

f'lt ·,I C«.7tv.fev
f'1q';l(;<h, (.0 l'f'07
f "*"' Fvr°'i.t.::: :_s<lt4;) C P... ,; ,

L _____ _

Macintosh™
Graphics and Sound

Programming in Microsoft® BASIC

David A. Kater

Osborne McGraw-Hill
Berkeley, California

L_

Disclaimer of Warranties and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it, includ
ing research, development, and testing to ascertain their effectiveness. The authors
and the publisher make no expressed or implied warranty of any kind with regard to
these programs nor the supplementary documentation in this book. In no event shall
the authors or the publishers be liable for incidental or consequential damages in con
nection with or arising out of the furnishing, performance, or use of any of these
programs.

COPYRIGHT. This collection of programs and their documentation is copyrighted.
You may not copy or otherwise reproduce any part of any program in this collection or
its documentation, except that you may load the programs into a computer as an essen
tial step in executing the program on the computer. You may not transfer any part of
any program in this collection electronically from one computer to another over a net
work. You may not distribute copies of any program or its documentation to others.
Neither any program nor its documentation may be modified or translated without
written permission from Osborne/McGraw-Hill.

NO WARRANTY OF PERFORMANCE. Osborne/McGraw-Hill does not and cannot
warrant the performance or results that may be obtained by using any program in this
book. Accordingly, the programs in this collection and their documentation are sold "as
is" without warranty as to their performance, merchantability, or fitness for any par
ticular purpose. The entire risk as to the results and performance of each program in
the collection is assumed by you. Should any program in this collection prove defective,
you (and not Osborne/McGraw-Hill or its dealer) assume the entire cost of all neces
sary servicing, repair, or correction.

LIMITATION OF LIABILITY. Neither Osborne/McGraw-Hill nor anyone else who
has been involved in the creation, production, or delivery of these programs shall be
liable for any direct, incidental, or consequential benefits, such as, but not limited to,
loss of anticipated profits or benefits, resulting from the use of any program in this
collection or arising out of any breach of any warranty. Some states do allow the exclu
sion or limitation of direct incidental or consequential damages, so the above limitation
may not apply to you.

Published by
Osborne McGraw-Hill

2600 Tenth Street
Berkeley, California 94710

U.S.A.

For information on translations and book distributors outside of the U.S.A., please
write to Osborne McGraw-Hill at the above address.

Macintosh is a trademark of Apple Computer, Inc.
Microsoft is a registered trademark of Microsoft Corporation.
A complete list of trademarks appears on page 271.

Macintosh™ Graphics and Sound

Copyright ©1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written permission of the
publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 898765

ISBN 0-07-881177-5

Jonathan Erickson, Acquisitions Editor
Kay Luthin, Copy Editor
Jan Benes, Text Design

Deborah Wilson, Composition
Yashi Okita, Cover Design
Kay Nelson, Technical Editor

Contents

Introduction vii
Chapter 1 Macintosh Graphics 1
Chapter 2 Printing and Plotting 13
Chapter 3 Drawing Basic Shapes and Patterns 51
Chapter 4 Interactive Graphics 93
Chapter 5 Sound 137
Chapter 6 Transferring Images 167
Chapter 7 Animation Techniques 199
Chapter 8 Manipulating Displays and Viewing Objects 223
Chapter 9 Designing Efficient Programs 259

Index 273

Dedication

To Mom
Who is about as graphic as they come

Acknowledgments

I have especially enjoyed writing this book because it has given me
the opportunity to work with a lot of talented people. Thanks to every
one who contributed their time, energy, and creativity.

First and foremost, I'd like to thank Renda Ozden for his dedica
tion, creative insight, graphics and programming talent, and
companionship throughout this project. Renda designed and imple
mented many of the programs, drew several graphics illustrations,
and was an endless source of ideas for graphics applications. This
book is very much a product of his fertile imagination.

Russel Schnapp, author of Macintosh Graphics in Modula-2
(Prentice-Hall, 1986), gave significant help at a critical time.

Nick Galemo, author of the popular Paint Mover program, edited
and revised the chapters on sound and on working with screen
images. His timely contribution helped to keep the book on schedule.

Anthony Mack, President of the UC Irvine Mac Users Group,
thoroughly tested each of the program listings in the book, making
modifications as needed to give the programs a uniform format. He
also drew several illustrations.

Morgan Davis contributed several programs, including Towers of
Hanoi and the cursor editor.

Dick Kater, my co-author in Getting the Most Out of Your Epson
Printer (McGraw-Hill, 1985) and The Printed Word (Microsoft Press,
1985), made several helpful suggestions.

The EduKater staff provided support and encouragement through
out the project. Ramona Garcia managed the office and was tenacious
about getting the chapters out on time. Joe Parez took time off from
accounting to write several programs. Griselda Engelhorn, Maureen
Aldrich, and Tina Vitous kept everyone's spirits high and did what
ever was necessary to keep the project going.

Introduction

No matter how you look at it, learning about computers and how to
program them takes time; and the more complex the subject, the
more draining it can be, except when you have a particular interest
in what you are learning. Motivation makes the difference. Fortu
nately, it is easy to get excited about computer graphics and sound,
since both appeal to our creative nature.

In this book, you have an opportunity to learn about Macintosh
graphics and sound by typing and running short programs. You'll
find that actively using the programs in the book is the best way to
learn how to use graphics statements, so try out the programs. Read
the annotated program listings, paying close attention to the ways
various statements and functions are used.

Above all, don't expect to learn all about computer graphics in one
sitting. Be patient, and you will be rewarded with newfound graphics
abilities.

vii

viii Macintosh Graphics and Sound

Using This Book
Macintosh Graphics and Sound is designed to usher you into the

world of Macintosh graphics and sound by using BASIC. BASIC
(short for Beginner's All-purpose Symbolic Instruction Code) is a
programming language for beginners. We will develop this book
around the first BASIC introduced on the Mac: version 2.0 of Micro
soft BASIC.

The challenge for any writer of computer subjects is to bridge the
gap between a tutorial and a reference work. A pure reference work
is often only marginally useful to the computer novice; a long, drawn
out tutorial is the last thing a polished programmer wants to wade
through. Macintosh Graphics and Sound contains a combination of
both approaches. The book is organized around graphics concepts. It
starts with such basic topics as working with the video display and
drawing simple shapes, and then progresses to more advanced topics
like rotating two- and three-dimensional objects. It is well indexed so
that you can find your way quickly to topics of interest.

For those who prefer a 'learn by doing' approach, graphics state
ments and techniques are illustrated with short sample programs.
By reading and experimenting with the programs, you can discover
what the Macintosh has to offer. Each chapter concludes with several
comprehensive programs that apply the concepts and techniques
learned in that chapter.

System Requirement~
To get the most out of this book, your minimal hardware require

ment is the original Macintosh, which has 128K of memory. You can
write short programs, but you will have to be very conscious of
memory limitations. Most of the programs in this book work on the
128K Mac; exceptions are carefully noted. For those who have 128K
machines, Chapter 9 discusses ways to deal with limited memory.

While a dual-drive system is necessary for word processing and
some other applications, BASIC programmers can use a single-drive
machine. With careful file management, you can store your operating
system and BASIC, and still have nearly 200K for program storage.

A printer is not an absolute necessity for using BASIC, but it can
make life a lot easier. Printouts make your work on the computer
somewhat transportable. A printer also allows you to distribute
paper copies of your graphics displays.

Introduction ix

You may also wish to borrow or purchase a digitizer unit that
converts real-life images into digitized form in the Mac.

For software, you'll need a copy of Microsoft BASIC. The pro
grams in this book are written in version 2.0 of Microsoft BASIC.
You'll occasionally need a graphics program, such as MacPaint or
MacDraw, for creating graphics images.

READER BACKGROUND

This book is designed for all BASIC programmers who want to mas
ter Macintosh's remarkable graphics abilities. On other computers,
the subject of graphics is generally avoided by beginning pro
grammers. But the Mac invites even the beginner to participate in
the graphics experience.

The first few chapters start at a leisurely pace so that the novice
programmer can get started with ease. At each stage we develop the
tools to prepare the reader for the next section. The book is also care
fully indexed so that advanced programmers will be able to find
quickly the sections they want to know about.

Newcomers to BASIC and the Mac will find it best to read the
chapters in sequence. Take your time and read carefully. You'll find
that running each of the sample exercises will help you learn the
material in a surprisingly short time and to retain it longer. Working
with practice programs lets you get all the catastrophic errors out of
your system before you attempt your own programs. Those who wish
to minimize typing time in working with the practice programs
might consider purchasing the optional program disk.

If you are an experienced programmer, you will probably want to
proceed at a faster pace. You may want to skim the first few chapters
to get familiar with the Mac, and then use the Index and Table of
Contents to find topics of interest. The applications programs at the
end of each chapter provide examples of how to use the tools intro
duced in that chapter. The optional program disk will allow you to
modify the major programs.

The Macintosh is a machine that allows us to explore our own
creativity. We hope this book will inspire you to push your limits and
to make new discoveries about yourself.

Program Disk Offer
We have made many of the major programs in this book available

on disk. The files are stored on a data disk, so single-drive users may
want to transfer the files to a system disk.

x Macintosh Graphics and Sound

The cost is $19.95, which includes shipping to anywhere in the
continental United States. Residents in other parts of the world,
please add $3.00 to cover additional shipping costs ($22.95 total).
California residents, please add 6% for state tax ($21.15 total).

Make your check or money order payable to EduKater, and send
it to:

David A. Kater
Edu Kater
P.O. Box 1868
La Mesa, CA 92041

Orders paid by money order or cashier's check will be shipped
within three working days of receipt. Orders paid by personal check
will be shipped within three weeks of receipt.

PROGRAM DISK OFFER

Enter quantity desired:

___ diskette(s) at $19.95:

Shipping outside U.S. ($3.00):

Tax for CA residents ($1.20):

Total enclosed:

Ship to:

1
Macintosh Graphics

Much has been written about how the Apple Macintosh computer sets
a new standard for personal computing. One of the most intriguing
innovations of the Macintosh is its easy-to-use graphics. This book
can teach you how to use BASIC programs that will help you take full
advantage of your Macintosh's graphics capabilities.

This chapter will give you an overview of what you can do with
the BASIC programs in this book. A sample programming session
will help you get started.

Macintosh Graphics and You
You may wonder why you would want to use BASIC to develop

graphics on the Macintosh in the first place. After all, MacPaint,

1

2 Macintosh Graphics and Sound

MacDraw, Microsoft Chart, and other graphics-oriented software
programs are available to satisfy the appetite of the most . ardent
graphics enthusiast. Each of these programs can give you useful,
creative results. So why bother learning to program graphics when
you can just do graphics?

The following examples answer this question. They illustrate some
of the many ways BASIC programs can help you create and manage
your graphics on the Mac.

BASIC AS A GRAPHICS MANAGER

BASIC can help you combine the graphics you have developed with
other programs into complete presentations. You will learn in Chap
ter 6 how to transfer graphics images from other programs into
BASIC. These images can be stored in memory or on disk and then

More ond More People ore weoring MocShoes

High Slepper

The MocShoe

HighSleppor

Saxon

MacShot

Trippor

'w'ond•r

0 40 80 120 160

M;le per shoe

Figure 1-1.
BASIC can display frames created by Macintosh applications

9 I' ilc~ Edit S c~ on h Run Windows

20 Animation Frames

Figure 1-2.
Animation frames

Macintosh Graphics 3

displayed by a BASIC program as needed. For example, a retail sales
outlet might use a BASIC program to manage a continuous slide
show sales floor demonstration, using charts from Chart, text from
Mac Write, and illustrations from MacPaint. Figure 1-1 shows screens
from a sample demonstration.

BASIC's abilities as a graphics manager don't stop with slide
presentations. Macintosh BASIC provides several ways to store
images in memory and then display them one at a time in succession
to produce very believable animation. The images can be created
with BASIC or some other program. Figure 1-2 shows two frame
sequences created with a program developed in Chapter 7. One shows
a cat leaping; the other shows the earth rotating on its axis.

PRECISION PLOTTING

BASIC also allows you to calculate and plot functions, like the one in
Figure 1-3, quickly and efficiently. You can plot curves like those in
Figure 1-3 with MacPaint or MacDraw, but it's much easier and
more precise to plot them with BASIC. Figure 1-4 shows the short
program segment necessary to plot the three curves.

4 Macintosh Graphics and Sound

1000 309S

900

800 ... ······
209S

C11plt11l
700

600 ... 109S

500

0 2 4 :s

Veer

Xoffeet. 70: Yoffeel•240:Xecele-. I: Yecele • -.2
FORl=rlT03

READ c(l),r(t)
DAT A 50,.30, 100,.20,200,. 10

IEITt
FOi ioop:: 1 TO 3
cepttel=C(loop): rete:r(loop)
FOR deg = I TO 3650

6

P&ET(dey*Xscele+Xoffset, cepttel"Yscele+Yoffset)
cepttel = cepltel + cepttet•(rete/365)

IEITdey
IEIT loop
z: IF lllEIS=-THEll z

Figure 1-3.
Function plot

PATTERNS AND ART

7 e 9 10

Part of the Macintosh's charm is the ease with which it can produce
both serious business graphics and art for art's sake. MacPaint is an
excellent tool for freehand drawing; BASIC is better suited for creat
ing repetitive patterns and geometric shapes. The striking patterns
shown in Figure 1-5 are created by a randomly repeating BASIC
program that draws ovals gradually changing sizes and positions. A
totally different effect is created by drawing lines between two
curves, as shown in Figure 1-6.

FOR loop= 1 TO 3
cepitel=c(loop) : rete=r(loop)
FOR dey = 1 TO 3650

Macintosh Graphics 5

PSET(dey*Xscel e+ Xof f set, cepi tel *Vsce l e •Vof f set)
cepilel = cepi tel + cepitel *(rete/365)

NEXT dey
NEXT loop
z IF INKEVS= "" THEN Z

)I

Figure 1-4.
Program code for growth curves

9 File Edit S<rnn h Run Windows

Figure 1-5.
Repeating ovals

INTERACTIVE GRAPHICS

One advantage of computer graphics over other forms of graphics is
that the user can interact with the graphics images on a computer.
Because BASIC can easily detect input from the mouse, you can write

6 Macintosh Graphics and Sound

e f ii (~ Edit l; (~< ll " (h Run Windows

~D line art

Figure 1-6.
Repeating line segments

Figure 1-7.

This 1s the 6ltitute indic6tor.
It is c61ibrnted in thous6nds
of feet.

Aircraft instrument panel

~ Second screen
invoked by clicking
mouse pointer on
instrument p6nel.

Macintosh Graphics 7

programs that will interact with the operator. This interactive ability
can be used to full advantage in educational programs. Figure 1-7
illustrates how a tutorial program could introduce the viewer to the
instrument panel of a small aircraft.

In this example you click the mouse pointer on any of the items on
the panel. The program will respond with a close-up view of the item
along with a description. This approach lets you control what you
learn in a very intuitive and visual way. BASIC's ability to detect a
mouse click anywhere on the screen is introduced in Chapter 4 and is
used throughout the rest of the book.

_The next example literally adds another dimension to the use of
BASIC's interactive abilities. In Chapter 8, we introduce a program
that allows you to draw three-dimensional schematic objects. Lines
are drawn in panels representing three different views of the object.
Figure 1-8 shows a schematic representation of a car. Once the object
is drawn, the program allows you to view it from any direction.

While it is possible to draw three-dimensional objects with Mac-

,. 9 Fiie lllew Lock Depth Primltiues

TOP

::::~:::::::::::§11~·: ····~··········0···:·····1: ::::.. ····· · .. :::: E-:9-::::.::·. . .:

FRONT SIDE

Figure 1-8.
Three-dimensional schematic depiction of car

8 Macintosh Graphics and Sou·nd

Paint, BASIC simplifies the process by taking care of the messy cal
culations required to project a three-dimensional object accurately on
a two-dimensional screen.

FLEXIBILITY

Programmers in all languages have long been aware of the advan
tages of writing their own programs instead of relying on commer
cially available software. Of course, there are trade-offs. A commer
cial program is designed to do a particular application and to do it
well, but it costs money. A home-brewed program takes time to
write, but it is free. A commercial program cannot generally be mod
ified to meet individual requirements. A home-brewed program can
be written to your exact specifications and customized to your heart's
delight.

Writing your own applications programs may sound like a for
midable task, but the graphics statements available in Microsoft
BASIC make it easy to write powerful graphics programs. This book
will show you how.

Macintosh, the Graphics Machine
The Macintosh is one of the first computers designed with graph

ics in mind. To understand how it supports your graphics efforts, let's
look briefly at what makes the Macintosh unique.

First, the Macintosh displays information on the screen in a novel
way. Rather than the standard arrangement of rows and columns of
text, the Mac screen is addressed as a matrix of tiny screen elements
called pixels. This orientation not only allows the computer to mix
graphics and text on the same screen but also lets it display text in a
variety of different fonts, sizes, and styles.

This graphics orientation is supported by a very powerful set of
built-in graphics routines, known as the QuickDraw graphics pack
age. These routines, permanently stored in the Macintosh's read-only
memory (ROM), create fast and efficient graphics. Microsoft BASIC
allows you easy access to a healthy subset of these ROM routines via
the CALL statement. You will use these routines throughout the book.

There is more to Macintosh graphics than displaying information
on the screen. The printer interface is designed to accurately repro
duce the Mac screen onto the Imagewriter printer. Anything you dis
play on the screen can be printed on the printer by pressing the keys
SHIFT-COMMAND-4. (The COMMAND key is the cloverleaf ~.)

Macintosh Graphics 9

Microsoft BASIC adds two additional ways to use your printer.
You can print your entire program listing with the LLIST command.
You can also use the WINDOW OUTPUT command to print graphics
as large as your output device will allow. Chapter 7 gives you a com
plete overview of printing graphics with BASIC.

Last but not least, the Macintosh mouse is a very convenient
device for graphics input. It lets you easily select objects on the
screen to move them, change their orientation, give commands
through dialog boxes, or choose options from a list-in short, it lets
you interact with the graphics you create as you create them, as well
as when you use them.

Getting Started with Microsoft BASIC
For those who are new to the Macintosh and BASIC, we include a

short session on getting started. Experts should skip to the next
chapter.

How do you get started with BASIC? First, make sure you have
the right program. The examples in this book are created with
Microsoft BASIC version 2.0. Macintosh BASIC owners can follow
along with some help from the user's manual. Make a copy of your
BASIC master disk either by using the Diskcopy program provided
with your System Master disk or by dragging icons. The backup copy
will be your working disk. Before you put the original disk away, you
may want to make an extra copy, just in case.

Insert your working disk and display the directory window.
Double-click on the Binary BASIC icon (the one with the pi symbol).
We will be using this version of BASIC for graphics because it is
generally faster than Decimal BASIC.

Enter the following program in the List window:

RAllDOHIZE TIHER
WHILE HOUSE(O):O
IC:500*RllD: y:300*RllD: 8:5*RllD
FOR red= 1 TO 60*RllO &TEP s

CIRCLE(x,y),ntd,s
llEIT ntd
WEllD

You can enter the text in lowercase if you prefer. When you press
RETURN at the end of each line, the computer automatically converts
the key words to uppercase and displays them in boldface print. If
you make a mistake, press BACKSPACE to delete the previous letter.

10 Macintosh Graphics and Sound

Click the mouse button to position the cursor for editing. You can
even delete blank lines by positioning the cursor at the beginning of
the next line and pressing BACKSPACE.

PRINTING THE SCREEN

When your text matches the listing, select Start from the Run menu.
The program will continue to draw circles on the screen. Figure 1- 9
shows a sample run.

While the patterns are in motion, let's get a printout of the output
window. Make sure your printer is connected and turned on. Check
the CAPS LOCK key to make sure it is up. Then press the SHIFT

COMMAND-4 keys simultaneously. (The COMMAND key is just to the left
of the SPACE BAR.) This action prints a copy of the output window on
paper. If you press these same keys with the CAPS KEY down, you get
a printout of the entire screen. This method of copying the screen is
the easiest way to get a quick printout of your program's output.

The program will run continuously until you press the mouse but
ton. Try it now. The computer replies with Program stopped and
re-displays the List window.

PRINTING A PROGRAM LISTING

At this point you probably want to print a listing of the program on
your printer. There are two ways to do this. If the program listing fits

r il (1 Edit S(1<1n h Run Window:s

Figure 1-9.
Random concentric circles

Macintosh Graphics 11

completely in the List window, you can use SHIFT-COMMAND-4 to print
the current window. For longer listings, you'll have to enter a com
mand using the Command window. To see this, select Command from
the Window menu. Type list into the Command window and press
RETURN.

Notice the cramped text lines in the printout. This effect is caused by
the SHIFT-COMMAND-4 command sequence, which shortens the nor
mal line-spacing setting of the printer in order to print the output
window as continuous graphics. To reset the line spacing for text,
turn the printer off and then on. Now try llist again.

SAVING YOUR PROGRAM

To save the current program, select Save from the File menu. The
computer will ask you for the name of the file. Type Circles, and
press RETURN.

OPENING ANOTHER PROGRAM

Now let's try opening a different BASIC program. Select Open from
the File menu. The resulting dialog box displays a list of BASIC files
on that disk. You can scroll through these files and select the one you
want. You could even eject this disk and select a program from
another disk, but don't do so now. For a real treat, select Music. Chap
ter 5's topic is music and sound, and it will show you how to use sound
to enhance your graphic programs.

When you are done with that program, select Stop from the Run
menu. To end the session, select Quit from the File menu. This exits
BASIC and brings back the desktop. The final step is to select Eject
from the File menu and turn off your Macintosh. You have just com
pleted a successful session with BASIC.

Summary
You now have some sense of how the Macintosh can make working

with graphics easy and also of the kinds of graphics you can do with

12 Macintosh Graphics and Sound

BASIC on the Macintosh. The program examples that have been
presented so far only scratch the surface of what you can do. In the
next chapter you will learn how to display text of all sizes and shapes
on the screen. You'll also explore some of the things you can do by
plotting points.

2
Printing and Plotting

In this chapter we will take a closer look at some aspects of the Mac's
graphics medium, the video display-how big it is, how to print what
you see on the screen onto paper, and how Microsoft BASIC displays
graphics. You will also use the two most basic tools of all those you
will learn in this book: printing text characters and plotting points.

The 20 programs presented in this chapter will help you learn
about BASIC graphics. You should type in as many as you can (most
are less than ten lines long). You'll find that actually working with
the programs on the computer will give you a better understanding
of the programming concepts than you would gain by simply looking
at the listings in the book. The longer listings are available on a pro
gram disk to save you the trouble of typing them in.

A Look at the Video Display
The video display (or screen) can be manipulated to produce

graphics images in complex ways. To control computer graphics, you

13

14 Macintosh Graphics and Sound

must understand the limitations of the medium. Thus it is fitting that
your quest for better graphics begin with a study of the video display.

DISPLAY LAYOUT
The video display is composed of rows and columns of tiny, square
areas called pixels. The images on the screen that you perceive as
text and graphics are nothing more than carefully arranged patterns
of black and white pixels. The active portion of the display is 7 1/9
inches (horizontal) by 4 3/4 inches (vertical). There are about 72 pix"
els per inch, both horizontally and vertically, which results in a work
ing grid of 512 X 342 pixels.

Graphics created with BASIC are displayed in a portion of the
screen called the output window. Its default size is 491 pixels wide by
254 pixels high. You can expand and compress this window with the
size box to fit your needs. Windows can also be manipulated with the
WINDOW statement.

Don't forget that the video display is only part of the area that is
addressable with BASIC graphics statements. As you'll see later,
there may be times when you want to address a much larger area
(for example, when you print your graphics on a printer).

REPRODUCING THE VIDEO DISPLAY

There are two ways to transfer your graphics images to paper. The
Macintosh can copy screen images to the printer with SHIFT

COMMAND-4. BASIC also lets you link the current output window to the
printer with the WINDOW OUTPUT # statement. Using this tech
nique, you can print graphics images as large as the output device
will allow. See Chapter 6 for details.

On the original Imagewriter, BASIC can address an area 640 dots
wide by 752 dots high (8 inches by 10 4/9 inches). To see how this area
compares to the screen display, look at both parts of Figure 2-1.

The Macintosh designers made every effort to let you produce
printouts that accurately reproduce what is on your video screen. The
accuracy of the reproduction depends, of course, on the output device
and the printing method used. For example, using the Imagewriter
and the screen dump keys SHIF'T-COMMAND-4, you can transfer the
screen image to the printer. When you use a printer and BASIC's
window print feature, however, shapes on the screen are slightly dis
torted as they are transferred to the printed page.

Why does this happen? The Macintosh's screen has an aspect ratio
of 1 to 1, meaning that the pixels are spaced the same distance apart

Printing and Plotting 15

horizontally and vertically. This is almost, but not quite, true of all
printers' capabilities. The standard printer dot spacing on the Image
writer is 80 dots per inch (dpi) horizontally to 72 dots per inch
vertically, so the aspect ratio is 10 to 9, or 1.11 to 1, instead of 1 to 1.
On other printers the dot spacing may be slightly different. Thus
screen images tend to be slightly compressed or expanded horizon
tally when they are printed, as is shown in Figure 2-2.

This slight distortion is insignificant in most cases, but if you need
more precision in your printouts, you can simply adjust the image on
the screen by using BASIC's GET and PUT statements. You'll see
how in Chapter 6. Briefly, you use the GET statement to bring a por
tion of the screen into memory. Next, you use the PUT statement to
bring it back to the screen in a format that is slightly stretched
horizontally. Then, when the image is slightly compressed horizon
tally by the printer, it will print out in a 1-to-1 aspect ratio.

CHANGING THE SIZE OF YOUR WINDOW

The default output window is fine for most applications, but you may
want to adjust its size. For example, you may want to extend the win
dow to its full height of nearly 300 pixels by dragging the size box in
the lower-right corner of the window. (The output window returns to
the default size each time you enter BASIC.)

~"·
7 \ .

""'9
I

\ I] 1]

a.

Figure 2-1.
Screen copy (a) and full-page drawing (b)

16 Macintosh Graphics and Sound

I
I 11 ! I I'/\ I, t l 1 ~· l\ Ir;>,/ I !'~

b.

Figure 2-1.
Screen copy (a) and full-page drawing (b) (continued)

1111
1111
1111
1111
1111
1111

80 dpt x 72 dpt

1.1 :1

• • • • • •
Imagewriter

Figure 2-2.
Aspect ratio comparison

72 dpt x 72 dpi

1:1

Screen

Printing and Plotting 17

60 dpi x 72 dpt

.833 :1

• 1ee • • ~'I 1•
11 •

Epson

• 1• •
•

When you initiate a BASIC program run, the output window is
automatically cleared to receive your new creation. You can also clear
the window under program control with the CLS (clear screen)
statement.

Plotting Points
With a clear picture of the video displ3¥, you are now better pre

pared to take the next step: plotting points on the screen. A pixel (or
screen point) is located by its horizontal and vertical distance along
two axes. Just as in high school algebra, the horizontal distance is the
x coordinate of the pixel, and the vertical distance is the y coordinate.
Thus each pixel position is associated with a pair of numbers, usually
shown in parentheses as (x,y).

There are differences between the Macintosh coordinate system
and the one you learned in high school, however. First of all, the (0,0)
position (or origin) of the Mac system is not in the middle; it is located
in the upper-left corner of the output window (see Figure 2-3). Also,
the vertical values increase as points move down the screen. The
coordinates of the visible screen area therefore go from (O,O) in the
upper-left corner to (490,253) in the lower-right corner of the output
window. The point (245,126) will be used as the center point for pro
grams in this book.

18 Macintosh Graphics and Sound

-------------- -- - -
------- - -=--

/
(490,0)

•f (245, 126)

(0,253)

/
(490,253)

~bD
Command

v

Figure 2-3.
Addressable BASIC area

BASIC actually lets you refer to pixel positions from -32768 to
32767 in both horizontal and vertical directions. There are several
advantages to having such a large drawing area, even though only a
small portion of it is visible on the screen. You can let your drawings
wander off the screen without getting an error message. You can also
construct images and print them on output devices that accept larger
formats than the video display. You will learn in Chapter 6 how to fill
an entire printed page with graphics.

A SAMPLE PLOTTING PROGRAM

Let's find out how to plot points onto this grid. First, load in the
binary version of BASIC [Microsoft BASIC (b)], or if you are cur
rently using BASIC, select New from the File menu. Then type the
listing shown next into the List window. (Refer to the sample session
in Chapter 1 for information about entering and editing a BASIC
program.)

PRUIT "point·
P6ET(I00,50)

Printing and Plotting 19

To run the program, select Start from the Run menu. The PRINT
statement displays the word "point" on the screen. The point-plotting
statement is PSET(l00,50). This statement places a black dot 100
pixels horizontally and 50 pixels vertically from the upper-left corner
of the output window.

· s File Edit Se11rch Run Windows

<o.o> ~i~oii~~~~iiiiiiiiiiii~iiii~ii~iiiiiiiiii~~

} ~

y

100

point

•

_ 50 I

!!D
PRINT"point"
PSET(100 ,50)

List

20 Macintosh Graphics and Sound

ADDING RANDOMNESS TO YOUR GRAPHICS

The List window reappears as soon as the program is finished. To
make this program a little more exciting, you can add a touch of
randomness by using the computer's random number function.
Change the listing to match this:

RAflDOHIZE TIHER
loop:
X:200+50*RflD:y:100+50*RflD
P6ET(x,y)
&OTO loop

Again, select Start from the Run menu. The program executes in
a continuous loop that will run forever unless you intervene. To exit
the program, select Stop from the Run menu.

The Macintosh has a built-in random number generator that is
useful for adding random action to graphics displays. It will be used
frequently throughout this book. The random number generator is
essentially a very long list of randomly ordered numbers between 0
and 1 (such as 0.034, 0.7791, 0.2088, ...). The RND function pulls
numbers from this list one at a time and returns them to the pro
gram. The RANDOMIZE statement determines where in the list the
RND function starts pulling numbers. The starting position can be
chosen in several ways. In this program the seed number is selected
from the internal system clock (TIMER). This results in a different
pattern each time the program is run. You'll find the random number
feature a tremendous asset in creating animation and active graphics
displays.

The RND function is used in the above program to set horizontal
and vertical limits on the location of each PSET point. The horizontal
coordinate (x) is fixed between 200 and 250. How is this done? Recall
that RND ranges between 0 and 1. Multiplying this by 50 changes
the range to between 0 and 50. Adding 200 fixes the final range of
possibilities between 200 and 250. Similarly, the vertical coordinate
(y) is limited to the range 100 to 150. You can use this technique any
time you want to select random numbers in a specified range.

SWITCHING BETWEEN BLACK
AND WHITE-OR COLOR

The PSET statement is smarter than it first appears. Not only can it
plot black points on a white background, but it can also plot points in
color. When the color Mac is available, you will really appreciate this

Printing and Plotting 21

feature. For now, each color selected is displayed on the screen as
black or white. The default color for PSET, as you just witnessed, is
black. The numbers assigned to white and black are 30 and 33,
respectively. Zero and one also give you white and black. To exercise
PSET's "color" ability, let's erase each black dot in the current pro
gram and, after a short delay, replace it with a white dot.

RAllDDnlZE TIHER
loop:
X=200+50*RllD:y:100+50*RllD
P&ET(x,y)
FOR i= 1 TO 800: llEXT i
P&ET(x,y),30
GOTO loop

Look closely as this program runs. The first PSET paints a black dot
on the screen; the second PSET paints it white. The FOR/NEXT loop
adds a short time delay.

PSET has a companion statement called PRESET. It is identical
to PSET except that the default is white if no color is specified. The
second PSET in the preceding program could be replaced by
PRESET(x,y).,

CREATING RANDOM PATTERNS

In these first few programs, all pixel positions have been specified
explicitly; that is, for each pixel, the program specifies exact horizon
tal and vertical values. This is called absolute positioning. The PSET
and PRESET statements can also position pixels relative to the cur
rent pixel position. This is called relative positioning. Try the
following:

RAllDOtllZE TIHER
P&ET(250, 150)
loop:
P&ET &TEP (4*RllD-2,2*RllD-1)
GOTO loop

The STEP option in the second PSET statement changes the mean
ing of the x and y coordinates; that is, the numbers inside the paren
theses are added to the current pixel coordinates. For example, the
expression 4 * RND - 2 in the second PSET statement generates
random numbers between -2 and +2. The PSET statement converts
them into the integers -2, -1, 0, l, and 2. The integer selected is
added to the previous x coordinate to determine the x coordinate of

22 Macintosh Graphics and Sound

Figure 2-4.
Random patterns

the next point. The ultimate result is an endless variety of random
patterns that resemble finely detailed pencil sketches, as illustrated
in Figure 2-4.

Another way to control the stepping is shown in the following
listing:

RIJIDOlllZE Tl"ER
X=245: Y= 126
loop:
h= 2*Rll0-1 :k= 2*RND-1
FOR i=1TO3 + 18*RND
11:: x+h: Y= y+k
P6£T(x,y)
NElrT i
GOTO loop

In this program, the FOR/NEXT loop draws short line segments.
The direction is determined by h and k.

Using Arrays to Store Poin1ts
In the current program, the numbers x and y are used to plot a point
and are then recalculated in the loop's next pass. Some graphics
techniques require that you store these numbers in arrays, which are
lists of numbers or strings that use a common variable name, each
one associated with a unique number. In the next program you will

Printing and Plotting 23

use a two-dimensional array in which each cell or element of the
array is referenced by its row and column number.

B(l,1)-

6(2,1)-

6(3, 1)-

6(4, 1)-

e(row ,column)

250.4100

250.8200

251.2300

251.6400

252.0499

252.4599

252.8699

253.2799
253.6899

•
•
•

150.6806

151.3612

152.0419

152.7225

153.4031

154.0837

154.7643
155.4449

156.1256

•
•
•

- 6(1,2)
- B(2,2)

- 6(3,2)

- 6(4,2)

In this case, the array a is used to store each point that is added to .
the figure. Let's take the listing out for a spin.

RARDOHIZE TIHER
n::60: head: I: tatl=2
Din a(n,2)
a(head, 1)=250: a(head,2)=150
loop:
h=2*RND-I: k=2*RND-I
FOR j=I TO 5+15*RND
PRE6ET(a(tail, l),a(tail,2))
a(teil, I)=&(head, I)+h: a(tail,2)=a(he8d,2)+k
heed:heed HOD(n)+ I: tatl=tail HOD(n)+ I
P6ET(e(head, 1),a(head,2))
NEXT j
&OTO loop

As the program listings get longer and wider, you may wish to
increase the size of the List window. A fast way to do this is to double
click on the window's title bar. It expands to fill most of the screen.
Another double-click brings it back to the default size and position.

Storing the coordinate points in array a enables you to go back
and erase previous points, giving the effect of a snake moving around
the screen. To manage this, the variables head and tail are used to
keep track of the starting and ending coordinates. These pointers are
moved to the end of the array and then back to the beginning with
the MOD function. Figure 2-5 shows the sequence of actions.

24 Macintosh Graphics and Sound

HF.AD
TAIL

264.4347 151 .5455

264.2313 151 .6903

264.0279 ~-1.~~~ --------·
263.6245 152.5799

,c_, I I 1.;,_j'..J '.,j ! c,-: 11-1-: I

252 .4599 1540637

252.6699 154.7643

253 .2799 155.4449

253 .6699 156.1256

1 Turn off toil
pt xe l on screen

Figure 2-5.
Using array pointers

1•
H£AD ./ '_ TAIL

(264 ,153) (252,153)

HEAD
TAIL

250.4100 150.6606

250.6200 151.3612

251 .2300 152 0419
f-------4 -----
251 .6400 152.7225

't-.4 t-, ,4 I(_ I .. ·1~''

2·52 .4599 1540637

252 .6699 154.7643

25:5.2799 155.4449

25 :5.6699 156.1256

2. Reploce to11
with new point

Controlling Patterns with Checkpoints

tHEAD
TAIL

250.4100 150.6806

250 .6200 151.3612

251 .2300 152.0419

251 .6400 152.7225

264.6764 151.6949

L,r::,! JC:-1'~ '~ I : . ..J (Ji_,~-

252.6699 154.7643

253.2799 155.4449

253 .6699 156. 1256

3. Moye pointers

The current program runs all over the screen and crosses over itself.
One way to minimize this crisscrossing is to check each point before
you use PSET to make sure it is not black. Change the program to:

DEFlffT 11-z
RAllDOHIZE TIHER
n=60: he11d=l: t11i1=2
DIH e(n,2)
11(he11d, 0=250: 11(he11d,2)= 150
FOR X= 100 TO 400

P&ET(x.100): P&ET(x,200)
llUTx
FOR II= 100 TO 200
PSET(100.y): P&ET(400.y}
11£1T y
loop:
h:2*RID-1: k:2*RID-1
FOR J=1TO5+15*RID
IF C>20 THU slc1p

Printing and Plotting 25

IF POlllT(a(head, 1)+h.a(heed,2)+k)=33 TllEI C=C• 1: &OTO loop
sktp: C--0
PRE&ET(ll(t1tl, 1),ll(t1tl,2))
ll(t1t1.1)=e(heed, 1)+h: ll(t1t1.2):1(heed,2)+k
heed=heed llOO(n)+ 1: t1il=t1il noD(n)• 1
P&ET(l(heed, 1),ll(heed,2))
IEIT j
&OTO loop

The POINT function returns the color value of the selected point. If it
is black (that is, 33), then another point is selected. This function also
prevents the snake from escaping the rectangular boundary added at
the beginning of the program.

Speeding Up Your Program

Another newcomer to this program is the DEFINT statement, which
changes the default variable type to integer.

Microsoft BASIC uses three types of numeric variables: integer,
single-precision, and double-precision. Integer variables use only 2
bytes of memory and work only with integer values (-2, 0, +5, and so
on); decimal numbers are converted to integers when they are stored
in an integer variable. Single-precision variables use 4 bytes of
memory and contain decimal numbers up to 7 digits long in Binary
BASIC. Double-precision variables require 8 bytes each and are used
for calculations involving decimal numbers with many significant
digits. Variable types can be defined with the DEF function or can
be defined individually by appending the symbol ! for single preci
sion, # for double precision, and % for integer.

DEFINT a-z is used in the previous program to change all vari
ables beginning with the letters a through z to integer variables. The
computer can process integer variables much more quickly than
single- or double-precision variables; using integer variables can help
you speed up your graphics programs. However, be very careful
which variables you assign as integer variables. Numbers used for
decimal calculations will be truncated to integer types. If this is not

26 Printing and Plotting

your intent, the results can be a bit bizarre. In the current program,
using integer variables restricts the angles of motion to multiples of
45 degrees.

Because this snake can get boxed in, a counter (c) has been added
to the program. If the program can't find a suitable direction after 20
tries, it skips the point check and goes on as if nothing were amiss.

Working with Text
The vast majority of personal and business computers are oriented

toward producing lines of text on the screen. A typical system can
display up to 24 lines of 80 characters. On these machines, graphics
abilities have often been added as an afterthought. The Macintosh
designers took an entirely different approach-the Mac screen is
designed for graphics. Even text is displayed as a grid of pixels.
There is no fixed number of rows and columns of text characters; it
all depends on the size of the text. Of course, the system has some
built-in rules about character positioning.

FONTS AND SPACING
The graphics orientation of the Mac gives you tremendous flexibility
in displaying text.-With BASIC, you can control four text attributes:
font, size, face, and mode. The font is the style of a set of characters,
including its upper- and lowercase letters, numbers, punctuation, and
symbols. The default font for BASIC output is called Geneva. The size
of a letter is measured in points, one point being roughly 1/72 inch.
The standard size of the Geneva font is 12 points. The face is any of
seven stylistic variations within the font-bold, underline, italic,
shadow, and so on. Mode is the way text interacts with the current
contents of the screen; for example, whether it overlays existing pix
els or combines with them. Each of these attributes will be explained
in detail later in this section.

To make full use of the built-in Macintosh text characters, it is
important that you understand the elements that contribute to the
design of a character set. Each Macintosh character is stored as a
matrix of dots. The matrix must include room for upper- and lower
case characters, lowercase ascenders and descenders, spacing between
lines (leading), spacing between characters (letter spacing), spacing
between words (word spacing), and a reference point used for posi
tioning the character on the screen. Figure 2-6 shows several ele
ments of character design.

Printing and Plotting 27

eect1 squere represents e dot in the cherecter matrix

/ ascender ----

•1• ·1 I ••• ••• ••.•. .i.
I I I I

=

--------ascent 11ne •• i i i Ix-height x-height line

• • • • •••1 base line
descender - •••••------descent 11ne

J leading

1-~i:_J I
lch1,..cter _J

width

Figure 2-6.

1. ·1 i• ·=
i I = 1··i i !

1

11 i . ·-·u ~-=l}='JlJ-·
word
spacing ~

character
spacing

Elements of character design

The letters shown in Figure 2-6 are 12-point Geneva characters.
The font size is the distance between the ascent line of one row of text
and the ascent line of the next row of single-spaced text. Fonts are
installed on the disk in a specific point size. If you ask for a different
size, the Mac scales the font up or down to match your request. Scal
ing fonts to odd sizes can produce unpleasant results, however. If you
use odd sizes frequently, you may need to install a font size that's
closer to the one you want. You can do this by using the Macintosh
application Font Mover. (See "Transferring Fonts" later in this chap
ter for more on Font Mover.)

The character width assigned to a character depends on the shape
of the image. For example, the character width of i is less than that
of m. All of the original Macintosh fonts except Monaco share one
characteristic: the characters' widths are spaced proportionally to
the image shape. Thus, these fonts are called proportionally spaced
fonts. Monaco, on the other hand, is a monospaced font, meaning that

28 Macintosh Graphics and Sound

the character width is the same for all characters, regardless of the
character shape.

For text characters, the image width is generally less than the
character width in order to provide spacing between adjacent char
acters. Border lines and other special symbols may use the entire
character width so that they can join adjacent characters to form
larger shapes.

The computer also puts spaces (leading) between lines of text.
Leading is measured from the descent line of one row of text to the
ascent line of the next. The leading for single-spaced, 12-point Geneva
characters is 4 pixels.

The character origin is a point of reference used to position the
character. It is usually placed at the left edge of the base line.

Each character of a font is defined by its dot pattern and asso
ciated spacing information. Using this information, the Mac can
properly adjust for both vertical and horizontal spacing between
characters. This makes text handling easier. for programmers. But
with so many different sizes of text fonts available, it is difficult to
predict just how many rows and columns of text can be displayed on
the screen for a given font size. Figure 2-7 can help you determine
the number of rows and columns available for several different font
sizes.

POSITIONING TEXT

If there are no fixed positions for text on the screen, how do you con
trol text position? There are primarily two ways to position text. One
is by specifying the pixel location of the character origin point illus
trated in Figure 2-6. To use this method, you must know the point
size and average character width of the font and size you have
selected.

A second way to position text is to locate it in terms of rows and
columns. For example, you could position a character ten rows from
the top and 20 columns from the left border of the current output
window. Note that these rows and columns are measured in terms of
the currently selected text size. For example, the screen holds 27
rows of 10-point text, but only 18 rows of 20-point text. Figure 2-8
compares the two methods of positioning text. Look at the following
listing to see the difference:

FORt=I TO 12
LOCATE t, 12: PRlllT CHRl<215);
IEITt
FOR t:2 TO 12 STEP 2

Printing and Plotting 29

Cherecter
Point
Size

Approximate
Characters/

L1ne

~~o~~~~~~~~~~=::!T~eH~tQR~o~w~s~~~~~~~~~~~
6 '"''"""'1lrR1,.11n11""'"''''·- ·1111111niJ11u1Ju 1tu'ftr\111-u,1Rautm11,n111111JUflUlU1•111•"•• .. ·· ,a·111•1t11n•.-aaac.1·l1•h• .. HI••·
9 ABCDEf GHIJKLMNOPQRSTUVWXYZ I\)"_· abcdef qhi ik lmnopqrs tuvwxu z(I)- A X~ENOU6oooa~ceeeeilii"fiooooouuu

1 o ABCDrFGH IJKLMNOPQRbTUVWXVZl\J" _ • ebcdef ghi j k 1 mnoporof u•,.,xuzt n-AJ!.C£1l0Ualiailiieceeee iii i nooooouuiul
12 ABCDEFGHIJKLMNOPQRSTUYWXVZ(\)"_ ' Bbcdef ghi jklmnopqrstuvwxyz{l)-Aai;rno

14 ABCDEFGH IJKLMNOPQRSTUVWXVZ[\)' _ 'abcdef ghi jklmnopqrstuvwxyz{j}

1 a ABCDEFGH IJKLMNOPQRSTUVWXYZ [\]" _' abcdef ghi jklm
20 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\J·_·ebcdef ghl j

24 ABCDEFGH IJKLMNOPQRSTUVWXVZ[\]"_'a

32 ABC DEF G HI J KL MN 0 P QR STU V W

144
94
96
69

61

45

~2
33

23

48 ABCDEFGH IJKLMNOP 16

a.

Chorocter
Point
Size 6 e 10 12 14 16 20 2£1 32 48

![f!.9_ 2-9b (list)

• ~ A A A A A A A I I B A ' c B • c B I 0 B B , f D c c B • r E . 0 B I 0 F D c c J H G E I I E c B l J H F D D " K I c . F • L J G E D ,
" E I K H G I " l . 0 H F ,
~ M I F E D c • a N . J I G w " 0

I 9 p K j G F .
r 1 0 L H E I u K H ' v R
! '<(6 M

L I G D M T N " • I F . z u 0 M J . I v H . N J . I w p K . ! x 0 0 G r I . v
L K . ~ z R p

I

I • I

42 2s 27 I 9 1 6 1 2 1 I 9
Number 7 4
Cherecters/
Column

b.

Figure 2-7.
Text size examples in rows (a) and columns (b)

64 BO

A A
B B c c u

3 3

30 Macintosh Graphics and Sound

LOCATE 12,t:PRlllT CHR$(215);
NEXT I
LOCATE 12,13
PRlllT"LOCATE 12, 12"
HOVETO 200, 100
PRlllT "t10YETO 200, 100"
FOR i=O TO 100 GTEP 2
P&ET(200,I)
NEXT I
FOR 1=0 TO 200 GTEP 2
P&ET(t,100)
NEXT I
z: IF INKEYS=·· THEN z

LOCATE works with rows and columns in the current text size;
MOVETO uses horizontal and vertical pixel coordinates. LOCATE
12,12 positions the pen in the twelfth row and twelfth column of text.
MOVETO 200,100 moves the pen 200 pixels right and 100 pixels
down from the upper-left corner of the output window.

There are a couple of things you should observe in the previous
program. First, the diamonds are printed using the CHR$ function.
This handy function can be used to print any of the symbols shown in
Appendix A of the Microsoft BASIC Manual. Second, the last line of
the program is used to pause the output display until any key on the
keyboard is pressed. The program list is then displayed. The
INKEY$ function is the key element here. This function constantly

~u::::::::::::: .. ·::::::::::·::::::::: ::::~· .. ·· :::::::::::: TeHt Positioning :::::: :::: :-· .. :::::: _ ~: __ :::.. --

............... ····················--r;.······ MOVETO 200, 100

,..,

".><><'><>,.,<>LOCATE 12,12

tar
Figure 2-8.
Two methods of positioning text

Printing and Plotting 31

strobes the keyboard for input. Each time a key is pressed, the
INKEY$ function remembers the key's value. But there is only room
in INKEY$'s memory for one keystroke. So if INKEY$ is empty
(that is, INKEY$='"'), then no keys have been pressed since the last
time it was used. This statement stays in a loop until any key is
pressed, which gives you an easy way to protect a graphics display
from being disrupted by overlapping windows.

SELECTING TEXT
Now that you know how to position text, how do you select the type of
text you want? Four main text attributes are available through calls
to the Macintosh ROM: font type, size, face, and mode. The following
discussion introduces these text attributes one at a time. Use Figure
2-9 as a reference throughout the discussion.

Text Font

Your BASIC system disk comes with three fonts: Chicago, Geneva,
and Monaco. Actually, there is more to it than that. Each font stored
on the disk is associated with a specific point size. The system disk
thus contains Chicago-12·, Geneva-9, Geneva-12, and Monaco- 9.

What about all the other wonderful fonts that are supplied with
your Macintosh? They are stored in the Fonts and System files
located on the System Master disk. (There are also commercially
available fonts. See your Macintosh dealer for more information.)

Transferring Fonts

To transfer fonts from any Mac disk to the BASIC system disk, save
any programs to disk; then reset the computer. Insert the BASIC
system disk in the internal drive and the System Master disk in the
external drive (single-drive users will have to do some disk swap
ping). Double-click on the Fonts/DA Mover icon on the System Mas
ter disk. (Note: if you are still using the old Font Mover program,
your Macintosh dealer can provide you with the improved Font/DA
Mover program). This activates the Font/DA Mover program that
allows you to transfer fonts between the System file on your BASIC
disk and a Fonts file on any of your other disks. Click on the Close
button corresponding to your System Master disk. Click on the Open
button to display the standard Mac file dialog window. Eject your
System Master disk (you may have to click the Drive button first) and
insert a disk containing the fonts you want to transfer. Double-click
on the file you wish to use.

To make the transfer, select a font from the window and click the
Copy button to transfer the font to the System file of your BASIC

32 Macintosh Graphics and Sound

o Lhirogo

1 Geneva
2 New York

3 Geneva
4 Monaco

::r-1:~fo >
eiM : <

: .{[~;.;/)
. '

! [1i;1gerl1n~
:>:-. ·.·.·-:-·

\) ... ·.·.
y::;~::-:: ·.·

7 Rlilm!B
6 BBn li'rilnCl!eo)~~g~~~i
9 Toronto :: < \/

..
1 o 5eattle . . . /
11 Cairo(;;g.'fl ; : . >
16

24

32

64

: ...
•• Cilndense~· • :

127

Figure 2-9.
Text attributes

ii

16
,-,4· L'

Copy
OR

XOR

BIC

disk. If you need help, select the Help button or check Macintosh, your
owner's manual, for assistance.

Once you have all the fonts you want on your BASIC disk, how do
you select a text font from BASIC? Use the TEXTFONT ROM call.
Reopen BASIC (binary version) and enter the following program:

F0Rt=OT04
TEXTFONTt
PRINT "text font";t
NEXT t

TEITFOKJ 1
PRlllT"Baclc to the stenderd font•
z: IF IHEYI= .. THEI z

(Press any key to end this program.)

