadvantages of PSET animation are

• PSET images replace, and therefore destroy, the backgrounds they cover.

42 Macintosh Game Animation

• If the PSET image does not have a border on its trailing edge, it will leave a
trail made of pieces from previous images.

• The maximum speed of PSET animation is limited by the width of the border
on the image's trailing edge.

XOR Motion

Unlike PSET or picture motion, XOR images do not destroy the backgrounds they
travel over. Images displayed with the XOR action verb create a composite of both the
image and the background. If an image is PUT once with XOR, the composite
image appears; if the image is PUT a second time over the first, the composite
image is erased and the background restored. Since XOR images do not need
borders, they are not limited in speed or direction.

XOR animation has the following advantages:

• XOR images preserve the backgrounds they travel over.

• XOR images can move at any speed and in any direction since they are not
restricted by border widths.

Some of the disadvantages of XOR animation are

• XOR images must be displayed twice: once to be erased and once to be
displayed, making XOR animation nearly twice as slow as the same animation
using PSET.

• XOR images displayed over patterned backgrounds appear translucent
because the XOR image reverses the black and white pixels it covers, possibly
causing an X-ray effect.

• XOR animation flickers because the image disappears from the screen when
erased. Increasing the size and black area of XOR images increases the flicker.

Using Image Motion

Program 4-1 demonstrates image motion with both PSET and XOR actions. The
PSET flying saucer crosses the screen at the top with nearly twice the speed of the
XOR saucer. When they cross the black portion of the background, the different
results of their background interaction become apparent. The PSET image erases
the background it crosses. The XOR image leaves the background unchanged;
however, the image inverts its patterns. The black saucer becomes white. XOR
flicker is apparent on both white and black backgrounds.

Image Animation 43

Master Control and the Animation Loop

The master control in the Image Motion program (Program 4-1) calls subrou
tines that initialize the screen and variables and draw a background. The animation
loop, a portion of the master control, displays images and calculates new positions.

'MASTER CONTROL
GOGUB Initialize
GOGUB GETShip

LI NE (256 ,0)-(511,341) ,33 ,BF 'BACKGROUND

Animation 1 oop:
LOCATE 2,5: PRINT "PSET MOTION"
FOR X=l TO 511

PUT (X, 100),SAUCER,PSET
NEXT X

LOCATE 10 ,5: PR I NT "XOR MOT I ON"
PUT (XOLD,200),SAUCER 'INITIAL XOR DISPLAY
FOR X=l TO 511

PUT (XOLD,200),SAUCER: PUT (X,200),SAUCER
XOLD:X

NEXT X

CLG
LI NE (256 ,0)-(511,341) ,33 ,BF
GOTO Animationloop

The Animationloop: subroutine sets two flying saucer images in motion. The
first FOR/NEXT loop steps the X-axis location for a PSET SAUCER image. Only
one PUT is necessary because the SAUCER image includes a two-pixel border on
its left side. This border erases previous SAUCER images as the new image moves
one pixel to the right. To see the effect of exceeding border width, increase the
STEP value of the FOR/NEXT loop.

The second FOR/NEXT loop moves the same SAUCER image across the screen
with XOR action. With PUT, an initial XOR image is placed at the saucer's starting
location. This makes the first PUT in the FOR/NEXT loop erase. Without this
starting XOR image, the first PUT in the FOR/NEXT loop would display and not
erase. In larger animation loops this reversal of the erase and display PUT state
ments increases flicker.

Although the SAUCER image includes a two-pixel border, the XOR image does
not show it. Thus, programs can use the same image array for both XOR and PSET
images.

44 Macintosh Game Animation

Before incrementing X, the value of the old X location is stored in XOLD for use
by the erasing PUT. If the saucer moved vertically, the old Y location would also
need to be stored.

Initialize and GETShip

The Initialize and GETShip subroutines (shown next) prepare the program for
operation. The initializing subroutine dimensions the SAUCER array, prepares a
window for display, and sets the XOLD variable for the first display and erase
location. The rectangle array that limits the saucer's size is also set.

CALL PAINTOVAL draws the saucer with its leftmost pixel at X=2. The GET
statement must include a two-pixel border on the ship's left side. When it stores the
image, the GET statement includes the pixel columns of X=O and X=l. These two
columns form the border for PSET images. Because there are no borders on the
other three sides of the ship, movements other than to the right will leave a trail.

lnitializo:

CLS
DEFINT A-Z
Dltt SAUCER (17) 'ARRAY DIMENSIONED TO HOLD A 31 X B IMAGE
WINDOW 1,-IMAGE MOTloN·,co,38)-(511,341), 1
XOLD= 1 'FIRST XOR ERASE LOCATION

'SHAPE OF SAUCER RECTANGLE
CORNERSCR(0)=2' V COORDINATE OF UPPER LEFT CORNER
CORNERSCR(1)=2' X COORDINATE OF UPPER LEFT CORNER
CORNERSCR(2)= 1 O' V COORDINATE OF LOWER RIGHT CORNER
CORNERSCR(3)=30' X COORDINATE OF LOWER RIGHT CORNER
RETURN

GETShip:
'DRAW AND SAVE SHIP WITH PICTURE
CALL PA INTOVAL(VARPTR(CORNERSCR(O)))
'GET IMAGE WITH A TWO PIXEL BORDER ON LEFT SIDE
GET (0,2)-(30,9),SAUCER
CLG
RETURN

Image Animation Techniques

Image Animation is an extension of image motion. Like Picture Animation, Image
Animation displays a sequence of images so that a figure appears to move and
change. Storing image sequences in multidimensional arrays makes selecting the
correct image both easy and rapid.

Image Animation 45

Images Stored in Multidimensional Arrays

One flexible arrangement for storing sequences of eels is to dimension a multidi
mensional array so that the first dimension specifies the image data, the second
specifies the sequence, and the third specifies the eel within the sequence. For
example, an array that holds two sequences of six eels, or images, where each image
requires 100 integer array elements, should be dimensioned with

DIM arrayname% (99,1,5)

The GET statement to store multiple images in this array is

GET (Xl,Yl)-(X2,Y2),arrayname(o,SEQ,CEL)

where SEQ and CEL indicate the sequence and eel number of a specific image.
Unless the OPTION BASE statement changes the array, both SEQ and CEL begin
at 0.

A specific image in the array is selected by setting the SEQ and CEL variables.
The PUT statement for the third eel in the second sequence is

SEQ= 1: CEL= 2
PUT (Xl,Y1)-(X2,Y2),arrayname(O,SEQ,CEL),action verb

The use of variables SEQ and CEL allows the animation loop to switch sequences
or increment eel selection by incrementing or decrementing the appropriate
variable.

Using Image Animation

Program 4-2 is similar to the Picture Animation program (Program 3-5), where a
rotating wheel moves around the screen under mouse control. Figure 4-1 shows
the screen before the PSET wheel starts to roll.

The techniques demonstrated in this program show how

• Image Animation displays images stored in multidimensional arrays.

• The SEQ and CEL variables select images from the multidimensional array.

• The spinning rate of the wheel (the animation rate) depends upon the rate of
motion.

The PSET version of the program demonstrates how

• PSET images replace backgrounds they cover with their own background.

• PSET images flicker less and retain their pattern regardless of backgrounds
they cross.

• PSET image borders limit speed.

46 Macintosh Game Animation

,. "' • me Edit §(~<In h Run Windows
§[] PSET I MAGE RN I MRTI ON

PUT MOUSE POINTER WHERE VDU WANT WHEEL TO GO.
ITS DISTANCE AWAV DETERMINES WHEEL SPEED.
WHEEL SPEED DETERMINES ROTATION SPEED.
X SPEEDS GREATER THAN 2 LEAVE A TRAIL.

PRESS OR HOLD MOUSE BUTTON TO ST ART AND CHANGE SPEED.

XSPD= 0 VSPD= 0

Figure 4-1. Display of animation PSET wheel

.,

The user controls the rolling wheel with the mouse pointer and button. Pressing
the button starts the wheel rolling toward the mouse pointer. The distance
between the wheel and pointer when the button is pressed determines the wheel's
speed. The wheel's speed determines its rate of spin.

Both the PSET and XOR versions of this program display the X and Y speeds at
the bottom of the screen . As you control the PSET wheel, notice that if the X-axis
speed is greater than 2, parts of the old image are left on the screen . This is because
the image's 2-pixel border has been exceeded. The XOR wheel can travel at any
speed, in any direction, without leaving old images.

Master Control

The initializing subroutine sets the program's variables, opens a display win
dow, and controls the GETs for the 12 wheels used in the animation sequence . It

Image Animation 47

then prints instructions and displays a background before starting the animation
loop.

'MASTER CONTROL
60SU8 Initialize
60SU8 GETWheels
LOCATE 1, 12: PRINT "PUT MOUSE POINTER WHERE YOU WANT WHEEL TO GO:
LOCATE 2,12: PRINT "ITS DISTANCE AWAY DETERMINES WHEEL SPEED:
LOCATE 3, 12: PRINT "WHEEL SPEED DETERMINES ROTATION SPEED:
LOCATE 4, 12: PRINT ·x SPEEDS GREATER THAN 2 LEAVE A TRAIL."
LOCATE 6,12
PRINT "PRESS OR HOLD MOUSE BUTTON TO START AND CHANGE SPEED."
LOCATE 18, 12: PRINT "XSPD= YSPD:";
'BOUNDARIES ADJUSTED FOR WHEEL HEIGHT AND WIDTH
LINE (89,99)-(406+WIDE,250+HIGH),33,B
LINE (255, 100)-(406+WIDE,250+HIGH),33,BF

'***ENTER INITIAL XOR PUT HERE

Animation Loop

The animation loop moves a PSET image according to variables set by the
mouse. The SEQ and CEL variables, which control which wheel image is displayed,
are set by the wheel speed and direction of travel.

Animationloop:
PUT (X,Y),WHEELS (0,SEQ,CEL),PSET 'DISPLAY NEW IMAGE
"CEL CHANGE (ROTATION RATE) DEPENDS UPON SPEED IN X DIRECTION
'MAX I MUM XSPD IS 1 0
NEXTCEL=-(1*(ABS(XSPD)>O))-(1*(A8S(XSPD)>3))-(1 *(A86(XSPD)>6))
'NEXTCEL:INT((ABS(XSPD)+4)/5) 'ROTATION RATES OF 0, 1, AND 2
CEL:CEL+NEXTCEL: IF CEL>5 THEN CEL=O 'INCREASE CELSO WHEEL ROLLS
IF X>XOLD THEN SEQ:O ELSE SEQ= 1 'SET SEQUENCE ACCORDING TO DIRECT If
XOLD=X: VOLD=Y 'STORE DISPLAY LOCATION
'READ MOUSE LOCATION AND CALCULATE SPEED WHEN BUTTON PRESSED
IF t10USE(0)<>0 THEN X:t10USE(1): Y:MOUSE(2)
XSPD:(X-XOLD)/SCALE: VSPD:(V-VOLD)/SCALE
'SPEED PROPORTIONAL TO DISTANCE
LOCATE 18,18: PRINT XSPD;: LOCATE 18,34: PRINT VSPD;
X=XOLD+XSPD: V:YOLD+VSPD 'CALCULATE NEW POSITION
'CHECK BOUNDARIES
IF X<90 OR X>406 THEN X=-90*(X<90)-406*(X>406)
IF V< 100 OR V>250 THEN V=-1OO*(V<100)-250*(V>250)
GOTO AnimationLoop

48 Macintosh Game Animation

A single PUT statement displays the wheel image selected by SEQ and CEL. The
first dimension of a multidimensional array, such as WHEELS, should be set to 0

when an image is PUT.
The rate of eel change, which determines the wheel rotation speed, can be

related to the X-axis speed of the wheels in two ways. The first method, which is
used in the program, sets NEXTCEL according to a schedule of X-axis speed ranges.
The line

NEXTCEL=-(I * ABS(XSPD)>o)-(I * ABS(XSPD)> 3)-(I * ABS(XSPD)>6)

sets NEXTCEL according to the following schedule:

XSPD NEXTCEL
-IO to-7 3

-6 to-4 2

-3 to-I I

0 0

I to 3 I

4 to 6 2

7 to IO 3

The values in this schedule can be changed by varying the speeds against which
ABS(XSPD) is tested or by multiplying a constant by the term (ABS(XSPD)>
speedconstant).

The second method for determining the rotation speed uses the equation

NEXTCEL= INT((ABS(XSPD)+ 4)/ 5)

The value of NEXTCEL is set by speed ranges calculated by dividing the speed,
XSPD, by a constant, 5. Since the maximum speed is ±10, division by 5 yields three
NEXTCEL values, 0, I, and 2. The constant 4 is added to ABS(XSPD) so that XSPD
values between -4 and -I and I and 4 will not yield a NEXTCEL value of 0.

To set NEXTCEL using this second method, remove the apostrophe from the
fifth line after Animationloop and place an apostrophe in front of the previous
line.

Other portions of the animation loop, such as mouse control and boundary
checking, operate the same as the animation loop in Program 3-5.

Initialize

The initializing subroutine begins by clearing the screen and defining all
variables as integers. It then dimensions the WHEELS integer array to hold the
images (42 elements each), two sequences, and six eels per sequence.

Image Animation 49

The height and width of the images, HIGH and WIDE, are used to adjust the
boundary lines drawn in the master control portion of the program. These bound
ary lines must be positioned properly or PSET images will erase them.

SEQ and CEL variables are set to display the first wheel in the sequence of right
spins. X and Y are set near the center of the screen.

Initialize:
CLS
DEFINT A-Z
'DIMENSION FOR TWO SEQUENCES OF SIX CELS, EACH IMAGE IS 20)(20
Dlt1 WHEELS (41, 1,5)
WINDOW 1,"PSET IMAGE ANIMATION",(0,38)-(511,341), 1
SEQ:O: CEL=O 'STARTING WHEEL IMAGE
)(:256: V:l70 'WHEEL STARTING LOCATION
WIDE=20: HIGH=20'SIZE OF WHEEL CHANGES VISUAL BOUNDARY LINES
SCALE=40 'SPEED CONTROL, INCREASE SCALE TO DECREASE SPEED

' RECTANGLE - SHAPE OF WHEEL
CORNERWHL(0)=2' Y COORDINATE OF UPPER LEFT CORNER
CORNERWHL(1):2' X COORDINATE OF UPPER LEFT CORNER
CORNERWHL(2)=18' Y COORDINATE OF LOWER RIGHT CORNER
CORNERWHL(3)= 18' X COORDINATE OF LOWER RIGHT CORNER
RETURN

GETWheels

The GETWheels subroutine and data are modified from Program 3-5. You can
.save typing time and debugging if you use that subroutine as a base.

The GETWheels subroutine draws 12 wheels using the CALL FRAMEOVAL,
MOVETO, and LINETO statements. Each wheel is drawn separately in the upper
left corner of the screen. It is then stored in the WHEELS integer array with the
GET statement. Two FOR/NEXT loops draw and load the wheels in the proper
order.

The rectangle in the GET statement, (0,0)-(19,19), creates a two-pixel border
around the wheel.

GETWheels:
'DRAW SIX WHEELS AND SA\IE TO A MULTIDIM. INTEGER ARRAY
'WHEELS MUST BE DISPLAYED BEFORE GET STATEMENT
'SEQUENCE 0 HOLDS RIGHT SPINS, SEQUENCE 1 HOLDS LEFT SPINS
FOR LSEQ=O TO 1

FOR LCEL:O TO 5
LOCATE 1,8: PRINT "ORIGINAL"
LOCATE 10, 15: PRINT "PUT IMAGE";

50 Macintosh Game Animation

CALL FRAHEOVAL(VARPTR(CORNERWHL(O))} 'WHEEL
READ KSPK 1, VSPK 1,KSPK2, VSPK2
CALL HOVETO(XSPK 1, VSPK 1)
CALL LINETO(KSPK2,VSPK2) 'SPOKE
'GET WHEEL INTO ONE ELEMENT OF THE WHEELS ARRAY
GET (0,0)-(19, 19),WHEELS (O,LSEQ,LCEL)
PUT (256, 140) I WHEELS (0 ,LSEQ,LCEL)
'GOSUB PAUSE
CLS

NEXT LCEL
NEXT LSEQ
RETURN

'SPOKE DAT A - KSPK 1, VSPK 1,XSPK2, VSPK2
'SEQ:O
DATA 2,10,16,10
DATA 4,6, 16, 14
DATA 6,3,12,16
DATA 10,2,10,17
DATA 12,2,6,16
DATA 16,6,3,14
'SEQ=1
DATA 16,6,3, 14
DATA 12,2,6, 16
DATA 10,2, 10, 17
DATA 6,3,12,16
DATA 4,6,12,16
DATA 2,10,16,10

XOR Modifications to Image Animation

You can now change the program to use XOR animation. The XOR version
demonstrates how

• XOR animation allows images to pass over backgrounds without erasing
them.

• XOR images flicker and change pattern depending upon the background they
cross.

• XOR images can travel at any speed or in any direction without leaviilg a trail.

The following changes to the Image Animation program will animate an XOR
wheel.

Delete the line in the master control that begins "LOCATE 4,12: ..• ". Add the

Image Animation 51

following line just before the Animationloop label:

PUT (><OLD,VOLD),WHEELS(O,OSEQ,OCEL),XOR 'INITIAL MOR IMAGE

This line displays the initial XOR image required in XOR animation. Without this
initial image the two PUT statements within the animation loop will not erase and
display in the proper order.

In the Animationloop subroutine, remove the PUT statement and replace it
with the following lines:

PUT (XOLD I VOLD) I WHEELS (0 ,OSEQ,OCEL) ,XOR
PUT (X,V),'wHEELS (0,SEQ,CEL),XOR 'ERASE OLD IMAGE, DISPLAY NEW
OCEL:CEL:OSEQ:SEQ

The first PUT statement erases the previously displayed image. This erasing PUT
must use the image that is currently displayed, specified by OSEQ and OCEL. The
new image, SEQ and CEL, is then displayed in the new location.

The initializing subroutine for XOR animation requires additional variables for
the initial XOR location and for the old CEL and SEQ. Change these lines, starting
with the fifth line after the Initialize label.

WINDOW 1,"MOR IMAGE ANIMATION",(0,38)-(511,341), 1
SEQ=O: CEL:O: OSEQ:SEQ: OCEL:CEL 'ST ART ING WHEEL IMAGE
)(:256: V= 170: XOLD=X: VOLD=V 'WHEEL ST ART ING LOCATION

Figure-Plotting Priori ties

The order in which multiple images plot is important to their appearance. PSET
and XOR images can be displayed in the same program by observing the following
rules:

• Do not display a PSET image over an XOR image. Doing so causes the erasing
XOR image to leave an image on the screen. From that point on, the XOR
Image Animation will run incorrectly.

• XOR images can be put over PSET images. However, the XOR image must be
erased before the next PSET is PUT.

• If images with different PUT actions never overlap, the order they are
displayed in is not critical.

In general, programs displaying figures with different PUT actions should
execute in the following order:

1. Erase old XOR images

2. Display PSET images

52 Macintosh Game Animation

3. Display new XOR images

4. Do calculations

5. Repeat from Step 1.

Whenever possible, Steps l, 2, and 3 should all be on the same BASIC program line.
This increases program speed and decreases flicker.

Performance Improvements

The most important performance goal for Image Animation is to decrease the time
that images are absent from the screen and to make the animation loop run as fast
as possible. Fast and efficient animation loops have time for additional calculations
and animation adjustments. You can improve the speed of the animation loop by

• Skipping images that don't move or change

• Decreasing image array size

• Using PSET images whenever possible

• Programming as many PUT statements as possible on a single line

• Removing remarks

Storing Images on Diskette

Image arrays can be saved and loaded to diskettes as sequential numeric data. The
following code illustrates how to save a single image array with 99 elements:

OPEN "filename" FOR OUTPUT AS #1
FOR ELEMENT=o TO 98

PRINT # l,arrayname%(ELEMENT)
NEXT ELEMENT
CLOSE#l

A multiple image array can be saved in one file containing all images with the use of
nested FOR/NEXT statements that step through the SEQ and CEL variables.

The array saved to diskette can be loaded back to the same type of numeric
image array with

OPEN "filename" FOR INPUT AS #1
ELEMENT=o
WHILE NOT EOF(l)

INPUT #l,newarray%(ELEMENT)
ELEMENT=ELEMENT+l

WEND
CLOSE#l

Image Animation 53

Reload multiple image arrays by incrementing SEQ and CEL values in the same
order in which data was stored.

The Animation Maker program shown in Appendix A demonstrates how
images are saved to and loaded from diskette.

Chapter 5

MacPaint

H ighly detailed figures and backgrounds drawn with MacPaint add to the
user's enjoyment and interest in the animation. This chapter explains how
to incorporate MacPaint drawings into BASIC programs.

First the procedures for drawing the running lion sequences shown in Figure
5-5 are outlined. Then the sequences are used in the Transfer and Conversion
program. This program (Program 5-1) turns the MacPaint drawing of the lion
sequence into picture and image eels and animates both sequences. Next the
Animation Maker program found in Appendix A is used to turn portions of a
BASIC picture into picture or image eels. Animation Maker can then test animate
the sequences and save the eels to disk.

The guidelines and procedures in this chapter presume a basic understanding of
the Macintosh Clipboard and Scrapbook File and MacPaint. If you are unfamiliar
with these tools, read the Macintosh and MacPaint manuals from Apple Computer.

Figure Sequences

The human and animal animation sequences presented in Figures 5-1 through 5 -5
work well as guides for the animation sequences you will create. The small size of

55

56 Macintosh Game Animation

the figures allows them to be entered in FatBits, and because they are small, they
will animate rapidly for arcade-style games. Figures may be enlarged and enhanced
with more details with the procedures explained in a later section.

Entering Figures

Figures 5-1through5-3 show a walking, running, and jumping human. Figure 5-4
is a galloping horse and Figure 5-5 a running lion. Still sequences from Muy
bridge's works served as the basis for these figures.

All the sequences contain six eels of 16 by 16 or 24 by 24 pixels. They all have
2-or 3-pixel trailing borders or masks, so they may be used with any of the
animation techniques.

Figure Positioning and Origins

When you create and enter figures in MacPaint, you set up a grid of dots. The grid
helps position and draw the figures. The grid is important because it allows you to
position figures consistently within a eel.

The grid is also important for locating a eel's origin. The parts of the figure that
do not move during animation must be drawn at the same location relative to their
eel's origin. If a runner's head remains stationary as the body moves, for example,
draw the head at the same location in each eel in the sequence.

PICTURE and PUT statements locate eels onscreen by specifying the origin's
new X,Y coordinates. GET also uses the origin as a reference point when creating
image eels. Some of the eel-creation programs in this book are easier to use when
eel origins are spaced in multiples of 8 pixels. Program 5-1 uses eels of 24-pixel
increments.

Entering the Animation Sequences

The following steps explain how to enter the lion sequence from Figure 5-5. Lion
eels are 24 by 24 pixels. Although others of these figures use 16 by 16 eels, all the
figures can be entered in 24 by 24-pixel eels for use in Program 5-1. To do this,
position the origins of smaller eels in 24-pixel X-axis increments beginning at (8,0).

1. Start MacPaint with a blank drawing area.

2. Create an 8-pixel Grid and enter Grid mode. Change the paint pattern to one
with a single pixel in the upper-left corner of the grid. Select the paint can
and fill the screen with the grid pattern. This creates a single dot every 8
pixels beginning at the upper-left corner (0,0) of the drawing area. Select
Grid from the Goodies menu. Grid mode will not effect pencil drawing.

MacPaint 57

t I

Cel 1 Cel 2

Ce l 3 Cel 4

Ce! s Ce! 6

Figure 5 -1 . Walking human

58 Macintosh Game Animation

Cel I Cel 2

Cel 3 Cel 4

Ce l s Cel 6

Figure 5-2 . Running human

MacPaint 59

Cel 1 Cel 2

Cel3 Cel 4

Cel s Cel 6

Figure 5-3. Long-jumping human

60 Macintosh Game Animation

•••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••• ••••••••••••••••••••••••
~~ ···················· .. •••••••••••••••••••• •• ••••••••••••••••••• • ••••••••••••••••• 1111111111811111 I •••• • •• ••• • •••• •••••••• • ••• ••••••• • •• ••••••• •••• •• •••••• •••••• •• • ••••• •••••• ••• • 1118 I 11a1111 1111 I ••••••••••••••••••• ••••••• ••••••••• • ••• •••••••• ••••••••• •••••

Cel 1

Cel 3

Cel s

Figure 5 -4. Galloping horse

Cel 2

Cel 4

Cel 6

MacPaint 61

Cel 1 Ce l 2

Cel 3 Cel 4

Cel s Cel 6

Figure 5 -5. Running lion

62 Macintosh Game Animation

3. Enter FatBits at the upper-left corner of the drawing area. Select the pencil
icon. Move it to the top-left dot in the drawing area. Hold down the COM

MAND key and click the mouse. The drawing area changes to FatBits at the
pencil's location.

4. Move to the first eel area. The small rectangle at the upper-left corner of the
FatBits drawing area covers the grid dot at (0,0). The origin for the first eel
will be at (8,0), the top dot to the right of the small rectangle. The top row
and left column of dots will be included in the lion's 24 by 24-pixel eel by
Program 5-1. The bottom right corner of the eel will be at (31,23), so the
lower row and right column grid dots are not included.

5. Draw a figure in the eel using the pencil and FatBits. Using the origin as a
reference point, draw the lion into the eel. Nearly all drawing functions are
available in FatBits, but the pencil will be the most useful when drawing
these figures. Figure 5-6 shows the grid and figures from the lion sequence.
When the lions are complete, their paws should be above the lower row of grid
dots and their noses should be to the left of the far right grid column. Grid
dots along the edge should be left until the entire sequence is complete. Grid
dots surrounding eels should be removed after animation has been tested.

6. Duplicate the figure from eel 1 into eel 2. Use a preceding figure as a base for
the new figure to help you draw smooth movements. To duplicate the figure
from eel 1 into eel 2, return to the normal drawing area by holding down the
COMMAND key and clicking the mouse button.

Follow these steps to slide a duplicate of eel 1 onto eel 2:

a. Ensure Grid, from the Goodies menu, is on.
b. Click on the Select Rectangle, at the upper-right corner of the func
tion menu.

c. Select eel 1 by clicking on the upper-left corner [the pixel at (8,0)] of
the eel and dragging to the eel's lower-right corner [the pixel at (32,24)].
With Grid on, the cursor will move from grid dot to grid dot. Release the
mouse button at the lower-right eel corner. Cel 1 now has a select
rectangle around it.

d. Drag a copy of eel 1 into the eel 2 space by holding down the OPTION

key, putting the cursor inside eel 1, and dragging it to the right. When the
left edge of the duplicate is next to the right edge of the original eel 1
(three jumps), release the mouse button.

7. Modify the duplicate to become Figure 2. Creating original or book figures is
easier when a duplicate of the preceding figure in the sequence is used as a
base. This helps to ensure that no figure will move too drastically from its
neighbor.

MacPaint 63

.. _,... ~ n.A·
• r ~- • • ._..-.- • • • • ~ • J""'1L. •

Figure 5 -6. Lion MacPaint sequence

8. Continue drawing and duplicating eels until all six eels are drawn.

9. Save the MacPaint drawing to disk. This drawing can be recalled for modifi
cation and used as a backup copy.

10. Remove grid dots in the eels. Enter FatBits and remove the extra grid dots.
Since all eels are adjacent, remove all the grid dots surrounding the eels. You
may want to leave the dot at the origin. It can be helpful during testing with
the Animation Maker or when positioning figures in your programs. You can
later delete this dot with the Animation Maker or by returning to MacPaint.

11. Copy the sequence to the Clipboard. Return to the large picture and select
the area beginning at (0,0). Make sure that the upper-left corner of Mac
Paint's large drawing area is included in the Clipboard copy.

12. Copy the Clipboard to the Scrapbook. The Scrapbook File stores many
Clipboard drawings in a disk-based file. Both Program 5-1 and the conver
sion utility in Appendix A can turn Scrapbook drawings into BASIC pic
tures.

The preceding steps have used the 24 by 24-pixel lion sequence. A eel of any size can
be created using the same procedures; however, the distances in the steps will have
to be adjusted accordingly. If eels fit within 8 by 8 grid increments, the grid method
should be used. If they do not, for example a 13 by 5 eel, the eel origins should still
be located on grid dots. These dots will help locate eel origins and reduce errors.

Converting MacPaint Pictures and Images

After creating an animated sequence on MacPaint you will want to animate it in a
BASIC program. This next section shows how to do just that. Program 5-1 and the
accompanying explanations show how to convert MacPaint drawings into BASIC
pictures. The program then breaks the BASIC picture into individual picture and

64 Macintosh Game Animation

image eels and then animates the cells.
The final part of this section explains how to load BASIC pictures into the

Clipboard and Scrapbook. They can then be loaded into MacPaint.

Transferring MacPaint Drawings to BASIC

MacPaint drawings must first be stored in the Clipboard before they can be
converted to BASIC pictures. Store MacPaint drawings in the Clipboard by select
ing the desired area of the MacPaint drawing area with the Select Rectangle. Then
choose Cut or Copy from the Edit menu. These functions store the selected area in
the Clipboard. If the picture contains an animation sequence using the 8-pixel grid
dots, the upper-left corner of the selected rectangle must be on a grid dot. The
Clipboard will retain the stored picture while you leave MacPaint and run a BASIC
program.

Transfer the MacPaint drawing in the Clipboard to the PICTURE string variable
with

OPEN "CLIP:PICTURE" FOR INPUT AS 1
BASICPIC$= INPUT$ (LOF(l),1)

CLOSE#l

The picture is drawn with

PICTURE (O,O),BASICPIC$

MacPaint drawings received through the Clipboard do not fill an entire BASIC
screen. If you want to do so, you must cut a MacPaint drawing into multiple
"clippings" and convert each one to a BASIC picture. These pictures can then be
displayed adjacent to one another.

Converting Pictures to Images

Images are made from MacPaint pictures by retrieving the MacPaint drawing from
the Clipboard and displaying the resulting BASIC picture onscreen. The GET
statement stores images from the display. A sequence of eels within a single
MacPaint picture can be turned into a sequence of individual images by stepping a
GET statement through the eels in the picture. This is one reason for drawing eels
so their origins occur at 8-pixel increments: it makes calculating origins easier.
Program 5-1 demonstrates how a program generates individual image and picture
eels from a single MacPaint picture.

MacPaint 65

Converting Images to Pictures

Images are converted to pictures by displaying the image between the PICTURE
ON and PICTURE OFF statements. Program 5-1 shows how to convert images to a
BASIC picture. Images can also be added to an existing picture with the following
lines of code:

PICTURE ON
PICTURE (0,0),originalpicture$
PUT (X,Y),image%

PICTURE OFF
combinedpicture$= PICTURE$

Transfer and Conversion Program

Program 5-1 converts the MacPaint drawing of the lion sequence created earlier in
this chapter into individual image and picture eels. It will, of course, turn any set of
six 24 by 24 eels into a sequence. After conversion, the program animates both the
image and PICTURE lion.

The sequence should be in the Clipboard or the current Scrapbook File when
Program 5-1 runs. If the sequence is in the Scrapbook, the program allows you to
load the Clipboard from the Scrapbook and then proceed. If the sequence is already
in the Clipboard, you only need to press RETURN.

Program 5-1 retrieves six 24 by 24-pixel eels from the drawing. It will also
animate smaller figures, like the 16 by 16-pixel humans, if the smaller figures have
the same origins as 24 by 24-pixel eels would have. (The smaller figures will
actually be in 24 by 24-pixel eels.)

As an alternative, you can convert Program 5-1 to run with different sized eels
by changing the image array dimension and the eel size in the GETCels subroutine.
For a 16 by 16 eel, the GET statement is

GET (8+ CEL*l6,0)-(23+ CEL*l6,15),IMAGEARRAY(o ,CEL)

Ce! origins must still be at 8-pixel increments along the top with the first origin at
(8,0). Cels must be side by side.

Master Control

The program first requests that you load the Clipboard from the Scrapbook. To
load the Clipboard, select Scrapbook from the Apple icon on the menu bar. Use the
Copy function from the Edit menu to copy a Scrapbook drawing into the Clipboard,
remove the Scrapbook window by clicking its close box, and then press RETURN. If

66 Macintosh Game Animation

you have previously loaded the Clipboard with a drawing, you only need to press
RETURN.

After loading the Clipboard and pressing RETURN, the GetClipping subroutine
retrieves the clipping and stores it in BASICPIC$. The picture is drawn at (0,0) so
that eel origins display in their original locations.

The subroutines GETCels and MakePicCels create individual image and picture
eels from the display. These eels are used in the Animatelmages and AnimatePic
tures subroutines.

'MASTER CONTROL
GOSUB Initialize
GOSUB Instructions 'ALSO WAIT FOR CLIPBOARD LOADING

LOCATE 17, 10: PRINT "THIS PICTURE IS FROM THE CLIPBOARD"
LOCATE 18, 10
PRINT "PRESS RETURN TO CREATE AND ANIMATE INDIVIDUAL IMAGES."
GOSUB GetCllpplng 'THIS SUBROUTINE RETRIEVES THE PICTURE "
PICTURE (0,0),BASICPICS 'DRAW THE PICTURE AT (0,0)
CALL Pause .

'GET INDIVIDUAL CELS FROM MACPAINT PICTURE
GOSUB GETCels
CLS

'CHANGE INDIVIDUAL IMAGES TO INDIVIDUAL PICTURES
GOSUB MakePlcCels
CLS

'ANIMATE INDIVIDUAL IMAGE CELS
LOCATE l4, 10: PRINT "THESE ARE IMAGE CELS BEING ANIMATED."
LOCATE 15, 10
PRINT "DOTS MAY TRAIL THE LION IF ALL GRID DOTS ARE NOT DELETED."
LOCATE 16, 10
PRINT "PRESS RETURN TO ANIMATE INDIVtDUAL PICTURE CELS."
GOSUB Anlmatelmages
CLS

'DISPLAY PICTURE CELS
LOCATE 14, 10: PRINT "THESE ARE PICTURE CELS BEING ANIMATE.D."
LOCATE 15, 10
PRINT "DOTS MAY TRAIL THE LION IF ALL GRID DOTS ARE NOT DELETED."
LOCATE 16, 10: PRINT "PRESS RETURN TO EXIT."
GOSUB AnimatePictures
END

MacPaint 67

Initialize

The initialize subroutine sets up the display window and dimensions the two
arrays holding the sequences.

Initialize:
CLS
DEFINT A-Z
'DIMENSION AN IMAGE ARRAY FOR SIX 24 X 24 IMAGES
'DIMENSION A PICTURI:. ARRAY FOR SIX PICTURES
DIM IMAGEARRAY(51,5),PICARRAY$(5)
WINDOW 1,.LOADING CELS FROM AMACPAINT PICTURE·, (0,38)-(511,341), 1
RETURN

I nstructtons:
LOCATE 2, 15: PRINT ·1F THE CLIPBOARD IS NOT ALREADY LOADED WITH.
LOCATE 3,15
PRINT .A SEQUENCE, LOAD THE CLIPBOARD I-ROM THE SCRAPBOOK:
LOCATE 6, 15: PRINT "WHEN THE DRAWING IS LOADED IN THl CLIPBOARD,"
LOCATE 7, 15: PRJNT ·puT THE SCRAPBOOK AWAY AND PRESS RETURN.·
LOCATE 10, 15: PRINT ·1F THE CLIPBOARD IS ALREADY LOADED,"
LOCATE 11, 15: PRINT .JUST PRESS RETURN:
'CLIPBOARD CAN BE LOADED FROM THE SCRAPBOOK DURING THE PAUSE
CALL Pause
CLS
RETURN

Retrieving the Clipboard Drawing and Making Cels

The Instructions subroutine not only prints instructions, it also waits for the
RETURN key to be pressed. It is during this wait that users load the Clipboard from
the Scrapbook. Because the menu bar has not changed, BASIC's EDIT functions
will still Cut, Copy, and Paste between the Scrapbook and the Clipboard.

After pressing RETURN, GetClipping opens the Clipboard file and loads the
MacPaint data into the string variable BASICPIC$. The program can treat BASIC
PIC$ the same as a normal BASIC picture.

The next two subroutines, GETCels and MakePicCels, turn this picture into
individual image and picture eels.

GetClipping:
OPEN "CLIP:PICTURE" FOR INPUT AS 1

BASICPIC$=1NPUT$(LOF(1),1)
CLOSE "1
RETURN

68 Macintosh Game Animation

GETCels:
'THE LOOP CREATES SIX CELS
FOR CEL •O TO 5

GET (8+CEL*24,0)-(31 +CEL*24,23),IMAGEARRAY(O,CEL)
NEXT CEL
RETURN

MakePicCels:
'THE IMAGE DOES NOT HAVE TO DISPLAY
'TO GENERATE PICTURE$
FOR CEL=O TO 5

PICTURE ON
PUT (0,0),IMAGEARRAY(O,CEL),PSET

PICTURE OFF
PICARRAY$(CEL)=PI CTURE$

NEXT CEL
RETURN

GETCels loads six 24 by 24 images with origins spaced 24 pixels apart along the top
row. The first origin is at (8,0). The picture, BASICPIC$, must be drawn with its
upper-left corner at (0,0) for these origins to be correctly positioned.

The images just created are used to generate picture eels. By displaying each
image between PICTURE ON and PICTURE OFF, each eel can be recorded as a
PICTURE statement and stored in a string array.

Animating the Sequence

The image and picture eels just created are animated by two FOR/NEXT loops
in Animateimages and AnimatePictures. The image moves across the screen first.
You can exit the animation by pressing RETURN.

The subprogram Pause waits until the RETURN key is pressed.

Animate Images:
CEL=O
FOR X= I 00 TO 400 STEP 2

PUT (X, 150),IMAGEARRAY(O,CEL),PSET
CEL •CEL + 1: IF CEL>S THEN CEL •O
FOR DELAY•! TO 500: NEXT DELAY
KEY$•1 NKEYS: IF KEV$=CHR$(13) THEN Done Image

NEXTX
Done Image:
RETURN

AnlmatePlctures:
CEL•O
FOR X= 100 TO 400 STEP 2

PICTURE (X, 150),PICARRAY$(CEL)
CEL •CEL +I: IF CEL>S THEN CEL •O
FOR OELAY•l TO 500: NEXT DELAY
KEYS-I NKEY$: IF KEY$•CHR$(I J) THEN OonePlcture

NEXTX
OonePtcture:
RETURN

SUB Pause STATIC
WATE: IF INKEY$<>CHR$(1J) THEN WATE
END SUB

Transferring BASIC Drawings to MacPaint

MacPaint 69

MacPaint's excellent graphics and fonts let you enhance drawings and charts
generated by BASIC programs. Your BASIC program must load its output into the
Clipboard so that MacPaint can work with it.

The BASIC display must first be recorded within a picture. To do this, record all
the graphics output that creates the display between a single pair of PICTURE ON
and PICTURE OFF statements. Store PICTURE$ in a BASIC string variable. The
contents of this string variable will be loaded into the Clipboard.

The following code stores the PICTURE variable STOREPIC$ in the Clipboard:

OPEN "CLIP:PICTURE" FOR OUTPUT AS 1
PRINT #1, STOREPIC$

CLOSE#l

Creating Your Own Figures

After experimenting with the sequences in this book, you will probably want to
enlarge the 16 by 16 or 24 by 24 figures and add details or you may want to draw
your own animated sequences.

Each game or program requires figures tailored to a specific size and degree of
detail. Small figures are a good way to test animation movement before adding
details. Once you have smoothly animated a sequence of small figures, you can
enlarge them and add details with the techniques explained in the next two
sections.

70 Macintosh Game Animation

Enlarging Figures

Figure 5-7 shows the first lion eel after enlargement and smoothing. Figures can be
enlarged or reduced with the following procedure:

1. Load the sequence into MacPaint.

2. Move the sequence down to gain working space. Enter Grid mode if the eel
origins are on grid dots. Select the entire sequence with the Select Rectangle
and move the sequence to the bottom of the drawing area. This leaves room
to enlarge a single eel without overlapping others.

3. Select the eel to be enlarged. Select the eel to be enlarged with the Select
Rectangle. Move its origin to the new location and deposit the eel.

4. Change the eel's size. Make sure the CAPS LOCK key is up. If you want to
change size while maintaining proportions, hold down the COMMAND and
SHIFT keys and drag the lower-right corner of the Select Rectangle until the
eel size is correct. Stretch a figure out of proportion by holding down the
COMMAND key while dragging the Select Rectangle. Click the mouse button
outside the selected area when you have finished.

5. Adjust proportions and smooth edges. Expanded figures have edges com
posed of large squares. Use FatBits to smooth the rough edges of expanded
figures. Figures enlarged or shrunk may need their proportions adjusted. If
a human waist is too long, for example, select the lower half of the body and
slide it up. All eels must be adjusted the same so that figures maintain the
correct relative position to the eel origin.

Adding Detail, Outlines, and Mirror Images

Additional details add identity and a three-dimensional quality to figures. Enlarged
and outlined figures such as the lion have the area and size for more detail than the
figures in this book. Adding details with MacPaint does not slow an animation
sequence; however, increasing the eel size does.

Figures composed of large black areas look unrealistic and flicker excessively.
As an alternative, you can animate figure outlines. Outline figures by surrounding
them with the Select Rectangle and selecting the Trace Edges command from the
Edit menu. The outlined figure is one pixel larger on all sides, so masks and borders
must be adjusted.

If you want to create sequences facing in opposite directions, use the Flip
Horizontal function of MacPaint. Surround the sequence with the Select Rectangle
and choose Flip Horizontal from the Edit menu. The mirrored figures will usually
need to be shifted within their eels to maintain correct border width.

MacPaint 71

..........................•
: : : : : : : : : : : :'f!ft:::::::::::: : : : : : : : : : : : : :
.
.
.......• . : : : : [] a:::::::::::

: : : : : : : •rrfl' •::::cry;;) a:::::::::::
.
: : : : : : : ~ •. : : : : !J _q : : : : : : : : : : :

Figure 5 - 7. Enlarged and detailed lion

Drawing Your Own Figures

Before beginning to draw, develop a storyboard of what the animated figure does,
as discussed in Chapter 1. After sketching a storyboard and deciding the figure's
personality, you can begin drawing with MacPaint.

Follow these steps when creating your own figures.

1. Do a rough sketch and storyboard. If you are unfamiliar with the animation
subject, complete a rough sketch using stick figures.

2. Decide upon eel height and size. It is ofte~ easier to begin with small, less
detailed figures and then magnify and add details when they animate cor
rectly.

3. Create a grid, origins, and eel areas in MacPaint. The first section in this
chapter describes how to create a grid and position eels within it. Figures you
create should have origin and figure locations positioned according to these
instructions.

4. Position and draw the body angles in each eel. Enter FatBits and draw the
body angle of the first extreme in the first eel. If the figures use PSET Image
Animation or masked-motion Picture Animation, position the body angle so

72 Macintosh Game Animation

moving parts do not enter the border or mask. Draw the body angle as a line
slanting at the appropriate angle. If the body angle remains constant
throughout the sequence, as in running and walking, copy it to the other
eels. If the body angle varies, create the body angles for the extreme figures
first and then use them as guides to create in-between body angles.

5. Draw stick figures using body angles as guides. At this point, the correct
body angles for your animation sequence should be in all the eels. Modify the
body angles in extreme eels with stick figures. Using the extremes as
guideposts, draw the in-between stick figures by working from one extreme
forward, copying (or comparing) and modifying the figure so that it becomes
the next figure in the sequence. Continue copying and modifying until all
the in-betweens are complete.

Before drawing legs and arms, determine the average speed of the eel so
you can calulate the amount that legs and arms move as the figure moves. In
Figure 5-2, for example, the runner's eels are designed to move forward 2

pixels at each eel change. To compensate for the forward eel motion, the foot
touching the ground must move backward within the eel an average of 2

pixels per eel. Because feet are slower at their front and rear extensions, the
actual movements may differ from the average. If the backward motion of
feet and the forward motion of the eel are too different, feet appear to slip
backward or skate forward. Make sure that the feet of walking or running
figures leave the ground as they move forward.

6. Check the animation of the figures. Save the MacPaint drawing to disk and
copy the figure sequence to the Clipboard or a Scrapbook File. Use Program
5-1 or the Animation Maker to test how the figures move.

If the entire animation sequence seems jerky, insert additional in
between figures. If only one portion of the sequence moves unrealistically,
adjust the difference between the two figures at that point or insert an
additional eel between them.

7. Make corrections to the stick figures.

8. Complete the figures with MacPaint. After refining the motion of the stick
figures, finish drawing the figures. After details have been added, additional
testing may reveal areas that need minor corrections. The Animation Maker
program lets you test and make minor pixel changes to sequences.

9. Save the MacPaint drawing. Completed sequences can be saved as a MacPaint
document and within the Scrapbook.

MacPaint 73

A Scrapbook Library

It's useful to have a library of Scrapbook files that contain different creatures, types
of animation sequences, or backgrounds. If you are unfamiliar with the use of the
Clipboard or Scrapbook, refer to the Macintosh and MacPaint books from Apple
Computers.

