

MACINTOSH GAME

PROGRAMMING TECHNIQUES

Cary Torkelson

M&f ll M&T Books

D~ A Division of MIS:Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011

© 1996 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage and retrieval system, without prior written permission
from the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book. The
Author and Publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

All products, names and services are trademarks or registered trademarks of their
respective companies.

Library of Congress Cataloging-in-Publication Data

Torkelson, Cary.
Macintosh games programning I Cary Torkelson.

p. cm.
ISBN 1-55851-461-9
1. Computer games--Programming. 2. Macintosh (Computer)

-Programming. I. Title.
QA76.76.C672T67 1996
794.8'15265--dc20 96-19483

10 9 8 7 6 s 4 3 2 1

Associate Publisher: Paul Farrell
Managing Editor: Cary Sullivan
Editor: Michael Sprague

CIP

Copy Editor: Suzanne lngrao
Copy Edit Manager: Shari Chappell
Production Editor: Joseph McPartland

CONTENTS

INTRODUCTION .. 1

Who Will Want to Read this Book? 1

Why Write a Game? ... 2

The Macintosh Game Market 3

What Are You Going to Learn?4

C Programming Techniques 4

Program Design and Marketing 4

The Tools Needed to Write Mac Games 4

Macintosh Toolbox Essentials 5

Resources ... 5

Where to Get Additional Information 5

The Bottom Line 6

iii

Contents

iv CHAPTER l : GETTING STARTED•.•.•..• 7
"" :'~" ,.;_'

Programming Style .. 8

C versus C++ ... 8

Structure of an "Object-Oriented" C Program 9

Additional Programming Conventions 11

What do You Need to Write a Game? 13

Macintosh Computer 13

Compiler/Development Environment 14

Additional Tools ... 14

Internet or Online Service Access 15

Game Design16

Defining Your Target Market 16

Which Mac Platforms to Support 16

Make it Macintosh ... 17

Pick a Project You Can Finish 18

Reusing Code from Previous Projects 18

Finish the Design Before You Code19

The Design of Desert Trek 19

A Game Idea is Born 19

Game Rules ... 20

Internal Design Issues 21

Skill Levels ... 21

Other Features .. 23

Screen Layout ... 24

CHAPTER 2: MAC TOOLBOX BASICS: MEMORY AND EVENTS••.• 27

Pascal Considerations .. .30

Pascal Calling Conventions 30

Pascal Strings .. .32

Contents

Architecture of a Mac Program 33

Initializing the Toolbox Managers34

Memory35

The Stack and Heap35

NIL versus NULL .. .38

Pointers39

Determining Memory Errors39

Handles .. 40

Memory Management Routines 46

Strings ... 48

String/Number Conversion Toolbox Routines 50

Events .. .51

Waiting for and Getting Events51

Determining "What Event Occurred 56

Handling Mouse Events 58

Handling Keyboard Events 61

Handling Update Events 64

Handling Activate Events 65

Handle Operating System Events 66

General Event Toolbox Routines 66

Random Numbers ... 68

CHAPTER 3: RESOURCES ••••••••••••••••..•••••••.••••••• 71

The Resource Fork ... 72

ResEdit .. 73

Using ResEdit ... 74

Creating a Resource File 74

Creating a Resource .. 7 4

'MENU' and 'MBAR' Resources 76

Creating a 'MENU' Resource 77

Contents

Creating an 'MBAR' Resource 79

'ICON' and 'cicn' Resources 80

'PICT' Resources .. 80

Finder Icons for Your Game 80

File Types and Creators 81

Resource Types Needed for Finder Icons 82

Creating the Finder Icons for your Game 83

Owner Resource ... 84

Creating Dialog Boxes for Your Game 85

The 'DLOG' Resource 85

The 'DITIJ Resource 87

3D Buttons Using a 'CDEF' 88

'CNTIJ Resources ... 89

Using 'CNTIJ Resources in Your Dialog Boxes 92

Final Notes on Using the 3D Button 'CDEF' 92

Custom Colors and Font Styles for Dialog Box Items 93

'WIND' Resources .. 106

'TEXT' and 'styl' Resources for Styled Text 106

The 'SIZE' Resource106

The Version (vers) Resource 107

'STR#' Resources ... 109

Custom Resources ... 112

Creating a Custom Resource Programmatically 113

Using a Custom Resource 116

Vegas Trek Resource Example 117

Summary .. 118

CHAPTER 4: WORKING WITH WINDOWS•......•.•...••.. 119

Anatomy of a Window : 120

Window Pointers and Records 122

Contents

Loading a Window .. 12 3

Showing and Hiding Wmdows 125

Moving and Sizing Windows 125

The Active Wmdow ... 126

Changing the Z-Order ofWmdow 128

Setting Window Properties 128

Examples .. 129

Update Events .. 131

Examples .. 134

Handling Mouse Click Events in the Content Region of a Window ... 136

Global and Local Coordinates 13 7

CHAPTER 5: DISPLAYING AND USING MENUS ...••..•..••.••..• 143

Menu Bars, Menus, and Menu Items 144

Adding the Apple Menu Items to the Apple Menu 145

Loading a 'MBAR' Resource 146

Setting and Drawing the Menu Bar 146

Example Loading and Setting a Menu Bar 14 7

Loading a Menu Resource 148

Handling Menu Events 149

Menu Processing For Mouse Down Events 149

Highlighting Menus 150

Menu Processing For Keyboard Events 152

Example of How to Determine which Menu was Selected 152

Handling Apple Menu Selections 154

Manually Inserting and Removing Menus from the Menu Bar 156

Hierarchical Menus .. 157

Pop-up Menus .. 158

Inserting and Deleting Menu Items 160

Getting and Setting a Menu Items Text 162

Contents

Enabling and Disabling Menus and Menu Items 162

Checking Menu Items .. 163

CHAPTER 6: USING DIALOG BOXES AND CONTROLS 165

Controls ... 166

Types of Controls ... 166

Control Parts , 167

Control Records and Control Handles 168

Creating, Loading, and Destroying Controls 171

Moving and Sizing Controls 172

Showing, Hiding, and Drawing Controls 173

Changing a Control's Highlight State 174

Changing Control Values 17 5

Changing Control Properties 17 6

Determining Which Control Was Clicked 177

Scroll Bar Example .. 179

Dialog Boxes ... 185

Types of Dialog Boxes 186

Application Modal Dialog Boxes 187

Dialog Box Records and Pointers 188

Item Types .. 189

Static Text and Text Edit Dialog Box Items 190

Loading and Closing Dialog Boxes 191

Accessing Dialog Box Items 192

Getting and Setting Text for Static Text Items and Text Edit Fields .194

Parameterized Text .. 19 5

Showing and Hiding Dialog Box Items 196

Finding an Item Based on the Mouse Location 196

Drawing Dialog Boxes 196

Using Alerts ... 197

Contents

Using Modal Dialog Boxes 198

Using Modeless Dialog Boxes 201

Modeless Dialog Box Example 203

Supporting Application Modal Dialog Boxes 208

Supporting Application Modal Alerts 217

CHAPTER 7: Qu1cKDRAW 223

Points, Rectangles, and Regions 224

Operations on Points 227

Operations on Rectangles 228

Operations on Regions 229

Graphics Ports .. 229

Offscreen Graphics Ports 231

Bitmaps ... 232

Creating and Destroying Graphics Ports 2 3 5

Associating Bitmaps with Graphics Ports 236

Setting and Getting the Current Graphics Port 2 3 7

Setting a Port's Clipping Region 2 3 7

QuickDraw Globals 2 3 8

Offscreen Graphics Port Example 239

Offscreen Graphics Worlds 241

Creating an Offscreen Graphics World 242

Setting the Current Graphics World 243

Locking a Graphics World's Pixmap 244

Destroying an Offscreen Graphics World 244

Offscreen Graphics World Example 245

Determining the Macintosh's Graphics Environment 247

32-bit Color QuickDraw or Not 248

Determining the Monitor's Pixel Depth 249

Reacting to Changes in the Monitor's Pixel Depth 249

Contents

•XI .. Drawing Graphics ... 253

Patterns ... 254

Transfer Modes ... 2 5 6

Pens .. 261

Color ... 263

Drawing Lines ... 268

Drawing Rectangles 270

Drawing Rounded Rectangles 271

Drawing Ovals ... 275

Drawing Icons .. 2 7 6

Drawing Pictures ... 277

Drawing Text ... 281

Bitmap Operations .. 286

CopyBits .. 287

Example .. 287

CopyMask ... 288

Bitmap Copy Speed Considerations 290

Drawing Directly to the Screen 291

Desert Trek's View Transition Special Effect Example 292

CHAPTER 8: INCORPORATING TEXT ...•....••......•......•. 295

Text Edit Records ... 296

Creating and Destroying Text Edit Records 298

Updating Text Edit Records300

TextJustification300

Line Height .. 301

Character Coordinates301

Selecting Text .. 302

Adding Text .. 303

Deleting Text .. .305

Contents

Setting Text Style .. .307

Scrolling Text .. 309

Example309

Accessing Text311

Searching for and Replacing Text 311

Drawing Pictures in Text Edit Records313

CHAPTER 9: READING AND WRITING FILES•...•. 319

Volumes ... 320

The Current Volume320

Getting and Setting the Current Volume321

File Creator and File Type321

The Standard File Dialog Boxes 322

Displaying a Standard File Open Dialog Box 323

Displaying a Standard File Save As Dialog Box 324

Creating and Deleting Files325

Opening and Closing Files326

Positioning the File Mark327

Reading and Writing Files328

File I/O Errors .. .330

Setting the Cursor .. .332

Save Example3 34

Loading Files Opened from the Finder3 3 9

Example .. 341

Load Example342

Saving Teach Text (SimpleText) Files with Embedded Graphics346

CHAPTER l 0: INCORPORATING SOUND ... , , •......• , , , , , , , , .349

Sound Formats ... 350

'snd' Sound Resources350

Contents

AIFF and AIFF-C .. .3 51

Other Sound Formats3 51

Sound Channels3 52

Creating Sound Channels353

Disposing a Sound Channel3 5 5

Playing a Sound Resource356

Quick Example .. .3 57

Playing Additional Sounds358

Sending Commands to a Sound Channel3 59

Placing Commands on a Sound Channel's Queue360

Executing Sound Channel Commands Immediately361

Sound Commands361

Example3 64

Obtaining Sound Channel Information364

CPU Usage of a New Sound Channel365

Obtaining Information for an Existing Sound Channel365

Obtaining Information about the Sound Manager368

Example369

Playing Sound from Disk369

Starting a Play from Disk Sound370

Example3 72

Pausing a Play from Disk Sound3 73

Stopping a Play from Disk Sound374

Example3 7 4

Callback Routines .. .3 7 5

The AS World3 76

Callback Routine Definition3 77

Setting Up a Callback Routine3 77

Example378

Callback Routine Processing3 79

Contents

Sound Manager Errors 3 80

Suspend and Resume Events 382

Getting a Suspend or Resume Event382

Background Music Example 384

CHAPTER 11: AFTER THE GAME IS FINISHED•..•. 391

Finishing Your Game392

On-line Help .. 393

Introduction Screens393

Additional Sounds and Music 394

High Scores Lists .. .3 9 5

User Interface Enhancements395

Testing Your Game396

Finding Testers .. .3 96

Setting the Ground Rules397

Getting Feedback .. .398

Distributing and Marketing Your Game 399

Commercial Distribution399

Getting a Contract .. 400

Shareware Distribution and Marketing 401

Distributing a Shareware Game 401

Offering Incentives to Register Your Game 403

Registration Fees ... 404

Supporting Your Game 405

Closing Comments .. 405

APPENDIX A: OTHER SOURCES OF INFORMATION•...... 407

Inside Macintosh Series 408

Apple Technical Notes 409

The Apple Developer Catalog 410

Contents

Electronic Mail ... 410

Telephone ... 410

Mail .. 410

Web Site .. 410

Metrowerks and Symantec Development Systems 411

Metrowerks .. 411

Symantec .. 411

develop, The Apple Technical]ournal 412

Usenet Newsgroups ... 412

Web Sites .. 413

National User Groups 413

Arizona Macintosh Users Group 414

Berkeley Macintosh Users Group 414

National Home and School Macintosh Users Group 414

APPENDIX B: ABOUT THE CD 415

Desert Trek Source Code 416

Demonstration Version of Symantec C++ for the Power Macintosh ... 416

Programming Tools ... 416

SoundMacer by Ingemar Rangnemalm 417

3D Buttons CDEF by Zig Zichterman 417

Shareware Games ... 417

INDEX•..•...•......•..•.•••..•..•..••.• 419

ACKNOWLEDGMENTS

This book would not have been possible without the influence and guid
ance provided by several fine people.

First of all, I would like extend a special thanks to Stephen Dacek and
Arthur Goikhman of Soft & GUI Inc. Their vast knowledge and experi
ence has profoundly affected my professional career as well as my pro
gramming style.

I would also like to thank Bob Nordling, president of the National
Home and School Macintosh Users Group. Over the years, Bob has
been a great help to all educational and entertainment shareware authors.
His ideas and programs to promote the exposure of shareware authors
encouraged me to become more heavily involved in the Macintosh share
ware community. Without that involvement, I probably wouldn't be
writing this book.

Finally, I would like to thank Glenn Seemann for his help in beta
testing Desert Trek and for his useful comments concerning the content
of this book.

xv

INTRODUCTION

Who Will Want to Read this Book?
Macintosh Game Programming Techniques teaches you, in an easygoing,
enjoyable manner, how to write programs for the Macintosh computer
using the C programming language. Many of the topics focus on tech
niques required to write quality games, hut most of the material applies
equally as well to writing any type of Macintosh program. This book
assumes that you are already familiar with the C programming language,
but don't worry, you need not be a "guru" to glean useful knowledge from
this book. The main ideas here are to enjoy learning how to program for
the Macintosh, and to help you design and market your games in addition
to learning the technical skills required to produce a successful game.

INTRODUCTION

The topics discussed in this book will appeal to a variety of people.
Programmers without any Macintosh programming experience will find
brief introductions to Mac programming techniques that will allow them
to grasp the more advanced principals without much difficulty.
Hobbyists, or part-time programmers with "informal" Macintosh pro
gramming experience will learn numerous tips and tricks to writing and
distributing that successful shareware game. Experienced or professional
programmers will find out how I approach and solve specific Macintosh
programming issues. Some of my techniques are quite unique, and you'll
either learn something new or have a good time laughing at my style.

Why Write a Game?

There are many reasons to write a game for the Macintosh computer,
many of which aren't that obvious. First, and most obvious, it might how
you make your living. However, you don't have to write games to make a
living programming for the Macintosh. For that matter, like me, you
might make a living programming for a completely different computer
platform. In those cases, you might want to write a game to improve or
enhance your programming skills. There's no better way to enhance your
programming skills than by writing a game. You'll be motivated, and you
will have fun.

Perhaps you want to build a reputation for yourself in the Macintosh
programming community, or try to make a little money. You could do so
by writing shareware games. There are very few authors who currently
make a living writing shareware games, and their style of distribution
more closely resembles that of a commercial software company than the
typical shareware author. However, there are plenty of examples of share
ware authors going on to write commercial games. They built a reputa
tion for themselves writing shareware games, and made the transition to
commercial software development using that reputation.

INTRODUCTION

Finally, maybe you just want to have some fun and spread a little joy ,,~~'

into the lives of others. Making the world a better place is not easy for
ordinary people like you and me. You might not affect millions of people,
or change societal attitudes, but you could make one or two people smile
by writing a game and sharing it with others. What more could you want?

The Macintosh Game Market

Almost everybody with a computer plays games. They may not write,
create databases, number crunch, surf the net, do homework, or keep the
family finances, but, with rare exception, they always play games. The
market for computer entertainment is wide open. Though the life of a
particular game is usually short lived, new games enter the market every
month. The same can't be said about word processors, spreadsheets, pro
gramming environments, or database programs. This means that you
probably won't become financially secure with one game, but you stand a
better chance at getting a game to market than other types of programs.

In addition to the large market of commercial games, shareware
games abound. More and more CD-ROM collections featuring share
ware games are released each year. Again, it's easy to make your mark, get
feedback, or just make industry connections writing a game. Almost any
one will try your game (it's up to you to write one good enough to hold
their interest), whereas not everyone is interested in utilities, system
extensions, and the like.

Lastly, don't overlook the porting market. Many games are ported
from the IBM PC compatible. Let's be honest here. The PC game mar
ket is much larger than the Mac market. However, more isn't always bet
ter. In other words, the are also more bad PC games than bad Macintosh
games, and those porting the games from the PC to Mac aren't always
experienced Mac programmers or even users. There's plenty of opportu
nity for Mac programmers in the games porting market.

INTRODUCTION

What Are You Going to Learn?

C Programming Techniques
Even experienced C programmers can stand to learn a thing or two about
general programming techniques. I personally have learned a lot working
on Wall Street, where your program had better work absolutely perfectly
24 hours a day, seven days a week, otherwise millions of dollars will be
lost (not to mention your job).

Program Design and Marketing

Having great Macintosh programming skills doesn't do you a lot of good
if you can't design and complete a game, or if you can't market it to the
public. Design can make the difference between writing a great game, or
producing an "okay, it works but it's not very elegant" game. Are you
going to want your game to be available in different languages? Well,
you'd better think about that before you've almost finished coding. Don't
worry, I'm not going to harp on methodologies, flow charts, or academic
garble. The goal is to make design an integral part of the game develop
ment process without causing too much pain.

After you've written the game of the century, what do you do with it?
You need to get it into the hands of the game-playing public, and there
are many ways to do this, depending on your ultimate goals.

The Tools Needed to Write Mac Games
Just exactly what are you going to need to write that cool game? Is your
current Macintosh sufficient? How about a compiler and development
system? All the hardware and software tools needed to write a complete
game are discussed, as well as where to get them.

INTRODUCTION

Macintosh Toolbox Essentials
What is the legendary Macintosh Toolbox, and is it going to help you
write that game? You bet it is, since it's chock full of the routines you
need to make your game a true Macintosh program. We'll start out with
the basics such as events, memory management, menus, windows, dialog
boxes, textedit, file 1/0, and QuickDraw. Special attention will be given
to 32-bit color QuickDraw, and the topics of offscreen graphics worlds,
copybits, and copymask (pixel transfer routines). Special attention will
also be given to modeless dialog boxes, a topic on which many tread
lightly. There's nothing mysterious about them, and I think you'll want to
use them all the time once you know their advantages and easy use. Other
topics that will be covered include digitized sound, styled textedit
records, saving TeachText files with embedded graphics, and automati
cally loading a file that was double-clicked in the Finder.

Resources
Easily half of your development time will be spent creating, editing, and
manipulating resources. Some of the resources covered in this book
include 'BNDL', 'CDEF', 'cicn', 'CNTL', 'dctb', 'DITL', 'DLOG',
'FREF', 'ictb', 'MBAR', 'MENU', 'PAT', 'PICT', 'SIZE', 'snd', 'STR#',
'styl', 'TEXT', 'vers', and 'WIND'. You'll also learn how to create cus
tom resources for storing and retrieving program data. Special attention
will be given to creating 'ictb' resources which are used to customize the
color and text attributes of dialog elements. Plenty of clear examples will
be given, something typically lacking in other documentation.

Where to Get Additional Information
I wish this one book could give you everything you need. However, it
would take me forever to write, and you probably wouldn't be able to

INTRODUCTION

carry it home. After reading this book, you'll definitely be able to write
great Macintosh games, but you'll probably want to seek additional infor
mation on certain topics. I'll get you started by telling you what's avail
able and where to get it.

The Bottom Line
This book presents to you all the necessary information to begin writing
games for the Macintosh computer. The entire source code for Desert
Trek, a popular shareware game that I've written, is included. Nearly all
coding examples will be drawn from this program so you can see how
everything fits together. Additionally, you'll have a wide set of ready-to
use routines to plug in or adapt to your games.

You'll learn, step by step, how to design a successful game, create all
the necessary resources, code, and market your product. Most impor
tantly, you'll have fun!

GETIING STARTED

This chapter will tell you everything you'll need to start writing a success
ful Macintosh game. It will also cover the programming conventions and
styles used throughout this book. It pays to spend a little time thinking
about the game you're going to write and how you're going to approach
the issues involved before you sit down and start coding. Spending a cou
ple of days early on could shave weeks off the development cycle.

7

CHAPTER 1-Getting Started

a Programming Style

C versus C++
C is a very powerful and flexible language that allows you to implement
almost any algorithm efficiently. However, being so flexible, C will let
you write code that doesn't do exactly what you wanted, blowing away
memory or introducing program bugs that are extremely difficult to track
down. In other words, a system error caused by a bad pointer or memory
operation may not occur near the origin of the problem.

In addition to other things, C++, an object-oriented extension of the C
programming language, attempts to reduce the types of errors caused by
poor programming techniques. Like Pascal, C++ forces strong adherence
to type rules, reducing the chance that an unintended operation takes place.

Another common debugging problem with C code is locating where
a variable receives a bad value. C++ tends to reduce the severity of this
problem by separating variables and the code that affects them into
objects. Those functions, called methods, are typically the only code that
can affect the value of the variable, simplifying the debugging process. By
its nature, C++ also encourages the practice of reusing code. In fact, sev
eral class libraries available for your use eliminate the need to write many
operations yourself, especially for the user interface.

So, with all the advantages C++ has over C, why not write Macinto'sh
games using C++? Well, you could definitely do so. However, for two
reasons, I believe that C is currently the better language for writing a
game. First, the advantages of using C++ come at a cost. (Since when do
you get something for nothing in this world?) The cost includes longer
training time to learn the language and a longer design cycle. Designing
class objects is no trivial task, and care must be taken to do things cor
rectly. Using C++ does not guarantee the creation of well-structured, or
even reusable, code. Using prebuilt class libraries to reduce the need to
write code yourself also comes at a cost. Class libraries tend to be large
because they need to cover a wide variety of applications. Being so

CHAPTER 1-Getting Started

generic, they are usually not optimized for your specific needs and tend
to execute more slowly. Program speed and size are very important issues
for Macintosh games, and C++ doesn't necessarily help here.

Structure of an "Object-Oriented" C Program

Even though we are forgoing the use of C++, there are many things that
we can do as C programmers to benefit from C++ concepts. First, using
the object metaphor, we can isolate data and the functions that operate on
that data into their own separate units. Global variables used across units
are not allowed, because by design, global variables can be altered any
where. In other words, all variables defined for a particular unit are pri
vate, meaning that no other unit can directly read or write that variable.
In addition, most functions that operate on that data are also private,
meaning that they're not callable from other units. Realizing that it is
sometimes necessary for one unit to access data from another unit, we
can declare public functions callable from other units. These public func
tions will be declared in the unit's header file. Structures and constants
can also be defined in the header file to provide other units with a vari
able's type information.

Header File (.H)

"Public" constants

"Public" structures

"Public" function prototypes

Source File (.C)

"Private" constants

"Private" structures

"Private" function prototypes

"Public" and "private" function definitions

CHAPTER 1-Getting Started

In C, there really is no formal definition of public and private elements.
Typically, functions and variables are considered public since they can, by
default, be accessed by other units. Yes, you would need to use the extern
keyword to access variables from another unit, but functions require no
such keyword. In order to ensure all elements defined in a source file are
private to that source file, declare all functions and variables with the sta
tic keyword. All elements declared with the static keyword are limited in
scope to the source file in which they are declared, making them unavail
able to other units.

What about public elements? Remember, we aren't allowed to use
global variables, so there are no public variables. Public functions require
that the function prototype be declared in the unit's header file, which
can then be included by other units requiring access to those functions.
Access to variables from other units is always accomplished through func
tion calls to that unit. So, if you need to perform a calculation using a
variable from another unit, call a function from that other unit that
returns the variable's current value. If you need to set a variable located in
another unit, call a public function from the other unit, passing the new
value. Note that sometimes the variable one unit wishes to read from
another unit is actually a structure. Since it is not efficient to pass entire
structures around on the stack, pointers to the structure can be used.
However, you're on your honor not to modify that structure in the
nonowning unit, which would be possible because you'd have a pointer to
that structure. Or, if you want to be really strict, you can require that the
calling routineprovide a pointer to storage in which a copy of the struc
ture can be returned. This is actually the preferred, more structured
method, but it does have the penalty of a memory copy operation,
increasing program execution time.

p M_y_Unlt.h ~
11 Public twic tion prototypes ~
shor t GetPrivat eNUllber (voi d);

1151
Ii

~ M.Jl!lnlt.c [B_l
11 Include til es ~
• include ' llyUnit .h "

II Private variables

ate.tic shor t sPrivate;

II function definiti on~

short GetPrivateNum!Jer(void)
(

return(sPri va te) ;

to)

Ii

CHAPTER 1-Getting Started

"OtherUnif' obtains a read-only
version of a private variable contained
in "MyUnit" via a shared function.

t
~ DtherUnlt.c ~
11 Include f ilea ~
•include "Othe rUnit . h "
• include "llyUni t . h •

II Privat e t wiction prototypes

ste. tic void UseOtherVe.r(void) ;

II !'wic t ion definiti ons

ate. t i c void UseOtherVe. r (void)
(

short sOther ;

sOther = GetPrivateNumber () ;

':o)

Ii

Figure 1. 1 Public and private elements and an example of one unit
accessing a variable from another unit.

Using the program structure defined here gives C programmers some of
the advantages C++ offers without incurring much of the overhead. By iso
lating data and functions into separate units, code can easily be reused. One
caveat, though: Just as in C++, care must be used to design units that can
realistically be plugged into other projects with little or no modification.

Additional Programming Conventions

In addition to using the object-oriented programming style described in
the previous section, there are several rules that, if followed, help you
create more stable and easy-to-maintain code.

11

CHAPTER 1-Getting Started

Hungarian Notation

Hungarian notation is the practice of prefixing variable names with an
abbreviation of the type of that variable. For example, shorts would be
prefixed with an s:

short sMyVariable;

Using Hungarian notation will allow you to quickly identify the type of a
variable and to make type casting more foolproof. The following is a list
of prefixes used in Desert Trek:

Data Type

short
long
Boolean
float
Handle
Ptr
char
char[)
char*
Str255
DialogPtr
WindowPtr
Rect
Graf Ptr
CGraf Ptr
GWorldPtr
GDHandle
Point
SndChannelPtr
StringHandle
CursHandle
SFReply
OSErr
CharsHandle
SFTypeList
PicHandle
CiconHandle
ControlHandle
BitMap

Prefix

s
1
b
fl
h
p
ch
ach, or sz for null-terminated arrays
psz
str255
pDialog
pWindow
re ct
pGraf
pCGraf
pGWorld
hGD
pt
pSndChannel
hString
hCUrs
sfReply
osErr
hChars
sfTypeList
hPicture
hCicon
hControl
bitmap

TEHandle
Size
MenuHandle
StringPtr
RGBColor
PatHandle
Pattern *

Avoid Using the int Type

CHAPTER 1-Getting Started

hTE
size
hMenu
pString
rgbColor
hPat
pPattern

The maximum value of the int variable type depends on the compiler
implementation. As long as your code stays on the Macintosh, things will
probably be fine. However, move that portable C code to another plat
form, and things might be different. If you want a 16-bit integer, use
short. If you want a 32-bit integer, use long. No ambiguity there.

Separate Nonuser Interface Code

To be honest, most of the code written for a game is user-interface
related. However, there are parts of the code that deal with the. rules of
the game and need not be platform-specific. If you plan to port your
game to another platform, such as Microsoft Windows, the nonuser
interface-specific code can be used with little or no modification.
Keeping it separate will help.

What do You Need to Write a Game?

Macintosh Computer
This is kind of obvious, but how much horsepower do you really need?
Today, even entry-level Macintoshes are adequate for writing games; in
the past, this was not the case. One would have had to spend a large sum
of money purchasing a high-end Mac to write even a fairly simple game.
Today, any Macintosh with a 68030 processor is more than enough. Of
course, if you plan on using high-intensity graphics such as ray tracing
tools, your needs may be better met with a PowerMac. Slower computers
will certainly not be speed demons when it comes to compiling your

CHAPTER 1-Getting Started

code, but I used to develop games on a Mac SE with a lowly 8 MHz
68000. If you want to write native PowerMac code, you should have a
PowerMac. A color monitor is necessary, because your game must sup
port color. You'll need at least 8 MB RAM, but 16 MB is strongly recom
mend to run several development tools at the same time. A CD-ROM
drive is also strongly recommended because high-end development tools
and programming documentation frequently come on CD-ROMs. One
of the best ways to determine if your Mac has what it takes to write a
game is to look at the system requirements of the development system
you choose to use. For example, Think C 6.0 only requires a Macintosh
running system 6.0.4 or higher and 4 MB of RAM. Code Warrior Bronze
requires a Macintosh with a 68020 or higher and 8 MB RAM running
system 7 .1 or higher. See Appendix A for more information on these
products and where to get them.

Compiler /Development Environment
Typically, compilers such as Metrowerks Code Warrior or Symantec's C,
C++, and Pascal include the development environment. They include
an editor, debugger, and project management tools, as well as the com
piler itself. Visual design tools are also a standard part of the high-end
C++ development environments, but they are typically not appropriate
for use on games. Again, see Appendix A for details on where to obtain
these products.

Additional Tools
In addition to the development environment, you'll need tools such as
ResEdit and MacsBug. ResEdit allows you to graphically edit resource
files. MacsBug is a system-level debugger that catches system errors that
may not be detected by the development environment's debugger. It is
also useful when running your game outside the development environ
ment. You will also need a graphics program to develop the graphics used

CHAPTER 1-Getting Started

in your game. Depending on your needs or ambitions, you could get by
with a simple paint program, or you may require a 3D rendering tool.
You will also need tools for recording and editing sound. Fortunately,
many Macs come with digitized sound input hardware and software. If
yours does not, seek out a friend, purchase additional hardware, or resign
yourself to using prerecorded libraries (making sure you have rights to
distribute a game using those sounds).

Internet or Online Service Access
Though not mandatory, Internet access, or an online service such as
America OnLine or CompuServe will be extremely helpful during all
stages of development. Browsing game-related newsgroups can give you
ideas on what types of games would be popular or successful in the mar
ket. Programming-related newsgroups will prove invaluable when you
have programming questions. Nothing beats the advice of a live, experi
enced programmer when you need help.

You'll need beta-testers to ensure a quality game without too many
bugs. Again, it's fairly easy to find many beta-testers with a wide variety of
Macintosh equipment on the Internet. A game that works perfectly on
your Mac may totally bomb on another. Also, many good ideas and sug
gestions come from those who aren't as enamored with your game as you
are. A word of wisdom: take feedback from beta-testers very seriously.
Your game will be improved by implementing their suggestions.
Remember, it's users like them who will be deciding whether your game
is good enough to pay for.

Lastly, when you have a completed game on your hands, you'll need
to announce its presence to the world. Whether you'll be distributing
your work as shareware or publishing it commercially, nothing beats the
advertising and distribution you can get with the Internet. Obviously, if
your game is shareware, distribution via the Internet is necessary to get it
in the hands of the public. Even if you've written a commercial game,
you'll want to distribute a demo version to spark interest.

: 1;5'.<•; ..

CHAPTER 1-Getting Started

1~J Game Design

I'm sure you have a great game idea and want to start writing it immedi
ately. However, spending a little time up front figuring out the details will
pay off big by reducing overall development time. It's especially impor
tant to determine your goals for the game up front. Do you want to com
mercially distribute the game or release it as shareware? You'll probably
have more fun writing a shareware game since it doesn't have to be as
polished and perfect as a commercial game. That doesn't mean that there
aren't shareware games that look and play much better than some com
mercial games. However, there's nothing like having to do something to
eat and pay rent to take some of the fun out of it.

Defining Your Target Market

What type of game do you want to write, and will it be successful in the
market? There's a wide variety of games out there: arcade shoot 'em ups,
role-playing adventures, sports games, card games, puzzle games, strate
gic simulations, and so on. It's important that you choose something
you're really interested in because that will improve the chances you'll
finish it successfully. However, give some thought to how popular it
would be in the market. Take a look at recent popular shareware and
commercial games to get an idea of what's doing well. Browse several
online newsgroups to see if there's a gap in the market. For example,
there are frequent complaints in the Mac community concerning the lack
of decent sports games. Arcade games tend to be very popular, but that
popularity is typically short-lived. Strategic simulations usually have a
smaller following, but those who play them are usually very supportive.

Which Mac Platforms to Support

Decide up front which Macintosh platforms you intend to support. Will
your game require 8-bit color, or can it run on black-and-white displays.
Will you support smaller screens, such as the 12-inch monitor? Are you

CHAPTER 1-Getting Started

going to have a native PowerMac version? Will you support 680x0-based J,,l;
Macs? Many games today require at least a 68020 processor. Lastly, will
your game require system 7, or will it support earlier versions? The answers
to these questions determines the size of the market your game will cater to,
and the complexity of your code. The more platforms you support, the
larger your potential market, but you'll need to spend extra time coding and
testing on all supported platforms. Figuring out up front which Macintosh
platforms to support will allow you to design your game appropriately. For
example, if you plan to support system versions prior to 6.0. 7, you'll need to
disable any digitized sound routines when running on those systems because
those sound routines require system version 6.07 or later.

Make it Macintosh

It's easy to say, "Hey, this is a game and I can completely take over the
machine and build whatever interface I like." That may have worked in
the DOS world, but you'd be asking for trouble from the Mac commu
nity. Your game is going to run on machines that occasionally have to do
real work (no, really), and your game will, if not cooperate with other
programs, at least have to leave them unaffected.

This means you'll need standard Macintosh elements, such as a menu
bar and movable windows. Many games like to completely take over the
screen, hiding the menu bar. There's nothing wrong with that, as long as
you provide an easy way to show the menu bar, quit the game, and switch
to other programs that may be running. Try to use standard Macintosh
controls when possible, because users will already be familiar with them.

If you happen to be porting a DOS game, do not under any circum
stances try to emulate a custom full-screen menu, use 8.3 filenames, or
ask users what kind of monitor they have when installing your game. In
addition, porting "chunky" 320x200 graphics directly without at least
some smoothing generally leaves a bad taste in users' mouths. The bot
tom line is this: you are writing a Macintosh program; make it a
Macintosh program.

CHAPTER 1-Getting Started

118 Pick a Project You Can Finish
One of the biggest reasons software projects, especially games, fail is that
the author attempts to do too much. This rings doubly true if this is your
first game or if you plan to release the game as shareware. Now, every
one of us wants to write that totally awesome, all-encompassing, market
busting game, but let's get real. If you don't have a multimillion-dollar
company providing the resources, you may want to scale back your goals.
A game can be popular and fun to play without full-motion video. In fact,
full-motion video won't make a bad game good.

For individuals who are writing their first game, another reason for
choosing a modest project is coding style. Your first game will not have
the best code. That's okay since as with anything else, practice and
experience will improve your style. However, if you choose a large first
project, you'll notice that code written early in the project tends to be
of much poorer quality than code written near the end of the project.
Sometimes consistent mediocre code is better than inconsistent code
because maintenance and debugging will go much more smoothly if the
code is fairly consistent.

Reusing Code from Previous Projects
Writing your first game will take much longer than writing subsequent
games because you have no code base to use. After writing your first
game, you should have hundreds of lines of code that can be used in sub
sequent games, either directly or with small modifications. Again, good
design on that first game will provide you with a lot of reusable code,
reducing the time it takes to write the next game. As a general rule of
thumb, make routines as generic as possible so they can be used for other
projects. However, do not do so at the expense of performance or the
look and feel of the game you're currently working on. After writing sev
eral games, you should have a number of routines that allow you to build
a skeleton application in very little time.

The entire source code for Desert Trek is included on the CD
ROMwith this book. This means that you have a number of routines that
are ready to be plugged into your games with little or no modification.

CHAPTER 1-Getting Started

Hopefully your first game will take less time to write than my first game
did. That's one of the goals of this book.

Finish the Design Before You Code
I know, you really want to get some cool stuff up and running as fast as
possible. There's nothing wrong with that, but don't rush into program
ming without a solid design in hand. This doesn't mean you need a
twenty-page thesis describing the technical details of the game. Maybe it
just means you've written a few notes on a scrap of paper or just sat down
to think about what you want the game to become. Doing so will make
coding the game progress more quickly and will require less rewriting of
code due to design changes. Lastly, having a complete design will help
you determine the order in which to code things, making testing easier.

The Design of Desert Trek

To practice what I preach, so to say, I'll take you through the design of
Desert Trek to give you a look at my experience that designing a game is
not painful and provides plenty of benefits.

A Game Idea is Born
Okay, so I'm sitting there thinking to myself, "I want to write a game."
What kind of game? Well, I'd like to write a small game, in terms of size
and resources, that's fun to play as a little diversion now and then. We're
not talking a major game that requires days to learn, hours to play, and a
big chunk of your hard drive. I'm ruling out arcade games because I don't
feel like writing one right now. Actually, my specialty is strategy, puzzle,
or logic games, and I feel comfortable writing them. I'm going to make
my game shareware, so I don't need to worry about marketing or dead
lines. Now I need an idea that fits these criteria.

Back in the early days of personal computing, numerous simple text
based games proliferated. Many of them were written in Basic, and you
had to type them in yourself if you wanted to play. Actually, it was a great

CHAPTER 1-Getting Started

way to learn computer programming, because typing in all that code was
bound to rub off on you after a while. One such game I vaguely but
fondly remember was a game called Camel. The object of Camel was to
ride a camel across the Gobi Desert. It was simple but fun, and I thought
an expanded Macintosh version with a healthy dose of graphics would do
well as shareware. Desert Trek is born.

Game Rules

Before playing a game, you need to know the rules. The same applies to
writing a game.

The goal of Desert Trek is to travel 1000 kilometers across the Gobi
Desert. Pretty simple, huh? My challenge as a game designer is to throw
in enough challenges to prevent the game from becoming boring quickly
while maintaining its simplicity. First, we need some hazards to prevent
the game from being too easy to win. The original Camel had several:
hungry cannibals chasing you, wild Berbers hidden in the sands wishing to
capture you, sandstorms, the constant threat of death by thirst, and the
possibility of running your poor camel to death. I, of course, kept these
hazards and added several more: hunger, camel health, dangerous paths in
the sands, and unfriendly caravans wishing to steal your precious supplies.
In order to help the player overcome these hazards, the original Camel
had oases to rest your camel and replenish supplies. In my version, I added
friendly caravans, abandoned campsites where you could find money, and
trading posts that sold useful supplies such as a compass to help you find
your way in a sandstorm and binoculars to better see what's ahead.

For the complete playing rules of Desert Trek, you can read the Help
section found in the program. However, from a game designer's point of
view, simply stating the game's playing rules is far from enough informa
tion to write the game. There's much to be decided that takes place
behind the scenes that the players generally don't need to know. Before
you continue reading the rest of this section, you may want to familiarize
yourself with the Desert Trek game rules. Familiarity with the game rules
will help you understand some of the design decisions I made.

CHAPTER 1-Getting Started

Internal Design Issues
Let's examine more closely the danger of thirst. In the original game,
thirst increased by a set amount per turn. After a certain point, the player
would perish unless he or she drank water. For my implementation of
Desert Trek, I wanted something a little more complex to make the game
less predictable or to at least require the player to pay more attention. To
accomplish this goal, I wanted thirst to increase by different amounts. I
came up with two methods in which to implement this. First, instead of
the game consisting of a number of turns that were essentially the same, I
added the concept of days. In other words, each day was broken up into
four turns, one each for morning, midday, evening, and night. Now I
could have thirst increase twice as much in the middle of the day, when
the temperature was supposedly hottest. Though this may seem to be a
trivial difference compared to the original game, this and several other
time-dependent factors means that players need to plan ahead to win.

Skill Levels
The second method by which I caused thirst to increase at different rates
was to add skill levels. In actuality, skill level affects all aspects of the
game, from how much money you can find at an abandoned campsite to
how many kilometers you and the cannibals can travel per turn. Skill lev
els bring up a very important issue to the game designer: how easy or
hard do I make the game to win? If the game is too easy to win, players
will quickly tire of winning and stop playing. If it's too hard, players will
quickly tire of losing and give up. What may be easy or hard to you will
not be the same for the next person. Much thought needs to be put into
determining the difficulty of the game. Adding skill levels gives you, the
programmer, some flexibility to appeal to a larger variety of players. It
adds some work to the game, but in some ways it makes your job easier.
Think about this: you create your game, but it's too hard. You need to
"tweak" some game parameters to make it easier. This requires coding
changes and retesting. Now the game is too easy. This requires more
tweaking, recompiling, and testing.

CHAPTER 1-Getting Started

After a few iterations, this method starts to become cumbersome. One
way to overcome this process is to store game parameters in the resource
file. You only need to change a resource to affect the difficulty of the
game. Now that your game is using data from a resource to drive its diffi
culty, there's only a small step to providing skill levels. Make a copy of the
resource, change a few parameters, and viola, you have a new skill level.
Providing skill levels allows game players to choose the level of difficulty
and lengthens the time players remain interested in the game. Once they
win, they will try again at a higher skill level. Design skill levels so that
new players will be able to win at the easiest skill level after a couple of
games and so that experienced players aren't always going to win at the
hardest. The more skill levels you have, the better, because players of dif
fering abilities will be able to find the skill level that challenges them with
out making it impossible for them to win. This is a little more work for
you, but your game will appeal to a wider variety of players.

To give you an example of the wide variety of playing abilities game
players have, let's look at one of my most popular games, Galactic
Empire. Like Desert Trek, Galactic Empire has ten skill levels. I designed
the skill levels so that I could almost always win at skill level 1, win fre
quently at skill level 5, and never win at skill level 10. Did I make the
game too hard? Well, I have receiyed correspondence from several people
stating that I had made the game totally impossible to win. In fact, they
were upset that I'd release a game that was so obviously impossible to win
even at level 1. On the other hand, I have also received correspondence
from several users who have won at skill level 10, a skill level that I admit
to not being able to win (and I wrote the game!). Based on the variety of
responses, I feel good about the balance. If everyone won at level 10, the
game would have been considered much too easy. If nobody could win at
level 1, the game would be considered much too hard.

I admit that some types of games lend themselves better to support
ing a variety of skill levels than others. However, skill levels don't have to
be of the "select from 1 to 10" variety to be effective. For example, a role-

CHAPTER 1-Getting Started

playing game may make the first few quests easy and progressively 23
increase the difficulty of the quests as the player progresses.

Other Features
After defining the game rules and coming up with general ideas on how
you're going to implement them, you need to think about what features
your game will support. One of the most common features for games,
other than those of the arcade variety, is the ability to save and load
games in progress. Another popular feature is a high scores list. Lastly, all
games need to provide help to the players. Typically, this is either pro
vided as a separate readme text file or integrated into the game. There
are benefits to both methods. A separate text file gives the users the abil
ity to import the text into their favorite word processor and print the
instructions. However, integrated help allows the user to easily get help
while playing the game and eliminates the need to distribute separate
files, which could become separated somewhere in distribution.

Desert Trek supports these features and provides a slight twist on
each. First, in addition to saving and loading games, the player can save
the journal as a text file. Though this isn't something to write home about,
it allows game players· to print a record of their game by loading that text
file into a word processor or Teachtext (now called SimpleText). The top
10 high scores are kept for each skill level. In addition to maintaining high
scores, Desert Trek allows users to export the high scores into a file, which
can then be imported into a friend's copy or a later version of Desert Trek.
When importing scores, the user can overwrite the current scores or
merge the two lists, keeping the highest scores from both. I believe that
some method of transferring high scores is especially important for share
ware games. When a user registers, I send out the latest version of the
game. Without this feature, the user would lose their high scores-not a
good reward for registering. Finally, the help I provide with Desert Trek is
included within the game, but an option to save the instructions as a text

CHAPTER 1-Getting Started

file is provided. This eliminates the need for distributing a separate file
while giving the user the ability to print the game instructions.

Screen Layout
It is very important to design the layout of the game screen or screens
before you get too far along in the project. Probably the most important
aspect of game design, the screen layouts define how the user will interact
with your artificial world. The screens should be easy to read, not too
cluttered, look pleasing, and follow standard Macintosh user-interface
guidelines. It doesn't matter how great your game is; if the screens don't
look cool, you can forget about attracting many players. However, don't
let the opposite occur either; there are many games with great colorful
graphics, but little substance.

For Desert Trek's game screen, of which there is only one, I wanted
to display certain information. First and foremost, the game player needs
to know two very important things: status and supplies. This includes
hunger, thirst, camel fatigue and health, distance traveled, cannibals dis
tance, and how much food, water, and elixirs you have. In addition to
these essentials, the player needs to know what time of day it is, because
that greatly affects certain aspects of the game. I accomplish this by pro
viding a simple first-person view of the desert. Based on the position of
the sun, the player can plainly see what time of day it is. In addition to
being able to show the player the time of day, the first-person view shows
the player what objects can be seen in the distance. When there's an oasis
in the distance, a picture of the oasis can be seen in the view portion of
the game window.

Also displayed in the game window is a textual journal of the player's
trek across the desert. This journal logs everything the player does and
sees and allows him or her to review the history of the game by scrolling
a standard text edit box. Lastly, I wanted 3D picture buttons on the main
game screen to allow the user to enter game commands without going to
the menus. Everything needed to play a complete game of Desert Trek
can be found on the game screen.

CHAPTER 1-Getting Started

Just knowing everything that's going to be displayed on the game 25
screen isn't enough. You also need to decide where to place things so that
the screen doesn't look cluttered and so that it is possible to find every-
thing easily. You'd be surprised how little things like button placement
can greatly improve the playability of a game. For Desert Trek, I grouped
related gauges and buttons together. For example, the gauges for hunger
and food and the button for eat are placed next to each other. Also, pay
attention to the little details. The distance indicators could easily have
been textual. However, by adding the graphic thermometer, which dis-
plays distance traveled for both the player and the cannibals, the player
can quickly assess the status of the game.

Since screen layout is vital to the design of the game, I always use a
graphics program to draw what I envision the game screen will look like
before I even think of coding. A good portion of your game code will deal
with the display of game information, so knowing what you're going to
do always helps. Drawing the screen before coding also allows you to
position everything perfectly without coding it by trial and error.

To be sure, Desert Trek lends itself to a nice, organized, compact game
screen; that's how the game was designed, and by completing the design up
front, I was able to elegantly integrate game play and screen layout.

Beyond the main game screen, there are several dialog boxes, a high
scores screen, and two information windows to be found in Desert Trek.
Again, attention to detail with the auxiliary screens will pay off with a
polished, professional looking game. Judicious use of color for the dialog
boxes adds a lot to the game, but don't overdo the colors; the results will
be gaudy and will detract from the game. Using a light gray background,
dark colors for text, light background colors for text entry fields, and 3 D
push buttons make for a nice effect.

MAC TOOLBOX BASICS:
MEMORY AND EVENTS

The Macintosh provides a large set of application programming interface
calls (commonly referred to as APis) to aide you in writing Macintosh
programs. These APis are collectively known as toolbox calls, and when
used correctly, allow all Macintosh programs to have the same style.
Every Macintosh contains the toolbox physically located in ROM chips
built into the machine. It is this legendary toolbox that has, until recently,
prevented clone-makers from creating Macintosh clones. Without the
toolbox, the Macintosh is useless. Recently, · though, Apple has licensed
the toolbox to clone manufacturers to increase Macintosh market share
against the Intel-based IBM PC and compatible machines.

27

CHAPTER 2-Mac Toolbox Basics: Memory and Events

Not all APis described in this book reside in the toolbox. Some calls
reside in the system software. However, for most purposes, it is unneces
sary to distinguish between the two. Related toolbox calls are grouped
into managers. For example, all menu-related routines make up the menu
manager. The number of managers and APis are so extensive it would be
impossible to cover them all in one book. The following is a list of man
agers discussed in this book:

1. Operating System Utilities. The operating system utilities include
routines to help determine the Macintosh environment (system ver
sion, whether or not certain APis that are available on this particular
Macintosh, etc.). Not all operating system utilities are in ROM.
Some are part of the Macintosh operating system itself. Many of
these routines are described later in this chapter.

2. Memory Manager. The memory manager contains routines to allo
cate and manipulate memory and strings. You will use these routines
to dynamically allocate storage for your game. These routines are
discussed later in this chapter.

3. The Events Manager. The events manager contains routines to han
dle user and system events, such as mouse clicks, keystrokes, and
update events (when a window's contents need to be redrawn). Because
Macintosh programs are event driven, it is very important to under
stand these routines. They are discussed in detail later in this chapter.

4. The Resource Manager. The resource manager contains routines
to load, save, and change resources. Resources are objects that your
program uses, such as menus, dialogs, and pictures. Chapter 3 dis
cusses resources in detail.

5. Wmdow Manager. The window manager contains routines related to,
you guessed it, windows. Wmdow manager routines are used to show,
move, size, and update windows (the actual drawing routines them
selves are part of Quickdraw). Chapter 4 discusses windows in detail.

6. Menu Manager. The menu manager contains all routines related to
the Macintosh menu bar. Routines to insert menus, change their con
tents, and determine what the user has selected can be found in the
menu manager. Chapter 5 discusses menus.

CHAPTER 2-Mac Toolbox Basics: Memory and Events

7. Dialog Manager. The dialog manager contains routines to handle .• o··~f;.:>··o
dialogs and alerts, such as loading dialogs, handling dialog events, and
manipulating dialog controls. Chapter 6 discusses dialogs in detail.

8. Control Manager. The control manager contains routines related to
controls, such as buttons and scrollbars. Routines to load controls, read
and set their values, and draw controls can be found in the control
manager. Along with dialogs, Chapter 6 discusses controls because
controls can be found in every dialog (even if it's just a text control).

9. Quickdraw. Quickdraw is one of the most important toolbox man
agers since it controls everything displayed on the screen. In fact,
many of the other managers call QuickDraw routines to perform
their tasks. For example, the window manager calls QuickDraw to
draw a window's title bar and frame. From the point of view of a
game author, QuickDraw is absolutely the most important manager,
because graphics tend to play heavily in game design. Chapter 7 pro
vides the details.

10. TextEdit. TextEdit provides a set of APis that allow you to display,
format, and edit text. This includes routines to draw text, scroll text,
and define text styles such as bold and italics. TextEdit is covered in
Chapter 8.

11. File Manager. The file manager contains routines to create, read,
and write files, as well as routines to present users with the standard
file Open and Save dialog boxes. Chapter 9 describes these routines.

12. Sound Manager. The sound manager contains routines to play and
manipulate sound on the Macintosh. This includes APis to create
sound channels, play short sound effects, and play background
music from sound files. Chapter 10 discusses the sound manager
and its routines.

There are a number of managers that are not discussed in this book, such
as the appletalk manager, the print manager, and the device manager. For
the most part, you won't need these managers to write a game (though if
you want to support networking, you'll definitely need to look at the
appletalk manager). However, if you do need information about these

CHAPTER 2-Mac Toolbox Basics: Memory and Events

managers, see Appendix A for additional information. There just isn't
enough room in one book to cover everything, so I'm trying to concen
trate on those routines that are necessary for most game functions.

Pascal c·onsiderations

The original Macintosh was designed at a time when Pascal was more
popular than C. For this reason, the Macintosh toolbox calls use Pascal
calling conventions and string definitions. Since you will be writing C
programs, there are a couple of things you'll need to be aware of to deal
correctly with the toolbox.

Pascal Calling Conventions
All Macintosh toolbox calls use the Pascal calling convention as opposed
to the C calling convention. For the most part, you will not need to
worry about the differences because all toolbox calls described in this
book are shown in their C incarnation. However, you will eventually look
up a Macintosh toolbox call and find it shown in its Pascal incarnation.
By knowing the following three rules, and the integer data type conver
sion table, you will be able to supply your C parameters correctly:

1. For parameters of size 4 bytes and less, use the variable itself.

2. For parameters greater than 4 bytes, use a pointer to that variable.

3. For parameters defined as type var, use a pointer to that variable. In
Pascal, var parameters are parameters passed by reference. Parameters
passed without the var keyword are passed by value. Remember, para
meters passed by value cannot be changed in the called routine,
.whereas parameters passed by reference can be changed.

Pascal Data Type

integer
longint

C Data Type

short
long

CHAPTER 2-Mac Toolbox Basics: Memory and Events

All Macintosh data types can be used without conversion since your C
compiler will define them correctly for you. How about a few examples to
make things clear? I'm not going to describe in any detail the APis used
in these examples because they are covered in other parts of this book.
The important thing here is to learn how to convert a Pascal toolbox def
inition into its C counterpart. Remember that if you get really stuck, you
can always open the appropriate header file supplied by your C compiler
to see how the toolbox call is prototyped.

In this first example, one parameter is a Macintosh toolbox type,
which does not need to be converted. The other parameter, an integer in
Pascal, needs to be converted to a short to be used correctly in C:

Pascal Definition: function SetVol(vName
vRefNum

:StringPtr;
:Integer): OSErr;

C Definition: OSErr SetVol(StringPtr · pStringName,
short sRefNum) ;

In the second example, even though the Macintosh toolbox type of Rect
does not need to be converted, it is greater than 4 bytes in length (the
Rect type has a size of 8 bytes). A pointer to the variable must be used
when making the C call:

Pascal Definition: function PtinRect(thePoint
theRect

C Definition: Boolean PtinRect (Point

:Point;
:Rect) : Boolean;

pt,
Rect *pRect) ;

For the last example, the var keyword is used in the Pascal definition. Even
though the Point data type is 4 bytes in length, the C call must use a
pointer to the variable so that its value can be changed in the toolbox call:

Pascal Definition: procedure LocalToGlobal(var thePoint:Point);

C Definition: void LocalToGlobal(Point *pt);

There's one final note about Pascal calling conventions. Occasionally, you
will need to supply a toolbox call with a pointer to one your own func-

······-~11· ... ····•··

CHAPTER 2-Mac Toolbox Basics: Memory and Events

tions. This, by the way, is known as a callback function since the toolbox
call, which your code called in the first place, will call back one of your
own functions. You should certainly use the conversion rules listed above
to make sure your parameters are defined properly, but there's also one
additional piece of information you need to know. Make sure to define
your function using the pascal keyword. The pascal keyword in C defines
a function using the Pascal calling conventions. In fact, all the toolbox
function prototypes defined by your C compiler are defined using the pas
cal keyword. Basically, C and Pascal put function parameters on the stack
in different ways. The toolbox routines expect the parameters to use the
Pascal method, not the C method. Keep this in mind when prototyping
and defining any callback functions because if you leave out the pascal
keyword, you will most likely cause a system error (or, at the very least,
unexpected program behavior). Here's an example (this particular function
will be discussed in Chapter 8 on Incorporating Text):

pascal void ScrollText(ControlHandle
short

Pascal Strings

hControl,
sPart);

The format of a Pascal string differs significantly from that of a C string.
A C string is simply a number of characters terminated with a null char
acter (zero, or '\O'). There is no length restriction on a C string; it can be
of any size. A Pascal string, on the other hand, has a maximum length of
255 characters. Why? Well, the first byte of a Pascal string isn't the first
character of the string itself, but a length indicator. This length byte
determines the number of characters contained within the string, so there
is no need for a null-terminating byte. Unfortunately for C programmers,
most Macintosh toolbox calls that take strings as arguments expect them
to use the Pascal format. This can get very annoying when you plan to
use standard C string manipulation functions, such as strcpyQ, strcatQ,
and strlenQ, and Macintosh toolbox calls on the same string. The C
functions expect a null-terminated string whereas the toolbox calls expect
a Pascal format string with a first byte length indicator. You will need to
convert strings between the C and Pascal formats in order to use both

CHAPTER 2-Mac Toolbox Basics: Memory and Events

types of calls. Most Compilers provide routines to accomplish this task, 33
and they will be described later in this chapter's in the section on strings.

Architecture of a Mac Program

So, what does the basic structure of a Macintosh program look like?
Here's the mainO function from Desert Trek:

main()
{

II Initialize the program and if no errors, continue.
if (InitDesertTrek())
{

II While we're not quitting, look for and process events.
while (!bQuitting)

CheckEvent();

II Clean up the program's resources.
CleanupDesertTrek{);

return{ O) ;

Pretty simple, huh? You're going to have that killer game out the door in
no time, right? Well, maybe, maybe not. Basically, all Macintosh pro
grams look for events and respond to them. In other words, Macintosh
programs are event driven. For the most part, the user generates the
events, such as mouse clicks, menu selections, and keystrokes. In addition
to the user, though, the Macintosh operating system itself might generate
events for your program, such as window updates (when part of your pro
gram window needs to be redrawn).

The other critical aspect of a Macintosh program is that it displays
information to the user. This is especially true for a game program. How
many computer games have you played that display no information (a
sound-only game)? Anyone familiar with the Macintosh knows that infor
mation gets displayed in windows. Every program has its own separate
window or windows, which can be moved around on the screen to suite

CHAPTER 2-Mac Toolbox Basics: Memory and Events

the user's preference. Some games, especially those of the arcade variety,
take over the entire screen. However, unless they're writing directly to
the video hardware (something that I strongly object to because it's so
unMac-like and will cause you nothing but trouble), they are still display
ing game information in a window the size of the whole screen.
Remember that you should never take control of the entire Macintosh for
your game unless you believe that taking over the whole screen is neces
sary to enhance the atmosphere of your game.

Lastly, you need to be aware that your program isn't the only thing
running on the user's Macintosh. Maybe the user is taking a break from
work to play your game, and there's something going on in the back
ground. The Macintosh provides a "cooperative" multitasking environ
ment, which means that you need to cooperate with the Macintosh to make
sure other programs get processor time when your program is running.

In summary, a Macintosh program does the following:

• Performs initialization.

• While not quitting, checks for events.

• If there's no event, give up some time to the operating system for other
tasks, and perform any background processing. (For example, if your pro
gram is a real-time game, you may need to move the enemy ship a little
bit closer to the player's ship whether the player does anything or not.)

• If there is an event, process it (typically resulting in the display of
new information to the user, be it moving a space ship or showing
how many widgets are left).

• When the program terminates, perform any cleanup work.

Initializing the Toolbox Managers

Many toolbox managers need to be initialized before you can use their
routines. It is a good idea to do this initialization as the very first thing in
your game. The following function performs all the toolbox manager ini
tializations for Desert Trek:

CHAPTER 2-Mac Toolbox Basics: Memory and Events

static void InitToolbox()
{

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
Ini tMenus () ;
TEinit ();
InitDialogs(OL);

Though most of the manager initialization routines take no parameters,
notice that Ini tGraf () , the call used to initialize quickdraw, takes a
Macintosh quickdraw global variable, qd. thePort, as a parameter. The
global variable is available to every Macintosh program running on the
system, and you do not define it yourself. Chances are, you'll probably
never use it in your game anyway. However, you must specify the global
variable because quickdraw will most certainly use it.

Memory

Before looking at specific toolbox managers and the routines they pro
vide, we need to take a moment to look at how the Macintosh handles
memory. Many of the toolbox calls take or return pointers, handles, and
strings. Understanding how these constructs work will make your life as a
programmer much easier.

The Stack and Heap
When your program runs, the Finder allocates a fixed memory block in
which your program runs. Any memory your program needs for code,
variables, and dynamically allocated storage comes from this block allo
cated to your program. When you build an application, you specify the
default and minimum amounts of memory to be allocated to your pro
gram. The user can change this setting using the Get Info command
from the Finder. This memory setting is very important because many
system errors are the result of an out of memory condition.

35

36

CHAPTER 2-Mac Toolbox Basics: Memory and Events

The memory block allocated to your program is divided into two
variably sized portions and one fixed portion. These are the stack, heap,
and global variables. It is the global variables that remain fixed during
program execution. They get stuffed at one end of the memory block.
The stack and heap grow as needed during program execution. The stack
starts at one end of the memory block, the heap at the other end. They
both grow toward the middle as they expand (see Figure 2.1).

The stack stores local variables defined in functions, as well as the
parameters passed to those functions. Every time you call a function, the
stack grows. When that function returns, the stack shrinks. One of the
very nice things about the Macintosh program stack is that there is no
fixed maximum size for the stack beyond that of the size of the block of
memory allocated to your program. Many other architectures, such as
DOS/Wmdows and OS/2 require that you specify a maximum stack size
when you compile your program.

Memory Allocated
to your Program

Heap

l

Maximum Heap Limit

1
Stack

Application
Globals

(Fixed Size)

Figure 2.1 The heap and stack memory.

The heap contains memory allocated during program execution. This
includes resources loaded and used by your program such as windows, dia
log boxes, menus, and even program code itself. Whenever your program

CH AP TER 2-M a c Tool b o x Basics : Memory a nd Even ts

allocates storage at run time, the memory also comes from the heap. 37
Because your program will likely allocate and free blocks of memory many
times while it is running, the heap can become fragmented . At some point,
this fragmentation could prevent you from allocating a block of memory
even if there is enough total memory available. The problem might be
that there isn't enough contiguous memory available (see Figure 2.2) .
When this happens, the Macintosh memory manager can perform heap
compaction to collect all the smaller chunks of free memory and create a
larger contiguous block. However, in order to do this, the memory your
program allocates must be relocatable. Fixed memory allocation prevents
the Macintosh memory manager from performing heap compaction on
that memory. The following sections on pointers and handles will cover
the pros and cons of fixed versus relocatable memory allocation.

Heap after some
initial memory
allocations .

c::::::J Unused Block

Heap after some
blocks are freed

(fragmentation evident) .

Block to be
allocated

Though there 's enough total
memory to allocate the block,
there ' s not enough contiguous
free space in the heap . Heap
compaction will be necessary .

Figure 2.2 Heap fragmentation .

A very interesting and very, very bad thing can happen. Since the stack
and heap both grow toward the center of free memory, they can eventu
ally collide. Actually, it is the stack that will always collide with the heap

38

CHAPTER 2-Mac Toolbox Basics: Memory and Events

because the heap won't expand if there isn't enough memory to load a
resource or allocate memory. I can guarantee that a heap/stack collision
will produce most undesirable results. Make sure to fully test your game
to gauge memory usage so that the user never has to find out what terri
ble things happen when a program runs out of memory. You also need to
check to make sure memory you allocate actually gets allocated, and that
resource you try to load gets loaded. A simple check on a pointer or han
dle can prevent many system errors. Sure, a memory allocation error or
resource load error makes it difficult to continue program execution, but
if you catch it, you can at least exit gracefully.

Here's a little more detail on heap/stack collisions. Remember, I said
that the heap won't actually collide with the stack because the heap can't
expand if there isn't enough memory available for a memory allocation of
resource load. How does the Macintosh know when the heap can no
longer expand? Does it keep track of the exact size of the stack? The
answer is no, not really. There is an imposed limit by which the heap can
expand. This limit allows the stack to grow to a certain size without the
danger of colliding with the heap. Initially, your program is given a fixed
amount of memory (it used to be SK, but I think it's more like 24K today)
exclusively for the stack. This doesn't mean that the stack can't grow
greater than that limit, just that the heap isn't allowed to expand such that
less than that amount is available for the stack. If you really want, there are
several toolbox calls that allow you to manipulate the maximum heap size,
either to reduce or increase the reserved stack space. For more informa
tion, see the section in this chapter on memory management routines.

NIL versus NULL
In C, a NULL pointer is one that's set to 0 and considered uninitialized
(and not pointing to anything). The equivalent in Pascal is nil, and, you
guessed it, most toolbox calls return nil or take nil as a parameter
when pointers and handles are concerned. To be honest, ni 1 and NULL

are exactly the same thing, so you usually don't need to know the differ
ence. The following #define has been defined in Think C/Symantec
C++ so that you can use ni 1 in your C programs without worry:

CHAPTER 2-Mac Toolbox Basics: Memory and Events

#define nil NULL

Pointers
Macintosh pointers work pretty much like C pointers. Memory allocated
using any of the toolbox pointer routines is fixed, meaning that the mem
ory manager cannot move the memory during heap compaction. For this
reason, I· strongly recommend against allocating pointers in your game.
However, several toolbox routines take pointers as arguments, so you do
need to know a little about them. The following routines allow you to
allocate, manipulate, and free pointers to memory:

typedef long Size;

II Allocate a fixed block of memory.
Ptr NewPtr(Size sizeByteCount);

II Free a fixed block of memory.
void DisposPtr(Ptr ptr);

II Get the size of an allocated fixed block of memory.
Size GetPtrSize(Ptr ptr);

II Set the size of an allocated fixed block of memory, which
II can be greater or less than the current size.
void SetPtrSize(Ptr ptr,

Size sizeNew) ;

II Copy memory from one fixed block to another.
void BlockMove(Ptr ptrSource,

Ptr ptrDestination,
Size sizeByteCount);

Determining Memory Errors
The following toolbox definitions and function, MemError (} , allow you
to check the results of the previous call to a memory allocation routine.
Basically, a nonzero result code is bad.

CHAPTER 2-Mac Toolbox Basics: Memory and Events

#define NoErr
#define MemFullErr
#define NilHandleErr
#define MemWZErr
#define MemPurErr
#define MemLockedErr

typedef short OSErr;

OSErr MemError (void) ;

Handles

0 I I No error.
-108 11 Not enough room in heap.
-109 II Bad operation on empty handle.
-111 II Bad operation on free block.
-112 II Bad operation on locked block.
-117 II Tried to move a locked block.

Handles are used to allocate relocatable blocks of memory. They are very
important to Macintosh applications and should always be used instead of
pointers when allocating memory for your game. Basically, a handle is a
pointer to a pointer. The pointer that it points to is called a master pointer.
The master pointer points to the actual block of memory, and the handle
your program defines points to the master pointer (see Figure 2.3). Why
do all this? Well, a relocatable block of memory might just move when
the Macintosh does heap compaction. If the block of memory moved, the
pointer to that block of memory must change its value in order to be
pointing to the correct location (you don't want it pointing to where the
block of memory used to he). Because the Macintosh doesn't want to start
changing your variables on you, it changes the master pointer, which is
exclusively under the Macintosh's control. Your handle remains
unchanged because it points to the master pointer, which didn't move.
Just the memory block it's pointing to moved.

CHAPTER 2-Mac Toolbox Basics: Memory and Events

Program Memory

Heap

Block of Master Pointers

L
Master Pointer]4--

...
Relocatable memory

allocated by program

Stack

L Handle t---

Globals

Figure 2.3 The relationship between handles, master pointers, and relocat
able blocks of memory.

This brings up an interesting point. The master pointers can't move
because if they did, your handles wouldn't be pointing to them anymore.
For this reason, master pointers are fixed in memory. In order to reduce
any fragmentation this might cause (you don't want to be creating and
releasing master pointers every time a relocatable block of memory is allo
cated), a block of master pointers is allocated on the heap when your pro
gram runs. This fixed block contains 64 master pointers that your program
can use. What if you need more? Whenever your program allocates that
65th block of memory, a new master pointer is automatically created. This

42

CHAPTER 2-Mac Toolbox Basics: Memory and Events

in itself could cause memory fragmentation, because the newly allocated
master pointer is fixed in memory and won't move during heap com
paction. Most times, though, this shouldn't be a problem because you'll
probably not need more than 64 handles for your game. However, if you
are certain you'll need more, you can manually create additional blocks of
master pointers during your program initialization so that those addition
blocks will remain near the top of the heap (and not get "in the way'' later).

The following routines allow you to allocate, manipulate, and free
handles to memory:

II Allocate a relocatable block of memory. The new handle
11 is unlocked and unpurgable (see handle flags below).
Handle NewHandle(Size sizeByteCount);

II Allocates a new master pointer, sets it to nil and returns
II a pointer to it.
Handle NewEmptyHandle (void) ;

II Returns a handle, given it's master pointer.
Handle RecoverHandle(Ptr ptrMaster);

II Free a relocatable block of memory.
DisposHandle (Handle handle) ;

II Get the size of an allocated relocatable block of memory.
Size GetHandleSize(Handle handle);

II Set the size of an allocated relocatable block of memory,
II which can be greater or less than the current size.
void SetHandleSize (Handle handle,

Size sizeNew);

II Move a relocatable block of memory as near as possible to
II the end of the heap. If you are locking a block of memory
II for an extended amount of time, using this call will
II minimize interference of the locked block with heap
I I compaction.
void MoveHHi (Handle handle) ;

II Create a copy of a relocatable block of memory. On input,
II the handle points to the source block. On output, the
II handle points to the copy.
OSErr HandToHand (Handle *pHandle) ;

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Copy a fixed block of memory to a new relocatable block
I I of memory.
OSErr PtrToHand(Ptr

Handle
long

ptrSource,
hNewHandle,
lByteCount) ;

II Copy a fixed block of memory to an existing relocatable
II block of memory.
OSErr PtrToXHand (Ptr

Handle
long

ptrSource,
handleDestination,
lByteCount) ;

II Append a relocatable block of memory after another.
OSErr HandAndHand (Handle hSource,

Handle hDestination);

II Append a fixed block of memory after a relocatable block
II of memory.
OSErr PtrAndHand(Ptr

Handle
long

ptrSource,
hDestination,
lByteCount) ;

II Purges a relocatable block of memory, but keeps it's
II master pointer which gets set to nil. In most cases
II you'll use DisposHandle() to free a handle and it's
II master pointer.
void EmptyHandle (Hande handle) ;

II Reallocates a relocatable block of memory after it's
II handle has been purged using the ErnptyHandle() call.
void ReallocHandle (Handle handle,

Size sizeNeeded);

II Create an additional block of 64 master pointers.
void MoreMasters (void) ;

Handle Flags

Handles have three characteristics: locked, purgable, and resource. The
locked flag determines whether or not a block of memory can be moved.
A locked block of memory cannot be relocated. A purgable block of
memory can be removed from the heap during a memory purge. The
resource flag specifies whether or not a block of memory is a resource.

43

44

CHAPTER 2-Mac Toolbox Basics: Memory and Events

For most cases, the only flag you will need to change is the locked
flag (using the HLock () and HUnlock () toolbox calls). The resource
flag is automatically set for loaded resources, and the purgable flag is
mainly a characteristic of resources. Of course, you could set your own
allocated handle to be purgable, but that almost never makes much sense.
You wouldn't want the Macintosh operating system to purge a block of
memory you allocated when it feels like it because you might just try to
use it later. If you didn't need the memory anymore, you'd have freed it
yourself right?. Here are the routines to set and reset the resource and
purgable flags of a handle (the locked flag will be discussed in detail in
the next section):

II Make a relocatable block of memory purgable.
void HPurge(Handle handle);

II Make a relocatable block of memory unpurgable.
void HNoPurge (Handle handle) ;

II Set the resource flag of a handle.
void HSetRBit(Handle handle);

II Clear the resource flag of a handle.
void HClrRBit(Handle handle);

Locking Handles

One drawback to using handles is that it takes two dereferences to get at
the data to which they point. First, you need to dereference the handle to
get the master pointer, and then the master pointer to get at the data. If
you are only doing this a couple of times, the time penalty of two derefer
ences probably won't hurt. However, speed is of the essence frequently in
games. You may need to reference the data many times in a loop, and two
dereferences are going to slow things way down. No, the solution is not
to allocate a fixed block of memory when you'll need to access in a loop.
Fixed memory is bad, remember. You could store a copy of the master
pointer in a local variable and use it for the loop, eliminating the need to
dereference the handle each time. This sounds like a reasonable solution
until you think about the possibility that the memory block you're refer-

CHAPTER 2-Mac Toolbox Basics: Memory and Events

encing might move before you're through with it. The copy of the master 45
pointer would then point to lala land, and a system error would be likely.
So what's a poor programmer to do? Well, maybe if we could make the
memory block fixed for a short period, while it's being processed, and
then set it back to relocatable when we're done, all our problems would
be solved. There are toolbox calls to do just this. So, when you need to
process a block of relocatable memory (one to which you have defined a
handle), you should lock it first, do your work, then unlock it so it can be
moved later if necessary. Here are the routines:

II Lock a relocatable block of memory so it can't be moved.
void HLock(Handle handle);

II Unlock a relocatable block of memory so that it can be
II moved again.
void HUnlock(Handle handle);

The following code fragments show how to allocate a new memory block
using a handle, and lock that handle so that it can be accessed quickly in a
loop (the functions and definitions can be found in their entirety in
Scores Wmdow.c and Scores Wmdow.h):

II These are fragments of the Desert Trek definitions, used for
II this example only.
typedef struct _SCORE
{

long lScore;
SCORE, *PSCORE, **HSCORE;

typedef struct _SCORES
{

SCORE Score[lO] [10];
SCORES, *PSCORES, **HSCORES;

static HSCORES hScores;

void InitializeScoresWindow(void)

short sLoop;
PSCORES pScores;

46

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Create a relocatable block of memory for the high scores
hScores = (HSCORES) NewHandle(sizeof(SCORES));

II Lock the block so it can't be moved while we're processing
II it
HLock((Handle) hScores l;

II Get a copy of the master pointer
pScores = *hScores;

II Process the high scores data structure
for(sLoop = O; sLoop < 10; sLoop++

pScores->Score[O] [sLoop] .lScore = O;

II Make the block movable again
HUnlock ((Handle) hScores) ;

Referencing a Data Element Using a Handle

Here's a quick example of how to get at a data element of a handle point
ing to a relocatable data structure. First you need to dereference the han
dle to get the master pointer, and then access the data element within the
structure pointed to by the master pointer.

#define NAME_LENGTH 20

typedef struct _NAME
{

char szName [NAME_LENGTH + 1] ;
NAME, *PNAME, * *HNAME;

static HNAME hScoreName;

II Reference the szName element of the data structure pointed
II to by the hScoreName handle.
(*hScoreName)->szName

Memory Management Routines
You can let the Macintosh operating system take care of all the memory
management for you, but if you would like to take a little control over

CHAPTER 2-Mac Toolbox Basics: Memory and Events

some of the memory yourself, the memory manager provides a number of 41
toolbox calls:

II Returns the total number of bytes available in the heap.
long FreeMem (void) ;

II Returns the size of the largest block of memory that can
II be allocated via compaction. No compaction actually takes
II place.
long MaxBlock(void);

II Obtains both the total number of bytes available and the
II largest contiguous block available on the heap if a purge
II occurred. No purge actually takes place.
void PurgeSpace(long *lTotalBytes,

long *lContiguousBytes);

II Compacts memory in an attempt to make a contiguous block
II of the size specified. It returns the size of the largest
II block available after heap compaction. No memory is
11 allocated.
Size CompactMem(Size sizeNeeded);

II Purges all relocatable memory blocks that are purgable
II and unlocked in an attempt to make a contiguous block of
II the size specified available. No memory is allocated.
void PurgeMem (Size sizeNeeded) ;

II Purges all purgable memory blocks, and compacts the heap
II in order to create the largest possible contiguous block
II of memory. The function returns the size of the
II largest contiguous free block of memory. The
II sizeExapandBytes parameter will contain the size by
11 which the heap can be expanded. No memory is actually
II allocated, and the heap is not expanded.
Size MaxMem(Size *sizeExpandBytes);

II Reserves a block of the requested number of bytes as
II near as possible to the start of the heap. Compaction
II and purging may take place. No memory is allocated.
void ResrvMem(Size sizeNeeded);

II Returns how much the stack can grow before colliding
II with the heap.
long StackSpace (void) ;

48

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Obtain a pointer to the end of the heap.
Ptr GetApplLimit(void);

II Set the heap limit to the specified address (not that
II this is not the new size of the heap, but an actual
I I address) .
void SetApplLimit(Ptr ptrNewLimit);

II Expands the heap to it's largest size, as defined by
II the current heap limit.
void MaxApplZone (void) ;

Strings

Remember, most toolbox calls that take strings as parameters require
those strings to be in the Pascal format (with a length byte and no need
for a null terminator). However, many times you'll want to use the stan
dard C string functions to manipulate strings in your program. What's a
poor programmer to do? Well, first of all, be very careful. You do not
want to pass a C string to a toolbox call expecting a Pascal string. Neither
do you want to pass a Pascal string to a C library call that's expecting a
null-terminated C string. In both cases, you will get unexpected results
(often leading to a system error).

Many compilers provide two functions that convert C and Pascal
strings to the other. The converted string overlays the original string in
memory (the two strings occupy up the same amount of storage-the
Pascal string has a length byte and the C string has a null-terminating
character).

II The first byte is the length indicator, so the maximum
II string length is 255 characters.
typedef unsigned char Str255[256];
typedef unsigned char *StringPtr;
typedef unsigned char **StringHandle;

unsigned char *CtoPstr(char *);
char *PtoCstr(unsigned char*);

CHAPTER 2-Mac Toolbox Basics: Memory and Events

One thing to keep in mind is that C strings are typically defined as 4.t;.:
char [],whereas the C types for Pascal strings (Str255, StringPtr,
and StringHandle) are defined as unsigned char [J. This means
that you will need to typecast converted strings when making toolbox and
C library calls (converted C strings will need to be typecast as (unsigned
char *) when calling toolbox routines, and converted Pascal strings will
need to be typecast as (char*) when calling C routines).

For Desert Trek, I have created two defines to make the typecasting a
little more readable:

#define Pstr unsigned char *
#define Cstr char *

One final note. If you want to create a Pascal string constant, you need to
prefix the string with '\p' or '\P'. In other words, the C string "Hello"
would look like this: "\pHello". How about an example? The following
fragment comes from the Desert Trek source file File 110.c. Don't worry
too much about the toolbox calls we haven't covered yet. They will be
covered later.

#define FILE_ERROR_STRINGS 129
#define FILE_ERROR_PREFIX 1

#define Pstr unsigned char *
#define Cstr char *

static void PostIOError(OSErr osErr)
{

Str255 str255;
char szError[80];

II Loads a string from the resource file into str255. This is
II a Pascal format string.
GetindString(str255, FILE_ERROR_STRINGS, FILE_ERROR_PREFIX) ;

II Convert the Pascal format string into a C format string.
PtoCstr(str255);

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Copy the loaded string into the szError (both strings are C
II format.strings, but str255 needs to be typecast since it was
II originally defined as a Pascal format string).
strcpy(szError, (Cstr) str255);

II Convert the error number to a string. str255 will now be
II a Pascal format string again.
Numl'oString(osErr, str255);

II Convert str255 to a C format string.
PtoCstr(str255);

II Add the error number to the end of szError.
strcat(szError, (Cstr) str255);

II Convert szError to a Pascal format string since we want to
II use it in a toolbox call.
CtoPstr(szError);

II Set szError as a parameter string to a dialog. Remember,
II toolbox calls require Pascal format strings. Notice that
11 the empty strings are specified in Pascal format ("\p").
ParamText ((Pstr) szError, "\p", "\p", "\p") ;

String/Number Conversion Toolbox Routines
It is frequently handy to convert numbers to strings and strings to num
bers. For example, you may want to display a number on the screen,
which requires a string representation of that number. There are, of
course, standard C library calls to do this for you, but the Macintosh
toolbox also provides a couple of calls. Of course, the strings used as
input and returned as output are Pascal format strings. This is exactly
why you might want to use these calls. Since you are probably going to
get the strings from a toolbox call, you might as well convert them to a
number without having to first convert the string to a C format string
(which you would need to do if you used a C library call to convert the
string to a number).

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Converts a long integer into a Pascal format string.
void NurnToString(long linput,

Str255 str2550utput);

II Converts a Pascal format string to a long integer.
void StringToNurn(Str255 str255Input,

long *lOutput) ;

Events

The main task of any Macintosh application is to receive and process
events. This is especially true for games because the player drives what
happens in the game. In addition to responding to events, a game usually
needs to do some background processing even when the user generates
no events. In other words, you may need to move an enemy ship, play a
sound, or update a timer even if the player doesn't enter a move. Lastly,
your game isn't the only thing running on the Macintosh. Good
Macintosh applications, including games, occasionally give up some time
to the system so that other processes can get the CPU (which includes
the Macintosh operating system itself). Do all this and have great graph
ics. Sounds tough to accomplish, doesn't it? Don't worry, though, it's easy
once you know the trick.

Waiting for and Getting Events

There are two ways to check for events posted to your game. The origi
nal method used to check for events required you to repeatedly call a
toolbox function to see if there was an event posted to your application. If
no event was posted, you needed to continue calling the function until
you finally got an event. This method also required you to call a different
toolbox function to give up CPU time to the system. After System 7 was
released, a new toolbox call was added that allows you to wait for events.
You no longer need to repeatedly call a function, since this toolbox call
doesn't return until an event is posted to your application. Also, while

51

CHAPTER 2-Mac Toolbox Basics: Memory and Events

you're waiting, the system gets all the CPU time it needs. This new tool
box call also allows you to specify a timeout value so that you can do any
background processing your game needs. However, you can't assume that
the Macintosh your game is running on has the new toolbox call, so you
must be prepared to use either method.