Printing and Plotting 33

Check your output with the first column of Figure 2-9. Font 0 is
Chicago. This is the font used by the Macintosh (look at the titles in
the menu bar). Font 1 is Geneva. This is the font chosen as the default
for BASIC. Font 2 should be New York, but if that font is not resident
on the system disk, BASIC uses the default font (Geneva) instead.
Font 3 is Geneva. Font 4 is Monaco, the only monospaced font in the
Mac.

Caution: Be sure to restore the default text attributes before leav
ing any program. BASIC does not revert to the defaults at the start of
each program you run, so any text attributes active at the end of one
program run will be retained at the start of the next. Once you start
manipulating text attributes, you assume responsibility for keeping
track of the active ones.

Font numbers O through 127 are reserved for fonts provided by
Apple. The numbers 128 through 383 are reserved for selected soft
ware vendor fonts, and 384 through 511 are for use by the rest of us.
If you plan to create your own fonts with a font utility, be sure you use
numbers in the appropriate range.

Text Size

Take another look at text font 4 (Monaco) in the last program run.
Something is definitely wrong. The problem is that the Monaco font
is stored on disk as size 9. The program is asking the Mac to print in
size 12, the default text size. When you select a text size that differs
from the available sizes in the System file, the Mac selects the closest
size of that font and then stretches or compresses it to match the
requested size. In this process, the characters may become distorted.
Look back at Figure 2-7 to see what happens to Geneva characters
when they are stretched to various sizes.

Let's try out a few different text sizes. Notice that the computer
handles line spacing in terms of the current text size. Try the
following:

TEITFOllJ 4
TEIT&IZE 9
FOR i=I TO 4
PRlllT"t1oneco - V
•xr1

34 Macintosh Graphics and Sound

TEIT&IZE 18
Flm 1::1TO4
PRllT"tloneco - 1 a·
REITI
TEITFOllT 1
TEIT&IZE 12
z: IF l•EYS=-THEll z

Notice that the first Monaco-18 prints right over the fourth Monaco-9.
The linef eeds are all done in the current text size, so the linefeed
after the last Monaco-9 is too short to make room for the first
Monaco-18.

The limits on text size are 1 to 127 points. Sizes less than 6 points
are too small to be useful and may result in a system error.

Text Face

Figure 2-9 shows the seven different ways in which text can be
manipulated to have different faces. What it doesn't show is that these
text variations can be used in combination as well. That's why the
Face column is shaded. To select a combination of two or more faces,
simply add up the values associated with each face. Enter the
following:

TEIT&IZE 18
TEITFACE65
llOVETO 70,60
PRllT "TEXT"
TEIT&IZE 12
TEITFACEO
z: IF IBEYS=- &OTO z

The TEXTFACE(65) call activates the combination of bold (1) and
extended (64) as shown in Figure 2-10. Most of the text faces in the
figure are self-explanatory, but expanded and compressed simply
stretch or compress space between letters. Note that outline (16) and
shadow (8) don't work in the default text mode; we'll see why below.

Text Mode

The last text attribute is called text mode. It governs the way text
will interact with the pixel patterns already on the video display. A
mode is selected with the TEXTMODE call, followed by a number
from 0 to 3. The default mode (called copy) causes text to overlay
anything that is currently on the screen. The other three modes are
labeled OR, XOR, and BIC (Black Is Changed). Figure 2-11 shows
how the word text interacts with three different backgrounds (black,
white, and gray) for each of the modes.

Printing and Plotting 35

Text lace

Value~ O 1 2 4 8 16 32 64

~~
Figure 2-10.
Text-face combinations

TEXT
Textfont: Geneva
Textsize: 18
Textfece: Bold
Textfece: Extended

Figure 2-11.
Text modes

65 ~ TEXT

Mode O: l:opy

Mode I: OR

Mode 2: XDR

Mode 3: BIC

Mode 0 is the copy mode, which simply overlays the backgrounds.
Each letter is surrounded by a white rectangle that obliterates any
thing currently on the screen. This creates a useful frame around
text that is printed on a solid black background. Note that shadow
and outlined attributes do not work in Mode O.

36 Macintosh Graphics and Sound

Mode 1 is called OR. In this mode the text characters are trans
parent; that is, if either the overlaying text character or the screen
has a black dot at a given pixel location, the result is black. The only
white areas are where both the text and the screen are white.

Mode 2 is labeled XOR, which stands for exclusive OR. In this
mode you get white if both text and screen pixels are white and also
if they both are black. If either the text pixels or the screen pixels are
black (not both), you get black. For an example, look at what hap
pened to the first Tin "TEXT." Both the T and the background pix
els are black, so the result is white. A good way to think of mode 2 is
to remember that all the black dots in the text will invert the existing
dots on the screen.

Mode 3 is called BIC, for Black Is Changed. In this mode, black
dots in the text turn white and replace the existing pixels. Note that
shadow and outline faces do not work in mode 3.

OulckDraw Routines and ROM Calls
The LOCATE, MOVETO, and TEXT statements covered earlier

in this chapter are examples of the many QuickDraw routines stored
in the read-only memory (ROM) of the Macintosh. These routines can
generally be accessed with the CALL statement. For example,
LOCATE can be executed as CALL LOCATE(r,c). Fortunately,
Microsoft BASIC lets you drop the CALL and the parentheses for all
ROM calls except LINE, since LINE is also a BASIC key word. The
programs in this book do not use the word CALL or the parentheses
when using these routines. Thus, in appearance, ROM calls are vir
tually indistinguishable from their BASIC counterparts; there are
differences, however, as you will discover throughout the book.

Applications
Most of the chapters from this point on will end with some practi

cal applications of the graphics concepts you have learned in that
chapter. Reviewing the program listings will give you a chance to see
these concepts used in combination to solve specific problems. You
can adapt the methods presented here to your own applications.

Some of the programs introduced in this chapter will be revised in
later chapters to incorporate new graphics tools as they are intro
duced, so keep your eyes open for improvements.

If you're an avid programmer, you'll probably skip the beginning of

:::o-~::::::::::::::::::::. ---~~::::· --· :~-= -·-· - AHes

1

3

7.

Printing and Plotting 37

-10 -9 -6 -7 -6 -5 -1 -3 -2 -1 1 2 3 1 5 6 7 6 9 10
-1

-2

-3

-1

-5

-6

Figure 2-12.
Cartesian coordinate system

each chapter and start right in with the applications programs to
find out what secrets they hold. Comments will be included to help
you decipher some of the more difficult programs and to emphasize
many of the graphics techniques used.

CARTESIAN COORDINATE SYSTEM

One of the most important applications for PSET is plotting func
tions. This program draws two coordinate system axes. Each unit on
either axis is 20 pixels (see Figure 2-12).

TEITSIZE 10
TEITFOfi 10
TEITllODE 1
FOR K=50 TO 450: P6£T(x, 130): llEIT K
FOR K=50 TO 450 &TEP 20
IF K=250 THEii endloop
FOR Y= 128 TO 132: P&ET(x,y): llEO" y
left= 10: IF X=50 OR X=450 THEii left= 15
llOYETO x-left,144: PRIU (x-50)/20-10;
endloop: llEO" K

FOR Y= 10 TO 250 &TEP 20
IF y:130 THEii llOYETO 240, 135: 681'0 sldp
llOVETD 232,y+5
sldp: PRIU 5-(y-30)/20;

38 Macintosh Graphics and Sound

FDR X=248 TO 252: P&ET(x,y): IEIT x
IEITy
FOR y:10 TO 250: P&ET(250,y): IEIT y
fEIT&IZE 12
TEITllODEO
TEITFOIT 1
z: IF lllCEY$: •• TllEI z

Finding enough room for the numbers was a problem here so the
10-point Seattle font was installed instead of scaling down a 12-point
font. (See the discussion earlier in this chapter on transferring fonts.)

Another problem in this program is that text characters in the
default mode 0 have a tendency to wipe out everything in their path.
You can get around this to some extent by printing all the text first
and then plotting the graphics. This is not always practical. For this
program, text mode 1 is used instead, so that the text will mingle
with the graphics already on the screen. Try it with mode 0 to see
what happens.

FUNCTION PLOTS

With the axes prepared in the previous program, all you have to do
now is plot some friendly functions. This involves adding only a few
program lines:

TEIT&IZE 10
TmFDIT 10
TEITnoDE 1
FOR X=50 TO 450: P&ET(x, 130): IEIT x
FOR X=50 TO 450 &TEP 20
IF X:250 THEI endloop 1
FOR y:128 TO 132: P&ET(x,y): IEIT y
left= 10: IF X:50 OR X=450 THEI left: 15
ftOVETO x-left, 144: PRlllIT (x-50)/20-1 O;
endloop 1: IEIT x
FOR Y= 10 TO 250 &TEP 20
IF y:130THEI ftOVETO 240,135: &OTO sldp
ftOVETO 232,y+5
skip: PRlllIT 5-(y-30)/20;
FDR X=248 TO 252: P&ET(x,y): IEIT x
IElrT y
FOR y:10 TO 250: P&ET(250,y): IElrT y
FDRx:-IOTO 10&TEP.01
f:y:2•(x•x-9•x+8)/(2*x*x+x-4)
IF y>6 DR y<-6 THEI endloop2
X1:20*x+250
y1:-20*y+130
P&ET(xl,y1)

endloop2: IEIT x
TEITSIZE 12
TEITllODEO
TEmOllT I
z: IF llllEYS=·· TllEI z

Figure 2-13 shows the plotted function.

Printing and Plotting 39

The only problem in plotting these functions is the quality of the
steep vertical lines. The FOR/NEXT loop that plots the function (line
f) steps along the x axis in increments of 0.01. For each x value, they
value is calculated; then both x and y are translated to screen coordi
nates xl and yl for plotting. The step increment 0.01 results in
somewhat sketchy vertical lines around x=l. You can improve the
continuity of the lines by using a smaller step increment, but the
smaller the increment, the slower the program will run.

Those who are mathematically inclined can try another approach
with certain functions. If a function is "one-to-one" (that is, has an
inverse), you can plot the function in two passes. Make one pass along
the x axis; then calculate the inverse and make a pass along the y
axis. (Another alternative is to use the LINETO command introduced
in the next chapter to make continuous lines.)

!l!O ---~-- - --..,,,,,-·-·-----· ~ :::u===-==:- --- -· Function Plot

6

5

4

3

2

1-·+---+--+--+----------+-----.. ~-----------;:P-:>t.....+1-===!=1 -ID-·-·_,-·-·-·_,_,-·-· , r, .. ID

Figure 2-13.
Function plot

40 Macintosh Graphics and Sound

The beauty of this program is that once it is entered, you can plot
virtually any function just by changing line f :. Try some of the
following:

y=3*SIN(3*x) + 2*COS(2*x)
y=abs(l/4*x)
y=-x + 2
y=l/2*X'3 - 4*X

POLAR FUNCTIONS
Rectangular coordinates are not the only possibilities for the mathe
matical purist. For drawing circles and spirals, polar coordinates are
much easier to work with. In a polar system, points are plotted by
their counterclockwise angle from the positive x axis and their
straight-line distance from the intersection (called the origin) of the
two axes. Figure 2-14 shows what elegant figures can be drawn
using polar coordinates.

FOR X:50 TO 450: P&ET(x, 150): IEIT x
FOR y::30 TO 270: PSET(250,y): IEIT U
FOR eng1e::O TO 20 STEP .01
f: r:30*engle*COS(engle)*Slll(engle)
P&ET(250+r*CO&(engle), 150+r*&lll(engle))
IEIT angle
z: IF IHEYS:"" THEN z

The length of the program listing should convince you of its sim
plicity. The FOR statement selects angles from 0 to 20 radians in
steps of 0.01. Line f is the function that calculates the corresponding
radius. The PSET line translates the radius and angle into x and y
screen coordinates and plots the point.

Once again, you can replace line f: with your own function for end
less variety. Here are some samples to experiment with:

r=60
r=3*angle
r= lOO*COS(3*angle/2)
r=60*SIN(2*angle)+40*COS(3*angle)
r= lO*angle*COS(3*SIN(2*angle))
r= lO*angle*COS(SIN(6*angle))

You can create one interesting variation by showing only a short
segment of the figure as it is being drawn. Combine the technique
given in the listing found in the "Using Arrays to Store Points" sec-

Printing and Plotting 41

Polar Function ==.!...--=-===- :::::.::::-- - .=:: --:..-:-.:...:0--=;;-::-=- - - -
-=-.-::-~~-- --- =~-.=-~=-=--=--=-::::-

Figure 2-14.
Polar function

,~ ... •··········· ···
l/

r ·.

\ .. : ..
\:
·.·

..
'• ··

,,.················,,\
. .. :
... · ... l

. ···.' ... ·
······.

tion of the chapter with the current program to show a smooth curve
tracing a pattern on the screen.

n=40: heed::1: tlt1:2
Dlft l(n,2)
e(head, 1)=250: e(haed,2)= 130
F• eng11=0 TO 20 STEP .01
PRE&ET(e(ten.1).e(tetJ,2))
f: r=30*engJe•CD&(engle)tl&ll(engle)
X=250+rl'CO&(engle): u= 130+r9&11(engle)
e(tet1, 1>=ic: e(ten,2>=y
heed::beed llOD(n)+1: tet1=ten llOD(n)•1
P&ET (X.y)
IF l•nto-THEI z
IEITengle
z:EID

Again, you can replace line f with any function that you choose.

Creating a Logo

One particularly challenging application of graphics is the develop
ment of a product logo or letterhead for business correspondence. In
many cases it is easier to create a logo with a drawing program like

42 Macintosh Graphics and Sound

MacPaint; in others, more control of the computer is required. This
book explores the possibilities of using BASIC to design logos. In this
chapter our techniques are limited to plotting points and using text
characters, but watch for this application in later chapters.

The first example prints oversized letters and then randomly
prints white dots in a rectangle that encloses the three letters (Figure
2-15).

TEITllODE 2
TEITSIZE 40
TEITFOllT I 0
TEITFACE 16
LOCATE 1,1
PRlllT "XYZ"
FOR 11= I TO 3000
X=l IO*RB: y:I0+60*RllD
PRE&ET(x,y)
llEIT n
TEITllODE 0
TEITSIZE 12
TEITFOllT 1
TEITFACEO
z: IF llKEYS=-TllEI z

The second example duplicates each letter with a slight vertical
and horizontal offset. Mode 2 is used to get an alternating black-and
white effect (Figure 2-16).

TEITFOlffO
TEITllODE 2
TEITFACEO
Tm&IZE 100
Fmn=t T08
llOYETO 2*n, 120-3*n
PRlllT"Zoo";
IEUn
TEITFOlff 1
TEOllOHO
TEITSIZE 12
TmFACEO
z: IF l•E'f1=-THEll z

You might also try putting the text size call in the loop to vary the
text size for each pass.

EXPLODING UNIVERSE

The next program is an exercise in positioning pixels on the screen
(Figure 2-17).

Figure 2-15.
Logo 1

Figure 2-16.
Logo 2

DEFllT e-z
n=100
Fm r= 150-n TO 150+n
Fm e::250-n TO 250+n
P:((r-150)"2+(c-250)"2)/n"2
IF P>BD(1) THEii P&ET(c,r)
IEITc
IEITr
z: IF IBEYl=-THEll z

Printing and Plotting 43

The program illustrates selective use of variable types. Notice that all
of the variables a through z are defined as integers to increase pro
gram speed. In calculating the distance, a double-precision variable
(d#) is used.

This program scans a square area and calculates the distance from
each point to the center. The distance is divided by the square of n

44 Macintosh Graphics and Sound

Figure 2-17.
Exploding Universe

and is then compared to a random number between zero and one. If
the modified distance is greater than the random number, the point
is plotted. The net effect is to give points farther from the center a
greater probability of being plotted and thus produce a "big-bang"
effect.

The program takes several minutes to run, which brings up the
question of how to speed up a program. Program speed is discussed
in detail in Chapter 10, but as a general rule, define all variables as
integers whenever possible to speed program execution. Just make
sure you declare variables that use decimal calculation as single
precision variables (such as x!) or double-precision variables (such as
d#).

LIFE

John Conway's game of Life attempts to simulate the growth of a
colony of living cells. The births and deaths of cells are governed by
these simple rules:

Survivals: Each live cell with 2 or 3 live neigh
bors survives.

generotion 69 populotion 72
Sconning for neighbors: row 2

Figure 2-18.
The game of Life

.. . . .

Printing and Plotting 45

Life

Deaths: A live cell with more than 3 neigh
bors dies from overpopulation.

Births: An empty cell with exactly 3 neigh
bors comes alive in the next gener
ation.

Note: Births and deaths occur simultaneously.
There is no real object to the game other than to try different pat

terns of cells and to observe how the population changes after each
generation. Figure 2-18 shows the game board after several
generations.

DEFlllT a-z: DIH a(25,25): g=I : p:O
PRlllT"inttializing game board: generation: ";g;
FOR r= 1 TO 25: READ s$
FOR c=1TO25
e(r,c)=VAL(HID$(s$,c, 1))
IF 11(r,c)=1 THEN P6ET(171+8*c,46+8*r): p:p+1
NEXTc
NEXTr
PRINT "popul11Uon";p
FOR X= 175 TO 375 GTEP 8
FOR y:50 TO 250: PSET(x,y): NEXT y
llEXT x

46 Macintosh Graphics and Sound

FOR y:50 TO 250 STEP 6
FOR X= 175 TO 375: P&£T(x,y): IDT X
BEily
LOCATE 1, 1: PR1U &PACEl(BO)
LOCATE 1, 1: PRIU ·genereuon·;g;· popuJ1auon·;p
checlcstotus:.
p:O
FOR r= 1 TO 25: LOCATE 2, 1
PRIU"Sceming for neighbors: roW-;r
FOR C= 1 TO 25: nb=O: IF e(r,c)= 1 THEN P=IJI+ 1
FOR 11::-1 TO + 1: If c+h< 1 OR c+h>25 THEI A:
FOR Y=-1 TO +1: IF r+Y<1 OR r+Y>25 OR 11::0 AND Y=OTllEll 6:
IF e(r+v,c+h)= 1 OR ll(r+v,c+h)=2 OR ll(r+Y ,c+h)=4 THEN nb:nb+ 1
6: REITY
A:IEITh
IF ll(r,c)= 1 THEii IF nb<2 OR nb>3 THEN e(r,c)=4 ELSE ll(r,c):2
IF e(r,c)=O THEN IF nb::3 THEN ll(r,c)=3
NEITc
IEllr
updeteboenl:
g::g+1: LOCATE 1,1: PRIU ·genereuon·;g;· populeuon·;p
FOR r=1TO25
FOR C=1TO25
IF ll(r,c)<3 THEN C
FOR y:45+6*r TO 48+8*r
FOR X= 170+6*c TO 172+6*c
IF 8(r,c)=4 THEN PRE&£T(x,y) ELSE P&ET(x,y)
IEllx
IElly
C:NEITc
BEITr
redoemy:
p:O
FOR r: 1 TO 25: FOR C= 1 TO 25
IF a(r,c)=2 OR ll(r,c):3 THH a(r,c)= 1
IF ll(r,c)=4 THEN a(r,c)=O
IF a(r,c)= 1 THEN p:p+ 1
BEil c,r
&OTO checkstetus:
DATA • 1001000000000000000000000·
DATA ·oooo 100000000000000000000·
DATA • 1000100000000000000000000·
DATA ·0111100000000000000000000.
DATA ·0000000000000000000000000·
DATA ·0000000000001000000000000·
DATA ·0000000000010000000000000"
DATA ·0000000000100000000000000·
DATA ·0000000001000000000000000·
DATA ·0000000010000000000000000·
DAT A ·ooo 1111100000000000000000·

DAT A ·ooo 1111000000000000000·
DATA ·0001011000000000000000
DATA ·0000000000000000000000000·
DATA ·000000000000000·
DATA ·0000000010010000000000000·
DAT A ·0000000011110000000000000·
DATA ·0000000100001000000000000·
DAT A ·0000000101101000000000000·
DATA ·0000000100001000000000000·
DAT A ·0000000011110000000000000·
DATA.000000000000000
DATA ·0000000000100000000000000·
DAT A ·00000000000000000000000·
DATA ·000000000000000·

Printing and Plotting 47

The program is driven by the strings in the DATA statements at
the end of the listing. A live cell is represented by 1; 0 represents no
cell. These strings are loaded character by character in the the array
a(r,c). After the initial grid is displayed, the checkstatus section scans
the board row by row. The number of neighbors is calculated for each
cell, and the cells are relabeled with 2 (survive), 3 (birth), or 4
(death). The updateboard section draws the next generation. The
Redoarray section changes all the 2s, 3s, and 4s back to l's and O's.
Then the program loops back to the checkstatus section to start the
next generation.

STARSHIP VIEWSCREEN

The next program simulates stars whizzing by as you gaze out the
screen of your command console. Black stars against a white back
ground would not seem natural, so the QuickDraw call BACKPAT is
used to select a black background and white dots.

DEFlllT a-z: DEF6116 d: RANDOHIZE TIHER
BACKPAT 492: CL6
a: FOR i=I TO 5: PGET(x(i),y{i))
IF f(i)>O THEN PGET(x(i)+ 1,y(I)+ 1)
IF f(i):2 THEN PGET(x(i)+ 1,y{i)): P6ET(x(l),y{i)+ I)
IF x(i)+h(i)>O AllD x(i)+h(i)<490

AND y{i)+k(i)>O AND y(i)+k(i)<253 THEN cf(l):O
b: x(l):203+84*RND: h(i):x(i)-245: IF h(l):O THEN b
y{i):108+36*RND: k(i)=y{i)-126: &OTO d
c: x(i):x(i)+h(i): y{O=y{i)+k(i):

d:(1:(i)-245)"'2+(y{i)-126)"'2
IF d> 10000 THEN f(i)=2: GOTO d
IF d>2000 THEN f(i)= 1

48 Macintosh Graphics and Sound

d: PRE6£T(x(i),y(i))
IF f(i)>O THEN PRE6£T(x(i)+ 1,y(i)+ 1)
IF f(i)=2 THEN PRE6£T(x(i)+ 1,y(i)): PRE6£T(x(i),y(i)+ 1)
NEXT i
z: IF INKEYS="" THEN e ELGE BACKPAT 380: CLG

Be careful using BACKPAT at this point. The BACKPAT routine is
designed to be used with patterns that have been stored in an array
earlier in the program. You'll learn how to define your own patterns
in the next chapter. For now, you can select areas of memory that
give you the patterns you want. By poking around at random, you'll
find that memory location 492 gives a black background and 380
gives a white background. These areas of memory should be consis
tent on all machines. If you experiment with different numbers, be
sure to use only even-numbered locations; a system error may result
if you use odd numbers. A CLS (clear screen) statement activates the
selected background pattern.

The Starship viewscreen program places white dots representing
stars near the middle of the screen and then moves them out to the
edge. The program keeps five stars active at all times. When a star
gets near the window border, it disappears, and a new star appears
in the center of the screen.

The horizontal and vertical coordinates of star i are stored in x(i)
and y(i), where i ranges from 1 to 5. The angle and speed at which
the star moves toward the edge of the window are determined by h(i)
and k(i).

To make the stars increase in size as they approach the edge of the
window, a flag variable f(i) was set. For dots close to the center, f(i) is
0, and only one dot is displayed. For dots past a certain radius, f(i) is
set to 1, and two dots are displayed. For dots close to the edge of the
screen, f(i) is set to 2, and four dots are displayed. The process of
increasing the size will be simplified with the tools developed in the
next chapter.

To stop the program, press any key. The background pattern
reverts to white in program line z.

Summary
In Chapter 2 we have developed some of the basic tools necessary

to work with graphics on the Macintosh screen.
First, you have learned about the video display and how to repro

duce it accurately on a printer. You have also learned how to plot

Printing and Plotting 49

points. Other useful techniques you have gained include the random
number function, absolute versus relative positioning, erasing points,
and even rudimentary animation.

This chapter has also presented basic character design, how you
can position text on the screen, and how you can use the four differ
ent text attributes available on the Macintosh: font, size, face, and
mode. The chapter ended with several programs that show you dif
ferent ways to use point plotting and text characters for a variety of
applications.

In Chapter 3, you will learn how to draw such basic shapes as
lines, rectangles, circles, and polygons. You will also learn how to fill
these shapes with patterns.

The end of each chapter will include a list of the statements, func
tions, ROM calls, and other BASIC key words used for the first time
in the programs in that chapter. Since you are already familiar with
BASIC, only those terms from the list that are unique to the Mac or
those that play a significant role in BASIC graphics are explained in
the chapter. For this first programming chapter, the list is quite
long; in subsequent chapters, it will provide a convenient summary of
the new key words introduced.

BASIC Statements, Connectives, and Functions
AND FOR PTAB TO
CHR$ IF RANDOMIZE VAL
CLS INKEY$ READ
COS MOD RND
DATA NEXT SIN
DEFINT OR SPACE$
DEFSNG POINT STEP
DIM PRESET THEN
ELSE PRINT TIMER
END PSET

ROM Calls
BACKPAT
LOCATE
MO VETO
TEXTFACE
TEXTFONT
TEXTMODE
TEXTSIZE

3
Drawing Basic Shapes

And Patterns

In this chapter you will learn to draw lines. You will also learn how to
create simple geometric shapes and fill them with patterns. These
techniques are the building blocks that you will use over and over to
develop more complex designs and patterns.

Drawing Simple Shapes
An elementary skill of the traditional pencil artist is drawing

basic shapes freehand-circles, straight lines, arcs, and so forth. You
do not need to concern yourself with developing such freehand skills,
because your computer already has them mastered. Your role is to
tell the computer what figures to draw and where to locate them on
the screen; the Mac takes care of all the details.

51

52 Macintosh Graphics and Sound

LINES

To draw a straight line, all you have to do is tell the Mac the two
endpoints, and it does the rest. Each point is located by its horizontal
and vertical distance from the upper-left corner of the screen with
the coordinates (0,0). Recall from the previous chapter that the Mac
screen is 512 pixels wide by 342 pixels high, and the default BASIC
output window is about 491 X 254. Thus (245, 126) is the approximate
middle of the screen, and the lower-right corner is (490,253).

To see how the LINE instruction works, enter this program:

LINE(0,0)-(490,253)

You can execute the program by selecting Start on the Run menu or
by pressing COMMAND-R (the COMMAND key is on the bottom row of
the keyboard, between OPTION and SPACE BAR).

LINE(0,0)-(490,253) draws a line from the upper-left corner of
the window (O,O) to the lower-right corner (490,253). How you execute
the program will determine which window is active after the pro
gram runs. If you use the Run menu, the List window reappears. If
you use COMMAND-R, the Command window reappears.

Individual straight lines are not much of a challenge by them-

Figure 3-1.
Radial lines

Drawing Basic Shapes and Patterns 53

selves, but in groups they can produce some pleasing patterns, such
as those in Figure 3-1. Change your program to:

FOR V:O TO 255 STEP 5
LINE(O, 126)-(490, V)

NEXT
stay: IF INKEYS="" THEN stay

This program draws a series of straight lines emanating from the
point (0,126). If you look closely at the figure, you can see that each
"straight line" on the Macintosh is actually a series of connected line
segments. This segmentation creates an interesting interference pat
tern where the lines are close together.

The height of the right endpoint of each line ranges from the top
of the window (0) to just below the bottom of the window (255) in
steps of 5, so this pattern has 52 lines. Try different step increments
to see how they will affect the figure and the pattern.

POLYGONS

Now that you know how to create straight lines, you can use them to
build basic shapes. One such shape is a polygon, which is simply a
figure with many straight sides, as in a triangle, a hexagon, or a
rectangle.

There are two typical approaches to drawing a polygon. One is to
select a set of points and then join them with lines, as shown in Fig
ure 3-2. The following program listing draws the .figure.

x0• 150: y0• 172
x 1 .. 244: y I= 148: GOSUB draw
x I •280: y I• I 00: GOSUB ct-aw
xl=360: yl•l44: GOSUB draw
x I •386: y I •230: GOSUB draw
xl•ISO: yl•l72: GOSUB draw
stay: IF IN<EY$=-- TI£N stay
STOP

draw:
LINE(x I ,y 1)-{xO,yO)
x0"'X I: yO-y I

RETURN

The program defines a pair of points (xO,yO) and (xl,yl) and calls a
subroutine. This routine connects the points with a line and then
redefines the starting point for the next line (xO,yO) as the endpoint of
the current line (xl,yl).

Another way to draw a polygon is to define the endpoint of each

54 Macintosh Graphics and Sound

(260, 100)

(244, 146)
• (360, 144)

(150, 172)

(366,230)

a.

(260, 100)

(360, 144)

(150, 172)

(366,230)

b.

Figure 3-2.
Drawing a polygon by selecting points (a) and connecting them with lines (b)

Drawing Basic Shapes and Patterns 55

line segment relative to the starting point. In the next program, each
line starts at point (xO,yO); horizontal and vertical increments (h and
v) are then added to get the endpoint (xl,yl).

RANDOMIZE Tlt'ER
start
CLS
xm245: y= I 26
xO=x: yO=y
FOR n= I TO S*RND+J

h=2()()1ERND- I 00: v= I OO*RND-50
x I =xO+h: y I syO+Y
LINE(xO,yO)-(xl,yl)
xO=x I: yO-y I

NEXTn
LINE(xO,yO)-(x,y)
INPUT"Press (Enter] for next fiQln, (Control .] to st

op";XS
GOTO start

This program uses the built-in random number generator (discussed
in Chapter 2) to draw random figures. RANDOMIZE TIMER
ensures that each program run will be different from other program
runs by grabbing a seed number from the system clock. RND selects
a random number between 0 and 1. The RND function is used to
select between three and eight sides for the figure and to pick ran
dom values for hand v. The line "xl=xO+h: yl=yO+v" calculates the
next endpoint (xl,yl) by adding the values h and v to the previous
endpoint (xO,yO).

Actually, lines in a true polygon do not cross each other. The
purists among you may consider shapes like the one in Figure 3-3 to
be two or more connecting polygons.

Polygons are such useful figures that there is a special Quick
Draw routine to simplify their creation. The setup is a bit tricky, so
pay close attention. To draw a polygon, the x and y coordinates for
the endpoints of each line segment must be stored in an integer
array-an array with cells containing integers (see the discussion of
arrays in Chapter 2).

In addition to the x and y coordinates, the first cell of the array
must hold the number of bytes contained in the entire array. For an
integer array, this number is twice the total number of cells in the
array. The next four cells must contain the top, left, bottom, and
right coordinates of a boundary rectangle that contains the entire
polygon. The rest of the cells contain the endpoint coordinates in the
unusual order y (vertical) followed by x (horizontal).

56 Macintosh Graphics and Sound

Total

Top

Left

Bottom

Right

Y1

HI

Y2

H2
• .
•

(HI, YI Top

Left

(H2,Y2) Bottom

The following program demonstrates one way to prepare the data
array for a polygon call.

DEF INT 11-z: DIM p(JO)
FOR i=O TO JO: READ p(i): NEXT i
DAT A 62,20, I 00, 155,200,20, 190,20, I 00, 90, I 30, 155, I 00, I 55
DATA 190,140,200,150,190,150,l I0,90,140,25,l I0,25,190
DA lA J5,200,20, I 90
FRAME POLY V ARPTR(p(O))
stay: IF INJ<EY$="" THEN stay

The first number (62) represents the total number of bytes in the
array. The next four numbers specify the boundaries of the framing

ilD
Press [Enter) for nei<t figure, [Control .) to stop?

Figure 3-3.
Connecting polygons

Drawing Basic Shapes and Patterns 57

;;o -::--- .:::__-=--::::-_-===--~ -- - ~ --
-=-----=----------~----==--==--- - pol on - - - --- -

- -::_ ---=--=..---=..-..=-_-=_::._---===---- =--

Figure 3-4.
Polygon drawn with FRAMEPOLY

rectangle. The rest of the numbers are coordinate pairs starting from
the top right corner of the figure and proceeding in a counterclock
wise direction (see Figure 3-4).

RECTANGLES

One of the most common polygonal shapes is the familiar rectangle.
It can be drawn by connecting four straight lines so that opposite
sides are parallel; but the Macintosh also provides an easier way to
draw it. Just add the b option at the end of the LINE statement as
shown below:

LINE(20,20)-(80,50),.b
stay: IF INKEY$="" THEN stay

The two points (20,20) and (80,50) determine the upper-left and
lower-right corners of the rectangle. (It doesn't matter which of these
points you enter first.) The b option stands for box; it causes the com
puter to draw a rectangle instead of a line. The two commas mark
the place of the missing color operand that you will see shortly.

ROUNDED RECTANGLES

A slight variation on the rectangle theme is a rectangle with rounded
corners. These figures are used so often for organization charts and
flow diagrams that the Mac designers included a special routine to

58 Macintosh Graphics and Sound

create them. Microsoft BASIC doesn't provide a separate statement
for drawing rounded rectangles, so you'll have to call on the built-in
ROM routines.

Before you start this exercise, take a brief look at the shapes
available through calls to the ROM: arc (ARC), oval (OVAL), rectan
gle (RECT), rounded rectangle (ROUNDRECT), and polygon (POLY).
Each of these shapes can be manipulated by the ERASE, FILL,
FRAME, INVERT, and PAINT operations. You'll use each of these
operations shortly. For now we'll focus on the FRAME operation that
draws the outline of the specified shape.

It requires a bit more planning to draw shapes with the ROM
routines than with BASIC statements, but being able to fill shapes
with patterns and invert sections of the screen makes it worth extra
effort. After a few gentle encounters, you'll include the ROM routines
as permanent parts of your programming tools.

The format for the framed, rounded rectangle routine is

FRAMEROUNDRECT VARPTR(Rectangle%(0)),0valwidth, Ovalheight

Rectangle%(0) through Rectangle%(3) are four cells in an integer
array that store the top, left, bottom, and right boundaries of the
rectangle. VARPTR is the variable pointer function that returns the
memory location of cell 0 in the Rectangle% array. Ovalwidth and
Ovalheight store the width and height of the oval shape that will be
used in rounding the corners. Recall from Chapter 2 that neither the
CALL statement nor the associated parentheses are used for ROM
calls in this book.

The boundaries of the rectangle deserve special comment because
they are delivered to the routine in such a roundabout way. First, the
numbers must be stored in an integer array. You can specify an inte
ger variable with the DEFINT statement or by including the percent
sign (%) in the variable name-A%(n), rect%(2), and so forth. The
array should be a single-dimension list; only four consecutive array
cells are required. Next, you deliver the address of the first of these
cells to the routine with the variable pointer function, VARPTR. For
example, if the numbers are stored in the array cells rect%(5),
rect%(6), rect%(7), and rect%(8), then VARPTR(rect%(5)) tells the com
puter the actual memory address of the array cell rect%(5). Because
array cells are stored consecutively in memory, the computer can
find rect%(6) through rect%(8) on its own.

The Ovalwidth and Ovalheight parameters tell the computer the

Drawing Basic Shapes and Patterns 59

(top) 50

(left) 20

(bottom) 222

rectS(1) 30 top

rectS(Z) 20 I eft

recUS(3) 222 bottom

roct1'(4) 460 right

Address

l s

r~
FRRftEROUHORECT URRPTR(rect%(1)),ow,oh

Figure 3-5.
FRAMEROUNDRECT unveiled

width and height of the oval to be used in rounding the corners (Fig
ure 3-5). The larger the numbers for the oval width(ow) and oval
height(oh), the more the corners are rounded.

The following program draws several rounded rectangles (shown
in Figure 3-6) with the same boundaries, but with different amounts
of rounding at the corners:

FORn•I T04
READ rect-Cn)
DAT A JO,J0,222,460

NEXTn
FOR d-0 TO 150 STEP 50
ow•IO+d: oh"5+d
FRAMEROUNDRECT V ARPTR(rectK(I)),ow ,oh

NEXTd
stay: IF INKEY$ THEN stay

60 Macintosh Graphics and Sound

Figure 3-6.
Rounded rectangles

ow c:IID ~ llQ:] rn:J
... [!]!] o:2!J []L] ~

The first FOR/NEXT loop stores the data numbers for the top,
left, bottom, and right edges of the figure into the variables rect%(1)
through rect%(4). The FRAMEROUNDRECT call does the actual
drawing. VARPTR(rect%(1)) gives the address of the variable cell
rect%(1) to the computer; ow specifies the width of the oval; and oh
specifies the height of the oval. The FRAMEROUNDRECT routine
is used four times in the second FOR/NEXT loop to show four differ
ent rounding sizes.

CIRCLES
Circles, ovals, and arcs can all be drawn with the BASIC CIRCLE
statement. To draw a simple circle, the computer requires a center
point and radius. Here's how it's done:

FOAn•I T04
FOR radius • I TO 50 STEP n

CIRCLE(I IO"n-JO, 120),radlus
NEXT radius

NEXTn
stay: IF INKEY$··· TIEN stay

Drawing Basic Shapes and Patterns 61

e 1' II~ Edit ~it~<11 · (h Hun Wlnttuws

~O circles

Figure 3-7.
Concentric circles

This program creates several concentric circles around each of four
points. The radius increases at different rates around each of the cen
ter points (see Figure 3- 7).

The CIRCLE statement also lets you include a STEP option,
which is convenient for positioning the center of the circle relative to
the current coordinates of the pen. Just as it does with PSET, includ
ing the word STEP changes the meaning of the x,y pair in the CIR
CLE statement. In the following listing, STEP(x,y) determines the
center of the circle by adding x and y to the coordinates of the last
center:

RANDOMIZE Tll"ER
MOYETO 245, 126
loop:
><·4-8*RND(I): y•4-8*RND
FOR n• I TO 3+8*RND

CIRCLE STEP(x,y),30
NEXT n

IF INKEYS··· THEN loop

The x and y values set the direction and distance of the step. The
FOR/NEXT loop repeats the STEP operation from 3 to 11 times,

62 Macintosh Graphics and Sound

FIRST LOOP SECOND LOOP

n9:0 n8

n7

n1

THIRD LOOP FOURTH LOOP
n1 n9

Figure 3-8.
Circles offset with STEP option

Drawing Basic Shapes and Patterns 63

(3+8*RND), drawing a circle at each new location, as you can see in
Figure 3-8.

OVALS

The CIRCLE statement is more versatile than its name implies-it
can also be used to draw ovals. The CIRCLE statement has an
optional parameter that specifies the aspect ratio of the oval (that is,
the ratio of the x radius to the y radius). When the two radii are
equal, their ratio is 1, and the figure is a round circle. Aspect ratios
decreasing from 1 down to 0 define progressively flatter and flatter
circles, approaching a horizontal line for the number 0. Numbers
from 2 up define tall, skinny ovals that approach a straight vertical
line. Figure 3-9 compares aspect ratios of 1, 0.5, and 5. Notice that
the radius is used for the longest axis in all three cases.

The CIRCLE statement has several optional parameters. The
complete format is

CIRCLE STEP(x,y),radius,color,start,end,aspect

ospect=

Figure 3-9.
Aspect ratios for ovals

5

T\ '1
' ' 'v'

5

64 Macintosh Graphics and Sound

Commas must be used as place holders for parameters that are not
used, as shown in the following listing:

x•IOO: y•l20: aspect .. I: GOSUB oval
x•2SO: y•l20: aspect•.5!: GOSUB oval
x•«>O: y•l20: aspect•S: GOSUB oval
LOCATE 14,1
PRINT TAB(J)"aspect=";T AB(12)" l";TAB(J2)".5";TAB(50)"5"
STOP

oval:
CIRCLE(x,y),50,,,,aspect
LINE(x,y)-(x+SO,y)
L INE(x,y)-(x,y-50)
RETURN

ARCS

What about the other optional parameters? The first one is color. It
operates just like the color parameter in PSET and LINE; that is, it
draws white if color is 30 and black if color is 33.

The start and end parameters let you draw only part of a circle or
oval to create an arc. The two numbers specify the starting and end
ing angles of the arc. Angles are measured in a counterclockwise
direction in radians, with 0 set at 3 o'clock. Those who slept through
geometry class (and could care less about radians) only need to know
what numbers to use to get different angles. The numbers range
from 0 to 2•pi, where pi is approximately equal to 3.14. Figure 3-10
shows angles for different multiples of pi.

If you prefer working in degrees, you can convert from degrees to
radians with a statement like rad = degree/57.3, because one radian
equals approximately 57.3 degrees.

Negative values for the start or end numbers in a CIRCLE state
ment do not represent angles measured in the negative (clockwise)
direction as you might have expected. Instead, a negative value
causes the computer to draw a line from that endpoint of the arc to
the center of the circle or oval. This is very useful for drawing pie
charts with sections removed, as shown in Figure 3-11.

Enter the following program:

x-245 : y-126 : radius- 60: pl-3. 14!
CIRCLE(x,y),radlus,, -.Jl*pi,-1. 7!*pl
CIRCLE(x+20,y),radlus,,- I. 7!*pi,-.31*pi
stay: IF INl<EY$•"" THEN stay

Drawing Basic Shapes and Patterns 65

111= 160°

Figure 3-10.
Arc angles

211 ,,. 6.26 r11di11ns = 360°

171 ,,. 3.14 rediens = 160°
1

2 11 "' 1.57 rediens = 90°

011 = 0°

211 = 360°

!l!O ----==-'"=-=--==-= -:-;::;--=----=-=-==--~-=--~ -=:: _::: --=-- -_-..:--c:_---- - ..: ·_--::"!:::-::-:::--::.-=--=-= ~-- - --~

==-~-=--":--==----=-=:--.--=-=-=--~-=---=--== --- -----=--- -_,..::.._-_,,__ ---- - _"'.:.._

Figure 3-11.
Pie chart with section removed

66 Macintosh Graphics and Sound

Notice that the CIRCLE statement always measures angles (even
negative ones) in a counterclockwise direction. The starting angle
may be smaller or larger than the ending angle. In this program, the
first CIRCLE statement draws the larger pie section from 0.3 pi to
1. 7 pi. The second CIRCLE statement draws the smaller section from
1. 7 pi to 0.3 pi. Try the program without the negative signs to see
what happens.

Filling Shapes
Until now, the shapes you have drawn have been outlines of var

ious figures. This section shows you how to fill in figures with differ
ent patterns.

The LINE statement has an optional parameter to let you fill in a
rectangle. Just add an f after the trailing b; no comma is necessary,
as shown in the following listing:

LINE(I 0,200)-(500,200)
FOR i•IO TO 500 STEP 50

LINE(i,200)-(i,O)
IF jml IOOR jaJIO THEN skip
LINE(l+35,0)-(i+65, 125).,bf

skip: NEXT I
stay: IF INKEY$.. •• THEN stay

Figure 3-12 shows the output.
A filled rectangle can also be used to form a black background, so

that you can draw white on black for a change of pace. But how do
you draw white lines? The LINE and CIRCLE statements both have
an optional parameter for color. The complete statement formats are
shown below:

CIRCLE STEP(x,y),radius,color,start,end,aspect
LINE STEP(xl,yl)-STEP(x2,y2),color,BF

The number 30 has been assigned to white; 33 gives you the default
color, black. Other numbers select either black or white on the Mac.

When you add bf to the end of the LINE statement, BASIC fills
the rectangle with the color designated by the color parameter. The
BASIC CIRCLE statement has no fill option. Try the following
program:

Drawing Basic Shapes and Patterns 67

Figure 3-12.
Piano keys drawn with the LINE statement

LINE(0,0)-(490,253).,bf
CIRCLE(120,80),50,30
CIRCLl::(240,80),50,30
CIRCLE(360,80),50,30
CIRCLE(180, 120),50,30
CIRCLE(300, 120),50,30
LINE(110,200)-(374,240),30,bf
t10YETO 160,230
TEXTSIZE 18
PRINT"XXlllrd Olympiad";
TEXTSIZE 12
stay: IF IN<EY$•"" Tl-EN stay

The first LINE statement fills the output window with the default
color, black. The five circles are drawn in white (color=30). The
second LINE statement creates a white rectangle. Notice that the fill
option (f) fills in the selected color (30=white). The next four lines
position the text, print it, and return the text size back to 12-point, as
you see in Figure 3-13.

BLACK OR WHITE WITH ROM ROUTINES

You can fill other shapes with either black or white as well, using the
built-in ROM routines. You can either PAINT or ERASE each of the

68 Macintosh Graphics and Sound

Figure 3-13.
White circles on black

five shapes: rectangle, rounded rectangle, oval, arc, or polygon.
Painting or erasing a shape means filling that shape with a pattern
similar to those used in MacPaint. PAINT fills a selected shape with
the current pen pattern; the default pattern is black. ERASE fills a
shape with the current background pattern; the default pattern is
white. (You will see how to change these default patterns in the sec
tion below. For now, keep their default colors, black and white.)

Start with the ERASE operation. You'll use this operation to
"white out" the interiors of the circles that were shown in Figure 3-8.
This exercise illustrates how differently BASIC statements and ROM
routines define shapes. The BASIC CIRCLE statement defines a cir
cle by its center and radius. ROM calls require the top, left, bottom,
and right boundaries of the smallest square that can contain the cir
cle. The translation is fairly straightforward. For a circle with center
(x,y) and radius r, the boundaries are

Top= y - r + 1
Left= x - r +1
Bottom= y + r
Right= x + r

Drawing Basic Shapes and Patterns 69

x-r+ 1 ----..

~ Bound6ries fit inside
/ circumference of circle

+- x+r

y+r _/

An extra"+ 1" has been added to the top and left numbers so that the
erased area does not include the circle itself. There is no need to sub
tract 1 from the bottom and right boundaries, because there are
really two different coordinate systems involved here. BASIC state
ments refer to screen pixel locations; ROM routines refer to grid lines
between the pixel locations. Figure 3-14 shows the difference.

The top, bottom, left, and right numbers refer to infinitely thin
grid lines between screen pixels. The circle coordinates refer to actual
pixel locations. As you can see in Figure 3-14, the grid numbers
required to frame the inside of a figure are not exactly the same as

0 7

0

7
~grid lines

Figure 3-14.
Grid line coordinates versus pixel coordinates

70 Macintosh Graphics and Sound

those of the border pixels themselves. The top and left grid numbers
are one greater; the bottom and right grid numbers are the same.

ERASEOVAL uses VARPTR to find the location of the array con
taining the boundaries, just as FRAMEROUNDRECT used VARPTR
in Figure 3- 5.

Now you are ready to use the ERASEOVAL routine. Type this:

RANDOMIZE TIMER
cx•245: cy· 126: radius·30
MOVETO cx,cy
loop:
x•4-8*RNO(I): y•4-8*RND(I)
FOR n= I TO 3+8*RNO(I)

cx•cx•x: cy-cy+y
CIRCLE (cx,cy),radius
arrayX(O)=cy-radius+ I : arrayX(I)=ex-radius+ I
arrayX(2)•cy•radius: arrayX(3)·cx•radius
ERASEOVAL VARPTR(arrayX(O))

NEXT n
IF INKEY$•"" THEN loop

This listing generates Figure 3-15. Compare the output to Figure 3-8
to see the difference made by erasing the center of each circle.

:o

Figure 3-15.
ERASEOVAL exercise

Drawing Basic Shapes and Patterns 71

MIXING ROM ROUTINES AND BASIC STATEMENTS
Using ROM calls will greatly increase your productivity, but mixing
figures drawn by these calls with figures drawn by BASIC state
ments can be a challenge. Filling in arcs-for example, when a pie
chart is drawn with BASIC statements and needs to be filled using
ROM calls - requires special attention. BASIC statements measure
angles in radians, whereas ROM calls use degrees. To make matters
worse, BASIC statements place zero at 3 o'clock and measure angles
counterclockwise; ROM calls place zero at 12 o'clock and measure
angles clockwise, as shown in Figure 3-16.

There can be other difficulties also. If the rectangle you used to
frame your arc for the ROM call was not a perfect square, the PAINT
ARC routine will use the corners of the rectangle as 45-degree
marks, as shown in Figure 3-17. Angles will therefore be stretched
and contracted to conform to the rectangular shape. If you try to mix
and match the BASIC CIRCLE statement and the ROM ARC rou
tine, you should use a square to frame the arc, or you will have quite a
job matching the two.

To make translating angle measures between ROM calls (degrees)
and BASIC statements (radians) easier, here are two programs to do
the work for you. The first listing converts from radians to degrees;
the second converts from degrees to radians. Both assume that the
boundary rectangle for all arc ROM calls is a square.