Building a Library of Scrapbooks

Each Scrapbook in a library may contain drawings unique to that Scrapbook.
Although there may be multiple Scrapbooks on a disk, only one can be named
Scrapbook File. This is the file accessed when you select Scrapbook from the Apple
icon menu. Other scrapbooks on the disk must be kept under different names, such
as LionScrapbook File.

On a two-disk system, the Scrapbook File on the startup diskette is used. If
BASIC is on a different disk than the program, the Scrapbook File on the BASIC
disk is used.

MacPaint is so large there is little room left for BASIC and applications on the
same disk. Because of this, Scrapbooks loaded from MacPaint will usually need to
be copied onto the BASIC disk. There are two methods of doing this. The first
method is the easiest way of transferring a single Clipboard drawing into a Scrap
book that is already on a BASIC disk:

1. Name the receiving scrapbook "Scrapbook File." If there are multiple scrap
books on the BASIC disk, the one that will receive the change must be
named Scrapbook File.

2. Load MacPaint and the drawing.

3. Copy the drawing into the Clipboard.

4. Quit and eject MacPaint.

5. Choose the Scrapbook in the Apple menu.

6. Copy the Clipboard into the scrapbook on the basic disk.

The second method allows you to load multiple drawings from MacPaint into the
Scrapbook and transfer the entire Scrapbook to the BASIC disk. This is useful

74 Macintosh Game Animation

when creating a number of figures of the same type or when making corrections to
an existing Scrapbook File.

1. Create a blank Scrapbook or copy the Scrapbook to be changed onto the
MacPaint disk. The system creates a blank Scrapbook File when there is no
file named Scrapbook File. To intentionally create blank scrapbooks, change
the current scrapbook's name to something other than "Scrapbook File."
When you next attempt to use the Scrapbook function, the system will bring
up a new blank scrapbook.

2. Load MacPaint.

3. Draw or edit sequences and backgrounds and copy them into the Scrapbook.

4. Exit MacPaint and rename the new Scrapbook. The Scrapbook File you have
just filled should have a descriptive name for easier access. The file must be
renamed so that it can be transferred to the BASIC disk.

5. Eject the MacPaint disk and insert the BASIC disk.

6. Copy the new Scrapbook onto the BASIC disk.

7. Access the new Scrapbook by changing its name. Before running a program
that needs a specific scrapbook you must change scrapbook file names. Add
the prefix "Original" in front of the existing Scrapbook File and change the
library scrapbook file name to Scrapbook File.

8. When you have finished, return Scrapbooks to their original names.

Chapter 6

Background Animation

Backgrounds are important to Macintosh animation for two reasons. First,
a well-designed background highlights and complements the action of a
game or animation sequence. Second, animated backgrounds enliven and

increase the visual appeal of the total display.
This chapter demonstrates two different background animation techniques.

The first method overlays a portion of the screen with changing image or picture
sequences. The second method uses the SCROLL statement to move entire screen
sections horizontally or vertically. The two types are different but complementary,
and both can animate highly detailed backgrounds painted with MacPaint.

Background animation can change over large screen areas but takes time to do
so, causing a program to run slower. Large background images and pictures also
need more memory than smaller figures do. Both of these problems are resolved
by compressing your program with the Compressor program found on the MS
BASIC master disk. It significantly reduces the size of the program and increases
the animation speed.

75

76 Macintosh Game Animation

Designing Backgrounds

Whether it is animated or stationary, an effective background should be designed
with the following elements:

• Shading and texture

• Balance

• Lines

Shading, texture, and color are powerful tools in computer graphics. When you
are creating a background, your choice of these elements affects the balance, mood,
and overall quality. The shading and texture of backgrounds should emphasize and
silhouette the primary figures. This is especially important when working with
XOR images, because the pattern in an XOR image depends upon the background it
covers.

Balance is a visual sense of harmony in an image. It is produced by evenly
distributing the components of mass, color, and line. A balanced background
creates a visual focus for the central action of the animation. It also improves the
screen's appearance. For example, small, brightly colored objects can be used to
offset larger, darker items that create a sense of mass. MacPaint's special effects
and cut-and-paste features let you experiment with different backgrounds until
you are confident you have created a balanced composition.

To avoid visual distraction, make sure the majority of structural lines and lines
of motion in any scene support the key image or action. Diagonal lines, perspective,
and background features should draw the eye toward the most important action.

Overlay Animation

Whether programs are games or simulations of industrial processes, they have
greater visual appeal when both the background and the figures are animated. You
can animate multiple sections of the background with overlays.

Overlays

Overlays use the same programming principles as image and picture figure anima
tion: a sequence of eels is rapidly displayed to appear as a single, animated object.
Overlays, unlike figures, do not change location and therefore may include por
tions of the background within their eels. When the overlay's background is the
same as the background covered, the animated object appears to leave the back-

Background Animation 77

ground unchanged. For example, rotating windmill blades can pass in front of the
windmill tower without affecting the tower or the appearance of the blades.

An entire screen of animated objects can demonstrate processes like factory
production flow or mechanical interaction of complex machinery. One later exam
ple in this book simulates the internal workings of a gasoline engine. A computer
ized cut-away piston allows the viewer to see the simulation in ways that might be
impossible in real life. The viewer's input can change the engine's timing, spark
voltage, or air-to-gas mixture, and the animated engine will react appropriately.

Overlay animation works best with repetitive motion. The same SEQ+CEL
variables used in Chapters 3 and 4 make switching between overlay sequences easy
to prog~am. If different sequences of motion are needed, IF/THEN and
ON/GOSUB conditional branches can select new values of SEQ.

The larger 512K Macintosh can store many images and pictures in memory so
that very complex operations can be demonstrated. The 128K Macintosh may need
to store some images and pictures on disk. Specific sets of overlays can then be
loaded from disk when needed.

Overlay Principles

Overlays require at least three eels per sequence to create the appearance of
motion within the eel. Using only two eels creates alternating views instead of
motion. The more eels per sequence, the smoother the motion.

Figure animation and background overlays react with each other. PSET image
figures or masked picture figures normally do not flicker. However, they will flicker
when they enter an area of overlay animation because the figure is momentarily
erased by the new overlay. XOR figures that enter an overlay area must observe the
XOR/PSET interaction rules discussed in Chapter 4. For these reasons, moving
figures are easier to program if they remain completely in or out of overlay
animation areas.

BASIC pictures created from a MacPaint clipping are more effective and effi
cient than pictures created with BASIC statements and ROM functions. MacPaint
drawings can be converted into BASIC pictures faster and with more detail.
Pictures converted from MacPaint contain a compressed code that defines which
pixels on each scan line of the monitor are on and off. For this reason both simple
and complex figures can be displayed with almost the same speed. Pictures created
with BASIC statements and ROM functions contain a list of the statements and
functions used in drawing. They actually redraw the picture just as the BASIC
program originally drew it. This causes complex pictures from a BASIC program to
redraw more slowly. The more complex a picture created with BASIC commands,
the longer it takes to redraw.

'78 Macintosh Game Animation

For design efficiency and program speed, follow these rules when programming
overlays:

• Use PICTURE or PSET image overlays. They are faster and of better quality
than XOR overlays.

• Make the overlay as small as possible. It should be just large enough to
enclose the animating part of the background.

• Overlays display faster when the code is all on the same BASIC line.

• Figures and overlays should use the same SEQ and CEL variables whenever
possible to reduce the number of calculations.

• Only display an overlay when it changes, since displaying an overlay slows the
program. Use IF/THEN and ON/GOSUB statements to bypass overlays that
don't need to change.

• Store sequences in multidimensional PICTURE and image arrays for rapid
and efficient access.

Drawing MacPaint Overlays

Animated backgrounds drawn with MacPaint add quality to your programs. To
create MacPaint overlays you will start with a base picture and change portions of it
that will become overlays.

As each portion is changed, it must be copied from the picture into the Scrap
book. From the Scrapbook it can be converted into a BASIC picture. Create a
MacPaint overlay by following these steps:

1. Draw and save an entire MacPaint background scene. This scene will act as
the base for further drawings. MacPaint drawings transferred to BASIC
through the Scrapbook or Clipboard do not fill the BASIC screen. Large
displays must be pieced together.

2. Determine the size of overlay you want. Enter Grid from the Goodies menu.
Choose the Select Rectangle and enclose an overlay area, counting the
number of jumps the cursor makes in each direction.

3. Redraw the overlay as the next eel in its sequence. Redraw the area within
the overlay so that it appears as the next eel in the overlay sequence. Redraw
backgrounds within the overlay that are uncovered by moving objects.

4. Cut out the overlay and store it in the Scrapbook. Enter Grid from the
Goodies menu. Using the same sized rectangle, surround a eel with the
Select Rectangle and copy it into the Scrapbook.

5. Repeat the process for other eels in the sequence.

Background Animation 79

6 . Convert the overlay in the Scrapbook into BASIC pictures. Program 5-1

demonstrates how to change drawings from the Scrapbook into BASIC
pictures and images.

The overlay pictures or images will be easy to position over the original scene
because they were cut out in Grid mode. This makes the display coordinate, the
overlay's origin, evenly divisible by eight.

Overlay Animation Program

The following program uses three overlays to animate the rotating planet shown in
Figure 6-1. The upper part of the screen contains the familiar flying saucer under
mouse control. As before, the saucer moves toward the mouse cursor when the

,. 9 l'ilc1 Edit S<rnn h Run Windows
.,

~D OUERLRY - RDTRTIN6 PLRNET -
-------=

Figure 6-1. Rotating planet

80 Macintosh Game Animation

mouse button is clicked. The rotating planet and the flying saucer operate inde
pendently. Pressing the RETURN key reverses the planet's rotation.

In this program the flying saucer is prevented from entering the overlay area.
You may want to change the lower Y boundary conditions to see what effect the
planet overlay has on the XOR saucer.

The flying saucer uses XOR animation so that stars are not erased as they are
crossed. Because this is XOR animation, the background pattern, the stars, will
show through the saucer in reverse.

This program should be saved for use as a base in programming the arcade
demonstration in Chapter 11.

Master Control and Animation Loop

Subroutines called by the master control set the initial variables, draw, and get
the saucer and planet overlays. The initial saucer display is PUT following the
GOSUB statements.

The animation loop is based on XOR animation loops similar to those in
Chapter 4. The planet overlay, three PSET images, changes in response to the
ROTATE variable. The variable PLANETSPD changes ROTATE on every other
pass through the animation loop.

'MASTER CONTROL
606UB Initialize
606UB GETSaucer
606UB GETPlanet
606UB Background .
PUT (XOLD,YOLD),SAUCER 'INITIAL XOR DISPLAY

An1mationloop:
PUT (85,182),PLANET (O,ROTATE),PGET
PUT (XOLD, YOLO) ,SAUCER,XOR: PUT (X, Y),SAUCER,XOR
PLANETSPD:PLANETSPD+DIR:ROTATE=INT(PLANETSPD/2)
IF ROT ATE<O THEN ROT ATE:2: PLANETSPD:4
IF ROT ATE>2 THEN ROT ATE:O: PLANETSPD:O
KEY$:1NKEYS: IF KEY$:CHRS(13) THEN DIR=-DIR
XOLD:X:YOLD=Y
IF HOU6E(0)<>0 THEN 606UB CheckMouse
X=XOLD+XSPD:Y=YOLD+YSPD
IF X<85 OR X>(415-WIDE)THEN X=-85*(X<B5)-(415-WIDE)*(X>(415-WIDE))
IF Y<O OR Y> 173 THEN Y=- 173*(Y> 173)
GOTO An1mntionLoop

CheckMouse:
X:HOUSE(1): Y:HOU6E(2)
XSPD:(X-XOLD)/SCALE: YSPD:(Y-YOLD)/SCALE
RETURI

Background Animation 81

The multidimensional image array PLANET holds three images of the planet
surface shown in Figure 6-1. In each image the planet's stripes are located in a
different location. Cycling through all three images makes the planet appear to
rotate. PLANET displays faster when PUT with PSET in the same line as the saucer
PUT statements.

PLANETSPD increases or decreases, according to the value of DIR, on each
pass through the animation loop. On every second pass, ROTATE also changes.
ROTATE selects the next image in the PLANET sequence. Pressing the RETURN key
reverses the sign of DIR, which reverses the direction of rotation.

The saucer's lowest altitude, Y=173, prevents it from overlapping the overlay.
Change 173 to 250 everywhere in the Y boundary code line and you will see the
increased flicker that occurs when images overlap overlays.

Initialize and Set Arrays

The initializing subroutine sets up three arrays, the screen window, and initial
variables.The first array holds a single saucer image. The second array, PLANET,
holds three large images. POLY, the third array, stores the coordinates used by
FILLPOLY to draw the planet surface.

Initialize:
CL&
DEFlllT A-Z
'DIMENSION PLANET FOR 3 YIEWS
DIH SAUCER(21), PLANET(2200,2). POLY(22)
WllDOW 1;0YERLAY - ROTATING PLANET·.co.38)-(511,341), 1
X=240: Y:130: XOLD=X: YOLD=Y 'SAUCER STARTING LOCATION
6CALE=20 'SAUCER SPEED CONTROL, INCREASE SCALE TO DECREASE SPEED
WIDE=18
ROT ATE:O: PLANETSPD=O: DIR= 1
RETURI

Rectangle:
CORNER(O)=Y 1: CORNER(1)=X1
CORNER(2)=Y2:CORNER(3)=X2
RETURI

82 Macintosh Game Animation

Patt em:
PATTERN(O):SHADE: PATTERN(1):SHADE
PATTERN(2)=6HADE: PATTERN(3):SHADE
RETURN

The Rectangle subroutine defines the corners of a rectangle outlining the
saucer. Putting the rectangle array in a subroutine allows the array to be redefined
when needed; this reduces redundant code. The Pattern subroutine uses the same
principle to give flexibility in defining new patterns.

GET the Saucer

The GETSaucer subroutine draws and stores the flying saucer. The PAINT
OVAL routine draws a black saucer, but when the saucer is PUT with XOR against
the black of space, it appears white.

GET Saucer:
Xl:O: Yl:O: X2=18: Y2:9: 60608 Rectangle
PAINTOVAL (VARPTR(CORNER(O)))
GET (0,0)-(18,9),SAUCER
CL6
RETURN

GET the Planet Overlays

The planet surface is drawn three times. In each successive drawing, shaded
segments are drawn at lower screen positions. Rapidly displaying these three
different views makes the planet appear to rotate.

The planet is drawn across the screen width, from X=O to 511, but only a
portion is displayed through the forward window of the starcruiser. This central
section of the planet is stored in PLANET. A larger PLANET will not fit in a 128K
system unless the program is first compressed. Macintosh computers with 512K
can include the entire planet without compressing the program. The GET rectan
gle, PUT origin, and PLANET dimension must be changed for a larger planet.

GETPlenet:
'USE POLYGON ROM ROUTINE TO DRAW OVERLAPPING PLANET SECTIONS
POLY(0):46 '23 ELEMENTS* 2 BVTES/ELEMENT

FOR VIEW:O TO 2 'SCENE OF PLANET
LINE (0, 180)-(511, 195),33,BF 'BLACK SPACE VISIBLE THROUGH CANYON
FOR STRIP:O TO 5 'SIX STRIPS ON PLANET
'READ TOP Y, BOTTOM CANYON Y, LEFT CANYON X

READ POLY(1), POLY(9), POLY(8)
POLY(2)=0: POLY(3)=341: POLY(4)=511

Background Animation 83

POL Y(5):POL Y(1): POL Y(7):POL Y(1): POLY(13):POL Y(1): POLY(15):POL Y(1)
POL Y(6):POL Y(2): POL Y(22):POL Y(2): POLY(20):POL Y(2) 'LEFT SCREEN SIDE
POLY(10):POLY(8) 'LEFT CANYON X.
POLY(11):POLY(9) 'BOTTOM CANYON Y
POLY(14):511-POLY(8): POLY(12):POLY(14) 'RIGHT CANYON X
POLY(16):POLY(4): POLY(18)=POLY(4) 'RIGHT SCREEN SIDE
POLY(17):POLY(3): POLY(19):POLY(3) 'SCREEN BOTTOM
'MODULO FUNCTION CALCULATES STRIPSHADE IN REPEATING SEQUENCE
STRIPSHADE=(STRIP+YIEW) tlOD 3
SHADE: 1*(STRIPSHADE=1)-O*(STRIPSHADE:0)+30686*(STRIPSHADE:2)
GO&UB Pattern
'DRAW PLANET
CALL FILLPOL Y(VARPTR(POLY(O)), VARPTR(PATTERN(O)))
LllE (0 I 182)-(250 I 182) ,30: LllE (250 I 182)-(250 I 190) ,30
LllE (250,190)-(511-250,190),30
LllE (511-250,190)-(511-250,182),30: LllE (511-250,182)-(511,182),30
IF STRIP:O THEI GOTO SkipO
LllE (POL Y(8) ,POLY(1))-(OLDPOL Y(8) ,OLDPOL Y(1)) ,33
LllE(POL Y(8),POL Y(9))-(0LDPOLY(8),0LDPOLY(9)),33
LllE (511-POLY(8),POLY(1))-(511-0LDPOLY(8),0LDPOLY(1)),33
LllE(511-POLY(8),POLY(9))-(511-0LDPOLY(8),0LDPOL Y(9)),33
SkipO:
IF strip<5 THEI GOTO Skip5
LINE (POLY(8),POLY(1))-(135,341),33
LllE (POLY(8),POLY(9))-(180,341),33 'LAST CANYON EDGE LINE
LllE (511-POL Y(8) ,POLY(1))-(511-135,341) ,33
LINE (511-POLY(8),POLY(9))-(511-180,341),33 'LAST CANYON EDGE LINE
Skip5:
OLDPOL Y(1):POLY(1): OLDPOL Y(9):POLY(9): OLDPOLY(8):POLY(8)
'LOCATE 5,5:1NPUT A$ 'INSERT THIS LINE TO WATCH PLANET BEING DRAWN
IEXT STRIP
RESTORE 'RESTART FROM BEGINNING OF DATA
GET (85, 182)-(415,282),PLANET (0,2-YIEW) 'LOAD VIEWS IN REVERSE ORDER
CL&
NEXTYIEW
RETURN
'DATA FOR PLANET STRIPES
TOP y I BOTTOM CANYON y I LEFT CANYON x
DATA 182, 190,250
DATA 184,194,244

84 Macintosh Game Animation

DATA 187,201,235
DATA 193,215,224
DATA 210,240,207
DATA 245,304, 182

Planet valleys are drawn and painted with the FILLPOLY ROM routine. A total of
22 X and Y coordinates define the rectangle enclosing a planet segment and
defining the shape of the valley. Fortunately, you do not have to enter 22 different
coordinates for each segment. Within the 22 coordinates, only three vary: the
valley top, the valley bottom, and the valley's left side. These are read into POLY(l),
POLY(9), and POLY(8). All other values are calculated or are constant.

You can change the shape of the planet and width of the valley and segments by
changing the values in the DATA statements. You can see each planet segment as it
is drawn by deleting the apostrophe(') in front of the LOCATE 5,5 statement near
the end of the subroutine. Press the RETURN key to advance to the next segment.

The MOD function calculates the next STRIPSHADE. This in turn selects the
pattern for the planet segment. (MOD returns the remainder of the left term
divided by the right.) As the two FOR/NEXT loops increment, the value of STRIP
SHADE remains 0, 1, or 2. The STRIPSHADE value then sets SHADE according to
which term inside the parentheses is true. The GOSUB Pattern statement rede
fines the segment pattern to the value of SHADE. When VIEW increases on the
next pass, the STRIPSHADE values (0, 1, or 2) move to lower planet segments.

The remainder of the subroutine draws connecting lines between canyon edges
and stores the overlay image in the multidimensional array PLANET. Only the
central portion of the planet is stored with GET. Attempting to store all three
views of the entire planet exceeds the 128K memory limits unless the program is
compressed.

Background

The background of black space, stars, and viewport sidepanels form a frame
around the animating overlay. If the entire planet is animated, do not enter the lines
beginning with

FOR SIDEPANEL=o TO 85

through, but not including,

RETURN.

Background:
CLS
LINE (0,0)-(511, 182),33,BF
FOR STAR=l TO 100

Background Animation 85

XST AR:511*RND(1): YST AR:200*RND(1)
PSET (XST AR, YST AR),30: PSET (XST AR+ 1 *RND(2), YST AR+ 1 *RND(2)} ,30

NEXT STAR
FOR SIDEPANEL=O TO 85

LINE (0,97+SIDEPANEL)-(SIDEPANEL,97+SIDEPANEL),30
LINE (500,97+SIDEPANEL)-(500-SIDEPANEL,97+SIDEPANEL),30

NEXT SIDEPANEL
CALL PEN61ZE(2,2): CALL HOVETO (0,100)
CALL LINETO (82, 185): CALL LINETO (82, 185): CALL LINETO (82,285)
CALL LINETO (418,285): CALL LINETO (418, 185): CALL LINETO (500, 100)
CALL HOVETO (82, 185): CALL LllETO (0,270)
CALL HOVETO (418, 185): CALL LINETO (500,270)
CALL HOVETO (82,282): CALL LllETO (72,300)
CALL HOVETO (418,282): CALL LINETO (428,300)
RETURN

Scrolling Background Animation

Scrolling backgrounds move entire displays. The background appears to move like
scenery seen through the window of a moving car. Scrolling backgrounds extend
the playing field or video world of your program.

Scrolling Screen Sections

The SCROLL statement moves a rectangular screen area a specific number of
pixels in the vertical and horizontal direction. It is as though a rectangular section
of the display were cut out and slid behind the display. If the entire display were
scrolled, it would appear as if the whole display were moving.

The SCROLL statement,

SCROLL (XI,YI)-(X2,Y2),xdelta,ydelta

moves the rectangular area specified by (Xl,YI)-(X2,Y2) the number of pixels
specified in xdelta and ydelta. SCROLL only moves the area once. The X and Y
coordinates in the SCROLL statement reference the upper-left corner of the
current output window as (0,0).

Continuous Scrolling

Continuous scrolling requires repeated SCROLL statements. As the scrolled area
moves away from its previous location, it exposes the Macintosh BASIC back
ground. If you want pictures or figures in this blank area you must draw or PUT
them there.

86 Macintosh Game Animation

When objects within the window scroll beyond the edge of the scrolling rectan
gle, they are erased and cannot be retrieved by reversing the scroll.

Continuously scrolling backgrounds are programmed by scrolling a screen area,
redrawing the scene to refresh the exposed Macintosh background, and scrolling
again. For example, as clouds scroll off the right side of the screen, the program
should display new clouds on the left. Since both image and picture figures may
enter the display from outside screen edges, figures can enter smoothly and
realistically. The result is a continuously moving sky of clouds.

Large continuously scrolling scenes are scrolled by displaying the full scene and
displaying the left and right views outside the screen boundaries as though they
were scenery in the wings of a stage. Display the "scenery in the wings" so that
their edges butt against those of the visible display. (You won't be able to see the
scenery on the side, but the program will know it's there.)

Move all three scenes with the same speed. The displayed screen is scrolled; the
outside two are displayed with repositioned origins. For example, as the visible
display scrolls two pixels to the right, the outside scenes are redrawn with their
origins shifted two pixels to the right. In this way the scene being scrolled off the
display is followed directly by the scene coming into the display. Butting their edges
together forms a continuous picture. Even highly detailed MacPaint pictures or
image conversions can be scrolled in this fashion.

Scrolling Performance

Scrolling works best in small increments. The program presented in this chapter
demonstrates this by scrolling the mountain range right at any speed, but limiting
leftward scrolling to two-pixel increments. The smaller increments result in slower
but smoother animation.

Figure performance decreases during scrolling. Figure interaction on the screen
should be held to a minimum while scrolling. When scrolling stops, fast figure
action can resume. You can increase performance by compressing the program.

The best scrolling uses PSET images or PICTURE with the Copy Pen mode;
however, this interferes with the erase/display cycle of XOR figures in the scrolling
area. If the figure crosses the joint between scenes during scrolling, unerased parts
of the figure may remain. As a consequence, XOR image and XOR picture figures
are easiest to program if they are restricted so they cannot cross the joint between
scenes during scrolling.

One way of keeping figure performance high is to scroll the background only
when the figure attempts to leave the visible display. At that time the figure should
maintain its screen location and the background should scroll past. When the figure
moves away from the edge, scrolling stops, and high performance figure animation
returns.

Background Animation 87

,. ei Hl<1 Edit S(rnn h Run Window'
.,

:'.:0- .. SCROLLING - MOUNTRIN RRNGE

-

Figure 6-2 . Scrolling mountain range

Scrolling Background Program

This program scrolls a range of mountains across the screen whenever you move
the flying saucer near the side of the screen . Two mountain ranges are butted
together to double the available background. One of the mountain ranges is shown
in Figure 6-2.

Fly the saucer with the mouse. Click the mouse button to make the flying
saucer move toward the mouse cursor.

The mountain range scrolls to the right in increments equal to the saucer speed
when it approaches the left edge . A fast approach scrolls the mountains right in
large increments, resulting in jerky animation.

Scrolling to the left is limited to 2-pixel increments. No matter how fast the
saucer approaches the right edge, the mountains scroll smoothly, but slowly, to the
left.

88 Macintosh Game Animation

Two mountain ranges are used. The joint between them is visible as a cliff at the
middle of the screen. After observing the original program you can create random
mountain ranges for each run by using the TIMER function to seed the random
number generator, RND.

Master Control and Animation Loop

Master control coordinates the subroutines that initialize variables and draw
the saucer and mountain images. The initial PUT required by the XOR saucer
follows the GOSUB statements.

'MASTE~ CONTROL
60608 lnitiallze
60608 GETSaucer
60608 GETMountain

PUT (XOLD,YOLD),SAUCER,XOR 'INITIAL XOR DISPLAY

Animation1oop:
PUT (XOLD,YOLD),SAUCER,XOR: PUT (X,Y),SAUCER,XOR
XOLD:X: YOLD:Y 'STORE LOCATION TO ERASE
IF n006E(0)<>0 THEN 60608 CheckMouse
X:XOLD+XSPD: Y:YOLD+YSPD 'CALCULATE NEW POSITION
'CHECK BOUNDARIES
IF X<5 OR X>(506-WIDE) THEN X=-5*(X<5)-(506-WIDE)*(X>(506-WIDE))
IF X=5 THEN 60608 Scro11Right
IF X=(506-WIDE) THEN 60608 ScroHLeft
IF Y< 100 OR Y>240 THEN Y=-1OO*(Y<100)-240*(Y>240): YSPD:O
GOTO AnimationLoop

CheckMouse:
X:n006E(1): Y:nOOSE(2)
XSPD:(X-XOLD)/SCALE: YSPD:(Y-YOLD)/SCALE
RETORll

The animation loop runs the same as the XOR animation loop from Chapter 4.
The two enhancements to the loop send program control to the ScrollRight or
ScrollLeft subroutines when the saucer attempts to leave the area between X=S
and X=S06-WIDE (WIDE is the saucer's width).

Scrolling

The ScrollRight and ScrollLeft subroutines move mountains. Only the area
between Y=lOO and Y=250 scrolls. The saucer stays within the scrolling area so it

Background Animation 89

won't be cut in half.
The same PSET image, MOUNTAINS, acts as both an entering and a departing

scene. The left of the two scenes, controlled by Scrollright, has a starting origin of
LFTEDGE=-256 outside the left side of the display. This places its right edge at
X=255.The right scene has a starting origin of RTEDGE=256 at the center of the
display. The joint between left and right scenes is visible at startup as a tall cliff. The
same scene is reused here to reduce the program's size. However, programs can be
modified to produce a smoother joining of scenes.

Scroll Right:
IF LFTEDGE-XSPD>(-12-WIDE)THEI BEEP: XSPD:O: GOTO NoScroll
LFTEDGE=LFTEDGE-XSPD:RTEDGE:RTEDGE-XSPD
GCROLL(O, 100)-(511,250),-XSPD,O 'SCROLL RIGHT IN JUMPS OF XSPD
PUT (LFTEDGE, 100),MOUNT AINS,PSET
PUT (X,Y),SAUCER 'REPOSITION SAUCER
XOLD=X:YOLD=Y
NoScroll:
RETURI

Scroll Left:
XSPD:2 'SCROLL LEFT AT SMOOTHER RATE OF XSPD=2
IF RTEDGE-XSPD<(12+WIDE)THEI BEEP: XSPD:O: GOTO NoScron
RTEDGE:RTEDGE-XSPD:LFTEDGE=LFTEDGE-XSPD
SCROLL(O, 100)-(511,250),-XSPD,O 'SCROLL LEFT IN CONSTANT JUMPS OF 2
PUT (~EDGE, 100),MOUNT AINS,PSET
PUT (X,Y),SAUCER 'REPOSITION SAUCER
XOLD:X:YOLD=Y
NoScroll:
RETURN

After the right scene scrolls by a distance of XSPD pixels, the left scene is PUT
at its new origin (LFTEDGE- XSPD). This moves the left scene XSPD pixels
farther right so that it fills the gap created by the scroll. The exposed gap is
momentarily visible as a white flash on the side of the screen being scrolled away
from.

Both LFTEDGE and RTEDGE are updated before each scroll. If they attempt to
scroll too far, the program beeps, the speed is set to 0, and further scrolling is
bypassed.

Scenes do not scroll completely across the display in Program 6-2. The
IF/THEN statement near the beginning of each subroutine stops scrolling so there
is room for the saucer on the entering scene.

The old saucer, which has moved with the scrolled background, is erased by a

90 Macintosh Game Animation

redrawn scene. The saucer should be redisplayed again at (X,Y) to give the appear
ance of standing still while the mountains scroll past. After each scroll and scene
change, the scrolling subroutine returns to the animation loop to check for further
mouse input.

The ScrollLeft routine works the same as ScrollRight, but its scroll speed is
limited to two pixels per move. The slower speed gives smoother scrolling.

Initializing and Drawing the Saucer

The multidimensional image array, MOUNTAINS, is dimensioned to hold an
image 512 pixels wide and 151 pixels tall. You can increase the speed of the saucer by
decreasing the SCALE value.

GETSaucer paints a black oval and stores it in the image array SAUCER. When
projected over black space with XOR, the black oval appears white.

Initialize:
CL6
DEFlllT A-Z
DIH 6AUCER(21),MOUNT AIN6(4833)
WINDOW 1,·scROLLING - MOUNTAIN RANGE-,(0,38)-(530,341), 1
WIDE:18: HIGH:18 'SIZE OF SAUCER
X=256: Y= 170: XOLD:X: YOLD=Y 'SAUCER ST ART ING LOCATION
SCALE=30 'SPEED CONTROL
LFTEDGE:-256:RTEDGE=256

' RECTANGLE - SHAPE OF SAUCER
CORNER(O)=O: CORNER(1)=0
CORNER(2)=9: CORNER(3)= 18
RETURN

GETSnucer:
CALL PAlllTOYAL(YARPTR(CORNER(O))) 'SAUCER
GET (0,0)-(18,9),SAUCER
CL6
RETURN

Drawing and Storing a Mountain Range

The range of mountains created for Program 6-2 is actually a series of vertical
lines with height controlled by random functions. Drawing each line at increasing X
coordinates produces a solid black silhouette.

The mountains only go down to Y=250, the bottom of scrolling and the lowest
mountain valley. A solid black box fills the stationary screen below Y=250.

GETMounta1n:
HEIGHT=200:SLOPE=1
FOR SLICE:O TO 51 1

Background Animation 91

TOP:200-60*RND(1): BOTIOM:200+50*RND(1): GRADIENT =3*RND(1)
HEIGHT :HEIGHT+GRADIENT*SLOPE
IF HEIGHT <TOP THEN SLOPE=-SLOPE
IF HEIGHT>BOTIOM THEN SLOPE:-SLOPE
LINE (SLICE,HEIGHT)-(SLICE,250),33

NEXT SLICE
&ET (0,100)-(511,250),MOUNTAINS
CL6
LINE (0,251)-(511,341),33,BF 'BLACK SCREEN BOTIOM
'DRAW TWO MOUNTAIN RANGES SIDE BY SIDE, ENDS MEET AT X=256
PUT (-256, 100),MOUNT AINS,PSET: PUf (256, 100),MOUNT AINS,PSET
RETURN

Mountains are actually lines drawn from Y=HEIGHT to Y=250. Each new line
is drawn in the next X-axis location, SLICE. SLICE increments from 0 to 511.

The first mountain height begins at 200, HEIGHT=200, with a downward
slope, SLOPE= I. From that point on, HEIGHT changes for each SLICE. Height
changes cannot be too great or the appearance of mountains will be lost. The top
and bottom limits and the change from the previous HEIGHT are calculated with
random functions. When the height touches a top or bottom limit, the SLOPE
changes sign. This switches from downhill to uphill or vice versa. When examining
this subroutine, remember that a decreasing HEIGHT, Y-axis variable, is a taller
mountain.

After all the slices are drawn, the mountain range is stored in the MOUNTAIN
image array. The screen is then cleared, and the MOUNTAIN image is displayed as
the left and right scenes. The two scenes meet at the screen center to form a cliff.

Hints and Tips for Background Animation

Some of the important facts to remember about background animation with
overlays are

• Cels used to overlay background areas work the same as figure animation;
however, they remain in one location.

• Overlays may be highly detailed. Both the moving image and the background
can be detailed if MacPaint drawings are used. Backgrounds are restored
when overlays are properly drawn.

• Overlays displayed with PSET images erase figures they cover. Pictures used
with Copy Pen mode will generally do the same, producing a ghost-like
figure.

92 Macintosh Game Animation

• Overlays usually cover a large amount of total area and may slow the
program. To combat this and increase available memory, compress the
program.

When programming backgrounds with scrolling animation, remember:

• Small screen areas scroll faster than large ones. This allows them to move in
smaller increments and with greater smoothness.

• When the screen area is scrolled, the Macintosh background is exposed.
Continuous backgrounds are produced by replacing this blank area with an
entering scene and scrolling again.

• Figures within the scrolling area move with the background.

• Performance and available memory may dictate scrolling only a portion of the
screen.

Chapter 7

Collision Detection and Identification

0 ne of the characteristics of computer animation is the figure's ability to
interact with the video world surrounding it. However, this is only possible
with figures that detect and identify objects on the screen. This chapter

explains how to detect and identify collisions between figures and other objects
and how each object can react to a collision with unique but complex behavior.

Collision Detection and Identification

There are three ways in which BASIC programs detect collisions. The first way
compares the locations of moving figures and identifies the struck figure. The
second method stores a "map" of the screen in memory. Figures can identify the
background they move over by examining this Target Identification Grid. The third
method of collision detection uses the POINT function to check whether pixels
around a moving figure are white or black. The POINT method is only useful in
special situations.

93

94 Macintosh Game Animation

Location Comparison

An easy and accurate method of detecting collisions between moving figures is to
compare their locations. If the locations are within specified X and Y distances of
each other, they will appear to have collided.

One way of programming this compares the origins and widths of eels to
determine if the eels overlap. On the X-axis this comparison might look like

IF (XRUNNER+ RWIDTH)> XLION AND XRUNNER< (XLION+ LWIDTH)
THEN ...

This statement checks if the runner's right side (XRUNNER+ RWIDTH) is to the
right of the lion's origin, and if the runner's origin, XRUNNER, is to the left of the
lion's right side (XLION+ LWIDTH). The only time this occurs is when the X-axis
coordinates of the two eels overlap.

The vertical coordinates can be checked after the THEN statement in the same
manner. By checking Y coordinates in the same program line, but after the figure's
X coordinates are checked, you speed up program operation. The program does not
take the time to check Y coordinates unless the X coordinates indicate a collision
might have occurred.

Another way of comparing locations checks whether the midpoints of the two
eels are within a specified distance of each other.This works best with figures that
are centered in their eels and are nearly the same size.

To use this method, find the X-axis midpoint of each eel by adding half a eel
width to the origin. The distance between the two midpoints is found by taking the
absolute value of the distance between midpoints. If the distance between mid
points equals half the sum of the eel widths, the two eels have touching edges. If the
distance is less, the eels overlap.

In the following program fragment, a 16 by 16 runner is being checked for
collision with a 24 by 24 lion eel.

IF ABS((XRUNNER+7)-(XLION+n))<(7+11) THEN
IF ABS((YRUNNER+7)-(YLION+l1))<(7+11) THEN
TGT= 4: ATEHIM=-1

Participants in a collision are identified by setting the value of TGT. In this case, the
runner is being checked for collisions with other figures, so the runner is known to
be in the collision and TGT=4 identifies the lion. The variable ATEHIM, set to-1
or TRUE, is used to indicate that the runner did not escape the lion.

The right-hand term of the comparisons, (7+ 11), controls how close eel mid
points must be for a collision. Precalculating the right-hand term and storing it in a

Collision Detection and Identification 95

variable allows the program to run faster. Increasing this term makes collisions
occur when figures are more distant. This value can be changed to adjust for a
player's skill level. If figures are much smaller than the eels that contain them, the
right-hand term can be reduced to detect contact between figures instead of
contact between eels.

Programs that contain many moving figures may have a large number of
collisions to check, and this can slow the game. However, you can reduce the
number of collision checks with two techniques: checking only the most signif
icant moving figure against the others, and grouping figures together so they can
be checked within a single IF/THEN statement.

In most activities there will be only one significant moving figure. This is the
figure that should be checked. Checking more than one figure against all others
drastically increases the number of checks and decreases the speed of the program.

Figures that move on the same X or Y coordinates, such as a horizontal row of
flying ducks, can all use the same initial location check on their common coordi
nate. For example, tin ducks in a horizontal row in an arcade game should all be
checked against their common vertical location. If the bullet is not at the correct
height, there is no point in checking the bullet's location against each duck's
horizontal location.

Rapidly moving figures may appear to jump over figures they should have
collided with. These jumps are caused by missed collision detection. Figures travel
ing with a combined speed that is faster than the sum of half the dimensions may
jump over each other because both old and new locations were outside the collision
distance. However, they may have appeared to pass through each other. To prevent
this, make figures at least twice the height or width of the combined speeds, or
limit the maximum speeds of the figures.

Here is a list of the advantages of using location comparison:

• Detection by location only misses if figures are too fast or too small.

• Collisions are detected regardless of the figure's direction of travel.

• The sensitivity or accuracy of collisions can be adjusted by changing a single
variable.

Some of the disadvantages are

• A large number of collision checks slow down the program.

• The collision-checking area is rectangular and your figure may have a differ
ent shape.

•Figures with combined speeds greater than the sum of half their widths or
heights may apparently jump over each other and miss a collision.

96 Macintosh Game Animation

Target Identification Grid

Figures can identify the background areas they move over or collide with by
referring to a Target Identification Grid . The Target Identification Grid acts as a
map that returns an identification number when given a set of screen coordinates .

When combined with the target behavior array (discussed later), the Target
Identification Grid assigns unique characteristics or behavior to different back
ground areas. For example, figures can be restricted to paths or mazes, or speeds
and sounds can change as figures travel over different areas of the background .

Calculating the Target Identity

Figure 7-1 shows a sample Target Identification Grid with five shapes posi
tioned on it: an oval, a slanted line, two boxes, and a "Title." The figure also shows
X and Y grid coordinates, which are integer values beginning with 0 at the

0 5

0

Cf)

Q) .._,
ca 5 c:::

X-Grid
Coordinates

10 15
I

'J {l(WiJ
20 25

'O ·-·-'O 7 '- '-
(,!,:) 0
I 0
>U

10

15
16

Ovel

Box

Figure 7 -1. Target Identification Grid

Slanted
Line

-

..
Box
J L

Collision Detection and Identification 97

upper-left corner. These coordinates are calculated from the screen coordinates
with the following formulas:

Grid X coordinate= INT(X/grid width)

Grid Y coordinate= INT(Y/grid height)

The grid acts as a map that identifies background objects by their grid coordinates.
Each pair of grid coordinates corresponds to a target identification number, TGT,
stored within the array TGTIDENT. If a figure's midpoint is at (X,Y), the back
ground object that the midpoint covers is found by

Xgrid = INT (X/grid width)

Y grid = INT (Ylgrid height)

TGT = TGTIDENT (Xgrid,Y grid)

If TGT is zero, ordinary background is covered; however, a non-zero TGT identi
fies a background object. Background objects with different characteristics should
have different TGT numbers.

Use the INT function when calculating grid coordinates from screen coordi
nates. Real numbers used as array indexes will not give accurate results.

Background objects may cover more than one grid square. For example, a single
target may be within one grid square, as in the case of the small box in Figure 7-1.

TGT = TGTIDENT (17,14) = 1 Small box

Some targets may cover multiple grid squares. An example is the slanted line.

TGT = TGTIDENT (20,6) = 2

TGT = TGTIDENT (20,7) = 2

TGT = TGTIDENT (21,6) = 2

TGT = TGTIDENT (21,7) = 2

Slanted line

Same line

Same line

Same line

Targets of the same type but in different locations can have the same TGT
number.

TGT = TGTIDENT (8,12) = 1

TGT = TGTIDENT (17,14) = 1

Box

Similar box in a different location

The program must store target or background identifiers within TGTIDENT.
Elements within TGTIDENT that do not have stored numbers are set to 0. By
convention, these O's stand for background that is ignored. This is useful for
preventing collisions with backgrounds, titles, or scoring information, such as

TGT = TGTIDENT (10,0) = o Title

TGT = TGTIDENT (10,1) = o Title

98 Macintosh Game Animation

Entering Target Identifiers

The target identifiers, TGT, for background objects must be entered into the
TGTIDENT array. Dimensioning the array initializes each array element to 0, so
large areas of background that are ignored do not need to be entered into the array.

Two methods of entering TGT are by calculation and by reading the identifiers
from DATA statements. Background objects drawn with ROM calls, such as
FRAMERECT, can use the drawing coordinates to calculate which TGTIDENT
elements need TGT values.

Unusual shapes or shapes that have multiple identities should have the identity
of each grid location read into TGTIDENT from DATA statements.This allows you
to create shapes that have different identifiers within the same shape. For example,
a long bar can have different identifiers along each side. These different identifiers
might result in different scores and angles of reflection.

TGT identifiers may be entered into TGTIDENT for objects that are not visible
on the screen. This creates invisible objects, such as hidden walls or secret
passages.

Unusual boundary shapes, such as a mountain range, can also be created by
entering an identifier, TGT, into TGTIDENT that indicates the wave is a boundary.
This allows you to create backgrounds with unusual boundaries.

Accurately filling the TGTIDENT array with TGT numbers may be difficult
for grids with a large number of squares. One way of making this easier is to draw
the grid over the background and to display each TGT value as it is entered. This
lets you see where objects are located in the grid. With the grid in place you can
cross-check each object's TGT and grid coordinates as the object is drawn. Com
plex objects can be drawn a single grid square at a time to help you identify TGT
values. The finished program should not display the grid and should draw back
grounds as rapidly as possible.

Increasing the Identification Accuracy

Increasing the number of grid squares in the Target Identification Grid
increases the accuracy of the identification and allows objects to appear smaller.
You can even identify specific details on larger objects, such as a doorhandle on a
door.

The example in Figure 7-1 shows a grid of 26 by 17 squares. Program 7-1,

shown later in this chapter, uses a grid that is 103 by 69.

Here is a list of the advantages of using the target-identifying method to detect
collision:

• Moving figures can identify the background they cover at their current and
next locations.

Collision Detection and Identification 99

• Each grid location may have a unique identifier, TGT, that determines a
specific reaction to being covered by a figure.

• The Target Identification Grid is fast. It takes the same time no matter how
many background objects are onscreen.

Some disadvantages of target identification are

• Figures may jump over small background objects if their current and next
locations are on either side of an object.

• The maximum number of squares in the Target Identification Grid may be
limited by memory.

• It may be difficult to fill the TGTIDENT array accurately.

Collision Detection With the POINT Function

The POINT function returns the pixel status at a specified coordinate. If the pixel
at the coordinate is white, POINT returns 30. If it is black, POINT returns 33.

Moving figures surrounded by a "fence" of POINT functions are able to detect
collisions when one of the POINT functions in the fence returns a value of 33,
black. The POINT fence surrounding a figure may take many shapes, but one of
the easiest to program.places a POINT at each corner of the figure's eel.

To check for collisions at the corners of a eel, calculate the eel's corner coordi
nates as offsets from the origin. For example, a 10 by 16 eel has a lower right
POINT function of

COLL3 =POINT (X+9,Y+15)

A different variable, COLLI through COLL4, should store the returned value of
each corner's POINT function. The COLL variable containing 33 has collided with
a black background pixel.

Specific points around a figure can be checked by selecting POINT coordinates
with the proper offset from the moving eel's origin. This lets the program identify
a specific spot in the figure as the only detection point. In the previous example,
COLL3 might check for a collision at the toe of a foot with the code

COLL3 =POINT (X+7,Y+13)

Some advantages of using the POINT function are

• POINT detects collisions with other figures and with backgrounds.

• The speed of detection is the same regardless of the number of other
onscreen figures and objects.

• Exact pixel locations, such as the toe of a boot or tip of a finger, can be
checked for collision.

100 Macintosh Game Animation

Some of the POINT function's disadvantages are

• POINT cannot detect patterns. A program using the POINT function may
miss shaded figures or background objects. Collisions are inconsistent
and unpredictable.

• The POINT function detects collisions but does not identify them. Either the
location or Target Identification Grid must be used for identification. This
can slow the program.

• You cannot use the POINT function in a program with a background that is
not white.

