

Macintosh™ Hands-On Pascal

-

-

-

-
-

-
-

-

Macintosh™ Hands-On Pascal

Ted G. Lewis
Abbas Birjandi

Wadsworth Publishing Company
Belmont, California

A Division of Wadsworth, Inc.

Production Management: Miller/Scheier Associates

Cover Designer: Detta Penna

®1986 by Wadsworth, Inc. All rights reserved. No part of this book may
be reproduced, stored in a retrieval system, or transcribed, in any form
or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher,
Wadsworth Publishing Company, Belmont, California 94002, a division
of Wadsworth, Inc.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 90 89 88 87 86

ISBN 0-534-06354-3

Apple is a trademark of Apple Computer, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc.

Library of Congress Cataloging-in-Publication Data

Lewis, T. G. (Theodore Gyle), 1941-
Macintosh hands-on Pascal.

Includes index.
1. Macintosh (Computer)-Programming. 2. Pascal

(Computer program language) I. Birjandi, Abbas.
II. Title.
QA76.M3L49 1986 005.265 85-20200
ISBN 0-534-06354-3

"11"!1!
'

-

-

-

Preftice xiii

Introduction xv

Why Pascal? xvi
What Is a Programming Language? xvi
How Does Macintosh Understand Pascal? xviii
How to Use This Book xviii

Session 1: Getting Started

The Mouse that Points 1
A Picture Language 3
Menus or When Is a Computer Like a Restaurant? 3
Windows into Macintosh 4

Opening a Pascal Window 6
Closing a Window 6
Dragging a Window 7
Sizing a Window 7
Scrolling a Window 8

Dialog or Talking Back to Your Macintosh 8
Starting Pascal 9
Quitting Macintosh Pascal 11
Summary 11
Problem Solving 12

1

vi

Session 2: Entering, Running, and Saving a Pascal Program

Running Your First Program 13
Changing a Line of Program Text 15
Running a Program 16
Bug Dialog 18
Saving Your Program For Later Use 19
Editing 22
Saving Your Edited Program 22
Restoring a Saved Program 25
Printing the Current Program 25
Summary 26
Program Solving 26

Session 3: The Structure of a Pascal Program

Reserved Keywords 27
Syntax Diagrams 28

Program Statement 29
Identifiers 29
Program Body 30
Declaration Part 30
Types 31
Constants 31
Variables 32

Assigning a Value to a Variable 32
Hands on the CandyJar 33
Communicating with the Outside World 35
Writeln vs Write 35
ReadLn 36
A Complete Example 38
Comment Statement 40
Summary 41
Problem Solving 42

CONTENTS

13 -

27 -

I"""
I

CONTENTS

-

-

-

-
-

-
-

-

Session 4: Integer, &Al, 11nd Chllr Expressions

The Instant Window 43
Integers 45
Reals 47
Char 49
Hands-On Example 50
Summary 51
Problem Solving 52

Session 5: What Is 11 Subprogram?

Pascal Subprograms 53
Procedures 54
Hands-On Examples of Procedure GET.MPG 56
Functions 59
Hands-On Example of Function MILEAGE 60
Summary 61
Problem Solving 62

Session 6: Choosing in P11SC11l

Boolean Variables 63
Boolean Operators 64
Boolean Expressions 66
IF Statements 66
RUN-STEP 69

Putting in STOPS 69
One-Legged IF Statements 70
Compound IF Clauses 70
Hands-On Example of Compound IF Statements 71
Multiway Branching 73
Case Statement 7 4
A Hands-On Example 77
The Observe Window 78
Summary 78
Problem Solving 78

vii

43

53

63

viii

Session 7: Iteration Using While, Repeat, and For

Algorithms 81
Iteration 81
While Loops 82
Repeat Loops 84
For Loops 85
Hands-On Looping Example 87
Summary 88
Problem Solving 88

Session 8: The Type Statement

The Notion of Data Type 91
The Type Statement 92
Subrange Types 93
Hands-On Experiments with New Types 94

Examples of Subrange Types 95
Summary 96
Problem Solving 97

Session 9: Text Files and Printer Output

What Is a File? 99
Kinds of Files 100
Declaring a Text File 101
Opening a File 101
Closing a File 102
Hands-On File Output 102
Reading a Text File 104
General Forms of 1/0 104
The Printer 105

Copy a File to the Printer 106
Hands-On Pseudo-File 1/0 106
Summary 108
Problem Solving 109

CONTENTS

81

91

99

CONTENTS

-
-

-

-

-

Session 10: Arrays

The Notion of an Array 111
Examples of Arrays 113

Tables 113
Hands-On Arrays 114
Lists 115

Add to the List 117
Sort the List 117
Look Up an Element in a List 120

Two-Dimensional Arrays 121
Summary 121
Problem Solving 122

ix

111

Session 11: String Processing 123

Strings in Pascal 123
String Declaration 124
Length of Strings 124

The Difference Between String Size and String Length 125
Finding the Length of a String 125

Hands-On String Length 125
String Operations 127
Searching Strings 128
Looking for Patterns 129
Deleting Substrings 130
More on POS 131
An Improvement to the Hands-On Program 131
Copy and Concat 132
Inserting Strings 134
Summary 134
Problem Solving 134

x

Session 12: Data Structures Containing Records

The Structure of Data 137
The Record Structure 138

Examples of Records 138
Dot Notation 139
Hands-On Experiment with TIC..TOC 142

Nested Dots 143
The With Statement 143
Hands-On With Statements 146
Summary 147
Problem Solving 148

CONTENTS

137

Session 13: Sets and Scalars 151

How Data Are Encoded 151
Enumerated Scalars 152
Hands-On Scalars 153

Examples of Enumerated Scalars 154
Sets 155

Examples Using Sets 156
Hands-On Sets 158
Things to Remember About Sets and Scalars 160
Summary 161
Problem Solving 161

Session 14: Random and Typed Files

Nontext Files 163
Sequential vs. Random Files 164
Random Files in Macintosh Pascal 165
Constructing a Typed File 166
Reading a Typed File 168
Random Retrieval 168
Random File Update 169
Hands-On Random Files 169
Summary 173
Problem Solving 173

163

CONTENTS

-

-

-

-

Session 15: More on Procedures and Functions ·

Scope Rules 175
Spelling Anomaly 176
Side-Effect Anomaly 176
Nonlocal Objects 177

What Block Activation Does 179
Hands-On Blocks 180
Simple Scope Rules 183
Parameter Passing 183

Pass-by-Value 183
Pass-by-Reference 184

External Blocks 185
Recursion 185

Recursive Definition 186
Recursion in Pascal 186

Hands-On Recursive Function S(N) 187
When Not to Use Recursion 188
Forward Referencing 188
Summary 189
Problem Solving 190

Session 16: Pointers and Dynamic Data Structures

Why Do We Need Dynamic Data Structures? 193
Addition Problem 193
Deletion Problem 194

Pointers 194
Nil Pointers 195
Operations on Pointers 196

Hands-On Linked Lists 196
Adding to Phonelist 198

Printing a Phone List 198
Hands-On Linked Lists Revisited 203

Deleting from Phonelist 203
Insertion in Phonelist 206

Summary 210
Problem Solving 211

xi

175

193

xii CONTENTS

Session 17: Music (Sound) 213

Description of Music 213
The Language of Music 214

Musical Scales 215
Sharp and Flat Notes 217

Hands-On: Playing All the Notes 217
Hands-On "Oh! Susanna" 218

Entering Notes 223
Assumption and Limitations of Concerto 223
Structure of Concerto 229

Summary 230
Problem Solving 230

Session 18: Graphics

The Drawing Window 231
Two-Dimensional Grid 232
Rectangles 233

Operations on Rectangles 235
Rounded-Corner Rectangles 236
Regions 236
Polygons and Pictures 237
Hands-On Polygons 237
Creating Icons 239
Hands-On Pictures 243
Hands-On Text Drawings 244
Drawing Environment: 'GrafPort 245
Summary 245
Problem Solving 245

Appendices

A An Overview of Pascal 247

B Pascal Syntax Diagrams 255

C Debugging Macintosh Pascal Programs 271

D Error Messages 275

E Selected Solutions to Session Problems 281

Index/Glossary

231

247

299

-

-

-
-

-
-
-

-
-
-

-

Preface

This book was inspired by the Macintosh™ and the Macintosh Pascal program,
which make learning to program an exciting adventure. There has never been a
better hardware and software combination for learning to program in Pascal
than the Macintosh Pascal system-including Pascal compilers running on large
computers. This powerful combination has advanced the state of the art in both
computing and education.

One of the consequences of the use of Macintosh Pascal in education is
that it renders textbooks obsolete. In fact, we recommend that you spend very
little time reading this or any other book on Pascal. Your time will be better
spent trying experiments with Macintosh Pascal, which is why this book has
been written as a sequence of hands-on sessions. Each session demonstrates a
major concept in programming with Pascal. Furthermore, each session is a
slightly more advanced treatment of programming, so you are led into deeper
waters by taking small steps.

This book is also organized as a reference to frequently used features. We
have included several appendix sections dealing with the syntax and semantics
of Pascal, Macintosh, and programming in general. Take a look at these sections
before you begin reading to familiarize yourself with these handy references.

We would like to thank Molly Lewis, who edited and typed the rough
manuscript. Michele Spear did the reference cards, and several reviewers made
many helpful suggestions for improvements.

T.G. Lewis

Abbas Birjandi

xiii

-

-

-
-

Introduction

The Macintosh Personal Computer is the first of a new line of computers to
adopt a radical philosophy concerning computers and people. The Macintosh
philosophy states that computers should do mundane work and people should do
creative thinking. The idea is to make the computer respond to its user according
to the user's rules and intuition, rather than bending the human will to conform
to computer systems.

You are probably familiar with the visual environment of the Macintosh
called the desk top. The desk top uses visual cues to help you operate Macintosh
with a minimum of jargon and even less knowledge of how computers work. Run­
ning a Macintosh is more like driving a bus than being an automobile mechanic.

But now you are ready to learn how to program the Macintosh in Pascal.
This is a big commitment because programming is more like being an auto­
mobile mechanic than like driving a bus. Macintosh Pascal is easier to learn than
Pascal on other machines, but there is no substitute for careful planning, metic­
ulous thought, and downright inventiveness when it comes to programming.
The desk-top tools of Macintosh Pascal will help enormously, but you must be
prepared to spend many hours disciplining yourself in order to become a success­
ful Macintosh Pascal programmer.

xv

xvi INTRODUCTION

Why Pascal?