PRINT "Enter radian angles between o and 6.28 (211)·
INPUT "Input the start of the arc in radlans";radl
start=450-radl*l80/J.14161
sl: IF start>mJ60 THEN start•start-360: GOTO sl
s?.: IF start<O THEN start-start+J60: GOTO s2
INPUT "Input the end of the arc In radians";rad2
endarc"450-rad2* 180/J. 1416!
el: IF endarc>•J60 THEN endarc•endarc-360: GOTO el
e2: IF endarc<O THEN endarcmendarc+J60: GOTO e2
arcangle=ABS(endarc-start)
PRINT"lnput direction: (Type a·-· for clockwise;;
INPUT"or a·+· for counterclockwise ";dlr$
IF dlr$="-"AND endarc<start THEN arcangle=J60-arcangle
IF dlr$.. "+"AND endarc>start THEN arcangle.,360-arcangle
IF arcangle>J59 THEN arcangle•arcangle-J60
IF dlr$.. ·+· THEN arcanglem-arcangle
PRINT"Stirt angle· CINT(start)
PRINT "End of angle" CINT(endarc)
PRINT "Arc of angle. CINT (arcangle)
PRINT ·continue (yin)?";

72 Macintosh Graphics and Sound

HOW MICR050FT BA51C 5TA TEMENT5
MEASURE ANGLES

112n

Start of Angle

HOW MACINTOSH ROM ROUTINES
MEASURE ANGLES

0 Degrees
,---Start of Angle

/-Length of Arc in Degrees

Figure 3-16.
Different ways of measuring angles

Drawing Basic Shapes and Patterns 73

done:
more$.. INKEY$
IF more$•"n" OR moreFN" THEN STOP
IF more$u"y" OR more$•"Y" THEN RUN ELSE done

PRINT"lnput the start of the angle In degrees (0-360)";
INPUT start
pl=J.14159!
sr•7.854!-pi/ I 80*start
IF sr <O THEN sr=sr+2*pi
IF sr >6.2832! l HEN sr=sr-2*pi
PRINT "Input the arc angle in degrees"
INPUT "pos"' clockwise, neg = counterclockwise";angle
endarc• 7.854!-pi/ I 80*(start+angle)
IF endarc< .. O THEN endarc .. endarc+6.2832!
IF endarc>6.2832! THEN endarc=endarc-6.2832!
art"7.854!-pi/ I 80*A8S(angle)
IF arc>6.2832! THEN arc=arc-6.2832!
PRINT "the start of the arc in rads is· sr
PRINT "the end of the arc in rads is " endarc
PRINT "the arc is. arc
PRINT"Contlnue (yin)?";
done:
more$.. INKl Y$
IF more$.. "n" OR more$m"N" THEN STOP
IF more$="y" OR more$="Y" THEN RUN ELSE done

The next program uses the first conversion routine, along with the
PAINT operation, to paint the pie slice in Figure 3-11 black.

start=O start=O

PeintArc PeintArc

Figure 3-17.
Measuring 45° angles on squares and on rectangles that are not square

74 Macintosh Graphics and Sound

x-2«>: y· 150: radius- 60: pi-J.14161
CIRCLE(x,y),radius,,-.Jftlpi,-1. 7ftlpi
CIRCLE(x+20,y),radius,,- I. 7!*pi, -.3!*pi
rad I aJ.J!lfpi: rad2•.J! ifpi: d$m"+"
GOSUB ConvertToOegree
ArrayK(O)ay-radius: Arrayl(I)ax+20-radlus
Arrayl(2)ay+radlus: Arrayl(3)ax+20+radlus
PAI NT ARC VARPTR(Arrayl(o)),start,arcangle
stay: IF INKEYS··· TIEN stay
END

ConvertTOOeg'ee:
start"450-radl*180/3.14161
sl: IF start>m360 THEN start•start-360: GOTO sl
s2: IF start<O THEN start=start+360: GOTO s2
endarca4S0-f'ad2*J80/3.14161
el: IF endarc>•J60 THEN endarc•endarc-360: GOTO el
e2: IF endarc<O THEN endaf'caendaf'c+J60: GOTO e2
arcangle .. ABS(endarc-start)
IF dS•"-" AND endarc<start Tl-EN arcangle•J60-arcangle
IF dS="+" AND endarc>start THEN arcangle=360-arcangle
IF arcangle>J59 THEN arcangle .. arcangle-360
IF dS=·+· THEN arcanglea-arcangle
RETURN

This program takes the starting and ending angles of the pie slice
(1. 7 pi and 0.3 pi) and the direction (counterclockwise) and converts
them into a start angle and an arc angle in degrees, as required by
the PAINTARC routine. Figure 3-18 shows the result.

Figure 3-18.
Painted arc

Drawing Basic Shapes and Patterns 75

The Mac has one more trick up its sleeve to aid you in changing
colors of different shapes. An INVERT operation can be used to
change the color (black/white) of any of four basic Mac shapes
rectangles, rounded rectangles, ovals, and arcs. The operation turns
each white dot black and each black dot white in the selected area,
similar to the way a photograph and its negative are related. You can
use this operation to invert the title of Figure 3-13.

l I NE (0,0)- (!)()0,:soo).,bf
CIRCLE(120,80)/:10,:so
CIRCLE(240,80),~.:m
CIRCLE(360,80),50,30
CIRCLE(180, 120),~.30
CIRCl.E(300, I 20),50,30
LINE(110,200)-(374,240),30,bf
MOVETO 160,2.JO
TEXTSIZE 18
PRINT"XXlllrd Olympiad";
TEXTSIZE I?
array1'(1)•201: arrayX(2)• I 1 I
array1'(3)•240: array1'(4)•374

loop:
I-OR delay•I TO JOOO: NEXT delay
INVERTRECT VARPTR(arr~ I))

IF INKl:Y$··· THEN loop

Press COMMAND-. to stop the program. Figure 3-19 shows the
inverted title.

Figure 3-19.
Inverted title

76 Macintosh Graphics and Sound

DEFINING YOUR OWN PATTERNS

The PAINT and ERASE operations let you fill a variety of shapes
with the default pen pattern and background patterns, which are
initially set to white and black respectively. With the FILL call, you
can fill shapes with your own patterns, just as you can in MacPaint.
Again, you have to use the ROM calls. Here's how it works.

Each pattern is composed of 64 dots arranged in 8 rows and 8
columns. The Macintosh expects you to design a pattern and then
store it in four consecutive cells in an integer array such as pat
tern %(1), pattern%(2), pattern%(3), and pattern%(4). The percent sign
is included to make the variable an integer type (instead of single- or
double-precision), which is critical to this process. Figure 3-20 shows
how to translate a sample pattern into the four numbers that will be
stored in an array.

The 8X8 matrix is divided into four sections, each corresponding
to an array cell. To calculate the number for each cell, add the values
of the pixels you choose. For example, pixels labeled 4096, 512, and 4
were selected in the top section. The sum 5512 is stored in array cell
p%(0). Note that white (no pixels selected) is represented by 0, and
black (all cells selected) is represented by 1 + 2 + 4 + ... + 8192 +
16384 - 32768, which equals -1.

4096+512+4 ... p%(0) 5512

64 +4096+4 ... p%(1) 4164

128+32+4 ... p%(2) 164

16384+ 16+ 1 ... p%(3) 16401

Figure 3-20.
Translating a pattern to four numbers

Drawing Basic Shapes and Patterns 77

~D

•

m~m~
••• •••• • • • •• • •• • • • ••• ••••

c~~ (CLEAR)

~
Dal tern(O)= 1052 p8ttern(1): 30801
r•at tern (2): 28202 p8\ tern(3): 7 198

~

Figure 3-21.
Pattern design program

Laying out an 8X8 grid and calculating each of these numbers
every time you want to create a new pattern would be a chore. To
speed up the process, here's a utility program that does all the work
for you. Figure 3- 21 shows the sample output. Here is the listing:

DEFINT a-z: Df:FSNG ><

DIM pat(8,8),pattem(3),powers(8,2)
start:
FOR row• I TO 8

FOR col• I TO 8
pat(row,col)=O

NEXT col
NEXT row
x=I
FOR row~2 TO I STEP - I

FOR col•8 TO I STEP - I
IF row: I AND col= I THEN powers(col,row)•-32768!

ELSE powers(col,row)=x: x•?*x
NEXT col

NEXT row
prec(0)•40: prec(I)•264
prec(2)• I 20: prec(3)•344
CLS
MOVHO 170, 160: PRINT "OK";
MOVETO 282, 160: PRINT "CLEAR";
FOR n=O TO 2

FOR k=O TO 3
Rb\D rect(k)

NEXT k

78 Macintosh Graphics and Sound

FRN1EROUNDRECT VARPTR(rect(0)),20,20
NEXTn
DAT A I 0, I 00, 190,380, I 4'0, I«>, 170,220, I 4'0,260, 170,34'0
LINE(IJ8,J7)-(221, 121),,b
LINE(26 I ,J7)-(J46, 121),,b
MOVETO 80,210
PAI.NT "pattem(O)•";PT A8(260);"pattem(I)•"
PRINT PT AB(80);"pattem(2)•";PT AB(260);"patter0<J)a"

CheckMouse:
IF MOUSE(0)<>-1 THEN CheckMouse
x"'10USE(I): yat1QUSE(2)
IF ABS(180-x)>J9 OR ABS(80-y)>l9 TIEN boxes
x•INT(x/10): col•x-IJ
y-INT(y/ 10): row-y-J
color-pat(col,row)

ChangePattem:
pat(col,row)• l-pat(col,row)
IF pat(col,row)•I THEN LINE(x*IO• l,yttlO+ I)-(x*I0•8,Y* 10 •8),,bf

ELSE LI NE(x* IO+ I ,Y* IO• I)-(X* I 0•8,ytt I 0•8),JO,bf
IF row t10D(2)-() THEN rxa.21 ELSE rx•I
IF pat(col,row)=I THEN pattem(INT((row-1)12))=pattem

(I NT((row-1)/2))•powers(col ,rx)
IF pet(col,row)=O THEN pettern(INT((row-1)/2)):pettern

(INT((row-1)/2))-powers(col,rx)
FILL RE CT VARPTR(prec(0)), VARPTR(pet tern(O))
MOVETO 170,210: PRINT pettern(O);
MOVETO 350,210: PRINT pettern(l);
MOVETO 170,226: PRINT pettern(2);
MOVETO 350,226: PRINT pettern(3);

mouse loop:
IF MOUSE(0)>=0 THEN CheckMouse
><=MOUSE(1): y:MOUSE(2)
IF ABS(160-x)>39 OR ABS(60-y)>39 THEN mouse loop
><=INT(x/10): col=x-13
y=INT(y/10): row=y-3
IF color=pet(col,row) THEN ChengePettern

GOTO mouseloop

boxes:
IF ABS(I BO-MOUSE(1))<40 AND ABS(155-MOUSE(2))< 15 THEN STOP
IF AB6(300-MOUSE(1))<40 AND ABS(155-MOUSE(2))< 15 THEN RUN

GOTO CheckMouse

Advanced programmers may wish to examine the inner workings
of this program; the rest of you can simply type it in and use it.

Drawing Basic Shapes and Patterns 79

Remember, as we mentioned just after the Introduction, long pro
grams like this one are available on disk. If you decide to look the
program over, don't be dismayed by the mouse statements used in the
CheckMouse and mouseloop sections of the program. These state
ments will be covered in detail in the next chapter.

The program works like the Edit Pattern feature of MacPaint;
you set or reset dots by clicking or dragging the mouse. The resulting
pattern is displayed in the window on the right, and the pattern
numbers are shown below the windows. Clicking the Clear button
erases the current pattern and restarts the program. Clicking the OK
button stops the program. This program can be used by itself as a
stand-alone utility, or it can be incorporated into programs that make
heavy use of patterns.

What do you do with the four pattern numbers once they have
been determined? These numbers should be stored in a single
dimension array (see the discussion in Chapter 2) and then accessed
by the FILL operation with one of these basic shapes: RECT,
ROUNDRECT, OVAL, ARC, and POLY. The numbers can also be
used with PENPAT and BACKPAT to change the default pen and
background patterns. To show you how this FILL operation works,
the next program fills the empty pie section in Figure 3-18 with a
pattern.

DIM pat:t:(11)
X=240: y=150: radius= 60: pi:3.1416
CIRCLE(x,y),radius,,-.3*pi,-1.7*pi
CIRCLE(x+20,y),radius,,-1.7*pi,-2.3*pi
rad1=1.7*pi: rad2=2.3*pi: d$:"+"
GOSUB ConvertToDegree:
Array:t:(O)=y-radius:Array:t:(1)=x+20-radius
Array:t:(2)=y+radi us:Array:t:(3)=x+20+radi us
PAINTARC VARPTR(Array:t:(o)),start,arcangle
rad 1=.3*pi: rad2= 1.7*pi:_d$="+"
GOSUB ConvertToDegree:
Array:t:(O):((y-radius)+ 1):Array:t:(1)=((x-radius)+1)
Array%(2)=y+radius:Array:t:(3)=x+radius
FOR i:t:=O TO 11

READ pat:t: (i:t:)
NEXTi%
DATA -32446,9240,6180, 17025,27647,-18945,-8581,-8329
DATA -32512,24,6144, 129
FILLARC YARPTR(Array:t:(O)),start,arcangle,VARPTR(pat:t:(O))
stay: IF INKEV$="" THEN stay
END

80 Macintosh Graphics and Sound

ConvertToDegree:
start:450-red 1*180/3 1416
s 1: IF starl>=360 THEN stet-t=start-360: GOTO s 1
s2: IF start <O THEN start:start +360: GOTO s2
endarc=450-rad2* 180/3. 1416
e 1: IF endare>=360 THEN endarc=endarc-360: GOTO e 1
e2 IF endarc<O THEN endarc=endarc+360: GOTO e2
arcangl e=ABS(endarc-starl.)
IF d$=" - .. ANO endarc<stert THEN arcangl e=360-ercangl e
IF d$="+"ANO endare>start THEN arcangle=360-arcangle
IF arcengle>359 THEN arcangle=arcengle-360
IF d$:"+" THEN ercangle:-arcangle

RETURN

The pattern is stored in the array pat%. The conversion subroutine at
the end of the program converts the radian angles from the CIRCLE
statements to degrees for both sections. Figure 3-22 shows the result.

Applications
Your new-found ability to draw shapes and patterns with only a

few key statements enables you to do fairly sophisticated graphics
with minimal effort. The rest of this chapter gives you some ideas to
work with.

~D filled arc

Figure 3-22.
Arc filled with a pattern

40.0

32.0

24.0

16.0

B.O

0 .0

-B.O

-16.0

- 24.0

-32.0

-40.0

Figure 3-23.
Bar chart

BAR CHART

Drawing Basic Shapes and Patterns 81

bar chart

NET INCOME EIV DIVISION

The next program showcases many of the techniques you learned in
this chapter. It accepts a set of numbers and displays them in bar
chart form. The program is designed to accommodate as many as 15
numbers, both positive and negative. Figure 3-23 shows the output
from a sample run.

The program illustrates how the industrious programmer can toss
a customized graphics program together with minimal effort. Here
is the listing:

DEFINT e,w,c,r,p
DIM pat(60), rect(60), dat(20), h(20)
FOR i•O TO 59

READ pat(i)
NEXT i
DAT A -32446,9240,6180, 11025,27647, -18945, -8581, -8329
OAT A -32512,24,6144, 129, - 7262, - 7396,5148, -7262
DATA -31932, 10256,0,0,6204,32385,-32386, 15385
DATA 4096, 129,0, 16,774,3096, 14460,-332
DAT A 16, 14460, 14352,0, -1, -20071, -29307, -1,32,0,0,0
DATA 871,-4388,-26618,3612,-32704,9240,6180,513
DAT A 16,4152,31868, 14352, -30396,8738, -188, -30446
ncO

82 Macintosh Graphics and Sound

entry:
nan+ I
CLS
INPUT"Enter data. When done, press Enter·;num$
dat(n).,VAL(num$)
IF numSo·· GOTO entry
IF na I THEN naO: GOTO entry
nmn-1: dmax=dat(I): dm in=dat(I)

draw:
CLS
FOR 1=1 TO n

IF dat(i)<dmin THEN dmin=dat(I)
IF dat(i)>dmax THEN dmaxadat(I)

NEXT i
IF dmax<O THEN dmax•O
IF dmin>O THEN dmin=O
l=dmax
FOR 1=50 TO 250 STEP 20

MO VETO I O,i+4
PRINT USING"••••.•";I,
l=l-(dmax-dmln)/ 10
LINE(58,l)-(60,I)

NEXT I
LINE(60,50)-(60,250)
base I lne•dmax/(dmax-dm ln)*200+50
IF dmln>•O THEN basellne-250
FOR 1~1 TO n

h(I) .. base I lne-dat(I)/(dmax-dmln)*200
NEXT I
LINE(60,baseline)-(470,basellne)
FORial TOn

LINE(70+(400/n)*{l- I),h(l))-(70+(400/n)*l- I O,basellne).,b
rect(4*(i-1)):h(i)+1
IF det(i)<O THEN rect(4*(i-1))=baseline+ 1
rect(4*(i-1)+1)=70+(400/n)*(i-1)+1
rect(4*(i-1)+2)=baseline
IF det(i)<O THEN rect(4*(i-1)+2)=h(i)
rect(4*(i-1)+3)=70+(400/n)*i-1 O

NEXT i
MOVETO 150,15
PRINT "NET INCOME BV DIVISION"
FOR n=O TO 56 STEP 4

FILLRECT VARPTR(rect(n)) ,VARPTR(pat(n))
NEXT n
stey: IF INKEV$="" THEN stay

The vertical axis contains 11 tick marks. The minimum and max
imum are calculated from the numbers entered, and the zero line is
adjusted accordingly. Fifteen patterns are read into the array pat in

Drawing Basic Shapes and Patterns 83

~D

RETURN

Figure 3-24.
Cube

Cube

locations 0 through 59, with four array cells per pattern. The border
numbers for each rectangle are stored in rect, and FILLRECT fills
each rectangle with a different pattern.

The nice thing about having this program in BASIC is that you
can modify it as needed. You can add labels, read data from disk
files, and so forth.

CUBE

To illustrate the Mac's ability to handle polygons, the following pro
gram draws three faces for a cube. Looking at Figure 3-24, you
might assume that FILLRECT could be used to fill in all the black
areas; but the "squares" on the top and right faces of the cube are not
really squares at all. They are polygons.

The program listing is straightforward:

DEFlllT e-z
Din p(23),q(13),r(13),r1(4),z(13)

'6tert polygon for the front
Fm J::O TO 3: READ r1{J): llEXT J
DATA 150, 150, 175, 175

84 Macintosh Graphics and Sound

1.oed coonHnetes for the fnme of the polygon
Fiii i:O TO 22: READ p(i): IEIT t
DATA 46, 110, 150,250,290, 150, 150,250, 150,250,250, 150,250
DATA 150, 150, 110, 190, 110,290,210,290,250,250

"Coordinates for the starting polygan for the top
Fiii t:O TO 12: READ q(i): IDT i
DATA 26, 140, 175, 150,210, 150, 175, 150,200,140,210, 140, 185

'Coordinates for the starting polygan for the side
FOR i:O TO 12: READ r(I): IEIT i
DATA 26, 165,250,200,260, 175,250,200,250, 190,260, 165,260
FRAllEPOLY YMPTR (p(O))
60Slll FRONT
&O&lllTOP
&OSlllSIDE
stay: IF 111£1$::-TID stay
om

FRONT:
F•i=1 T02

F•i=IT02
PAllTRECT VAllPTR(rl(O))
Fiii j:O TO 3: Ql(j)::rl(j): llEU j
Ql(O):Ql(O) + 50: Q1(2):Q1(2) + 50
PAllTRECT YARPTR(Ql(O))
rl(l)::r1(1) + 50 : r1(3)::r1(3) + 50

HEITI
rl(0)=175: r1(1)=175: r1(2)=200: rl(3)=200

mEITk
llETIB

TIP:
Fmk:IT02
Fmj=1 T02
PAllllPIJl.Y YARPTR(q(O))
Fiii t:O TO 12: z(i)=q(t): llEIT t
FUR 1=2 TO 12 &TEP 2: z(t) = z(t) + 50: IEIT i
PAlllTM..Y YARPTR(z(O))
F .. i= I TO 11 &TEP 2: q(t) = q(t) - 20: IEIT t
FOR 1=2 to 12 &TEP 2: q(t) = q(t) + 20: IEIT t

IEIT j
FOR I= I TO 11 &TEP 2: q(t) = q(i) + 30: IEIT I
FOR 1:2 TO 12 &TEP 2: q(t) = q(t)- 55: IEIT I

IEITk
RETUU
SIDE:

FORk:I T02
FOR J=I TO 2

PAlllTPOLY YARPTR(r(O))
FOR 1=0 TO 12: z (t):r(t): IEIT i

Drawing Basic Shapes and Patterns 85

FOR i= 1 TO 1 1 STEP 2: z(t):z(t) + 50: IEXT I
PAllTPOLY YARPTR(z(o))
FDR i= 1 TO 1 1 STEP 2: r(t}=r(t) - 20: IEXT I
FOR 1=2 TO 12 STEP 2:. r(t}=r(t) + 20: IEXT I

IEIT j
FOR i= 1 TO 1 1 STEP 2: r(t):r(t) + 5: IEXT I
Fl• 1=2 TO 12 STEP 2: r(t}=r(t) - 30: IEIT t

lllEIT k
RET ...

The first portion loads arrays with the appropriate coordinates.
Array p holds the endpoints for all the edges of the cube. Arrays rl,
q, and r contain the coordinates for a single polygon on a particular
face. The coordinates for the other polygons are calculated by
manipulating these numbers with the subroutines FRONT, TOP, and
SIDE.

VIEWSCREEN

This program is a modification of the viewscreen program in Chap
ter 2. The LINE statement is used to black out the screen, and the
CIRCLE statement is used to erase and paint stars. The larger stars
are created with three concentric circles, each with a radius of 0, 1,
and 2 respectively (see Figure 3- 25).

~--=-~~

-==--:----==-=----

Figure 3-25.
Revised viewscreen (from Chapter 2)

86 Macintosh Graphics and Sound

DEFINT a-z: DEFSNG d: RANDOMIZE TIMER
DIM b(30,4)
C(O)u 125: C(1)m244: C(2)a 127: C(3)•246
n·4
FOR 1=1 TO n: r(l) .. 1: NEXT I
LINE (0,0)-(491,254),33,bf
FOR 1=1 TO 100: PRESET(49QtlRND,253*RND): NEXT I
a:
FOR 1 .. 1 TO n

CIRCLE (X(l),y(l)),0,33
IF f(l)>O THEN CIRCLE (x(l),y(l)), l,33
IF f(I)> 1 THEN CIRCLE (X(l),y(l)),2,33
IF X(l)+h(l)>O AND x(l)+h(l)<490 AND y(l)+k(l)>O AND

y(l)+k(l)<253 THEN c
f(l)-0
b:
X(0=203+84*RND
h(l)=(x(l)-245)/5: IF h(l)=O THEN b
y(l)=I08+36*RND
kCl)m(y(i)-126)/5: IF k(i)mO THEN b ELSE GOTO d
c:
h(j}z I. 4t*h(I): k(l)m I. 4fllk(I}
X(l)aX(l)+h(I): yC l)ay(i)+k(I)
dz(X(l)-245)"2+(y(0-126)"2
IF d>20000 THEN f(l)•2: GOTO d
IF d>6000 THEN f(l)=l
d:
CIRCLE MO,y(l)),0,30
IF f(l)>O THEN CIRCLE (x(l),y(I)), 1,30
IF f(I)> 1 THEN CIRCLE (X(l),y(l)),2,30

NEXT I
PSH(RND*490,253*RNDl,RND
stay: IF INKEY$··· THEN a

One of the improvements in this version of the program is that the
stars accelerate as they get closer to the viewer. The program line
after label c increases the size of the step to encourage the illusion of
increased speed.

In order to increase the general activity level, the PSET state
ment at the end of the program adds an occasional star to the
background.

FUNCTION PLOT

The function plot program in Chapter 2 brought up the question of
how to maintain a continuous curve with steep vertical lines when
plotting functions. The LINE statement you learned in this chapter
can belp you with the problem. Try the following:

TEXTSIZE 10
TEXTFONT 10
TEXTMODE I
LINE(50, 130)-(450, 130)
FOR x=50 TO 450 STEP 20

IF x=250 THEN skip
LINE (X, 128)-(X, 132)

Drawing Basic Shapes and Patterns 87

leftalO: IF x=50 OR x=450 THEN left=15
MOVETO x-left, 144: PRINT (x-50)/20-10;

skip: NEXT x
FOR y=IO TO 250 STEP 20

IF r 130 THEN MOVETO 240, 135: GOTO jll'llP
MOVETO 2J2,y+5
jwnp:
PRINT 5-(y-30)120;
LINE (?.48,y)-(252,y)

NEXT y
LINE (250, I 0)-(250,250)

FOR x=-10 TO 10 STEP .011
Y'"2*(x*x-9*x•8)/(2*x*x•x-4)
xi =20*x•250
yl=-20*y+l30
IF y>6 OR y<-6 THEN jump I
IF x•-IOTHEN PSET (xl,yl) ELSE LINE (xO,yOHxl,yl)
jump I:
xO=x I: yO'"Y I
NEXT x

TEXTSIZE 12
TEX111)()£ 0
TEXTFONT I
stay: IF INKEY$=·· THEN stay

This program deals with the problem by drawing lines between con
secutive graph-point pairs, instead of plotting them one at a time.
Using new variables (xO,yO) to store the previous point coordinates,
you can draw a line connecting (xO,yO) to (xl,yl) for all points except
the first. Figure 3-26 shows the results.

LIFE

The LINE statement really speeds up the drawing of the grid in the
program called Life, which was introduced in Chapter 2. Another
major change in the program is the addition of a new array, nb,
which stores the number of neighbors for each cell. With this infor
mation stored in an array, the number of neighbors for each cell can
be calculated during the initial board setup and updated as needed
during the updateboard section. With these changes, the program
operates much faster.

88 Macintosh Graphics and Sound

-10 -9 -8 -7 -6 -s -4 -3 -z -1

Figure 3-26.

6

s
4

3

z

-1

Function plot with LINE statement

DEFlllT e-z: DIH 8(25,25), nb(25,25): g: I: p:O
PRlllT"lnitielizing geme boenl: generation: ";g;
FOR r: 1 TO 25: READ s$

FOR c:l T025
e(r,c)=VAL(HIDS(s$,c, I))
IF e(r,c):O THEii exit3
LINE(170+6*c,45+6*r)-(I 72+6*c,47+6*r).,bf: p:p+ 1
FDR h=-1 TO +1

IF c+h<l OR c+h>25 THEii exit2
FOR Y=-1 TO +1

IF r+Y<I OR r+Y>25 OR h=O AND Y::O THEii exit 1:
nb(r+y ,c+h)=nb(r+Y ,c+h)+ 1

exttt:
NEXT y

exit2:
NEXT h
exit3:
NEXT c

NEXT r
PRINT "populetion";p
FOR K= 175 TO 375 &TEP 6
LINE (x,50)-(x,250)

NEXT K
FOR y::50 TO 250 STEP 8
LINE (175,y)-(375,y)

7 8 9 10

Drawing Basic Shapes and Patterns 89

IEITy
LOCATE 1,1: PRllT &PACES(80)
LOCATE 1, 1: PRllT ·gerlll"et1on·;g;· populetton•;p

checkstetus:
p:O
FDR r=1TO25

LOCATE 2, 1: PRllT"Scemtng for netghbors:roW";r
FDR C= I TO 25: nb::O: IF e(r,c)= 1 THEii p:p+ 1

IF e(r,c)= 1 THE• IF nb(r,c)<2 OR nb(r,c)>3 THE• e(r ,c)=4 ELSE e(r ,c)=2
IF e(r,c)=O THE• IF nb(r ,c):3 TllEI e(r ,c)=3

IEXTc
IEXTr

updeteboanl:
g::g+l
LOCATE 1, 1: PRlllT ·generatton·;g;- populeuon·;p
FOR r=I TO 25

FOR C=I TO 25: f:O
IF a(r,c)<3 THEI exit6
bw:33: IF e{r,c)=4 THEI bW=30
LllE (I 70•6*c,45•6*r)-(I 72•6*c,47+6*r),bW ,bf
FDR h=-1 TO +I

IF c+h< I OR c+h>25 THEI exit5
FDR Y=-1 TO +I
IF r•Y< I OR r+v>25 OR h=O AID Y=O THEI extt4
IF bw=33 THEI nb(r+v ,c+h)=nb(r+v ,c+h)+ I ELSE nb(r+v ,c+h)=nb(r+v ,c+h)-1
extt4:
IEXTY

extt5:
IEXTh

extt6:
IEXTc

IEXTr

redoarny:
p:O
FDR r= I TO 25: FOR c= 1 TO 25
if a(r,c)=2 DR 8(r,c)=3 THEii e(r,c)= 1
IF e(r,c)=4 THEii e(r,c)=O
IF a(r,c)=I THEI p:p+1

IEXT CT
&OTO CheckStetus:
DATA • 1001000000000000000000000·
DATA ·0000100000000000000000000·
DATA ·100010000000000000000000·
DATA ·011110000000000000000000·
DATA ·000000000000000·
DATA ~0000000000001000000000000•
DATA ·0000000000010000000000000"
DATA ·0000000000100000000000000·

90 Macintosh Graphics and Sound

DATA"0000000001000000000000000"
DATA"0000000010000000000000000"
DAT A ·ooo 1111100000000000000000·
DAT A ·ooo 1111000000000000000000·
DAT A ·ooo 1011000000000000000000·
DATA"OOOOOOOOOOOOOOOOOOOOOOOOO"
DATA"OOOOOOOOOOOOOOOOOOOOOOOOO"
DAT A "0000000010010000000000000"
DATA "0000000011110000000000000"
DATA"0000000100001000000000000"
DATA"0000000101101000000000000"
DATA"0000000100001000000000000"
DATA "0000000011110000000000000"
DATA"OOOOOOOOOOOOOOOOOOOOOOOOO"
DAT A "0000000000 I 00000000000000"
DATA"OOOOOOOOOOOOOOOOOOOOOOOOO"
DATA"OOOOOOOOOOOOOOOOOOOOOOOOO"

CREATING A LOGO

Here is another idea for a company logo, based on the techniques for
drawing shapes that you have learned in this chapter. Figure 3-27
was drawn primarily by using the polygon ROM calls.

Figure 3-27.
Logo

TIME TECHNOLOGIES

Drawing Basic Shapes and Patterns 91

DEFINT a-z
DIM p(43), q(17), r(17)
FOR i•O TO 42: READ p(i): NEXT i
DATA 86, IO, I0, 10, 10, 100, I00, 105, 100, 105, 105, 115, 105
DATA 120, I 15, 125, 105, 135I105I135, 100, 140, 100, 140
DATA 140, 135, 140, l.J5, IJ5, 125, 1.35, 120, 125, I 15, 135
DATA 105,135,105,140,100,140,100,100
FOR i=O TO 16: READ q(i): NEXT i
DATA 34, 123,l I0,135,130,128,l I0, 135,l I0,135, 130,128
DATA 130,123,120,128,110
FOR iaO TO 16: READ r(I): NEXT I
DATA 34,105,l I0,117,130,105,l IO,l l2,110,l l7,l20, I l2,l30
DATA 105,130,105,110
FRAMEPOL Y VARPTR(p(O))
PAINTPOLY VARPTR(q(O))
PAINTPOLY VARPTR(r(O))
LI NE (120, 117)-(120, 123)
TEXTFONT 0: TEXTSIZE 22
MOVHO 160, 130
PRINT "l"IME TECHNOLOGIES"
TEXTFONT I: TEXTSIZE 12
f(0)• 100: f(I)• 155: f(2)= 140: f(3)=380
INVERTRECT VARPTR(f(O))
stay: IF INl<EY$•"" THEN stay

The array p contains the coordinates for the outside border. The
boundaries of the black sections are stored in arrays q and r. The
company name is printed in 22-point Chicago and then inverted with
INVERTRECT.

Summary
You are now well on your way toward being able to control graph

ics on your Macintosh with BASIC. This chapter has shown you how
you can draw and fill basic shapes, including lines, rectangles, cir
cles, arcs, ovals, and polygons. The ROM routines also give you the
ability to fill these shapes with patterns, paint them with the current
pen pattern, erase them with the current background pattern, and
invert them.

In the next chapter, you will learn how to make full use of the
mouse to create interactive graphics programs.

92 Macintosh Graphics and Sound

BASIC Statements and Functions

CIRCLE STEP(x,y),radius,color ,start,end,aspect
GO SUB
INPUT
LINE STEP(xl,yl)-STEP(x2,y2),color,BF
PRINT USING

ROM Shape Operations
ERASEshape
FILLshape
FRAME shape

INVERTshape
PAINTshape

ROM Shapes

RETURN
STOP
TAB
VARPTR

RECT-rectangle
ROUNDRECT-round rectangle
OVAL-oval

ARC-arc
POLY-polygon

4
Interactive Graphics

Graphics is no longer static, non-moving art. With the computer,
artists can easily interact with their art as they create it. If they don't
like a particular effect, they can change or remove it. Engineers can
use computers interactively to design automobiles, ships, airplanes -
almost anything you can name. Game enthusiasts can design and
control game graphics in a way never before possible.

Traditional computer programs permitted only a stilted form of
interaction. As the user, you would enter some data; then you could
run the program. After the program ran, you could examine the
results and note any errors. Only then could you change your data or
your program and start over.

An interactive program, on the other hand, accepts data and

93

94 Macintosh Graphics and Sound

immediately shows results, which makes a computer less tedious to
program and use. An interactive program also permits a computer to
perform tasks that were previously impractical or impossible.
Imagine, for example, trying to draw a picture by entering coordi
nates from the keyboard and looking at the results later!

This chapter presents techniques you can use to make your pro
grams more interactive. You will learn to use the mouse, control the
cursor's appearance, detect and act on interaction events, and create
dialog boxes and buttons. The last part of the chapter presents five
applications that use interactive programming. These include a
maze, a personality trait analyzer, an interactive educational applica
tion, a cursor shape editor, and a puzzle.

Mouse Input
We usually interact with a computer through a keyboard. This is a

convenient way to enter text, although we all await the day when we
can simply dictate text to the machine. But for pointing and sketch
ing, the keyboard leaves a lot to be desired. Tools for collecting input
that are better than the keyboard for pointing activities include
touch-sensitive screens, light pens, digitizing tablets, and mouse
devices.

The Macintosh mouse is an excellent pointer for selecting menu
options and objects on the screen. It can also be used to control a pen
for drawing, although some artists prefer a stylus or pen. With prac
tice, however, you can produce satisfactory drawings using a mouse.

As the mouse moves around the desktop, the motion of its roller
ball changes the position of the arrow-shaped cursor on the screen.
The position of the mouse and the status of the mouse button (down or
up) can also be detected with the MOUSE function. Your programs
can use the cursor position and mouse-button status to control many
things. For example, when the button is down, you can draw lines
between successive cursor positions to create a kind of electronic pen
and-ink drawing.

POLLING THE MOUSE

The Mac has an elaborate system for keeping track of the cursor
position as well as the status of the mouse button. You can detect such
things as the starting and ending positions of a drag, the number of
button clicks since the last status check, and the current pointer
position.

Press mouse button here .

.J, (200.150)

·-~

Interactive Graphics 95

""-Drag mouse

' Release mouse button here .

......................... ! (300,270)

Results of Ca!!s.

~

Mouse (0).

Mouse (I).

Mouse (2).

Mouse (3).

t1ouse (4).

Mouse (5)

f1ouse (6).

Figure 4-1.

330

290

200

150

300

270

Status of the mouse after a drag

•
Move mouse to here.

J,
• (330,290)

De,g;.r::.tP..liOf"\

Elut.ton up SinglP rl11:k since Jec;t
mn11se (o) rl'!ll

Current x coordineta of cursor

r.urrent y coordinl'ltl?. ol r.ursor

Sterting x coordinete of cursor

i;t,,rting y ronrr11Ml1?. nl rurc;or

Ending x rnorr11n11te o• cursor

Enr11ng y coordineta or r11rc;or

The key to discovering the status of the mouse is the MOUSE
function. MOUSE is actually seven functions, labeled MOUSE(O)
through MOUSE(6), that return specific information about the mouse
(see Table 4-1). Figure 4-1 illustrates the status after a single drag
operation.

96 Macintosh Graphics and Sound

Table 4-1.
MOUSE Function

MOUSE(O): Button status
0: Button inactive since last MOUSE(O) call
1: Button up; single click since last MOUSE(O) call
2: Button up; double click since last MOUSE(O) call
3: Button up; triple click since last MOUSE(O) call
-1: Button down; single click since last MOUSE(O) call
-2: Button down; double click since last MOUSE(O) call
-3: Button down; triple click since last MOUSE(O) call

MOUSE(l): Current x coordinate of cursor
MOUSE(2): Current y coordinate of cursor
MOUSE (3): Starting x coordinate of cursor
MOUSE (4): Starting y coordinate of cursor
MOUSE(5): Ending x coordinate of cursor
MOUSE(6): Ending y coordinate of cursor

In this scenario, the program user presses the button, drags the
mouse, releases the button, and then moves the mouse a short dis
tance. Then the program executes calls to MOUSE (0) through
MOUSE(6). MOUSE(O) returns 1 because the button is up and a sin
gle click occurred. MOUSE(l) and MOUSE(2) return the current
cursor position. MOUSE(3) and MOUSE(4) return the starting posi
tion of the drag. MOUSE(5) and MOUSE(6) return the ending posi
tion of the drag.

Your program can use all of this feedback, or only a selected por
tion. You can type a short example that tests if the button is clicked
in a certain area. Enter

LINE (40,40)-(70,70).,b
TestClick:
IF MOUSE(O)=O THEN Testclick
IF MOUSE(J)<40 OR MOUSE(3)> 70 OR MOUSE(4)<40 OR MOUSE(4)> 70
THEN TestCllck

MOVETO 94,62
PRINT "rectangle selected"
WHILE MOUSl:::(0)<>2: WEND

Try pressing the button anywhere outside the rectangle. You won't
get a reaction-the program only responds to a click within the speci
fied area. The second IF statement sends program control back to

Interactive Graphics 97

the TestClick line if the button press occurs outside the outlined
rectangle.

Notice that the mouse test used in this program [MOUSE(O)=O] is
designed to detect any button activity. If the button has been pressed
since the last MOUSE call, MOUSE(O) will be 1, 2, 3, -1, -2, or -3.
If the button is not pressed, MOUSE(O) is 0, and control passes back
to the TestClick line. Also, by choosing to test MOUSE (3) and
MOUSE(4), the program requires that the cursor be inside the rect
angle when the button is pressed, not when it is released.

ANOTHER EXAMPLE OF MOUSE INTERACTION

The different mouse functions can be confusing at first. The next
program lets you see the values change right before your eyes as you
click the button and move the mouse around the screen.

CLS : TEXTMODE 0
lnitDisplay:
LOCATE 1,1
PRINT "Button Status·,"Mouse(O)="MOUSE(O)" "
PRINT "Current X,Y","Mouse(I)=-MOUSE(I);T AB(32); "Mouse(2)="MOUSE(2)". •
PRINT "Starting X,Y","Mouse(3),."MOUSE(3);TAB(32); "Mouse(4)="MOUSE(4)" •
PRINT "Ending X,Y"."Mouse(S)="MOUSE(S);TAB(32); "Mouse(6)="MOUSE(6)" •
UpdateDisplay:
LOCATE 1,23: PRINT MOUSE(O)
LOCATE 2,23: PRINT MOUSE(I);TA8(4IO);t10USE(2)
LOCATE 3,23: PRINT t10USE(J);TA8(4IO);MOUSE(4)
LOCATE 4,23: PRINT MOUSE(S);TA8(410);t10USE(6)
MOVETO MOUSE(I),l'kll.JSE(2)
IF t'DUSE(O)<O THEN LINETO MOUSE(I),t'DUSE(2)
GOTO UpdateDlsplay

These simplified examples do not fully illustrate why you might
like to determine when a click occurs in a selected area. One typical
use is in menu selection. You can set up your own menu list and invite
the user to select one of several options. The Mac has several built-in
routines for doing this, and you will use them later in this chapter.
Here is a do-it-yourself version:

DEFINl a-z:
TEXTFONT I
TEXlSIZE 18
TEXTFACE 64
DIM pat(12),boX(12),edge(12)
FOR i=O TO 11: READ pat(i): NEXT i

98 Macintosh Graphics and Sound

FOR i•O TO 11: READ box(I): NEXT i
LINE (40,40H70,70),.b
LINE (40,100)-(70,130),.b
LINH40, 160)-(70, 190),.b
MOVETO 94,65
PRINT "Balance Sheet•
MOVETO 94, I 25
PRINT "General Ledger"
MOVETO 94, 185
PRINT "Income Statement"
DAT A 21930,21930,21930,21930, -I, -1, -1, - I
DATA 258,1032,4128,16512
DATA 41,41,70,70, IOl,41, 130,70, 161,41, 190,70
FILLRECT VARPTR(box(O)), YARPTR(pat(O))
FI LL RE CT V ARPTR(box(4)), YARPTR(pat(4))
FILLRECT VARPTR(box(8)), YARPTR(pat(8))
FOR l=O TO 11: READ edge(l):NEXT I
DAT A 40, 90, 70,244, I 00, 90, I 30,255, I 69, 90, 190,285
TestCllck:
IF MOUSE (0) =O THEN TestCllck
IF t10USE(J)>40 AND MOUSE(3)<70 AND t10USE(4)>40 AND
t10USE(4)<70 THEN GOTO Invert I
IF t10USE(J)>40 AND t10USE(J)<70 AND t10USE(4)> 100 AND
t10USE(4)< 130 THEN GOTO lnvert2
IF MOUSE(J)>40 AND t10USE(J)<70 AND t10USE(4)> 160 AND
t10USE(4)<190 THEN GOTO lnvert3
GOTO TestClick
Invert!: INYERTRECT YARPTR(edge(O)): GOTO CleanUp
lnvert2: INVERTRECT YARPTR(edge(4)): GOTO CleanUp
lnvert3: INVERTRECT VARPTR(edge(8))
Cle;rilp:
TEXTFONT J
TEXTSIZE 12
TEXTFACEO
WHILE t10USE(0)<>2: WEND

This program uses the INVERTRECT ROM routine to highlight the
selected option. Its results are illustrated in Figure 4-2.

You can also use mouse clicking and dragging to manipulate
objects on the screen interactively. The next example allows a user to
draw rectangles by clicking a starting point and dragging to control
the size of the rectangle. This program works like the rectangle rou
tine in MacPaint.

DEFINT a-z
FOR i•I TO 4: READ pat(i): NEXT I
DATA -21931,-21931,-21931,-21931
Loop:
WHILE MOUSE(O)=O

IF INKEY$<>"" THEN STOP
WEND

x I =MOUSE(3): y I =MOUSE(4)
x2=x I : y2•y I
PENPAT VARPTR(pat(I))
PEtf"'ODE I 0
WHll.E MOUSE(O)<O
rec(I)•y I : rec(3)•y2
IF y2<y I THEN rec(I)=y2: rec(3)=y 1
rec(2)=x I : rec(4)=x2
IF x2<x 1 THEN rec(2)•x2: rec(4)·x I
FRAMERECT VARPTR(rec(I))
x3=x2:y"J=y2
WHILE (x3=x2 AND y3=y2)

dummy=MOUSE(0)
x3=MOUSE(I): y.3=MOUSF.(2)

WEND
FRAMERECT VARPTR(rec(I))
x2=x3:y2=y3

WEND
PENNORMAL
FRAMERECT VARPTR(rec(1))
GOTO Loop

Interactive Graphics 99

These are only a few of the ways in which polling the MOUSE
function can be used to control program interaction. You probably
have several uses in mind already, but just in case, you can explore
many of the variations in this chapter and throughout the book. Next
we'll take a look at the mouse's alter ego on the screen, the cursor.

~0----------------- - Menu Selection

II Gener.al Ledger

~'] Income Statement

Figure 4-2.
Menu selection

IJJ

100 Macintosh Graphics and Sound

Controlling the Cursor
The mouse interacts with the computer through the cursor, an

icon tied directly to the mouse hardware. A program has no control
over the cursor position; cursor position is entirely a function of the
mouse. But your programs can control other aspects of the cursor,
such as its shape and how it interacts with figures already on the
video display.

DEFINING THE CURSOR
Microsoft BASIC also lets you redesign the shape of the cursor and
change how it interacts with the rest of the screen. You can use this
capability to remind your program user of the status of the program.
In the pen-and-ink example given earlier, for instance, you could
change the cursor to a pen shape to indicate when the mouse button is
down. Or if a program is erasing things, you could make the cursor
look like an eraser. How can you do this?

The most obvious way to start is to define the shape of the cursor.
The Mac maintains the shape of the cursor in a grid of 16 rows by 16
columns. The default cursor looks like an arrow. The process of defin
ing your own cursor shape is similar to that of defining a pen pattern,
but it is slightly more involved. You still store the patterns in an
array. In fact, since the cursor grid is 16 pixels wide and integer
variables hold 16 bits, each row of the cursor grid corresponds to one
cell of the array where the cursor pattern is stored.

Defining a cursor pattern requires more information than defin
ing a pen pattern. The cursor uses another 16 X 16 grid of dots as a
mask. This mask determines how the cursor changes shape as it is
moved over white and black areas of the screen. The defining array
must also contain the coordinates of the "hot spot" of the cursor,
which identifies the cursor's pixel position.

Figure 4-3 illustrates the design of a cursor. Notice that the value
of each row is calculated the same way it was in Figure 3-20; that is,
you add the column values of each blackened cell in a row. For
example, the first row of the cursor pattern in Figure 4-3 contains
two blackened cells in the columns labeled 256 and 128. Thus, the
row value is 256 plus 128, or 384.

Once the data is tucked neatly into the array, your only task is to
tell the computer where to find the array with the SETCURSOR call.
The following listing illustrates how you can define your own cursor:

Interactive Graphics 101

DEFINT a-z
DIM cur(J4)
FOR i" I TO 34: READ cur(I): NfXT i
DATA 0,384,640, I 152,2176,486J,9729,20477,-24S79
DAT A 20477,9729,4863,2176, 1152,640,384
DATA 0,384,640, 1152,2176,4863,9729,20477,-24579
DAT A 20477,9'129,4863,2176, 1152,640,384
DATA 10,0
LINE (200, 100)-(250, 150),,bf
LINE (JOO, 100)-(350, 150),,b
SETCURSOR VARPTR(cur(I))
Skip: IF MOUSE(O)aQ THEN Skip

When you run this program, the screen cursor changes to the desired
shape. Don't worry; you haven't permanently changed the cursor
shape. As soon as the program halts, the cursor resumes its familiar
shape.

Move the cursor around the screen to get a feel for using the new
cursor. When you move over the menu bar, the text shows through
the white portion of the cursor. But what if you don't want a trans
parent cursor?

THE CURSOR MASK
With the cursor mask, you control how the cursor interacts with the
current screen. In the preceding program, you used the same shape
for the mask as for the cursor. This resulted in the black portion of
the cursor staying black, regardless of the screen pixels it passed
over, while the white portions were transparent. Table 4-2 contains
the rules for changing this setup.

Table 4-2.
Cursor and Mask Effect on the Screen

Cursor Pixel

white
black
white
black

Mask Pixel

black
black
white
white

Effect on Screen Pixel

white
black
no change (transparent)
reverses screen pixel

102 Macintosh Graphics and Sound

Hot Spot
(0, 10)~

Figure 4-3.

364
640
1152
2176
4663
9729
20477

- 24579
20477
9729
4663
2176
1152
640
364

364
640
1152
2176
4663
9729
20477

-24579
20477
9729
4663
2176
1 152
640
364

CO "'f N '° CO -.:f r:"'I \0 CD "J' ,..... \,('I OJ "'\I' N -
\O(Q(f'ICJ'l "'\f""."1- U")t"'\jl.CJr--"l
f'.f'l")-00QLn '"'1-
N •O <D ~ N -

"' -I

Sample cursor design

Cursor

Mask

Notice in Table 4-2 that if the mask pixel is black, the cursor
completely overwrites the screen pixels. If the mask pixel is white,
the cursor reacts to the screen. For example, if both the cursor pixel
and its corresponding pixel in the mask are black, the screen pixel
shows black regardless of its previous color. Of course, these results

//
/(,,--. '

/smHrn
I , _ / Result

. .
/.,,-- --""'h

/ (J / Wh i te
L ..._ ___ _ / '__/Ml'!SI< }

1
.,/ - -- ·- --.._ !

1
Transparent

/ (~) ' Whi te .
l -....~ . _ ./ Cursor
'----. .

/ ,.,.....) t Ctffrent
I (, ; Screen

/ __ /Region

1 1 Screen /. I l j Result

/~7"~~r}
/9A "'"' /~--- : c~~~~~

1k-.t"'"' / Screen
I '-··- Region

Figure 4-4.
Visualizing cursor effect on screen

Interactive Graphics 103

are only temporary. As soon as the cursor passes on to another area,
the screen pixels revert to their original color. Figure 4-4 illustrates
how the mask controls the cursor's effect on the screen.

Let's change the mask so that the interior of the cursor turns
white when it is over a black region of the screen.

104 Macintosh Graphics and Sound

DEFINT a-z
DIM cur(34)
FOR ial TO 34: READ cur(i): NEXT i
DAT A 0,384,640, 1152,2176,4863, 9729,20477, -24579
DATA 20477,9729,4863,2176, 1152,640,384
DATA 0,384,896, 1920,3968,7679, 14847,28675,-8189
DATA 28675, 14847,7679,3968, 1920,896,384
DATA 10,0
LINE (200, 100)-(250, 150),,br
LINE (300, I 00)-(350, 150),,b
SET CURSOR VARPTR(cur(I))
Skip: IF MOUSE(O)=O THEN Skip

The next listing shows how the new cursor fits into the menu
selection program; the results are shown in Figure 4-5.

DEFINT a-z
DIM cur(34)
FOR i=I TO 34: READ cur(i): NEXT i
DAT A 0,384,640, 1152,2176,4863,9729,20477, -24579
DATA 20477,9729,4863,2176, 1152,640,384
DATA 0,384,896, 1920,3968,7679, 14847,28675,-8189
DATA 28675, 14847,7679,3968, 1920,896,384
OMA 10,0
SET CURSOR VARPTR(cur(I))
TEXTFONT I
TEXTSIZE 18
TEXTFACE 64
DIM pat(12),box(12),edge(12)
FOR i=O TO 11: Rf::AD pat(i): NEXT i
FOR i:O TO 11: READ box(i): NEXT i
LINE (40,40)-(70, 70),,b
LINE (40, 100)--(70, 130),,b
LINE(40, I 60)-(70, 190),,b
MO VETO 94,65
PRINT "Balance Sheet•
MOVETO 94, 125
PRINT "General Ledger"
MOVETO 94,185
PRINT "Income Statement"
DATA 21930,21930,21930,21930,-1,-1,-1,-1
DATA 258, 1032,4128, 16512
DAT A 41,41,70,10, IOl,41, 130,70, 161,41, 190,70
FILL.RECT VARPTR(box(O)), VARPTR(pat(O))
FI LLRECT V ARPTR(box(4)), VARPTR(pat(4))
FILLRECT VARPTR(box(8)), VARPTR(pat(8))
FOR i=O TO 11: READ edge(i): NEXT i
DATA 40,90,l0,244, I00,90, 130,255, 169,90, 190,285
TestClick:
IF MOUSE (0) =O THEN Testclick
IF MOUSE(3)>40 AND MOUSE(J)<70 AND MOUSE(4)>40 AND

Interactive Graphics 105

Balance Sheet

a
Income Statement

Figure 4-5.
Cursor with revised mask

MOUSE(4)<70 THEN GOTO Invert I
IF MOUSE(J)>40 AND MOUSE(3)<70 AND MOUSE(4)> 100 AND

MOUSE(4)<130 THEN GOTO lnvert2
IF MOUSE(J)>40 AND MOUSE(3)<70 AND MOUSE(4)> 160 AND

MOUSE(4)<190 THEN GOTO lnvert3
GOTO TestClick
lnvertl: INVERTRECT VARPTR(edge(O)): GOTO Cleanup
lnvert2: INVERTRECT VARPTR(edge(4)): GOTO Cleanup
lnvert3: INVERTRECT VARPTR(edge(B))
Cleanup:
TEITFONT 3
TEITSIZE 12
TEXTFACEO
WHILE HOUSE (0)<>2:WEND

MORE CURSOR COMMANDS

There is more to cursor control than changing its shape. For exam
ple, if you decide that you want to return to the original cursor, you
can use the INITCURSOR routine:

DEFINT a-z: DEFSNG x
DIM cur(34)
FOR ja I TO 34: READ cur(i): NEXT i
DATA 0,384,640, I 152,2176,4863,9729,20477,-24S79

106 Macintosh Graphics and Sound

DATA 20477,9729,4863,2176, I 152,640,384
DATA 0,384,896, 1920,3968,7679, 14847,28675,-8189
DATA 28675, 14847,7679,3968, 1920,896,384
DATA 10,0
LINE (200, 100)-(250, 150),.bf
LINE (300, I 00)-(350, 150),.b
Loop:
I NIT CURSOR
x•TIMER: WHILE TIMER<ax: WEND
SETCURSOR(VARPTR(cur(I)))
xaTIMER: WHILE TIMER<=x: WEND
IF MOUSE(O)aO THEN Loop

This program flashes two different versions of the cursor with a one
second time delay between them. Press any key to stop the program.