Collision Behavior

Programs are more interesting and exciting when figures and background objects
have their own personalities and reactions. The value of TGT returned after a
figure-to-figure collision or from a background object can identify what type of
collision effects should take place.

The TGT value that identifies figures and objects also identifies their behavior.
For example, a screen area drawn as a swamp might be indicated by TGT= 2. If a
running figure enters this area, then the runner may begin to slow down and the
score begin to decrease, both of these effects occurring only when TGT= 2.
Similarly, a collision between the runner and the lion, indicated by TGT= 4, may
end the game.

Your program can control behavior in two ways: with the use of IF/THEN
statements, or with the TGTBEHAV array. IF/THEN statements are helpful for
conditions that only apply to a single, special situation. In the case of the lion
overtaking the runner, an IF/THEN statement in the collision effects subroutine
might be

IF TGT= 4 THEN END

Collision behavior common to many objects and figures, such as score and sound
effects, can be stored in a target behavior array, TGTBEHAV Using a target
behavior array reduces the number of IF/THEN statements in the program,
increases the complexity of reactions, and can increase the speed of programs.

In its simplest form TGTBEHAV is a two-dimensional array. TGT specifies the
first dimension, the identity of the struck figure or covered background. The
second dimension accesses the type of behavior, such as sound effects, score, or
speed. Table 7-1 shows a sample TGTBEHAV for a jungle game and the types of
behavior and variables it might hold.

Some of the types of behavior that can be stored in a TGTBEHAV array include

Table 7 -1. The Target Behavior Array

TGT
0
1
2
3
4

Sound
Score On

0 0
15 -1
-5 -1
500 0
NIA -1

Behaviors

Sound ON GOSUB
Frequency Subroutine

NIA NIA
232 NIA
880 Swamp:
NIA Treasure:
2000 Lion:

Collision Detection and Identification 101

Time
Delay

NIA
NIA
100
0
500

Special
Behavior

NIA
NIA
-1 alligator up

O chest closed
-1 hungry

a musical tone, the score, a new speed or angle of motion, patterns, delay times,
subroutines, or a new skill level.

Figures and backgrounds may change their behavior depending upon previous
actions in the game. For example, you may want the lion to chase runners only
when it is hungry. If the lion recently caught a runner, the value 0, or FALSE, could
be stored in the hungry element of the lion's behavior. When the hungry element
changes to -1, or TRUE, the lion will again chase the runner.

Programming Detection and Identification

The Target Identification and Behavior program, Program 7-1, detects figure-to
figure collisions and background identification. Figure 7-2 shows the screen
display.

The program detects collisions between a moving ball and two moving flying
saucers. The two flying saucers slide back and forth across the screen at the same
altitude. They are used to demonstrate how multiple figures can be grouped
together for detection.

The title, horizontal black bar, and wavy black background demonstrate differ
ent capabilities of the Target Identification Grid and TGTBEHAV array. The wavy
background acts as a boundary that only allows the ball within one move before
stopping it. This demonstrates one way of creating unusual boundaries. The title
has a TGT identifier of 0 and therefore remains undetected as the ball passes over
it. Multiple behaviors in the same object are demonstrated in the horizontal bar.
The bar is divided into three sections. The ball will bounce off the ends, which have
one sound, while the ball will pass through the middle, which sounds a different
tone.

102 Macintosh Game Animation

UNDETECTED TITLE

-
•

Figure 7 -2. Display of the Target Identification program

You control the ball's direction and speed of travel with the mouse. The ball
moves toward the mouse cursor when the mouse button is pressed. You can move
the ball into different targets and backgrounds to see its effect.

Master Control and Initial Images

The master control portion of the program prepares the program by calling
subroutines that set the initial variable values, create the images and backgrounds,
and load the target identifier values and behaviors in the TGTIDENT and
TGTBEHAV arrays .

The ball and both flying saucers use XOR animation, so their images are
displayed before the animation loop begins.

'MASTER CONTROL
GOSUB lnitiallze
606UB GETlmages

'GOSUB DrawGrid
G06U8 DrawBackground
G06U8 LoadTgtBehaY

'INITIAL XOR IMAGES
PUT(BXOLD ,BYOLD) ,BALL,XOR

Collision Detection and Identification 103

PUT (SXOLD,SYOLD),SAUCER,XOR: PUT (SXOLD+ 100,SYOLD),SAUCER,XOR

Animation Loop

Three images (two saucers and a ball) move in the animation loop. The saucers
move back and forth across the screen at a constant height. The ball moves
according to the direction you indicate with the mouse.

In addition to moving images, the animation loop checks for collisions between
the ball and the moving saucers or between the ball and background objects. When
collisions are detected, the animation loop branches to the CollEffect routine,
where collision effects occur depending upon what was hit.

AnimationLoop:
'ERASE OLD DISPLAY NEW
'BALL
PUT(BXOLD ,BYOLD) ,BALL,XOR
PUT(BX ,BY) ,BALL ,XOR
'FIRST SAUCER
PUT (SXOLD ,SYOLD) ,SAUCER,XOR
PUT (SX,SY),SAUCER,XOR
'SECOND SAUCER
PUT (SXOLD+ 100,SYOLD),SAUCER,XOR
PUT (SX+ 100,SY),SAUCER,XOR
IF HIT THEN G06U8 CollEffect 'IF HIT IS TRUE THEN A COLLISION OCCURRED
BXOLD:BX:BYOLD:BY:SXOLD:SX
IF t10U6E(O):O THEN GOTO NoMouse
BX:t10U6E(1): BY:t10USE(2)
BXSPO:(BX-BXOLD)/SCALE: BYSPD=(BY-BYOLD)/SCALE
No Mouse:
BX:BXOLD+BXSPD:BY:BYOLD+BYSPD
SX:SXOLD+SXSPD
IF BX>O AND BX<(S 11-BWIDTH) THEN GOTO NoSide
BX:-(511-BWIDTH)*(BX>(S 11-BWIDTH)): BXSPD:-BXSPD 'SIDE BOUNDARIES
NoSide:
IF BY<O THEN BY:O: BYSPD:-BYSPD 'TOP BOUNDARY
IF SX>O AND SX<(411-SWIDTH) THEN GOTO NoSaucerSide
SX:-(411-SWIDTH)*(SX>411-SWIDTH): SXSPD:-SXSPD 'SAUCER SIDE

104 Macintosh Game Animation

NoSeucerSi de:
'CHECK FOR COLLISION WITH BACKGROUND OBJECTS
IF CHECK>=O THEN Skip 'WAIT FOR CHECK MOVES
TGT = TGTIDENT(INT((BX+ 7)*.2),INT((BV+ 7)*.2)) 'FIND ID OF THIS LOCATION
'DONT LET BALL TRAVEL INTO WAVE
IF TGT = 1 THEN BX:BXOLD: BV=BVOLD: BXSPD:O: BVSPD:O
IF TGT> 1 THEN HIT =-1 'MAKE HIT TRUE
'CHECK FOR COLLISION WITH MOVING SAUCERS
IF ABS((BV+7)-(SV+4))>(7+5) THEN Skip 'BALL NOT CORRECT HEIGHT
IF ABS((BX+ 7)-(SX+ 15))<(7+ 15) THEN TGT :5: HIT =-1 'IN LEFT SAUCER
IF ABS((BX+ 7)-(SX+ 100+ 15))<(7+ 15) THEN TGT =6: HIT =-1 'IN RIGHT SAUCER
Skip:
CHECK:CHECK-1
GOTO AnimetionLoop

The first few lines in the subroutine erase and display the ball and saucers at
their new locations. Immediately after displaying them, the program branches to
the CollEffect subroutine when HIT equals -1. This occurs immediately after
displaying the images so the effects and the new image location seem to occur
simultaneously. The variable, HIT, is set to TRUE or FALSE when new locations
have been calculated, but before the new location is displayed.

After the branch to CollEffect, the next seven lines store old values and
calculate new image locations according to the mouse's location when its button is
pressed. There is no lower Y-axis boundary for the ball. The black wave in the
lower portion of Figure 7-2 acts as the lower boundary. This demonstrates how
the TGTIDENT array can be used for unusual boundaries.

After the boundaries are checked, four lines check for collisions with back
ground objects. When the value of CHECK is positive, both background and figure
collision checks are skipped. The variable CHECK prevents collision detection
from detecting the same collision more than once. The collision effect subroutine
sets CHECK equal to 6 after a collision. The end of the animation loop subtracts 1

from CHECK after each pass. This gives the ball five moves after a collision to
move away from the collision before detection begins again.

If CHECK is negative, the TGT value is retrieved from TGTIDENT using the
eel midpoint of the ball's next location.

If TGT equals 1, the ball will land on the background wave the next time it is
displayed. When this occurs, the next location is reset and speed is set to 0. This
stops the ball from moving into the background.

If TGT is greater than 1, some other background object will be covered. Setting
HIT equal to -1 will branch the program to the collision effect subroutine after
displaying the images. The collision effect subroutine will create the effect asso
ciated with the TGT number.

Collision Detection and Identification 105

The last few lines of the animation loop check for collisions between the ball
and the moving saucers. The first of these lines checks if the ball is at the correct
height to contact the saucers; if not, the program skips the X-axis checks.

When the ball is at the correct height, the midpoint of the ball's width is checked
against the midpoint of each saucer. When the distance between midpoints is less
than half the sum of their widths, a collision occurs. TGT is set equal to the flying
saucer identifier, and HIT is set equal to -1, TRUE.

Drawing the Background
And Loading Target Identifiers

Target identifiers, TGT, load when the background objects they identify are
drawn. Two different methods are used. The first loads the value 1 into
TGTIDENT elements associated with the top black wave and the next element
below the top. The second method reads different values from DATA statements
after drawing the horizontal bar.

DrawBackground:
'DRAW VERTICAL BARS IN A COSINE WAVE AT SCREEN BOTIOM
'ASSIGN TGTIDENT VALU_ES AS EACH SQUARE DRAWN
FOR XBAR=O TO 511 STEP 5 'EACH COLUMN IS 5 WIDE

VTOP:200-50*COS((3. 14/ 180)*(360*XBAR/511}) 'CALCULATE CURVE
VGR ID= I NT(.2*(VTOP+ 2))
XGR ID= I NT(.2*(XBAR+2))
'WAVE BACKGROUND IDENTIFIED AS 1

TGT IDENT(XGR ID, VGR ID)= 1 'WAVE BOUNDARY
TGTIDENT(XGRID,VGRID+l):l 'GRID BELOW WAVE
LINE (XBAR,VTOP)-(XBAR+4,320),33,BF 'DRAW BACKGROUND

NEXT XBAR
'DRAW HORIZ. BAR
'ASSIGN TGTIDENT VALUES FROM DATA
LINE (220,50)-(280,65),33,BF 'HORIZONTAL BAR
FOR X=220 TO 275 STEP 5 'GRID SQUARES IN BAR

FOR V:50 TO 60 STEP 5
READ ID
TGTIDENT(INT(.2*(X+2)),INT(.2*(V+2)})=1D

NEXT V
NEXT X
LOCATE 1,25: PRINT "UNDETECTED TITLE";
LOCATE 18,25: PRINT ·score=";
RETURN

TGT - TARGET IDENTIFIER NUMBERS
'HORIZONTAL BAR - LEFT, MIDDLE, RIGHT

106 Macintosh Game Animation

'THOUGH ALL THE SAME BAR, EACH PORTION HAS A DIFFERENT BEHAVIOR
DAT A 2,2,2,2,2,2,2,2,2,2,2,2
DAT A 3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3
DAT A 4,4,4,4,4,4,4,4,4,4,4,4

As the FOR/NEXT loop steps through the width of the screen, it divides the
screen into 103 vertical columns. The height of each of these columns depends
upon the value of YTOP set by a cosine formula. The cosine formula creates the
wave effect.

A single LINE statement draws the horizontal bar at mid-screen. Although the
horizontal bar appears onscreen as a single bar, the collision effects subroutine will
treat it as though it were three separate background objects. The left third of the
bar is identified as TGT= 2, the middle identified as TGT= 3, and the right third
identified as TGT=4.

The two FOR/NEXT statements divide the bar into three rows of 12 grid
squares each. The READ ID statement retrieves the target identifier from the
DATA statements and stores it in the TGTIDENT array. The+ 2 constant added to
X before multiplying ensures the Xgrid and Ygrid integer values are calculated from
the center of each grid square.

Loading the Target Behavior

Each different TGT identifier can create its own unique collision effects by
storing its collision behavior in the array TGTBEHAV. The effect of a collision or
background location can be accessed by specifying the TGT identifier and the type
of behavior.

TGT values of 1 identify the wave background; 2, 3, and 4 identify the horizon
tal bar; and S and 6 identify the left and right flying saucers. The three collision
behaviors of sound frequency, sound duration, and collision score are specified by
values of 0, 1, and 2 in the second dimension.

LoaclT gtBehaY:
'TGTBEHAV(TGT,BEHAVIOR) HOLDS BEHAVIOR OF EACH TARGET
'TGT = 1-WAVE BACKGROUND; 2,3,4-BAR; 5,6-SAUCERS
'BEHAVIOR:O-FREQ; 1-SOUND LENGTH; 2-SCORE
TGTBEHA V(1,0):261: TGTBEHAV(1, 1)=10: TGTBEHAV(1,2)=0
TGTBEHAV(2,0):523: TGTBEHAV(2, 1):1: TGTBEHAV(2,2}=25
TGTBEHAV(3 ,0)=1046: TGTBEHAV(3, 1)=5: TGTBEHAV(3 ,2):50
TGTBEHAV(4,0):523: TGTBEHAV(4, 1)=1: TGTBEHAV(4,2):25
TGTBEHAV(5,0):2000: TGTBEHAV(5, 1)=10: TGTBEHAV(5,2)= 100 'LEFT SAUCER
TGTBEHAV(6 ,0):230: TGTBEHAV(6, 1)=10: TGTBEHAV(6 ,2):500 'RIGHT SAUCER
RETURN

Collision Detection and Identification 107

Handling the Collision Effects

The subroutine CollEffect uses the TGT identifier and the behavior stored in
TGTBEHAV to create specific collision effects. The SCORE and SOUND code
lines show how collision effects depend upon the TGT values found in
the animation loop.

Co11Effect:
SCORE:SCORE + TGTBEHA V(TGT ,2)
LOCATE 16,31: PRINT SCORE;
SOUND TGTBEHAV(TGT,0),TGTBEHAV(TGT, 1) 'SOUND FREQ,TIME
IF TGT=2 ORTGT =4 THEN BYSPO:-BYSPO 'BOUNCE ONLY AT BAR ENOS
CHECK:6: HIT :0 TURN CHECKING OFF FOR 5 MOVES, MAKE HIT FALSE
RETURN

The IF/THEN statement bounces the ball from the left or right ends of the
horizontal bar.

Setting CHECK to 6 gives the ball five times through the animation loop to
move away from the collision that just occurred. Change to smaller or larger
numbers and watch their effect. If CHECK is too large, other nearby objects will be
missed.

HIT must be reset to 0, so that the program will not continually loop back to the
CollEffect subroutine.

Drawing the Target Identification Grid

The DrawGrid subroutine draws the Target Identification Grid so you can
check the grid location of background objects. The first grid square in the upper
left corner is (0,0).

Remove the apostrophe from in front of the GOSUB DrawGrid line in the
master control portion of the program to see the grid drawn over the background
objects.

DrawGrid:
'OrawGrid SHOWS THE GRID USED BY TGTIDENT
'USE THIS TO VERIFY LOCATIONS VERSUS TARGET IDENTITY
FOR XG=O TO 511 STEP 5

LINE (XG,O)-(XG,341),33
NEXT XG
FOR YG=O TO 341 STEP 5

LINE (0,YG)-(511,YG),33
NEXT VG
RETURN

108 Macintosh Game Animation

Initialize and GET Images

The initializing subroutine dimensions the image, TGTIDENT, and TGT
BEHAV arrays. The image widths and heights are also set for use in boundary
calculation. Programs run faster if numbers are precalculated and stored in integer
variables.

The ball and saucer images use the MakeRectArray and MakePatternArray
subroutines to redefine the rectangle and pattern arrays. Using subroutines to
redefine the ROM routine arrays saves memory space and typing time.

I nitt fl 1i ze:
CLS
DEFlllT A-Z
Dltt BALL(17},SQUARE(17),SAUCER(21},TGTIDENT(102,68),TGTBEHA'v'(6,2)
WINDOW 1,"",(0,23)-(511,341},2
BWIDTH:16: BHEIGHT=16 'SIZE OF BALL
SWIDTH:32 'SIZE OF EACH SAUCER
BX:400: BY:50: BXOLD:BX: BYOLD:BY 'BALL ST ART ING LOCATION
SX=50: SY:100: SXOLD:SX: SYOLD:SY 'SAUCER STARTING LOCATION
BXSPD=-4: BYSPD:-3 'BALL SPEED
SXSPD:5: SYSPD:O 'SAUCER SPEED
SCALE:20
RETURN

GETlmflges:
'BALL - SET SIZE WITH ARRAY
X 1 =0: Y 1 =0: X2= 15: Y2= 15: 606UB MflkeRectArrfly
CALL PAI llTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(15, 15),BALL
CLS
'SAUCER - NEW SIZE AND PATIERN
X 1 =0: X2:31 : Y 1 :0: Y2:9: 606UB MflkeRectArrfly
P 1 :4386: P2= 17544: 606UB MflkePfltternArrfly 'CROSSHATCH PA TIERN
CALL FILLOVAL(VARPTR(CORNER(O)),VARPTR(PAT(O)))
GET (0,0)-(31,9),SAUCER
CLS
RETURN

MflkeRectArray:
'CREATE VARIABLE SIZED RECTANGLE AS NEEDED
CORNER(0)= Y 1 : CORNER(1):X 1
CORNER(2):Y2: CORNER(3):X2
RETURN

MakePat temArray:
'CREATE PATTERN AS NEEDED
PAT(O):P 1: PAT(1):P2
PAT(2)=P 1: PAT(3):P2
RETURN

Collision Detection and Identification 109

Chapter 8

Program Presentation and Control

A program's title page and the design and functions of its menus help create
an attractive and easy-to-use program. In addition to title and cursor
design techniques, this chapter demonstrates BASIC programming of

Macintosh windows, menus, dialog boxes, and data entry. Creating programs with
controls consistent with Macintosh principles improves the program's professional
image, increases user acceptance, and decreases user frustration.

Presentation Titling

Your programs should begin with titles and instructions that attract and inform.
BASIC's font management instructions allow your programs to display a range of
Macintosh fonts and styles. Enhanced MacPaint title pages can also be stored on
disk for use in programs.

Font Management

BASIC controls text characteristics with Macintosh ROM routines. The function

CALL TEXTFONT (font)

111

112 Macintosh Game Animation

selects different fonts for display. The font number determines the font displayed
until the next change. The fonts available are displayed in Table 8-1. Many of the
fonts are available on the MS-BASIC disk. If you need other fonts, use the Font
Mover on the Macintosh system disk to add fonts to your program disk. Fonts can
be deleted from the program disk for a considerable savings in memory.

Font sizes and styles are changed with the commands

CALL TEXTSIZE (size)

CALL TEXTFACE (face)

Not all text fonts display well in all sizes. Font Mover and MacPaint display the
appropriate sizes for different fonts.

Table 8-2 shows the text faces available. To combine text faces, add together the
values of the face attributes you want displayed. For example, bold, TEXTFACE(l),
and outlined, TEXTFACE(8), combine as TEXTFACE(9). When issued separately,
the last command takes precedence.

The function

CALL TEXTMODE(mode)

lets you display text over backgrounds in destructive or non-destructive modes
similar to PSET and XOR images. The default mode, mode 0, replaces the back-

Table 8 -1. Text Fonts

Font Number Font

0 System
1 Application
2 New York
3 Geneva
4 Monaco

5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto

10 Seattle
11 Cairo

Comment

Defaults to Chicago
Defaults to Geneva - 12 point

Pitch 9 and 12 available from BASIC disk
Pitch 9 available on BASIC disk;
non-proportional spacing

Graphics characters

Program Presentation and Control 113

Table 8-2. Text Faces

Face Number Face Appearance

0 Plain; default
1 Bold
2 Italic
4 Underlined
8 Outlined

16 Shadow
32 Condensed spacing
64 Expanded spacing

ground. Mode 2 XORs the text with the background. A second print in mode 2 at
the same location erases the print and restores the background. XOR printing can
be difficult to read over complex backgrounds.

Improving the Title and Lettering

Your program's title and instruction pages can be drawn with MacPaint, stored on
disk as a BASIC PICTURE$ file, and loaded for display when necessary. MacPaint
title screens can include detailed artwork and enhanced lettering.

You can enhance MacPaint fonts by typing in MacPaint as you normally would
and then using FatBits to smooth jagged edges of letters or to add custom serifs and
design. You can store alphabets of your custom letters in Scrapbook files for reuse.
Chapter 5 describes how to create libraries of Scrapbook files.

Typing and editing text in MacPaint is much easier if you select Grid from the
Goodies menu. Using Grid lets you edit words while maintaining the origin
positioning.

Animated Titles

Animated titles and words can grab a user's attention and add amusement to
learning games. Animated image letters or words are printed onscreen and then
stored with the GET statement just as graphics images are stored. PICTURE
letters and words are created by printing between PICTURE ON and PICTURE
OFF statements. You can modify the picture motion program in Chapter 3 so that it

114 Macintosh Game Animation

animates a word. Change the PICTURE ON and OFF routine in the MaskShip
subroutine to read as follows:

PICTURE ON
CORNER(0}=16: CORNER(l)=o
CORNER(2}=30: CORNER(3)=3
CALL ERASERECT(VARPTR(CORNER(O))) 'LEFT SIDE MASK
PRINT "FLYING SAUCER"

PICTURE OFF

The mask created by ERAS ERECT erases the left-hand side of the capital F so you
can use an animation speed of up to 3 pixels per move. Lettering without a mask can
only move at speeds of 1 pixel per move.

Customized Mouse Cursors

The mouse cursor or pointer is the first movable object that users see on the
Macintosh. As such, its shape should reflect the function being performed. The
pointer may become a pointing hand, an animated figure, or a paintbrush.

The following description and program explain how to create your own cursors.
The Cursor Maker in Appendix A will also help you generate your own custom
cursors.

Customizing the Mouse Cursor

There are good reasons for customizing the cursor. Using a cursor with a shape
that reflects the current task gives your program a more intuitive feel. For example,
moving a paintbrush to add pattern on the screen is far more understandable and
memorable than moving an arrow cursor. Cursors can also be animated to provide
animated figures that respond immediately and directly to mouse movements.

The mouse cursor design, its interaction with the screen, and its single detec
tion point are all specified by

CALL SETCURSOR (VARPTR(cursor%(0)))

The cursor% integer array holds 34 elements as shown in Table 8-3. The VARPTR
tells the SETCURSOR ROM routine where to look in memory to find the begin
ning of the cursor% array data. (VARPTR is described in more detail in Chapter 3.)
Each number stored within a cursor% element represents a pixel location or loca
tions within a 16-pixel row.

Cursor data is in the first 16 elements, 0to15. These elements define a 16by16
pixel pattern of the cursor. A sample pixel pattern is shown in Figure 8-1.

Program Presentation and Control 115

Table 8 - 3. Cursor Array Data

Cursor Array
Elements*

0to15
16 to 31

32
33

Data Stored

Cursor data-controls cursor shape
Cursor mask-controls cursor appearance
Vertical hot spot coordinate-values Oto 16
Horizontal hot spot coordinate-values Oto 16

*The cursor array must be an integer array.

16 BY 16 ~
PATTERN

Figure 8 -1. Creating a custom cursor

116 Macintosh Game Animation

The second 16 elements, 16 to 31, hold mask data. They also define a 16 by 16
pixel pattern. The interaction between cursor data and mask data determines how
the cursor will appear on different screen backgrounds.

Table 8-4 shows the different types of interaction possible. If a black cursor is
desired, regardless of the background it's on, the 16by16 pattern for both cursor
data and mask data are the same. A cursor that displays the inverse of its back
ground, like XOR images, has only cursor data; all mask data is 0.

Each row of 16 pixels corresponds to two bytes, or 16 bits. Black pixels in the
pattern correspond to bits equal to 1; white pixels to bits equal to 0. Since each bit
location is a power of 2, the pattern of a 16-pixel row can be reduced to a single
number. That is the number stored in the cursor's integer array elements 0 to 31.

The standard Macintosh cursor is a solid black arrow; both cursor and mask
data have bits equal to 1 in the shape of an arrow. The edge of the arrow is white so
that it stands out on black backgrounds. The edge has 0 bits in the cursor data and 1
bits in the mask data. Appendix A contains the Cursor Maker program that will
help you create cursors.

The cursor always restores the background it moves over. The cursor has one
sensitive location (called the hot spot) in its 16by16 pattern.This is the point used to
activate buttons, windows, and edit fields.

The hot spot is not a pixel. It is the intersection of two screen coordinates. Pixels
are located below and to the right of each screen coordinate. The hot spot can range
from (0,0) at the far upper-left corner of the grid to (16,16) at the far lower-right
corner.

Store the vertical location of the hot spot in cursor%(32) and the horizontal
location in cursor%(33).

Figure 8-2 shows how the black pixels in row 4 of Figure 8-1 evaluate to 24705.
The value, 24705, is stored in cursor%(3). (Because cursor% is an integer array, values
greater than 32767 must be stored as a negative number, value - 65536.) Mask

Table 8-4.

Cursor
Data

0
1
0
1

Cursor Appearance

Cursor
Mask

1
1
0
0

White
Black
Invisible

Pixel Appearance
On Screen

Inverse of screen pixels; similar to XOR image

Program Presentation and Control 117

ARRAY ELEMENT CALCULATION

32768 8192
I I

16384 4096

2048
I

1024

512
I

256

128
I

64

32
I

16

8
I

4

Figure 8-2. Each row of pixels in a cursor evaluates to an integer number

2
I

array elements are defined in the same manner; however, they are stored in cursor%
elements 16 to 31.

Animating the Mouse Cursor

Picture and image figures animate poorly when they directly follow rapid mouse
movement. In these cases, use cursor animation.

Animate cursors by changing the cursor% array elements, 0 to 31, each time the
animation eel changes. CALL SETCURSOR does not function correctly with the
multidimensional arrays used in image and Picture Animation. Instead, use ON
CEL GOSUB statements to change array elements.

Each time the variable CEL changes, GOSUB calls a subroutine that redefines
cursor% elements 0 to 31. Such a series of statements for the runner in Chapter S
might appear as

ON CEL GOSUB MAN1,MAN2,MAN3,MAN4,MANS,MAN6

MANI:
RUNNER%(O)=O: RUNNER%(1)=767: RUNNER%(2)=767 ...
RETURN

MAN2:
RUNNER%(0)=384: RUNNER%(2)=384: RUNNER%(3)=256 ...
RETURN

118 Macintosh Game Animation

Programming Custom Mouse Cursors

Program 8-1 changes the cursor to a pointing hand. Each press of the RETURN key
reveals a different cursor-mask data combination. The cursor's hot spot is at the
upper-right corner of the pointing finger.

Initializing and Creating
A Black Pointing Hand

The initialize routine defines the HAND array as an integer array with 34
elements. CALL SHOWCURSOR ensures that the cursor is displayed. The Hot
Spot subroutine sets the hot spot before the rest of the cursor is defined.

After clearing the screen and drawing the background, both cursor data and
mask data are loaded into arrays. The CALL SETCURSOR function then changes
the cursor to match the data in HAND%.

Both the cursor data and mask data specify a hand pattern like that in Figure
8-1. Because both data and mask bits are the same, the cursor appears black on all
screen sections. If the cursor is not visible, move the mouse, since the cursor may be
on the black side of the screen. The standard cursor uses a black cursor with a
white border.

'INITIALIZE
DEFINT A-Z
DIM HAND(33)
CALL SHOWCURSOR
GOSUB Hotspot

'NEW BLACK CURSOR - Data Bits 1, Mask Bits 1
CLS: LOCATE 5, 15: PRINT "BLACK CURSOR";: GOSUB Background
GOSUB CursorData 'LOAD DATA BITS
GOSUB CursorMask 'LOAD MASK BITS
CALL SETCURSOR(VARPTR(HAND%(0)))
GOSUB Wate

Flashing Cursor and White Cursor

This first routine creates a flashing cursor by alternating between the HIDE
CURSOR and SHOWCURSOR functions. Pressing the RETURN key exits the
flashing cursor loop.

The second routine in this block creates a white cursor by erasing the cursor
data values, elements 0 to 15. This leaves only the mask bits that were previously
defined.

Program Presentation and Control 119

'FLASHING CURSOR
CLS: LOCATE 5, 13: PRINT "FLASHING CURSOR";: GOSUB Background
KEY$="·
WHILE KEY$<>CHR$(13)

KEY$.. INKEY$
CALL HIDECURSOR
FOR PSE= 1 TO 500: NEXT PSE
CALL SHOWCURSOR
FOR PSE= 1 TO 500: NEXT PSE

WEND

'NEW WHITE CURSOR -Data Bits 0, Mask Bits 1
CLS: LOCATE 5, 15: PRINT "WHITE CURSOR";: GOSUB Background
FOR E=O TO 15: HAND7'(E)=O: NEXT E 'ERASE DATA BITS, LEAVE MASK BITS
CALL SETCURSOR(VARPTR(HAND~(O)))
GOSUB Wate

Inverse, Invisible, and Normal Cursor

A cursor pattern containing cursor data and no mask data appears as an inverse
of the background. White appears on black, and black appears on white. Here a
FOR/NEXT loop sets the mask bits to 0. The Cursor Data subroutine then loads the
cursor data.

A totally invisible cursor is created by setting all cursor and data values to 0. The
hot spot is still set.

The INITCURSOR restores the cursor to its standard shape at any time. If
HIDECURSOR is active, the cursor will not appear until a SHOWCURSOR func
tion executes.

'NEW INVERSE CURSOR - Data Bits 1, Mask Bits 0
CLS: LOCATE 5, 14: PRINT "INVERSE CURSOR";: GOSUB Background
FOR E=16 TO 31: HAND7'(E)=O: NEXT E 'ERASE MASK BITS
GOSUB CursorData 'LOAD DAT A BITS
CALL SETCURSOR(VARPTR(HAND7'(0)))
GOSUB Wate

'NEW INVISIBLE CURSOR - D~ta Bits 0, Mask Bits 0
CLS: LOCATE 5, 15: PRINT "INVISIBLE CURSOR";: GOSUB Background
FOR E=O TO 15: HAND~(E)=O: NEXT E 'ERASE DATA BITS, LEAVE MASK BITS
CALL SETCURSOR(VARPTR(HAND~(O)))
GOSUB Wate

'NORMAL CURSOR

120 Macintosh Game Animation

CLS: LOCATE 5,15: PRINT "NORMAL CURSOR";: GOSUB Background
CALL INITCURSOR
GOSUB Wate
END

Loading the Cursor Array

Only the first 16 elements of the cursor pattern load in Cursor Data. This data
represents the hand in Figure 8-1.

The cursor mask loads into array elements 16 to 31 with the FOR/NEXT loop in
CursorMask. CursorMask and CursorData contain the same pattern definitions.
Loading them with different definitions creates such effects as outlined or change
able backgrounds.

HotSpot defines the upper-right corner of the finger tip as the hot spot. It
remains constant throughout the program.

CursorData:
HANDX(0)•0
HANDX(1)= 1536
HANDX(2)=6654
HAND?l;(3)=24705
HAND?l;(4)=-31106
HAND?l;(S)a3856
HAND?l;(6)=6384
HAND?l;(7)=400
HAND?l;(8)=352
HAND?l;(9)=-7392
HAND?l;(10)=8128
HAND?l;(11)=0
HAND?l;(12)=0
HAND?I:(13)=0
HAND?I:(14)=0
HAND?I:(15)=0
RETURN

CursorMask:

'Bit pattern
'0000000000000000
'0000011000000000
'0001100111111110
'0110000010000001
'1000011001111110
'0000111110001000
'0001100011110000
'00000001100 I 0000
'0000000101100000
'1110001100100000
'0001111111000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000
'0000000000000000

'LOAD CURSOR MASK FROM CURSOR DAT A
FOR M=16 TO 31: HAND?l:(M)=HAND?l;(M-16): NEXT M
RETURN

Hotspot:
HAND'1:(32)=3 'VERTICAL

HAND%(33)= 16 'HORIZONTAL
RETURN

Background:
LI NE (256,0)-(511,341),33,BF

Program Presentation and Control 121

LOCATE 15,5: PRINT "PRESS RETURN TO CONTINUE";
RETURN

Wate:
Pause: KEY$=1 NKEY$: IF KEY$<>CHR$(13) THEN Pause
RETURN

If you need to create your own cursors or create masks for the hand shown here,
use the Cursor Maker program in Appendix A.

Menus,Dialog Boxes, and Data Entry

Macintosh users work within an operating environment that is far easier to
understand and control than any personal computer environment that has pre
ceded it. Two of its most important features are its consistent, modeless command
structure and its use of metaphors and icons.

In most other computer systems and applications, users must learn a different
set of commands and a different type of menu or command structure for every
application and operating system. With the Macintosh all interactions between the
user and the computer are consistent. Even users of a new application are able to
deduce much about how an application works without instruction.

Many good Macintosh programs are modeless; commands and operating proce
dures do not change in different parts of the application. In most cases, users can
access any function while another function is still in progress. MacPaint is an
excellent example of a modeless program. Functions within FatBits work the same
as in normal drawing.

Icons, pictorial representations, and a metaphor environment make operating
good Macintosh programs intuitive. People understand many new concepts and
facts by relating them to concepts and facts they already understand. Icons visually
represent functions people understand. For example, users know how a brush
works. The metaphor of using a brush on the screen helps people relate the new
concept of computer painting to their already existing concept of painting. Sim
ilarly, most people are familiar with storing documents in file folders. This makes
Macintosh file management easy to understand.

122 Macintosh Game Animation

Designing Your Environment

Macintosh programs should all operate within the same environment, using win
dows, icons, menus, and the mouse cursor in the same way. MS-BASIC is capable of
controlling and using the Macintosh environment within your programs; however,
building an effective user environment can be more difficult than writing the
program. You must consider the relationships between program functions and how
users will expect to interact with the program. Its operation should be intuitive; its
responses predictable.

To do this you must outline

• What functions can be accessed during different processes.

• What the menu and item hierarchies and labels will be.

• What the most understandable metaphors for controlling the program are.

Only after understanding how the user wants to interact with the program should
you design the user environment. Testing it on real users, beta testing, will verify
correct areas and highlight needed changes.

Event Trapping

BASIC has two methods of monitoring special events like clicking on a window or a
timer reaching its limit. The first method uses a conditional branch, an IF/THEN or
ON/GOSUB statement, for example. This method has the problem that special
events are not detected when they occur; they are only detected when the program
reaches the conditional branch. This may cause a poor response time.

Event trapping, the second method of monitoring, gives immediate responses
but poses hazards for sloppy programs. After each BASIC statement executes,
BASIC checks whether an event has occurred. This checking is known as an event
trap. After trapping an event, the program interrupts its normal operation and
BASIC executes the subroutine assigned to that event. When the event subroutine
is complete, program execution continues from where it was interrupted. There is
no delay between an event and the subroutine it calls.

The events that BASIC traps for are second intervals (ON TIMER GOSUB),
mouse button clicks (ON MOUSE GOSUB), menu selections (ON MENU
GOSUB), dialog box activity (ON DIALOG GOSUB), and attempts to stop the
program (ON BREAK GOSUB).

Event trapping begins after an eventspecifier ON statement and stops after an event
specifier OFF. When event trapping is turned off, the specified event is disregarded
and not stored. BASIC remembers trapped events while halted with eventspecifier
STOP. Turning event trapping back on after a STOP recalls the stored events from
a queue and acts on them.

Program Presentation and Control 123

In some events, such as menu selection, you should use the OFF statement to
prevent undesired menu selection during the event subroutine. This stops unde
sired menus from executing immediately after the current one.

The event subroutine determines the action to take in response to an event. For
example, after ON MENU GOSUB branches to its event subroutine, the MENU(O)
and MENU(l) functions can determine which menu and item have been selected
and from this, what further subroutines need to execute.

Precautions When Programming Event Trapping

Event trapping can lead to unusual and difficult problems unless you take
special care when designing and coding. Problems arise because event trapping can
interrupt an ongoing program at any point. This introduces two types of errors:

• Variables used in the main program are unexpectedly changed by the event
subroutine.

• Two different events, for example ON MENU and ON DIALOG, attempt to
use the same event subroutine simultaneously.

The first problem usually occurs with counters in FOR/NEXT and WHILE/WEND
loops. If the loop uses J as a counter, but is interrupted by an event trap whose
subroutine also uses J, unexpected results occur. When the loop continues after the
event trap, the J counter value has changed. This problem is difficult to pinpoint
because program output is different each time. The CrossRef program on the
BASIC master disk from Microsoft will assist you in detecting variables used more
than once.

The second problem occurs when two event traps attempt to use the same event
subroutine. This occurs when one subroutine is executing and another event
occurs that attempts to use the active subroutine. Results can be unpredictable.

Preventing Problems

Event-trapping problems can be prevented by following these guidelines:

• Use unique variable names whenever memory allows. Use the CrossRef
program on the BASIC disk to check for duplicate variable names.

• Subroutines that use variables changed by event trapping should begin with
an eventspecifier STOP and end with eventspecifier ON.This prevents variables
from changing in mid-calculation or mid-process.

• Use unique event subroutines.

If event-trapping problems continue, replace some of the event traps with condi
tional branches. This will help narrow the problem.

124 Macintosh Game Animation

Windows

Windows play an important part in presenting Macintosh information. They are a
metaphor for paper on a desk top. With windows the user views different pieces of
information or different ongoing processes as separate items.

BASIC has WINDOW statements that control how windows are displayed and
WINDOW functions that receive and output information. WINDOW functions
return information on the current status of windows and their size.

BASIC creates the active, topmost window with the statement

WINDOW id,[,[title][,[(X1, Y1 }-(X2, Y2)][,type]]]

The active window receives INPUT statements, dialog events, and DIALOG func
tions. When first created, the active window is also the output window. WINDOW
statements should be used whenever a new, active output window is needed or to
activate an underlying window.

Output windows receive print, graphics, button, and edit field output. Desig
nate output windows with

WINDOW OUTPUT id

By switching output windows during program execution, you can update informa
tion on windows other than the topmost active window. This also allows you to
animate figures in multiple windows at the same time. Windows also form dialog
boxes for the presentation of warnings and data entry.

The WINDOW(n) function returns values used to monitor which windows are
currently active or output windows. This allows your program to make window
changes and updates based upon current window status.

Hints on Creating Windows

The following tips will help you design windows and dialog boxes:

• Window rectangles are specified in the original BASIC coordinate system; the
screen's upper-left corner is (0,0). The current ouput window's upper-left
corner is (0,0) for text and graphics output to the window.

• Changing the size of the window does not change the scale of the drawing
inside. It expands the window's view of the drawing.

• Windows, dialog boxes, edit fields, and buttons are much easier to position
with a screen overlay. The screen overlay is a clear plastic sheet that shows
screen coordinates. Use a full-sheet MacPaint drawing to create a grid with
coordinate numbers. Many copy shops have duplicators that can create full
size transparencies.

Program Presentation and Control 125

Menus and Items

The menu bar and item list are common to all Macintosh programs. The MENU
statements customize the menu bar to your program; MENU functions monitor
which menu or item was most recently selected. The value of that menu or item
can then be used to branch to subroutines that generate the desired function.

The MENU statement,

MENU menu-id,item-id,state £,title-string]

builds both the menu bar and the item list. The state argument enables and disables
menu labels. With it you can selectively disable labels that are not allowed during
certain tasks.

Setting the state argument to 2 for an item enables that item and places a check
mark in front of it. This is a useful way of indicating the status of ON/OFF flags.

Your programs may have multiple levels of menus by incorporating multiple
MENU description statements. The program returns to the BASIC menu with the
statement MENU RESET.

Menu Selection Methods

Menu selections can be detected with either event trapping, using ON MENU
GOSUB, or conditional branching, using MENU(O). Using MENU(O) as the expres
sion in an ON expression GOSUB statement branches program flow to the subrou
tine appropriate for the menu option selected. From that menu subroutine,
MENU(l) controls which item subroutine executes.

Dialog Boxes

Dialog boxes are windows that serve two functions: they act as data entry areas
and as important message displays. The DIALOG function monitors activity
involving dialog boxes, buttons, and edit fields. Users can enter data, select options,
control variables, and scroll through files all with the use of dialog boxes, buttons,
and edit fields.

Activity involving windows and data entry is monitored in two ways. Event
trapping can use the ON DIALOG GOSUB statement or conditional branching
can check the DIALOG(O) function for the latest activity.

The DIALOG(O) function acts as a flag for recent dialog activity. If DIALOG(O)
equals 0, there has been no dialog activity. Window selection, pressing buttons, and
interacting with edit fields causes DIALOG(O) to return a number related to the
activity. This number can control ON/GOSUB branching to subroutines.

After DIALOG(O) or ON DIALOG GOSUB has detected dialog activity,

126 Macintosh Game Animation

analyze the activity with DIALOG(n), where n is 1 through 5. The function
DIALOG(l), for example, returns the number of the button most recently
pressed.

Tips for Programming With DIALOG

Program control through dialog activity may at first appear difficult. Here are
some tips:

• Some confusion may occur when using DIALOG with multiple windows.
DIALOG functions only monitor activity on the active window. If you are
using dialog event trapping with BUTTON and EDIT$ functions, be sure the
output and active windows are the same. BUTTON and EDIT$ functions
return information from the current output window. Output windows are
created with the WINDOW OUTPUT statement and active windows are
created with the WINDOW statement.

• Dialog boxes are windows. As such they use the same coordinate positioning
rules as windows.

• File control can be handled with the FILES statement and FILE$ function.
They generate their own dialog box and allow you to scroll through file lists
or enter file names. The SAVE statement used without arguments generates
a dialog box that allows you to switch drives, eject disks, and save programs.

• Always save programs before testing dialog controls. It's easy to get in a loop
without a way out. Pressing COMMAND-. (period) will stop most programs. If
the BASIC menu does not reappear, type END in the command box and press
RETURN. Do not use the ON BREAK event trap until the program is complete
and debugged.

• You can stop users from clicking outside the currently active window by
using negative numbers for WINDOW types.

Buttons

There are three types of buttons: a push button, a check box, and a round radio
button. The simple push button, type 1, is used to change functions or modes of
operation. Type 2, the check box, should be used for either-or and on-off type
selections. Radio buttons, type 3, are usually used to select from one of many
choices.

Check button status with DIALOG(!) and the BUTTON(id) function. DIA
LOG(l) returns the id of the most recently pressed button. BUTTON(id) returns
the status of a specified button. Button status can be inactive (dim), active but not
selected, and active but selected.

Program Presentation and Control 127

When possible, let the user see which button is currently selected. Use the
active, but selected, button status to let users know a button is selected. Users can
select from icon menus in your program if you draw icons and place a push button
around them or a check box next to them.

BUTTON activity is monitored in the current output window only; DIALOG
activity is monitored in the active window. When checking both BUTTON and
DIALOG activity, make sure WINDOW OUTPUT is on the active window.

Editing Information

The EDIT FIELD statement and EDIT$ function let users enter and edit informa
tion in dialog boxes using standard Macintosh editing procedures.

Edit fields are easier to design if you make the transparent screen overlay
showing coordinates.

Programing Windows, Menus,
Dialog Boxes, and Buttons

The program presented here demonstrates one method of programming anima
tion in a multiple-window Macintosh environment. In Program 8-2, users can
display and control four windows: two contain moving balls, one contains a pat
terned background, and the fourth carries messages and data entry fields. Figure
8-3 shows one of the many possible screen configurations of Program 8-2.

Program 8-2 is long for a demonstration; however, it can be used as a base for
programs that require simultaneous animation in two windows. You only need to
replace the two animation subroutines and change the initializing and image
creation subroutines.

The moving balls in both windows 1 and 2 move simultaneously. Users can
change the size and location of either animation window. The two animation
windows and the patterned background window can be layered and the animation
windows can be moved wherever the user desires. Clicking the cursor on an
underlying window brings that window to the top. To close an animation window
and stop its animation, click the window's Close box in the upper-left corner.
Windows are redisplayed by selecting them from the View menu.

Dialog boxes appear with buttons, and edit fields control the animation vari
ables such as the X- and Y-axis speed of motion and sound frequency. The edit
fields used to control speed allow Macintosh-style mouse and keyboard editing of
typed information. Sound frequencies, used during ball rebounds, are selected by
clicking the desired button from a choice of three frequencies.

Close examination of Program 8-2 and the Animation Maker in Appendix A
will reveal how you can prepare professional programs using the Macintosh's

128 Macintosh Game Animation

,.. '5 Uiew Speed Options Commands

Enter new speed bet ween -20 end 20.
Recommended speeds bet ween -6 end 6.

I~

OK

Window 1

•

Figure 8-3. Screen display of windows from Program 8-2

.,

Uertical Animation
Window 2

•

features. Program 8-2 uses the polling method of monitoring dialog and menu
activity.

Running the Program

When you start the program, pre-existing windows may display, along with
window 4, the program's patterned window. The only one of these windows
belonging to the program is window 4.