Pascal is a high-level programming language for teaching beginners how to pro­
gram. A high-leuel language is an English-like notation for communicating ideas
called algorithms to a machine. Pascal is particularly well suited to become your
first programming language because of the many ways in which Pascal forces
you to discipline your thoughts. This discipline becomes increasingly important
as you attack more challenging problems with your Macintosh.

What Is a Programming Language?

Algorithms are very detailed, exactingly precise steps for solving problems. Find­
ing the solution to an equation, keeping a list of telephone numbers, or drawing
pictures on the screen all require a long list of detailed and precise steps in order
for a machine to do them. Most of what is known about computers has been
boiled down to a few thousand algorithms.

An algorithm must be encoded in a form that can be understood by a
machine before it becomes a program. (A program, of course, is a list of instruc­
tions which govern the actions of a machine.) Your Macintosh can understand
only one kind of encoding: binary numbers. Binary numbers are strings of ones
and zeros, as shown below.

10110011

This pattern might mean "add" or "copy" or some other machine-level opera­
tion. Binary strings are grouped together to form machine language programs.
Unfortunately, even the most powerful computers cannot "understand" any
other form of an algorithm.

Over the past 25 years computer scientists have come to the rescue of pro­
grammers who do not wish to learn machine language. These scientists have
invented many special-purpose notations called programming languages which
make programming much easier and thousands of times faster to do.

Suppose you want to tell the Macintosh how to calculate the sales tax on
an item selling for AMOUNT dollars.

"Compute the sales tax on AMOUNT dollars at five percent tax rate."

The request can be formalized by using a mathematical notation and being care­
ful how you say what you mean.

"Let Sales_Tax Equal Five Percent of Amount"

Going one step further, the sentence can be succinctly written in a pseudo­
English and pseudo-mathematical form by using=,+,-,*, and I for equals, add,
subtract, multiply, and divide.

"Sales_ Tax = 0.05 * AMOUNT"

-

-
-

-

-

-

-

INTRODUCTION xvii

This brief example illustrates the essential idea of a high-level programming
language like Pascal. Most high-level programming languages are a blend of
natural language and mathematics. Natural language is easy for humans to
understand, and mathematics is easy for a machine to "understand."

You might wonder why English or some other language is not used exclu­
sively. To show why this is not easy to do, consider the following sentence.

"Payment equals amount owed divided by 10 minus the discount."

This sentence is ambiguous because it could have two interpretations:

1. Payment = owed I 10 - Discount

2. Payment = owed I (10 - Discount)

In other words, the amount owed is either divided by 10, or divided by (IO-Dis­
count), depending on your interpretation of the sentence. In a programming
language, parentheses are used to remove ambiguity.

Now consider the sentence below.

"Be careful of the corners on that round table."

This sentence is perfectly clear: There is no ambiguity due to missing paren­
theses or the need to group together words belonging to a certain phrase.
Unfortunately, again, the sentence is meaningless because we know from experi­
ence that round tables do not have corners. A computer, however, does not
have human experience. Instead, algorithms written in a high-level language
must be very accurate when they describe the "world" to a machine.

In Pascal the "experience" part of a program must be given through a
section of the program that describes objects to the Macintosh. If a "round table"
is needed by the program, then it must be described beforehand:

Var
ROUND_TABLE: Real;

This is a Pascal data declaration statement which defines an object called
ROUND_T ABLE as a variable that can assume real number values (real numbers
are strings of digits that include a decimal point).

Every object in Pascal has an attribute, such as Real, called its type. A type is
a set of values. ROUND_T ABLE can take on real numbers and nothing else;
hence its type is Real If ROUND_TABLE had been declared as an Integer, it could
take on only whole number values without decimal points. Languages like Pascal
that require you to define the types of all objects used in a program are called
strongly-typed languages.

English will not do as a programming language because it is ambiguous and
it does not give a computer enough information about the types of its objects.
High-level languages can be made to resemble English, but this resemblance is
deceptive. In actuality, a high-level language is far more formal than any natural
language. As a consequence, we must study the rules and regulations of most pro­
gramming languages in order to write even the most elementary programs.

xviii INTRODUCTION

How Does Macintosh ''Understand" Pascal?

If a computer can orily understand algorithms encoded in binary, then how does
Macintosh "understand" English-like Pascal? In fact, Macintosh does not under­
stand a word of Pascal. Instead, a program called Macintosh Pascal is needed
before Pascal programs can be run on the machine. The Macintosh Pascal pro­
gram is a machine language program which interprets Pascal text much like a
human interpreter translates English into French while an English person is
communicating with a French person.

In computer terminology, an interpreter is any program which carries out
the instructions of a high-level program directly upon reading each instruction,
one at a time. Most computers do not interpret Pascal programs the way Mac­
intosh does. In other systems Pascal is converted first into machine language
and then the machine language version of your program is run. In Macintosh
Pascal the Macintosh Pascal interpreter never converts Pascal into machine
language. Instead, Macintosh Pascal immediately does what each Pascal state­
ment tells it to do.

Interpreters are excellent translators to use when you are first learning to
program because they quickly tell you when a mistake is made, and they let you
run a partially completed program to see what it does. Interpreters are good for
experimenting with a program, and as you will later see, they make program­
ming much easier by giving you features not possible without an interpreter.

How to Use This Book

For a short survey of Pascal read Appendix A:" An Overview of Pascal" at the end
of this book. Specific details of each feature of Pascal are given in the sessions,
beginning with Session 1.

The best way to learn to program is to do it. This book takes you through a
series of increasingly difficult programs by inviting you to actually run pro­
grams on the Macintosh.

This approach starts with specific examples of each concept and then moves
to the general case. The reader should prepare for a specific-to-general or hands­
on approach to learning Pascal. You might consider using a reference guide in
addition to this book in order to obtain general information.

The material should be covered from beginning to end. Each session in­
cludes several programs to be run on your Macintosh. Be sure you know how to
run these programs before moving on to the next session.

A diskette containing all of the programs and another diskette containing
some of the MacPaint figures in this book may be purchased from the authors
for a nominal fee if you do not want to enter them into your machine.

r

-

-
Session 1:

Getting Started

In this session you will learn how to manipulate icons, menus, and windows and how to startup
Macintosh Pascal, and along the way, you will become familiar with Macintosh terminology.

The Mouse that Points

Vladimir Zworykin moved to the United States in 1919 and became an American
citizen in 1924. By the early 1930s he had invented the iconoscope (image­
watcher) and the kinescope. The iconoscope was used to capture icons or images
in electronic form and the kinescope was used to play back the captured icons or
images. Today kinescopes are called CRTs (cathode ray tubes); they are the
screens used for television sets and personal computers.

A television screen displays visual information which you have little con­
trol over, but a personal computer screen displays information for you to inter­
act with and change. The Macintosh provides two ways for you to control visual
objects on its CRT screen: the keyboard and the mouse. You are probably already
familiar with a keyboard, but perhaps this is the first time you have used a
mouse. A mouse is a hand-controlled pointing and selecting device.

The Macintosh mouse shown in Figure 1.1 consists of a small box with a
button on it. The box has a rotating ball beneath it which allows the mouse to be
moved around the top of a desk. An electrical wire connects the mouse with the
computer so that the computer can sense where the mouse is.

1

2 GETTING STARTED

(a)

(b)

FIGURE1.1
The mouse (a) as Macintosh sees it, and (b) as humans see it.

The signals coming from the mouse are translated by the computer into a
screen location. The computer draws a pointer or cursor on its screen corre­
sponding to the location of the mouse on your desk top. The screen pointer
moves in concert with the movement of the mouse. Depending on where the
mouse is pointing, pressing the mouse button sends a message to the Macintosh
which causes some action to be carried out. In Macintosh terminology, pointing
with the mouse and pressing its button is called clicking.

-

-

-

-
-
-
-

THE MOUSE THAT POINTS 3

The button on the mouse may be pressed and released (click), pressed and
held down (click-hold), or clicked two times in rapid succession (double-clicking).
Furthermore, the mouse may be moved while the button is click-held. This is
called dragging; it may be used to move a graphical object across the screen or high­
light a line of text on the screen.

As you can see, clicking is a simple way to give commands to your compu­
ter. The mouse is used just like your finger to point at what you want, but unlike
your finger, the mouse can be used to tell the Macintosh what action to perform.
Some items can be double-clicked to produce the same result as clicking on two
separate items in sequence. This is called a shortcut since it is actually just a faster
way of doing things. In the following sections we will learn how to give a variety
of commands to Macintosh using the mouse.

A Picture Language

One of the major goals of the Macintosh design is to minimize the vocabulary
needed to communicate with it by using pictures instead of words to show you
what it can do (see Figure 1.2). These graphical cues are called icons, or literally,
"meaningful symbols." (An icon is defined as "a metaphor or symbol," and in lin­
guistics, it refers to the concept of using pictures rather than letters of the alpha­
bet to communicate ideas.) "Diskette" icons are located in the upper right-hand
corner of your screen and naturally look like pictures of little diskettes. The
"trash can" icon is a receptacle used for deleted files or programs. These are just
two examples of the many and varied icons you will encounter using your
Macintosh.

Menus, or, When Is a Computer Like a Restaurant?

When you go to a restaurant, some of the routine actions you perform are to
pick up a menu; look at the items under main courses, beverages, and desserts;
make your choices; and order them. Macintosh provides you with the same
means of communication, except that a Macintosh menu is a list of program
options instead of a list of food options like chop suey or french fries.

If you examine a restaurant menu closely, you will notice how foods are
grouped together into categories to avoid confusion with foods in other cate­
gories. For example, main course items are separated from beverages. Macintosh
uses the same idea by displaying the different categories of menu titles at the
top of the screen in a region called the menu bar.

Unlike a restaurant menu, which displays all of the items in each category
of food or drink at once, a Macintosh menu bar conceals the multiple-choice
items in each category. The reason for this is not only because the display area
of the screen is limited, but, also because displaying all items at once would
clutter the screen, making it difficult to find items. Besides, once you've made a

4

D
System Fold ~

\/--··-·

FIGURE1.2
Some useful icons.

Icons for system folder, and
Macintosh Pascal

GETTING STARTED

choice in a category you can go on to a new category, ignoring the extraneous
detail of previous categories.

Menus are selected by click-holding them; a certain item within a menu is
selected by simultaneously pressing the mouse button and moving the mouse
until the desired item is chosen. This is called "pulling down" the menu, hence
the reason Macintosh menus are called pull-down menus. Releasing the button
causes the highlighted item to be selected and the menu to disappear.