You can also make the cursor temporarily invisible. HIDE
CURSOR turns off the cursor until it is revived by SHOWCURSOR.
The next listing demonstrates how HIDECURSOR works. You can
even select menu options while the cursor is invisible.

DEFINT a-z: DEFSNG x
DIM cur(34)
FOR 1 .. 1 TO 34: READ cur(i): NEXT i
DAT A 0,384,640, 1152,2176,4863, 9729,20477,-24579
DATA 20477,9729,4863,2176, 1152,640,384
DATA 0,384,896, 1920,3968,7679, 14847,28675,-8189
DAT A 286 75, 14847, 76 79,3968; 1920,896,384
DATA 10,0
LINE(200, 100)-(250, 150),,bf
LINE (300, I 00)-(350, 150),,b
Loop:
INITCURSOR
X"TIMER: WHILE TIMER<=x: WEND
SETCURSOR(VARPTR(cur(I)))
xzTIMER: WHILE TIMER<=x: WEND
HIDECURSOR
x=TIMER: WHILE TIMER<"X: WEND
IF MOUSE(O)=O THEN Loop

Note that although a SHOWCURSOR call is not included in the pro
gram, the cursor will still be displayed at the start of each loop. This
occurs because the INITCURSOR call does an automatic SHOW
CURSOR.

Another way to hide the cursor is with OBSCURECURSOR. The
cursor stays hidden until the user moves the mouse. You can think of
this routine as a HIDECURSOR with a mouse-activated SHOW
CURSOR feature. The following listing shows OBSCURECURSOR
in action.

DEF INT 11-z: DEFSNG ><

DIM cur(J4)
FOR I= I TO J4: READ cur(I): NEXT i

Interactive Graphics 107

DAT A 0,384,640, I I 52,2176,486J, 9729,20477, -24579
DATA 20477,9729,4863,2176,1152,640,384
DAT A 0,384,896, 1920,3968, 76 79, 14847,28675, -8189
DAT A 28675, 14847, 76 79,3968, 1920,896,384
DATA 10,0
LINE<200, I 00)-(250, 150),,bf
LINE (300, I 00)-(350, 150),,b
SETCURSOR(YARPTR(cur(I)))
Loop:
OBSCURE CURSOR
x=TIMER: WHILE TIMER<=x: WEND
IF MOUSE(O)=O THEN Loop

POSITIONING THE CURSOR

With all the wonderful things your program can do to control the
cursor, there is one thing missing-it cannot control the cursor's
position. There is no program statement or ROM call that will let
your program position the cursor at a fixed pixel location. All those
MOVETO- and LOCATE-type commands affect the pen's position,
not the cursor's. The only way to move the cursor is with the mouse.
The user is in complete control.

Program Interaction
This section deals with other ways of interacting with your BASIC

programs. The mouse is terrific for pointing, and the Macintosh has
some built-in routines to give you things to point at-namely, menus
and dialog boxes with buttons. In addition, Microsoft BASIC sup
ports a clever way to control the process of interaction, called event
trapping.

EVENT TRAPPING

No chapter on interactive graphics for the Mac would be complete
without a discussion of event. trapping. Event trapping consists of
detecting certain user actions and responding selectively to them.
Events that can be detected on the Mac include mouse activity
(MOUSE), menu activity (MENU), dialog activity (DIALOG), timer
activity (TIMER), and program interruption (BREAK). For graph
ics, we will concern ourselves with the first four.

Event trapping lets your program respond instantly to certain
user actions. It redirects program flow to other sections of the pro-

108 Macintosh Graphics and Sound

gram. For example, when the user clicks in a menu, event trapping
can automatically send program control to the subroutine that pro
cesses menu selections. Unfortunately, you must still write the sub
routines that respond to events.

A word of caution: while event trapping is useful, it lends itself to
program bugs and errors, so use it with caution. Observe all the
caveats expressed in the BASIC manual. Event trapping also slows
execution slightly.

How do you do event trapping? First, turn on the trapping func
tion for a particular event with 'event ON'. For example, MENU ON
starts the computer scanning for button activity before it executes
each statement. Then use 'ON event GOSUB' to direct program flow
to an event-handling subroutine when that event occurs. For exam
ple, 'ON MENU GOSUB menuhandle' sends program control to the
subroutine menuhandle. The interesting thing about event trapping
is that the jump to the subroutine does not occur when these state-·
ments are executed. Instead, it happens when event MENU occurs
(when you click a menu selection), regardless of the current program
line. When the subroutine is finished, control returns to the next pro
gram line, as in this illustration:

ON MENU GOSUB menuh11ndle: MENU ON
PRINT "Euent trapping eH11mple"
FOR ial to I 00

PSET(IOO*RND,IDO*RND) +-- User selects menu item
.,ANEHTI ~
~ 'program continues di11erts control to menuh11ndle

control ·: ~
returned to END
ne>et menuhandle:
statement 'menu handling routine

"'RiTURN

Other events can be trapped in a similar fashion. Let's look at a few
examples.

CREATING MENUS

The first example uses menus to show how event trapping can inter
rupt the program at any point.

MENU 6,0,1,"New Menu"
MENU 6, I, I ,"Doodle"
MENU 6,2, I ;Type"
MENU 6,J, 1,"Erase"

MENU 6,4, l,"Stop"
ON MENU GOSUB MenuCheck : MENU ON
Loop: GOTO Loop

MenuCheck:
MENU
IF M£NU(0)<>6 THEN RETURN
ON MENU(I) GOSUB Doodle, Type, Eraser, Halt

RETURN

Doodle:
PRINT"doodle routine goes here"

RETURN

TVJ>e:
PRINT"type routine goes here·

RETURN

Eraser:
PRINT"erase routine goes here·

RETURN

Halt:
MENU RESET

END

Interactive Graphics 109

The MENU statements in this listing set up a sixth menu, called
New Menu, with options Doodle, Type, Erase, and Stop. The ON
MENU GOSUB and MENU ON statements are the keys to event
trapping. Only one thing happens when they are executed: the com
puter stores the jump location (menucheck) in memory. No jumps
take place. The program settles into an endless loop at statement
Loop.

Now the excitement begins. As soon as the user selects a menu
item, the computer activates the menu trap. The program breaks out
of the endless loop and jumps to the line Menu Check. The trap is tem
porarily disabled. When the program gets a RETURN, program con
trol returns to the next program line, and the trap is reactivated; that
is, the program resumes its endless loop until the next menu selection
is made.·

The MenuCheck routine reroutes program control to a section of
the program where the menu items are implemented. The MENU
statement turns the menu title back to black on white. The IF state
ment makes sure that the right menu is selected; otherwise, the pro
gram returns to Loop. ON /GO SUB sends control to the correct sec
tion of the program, based on the menu options 1 through 4.

The current program has dummy PRINT statements in all of the

110 Macintosh Graphics and Sound

routines except the halt routine. Try selecting each of the routines;
then select Stop. This routine executes a MENU RESET that erases
the menu we set up and returns to BASIC's default menu bar. STOP
ends the program.

In the last example, the computer trapped menu activity and de
livered program control to the appropriate subroutine. The next pro
gram fills in the empty subroutines:

DI" penll(?),r.1111C(.s4)
GU&UB SetUptursor
"EIU 6,0,l;New MenU
"EIU 6, I, l;Doodle"
nEIU 6,2, I, "Type·
nEIU 6,3, I, "Erase·
nmu 6,4, 1, ·stop·
DI nEIU &OSUB MenUCheck : nEIU DI
Loop: &OTO Loop

MenUCheck:
01 HEIU(I) &OSUB Doodle, Type, Eraser, Helt
IF HEIU(O):O THEI MenuCheck

RETURlt

SetUpCursor:
FOR i= I TO 34: READ curS(i): IEXT i
DATA-1,-32767,-32767,-32767,-32767,-32767,-32767
DATA-32767_,-32767,-32767,-32767,-32767,-32767
DATA -32767,-32767,-1,-1,-32767,-32767
DATA -32767,-32767,-32767,-32767,-32767,-32767
DATA-32767,-32767,-32767,-32767,-32767,-32767,-1
DATA 8,8

RETURN

Doodle:
nEIU 6,1,0
DLoop:
HOVETO HOUSE(l),HOUSE(2)
IF HOUSE(O)<O THH LllETO HOU6E(l),HOUSE(2)
IF HEIU(O)=O THEI Dloop
HEIU6,1,1

RETURN

Type:
nEIU6,2,0
Tloop:
IF nDUSE(O)<O THEI nDVETO HOUSE(3),nOUSE(4)
&ETPEI VARPTR(penll(O)): y::penll(O): x:penll(1)
LllE(x,y)-(x,y-10): FOR i=1TO100: IEXT j
LllE(x,y)-(x,y-10),30: FOR t:1TO100: IEXT i
lnS=llKEYS: PRINT lnS;

Interactive Graphics 111

IF HEllU(O)=O THEii Tloop
HEllU 6,2,1

RETURfl

Eraser:
HEllU 6,3,0
Eloop:
IF HEllU(O)<>O THEii ExitEniser
IF HOU6E(2)>0 THEii 6ETCUR60R(YARPTR(cu~(1))) ELSE llllTCUR60R
IF HOU6E(O):O THEii Eloop:
X=HOU6E(I): y:HOU6E(2)
LlllE(x-6,y-6)-(x+ 7,y+ 7) ,30 ,bf
IF HEllU(O)=O THEii Eloop
ExltEniser.
HEllU 6,3, 1

RETURll

Helt:
HENURE6ET
END

This more complete version rounds out the program. It also dem
onstrates how you can dim a menu item (as illustrated in Figure 4-6).
In the doodle routine, MENU 6,1,0 dims the doodle menu item until
another menu item is selected. Then MENU 6, l, 1 reactivates this
item before returning to the menucheck section.

9 File Edit Sew n h Run Windows

110--------

Figure 4-6.
Dimmed menu item

menudem

l: riiH)

Stop

Erose

Cl

112 Macintosh Graphics and Sound

The type text routine uses the INKEY$ function and PRINT
rather than INPUT-to display text. Although with INPUT, the sys
tem handles all the editing features (like positioning the cursor and
dragging to select a section of text). INPUT gums up the works in a
program where you want to be able to switch quickly from one menu
item to another. It maintains program control until you complete the
input line by pressing the ENTER or RETURN key. INKEY$ gives a
much faster response; however, the programmer must add any edit
ing features.

The program displays a flashing cursor by alternately drawing
black and white vertical lines with the LINE statement. The cursor
is located at the point of a mouse click by first setting the pen coordi
nates to MOUSE (3) and MOUSE (4). As the user types text, the
GETPEN function keeps track of the new pen location.

The eraser routine changes the cursor shape whenever the button
is pressed and erases with the LINE statement. Again, notice how
each menu item is unavailable while that routine is in progress, as
shown in Figure 4-6.

USER DIALOG

The Mac also allows the user to interact through the current output
window in several ways, all called types of user dialog. Window man
agement gives the user the ability to create and manipulate different
kinds of windows. Special screen areas, called buttons, can detect a
mouse click (for example, when a user responds to a question). Edit
fields can handle text input from the user. Finally, a multipartite
DIALOG function informs the program which dialog events have
taken place.

Programs use dialogs to obtain additional information and input
from the user. Dialogs are often used like printed forms (such as a
tax form or a multiple-choice quiz). For example, when you print a
listing, BASIC uses dialogs to inquire about paper size and orienta
tion, print quality, number of copies, and so forth.

Full coverage of dialogs is beyond the scope of this book, but we
will discuss some simple implementations. Here is an example that
uses several of the above elements:

DrawWindow:
WINDOW 2,.(50,50)-(450,280),2
MOVETO 50,50: PRINT"Save drawing as:·;
EDIT FIELD l,"my drawing",(120,70)-(370,85)
MOVETO 80, 125: PRINT"Drive:";
BUTTON 1,2,"lnternal",(150, 112)-(250, 125),2
BUTTON 2, I, "External",(I 50, 135)-(250, 147),2

MOVHO 80, I 72: PRINT "format:";
BUTTON 3, I, "MacPaint",(I 50, 160)-(250, I 72),3
BUTTON 4,2, "BASIC",(I 50, 182)-(250, I 94).3
BUTTON 5, I, "SAVE" ,(290, I 30)-(350, I 50), I
BUTTON 6, I, "CANCEL. ,(290, 165)-(350, I 85). I

Getlnput:
d=DIALOG(O): IF d=O THEN Getlnput
IF d=6 THEN GOSUB EditName
IF d<> I THEN Getlnput

Interactive Graphics 113

ON DIALOG(!) GOSUB Internal, External, MacPaint, BASIC, Savelt, Cancellt
GOTO Getlnput
END

EditName:
titleS=EDIT$(I)
EDIT FIELD CLOSE I
MOVETO 120,85: PRINT title$;

RETURN

Internal:
BUTTON 1,2
8UTTON2,I

RETURN

External:
BUTTON 1,1
BUTTON 2,2

RETURN

MacPaint:
BUTTON 3,2
BUTTON 4,1

RETURN

BASIC:
BUTTON 4,2
BUTTON 3,1

RETURN

SAVE It:
'Saye routine goes here

RETURll

Cancel It:
WlllDOW CLOSE 2
EllD

RETURll

DIALOG BOX

The DrawWindow section draws a dialog box for our interaction.
This box is window number 2. It resides from (50,50) to (450,280)
(absolute screen coordinates). It is a type 2 window (i.e., a dialog box).

114 Macintosh Graphics and Sound

Notice that all subsequent screen coordinates use the upper-left
corner of this window as location (0,0).

The EDIT FIELD statement creates a screen area used for enter
ing and editing text. This one specifies field number 1, has a default
value of 'my drawing', and resides in the rectangle (120, 70)-(370,85).
Again, these numbers assume that the upper-left corner of the output
window is (0,0).

BUTTONS
The rest of the Draw Window section creates six buttons. A button is
so named because it is something you press (click on) to cause a
desired action. A Macintosh button contains an area of the screen
that is sensitive to a mouse click. The format for the BUTTON state
ment is BUTTON number, state, title, rectangle, type. The last three
parameters are optional. The first BUTTON statement in the listing
sets up button number 1 in state 2 (active and selected) with the title
'Internal'; it is sensitive from (150,112) to (250,125) and is type 2 (a
check box).

Figure 4-7 shows the three different types of buttons. The first
two buttons are check boxes; 1 is selected. The next are called radio
buttons; 4 is selected. On the right are push buttons; the SAVE button
has been selected by the mouse, not by the BUTTON statement.

The Getlnput section uses the DIALOG(O) function to detect activ-

Figure 4-7.
Dialog window

Seve drewing es·

Drive: 181 lnternol

O lHtern11I

Formet: 0 MacPaint

@BASIC

•1i1a•
(CANCEL)

Interactive Graphics 115

ity by the user. This program uses polling rather than event trap
ping. Which method you use is a matter of personal preference. The
DIALOG(O) function returns the values 0 through 7 to indicate the
type of activity. The program tests for the values O (no dialog activ
ity), 1 (button press), and 6 (RETURN key in edit field). When the user
presses the RETURN key, control passes to the EditName routine. If a
button is pressed, the ON DIALOG(l) statement directs control to the
appropriate routine. DIALOG(l) returns the number of the most
recently pressed button.

The edit and button routines are mostly skeletons. The EditN ame
routine retrieves the contents of the edit field with EDIT$ and saves
it in title$. Then the program closes the edit field. The first four but
ton routines (Internal, External, MacPaint, and BASIC) simply
change the state of a selected button. Notice that when the user
selects one button of a mutually exclusive pair (Internal or External),
the program explicitly turns the other one off. The Cancellt routine
closes the current output window before stopping the program.

Applications
The following programs are applications of interactive program

ming.

MAZE
This program draws a maze and then lets the user click the mouse to
move along a path, starting from an initial cell.

RAllDOnlZE TlnER
DEFINT a-z
W=30 'cell width (must be e¥en)
c=420/w ·number of columns
r=280/w 'number of rows
S=O
Din m(r+ 1,c+ I), f(2/3*c*r,2)

DniwMazeGrid:
FOR X:250-w*c/2 TO 250+w*c/2 STEP w

LlllE (x, 150!-w*r/2)-(x, 1501+w*r/2)
NEXTx
FOR Y=150-w*r/2 TO 150+w*r/2 STEP w

LINE(250!-w*c/2,y)-(250!+w*c/2,y)
NEXTy

PicklnitialCell:
rz=r*RND(I)+ .5: CZ=c*RND(1)+.5
m(rz,cz)=16: ri=rz: ci:cz

116 Macintosh Graphics and Sound

Exemtne: ·netghbors
m=rz-1: cn:ez: ·up
IF m>O THEN IF m(m.cn):O THE• &0608 Addtof
111=rz: cn=cz-1: • left
IF cn>O THEN IF m(m.cn):O THEN &O&UB Addtof
m=rz• 1: cn=cz: • down
IF m<=f' THEN IF m(m.cn):O THEN &o&UB Addtof
m:rz: cn=cz• 1: • right
IF Cll<=C THEN IF m(m.cn):O THEN &o&UB Addtof

·c11oose e frontier cell
If S=O THEN Choose
s 1:s*RllD(1)+ .5: rz=f(s 1, 1): cz=f(s 1.2)
IF rz=O OR cz:O THEN Pley
f(s 1.1):f(s,1): f(s 1,2):f (s,2): S=s-1

"edd cell to meze
ts$="": m(rz.cz)=O
IF m(rz-1.cz)>O THEN ts$:ts$•1"
IF m(rz.cz-1)>O THEN ts$:ts$•"l"
IF m(rz•1.cz)>O THEN ts$:ts$+"8"
IF m(rz.cz• 1)>0 THEN ts$:ts$+"R"
t$::111DS(ts$,LEN(ts$)*RID(1)+.5, 1)
WHILE t$:1"
r1=rz-1: c1:ez
m(rz,cz)=m<rz.cz)+ 1: m(r1.c1):m(r1,c1)+4
LINE (251-W*c/2+w•(c1-1).150-W*r/2+w•r1)-(249-W*c/2•w•c1.

150 -w•r/2•W*r0.30
l$=-

WEND
WHILE l$="L"
r1:rz: C1=CZ-1
m(rz,cz):m(rz,cz)•2: m(r1.c1)=m(r1.c1)•8
LliE (250-w•c/2•w•c1,151-w*r/2+w•(r1-1))- (25o-w•c/2•W*c1.

· 149-w•r/2+w•r1),30
t$:""
WEND
WHILE t$:"8"
r1=rz•1: C1=CZ
m(rz,cz):m(rz.cz)•4: m(rl .c 1)=m(rl .c 1)• I
LINE (251-w•c/2•w•(c1-l),150-w•r/2•w•(rl-1))-(249-W*c/2•W*c1.

t$:""
WEND
WHILE tS="R"
rl::rz: c1:cz+I

150-W*r/2•W*(r1-1)),30 -

m(rz.cz)=m(rz,cz)+8: m(rl .c I)=m(rl .c I)+2
LINE (250-w*c/2•w•(c 1-1), 15 l-W*r/2•W*(rl-1))- (250-W*c/2•W*(c 1-1).

149-w•r/2+w•rl),30

WEND
GOTO Examine: · neighbors

Addtof:
m(m,cn)=-1: S=s+ 1: f(s, 1)=m: f(s,2):cn

RETURN

Choose: • start AND finish cells:
m(n,cO=m(ri,c0-16
rl =(r-l)•RND+.5

Interactive Graphics 117

LINE (250-w•c/2, 150-w•r/2+w*r1)-(250-w*c/2, 150 -w•r/2+w•(r1-1)),30
temp=rl
rl =(r- l)•RND+ .5
LINE (250+w•c/2, 150-w•r/2+w•r 1)-(250+w•c/2, 150 -w•r/2+w•(r1-1)),30

PeintStartCell:
PENPAT 2
ulx=(250· - w*c/2) · upper left comer of the entrance _ x coordinate
uly:(150 - w*r/2 + w•(temp-1)) ·and _ y coordinate
LINE(ulx+3,uly+3)-(ulx+w-3,uly+w-3),,bf
bx=250-w*c/2: by=150-w*r/2

Play:
IF HOUSE(O)=O THEii Play
X:HOUSE(3): y:HOUSE(4)
IF AB6(x-250)>w*c/2 OR AB6(y-150)>w•r/2 THEii Play
ty=by+IJIT((y-by)/w)•w
lx=bx+ IJIT((x-bx)/w)*w
flag:O: ft:O: fl:O: fb:O: fr:O
IF POIJIT(lx+w/2,ty-w/2):33 THEii ft=l
IF POIJIT(lx-w/2,ty+w/2):33 THEii fl= 1
IF POIJIT(lx+w/2,ty+3*w/2):33 THEN fb= I
IF POIJIT(lx+3*w/2,ty+w/2):33 THEN fr= I

TestB oundary:
IF ft= 1 AllD POIJIT(lx+w/2,ty)=30 THEii ft=2: flag= 1
IF fl:1 AllD POIJIT(lx,ty+w/2):30 THEii fl=2: flag:!
IF fb= 1 AllD POIJIT(lx+w/2,ty+w)=30 THEii fb:2: flag= I
IF fr=I AllD POIJIT(lx+w,ty+w/2):30 THEii fr:2: flag:!

PaintNewRect:
IF flag= 1 THEii LlllE(lx+3,ty+3)-(lx+w-3,ty+w-3),,bf
IF ft=2 THEii LlllE(lx+3,ty-2)-(lx+w-3,ty+2),,bf
IF fl=2 THEii LlllE(lx-2,ty+3)-(lx+2,ty+w-3),,bf
IF fb=2 THEii LlllE(lx+3,ty+w-2)-(lx+w-3,ty+w+2),,bf
IF fr=2 THEii LlllE(lx+w-2,ty+3)-(lx+w+2,ty+w-3),,bf
IF POIJIT(lx+w,ty+w/2)=30 AllD lx+w=250+c*w/2 AllD flag= I THEii Win
GOTO Play

118 Macintosh Graphics and Sound

Win:
p(l):O: p(2):0: p(3)=342: p(4)=512
FOR i=1 T05

lllYERTRECT VARPTR(p(1)): FOR J=I TO 2000: llEXT j
lllVERTRECT VARPTR(p(1)): FOR J= I TO 2000: llEXT j

llEXT i
Stay: IF lllKEY$="" THEii Stay

The maze-drawing portion of the program starts out by drawing a
grid and then selects an initial cell at random. Next, the program
examines the four neighbors and adds each newly encountered cell to
a stack called a frontier.

A stack is simply a place where you can store data in a "last in,
first out" manner. Think of a stack of dishes. Suppose you place a red
dish on a stack, then a green dish, then a blue dish. When you take
dishes off the stack, you will retrieve them in reverse order: blue,
then green, then red.

The program chooses one of the frontier cells and adds it to the
maze by removing it from the frontier stack and erasing one of its
borders. Control returns to the examine neighbor section, and the
program continues until there are no more frontier cells (s=O, i.e., the
stack is empty). At that point all cells have been added to the maze.
Finally, start and end cells are selected at random to complete the
maze, and the start cell is highlighted with the LINE statement.

The program draws a different maze each time you run it. Notice
that you can change the variable w, which determines the width and
height of the cells; be sure to use an· even value.

The interactive part of the program starts at Play. The goal is to
click your way from the start cell to the end cell. MOUSE(O) detects a
mouse click; the coordinates are stored in x and y with MOUSE(3)
and MOUSE(4). To eliminate points outside of the maze, the program
uses the ABS function to test the point (x,y) against the midpoint
(250, 150). The values ty and Ix are set to the top and left boundaries
of the selected cell. The program uses these values to test for high
lighted neighbors and maze walls.

The program screens each selected cell to make sure that it meets
two criteria before adding it to the highlighted path. One, it must
have a highlighted neighbor. If so, the appropriate flag ft, fl, fb, or fr
is set to 1. Two, it must not be separated from this neighbor by a
maze wall. Cells that pass both tests are highlighted, as shown in
Figure 4-8.

The last IF statement in the PaintNewRect section tests to see if
the maze is complete. If it is, control passes to the Win routine, which

Figure 4-8.
Maze

-- Maze

Interactive Graphics 119

.J

uses INVERTRECT to announce the victory. When the hoopla is
over, press any key to stop the program.

PERSONALITY TEST

Here's an application that illustrates the usefulness of mouse selection
in testing situations. This example is a personality test that estimates
the relative strengths of four personality traits and then graphs
them. Don't place too much faith in the results of this program; it's
included only to illustrate possibilities:

DEFINT a-z: DEF6116 I
Din rec(32),A$(12),B$(12),C$(12),0$(12),pat(16)
Din rect(60),dat(20),h(20)
FOR 1=0 TO 31 :READ rec(i):REXT i
DATA 55,241,70,270,85,241,100,270,115,241, 130,270
DAT A 145,241, 160,270,55,305, 70 ,334,85,305, 100 ,334
DATA 115,305,130,334,145,305,160,334
FOR i=1 TO 12: READ A$(i): llEXT i
DATA self-rellant,bold,aggressiYe,persistent
DAT A detennlned,bnlYe,competitlYe,adYenturous
DAT A decislve,restless,unconquerable,vigorous
FOR i=l TO 12: READ B$(i): llEXT I
DATA persuasive,open-minded,optlmistlc,insplrlng
DAT A conf ident,convinclng,soclable,talkatlYe
DAT A playf ul,attractive,charmlng,companlonable
FOR i=1 TO 12: READ C$(1): llEXT I
DAT A loyal,moderate,trustlng,obedlent,gentle

120 Macintosh Graphics and Sound

DAT A cantrolled.lentent.generous)dnd)l81ghborly
DATA eccontm0dlt1ng.good-nlltlre
FOR f= 1 TO 12: READ D$(t): IEIT f
DATA humble.accureteJ198C8ful,edlpteble
DATA nspectful,cautfous.egraeeble.,precfse
DAT A god-fear1ng.soft-spolcen..dtplomet.fc.receptfve

New6cnen:
CL&
IUIYETO 240,40:PRlllT •t10sr:LlllE (237,29)-(274,41) •• b
j::O
PrfntOVel:
FRAllEOYAL YARPTR(nc(j))
J=j•4
IF j<13 &OTO PrfntOVel
W:W+1
nDYETO 110,70:PRlllT AS(w)
ftOVETO 110, 100:PRlllT BS(w)
nDYETO 110, 130:PRlllT C$(w)
ftOVETO 1I0,160:PRlllT D$(w)
nDYETO 90,200
PRlllT "&elect one word thet MOST descrfbes you."
Loop1: Z=llOU&E(O)
X::llOU&E(3): y=IUIU&E(4)
IF ((x-256)"2/ 14"2)+((y-62)"2/7"2)< 1 THEI llYERTOYAL YARPTR(nc(O)):d 1::d1+1:

&OTO Prfntleest
IF ((x-256)"2/14"2)+((y-92)"2/7"2)<1 THEl llYERTOYAL YARPTR(nc(4)):11:11+1:

&OTO PrfntLnst
IF ((x-256)"2/14"2)+((y-122)"2/7"2)< 1 THEI llYERTOYAL YARPTR(nc(8)):s 1=S1+1:

&OTO Prfntleest
IF ((x-256)"2/ 14"2)+((y-152)"2/7"2)< 1 THEI llYERTOYAL YARPTR(nc(12)):c l=c 1+1:

&OTO Printleest
&OTOLoop1
Prfntleest:
IUIYETO 300,40: PRlllT "LEAST"
LllE (297,29)-(340,41),,b: j:16
PrintOvel2:
FRAftEOVAL YARPTR(nc(j))
J=j•4:1F J<29 THEI &OTO Print0vel2
ftOYETO 90,200
PRlllT "&elect one word thet LEAST describes you."
Loop2:
Z=ftOU&E(O)
K=IUIU&E(3): y:IUIU&E(4)
IF ((x-319)"2/14"2)+((y-62)"2/7"2)<1 THEl llYERTOYAL YARPTR(nc(16)):d2:d2+1:

&OTO Pause

Interactive Graphics 121

IF ((x-319)"2/ 14"2)+((y-92)"2/7"2)< 1 THEii lllVERTOVAL VARPTR(rec(20)):12:12+ 1:
&OTO Pause

IF ((x-319)"2/ 14"2)+((y-122)"2/7"2)< 1 THEii lllVERTOVAL VARPTR(rec(24)):s2:s2+ 1:
&OTO Pause

IF ((x-319)"2/ 14"2)+((y-152)"2/7"2)< 1 THEii lllVERTOVAL VARPTR(rec(28)):c2:c2+ 1:
&OTO Pause

GOTO loop2
Pause:
FOR i= 1 TO SOOO: llHT i
IF W<12 THEii NewScreen
FOR i:OTO 15

READ pat(I)
llEXT i
DATA -32446,9240,6180, 17025,27647,-18945,-8581,-8329
DATA -32512,24,6144,129,-7262,-7396,5148,-7262
dat(1)=d1-d2
d8t(2):11-12
d8t(3):S 1-S2
d8t(4)::C 1-c2
dmax:dat(1): dmin=dat(1)
CL&
n:4
FOR 1:1 TO n

IF dat(i)<dmin THEN dmln=dat(i)
IF d8t(f)>dmax THEii dm81C=d8t(i)

llEXT i
IF dmax<O THEii dmax::O
IF dmin>O THEii dmin::O
l:dm&IC
FOR 1=50 TO 250 &TEP 20

noVETO 10,i+4
PRINT U&lfl6"""""·"";1,
1=1-(dmax-dmin)/ 1 O
LlflE(58,i)-(60,i)

NEXT i
LlflE(60,50)-(60,250)
b8seline=dmax/(dm8x-dmin)*200+50
IF dmin>=O THEii b8sellne:250
FOR i=1 TO n

h(t):b8seline-d8t(i)/(dm81C-dmin)*200
llEXT I
LlflE(60,b8seline)-(470,baseline)
FOR 1:1 TOn

LlflE(70+(400/n)*(i-1),h(i))-(70+(400/n)*i-10,baseline),,b rect(4*(1-1)):h(i)+1
IF d8t(i)<O THEN rect(4*(i-1)):baseltne+1
rect(4*(1-1)+1>=70+(400/n)*(f-1)+1

122 Macintosh Graphics and Sound

rect(4*(i-1)+2):baseltne
IF det(t)<O THEI rect(4*(i-1)+2)=h(j)
rect(4*(i-1)+3)= 70+(400/n)*i-1 o

IEITI
llOYETO 61, 15:PRlllT "DOl11NANCE"
llOYETO 179,15:PRllT "INFLIENCE"
llOYETO 261, 15:PRlllT "STEADINESS"
llOYETO 364, 15: PRlllT "COl1Pl.IANCE"
FOR r=O TO n*4 STEP 4

FILLRECT YARPTR(rect(r)),YARPTR(pat(r))
IEITr
Stay: IF lllKEYS=-THEI Stay

Although it might be easier to use radio buttons for word selec
tion, this program uses elliptical buttons. Those of you with a
mathematical bent can use other conic sections (circles, parabolas,
and hyperbolas) to simplify testing for regions.

The program displays a list of words, four at a time, as shown in
Figure 4-9. For each word group, the user selects the two words that
best describe and least describe himself or herself. When the entire
list has been processed, the program plots the difference between the
total of most and least responses for each trait (Figure 4-10). The
chart is plotted with a modified version of the bar chart program
from Chapter 3.

Figure 4-9.
Word selection

~ mID'.l

persistent - 0
inspiring 0 0
obedient C) -adaptable 0 0

Select one word that LEAST describes you.

6.0

4.9

3.8

2.7

1.6

DOMINANCE

0 .5 ~~~~a._
-0.6

-1.7

-2.8

-3.9

-5.0

Figure 4-10.
Plot of personality traits

INFLUENCE

Interactive Graphics 123

STEADINESS COMPLIANCE

0 0 e 0 t 0 0 0 0 I 0 '

Again, use this program for fun, but please don't make any
serious decisions based on the test results.

VISUALLY DIRECTED INSTRUCTION

This program illustrates a very visual way of directing the flow of an
educational program. When the student clicks on the desired portion
of a picture, the program responds by giving more detailed informa
tion. This concept can be extended to several levels of detail, with
different options at each level. Here is the program:

DEFlllT e-z
Din m(23),s(4).k(25),o(33)

'reed mouse dete
FOR i:OTO 32

READ o(i)
NEXTi
DATA 66,106,100,115,110,115,100,112,100,106,106,106
DATA 116,109,116,115,110,115,100,112,100,112,110,106
DATA 116,106,113,109,111,109,104,106,108

124 Macintosh Graphics and Sound

'reed the keyboard data
FOR t:OT024
READk(t)

llEIT t
DATA 50, 127,40, 140,90, 140,40, 137,40, 127,50, 127,90, 130
DATA 90,140,80, 140,40, 137,40, 137,80, 127,90

'reed screen date
FOR t:OT03
READs(t)

llEIT t
DATA 65,63,85,87

'reed mac body data
FORt:OT022

READm(t)
llEIT t
DAT A 46,40,50,80,80,60,60, 100,60, 100,90,60 ,90,60,60,50
DATA 70,50,100,90,100,100,90

Draw:
'draw the mac body
Cl&
FRAllEPOLY VARPTR(m(O))
FRAllEROUllDRECT VARPTR(s(0)), 10, 10
LlllE (60,97)-(90,97)
LlllE (80,92)-(87,92)

'drew the keyboard
FRAllEPOLY YARPTR(k(O))
FOR i=44 TO 78 &TEP 4
LlllE(t, 135)-0+5, 129)

flEIT t
i:52: J= 129
FOR 1:1 T04

LlllE(i,j)-(t+26,J) : i: t - 2 : j= j + 2
llEIT I
LlllE(54, 127)-(86, 99)
LlllE(52, I 27)-(66,99)

'drew the mouse
FRAHEPOL Y VARPTR(o(O))
LlllE(109, 105)-(113, 105)
LlllE(l 11, 104)-(100 ,84)
HOYETO 140, 150
PRlllT "CLICK ON ANY COHPONENT ."

Start:
IF(HOU&E(O)>O) THEii GO&UB Check
GOTO Start

Finish:
CLS
EflD

Check:

Interactive Graphics 125

IF (HOUSE(1)>60 AND HOUSE(1)<90) AND (HOUSE(2)>60 AND HOUSE(2)<90)THEN
GOSUBM11c

IF (HOUSE(l)>IOO AND HOUSE(l)<l 10) AllD (HOUSE(2)> 106 AND HOUSE(2)<115) THEii
60SUB Mouse 1

IF (HOUSE(1)>40 AND HOUSE(1)<90) AND (HOUSE(2)>127 AND HOUSE(2)<140) THEii
GOSUB Keyboard

RETURN

Mac:
CLS
PRlllf "THE MACINTOSH SCREEN "
PRlllT "The Macintosh screen has a resolution of"
PRlllT "512x342. All the information needed to·
PRlllT "generate the screen image is stored tn a·
PRlllT "special part of random access memory called"
PRlllT "video RAl1. The screen is bit-mapped. In other"
PRlllT "words, 88Ch pixel corresponds to 11 bit in the"
PRlllT "video RAM. Drawing bit mapped pictures·
PRlllT "requires a lot of computing power."
PRlllT
llPUT "DO YOU WANT TO GET MORE INFO? (Y/N)" ,a$
IF UCASE$(a$) = ·y· THEii GOTO Draw ELSE GOTO Finish

RETURN

MOUSEi:
CLS
PRlllT"THE MOUSE"
PRlllT"The Mac uses is a mechanical/optical mouse."
PRlllT"The roller inside is mechanically coupled"
PRlllT"to two rotating vanes that interrupt beams·
PRlllT"from light-emitting diodes that light up·
PRlllT"phototransistors. The two YBnes track"
PRlllT"Yertical and horizontal motions. The mouse·
PRlllT"can sense only absolute location. That Is,·
PRlllT"the way you hold the mouse is not important"
PRlllT"as far as the direction is concerned.
PRlllT
INPUT "DO YOU WANT TO GET MORE INFO? (YIN)" ,a$
IF UCASE$(a$) = "Y" THEii GOTO Draw ELSE GOTO Finish

RETURN

Keyboenl:
CLS

126 Macintosh Graphics and Sound

PRllT"THE KEYBOARD"
PRllT"The Macintosh keyboard h8S the stondenl QWERTY"
PRllT"leyout. It has some special keys such es Commend"
PRllT"end Option. You can get foreign characters end
PRllT"gntphics symbols by pressing the OPTION key."
PRllT"You can adjust the features of your keyboard by"
PRllT"choosing the control panel from the apple menu:
PRINT
llPUT "DD YOU WANT TO GET MORE INFO? (YIN)" ,e$
IF UCA&£$(e$) = -y· THEI &OTO Dnw ELSE &OTO Finish

RETURI

In the simplified example this program presents, there are three com
ponents of a computer system (Figure 4-11). The student clicks on a
component to obtain more information about it. The components are
drawn with the BASIC LINE statement and the FRAMEPOLY
ROM call.

In Chapter 6 you will learn how to use MacPaint figures in your
BASIC programs; they will greatly reduce the effort required to
implement this kind of program.

This program uses rectangular screen regions to test for selection.
They only roughly approximate the screen figures. You could use
more precise test shapes if desired.

CURSOR EDITOR

Defining patterns and cursors with pencil and paper gets tedious
quickly. That's why you typed a pattern utility program in the last
chapter. The following cursor editor program is based on the same
idea, but it has a few twists.

INITCURGOR
DEFllT A-2
DIH Cursor(33),GrldMar1c(15,31),UndoBuff(15,31)
Alive= -1 : Deed= 0: E = 14: F = 15: Sx = 16
Page= 256: MaxlNT = 32767: Real•= 65536!
&O&UB CreateMenus
WllDOW 1,,(120,35)-(375,290),4
DI HEIU &O&UB HandleMenu: HEIU DI

WaitForFinger:
IF HOU&E(O)<>O THEI WeitForFinger
WaitForMouse:
IF HOU&E(O):Dead THEI WaitForMouse
x = HOU&E(3)\Sx: y = HOU&E(4)\Sx
IF (X<O OR X>F) OR (Y<O OR Y>F) THEI Waitforfinger
DI Mode &O&UB MekeMar1c,MekeM8Sk
&OTO WaltForFtnger

Interactive Graphics 127

Picture Click ::_-::;..=--::=: -=~ _:::- -

CLICK ON ANY COMPONENT .

THE MACINTOSH SCREEN
The Macintosh screen has a resolution of
512x342. All the information needed to
generate the screen image is stored in a
special part of random access memory called
video RAM. The screen is b.1\ mapped. In other
words, eech pixel corresponds to a bit in the
video RAM. Drewing bit mapped pictures
requires e lot of computing power.

DO vou WANT TO GET MORE INFO ? (V /N) I

THE KEYBOARD
The Macintosh keyboard has the standard OWERTV
layout. It hes some special keys such as Command
end Option. Vou can get foreign characters and
graphics symbols by pressing the OPTION key.

Figure 4-11.

vou can adjust the features of your keyboard by
choosing the control panel from the apple menu.

DO YOU WANT TO GET MORE INFO? (V/N)j

THE MOUSE
The Mac uses Is a mech6nical/optical mouse.
The roller inside is mechanically coupled
to two rotating vanes that Interrupt beams
from light-em1tting diodes that light up
phototransistors. The two vanes trac_k
vertical and horizontal motions. The mouse
can sense only absolute location. That IS,
the way you hold the mouse is not important
es fer as the direction Is concemed.

DO VOU WANT TO GET MORE INFO? (V/N)j

Obtaining additional information by clicking on the screen

ll

128 Macintosh Graphics and Sound

t1eket1er1c:
Grldt1ar1c(X, Y) = flOT Gridt111r1c(X, Y)
&OTO t1ar1cXY

t1eket1esk:
Grldt1er1c(X,Y+Sx) = flOT Gridt1ar1c(X,Y+Sx)
&OTO t1askXY

HandleMenu:
Pulled= HEflU(O) : Item"' HEflU(1)
Ofl Pulled &OSUB File,EditMenu,ModeChenge,Help,Quit
HEflU
IF flOT ReDrew THEfl RETURfl
RestoreGrld:
PEflHODE 8
CL&
ReDrew = o
FOR x = F TO Pege-F STEP Sx
LINE(X,0)-(X,Pege)
LINE(O,X)-(Pege,X)

NEXT
PEflHODE 10
FOR X =OTO F
FORY=OTOF

IF GridMer1c(X,V) THEfl 60SUB Mar1cXV
IF GridMer1c(X,V+Sx) THEN &OSUB t1eskXY

NEXT
NEXT

RETURN

Mer1cXY:
Boxl(O): Y*Sx: Boxl(l):X*Sx
Boxl(2):V*Sx+F: Boxl(3):X*Sx+F
lflYERTRECT (YARPTR(Boxl(O)))

RETURN

MaskXV:
Boxl(O)= V*Sx+2: Boxl(1):X*Sx+2
Boxl(2)=Y*Sx+ 13: Boxl(3)=X*Sx+ 13
DoOvel:
lflYERTOYAL (YARPTR(Boxl(O)))

RETURN

File:
IF Item = 2 IHEll SaveCursor
CFile$ = FILES$(1 ;cRSR")
ReDrew = -1
IF CFile$:"" THEN RETURN ELSE CL&
OPEN ·r, •1,CFile$
FORl=OT033

INPUT • 1, Cursor(I)

NEXT
CLOSE
FOR y = 0 TO F : DBi ts• = 0 :MBits = 0

FOR X = FTOO STEP-I
Bits•= 2"X

Interactive Graphics 129

IF Bits• > MeiclNT THEN Bits• = Bits• - Reel•
GridMartc(F-X,Y) = ((Cursor(Y) AID Bits•) =Bits•)
GridMertc(F-X,Y•Sic) = ((Cursor(Y+Sic) AID Bits•) =Bits•)

NEXT
NEXT
HotX = Cursor(33): HotY = Cursor(32)

RETURN

SeYeCursor:
CFile$ = FILE&$(0,"Stwe cursor date es:•)
ReDraw = -1
IF CFile$=·· THEN RETURN
CLS
&O&UB Update
OPEN ·o·, •t,CFUe$

FOR I :OT033
PRINT •t,Cursor(I)

NEXT
CLOSE
IAHE CFile$ A& CFile$,"CRSR.

RETURN

lnitGrid:
Mode= 1
FOR X =OTO F
FORY:OT031

GridMartc(X,Y) = 0
UndoBuff(X,Y) = 0

NEXT
NEXT
Item= Mode
606UB ModeChange
&OTO RestoreGrid

CreeteMenus:
HEIU 1,0, 1;rne·
HENU 1, 1, 1, "Get Cursor"
HENU 1,2, 1,"Seye Cursor"

HENU 2,0, 1 ,"Edir
nENU 2, 1, 1, "Set Cursor"
HENU 2,2, 1;Normal Cursor"
HENU 2,3,1,"Chenge Hot Spot"
nENU 2,4, 1 ,"Undo"

130 Macintosh Graphics and Sound

nEIU 2,5, I ;E111se P11ttem·

nENU 4,0,1,"Help"
nENU 4, I, !,"Instructions·

HENU 5,0, 1,"Quit"
HENU 5, 1, 1, "Let Me Outt11 here!"

Mode Change:
Mode= Item
HENU 3,0,1,"Mode"
HENU 3, 1, 1+AB6(Mode:1), "Edit Curso~
HEIU 3,2, l+ABS(Mode:2),"Edit Mask"

RETURN

EditMenu:
ON Item &OTO Changelt,Pointer,GetHotXY,Undo,lnitGrid
Undo:
FDRX:OTOF

FURY= OTO 31
6WAP GridMark(X,Y),UndoBuff(X,Y)

NEXT
NEXT
&OTO RestoreGrid

Upd11te:
FURY= OTO F
DBits• = O : MBits• = o
FORX=FTOOSTEP-1
UndoBuff(X,Y)=GridMark(X,Y)
UndoBuf f(X, Y+Sx):GridM11rk(X, Y+Sx)
IF GrtdMark(F-X,Y) THEN DB1ts•=D8its•+211
IF Grtdl18rk(F-X,Y+Sx) THEii MBits•:MBits•+211

NEXT
IF DBitS- > 118xlNT THEii DB1ts• = DBitS--Real•
IF Metts• > 118xlNT THEii Metts• = MBitS--Real•
CUrsor(Y):DBits• : Cursor(Y+Sx):MBits•

NEXT
Cursor(33) = HotX : Cursor(32) :HotY

RETURN

Changelt:
&OSUB Update
SETCURSOR (VARPTR(Cursor(O)))

RETURN

Pointer:
INITCUR60R

RETURN

GetHotXY:
WINDOW 2,,(8,25)-(100, 100),4

EDIT FIELD 1,STRS(HotX),(5, 10)-(30,25).,2
EDIT FIELD 2,STRS(HotY),(5,30)-(30,45).,2
BUTTOll 1, 1,"0k.,(20,55)-(60,70)
EDIT FIELD 1:TEITFOllT 0
HOVETO 35,23: PRINrX (Hortz)•
HOVETO 35,43: PRINrY (Vert)•

Loop:
Action = DIALO&(O)
IF Action = 1 THEN Endloop
IF Action = 2 THEN I = DIAL06(2): EDIT FIELD I
GOTO Loop
End.oop:
HolX = VAL(EDIT$(1))

HotY = YAL (EDIT $(2))
WINDOW CLOSE 2
WINDOW OUTPUT 1

RETURN

Help:
RETURN

Quit:
HEllU RESET
HEllU OFF
EllD

Interactive Graphics 131

This program is largely controlled by menus. It uses the MOUSE
functions, event trapping, and even such dialog features as windows
and edit fields. In addition, the program allows you to save your cur
sors as files on disk and to load them back in for editing. You should
be able to use the File routine in this program as a guideline for
loading cursor files into your own programs.

Figure 4-12 illustrates a sample cursor. The black squares repre
sent cursor pixels and the black circles represent mask pixels.

TOWERS OF HANOI

Towers of Hanoi is a puzzle used as an example of recursive pro
gramming technique in nearly every college-level computer course in
this country. The object of the puzzle is to move all of the disks on the
leftmost tower to the right tower without placing a large disk on a
smaller one.

DEFINT A-Z
True= -1: Folse= o: Count= 4
Din Dlsc(2,Count-1): Din LeYel(Count+5)
606UB Setup
606UB lnitDiscs

132 Macintosh Graphics and Sound

Figure 4-12.
Cursor editor

ContinuePloy:
60608 GetDisc
60608 FindTower
606U8 MoveDisc
Moves = Moves + 1
HOYETO 10, 10 : PRlffT Moves
GOTO ContinuePJey

MoveDisc:
X = NewTower: Y = Newlevel
XX= OldTower: YY = Oldlevel
SWAP Disc(XX,YY),Oisc(X,Y)
606U8 PloceDisc
LlltE (76+XX*110,155+YY*19)-(66+XX*110,173+YY*19),,BF
Tower(DiskToMove)=NewTower: Level(DislcT oMove)= Newlevel

RETUH

AbortDisc:
606UB GetDisc
FtndTower:

Msg$ ="Select A Tower"
606U8 DoMsg
Okey= False
OldTower = Tower(DiskToMove)
Oldlevel = Level(DislcToMove)

WHILE NOT Okey
Chosen= 4
WHILE Chosen > 3

&O&UB GetButton
IF Chosen = 4 THEN Restart
IF Chosen= 5 THEN Quit

WEND
Picked = Chosen- I
IF Picked= OldTowerTHEN AbortDlsc

Interactive Graphics 133

IF Disc(Picked,Count-1)=0 THEN Newlevel:Count-1: &OTO Yol1d
FOR Y:Count-1 TO 1 STEP -1

IF Disc(Picked,Y-1):0 AID Disc(Picked,Y)) DiskToHoye THEN NewleYel:Y-1:

NEXT
lgnoreTest:
WEND
YoUd:
NewTower = Picked

RETURN

GetDisc:

Okoy:True:Y:O

Hsg$ = • Select A Disc·
&O&UBDoHsg
Okey= Folse
WHILE IDT Okey
Chosen= O
WHILE Chosen < 4

&O&UB GetButton
IF Chosen = 4 THEN Restart
IF Chosen = 5 THEN Quit

WEND
DtskToMoye =Chosen - 5
IF LeyeJ(DiskToHOYe) = 0 THEii Leoye
IF Disc(Tower(DiskToHoye),LeYel(DiskToMoYe)-1):0 THEii Okey= True

WEND
leoye:

RETURN

GetButton:
WHILE DIAL06(0) <> 1: WEND
Chosen = DIALOG(1)

RETURN

DoMsg:
LINE (91,32)-(299,56),30,BF
HOVETO 140,49: PRINT Hsg$

RETURN

134 Macintosh Graphics and Sound

PutDiscs:
ID=O
FOR I= 76 TO 298 &TEP 110

ID= ID+ I
LlllE (1,60)-(1+ 10,230),,Bf
BUTTOll ID, l,"",(1-3,67)-(1+15,61),3

llEXT
FORX:OT02

FOR y = 0 TO Count-I
IF Disc(X,Y)<>O THEii 60608 PlaceDisc

DoNextDisc:
llEXT Y

llEXT X
RETURll

PlaceDisc:
ID= Disc(X,Y): Size= (40 + ID* 10)/2
TopX:64+X* 110-Size:TopY: 155+Y* 19
BotX=64+ X*llO+Size:BolY= 174+Y* 19
BUTTOll ID+5, l,&TRS(ID),(TopX,TopY)-(BotX,BotY)

RETURll

lnitDiscs:
FOR x = I TO 2: FOR y = 0 TD Count-I

Disc(X, Y)=O
llEXT Y,X
FOR y = I TO Count

Disc(O, Y-l):Y
Tower(Y)=O
Level(Y)=Y-1

llEXT
GOTO PutDiscs

Setup:
WllDOW 1,,(60,40)-(452,320),2
novno 90,20 : TEXTFOllT 0 : TEXT&IZE 24
PRlllT "Towers Of Hanoi": TEXT&IZE 12
LlllE (90,31)-(300,57),,B
BUTTOll 4, l,"Restart",(5,255)-(60,271)
BUTTOll 5,l,"Quit",(311,255)-(366,271)

RETURll

Restart:
RUii

Quit:
WlllDDW CLOSE I
HD

This implementation represents the disks with push buttons and uses
radio buttons for tower selection, as shown in Figure 4-13.