Delete the other windows by clicking the mouse cursor on them and then
clicking the mouse cursor on that window's Close box.

The Master Control and Main Loop

The master control runs only three subroutines to prepare the program before

Program Presentation and Control 129

starting the Mainloop. These three subroutines initialize variables, create and
store the ball image, and change the menu.

The Mainloop routine is a continuous loop that polls, or repetitively monitors,
the status of menu selections and dialog activity. The dialog activity that is checked
for controls window presentation. The Mainloop also activates the animation
routines when the correct windows are visible. Event trapping is not used in this
program.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall
GOSUB MenuChange

MainLoop:
MENUSELECT..,MENU(O): ITEMSELECT=MENU(I) 'CHECK MENU SELECTIONS
ON MENUSELECT GOSUB ViewMenu,SpeedMenu,OptionMenu,CommandMenu
EVENT=DIALOG(O) 'CHECK DIALOG ACTIVITY
IF EVENT=3 THEN GOSUB ClickWindow 'CLICKED INACTIVE WINDOW
IF EVENT=4 THEN GOSUB CloseRef 'CLICKED CLOSE BOX
IF EVENT=S THEN GOSUB RefAfterMove 'REFRESH AFTER SIZED OR MOVED
IF WINDOW! VISIBLE THEN GOSUB AnimateWI
IF WINDOW2VISIBLE THEN GOSUB AnimateW2
GOTO MainLoop

The first two lines of Mainloop check for the selection of a menu item. If
MENU{O) returns a non-zero number, the ON/GOSUB statement branches the
program to one of the menu response subroutines. Each of these subroutines, such
as ViewMenu or OptionMenu, uses the ITEMSELECT variable to determine
which item from the menu was selected and what action should be taken.

EVENT stores the value of the most recent dialog activity. The three IF/THEN
statements check if that activity included a window being selected by clicking the
mouse on it, a Close box being clicked, or the top window being moved. The
subroutines specified by EVENT take care of the window management and screen
appearance resulting from the dialog activity.

Animation only occurs when the animation window is visible. The variables
WINDOWl VISIBLE and WINDOW2VISIBLE are TRUE, -1, when the window is
displayed at any level. The actual animation code is in AnimateWl and AnimateW2
subroutines.

A GOTO statement restarts the Mainloop so polling and animation continue.
If the Main Loop is too large, a delay between menu or dialog activity and its results

130 Macintosh Game Animation

occurs. Keep such polling loops as short as possible.

Animation in the Windows

The last two IF/THEN statements in the MainLoop specify when the two
animation subroutines run. Animate Wt moves the ball horizontally when window
1 is visible. AnimateW2 moves the ball vertically when window 2 is visible. The
animation windows do not need to be on top for animation to continue.

AnimateWt:
'HORIZONTAL ANIMATION
WINDOW OUTPUT I
PUT (X,60),BALL,PSET
X=X+XSPD
IF X>25 AND X<350 THEN GOTO OkXSPD
XSPD=-XSPD: X=-25*(X<=25)-350*(X>=350)
IF SOUNOON THEN SOUND FREQ,2
OkXSPD:
IF TOPWINDOW<>O THEN WINDOW OUTPUT TOPWINDOW
RETURN

AnimateW2:
'VERTICAL ANIMATION
WINDOW OUTPUT 2
PUT (60,V),BALL,PSET
V•V+VSPD
IF V>20 AND Y<200 THEN GOTO OkVSPD
VSPD=-VSPD: V=-20*(V <=20)-200*(V>=200)
IF SOUNOON THEN SOUND FREQ,2
Ok VS PD:
IF TOPWINOOW<>O THEN WINDOW OUTPUT TOPWINOOW
RETURN

The WINDOW OUTPUT statement at the beginning of each animation routine
sends graphics output, in this case an image, to the window. Output returns to the
top window at the end of each animation subroutine. The variable TOPWINDOW
always holds the window id of the top and active window. If TOPWINDOW is 0, no
window is active.

Both subroutines use PSET Image Animation. The ball moves only one incre
ment, XSPD or YSPD, each time the subroutine executes.

Program Presentation and Control 131

XSPD and YSPD can be changed by selecting Speed from the menu bar. Speeds
outside the range of -6 to 6 leave a trail behind the moving ball.

After adding the speed to find the next location, the boundaries are checked.
Exceeding a boundary causes the speed to reverse and if SOUNDON is TRUE, a
tone sounds.

Controlling Active Windows

Two subroutines control which windows are active, but three subroutines
actually create and activate the animation and background windows. The dialog
boxes are controlled through separate routines.

The controlling subroutines, ViewMenu and ClickWindow, determine the
active window. Users activate windows by selecting them from the View menu or by
clicking the mouse cursor on them when they are displayed at a lower layer. These
two subroutines also keep track of the order in which windows are layered.

The three subroutines labeled ViewWindow generate a new active top window.
Active windows are only created by redisplaying the window with the WINDOW
statement.

ViewMenu:
'CREATE ACTIVE WINDOW FROM MENU
MENU 'TURN OFF HIGHLIGHTED MENU BAR
TOPWINDOW=ITEMSELECT 'WINDOW NUMBER SAME AS ITEM NUMBER
IF ITEMSELECT=I THEN WINDOW I VISIBLE=- I
IF ITEMSELECT=2 THEN WINDOW2VISIBLE=-1
INVIEW=O
FOR LEVEL= I TO 4 'FIND LEVEL IF WINDOW ALREADY ONSCREEN (INVIEW)

IF WORDER(LEVEL)=TOPWINDOW THEN INVIEW=LEVEL
NEXT LEVEL
'IF WINDOW ONSCREEN, THEN MOVE OTHERS INTO ITS LEVEL
IF INVIEW"'O THEN GOTO OkViewl
FOR LEVEL=INVIEW TO 4

WORDER(LEVEL)=WORDER(LEVEL +I)
NEXT LEVEL
OkViewl:
'MOVE ALL LEVELS DOWN TO MAKE ROOM FOR NEW TOP
FOR LEVEL=4 TO 2 STEP -1

WORDER(LEVEL)=WORDER(LEVEL -1)
NEXT LEVEL
WORDER(I)=TOPWINDOW 'PUT SELECTED WINDOW ON TOP LEVEL
ON TOPWINDOW GOSUB ViewWindow I, ViewWindow2
' GOSUB WINDOWORDER 'PRINT ORDER OF WINDOWS ONSCREEN
RETURN

132 Macintosh Game Animation

ClickWindow:
'CREATE ACTIVE WINDOW BY CLICKING ON UNDERNEATH WINDOW
TOPWINDOW=DIALOG(3) 'WINDOW ID CLICKED AS NEW TOP
INVIEW=O
FOR LEVEL= I TO 4 'FIND LEVEL OF CLICKED WINDOW

IF WORDER(LEVEL)=TOPWINDOW THEN INVIEW=UVEL
NEXT LEVEL
'IF WINDOW ONSCREEN, THEN MOVE OTHERS INTO ITS LEVEL
IF INVIEW=O THEN GOTO OkView2
FOR LEVEL=INVIEW TO 4

WORDER(LEVEL)=WORDER(LEVEL +I)
NEXT LEVEL
OkView2:
'MOVE ALL LEVELS DOWN TO MAKE ROOM FOR NEW TOP
FOR LEVEL=4 TO 2 STEP -1

WORDER(LEVEL)=WORDER(LEVEL -1)
NEXT LEVEL
WORDER(I)=TOPWINDOW 'MAKE SELECTED WINDOW TOP LEVEL
ON TOPWINDOW GOSUB ViewWindow I, ViewWindow2,, ViewWindow4
' GOSUB WINDOWORDER
RETURN

ViewWindow I:
'MAKE WINDOW I ACTIVE AND OUTPUT
AWX=SO: AWY=l95 'UPPER LEFT CORNER
WINDOW I ,"Horizontal Animation",(AWX,AWY)-(AWX+400,AWY+ 130), I
GOSUB Window I Ref
RETURN

ViewWindow2:
'MAKE WINDOW 2 ACTIVE AND OUTPUT
AWXc335: AWY=SO 'UPPER LEFT CORNER
WINDOW 2,"Vertical Animation",(AWX,AWY)-(AWX+ 170,AWY+240), I
GOSUB Window2Ref
RETURN

ViewWindow4:
'MAKE WINDOW 4 ACTIVE AND OUTPUT
WINDOW 4,"",(70,70)-(430,270),2 'FRAMED DIALOG BOX
GOSUB Window4Ref
RETURN

Program Presentation and Control 133

The ViewMenu and Click Window subroutines keep track of the order in which
windows are layered with the array WORDER (Window ORDER). WORDER(l)
contains the window id of the top and active window. WORDER(2) contains the
window id of the window at the second level, underneath the first, and so on. When
any subroutine changes the order in which windows are layered, the subroutine
also reorders the window ids stored in WORDER. Levels within WORDER that do
not contain a window id are set to 0.

The subroutine ViewMenu makes one of the animation windows, window 1 or
window 2, the top and active window. TOPWINDOW stores the value of
ITEMSELECT, either 1 or 2, which is also the number of the window id selected.
Selecting a window from the menu makes it visible, so the WINDOWVISIBLE
variables are set to TRUE. The animation routines only execute when a window is
visible.

The first FOR/NEXT statement examines each level in the WORDER array to
determine if the requested window is already onscreen. This check is necessary for
the program to correctly resort the window order in WORDER. If the window is
onscreen, its current window level is stored in INVIEW. If not onscreen, INVIEW
remains 0.

When the selected window is onscreen, the following FOR/NEXT loop moves all
window ids in WORDER up to fill the level occupied by the selected window. This
fills the "hole" left in the window order when the selected window is removed from
its current level.

The last FOR/NEXT loop moves all the window ids in WORD ER down one level
so that the selected window id can be stored in WORDER(l). The ON/GOSUB
statement executes a subroutine that creates the active TOPVIEW window.

Macintosh users expect to bring windows lying at lower levels to the top by
clicking the mouse cursor on them.Click Window controls how this is done. Click
Window works in a manner very similar to ViewMenu. TOPWINDOW again
stores the window id of the top and active window. DIALOG(3) returns the window
id of the last window clicked.

The first FOR/NEXT loop finds the level of the clicked window. The line
beginning with IF INVIEW<>o moves the other window ids up, replacing the
selected window id in WORDER. The final FOR/NEXT loop moves all ids in
WORDER down one level so that the window id of the new top window can be
stored in WORDER(l).

The ON/GOSUB statement executes one of three ViewWindow subroutines.
These subroutines create the two animation windows and the patterned back
ground window. The patterned background window always exists onscreen.

The three ViewWindow subroutines create active windows with the WINDOW
statement. This WINDOW statement is the only way to make a window active.

ViewWindowl and ViewWindow2 specify the upper-left corner of windows

134 Macintosh Game Animation

with AWX and AWY. This allows you to change a window's startup location easily.
Both animation windows are type 1. They can be moved, have their size changed,
and be closed with a Close box. Window 4 is type 2. It cannot be moved, sized, or
closed. Clicking on window 4 will bring it to the top.

The printing and graphics that fill each window come from the WindowRefresh
subroutines.

Refreshing Windows After Changes

These next subroutines reprint and redisplay graphics in windows after a
window change. The first subroutine, RefAfterMove, fills in the blank area
exposed when a top-level window moves. CloseRef redisplays window text and
graphics on windows that have been uncovered when the top window's Close box is
clicked.

The three small WindowRef subroutines print text and graphics to the current
output window. Refresh subroutines do not create new active windows. They only
display text and graphics on the current output window.

Ref AfterMove:
'REFRESH WINDOWS WHEN UNCOVERED OR SIZE CHANGED
FOR LEVEL=4 TO 1 STEP -1 'FROM LOWEST LEVEL TO TOP

IF WORDER(LEVEL)<>O THEN WINDOW OUTPUT WORDER(LEVEL)
IF WINDOW(O)=l AND WINDOW(3)<65 THEN SkipRefresh 'TOO SHORT
IF WINDOW(0)=2 AND WINDOW(3)<30 THEN SkipRefresh 'TOO SHORT
ON WORDER(LEVEL) GO SUB Window 1 Ref, Window2Ref,. Window4Ref
SkipRefresh:

NEXT LEVEL
RETURN

CloseRef:
'REFRESH UNCOVERED WINDOW WHEN CLOSE BOX CLICKED
WINDOWGONE=DIALOG(4) 'ID OF ERASED WINDOW
IF WINDOWGONE=l THEN WINDOWIVISIBLE=O 'STOP ANIMATION
IF WINDOWGONEa2 THEN WINDOW2VISIBLEaQ
'TOP GONE, SO PULL ALL LEVELS UP
FOR LEVEL= 1 TO 4

WORDER(LEVEL) .. WORDER(LEVEL + 1)
NEXT LEVEL
TOPWINDOW=WORDER(1)
IF TOPWINDOW<>O THEN WINDOW OUTPUT TOPWINDOW 'UPDATE WINDOW
ON TOPWINDOW GOSUB Window 1Ref,Window2Ref,.Window4Ref
' GOSUB WINDOWORDER
RETURN

Window 1 Ref:
'REDRAW AND REPRINT WINDOW
LOCATE 3,21: PRINT "Window 1"
LINE (10, 10)-(380,20),33,BF
LI NE (10, 110)-(380, 120),33,BF
PUT (X,60),BALL,PSET
RETURN

Window2Ref:
'REDRAW ANO REPRINT WINDOW
LOCATE 1,5: PR I NT "Window 2"
LI NE (10,20)-(20,220),33,BF
LI NE (120,20)-(130,220),33,BF
PUT (60,V),BALL,PSET
RETURN

Window4Ref:
'REDRAW BACKGROUND WINDOW

Program Presentation and Control 135

CORNER(O)= 10: CORNER(1)= 10: CORNER(2)= 190: CORNER(3)=350
PA TTERN(O)= 1000: PATTERN(1)=1000: PA TTERN(2)= 1000: PA TTERN(3)= 1000
CALL FILLRECT(VARPTR(CORNER(O)),VARPTR(PATTERN(O)))
LOCATE 3, 16: PRINT" Window 4•
RETURN

The subroutine RefAfterMove executes when the DIALOG(O) function in the
MainLoop detects that the top window has moved or changed size. Either action
usually uncovers underlying windows, which exposes blank window areas.

Starting with the lowest level window, level four, Ref AfterMove uses the win
dow id at each level to change window output. As each level becomes the output
window, the ON/GOSUB statement executes the appropriate WindowRef subrou
tine. The top window is the last window refreshed. This leaves window output set
to the window id of the top and active window.

The two IF/THEN statements check the window id and height of the current
output window. If either animation window is too short to be properly refreshed,
they skip the refresh subroutine.Attempting to refresh a window that is too short
causes graphics and text to scroll.

When the DIALOG(O) function in the MainLoop detects a Close box being
clicked, EVENT is set equal to 4. This sends control to the CloseRef subroutine.

The DIALOG(4) function stores the window id of the window that is being
closed. The WINDOWVISIBLE variable for window 1 or 2 is then changed to
FALSE. This prevents animation to a closed window.

136 Macintosh Game Animation

The CloseRef subroutine moves all window ids up one level within the
WORDER array. This fills the "hole" left by the now closed top window.

The id of the window replacing the closed window is retrieved from WORDER(l)
and stored in TOPWINDOW. The WINDOW OUTPUT statement directs output
to this new top window so that it can be refreshed.

Both the Ref After Move and Close Ref subroutines use three short subroutines
to display the appropriate text and graphics in a window. The subroutines
WindowlRef and Window2Ref show that text, graphics, and images can all refresh
a window. Window4Ref draws a pattern into window 4. Window 3 is created and
refreshed by routines later in the program.

Entering Information With an Edit Field

Users can enter new X- or Y-axis animation speeds by selecting Speed from the
menu bar. After selecting Speed, a dialog box appears onscreen with prompt
messages and an edit field. The edit field accepts standard Macintosh keyboard and
mouse editing procedures. If the new speed is outside the range -20 to 20, a tone
sounds and the cursor remains in the edit field.

SpeedMenu:
MENU
ON ITEMSELECT GOSUB Xltem,Yltem
RETURN

Xltem:
'CHANGE X-AXIS SPEED
SPD=XSPD 'STORE IN CASE SPEED IS NOT CHANGED IN DIALOG BOX
SPD$.. STR$(XSPD} 'CHANGE A NUMBER TO A STRING FOR USE IN EDIT FIELD
GOSUB SpeedDialog 'USE SHARED DIALOG BOX
GOSUB EditLoop 'WAIT FOR ENTRY
XSPD=SPD 'STORE ENTERED SPEED IN XSPD
GOSUB CloseDialog 'CLOSE BOX AND REFRESH UNDERLYING WINDOWS
RETURN

Yltem:
'CHANGE Y-AXIS SPEED
'OPERATION THE SAME AS Xltem SUBROUTINE
SPD=YSPD
SPD$=STR$(YSPD}
GOSUB SpeedDialog
GOSUB EditLoop
YSPD=SPD
GOSUB CloseDialog

Program Presentation and Control 137

RETURN

SpeedDia log:
'PREPARES DIALOG BOX AND BUTTONS FOR X ANDY SPEED EDIT FIELD
WX= 10: WY=40 'UPPER LEFT CORNER
WINDOW 3,"",(WX,WY)-(WX+290,WY+100),-2
LOCATE 1,5: PRINT "Enter new speed between -20 and 20."
LOCATE 2,5: PRINT "Recommended speeds between -6 and 6."
LI NE (35,38)-(101,56),,B
EDIT FIELD l,SPD$,(37,40)-(100,55),3,I
BUTTON 1, 1,"Cancel",(75,70)-(125,90)
BUTTON 2, 1,"0K",(175,70)-(225,90)
RETURN

EditLoop:
'LOOP TO ALLOW EDIT, THEN EXIT OR CANCEL ON BUTTON SELECTION

IF DIALOG(O)=l THEN EDITBUTTON=DIALOG(l) ELSE EDITBUTTON=O
IF EDITBUTTON=l THEN SPDSame 'DON'T CHANGE EXISTING SPEED
IF EDITBUTTON=2 THEN SPDDone
GOTO EditLoop

SPDDone:
SPDNEW=VAL(EDIT$(1)) 'RETRIEVE ENTERED VALUE, THEN CHECK
IF SPDNEW<-20 OR SPDNEW>20 THEN SOUND 232,2: GOTO EditLoop
SPD=SPDNEW
SPDSame:
RETURN

After the MENU statement removes the menu highlight, ON/GOSUB sends
control to the subroutine selected by ITEMSELECT.

The Xltem subroutine presents a dialog box in which the user is asked to change
or accept the XSPD value. Both the Xltem and Yltem subroutines operate in the
same manner, so only the Xltem subroutine will be described.

The edit fieid displays the current value of XSPD as a prompt. This allows the
user to accept or change the current value. Because both Xltem and Yltem share
the same dialog box and edit field, the prompt is stored in a common variable,
SPD$. XSPD is changed to a string with the STR$ function.

The subroutine SpeedDialog displays the dialog box, buttons, and prompts. The
EditLoop subroutine waits for a new speed entry and monitors the Cancel and OK
buttons.

After returning from the EditLoop, the value of SPD is stored in XSPD. The
CloseDialog subroutine closes window 3 and returns output to the top window.
CloseDialog is discussed near the end of the program.

138 Macintosh Game Animation

Window 3 is the dialog box that appears for all variable changes and in response
to a quit request. The SpeedDialog subroutine displays window 3 print prompts, a
single edit field, and two buttons. Because window 3 is type -2, which does not
allow selection outside window 3, there is no need to change the WORDER array.
Window 3 will always be either on top or closed.

The Editloop waits for users to change the speed in the edit field. The loop at
the beginning of the subroutine continues until either the Cancel button, button 1,
or the OK button, button 2, are selected. Choosing Cancel leaves the speed
unchanged. Choosing OK changes the speed to the new value.

The VAL function changes the string returned by EDIT$(1) into a number
stored in SPDNEW. If SPDNEW is outside acceptable limits, a tone sounds and the
loop is reentered. If SPDNEW is within limits, SPD is set equal to SPDNEW so that
XSPD or YSPD can be updated.

Entering Information with Buttons

The Options menu selection demonstrates how users can change variables
with button selection. The Sound item under the Options menu turns sound on or
off when selected. A check mark in front of the Sound item indicates sound is
currently on.

The Freq item under Option demonstrates how variables can be changed with
buttons. Variable changes made by button selection are easy to use and self
explanatory. Buttons also make programming easier because all input values are
known. Selecting Freq under the Options menu presents users with three buttons
for high, medium, or low frequency. Selecting one of these with the mouse cursor
sounds the new frequency and returns to the program. Rebounds will beep using
the new frequency.

OptionMenu:
MENU
ON ITEMSELECT GOSUB Soundltem,Freqltem
RETURN

Soundltem:
SOUNDON=NOT SOUNDON 'REVERSE TRUE AND FALSE
'CHECK MARK ITEM IF TRUE
IF SOUNDON THEN MENU 3, 1,2,"Sound" ELSE MENU 3, 1, I ,"Sound"
RETURN

Freq Item:
'PRESENT MUL Tl PLE CHOI CE BUTTONS FOR FREQUENCY SELECT ION
WX= 100: WY= 100

Program Presentation and Control 139

WINDOW 3,·",(WX,WV)-(WX+300,WV+120),-2
LOCATE 2,5: PRINT "Select frequency for sound."
FreqLoop:
BUTTON 1,BUTST AT(1), "Low· ,(20,50)-(90, 70),3
BUTTON 2,BUTST AT(2),"Medium· ,(110,50)-(180, 70),3
BUTTON 3,BUTST A T(3), ·High" ,(200,50)-(270, 70),3
BUTTON 4, 1, "OK., (200, 90)-(280, 110), 1
WHILE DIALOG(O)<>l: WEND 'CHECK FOR ANY BUTTON PRESS
BUTTONSELECT=DI ALOG(I) 'WHICH BUTTON PRESSED
IF BUTTONSELECT = 4 THEN GOTO DoneFreq
FREQ=SOO*BUTTONSELECT 'SET FREQUENCY
SOUND FREQ,2 'TEST SOUND
'SET ALL BUTTON STATUS TO UNSELECTED
FOR STAT=! TO 3

BUTST AT(ST AT)= 1
NEXT STAT
BUTST A T(BUTTONSELECT)=2 'SET BUTTON TO SHOW ON NEXT DI SPLAY
GOTO Freqloop
DoneFreq:
GOSUB CloseDialog
RETURN

Executing the Soundltem subroutine alternates the Boolean value of SOUNDON
between TRUE and FALSE. If SOUNDON is TRUE, the IF/THEN statement
changes the Sound menu item to active, but selected, status. If it is FALSE, the
menu item changes to active, but not selected. Active, but selected, status displays
the menu item with a check mark.

Window 3 appears again when Freq is selected. The three sound buttons
displayed by the Freqltem subroutine use a button status stored in the array,
BUTSTAT. Storing button status allows existing button status to be displayed. Your
programs should always show the currently selected button and default data entry
fields.

The WHILE/WEND loop waits for a button press. The variable BUTTON
SELECT then stores the id of the selected button. If it is 4, the program jumps to
the end of this subroutine. The FREQ variable is then set by simply multiplying 500

times the number of the button. More complex numeric and string responses can
be selected by using BUTTONSELECT as an index to access information from an
array. The Initialize subroutine can store the allowable responses in the array.

After changing the frequency, all buttons are set to 1. The status of the selected
button is then changed to 2 to show that it is active and selected.

140 Macintosh Game Animation

Exiting and Restarting Programs

In many programs, users want the option of restarting the program without
quitting. They also must be able to quit. Before ending a program, users should be
asked to confirm that they want to quit because the quit selection may have been
accidental. If files have been changed but not saved, the users should also confirm
whether they want to save the changed files before quitting.

CommandMenu:
MENU
ON ITEMSELECT GOSUB Resetltem,Quitltem
RETURN

Resetltem:
'CLOSE WINDOWS AND START OVER
FOR WC= I TO 4

WINDOW CLOSE WC
NEXT WC
TOPWINDOW=4 'ST ART WITH WINDOW 4
FOR LEVEL= I TO 4: WORDER(LEVEL)=O: NEXT LEVEL 'ZERO ALL LEVELS
WORDER(I)=TOPWINDOW 'PUT TOPWINDOW IN LEVEL I
GOSUB ViewWindow4 'MAKE WINDOW 4 ACTIVE
X=25: XSPD=2 'HORIZONTAL START LOCATION AND SPEED
Y=20: YSPD=2 'VERTICAL START LOCATION AND SPEED
SOUNDON=-1: FREQm I 000 'ST ART WITH SOUND
BUTSTAT(l)=I: BUTSTAT(2)=2: BUTSTAT(3)=1 'SET STARTING STATUS
GOSUB MenuChange
RETURN

Quitltem:
'DIALOG BOX TO CROSS-CHECK QUIT SELECTION
WX= 100: WY=200
WINDOW 3,"",(WX+SO,WY)-(WX+250,WY+90),-2
LOCATE 2,3: PRINT "Do you want to quit?"
BUTTON 1, 1,"Cancel",(20,60)-(70,80)
BUTTON 2, 1,"Quit",(130,60)-(180,80)
QuitLoop:

'WAIT FOR BUTTON SELECTION
IF DIALOG(O)=l THEN EDITBUTTON=DIALOG(1) ELSE EDITBUTTON=O
IF EDITBUTTON .. 1 THEN Cancel
IF EDITBUTTON=2 THEN Done
GOTO QuitLoop

Done:
WINDOW CLOSE 1: WINDOW CLOSE 2: WINDOW CLOSE 3

MENU RESET: END
Cancel:
'DON'T QUIT
GOSUB CloseDialog
RETURN

Program Presentation and Control 141

The Resetitem subroutine allows the program to restart without quitting the
program. It closes all windows, resets variables to their starting values, and reopens
window 4 as the active window.

Quitltem presents window 3 as a dialog box asking the user to confirm that he
wants to quit. Selecting the Cancel button with the mouse lets the user return to
the program without quitting. Selecting the OK button closes all the windows,
resets the menu to the BASIC menu bar, and ends the program.

Maintenance Subroutines

This final block of code contains subroutines used in starting the program or
shared by multiple subroutines.

Initialize:
DEFINT A-Z
DIM BALL(49)
WINDOW CLOSE 1 'CLOSE OPEN PROGRAM WINDOW
GOSUB ViewWindow4
TOPWINDOW=4 'START WITH NO WINDOW SHOWING ANIMATION
WORDER(1)=TOPWINDOW 'FIRST TOP WINDOW
X=25: XSPD=2 'HORIZONTAL START LOCATION AND SPEED
Y=20: YSPD=2 'VERTICAL START LOCATION AND SPEED
SOUNDON=-1: FREQ= I 000 'TURNS SOUND ON
BUTST AT(1)=1: BUTST AT(2)=2: BUTST AT(3)=: 1 'SET BUTTON ST A TUS
RETURN

MenuChange:
'CREATE A NEW MENU BAR OF FOUR SELECTIONS
MENU 1,0, 1,"View": MENU 1, 1, 1,"Horizontal": MENU 1,2, 1,"Vertical"
MENU 2,0, I ,"Speed": MENU 2, I, I ,"X-axis": MENU 2,2, 1,"Y-axis"
MENU 3,0, I ,"Options": MENU 3, 1,2,"Sound": MENU 3,2, I ,"Frequency"
MENU 4,0, I ,"Commands": MENU 4, 1, I ,"Restart": MENU 4,2, I ,"Quit"
MENU 5,0, 1,"" 'DELETE BASIC WINDOW MENU
RETURN

GETBall:
CLS

142 Macintosh Game Animation

CORNER(0),.6: CORNER(1)"'6: CORNER(2)"' 18: CORNER(3)= 18
CALL PAINTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(23,23),BALL
CLS: GOSUB Window4Ref
RETURN

CloseDialog:
WINDOW CLOSE 3 'CLOSE DIALOG BOX
'SWITCH OUTPUT TO TOPWINDOW
IF TOPWINDOW<>O THEN WINDOW OUTPUT TOPWINDOW
ON TOPWI NDOW GO SUB Window 1 Ref, Window2Ref
RETURN

WindowOrder:
'PRINT OUT ORDER OF WINDOWS TO ASSIST DEBUG
FOR LEVEL= 1 TO 4

LPRINT "WINDOW ORDER IS ";WORDER(LEVEL)
NEXT LEVEL
LPRINT
RETURN

The Initialize subroutine defines numeric variables as integers, sets variables to
starting values, dimensions the ball image array, and displays window 4, the startup
window. The sound option is on with the frequency set to medium. Button status
reflects the sound option being on.

Menus are changed with the MenuChange subroutine. Because this menu has
only four choices, the fifth choice on the BASIC menu bar is deleted.

The ball used in windows 1 and 2 is created in window 4. The CLS statement
clears the window before drawing the ball and after the ball is stored in BALL.
GOSUB Window4Ref redraws the pattern in window 4.

All the subroutines that opened window 3 as a dialog box use the CloseOialog
subroutine to close it and restore any window that is uncovered.

Debugging the window management portion of your program is easier if you
know what windows are being affected. Many of the window management subrou
tines contain the line

'GOSUB WindowOrder

Removing the apostrophe from these lines executes WindowOrder. If you have a
printer attached, WindowOrder prints the order of window ids currently displayed.
The first window printed is on top, level one.

Printing the values that WINDOW and DIALOG functions return will also help
you understand what is happening. It is easier to print these values to the printer,
because they will print regardless of the output window.

Chapter 9

Special Effects

S pedal effects, paths guiding complex movement, and sound effects add
excitement and realism to your animation programs. Special effects like
gravity simulate real-world phenomena; others occur only in imagination,

like figure disintegration. This chapter presents programs designed to add the
diversity of special effects to your animation.

Programs in this chapter use XOR and PSET Image Animation. Picture Anima
tion can use all of these special effects except image changing.

Paths of Motion

The path that an animated figure follows as it moves across the screen can be
defined by either an equation or a predefined set of values. Using either method
allows your figures to move consistently over complex paths under program
control.

There are three different types of predefined paths:

• A calculated path uses an equation to calculate each new position as it is needed
during the animation cycle.

143

144 Macintosh Game Animation

• A precalculated path defines and stores all path coordinates in an array before
animation begins. These locations can then be rapidly accessed during
motion.

• The final type of path stores manually generated paths in an array. Manually
entered paths can store the most complex paths.

Calculated Path

Program 9-1 orbits a planet around a sun. The program calculates each X and Y
coordinate for the planet as it moves. The time required for these calculations slows
the movement significantly; however, with this method you have the advantage of
being able to make small changes in the path at any time by changing variable values
used in the path equation.

This program should be saved on disk. It can be used as the base for many other
programs in this chapter.

Master Control and Animation Loop

The master control calls subroutines that initialize variables and arrays and
draw and store the ball image used for both the planet and the sun. A PAINTOVAL
command draws the sun. The animation loop continues moving the planet in a
circle until you stop the program.

"MASTER CONTROL
GOSUB Initialize
GOSUB GETBall
GOSUB DrawSun

Animation loop:
PUT (X,Y),BALL,PSET 'PSET OR PICTURE DISPLAY HERE
ANGL=ANGL+DIRCTN
IF ABS(ANGU>AROUND THEN ANGL=O 'RESTART AT ZERO
X=XSUN+RADIUS*COS(ANGL): Y=YSUN+RADIUS*SIN(ANGL) 'NEXT LOCATION
GOTO AnimationLoop

The moving planet uses PSET Image Animation for higher quality animation.
Because the planet is not moving over a background, either PSET or Picture
Animation could be used.

If you want the planet to orbit over a background or increase its speed without
leaving a trail, you must change the animation type to either Image or XOR
Animation. (You will need to add an initial planet display before the animation
loop.) The animation loop will require both an erase and display statement using
old and then new locations. XOR Image Animation is described in Chapter 4, and

Special Effects 145

XOR Picture Animation is described in Appendix B.
Planet locations are calculated from the angle of the planet, ANGL, and the

radius of the orbit, RADIUS. The last line in the animation loop calculates the X and
Y components of the planet position using the cosine and sine of its angle from the
positive X-axis. XSUN and YSUN are added to the X and Y components to move the
center of the orbit to the center of the sun.

Motion occurs because the angle of the planet from the positive X-axis
increases by the amount DIRCTN on each pass through the animation loop. When
ANGL exceeds AROUND, the planet has traveled full circle and starts over.

Initialization and Image Creation

The initializing and ball creation subroutines prepare the program for anima
tion. The radius and speed of the orbit can be changed by altering their values in the
Initialize subroutine.

Initialize:
CLS
DEFINT B,C 'PRECISE CALCULATIONS SHOULD NOT USE INTEGER VARIABLES
DIM BALL(44)
WINDOW I ,"CALCULATED PATH - EARTH ORBIT",(0,38)-(511,341), I
X=600: Y=400 'PLANET STARTING LOCATION OUTSIDE OF SCREEN
RADIUS=130:ANGL=O:XSUN=240:YSUN=140
AROUND=2*3.141593 'FULL CIRCLE IN RADIANS
DIRCTN=.02 'DIRECTION AND SIZE OF MOVE IN ORBIT
RETURN

GETBall:
' SHAPE OF PLANET
CORNER(0)=3: CORNER(I)=3
CORNER(2)= 18: CORNER(3)= 18
CALL PAINTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL
CLS
RETURN

Draw Sun:
'DRAW A LARGE SUN
SUNRADIUS=20
CORNER(O)=YSUN-SUNRADIUS: CORNER(1)=XSUN-SUNRADIUS
CORNER(2)=YSUN+SUNRADIUS: CORNER(3)=XSUN+SUNRADI US
CALL PAINTOVAL(VARPTR(CORNER(O)))
RETURN

146 Macintosh Game Animation

Calculations for many special effects require decimal arithmetic to preserve
accuracy. For that reason, the initializing subroutine differs from previous pro
grams by defining variables beginning with Band C as integer variables. The arrays
BALL and CORNER must both be integer.

The first planet position is outside the screen's limits. This prevents it from
being displayed and allows the animation loop to calculate the first visible location.

ANGL is the angle of the planet from the positive X-axis in the clockwise
direction. ANGL, DIRCTN, and AROUND are measured in radians, an angular
unit of measure. There are 2 pi radians in 360 degrees (pi is 3.141596).

The value and sign of DIRCTN determine the speed and direction of the orbit.
A larger DIRCTN value increases the speed; however, increasing it or the RADIUS
too much causes the planet image to exceed its border and leave a trail. Setting
DIRCTN creates a counterclockwise orbit that requires a different check of ANGL
versus AROUND.

The GETBall subroutine creates a single black ball image with CALL PAINT
OVAL and the GET statement. The DrawSun subroutine draws a black filled circle
centered on (XSUN,YSUN).

Precalculated Path

Some paths are very complex and may require elaborate equations to describe
them. Even simple calculations like those in Program 9-1 can take a long time.
These calculations may slow the animation. Precalculated paths provide a solution
to this problem by calculating X and Y coordinates in advance and storing them in
an array. When the figure moves, it retrieves its next location from the array. This is
a much faster process than calculating a complex equation. Using a precalculated
orbit may be twice as fast as using a calculated one. Another advantage to precalcu
lated paths is that many figures may use the same path array simultaneously with
no decrease in performance.

Path coordinates can be entered in the array in two ways:

• Path coordinates are calculated from equations and stored in the array.

• Path coordinates are created from mouse or keystroke entries. The user
moves the figure over the screen, and path coordinates are stored in the array
for future use.

You can force shapes that follow stored paths to use a different path by changing
the array they access. This allows a figure to move quickly between different paths
(for example, walking in a straight line and then suddenly walking in a circle).

The following modifications to Program 9-1 demonstrate a straight-line path
calculated by equation and stored in an array. The equation calculates the coordi

Special Effects 147

nates between any two points, whether or not the points are on the screen. If the
endpoints are off the screen, the ball continues outside screen boundaries until
reaching the off-screen endpoint. On reaching the end, the ball repeats the path.

Master Control and AnimationLoop

The animation loop again uses PSET Animation. The equations defining the
path are replaced by three lines of BASIC that retrieve precalculated coordinates
from the array PTH.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall

Animation loop:
PUT (X,Y),BALL,PSET 'PSET OR PICTURE DISPLAY
LOCTN=LOCTN+SKIP
IF LOCTN>PTHEND THEN LOCTN=O
X=PTH(LOCTN,0): Y•PTH(LOCTN, 1) 'PATH COORDINATES FROM PTH ARRAY
GOTO AnimationLoop

The array PTH stores the X and Y coordinates along the path in PTH(LOCTN,0)
and PTH(LOCTN,l), respectively. LOCTN tracks the ball's location along that
path and may range from 0 to 512. After each display in a new location, the next
location is accessed by increasing LOCTN by the value of SKIP and setting X and Y
equal to the next coordinate pair found in PTH. Increasing the value of SKIP
increases the number of coordinate pairs skipped over in the path. This increases
the speed. When LOCTN exceeds the end of the path, PTHEND, the ball starts
over again on the path.

To shift an entire path's position, add a positive or negative offset to the X and Y
set by PTH(LOCTN,O) and PTH(LOCTN,1).

Initialization and Image Creation

In addition to defining variables and windows, the initializing subroutine calcu
lates and loads the path array before the animation loop begins. The GETBall
subroutine loads a solid black ball image.

Initialize:
CLS
DEFINT B,C
DIM BALL(44), PTH (512, I)
WINDOW l,"PRECALCULATED PATH - STRAIGHT LINE",(0,38)-(511,341), I

148 Macintosh Game Animation

'WARNING - XST ART AND XSTOP CANNOT BE MORE THAN 513 APART
XSTART=30: YSTART= 165: XSTOP=530: YSTOP=-10 'END POINTS OF LINE
LOCTN=O 'START PATH AT BEGINNING
SKIP= 1 'SPEED OVER PATH
'CALCULATE EQUATION OF A STRAIGHT LINE
SLOPE=(YSTOP-YSTART)/(XSTOP-XSTART) 'SLOPE OF LINE
VCROSS=YSTOP-SLOPE*XSTOP 'WHERE LINE CROSSES Y AXIS
LOCATE 10, 18: PRINT "CALCULATING STRAIGHT LINE PATH"
'LOAD PATH ARRAY, PTHO
FOR XLOC=XST ART TO XSTOP

PTH(SPOT,O)=XLOC 'X LOCATION
PTH(SPOT, 1)=XLOC*SLOPE+YCROSS 'Y LOCATION FOR SPECIFIC X
SPOT=SPOT +I 'NEXT SPOT IN PATH (PTH ARRAY)
LOCATE 12,29: PRINT SPOT; 'SHOW USER PROGRAM IS LOADING

NEXT XLOC
PTHEND=SPOT-1 'LAST POINT ON PATH

X=PTH(LOCTN,0): Y=PTH(LOCTN, 1) 'STARTING LOCATION ON PATH

' RECTANGLE - SHAPE OF BALL
CORNER(0)=3: CORNER(1)=3
CORNER(2)=- 18: CORNER(3)= 18
RETURN

GETBall:
CALL PAINTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL
CLS
RETURN

The initializing subroutine begins by clearing the screen and defining variables
beginning with Band C as integer variables. The rest of initialization calculates and
stores path coordinates.

Endpoints for the straight line can be inside or outside the window; however, it
cannot contain more than 513 (X,Y) coordinate pairs. These endpoints are used to
calculate the constants defining the equation of a straight line. SLOPE, the slope of
the line, and YCROSS, the point where the extended line would cross the Y-axis,
are used to calculate all (X,Y) coordinates between the endpoints.

Using the equation, the FOR/NEXT loop calculates a Y coordinate for each value
of X between XSTART and XS TOP. These (X, Y) coordinate pairs are stored with
array indices from zero to PTHEND. PTHEND cannot exceed 512.

After creating the path, the starting X and Y coordinates are set to the beginning
of the path.

Special Effects 149

Manually Entered Paths

Complex paths, such as shown in Figure 9-1, can be created by moving a figure
under mouse or keyboard control and storing the path coordinates in an array. The
figure can then duplicate the path by recalling the coordinates from the array. If you
store many paths in a multidimensional array, the program can move the figure
between different paths by changing the index number that indicates a specific
path.

Program 9-3 generates a path array that allows figures to duplicate exactly the
speed and locations of any path you trace. Figures can even jump from one location
to another.

When the program begins, the ball appears at the center of the screen. The ball
follows below and to the right of the mouse cursor when the mouse button is held
down. Releasing the mouse button, moving to a new cursor location, and pressing

,. J..
• file Edit Se<!!'(h Run Windows

:O MRNURLL Y ENTERED PRTH
PRESS THE MOUSE BUTTON AND MOVE CURSOR TO CREATE PATH.
PRESS RETURN TO COMPLETE PATH.
PATH AUTOMATICALLY COMPLETES AFTER 512 STEPS.

STEPS REMAINING = 413

_ .-.

--

Figu re 9-1. Manually entered path display

.-. _ ~
____ /.

.,

150 Macintosh Game Animation

the mouse button causes the ball to jump from its current location to the new
location.

The screen displays the number of path locations, LOCTN, remaining before
path storage is full. LOCTN ranges from 0 to 512. The last 128 recorded locations
generate a click warning you that the end is near. Pressing RETURN ends the path if
you want fewer than 512 positions.

After ending the path, the program pauses, clears the screen, and guides the ball
over the path you've created following exactly the same locations and speed. At the
end of the path the program asks whether you want to see the path again.

Manually generated paths like this can also be stored as a sequential file on
diskette. The target application can then retrieve the file from disk and store it back
in a path array.

Master Control and Animation Loop

The master control initializes variables and stores the image as before. It also calls
a subroutine that creates the path. The animation loop guides the ball over the path.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall
GOSUB CreatePath

PUT (XOLD,YOLD),BALL,XOR 'INITIAL XOR DISPLAY

Animation loop:
PUT (XOLD,YOLD),BALL,XOR: PUT (X,Y),BALL,XOR 'ERASE AND DISPLAY XOR
XOLD=X:YOLD=Y
LOCTNsLOCTN+SKIP
IF LOCTN>PTHEND THEN GOSUB Restart
X=PTH(LOCTN,0): Y=PTH(LOCTN, 1) 'PATH COORDINATES FROM PTH ARRAY
FOR PSE .. 1 TO 100: NEXT PSE
GOTO AnimationLoop

Restart:
CLS
LOCATE 8, 15: INPUT "Do you want to see the path again? (Y/N)";ANSS
CLS:LOCTN=O
IF ANSS="N" OR ANSS="n" THEN END
XOLD=250:YOLD=150
PUT (XOLD,YOLD),BALL,XOR 'INITIAL XOR DISPLAY
RETURN

Special Effects 151

The loop is a simple XOR animation loop. PSET or Picture Animation can also be
used if speeds are limited to less than the figure's trailing border width.

After displaying the new image, the location on the path, LOCTN, is increased
by SKIP. SKIP is set to 1 in the Initialize routine. LOCTN indexes the new
coordinate pair that updates the next X and Y coordinates. When LOCTN is greater
than PTHEND, you are asked if you want to see the path again.

You can shift an entire path by adding or subtracting offsets to the PTH
coordinates that set X and Y.

Initialization and Image Creation

The initializing routine sets the variables and arrays used in the program and
creates the window. The number of locations in the path can be increased by
increasing the dimensions of the PTH array. If you do this, also increase the limits
of LOCTN in the AnimationLoop and DrawPath subroutines.

Initialize:
CLS
DEFINT B,C
DIM BALL(44), PTH (512, 1)
WINDOW 1,"MANUALLV ENTERED PATH",(0,38)-(511,341),1
X=250: Y=150: XOLD=X: YOLD=Y 'STARTING LOCATIONS
LOCTN=O 'START PATH AT BEGINNING
SKIP=l 'SPEED OVER PATH

' RECTANGLE - SHAPE OF BALL
CORNER(0)=3: CORNER(1)=3
CORNER(2)= 18: CORNER(3)= 18
RETURN

GETBall:
CALL PAINTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL
CLS
RETURN

Increasing the value of SKIP increases the speed through the path, although large
values of SKIP have a tendency to "round the corners" on a path.

Creating the Path

Generate a path by holding down the mouse button and moving the mouse
cursor. The Draw Path loop moves the mouse to follow the cursor and continuously

152 Macintosh Game Animation

records the figure locations, whether the figure is moving or not and whether the
mouse button is down or not. This method of continuous "polling" allows the path
to duplicate the speed and pauses of the figure as well as its locations.

CreatePath:
LOCATE 1,8
PRINT "Press the button and drag the mouse to create the path."
LOCATE 2,8: PRINT "Press RETURN to complete path."
LOCATE 3,8: PRINT "The path wm automatically complete after 512 steps."
LOCATE 5, 15: PRINT "Steps remaining="
PUT (XOLD,YOLD),BALL,XOR 'INITIAL XOR DISPLAY WHEN CREATING PATH

Draw Path:
PUT (XOLD,YOLD),BALL,XOR: PUT (X,Y),BALL,XOR 'ERASE THEN DISPLAY
XOLD .. X:YOLD•Y
IF MOUSE(0)=-1 THEN X=MOUSE(1): Y=MOUSE(2) 'MOUSE HELD DOWN
PTH(LOCTN,O)•X: PTH(LOCTN, 1)=Y 'RECORD LOCATION
LOCTN=LOCTN+ 1: IF LOCTN>512 THEN Quit
KEY$=1NKEY$: IF KEY$=CHR$(13) THEN Quit
IF LOCTN>384 THEN SOUND 523,.4 'CLICK
LOCATE 5,31: PR I NT LOCTN;
GOTO DrawPath
Quit:
PTHEND=LOCTN-1
LOCTN=O
CLS
RETURN

CreatePath begins by displaying an XOR ball. The DrawPath subroutine then starts
with normal XOR animation.