To determine if the Macintosh you're game is running on supports a
particular toolbox call, you can use the following toolbox function:

II TrapType values
enum { OSTrap, ToolTrap };

II Get an operating system or toolbox trap address.
long NGetTrapAddress(short sTrapNumber,

TrapType trapType) ;

To check if a particular toolbox call exists, you need to get its trap address
·and compare it to something. That something is the address of a special
trap, the _Unimplemented trap. So, if the trap address of the toolbox call
you're inquiring about has the same address as the _Unimplemented
trap's address, the Macintosh your game is running on does not support the
toolbox call in question. So, how do you know the trap number of a partic
ular toolbox call? In general, it's the toolbox call prefixed with an under
score (for example, _Wai tNextEvent). Your C compiler should come
with a header file, Traps.h, that lists all the trap numbers.

The following code sample shows how to use NGetTrapAddress () to
determine whether or not the Macintosh supports the Wai tNextEvent ()
toolbox call:

static Boolean bHasWaitNextEvent = false;

II This Mac supports WaitNextEvent if NGetTrapAddress doesn't return the
II _Unimplemented trap address.
bHasWai tNextEvent = (NGetTrapAddress (_Wai tNextEvent, Tool Trap) ! =

NGetTrapAddress (_Unimplemented, Tool Trap)) ;

Now that you know whether this Macintosh supports the
Wai tNextEvent () toolbox call, here's what it looks like:

CHAPTER 2-Mac Toolbox Basics: Memory and Events

I I Event Masks for Wai tNextEvent () and GetNextEvent ()
enurn {
everyEvent = -1,
mDownMask = 2,
mUpMask = 4,
keyDownMask = 8,
keyUpMask = 16,
autoKeyMask = 32,
updateMask = 64,
diskMask = 128,

II Check for all events
II Mouse down events
II Mouse up events
I I Key down events
I I Key up events
II Key repeat events
II Update events
II Disk events

activMask = 256,
highLevelEventMask = 1024,
osMask = -32768

II Activate events
II High level events
II Operating system events

};

II The Event Record Structure
struct EventRecord
{

short what; II Event type
long message; II Event specific data
long when; I I Time when event occurred
Point where; II Mouse location of event
short modifiers; II Keyboard and Mouse state

};

II Get's the next event posted to your application. If
II there's no event, let other processes use the CPU for
II up to the amount of time specified in lSleepTime.
Boolean WaitNextEvent(short sEventMask,

EventRecord *pEvent,
long lSleepTime,
RgnHandle hRgnMouse) ;

In a moment, we'll look at the EventRecord structure in more detail.
First, though let's examine the WaitNextEvent () parameters. The
sEventMask parameter specifies the events we want to look for. Typically,
you'll want to look for all events posted to your game. Note that even if
you ignore certain events by masking them out, those events remain on
your game's event queue. Eventually, you'll need to process them. The
EventRecord structure returns the details of the event posted to your
game. Again, more on that later. The lSleepTime parameter specifies
how long you're willing to wait for an event without getting any CPU

54

CHAPTER 2-Mac Toolbox Basics: Memory and Events

time to do background processing for your game. If your game has no
real-time components, you could wait indefinitely. However, you usually
will want to do something about once every clock tick. (By the way, a
clock tick is 1/60th of a second.) The hRgnMouse specifies a region
(regions will be discussed in Chapter 7 on Quickdraw) in which your
application will get mouse move events. Most of the time, you won't need
to worry about mouse move events, so you'd pass ni 1 as this parameter.
Finally, this routine returns true or false, depending on whether an
event was posted to your game (in other words, true means you got an
event, false means that you didn't get an event and the sleep time
period elapsed).

If the Macintosh your game is running on does not support
Wai tNextEvent (),you need to use the following toolbox calls:

II Get the next event for your application from the event
II queue (if there is an event).
Boolean GetNextEvent(short sEventMask,

EventRecord *pEvent) ;

II Give up the CPU to other processes. Apple recommends that
II it be called at least once a tick (1160th of a second).
II You should call it just before GetNextEvent(). Even if
II you are using WaitNextEvent(), you need to use this call
II if your game does a lot of processing based on an event so
II that other tasks don't get "starved" while you do your
II processing.
void SystemTask(void);

Previously in this chapter, you saw the main () function of Desert Trek.
Basically, all it did was call another Desert Trek function to check for
events until the program ended. Here's how Desert Trek checks for events:

static void CheckEvent(void
{

EventRecord eventRecord;
Boolean bEvent;
short sitemHit;
DialogPtr pDialog;

II If this Macintosh supports WaitNextEvent(), use it to wait

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II for an event. We'll wait for up to 1 tick for an event
II before dropping out so we can do backgroWld processing.
if (bHasWaitNextEvent)

bEvent = WaitNextEvent (everyEvent, &eventRecord, lL, NULL) ;

II This Mac doesn't support WaitNextEvent(), so we need to use
II GetNextEvent(). In addition, we need to give the system
II some time to process other applications, so we also need to
II call SystemTask().
else

SystemTask();
bEvent = GetNextEvent (everyEvent, &eventRecord) ;

II Perform any backgroWld processing. Desert Trek doesn't
II really have any other than to check to see if any soWlds
II that were playing are finished.
CheckSoWld () ;

II If there was an event, process it.
if (bEvent)

HandleEvent (&eventRecord) ;

II There was no event, but since Desert Trek uses modeless
II dialog boxes, we need to check to see if there was a
II dialog event and if so, call DialogSelect() to make sure
II that text edit cursors blink correctly in that dialog.
else

if (IsDialogEvent(&eventRecord))
DialogSelect(&eventRecord, &pDialog, &sitemHit);

Let's examine the CheckEvent () function in detail. Remember, there
are two toolbox calls to get an event posted to your program. The pre
ferred method is Wai tNextEvent () because it automatically gives CPU
time to other processes running on the Macintosh. However, if
WaitNextEvent () is not supported, you'll have to use
GetNextEvent () along with SystemTask () (in order to give up the
CPU to other processes). In any case, both toolbox calls return true if an
event was retrieved for your game, false if no event was retrieved.
Before processing an event, if there was in fact one, Desert Trek calls its
own function, CheckSound () . This is the only work Desert Trek per-

CHAPTER 2-Mac Toolbox Basics: Memory and Events

fonns in the background. You'll want to put anything else your game does
in the background here. When I say background, I mean any work your
program has to do that is, for the most part, independent of events. This
might be to move the asteroids a little, scroll an introduction story (as in
my Galactic Empire game, which you can find on the CD-ROM), or close
a no longer needed sound channel (which is what Desert Trek does).

The last thing CheckEvent () does is determine whether there was an
event posted to Desert Trek. If an event was posted, the routine
HandleEvent () is called to deal with it. H no event was posted, though, we
aren't done. Desert Trek uses modeless dialog boxes. Modeless dialog boxes,
which are described in much more detail in Chapter 6, are essentially special
dialog boxes that can remain on the screen along with your other game win
dows. Many dialog boxes have text edit boxes within them to allow the user
to input text (such as a name for the high scores list) and need to have the
cursor within the selected text edit field blink. A special event is posted to
your game to enable the cursor to blink within a modeless dialog boxes text
edit field. The interesting thing about this event is that Wai tNextEvent ()
and GetNextEvent () both return false, as if there wasn't really an
event for your game. This is somewhat true, since your game didn't really get
an event worth processing. The event was really meant for any modeless dia
log boxes you have. In any case, even if you think no event was posted to
your game, you need to call the IsDialogEvent () toolbox call to see if
any dialogs your game displays have a special event waiting for them. H so,
the DialogSelect () toolbox call automatically handles the special event
destined to the dialog (so you don't need to bother with it). More on these
toolbox calls is discussed in Chapter 6.

Determining What Event Occurred
After your game receives an event, what do you do with it? The first
thing you need to do is determine the type of event. Was it mouse click,
keystroke, or update event? The following is a list of events your game
might receive, which gets reported to your game in the what field of the
EventRecord data structure:

CHAPTER 2-Mac Toolbox Basics: Memory and Events

en um

} ;

nullEvent = 0,
mouseDown = 1,
mouseUp = 2,
keyDown = 3,
keyUp = 4,
autoKey = 5,
updateEvt = 6,
diskEvt = 7,
activateEvt = 8,
osEvt = 15,

II Null event (no event available)
II Mouse down event
II Mouse up event
II Key down event
I I Key up event
II Auto key (repeated key)
II Update event
I I Disk event
II Activate event
II Operating system event

Desert Trek cares about the following events: mouseDown, keyDown,
autoKey, udpateEvt, activateEvt, and osEvent. For most cases,
these are the only events your game need to respond to. Here's the
HandleEvent () routine from Desert Trek:

static void.HandleEvent(EventRecord *pEvent
{

switch (pEvent->what
{

case mouseDown:

HandleMouseEvent (pEvent) ;
break;

case keyDown:
case autoKey:

HandleKeyEvent (pEvent) ;
break;

case updateEvt:

HandleUpdateEvent (pEvent) ;
break;

case activateEvt:

HandleActivateEvent(pEvent);
break;

CHAPTER 2-Mac Toolbox Basics: Memory and Events

case osEvt:

HandleOSEvent (pEvent) ;
break;

Handling Mouse Events
Mouse events are probably the most difficult to process since the mouse
can be used to do many different things in an application. These actions
include selecting a menu item, moving a window, or clicking on a button
in a window or dialog box. The first thing you need to do is determine
where the mouse event occurred. Wmdows are broken up into different
regions, such as the title bar, close box, or the content of the window
itself. You'll need to determine not only which window the mouse event
affects, but also the region of that window where the mouse was clicked.
The following toolbox call does just that:

short Find.Window(Point ptMouseLocation,
WindowPtr *pWindow) ;

You simply supply the where field of the EventRecord data structure,
and get back the WindowPtr of the window affected as well as the
region within the window where the mouse was clicked (window pointers
are discussed in Chapter 4.) This window region is commonly referred to
as the window "part," and the following values represent the window
parts that can be returned by FindWindow ():

en urn

} ;

inDesk = 0,
inMenuBar = 1,
inSysWindow = 2,
inContent = 3,
inDrag = 4,
inGrow = 5,
inGoAway = 6,
inZoomin = 7,
inZoomOut = 8

II Macintosh Desktop
II Menubar
11 System window
II Content region of a window
II Title bar
I I Grow region
II Close box
II Zoom region for a "zoomed-out" window
II Zoom region for a "zoomed-in" window

CHAPTER 2-Mac Toolbox Basics: Memory and Events

If the mouse event occurs in a system window, you don't want to process $)
it yourself. Instead, you'll want to pass that event back to the system
using the following toolbox call:

void SystemClick(EventRecord *pEvent,
WindowPtr pWindow) ;

For mouse clicks in the zoom box, close box, size region, and title bar, all
you need to do is call the following toolbox routines and the appropriate
window action will be taken care of for you. These routines take two com
mon parameters: ptStart, which specifies where the mouse was clicked,
and pWindow, which specifies the window to affect. You need to pass the
where parameter of the EventRecord data structure for ptStart, and
the pWindow returned by FindWindow () for pWindow.

II Moves a window based on a user click event in the window's
II title bar. rectDragLimit limits where the user can move
II the window. Basically, it's where the user is allowed to
II release the mouse.
void DragWindow (WindowPtr

Point
Rect

pWindow,
ptStart,
rectDragLimit);

II Automatically sizes the window, based on mouse movement
II by the user. You need to specify the maximum size of the
II window in the rectSizeLimit parameter.
long GrowWindow(WindowPtr pWindow,

Point ptStart,
Rect rectSizeLimit);

II Tracks the mouse in the zoom box of a window. You need
II to pass the window part returned by FindWindow() as the
II sWindowPart parameter. This call returns true if the
II mouse button is released in the zoom box, false if not.
II If this toolbox call returns true, you need to call
II zoomWindow() to actually perform the zoom. See chapter 4
II on windows for the prototype of ZoomWindow().
Boolean TrackBox (WindowPtr pWindow,

Point ptStart,
short sWindowPart);

II Tracks the mouse in the close box of a window. This call
II returns true if the mouse button is released in the

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II close box, false if not. If this toolbox call returns
II t:cue, you need to close the window yourself (typically
II with CloseWindow(), which is discussed in chapter 4).
Boolean TrackGoAway(WindowPtr pWindow,

Point ptStart) ;

The following routine from Desert Trek handles mouse down events:

static void HandleMouseEvent(EventRecord *pEvent)
{

short sWindowPart;
short sWindowID;
WindowPtr pWindow = nil;
Rect rectDragArea;

I I Find in which window and window part the mouse was clicked.
sWindowPart= Find.Window(pEvent->where, &pWindow) ;

11 Get the Desert Trek window ID of the window clicked. More
II on this can be found in chapter 4 on windows.
sWindowID = (short) GetWRefCon (pWindow) ;

II If the user clicked in a system window, let SystemClick()
II handle it.
if (sWindowPart == inSysWindow)

SystemClick(pEvent, pWindow) ;

II If the user clicked in the menubar, see which menu item was
I I selected. More on this can be folllld in chapter 5 on menus.
else if (sWindowPart == inMenuBar)

HandleMenuSelection(MenuSelect (pEvent->where)) ;

II If an application modal dialog is being displayed, and the
II window the user clicked on wasn't the dialog, beep since the
II user is not allowed to work with other Desert Trek windows
I I when an application modal dialog is up. See chapter 6 for
II more information.
else if ((IsAppModalDialogup()) &&

(pWindow ! = GetAppModalDialogWindow ()))
SysBeep (1) ;

II If the Desert Trek window the user clicked on wasn't the
II frontmost window, make it the frontmost window.
else if (pWindow != FrontWindow())

CHAPTER 2-Mac Toolbox Basics: Memory and Events

SelectWindow (pWindow) ;

II See what part of the window the user clicked on.
else switch (sWindowPart)
{

II User wants to move the window.
case inDrag:

II Let the user move the window anywhere on the screen.
rectDragArea = screenBits.bounds;
DragWindow(pWindow, pEvent->where, &rectDragArea);
break;

II The user might be trying to close the window.
case inGoAway:

if (TrackGoAway(pWindow, pEvent->where))
HandleCloseWindow(sWindowID);

break;

II The user clicked in the content of a Desert Trek window.
case inContent:

HandleMouseDowninContent (pEvent, sWindowID) ;
break;

Handling mouse down events in the content region of a window is some
thing many games are going to need to do, and we'll take a closer look at
processing them in Chapter 4.

Handling Keyboard Events
When the user presses a key, the game will receive a keyboard event.
There are two basic types of keyboard events, but usually you will handle
them in the same way. The first is the keyDown event, which occurs when
the user presses a key. The second is the autoKey event, which occurs
when the user holds down a key for a certain amount of time and the key
starts automatically repeating (so, you'll first get the keyDown event, then
a little bit later, many autoKey events until the user releases the key).

6:2

CHAPTER 2-Mac Toolbox Basics: Memory and Events

In addition to the key being pressed, you frequently need to know
what modifier keys were held down. For example, if a key press is accom
panied by the Command key, chances are that the user is attempting to
use a Command key shortcut for a menu item. Modifier keys include the
Shift, Command, Control, and Option keys, as well as whether the
Caps Lock key was down or not. The state of the modifiers can be found
in the modifiers field of the EventRecord data structure. You need to
use bit operators to determine which of the following modifier keys were
pressed for the event. A code sample showing how to do this follows:

en urn

} ;

btnState = 128,
cmdKey = 256,
shiftKey = 512,
alphaLock = 1024,
optionKey = 2048,
controlKey = 4096

II Mouse button down?
II Command key down?
II Shift key down?
II Caps lock down?
II Option key down?
II Control key down?

The message field of the EventRecord data structure contains the key
pressed. You can extract either the character code or key code from this
field using the following two masks:

en urn

} ;

charCodeMask = OxOOOOOOFF,
keyCodeMask = OxOOOOFFOO

II The character itself
II The key code

The following code segment shows how Desert Trek handles a key event.
Notice that the code first determines which window the keystroke
belongs to by using the FrontWindow () toolbox call (which is
described in Chapter 4). Each type of window in Desert Trek (the main
window, the high scores window, the about window, etc.) has its own
event-handling routine, and the correct one needs to be called when a
key event is posted.

CHAPTER 2-Mac Toolbox Basics: Memory and Events

static void HandleKeyEvent(EventRecord *pEvent
{

short sWindowID;
WindowPtr pWindow = nil;

II Determine which window was the front window - it gets the keystroke.
II See chapter 4 on Windows for a description of these toolbox calls.
pWindow = FrontWindow () ;
sWindowID = (short) GetWR.efCon(pWindow) ;

I I If the cOilll!land key was down, handle it as a menu selection. See
I I chapter 5 on menus for the MenuKey () toolbox call. Notice that
II we pass the character code to the MenuKey() function.
if (pEvent->modifiers & cmdKey)

HandleMenUSelection(MenuKey((char) (pEvent->message &

charCodeMask))) ;

I I Pass the key event to the appropriate routine.
else switch (sWindowID)
{

case HELP_WINDOW_ID:

DoinfoWindowEvent (GetinfoWindowPtr (HELP_WINDOW_ID) , pEvent) ;
break;

case CARYS_GAMES_WINDOW_ID:

DoinfoWindowEvent (GetinfoWindowPtr (CARYS_GAMES_WINDOW_ID) ,
pEvent) ;

break;

case SCORES_WINDOW_ID:

DoScoresWindowEvent (pEvent) ;
break;

case ABOUT_WINDOW_ID:

HandleAboutWindowEvent (pEvent) ;
break;

case APP_MODAL_DIALOG_ID:

DoAppModalEvent (pEvent) ;
break;

CHAPTER 2-Mac Toolbox Basics: Memory and Events

The following code segment shows how to determine which key was
pressed (the complete function's code can be found in Scores
Wmdow.c).

void DoScoresWindowEvent(EventRecord *pEvent)
{

short scharCode;

II If this is a key down event
if (pEvent->what == keyDown)
{

II Get the character pressed using the BitAnd() toolbox call.
I I The Bi tAnd () toolbox call is equivalent to the & operator.
I I e.g. : scharCode = pEvent->message & charCodeMask
scharCode = BitAnd(pEvent->message, charCodeMask) ;

II If the Return or Enter key was pressed, simulate a click
II on the OK button.
if ((scharCode == 13) I I (scharCode == 3))
{

II Highlight the OK button and close the high scores window.

II If 0 through 9 was pressed, change the skill level being
II viewed in the high scores screen (0 means skill level 10).
else if ((scharCode >= '0') && (scharCode <= '9'))
{

II Change the skill level viewed.

Handling Update Events
Update events occur when a window needs to be redrawn. For reasons
why a window needs to be redrawn, see Chapter 4. The most important
thing to do here is to determine which window needs to be updated. The
message field of the EventRecord structure contains the window
pointer of the window that needs updating. The following code snippet
shows how to get the window pointer from the event:

CHAPTER 2-Mac Toolbox Basics: Memory and Events

static void HandleUpdateEvent(EventRecord *pEvent)
{

WindowPtr pWindow = nil;

pWindow = (WindowPtr) pEvent->message;

Update events will be covered in much more detail in Chapter 4.

Handling Activate Events
Activate events occur when one of your game windows becomes active or
inactive. When the user clicks from window to window in your game,
the new window clicked on gets an activate event while the window that
used to be active gets a deactivate event. For the most part, you game
needs to do very little in response to an activate event. However, if the
window getting activated or deactivated contains a scrollbar, you need to
active or deactivate that scrollbar accordingly. To determine which win
dow in your game received the activate or deactivate event, simply use the
message field of the event record, just as in the case of the update event.
Lastly, you need to know whether or not the specified window was acti
vated or deactivated. This information is contained within the modifiers
field of the event record. The toolbox defines a bit mask that allows you
get at the modifier bit for activate events, called activateFlag. The fol
lowing function from Desert Trek handles an activate event, determining
which window the event was for, and whether the event was an activate or
deactivate event. This function can be found in "Main.c"

static void HandleActivateEvent(EventRecord *pEvent
{

WindowPtr pWindow = nil;
Boolean bActivated;

II Determine the window that got the activate event.
pWindow = (WindowPtr) pEvent->message;

II Determine whether the window was activated or deactivated.
bActivated = (Boolean) BitAnd(pEvent->modifiers, activeFlag);

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Process the activate event.
ActivateDeactivateWindow(pWindow, bActivated);

Handle Operating System Events
The operating system events that you would want your game to respond
to include suspend and resume events. A suspend event is sent to your
game when the user switches to another application running on the
Mactinsoh. A resume event gets sent to your game when the user
switches from another application running on the Macintosh to your
game. Chapter 10 on Sound will cover these events in detail since you'll
primarily need to take care of sound chores when receiving one of these
operating system events.

General Event Toolbox Routines
There are several additional even-trelated toolbox calls that you may find
useful. Here is a list of them:

II Checks for an event without removing that event from the
I I event queue. Returns true if an event is found, and
II pEvent contains the event record data for the event.
Boolean EventAvail(short sEventMask,

EventRecord *pEvent) ;

II Removes all events of type sEventMask from the event
II queue. sStopMask causes FlushEvents() to stop when an
II event of that type is encountered (in other words, all
II events in the queue after sStopMask are kept, even if they
11 are of type sEventMask).
void FlushEvents(short

short
sEventMask,
sStopMask) ;

II Get the current mouse location in local coordinates. See
II chapter 7 on quickdraw for the Point definition as well as
II the difference between local and global coordinates.
void GetMouse(Point &ptMouseLocation);

CHAPTER 2-Mac Toolbox Basics: Memory and Events

II Returns true if the mouse button is down.
Boolean Button(void);

II Returns true if the mouse is down and there are no mouse
II events pending in the event queue. In other words, the
II mouse is still down from the previous mouse down event.
Boolean StillDown(void);

II Does the same as StillDown(), but removes the
II corresponding mouse up event from the event queue before
II returning false.
Boolean WaitMouseUp(void);

II Returns a bit array of which keys are currently pressed
II on the keyboard. At first, this seems like a good way to
II get keys for a game, since you can just read the keyboard
II state at any time. However, note that only two keys will
II be reported down by the Macintosh at any one time - it's a
II limit imposed by the Macintosh (this doesn't include the
II modifier keys, so you get up to two keys and the state of
II the shift, caps lock, control, option, and command keys).
typedef long KeyMap[4J;
void GetKeys(KeyMap keyMapKeys);

II Returns the number of ticks since the system was started.
II A tick is approximately 1160th of a second.
long TickCount (void) ;

II Causes your program to stop for !Duration ticks. It's
II primary use in games is to cause animation rates to be
II the same on different speed Macs (you can slow down faster
II Macs so the game isn't too fast). However, you should
II never use this function since it causes the entire Mac to
II come to a screeching halt, and that's poor form in a
II cooperative multitasking environment. The same effects
II can be achieved using another method that allows the Mac
II to continue processing other applications. Chapter 7 on
II quickdraw covers the other method. I show you this
II toolbox call so that I can tell you never, ever, under any
II circumstances to use it!!!!
void Delay(long !Duration,

long *plEndTickCount);

68

CHAPTER 2-Mac Toolbo x Basics: Memory and Events

T I P

In case you missed the point, you should never use the Delay() tool
box call in your game. However, there are frequent times when
you'd like to have events take the same amount of time regardless
of how fast the Macintosh your game is running on can execute your
code. For example , Desert Trek's scene fades take the same amount
of time on any Macintosh, regardless of its speed (well, if you want to
get really technical, super slow Macintoshes might cause the fade to
take a little longer, but I won 't admit to it!). If I did not put some type
of delay in there , very fast Macintoshes would execute the scene
fade code so fast that the player would completely miss it. How did I
do it? Well , I created a routine called NiceDelay() which delays for
the specified amount of time (just like the Delay() toolbox routine) ,
but gives other tasks running on the Macintosh processor time.
Here's the code, which can be found in "Common Functions.c".

void NiceDelay(long lDelay I
{

long lStartTime;
long lEndTime;

II Initial ize the timer.
lStartTime = TickCount();

II Delay for the specified amount of time, giving other processes the chance
II to execute while we're delaying. Notice that we continue to perform
II Desert Trek's background processing while delaying. The only background
II processing Desert Trek does is to check to see if any sounds have
II finished playing.
do
{

SystemTask (I ;
CheckSound (I ;
lEndTime = TickCount();

} whi le ((lEndTime - lStartTirne) < lDelay) ;

Random Numbers
Just about every game needs to generate random numbers to drive game
events. T he Macintosh toolbox provides two routines that can be used to
generate random numbers . Before you generate r andom numbers,

CHAPTER 2-Mac Toolbox Basics: Memory and Events

though, you need to understand the concept of a seed. You see, the 4,
Macintosh doesn't truly generate completely random numbers. Random
numbers are really computed, based on a seed number. The sequence of
random numbers generated for the same seed are always the same.
When your game starts, it is given the same seed number each time.
This means that the same sequence of random numbers will be generated
each time your game runs. This, of course, probably isn't at all what you
want. You want a different sequence of random numbers to be used each
time your game runs. Otherwise, you could predict what would happen
in your game (or worse yet, the user could predict the sequence of events
for your game). To overcome this limitation, you should always set the
seed number when your game begins. However, what should you set it
to? A good method to use would be to set the seed value to the current
time, or tick count. This would pretty much ensure a different seed
everytime your game is run. The seed is stored in a global variable called
randSeed. It is defined by the Macintosh as follows.

long randSeed;

The first thing your should do when your game starts is to set the seed
number using the TickCountO toolbox funtion. The following example
shows how to do this.

II Sets the random number seed.
randSeed = TickCount();

Now that the random number seed has been taken care of, how do you
generate random numbers? The toolbox provides the following routine
that generated random numbers between -32768 and +32767.

II Returns a random number between -32768 and +32767.
short Random(void) ;

This is just great, but most of the time you'd like to generate a random
number between 0 and some value, like say 100. How can you use the
RandomO routine to generate a number between 0 and some limit that
you define? You can simply use the modulo operator, which gives you the

CHAPTER 2-Mac Toolbox Basics: Memory and Events

remainder of a division operation. Thus, a random number modulo 100
gives you a number between 0 and 99 (which is a range of 100 values).
The following code example generates a random number between 0 and
99. Notice that you must take the absolute value of the RandomO func
tion otherwise you'd get a range of-99 to +99.

short sMyRandom;

sMyRandom = abs (Random()) % 100;

If you want to generate a number between 1 and 10, using the following
code example.

sMyRandom = 1 + abs (Random ()) % 10;

RESOURCES

All Macintosh files consist of two forks, one for the salad and one for the
main course. Proper etiquette must be observed, otherwise your friends
may stop asking you out to dinner. Seriously, Macintosh files do consist
of two forks, the data fork and resource fork. Each fork is independent,
meaning file I/O to one fork does not affect the other, and a Macintosh
file may contain either a data fork, resource fork, or both.

Typically, data files contain only a data fork, and native 680x0 appli
cation files (the actual executable program itself) contain only a resource
fork. Native 680x0 program code is contained in the resource fork of type
CODE. Native PowerMac code is stored in the data fork. This scheme
for storing program code makes it possible for a single Macintosh exe
cutable file to contain both native PowerMac code (in the data fork) and
native 680x0 code (in the resource fork).

71

CHAPTER 3-Resources

12 The Resource Fork

This chapter concerns itself with the resource fork of a file. For more
details on the data fork, see Chapter 9. The resource fork of an applica
tion file contains definitions for the program's menus, dialog boxes,
graphics, icons, cursors, text, sound, program specific data, and, to be
honest, just about everything else. Proper use of the resource fork allows
you to customize your game without needing to change the code. For
example, let's say you want to support multiple languages for your pro
gram. If you store all program text in string resources, translating your
program into a different language is as simple as changing those string
resources. I had to learn that lesson the hard way, of course.

When I wrote Galactic Empire, all of the text used for screen drawing
was hard coded into the program. I got a request from a user who wanted
to translate the game into a different language so that his kids could play
the game in their native tongue. He was able to translate the menu and
dialog box text easily into the other language because they were resources
easily edited by ResEdit, but he could not change the hard-coded strings.
(For you technophiles out there, yes, he could have edited the 'CODE'
resources containing the hard-coded strings, but what if the translated
string was larger than the original?) If I had put all text strings in the
resource file, his job would have been easy. However, I needed to change
the code to read all strings from the resource file before the translation
could be completed.

Creating the resources for your game will take at least as long as it
takes to write the code. This will become especially true when you have a
little more coding experience and can re-use code from other projects. Of
course, you'll want to start coding before creating all the resources for
your game, but it is often necessary to create many of the resources first.
For example, you'll need menu and window resources before you can
write even a minimally functional program.

The remainder of this chapter discusses the creation of various types
of resources using ResEdit, the standard Macintosh resource editor. At
the end of this chapter, I will demonstrate the power of resources by

CHAPTER 3-Resources

transforming Desert Trek into the exciting new game, Vegas Trek, with
out rewriting a single line of code.

Res Edit
There are generally two ways to create and edit resources for your game.
One such method is to use a resource compiler. A resource compiler takes
an input file describing the resources to create in textual format, and gen
erates a resource file as output. The resultant resource file can then be
combined with the compiled code to produce the final application.
Another, and by far, more popular method to create and edit resources is
to use Apple Computer's ResEdit. ResEdit allows you to directly edit
resource files in a graphical environment. It even allows you to edit an
application program's resource fork. After the compiler itself, ResEdit
will be your most valuable tool.

There is a certain mystique concerning the use of ResEdit in the user
community. Often you are told to use it with care, and always, always use
it on backups of programs, not the original itself. Of course, editing the
system file with ResEdit is certain to quickly destroy your computer. This
reputation should tell you two things. First, ResEdit is a powerful tool
that allows one to edit the resource fork of a program, significantly alter
ing the way it operates. Second, we developers want to keep this powerful
tool out of the hands of the masses so that we can demonstrate our
incredible Macintosh knowledge time and again to impress our friends.

As a developer, you can, for the most part, ignore these warnings.
However, they didn't arise simply to discourage others from modifying
your programs. ResEdit can wreak severe damage to your resource files
under certain circumstances. I strongly urge you to back up your resource
files frequently, because if ResEdit encounters any problems such as lack
of memory to perform an operation, it has a tendency to render your
entire resource file completely and utterly useless. I've had this happen to
me in the past, and I've learned my lesson the hard way-losing forever
dozens of hours of work. However, ResEdit is, for the most part, a very
stable tool.

' ,/

\

CHAPTER 3-Resources

14 Using ResEdit

Though I can't possibly cover the use of ResEdit in full here, I can give
you enough information to start using the tool productively. Again, ·
ResEdit allows you to edit the resource fork of any Macintosh file. It does
not allow you to view or edit the data fork.

Creating a Resource File
\Vhen you start a new project, one of the first things you'll need to do is
create a resource file. If you are using Symantec C++ (or Think C), you
should give your resource file the same name as your project file, with
.rsrc appended to the end. For example, if the project file name is Desert
Trek.1t, name the resource file Desert Trek.1t.rsrc. Using this naming
convention allows your program, when run under the Symantec environ
ment, to automatically load resources from your resource file. Otherwise,
you'll need to explicitly add the resource file to your project, which will
cause it to be compiled every time you change the resource file (which,
believe me, will be often), increasing the time it takes to compile and run
your program. In addition, you'll end up with a file of that name anyway
(the compiled version of your resources), just begging to cause you endless
confusion as to which resource file you should be editing anyway.

To create a resource file, start ResEdit. You'll be presented with the
famous Jack-in-the-box opening screen. Click the mouse anywhere to
continue. Next, you'll be presented with an Open File dialog box. At this
point, select the resource file you want to edit, or click on the New but
ton to create a new resource file. Use the naming convention described
previously, and store the resource file in the same folder as your project.
Make a backup of this file frequently as you'll be very, very upset if it ever
gets corrupted.

Creating a Resource
Once in ResEdit, you'll see a window that is either blank for a new file or
shows you all the resource types contained within the file. Since you can,

CHAPTER 3- Resou rces

and must, have multiple resources of the same type (for example, two 75
MENU resources to describe the File menu and Edit menu), the initial
screen shows you just the types of resources in the file. To see all the
resources of a particular type, simply double-click on the type and
another window opens (see figure 3.1).

Desert Trek:.11.rsrc ~

~~
.... . , .i & mCEJ ml iiL
~i:'"

®181
i;i -· ¢¢

1_ . - I i ttl • lt 11J

~ mJl ~~ • D - i;i \11. - -
129 31 "High Score"
130 29 "Register"
131 39 "Import High Scores"
132 36 "Seve Gome Prompt"

• D CJ[') & CJD lll D a D
\11 ~ -·· <lo ··· <lo ·· <lo ··

ICN ' ;cs• ics8

133 36 "Eled Neme"
134 32 "High Scores"
135 36 "About Desert Trek"
136 36 "Not Enough Memory"

II w ~ Ill ~.i . . .
-

MBAA MENU DD P~T ROST

137 46 "Fix Memory"
136 35 "Disk 1/ 0 Error"
139 44 "Bed Geme Version"
140 45 "B1:1d Scores Fi 1 e"

e Tho Th•

<Jl~ ?J!Ck (/Uit:k

- ~ - -- ·· br-ovn br-own

141 36 "Can·t Personalize" 0
142 41 "Convert Werning" 1il

SCRS SIZE STR• sti,il TEXT SCRS STR• sti,il

20bl CJ CJ 6 .05

~
7.0 _

2 0bl CJ CJ 6.05
7.0 _,

Figure 3.1 An empty resource fi le, a resource file with severa l resource
groups, and a resource fi le with one resource group open.

To create a new resource, you need to use the Create New Resource
command under the Resource menu (do not use the New command
under the File menu because that gives you a new resource file). You can
create new resources in one of two places: at the main window, which
shows you all the resource types, or at any window that shows you all the

CHAPTER 3-Resources

resources for a given type. Creating a new resource from the main win
dow prompts you for the resource type to create. This is how you create a
new resource type. Creating a resource from a window showing you all
the resources of a particular type creates a resource of that type. Double
clicking on one of the existing resources displayed in this window will
allow you to edit it.

What's This 128 Number I See So Much?

After using ResEdit for a short while, you'll quickly notice that ResEdit
has an affinity for the number 128. In fact, all new resources created in
your file start out with the ID 128, or if that number's already taken, the
smallest number greater than 128. Yes, ResEdit must choose some ID
number for newly created resource, but why not 0, 1, or 17654? The rea
son is simple: Apple reserves all resource IDs from 0 to 127. They are
used for system resources, such as the standard watch cursor.

Changing the Resource ID and Giving It a Name

At some point, you may want to change the ID number of a resource, or
give it a meaningful name. To do so, select the resource in question and
choose Get Resource Info from the Resource menu. The resulting dia
log box has fields for you to enter the resource ID and name. Giving
resources names can be very helpful when trying to figure out where that
high scores dialog box is located from a list of twenty dialog box entries.
Also, you can load resources by name as well as ID.

This ends the ResEdit tutorial. The following sections describe how
to create resources of a specific type and load them into your program.

'MENU' and 'MBAR' Resources

Every true Macintosh application, including games, has a menu bar asso
ciated with it. The definition of the menu bar and its menus are found in
the 'MENU' and 'MBAR' resources.

CHAPTER 3-Resources

Creating a 'MENU' Resource
The 'MENU' resource contains all information needed to describe a sin
gle Macintosh menu. You will need one 'MENU' resource for each menu
in your game. ResEdit provides an easy to use 'MENU' editor that allows
you to easily build and customize menus for your game.

Using your newfound ResEdit skills (or old ones if you're already a
pro), create a 'MENU' resource. The 'MENU' dialog box shows you the
menu you're building as well as options for each menu item (see Figure
3 .2). A new menu has only a menu title, which you can change by typing
in the Title edit field. Note that you can make this the Apple menu by
selecting the radio button just under the Title edit field. Selecting this
will create a menu with the Apple symbol as its title. You will need one of
these for each game you write.

MENU "Fiie" ID = 129 from Desert Trek. '11.rsrc

IT!!!]_ I Selected Item:
,__N~e~w-G-am-e~~~~-lQ~!

t8J Enabled

Resume Game... J I TeHt: ®I Saue Game
I o I •

Saue Game Rs •.•

Quit aGQ

!
! 0 ··········(separator line)

Color

! D has Submenu TeHt: l•I
Cmd-Key: [!] l•I

lo I Mark: I None -..11•1

Figure 3.2 The Build Menu dialog box from ResEdit.

To add items to the menu you're creating, press Return on the keyboard.
You should notice that the first item in the list box gets selected (it will be
blank at this point). The Text edit field can be used to enter the title of
the menu item. You can also select the separator line to make this menu
item a separator. Use separators to group related menu items and sepa
rate them from other groups. For each menu item, you can specify the
command key equivalent, whether or not it has a submenu (if you're

78

CHAPTER 3-Resources

building hierarchical menus), and its appearance (color, text style, mark
symbol). Press Return to add another menu item. Make sure not to press
Return after the last menu item or you'll get a blank menu item at the
end of the list. To delete a menu item, simply select it and press Delete
or choose Clear Item from the Edit menu. To allow you to see a preview
of the menu being created, ResEdit adds your new menu to its menu bar.

There is one very important item you need to specify for each menu
in your game, one that's not readily apparent from the 'MENU' dialog
box. In your program code, you need a way to determine which menu was
selected by the user. When the user selects an item from one of your
menus, your program will be given the menu ID of the menu selected.
This menu ID does not necessarily match the resource ID specified in
ResEdit. To see what ID your program will receive, you need to choose
Edit Menu and MDEF ID from the MENU menu. This dialog box lets
you specify the ID your program will receive when an item in that menu is
selected by the user. Typically it makes sense to have the menu ID match
the resource ID. If you change the resource ID of a menu after it has been
created, this menu ID will not change along with it. You will manually
need to change it to match the new resource ID. Leave that MDEF field
in this dialog box alone unless you have a 'MDEF' resource in your pro
gram you'd like to use. If you don't know what they are, don't worry.
They're like 'CDEF' resources, which are described later in this chapter.

The Apple Menu

Every program needs an Apple menu as its first menu. So, you'll need to
create one using ResEdit. The Apple menu, of course, contains items
from the Apple menu folder. You won't need to do anything in ResEdit to
define them, it's done in the code. However, you should make the last
menu item entry a separator bar in preparation for adding the Apple
menu folder items. Usually the only items you put in the Apple menu are
the About game ... entry and maybe a Help ... entry.

The Ellipse ...

Any menu item command that will bring up a dialog box or prompt the
user for additional information should end with three periods (an ellipse).

CHAPTER 3-Resources

For example, Save As ... should have an ellipse because it will ask the user 79
to enter a file name, but Save shouldn't because it won't (with the possi-
ble exception of the first time a game is saved)

Creating an 'MBAR' Resource

An 'MBAR' resource is simply a description of your game's main menu
bar. It contains a list of the 'MENU' resource IDs that correspond to the
menus that will appear on the menu bar. Creating an 'MBAR' resource
isn't very exciting, but it's easy. When a new 'MBAR' resource dialog box
appears, it's fairly empty. All you see is that there are no menus defined
and a line of asterisks next to the number 1 (see Figure 3.3).

MBAR ID - 128 from Untitled

1: of menus

1) *****

Figure 3.3 The Build Menu Var dialog box from ResEdit.

In order to specify the menus in the menu bar, you need to add fields to
this resource. Click on the asterisks and you'll see a box drawn around
them. You can now go to the Resource menu and select Insert New
Field(s) to add an item to this list. Notice that an entry field appears
titled Menu res ID. This is where you enter the resource ID of the first
menu. Add as many fields as there are menus for your menu bar. You can
insert new fields anywhere in your list by selecting the asterisks just above
where you want the new field to appear. See, it's not too bad once you
know the trick.

CHAPTER 3-Resources

ao \ICON' and \cicn' Resources

Icons ('ICON') and color icons ('cicn') can be defined in ResEdit and
used in your game. They can be placed directly into dialog boxes or
loaded and used by your program. Do not confuse these resources with
the icons the Finder uses to display your game and its files. Those will be
discussed in the next section.

You draw new icons using ResEdit's icon editor, a scaled-down ver
sion of MacPaint. You will notice that each icon has a mask associated
with it. The icon mask is used along with the icon itself when drawing the
icon. More details about masks will be given in Chapter 7, but basically,
only the pixels specified in the mask get drawn from the icon itself. The
other pixels are picked up from whatever happens to be on the screen.
Most of the time, you can have ResEdit create the correct mask for you
by dragging your icon to the mask field when it's finished.

One nice thing about 'cicn' resources you define is that, when used in
dialog boxes and alerts, the Macintosh will automatically choose the black
and-white or color version of the icon based on the monitor being used.

\PICT' Resources

Because games use extensive graphics, you will almost certainly need to
use picture resources. Chapter 7 explains all the details on using 'PICT'
resources. To get a graphic into a 'PICT' resource, simply copy the
graphic from your favorite graphics editor, and paste it into the new
'PICT' resource. The 'PICT' resource will size itself accordingly. 'PICT'
resources can be used directly in dialog boxes (see the section on creating
dialog boxes further on).

Finder Icons for Your Game

The Finder displays an icon for each program installed on a Macintosh.
In addition, files created with that program are typically displayed with an

CHAPTER 3-Resources

icon that visually associates it with the program that created it. No, this 8:1
isn't Macintosh 101, but clearly the programmer must do something to
tell the Finder what icons to use when displaying the program and associ-
ated files. Though not particularly difficult, you must be careful to define
everything the Finder needs, otherwise you'll quickly get frustrated every
time the Finder displays a generic application or document icon for your
game and its files.

File Types and Creators

Every Macintosh file has a file type and creator, each a four-character
field. The file creator tells the finder which application program created a
particular file. The file type is used to distinguish the types of files cre
ated by an application, such as a high scores file versus a saved game file.
The Finder uses both the file type and creator to determine which icon to
display for a particular file. If you have the proper resources defined in
your game, the Finder will display any icon you have defined to be associ
ated with a file created by or used for your game. Also, the Finder uses
this information to determine which application to launch when the user
double-clicks or opens a document file.

Defining the File Type and Creator for Your Application

The development system that you're using should allow you to specify the
file type and creator for your application. Typically, it can be found in the
same dialog box that specifies that you are writing an application program,
versus a device driver or code resource. For Think C/Symantec C++, this
is defined in the dialog box displayed by selecting Set Project Type ...
from the Project menu. All application programs have a type of APPL.
You get to define the creator yourself, but make sure to choose a four
character creator type that will be unique; otherwise the Finder will get
confused. You will use this creator type for all files associated with your
game whether the file was created manually or within the game itself.

You can also use ResEdit to specify a file's type and creator. If the
resource fork is already open within ResEdit, choose Get Info For
"open file name" ... from the File menu. To change a file's type and ere-

CHAPTER 3-Resources

ator without first opening it with ResEdit, select Get File/Folder Info ...
from the File menu. You will be prompted to specify the name of the file
to change. Once the File Information dialog box is displayed, you can
type in the file's type and creator. These values are case-sensitive.

Resource Types Needed for Finder Icons
You need to create icons for each file type your game uses, including one
for the game itself. For example, Desert Trek has two file types: a high
scores file, and a saved game file. This means that Desert Trek needs
three Finder icons associated with it.

~
N 0 T E

Desert Trek actually creates flies of a third type: the journal flle and
information files for help. However, these flies are saved as text, and
thus given a file type of TEXT. In addition, since I want TeachText (or
SimpleText in more recent versions of the system) to be launched if
the user double-clicks or opens one of these files, the file is given a
creator type of ttxt. ·

To create the Finder icons and associated information for your game, you
need to create resources of type 'BNDI.:, 'FREF', 'ICN#', 'icl4', 'icl8',
'ics#', 'ics4', and 'ics8'. Ironically, you do not use the 'ICON' resource
type. That's used to define icons that your game itself can load and use.
The following is a very brief description of what each resource type does:

'BNDL'

'FREF'

The BNDL resource is what you need to create
first because it will create all the other resource
types for you. You specify the creator type once,
called the signature by ResEdit in the dialog box
displayed for BNDL resources, and as many file
types as needed for your game.

With later versions of ResEdit, you no longer need
to create resources of this type yourself, ResEdit
does it automatically. One resource of this type
is created for each file type you define, includ
ing one for your game.

'ICN#'

CHAPTER 3-Resources

This is the black-and-white version of an icon for
your game or one of its associated files.

'icl4' This is the 4-bit, or 16-color version of a Finder icon.

'icl8' This is the 8-bit, or 256-color version of a Finder icon.

'ics#', 'ics4', 'ics8' These are the small icons, used in the Apple and
Application menus when displaying your game
there.

ResEdit will also create one additional resource when you create a
'BNDL' resource for your game. This resource's type will be the same
as the file signature specified In the 'BNDL' resource. This resource is
known as the owner resource and is used by the Finder to display
information in the Get Info box. Its format is described later.

Creating the Finder Icons for your Game
To create the Finder icon information for your game (you thought I'd never
actually get around to telling you how, didn't you?), create a new resource of
type 'BNDL'. ResEdit will display the dialog box shown in Figure 3 .4.

§Iii§ BNDL ID = 128 from Desert Trek.1

Signature: 1!1m!MI

Type Finder I cons

APPL ~\4'~~YtYt
TRKG ril ~Ell

TRKS l!J 11 ~1111

'°

'°

Figure 3.4 The BNDL dialog box from ResEdit.

You'll see a text edit field for the signature, and a listbox for the file types
and icons. Again, the signature is a 4-character field (numerics are

CHAPTER 3-Resources

allowed, too) that lets the Finder know what program created a particular
file. This signature should match the file creator given to your game and
should he used as the creator for all files associated with your game.

To create a new file type, select Create New File Type from the
Resource menu. The first file type should always he APPL. The APPL
file type defines the icon the Finder uses for your game. Double-clicking
on the icon boxes under the Finder Icons heading allows you to specify
or create the Finder icons for that file type. You will he prompted to
specify the icon to use. Select an icon already defined, or click on the
New button to create a new Finder icon. Remember that each Finder
icon is really six icons: the black-and-white icon, the 16-color icon, the
256-color icon, and the miniversions of each. The screen that appears
when you edit or create the Finder icons is sort of a scaled-down version
of MacPaint. You can draw your icons here, or paste them in from a dif
ferent source. Don't forget to specify the icon mask, otherwise you won't
he able to see your icon. Masks are described in detail in Chapter 7, hut
for the moment you can simply drag one of your icons to the mask field
and ResEdit will fill it in for you. For most cases, this is the mask you'll
want to use anyway.

Owner Resource
ResEdit automatically creates the same type of owner's resource you type
in as the game's signature in the 'BNDL' resource. The owner resource is
used by the Finder to display Get Info information. This resource is sim
ply a text string describing your game. Opening this resource shows you
the generic ResEdit resource editor. The leftmost column shows the data
offset starting at zero, the middle column shows hexadecimal data, and
the rightmost column shows ASCII data. You can type hexadecimal num
bers in the middle column, text in the right column.

The owner resource is a Pascal string, meaning the first byte is a
length indicator. Starting at the second byte, or character, of the right
column, type in the descriptive text for your game. After typing it in,
count how many characters are in the description, convert that to hex,

CHAPTER 3-Resources

and type in that number as the first byte in the hexadecimal column. If
you don't feel like using the data offset column and counting to figure out
the length of your text, you can close the resource, look at its size and
subtract one (for the length byte itself).

Creating Dialog Boxes for Your Game

One of the more time-consuming tasks of writing a game is designing
and building the dialog boxes. Some games require much more work in
this area than others, but nearly every game is going to need multiple dia
log boxes. For example, Desert Trek has fifteen dialog boxes. The cre
ation of dialog boxes using ResEdit will be discussed here. An explanation
of the different types of dialog boxes along with rules for their proper use
can be found in Chapter 6.

Dialog boxes use several resource types, depending on what you
define. The dialog box definition itself is contained in the 'DLOG'
resource. Every dialog box, of course, contains controls, or dialog box
items. The definitions of these items are contained in the 'DITL'
resource. If you define custom colors for the dialog box, their definitions
are stored in the 'dctb' resource. You typically will not need to define the
'DITL' and 'dctb' resources yourself, because they will automatically be
created when you use ResEdit's dialog box editor to create a 'DLOG'
resource. You can also create custom colors for dialog box items by creat
ing an 'ictb' resource for each dialog box. The 'ictb' resource is somewhat
cryptic, and ResEdit does not provide a way to graphically edit dialog box
item colors. However, with a lot of patience, and a little trial and error,
ictb resources can greatly enhance the appearance of your games.

The 'DLOG' Resource
The 'DLOG' resource is where you can define most elements related to a
dialog box. Figure 3 .5 shows the dialog box editor ResEdit displays when
you create or edit a dialog box.

86

CHAPTER 3-Resources

§Ii" DLOG "Hi h Score" ID= 129 from Desert Trek.11'.rsrc

Top: I@ I Height: ~

Left: [£] Width: ~

Color: O Default
@Custom

Content: D Frame: I I
Title teKt : I I Highlight: I I
Title bar: D

DITL ID: ~11_2_9_~

D Initially uisible

D Close boK

Figure 3.5 The DLOG dialog box editor from ResEdit.

From here, you can specify the window used to display the dialog box,
including whether or not it has a close box, scroll bars, or even a title bar,
and its size and location. To specify the dialog box's title in the title bar,
you need to select Set 'DLOG' characteristics from the DLOG menu.
Don't forget to do this; otherwise your dialog box will have no title, or, if
you're like me, and you copy and paste dialog boxes from one place to
another, have the completely wrong title.

Typically, when my games display a dialog box, they get centered
either on the screen or on my main game window (which the user can
move around). For this reason, specifying the dialog box's location isn't
necessary. Also, the dialog box's visible flag should be off, so that the dia
log box isn't first displayed at the location specified in ResEdit, then
moved to the center of the screen. Remember, the game player's screen
may not be the same size as your screen, so you may always want to have
your program position the location of dialog boxes. If your game requires
system 7.0 or later, you can use ResEdit to automatically have the dialog
box centered on the main screen, regardless of its size. Select Auto
Position ... from the DLOG menu to do this.

CHAPTER 3-Resources

One of the more important things you need to select here is the 8~f

DITL ID. ResEdit defaults to a DITL ID equal to that of the dialog box
ID. For most cases, that's just fine. However, you need to be aware that it
isn't always the case. For example, if you copy and paste a dialog box from
one program to another, something I frequently do to save time when
writing a new game that can use a dialog box similar to one I've defined
for another game, just copying the 'DLOG' resource isn't enough. You
will need to copy the 'DITL' resource associated with that dialog box, as
well as any other supporting resources such as the 'dctb' and 'ictb'
resources. When doing so, make sure all the IDs match up.

Another potential snag relates to 'ALRT' resources. Alerts, of course,
are special dialog boxes frequently used by many programs. For reasons
I'll explain later, I prefer not to use alerts, but if you decide to use them,
keep in mind that they also use 'DITL' resources to describe their items.
You will need to be careful because ResEdit will start assigning IDs of
128 to both 'ALRT's and 'DLOG's, and the 'DITL's they use. Obviously,
the 'ALRT' with ID 128 and the 'DLOG' with ID 128 can't use the
'DITL' resource of ID 128. You will need to rectify the situation by
renumbering either the 'ALRT's or 'DLOG's. I strongly recommend that
a 'DITL''s resource ID matches that of its owning 'ALRT' or 'DLOG'.
Otherwise, you are going to be spending a lot of time sometime in the
future trying to figure out why you can't get that dialog box or alert to
work properly.

When you delete a 'DLOG' or 'ALRT' from your game, be careful
to delete all the related resources such as the 'DITL', 'ictb', and 'dctb'
('ALRT's use the 'actb' for custom color definitions). Otherwise, you will
have orphan resources lying around in your game, eating up disk space
and waiting to cause potential problems in the future.

The 'DITL' Resource
As previously explained, the 'DITL' resource contains information
describing all the items contained in a dialog box or alert. When creating
a dialog box, you will probably spend most of your time creating and
positioning the dialog box items. To edit the 'DITL', simply double-click

88

CHAPTER 3-Resources

on the miniature representation of the dialog box you're building in the
left side of the Dialog dialog box (try not to get confused, but remember,
you are using a dialog box to build a dialog box). Doing so will display a
full-sized representation of the dialog box you're building, along with a
floating control palette.

To add controls to your dialog box, drag and drop controls from the
palette to your dialog box. Double-click on a control to set its properties,
such as text. You can move a control by dragging it around, and you can
size it by selecting it and using the minisize control (a small black box in
the lower-right comer). The alignment menu allows you to align several
controls with relation to each other.

To add an icon or picture to your dialog box, you need to first define
the 'PICT' or 'ICON' resource (color icons have a resource type 'cicn')
to be used because you'll be asked to enter its ID in ResEdit's Properties
dialog box. For icons, use the same ID for the black-and-white 'ICON'
resource and color 'cicn' resource. This way, the correct icon will auto
matically be displayed when the dialog box is shown on black-and-white
or color monitors.

The item numbers are very important. First, they are the IDs that
your code will use to manipulate the item, such as setting and reading
text from an edit field. They also determine the tabbing order. The first
edit field to contain the cursor will be the one with the lowest item ID.
When the user presses the Tab key, the edit fields will be traversed in
order according to their IDs.

For more information about the types of controls that can be used, see
Chapter 6. There are a few special tricks that can be used to create better
looking dialog boxes, such as custom control colors and the use of control
definitions, or 'CDEF's, to give buttons a three-dimensional look. Since
no coding is necessary to achieve these results, they will be described here.

30 Buttons Using a 'CDEF'

Control definitions are functions that are used to draw a control. The
Macintosh operating system calls the CDEF function whenever a control

CHAPTER 3-Resources

needs to be drawn on the screen. Apple provides a default 'CDEF' to 89
draw all controls. It has an ID of 0, and all controls you create have a
default ProclD of 0. The ProclD field of a control tells the Macintosh
what 'CDEF' to use when drawing that control. By changing the ProcID
of a control used in your dialog box, you can specify a different 'CDEF'
for drawing your controls.

Desert Trek uses a 'CDEF' written by another author who has been
kind enough to allow me to use it royalty-free. The 'CDEF' draws push
buttons, radio buttons, and check boxes with a three-dimensional effect.
The 'CDEF' can be found on the CD included with this book. See
Appendix B for more details.

There are two basic approaches that can be used to include the 3 D
buttons 'CDEF' into your program. The easy way is to copy the 'CDEF'
into your game's resource file and give it an ID of 0. Because the standard
Macintosh 'CDEF' has an ID of 0, the one included in your game will
automatically override it (only for your game, not the entire system).
This means that any buttons (push, radio, or check box) displayed by
your program will be drawn with the 3D effect. Pretty easy, huh?
However, there's a catch: any button drawn will have the 3D effect, even
those in System dialog boxes called by your program such as the standard
Macintosh File Open and Save dialog boxes. Needless to say, this is not
the Macintosh way. You can customize the interface to your program,
within reason, but you should never affect standard system operations or
appearance without the user's express written consent. With a little bit of
work, you can easily overcome this problem by implementing 3D con
trols using the method described as follows.

'CNTL' Resources
'CNTL' resources are used to define generic controls that can be used in
your game's windows and dialog boxes. ResEdit allows you to place these
controls in dialog boxes. However, before doing so, you must obviously
define the control first. Creating a new 'CNTL' resource produces the
dialog box seen in Figure 3 .6.

90

CHAPTER 3-Resources

~liJ= CNTL "OK" ID 128 from Desert Trek.n.rsrc

BoundsRect I" IEJ~~lliD
Ualue lo I
Uisible @True O False

Max 0

Min 0

ProclD 2048

RefCon 0

Title OK

Figure 3.6 The CNTL editor from ResEdit.

Of the many options that you can set here, only a few are of interest for
the purpose of setting up the 3 D control. First, you need to specify the
dimensions of the control. The BoundsRect property is used to specify
the size and position of the control. However, if you think about it, you
can't always tell where in a dialog box you'll want the control to go.
Furthermore, what if you want to use this control (such as an OK button)
in multiple dialog boxes, but at different positions? Fortunately, ResEdit
allows you to place the control into a dialog box at any position, regard
less of what the BoundsRect property states. Thus, for controls you plan
on using ResEdit to place into dialog boxes, it makes the most sense to
use the BoundsRect property to specify only the control's width and
height. This means that the top and left values should be 0, and that the
bottom and right values should specify the control's height and width (the
four BoundsRect values are entered in this order: top, left, bottom,
right). Unfortunately, ResEdit does not allow you to change the control's
width and height when placing it into a dialog box, so if you want the
same control to be a different size in two different dialog boxes, you'll
need to create two different controls (for example, if you want a large OK
button in one dialog box and a small one in another).

You need only specify two more fields to create your 3D control. The
easy one is the Title property; which specifies the text displayed for the con-

CHAPTER 3-Resources

trol. This is the text that appears in a push button, or next to a radio button 9l ..
and check box control. The less obvious one is the ProcID property.

The Procf D Property

The ProclD property specifies which 'CDEF' to use when drawing the
control. The 'CDEF' specified will determine the type of control you get:
button, scroll bar, etc. The standard Macintosh push button has a
ProcID of 0, the radio button an ID of 2, the check box an ID of 1, and
the scrollbar an ID of 16. To use a 'CDEF' that you have copied into
your game's resource file, you need to specify its ID here. However,
there's a small catch. The ProclD isn't exactly the resource ID of the
CDEF. For starters, remember that the push button, radio button, and
check box all use different ProcIDs (0, 2, and 1, respectively). However,
the single 3D 'CDEF' used in Desert Trek draws all three types of but
tons. How does one CDEF cover all three types of buttons, and more
importantly, how do you, the game programmer, specify which one to
use? The answer is apparent in Figure 3. 7.

ProcID Field of Control Definition

13 12 11 10 9 8

Figure 3.7 The ProclD bits specification.

The 'CDEF' resource ID is only a portion of the ProcID. To understand
this a little better, you need to know that certain controls are grouped
together. For example, push buttons, radio buttons, and check box con
trols are considered to be related. They are all styles of buttons. The
Macintosh uses only one 'CDEF' to draw all controls in a group. The
CDEF knows exactly what button to draw by looking at the control style
passed to it by the Macintosh when it's time to draw a control. How does
the Macintosh know what style to send the 'CDEF'? It uses the last 4 bits
of the ProclD property. So now you know that standard scroll bars,
which use a ProcID of 16, are considered a different type of control than
buttons, and the default Macintosh 'CDEF' for drawing them is ... (drum
roll, please) 1 (see Figure 3.8).

92

CHAPTER 3-Resources

ProcID Field of a Standard Scrollbar
16 = 0 0 0 0 0 0 0 0 0

---- CDEF Resource ID,------

1

Figure 3.8 The ProclD of 16 for scroll bars equates to a 'CDEF' ID of l.

To determine what ProcID to use when you want to specify a 'CDEF'
like the 3D CDEF Desert Trek uses, you need to multiply the CDEF
resource ID by 16. Then, add 1 for a check box, or 2 for a radio button.
Thus, because the 3D buttons 'CDEF' Desert Trek uses has a resource
ID of 128, a push button would need a ProcID of 2048 (128 * 16), a
radio button 2050 (128 * 16 + 2), and a check box 2049 (128 * 16 + 1).

Using 'CNTL' Resources in Your Dialog Boxes
It is very simple to use 'CNTL' resources in your dialog box. When edit
ing the dialog box items (the 'DITL' resource), use the control palette to
place a "Control" control on your dialog box. Open its properties and
you'll see a dialog box displayed. The only thing you really need to spec
ify here is the 'CNTL' resource ID of the control you wish to use. You
can move the control anywhere in the dialog box you're creating, just like
any of the other standard controls; however, you will not be able to
change its size. The size would need to be changed back in the original
'CNTL' definition.

Final Notes on Using the 3D Button 'CDEF'
For best visual results, you will want to give most dialog boxes using the
3D button 'CDEF' a custom background color of light gray. You specify
this color in the 'DLOG' resource. See Desert Trek's resource file for the
exact shade of light gray used.

Lastly, if multiple dialog boxes use the same button, such as an OK
button, you need to define only one 'CNTL' resource. You can then use
that resource in as many dialog boxes as you want. The only restriction is

CHAPTER 3-Resources

that the button must be the same size in all dialog boxes because the size
can only be specified in the 'CNTIJ resource itself.

Custom Colors and Font Styles for Dialog Box
Items

An easy way to spice up the appearance of your application is to add color
to the controls found within your dialog boxes. The push buttons, radio
buttons, and check boxes already look nice thanks to the 3D button
'CDEF', but what about the static text and text edit controls? Without
any coding, you can add custom colors and change font styles for these
controls by adding an 'ictb' resource for each dialog box. In order to use
an 'ictb' resource to define colors and text styles for dialog box items, you
must first define a custom color resource for your dialog box (the 'dctb').

The 'ictb' resource defines custom styles for each control in the dia
log box with the same resource ID as itself. There is no built-in ResEdit
editor for this resource type, so you will need to type all the data by hand
into ResEdit's generic resource editor described in the preceding Owner
Resource section. The format of the 'ictb' resource is, to be quite honest,
not trivial to build, but plenty of examples will be given after a complete
explanation of its format.

The 'ictb' resource is divided into two sections. The first section con
tains a pair of words for each item in the dialog box. The two words specify
what styles are to be changed for a dialog box item, as well as the offset
within the 'ictb' where the style record for that dialog box item can be
found. The second part of the 'ictb' resource is an array of style records
defining the actual styles for the dialog box items. Two dialog box items can
use the same style record if they are to have the same style.

Style Definition and Offset Section

Each item in the dialog box must have an entry in this section of the 'ictb'
resource, even if you are not changing the style of that item. Each entry is 4
bytes, or two words. The first entry, bytes 1 through 4, pertain to dialog box
item 1, the second entry, bytes 5 through 8, pertain to dialog box item 2, and so
on. Thus, if a dialog box has six items, this section will be 24 bytes in length.

94

CHAPTER 3-Resources

The first word of an entry, the item data word, contains a specifica
tion of the styles that are to be changed for the dialog box item. The
text's font, size, style, and color can be changed, in any combination. The
following table shows what values for the item data word affect what
characteristics of the item:

Characteristic

Text Font

Text Style

Text Size

Foreground Color

Add to Text Size

Background Color

Text Mode

Font is Name

Text Font

Text Style

Text Size

Foreground Color

Add to Text Size

Word Value (Hexadecimal)

0001

0002

0004

0008

0010

2000

4000

8000

You can change the text font by using this
value. The font can be specified in one of
two ways in the style record (which will be dis
cussed shortly). You can either specify a font
number. or a font name. Though slightly more
complex, it is strongly recommended that
you use the font name method because you
cannot always rely on font numbers to be the
same from system to system.

The text style includes the following charac
teristics: bold, italic, underline, outline,
shadow, condensed, and extended.

This will affect the size of the text.

The will change the color of the text itself. You
will specify the RGB value in the style record.

Rarely used, this characteristic allows you to
add to the standard text size instead of
specifying it directly.

Background Color

Text Mode

Font is Name

CHAPTER 3-Resources

This will change the color of the background
behind the text.

This affects the method by which the text is
drawn. See Chapter 7 for a complete expla
nation of bit transfer modes, such as srcOr,
srcXor, and srcCopy.

This value, when set, specifies that the font
name will be used instead of the font num
ber. See the following section on style
records for more information. Again, if you
plan to change the font, this method of font
name specification is strongly recommended
over the font number method since font
numbers may not always be the same from
one Macintosh to the next.

To change more than one style, simply add together the values. For
example, to change the text style and foreground color, add Ox0002 and
Ox0008 to get OxOOOA. To change the text font and size, add OxOOOl,
Ox0004, and Ox8000 to get Ox8005.

The second word of an entry, the item data offset, specifies where, in
the 'ictb' resource, the style record begins. The first style record will
start immediately following the item data and offset section. So, for a
dialog box with six items, the first style record will begin at byte 24
(Ox18). Since each style record is 20 bytes in length, the second style
record will begin at 44 (Ox2C), the third at 64 (Ox40), etc. Again, only
those items you wish to change the style of need style records, so there
will almost always be fewer style records than items in your dialog box.
Also, remember that two dialog box items can share the same style
record, meaning that the item data offset word can be the same for mul
tiple dialog box items.

The only dialog box item types that we plan to change with the 'ictb'
resource are static text and text edit fields. So, for every other type of dia
log box item such as buttons, icons, and pictures, the entry for that con
trol will be 0000 0000 (4 bytes ofzeros).

95

CHAPTER 3-Resources

96 Style Records

The second section of the 'ictb' resource contains all the style records.
Each dialog box item style record is 20 bytes in length. The item data
word determines which fields will be used in the style record. So, even if
you define a foreground color in the style record, it will only be used if
the appropriate value is set in the item data word.

The following table describes the format of a 20-byte text style record:

Offset Size Description

0 2

2 2

4 2

6 6

12 6

18 2

Text Font

Text Font (Font Number, or Offset to Font
Name)

Text Style

Text Size

Foreground Color (RGB, 2 bytes for each
component)

Background Color (RGB, 2 bytes for each
component)

Font Mode

This can be the text font number, or an off
set to the text font name. The first text font
name immediately follows the last style
record. So, for a dialog box with six items
and two style records, the first font name
offset would be (6 * 4) + (2 * 20), or 64
(0x40). The font name specified is a Pascal
string, which means the first byte of the
string is a length indicator. So, if you
wanted to specify the font name Geneva,
the text font name would start with Ox06,
followed by the ASCII string Geneva
(which can be typed directly in the right
most field of RedEdit's generic resource
editor).

CHAPTER 3-Resources

Text Style This word specifies the style of the text, "II· :;.·~>Arl'':

such as bold and italics. the following
·c,,,P,~'%;,.,,

table shows the values you need to use:

Style Word Value (Hexadecimal)

Bold 0100

Italic 0200

Underline 0400

Outline 0800

Shadow 1000

Condensed 2000

Extended 4000

Add the values together to combine
styles. For example, bold and underlined
would be specified by using a value of
Ox0500 (OxOlOO + Ox0400).

Text Size This field specifies the size of the text. If the
add to text size value is set in the item
data word, this value will be added to the
current text size.

Foreground This 6-byte field specifies the color of the
text. The red
Color component is specified in the first 2 bytes,

green in the second 2. and blue in the last
2 bytes. For example. a dark blue would
be specified as 0000 0000 8000 (values are
in hexadecimal).

Background This 6-byte field specifies the background
Color color to be used behind the text.

Font mode This value specifies the transfer mode to
be used when drawing the text. You
should never need to use this field.

CHAPTER 3-Resources

'°': Example 7: Desert Trek's Bad Name Dialog Box (ID= 733)

The Bad Name dialog box is displayed if, when the user is typing in a
name for the high scores list, the typed-in name has fewer than 1 or more
than 20 characters. There are only three dialog box items: a 3D push but
ton, a static text field, and an icon. The only style change I want to make
is to have the static text color appear dark blue.

Remember, the first section of the 'ictb' resource contains two words
for each dialog box item: the item data word and the item data offset.
Since there are three dialog box items, this section will be 12 bytes in
length. This also means that the first, and in this case, only style record
will start at offset 12 (OxOC).

Since the only item's style I want to change is the static text field
(item ID 2), the other items will have entries of 0000 0000 in this section.
In addition, the only style I want to change for the static text field is the
foreground color, so the item data word needs to be Ox0008. Therefore,
the first section of the ictb should look like this (the first word is the item
data word, the second word is the item data offset):

Dialog Box Item ictb Offset Entry (Hexadecimal)

1 (Push Button) 0 (OxOO) 00000000

2 (Text Edit Field) 4 (Ox04) 0008 OOOC (change foreground
color)

3 (Icon) 8 (Ox08) 0000 0000

The single style record for this ictb, which begins at offset OxOC, looks
like this:

Style Record Field ictb Offset Entry (Hexadecimal)

Text Font 12 (OxOC) 0000

Text Style 14 (OxOE) 0000

Text Size 16 (OxlO) 0000

Foreground Color 18 (0xl2) 0000 0000 8000

Background Color

Text Mode

24 (0xl8)

30 (Oxl E)

CHAPTER 3-Resources

0000 0000 0000

0000

See Figure 3.9 for the Bad Name 'DITV resource showing the dialog box
item numbers, and the complete 'ictb' resource as described previously.

§Iii~ ictb "Bad Name" ID = 133 from l ~
000000 0000 0000 0008 OOOC DDDDDDDD ~
000008 0000 0000 0000 0000 DODODDDD "
000010 0000 0000 0000 8000 DDDDDDAD
000018 0000 0000 0000 0000 DDDDDDDO
000020
000028
000030
000038
000040
000048
000050
000058
000060
000068

Figure 3.9 The DITL and ictb resources for the bad name dialog box.

Example 2: Desert Trek's High Score Dialog Box (ID= 729)

The High Score dialog box allows the game player to enter his or her
name when a new high score is achieved. The dialog box has five items:
an icon, two 3D push buttons, a static text field, and a text edit field. I
want to change the static text field to use a text color of dark blue, and
the text edit field to use a background color of yellow. The item ID of the
static text field is 4, and the ID of the text edit field is 3.

Since there are five dialog box items, the first section of the 'ictb'
resource will be 20 bytes. This means that the first style record will start
at offset 20 (Oxl 4). Now, I'm going to use a neat trick to reduce the size
of the 'ictb'. You would initially think that I need two style records, one
for the static text field and one for the text edit field. However, since I'm

CHAPTER 3...,.--Resources

100 changing only the foreground color for the static text field, and only the
background color for the text edit field, I can use the same style record
for both. The style record itself would contain data for both the fore
ground and background colors, but the item data word for the static text
will only pick up the foreground color, and the item data word for the
text edit field will only pick up the background color.

The first section of the 'ictb' would look like this:

Dialog Item ictb Offset Entry (Hexadecimal)

1 (Push Button) 0 (OxOO) 00000000

2 (Push Button) 4 (0x04) 00000000

3 (Text Edit Field) 8 (Ox08) 2000 0014 (change back-
ground color)

4 (Static Text Field) 12 (OxOC) 0008 0014 (change fore-
ground color)

5 (Icon) 16 (OxlO) 00000000

The single style record for this 'ictb', which begins at offset Oxl4, looks
like this:

Style Record Field ictb Offset Entry (Hexadecimal)

Text Font 20 (0xl4) 0000

Text Style 22 (Oxl6) 0000

Text Size 24 (0xl8) 0000

Foreground Color 26 (OxlA) 0000 0000 8000

Background Color 32 (0x20) FFFF FFFF 8000

Text Mode 38 (0x26) 0000

See Figure 3.10 for the 'DITL' resource showing the dialog box item
numbers, and the complete ictb resource as described previously.

CHAPTER 3-Resources

Fs"i!i;;; Dill "Hig_h Score" ID= 129 from II~
~ fYou haue made the high scores lii!i1
LlOJ !Re_loice, and enterY._our name:

llnnonymous WI
1.1i1qt,1lfterefit!#W ! ,l!!lf.:s.t1tate11e11iW _.

;;jii§ ictb ·~H.i_g_h Score" ID= 129 from ~
000000 0000 0000 0000 0000 DODD DODD t=l{r
000008 2000 0014 0008 0014 DDDDDDD
000010 0000 0000 0000 0000 DDDDDDDD
000018 0000 0000 0000 8000 DDDDDDAD
000020 FFFF FFFF 8000 0000 DDDDADDD
000028
000030
000038
000040
000048
000050

gggg~g l;o;
000058 ~

Figure 3.1 O The DITL and ictb resources for the High Score dialog box.

Example 3: Desert Trek's About ... Dialog Box (ID= 735)

The About Desert Trek ... dialog box is shown when the user chooses
About Desert Trek ... from the Apple menu. This dialog box has nine
items: two 3D push buttons, six static text fields, and one icon. Now I want
to start getting fancy, and use different fonts, styles, and colors for the static
text fields. Here's what I want to do to the following static text fields:

ID Styles Wanted

4 Text color blue. Times font.

5 Text color red. Geneva font. Size 10.

6 Text color red. Geneva font. Size 10. Bold.

7 Text color blue. Geneva font. Size 10. Bold.

8 Text color blue.

9 Text color blue.

101

102

CHAPTER 3-Resources

The first question is, How many style records are needed?. If I wanted to
be safe, I could create one style record for each static text field. However,
it looks like I can consolidate several fields very easily. First, static text
fields 8 and 9 have exactly the same style, so they can be combined into
one style record. Furthermore, static text item 7 has the same color as
items 8 and 9. Since items 8 and 9 only define the foreground color, the
other fields of their style record will be ignored. Thus, I can define a style
record for item 7, and have items 8 and 9 pick up only the foreground
color field from that style record. Using the same reasoning, it looks as if
I could also combine the style records of static text fields 5 and 6. The
only difference between the two is the bold text style, which won't be
specified in item S's item data word. However, there's a catch here: both
items 5 and 6 specify a font. It seems that the dialog box would get con
fused if two items with slightly different styles but the same font use the
same style record. In this case, if items 5 and 6 used the same style record,
the font attribute for item 6 would not be picked up correctly. It's one of
those unfortunate facts of life. Since items 7, 8, and 9 will be sharing a
style record, only four style records will be needed.

There are nine items in the dialog box, so the first style record will
begin at 36 (Ox24), the second at 56 (Ox38), the third at 76 (Ox4C), and
the last at 96 (Ox60). Notice that I'll also need to define two fonts by
name, Times and Geneva. The first font name will appear immediately
after the last style record, which will be at offset 116 (Ox74). The first
font, Times, has five characters. This means that the font entry will be six
characters in length (remember, the font entry is a Pascal string, which
means that the first byte is a length indicator). The second font will thus
begin at 116 + 6, or 122 (Ox7A).

The first section of the 'ictb' would look like this:

Dialog Box Item

l (Push Button)

2 (Push Button)

3 (Icon)

ictb Offset

0 (OxOO)

4 (0x04)

8 (0x08)

Entry (Hexadecimal)

0000 0000

0000 0000

0000 0000

CHAPTER 3-Resources

4 (Static Text Field) 12 (OxOC) 8009 0024 (foreground color.
font)

5 (Static Text Field) 16 (OxlO) SOOD 0038 (foreground color.
font. size)

6 (static Text Field) 20 (0xl4) 800F 004C (foreground color.
font. size. style)

7 (static Text Field) 24 (0xl8) 800F 0060 (foreground color.
font. size. style)

8 (Static Text Field) 28 (OxlC) 0008 0060 (foreground color)

9 (Static Text Field) 32 (0x20) 0008 0060 (foreground color)

The first style record, starting at offset 36 (Ox24) and specifying a Times
font and a foreground color of blue, looks like this:

Style Record Field ictb Offset Entry (Hexadecimal)

Text Font 36 (Ox24) 0074 (Offset to font name)

Text Style 38 (Ox26) 0000

Text Size 40 (0x28) 0000

Foreground Color 42 (0x2A) 0000 0000 8000 (Blue fore-
ground)

Background Color 48 (0x30) 0000 0000 0000

Text Mode 54 (Ox36) 0000

The second style record, starting at offset 5 6 (Ox3 8) and specifying a
Geneva font, a text size of 10, and a foreground color of red, looks like this:

Style Record Field

Text Font

Text Style

Text Size

ictb Offset

56 (0x38)

58 (0x3A)

60 (Ox3C)

Entry (Hexadecimal)

007 A (Offset to font name)

0000

OOOA (Font size of 10)

1Q4

CHAPTER 3-Resources

Foreground Color 62 (0x3E) 8000 0000 0000 (Red
foreground)

Background Color 68 (Ox44) 0000 0000 0000

Text Mode 74 (Ox4A) 0000

The third style record, starting at offset 7 6 (Ox4C) and specifying a
Geneva font, a text size of 10, a text style of bold, and a foreground color
of red, looks like this:

Style Record Field ictb Offset Entry (Hexadecimal)

Text Font 76 (Ox4C) 007 A (offset to font name)

Text Style 78 (0x4E) 0100 (bold)

Text Size 80 (0x50) OOOA (font size of 10)

Foreground Color 82 (0x52) 8000 0000 0000 (red fore-
ground)

Background Color 88 (0x58) 0000 0000 0000

Text Mode 94 (OxSE) 0000

The fourth and last style record, starting at offset 96 (Ox60) and specify
ing a Geneva font, a text size of 10, a text style of bold, and a foreground
color of blue, looks like this:

Style Record Field ictb Offset Entry (Hexadecimal)

Text Font 96 (Ox60) 007 A (offset to font name)

Text Style 98 (0x62) 0100 (bold)

Text Size 100 (Ox64) OOOA (font size of 10)

Foreground Color 102 (Ox66) 0000 0000 8000 (blue fore-
ground)

Background Color 108 (Ox6C) 0000 0000 0000

Text Mode 114 (Ox72) 0000

CHAPTER 3-Resources

The first font text description, Times, begins at offset 116 (Ox74), and
looks like this:

ictb Offset Entry (Hexadecimal)

116 (0x74) 0554 696D 6573 (length of 5, ASCII values for Times)

The second font text description, Geneva, begins at offset 122 (Ox7A),
and looks like this:

ictb Offset

122 (0x7A)

Entry (Hexadecimal)

0647 656E 6576 61 (length of 6, ASCII values for
Geneva)

See Figure 3.11 for the 'DITL' resource showing the dialog box item
numbers and the complete ictb resource as described previously.

Rt lctb "Rbout Desert Trek" 10""' 13 liiilil = ==== ::::=:: jl 000010 SOOll 0038 800F 004C ADosiiDIL
00001a 800F 0060 oooa 0060 Aoo·ooo·
000020 0008 0060 0074 0000 DUD'DlDD
000029 0000 0000 0000 8000 llDDDDDAD
000030 0000 0000 0000 0000 DDDDDDDD
000038 OD7A 0000 OOOA 8000 DzDDDllAD
000040 0000 0000 0000 0000 DDDDODDD
000048 0000 0000 007A 0100 DIJDDDzDD
OOD050 ODOll SOOll OOOD 0000 DDADDDDD
000038 0000 0000 0000 0000 llDDllDDDD
CIOOOeO 007A 0100 DOOR 0000 DzDDDllllD
000069 0000 8000 0000 0000 lllJADDllDD
000070 0000 0000 0534 6960 DDDDDTllD jg
000078 6573 0647 6S&E 6376 esllGemw
ooooso 61 a 11

Figure 3.11 The DITL and ictb resources for the About Desert Trek ... dialog box.

CHAPTER 3-Resources

.~.g~ 'WIND' Resources

Wmdow resources define windows that your program can load. Think of
windows as dialog boxes without any predefined controls. ResEdit allows
you to create windows in a very similar manner to dialog boxes, except
that you don't define a 'DITL'. Desert Trek uses windows for its main
screen and high scores screen.

'TEXT' and 'styl' Resources for Styled Text

The 'TEXT' and 'styl' resources can be used to display bulk text mes
sages to the user, such as on-line help. The nice thing about these
resources is that you can display formatted text with multiple fonts and
styles easily in a TextEdit window (see Chapter 8 for more details on how
to load and use these resources). You should not edit the 'styl' resource
directly because ResEdit automatically creates one when you edit a
'TEXT' resource. However, keep in mind that if you copy or renumber a
'TEXT' resource, you need to do the same with the corresponding 'styl'
resource (they will have the same resource ID).

When you create a 'TEXT' resource, ResEdit provides a very simple
text editor that allows you to type in the text as well as change the font, size,
and style. The 'TEXT' resource has a limit of about 32,000 characters, so
you'll need multiple 'TEXT' resources for text blocks greater than that.

The 'SIZE' Resource

The Finder uses the 'SIZE' resource to determine how much memory to
give an application when it runs. There are two size parameters specified
in this resource: the preferred memory size and the minimum memory

CHAPTER 3-Resources

size. In addition to these two memory specifications, there are 16 bits of ~~11 ;
information pertaining to your game, such as whether or not your game
is 32-bit clean.

You will need to determine how much memory your application
requires to run. This will most certainly be affected by many factors, such
as the number of offscreen bitmaps your game uses. Several methods can
be used to determine your game's memory usage, and it's up to you to
find out the minimum needed to run your game. For example, you could
give your game as much memory as your Macintosh allows, and use the
About This Macintosh from the Apple menu of the Finder to see how
much your game is actually using. Be careful, though, because this num
ber fluctuates based on what your program has loaded (in terms of dialog
boxes, windows, files, etc.), as well as factors such as the monitor's pixel
depth. Try to maximize your game's memory usage before getting a read
ing, possibly by opening as many windows as possible.