Figure 4-13.
Towers of Hanoi

Summary

2

Interactive Graphics 135

Towers Of Hanoi
I Select R Tower I

3 4

Quit

This chapter has introduced four major types of interactive graph
ics: mouse input, controlling the cursor, program interaction, and
applications. These are powerful tools for making your graphics pro
grams responsive to user input.

The next chapter investigates how to add sound to your programs.

BASIC Statements

ABS
BUTTON
CLOSE
DIALOG
EDIT FIELD
EDIT$
MENU
MENU OFF
MENU RESET
MOUSE
NAME

136 Macintosh Graphics and Sound

BASIC Statements, Continued

NOT
ON/GOSUB
ON/GOTO
OPEN
PRINT#
SWAP
UCASE$
WEND
WHILE
WINDOW
WINDOW CLOSE
WINDOW OUTPUT

ROM Calls

GETPEN
HIDECURSOR
INITCURSOR
PENMODE
PENNORMAL
PENPAT
SETCURSOR
OBSCURECURSOR
SHOWCURSOR

5
Sound

Using sound in games and graphics presentations adds excitement to
your programs. The Macintosh has one of the most sophisticated
sound synthesizers available in microcomputers today. This chapter
discusses the sounds you can create using Microsoft BASIC and your
Macintosh. It also shows you how you can integrate them into your
graphics programs to create your own micro-orchestra.

A knowledge of music theory is not necessary to exploit the Mac's
audio potential. This chapter provides a number of sample programs
to base your experimentation on. Be sure to experiment, and most of
all, have fun!

To take full advantage of the sound features of your Macintosh,
you'll need a little background information on sound in general and
the Mac synthesizer in particular. The following sections provide you
with all you need to know.

137

138 Macintosh Graphics and Sound

The Nature of Sound
Audio systems use speakers to produce sound. The speakers con

vert electrical impulses into vibrations that move the air around the
speaker. These vibrations, or waves, travel through the air to your
ear, causing your eardrums to vibrate. Your brain then interprets
these vibrations as voices, music, or noise.

The complex structure of all sounds (even those of musical
instruments) can be broken into its components in the form of sine
waves, as shown in Figure 5-1. The shape of the sine wave is the same
as its mathematical function. (You may want to dust off your high
school trigonometry book if you need a refresher.) A complex sound
structure can be synthesized by adding a number of sine waves of
different amplitudes, wavelengths (or frequencies), and phases.

Let's look at these key terms. Notice that the wave moves above
and below a center line. The wave's amplitude is the distance from
the highest (or lowest) point to the center line. The amplitude deter
mines the sound's intensity: the greater the amplitude, the louder the
sound. The wavelength is the distance between the wave's peaks (or
valleys, in this illustration). One round trip from peak to peak (or

Figure 5-1.
Sine waves

Phase
Difference

Phase

0° 1 60° 360° 540°

Amplitude

Sound 139

valley to valley) is referred to as a cycle. The phase of a wave de
scribes its position in time or in relation to another wave. A wave
cycle is divided into 360 degrees of phase. Figure 5-1 has a second
wave which is 90 degrees out of phase with the main wave. This dif
ference is referred to as the phase difference or phase shift.

A wave's frequency is the number of its cycles that can occur in a
given period of time. Frequency is measured in cycles per second or
Hertz (Hz). Frequency varies inversely with the wavelength; that is,
as the frequency increases, the wavelength decreases. Audible sound
ranges from frequencies of 20 Hz to 20,000 Hz. A 20,000-Hz tone has
a wavelength of only 0.65 inches, while a 20-Hz tone is 54 feet in
wavelength. Frequencies are usually expressed in terms of pitch;
thus, a higher-pitched tone has a greater frequency than a lower
pitched one.

Music Terminology
To better understand what you will be learning in this chapter, a

brief discussion of basic music terminology is also in order. A tone, or
note, represents a specific frequency of sound. In musical notation,
each note is represented by a letter from A to G. The letter indicates
where the note lies within an octave. An octave is a sequence of eight
notes. It starts at any given note and ends at the next occurrence of
that same note, eight notes away. The frequency of a note in the
higher octave is exactly twice that of the same note in the lower
octave. Table 5-1 lists the notes and their frequencies. The standard
ized relationship of notes and frequencies is known as Ptolemy's dia
tonic scale.

You'll notice in the table that there are notes labeled D~. E~. G~.
A~. and BP. The symbol "p" after the note indicates it is a flat. Aflat
note is a note that falls between two "natural" notes. For example, E P
falls between D and E. The same note (EP) can also be labeled D#.
The symbol "#" stands for sharp. Like a flat, a sharp note falls
between two natural notes. The difference between a sharp and a flat
is that the sharp occurs above the note's natural frequency, while a
flat occurs below a note's natural frequency. Thus, the note DP lies
below D, and between C and D. The note D# lies above D, and
between D and E. Whether you call a note D# or E~ is really up to
you; they are both the same note.

The speed at which notes are played is called tempo. The note

140 Macintosh Graphics and Sound

Table 5-1.
Notes and Their Frequencies

Octave Note Frequency (Hz)

3 below middle C c 33
3 below middle C D~ 35.2
3 below middle C D 37.125
3 below middle C E~ 39.6
3 below middle C E 41.25
3 below middle C F 44
3 below middle C G~ 46.9375
3 below middle C G 49.5
3 below middle C Ali 52.8
3 below middle C A 55
3 below middle C B1' 57.75
3 below middle C B 61.875
2 below middle C c 66
2 below middle C D!J 70.4
2 below middle C D 74.25
2 below middle C E1' 79.2
2 below middle C E 82.5
2 below middle C F 88
2 below middle C G1' 93.875
2 below middle C G 99
2 below middle C Ali 105.6
2 below middle C A 110
2 below middle C Bii 115.5
2 below middle C B 123.75
1 below middle C c 132
1 below middle C Dli 140.8
1 below middle C D 148.5
1 below middle C Eli 158.4
1 below middle C E 165
1 below middle C F 176
1 below middle C Gli 187.75
1 below middle C G 198
1 below middle C Ali 211.2
1 below middle C A 220
1 below middle C Bli 231
1 below middle C B 247.5
Middle C c 264
Middle C D1' 281.6
Middle C D 297
Middle C EP 316.8
Middle C E 330
Middle C F 352

Sound 141

Table 5-1.
Notes and Their Frequencies (continued)

Octave Note Frequency (Hz)

Middle C GP 375.5
Middle C G 396
Middle C AP 422.4
Middle C A 440
Middle C BP 462
Middle C B 495
1 above middle C c 528
1 above middle C DP 563.2
1 above middle C D 594
1 above middle C EP 633.6
1 above middle C E 660
1 above middle C F 704
1 above middle C G~ 751
1 above middle C G 792
1 above middle C A~ 844.8
1 above middle C A 880
1 above middle C B'1 924
1 above middle C B 990

2 above middle C c 1056
2 above middle C D'1 1126.4
2 above middle C D 1188
2 above middle C EP 1267.2
2 above middle C E 1320
2 above middle C F 1408
2 above middle C GP 1502
2 above middle C G 1584
2 above middle C AP 1689.6
2 above middle C A 1760
2 above middle C B'1 1848
2 above middle C B 1980

3 above middle C c 2112
3 above middle C DP 2252.8
3 above middle C D 2376
3 above middle C EP 2534.4
3 above middle C E 2640
3 above middle C F 2816
3 above middle C GP 3004
3 above middle C G 3168
3 above middle C AP 3379.2
3 above middle C A 3520
3 above middle C BP 3696
3 above middle C B 3960

142 Macintosh Graphics and Sound

played for the longest period of time (duration) is called the whole
rwte. Other notes' durations are measured in fractions of the whole
note. There are half, quarter, eighth, and sixteenth notes. The dura
tion can even be less-for example, most drummers work in thirty
second and sixty-fourth notes. The duration of the whole note in any
composition is pretty much up to the creator's discretion and depends
on how fast the music should be played. In the section on the SOUND
statement, you will read about the duration parameter, which con
trols the music's tempo. In the sample programs, the whole note's
duration is one second. You'll see later how to represent this in your
program.

Macintosh Sound
Microsoft BASIC implements sound with three functions: BEEP,

SOUND, and WAVE.
BEEP creates the simple sound that alerts the user. It is very easy

to use: just type BEEP. SOUND is the primary statement you will
use to produce sound. The SOUND statement allows you to control a
note's pitch, duration, and volume. If you prefer multiple-part har
mony, youcan assign each note to one of four voices. The SOUND
WAIT and SOUND RESUME statements allow you to synchronize
these voices. WAVE lets you control the quality of the sound by speci
fying the shape of the wave form. Musicians call this aspect of sound
its color or timbre. By changing the shape of the wave form, you can
produce thin, shrill sounds or rich, melodious tones.

THE BEEP STATEMENT
The Macintosh sound synthesizer transforms digital information into
analog waves to create sound. The simplest kind of sound is created
with the BEEP statement. As the name implies, this statement emits
a short beeping sound. The pitch is D above middle C. It is convenient
for alerting the user to some occurrence, such as an input error. This
listing shows how easy it is to use:

Loop:
BEEP
Skip: IF INKEYS:"" THEN Skip ELSE Loop

Press the SPACE BAR to repeat the sound. Use Stop from the Run
menu to quit the program.

BEEP uses a very simple wave form, called a square wave, to
create sound:

Sound 143

Amplitude

Wevelen9th

A square wave is created by a signal that toggles between two states
instantly, instead of following the gradual change of a sine wave. Note
that although the wave is a different shape, the concepts of wave
length and amplitude still apply.

THE SOUND STATEMENT

The SOUND statement also uses a square wave tone, but it gives you
control of the pitch (frequency), the length of the note (duration), and
the volume. The format for this statement is SOUND frequency, dura
tion, volume, voice. The last two parameters are optional. You can use
frequency numbers from 0 to as high as you can stand listening to.
The Macintosh can produce sounds ranging from 30 Hz to 11,000 Hz.
BASIC allows you to specify any number for the frequency parame
ter; however, best results are obtained in the range from 30 to about
6000 Hz. This range encompasses the fundamental frequencies of all
but the highest notes of some high-pitched wind instruments. Table
5-1 shows the frequency values for these notes.

As you learned earlier, the duration determines the length of time
that the note is sustained. It can be represented by any number from
0 to 77. Since one second is about 18.2 on this scale, the longest dura
tion you can specify with one SOUND statement is about 4.23
seconds.

SIMPLE SOUNDS

Let's try the SOUND statement, using just the frequency and dura
tion parameters:

Pley:
CL6
RESTORE SongD11t11
FOR i=l TO 12

READ f,d
SOUND f,d

NEXT i
PRINT"Press <Spece b11r> for 11nother round"
Stey: IF INKEYS=·· THEN St11y ELSE Pl11y

144 Macintosh Graphics and Sound

SongD11t11:
DAT A 523 ,8 ,587 ,8 ,659 ,8 ,523 ,8, 784,4.659 ,8
DATA 880,8,784,8, 1046, 16,784,8,659,8,523,8

The note sequence in this well-known tune is C,D,E,C,G,E,A,G,C,
G,E,C, where the next-to-last C is one octave above middle C. The
frequencies and durations are read into f and d and then played with
the SOUND function. The loop continues for the 12 pairs of numbers.
You can repeat the sequence by pressing the SPACE BAR. The RE
STORE statement restores the data pointer to the SongData line and
reads in the data again and again.

The volume is affected by two factors: the SOUND statement's
volume parameter and the volume slide switch on the Macintosh
Control Panel. You can display this Control Panel with the Apple
desk accessory menu.

File Edit licw rc h Run Windows

RbOut Microsoft BRSIC... List

Colculotor
Key Cops

I ''

Puzzle

z: IF INKEV$:"

songdete:
DATA 523 ,B,5

t--~~~~~~~~~~~~~~---,.....-1

DAT A BBO ,B, 7•lil•lililillill•••••

Try the different volume levels from 0 to 7, playing the song each
time. Then select a level that you find comfortable, and leave it there.
Note that BEEP will not produce sound if the volume is set to 0.

Sound 145

You can also fine-tune the volume level with the volume parame
ter of the SOUND statement. The default (which you just heard) is
127 in a range of 0 to 255. First, try it at 0. Add 0 to the SOUND
statement in the current program to match:

&OUllD f ,d,O

The volume level is perceptibly less. Try values up to 255. It doesn't
have the dramatic effect of the volume slide switch, but changing the
volume parameter does make a difference.

The voice parameter lets you produce as many as four voices to
create four-part harmony (or discord, depending on your musical
prowess). We will look at multiple-voice abilities later in this chapter.
Save the current program with the file name Georgia for later
experiments.

SINGLE-VOICE MUSIC
...-~~~~~~~~~~~~--~--~

There are actually three different sound synthesizers in the Mac: ·
square wave, four-tone, and free-form. Both the BEEP statement and
Sfngle-voicew SOUND"itatements use the square wave synthesizer. The
sound produced by this synthesizer is a little harsh in comparison to
tJi;' mellow tones Eroduced by the four-tone synthesizer, but it is easy
to use and is fine for graphics sound effects. The next program shows
a few examples of the different kinds of sounds you can make with
the square wave synthesizer. Press any key to stop a sound, and then
click to select another one.

Setup:
DEFlllT e-z
DIH WY(256)
WlllDOW 1,"",(20,30)-(490,330),4
TEXTFOllT 0 : TEXT&IZE 24
HOVETO 150,40: PRlllT ·sound Meker": TEXTSIZE 12

Buttons:
FOR b:I TO 6

READ b$:
BUTTOll b, 1,b$,(170,60+b*30)-(390,BO+b*30),3

llEXT

146 Macintosh Graphics and Sound

DATA Spece Ship, Alien Leser Zep,Engine,Weming Signa1
DATA C1ose Encounters, Goodbye

Se1ect:
WHILE DIALO&(O)<> 1 : WEND
Se1ection = DIALO&(1)
Oii Seiection &OSUB SpeceShip, LeserZep,Engtne, WamtngSlgnel,Encounters, Goodbye
SOUND 0,18
&OTO Select

Spaceship:
IC:O

WHILE lllKEYS:"" AID x<140
Z:IC"2 : IC:IC + 1
FOR j:z+ 100 TO z STEP -25

SOUND J,.49: SOUND j+200,.49
NEXT
WEND
RETURN

LeserZap:
FORx:OT02

SOUND 1500*RllD(1), 1.5,30
NEXT
RETURN

Engine:
pedall=2: pres1=0
WHILE lllKEYS=""
IF 16*RllD(1) <1 THEii press:llOT(press)
IF pn1eo-o TH£• pede11-peda11-.06 EL&E peda11-pedeU•.O&

IF pedell<.44 THEii pedall:.5 ELSE IF pedell >2 THEii p8dall:2
SOUND 1,pedel!
WEND
RETURN

WamingSigna1:
FORl=1 T06

SOUND 2112,3
SOUND 66,3

NEXT I
RETURN

Encounters:
RESTORE Notes
FOR 1=1 T05

READ freq,dur
SOUND freq,dur

NEXT
RETURN
Notes:
DATA 784,9,880,9,698,9,349,9,523, 19

Goodbye:
SOUND528,4
SOUND 528,4
SOUND 528,3
SOUND 396,3
SOUND 440,3
SOUND352,4
FOR i= 1 TO 5000: NEXT I
WINDOW CLOSE 1
STOP

Sound 147

There are lots of things you can do with the SOUND statement.
Use the following suggestions as a guide, and don't be bashful about
experimenting.

Mixing Sound and Graphics
Single-voice sound can easily be added to a static graphics display,

but the real trick is to coordinate SOUND with an active display. In
the next program, the Olympic theme was added to the program
from Chapter 3 that displays the Olympic rings with a flashing title:

n=16
DIH f(n),d(n)
FOR 1=1 TO n

READ f(i),d(i)
NEXTi
DATA 330, 16,396, 12,396,4,264,8,297,8,330, 16
DATA 297,8,297,6,297,8,330,4,297,4,264,4,297,4
DATA 330,4,264,4,297,8

'draw screen
LINE(0,0)-(500,300),,bf
CIRCLE(120,80),50,30
CIRCLE(240,80),50,30
C IRCLE(360,80) ,50 ,30
CIRCLE(180, 120),50,30
CIRCLE(300, 120),50,30
LINE(110,200)-(374,240),30,bf
HOYETO 160,230
TEXTSIZE 18
PRINT"XXlllrd Olympiad";
TEXTSIZE 12

148 Macintosh Graphics and Sound

~(1}:201: ~(2):111: ~(3):240: ~(4):374

TimerOn:
ONTIHER(3) 60SU8 Invert: TIHER ON
Play:
FOR i=l TO n

SOUND f(i),d(i)
NEXT i
SOUND 0, 8
FOR i= 1 TO n-2

SOUND f(i),d(i)
NEXT I
SOUND f(n),4
SOUND f(n-1),8
SOUND 0,8
&OTO Play

Invert:
INYERTRECT YARPTR(~(1))

RETURN

To alternate between graphics and sound, the statement ON
TIMER(3) GOSUB was used. This statement interrupts the Play rou
tine every three seconds to invert the rectangle containing the title.

There are two other features of this program that you should
notice. The frequency and duration values are read into arrays f (i)
and d(i) at the beginning of the program and are used in the Play
routine later. In previous programs, the sounds were played as the
data was read in. Storing data in arrays allows you to replay portions
of the selection without duplicating data unnecessarily. In this pro
gram, the two passes use exactly the same notes, except that the last
two notes are reversed.

You may also notice that inserting a pause between repetitions of
the melody is not a trivial problem. A simple time delay does not
always do the trick, because the Mac SOUND synthesizer stores the
sound in a buffer area and then feeds the buffer to the sound port as
necessary. BASIC has no way to detect when this buffer is empty and
hence does not know when to start the delay. Thus, you can only guess
how long to delay. One workable solution is to include a SOUND
statement with the frequency set to zero and the duration set for the
time you want to pause (SOUND 0,8 in this program). With this
technique, no sound will be produced.

One of the advantages of the simple square wave synthesizer is
that it uses only 2 percent of the processor's time, so it can be com
bined with graphics without a significant effect on display speed.
The four-tone synthesizer, on the other hand, demands 50 percent or

Sound 149

more of the processor's attention. This can be deadly to active graph
ics displays. If you're a graphics programmer, you will have to bal
ance between sound quality and graphics speed.

The next program shows more examples of linking sound with
graphics.

RAllDOHIZE TIHER
cx:245:cy=l26:r=30
Get Dur.
lllPllT"Enter duration (0-20)",duretion
IF duratlon<O OR durallon>20 THEii GetDur
HOYETO cx,cy
Loop:
X=4-8*RllD(I): y:4-8*RID(I)
FOR n= I TO 3•8*RllD(I)

CX:CX•x:cy:cy•y
CIRCLE (cx,cy),r
SOUllD 440,duretion,O
rl(O):cy-r• I: rl(O=cx-r+ I
rl(2)=cy+r. rl(3)=cx+r
ERASEOYAL YARPTR(rl(O))
SOUllD 528,duretton,O

llEXT n
IF lllKEYS="-THEll Loop
RUii

Pressing the SPACE BAR runs the program again. Enter duration
numbers from 1 to 20 to see how the note duration affects both the
speed of the display and the response to pressing a key.

SOUND AND INTERACTIVE GRAPHICS

Sound can be used to give audible feedback to mouse or keyboard
action. In the next example, sound is used to emphasize correct and
incorrect cell selections in the maze program from Chapter 4. The
changes are shown in the following listing:

'add cell to maze
SOUllD 528, I

Play:
IF HOUSE(O):O THEii Play
X:HOUSE(3): y:HOUSE(4)
IF ABS(x-250)>w*c/2 OR ABS(y- I 50)>w*r/2 THEii &OSUB 8ed6ound: &OTO Play

PalntNEWRect:
IF flag:O THEii &OSUB 81d6ound
IF flag: I THEii LlllE(lx+3,ty+3)-(lx+w-3,ty•w-3),,bf: BEEP

150 Macintosh Graphics and Sound

GOTO Play

BadSound:
IF HOUSE(O)<O THEN SOUND 33,3

RETURN

Win:
p(1)=0: p(2)=0: p(3):342: p(4)=512
ON TIHER (1) 60SUB Flesh: TIHER ON
SOUND 352,12
SOUND 297,6
SOUND 231, 16
SOUND 297, 16
SOUND 352, 16
SOUND 462,32
Stay: IF INKEYS= .. THEN Stay
END

Flesh:
lllYERTRECT YARPTR(p(l))

RETURN

SOUND 528, 1 announces the addition of each new cell as you create
the maze.

The BadSound subroutine is added just before the Win routine. It
plays a low-pitched tone whenever you click outside the maze or in an
incorrect cell. GOSUB BadSound sends control to this routine. BEEP
is used to announce a new cell added to the maze path.

The Win routine has been modified to play a six-note melody. The
ON TIMER(l) statement causes the program to leave the SOUND
statement every second to invert the title rectangle. Since the sound
is stored in a buffer, this interruption does not disturb the melody.
The calls to the Flash routine continue until a key is pressed to end
the program.

The next program shows another example of using sound to rein
force behavior. In this modified version of the Towers of Hanoi pro
gram from Chapter 4, you hear a pleasant sound when you pick a top
disk and a valid tower. You hear a buzzer-like sound when you select
the tower the selected disk is already on or when you select a disk
that's not on the top of a stack. Lower frequencies, such as 50 and 45,
give the buzzer effect. Simple sounds like this require little effort,
but they add a lot to an interactive program. The changes are listed
below:

AbortDisc:
SOUND50,10
&OSUB GetDlsc

Ve ltd:
NewTower =Picked
SOUND 2000,3

RETURN

GetDisc:
Msg$ = • Select A Disc·

Sound 151

IF Dlsc(Tower(DlskToMove),Level(DlskToMove)-1):0 THEN Okey= True ELSE
SOUND45,5

WEND

Leave:
SOUND 1546,3

RETURN

The WAVE Statement
The WAVE statement makes two important contributions to your

ability to produce sound with Microsoft BASIC. It activates and
deactivates multiple-voice mode, and it allows you to change from a
square wave into a wave form that provides a mucfi more pleasant
sound.
~ad the program you saved earlier as Georgia; then make these
changes:

WAYE O,&IN
Play:

SOUND f ,d,,O

What a difference! The latest version sounds much better than the
original. There are two changes: the addition of the line WAVE
O,SIN and the addition of the wave parameter at the end of the
SOUND statement. In the WAVE statement, 0 specifies voice 0 of
four voices. This number corresponds to the wave parameter in the
SOUND statement. SIN stands for the sine function (shown in Fig·
ure 5-1). It produces a rich, smooth sound. The default SOUND func·
tion (without a voice selection) uses the square wave generator. This is

152 Macintosh Graphics and Sound

fine for buzzers and simple sounds but is not appropriate for music.
There is no need to include a number for the volume parameter,

since it is ignored when the multi-voice mode is active. You must still
leave a place for it with two commas, however. The 0 in the SOUND
statement stands for voice 0.

MULTIPLE VOICES

Speaking of voices, the next program illustrates how to create
multiple-part harmony:

DEFINT e-z: DEFSN6 d,f
FOR 1=1 TO 6: READ freq(i): NEXT i
REH rest C D Eb F G A Bb
DATA 0, 33,37.125,39.6,44,49.5,55,57.75
d:56
note$= "zcdef gab"
DAT A b36b36c46d46, f36f36f3Bf36,d36z16z 14,b26z 16b 16z 16
DAT A b36d46c46f36 ,f36f36A36f36 ,d36z 16E34,b26z 16f24
DAT A b36b36c46d46, f38f36f36f36 ,d38z 18z 14,b28z 16b 16z 16
DAT A b34836f36, f34f36f36,d34c36z16, b24f26z 16
DAT A b36b36c46d46 ,f36f36f36f36 ,d36z 16z I 4,b26z 16b 16z 16
DATA e46d46c46b36,g36g36g36g36,b26z 16z 14,e26z 16e 16z 16
DAT A a36f36g36a36,e36e36e36e36,c36z 16z 14,f26z 16f 16z 16
DATA b34b34,d34d34,f24f24,b24b24
DATA done
FOR i=O TO 3: WAYE i,SIN: NEXT i

Play:
SOUND WAIT
FOR YOice:O TO 3

READ s$
IF s$:"done· THEN Stay
FOR k= 1 TO LEN(s$) STEP 3

f=freq(INSTR(note$,HID$(s$,k, 1))) * 2 ·cvAL(HID$(s$,k+ I, I)))
di= d/YAL(HID$(s$,k+2, I))
SOUND f,dl,,Yoice

NEXTk
NEXT YOice
SOUND RESUHE
60TOP1ey
Stay: IF INKEYS="" THEN Stay

The main lesson in this program is the way multiple voices are
handled in the Play routine. This routine reads in a string containing
frequency and duration information from one measure of music for a
single voice. The string is analyzed, and the notes are sent via the

Sound 153

SOUND statement to the sound buffer. Then a string is read in for
the next voice, and so on, until one measure of notes has been pro
cessed for all four voices.

Now here's the trick. The SOUND WAIT statement at the begin
ning of the loop causes all sound information to remain in the buffer
until the entire loop is complete. Then the SOUND RESUME state
ment turns all four voices loose at the same time. That's how you get
simultaneous multiple voices. Each line of data is processed in the
same way until the piece is finished.

Take a closer look at the data. The coding scheme used in this
program requires three items for each note: the note (a-g), the octave
number (0-7), and the duration (l=whole, 2=half, 4=quarter, 6=sixth,
8=eighth). Every data line contains one string for each of the four
voices. In the first data line, b88 means that note b in octave 8 is an
eighth note. In that same string, there is another b, a c in the next
octave up (octave 4), and ad also in octave 4. In the last two strings of
the first data line, z is used as a rest.

The frequency numbers for each octave are calculated by multi
plying the corresponding note in a base octave by an appropriate
power of two. The base octave (three octaves below middle C) is read
into the array freq. To avoid special notations for sharps or flats, these
notes are coded right into the array. This approach has the disadvan
tage that no new sharps or flats can be introduced as the piece pro
gresses. For this particular song, e is used for E ~ and b is used for B ~.

The freq array is closely associated with the string note$. The
first character in the string is z; its frequency (0) is the first number
in the array freq. The second character is c, and it.s frequency (88) is
the second number in the array. This correspondence is used by the
Play routine to translate a letter in the data line to its corresponding
numeric frequency. The INSTR function takes care of all the details.

The duration of each note is calculated by dividing the number
d = 56 by the duration number in the data string. Using smaller
numbers will increase the tempo of the piece. It will also demonstrate
how much the multiple-voice sound synthesizer slows down program
execution. Using smaller numbers will cause pauses between each
measure. This delay occurs because the program cannot feed the data
to the buffer before it is emptied. To speed up the tempo while main
taining continuous music would require either tighter code or
machine language routines to speed up execution.

Each voice is assigned a sine wave as it.s wave form in a loop just
above the Play routine. This is the default wave form for multiple-

154 Macintosh Graphics and Sound

voice sound. You will see how to define your own wave forms shortly.
One more observation: the volume is greatly affected by the

octave you select for this song. If you choose to play it in the next
octave down, the song will barely be audible, even with the volume
slide switch set to 7. You can try this yourself by changing the expo
nent portion of the frequency calculation to 211 (VAL(MID$(s$,k + l, 1))
-1). The -1 shifts everything down one octave and nearly wipes out
the volume at the same time.

SIMULATING MUSICAL INSTRUMENTS

Just how much control does the WAVE statement give you over the
quality of the sound? Can you make the Mac talk, or sound like a
clarinet or a trumpet? It can be done - but not without a great deal of
effort. While the Mac can generate a reasonably consistent wave form
for all frequencies, the wave forms generated by real musical
instruments vary with the frequency. Also, the amplitude of a vibrat
ing string, for example, builds up to a peak and then gradually
decreases as the vibrations damp out. Simulating these effects on a
microcomputer would require considerable knowledge and effort.
Some dedicated users have achieved success by storing preselected
wave patterns in different arrays and using them as needed to create
the desired effect. Without this kind of effort, all the sounds you pro
duce will sound more or less like an organ at different stops.

DEFINING YOUR OWN WAVE FORMS

So far, the examples in this book have used either the default square
wave or the sine wave to generate sound. The WAVE statement allows
you to define your own wave form, which lets you experiment with
unusual sounds. The wave form is stored in an integer array of 256
numbers ranging from -128 to 127. The numbers stand for the height
of the wave, at a given point in time, above or below the line around
which it oscillates. The name of the array is placed in the WAVE
statement along with the number of the first array element in the
pattern.

Zero is used as the default if no starting array element number is
supplied. There are several ways to generate wave form arrays. One
way is to let the random number generator have a field day selecting
values for you. This method is likely to produce some interesting
sounds, but many of them will not be pleasant. Another approach is
to write a program that records your freehand mouse doodles into an
array. This is a good exercise if you want to practice the lessons from
Chapter 4. One problem with freehand wave forms is that the rela-

Sound 155

tionship between the wave form and the resulting tone quality is not
obvious. If you have a wave form that is just about what you want, it is
not clear how to change it to get the right sound. Another problem is
that free-form waves may produce distorted harmonic frequencies
because of the sound synthesizer's sampling rate limitations.

A more controlled method is to use combinations and variations of
well-known periodic functions to create new sounds as in the follow
ing program that uses the sine function:

DEFINT w
DIH W6Y(256)
6=2*3.14159/256
FOR i=O TO 255

W6Y(i)=50*(S 111(i *6)+2*S 111(3 *i *6))
PRINT i, W6Y(i)
IF W6Y(i)> 127 OR W6Y(i)<-128 THEii STOP

NEXT i

FOR w:l TO 2
IF W= I THEii WAVE 0,6111: PRINT.SIN function·
IF W=2 THEii WAVE 0,W6Y: PRINT.W6Y function·
FOR j=I TO 10

READ f,d
SOUND f,d,,O

NEXT j
RESTORE d6t
06t:
DATA 660,8,633.6,8,660,8,633.6,8,660,8
DAT A 495,8,594,8,528,8,440,8
DATA 0,16
t:TIHER
De16y: IF TIHER<t+5 THEii del6y

NEXT w

The values stored in the array wav represent the height of the curve
at fixed intervals. The values must be between -128 and 127. The
function used in this example is y=50(SIN(x)+2(SIN(3x))). You can
play with different combinations of the trigonometric functions (SIN,
COS, ATN, and so on) or toss in a few of your own. Another interest
ing example you might want to try is this: y=80SIN(x)-80+i/2.

The delay loop pauses the program between passes to let the
sound buffer process its contents.

Applications
The first two applications give you two more tools for generating

different wave patterns.

156 Macintosh Graphics and Sound

WAVE PLOTS

You can start out with a program that plots a graph of different func
tions and plays a tune so that you can hear the tone quality. The func
tion should be entered in the Funct line. Press any key to stop the
program:

DEF INT a-z :DEF&RG a/ JCN
D1Mwn(256)
a=2*U 41591256
Fmi=OT0255

Funot:
wav(i):eOl(Slr(i *a)+21Slf0*1 *a))
PRINT ; , wa'Y(i)
IF wa'l'(i)>l27 m wa'l'(i)<-128 TIEN STOP

rEXr i
VAYEO,wav

'drawaHe's
Cit TIKR(4.7) GOSUB DoSound:TIKR Cit
a.s
TEXl'SIZE 10
TEXl'FCllT I 0
mmtJDE9
LlrE (SO,ll0)-(450,llO)
Fm >f'60 TO 450 STEP I 00

IF x-2150 TIEN Slcipl
LlrE C>c,128)-(>c,132)
l•ft .. 10
IF ~ m >P450 TIEii l•ft•l 5
tt>YETO x-l•ft ,144 :PRINT (>t-50)1100-2;"1";

Sktpl:
rEXrx
Fm lf"I 0 TO 250 STEP 20

IF ipllO TIEii tl>YETO 240,135:GOTO SlcipM>w
tl>YETO 2181145
SlcipMtw:
PRINT 120-(..,-10);
LlrEC248 M)-(252N)

•xrv
LllE(250 ,I OH250,2m)
TEXl'SIZE 12
mmtJDEO
TEXl'FCllT I

'draw wawform
Fmrn-oTO 1
FC1ti~T02SS

lf"Ya'l'(i)
IF v>llO m v<-llO TIEN Slcip2
X""I *21255-2'tm*2

><1"'1001)(+~
yl .. 130-y
PSET(><I }JI)

Sldp2:
rEXTi

rEXTm
Stav: IF INKEY$'-'"' THEN St av
TIKR OFF :ENO

DoSound:
FOR j=I TO 10

READ f tJ
SOUND f ,d ,,0

rEXT j
RESTORE DoSound
DATA !I 6.8 ,12l>l6.8,l 2pl6.8/Jl>52,4 p96,l 2
DATA 396/Ji352,4 i396/J,422.4 ,4 ,462,16
RETURfll

Sound 157

The function-plotting routine is a modification of an earlier pro
gram. Figure 5-2 shows the results with the current function.

ON TIMER(4.7) is used to send the program to the sound subrou
tine about every five seconds. Be careful not to do this too often, or the
sound buffer will demand too much of the processor's time and halt
the screen graphics.

I

-2 11

Figure 5-2.
Wave form plot

~

..

-1 11

: ..)

Waue plot - ----

120 ...
100

BO

60

40

20

"- 20
I 11 2· 11

·--40

:..so
~BO .·

-".1 o_o
- iJo =-.,)

158 Macintosh Graphics and Sound

Another way to create new wave forms is by combining modified
sine waves. The following program lets you define as many as ten sine
waves, each with its own amplitude and phase shift. The program
then adds them together to produce a totally new wave form. As in
the previous program, the wave form is plotted and played.

The 256 values describing this new shape are stored in the swave
array. You can modify the program to save the values to disk or print
them out for future reference.

RNl>OtlZE TIKR
DEF INT i JJl,S
DIHsvaw(256)
c"'2 *3 .141591256: '2111256

'fill arrai,i
INPUT'Enter •of wave parts (I - 1 O)u,1'
DIM a(n) p(n)
PRINT 'Ente-r",1';"amplitudes (0- 127)"
FORi=1 TOn

Ina:
INPUT a(;)
IF a(;)~ OR a(i)>127 TIEN BEEP:GOTO Ina

NEXJi
PRINT 'Enter"J';')mase values (0- 628)"
FORi=1 TOn

lnp:
INPUT p(i)
IF p(i)~ OR p(i)>628 TIEN BEEP:GOTO lnp

NEXJi
LOCATE 1,JO:PRINT 'Fi11i119 arrai,i~·
FOR i=O TO 255

v=()

FORj=1 TOn
w=w+a(j)*SIN(c*i*j+p(j))
NEXT j
svaw(i)=vln
LOCATE 2,29:PRINT i;s:waw(i);

NEXJi
WAYE O,swaw

'draw a~
ON TIKR(5) GOSlm DoSound:TIKR ON
a.s
TEXJSIZE 10
TEXJFOIT 10
TEXl'MJDE 9
LINE (50,130H450,1!0)
FOR~ TO 450 STEP 100

IF x=t250 THEii Skip
LINE (x,128)-(x,l 32)

ltft•IO
IF X"'50 Cit x=450 TIEN ltft=l 5
l"DYETO x-1tft,144:PRllT (x-50)/100-2;"1"

Sldp:
•xrx
Felt 'f"I 0 TO 250 STEP 20

IF u=1 !O TIEN ttWETO 240 ,I~ :GOTO Sk1pt'b'ri!
ttWETO 218gt5
Sld~w:
PRllT 120-(v-IO);
Fmi X"'248 TO 252:PSET6cN):•xr x

•xrv
Fmt .,.-10 TO 250 :PSET(250 N):•xr V
TEXJSIZE 12
TEXIMJDEO
TEXJFmtr I

'draw wawfonn
Fmtm-c>TO 1

FClti-OT0255
v=sw aw(;)
IF v>t IO• v<-t IO THUi Skip2
~ 121255-2'""12
x1=100~250

v1·110-v
PSET(>Ct NI)

Skip2:
•xri

•xrm
Stav: IF lllCE'Vt:-'"' TIEN Stav
Tll"ER OFF:-

DoSound:
&Olm>784,16,p
&Olm>880,16,p
&Olm>698,16,P
&Olm>349,16,P
&Olm>52!,24,P
~0,16

RETIB

Sound 159

The function you create is represented by the formula

F(X) = AhSIN(Pl+ X) + A2•SIN(P2+ X) + A3•SIN(P3+ X) + ...
+ An•SIN(Pn+ X)

where Al through An represent the amplitudes you enter, and Pl
through Pn represent the phase shift values. These functions can be
used to change the wave form in other programs.

160 Macintosh Graphics and Sound

KEYBOARD SIMULATION
Here's a program that turns part of your computer keyboard into a
piano keyboard:

'initialize Yariables
DEFllNT a-z: DEF6116 f
dunition:5
TEXTHDDE 3
TEXTSIZE 14
TEXTFACE 1
DIH key$(16,2), freq(16), rect(64),poly(291), pat(8)
DIH index(16)

FDR i=l TO 16: READ key$(i, 1): llEXT i
FOR i=l TO 16: READ key$(i,2): llEXT i
DATA z,s,x,c,f,Y,g,b,n,j,m,k;;,1,./
DATA A,Bb,B,C,Db,D,Eb,E,F,Gb,G,Ab,A,Bb,B,C

·read in frequencies
FOR i=l TO 16:.READ freq(i): llEXT i
DATA 220,231,247.5,264,281.6,297,316.8,330
DATA 352,375.5,396,422.4,440,462,495,528

'drew keyboard
LlllE(l00,20)-(400,220),.b
FOR i= 100 TO 400 6TEP 30

LlllE(i,220)-(i,20)
IF i:130 OR i=190 OR i=280 THEii LlllE(i-13,20)-(i+7,160),.bf
LlllE(387,20)-(400, 160),.bf
IF i=310 THEii LlllE(i-10,20)-(i+l0, 160),.bf
IF i=220 OR 1:340 THEii LlllE(i-7,20)-(i+ 13, 160),.bf

llEXT i

·set up polygon array
FOR 1=0 TO 291: READ poly(i): llEXT i
DATA 38,21, 101,220, 130,220, 101,220, 130, 161, 130, 161
DATA 117,21,117,21,101,220,101,30,21, 118, 160,137,160
DATA 118, 160,137,21, 137,21,118, 160, 118,38,21, 131,220
DATA 160,220,131,220, 160,21, 160,21, 138, 161, 138, 161
DAT A 131,220, 131,38,21, 161,220, 190,220, 161,220, 190
DATA 161, 190, 161, 177,21, 177,21, 161,220, 161,30,21, 178
DATA 160,197,160,178,J60, 197,21, 197,21, 178, 160, 178
DATA 46,21, 191,220,220,220, 191,220,220, 161,220, 161
DATA 213,21,213,21, 198, 161, 198, 161, 191,220, 191,30,21
DATA 214, 160,233, 160,214, 160,233,21,233,21,214, 160,214
DAT A 38,21,221,220,250 ,220 ,221,220 ,250 ,21,250 ,21,234
DAT A 161,234, 161,221,220,221,38,21,251,220,280,220,251
DATA 220,280, 161,280, 161,267,21,267,21,251,220,251
DATA 30,21,268, 160,287, 160,267, 160,28"1,21,287,21,268
DATA 160,268,46,21,281,220,310,220,281,220,310, 161
DATA 310, 161,300,21,300,21,288, 161,288, 161,281,220,261

DATA 30,21,301,160,320,160,301,160,320,21,320,21,301
DATA 160,301,46,21,311,220,340,220,311,220,340, 161
DAT A 340, 161,333,21,333,21,321, 161,321, 161,311,220,311
DAT A 30,21,334, 160,353, 160,334, 160,353,21,353,21,334
DATA 160,334,36,21,341,220,370,220,341,220,370,21,370
DATA 21,354, 161,354, 161,341,220,341,36,21,371,220,400
DATA 220,371,220,400, 161,400, 161,367,21,387,21,371
DATA 220,371

'index to polygon erray
FOR k= 1 TO 16: READ index(k): NEXT k
DATA 0, 19,34,53,72,87, 110,125,144,163,178,201,216,239
DATA 254,2"13

·pettem emiy
FOR 1:0 TO 7: READ pet(I): NEXT I
DATA -21931,-21931,-21931,-21931,0,0,0,0

Seen:
in$=11KEY$
IF in$:"" THEN Seen
IF in$=". THEN Helt
FOR k=l TO 16

IF in$:key$(k, 1) THEN Pley
IEXTk
&OTO Seen

Play:
SOUND freq(k),duretion
FILLPOLY VARPTR(poly(index(k)}), VARPTR(pet(O))
PRINT key$(k,2);
FOR i= 1 TO 1000: NEXT i
IF k=2 OR k=5 OR k=7 OR k:10 OR k=12 OR k:l4 THEN
606UB Bleck ELSE &O&UB White

&OTO Seen

818ek:
PAllIPOLY YARPTR(poly(index(k)))

RETURN

White:
ERAGEPOL Y VARPTR(poly(index(k)))

RETURN

Helt:
TEXTHODE 0: TEXT&IZE 12: TEXTFACE 0

EID

Sound 161

It stores the active keys and corresponding notes in the two
dimensional array key$. The INKEY$ function detects a keystroke
and then sends control to the Play routine. The corresponding fre-

162 Macintosh Graphics and Sound

Figure 5-3.
Piano keyboard

quency is played for the time set by the variable duration. The
polygon corresponding to that note is then filled with a pattern for a
short period. The major chunk of the data consists of numbers that
define the polygons. Figure 5-3 illustrates the program in action. The
bottom two rows of letters on the Mac keyboard are assigned keys on
the piano keyboard, as shown in Figure 5-4.

MUSIC ENTRY SYSTEM

The SOUND and WAVE statements are excellent for creating sound,
but if you are trying to translate a written piece of music, you must
rely on a translation table like Table 5-1. Why can't you simply enter
notes as letters and teach the computer to translate for you?

That's exactly what was done in the program that plays multiple
voice music. Although that program was not fancy, it got the job
done. Microsoft has taken this idea one step further. One of the dem
onstration programs included with Microsoft BASIC (MUSIC) has a
more sophisticated coding system. It reads music that has been coded
as DATA statements for as many as four voices and plays the music
for you. A modified version is shown here:

DEFINT A-Z
Dlt1 F•(68)
Log2of27.5• = L06(27.5•)/L06(2•)
FOR ><:g= I TO 88

A

Figure 5-4.
Note assignments

f'l'(x:I:) = 2"(Log2of27.5• + x:I:/ 12•)
NEXT x:I:

"Build fund11ment11l w11Ye fonn
PRUIT "use SIN W6Ye (yin)?";
Stay: i$:1NKEYS: IF i$:"" THEN Stay
PRINT i$
IF i$:"y" OR i$=-Y- THEN Sine
PRINT"Building array:·;
DIH Timbre(255)
K•=2*3.14159265•/256
FOR 1=0 TO 255: LOCATE 2, 14: PRINT i

Sound 163

Ob

r.
·'· .. . ---· '·-- ·~·

Timbre(l):31 *(61N(I *K•)+61N(2* l*K6)+61N(3*1*K•)+ 61N(4*1*K •))
NEXT I
WAYE O,Timbre
WAYE 1,Timbre
WAYE 2,Timbre
WAYE 3,Timbre
&OTO SymbolTable

Sine:
WAYE 0,61N
WAYE 1,61N
WAYE 2,61N
WAYE 3,61N

164 Macintosh Graphics and Sound

SymbolTeble:
cs= ·cdefgebp•-12346B<>r
Dl"Cf(19)
FOR 1:1TO19

READ CF(I)
IEITI
DATA 0,2,4,5,7,9, 11,0, 1,-1, 0,0,0,0,0,0, -12,12,0

'Duration Values
DI" CT•(19)
FOR l=1TO19

READ CT•(I)
IEXT I
RE"·-- pl,p2,p3,P4,p6,p8 correspond to 36.4 ... 4.55 time units
DATA o,o,o,o,o,o,o,o,o,o,36.4, 1a.2,12.1333333,9 .1,6.0666667•,4.55,o,o,o

hPley:
GOUIDRE&UnE
RESTORE Song

·reed default octaves for voices 0-3
FOR Y:OTO 3

READ VO(Y)
VO(Y):12*VO(y) + 3

IEITY

Loop:
GOUIDWAIT
F•Y=0T03
t•=VT•(y)
Fi=-1
READp$
IF p$:·x· THEI RePley

FOR i= 1 TO LEl(p$)
Ci:ll&TR(C$,"IDS(p$,i, 1))
IF Cb8 THEI NOSound
IF Fi>=O THEN GOURD F•(Fi),t•,,v: t•:VT•(Y)
IF Ci=8 THEN Ft:O ELSE Fi:CF(Ci)+VO(Y)
&OTO Slclp
NoSound:
IF Ci< 11 THH Fi=Fi+CF(Ci): &OTO Skip '• or -
IF Cl<17 THEN t•:CT•(CI): &OTO Skip '1 through 8
IF Ct<l9 THEN VO(y):VO(y)+CF(Ci): &OTO Slctp '<or>
i=i+1 'In
VT•(Y):CT•(l1&TR(C$."IDS(p$,i, I)))
IF Fl<O THEN t•:VT•(Y)
Slctp:

IEIT I

IF Fb=O THEN SOUND F'(Fi),t•,,y
llEJCT Y

SOUND RE&UHE
GOTO Loop

Song:
DATA 1,3,3,3
DAT A 12g>ge, 12p2de, 12p216g3f'g38, 16p6geb>dcced
DATA e<e, ge<b, b3eb3ge3d, dgf'gd<bgeb
DATA eb>c, 8>dc, e3f'g3de3<b, >cdedc<b8bg
DATA df'd, C<8>f', 83>da3ge3f', t•gedf'8>C<b8
DAT A gee, g<g>e, d3f'g3f'g38, bg8b>dcced
DATA ed, ge<b, b38b3ge3g, dgf'gd<bg8b
DATA cc•d, >Ced, 83f'g3e<e3>c, e>dc<begdgt•
DATA <gp, dp, <b3p, gp
DATAx

Sound 165

To use the program, you type notes and pauses directly from the
sheet music into DATA statements. You can use BASIC's editing fea
tures to edit the data as desired. The first four data numbers select
the starting octave for each voice. The octaves range from 0 to 7, 3
being the octave from middle C to B above middle C.

The rest of the data is the music. Each line in the original music
program feeds the equivalent of about 11/2 seconds of sound per data
line for each of voices 0 through 3. If you add more, the sound buffer
may run out of memory; if you add less, the song will be filled with
pauses.

The notation itself is very straightforward. The notes a through g
can be followed by the symbols # for sharp and - for flat, and by a
duration number. The duration numbers may be 1 for a whole note, 2
for half, 4 for quarter, 6 for sixth, and 8 for eighth. The duration for
the notes in each voice is set with the letter 1 followed by a duration
number. You set the basic duration in the first measure and then
change it only as needed. To cause a rest for a voice, use p followed by
a duration number. The seven symbols a through g refer to notes in
the current octave. To play notes in an adjacent octave, use < to move
down an octave and > to move up an octave.

Once you have entered the data for your song, the program plays
it in an endless loop. The RESTORE statement (see RePlay:) restores
the data pointer to the line Song, and the beat goes on.

You can use your own wave forms to modify the sound quality, or
you can keep the standard SIN wave.

166 Macintosh Graphics and Sound

Summary
As you have seen from the examples, sound adds an exciting

dimension to graphics displays. It gives your programs the profes
sional touch that separates the mediocre program from the outstand
ing one.

There is no "best" sound to use for all situations. You can use
BEEP or the simple square wave SOUND statement. Or you can
produce fuller sounds with the WAVE statement. Which statement
you use and when you use it is up to you.

BASIC Statements
BEEP
SOUND
TIMER
TIMER ON
WAVE

6
Transferring Images

The next two chapters are closely related. In this chapter you will
learn how to collect and display large screen images. In Chapter 7,
you will put these techniques to use by producing animation.

So far, we've used BASIC statements and ROM calls to manipu
late text and to draw different graphics shapes -everything from
points to rounded rectangles and polygons. In this chapter you will
learn how to collect these images, as well as images from other pro
grams. You will also learn how to save them to disk, load them back
into memory, and redisplay them almost instantaneously anywhere
on the screen or the printer, expanded or compressed to your specifi
cations. These are the essential techniques for manipulating images
quickly on the Mac. Mastering these techniques paves the way for
animation.

167

168 Macintosh Graphics and Sound

There are two primary ways of storing graphics in memory. One
way is to store data as a bit map, a bit-for-bit represention of the
screen pixels that is stored in an integer array. The other method is
to store the data as a picture, a series of drawing commands stored in
a string variable. We will examine the techniques and effects of both
of these methods.

Storing Images in Arrays (Bit Maps)
The array storage method uses the GET and PUT statements.

GET takes information from the screen and stores the bit map into
memory; PUT transfers the bit map from memory onto the screen.

BIT MAP STORAGE IN MEMORY

The storage format used by GET and PUT is straightforward:
BASIC stores the image as a series of integers. When you declare an
array to hold a bit map, you should declare it as an integer. If you use
other data types, you will not be able to interpret the data properly.