Throughout this book, we will use the notation "TITLE-ITEM" to mean
pulling down a menu TITLE and then selecting an ITEM from it. For example,
FILE-OPEN means to pull down menu FILE and then select OPEN.

The pulled-down EDIT menu in Figure 1.3 displays the currently available
choices in bold type and the temporarily unavailable (disabled) menu items in
dimmed type.

Windows into Macintosh

Suppose you are writing a term paper or a business report. At some time you
may want to look at different pages in order to summarize or build other parts
of the report. A natural way to do this is to put particular pages next to one

WINDOWS INTO MACINTOSH 5

Menu Bar
Menu Title

A pulled down Menu

Cut

0
Copy
Paste

Empty Fo~ Clear ~r

Select Rll XR

Show Clipboard

FIGURE1.3
A pulled-down menu.

another and look at them simultaneously in order to draw information from
them for the rest of the report. Each page is like a "window" into the entire re­
port; using multiple pages helps to finish the report in a shorter time.

In a computer system, one or more regions of the screen may be dedicated
to different functions. These regions act like pages of reports and can allow you
to see portions of several documents at one time. They are called windows and are
used by the Macintosh to display different pages of information at the same time.

A window is any region of the screen which can be moved, re-sized, and
scrolled. You can rearrange the position of any window, change its size by
making it bigger or smaller, and scroll its contents both horizontally and vertical­
ly (see Figure 1.4). A window has: (1) a size box to change the window's size, (2) a
scroll bar for moving through the contents of what is displayed in the window, (3)
a control bar for moving around the screen, and (4) a close box for closing the window.

The active window is the one through which you can communicate with the
Macintosh at a given instant of time. To make a window active you merely move
the mouse pointer to somewhere within its boundaries and click once. Doing so
will bring the newly activated window into the foreground and move the previ­
ously active one to the background.

6 GETTING STARTED

Opening a Madntosh Pascal Window

A window is initially opened by double-clicking an icon or pulling down a menu
and selecting an item. For example, to open the windows of Macintosh Pascal
you insert the Macintosh Pascal diskette into the drive and start the computer.
Move the mouse and locate the pointer on the diskette icon, then double-dick.
This will open a window as shown in Figure 1.4.

Now move the mouse to the Demos folder icon and double-dick. Notice
that a new window is created and brought in front of the previously active win­
dow. Figure 1.5 shows a new window, which is now the active one. In general,
the active window is the one that has its control bar shaded by parallel lines.

Closing a Window

Next move the mouse pointer onto the little square box (closing box) in the top
left corner of the Demos Window and click the mouse once. The Demos Window
disappears. What you did is called closing a window. You should always close
windows that are no longer needed.

Macintosh Pascal

FIGURE1.4
A window and its parts.

WINDOWS INTO MACINTOSH 7

Dragging a Window

The evil forces of chaos may be overcome by occasionally organizing your per­
sonal belongings at home or in your desk at the office. Macintosh allows you to
clean house or make things more accessible in the same way, by moving objects
such as icons and windows about. This capability is called dragging. Using the
mouse, you can drag an object at will from one location on the screen to another.
For example, to move a window point to the control bar at the top of the active
window, hold down the mouse button, move (drag) it to another location, and
then release the mouse button.

Sizing a Window

The size of a window is changed by "stretching" its lower right corner. Move
the mouse to the little square in the lower right corner of any window and drag
the corner. Notice how the corner follows the mouse. When the window has
been stretched to the desired size, release the mouse button. This is the new size
of the active window.

s File Edit Uiew Special

Pascal
34QK in disk 51K availallol•

~ 0 • Macintosh Pascal Empty Folder

1110 Demos
7 it•ms 12K in f..w.r

m m m m
Pip.t.V.. Pascal's Trian<jW Squares

m m m
MokePlonet AutoSketch

FIGURE1.5
Pascal and Demos Folder Windows.

8 GETTING STARTED

Scrolling " Window

Notice the horizontal and vertical scroll bars in the active window. To make the
contents move up or down, click-hold the up or down arrow at either the top or
bottom of the vertical scroll bar. Similarly, you can scroll back and forth by click­
holding the left or right arrow on either side of the horizontal scroll bar.

Each scroll bar contains a square box indicating what portion of the entire
contents of the window has been scrolled at any instant. Click-holding a scroll
arrow causes this box to move, but you can also move the box itself in a kind of
short-cut method of scrolling. For example, to scroll one half of the way through
a document such as a Pascal program, drag the scroll box to the midpoint of the
vertical scroll bar.

Dialog, or, Talking Back to Your Macintosh

Once in a while the Macintosh must warn you of some dangerous condition, get
information from you to help it out of a fix, or just get a command from you. To
do this, a special kind of window called a dialog box appears like the one shown in
Figure 1.6.

Dialog Boz

s File Edit Search Windows

~ Not a ualid eHecutable statement.

begtn
{Vour progn1m statements}
writeln (•
lllllllll • 1111!1 Flnt
program-Ji
writeln("Good bye");

end.

FIGURE1.6
A dialog box showing an error.

Drawing

-

-

STARTING PASCAL 9

Dialog boxes appear when needed and disappear when a crisis is resolved
or the Macintosh has the information it needs. Most dialog boxes can be handled
using the mouse to click the answer. For example, "bug" dialog boxes are general­
ly informative and therefore do not require responses. Simply click inside the
"bug" box to make it disappear before making the necessary correction.

A dialog box will appear each time you save a program on diskette or print
a program on the printer, and when you do something Macintosh cannot under­
stand. Some dialog boxes will contain icons, text, or multiple-choice buttons,
and some will require you to enter a name, select an item from a list, or simply
acknowledge a message by clicking the dialog box. The Macintosh usually
"beeps" prior to displaying a dialog box .

Starting Pascal

Suppose we get started using Macintosh Pascal. Insert the Pascal diskette and
start your system. Open the Pascal Diskette Window either by pointing to the
MacPascal diskette icon (located in the upper right-hand corner of the screen)
and double-clicking or by selecting the OPEN option under the FILE menu.
Figure 1.7 shows how your screen should look when this is accomplished.

s File Edit Uiew Special

CJ
Sys~~ Fold~r

FIGURE1.7
Pascal disk Open Window.

10

Edit Search Run Windows

Untitled

proqrflm 1_ 1 ,,f·r1 ~ 1

YIJr

, j ' ' I t' 1 1 ~ • 1 1 + 'r I

begin
• f p • : r J).:.rr ':."1:

en<l

FIGURE1.8
Pascal Program, Text, and Drawing Windows.

GETTING STARTED

TeHt

Drawing

Now open the Macintosh Pascal icon from within the Pascal window. Note
that the screen is divided into three windows (see Figure 1.8). These windows
are: (1) the Program Window (untitled), where the text of your program appears; (2)
the Text Window, where textual output appears as your program executes; and (3)
the Drawing Window, where pictures appear if they are produced by your
running program.

These windows are no different from other windows; all usual window
operations can be applied to them. In this case, however, all three windows are
adjacent to each other with none appearing in the foreground.

The idea is to manage the three windows to the best advantage. For
example, if your program does not draw any pictures you may want to remove
its Drawing Window and use the extra space to enlarge the Text Window.

How is this done? First, if the Drawing Window is inactive, move the
mouse pointer inside the window area and click once. Then close the Drawing
Window by placing the pointer on its close box and click one time. Now you can
drag the size box in the lower right comer of the Text Window down and to the
right, making the Text Window grow larger. Figure 1.9 shows the screen when
the Drawing and Text Windows are both closed and the Program Window is
enlarged and active.

When entering a new program, you must work in the Program Window.
You may choose to leave the Drawing and Text Windows intact or close them,

QUITTING MACINTOSH PASCAL 11

Iii File Edit Search Run Windows

~D Untitled

µroqrom '_,. •, t - ~

I- I • 11~ I • -0 . 1

he gin
'I'. ~ , ~ • ', ••• ;, . I":' I

end

FIGURE1.9
A Pascal Program Window.

using their space for an enlarged Program Window. Also, all editing (changing)
of your program must be done in the Program Window. The Text and Drawing
Windows are used when you want to see the program's output.

Quitting Macintosh Pascal

Now let's take a break. Select FILE-QUIT to leave Macintosh Pascal. After a
pause, the desk top reappears. Select FILE-EJECT to eject the Macintosh Pascal
diskette, and turn the Macintosh off. If you do not eject the diskette, then it can
be ejected the next time you turn on the Macintosh by simultaneously pressing
and holding the mouse button while turning on the power.

Summary

Traditional programming has dominated computing because of the limitations
of computer hardware, but the Macintosh is the first of a line of high-speed,
graphics-oriented computers destined to make traditional programming a relic

12 GETTING STARTED

of the past. Old style programmers were forced to adopt techniques that re­
quired handling only one programming task at a time.

For example, when writing programs for a traditional computer you must:
(1) use a text editor to enter (type in) the program, (2) use a program called a
compiler to locate errors in typing or invalid uses of the programming language,
and (3) return to the text editor to correct errors. You could spend many hours
repeating this process before the program was run a single time.

Fortunately, the advanced features of the Macintosh have made the old ap­
proach to programming unnecessary. Macintosh Pascal has multiple windows which
allow you to view the program through one window, view the textual output
from the program as it is running through another, and if your running pro­
gram generates graphical pictures, view graphics through a third.

Menus, windows, and icons are used heavily by Macintosh Pascal in pro­
viding the multidimensional views necessary to combine writing, editing, com­
piling, and testing programs into a single task. We call this new way to program
a computer multidimensional programming to distinguish it from the old style, which
is one-dimensional.

You are now familiar with some of the basic concepts and capabilities of
your Macintosh. In future sessions, you will learn how to apply these features
as you work "hands-on" with Macintosh Pascal.

Problem Solving

1. "Mouse around" by doing the following desk top exercises:
a. Drag a window to a new location on the desk top.
b. Drag an icon around the desk top.
c. Change the size of a window.
d. Pull down the "Apple" Accessories menu and see what is in it.
e. Open two or more windows and practice making each of them the

active window.

2. Open the Macintosh Pascal diskette and double-click the Demos folder.
This folder contains sample Pascal programs. Select and double-dick
one to load it into memory and enter Macintosh Pascal. Next, select
RUN-GO and watch what happens to the Pascal windows as the
program runs.