Holding the mouse button down stores the cursor's current location in the
variables X and Y. These are then stored in PTH(LOCTN,0) and PTH(LOCTN,1),
respectively. LOCTN then increases by 1 to the next location along the path. If the
next location is less than 513, the loop starts over; if the location equals 513, the loop
exits. You can also exit the creation loop by pressing RETURN, which is monitored by
KEY$. When the creation loop ends, the last location in the path is stored in
PTHEND. PTHEND allows the animation loop to check when the loop ends.

Gravity and Acceleration

Simulating gravity adds realism to falling, animated figures. You can use the same
principles demonstrated here to make figures accelerate in any direction.

Special Effects 153

,. e Hie Edit Scrnn h Run Windows
.,

~ GR_lUITY RND RCCELERRTION

·········-.

·-....

.. ... _
. ·

••

Figure 9-2 . Gravity display

Program 9-4 demonstrates the effects of gravity on a bouncing ball. The ball
also loses speed with each bounce, or collision, with the edge of the screen. Figure
9-2 uses dots to show the trail left by a ball bouncing under the effects of gravity.

Master Control and AnimationLoop

The animation loop is a standard XOR animation loop. However, YSPD
increases or decreases depending on the influence of gravity.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall

PUT (XOLD,YOLD),BALL,XOR 'INITIAL XOR DISPLAY

Animation loop:
PUT (XOLD,YOLD),BALL,XOR: PUT (X,Y),BALL,XOR 'ERASE AND DISPLAY

154 Macintosh Game Animation

'PSET (X+ 10,Y+ 10),30: PSET (X+ 11,Y+ 10),30 'LEAVE A DOT TRAIL
XOLD=X:YOLD=Y
YSPD=YSPD+YGRAV 'GRAVITY EFFECT ON SPEED
X=XOLD+XSPD: Y=YOLD+YSPD 'SPEED CAUSING LOCATION CHANGE
IF X<O OR X>478 THEN X=-478*(X>478): XSPD=-XSPD*REBOUND
IF Y<O OR Y>286 THEN Y=-286*(Y>286): YSPD=-YSPD*REBOUND
GOTO AnimationLoop
'

As the ball falls, YGRAV adds to YSPD to increase the speed. As the ball goes up,
YGRAV adds to a negative YSPD, slowing the ball's speed to 0 and finally causing it
to fall.

With the REBOUND value equal to 1, the ball bounces back at its original speed.
In reality, objects lose energy during collisions. Setting REBOUND to less than 1
causes the ball to lose speed. If it is greater than l, the speed increases after each
collision.

Initialization and Image Creation

Initialization is the same as in the standard XOR animation program, but two
new variables, YGRAV and REBOUND, are added. Only variables beginning with
B and C are defined as integers. Other variables are left as single-precision vari
ables to ensure the accuracy needed to calculate rebound and gravity effects.

Initialize:
CLS
DEFINT B,C
DIM BALL(44)
WINDOW !,"GRAVITY AND ACCELERATION",(0,38)-(511,341), 1
X=20: Y=SO: XOLD=X: YOLD=Y 'STARTING LOCATIONS
XSPD=S:YSPD=-2
YGRAV=.6 'GRAVITY - LARGER NUMBERS CREATE STRONGER GRAVITY
REBOUND=.9 'REMAINING ENERGY (SPEED) AFTER WALL COLLISION

' RECTANGLE - SHAPE OF BALL
CORNER(0)=3: CORNER(I)=3
CORNER(2)= 18: CORNER(3)= 18
RETURN

GETBall:
CALL PAI NTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL
CLS
RETURN

Special Effects 155

Initialization sets the starting location and initial speed for the ball. YGRAV equals
the amount that the speed, YSPD, increases during each animation loop. Increasing
YGRAV increases the pull of gravity. REBOUND is the percent of the original
speed remaining after a collision.

Accelerating Rockets

To simulate a rocket's takeoff, set X and Y for the bottom of the screen and set
YGRAV to a negative value. Add an XGRAV value and the rocket will curve to the
side.

Leaving a Trail

With a slight addition to your programs, figures can leave behind a trail that follows
the figure's movement. Trails can be created in two ways: by not completely
erasing the previous figure or by drawing a trail in relation to the figure's location.

PSET and PICTURE figures leave trails when their trailing border is not as wide
as their longest move.

To leave an interesting dot trail in the Gravity program, Program 9-4, remove
the apostrophe from the beginning of the PSET statements in the animation loop.
Removing the apostrophe activates the line

PSET (X+10,Y+10),30: PSET (X+n,Y+lo),30

This line places two PSET dots at the center of the XOR ball. The next XOR image
will not erase them. (If PSET or Picture Animation were used, the dots would be
erased by the next figure.) Figure 9-2 showed the XOR dot trail following the
bouncing ball.

Figure Interaction

Figures can intercept and follow other figures by calculating their speed based upon
the speed and relative location of the other figure.

Program 9-5 demonstrates how one figure intercepts another on command.
Pressing the mouse button starts and stops the intercept.

A filled ball acts as the target for a circle, the interceptor. The filled ball moves
under the effects of gravity, so it bounces across the screen, getting lower after each
bounce. Initially, the circle moves horizontally across the screen.

Pressing the mouse button toggles the INTERCEPT variable between TRUE
and FALSE. When INTERCEPT is TRUE, the speed of the circle in BALL(0,2) is
calculated from the speed and distance of the ball, BALL(O,l).

The greater the distance between the two, the faster the circle moves to

156 Macintosh Game Animation

intercept. As they move closer, the circle slows.
Pressing the mouse button a second time changes INTERCEPT to FALSE. This

releases the circle to continue at its current speed and direction. Because the filled
ball moves under the effect of gravity, the ball and circle move apart. The screen
display shows when intercept is on or off.

A slight modification to the program, described later, allows one ball to follow
the other as though being dragged by a rubber band.

Master Control and Animation Loop

The master control prepares the animation loop with two figures and two sets
of variables. Both initial XOR images are displayed before the animation loop
begins.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall

LOCATE 17,10
PRINT "Press button to switch intercept on and off"
LOCATE 15,22
PRINT "INTERCEPT OFF"
PUT (XOLD(1),YOLO(1)),BALL(0,1),XOR 'INITIAL XOR DISPLAY
PUT (XOLD(2),YOLD(2)),BALL(0,2),XOR 'INITIAL XOR DISPLAY
'

Animation loop:
PUT (XOLD(1),YOLO(1)),BALL(O,1),XOR: PUT (X(1),Y(1)),BALL(O,1),XOR
PUT (XOLD(2),YOLD(2)),BALL(0,2),XOR: PUT (X(2),Y(2)),BALL(0,2),XOR
XOLD(1)=X(1): YOLO(1)=-Y(1): XOLD(2)aX(2): YOLD(2)aY(2)
YSPD(1)=YSPD(1)+YGRAV 'GRAVITY CAUSING ACCELERATING SPEED
X(1)=-XOLO.(1)+XSPD(1): Y(1)=YOLO(1)+YSPD(1) 'CAUSING LOCATION CHANGE
X(2)=XOLD(2)+XSPD(2): Y(2)=YOLD(2)+YSPD(2)
'SINGLE MOUSE CLICK TURNS INTERCEPT (OR FOLLOW) ON AND OFF
IF MOUSE(O)<> I THEN GOTO NoClick
INTERCEPT=NOT INTERCEPT
LOCATE 15,31: IF INTERCEPT THEN PRINT "ON" ELSE PRINT "OFF"
NoClick:
IF NOT INTERCEPT THEN GOTO Notlntercept
XSPD(2)=XSPD(1)+(X(1)-X(2))/5
YSPD(2) .. YSPD(1)+(Y(1)-Y(2))/5
' XSPD(2)=(X(1)-X(2))/5
' YSPD(2)=(Y(1)-Y(2))/5
Not Intercept:
IF X(1)>O AND X(1)<478 THEN GOTO OkX 1

X(I)"'-478*(X(I)>478): XSPD(I)=-XSPD(I)*REBOUND
OkXl:
IF Y(I)>O AND Y(I)<286 THEN GOTO OkY I
Y(1)'•-286*(Y(1)>286): YSPD(I)=-YSPD(I)*REBOUND
OkYI:
IF X(2)>0 AND X(2)<478 THEN GOTO OkX2
X(2)=-478*(X(2)>478): XSPD(2)=-XSPD(2)*REBOUND
OkX2:
IF Y(2)>0 AND Y(2)<286 THEN GOTO OkY2

Special Effects 157

Y(2)=-286*(Y(2)>286): IF NOT INTERCEPT THEN YSPD(2)=-YSPD(2)*REBOUND
OkY2:
GOTO AnimationLoop

This animation loop moves two independent images, a solid ball and a black circle.
Each has its own boundary checks and speed; however, pressing the mouse button
makes the circle, BALL(0,2), move to intercept the ball, BALL(0,1). Pressing the
button again causes them to continue independently. Because the ball travels under
the influence of gravity, the two figures separate when the intercept command is
off.

Both images use XOR animation and are erased and displayed in the first two
lines of the loop. Each figure's speed and location variables are stored in a different
element of the same array. In this way commonly understood variable names, such
as X and XSPD, can still be used and an array index used to indicate whether the
figure is 1 or 2. (Index 0 is ignored for convenience in numbering the figures.)

The two figures animate with normal XOR animation and boundary checking
until the mouse button is clicked. Clicking the button the first time sets INTER
CEPT equal to TRUE. When INTERCEPT is TRUE, XSPD(2) and YSPD(2) are set
as a function of the speed and distance of figure 1. This causes figure 2 to intercept
figure 1. Decreasing the divisor, 5, increases the speed of intercept.

Pressing the mouse button a second time reverses the state of INTERCEPT,
changing TRUE to FALSE. Figure 2 then moves independently when INTERCEPT
is FALSE.

Initialization and Image Creation

The initializing routine is similar to initializing the gravity program with two
exceptions. Two sets of variables are initialized and the INTERCEPT value is set to
FALSE. Setting INTERCEPT to FALSE prevents the program from beginning with
an interception.

Initialize:
CLS
DEFINT B,C 'USE SINGLE PREC1SION FOR GRAVITY CALCULATIONS

158 Macintosh Game Animation

DIM BALL(44,2) 'TWO BALLS USED IN .(0, 1) AND (0,2)
WINDOW I ,"INTERCEPTING A MOVING FIGURE",(0,38)-(511,341), 1
X(1)""20: Y(1)=50: XOLD(1)=X(1): YOLO(1)=Y(1) 'ST ART ING LOCATIONS
X(2)=475: Y(2)=50: XOLD(2)=X(2): YOLD(2)=Y(2)
XSPD(1)=5: YSPD(1):s-2 'SPEED
XSPD(2) .. -2: YSPD(2) .. 0
YGRAV ... 3 'GRAVITY - LARGER NUMBER CREATES STRONGER GRAVITY
REBOUND 9 'LOST ENERGY (SPEED) AT WALL COLLISION
INTERCEPT=O 'INTERCEPT .. O (FALSE) THEN NO INTERCEPT, IF -1 THEN TRUE .
' RECTANGLE - SHAPE OF BALL
CORNER(0)=3: CORNER(1)=3
CORNER(2)= 18: CORNER(3)= 18
RETURN

GETBall:
CALL PAINTOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL(0, 1) 'TARGET
CLS
CALL FRAMEOVAL(VARPTR(CORNER(O)))
GET (0,0)-(20,20),BALL(0,2) 'INTERCEPTOR
CLS
RETURN

Two different figures are drawn in the GETBall subroutine. The interceptor is a
circle, FRAMEOVAL, and the target is a filled circle, PAINTOVAL.

Towing Figures With a Rubber Band Effect

A simple modification to the previous program makes the circle follow the solid
ball as though it were attached by a rubber band. To create this effect, place an
apostrophe (')in front of the lines

XSPD(2)=XSPD(l)+ .. .

YSPD(2)=YSPD(1)+ .. .

Remove the apostrophes from in front of the lines following them.
These new lines set the circle's speed according to the distance between the

circle and the ball. The ball speed is not used in the equation.

Changing Image Arrays During Motion

Images stored in integer arrays can be changed as they animate. Changes to an
image are made by changing the integer numbers stored within the integer image

Special Effects 159

array. A number of different effects can be achieved by changing the array numbers
of an image during animation. For example, an image can appear on the screen in
sections, a few pixels at a time. An image can also be changed as it animates without
changing the sequence or eel. Inserting numbers into array elements that were 0

causes new pixels to appear. Changing image array numbers to 0 makes figures
disappear a few pixels at a time.

These special effects are created by changing the numbers stored in the image's
integer array. Changing elements 0 and 1 changes the image's width and height,
respectively. Changing elements after these first two changes the image's shape.

Program 9-6 demonstrates a disintegrating and reassembling process that
transports a figure element-by-element to a new location onscreen. The original
figure appears to dissolve as its array elements are transferred to a new growing
image. As the program demonstrates, both new and old images can move while
their image arrays change.

Master Control and Animation Loop

The first two blocks of lines call subroutines that initialize variables, create the
FRIBIT image, and initialize a receiving image, CLONE. The demonstration is
presented in a science fiction format.

In the animation loop, both the original image, FRIBIT, and the CLONE image
move. As the images move, array elements transfer from the original image to the
clone.

"MASTER CONTROL
GOSUB Initialize
GOSUB GETFribit
GOSUB PrepareClone

'PREPARE SETTING
LOCATE 16,20: PRINT "Beam up the Fribit, Scottyr
PUT (XFRIBIT,YFRIBIT),FRIBIT,PSET
FOR PSE= I TO 3000: NEXT PSE
LOCATE 16,20: PRINT SPACESC47)
LOCATE 3,24: PRINT "Aye, Aye, Captain!· .
Anlmationloop:
PUT (XFRIBIT,YFRIBIT),FRIBIT,PSET 'DISPLAY AND COVER OLD IMAGE
PUT (XCLONE, YCLONE),CLONE,PSET
LINE (XFRIBIT+ 16,YFRIBIT)-(XCLONE+ 16,YCLONE+32),33
LI NE CXFRIBIT + 16,YFRIBITHXCLONE+ 16, YCLONE+32),30
XFRIBIT•XFRIBIT+XSPD:XCLONE•XCLONE+XSPD
IF ELEMENT=66 THEN Complete: 'COMPLETE IMAGE DISPLAYED, so EXIT LOOP

160 Macintosh Game Animation

COUNTER=COUNTER+I
IF COUNTER<>2 THEN GOTO NoUpdate
COUNTER=O
CLONE(ELEMENT)=FRI Bl TC ELEMENT)
FRIBIT(ELEMENT)=O
ELEMENT=ELEMENT+l
NoUpdate:
FOR PSE=I TO 80: NEXT PSE 'TIMING DELAY
GOTO Animationloop
Complete:
BEEP
LOCATE 3' 18: PRINT "The Fribit is onboard, Captain!"
FOR PSE=l TO 9000: NEXT PSE
END

After the FRIBIT and CLONE images are put with PSET, a line drawn in black
and then redrawn in white creates the appearance of a beam between original and
clone. Both FRIBIT and CLONE move at the same speed, XSPD, during this
process.

Elements are transferred every other time through the loop when COUN
TER=2. An element in CLONE is set equal to an element in FRIBIT. The same
FRIBIT element is then set equal to 0, changing the pixels to white. The variable
ELEMENT increases by 1 after each transfer to prepare for the next transfer. The
next time the images are displayed, they will have a new appearance.

This program uses PSET animation. If XOR animation were used, the element
transfer would take place between the erasing PUT and the displaying PUT. This
preserves the image appearance until it has erased its existing screen display.

When all 66 elements are transferred, the animation loop exits to a closing
statement.

Initialization and Image Creation

Arrays are dimensioned for both the original image, FRIBIT, and the receiving
image, CLONE. The CLONE array must be equal to or larger than the original
array if all of FRIBIT is to transfer.

Initialize:
CLS
DEFINT F,C
DIM FRIBIT(65), CLONE(65)
WINDOW I ,"CHANGING IMAGE ARRAVS",(0,38)-(511,341), 1
XFRIBIT=80: VFRIBIT=200: XSPD=2
XCLONE=80:VCLONE=80

COUNTER=O
RETURN

GETFrlbit:
X 1m11: Y 1 =2: X2•21: Y2•8: GOSUB RectArray

Special Effects 161

PSET (X 1,0),33: PSETCX 1+1, 1),33: PSET (X2-1 ;0),33: PSET (X2-2, 1),33
CALL FRAMEOVAL(VARPTR(CORNER(O))) 'HEAD •
LI NE (2, 1OHS,13),33,BF: LI NE (25, 10)-(29, 13),33,BF 'ARMS
X 1 = 7: YI = 16: X2=24: Y2=35: GOSUB RectArray
CALL PAI NT ARC(VARPTR(CORNER(O)), I 20, -248) 'LEGS
XI =4: YI =8: X2=27: Y2=2 I: GOSUB RectArray
CALL ERASEOVAL(VARPTR(CORNER(O))) 'CLEAR BODY AREA
CALL FRAMEOVAL(VARPTR(CORNER(O))): PSET (15, 17),33 'BODY
GET (0,0)-(31,31),FRIBIT
CLS
RETURN

RectArray:
' RECTANGLE SHAPE
CORNER(O)=Y 1: CORNER(I)=XI
CORNER(2)=Y2: CORNER(3)=X2
RETURN

PrepareClone:
'IMAGE MANIPULATION IS POSSIBLE WITH INTEGER IMAGE ARRAYS
CLONE(O)=FRIBIT(O) 'WIDTH OF IMAGE
CLONE(I)=FRIBIT(I) 'HEIGHT OF IMAGE
'CLONE IS NOW A BLANK IMAGE, WIDTH=CLONE(O) AND HEIGHT=-CLONE(I)
ELEMENT=-2 'FIRST IMAGE ARRAY ELEMENT TO BE TRAN~FERRED
RETURN

GETFribit stores a distinctive image in the 66 elements of the FRIBIT array.
PrepareClone, however, does not create an image, but only prepares the array to
receive an image.

PrepareClone sets the width element, element 0, of the CLONE array equal to
the width of the FRIBIT image array. Likewise, it sets the image heights, stored in
element l, equal. Both image height and width must be stored in an image array
before an image can be PUT.

Additional Image Manipulations

Your programs can manipulate images in many other ways. Here are a few
suggestions.

162 Macintosh Game Animation

• Change the height element, element l, of an image array to cut off the lower
portions of a figure. When executed in a FOR/NEXT loop, the program can
make figures appear to rise up from or fall into a hole.

• Create images that change shape from one figure to another by transferring
elements into an animating image array from a DATA file or from another
image array.

• Disintegrate images piecemeal by setting random elements to O within their
array. Do not set the width or height elements to 0.

Three-dimensional Effects

Perspective adds a feeling of three dimensions to pictures; figures closer to us
appear larger than those far away. Combining figures and backgrounds drawn in
perspective increases the feeling of depth in your displays.

,. .I.
• file Edit Se<1n h Run Windows

.,

~D THREE-DIMENSIONAL MOTION

Figure 9-3. Three-dimensional motion display

Special Effects 163

Both images and picture figures can be scaled to different sizes by specifying a
lower-right corner in the displaying statement. Specifying corners with the same
difference between them as in the original recreates the figure with the original
size. Similarly, multiplying a display's height and width by the same amount
changes the figure's size while maintaining the original proportions.

Two methods of changing a figure's size to account for perspective are

• Using the figure's distance from an imaginary horizon to determine how
large or small the figure should be scaled. Smaller distances mean the figure
is closer to the horizon and should be smaller.

• Another method controls figure height with mouse or keystroke commands.
For example, holding the mouse button down while pushing the mouse away
"pushes the figure away," making it smaller.

In the next program, the mouse controls the movement of a ball onscreen. The
ball's size changes automatically in response to its distance from the horizon. The
vanishing perspective lines that form the background also add to the feeling of
depth. Figure 9-3 shows the ball in the foreground and the terrain it travels over.

Master Control and Animation Loop

This program begins as other XOR animation programs do, but adds a back
ground drawn by the DrawBackground subroutine.

'MASTER CONTROL
GOSUB Initialize
GOSUB GETBall
GOSUB DrawBackground

PUT (XOLD, VOLDHXOLD+29*ZSI ZEOLD, VOLD+29*ZSI ZEOLD),BALL,XOR

Animation loop:
PUT (XOLD, YOLDHXOLD+29*ZSI ZEOLD, YOLD+29*ZSI ZEOLD),BALL,XOR
PUT (X,Y)-(X+29*ZSIZE,V+29*ZSIZE),BALL,XOR
XOLD•X:YOLD•Y:ZSIZEOLD•ZSIZE
'MOVE IN DIRECTION OF MOUSE CURSOR, SPEED PROPORTIONAL TO DISTANCE
IF MOUSE(0)<>-1 THEN GOTO NoMouse
X-MOUSE(I): Y=MOUSE(2)
XSPD•(X-XOLD)/SCALE: VSPD•(V-YOLD)/SCALE
NoMouse:
X•XOLD+XSPD: Y•YOLD+YSPD 'SPEED CHANGING LOCATION
ZSI ZE•.OS+(ABS(HORI ZON-Y)/(BOTTa1-HORI ZON)J* 1.5
IF X>=O AND X<=(500-22*ZSIZE) THEN GOTO OkX

164 Macintosh Game Animation

X=-(500-22*ZSI ZE)*(X>(500-22*ZSI ZE)): XSPD=O
Ol<X:
IF Y>=HORIZON AND Y<=BOTTOM THEN GOTO OkY
Y=-HORI ZON*(Y <HORI ZON)-BOTTOM*(Y>BOTTOM): YSPD=O: XSPD=O
OkY:
GOTO AnimationLoop

The first difference from previous XOR statements is the extra terms that define
the lower-right corner of the BALL image. Using a PUT statement of

PUT (X,Y)-(X+29,Y+29),BALL,XOR

produces a ball with the same proportions as the original. By multiplying both
added values, in this case 29, by ZSIZE (or ZSIZEOLD), the size of the figure
increases or decreases while maintaining its proportions.

After erasing and displaying the ball, the old X, Y, and ZSIZE values are stored
for the next erasing PUT statement. When the mouse button is pressed and held
down, the speed and direction of the ball's travel are recalculated.

The variable ZSIZE, the magnification of the ball, is calculated using its distance
away from the horizon line. You can change the variables BOTTOM and
HORIZON in the Initialize subroutine to alter the background's appearance while
maintaining proper perspective. On the horizon the ball shrinks to its smallest size,
.OS times the original size. At the bottom of the screen, close to the viewer, the ball
expands to 1.55 times its original size. The constant 1.5 is the magnification rate.

lni tialization

The Initialize subroutine adds variables to draw the background and to calculate
the perspective. The pattern for the ball's shadow is stored in the PATTERN%
array.

Initialize:
CLS
DEFINT B,C,P
DIM BALL (59)
WINDOW I ,"THREE-DIMENSIONAL MOTION",(0,38)-(511,341), l
X=250: Y=l50: XOLD=X: YOLD=Y 'STARTING LOCATION
SCALE =30 'SPEED CONTROL
HORIZON= 1 1 0 'Y COORDINATE OF HOR I ZON LI NE
BOTTOM=280 'Y COORDINATE OF BOTTOM LIMIT
CENTER=250 'X CENTER ON HORIZON LINE
RETURN

Special Effects 165

Creating the Image and Background

The ball-drawing subroutine draws the ball in three stages. The shadow adds to
the three-dimensional effect. The Rectangle subroutine resets the CORNER%
array for different sized ovals.

A FOR/NEXT loop creates the background by drawing a series of lines radiating
from the horizon to the foreground.

GETBall:
'SHADOW
PATTERN(0)=-30686: PATTERN(1)=-30686
PATTERN(2)=-30686: PATTERN(3)=-30686
y 1 =8: x 1 =6: Y2=21: X2=29: GOSUB Rectangle
CALL. FILLOVAL(VARPTR(CORNER(O)), VARPTR(PATTERN(O))) 'SHADOW
Yl=l: Xl=l: Y2=21: X2=21: GOSUB Rectangle
CALL ERASEOVAL(VARPTR(CORNER(O))) 'BALL
CALL FRAMEOVAL(VARPTR(CORNER(O))) 'BALL OUTLINE
GET (1, 1)-(29,29),BALL 'SAME HEIGHT TO WIDTH RATIO AS GET RECTANGLE
CLS
RETURN

Rectangle:
' RECTANGLE - SHAPE OF BALL
CORNER(O)=Y 1: CORNER(1)=X1
CORNER(2)=Y2: CORNER(3)=X2
RETURN

Draw Background:
FOR XOFF=-25 TO 25

LI NE (CENTER+XOFF*3,HORI ZON)-(CENTER+ 150+XOFF*300,341),33
NEXT XOFF
RETURN

Sound Effects

The Macintosh has very good sound and music capability that will add interest to
your animation. Some sounds, such as those produced by bells, organs, and sirens,
can be defined by exact equations and can be programmed with the Mac's multi
voice sound. Other more exotic and unpredictable sounds can only be found by
experimenting. The general principles that govern most elementary sounds can be
found in many college physics texts.

Multivoice sound can slow programs by as much as 50%. It should only be used

166 Macintosh Game Animation

in between action sequences. SOUND WAIT and SOUND RESUME may also limit
your animation programs because they can consume large amounts of memory.

Program 9-8 contains a small collection of sounds you can begin experimenting
with. They are not meant as an explanation of the SOUND or WAVE capabilities.

WINDOW 1, "SOUND EFFECTs·,co,38)-(511,341), 1

SpaceMusic:
LOCATE 8,28: PRINT "SPACE MUSIC"
WAVE 1,SIN 'WAVE PATTERN OF MOST MUSIC
SPACE=O
WHILE SPACE<40
BASEFREQ=600:ADDERFREQ=800
SOUND RND(1)*ADDERFREQ+BASEFREQ,RND(1)*3,,1
SPACE=SPACE+ I
WEND

BounclngBa 11:
CLS: LOCATE 8,23: PRINT "BOUNCING CANNON BALL.
WAVE 0 'RETURN TO SINGLE VOICE AND SQUARE WAVE
'SQUARE WAVE .PRODUCES ABRUPT CHANGES
BOUNCE=O
WHILE BOUNCE <2
FREQ=523:FALLRATE=-2:SILNCE=10
HIBALL=70: LOBALL=l: RECOIL=2000
FOR VARIATN=HIBALL TO LOBALL STEP FALLRATE

SOUND FREQ-VARIATN/2,VARIATN/RECOIL
SOUND 32767,VARIATN/SILNCE 'SOUND OF SILENCE

NEXT VARIATN
BOUNCE=BOUNCE+l
WEND

PhasorCannon:
CLS: LOCATE 8,21: PRINT ·sTAND BACK, PHASOR CANNONr
WAVE 1,SIN 'SINGLE VOICE WITH SINE WAVE
WHILE SHOTS<3

HI GHFREQ=2000: LOWFREQ=SSO: F ALLRATE =-30
FOR FREQ=HIGHFREQ TO LOWFREQ STEP FALLRATE

SOUND FREQ, 1,, 1
NEXT FREQ
SHOTS•SHOTS+l

WEND

Siren:
CLS: LOCATE 8,25: PRINT ·s1RENS IS GOLDEN"
WAVE 1,SIN
WHILE SIREN<3

HI FREQ= 1500: LOWFRE0= 1000: RATECHNG= 15
FOR RISEFREO=LOWFREO TO HIFREO STEP RATECHNG

SOUND RISEFREO, I,, I
NEXT RISEFREO
FOR FALLFREO=HIFREO TO LOWFREO STEP -RATECHNG

SOUND F ALLFREO, I,, I
NEXT FALLFREQ
SIREN=SIREN+ I

WEND

HyperSpaceDrive:
CLS: LOCATE 8,25: PRINT "HYPERSPACE DRIVE"
WAVEO
ACCELERATE=IO:LOREV=200:HIREV=600
WHILE ACCELERATE>5
FOR REVS=LOREV TO HIREV STEP ACCELERATE

SOUND REVS, I
NEXT REVS
LOREV•LOREV+200:HIREV=HIREV+300
ACCELERATE=ACCELERATE-1
WEND

Organ:
CLS: LOCATE 5,20: PRINT "NOW FOR SOMETHING SOOTHING!"
LOCATE 8,27: PRfNT "ORGAN TONES"
LOCATE 10,25: PRINT "VARIATIONS ON 'C'"
WAVE O,SIN: WAVE 1,SIN: WAVE 2,SIN 'THREE VOICES
'HARMONICS OF A TUBE CLOSED AT ONE END
FOR OCTAVE= I TO 5

SOUND WAIT 'OVERLAP ALL THREE VOICES WHEN PLAYED
MAI NFREO= 130. 75*0CT A VE: HARMONIC I =MAI NFRE0*3
HARMONIC2=MAINFRE0*5
SOUND MAINFRE0,36,,0
SOUND HARMONICl,36,, I: SOUND HARMONIC2,36,,2
SOUND RESUME

NEXT OCTAVE
FOR PSE=I TO 5000: NEXT PSE 'TIME TO PLAY ORGAN NOTES

Special Effects 167

168 Macintosh Game Animation

CLS: LOCATE 8,28: PRINT "THAT'S ALL!"
FOR PSE= 1 TO 8000: NEXT PSE
END

Chapter 10

Developing Your Program

T his chapter present.s some ideas and guidelines for developing interesting
and challenging animation applications. Successful programs, whether
they are business applications or games, share common elements. They

must be attractive and efficient to attract the user's attention and give a profes
sional appearance. In addition, they must hold the viewer's interest and respond to
inputs with feedback and reward.

Animation Environments

Many animation settings involve a simulated world or environment that helps
develop an emotional response in the player as well as a plausible context for the
action. The environment that you design must fit within the context of the
program and be consistent with the program's description and goals.

Such an animation environment is made up of the following elements:

• The text and instructions

• Figures and graphics backgrounds

169

170 Macintosh Game Animation

• Conditions in the simulated world (such as gravity)

• The rules and scoring displays.

All of these components must be thoughtfully coordinated in order to create a
successful animation environment. The more consistent and "realistic" your
design, the more users will want to interact with it. In this way their participation
with the program is increased.

Attraction

A program's lead-in and attractiveness are important because they form the play
er's initial impression. Changing a poor initial impression can be difficult, since a
second chance may never occur. This means you must avoid backgrounds that
distract from the focus of interest, confusing action or instructions, and sound
effects that are inappropriate or too loud. Carefully choreographed graphics and
backgrounds, smooth animation, and high-quality sound and music are the techni
cal goals of the programmer who wants to produce attractive and appealing
animation.

Rewards

Rewards play two important roles for program users:

• They provide feedback that helps users modify their behavior.

• They encourage correct responses.

Rewards such as bells, flashing colors, and high scores create positive feedback that
makes users feel good about their efforts. In addition, non-judgmental feedback,
such as a small beep or a position marker, provides the player with an indicator of
his or her status in the game.

Pack as much excitement for as many senses as possible into the rewards you
use. However, be sure to make the reward commensurate with the effort involved.
If a big reward is given for a small accomplishment, increasing the reward for large
accomplishments is difficult.

Variation

Variation makes the environment more interesting and invites repeated use. Situa
tions, figure behavior, complexity of strategy, music, and background are all
elements that can change. However, remember to use consistent shapes and
patterns for figures that must maintain their identity throughout the program.

Developing Your Program 171

Skill Levels

The starting level of difficulty in a simulation, learning aid, or game should be
slightly greater than the player's current capabilities. The user must be challenged
by achievable goals. Two methods of setting skill levels during the program are

• Asking the user to enter a starting skill level.

• Adjusting the skill level according to the user's demonstrated ability during
an initial testing period.

Game players and students often go through several learning and skill-develop
ment stages. The player first learns the basic rules and then, with practice, gains
increasing skill in different parts of the game or simulation. During the growth of
those skills, the player develops tactics that work for specific situations. By this
time, the player is usually adept and able to. achieve high scores. Ultimately, the
player develops an overall strategy that works for all the offensive and defensive
maneuvers needed.

Playability

As a programmer, you have the difficult job of making the user's job easy. You must
present your program clearly so it is easy to use and enjoy. By doing that, you let the
user focus on the content of the program, rather than on how to operate it.

Consistency

Remember that controls should be consistent in two ways. First, always use
commands and help displays in the manner in which they are commonly used in
other programs and games. Second, when adding commands that are specific to
your program, use them the same way every time.

The use of consistent commands limits the number of new rules your users
must learn, thereby reducing the chance of confusion. Your program will then be
more understandable and seem familiar, which makes learning easier.

Display

The video screen should display all the information the user needs to react properly
to the animation environment. This information can be presented in scores, help
menus, icons, and other displays that tell what has occurred, what is currently
happening, or what may happen next. Designing the screen so it is both attractive
and easy to interpret is most important.

172 Macintosh Game Animation

Information Display

It is necessary during all phases of a game to keep your players informed about
the status of the program and the computer. For example, if a calculation or
initializing time is long, put a message on the screen indicating that the computer is
working.

In some BASIC programs, continually displaying information slows down the
animation. In such a case, design your program so that information is updated at
time intervals with ON TIMER or by menu selection.

The display screen can signal upcoming events, which can help build excitement
and anticipation. For example, a signal flashing faster and faster can be used to
indicate increasing danger.

Displaying the Score

The score, or some indication of the program's progress, should always be
posted on the screen. You can post the score in special areas or display it over screen
background.

The score's location on the screen makes a difference in a display's impact.
Studies have shown that information is most noticeable and memorable when
placed in the upper-right or -left corners of the screen.

Represent the score clearly. If you choose a method other than numbers, such
as bar charts or pictures, make sure users can tell the score is adding up; this
provides a reward and an incentive for continued play.

Animation in Application Programs

Computer animation is useful for serious subjects in addition to its entertainment
value. Messages carried by animation are easy to remember. Television, for exam
ple, now uses computer-animated program titles, weather reports, simulations of
dangerous or inaccessible activity, and charts and graphs. The following short
descriptions mention a few ways in which computer animation can be used in
application programs.

Process Control and Simulation

Mechanical, chemical, and electrical processes can be simulated for educational
training when the real processes are too expensive or dangerous. Such programs
can work in petroleum refining, chemical distilling, and mechanical failure testing.

Developing Your Program 173

Financial and Market Analysis

When animated on a time line, financial, production, and market information can
reveal unexpected trends and peculiarities. Animated charts can give a better
perspective to changing lease bases, shifting target demographics, and changing
product mix.

Weather and Demography

Geographic changes in weather and population become more apparent when
viewed as animated patterns overlaid on a map. In many cases, seemingly shapeless
masses with random movements reveal obvious patterns and trends when ani
mated over time.

Art

The use of computers in art is increasing because of more accessible languages and
computers and the use of graphics. One application currently in use translates a
dancer's choreographed script into animated images that are easier to understand.

Game Elements

Most computer games are a combination of three elements:

• Simulation of a fantasy or real-world environment

• Arcade-type play

• Strategy.

The first element, environment, sets the stage in which the action takes place and is
an integral part of all computer games. Any game requires an artificial yet believa
ble context for the action. In most cases, a game is set in a simulated environment
designed to enhance the action or develop greater commitment from the player.

Arcade-type action, the second game element, challenges the player's reaction
time and coordination. In addition, most arcade-type games also incorporate some
element of chance to break up an obvious strategy.

The third element in most games is strategy. A good game with increasing skill
levels requires the player to develop more and more sophisticated strategies.

When designing your game, consider how to combine these elements most
effectively. The type and amount of simulation, arcade-type play, and strategy will
vary between games. Physical reaction speed may be required one moment and

174 Macintosh Game Animation

mental calculation or strategy the next. The combinations of different elements are
limitless.

Story Line and Goals

The first step in developing a game is to develop a consistent story line with a clear
goal. You can then decide upon the environment, action, and strategy your game
requires.

It is important that your story line have continuity so that actions and new
developments are introduced in a logical order and are consistent with the rest of
the game. In addition, there must be enough complexity to make the game
intriguing, but not so much that the players become confused. For this reason, the
goal and a description of the game's action should be summarized in a clear one- or
two-sentence statement. This will help you design and program your game. Then,
whenever you make changes in the program, you can check the changes against the
story line and goal to prevent inconsistencies and confusion.

The Audience

Games must be complex enough that players want to learn how to play and develop
winning strategies. However, they should not be so complex that the majority of
your audience can't win or score high enough to feel a sense of accomplishment.
You will find it helpful to analyze and test your audience to determine the complex
ity and level of skill it requires. Even within a specific audience, skill and strategy
levels must increase as players' skills increase.

No matter how difficult the game, it is essential that game control and operation
be clear and easy to use. Complexity should come from the player's interaction
with the figures and strategies in the game, rather than from the mechanics of
playing the game. Before you begin programming, it is important to know how
players will operate and communicate with your program. Outline how they will
control the game and receive information from it. If you are unfamiliar with your
audience, you may spend time and energy developing incorrect control methods.
You can avoid such wasted efforts by testing different stages of development on
prospective players.

Limitations

An important factor in determining a game's complexity is the speed and memory
of the computer used as well as the programming language. As you build your game
and make additions and enhancements, the system may run out of memory or the
animation may slow down. When system and memory limitations require that a

Developing Your Program 175

program be pared down, the game's goal statement can be helpful in determining
its essential elements. If cutting elements from the game isn't possible, you can
increase the speed by compiling the program or rewriting it in a faster language like
assembly language, C, or Forth. If the program is too long, you may be able to divide
it into modules that can be loaded from diskette as needed.

Chapter 11

Demonstration Programs

T he programs in this chapter demonstrate the techniques described in
previous chapters. In the Satellite Interceptor program (Program 11-1),
players attempt to capture attacking satellites. The Satellite Interceptor

uses animation with a mouse-controlled sight, satellites that spin and increase in
size as they approach, and a rotating planet background.

The Visible Engine program (Program 11-2) simulates the moving parts and
processes in a four-stroke gasoline engine, which is similar to a car engine. Viewers
can change the gas flow and air/gas ratio with the mouse and watch the effect the
changes have on engine performance.

Listings for the Satellite Interceptor and Visible Engine programs are presented
in this chapter with short explanations. Many of the routines in these two demon
strations have been explained more fully throughout the book. These programs
work on both 128K and 512K Macintosh computers.

Satellite Interceptor

The Satellite Interceptor program presents an arcade-type game in a space sce
nario. Figure 11-1 shows the view through the front of the player's space ship.

177

178 Macintosh Game Animation

The techniques used in this demonstration are

• Background animation that rotates the planet.

• Changing image size to create the impression of satellites approaching from a
distance .

• Image animation with a six-eel sequence of a spinning satellite .

• Collision detection by location.

• Sound effects during satellite capture .

• Mouse-controlled movement of the grappler beam sight.

• Keyboard control that activates the grappler beam.

Operating Instructions

Working secretly for the last ten years, underground resistance fighters have
finally completed Zebron's only freedom fighter, the satellite interceptor you are

,. • Iii<~ Edit il <~ <t n h Run Windows
.,

Figure 11-1 . Satellite Interceptor display

Demonstration Programs 179

about to fly. As your home planet slowly rotates below, you review your orders.
Your objective is to capture as many killer satellites as possible by bringing them

into your ship's hold with the "grappler" beam.
The ship's Doppler radar was destroyed by sabotage, so you have no way of

knowing a satellite's distance and speed. Best estimates indicate that when killer
satellites are approximately two times the height of the sight, they explode,
damaging your ship's viewport.

Built from hyper-polycarbonate, your interceptor is impenetrable except for
the viewport. After two cracks in the viewport, life-support systems begin to fail.
After three cracks, a crash landing is mandatory.

The killer satellites learn from previous attacks. Successive satellites attack at
faster rates.

You must control the grappler beam manually. An electromagnetic pulse beam
destroyed your computer shortly after launch. The grappler beam, visible on your
viewport as a square sight, uses gravitational field distortion; therefore, the beam
must be aimed by dragging it in a new direction. The beam will begin traveling
toward the mouse cursor when you press the mouse button. The farther the
distance between the square sight and the mouse cursor when the mouse button is
pressed, the faster the sight will travel.

Capture satellites by centering the sight on the satellite and pressing the SPACE

BAR. The right side-panel displays satellites grappled into your ship's hold. Be
conservative when shooting the beam, since you have only 40 shots to capture
eight satellites.

Program Explanation

The Satellite Interceptor demonstration is based on the Rotating Planet program
(Program 6-1) from Chapter 6. Using a copy of it will save you time.

Chapter 6 explains the foundation of the animation loop and the subroutines
used in background animation. The satellite location is controlled by the XSAT and
YSAT. NSATSIZE controls the size of the satellite. On each pass through the
animation loop, satellite size increases by the amount NSATSPD. The letter "O"
preceding a variable indicates the old value of that variable, which is stored for later
use in erasing an image or calculating speed. The CEL variable controls which of
the six satellite images is displayed.

The distance between the center of the sight, (X+10,Y+10), and the center of
the satellite, (XSAT + .5 * NSATSIZE, YSAT + .5 * NSATSIZE), determines the accu
racy of a fired grapple beam. If that distance is less than the variable ACCURACY,
the grapple is successful and the CollectSatellite subroutine captures the satellite
and puts the next satellite onscreen. Animation loop performance is improved by
checking sight location against satellite location only when the SPACE BAR,

CHR$(32), is pressed.

180 Macintosh Game Animation

Enhancements

The techniques discussed in Chapter Sand the utilities in Appendix A can create
more complex figures and backgrounds than those drawn with BASIC subroutines.

The difficulty of this demonstration can be changed with these variables:

ACCURACY

NSATSPD

SCALE

Increase this value to allow a greater margin of error
when firing the beam.

Controls the rate at which satellites approach. Making
this smaller gives the player more time.

Decreasing SCALE increases the speed of sight move
ment.

The program will run faster if you program in the binary version of Microsoft
BASIC and compress the program using the Compressor utility found on the
master disk from Microsoft.