Figure 6-1 gives an example of how an image is stored in
memory. The first cell of the integer array, a(O), contains the width of
the rectangle; the second cell, a(l), contains the height of the rectan
gle. The remaining cells contain the bit pattern of the image. The
bits are arranged in groups of 16 horizontally. For this example, the
pattern is 21 bits wide, so a 32-bit grid is used. When the pattern is
displayed, the rightmost eleven bits of each line are ignored, since the
computer can tell from the width value in a(O) that it should display
only the first 21 bits. In the figure's example, cells a(2) and a(3) con
tain the bit pattern for the first horizontal line. Cell a(2) is the left
side of the line, and cell a(3) is the right side. The remaining cells
continue left to right and down the bit map.

In the example, the first cell is exploded to show you how the inte
ger value in the cell is calculated. Reading from right to left, you can
see that each bit in the cell represents an increasing power of 2, as
shown below each bit. The exception is the leftmost bit, the "sign bit."
To calculate the cell's value, you add the values of the bits that are on
(black). If the sign bit is on, subtract 32768, giving the proper nega
tive value. In our example, the first cell is calculated by summing 4,
8, 16, 32, 64, 128, and 256, giving the value 508.

As you can see, creating a drawing and converting it to a bit map
can be a long, tedious process. This is the way most images were
created on earlier microcomputers that produced bit-mapped graph-

Transferring Images 169

508

D
A

r---~ '-----1

~·~12~2~5611~281~641~321~118141~211
Width in pixels o(O) d I
Height in pixels B(1) 1
Bit pflttern B(2) _,,.. /,

o(3) / /

21
21
SOB
0

Figure 6-1.

o(4)
e(S)
0(6)
o(7)
0(8)
o(9)

e(10)

1539
0
2048
-32768
4096
16384
8192

Array storage format

----- 21 -----"'

ics. The task is simple and fast on a Macintosh, thanks to a utility
called Paint Mover. It converts drawings made with MacPaint into
the proper bit-map data format that BASIC needs. (We'll look at
Paint Mover again later in this chapter.)

TRANSFERRING A SCREEN IMAGE TO AN ARRAY (GET)

To see how the GET command works, enter this program.

DIH holdjg (708)
FOR IC= OTO 100 STEP 100

FOR y = 0 TO 100 STEP 100
FOR i = 0 TO 100 STEP 10

IF y = 100 THEN LINE (1C,y)-(i,O) ELSE LINE (1C,y)-(i, 100)
IF IC= 100 THEN LINE (IC,y)-(0, i) ELSE LINE (1C,y)-(100,i)

NEXT i
NEXT y

NEXT IC
6ET (O,O)-(100, 100),hold~

170 Macintosh Graphics and Sound

The program draws a figure on the screen and then, using the GET
command, loads the image into an array called hold%. In this exam
ple, the image is drawn within a rectangle that is bounded by the top
left coordinate (O,O) and the bottom right coordinate (100, 100). These
coordinates are used in the GET command to tell BASIC which por
tion of the screen should be retrieved.

The size of the array hold% is calculated with the following
formula:

((bottom - top + 1) * INT(((right - left + 16) I 16)) + 1)

In the formula, bottom is the highest Y coordinate (100) and top is the
lowest (0). Right is the highest X coordinate (100) and left is the low
est (0). Applying the values in the example to the formula, you get

((100 - 0 + 1) * INT (((100 - 0 + 16) I 16)) + 1 = 708)

TRANSFERRING ARRAY DATA TO THE SCREEN (PUT)
To display the saved image on the screen, add the following lines to
the end of the program you just entered:

CL6
FOR i =I TO 10

PUT (RND*400,RND*200),hold:g,psET
NEXT i

The new code clears the screen and then displays ten copies of the
image at random locations on the screen. The coordinate given in the
PUT command tells BASIC the location of the upper-left corner of
the image. The image is displayed to the right and below the point
specified. Following the coordinate is the name of the array holding
the image. In the example, we specified hold%. If no subscript is spec
ified, BASIC starts from the beginning of the array.

The last portion of the PUT statement is the display option. The
PUT command has different options that determine how an image
interacts with the current screen contents. The option PSET was
used in this example. The other options are PRESET, AND, OR, and
the default XOR. Figure 6-2 shows how each of the options affects
three different backgrounds: white, gray, and black. Try these
options for yourself by changing the PUT command in the example.·

The PSET and XOR options are particularly useful for animating
screen images. PSET will clean up leftover points as an object moves

Transferring Images 171

I PSET I

Figure 6-2.
PUT options

!PRESET! AND OR XOR

around the screen. XOR preserves the screen background as an
object moves over it. Chapter 7 will discuss both options in detail.

CHANGING THE SIZE OF THE IMAGE

Besides simply specifying where to display a bit map, PUT also
allows you to specify two coordinates. As in the GET command, the
first coordinate specifies the top left corner of the display, and the
second coordinate specifies the bottom right corner. When you define
both corners, the PUT command will automatically scale the image
to fit the new dimensions.

To see how this works, replace the PUT loop in the sample pro
gram with the following code:

FOR I= I TO 10
IC= RllD*400
die= (RJID*l50)+50
y = RJID*200
dy = (RJID* 150)•50
PUT (x,y)-(ic+dic,y+dy),holdi,PSET

JIEICT i

This revised program will display the image ten times using random
locations, widths (dx), and heights (dy).

·storing Images in Strings
The second method of storing images is with string variables. The

BASIC statements and functions required include PICTURE, PIC
TURE ON, PICTURE OFF, and PICTURE$.

172 Macintosh Graphics and Sound

CREATING A PICTURE STRING

Creating a picture string can be compared to using a tape recorder.
You turn the recording mechanism on with PICTURE ON. Then, as
the computer executes graphics commands, it records each command
in the string PICTURE$. When the drawing is complete, you turn
the recording off with PICTURE OFF.

To show you how this works, we will use the previous program
with a few changes:

PICTURE ON
FOR x = 0 TO 100 &TEP 100

FOR y = 0 TO 100 &TEP 100
FOR i = 0 TO 100 &TEP 10

IF y = 100 THEN LINE (x,y)-(1,0) ELSE LINE (x,y)-(l, 100)
IF x = 100 THEN LINE (x,y)-(0, 1) ELSE LINE (x,y)-(100,i)

NEXT i
NEXT y

NEXTx
PICTURE OFF
hold$ = PICTURE$
FOR i = 1TO10

PICTURE (RND*400,RND*200),hold$
NEXT I

Instead of using GET and PUT, this program starts the picture
creation process by executing the PICTURE ON command. Next, the
lines of the design are drawn. While the drawing is taking place,
BASIC creates a coded string called PICTURE$ that contains a log
of all drawing commands executed during the picture-creation ses
sion. The session is ended by the PICTURE OFF command. At that
point, the string PICTURE$ is available for you to use.

Notice that the screen does not display the image as it is drawn
unless SHOWPEN is included. This feature of PICTURE ON could
be used to construct an image that would not be shown to the viewer
until it was complete.

In this sample program, hold$ is assigned the value of PIC
TURE$. Storing PICTURE$ in another string variable allows you to
create many pictures in the same program. Each new picture you
create can be stored in a different string.

Once the picture is created, you can display it on the screen by
using the PICTURE command. This command looks a lot like the
PUT command. One difference, however, is that PICTURE does not
provide the display options that PUT provides. You may only display

Transferring Images 173

picture strings in the same manner as they were created.
The display loop at the end of the program displays the picture at

ten random locations on the screen. Notice the difference in the dis
play. When you used PUT, the images flashed on the screen. Using
the PICTURE command, you can see each individual line as it is
being drawn.

CHANGING THE SIZE OF A PICTURE STRING

As with the PUT statement, you can resize an image by specifying a
lower-right coordinate in the PICTURE statement. Replace the dis
play loop at the end of the sample program with the following code:

FOR i =I TO 10
x = RND*400
dx = (RND*l50)+50
y = RND*200
dy = (RND*l50)+50
PICTURE (x,y)-(x+dx,y+dy),hold$

NEXT i

Now run the revised program. Something is wrong! The resized
images are much smaller than the ones generated by the PUT state
ment. This is a subtle difference between the PUT and PICTURE
statements. The PUT statement resizes the image based on the origi
nal size of the image-in this case, 101 bits wide and 101 bits high.
The PICTURE statement resizes the image in relation to the size of
the window when the PICTURE statement was created.

To see how this works, add a STOP statement to the program
immediately following the PICTURE OFF statement. Then make the
output window smaller by clicking and dragging in the output win
dow's size box. Next, run the program. The program will stop after
the picture has been created. At this point, the output window is still
blank. Again, using the window's size box, make the window large
enough to fill the screen. Restart the program by selecting Continue
from the Run menu. The images drawn are now larger than the ones
from the initial run.

SHOWPEN and HIDEPEN
The BASIC commands SHOWPEN and HIDEPEN are used to

make visible or to hide the results of drawing commands. When the
PICTURE ON statement is executed, BASIC will automatically exe-

174 Macintosh Graphics and Sound

cute HIDEPEN, which causes the results of all drawing commands
to be invisible and allows the picture to be created without affecting
the screen. When the PICTURE OFF statement is executed, BASIC
will also execute SHOWPEN, making drawing commands visible
again.

You can control drawing visibility yourself by adding SHOWPEN
and HIDEPEN statements to your program. If you wish to see a pic
ture as it is being created, add a SHOWPEN statement after a PIC
TURE ON statement. This will counteract the HIDEPEN command
that BASIC automatically executes. You can also add a HIDEPEN
statement before the PICTURE OFF command to counteract its
SHOWPEN.

Be careful when you use these commands. The effects of SHOW
PEN and HIDEPEN are cumulative; that is to say, if you execute
HIDEPEN three times before a SHOWPEN, you must execute
SHOWPEN three times before drawings become visible again. The
system contains a pen status register, which acts as a counter. When
the register is zero or greater, drawings are visible. When the regis
ter is less than zero, drawings are invisible. Executing SHOWPEN
adds 1 to the register; executing HIDEPEN subtracts 1 from the
register. When you run BASIC, the register starts at zero (visible). If
HIDEPEN is executed three times, the register will contain -3
(invisible). Executing SHOWPEN once will increment the register to
-2 (still invisible). It will take two more executions of SHOWPEN to
return the register to zero.

Comparing Storage Methods
Which method of storing an image in memory is the best for your

needs? This question will become very important when you use
images for animating objects.

Speed is one of the critical factors in creating believable anima
tion. Which storage method can recreate an image on the screen in
the least time? The answer is, "It depends."

Two important factors determine which method is most appro
priate. One is the size of the image; the other is its complexity (the
number of QuickDraw calls it requires). PUT slows down for large
images, but the complexity doesn't matter, because the image is
stored as a bit pattern in memory. PICTURE is fast if the number of
QuickDraw calls is minimal, but it slows down for a complex image.

Transferring Images 175

The following listing loads a large rectangle into memory in both
formats. Then the array format is displayed in a loop by PUT, and
the time is recorded by TIMER. The string format is displayed by
PICTURE in the same size loop. The string format performs the
same operation in less than half the time. Thus, for rapid display of
large, simple figures,. string storage is preferred.

'drew picture end store in memory
RANDDHIZE TIHER
DEFINT e: loop:50
PICTURE ON: GHOWPEI
FDR i=I TO 20

CIRCLE(245+RND*20, 126+RID*20), 10
NEXT i
PICTURE OFF
X1=225:yl:106:X2=265:y2:146
n=2+((y2-y 1)+1)*INT(((x2-x1)+16)/ 16)
DIH errey(n)
GET (x 1,y 1)-(x2,y2) ,errey
CLG
PRINT"erray and string loeded"
606UB Peuse

'display errey
sterl=TIHER
FOR I= I TO loop

PUT (225, 106),errey,OR
CLG

NEXT i
done:TIHER
elepse=done-stert
PRINT "elapsed time for array:·;elapse
GOGUBPause
CL6

'display string
sterl:TIHER
FOR i= 1 TO loop

PICTURE ,PICTURE$
CLG

IEXTi
done=TIHER
elepse=done-stert
PRINT"elapsed time for string:·;elapse
Stay: IF llKEYS=·· THEN Stey
EID

Pause:
FOR i= 1 TO 5000: NEXT i
RETURN

176 Macintosh Graphics and Sound

However, array storage is clearly the champion in this speed con
test, as you have seen in the earlier examples. The PICTURE com
mand has to redraw the image each time the image is displayed,
which slows it down significantly.

PRESERVING THE BACKGROUND
Another difference that you might want to consider besides speed is
how the imaging technique affects the current screen contents. In
some instances you will want an object to float across the screen
without affecting the background. (The mouse pointer is an example
of this.)

The PICTURE statement simply writes over the background in
OR mode-black dots in the picture image change the screen pixels
to black; white dots don't affect the current screen contents. But
there is no way to recover the original screen contents unless you
stored them in memory first.

The PUT statement is good for controlling interaction with the
background. The XOR mode has a unique property: if you PUT an
image in XOR mode twice in a row, the PUT image disappears, leav
ing the original background intact. You will see this in action in
Chapter 7.

CONSTRUCTING IMAGES
One advantage of string storage over array storage is that you can
create images out of sight of the viewer. With array storage you must
assemble the image on the screen and then GET the image into an
array. The PICTURE ON statement does not show the image being
created unless you issue a SHOWPEN statement.

One final advantage of string storage is that it stores images in
the same format as the Clipboard. Thus, string storage is the natural
choice when you transfer images between BASIC and other pro
grams via the Clipboard. The next section shows how this is done.

Transferring Images Between
BASIC and Applications Programs
Until now, the programs in this chapter created images with

BASIC statements and stored them in string or array format. This
section looks at techniques for using figures created by other pro
grams, such as MacPaint or Microsoft Chart, with BASIC programs.

Transferring Images 177

The focal point of the transfer facility is the Clipboard. The Clip
board stores images as a sequence of QuickDraw routines, just like
those stored in PICTURE$. Because the QuickDraw routines are
stored in ROM, the Clipboard storage format provides a standard
that can be used by all Macintosh programs.

You know, for example, that a MacPaint screen can be copied into
the Clipboard, and that it will stay there until something else re
places it. You could draw an image with MacPaint, copy it to the
Clipboard, quit MacPaint, and load BASIC. The MacPaint image
would still be in the Clipboard.

You can also copy images from the Scrapbook into the Clipboard
without ever leaving BASIC. Here is a quick review of the process:
choose Scrapbook from the Apple menu, choose a picture, and then
select Copy from the Edit menu to copy the image to the Clipboard.
Finally, close the Scrapbook window.

TRANSFERRING IMAGES
FROM THE CLIPBOARD TO BASIC
Use one of the methods just given to copy an image to the Clipboard.
With that done, the only question is how to pull that image into a
BASIC string variable. You need a program that will read the Clip
board contents and store them in a BASIC-compatible format. As you
enter the following program, be careful not to use the Copy or Cut
option from the Edit menu, or the image you stored in the Clipboard
will be lost. Enter the following:

PRINT ·copy 11 picture from the Scrapbook"
INPUT "Hit return to continue",><
CLS
OPEN "CLIP:PICTURE" FOR INPUT AS 1
i$=1NPUT$(LOF(I), I)
CLOSE 1
PICTURE ,i$

This program transfers an image from the Clipboard to the string
variable i$. It addresses the Clipboard as a device, just as it would
address a disk file. The device name reserved for the Clipboard is
CLIP:PICTURE. The program opens the Clipboard as a file for
input. INPUT$ brings the image from the Clipboard into the string
variable i$. Then the Clipboard file is closed. The PICTURE state
ment displays the image on the screen.

Because no coordinates were specified in the PICTURE state
ment, the image is displayed where it was recorded originally. To
specify your own rectangle and see how PICTURE scales the image,

178 Macintosh Graphics and Sound

you can either add (xl,yl) to pick a different position or use
(xl,yl)-(x2,y2).

TRANSFERRING IMAGES
FROM BASIC TO THE CLIPBOARD

The next step is to learn how to transfer an image from a BASIC
string variable back to the Clipboard. You can use this technique to
transfer an image created in BASIC to an applications program.

The following program demonstrates how to do this. First, an
image is created with PICTURE ON, so that it is recorded in the
string PICTURE$. Then the Clipboard is opened for output and the
image is sent via the PRINT# statement. To verify that the image
made it safely to the Clipboard, the Clipboard contents are loaded
back into a string and redisplayed on the screen in a compressed
form:

'draw and record picture
PICTURE ON: &HOWPEN
FOR t=O TO 3.14 STEP .01

IC 1 =240+220*COS(t)*C06(4*61N(2*t))
y 1=200+160*SIN(t)*COS(4*SIN(2*t))
112= 170+220*COS(t)*C06(3*t/2)
y2= 100+80*61N(t)*C06(3*t/2)
LINE (111,y 1 Hx2,y2)

NEXT t
PICTURE OFF

'store image in clipboard
OPEN "CLIP:PICTURE" FOR OUTPUT AS 1
PRINT" 1, PICTURES
CLOSE 1
CL&

'recall image from clipboard end display
OPEN "CLIP:PICTURE" FOR INPUT AS 1
i$=1NPUT$(LOF(1),1)
CLOSE 1
PICTURE (50,50)-(450,200),1$
Stay: IF INKEYS="" THEN Stay

Storing Images on Disk
Moving images in and out of BASIC is a big advantage, but wres

tling with MacPaint every time you want to move the same image
into BASIC can get tiresome.

A better approach is to capture the image on disk the first time it
is transferred into BASIC. Then you can recall it directly from the

Transferring Images 179

disk into memory without swapping disks and programs. Because
images brought in through the Clipboard are stored in string format,
that's where this story will start.

STRING STORAGE ON DISK

Storing a string-formatted image on disk is a two-step process: load
ing the image into a string, and saving the image to disk. The next
program does both. It uses PICTURE ON to store an image in PIC
TURE$, and then the string is written to disk:

'record imege
PICTURE ON
6HOWPEN
FOR 1=1 TO 100

m=HOU6E(O)
lC=HOU6E(1): y:HOU6E(2)
LI NE(M,y)-(>C+ 10 ,y+ 1 O),,b
LI NE(490->C,253-y)-(490->C+ 10,253-y+10) ,,b
L INE(>C,253-y)-(>C+ 10,253-y+ 1 O),,b
LINE(490->C,y)-(490->C+ 10 ,y+ 10) ,,b

NEXT I
HIDEPEN
PICTURE OFF

'seve string file
f$=FILE6$(0,"seve es string file:")
IF f$:"" THEN END
OPEN f$ FOR OUTPUT AG 1
PRINT •1, PICTURE$
CLOSE 1

There are couple of points to notice about the program. The
FILES$ function is a very powerful way to interact with disk files. It
brings up standard Macintosh dialog boxes to select files from the
disk. FILES$(0) prompts the user for a file name. FILES$(1) lets the
user select the name of an existing file. Also, the file format used in
this program is simple sequential disk storage. It is not practical to
store strings of varying length in a random access file.

Loading a string image back into memory from the disk is
accomplished in much the same fashion, but with the order reversed.
Enter the following:

'load string file
f$•FILES$(I)
IF f$="" THEN END
OPEN f$ FOR INPUT AS 1
imageg$=1NPUTS(LOF(1),1)
CLOSE I

180 Macintosh Graphics and Sound

'display image
FOR imO TO 200 STEP 40

CLS
PICTURE(i,0)-(490-i,253-i),image$

NEXT i

Stay: IF INKEY$··· THEN Stay

The INPUT$(LOF(l),1) function reads the entire contents of the
disk file into the string image$.

ARRAY STORAGE ON DISK

Images loaded into arrays can also be transferred to disk. This next
listing gets an image from the screen into an array and then stores it
on disk:

'record image
DEFINT e-z
nfreme=1
PENNORHAL
FOR i=1TD100

m:HOUGE(O)
X=HDUGE(l): y=HDU6E(2)
LINE(x,y)-(x+ 1O,y+1 O),,b
LINE(490-x,253-y)-(490-x+ 10,253-y+ 1 O),,b
LINE(x,253-y)-(x+ 10,253-y+ 1 O),,b
LINE(490-x,y)-(490-x+ 1O,y+1 O),,b

NEXT i
n=2+(((253-1)+1)*INT(((490-1)+16)/ 16))
DIH errey(n)
GET (1, 1)-(490 ,253) ,emiy

'seYe es errey file
f$:FILE6$(0,"S11Ye es array file:")
IF f$=·· THEN END
OPEN f$ FOR OUTPUT AG 1
PRINT "1,n;nfreme;
FDR i=OTO n

PRINT "1, errey(i);
NEXT i
CLOSE 1

This program stores the size of the array and the number of frames
(nframe). You could also store the coordinates of the upper-left corner
of the GET rectangle, which makes it possible to recreate the image
in its original position.

Storing images in array format is very convenient, but there is a

Transferring Images 181

price-an image stored in array format may require as much as
three times the disk space that it would require in string format. A
utility program that converts between the two formats is provided at
the end of the chapter.

The next listing shows you how to load the image back into
memory and display it on the screen:

·1oad array file
DEFINT e-z
lnOiskA·
f$-flLE6$(I)
IF f$="" THEN END
OPEii f$ FOR INPUT AS I
INPUT' 1,n,nfreme
DIH errey(n)
FOR i=O TO n

INPUI 'I, errey(l)
NEXT i
CLOSE I

'd1spley 1mege
FOR k-0 TO 200 STEP 40

CLS
PUT ((x• 1),y)-(490-i ,25:~-i),errny,PSET

NEXT i
Stey: IF INKEYS="'" lHEll Stey

The advantage of storing your images on disk is that they are there
for instant recall, which eliminates having to slip in and out of
BASIC to load images from other programs.

Sending Images to a Printer
If you're familiar with the Macintosh, you've probably used its

built-in screen dump feature. When you press SHIFT-COMMAND-4, the
Imagewriter prints a copy of the screen. Actually, there are two vari
ations within this. If the CAPS LOCK key is up, only the current output
window is printed. If the CAPS LOCK key is down, the entire screen is
printed.

PRINTING LARGER IMAGES
The screen dump feature works fine for printing the output from
most BASIC programs, but the Mac screen is clearly limited in size.
What if you want to print something as large as an entire sheet of
paper?

182 Macintosh Graphics and Sound

Fortunately, you can do this, because BASIC's limits on its state
ments are greater than the boundaries of the screen. If you direct a
large image to the screen, all points that fall outside the screen boun
daries are ignored. But if that same image is redirected to an output
device with a larger drawing area (a printer), BASIC can take
advantage of the larger dimensions.

The two statements you will use to redirect the output are OPEN
"lptl:" FOR OUTPUT AS 1 and WINDOW OUTPUT #1. The OPEN
statement opens the printer as a device, just like opening the Clip
board or a disk file. The device name lptl: is reserved for the printer.
The channel associated with this device is set to 1. The WINDOW
OUTPUT # 1 statement sets up a direct link between the output win
dow and channel 1, which represents the printer. In this way, any
thing "drawn" to the window will be routed to the printer instead.
Because the printer is much larger than the screen, you can create a
drawing window as large as the printer allows. On a standard
Imagewriter, that size is 640 pixels (0-639) wide by 752 (0-751) pixels
high.

The next step is to draw something on the window. The image is
not displayed on the screen, but it is assembled in memory. When the
window is closed, the image is converted to dot patterns that the
printer understands and prints.

DEF INT e-z: DEFGNG t
WINDOW 1, "grephics",(0,0)-(639, 751)
OPEN "lpt V FOR OUTPUT AS •1
WINDOW OUTPUT •1
LINE (0,0)-(639,751),,b
FOR t::O TO 6.28 STEP 01
x I :320+200*COS(t)*C0Sl4*SIN(2*t))
y 1=150+80*SIN(t)*COS(4*61N(2*t))
X2::320+200*COS(t)*COS(2*t)
y2:600+80*SIN(t)*COS(2*t)
LINE (x 1,y 1)-(x2,y2)

NEXT t

CLOSE •1

St11y· IF INKEYS=". THEN St11y

The WINDOW 1 statement opens a window large enough for all the
graphics statements issued. Figure 6-3 shows the results.

Now you can explore printing graphics in a larger format than
the screen. Since Microsoft BASIC allows pixel coordinates from
-32768 to 32767, you should be able to use output devices of any size.

Figure 6-3.
Full-page printout

Transferring Images 183

184 Macintosh Graphics and Sound

ADJUSTING FOR PRINTER DISTORTION

There is another subtle difference between using SHIFT-COMMAND-4
to copy the screen to the printer and using WINDOW OUTPUT # to
draw to the printer. The screen dump utility controls the printer so
that the printout reflects the 1-to-1 aspect ratio of the screen. But the
WINDOW OUTPUT # statement uses the default horizontal spacing
of the Imagewriter, which is 80 dots per inch, compared to the fixed
72 dots per inch of the vertical spacing. Thus, dots on the printout are
closer together horizontally than they are on the screen, which makes
circles look like ovals.

You can use two approaches to adjust for this distortion. The first
is to change all your drawing commands to stretch out the horizontal
coordinates by a factor of 80/72 (10/9), which makes the printout have
a 1-to-1 aspect ratio. A second approach is to draw on-screen without
any adjustments, using the PICTURE ON statement to record the
graphics commands. Then use the PICTURE statement to redraw
the image to the printer with the coordinates expanded by 10/9. This
gets the job done with only one adjustment. The next listing shows
the second approach:

DEFlln e-z: DEFSN6 t
WINDOW 2,"grephics",(0,0)-(639,751)
SHOWPEN
PICTURE ON
LINE (I 00, 110)-(300,220),,b
LINE (120,120)-(160,160),,b
CIRCLE(140, 190),20
PICTURE OFF
HIDEPEN
OPEN "lpt I:" FOR OUTPUT AS •1
WINDOW OUTPUT • 1
PICTURE (O,O),PICTURE$
HOVETO 170, 146: PRINT"square·
HOVETO 170, 196: PRINT"circle"
PICTURE (0, 140)-(639*10/9, 140+751),PICTURE$
HOVETO 190,288: PRINT"adjusted square"
HOVETO 190,336: PRINT"adjusted circle"
CLOSE •1: WINDOW CLOSE 2
Stay:IF INKEY$:"" THEN Stay

Note that for the program to run correctly the first time, the WIN
DOW statement must appear before the image is recorded.

The second PICTURE statement uses the full range of the paper,
(0,0)-(639, 751), with two changes. First, 140 is added to the two y

D
0
D
0

Figure 6-4.

square

circle

11djusted square

11dJusted circle

Adjusting for printer distortion

Transferring Images 185

Result usmg stenderd lmegewriter
espect retio of 80 dots per inch
ecross end 72 dots per inch down

Result after 11djusting horizontel
dimension to compensate for
printer distortion

coordinates to shift the figure down the page. Second, the maximum
x value (639) is multiplied by 10/9 to stretch the images. Figure 6-4
shows the difference.

Applications and Ideas
There are several ways to manipulate images. This section will

describe a few methods.

DIGITIZING IMAGES

One of the easiest ways to collect images to use in BASIC programs is
with the assistance of a digitizer. A digitizer transfers complex
images to a digitized format that a computer can use. There are sev
eral such units available for use with the Macintosh. A variety of
methods can be used to capture the image, including using the print
er as an input device, using a fixed-lens camera, using no lens at all,
and using signals from a video camera or recorder.

The digitized sample shown in Figure 6-5 was created with Mac
Vision by Koala Technologies Corporation (3100 Patrick Henry Drive,
Santa Clara, CA 95052-8100). The image was captured by a video

186 Macintosh Graphics and Sound

Figure 6-5.
A digitized image

camera and sent to the MacVision hardware unit. This magic box
digitizes the image and displays it on the screen, where it can be
copied into the Clipboard and pasted into MacPaint or loaded
directly into BASIC. The required software installs easily as a desk
accessory (in the Apple menu) and requires only about 6K of disk
space.

The great advantage of digitized images is that they eliminate the
need to develop graphics from scratch. The camera pulls the image
into the computer; you can touch it up with FatBits if you want. Then
it can be transferred to BASIC and manipulated as desired.

USING MACPAINT

MacPaint's FatBits feature is a natural for editing graphics images.
Images created by applications programs, or even by BASIC, can be
transferred in two ways: via the omnipresent Clipboard, or via the
screen-dump-to-disk feature using SHIFT-COMMAND-3. Remember, if
the CAPS LOCK key is up, SHIFT-COMMAND-3 copies the current win
dow contents to a disk file. If the CAPS LOCK key is down, it dµmps the
entire screen to a disk file. The Mac will number these files sequen
tially as screenO, screen!, and so on. The best part of all is that files
generated this way are totally compatible with MacPaint.

Transferring Images 187

The screen dump feature is quick and easy, but it does have lim
itations. Screen images can easily use 20K of disk space apiece, so
you must monitor disk space and keep close track of which image is
stored· in which screen file.

How can you transfer a MacPaint image back to BASIC? The
standard method is again the Clipboard. Another way is to convert
MacPaint files into a format that can be read by a BASIC program.
A program called Paint Mover (MacinSoft, P.O. Box 27583, San
Diego, CA 92128) can do this and more.

Paint Mover has several advantages over the Clipboard. It can
convert an entire MacPaint document, whereas with the Clipboard,
the image size is limited to the size of the MacPaint window. Paint
Mover allows you to create images that fill an entire BASIC screen,
something you cannot do with the Clipboard. Paint Mover can also
take several MacPaint files and merge them into a single BASIC
compatible file. The images can be loaded into an array and dis
played with PUT. Thus, several images can be readily available, sub
ject to memory limitations. If you find yourself doing a lot of cutting
and pasting between MacPaint and BASIC, Paint Mover would be a
big time-saver.

What's more, the PUT statement is the most suitable for creating
animation, since it permits the many display options necessary for
preserving the background and masking display areas. Files created
by Paint Mover are fully compatible with the PUT statement's data
requirements. Using this package is probably the easiest way to
create a large number of BASIC-compatible images for animation.

TRANSFER MODULES
Many transfer programs were introduced in this chapter. The next
listing pulls them all together in one program so that you can see how
they work together:

'ilitlllllze llSiables
&R•DMIZI: TIMER
DEFINI e-z: DEFSNli t n..,...
nf,....1

'set-.nau
t«• 7,0,1,"Stringlnnfer"
IMENI 1,1,1, '\Gld fram Clip"
IMENll l,2,1, "SmJe to Clip"
IMENI 1,5, 1, '\Gld fram llslc"

188 Macintosh Graphics and Sound

MDIII 1,4,1,"S-tollsk" ME• 1,5, 1, 'toad frum screen•
ME• 7,6, 1, "Send to screen"
MElllll 1,1,1,"Sendtoprinter•
MElm 1,8, 1, "S tap•
ME• 8,0,1,'Rrnyl,_.fer-"
ME• 8, 1, 1, 'toad frum dsk"
ME• 8,2,1, "S-to dsk" ME• 8,l, 1, 'toad frum screen"
ME• 8,4,1, "Send to screen"
ME• 8,5, 1, "Send to printer-•
ME• 8,6,1,"Stap•

OuMDE
ME•
msg$="Select meoo item"
llSUIM!ssege
sc• mll-NNU(O)
IF mll<"l 11 mD>8 TIEN scm
IN mll-6 5111 llBll1, llBll8

meool:
IN MENU(1) liDSH lnClip, OutClip, lnDisk, OutOisk, lnScreen, OutScreen, OutPrinter, halt
lilTD OoMnl

IDIRIB:
IN MENU(I) liDSll lnDislcl, OutOislcl, lnScreenR, OutSr.reenll, OutPrinterft, halt
lilll OoMnl

lnClip:
DPEN "CLIP:PICTURE" Fii INPllT RS I
i S=llllPUJ $(taF(1),1)
IF i$m"" I llEN msgS= "»> Clipbo.-d is ~y <«": liDSIB M!stege

IF i$<>"" HEN msg$=')» Clipbo.-d recorded in string<«": 60SUB M!ssege: imageS=i$
CLOSE 1

IETU.N

OutClip:
IF image$="" HEN msg$= ')))string is ~y«<": lilSll M!ssege: llHIN
DPEN "CLIP:PICTURE" Fii llTHI IS I
PlllNI #1, image$
CLISE 1
msg$="String recorded in Clipbo.-d": lilSll M!ssege

IETllN

lnllislc:
f$=FILES$(1)
IF f$="" I lllN Ill HN
DPIN f$ FDI IWSI IS 1
nwg$=10llling string file"
delay=1
lilSll M!ssage
imege$•1•UI $(LIF(1),1)
ELISE 1

BllllN

OutDislc:
f$=FILIS$(0, "smie as string file:"J
If f$="" flfN Bil UllN
DPIN f$ fll IUIPUl IS 1
PllNI #1, image$
ELISE 1

BITUIN

lnScreen:
ELS
•INID• 2,,(100, 100)-(400,100),2
1111 IN 2, 1, "from tnay",(80,20)-(200,40),2
IUH IN :5, 1, "from draoing",(80,60)-(250,80),:i.'

Dill:
IF lllLD&(0)<>1 HEN Dill
•tNDD• I
PIEilll IN
Sll•IN

Transferring Images 189

IF lllll&(1)=2 HIN liDSUI OutScreenll: IF flaga=O HIN PIEIUlll IFF: llTUllN
IF DlllLD&(l)-3 HIN liDSUI Onu
PIEIUll IFF
imege$=PIEIHI$
msg$="Pict1We recorded"
5DSUI M!Ssage

llIUllN

outscreen:
If image$<>"" IHEN PICIUll \0,~0l,image$: llTUIN
msg$=">» Load string first«<"
lilSUI M!Ssage

1111 .. N

OutPri nter:
If imege$~"" lllN msg$=">» Load string first«<": lilHI fliffsage: IHllN
•INDD• 2, "printing",(O,OJ-(6l9,"151)

190 Macintosh Graphics and Sound

IPEN ipt1:" HI DUTPUl IS #1
lllNDDIU DUI PUl #1
Pl[JUll ,image$
CIDSE #1
•INIDll 1

IUllN

lnDiskB:
f$=JIUS$(11
IF f$="" I IEN ID UIN
msg$= ">»Loading .-ray file«<"
delay=t
lilSUI M!ssege
IPEN f$ Fii INPll IS t
IF flaga=t IIEN HISE a
INPUl #1,n,nframe
DIMatnJ: flaga=l
HI i"'9 II n

INPIT #t, ll(i)
NEiii i
CHSE 1

IUUIN

OutOiskB:
If flaga---O llfN msgS=">» load .-ray first«<": lilSUI M!ssege: IHUIN
f$=J ll.H$(0, "SIM! 8S .-ray file:"J
If f$="" HEN IDUIN
msgS= "SlllJing .-ray file"
delay=1
IOOSU• M!ssage
IHN f$ Fii 111 PUI IS t
PllNI #t ,n;nfnme;
HI i"'fl l D n

PllNl #1, ll(°O;
NHI i
CLISE 1

IUllN

lnSrreenA:
cu
lllNDD• 2 ,,U oo, tuOH400,lOOJ,1
IUll IN 1, 1, "from string",(40,70Hl00,40),7
IUTTDN 'S, I, "from drewing",(40,60J-(2'i0,80),1

Dilll2:
IF DlllDli(OJ<>t HIEN Dilll1
llHNDDllll t
If DllLDli(tJ=2 llEN lilSUI OutScreen: If image$="" lllN IUUIN
If llllDli(t)=l llEN lilSll Dr11111

pet'X(I)= -21911
pet'X(2)= -21911
pet'X(J}~ -21911
pet1,(4)= -21931

lnSloop:
msg$= "select r•tllft!lle With 11111USe"
lilHIM!ssage
•Ill MllH(O}=U --H1 =+mlSl(J)
y1=NISE(4J
H2"111
g2-g1
PE•IT lllPTl(pet'X(1))
PE .. IE10
If fl91SE(O)>~ TIEN lnSloap
•ILE MllSE(O)<O

r(Omy1
r(3)"'!(l
If g2<yl llEN r(l)=y2: r(J)"91
rt2)=al
r(4)"112
If H2<Ht TIEN r(2)=H2: r(4)=t11
JllKIECI lllPTl(r(I })
HJ=a2
yJ-y2
llli1u tHJ=t12 •• yJ=g2)

Z"=NllH(O}
HJ=MllH(IJ
yJsMIUSE(2) ...

HIKllCI lllPlltr(IO
H2=aJ
Y2'111 ...

HI "'111)
gl=rt1J
H2=rt4H
yl'"f11J-I

&etlt:
PENNllfl9l
HIKIEtl lllPll(r(t))
If flega=I llEN HISE e
1'1'=2+(tg2-yl J+ I)* INI (((H2-HI J+ 16)/ I 6)
llMe(n)
flega=I
ID (HI ,yl HH2,y2),e
msg$= ')» rectllft!lleselected<«"
11111 M!ssege

Transferring Images 191

192 Macintosh Graphics and Sound

tlS
IETllN

OutScreeall:
If fllgll"O TIEN msg$=">» lOlld array first<«":
lilHI M!ssage: IETllN

tlS
PD (HI ,yl)-(H2,g2),e,PSET

IOllN

OutPrinta11:
If fllgl"O TIEN msg$•">» lOlld array first«<": lilSll M!ssage: IETUIN •1••• 2, "printing",(0,0)-(639, 151)
IPIN ,ptl:"Hl IDPIT IS #I
•INllmlRPll #I
PR (O,O),a
l:llSE #I
•1N11•1

IDllN

Halt:
KNlaHn

ENI

Drmu:
ClS
HI t-0 H 6.28 SUP Jll

HI =745+:100* CIS{t)• CIS(4* S IN(2•t))
yl ~ 126+80* SIN(t)•tlS t 4* S IN(2• tJ)
IQ•245+:lOO*tlS(t)•CDS(1.*tJ
g2•126+80*SIN(tJ•taS(2*t)
l INl(HI ,yl H"2,g2)

NHI t
IOUIN

M!ssage:
IUl JIN I, 1,msg$,(U,0)-(500,20)
HI d=I II deley*2000
NHI d
delag=5

IOUIN

STRING/ ARRAY CONVERSION

You can use the complete module listing to build a customized
transfer utility program quickly. For example, this next program
converts directly between the string file format and the array file
format:

DEFINT e-z
nfreme=l
flege=O
11bort=O
petl(0= -21931
p11tl(2),., -21931
p11tl(3)= -21931
petl(4)= -21931

Start·
CL6
WINDOW 2,,(100, 100)-(400,200),2
BUTrON 2, 1 ;string to errey",(80,20)-(200,40).2
BUTTON 3, t;Arrey to string",(80,60)-(250,80),2

Diel·
IF DIALO&(O)<> I THEN Diel
WINDOW I
IF DIALO&(1):2 THEN &OSUB StringToArrey
IF DIALO&(1):3 THEN 60SUB ArreyToString
&OTO Start

StnngToArrey:
606UB lnDisk
IF abort= 1 THEN ebort:O: RETURN
&OSUB Out.Screen
606UB lnScreenA
60SUB OutDiskA

RETURN

ArreyToString:
60SUB lnOiskA
IF abort=l THEN abort:O: RETURN
&OSUB lnScreen
&OSUB OutOisk

RETURN

lnDisk:
f$,,,FILE6$(1)
IF f$=·· THEN abort=l: RETURN
OPEN f$ FOR INPUT AS I
imege$:1NPUT$(LOF(I). I)
CLOSE I

RETURN

OutOisk:
f$::FILES$(O;seve es string file·")
IF f$= •• THElhbort= I: RETURN
OPEN f$ FOR OUTPUT AG 1

Transferring Images 193

194 Macintosh Graphics and Sound

PRINT "1, images
CLOSE 1

RETURN

lnScreen·
PICTURE UN
SHOWPEN
606U8 OutScreenA
PICTURE OFF
IF flaga=O THEN RETURN
imageS=PICTURES

RETURN

Out Screen·
IF images=·· THEN RETURN
PICTURE (0,30),imageS

RETURN

lnOiskA·
f$:FILE6$(1)
IF f$:"" THEN abort= 1
OPEN f$ FOR INPUT AS 1
IF flaga=l THEN ERASE a
INPUT" 1,n,nframe
OIH 11{n)
flaga=l
FOR i=OTO n

INPUT "1, a(i)
NEXT 1

Cl.USE I
RETURN

01Jtoisl<A:
IF fl!iga=O THEN RETURN
f$=FILE6$(0,"Save as array file")
IF f$= •• THEN abort= I: RETURN
OPEN f$ FOR OUTPUT AS 1
PRINr "1,n;nframe;
FOR i=O TO n
PRINT "I, a(i);

NEXT i
CLOSE 1

RETURN

lnScreenA·
IF image$;"" HEN Ill UIN
PICTUll to,10),imtge$
msg$= '11se the IOOUSe to select the section of the dP.sign you mant."
BUH IN I, I ,msg$,(0,0)-(500,10)
5DSUB Selectrect

Pl ... INll
FllKIECT lllPT l(rt I H
n=I +((r(l)-r(I))+I J* INI (((r(4)-rt2)J+ I 6J/l 6)
IF flaga=I rlEN HISI 11

llMatnJ
flaga=I
lill(r(2),r(I))-(r(4J-l ,r(.S)-I),fl
l:U
llTTIN tllSf I

lfTllN

OutScreenll:
If flaga=O TIEN llTllN
cu
PIT (0,50J,a,PSET

ll"TllN

Selectrer.t:
•H.J. NllSE(O)=O
•:NI
Hl--1411SEU)
yl--1411Sl(4J
H2=HI
y2=yl
PENPU lllPTltpat~IH
PENNllE 10
IF MllSE(0)>'"8 TIEN Selectrect
•Ill NllSE(O)<O

r(l)=gl
r(l)=y2
IF yl<yl TIEN S•P r(l),r(l)
r(2J=ttl .

rt4J=tl1
If H2<HI TIEN S•P rt2J,rt4J
FllKIECT lllPTl(r(O)
1d=H2
g5=y2
•1u ("5=112 •• !P=yJJ

z--MllSF(O)
H5=MllSEt I)
yl=MllSF(2J

•NI
FllKIECT lllPTl(r(I H
H2=Hl
y2=y5

•NI
IEHIN

Transferring Images 195

This program was built by modifying each of the modules needed
from the previous program.

196 Macintosh Graphics and Sound

MEMO PAD

We've all seen the ubiquitous "From the desk of' memo pads. This
program combines text and pictures to give them a new twist:

PRINI ·topy the Mee picture from the Scrapbool<"
INPUJ "Hit. return to continue·. x
INPUT "Enter your neme >", myneme$
CLS
OPEN "Cllf':PICTURE" FOR INPUT AS I
i$=1NPUT$(LOF(I), 1)
Cl.USE 1
WINDOW 2,"memo",(0,0)-(639,751)
PICTURE ON
SHOWPEN
fEXTHODE 1
TEXTFONT 1
TEXTSIZE 18
PIClURE (70,5),i$
HOYETO 10,20
PRINT "From the"
HOVETO 215, 100
PRINT "of·; myname$
HIDEPEN
PICTURE OFF
memo$ = PIL"TURE$
OPEN "lpt 1 :· FOR OUTPUT AS • 1
WINDOW OUTPUT • 1 .
PICTURE ,memo$
CLOSE •1

To create the image, you must copy the Macintosh picture that
Apple provides in the System Master disk's Scrapbook into the Clip
board. Next, enter your name, and the program will print your
notepad logo, as shown in Figure 6-6.

If you haven't noticed, the program does something we haven't
mentioned yet: it includes PICTURE statements within a picture
creation routine to make a new picture. And, if you like, you can
write the new picture to the Clipboard, add it to the Scrapbook, and
use it in your Mac Write documents.

Summary
The Macintosh has many tools that make it easy to manipulate

and transfer images in ways never before possible on a microcomput
er. This chapter discussed two formats for storing images: string and
array. String storage consists of a string of QuickDraw · com-

Transferring Images 197

Fromthe Ill
c-1~
~ ~of Dave Kater

~

Figure 6-6.
Creating your notepad logo

mands that can be used to recreate the image. Array storage main
tains a bit-by-bit representation of the image.

Using one or both of these storage formats, you can transfer
images among memory, screen, disk, and Clipboard, and even out to
the printer. Which format you select depends on a variety of factors,
including the speed at which you wish to recreate the image, memory
and disk storage requirements, and compatibility with other
programs.

The tools developed in this chapter pave the way for more complex
graphics abilities. In Chapter 7, these tools will be used to explore the
possibilities of animating images with Microsoft BASIC.

7
Animation Techniques

By now you know how to draw images on the Macintosh screen and
save them on a disk. In this chapter, you will learn how to apply these
skills to one of the most captivating aspects of computer graph
ics: animation.

Literally, to animate means to give life to (a la Doctor Franken
stein). In practice, to animate means to give the appearance of motion
where there actually is none. This illusion is created in animated car
toons by the rapid presentation of thousands of drawings in a
sequence, with each drawing slightly different from its predecessor.
The human mind then interprets the sequence of images as continu
ous motion.

Conventional animators must sketch each of these drawings by
hand. They have ways of saving time and effort, but with pencil,

199

200 Macintosh Graphics and Sound

eraser, and paper, the process is still tedious. However, the graphics
capabilities of the Macintosh open up new doors for you, the aspiring
animator. Using Microsoft BASIC graphics statements, you can write
programs that draw animation sequences for you. You can also use
the image transfer techniques (developed in Chapter 6) to help you
animate hand-drawn (actually, mouse-drawn) images.

In this chapter, you will learn some of the basic techniques of
computer animation. You begin by learning to move a fixed object
around the screen, using two versions of the PUT statement. You then
learn to display a sequence of still images, called frames, in rapid
succession to create believable animation. The chapter concludes
with utility programs that help you create and store frames for
animation.

The subject of animation can easily fill several volumes. The goal
of this chapter is to cover enough of the basics to get you started in the
right direction. For a more thorough coverage of the subject, read
Macintosh Game Animation, by Ron Person (Osborne/McGraw-Hill,
1985).

Single-Frame Motion
A good way to start learning about animation is to move a single

object around the screen. In the previous chapter, you learned how to
store objects in both string and array formats and how to display
them anywhere on the screen. This chapter uses both methods, but
we will start with array storage, since it is more interesting.

Recall that the PUT statement transfers a bit image from an
array to the screen using one of the Microsoft BASIC action verbs
PSET, PRESET, AND, OR, and XOR. These control the interaction
between the stored image and the contents of the current screen. The
two most useful action verbs for animation are PSET and XOR. If
you do not specify an action verb in the PUT statement, BASIC will
assume XOR. PSET means that the current screen contents are
totally obliterated by the incoming stored image. XOR stands for
exclusive OR; its effects are summarized in Table 7-1.

The XOR action described in Table 7-1 determines the color of
each pixel when a stored image is displayed on the screen with PUT.
The pixel will be black if either the incoming pixel or the current
screen pixel is black, but not if both are black. The pixel will be
white if the screen and the stored image pixels are both black or
both white. In short, if both pixels are the same color, the resulting
pixel will be white; otherwise, it will be black.

Animation Techniques 201

Table 7-1.
XOR Action

Screen

black
black
white
white

MOVING AN OBJECT

Stored Image

black
white
black
white

Result

white
black
black
white

The first program uses the PSET action verb to move a ball (a filled
circle) around the screen:

DEFUIT l!-Z

X:lOO: y~100: rad1US=25: dx:4: dy~4
X1=x-radius·x2=x•radius: yl=y-radius: y2=y•radius
size=2•({(y2-y I)• 1)*llfT(((x2-x1)•16)/ 16))
Din block(size)
PRllfT"Press any key to pause and resume the program·
PRllfT "Press Mouse button to stop·
FOR i= 1 TO 20000: NEXT i
CLG
CIRCLE(x,y),radius
R:C(O)=y-radius• 1: r!C(I)=x-radius• I
r!C(2)=y•redius: r!C(3)=x•redius
p:C(0):-26266:p:C(I): I 7025:p:C(2):-32446:p:C(3):26265
FILLOYAL YARPTR(r!C(O)), YARPTR(p:C(O))
GET (x I ,y 1)-(x2,y2) ,block

Animation:
PUT (x-radius,y-redius),block,PSET
X:X+dlt y:y+dy
IF x<radius THEN ><=radius: dx,,-dx
IF x>465 THEN x:465: dx:-dx
IF y<radius THEN y=radius: dy=-dy
IF y>275 THEN Y=275: dy:-dy
IF HOUGE(O)<O THEN END
IF INKEYS-="" THEN animation
stay: IF INKEYS=·· THEN stay
GOTO Animation

Press any key to pause and resume the action. Click the mouse pointer
in the output window to stop the program.

Figure 7-1 shows what can happen if you are not careful with
PSET motion. The ball leaves a trail as it moves, but this effect is due

202 Macintosh Graphics and Sound

Figure 7-1.
PSET action leaving a trail

only to a lack of planning: the GET rectangle is the same size as the
circle. When the stored image is moved to a new location with PUT,
the next version doesn't completely cover the old one, so it leaves a
trail. The golden rule for PSET animation is to leave a border
between the object and the GET rectangle that is at least as wide as
the number of pixels the object is to be moved.

The problem can be corrected by increasing the boundary of the
rectangle by four pixels in all directions, since the ball is moving four
pixels at a time. Change these lines:

xl=x-radius-dx:x~=x+rad1us+dx

yl=y-radius-dy:y2=y+radius+dy

The four-pixel border erases any trail, no matter which direction
the ball travels. The same technique works just as well on a black
background, as long as you use black for the border pattern. Make
this change:
, ...
CLG
LIJIE(0,0)-(490,342),,bf
CIRCLE(x,y),redius ,

Animation Techniques 203

ANIMATING ON A BACKGROUND PATTERN

Moving an object over a background requires even more planning.
Delete the LINE statement and make the following changes:

GET (x 1,y 1)-(x2,y2),block
~(0):0: ~(1):0: ~(2):342: ~(3):491

pll(0)=225:pl(1)=15653:pl(2):9533:pl(3): 15869
F ILLRECT YARPTR(~(O)), YARPTR(pl(0))

Animation: , ...
This program leaves a trail of background pattern. One way to

prevent this is to save the background before each PUT statement
and then replace the background after each PUT statement. Fortu
nately, BASIC offers an easier solution: use XOR motion instead of
PSET motion. Make these changes:

An1mat1on:
nx=x-redius:ny=y-redius
PUT (nx,ny),block,XOR
' ...
IF HOUSE(O)<O THEii EllD
PUT (nx,ny),block,XOR
IF lllKEYS=·· THEii Animation

Using XOR twice retains the background. The first XOR merges
with the background, turning all shared points white (see Table 7-1).
The second XOR fills these shared points back in and then deletes the
others. Thus, the PUT image is erased and the background is
restored.