When creating a 'SIZE' resource, you need to give it an ID of -1. If
the user changes the memory settings via the Get Info window from the
Finder, these settings will be stored in new 'SIZE' resources ofIDs 0 and
1 (the new preferred size can be found in ID 0, the new minimum size in
ID 1). The memory settings are specified in bytes, so if you want a mini
mum and preferred size of 1024K, which Desert Trek uses, the values
specified would be 1024 * 1024, or 1048576.

The Version (vers) Resource

The 'vers' resource provides the Finder with information concerning the
version of your program. If properly defined, the information will be dis
played when the user chooses Get Info from the File menu with your
game selected. Version information will also be displayed if the user
chooses the Show Version option from the Views Control Panel.

CHAPTER 3-Resources

=~ uers ID = 1 from Desert Trek.11.rsrc ~

Uersion number: l•I · LI · EJ
Rele11Se:I Final ... I Non-release: @:]

Country Code:! 00 - USR ... I

Short uersion string: I 1.04
~~~~~~~~ 

Long version string (uisible in Get Info): 

11.04, © 1994-1996 Cary Torkelson 

Figure 3.12 The vers resource editor from ResEdit. 

ResEdit provides a simple-to-use 'vers' resource editor for defining the 
resource, as shown in Figure 3.12. The Finder will use version informa
tion from 'vers' resources with IDs of 1 and 2. The Finder will use the 
short version string from vers resource ID 1 to display the version num
ber of your game for all Finder folder views except icon and small icon 
(assuming, of course, that the user has chosen to view version information 
from the Views Control Panel). The long version string of 'vers' resource 
ID 1 is used in the Get Info window and will be displayed at the Version 
label. Note that if you do not have a 'vers' resource of ID 1, the Finder 
uses the Owner Resource to display information here. Lastly, the Finder 
will use the long version string of vers resource ID 2, if it exists, to place 
additional information about your application as part of the title near the 
game's icon at the top of the Get Info window. See Figure 3.13 for a sum
mary of the information that is used and where it goes. 



CHAPTER 3-Resources 

Desert Trek Info 

~ DenrtTrek TI by carv Torkelson ------11-- Information from the long version 
Kind: applioation program string of "vers' resource id 2. 
Size: 3681< on disk (375 ,762 bytes used) 

Vhere: Mac HI>: Trek Products: 

. Created: Sun, Jun 25, 1995, 10:21 PM 
Hodfffed: Sat, Mar 23, 1996, 4:49 PM 

Version: ~!'.!;!~ 994-1996 carv --+-- Information from the Ing version 
string of "vers' resource id 1. !Comments: 

,........mory Reqairements ·---, 
i SU99estod •iz•: 1024 K .f.-

1
1-- Information from the "SIZE' resource 

! Minimum .;ze: ~ K of id -1 (or ids O and 1 if the use 
I Preferred sizo: ~ K ! changed the suggested settings). 1, __ .., _____ , ___ .. ____ , __ ,,,., __ J 

Figure 3.13 The Get Info window for Desert Trek. 

'STR#' Resources 

'STR#' resources are used to define the text strings your program uses. It 
is good practice to include all textual output strings, including even those 
of just one word, in the resource :file. If you need to change these strings 
for any reason, such as supporting a new language or :fixing a typo, you 
only need to change the resource fork of your game. If the strings were 
hard coded into your program, you would need to recompile in order to 
have the changes take affect. This is especially important when someone 
else needs to change the strings. They won't need your source code. 



CHAPTER 3-Resources 

Strings are stored in groups, each group being a single 'STR#' 
resource. In other words, a single 'STR#' resource contains multiple 
strings. When you load a string from the resource fork of your game, you 
will need to specify the resource ID of the 'STR#' resource and the offset 
within that resource. 

When you create a new 'STR#' resource, it will contain no strings. 
Like the 'MBAR' resource, you need to add strings to the list before you 
can type them in. Do 1?0 by clicking on the ***** next to a number, and 
select Insert New Field from the Resource menu. A blank field will be 
inserted, where you can type in the new string. 

To read strings into your program, you use the GetindString () 

toolbox call, which has the following parameters: 

GetindString ( Str255 str255, 
short sResourceID, 
short sStringOffset ) ; 

Typically, you will want to read a string once and use it many times. This is 
especially true for strings used to update the screen, since you will not want 
to load them in every time you draw the screen. In order to minimize the 
storage that your strings require once loaded in memory, you should use a 
temporary variable to load the string from the resource file, and use the 
NewString ( ) toolbox call to duplicate the string just loaded in memory: 

StringHandle NewString( Str255 str255 ); 

A variable of type Str255 requires 256 bytes of storage (255 characters 
plus 1 length byte), regardless of the length of the string itself. 
NewString () allocates just enough storage to hold the string. This can 
significantly reduce the storage required to hold your program strings, 
especially when many of them are small. However, you should not modify 
a string created with NewString () because if you attempt to make it 
larger, you will corrupt memory (that's a bad thing). 

Desert Trek's game window uses a number of strings, loaded from a 
'STR#' resource, to display game status. The code to define and load the 
strings looks like this: 



#define TREK_WINDOW_STRINGS_ID 
#define HUNGER_STRING_ID 

128 
1 

#define THIRST_STRING_ID 2 
#define FATIGUE_STRING_ID 3 
#define HEALTH_STRING_ID 4 
#define FOOD_STRING_ID 5 
#define WATER_STRING_ID 6 
#define ELIXERS_STRING_ID 7 
#define CANNIBALS_DISTANCE_STRING_ID 8 
#define GOLD_STRING_ID 9 
#define DISTANCE_TRAVELLED_STRING_ID 10 
#define KM_STRING_ID 11 
#define BEHIND_YOU_STRING_ID 12 
#define SCORE_STRING_ID 13 

static StringHandle hStringHunger; 
static StringHandle hStringThirst; 
static StringHandle hStringFatigue; 
static StringHandle hStringHealth; 
static StringHandle hStringFood; 
static StringHandle hStringWater; 
static StringHandle hStringElixers; 

CHAPTER 3-Resources 

static StringHandle hStringCannibalsDistance; 
static StringHandle hStringGold; 
static StringHandle hStringDistanceTravelled; 
static StringHandle hStringKm; 
static StringHandle hStringBehindYou; 
static StringHandle hStringScore; 

void SetTrekWindowStrings( void ) 
{ 

Str255 str255; 

GetindString( str255, TREK_WINDOW_STRINGS_ID, HUNGER_STRING_ID ); 
hStringHunger = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, THIRST_STRING_ID ) ; 
hStringThirst = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, FATIGUE_STRING_ID ) ; 
hStringFatigue = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, HEALTH_STRING_ID ); 
hStringHealth = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, FOOD_STRING_ID ) ; 
hStringFood = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, WATER_STRING_ID ) ; 
hStringWater = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, ELIXERS_STRING_ID ) ; 

llJ 



CHAPTER 3-Resources 

hStringElixers = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, 

CANNIBALS_DISTANCE_STRING_ID ) ; 
hStringCannibalsDistance = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, GOLD_STRING_ID ) ; 
hStringGold = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, 

DISTANCE_TRAVELLED_STRING_ID ) ; 
hStringDistanceTravelled = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, KM_STRING_ID ) ; 
hStringKm = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, BEHIND_YOU_STRING_ID ) ; 
hStringBehindYou = NewString( str255 ); 
GetindString( str255, TREK_WINDOW_STRINGS_ID, SCORE_STRING_ID ) ; 
hStringScore = NewString( str255 ); 

Custom Resources 
In addition to the many standard types of resources you need for your 
game, you will most likely also want to store and retrieve your own infor
mation. For example, Desert Trek supports ten skill levels. There are 
more than approximately fifty parameters that get set differently for each 
skill level, such as how many supplies you start the game out with, to how 
far the cannibals can travel during different times of the day. It would not 
be very elegant to set each of these variables individually depending on 
the skill level selected by the player. That translates to more than 500 
assignment statements, adding much to the program code. A better solu
tion would be to read this information, which does not change, at run 
time from the resource fork of the game. 

In fact, Desert Trek uses three types of custom resources: one for the 
game parameters, one for the high scores, and one containing RGB val
ues for the Mac's standard 16-color palette. The game parameters and 
RGB colors resources never change after I ship the game. Only the high 
score resource gets modified. 

So, two questions naturally come to mind. How do I create custom 
resources for my game? How do I read and modify custom resources for 
my game at run time? 



CHAPTER 3-Resources 

There are basically two ways to create custom resources for your 
game: manually and programmatically. If the resource contains very little 
data, you might as well type it in manually. For example, Desert Trek's 
'clrs' resource contains 16 RGB values for colors. Since each RGB value 
is 6 bytes in length, there are only 96 bytes to the resource. Using 
ResEdit, I just created a clrs resource and typed in the data. 

For more complex or lengthy resources, you will want to generate 
the data programmatically. Desert Trek's game parameters resources are a 
good example. There are a total of 10 resources of type 'GPRM', one for 
each skill level. (There are actually two additional resources of type 
'GPRM' that contain the user's settings for sound and color depth warn
ing, but we can ignore them for this example). Included with the source 
code for Desert Trek is the unit 'Set Parameters.c'. However, you'll 
notice that this unit isn't included with the Desert Trek project (in other 
words, it is not compiled into the game). The reason for this is that this 
unit was used to create the 'GPRM' resources that define the game's 
parameters for each skill level. You would not need this code in the final 
version of the game, so it's left out of the project after it's used to create 
the resources. 

Before we go into the code to create resources, note that there's also a 
private resource that Desert Trek uses, which should be created before 
the game is distributed, but also gets modified after the game is distrib
uted (remember, the game parameters do not change after the game is 
distributed). The high scores resource 'SCRS' contains the top 10 high 
scores for each skill level. Because they need to be modified when the 
user gets a high score, the code to create them was left in the final version 
of Desert Trek (this also allows the high scores resource to be re-created 
if, for any reason, it gets removed from the game). 

Creating a Custom Resource 
Programmatically 

To programmatically create resources, you need to define a handle to the 
data you want to store in the resource fork of the game. In other words, 
you can't just take any variable type and make it into a resource. After 



CHAPTER 3-Resources 

declaring, allocating, and setting the data into a handle, use the following 
toolbox call to add the handle to the resource file: 

AddResource( Handle 
Res Type 
short 
Str255 

hData, 
ResourceType, 
sResourceID, 
str255ResourceName ) ; 

The ResType data type is defined as follows: 

typedef unsigned long ResType; 

Essentially, ResType is a 4-byte, or character, field. For most purposes, 
you will specify a four-character string, such as 'SCRS'. The following 
code example shows how the ResourceType parameter is specified. 

Whenever your resource data changes (for example, the user gets a 
new high score and enters a new name to the high scores list), you most 
likely will want to store those changes back to the resource fork of your 
game. Two toolbox calls are used to set the modification state of the 
resource handle, and to actually force an update to the resource file: 

ChangedResource ( Handle hResource ) ; 
WriteResource ( Handle hResource ) ; 

It's generally a good idea to mark a new resource as changed and to force 
a write to the resource fork of the game. The following code example 
shows how Desert Trek's high scores resource is created (the definition of 
the high scores structure and the ClearScores ( ) function are left out 
of this example for brevity, but you can find the complete source code on 
the CD-ROM in the file Scores Wmdow.c): 

static HSCORES hScores; 

void InitializeScoresWindow( void ) 
{ 

short sLoop; 



CHAPTER 3-Resources 

II Create the high scores structure 
hScores = (HSCORES) NewHandle( sizeof( SCORES) ); 
HLock( (Handle) hScores ) ; 

II Clear the high scores structure 
for( sLoop = O; sLoop < 10; sLoop++ 

ClearScores ( sLoop ) ; 

II Add the high scores structure to the resource fork 
AddResource( (Handle) hScores, 'SCRS', 128, "\pHigh Scoresn ) ; 
ChangedResource( (Handle) hScores ); 
WriteResource( (Handle) hScores ); 
HUnlock( (Handle) hScores ); 

Something you hopefully noticed was that nowhere in the previously 
defined toolbox calls to add, change, and write a resource, is there a para
meter to tell you which resource file you want to affect. In other words, it 
is assumed that you are affecting the resource fork of the game itself. 
However, you may want to affect resource files other than the game itself. 
All resource calls work on what is known as the current resource file. Any 
resources created or changed will be stored in the current resource file, 
which defaults to the application's resource fork. The following toolbox 
calls allow you to create and open new resource files, as well as change 
the current resource file: 

void CreateResFile( Str255 str255ResourceFileName ); 
short OpenResFile( Str255 str255ResourceFileName ); 
short CurResFile(); 
void UseResFile( short sResourceFileID ); 
void CloseResFile( short sResourceFileID ); 

The CreateResFile () toolbox call may or may not create a new file. 
For example, you may want to create a resource fork for a file that already 
exists. For this case, CreateResFile () does not create a new file, but 
creates a resource fork for the already existent file. You must create a 
resource fork for a file before using OpenResFile ();otherwise the call 
will fail. 



CHAPTER 3-Resources 

The following code fragment shows how you would use a resource 
file other than the resource fork of your game. An important thing to 
keep in mind is that you need to store the resource ID of your game 
before using UseResFile () to specify a different resource file. 
Otherwise, you won't be able to switch hack after you're finished with the 
other resource file. The full source for this code fragment can be found in 
Information Wmdow.c. 

void SaveinfoW:indoWI'ext ( void ) 
{ 

short sCurrentResourceFile; 
short sTextResourceFile; 
Str255 str255FileName = "\pMyResourceFile"; 

11 Save the resource id of Desert Trek itself 
sCurrentResourceFile = CurResFile(); 

II Create a resource fork for str255FileName and open it 
CreateResFile( str255FileName ) ; 
sTextResourceFile = OpenResFile( str255FileName ); 

I I If the open worked, continue 
if ( sTextResourceFile != -1 ) 
{ 

UseResFile ( sTextResourceFile ) ; 

II Put code here to read, add, and modify resources for the other file 

II Close the resource file and resume using Desert Trek's resource fork 
CloseResFile ( sTextResourceFile ) ; 
UseResFile ( sCurrentResourceFile ) ; 

Using a Custom Resource 
Now that you've created a custom resource for your game, how do you 
use it? Actually, it's very simple. All you need to do is define a handle to 
the data structure that defines the resource you've created and use the 
following toolbox call: 



CHAPTER 3-Resources 

Handle GetResource ( ResType ResourceType, 
short sResourceID ) ; 

The following code fragment, which can be found in its entirety in 
Scores Window.c demonstrates the use of GetResource (). Notice 
that typecasting is used to convert the generic handle type returned by 
GetResource () to the specific handle type defined in Desert Trek. 

static HSCORES hScores; 
static HNAME hScoreName; 

void InitializeScoresWindow( void ) 
{ 

hScores = (HSCORES) GetResource( 'SCRS', 128 ); 
hScoreName = (HNAME) GetResource( 'SCRS', 129 ); 

When you are finished using a resource, you need to free it from memory. The 
following toolbox call should be used when the resource is no longer needed: 

ReleaseResource( Handle hResource ); 

Vegas Trek Resource Example 

The CD-ROM included with this book contains a game, Vegas Trek, 
which was created by taking Desert Trek and changing certain resources. 
The idea for creating a "parody" of Desert Trek came from Mike Foley, 
who took Desert Trek, edited the resource fork of the game, and created 
Vegas Trek. Play Vegas Trek, and you'll notice that it's pretty much a 
completely different game (yes, all the rules are obviously the same, but 
all the locations, mode of transportation, events, etc. are different). This 
transformation was made possible by the fact that all of the graphics, 
menus, and text for the program are stored in the resource fork of the 
game. No coding changes were made (Mike didn't have the source code, 
and I didn't have to do anything to support his changes). 



CHAPTER 3-Resources 

This is a great example of what can be done if a game is designed to 
use resources well. Just as easily, Desert Trek can be translated by anyone 
with the skill to do so into other languages without the need for any cod
ing changes. 

Summary 
You now know what resources are, where they are stored, and how to use 
them. Keep in mind that creating and maintaining the resources for your 
game is just as important as writing the code itself. Plan to spend a sig
nificant amount of your development time creating all the resources for 
your game. 



WORKING WITH WINDOWS 

This chapter describes how to create and use windows for your game. 
Windows are a program's way of displaying information to a user, such as 
the status of a game, a picture or view of the game, and the high scores 
list. Windows are also used to retrieve input from users. For example, the 
user may click on an object or type text into in a window. Many games 
create and maintain more than one window, and in some cases, can have 
several instances of the same type of window (similar to having several 
documents open in a word processor). For example, Desert Trek's help 
window and "Cary's Games" window are the same type of window 
(though they display different information), and thus use the same code 
for drawing the window's contents and reacting to user input. 

119 



CHAPTER 4-Working with Windows 

Because the user can run several programs at the same time on a 
Macintosh, several windows from different applications can be visible at 
the same time. In addition, windows may overlap one another, obscuring 
portions of the overlapped window. When the user shows your game 
after it has been hidden or moves a window that had overlapped one of 
your game windows, the Macintosh operating system will generate events 
to your program, telling you that the window needs to be redrawn. Your 
program will need to respond to these events by redrawing the contents 
of the window. Your game itself will most likely cause its windows, or a 
portion of one of its windows, to be redrawn during game play even if it 
wasn't hidden or covered by another window. For example, when the user 
eats some food in Desert Trek, the status bars showing hunger and 
amount of food left need to be redrawn. 

It is obvious that your game will need to concern itself about drawing 
the content of windows, and perhaps allow for some user interaction with 
your game through those windows. However, your game's window 
responsibilities don't end there. Your game will also need to allow the 
moving, closing, and, perhaps, sizing of windows. Routines and strategies 
for doing so will also be discussed in this chapter. 

Anatomy of a Window 

In order to understand your responsibilities concerning the maintenance 
of windows within your game, you first need to understand the various 
components of a window. Any Macintosh user surely knows the various 
parts of a window, but how does a programmer deal with these parts. 
Figure 4.1 shows the anatomy of a window. 



CHAPTER 4-Working with Windows 

Close box. 

Window Title. 

r- Zoom Box. 

- Window - Title bar. 

~ 

Content region . 

izy 
¢ Jo I~ Size box (grow icon) 

Figure 4.1 The anatomy of a window. 

Chapter 2 discussed how to respond to mouse click events in the title bar, 
zoom box, close box, and size box. As you have seen, the Macintosh makes 
it fairly easy to maintain these aspects of a window, doing almost all of the 
work for you. Your two biggest responsibilities are to draw the content of 
a window and determine what to do when the user clicks the mouse in the 
content region of a window. The Macintosh will help you out with draw
ing the content region of a window by telling you when a window needs to 
be redrawn. Your game will also be given specific mouse click information 
such as which window was clicked, and the exact coordinates where the 
click occurred. However, before going into these topics in detail, let's 
examine how to load and set various properties for windows. 

121 



CHAPTER 4-Working with Windows 

The Macintosh needs to maintain information concerning a window, and 
that information is stored in a window record. Rarely, if ever, will you 
need to access specific information from a window record directly 
because there are several toolbox calls you can use to manipulate a win
dow record. For that reason, I am going to document only the first and 
last fields in the WindowRecord data structure, which are the ones of 
most interest: 

struct WindowRecord 
GrafPort port; 

long refCon; 
} ; 

II Reference Constant for program use. 

typedef struct WindowRecord WindowRecord; 
typedef WindowRecord *WindowPeek; 
typedef GrafPort *GrafPtr; 
typedef GrafPtr WindowPtr; 

The last field of the WindowRecord structure is called ref Con, or ref
erence constant. The reference constant is a long integer value that your 
game can use to store any type of information you want to be associated 
with that specific window. Typically, the reference constant is used by 
programs to differentiate different types of windows from one another 
(or multiple instances of the same type of window). Desert Trek has sev
eral types of windows and uses this field to give each window created by 
Desert Trek a unique identifier. Keep in mind that this field can be used 
for any purpose by your program. For example, if you would like to keep 
a lot of window-specific information for each window in your program, 
you could store a handle to the data structure describing that window 
information as the reference constant. 

There is one additional point of interest when it comes to how 
Macintosh programs reference a window. In most cases, window pointers 
are used (WindowPtr) when calling toolbox functions related to win-



CHAPTER 4-Working with Windows 

dows. As you can see from the previous definitions a WindowPtr is ~~11j!,;;;~' 
really just a Graf Ptr (see Chapter 7, Quickdraw, for more information 
on the Graf Ptr and Graf Port data types). Notice, too, that the first 
field in the WindowRE!COrd data structure is of type Graf Port. What 
does this mean to you, the game programmer? Well, it means that you 
can use window pointers everywhere you can use graphics port pointers. 
In Chapter 7, you'll find out that toolbox calls used to perform drawing 
operations require graphics port pointers. Because you will frequently 
need to draw information into a window, you can use the WindowPtr for 
that window instead of always having to reference the Graf Port field of 
the window record. Believe me, this is a great convenience. 

Lastly, there is a minor difference between a black-and-white window 
and a color capable window. Two slightly different window records are 
defined, one for each type. The only difference between the two window 
records is that a color window record (CWindowRecord) has as its first 
field a CGraf Port (which is a color graphics port) instead of a 
Graf Port. Your game only needs to be aware of this minor difference 
when it loads a window from a resource. The next section on loading 
windows will give you all the details. 

Loading a Window 

To load a window from your game's resource fork (of type 'WIND'), use 
the following toolbox call: 

WindowPtr GetNewWindow ( short sWindowResourceID, 
void *pStorage, 
WindowPtr pWindowBehind ); 

The sWindowResourceID parameter specifies the resource ID of the 
'WIND' resource to be loaded. The pStorage routing specifies a 
pointer to an allocated block of memory large enough to hold the win
dow record of the new window. A value of ni 1 will cause the Macintosh 
to automatically allocate storage for the window record from the heap. 
You'll probably always want to use ni 1 here, unless you really want to 



CHAPTER 4-Working with Windows 

allocate and manage the storage for the window record yourself . The 
pWindowBehind parameter specifies the plane in which your window 
will appear (the Z-order). In other words, this parameter specifies the win
dow that will be immediately in front of the window you're loading. Most 
of the time you will want the loaded window to be the frontmost window 
on the screen. You would think that passing ni 1 would accomplish this 
since you don't want the loaded window to go behind any window; how
ever, you would be wrong. Passing nil actually causes the window to 
appear behind all the windows currently on the screen. To have the win
dow appear in front of all the other windows on the screen, you need to 
pass -1 (typecast to type WindowPtr). Lastly, this toolbox call returns a 
window pointer to the window loaded. 

Recall that I mentioned that there was a slight difference between 
color-capable windows and black-and-white-only windows. Well, that 
difference really only matters when you load the window. Another tool
box call loads a color-capable window: 

WindowPtr GetNewCWindow( short 
void 
WindowPtr 

sWindowResourceID, 
*pStorage, 
pWindowBehind ) ; 

Notice that everything is the same except for the toolbox call name. The 
parameters and return value are the same as GetNewWindow ( ) . 

When you are finished with a window and want to remove it from 
the screen and, more importantly, remove its window record from mem
ory, use one of the following toolbox calls: 

II If you allocated memory for the window record yourself, 
II use the following to destroy a window (the window record 
II memory is not freed, so you'll need to free it yourself). 
void CloseWindow( WindowPtr pWindow ); 

II If you had the Mac automatically allocate the window 
II record (by specifying nil for the pStorage parameter of 
II the GetNewWindow() call), use the following to destroy a 
II window (the window record will automatically be freed). 
void DisposeWindow( WindowPtr pWindow ); 



CHAPTER 4-Working with Windows 

A code example showing the use of these call wills be given at the end of 
the section on setting window properties. 

Showing and Hiding Windows 

There may be times when you need to hide a window without closing it 
and removing it from memory. You can then later show the window with
out having to reload it (and without having to resize and move it, too). 

II Hides a window. 
void HideWindow ( WindowPtr pWindow ) ; 

II Shows a window. 
void ShowWindow ( WindowPtr pWindow ) ; 

T I P 

Because all the windows your game loads and displays will most llkely 
need to be sized and positioned based on the size of the screen your 
game is running on, it Is a good idea to create window resources as 
not visible. Doing so causes the window not to be displayed Immedi
ately when loaded. After loading the window, you can size and posi
tion the window and then call ShowWindow < > to make it visible on the 
screen. This prevents the window from first appearing Immediately 
after it's loaded at whatever location It's defined at in the resource 
fork, and then moving to its new location once you size and position It 
(which can be visually unappealing to the user). 

Moving and Sizing Windows 

The Macintosh toolbox provides the following calls to move and size 
windows: 

II Moves a window to a new location on the screen. The 
II horizontal (sHPosition) and vertical (sVPosition) 
II values are specified in global coordinates (see the 
II section on handling mouse click events in the content 
II region of windows later on in the chapter for a 



CHAPTER 4-Worklng with Windows 

II description of local and global coordinates). If 
II bActivate is true, the window is activated and brought 
II to the front. 
void MoveWindow ( WindowPtr pWindow, 

short sHPosition, 
short 
Boolean 

sVPosition, 
bActivate ) ; 

II Sizes a window. The new width and height are specified in 
II pixels. If bUpdate is true, the proper update events are 
I I send to your program to redraw any newly exposed parts of 
II the window. You will almost always set this to true. 
void SizeWindow ( WindowPtr pWindow, 

short sWidth, 
short 
Boolean 

sHeight, 
bUpdate ) ; 

II "Zooms" a window between a zoomed-in state and a 
II zoomed-out state. sPartCode is the code returned by 
I I Find.Window () as described in chapter 2 on toolbox basics. 
II If bActivate is true, the window is activated and brought 
II to the front. 
void ZoomWindow ( WindowPtr pWindow, 

short 
Boolean 

The Active Window 

sPartCode, 
bActivate ) ; 

There can be multiple windows open on a Macintosh screen at any one 
time, hut only one of those windows can be the active window. The active 
window is the window that the user is currently interacting with. For 
example, any keystrokes typed by the user are destined for the active win
dow. Visually, the active window is the only window on the Macintosh 
desktop that has the horizontal lines drawn in the title bar (see Figure 
4.2). Also notice that if the window is sizable, the grow icon is only visible 
for the active window {it is hidden for all nonactive windows). 



CHAPTER 4-Working with Windows 

Rctlue Window Not Rcti11e 

Figure 4.2 Active and inactive windows. 

When an event gets posted to your game, you may need to know which 
game window is currently active. This is especially true when the user 
types from the keyboard because keyboard events posted to your game do 
not specify the window for which the event occurred. The following tool
box call returns the active window: 

11 Gets the currently active (front most) window. 
WindowPtr FrontWindow ( void ) ; 

There will be times when your game needs to change the active window. 
For example, if the user clicks on a window that is not active, you need to 
activate that window as well as deactivate the currently active window. 
The following toolbox call takes care of all of that for you: 

II Activates the specified window and brings it to the front. 
II The currently active window is deactivated. 
void SelectWindow ( WindowPtr pWindow ) ; 

If you want to manually set the highlight state of a window (in other 
words, draw it as active or not active), you can use the following toolbox 
call. Normally, you do not need to use this call because the Macintosh 
automatically draws the proper highlighting state when a window gets 
activated or deactivated. 



CHAPTER 4-Working with Windows 

II Set the highlight state for a window. Specifying true for 
II bHighlight will cause the window to look active. False 
II will cause the window to look not active. 
void HiliteWindow( WindowPtr pWindow, 

Boolean bHighlight ); 

Lastly, remember that I briefly mentioned that the active window is the 
only window that has the grow icon visibly drawn. If you have a sizable 
window in your game, you need to manually draw the grow icon for that 
window when it gets activated. Use the following toolbox call. 

II Draw the grow icon for a sizable window. 
void Dra'WGrowicon( WindowPtr pWindow ); 

Changing the Z-Order of Window 

The z-order of windows determines which windows are on top of, or 
overlapping, other windows. You can specify the z-ordering of your 
game's windows using the following Macintosh toolbox calls. However, 
these calls are typically not used since they do not generate all of the 
appropriate activate and deactivate events. You would normally use the 
SelectWindow ( ) toolbox call to bring a window to the front. 

II Brings the specified window to the front. 
void BringToFront( WindowPtr pWindow ); 

II Sends the specified window behind pBehindWindow. If 
II pBehindWindow is nil, the window is moved behind all other 
11 windows. 
void SendBehind ( WindowPtr pWindow ) ; 

WindowPtr pBehindWindow ) ; 

Setting Window Properties 

As I stated before, there are a number of toolbox calls to manipulate the 
properties of a window, eliminating the need to directly access the win-



CHAPTER 4-Working with Windows 

dow record itself. In reality, there are only two properties that you may 
want to change: the window title and the reference constant. The follow
ing toolbox calls allow you to query and set the window title and refer
ence constant: 

II Sets the title ·text for a window. 
void SetWTitle( WindowPtr 

Str255 
pWindow, 
str255Title ) ; 

II Gets the title text for a window. 
void GetWTitle( WindowPtr 

Str255 
pWindow, 
str255Title ) ; 

II Sets the reference constant for a window. 
void SetWRefCon ( WindowPtr pWindow, 

long lRefCon ) ; 

II Gets the reference constant for a window. 
void GetWRefCon ( WindowPtr pWindow, 

long *plRefCon ) ; 

Examples 
The following code fragment loads a window, sizes it, sets its reference 
constant, and selects it as the active window. The entire function can be 
found in Trek Wmdow.c. 

#define TREK_WINDOW_RESOURCE_ID 128 
#define TREK_WINDOW_ID 1 

static WindowPtr pWindowTrekWindow = nil; 
static Rect rectTrekWindow; 

static void CreateTrekWindow( void ) 
{ 

II If this is a color Mac, use GetNewCWindow. 
if ( UsingColorGraphics( nil ) ) 

pWindowTrekWindow = GetNewCWindow ( TREK_WINDOW_RESOURCE_ID, nil, 
(WindowPtr) -1 ); 



CHAPTER 4-Working with Windows 

else 
pWindowTrekWindow = GetNewWindow ( TREK_WINDOW_RESOURCE_ID, nil, 

(WindowPtr) -1 ) ; 

II Set the reference constant so I can identify this window later. 
SetWRefCon ( pWindowTrekWindow, TREK_WINDOW_ID ) ; 

II Size the window. 
SizeWindow( pWindowTrekWindow, rectTrekWindow.right, 

rectTrekWindow.bottom, false); 

II Call my own routine to center the window on the screen. This 
II routine can be found in "Common Functions.c". 
CenterWindow( &rectTrekWindow, &screenBits.bounds, true, 

pWindowTrekWindow ) ; 

II Show the window since the resource defines it as hidden. 
ShowWindow( pWindowTrekWindow ); 

II Activate the window and make it font most. 
SelectWindow( pWindowTrekWindow ); 

Once the window is no longer needed, it needs to be disposed. The fol
lowing code fragment does so (the function can be found in its entirety in 
Trek Window.c): 

void DestructTrekWindow( void ) 
{ 

DisposeWindow ( pWindowTrekWindow ) ; 
} 

At this point, you might want to go back and look at the code example 
given in the "Handling Keyboard Events" section in Chapter 2 to see 
how FrontWindow () and GetWRefCon () are used to determine 
which window gets a keyboard event. 



CHAPTER 4-Working with Windows 

Update Events 

One of the most important parts of window management for your game 
will be drawing information into a window. When a portion of a window 
that was once covered by another window is uncovered, your game must 
redraw the part of the window that was revealed. Even if you have only 
one window for your game, you still need to respond to update events 
because windows from other applications may obscure your game win
dow. In addition, the user may hide your game and return to it later, caus
ing the need to redraw the entire window. Lastly, you will want to take 
advantage of update events to automatically cause the redraw of a window 
in which information has changed. Keep in mind that "information" 
doesn't just mean text for high scores or status for amount of food left. 
Information might be the position of a Klingon ship versus the players 
ship, or the current location of the photon torpedo on an intercept course 
with the players ship. The contents of a window is a snapshot of the cur
rent status of the game. That status might change 60 times a second in an 
arcade game with high speed animation. The actual process of drawing 
will be discussed in Chapter 7, Quickdraw, but there are a number of 
things that need to happen before the actual drawing occurs. 

When a portion of, or an entire window, needs to be redrawn, your 
game receives an update event (updateEvt). The update event tells you 
which window needs to be drawn. To respond to an update event, you 
game would usually draw the window that needs updating. The routine 
that draws a window's contents is commonly referred to as the window's 
update routine, because you normally call it when an update event for 
that window is posted to your game. 

How do you know what portion of the window to draw? The 
Macintosh actually makes this easy for you. It's simply a lot easier to 
redraw the whole window as opposed to figuring out what needs to be 
redrawn. You don't have to perform complex operations to figure out if 



CHAPTER 4-Working with Windows 

the player's ship belongs in the update region or not, or if the fuel indica
tor needs to be redrawn too. By using two toolbox calls, you can redraw 
the entire window, but have the Macintosh clip, or exclude, the drawing 
of anything that doesn't need to be redrawn. This makes it easy on your 
code and avoids any actual drawing that doesn't need to take place. Here 
are the two toolbox calls: 

II Begin update drawing for a window. 
void BeginUpdate ( WindowPtr pWindow ) ; 

II End update drawing for a window. 
void EndUpdate ( WindowPtr pWindow ) ; 

So, just before drawing your window in response to an update event, call 
BeginUpdate () to have the Macintosh automatically ignore any draw
ing you do outside the update region. This is called clipping, because any 
drawing outside the update region is "clipped," or ignored. After drawing 
the window, you must call EndUpdate () to restore the clipping region 
of the window. 

At times, you'll need to update a portion of the window due to a 
change in the information being displayed there. For example, if the user 
drinks in Desert Trek , I need to reflect the decrease in the water supply 
and player's thirst in the game window. It would be foolish to have special 
code to draw just the water and thirst indicators if I already have a rou
tine to draw the entire contents of the game window to handle update 
events. An easy way to draw the new information is to post an update 
event to the game window. The event processing code in Desert Trek 
simply calls the window drawing routine, and the new information is 
drawn automatically. To post an update event to the appropriate window, 
you use routines to invalidate a portion of the window. When a portion of 
a window is marked as invalid, an update event for that window is posted 
to your game. 

The following routines can invalidate or validate portions of a win
dow; you invalidate portions of a window that you need to redraw and 
validate portions of a window that you manually draw outside a 
BeginUpdate () , EndUpdate () pair that you had previously invali-



CHAPTER 4-Working with Windows 

dated. You only need to validate a window region if you draw something ,J,~ 

to a window before the update event had to be processed. In other words, 
you should rarely need to use the validate routines. Using the 
BeginUpdate () , EndUpdate () pair will automatically validate the 
entire window, so make sure to draw everything between the two calls 
(which you should be doing anyway), otherwise, parts of your window 
may not get drawn. Rectangles and regions will be discussed in Chapter 
7, Quickdraw (the Rect and RgnHandle data types). Note that these 
routines do not specify which window to validate or invalidate. So, before 
calling one of these routines, you need to make absolutely sure that the 
window you want to affect is the current drawing port. The current 
drawing port, which will be described in detail in Chapter 7, determines 
where any drawing-related commands are displayed (in other words, 
which window gets drawn to). Use the SetPort ( ) toolbox call and 
specify the window pointer of the window you want to validate or invali-
date before making one of these calls. 

II Invalidate a rectangular region of a window, causing an 
II update event to be posted to that window. 
void InvalRect( Rect *pRectinvalidate }; 

II Invalidate a region of a window, causing an update event 
II to be posted to that window. 
void InvalRgn ( RgnHandle hRgninvalidate } ; 

II Validate a rectangular region of a window, which will be 
II clipped from drawing when updating a window. 
void ValidRect( Rect *pRectValidate }; 

II Validate a region of a window, which will be clipped from 
II drawing when updating a window. 
void ValidRgn ( RgnHandle hRgnValidate } ; 

Invalidating portions of a window is a great way to redraw windows that 
contain no animation, such as status windows or high score windows. 
However, if the window contains animation, it is generally not practical 
to redraw everything in the window every time something moves. Even 
though the Macintosh will clip all extraneous drawing, it probably would 



CHAPTER 4-Worklng with Windows 

take too much time to execute all your window drawing code just to 
change the position of an animated object. For example, Desert Trek, 
where the view fades from one part of the day to the next, does not use 
the traditional invalidate rectangle method because the only thing chang
ing on the screen during the fade is the view portion of the game window. 
To accomplish this, I simply draw the information directly to the window 
without going through the invalidation and update process. This means 
not using BeginUpda te ( ) and EndUpda te ( ) when drawing the fades. 

Examples 
How about some code examples? For starters, the following code 
responds to an update event by determining which window needs to be 
updated and calling the appropriate routine to draw that window: 

static void HandleUpdateEvent( EventRecord *pEvent ) 
{ 

short sWindowID; 
WindowPtr pWindow = nil; 

II Check to see if the number of colors the monitor is set to changed since 
II the last update event. 
CheckMonitorcolors ( true ) ; 

I I Detemine the window that needs updating. Notice that I use the window's 
II reference constant to determine which drawing routine to call. 
pWindow = {WindowPtr) pEvent->message; 
sWindowID = (short) GetWRefCon( pWindow ) ; 

I I Call the appropriate routine to draw the window needing updating. 
switch { sWindowID ) 
( 

case TREK_WINDOW_ID: 

UpdateTrekWindow(); 
break; 

case HELP_WINDOW_ID: 

UpdateinfoWindow( GetinfoWindowPtr{ HELP_WINDOW_ID ) ) ; 



CHAPTER 4-Working with Windows 

break; 

case CARYS_GAMES_WINOOW_ID: 

UpdateinfoWindow( GetinfowindowPtr( CARYS_GAMES_WINDOW_ID) ); 
break; 

case.SCORES_WINOOW_ID: 

UpdateScoresWindow(); 
break; 

case ABOUT_WINOOW_ID: 

UpdateAboutwindow(); 
break; 

case APP_MODAL_DIALOG_ID: 

UpdateModalDialog{ pWindow ) ; 
break; 

The following routine updates the Desert Trek game window. I am using 
an offscreen bitmap to hold the window information and transferring it 
all to the screen with one toolbox call, CopyBi ts (), which will be dis
cussed in Chapter 7. 

void UpdateTrekWindow( void ) 
{ 

GrafPtr pGrafCUrrent; 

II Save the current port so I set it back after drawing. Chapter 7 on 
II quickdraw will describe this toolbox call. 
GetPort ( &pGrafCurrent ) ; 

II Set the drawing port to the Desert Trek game window. 
SetPort{ pWindowTrekWindow ); 

II Begin updating. Anything outside the update region will be clipped. 
BeginUpdate ( pWindowTrekWindow ) ; 



· .. 136 

CHAPTER 4-Working with Windows 

II Draw the whole window in one shot using the CopyBits() call, which will 
II be discussed in chapter 7 on quickdraw. 
CopyBits( &bitmapTrekWindow, &pWindowTrekWindow->portBits, 

&rectTrekWindow, &rectTrekWindow, srcCopy, nil); 

II Draw the window controls (in this case, the scrollbar for the journal 
II text). Chapter 6 on Dialogs and Controls will describe this toolbox 
II call. 
Draweontrols ( pWindowTrekWindow ) ; 

II Finished drawing, so restore the clipping region for this window. 
EndUpdate ( pWindowTrekWindow ) ; 

II Restore the drawing port to whatever it was before drawing this window. 
SetPort ( pGrafCUrrent ) ; 

Handling Mouse Click Events in the 
Content Region of a Window 

'\Vhen the user clicks the mouse somewhere in your game window, your 
game receives a mouse down event (see Chapter 2 for event information). 
If the user clicks in the title bar, close box, zoom box, or size box of the 
window, you simply call a toolbox routine to automatically handle the 
click event. However, if the user clicks somewhere in the content region 
of the window, you need to handle all of the details yourself. '\Vhat you 
need to do depends on the contents of the window. For windows that 
only display information, you will probably ignore the click event (other 
than to activate the window, if it isn't already active). For other windows, 
you'll need to do more. For example, Desert Trek's main window, while 
displaying all types of information, also contains a scrollbar control and a 
set of picture buttons. '\Vhen the user clicks on the scrollbar or one of the 
buttons, something needs to happen, which brings up two points. First, 
you need to determine exactly where the user clicked (on the scrollbar, 
one of the buttons, or somewhere else). Second, you need to track the 
mouse click to see where the user releases the mouse. In other words, the 
user could click on one of the picture buttons, but change his or her mind 



CHAPTER 4-Working with Windows 

and move the mouse, with the button depressed, out of the picture but- c~ 

ton. Releasing the mouse button when it's not over the picture button 
originally clicked means that the command associated with that picture 
button should not be executed. 

Global and Local Coordinates 
To determine where the user clicked the mouse, all you need to do is look 
at the where field of the click event. The where field consists of a 
Point structure, which tells you the horizontal and vertical coordinates 
of the click. The coordinates, however, are relative to the top-left corner 
of the Macintosh screen. When a coordinate is relative to the top-left 
corner of the screen, it is referred to as a global coordinate. When a coor
dinate is relative to the top-left corner of the content region of a particu
lar window, that coordinate is referred to a local coordinate. Note that 
this isn't relative to the top-left corner of the window itself, because that 
would include the title bar. Any processing you do related to mouse click 
events should take place in local coordinates. This is due to the fact that 
the user can move your window anywhere on the screen and you can't be 
sure how the global coordinate relates to your window unless you factor 
in your window's current position. You need to covert the global coordi
nate specified in the event record of a mouse click to a coordinate local to 
the window affected. It could get quite tedious querying your window's 
position on the screen for every mouse click event to determine where in 
your window the mouse was clicked. Fortunately, the Macintosh provides 
two routines to convert coordinates: 

II Convert a global coordinate to a local coordinate. 
void GlobalToLocal( Point &pt); 

II Convert a local coordinate to a global coordinate. 
void LocalToGlobal( Point &pt); 

Again, since you do not provide a window pointer to either of these func
tions, you need to make sure that the correct window's port is the current 
graphics port by using the Set Port ( ) toolbox call. 



CHAPTER 4-Working with Windows 

Once you determine where the user has clicked, you need to take 
action. The action taken depends solely on what's in your window. Again, 
with Desert Trek, something exciting should happen when the player 
clicks on certain items within its window. The first of these items is a 
standard scrollbar, which allows the player to scroll through the game's 
journal. The Macintosh toolbox provides a call that tells you whether or 
not a user click in the content region of a window occurred within any of 
the controls within that window, FindControl (), which will be dis
cussed in more detail in Chapter 6, Using Dialog Boxes and Controls. The 
other item the user can click on in the Desert Trek window is any of a 
number of picture buttons. These picture buttons are not standard 
Macintosh controls, and thus must be handled separately. The rest of this 
chapter will show how they are handled. 

First things first. How do I determine whether or not the user clicked 
on one of the picture buttons? If the mouse has been clicked in the 
Desert Trek main window, the following function from Trek Wmdow.c 
gets called: 

void TrekWindowMouseDown( Point pt ) 
{ 

II Make sure the Desert Trek window is the current graphics port. 
SetPort ( pWindowTrekWindow ) ; 

·II Convert the event's global coordinates to local coordinates. 
GlobalTOLocal( &pt); 

II If the player did not click on the scrollbar, check to see if they 
II clicked on one of the picture command button. 
if ( !ClickedOnJournalScrollbar( pWindowTrekWindow, pt ) ) 

ClickedOnCommandsButtons ( pt ) ; 

If the player did not click on the scrollbar, we need to see if they clicked 
on a picture command button. The following routine fragment from 
Trek Wmdow.c determines whether or not the click was in a command 
button using the PtinRect () toolbox call described in Chapter 7. 
Basically, the PtinRect () function returns true if the point in question 
resides within the given rectangle. 



CHAPTER 4-Working with Windows 

static Boolean ClickedOnCommandsButtons( Point pt ) 
{ 

Boolean bHandled = false; 
short sLoop; 

II The sCommandButtonState variable is an array of shorts that specify 
II whether a particular coounand button is enabled or not. We do not process 
I I mouse clicks on a command button that is disabled. 
short *sCommandButtonState = GetCommandButtonsState(); 

II In order to optimize a little, the picture command buttons rectangles 
II are divided into three groups: those within the view rectangle, those 
II horizontally arranged under the view rectangle, and those arranged 
II vertically at the right of the screen. We first check to see if the 
11 player clicked anywhere within on of these regions before we try to 
11 locate which button they clicked on. 
if ( PtinRect( pt, &rectHorizontalButtons ) 11 

PtinRect ( pt, &rectVerticalButtons 11 

PtinRect( pt, &rectView ) ) 

II The player did click in one of the areas of interest, so return that 
II fact to the calling routine. 
bHandled = true; 

I I Loop though every picture command button and see if that's the button 
II the player clicked on using the PtinRect() call. In addition, that 
II picture command button must also be enabled. 
for( sLoop = NormalPaceButton; sLoop <= ExitTradingPostButton; sLoop++ 

if ( ( PtinRect( pt, &rectCommandButtons[sLoop] ) ) && 
( sCommandButtonState[sLoop] == ButtonEnabled ) ) 

11 The user did click on an enabled picture command button. We now 
II need to determine if the user releases the mouse button over that 

. I I command button. 
if ( TrackClickOnCommandButton( sLoop ) ) 
{ 

II The user released the mouse over that command button, so execute 
II the command (the code is left out here for brevity). 
switch ( sLoop l 
{ 

} 

return ( bHandled ) ; 



140 

CHAPTER 4-Working with Windows 

Once we determine that the player has clicked on a picture command 
button, we need to track the mouse as long as its button is down. This 
means that the picture command button needs to be drawn to reflect its 
state: depressed if the mouse is over the button, normal if the mouse is 
not over the button. In other words, the player could click on a command 
button (and it would have to be drawn in its depressed, or clicked on 
state), but then start moving the mouse around while the mouse button 
remains clicked. If the mouse strays out of the command button, the 
command button needs to be redrawn in its normal state because that 
command will not be selected if the user releases the mouse button. Of 
course, the player could be fickle and move the mouse in and out of the 
command button several times before making up his or her mind. We, as 
programmers, must allow for that case. The following routine tracks the 
mouse if it is clicked on one of Desert Trek's picture command buttons: 

static Boolean TrackClickOnComrnandButton( short sComrnandButton ) 
{ 

short sButtonState = ButtonSelected; 
short sOldButtonState = ButtonEnabled; 
Point pt; 

II While the mouse button is still down, track it. 
while( StillDown() ) 
{ 

II Get the current mouse location, which will be in local coordinates. 
GetMouse ( &pt ) ; 

II If the mouse is still over the command button they originally clicked 
II on, check to see if the button is in its enabled state (which means 
II that its drawn in the "up" position). If so, change the button state 
II so that it gets drawn in the "down" position {button selected). 
if { PtinRect{ pt, &rectComrnandButtons[sComrnandButton] ) ) 
{ 

if { sButtonState == ButtonEnabled ) 
sButtonState = ButtonSelected; 

II Otherwise, if the mouse is no longer over the button they originally 
II clicked on, and if the button state is still in the "down" state 
II {button selected), set the button state to the "up" state (button 
II enabled). 



CHAPTER 4-Working with Windows 

else if ( sButtonState == ButtonSelected 
sButtonState = ButtonEnabled; 

II If the button state changed, redraw the button. Chapter 7 on quickdraw 
II will explain the code in my DraWCommandButton() routine. 
if ( sButtonState != sOldButtonState ) 

DraWCommandButton( sCommandButton, sButtonState, 
&pWindowTrekWindow->portBits, 
&rectCommandButtons[sCommandButton] ); 

II Set the old button state to the current button state. This way, we 
II won't bother drawing the button if its state hasn't changed. 
sOldButtonState = sButtonState; 

II The user has finally released the mouse, so we need to draw the button 
II in its "up" state if it isn't already so. 
if ( sButtonState == ButtonSelected ) 

DraWCommandButton( sCommandButton, ButtonEnabled, 
&pWindowTrekWindow->portBits, 
&rectCommandButtons[sCommandButton] ); 

II Return true if the user released the mouse over the button they 
II originally clicked on. 
return( sButtonState == ButtonSelected ) ; 

141 



DISPLAYING AND USING MENUS 

Along with windows, menus are one of the most basic components of any 
Macintosh application. This includes games, so even if your game takes 
up the entire screen, you need to provide a way to show the menu bar. 
This is especially true today with Multifinder and System 7 because the 
user may need access to any application running on the machine while 
playing your game (the boss screen might just not be good enough!). 
With this in mind, every game programmer needs to be familiar with the 
loading of menus, detecting when the user has selected a menu item, 
checking menu items to show whether or not various options are set, and 
maybe displaying a pop-up menu or two. This chapter will give you the 
rundown on menus. 

143 



CHAPTER 5-Displaying and Using Menus 

144 Menu Bars, Menus, and Menu Items 

When using proper menu terminology, it is necessary to distinguish the 
various parts of what we commonly refer to as menus. The lowest compo
nent of a menu is a menu item. A menu item is one entry of a menu, such 
as Save .. or Quit. Menu items have various properties such as being 
enabled or disabled, checked, or having a command key equivalent. Menu . 
items are addressed via a menu item ID, which corresponds to that item's 
location in a menu. For example, the first menu item has an ID of 1, the 
second 2, and so on. 

A menu proper consists of a group of menu items. Your program will 
need to identify menus using both a menu ID and menu handle. The 
menu ID is specified when you create the menu in ResEdit (see Chapter 
3, Resources, for full details). When the user selects a menu item, the 
menu ID of the menu containing the item selected will be passed to your 
program via an event. In addition to the menu ID, your program will 
need to use the menu handle of a menu in order to manipulate that menu 
(such as inserting, deleting, enabling, disabling, and checking menu 
items). You can obtain a menu's handle by using the following toolbox 
call and supplying its menu ID. Note that in order for the toolbox to find 
the menu handle with the specified ID, the menu must be loaded and 
inserted into the menu bar (more on that later). 

II Obtain a menu's handle give its ID. 
MenuHandle GetMHandle ( short sMenuID ) ; 

A menu bar is a collection of menus. Typically, the menu bar for an appli
cation is shown at the top of the Macintosh screen. Because all applica
tions running on the Macintosh show their menu bars at the top of the 
screen, only the menu bar of the currently active application is seen by 
the user. 

It makes sense that you can manipulate menu items, such as checking 
a menu item, deleting a menu item, or disabling a menu item. It also 
make sense that you can perform operations on an entire menu at a time, 
such as inserting a menu into a menu bar, or changing its title. In addi-



CHAPTER 5-Displaying and Using Menus 

tion, you can perform operations on the entire menu bar of an applica- :~il-IH~: 
tion. This includes loading menu bars and setting them to be the menu 
bar for your game. 

There's one final point I need to make concerning menus. Before 
using a menu, it must be loaded from the resource fork and inserted into 
the menu bar. For most menus, this makes perfect sense because you'd 
want the menu to appear in the game's menu bar. However, there will be 
times when you want to use a menu that's not on the menu bar proper (at 
the top of the screen). Examples include hierarchical menus and pop-up 
menus, which will be discussed later in this chapter. These menus must 
also be inserted into the menu bar before you can use them. However, 
there's a way to do so without causing them to appear at the top of the 
screen in the menu bar proper, as we'll see later. 

Adding the Apple Menu Items to the 
Apple Menu 

The apple menu of every application needs to contain the apple menu 
items stored in the System Folder. Because these items vary from system 
to system based on the user's preferences, you need to add these items at 
run time (it is impossible to add them when creating the menu in 
ResEdit). The following toolbox call is used to add these items: 

II Add the names of resources of the specified type to the 
II specified menu. All open resource files are searched, 
II including the system resources. 
void AddResMenu ( MenuHandle hMenu, 

ResType resType); 

Notice that this call can add items to any menu that you specify, and that 
you can add the names of any type of resource. For the apple menu, the 
resource type you need to specify to get the contents of the apple menu 
items folder is 'DRVR'. For system versions earlier than 7, which don't 
support an apple menu items folder, the 'DRVR' resource type will cause 
all desk accessories to be added to the specified menu. As it turns out, this 



CHAPTER 5-Displaying and Using Menus 

is exactly what you would want to happen-you're covered under all sys
tem versions! An example of how to use this call will be shown shortly. 

Loading a 'MBAR' Resource 

The convenient thing about using menu bar resources is that you can 
load the entire menu bar for your game in one fell swoop; well, almost, as 
we'll see in the example. The following toolbox call loads a menu bar 
resource. This routine causes all menus defined on the specified menu 
bar to be loaded automatically, eliminating the need to load each menu 
individually. Notice that the resource loaded is simply a generic handle. 

II Load a menu bar from the resource fork. 
Handle GetNewMBar ( short sMenuBarID ) ; 

When you are finished with a menu bar, you need to release the resource 
it takes in memory by calling ReleaseResource () (described in 
Chapter 3) and supplying the menu bar handle to be released. 

Setting and Drawing the Menu Bar 

After loading a menu bar, you need to set it as the menu bar for your 
game. The following toolbox call sets the menu bar and automatically 
inserts all menus associated with that menu bar. 

II Sets the menu bar. 
Handle SetMenuBar( Handle hMenuBar ) ; 

Setting a menu bar does not draw it on the screen. You need to do so 
explicitly using the following toolbox call: 

II Draws the menu bar. 
void DrawMenuBar ( void ) ; 



CHAPTER 5-Displaying and Using Menus 

When you change the contents of the menu bar, you need to call 
DrawMenuBar () to reflect those changes on the screen. Changes to the 
menu bar include changing menu names, inserting or deleting menus, or 
enabling or disabling menus. You do not need to call DrawMenuBar ( ) if 
you change a menu item. 

Example Loading and 
Setting a Menu Bar 

The following code example shows how to load a menu bar, add the apple 
menu items to the apple menu, and set the menu bar as the menu bar for 
Desert Trek (the entire function can be found in Menus.c). 

#define MENU_BAR_ID 128 

static Handle hMenuBar; 

static MenuHandle hMenuApple = nil; 
static MenuHandle hMenuFile = nil; 
static MenuHandle hMenuOptions = nil; 
static MenuHandle hMenuComrnands = nil; 
static MenuHandle hMenuBuy = nil; 
static MenuHandle hMenuSkillLevel = nil; 

Boolean SetDesertTrekMenuBar ( void ) 
{ 

II Load the menu bar from the resource fork. 
hMenuBar = GetNewMBar ( MENU_BAR_ID ) ; 

I I If the menu bar loaded okay ... 
if ( hMenuBar ) 
{ 

I I Set the Desert Trek menu bar to be the menu bar just loaded and draw 
II it on the screen. 
SetMenuBar ( hMenuBar ) ; 
DrawMenuBar ( ) ; 



CHAPTER 5-Displaying and Using Menus 

} 

I I Set the menu handles for each menu in the menu bar. This will speed 
II up menu command processing in other parts of the code since we will 
II not need to obtain a menu's handle every time we try to access it. 
hMenuApple = GetMHandle ( AppleMenuID ) ; 
hMenuFile = GetMHandle ( FileMenuID ) ; 
hMenuOptions = GetMHandle ( OptionsMenuID ) ; 
hMenuCommands = GetMHandle ( CommandsMenuID ) ; 
hMenuBuy = GetMHandle ( BuyMenuID ) ; 
hMenuSkillLevel = GetMHandle( SkillLevelMenuID ); 

II Add the apple menu items to the menu bar (or the desk accessories for 
I I system versions previous to 7) . Note that we can do this after drawing 
II the menu bar since this canmand only affects the items within the menu. 
II We do not need to draw the menu bar again. 
AddResMenu( hMenuApple, 'DRVR' ) ; 

Loading a Menu Resource 

Sometimes you'll want to load a single menu into memory. Most of the 
time, it will be to support hierarchical and pop-up menus, which do not 
appear directly on the menu bar (and thus not defined in your menu bar 
resource). Pop-up menus are usually found in a window or dialog box, 
and in Desert Trek, you can find them in the information windows (the 
help window and "Cary's Games" window). The child menus (referred to 
as submenus) of any hierarchical menu will need to be explicitly loaded 
too, because they are not part of the menu bar proper. To load a menu 
resource, use the following toolbox call: 

II Load a menu from the resource fork. 
MenuHandle GetMenu( short sMenuResourceID ); 

After you are finished with a menu, you need to free the memory 
resources it takes. Use ReleaseResource ( ) to do so. 



CHAPTER 5-Displaying and Using Menus 

Handling Menu Events 
There are two methods by which menu commands can be issued by the 
user. The first and most obvious is for the user to select the menu com
mand with the mouse. The second is for the user to press the command 
key equivalent of a menu command from the keyboard. When the user 
selects a menu item from one of your game menus using the mouse, your 
game receives a motJSe down event. When the user types the command key 
equivalent of a menu command, your game receives a key down event. Your 
game must handle both these cases to properly deal with menu events. 

Menu Processing For Mouse Down Events 
The first thing your game does when it receives a mouse down event is to 
look for the window and window part in which the mouse button was 
clicked. This is accomplished using' the FindWindow () toolbox call 
described in Chapter 2. If the window part has the value inMenuBar, 
you know that the user just clicked on a menu. Your game must then 
track the mouse click to determine if the user releases the mouse button 
over a menu item, and if so, determine what menu and menu item were 
selected. The Macintosh toolbox provides the following routine to auto
matically take care of the mouse tracking within the menu bar for you. 

II Tracks a click in the menu bar. This call returns the 
II menu ID and menu item ID within that menu selected by the 
II user. If no menu item was selected (the user moved the 
II mouse out of the menus before releasing the button), 0 is 
II returned. ptClick should be the "where" field of the 
II event record (which is where the click took place). 
long MenuSelect( Point ptClick ); 

Wait a minute. This toolbox call only returns one value, so how can a 
program determine which menu and menu item were selected by the 
user? Remember, you need to know both the menu ID and menu item ID 



CHAPTER 5-Displaying and Using Menus 

that the user selected in order to determine which menu command was 
selected. Why isn't the menu item ID enough? Well, the first menu item 
in each menu has an ID of 1. This means that the menu item ID by itself 
won't be enough to determine which command was selected. You'll need 
to know the menu ID too in order to determine the menu command 
selected. Looking closely at the previous toolbox call shows that it returns 
a long integer value. The menu IDs and menu item IDs are short integer 
values. MenuSelect () concatenates both these short integer values into 
one long integer value as its return code. The high order word contains 
the menu ID, and the low order word contains the menu item ID. The 
following two toolbox calls can be used to extract the low order and high 
order short integers from a single long integer: 

II Get the high order short integer (word) from a long 
II integer. 
short HiWord( long 1 ); 

II Get the low order short integer (word) from a long 
II integer. 
short Loword( long 1 ); 

Highlighting Menus 
There's one last thing you need to do concerning menu selection. The 
MenuSelect () toolbox call automatically draws the proper highlight
ing of menus and menu commands as the user moves the mouse over 
them. However, after the user releases the mouse, it is your responsibility 
to unhighlight the menu that was last highlighted automatically by 
MenuSelect ( ) . Why, do you ask, doesn't MenuSelect ( ) do this for 
your too? After all, it goes through the trouble of tracking the mouse and 
highlighting and unhighlighting menus and menu items based on the 
mouse movement. Well, many programs do some type of processing after 
a menu item is selected, such as bringing up a dialog box. You'll notice 
that for many programs, the menu containing the menu item selected by 
the user remains highlighted until the command is complete (for exam
ple, the dialog box is dismissed). For this reason, it is left up to the pro-



CHAPTER 5-Displaying and Using Menus 

gram itself to determine when it's appropriate to unhighlight the menu ,;;~\tiDJi~~;'" 
selected by the user (you can do it immediately, or wait until you've fin-
ished processing the command). The following toolbox call is used to 
accomplish this purpose: 

II Highlights a menu (inverts it so that you get white text 
II on a black background). Any previously highlighted menu 
II gets automatically unhighlighted. If you specify 0 for 
II the menu ID, all menus are unhighlighted. 
void HiliteMenu( short sMenuID ) ; 

You need to call this routine at some point in your menu processing. It 
makes sense to put this call at the end of the processing, which is typically 
what most programs do. Remember to pass in a menu ID of 0 to this call 
in order to unhighlight all menus on the menu bar. 

Desert Trek's HandleMouseEvent () routine, shown in Chapter 2, 
determines whether or not a mouse click occurred in the menu bar. The 
following is a code fragment from that routine so that we can see it again 
in a new light after learning all about menu selections with the mouse: 

static void HandleMouseEvent( EventRecord *pEvent 
( 

short sWindowPart; 
WindowPtr pWindow = nil; 

II Detennine the window and window part where the user clicked. 
sWindowPart = FindWindow( pEvent->where, &pWindow ) ; 

II If the user clicked in the menu bar, call a Desert Trek routine to 
11 process the menu click. Pass that routine the menu ID and menu item ID 
I I that the user selected which will be returned by MenUSelect () . 
if ( sWindowPart == inMenuBar ) 

HandleMenuSelection( MenuSelect( pEvent->where ) ) ; 

We will take a look at the HandleMenuSelection () routine in a 
moment, but first, let's look at how to process menu selections via the 
keyboard. 



CHAPTER 5-Displaying and Using Menus 

:.~Jjl;:iiil:~!;: Menu Processing For Keyboard Events 
Besides clicking on a menu using the mouse, the user can select a menu 
command using its command key equivalent. You can set up command 
key equivalents for your game's menu commands while creating the 
menus in ResEdit. When your game receives a keyDown event, you 
need to check to see if the command key was pressed. If so, you can 
assume that the user attempted a command key equivalent and process it 
as such. This question arises: How do you determine which menu com
mand was selected from the keystroke? The ever helpful Macintosh tool
box provides just such a routine: 

11 Converts a keystroke into the menu ID and menu item ID 
II that corresponds to that key. The return code is the 
II same as the MenuSelect() toolbox call. 
long MenuKey ( char chKeyPressed ) ; 

Desert Trek's HandleKeyEvent () routine, shown in Chapter 2, deter
mines if a keystroke was a command key equivalent for a menu command. 
The following is an excerpt from that routine: 

static void HandleKeyEvent( EventRecord *pEvent ) 
{ 

II If the colllillaild key was pressed, call MenuKey{), passing it the character 
II code of the key pressed. Send the return code from MenuKey() to Desert 
II Trek's HandleMenuSelection() routine for processing. 
if ( pEvent->modifiers & cmdKey ) 

HandleMenuSelection( MenuKey( (char) ( pEvent->message & 

charCodeMask ) ) ) ; 

Example of How to Determine which Menu 
was Selected 

As we have seen above, both the MenuSelect () and MenuKey ( ) tool
box routines return the menu ID and menu item ID of the menu com
mand selected by the user. Desert Trek contains several functions 



CHAPTER 5-Displaylng and Using Menus 

designed to determine which command to execute based on the menu ID 
and menu item ID returned by these toolbox routines. First, each menu 
in Desert Trek has its own function defined to call the appropriate com
mand routine based on the menu item ID selected by the user (e.g., one 
for the File menu, one for the Apple menu). Second, there is one function 
that determines which menu was selected, and calls the appropriate menu 
handling routine to handle that selection. The following routine from 
Menus.c decodes the return code from MenuSelect () or 
MenuKey ( ) , which gets passed in as a parameter, and determines which 
menu handling function to call: 

void HandleMenuSelection( long lMenuSelectioninformation ) 
{ 

short sMenuSelected; 
short sMenuitemSelected; 

11 Break up the long which contains which menu ID and menu item ID was 
II selected by the user. 
sMenuSelected = HiWord ( lMenuSelectioninformation ) ; 
sMenuitemSelected = LoWord ( lMenuSelectioninformation ) ; 

11 Based on the menu ID, call the appropriate menu handling routine, passing 
II it the menu item ID selected. 
switch ( sMenuSelected ) 
{ 

case AppleMenuID: 

HandleAppleMenuSelection ( sMenuitemSelected ) ; 
break; 

case FileMenuID: 
HandleFileMenuSelection( sMenuitemSelected ); 
break; 

case OptionsMenuID: 

HandleOptionsMenuSelection ( sMenuitemSelected ) ; 
break; 

case SkillLevelMenuID: 



CHAPTER 5-Displaying and Using Menus 

} 

HandleSkillLevelMenuSelection ( sMenuitenSelected ) ; 
break; 

case CommandsMenuID: 

HandleCommandsMenUSelection ( sMenuitenSelected ) ; 
break; 

case BuyMenuID: 

HandleBuyMenUSelection ( sMenuitenSelected ) ; 
break; 

11 Unhighlight the menu selected by the user, now that processing of the 
II menu command is C011Plete. 
HiliteMenu( 0 ) ; 

Handling Apple Menu Selections 

The apple menu contains who knows what, depending on the particular 
Macintosh your game is running on. This begs the question; How do I 
know what to do when the user selects an apple menu item that isn't 
explicitly defined by my game? (remember, you defined at least an 
About .. menu item for the apple menu). You need to do two things in 
order to take the appropriate action. The first is to obtain the text string 
contained by the apple menu item selected by the user. This is accom
plished by using the Get Item() toolbox call, which will be described 
shortly. After getting the text string, you simply need to call the following 
toolbox routine to invoke the program, desk accessory, or show the folder 
pointed to by the apple menu item: 

11 Opens a desk accesso:r:y on systems earlier than 7. Runs 
II the program or shows the folder as defined by the user 
I I in the menu items folder for system 7 and later. Returns 
II 0 if the program or desk accesso:r:y can't be loaded. 
short OpenDeskAcc( Str255 str255Name ); 



CHAPTER 5-Displaying and Using Menus 

The following code from Menus.c shows how Desert Trek handles a 
menu selection from the apple menu. This function is called by 
HandleMenuSelection ( ) which passes in the menu item ID selected 
by the user. 

static void HandleAppleMenuSelection( short sMenuitemSelected ) 
{ 

Str255 str255; 
Graf Ptr pGrafSave; 

switch ( sMenuitemSelected ) 
{ 

II If the About menu item was selected, load the about window. 
case AppleMenuAboutID: 

ConstructAboutWindow(); 
break; 

II If the help menu item was selected, show the help window (or load 
II it if it isn't already loaded). 
case AppleMenuHelpID: 

if ( !ShowlnfoWindow( HELP_WINDOW_ID ) 
ConstructinfoWindow{ HELP_WINDOW_ID, 128, 134, 

UsingColorGraphics{ nil) ); 
break; 

11 If the "Cary's Games" menu item was selected, show the "Cary's Games" 
II window (or load it if it isn't already loaded). 
case AppleMenuCarysGamesID: 

if { !ShowlnfoWindow( CARYS_GAMES_WINDOW_ID ) 
ConstructinfoWindow( CARYS_GAMES_WINDOW_ID, 129, 135, 

UsingColorGraphics( nil) ); 
break; 

II If an item from the apple menu items folder was selected {or, on 
II system versions earlier than 7, a desk accessory), open that item. 
default: 

II Save the current graphics port. 
GetPort ( &pGrafSave ) ; 



CHAPTER 5-Displaying and Using Menus 

II Get the menu item text of the item selected by the user. This 
II toolbox call will be discussed a little later in this chapter. 
Get!tem( hMenuApple, sMenuitemSelected, str255 ); 

II Open the program, folder, or desk accessory associate with that menu 
11 item. 
OpenDeskAcc( str255 ); 

II Set the graphics port back to what it was. 
SetPort ( pGrafSave ) ; 
break; 

Manually Inserting and Removing 
Menus from the Menu Bar 

You might need to add or delete menus occasionally from the menu bar. 
Of course, most games probably won't need to use these functions 
because changing the menus on the menu bar can be disorienting to the 
user. Remember that you'll need to call DrawMenuBar ( ) after using any 
of these call to visually reflect the changes made to the menu bar. 

II Removes all menus from the menu bar. Useful for hiding 
II the menu bar in full screen games. 
void ClearMenuBar ( void ) ; 

II Inserts a menu into the menu bar before the specified 
11 menu ID. To add a menu at the end of the menu bar, 
II specify 0 for sBeforeID. A value of -1 for sBeforeID has 
II a special meaning, and will be described in the following 
II section. 
void InsertMenu ( MenuHandle 

short 
hMenu, 
sBeforeID ) ; 

II Deletes a menu from the menu bar. 
void DeleteMenu ( short sMenuID ) ; 



CHAPTER 5-Displaying and Using Menus 

Hierarchical Menus 

Using ResEdit, you can build hierarchical menus in the menu editor by 
clicking on the has Submenu checkbox and specifying the menu 
resource ID of the submenu (see Figure 5.1). 

;;im= MENU "Skill le11el" ID Ill from Desert Trek.'lt.rsrc 

Skill leuel]_ Selected I tern: [8l Enobled 
I (Eosy) 11€ 1 ~ 2 11€ 2 Te Ht: ® I 1 0 (Difficult) I 
l 11€ 1 
4 11€4 0 ··-······· ( ~e1>urn tor lint) l 
5 11€5 
6 11€6 Color 

7 11€7 [8l hos Submenu TeHt: . 
9 11€9 

ID:~ ~=• 9 11€9 
I OJ_Olfficultl_ ..!._ 

{} 

Figure 5.1 The ResEdit dialog for building menus. 

A submenu is exactly the same as a regular menu (meaning that it has a 
menu resource ID as well as a menu ID used by your program), and get
ting menu selection notifications from the Macintosh operating system 
takes place exactly the same as normal menus (you get the menu ID and 
menu item ID of the menu command selected within the submenu) . 
However, if you were to run your game, you'd notice that the submenu 
does not automatically appear when you select the menu item containing 
that submenu. Why not? Well, the answer is quite simple. You did not 
define that submenu in the menu bar resource because if you did so, the 
menu would appear on the menu bar proper. The menu won't automati
cally get loaded when you load the menu bar, so you need to load the 
menu manually using the GetMenu () toolbox call previously described. 
Loading a menu, however, isn't enough. You need to insert that menu 
into the menu bar before it can be used (remember, all menus must be 
inserted into the menu bar before they can be used). However, you need 
to insert the menu into the menu bar without it being shown on the 

157 



CHAPTER 5-Displaylng and Using Menus 

menu bar. Remember, it's only a suhmenu, not a main menu. To accom
plish this, you need to use the InsertMenu () toolbox call just 
described, and specify as the sBeforeID parameter, -1. This will make 
the menu available for use as a hierarchical menu without being displayed 
on the main menu bar. 

Desert Trek does not use any hierarchical menus, so the following 
code example does not come from Desert Trek. Don't forget to first 
define the suhmenu in ResEdit. 

#define SUB_MENU_ID 135 

static MenuHandle hMenuSubmenu = nil; 

Boolean LoadSul:menu ( void ) 
{ 

II Load the menu from the resource fork. 
hMenuSubmenu = GetMenu ( SUBMENU_ID ) ; 

II Insert the menu into the menu bar so that it's not actually 
II shown on the menu bar proper, but is available for use as a 
II subnenu. 
InsertMenu ( hMenuSubmenu, -1 ) ; 

Pop-up Menus 
Pop-up menus don't appear on the menu bar proper, hut can he "popped 
up" just about anywhere on the screen. Desert Trek uses pop-up menus 
in the help dialog box and "Cary's Games" dialog box. Just like hierarchi
cal menus, pop-up menus need to he manually loaded using 
GetMenu ( ) , and inserted invisibly into the menu bar using 
InsertMenu () with the sBeforeID parameter set to -1. To pop-up a 
menu anywhere on the screen, use the following toolbox call: 

II Causes a popup menu to be displayed on the screen. The 
II menu must first be loaded and inserted into the menu bar 
II (with sBeforeID = -1), and the coordinates are specified 
II in global coordinates. sPopupitem denotes the menu item 



CHAPTER 5-Displaying and Using Menus 

II to be selected when the popup menu appears (0 means no 
II item wili be selected). 
long PopupMenuSelect ( MenuHandle hMenuPopup, 

short 
short 
short 

sTop, 
sLeft, 
sPopupitem ) ; 

The sPopupitem parameter specifies which menu item within the pop
up menu will the currently selected item when the menu pops up. In 
other words, when the menu pops up, the menu item with the ID of 
sPopupitem will be highlighted first. The two coordinates specified are 
the top-left comer, in global coordinates, of the location of the selected 
menu item. This is done so that when the pop-up menu appears, the 
mouse is positioned over the menu item selected. If there is no selected 
menu item (sPopupitem is 0), the coordinate specified are at the top
left comer of the pop-up menu itself. If a menu item is selected, menu 
items located before the selected item will be drawn above these coordi
nates, and menu items located after the selected menu item will be drawn 
below these coordinates. 

PopupMenuSelect () returns the same value as MenuSelect ( ) 
or MenuKey ( ) . It is a long integer value whose high order word contains 
the menu id of the menu selected (which we already know because the 
menu handle corresponding to that ID was passed in as the first parame
ter to this toolbox call), . and low order word contains the menu item ID 
of the item selected (0 if no item is selected). 

Pop-up menus aren't as easy to maintain as normal menus because 
you need to manually draw the location of the pop-up menu on the 
screen and determine for yourself when the user has clicked on that pop
up menu. When I say draw the location of the pop-up menu, I mean the 
location in your window where the user can click to make the pop-up 
menu to appear. This is typically an outlined box with a shadow contain
ing some type of text (see Figure 5-2 showing Desert Trek's help win
dow). Because we have not yet covered drawing routines, I will point you 
to the DrawTopicsMenu () function defined in the Information 
Wmdow.c module of Desert Trek. After reading more on drawing, take a 
look at this function to see how you'd draw the box and shadow of a pop
up menu location in your own window. The drawing of the pop-up up 



160 

CHAPTER 5-Displaying and Using Menus 

menu in its popped up state, including all highlighting and mouse track
ing, is taken care of by the Macintosh. 

rm Desert Trek Help 

l Topic ~_1 Popup menu location 
1we1come1_o~sen~ ;e-

The object or Desert Trek Is to travel 1 000 kilometers across the great I: 
Gobi Desert. Your journey will be a difflcultone, as many dangers Iii!!!! 
stand in your way: hungry cannibals who are relentlessly chasing Ji!!;: 
you, the threat or death by thirst, hunger, ratlgue, and health, Wiid i:l;j! 
Berbers hidden In the sands whO wish to kidnap you, dangerous lliii!I 
!Paths In the desert sands, sandstorms, and thieves traveling In 1mm 
!caravans. Do not despair, there are many things to help you out on !iml 
your journey: oases, friendly caravans, abandoned campsites where liii\' 
you might find a slash or gold, and trading posts where you can ii@ 
purchase supplies and useful Items. mm 

There are four turns to a day: morning, midday, evening, and night. I Traveling ata normal pace orrastpace, resting, approaching, or 
~Olding use up a turn. Ealing, drinking, using an elixir, or using the ~ 

f!Saue as TeachteHt ••• J l 1 DK J) 

Figure 5.2 The Help window from Desert Trek. 

To determine when to pop up a pop-up menu, you need to process the 
mouse down event in the content region of the window containing the 
pop-up menu. Simply check to see if the mouse was clicked within the rec
tangle bounding the pop-up menu. If so, pop up the menu. Remember that 
the pop-up menu coordinates are specified in global coordinates, not local. 

Since Desert Trek's pop-up menus appear in a dialog box, I use a 
user-defined control to define the pop-up menu's location. This allows 
me to treat the pop-up menu as a standard control, which has the advan
tage of telling me when it has been clicked on (so I don't need to check 
mouse coordinates myself). Chapter 6 on using dialog boxes and controls 
will discuss this trick in more detail. 

Inserting and Deleting Menu Items 

You may occasionally need to add or delete items from menus. The fol
lowing toolbox calls allow you to do so. Take caution, however, because if 
you insert or delete items from a menu, you will be changing the item 



CHAPTER 5-Displaying and Using Menus 

IDs of all menu items located after the item that was inserted or deleted. 
Make sure to account for that in the part of your code, which determines 
the menu item selected by the user. 

I I Add a menu item to the end of a menu. 
void AppendMenu( MenuHandle hMenu, 

Str255 str255Definition ); 

II Insert a menu item after the specified location. If 
II sAfteritemID is 0, the item will be inserted at the 
11 beginning of the menu. 
void InsertMenu ( MenuHandle 

Str255 
short 

hMenu, 
str255Definition, 
sAfteritemID ) ; 

II Delete the specified menu item from a menu. 
void DelMenuitem( MenuHandle hMenu, 

short sitemID ); · 

11 Returns the number of menu items in a menu. 
short CountMitems ( MenuHandle hMenu ) ; 

Notice that the strings taken by the AppendMenu () and 
InsertMenu () toolbox calls are called definition strings. The reason 
they are called definition strings is that they specify more than just the 
text of the item. The following modification characters can be used 
within the definition string: 

Character Meaning 

( 

I 
< 

/\ 

Item separator. Used to Insert more than one item at 
atime 

Disable the item 

Specify a command key equivalent 

Text style. B=Bold, !=Italics, U=Underline, O=Outline, 
S=Shadow 

Mark the item 

Specify an icon 



CHAPTER 5-Displaying and Using Menus 

For example, if you want to associate a command key equivalent to an 
inserted menu item, you need to append the I character and the com
mand key equivalent to the menu item string. To specify a command 
equivalent of command-S for a menu item titled Save, the definition 
string would be "Save/S". 

Getting and Setting a Menu Items Text 

The following two toolbox calls allow you to retrieve or set the text of a 
menu item. In order to support the apple menu, you need to use 
Get Item () to obtain the apple menu item's text before calling 
OpenDeskAcc ( ) to run the program associated with that menu item. 

II Get a menu item's, text. 
void Getitem( MenuHandle hMenu, 

short sMenuitemID, 
Str255 str255Itemrext ); 

I I Set a menu item's text. 
void Setitem( MenuHandle hMenu, 

short sMenuitemID, 
Str255 str255Itemrext ); 

Note that the modifier characters described in the previous section on 
inserting and deleting menu items have no effect here. In fact, if you want 
to use one of the character modifiers in the actual text of a menu item, 
you must use Set Item (). 

Enabling and Disabling Menus and 
Menu Items 

Frequently you will need to enable or disable certain menu items during game 
play. Some commands may not make sense during certain points in the game. 
For example, in Desert Trek you can't buy any supplies unless you're in a trad
ing post. 1bis means that the Buy menu and all its items must be disabled 



CHAPTER 5-Displaying and Using Menus 

when the player isn't in a trading post, but they must be enabled when a player 
enters a trading post. In fact, it's even a little more complicated than that. Even 
when a player is at a trading post, they may not have enough money to pur
chase a certain item. In that case some of the menu items in the Buy menu will 
need to be disabled (the player doesn't have enough money to buy the item), 
and other items will need to be enabled (the player has enough money). Tiris 
logic applies to almost every menu command in Desert Trek. It is generally a 
good idea to create a single routine that enables and disables all menu items 
based on the current game conditions. You should call this routine after any
thing happens that might affect the state of the menus. Desert Trek and every 
other game I've written call such a routine after every command issued by the 
game player. H you want to look at what this routine for Desert Trek, see the 
AdjustMenus () function (which in tum calls AdjustCommandsMenu (), 

AdjustBuyMenu (),and AdjustFileMenu ())in the unit Menus.h. I'd 

put it here, but it~ quite long. 

The following toolbox calls enable and disable menu items. 

II Disable a menu item. To disable the whole menu, specify 
II 0 for sMenuitemID. 
void Disableitem( MenuHandle hMenu, 

short sMenuitemID }; 

11 Enables a menu item. To enable the whole menu, specify 
II 0 for sMenuitemID. 
void Enableitem( MenuHandle hMenu, 

short sMenuitemID } ; 

To enable or disable an entire menu, specify 0 as the menu item id 
(sMenuitemID). Remember, to have an enabled or disabled menu 
appear correctly on the menu bar, you need to call DrawMenuBar ( ) . 

You do not need to call DrawMenuBar ( ) if you are just enabling or dis
abling a menu item. 

Checking Menu Items 

You will often need to check a menu item, especially for options that can 
be either on or off. For example, Desert trek has a menu item under the 



CHAPTER 5-Displaying and Using Menus 