Restart:
'MASTER CONTROL
GOSUB Initialize
GOSUB Instructions
GOSUB GETSight
GOSUB GETSatellites
GOSUB GETPlanet
GOSUB Background .
'INITIAL XOR DISPLAY OF SIGHT AND SATELLITE
PUT (XOLD,YOLD),SIGHT
PUT (OXSAT,OYSATHOXSAT+OSATSIZE,OYSAT+OSATSIZE),SAT(O,CEL)
'

Animation loop:
PUT (85, 182),PLANET (0,ROT ATE),PSET
PUT (XOLD,YOLD),SIGHT,XOR: PUT (X,Y),SIGHT,XOR 'ERASE AND DISPLAY SIGHT
PUT (OXSAT ,OYSATHOXSAT +OSATSIZE,OYSAT +OSATSI ZE),SA TCO,OCEL),XOR
PUT (XSAT,YSATHXSAT+NSATSIZE,YSAT+NSATSIZE),SAT(O,CEL),XOR
'STORE LOCATION AND CEL VALUES FOR ERASING AND SPEED CALCULATION
XOLD=X: YOLD=Y: OXSAT=XSAT: OYSAT=YSAT: OSATSIZE=NSATSIZE: OCEL=CEL
'IF SATELLITE TOO LARGE (TOO CLOSE), IT CRASHES INTO VIEWPORT
IF NSATSIZE>58 THEN GOSUB Crash
'CHECK NUMBER OF SHOTS FIRED
LOCATE 19,35: PRINT 40-SHOT: IF SHOT=40 THEN GOSUB NextGame
'PRESS SPACE BAR TO SHOOT

Demonstration Programs 181

KEY$=1NKEYS: IF KEY$=CHR$(32) THEN GOSUB ShootGrappler
'CALCULATE NEW SIGHT SPEED
IF MOUSE(O)=O THEN GOTO NoMouse
X=MOUSE(1): Y=MOUSE(2)
XSPD=(X-XOLD)/SCALE: YSPD .. (Y-YOLD)/SCALE
NoMouse:
XaXOLD+XSPD: Y=YOLD+YSPD 'NEXT SIGHT LOCATION
'CHECK SIGHT BOUNDARIES
IF X<85 OR X>(397) THEN X=-85*(X<85)-(397)*(X>(397))
IF Y<O ORY> 161 THEN Y=-16l*(Y>161)
'RANDOMLY CHANGE SATELLITE SPEED AND DIRECTION
XSA TS PD .. XS A TSPD+4*RND(T I MER)-2
IF ABS(XSATSPD)>6 THEN XSATSPD=6*SGN(XSATSPD)
YSA TS PD= VS A TSPD+4*RNDCT I MER)-2
IF ABS(YSATSPD)>6 THEN YSATSPD=6*SGN(YSATSPD)
XSAT•XSAT+XSATSPD:YSAT=YSAT+YSATSPD
'CHECK SATELLITE BOUNDARIES
IF XSAT>85 AND XSAT<(400-NSATSIZE) THEN GOTO OkX
XSA T =-85*(XSA T <85)-(400-NSA TS I ZE)*(XSA T>(400-NSA TSI ZE))
XSATSPD=-XSATSPD
OkX:
IF YSA T>O AND YSAT <(173-NSATSI ZE) THEN GOTO OkY
YSAT =-(173-NSATSI ZE)*(YSAT>(173-NSATSI ZE))
YSATSPD=-YSATSPD
OkY:
'INCREASE SATELLITE SIZE TO MAKE IT APPEAR TO APPROACH
NSATSIZE=NSATSIZE+NSATSPD
'DISPLAY NEXT CEL IN SEQUENCE
CEL=CEL+l: IF CEL>S THEN CEL=O
ROTATE=ROTATE+ 1: IF ROTATE>2 THEN ROTATE=O
GOTO AnimationLoop

ShootGrappler:
'ATTEMPT GRAPPLE WHEN SPACE BAR PRESSED
SHOT=SHOT+l
SOUND 6000,2
'CHECK DISTANCE BETWEEN CENTERS OF SIGHT AND SATELLITE
'IF IT IS LESS THAN ACCURACY, THE GRAPPLE IS GOOD
IF ABS((XSA T + .S*NSA TS I ZEHX + 1 0))<ACCURACY AND
ABS((YSAT+.S*NSATSIZE)-(Y+ 1 O))<ACCURACY THEN GOSUB CollectSatellite

RETURN

182 Macintosh Game Animation

Co llectSate 11 i te:
'WHEN A GOOD GRAPPLE BEAM IS FIRED
'CREATE SOUND EFFECTS, ERASE SATELLITE, AND SHOW MINIATURE
FOR FREQ=6000 TO 200 STEP -100: SOUND FREQ, 1: NEXT FREQ
TOPROW=200: SHIFT=O
SCORE=SCORE+l: IF SCORE>4 THEN TOPROW=120: SHIFT .. 20
'DISPLAY MINIATURE ON SIDE PANEL
YNOTCH = TOPROW+SHIFT +SCORE*20
PUT (430+SHIFT,YNOTCH)-(440+SHIFT, 1 O+YNOTCH),SAT(O,CEL),PSET
GOSUB NewSatellite
IF SCORE=8 THEN GOSUB NextGame
RETURN

Crash:
'SATELLITE IS TOO BIG (APPEARS TOO CLOSE) AND HITS WINDSHIELD
SOUND 200,5
'DO A LEFT SIDE CRASH, THEN A RIGHT SIDE CRASH
COUNTER=O:SIDE=80:XCRACK=5
CRASH=CRASH+l: IF CRASH=2 THEN SIDE=415: XCRACK=-5
IF CRASH=3 THEN GOSUB NextGame: GOTO SkipCrash
LINE (SIDE, 182)-(SIDE+5, 182),33
WHILE: COUNTER<S00-85 'DRAW CRACK

COUNTER=COUNTER+5
ANGL "'2*3. 14*RND(1)
LINE -STEP (XCRACK,-2+5*SIN(ANGL)),30

WENQ
GOSUB NewSatellite
FOR PSE= 1 TO 1000: NEXT PSE
SkipCrash:
RETURN

Newsate 11 i te:
'ERASE SATELLITE AT OLD LOCATION, THEN DRAW A NEW SMALL ONE
PUT (XSAT,YSATHXSAT+NSATSIZE,YSAT+NSATSIZE),SAT(O,CEL),XOR 'ERASE
'NEW STARTING LOCATION IS RANDOM
XSAT =200+ 1 OO*RND(T I MER): YSA T =80+60*RND(T I MER)
OXSAT=XSAT:OYSAT=YSAT:CEL=O:OCELmCEL
'SATELLITE SPEED (NSATSPD) INCREASES WITH SCORE
NSATSIZE=2: OSATSIZE=NSATSIZE: NSATSPD=.5+SCORE*.2
'ORA W NEW SA TELL I TE
PUT (OXSAT,OYSATHOXSAT +OSATSIZE,OYSAT +OSATSIZE),SATCO,OCEU,XOR
RETURN

Next Game:
'REPORT RESULTS AND ALLOW ANOTHER GAME TO ST ART
'ERASE SATELLITE AT OLD LOCATION

Demonstration Programs 183

PUT (XSAT,YSAT)-(XSAT +NSATSIZE,YSAT +NSATSIZE),SAT(O,CEL),XOR 'ERASE
LINE (83,250)-(417,341),33,BF 'BLANK OUT TEXT BACKGROUND
LOCATE 17, 13
IF SCORE=8 THEN PRINT "Good going, Commander!": GOTO PrintScore
IF CRASH<3 THEN PRINT "You ran out of energy and had to land."
IF CRASH=3 THEN PRINT "Windshield damage forced you to land."
PrintScore:
LOCATE 18, 13: PRINT "You recovered ";SCORE;" satellites."
LOCATE 19, 13: INPUT "Would you like to play another game? (Y/N)";ANS$
IF ANS$.. "N" OR ANS$.. "n" THEN CLS: END
GOSUB lnitializeVariables
GOSUB BackGround
'INITIAL XOR DISPLAY OF SIGHT AND SATELLITE
PUT (XOLD,YOLD),SIGHT
PUT (OXSAT,OYSAT)-(OXSAT+OSATSIZE,OYSAT+OSATSIZE),SAT(O,CEL)
RETURN

Initialize:
CLS
DEFINT C,P,S
'DIMENSION PLANET AND SATELLITE FOR MULTIPLE IMAGES IN AN ARRAY
DIM SIGHT(41),PLANET(2122,2),SAT(63,5),POLY(22)
WINDOW 1,"",(0,22)-(511,341),2
GOSUB lnitializevariables
RETURN

lnitializeVariables:
X=240: Y=130: XOLD=X: YOLD=Y 'INITIAL SIGHT LOCATION
XSAT=250: YSAT=lOO: OXSAT=XSAT: OYSAT=YSAT 'INITIAL SAT LOCATION
CEL•O: OCEL•O 'CEL OF SATELLITE SEQUENCE
ROT ATE =O. 'CEL OF PLANET SEQUENCE
'NSATSPD IS RATE OF SATELLITE SIZE CHANGE, NSATSIZE IS INITIAL SIZE
'INCREASE NSATSPD TO INCREASE SATELLITE'S APPROACH SPEED
NSATSPD=.4: NSATSIZE=2: OSATSIZE=2
SHOT =O 'SHOTS TAKEN
ACCURACY=6 'INCREASE VALUE OF ACCURACY TO MAKE GAME EASIER
SCORE•O: CRASH=O 'ZERO CRASHES AND SCORE
SCALE"'8 'SIGHT SPEED, INCREASE SCALE TO DECREASE SPEED
RETURN

184 Macintosh Game Animation

GETSlght:
'DRAW SIGHT AND STORE IT. IN INTEGER ARRAY 'SIGHT'
Xl•l: Yl .. 1: X2=19: Y2=19: GOSUB Rectangle
CALL FRAMEROUNDRECT (VARPTR(CORNER(0)),5,5)
LINE (X1,Y1HX2,Y2),33: LINE (X2,Y1HX1,Y2),33 'CROSS HAIRS
LINE (5,5)-(14, 14),30,BF 'BLANK CENTER IN CROSSHAIRS
GET (O,OH 19, 19),SIGHT
CLS
RETURN

GETSate l1i tes:
'DRAW AND STORE SIX CELS IN A SEQUENCE OF ROTATING SATELLITE
FOR DCEL =O TO 5

x 1 •0: y 1 •0: X2•30: Y2•30: GOSUB Rectangle
CALL FRAMEOVALCVARPTR(CORNER(O)))
FOR STRIPE=O TO 3 'DRAW VANES ON SATELLITE

CALL PAI NT ARC(VARPTR(CORNER(O)),STRI PE*90+DCEL *30,30)
NEXT STRIPE
'STORE EACH SATELLITE IN A SEPARATE ELEMENT IN ARRAY
GET (0,0)-(30,30),SAT(O,DCEL)
CLS

NEXT DCEL
RETURN

GET Planet:
'DRAW THREE VIEWS (CELS) OF A PLANET
'EACH VIEW SHOWS A SHADED STRIP IN A DIFFERENT LOCATION
POLY(O)m46 'ARRAY USED IN FILLPOLY FUNCTION
FOR VIEW=O TO 2
LINE (0, 180)-(511, 195),33,BF 'BLACK 1-!0RIZON BACKGROUND

FOR STRIP=O TO 5 'DRAW FIVE OVERLAPPING STRIPS FOR EACH IMAGE
'LOAD POLY ARRAY TO DESCRIBE EACH STRIP ON CANYON
'SEE DAT A TO CHANGE CANYON APPEARANCE
READ POLY(1), POLY(9), POLY(8) 'READ DAT A FOR STRIP AT CANYON EDGE
POLY(2)=0: POLY(3)=341: POLY(4) .. 511 'LEFT, SCREEN BOTTOM, RIGHT
'CALCULATE OTHER VALUES AS MIRROR IMAGES, LEFT TO RIGHT SIDE
POLY(5)=POL Y(1): POLY(7)=POLY(1): POLY(13)=POLY(1): POLY(15)=POLY(1)
POLY(6)=POLY(2): POLY(22)=POLY(2): POLY(20)=POLY(2)
POLY(1 O)=POLY(8)
POLY(11)aPOLY(9)
POLY(14)=511-POLY(8): POLY(12)=POLY(14)
POLY(16)=POLY(4): POLY(18)=POLY(4)
POLY(17)=POLY(3): POLY(19)=POLY(3)

Demonstration Programs 185

STRIPSHADE=(STRIP+VIEW) MOD 3 'ALLOW 0, 1,2 VALUES
'STORE STRIP PATTERN IN SHADE DEPENDING ON VALUE OF STRIPS.HADE
SHADE•l*(STRIPSHADE=1)-0*(STRIPSHADE=0)+30686*(STRIPSHADE .. 2)
GOSUB Pattern
'DRAW ONE STRIP ACROSS CANYON
CALL Fl LL POL Y(VARPTR(POLY(O)), VARPTR(PA TTERN(O)))
'DRAW LINES CONNECTING CANYON EDGES
LINE (0, 182H250, 182),30: LINE (250, 182)-(250, 190),30
LINE (250, 190)-(511-250, 190),30
LI NE (511-250, 190)-(511-250, 182),30
LI NE (511-250, 182)-(511, 182),30
IF STRIP= 0 THEN GOTO StrlpOSklp
LI NE (POLY(8),POLY(1))-(OLDPOLY(8),0LDPOLY(1)),33
LI NE(POLY(8),POLY(9))-(0LDPOLY(8),0LDPOLY(9)),33
LINE (511-POLY(8),POLY(1))-(511-0LDPOLY(8),0LDPOLY(1)),33
LI NE(511-POLY(8),POLY(9))-(511-0LDPOLY(8),0LDPOLY(9)),33
StripOSkip:
IF STRIP<> 5 THEN GOTO Strlp5Skip
LI NE (POLY(8),POLY(1))-(135,341),33
LI NE (POLY(8),POLY(9))-(180,341),33 'LAST CANYON EDGE LINE
LINE (511-POLY(8),POLY(1))-(511-135,341),33
LINE (511-POLY(8),POLY(9))-(511-180,341),33 'LAST CANYON EDGE LINE
Strip5Skip:
OLDPOLY(1)=POLY(1): OLDPOLY(9)=POLY(9): OLDPOLY(8)•POLY(8)
'FOR SLOW•l TO 5000: NEXT SLOW 'DELETE' TO SEE STRIPS BEING DRAWN

NEXT STRIP
RESTORE
GET (85, 182)-(415,282),PLANET (0,2-VIEW)
CLS
NEXT VIEW
RETURN

'ONLY THESE DAT A NEED TO BE CHANGED TO CHANGE APPEARANCE OF PLANET
'STRIPE TOP, STRIPE BOTTOM, LEFT CANYON SIDE
DAT A I 82, 190,250
DAT A 184, 194,244
DATA 187,201,235
DATA 193,215,224
DAT A 210,240,207
DAT A 245,304, 182

Rectangle:
'DEFINES RECTANGLE USED IN ROM DRAWING ROUTINE
CORNER(O)=Y 1: CORNER(I)=X 1

186 Macintosh Game Animation

CORNER(2)=Y2: CORNER(3)=X2
RETURN

Pattern:
'DEFINES PATTERN USED IN ROM DRAWING ROUTINE
PATTERN(O)=SHADE: PATTERN(I)"'SHADE
PA TTERN(2) .. SHADE: PA TTERN(3)•SHADE
RETURN

Background:
'DRAW STARS AND SPACE SHIP CONTROL PANEL
CLS
LINE (0,0)-(511, 182),33,BF 'HORIZON
FOR STAR=! TO 100 'DRAW STARS AT RANDOM LOCATIONS

XST AR=5 I 1 *RND(I): YST AR=200*RND(I)
PSET (XST AR,YST AR),30: PSET (XST AR+ I *RND(2),YST AR+ I *RND(2)),30

NEXT STAR
'FILL SIDE PANELS BY DRAWING HORIZONTAL LINES
FOR SIDEPANEL•O TO 85

LINE (0,97+SIDEPANEL)-(SIDEPANEL,97+SIDEPANEL),30
LI NE (500, 97+SI DEPANEL)-(500-SIDEPANEL, 97+SI DEPANEL),30

NEXT SIDEPANEL
'DRAW OUTLINE OF CONTROL PANEL
LINE (500,97)-(511, 182),30,BF 'ADD THIS TO ORIGINAL VERSION
CALL PENSIZE(2,2) 'MAKE PEN WIDER AND TALLER
CALL MO VETO (0, I 00)
CALL LINETO (82, 185): CALL LINETO (82, 185): CALL LINETO (82,285)
CALL LINETO (418,285): CALL LINETO (418, 185): CALL LINETO (500, 100)
CALL MOVETO (82, 185): CALL LINETO (0,270)
CALL MOVETO (418, 185): CALL LINETO (500,270)
CALL MOVETO (82,282): CALL LINETO (72,300)
CALL MOVETO (418,282): CALL LINETO (428,300)
LOCATE 19,25: PRINT "REMAINING";
RETURN

Instructions:
CLS
LOCATE 2,20: PRINT "SATIOLL1n;: INTIORCIOPTOR"

LOCATE 4,5
PRINT "You must use your grappler beam to capture the killer satellites·
LOCATE 5,5
PRINT "orbiting the planet, Zebron. You have only enough energy to fire the"
LOCATE 6,5

Demonstration Programs 187

PRINT "grappler beam 40 times to capture the 8 satellites."
LOCATE 8,5
PRINT "Center the grappler sight on the satellite and press the space bar"
LOCATE 9,5
PRINT "to capture a satellite. Move the sight by positioning the cursor·
LOCATE 10,5
PRINT "beyond the satellite in the desired direction and press the·
LOCATE 11,5
PRINT "mouse button. The sight's speed of travel depends upon the distance"
LOCATE 12,5
PRINT "between the cursor and the sight when the button ls pressed."
LOCATE 14,5
PRINT "Satellites fly a random course as they attempt to ram y9u."
LOCATE 15,5
PRINT "Each ram cracks your viewport. Three rams force you to make"
LOCATE 16,5
PRINT ·a crash landing:
LOCATE 19,5
PRINT "Press any key to begin.''
Wate: KEY$.. INKEY$: IF KEY$.. "" THEN Wate
CLS
RETURN

Visible Engine

The Visible Engine program simulates a four-stroke gasoline engine. The piston
moves up and down, valves operate, and the spark plug fires. Gases enter the
cylinder, ignite, and exhaust in the correct sequence. Viewers can control the gas
flow and air/gas mixture ratio while watching the effect on engine operation.
Figure 11-2 shows the engine with the gas flow rate and air/gas mixture ratio
adjusted so that the engine is in danger of overheating.

Visible Engine demonstrates how simulations can teach mechanical and
continuous-flow processes. Just as games are targeted for the skill level and
interest of their players, training simulations must be targeted toward the user's
existing knowledge and the teacher's desired training goals. In this program, users
are expected to understand the basic concept of internal combustion, namely that a
mixture of air and gas is ignited by a spark. The resulting explosion forces a piston
down, which turns a crankshaft.

The simulation is designed to teach the order of events within an engine and the
effect that different combinations of gas flow and air/ gas mixtures have on engine
operation.

188 Macintosh Game Animation

,. .S rih~ Edit ~e<1n h Run Windows

FOUR-STROKE ENGINE SIMULRTION

RPM:
1331

Perf ormence Note:
OVERHEATING!

D Manual

181 Sound

Figure 11-2. Visible Engine display

Ges
Flow

Mixture
Retio

Ges

Air

Visible Engine demonstrates these programming techniques:

• Animation sequences of the piston/cam image.

• IF/THEN statements used to control responses to changes entered by the
user.

• Control of variables with the use of movable indicator bars.

• Variables set by button selection .

• Event trapping of button and mouse activity.

Operating Instructions

The engine simulation runs in two modes . It begins in a continuously running
automatic mode. In this mode, viewers can change the gas flow and air/gas mixture
by pointing the mouse cursor at the desired level within the indicator bar and

Demonstration Programs 189

pressing the mouse button. The indicator bar will then slide to a new level of gas
flow or air/gas mixture. The engine speed, RPM, adjusts to the new settings. When
the new settings are not within tolerance, a performance note flashes the problem
that may occur. Notes indicate such things as overheating, poor mileage, or
flooding.

The second mode of operation allows viewers to step through the individual
engine cycles and see what takes place in each cycle. To use this mode, select the
Manual button with the mouse cursor. Pressing the SPACE BAR advances the engine
to its next position. Labels that name the four cycles appear at appropriate loca
tions. Viewers can return to automatic mode by reselecting the Manual button and
pressing the SPACE BAR. Gas flow and air/gas mixture may be set while in manual
operation.

Spark plug and exhaust noise is generated after selecting the Sound button.
Reselect the Sound button to turn the sound off.

The Visible Engine is an animation demonstration and is not meant to accu
rately represent any specific engine.

Program Explanation

Both DIALOG and MOUSE event trapping are turned on after drawing the
background. DIALOG events and button selections change the values of the
variables MANUAL and NOISE. Selecting the Manual button changes the MAN
UAL variable. When MANUAL is TRUE, -1, the program branches to Manual
Routine. When the NOISE variable, controlled by the Sound button, is TRUE, the
SoundEffect subroutine executes.

Mouse events activate the Adjustments subroutine. Pressing the mouse button
when the cursor is within a gas or air/gas indicator bar slides the bar to the point of
the cursor. This also resets the values of YGAS and MIXEFFECT variables. These
new variable settings are then used to calculate the new RPM reading, animation
delay, and performance notes.

The LEVER image creates a sliding bar effect by depositing white on its top edge
and black on the bottom edge. When moved with PSET, the image creates the
appearance of a sliding bar.

The animation loop displays the PISTNCAM image and then branches to
either the PowerCycle or Compression Cycle subroutine depending upon whether
POWER is TRUE, -1, or FALSE, 0. The last line in the animation loop alternates
POWER between TRUE and FALSE every fourth pass through the animation loop.

Air/gas vapor, explosions, the spark, and exhaust gas each use a single image.
The display statement for each image changes its size so that the image fills the
cylinder and appears to expand or contract.

190 Macintosh Game Animation

The IF/THEN statements in the latter half of the animation loop analyze
indicator bar settings and display warning labels depending upon those settings.

Enhancements

MacPaint can draw more detailed backgrounds and engine parts. The utilities in
Appendix A will convert these drawings into images and help you test them in
animation.

The speed of the Visible Engine can be increased by decreasing image sizes.
Simulation speed can also be increased by limiting the use of PRINT and SOUND.
Programming in the binary version of Microsoft BASIC and compressing the
program with the Compressor program found on the master Microsoft disk will
also increase performance.

Simulations can generate complex reactions by storing reactions and behavior
in arrays such as the TBEHAV arrays discussed in Chapter 7. This allows IF/THEN
statements to evaluate or change behavior depending upon the information in a
specific array element.

'MASTER CONTROL
GOSUB Initialize
GOSUB Clouds
GOSUB CreateParts
GOSUB Background
ON DIALOG GOSUB ButtonActivity: DIALOG ON
ON MOUSE GOSUB Adjustments: MOUSE ON

PUT (200,48),VALVE: PUT (290,48),VALVE 'INITIAL XOR VALVES

AnimatlonLoop:
PUT (212,80),PISTNCAM(O,CYCLE),PSET
IF POWER THEN GOSUB PowerCycle
IF NOT POWER THEN GOSUB CompressionCycle
IF NOISE AND POWER THEN GOSUB SoundEffect
IF MANUAL THEN GOSUB Man(jalRoutine
LOCATE 12,7: PRINT SPACE$(20)
LOCATE 13,7: PRINT SPACE$(23)
IF YMIX>200 THEN LOCATE 12,7: PRINT "POOR MILEAGE"
IF YMIX<137 AND RPM> 1200 THEN LOCATE 12,7: PRINT "OVERHEATING!"
IF RPM>2600 THEN LOCATE 13,7: PRINT "RPM TOO HIGH"
IF RPM<600 AND YMIX>210 THEN LOCATE 13,7: PRINT "FLOODING!"
GOSUB Pause 'ERASE PERFORMANCE NOTES
'DISPLAY 4 CELS OF POWER CYCLE, THEN 4 CELS OF COMPRESSION CYCLE

CYCLE=CYCLE+I
IF CYCLE>3 THEN CYCLE=O: POWER=NOT POWER
GOTO AnimationLoop .
PowerCycle:

Demonstration Programs 191

'DISPLAY IMAGES DURING POWER CYCLE, POWER VARIABLE IS TRUE
ON CYCLE+ I GOSUB PowerO, Power!, Power2, Power3
RETURN

PowerO:
PUT (215,67)-(285,80),EXPLSN,PSET
PUT (240,67),SPARK,PSET
RETURN

Power!:
PUT (215,67)-(285, I 00),EXPLSN,PSET
PUT (238,67)-(262,87),SPARK,PSET

RETURN

Power2:
PUT (215,67)-(285, 120),BURNT,PSET
PUT (290,48), VAL VE: PUT (290,28), VAL VE,XOR
RETURN

Power3:
PUT (215,67)-(285, I 00),BURNT,PSET
PUT (290,50),EXHST
RETURN

CompressionCyc le:
'DISPLAY IMAGES DURING COMPRESSION CYCLE, POWER VARIABLE IS FALSE
ON CYCLE+ 1 GOSUB Compo, Comp I, Comp2, Comp3
RETURN

Compo:
PUT (215,67)-(285,80),BLANK,PSET
PUT (290,50),EXHST
PUT (290,28),VALVE
PUT (290,48),VALVE 'CLOSE EXVALVE
PUT (200,48), VAL VE,XOR
PUT (200,28),VALVE,XOR 'OPEN INTAKE
RETURN

192 Macintosh Game Animation

Comp I:
PUT (180,50),INTAKE,XOR
PUT (215,67)-(285, I 00),AIRGAS,PSET
RETURN

Comp2:
PUT (215,67)-(285, 120),AIRGAS,PSET
PUT (180,50),INTAKE,XOR: PUT (200,28),VALVE,XOR
PUT (200,48), VAL VE,XOR
RETURN

Comp3:
PUT (2 I 5;67)-(285, 100),COMPRESS,PSET
RETURN

ManualRoutine:
'DISPLAY HEADINGS WHEN MANUAL VARIABLE IS TRUE
IF NOT POWER THEN Skip I
IF CYCLE=O THEN LOCATE 2,27: PRINT" Power "
IF CYCLE=2 THEN LOCATE 2,29: PRINT SP8$: LOCATE 3,43: PRINT "Exhaust"
GOTO Wate

Skip I:
IF CYCLE=O THEN LOCATE 3,43: PRINT SP8$: LOCATE 3, 15: PRINT "Intake"
IF CYCLE<>2 THEN GOTO Wate
LOCATE 3, 15: PRINT SP8$: LOCATE 2,27: PRINT "Compression"
Wate:
KEY$=1NKEY$: IF KEY$.. "" THEN Wate 'WAIT FOR KEYSTROKE
RETURN

SoundEffect:
'SOUNDS MADE WHEN SOUND VARIABLE IS TRUE
IF (NOT POWER) THEN RETURN
IF CCYCLE=O OR CYCLE=l) THEN FOR l=l TO 10: SOUND 200,.4,255: NEXT I
IF CYCLE=3 THEN SOUND 230, I ,255
RETURN

ButtonActivity:
'SELECTED BY DIALOG EVENT TRAPPING
'ALTERNATE BETWEEN MANUAL OR SOUND WITH BUTTON SELECTION
BEEP: A•DI ALOG(O): BUTTONID=DI ALOG(I)
IF BUTTONID<> I THEN GOTO Button2

BUTTON 1,2+MANUAL,"Manual",(50,225)-(120,240),2

MANUAL•NOT MANUAL
' CLEAR OLD LABELS
LOCATE 2,27: PRINT SPACE$(12)
LOCATE 3,43: PRINT SPACE$(7)
LOCATE 3, 15: PRINT SPACE$(6)
LOCATE 9,7

Demonstration Programs 193

IF MANUAL THEN PRINT "Press SPACE BAR" ELSE PRINT SPACE$(20)
Button2:
IF BUTTONID<>2 THEN RETURN
BUTTON 2,2+NOISE,"Sound",(50,250H120,265),2: NOISE=NOT NOISE
RETURN

Adjustments:
'SELECTED BY MOUSE EVENT TRAPPING
'MAKE GAS/AIR RATIO OR GAS FLOW CHANGES
'POINT TO NEW POSITION ON BAR GRAPH AND PRESS MOUSE BUTTON
IF MOUSE(0)<>-1 THEN NeverM1nd 'SKIP SUBROUTINE IF NOT HELD DOWN
M:aMOUSE(O): XM=MOUSE(I) 'READ X VALUE OF MOUSE TO FIND WHICH BAR
IF XM>350 AND XM<370 THEN GOTO GasAdjust
IF XM<410 OR XM>430 THEN NeverMind
'CALCULATE NEW AIR/GAS RATIO FROM Y VALUE OF MOUSE
MIXLEVEL =MOUSE(2)
IF MIXLEVEL>107 AND MIXLEVEL<251 THEN GOTO OkMlx

MIXLEVEL =-I 07*(MIXLEVEL < 107)-251 *CMIXLEVEL>251)
OkMlx:
WHILE ABS(MIXLEVEL-YMIX)>3 'ADJUST BAR HEIGHT

VMIX-VMIX ... 2*SGN(MIXLEVEL-VMIX): PUT (411, VMIX),LEVER,PSli:T

WEND
GOTO NewSpeed
GasAdjust:
'CALCULATE NEW GAS FLOW FROM Y VALUE OF MOUSE
GASLEVEL =MOUSE(2)
IF GASLEVEL> 107 AND GASLEVEL <251 THEN GOTO OkGas

GASLEVEL .. -107*(GASLEVEL < 107)-251 *(GASLEVEL>251)
Ok Gas:
WHILE ABS(GASLEVEL-YGAS)>3 'ADJUST BAR HEIGHT

YGAS=YGAS+2*SGNCGASLEVEL-YGAS): PUT (351,YGAS),LEVER,PSET
WEND
New Speed:
'CALCULATE NEW RPM FROM COMBINATION OF GAS FLOW AND AIR/GAS RATIO
MIXEFFECT• 1-.0129*ABSCYMIX-179)
RPM•27.5*(251-YGAS>*MIXEFFECT
LOCATE 7,6: PRINT INT(RPM)

194 Macintosh Game Animation

NeverMind:
RETURN

Initialize:
'SET UP SYSTEM AND STORE INITIAL VARIABLE VALUES
DEFINT A-L,N-0,S-Z
DIM VALVEC97), SPARK(23), INTAKE(97), AIRGAS(97), EXHST(97)
DIM EXPLSN(97), COMPRESS(97), PISTNCAM(1006,3), BURNTC97)
DIM BLANK(97), LEVERC27)
WINDOW 1,.FOUR-STROKE ENGINE SIMULATION",(0,38)-(~ 11,341), 1
CVCLE=O: POWER=-1 'START AT TOP ON POWER CYCLE
VGAS= 165: VMIX .. 165: MIXEFFECT•.8194: RPM .. 1500
SPSS = SPACE$(8)
RETURN

Create Parts:
'DRAW AND STORE PARTS OF EXPLOSIONS, PISTONS, AND PARTS
CLS
LINE (3,0)-(6, 10),33,BF: LINE (0, 10)-(10,20),33,BF 'VALVE
GET (0,0)-(10,20),VALVE
CLS
LINE (10,0)-(3,3),33: LINE -STEP(5,0),33: LINE -STEP(-8,5),33
LINE (10,5)-(10, 10)
LI NE (1O,OH18,3),33: LI NE -STEP(-5,0),33: LI NE -STEP(8,5),33
GET (0,0)-(20, 10),SPARK
CLS
LINE (0,0)-(30, 12),33: LINE (0, 10)-(30, 16),33: LINE (0,20)-(30,20),33
GET (0,0)-(30,20),INT AKE
CLS
LINE (0, 12)-(30,0),33: LINE (0, 16)-(30, 10),33: LINE (0,20)-(30,20),33
GET (0,0)-(30,20),EXHST
CLS
P1=4097: P2=4097: GOSUB Clouds: GET (0,0)-(70, 15),AIRGAS
CLS
P1=4386: P2 .. 4386: GOSUB Clouds: GET (0,0)-(70, 15),COMPRESS
CLS:
P 1 .. 2000: P2=3000: GOSUB Clouds: GET (0,0)-(70, 15),EXPLSN
CLS
Pl=-1: P2=-1: GOSUB Clouds: GET (0,0)-(70,15),BURNT
CLS
GET (0,0)-(70, 15),BLANK
'CREATE ADJUSTMENT BAR FOR GAS FLOW AND GAS/AIR RATIO
LINE (0,2)-(18,4),33,BF

GET (O,O)-(18,4),LEVER
CLS
'DRAW FOUR VIEWS OF PISTON AND CAM
FOR PISTN•O TO 3

X1•2:Y1=0:X2=80:Y2=200
GOSUB Rectangle
CALL ERASERECT(VARPTR(CORNER(O)))
IF PISTN=3 THEN GOTO Plstn3

X1•2: Y1 .. 2+PISTNif20: X2=80: Y2=PISTN*20+60
GOSUB Rectangle
CALL PAINTRECTCVARPTR(CORNER(O)))
GOTO SklpP3

Plstn3:
X1•2:Y1•22:X2=80:Y2=80
GOSUB Rectangle
CALL PAINTRECT(VARPTR(CORNER(O)))

SklpP3:
XPISTNCNTR=X1+40:YPISTNCNTR=Y1+25
X1=20:Y1=160:X2•60:Y2=200
GOSUB Rectangle
CALL PAINTOVAL(VARPTR(CORNER(O)))
XCAMCNTR .. 40+ 1O*COS((-75+90*PISTN)*3.14/I80)
YCAMCNTR= 180+ 1 O*SI NCC-75+90*PISTN)*3.14/ 180)
Xl=XCAMCNTR-lO:Yl=YCAMCNTR-10
X2=XCAMCNTR+10:Y2=YCAMCNTR+10
GOSUB Rectangle
CALL I NVERTOVAL(VARPTR(CORNER(O)))

Demonstration Programs 195

LI NE (XPISTNCNTR-15, YPI STNCNTR)-(X 1-1,YCAMCNTR),33
LI NECXPI STNCNTR+ 15, YPI STNCNTR)-(X2, YCAMCNTR),33
GET (2,0H78,200),PISTNCAM(O,PISTN)

NEXT PISTN
CLS
RETURN

Cloude:
'CREATE THREE OVERLAPPING FILLED OVALS
FOR CLOUD=O TO 3

GOSUB Pattern 'PATTERNS SET IN CreateParts
Yl=O:Y2=15
X1 .. 0:X2=30
GOSUB Rectangle
CALL FI LLOVALCVARPTR(CORNER(O)), VARPTR(PA TTERN(O)))
X1=20:X2=50
GOSUB Rectangle

196 Macintosh Game Animation

CALL Fl LLOVAL(VARPTR(CORNER(O)), VARPTR(PA TTERN(O)))
X1=40:X2=70
GOSUB Rectangle
CALL Fl LLOVAL(VARPTR(CORNER(O)), VARPTR(PA TTERN(O)))

NEXT CLOUD
RETURN

Rectangle:
CORNER(O)=Y 1: CORNER(1)=X1: CORNER(2)=Y2: CORNER(3)=X2
RETURN

Pattern:
PATTERN(O)=Pl: PATTERN(1)=P2: PATTERN(2)=P1: PATTERN(3)=P2
RETURN

Background:
'DRAW CYLINDER WALLS AND HEADINGS
LINE (200,70)-(210, 170),33,BF 'LEFT CYLINDER WALL
LINE (290, 70)-(300, 170),33,BF 'RIGHT CYLINDER WALL
LINE (212,57)-(288,66),33,BF 'TOP
LINE (248,57)-(252,66),30,BF: LI NE (249,47)-(251 ,57),33,BF
LI NE (212,66)-(288,66),33 'SPARK PLUG
LI NE (350, 106)-(370,255),33,B: LI NE (410, 106)-(430,255),33,B
LINE (350,YGAS)-(370,255),33,BF: LINE (410,YMIX)-(430,255),33,BF
PUT (351 ,YGAS),LEVER,PSET: PUT (411 ,YMIX),LEVER,PSET
LOCATE 11,7: PRINT "Performance Note:":
LOCATE 6,7: PRINT "RPM:": LOCATE 7,7: PRINT "1937"
LOCATE 5,44: PRINT "Gas": LOCATE 5,51: PRINT "Mixture ..
LOCATE 6,44: PRINT "Flow": LOCATE 6,51: PRINT "Ratio"
LOCATE 8,55: PRINT "Gas": LOCATE 16,55: PRINT "Air"
BUTTON 1J1,"Manual",(50,225)-(120,240),2
BUTTON 2, 1 ,"Sound" ,(50,250)-(120,265),2
RETURN

Pause:
FOR MOMENT=! TO 50000!/(I +RPM): NEXT MOMENT
RETURN

Appendix A

Animation Toolkit

T he Animation Magic Toolkit contains four programs to aid you in pro
gramming animation and graphics on the Macintosh. In addition to helping
you create and test animated figures, patterns, and cursor designs, the four

programs contain many subroutines that you can use in your programs. These
subroutines show how to create a MacPaint-like FatBits function and save and load
both images and BASIC pictures to and from disk.

The four programs are:

Pattern Maker. This program helps you design new background or paint patterns
by clicking pixels on and off in an editing grid. The pattern array for this pattern is
calculated and displayed onscreen.

Cursor Maker. The Cursor Maker helps you design new cursor patterns. Like the
Pattern Maker, new designs are created by clicking pixels on and off in the cursor
data and mask data grids. This allows you to experiment with different modes of
presenting the same cursor shape. The cursor array data can be printed to a printer
or saved to disk as a text file. This text file can later be merged into your BASIC
programs or run by itself as a BASIC program.

197

198 Macintosh Game Animation

MacPaint to BASIC Picture Converter. This program converts Scrapbook or Clip
board drawings into BASIC pictures and saves them to disk. It's also handy for
checking the appearance of BASIC pictures stored on disk.

Animation Maker. Testing, editing, and saving animated figures and backgrounds
is quick and efficient with the Animation Maker. It creates and saves to disk
individual eels from a sequence of figures on a BASIC picture (or converted
MacPaint drawing). Its Edit Drawing function can create or edit figures.

Animation Maker copies as many as nine eels from a BASIC picture and tests
how they animate. Ce! size is selectable. The Animation Maker lets you save edited
pictures and animation eels to disk for later use in your BASIC programs.

Pattern Maker

With the Pattern Maker you can quickly design new background and paint patterns.
The Pattern Maker calculates the array values your program needs to reproduce the
pattern and prints the pattern array values onscreen.

Instructions

The Pattern Maker divides the screen into two sections, as shown in Figure A-1.
The left side contains the edit grid and the test sample. The edit grid is a magnified
view of the 8 by 8 pixel pattern. The test sample to the right of the grid shows how a
32 by 32 pixel area appears when filled with the pattern in the edit grid.

The right half of the screen contains a Recalculate Pattern button, pattern array
values, the Pattern Area, and a Quit button. Clicking on the Recalculate Pattern
button calculates and displays the new pattern's array values. The Pattern Area is
then filled with the new pattern.

To create new patterns:

• Move the mouse cursor into the edit grid, put the mouse cursor where you
want to change a pixel color, and click the mouse button. The test sample, in
mid-screen, shows how a small section of normally sized pattern will appear.

• When the test sample appears correct, click the Recalculate button. The
pattern array values will be calculated and the pattern area will fill with the
new pattern.

• If this pattern is correct, write down the array values for use in your
programs. If the pattern is not correct, move the cursor into the edit grid and
change the pattern.

,. .S file Edit)i(~dn h Run Windows

~D Pattern Maker

EDIT GRID

~
TEST
Il
Il

Figure A-1. Pattern Maker display

Program Explanation

Game Animation 199

[Recalculate Pattern I
PATTERN%(0)= 207
PATTERN%(1)= 12304
PATTERN%(2)= 15368
PATTERN%(3)= 3315

PATTERN AREA

Quit

The Pattern Maker operates from within the CheckMouse loop. This loop waits
until the mouse cursor is clicked within either the edit grid or a button.

Clicking the mouse within the edit grid branches the program to the Drawln
Grid subroutine. Pixel changes are actually made to the small test sample. The 8 by
8 pixels in the upper-left corner of the test sample are magnified to create the edit
grid.

Clicking the mouse button translates the cursor's location in the edit grid to a
location within the upper-left corner of the test sample . Four PSET statements
then plot pixels in the test sample to create a simulated 32 by 32 pixel pattern. GET
and PUT statements magnify the 8 by 8 pixel area in the upper-left of the test
sample to create the edit grid .

Pixel values within the 8 by 8 pixel area are stored in the array GRID. When the

200 Macintosh Game Animation

GRID array value corresponding to a pixel is FALSE, the pixel is painted white;
when the value is TRUE, the pixel is painted black. The NOT function reverses the
GRID array value for a GRID element; this also reverses the color for the asso
ciated pixel.

Selecting the Recalculate Pattern button executes a double FOR/NEXT loop in
the RecalculatePattern subroutine. This subroutine calculates new pattern array
values and fills the Pattern Area.

The numeric value describing two rows of pixels in the edit grid is calculated
from the TRUE and FALSE values stored in the GRID array. The PINDEX loop
steps through the array two rows at a time to calculate the four integer array values
that describe a pattern.

Chapter 3 explains how each pixel in a pattern can be represented by a power of
2. The XGRID loop calculates the value of each row by calculating the power of 2 for
a pixel location and multiplying the result by the TRUE or FALSE condition stored
in GRID. If GRID indicates that a pixel is white (FALSE), its power of 2 is multiplied
by O. If the pixel is black (TRUE), its power of 2 is multiplied by-1. The sum of the
first row and the sum of the second row are then added together. This total
represents an integer value describing two rows of the pattern. Values larger than
32767 must have 65536 subtracted before being stored in an integer array.

The FILLRECT function at the end of the subroutine fills the Pattern Area with
the pattern just calculated.

GOSUB Initialize
GOSUB Rectangle
GOSUB Background

CheckMouse:
IF MOUSE(O)= l THEN XM=MOUSE(l): YM=MOUSE(2)
IF XM>=SO AND XM<130 AND YM>=lOO AND YM<180 THEN GOSUB DrawlnGrid
IF DIALOG(O)=l THEN BUTTONID=DIALOG(l)
IF BUTTONID=l THEN GOSUB RecalculatePattern
IF BUTTONID=2 THEN GOTO EndPattern
XM=O:YM=O: BUTTONID=O
GOTO CheckMouse

DrawlnGrid:
SOUND 230,.4 'CLICK
XGRID=I NT((XM-50)/ 10): YGRID=INT((YM-100)/ 10) 'MOUSE LOCATION
GRID(XGRID,YGRID)=NOT GRIDCXGRID,YGRID) 'SWITCH TRUE/FALSE VALUE
IF GRIO(XGRID,YGRID) THEN COLOR=33 ELSE COLOR=30
PSET (XGRID+ 170,YGRID+ 100),COLOR: PSET (XGRID+ 178,YGRID+ 100),COLOR
PSET (XGRID+ 170,YGRID+ l 08),COLOR: PSET (XGRID+ 178,YGRID+ 108),COLOR

Game Animation 201

GET (170, 1OOH177, 107),SQUARE 'GET TEST AREA
PUT (SO, 1OOH130, 180),SQUARE,PSET 'MAGNIFY TEST AREA INTO EDIT GRID
RETURN

Reca lculatePattern:
BUTTON BUTTONID,2,"Recalculate Pattern",(305, 10)-(450,25), I
BEEP
YGRID=O: ROWNUM=O: ROWNUMPLUS=O
FOR PINDEX·O TO 3 '4 SETS OF 2 ROWS EQUAL FOUR PATTERN ELEMENTS
FOR XGRID=O TO 7 'STEP ACROSS EIGHT PIXELS

ROWNUM=ROWNUM-(GRID(XGRID,YGRID)=-1)*2"(I5-XGRID) 'EVEN ROWS
ROWNUMPLUS=ROWNUMPLUS-(GRID(XGRID,YGRID+ I))*2"(7-XGRID) 'ODD ROWS

NEXT XGRID
ROWSVALUE=ROWNUM+ROWNUMPLUS
IF ROWSVALUE>32767 THEN ROWSVALUE=ROWSVALUE-65536!
PATTERN(Pl NDEX)=ROWSVALUE
LOCATE 3+PINDEX,39: PRINT "PATTERN7W;PINDEX;")= ";PATTERN(PINDEX)
YGRID=YGRID+2: ROWNUM=O: ROWNUMPLUS=O 'NEXT TWO ROWS
NEXT PINDEX
CALL FI LLRECT(VARPTR(CORNER(O)), VARPTR(PA TTERN(O)))
BUTTON BUTTONID, I ,"Recalculate Pattern",(305, I 0)-(450,25), I
RETURN

EndPattern:
CLS
END

Initialize:
DEFINT C,P,S
DIM GRID(7,7), SQUARE(9) '8 BY 8 GRID
RETURN

Rectangle:
CORNER(O)= 138: CORNER(I)=305
CORNER(2)=238: CORNER(3)=405
RETURN

Background:
WINDOW I ,"Pattern Maker",(0,38)-(511,341), I
BUTTON I, 1,"Recalculate Pattern",(305, 10)-(450,28), I
BUTTON 2, 1,"Quit",(305,270)-(370,288), I
FOR PINDEX=O TO 3

LOCATE 3+PINDEX,39: PRINT "PATTERN7W;PINDEX;")= ";PATTERN(PINDEX)

202 Macintosh Game Animation

NEXT PINDEX
LI NE (49, 99)-(131, 181),33,B
LINE (304, 137)-(405,238),33,B
LOCATE 6,9: PRINT "EDIT GRID"
LOCATE 6,21: PRINT "TEST"
LOCATE 8,39: PRINT "PATTERN AREA"
RETURN

Cursor Maker

With the Cursor Maker, the tedium of calculating the array for a new cursor
disappears. You can easily generate cursors that reflect your program's functions.
You can even create 16 by 16 figures for use in animated cursors.

Instructions

The Cursor Maker works in a manner similar to the Pattern Maker. New cursors
are created by turning pixels on and off in the cursor data and mask data grids,
shown on the left side of the screen. Because you can edit both cursor data and the
mask, you can create cursors combining white, black, and XOR display modes. The
cursor array values from your design can be printed or saved to disk and later
merged with your BASIC programs. The hot spot of the cursor is the upper-left
corner (0,0). Figure A-2 shows the screen display.

To create a new cursor:

• Move the cursor in either the cursor data or mask data editing grid and click
the mouse button on locations you wish changed. An unmagnified view of
the cursor pattern or mask pattern appears to the right of each grid.

• To see the actual cursor, click the Custom Cursor button. A message will
flash as the cursor array values are calculated. When it disappears, the new
cursor replaces the old. You can move the new cursor anywhere on screen and
make selections with it.

• To use a standard cursor, click the Standard Cursor button with the upper
left corner of your custom cursor or press the SPACE BAR.

To print cursor designs:

• Be sure your printer is attached and on and then click the Print Cursor
button. All the cursor array values describing the last cursor calculated will
print.

Game Animation 203

r • Hh~ Edit
.,

S(rnn h Run Windows

~o Cursor Maker

TEST AREA
CURSOR DATA

~
3f Standard Cursor

Custom Cursor

~

MASK DATA
Print Cursor

• Saue Cursor

Quit

Figure A-2. Cursor Maker display

• To store a BASIC program containing the cursor design, click the Save
Cursor button. The text file saved is !is table as a normal BASIC program and
may be merged with other BASIC programs. You can also cut or copy
sections of the cursor program into the Clipboard and paste them into your

programs.

Chapter 8 discusses mask and cursor design in greater detail.

Program Explanation

The PollingLoop at the beginning of the program continually monitors the mouse
location when the mouse button is clicked and monitors for button selection.

Clicking the mouse in either editing grid branches the program to the EditCur
Data or EditCurMask subroutine. These subroutines change the color of the
selected pixel in the small cursor design to the right of each edit grid . This small

204 Macintosh Game Animation

design is then magnified and displayed as the large cursor data or mask data grid.
The white or black status of a pixel within either grid is recorded in the

DATAGRID and MASKGRID arrays. The color of a specific pixel in a grid is stored
in a related element of its array. These 16 by 16 arrays record white pixels as FALSE
and black pixels as TRUE.