One disadvantage of XOR animation is that the object tends to
flicker. You can reduce this effect by adding a small time delay (for
example, FOR i=l TO 100: NEXT i) between the two PUTs to the
same location.

Multiple-Frame Animation
The next level of animation is to change the shape of a stationary

object. There are several ways to accomplish this. One method is to
display the entire object and then use simple graphics statements
like PSET and LINE to modify portions of it. This gives the effect of
motion.

204 Macintosh Graphics and Sound

:0 hourglass logo

~ TIME TECHNOLOGIES

Figure 7-2.
Animation hourglass logo

CONTINUOUS MOTION

The animated logo shown in Figure 7-2 is a modification of a logo
used in Chapter 3. This time, the sand sifts from the top chamber to
the bottom one, just as it does in an hourglass. The effect of motion
occurs when the black area in the top chamber is erased and black
lines are added to the bottom chamber at the same time. The vertical
column of sand is erased from the top down with PRESET to finish
the cycle. Since the figure is quite small, BASIC is fast enough to
make the motion appear almost continuous. In fact, the program con
tains some delay loops to slow down the motion. Here is the program:

DEFltfT 6-Z

DIH gl11ss(42), s11nd(16), er11ser(3)
FOR i=O TO 42: READ gl11ss(i): NEXT i
DATA 66, 10, 10, 10, 10, 100, 100, 105, 100, 105, 105, 115, 105
DATA 120, 115, 125, 105, 135, 105, 135, 100, 140, 100, 140
DATA 140, 135, 140, 135, 135, 125, 135, 120, 125, 115, 135, 105
DATA 135, 105, 140, 100,140, 100,100
FOR i=O TO 16: READ s11nd(i): NEXT i
DATA 34, 105, 110, 117, 130, 105, 110, 112, 110, 117, 120, 112
DATA 130, 105, 130, 105, 110
FOR i=O TO 3: READ er11ser(i): NEXT i
DATA 102,110,105,130

FRAHEPOLY VARPTR(gless(O))
PAINTPOLY VARPTR(send(O))
LINE (120, 117)-(120, 135)
TEXTFONT 0 : TEXTSIZE 22
novno 155,140
PRINT "TIME TECHNOLOGIES"
X:110
Yd35
Xl= 130

FOR id TO 14
FOR j:l TO 1000: NEXT j
ERASERECT VARPTR(ereser(O))
ereser(2) = ereser(2) + 1
IF I< 11 THEN LINE(X,Y)-(Xl,Y)
Y::-Y-1
IF i > 5 THEN X=)(+ 2: lC 1 "' lC 1 - 2

NEXT I
FOR i:l 17 TO 124

FOR j=-1 TO 100: NEXT j
PRESD(120,i)

NEXT i
FOR i= 1 TO 5000: NEXT i
RUN

Animation Techniques 205

Another approach is to select a portion of the object and replace it
with a controlled sequence of images. For example, the next program
displays a woman's face and then winks one eye (Figure 7-3). The
wink is produced by using PUT with a carefully selected sequence of
frames that show the eyelid in different positions. Figure 7-4 shows
the sequence.

Notice that the images are small and manageable. Not only do
they take up a minimal amount of room in memory, but they can also
be displayed by the PUT statement fast enough to produce believable
animation.

Also notice that the change from frame to frame is subtle. When
the frames are displayed in order, the motion appears smooth and
continuous. In creating your own sequences, be sure to include
enough frames so that the viewer's mind will not need to fill in too
many gaps.

STORING IMAGES

The eye frames in Figure 7-4 were created with MacPaint and then
transferred to BASIC via the Clipboard. This process seems easy
until you stop to think about where you are going to store the images.
The ideal scenario would be to display the entire sequence on the

206 Macintosh Graphics and Sound

------------~0 Wink -----=--==- _::-----"" - -
---____:::=__.:: ~ - ----=----=-__;::::--:::_-

1-9 changes speed, s to stop

Figure 7-3.
Winking face

screen and then somehow grab the images one at a time into equal
sized arrays. The trick here is knowing how to select uniformly sized
frames around each image so that the eye will be in the same position
in each rectangle. One solution would be to draw borders around each
image in MacPaint and write a custom program to GET the images
into a two-dimensional array.

The approach used for the eye sequence shown in the figure was
to write a utility program that allowed the operator to use the mouse
to select a border rectangle and position that rectangle uniformly
around each image. The images were then stored in a disk file where
they could be loaded into an array and animated with PUT. (The
program is listed as MacPaint Transfer; it appears at the end of the
chapter.)

Figure 7-4.
Wink sequence

Animation Techniques 201

You'll find that preparing and storing the frames is the major bat
tle in frame sequence animation. Animating the images once they are
stored on disk is comparatively easy.

Here is the complete program listing:

'initialize Yllriables
DEFlllT a-z

LoadFace:
OPEN "MS-Basic graphics:face.pic(1)" FOR INPUT AS 1
INPUT "1,n,nframe
Din aw(n)

msg$,,"loading Face.Pie": GDSUB Message
FDR i"OTO n

INPUT "1,aw(i)
NEXT i

BUTTON CLOSE 1
CLOSE 1

LoadEyes:
OPEN "MS-Basic graphics:eyes.pic(10)" FDR INPUT AS 1
INPUT "1,n,nframe
Din a(n,nframe)
FDR f=l TD nframe

msg$,.,"loading eye frame "+STR$(f): 606UB Message
FDR i=OTD n

INPUT "1,a(i,f)
NEXT i

NEXT f
BUTTON CLOSE 1
CLOSE 1

Animate·
msg$=" 1-9 changes speed, s to stop": 606UB Message
PUT(50,40),aw,PSET
LINE(S0,40)-(462,276),.b
k;I
Aniloop:
FDR h 1 TD nframe

PUT(252, 133).a(O,i),PSET
IF i:l THEN FOR X=l TD 9000: NEXT x
i$:1NKEY$
IF i$=·s· DR i$="6" THEN END
Y=YAL(i$): IF Y>O THEN k=10-Y
FDR j:l TO k*100: NEXT j

NEXT i
&OTO Aniloop
CL&: BUTTON CLOSE I

Quit:
END

208 Macintosh Graphics and Sound

Mess11ge:
BUTTON 1, l,msg$,(20,0)-(470,20)
FOR d= 1 TO del11y*2000: NEXT d
del11y=5

RETURN

The first two sections of the program load in the picture of the
woman and the eye frames from two separate files. Both files use the
same format. The first number in the file is the number of cells
necessary to store each frame. The second number is the number of
frames stored in the file. Use these numbers to dimension an array
large enough to hold the images. Be sure to include the appropriate
disk and file names in the OPEN statements.

The animation section of the program displays the woman. It then
displays the eye-frame sequence, controlled by time delays. The pro
gram uses the INKEY$ function to scan for keyboard activity. Keys 1

through 9 change the speed of the wink. The 1 key is slowest, 9 is
fastest, and s stops the program.

ROTATING OBJECTS

A more daring feat is to create a separate frame for each view of the
entire object instead of changing just a small portion of it. The prob
lem with storing the entire object in separate frames is twofold.
First, it requires lots of memory. Users with 128K Macintoshes will
quickly encounter the "Out of Memory" message. Second, it takes
more time to cover the entire screen with dots than it does to cover a
small section. If the image is too large, the eye can detect that the
image is put on the screen in sections.

Figure 7-5 shows six frames representing different views of the
world as it rotates on its axis. Draw the frames with MacPaint and
then transfer and animate them with the MacPaint Transfer pro
gram. Watching these frames displayed in sequence definitely gives
one the impression of a rotating globe, but the animation is jerky.
Can you guess why?

The problem is not with the PUT statement. The frames are still
small enough that the images appear "instantly" on the screen. Size is
part of the problem. As image size increases, the number of.frames
must increase also. The animator must provide more steps to main
tain the illusion of continuous motion. The challenge here is to select
the minimum number of frames that will produce believable anima
tion for a given frame size.

Animation Techniques 209

Figure 7-5.
Six views of the world

DIGITIZING FRAMES

Using MacPaint to create animation frames is very convenient, as
long as the size of the images is reasonable. For complex images, you
may want to use a digitizer to capture individual frames. Figure 7-6
illustrates what a digitizer can do.

Koala's Mac Vision unit captured each of these images from a
videotape signal (see Chapter 6 for more information). It then trans
ferred them into the Macintosh through the terminal port. Using the
freeze-frame feature of a videotape unit, you can select individual
frames. This sequence shows approximately every third video frame.

As you can see, the frames in Figure 7-6 could stand considerable
touching up before they might be ready to animate in BASIC. Even
so, using digitized images can give you a tremendous head start
toward creating large, complex images for animation.

GENERATING FRAMES IN BASIC

Creating animation frames in MacPaint is not an exact science. Even
with the MacPaint Transfer utility program, centering images uni
formly within the frame boundaries requires either careful planning

210 Macintosh Graphics and Sound

Figure 7-6.
Digitized football player

~D

Figure 7-7.
Cat in motion

Animation Techniques 211

show cot

or a very steady hand. For more control, you can create images pixel
by pixel using a BASIC program.

The sequence in Figure 7- 7 was created with just such a pro
gram. The program is called Animator; it is listed in the "Animation
Utility Program" section later in the chapter. Animator creates
frames that are 32 pixels square and saves them to disk.

The following program animates these frames:

DEFIHl. e-z

LoadFile:
f$:FILES$(1)
IF f$=--THEN STOP
PRINY-Loading file-
OPEN f$ FOR INPUT AS • 1
INPUT • 1,n,nframe
Dlt1 a(n,nframe)
FOR frame,-, 1 TO nframe

FOR hOTO n
INPUT • 1,a(i,fn1me)

NEXT i
NEXT frame
CLOSE •1

212 Macintosh Graphics and Sound

CLS
PRINT • 1-9 changes speed, s TO STOP"

k:l
Animate:
FOR X:l TO 491 STEP nfreme

FOR i:1 TO nfreme
PUT(x+i,201),a(0,0,P&ET
LINE(X+i-1,201)-(x+i-1,300), White
i$:1NKEYS
IF i$:"s" OR 1$="6" THEN END
Y:VAL(i$): IF Y>O THEN k= 10-Y
FOR j:l TO k*100: NEXT j

NEXTI
IEXTx
&OTO Animate

Note that the LINE statement erases any trail left by pixels in the
far left column of each frame. You can change the PSET action in the
PUT statement to XOR if you prefer. Just remember that you get a
slight flicker with XOR motion.

Animation Utility Programs
The two utility programs in this section are designed to help you

manage animation.

ANIMATOR UTILITY

The first program allows you to create your own animation frames
and store them on disk for use with this (or another) program:

•EFINI .-z
H1-301:112-332:y1-51:y2-92
n= 2+(((y2-yl)+ I)* INI (((112-H1)+16)/ 16))
frane-1: nfrmne-=1: fsize..32
IDlllF'20: 'mljust to 6 for- 128K Mic
• IMpet(fsi ze,fsi ze,m1111),pettem(3), a(n,1111111),t~n)
H• i=G H 1111111

a(O,i) .. 32: a(1,i)=32
NEUi

start:
...... 2, "lllWmetor-",(0,40)-(511,340), 1
IN •IHI& Hiii boHes: lllHli IN
lillll Dr~nd
msgS•"Etlting frmne ": HSll "9sage
lllTTIN 2,1,1.0RD FRRM:",(47,250H157,280),1

IDTIN 3,1, "SHUE FRHK",(167,250)-(271,280),1
llJT IN 4, 1, 1.0H D f ILE",(400,30)-(470,55), 1
IDTIN 5, 1, "SHUE FILE",(400,60)-(470,85), 1
IDTIN 6,1, "RNIMITE",(400,90)-(470,115),1
IDTIN 7, I, "SHIFT >» ",(400, 120)-(470, 145), 1
IDTIN 8, I, "QUIJ ",(400, 150)-(470, 115), 1

CheclcMIUle:
IF 1191SE(O)-O TIEN flag-8: lilTI CheclcMIUle
...... ISE(I): y-t.91SE(2): H3 ... ISE(3)

Animation Techniques 213

IF llS(l61-a)>1 I I II llS(l33-g)>111 TIEN CheclcMIUle
c•INl(H/7)-6
r-INl(y/7)-2
IF IF'16 TIEN Oag=flag+1
IF flegml ... IMl3 TIEN color=pat(c,r,O)
If color<>pat(c,r,O) TIEN CheclcMIUle
pat(c,r,O)m1-pat(c,r,O)
IF pat(c,r,0)•1 TIEN LINE(7•c+44, 7*r+16)- (7*c+47, 7*r+l9),,bf: PS0(300+c,50+r)
IF pat(c,r,O)=G TIEN LINE(1*c+44, 7*r+16)- (7*c+47,1*r+l9),30,bf: PIHET(300+c,50+r)
lilT I CheclcMIUle

Bma:
d=911Llli(O)
If d01 TIEN IBllN
IF lllllli(l)=2 TIEN lilSll LOldrame
IF lllllli(1)s3 JIEN Sauefnwne
IF lllllli(l)=4 TIEN lilSll LOldile
IF lllllli(l)-5 TIEN litSll Sauefile
IF lllllli(l)=6 TIEN lilSll Hni11111te
IF lllllli(l)a7 TIEN litSll SliftRi"1t
IF lllllli(I)a& TIEN litSll Quit
msg$="edting frmne": lilSll ""5sage

IDllN

Quit:
•1N11• 1

ENI

LOldrame:
lllllli IFF: llTTIN 2,0
HR FIELI 1,STIS(frame),(310,100)-(330,115)
1..-1: IF lllllli(O)o6TllN1..-1
frame=llll(HR$(I))
IF frame>nm II fr81ne<O TIEN IEEP: frmne=I: lilTI LOldrmne
HR FIELI CLISE I
litSll Getfrmne
lllllli llt IDTIN 2,1

IBllN

214 Macintosh Graphics and Sound

SmJl!frame:
lllLH IFF: lflTIN 3,0
EID FIEll 1,STl$(frmneJ,(310,100H330,115)
msg$="Press Ret1n1": Hiii .--sage
lqrt2: IF lllllli(O)o6 TIEN lqli2
frame-llll(EllT $(1))
IF fnne>mmt II frmne<U TIEN IEEP: frmne=I: lifll S-nlm
IF fnne>nfrmne TIEN nframe-fnme
EID FIELI CLISE 1
msg$="s111Jing frmne "+STl$(fnme): lillll .--sage
liET (HI ,yl)-(H2,g2),8(0,fnme)
Fii r=I Tl fsize
Fii c=I Tl fsize

pat(c,r,fnme)=pat(c,r,O)
NEii c

NEii r
msg$="editing frmne •
Hlll*sage
lllLH IN: IDTIN 3,1

IETllN

SmJlllile:
f$=FILES$(0, "Siwe as IWTBg file:")
IF f$=""TIENIOllN
lillll Dr~rid
HI ral Tl 11
HI c=I Tl fsize

IF pat(c,r,0)=1 TIENLINU1*c+44,1*r+16)- (1*c+41,1*r+19),,bf
NE .. c

NEil r
msg$= "SlllJing file "+f$: HSll .--sage
IPEN f$ Fii lflPIT IS 1
PllNT #1, n;nframe;
HI j=I Tl nfrmne
Fii i=Dfl n

PllNT #1, ll(i,j);
NEii i

NEii j
tllSE #1
msg$="Edting frmne "+STl$(fnmeJ: HSll .--sage

IOllN

LOldile:
f$=FILES$(1)
IF f$=""TIENIDllN
lflTIN4,0
LINE(49,21 H21J,245),30,bf
HSll Dr~rid
IPEN f$ HI l .. fl IS #1
1 .. n #1,n,nfrmne

HISE a,pat
I IM8'n,maaJ,pat(fsize,fsi ze,maaJ
HI frame=I Tl nfrmne

Animation Techniques 215

msg$0 '\oading frame "+STIS(frmne): lilSll M!ssage
HI i=GTI n
l•IT #l,8'i,frame)

.... i
PIT (301,51),ll(O,frmne),PSET
HI P1 Tl fsize
HI c=I Tl fsize.

IF PllNl(300+c,50+r)=il llfN pat(c,r,frmne)=I
... c
,. .. r
,. .. frmne
frame= I
CLISE #I
PIT (301,51),ll(O,O),PSET
llTllN4,I
IEUIN

Ari mate:
msg$="1-9 changes speed, s to stop": lilSll M!ssage
k=1
Ari Loop:
HI i=1 II nfrmne
PIT (501,201),11(0,iJ,PSH
i$=1NICH$
If i$="s" II i$="$" TIEN Arileaue
u=lll(i$): IF -0 TIEN k=10-u
HI j=I II k*100: j
.... i
lilll Ariloop
Arileaue:
u•uo1,201 Hll2,J12),10,bt

IHllN

M!ssage:
llTTIN 1,1,msg$,(50,0H210,20)

IETllN

OrmvGrict
HI H=49 Tl 273 STEP 1

ll•(11,21)-(H,245)
LI•(49,11-28)-(271,11-28)

•llH
IETllN

lietframe:
msg$~1oading frmne "+ST 1$(frmne): HSll M!ISll!Jl'
PIT (301,51),11(0,frmne),PS ET

216 Macintosh Graphics and Sound

Fii r=1 Tl fsize
1191ETI 2ao,1•r+20:THJll91E 2:PllNI "<";
Fii c=1 Tl fsize

IF pat(c,r,frmne)=1 TIEN UNE(1•c+44,1•r+16)-U•c+41,1•r+19),,bf
IF pat(c,r,frmne)=O TIEN UNE(1•c+44, 1•r+ I 6)-(1•c+41, 1•r+ 19),30,bf
pat(c,r,O)=pet(c,r,frane)

NEii c
1191ETI 2ao,1•r+20: PllNI "<";: THTll91E 0

NEil r
IETllN

S .. ftRight:
msg$.. "slifting frmne riflt": HHI M!ssege
llTTIN1,0
Fii c•31 Tl 1 STEP -1
Fii r=I Tl fsize
S•P pat(c,r,O),pat(c+ I ,r,O)

IEll r
IEIT c
Fii r-1 Tl fsize
1191012B0,1•r+20:TEITll91E 2:PllNI "<";
Fii c=1 Tl fsize

IF pat(c,r,0)=1 TIEN LINE(7•c+44,1*r+16)-(1*c+41,1*r+19),,bf
IF pat(c,r,0)=0 TIEN LINE(1•c+44, 1•r+ 16)-(1*c+41, 1•r+ 19),30,bf
IEITc
119101280,1*r+20:PllNT "<";:TEITll91E 0

IEITr
50(332,51)-(332,82),t111111
50(301,51)-(331,82),8(0,0)
PIT(302,51),8(0,0),PSO
PIT(301,51),temp,PSO
llTTIN7,1

IOllN

Two of the design considerations were to keep the image size
small and to store the frames in files that would easily load into array
format. The program uses a grid size of 32 X 32, which is small
enough to be manageable for very smooth animation. Even so, the
Animator program only allows six frames in the 128K Mac. Be sure
to set· variable Max to 6 or less if you use the program on a 128K
machine. On 512K (Fat) Macintoshes, you can set Max to 20 or
higher.

Once stored on disk, the frames can be loaded into memory and
animated. If you intend to use PSET animation, be sure to leave

!!O animator
editing frame

...
• •

•• • •

LORD FRAME J (SRUE FRAME J

Figure 7-8.
Animator screen

Animation Techniques 217

---~------

(LORD FILE)

(SRUE FILE)

(RNIMRTE)

(SHIFT>»)

QUIT)

enough blank columns so that the image doesn't leave a trail or erase
the trail as you did in the previous listing.

When you run the Animator program, be sure to watch the button
above the grid for messages (see Figure 7-8). It alerts you to the sta
tus of the program and prompts you for action when necessary.

Sketch frames by clicking and dragging the mouse. Save each
frame to memory with SAVE FRAME when it is complete. If you
want to use a frame already drawn as the basis for a new frame, load
it with LOAD FRAME. This takes time, so be patient. There is also a
button for shifting the edit frame right one pixel, which is useful for
animating objects that rotate.

You can animate at any time with ANIMATE. Press keys 1

through 9 to vary speed and s to stop animation.
When you are satisfied with the sequence of frames, save it to disk

with SAVE FILE. With LOAD FILE you can load frame sequences
into the program for further editing or load them into other BASIC
programs.

If you really want to get serious about animation, try the Ani
mation Toolkit 1 from Ann Arbor Softworks, Incorporated,

218 Macintosh Graphics and Sound

308 1/2 South State Street, Ann Arbor, Michigan 48104, (313) 996-
3838. This program is written in assembly language, so it is very fast.
It has many editing features and stores frames very compactly. It can
handle 140 32 X 32 frames on a 128K Mac and up to 3,000 frames on
a 512K Mac. Ann Arbor Softworks also provides a utility that con
verts frame sequences into Macintosh fonts that can be used in
BASIC or other programs.

MACPAINT TRANSFER UTILITY

This is a program for transferring MacPaint images into array for
mat. In particular, the program allows you to select a frame size and
use it to collect several images from a MacPaint file. The images are
then stored in a single file. The steps in this process are as follows:

1. Load the screen from the Clipboard into a string variable.

2. Display the image in the BASIC output window.

3. Use the mouse to select a rectangular frame size.

4. Place the rectangle around each image and store it on disk.

The program also lets you load a file into memory and animate it.
You can copy an image out of the Scrapbook to exercise the program.
Users of 128K Macs should keep in mind that the size and number of
frames are limited.

When you run the program, be prepared with the file name and
the number of frames you wish to use. Here is the program:

'i m ti al i ze uan 11111 es
•EJINI &-z: flag-CJ
pat'l.(1)- -21911: pat'l.(2)-21911
pat'l.(l)-21931: pat'l.(4)-21931

Choose:
LINE(160,40)-(150, 165),,b
llTTIN 2, 1, "Select frames",(180,60)-(330,85), I
llTTIN l,I, "Rlill'llllte frames",(180,90)-(330,115), I
•ITT IN 4, I, '11ui t",(180, 120)-(330, 145), I
Dial:
dl ... IHl5(0): IF dO<>I HEN Dial
IHllllli(I)
IF d<2 II d>4 TIEN Dial
•ITTINCllH 2
llTTIN CllH 3
llTTIN CLISE 4
CLS

Animation Techniques 219

DN d-1 liDSUI Selectfrmnes, RlimateFrmnes,QUit
&Ill Choose

Selectf rmnes:
INPUT 'Inter IUllber of frmnes to be stored";nfrmne
f$=f'ILH$(0, "Smre frmnes in file:")
If f$="" THEN STIP
IPEN f$ HI lllPll H 1

lnclip:
cu
IPEN '1:LIP~ICTURE" fll INHT IS 2
i$=1Mtll $(LDJ(2),2)
If i$="" TIEN msg$= ">» Clipboard is empty«<": lilSUI M!ssage: IETllN
If i$<>"" TIEN msgS==">» ClipbOllrd recorded in string«<: lilHI M!ssage: i"'8ge$"1$

CLISE 2
OutScrem:
If imnge$<>""TIENPICTllE (0,30),i"'8ge$: lilTI SelectRectangle

msg$=">» Load string first«<"
lilSll M!ssage

SelectRectangle:
lnsloop:
msg$- "select rectangle with mouse•
lilSll M!SSll!Jl'!
•Ill l\9HE(O)=O: •NI
H1 ISE(3):y1_..,.ISE(4)
H2=H1: g2=y1
PENPH HIPTl(pat~I))
PENMllEIO
If l\91SE(O)>=O HIEN lnsloop
•ILE MllSE(O)<O
rt 1)=yl: r(3)=g2
If g2<y1 TIEN rt0=g2: r(3)=y1
r(2)=H1: r(4)=H2
If H2<H1 TIEN r(2)=H2: r(4)=H1
JllN:IECT Hlnl(r(I))
H3=H2:g3=g2
•ILE (H3=H2 INI g3=g2)

z=l\91SE(O)
83,..ISEU): g3=-NllSE(2) --fll N:IECT HIPTl(r(I))

H2=H3: Y2==Y3 --HI "'1"(2): y1=rt1): H2=r(4)-1: g2=r(5)-1
h=g2-y1: UJ=H2-H1

220 Macintosh Graphics and Sound

uenr111ectmve:
•g$.. "nctmve may (yin)?": HHI M!ssege
ln:i$•1NDt$
IF i$m"" JIEN in
IF 1$="11" TIEN SelectRectMglle
n-2+((y2-y1)+ 1)• INJ (((112-HI)+ 16)/16)
IF flag=I TIEN HISE a
llMl(n): flag=I

HI f=I Tl nfnime
Posi tianllectMglle:
•g$.. "Select fnme "+STIS(f): HHI M!ssege
•Ill lii91SE(O)>=O

H1 ... ISE(1): y1 ... ISE(2)
112•1: y2-gl
r(1)=y2-IE r(2)"'112: r(3)=y2: r(4)=tl2+w
FllKIEU HIPTl(r(I))
HI l=I Tl 500: NEii i
FllKllCT lllPTl(r(I)) ...

•g$.. "fnme selected"SISll M!ssege
'Getlt
HI =r(2): gl '"I'(1): 112=r(4)-I: y2"f(3)-1
liO (HI ,yl)-(112,y2),a

'OutDiskft
•g$= "Si.Jing fnme "+STIS(f): lilSll message
IF f=I llEN PllNI #1,n;nfrwne;
Fii 1"4111 n
PllNI #1, a(i);

NEii i
NEii f
CLISE I
CU: IRTIN CLISE I

IOllN

M!ssege:
Ill TIN I, I ,•g$,(20,0)-(410,20)
Fii ..,_, Tl delayt'2000: NEii d
dellllJ"5

IETllN

Hlilllllteframes:
f$=JILES$(1)
IF f$="" TIEN STIP
IPEN f$ Fii INPIT IS I
INPIT #1,n,nfnme
IF flag=I TIEN EllH a
llMl(n,nfnme): flag=I
Fii f=I Tl nfnne
•g$.. ,omng fnme "+STIS(f): lilSll M!ssege
Fii i=OTI n

1 .. 11 #1,a(i,0
NEID i

NEID f
llTTIN CLISE I
CLISE I

'Rnimate

Animation Techniques 221

msgS="l-9 clmges speed, s to stop": lilSll M!SHge
k=I
Rniloop:
Fii i=I Tl nframe

Piil (50,50),a(O,i),PS El
i$=1NKH$
IF i$=·s· II i$="S •TIEN Rlileaue
u=91l(i$): If .->O TIEN k=I0-11
Fii j=I Tl k* I 00: NEID j

NEID i
lilll Rniloop
Rnileaue:
CU: llllTIN CLISE I
IOllN

Qlit:
ENI

The first two numbers saved in the file represent the size of the array
elements (n, determined by the GET rectangle) and the number of
frames (nframe). These two numbers make it easy to load the file.
The rest of the file contains data for the frames. This is the same file
format as that used in the Animator program. You may want to mod
ify the Animator utility so that it accepts variable-sized arrays
created by the MacPaint Tran sf er program.

Summary
You have now had a taste of how the Macintosh can help you ani

mate images. This chapter showed you how to animate single-frame,
program-drawn objects. It also demonstrated techniques for combin
ing multiple pre-drawn frames into animation sequences.

The next chapter will introduce you to techniques you can use to
manipulate Macintosh graphics. You will see how to move, rotate, and
stretch objects in two and three dimensions. You will even learn some
computer-aided design techniques.

8
Manipulating Displays

And Viewing ObJ·ects

In this chapter you will see how to manipulate points, lines, polygons,
and even complex screen images with BASIC. The programs include
routines for three types of transformations: translations (moving the
object around the screen), rotations (changing the orientation of the
object), and scaling (changing the size of the object). The routines will
be extended to include viewing and manipulating three-dimensional
objects. A miniature computer-aided design (CAD) program, origi
nally written by Rob Dickerson of Microsoft and modified for use in
this book, will conclude the chapter.

Back in Chapter 2, we mentioned the Macintosh's huge coordinate
system, ranging from - 32, 768 to + 32, 767. The Mac screen displays
only a portion of this graphics area. We will now take a closer look at
the relationship between this coordinate system and the video dis
play. This background material will give you a firm conceptual basis
for manipulating objects on the screen.

Caution: This chapter delves briefly into some mathematics, par-

223

224 Macintosh Graphics and Sound

ticularly trigonometry. Don't let this put you off. Try reading the
material slowly to give yourself time to absorb the ideas. You can
make good use of the programs without getting too involved with the
math.

Transformations
The Macintosh is loaded with tools that help programmers change

the appearance of objects on the screen. The term that describes
these changes is transformation. We will describe three transforma
tions: moving an object from one location to another (translation),
rotating an object about a fixed point (rotation), and changing the
size of an object (scaling). The discussion will begin with transforma
tions of objects that contain only two dimensions: length and width.
Two-dimensional objects like circles and squares can be displayed on
a flat surface. Later in the chapter, the techniques developed for two
dimensional objects will be extended to cover representations of
objects containing three dimensions: length, width, and depth. Three
dimensional objects include those you see around you every day
cars, people, and even computers.

Two-Dimensional Transformations

The simplest object in a two-dimensional plane is a point, which is
located by its horizontal (x) and vertical (y) distances from the origin
of the coordinate system. For our purposes, the coordinate system
refers to the numbers used by the BASIC output window (look back
at Chapter 2, Figure 2-3). Recall that this is not the same as the
Cartesian coordinate system, which is typically used in mathematics
(refer to Figure 2-12 for a refresher).

For each of the two-dimensional transformations discussed here,
we list equations that apply the transformation to a point (x,y) to get
a new point (XNEW, YNEW). Then we will use those equations in a
sample program.

TRANSLATION

To translate (move) a point from one location on the screen to another,
simply add the horizontal and vertical distance values to its x and y
coordinates, respectively. Figure 8-1 shows the effect of adding the
values h (horizontal distance) and k (vertical distance) to the point
(x,y).

Manipulating Displays and Viewing Objects 225

Figure 8-1.
Translating a point

(X,V) ~
•·············

•
(X+H, V+K)

K

If you want to move an entire object, add the translation values h
and k to each of its points. Why use a point-by-point approach when
the GET and PUT statements can do the job neatly and efficiently?
Because you can rapidly and easily translate objects that are de
scribed by a few control points by translating only those points. Con
sider, for example, a polygon. You need only translate the corner
points and then connect them by using BASIC's LINE statement.
Figure 8-2 shows an object relocated in this way .

Figure 8-2.
Translating a polygon

.. . ..

226 Macintosh Graphics and Sound

SCALING

You scale an object by multiplying the coordinates of each of its
points by a constant. Scaling also moves the object in the plane. If the
scaling factor is less than one (but greater than zero), it compresses
the object and moves it closer to the origin. If the factor is greater
than one, scaling enlarges the object and moves it away from the
origin. If you scale both coordinates by the same factor, the object
maintains its original proportions. By using different scaling factors
for horizontal and vertical coordinates, you can distort the object. To
reflect an object, use a negative scaling factor. For example, scaling
horizontal coordinates by -1 reflects (flips) the object horizontally.
Figure 8-3 illustrates the effects of scaling on a polygon.

Sct11ing, eQUfll ft1ctors:

Sct1ling, uneQufll ft1ctors XNEW=s·X

Figure 8-3.
Scaling polygons

VNEW= t·V

XNEW: s·X
VNEW= s•V

Manipulating Displays and Viewing Objects 227

ROTATION

You can use BASIC to rotate objects. Once again, the technique
involves rotating a single point. To rotate a complete object, apply the
rotation equations to each of its points.

Figure 8-4 illustrates how to rotate a point (x,y) through the angle
phi to (XNEW,YNEW) and derives the rotation equations. The equa
tions use the trigonometric sine and cosine functions.These functions
are essential for dealing with angles, and you don't have to be a trigo
nometry expert to use the equations.

Figure 8-4.

(O ,O) _ _ x_N_EW_=_R_c_os_<_e_-~¢ _> __ __., x

y

R YNEW = R Sin (e - ~)

/
(XNEW, YNEW)

(X ,Y)

XNEW = R cos(e - ¢)

= R (cose cos¢+ sine sin¢)
= (R cose) cos¢• (R sine) sin¢
= X cos¢• Y sin¢

YNEW = R sin(e-¢)
= R (sine cos¢ - cosesin¢)
= (R si ne) cos¢ - (R cose) si n l'l
=Ycos¢-Xsin9l

XNEW = X c os¢+ Y sin¢

YNEW = Y cos¢ - X s i n¢

Equations of two-dimensional rotation

228 Macintosh Graphics and Sound

USING TRANSFORMATION
EQUATIONS IN BASIC
Let's try out the three transformations on a simple straight line. The
plan is to make a subprogram for each of the transformation equa
tions. Once the subprograms are in place, you can call each subpro
gram as necessary to transform both. endpoints of the line and then
use the LINE statement to redraw the rest of the line. In this pro
gram, you will first translate the line, then rotate it, and finally scale
it, as shown in Figure 8-5.

TRANSFORMATION SUBPROGRAMS
The subprograms you need are listed below:

Subprognms:
&U8 Tt"MSlete(x,y.h,k) STATIC

K=X+h: y:y+k
EID&UB
&U8 Rotete(x,y.e) STATIC

e:CO&(e): 1=&ll(e)
xt=x*c+y*s
yt::y•c-x*s
X=xl: Y--yl

EllD&tm
&tm Scele(x,y,s,t) STATIC

K=S*x
y:.t•y

EID&UB

Before using these program segments, there are several things
you should notice. First, these are not subroutines; they are subpro
grams. A subprogram is a new kind of program module described in
the Advanced Topics chapter of the Microsoft BASIC Manual.
Review the chapter now if you are unfamiliar with subprograms.

Subprograms are especially convenient in program segments that
will be reused in several different programs. The variables listed in
the SUB subprogram statement are used as temporary names for the
corresponding variables in the calling statement. They serve the
same purpose as the list of names in a function definition (DEF FN)
statement.

Consider, for example, the statement CALL translate (xold,yold,
xmove,ymove). The variables x, y, h, and k in the SUB translate

Manipulating Displays and Viewing Objects 229

~:~:~::-.. -~f ~i
.. ··· .. ~--\ ! f

·····-.. ~·::.:··--::/ ,l< ":.·-:' ift .. / ETRRl'iSLRTE IQ)
~ : T

.......... •• • R

•••••••••••••• -.. / T ~ • • 0 \.t,I
@ '. ,• R

=·· .•

... ·

Figure 8-5.
Transforming a line

.. ···
..

statement (see listing) are temporarily assigned as names for the
variables xold, yold, xmove, and ymove, respectively. Thus, the
statement x=x+h actually performs the operation xold=xold+xmove.

The rotation subprogram deserves special comment. The rotation
angle, a, is expressed in an angular measure known as radians.
Recall from Chapter 3 that BASIC's SIN and COS functions will only
accept angles in radians, rather than in the more familiar degrees.
The relationship between radians and degrees is

360 degrees = 2 X pi radians where pi (rr) is approximately 3.1416

Positive angles result in counterclockwise rotation. Negative
angles rotate points clockwise. Note also that the COS and SIN func
tions are relatively slow. To save time, the subprogram calculates
COS(a) and SIN (a) once, and then reuses the calculated values.

The rotation program uses temporary variables xt and yt to avoid
trouble. If it used x and y instead, the equation y=y•c-x•s would

230 Macintosh Graphics and Sound

use a modified x from the previous program line, rather than the
original value passed to the subprogram. Using xt and yt as tempo
rary variables avoids this problem.

Note: We have used the statement DEFINT a-z throughout this
book. This declares all variables as integer types and speeds up the
programs. When working with transformations, you will usually
need the accuracy of single-precision variables. Thus, the programs
in this chapter use the default (for Binary BASIC) single-precision
type and define integer variables only as needed.

USING THE TRANSFORMATION SUBPROGRAMS

Insert these lines before your subprograms:

Xl:300:yl:o40
X2:400:y2:120
LllE(x I .y I)-(x2,y2)
h=-100: k:O
trenslate x I ,y I ,h,k
tntflSlate x2,y2.h.k
LllE(x I .y l)-(x2.y2)
a:-.4
rotate x I ,y I ,e
rotate x2,y2,e
LllE(x I ,y I)-(x2,y2)
8:.5: t:.5
scale xl,yl.s.t
scale x2,y2,s,t
LllE(x I ,y l)-(x2,y2)
Stay: IF llKEIS="" THEI Stay
EID

The revised program assigns values to the endpoints of the line,
(xl,yl) and (x2,y2), and then draws the line. Next it assigns values to
h and k and calls the translate subprogram for each endpoint. Notice
that the word CALL is optional, and not used in this program.

Next the program assigns the value -0.4 to a, rotates the end
points, and draws the rotated line. This angle rotates the line clock
wise by approximately 23 degrees. The program applies a scaling
factor of 0.5 to the x and y coordinates of the endpoints of the last
line. Then it draws the line. Press any key to stop the program.

TRANSFORMATIONS ABOUT A FIXED POINT

The scaling and rotation routines have a basic limitation. In their
current form, both routines transform a point about the origin (look
back at Figure 8-5). To rotate or scale an object about an arbitrary
point (s,t), as in Figure 8-6, perform these three steps: first, translate

Manipulating Displays and Viewing Objects 231

IS File Edit ~i<!M< h Run Windows

Figure 8-6

Figure 8-6.
The original line at (1) has been translated to the origin at (2); at (3) it has
been rotated and scaled; (4) shows the line translated back

the object's points by (-s,-t). Then rotate or scale the object. Finally,
translate again by (s,t). The next listing demonstrates this approach.
It rotates and translates a line about one of its endpoints:

111:300: y1:40
K2:400:y2:120
LlflE(K 1,y 1)-(K2,y2)
h:-Kl:k:-yl
Tnins1ete x 1,y 1,h,k
Tninslete x2,y2,h,k
LllllE(x 1,y 1)-(x2,y2)
e=-.55
Rotate x2,y2,e
S:.5: t:.5
Sce1e x2,y2,s,t
LlflE(K 1,y 1)-(K2,y2)
Tninslete x1,y1,-h,-k
Tnins1ete x2,y2,-h,-k
LllE(x 1,y 1)-(x2,y2)
Stey: IF llllCEYl=-TllEI Stey
EllD

232 Macintosh Graphics and Sound

Subprogrlms:
SUB Trenslete(x,y,h,k) STATIC

X:X+h:y:y+k
END&UB
608 Rotete(x,y,e) STATIC

C:COS(e): S:&lll(e)
xt=x*c+y*s
yt:y•c-x•s
X:Xl: y:yt

EID&UB
SUB Scele(x,y,s,t) STATIC

X:S*X
y:t•y

EID&UB

You can avoid these extra translations by adding a reference point to
the subprograms. The following listing shows how to rotate an object
about a fixed point (xO,yO):

&118 Rotete(x,y,xo,yo,e) STATIC
c:COS(e): s=&lll(e)
xt=XO+(x-xO)*c+(y-yO)*s
ytmyO+(y-yO)*c-(x-xO)*s
X:xt:y:yt

EID &U8

In the next program, you will rotate the letter M about a point
(xO,yO) like this:

M-«o.yoJ

The program stores the letter as a polygon. It updates each point
in the polygon array with this rotation subprogram:
Setup:
DEFIHT h,k,p,x,y
pll:3. 1415926•
81 =-2*p11/25
11:8i

Dlt1 poly(14), polyt(14), pgone(14)
pgone(0)=30
FOR 1:0 TO 14: READ poly(1): polyt(i):poly(l): NEXT 1
DATA 30,46,36, 104, 104, 100,40,50,40,70,70,50, 100, 100, 100
X0:70:y0:75
FOR r=I TO 5: FOR c:l TO 2

READ peth(r,c)
DATA 4,-4,6,-2,6,2,4,6,2, 10

Manipulating Displays and Viewing Objects 233

NEXT c,r
• *** draw stairs ***
SIC:20:Sy:103
FOR 1:1TO10
LINE(sx+26,sy)-(sx+26,sy+ 12)
LINE(sx,sy)-(sx+26,sy)
SIC:SIC+26:sy:sy+12

NEXTI

• *** draw A, C, and first M ***
LINE(370,220)-(400, 170): LINE(400, 170)-(430,220)
LlllE(362,200)-(416,200): CIRCLE (460, 195),25.,.6,5.46
FRAHEPOLY VARPTR(poly(O))

Tumble:
FOR rep:! TO 10

FOR m:1TO5
ca:COS(a): sa:SIN(a)
FOR I= I TO 14: pgone(i):polyt(i): NEXT i
Translate xO,yO,path(m, 1),path(m,2)
FOR I: I TO 14 STEP 2
Translate poly(l+ I),poly(l),path(m, 1),path(m,2).
polyt(l):poly(I): polyt(I+ 1):poly(I+ I)
IF1>4 THEN Rotate polyt(I+ 1),polyt(i),xO,yO,ca,sa

NEXTi
PENPAT 360
FRAHEPOL Y VARPTR(pgone(0))
PENPAT 492
FRAHEPOLY VARPTR(polyt(O))
a:8+81

NEXTm
NEXT rep

Stay: IF INKEY$:"" THEN Stay
END
REH ** Subprograms **
SUB translate(x,y,h,k) STATIC

IC:IC+h: y:y+k
END&UB
SUB rotate(x,y,xO,yO,c,s) STATIC

1<t=1<0+(1<-1<0)*c+(y-yO)*s
yt:yO+(y-yO)*c-(1<-ICO)*s
IC=Kt: y:yt

END SUB

The program also translates the M before each rotation to make
the visual effect more interesting. The path array contains the
amounts by which the Mis translated. Figure 8-7 shows the cumula
tive positions of the letter M as it tumbles down the stairs.

The letter is erased by storing the polygon in an auxiliary array,
pgone. Just before it draws the next letter, the program erases the

234 Macintosh Graphics and Sound

old letter by calling FRAMEPOLY with the pen pattern set to 380
(white). It then changes the pen pattern back to black with PENPAT
492.

Notice that the program does not rotate the original polygon
representation of the M, kept in the array poly. Instead, it makes a
temporary copy of the shape in polyt and then rotates and displays it.
Repeatedly applying rotation or scaling transformations to an object
will usually cause distortion because arithmetic errors will accumu
late. By accumulating the transform parameters instead and apply
ing them to an untransformed model, your programs can minimize
such distortion.

You can add scaling about a point by making these changes to
your program:

ll=lll: S=I

FOR r=I TO 5: FOR C=I TO 2
READ p11th(r,c)
DATA 4,-4,8,-2,8,2,4,7,2, I I

NEXT c,r

tr11nsl11te poly(l+ I),poly(l),p11th(m, I),p11th(m,2)
polyt(f):poly(I): polyt(I+ I):poly(l+ I)
IF 1>4 THEN Sc11le polyt(I+ I),polyt(l),>eO,yO,s,s
IF 1>4 THEN Rot11te polyt(I+ I),polyt(l),>eO,yO,c11,s11

NEXT!
PENPAT 380
FRAHEPOLY YARPTR(pgone(O))
PEIPAT 492
FRAHEPOLY YARPTR(polyt(O))
11:11+111
S:S*.95

SUB Sc11le(>e,y,>eO,yO,s,t) STATIC
>e=xO+s*(x-xO)
y:yO+t*(y-yO)

END SUB

You can use a similar technique to rotate MacPaint images. Keep
in mind that rotating every point in a large image requires a tre
mendous amount of calculation. Don't expect to see fast rotation ani
mation unless you store different views as frames in memory.

The next program loads a MacPaint image in a file created with
the module transferral program from Chapter 6. If you wish, you can
modify it to read an image from the Clipboard instead. Either way,
the program displays the image on the screen, translates it h pixels

Manipulating Displays and Viewing Objects 235

~o

Figure 8-7.
Tumbling letter M

Tumbling M

AC

to the right, and rotates it about the midpoint of the GET/PUT
rectangle:

Ani metefremes:
f$:FILES$(1)
IF f$:"" THEN STOP
OPEN f$ FOR INPUT AS 1
INPUT• 1,n,nfreme
IF flag= I THEN ERASE arrayl
DIH arrayl(n): flag= 1
msg$="1oading figure·: GOSUD Message
FOR i:OTO n

INPUT • 1,arrayl(i)
NEXT i
DUTTON CLOSE 1
CLOSE 1

Rotetion:
CLS
INPUT "Enter angle of rotation (-6.28 to 6.26)";a
ce:COS(a): sa=SIN(a)
CLS
msg$:"press ·s· to stop, ·e· for enother engle"

236 Macintosh Graphics and Sound

60SUB messege
uh<=20: uly:SO: h=200: k=O
ml dx=ul x+h+erreyl(O)/2: mi dy:uly+k+erroyll(1)/2
PUT (ulx,uly),erreyll,P&ET
HOYETO ulx+h,uly+k-10
PRINT "Rotetlng ";o;"rodians";
FOR row: I TO orraylC(I)

FOR col: I TO arraylC(O)
x=ulx+row: y=uly+col
IF POINT(x,y)<>33 THEN skip
Translate x,y,h,k
Rotate x,y,midx,mldy,ca,so
P&ET(x,y)

Skip:
NEXT col
1$:1NKEY$: IF 1$:"s" OR 1$:"a" THEN DoKey

NEXT row
Stoy: 1$:1111(EY$: IF 1$:"" THEN Stay
BUTTON CLOSE 1
IF 1$:"s" THEN END
GOTO Rotation

DoKey:
BUTTON CLOSE 1
IF 1$:"s" THEN END
IF 1$:"a" THEN Rotation
END
Message:

BUTTON t, t,msg$,(20,0)-(470,20)
RETURN

REH ** Subprograms **
SUB Tronslate(x,y,h,k) STATIC
l(:l(+h:y:y+k

END SUB
SUB Rotate(x,y,xo,yo,c,s) STATIC
xt=xO•(x-xO)*c+(y-yO)*s
yt:yO+(y-yO)*c-(x-xO)*s
l<:Xt: y:yt

END SUB
SUB Scale(x,y,xO,yO,s,t) STATIC
x=xO+s*(x-xo)
y:yO+t*(y-yO)

END SUB

Note that by using this program, the sample image shown in Figure
8-8 took three minutes to rotate.

Manipulating Displays and Viewing Objects 237

9 l'il<l Edit S<rnn h Run Windows

• -=-= - --=::;;--==----- Rotation

press s to stop, 11 for another angle

Rotating - .785 radians

IJJ

Figure 8-8.
MacPaint image rotated about its midpoint

Three-Dimensional Objects
Representing three-dimensional objects on a two-dimensional com

puter screen can be a challenge. Until someone develops an inexpen
sive screen that will display in three dimensions, graphics pro
grammers will have to work around that inherent restriction.

There are several different approaches you can use to project
three-dimensional objects onto the screen. In an isometric representa
tion, both the x and y axes are offset from the horizontal, and lines
that are parallel in three-dimensional objects are drawn parallel, as
shown in Figure 8-9.

An orthogonal representation shows three different views of the
object: top, front, and side. The views may be arranged on the screen
as shown in Figure 8-10. The figure also includes an isometric view
for comparison.

238 Macintosh Graphics and Sound

Figure 8-9.
Isometric view of the letter A

Top

DIIJJ .
.
. .

Front

Figure 8-10.
Orthogonal view of the letter A

Side

Manipulating Displays and Viewing Objects 239

Draftsmen and artists often use isometric and orthogonal views
because they are quick to prepare. But neither of these representa
tions gives a totally accurate depiction of an object. For example,
objects that are distant should appear smaller than those that are
closer. Perspective drawings achieve this effect by causing parallel
lines to converge at a distant point, called a vanishing point. Figure
8-11 demonstrates a perspective representation.

Perspective representations can be difficult to draw by hand, but
they are easy with your Macintosh. The key is to reduce an object's
size proportionally to its distance from the viewer. Think of the z axis
as extending into the screen. Your program can achieve perspective
by dividing each point's x and y coordinate by its z coordinate. Thus,
the farther along the z axis a point is (the farther away from the
screen), the greater the divisor and therefore the smaller the result
ing x and y coordinates.

/vanishing point horizon

··• ... ~(
H

Figure 8-11.
Perspective view of the letter A

240 Macintosh Graphics and Sound

The computer-aided design (CAD) applications program at the
end of this chapter uses all three methods to represent three
dimensional objects.

STORING THREE-DIMENSIONAL
OBJECTS IN MEMORY

Let's consider how to store a three-dimensional object in memory.
Like two-dimensional objects, three-dimensional objects consist of a
list of points (vertices). Of course, each such point has one additional
coordinate, the distance along the z axis. The notation (x,y,z) is used
to represent the three distances along the x, y, and z axes.

To draw the object, you must draw lines connecting the points in
the proper order. This kind of display is the simplest to provide. Once
drawn, it looks as if the object consists of a web of wires that connect
at its corners. This is called a wire-frame representation, sometimes
ref erred to as a schematic drawing.

You must also decide what information to store about each object.
As you might suspect, there are many schemes you can use. For some
applications, you may wish to store information about the vertices
that group to form faces, those that control the color and texture of
the faces, and more.

A very simple approach is to store the coordinates for both end
points of each line segment in the object. This is slightly redundant,
but it simplifies the program examples. Once you are familiar with
the programs in this chapter, you may wish to modify them to elimi
nate the duplication of vertices.

Manipulating Displays and Viewing Objects 241

THREE-DIMENSIONAL TRANSFORMATIONS

The three-dimensional transformations are relatively straightfor
ward extensions of their two-dimensional cousins. Consider rotation,
for example. In two dimensions, you only need to consider rotation
about a point. To rotate an object in three dimensions, you must spec
ify angles of rotation about all three axes. Our programs could then
rotate a point about each axis by using the two-dimensional technique
three times. There is, however, a more efficient method. The pro
grams in this chapter combine all three rotations into a single matrix
multiplication operation.

Three-dimensional scaling and translation are nearly identical to
their two-dimensional counterparts. In translation, you merely add x,
y, and z distances to the corresponding coordinates of each point. For
scaling, multiply each coordinate by the corresponding scaling factor.