Options menu for Sound. Selecting the menu item will turn sound on or 
off. When sound is on, the menu item is checked to provide a visual clue 
to the game player that sound is on Gust in case the sounds emitted by the 
computer aren't clue enough!). The following toolbox call checks or 
unchecks a menu item. 

11 Sets the check state for a menu item. A value of true 
II for bChecked checks the item. False unchecks the item. 
void Checkitem( MenuHandle hMenu, 

short sMenuitemID, 
Boolean bChecked ) ; 



USING DIALOG BOXES 
AND CONTROLS 

Dialog boxes and controls are essential elements of any Macintosh appli
cation, including games. Dialog boxes provide a way for programs to 
interact with the user. Frequently, a game will display a dialog box to ask 
for ip.formation from the user such as a name for a high scores list or the 
keyboard setting for moving the player's ship. Dialog boxes are also a 
convenient way to display certain types of information such as help 
screens and high scores lists. Controls are elements that can reside in 
windows or dialog boxes and are the actual objects with which the user 
interacts. Standard controls include push buttons, radio buttons, check 
boxes, and scroll bars. 

165 



CHAPTER 6-Using Dialog Boxes and Controls 

This chapter will show you how to use dialog boxes and controls in 
your game. Controls will be discussed first, because they play an important 
part in dialog boxes. 

Controls 

Types of Controls 
The Macintosh operating system provides several types of controls, 
which are often referred to as the standard controls. In addition to the 
standard controls, the control manager allows programmers to create 
other types of controls to suite their needs. However, the creation and 
use of so-called user-defined controls goes beyond the scope of this 
book. Don't fret, though, because the standard controls provide enough 
functionality to cover all your game's needs. 

The standard controls include buttons and scroll bars. Button controls 
are really a class of controls that include push buttons, radio buttons, and 
check boxes. Every Macintosh user is familiar with these controls, and 
your game should take advantage of them when prompting the user for 
information (see Figure 6.1). 

( Push Button ) 

D Check BoH 
181 Selected Check BoH 

O Radio Button 

® Selected Radio Button 

Scrollbar 

Figure 6.1 The standard controls. 



CHAPTER 6-Using Dialog Boxes and Controls 

Push buttons are used to allows users to complete the entering of 
data, be it saving it by pressing OK, or discarding it by pressing 
Cancel. They are also used to execute commands and bring up other 
dialog boxes for entering additional types of information. Last, they 
are typically the method by which the user dismisses dialog boxes and 
alerts. Radio buttons are used when the user is allowed to choose one 
option from a list of options. Normally arranged in groups (you would 
never have a single radio button appear by itself in a dialog box or 
window because that simply wouldn't make sense), exactly one radio 
button in that group is selected at any one time (no more, no less). 
The others radio buttons within that group are deselected. Check 
boxes are used when the user is given an option that can be yes or no, 
or on or off. They can appear singly or in groups. Finally, scroll bars 
are used to allow the user to see more information than can comfort
ably fit in the dialog box or window. Though primarily used for 
scrolling text, scroll bars are also useful for scrolling other large game 
elements such as maps. 

Control Parts 
Controls have distinct parts, and the user can affect controls in different 
ways using the different parts. Button controls have only one part, the 
button itself (the text of a radio button and check box is considered part 
of the button), so clicking anywhere on a button control has just one 
effect: selecting, or in the case of check boxes, possibly deselecting that 
button. Scroll bars, on the other hand, have several parts: the up button, 
down button, page up region, page down region, and thumb parts (see 
Figure 6.2). When responding to control events for scroll bars, you will 
need to know what part of the control was clicked on by the user in 
order to determine what to do (e.g., scroll the text up or down, scroll by 
just one line or a whole page at a time, etc.). The following toolbox con
stants define the various parts of a scroll bar control (we will shortly dis
cuss how your game can determine what part of a scroll bar was clicked 
on by the user). 



168 

CHAPTER 6-Using Dialog Boxes and Controls 

enum { 

} ; 

inUpButton = 20, 
inDownButton = 21, 
inPageUp = 22, 
inPageDown = 23, 
inThurnb = 12 9 , 

Up Button 

!!,,,.\ _________ Page Up Region 

i~{ 

Thumb 

Page Down Region 

Figure 6.2 The parts of a scroll bar. 

Control Records and Control Handles 
We learned in Chapter 4 on windows that each window your game cre
ates has a window record associated with it which contains the pertinent 
information about that window. Similarly, controls created by your game 
have a control record associated with them which contains all the infor
mation associated with that control. Again, your game should not directly 
access the fields of a control record directly. Instead, you should use one 
of the many toolbox calls that give you access to the control record infor
mation. The toolbox routines that set and retrieve a control's properties 
will be given in the following sections. 



CHAPTER 6-Uslng Dialog Boxes and Controls 

The control record contains many properties to define how a control 
looks on screen as well as how the user is allowed to interact with it. 
Though I'm not going to show you the specific fields contained within 
the control structure, I'll discuss the various properties in detail. When 
you load a control from a resource fork, the handle to the control record 
will be returned to your game. This control handle will be used to access 
the various fields of the control. The following toolbox definitions define 
the control record and handle (I'm leaving out most of the control record 
fields because you can access them using toolbox routines). 

struct ControlRecord 

} ; 

long contrlRfCon; 
Str255 contrlTitle; 

typedef struct ControlRecord ControlRecord; 
typedef ControlRecord *ControlPtr, **ControlHandle; 

The following properties are defined in a control record. 

1. Control Owner. Each control can have only one owner. The owner 
of a control is the window or dialog box that contains that control. 
You specify the owner when a control is loaded. 

2. Control Rectangle. The control rectangle defines where, in local 
coordinates, the control resides within a window or dialog box. You 
specify a control's initial location when defining it in ResEdit, but 
you can change its location using a toolbox call discussed later on. 

3. Control Visibility and Highlight State. Controls can be either visi
ble or invisible. Only visible controls are drawn on the screen and can 
be interacted with by the user. A control's highlight state affects how 
that control gets drawn on the screen when visible. The most com
mon use of a control's highlight state is to enable and disable the con
trol. A disabled control cannot be manipulated by the user, and it's 
typically drawn in an inactive state ("grayed out"). 



CHAPTER 6-Using Dialog Boxes and Controls 

4. Control Values. Control values have two major purposes. The first 
and foremost is to provide the control's drawing procedure informa
tion on how to draw the control. When the user manipulates a con
trol, the results of that manipulation generally cause the value of the 
control to change. For example, if the user clicks on a check box, the 
check within that box toggles on and off. When the user clicks in a 
scroll bar, the thumb part of the scroll bar moves up or down (or left 
or right) to reflect the action the user has taken. The value of the con
trol determines how certain parts of that control are drawn (checked 
or unchecked, thumb location, etc.). This means that your game can 
influence how a control gets drawn on the screen by setting its value. 

The second purpose of a control's value is to provide a way for your 
program to determine the state of a control, and act accordingly. For 
example, you can determine whether or not a check box is checked by 
reading its control value, and set or reset a game option dependent 
on that check box . By reading a scroll bar's value, you can scroll the 
text associated with that scroll bar to the desired location. 

Controls have three values associated with them: the minimum value, 
maximum value, and current value. For button controls (radio buttons 
and check boxes), the minimum control value is 0 and the maximum 
control value is 1. You won't need to change these default values 
because it only makes sense for buttons to have one of two states: 
checked or unchecked (or on or off for radio buttons). A scroll bar's 
minimum value is typically 0 (for simplicity), and the maximum value is 
generally determined by the program, depending on the amount of 
information that can be scrolled. A scroll bar's maximum value would 
be set such that when the scroll bar's current value is equal to the maxi
mum value, the user would be viewing the end of the information con
trolled by the scroll bar. The scroll bar's drawing routine uses all three 
control values to determine where to draw the thumb of the control. 

5. Control Reference Constant. The control structure provides a 
long integer field that can be used by your game to store any control 
specific information. This is very similar to the reference constant 
windows contain for your game's use, and can be used to distinguish 
between multiple controls within a window. 



CHAPTER 6-Using Dialog Boxes and Controls 

6. Control Title. The last field of a control structure is the control's 
title. The control's title determines what text gets drawn on the 
screen in or near that control. The title text for push buttons gets 
drawn within the push button. The title text for radio buttons and 
check boxes gets drawn just to the right of the control. A scroll bar's 
title text does not get drawn. 

Creating, Loading, and Destroying Controls 
Controls can he defined in the resource fork of your game using ResEdit. 
You can then load these controls into any window your game maintains. 
Alternatively, you can create a control from scratch using a toolbox rou
tine. Desert Trek creates a standard scroll bar control for use on the main 
game screen. The player uses the scroll bar control to scroll the game's 
journal text. The following toolbox routines load or create a control into 
the specified window. Note that, unlike the GetNewWindow ( ) toolbox 
call, you are not given the opportunity to manage the memory needed by 
a control record. "Why? I don't know, so just deal with it (you aren't really 
trying to manage window record memory by yourself anyway, right?). 

II Get a control from the resource fork. 
ControlHandle GetNewControl( short sResourceID, 

WindowPtr pWindow ) ; 

II Creates a control from "scratch". 
ControlHandle NewControl ( WindowPtr 

Rect 
Str255 
Boolean 
short 
short 
short 
short 
long 

pWindow, 
*pRect, 
str255Title, 
bVisible, 
sinitialValue, 
sMinimumValue, 
sMaximumValue, 
sControlType, 
lReferenceConstant ); 

The following control types are defined to allow you to create any stan
dard control with the NeWControl () toolbox routine. Specify one of 
them as the sControlType parameter. 



CHAPTER 6-Using Dialog Boxes and Controls 

enum { 
pushButProc = 0, 
check boxProc = 1, 
radioButProc = 2, 
scroll barProc = 16, 

II Standard pushbutton 
II Standard check box 
II Standard radio button 
II Standard scroll bar 

Once you are finished with a control, you need to remove it from the 
screen and free up the memory taken by its control record. The following 
toolbox calls remove either one specific control, or all controls for a par
ticular window. Note that when you call CloseWindow () or 
DisposeWindow () to remove a window from the screen and its win
dow record from memory, all the controls associated with that window 
are automatically disposed of for you. So, you only really need to use 
these calls if you plan on removing a control from a window that will 
continue to be displayed, something you probably aren't going to need to 
do all that often for normal games. 

II Destroys a control, removing it from the screen. 
void DisposeControl( ControlHandle hControl ); 

II Removes all controls contained within a window. 
void KillControls( WindowPtr pWindow ); 

Moving and Sizing Controls 
Typically, you specify a control's location and position when you define 
that control in ResEdit, or create it using NeWControl ().Occasionally, 
however, you may want to move or size a control within your code after 
the control has been created. The following toolbox calls move and size 
controls within your windows and dialog boxes. Note, however, that in 
addition to using these calls, you must call the SetDitem () toolbox call 
to have your changes reflected onscreen when moving controls within 
dialog boxes. This routine as well as an example ofMoveControl () will 
appear in the dialog boxes section of this chapter. 



CHAPTER 6-Using Dialog Boxes and Controls 

II Changes a control's location within a window or dialog. 
II The coordinates specified are local coordinates. 
void Movecontrol( ControlHandle hControl, 

short 
short 

sHPosition, 
sVPosition ) ; 

II Changes a control's size (width and height). 
void SizeControl( ControlHandle hControl, 

short sWidth, 
short sHeight ) ; 

Showingl Hidingl and Drawing Controls 
You may occasionally want to hide controls. Be careful, though, because 
it almost always makes more sense to the user to have a control drawn in 
its disabled state instead of being hidden. The following toolbox routines 
show and hide controls. 

II Hides a control. 
void HideControl( ControlHandle hControl ); 

II Shows a control. 
void ShoWControl( ControlHandle hControl ); 

When your window receives an update event, you typically respond by 
drawing that window's contents. If your window contains controls, those 
controls will need to be drawn too. The following two toolbox routines 
cause a window's controls to be redrawn. 

II Draws all the controls for a given window. Call this 
II routine in your window's update procedure if that window 
II contains any controls. 
void DraWControls( WindowPtr pWindow ); 

II Draws only those controls for a window that fall within 
II the region specified. This routine is more efficient than 
II DraWControls() since it skips the drawing of controls 
II outside the specified region. However, you'll have to 
II determine that region yourself, so it's not as easy to 



174 

CHAPTER 6-Using Dialog Boxes and Controls 

II use. 
void UpdtControls ( WindowPtr pWindow, 

RgnHandle hRegion ) ; 

Changing a Control's Highlight State 
The following toolbox call allows you to change a control's highlight state. 
The highlight state of a control is a short integer value from 0 to 255, 
where 0 means no highlighting (the normal active state for a control) and 
255 means that the control is disabled (inactive). For some historical rea
sons, the value of 254 is considered invalid. Values of 1 through 253 define 
which part of a control is highlighted. Typically, though, you will only use 
highlight state values of 0 and 2 5 5 to enable or disable controls within 
your dialog boxes and windows. A disabled control can't be interacted with 
by the user, and thus will generate no events to your game if clicked on. 

II Set the highlight state for a control. 0 means enabled, 
II 255 means disabled. 
void Hili teControl( ControlHandle hControl, 

T I P 

short sHiliteState ); 

Many of the push buttons in Desert Trek 's dialog boxes allow the user 
to activate ("push") them via the keyboard instead of having to 
click on them with the mouse. For example, the Return and Enter 
keys always perform the same action as clicking on the default push 
button in any dialog box (the default push button is drawn with a 
border to denote it as such). In addition, the Escape key can be 
used to cancel any dialog boxes that contain a Cancel button (or, 
in the case of the dialog box used to enter a player's name into the 
high scores list, the Not Interested button, which is pretty much the 
same thing as a Cancel button). In order to provide visual feedback 
to the user when using the keyboard to "click" on a button, I set the 
push button's highlight state to cause the button to be automatically 
redrawn on the screen first in the "pushed" position, then back in the 
normal position . This causes the button to look like it had been 
clicked on with the mouse. It's a neat effect, and what makes it so 
neat is that the user probably doesn't even think twice about it. They 
just say, "Yeah, it's supposed to work that way. No big deal." 



CHAPTER 6-Using Dialog Boxes and Controls 

void AnimateButton( DialogFtr pDialog, 
short sitemID ) 

ControlHandle hControl; 

II Get the control's handle. Note that this is a Desert Trek routine, not 
I I a toolbox routine. This routine will be discussed in the section on 
II dialog boxes. 
hControl = GetitemHandle ( pDialog, sitemID ) ; 

II Cause the button to be drawn in it's "pushed" state. 
HiliteControl( hControl, 1 ); 

11 Give the user some time to see which button they caused to be "pushed". 
NiceDelay ( 8 ) ; 

II Cause the button to be drawn back in its normal state. 
HiliteControl( hControl, 0 ); 

Changing Control Values 

We learned that controls have a minimum, maximum, and current value. 
Of course, the Macintosh toolbox provides a set of routines to query and 
set these values. Note that a control's current value is not allowed to stray 
outside the minimum and maximum values. If you try setting a control's 
current value greater than the maximum value, the current value will be 
set to the maximum value. If you try to set a control's current value lower 
than the minimum value, the control's current value will be set to its min
imum value. As an aside, this is one excellent reason why you shouldn't 
directly manipulate a control record's value yourself. You might acciden
tally set a control value outside that valid range, and who knows what 
kind of dire consequences might happen when the poor, confused control 
attempts to draw itself. 

II Set the current value for a control. 
void SetCtl Value ( ControlHandle hControl, 

short sValue ) ; 

II Set the minimum value for a control. 
void SetCtlMin ( ControlHandle hControl, 



CHAPTER 6-Using Dialog Boxes and Controls 

short sValue ) ; 

II Set the maximum value for a control. 
void SetCtlMax( ControlHandle hControl, 

short sValue ) ; 

II Get the current value for a control. 
short GetCtlValue( ControlHandle hControl ); 

II Get the minimum value for a control. 
short GetCtlMin( ControlHandle hControl ); 

II Get the maximum value for a control. 
short GetCtlMax ( ControlHandle hControl ) ; 

Changing Control Properties 
A control's title and reference constant can be set or retrieved using the 
following toolbox routines. 

II Set the title text of a control. 
void SetCTitle( ControlHandle hControl, 

Str255 str255Title ); 

II Get the title text of a control. 
void GetCTi tle ( ControlHandle hControl, 

Str255 str255Title ); 

II Set the reference constant for a control. 
void SetCRefCon ( ControlHandle hControl, 

long lRefCon ) ; 

II Get the reference constant for a control. 
void GetCRefCon ( ControlHandle hControl, 

long *plRefCon ) ; 



CHAPTER 6-Using Dialog Boxes and Controls 

Determining Which Control Was Clicked 
Now that you've loaded all your controls and set their properties just 
right, how do you tell when the user has clicked on one of them? In addi
tion, what does your game have to do in response to a user's click in one 
of your controls? Remember, when the user clicks anywhere in your win
dow, your game gets a mouse down event specifying the content region 
of that window. If that particular window has any controls, you need to 
determine if one of them was clicked on in your routine handling mouse 
down events in the content region. The following toolbox routine will 
tell you if a control within your window was clicked on by the user. 

II Determines which control within a window was clicked on 
II by the user. 
short FindControl( Point 

WindowPtr 
ControlHandle 

pt, 
pWindow, 
*hControl ) ; 

This is a fairly busy toolbox call, taking and returning several values. Let's 
take a closer look at its parameters and return code. The input parame
ters to this function are the window pointer of the window clicked on, 
and the point clicked within that window. The pt parameter is specified 
in local coordinates, so you will need to convert from the global coordi
nates given to you in the where field of the event record for the click 
event. The function also takes a pointer to a control handle, which gets 
the control handle of the control clicked on. If no control is clicked on, 
the hControl parameter is set to nil. Use this value to determine if a 
control within the window was clicked on by the user. Last, this toolbox 
call returns the part of the control clicked on by the user (assuming, of 
course, that a control was actually clicked on). Shortly we will see an 
example of handling scroll bar clicks where the control part clicked on by 
the user is important to processing that click. 



CHAPTER 6-Using Dialog Boxes and Controls 

After the user clicks on a control, what happens? As with most mouse 
clicks, we need to track the mouse to see whether or not the user releases 
the mouse button in that control. In addition, the control needs to be drawn 
appropriately to reflect the location of the mouse while the mouse button is 
down. Fortunately, the Macintosh provides a toolbox call to do just this. 

II Tracks the mouse when the user clicks on a control. pt 
II is specified in local coordinates, and should be the same 
II value specified in FindControl(). 
void TrackControl( ControlHandle hControl, 

Point pt, 
ProcPtr pProcAction ) ; 

There's one very interesting argument to this toolbox call, and that's 
pProcAction. This parameter specifies a callback function that you 
define to perform any actions while the mouse is clicked down on a con
trol. A callback function is one of your game's own functions that you 
want a Macintosh toolbox routine to call. In this case, the callback func
tion is called periodically while the mouse button is down in the control 
being tracked. You can most certainly specify nil as the pProcAction 
parameter if you don't want to take any special action while the mouse 
button is down. In fact, there is usually only one case where you actually 
want to specify this parameter. That's the case where the user clicks in a 
scroll bar part other than its thumb. You typically don't want to take any 
action when the user clicks and drags the thumb of a scroll bar since you 
won't redraw the text (or graphics) being scrolled until the user drops the 
thumb by releasing the mouse button. In the case where the user clicks 
one of the scroll bar's other parts, you'll want to continually update the 
information being viewed to reflect the scroll bar's new value. For exam
ple, if the user clicks in the up arrow of a scroll bar, the text associated 
with that scroll bar should be scrolled one line up. As long as the user 
keeps the mouse button clicked in the up arrow, you need to keep 
scrolling the text up, one line at a time. In order to do so, you must spec
ify a callback routine when calling TrackControl (). Otherwise, your 
program won't get control until the user releases the mouse button, and 
the user won't see the text being scrolled while the mouse button is down. 



CHAPTER 6-'-Using Dialog Boxes and Controls 

The callback function you specify must be declared as pascal, 
because the Macintosh toolbox uses the pascal calling convention (see 
Chapter 2 on toolbox basics if you need a refresher). In addition, your 
callback function needs to take two parameters: a control handle and con
trol part. You will need these values in order to determine how to draw 
any changes taking place due to the mouse down event in that control. 
Your function should look like the following function prototype. 

pascal void MyCallback( ControlHandle hControl, 
short sControlPart ) ; 

We'll see exactly how to use this callback function in the following exam
ple of how to handle scroll bar control events. 

Scroll Bar Example 
Since the scroll bar is the most difficult standard control to use, and the 
most versatile, let's look at how Desert Trek handles the journal scroll bar 
in the main game window. The journal scroll bar allows the player to scroll 
the journal's text, which is a log of all the events that take place during their 
trek across the desert. This example will concern itself with the scroll bar 
only (loading the scroll bar, setting its values, and responding to click 
events), and not the actual drawing of the text effected by the scroll bar. See 
Chapter 8, Incorporating Text, for specific details on drawing the text itself. 

Desert Trek creates the journal scroll bar from scratch using the 
NewControl () routine. The following code excerpt comes from 
Joumal.c. 

static ControlHandle hControlJournalScroll bar = nil; 

void ConstructJournal ( WindowPtr pWindowTrek.Window, 
Rect *prectJournalScroll bar, 
Rect *prectJournal ) 

II Create the journal scroll bar. The rectangle specified was computed so 
II that the scroll bar appears just to the right of the textedit field 



CHAPTER 6-Using Dialog Boxes and Controls 

11 containing the journal text. 
hControlJournalScroll bar = NewControl( pWindowTrekWindow, 

prectJournalScrollbar, 
"\p" I 
true, 
0, 
0, 
0, 
scrollbarProc, 
0 ) ; 

II OWner 
II Rectangle 
11 No Title 
II Visible 
11 Value 
II Min Value 
11 Max Value 
I I Scrollbar 
I I RefCon 

As you can see, the control values are initialized to 0 because there is no 
journal text when the scroll bar is created (this happens before the first 
game even begins). As I stated above, the control values are one of the 
most important aspects of a scroll bar control, because they determine 
how the scroll bar is drawn. This not only includes whether the scroll bar 
is active or not, but the positioning of the thumb. Remember that a scroll 
bar's thumb location reflects the proportion of text that can be scrolled up 
or down (in other words, where in the text the user is currently viewing). 
For example, if the user is looking at line 75 out of 100, the scroll bar 
thumb should be drawn about three quarters of the way down from the 
top of the scroll bar. 

The question arises, what should be scroll bar's control values? Well, 
the minimum value should always be 0, to provide a base starting point. 
What should the maximum value be? That depends on how many lines of 
text are contained in the journal, as well as the number of lines of text 
that can be displayed on the screen at one time. The scroll bar's maxi
mum control value needs to reflect the number of lines of text that can 
actually be scrolled. The number of lines that can be scrolled is equal to 
the total number of lines in the journal minus the number of lines that fit 
on the screen. For example, if the journal contains six lines of text, and 
four lines of text can be displayed on the screen at a time, the scroll bar's 
maximum value needs to be 6 - 4, or 2. This makes perfect sense if you 
think about it. If four lines are displayed on the screen, the user needs to 
click the down arrow twice in order to see the last line of text The first 
click on the down arrow will scroll the text up one line, making line 5 vis
ible. A second click on the down arrow will make line 6 visible, and since 
there's no more text, the scroll bar should now be at it's maximum value. 



CHAPTER 6-Using Dialog Boxes and Controls 

It took two clicks to scroll through all the text, so the scroll bar's maxi
mum control value needs to be 2. The following code computes and sets 
the scroll bar's maximum value whenever text is added to the journal (just 
the code directly related to the scroll bar is shown). 

static short sLinesPerPage; 

void AdclJournalText ( char *szText, 
short sLength, 
Boolean bUpdateWindowNow ) 

short sMaxinrumScrollValue = O; 

II The scroll bar's maxinrum control value needs to be the total number of 
II lines in the journal minus the number of lines that can be displayed on 
II the screen at one time. 
sMaxinrumScrollValue = (*teJournal)->nLines - sLinesPerPage; 

II If all of the journal text fits on the screen, there is nothing to 
II scroll, and the maxinrum value is 0. 
if ( sMaxinrumScrollValue < 0 ) 

sMaxinrumScrollValue = O; 

II Set the scroll bar's highlight state (active or inactive) based on 
II whether there's something to scroll (if there isn't anything to scroll, 
I I the scroll bar needs to be disabled) . 
HiliteControl( hControlJournalScrollbar, sMaxinrumScrollValue? 0 : 255 ); 

II Set the scroll bar's maxinrum control value. 
SetCtlMax( hControlJournalScrollbar, sMaxinrumScrollValue ); 

II Set the scroll bar's current value to be the same as the maxinrum value. 
II This will force the journal text to scroll to the end every time new 
II text is added. This is done so the user can see the new text 
II immediately without having to scroll down. 
SetCtl Value ( hControlJournalScrollbar, sMaxinrumScroll Value ) ; 

II If the screen is to be updated, synchronize the text displayed with the 
II current value of the scroll bar. In other words, actually scroll the text 
II to the proper position based on the scroll bar's value. 
if ( bUpdateWindowNow ) 

SynchJournalTextWithScrollbar(); 



CHAPTER 6-Using Dialog Boxes and Controls 

Now that the journal scroll bar is set up correctly, and its control values 
change whenever new text is added to the journal, we need to allow the 
user to scroll the text within the journal using that scroll bar. This means 
that any mouse clicks on the scroll bar need to be detected and dealt with 
appropriately. So, first things first. How do we detect a click on the Desert 
Trek game window's scroll bar. When Desert Trek gets a mouse down 
event in the content region of the main game window, the following func
tion in Trek Wmdow.c gets called (we have seen this function before, but 
we ignored the function to determine if the scroll bar was clicked). 

void TrekWindowMouseDown( Point pt ) 
{ 

II Convert the where field of the event record from global coordinates to 
II local coordinates. First, though, make sure that the main game window 
II is the current port, since that's the port the GlobalToLocal() toolbox 
II routine will use when converting from global coordinates. 
SetPort ( pWindowTrekWindow ) ; 
GlobalToLocal ( &pt ) ; 

II Check to see if the player clicked on the scroll bar. If not, check to 
II see if the player clicked on any of the picture buttons. 
if ( !ClickedOnJournalScrollbar( pWindowTrekWindow, pt ) ) 

ClickedOnCommandsButtons ( pt ) ; 

The Desert Trek function, ClickedOnJournalScrollbar (),checks 
to see if the player clicked on the scroll bar and if so, calls a routine to 
process that click. This function can be found inJoumal.c. 

Boolean ClickedOnJournalScroll bar( WindowPtr pWindow, 
Point pt ) 

Boolean bClickedOnScrollbar = false; 
ControlHandle hControl; 
short sControlPart; 

II Check to see if the player clicked on the scroll bar. 
sControlPart = FindControl( pt, pWindow, &hControl ); 

II If they did, handle the click, passing the scroll bar clicked handling 
II routine the part of the scrollbar clicked on by the user. 



CHAPTER 6-Using Dialog Boxes and Controls 

if ( hControl == hControlJournalScrollbar ) 
{ 

bClickedOnScrollbar = true; 
HandleClickOnJournalScrollbar( sControlPart, pt); 

II Returns true if the user did click on the scroll bar, false if not. 
return ( bClickedOnScrollbar ) ; 

The routine that processes the click on the journal scroll bar can also be 
found in Journal.c. This routine needs to track the player's click in the 
scroll bar, and uses the TrackControl () toolbox routine to do so. 
Remember that the TrackControl () routine can take a callback func
tion, one that gets called periodically while the mouse button is down. You 
would want to supply this callback function in cases where the text should 
be scrolled while the mouse button is down. When should the text be 
scrolled while the mouse button is down? The answer is whenever the 
mouse button was clicked in the up arrow, down arrow, page up region, or 
page down region. In fact, the only part of the scroll bar where you don't 
want to specify a callback function is when the user clicks in the thumb 
part of the scroll bar. Why? When the thumb of the scroll bar, they are 
allowed to randomly move it to any position, and at any rate. Typically, 
most Macintosh applications don't scroll the text to track this condition 
since the text could move anywhere at anytime. On the other hand, when 
the user clicks in the up or down arrows, or the page up or down regions, 
the text can be scrolled one line, or one page at a time while the mouse 
button is held down. This scrolling always occurs in one direction only 
because the user can't change the scroll direction while the mouse button 
is down. 

static void HandleClickOnJournalScrollbar( short sControlPart, 
Point pt ) 

II If the user clicked in the thumb of the scroll bar ... 
if ( sControlPart == inThumb ) 
{ 

II Track the click without specifying a callback routine. 
TrackControl( hControlJournalScrollbar, pt, nil ); 



CHAPTER 6-Using Dialog Boxes and Controls 

II After the mouse is released, scroll the journal text to the new 
II position. 
SynchJournalTextWithScrollbar(); 

II Otherwise, the user clicked on the up/down arrow, or the page up/down 
II region. Track the click, supplying a callback routine to scroll the 
II the text while the mouse button is down. 
else 

TrackControl( hControlJournalScrollbar, pt, ScrollJournalText ); 

The callback function supplied to TrackControl () will need to 
change the current control value of the scroll bar, and scroll the actual 
text accordingly. Remember, the callback function will be supplied with 
the control handle of the scroll bar and the part in which the user clicked. 
The callback function uses the part parameter to determine in what 
direction to scroll, and by how much. The scroll bar's control value needs 
to decrease if the user clicked in the up arrow or page up region, and 
increase if the user clicked in the down arrow or page down region. This 
is due to the fact that when the scroll bar's control value is 0, the thumb is 
drawn nearest the up arrow, and when the scroll bar's control value is 
equal to the maximum control value, the thumb is drawn nearest the 
down arrow. The following function can be found in}oumal.c. 

static pascal void ScrollJournalText( ControlHandle hControl, 
short sControlPart 

short sScrollArnount = O; 

II Depending on the part of the scroll bar in which the player clicked, we 
II need to scroll different amounts. Either one line at a time or one page 
II at a time, and either up or down. 
switch( sControlPart ) 
{ 

case inUpButton: 

sScrollAmount = -1; 
break; 

case inDownButton: 



CHAPTER 6-Using Dialog Boxes and Controls 

sScrollArnount = 1; 
break; 

case inPageUp: 

sScrollArnount = -sLinesPerPage; 
break; 

case inPageDown: 

sScrollArnount = sLinesPerPage; 
break; 

II If we need to scroll the text ... 
if ( sScrollArnount ) 
{ 

} 

II First set the control value of the scroll bar control to reflect the 
II change. This will cause the scroll bar control to be drawn correctly 
II (in other words, the thumb part will move to the proper position). 
SetCtlValue( hControlJournalScrollbar, 

GetCtlValue( hControlJournalScrollbar ) + 
sScrollAmount ) ; 

II Scroll the actual text to the correct position. Chapter 8 on textedit 
II will show this function in detail. 
SynchJournalTextWithScrollbar(); 

This concludes the section on controls. Let's now look at dialog boxes 
and the special way in which they allow you to use controls easily. 

Dialog Boxes 
A dialog box is a special type of window intended to obtain information 
from or display information to the user. Dialog boxes share many of the 
same characteristics of windows, and provide an especially easy way to use 
controls. In addition to supporting the standard controls described above, 
they support a mechanism for allowing the user to enter text. Because 
your game will most likely require that the player enter text at some 



CHAPTER 6-Using Dialog Boxes and Controls 

point, even if it's just for the high scores list, you will almost certainly use 
dialog boxes in your game. 

Types of Dialog Boxes 
The Macintosh operating system provides several types of dialog boxes 
that can be used by your game; these are modal dialog boxes, modeless dialog 
boxes, and alerts. Modal dialog boxes require that the user enter the infor
mation requested or read the information presented before continuing 
with your game. In other words, they are modal, which pretty much 
means that the user has entered a particular mode of the game from 
which they must exit before they can do anything else. If the user tries to 
click anywhere outside a modal dialog box, the Macintosh beeps (or 
flashes the title bar) and ignores that click. An example of when you'd 
want to use a modal dialog box is when your game prompts the user to 
enter their name for the high scores list. While this prompt is on the 
screen, you don't want the player to start another game, clear the high 
scores list, or do just about anything else. So, you use a modal dialog box 
and force the player to enter their name before doing anything else (or, if 
your game supports it, and it should, cancel the dialog box without hav
ing to enter their name). 

The user can interact with modeless dialog boxes at his or her leisure. 
The user is not required to enter the requested information and dismiss 
the dialog box before going on to do other things. Desert Trek uses a 
modeless dialog box for the high scores window. When the player 
chooses to see the high scores list, a modeless dialog box appears on the 
screen, but that dialog box does not have to be dismissed in order for the 
player to continue playing Desert Trek. 

Alerts are a special type of modal dialog box, typically used to display 
information to the user. They are also used to allow the user to make a 
choice from several options. An alert generally contains only text and one 
or more push buttons (okay, and maybe an icon). When the player tries 
to quit Desert Trek and their current game is not saved, a message is dis
played asking them if they want to save before quitting, not save before 
quitting, or cancel the operation (in other words, not quit). An alert 



CHAPTER 6-Using Dialog Boxes and Controls 

would be perfect for this scenario because Desert Trek needs to display a 
message and get a simple response from the user. However, Desert Trek 
doesn't use alerts for a good reason. I'll explain. 

Application Modal Dialog Boxes 
Modal dialog boxes were just :fine to use back in the good old days when 
your application was the only thing running on the Macintosh. 
Remember, modal means that the user must deal with the dialog box 
before doing anything else. It's that "anything else" part that really 
becomes a problem when your game runs in a multiprogram environment. 
It's okay for you to require that the player deal with your modal dialog box 
before they can do anything else with your game, but you don't want to 
prevent the player from doing anything at all on their computer before 
dismissing your modal dialog box. In addition, you probably don't want to 
prevent the user from seeing your other game windows when a dialog box 
is displayed on the screen. That box might overlap one of your game win
dows, and the player might need to see that game window before entering 
information into that dialog box. If you use a modal dialog box, you would 
:first have to cancel the dialog box to see the window, then bring it up 
again to enter the requested information. When would this happen? How 
about a game that asks the user to enter how many troops they'd like to 
use to attack, but the window showing how many troops they have is 
being obscured by the dialog box asking the question. 

So, why not just always use modeless dialog boxes. Modeless dialog 
boxes don't lock up the system and can be moved around the screen. It 
sounds like a decent solution. Unfortunately, doing so would give the 
user too much freedom. Remember, the reason you used a modal dialog 
box in the :first place was to prevent the user from doing anything else 
with your game until they dismissed that dialog box. A modeless dialog 
box would allow the user to start doing things you wouldn't want them 
doing until they completed the dialog box being displayed. 

So, what can you do? What we'd really like is a movable dialog box 
that's modal to our game, but not to the whole system. Other operating 
environments, such as Microsoft Windows, support what's called an 



CHAPTER 6-Using Dialog Boxes and Controls 

application modal dialog box. An application modal dialog box prevents 
the user from doing anything else with the application displaying the dia
log box, but allows the user to click on and use other application's win
dows. These operating environments also support system modal dialog 
boxes which prevent the user from doing anything on the system until 
the dialog box is dismissed. Macintosh's modal dialog boxes and alerts can 
be considered system modal dialog boxes. System modal dialog boxes 
should only be used in extreme cases where the user must deal with a sit
uation immediately, such as situations where the entire computer would 
be affected. Unfortunately, the Macintosh does not support application 
modal dialog boxes natively. However, they can certainly be simulated 
with a little work. 

All of Desert Trek's modal dialog boxes are application modal dialog 
boxes (with the exception of the Macintosh's standard File Save and Open 
dialog boxes which will be discussed in Chapter 9 on Reading and 
Writing Files). This is accomplished by using modeless dialog boxes, but 
preventing the user from activating any other Desert Trek window while 
that modeless dialog box is displayed. Even the alerts that Desert Trek 
displays are application modal. After I describe how to use dialog boxes in 
your game, I will show you how to easily implement application modal 
dialog boxes and alerts. 

Dialog Box Records and Pointers 
As I briefly stated at the beginning of this section, dialog boxes are a spe
cial type of window. In fact, anything that you can do with a window, you 
can do with a dialog box. This means that you can specify a dialog box 
pointer in any toolbox call that takes a window pointer. For example, you 
can set a dialog box's title text or reference constant just as you can with a 
window. How can this be? It's simple once you look at the dialog box 
record containing the information for a dialog box. Note that once again, 
I'm not showing the whole record since you'll use toolbox routines to 
manipulate the dialog box record elements. 



CHAPTER 6-Using Dialog Boxes and Controls 

typedef WindowPtr DialogPtr; 
struct DialogRecord { 

WindowRecord window; 

} i 

As you can see, the first element of a dialog box record is a window 
record. This means that a dialog box is really a window with a few extra 
things. Also, the DialogPtr is defined to be a WindowPtr, which 
means that you don't even need to typecast dialog box pointers when 
using them in toolbox calls that take window pointers. How convenient. 

So, what does a dialog box have that windows do not. In essence, there 
are two things. First, a dialog box contains a handle to a list of dialog box 
items. Dialog box items are really just a collection of controls that the dia
log box contains. However, the controls are indexed with an item number 
instead of their control handle. This means that you can identify controls 
within dialog boxes by their item number, instead of having to keep track of 
their control handles. The item numbers are defined when you create the 
dialog box and its corresponding dialog box item table ('DITIJ resource) in 
ResEdit (see Chapter 3). Second, dialog boxes allow you to define any 
number of text edit boxes, which allows the user to enter text. From your 
program's point of view, these text edit boxes can be referred to by their 
item numbers, just like the other standard controls within that dialog box. 

Item Types 
An advantage of using dialog boxes over windows is that the controls 
contained within a dialog box can be easily accessed via an item ID. 
These items include not only standard controls such as push buttons, 
check boxes, and radio buttons, but also user items, static text fields, text 
edit fields, icons, and pictures. You determine an item's type when defin
ing that item in ResEdit. An item's type is a short integer with one of the 
following values as defined by the toolbox. 



190 

CHAPTER 6-Using Dialog Boxes and Controls 

enum { 

} ; 

ctrlitem = 4, 
btnCtrl 0, 
chkCtrl l, 
radCtrl = 2, 
resCtrl 3, 

statText = 8, 
editText = 16, 
iconitem = 32, 
picitem = 64, 
useritem = 0 

II Standard control. 
11 Push button. 
I I Check box. 
II Radio button. 
II Control resource. 
II Static text field. 
II Text edit field. 
II Icon resource. 
II Picture resource. 
II User item. 

A standard control's item type is the sum of ctrlitem and the constant 
defined for that particular type of control. For example, a radio button's 
item type is 4 + 2, or 6. Typically, you will only need to worry about item 
types when you create them with ResEdit. 

Static Text and Text Edit Dialog Box Items 
As just stated, dialog boxes support editable text fields. In addition, they 
support static text fields. Static text fields are just that, static. The user is not 
allowed to change the text contained within them. However, your game 
can certainly change the text displayed within a static text field, as we'll see 
later. Static text items are typically used as a label for text edit fields, and 
describe to the user what they are expected to type. Static text fields are 
also used to convey messages to a user, such as an alert or error condition 
(e.g., "The name you entered for the high scores list is too long."). 

Text edit boxes contained within dialog boxes are an easy way to get 
text typed from the user. Generally, whenever your game needs to get 
typed input from the user, such as a name, you will do so through a dialog 
box containing a text edit field. Text edit fields take care of just about 
everything for you, (e.g., allowing the user to type characters, change the 
insertion point, and select text). All you have to do is read the text. We'll 
learn all about that in a moment. 



CHAPTER 6-Using Dialog Boxes and Controls 

Loading and Closing Dialog Boxes 
To load a dialog box from the resource fork (type 'DLOG'), use the fol
lowing toolbox routine. 

II Loads a dialog from the resource fork. 
DialogPtr GetNewDialog( short sDLOGResourceID, 

Ptr pStorage, 
WindowPtr pWindowBehind ) ; 

Just as with the GetNewWindow (} toolbox routine, to load a window 
from the resource fork, you need to specify the resource ID of the dialog 
box to be loaded. The dialog box item's table of controls will also auto
matically be loaded from the 'DITV resource with the same ID. You are 
also given the opportunity to allocate your own storage for the dialog box 
record by specifying a pointer to that storage in the pStorage parame
ter. Passing ni 1 will cause the Macintosh to automatically allocate and 
maintain the storage for you. This is the recommended route. Last, you 
need to specify the window which the loaded dialog box will appear 
behind. Just like the GetNewWindow (} toolbox routine, -1 will cause 
the dialog box to appear in front of all windows, ni 1 will cause the dialog 
box to appear behind all window. 

When you are finished with a dialog box (typically when the user dis
misses the dialog box), you need to remove it from the screen as well as 
release the memory used by its dialog box record. There are two toolbox 
routines that close a dialog box. The one you will need depends on whether 
or not you choose to allocate storage for the dialog box record yourself. 

II Closes a dialog, removing it from the screen. The memory 
II used by the dialog record is not automatically freed, so 
II you will need to do so yourself. Use this call if you 
II specified a pointer for pStorage in the GetNewDialog() 
II call. 
void CloseDialog( DialogPtr pDialog ); 



CHAPTER 6-Using Dialog Boxes and Controls 

II Closes a dialog, removing from the screen. The memory 
II used by the dialog record is automatically freed. Use 
II this call if you specified nil for pStorage in the 
II GetNewDialog() cali. 
void DisposDialog( DialogPtr pDialog ); 

Examples of these calls will be given shortly. 

Accessing Dialog Box Items 
Remember that one of the advantages of dialog boxes is that they contain 
a list of dialog box items that can be easily manipulated. These items can 
be accessed by using either the item's ID or the item's handle. Some of the 
toolbox routines used to manipulate dialog box items require the item's 
ID, and some require the item's handle. "When you create a dialog box and 
its item list with ResEdit, you assign IDs to all the items. "What you need 
is a way to obtain a dialog box item's handle from its ID, which you 
already know. The following toolbox routine is exactly what you need. 

II Get a dialog item's type, handle, and rectangle given it's 
11 ID. 
void GetDitem( DialogPtr pDialog, 

short 
short 
Handle 
Re ct 

sitemID, 
*psitemType, 
*phitem, 
*pRectitem ) ; 

This toolbox routine returns a dialog box item's type, handle, and rectan
gle. For the most part, you will need only the handle returned. Because 
you defined the item's type when you created it with ResEdit, you proba
bly won't need that value, unless you expect an item's type to change dur
ing program execution (which could easily be confusing to the user). 
Occasionally, you'll need an item's rectangle, especially if you are manu
ally drawing anything in the dialog box related to the item in question. In 
the next chapter on Quickdraw, we'll see an example of how to use a user 
type item to draw a pop-up menu in a dialog box. In that example, we'll 
need the item's rectangle in order to draw the shadowed rectangle show
ing the user where to click to pop-up the menu. 



CHAPTER 6-Using Dialog Boxes and Controls 

You can set an item's information by using the following toolbox call. 193 

II Set a dialog item's type, handle, and rectangle given it 's 
11 ID. 

void SetDitem( DialogPtr pDialog, 
short sitemID, 
short 
Handle 
Re ct 

sitemType , 
hitem, 
rectitem ) ; 

Rarely, if ever, will you need to use this call. The only time you'll need to 
use it is when you want to change a dialog box item's location. After mov
ing a control using the MoveControl () routine to position an item in a 
dialog box, you need to use SetDitem () to have the change take place. 
You need to use both toolbox calls, otherwise the item's new position 
won't get reflected onscreen. The following function from Desert Trek 
moves the push buttons contained in the high scores dialog box. The 
function can be found in Scores Wmdow.c. 

#define BUTI'ON_SPACING 90 

static void MoveScoresButtons( void 

Rect rectitem; 
short sitemType; 
short sitemWidth; 
short sitemHeight ; 
Handle hitem; 
short sLoop; 
short sDistance = BUTI'ON_SPACING; 

II Loop through all three buttons in the high scores dialog. 
for( sLoop = PB_OK; sLoop <= PB_CLEAR_ALL; sLoop++ ) 
{ 

II Get the button ' s item type, handle, and rectangle. 
GetDitem( pDialogScores , sLoop, &sitemType, &hitem, &rectitern ); 

II Determine where the button should go . The f irst button goes in t he 
II lower right corner of the dialog , and the others fan out to the left 
I I of it. 
sitemWidth = rectitem.right - rectitem.left; 
sitemHeight = rectitem .bottom - rectitem.top ; 



CHAPTER 6-Using Dialog Boxes and Controls 

SetRect{ &rectitem, rectScores.right - sDistance, rectScores.bottom + 4, 
rectScores.right - sDistance + sitemWidth, 
rectScores.bottom + 4 + siternHeight ); 

II Move the button control to it's new location. 
MoveControl{ (ControlHandle) hitem, rectitem.left, rectitem.top ); 

II Set the button control's rect in the dialog item list. 
SetDitem{ pDialogScores, sLoop, sitellil'ype, hitem, &rectitem ); 

II Prepare for the next button's position. 
sDistance += BUTl'ON_SPACING; 

Getting and Setting Text for Static Text Items 
and Text Edit Fields 

The toolbox provides several routines for retrieving and setting the text 
of static text and text edit items within a dialog box. Two of these routines· 
take the item's handle, which you obtain by using GetDitem (). 

II Sets the text of a static text or text edit field of a 
11 dialog. 
void SetIText{ Handle hitem, 

Str255 str255Text ); 

II Gets the text of a static text or text edit field of a 
11 dialog. 
void GetIText { Handle hitem, 

Str255 str255Text ); 

II Sets the selection range of a text edit field. The 
II start and end positions are character positions. 
void SelIText{ DialogPtr pDialog, 

short sitemID, 
short 
short 

sSelectionStart, 
sSelectionEnd ) ; 

In addition to selecting the text in the specified text edit field, 
SelIText ( ) also sets the input focus to the specified field. The input 



CHAPTER 6-Using Dialog Boxes and Controls 

focus determines which field will get keystrokes typed by the user. ,J19S 
Generally, it's the field with the blinking insertion point. There are a cou-
ple of cases in which you may want to use SelIText (). The first is 
when you load any dialog box that contains one or more text edit fields. 
You should select all the text contained within the field you want to ini-
tially have focus. The second is when you are checking input fields for 
errors. If a field contains an error, you should set focus to that field and 
select all its text after displaying the error message. This is especially use-
ful to the user in dialog boxes with multiple text edit fields because, if you 
select that field, the user will immediately know where the error lies. 
We'll see an example of this later on. 

Parameterized Text 

When you define a dialog box item table in RedEdit (resource type 
DITL), you can place parameter tokens into the text of any item defined 
(static text items, radio buttons, push buttons, etc.). The parameter 
tokens are "0, "1, "2, and "3, meaning that you can have up to four 
unique parameter tokens per dialog box. The same token can be used 
more than once in a dialog box if you want the same parameterized text 
to appear in more than one dialog box item. In your code, you can set the 
text to be substituted for these tokens by using the following toolbox call. 

II Sets the 4 parameterized text tokens, which will get 
II substituted into your alerts and dialogs. This is a 
II global change, meaning that unless you reset them, they 
II will be used in all dialogs and alerts subsequently 
II displayed by your program. 
void PararnText ( Str255 str255Token0, 11 '"'0" 

Str255 
Str255 
Str255 

str255Tokenl, 
str255Token2, 
str255Token3 ) ; 

I I '"'1" 
II ""2" 
11 ""3" 

Just remember that these substitutions will be made in any dialog box or 
alert loaded by your program. This means that you should probably set 
them just before loading any dialog box or alert that needs them. 



CHAPTER 6-Using Dialog Boxes and Controls 

Showing and Hiding Dialog Box Items 

Occasionally, you may need to show or hide dialog box items. The fol
lowing toolbox routines allow you to do so. Remember that it is better 
practice to disable an item rather than make it invisible. 

II Hides a dialog item, making it invisible. 
void HideDitem( DialogPtr pDialog, 

short siternID ) ; 

II Shows a dialog item, making it visible. 
void ShowDitem( DialogPtr pDialog, 

short siternID ); 

Finding an Item Based on the Mouse 
Location 

Normally, dialog boxes take care of all mouse clicks on dialog box items 
for you. The dialog box automatically tracks the mouse click and returns 
to your program the item ID of the dialog box item clicked on by the 

· user. However, if for some reason you need to determine which item the 
mouse is over, the toolbox provides a routine to tell you which dialog box 
item is located at a given point. 

II Given a point in local coordinates, tells you which dialog 
II item is under that point. 
short FindDitem( DialogPtr pDialog, 

Point pt); 

Drawing Dialog Boxes 
The following routines are used to draw a dialog box and its contents 
(including all dialog box items). 



CHAPTER 6-Using Dialog Boxes and Controls 

II Draws an entire dialog and it's contents. 
void DrawDialog( DialogPtr pDialog ); 

II Draws the specified region of dialog and it's contents. 
void UpdtDialog( DialogPtr pDialog, 

RgnHandle hRegion ) ; 

The two toolbox routines, ModalDialog () and DialogSelect (), 

which will be discussed shortly, automatically draw a dialog box's con
tents when an update event occurs for that dialog box. This means that if 
you don't do anything unusual, such as custom drawing within a dialog 
box, you won't need to use the DrawDialog () or UpdtDialog () 

calls. However, Desert Trek uses these calls since all dialog box update 
events are processed to allow for custom drawing in any dialog box. So, 
we'll see DrawDialog () used in the dialog box examples shown later 
in this chapter. 

Using Alerts 
An alert is a special type of modal dialog box that displays a message and 
asks for a simple response from the user. An example would be asking the 
user a yes/no question such as asking whether or not the user wants to 
save a game before quitting. The toolbox calls to display alerts take an 
alert resource ID as an input parameter. You specify this ID when creat
ing the alert with ResEdit. These routines return the item ID clicked by 
the user to dismiss the alert. This is how you determine whether the user 
clicked OK, Cancel, Yes, No, etc. The alert toolbox calls also take as a 
parameter a pointer to what's called a filter procedure. Filter procedures 
will be discussed shortly in the section on getting modal dialog box 
events. The only difference between the various alert calls is the icon dis
played in the alert. See Figure 6.3 for the icons displayed by the toolbox 
calls described below (Alert ( ) does not automatically display an icon; 
you need to define it yourself when creating the alert in ResEdit). 



198 

CHAPTER 6-Using Dialog Boxes and Controls 

[1i] Note Alert Icon 

Caution Alert Icon 

Stop Alert Icon 

Figure 6.3 The alert icons. 

II Displays a generic alert. 
short Alert( short sAlertID, 

ProcPtr pProcFilter ); 

II Displays a note alert. 
short NoteAlert( short sAlertID, 

ProcPtr pProcFilter ); 

II Displays a caution alert. 
short CautionAlert( short sAlertID, 

ProcPtr pProcFilter ); 

II Displays a stop alert. 
short StopAlert( short 

ProcPtr 
sAlertID, 
pProcFil ter ) ; 

Again, Desert Trek does not use these toolbox routines because they pre
vent the user from doing anything else on the computer until the alert is 
dismissed. Instead, Desert Trek simulates application modal alerts by 
using modeless dialog box boxes, which do not prevent the user from 
switching to another application. You can very easily use this code, which 
will be shown shortly, in your own game. 

Using Modal Dialog Boxes 
When your game displays a modal dialog box on the screen, you need a 
way to cause that dialog box to take control of the system and report back 
to your program any clicks on items within that dialog box. The 



CHAPTER 6-Using Dialog Boxes and Controls 

Macintosh toolbox provides a routine to make it very easy to accomplish 
this task. Before using this call, make sure the dialog box is loaded and 
the frontmost window (notice that this routine does not take a dialog box 
pointer as a parameter, so the dialog box in question must be the front
most window in order for this call to work). 

II Gives control of the Macintosh over to a dialog. Any user 
II interaction with the dialog is automatically handled. 
II This routine returns when the user clicks on a dialog 
II item. Keep calling this routine in a while() loop until 
II the user clicks on an item that dismisses the dialog. 
void ModalDialog( ProcPtr pProcFilter, 

short *psitemHit ); 

This toolbox routine takes two parameters: a pointer to a filter function, and 
a pointer to a short integer, which will get set to the item ID of the item 
clicked on by the user. This toolbox call does not return control to your 
program until the user actually selects a dialog box item. In other words, if 
you click on a button, but change your mind and move the mouse out of 
that button before releasing the button, ModalDialog () will not return 
control to your program. If you specify ni 1 for the filter function parame
ter, a standard filter function will be used. This standard filter function 
does one thing: converts the Return key or Enter key keystroke to a click 
on the item with an ID of 1. Thus, the item with an ID of one is typically 
referred to as the default item of a dialog box. Usually, it should be your 
OK button, or its equivalent. If you need to do anything special in the 
modal dialog box, such as custom drawing or converting other keystrokes 
to actions, you must supply your own filter function. If you do so, you 
must take over the task of converting Return and Enter key keystrokes to 
clicks on item 1. The filter function is in fact a callback routine that the 
Macintosh calls whenever an event occurs to the modal dialog box used by 
your game. A filter function must be declared as follows: 

II Filter function definition for ModalDialog() and 
II the ShowAlert() family of toolbox routines. 
pascal Boolean MyFilterProc( DialogPtr pDialog, 

EventRecord *pEvent, 
short *psitemHit ); 



CHAPTER 6-Using Dialog Boxes and Controls 

Your filter function will receive the dialog box pointer for which the 
event occurred (this will always be the modal dialog box currently dis
played), and the event record for the event itself, which can be modified if 
needed. If your filter function processing determines that this event 
should cause an item to be clicked, you need to set that item number and 
return it using the psiternHit parameter. For example, if you are map
ping the Escape key to a Cancel button, you should set psiternHit to 
the item ID of the Cancel button if the event is a key down event of the 
Escape key. Lastly, the filter function returns true or false, depend
ing on if you want Modal Dialog ( ) to return the item ID to the por
tion of your code that called ModalDialog ( ) . Returning true will cause 
your program to regain control at the ModalDialog () call. You should 
return true if you set the ps It ernH it parameter. 

Though Desert Trek doesn't use any modal dialog boxes, a typical 
modal dialog box routine would look something like the following code 
example. The use of a filter function is not shown. If you really need to 
use a filter function, you should seriously consider using a modeless dialog 
box instead (or, the application modal dialog box Desert Trek simulates). 

static void DoModalDialog( void ) 
{ 

DialogPtr pDialog; 
Boolean bExit = FALSE; 
short siternHit; 

II Load the modal dialog from the resource fork. 
pDialog = GetNewDialog( DLG_MODAL, nil, (WindowPtr) -1 ); 

II Initialize any dialog items here. Things you might do include setting 
II the text of any text edit fields, and selecting any radio buttons or 
II check boxes that need to be set. 

II Show and select the dialog. It must be the frontmost window before 
II calling ModalDialog(). 
ShowWindow( pDialog ); 
SelectWindow( pDialog ); 

II Loop until the user selected something in the dialog that would cause it 
II to go away. 



CHAPTER 6-Using Dialog Boxes and Controls 

while( !bExit ) 
{ 

II Get the next dialog item selected by the user. No filter function is 
II specified. 
ModalDialog( nil, &siternHit ); 

II Take the appropriate action, depending on which item the user clicked. 
switch( siternHit ) 
{ 

II The user clicked on the OK button. Usually, you would read the 
II states of any dialog items the user was allowed to change. This 
II includes reading text edit fields and the state of any check boxes 
II and radio buttons. Also, since the user now wishes to dismiss the 
II dialog, set the flag to exit the while loop. 
case OK: 

bExit = TRUE; 
break; 

II The user has dismissed the dialog, so remove it from the screen and free 
II it from memory. 
DisposDialog( pDialog ); 

Using Modeless Dialog Boxes 
Modeless dialog boxes are easy to use once you know what to do. In fact, 
they are probably just as easy to use as modal dialog boxes that require a 
filter function, and they are much more versatile. For the most part, you 
can treat modeless dialog boxes like any standard window. The advantage 
of modeless dialog boxes, though, is that they support dialog box items 
such as text edit boxes, and they report clicks on any of their items to 
your game in a manner that's easy to process. You don't need to use 
FindControl () and TrackControl (), which are required when 
processing click events for control items in standard windows. 

There are a couple of things that you need to do differently from stan
dard windows. In order to get the convenient dialog box item processing, 
you have to use a special toolbox call that processes modeless dialog box 
events. This question arises: How do I know when an event is destined for 



202~ 

CHAPTER 6-Using Dialog Boxes and Controls 

a modeless dialog box or a standard window? The Macintosh toolbox pro
vides a call to tell you if an event is meant for a modeless dialog box. 

II Returns true if the given event is a dialog event. 
Boolean IsDialogEvent{ EventRecord *pEvent ); 

If the event is a dialog box event, you need to call the following toolbox rou
tine to determine what dialog box item, if any, was clicked on by the user. 

11 Handles a dialog event. Returns true if you need to 
II respond to the message {in other words, an item within 
II the dialog was clicked on by the user). ppDialog will 
II contain the dialog pointer of the dialog effected by the 
II event. psitemHit will be set to the item id within that 
II dialog clicked on by the user. You only supply pEvent, 
II the other parameters are really return values. 
Boolean DialogSelect{ EventRecord *pEvent, 

DialogPtr 
short 

*ppDialog, 
*psitemHit ) ; 

If DialogSelect ( ) returns true, the user clicked on one of the dia
log box items. The ID of that item is returned in psitemHi t. If 
DialogSelect () returns false, the user did not click on one of the 
items. You may decide to take further action based on the event type. For 
example, if you allow the user to click on objects within the dialog box 
that aren't in the dialog box's item table, you need to determine if the 
event was a mouse down event in one of those objects. Desert Trek needs 
to do this in the high scores window. The skill level indicators at the top 
of the dialog box are not items, so any user clicks in the dialog box not 
detected by DialogSelect () need to be examined to see of they were 
located within any of the skill level indicators. 

In Chapter 2 in the section on events, it was stated that even if 
Wai tNextEvent () or GetNextEvent () returns false, meaning 
that no event was posted to your game, you need to check to see if a dia
log box event was posted anyway. Why? Well, modeless dialog boxes with 
text edit boxes occasionally need to blink the cursor within the active text 
edit box. This is accomplished when you call DialogSelect (). In 
order to force your program to periodically call DialogSelect (), 



CHAPTER 6-Using Dialog Boxes and Controls 

Wai tNextEvent () and GetNextEvent () occasionally return a null 
dialog box event meant simply to cause the cursor in a modeless dialog 
box to blink. Go back and reread the code example in Chapter 2 showing 
Desert Trek's CheckEvent ( ) function to see this in action. 

Modeless Dialog Box Example 
Let's look at all the code related to one of Desert Trek's modeless dialog 
boxes. The high scores dialog box is a modeless dialog box, meaning that 
it coexists with all of Desert Trek's other windows and modeless dialog 
boxes. The player is allowed to show the High Scores dialog box and 
keep it around while they play Desert Trek. Let's first look at the code to 
create the high scores dialog box. Notice that I make several calls to win
dow routines, passing in the dialog box pointer as a parameter. 
Remember, dialog box pointers are synonymous with window pointers. 

static DialogPtr pDialogScores; 
static short sSkillLevelViewed; 
static Rect rectScores; 

void ConstructScoresWindow( void ) 
{ 

II If the high scores dialog is already loaded, just make it the 
II frontmost window. 
if ( pDialogScores ) 

SelectWindow( pDialogScores ); 

II Otherwise, we need to load the dialog and show it on the screen. 
else 
{ 

II The skill level initially shown in the high scores dialog is the 
II skill level currently selected by the user. 
sSkillLevelViewed = GetSkillLevel(); 

II Create the offscreen components of the high scores window. All 
II drawing first takes place offscreen before being displayed in the 
II dialog. Chapter 7 on quickdraw will cover this practice thoroughly. 
ConstructScoresWindoWOffscreen(); 

II Load the dialog from the resource fork. 



CHAPTER 6-Using Dialog Boxes and Controls 

pDialogScores = GetNewDialog( DLG_SCORES, nil, (WindowPtr) -1 ); 

II Set the dialog's reference constant so that the dialog can be 
II identified later by it's reference constant. 
SetWRefCon( pDialogScores, SCORES_WINOOW_ID ) ; 

II Size the dialog to the correct dimensions. 
SizeWindow( pDialogScores, rectScores.right, rectScores.bottorn + 26, 

false ) ; 

II Move the buttons in the dialog's item list to their proper locations. 
II We've already seen the code for this routine above. 
MoveScoresButtons(); 

II Draw the high scores offscreen. Again, the chapter on quickdraw will 
II cover the details. 
DraWScoresWindow(); 

II Call the generic Desert Trek routine to center a window on the screen. 
CenterWindow( &pDialogScores->portRect, nil, true, pDialogScores ); 

II Make the dialog visible and the frontrnost window. 
ShowWindow( pDialogScores ); 
SelectWindow( pDialogScores ); 

Once the High Scores dialog box is loaded, we need to process events for 
that dialog box. Most of the window-related events, such as clicks in the 
title bar or close box, are handled in the HandleMouseEvent () rou
tine in Main.c. This routine does not distinguish between specific win
dows or dialog boxes for mouse clicks in the title bar or close box regions. 
For mouse clicks in the content region of a dialog box or window, 
though, the High Scores dialog box is singled out by using its reference 
constant. If a mouse click in the content region of the High Scores win
dow is detected, DoScoresWindowEvent () is called. In addition, key
strokes made by the user while the High Scores dialog box is the active 
window are sent to DoScoresWindowEvent (). The 
DoScoresWindowEvent () routine shown below can be found· in 
Scores Wmdow.c. Notice the use of DialogSelect () before doing 
any other processing. 



CHAPTER 6-Using Dialog Boxes and Controls 

void DoScoresWindowEvent ( EventRecord *pEvent ) 
{ 

DialogPtr pDialog; 
short sitem; 
short sLoop; 

II Since the scores window is a dialog, call DialogSelect to see if the 
II event was a user click in one of the dialog items. If so, sitem will 
II contain the ID of the item clicked. 
if ( DialogSelect( pEvent, &pDialog, &sitem ) ) 

switch( sitem ) 
{ 

case PB_OK: 

II The OK button dismisses the high scores window. 
DestructScoresWindow(); 
break; 

case PB_CLEAR: 

II Clear the high scores for the skill level being viewed. 
ClearScores ( sSkillLevelViewed - 1 ) ; 

I I can the ViewNewLevel ( ) routine which will force a redraw of the 
11 high scores window (now with the cleared scores). 
ViewNewLevel ( sSkillLevelViewed ) ; 
break; 

case PB_CLEAR_ALL: 

II Clear the high scores for all skill levels. 
for( sLoop = O; sLoop < 10; sLoop++ ) 

ClearScores( sLoop ); 

II Reflect the changes by redrawing the high score window. 
ViewNewLevel ( sSkillLevelViewed ) ; 
break; 

II If the event posted was not an event affecting one of the dialog items, 
II and the event was a mouse down event, check to see if the player clicked 
II on one of the skill level indicators. 
else if ( pEvent->what == mouseDown ) 

ScoresWindowMouseDown ( pEvent->Where J ; 



CHAPTER 6-Using Dialog Boxes and Controls 

11 If the event was a keystroke, process it. The ScoresWindowKeyDown() 
II routine takes the character code of the keystroke as a parameter. 
else if ( pEvent->what == keyDown ) 

ScoresWindowKeyDown( BitAnd( pEvent->message, charCodeMask) ); 

The ScoresWindowMouseDown ( ) and ScoresWindowKeyDown ( ) 

routines will not be shown here, but feel free to look them up in the 
Scores Wmdow.c. The last event type we need to worry about for the 
High Scores dialog box is the update event. Note that Desert Trek does 
not call DialogSelect ( ) in response to an update event destined for 
the High Scores window. Since the High Scores window has many items 
that need to be custom drawn, an Upda teScoresWindow ( ) routine 
was created to perform all of the dialog box's drawing, including that 
which would occur if DialogSelect () was called. This routine can 
also be found in Scores Wmdow.c. Most of the routine contains drawing 
functions that will be covered in Chapter 7 on QuickDraw so don't worry 
too much about them right now. 

void UpdateScoresWindow( void ) 
{ 

GrafPtr pGrafCUrrent; 
RGBColor rgbForeColorCUrrent; 
RGBColor rgbBackColorCUrrent; 
hColors hStdl6Colors = GetColorsHandle(); 
Boolean bUsingColorGraphics; 

bUsingColorGraphics = UsingColorGraphics( nil); 

II If the dialog pointer is valid, let's draw the dialog. 
if ( pDialogScores ) 
{ 

GetPort( &pGrafCUrrent ); 
SetPort( pDialogScores ) ; 

II Start the update process, which will automatically clip any drawing 
II outside the region the needs redrawing. 
BeginUpdate( pDialogScores ); 

II Call the toolbox routine that automatically draws the dialog's items. 
II We need to do this before doing any custom drawing since if we called 
II this after the custom drawing, the dialog items may overwrite the 



} 

CHAPTER 6-Using Dialog Boxes and Controls 

II custom drawing we did. 
DrawDialog ( pDialogScores ) ; 

11 Perform the custom drawing, which pretty much just copies the offscreen 
I I high scores area to the onscreen dialog. 
GetForeColor ( &rgbForeColorCurrent ) ; 
GetBackColor ( &rgbBackColorCurrent ) ; 
RGBForeColor( &(*hStd16Colors)->rgbColor[ColorBlack] ); 
RGBBackColor( &(*hStd16Colors)->rgbColor[ColorWhite] ); 

CopyBits( &bitmapScores, &pDialogScores->portBits, &rectScores, 
&rectScores, srcCopy, nil); 

RGBForeColor ( &rgbForeColorCurrent ) ; 
RGBBackColor ( &rgbBackColorCurrent ) ; 

II End the update process. 
EndUpdate( pDialogScores ); 
SetPort ( pGrafCurrent ) ; 

When the user dismisses the High Scores dialog box, either by pressing the 
OK push button, or clicking on the dialog box's close box, the dialog box 
needs to be removed from the screen, and the dialog box record freed from 
memory. The following routine from Scores Wmdow.c does just that. 

void DestructScoresWindow( void ) 
{ 

II Clean up the offscreen components of the high scores dialog. 
DestructScoresWindowOffscreen(); 

II If the dialog pointer is valid •.. 
if ( pDialogScores ) 
{ 

11 Remove the dialog from the screen, and free up the memory taken by 
II its dialog record. 
DisposDialog ( pDialogScores l ; 

II Set the dialog pointer to nil, so that we know the dialog is no longer 
I I on the screen. 
pDialogScores = nil; 



CHAPTER 6-Using Dialog Boxes and Controls 

That concludes the modeless dialog box example. As you can see, sup
porting modeless dialog boxes is not difficult at all. 

Supporting Application Modal Dialog Boxes 

We just saw an example of how to support modeless dialog boxes in your 
game. However, there are times when you want to show a dialog box and 
prevent the player from interacting with the other windows and dialog 
boxes of your game until that dialog box is dismissed. Normally, you 
would use a modal dialog box, but as was discussed, modal dialog boxes 
are bad because they prevent the user from accessing the windows of 
other applications running on the Macintosh. 

The trick to supporting Application Modal dialog boxes is to imple
ment modeless dialog boxes while at the same time preventing the user 
from interacting with any of your other windows and dialog boxes. This 
task isn't very difficult and only requires one check to be added to your 
mouse down event processing. Okay, there's also one other thing to think 
about. How can the user interact with one of your game's dialog boxes or 
windows? The most obvious is by clicking on it. We've just covered that. 
However, it's also possible to select and/or affect game windows and dia
log boxes by choosing various menu commands. So, you need to disable 
any menu commands in your game that affects any window or dialog box. 
To be honest, that's probably just about every menu command your game 
supports. No, don't go thinking that the Quit command doesn't affect 
any windows or dialog boxes. It causes all of your windows and dialog 
boxes to close, and most likely creates a dialog box itself, asking if the 
user wants to save before quitting. Basically, you need to disable all of 
your game's menus when an application modal dialog box is displayed. 
The only menu commands you want to remain enabled are the items 
under the apple menu not associated with your game, and any system 
menus such as the Balloon Help menu and Application menu. 

So, let's see some code examples of what needs to be done to support 
application modal dialog boxes. First, let's look at how mouse clicks are 
handled. The following routine comes from Main.c. We've seen it 
before, but now look at it again, paying special attention to the code that 
checks to see if an application modal dialog box is currently active. 



CHAPTER 6-Using Dialog Boxes and Controls 

static void HandleMouseEvent( EventRecord *pEvent ) 
{ 

short 
short 

sWindowPart; 
sWindowID; 

WindowPtr pWindow = nil; 
Rect rectDragArea; 

II Get the window pointer , window part, and window ID of the window clicked. 
sWindowPart = FindWindow( pEvent->where , &pWindow ); 
sWindowID = (short) GetWRefCon( pWindow I; 

II If t he click was in a system window (pretty much any window not belonging 
II to t his game), let the toolbox call SystemClick() handle it. 
if ( sWindowPart == inSysWindow ) 

SystemClick( pEvent, pWindow ) ; 

II If the click occurred in the menu bar, handle the menu selection. 
II Remember, if an application modal dialog is active, all the menus 
II commands related to this game are disabled. So, we're really checking 
II for system menu clicks in that case (apple , balloon help , or application 
11 menus) . 
else if ( sWindowPart == inMenuBar ) 

HandleMenuSelection( MenuSelect( pEvent->where ) ) ; 

II If an application modal dialog is active, and the window for which this 
II click event occurred was NOT for that application modal dialog, simply 
II beep and ignore the event. This prevents other windows and dialogs from 
II getting activated while an application modal dialog is up. 
else if ( ( IsAppModalDialogUp() ) && 

( pWindow ! = GetAppModalDialogWindow() ) ) 
SysBeep ( 1 ) ; 

II Activate the clicked window if it wasn't topmost . 
else if ( pWindow ! = FrontWindow () 

SelectWindow( pWindow ) ; 

II Handle the actual click. We'd get here if no application modal dialog 
II was up , or if the click was on the application modal dialog (in which 
II case, we need to handle it ) . 
else switch ( sWindowPart ) 

case inDrag: 

rectDragArea screenBits.bounds; 

209 



CHAPTER 6-Using Dialog Boxes and Controls 

DragWindow( pWindow, pEvent->where, &rectDragArea ) ; 
break; 

case inGoAway: 

if ( TrackGoAway( pWindow, pEvent->where ) 
HandleCloseWindow( sWindowID ); 
break; 

case inContent: 

Handl~ouseDowninContent ( pEvent, sWindowID ) ; 
break; 

As you can see, one else clause in the mouse down event handling rou
tine allows us to implement application modal dialog boxes. Well, okay, 
there are several supporting functions that need to be discussed, but this 
is the crux of the support for application modal dialog boxes. 

Before looking at some of those supporting functions, let's look at the 
code to disable Desert Trek's menus when an application modal dialog 
box gets displayed. This routine gets called either when an application 
modal dialog box is first displayed, or when it is dismissed and there are 
no other application modal dialog boxes active. In a moment, we'll dis
cuss how more than one of these boxes might be displayed at one time (of 
course, only one of them can be active). 

void SetModalDialogMenuState( Boolean bEnable ) 
{ 

II An application modal dialog is active. Disable all Desert Trek menus. 
II Note that we can disable every menu wholesale except the Apple menu. 
II For the Apple menu, we should only disable Desert Trek's menu items, not 
II the menu folder items/desk accessories. 
if ( !bEnable ) 
{ 

Disableitem( hMenuApple, AppleMenuAboutID ) ; 
Disableitem( hMenuApple, AppleMenuHelpID ) ; 
Disableitem( hMenuApple, AppleMenuCarysGamesID ) ; 
Disableitem( hMenuFile, 0 ) ; 
Disableitem( hMenuOptions, 0 ) ; 



} 

CHAPTER 6-Using Dialog Boxes and Controls 

Disableitem( hMenuCollUllands, 0 ) ; 
Disableitem( hMenuBuy, 0 ) ; 
Disableitem( hMenuSkillLevel, 0 ); 
DrawMenuBar ( ) ; 

II The last application modal dialog has been dismissed. First, enable all 
I I of Desert Trek's menus, and then call the AdjustMenus () routine which 
II will set all of the menu's enabled/disabled states based on the current 
II game's conditions. 
else 

} 

Enableitem( hMenuApple, AppleMenuAboutID ) ; 
Enableitem( hMenuApple, AppleMenuHelpID ) ; 
Enableitem( hMenuApple, AppleMenuCarysGamesID ) ; 
Enableitem( hMenuFile, 0 ) ; 
Enableitem( hMenuOptions, 0 ) ; 
Enableitem( hMenuCollUllands, 0 ) ; 
Enableitem( hMenuBuy, 0 ) ; 
Enableitem ( hMenuSkillLevel, 0 ) ; 
AdjustMenus(); 

We have now seen how your code can allow modeless dialog boxes to act 
like application modal dialog boxes, but how do you actually implement 
the application modal dialog box? In other words, how do you create this 
dialog box, process events for it, and react when the user dismisses it? 
Desert Trek has defined a unit, App Modal Dialog box.c, which does all 
of this for you. All you need to do is include this unit in your game and 
use its functions to support application modal dialog boxes (or, if you 
really want, you can copy and change the code to suite your specific 
needs). The only function this unit uses externally is the 
CenterWindow () function found in Common Functions.c. You'll 
need to make sure that you have a CenterWindow () function defined 
somewhere in your game, or just copy this function from Common 
Functions.c to App Modal Dialog.c. 

Let's look at the external functions defined in App Modal Dialog.c 
and see when you should use them in your game. Probably the first thing 
you'd want to do is create an application modal dialog box. This is by far 



CHAPTER 6-Using Dialog Boxes and Controls 

the most complex function in the unit because it does all the setup work. 
Here's the prototype: 

DialogPtr ConstructAppModalDialog( short sDialogID, 
void (*pfnEvent) ( short, 

DialogPtr, 
EventRecord *) , 

void ( *pfnDraw) ( DialogPtr ) , 
void ( *pfnHandleMenus) ( Boolean ) , 
short sDefaultAction, 
short sEscapeAction, 
short sYesAction, 
short sNoAction ) ; 

There are quite a few parameters, but you don't need to specify all of them. 
They are there to provide plenty of flexibility. The first parameter, 
sDialogID, is used to specify the resource ID of the 'DLOG' resource. 
The next three parameters are callback functions that you want called when 
certain things happen to the application modal dialog box. Do not define 
these callbacks as pascal, as you would when supplying callback func
tions to toolbox calls, since they all need to use the C calling convention. 

The first callback function you supply is the event callback function, 
pfnEvent. You will always provide an event callback function because 
you need to process events for the dialog box (how can the user dismiss 
the dialog box if you don't process the event for it?). Essentially, the event 
callback function should look exactly like any function that processes 
events for a modeless dialog box (see the example of the 
DoScoresWindowEvent () function shown in the previous section). 
Your event callback function should take three parameters, a short integer 
giving you the ID of the selected item, a dialog box pointer of the mode
less dialog box in question, and a pointer to the event record in case you 
need to do any special event processing Oike supporting pop-up menus). 

The second callback function that you can optionally supply is 
pfnDraw, a custom dialog box update routine. You would only need to 
supply this parameter if you need to do any custom drawing in the dialog 



CHAPTER 6-Using Dialog Boxes and Controls 

box. Your drawing callback function will be passed to the dialog box 
pointer. Note that BeginUpdate () and EndUpdate () are called 
automatically for you, so your custom drawing routine simply needs to do 
its drawing. It doesn't have to concern itself with setting the drawing 
port, calling BeginUpdate (),etc. 

The third callback function you can optionally supply is a pointer to 
an application modal menu enabling and disabling routine. This routine 
takes one parameter telling you whether or not to enable or disable 
menus (a value of true means to enable the menus because no applica
tion modal dialog box is left on the screen). Your menu callback routine 
will be called whenever you need to enable or disable the menus. In other 
words, when the first application modal dialog box appears on the screen, 
or when the last one dismissed. You just saw Desert Trek's menu callback 
routine, SetModalDialogMenuState () above. 

The last four parameters taken by ConstructAppModalDialog () 

are keyboard shortcuts for dialog box items. Specify the item ID of the 
item you want clicked when you press the Return or Enter key in 
sDefaultAction, the Escape or Tilde(-) key in sEscapeAction, the 
Y or y key in stesAction, and the Norn key in sNoAction. Specify 0 
for those key combinations you don't want to carry any special meaning. 
For those chosen items, your event handling routine will give the specified 
item IDs when the user types the corresponding key on the keyboard. 

Note that ConstructAppModalDialog () does not show the dia
log box. This allows you to do some initialization before the dialog box 
appears on the screen, such as setting text edit fields or radio button and 
check box states. Make sure to show the dialog box yourself after calling 
ConstructAppModalDialog(). 

The remaining functions defined in App Modal Dialog.c used to 
support application modal dialog boxes are really very simple. Use the 
following routines to determine if an application modal dialog box is on 
the screen, and to retrieve its dialog box pointer. See the 
HandleMouseEvent () routine shown above to see how these two 
functions should be used in your code. 



CHAPTER 6-Using Dialog Boxes and Controls 

II Returns true if an application modal dialog is on the screen. 
Boolean IsAppModalDialogUp ( void ) ; 

II Returns the dialog pointer of the application modal dialog on the screen. 
II If you receive an event for a window or dialog other than the dialog 
II returned by this call, ignore the event (assuming, of course, that the 
II above function returned true). 
DialogPtr Getl\ppModalDialogWindow ( void ) ; 

How do you pass events to the active application modal dialog box? In 
the same way you pass events to any of your other windows or dialog 
boxes. That's accomplished by checking the reference constant of the dia
log box. The following reference constant is set for all application modal 
dialog boxes: 

II The reference constant for any application modal dialog. Use it to know 
I I when to pass events to UpdateModalDialog () and DoAppModalEvent () described 
II below. 
#define APP_MODAL_DIALOG_ID 5 

When you receive an event for a dialog box with a reference constant of 
APP _MODAL_DIALOG_ID, call one of the following two routines (one is 
for mouse and keyboard events, the other is for update events). 

II Call this routine when an application modal dialog gets an update event. 
II Pass it the window handle you extracted from the event record. 
void UpdateModalDialog( DialogPtr pDialog ); 

II Call this routine when an application modal dialog gets a mouse or keyboard 
II event. Pass it the pointer to the event. 
void DoAppModalEvent( EventRecord *pEvent ); 

When your routine that handles application modal dialog box events 
wants to dismiss the dialog box due to some user action, call the follow
ing routine. Again, you need to pass it a pointer to the function you 
defined to deal with the disabling and enabling of menus in response to 