3. Open the Macintosh Pascal diskette, select and double-click an icon to
get into the Macintosh Pascal system. Close all three windows by click­
ing each of the three close boxes. Now, how do you suppose these
windows can be opened again?

4. Make a list of the operations that can be performed with the mouse.
What would you say is the principal advantage of a mouse versus a
keyboard?

-

-

-

-

-
-
-
-
-

Session 2:

Entering, Running, and Saving
a Pascal Program

Session 1 showed you how to start Macintosh Pascal, manipulate windows, and select items from a
menu. In this session you are guided through entering, running, and saving a simple program.

Running Your First Program

The idea of people using machines for the purpose of writing is not very old. The
first typewriter was invented in 1865 by an American named Sholes, and it was
perfected by another American, named Remington, in 1877. Even so, the type­
writer did not begin to impress many people until the 1880s. Now, 100 years
later, the typewriter has been replaced by another writing machine-the per­
sonal computer.

For the purposes of this book the Macintosh will become the preferred
writing machine for writing Pascal programs. The "Macintosh typewriter" is
much more advanced than most ordinary typewriters because it can "remember"
text by saving it in diskette files, change text by helping you edit it, and speed up
text entry by automatically formatting each line as you enter it. Macintosh type­
writers are wonderful, but they require a little practice in order to learn how to
use them.

Insert your Macintosh Pascal diskette and start your system. Next open the
Macintosh Pascal diskette icon either by double-clicking it or by selecting OPEN
from the FILE menu. Finally, open the Macintosh Pascal icon. After a brief pause
you should see three familiar windows-Program (Untitled), Text, and Drawing. See
Figure 2.1.

13

14 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

Insertion Point T Pointer

{Your progrom stotements}
end.

FIGURE2.1
Insertion mark and"/" pointer.

TeHt

Drawing

Look closely at the Program Window: it contains the skeleton of a Pascal
program in reverse video (white-on-black), which means its contents have been
selected. Text is selected whenever you want to handle it altogether as a unit (for
example, to move or delete it).

If you press the backspace key, the selected contents will be erased. If you
begin typing, the keyboard input will replace the selected text. To leave the con­
tents as they appear in the Program Window, simply point and click anywhere
within the window.

Just for fun (without touching the mouse button and in one sweeping
motion), move the pointer starting somewhere on the menu bar, straight down
to the scroll bar at the lower edge of the Program Window. Did you notice the
pointer changing from an arrow to a large "I" and back again? Inside the Program
Window the pointer becomes an "I." By clicking the pointer inside a window you
change the "I" into a blinking vertical bar which is called an insertion point. The
insertion point is where any characters you type will be inserted.

CHANGING A LINE OF PROGRAM TEXT 15

Changing a Line of Program Text

Since the program shown inside the Untitled Program Window is itself untitled,
it must be given a name. Move the insertion point to the beginning of the word
"Untitled" following the word "Program" in the first line of the Program Win­
dow. To replace "Untitled," highlight it by dragging the mouse over it (keeping
the button depressed), and then release the button. As you can see in Figure 2.2,
the word "Untitled" appears in reverse video. From the keyboard, type "Examplel"
(being careful not to type any spaces), which becomes the name of your first
program.

Now that program Examplel has a title, modify it by moving the insertion
point to the places where you want to insert new text. Move the cursor beyond
the right bracket,"}" on the line below begin and click once. A blinking vertical
bar appears that indicates where to start typing. Press the return key on your key­
board, causing a new line to be created. (Any time you want to begin on a new
line, just press the return key.) Now type the following two statements exactly as
shown below.

WriteLn ('Hello, My First Program') ;

WriteLn ('Good bye') ;

• File Edit Search Run Windows

=o Untitled

program-; IQ
{Vour declarations}

begin
{Vour program statemTts}

end.

lQJ
OJ _:_::,_ IQm,

FIGURE2.2
Program with "Untitled" shaded.

Te Ht

t-

OraWi'!.9_

16 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

a File Edit Seorch Run Windows

Untitled

program Exemplel;
(Vour declarations}

begin
(Vour progrem statements}
writeln('Hello, My First progrom');
writeln(' Good bye');

end.

FIGURE2.3
Example1 program.

Te Ht

Drowlng

WriteLn is Pascal for "write line," and it tells Macintosh to write a line of text in
the Text Window. When the program is executed, the two lines below will be dis­
played in the Text Window.

Hello, My First Program

Good bye

After you have entered the two statements, your screen should look like Figure
2 .3.

Running a Program

The next step is to see what this program does by executing or "running" it.
Point at RUN on the menu bar and hold down the mouse button. Pull down the
RUN menu by moving the mouse pointer (button depressed) down through the
options. To select GO, stop when the pointer highlights it and release the mouse
button. Watch what appears in the Text Window. Figure 2.4 shows the screen
before you release the mouse button while selecting Go.

As you can see, there are many options to choose from within the RUN
menu. For the time being, GO is all you need. Selecting GO informs Macintosh
Pascal that you want to run the program currently in the Program Window. In

RUNNING A PROGRAM

s File Edit Seorch - Windows
~ ii' Untitle_(I Chec-;:lc-;;;X;;:K;i~~,...1-----Te_H_t ____ _

progrom Example 1; ~.~-~-~-~---··· .. ······- IQ1
{Vour declarations} •••••

begin ~i(·
1

1. {Vour program statefl" io··· ' 1)
writeln('Hello, My Fi~ Step XS
writeln(' Good bye'); Step-Step

end. ·--····-··············- --···--···
stops In

FIGURE2.4
Use of "Go" to Run Example1.

s File Edit Seorch Run Windows

~D Untitled

jprogrom Example 1; l
{Vour declarations}

beg1n
{Vour program statements}
writeln('Hello, My First program');
writeln('Good bye');

end.

FIGURE2.5
Results of "Go" on Example1.

Oro wing

TeHt
Hello, My Fir~t progra•
Good bye

Drowtng

H

17

18 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

this case, selecting GO runs Example I, which simply writes two messages in the
Text Window. Figure 2.5 shows the screen after you have run the program.

Let's sum up what we have done so far. After opening the Macintosh Pascal
icon, we modified the skeleton of a Pascal program residing in the Program Win­
dow. This modification caused two messages to be written in the Text Window.
Selecting RUN-GO causes Macintosh Pascal to run the program currently in the
Program Window. The running program in turn writes text to the Text Window.

Bug Dialog

The GO command starts executing the statements in your program sequentially.
However, if an incorrect statement is encountered, the program will fail. Mac­
intosh Pascal will then notify you of the failure through a dialog box like the one
shown in Figure 2.6.

Suppose we change the WriteLn statement in program Example! to the
following (incorrect) statement. Replace the first single quotation mark with a
double quotation mark.

WriteLn ("Hello, My First Program') ;

If you don't remember how to make this change, follow these directions. First
move the cursor to the right of the left parenthesis and drag the mouse over the

s file Edit Search Windows Ii} Not a uelid eHe<uteble statement.

beg1n
{Your program statements}
writeln (•
llCIHllD I lfl!l IFtlf'llt
program "J;
writeln('Good bye');

end.

FIGURE2.6
Example of BUG message dialog box.

Drawing

-

SAVING YOUR PROGRAM FOR LATER USE 19

single quotation mark. Type a double quotation mark in place of the highlighted
single quotation mark.

The only change you made was to replace a single quote with a double
quote. Try to run this program by selecting GO from the RUN menu. This time
the program produces a surprising result-A BUG message appears informing
you of some kind of error. (A common synonym for a programming error is the
word "bug.") In addition, notice that the vicinity in which the error occurred is
shown in outline style and is flagged with a "thumbs-down" symbol. Macintosh
Pascal is saying that the thumbs-down line is not a correct Pascal statement;
hence it is unable to execute it.

To get rid of the bug, make the message disappear by moving the pointer
anywhere in the error message window and clicking once. Using the same
method as before, delete the offending double quote and insert a single quote in
its place. Make sure your program is bug-free by running it again, successfully.

Saving Your Program for Later Use

Programs in the Program Window should be saved to diskette so you can use
them later. Never attempt to save programs on the Macintosh Pascal diskette,
which ought to be write protected so it cannot be written on. Instead, use another
diskette to keep your programs on.

~Edit Search Run Windows

.~o]l NE~H~ll~~~l!·~·e~d[il~iiiiiiiiiiC::::::::::T~e~H~t::::::::::::
DIH'n ,,, •,· k').

P Close r i-.:::..
b Sal1e Isl
'lllllDl••ltements}

Reuert It IY. First program •);
Page Setup... ') ~

e Print ...

Drawing

Quit

FIGURE2.7
File option to Save a new program.

20 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

To save a program, first select the menu item SAVE AS ... from the items
under FILE. This is done by pulling down the FILE menu and selecting SA VE AS
... (see Figure 2.7). Shortly, a dialog box will appear asking for the name under
which you wish to save your program. Remember, dialog boxes either inform
you of a crisis (recall the error dialog box with the bug icon you saw earlier) or
notify you of options and wait for your response.

In this example, you are given four alternatives to choose from (see Figure
2.8). The first is a blank box on which to enter the name of the file you want to
save your program under. The three remaining options are enclosed in labeled
boxes called buttons: SA VE (dimmed), CANCEL (highlighted), and EJECT (high­
lighted).

Why are some of these dialog buttons highlighted and some dimmed?
Since there are only two logical courses of action to choose from at this decision
point, there are only two corresponding operative (highlighted) buttons. Select­
ing the CANCEL button allows you to change your mind and not save the pro­
gram. Choosing CANCEL returns you to where you were before you selected
SA VE AS ... from the FILE menu.

In Macintosh terminology, the highlighted buttons (CANCEL and EJECT)
are said to be "enabled," that is, they are ready and able to respond to your com­
mands. Conversely, the dimmed button (SAVE) is "disabled" or not able to carry
out its action until such time as it is again enabled. If you select SA VE, for
example, prior to entering a name for your program in the name box, no action
will be taken because SA VE is disabled.

program E
{Vour dee!

Search Run Windows

Saue your program as

II
Sa Pe Concel

beg1n
{Vour prog
writeln('H
writeln('G

end. l!=!=========

FIGURE2.8
Dialog box for selection of Save As . ..

MecPascel

(Eject)

g

1'9'I
I

SAVING YOUR PROGRAM FOR LATER USE

Edit Search Run Windows

program E
{Vour decl

beg1n
{Vour prog
writeln("H
writeln("G

Saue your program as

jEHamplell

Saue Cancel

end. ~=======~

FIGURE2.9
Save dialog after program name entered.