STORING AND MANIPULATING
THREE-DIMENSIONAL OBJECTS

The next program stores and manipulates a three-dimensional object.
The program reads the endpoint coordinate values into six arrays
(three arrays for each of the endpoints) and then asks you to select a
viewing mode (perspective or isometric), a scaling factor (1 = no
change, less than 1 = reduction, greater than 1 = expansion), and
rotation angles about each of the three coordinate axes (in degrees):

GOGUB lnitSys
GOSUB LoedDete
Maino:
GOSUB Viewm
WHILE HOUSE(O}>:O: WEND
GOTO meinO

· drew e 30-llne to one quadrant

Drewline:
x 1=xw1(lptr)*rotmet(1, 1)+yw1(lptr)*rotmet(1,2)+zw 1 (lptr)*rotmet(1,3)
y 1=l<W1(1ptr)*rotmet(2,1)+yw1(1ptr)*rotmet(2,2)+zw1 (lptr)*rotmet(2,3)
x2=xw2(1ptr)*rotmet(1, 1)+yw2(1ptr)*rotmet(1,2)+zw2 (lptr)*rotmet(1,3)
y2=xw2(1ptr)*rotmet(2, 1)+yw2(1ptr)*rotmet(2,2)+zw2 (lptr)*rotmet(2,3)
1< 1=1< 1 *scele:1<2=1<2*scele
y 1=Y1 *scele:y2:y2*scele

242 Macintosh Graphics and Sound

IF NOT persp THEN Drewllneo
zl =KW 1(lptr)*rotmet(3,1)+yw1(lptr)*rotmet(3,2)+zw1 (lptr)*rotmet(3,3)

z2:xw2(1ptr)•rotmet(3, 1)+yw2(1ptr)•rotmet(3,2)+zw2 (lptr)*rotmet(3,3)

z 1=Z1 *scele:z2=z2*scele
t 1:250/(250+z1):t2=250/(250+z2)
y 1=Y1 *t 1 :y2=y2*t2
IC 1:IC1*t1 :K2:K2*t2
Dr11wlineO:
LINE(xorg+x 1,yorg-y 1)-(xorg+x2,yorg-y2),color

RETURN

· bu11d the rot11tion m11tri1<

BuildM11t:
rotm11t(1, 1):COS(zrot)*COS(yrot)
rotm11t(1,2)=61N(zrot)*COS(yrot)
rotmet(1,3)=-61 N(yrot)
rotm11t(2, 1)=-61N(zrot)*COS(xrot)+
COS(zrot)*SIN(yrot)*SIN(xrot)
rotmet(2,2):COS(zrot)*COS(xrot)+
SIN(zrot)*SIN(yrot)*SIN(xrot)
rotmet(2,3):COS(yrot)*SIN(xrot)
rotm11t(3, 1)=SIN(zrot)*SIN(xrot)+
CO&(zrot)*SIN(yrot)*COS(xrot)
rotmet(3,2):-COS(zrot)*SIN(xrot)+
SI N(zrot)*Si N(yrot)*COS(xrot)
rotm11t(3 ,3):COS(yrot)*COS(xrot)

RETURN

Lo11dD11t11:
numlin=33
FOR i= 1 TO numlin

READ xwl(i),ywl(i),zwl(i)
READ xw2(i) ,yw2(1) ,zw2(i)

NEXT i
DATA -60,-40,-50,-30,-40,-50
DATA -30,-40,-50,-20,-40,-40
DATA -20,-40,-40,20,-40,-40
DATA 20,-40,-40,30,-40,-50
DATA 30,-40,-50,60,-40,-50
DATA 60,-40,-50,30,-40,40
DATA 30,-40,40,-30,-40,40
DATA -30,-40,40,-60,-40,-50
DATA -10,-40,-10, 10,-40,-10
DATA 10,-40,-10,0,-40,20
DATA 0,-40,20,-10,-40,-10
DATA -60,30,-50,-30,30,-50
DATA -30,30,-50,-20,30,-40
DATA -20,30,-40,20,30,-40
DATA 20,30,-40,30,30,-50

Manipulating Displays and Viewing Objects 243

DATA 30,30,-50,60,30,-50
DATA 60,30,-50,30,30,40
DATA 30,30,40,-30,30,40
DATA -30,30,40,-60,30,-50
DATA -10,30,-10, 10,30,-10
DATA 10,30,-10,0,30,20
DATA 0,30,20,-10,30,-10
DATA -60,-40,-50,-60,30,-50
DATA -30,-40,-50,-30,30,-50
DATA -20,-40,-40,-20,30,-40
DATA 20,-40,-40,20,30,-40
DATA 30,-40,-50,30,30,-50
DATA 60,-40,-50,60,30,-50
DATA 30,-40,40,30,30,40
DATA -30,-40,40,-30,30,40
DATA -10,-40,-10,-10,30,-10
DATA 10,-40,-10,10,30,-10
DATA 0,-40,20,0,30,20

RETURN

V1ewm:
GOSUB OpWin
MOYETO 10, 15:PRINT"6cele:"
110VETO 130, 15:PRINT"X rot: "
1101/ETO 10,35:PRINT"V rot: "
110YETO 130,35:PRINT"Z rot:"
EDIT FIELD 4,STR$(zr),(1B0,25)-(235,40),1,3
EDIT FIELD 3,STR$(yr),(60,25)-(115,40), 1,3
EDIT FIELD 2,STR$(xr),(1B0,5)-(235,20),1,3
EDIT FIELD 1,STR$(scele),(60,5)-(115,20) , 1,3
BUTTON 2,2,"Perspecti11e· ,(1,45)-(119,59)
BUTTON 1,2,"lsometric",(120,45)-(239,59)
die 1 O:DI ALOG(0):die10:0 I ALOG(0)
i= 1
ExpenO:
die10=DIALOG(O)
IF (dielO:O) OR (die10=2) THEN ExpenO
IF diel0<5 THEN expen 1
i:i+ 1 +(i>3)* 4
EDIT FIELD i
GOTO ExpenO
Expen 1:
IF (dielO= 1) AND (DIALOG(1)=2) THEN persp:true ELSE persp:felse
scele=YAL(EDIT$(1))
xr=YAL(EDIT$(2)):xrot=xr/57.3
yr=YAL(EDIT$(3)) :yrot=yr/57.3
zr=YAL(EDIT$(4)):zrot=zr/57.3
GOSUB buildmet
xorg=256:yorg= 160
WINDOW CLOSE 2
color=33

244 Macintosh Graphics and Sound

CLS
IF numlin=O THEN RETURN
FOR lptr= 1 TO numlin

GOSUB Drawline
NEXT lptr

RETURN

· open up the message window

OpWin:
GET (135, 126)-(375, 190),bitsaY
WINDOW 2,,(135, 150)-(375,210),3

RETURN

· close message window

ClosWln:
WINDOW CLOSE 2
PUT(135, 126),bitsav,PSET

RETURN

· initialize the system et startup

lnitSys:
DEFINT e-n
DEFSNG o-z
DIM xw 1 (200) ,xw2(200) ,yw 1 (200) ,yw2(200) ,zw 1 (200)
DIM zw2(200),rotmat(3,3),bitsav(1O10)
true=-1 :false=O
numlin=O:scale= 1
WINDOW 1,,(0,20)-(511,341),3

RETURN

The Dralin routine draws a line. It begins by rotating and scaling
the x and y coordinates. If the user requests a perspective drawing, it
rotates and scales the z coordinates and uses them to adjust x and y,
creating the perspective effect. After all the calculations are com
plete, it draws the line between the resulting x and y values.

The BuildMat routine computes the rotation matrix. The user
supplies the three rotation angles xrot, yrot, and zrot. BuildMat uses
these numbers to calculate nine values stored in the RotMat array.
The Dralin routine uses these values to rotate the x and y coordinates.

The Viewm routine builds an edit dialog box. It gets values from
the user and then calls the BuildMat and Dralin routines to rotate,
scale, and draw the figure.

Manipulating Displays and Viewing Objects 245

Computer-Aided Design Program
Computer-aided design (CAD) is the process of using computers to

assist in product design. The need for efficient ways to design every
thing from nuts and bolts to automobiles and spacecraft has been one
of the primary driving forces in the development of computer
graphics. Traditionally, CAD programs reside on mainframes and
minicomputers because of memory and processing-speed require
ments. Nevertheless, you can implement a simple CAD system on your
Macintosh by using-of all languages-BASIC.

Admittedly, our CAD program is not going to put any software
developers out of business. It does demonstrate, however, a vital appli
cation of the routines and concepts developed in this chapter. Typing
a program of this length is not for the faint-hearted. If you wish to
save some typing time, you can send away for the program disk de
scribed on page ix.

• this program creates end displays 30 graphic images

&O&UB lnltSys
&o&UB UpDete
WHILE true

WHILE ltOU&E(O)<l:HHU ON
IF (f1egY=1 OR HOU&E(1)>256 AND HOU&E(2)<140) AND (numlin <> 0) AND

(updeleYlew)THEN 60 SUB Seen
WEND
HENU&TOP
&O&UB AddAPolnt
HENUON

WEND
END

• add another point

AddAPolnt:
num11n=num11n+ 1
IF numlln= 1 THEN HENU 5,2, 1: HENU 5,3, 1
xwl(numlln):xwl:yw1(numlln)=ywl:zw1(numlin)=zwl
&O&UB Get3d
IF cancel THEN numlln:numlin-l:RETURN
xw2(numlln)=xwl:yw2(numlln)=ywl:zw2(numlln)=zwl
color:33:1strt:numlln:lstp:numlln
606UB UDetRenge

RETURN

246 Macintosh Graphics and Sound

· updete the screen

UpDete:
HENU 4,1,1
selected =felse
updeteY1evt=true
CLS
LINE(0,160)-(511,160)
LINE(256,0)-(256,321)
IF lolcflg THEN UpDeteO
FOR dx=-120 TO 120 STEP 10

FOR dy:-80 TO 80 STEP 10
PSET(128+dx,80+dy)
PSET(128+dx,240+dy)
P6ET(384+dx,240+dy)

NEXT dy
NEXT die
UpDeteO:
IF numlln=O THEN RETURN
color=33
lstrt=1
lstp:numlln
&OSUB UDetRenge

RETURN

• updete 11 range of line records

UDetRenge:
persp:f else
scele=1
xrot=O
yrot:O
zrot=O
xorg= 128:yorg=80
&OSUB BulldMet
FOR lptr:lstrt TO lstp

&OSUB Drelin
NEXT lptr
xrot=l.571
yrot=O
zrot=O
xorg= 128:yorg=240
&OSUB BuildMet
FOR lptr:lstrt TO lstp

&OSUB Drelin
NEXT lptr
xrot= 1.571
yrot=O
zrot=l.571
xorg:384:yorg=240
&OSUB BulldMet

Manipulating Displays and Viewing Objects 247

FOR lptr:lstrt TO lstp
&O&UB DreHn

NEXT lptr
xrot=l.047
yrot:5.76
zrot:l.047
xorg:384:yorg:80
&O&UB BufldMat
FOR lptr:lstrt TO lstp

&O&UBDreUn
NEXT Jptr

RETURN

• drew a 30-line to one quadrant

Drelin:
x 1=xw1(lptr)*rotmat(1, 1)+yw1(lptr)*rotmat(1,2)+zw 1(lptr)*rotmat(1,3)
y 1=Xw1 (1ptr)*rotmat(2, t)+yw 1(1ptr)*rotmat(2,2)+zw1 (1ptr)*rotmat(2,3)
x2=xw2(1ptr)*rotmat(1, 1)+yw2(1ptr)*rotmat(1,2)+zw2(1ptr)*rotmat(1,3)
y2=xw2(1ptr)*rotmat(2, 1)+yw2(1ptr)*rotmat(2,2)+zw2(1ptr)*rotmat(2,3)
x1=x1*scale:x2:x2*scale
y 1=Y1 *scale:y2=y2*scale
IF NOT persp THEN DrellnO
z 1=xw1(lptr)*rotmat(3,1)+yw1 (lptr)*rotmat(3,2)+zw1 (lptr)*rotmat(3 ,3)
z2=xw2(1ptr)*rotmat(3, 1)+yw2(1ptr)*rotmat(3 ,2)+zw2(1ptr)*rotmat(3 ,3)
z 1=Z1 *scale:z2=z2*scale
t 1=250/(250+z1):t2=250/(250+z2)
y 1=Y1*t1 :y2:y2*t2
X 1=X1*t1 :X2:X2*t2

DrelinO:
LINE(xorg+x 1,yorg-y 1)-(xorg+x2,yorg-y2) ,color

RETURN

• build the rotation matrix

BuildMat:
rotmat(1, 1):CO&(zrot)*CO&(yrot)
rotmat(1,2)=61N(zrot)*CO&(yrot)
rotmat(1,3)=-&IN(yrot)
rotmat(2, 1)=-&IN(zrot)*CO&(xrot)+CO&(zrot)*&IN(yrot)*&IN(xrot)
rotmat(2,2)=CO&(zrot)*CO&(xrot)+&IN(zrot)*&IN(yrot)*&IN(xrot)
rotmat(2,3)=CO&(yrot)*&IN(xrot)
rotmat(3, 1):&IN(zrot)*&IN(xrot)+CO&(zrot)*&IN(yrot)*CO&(xrot)
rotmat(3,2)=-CO&(zrot)*&IN(xrot)+&IN(zrot)*&IN(yrot)*CO&(xrot)
rotmat(3,3)=CO&(yrot)*CO&(xrot)

RETURN

• get a 3D cursor potnt

Get3d:
IF updatevtew THEN Get3dA
&O&UBOpWtn

248 Macintosh Graphics and Sound

PRINT
PRINT "You must return to the update Yiew·
PRINT • before you can select a point"
cancel= true
FOR J= 1 TO 20000 : NEXT J
&OSUB Closwtn

RETURN
Get3dA:
&OSUB Get2d
i=true
FOR j:1TO3

IF llUT(setdpth(j) OR setcoor(j)) THEii i=false
NEXT j
IF i THEii Get3dB
&OSUBOpWin
PRINT" Point Is ambiguous. Select depth"
PRINT • In another quadrant and try again"
&OSUB ChkUsr
IF cancel THEii RETURN
WHILE HOUSE(O)< 1 :WEND
&UTO Get3d
Get3dB:
IF setcoor(1) THEii xwl:XW ELSE xwl:xdpth
IF setcoor(2) THEii ywl=yw ELSE ywl:ydpth
IF setcoor(3) THEii ZWl:ZW ELSE ZWl=Zdpth

RETURN

'MENU command

ProcessM:
menuld:HEllU(O)
ltemld:HEllU(1)
FOR pml:I TO 5
HEllU pml,0,0

NEXT
HEllUOFF

Oii menuid &OSUB FlleM, YlewM,LockM,DepthM,PriM
FOR pml: 1 TO 5
HEllU pmi,0,1

NEXT
IF NUT updateYlew THEii HEllU 4,0,0: HEllU 5,0,0
HEllU 011
01 HEllU &OSUB ProcessM

RETURN

• file command

FlleM:
01 itemld SUTO FllSaY,FllLoad,FllQult

Manipulating Displays and Viewing Objects 249

FtlSeY:
nS:FILESS(O ,fllnemS)
IF (numJln:O) OR (LEl(n$):0) THEN FllSevO
ftlnemS=nS
OPEN ftlnem$ FOR OUTPUT AS 1
FOR I= 1 TO numJln
PRINT• 1,xw1(1)
PRINT• 1, xw2(1)
PRINT• 1, ywl(I)
PRINT• I, yw2(1)
PRINT• 1, zw1(1)
PRINT• I, zw2(1)

NEXT I
CLOSE I
Fl16eY0:
&OSUB UpDete

RETURN

Fllloed:
nS=FILESS(I)
IF LEl(n$):0 THEN SOSUB UpDete:RETURI
ftlnemS=nS
OPEi mnemS FOR INPUT AS 1
num11n=O
FllloedO:
IF EDF(1) THEN CLOSE l:&O&UB UpOete: RETURN
num11n=num11n• I
l•UT• 1,xw1(num11n)
INPUT• 1,xw2(num11n)
INPUT• 1,yW1(numlln)
INPUT• 1,yw2(num11n)
INPUT• 1,zw1(num11n)
INPUT• 1,zw2(num11n)
&OTO FllloedO

FU Quit:
&O&UBOpWtn
PRINT" Are sure thllt you"
PRINT • went to stop?"
&O&UB ChkUsr
IF cancel THEN RETURN
llEIU RESET

EID

• drew e view

YtewM:
01 ltemtd &OTO UpDete,Expend

Expend:
HEIU 4,0,0: HEIU 5,0,0

250 Macintosh Graphics and Sound

flagY=1
&O&UBOpWln
HOYETO 10, 15:PRINT"Scele:·
HOYETO 130, 15:PRINT"X rot:"
HOYETO 10,35:PRINT"Y rot:"
HOYETO 130,35:PRINT"Z rot:"
EDIT FIELD 4,6TR$(zr),(180 ,25)-(235,40), 1,3
EDIT FIELD 3,&TRS(yr),(60,25)-(115,40), 1,3
EDIT FIELD 2,&TRS(xr),(180,5)-(235,20), 1,3
EDIT FIELD 1,&TRS(scele),(60,5)-(115,20),1,3
BUTTON 2,2,"PerspectlYe",(1,45)-(119,59)
BUTTON 1,2,·1sometrlc" ,(120 ,45)-(239 ,59)
dlelO:DIALO&(O):dlelO:DIALD&(O)
I= I
updeteYiew=felse
ExpnnO:
dlelO:DIALO&(O)
IF (dlelO:O) DR (dle10:2) THEN Expeno
IF dlel0<5 THEN Expenl
1:1+ I +(1>3)*4
EDIT FIELD I
&OTO ExpenO
Expenl:
IF (dlelO= I) AND (DIALOG(I)=2) THEN persp:true ELSE persp:f else
scele:YAL(EDIT$(I))
xr:YAL(EDIT$(2)):xrot=xr/57 .3
yr:YAL(EDIT$(3)):yrot:yr/57.3
zr=YAL(EDIT$(4)):zrot:zr/57 .3
&O&UB BuildMet
xorg=256:yorg= 160
WINDOW CLOSE 2
color=33
CL&
IF numlin=O THEN RETURN
FDR lptr= 1 TD numlin

&OSUB Drelln
NEXT 1ptr

RETURN

' toggle the grid lock

LockM:
lokflg= 1-ltemid
HENU 3,ltemld,2
HEllU 3,2+1okflg, I

RETURN

• set new ectiYe depth

DepthM:
l:HOUSE(O)

Manipulating Displays and Viewing Objects 251

WHILE HOU6E(O)<l:WEND
GOSUB Get2d
IF cancel THEii RETURN
FDR 1:1TD3

setdpth(l):setcoor(1)
llEXT i
icdpth:icw:ydpth:yw:zdpth=zw

RETURN

• get 2D cursor point

Get2d:
cencel=felse
ICS:HOUSE(1):ys:HOUSE(2)
IF eicpended = 1 THEii 6DSUB NoOrew: RETURN
IF ys> 160 THEii get2d 1
IF ICS<256 THEii get2d0
6DSUBOpWln
PRINT • Sorry, you can't click here."
PRINT "This window Is for display only."
606UB ChkUsr
IF cancel THEii RETURN
WHILE HDUSE(0)<1:WEllD:GDSUB Get2d:RETURll
Get2d0:
setcoor(1)=true:icw=ics-128
setcoor(2):true:yw=80-ys
setcoor(3):felse
GOTO get2deic
Get2d1:
setcoor(3):true:zw=240-ys
IF ICS<256 THEii get2d2
setcoor(l):felse
setcoor(2)=true:yw:ics-384
GOTO Get2dEx
Get2d2:
setcoor(1)=true:xw=xs-128
setcoor(2)=f&lse
Get2dEx:
IF lokflg THEii RETURN
ICW: I NT ((icw+5)/ 1 0)* 1 0
yw=INT((yw+5)/ 1O)*1 o
ZW= INT((zw+5)/ 1O)*10

RETURN

• perfonn e graphic prlmitiYe function

PrlM:
011 itemld GOTO PrlmO,Oellest,OelAll

PrlMO:
WHILE HDUSE(O)< 1 :WEllD
IF expended =1THEii606UB NoOrew: RETURN

252 Macintosh Graphics and Sound

&O&UB 6et3d
RETURN

· delete the lest line from the dete bese
Del Lest:
IF numltn:O THEN RETURN
lstrt=numlin
lstp:numlin
color:30
&O&UB UD11tR11nge
numltn:numlln-1
xwl:xw2(numl1n):ywl:yw2(numl1n):zwl=zw2(numl1n)

RETURN

' delete the entire greph1c dete base
DelAll:
&O&UBOpWin
PRINT • Do you went to delete •
PRINT • the entire picture?"
&OSUB ChkUsr
IF cencel THEN RETURN
numltn=O
606UB UpDete

RETURN

check with user before execution

ChkUsr:
BUTTON 2,2;c11ncel",(130,40)-(199,59)
BUTTON 1,2, "Ok" ,(200 ,40)-(239 ,59)
dl11IO:DIAL06(0):di11IO:DIALO&(O)
ChkUntll:
dlelO:DIALO&(O)
IF dle10<> 1 THEN ChkUntll
IF DIALO&(0=2 THEN cencel:true ELSE cencel=felse
&O&UB ClosWin

RETURN

• open up the messege window

OpWln:
&ET (135, 128)-(375, 190),bltSllY
WINDOW 2,,(135, 150)-(375,210),3

RETURN

• close message window

ClosWln:
WINDOW CLOSE 2
PUT(135, 128),bltSllY,P6ET

RETURN

Manipulating Displays and Viewing Objects 253

initialize the system et startup

lnitSys:
DEFINT e-n
DEFSN& o-z
DIH xw 1 (200) ,xw2(200),yw 1 (200) ,yw2(200) ,zw 1 (200) ,zw2(200)
DIH rotmet(3,3) ,bitseY(1O10) ,setcoor(3) ,setdpth(3) ,cursor(33) ,color(200)
trve=-1 :felse=O
filnem$:" •
numlin=O:scele= 1
selected = felse
HENU 1,0,1,"File"
HHU 1, 1, 1,"seye·
HENU 1,2, 1,"loed"
HENU 1,3,1,"stop"

HHU 2,0, 1,"Yiew·
HENU 2, 1, 1, "updete screen·
HENU 2,2,1,"expended Yiew·

HHU 3,0,1,"Lock"
HHU 3, 1,2,"grid on·
HHU 3,2, 1,"grid off"

HENU 4,0, 1,"Depth"
HENU 4, 1, 1, "ectlye"

HENU 5,0, 1,"PrimitiYes·
HENU 5, 1, 1 ;new stream·
HENU 5,2,0,"delete lest"
HENU 5,3,0,"delete en·

WINDOW 1,,(0,20)-(511,341),3
ON HENU &OSUB ProcessM
HEllU 011
·Input Cursor:
FOR 1:0 TO 33: READ cursor(I): llEXT I
DATA 10752,7168,-128,7168, 10752, 18688,-30592,0,0,0,0
DATA 0,0,0,0,0, 10752,7168,-2176,7168, 10752, 18688,-30592
DATA 0,0,0,0,0,0,0,0,0,2,4
RETURN

NoDepth:
&OSUB OpWin
PRINT ·sorry, you h&Ye to go to the updeted"
PRINT • screen to eccess this function."
FOR J= 1 TO 20000: NEXT J
&O&UB ClosWin

RETURN

NoPriM:
&OSUB OpWin
PRINT ·sorry, you heYe to go to the"
PRINT "updeted screen to access this function·
FOR J=1TD20000: NEXT J
&OSUB ClosWin

254 Macintosh Graphics and Sound

RETURN

Seen:
HEID ON: HEID STOP
IF HOUSE(1)<257 OR HOUSE(2)>159 THEN lllTCURSOR: RETURN
IF POINT(HOUSE(1),HOUSE(2))=33 THEN SETCURSOR YARPTR(eursor(O)) ELSE lllTCURSOR
IF HOUSE(O}>:O THEN Seen
mx = HOUSE(1) : my = tlOU&E(2)
IF POINT(mx,my):33 THEN lllTCURSOR: GOSUB UnWentedllne: GOTO Seen
GET(240, 1)-(420,30),bltseY
LOCATE 1,40
PRINT "not on 11ne·
FOR Z= 1 TO 500: NEXT z
PUT(240, 1)-(420,30),bltsev ,PSET
GOTO Seen

RETURN

• Find eoonllnetes of unwanted line
UnWentedllne:

e1eanlla1og:DIALOG(O)
FOR 1ptr= 1 TO numlin

GOSUB Dralln
x1=xorg+x1:yl:yorg-y1
x2=xorg+x2:y2=yorg-y2
IF x2 <> x1 THEN notvertlea1
IF mx = x 1 AID AB&(y 1-my) < ABS(y 1-y2) THEI &OTO Remove ELSE CheckNext
NotYertlcal:
vebs:ABS(my -y 1 -(y2-y 1}/(x2-x l)•(mx-x 1))
IF VabS< 1 THEN remove

CheckNext:
NEXT lptr

&ET(240, 1)-(420,30),bitsav
LOCATE 1,40
PRINT "not on 1ine·
FOR Z= 1 TO 500: NEXT z
PUT(240, 1)-(420,30),bitsev,PSET

RETURN

Erase hidden line)
Remove:
GET(115,290)-(315,320),bitsav

BUTTON 1,2, "Delete?",(120,295)-(210,314)
BUTTON 2,2,"Leeve a1one?",(220,295)-(310,314)
Query:
FOR I= 1 TO 500: NEXT I
LOCATE 1,1:
LlftE(x 1,y 1)-(x2,y2) ,30
FOR I= 1 TO 500: NEXT I
LINE(x 1,y 1)-(x2,y2) ,33
IF DIALO&(O):O THEN Query

Manipulating Displays and Viewing Objects 255

BUTTON CLOSE 1
BUTTON CLOSE 2
PUT (115,290)-(315,320),bitSllY,PSET
IF DIAL06(1):2 THEN RETURN
LINE(x 1,y I)-(x2,y2),30
FOR l:lptrTO numlln-1

xw I (i):xw I (i+ I): xw2(i):xw2(i+ I)
ywl(i)=ywl(i+I): yw2(0=yw2(i+1)
zw 1 (i):ZW l(i+ 1): zw2(i):ZW2(i+ I)

NEXT i
numlin=numlin-1

RETURN

The CAD program displays an orthogonal representation of a
wire-frame object of your design, as well as an isometric representa
tion of the object in the upper-right quadrant. To start the program,
select Active from the Depth menu. The menu bar dims to let you
know that you should click a point in one of the three quadrants dis
playing an orthogonal view-upper left (top view), lower left (front
view), or lower right (side view). This establishes two coordinate
values (for example, x and y) for a point in the upper-left quadrant.
Next, select New Stream from the Primitives menu. Now you are
ready to select points.

Choose a point in one of the other two orthogonal-view quadrants
(not the one you clicked after you activated the Depth menu). Let's
say you click a point in the xz quadrant (lower left). That sets the x
and z values for a three-dimensional point (x,y,z). They value is sup
plied by the y coordinate of the point that you clicked for the active
depth. Continue clicking more points in that quadrant. The program
draws a line for each new point. It connects all the lines until you
select New Stream from the Primitives menu. New Stream starts a
new stream of connected points:

y~
z x

z~z~
x x y

256 Macintosh Graphics and Sound

When you are ready to work in a different plane, simply select a
new Depth plane and a New Stream. If you don't like the line you
have just drawn, select Delete Last from the Primitives menu. If you
decide to scrap it all, select Delete All from the Primitives menu.

You can also delete a selected line by using the mouse. Move the
cursor into the upper-right quadrant and position it over the line you
wish to delete. Click the button when the cursor changes shape. The
program tests each pair of points in your data base to see if the point
you clicked is approximately on one of the lines. If a match is made,
the line flashes. You can then click Delete to delete it or Leave to
leave it in the data base.

The Lock menu lets you disable the grid so you can position the
points more precisely. If the screen gets messed up in any way, select
ing Update Screen from the View menu redraws the object.

If you wish to view the object on the whole screen, select
Expanded View from the View menu. Expanded View displays a
dialog box that you may recognize from the previous program. You
can scale the figure, set rotation values for each of the three axes, and
choose either an isometric or perspective view. You can select
Expanded View several times to try different view angles and scale
factors.

When you are ready to continue editing the figure, select Update
Screen again from the View menu. This will return you to the pre
viously displayed orthogonal representation.

When your creation is ready to be immortalized, select Save from
the File menu. The Load option of the File menu lets you load your
creations from disk.

Summary
The programs developed in this chapter demonstrate transforma

tions of objects on the computer screen. The transformations include
translations, rotations, and scaling. Transformation of three
dimensional objects requires the additional consideration of how to
project the objects onto a two-dimensional screen. Orthogonal, iso
metric, and perspective representations of three-dimensional objects
have been discussed in this chapter.

In the next chapter, we will explore some techniques for writing
efficient programs. You will learn how to 'shoehorn' an overgrown

Manipulating Displays and Viewing Objects 257

BASIC program into a 128K Mac and how to speed up those sluggish
bits of code.

BASIC Statements
SUB ... STATIC
END SUB

9
Designing Efficient

Programs

Coding a computer program is not an exact science. Although a pro
grammer must follow the basic rules of the language, program
design is largely a matter of personal style. The way you write a pro
gram also depends on the results you want: you may want one pro
gram to be a model of structured design and well-documented code, .
another to use the least possible memory, and another to be optimized
for fast execution. It is not always possible for a program to do all
three equally well, so you must analyze your needs and establish
priorities. In this chapter we discuss ways to design programs with
efficient use of memory and increased program speed.

259

260 Macintosh Graphics and Sound

Working with Limited Memory
Manipulating complex graphics images can require large amounts

of memory. If you use a 128K system, you may find your programs
severely restricted unless you pay close attention to memory usage.
Fortunately, there are several tools and techniques you can use to
work within the memory limitations of your system.

MEMORY PARTITIONS

We'll start with a brief look at how the Mac uses memory. Microsoft
BASIC on the Macintosh separates available memory into three dis
tinct areas, called the stack, the data segment, and the heap.

The stack keeps track of program flow when you use nested loops
and calls to subprograms and subroutines. The deeper the level of
nesting in your programs, the more stack space they will require.

The data segment contains the program text, along with string
variables, numeric variables, and file buffers for opened files.

The heap, as its name implies, contains a heap of goodies. First
and foremost, it contains the active segments of the BASIC program
itself. Instead of all of the more than 80K of BASIC code being loaded
into memory at once, sections of the language are loaded into memory
as they are needed. This can slow down program execution when new
segments are loaded into memory, but it keeps the net amount of
memory required by BASIC to a tolerable level. The heap also con
tains a 1024 byte SOUND buffer, image data recorded by the PIC
TURE statement, and storage for such user interface structures as
buttons, edit fields, and active desktop objects.

CONTROLLING MEMORY ALLOCATION

Each of these sections is allocated a predetermined amount of
memory, depending on how much memory your Macintosh has. On a
512K system, Binary BASIC 2.0 allocates around 52K bytes for the
heap, 14K for the stack, and 334K for the data segment. On a 128K
system, Binary BASIC allocates 13K for the heap, 6K for the stack,
and 20K for the data segment.

If you want to change these default values, BASIC provides a
means to control memory allocation via the CLEAR statement. This
statement completely resets the stack and all variables, functions,
and string space to null or zero status. The format is

CLE AR, data, stack

Designing Efficient Programs 261

where data is the number of bytes reserved for BASIC's data seg
ment and stack is the number of bytes reserved for the stack. Both
the data and stack parameters are optional; if not supplied, a
parameter defaults to its current value. The heap space is whatever
is left over after the data and stack areas are set. If you are doing a
lot of bit image array manipulation in a program, you may need to
increase the size of the data segment and decrease the size of the
stack.

MONITORING MEMORY ALLOCATION

To help you monitor the amount of available memory, BASIC pro
vides the function FRE(x). This function returns the amount of
unused heap space if x is -1, the amount of unused stack space if x is
-2, and the amount of unused memory in the data segment if x is any
other number. If you have large amounts of data and you are pushing
the limits of available memory, use the FRE function to monitor the
memory demands made by your program.

Keep in mind that the values returned by FRE give an instanta
neous assessment of free memory; these values change continuously
while your programs run, as demonstrated by this listing:

h=FIE(-1): PllllT "htap:";h
PllllT FIE (0)
l=fl£(-2): PllllT "steck:";s
PRlllT FIE (0)
d=FIE(O): PllllT "dete:";d
Plllll'FIE(O)
t=h+s+d: PllllT "totel:";t
PllllT FIE (0)
z: IF l•HS=-TIE• z

Each time your program introduces a new variable, it reduces the
data segment memory by a minimum of eight bytes:

heap: 13490
20820

stack: 6323
20812

data: 20804
20804

total: 40617
20796

Remember, the default data type for Binary BASIC is single
precision, which requires four data bytes per variable plus extra
memory for the variable's name and other overhead. (Integers con-

. sume two data bytes, and double-precision variables take eight.)

262 Macintosh Graphics and Sound

Designing for Limited Memory
There are several ways to condense a program so that it takes up

less room. Users with 128K Macs may be forced to sacrifice some
program readability to make the most of the memory available.

Keep the use of line numbers, labels, and remarks to an absolute
minimum (see Figure 9-1). Use short variable names. You can also
place multiple statements on a single line and remove indentations
(as in nested loops).

D - - - --- -

jLISTING A:

10 REM: INITIALIZING VARIABLES
20 RANDOMIZE TIMER

List

30 DIM POINTER(20): REM STORES POINTER INFO FOR DRAW ROUTINE
40 FDR COUNTER= 1 TO 20
50 READ POINTER(COUNTER)
60 NEXT COUNTER
70PSTART:10
BO PMIDDLE=210
90 PEND:400

DRAWROUTINE: REM DRAWS RANDOM DOTS GUIDED BV POINTER ARRAV _
100 XCOORDINATE=O
XLOOP:
110XCOORDINATE:XCOORDINATE+1
120 PSET(XCOORINATE+POINTER(RND*20),200)
130 IF XCOORDINATE<20 THEN GOTO XLOOP

LISTING B:

RANDOMIZE TIMER: DIM P(20)
FDR C: 1 TD 20: READ P(C): NEXT C
PS:10:PM=210:PE:400
FDR X: 1 TD 20: PSET(X+P(RND*20),200): NEXT X

Figure 9-1.
Examples of ways to condense programs

Designing Efficient Programs 263

Sometimes you can reuse the same variable for several purposes,
rather than introducing a flock of new variables (see Figure 9-2).
This cuts down on variable storage.

Another trick is not to use the optional verb CALL when using
ROM routines (see Figure 9-3).

Remember, use these techniques only as a last resort. Eliminating
comments and reusing variables can make a program exceedingly
difficult to understand, especially if the program sits idle for a month
or two.

CHAINING AND OVERLAYING PROGRAMS

Another way you can make room for variable storage is to decrease
the instantaneous size of your program. For example, assume you
have written a magnificent music composition tool. Suppose it con
sists of two main sections: one helps the user compose, and the other
plays the resulting music. You can take advantage of the fact that
these two program sections need not be in memory at the same time.
The composition section merely passes control to the playing section
when necessary. When the playing section is finished, it passes con
trol back to the composition section. In BASIC, progam control is
passed from one segment to the next with the CHAIN statement.

Figure 9-2.
Reusing variables

~o List
If DR 11=50 TO I 00

CIRCLE(200, 150),11
NEXT 11
INPUT "ne)(t number"; 11
PRINT "The boss w11nts ";11;" of them"
seen: 11='10USE(O): IF 11>=0 THEN seen
ON ABS(11) GOSUB quit, drew

QI

I

II
~

r"llJ

264 Macintosh Graphics and Sound

;;o List
!BEFORE:

AFTER:

FRAMEROUNDRECT VARPTR(rect:C(1)), w ,h)
TEXTMODE 9
MOVETO x,y

Clf

Figure 9-3.
Do not use CALL

When BASIC executes a CHAIN statement, it merely replaces the
current program with a new one and begins executing it. If the pro
gram segments need to share certain variables, include the variable
names in a COMMON statement at the beginning of both segments.
You can also tell BASIC to share all variables with CHAIN's All
option.

A related technique is called overlaying. Overlays are used when
several sections of your program share some code. When you use
overlays, the same program continues to run, but you replace parts of
it as necessary. The CHAIN MERGE statement helps you do this.
You specify the range of statements to replace, and BASIC does the
rest. Figure 9-4 contains a skeletal version of an overlayed program.
The main program replaces labels s through e with overlay "inside"
or "outside" as necessary.

RECLAIMING ARRAY MEMORY

Array variables allow programmers to reference a group of variables
of the same type with a single variable name. Before using an array,
you must reserve memory by using the DIM statement. If your pro
gram uses an array for one portion of the program run and never
uses it again, you can reclaim the space it occupied with the ERASE

Designing Efficient Programs 265

Mein Program file "inside" file "outside"

ON MENU GOSUB int,ext
RETURN

s: 'Drow interior s: 'Drow exterior

int:
CHAIN MERGE "inside",,ALL, DELETE s-e
RETURN

ext:
CHAIN MERGE "o.utside",,ALL, DELETE s-e e: RETURN
RETURN

s: 'rout Ines go here
e:

Figure 9-4.
Using CHAIN MERGE to overlay sections of a program

e: RETURN

statement. You can then use the memory for other purposes or reuse
it with the same array after redimensioning it:

GET (1,t)-(r,b),orroy
PUT (1+20,t),orroy,PSET
ERASE orroy
DIM orroy(30, 12)

REPLACING CONSTANTS

Another way to save memory is to replace often-used constants (both
numbers and strings) with variables. For example, a variable named
pi consumes less memory than the constant 3.1415926. This is one
technique that can actually improve the readability of your programs:

pi:3.1415927
FOR i= 1 to 5

FOR j= 1 to 5 STEP . 1
x=200+cos(2* j •pi)*sin(i *pi/2)
y= 1 OO+cos(2* j •pi)•cos(i *pi/2)

NEXT j
NEXT i

266 Macintosh Graphics and Sound

Designing for Speed
In many graphics applications, the primary consideration is not

how short you can make your program, but how fast you can display
the graphics on the screen. Display speed is a function of both pro
gram design and the language used. The best language for fast pro
gram execution is the machine code of the computer's central pro
cessing unit (CPU). Programs written in machine code can take full
advantage of the inherent speed of the computer. Another option is to
write the majority of your program in BASIC, but code the speed
intensive routines in machine code and call them from the BASIC
program. This technique uses both languages to their best advantage.

For many BASIC programmers, however, neither option is attrac
tive. Machine code is difficult to learn, and programming with it
requires heroic levels of concentration and patience. BASIC, on the
other hand, is easy to learn, and Microsoft BASIC allows access to
many of the routines in ROM that execute at machine-language
speed.

Even so, BASIC programmers are handicapped by the fact that
Microsoft BASIC on the Macintosh is an interpreted language; that
is, each BASIC statement or function must be translated (inter
preted) into 68000 machine code before it can be executed. This
translation process is time-consuming, and it slows program execu
tion considerably. Interpreted programs typically run ten times
slower than their machine-language counterparts.

Fortunately, there are several ways to improve program execution
speed. For example, consider that programs typically spend a good
portion of their execution time processing a small portion of the cqde.
You can speed execution by coding these high-use areas carefully.

CONDENSING CODE

Condensing the program code, as shown earlier in this chapter, not
only saves memory but can also make your programs run faster. This
means removing remarks and shortening variable and label names,
removing all labels and line numbers not used by GOTOs and
GOSUBs, and using multiple statements per line whenever possible.
These changes will make your program less readable, but they will
execute faster because the interpreter has less to read.

CONTROLLING VARIABLE TYPES

Another way to speed up a program is to choose variable types care
fully. The default variable type for the decimal version of BASIC is

Designing Efficient Programs 267

double-precision, and the default for the binary version is single
precision. You can change these defaults either by defining variable
types with DEFINT, DEFSNG, DEFDBL, and DEFSTR statements,
or by explicitly specifying each variable type with the symbols%, !, #,
and $, respectively. Defining variable types with DEF statements
eliminates the need for these extra symbols and thus shortens vari
able names:

DEF INT 1H: DEFSNG m-y: DEFSTR z
FOR I: 1 to 5

READ e(i)
DATA 3,5,2,7,5

NEXT I
p:3. 1416: t:sin(p/2)
INPUT "Enter your name";znam

Of the three numeric variable types, BASIC processes integer vari
ables most quickly because the Macintosh CPU can directly move
and perform arithmetic on integers. The CPU requires more instruc
tions to work with single- or double-precision variables. Remember,
integer variables require only two bytes of storage, as compared to
four bytes for single-precision and eight bytes for double-precision.
The program simply has less data to manipulate with integer vari
ables. Thus, you can speed up your programs considerably by using
integer variables for loop counters, flags, and anything else in which
decimal accuracy is not required.

HANDLING SUBROUTINES

Subroutines are very useful programming devices. They can cut
down on program size by minimizing duplicated code. You can also
use them to break large tasks into smaller units and organize pro
grams logically, as in structured languages like Pascal. Unfortu
nately, heavy use of subroutines tends to slow down program execu
tion. When calling a subroutine, the BASIC interpreter must save the
current program location and find the destination label. Then it must
restore the original program location at the end of the subroutine. All
this overhead takes extra time.

You can eliminate jumps to short subroutines by replacing the
GOSUB statement with a copy of the subroutine code. Figure 9-5
illustrates this technique.

CONTROLLING VARIABLE ORGANIZATION

The order in which you define and use string and array variables can
be extremely important when you are using large arrays. If you ha-

268 Macintosh Graphics and Sound

Figure 9-5.

BEFORE:

GOSUBTRANS

GOSUBTRANS

TRANS:
)C:>e+h:y:y+k
RETURN

AFTER:

>C=>e•h:y:y+k

)C:)C+h:y:y+k

Replacing GOSUB statements with subroutine code

bitually define your arrays before your string variables, you are ask
ing for trouble. BASIC likes to store the names for all string vari
ables in low memory before the array variables. Each time a program
uses a new string variable, BASIC moves all the array variables
higher in memory to make room for the new string. This is not meant
to be devious; it is simply the way BASIC handles its variable stor
age. If you have a 512K or larger Macintosh, try this program:

Diii mS(30000)
PRIU "Ylrtlble Relocettan DemDnstntt••

··-·: PRllT IS ltS="llllllb·: PRllT llS
ct-•cccc•: PRllT cl
PRllT IS;bS;cS
e: IF 1mcns.-no 1

The delay between print lines results from BASIC moving the
array. Imagine how surprised an unsuspecting programmer would
be to see his or her program suddenly pause right in the middle of a
carefully choreographed graphics routine.

Now that you know the cause, what is the cure? Just mention each
of the string variables to be used in your program before you dimen
sion any arrays. Add this line to the beginning of the previous
program:

Designing Efficient Programs 269

Note that the effect is more pronounced on programs with large
amounts of data, particularly on Macintoshes with more than 128K of
memory. As long as your program declares string variable names
before dimensioning arrays, BASIC need not move the arrays.

You may also experience unexpected program delays when the
computer accesses the disk to bring in new segments of the BASIC
interpreter. Minimize this delay by allocating more heap space, so
that more of BASIC is resident in memory (or increase your Macin
tosh's memory to 512K or more).

Speed Versus Memory
Execution speed and efficient use of memory are often conflicting

factors in program design. In most cases, a program designed to exe
cute quickly requires lots of memory. For example, to produce fast
animation in BASIC, you need to prepare frames in advance, load
them all into memory, and then display them rapidly by using PUT
or PICTURE. Storing all these frames can put significant demands
on memory.

If you change the program orientation to conserve memory, speed
is likely to suffer. In the above example, you could store the frames on
disk, load them one at a time into the same area of memory, and then
display them on the screen. This requires less memory, but the
transfer rate from disk to memory limits the display rate.

Summary
In this chapter, we covered several tips on how to get programs to

run with limited memory and how to improve program speed. Don't
try to use all these techniques in every program. Let necessity be
your guide. You'll soon learn which methods work well with your
programming style and which to use as a last resort.

Statements
CHAIN
CLEAR
ERASE

Function
FRE

Trademarks

The following italicized names are trademarked products of the cor
responding companies.

The Finder
MacPaint
MacDraw
Mac Write
Chart
MacVison
Animation Toolkit 1
Paint Mover

Apple Computer, Inc.
Apple Computer, Inc.
Apple Computer, Inc.
Apple Computer, Inc.
Microsoft Corporation
Koala Technologies, Inc.
Ann Arbor Softwork, Inc.
Macinsoft, Inc.

271

ANIMATE command, 217
Animation

multiple-frame, 203-12
on a background pattern, 203
program examples, 212-21
rotation, 208-09
single-frame, 200-03

ARC call, 58, 71, 74
Arcs, 64-66
Arrays

defined, 22
to store images, 168-69
to store points, 23-24
transferring from a screen,

169-70
transferring from MacPaint,

218-21
transferring to a screen, 170-71
using to reclaim memory,
264-65

Index

BACKPAT statement, 47-48, 79
BACKSPACE command, 9-10
Bar charts, 81-83
BASIC, uses in graphics, 2-8
BEEP statement, 142-43, 144,
145, 150

Beeps, 142-43
BREAK call, 107
BUTTON statement, 114
Buttons, 114-15

CALL statement, 36, 263
Cartesian coordinate system,
37-38

CHAIN MERGE statement, 264
CHAIN statement, 263-64
CHR$ function , 30
CIRCLE statement, 60, 63, 64,

68, 71, 85
CIRCLE STEP statement, 61

27.J

274 Macintosh Graphics and Sound

Circles, 60-63
CLEAR statement, 260-61
CLIP:PICTURE command, 177
CLS (clear screen) statement,

17, 48
COMMAND-, 75
COMMAND-R, 52
Commands

cursor, 105-07
draw, 173-74
print, 8-9, 10-11, 14-15, 181-85

Computer-aided design (CAD)
program, 245-56

COS statement, 40-41, 155, 229
Cubes, 83-85
Cursor

commands, 105-07
defining, 100-01
mask, 101-05
positioning, 107

DATA statement, 4 7
DEFINT statement, 25
Dialog box, 113-14
DIALOG call, 107, 112, 114-15
DIM statement, 264

EDITFIELD statement, 114
ERASE statement, 68, 70, 76, 265
Event trapping, 107-08

FILES$ function , 179
FILL call, 76, 79, 83
Filling in shapes, 68-80
Fonts

described, 26-28
transferring, 31-33

FOR/NEXT loop, 21, 22, 60
FRAME call, 58, 60
FRE function, 261
Function plots, 38-40, 86-87

GET statement, 15, 168, 169-70,
171, 176

GETPEN function , 112

HIDECURSOR call, 106
HIDEPEN command, 173-74

Image manipulation examples,
185-96

Image storage
comparison, 174-76
in arrays, 168-71, 180-81
in strings, 171-73, 179-80
on disk, 178-79, 205-08

Image transfer, 176-78
INITCURSOR call, 105-06
INKEY$ function, 30-31,

161-62, 208
INPUT command, 112
INSTR function, 153
Interactive programming
examples, 115-34

INVERT call, 75
INVERTRECT statement, 98

LINE statement, 52, 66-67,
85, 87

Lines, 52-53
LLIST command, 9
LOAD FILE command, 217
LOADFRAME statement, 217
LOCATE statement, 30
Logo creation, 41-42, 90-91

MacPaint
FatBits, 186-87
transferring into array format,

218-21
Memory

controlling, 260-61
design, 262-65
monitoring, 261
partitions, 260

MENU call, 107, 108 .
Menu creation, 108-12
MENU RESET command, 110
Microsoft BASIC

getting started, 9-11
numeric variables, 25

MOD function, 23
MOUSE function, 95-97, 99, 107
Mouse usage, 95-99
MOVETO statement, 30

OBSCURECURSOR call, 106-07
ON/GOSUB command, 108, 109
ON TIMER statement, 148,

150, 157

Output window
changing sizes, 15-17
described, 14
user interaction, 112-13

OVAL call, 58, 70
Ovals, 63-64

PAINT call, 68, 71, 74, 76
PENPAT call, 79
PICTURE OFF statement, 172
PICTURE ON statement, 172,
173, 176, 179

PICTURE statement, 172-73
PICTURE$ statement, 172, 179
Pixels

absolute positioning, 21
defined, 8, 14
relative positioning, 21

Plotted points
color options, 20-21
controlling patterns, 24
examples, 18-19, 42-48,
85-86, 87-90

Macintosh coordinate system,
17-18

randomness, 20, 21-22
speeding, 25-26
storing, 22-24

POINT function, 25
Polar functions, 40
POLY call, 58
Polygons, 53-57
PRESET statement, 21
PRINT statement, 19
PSET statement, 19, 20-21,
37, 40, 170, 200, 202

PUT statement, 15, 168, 170-71,
173, 187, 202, 205

QuickDraw graphics package,
8, 36

RANDOMIZE TIMER statement,
20, 55

Read-only memory (ROM)
stored statements, 36
using to fill shapes, 67-80

RECT call, 58, 83
Rectangles, 57

rounded, 57-60

Index 275

RESTORE function, 144, 165
RETURN command, 9, 109
ROUNDRECT call, 58, 60
RND function, 20, 55

SAVE FILE command, 217
SAVE FRAME statement, 217
SETCURSOR call, 100-01
SHIFT-COMMAND-3, 186
SHIFT-COMMAND-4, 8, 10, 11,
14, 181

SHOWCURSOR call, 106-07
SHOWPEN command, 173-74, 176
SIN statement, 40-41, 151,
155, 229

Sound
defined, 138-39
program examples, 156-65
terminology, 139-42
with graphics, 147-51

SOUND RESUME statement,
142, 153

SOUND statement, 142, 143-44,
145, 148

SOUND WAIT statement, 142, 153
Speed design

condensing code, 266
controlling variable
organization, 267-69

controlling variable types,
266-67

handling subroutes, 267, 268
Square wave tones, 143-45

defining your own, 154-55
STEP option, 21
String/array conversion, 192-95
SUB statement, 228-29
System requirements, viii

Text
face, 26, 34
mode, 26, 34-36
position, 28-31
selection, 31-33
size, 33-34
spacing, 26-28

TEXTFACE call, 34
TEXTFONT call, 32-33
TEXTMODE call, 34

276 Macintosh Graphics and Sound

TEXTSIZE call, 33-34
Three-dimensional objects

defined, 237-40
manipulating, 241-44
storing, 240, 241-44

TIMER call, 107
Transformation

fixed points, 230-37
rotation, 227
scaling, 226
subprograms, 228-30
three-dimensional, 241
translations, 224-25

User dialog, 112-13

VARPTR call, 58, 70
Voices

multiple, 152-54
single, 145-47

WAVE statement, 142, 151,
154-55

WINDOW OUTPUT
command, 9, 182-84

WINDOW OUTPUT #
statement, 14

XOR statement, 170-71,
176, 200