application modal dialog boxes. 

II Removes the application modal dialog from the screen. 
void DestructAppModalDialog ( void ( *pfnHandleMenus) (Boolean) ) ; 



CHAPTER 6-Using Dialog Boxes and Controls 

One final note about Desert Trek's support for application modal dialog 
boxes. The App Modal Dialog.c unit supports up to five levels of appli
cation modal dialog boxes. In other words, up to five application modal 
dialog boxes can be on the screen at a time. Keep in mind, however, that 
the user is allowed to interact with only one of them at a time, and they 
must dismiss the active dialog box before having access to the one under
neath. You should never need more than two levels of application modal 
dialog boxes on the screen at any given time, so five is being very gener
ous. When would you want to have more than one application modal dia
log box on the screen at a time? The answer is whenever an application 
Model dialog box causes another dialog box or alert to be displayed. For 
example, if you have an application modal dialog box that asks the user to 
type in their name, and the name typed in is invalid or contains too many 
characters, you need to display a message stating so. That message will 
most likely be an application modal dialog box (or alert, as will be 
described in the next section). This means that there will be two of these 
boxes on the screen: the original dialog box asking for the player's name, 
and a message stating that the name they tried to enter is invalid. The 
player must dismiss the topmost box before returning to the first. 

Let's see how Desert Trek uses the application modal dialog box sup
port provided by App Modal Dialog.c. The following examples are used 
to display a dialog box asking the player to enter their name when they 
achieve a high score. The following function, found in Scores 
Window.c, creates the application modal dialog box when the user 
achieves a high score. 

void CheckHighScore ( void ) 
{ 

PGAME_STATE pGameState; 
DialogPtr pDialog; 

II Get the game's state, so that the player's score can be computed. 
pGameState = RetrieveGameState(); 

II If the player's score is greater than the lowest high score for this 
II skill level, ask them for their name. 
if ( ComputeScore( pGameState ) > 

(*hScores)->Score[pGameState->sSkillLevel - 1) [9] .!Score ) 



216 

CHAPTER 6-Uslng Dialog Boxes and Controls 

II Create the application modal dialog . HandleHighScoresEvent is the 
II function we want to receive events for this dialog, and 
II SetModalDialogMenuState() will disable and enable the menus as 
II appropriate. We also specify the enter/ return keys should be 

II the same as cl icking on the PB_NAME_OK button item, and the escape/ 
II tilde keys be the same as clicking on the PN_NOT_INTERESTED button. 
pDialog = ConstructAppModalDialog( DLG_HIGH_SCORE, HandleHighScoresEvent, 

nil, SetModalDialogMenuState, 
PB_NAME_OK, PB_NOT_INTERESTED, 0, 0 ) ; 

II Initialize the dialog by setting the text edit field item EF_NAME to 
II the name l ast typed in by the player. Also, select it. 
SetIText( (Handle) GetitemHandle( pDialog, EF_NAME ) ' 

(Pstr) (*hScoreName)->szName ); 
SelIText( pDialog, EF_NAME, 0, 99 ) ; 

II Show the dialog. 
ShowWindow( pDialog ); 

The following function handles the events for the dialog box, and can 
also be found in Scores Wmdow.c. 

static void HandleHighScoresEvent( short sitemHit, 
DialogPtr pDialog, 

Str255 str255 ; 
short sLength; 

switch ( sitemHit 

EventRecord *pEvent ) 

II If the user hit the OK button ... 
case PB_NAME_OK: 

II Get the name they entered. 
GetIText( (Handle) GetitemHandle( pDialog, EF_NAME ) , str255 ) ; 
sLength = (short) *str255; 

II If no name was entered, or it was too long, display an alert t o 
II tell them so. Select the name text to make it easier for the 
II player to correct. 



CHAPTER 6-Using Dialog Boxes and Controls 

if sLength < 1 ) I I 
sLength > NAME_LENGTH ) 

SelIText( pDialog, EF_NAME, 0, 99 ); 
ShowAlert ( DLG_BAD_NAME, nil, nil, SetModalDialogMenuState ) ; 

II If the name was okay ... 
else 

II Close the application modal dialog. 
DestructAppModalDialog( SetModalDialogMenuState ); 

II Save the name so we can default to it next time. 
memcpy( (*hScoreName)->szName, str255, sLength + 1 ); 

II Add the name to the high scores list. 
AddHighScore( str255, sLength ); 
II If the high scores window is up, update it to reflect the new 
II high score. 
if ( pDialogScores ) 

ViewNewLevel( sSkillLevelViewed ); 

break; 

11 If the user hit the "Not Interested" (cancel) button ... 
case PB_Nar_INTERESTED: 

II Close the application modal dialog. 
DestructAppModalDialog( SetModalDialogMenuState ); 
break; 

Using the preceding explanations and examples, and including the App 
Modal Dialog.c unit in your game should make it fairly easy for your 
game to support application modal dialog boxes. It's well worth the effort. 

Supporting Application Modal Alerts 
Alerts provide a very useful function. They display a message to the user 
and solicit a simple yes/no type response. But, as in the case of modal dia-



CHAPTER 6-Using Dialog Boxes and Controls 

log boxes, they prevent the user from interacting with other applications 
running on the Macintosh. It would be a shame to lose the simplicity of 
these alerts. However, if your game supports application modal dialog 
boxes as was just described, you need very little additional coding in order 
to support application modal alerts (these that prevent the user from 
interacting with any other windows in your game, but allow the user to 
interact with windows belonging to other applications). 

Instead of using the toolbox Alert () routine, you can call the 
ShowAlert () routine defined in Common.c, which takes four parame
ters. The first parameter is the resource ID of the alert to load. Instead of 
defining a resource of type 'ALRT', though, define the alert like a regular 
dialog box of type 'DLOG'. So, in essence, the first parameter is a dialog 
box resource ID. The second parameter is a rectangle in which to center the 
alert when its drawn. You can pass ni 1 for this parameter to have the alert 
centered on the screen. The third parameter is a pointer to a function that 
you want called when the user dismisses the alert. This callback function 
takes one parameter, a short integer denoting the item ID that caused the 
alert to be dismissed. A value of nil is allowed and means that no function 
will get called when the alert is dismissed. Use nil when no action is 
needed after the alert goes away, such as when the alert is simply displaying 
information and an OK button. The final parameter is a pointer to a func
tion that handles the enabling and disabling of menu items when an applica
tion modal dialog box (or, in this case, an application modal alert) is active. 
This callback function was described above in the section on supporting 
application modal dialog boxes. You can specify nil for this parameter if 
you don't need to disable any menu items when an application modal alert is 
shown (or if you have already done so before calling this routine). 

II This private variable is used to store the address of the callback 
I I function supplied to ShowAlert () . This callback function, if specified, 
I I will be called when the alert is dismissed by the user. The callback 
11 function will be provided with the ID of the item which caused to alert to 
II be dismissed, which is exactly what you'd get if you call the Alert() 
II toolbox routine. 
static void (*pfnHandleResult) ( short ) ; 

void ShowAlert( short sAlertID, 



CHAPTER 6-Using Dialog Boxes and Controls 

Rect *rectCenteron, 
void (*pfnHandleResultCallback) ( short ) , 
void ( *pfnHandleMenus) ( Boolean ) ) 

DialogPtr pDialog; 

II If no rectangle was specified for centering the alert on, default to the 
II center of the screen. 
Rect rectToCenteron = screenBits.bounds; 

II If a rectangle was specified for centering the alert on, use it. 
if ( rectCenteron ) 

rectToCenteron = *rectCenteron; 

II Since only one alert can be on the screen at one time, we don't need an 
II array to save the result callback function. We can use a single private 
II variable instead. 
pfnHandleResult = pfnHandleResultCallback; 

II Load an application modal dialog using the set of routines described 
I I above. All alerts use the cQilUllon HandleAlertEvent () routine to handle 
II events for that alert. 
pDialog = ConstructAppModalDialog( sAlertID, HandleAlertEvent, nil, 

pfnHandleMenus, PB_OK, 0, 0, 0 ) ; 

II Center the alert, either on the screen, or within the rectangle 
II specified as a parameter to this function. 
CenterWindow( &pDialog->portRect, rectCenteron, true, pDialog ); 

II Beep to signify that this is an alert. 
SysBeep ( 1 ) ; 

II Show the alert and make it the frontrnost window. 
ShowWindow ( pDialog ) ; 
Selectwindow( pDialog ); 

The HandleAlertEvent (} routine handles events for alerts. 
Whenever a dialog box event for this alert occurs, this routine gets called. 
Its main purpose is to determine if the user has dismissed the alert and if 
so, to call the routine you specified when the alert was created to handle 
the return code of the alert (which is the item ID used by the user to dis
miss the alert). This code can be found in Common.c. 



CHAPTER 6-Using Dialog Boxes and Controls 

static void HandleAlertEvent( short 
DialogPtr 

sitemHit, 
pDialog, 

EventRecord *pEvent ) 

short sitemType; 
Handle hitem; 
Rect rect; 

II Get the item information on the item clicked on by the user. 
GetDitem( pDialog, sitemHit, &sitemType, &hitem, &rect ); 

II If the item was a push button (or a resource control), the user is 
II dismissing the alert. We need to check the item type since the user 
II could click on the alert's icon or message, which would be passed to 
II this routine since they are valid clicks on a dialog item. Clicks on 
II those item types can be ignored. 
if ( ( sitemType == ctrlitem ) 11 

( sitemType == ctrlitem + resCtrl ) ) 

II Close the application modal dialog representing this alert. 
DestructAppModalDialog ( SetModalDialogMenuState ) ; 

II If a callback function was specified, call it and pass it the ID of 
II the item the user used to dismiss this alert. 
if ( pfnHandleResult ) 

(*pfnHandleResult) ( sitemHit ); 

You need only the two previous routines to support application modal 
alerts (assuming, of course, that you are supporting application modal 
dialog boxes). Here's an example of code your would write to display an 
application modal alert using the ShowAlert () routine from Offscreen 
Graphics.c. Most of the routine is left out so that we can focus on the 
ShowAlert () call. 

void CheckMonitorColors( Boolean bReloadGraphics 
{ 

II Show an application modal alert to the user. The DLOG resource id is 
I I NOT_ENOUGH_MEMORY_ALERT_ID. nil is passed as the center on parameter so 
II that the alert gets centered on the screen. When the user dismisses the 
I I alert, we want the HandleMemoryAlertResult () function to get called. it 
II will be passed the item id which was used to dismiss the alert. Finally, 



CHAPTER 6-Uslng Dialog Boxes and Controls 

I I the SetModalDialogMenuState ( ) will be called to disable and enable menu 
II items to reflect the fact that an application modal alert is on the 
II screen. 
ShowAlert ( NOT_ENOUGH_MEMORY__ALERT_ID' nil' 

HandleMemoryAlertResul t, SetModalDialogMenuState ) ; 

Here's the a routine that handles the alert's result code. It can be found in 
Offscreen Graphics.c. 

static void HandleMemoryAlertResult( short sResult ) 
{ 

I I Show the Desert Trek main window. 
ShowTrekWindow ( ) ; 

II If the user clicked on the "How Do I Fix This?" button, show another 
I I application modal alert. We specify no routine to handle the result 
II code since this alert is for information only (it has only one button to 
II dismiss it). 
if ( sResult == PB_MORE_INFO ) 

ShowAlert( MEMORYJIELP__ALERT_ID, nil, nil, SetModalDialogMenuState ) ; 

II If the user doesn't want any more warnings, set the flag to disable them. 
else if ( sResult == PB_DISABLE_WARNINGS ) 

**hbColorDepthWarning = false; 



Qu1cKDRAW 

QuickDraw is probably the most fundamental Macintosh toolbox manager. 
Anything that the user sees on the screen is a direct result of one of the 
QuickDraw toolbox routines. This includes text as well as graphics. Other 
toolbox managers use QuickDraw when they need to draw something on 
the screen. For example, the window manager uses QuickDraw to draw all 
window parts such as title bars and title text. The menu manager uses 
QuickDraw to draw the menu bar and to highlight and unhighlight menu 
items as the user selects them. 

223 



CHAPTER 7-QuickDraw 

Because QuickDraw is so fundamental to the operation of the 
Macintosh, it is easily one of the largest and most complex toolbox man
agers. Anyone new to Macintosh programming can easily become over
whelmed with the task of trying to learn everything there is to know 
about QuickDraw. In fact, there are entire books whose sole purpose in 
life is to describe QuickDraw, or even just a specific subset of 
QuickDraw. Fortunately, the core functions of QuickDraw, ·and those 
functions necessary to write a complete game, can be briefly covered in 
much less space. This chapter will take you through the fundamentals of 
QuickDraw, explaining how drawing occurs on the Macintosh screen, 
within specific windows, or offscreen. You will learn how to draw graphic 
elements and text as well as see a few tricks used to provide special graph
ics effects in your game. 

Points, Rectangles, and Regions 

When drawing, you need to specify not only what to draw, but where to 
draw it. The coordinate system that QuickDraw uses specifies points on 
the screen using a horizontal and vertical coordinate. Because you will 
frequently need to use point coordinates in your game, the toolbox 
defines a point structure for you. We have already seen the Point type as 
it relates to mouse down events. 

struct Point 

} i 

short v; II Vertical coordinate. 
short h; II Horizontal coordinate. 

typedef struct Point Point; 

The horizontal coordinate, h, specifies how many pixels the point lies 
from the left edge of the screen. The vertical coordinate, v, specifies how 
many pixels the point lies from the top of the screen. This means that the 
origin of the Macintosh coordinate system is the upper left of the screen. 



CHAPTER 7-QuickDraw 

QuickDraw also defines a data structure named Rect. You will find 
this a most useful type and use it frequently throughout your program. 
The Rect data structure defines a bounding rectangle, which has top, 
left, bottom, and right edges. See Figure 7.1 for a pictorial view of the 
Macintosh coordinate system. 

Origin ( 0, O ) 

v 

Increasing 
vertical 
coordinates 

top 

bottom 

• 

struct Rect 

} ; 

{ 

Increasing horizontal coordinates 

h left right __.. 
-.-

_..• 
-.. Point ( h, v) 

_..• • -.-

Rectangle ( top, left, bottom, right) 

... 

Figure 7.1 The Mac coordinate system. 

short top; 
short left; 
short bottom; 
short right; 

II Top edge of the rectangle. 
II Left edge of the rectangle. 
II Bottom edge of the rectangle. 
II Right edge of the rectangle. 

typedef struct Rect Rect; 



CHAPTER 7-QuickDraw 

Many QuickDraw toolbox calls use bounding rectangles. This makes 
sense because if you look at the windows on a Macintosh screen, the con
tents regions of those windows are rectangles. Look a little more closely, 
and you'll see that just about every part of a window or control constitutes 
a rectangle. The title bar, close box, worn box, and size box of a window 
are all rectangles. The up arrow, down arrow, page up region, page down 
region, and thumb of a scroll bar control are all rectangles too. Rectangles 
are not only used to define actual rectangles, but other objects as well. 
When you want to define a circle or oval, you describe that object to 
QuickDraw by specifying the rectangle that bounds the circle (which 
would be a square) or oval. Even standard button controls are considered 
rectangles with rounded comers (and thus are called rounded rectangles). 
Frequently, seemingly complex objects can be simply described using a 
number of smaller rectangles. As we look at the QuickDraw toolbox rou
tines, we'll see the rectangle at work in many roles. 

Finally, what happens if an object you're describing really can't be 
specified by using a single rectangle. In this case, you'd use a structure of 
type Region. Regions are much more complex and difficult to use than 
rectangles, but they do provide a way to describe objects that can't be 
described with rectangles alone. Regions need to be built and are fre
quently referenced by using a handle to that region (because region defini
tions can be of varying size). However, if you look at the region data types 
given as follows, you'll notice that one field of the region data structure is 
a rectangle, which is the smallest rectangle that encloses the entire region. 
Rectangles really are pervasive in QuickDraw. I'm not going to spend 
much more time on regions, because they typically do not play an impor
tant role in games. In fact, Desert Trek does not use any regions at all. 

struct Region 

}; 

short rgnSize; II Size of the region in bytes 
Rect rgnBBox; II Region's bounding rectangle 

typedef struct Region Region; 
typedef Region *RgnPtr, **RgnHandle; 



CHAPTER 7-QuickDraw 

Operations on Points 
The Macintosh toolbox provides many functions that operate on points. 
They range from setting points to combining points to translating points 
from one coordinate space to another. We have already seen the 
Global ToLocal () and Local ToGlobal () toolbox functions 
described in Chapter 4 on Working with windows. Both of these func
tions convert points from one coordinate space to another. The following 
functions also operate on points. Note that not all toolbox calls that oper
ate on points are listed, though the ones you would most likely use in 
your own game are shown. 

II Sets a Point structure to the specified coordinates. 
void SetPt( Point 

short 
short 

*pPoint, 
sHCoordinate, 
sVCoordinate ) ; 

II Returns true if the two points are equal. 
Boolean EqualPt( Point ptl, 

Point pt2 ) ; 

II Adds two points together. 
void AddPt( Point ptToAdd, 

Point *pptToAddTo ); 

II Subtracts one point from another. 
void SubPt( Point ptToSubtract, 

Point *pptToSubtractFrom ); 

II Returns true if the given point lies within the given 
II rectangle. This call is very useful for determining 
II if mouse clicks occur within objects contained in your 
II windows and dialogs. 
Boolean PtinRect( Point 

Rect 
pt, 
*pRect ) ; 

·•-f•.·\ci :-··;,;, 



CHAPTER 7-QuickDraw 

Operations on Rectangles 
The Macintosh toolbox also provides an almost dizzying array of func
tions to manipulate rectangles. The following are some of the more use
ful ones. Because a rectangle structure is 8 bytes in length, all toolbox 
calls take pointers to rectangles as parameters even if the rectangle isn't 
going to be modified by the call. 

II Sets a Rect structure to the specified boundary. 
void SetRect( Rect *pRect, 

short sLeft, 
short sTop, 
short sRight, 
short sBottom ) ; 

II Sets a Rect structure given two points (the diagonal of 
II the rectangle). 
void Pt2Rect ( Point pointl, 

Point 
Rect 

point2, 
*pRect ) ; 

II Returns true if the two rectangles are equal. 
Boolean EqualRect( Rect *pRectl, 

Rect *pRect2 ); 

II Moves a rectangle by the amount specified. The horizontal 
II offset is added to the rectangle's left and right edges, 
II and the vertical offset is added to the rectangle's top 
II and bottom edges. Positive offsets move the rectangle 
II down or to the right. Negative offsets move the rectangle 
II up or to the left. 
void OffsetRect( Rect 

short 
short 

*pRect, 
sHOffset, 
sVOffset ) ; 

II Changes the dimensions of a rectangle. The horizontal 
II inset is added to the left edge, and subtracted from the 
II right edge. The vertical inset is added to the top edge, 
II and subtracted from the bottom edge. A positive inset 
11 shrinks the rectangle. A negative inset expands the 
II rectangle. 
void InsetRect( Rect 

short 
*pRect, 
sHinset, 



CHAPTER 7-QuickDraw 

short sVInset ) ; 

II Computes the smallest rectangle that completely encloses 
II the two given rectangles. 
void UnionRect( Rect 

Rect 
Rect 

*pRectl, 
*pRect2, 
*pRectUnion ) ; 

II Returns true if the two rectangle intersect. The 
II rectangle formed by the intersection is returned in 
II pRectintersection. 
Boolean SectRect( Rect *pRectl, 

Rect *pRect2, 
Rect *pRectintersection ); 

Operations on Regions 
Again, regions are objects that games often do not need to use. However, 
if you want to use a toolbox routine that requires a region handle, you'll 
need to create a region, define that region, and destroy that region once 
you're :finished with it. I won't go into how to define a complex region 
here, but using the following toolbox calls, you can define a region whose 
boundary is a simple rectangle. 

II Creates a new region and returns a handle to it. 
RgnHandle NewRgn ( void ) ; 

II Defines a region's boundary to be that of the specified 
II rectangle. 
void RectRgn ( RgnHandle 

Rect 
hRgn, 
*pRect ) ; 

II Disposes of a region, freeing up the memory taken by that 
II region. 
void DisposeRgn ( RgnHandle hRgn ) ; 

Graphics Ports 

When you draw something using QuickDraw, where does that drawing 
actually take place and get displayed? Is it always directly to the screen? 



CHAPTER 7-QuickDraw 

Well, that doesn't really make much sense. Who knows where the user 
might have moved your game window, or how many other windows the 
user has opened on the Macintosh screen. If your game had to take all 
this into account whenever you wanted to draw something, it'd be a mira
cle if everything went where it was supposed to. QuickDraw provides a 
simple solution to this problem: All drawing takes place in the current 
graphics port. A graphics port is a QuickDraw entity that defines a loca
tion for drawing, be it on the screen or offscreen. A graphics port defines 
not only a drawing space, but all kinds of characteristics for that drawing 
space. These characteristics define how drawing takes place within that 
graphics port. 

A graphics port's characteristics are stored in a record just like window 
information is stored in a window record and control information is stored 
in a control record. In fact, we saw in Chapter 4 on Working with windows 
that the first element of a window record is a graphics port record. This 
means that window pointers are in essence graphics port pointers, and can 
be used wherever you can use graphics ports. When your game creates a 
window, it also creates a graphics port associated with that window, causing 
all drawing to that graphics port to take place within that window. 

Again, the individual fields of a graphics port record will not be 
listed because you should never access these fields directly. There are a 
number of toolbox calls that allow you to read and set the characteristics 
of a graphics port's record. However, there is a distinction between 
color-capable graphics ports and "normal" graphics ports. For several 
years, the Macintosh supported only black-and-white displays. When 
the original QuickDraw routines were designed, little color support was 
defined into graphics ports. After the advent of color-capable 
Macintoshes, the definition of a graphics port needed to be changed to 
support the new color capabilities. However, the new definition needed 
to be backwards compatible so that older programs written using the 
original graphics ports could continue to be used. To accomplish this, a 
new color-capable graphics port record was defined, leaving the original 
graphics port unaltered. However, all QuickDraw toolbox routines were 
implemented such that they can take pointers to either type of graphics 
port, color or original. This means that your game will not need to be 



CHAPTER 7-QuickDraw 

concerned by the differences in the two graphics port record types. 
Creating, manipulating, and destroying graphics ports are identical for 
either type. The following toolbox definitions show how graphics port 
records and pointers are defined. 

struct GrafPort { 

BitMap portBits, 

} ; 

struct CGraf Port 

PixMapHandle portPixMap, 

} ; 

II The port's bitmap, which 
II we'll see in a moment. 

II The handle to a color 
II bitmap, which we'll see a 
II little later. 

typedef struct GrafPort GrafPort; 
typedef GrafPort *GrafPtr; 
typedef struct CGrafPort CGrafPort; 
typedef CGrafPort *CGrafPtr; 

Offscreen Graphics Ports 
Because graphics ports for windows are automatically created with the 
window, when would you need to create any graphics ports yourself? All 
drawing occurs in windows, or at least somewhere on the screen, doesn't 
it? Well, if the topic of this section isn't hint enough, the answer is no, 
not all drawing occurs directly on the screen. This is especially true for 
games. Frequently you will want to perform all drawing operations off
screen, and then transfer the complete offscreen image directly to your 
game window in one shot. This has several advantages. First, the user 
won't see the individual drawing commands used to create the complete 
image actually take place. Second, constant drawing directly to a window 
graphics port can cause flicker because you often need not only to draw 
an object at its current position, but you need to erase that object from its 



CHAPTER 7-QuickDraw 

previous position. Third, if your game has objects that move over a back
ground, that background needs to be stored somewhere in its original 
state (without any objects over it). Fourth, the complex objects that you 
draw need to be stored somewhere. You don't want to be loading them 
from the resource fork every time you need them. A great way to store 
them is to use an offscreen graphics port, from where they can be copied 
anytime you need them. There are plenty of other reasons to use off
screen graphics ports, but let's sum it up by saying that just about any
thing that appears on the screen for game programs is first drawn in an 
offscreen graphics port. 

Bitmaps 
Graphics port records contain characteristics about the port they 
describe, and one of these fields is the port's bitmap. It is the port's 
bitmap that actually contains the image. When you perform drawing 
commands to a graphics port, the results of that drawing is reflected in 
the bitmap. The graphics port's bitmap for a window is the content 
region of that window. When you draw to the window's graphics port, its 
bitmap is affected, and those changes are automatically displayed on the 
screen in the content region of that window. An offscreen port's bitmap, 
however, resides only in memory, not on the screen. For this reason, off
screen bitmaps are often referred to as in-memory bitmaps. The important 
thing to realize here is that you need to allocate the memory needed by 
an offscreen port's bitmap. The amount of memory needed for an off
screen bitmap depends on two factors: the size of the bitmap and the 
number of colors the bitmap supports (often referred to as the number of 
bit planes). The size of a bitmap is often expressed in pixels, where a pixel 
represents a single dot. Many standard Macintosh monitors support 
640x480 pixels, meaning that the monitor displays 640 pixels left to right 
and 480 pixels top to bottom. The number of colors a bitmap supports is 
2 raised to the power of the number of planes in a bitmap. For example, a 
black-and-white bitmap, which supports just one color (either white on a 
black background or black on a white background), has a plane count of 1 
(21 = 1 ). A bitmap that supports 2 5 6 colors, a common number chosen by 
many games, requires 8 bit planes (28 = 256). 



CHAPTER 7-QuickDraw 

To compute the amount of memory you need to allocate for an off
screen bitmap, you need to know the width and height of the bitmap, as 
well as the number of colors. However, there's a little catch he,re. The in
memory representation of a bitmap has a certain restriction: Each row of 
a bitmap must be word aligned. "What does that mean? First, a "row" of 
the bitmap can be considered a single line of that bitmap. In other words, 
a row has a height of 1 pixel and runs the entire width of the bitmap. So, 
if a bitmap has a height of 12 pixels, you can consider that bitmap as hav
ing 12 rows. "When I say word aligned, I mean that a row of the bitmap 
must start on a word address, which is a 16-bit value. This means that the 
smallest amount of memory required by a row in a bitmap is 16 bits, since 
the next row of the bitmap must start on the next word boundary. The 
number of bits required for a row of a bitmap is the width of the bitmap 
times the number of color planes. Thus, a bitmap 12 pixels wide and con
taining only 1 bit plane (meaning that this is a black-and-white bitmap) 
requires 16 bits, or 2 bytes, for every row. Notice that in this example, 4 
bits of every row go unused. Once you compute the number of bytes 
required by a row in a bitmap, simply multiply that number by the num
ber of rows in the bitmap to determine how much memory that bitmap 
requires. Remember, the number of rows in a bitmap is the height of the 
bitmap expressed in pixels. 

Example 

So, how many bytes would a black-and-white bitmap 46 pixels wide by 15 
pixels high take? A single row in this bitmap needs 46 bits (46 pixels times 
1 bit plane) . .To make each row word aligned, however, a single row needs 
to be padded to the next 16-bit boundary after 46, which is 48. That's 
3words (48 divided by 16), or 6 bytes (48 divided by 8). Thus, the number 
of bytes required by this bitmap is 6 bytes per row times 15 rows, or 90 
bytes. If your game needed to use an offscreen graphic ports with the 
properties described in this example, you would need to allocate 90 bytes 
for the bitmap contained in that graphics port. 

Just like many other entities on the Macintosh, a bitmap is described 
by a bitmap record. The bitmap record contains only three fields: a pointer 
to the memory used by the bitmap, the number of bytes in each row of the 



CHAPTER 7-QuickDraw 

binnap, and the bounding rectangle of that binnap (which is used to specify 
the dimensions of a binnap). You need to set all three values yourself when 
creating an offscreen binnap. Note that the memory taken by a binnap is 
nonrelocatable, meaning that it is fixed in memory. You might want to keep 
that in mind when allocating memory for binnaps. 

struct BitMap { 

}; 

Ptr baseAddr; 
short rowBytes; 
Rect bounds; 

II Pointer to the bitmap's memory. 
II Number of bytes in each row. 
II Bounding rectangle. 

A color-capable binnap requires more information than that required by 
a monochrome bitmap. In order to distinguish a color-capable bitmap 
from a monochrome bitmap, color-capable bitmaps are referred to as 
pixmaps, or pixel maps. Thus, a pixmap is the color equivalent of a bitmap. 
However, in order to make pixmaps as similar as possible to bitmaps, the 
first three fields of a pixmap record are exactly the same as the three fields 
of a bitmap record. So, when creating a pixmap, you still allocate the 
storage taken by that pixmap in the same way you do for bitmaps. 
However, you also now need to allocate the pixmap record (yes, another 
memory allocation!). The Macintosh provides the following two routines 
to allocate and de-allocate a pixmap record. Unless otherwise noted, 
when I refer to bitmaps in the future, you can assume that I'm also refer
ring to pixmaps. 

II Creates a new pixmap record and returns the handle to that 
II pixmap to you. Make sure to dereference the handle when 
II assigning values to the baseAddr, rowBytes, and bounds 
II fields (you need to assign these values yourself, just as 
I I you would for a bi trnap) . 
PixMapHandle NewPixMap ( void ) ; 

II Disposes of a pixel map record. Make sure to free up the 
II memory taken by the image of the pixmap, which you 
II allocated yourself. 
void DisposePixMap ( PixMapHandle hPixMap ) ; 



CHAPTER 7-QuickDraw 

You need to create and destroy bitmaps for offscreen graphics ports your- .~{;'~<. 
self. When a graphics port is first initialized, the bitmap associated with 
that graphics port is the Macintosh screen itself. This means that if you 
started drawing to that graphics port, the drawing would go directly to 
the screen. This, of course, is totally undesirable because you should 
never draw directly to the screen's bitmap. That would affect other appli-
cation's windows as well as your own. It's not the Macintosh way. So, in 
essence, this means that creating an offscreen graphics port does not cre-
ate a bitmap that you can use to hold that port's image. You'll need to cre-
ate an offscreen bitmap and assign that bitmap to the graphics port in 
question when created, and free up the memory taken by that bitmap 
when the port is destroyed. We'll see how to do that in a minute. 

Creating and Destroying Graphics Ports 
You must allocate the storage for a graphics port record yourself because 
the Macintosh does not do it automatically for you. A couple of the fields 
contained in the graphics port record contain pointers to additional data. 
The Macintosh will allocate and maintain the memory used by these 
fields for you. The memory allocated for a graphics port's record must be 
nonrelocatable, or fixed. Keep this in mind when allocating storage for 
the port's record. After allocating memory for a graphics port, use the fol
lowing toolbox call to initialize that port and have the Macintosh allocate 
the internal structures needed for that port. 

II Initializes a new graphics port. The port is made the 
II current graphics port. 
void OpenPort( GrafPtr pGraf ); 

II Initializes a new color graphics port. The port is made 
II the current graphics port. 
void OpenCPort( CGrafPtr pCGraf ); 

If you want to restore a graphics port to its initialized state, use the fol
lowing toolbox call. This call is appropriate to use if you've changed the 



CHAPTER 7-QuickDraw 

drawing properties of a graphics port and want to quickly get back to the 
defaults using a single toolbox call. 

r:l1 
N 0 T E 

This call does not allocate memory for the port's Internal structures, 
and thus cannot be used on a port that hasn't been first initialized 
using the OpenPort < > routine. 

II Reinitializes an existing graphics port. The port is made 
II the current graphics port. 
void InitPort( GrafPtr pGraf ); 

II Reinitializes an existing color graphics port. The port 
II is made the current graphics port. 
void InitCPort( CGrafPtr pCGraf ); 

After you have finished with a graphics port, you need to destroy it. The 
following toolbox call closes a port and releases all memory taken by the 
port's internal data structures. Keep in mind that you need to free up the 
memory taken by the graphics port's record and associated bitmap. 

I I Closes the specified graphics port. Memory used by 
II internal structures is freed, but not the memory used 
II by the port's record itself. 
void ClosePort( GrafPtr pGraf ); 

II Closes the specified color graphics port. Memory used by 
II internal structures is freed, but not the memory used 
II by the port's record itself. 
void CloseCPort( CGrafPtr pCGraf ); 

We will see an example of how to create and destroy a graphics port in a 
moment. 

Associating Bitmaps with Graphics Ports 
Remember, creating and initializing a graphics port does not provide that 
port with a bitmap in which to draw. One of the first things you need to 
do after creating a graphics port is to associate a bitmap you've created 



CHAPTER 7-QuickDraw 

with that port. After creating your bitmap and opening the graphics port, 
use the foJ.lowing toolbox call to associate the two. Notice that like many 
of the QuickDraw toolbox calls, you do not specify the graphics port you 
want to affect. This means that the toolbox call operates on the current 
graphics port, and you should make sure the graphics port you want 
affected is the current graphics port. 

II Associates a bitmap with the current graphics port. 
void SetPortBits ( BitMap bitMap ) ; 

II Associates a pixmap with the current color graphics port. 
void SetPortPix ( PixMapHandle hPixMap ) ; 

Setting and Getting the Current Graphics 
Port 

As already mentioned, most QuickDraw toolbox operations affect the 
current graphics port. You need a way to change what graphics port is 
current in order to draw to a different port. You'll also need to obtain the 
current graphics port, mainly so that you can set the current graphics 
port back to what it was before you changed it. The following two tool
box calls allow you to obtain and set the current graphics port. Note that 
the following two routines work just as well for color graphics ports, in 
which case you'd simple supply a CGraf Ptr instead of a GrafPtr. 

II Obtains the =rent graphics port. 
void GetPort( GrafPtr *ppGraf ); 

II Set the current graphics port to the one specified. 
void SetPort( GrafPtr pGraf ); 

Setting a Port's Clipping Region 
When updating windows on the screen, the Macintosh automatically 
clips any drawing needed to just the part of the window that needs to be 



CHAPTER 7-QuickDraw 

drawn. This was accomplished by using the BeginUpdate () and 
EndUpda te ( ) toolbox calls. Recall that a window's clipping region is 
the only part of the window that actually gets drawn to. Anything you try 
to draw outside the clipping region gets clipped, meaning that the area 
outside the clipping region remains unaffected. You can get and set a 
graphics port's clipping region using the following toolbox calls. Notice 
that ClipRect () doesn't require a region handle, and thus provides an 
easy way to set a port's clipping region. Also note that these calls do not 
take a graphics port pointer as a parameter, meaning that they affect the 
current graphics port. Make sure that you've set the current graphics port 
to the one you wish to get or set the clipping region for. 

11 Gets the current ports clipping region. Notice that the 
II handle itself does not change (you don't pass in a pointer 
II to the handle), but its master pointer will get set to 
II point to the port's clipping region. 
void GetClip ( RgnHandle hRgn ) ; 

II Sets the current port's clipping region. The Macintosh 
II copies the region you supply and uses that copy. 
void SetClip ( RgnHandle hRgn ) ; 

II Sets the current port's clipping region to the rectangle 
II specified. 
void ClipRect( Rect *pRect ); 

QuickDraw Globals 

When you initialize the QuickDraw toolbox manager, several global vari
ables are made available to your program. These global variables can be 
used throughout your code for various purposes. A couple of the global 
variables you might find useful are as follows: 

II This global variable is used when calling InitGraf to 
II initialize the QuickDraw toolbox manager. You can 
II reference this variable anytime to see what the current 
II graphics port is, but you should really use GetPort() 
11 instead. 
GrafPtr qd.thePort; 



CHAPTER 7-QulckDraw 

II The bitmap referencing the Macintosh screen. This bitmap 
II is useful for detennining the size of the screen your game 
II is running on. Desert Trek references this global 
II variable frequently when centering windows and dialogs on 
II the screen. 
BitMap qd.screenBits; 

Offscreen Graphics Port Example 
The following code fragment from Scores Window.c creates an off
screen graphics port for the high scores window when the monitor is run
ning in black-and-white mode. Color graphics support in Desert Trek 
does not use the somewhat cumbersome process of allocating and main
taining color graphics ports and pixmap records. In a moment, we'll see a 
much easier way to support offscreen color graphics ports. 

static GrafPtr pGrafScores = nil; 
static BitMap bitmapScores; 
static Rect rectScores; 

void ConstructScoresWindowOffscreen( void ) 
{ 

GrafPtr pGrafCurrent; 
short sBitmapRowBytes; 
Size sizeBitmap; 

II Save the current graphics port so that we can restore it after creating 
II the offscreen graphics port. 
GetPort ( &pGrafCurrent ) ; 

II Allocate storage for the graphics port record. 
pGrafScores = (GrafPtrl NewPtr( sizeof( GrafPort) ); 

II Initialize (open) the port for the first time. OpenPort () also sets the 
II given port to be the current graphics port. 
OpenPort ( pGrafScores ) ; 

11 Compute the number of bytes needed for a single row of the bitmap we plan 
II to associate with the offscreen graphics port. Remember, the rows need 
II to be word aligned, so round up to the nearest word. 



240 

CHAPTER 7-QuickDraw 

sBitmapRowBytes = (((rectScores.right - rectScores . left - 1) I 16) + 1) * 2; 

II Compute the number of bytes needed for the enti re bitmap , which is the 
II number of bytes needed per row times the number of rows . 
sizeBitmap = ( rectScores.bottom - rectScores.top ) * sBitmapRowBytes; 

II Allocate the storage needed for the in-memory bitmap, and set the bitmap 
II fields accordingly. 
bitmapScores.baseAddr = (QDPtr) NewPtr( sizeBitmap ) ; 
bitmapScores.rowBytes = sBitmapRowBytes; 
bitmapScores.bounds = rectScores ; 

II Associate the new bitmap with the new graphics port . 
SetPortBits( &bitmapScores ) ; 

II Set the current graphics port back to what it was before this function 
II was called . 
SetPort( pGrafCurrent ) ; 

Once the graphics port and its bitmap are no longer needed, the follow
ing code is called to release the memory taken up by the bitmap and the 
graphics port record. This function can be found in its entirety in Scores 
Wmdow.h. 

void DestructScoresWindoWOffscreen( void ) 
{ 

II If the graphics port is a val id pointer ... 
if ( pGrafScores ) 

II Free the memory allocated for the bitmap . 
DisposPtr( (Ptr) bitmapScores.baseAddr ) ; 

II Close the graphi cs port. This free up memory the Macintosh allocated 
II for the port's internal structures. 
ClosePort( pGrafScores ); 

II Free the memory allocated for the graphics port's record. 
DisposPtr( (Ptr) pGrafScores ) ; 

II Set the graphics port pointer to nil , so we know that it's invalid . 
pGrafScores = nil ; 



CHAPTER 7-QuickDraw 

Offscreen Graphics Worlds 
Maintaining an offscreen graphics port is somewhat complicated. Not 
only must you allocate a graphics port record, but you also need to set up 
the offscreen bitmap you want to associate with that port. Computing the 
offscreen bitmap's memory requirement isn't trivial. After finishing with 
an offscreen graphics port, you need to clean up the memory used by the 
bitmap and graphics port record. Adding color support adds an additional 
element to allocate and maintain: the pixmap record and handle. Last, the 
memory allocated for a graphics port record and bitmap need to be fixed, 
causing potential memory fragmentation problems. 

You're probably saying, "there's got to be an easier way." Fortunately, 
yes, there is an easier way to maintain offscreen graphics environments. 
The Macintosh provides graphics worlds, which make the maintenance of 
offscreen graphics environments much simpler than the process just 
described. Then why did I bother to tell you about graphics ports and 
bitmaps in the first place? Well, for two reasons. First, offscreen graphics 
worlds still use graphics ports and bitmaps. It's just that they allocate and 
maintain the memory used by graphics ports and bitmaps for you. You 
still need to know about their existence and how to use them. Second, 
older Macintoshes that don't support 32-bit color QuickDraw do not 
support graphics worlds. This means that if your game is going to run on 
such a Macintosh, it needs to create and maintain graphics ports and 
bitmaps itself. Desert Trek makes a "compromise" in this area. Black
and-white support for Desert Trek is accomplished using the manual 
method of creating and maintaining graphics ports and bitmaps, while 
color support is accomplished via the use of graphics worlds. This means 
that in order to run Desert Trek in color, your Macintosh must support 
32-bit color QuickDraw (color-capable Macintoshes without 32-bit color 
QuickDraw are rare, but they could still run Desert Trek in black-and
white mode). 

To be honest, graphics worlds are fairly complex and allow you to 
define a large number of characteristics for the drawing environment. 
However, you can easily use just the bare-bones features of graphics 
worlds and still get everything you need for most game purposes. When 
implemented correctly, you rarely need to distinguish between the use of 



CHAPTER 7-QuickDraw 

graphics worlds or graphics ports and bitmaps. The biggest difference 
comes when creating and destroying graphics worlds, which is a lot sim
pler than creating and destroying graphics ports and bitmaps. 

To use the graphics world toolbox calls from most compilers you 
need to explicitly include Apple's include file QDOffscreen.h in your 
code, which contains all the definitions and function prototypes needed 
to use offscreen graphics worlds. These definitions are not automatically 
included in your game project for you. 

Graphics world pointers are used when calling toolbox routines that 
deal with graphics worlds. Their definition is exactly that of a color 
graphics port. However, note that you do not need to allocate storage for 
the graphics port record when using graphics worlds. The Macintosh 
automatically takes care of that for you. 

typedef CGrafPtr GWorldPtr; 

Creating an Offscreen Graphics World 

To create an offscreen graphics world, use the following toolbox call. 

II Creates an offscreen graphics world. Specify a pointer 
II to the graphics world pointer, which will get set for you. 
II Also specify the pixel depth of the offscreen graphics 
II world (which can be 0, 1, 2, 4, 8, 16, or 32), and the 
II bounding rectangle. You can specify nil for hCTab and 
II hDC, and 0 for fGWorld. These parameters are optional. 
QDErr NewGWorld( GWorldPtr *ppGWorld, 

short sPixelDepth, 
Rect 
CTabHandle 
GDHandle 
GWorldFlags 

&pRectBounds, 
hCTab, 
hGD, 
fGWorld ) ; 

This toolbox routine returns to you a graphics world pointer in the parameter 
ppGWorld. You need to supply the bounding rectangle of the offscreen 
graphics world in pRectBounds and the number of bit planes in 



CHAPTER 7-QuickDraw 

sPixelDepth. The remaining parameters are optional and won't be 
described in detail here. You should simply supply nil for hCTab (the handle 
to a color table) and hGD (the handle to a graphics device), and 0 for fGWorld 
(the graphics world creation flags). This routine will allocate all the necessary 
memory needed for the graphics port and offscreen bitmap. So, even though 
the toolbox call looks a little scary, it really saves you a lot of coding. 

Setting the Current Graphics World 
Remember, you need to use SetPort ( ) to set the current graphics port 
to the particular port in which you want to draw. There's a similar tool
box routine that you need to use concerning the current graphics world. 
Make sure to use the following toolbox call to set the current graphics 
world to the desired graphics world. 

II Sets the current graphics world. You can specify nil for 
II the hGD parameter when setting the current graphics world 
II to one that you've created. If you're setting the 
II graphics world back to one that you' previously queried 
11 with GetGWorld(), pass the hGD you got from that call. 
void SetGWorld( GWorldPtr pGWorld, 

GDHandle hGD ) ; 

You'll need to query the current graphics world before changing it so that 
you can set it back when you're fihlshed drawing to that other graphics 
world. This is very similar to using GetPort ( ) and SetPort ( ) for 
getting and setting the current graphics port. 

II Obtains the current graphics world and device handle. 
void GetGWorld ( GWorldPtr *ppGWorld, 

GDHandle *phGD ) ; 

This routine returns a device handle as well as a graphics world pointer. 
All you need to know about the device handle is that you should pass it 
back to SetGWorld () when you restore the current graphics world back 
to what its original state. 



CHAPTER 7-QuickDraw 

Locking a Graphics World's Pixmap 
To draw to an offscreen graphics world, you simply need to make it the 
current graphics port by using SetGWorld (). However, there's one 
catch: Remember that the bitmap (or pixmap) you manually allocate for a 
graphics port is fixed in memory. "When drawing to such a bitmap, you 
don't need to worry about the Macintosh trying to relocate that bitmap's 
memory. On the other hand, the pixmap automatically created for you by 
NewGWorld () is relocatable. This means that it might get moved 
around the heap during compaction. Thus, before drawing to an off
screen graphics world, you need to lock the pixmap to prevent it from 
moving around. After you have finished drawing to the pixmap, unlock it 
so that it can be moved if necessary during a heap compaction. The fol
lowing toolbox calls allow you to lock and unlock a graphics world's pixel 
map. Supply the portPixMap field of the graphics world pointer to 
these calls (we'll see an example shortly). 

II Locks a movable pixel map in memory. Call this before 
II drawing to an offscreen graphics world. This function 
II returns false if there's no offscreen pixmap to draw to. 
Boolean LockPixels( PixMapHandle hPixMap ); 

II Unlocks a locked pixel map. Call this after you have 
II finished drawing to the graphics world. 
void UnlockPixels( PixMapHandle hPixMap ); 

Destroying an Offscreen Graphics World 
After you have finished with an offscreen graphics world, simply call the 
following toolbox routine to free up all resources taken by the graphics 
world. It certainly beats manually freeing up all the memory associated 
with an offscreen graphics port and bitmap. 

II Frees up all memory structure associated with the supplied 
II graphics world. 
void DisposeGWorld( GWorldPtr pGWorld ); 



CHAPTER 7-QuickDraw 

Offscreen Graphics World Example 
Now that we have seen how to use graphics worlds, let's look at the entire 
ConstructScoresWindowOffscreen () function found in Scores 
Wmdow.c. Notice that the code to create the offscreen graphics world 
takes only two lines, as opposed to the eight lines needed to set up an off
screen graphics port and bitmap. Actually, a line used to create the off
screen graphics world simply sets up the bitmap variable so that when the 
offscreen bitmap needs to be copied to the scores window on screen, the 
graphics world pointer doesn't need to be referenced. In other words, the 
bitmap variable can be specified regardless of whether that bitmap was 
manually created or automatically created as part of the graphics world. 
We'll see an example of this later on in the section on bitmap operations. 

static GWorldPtr pGWorldScores = nil; 
static GrafPtr pGrafScores = nil; 
static BitMap 
static Rect 

bitrnapScores; 
rectScores; 

void ConstructScoresWindoWOffscreen( void ) 
{ 

GrafPtr pGrafCurrent; 
short sBitrnapRowBytes; 
Size sizeBitrnap; 
short sPixelDepth; 

II Save the current graphics port so that we can restore it after creating 
II the offscreen graphics port. 
GetPort( &pGrafCurrent ); 

II If we are using color graphics (which also means we have 32-bit color 
II QuickDraw), create an offscreen graphics world . UsingColorGraphics() 
II also returns the number of colors the monitor is set to (the monitor's 
I I pixel depth) . 
if ( UsingColorGraphics( &sPixelDepth ) ) 
{ 

II Create the offscreen graphics world, specifying the monitor's pixel 
II depth as the pixel depth of the graphics world. This will speed up 
II drawing to the screen since no pixel depth conversion will be needed. 
NewGWorld( &pGWorldScores, sPixelDepth, &rectScores, nil, nil, 0 ); 



CHAPTER 7-QulckDraw 

II Set the high scores window bitmap to the appropriate field of the 
II offscreen graphics world. This is done so that when we copy the 
II offscreen bitmap to the high scores window onscreen, we don't have to 
II care whether the bitmap was created manually (by executing the code 
11 below), or automatically with the graphics world. 
bitmapScores = ((GrafPtr) pGWorldScores)->portBits; 

II Black-and-white support only. Create the graphics port and bitmap the 
II old fashioned way. 
else 

II Allocate storage for the graphics port record. 
pGrafScores = (GrafPtr) NewPtr( sizeof( GrafPort) ); 

II Initialize (open) the port for the first time. OpenPort() also sets 
II the given port to be the current graphics port. 
OpenPort( pGrafScores ); 

II Compute the number of bytes needed for a single row of the bitmap we 
II plan to associate with the offscreen graphics port. Remember, the rows 
II need to be word aligned, so round up to the nearest word. 
sBitmapRowBytes = (((rectScores.right-rectScores.left-1) I 16) + 1) * 2; 

11 Compute the number of bytes needed for the entire bitmap, which is the 
II number of bytes needed per row times the number of rows. 
sizeBitmap = ( rectScores.bottom - rectScores.top ) * sBitmapRowBytes; 

II Allocate the storage needed for the in-memory bitmap, and set the 
II bitmap fields accordingly. 
bitmapScores.baseAddr = (QDPtr) NewPtr( sizeBitmap ) ; 
bitmapScores.rowBytes = sBitmapRowBytes; 
bitmapScores.bounds = rectScores; 

II Associate the new bitmap with the new graphics port. 
SetPortBits( &bitmapScores ); 

II Set the current graphics port back to what it was before this function 
11 was called. 
SetPort( pGrafCUrrent ); 



CHAPTER 7-QuickDraw 

The following function from Scores Window.c frees up the memory 
associated with the offscreen drawing environment used for the high 
scores screen. 

void DestructScoresWindowOffscreen( void ) 
{ ./ 

II If a graphics world was allocated, dispose of it, freeing its resource. 
if ( pGWorldScores ) 

DisposeGWorld( pGWorldScores ) ; 

II If a manually created graphics port (and bitmap) was allocated, free 
II all of its resources manually. 
if ( pGrafScores ) 
{ 

DisposPtr( (Ptr) bitmapScores.baseAddr ); 
ClosePort( pGrafScores ); 
DisposPtr( (ptr) pGrafScores ); 

II Invalidate the pointers, so that we know that no offscreen graphics 
II world or port exists for the high scores window. 
pGWorldScores = nil; 
pGrafScores = nil; 

Determining the Macintosh's Graphics 
Environment 

How do you tell if the Macintosh your game is running on supports 3 2-
bit color QuickDraw? In addition, how do you tell if the user has the 
monitor set to black and white or color? And, even if the monitor is set to 
color mode, how can you tell what the monitor's pixel depth is set to? 
What happens if the user changes the monitor's pixel depth in the middle 
of your game? This section will answer these questions. 



CHAPTER 7-QuickDraw 

32-bit Color QuickDraw or Not 

First, you need to determine if the Macintosh your game is running on 
supports 32-bit color QuickDraw. If not, you can't use offscreen graphics 
worlds. In that case, you have one of three options. First, you could sim
ply tell the user that your game requires 32-bit color QuickDraw and not 
allow them to play your game. Second, you could manually create all the 
offscreen color graphics ports and pixmaps yourself. Last, you could do 
what Desert Trek does and just not support color on those machines; 
they would have to play the game in black and white. 

The following routine from Offscreen Graphics.c determines 
whether or not a Macintosh supports 32-bit color QuickDraw. A portion 
of the function not related to determining 32-bit color QuickDraw has 
been left out. Also, I'm not going to describe the Gestalt () toolbox 
call other than to tell you that it is used to obtain the version of 
QuickDraw used on the computer your game is running on. 

static Boolean bHas32BitQuickdraw; 

static void Check32BitQuickdraw( void ) 
{ 

OSErr osErr; 
long lQDVersion = O; 

II Default to false. 
bHas32BitQuickdraw = false; 

II Check to see if the Gestalt() toolbox function is supported on this 
11 Macintosh. 
if ( NGetTrapAddress( _Gestalt, ToolTrap ) != 

NGetTrapAddress( _Unimplemented, ToolTrap ) 

II Use the Gestalt() toolbox call to get the QuickDraw version number. 
osErr =Gestalt( gestaltQuickdrawVersion, &lQDVersion ) ; 

II If the version number is greater than or equal to Ox0200, this 
II Macintosh supports 32-bit color QuickDraw. 
if ( lQDVersion >= Ox0200 ) 

bHas32BitQuickdraw = true; 



CHAPTER 7-QuickDraw 

Determining the Monitor's Pixel Depth 

The following routine from Offscreen Graphics.c detennines the moni
tor's current pixel depth. It uses the toolbox call GetGDevice () to obtain 
the graphics device handle for the screen. A field of the graphics device han
dle contains the monitor's current pixel depth. You shouldn't need to use 
graphics devices that are beyond what's covered in the following function: 

static short GetMonitorPixelDepth( void ) 
{ 

GDHandle hGDMonitor = nil; 
short sPixelDepth = O; 

II Get a handle to the graphics device. 
hGDMonitor = GetGDevice(); 

II If we got a valid handle, obtain the monitor's pixel depth. 
if ( hGDMonitor ) 

sPixelDepth = (*{*hGDMonitor)->gdPMap)->pixelSize; 

II Return the monitor's pixel depth to the calling routine. 
return( sPixelDepth ); 

The monitor's pixel depth will be 1 when the monitor is set to black-and
white mode. 

Reacting to Changes in the Monitor's Pixel 
Depth 

To be honest, many games do not take action when the monitor's pixel 
depth changes. However, if the user changes the monitor's pixel depth in 
the middle of your game, drawing speed may significantly degrade, or 
garbled results may appear on the screen. "Why would this happen? First, 
if your offscreen bitmaps have a pixel depth different from the monitor's 
pixel depth, QuickDraw will need to convert between the two different 
depths when you copy the offscreen bitmap to the screen. That conver
sion takes time, and thus the drawing speed of your game will be 
degraded. We'll discuss bitmap drawing speed in much more detail when 



CHAPTER 7-QuickDraw 

we learn about the CopyBits () toolbox routine later. Second, if the 
conversion goes from a higher pixel to a lower depth, your bitmap might 
look garbled when it gets displayed on the screen. For example, if you try 
to draw a beautiful offscreen 256-color picture on a monitor in black
and-white mode, it probably isn't going to look so great. 

So, how should a game react to a change in the monitor's pixel depth? 
First, you need to decide if your game is going to support all monitor 
pixel depths. If not, you'll probably just display a message to the user and 
quit. However, if your game will support a pixel depth change, you'll 
need to reload your game's graphics and rebuild all your offscreen 
bitmaps to match their depths with the new depth of the monitor. Desert 
Trek will support all monitor pixel depths, but will use color graphics 
only if the monitor is set to at least 16 colors. Anything less will cause 
Desert Trek to draw all its graphics in black and white. 

You need to be careful if you do support different pixel depths. Why? 
Well, the larger the pixel depth, the more memory the offscreen bitmaps 
will need. You need to make sure there's enough memory available to 
your game to allocate all the offscreen graphics bitmaps. If not, you will 
have to create all your offscreen bitmaps at a lower pixel depth, one that 
can be supported given the amount of memory available to your game. If 
there isn't enough memory to allocate the offscreen bitmaps at the moni
tor's pixel depth, Desert Trek will create offscreen bitmaps with the high
est pixel depth allowed by the memory available. 

When should you check to see if the monitor's pixel depth has changed? 
That's easy. Whenever your game gets an update event, check the monitor~ 
pixel depth. If the user does change the monitor's pixel depth, all windows 
on that Macintosh receive an update event so that they can adapt to the new 
pixel depth. Go back and check out the HandleUpdateEvent () function 
shown in Chapter 4 on working with windows. The first thing it does is call 
the CheckMoni torColors () function to see if the monitor's pixel depth 
has changed. Here's the code that checks and reacts to changes in the moni
tor's pixel depth. The function, as well as all the support functions called by 
CheckMoni torColors () not shown here, can be found in Offscreen 
Graphics.c. 



CHAPTER 7-QuickDraw 

II Set to true if this Macintosh supports 32-bit color QuickDraw. 
static Boolean bHas32BitQuickdraw; 

II Set to true if color graphics are being used. The Macintosh must support 
II 32-bit color QuickDraw, and the monitor must be set to a pixel depth of at 
II least 4 for this to be true. 
static Boolean bUsingColorGraphics; 

II Contains the current pixel depth used by all the offscreen bitmaps. 
static short sOffscreenPixelDepth = O; 

II Contains the current pixel depth of the monitor. 
static short sMonitorPixelDepth = O; 

void CheckMonitorColors( Boolean bReloadGraphics 
{ 

short 
short 
long 
short 
short 

sCurrentPixelDepth; 
sNeWOf fscreenPixelDepth; 
lAppSize; 
sMaxDepthAllowed; 
sMemNeededForDepth; 

II We only care about changing monitor depths if the Mac supports 32-bit 
II color QuickDraw. Otherwise, graphics for Desert Trek are always drawn 
II in black and white. 
if ( bHas32BitQuickdraw ) 
{ 

II Get the monitor's current pixel depth. 
sCurrentPixelDepth = GetMonitorPixelDepth(); 

I I If the pixel depth has changed from the last time we checked, we have 
II some work to do. 
if ( sCurrentPixelDepth != sMonitorPixelDepth ) 
{ 

II Set the variable that keeps track of the monitor's pixel depth so we 
II can check it again at the next window update. 
sMonitorPixelDepth = scurrentPixelDepth; 

II Call a function that reads the 'SIZE' resource to see how much memory 
II the user has allocated to Desert Trek. We will use this number to 
II determine if there's enough memory to allocate all offscreen bitmaps 
II at the monitor's pixel depth. 
lAppSize = GetCurrentAppSize(); 



252 

CHAPTER 7-QuickDraw 

II Compute the maximum offscreen pixel depth allowed given the 'SIZE' 
II resource ' s memory setting. 
sMaxDepthAllowed = GetMaxDepthAllowed( lAppSize ) ; 

II Compute the amount of memory needed to support the monitor's current 
II pixel depth. This will be used to display a message to the user, 
II telling them what they need to set Desert Trek's memory setting to 
II in the Get Info box from the Finder in order to support the current 
II monitor 's pixel depth. 
sMemNeededForDepth = GetMemNeededForDepth( sCUrrentPixelDepth ); 

II If the current monitor's pixel depth is greater than what's allowed 
II based on the memory available to Desert Trek, we need to scale back 
II the offscreen pixel depths to the maximum allowed given the amount of 
II memory available. If the user has color depth warnings turned on, 
II display a message explaining that they may see graphics performance 
II degradation since there isn't enough memory to support the current 
II monitor's pixel depth. 
if ( sMonitorPixelDepth > sMaxDepthAllowed ) 
{ 

sNeWOffscreenPixelDepth = sMaxDepthAllowed; 

if ( **hbColorDepthWarning ) 
DisplayMemoryAlert( sMaxDepthAllowed, sMemNeededForDepth ); 

II Otherwise, there's enough memory. Set the offscreen pixel depth for 
II bitmaps to match that of the screen for best graphics performance. 
else 

sNeWOffscreenPixelDepth = sMonitorPixelDepth; 

II If the offscreen pixel depth has changed, we need to close all 
II offscreen graphics ports and worlds, and recreate them at the new 
II pixel depth. The ReloadGraphics() function accomplishes this. Also 
II set the variables that define what graphics mode Desert Trek is 
II currently using (color or black and white, and if color, the pixel 
11 depth used) . 
if ( sNeWOffscreenPixelDepth != sOffscreenPixelDepth 
{ 

sOffscreenPixelDepth = sNeWOffscreenPixelDepth; 
bUsingColorGraphics = (Boolean) ( sOffscreenPixelDepth >= 4 ); 



if ( bReloadGraphics 
ReloadGraphics() ; 

Drawing Graphics 

CHAPTER 7-QuickDraw 

Now that we have an understanding of where you can draw graphics 
(whether it is into a window onscreen or a bitmap offscreen), let's look at 
how you actually draw the graphics. Drawing is divided into two basic 
procedures: setting up the drawing environment, and performing the 
actual drawing. Setting up the drawing environment affects how the 
actual drawing takes place and includes characteristics such as transfer 
modes, pens, patterns, and colors. Once you've set the characteristics, 
you can draw lines, rectangles, rounded rectangles, ovals, pictures, and 
icons (there are also drawing routines for polygons, arcs, and regions, but 
they are less frequently used and won't be covered in this book). This sec
tioh will discuss specific drawing commands that you can issue to affect 
bitmaps and windows (when I use the term bitmap for the rest of this sec
tion, I mean an offscreen bitmap or the content region of an onscreen 
window). Drawing text and transferring images from one bitmap to 
another will be covered in later sections. 

Keep in mind that all drawing routines discussed here affect the cur
rent graphics port or graphics world (and you can assume that when I say 
graphics port in the future, I also mean graphics world). Make sure you set 
the current graphics port to the port you wish to draw to before using these 
routines. Remember, you can draw directly to a window onscreen by set
ting the current graphics port to the window pointer of the window you 
wish to draw to. However, most of the time you will perform these drawing 
commands to offscreen bitmaps and then transfer the completed images to 
windows and dialog boxes onscreen using bitmap transfer operations. 

253 



CHAPTER 7-QuickDraw 

Patterns 
Patterns are used when filling areas of a bitmap or when drawing lines 
and other objects into a bitmap. A standard black-and-white pattern is an 
8 bit by 8 bit structure that determines how an area of the bitmap gets 
filled, and repeats itself over the entire affected area (see Figure 7 .2). 
Color patterns are a little more complex, so we'll skip showing the actual 
data structure. Think of them as an 8 pixel by 8 pixel pattern where each 
pixel can be any color as opposed to just black and white. Don't worry 
about their additional complexity, though, because color patterns are just 
as easy to use as standard patterns. 

8 pixels 

8 pixels • 

• • • 

• • • 

Pattern 
• • Area filled with pattern 

Figure 7 .2 How patterns work. 

struct Pattern{ 
unsigned char pat[S]; 

} ; 

typedef struct Pattern Pattern; 
typedef Pattern *PatPtr; 
typedef PatPtr *PatHandle; 

II Color pattern structure, PixPat. 
typedef struct PixPat PixPat; 
typedef PixPat *PixPatPtr, **PixPatHandle; 

Most of the time, you will use a black pattern when drawing, which 
means that a solid line or object will be drawn. However, you may wish to 



CHAPTER 7-QuickDraw 

use different patterns to draw certain special effects. Figure 7 .3 shows 255 
how different patterns affect the drawing of a thick line, or the filling of a 
rectangle (the toolbox calls used to draw these objects will be described 
shortly). Desert Trek uses patterns when drawing the view transition 
from one part of the day to the next. Later in this chapter, we'll see how 
to use patterns to provide this effect. 

------------ Line drawn using black pattern 
------------ Line drawn using gray pattern 

Framed rectangle filled with gray pattern 

Figure 7.3 How patterns affect the drawing of a line. 

Patterns can be loaded from the resource fork using either the 
Ge t Pat ter n ( ) or GetindPattern ( ) toolbox calls. Color patterns, 
often referred to as pixel patterns, can be loaded using the GetPix Pat () 

toolbox call. 

II Reads a pattern of type 'PAT ' from the resource fork. 
PatHandle GetPattern( short sPat t ernI D ) ; 

II Reads a pattern of type ' PAT# ' from the resource fork. 
voi d Get i ndPattern(Pattern pattern , 

short 
short 

s PatternListID, 
sPatterni ndex ) ; 

II Reads a color pixel pattern· of type ' ppat' f rom t he 
II resource fork . 
PixPatHandle Get PixPat ( short sPi xPatID ) ; 



CHAPTER 7-QuickDraw 

The following standard patterns are built into the toolbox and don't need 
to be loaded from a pattern resource. You can use them directly in any 
toolbox call that takes a pattern as a parameter. 

Pattern qd.dkGray; 
Pattern qd.ltGray; 
Pattern qd.gray; 
Pattern qd.black; 
Pattern qd.white; 

II Dark gray 
II Light gray 
II Medium gray 
II Solid black 
II Solid white 

The use of patterns in drawing specific objects will be shown in the fol
lowing sections. 

Transfer Modes 
The transfer mode determines how graphic operations affect the bitmap 
you're drawing to. More specifically, the transfer mode determines how 
new images being placed into the bitmap are combined with the image 
already contained in that bitmap. When I say new image, I really mean 
anything drawn to the bitmap (lines, rectangles, text, or portions of other 
bitmaps). Most of the time you will want the new image to replace what's 
already contained in the bitmap you're drawing to, but there may be 
times when you want the new image combined in some way with the 
existing image. There are two classes of transfer modes defined by the 
Macintosh toolbox, one that affects the drawing of lines, shapes, and pat
terns, and another that affects bitmap transfer operations and the drawing 
of text. The following transfer modes are defined by the toolbox. 

enum { 
II Transfer modes for bitmap transfer operations and 
II the drawing of text. 
srcCopy = 0, 
srcOr = 1, 
srcXor = 2, 
srcBic = 3, 
notSrcCopy = 4, 
notSrcOr = 5, 
notSrcXor = 6, 



CHAPTER 7-QuickDraw 

notSrcBic = 7, 

II Transfer modes for pens and patterns. 
patCopy = 8, 
patOr = 9, 
patXor = 10, 
patBic = 11, 
notPatCopy = 12, 
notPatOr = 13, 
notPatXor = 14, 
notPatBic = 15 

Individual elements of each group affect graphics operation in the same 
way, meaning that srcCopy does the same thing for bitmaps and text 
that pat Copy does for pens and patterns. 

When the new image is placed over an existing image, the bits of 
both images are combined using the method specified by the transfer 
mode. The following tables show how the bits are combined. Note that 
even though the table shows how black-and-white bits are combined, the 
same rules apply for color pixels. Color pixels are represented by more 
than 1 bit, and those individual bits are combined using the same rules 
defined for the combination of black-and-white pixels (which are repre
sented by a single bit). For example, a 16-color image contains 4 bits of 
color information for each pixel. A 256-color image requires 8 bits for 
each pixel. For black-and-white images, white pixels are considered to 
have a bit value of 0 and black pixels a bit value of 1. We'll learn more 
about color pixels' bit representation later. 

srcCopy and patCopy 

These transfer modes replace existing pixels with pixels from the new 
image. Most of the time, you will use these transfer modes because you'll 
want what you're drawing to replace the existing image on the bitmap 
you're drawing to. The following table shows how pixels from the new 
image are combined with the existing image. In this case, no real combi
nation takes place because the existing pixels are simply replaced with the 
new pixels. 



CHAPTER 7-QuickDraw 

New Pixel Existing Pixel Resultant Pixel 

white white white 

white black white 

black white black 

black black black 

srcOr and patOr 

These transfer modes combine the pixels of both the new and existing 
image using the logical or operation. Visually, the new image overlays the 
existing image. If a pixel is "on" in either the new or existing image, the 
pixel will be "on" in the resultant image. A pixel is considered "on" when 
its bit is set to 1. For a black-and-white image, this means a black pixel. 

New Pixel Existing Pixel Resultant Pixel 

white white white 

white black black 

black white black 

black black black 

srcXor and patXor 

These transfer modes combine the pixels of both the new and existing 
images using the logical exclusive-or operation. The result is that selected 
pixels in the existing image are inverted. The selection is determined by 
the new image. Black pixels in the new image cause the corresponding 
pixels in the existing image to be inverted. "White pixels in the new image 
have no effect on the corresponding pixels in the existing image. For 
example, you could invert all the pixels in a bitmap by setting the transfer 
mode to patXor, and drawing a black-filled rectangle the size of that 
bitmap (we'll see a better way to invert images later in this chapter). 



CHAPTER 7-QuickDraw 

New Pixel Existing Pixel Resultant Pixel 

white white white 

white black black 

black white black 

black black white 

srcBic and patBic 

These transfer modes cause selected pixels in the existing image to be 
reset to white. The selection is determined by the new image. Black pix
els in the new image cause the corresponding pixels in the existing image 
to be reset to white. White pixels in the new image have no effect on the 
corresponding pixels in the existing image. 

New Pixel Existing Pixel Resultant Pixel 

white white white 

white black black 

black white white 

black black white 

The notSrc and not Pat transfer modes basically reverse the effect 
black and white pixels in the new image have on the existing image. 

notSrcCopy and notPatCopy 

The resultant image is an inverted copy of the new image. 

New Pixel Existing Pixel Resultant Pixel 

white white black 

white black black 

black white white 

black black white 



CHAPTER 7-QuickDraw 

notSrcOr and notPatOr 

Black pixels in the new image have no effect on the existing image, and 
white pixels in the new image result in black pixels regardless of what 
existed previously. 

New Pixel Existing Pixel Resultant Pixel 

white white black 

white black black 

black white white 

black black black 

notSrcXor and notPatXor 

White pixels in the new image cause pixels in the existing image to be 
inverted. Black pixels in the image have no effect on those in the 
existing image. 

New Pixel 

white 

white 

black 

black 

Existing Pixel 

white 

black 

white 

black 

notSrcBic and notPatBic 

Resultant Pixel 

black 

white 

white 

black 

These transfer modes combine the pixels of both the new and existing 
images using the logical and operation. In other words, pixels in the 
resulting image are black only if pixels in the new image and existing 
image are black. 



CHAPTER 7-QuickDraw 

New Pixel Existing Pixel Resultant Pixel 

white white white 

white black white 

black white white 

black black black 

Pens 
The pen is used to draw lines as well as to outline objects such as rectan
gles and ovals. A bitmap's pen has several characteristics that affect 
images drawn using the pen. These characteristics include pen position, 
size, mode, and pattern. The pen's current position determines where pen 
drawing operations start. This means that any line or text drawn will start 
at the pen's current location. You will frequently move the pen to the 
desired start location just before drawing lines and text . The pen's size 
determines the width and height of lines and object outlines (such as the 
outlines of rectangles of ovals). The pen's mode is the transfer mode used 
when drawing objects with the pen. Though text location is determined 
by the pen's location, the transfer mode used for text is not determined by 
the pen's mode. Later in this chapter, we'll see that the text mode is speci
fied separately. Finally, the pen's pattern is used when drawing objects 
with the pen. For example, if you draw a line when the pen's pattern is set 
to gray, you get a gray line. If the pattern is set to white, you get a white 
line. The following record contains the pen's characteristics. 

struct PenState { 
Point pnLoc; 
Point pnSize; 
short pnMode; 
Pattern pnPat; 

} ; 

II Pen's location 
II Pen's size 
II Pen's transfer mode 
II Pen's pattern 



CHAPTER 7-QuickDraw 

typedef struct PenState PenState; 

You can query and set the pen's state record using the following toolbox calls: 

II Reads the pen's current state record into the supplied 
II variable. 
void GetPenState( PenState *ppenState ); 

II Set's the pen's state to the specified state record. 
void SetPenState( PenState penState ); 

Usually, you will only need to change one of the pen's characteristics at a 
time. For example, you may want to move the pen's location to the start 
of a line, or to where you would like to draw some text. It doesn't really 
make sense to make a call to SetPenState () every time you want to 
change only one field of the pen's state record. For that reason, the tool
box provides the following calls, which affect one record of the pen's state 
at a time. Keep in mind that all these calls affect the pen for the current 
graphics port. Make sure you've set the current graphics port to the 
graphics port you want to affect. 

II Get the pen's current location. 
void GetPen( Point point); 

II Move the pen to the specified location. 
void MoveTo ( short sHPosition, 

short sVPosition ) ; 

II Move the pen to by the specified offsets. Positive values 
II move the pen down and to the right, negative values move 
II the pen up and to the left. 
void Move( short sHOffset, 

short sVOffset ) ; 

II Set the pen's width and height. 
void PenSize ( short sWidth, 

short sHeight ) ; 

II Set the pen's pattern. 
void PenPat( Pattern pattern); 



CHAPTER 7-QuickDraw 

II Set the pen's transfer mode. Use one of the pattern modes 
II defined above. 
void PenMode( short sMode ); 

II Set all pen characteristics to their defaults. This means 
II a width and height of 1, a pattern of solid black, and a 
II transfer mode of patCopy. 
void PenNormal ( void ) ; 

Last, you can show and hide the pen. A hidden pen does not drawing 
anything in its graphics port. In other words, lines, object outlines, and 
text do not get drawn if the pen is hidden, even if you issue drawing com
mands. The following toolbox routines show and hide the pen. 

II Hides the pen so that no drawing operations take place. 
void HidePen ( void ) ; 

II Shows the pen so that drawing operations take place. 
void ShowPen ( void ) ; 

Color 
An entire book could easily be devoted to explaining the various aspects 
of how the Macintosh supports color graphics. However, the basics 
needed to write games can be covered in a few paragraphs. 

Most everything discussed in this chapter so far has centered around 
black-and-white graphics. At first that might seem odd because most 
games written today need to support color graphics if they are to be suc
cessful. Why spend so much time on black-and-white graphics and just 
mention color almost as a side note? The answer is that just about every
thing that applies to black-and-white graphics applies equally to color 
graphics. Adding color to your game is very simple once you understand 
the fundamentals of drawing. This section will show you how easy it is to 
draw in color. 

When drawing in black and white, a pixel is considered "on" when 
that pixel is black and "off" when that pixel is white. Thus a single pixel 
in a black-and-white bitmap requires only 1 bit; where a white pixel has a 



CHAPTER 7-QuickDraw 

bit value of 0, a black pixel has a bit value of 1. When drawing in color, a 
single pixel can be more that just black and white. It can be red, green, 
blue, black, white, or just about any other color. This is accomplished by 
providing more than 1 bit per pixel. A single bit can represent two values, 
or two colors, which are typically black and white. To represent more col
ors, you need more bits. The number of bits allocated for each pixel 
determines how many colors can be supported in a graphics port. The 
following table shows what color depths the Macintosh supports. 

Bits per Pixel Number of Colors 

1 

2 

4 

8 

16 

24 

2 (black and white) 

4 

16 

256 

65,536 

16.7 million 

When you draw in color to a graphics port, you need to specify the color 
of the object to be drawn. The color you want to draw is typically speci
fied by providing the red, green, and blue components of the color you 
want to draw. This is commonly referred to as an RGB value, and the 
toolbox defines an RGB structure used to specify color. 

struct RGBColor { 
unsigned short red; 
unsigned short green; 
unsigned short blue; 

}; 

II Red component 
II Green component 
II Blue component 

typedef struct RGBColor RGBColor; 

When you specify an RGB color to draw, that color most likely will need 
to be converted into a color supported by that graphics port. From the 
preceding RGB definition, you can obviously specify a lot more colors 
than a graphics port might support. For example, you can certainly spec-



CHAPTER 7-QuickDraw 

ify more RGB colors than a 256-color graphics port will be able to show. 
How does an RGB color specification get translated into a specific color 
in the graphics port? When you specify an RGB color, the Macintosh 
toolbox automatically chooses the color supported by the graphics port 
that is closest to the color you specify. This leads to another question. 
What colors does a graphics port of a specific color depth support? The 
Macintosh uses a color table for each graphics port to list the colors sup
ported by that graphics port. When you create a graphics port, you can 
specify the color table used. The default color table will be used if you 
choose not to supply your own. In most cases, unless your game has very 
specific color needs not taken care of by the default color table, you 
should use the default color table for your game's graphics. If you change 
the Macintosh screen's color table, all graphics shown on the screen will 
be drawn using your own color table, causing other application's windows 
to use your colors. Other applications, which include the Macintosh 
Finder, might not look aesthetically pleasing in your colors. 

The following table shows the RGB values used for a standard 4-bit, 
16-color graphics port. 

Color Red Green Blue 

Black 0 0 0 

Dark Gray 16448 16448 16448 

Medium Gray 32869 32869 32869 

Light Gray 49344 49344 49344 

Tan 37008 29041 14906 

Brown 22102 11308 1285 

Green 0 25700 4369 

Light Green 7967 47031 5140 

Light Blue 514 43947 60138 

Blue 0 0 54484 

Purple 17990 0 42405 

Pink 62194 2056 33924 



CHAPTER 7-QuickDraw 

Red 
Orange 

Yellow 

White 

56797 

65535 

64764 

65535 

2056 

25700 

62451 

65535 

1542 

514 

1285 

65535 

How do you specify an RGB color, and what effect will that have on draw
ing? Again, let's recall how black-and-white drawing takes place. When 
you draw in black and white, your drawing will either cause certain pixels 
to turn white, black, or remain the same. For example, if you draw a line 
with the standard pen (solid black pattern and a mode of patCopy), a 
solid black line will be drawn to the graphics port, causing all pixels the 
line affects to turn black. If you fill a rectangle with a gray pattern with the 
transfer mode set to patCopy, every other pixel in the rectangle will be 
changed to black, the others changed to white (refer back to Figure 7.3). 

When drawing in color, the graphics port's foreground color deter
mines what color to draw pixels that would have been drawn black in a 
black-and-white graphics port. The port's background color determines 
what color to draw pixels which would have been drawn white in a black
and-white port. For example, if a port's foreground color is red, lines drawn 
will appear in red (assuming, of course, a pen transfer mode of pat Copy). 
Filling a rectangle with a gray pattern will cause half the pixels to be of the 
foreground color, the other half to be of the background color. For exam
ple, if the port's foreground color is red and the background color is green, 
a rectangle filled with a gray pattern will have half its pixels red, the other 
half green (the red corresponding to what would have been black, and the 
green corresponding to what would have been white in a black-and-white 
graphics port). This means that drawing in color takes place exactly the 
same as drawing in black and white, except that you need to set the fore
ground and background colors before you draw. 

To set the current graphics port's foreground and background colors 
or to determine their current values, use the following toolbox calls. 



CHAPTER 7-QuickDraw 

II Set the current graphics port's foreground color. 
void RGBForeColor( RGBColor *prgbColor ); 

II Set the current graphics port's background color. 
void RGBBackColor( RGBColor *prgbColor ); 

II Get the current graphics port's foreground color. 
void GetForeColor( RGBColor *prgbColor ); 

II Get the current graphics port's background color. 
void GetBackColor( RGBColor *prgbColor ); 

Most of the time, you will only need to set a graphics port's foreground 
color when drawing because most drawing commands are used to set pix
els, not reset them (set pixels are drawn black, or in the foreground color, 
reset pixels are drawn white, or in the background color). It is generally a 
good idea to query a graphics port's foreground and background colors 
before changing them so that you can set them back when you've finished 
drawing. This is especially true when drawing to the Macintosh screen or 
a window that draws some of its own contents, such as controls. Also, 
before using any bitmap transfer operation, you must set the foreground 
color to black and the background color to white before performing that 
operation. Otherwise, undefined results will occur. 

T I P 

When you need to specify a color to draw into your graphics port, 
how can you easily choose an RGB color that matches the color you 
want? Desert Trek defines an array of 16 RGB colors that are read 
from a custom resource. These colors correspond to the Macintosh's 
standard 16 colors, and thus look the same whether the user has the 
monitor set to 16, 256, thousands, or millions of colors. When Desert 
Trek want to draw an object in color, it sets the foreground color to 
one of these values. The following structure definition and enumera
tion defines the 16-bit RGB color array. 



CHAPTER 7-QuickDraw 

enum enumStd16Colorsindex { ColorWhite = 0, ColorYellow, ColorOrange, 
ColorRed, ColorPink, ColorPurple, ColorBlue, 
ColorLightBlue, ColorLightGreen, ColorGreen, 
ColorBrown, ColorTan, ColorLightGray, 
ColorMediumGray, ColorDarkGray, ColorBlack 

} ; 

typedef struct _Colors 
{ 

RGBColor rgbColor[16]; 
Colors, *pColors, **hColors; 

The following line of code loads the colors from Desert Trek's resource file. 

static hColors hStdl6Colors; 

hStd16Colors = (hColors) GetResource( 'clrs', 128 ); 

When Desert Treks want to set the foreground color to one of the stan
dard 16 colors, it uses the hStd16Colors handle, which points to an 
array of the RGB values corresponding to the Macintosh's standard 16 
colors. The following is an example. 

II Set the foreground color to yellow. 
RGBForeColor( &(*hStdl6Colors)->rgbColor[ColorYellow] ); 

If you would like to use this code in your game, make sure to copy the 
'clrs' resource from Desert Trek into your game's resource fork. 

Drawing Lines 
The pen draws lines in a graphics port. To draw a line, you first need to 
move the pen to the start point of the line you want to draw. The toolbox 
call that draws lines does so by moving the pen to a specified end point. 
Moving the pen from one location to another draws consecutive lines 
where the start point of one line is the same as the end point of the previ
ous line. The pen's characteristics as described above in the section on 



CHAPTER 7-QuickDraw 

pens affect how the line will be drawn in a graphics port. This includes 
the line's width, pattern, and transfer modes. Figure 7.4 shows a variety of 
lines drawn based on different pen settings. 

Pen width of 1, pattern of black. 

Pen width of 1, pattern of gray. 

----------- Pen width of 3, pattern of black. 

----------- Pen width of 3, pattern of gray. 

Pen width of 1, pattern of white, 
drawn on a black background. 

Figure 7.4 Various lines. 

The following two toolbox calls draw a line. Note that you specify the end 
points in the calls. The start point is always the pen's current location. 

II Draw a line the specified horizontal and vertical distance 
II from the pen's current location. 
void Line( short sHDistance, 

short sVDistance ) ; 

II Draw a line to the specified coordinates from the pen ' s 
II current location . 
void LineTo( short 

short 
sHCoordinate, 
sVCoordinate ) ; 

Let's look at an example of how to draw lines. Way back in Chapter 5 on 
menus, it was stated that when using pop-up menus, you are responsible 
for drawing the area of the screen that signifies where the user should 
click to pop up a menu. That area is typically a framed rectangle with a 
shadow (see Figure 7 .5). The shadow can be drawn using lines. The fol
lowing routine from Desert Trek draws the pop-up menu box with a 
shadow and can be found in Information Wmdow.h. 



CHAPTER 7-QuickDraw 

I Popup Menu Rectangle with a shadow, showing 
the location of a popup menu. 

Figure 7.5 A shadowed rectangle. 

static void DrawTopicsMenu( PINFO_WINOOW pinfoWindow ) 
{ 

Rect rect; 

JI Store the rectangle of the pop-up menu in a terrg;iorary variable. 
rect = pinfoWindow->rectTopicsMenu; 

JI Grow the rectangle by 1 pixel in each direction. 
InsetRect( &rect, -1, -1 ); 