Examples

(Eject)

gram

g

21

A different action is taken if you wish to save the program on another disk­
ette. In this case, EJECT the Macintosh Pascal diskette. Dialog boxes will ap­
pear which guide you through the process. Note that the name of the diskette
currently in the drive always appears above the EJECT button so that you can
readily identify which diskette is in the drive.

After the Pascal diskette is ejected from the drive, the EJECT button is dis­
abled since you cannot eject a diskette from an empty drive. Remove the ejected
Pascal diskette and insert an alternate diskette to save the program on. This is a
good time to enter the name to save your program under, so type Example! in
the name box. As soon as you start typing, SA VE becomes enabled. (See Figure
2.9.)

Select SA VE and your program will be written on the alternate diskette and
saved for future use. When you open this diskette window later, a program icon
named Example! will appear as shown in Figure 2.13.

After the program has been saved, the alternate diskette is ejected and a
new dialog box asks you to insert the Macintosh Pascal diskette. After you do
so, you are returned to what you were doing before you selected SA VE AS

Meanwhile, back at the Program Window, notice how its title (the file­
name) has changed from "Untitled" to "Example I" because you named and saved
the program. (See Figure 2.10.)

Also notice that the file name and program name are identical. It is a good
idea to save programs in files of the same name to reduce confusion. If you're en-

22

Editing

ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

tering a long program, save what you've entered several times before you reach
the end. If a power shortage or other disaster occurs and your program is lost,
you still have the saved version and can avoid having to retype the entire program.

There are times when you need to add, delete, or modify your program and
then save the changed version. To delete a portion of your program, highlight the
area to be omitted by dragging the mouse over it (button depressed), release the
button, and press Backspace on the keyboard, once.

To make additions to a program, move the insertion point to the desired
place and type. For example, program Example! can be changed by editing the
following lines.

1. Add these two lines after "{your declarations}":

Var
count: integer;

2. After "WriteLn ('Hello, My first Program~;" add:

For counter = 1 To 50 Do

WriteLn ('counter = ' ,counter) ;

The Program Window should look like Figure 2.11.

(Optional: If you are curious to know what effect these additions have made,
select GO from the RUN menu and watch the Text Window.)

If you want to modify a word or group of words, highlight them using the
mouse and just start typing in the change. The highlighted text will be replaced
immediately by whatever you enter.

Saving Your Edited Program

If you pull down the FILE menu after saving Example I, more buttons are enabled
than before it was saved. Obviously, a program must be saved before the system
will let you perform these other operations on it. Compare Figures 2.12 and 2.7.

You can easily replace a version of Example! saved on diskette with a
changed version in the Program Window by selecting FILE-SA VE. When you do,
no dialog box appears to request a program name because Macintosh Pascal
recalls that you've saved this once before and which diskette it was saved on. A
dialog box does appear asking for the proper diskette (by name) to be inserted
into the drive. You are again guided through the saving process, and then re­
turned to the Pascal Program Window, as before.

-

-

SAVING YOUR EDITED PROGRAM

s File Edit Search Run Windows

Examp1e1

~rogram Example 1;
{Vour declarations}

beg1n
{Vour progrnm statements}
writeln('Hello, My First progrom');
writeln('Good bye');

end.

FIGURE2.10
Effect of Saving on Program Window title.

Te Ht

Q Hello, My First Program
Good bye

Drawing

s File Edit Search Run Windows

e1 EH ample 1 ji
program Example 1;

{Vour declsrations}
var

~ counter : integer;
begin

{Vour progrom st11tements}
writeln('Hello, My first Program');
for counter := 1 to 50 do

writeln('counter=', counter);
writeln('Good bye');

end.

FIGURE2.11
Example1 after modification.

TeHt
IQ He I Io, My Fi r~t Progra•

Good bye

Drawing

23

I--

24 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

saue
Saue Rs ...

b Reuert
Page Setup ... tements}

Windows

Print... first Program');
Quit o 50 do ·

writeln('counter= ', counter);
writeln('Good bye');

end.

FIGURE2.12
File menu, more options after program is saved.

D
Empt~ F o Ider

FIGURE2.13
Examp/e1 icon.

~
Example!

TeHt

Drawing

PRINTING THE CURRENT PROGRAM 25

Alternately, if you wanted to save the changed program under a new name
(which doesn't affect the program saved under the old name) select FILE-SAVE
AS ... and supply the new name. To terminate this session, select FILE-QUIT.

Restoring a Saved Program

To copy a previously saved program from a diskette file into main memory, you
must first FILE-CLOSE the existing program and then FILE-OPEN another
program.

Pull down the FILE menu and select the CLOSE item. If the current pro­
gram has not been saved, you will be asked if you want to save or discard it (a
dialog box appears with SAVE, DISCARD, and CANCEL buttons). However, if
the current program has been saved (and not modified since being saved) then
another dialog box will appear with an EJECT button.

Click the EJECT button and replace the Macintosh Pascal diskette with the
diskette containing the program you want to copy into memory. As soon as the
diskette is loaded, the dialog box will display the files on the diskette in a small
window which can be scrolled.

Find the program file you want and double-click it. This will cause the pro­
gram to be loaded into main memory, and a dialog box will appear telling you to
put the Pascal diskette back into the drive.

The newly loaded program will appear in the Program Window. You can
edit, run, or save this program as before.

Printing the Current Program

To print the program currently in the Program Window, you must first make
sure the write protect tab on your Pascal diskette is closed (the write protect is
off> and your printer is turned on (plugged in, loaded with paper, etc.).

Select the FILE-PRINT item and wait for the printer-setup dialogue box to
appear. This dialog box has several buttons for choosing quality of print and
page dimensions. Any of these settings will work, and in most cases you will
simply click the OK button to continue.

Macintosh Pascal will write the image to be printed to disk first, then print
the disk file. To terminate before the entire file is printed, simultaneously press
the APPLE control key (located immediately to the left of your keyboard space­
bar) and the period key. Otherwise, sit back and relax while the printer gives
you a hard copy of your Pascal program.

When you are finished, eject the diskette and open the write protect tab
(turning on the write protect) so you cannot accidentally erase essential files.

26 ENTERING, RUNNING, AND SAVING A PASCAL PROGRAM

Summary

You will be using two diskettes while learning Macintosh Pascal. The Macintosh
Pascal diskette contains the Pascal interpreter software and should be write pro­
teded so you cannot accidentally erase the interpreter. The other diskette contains
your own programs.

Programs are entered, edited, run, and printed from the Program Window.
To keep a permanent copy of each program, FILE-SA VE AS ... or FILE-SA VE
the contents of the Program Window onto the second diskette. Use FILE-SA VE
AS ... the first time a program is saved or whenever a new name is desired, and
FILE-SA VE whenever the Program Window already knows the file name.

An old program on diskette is loaded into the Program Window by the FILE­
OPEN command. If the program is on another diskette, EJECT the Macintosh
Pascal diskette and follow the directions given in the dialog boxes. This process
is similar to FILE-SAVE

A program is executed by selecting RUN-GO. Its output appears in the
Text Window. The RUN menu has several other items for running a program.
These options will be discussed when the need arises, but for now use RUN-GO
to execute a program.

Problem Solving

1. Use FILE-OPEN to copy Example! from your second diskette into the
Program Window. List the steps needed to do this.

2. How are the mouse and keyboard used to delete an entire line of text
from the Program Window?

3. Perform the following experiment. Close the Drawing Window and
stretch the Program Window so that it nearly conceals the Text Win­
dow (but do not conceal it entirely). How is the Text Window brought
in front of the Program Window without re-sizing either window?

4. What happens when you attempt to select a dimmed item from a menu
or a dimmed button from a dialog box?

5. Explain how to insert a line of text between two existing lines in the
Program Window.

Session 3:

The Strudure of a
Pascal Program

The text that first appears in the Program Window of Macintosh Pascal (immediately after opening
the Pascal icon) is the smallest possible complete Pascal program. Although it does nothing meaning­
ful, it is nevertheless a valid program. In this session, you will learn about the structure of data,
instrudions, constants, and variables in Pascal. This will enable you to write meaningful programs
that carry out calculations and do simple input and output operations.

Reserved Keywords

Start up Macintosh Pascal and look at the skeleton program shown highlighted
in the Program Window. Click the Program Window to un-select "Program
(Untitled)."

The words appearing in boldfaced type in this skeletal program have special
meaning in Pascal and are called reserved words or keywords (see Figure 3.1). There
are many reserved words in Pascal:

27

28 THE STRUCTURE OF A PASCAL PROGRAM

AND END NIL SET
ARRAY FILE NOT STRING
BEGIN FOR OF THEN
CASE FUNCTION OR TO
CONST GOTO OTHERWISE TYPE
DIV IF PACKED UNTIL
DO IN PROCEDURE USES
DOWNTO LABEL PROGRAM VAR
ELSE MOD RECORD WHILE

REPEAT WITH

"Reserved" means that these words cannot be used in any way except as
punctuation symbols in the grammar of a Pascal program. The rules of grammar
are called syntax rules, and in Pascal these rules are defined by syntax diagrams.

Syntax Diagrams

You can use a syntax diagram like the simple one shown in Figure 3.2 to check
the precise grammar of any Pascal statement. Following the diagram in the direc-

• File Edit Seorch Run Windows

D Untitled

~

/Identifier

~prngnm Uolltl•d; (Separator
{'r'our decl11n1tions}

Reserved Words begin
{'r'our progrnm statements}

end.

~
IQl jg 1'21

FIGURE3.1
A complete program skeleton.

-

IDENTIFIERS 29

tion of the arrows (left to right), shows you how words are put together to form
valid Pascal statements.

In a syntax diagram circles always appear around reserved words and
special symbols (such as the ; or .). Circled words appear in a Pascal statement
just as they are shown inside the circle. Boxes are used to enclose other syntactic
forms. Each separate syntactic form has its own diagram; for example, there are
diagrams which define the syntax of an identifier, a declaration part, and the
body of a program.

Look at Appendix B, "Pascal Syntax Diagrams," in the back of this book to
see the complete set of syntax diagrams for the Pascal language. By learning to
read and understand these diagrams, you will be able to verify correct usage of
statements within a Pascal program.

Progratn Statement

The first line of a Pascal program is called the program statement (or the "header'')
and always starts with the reserved word "Program" and ends with a semicolon.
(All statements in a Pascal program must end with a semicolon except the state­
ments immediately preceding the reserved words "END," "ELSE," and "UNTIL")
The word following the reserved word "Program" is the name or title given to
the program by the programmer. The usual term for this program title is the
program identifier.