Clicking the Custom Cursor button branches the program to CalculateCursor.
This subroutine calculates row values of the cursor design in a manner similar to
the recalculate subroutine used in Pattern Maker. However, since each row of
cursor design contains 16 pixels, the Cursor Maker evaluates a single row of pixels
at a time.

The integer values for the cursor data store in elements O to 15 of the cursor
pattern array. Values for the mask data store in elements 16 to 31. The hot spot is
set in the Initialize subroutine to (0,0). The SETCURSOR function call at the end of
the subroutine changes the cursor appearance.

GOSUB Initialize
GOSUB Background

Po 11 i ngLoop:
'CllECK WHERE MOUSE CURSOR CLICKED
IF MOUSE(O)=l THEN XM=MOUSE(1): YM=MOUSE(2)
'IF CURSOR CLICKED INSIDE EITHER BOX THEN CHANGE PIXELS
IF XM>=50 AND XM< 130 AND YM>=50 AND YM< 130 THEN GOSUB EditCurData
IF XM>=50 AND XM<130 AND YM>=180 AND YM<260 THEN GOSUB EditCurMask
'CHECK FOR BUTTON SELECTION
IF DIALOG(O)=l THEN BUTTONID=DIALOG(l)
IF BUTTONID=l THEN INITCURSOR
IF BUTTONID=2 THEN GOSUB CalculateCursor
IF BUTTONID=3 THEN GOSUB PrintArray
IF BUTTONID=4 THEN GOSUB SaveCursor
IF BUTTONID=5 THEN CLEAR: END
'SPACE BAR RETURNS TO NORMAL CURSOR
KEY$=1NKEY$: IF KEY$=CHR$(32) THEN INITCURSOR
XM=O:YM=O:BUTTONID=O
GOTO PollingLoop

EditCurData:
SOUND 230,.4
'CALCULATE GRID LOCATION OF CURSOR
XGRID=I NT((XM-50)/5): YGRID=I NT((YM-50)/5)
'SWITCH PIXEL VALUE AT THAT LOCATION
DATAGRID(XGRID,YGRID)=NOT DATAGRID(XGRID,YGRID)

Game Animation 205

IF DATAGRID(XGRID,YGRID) THEN COLOR=33 ELSE COLOR=30
PSET (XGRID+ 150,YGRID+50),COLOR 'DRAW PIXEL IN SMALL IMAGE
GET (150,50)-(165,65),SQUARE 'GET SMALL IMAGE
PUT (50,50)-(129, 129),SQUARE,PSET 'CREATE MAGNIFIED .VIEW
RETURN

EditCurMask:
'OPERATES THE SAME AS EditCursorData
SOUND 230,.4
XGRID=INT((XM-50)/5): YGRID=INT((YM-t80)/5)
MASKGRID(XGRID,YGRID)=NOT MASKGRID(XGRID,YGRID)
IF MASKGRID(XGRID,YGRID) THEN COLOR=33 ELSE COLOR=30
PSET (XGRID+ 150,YGRID+ 180),COLOR
GET (150, 180)-(165, 195),SQUARE
PUT (50, 180)-(129,259),SQUARE,PSET

RETURN

CalculateCursor:
'CALCULATE THE VALUE OF EACH ROW BY SUMMING
'THE POWER OF TWO ASSOCIATED WITH EACH PIXEL IN A ROW
BEEP
'CALCULATE CURSOR DAT A
FOR CINDEX=O TO 15 'CURSOR ARRAY INDEX FOR CURSOR DATA

LOCATE 8,28: PRINT "CALCULATING"
YGRID=CINDEX: ROWSVALUE=O
'CALCULATE VALUE IN ROW OF16 CURSOR DATA PIXELS
FOR XGRID=O TO 15

ROWSVALUE=ROWSVALUE-(DATAGRID(XGRID,YGRID)=-1)*2A(15-XGRID)
NEXT XGRID
IF ROWSVALUE>32767 THEN ROWSVALUE=ROWSVALUE-65536!
CURSOR(Cl NDEX)=ROWSV ALUE
LOCATE 8,28: PRINT SPACE$(14)

NEXT CINDEX
'CALCULATE MASK DAT A
FOR CINDEX=16 TO 31 'CURSOR ARRAY INDEX FOR MASK DATA

LOCATE 8,28: PRINT "CALCULATING"
YGRID=CINDEX-16: ROWSVALUE=O
FOR XGRID=O TO 15 'CALCULATE VALUE IN ROW MASK

ROWSVALUE=ROWSVALUE-(MASKGRID(XGRID,YGRID)=-1)*2A(15-XGRID)
NEXT XGRID
IF ROWSVALUE>32767 THEN ROWSVALUE=ROWSVALUE-65536!
CURSOR(Cl NDEX)=ROWS VALUE
LOCATE 8,28: PRINT SPACE$(14)

206 Macintosh Game Animation

NEXT CINDEX
'CHANGE TO NEW CURSOR
CALL SETCURSOR(VARPTR(CURSOR(O)))
BEEP
RETURN

PrintArray:
'PRINT CURSOR ARRAY VALUES TO PRINTER
FOR 1=0 TO 31

LPRINT "CURSOR7W;I;")= ";CURSOR(!)
NEXT I
LPRINT "CURSOR7'(32)= O"
LPRINT "CURSOR%(33)= O"
RETURN

Savecursor:
'SAVE CURSOR AS A TEXT FILE
'TEXT FILES MAY BE CUT AND PASTED OR MERGED
'INTO ANOTHER PROGRAM
BEEP
SAVEFILE$=FILES$(0,"Enter cursor name")
IF SAVEFILE$="" THEN SkipSave 'SKIP IF CANCELED
OPEN SAVEFILE$ FOR OUTPUT AS •1

PRINT •1,"DIM CURSOR%(33)"
PRINT •1,"FOR LOOP=O TO 31"
PR I NT • 1, "READ CURSOR%(LOOP)"
PR I NT • 1, "NEXT LOOP"
FOR 1=0 TO 31

PRINT •!,"DATA ";CURSOR(!)
NEXT I
PRINT •1,"CURSOR%(32)=0: CURSOR%(33)=0 'HOTSPOT"
PRINT •1,"CALL SETCURSOR(VARPTR(CURSOR%(0)))"

CLOSE •1
SkipSave:
'REDRAW SCREEN COVERED BY DIALOG BOX
LI NE (49,49)-(130, 130),33,B
LOCATE 3,7: PRINT "CURSOR DATA"
PUT (150,50)-(165,65),SQUARE,PSET 'SMALL CURSOR IMAGE
PUT (50,50)-(129, 129),SOUARE,PSET 'CURSOR GRID
RETURN

Initialize:

Game Animation 207

DEFINT C,S
DIM OAT AGRIO(15, 15), MASKGRIO(15, 15), CURSOR(33), SQUARE(17)
CURSOR(32)=0: CURSOR(33)=0 'HOTSPOT AT UPPER LEFT CORNER
RETURN

Background:
WINDOW 1 ;cursor Maker",(0,38)-(541,341),1
'BUTTONS
BUTTON 1, 1,"Standard Cursor",(200,50)-(330,68), 1
BUTTON 2, 1,"Custom Cursor",(200,80)-(330,98), 1
BUTTON 3, 1,"Print Cursor",(200, 150)-(330, 168), 1
BUTTON 4, 1,"Save Cursor" ,(200, 180)-(330, 198), 1
BUTTON 5, 1,"Quit",(200,243)-(330,261),1
'TEST AREA
LINE (400,0)-(400,341),33 'VERTICAL LINE
LI NE (400, 190)-(511,341),33,BF 'BLACK t)OTTOM
Y=196
WHILE Y> 1 00 'DRAW TEST AREA

LINE (400,Y)-(511,Y),33
Y=Y-GRAD
GRAO=GRAO+. 15

WEND
'GRID FRAMES
LI NE (49,49)-(130, 130),33,B: LI NE (49, 179)-(130,260),33,B
LOCATE 3,7: PRINT "CURSOR DATA"
LOCATE 11,7: PRINT "MASK DATA"
LOCATE 2,53: PRINT "TEST AREA"
RETURN

MacPaint-to-BASIC Picture Converter

This short program converts MacPaint drawings stored in the Clipboard or Scrap
book into BASIC pictures for use in your programs and in the Animation Maker.
You can also use it to check the appearance of BASIC pictures stored on disk.

Instructions

MacPaint drawings must be saved to a Scrapbook or the Clipboard before operating
the converter program. The Scrapbook file containing the drawings to be converted
must be named Scrapbook File. Chapter 5 explains how to keep multiple Scrapbook
files on a disk.

208 Macintosh Game Animation

MacPaint drawings cut or copied to the Clipboard or Scrapbook will not fill an
entire BASIC display screen.

To load a MacPaint drawing into the Clipboard while you are in MacPaint:

• Choose the Select Rectangle and surround the drawing area you want saved
to the Clipboard. If the drawing contains a sequence of animation figures,
select Grid from the Goodies menu before surrounding the area to be saved.

• Select Cut or Copy from the Edit menu. This stores the surrounded area in
the Clipboard.

• Exit MacPaint and start the Converter program. The Clipboard drawing will
remain intact until another item is cut or copied.

To load the Clipboard from the current Scrapbook file:

• Select Scrapbook from the Apple menu option. The Scrapbook accessed is
the file named Scrapbook File on the startup disk.

• Scroll to the Scrapbook drawing you want. Store that drawing in the Clip
board by selecting Cut or Copy from the Edit menu.

• After storing a single drawing in the Clipboard, close the Scrapbook by
selecting the Close box in its upper-left corner.

To convert a Clipboard drawing to a BASIC picture:

• Click the Clipboard Conversion button.

• The Clipboard drawing will appear onscreen. If you wish to save the picture
as a BASIC file, type Y or y and press RETURN.

• Enter the BASIC picture's file name in the edit field that appears. Click the
Save button to save the file. You can also change disks, change drives, or
cancel.

• The Clipboard drawing will again appear onscreen with the save query. You
can save the picture again by responding with Y or y, or you can exit by typing
Norn and pressing RETURN.

To view BASIC picture files that are already on disk:

• Click the Display BASIC Picture button.

• Scroll through the file names to the desired file and select it.

• The BASIC picture and its file name will appear onscreen.

To quit, select Quit and respond to the query with Y or y; then press RETURN.

Game Animation 209

Program Explanation

The conversion program is a straightforward program using the save and load
routines described in Chapters 3 and 5.

The PollingLoop monitors DIALOG(O) for button selection. Other saving and
loading functions are taken care of in subroutines.

Loading the Clipboard from the Scrapbook uses the normal Apple and Edit
functions available on the BASIC menu bar.

The ClipToPicture subroutine uses the LoadFromClip subroutine to retrieve
the current Clipboard file and store it in the string variable MACPNT$. The
MACPNT$ drawing is then displayed with the PICTURE statement. The user is
asked whether this picture should be saved to disk. If the user responds with Y ory,
the SavePicToBASIC subroutine asks for a file name and stores the MACPNT$
string on disk.

Display Picture loads a BASIC picture stored on disk and displays it. This allows
you to review the pictures. You can also review edited pictures or picture eels from
the Animation Maker program. Text files that are not a BASIC picture can be
selected, but they will not display.

'MASTER CONTROL
GOSUB Initialize
GOSUB DisplayButtons
LOCATE 1,7
PRINT "Cut or Copy rrom Scrapbook to Clipboard or select a button."
'

PollingLoop:
IF DIALOG(0)=1 THEN BUTTONID=DIALOGC 1)
IF BUTTONID=l THEN GOSUB CllpToPlcture
IF BUTTONID .. 2 THEN GOSUB DisplayPlcture
IF BUTTONID•3 THEN GOSUB Quit
BUTTONID•O
GOTO PolllngLoop
'
Cl ipToPicture:
GOSUB LoadFromCI Ip
CLS
Pl CTURE,MACPNT$
LOCATE 15,3: PRINT "Clipboard picture."
Question:
LOCATE 16,3: INPUT "Create a BASIC PICTURE me? (Y/N) ",ANS$
IF ANS$="N" OR ANS$="n" THEN Done
IF ANS$="Y" OR ANS$="y" THEN GOSUB SavePicToBaslc
GOTO Question

210 Macintosh Game Animation

Done:
CLS
'ERASE SCREEN AND PICTURE STRINGS
BASPIC$="": MACPNT$=""
LOCATE 1,7
PRINT "Cut or Copy from Scrapbook to Clipboard or select a button."
RETURN

LoadFromCl ip:
'GET PICTURE FROM CLIPBOARD
OPEN "CLIP:PICTURE" FOR INPUT AS 1

MACPNT$=1NPUT$(LOF(1),1)
CLOSE "1
'BASIC PICTURE NOW IN MACPNT$
RETURN

SavePicToBasic:
'ENTER PICTURE NAME
SAVENAME$•FILES$(0,"BASIC PICTURE name?")
PI CTURE,MACPNT$
'BYPASS IF CANCEL SELECTED
IF SAVENAME$="" THEN Done
OPEN SAVENAME$ FOR OUTPUT AS "1

PR I NT "1, MACPNT$
CLOSE "1
Done:
RETURN

DisplayPicture:
'SELECT A TEXT FILE FROM DISK
'BASIC PICTURES ARE TEXT FILES
BASPICNAME$=F I LES$(1,"TEXT")
'BYPASS IF CANCEL SELECTED
IF BASPICNAME$="" THEN Done
OPEN BASPICNAME$ FOR INPUT AS 1

BASPIC$=1NPUT$(LOF(1),1)
CLOSE "1
'TEXT FILE NOW IN BASPIC$
Done:
CLS
PICTURE, BASPIC$
RETURN

Quit:
WINDOW 2,"",(100, 100)-(320, 150),-2
LOCATE 2,2: INPUT "Do you wish to quit? (VIN) ";ANS$
IF ANS$.. "V" OR ANS$="y" THEN CLS: MENU RESET: END
WINDOW CLOSE 2
PICTURE, BASPIC$
LOCATE 14,3

Game Animation 211

IF BASPICNAME$<>"" THEN PRINT "BASIC PICTURE - ";BASPICNAME$
RETURN

Initialize:
DEFINT A-Z
WINDOW 1,"",(0,28)-(511,369),2
BASPIC$="": MACPNT$=""
RETURN

DisplayButtons:
BUTTON 1, 1,"Cllpboard Conversion",(300,225)-(450,243), 1
BUTTON 2, 1,"Dlsplay BASIC PICTURE",(300,255)-(450,273), 1
BUTTON 3, 1,"Quit",(300,285)-(450,303), 1
RETURN

Animation Maker

The Animation Maker tests, edits, saves, and loads animation images and pictures.
Sequences of figures can be created as MacPaint drawings, edited with Animation
Maker, and saved as individual animation eels. The Animation function tests the
animation of up to nine eels per sequence.

Instructions

The Animation Maker uses a single BASIC picture as the central focus of all
operations. This central picture may contain a sequence of animation figures or a
background drawing. The picture can be any BASIC picture. (MacPaint drawings
must first be changed to BASIC pictures with the conversion program.)

Individual animation eels are copied from the central picture. After copying a eel
from the picture, you designate where in the animation sequence each eel will go.
Sequences of up to nine eels can be animated and tested at different animation rates
and speeds of travel. Both the central picture and individual eels can be saved to
disk. Cels are saved as both images and BASIC pictures.

212 Macintosh Game Animation

To create the central picture, use one of the following three methods:

1. Draw a sequence of animated figures with MacPaint, as described in Chap
ter 5. Convert the MacPaint drawing to a BASIC file with the Conversion
utility.

2. Use the Edit Drawing function from the Toolkit menu on Animation Maker
to draw simple figures, such as the 16 by 16 runner shown in Chapter 5.
Figures created with this method are suitable only for Image Animation.

3. Create a BASIC picture with a BASIC program and save it to disk.

The program begins by asking for the eel size. Cels are square and are measured
in pixels. Enter the eel size and press RETURN.

A 128K Macintosh can have up to nine 48 by 48 pixel eels. (You must first
compress the Animation Maker with the Compressor program found on the
MS-BASIC master disk.) The 512K Macintosh can have very large eels without
compressing the program. Cels larger than 150 pixels wide and high are not
recommended. They will overlap the information area in the animation window.

A BASIC picture (or a converted MacPaint drawing) can now be loaded as the
central picture. To load a BASIC picture:

• Select Load Drawing from the Files menu.

• Scroll to the BASIC picture name in the files window.

• The picture you have selected will load and display. Files that are not
BASIC pictures will not display.

To edit a central picture or create figures on a blank central picture:

• Select Edit Drawing from the Toolkit menu. A 16 by 16 square cursor will
appear.

• Move the square cursor over the area to be edited and click the mouse button.

• After a short pause, a new window, shown in Figure A-3, will display a
magnified view of the 16 by 16 pixel area you selected. An unmagnified view
of the area displays to the right.

• Put the cursor point on pixels to be changed in the magnified area and click
the mouse button. The small image shows how the actual change will appear.

• When you are finished editing, click the OK button. To disregard changes and
return to the drawing, click the Cancel button.

• Simple figures can be created with the Edit Drawing function. Figures
created in this way work well in Image Animation; however, they are drawn
too slowly for use in Picture Animation.

Game Animation 213

.,

ft. OK
. '.IJ"li . [Cancel I

Figure A- 3. Animation Maker editor display

Once you have loaded a central picture, you will want to select animation eels
from it. Cels are copied from a sequence on the central picture with the use of a
square cursor. The square cursor is the same size as the animation eel you
requested when the program started. Position the cursor over the figure so the
figure appears as you want it to appear in the eel. Pressing the mouse button copies
the figure under the cursor into an individual eel. Individual eels are placed in an
animation sequence window as they are created.

To create animation eels:

• If you have positioned figures so that eel origins are at 8-pixel increments,
you should select Grid from the Toolkit menu. With Grid selected, the origin
of the eel selection cursor moves only to locations divisible by 8. The eel origin
is the upper-left corner of a eel. A checkmark indicates that Grid is on.

• Select Create Cels from the Toolkit menu.

• A square cursor appears that is the size of the animation eel you specified on
startup. Move the mouse to position this cursor over a desired figure.

• When you've positioned the cursor around the figure so the figure appears
the same way you want it to appear in the eel, click the mouse button.

• The sequence window that appears shows the eel you have selected and the
nine eels in the sequence. This sequence window is shown in the lower
portion of Figure A-4. Move the cursor inside the eel in the sequence you
want replaced and click the mouse button. Array element numbers print

214 Macintosh Game Animation

r • nnimnh~ luulki1 rnw~ finistrnd

·~·
.-~.

Click mouse in di re ct ion end speed
of desired motion.
Cel= 1 Deley= O
XSPD= 0 VSPD: 0