JI outline the rectangle. We'll see this call defined in the next section. 
FrameRect ( &rect ) ; 

JI Move the pen to the bottom left of the pop-up menu location, moving 2 
JI pixels to the right to produce a shadow effect. 
MoveTo ( rect.left + 2, rect.bottom ); 

JI Draw a line to the bottom right of the pop-up menu's location. 
LineTo ( rect.right, rect.bottom ); 

JI Draw a line from the previous line's end point to 2 pixels below the top 
JI right of the pop-up menu's location (again, to produce the shadow effect). 
LineTo ( rect.right, rect.top + 2 ); 

Drawing Rectangles 
Rectangles form one of the most fundamental shapes drawn. The follow
ing toolbox routines allow you to outline, draw, and fill rectangles with a 
specified pattern. The pen's size, pattern, and transfer mode affect most 
of the following operations. 



CHAPTER 7-QuickDraw 

II Frame a rectangle, which draws an outline around that 
II rectangle. The pen's style will detennine the style of 
II the outline drawn (including the width and height of the 
11 outline). 
void FrameRect( Rect *pRect ); 

II Paints a rectangle using the pen's current pattern and 
II transfer mode. 
void PaintRect( Rect *pRect ); 

II Fills a rectangle using the specified pattern. The 
II transfer mode is always patCopy. 
void FillRect( Rect *pRect, 

Pattern pattern); 

II Fills a rectangle using the specified color pixel pattern. 
II The transfer mode is always patCopy. 
void FillCRect( Rect *pRect, 

PixPatHandle hPixPat ); 

II Erases a rectangle, setting it to the background color. 
void EraseRect( Rect *pRect ); 

II Inverts all pixels in a bitmap contained within the 
II specified rectangle. 
void InvertRect( Rect *pRect ); 

A number of other code examples in this book draw rectangles, so there's 
no need here to show an additional example. 

Drawing Rounded Rectangles 
Rounded rectangles are rectangles with rounded comers. A perfect exam
ple of a rounded rectangle is any standard Macintosh push button. 
Rounded rectangles are drawn like normal rectangles, with the addition 
of two parameters. You need to specify the width and height of the cor
ners. The width and height really specify the diameters of an oval, which 
is then used to determine how the rounded corners will look. Each 



CHAPTER 7-QuickDraw 

rounded comer will be drawn using one quarter of the oval (see Figure 
7 .6). The following toolbox routines are used to draw rounded rectangles. 

Comer width....___. 

One quarter of the oval is used to draw 
each comer of the rounded rectangle. 

Figure 7.6 The corners of a rounded rectangle. 

II Frame a rounded rectangle, which draws an outline around 
II that rounded rectangle. The pen's style will determine 
II the style of the outline drawn (including the width and 
II height of the outline). 
void FrameRoundRect( Rect 

short 
short 

*pRect, 
sCornerWidth, 
sCornerHeight ) ; 

II Paints a rounded rectangle using the pen's current pattern 
II and transfer mode. 
void PaintRoundRect ( Rect 

short 
short 

*pRect, 
sCornerWidth, 
sCornerHeight ) ; 

II Fills a rounded rectangle using the specified pattern. 
II The transfer mode is always patCopy. 
void FillRoundRect ( Rect *pRect, 

short 
short 
Pattern 

sCornerWidth, 
sCornerHeight, 
pattern ) ; 



CHAPTER 7-QuickDraw 

II Fills a rounded rectangle using the specified color pixel 
II pattern. The transfer mode is always patCopy. 
void FillCRoundRect( Rect *pRect , 

short 
short 
PixPatHandle 

sCornerWidth, 
sCornerHeight, 
hPixPat ) ; 

II Erases a rounded rectangle , setting it to the background 
II color . 
void EraseRoundRect( Re ct 

short 
short 

*pRect , 
sCornerWidth, 
sCornerHeight ); 

II Inverts all pixels in a bitmap contained within the 
II specified rounded rectangle . 
void InvertRoundRect( Rect *pRect ) ; 

T I P 

short 
short 

sCornerWidth , 
sCornerHei ght ) ; 

Round rectangles are great for showing which push button of a win
dow or dialog box is the default button. Remember, the default but
ton gets "clicked on" when the user presses the Return or Enter key. 
The following code example shows how to display to the user which 
is the default push button. This is accomplished by drawing a thick, 
rounded rectangle around that push button (see Figure 7.7). This rou
tine comes from App Modal Dialog.c and draws all application 
modal dialog boxes. 

( Open D The default button has a thick rounded rectangle drawn around it. 

Figure 7.7 A default button. 

void Updat eModalDialog( DialogPtr pDialog 
{ 

Graf Ptr pGrafCUrrent; 
Re ct rect; 
short sCornerSize; 
short sitem; 
Handle hitem; 

273 



274 

CHAPTER 7-QuickDraw 

II Save the current graphics port and change it to the dialog we're about to 
II draw. 
GetPort( &pGrafCurrent ); 
SetPort( pDialog ) ; 

II Begin updating the dialog. 
BeginUpdate( pDialog ); 

II Call the toolbox routine that draws a dialog and all its items. 
DrawDialog( pDialog ) ; 

II I f there's a default push button, draw the thick outline around that 
II button so that the user visually see which button is the default. 
if ( pCurrentDialog->sDefaultActionID ) 
{ 

II We need to query the rectangle bounding the default button since it 
II will be used to draw the rounded rectangle around that button. 
GetDitem ( pDialog, pCurrentDialog->sDefaultActionID, &sitem, &hitem, 

&rect ) ; 

II The corner size of rounded rectangle we want to draw around the default 
II button is the height of the button minus 4. 
sCornerSize = rect .bottom - rect.top - 4; 

II The rounded rectangle we want to draw around the default button needs 
II to be 3 pixels thick. That's accomplished by setting the pen's size . 
PenSize( 3, 3 ) ; 

II The rounded rectangle we want to draw needs to be positioned 4 pixels 
II away from each side of the default button. So, grow the rectangle of 
II default button by 4 pixels in each direction. 
InsetRect ( &rect, -4, -4 ); 

II Frame the rounded rectangle around the default button. 
FrameRoundRect( &rect, sCornerSize, sCornerSize ); 

II Restore the pen's size. 
PenSize (1, 1) ; 

II If there's a custom drawing routine specified for the application modal 
II dialog, call it. 
CallCustomDrawRoutine( pDialog ); 



CHAPTER 7-QuickDraw 

II We are finished updating the dialog. 
EndUpdate ( pDialog ) ; 

II Restore the current graphics port back to what it was before this routine 
11 was called. 
SetPort ( pGrafCUrrent ) ; 

Drawing Ovals 
You draw ovals by specifying the rectangle in which the oval is inscribed 
(see Figure 7 .8). If you want to draw a circle, simply specify a square. The 
following toolbox routines allow you to draw ovals. 

The oval drawn is inscribed 
in the specified rectangle. 

Figure 7 .8 An oval. 

I I Frame an oval, which draws an outline around that oval. 
II The pen's style will determine the style of the outline 
II drawn (including the width and height of the outline). 
void FrameOVal( Rect *pRect ); 

II Paints an oval using the pen's current pattern and 
II transfer mode. 
void PaintOVal( Rect *pRect ); 

II Fills an oval using the specified pattern. The transfer 
II mode is always patCopy. 
void FillOVal ( Rect *pRect, 



CHAPTER 7-QuickDraw 

Pattern pattern ) ; 

II Fills an oval using the specified color pixel pattern. 
II The transfer mode is always patCopy. 
void FillCOval( Rect *pRect, 

PixPatHandle hPixPat ); 

II Erases an oval, setting it to the background color. 
void EraseOval( Rect *pRect ); 

II Inverts all pixels in a bitmap contained within the 
II specified oval. 
void InvertOval( Rect *pRect ); 

Drawing Icons 
You can create icons in the resource fork of your game using ResEdit, and 
later load and draw those icons into a graphics port. Black-and-white 
icons have a resource type of 'ICON', and color icons have a resource 
type of 'cicn'. The following toolbox calls load icons from the resource 
fork. 

II Loads a black and white icon of type 'ICON' from the 
II resource fork. Use ReleaseResource() when you are 
II finished with the icon. 
Handle Geticon( short siconID); 

II Loads a color icon of type 'cicn' from the resource fork. 
II Use DisposCicon when you are finished with the color icon. 
CiconHandle GetCicon( short siconID ); 

II Releases the resources taken up by a color icon. 
void DisposCicon( CiconHandle hCicon ); 

To draw an icon, use one of the following two toolbox calls. Notice that 
you can stretch an icon to fit inside a given rectangle. Icons are typically 
32 pixels wide by 32 pixels high, so if you don't want any stretching to 
take place, make sure the specified rectangle has a width and height of 32 
pixels. Icons are drawn using an icon mask. An icon mask is always black 
and white, even though the icon itself could be color. The black pixels in 



CHAPTER 7-QuickDraw 

the icon mask detennine which pixels from the icon get drawn into the 277 
destination graphics port. A white pixel in the mask means that the corre-
sponding pixel in the icon does not get drawn. You build the icon's mask 
when creating a color icon in ResEdit. For black-and-white icons, the 
icon itself is it's own mask (since both are black and white). 

II Draws a black and white icon into the current graphics 
II port within the specified rectangle. 
void Plot Icon ( Rect *pRect, 

Handle hicon ) ; 

II Draws a color icon into the current graphics port within 
II the specified rectangle. 
void PlotCicon ( Rect 

CiconHandle 

Drawing Pictures 

*pRect, 
hCicon ) ; 

You can draw pictures using your favorite graphics editor and then place 
them into the resource fork of your game as type 'PICT'. Your game can 
then load these pictures and draw them into a graphics port. However, let 
me give you this one warning: Drawing pictures takes a long time, so you 
should never draw the same picture multiple times into any of your game 
windows. Instead, always create an offscreen bitmap to hold your pictures 
so that they can be copied later into other graphics ports (such as a win
dow, dialog box, or another graphics port) using one of the bitmap trans
fer operation discussed below. In other words, when your game initializes 
itself, it should create offscreen bitmaps to hold the pictures loaded from 
the resource fork. You shouH,then load the pictures, draw them to the 
offscreen graphics ports, and release the picture resources (you won't 
need the picture resources anymore because they were already copied to 
an offscreen bitmap). 

Desert Trek creates three distinct offscreen graphics ports to hold three 
pictures loaded from the resource fork of the game. The pictures loaded 
include the general game's graphics (such as the 3D picture buttons and 
objects placed in the view portion of the game window), the various views of 



278 

CHAPTER 7-QuickDraw 

the desert including the jail and trading post, and the game's graphics masks 
(we'll discuss the use of the masks in the section on bitmap operations). 

The following toolbox call loads a picture resource of type 'PICT'. 

II Loads a picture resource of type 'PICT' from the resource 
II fork. Use ReleaseResource() when you are finished with 
II the picture. 
PicHandle GetPicture( short sPictureID ); 

The following toolbox call draws a picture into the current graphics port. 
You need to specify the rectangle in which to draw the given picture. The 
picture will be stretched to fit the rectangle specified. 

II Draw a picture into the specified rectangle. 
void DrawPicture( PicHandle hPicture, 

T I P 

Rect *pRect ) ; 

You will rarely want a picture loaded from your resource fork to be 
stretched. So how do you know the size of a picture? You could 
probably figure it out when you draw the picture in your favorite 
graphics editor, but surely there's a better way. Pictures are in fact 
fairly complex graphical objects. They are descr,ibed by a large 
record , which contains the many properties associated with that pic
ture. One of the fields in a picture's record is its bounding rectangle. 
The field name is picFrame . Thus, when you load a picture, you can 
determine its size by looking at the picFrame field of the picture 
record. You might want to use this information to determine the size 
of the bitmap needed to hold that picture. Desert Trek uses this field 
for just such a purpose. The following code creates an offscreen 
graphics world or a black-and-white graphics port to contain Desert 
Trek's main graphic elements (the 3D buttons, status gauges, and 
objects that appear in the view portion of the game window such as 
the oasis, caravan trading post, etc.). Notice that the picture con
taining the graphics is loaded from the resource fork first so that the 
size of the bitmap needed to contain the graphics can be deter
mined before actually creating it . This code can be found in 
Offscreen Graphics.c. 



static void CreateGraphicsOffscreen( void ) 
{ 

CGraf Ptr pCGrafCUrrent; 
GDHandle hGOCUrrent; 
Graf Ptr pGrafCurrent; 
short sBitrnapRowBytes; 
Size sizeBitrnap; 
Rect rectGraphics ; 
PicHandle hPicGraphics; 
short sPictureID; 

II Save the current graphics pert. 
GetPort( &pGrafCUrrent ); 

CHAPTER 7-QuickDraw 

II If we are using color graphics, a new graphics world will be created . 
II Save the current graphics world so that we can restore it at the end 
II of this routine. Also, we want to load the col or picture. 
if ( bUsingColorGraphics ) 
( 

sPictureID = COLOR_GRAPHICS_ID; 
GetGWorld( &pCGrafCUrrent , &hGOCUrrent ) ; 

II Black and white graphics are being used, so load the black and white 
II picture from the resource fork . 
else 

sPictureID = BW_GRAPHICS_ID; 

II Load the picture . 
hPicGraphics = GetPicture( sPictureID ) ; 

II Lock the picture's handle whil e we're accessing the fields of the 
II picture handle. 
HLock( (Handle) hPicGraphics ); 

II Get the picture's bounding rectangle . 
rectGraphics = (*hPicGraphics)->picFrame; 

II In case the picture's bounding rectangl e isn't zero based (in other 
II words, the l eft and top don't have coordinates of 0) , offset the 
II rectangl e so that the left edge and top edge have a coordinate of 0. 
OffsetRect( &rectGraphics , -rectGraphics .left, -rectGraphics.top ); 

II If we're using color graphics , create an offscreen graphics world. 

279 



CHAPTER 7-QuickDraw 

if ( bUsingColorGraphics ) 
{ 

II Create the offscreen graphics world . 
NewGWorld( &pGWorldGraphics, sOffscreenPixelDepth, &rectGraphics, 

nil, nil , 0 ) ; 

II Set the current graphics world to the newly create graphics world. 
SetGWorld( pGWorldGraphics, nil ); 

II Lock the pixel map of the graphics world before drawing to it . 
if ( LockPixels( pGWorldGraphics->portPixMap ) ) 
{ 

II Erase the offscreen graphics world. 
EraseRect( &rectGraphics ); 

II Draw the picture loaded from the resource fork into the graphics 
II world. 
DrawPicture( hPicGraphics, &rectGraphics ) ; 

II We're finished drawing, so unlock the pixel map so it can float in 
II memory as needed (during heap compaction). 
UnlockPixels( pGWorldGraphics->portPixMap ); 

II Set the bitmap pointing to the offscreen graphics to be the pixel map 
II of the offscreen graphics world . It is this bitmap that is referenced 
II whenever copying these graphics to another offscreen bitmap or onscreen 
II window or dialog. 
bitmapGraphics = ((GrafPtr) pGWorldGraphics)->portBits; 

II If we're using black and white graphics , create an offscreen graphics 
II port and corresponding bitmap. 
else 

II Allocate storage for the graphics port and initialize the port. 
pGrafGraphics = (GrafPtr) NewPtr( sizeof ( GrafPort ) ); 
OpenPort( pGrafGraphics ) ; 

II Determine the size of the bitmap needed. 
sBitmapRowBytes = (((rectGraphics.right-rectGraphics.left-1)116)+1)*2; 
sizeBitmap = ( rectGraphics.bottom - rectGraphics.top ) * sBitmapRowBytes; 

II Allocate storage for the offscreen bitmap to be associated with the 



CHAPTER 7-QuickDraw 

II offscreen graphics port. 
bitmapGraphics.baseAddr = (QDPtr) NewPtr( sizeBitmap ); 
bitmapGraphics.rowBytes = sBitmapRowBytes; 
bitmapGraphics.bounds = rectGraphics; 

II Associate the offscreen bitmap with the offscreen graphics port. 
SetPortBits( &bitmapGraphics ) ; 

II Erase the offscreen graphics port. 
EraseRect( &rectGraphics ) ; 

II Draw the picture loaded from the resource fork into the offscreen 
II graphics port . 
DrawPicture( hPicGraphics , &rectGraphics ); 

II We're finished with the picture, so unlock frs handle and free it from 
II memory. 
HUnlock( (Handle) hPicGraphics ) ; 
ReleaseResource( (Handle) hPicGraphics ) ; 

II If we changes the current graphics world, set it back to what it was 
II before this routine was call ed. 
if ( bUsingColorGraphics ) 

SetGWorld( pCGrafCurrent, hGDCurrent ) ; 

II Restore the graphics port to what it was before this routine was called. 
SetPort( pGrafCurrent ) ; 

Drawing Text 

Describing everything about how the Macintosh supports the drawing of 
text could fill an entire book. This means that you're going to get a crash 
course that leaves out many details. However, everything that you need to 
know about drawing text for your game will be described here. 

You can specify many characteristics of text your game draws to the 
screen. This includes the font (Helvetica, Times, Courier, etc.), face 
(often referred to as style and includes underline, bold, and italics), size, 
and the text transfer mode. Also don't forget that the color of the text 
drawn is governed by the graphics port's foreground color. 

281 



CHAPTER 7-QulckDraw 

When specifying which font to use, you will need to use a font num
ber. The font number will get translated into the actual font used. The 
toolbox has defined font numbers for some of the most popular and stan
dard fonts supported on Macintosh systems. Keep in mind that not all 
fonts may be installed on the system your game is running on. For this 
reason, you should try to stick to common fonts such as Helvetica, 
Tnnes, Courier, Geneva, and New York. If you choose a font that's not 
installed on the system, the toolbox will substitute a different font for 
you. Also note that these are not all the fonts that you could possibly use. 
There is a way to determine all the fonts installed on a particular 5ystem, 
but that won't be discussed here. 

enum { 

}; 

systemFont = 0, 
applFont = 1, 
newYork = 2, 
geneva = 3, 
rnonaco = 4, 
venice = 5, 
london = 6, 
athens = 7, 
sanFran = 8, 
toronto = 9, 
cairo = 11, 
losAngeles = 12, 
times = 20, 
helvetica = 21, 
courier = 22, 
symbol = 23, 
mobile = 24, 

II The system font, usually Chicago 
II The application font, usually Geneva. 

When specifying the text face, you can specify one or more of the follow
ing styles as defined by the toolbox. To specify more than one style, use 
the logical or operator. For example, to specify bold and underline, use 
the expression ( bold I underline) in the toolbox call used to 
change the text face. We'll see that call shortly. 



enum { 
normal = 0, 
bold = 1, 

I I Normal text 
11 Bold 
11 Italics 
I I Underlined 
II outline 
11 Shadow 
I I CJ.:rd:ra:d 

CHAPTER 7-QuickDraw 

italic = 2, 
underline = 4, 
outline = 8, 
shadow = OxlO, 
condense = Ox20, 
extend = Ox40, II Extended 

} ; 

You specify the font size in points. As anyone who has worked with a 
word processor knows, the higher the point size, the larger the font. A 
point size of 12 is typical for many applications. 

Last, the text transfer mode is specified using any of the src transfer 
modes described previously. The following toolbox calls can be used to 
change the characteristics of the text you draw to a graphics port. 

II Sets the text font. 
void TextFont( short sFontNumber ); 

II Sets the text face. Use one or more of the text styles 
II above defined. 
void TextFace( short sFace ); 

II Sets the text size. 
void TextSize( short sPointSize ); 

II Sets the text's transfer mode. Use an src value. You 
II will normally use srcCopy. 
void TextMode( short sPointSize ); 

Okay, so now you can set all kinds of characteristics for the text you want 
to draw. So how do you actually draw the text to a graphics port? The 
first thing you need to do is position the pen to where you want the text 
to be drawn. The text will be drawn up and to the right of the pen. In 
other words, consider the pen as being located where the underline for 
underlined text would go. As you draw text, the pen automatically moves 



284 

CHAPTER 7-QuickDraw 

to a point just after the last character of text drawn. This is done so that 
you can draw more text just after any previous text drawn without need
ing to reposition the pen. This certainly comes in handy. The following 
toolbox calls draw text to the current graphics port. 

II Draw a single character at the pen's location . 
void DrawChar ( char ch ) ; 

I I Draw a string at the pen's location. 
void Drawstring( Str255 str255 ); 

II Draw text at the pen's location . You specify a pointer 
II to the text . sFirstChar is the offset within the text 
II that's the first character to be drawn. sCharCount 
II specifies the number of charact ers to be drawn. 
void DrawText( Ptr 

short 
short 

pText, 
sFirstChar, 
sCharCount ) ; 

II Draws text within a rectangle on the screen. The words in 
II the text are automatically wrapped at the right edge of 
II the rectangle, so that the next word starts on a new line 
II if it doesn't fit on the current line. You need to 
II specify a pointer to the text , its length, the rectangle 
II to contain the text, and the text's justification. The 
II justifications will be described in chapter 8 on TextEdit. 
II Use teJustLeft for left justified , teJustCenter for center 
II justified, or teRightJust for right justified. 
void TextBox( Ptr pText, 

long lTextLength, 
Rect *pRect, 
short sJustification ) ; 

There may be times when you need to know the width, in pixels, of the 
text you're about to draw. The following toolbox calls determine how 
many pixels wide the text specified would be if drawn to the graphics port. 
They consider all the text's characteristics such as font, face, and size. 

I I Determines the width of a single character . 
void CharWidth( char ch); 

II Determines the width of a string. 
void StringWidth( Str255 str255 ); 



CHAPTER 7-QuickDraw 

II Determines the width of the specified text. You must 
II specify a pointer to the text. sFirstChar is the offset 
II within the text that's the first character to be 
II considered. sCharCount specifies the number of characters 
II to be considered. 
void TextWidth ( ptr 

short 
short 

pText, 
sFirstChar, 
sCharCount ) ; 

The following code snippet from Trek Wmdow.c draws a string that is 
right justified relative to a given position. In order to right-justify the 
text, the pen must be moved from the desired right edge by the width of 
the string to be drawn (since all drawing goes from left to right). Just for 
fun, I'm throwing in a text face change here. It is not used in the actual 
Desert Trek code. 

#define STATUS_TEXT_RIGHT_ELGE 232 

static StringHandle hStringHunger; 
static Rect rectStatus[J; 

static void DrawFixedStrings( void ) 
{ 

II Set the text font to Geneva . 
TextFont ( geneva ) ; 

II Set the text size to 10. 
TextSize( 10 ); 

II Set the text face to be bold and underlined. 
TextFace( bold I underline); 

II Move the pen to where we want the text to go. Since we want the text 
II to be right justified with STATUS_TEXT_RIGHT_ELGE, we need to move the 
II pen left from that edge by the length of the string we want to draw. 
II The bottom of the text is specified as rectStatus[Hunger] .bottom. 
MoveTo( STATUS_TEXT_RIGHT_ELGE - StringWidth( *hStringHunger ) , 

rectStatus[Hunger] .bottom); 

II Draw the text. 
Drawstring( *hStringHunger ); 

285 



CHAPTER 7-QuickDraw 

Bitmap Operations 

Most games frequently need to transfer images from one bitmap to 
another. Whenever the screen needs to be updated, the image typically 
comes from an offscreen bitmap. To build that offscreen image, the 
graphics used often come from other offscreen bitmaps. For example, 
when Desert Trek needs to update the main window, the image for the 
main window is first built in an offscreen bitmap and then transferred to 
the screen in one shot. That offscreen image is really a copy of what's on 
the screen. To build that offscreen image, graphic elements are taken 
from other offscreen bitmaps. Desert Trek's desert views come from one 
of those bitmaps, and the 3D buttons and other graphical objects come 
from another offscreen bitmap. The offscreen bitmaps that hold the 
graphic elements used to build the copy of the game screen are set up 
when the program starts and remain unchanged throughout the game 
(unless the user changes the number of colors using the Monitors 
Control Panel). The offscreen bitmap that holds a copy of the main game 
screen gets updated each turn of the game. Figure 7. 9 shows how Desert 
Trek's main screen gets built. 

Offscreen bitmap containing 

graphics elements ~.-----------. 
Part of both offscreen bitmaps plus ~ 
additional text and graphics drawing IJt Offscreen copy of game 
commmand are used to build the window contents 
offscreen image of the game window. 

Offscreen bitmap containing 
desert views 

Game Window 

Figure 7.9 How Desert Trek's main screen gets built. 



CHAPTER 7-QuickDraw 

CopyBits 
The Macintosh toolbox provides two very powerful functions to transfer 
images from one bitmap to another. Used correctly, these bitmap transfer 
operations can quickly and efficiently build your game's screens. The first 
bitmap transfer operation provided is CopyBi ts ( ) . 

II Copies the specified part of one bitmap into the 
II specified part of another bitmap. 
void CopyBits ( BitMap *pbitmapSource, 

BitMap *pbitmapDestination, 
Rect 
Rect 
short 
RgnHandle 

*prectSource, 
*prectDestination, 
sTransferMode, 
hrgnClip ) ; 

CopyBits () copies the specified part of one bitmap into the specified 
part of another bitmap. You need to specify the source and destination 
bitmaps, the bounding rectangle of the part of the source bitmap you 
want to copy, the bounding rectangle of where in the destination bitmap 
you want the image copied to, the transfer mode of the operation (how 
bits from the source bitmap get combined with the bits of the destination 
bitmap), and optionally, a clipping region. The source and destination 
rectangles do not need to be the same size. CopyBits () will scale the 
source image to fit the destination rectangle. The transfer mode must be 
one of the src transfer modes described earlier. Most of the time you 
will specify srcCopy because you will want to replace the pixels in the 
destination bitmap with those from the source bitmap. You can simply 
specify nil for hrgnClip, unless you want to clip the operation to a 
particular region. Also note that CopyB its ( ) can take a 
PixMapHandle as well as a Bi tMap for color pixel map transfers. In 
this case, if the color depth of the two pixel maps differ, CopyBits () 
supplies a conversion. Keep in mind that these conversions come at the 
cost of speed. More on that in a moment. 

Example 
The following code from Trek Wmdow.c updates the main Desert Trek 
game window. Basically, all it does is copy the offscreen image of the 



CHAPTER 7-QuickDraw 

game window into the game window itself. Notice that this code works 
whether the offscreen graphics are contained in a black-and-white bitmap 
or a color pixel map. This is possible because CopyBits () takes either 
bitmap type. The variable pointing to the offscreen bitmap gets set to 
either the color pixel map of the graphics world or the black-and-white 
bitmap of the graphics port when created. In either case, this update rou
tine doesn't need to distinguish between the two. 

void UpdateTrekWindow( void 
{ 

GrafPtr pGrafCurrent; 

II Save the current graphics port. 
GetPort ( &pGrafCurrent ) ; 

II Set the current graphics port to the Desert Trek game window. 
Setport ( pWindowTrekWindow ) ; 

II Begin update. 
BeginUpdate( pWindowTrekWindow ); 

II Copy the offscreen bitmap containing the contents of the main game 
II window directly to the main game window. 
CopyBits( &bitmapTrekWindow, &pWindowTrekWindow->portBits, 

&rectTrekWindow, &rectTrekWindow, srcCopy, nil); 

II Draw the main game window's controls (basically, the journal's 
II scrollbar). 
Drawcontrols( pWindowTrekWindow ); 

II End update. 
EndUpdate ( pWindowTrekWindow ) ; 

II Restore the graphics port to what it was before this routine was 
II called. 
SetPort( pGrafCurrent ); 

CopyMask 
CopyBits () is a very useful way to copy rectangular images from one 
bitmap to another, but what if you need to copy a nonrectangular image. 



CHAPTER 7-QuickDraw 

For example, Desert Trek draws a palm tree growing out of a small pond 289 
when there's an oasis in the distance. The image of the palm tree needs to 
overlay the view of the desert. If CopyBits () was used, parts of the 
palm tree image contained within the source bounding rectangle contain-
ing information we don't want transferred to the destination bitmap will 
get transferred nonetheless. In other words, there is some "blank space" 
contained within the bounding rectangle that doesn't have anything to do 
with the palm tree, and that blank space will be copied to the destination 
bitmap. Obviously, this is a problem. What we need is a way to specify 
what parts of the source image contained within the bounding rectangle 
we want transferred to the destination bitmap. The Macintosh toolbox 
provides such a mechanism, called an image mask. An image mask is a 
black-and-white image where the black pixels specify what pixels in the 
source image you want copied to the destination bitmap. The following 
toolbox call allows you to copy an image from one bitmap to another and 
specify a mask determining which pixels from the source bitmap get 
copied to the destination bitmap. Figure 7 .10 shows the effects of using 
CopyBits () versus Copy Mask (). 

CopyBits 

Source 

~ + 

Copy Mask 

Source Mask 

Destination 

Destination 

Result 

Result 

Only bits specified by 

mask are copied 

Figure 7.10 CopyBits() versus CopyMask(). 



CHAPTER 7-QulckDraw 

II Copies the specified part of one bitmap into the 
II specified part of another bitmap using a mask bitmap. 
II The transfer mode is always scrCopy for those bits 
II specified in the mask (bits not specified in the mask 
II are not copied to the destination bitmap). All three 
II rectangles must be of the same size, no scaling is 
11 performed. 
void CopyMask( BitMap 

BitMap 
BitMap 

*pbitmapSource, 
*pbitmapMask, 
*pbitmapDestination, 

Rect *prectSource, 
Rect *prectMask, 
Rect *prectDestination ) ; 

CopyMask () requires that all rectangles specified be the same size, 
which means that no scaling occurs. As with CopyBits (), the source 
and destination can be color pixel maps, but the mask bitmap must be 
black and white. You do not specify a clip region or a transfer mode with 
CopyMask ();the transfer mode is always scrCopy. 

~ 
N 0 T E 

One final note about using these bitmap transfer operations. If you 
are using color pixel maps, you must make sure that the foreground 
color is black and the background color is white before using 
CopyBi ts ( l or CopyMask ( l . If you do Aot. the results of the operation 
are undefined. 

Bitmap Copy Speed Considerations 

Because copying parts of one bitmap to another occurs frequently in 
graphically oriented games, you will most likely be calling CopyBi ts ( ) 
and CopyMask ( ) often during game play. If used correctly, these bitmap 
operations operate very quickly, giving you smooth game animation. If 
used incorrectly, speed suffers greatly, reducing significantly the number 
of screen updates you can perform per second. This will ultimately lead 
to sluggish or jerky screen updates. For a game like Desert Trek, the 
speed at which the bitmap transfers take place is less important because 
there's little animation. However, arcade games will want to maximize the 



CHAPTER 7-QuickDraw 

speed at which these bitmap transfer operations take place. By adhering 
to the following rules, you can maximize the speed at which bitmap trans
fer operations take place. 

1. Always, always, always make sure that the source and destination rec
tangles are exactly the same size. Scaling can take forever (in com
puter time). 

2. Make certain that the source and destination pixel maps have the 
same color depth. Again, conversion between two color depths can 
take a very long time. 

3. It is much better to perform a small number oflarge bitmap transfers 
than it is to perform a large number of small bitmap transfers. This is 
due to the fact that the toolbox incurs a lot of overhead just setting up 
a bitmap transfer. 

4. Whenever possible, use the same rectangle to specify the exact same 
coordinates in both the source and destination bitmaps. This is easily 
accomplished for bitmaps that are a copy of a window on the screen, 
because both the window and offscreen bitmaps can have the same 
origin and size. 

Drawing Directly to the Screen 
Some games bypass CopyBi ts () and draw directly to the screen for 
speed. Don't do this. Don't even think about doing this. By doing so, you 
guarantee that your game will be incompatible with some video cards and 
monitors out there. This assumes that you can even get it to work reliably 
on standard Macintosh hardware. In addition, if your direct-to-screen 
code is written in 680x0 assembly, as was the common method to imple
ment direct-to-screen drawing in the past, your game will actually run 
slower on Power Macintoshes than if you had used CopyBi ts ( ) in the 
first place. This is because the native 680x0 code would have to be inter
preted, whereas the CopyBi ts ( ) code is native to the platform it's run
ning on, be it a 680x0-based Macintosh or a Power Macintosh. 



CHAPTER 7-QuickDraw 

Desert Trek's View Transition Special 
Effect Example 

Desert Trek provides a special graphical effect when the view in the game 
window changes. Basically, the old view dissolves into the new view. This 
is accomplished by using multiple patterns and CopyMask ( ) • The new 
view is copied into the Desert Trek game window in parts. The parts 
copied are defined by 16 patterns, as seen in Figure 7.11. Each pattern 
gets drawn one at a time into a black-and-white offscreen graphics port 
that's the same size as the view portion of the Desert Trek game window. 
That offscreen graphics port is then used as a mask for copying the new 
view image into the game window. This means that only selected pixels 
from the new view get copied onto the screen. This process is repeated 
for a total of 16 times where each time, more and more pixels get copied 
to the screen. Eventually, all the pixels are copied and the special effect is 
complete. The following code can be found in Trek Wmdow.c. 

129 

132 133 134 135 

•••• 136 137 138 139 

••• 140 141 142 

Figure 7 .11 The pattern used for the view transition. 



void DrawViewTransition( void ) 
{ 

Boolean 
short 
Graf Ptr 

bUsingColorGraphics ; 
sLoop; 
pGrafCurrent ; 

CH APTER 7-Qu ickDraw 

II Save the current graphics port so that it can be restored later . 
GetPort( &pGrafCurrent ); 

II Determine if we are using color graphics. 
bUsingColorGraphics = UsingColorGraphics( nil ) ; 

II Make sure that the Desert Trek game window is updated with the current 
II game status, including the view of the player's current location . 
UpdateTrekWindow(); 

II Draw the new view offscreen. It is this new view that will get "phased" 
II into the game window. 
DrawVieWOffscreen( nil, nil, bUsingColorGraphics, nil ); 

II If we are using color graphics, lock down the pixel map of the Desert 
II Trek game window. Remember, you must lock a pixel map before drawing 
II to it . 
if ( bUsingColorGraphics ) 

LockPixels( pGWorldTrekWindow->portPixMap ); 

II Set the current graphics port to the offscreen graphics port that will 
II be filled with the patterns used to phase the new view onscreen. This 
II graphics port is the same size as the view portion of the game window. 
SetPort( pGrafViewPatterns ); 

II Loop through each pattern. The first pattern has very few bits set, and 
II the last pattern is solid black . 
for( sLoop = 0; sLoop < NUMBER_VIEW_PATTERNS; sLoop++ 
{ 

II Fill the mask bitmap with the specified pattern. 
FillRect( &rectView, **hPatViewPatterns[sLoop] ) ; 

II Copy only those pixels from the new view specified by the mask pattern 
II above into the view part of the Desert Trek game window. The first 
II time through this loop, only a few pixels from the new view will get 



CHAPTER 7-QuickDraw 

} 

II copied to the view in the game window. Each time though this loop, 
II more and more of the new view will get copied into the game window 
II until the last copy, which will copy the entire new view into the 
I I game window. 
CopyMask( &bitmapTrekWindow, &bitmapViewPatterns, 

&pWindowTrekWindow->portBits, &rectView, &rectView, 
&rectView ) ; 

II Delay for 2160th of a second. Otherwise, if Desert Trek is running on 
II a really fast Macintosh, the special effect would go by so quickly that 
II the user wouldn't get a chance to see it. 
NiceDelay ( 2 ) ; 

II If we locked the Desert Trek game window's pixel map, unlock now since 
II we are done with it. 
if ( bUsingColorGraphics ) 

unlockPixels ( pGWorldTrekWindow->portPixMap ) ; 

II Restore the current graphics port back to what it was before this 
II routine was called. 
SetPort ( pGrafCUrrent ) ; 



INCORPORATING TEXT 

There will be many times when you'll want to display considerable quan
tities of text in your game. For example, if your game supports on-line 
help, you will need to give the user the ability to view and scroll through 
the help text. Desert Trek also maintains a textual journal that contains a 
description of the player's journey across the desert. It should be fairly 
clear that using the somewhat limited text drawing routines described in 
Chapter 7 on QuickDraw won't provide enough functionality when it 
comes to displaying, formatting, and scrolling the amount of text 
involved for these functions. The Macintosh toolbox provides the 
TextEdit manager to deal with such quantities of text. As the name 
implies, TextEdit gives Macintosh applications the ability to allow for the 
entering of text as well as the display of text. 

295 



CHAPTER 8-lncorporating Text 

This chapter will cover many aspects of the TextEdit toolbox man
ager, including how to support styled text. However, this chapter will 
limit itself to the display of textual information and not cover the process 
of allowing the user to input text into text edit fields. We have already 
seen how to obtain text from the user in Chapter 6 on dialog boxes and 
controls, and that should easily suffice for most games. Also, certain 
advanced features of TextEdit, rarely used by game programs, will be left 
out for the sake of brevity. 

Text Edit Records 
Just as windows and controls have records defining their properties, text 
edit fields have records that define their properties. Unlike the case with 
windows and controls, however, the toolbox does not provide a method 
to access all of those fields with toolbox calls. In the case of text edit 
fields, then, you will need to know the names of some of the fields con
tained within the text edit record. 

You should also note that there are really two types of text edit 
records. They contain the same number of fields, and the field names are 
all the same, but the contents of some of the fields differ. These two types 
of text edit records are commonly referred to as the "old style" text edit 
record, and the "new style" text edit record. The fundamental difference 
between the two text edit records is that the new style text edit record 
supports different text styles within the text edit record. The old style text 
edit record only supported one text style which applied to all the text in 
the text edit record. The new text edit record allows you to define multi
ple styles for different sections of text. In order to support the new style 
text edit record while at the same time supporting applications that used 
the old style text edit record, the toolbox interprets some of the fields 
within the text edit record differently. You need not be concerned over 
these differences. 

The following fields within the text edit record may interest your 
game. The only way to obtain the information they contain is to directly 



CHAPTER 8-lncorporating Text 

access the field of the text edit record itself. Do not change their values, 
though. Doing so could cause major problems, and simply begs for trouble. 

struct TERec { 

}; 

Rect destRect; 
Rect viewRect; 

short teLength; 

short nLines; 
short lineStarts[16001]; 

II Destination rectangle. 
II View rectangle. 

II Number of characters. 

II Number of lines. 
II First character of each line. 

typedef struct TERec TERec; 
typedef TERec *TEPtr, **TEHandle; 

destRect: The destination rectangle specifies the entire rectangle bound
ing all the text within a text edit record. Note that this rectangle can easily 
be much larger than what can be displayed on the screen. As text is added 
to or deleted from the text edit record, the destination rectangle's height 
grows or shrinks accordingly. The destination rectangle's width determines 
how words are broken to form lines. Text edit records automatically break 
lines of text for you to fit within the width of this rectangle. In other words, 
if a word extends beyond the right edge of the destination rectangle, the 
word will instead be placed at the left edge of the next line. 

r2I 
N 0 l E 

The top of the destination rectangle Is not constant. It reflects the 
portion of the text edit record currently being viewed in the graphics 
port. As you scroll the text of a text edit record up or down, the top 
and bottom of the destination rectangle changes accordingly. This 
means that you will use the top of the destination rectangle to deter
mine how you need to scroll the text to match the value of the scroll 
bar associated with that text edit record. We'll see an example of 
this later in this chapter. 



CHAPTER 8-lncorporating Text 

viewRect: This field specifies where the text edit record is located 
within the graphics port. You need to supply this rectangle as a parameter 
when creating a text edit record. All text associated with the text edit 
record is displayed within this rectangle. 

teLength: This field tells you how many characters are contained 
within the text edit record. Note that a text edit record can contain a 
maximum 32,000 characters. You will need to check this field whenever 
you add text to the text edit record to make sure you do not exceed the 
32,000-character limit. 

nLines : This field tells you how many lines are contained within the 
text edit record. You will need to use this field to determine what maxi
mum and minimum control values to set for the scroll bar associated with 
the text edit record. In other words, the number of lines in the text edit 
record directly determines how much scrolling the user needs to do in 
order to see all the text. 

lineStarts [] : This field gives you the offset of the first character of 
each line. The offset is expressed in number of characters from the begin
ning of the text contained within the text edit record. As we'll see later, 
this field is useful for determining what line a particular character is on, 
or for deleting a number of lines from the text edit record. 

Creating and Destroying Text Edit 
Records 

You do not need to allocate storage for a text edit record when creating 
one because the toolbox takes care of all the memory management for 
you. This also includes the management of the memory taken up by the 
text and text styles contained within the text edit record. 

Certain characteristics of the text contained within a text edit field 
are determined at the time of creation. In other words, the text's font, 
style, size, and transfer mode get copied from the corresponding charac
teristics of the current graphics port when the text edit record is created. 



CHAPTER 8-lncorporating Text 

Make sure to set these text characteristics before creating the text edit 
record. This is especially true if you plan to use an old style text edit 
record because you can't change the text's characteristics after the text 
edit record is created. 

The following two toolbox calls create either an old style text edit 
record or a new style text edit record. The text edit record will be created 
inside the current graphics port, be it an offscreen graphics port, or an 
onscreen window. These toolbox routines return a handle to the text edit 
record created. You will need to use this handle when referencing that 
text edit record, so keep it handy. 

II Creates an old style text edit record, one which will not 
II support multiple text styles. 
TEHandle TENew( Rect *pRectDestination, 

Rect *pRectView ); 

II Creates a new style text edit record, one which will 
II supPQrt multiple text styles. 
TEHandle TEStylNew( Rect *pRectDestination, 

Rect *pRectView ) ; 

The two rectangle parameters are specified in the local coordinates of the 
graphics port in which the text edit record is created. The first rectangle, 
pRectDestination, is really used to specify the width of a text edit 
record. The height of this rectangle will grow or shrink automatically as 
text is added to or deleted from the text edit record. The second rectan
gle, pRectView, is the viewing rectangle. The viewing rectangle is where 
text will be displayed in the graphics port containing the text edit record. 
Most of the time you will want the destination rectangle to be the same as 
the view rectangle when you first create a text edit record. Unless you 
plan to support the horizontal scrolling of text, make sure that both rec
tangles have the same width. 

Once you are finished with a text edit record, you need to dispose of 
it. This causes it to be removed from its graphics port and frees all its 
memory resources. The following toolbox call disposes of both old and 
new style text edit records. 



CHAPTER 8-lncorporating Text 

II Disposes of a text edit record, removing it from the 
II graphics port and freeing up all its memo:ry. 
void TEDispose( TEHandle hTE ); 

Updating Text Edit Records 

When a window receives an update event, you need to update all text edit 
records contained within that window. In addition, anytime you change 
the appearance of a text edit record, you need to update it so that those 
changes get reflected in the graphics port or window containing that text 
edit record. The following toolbox call updates a text edit record. Note 
that TEUpda t e ( ) is automatically called for you whenever you add, 
delete, or scroll the text within a text edit record. 

II Redraws the portion of a text edit record specified by 
I I pRectUpdate. 
void TEUpdate ( Rect 

TEHandle 

Text Justification 

*pRectUpdate, 
hTE ) ; 

You can justify text within a text edit record to be either left justified, cen
tered, or right justified. The justification affects all text within the text 
edit record, meaning that you cannot justify sections of text within the 
same text edit record differently. The following justification constants are 
defined by the Macintosh toolbox. 

en um 
teJustLeft = 0, 
teJustCenter = 1, 
teJustRight = -1 

II Left justified text. 
II Centered text. 
II Right justified text. 

To set the text justification, use the following toolbox call. 



CHAPTER 8-lncorporating Text 

II Sets the text justification for the specified text edit 
11 record. 
void TESetJust ( short 

TEHandle 

Line Height 

sJustification, 
hTE ) ; 

There will be times when you need to determine the height of one or 
more lines in the text edit record. For example, if you need to determine 
how many lines fit on the screen at one time, something which you'll 
need to do to set the scroll bar's control values correctly, you have to 
compute the average height of a line in the text edit record. The average 
height of a line is the total height of all lines divided by the number of 
lines in a text edit record. The following toolbox call returns the height, 
in pixels, of the range of lines specified. If you want the height of a single 
line, use the same value for the start and end lines. Note that you specify the 
end line first. 

II Returns the height, in pixels, of the lines specified. 
long TEGetHeight( long lEndLine, 

long 
TEHandle 

lStartLine, 
hTE ) ; 

Character Coordinates 
As mentioned earlier, you can imagine a single large rectangle that 
bounds all of the text contained within a text edit record. At times, it 
might be useful to determine which character lies at a particular point 
within that bounding rectangle, or, to determine the point within that 
bounding rectangle at which a particular character lies. Desert Trek uses 
this information to support the display of pictures in a text edit record. 
The position of the picture is specified relative to a particular character in 
the 'TEXT' resource. The location of a picture within the text edit 
record's bounding rectangle can be computed using the coordinates of 



CHAPTER 8-lncorporating Text 

the character next to that picture. We'll see more about the support of 
pictures in text edit records toward the end of this chapter. 

The following two toolbox calls can be used to convert between a 
character's offset within the text and its point coordinate within the text 
edit record's bounding rectangle. 

II Returns the character offset within the text edit record's 
II text that corresponds to the point specified. 
short TEGetOffset( Point pt, 

TEHandle hTE ) ; 

II Returns the point location corresponding to the character 
II offset within the text edit record's text. 
Point TEGetPoint( short sCharacterOffset, 

TEHandle hTE ) ; 

Selecting Text 
Before we get into how to add and delete text from a text edit record, it is 
important to know how to select text within a text edit record. Why? 
Well, when adding text to a text edit record, the text selection determines 
where that text gets added. Similarly, to delete text from a text edit 
record, you must first select the text you want deleted. 

To select text in a text edit record, use the following toolbox call. Note 
that the selected text gets highlighted or inverted (e.g., white text on a black 
background, as opposed to the usual black text on a white background). 

II Sets the selected text within the specified text edit 
II record. The selection is specified by character position 
II within the text edit record. If the start and end 
II selections are the same, you are really setting the 
II insertion point's location. 
void TESetSelect( long 

long 
TEHandle 

lSelectionStart, 
lSelectionEnd 
hTE ) ; 

The start and end selection characters are specified as an offset from the 
first character in the text edit record. If you try to set the text selection 



CHAPTER 8-lncorporating Text 

beyond the last character of the text edit record, the selection will stop at 
the last character. If the start character specified occurs after the end 
character specified, the two parameters are automatically reversed. If you 
want to deselect all the text, or set the insertion point for adding text, 
specify the same value for the start and end selection characters. This will 
cause the insertion point to be positioned just after the character speci
fied. If you want to position the insertion point just before the first char
acter, specify 0 for both the start and end positions. 

Adding Text 
To insert text into a text edit record, use one of the following two toolbox 
calls. You need to specify a pointer to the text that is to be added, th~ 
length of the text that is to be added, and the text edit record to which 
you are adding the text. For new style text edit records, you can also spec
ify an array of style tables to be used to set the styles of the text added. 
Most of the time, this array will be loaded from a resource of type 'styl'. 

II Inserts text into the specified text edit record. The 
II text gets inserted at the insertion point or just before 
II the first character selected in the text edit record. 
void TEinsert ( Ptr pText, 

long lTextLength, 
TEHandle hTE ) ; 

II Inserts text into the specified text edit record. The 
II text gets inserted at the insertion point or just before 
II the first character selected in the text edit record. The 
II styles pointed to by hST will be used to set the text 
II styles of the text inserted, and is typically loaded from 
II a 'styl' resource. 
void TEStylinsert( Ptr 

long 
stScrpHandle 
TEHandle 

pText, 
lTextLength, 
hST, 
hTE ) ; 

The text to be inserted gets added at the insertion point. If there's a block 
of text selected, the insertion point is considered to be located just before 



CHAPTER 8-lncorporating Text 

the first character of the selection. The selected text remains unaffected 
after inserting text. In other words, it remains selected. If you want the 
inserted text to replace the selected text, you'll need to delete the selected 
text first. We'll see how to do that in the next section. 

The following example adds styled text to a new text edit record. The 
text is loaded from a resource of type 'TEXT', and the styles table associ
ated with that text is loaded from a resource of type styl. When you cre
ate a 'TEXT' resource using ResEdit, a styl resource with the same ID is 
created to contain the styles you select while editing the text. The follow
ing code excerpt comes from Information Window.c. Only the code 
associated with the text edit record is shown here. 

void ConstructinfoWindow( short 
short 

sWindowID, 
sTextResourceID, 

short sTopicsMenuID, 
Boolean bUseColor ) 

PINFO_WINDOW pinfoWindow; 
Handle hText; 
StScrpHandle hStScrpText; 
Handle hitem; 
short sMaxScrollValue; 
Rect rect; 
short sitemType; 

II I created a user item in the dialog to specify the location of the text 
II edit record within that dialog. Here I get it's rectangle so I know what 
II to specify as the text edit record's view rectangle. 
GetDitem( pinfoWindow->pDialog, INFO_WINDOW_TE_ID, &sitemType, &hitem, 

&(pinfoWindow->rectText) ); 

II Create a new text edit record that supports multiple text styles. 
pinfoWindow->hTE = TEStylNew( &(pinfoWindow->rectText), 

&(pinfoWindow->rectText) ); 

II Load the text for the text edit record from the resource fork. 
hText = GetResource( 'TEXT', sTextResourceID ); 

II Load the associated text styles array from the resource fork. 
hStScrpText = (StScrpHandle) GetResource( 'styl', sTextResourceID ); 



JI Lock the text in memory. 
HLock { hText ) ; 

CHAPTER 8-lncorporating Text 

JI Insert the text and its associated text styles into the text edit record. 
TEStylinsert{ *hText, SizeResource( hText ), hStScrpText, 

pinfoWindow->hTE ); 

JI Done with the text and style array. Unlock and free them from memory. 
HUnlock( hText ) ; 
ReleaseResource ( hText ) ; 
ReleaseResource( (Handle) hStScrpText ); 

JI Compute how many lines fit on the screen at one time. This is determined 
JI using the height of the display area and dividing it by the average 
JI height of a line in the text edit record. The average height of a line 
JI in the text edit record is computed by dividing the entire height of all 
JI the lines in the text edit record by the number of lines in the text edit 
// record. 
sHeight = TEGetHeight( (*pinfoWindow->hTE)->nLines, 0, pinfoWindow->hTE ); 

pinfoWindow->sLinesPerPage = ( pinfoWindow->rectText.bottom -
pinfoWindow->rectText.top ) I 

( sHeight I (*pinfoWindow->hTE)->nLines ); 

JI Compute the scrollbar's maximum value. This is the total number of lines 
JI in the text edit record minus the number of lines that can fit on the 
II screen at one time. 
sMaxScrollValue = {*pinfoWindow->hTE)->nLines - pinfoWindow->sLinesPerPage; 

JI If all the lines fit on the screen, we can disable the scrollbar ... 
if ( sMaxScrollValue <= O ) 

HiliteControl( pinfoWindow->hControlScrollbar, 255 ); 

JI otherwise set the scrollbar's maximum value. 
else 

SetCtlMax( pinfoWindow->hControlScrollbar, sMaxScrollValue ); 

Deleting Text 

There may be times when you need to delete text from a text edit record. 
The following toolbox call deletes the selected text from the specified 



306 

CHAPTER 8-lncorporating Text 

text edit record. The insertion point will be left where the deleted text 
used to be, and of course, there will no longer be any selected text. 

II Deletes the selected text from the specified text edit 
11 record. 
void TEDelete( TEHandle hTE ); 

T I P 

If you are constantly adding text to the end of a text edit record, 
such as Desert Trek does for keeping the game's journal, you need to 
be careful not to exceed the 32,000 character limit. Otherwise, some 
of the text you're adding won't really get added. A great way to 
make sure the text you're adding really gets added is to check to 
make sure there's enough room for that text. If not, delete enough 
text from the beginning of the text edit record to make room for the 
new text. The following routine from Desert Trek adds text to the 
game's journal. Notice that it deletes lines of text from the beginning 
of the journal if there isn 't enough room to hold the next text. This rou
tine can be found in Journal.c. 

void AddJournalText( char *szText, 
short sLength, 
Boolean bUpdateWindowNow ) 

short sMaximurnScrollValue = O; 

II While there isn't enough room in the text edit record to hold the new 
II new text, delete the first line of the .text edit record. 
while ( (*teJournal)->teLength + sLength >= 32000 ) 
{ 

II First select the text we want to delete. In this case, it's the entire 
II first line of text in the journal. 
TESetSelect( 0, (*teJournal)->lineStarts[l], teJournal ); 

II Delete the selected text. 
TEDelete ( teJournal ) ; 

II We always want the new text to be added at the end of the journal. So, 
II we must set the insertion point to the end of the journal. Do so by 

II setting the selection start and end positions to be the last character 
II of the journal. 
TESetSelect( (*teJournal)->teLength, (*teJournal)->teLength, teJournal ) ; 



CHAPTER 8-lncorporating Text 

II Insert the new text into the journal . 
TEinsert( szText, sLength, teJournal ); 

II Recompute the maximum scrollbar value based on the new number of lines 
II in the journal (and the number of lines displayed on the screen). 
sMaximumScrollValue = (*teJournal)->nLines - sLinesPerPage; 

II Make sure that the scrollbar's maximum value at least 0. 
if ( sMaximumScrollValue <= 0 ) 

sMaximumScrollValue = O; 

II Set the scrollbar's highlight state. Remember, if there's nothing to 
II scroll , we need to disable the scrollbar . Otherwise, it needs to be 
II enabled. 
HiliteControl( hControlJournalScrollbar, sMaximumScrollValue? 0 : 255 ) ; 

II Set the new maximum value for the scrollbar, as computed above. 
SetCtlMax( hControlJournalScrollbar, sMaximumScrollValue ); 

II Whenever text is added to the journal, we always want to scroll the text 
II viewed by the user t o the bottom of the text edit record . This will 
II force the new text added to be displayed to the user, regardless of what 
II journal text they were looking at before the new text was added. 
SetCtlValue( hControlJournalScrollbar, sMaximumScrollValue ); 

II Update the Desert Trek main window if specified by the calling routine . 
if ( bUpdateWindowNow ) 

SynchJournalTextWithScrollbar(); 

Setting Text Style 

As stated above, new style text edit records support multiple text styles for 
different sections of text. What styles can you set for the text? The toolbox 
defines the following text style structure that changes the text's style. 

struct TextStyle { 

short tsFont; II Font number. 
Style tsFace; II Face style (bold, italics, etc . ) 
char filler; 
short tsSize; II Text point size. 



308 

CHAPTER 8-lncorporating Text 

RGBColor tsColor; II Text RGB Color. 
} ; 

typedef struct TextStyle TextStyle; 
typedef TextStyle *TextStylePtr, **TextStyleHandle; 

How do you set the style for a section of text within a text edit record? First, 

you need to create a text style structure and populate it with the desired style 
values. Then you need to select the text that you want to affect. After doing 

so, use the following toolbox call to set the selected text's style. 

II Modes used when calling TESetStyle(). 
enum { 

doFont 1, II Change font . 
doFace 2, II Change face (bold, italics, etc.) 
doSize 4, II Change size. 
doColor = 8, II Change color. 
doAll = 15 II Change them all! 

II Sets the text style of the selected text within the 
II specified text edit record. The sMode parameter specifies 
II which attributes to set. You can add the modes together 
II if you want to modify multiple text attributes. Set 
II bRedraw to true to have the text immediately redrawn. 
void TESetStyle( short sMode, 

TextStylePtr ptextStyle, 
Boolean 
TEHandle 

bRedraw, 
hTE ) ; 

If you need to determine which styles apply to a given character within a 
text edit record, you can use the following toolbox call to obtain it. 

II Obtains style information for the character at the given 
II offset within the text edit record's text. Also returns 
II the height of the line containing that character as well 
II as the font ascent for that character . 
void TEGetStyle( short sCharacterOffset, 

TextStylePtr 
short 
short 
TEHandle 

ptextStyl e, 
sLineHeight, 
sFontAscent, 
hTE ) ; 



CHAPTER 8-lncorporating Text 

Scrolling Text 

How do you make sure that the correct portion of a text edit record is 
being displayed on the screen? The main point of using a text edit record 
is to allow the user to scroll through a large amount of text. It is up to 
you to make sure that the text corresponding to the scroll bar's value is 
being displayed on the screen. The toolbox provides the following rou
tine to scroll text within a text edit record. 

II Scrolls a text edit record horizontally and/or vertically 
II by the amounts specified. 
void TEScroll ( short sHArnount, 

short 
TEHandle 

sVAmount, 
hTE ) ; 

In essence, this routine modifies the destination rectangle, offsetting it by the 
horizontal and vertical values you specify. Positive values for the offsets cause 
text to scroll down or to the right, negative values cause the text to scroll up 
or to the left. Usually, you will only be concerned with scrolling text up or 
down, meaning that you can specify 0 for the horizontal scroll amount. 

The toolbox also provides a quick method to scroll the selected text 
into view. However, if you use this call, you'll need to set the scroll bar's 
value manually. Remember, you usually scroll the text in a text edit record 
to match the value of the scroll bar associated with that text edit record. 
If you start scrolling the text yourself, you'll need to make sure the scroll 
bar stays synchronized. 

II Scrolls the selected text into view. 
void TESelView( TEHandle hTE ); 

Example 
The following example from Desert Trek synchronizes a text edit record's 
text with the current scroll bar value. Whenever the user changes the 
value of the scroll bar, the text associated with the scroll bar's value needs 
to be scrolled into view. The following routine fromJournal.c scrolls the 
journal text accordingly. 



310 

CHAPTER 8-lncorporating Text 

void SynchJournalTextWithScrollbar( void ) 
{ 

GrafPtr pGrafCurrent; 
short 
short 
short 

sCurrectPosition; 
sNewPositon; 
sScrollbarValue; 

II Save the current graphics port so that we can restore it later. 
GetPort( &pGrafCurrent ); 

II Set the current graphics port to the journal's graphics port. 
SetPort( pGrafJournal ); 

II Lock the text edit record, so it stays fixed in memory while we're using 
II it. 
HLock( (Handle) teJournal ) ; 

II Get the current vertical position of the text being viewed on the screen. 
II It's the top of the view rectangle minus the top of the destination 
II rectangle. Remember, it's the destination rectangle that changes when 
II we scroll a text edit record's text. 
sCurrectPosition = (*teJournal)->viewRect.top - (*teJournal)->destRect.top; 

II Get the scrollbar's current value. 
sScrollbarValue = GetCtlValue( hControlJournalScrollbar ); 

II If the scrollbar's value is 0, the user is looking at the first page of 
II text. Thus, the new position is 0, meaning the top of the text. 
if ( !sScrollbarValue ) 

sNewPositon = O; 

II Otherwise , the position we need to scroll to is determined by the 
II scrollbar's value. Remember that the scrollbar tells us which line 
II is the first line being viewed on the screen. Thus, we need to scroll 
II to the vertical coordinate specified by that line. TEGetHeight() tells 
II us that value. 
else 

sNewPositon = TEGetHeight( sScrollbarValue, 0, teJournal ); 

II Scroll the text to the new current position. Since TEScroll takes an 
II offset, we need to subtract the new position from the current position. 
II Note that we don't want to scroll the text horizontally, so the first 
II offset specified is 0. 
TEScroll( 0, sCurrectPosition - sNewPositon, teJournal ); 



CHAPTER 8-lncorporating Text 

II We're done with the text edit records, so unlock it. 
HUnlock( (Handle) teJournal ) ; 

II Update the window to reflect the scrolled text. The journal's text edit 
II record is really kept in an offscreen graphics port, and then copied to 
II the screen using CopyMask(). 
DrawJournalinTrekWindow(); 

II Restore the graphics port to what it was before this routine was called. 
SetPort ( pGrafCurrent ) ; 

Accessing Text 

There will be times when you need to access the text of a text edit record. 
For example, Desert Trek can save the journal's text into a text file. In 
order to do so, Desert Trek needs to access the text within the journal's 
text edit record so that it can be saved to a file. The following toolbox 
routine returns a text edit record's text. 

typedef char Chars[32001]; 
typedef char *CharsPtr,**CharsHandle; 

II Retu:rns a character handle to the text contained within 
II the specified text edit record. 
CharsHandle TEGetText ( TEHandle hTE ) ; 

Be very careful with the character handle returned, because it points to 
the actual text contained within the text edit record. Do not modify the 
text pointed to by the character handle, otherwise you'll be asking for 
trouble. Also note that if you dispose of a text edit record, any character 
handles you have pointing to that text edit record's text will become 
invalid because that text will be disposed of with the text edit record. 

Searching for and Replacing Text 
The toolbox provides a very powerful text search and replace routine. You 
can use this routine to search for a string in a text edit record and, option-



CHAPTER 8-lncorporating Text 

ally, replace it with another string. There's no reason why you can't use the 
following routine on blocks of text not contained within text edit records, 
but generally, it is used on text contained within text edit records. 

II Searches text for a target string and optionally replaces 
II the target string with a replacement string. Returns a 
II negative value if the target string is not found. 
long Munger ( Handle hText, 

long lStartPosition, 
Ptr pTargetText, 
long lTargetLength, 
Ptr pReplacementText, 
long lReplacementLength ) i 

Munger ( ) returns an offset into the text block or a negative value upon 
completion. A negative value means that the target text was not found. A 
non-negative result means that the target text was found, and if specified, 
replaced. In the case where no replacement text was specified, the return 
value is the character position just after the found string. If replacement 
text was specified, the return value is the character position just after the 
text replacing the target string. 

Munger ( ) takes quite a few parameters, so lets take a closer look at 
them. You first need to specify a handle to the text to be searched. For a 
text edit record, this is the character handle returned by TEGetText (). 

Next, you need to specify the starting position of the search. If you want 
to start the search at the beginning of the text block, specify 0. Combined 
with the return value, this parameter is very useful when you are doing a 
global search and replace. You simply call Munger ( ) repeatedly, passing 
it the return value of the previous call until you finally get a negative 
result, that is, no more occurrences of the text string can be found. 

The text string you want to look for is specified by a pointer to that 
string. This is called the target text because that's the target of your 
search. You need to specify the length of the target text, which means that 
you can't assume it's a standard C null-terminated string. It is legal to 
specify ni 1 as the target, which means that text will always get replaced 
starting at the lStartPosi ti on character in the text array. The num
ber of characters replaced in this case is specified in the 



CHAPTER 8-lncorporating Text 

~:a:e~~:~~::tt~!a;::~~::~~:;~; ~~:~7ci~:~:t~~~r~::i~::.length, .·;;;!!~· 
The replacement string is also specified by providing a pointer to 

that string and its length. If a replacement string is specified, the found 
target string will be replaced with the replacement string. The strings do 
not need to be the same length. It is perfectly legal to specify ni 1 as the 
replacement string, in which case a found target string is not replaced. 
This is useful if you are only interested in locating a string within a text 
block. One final note: If you specify a replacement string and a replace
ment string length of 0, the target string is simply deleted (since the 
replacement string has a length of 0). 

Drawing Pictures in Text Edit Records 

The following code examples show you how you can support graphics in 
text edit records. Basically, you need to do two things: (1) you need to 
determine where the graphics go in relation to the text contained within 
the text edit record, and (2) you need to draw the graphics on the screen 
when the user has scrolled them into view. 

This is really very simple to accomplish. Think about a large bound
ing rectangle that encompasses all the text of a text edit record. Now, 
envision pictures placed among the text contained in that bounding rec
tangle. How do you determine where the pictures go? What you really 
need to do is to calculate a rectangle bounding the picture. You'll know 
the picture's width and height from the picture itself, so all you really 
need is the comer of the rectangle within the text edit record that will 
bound that picture. That corner can be calculated by specifying the pic
ture's location relative to a character's position in the text. For example, 
you can say that picture 1 is located after character 86. After setting the 
pictures' positions, it's easy to determine what pictures to draw based on 
the scroll bar's value. You're already doing this to determine what text to 
display based on the scroll bar's value. 

Desert Trek determines what character a picture is drawn near via a 
special keyword specified in the 'TEXT' resource. In fact, Desert Trek 



CHAPTER 8-lncorporating Text 

provides three special keywords that can be placed in the 'TEXT' 
resource: one for icons, one for pictures, and one that determines where 
to scroll when a topic is selected from the topic's pop-up menu. If you 
want to use the code from Information Wmdow.c to support help and 
other information windows in your game, you can specify these keywords 
anywhere in the 'TEXT' resource. 

The >Topic< keyword determines which line of the 'TEXT' resource 
gets displayed at the top of the screen when a topic is selected from the 
topic's pop-up menu. If the user selects the first topic from the topic's 
pop-up menu, the text gets scrolled to the first occurrence on the 
>Topic< keyword. If the user selects the second topic from the topic's 
pop-up menu, the text gets scrolled to the second occurrence of the 
>Topic< keyword. You can probably take things from here. 

The >Pict(pl,p2,p3,p4)< keyword is used to place a picture in the text 
edit record at the position of the keyword. Make sure to leave enough 
blank lines in the text to allow space for the picture, otherwise it will over
lay some of the text. The Picture keyword takes four parameters. The first 
parameter, pl, specifies the minimum color depth needed to support a 
color picture. For example, 4 means that the monitor must be set to at 
least 16 color mode in order to use a color picture. A value of 8 would cor
respond to 256 colors. The second parameter, p2, specifies the resource 
ID of the color picture to draw at that location in the text edit record. The 
third parameter, p3, specifies the resource ID of the black-and-white pic
ture to draw at that location if the monitor isn't set to the color depth 
specified by parameter pl. The final parameter, p4, specifies the justifica
tion of the picture within the text edit record. A value of 1 means left-jus
tified, a value of 2 means centered, and a value of 3 means right-justified. 

The >lcon(pl,p2)< keyword places an icon in the text edit record at the 
position of the keyword. Again, you'll need a couple of black lines to leave 
space to draw the icon. The first parameter, p 1, specifies the resource ID 
of the icon, which can be either a color icon of type cicn, or a black-and
white icon of type 'ICON'. If you have both types of icons defined, the 
proper icon will be drawn based on the monitor's pixel depth. The second 
parameter, p2, specifies the justification. Again, use 1 for left-justification, 
2 for center-justification, and 3 for right-justification. 



CHAPTER 8-lncorporating Text 

You can look at the code in Information Wmdow.c to see how the 315 
'TEXT' resource gets parsed. Basically, Munger ( ) is used to locate all 
three types of keywords. The keywords are removed from the text before 
the text gets put into the text edit record so that the user doesn't see 
them. The following code from Information Wmdow.c determines the 
location of a picture based on which character in the text edit record the 
picture follows. Again, think of this position as being located somewhere 
within the large rectangle bounding the entire text edit record. 

static void SetPicturePosition( PINFO_WINDOW pinfoWindow, 
PPICTURE_INFO pPictureinfo, 
Re ct *prectBitmap ) 

short sLineNwnber; 
short sLineHeight; 
short sLeft; 
short sTop; 
Point ptCorner; 

II Find the line nwnber of the line containing the character at which this 
II picture is to be located . This is a Desert Trek routine . 
sLineNwnber = FindLineNwnber(pinfoWindow, pPictureinfo->sCharacterPosition); 

II Get the height of the line containing this pict ure. 
sLineHeight = TEGetHeight( sLineNwnber , sLineNwnber , pinfoWindow->hTE ); 

II Get the point location within the text edit record's bounding rectangle 
II that corresponds to the character's position. This is where the picture 
II will be located within the bounding rectangle of the text edit record. 
ptCorner = TEGetPoint( pPictureinfo->sCharacterPosition, pinfoWindow->hTE ); 

II Compute the vertical coordinate of the picture. We need to subtract the 
II height of the line from the vertical position computed above to account 
II for the fact that the point returned by TEGetPoint() is really the bottom 
II of the character's position within the text edit record. 
sTop = ptCorner.v - sLineHeight; 

II If the picture is left justified, it's horizontal position is at the left 
II of the text edit record (plus a little margin). 
if ( pPictureinfo->lJustification == 1 ) 

sLeft = pinfoWindow->rectText.left + 2; 



316 

CHAPTER 8-lncorporating Text 

II I f the picture is centered, it's horizontal coordinate is the middle of 
II the text edit record minus half the picture's width. 
else if ( pPictureinfo->lJustification == 2 ) 

sLeft = pinfoWindow->rectText.left + ( pinfoWindow->rectText .right -
prectBi tmap->right ) I 2; 

II If the picture is right justified, the left edge of t he picture is the 
II right edge of the text edit record minus the width of the pict ure. 
else 

sLeft = pinfoWindow->rectText.right - prectBitmap->right - 2; 

II Set's the picture ' s l ocation within the text edit record. 
SetRect( &pPictureinfo->rectPosition, sLeft, sTop, 

sLeft + prectBitmap->right , sTop + prectBitmap->bottom ); 

After you know where the pictures go, you simply need to draw them on 
the screen when appropriate. Again, it's as simple as knowing what part of 
the rectangle bounding the entire text edit record is being displayed on 
the screen. If any pictures are located within the part being displayed on 
the screen, you need to draw them. The following routine from 
Information Wmdow.c determines if a picture is visible on the screen 
and if so, draws it. This routine gets called whenever the value of the 
scroll bar changes. 

static void DrawPictures( PINFO_WINIXlW pinfoWindow ) 
{ 

short sLoop; 
short sScrollbarValue; 
short sCUrrentHeight O; 
Re ct rectView; 
Re ct rectSect; 
Rect rectSectPicture; 
PPICTURE_INFO pPictureinfo; 

II Lock the handle to the picture information records so that we can 
II assign a pointer to i t which can be used throughout this function. 
II This will speed access to the picture information records. 
HLock( (Handle) pinfoWi ndow->hPictures ); 
pPictureinfo = *pinfoWindow->hPictures; 

II Get the current scrollbar's value so we can use it to calculate the part 



CH A PTE R 8-lnco rpo rating Te xt 

II of the text edit record currently being displayed on the screen. 
sScrollbarValue = GetCtlValue( pinfoWindow->hControlScrollbar ); 

II If the scrollbar ' s value is not 0 (meaning that the user is not looking 
II at the top of the text edit record), determine the vertical coordinate of 
II the line currently displayed at the top of the screen. 
if ( sScrollbarValue ) 

sCUrrentHeight = TEGetHeight( sScrollbarValue, 0, pinfoWindow->hTE ); 

II Set the rectangle specifying what part of the text edit record is being 
II displayed on the screen. This rectangle is relative to the top left of 
II the rectangle bounding the entire text edit record. The left and right 
II coordinates are simply the left and right edges of the text edit record 
11 itself . 
SetRect( &rectView, pinfoWindow->rectText.left, sCUrrentHeight + 

pinfoWindow->rectText.top, pinfoWindow->rectText.right, 
sCUrrentHeight + pinfoWindow->rectText.bottom ); 

II Loop through each picture contained in this text edit record to see 
II if they intersect the rectangle being viewed on the screen. 
for( sLoop = O; sLoop < pinfoWindow->sNurnberPictures; 

sLoop++, pPictureinfo++ ) 

II If the picture's rectangle intersects the rectangle being viewed on 
II the screen, we need to draw the part of the picture that intersects 
II with the screen. 
if ( SectRect( &pPictureinfo->rectPosition, &rectView, &rectSect ) ) 
{ 

II The intersection rectangle specifies the part of the screen that 
II contains the picture to be drawn. To determine the part of the 
II picture that should be drawn to the screen, simply offset the 
II screen rectangle by the top left corner of the picture's location 
II within the text edit record. 
rectSectPicture = rectSect; 
OffsetRect( &rectSectPicture, 

-pPictureinfo->rectPosition . left, 
-pPictureinfo->rectPosition.top ); 

II Convert the intersection rectangle into coordinates relative to the 
II screen containing the text edit record . This is where on the screen 
II the picture will be drawn. 
OffsetRect( &rectSect, 0, -sCUrrentHeight ) ; 

II Copy the part of the picture that needs to be drawn on screen . 

317 



318 

CHAPTER 8-lncorporating Text 

CopyBit s( &pPictureinfo->bitrnapPicture , 
&pinfoWi ndow->pDial og->port Bit s , 
&rectSectPicture, &rectSect, 
srcCopy, nil ) ; 

II Unlock t he picture information handle since we ' re done wi th it . 
HUnlock( (Handle) pinfoWindow->hPictures ); 



READING AND WRITING FILES 

Most games will need to read and write files to disk. For example, any 
game that supports a save game feature will need to save information to 
disk about a game in progress. In addition, you may want to write high 
scores, help text, or other types of information to disk. You could use the 
standard 110 functions provided by the C language to support file 110 in 
your game, but they do not provide the flexibility and performance that 
the Macintosh toolbox provides. In addition, you will want to use the 
standard Macintosh File Open and Save AB dialog boxes used to get file 
names from the user. These functions are supported by the File Manager, 
and are the topic of discussion for this chapter. This chapter covers those 
file manager routines that will be needed to support disk 110 for game 
programs. More advanced file 110 features such as those used to format 
disks or modify the file system are not covered. 

319 



CHAPTER 9-Reading and Writing Files 

Before you start reading and writing files, you need to know where those 
files are located. The toolbox routines to create and open files take a vol
mne reference number to specify in which disk and folder the file exists. 
A volume reference number uniquely identifies a specific folder on a partic
ular drive. When the user chooses a file to save or load, you will be given 
the volume reference number of the drive and folder specified by the 
user. Associated with a volume reference number is the volume's name. 
The volume's name is fully qualified, meaning that each nested folder is 
contained in the name. The volume's name begins with the name of the 
drive followed by a colon, and then followed by a list of all the folders 
leading to the folder specified by the volume's name. Each folder is sepa
rated by a colon. For example, the volume name for a folder named My 
Folder contained within the Game Folder folder of the disk named My 
Disk would be My Disk:Game Folder:My Folder. 

The Current Volume 
The current volume specifies the current drive and directory and is used as 
a starting point when you display the standard File Open and Save As 
dialog boxes. In other words, the first folder's contents displayed to the 
user in a File Open or Save As dialog box is the current volume. The 
user, of course, can change the folder and disk using the standard File 
dialog boxes. Your game should change the current volume to the one 
specified by the user after they have completed a File Open or Save dia
log box so that they will start out in that folder the next time a File dialog 
box is displayed. If you do not change the current volume, the user will 
be put back to the original current volume the next time a File Open or 
Save dialog box is displayed. That can be very annoying. 

Which volume is current when your game first runs? The initial cur
rent volume is determined by the location your game. This will be the 
drive and folder containing you game program. 



CHAPTER 9-Reading and Writing Files 

Getting and Setting the Current Volume 
The following two toolbox routines allow you to get and set the current 
volume. Note that for SetVol (),you can set the current volume using 
either a fully qualified volume name or a volume reference number. The 
volume reference number is used if the volume name parameter is set to 
nil, otherwise the volume name parameter is used. 

II Returns the current volume's name and reference number. 
OSErr GetVol( StringPtr pStringName, 

short *psReferenceNumber ) ; 

II Sets the current volume, using either a volume name or 
II volume reference number. You specify nil for the name 
II in order to set the current volume to the supplied 
II reference number. 
OSErr SetVol( StringPtr 

short 
pStringName, 
sReferenceNumber ) ; 

File Creator and File Type 

A file's creator and type were discussed in the context of Finder icons 
back in Chapter 3 on resources. When it comes to creating files, you will 
need to specify a file creator and file type. Both are four character fields. 
Most of the time, the file creator of files your game creates should match 
the file creator of the game itself. This allows the Finder to associate that 
file with your game (and allows the Finder to display the custom icon you 
created for a file of that type). On occasion, however, you might want to 
specify a file creator other than your game's file creator. For example, if 
you create a text file that you want the user to look at using Teach Text or 
SimpleText, you can specify a creator of 'ttxt', which is the creator type 
for Teach Text and SimpleText. By doing so, Teach Text or Simple Text will 
be started when the user double-clicks on the text file. 

The file type field can be used to differentiate between the types of 
files your game supports. For example, Desert Trek saves both game files 



CHAPTER 9-Reading and Writing Files 

and high scores lists. By using a different file type for each, the Finder 
displays a different icon for each type of file. In addition, the file type is 
used when your program displays the standard File Open dialog box. 
Only files of the type you specify are listed in the standard File Open dia
log box. For example, you can specify to only have saved game files dis
played when the user tries to open a saved game. This will prevent other 
types of files from being selected by the user. 

The Standard File Dialog Boxes 
The Macintosh toolbox provides two standard File dialog boxes that can be 
used by any program. These two dialog boxes are commonly referred to as 
the standard File Open dialog box and the standard File Save As dialog box. 
The standard File Open dialog box allows the user to specify a file to load. 
The standard Save As dialog box allows the user to specify a file name and 
location of a file to save. See Figure 9 .1 for an example of these dialog boxes. 

I!!! Desklol! ..-1 =Mac HD 

=Mac HD tit [ Ejetl ) W Trash 
[ Desktop ) 

to 
[ New Li) 

Saue game as: I Cancel 

lrrek Game n Saue II 
Standard File Save As Dialog 

l!iii! Oesklol! ..-1 
•Md( 1111 

[)Trek &ame 
1UT Trash 

=Mac HO 

[ Eject ) 

[ Desktop ) 

Concel 

~------~· I[ Open Jl 

Standard File Open Dialog 

Figure 9.1 The standard Open and Save As dialog boxes. 



CHAPTER 9-Reading and Writing Files 

The routines used to display the standard File dialog boxes return a standard < 

file reply record. This record contains information related to the file speci
fied by the user. The following describes the standard file reply record. 

struct SFReply { 
Boolean good; 
Boolean copy; 
OSType fType; 
short vRefNum; 
short version; 
Str63 fName; 

} ; 

II True if the user clicked OK 
11 Not used 
11 File type 
II Volume reference number 
II File version 
II File name 

typedef struct SFReply SFReply; 

The good field specifies whether the user clicked on OK or Cancel 
You should continue the open or save operation only when the value of 
this field is true. If it is false, you should cancel the open or save 
operation. The fType field specifies the type of the file selected by the 
user. The volume reference number returned will need to be used when 
creating or opening the file specified by the user. Remember, it is com
mon practice to set the current volume to the volume specified by the 
user. That way, the next time a standard File dialog box is displayed, the 
first folder shown will be the one the user last specified. The file's version 
number is currently always set to 0 by the toolbox. The last field of the 
standard file reply record is the file's name. Though enough storage is 
allocated for file names of up to 63 characters, they are really limited to 
31 characters. Remember that the file name specified here is a pascal 
string. 

Displaying a Standard File Open Dialog Box 
To display the standard Open dialog box, use the following toolbox rou
tine. Note that the contents of the current volume will be initially dis
played when this dialog box is drawn. 

II The file type list used in SFGetFile(). 
typedef OSType SFTypeList[4]; 



CHAPTER 9-Reading and Writing Files 

II Displays and processes all events for the standard file 
II open dialog. It returns when the user dismisses the 
II dialog. This is a system modal dialog. 
void SFGetFile( Point ptTopLeft, 

Str255 str255Prornpt, 
ProcPtr 
short 
SFTypeList 
ProcPtr 
SFReply 

pProcFilter, 
sNurnberTypes, 
sfTypeList, 
pProcHook, 
*psfReply ) ; 

This routine takes a number of parameters, so let's take a look at them one 
at a time. The first parameter, ptTopLeft, specifies the top-left comer of 
the dialog box. This is where the dialog box will be displayed on the screen, 
meaning that the coordinates specified are global coordinates. Most of the 
time, you will want the dialog box centered nicely on the screen. To do so, 
simply specify a point of (0, 0). This will cause the toolbox to automatically 
center the dialog box on the screen for you. The next parameter, 
str255Prompt, specifies the text used to prompt the user. However, 
you'll notice that there is no prompt in the standard File Open dialog box. 
That means that this parameter goes unused. Maybe Apple will decide to 
use it in the future. The two ProcPtr parameters are used to customize 
the behavior of the standard File Open dialog box. They will not be dis
cussed here since your game will rarely, if ever, need to use them in games. 
You can specify up to four file types to be displayed in the File Open dialog 
box. Use sfTypeList to specify the list itself, and sNwnberTypes to 
specify how many types from that list should be used. If you specify a value 
of-1 for sNwnberTypes, all file types will be displayed. Last, you need to 
specify a pointer to standard file reply record. If the user selects a file to 