Identifiers

Identifiers are not limited to identifying programs only. They are used for
naming a variety of objects in Pascal. An object can be a number, a place in
memory where a number is stored, a program, or even a series of actions within
a program.

Program

identifier

declaration part

FIGURE3.2
Example of a syntax diagram.

30 THE STRUCTURE OF A PASCAL PROGRAM

Certain rules must be observed while creating a Pascal identifier: (1) it must
begin with a letter, (2) the subsequent characters must be strings of letters or
digits, and (3) it must be fewer than 255 characters in length.

The rule for an identifier excludes punctuation marks, spaces, or special
characters. (Exception: you may use the underscore within an identifier to en­
hance readability, for instance, My_Program_Draws_Circles is acceptable.) The
following identifiers are legal:

FIVE

MyFirstProgram

M2D2

Counts_Capital_Letters

while these are not:

2daysProgram

_Break

Bar.Graph?

$MoneyMaker

Pie Graph

Program Body

The program body comes after the program header and is where program in­
structions are listed. Its beginning is marked by "{Your Program Statements}" in
the skeleton program. Note that statements appearing in the program body are
enclosed by the reserved words "Begin" and "End." (Refer back to Figure 3.1.)

Declaration Part

The program body is preceded by a section called the declaration part, which defines
all objects used by the program body. In the skeleton program the declaration
part is marked with the comment "{Your Declarations}".

A simple declaration part contains two statements (in order of appearance):
(1) the constant definition statement, followed by (2) the variable declaration statement.
Only legal Pascal identifiers may be used as variable or constant names. Other
statements may appear in the declaration part as well, but for now let's see how
these two simple statements work.

r

-

-

-

CONSTANTS 31

Types

All objects of Pascal must be typed. A type is a collection of values. For example,
the set of whole numbers -32,768, -32,767, ... 0,1,2, ... 32,767 is a collection of
values called integers in Pascal. An integer object contains integers only, and so we
say its type is Integer.

The set of positive and negative numbers that contain a decimal point is
called the Real type. A real number such as 5.2 must be stored as a real object.

Another type, called Boolean, holds only the logical values True and False.
A character object contains only letters, digits, special characters, and what­

ever can be entered by a single keystroke; its type is Char.
The simplest types in Pascal are Char, Real, Integer, and Boolean; there­

fore, the simplest objects in Pascal must be either Char, Real, Integer, or Boolean.
But there are many more types possible in Pascal. For a start, suppose we
examine only the simplest objects. There are two ways to declare simple objects:
constants or variables.

Constants

Constants are defined as objects which cannot be altered or changed by any sub­
sequent action of the program. Once a constant is defined, it can be used through­
out the program in place of the value it represents.

The type of data a constant identifies depends on the value associated with
it. It could be a Real type (if it is a number containing a decimal point), an Integer
type (if it is a whole number without a decimal point), or a Char type (if it is a
single character or special character).

The reserved word "Const" is written at the beginning of the constant
definition statement. The constant's identifier, an equals sign, and its value
follow. Successive constant identifiers and their values can be listed, separated
by semicolons. The following constant definition statement defines three con­
stants: FIVE (Integer), PI (Real), and Rating (Char).

Program Sample;
{Your declarations}

Const
FIVE = 5:
Pl = 3.14;
RATING = '*';

Begin
{Your program statements}
WriteLn ('This is a ',FIVE.RATING);
WriteLn ('This value of Pl is' ,Pl:10.2)
End.

32 THE STRUCTURE OF A PASCAL PROGRAM

Try this program by inserting the Const statement and the WriteLn statements
into the skeleton program and then selecting RUN-GO.

Look in the Text Window after Program Sample has been run. The quoted
messages inside the two WriteLn statements are shown followed by the value
of FIVE, RA TING, and PI. In the second WriteLn statement, PI was displayed in
a format given by :I0:2. This means to allow IO columns in the Text Window
for the entire number with 2 of the IO columns devoted to the decimal fraction
of PI's numerical value (3.14).

FIVE is an Integer constant because it is given an integer value (5 has no
decimal point). RA TING is a Char constant because it is given a '*'as its value.
PI is a Real constant because it contains a number with a decimal point.

Variables

Variables are objects which store information of a certain type. There is, however,
a critical difference between a variable and a constant: variable values can change
or be changed (vary) during program execution. Although a variable contains a
value of a certain data type {like a constant), its type must be specified by name
(not implied as in the Const statement).

The reserved word "Var" is used to begin the variable declaration statement.
Var is followed by each declaration consisting of the variable identifier, a colon,
and a data type. Successive variable declarations are separated by semicolons.

Var
CandyJar : Integer ;
GPA : Real;
LetterGrade : Char ;

Several variables of the same type can be listed together but separated by
commas as shown below.

Var
X,Y,Z
A,B,C:

: Integer;
: Real;

The Var statement is optional, but if it appears in a program, it must follow the
Const statement (or the program header if there is no Const). All variables must
be declared in a single Var statement.

Assigning a Value to a Variable

Suppose we create a variable named CandyJar of type Integer, in order to count
pieces of candy (data) stored in a hypothetical candy jar. CandyJar should be con­
sidered initially empty after it has been defined in the Var statement.

A value of 1 can be stored in CandyJar using a Pascal assignment statement
in the program body, as follows:

-

-

-

-

-
-
-
-

HANDS ON THE CANDY JAR 33

CandyJar := 1 ;

The "assignment" operator (:=)causes the value to its right (1) to be copied into
the variable to its left (CandyJar).

If you want to copy the contents of one jar and place them in another, use
the assignment statement to copy from right to left.

CandyJar := OldCandyJar;

This assignment statement copies from the contents of OldCandyJar to the
contents of CandyJar. The contents of OldCandyJar are not changed, but the
previous contents of CandyJar are replaced by the copy of OldCandyJar's
contents.

Suppose there are three candies in the CandyJar; you could be greedy and
add two more candies to it. This is accomplished by the assignment statement:

CandyJar := CandyJar + 2;

(5) <- - (3) + (2)

Pascal takes the contents of the CandyJar (to the right equalling 3), adds two
more to it (totalling 5), and places a copy of that total in the most current Candy­
Jar (to the left of the assignment operator).

Hands on the CandyJar

Let's write a program to illustrate some of these new programming concepts.
After you've started up Macintosh Pascal, follow these instructions:

1. Close the Text and Drawing Windows. Then enlarge the Program
Window as much as possible (stretch it by dragging the size box).

2. Replace "Untitled" in the program statement with the identifier
EXERCISE!.

3. Enter a variable declaration statement as follows:

VAR
CandyJar : Integer;

4. Enter the following Program statements to the program body between
Begin and End.

CandyJar := 1 ;

Writeln ('Number of candies in the Jar is ' ,CandyJar) ;

5. Reopen the Text Window by selecting the TEXT option from the
WINDOWS menu.

6. Run the program and watch its output in the Text Window. See
Figure 3.3.

34 THE STRUCTURE OF A PASCAL PROGRAM

• File Edit Search Run Windows

Untitle_(j 0 Te Ht

program Exercise 1; Humber of candies in the jar ~
{Vour declarations} is 1

var ~ CandyJar : integer;
begin

{Vour program stotements}
CandyJar := 1;
writeln('Number of candies in the jar is ·, Candy~lar);

end.

FIGURE3.3
Exercise1 assigning 1 to CandyJar .

• File Edit Search Run Windows

EHersice ~ TeHt
l"'I

program Exercise I; Number of condies in the jorlQ
{Vour declarations} is 1
Y8r Now number of condies in the~

candyJar: Integer; jar is 6 211
begin

{Vour program stotements}
CandyJar := 1;
writeln('Number of candies in the jar is·, CandyJar);
CandyJar := CandyJar + 5;
writeln('Now number of candies in the jar is·, Candy.Jar);

end.

FIGURE3.4
Exercise1 after adding new changes.

-

-

-

COMMUNICATING WITH THE OUTSIDE WORLD 35

7. Just to be greedy, add the following statements after your last WriteLn
(see Figure 3.4).

CandyJar := CandyJar + 5;

Writeln ('Now number of candies in the Jar is ' ,CandyJar) ;

8. Run Exercisel again (without drooling). See Figure 3.4.

9. Save this program on another diskette as Exercisel. You will need it
again later in this session.

Communicating with the Outside World

Now that you have run a few sample programs it is time to learn more about in­
put and output. The simplest form of input comes from the keyboard. This is con­
trolled by the ReadLn statement. Similarly, the simplest form of output is to the
Text Window using WriteLn.

WriteLn vs. Write

In every WriteLn statement the output is always enclosed in parentheses. What­
ever falls within the single quotes is printed exactly as it is written, for instance:

Writein ('He called her cat a furry peripheral');

Writein ('Her cat called him a prr .. t meow') ;

Each WriteLn prints its line of text on a separate line. Write is similar to WriteLn
except it does not force a carriage return following its output. (Wherever we talk
about a "return" we mean the character generated by pressing the Return key on
the Macintosh keyboard. This has the effect of moving the cursor to the begin­
ning of the next line.) The following example illustrates by comparison the differ­
ence between WriteLn and Write.

Begin
Write ('Enter X') ;
Writeln ('OK') ;
Writeln ('Enter Y') ;
Writeln ('OK, Too')

End.

The output appears in the Text Window exactly as shown below.

Enter XOK
Enter Y
OK, Too

The first Write statement causes 'Enter X' to be output without a Return.
The next statement displays 'OK' immediately following 'Enter X' because no
Return has been output to separate the two.

36

ReadLn

THE STRUCTURE OF A PASCAL PROGRAM

Compare the first line of output with the output displayed by the next two
statements. 'Enter Y' is output followed by a Return. Thus when 'OK, Too' is dis­
played, it appears on the next line.

The WriteLn statement:

is equivalent to the following:

Writeln ('OK') ;

Write('OK') ;
Writeln;

The WriteLn without parentheses simply causes a Return to be output to the
Text Window.

What if you want to communicate with or provide input to a running prograpl?
You can assign a variable its value from outside the program using the ReadLn
(pronounced "read line") statement. To see how this works open the Pascal Pro­
gram Window and enter a program named ProgTest with variable CandyJar of
type Integer, as you did in Exercisel . (See Figure 3.5.) Then enter these state­
ments in the Program Body:

s File Edit Search Run Windows

Untitled

program ProgTest;
{Your decleretions}
Y6r

CandyJer : Integer;
begin

{Your progrnm statements}
Write("Type in any number');
ReadLn(CandyJar);
Writeln("Number of candies you put i

end.