Faster
Slower
Done

~~~~ DOD 
Figure A-4. Animation Maker animation display 

onscreen to show the eel being transferred. When transfer is complete, the 
new eel appears in the sequence. 

• You can replace more than one eel with the new eel. 

• Click the Another button to select and add another eel to the sequence. 

• Click the Done button to return to the central picture and main menu. 

When selecting eels at the edge of the drawing, the cursor may beep and not copy 
the eel. If this occurs, move away from the picture edge and approach it slowly. Click 
the mouse button again. 

To animate the sequence in the sequence window: 

• Select PSET from the Animate menu. 

• The eel sequence window will appear. Click the mouse on the first eel in the 
sequence; then click the mouse on the last eel in the sequence. The last eel 



Game Animation 215 

must follow the first. All the selected eels will be underlined with a heavy 
black bar. 

• After clicking the last eel in the sequence, the animation window will appear 
showing the animation. The number of the current eel, delay between 
animation displays, and X and Y speeds print at the bottom of the animation 
window. The windows and animation will appear similar to Figure A-4. 

• Change the direction and speed by pointing the mouse cursor where you 
want the animation to move to; then click the mouse button. The cursor's 
distance from the eel controls the rate of motion. 

• Control the rate of eel change by clicking the Faster or Slower buttons. 

• Stop animation momentarily by pointing to a Faster or Slower button and 
holding the mouse button down. 

• Remember that PSET animation leaves a trail when the speed of travel 
exceeds the border (mask) width on the figure's trailing side. You can test for 
maximum speed and desired border widths in this way. 

• Exit the animation window by clicking the Done button. 

If a eel needs pixels changed, exit the Animation function and select Edit Drawing 
from the Toolkit menu. Select the area of the central picture that needs correction 
and make changes. Resave the corrected eel back into the sequence window. 

If a figure jerks or jumps relative to others in its sequence, the figure is probably 
incorrectly positioned within the eel. To correct this, exit the Animation function 
and turn off the Grid mode. Select Create Cel from the Toolkit menu. Now select 
the same eel from the drawing but use a new origin. Move the new origin an 
amount equal to the jump or jerk, but in the opposite direction. Replace the 
incorrect eel in the sequence window with the one you have just repositioned. 

Individual eels from the sequence window and the central picture can be saved 
to disk from the Files menu. Save the central picture by selecting Save Drawing 
from the Files menu and responding with a file name. 

To save individual eels as either image or picture disk files: 

• Select Save Cels from the Files menu. The sequence window will appear. 

• Click on the eel in the sequence that you want saved to disk. 

• Type the eel's name in the edit field of the window that appears. You may want 
to use a file name that describes the size of the file and its position in the 
sequence. For example, the sixth lion in a sequence of 24 by 24 pixel eels 
might be named LION6p24. The program saves the eel as an image and as a 
picture. The program automatically adds - Image to image eel file names and 
- Picture to picture eel file names. 

• Cels can be recalled from disk with Load Drawing or Load Image Cels from 
the Files menu. 



216 Macintosh Game Animation 

To load an image eel that has been saved to disk: 

• Turn on the Grid mode if you want to locate eel origins at 8-pixel increments 
on the central picture. 

• Select Load Image Cels from the Files menu. 
• Scroll to the image file name in the file window and select it. 

• The file name window will disappear, revealing the central picture. 

• The image eel will appear as a movable XOR image on top of the central 
picture. Using the mouse cursor, move the image to its new location and click 
the mouse. This deposits the image on the picture with PSET. You can 
deposit multiple images on a central picture in this fashion. 

• The central picture can contain many images loaded from disk. The central 
picture containing these figures can be saved to disk as a BASIC picture with 
the Save Drawing function from the Files menu. 

• Images deposited in this manner can be copied into the sequence window 
using the Create Cels function previously discussed. 

Program Explanation 

The Animation Maker program contains remarks that explain subroutines and 
statements. 

Test the program with small eel sizes, approximately 8 by 8 pixels. Compress it 
with the Compressor utility available on the MS-BASIC master disk. This will give 
the program more available memory for large eels and faster operating speed. 

Some enhancements you may want to make to the Animation Maker are 

• A MacPaint to BASIC picture converter as part of the Animation Maker 
menu. This would allow you to convert Clipboard and Scrapbook drawings 
directly into a central picture. Use the Converter utility listed in this appen
dix as an example. 

• XOR and Picture Animation functions added to the Animation menu. 

'Master Control 
GOSUB Initialize 
GOSUB Startup 
STATUS=!: GRIDSTATUS=l: GOSUB MainMenu 

Loop: 
MENUNUM=MENU (0): ITEMNUM=MENU ( 1) 
IF MENUNUM<>O THEN GOSUB MenuCoord 
GOTO Loop 



Game Animation 217 

Initialize: 
DEFINT A-V,X-Z 'W REMAINS SINGLE PRECISION FOR WATE VARIABLE 
DIM IMAGE( 1, 1),IMAGECURSOR(1),NEWCEL(1 ),CURSOR(33) 
DIM EDITSQUARE( 17),GRID( 15, 15) 
STATUS=O: GRIDSTATUS=l: GOSUB MainMenu 
'MAKE SQUARE EDIT CURSOR TO REPLACE ARROW CURSOR 
CURSOR(0)=-1: CURSOR( 15)=-1: CURSOR( 16) .. -1: CURSOR(31 )"'-1 
FOR C=O TO 1: FOR D=l TO 14 

CURSOR(D+C* 16 )=-3276 7 
NEXT D: NEXT C 
MAINPIC$="" 'BLANK PICTURE 
GRID=O 'TURN GRID OFF, GRID MOVES IMAGE CURSOR IN 8 PIXEL JUMPS 
RETURN 

Startup: 
WINDOW 1,"",C0,20H511,341),3 
LOCATE 6,24: PRINT "ANIMATION MAKER" 
LOCATE 8,25: PRINT "from the book," 
LOCATE 10,24: PRINT "ANIMATION MAGIC" 
LOCATE 12,25: PRINT "by Ron Person, .. 
LOCATE 13, 18: PRINT "published by Osborne, McGraw-Hill" 
'ASK USER FOR SIZE OF CEL TO BE USED 
LOCATE 18, 16: INPUT "Enter the pixel width of your square eel: ",CELSIZE 
IF CELSIZE=O THEN BEEP: GOTO Startup 'ZERO CELSIZE DOES NOT WORK 
WINDOW 1,"" ,(0,20)-(511,341 ),3 'MAIN WINDOW 
CLS 
GOSUB ClearAll 
RETURN 

MenuCoord: 
STATUS•O: GOSUB MainMenu 
ON MENUNUM GOSUB AnimateCoord,ToolkitCoord,FilesCoord,CompleteCoord 
STATUS= 1: GOSUB MainMenu 
RETURN 

AnimateCoord: 
ON ITEMNUM GOSUB PSET Anim 
PICTURE,MAINPIC$ 
RETURN 

PSETAnim: 



218 Macintosh Game Animation 

FIRSTCEL=99: LASTCEL=99 'MAKE FIRST AND LAST CEL VALUES INCORRECT 
GOSUB ShowSequence 
LOCATE 3, 15: PRINT "Click on first eel." 
AnmMouseLoop: IF MOUSE(O)<> 1 THEN AnmMouseLoop 

XM .. MOUSE( 1 ): YM~OUSE(2) 
IF XM>5 AND XM<486 AND YM>60 AND YM<109 THEN GOTO PickCel 
)(MaO: VMaQ 
GOTO AnmMouseLoop 
PiekCel: 
SOUND 232,.4 'CLICK 
CELNUM=INT((XM-6)/54) 'CALCULATE WHICH CEL CURSOR IS IN 

IF FIRSTCEL<99 THEN GOTO OkFirstCel. 
FIRSTCEL =CELNUM 
LINE (5+CELNUM*54, 111 )-(55+CELNUM*54,309),33,BF 
LOCATE 3, 15: PRINT "Click on last eel." 
GOTO AnmMouseLoop 

OkFirstCel: 
LASTCEL •CELNUM 
IF LASTCEL>=FIRSTCEL THEN GOTO OkLastCel 

FIRSTCEL=99:LASTCEL=99 
SOUND 232,1 
GOTO PSET Anlm 

OkLastCel: 
LINE (5+FIRSTCEL*54, 111 )-(55+LASTCEL*54,309),33,BF 'MARK CELS 
LOCATE 3, 15: PRINT SPACE$(20) 
ANMX=O:ANMY=lO 
WINDOW 3,"",(ANMX+100,ANMY+20)-(ANMX+460,ANMY+230),2 
ANMCEL=FIRSTCEL 'STARTING CEL IN SEQUENCE 
X=5:Y=5:XOLD=X:YOLD=Y:SCALE=40:XSPD=O:YSPD•O 
LOCATE 10,5: PRINT "Cilek mouse in direction and speed· 
LOCATE 11,5: PRINT "of desired motion." 
LOCATE 12,5: PRINT "Cel= ";:LOCATE 12, 18: PRINT "Delaya";WATE 
LOCATE 13,5: PRINT "XSPD= o·;: LOCATE 13, 18: PRINT "YSPD= o·; 
BUTTON 1, l,"Faster",(290, 150)-(360, 165), 1 
BUTTON 2, 1,"Slower" ,(290, 170)-(360, 185), 1 
BUTTON 3, 1,"Done" ,(290, 190)-(360,205), 1 
RTBORDER=360-CELSIZE:BOTTOM=140-CELSIZE 
WATE•O: EXITANM .. O 
Animat ionLoop: 

PUT (X,Y),IMAGE(O,ANMCEL),PSET 
LOCATE 12, 10: PRINT ANMCEL; 
ANMCEL=ANMCEL+l: IF ANMCEL>LASTCEL THEN ANMCEL=FIRSTCEL 
XOLD=X:YOLD=Y 



IF MOUSE(0) .. 0 THEN GOTO NoMouse 
X=MOUSE( 1 ): Y=MOUSE(2) 
XSPD=(X-XOLD)/SCALE: YSPD=(Y-YOLD )/SCALE 
LOCATE 13, 10: PRINT XSPD 
LOCATE 13,23: PRINT YSPD 

NoMouse: 
IF DIALOG(O)=l THEN GOSUB AnmButtons 
IF EXITANM THEN AnmDone 
X=XOLD+XSPD:Y=YOLD+YSPD 

Game Animation 219 

IF X<S OR X>RTBORDER THEN X=-5*(X<5HRTBORDER)*(X>RTBORDER) 
IF Y<S OR Y>BOTTOM THEN Y=-5*(V<5)-BOTTOM*(Y>BOTTOM) 
FOR WATETIME=l TO WATE: NEXT WATETIME 'SINGLE PRECISION VARIABLE 

GOTO AnimatlonLoop 
AnmDone: 
WINDOW CLOSE 3: WINDOW CLOSE 2 
RETURN 

AnmButtons: 
BUTTONID=DIALOG( 1) 
IF BUTTONID•l THEN WATE•WATE-50: IF WATE<O THEN WATE•O 
IF BUTTONID=2 THEN WATE=WATE+SO 
LOCATE 12,23: PRINT WATE 
IF BUTTONID•3 THEN EXITANM=-1 
RETURN 

ToolkitCoord: 
ON ITEMNUM GOSUB Grld,CreateCels,EdltDrawlng 
RETURN 

Grid: 
'MOVES CEL CREATION AND LOADED IMAGE CURSOR IN 8 PIXEL INCREMENTS 
'MAKES POSITIONING OF CELS MUCH EASIER AND MORE CONSISTENT 
GRID=NOT GRID 'REVERSE TRUE/FALSE 
'CHANGE MENU APPEARANCE 
IF GRID THEN GRIDSTATUS•2 ELSE GRIDSTATUS•l 
MENU 2, 1,GRIDST ATUS, "Grid. 
RETURN 

CreateCels: 
'HIDE CURSOR AND REPLACE IT WITH A SQUARE TO CUT CEL OUT OF PICTURE 
OXM•O:OYM•O 
LFTSIDE•O: RTSIDE·S 11-CELSIZE: TOP•O: BOTTOM-321-CELSIZE 'BOUNDARIES 
CALL HIDECURSOR 



220 Macintosh Game Animation 

PUT (OXM,OYM),IMAGECURSOR,XOR 'INITIAL XOR IMAGE 
MoveCreateCurso~ 

XM=MOUSE( 1 ): YM=MOUSE(2) 
IF GRID THEN XM=8*1NT(XM/8): YM=8*1NT(YM/8) 
IF XM<LFTSIDE OR XM>RTSIDE THEN XM=-RTSIDE*(XM>RTSIDE) 
IF YM<TOP OR YM>BOTTOM THEN YM=-BOTTOM*(YM>BOTTOM) 
PUT (OXM,OYM),IMAGECURSOR,XOR: PUT (XM,YM),IMAGECURSOR,XOR 
OXM=XM:OYM=YM 
MOUSEBUTTON=MOUSE(O): IF MOUSEBUTTON=l THEN DoneCreateCursor 

GOTO MoveCreateCursor 
DoneCreateCursor: 
PUT (OXM,OYM),IMAGECURSOR,XOR 'ERASE 
CALL SHOWCURSOR 
'GET CEL FROM PICTURE AND DISPLAY IT IN ANIM. SEQUENCE 
GET (OXM,OYM)-(OXM+CELSIZE-1,0YM+CELSIZE-1 ),NEWCEL 'GET NEWCEL 
GOSUB ShowSequence 
BUTTON 1, 1,"Another",(400, 15)-(480,30), 1 
BUTTON 2, 1,"Done",(400,35)-(480,50), 1 
LOCATE 2,8: PRINT "New Click on" 
LOCATE 3,8: PRINT "eel receiving eel." 
'WAIT FOR A CLICK ON BUTTON OR IN SEQUENCE 
CreateMouseLoop: 

BUTTONID=O 
IF DIALOG( 0)=1 THEN BUTTON I D=D I ALOG( 1 ): GOTO DoneCreate 

IF MOUSE(O)<>l THEN CreateMouseLoop 'DO AGAIN IF NO BUTTON 
XM=MOUSE( 1 ): YM=MOUSE(2) 
IF XM>6 AND XM<486 AND YM>59 AND YM< 110 THEN GOSUB EnterNewCe I 
XM .. O:YM=O 

GOTO CreateMouseLoop 'DO AGAIN IF NEITHER BUTTON NOR CEL 
DoneCreate: 
WINDOW CLOSE 2 
PICTURE, MAINPIC$ 
IF BUTTONID= 1 THEN BUTTONID=O: GOTO CreateCels 'ANOTHER BUTTON 
RETURN 

Show Sequence: 
'OPEN WINDOW SHOWING CELS IN SEQUENCE 
WINDOW 2,"",( 10, 191)-(502,310),3 
LINE (4,4)-(55,55),33,B 'SQUARE AROUND NEWCEL 
PUT (5,5)-(54,54),NEWCEL,PSET 
FOR CEL .. 0 TO 8 

XOFF=54*CEL 
LINE (XOFF+5,59)-(XOFF+55, 110),33,B 



PUT (XOFF+6,60)-(XOFF+54, 109),IMAGE(O,CEL),PSET 
NEXT CEL 
RETURN 

EnterNewCel: 

Game Animation 221 

CELNUM=INT((XM-6)/54) 'CALCULATE WHICH CEL CURSOR IS IN 
'TRANSFER ARRAY ELEMENTS FROM NEWCEL INTO IMAGE (0,CELNUM) 
LOCATE 2,36: PRINT "Transferring. 
FOR l=O TO IMGSIZE 

LOCATE 3,38: PRINT I; 
IMAGE(l ,CELNUM)=NEWCEL( I) 

NEXT I 
'DISPLAY NEW IMAGE IN SEQUENCE 
XOFF =54*CELNUM 
PUT (XOFF+6,60)-(XOFF+54, 109),IMAGE(O,CELNUM),PSET 
LOCATE 2,36: PRINT SPACE$( 12);: LOCATE 3,38: PRINT SPACE$(4); 
RETURN 

EditDrawing: . 
'CREATE NEW CURSOR THEN ALLOW iT TO MOVE UNTIL MOUSE BUTTON PRESSED 
CALL SETCURSOR(VARPTR(CURSOR(O))) 'NEW MOUSE CURSOR ( 16 SQUARE) 
Pause: MOUSEBUTTON .. MOUSE(O): IF MOUSEBUTTON .. O THEN Pause 
'USE CURSOR POSITION TO DEFINE ORIGIN OF 16 BY 16 EDIT SQUARE 
XORIGIN=MOUSE( 1 ): YORIGIN=MOUSE(2) 
CALL INITCURSOR 'RESET TO STANDARD CURSOR 
GET (XORIGIN,YORIGIN)-(XORIGIN+ 15,YORIGIN+ 15),EDITSQUARE 'AREA TO EDIT 
'CREATE WINDOW 2 WITH A MAGNIFIED IMAGE TO GIVE ILLUSION 
'OF EDITING LARGE IMAGE 
DRWX=O: DRWY=O 
WINDOW 2,"",(DRWX+ 100,DRWY+ 1 OO)-(DRWX+350,DRWY+200),3 
BUTTON 1, 1,·oK·,c 150, 10)-(210,25), 1 
BUTTON 2, 1,·cancel" ,( 150,30)-(210,45), 1 
PUT ( 100, 1O)-(115,25),EDITSQUARE,PSET 'SMALL IMAGE BEING CORRECTED 
LINE (9,9)-(90,90),33,B 'OUTLINE AROUND MAGNIFIED IMAGE 
GOSUB LoadEditGrid 'LOAD PIXEL VALUES INTO GRID ARRAY 
PUT ( 10, 10)-(89,89),EDITSQUARE,PSET 'MAGNIFIED IMAGE 
'CHECK FOR MOUSE BUTTON PRESSED WHEN CURSOR IN LARGE IMAGE 
'WHEN PRESSED, MAKE CHANGE AT CORRESPONDING SMALL IMAGE LOCATION 
'THEN MAGNIFY CHANGE INTO LARGE IMAGE 
XM•O:YM•O 
Editor: 

MOUSEBUTTON=MOUSE(O) 
IF MOUSEBUTTON<> 1 THEN GOTO NoButton 



222 Macintosh Game Animation 

XM=MOUSE( 1 ): YM=MOUSE(2) 'GET NEW MOUSE LOCT'N 
IF XM>=lO AND XM<90 AND YM>=lO AND YM<90 THEN GOSUB EditlnGrid 
NoButton: 
IF DIALOG(O)=l THEN GOTO ButtonClicked 'STOP EDITING 

GOTO Editor 
ButtonCl icked: 
BUTTONID-DIALOG( 1) 

IF BUTTONID=l THEN GOSUB UpdatePicture: GOTO DoneEdit 'OK BUTTON 
IF BUTTONID"'2 THEN DoneEdit 'CANCEL BUTTON 
DoneEdit: 
WINDOW CLOSE 2 
PICTURE,MAINPIC$ 'REDRAW PICTURE 
RETURN 

LoadEditGrid: 
'LOAD PIXEL VALUES OF 16X16 EDIT IMAGE INTO GRID ARRAY 
'BLACK PIXELS (ON) ARE TRUE, -1 
CALL HIDECURSOR 
LOCATE 5,20: PRINT "Standby" 
FOR l=O TO 15 

FOR J=O TO 15 
PIXCHECK=POINTC 100+1, 1 O+J) 'CHECK PIXELS IN SMALL IMAGE 
IF PIXCHECK=33 THEN GRlD(l,J)=-1 ELSE GRID(l,J)=O 

NEXT J 
NEXT I 
LOCATE 5,20: PRINT SPACE$(10) 
CALL SHOWCURSOR 
RETURN 

EditlnGrid: 
'CHANGE DOTS IN 16X16 IMAGE THEN MAGNIFY IT TO CREATE LARGE EDIT AREA 
'PIXEL VALUES INITIALLY STORED IN GRID ARRAY BY LoadEditGrid: 
SOUND 230,.4 'CLICK 
XGRID,,,INT((XM-10)/5): YGRID=INT((YM-10)/5) 'LOCATION IN LARGE APE.A 
GRID (XGRID,YGPID)=NOT GRID(XGRID,YGRID) 
IF GRID(XGRID,YGRID) THEN COLOR=33 ELSE COLOR=30 
PSET (XGRID+ 100,YGRID+ 10),COLOR 'PLOT CHANGED PIXEL IN SMALL GRID 
GET ( 100, 1OH115,25),EDITSQUARE 'GET NEW SMALL GRID IMAGE 
PUT ( 10, 10)-(89,89),EDITSQUARE,PSET 'BLOW UP SMALL GRID TO LARGE 
XM-O:YM•O 
RETURN 

UpdatePicture: 
'ADD SMALL GRID IMAGE TO EXISTING PICTURE 



Game Animation 223 

WINDOW CLOSE 2 'CLOSE WINDOW BEFORE REDRAWING MAIN PICTURE 
PICTURE,MAINPIC$ 'REDRAW PICTURE 
PICTURE ON 

PICTURE,MAINPIC$ 
PUT (XORIGIN,YORIGIN),EDITSQUARE,PSET 

PICTURE OFF 
MAI NPI C$=P I CTURE$ 
RETURN 

Fi lesCoord: 
ON ITEMNUM GOSUB SaveCels,SaveDraw,LoadCels,LoadDraw 
RETURN 

SaveCels: 
'IMAGE CEL FILES END WITH -Image 
'PICTURE CEL FILES END WITH -Picture 
GOSUB ShowSequence 
LOCATE 3, 15: PRINT "Click on eel In sequence to be saved." 
SaveMouseLoop: IF MOUSE(O)<> 1 THEN SaveMouseLoop 

XM=MOUSE( 1 ): YM=MOUSE(2) 
IF XM>5 AND XM<486 AND YM>60 AND YM<109 THEN GOTO SavePlckCel 
XM=O: YM=O 

GOTO SaveMouseLoop 
SavePickCel: 
CELNUM=INT((XM-6)/54) 'CALCULATE THE CEL CURSOR IS IN 
SOUND 232,.4 'CLICK 
.SAVECELNAME$=FILES$(0,"Cel name.") 
IF SAVECELNAME$="" THEN SaveCeJDone 'BYPASS If NOTHING ENTERED 
IMAGECELNAME$=SAVECELNAME$+" -Image" 
PICCELNAME$=SAVECELNAME$+"-Picture" 
OPEN IMAGECELNAME$ FOR OUTPUT AS "1 'SAVE SELECTED IMAGE 

FOR l•O TO IMGSIZE 
PRINT "1,IMAGE(l,CELNUM) 

NEXT I 
CLOSE "1 
PICTURE ON 'TURN SINGLE IMAGE INTO SINGLE PICTURE OF CEL 

PUT (0,0),IMAGE(O,CELNUM),PSET 
PICTURE OFF 
CELPIC$ .. PICTURE$ 
OPEN PICCELNAME$ FOR OUTPUT AS "1 'SAVE CEL PICTURE 

PRINT "1,CELPIC$ 
CLOSE"! 
SaveCe !Done: 
WINDOW CLOSE 2 



224 Macintosh Game Animation 

PICTURE, MAINPICS 
RETURN 

SaveDraw: 
SAVENAME$•FILES$(0,"BASIC PICTURE name.") 
PICTURE,MAINPICS 
IF SAVENAMES="" THEN DoneSaveDraw 'BYPASS WHEN CANCEL SELECTED 
OPEN SAVENAME$ FOR OUTPUT AS •1 

PRINT •1, MAINPIC$ 
CLOSE •1 
DoneSaveDraw: 
RETURN 

LoadCels: 
IMGNAME$•FILES$( 1,"TEXT") 
PICTURE,MAINPIC$ 'REDRAW SCREEN 
'ALLOW ONLY IMAGES TO LOAD 
IF RIGHT$(1MGNAME$,6)<>"-lmage" THEN DoneLoadCels 
IF IMGNAME$•"" THEN DoneLoadCels 'BYPASS WHEN CANCEL SELECTED 
OPEN IMGNAME$ FOR INPUT AS I 

FOR l•O TO IMGSIZE 
INPUT • 1,NEWCEL(I) 

NEXT I 
CLOSE •1 
'ALLOW LOADED IMAGE TO BE MOVED AROUND ON SCREEN 
'PRESS THE MOUSE BUTTON TO DEPOSIT THE IMAGE 
XM=O:YM=O:OXM=O:OYM=O 
PUT (OXM,OYM),NEWCEL,XOR 'INITIAL XOR IMAGE 
MoveLoadedCe 1: 

XM•MOUSE( 1 ): YM•MOUSE(2) 
IF GRID THEN XM .. 8*1NT(XM/8): YM=8*1NT(YM/8) 'LOCATIONS DIVIS. BY 8 
PUT (OXM,OYM),NEWCEL,XOR: PUT (XM,YM),NEWCEL,XOR 
OXM•XM: OYM=YM 
MOUSEBUTTON=MOUSE(O): IF MOUSEBUTTON=I THEN DepositCel 

GOTO MoveLoadedCel 
DeposltCel: 
PICTURE,MAINPIC$ 
PICTURE ON 'ADD NEW IMAGE TO OLD SCREEN 

Pl CTURE,MAINPIC$ 
PUT (OXM,OYM),NEWCEL,PSET 

PICTURE OFF 
MAINPIC$ .. PICTURE$ 'CREATE A NEWMAINPIC$ THAT INCLUDES LOADED IMAGE 
DoneLoadCels: 
PICTURE, MAINPIC$ 



RETURN 

LoadDraw: 
Pl CNAMES=F I LES$( 1, "TEXT") 
PICTURE,MAINPIC$ 

Game Animation 225 

IF PICNAME$•"" THEN DoneLoadDraw 'BYPASS IF NOTHING LOADED 
OPEN PICNAMES FOR INPUT AS 1 

NEWPIC$=1NPUT$(LOF( I), I) 
CLOSE •1 
MAINPIC$•NEWPIC$ 'REPLACE OLD PICT WITH NEW 
DoneLoadDraw: 
CLS 
Pl CTURE,MAINPIC$ 
RETURN 

Comp leteCoord: 
ON ITEMNUM GOSUB ClearAll,Restart,DoneProg 
RETURN 

ClearAll: 
IMGSIZE=(4+CELSIZE*2*1 NT((CELSIZE-1)+16)/ I 6)/2 
ERASE IMAGE,IMA~ECURSOR,NEWCEL,EDITSQUARE,GRID 
DIM IMAGE(IMGSIZE,9),IMAGECURSOR(IMGSIZE),NEWCEL(IMGSIZE) 
DIM EDITSOUARE( 17),GRID(IS, 15) 
MAINPIC$•"" 
PICTURE,MAINPIC$: CLS 
LINE (20,20)-(20+CELSIZE-l,20+CELSIZE-l),33,B 
GET (20,20)-(20+CELSIZE-l ,20+CELSIZE-I ),IMAGECURSOR 
CLS 
RETURN 

Restart: 
GOSUB Startup 
RETURN 

DoneProg: 
WINDOW 2,"",(I00, 100)-(350, 150),-2 
LOCATE 2,2: INPUT "Do you wish to quit? (V/N) ";ANS$ 
IF ANS$="Y-OR ANS$="y" THEN CLS: MENU RESET: END 
WINDOW CLOSE 2 
PICTURE, MAINPIC$ 
RETURN 

MainMenu: 



226 Macintosh Game Animation 

MENU 1,0,STATUS,. Animate" 
MENU 1, 1, 1,"PSET" 

MENU 2,0;STATUS,"Toolklt" 
MENU 2, 1,GRIDSTATUS,"Grld" 
MENU 2,2, 1,·create Cels" 
MENU 2,3, 1, "Edit Drawing· 

MENU 3,0,STATUS,"Flles· 
MENU 3, 1, 1,·save Cels" 
MENU 3,2, 1,"Save Drawing· 
MENU 3,3, 1,"Load Image Cels" 
MENU 3,4, 1,"Load Drawing· 

MENU 4,0,STATUS,"Finished" 
MENU 4, 1, 1,"Clear All" 
MENU 4,2, 1, "Restart" 
MENU 4,3, 1, "Quit" 

MENU 5,0, 1, •• 
RETURN 



Appendix B 

MacBASIC Animation 

T his appendix demonstrates MacBASIC programming of animated figures 
and mouse control. The program is similar to the mouse-controlled wheel 
used in Chapter 3. Two types of Picture Animation are demonstrated: 

entire-erase and XOR animation. The end of the appendix modifies an MS-BASIC 
program, Program 3-5, for XOR animation. 

MacBASIC, the Macintosh BASIC produced by Apple Computer, Inc., produces 
animation with techniques similar to those described in Chapter 3, "Picture Ani
mation." Many of the other principles in the book, such as collision detection, 
identification by location, and most special effects, can also be used in MacBASIC 
animation. 

The fundamental principles of animation for MacBASIC are the same as those 
described in Chapters 1, 2, and 3. 

The following example demonstrates a rotating wheel under mouse control. 
The initial program uses the entire-erase method of animation, where old figures 
are covered with white before the new figure is redrawn. The program modifica
tion demonstrates XOR animation. 

227 



228 Macintosh Game Animation 

Entire-Erase Picture Animation 

The animation concept and program flow are very similar to that used in Program 
3-5. The screen display is the same as Figure 4-1. 

Entire-erase animation completely erases the previously displayed figure 
before drawing the next figure in the sequence at a new location. To reduce the 
amount of time the figure is absent from the screen, the erase should immediately 
precede drawing the new figure. 

In this demonstration all wheel figures are erased by the ERASE OVAL com
mand. More complex figures may require an erasing figure that exactly matches 
each specific figure displayed. 

The animated wheel in the demonstration program rotates continually. The 
farther the cursor is from the wheel when the mouse button is pressed, the faster 
the wheel moves. 

The program contains four parts: the master control, the animation loop, eel 
drawings, and subroutines. The master control prepares the program by executing 
the Initialize and Background subroutines. Program control then passes to the 
animation loop, a DO LOOP that animates the rotating wheel. 

The statement 

SET OUTPUT TOSCREEN 

displays a full screen output window. The Background subroutine at the end of the 
program draws and prints a background similar to the one shown in Figure 4-1. 

The animation loop animates the wheel continually until you stop the pro
gram. Animation begins by storing the first wheel's location in XDISPLAY and 
YDISPLAY. The number of the eel drawn is specified in NEWCEL. 

The drawing statements in WheelDraw use their own unique variables to 
specify locations and the eel drawn. This allows the use of the same drawing 
statements by different wheels in the same animation loop. 

In the subroutine WheelDraw, the statement ERASE OVAL erases the previous 
wheel at the previous location, XOLD, YOLO. This erases both the previous wheel 
and any background it covered. SELECT DISPLAYCEL then transfers control to 
the CASE specified in the variable DISPLAYCEL. If DISPLAYCEL contains 5, the 
drawing statements following CASE 5 execute. 

On returning to AnimationLoop, XOLD and YOLO store the location of the 
displayed wheel for later use when erasing. If the mouse button is pressed, the 
following lines calculate XSPD and YSPD from the distance between the cursor 
and the wheel location. Adding XSPD and YSPD to the current wheel location 



MacBASIC Animation 229 

produces the next location. This new location is then checked against the bounda
ries of the black and white box. Locations outside the box are reset within it. 

With a new location and the next figure calculated, the loop returns to its first 
line, where the animation cycle begins again. 

MASTER CONTROL 
GOSUB Initialize: 
GOSUB Background: 
! 

SET PENMODE I 0 !USED TO SET XOR DRAWi NG 
XDISPLAY .. X9LD:YDISPLAY=YOLD:DISPLAYCEL=OLDCEL 
GOSUB WheeJDraw: !INITIAL 

! 
AnimatlonLoop: 
DO 

! XDISPLAY=XOLD:YDISPLAY=YOLD:DISPLAYCEL=OLDCEL 
I GOSUB Whee JDraw: !ERASE 
XDISPLAY=X: YDISPLAY=Y: DISPLAYCEL=NEWCEL: GOSUB WheeJDraw: 
XOLD .. X: YOLD=Y !STORE OLD VALUES 
IF MOUSEB= I THEN 

XSPD•INT((MOUSEH-XOLD)/SPDFACTOR) !CALCULATE NEW SPEEDS 

YSPD .. INT((MOUSEV-YOLD)/SPDFACTOR) 

ERASE RECT COL,250;COL+300,270 !ERASE OLD VALUES DISPLAY 

SET PENPOS COL,270 

GPRINT "XSPD= ";XSPD;" YSPD= ";YSPD; 
ENDIF 
!ADD SPEED TO CURRENT LOCAITON 
X .. XOLD+XSPD 
Y•YOLD+YSPD 
!CHECK BOUNDARIES 
IF X<90 THEN X=90 ELSE IF X>406-WIDTH THEN X=406-WIDTH 
IF Y<70 THEN Y=70 ELSE IF Y>240-HEIGHT THEN y .. 240-HEIGHT 
!CALCULATE SEQUENCE BY DIRECTION !GOTO NEXT CEL IN 

SEQUENCE 
IF XSPD<O THEN SEQ=6 ELSE SEQ=O ! 
CEL=CEL +I: IF CEL>S THEN CEL=O 
I OLDCEL =NEWCEL !OLDCEL NEEDED BY XOR ERASE 



230 Macintosh Game Animation 

NEWCEL=CEL+SEQ !CEL TO BE DISPLAYED 
FOR I= I TO 200: NEXT I !DELAY TO DI SPLAY AND SLOW SPEED 

LOOP 
GOTO AnimationLoop: 
! 

WheelDraw: 
!ERASE OVAL ERASES PEN'10DE 8, DEFAULT, WHEELS. NOT FOR XOR ERASE 
ERASE OVAL XOLD,YOLD;XOLD+ 18,YOLD+ 18 ! DELETE FOR XOR ANIMATION 
SELECT DISPLAYCEL 

CASEO 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 

PLOT XDISPLAY,YDISPLAY+9;XDISPLAY+ 16,YDISPLAY+9 
CASE I 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 

PLOT XDISPLAY+2,YDISPLAY+S;XDISPLAY+ 15,YDISPLAY+ 14 
CASE2 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 

PLOT XDISPLAY+4,YOISPLAY+2;XDISPLAY+ 12,YDISPLAY+ 14 
CASE 3 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 

PLOT XDISPLAY+8,YDISPLAY+ I ;XDiSPLAY+ I O,YDISPLAY+ 17 
CASE4 

FRAME OVAL XDISPLAY,YDISPLAY;XOISPLAY+ 18,YOISPLAY+ 18 

PLOT XDISPLAY+ I I ,YDISPLAY;XDISPLAY+6,YDISPLAY+ 16 
CASES 

FRAME OVAL XDISPLAY,YOISPLAY;XDISPLAY+l8,YDISPLAY+ 18 

PLOT XOISPLAY+ 14,YDISPLAY+S;XDISPLAY+ 3,YDISPLAY+ 14 
CASE6 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 



RETURN 
I 

MacBASIC Animation 231 

PLOT XDISPLAY+ 14,YDISPLAY+S;XDISPLAY+ 3,YDISPLAY+ 14 
CASE 7 

FRAME OVAL XDISPLAY,YDISPLAY;XDISPLAY+ 18,YDISPLAY+ 18 

PLOT XDISPLAY+ I O,YDISPLAY+ I ;XDISPLAY+6,YDISPLAV+ 16 
CASES 

FRAME OVAL XDISPLAV,VDISPLAY;XDISPLAV+ 18,VDISPLAV+ 18 

PLOT XDISPLAY+8,YDISPLAY+ I ;XDISPLAY+9,VDISPLAV+ 16 
CASE9 

FRAME OVAL XDISPLAY,VDISPLAY;XDISPLAV+ 18,YDISPLAY+ 18 

PLOT XDISPLAY+4,VDISPLAV+3;XDISPLAV+ 12,YDISPLAV+ 14 
CASE 10 

FRAME OVAL XDISPLAV,VDISPLAY;XDISPLAY+ 18,VDISPLAV+ 18 

PLOT XDISPLAY+2,VDISPLAV+S;XDISPLAV+ 16,VDISPLAV+ I J 
CASE 11 

FRAME OVAL XDISPLAV,VDISPLAV;XDISPLAY ... 18,YDISPLAV ... I 8 

PLOT XDISPLAY,YDISPLAY+9;XDISPLAY+ I 6,VDISPLAV+9 
CASE ELSE 

END PROGRAM llN CASE OF PROGRAM ERROR IN DISPLAYCEL VALUE 
END SELECT 

Initialize: 
CEL=O: SEQ=O: NEWCEL=O !FIRST CEL OF FIRST SEQUENCE 
X=2SO:XOLD=X 
V= 170: VOLD•Y 
WIDTH=l8: HEIGHT=18 !SIZE OF BALL, USED IN BOUNDARY DETECTION 
!BOUNDARY WALLS 
Xl=89: X2•407 !LEFT AND RIGHT WALLS 
YI =69: Y2=24 I !TOP AND BOTTOM 
SPDF ACTOR•40 !DECREASE FOR FASTER SPEED RESPONSE 
SET OUTPUT TOSCREEN !USE FULL SCREEN 



232 Macintosh Game Animation 

RETURN 
! 
Background: 
COL=90: FIRST=20 !POSITION FIRST LINE OF TEXT 
SET PENPOS COL,FIRST 
GPRINT "MOVE CURSOR WHERE YOU WANT WHEEL TO GO." 
SET PENPOS COL,FIRST + 16 
GPRINT "DISTANCE AWAY DETERMINES WHEEL SPEED." 
SET PENPOS COL,FIRST+32 
GPRINT "PRESS MOUSE BUTTON TO CHANGE SPEED: 
SET PENPOS COL,270: GPRINT "XSPD .. O YSPD•O" 
FRAME RECT XI ,YI ;X2,Y2 !BOUNDARY BOX 
PAINT RECT 250,Y I ;X2,Y2 !BLACK HALF OF BOX 

RETURN 

If you are familiar with MS-BASIC, the following differences exist in the 
program: 

• The multiple statement form of IF/THEN/ENDIF is used. 

• Each eel within the sequence is uniquely drawn under a CASE statement. 
MacBASIC does not store pictures within a string variable or multidimen
sional variable. 

• The SELECT and CASE statements access each unique drawing. 

XOR Picture Animation 

XOR Picture Animation is useful with both MS-BASIC and MacBASIC. XOR 
animation has the advantage of restoring backgrounds that figures cross. Because 
XOR animation requires two complete drawings of the figure for every move, the 
animation speed may be almost twice as slow as entire-erase animation. 

XOR animation requires a different pen mode. In the default pen mode, mode 8, 
a drawing's pixels completely replace existing screen pixels. The XOR pen mode, 
mode 10, is different. In XOR mode, black pixels common to both the screen and 
the drawing turn white. Pixels that are black on one but white on the other turn 
black. 

As a result, XOR drawings take on a pattern dependent on both the figure and 
background pixels. XOR drawings can also erase themselves and restore the 
original background. Redrawing an XOR figure over the top of the same figure 
(already displayed) erases both figures and restores the background. 

The erase-and-display process of XOR animation follows these steps for both 



MacBASIC Animation 233 

MacBASIC and MS-BASIC: 

• Draw an initial XOR figure before the animation loop begins. (Without this 
initial figure the erase-then-display cycle will not work.) 

• Erase the displayed XOR figure by drawing the same figure again in the same 
location. (Two XOR figures cancel, restoring the original background.) 

• Draw the new XOR figure in its new location. 

• Store the currently displayed figure's location and eel number. These will be 
used to erase the displayed figure. 

• Calculate the next figure location and next eel in the sequence. 

• Return to the second step and start over. 

MacBASIC XOR Animation 

The pen mode must be set to XOR before XOR animation figures are drawn. 
This can be done at the beginning of each figure's drawing routine or at the 
beginning of the program, if no other modes are needed. Use the command format, 
SET PENMODE 10. If other figures or printing require a different pen mode, the 
program must reset the pen mode before executing those statements. 

The program listing includes the XOR animation changes as remarks. You can 
modify the listing for XOR animation by deleting exclamation marks or the entire 
line, where indicated. 

Change the pen mode to XOR for the entire program after the GOSUB 
Background statement. 

After the pen mode setting and before the animation loop, the program must 
display the initial XOR figure, 

XDISPLAY=XOLD: YDISPLAY=YOLD: DISPLAYCEL=NEWCEL 
GOSUB WheelDraw !INITIAL XOR DISPLAY 

Without the initial display, the erase-then-display cycle of the animation loop 
will be backward and the figures will not erase as they move. 

Immediately following the DO statement, add the XOR drawing that erases old 
figures, 

XDISPLAY=XOLD: YDISPLAY=YOLD: DISPLAYCEL=OLDCEL 
GOSUB WheelDraw !XOR ERASE 

The previous GOSUB WheelDraw line follows the line just added. It displays the 
new eel. 

Before calculating a NEWCEL value in the animation loop, store the eel number 
of the existing display, 



234 Macintosh Game Animation 

OLDCEL=NEWCEL !STORE OLD CEL FOR XOR ERASE 

The entire-erase animation method erased a solid oval before drawing each new 
wheel. This is unnecessary with XOR animation. Delete the line 

ERASE OVAL XOLD,YOLD;XOLD+l8,YOLD+18 

at the beginning of the WheelDraw subroutine. 

MS-BASIC XOR Animation 

MS-BASIC XOR animation follows the same procedures of XOR erasing and 
drawing described earlier in this appendix. The following description and program 
modifications change Program 3-5 from entire-erase to XOR animation. 

MS-BASIC programs that store figures within a PICTURE string variable 
should have 

CALL PENMODE (10) 

after the PICTURE ON statement that starts recording picture data. Return the 
pen mode to copy mode with 

CALL PENMODE (8) 

before the PICTURE OFF statement. MS-BASIC pictures recorded in this fashion 
will not need to change the pen mode during the animation loop. Each pen mode 
change will be recorded within the PICTURE string variable. 

The MS-BASIC wheel animation, Program 3-5, can be modified for XOR 
animation by adding 

PICTURE (XOLD,YOLD),WHEELS$(0SEQ,OCEL) 'INITIAL 

before the animation loop. Replace the entire-erase PICTURE statements at the 
beginning of the animation loop with an XOR erase-then-display combination: 

PICTURE (XOLD,YOLD),WHEELS$(0SEQ,OCEL): 
PICTURE (X,Y),WHEELS$(SEQ,CEL) 'ERASE THEN DISPLAY 

The line following the PICTURE statements should store the displayed eel and 
sequence number 

OSEQ=SEQ: OCEL=CEL 'STORE FOR USE IN ERASING 

for use when erasing. XOLD and YOLO are already stored in the entire-erase 
program. 



MacBASIC Animation 235 

Create XOR wheel pictures by typing 

CALL PENMODE (10) 'XOR PEN MODE 

after the PICTURE ON statement, and 

CALL PENMODE (8) 'COPY PEN MODE 

before the PICTURE OFF statement. 
The DrawErase GOSUB and subroutine are not used and can be deleted. 



Appendix C 

MacPascal Animation 

T he MacPascal program presented here demonstrates both the entire-erase 
animation method described in Chapter 3 and a technique for removing 
the scan bar. 

Although this program demonstrates only the entire-erase method of picture 
animation, MacPascal can also animate pictures with masked-motion, described in 
Chapter 3, and with XOR animation, described in Appendix B. 

Entire-Erase Picture Animation 

This program creates a rotating wheel with entire-erase animation. It also demon
strates how the mouse can control animated motion. The screen display is similar 
to Figure 4-1, and most of the variables are the same as Program 3-5. 

The animation procedure is a loop called repeatedly from the main procedure. 
Because all of the parameters of the procedure pass by reference (note the key word 
"var" in the parameter list), the updated values are retained each time control 
passes from the procedure to the main routine and back to the procedure. 

The first two procedure calls after the "begin" in the animation loop draw the 
picture. The statement 

237 



238 Macintosh Game Animation 

DrawPicture(Erase Wheel,OldRect); 

draws a "blank" wheel over the last wheel displayed. This erases the wheel at that 
location. OldRect is a variable of type Rect that stores the location of the currently 
displayed wheel. OldRect is set equal to WhereRect near the end of the animation 
loop. This eliminates the need to redefine fully the old rectangle using a SetRect 
statement and the previous position coordinates. 

The statement 

DrawPicture (Wheels[seq,cel], WhereRect); 

draws the next wheel in the sequence at the new location. DrawPicture draws the 
wheel at the location specified by WhereRect. The 2 by 6 global array Wheels holds 
all of the wheel picture definitions. 

The wheel animates because the variable eel increments by 1 during each pass 
through the animation loop. Because of this, each picture drawn is the next picture 
in the sequence. The three lines of code following the displaying DrawPicture 
statement increment the variable eel. The sequence selected, clockwise or counter
clockwise, depends upon the direction of travel, that is, whether X is greater than 
XOld. 

The next two lines store the current wheel coordinates, X and Y, for use in 
calculating the wheel speed and location. 

Pressing the mouse button changes wheel speed and direction. The program 
statements beginning with 

if Button then 

and ending with 

end; 

control the wheel's speed of motion. These lines execute only if the Boolean 
variable Button, a predefined variable in MacPascal, is true when the 

if Button then 

statement executes. 
The operator "div" is used in the calculation of XS pd and YSpd. In Pascal there 

are both integer and real divides. In this case, the result is stored in an integer 
variable; therefore, the integer divide "div" is used, proclucing an integer result. 

Removing the Scan Bar 

The scan bar, a horizontal line that interferes with animated pictures, can be 
stopped with the use of the Pascal Synch command. Before we discuss the com-



MacPascal Animation 239 

mand, the program must be changed to make flicker and the scan bar more evident. 
The following simple changes create a solid black wheel with a white spoke. The 

definitions of the wheel stored in the Wheels array must be changed to produce a 
black wheel. To do this, change all the calls in the DrawWheels procedure from 
FrameOval to PaintOval. This draws a filled circle instead of an outline. The 
Move To and Line To statements do not change, but the PenMode must change from 
PatCopy, default mode, to PatXor, exclusive XOR. In this mode, drawing inverts the 
color of the background underneath drawn pixels. The line drawn with Move To and 
Line To reverses the black circle and draws a white line. The call to PenMode has to 
be made only once before the drawing. This is accomplished at the beginning of the 
DrawWheels procedure with the instruction PenMode(PatXor);. 

If this were the only modification made, the wheel would be black with a white 
spoke. But there would also be a small horizontal band through the wheel. This 
band is the scan bar, and it is caused by the interaction of the painting routine and 
the screen refresh cycle of the Macintosh. The scan bar usually moves through 
animated pictures. The following paragraphs explain how to remove the scan bar. 

To remove the scan bar, the program must synchronize the calls to Draw Picture 
with the screen refresh cycle. MacPascal provides the Synch command for this 
purpose. When the MacPascal program encounters the Synch command, it stops 
and waits for a signal called the vertical retrace. This occurs every 60th of a second 
when the electron beam drawing the display moves from the bottom of the screen 
to the top. 

Inserting the Synch command as the first line after "begin" in the animation 
loop procedure synchronizes drawing to the vertical retrace. The result is a station
ary scan bar that may still cross the animated figure. To remove the scan bar from 
the area of the figure, insert a small delay. Four lines that do this are 

WaitCount:=TickCount; 
Repeat 

Wait:=TickCount 
Until Wait:=TickCount; 

Insert these lines after the Synch statement at the top of the animation loop. 
WaitCount and Wait are local variables, defined in the subroutine, and are of the 
type longint. TickCount is a MacPascal function that returns a long integer of the 
number of 60ths of a second that have elapsed since the Macintosh was turned on. 
As written, there is no actual waiting. The time to execute the commands provides 
enough delay to prevent the scan bar from crossing the wheel. 

program Picture-Animation; 

uses 
quickdraw2; 



240 Macintosh Game Animation 

const 
scale = 40; ( speed control--lncrease scale to decrease speed) 
size= 16; 

type 
WheelArray = array[0 .. 1, 0 .. 5) of PlcHandle; ( 2 x 6 array for cells} 

var 
seq, eel, X, Y, XOld, VOid, XSpd, YSpd: integer; 
wheels: WheelArray; 
EraseWheel : PlcHandle; 
DrawRec, WhereRect, OldRect: rect; 

(-----------------------------------------------------------------} 
( INITIALIZE: Sets up drawing screen coordinates and initializes drawing } 
( frame. } 
(-----------------------------------------------------------------} 

procedure Initialize (var DrawRec: Rect; 
var seq, eel, X, Y, XOld, VOid : integer); 

const 
wide= 18; 
high= 18; 

var 
FrameRec, BlackRec: rect; 

begin 
hideall; 
lnitCursor; 
SetRect(DrawRec, O, 38, 511, 341 ); 
SetDrawlngRect(DrawRec); 
ShowDrawlng; 

( remove default windows} 
( display arrow cursor} 
(define drawing screen} 
( and display ) 

SetRect(BlackRec, 255, 100, 406 +wide, 250 +high); 
lnvertRect(BlackRec); (fill half of draw frame with black} 
SetRect(FrameRec, 106, I 00, 406 + wide, 250 + high); 
FrameRect(FrameRec); (drawing frame outline} 
MoveTo(95, 25); ( display text} 
DrawString('MOVE CURSOR WHERE YOU WANT WHEEL TO GO.'); 
MoveTo(95, 40); 
DrawString('DISTANCE AWAY DETERMINES WHEEL SPEED.'); 
MoveTo(95, 75); 

DrawString('PRESS MOUSE BUTTON TO CHANGE SPEED.'); 

seq:= O; ( starting wheel sequence} 



eel:= O; 
x := 256; 
y := 170; 
XOld := X; 
VOid := Y; 

( starting wheel position J 
( starting wheel location J 

end; { Initialize} 

MacPascal Animation 241 

(-----------------------------------------------------------------) 
(DRAW WHEELS: Draws six wheels and saves in multidimensional array. ) 
( Sequence O holds right spins, } 
( Sequence I holds left spins. ) 
( Also draws "blank" wheel for erasing previous wheel. ) 
(-----------------------------------------------------------------) 

procedure DrawWheels (var wheels: wheelarray; 
var EraseWheel : PicHandle); 

var 
WheelRec: rect; 
lseq, lcel : integer; 

begin 
SetRect(WheelRec, 2, 2, 18, 18); { define rectangle for wheel J 

Wheels[O, OJ:= OpenPlcture(WheelRec); (define wheel 0,0) 
FrameOval(WheelRec); (outline of wheel ) 
MoveTo(2, I 0); ( draw spoke) 
LlneTo(l 6, 10); 
ClosePicture; 

Wheels[O, 1] := OpenPicture(WheelRec); ( define wheel 0, I) 
FrameOval(WheelRec); ( outline of wheel ) 
MoveTo(4, 6); ( draw spoke J 
LineTo(l 6, 14); 
ClosePlcture; 

Wheels[O, 2] := OpenPicture(WheelRec); (define wheel 0,2) 
FrameOval(WheelRec); (outline of wheel ) 
MoveTo(6, 3); ( draw spoke) 
LineTo( 12, 16); 
ClosePicture; 



242 Macintosh Game Animation 

Wheels[O, 3] := OpenPicture(WheelRec); (define wheel 0,3} 
FrameOval(WheelRec); (outline of wheel } 
MoveTo( 1 o, 2); ( draw spoke } 
Line To( 1 o, 17); 
ClosePicture; 

Wheels[O, 4] := OpenPicture(WheelRec); (define wheel 0,4} 
FrameOval(WheelRec); (outline of wheel } 
MoveTo( 12, 2); ( draw spoke } 
LineTo(6, 16); 
ClosePicture; 

Wheels[O, 5] := OpenPicture(WheelRec); (define wheel 0,5} 
FrameOval(WheelRec); (outline of wheel } 
MoveTo( 16, 6); ( draw spoke } 
LineTo(3, 14); 
ClosePlcture; 

Wheels[ 1, 5] := OpenPlcture(WheelRec); ( define wheel 1,5} 
FrameOval(WheelRec); ( outline of wheel } 
MoveTo(2, 10); (draw spoke} 
Line To( 16, 10); 
ClosePicture; 

Wheels[ 1, 4] := OpenPicture(WheelRec); (define wheel 1,4} 
FrameOval(WheelRec); ( outline of wheel } 
MoveTo(4, 6); (draw spoke} 
Line To( 16, 14); 
ClosePicture; 

Wheels[ 1, 3] := OpenPicture(WheelRec); (define wheel 1,3} 
FrameOval(WheelRec); (outline of wheel } 
MoveTo(6, 3); ( draw spoke } 
LineTo( 12, 16); 
ClosePicture; 

Wheels[ 1, 2] := OpenPicture(WheelRec); (define wheel 1,2} 
FrameOval(WheelRec); (outline of wheel } 
Move To( 1 O, 2); ( draw spoke } 
Line To( 10, 17); 
ClosePicture; 

Wheels[ 1, 1] := OpenPicture(WheelRec); (define wheel I, 1} 



FrameOval(WheelRec); 
MoveTo( 12, 2); 
LineTo(6, 16); 
ClosePicture; 

[outline of wheel J 
( draw spoke } 

MacPascal Animation 243 

Wheels[ I, OJ:= OpenPicture(WheelRec); ( define wheel 1,0} 
FrameOval(WheelRec); [outline of wheel J 
MoveTo(16, 6); (draw spoke} 
LineTo(3, 14); 
ClosePicture; 

EraseWheel := OpenPicture(WheelRec); (define blank wheel J 
Fi110Val(Whee1Rec, white); 
ClosePicture; 

end; (draw wheels} 

(-------------------------------------------------------------~---} 
(ANIMATION LOOP: Sequences through array of pictures, erasing J 
( previous wheel and drawing new one. Speed and J 
( direction are controlled by the mouse/button. J 
(-----------------------------------------------------------------} 

procedure Animationloop (var X, V, XOld, VOid, XSpd, VSpd: integer; 
var Wheels: WheelArray; 
var EraseWheel : PicHandle; 
var OldRect, WhereRect : Rect); 

begin 
DrawPicture(EraseWheel, OldRect); ( erase previous picture J 
DrawPicture(Wheels[seq, eel], WhereRect); ( draw new picture } 
eel:= eel + 1; [ increase cell so wheel continues to roll ) 
if eel > 5 then [ wrap around J 
eel := O; 

if X > XOld then ( set sequence according to direction J 
seq:= o 

else 
seq:= 1; 

XOld := X; 
VOid := V; 
if Button then 
begin 

(save old value of X J 
[save old value of V} 

[ when button pressed:) 



244 Macintosh Game Animation 

GetMouse(X, Y); 
XSpd := (X - XOld) div Scale; 
YSpd := CY - VOid) div Scale; 

end; 

( get coordinates of cursor } 
(make speed proportional to } 
[distance from cursor to wheel } 

X := XOld + Xspd; 
Y := VOid + YSpd; 
If CX < 107) then 

[calculate new position} 

( stop at boundary } 
x := 107 

else jf ex) 407) then 
x := 407; 

if CY < 1 o I )then 
Y :=IOI 

else If CY> 251) then 
y := 251; 

OldRect := WhereRect; ( save old rectangle } 
SetRect(WhereRect, X, Y, X + Size, Y + Size); ( define new position } 

end; (animation loop} 

(-----------------------------------------------------------------) 
( MAIN PROGRAM } 
(-----------------------------------------------------------------} 

begin 
lnitiallze(DrawRec, seq, eel, X, Y, XOld, VOid); 
DrawWheels(Wheels, EraseWheel); 
SetRect(OldRect, XOld, VOid, XOld + Size, VOid + Size); 
SetRect(WhereRect, X, Y, X + Size, Y + Size); 

( init. for first ) 
( time through } 

(animation loop) 
while True = True do ( infinite loop ) 
Anlmatlonloop(X, Y, XOld, VOid, XSpd, YSpd, Wheels, EraseWheel, OldRect, WhereRect); 

end. (main) 



Appendix D 

Additional Sources 

T wo of the best books that document human and animal motion in photo
graphic frames are Muybridge's Animals in Motion, edited by LS. Brown, 
and The Human Figure in Motion, edited by LS. Brown (New York: Dover 

Publications, 1957 and 1955, respectively). 
Eadweard Muybridge made his photographic study of human and animal 

motion in the 1880s. The photos were made against a ruled black background, so 
motion paths and body angles are easy to see. The Human Figure in Motion contains 
4789 photographs showing 163 types of motion. Animals in Motion shows 123 types 
of motion in 34 different animals. 

245 



Index 

A 

Acceleration. See Gravity 
ACCURACY, accuracy of shot variable, 

179 
Animation. See also Image Animation, 

Picture Animation; Background 
animation 

in art, 173 
background, 75 
books,3,245 
in business, 173 
cursor, 117-18 
environment, 169 
MacBASIC, 227-34 
MacPascal, 237-44 
in multiple windows, 130 
picture, 2, 19 

principles of, 3, 27 
simulation, 172, 187-96 
software toolkit, xi 
testing, 214 
of titles and lettering, 113-14 
utilities, 197-226 

Animation Magic Toolkit, 211-26. See also 
Utilities 

software diskette, xi 
Animation Maker utility, 198, 211-26 

figures for use with, 55-61 
Animation rate, 45, 48, 80 
Arcade, 173 
Array dimensions, 40 
Attraction, 170 
Audience, 174 

247 



248 Macintosh Game Animation 

B .. 
Background animation. See also Overlay 

animation; Scrolling animation 
hints and tips, 91 
performance, 91 

Background design, 76 
Background identification, 96 
Background preservation. See Image 

Animation, XOR; Picture Animation, 
XOR 

Balance, 76 
BASIC, version, ix, 190 

Behavior, See Collision behavior 
Bit patterns, 20, 21 See also Patterns 
Body angle, 3-5, 8 

Boolean algebra, 34 
Borders 

for a picture, 29 

for a PSET image, 41, 43, 46 
Boundary calculation, 34 

Boundary control, 49 
BUTTON, 126 
Button, selection, 219 
Buttons, 126-127, 138 

c 
Calculated path, 144-146 
CALL BACKPAT, 21, 23 
CALL FILLARC, 25 

CALL FILLPOLY, 81-84, 184-85 
CALL FILLRECT, 200 

CALL FRAMEOVAL, 49 
CALL HIDECURSOR, 118 
CALL INITCURSOR, 119 
CALL LINE, 24 
CALL LINETO, 24, 49 
CALL MOVETO, 24, 49 
CALL PAINTOVAL, 44 
CALL PENMODE, 234 
CALL PENNORMAL, 24, 32 
CALL PENPAT, 24 

CALL PENSIZE, 24 

CALL SETCURSOR, 118 
CALL SHOWCURSOR, 118 
CALL TEXTFACE, 112 
CALL TEXTFONT, 111 
CALL TEXTMODE, 112 
CALL TEXTSIZE, 112 
Cel, 2, 33 

with Image Animation, 45 

with Picture Animation, 35 
Cel change rate, 45, 48, 80 

Cel size, 49 
CHECK, collision-checking variable, 104 
Clipboard, 207, 210 
CLONE, duplicated image array, 160 
Collision skipping, 104 
Collision behavior. See also TGTBEHAV 

by IF/THEN, 100 
by TGTBEHAV, 100-01 

Collision detection 
demonstration, 101-09, 178 

IF/THEN use of, 94 
by location, 94 
misses, 95 
multiple figures, 95 
performance slow down, 95 
by POINT, 99-100 

by Target Identification Grid, 96 
types, 93 

Complexity, 174 

Compressor utility, 75, 190, 212 
Consistency, 171 
Control 

by button, 126-27 
by event trapping, 122-23 
by mouse, 33, 35 
by moving bars, 188 
by polling events, 122, 128, 199, 

204, 209, 216 
Cursor, See also Cursor Maker utility 

animation, 117 



appearance, 116, 119 
array, 115-20 
bit values, 116 
customizing, 114-21 
hot spot, 204 

Cursor data, 114, 204 
Cursor Maker utility, 116, 197, 202-07 
Cycle, 4, 7 

D 

Data entry 
with buttons, 138 
with edit fields, 136-38 

Debugging, 11, 123 
Design. See Environment; Figures; 

Game design; Structured 
programming; Windows 

Detail, adding to figures, 70 
Dialog, 121, 125-26 

with multiple windows, 126 
DIALOG, 125-26 
Dimensioning. See Image array; 

Pictures, multiple in string array 
Direction of travel. See also Control; 

Paths of motion 
controlling sequence, 34 

Disintegration, 159 
Disk 

loading images, 52-53 
loading pictures, 38, 224 
saving images, 52-53 
saving pictures, 38, 210 
saving TEXT files, 206 

Display, 171-72 
Display priority, 51 
Drawing, line vs. pixel, 2 

E 

Edit Fields, 127, 136-38 
Edit Grid, 198-99, 213, 222 

EDIT$, 127 
Engine simulation, 187-96 
Enlarging figures, 70 

Index 249 

Entire-erase. See also Image Animation; 
Picture Animation 

MacBASIC, 228 
MacPascal, 237 

Event trapping, 122-23. See also Polling 
programming precautions, 123 

Extremes, 3, 8 

F 

FatBits, 62, 71 
FatBits utility. See Edit Grid 
Figure creation. See also Animation 

Maker utility 
adding detail, 70 
creating your own, 69-73 
enlarging, 70 
entering from book, 56 
with MacPaint, 56-63 
manipulation, 158-62 
mirrored, 70 
photographic sequences, 245 
size changes, 163-64, 178-79 

Figure sequences 
horse galloping, 60 
human long-jumping, 59 

· human running, 58 
human walking, 57 
lion running, 61 

FILES, 126 
FILES$, 126, 210, 223 
Flicker. See also Scan Bar 

reduction, 29, 37 
reduction with PSET image, 41 
reduction from Scan Bar, 239 

Font management, 111-14 
FRIBIT, image manipulation array, 160 



250 Macintosh Game Animation 

G 

Game design, 173-75 
Games, demonstration, 177-96 
GET, 39, 56 
Goals, 174 
Graphics, output to window, 124 
Gravity, 152-55 
Grid, 62, 71. See also Edit Grid 

H 

HIT, collision marker variable, 104-07 
Hot spot, 116, 204 

I 

Icon, 121 
IF/THEN 

in boundary limits, 34 
in simulation, 188 

Image. See also GET, PUT 
combining with picture, 223 
creating from picture, 64 
disk storage/retrieval, 52-53 
manipulation of shape, 158-62 
plotting order, 51 
size, 178-79 

Image Animation, 39, 44-51, 47 
PSET, 45 
rotating wheel program, 46-50 
XOR, so 

Image array 
dimensioning, 40 
element transfer, 160 
integer array, 40 
manipulating, 158, 160 
multiple images per array, 44-45, 

82 
Image Maker. See Animation Maker 

utility 
Image motion 

PSET, 40-41 
XOR, 40, 42 

In-between eels, 5, 8 
INTERCEPT, intercept on variable, 

155-56 
Intercepting figures, 155-58 
ITEM, 125 

L 

Leg speed, 72 
Lion sequence, 56 
Loading 

images from disk, 52-53, 224 
pictures from disk, 38, 224 

LOCTN, path location variable, 147, 150 

M 

MacBASIC, 227-34 
differences from MS-BASIC, 232 
Set Output ToScreen, 228 
Set Pen Mode, 232-33 

Macintosh, 128KB, ix, 77, 82, 84, 177, 
212 

Macintosh, 512KB, ix, 77, 82, 177, 212 
Macintosh environment, 121-22 
MacPaint. See also Utilities 

BASIC-to-MacPaint, 69 
converting to basic pictures, 63-64 
converting to images, 64, 67 
converting to pictures, 67, 198 
creating eels, 56-63 
enhancing titles, 113 
MacPaint-to-BASIC, 64, 207-11 
overlays, 77 
size in BASIC display, 208 

MacPascal 
animation, 237-44 
Button, 238 
DrawPicture, 238 
Select DisplayCel, 228 
Set Output ToScreen, 228 

Manually entered path, 149-52 
loading, 152 
speed, 151 



Mask data, 116, 204 
Mask limits, 29, 31. See also Borders 
Master control, 11, 12, 15 
Memory. See also Macintosh 128KB, 

512KB 
Compressor utility, 75, 190, 212 
program size, 75 

MENU, 121, 125, 129 
Menu creation, 141-42, 226 
Menu selection 

event trapping, 122-23 
polling, 129 

Metaphor, 121 
MIXEFFECT, air/gas ratio variable, 189 
MOD,84 
Motion. See also Paths of motion; Special 

effects 
exaggeration, 3 
three-dimensional, 162-65 

Motion path, 3-5, 8 
Mountain range, 90 
MOUSE, 35 
Mouse control, 33, 35 
Mouse cursor. See Cursor 
Multiple images per array, 49 
Multiple pictures per array, 49 
Muybridge, E., l, 3, 56, 245 

N 

NSATSIZE, satellite size variable, 179 

0 

ON eoentspecifier GOSUB, U2 
ON MENU GOSUB, 125 
ON TIMER GOSUB, 172 
Ordering information for disk, xi 

·Origin, 33, 56, 62, 71 
Overlay animation, 76-85, 178 

demonstration, 178 
with figures, 77 

Overlay creation, 78 
Overlay limitations, 77 

p 

Pascal. See MacPascal 
Path array loading, 148 

Index 251 

Paths of motion. See also Calculated path; 
Precalculated Path; Manually-entered 
path 

changing paths, 146-47, 151 
types, 143 

Pattern Maker utility, 197-202 
Patterns. See also Pattern Maker utility 

bit values, 21 
creating, 20, 198 
precalculated designs, 22 

Performance improvement 
background animation, 91 
background overlays, 77 
background scrolling, 86 
calculated path, 144 
collision detection, 95 
with integer variables, 108 
MacPaint vs. BASIC pictures, 77 
shifted origin 'jitters,' 33 
speed increase, 52, 190 

Perspective. See Three-dimensional 
motion 

Photographic sequences, 245 
PICTURE, 28, 56 
Picture Animation, 2 7-38 

entire-erase, 29-30 
hints and tips, 37 
initializing string arrays, 36 
masked motion, 29-30 
rotating wheel program, 34-37 
XOR, background preservation, 29, 

232-35 
Picture motion, 27, 29 
PICTURE OFF, 28, 32, 68 
PICTURE ON, 28, 32, 68 
PICTURE$, 28, 32, 69 
Pictures 

combining with images, 64, 223-24 



252 Macintosh Game Animation 

loading from disk, 38, 210 

multiple in string array, 33 
saving to disk, 38, 210 

Pixel, 2 
Playability, 171 

POINT, 99-100 

Polling, 122, 128, 199, 204, 209, 216. 

See also Event trapping 
Precalculated path, 146-49 

Priority of displaying figures, 51 

Program 
animated lion, 65-69 

Animation Maker utility, 211-26 
calculated path, 144-46 

Crossref utility, 123 

Cursor Maker utility, 202-07 

custom cursor 118-121 

detection and identification, 101-09 

drawing routines, 25-27 

Image Motion, 42-44 
Image Animation, 46-51 

image manipulation, 158-62 

intercept, 155-158 

MacBASIC animation, 227-34 
Macintosh environment, 127-42 

MacPaint-to-BASIC converter, 
207-11 

MacPascal animation, 239-44 
pattern changing, 23-24 

Pattern Maker utility, 198-202 

picture motion, 30-32 

Picture Animation, 34-37 
rotating planet, 79-85 

rotating PSET image wheel, 46-50 

rotating XOR image wheel, 50-51 
satellite interceptor, 177-87 

scrolling mountain range, 87-91 
slide show, 14-15 

starburst pictures, 28-29 
three-dimensional motion, 

162-65 

windows, buttons, and dialog, 
127-42 

visible engine, 187-96 

Program compression, 75 

PSET image borders, 41, 43 

PUT, 2, 39-40, 56 

R 

REBOUND, reflection variable, 154 
RESUME, 166 

Rewards, 170 

RND, 88 

s 
Save to disk 

image, 52-53, 223 

cursor data, 206 

picture, 38, 210 

text file, 206 

Scan bar, 238 

Score, 172 

Scrapbook files, 207 
Scrapbook library, 73-74 

SCROLL, 75, 85 

Scrolling animation, 85-91 

Scrolling motion 
continuous, 85 
effect of speed, 87 

with figures, 89 

limits, 86-7 
updating background, 89 

SEQ, 33, 35, 45 

Sequence, 7, 33 

Sequence selection, 35 
Shading in background, 76 

Simulation, 172-73 

IF/THEN logic control, 188 
visible engine program, 187-96 

Size changes, 163-64, 178-79 
Skill level, 171, 174, 187 
SKIP, path speed variable, 147, 151 

Smoothness, 5, 8 



Software diskette, xi, 197-98 

Software ordering information, xi 
SOUND, 166 

Sound control with buttons, 127, 139 

Sound effects 
grapple beam, 182 

multiple, 165-68 

Special effects 
changing images, 158-62 

disintegration, 159-62 

gravity and acceleration, 152-55 

intercepting figures, 155-58 

leaving a trail, 155 

paths of motion, 143-52 

three-dimensional, 162-65 

towing, 158 

Speed 
with integer variables, 108 

of intercept, 157 

leg and arm, 72 

MacPaint vs. BASIC pictures, 77-78 

Speed control. See also Animation rate 
with buttons, 127 

with cursor, 33-35 

Speed improvement, 37-38. See also 
Performance 

STAR, star drawing subroutine, 186 

Story line, 174 

Storyboard, 7, 71 
Straight-line programming, 11 
Strategy, 173 

Structured programming, 11, 12 

Subroutine, 11, 17 

T 

Target behavior, loading, 106 

Target identification. See also TGT, 
TGTIDENT 

entering identifiers, 98 

grid onscreen, 107 

increasing accuracy, 98-99 

Index 253 

loading, 105 

Target Identification Grid, 93, 

96-99 

TBEHAV, behavior array, 190 

Tempo, 7-8 

Testing, 17-18 

Text faces, 113 

Text files, 206 

Text fonts, 112 

TGT, target identifier variable, 97, 

100-01 

TGTBEHAV, target behavior array, 
100-01 

TGTIDENT, target identification array, 
97, 104 

Three-dimensional motion, 162-65 

TIMER, 88 

Titles, 111-14 

animated, 114 

enhanced with MacPaint, 113 

Towing figures, 158 

Trail behind a figure, 155 

u 
Utilities, 197-226 

v 

Animation Maker, 211-26 

Compressor, 75, 190, 212 

Cross ref, 123 

Cursor Maker, 202-07 

Diskette ordering information, xi 
MacPaint-to-BASIC converter, 

207-11 

Pattern Maker, 198-202 

Variation, 170 

VARPTR, 21, 114 

Vertical retrace, 239 

w 
WAIT, 166 

WAVE, 166 



254 Macintosh Game Animation 

WINDOW, 124 

WINDOW OUTPUT, 124 
Windows 

closing, 127, 135 

controlling active window, 131-33 
graphics output to, 124, 130 

y 

refreshing, 134-35 

too small, 135 
tracking display order, 133 

YGRAV, gravity variable, 154 



MacintosliM Game Animation 

Put your Macintosh™ in motion for home entertainment. classroom projects, graphic 
arts. and more! 
Macintosh™ Game Animation enables you to take full advantage of the animation and 
graphics capabilities of your Macintosh computer. 
Learn how to: 

-create original animated figures 
-invent special effects 
-devise intricate backgrounds 
-develop game designs 

while you build your programming skills in Microsoft'" BASIC. Macintosh™ Pascal. and 
Macintosh™ BASIC. .. 
Macintosh™ Game Animation is filled with imaginative and entertaining programs 
and programming tools that provide you with hours of instruction and enjoyment. 
Ron Person is the author of Animation Magic With Your IBM" PC and PCjr and 
Animation Magic With Your Apple® lie and lie. Person holds an MS degree in physics 
from Ohio State University and an MBA degree in marketing from Hardin-Simmons 
University in Texas . He was formerly an industry analyst at Texas Instruments. 

•Apple is a registered trademark of Apple Computer, Inc. 
•IBM is a registered trademark of IBM Corp. 
• Macintosh is a trademark of Apple Computer, Inc. 
• Microsoft is a registered trademark of Microsoft Corp. 

ISBN 0- 07- 881127-9 - . 