open, its information will be returned to you in this record. 

Displaying a Standard File Save As Dialog Box 
To display a standard File Save As dialog box, use the following toolbox 
routine. Note that the contents of the current volume will be initially dis
played when this dialog box is drawn. If the user specifies the name of a 
file that already exists, this toolbox routine automatically asks the user if 
they want to replace the existing file. 



CHAPTER 9-Reading and Writing Files 

II Displays and processes all events for the standard file 
II save as dialog box. It returns when the user dismisses the 
II dialog box. This is a system modal dialog box. 
void SFPutFile( Point ptTopLeft, 

Str255 str255Prompt, 
Str255 str255FileName, 
ProcPtr 
SFReply 

pProcHook, 
*psfReply ) ; 

This toolbox routine takes several of the same parameters as 
SFGetFile () . The top-left comer of the dialog box's location is spec
ified as the first parameter. Most of the time, you will cause it to be cen
tered on the screen by using a point coordinate of (0, 0). The prompt 
string is used in this dialog box and is displayed just above the text edit 
box that allows the user to type in the name of the file to be saved. The 
str255FileName parameter is used to set the initial contents of the 
text edit box where the user types in the file name. You will typically ini
tialize this to be the name of the file if it has already been saved, or 
"Untitled" if this is the first time the file is being saved. The ProcPtr 
parameter is used to customize the Save As dialog box, and won't be dis
cussed here. Last, the information of the file to be saved is returned to 
your program in the standard file reply record you specify. 

An example on how to use SFGetFile () and SFPutFile () is 
shown at the end of this chapter. 

Creating and Deleting Files 

You need to create a file before it can be opened and read from or written 
to. In addition, you will occasionally need to delete files you've previously 
created. The toolbox provides routines to create and delete files for you. 
To create a file, use the following toolbox routine. 

II Creates a new file. If the file already exists, an error 
II is returned (dupFNErr). 
OSErr Create ( Str255 str2 55FileName, 

short 
OSTYPe 
OSTYPe 

sVolumeReferenceNumber, 
osTYPeCreator, 
osTYPeFileTYPe ); 



CHAPTER 9-Reading and Writing Files 

You need to specify the name of the file to create, the volume reference 
number of the drive and folder in which you want to create the file, the 
file's creator, and the file's type. The file's name and volume reference 
number will come from the appropriate fields in the standard file reply 
record. Your game will specify the file's creator and type. If the file you're 
trying to create already exists, you will get a dupFNErr return code (see 
the following file 110 errors section for a list of return codes). In this 
case, you can replace that file with the new one by deleting the file and 
creating it again. We'll see an example of this later. 

To delete a file, use the following toolbox call. 

II Deletes the specified file. 
OSErr FSDelete( Str255 str255FileName, 

short sVolurneReferenceNurnber ) ; 

You can rename files using the following toolbox call. The renamed file 
resides in the same volume. (disk and folder) as the original. If you specify 
a disk or folder name, that disk or folder gets renamed. 

II Renames a file. 
OSErr Rename ( Str255 

short 
Str255 

str2550ldFileName, 
sVolurneReferenceNurnber, 
str255NewFileName ); 

Opening and Closing Files 

Before reading and writing to a file, you need to open that file. Opening a 
file will return a file reference number, which you'll need when perform
ing 110 operations to that file. After you have finished with a file, you 
must close it. The following two toolbox routines open and close files. 

II Opens a file. You need to specify the file name and 
II volume reference number. A file reference number is 
II returned to your program. 
OSErr FSOpen( Str255 str255FileName, 

short sVolurneReferenceNurnber, 
short *psFileReferenceNurnber ); 



CHAPTER 9-Reading and Writing Files 

II Closes a file. 
OSErr FSClose( short sFileReferenceNurnber ); 

Examples of these calls appear later in this chapter. 

Positioning the File Mark 

A file's mark position determines exactly where in a file you read and write. 
In other words, bytes are written to or read from a file starting at the file's 
current mark position. After reading or writing, the file's mark position 
automatically changes to the location in the file just after the last byte 
read or written. You can obtain or change the file's mark position manu
ally using the following toolbox calls. In most cases, you will not need to 
use these functions because you typically read or write through the entire 
file at one time, as opposed to moving through it randomly. For example, 
when saving a file, you almost always want the item you're about to write 
to be placed just after the last item you've written. 

II Obtains a file's current mark position. 
OSErr GetFPos( short sFileReferenceNurnber, 

long *plMarkPosition ) ; 

II Sets a file's mark position relative to the base value 
II you specify. Use one of the base constants defined 
11 below. 
OSErr SetFPos ( short 

short 
long 

sFileReferenceNurnber, 
sMarkBase, 
lMarkOffset ) ; 

II File mark base constants used in SetFPos(). 
enum { 

fsAtMark : 0 I 
fsFromStart = l, 
fsFromLEOF = 2, 
fsFromMark = 3 

II Uses current mark and ignores offset. 
II Relative to start of file. 
II Relative to logical end of file. 
II Relative to current mark. 

Note that you can use positive or negative values for the mark offset 
parameter in SetFPos ( ) . If you try to set the file's mark position to a 



CHAPTER 9-Reading and Writing Files 

point before the start of the file, you will get a posErr return code and 
the file's mark position will be moved to the start of the file. If you try to 
move a file's mark position to a point after the end of the file, you will get 
a eofErr return code and the file's mark position will be moved to the 
end of the file. Also note that if you use the f sA tMar k base constant in 
SetFPos ( ) , the offset parameter is ignored, meaning that the file's mark 
position remains unchanged. 

If you want to obtain a file's logical end-of-file mark, you can use the 
following toolbox call. You can use this call to determine the size, in 
bytes, of an open file. 

II Obtains a file's logical end-of-file position. 
OSErr GetEOF( short sFileReferenceNurnber, 

long *plEndOfFile ); 

Reading and Writing Files 

To read and write to files, you need to specify a pointer in memory where 
you want the data to go to or come from. Most of the time, this will be a 
pointer to one of your program variables. In addition, you need to specify 
the number of bytes to be read or written. If you are reading or writing a 
program variable, this length typically will be the size of that variable. 
Examples will be given toward the end of this chapter. 

The following two toolbox calls read and write data to files. You will 
need the file's reference number to use these routines. When writing to a 
file, the end-of-file is automatically extended whenever the data you write 
exceeds the file's current end-of-file position. If you try to read past the 
end of a file, an error of eofErr is returned to your game. In this case, 
the number of bytes read stops at the end of the file. This means that you 
do not necessarily read the number of bytes you specified (this can also 
happen when writing to a file, as in the case of a disk full error). In cases 
of an error, only some of the bytes may be read or written. In other 
words, an error doesn't automatically mean that zero bytes are trans-



CHAPTER 9-Reading and Writing Files 

ferred . Sometimes you'll need to know how many bytes were actually 329 
read or written. This information is provided back to you in the same 
variable you used to specify how many bytes to read or write to the file. 
Thus, the value of the byte count variable you pass to these toolbox rou-
tines starts out as the number of bytes you want read or written to the 
file. After the routine completes, the value of the byte count variable you 
supplied is changed to the actual number of bytes read or written to the 
file. In cases where no error occurs, both values will be the same. 

II Writes data to an open file. The logical end-of-file is 
II automatically extended if you are writing past the end of 
II the file. 
OSErr FSWri te { short 

long 
Ptr 

sFileReferenceNurnber, 
*plByteCount, 
pOutput ) ; 

II Reads data from an open file. eofErr is returned if you 
II try to read past the end of the file. 
OSErr FSRead { short 

long 
Ptr 

sFileReferenceNurnber, 
*plBy teCount, 
pinput ) ; 

T I P 

There are times when an item you want to write to a file varies in 
length . For example, the size of the journal kept in Desert Trek 
depends on the number of moves and specific actions taken by the 
player. When saving a game, this doesn 't really present a problem 
because Desert Trek can simply query the length of the text con
tained within the journal and write the appropriate number of bytes 
to the saved game file . However, when it comes time to load a 
saved game file , Desert Trek needs to know the length of the text 
contained within the journal saved to disk. An easy solution to this 
problem is to write out a length indicator just before the data of vary
ing length. In other words, when saving a game, Desert Trek writes a 
length indicator just before the journal text. When the game is 
loaded, the length indicator is read first and specifies the number of 
bytes that must be read to obtain all of the journal 's text. An exam
ple of this follows soon. 



330 

CHAPTER 9-Reading and Writing Files 

T I P 

How about another tip when it comes to saving game files for your 
game? Often, your game will evolve over time as you make 
improvements and bug fixes. Frequently, this will cause the format of 
your game save file to gradually change. In other words, you might 
save more information to a game file in a later version of your game 
that adds new features. This could cause problems if a player tries to 
load an older save game file into the newer version of the game (or 
a newer save game file into an older version of your game). To pre
vent problems, the first thing you should write to a saved game file is 
a version number indicating the version of the saved game. When 
you change the format of the saved game file, increment the ver
sion number. Then, check this version number when loading a game. 
If it doesn 't match the version number your game is looking for, you 
can take the appropriate action. You might simply display a mes
sage to the user stating that the saved game cannot be loaded by 
your game's version. Or, you might convert an older saved game file 
so that it can be used with your game's current version. 

File 1/0 Errors 

All file 110 routines return a result code that tells you whether or not the 
110 completed successfully. If the 110 failed, the return code describes 
the type of failure. Your game needs to check for and process return 
codes so that an appropriate message can be displayed to the user if a file 
could not be saved or loaded. Why? You do not want the user thinking 
that a game was saved when it wasn't, otherwise they will not be too 
happy when they try to load the game at a later time. In addition, you do 
not want to load half a saved game, encounter an error, and try to act as if 
the entire saved game was loaded. Can you say impending system error? 

The following is a list of most of the result codes that might be 
returned by the 110 routines discussed in this chapter. 



CHAPTER 9-Reading and Writing Files 

enum { 

T I P 

noErr = 0, 
dirFulErr = -33, 
dskFulErr = -34, 
nsvErr = -35, 
ioErr = -36, 
bdNarnErr = -37, 
fnOpnErr = -38, 
eofErr = -39, 
posErr = -40, 
mFulErr = -41, 
tmfoErr = -42, 
fnfErr = -43, 
wPrErr = -44, 
fLckdErr = -45, 
vLckdErr = -46, 
fBsyErr = -47, 
dupFNErr = -48, 
opWrErr = -49, 
pararnErr = -50, 
rfNurnErr = -51, 
gfpErr = -52 , 
volOffLinErr = -53, 
perrnErr = -54, 
volOnLinErr = -55, 
nsDrvErr = -56, 
noMacDskErr = -57, 
extFSErr = -58, 
fsRnErr = -59, 
badMDBErr = -60, 
wrPerrnErr = -61, 
dirNFErr = -120, 

11 No error 
II Directory full 
I I Disk full 
II No such volume 
11 IIO error 
11 Bad name 
II File not open 
11 End of file 
II Positioned before start of file 
I I Memory full 
II Too many files open 
II File not found 
II Diskette is write protected 
I I File is locked 
II Volume is locked 
11 File is busy 
I I Duplicate filename 
II File already open for writing 
II Bad parameter 
I I Refnum error 
II Get file position error 
II Volume not on line error 
II Permissions error 
II Drive volume already on-line 
II No such drive 
I I Not a Mac diskette 
II Volume belongs to an external fs 
II File system internal error 
II Dad master directory block 
II Write permissions error 
I I Directory not found 

If you encounter a file 1/0 error during the save of a file, you should 
delete that file because it's no good. Doing so will prevent the user 
from trying to load that bad file in the future. We'll see this tip in 
action in the save file coding example that follows. 



CHAPTER 9-Reading and Writing Files 

You will need to check the return code of every file 110 call you make, so 
it's a good idea to create your own routine that does so. Desert Trek uses 
the following routine to determine if an 110 completed successfully. This 
function, which can be found in File 1/0.c, returns true if the 110 was 
successful. If the 110 failed, this function calls a routine to display the 110 
error to the user, and returns false. You can find the Desert Trek routine 
that displays an 110 error to the user, PostIOError (),in File 110.c. 

Boolean IOSuccessful( OSErr osErr ) 
{ 

Boolean bSuccess = true; 

II If the IIO error wasn't noErr, display an error message to the user. 
if ( osErr != noErr ) 
{ 

PostIOError( osErr ) ; 
bSuccess = false; 

II If there was no IIO error, return true. Otherwise, return false. 
return( bSuccess ); 

Setting the Cursor 

Reading and writing to disk can take some time, during which the player 
is typically prevented from interacting with your game. For example, the 
player is generally not allowed to enter moves while a saved game is being 
loaded. That simply wouldn't make much sense. In order to tell the user 
that they are waiting for a disk operation to complete before they can 
continue with the game, you need to change the cursor from the standard 
arrow to a watch. 

The following data types are defined by the Macintosh for cursors. 
Basically, a cursor record contains the cursor image, a mask image, and 
the point that denotes the cursor's hot spot. Since a cursor is a 16 pixel by 
16 pixel entity, it is the hot spot that specifies exactly the coordinate at 
which the mouse clicks occur. 



struct Cursor { 
Bitsl6 data; 
Bitsl6 mask; 
Point hotspot; 

} ; 

CHAPTER 9-Reading and Writing Files 

typedef struct Cursor Cursor; 
typedef Cursor *CursPtr, **CursHandle; 

Cursors are loaded from your game's resource fork. This means that 
you can use ResEdit to draw any cursor you want for use in your game. 
The following toolbox routine loads a cursor. Make sure to use 
ReleaseResource () to release the cursor once you are finished 
with it. 

II Loads a cursor from the resource fork. Use 
II ReleaseResource() once you are finished with the cursor. 
CursHandle GetCursor( short sCursorID ); 

There are several standard cursors defined by the Macintosh, and you 
load them just as you would any other cursor (see Figure 9.2). Use one of 
the following cursor IDs to load a standard cursor. 

Standard System Cursors 

Figure 9.2 The standard cursors. 

enum { 

} ; 

iBeamCursor = 1, 
crossCursor = 2, 
plusCursor = 3, 
watchCursor = 4 

II I-beam cursor. 
II Cross cursor. 
II Plus cursor. 
II Watch cursor. 



CHAPTER 9-Reading and Writing Files 

The following code snipped loads the watch cursor. The entire function 
can be found in File 1/0.c. 

static CursHandle hCursWatch; 

void InitializeFileIO( void ) 
{ 

hCursWatch = GetCursor( watchCursor ); 

To set the cursor, use the following toolbox routine. 

II Sets the cursor. 
void SetCursor( CursPtr pCursor ); 

If you want to set the cursor back to the standard arrow pointer, use the 
following toolbox routine. 

II Sets the cursor back to the standard arrow. 
void InitCursor( void); 

Examples of these calls follow in the save example. 

Save Example 

The following routines save a Desert Trek game file. Basically, a Desert 
Trek saved game file contains three items: a version number, the game's cur
rent state, and the journal. Notice that the game's current state is defined by 
a large number of variables (distance traveled, time of day, inventory, 
health, etc.), but that these variables are defined in a single structure. This 
speeds disk 110 because all the game variables can be saved or loaded in a 
single 110 operation. If the game's variables were not all contained in a 
single structure, each variable would require its own disk 110. 

Before looking at the function that saves a Desert Trek game, let's 
look at two supporting functions. The first supporting function creates 
and opens a file, returning a file reference number. This function gets 
called whenever Desert Trek saves any type of file. If a file of the same 



CHAPTER 9-Reading and Writing Files 

name already exists, that file is deleted and replaced with the new file. .. ... fi§i;.,, 
This function can be found in File 110.c. 

static short OpenNewFile( SFReply *psfReply, 
OSType osTypeCreator, 
OSType osTypeType ) 

short sFile = O; 
OSErr osErr; 

II Set the current volume to the volume of the new file. 
SetVol( nil, psfReply->vRefNum ) ; 

II Create the new file. The file creator and type are passed into this 
II routine. The file name and volume are specified in psfReply. 
osErr = Create( psfReply->fName, psfReply->vRefNum, osTypeCreator, 

osTypeType ) ; 

II If this file already exists, delete it and create it again. 
if ( osErr == dupFNErr ) 
{ 

FSDelete( psfReply->fName, psfReply->vRefNum ); 
Create( psfReply->fName, psfReply->vRefNum, osTypeCreator, osTypeType ); 

II Open the file. The IOSuccessful() routine displays any error message to 
II the user. IOSuccessful() returns true if no IIO error occurs. If the 
II file was opened successfully, set the cursor to the watch. 
if ( IOSuccessful( FSOpen( psfReply->fName, psfReply->vRefNum, &sFile ) ) ) 

SetCUrsor( *hCUrsWatch ); 

II If the file wasn't opened, set the file reference number to 0. 
else 

sFile = O; 

II Return the file reference number. 
return ( sFile ) ; 

The second support function prompts the user for a file name. This func
tion displays the standard File Save As dialog box and, if the user specifies 
a file to save, calls the previous routine to create and open the file. This 
function can be found in File 110.c. 



CHAPTER 9-Reading and Writing Files 

static short PromptForSaveAS( short sPromptID, 
short sNameID, 

Str255 str255Prompt; 
Str255 str255Name; 
short sFile = O; 
Point ptOrigin = { 0, 0 }; 

Str255 str255NamePrompt, 
OSType osTypeCreator, 
OSType osTypeType, 
SFReply *psfReply ) 

II Get the file save as prompt string. 
GetindString( str255Prompt, FILE_STRINGS, sPromptID ); 

II If no file name was specified, get the default file name string. 
if ( !str255NamePrompt ) 

GetindString( str255Name, FILE_STRINGS, sNameID ); 

II If a file name was specified, copy it into the name prompt string. 
else 

memcpy( str255Name, str255NamePrompt, *str255NamePrompt + 1 ) ; 

II Display the standard file save as dialog. 
SFPutFile( ptOrigin, str255Prompt, str255Name, nil, psfReply ) ; 

II If the user chose to save a file, update the game windows (since they 
II were probably obscured by the standard file save as dialog) and open 
II the file. 
if ( psfReply->good ) 
{ 

UpdateWindows(); 
sFile = OpenNewFile( psfReply, osTypeCreator, osTypeType ) ; 

II Return the file reference number. 
return( sFile ); 

The following function actually saves a Desert Trek game file. The user 
may or may not be prompted for a file name. If the user chose Save As ••. 
from the File menu, or the game has not yet been saved, the user is 
prompted for a file name. If the game has already been saved (and the 



CHAPTER 9-Reading and Writing Files 

user did not choose Save As .•• ), the game is saved over the old save game 
file for the current game. This function can be found in File 110.c. 

II Private variable that keeps track of whether or not the current game has 
II been saved. 
static Boolean bGameSaved = true; 

II The current game's name. It's "Untitled" if the game hasn't yet been 
11 saved. 
static char szSavedGameName [FILE_NAME_SIZE + 1] ; 

II The current game's volume reference number. 
static short sSavedGameVolume; 

Boolean DoSave( Boolean bPromptForFileName 
{ 

PGAME_STATE pGameState; 
SFReply sfReply; 
short sFile = O; 
long lSize; 
long lLongSize = sizeof( long); 
CharsHandle hCharsJournal; 

II Default to a state of not saved (in case an IIO error occurs). 
bGameSaved = false; 

II If we need to prompt for a name ... 
if ( bPromptForFileName 11 

!strcmp( szSavedGameName, (Cstr) *hStringUntitled ) 

I I Convert the current game's name to a PASCAL string, since that's what 
II PromptForSaveAS() takes. 
CtoPstr( szSavedGameName ); 

II Prompt the user for a file name. 
sFile = PromptForSaveAS( SAVE_GAME_STRING, 0, (Pstr) szSavedGameName, 

'DTRK', 'TRKG', &sfReply ) ; 

II Convert the saved game name back to a C string. 
PtoCstr( (Pstr) szSavedGameName ); 

II If the file was opened, save the file's name and volume reference 
II number so that we can use them when the user saves the game again. 



CHAPTER 9-Reading and Writing Files 

if ( sFile ) 
{ 

sSavedGameVolume = sfReply.vRefNurn; 
PtoCstr ( sfReply. £Name ) ; 
strcpy( szSavedGameName, (Cstr) sfReply.fName ) ; 

II If the user is not to be prollq)ted for the file name of the game to save ... 
else 

II Set the volume reference number and name fields of the standard file 
II reply record to the current game's volume reference nUlllber and name. 
II It is the standard file reply record that gets used by the 
II OpenNewFile() routine to open the file. 
sfReply.vRefNum = sSavedGameVolume; 
strcpy( (Cstr) sfReply.fName, szSavedGameName ) ; 
CtoPstr( (Cstr) sfReply.fName ); 

II Open the saved game file. 
sFile = OpenNewFile( &sfReply, 'DTRK', 'TRKG' ); 

II If the saved game file was successfully opened ... 
if ( sFile ) 
{ 

II Get the current game state. 
pGameState = RetrieveGameState(); 

II Write the saved game version number to the file first. To do so, first 
II compute the size of the version number (which is actually a string, 
II e.g. "1.01"). Then, write it to the file. IOSUccessful() will display 
II any IIO error to the user. If there is no IIO error, IOSUccessful() 
II will return true. 
lSize = sizeof( GAME_SAVE_VERSION ); 
bGameSaved = IOSUccessful( FSWrite( sFile, &lSize, GAME_SAVE_VERSION) ); 

II If the last operation didn't generate an IIO error, write the game's 
11 current state to the saved game file. The entire structure is 
II written out using a single write operation. 
if ( bGameSaved ) 
{ 

lSize = sizeof( GAME_STATE ); 
bGarneSaved = IOSUccessful( FSWrite( sFile, &lSize, pGameState) ); 



CHAPTER 9-Reading and Writing Files 

II Finally, if no I IO errors have occurred, write the game's journal to 
II the saved game file. 
if ( bGameSaved ) 
{ 

II First write the text l ength of t he journal to the fi l e. We 'll need 
II to know this when loading the saved game file. 
l Size = GetJournalText( &hCharsJournal ) ; 
bGameSaved = IOSuccessful( FSWrite( sFile , &lLongSize, &lSize) ); 

II Finally, if there's no I IO error , write the text of the journal . 
i f ( bGameSaved ) 

bGameSaved = IOSuccessful( FSWr ite ( sFile, &lSize, *hCharsJournal) ) ; 

II Cl ose the fi l e. 
FSClose( sFile ) ; 

II If an I IO error occurred, delete the corrupt game file . 
if ( !bGameSaved ) 
{ 

II We need to convert .the C st ring containing the file name to a 
II pascal string that can be used by the FSDelete() toolbox routine . 
CtoPstr( szSavedGameName ); 
FSDel ete( (Pstr) szSavedGameName, sSavedGameVolume ); 
PtoCstr( (Pstr) szSavedGameName ) ; 

II Restore the cursor to the arrow (it was changed to the watch) . 
InitCursor() ; 

II Return true if the game was saved successfully. 
return( bGameSaved ) ; 

Loading Files Opened from the Finder 

Before taking a look at an example of how to load a saved game file in 
Dese~t Trek, there's one last topic that needs to be discussed. The user 
might start your game by opening a saved game file from the Finder. In 
that case, the Finder automatically starts your game and passes it infor
mation concerning the file opened by the user. Your game should check 

339 



340 

CHAPTE R 9-Reading and Writing Files 

to see if it was started in such a manner, and if so, load the file opened by 
the user. 

The information concerning those files that were opened in the 
Finder can be found in an application file record. The application file 
record contains the volume reference number and name of the file 
opened, as well as the file's type (in case your game supports more than 
one file type). There are two actions that the user can perform on your 
game files . The first is to open the file, and the second is to print the 
file. You can distinguish between these two actions using constants 
defined by the toolbox. If your game supports printing, you'll need to 
print the file specified. 

II Constants to determine if the file was opened or printed 
II from the finder. 
enum { 

} ; 

appOpen = 0, 
appPrint = 1 

11 Opened 
II Printed 

II The application file structure. 
struct AppFi l e { 

short vRefNum; II File volume reference number. 
OSType fType; II File type . 
short ver sNum; II File version. 
Str255 fName II File name. 

} ; 

typedef struct AppFile AppFile; 

To determine if your game was started in response to a file being opened 
from the finder, use the following toolbox routine. Call this routine when 
your game first starts to see if you need to load a file opened by the user. 

II Returns a message and f ile count . The message is e i ther 
II appOpen or appPrint . The file count is the number of 
II files that were selected when open or print was selected 
II from the Finder. 
void CountAppFiles(short 

short 
*psMessage, 
*psFileCount ) ; 



CHAPTER 9-Reading and Writing Files 

If the file count returned by CountAppFiles () is greater than zero, 
you know that your game was started in response to the user selecting 
Print or Open on one of your game's documents. In that case, you need 
to obtain information about the file or files selected. For most games, you 
will only concern yourself with one file because it usually doesn't make 
sense to open more than one saved game at a time. Also, many games will 
ignore the Print command. The following toolbox call returns file infor
mation for game documents selected when your game was started. You 
obtain file information one file at a time by specifying the index of the file 
on which you want information. The first file's index is one (not zero). 

II Obtains information on a file that was selected when your 
II game is start ed in response to a Finder open or print . 
void GetAppFiles( short sindex, 

AppFile *pAppFile ); 

After you have processed a file using GetAppFilesO, you need to tell the 
Finder that you have finished with that file. The following toolbox rou
tines does just that. 

II Clears an application file after you have processed it. 
II Supply the index of the file you have processed (use the 
II same index as you did in GetAppFiles()). 
void ClrAppFiles( short sindex ); 

Example 
The following function from Desert Trek determines whether or not a 
saved game file needs to be opened when the game first starts. Because 
Desert Trek does not support printing, any documents opened due to a 
Print command from the Finder are ignored. Also note that only saved 
game files are processed, and even then only the first saved game file is 
processed (any others are ignored). 

void CheckFinderOpenFile ( void ) 
{ 

short sMessage ; 
shor t sNurnberDocs; 



342 

CHAPTER 9-Reading and Writing Files 

short sLoop; 
AppFile appFile; 
Boolean bGameFound = false; 

II Count how many files were selected in the Finder when Desert Trek was 
II started. 
CountAppFiles( &sMessage, &sNurnberDocs ); 

II If any files were selected, and the message was not a print message, 
II search through all the files selected, looking for saved game files. 
if ( ( sMessage != appPrint ) && 

( sNumberDocs > 0 ) ) 
for( sLoop = 1 ; sLoop <= sNumberDocs; sLoop++ ) 
{ 

II Get the file's information . 
GetAppFiles( sLoop, &appFile ); 

II Tell the Finder that we've processed the file . 
ClrAppFiles( sLoop ); 

II If the file is a Desert Trek saved game and we haven't already come 
II across a saved game, load that game. If more than one saved game 
II file was selected, the first one we come across will be the one 
II loaded. 
if ( !bGameFound && ( appFile . fType == 'TRKG' ) ) 
{ 

bGameFound = true; 
ResumeGame ( &appFile ) ; 

Load Example 

The following two functions from Desert Trek load a saved game file. 
They can both be found in File 1/0.c. The first function opens a saved 
game file. The name of the file to open is either obtained from the user 
via the standard File Open dialog box or from the Finder's application file 
record passed to Desert Trek when the user opens a saved game file from 
the Finder. 



CHAPTER 9-Reading and Writing Files 

static short OpenSavedGame( AppFile *pappFile 
{ 

Point 
OS Err 
short 
SFReply 

ptOrigin = { 0, 0 }; 
osErr; 
sFile = O; 
sfReply; 

II Only allow the user to select Desert Trek saved games from the standard 
II file open dialog. 
SFTypeList sfTypeList = { 'TRKG', '\p', '\p', '\p' } ; 

II If we're using the Finder information due to a user opening a saved game 
II file from the Finder, set up the standard file reply record as if the 
II user selected that file from the standard file open dialog. 
if ( pappFile ) 
{ 

sfReply.good = true; 
sfReply.vRefNum = pappFile->vRefNum; 
strcpy( szSavedGameName, PtoCstr( pappFile->fName) }; 

II If the file was not opened by the Finder, display the standard file open 
II dialog to the user. 
else 

II Display the standard file dialog. 
SFGetFile( ptOrigin, "\p", nil, l, sfTypeList, nil, &sfReply ) ; 

II If the user selected a file, save the name of the file. 
if ( sfReply.good ) 
{ 

PtoCstr( sfReply.fName ); 
strcpy( szSavedGameName, (Cstr) sfReply.fName ) ; 

II If we are to open a file ... 
if ( sfReply.good ) 
{ 

II Save the file's volume reference number and set the current volume to 
II the file's volume. 
sSavedGameVolume = sfReply.vRefNum; 
SetVol ( nil, sSavedGameVolume ) ; 



CHAPTER 9-Readlng and Writing Files 

) 

II Convert the file name to a PASCAL string, since that's what FSOpen() 
II takes. 
CtoPstr ( szSavedGameName ) ; 

II If the file is opened without an error, set the cursor to the watch, 
II otherwise, set sFile to zero so that the calling routine knows that 
II the open failed. 
if ( IOSuccessful( FSOpen( (Pstr) szSavedGameName, sSavedGameVolume, 

&sFile ) ) ) 
SetCursor( *hCursWatch ); 

else 
sFile = O; 

II Convert the saved game file name back to a C string. 
PtoCstr( (Pstr) szSavedGameName ) ; 

II Return the saved game's file reference number. 
return ( sFile ) ; 

The previous function is called by the main routine to load a saved game 
file. After opening the saved game file, this routine first checks to make 
sure that the saved game file isn't an old version. If so, an alert is dis
played to the user and the file is not loaded. If the saved game file is cur
rent, the game state and journal are read from the file. 

Boolean LoadGame ( AppFile *pappFile ) 
{ 

GAME_STATE GameState; 
Boolean bLoaded = false; 
short 
long 
char 
long 
Handle 

sFile; 
lSize; 
szVersion[] = GAME_SAVE_VERSION; 
lLongSize = sizeof( long); 
hText; 

II Open the saved game file. Either the user will be pr~ted with the 
I I standard file open dialog, or the application file record supplied by 

I I the Finder will be used. 
sFile = OpenSavedGame ( pappFile ) ; 



CHAPTER 9-Reading and Writing Files 

II If the file opened successfully ... 
if ( sFile ) 
{ 

II First load the saved game file version string. 
!Size= sizeof( szVersion ); 
bLoaded = IOSuccessful( FSRead( sFile, &!Size, szVersion) ); 

II If the version string was loaded successfully, check it to see if it 
II matches the version string that this version of Desert Trek expect. If 
II not, display an alert to the user and fail in loading the file. 
if ( bLoaded ) 

if ( strcrrp( GAME_SAVE_VERSION, szVersion ) 
{ 

ShowAlert( OLD_SAVE_VERSION, nil, nil, SetModalDialogMenuState ) ; 
bLoaded = false; 

II If the version string checked out okay, load the game state record. 
if ( bLoaded ) 
{ 

!Size= sizeof( GameState ); 
bLoaded = IOSuccessful( FSRead( sFile, &lSize, &GameState) ); 

II If the game state record loaded okay, load the size of the journal. 
if ( bLoaded ) 

bLoaded = IOSuccessful( FSRead( sFile, &lLongSize, &!Size) ); 

II If the journal's size was loaded okay ... 
if ( bLoaded ) 
{ 

II Allocate a new handle large enough to hold the journal. 
hText = NewHandle ( !Size ) ; 

II If the handle was allocated successfully ... 
if ( hText ) 
{ 

II Lock the handle and load the journal text from disk into the 
11 handle. 
HLock ( hText ) ; 
bLoaded = IOSUccessful( FSRead( sFile, &!Size, *hText) ); 

II If the journal text loaded okay, clear the journal and add the 
I I saved game's journal text to the journal. 



CHAPTER 9-Reading and Writing Files 

} 

if ( bLoaded ) 
{ 

ClearJournal( false); 
AddJournalText( *hText, lSize, true ) ; 

} 

II unlock the handle and free the memory associated with it. 
HUnlock ( hText ) ; 
DisposHandle( hText ); 

II Close the file and set the cursor back to the standard arrow. 
FSClose( sFile ); 
Ini tCursor () ; 

II If the game loaded okay, set the game state to the one loaded from the 
II saved game file. 
if ( bLoaded ) 

SetGameState( &GameState ); 

II Return true if the game was loaded successfully. 
return ( bLoaded ) ; 

Saving TeachText (SimpleText) Files with 
Embedded Graphics 

You can save TeachText files with embedded graphics. In later versions of 
the Macintosh system software, TeachText has been replaced with 
SimpleText, so this trick also works for SimpleText. To add pictures to a 
Teach Text file, you need to save the pictures into the resource fork of the 
Teach Text file. The first picture must have a 'PICT' resource ID of 1000, 
the second 1001, and so on. To specify where in the text a picture is 
located, you need to write a "magic code" with the hexadecimal value of 
OxOOCA into the text part of the file. The first occurrence of this special 
value will cause the PICT resource ofID 1000 to be placed in the text. 
The second occurrence of the special value will cause the PICT resource 



CHAPTER 9-Reading and Writing Flies 

of ID 1001 to be placed within the text. Note that all pictures will be cen
tered. Also make sure to leave enough blank lines in the text for the pic
ture; otherwise, the picture will overlay some of the text. To see an exam
ple of how Desert Trek saves pictures into a TeachText file, see the 
SaveinfoWindowText () function in Information Wmdow.c. 



INCORPORATING SOUND 

No game is complete without sound. Sound effects and background 
music are almost mandatory if you want your game to be a success. The 
Macintosh sound manager provides a wealth of routines to support the 
playing and recording of sounds. This chapter covers those routines 
needed to support the playing of sound and music in your game. You will 
learn how to play digitized sounds asynchronously, support looping back
ground music, and play multiple sounds simultaneously through multiple 
sound channels. Note that in order to use most of the routines described 
in this chapter, your game must be running on a Macintosh using system 
6.07 or later. 



CHAPTER 10-lncorporatlng Sound 

Sound Formats 
There are a plethora of sound formats in existence out there. Each format 
has its own advantages and disadvantages, and of course, each requires a 
different method to be played on the Macintosh. The remainder of this 
chapter focuses on the playing of the first two types of sound formats dis
cussed below. 

'snd 'Sound Resources 
Probably the most popular and easiest to use sound format is the 'snd ' 
resource, also known as a sound resource. These types of sounds are also 
commonly referred to as System 7 sounds because they can be placed in 
the system folder and used as alert sounds. They can also be played 
directly in system 7 by double-clicking on a file containing a sound 
resource. The built-in sound recording capability provided by the 
Macintosh saves sounds in this format. To be sure, when it comes to 
sound effects and short music clips, this is the sound format of choice to 
use on the Macintosh. 

As the name implies, sound resources are stored in the resource fork 
of a file or program as type 'snd '. This means that you can store as many 
sound effects as you need in the resource fork of your game, eliminating 
the need for a separate sound file. You load these resources using the 
generic GetResource () toolbox routine, and supply the resource han
dle to the sound manager routine that plays these types of sounds. 

A sound resource is really a sampled, or digitized sound. "When the 
sound is recorded, you can use any sampling rate up to 64 kHz, but the 
following rates are most commonly used: 22 kHz, 11 kHz, 7 kHz, and 5 
kHz. The higher the sampling rate, the better the sound quality, however, 
you pay for that quality in terms of sound size. This means that the 
higher the sound quality, the larger the size of the sound. The sound 
manager provides a method to compress digitized sounds using the 
Macintosh Audio Compression and Expansion compression algorithm 
(MACE) and allows sounds to be compressed by 3:1 (MACE3) or 6:1 
(MACE6). Compressed sounds take up considerably less space, but they 



CHAPTER 10-lncorporating Sound 

lose some sound quality and require a little more CPU time to play 
because they need to be decompressed on the fly. 

AIFF and AIFF-C 
For larger sounds such as music, and for sounds that you wish to be more 
portable across platforms or intended for use in other Macintosh pro
grams, Apple and third-party developers have defined the Audio 
Interchange File Format (AIFF) and the Audio Interchange File Format 
extension for Compression (AIFF-C). Sounds and music recorded in 
AIFF and AIFF-C formats have their sound information stored in the 
data fork of a file. This overcomes any size limitations imposed by the 
maximum single resource size and makes the sound easier to share with 
other programs (it's easier to share a data file than it is to share a single 
resource contained in a resource file). 

The sound contained within QuickTime movies is typically stored in 
this format. In fact, you can use SimpleText to convert a CD music track 
into an AIFF format music file, which can be played by any QuickTime 
player, or from within your game. 

Other Sound Formats 
Other popular sound formats include MOD files, MIDI files, and WAV 
files. MOD files are a very popular cross-platform format used to support 
multivoice music. MOD files tend to be much smaller than sound 
resources or AIFF files for a given playing time, but the playing of MOD 
files tends to be more difficult than using the built-in sound manager 
routines that play sound resources and AIFF files. MIDI files have similar 
properties to MOD files in terms of size and complexity to play. WAV 
files are pretty much the Microsoft Windows equivalent to a Macintosh 
sound resource (except that WAV files are not resources), meaning that 
they represent sampled, or digitized sound. You can't use WAV files 
directly with the sound manager routines, but tools exist to convert 
between the WAV file format and the sound resource format. Of course, 
many more sound formats exist, but they won't be discussed here. 



CHAPTER l 0-lncorporating Sound 

~~1 .. · ... ··... Sound Channels '~,,--,· 

All sounds played in the Macintosh are played through sound channels. A 
sound channel is really just a queue that holds sound channel commands. 
This means that you can queue up multiple sound commands to a sound 
channel. Each command is processed by the queue in a first come, first 
serve basis, and one command completes before the next command 
begins. There are a number of different commands that can be sent to a 
sound channel, and not all of them necessarily produce sound. We'll see 
different types of sound commands throughout this chapter. 

As with just about any other Macintosh construct, a sound channel 
has a record associated with it that contains information pertaining to 
that sound channel. Most of the fields contained within the sound chan
nel record are used internally by the sound manager, but there's one user 
information field that can be used by your program for any purpose. 
We'll see a common use of this field later on in the section on playing 
music from disk. The following is the definition of a sound record, show
ing the user information field. 

struct SndChannel 

long userinfo; 

} ; 

typedef struct SndChannel SndChannel; 
typedef SndChannel *SndChannelPtr; 

Your game must create a sound channel before playing sound. To be hon
est, that's not technically true because you can have the sound manager 
create a sound channel for you when you want to play a sound. However, 
a game program would never do so because sound resources would be 
played synchronously, meaning that your game would grind to a com
plete halt until the sound finished playing. In addition, if you play music 



CHAPTER l 0-lncorporating Sound 

from disk and have the sound manager automatically create a sound 
channel for you, you would have no further control over the playing of 
that sound file. In other words, you couldn't pause, resume, or stop the 
music in response to a game event. 

The sound manager allows your game to create more than one sound 
channel so that you can have multiple sounds playing at the same time. In 
other words, you could have background music playing while at the same 
time play sound effects for certain events in your game. The number of 
sound channels that you can have open and playing sound simultaneously 
is limited only by the CPU power of the machine your game is running 
on. The more sound channels you have open, the higher the CPU load. 
Later on, we'll see methods to determine exactly how much CPU time 
the sound manager is taking to support your game's sound channels. 

Creating Sound Channels 
To create a sound channel, use the following sound manager routine. 

II Creates a new sound channel. A sound channel pointer is 
I I returned in ppSndChannel . You can specify nil for 
II pProcCallback if you don't need a callback function 
II associated with this sound channel. 
OSErr SndNewChannel ( SndChannelPtr *ppSndChannel, 

short 
long 
SndCallBackProcPtr 

sSynthesizerID, 
linitParms, 
pProcCallback ) ; 

The first parameter you need to pass to SndNewChannel ( ) is a pointer 
to a sound channel record pointer. You will almost always pass a pointer 
to nil for this parameter, which causes the sound manager to automati
cally allocate memory for the sound channel for you. Note that you never 
pass ni 1 itself as this parameter, but rather a sound channel pointer 
whose value is set to nil. We'll see an example later in this chapter. 

The second parameter to SndNewChannel ( ) is the ID of the syn
thesizer to use for the sound channel. There are currently three different 
types of synthesizers supported by the sound manager, defined as follows. 



CHAPTER l 0-lncorporating Sound 

II Sound channel synthesizer IDs. 
enum { 

squareWaveSynth = l, 
waveTableSynth = 3, 
sampledSynth = 5, 

II Square wave synthesizer 
II Wave table synthesizer 
II Sampled sound synthesizer 

To play sound resources, AIFF files, and AIFF-C files, you need to spec
ify a sampled sound synthesizer for this parameter. All routines and exam
ples shown in this chapter assume that you are using a sound channel 
defined with a synthesizer ID of sampledSynth. 

The third parameter to SndChannelNew () is the initialization 
parameter for the sound channel. The following initialization parameters 
can be used for sampled sound synthesizer channels. 

II Sound channel initialization parameters. 
enum { 

initChanLeft = Ox0002 II Left stereo channel 
initChanRight = Ox0003, 
initMono = Ox0080, 
initStereo = OxOOCO, 
initMACE3 Ox0300, 
initMACE6 = Ox0400, 

II Right stereo channel 
II Monophonic channel 
II Stereo channel 
II MACE 3:1 
II MACE 6:1 

You can specify more than one initialization parameter by using addition 
or the bitwise OR operator. Typically you will choose one channel type 
parameter and perhaps one compression parameter. The 
ini tChanLeft and ini tChanRight initialization parameters specify 
that the sound channel should only play sound through the external audio 
jack on the Macintosh computer. The ini tMono and ini tStereo ini
tialization parameters specify that the sound channel should play sound 
through both the external audio jack and the internal speaker. You will 
most likely choose from one of these two initialization parameters 
because you'll almost always want sound to be produced through the 
internal speaker in case the user doesn't have external speakers (if the user 
has external speakers hooked up to the audio jack, no sound will be pro
duced through the internal speaker). The ini tMACE3 and ini tMACE6 

parameters specify that the sound channel may have to play compressed 



CHAPTER l 0-lncorporating Sound 

sounds. Sound channels can play uncompressed or compressed sounds 
regardless of the value of the compression initialization parameters, but 
these parameters provide the sound manager a way to better compute the 
CPU load required by the sound channel. Thus, you should specify a 
compression parameter if that channel is going to play compressed 
sounds. Doing so allows the sound manager to give your game a more 
accurate value of the CPU load used by that channel. 

The final parameter to SndNewChannel () is a callback routine 
function pointer. This is a function you define that can be called by the 
sound manager when a particular command is processed by the sound 
channel. The most common use of the callback routine is to determine 
when sounds have finished playing. Callback functions will be discussed 
later in this chapter. If you do not need a callback function, you can spec
ify ni 1 for this parameter. 

SndNewChannel () returns a sound manager error code if the 
sound channel could not be allocated. Return values include noErr, 
resProblem, and badChannel. See the section on sound manager 
errors for a description of these return codes. 

Disposing a Sound Channel 
After you have finished with a sound channel, you need to dispose of the 
channel in order to free up the resources taken by that channel. The fol
lowing sound manager routine disposes of a sound channel. 

II Closes and disposes of a sound channel. If bQuiteNow is 
II true, the channel closes irmnediately. If false, queued 
II cormnands are completed before the channel is closed. 
OSErr SndDisposeChannel{ SndChannelPtr pSndChannel, 

Boolean bQuietNow ) ; 

The first parameter to SndDisposeChannel () is a pointer to the 
sound channel to be disposed of. The second parameter specifies whether 
you want sound commands in the channel to be processed before t;he 
channel is closed. If this parameter's value is true, the sound channel's 
command queue is flushed, any sound currently playing is stopped, and 



CHAPTER l 0-lncorporating Sound 

the channel is closed immediately. If this parameter's value is false, the 
sound channel does not close until all queued commands have been 
processed. You will typically specify true for this parameter because 
you'll want the channel closed right away (otherwise, why are you closing 
the channel?). Result codes for SndDisposeChannel () include 
noErr and badChannel. 

Playing a Sound Resource 
Before playing a sound resource, you need to load that resource from the 
resource fork of your game. In addition, you need to make sure that the 
sound resource does not move in memory while it is playing. This means 
that you must lock the sound resource before playing it. After the sound 
has finished, you can unlock it. Note that it is common practice to load 
all sound resources and lock them when a game initializes. This will 
speed up the playing of sounds during game play because they will not 
need to be loaded or locked when played. If you decide to use this strat
egy, make sure to move the sounds to the top of the heap before locking 
them (using the MoveHHi ( ) toolbox routine) so that they do not create 
any heap compaction problems. Though Desert Trek loads all sound 
effect resources at game initialization, it does not lock them because it is 
not an arcade game and thus doesn't need every ounce of speed. The 
sounds are locked just before they are played, and unlocked after they 
have finished. 

The following sound manager routine plays a sound resource. 

II Plays a sound resource to the specified sound channel. A 
II value of nil can be specified for the sound channel, in 
II which case the sound is always played synchronously. A 
II value of true for bAsynch will cause the sound to be 
II played asynchronously. 
OSErr SndPlay ( SndChannelPtr 

Handle 
Boolean 

pSndChannel, 
hSound, 
bAsynch l; 



CHAPTER 10-lncorporating Sound 

The first parameter to SndPlay () is a pointer to the sound channel in 
which you want the sound to play. If you specify ni 1 for this parameter, a 
sound· channel is automatically created for you. In this case, the sound 
channel will be destroyed after the sound is complete. However, the 
sound will be played synchronously, meaning that your program grinds to 
a halt while the sound is playing. For this reason, games rarely use nil 

for the sound channel parameter. 

The second parameter is the handle to the sound you want to play. 
Make sure that the sound is locked in memory so that it doesn't move 
while it is playing. The third parameter specifies whether the sound 
should be played synchronously or asynchronously. If false, the sound 
is played synchronously and control doesn't return to your program until 
the sound completes. Note that the whole system also comes to a grind
ing halt. This means that you should never play a sound synchronously. If 
you want your game to halt while the sound is playing, code it in such a 
way that you can still call SystemTask () to give other applications on 
the Macintosh processing time while the sound is playing. This means 
that you should always specify true for the last parameter so that the 
sound is played asynchronously. 

SndPlay () can return one of the following error codes: noErr, 

resProblem, badChannel, or badFormat. Again, we'll see descrip
tions of these errors later in this chapter. 

Quick Example 
The following code snippet creates a sound channel, loads a sound 
resource, and plays it asynchronously through that channel. There's a lot 
more to managing sound than is shown in this example, but we'll take a 
closer look at that in a moment. 

II Private global variables for sound management. 
static Handle hSound = nil; 
static SndChannelPtr psndChannel = nil; 



CHAPTER l 0-lncorporatlng Sound 

static void PlaySound ( void ) 
{ 

} 

II Create a new sound channel which plays monophonic sound through the 
II internal speaker and audio jack, and which supports MACE 3:1 compression. 
II No callback function is supplied in this example for simplicity. You'll 
II almost always want a callback function so that you'll know when a sound 
II completes. 
SndNewChannel( &psndChannel, sampledSynth, initMono I initMACE3, nil); 

II Load the sound resource, move it to the top of the heap, and lock it. 
hSound = GetResource ( 'snd ' , THE_SOUND_ID ) ; 
MoveHHi ( hSound ) ; 
HLock ( hSound ) ; 

I I Play the loaded sound through the newly created sound channel. 
SndPlay ( psndChannel, hSound, true ) ; 

Playing Additional Sounds 
After playing a sound on a sound channel, what happens next? That 
depends on what you want to do. For starters, the sound you played will 
take some amount of time to finish. During that time, you may need to 
play another sound. Maybe just after firing the ship's lasers, a large aster
oid impacts with the player's ship. Before the laser firing sound com
pletes, you need to play the ship destruction sound. If you simply used 
the SndPlay () routine to play the new sound to the same sound chan
nel currently playing the laser firing sound, what would happen? 
Remember, the sound channel contains a queue, which holds all the com
mands sent to it. The SndPlay () routine really just sends a command 
to the sound channel to play a sound. This means that a new sound 
request will queue up behind the first one, resulting in the new sound 
being played after the first one finishes. In most cases, this is not what 
you want to happen. You want the new sound to be played immediately. 
It would be silly to have the ship explosion sound occur a little after the 
ship actually explodes on the screen. 

What are your options? The first would be to create another channel 
to play the new sound. More to the point, you would probably set up two 
sound channels to play sounds, and alternate between them. However, if a 



CHAPTER l 0-lncorporating Sound 

lot is happening in the game, you will still run into situations where all 
sound channels are busy playing sounds when a new one needs to be 
played. Eventually, you are going to have to decide what to do with the new 
sound. Most of the time, you will probably cut short one of the currently 
playing sounds and start the new sound immediately. Rarely will you simply 
not play the new sound, and most likely you would never want to delay 
playing the new sound until the current ones finish. To resolve this situa
tion, however, requires that you have some additional information. 

First, you need to know if a sound channel is busy playing a sound. 
We'll see how to do that in a section later describing how to obtain sound 
channel information. Second, if you decide to stop a sound currently in 
progress in favor of playing the new sound, you need a way to stop the 
current sound. Here you have two options. First, you could simply dis
pose of the sound channel currently playing the sound, then create a new 
channel to play the new sound. That's probably the easiest thing to do, 
but perhaps not the fastest. Desert Trek uses this technique because it's a 
strategy game and time isn't extremely critical. Even so, the disposal and 
creation of a sound channel occurs very quickly. Second, you could sim
ply stop the current sound playing on the channel, and then play the new 
sound. In this case, you wouldn't need to dispose of and create a new 
channel. This can be accomplished by sending a command to the sound 
channel, and bypassing the queue so that the command gets executed 
immediately (you wouldn't want the command to wait on the queue for 
the sound currently playing to finish, now, would you?). This brings up a 
good question. How do you send commands to a sound channel, and 
what commands can you send? 

Sending Commands to a Sound 
Channel 

There are several commands that you may want to send to a sound chan
nel. In the previous discussion, you might want to stop a sound that is 
currently playing on the channel so that you can start playing a different 
sound. Or, you might want to obtain information about a sound channel, 



CHAPTER l 0-lncorporating Sound 

such as whether or not it is currently playing a sound (whether the sound 
channel is considered busy or not). 

Commands are sent to a sound channel using a sound command 
record. A sound command record contains three fields: the command 
itself and two parameters. The meaning of the two parameters depends 
on the sound command itself. The following is the sound command 
structure definition. 

struct SndCOlllinaild { 
unsigned short 
short 
long 

}; 

Cllld; 
paraml; 
param2; 

typedef struct SndCOlllinaild SndCOlllinaild; 

There are several ways to send commands to a sound channel. The first is 
to put the sound command at the end of the sound channel's queue. 
Using this method allows you to place multiple commands on the queue 
and have them executed one after another. The second method allows 
you to force the sound channel to immediately execute the command. 
You would use this method to send commands that can't wait to be exe
cuted, such as the command to quiet a sound channel. Finally, there are a 
couple of sound channel status commands that are sent to the sound 
manager using yet another sound manager routine. 

Placing Commands on a Sound Channel's 
Queue 

Using the following sound manager routine, you can place sound com
mands on a sound channel's queue. The commands you place in the 
queue will be executed one at a time in the order you placed them there. 

11 Sends a cOlllinaild to the specified sound channel. bNoWait 
II specifies whether'you want to wait until the queue has 
II room for the cOlllinaild if it's currently full. 
OSErr SndDoCOlllinaild ( SndChannelPtr pSndChannel, 

SndCOlllinaild *psndCOlllinaild, 
Boolean bNoWai t ) ; 



CHAPTER 10-lncorporating Sound 

The first parameter taken is a pointer to the sound channel to which you 
want to send the command. The second parameter is a pointer to the 
command record you want to send. The third parameter specifies 
whether or not you want to wait for space to become available on the 
queue if it happens to be full. The default queue size is 128 commands, so 
unless you're heavily loading up the queue, you need not worry too much 
about the queue becoming full. Most of the time you will specify true 
for the last parameter because you don't want your game coming to a 
screeching halt if the sound channel's queue becomes full. This routine 
returns noErr, queueFull (if the channel is full and you specified 
true for bNoWai t), or badChannel. 

Executing Sound Channel Commands 
Immediately 

In some cases, you'll want to bypass the sound channel's queue and exe
cute a sound command immediately. For example, if you want to stop the 
currently playing sound by sending it a Quiet command, you don't want 
that command to wait on the queue until the current sound finishes. This 
kind of defeats the purpose of sending the Quiet command in the first 
place. Thus, the sound manager provides the following routine to send 
commands directly to a sound channel. 

II Sends a sound command directly to the sound channel, 
II bypassing the channel's queue. 
OSErr SndDoimmediate( SndChannelPtr pSndChannel, 

Snd.Command *psnd.Command ) ; 

This routine takes a pointer to a sound channel and command to be exe
cuted. Return codes can be noErr or badChannel. 

Sound Commands 
So, exactly what sound commands can you send to a sound channel? 
Good question. There are quite a few commands that can be sent to a 
sound channel; however, we'll just look at those that are more commonly 
µsed by game programs. 



CHAPTER l 0-lncorporating Sound 

Command 

callBackCmd 

flushCmd 

loadCmd 

Description 

The Callback command causes the callback 
function defined for the sound channel to be 
executed. This topic is discussed in great detail 
later in this chapter. The parameters for this 
command are application defined, meaning 
that you can use them in any way that you like. 

The Flush command flushes the sound channel's 
queue. In other words, all queued commands are 
removed from the queue. You would normally 
send this command with SndDoimmediate ().The 
command parameters are not used, and thus 
are ignored. Note that this command only flushes 
the commands stored in the queue, and has no 
effect on the command currently being 
processed. This means that any sound being 
played will finish normally. 

The CPU Load command allows you to obtain 
how much CPU time would be required for a 
channel with the given properties. You would 
use this command before creating an actual 
sound channel to determine the amount of the 
CPU that would be taken by a new channel if 
created. The CPU load is expressed as a per
centage, where l 00 means l 00% of the CPU 
(something you'd probably want to avoid). You 
must use the SndControl () routine, which will 
be described in the next section. to send this 
command, because information will be 
returned to your program in the parameters of 
the sound command record. Parameter l 
should be O when you send the command. 
When the command finishes, parameter l will 



Command 

pauseCmd 

quietCrnd 

resurneCrnd 

totalLoadCrnd 

CHAPTER l 0-lncorporatlng Sound 

contain the CPU load value. Parameter 2 must 
contain the sound channel's initialization para
meters, such as ini tMono, ini tMACE3, etc. 

Description 

The Pause command causes a sound channel 
to stop processing commands in the queue. 
The parameters are unused and thus ignored. 

The Quiet command stops the sound currently 
playing on the sound channel. You should send 
this command using SndDoirrunediate ().The 
parameters are not used. 

The Resume command causes a sound chan
nel to resume the processing of sound com
mands on the queue. You normally send this 
when you want to cancel a Pause command. 
The parameters are not used. 

The Total Load command allows you to deter
mine the total CPU load taken by all existing 
sound channels in addition to a newly created 
sound channel with the initialization parameters 
you specify. In other words, this command 
works like the Load command except that the 
CPU load returned is not just the CPU load of 
the channel to be created, but the CPU load 
of that channel added to the current CPU load 
taken by all existing channels. Again, you must 
use the Sndcontrol ( l routine discussed below 
to send this command. Parameter l should be 
O on input, and will contain the total CPU load 
on output. Parameter 2 should contain the 
sound channel initialization parameters to be 
used for the new sound channel. 



CHAPTER l 0-lncorporating Sound 

waitCmd The Wait command stops a sound channel 
from processing queued commands for the 
specified amount of time. Parameter l con
tains the length of the wait, expressed in half
milliseconds. In other words, a value of 2 means 
to wait l milllsecond. Because parameter l Is 
an unsigned short Integer, you can wait up to 
65535 half-milliseconds, or 32767.5 milliseconds, 
or 32.7675 seconds. Parameter 2 is unused. 

Example 
The following code example sends a quiet command to the specified 
sound channel, using the SndDoimmediate () routine. This code is 
not used in Desert Trek. 

static void QuietChannel( SndChannelPtr psndChannel ) 
{ 

SndCorrnnand sndConunand; 

II If the sound channel exists ••. 
if ( psndChannel ) 
{ 

} 

} 

II The quietOnd doesn't use the parameter fields. 
sndCorrnnand.cmd = quietOnd; 
sndCorrnnand.paraml = O; 
sndCorrnnand.param2 = O; 

II Execute the conunand imnediately, without waiting at the end of the 
II sound channel's queue. 
SndDoinunediate( psndChannel, &sndCaamand ); 

Obtaining Sound Channel Information 

The sound manager provides several routines that return information 
about sound channels and the sound manager itself to your game. We 



CHAPTER 10-lncorporating Sound 

have already seen that the loadCmd and totalLoadCmd sound channel 
commands return information concerning how much CPU load a new 
sound channel would take. In addition, you can obtain information about 
an existing sound channel as well as information concerning the status of 
the sound manager itself. 

CPU Usage of a New Sound Channel 

To send the loadCmd and totalLoadCmd sound channel commands, 
use the following sound manager routine. 

II Sends a loadCrnd or totalLoadCrnd to the sound manager in 
II order to determine the CPU load of a sound channel with 
II the specified characteristics. 
OSErr SndControl( short sSynthesizerID, 

SndCommand *psndCommand ) ; 

The first parameter specifies the synthesizer ID of the synthesize you 
plan to use for the sound channel. Use one of the same IDs you'd use for 
the SndNewChannel {) command. Again, all the examples in this chap
ter use the sampledSynth synthesizer ID. The second parameter to 
SndControl {) is a pointer to the Sound command you want to send. 
Remember that parameter 2 of the sound command record should con
tain the initialization parameters that you would use when creating the 
sound channel with SndNewChannel { ) . Parameter 1 of the sound com
mand record will contain the CPU load when SndControl {) returns. 
The only error code returned by this routine is noErr. 

Obtaining Information for an Existing Sound 
Channel 

You can obtain information for an existing sound channel. The informa
tion is returned to your game in a sound channel status record, which is 
defined as follows. 



CHAPTER 10-lncorporating Sound 

struct SCStatus 
Fixed 

} ; 

Fixed 
Fixed 
Boolean 
Boolean 
Boolean 
Boolean 
unsigned long 
long 

scStartTime; 
scEndTime; 
scCurrentTime; 
scChannelBusy; 
scChannelDisposed; 
scChannelPaused; 
scUnused; 
scChannelAttributes; 
scCPULoad; 

typedef struct SCStatus SCStatus; 
typedef SCStatus *SCStatusPtr; 

Field 

scStartTime 

Field 

scEndTime 

scCurrentTime 

Description 

If a sound is currently playing on the chan
nel (as indicated by a value of true for 
scChannelBusy), this value contains the 
starting time in seconds of a sound being 
played from disk (the next section 
describes how to play sounds from disk). 

Description 

If a sound is playing on the channel (as 
indicated by a value of true for 
scChannelBusy), this value contains the 
end time in seconds of a sound being 
played from disk. 

If a sound is playing on the channel (as 
indicated by a value of true for 
scChannelBusy), this value contains the 
current time in seconds of a sound being 
played from disk. 



scChannelBusy 

CHAPTER 10-lncorporating Sound 

This field contains a value of true if the 
sound channel is currently producing 
sound; it is false if no sound is playing on 
the channel. 

scChannelDisposed This is a reserved field used internally by 
the sound manager. 

scChannelPaused This field contains a value of true if the 
sound channel is paused (in other words, not 
processing commands from the queue). 

scunused This field is reserved for sound manager use. 

scchannelAttributes This field contains the current sound chan
nel attributes. The format of this field is the 

scCPULoad 

same as the values specified in the sound 
channel initialization parameters when the 
sound channel was created. 

This field contains the CPU load being 
used by the sound channel. 

To obtain the status record for an existing sound channel, use the follow
ing sound manager routine. 

II Obtains information about the specified sound channel. 
OSErr SndChannelStatus( SndChannelPtr psndChannel, 

short 
SCStatusPtr 

sLength, 
pscStatus ) ; 

You need to pass three parameters to this routine. First, you need to sup
ply a pointer to the sound channel for which you want to gather informa
tion. Second, you need to supply the size of the buffer you're providing 
to gather the information. You will almost always specify the size of the 
sound channel status record. Finally, you need to specify a pointer to the 
sound channel status record that will receive the information. This rou
tine can return error codes of noErr, paramErr, or badChannel. 



CHAPTER l 0-lncorporating Sound 

,;,~~,~-'°~'); Obtaining Information about the Sound 
Manager 

You can obtain information concerning all sound channels that the sound 
manager is currently managing for all applications running on the 
Macintosh. Note that this includes sound channels allocated by other 
programs. The information you can obtain is defined by the following 
sound manager status record. 

struct SMStatus 
short smMaxCPULoad; 
short smNumChannels; 
short smCurCPULoad; 

} ; 

typedef struct SMStatus SMStatus; 
typedef SMStatus *SMStatusPtr; 

Field 

smMaxCPULoad 

smNumChannels 

smCurCPULoad 

Description 

This value is the maximum CPU load that the 
sound manager will not exceed when allocat
ing sound channels. In other words. if you try 
to create a new sound channel that would 
increase the CPU load for all channels 
beyond this value, the sound manager will fall 
to create the new channel. The default value 
for this field is l 00 when the system boots. 

This value contains the total number of sound 
channels allocated by all applications running 
on the Macintosh. Note that the channels do 
not necessarily have to be currently in use, just 
that they have been allocated. 

This value contains the current CPU load 
taken by all sound channels allocated on the 
Macintosh. 



CHAPTER 10-lncorporating Sound 

To obtain the sound manager information, use the following routine. 

II Obtains information about all sound channels allocated by 
II the sound manager on this Macintosh. 
OSErr SndManagerStatus( short sLength, 

SMStatusPtr psmStatus ) ; 

You need to specify the length of the buffer you're providing, typically 
the size of the sound manager status record. In addition, you need to 
specify a pointer to the sound manager status record that will receive the 
status information. This routine only returns noErr. 

Example 
The following code snippet makes calls to gather information on a spe
cific sound channel as well as the sound manager as a whole. 

static void GetSoundChannelinfo( SndChannelPtr psndChannel 
{ 

OSErr osErr; 
SCStatus scStatus; 
SMStatus smStatus; 

II Obtain information for the specified sound channel. 
osErr = SndChannelStatus( psndChannel , sizeof( scStatus ), &scStatus ); 

II Obtain information on the sound manager as a whole 
osErr = SndManagerStatus( sizeof( smStatus ), &smStatus ); 

Playing Sound from Disk 

Playing sounds effects with the SndPlay () sound manager routine 
works great for short sounds and music clips. However, what if you want 
to play a longer music clip, one that's very large in size (perhaps several 
megabytes)? The SndPlay () routine requires that the sound to be 
played be loaded and locked in memory, making it a poor choice for 
larger music clips. You can easily imagine situations where there isn't 



CHAPTER 10-lncorporating Sound 

enough memory available to load the entire music clip to be played. 
What's needed is a way to play a large music clip from disk, where por
tions of the music are loaded into memory as they are needed, and 
removed from memory when they have been played. 

This is accomplished by providing a double buffer mechanism from 
which to play the music. In other words, two buffers are used to play the 
music, where each buffer is much smaller than the size of the entire music 
file. First, buffer one is filled with as much music as can be fit from disk. 
Next, while the music in buffer one is being played, the second buffer is 
loaded with the next part of the music from disk. Once the music in the 
first buffer is complete, the music in the second buffer is played, without 
causing a break in the music. Then, while the music in the second buffer 
is being played, the first buffer's contents are replaced with the next por
tion of music from disk. This process repeats until the entire music file 
has been played. The advantage of the double buffer scheme is that a 
music file of unlimited size can be played using a relatively small amount 
of memory. As long as the buffers are large enough to hold enough music 
so that while one is being played the other can be completely filled from 
disk, the entire music file plays without interruption. Fortunately, the 
management of the double buffer scheme is automatically taken care of 
for you when you use the play from disk sound manager routines. 

Starting a Play from Disk Sound 
The following sound manager play-from-disk routine allows you to play 
either a sound resource or an AIFF file from disk. 

II Plays a sound resource or AIFF file from disk, using the 
II double buffering technique to play continuous sound using 
II a limited amount of memory. 
OSErr SndStartFilePlay( SndChannelPtr psndChannel, 

short 
short 
long 
Ptr 
AudioSelectPtr 
ProcPtr 
Boolean 

sFileReferenceNurnber, 
sResourceID, 
lBufferSize, 
pBuffer, 
paudioSelection, 
pprocCornpletion, 
bAsynch ) ; 



CHAPTER 10-lncorporating Sound 

The first parameter to SndStartFilePlay () is a pointer to the sound 
channel that you want the sound :fil~ to be played. You could specify nil 
here, and have the sound manager automatically create a sound channel 
for you to play the music file. However, I strongly recommend against 
doing so because you will have no further control over that sound chan
nel. You will not have the pointer to the sound channel that allows you to 
send it additional commands, pause the music, or stop the music. 
Therefore, you will almost always want to have some control over the 
sound from disk channel, even if it's to simply stop the music in response 
to the user turning off sound in your game. 

The second and third parameters specify whether you want to play a 
sound resource or an AIFF (or AIFF-C) file. Remember, a sound 
resource is contained in a resource of type 'snd ', and an AIFF file con
tains sound information stored in the data fork of a :file. If you want to 
play an AIFF file, supply the file reference number in 
sFileReferenceNumber, and specify a value of 0 for the resource 
parameter sResourceID. If you are playing an AIFF file, you must 
open the file :first with the FSOpen () toolbox call, which will return to 
you the file reference number. If you want to play a sound resource, spec
ify 0 for the :file reference number, and the 'snd ' sound resource ID in 
sResourceID. 

The fourth and fifth parameters deal with the double-buffering to be 
used to play the :file. The total size of the double-buffer is specified in 
lBufferSize. Most of the time, you will specify nil for pBuffer, 

. which will cause the sound manager to automatically allocate the double
buffers for you. In that case, the sound manager creates two buffers, each 
with a size half of the buffer size you specified in lBufferSize. If you 
want to allocate your own buffer, allocate one buffer of the size you speci
fied, lock it so that it's :fixed in memory, and supply a pointer to that 
buffer in pBuffer. 

The sixth parameter, paudioSelection, allows you to specify that 
only a portion, or selection of the sound file be played. Details won't be 
provided here, other than you supply ni 1 for this parameter to play the 
entire music file. The seventh parameter specifies a callback function to 
be called when the sound completes. This is a function you define that 



CHAPTER l 0-lncorporating Sound 

takes some action once the music file completes. However, you can 
accomplish the same thing by defining a callback function for the sound 
channel you specified and sending that channel a callBack command. 
We'll see how to do that in the next section. For most circumstances, you 
will supply nil for this parameter too (and use the method described in 
the next section on callback routines to take action once the sound file is 
finished playing). If you do want to use a callback function for 
SndStartFilePlay (),note that it differs from a regular sound chan
nel callback function in that the only parameter passed to the callback 
function is the sound channel pointer. After reading the following section 
on callback routines, you'll realize that you need to set the user informa
tion field of the sound channel in order to pass useful information to the 
callback routine (such as the A5 world pointer for your garrie, which we'll 
discuss in a moment). 

The final parameter to this function specifies whether or not the 
music file should be played asynchronously. You will always, want to 
specify true here so that the music file gets played asynchronously. If 
you do not, your game and the entire Macintosh system running your 
game will grind to a halt until the music file plays completely. 

This routine can return one of the following error codes: noErr, 
notEnoughHardwareErr, queueFull,badChannel,badFormat, 
notEnoughBufferSpace, badFileFormat, channelBusy, 
bufferTooSmall, or siinvalidCompression. Again, see the section 
on sound manager errors for a complete description of these return codes. 

Example 
The following code snippet starts playing an AIFF sound file from disk. 
This routine can be seen in its entirety in Digitized Sound.c, which 
includes the code to ensure that the sound channel's callback routine gets 
called once the sound file completes playing. 

II Private global variable containing the file reference number of the music 
II file being played from disk. 
static short sMusicFile; 



void PlayBackgroundSound ( void ) 
{ 

CHAPTER l 0-lncorporatlng Sound 

11 The volume reference number where the AIFF sound file can be found. 
short sVolume; 

II If the background sound channel has not yet been created, create the 
II the sound channel. 
if ( ! psndChannelBack ) 

SndNewChannel( &psndChannelBack, sanpledSynth, initMono, 
(Snd.CallBackProcPtr) CheckSoundDone ) ; 

I I If the background sound channel has already been created, stop any music 
I I currently being played on that channel. 
else 

CloseBackgroundMusicFile(); 

I I Obtain the volume reference number where the Desert Trek program lies. 
II That's where we're going to look for the music file. 
sVolume = GetProgramVolume(); 

II Open the music file, and if successful, play the music on the background 
I I sound channel. Notice that a double buffer of 65536 bytes is being used. 
if ( !FSOpen( MUSIC_FILE, sVolume, &sFileMusic ) ) 

SndStartFilePlay( psndChannelBack, sFileMusic, 0, 65536, nil, nil, 
nil, true ) ; 

Pausing a Play from Disk Sound 
Your game may want to pause the music being played from disk, so that it 
can be resumed from that point later on. The following sound manager 
routine will pause or resume a play from disk sound on a sound channel. 

II Pauses or resumes sound on a charmel playing sound from 
II disk. 
OSErr SndPauseFilePlay( SndChannelPtr psndChannel ); 

You simply pass a pointer to the sound channel currently playing sound 
from disk. If the channel is playing sound, it gets paused by this routine. 
If the channel is already paused, this routine causes sound to resume on 
that channel. Note that this routine only works for a channel playing 



CHAPTER 10-lncorporating Sound 

sound from disk. Return codes include noErr, queueFull, 
badChannel, and channelNotBusy. 

Stopping a Play from Disk Sound 
If you want to stop a sound being played from disk, use the following 
sound manager routine. 

II Stops sound from a channel playing sound from disk. 
OSErr SndStopFilePlay( SndChannelPtr psndChannel, 

Boolean bStopNow ) ; 

You need to pass a pointer to the sound channel currently playing sound 
from disk, and a parameter indicating whether or not you want the sound 
to stop immediately. You will always specify true for bStopNow because 
if you do not, this call doesn't return until the sound file completes, caus
ing your game and the Macintosh on which it's running to grind to a halt. 
This routine can return noErr or badChannel. Don't forget to close 
the file if you are playing an AIFF sound file after the sound stops. 

Example 
The following routine from Digitized Sound.c stops a sound playing 
from disk, and closes the sound file. 

II Private global variable containing the file reference number of the music 
II file being played from disk. 
static short sMusicFile; 

static void CloseBackgroundMusicFile ( void ) 
{ 

II If the !llllsic file is open •.. 
if ( sFileMusic ) 
{ 

II Stop playing the !llllsic file on the background sound channel. 
SndStopFilePlay( psndChannelBack, TRUE ) ; 



II Close the Irnlsic file. 
FSClose( sFileMusic ); 

CHAPTER l 0-lncorporating Sound 

II Set the Irnlsic file reference number to 0 so that we know that the file 
II is now closed. 
sFileMusic = O; 

Callback Routines 

Callback routines for sound channels are commonly used when you want 
to take some action after a sound has :finished playing. The action taken 
varies depending on your game's needs, but commonly you'll want to play 
another sound or close the sound channel once it has stopped playing a 
sound. For example, if you are playing background music by looping a 
short music clip, you need to play that clip again immediately after it's 
:finished in order to simulate continuous sound. 

A few technicalities need to be considered when using a callback rou
tine for a sound channel. These technicalities arise due to the fact that 
your callback routine might be called at interrupt time. A routine being 
executed at interrupt time cannot allocate or free any memory, as calls to 
the memory manager aren't allowed. This means that you must be very 
careful what you do in your callback routine. Remember that even if you 
do not call a memory manager routine directly, a call to a different toolbox 
manager routine might in turn result in a call to the memory manager. In 
fact, it's best to simply set a global variable in the callback routine that gets 
checked in your game's main event loop. When your game's main event 
loop detects that the global variable has been set, you can take the action 
you really want to perform when the callback routine was invoked. 
However, you don't have direct access to your game's global variables 
when your callback routine gets called. This is due to the fact that the A5 
world is not set to your game's global variables section in memory at inter
rupt time. Wait a second, what is this A5 world? Glad you asked. 



CHAPTER l 0-lncorporating Sound 

~ ;~~! The AS World 
The AS world really refers to the application's globals that can be refer
enced at a particular time. It is called the A5 world because register AS on 
the 680XO-based Macintoshes points to the global variables area of a pro
gram. In Chapter 2, we saw that a Macintosh application breaks up the 
memory allocated to it into three separate sections: the globals area, the 
heap, and the stack. The globals area contains an application's global vari
ables, and when you reference those variables, it is via an offset from the 
AS pointer. During interrupt time, the AS world won't be set to point to 
your game's global variables. This means that your interrupt routine can't 
immediately access your game's variables. What you need to do is to set 
the A5 world to point to the global variables of your game. This can be 
accomplished by using the following toolbox routine. 

II Sets the AS world. This routine returns the current AS 
11 world so that you can set it back when done. 
long SetAS ( long lAS ) ; 

The SetA5 ( ) routine sets the A5 world and returns the A5 world that 
was in force before you changed it. This means that you can set the AS 
world to your game's A5 world in the callback routine to get access to 
your global variables. Just before your callback routine ends, you should 
set the A5 world back to the one you received when you changed it. How 
do you know the value of your game's A5 world pointer? The following 
routine returns the A5 value for your game. 

II Returns the A5 world pointer for your application. 
long SetCUrrentAS ( void ) ; 

When you set up the sound channel command that causes your callback 
routine to be called, you need to pass along the A5 value for your game in 
the second parameter of the sound channel command. You can then use 
this value in the callback routine to set the AS world to point to your 
game's global variables. You will learn how to do this in the example given 
in the section on setting up a callback routine. 



CHAPTER 1 a-Incorporating Sound 

Callback Routine Definition 

Your callback routine needs to be defined as follows. 

II Function prototype for your game's sound channel callback 
II routine. Note that there is no toolbox call called 
II MyCallback(). 
pascal void MyCallback( SndChannelPtr 

SndConunand 
psndChannel, 
sndConunand ) ; 

Basically, your callback routine will be passed two parameters. This first 
is a pointer to the sound channel that caused the callback routine to be 
called. The second is the Callback command that triggered the callback 
routine. Note that this is not a pointer to the Sound command, but the 
actual record itself. 

Setting Up a Callback Routine 
You need to do two things to set up a callback routine so that it gets 
called when a sound finishes playing on a sound channel. First, you need 
to pass a pointer to your callback routine when creating the sound chan
nel with SndNewChannel (). Second, you need to place the Sound 
command that invokes your callback routine on the sound channel's 
queue. This command should come after the Sound command that plays 
the sound. Remember that using SndPlay () really just causes a Sound 
command to be placed on the sound channel's queue. So, make sure that 
you place the Callback command after calling SndPlay () (or 
SndStartFilePlay () if you're playing music from disk). 

As previously discussed, when your callback routine gets invoked, you 
will be passed the sound channel pointer and Sound command, which 
cause the callback routine to be called. This means that you can use the 
sound command parameters to pass information to your callback routine. 
One of these parameters should be the A5 world of your game so that you 
can access your game's global variables during the callback routine. 
Because the AS world pointer is a long integer, you must use sound com
mand parameter 2 because sound command parameter 1 is a short integer. 



CHAPTER l 0-lncorporating Sound 

This leaves sound command parameter 1 for your own use. Desert Trek 
uses it to tell the callback routine which sound channel has completed 
playing a sound (either the background sound channel or the sound effects 
sound channel). 

Example 

The following function &om Digitized Sound.c plays a sound effect, 
which sets up the callback function to be called when the sound finishes 
playing. 

II Private global variable that points to the sound effect we want to play. 
11 The PlaySound() routine sets this variable based on what sound effect is 
11 to be played. You can find the PlaySound() routine in "Digitized 
II Sound.c•. 
static Handle hSound; 

I I This is the global variable that gets set in the callback routine when a 
II sound effect finishes playing. It's value gets checked during every pass 
II of the main event loop. 
static Boolean bForegroundSoundDone = FALSE; 

static void PlayForegroundSound( void ) 
{ 

SndComrnand sndComrnand; 

II If the sound channel does not yet exist, create it. Note that we are 
I I defining the Desert Trek function, CheckSoundDone () , as the callback 
II function for this sound channel. 
if ( !psndChannel ) 

SndNewChannel( &psndChannel, sampledSynth, initMono I initMACE3, 
(SndCallBackProcPtr) CheckSoundDone ) ; 

II Move the sound to the top of the heap and lock it. 
MoveHHi ( hSound ) ; 
HLock ( hSound ) ; 

II Reset the flag used to check if the sound effect has finished. 
bForegroundSoundDone = false; 

II Set up the callback sound corrunand. The first parameter specifies that 



CHAPTER l 0-lncorporating Sound 

11 the foreground sound channel caused the callback routine to be called. 
II 'l'he second parameter is set to Desert Trek's AS world. 
sndCommand.cmd = callBackand; 
sndComnand.paraml = FOREGROUND_SOUND_COMPLETE; 
sndCommand.pararn2 = SetCurrentAS (); 

II Play the sound effect. 
SndPlay( psndChannel, hSound, true ) ; 

II Send the command to call the callback routine when the sound finishes 
II playing. 
SndDoCommand( psndChannel, &sndComnand, true ) ; 

Callback Routine Processing 
When the callback routine gets called, you need to take some action. 
Again, the callback routine itself should just set a flag that causes some 
processing to get kicked off from your main event loop because you do 
not want to do anything in the callback routine that causes a memory 
manager routine to be called. The first thing your callback routine needs 
to do, however, is to set the A5 world to your game's AS world. You can 
then feel free to access your game's global variables. The last thing your 
callback routine should do is restore the AS world back to what is was 
before your callback routine was called. The following is Desert Trek's 
callback routine, which can be found in Digitized Sound.c. 

static pascal void CheckSoundDone ( SndChannelPtr pSndChannel, 
SndCommand sndCommand ) 

long lAS; 

II Set the AS world to Desert Trek's AS world, which was stored in the 
II second parameter of the sound crnnmand. 
lAS = SetAS ( sndCommand.param2 ) ; 

II If the first parameter indicates that this callback was invoked due the 
II finishing of sound on the background music sound channel, set the flag 
II which denotes that the background sound is done. 
if ( sndCrnnmand.paraml == BACKGROUND_SOUND_COMPLETE ) 

bBackgroundSoundDone = true; 



CHAPTER 10-lncorporating Sound 

II If the first parameter indicates that this callback was invoked due the 
II finishing of sound on the foreground sound effects sound channel, set the 