FIGURE3.5
ProgTest, use of ReadLn.

TeHt
~ Type in any nu•ber

Hu•ber of candie~ you put in
the jar is 1

Drawing

H

COMMUNICATING WITH THE OUTSIDE WORLD

Write (Type in any number ') ;
Readln (CandyJar) ;
Writeln ('Number of candies you put in the jar is ', CandyJar) ;

37

Run the program, and when you see the insertion point appear after the line
requesting a number, enter any number and hit the Return key. (If you enter
more than one value after the prompt, all but the first value will be ignored.) You
can see by the final output line that you have successfully assigned a value to
variable CandyJar.

As shown, ReadLn is followed by the name of a variable enclosed in
parentheses.

Readln (CandyJar) ;

An insertion point prompt will appear whether or not a polite request generated
by a WriteLn statement is present before the ReadLn.

Assigning values from the keyboard using ReadLn makes this program an
interactive program, because you interact with it. You can assign values to many
variables in a running program by listing their names in ReadLn. For example,
values for variables X,Y,Z, and LAST can be obtained through a simple ReadLn
statement.

Readln (X,Y,Z,LAST) ;

s File Edit Search Run Windows

EHercisel

jprngram Exercise I;
{Vour declarations}
var

Candy.Jar: integer;
begin

{Your progrom statements}
Candy.Jar := I ;
writeln('Number of candies in the jar
Candy.Jar:= Candy.Jar+ 5;
writeln('Now number of candies in th

end.

FIGURE3.6
Exercise1 after Open.

TeHt

t-

orawl'!.9_

38 THE STRUCTURE OF A PASCAL PROGRAM

A Complete Example

If you have not done so already, close program ProgTest by selecting CLOSE
from the FILE menu. Select the DISCARD button if asked whether you want to
SAVE or DISCARD ProgTest, since you will not need it later.

Once again, pull down the FILE menu, but this time select OPEN. Since
Exercisel is not on your system disk (we hope) it won't be listed in the dialog
window among the files to OPEN. Therefore, click the EJECT button and insert
the disk containing Exercisel. Now select Exercisel by pointing and double­
clicking it. Macintosh will ask you to re-insert the Macintosh Pascal diskette and
then bring up Exercisel in its Program Window. (See Figure 3.6.) Enlarge the
Program Window, so you can see the entire program.

Recall that in Exercise I you declared variable CandyJar, assigned one candy
to it, and later added five more candies. What if you wanted to take some candy
from it? (You certainly deserve a reward by now.) The following statement will
do the job.

CandyJar := CandyJar - 2;

This assignment statement says to subtract 2 from CandyJar and copy the result
back into variable CandyJar. Remember, the result of the computation performed
to the right of the" := "is assigned to the variable on the left.

• File Edit Search Run Windows

EHercise F-0 Te Ht

program Exercise 1; Ho°' nuinber of candies in the ~ {Your declarations} j or is 6

var Candies I eft in jar after
4~ CandyJar : integer; gobbling up 2 are:

begin
{Your progrom stotements}
Candy.Jar := 1;
writeln('Number of candies in the jar is·, CandyJar).:
Candy.Jar := Candy.Jar+ 5;
writeln('Now number of candies in the jar is ·, CandyJar);
CandyJar := CandyJar - 2;
writeln('Candies left in jar after gobbling up 2 are:·, Candy.Jar);

end.

FIGURE3.7
Exercise1, subtracting two gobbled candies.

A COMPLETE EXAMPLE 39

• File Edit Search Run Windows

EHercise -o Te Ht

program Exercise 1; Now nu1tber of candie~ in the~
{Your declarations} jar is 10

var Candies left in jar after '="
Candy.Jar: integer; gobbling up 2 are: sf

begin
{Your program statements}
Writeln('Enter Number or candies:');
Readln(CandyJar);
writeln('Number of candies in the jar is ·• Candy.Jar);
Candy.Jar :: Candy.Jar + 5;
wr1teln('Now number or candles 1n the j6r 1s ', candyJ6r);
CandyJ6r := C6ndyJar - 2;
writeln('Condies left in jor ofter gobbling up 2 are: ',Candy.Jar);

end.

FIGURE3.8
Exercise1, use of ReadLn .

• File Edit Search Run Windows

EHercise [!o TeHt

program Exercise 1; Enter Number of candies: Q
{Your decl arations} 5

jar~ Y8r Number of candies in the

Candy.Jar: integer; i s 5 ~
begin

{Your program statements}
Writeln('Enter Number of candies:');
ReadLn(CandyJar);
writeln('Number of candies in the jar is·. Candy.Jar);
Candy.Jar :: C6ndyJar + 5;
writeln('Now number of candles 1n the jar 1s ·, CandyJar);
Candy.Jar := Candy.Jar - 2;
writeln('Condies left in jor ofter gobbling up 2 ore: ', CondyJar);

end.

FIGURE3.9
Exercise1, first portion of Text Window.

40 THE STRUCTURE OF A PASCAL PROGRAM

Let's see how this works in Program Exercise!. Add these statements after
the last WriteLn statement in Exercise!.

CandyJar := CandyJar -2;
Writeln ('Gandies left in jar after gobbling up 2 are: ', CandyJar);

Now RUN-GO Exercise!. Since the Text Window is in the background (behind
the enlarged Program Window), you need to bring it to the foreground to read it.
Just select TEXT from the WINDOWS menu. Notice that you can only see the
last four lines of output in the Text Window. To see all of the lines either en­
large the window or use the scroll boxes. Remember, to scroll, click on the up­
arrow or down-arrow (on the right side of the window) to look up or down
through the output lines. We've scrolled down to the last line of output in Figure
3.7. Now delete:

CandyJar := 1 ;

by highlighting the entire line and then hit the backspace key.

Next insert these lines in its place:

Writeln ('Enter Number of candies:') ;
Readln (CandyJar);

Make sure the Text Window is open, then run your program and enter a
number when you are prompted by the blinking insertion point. (Don't forget to
hit the return key after entering a number, or the Macintosh will never receive
your message!) Compared to previous versions of Exercise!, the current one is
really beginning to perform some work.

Comment Statement

Have you noticed the words enclosed in {curly brackets} in your skeleton Pascal
program? These are called comments and serve as explanations or notes to make
the program more readable. You can (and should) insert comments within your
programs. In Pascal, anything written between open"{" and closed"}" is ignored
and therefore doesn't cause any action to be taken.

Comments exist solely for the convenience of the reader of the program.
For example, you could include your name as author of a program you've written
by inserting:

{ Author : FAT MAC }

Comments can appear almost anywhere in a program and can extend over
several lines. Just remember, a left (opening) bracket must appear at the begin­
ning and a right (closing) bracket at the end of each comment:

{Program Sweet Tooth
by

FAT MAC}

-

-

-
-

-

-

SUMMARY 41

Summary

In this session you learned about the structure of a simple Pascal program (see
Figure 3.10). Constants and 'Oariables must be defined in the declaration part of the pro­
gram. Constants are defined using their exact value (explicitly), which cannot be
altered by any subsequent action in the program.

Variables are assigned their values using assignment or ReadLn statements.
Variable values can "vary" or be changed by the executing program. The value
of a variable is processed by performing mathematical computations using assign­
ment statements.

Begin and End enclose all statements in the program body; semicolons sepa­
rate all program statements; and a period always follows the end of the program.

The output of a running program appears in the Text Window through
either the Write or Writeln statement. Writeln sends a Return to the Text Win­
dow and Write does not.

We have not studied examples of all operators you may use in an expres­
sion, but for quick reference later on, see Table 3.1, Pre<::edence Table. The opera­
tors at the top of the list are done first, followed by the second precedence
operators and so on.

FIGURE3.10

program identifier;

con st

constant definition;

constant definition;

var

variable declaration;

variable declaration;

begin

program statement;

program statement;

end.

A complete program structure.

declaration part

program body

42 THE STRUCTURE OF A PASCAL PROGRAM

Table 3.1 PRECEDENCE TABLE

Operator What It Does When It Is Done

@,-,not address, negative, Boolean NOT FIRST

*,/,div, multiply, divide, divide SECOND
mod, and modulo, Boolean AND

+,-,or add, subtract, Boolean OR THIRD

=.<>.<.>. comparisons LAST

Problem Solving

1. How do you define an object as a variable to represent the value PI?

2. What is an "identifier"?

3. What is a "reserved word"?

4. What is the purpose of semicolons?

5. What is a "string constant"?

6. Explain why the contents of a variable can be changed.

7. Write a "Writeln" statement to print "IT'S TIME TO PARTY."

8. What is the difference between constants and variables?

9. Write a program to add two numbers, Band C, together.Band C get
their values from the keyboard, and are integers. Display the answer
in the Text Window.

10. Modify program Exercise! to subtract Grab from CandyJar. Grab is
entered from the keyboard. Display the new value of CandyJar in the
Text.

i I

,..,

r-!

; :

-

-

Session 4:

Integer, Real, and Char
Expressions

In this session you will learn how to write integer, real, and char expressions that e-oaluate to
integer, real, or char ualues. f.xpressions can be used as part of assignment, Write, WriteLn, and
other statements cooered in later sessions.

The Instant Window

A quick way to see how Pascal interprets a certain statement or expression is to
open the Instant Window and use it to evaluate one or more statements. The
Instant Window can be used to enter statements that are not part of a program
residing in the Program Window. Or you can halt a running program, open the
Instant Window, execute a few statements, and then resume execution of the pro­
gram. Alternately, the Instant Window can be used to run tests, as we will do
later in this session.

Start Macintosh Pascal and close the Program and Drawing Windows. This
leaves the Text Window and a blank screen. Select the WINDOWS- INST ANT
menu and get the Instant Window as shown in Figure 4.1. We will use the two
windows shown in Figure 4.1 throughout the following hands-on exercise.

The DO IT button in the Instant Window is for executing whatever
happens to be in the Instant Window. Initially, "{Any statement, any time}" ap­
pears as a selected comment. Press the backspace key to erase this comment.

43

44 INTEGER, REAL, AND CHAR EXPRESSIONS

Enter the following output statement into the Instant Window and click DO
IT. Watch what appears in the Text Window.

WriteLn ('Greetings from Instant')

As you can see, this single statement is executed and its output message appears
in the Text Window just as if it were a running program. During this session you
will be executing WriteLn statements containing expressions like the one below
(see Figure 4.2) .