II flag which denotes that the foreground sound is done. 
else if ( sndCormnand.paraml == FOREGROUND_SOUND_COMPLETE ) 

bForegroundSoundDone = true; 

II Restore the AS world to what it was before this routine was called. 
SetAS ( lA5 ) ; 

Desert Trek's main event loop calls the following routine to check if one of 
the sound channel done flags has been set (you can see the call made from 
the CheckEvents () function shown in Chapter 2 in the section, "Waiting 
for and Getting Event:s). This routine can be found in Digitized Sound.c. 

void CheckSound( void ) 
{ 

II If the foreground sound effect is done, call a routine to destroy the 
II sound effects channel. 
if ( bForegroundSoundDone ) 

KillForegroundSound(); 

II If the background IIUlsic sound is done, call a routine to play that sound 
II again in order to sillUllating continuous IIUlSic. 
if ( bBackgroundSoundDone ) 

PlayBackgroundSound(); 

Sound Manager Errors 

Calls to sound manager routines can return the following errors. 

Error 

no Err 

Description 

No error occurred. The sound manager 
routine completed successfully. 



res Problem 

CHAPTER l 0-lncorporating Sound 

An error occurred while loading the 
resource. 

badChannel The sound channel is invalid, corrupt, or 
unusable. 

badFormat The 'snd' resource you're trying to play 
is corrupt or unusable. 

queueFull The sound channel queue is full. 

paramErr A parameter to a sound manager rou
tine is incorrect. 

notEnoughHardwareErr The current Macintosh is not capable of 
playing a sound from disk due to insuffi
cient hardware. 

notEnoughBufferSpace There isn't enough memory available to 
allocate the buffer size specified in 
SndStartFilePlay(). 

badFileFormat 

channelBusy 

buffersTooSmall 

The play-from-disk file specified is not a 
valid AIFF or AIFF-C file. 

The Play-from-Disk command failed 
because the specified sound channel is 
already busy playing a sound from disk. 

The buffer size specified 
SndStartFilePlay () is not large 
enough to support play from disk. 

siinvalidCompression The file specified in 

Error 

channelNotBusy 

SndStartFilePlay () has an invalid 
compression type. 

Description 

Returned by SndPauseFilePlay () 

when the specified sound channel is 
not currently playing a sound from disk. 



CHAPTER l 0-lncorporating Sound 

Suspend and Resume Events 
Playing sound asynchronously brings up an interesting problem when you 
consider that the user can, at any time, switch out of your game and into 
another application (even if it's just the Finder). What exactly happens to the 
sounds that are currently playing on your sound channels once your game 
becomes inactive? The answer is that the sound manager will continue to 
play those sounds to completion. This behavior, though, doesn't really 
become a good Macintosh application. A good Macintosh program should 
stop all sounds in progress if the user switches to another application. 

When your game receives a suspend event, you should close all 
sound channels, or at the very least, quiet them. When your game 
receives a resume event, you can reopen the sound channels and start 
playing any sounds, such as background music. Suspend and resume 
events are passed to your game in an event of type osEvent. However, 
you need to make sure your game is set up to receive these events. In 
other words, your game doesn't get these events unless you specify that 
your application accepts them. You specify that your game should 
receive suspend and resume events in the 'SIZE' resource and in the 
project type definition of your game project. If you are using Think C or 
Symantec C++, you must set the SIZE flags from the Set Project Type 
dialog box (from under the Project menu). Simply make sure that the 
Suspend & Resume Events flag is selected. If you are editing the 'SIZE' 
resource directly, you need to make sure that the Accept Suspend Events 
and Does Activate on FG Switch flags are set to 1. These two steps are 
very important since if you do not complete them, your game will not 
receive suspend and resume events. 

Getting a Suspend or Resume Event 
When your game receives an operating system event, you need to deter
mine if it was a suspend or resume event. Actually, both event types are 
grouped together into what the toolbox calls a 
suspendResumeMessage. This message type differentiates between 
suspend/resume messages and other types of operating system messages 
(which we will not discuss here). To determine whether the operating sys-



CHAPTER 10-lncorporating Sound 

tern event received by your game is a suspendResumeMessage, you 
need to check the high byte of the message field of the event record. If 
the message field high order byte equals suspendResumeMessage, 

then you have a suspend or resume message. We'll soon see an example. 

After determining that a suspend or resume message occurred, you 
need to figure out whether the event was a suspend event or a resume 
event. This is accomplished by checking bit 0 of the message field. If bit 
0 is set, the message is a resume message. If the bit is reset, the message is 
a suspend message. The toolbox defines a constant, activateFlag, 

which can be used to determine the value of bit 0 of the message field. 

The following code example, from Main.c handles operating system 
events. 

static void HandleOSEvent( EventRecord *pEvent ) 
{ 

WindowPtr pWindow; 
long lEventType; 

II Get the high order byte of the event message field. 
lEventType = pEvent->message » 24; 

I I If the high order byte is equal to suspendResumeMessage, this is a 
II suspend or res\lllle message. 
if ( lEventType == suspendResumeMessage ) 
{ 

11 We need to activate or deactivate the frontmost Desert Trek window, 
II depending on the event type. 
pWindow = FrontWindow ( ) ; 

II If this is a resume message ... 
if ( pEvent->message & resumeFlag ) 
{ 

} 

II Initialize the cursor back to the arrow pointer. 
InitCUrsor () ; 

II Activate the frontmost window (which really just enables the 
II scrollbar of that window, if it has one). 
ActivateDeactivateWindow( pWindow, true ) ; 

II Start playing the background music (if it's turned on). 
PlayBackgroundSound(); 



CHAPTER 10-lncorporating Sound 

II Otherwise this is a suspend message •.. 
else 
{ 

II Stop all sound channels and dispose of them. 
KillBackgroundSound(); 
KillForegroundSound(); 

II Deactivate the frontmost window (which really just disables the 
II scrollbar control of that window, if it has one). 
ActivateDeactivateWindow( pWindow, false ) ; 

Background Music Example 
Desert Trek can play background music from two sources. First, included 
with the game is a short sound clip (stored as a 'snd ' resource) that can 
be looped to simulate continuous music. However, after repeated play, 
this sound clip could become repetitive. To overcome this problem, 
Desert Trek can play any AIFF or AIFF-C music file that the user wants. 
All the user has to do is put an AIFF or AIFF-C file named "Music" in 
the same folder as Desert Trek, and Desert Trek will play that file as the 
background music. This section will show the strategy and code used to 
play the background music in Desert Trek. 

A separate sound channel is used to play the background music so 
that sound effects played on another channel don't interrupt the back
ground music. This sound channel gets created when the program starts 
if the background music option is turned on. The channel remains open 
for as long as the music plays, meaning that if the music is stopped for 
some reason, the channel is destroyed. The music can be stopped either 
by turning off the background music option or switching to another 
application. If the music stops because the sound finishes playing, the 
background music sound is played again. 

Because we want the background music to play uninterrupted, there 
are a few things we need to be careful about. If the short sound clip is 
used as the background music, the sound must be looped fairly often 



CHAPTER 10-lncorporating Sound 

(about every 15 seconds). If some lengthy processing is happening at the 
time the sound needs to be replayed, a pause in the music might occur. In 
fact, heavy processing isn't necessary to cause a pause in the music. If the 
user clicks on a menu and holds the mouse button down for a few sec
onds, thinking about what to do, control doesn't return to Desert Trek's 
main event loop until the user releases the mouse button. If the sound 
clip finishes while the user is thinking about what menu item to select, 
Desert Trek won't get a chance to replay the sound until the user finally 
makes a choice. Now, the chances that the user will hold the mouse but
ton down for a long period of time just when the music clip finished isn't 
all that great, but it can happen. 

In order to lessen the chances that such an action would cause a pause 
in the background music, Desert Trek puts an additional Play command 
on the sound channel's queue. Thus, if the first music clip completes 
while something else is going on, the music won't stop. Of course, if the 
user keeps the mouse button down long enough in a menu, the music will 
eventually stop. However, the user would have to hold down the mouse 
for quite some time Yi order for that to happen. When Desert Trek 
regains control, it places another Play command on the sound channel's 
queue. In practice, then, there should always be one additional Play com
mand on the queue, giving Desert Trek a little extra time to process an 
end of music notification. This extra Play command is not used when 
playing sound from disk because it really can't be implemented. The 
Play-from-Disk command cannot be queued up because you would just 
receive a "channel busy" error code. However, this is less of a problem 
for the longer background music files, since they will probably be entire 
songs. If there's a short delay between when the song finishes and starts 
up again, it won't sound that bad. 

Desert Trek's main event loop calls the CheckSound ( ) routine to 
see if the background music sound finished playing. Because the event 
loop should be executed every 1/60th of a second, there will be no notice
able delay or pause in the background music (except in the previous case, 
but we've now taken care of that). However, if some internal Desert trek 
processing takes some time, we need to call the CheckSound ( ) routine 
periodically during that processing to make sure that sound end notifica-



CHAPTER l 0-lncorporating Sound 

tions are handled. The only real "lengthy'' processing that Desert Trek 
performs is the view transition special effect (which takes about half a sec
ond). The NiceDelay () function is used by the special effects routine 
to ensure that the effect is timed correctly regardless of the speed of the 
Macintosh. If you look in the NiceDelay () function, you'll notice that 
it calls CheckSound () to make sure that sound processing takes place 
while Desert Trek waits for something to finish. 

The following routine starts the background music. It gets called 
when the program begins, when the user turns on background music 
(after it had been off), or when Desert Trek receives a resume event. The 
private global variables used to support background music are also shown. 

11 Used to detennine that the background l!Rlsic sound is conplete. 
#define BACKGROUND_SOUND_COMPIBl'E 1 

II The name of the l!Rlsic file that the user can supply. 
#define MUSIC_FILE "\pMusic• 

II Detennines whether background l!Rlsic is on or _off. It is saved in the 
II resource fork of Desert Trek so that it can be read the next time Desert 
II Trek is run. 
static Boolean **hbBackgroundSoundOn = nil; 

II The background l!Rlsic sound channel pointer. 
static SndChannelPtr psndChannelBack = nil; 

II Used for the background l!Rlsic clip's 'snd ' resource. 
static Handle hSoundBackground = nil; 

II Set to true by the callback function when the background llRlSic sound 
II conpletes. 
static Boolean bBackgroundSoundDone = false; 

II The background l!Rlsic file's file reference number. It is set to 0 when the 
II file is closed or not being used. 
static short sFileMusic = O; 

void PlayBackgroundSound( void ) 
{ 

SndComnand sndComnand; 
Boolean bDoubleUp = false; 
short sVoltune; 



CHAPTER 10-lncorporating Sound 

I I If the background music option is turned on ... 
if ( **hbBackgroundSoundOn ) 
{ 

II If the sound charmel hasn't been created yet ... 
if ( !psndChannelBack ) 
{ 

II We want to place an extra sound clip on the sound charmel's queue 
II so that if Desert Trek can't irrmediately process the end of music 
II notification, the background music doesn't stop. 
bDoubleUp = true; 

I I Create the background music sound charmel. We' ll allow stereo 
II output so that AIFF and AIFF-C files get played in stereo if the 
II user has external speakers attached to the audio jack. The 
I I CheckSoundDone () callback routine is defined for this sound charmel. 
SndNewChannel( &psndChannelBack, Saill>ledSynth, initStereo I initMACE3, 

( SndCallBackProcPtr) CheckSoundDone ) ; 

II If the sound charmel is open, that means that we are playing the sound 
II again since it has finished playing. If the sound was an AIFF or 
II AIFF-C music file, we need to close that file before we try to play 
II it again. 
else 

CloseBackgroundMusicFile(); 

II Reset the flag that tells Desert Trek that the background music has 
II completed. This flag will get set to true by the callback routine 
I I when the sound completes . 
bBackgroundSoundDone = false; 

II Set up the sound command that will cause the callback routine to be 
11 invoked. The command must be sent after the command which starts 
II playing the background music. Note that we set the first parameter to 
II BACKGROUND_SOUND_COMPLETE to denote that the background music charmel 
II caused the callback routine to be called. The second parameter is set 
II to Desert Trek's A5 global variables pointer. This is done so that the 
II callback routine can access Desert Trek's global variables. 
sndCommand.cmd = callBackCmd; 
sndCommand.paraml = BACKGROUND_SOUND_COMPLETE; 
sndCommand.param2 = SetCUrrentA5(); 

II Get Desert Trek's volume reference number so that we can use it to see 
II if the user has placed an AIFF or AIFF-C music file in the same folder 
II as the Desert Trek program. 
sVolume = GetProgramVolume(); 



CHAPTER 10-lncorporating Sound 

II If the music file exists and can be opened without error, start sound 
II play from disk. We specify the music file's reference number and a 
II buffer size of 64K. 
if ( !FSOpen( MUSIC_FILE, sVolume, &sFileMusic ) 

SndStartFilePlay( psndChannelBack, sFileMusic, 0, 65536, nil, nil, 
nil, true ) ; 

II If no music file was found, play the short music clip loaded from 
II Desert Trek's resource fork. 
else if ( hSoundBackground l 
{ 

II Move the sound resource to the top of the heap and lock it before 
II playing it. 
MoveHHi ( hSoundBackground l ; 
HLock ( hSoundBackground l ; 
SndPlay( psndChannelBack, hSoundBackground, true ) ; 

II Send the sound command that will cause the callback routine to be 
II invoked. Note that this comand will be processed by the sound 
II channel after the sound we just played finishes. 
SndDoCommand( psndChannelBack, &sndCommand, true); 

I I If we just created the sound channel and we are playing the short sound 
II clip from the resource fork, we want to queue up a second sound play 
II and callback command. This will prevent a pause in the background 
II music if Desert Trek can't replay the music clip right away. 
if ( bDoubleUp && lsFileMusic && hSoundBackground ) 
{ 

SndPlay( psndChannelBack, hSoundBackground, true ) ; 
SndDoComand( psndChannelBack, &sndComand, true ) ; 

When the background music sound completes, the callback function gets 
called by the sound manager. That callback routine sets the 
bBackgroundSoundDone flag, which in turn is detected by the 
CheckSound () routine. The CheckSound () routine will call the 
PlayBackgroundSound () routine when it detects that the 
bBackgroundSoundDone flag has been set. The callback routine, 
CheckSoundDone ( ) , and the CheckSound ( ) routine both have been 



CHAPTER l 0-lncorporating Sound 

shown already in the section on callback routines presented earlier on in 189'.' 
this chapter. 

When the background music is to be stopped, any open sound file is 
closed and the sound channel is disposed of. The following routine han
dles the disposing of the sound channel itself and can be found in 
Digitized Sound.c. 

void KillBackgroundSound( void ) 
{ 

II If the background 11R1sic channel has been created ... 
if ( psndChannelBack ) 
{ 

II Close the background IIRlsic file (if it's being used). 
CloseBackgroundMusicFile(); 

II Close the sound channel, which automatically stops any sound playing 
II on that channel. 
SndDisposeChannel ( psndChannelBack, true ) ; 

II Set the background sound channel pointer to nil so that we know that 
II channel has been disposed and is not valid. 
psndChannelBack = nil; 

II If the background music clip from the resource file has been loaded, 
II we can unlock it's handle since the sound is no longer playing. 
if ( hSoundBackground ) 

H!Jnlock ( hSoundBackground ) ; 

The following routine from Digitized Sound.c closes an AIFF or AIFF
C file being used for the background music. 

static void CloseBackgroundMusicFile( void ) 
{ 

II If the 11R1sic file is open and being used ... 
if ( sFileMusic ) 
{ 

II Stop the play from file command illlmediately. 
SndStopFilePlay( psndChannelBack, TRUE ) ; 



CHAPTER 10-lncorporating Sound 

II Close the music file. 
FSClose( sFileMusic ); 

I I Set the music file reference number to 0 so that we know that the 
II music file is no longer being used. 
sFileMusic = O; 



AFTER THE GAME IS FINISHED 

Now that you've finished writing, what's going to be the hottest game in 
existence, what do you do next? Can you just sit back, relax, and collect 
royalties? Hardly. There's still a lot left to do if you want your game to be 
a great success. What you do with the game after you've finished writing 
it can have as much effect on the popularity and success of that game as 
the actual game itself. 

391 



CHAPTER 11-After the Game is Finished 

First of all, when exactly do you consider a game complete? Finishing 
your game will most likely be the hardest part of writing that game. Even 
after you consider the game completely finished, there's the question of 
testing it out to make sure it works the way you intended, ensure that 
there aren't any bugs, and absolutely, positively make sure that it doesn't 
crash on any Macintosh systems you intend to support. After testing the 
game, you need to make it available to the world. There are numerous 
avenues of distribution, and choosing the right ones will go a long way to 
meeting your goals for the game. This is especially true if you plan to 
release your game as shareware, a popular form of distribution for games 
that aren't written on contract for a major game company. Last, how 
should you support your game after it has been released? Most of the time, 
writing and releasing a game is just the first step in a game's life time. Bug 
fixes and enhancements can dramatically alter a game over time. 

This appendix will discuss these preceding questions, as well as pro
vide recommendations on how to market, distribute, and support your 
game. Keep in mind that writing a game is only part of a game's life cycle. 
If you want your game to be really successful, you need to put in a lot of 
additional work. 

Finishing Your Game 

The hardest part of writing a game is finishing the last 10%. When 
you've reached this point, a bulk of the hard work is complete and you're 
most likely really anxious to release the game to the world and see the 
reactions it generates. You will be really tempted to skimp on those fin
ishing touches that make a good game a great game. Don't succumb to 
this temptation. Take a little extra time and put in those finishing 
touches. You'll be well rewarded for the extra time spent at this stage of a 
game's life cycle. 

What constitutes the finishing touches on a game? Really, just about 
anything that isn't directly related to game play itself can be considered a 
finishing touch. Typical features include integrated on-line help, intro
duction screens, additional sounds and music, high scores lists, and user 
interface shortcuts such as smart icons. 



CHAPTER 11-After the Game is Finished 

On-line Help 
Most games include some sort of on-line help, even if it's just an abbrevi
ated form of the game's playing instructions. On-line help provides a real 
benefit to users because they won't need to spend a lot of time reading 
instructions before playing a game. Most people want to start playing 
right away, and won't have the patience to read a complex readme file or 
printed instruction manual. For shareware games especially, you want to 
make sure that the game's rules are presented in a concise and easy-to
understand manner because the user won't give your game much play 
time if they can't quickly and easily figure out how to play. There are 
exceptions to this rule, especially for more complex simulations, but even 
then you'll want to provide on-line help so that users can refer to it while 
they learn how to play your game. 

On-line help ranges from the very simple dialog box screen with a 
few instructions, to a very complex help system that provides detailed 
instructions, balloon help, and context sensitive hints, tips, and tech
niques. What you provide depends on the amount of time you wish to 
spend, and whether or not you intend to provide an external help file. 
The advantage to including all game instructions as on-line help is that 
there isn't an external help file that might get lost or deleted. However, 
may people like to print out the instructions for more complex games. 
For this reason, you may want to provide a print capability or the ability 
to save the on-line help as a text file, which can then be printed with 
TeachText or SimpleText. Desert Trek provides a good example for a 
decent middle-of-the-road help system. It provides styled text accessible 
by topic, embedded graphics for examples, and the ability to save help 
text into a text file. Also, the Help dialog box can be viewed at the same 
time the game is being played. However, it falls short of balloon help and 
context sensitive hints. 

Introduction Screens 
Many games provide an introduction screen or even a short "movie" to 
introduce the game. Introduction screens can definitely give a game a 
professional look, but can take a considerable amount of work on your 



CHAPTER 11-After the Game is Finished 

part to write depending on its complexity. A fairly easy introduction 
screen consists simply of a graphic contained within a window, with per
haps a few buttons that can be used to start a game, view its help, or set 
some options. A more complex introduction screen includes animated 
graphics, and perhaps a scrolling story line. In addition, an introduction 
screen might show some aspects of game play, usually by having a com
puter-controlled player actually playing parts of the game. 

Being a simple game, Desert Trek provides no introduction screen. 
However, Galactic Empire, a shareware game that can be found on the 
CD-ROM included with this book, contains an introduction screen with 
a scrolling background story. Many commercial games contain lengthy 
and sometimes very impressive introduction screens, which the develop
ers surely spent a lot of time working on. Keep in mind, however, that the 
user will only be interested in the introduction screen the first several 
times they play your game. After that, they'll most likely want to skip the 
introduction screens and get right to game play. 

Additional Sounds and Music 
Nearly all games need to provide sound effects in order to become popu
lar. Most silent games won't hold a user's interest for long. There are 
exceptions to this rule depending on the type of game you've written, but 
rare is the game without any sound that becomes really popular. In addi
tion to sound effects, background music can add a lot to a game. You 
should consider this when finishing your game. However, don't go over
board. Professional quality games do not contain an overabundance of 
sound, and the sounds they do contain are usually tasteful and add to the 
ambiance of the game itself. Keep in mind that additional sound and 
music adds to the size of your game. In fact, a large percentage of a 
game's size can usually be accounted for by its sounds and music. For 
shareware games especially, you need to be conscious of the size of your 
game because many people will be downloading the game from the 
Internet or an on-line service. The larger the game, the longer the down
load time. 



CHAPTER 11-After the Game is Finished 

High Scores Lists 
Most games provide some type of high scores list. Again, they can range 
from a simple dialog box displaying the top 10 scores to more complex 
screens that contain game statistics as well as scores for multiple skill lev
els. Many games incorporate the high scores list into the game's introduc
tion screen. What route you take depends on the type of game your write 
and the amount of time you are willing to spend designing and writing 
the high scores screen. 

User Interface Enhancements 
There are any number of things that you can do to improve the way in 
which the user interacts with your game. This includes features such as 
smart icons, the ability to undo commands, the ability to pause a game, 
and the ability to zoom, scroll, or position game windows. Many of these 
types of enhancements only make sense for certain types of games. For 
example, a pause feature really has no meaning for a game like Desert 
Trek. However, some enhancements can make any game easier to play. 
Your goal should be to make it as easy as possible for the user to play your 
game. They should be able to concentrate on the actual game play itself, 
not on how to enter moves, keep track of the game's status, or how to 
save or start a new game. Time spent working on user-interface enhance
ments can really go a long way to make a game successful. There have 
been examples of fun-to-play games that haven't become very popular 
because they had awful user interfaces. This is especially true for games 
that have been ported to the Macintosh from the DOS world, where the 
developers didn't take advantage of what the Macintosh has to offer in 
the area of user interface. 

The best way to determine the types of user interface enhancements 
that would be good for your game is to look at what other successful 
games have done. Pay close attention to those aspects that make the game 
easy to play or hard to play. Feel free to be creative in your user interface, 
but don't deviate so far from the standard as to make it difficult for the 



CHAPTER 11-After the Game is Finished 

user to understand your interface. The user should be able to pick up on 
your basic interface without needing to read any instructions. It's okay to 
require a little learning for some shortcuts or more advanced interface 
features, but no user is going to read pages of documentation to figure 
out how to launch a fleet, trade commodities, or save a game in progress. 

Testing Your Game 
Now that you've finished writing your game, including adding all those 
little enhancements discussed above that will make your game great, 
what's next? Before you distribute your game to the world, make sure it 
works exactly the way you intended. You need to test your game. 

Completely testing your game isn't going to be easy. First, make sure 
that the game doesn't crash on a wide range of Macintoshes, including a 
variety of system versions using various extensions. Second, make sure that 
your game behaves as you intended. For example, are all puzzles solvable, 
and is the game winnable? You also want to make sure that the game isn't 
too easy to win, otherwise players will loose interest quickly. Last, it is 
common to get feedback on your game from a select group of users at this 
stage. Their input will help you make improvements to your game. 

Testing a game is commonly called beta-testing. Beta-testing means that 
your game is almost finished, and you're testing to make sure all features of 
the game work correctly. ff you are still writing portions of the game, but 
need to test those parts that have already been written, you perform what's 
commonly called an alpha-test. Alpha-testing takes place while portions of the 
game are still being written. You will do most of the alpha-testing yourself as 
you write the game. You will need the help of others to beta-test your game. 

Finding Testers 
You are going to need help testing your game for several reasons. First 
and most obvious, you need to try out your game on different Macintosh 
platforms. Unless you own a wide range of Macintosh products 
(Powerbooks, Performas, Power Macs, and older Macintoshes such as 



CHAPTER 11-After the Game is Finished 

Quadras, Centrises, and Mac Ils), you need the assistance of others who jf:Z: 
own those types of machines. Second, other people will have different 
playing styles than your own. You may test your game to death, but 
someone with a different playing style may come across problems in your 
game that you never caught. Third, determine what others think of your 
game. Do they find it fun to play? Is it easy to learn? Last, you need to 
make sure your game isn't too easy or too hard to win. You yourself can't 
be the judge of that. Remember, you wrote the game and know all the 
tricks and solutions to all the puzzles. 

The best way to find testers is to look for friends with Macintoshes. 
They will probably be more than happy to help you out. In addition, you 
can seek testers by posting articles to an Internet newsgroup (such as the 
comp. sys. mac. games . * hierarchy, or comp. sys. mac. program
mer. games) or an on-line service such as America Online. You'll stand a 
good chance at getting a number of interested testers if you solicit such a 
large audience. You can also seek testers from user's groups. 

Setting the Ground Rules 
You need to be selective when it comes to choosing who will beta-test 
your game. This is especially true if you don't personally know the indi
vidual. You need to make sure that beta-testers are dedicated to actually 
testing your program. Just playing the game isn't going to be enough. 
They will need to stress the game and use all its features. More impor
tantly, though, you need to make sure that they will report back to you 
their results in a timely fashion and continue testing newer versions of 
your game as you make bug fixes and modifications. 

You should limit the number of people beta-testing your game; if you 
have too many, it will become difficult corresponding with all of them. 
Conversely, you'll probably want more than one or two testers to make 
sure you get a variety of feedback. It all depends on the quality of your 
testers. A small number of good testers will be much better than a larger 
quantity of so-so testers. 

You should offer your beta-testers some incentive for testing your 
game. This incentive can range from something simple such as having 



CHAPTER 11-After the Game is Finished 

their name included in an acknowledgments screen somewhere in your 
game, to getting a free copy of the game once it's released. Also keep 
track of the types of computers and systems versions your prospective 
testers are using have. You don't want to end up with 10 testers using the 
same Macintosh and system version. Last, consider how you are going to 
send your game to the testers. If you want to use electronic methods, 
make sure that your testers can handle it. Keep in mind that you'll be 
making a number of changes during the testing phase, meaning that 
you'll need to send out new versions of your games to the testers from 
time to time. 

Spell out your timeframe to your testers. If you want to release the 
game soon, you'll need testers who can spend a lot of time with your 
game now. Also make sure that your testers are dedicated to testing your 
game. You don't need people who just want a sneak preview of your game 
before it gets released. They won't provide much useful feedback. Also 
make it clear that the testers are not to distribute the beta-version of your 
game to others. The last thing you want is a beta-version of your game 
out on the net somewhere. 

Getting Feedback 
You should really listen to what your testers have to say, even if you aren't 
pleased by it. Keep in mind that of course you love your game, but others 
may have a different opinion. Remember that it is these types of people 
who will be paying for your game, so you need to make sure that they are 
going to like it. In addition to telling you how much fun your game is to 
play, testers will provide invaluable input concerning your game's user 
interface. They'll tell you if it makes the game easy to play, or just simply 
gets in the way. 

Just as your testers are dedicated to testing your game in a timely 
fashion, make sure you fix bugs and make improvements in a timely fash
ion. You do not want the testing phase of game development to continue 
forever. However, don't send out a new version of the game every day. 
This can be quite expensive for you and your testers (if they have to pay 



CHAPTER 11-After the Game is Finished 

to download the game). Plan on having to send out two to five new ver
sions of your game during testing. 

Distributing and Marketing Your Game 

Distributing and marketing your game means getting your game into the 
hands of game players, and maybe even receiving some type of compen
sation for your efforts. One of the most important decisions you'll have 
to make is whether to distribute your game as shareware, or try to make it 
into a commercial game. That decision will determine how and where 
you'll distribute your game, and the type and amount of compensation 
you'll receive. It is often easier to create and support shareware game 
than a commercial game, but you will almost always get more money for 
a commercial game. We'll see why in the following sections. 

Commercial Distribution 
If you are planning on writing a commercial game, you should have a 
contract up front with the company that's going to distribute your game. 
That contract will spell out the terms of your agreement with that com
pany, and set forth how and how much you will get paid. A traditional 
contract gives all rights of the game to the company with which you are 
working. That means that they determine what to do with the game now 
and into the future. You are basically giving that company the right to do 
whatever they see fit with your game. In return, you will typically receive 
royalties on the sales of that game. The royalties are based on what the 
company sells the game to distributors for, not the retail price of the 
game. For example, a $20 retail price for a game might mean that the 
company selling it gets around $12. The royalties you receive will typi
cally range from 10% to 15%, but recently, that number has been declin
ing somewhat due to the fierce competition in the market. You'll have to 
share those royalties if your game is included in a multigame package. 
For example, if your game is included with four others, each game author 
would receive one-fifth of the royalties, or 2% to 3% (don't you just love 



CHAPTER 11-After the Game is Finished 

it when the math works out so easily in these examples!). In addition to 
royalties, you may also receive an advance against those royalties. An 
advance, typically a small sum ranging from as little as $500 to as much as 
$2,000 is exactly that: an advance. This means that enough royalties need 
to come in to cover that advance before you see any additional money. 
However, you do get the advance up front, before the game is complete. 

Though it seems like you are giving up a lot to the company distribut
ing your game, consider the compensation and alternatives. First, you will 
almost certainly sell more copies of a game if it is commercially distrib
uted. This is due to the advertising capabilities of larger companies, and 
the fact that they can get your game on store's shelves and into mail-order 
catalogs. The company you're working with will also provide the packag
ing for your game, including artwork for the box. They will be able to 
mass produce your game in a cost-effective way, something that's difficult 
for an individual to accomplish. In a sense, all you have to do is write the 
game, and the company you're working with will take care of the rest. 

However, also consider your responsibilities. If you sign a contract 
with a company for a game, you must deliver. Not only that, but your 
game must be of the highest quality and be really, really bug free. You 
also have a deadline, which means you must be very serious about writing 
a game. If it's a hobby or part-time job of yours, make sure you can spare 
the time needed to finish the game on time. Also make sure that you have 
the drive and experience to complete the game. 

Getting a Contract 
So, how do you go about getting a contract to write a game? Good ques
tion. To be honest, it's not easy. It helps to build a reputation for yourself 
in the Macintosh gaming community. Writing shareware games is one of 
the best ways to build a reputation for yourself. Many quality shareware 
games have gone on to become commercial games. In those cases, the 
company may contact you first, or you may submit a copy of your game 
to the company to see if they're interested in making a commercial ver
sion. Basically, it helps to have something concrete to show the company 
you want to commercially distribute your game, even if it's just a demo. 



CHAPTER 11-After the Game is Finished 

I can't really prescribe a sure-fire way to get you a contract. You ,j;:c\!~llti.'0l~:i 
mainly need to build a reputation for yourself. Do a good job at this, and 
you might be surprised at the opportunities that arise. You need to write 
high-quality games and get good visibility for those games. The section 
on shareware distribution and marketing will give you many good ideas 
on how to get started. After doing so, contact a couple of companies that 
distribute Macintosh games and see if they'd be interested in distributing 
a commercial version of one of your games. If they are of high quality, 
you stand a good chance at success. 

Shareware Distribution and Marketing 

Many games written by nonprofessionals are distributed as shareware. 
Shareware games are games that are distributed without immediate pay
ment to the author. After playing the game, the user may choose to send 
some type of payment to the game's author in order to register that game. 

Distributing a Shareware Game 

An important aspect of releasing a shareware game is getting it into the 
hands of users. The more people who try your game, the more people 
who will register it. This means that you need to spend some time send
ing copies of your game to various places, both electronically and by mail. 
Where should you send your games to get the biggest exposure? You'll 
need to send copies of your games to the Internet, major on-line services, 
and major users groups. In addition, you may want to send your share
ware games to major shareware distributors, though they typically obtain 
most of the shareware they distribute from the Internet. 

So, where on the Internet should you send your game? There are a 
large number of ftp sites where Internet users download shareware pro
grams. If you had to figure out where each site was located, and send your 
game to each of those sites, you'd probably get a really big headache. 
Fortunately, there's a central location that you can send your game and 
have it automatically distributed to the major shareware repositories. 
Send your game to macgifts@mac. archive. umich. edu. Send the 



CHAPTER 11-After the Game is Finished 

game in . hqx format (binhex format, which is a textual representation of 
a Macintosh application) by inserting it into an e-mail message. You 
should type a short description of the game just before where the binhex 
data for your game starts in that message. Programs such as Stufflt Light 
and Compact Pro allow you to generate binhex versions of your share
ware game. Make sure to compress your game first, and do not make it a 
self-extracting archive. The goal here is to make your game as small as 
possible so as to reduce download time. 

You should also send your game to the major on-line services such as 
America Online and CompuServe. You'll need to have an account or know 
someone with an account to upload your game to these on-line services. 

There are three major users groups that you should seriously con
sider sending your shareware game to. These are the National Home and 
School Macintosh Users Group (NHSMUG), the Arizona Macintosh 
Users Group (AMUG), and the Berkeley Macintosh Users Group 
(BMUG). These users groups have worldwide recognition, a large num
ber of members, and each offers CD-ROM collections containing share
ware games. You will certainly get a lot of exposure for your games by 
getting them into the shareware collections of these users groups. To 
obtain information on AMUG, visit their web site www. amug. org. To 
obtain information on BMUG, visit their Web site at www. bmug. org. 
To obtain information about NHSMUG, send an e-mail asking for 
shareware distribution assistance to nhsmug@aol . com. Do not send any 
programs to this e-mail address; it is for information only. The 
NHSMUG will distribute your shareware game to the Internet and 
America Online if you ask for their assistance doing so. 

Make sure to keep your address current in your games. You might 
want to consider getting a post office box if you plan to get serious about 
distributing shareware games. That way, if you move, mail can be for
warded easily to your new address. It sometimes takes a long time for a 
new version of your game to replace older versions that have old 
addresses in them. You can lose a number of registrations if the user 
sends the fee to an old address, only to have it returned as undeliverable. 



CHAPTER 11-After the Game is Finished 

Offering Incentives to Register Your Game 
How do you get users to register your game? There are a great number 
of methods used by today's shareware games. Most methods require that 
you send something back to the user when they register. This is only fair 
because you are receiving payment. However, be prepared to handle the 
workload involved in responding to registrations. 

Do not promise more than you can realistically handle. For example, 
it is generally unwise to promise sending out newer versions of your 
games to registered users for several reasons. First, you will probably be 
making a number of bug fixes and enhancements to the game as people 
report errors and send in suggestions. Second, if you start receiving a 
large number of registrations, perhaps in the hundreds, you'll need to 
send updates to a large number of people. That can get expensive quickly. 
Generally, it is best to promise the latest version of a game at the time the 
user registers. If you want to provide free updates, it is best to have the 
users contact you. That way, you will only have to send newer versions of 
your games to those who are truly interested in getting updates. 

One of the more popular methods to get users to register is to dis
tribute a demo, limited, or crippled version of your game. When the user 
registers, you promise to send them a code or new copy of the game, 
which enables all features of the shareware version. The trick here is to 
know how much to leave out of the game without making game play too 
limited. You want the user to get a chance to play the game for a while to 
determine how much they like it, while at the same time giving them 
something to look forward to when they pay the registration fee. For 
example, if you have written a role-playing or adventure game, maybe 
you can allow the user to play only the first two quests in the shareware 
version. For an arcade game with multiple levels, perhaps the shareware 
version of the game only allows you to play the first 10 levels. After regis
tering, the entire game can be played. 

Another common method used to encourage users to register is to 
include extended shareware notices in the game. These extended notices 



CHAPTER 11-After the Game is Finished 

may appear from time to time during game play, or display for several 
seconds when the game is first run or exited. The user must put up with 
these notices if they do not register the game. After registering, the user 
enters a code you provide to make the notices disappear. You must be 
careful when using this registration incentive because you do not want to 
annoy the user so much as to tum them off your game. 

Some shareware authors who have written a number of shareware 
games offer to send registered users multiple games. In other words, if 
the user registers for one game, they will receive a disk containing more 
games written by the author. Of course, this method only works after you 
have written several games. 

The National Home and School Macintosh Users Group has a repu
tation for offering shareware authors certain programs to get users to 
register shareware games. In the past, this has taken the form of discounts 
or free samples of products offered by the NHSMUG. When a user reg
isters one of your games, you typically send a coupon to the registered 
user who can then send it to NHSMUG for their discount or free sam
ple. You, in tum, could advertise such an incentive in your game, hope
fully with the effect of obtaining more registrations. To see what the 
NHSMUG currently offers, send an e-mail message to 
nhsmug@aol . com. 

Registration Fees 
Typical registration fees for shareware games range from $10 to $25. 
Anything less than $10 probably isn't worth it for _the user to send in the 
fee or for you to process it. Anything more than $25 and your shareware 
game starts becoming as expensive as commercial games. Because your 
games will be seen globally, make sure to denote the currency type, e.g., 
U.S. dollars. The average registration fee hovers somewhere around 
$15(U.S.). Your game should be something really special if you plan on 
asking for more. 



CHAPTER 11-After the Game is Finished 

Supporting Your Game 

Writing and releasing a Macintosh game requires a certain amount of 
responsibility on your part. A good author will support a game after it is 
released. Support includes fixing bugs, responding to user's questions and 
comments, and enhancing the game in response to suggestions. The 
amount of time you spend supporting your game can have a great effect 
on how well that game succeeds in the market. Many games evolve over 
time, sometimes starting out little more than weekend hacks and ending 
up popular hits. Be prepared to spend as much time supporting your 
game as you did writing it. 

If you just want to write a game and make it available to the world 
without having any additional responsibility, you can release your game as 
freeware. Freeware games are usually provided on an as-is and require no 
registration. You can still get feedback and suggestions, and build a repu
tation for yourself without the added responsibility of supporting your 
game. However, it is still good practice to fix any bugs that cause system 
errors. You wouldn't want to build a negative reputation for yourself. 

Closing Comments 

You now know just about everything that goes into writing a Macintosh 
game, from idea generation to coding to marketing and distribution. Try 
not to be overwhelmed by the skills needed to write a complete game. 
Take it one step at a time, learning things as you need to along the way. 
Take advantage of other programmers' experience by examining their 
source code and asking questions (see Appendix A for where to obtain 
additional information and help in writing games). Always keep in mind 
that writing games can be a lot of fun and often brings many rewards. 



OTHER SOURCES OF INFORMATION 

It would be impossible to teach you everything there is to know about 
Macintosh programming in one short book. You might find yourself 
needing additional information on topics discussed in this book, or even 
on topics not covered in this book. Where can you obtain this informa
tion? Good question. This appendix will list several resources available to 
Macintosh developers, and give you a head start in obtaining additional 
programming help. 

407 



APPENDIX A-Other Sources of Information 

Inside Macintosh Series 
The Inside Macintosh Series is a collection of books written by Apple 
Computer, and is considered the reference of choice by Macintosh devel
opers. If you want the official word on Macintosh programming topics, 
this series provides just what you need. The series itself now spans over 
two dozen books, where each book focuses on a particular toolbox man
ager or programming topic. You can typically find these books at a large 
bookstore, or you can order them in printed or electronic form from 
Apple's Developer Tools Catalog (which will be discussed shortly). The 
following books comprise the series as of the publication date of this 
book (new titles are added as the Macintosh operating system changes). 

• 3D Graphics Programming with QuickDraw 3D 

• Advanced Color Imaging on the Mac OS 

• Apple Guide Complete 

• AppleScript Finder Guide 

• AppleScript Scripting Additions Guide 

• AppleScript Language Guide 

• Inside Macintosh: Overview 

• Inside Macintosh: Macintosh Toolbox Essentials 

• Inside Macintosh: More Macintosh Toolbox 

• Inside Macintosh: Imaging With QuickDraw 

• Inside Macintosh: Text 

• Inside Macintosh: Files 

• Inside Macintosh: Memory 

• Inside Macintosh: Processes 

• Inside Macintosh: Operating System Utilities 

• Inside Macintosh: Devices 

• Inside Macintosh: lnterapplication Communication 



APPENDIX A-Other Sources of Information 

• Inside Macintosh: Networking 

• Inside Macintosh: QuickTime 

• Inside Macintosh: QuickTime Components 

• Inside Macintosh: Sound 

• Inside Macintosh: X-Ref 

• Inside Macintosh: AOCE Application Interfaces 

• Inside Macintosh: AOCE Service Access Modules 

• Inside Macintosh: Power PC System Software 

• Inside Macintosh: PowerPC Numerics 

• Inside Macintosh: QuickDraw GX Programmer's Overview 

• Inside Macintosh: QuickDraw GX Objects 

• Inside Macintosh: QuickDraw GX Graphics 

• Inside Macintosh: QuickDraw GX Typography 

• Inside Macintosh: QuickDraw GX Printing 

• Inside Macintosh: QuickDraw GX Printing Extensions and Drivers 

• Inside Macintosh: QuickDraw GX Environment and Utilities 

Just one final note on the Inside Macintosh series: Buying the printed form 
of all the books would make the national debt look small, but you can pick 
up a CD-ROM containing electronic versions of most of the books for less 
than $100. See the section on the Developer Tools Catalog for where you 
can buy the CD-ROM version of the Inside Macintosh Series. 

Apple Technical Notes 

Over the years many technical notes have been released, written by real 
programmers covering a wide variety of topics. These tech notes are 
available from the Internet or on the Bookmark CD included with 
develop, The Apple Technical Journal (see the section on develop for more 
information). Collections of tech notes are usually grouped by topic, 
making it relatively easy to locate ones that may be of interest to you. 



APPENDIX A-Other Sources of Information 

The Apple Developer Catalog 

The Apple Developer Catalog contains probably the most comprehensive 
list of development products available for the Macintosh. Everything 
from development environments to hooks to training materials to pro
gramming tools can he found here. To he sure, you'll pay retail price for 
these products, hut everything you could ever want can he found here. To 
obtain a copy of the catalog, use one of the following means. 

Electronic Mail 
apda@applelink.apple.com 

Telephone 
U.S. 

Canada 

International 

Fax 

Mail 

1-800-282-2732 

1-800-637-0029 

(716) 871-6555 

(716) 871-6511 

Apple Developer Catalog 

Apple Computer, Inc. 

P.O. Box 319 

Buffalo, NY 14207-0319 

Web Site 
http://dev.info.apple.com 



APPENDIX A-Other Sources of Information 

Metrowerks and Symantec 
Development Systems 

Metrowerks and Symantec offer two of the most popular development 
environments for the Macintosh computer (CodeWarrior by 
Metrowerks, and Symantec C++ and Think C by Symantec). If you are 
looking to obtain a development environment and you are a student or 
teacher, you can typically obtain a substantial educational discount. 
Contact the company directly to see if they are currently offering any 
educational discounts or special offers. 

Metrowerks 
Metrowerks Corporation 

3925 West Braker Lane. Suite 310 

Austin. TX 78597 

(512) 305-0400 (voice) 

(512) 305-0440 (fax) 

(800) 377-5416 (order only in the U.S.) 

http: I /www. metrowerks. com (web site) 

Symantec 
Symantec Corporation Headquarters 

10210 Torre Avenue 

Cupertino. CA 95014 

(503) 334-6054 (voice) 

(503) 334-7400 (fax) 

(800) 441-7234 (U.S. and Canada only) 

http: I /www. symantec. com (web site) 



APPENDIX A-Other Sources of Information 

develop, The Apple Technical Journal 

This quarterly journal contains articles, columns, and question and 
answer sections covering a wide range of Macintosh programming topics. 
Included with each issue is the Bookmark CD, a CD-ROM containing a 
wealth of programming documentation, examples, source code, and 
related information. You can purchase individual copies for $10, or sub
scribe for a whole year for around $30 (in the U.S.). Considering the 
information contained on the CD-ROM alone (including several Inside 
Macintosh books, all the tech notes, and programming examples, includ
ing some for games), this is one of the best Macintosh programming val
ues around. To subscribe, simply contact the Apple Developer Catalog via 
one of the previously listed means. 

Usenet Newsgroups 
There are several Macintosh games and programming-related news
groups available on the Internet. Make sure to look over the FAQs (fre
quently asked questions) before posting to a newsgroup in order to make 
sure you understand the guidelines and ground rules about what's appro
priate to discuss on each newsgroup. These newsgroups are frequented 
by programmers and game players alike, and provide a great source of 
information specific to the design and development of games and other 
programs for the Macintosh computer. You'd do yourself a great favor by 
reading over some of these newsgroups. 

• 
• 
• 
• 
• 
• 

comp.sys.mac.programmer.help 

comp.sys.mac.programmer.info 

comp.sys.mac.programmer.misc 

comp.sys.mac.programmer.tools 

comp.sys.mac.programmer.games 

comp.sys.mac.games.action 



• 
• 
• 
• 
• 
• 

APPENDIX A-Other Sources of Information 

comp.sys.mac.games.adventure 

comp.sys.mac.games.announce 

comp.sys.mac.games.flight-sim 

comp.sys.mac.games.marketplace 

comp.sys.mac.games.misc 

comp.sys.mac.games.strategic 

Note that these newsgroups can sometime change names over time or 
disappear completely. Also note that new newsgroups can come into 
being. Make sure to take advantage of your newsreader's newsgroup 
search facility to get the latest up-to-date names of Macintosh games and 
programming-related newsgroups. 

Web Sites 

There are already several Macintosh programming-related World Wide 
Web sites available today, and many are being added as you read this 
book. Due to the volatile nature of the locations of these web sites, it 
would probably be silly of me to list any specific sites here because they 
may not be around or may have different names and locations by the 
time you read this book. However, you can search for these sites your
self. One of the best places to start is the Yahoo Web page 
(http: I /www. yahoo. com). Specify "Macintosh and Programming" 
as the search criteria, and you'll be rewarded with a list of the Web sites 
that cater to Macintosh programmers. 

National User Groups 

ff you plan to distribute your game as shareware, you would do yourself a great 
service by sending a copy of your program to the following national users 
groups. They each boast a large membership and vast software collections. 



APPENDIX A-Other Sources of Information 

Arizona Macintosh Users Group 
Arizona Macintosh Users Group 

Attention: Author Submissions 

4131 North 27th Street, Suite A 120 

Phoenix, AZ. 85016 

America Online: AMUG 

E-mail: info@amug.org 

Web site: http: I /www. amug. org 

Phone: (602) 553-0066 

Berkeley Macintosh Users Group 
Berkeley Macintosh Users Group 

Attention: Art Lau 

l 442A Walnut Street, #62 

Berkeley, CA 94709 

E-mail: art_lau@bmug.com 

Web site: http: I /www. bmug. org 

Phone: (510) 549-2684 

National Home and School Macintosh Users 
Group 

National Home and School Macintosh Users Group 

Attention: Shareware Distributions 

P.O. Box 64064 

Kenner, LA 70064 

E-mail: nhsmug@aol.com (information only, do not send programs 
here) 



ABOUT THE CD 

The CD-ROM included with this book contains the complete Desert 
Trek source code, a demo version of the Symantec C++ development 
environment for the Power Macintosh, several programming tools, and 
shareware games for fun and study. Given the last-minute nature of 
putting together items to be included with the CD-ROM, make sure to 
look over the Readme file contained on the CD-ROM for any last
minute updates. 

415 



APPENDIX B-About The CD 

Desert Trek Source Code 
The entire source code and all supporting files for Desert Trek can be 
found in the Desert Trek Source folder. This includes project files for 
Think C and Code Warrior, graphics files used to draw Desert Trek's 
graphics, the resource file containing all sounds, dialog boxes, and other 
resource data, and all source code and header files. Because nearly all of 
the examples given in this book come from Desert Trek's source code, 
you may want to copy the project and source files to your Macintosh's 
hard drive. You will need to copy the source code folder, the resource file, 
and the project file corresponding to the development system you're 
using. If you plan to use the demonstration version of Symantec C++ ver
sion 8 included on the CD-ROM, the Think C version 7 project file for 
Desert Trek will be converted for you when you first open it. 

The source code for Desert Trek has been saved in text format, 
meaning that you can look at it using any text editor. Feel free to borrow 
portions of the code for use in your own games. 

Demonstration Version of Symantec C++ 
for the Power Macintosh 

A demonstration version of Symantec C++ is included on the CD-ROM 
so that you can compile the Desert Trek project even if you don't cur
rently own a development system. Note that you must have a Power 
Macintosh in order to use this version of Symantec C++. For installation 
instructions and additional information, see the documentation included 
on the CD-ROM. 

Programming Tools 
Several shareware tools have been included on the CD-ROM that you 
might find useful in the development of games. If you plan to use these 
tools, please compensate the authors of these fine programs for their 



APPENDIX B-About the CD 

efforts by registering them. The following are descriptions of two of the 
tools I used to create Desert Trek. 

SoundMacer by Ingemar Rangnemalm 
SoundMacer is an excellent and easy-to-use digitized sound utility that 
can dramatically reduce the size of your 'snd ' resources without much 
sacrifice in sound quality. 

30 Buttons CDEF by Zig Zichterman 

The 3D buttons ~sed in Desert Trek are compliments of the 3D Buttons 
CDEE See the Readme file and Chapter 3 on Resources to see how you 
can use the 3D Buttons CDEF in your games. 

Shareware Games 

Several shareware games are included on the CD-ROM so that you can 
get an idea of the types and styles of shareware games available for the 
Macintosh (well, okay, for a little fun too). Remember to compensate the 
shareware authors for their efforts by registering, if you plan to make the 
game a part of your software collection. Keep in mind that you'll be on 
that side of the fence if you release your games as shareware. 



A 
AS world, 376 
About ... dialog box (Desert Trek), 101-105 
activate events, 65-66 
active window, 126-128 
AIFF (Audio Interchange File Format), 351, 

370-371 
AIFF-C (Audio Interchange File Format exten

sion for Compression), 3 51 
alerts, 186-187 

icons, alert, 198 
supporting, 217-221 
using, 197-198 

alpha-testing, 396 
'ALRT' resources, 87 
America OnLine, 15, 402 
AMUG (Arizona Macintosh Users Group), 

402,414 
APls (application programming interface calls). 

See toolbox calls 
AppendMenuO toolbox call, 161 
Apple Developer Catalog, 410 
apple menus, 78 

adding apple menu items to, 145-146 
selections, handling, 154-156 

appletalk manager, 29 

APPL file type, 84 
application modal dialog boxes, 187-188 

supporting, 208-21 7 

z 
0 
rn 
x 

application programming interface calls (APls). 
See toolbox calls 

Arizona Macintosh Users Group (AMUG), 
402 , 414 

Audio Interchange File Format (AIFF), 351 , 
370-371 

Audio Interchange File Format extension for 
Compression (AIFF-C), 3 51 

B 
background music, 384-390 
badChannel (sound manager error), 381 
badFileFormat (sound manager error), 381 
badFormat (sound manager error), 381 
Bad Name dialog box (Desert Trek), 98-99 
BeginUpdateO routine, 132-134 
benefits of game programming, 2-3 
Berkeley Macintosh Users Group (BMUG), 

402 , 414 
beta-testing, 15, 396-399 
bitmap operations, 286-291 

code example, 287-288 
CopyBits, 287 
CopyMask, 288-290 

419 



Index 

CopySpeed,290-291 
screen, drawing directly to, 291 

bitmap records, 233-234 
bitmaps, 232-235, 236-237 
black-and-white bitmaps, 263-264 
black-and-white windows, 123, 124 
BMUG (Berkeley Macintosh Users Group), 

402,414 
BNDL dialog box (ResEdit), 83-84 
'BNDL' resource, 82, 83, 84 
BoundsRect property, 90 
buffersTooSmall (sound manager error), 381 
BuildMenu dialog box (ResEdit), 77 
Build Menu Var dialog box (ResEdit), 79 
button controls, 166-167 

c 
c 

values of, 170 

calling conventions in, 30-32 
C++vs., 8-9 
object-oriented programming with, 9-11 
publidprivate elements in, 9-11 
strings with, 32-33, 48-49 

C++ 
advantages and disadvantages of, 8-9 
defining file type/creator in, 81 
demo version of, 416 
resource files in, 7 4 
SIZE flags with, 382 

Callback command, 362 
callback routines, 32, 178, 212-213 

for sound channels, 375-380 
A5 world, 376 
code example, 3 78-3 79 
defining routine, 3 77 
processing of routine, 3 79-3 80 
setting up routine, 377-378 

calls, toolbox. See toolbox calls 
'CDEF' resources, 88-89, 92-93 
CD-ROM drive, using, 14 
CD-ROM (included with book), 415-417 

Desert Trek source code, 416 
gaines on, 417 
programming tools, 416-417 
SoundMacer, 417 
Symantec C++, demo version of, 416 

30 Buttons CDEF, 417 
channe!Busy (sound manager error), 381 
channe!NotBusy (sound manager error), 381 
channels, sound. See sound channels 
CharWidthO toolbox call, 284 
check boxes, 167 
CheckEventO routine, 54-56 
CheckMonitorColorsO routine, 250 
CheckSoundDoneO routine, 388-389 
CheckSoundO routine, 54-55, 385-386, 388-389 
child menus, 148 
'cicn' resource, 80 
class libraries, 8-9 
clipping, 132-134 
clipping region, setting graphics port's, 237-238 
ClipRectO routine, 238 
CloseBackgroundMusicFileO routine, 389 
close box, 121 
Close WindowO routine, 171 
closing 

dialog boxes, 191-19 2 
files, 327 

CNTL editor (ResEdit), 90 
'CNTL' resources, 89-92 
code 

finishing design before starting with, 19 
reusing, from previous projects, 18-19 

CodeWarrior Bronze, 14 
collisions, heap/stack, 37-38 
color 

adding, to dialog boxes, 93-105 
examples, 98-105 
style definition/offset section, 93-95 
style records, 96-97 

with bitmap transfer operations, 290 
in icons, 80 
using, 263-268 

color-capable bitmaps, 234 
color capable windows, 123, 124 
color monitors, 14 
Command key, 62 
commercial distribution of games, 399-400 
compiler/development environment, 14 
compilers, resource, 73 
compression, sound, 350-351 
CompuServe, 15, 402 
ConstructAppModa!DialogO routine, 213 



ConstructScores WindowOffscreenO routine, 
245-247 

content region, 121 
contracts 

obtaining,400-401 
terms of, 399-400 

control definitions, 88 
control handles, 169 
control manager, 29 
control records, 168-169 

properties of, 169-171 
controls, 165-185 

components of, 167-168 
and control records, 168-169 
creating, 171-172 
determining selected, 177-179 
drawing, 173-174 
hiding, 173 
highlight state of, changing, 17 4-17 5 
loading, 171 
moving, 172-173 
properties of, changing, 176 
removing, 172 
scroll bar example illustrating, 179-185 
showing, 173 
sizing, 172-173 
types of, 166-16 7 
values of, changing, 175-176 

conventions, programming 
and differences between C and C++, 8-9 
Hungarian notation, 12-13 
int variable type, using, 13 
object-oriented programming, 9-11 
user- and nonuser-interface code, separating, 13 

"cooperative" multitasking environments, 34 
coordinates, global/local, 13 7-141 
coordinate system, Macintosh, 225 
CopyBitsO routine, 135-136, 287-288, 291 
CopyMaskO routine, 288-290 
CountAppFilesO routine, 340-341 
CreateResFileO toolbox, 115 
creator, file, 321 
cursor, setting, 332-334 
custom resources, 112-118 

creating, programmatically, 113-116 
example, 117-118 
using, 116-117 

D 
data fork, 71 
'dctb' resource, 85 
debugging, 8. See also testing 
default item (dialog boxes), 199 
Delay toolbox, 68 
deleting 

controls, 172 
files, 326 
menu items, 160-162 
offscreen graphics ports, 235-236 
offscreen graphics worlds, 244 
sound channels, 355-356 
text, 305-307 
text edit records, 299-300 

demo versions, distributing, 15, 403 
Desert Trek 

About ... dialog box in, 101-105 
activate event handling in, 65-66 
alerts in, 198 

Index 

application modal dialog boxes in, 210-217 
background music in (code example), 384-390 
Bad Name dialog box in, 98-99 
callback routine in, 379-380 
colors in, 2 68 
control definitions in, 89 
design of, 19-25 

help feature, 23-24 
high scores list, 2 3 
ideal, 19-20 
internal design, 21 
rules, 20 
saving/loading games, 23 
screen layout, 24-25 
skill levels, setting, 21-23 

event checking in, 54-58 
file types in, 82 
Get Info window in, 108-109 
HandleEventO routine in, 58 
HandleMouseO routine in, 60-61 
help window, 159, 160 
High Score dialog box in, 99-101 
journal in, 329 
key event handling in, 62-64 
loading saved games in, 342-346 
mainO routine in, 33 
main screen of, 286 



Index 

menu handling in, 147, 151-156, 158, 163-164 
mouse event handling in, 60-61 
on-line help in, 393 
opening saved games in, 341-342 
patterns in, 255 
pictures in, 277-278 
push buttons in, 174, 193-194 
rules of, 20 
saving files in, 23, 330, 334-339 
scroll bar control in, 171 
source code for, 416 
synchronization of text with current scroll bar 

value in, 309-311 
view transition special effect (code example), 

292-294 
windows in, 122 

design, game, 4, 16. See also under Desert Trek 
finishing, before starting with code, 19 
finishing touches, 392 

destination rectangle, 297 
destRect field (text edit records), 297 
develop, 409, 412 
development environment, 14 
dialog boxes, 165, 185-221. See also controls 

alerts, 186-187 
supporting, 217-221 
using, 197-198 

closing, 191-192 
controls, adding, 88-92 
creating, 85-93 

'CNTL' resources, using, 89-92 
'DITL' resource, using, 87-88 
'DLOG' resource, using, 85-87 
3D buttons, 88-89, 92-93 

custom colors/font styles, adding, 93-105 
examples, 98-105 
style definition/offset section, 93-95 
style records, 96-97 

default item of, 199 
drawing, 196-197 
items in, 189 

accessing, 192-194 
finding, based on mouse location, 196 
parameterized text, 195 
retrieving/setting, 194-195 
showing/hiding, 196 
static text items, 190, 194 
text edit fields, 190, 194-195 

type of, 189-190 
loading, 191 
modal, 186-188 

supporting,208-217 
using, 198-201 

modeless, 56, 186 
using, 201-208 

pointers, dialog box, 188-189 
records, dialog box, 188-189 
types of, 186-187 

dialog manager, 29 
DialogSelect() routine, 56, 202-204 
displaying 

controls, 173 
dialog box items, 196 
information, 33-34 
windows, 125 

Dispose WindowO routine, 171 
distribution and marketing, 399-404 

commercial distribution, 399-400 
contracts 

obtaining, 400-401 
terms of, 399-400 

registration, encouraging, 403-404 
shareware, 401-404 
support,offering,405 
target market, defining, 16 

'DITL' resource, 85, 87-88, 189, 191 
DLOG dialog box (ResEdit), 85-87 
'DLOG' resource, 85-87 
DoScoresWindowEventO routine, 204-205 
DrawCharO toolbox call, 284 
drawing 

controls, 173-174 
dialog boxes, 196-197 
graphics, 253-281 

color, using, 263-268 
icons, 276-277 
lines, 268-270 
ovals, 275-276 
patterns, 254-256 
pens, using, 261-263 
pictures, 277-281, 313-318 
rectangles, 270-275 
rounded rectangles, 271-275 
transfer modes, using, 256-261 

menu bars, 146-14 7 
text edit records, pictures in, 313-318 



DrawMenuBarO routine, 147 
DrawString() toolbox call, 284 
DrawTextO toolbox call, 284 
'DRVR' resource, 145 

E 

ellipse, 78-79 
EndUpdateO routine, 132-134 
environment, compiler/development, 14 
errors 

determining memory, 39-40 
sound manager, 380-381 

events, 51-70 
activate, 65-66 
checking for, 51-56 
determining type of, 56-58 
keyboard, 61-64 
mouse,58-61, 136-141 
operating system, 66 
suspend/resume, 382-384 
toolbox routines, 66-68 
update, 64-65 

events manager, 28 
extern keyword, 10 

F 
face, text, 281, 282 
file creators, 81-82, 321 
file manager, 29 
File Open dialog box, 322-324 
files, 319-34 7 

closing, 327 
creating, 325-326 
creator, file, 81-82, 321 
cursor during reading or writing of, 332-334 
deleting, 326 
File dialog boxes, 3 2 2-3 2 4 
File Save As dialog box, 322-323, 324-325 
1/0 errors with, 330-332 
loading, from Finder, 339-341 

code examples, 341-346 
mark position of, 327-328 
opening,326 
reading/writing, 328-330 
saving 

code example, 334-339 

Index 

TeachText files with embedded graphics, 
346-347 

sound effects and size of game, 394 
type, file, 321-322 
volumes of, 320-321 

File Save As dialog box, 322-323, 324-325 
file types, 81-82 
filter procedures, 197, 199-200 
FindControlO toolbox call, 177 
Findericons,80-84 

creating, for games, 83-84 
and file type/creators, 81-82 
loading files opened from, 339-341 
resource types needed for, 82-83 

finding 
dialog box items, 196 
text, 311-313 

FindWindowO toolbox call, 58-60, 149 
finishing touches, 392 
flags, handles, 43-44 
Flush command, 362 
fonts, 281-283 

in dialog boxes, 93-105 
examples, 98-105 
style definition/offset section, 93-95 
style records, 96-97 

forks, 71 
fragmentation, of heap, 37 
freeware, 405 
'FREF' resource, 82 
FrontWindowO toolbox call, 62-64 
FSCloseO toolbox call, 327 
FSDeleteO toolbox call, 326 
FSOpenO toolbox call, 326 
FSReadO toolbox call, 329 
FSWriteO toolbox call, 329 

G 
Galactic Empire, 22, 72, 394 
GetAppFilesO routine, 341 
GetDitemO routine, 194 · 
GetEOFO toolbox call, 328 
GetFPosO toolbox call, 327 
GetGDeviceO toolbox call, 249 
GetGWorldO toolbox call, 243 
GetlndPattemO toolbox call, 2 5 5 
GetltemO toolbox call, 162 



Index 

GetPatternO toolbox call, 255 
GetPixPatO toolbox call, 255 
GetPortO toolbox call, 243 
GetResourceO toolbox routine, 350 
global coordinates, 13 7-141 
global variables, 9, 238-239 
goals, setting realistic project, 18 
'GPRM' resources, 113 
graphics, drawing, 253-281 

color, using, 263-268 
icons, 276-277 
lines, 268-270 
ovals, 275-276 
patterns, 254-256 
pens, using, 261-263 
pictures, 277-281 

in text editrecords, 313-318 
rectangles, 270-275 
rounded rectangles, 271-275 
transfer modes, using, 256-261 

graphics environment, determining Macintosh, 
247-253 

graphics ports, offscreen, 229-240 
bitmaps, 232-235, 236-237 
clipping region, setting, 237-238 
code example, 239-240 
creating/destroying, 235-236 
current port, setting/getting, 237 
global variables, 238-239 

graphics programs, 14-15 
graphics worlds, offscreen, 241-247 

code example, 245-247 
creating, 242-243 
destroying, 244 
locking pixmap, 244 
setting current world, 243 

H 

HandleAlertEventO routine, 219-220 
HandleEventO routine (Desert Trek), 58 
HandleKeyEventO routine, 152 
HandleMouseEventO routine, 151, 204 
HandleMouseO routine (Desert Trek), 60"61 
handles, 40-46 

control, 169 
flags, 43-44 
locking, 44-46 

referencing data elements using, 46 
routines with, 42-43 

HandleUpdateEventO routine, 250 
header file ( .H), 9 
heap, 36-38 

collision of, with stack, 3 7-3 8 
fragmentation of, 37 

help 
creating on-line, 393 
Desert Trek, 23-24 

hiding 
controls, 173 
dialog box items, 196 
windows, 125 

hierarchical menus, 157-158 
highlighting (menus), 150-151 
highlight state, control, 169, 174-175 
High Score dialog box (Desert Trek), 99-101 
high scores lists, 23, 395 
Hungarian notation, 12-13 

'icl4' resource, 83 
'icl8' resource, 83 
'ICN#' resource, 83 
icon masks, 276-277 
'ICON' resource, 80, 88 
icons 

alert, 198 
color, 80 
defining, 80 
drawing, 276-277 
Finder, 80-84 

'ics4' resource, 83 
'ics8' resource, 83 
'ics#' resource, 83 
'ictb' resource, 93-105 
image masks, 289 
information 

displaying, 33-34 
updating, 131-134 

lnitGrafO routine, 35 
in-memory bitmaps, 232 
inserting 

menu items, 160-162 
text, 303-305 

InsertMenuO toolbox call, 161 



Inside Macintosh Series, 408-409 
interface, enhancements to user, 395-396 
Internet 

access to, 15 
newsgroups on, 412-413 

introduction screens, creating, 393-394 
int variable type, 13 
VO errors, 330-332 
IsDialogEventO toolbox, 56 

J 
justification, text, 300-301 

K 
keyboard events, 61-64 

menu processing for, 152 

L 
line height, determining, 301 
lines, drawing, 268-270 
lineStartsO field (text edit records), 298 
Load command, 362-363, 365 
loading 

controls, 171 
in DesenTrek, 23, 342-346 
dialog boxes, 191 
files, from Finder, 339-341 
menu bars, 147-148 
menus, 145, 148 
windows, 123-125 

local coordinates, 13 7-141 
locked flag, 43-46 

M 
MACE (Macintosh Audio Compression and 

Expansion compression algorithm), 350 
Macintosh 

coordinate system in, 225 
graphics environment of, determining, 247-

253 
platforms, supponing, 16-17 
system requirements, 13-14 
using standard elements of, 17 

Macintosh Audio Compression and Expansion 
compression algorithm (MACE), 350 

Index 

Macintosh programs, structure of, 33-34 
Macintosh toolbox. See toolbox calls; toolbox 

managers 
MacsBug, 14 
mainO function (DesenTrek), 33 
managers, toolbox. See toolbox managers 
market for games, 3 
marketing. See distribution and marketing 
mark position, 327 
masks, 84 

image, 289 
master pointers, 40-42 
'MBAR' resource, 76, 79, 146 
'MDEF' resource, 78 
memory, 35-48 

allocating, for offscreen bitmaps, 2 3 3 
errors, determining, 39-40 
handles, 40-46 

flags, 43-44 
locking handles, 44-46 
referencing data elements using, 46 
routines, 42-43 

heap, 36-38 
management routines, 46-48 
nil/NULL pointers, 38-39 
pointers, 39 
setting memory blocks, 35-36 
and 'SIZE' resource, 106-107 
stack, 36-38 
system requirements, 14 

memory manager, 28, 37, 47-48 
menus, 143-164 

adding apple menu items to, 145-146 
Apple, 78 
components of, 144 
describing, 7 6-79 
determining selected, 152-154 
enabling/disabling, 162-163 
hierarchical, 157-158 
highlighting, 150-151 
loading, 145 
manually insetting/removing, from menu bar, 

156 
pop-up, 158-160 
selections, handling apple menu, 154-156 
submenus, 157-158 

menu bars, 76, 144 
code example for loading and setting, 14 7-148 



Index 

drawing, 146-147 
loading, 147-148 
manually inserting/removing menus from, 156 
'MBAR' resource, loading, 146 
performing operations on, 145 
setting, 146-148 

menu events, 149-154 
determining selected menus, 152-154 
highlighting menus, 150-151 
keyboard events, 152 
mouse down events, 149-150 

menu ID, 144, 149-154 
menu item ID, 149-150, 152-153 
menu items, 144 

adding, to apple menu, 145-146 
checking, 163-164 
enabling/disabling, 162-163 
inserting/ deleting, 160-162 
manipulating, 144 
text of, retrieving/setting, 162 

menu manager, 28 
'MENU' resource, 76-79 
MenuSelect() routine, 150-151 
methods, 8 
Metroworks, 411 
MIDI files, 351 
modal dialog boxes, 186 

application, 187-188 
supporting,208-217 
using, 198-201 

modeless dialog boxes, 56, 186 
using, 201-208 

MOD files, 351 
modifier keys, 62 
modulo operator, 69-70 
monitor 

color, 14 
pixel depth of 

determining, 249 
reacting to changes in, 249-253 

mouse, finding dialog box items based on location 
of, 196 

mouse click events, in content region of window, 
136-141 

mouse down events, menu processing for, 149-150 
mouse events, 58-61 
moving 

controls, 171-172 

windows, 125-126 
Multifinder, 143 
multitasking environments, "cooperative," 34 
MungerQ routine, 312 
music, background, 384-390 

N 
National Home and School Macintosh Users 

Group (NHSMUG), 402, 404, 414 
nationalusergroups,413-414 
NewControlO toolbox routine, 171, 172 
NewGWorldO toolbox call, 244 
newsgroups,usene~412-413 

NGetTrapAddressO routine, 52 
NHSMUG (National Home and School 

Macintosh Users Group), 402, 404, 414 
NiceDelayO routine, 68, 386 
nil pointer, 38-39, 124, 218 
nLines field (text edit records), 298 
noErr, 380 
nonuser-interface code, 13 
notEnoughBufferSpace (sound manager error), 381 
notEnoughHardwareErr (sound manager error), 

381 
notPatBic, 260-261 
NotPatCopy, 259 
NotPatOr, 260 
NotPatXor, 260 
notSrcBic, 260-261 
notSrcCopy, 259 
notSrcOr, 260 
notSrcXor, 260 
NULL pointer, 38-39 
numbers 

converting, to strings, 50-51 
generating random, 68-70 

0 
object-oriented programming, 9-11 
offscreen graphics ports. See graphics ports, 

offscreen 
offscreen graphics worlds. See graphics worlds, 

offscreen 
on-line help, creating, 393 
online service access, 15 
OpenDeskAccO toolbox call, 162 



opening files, 326 
OpenPort() routine, 236 
operating system events, 66 
operating system utilities, 28 
operations 

bitmap, 286-291 
code example, 287-288 
CopyBits, 287 
CopyMask, 288-290 
CopySpeed, 290-291 
screen, drawing directly to, 291 

on menu bars, 145 
on points, 227 
on rectangles, 228-229 
on regions, 229 

ovals, drawing, 275-276 
owner, control, 169 
owner resource, 84-85 

p 

paramErr (sound manager error), 381 
parameterized text, in dialog boxes, 19 5 
Pascal, 30-33 

calling conventions in, 3 0-3 2 
strings in, 32-33 
strings with, 48-49 

pascal keyword, 32 
patBic, 259 
patCopy,257-258 
patOr, 258 
patterns, drawing, 254-256 
patXor, 258-259 
Pause command, 363 
PC games, 3 
pens, 261-263, 283-284 
'PIC'I''resource,80,88,277,278 
picture resources, 80 
pictures, drawing, 277-281 

in text edit records, 313-318 
pixel depth of monitor 

determining, 249 
reacting to changes in, 249-253 

pixels, transfer modes for. See transfer modes 
pixmaps (pixel maps), 234, 244 
platforms, supporting Macintosh, 16-17 
PlayBackgroundSoundO routine, 388 
pointers, 39 

dialog box, 188-189 
master, 40-42 
window, 122-123 

points, 283 
defining, 224 
operations on, 227 

pop-up menus, 158-160 
PopupMenuSelectQ routine, 159 
porting,3 

Index 

ports, offscreen graphics. See graphics ports, off-
screen 

PowerMac, 13-14 
private elements, 9-11 
processor, Macintosh, 13-14 
ProclD property, 91-92 
programming conventions. See conventions, pro-

gramming 
programming language, choice of, 8-9 
programs, structure of Macintosh, 33-34 
projects 

reusing code from previous, 18-19 
setting realistic goals for, 18 

PtlnRectO toolbox call, 138-139 
public elements, 9-11 
purgable flag, 43, 44 
push buttons, 167 

rounded rectangles with, 273 

Q 

queueFull (sound manager error), 381 
QuickDraw, 29, 223-294 

bitmap operations, 286-291 
code example, 287-288 
CopyBits, 287 
CopyMask, 288-290 
CopySpeed, 290-291 
screen, drawing directly to, 291 

graphics, drawing, 253-281 
color, using, 263-268 
icons, 276-277 
lines, 268-270 
ovals, 275-276 
patterns, 254-256 
pens, using, 261-263 
pictures, 277-281 
rectangles, 270-275 
rounded rectangles, 271-275 



Index 

transfer modes, using, 256-261 
graphics environment, determining, 247-253 
graphics ports, offscreen, 229-240 

bitmaps, 232-235, 236-237 
clipping region, setting, 237-238 
code example, 239-240 
creating/destroying, 235-236 
current port, setting/ getting, 2 3 7 
global variables, 238-239 

graphics worlds, offscreen, 241-247 
code example, 245-247 
creating, 242-243 
destroying, 244 
locking pixmap, 244 
pixmap, locking, 244 
setting current world, 243 

operations 
bitmap. See subhead: bitmap operations 
on points, 227 
on rectangles, 228-229 
on regions, 229 

points 
defining,224 
operations on, 227 

rectangles 
defining, 225-226 
operations on, 228-229 

regions 
defining, 226 
operations on, 229 

text, drawing, 281-285 
32-bit color, 248 
view transition special effect (code example), 

292-294 
QuickTime movies, 351 
Quiet command, 363 

R 
radio buttons, 167 
random numbers, generating, 68-70 
randSeed,69 
records 

bitmap, 233-234 
control. See control records 
dialog box, 188-189 
text edit. See text edit records 
window, 122 

rectangles 
control, 169 
defining, 225-226 
destination, 297 
drawing, 270-275 
operations on, 228-229 

redrawing windows, 131-134 
reference constant, control, 170, 176 
regions 

defining, 226 
operations on, 229 

ReleaseResourceO command, 3 3 3 
removing. See deleting 
RenameO toolbox call, 326 
ResEdit, 14, 73-76, 84 

creating resource files with, 74 
creating resources with, 74-76 
ID 128 in, 76 
problems with using, 73 

resource compilers, 73 
resource files, creating, with ResEdit, 74 
resource flag, 43, 44 
resource fork, 71-73 
resource manager, 28 
Resource menu, 75-76 
resources 

'ALRT,' 87 
'BNDL,' 82, 83, 84 
'CDEF,' 88-89, 92-93 
changing ID number of, 76 
'cicn,' 80 
'CNTL,' 89-92 
creating, with ResEdit, 74-76 
custom, 112-118 

creating, programmatically, 113-116 
example, 117-118 
using, 116-117 

'dctb,' 85 
'DITL,' 85, 87-88, 189, 191 
'DLOG,' 85-87 
'DRVR,' 145 
for Finder icons, 82-83 
'FREF,' 82 
'GPRM,' 113 
'icl4,' 83 
'icl8,' 83 
'ICN#,' 83 
'ICON,' 80, 88 



'ics#,' 83 
'ics4,' 83 
'ics8,' 83 
'ictb,' 93-105 
'MBAR,' 76, 79, 146 
'MDEF,'78 
'MENU,' 76-79 
owner, 84-85 
'PICT,' 80, 88, 277, 278 
'SCRS,' 113 
'SIZE,' 106-107, 382 
'snd,' 350-351 
'STR#,' 107-109 
'sty!,' 106 
'TEXT,' 106, 304, 313-315 
'vers,' 107-109 
'WIND,'106 

resProblem (sound manager error), 381 
Resurnecornrnand,363 
resume events, 382-384 
reusing code, from previous projects, 18-19 
RGB colors, 264-266 
rounded rectangles, drawing, 271-275 

s 
saving files 

Desert Trek, 23, 330, 334-339 
TeachText files, with embedded graphics, 346-

347 
ScoresWindowKeyDownO routine, 206 
ScoresWindowMouseDownO routine, 206 
screen, drawing directly to, 291 
scroll bars, 167 

code example, 179-185 
values of, 170 

scrolling text, 309-311 
'SCRS' resource, 113 
searching/replacing text, 311-313 
seeds, 69 
SelITextO routine, 194-195 
SetCurrentA50, 376 
SetD ltemO toolbox call, 1 72 
SetFPosO toolbox call, 327-328 
SetGWorldO toolbox call, 243, 244 
SetPortO toolbox call, 133, 137, 243 
SetVolO command, 321 
shadowing,269-270 

shareware, 2, 401-404 
distributing, 401-402 

Index 

encouraging registration of, 403-404 
registration fees for, 404 

ShowAlertQ routine, 218 
silnvalidCompression (sound manager error), 381 
size box, 121 
'SIZE' resource, 106-107, 382 
sizing 

controls, 171-172 
windows, 126 

skill levels 
Desert Trek, 21-23 
Galactic Empire, 22 

SndChenne!StatusO routine, 369 
SndControlO routine, 365 
SndDisposeChannelO routine, 355-356 
SndDoCommandO routine, 360-361 
SndDolrnrnediateO routine, 361, 364 
SndManagerStatusO routine, 369 
SndNewChannelO routine, 353-355 
SndPlayO routine, 356-358, 369-370, 377 
'snd' resources, 350-351 
SndStartFilePlayO routine, 370-372 
SndStopFilePlayO routine, 389-390 
sound channels, 352-356 

additional sounds following, 358-359 
callback routines for, 375-380 

AS world, 376 
code example, 378-379 
defining routine, 3 77 
processing ofroutine, 3 79-3 80 
setting up routine, 3 77-3 78 

code example, 357-358 
creating, 353-355 
disposing, 355-356 
obtaining information on, 364-369 
sending commands to, 359-364 
status records of, 365-367 

sound effects, 349-390 
additional sounds, 358-359 
background music (code example), 384-390 
disk, playing sound from, 369-375 

code examples, 372-373, 374-375 
pausing play, 373-374 
starting play, 370-372 
stopping play, 374 



Index 

errors, sound manager, 380-381 
and file size, 394 
formats, 350-351 

AIFF/AIFF-C, 351 
MIDI, 351 
MOD,351 
'snd' sound resources, 350-351 
WAV,351 

playing sound resources, 356-357 
suspend/resume events with, 382-384 

SoundMacer, 417 
sound manager, 29 
source file (.C), 9 
srcBic, 259 
srcCopy, 257-258 
srcOr, 258 
srcXor, 258-259 
stack, 36-38 

collision of, with heap, 37-38 
static keyword, 10 
static text fields, 190 
static text items, 190, 194 
strings, 48-51 

numbers, converting to, 50-51 
in Pascal vs. C, 32-33 
'STR#' resources for defining, 109-112 

StringWidthO toolbox call, 284 
'STR#' resources, 109-112 
style, setting text, 307-308 
'sty!' resource, 106 
submenus,148, 157-158 
support, offering software, 405 
suspend events, 382-384 
Symantec, 411 
System 7, 51, 143 
system requirements, 13-14 

T 
Tab key, 88 
target market, defining, 16 
target text, 312 
TeachText, 82, 346-347 
technical notes, 409 
teLength field (text edit records), 298 
testing, 396-399 

beta-testers, 15 
feedback,getting,398-399 

finding testers, 3 96-3 97 
managing testers, 397-398 

text, 2 9 5, 3 00-318. See also text edit records 
accessing, 311 
adding, 303-305 
character coordinates, using, 301-302 
deleting, 305-307 
drawing, 281-285 
justifying, 300-301 
line height, determining, 301 
menu item, getting/saving, 162 
scrolling, 309-311 
searching for and replacing, 311-313 
selecting, 302-303 
style of, setting, 307-308 

TextBoxO toolbox call, 284 
TextEdit, 29 
text edit fields, 190, 194-195 
text edit records, 296-298 

accessing text in, 3 11 
character coordinates in, 301-302 
creating, 298-299 
deleting text from, 305-307 
drawing pictures in, 313-318 
inserting text into, 303-305 
justifying text in, 300-301 
line height in, 301 
removing, 299-300 
scrolling text in, 309-311 
searching and replacing text within, 311-313 
selecting text within, 302-303 
synchronization of, with scroll bar value (code 

example), 309-311 
text styles within, 307-308 
updating,300 

TextFaceO toolbox call, 283 
TextFontO toolbox call, 283 
TextModeO toolbox call, 283 
'TEXT' resources, 106, 304, 313-315 
TextSizeO toolbox call, 283 
TextWidthO toolbox call, 285 
Think C, 74, 81, 382 
3D buttons, adding, to dialog boxes, 88-89, 92-93 
3D Buttons CDEF, 417 
TickCountO toolbox routine, 69 
title, control, 171, 17 6 
title bar, 121 
Title property, 90-91 



Toolbox, 5 
toolbox calls, 27 

and events, 51-68 
activate events, 65-66 
checking for events, 51-56 
keyboard events, 61-64 
mouse events, 58-61 
operating system events, 66 
routines, event-related, 66-68 
type of event, determining, 56-58 
update events, 64-65 

groupings of, 28-29 
and memory, 35-48 

errors, determining memory, 39-40 
handles, 40-46 
heap, 36-38 
management routines, 46-48 
nil/NULL pointers, 38-39 
pointers, 3 9 
setting memory block, 35-36 
stack, 36-38 

Pascal with, 30-33 
calling conventions, 30-32 
strings, 32-33 

random numbers, generating, 68-70 
strings with, 48-51 

toolbox managers, 28-30. See also specific man
agers, e.g.: sound manager 

initializing, 34-3 5 
Total Load command, 363, 365 
TrackControlO routine, 183-184 
transfer modes, 256-261 

notSrcBic and notPatBic, 260-261 
notSrcCopy and NotPatCopy, 259 
notSrcOr and NotPatOr, 260 
notSrcXor and NotPatXor, 260 
srcBic and patBic, 2 59 
srcCopy and patCopy, 257-258 
srcOr and patOr, 258 
srcXor and patXor, 258-259 

type, file, 321-322 
type, item, 189-190 

u 
update events, 64-65 

windows, 131-134 
UpdateScoresWindowO routine, 206-207 

usenet newsgroups, 412-413 
user groups, national, 413-414 

Index 

user interface, enhancements to, 395-396 
user-interface code, 13 
utilities, operating system, 28 

v 
values, control, 170, 175-176 
variables, global, 9, 238-239 
var keyword, 30, 31 
Vegas Trek, 117-118 
'vers' resource, 107-109 
viewRect field (text edit records), 298 
visibility, control, 169 
volumes, 320 

current, 320-321 
name of, 320 
reference number of, 320 

w 
Wait command, 364 
WaitNextEventO routine, 52-56 
WAVfiles, 351 
Web sites, 413 
window manager, 28 
windows, 119-141. See also dialog boxes 

active, 12 6-12 8 
black-and-white vs. color capable, 123, 124 
changing z-order of, 12 8 
code examples, 129-130, 134-136 
components of, 120-121 
displaying, 125 
function of, 119 
global/local coordinates in, 13 7-141 
hiding, 125 
loading, 123-125 
and mouse click events, 136-141 
moving, 125-126 
overlapping, 120 
pointers, window, 122-123 
records, window, 122 
setting properties of, 128-129 
sizing, 126 
and update events, 131-134 
validating/invalidating portions of, 132-133 
zooming, 126 



Index 

'WIND' resources, 106 
worlds, offscreen graphics. See graphics worlds, 

offscreen 

y 

Yahoo Web page, 413 

z 
zoom box, 121 
zooming, with windows, 126 
z-order, 124, 128 