WriteLn (10 * 3) ;

The value of this expression is 30. The WriteLn statement causes 30 to be output
to the Text Window.

The idea of using an expression within a WriteLn statement will be used in
examples throughout this session. To change an expression to some other test
expression, select (highlight) the expression by dragging the mouse over it, and
type in a replacement.

s File Edit Seorch Run Windows

FIGURE4.1
Instant Window and Text Window.

INTEGERS 45

::o Instant

[Do It) jQj
Wri teln(1 O " 3)

\QJ
2I JQJ ~

F/GURE4.2
Instant Window with a single statement.

Integers

Integers are the simplest kind of numbers stored in a Pascal program. They
range in value from -32,768 to 32,767. You can add, subtract, multiply, divide,
and perform 1/0 on integers using the following operators.

+, -, *
div, mod

add, subtract, multiply.
divide (quotient), divide (remainder) .

In order to use these operators in expressions, you must follow the rules of
hierarchy or ordering as you evaluate different operations. There are two levels
of hierarchy and precedence of operations.

+I div mod

+-
these are done first ...
followed by these,

When more than one operator from one level of hierarchy is found in an
expression, they are evaluated from left to right. Using parentheses can change
this order of evaluation, as well as make it clearer.

In addition to these operators, the following intrinsic functions apply to
integers.

Readln ()
Wrileln ()
abs()
sqr ()

sqrt ()

chr ()
succ ()
pred ()

Read an integer from the keyboard.
Write to the Text Window.
Absolute value of.
Square of.
Square root of.
Character of.
Successor of.
Predecessor of.

46 INTEGER, REAL, AND CHAR EXPRESSIONS

Use the mouse and keyboard to edit the Writeln statement of Figure 4.2. i-"'
Enter the following expressions and watch the result appear in the Text Window
each time you click DO IT.

,_,
Instant Window Result Explanation

10+2 12 This is an easy one. The sum of 10
and 2 is 12, but notice how many leading
blanks appear in front of 12 in the
Text Window.

10 + 2 :3 12 This time only 3 columns are allowed i-i
for 12. The :3 specifies the number of
columns allowed for a result when
displayed from Writeln.

i-i

5 div2 2 Div means "quotient of'. The
quotient of 5 divided by 2 is 2.

5mod2 1 The remainder after the division
is 1. Mod means to take the remainder
(of 5 divided by 2).

-5 div 2 -2 The quotient of (-5) divided by 2.

-5 mod 2 1 The remainder after (-5) is divided
by 2. (It will always be positive ~

because (-2) * (2) = (-4).

5 mod (-2) Error You get a bug because this is undefined.

- (5 mod 2) -1 The result of 5 mod 2 is made negative.

11*3 33 Multiplication is as usual.

11 * 3 div 2 + 1 17 11 * 3 is done first, then div 2,
and lastly + 1.

11 * (3 div 2) + 1 12 3 div 2 is done first because of ().

abs (-3) 3 The absolute value ignores sign.

sqr (-3) 9 This is the same as (-3) * (-3).

chr (65) A The integer is converted into a
r"'I character. The ASCII code for 'A' is

65.

succ (1) 2 The successor to 1 is 2. The next 1-i

larger value is one greater than 1.

REALS

Reals

pred (2) 1 The predecessor of 2 is 1. The next
smaller value is one less than 2.

47

Try each of these expressions on your computer. After entering a new
expression, click DO IT and watch the Text Window. Click the Instant Window
once to make it active following DO IT. Drag the mouse over the previous
expression; then enter the next expression.

Integer expressions are typically found in assignment statements. Suppose
X is an integer.

X := 10 div 3;

Integer variables can be used freely in place of integers in either assignment or
WriteLn statements. Keep in mind that these variables must have been declared
previously in the Var statement.

X := Y div Z;

The quotient of Y divided by Z is stored in X. This causes the previous value in
X to.be lost.

Now erase the integer expression in the WriteLn statement of Figure 4.2 and try
the following operations on real numbers. You may be surprised by the "e" for­
mat obtained when real values are written to the Text Window.

1.5e + 2

This format is actually a method for expressing either very small or very large
numbers and is called scientific notation. The "e" stands for "times 10 to a power of"
whatever number follows. This means the decimal point is to be moved to the
right(+) or left(-) a certain number of digits. Thus 150.0 is equivalent to 1.5e + 2
and 0.15 is equivalent to 1.5e -1.

The "e" separates the number from the exponent part which tells how
many digits to move the decimal point. Remember, whenever a real number is
written in a Pascal statement, if it contains a decimal point there must always be
a leading digit to the left of the decimal (even if it is zero). Therefore, .5 is an
error and 0.5 is legal.

Instant Window

123.45

123.45 :7:2

Result

.12e + 2

123.45

Explanation

The output is displayed in "e format."
Only two significant places are shown.

The output is formatted as follows: 7
columns for the entire number, 2
columns for the decimal fraction.

48 INTEGER, REAL, AND CHAR EXPRESSIONS

10 I 3 :7:2 3.33 The result of dividing two integers is a 19!
real number. This is called type coercion
because the integers are changed into
reals, the division is done, and a real

r-!
result is obtained. The format :7:2 forces
the WriteLn to display two decimal frac-
tion digits. -1.0 I 2.0 :7:2 0.50 The result of dividing 1.0 by 2.0 is 0.50.
Without the :7:2 format, the result would
be displayed in e format.

1-'1

abs (-5.5) :7:2 5.50 Absolute value discards the minus sign.

sqr (-5.0) :7:2 25.00 Square the number.

sqrt (30) :7:2 5.48 The square root of the number. Notice
the 30 is coerced.

trunc (5.6) 5 Converts 5.6 to an integer by truncating
its decimal fraction part.

round (5.6) 6 Converts 5.6 to an integer by rounding it 1191!!

off .

sin, cos, arctan . . . three trigonometric operators. The
!""'I real number is in units of radians, i.e., sin

(3.14159) is 2.7e -6, close to zero.

exp (2) 7.4e + 0 The constant e = 2.7 ... raised to the
power of 2.

In (7.4e + 0) 2.0e + 0 The inverse of exp. The natural logarithm
of ...

3.1+4 I 2 * 6 1.5e + 1 Evaluation is from left to right unless a
higher priority operation is to be done. In
this example, the 4 I 2 is done first.

3.1 + (4 I 2) * 6 1.5e + 1 Same as above except the meaning is
made clear by the (). (4 I 2) is done first,
* 6 is second, and 3.1 + is last.

3.1 + 4 I (2 * 6) 3.4e+ 0 The parenthetic expression is done first.
Then 4 I 12 is done, followed by 3.1 +. r'""'\
The division coerced 4 and 12.

(3.14 + 4) I 2 * 6 2.1e + 1 The parenthetic expression is done first.
Then 7.1 is divided by 2. Finally, * 6 is

,..,
performed.

CHAR

Char

(3.1 + 4) I (2 * 6) 5.9e-1

(3.1+4) I (2 * 6) :8:3 0.592

49

The meaning is clear! The numerator is
computed, and the result is obtained by
division. The (3.1+4) sum is obtained
by coercing 4 into 4.0.

The answer is formatted.

The important thing to remember about real expressions is that they cause
integers to be coerced into reals whenever necessary. This is especially important
to recall when mixing reals and integers in assignment statements.

If X : Real and Y : Integer have been declared in your program, then

X := Y;

is legal, but

y := X;

is an error! This is because an integer can be coerced into a real, but a real can­
not be coerced into an integer. To get around this problem, you must use trunc
or round.

Y := trunc (X) ;

Y := round (X) ;

The second lesson to be learned from the exercises above is the impor­
tance of parentheses. Always use parentheses to make sure the computer does
the calculations exactly the way you intend them to be done. A minor slip-up
can mean hours of debugging time.

The character set shown on your keyboard is encoded (internally) by associating
a number with each character. Thus characters can be manipulated much like
integers. The ASCII code below is the character set used by Macintosh; it con­
tains 95 printable characters and many special (unprintable control) characters.
Notice the first character is a space.

ASCII Character Set

! "# $ o/o & ' () * + - , . I 0 1 2 3 4 5 6 7 8 9: ; < = >?@

ABC DEF G HI J KL MN 0 P QR STU V W X Y Z [\). - '

abcdefghijklmno pqrstuvwxyz{}

This is made possible by converting the char value or variable into an
integer. The following examples should be run using the Instant Window.

50 INTEGER, REAL, AND CHAR EXPRESSIONS

Instant Window Result Explanation

ord ('A') 65 The internal numeric code for capital A.

ord ('a') 97 The internal numeric code for lower case
a.

ord (' ') 32 Even a blank space has an internal
numeric code.

succ ('a') b the successor of a is b. The alphabet is
ordered.

pred ('b') a The predecessor of b is a.

succ ('ab') Error A char is a single character.

ord ('Z') - ord ('A') 25 There are 25 letters of the alphabet
between A and Z.

chr (ord ('H')) H chr and ord are inverses of one another.

Char variables must be declared in the Var statement. Any char value can
be assigned to a char variable. If Ch : Char and X : Integer are declared, then the
following is a valid assignment statement.

Ch := Chr (X) ;

The value of Ch may be displayed from within a Writeln statement.

Writeln (-Ch) ;

Integers and chars are called ordinal types because they can be matched with
whole numbers and counted. Real is not an ordinal type because there are infinite­
ly many real numbers, too many to be counted and matched. The following state­
ment is invalid because X: Real cannot be matched up with an integer.

Writeln (Ord (X)) ;

The difference between a real and an ordinal causes many inconsistencies
in Pascal.

In general, be wary of mixing reals and ordinals in expressions (coercion),
using reals in the same or similar places along with ordinals. Also, avoid com­
paring or converting reals to ordinals and the reverse.

A Hands-On Example

This session is concluded with a hands-on example you can run on your Mac­
intosh. Enter the program shown in Figure 4.3 and RUN-GO. Compare the two
values obtained from the two expressions for the volume of a sphere.

Volume of sphere =
4 pi R3

3

r

-

SUMMARY

s file Edit Search Run Windows

fig 4.3 Sphere

program Sphere;
con st

Pl = 3.14159; {Math Pie}
var

Rodius, Vol 1, Vol2: reol ;
begin

Write('Enter Radius=');
Readln(Radius); {Read a real}
Vol 1 := (4 / 3) * Pl * Radius * Radius * Radius;
Vol2 := (4 I 3) * Pl * exp(3 * ln(Radius));
Writeln('V=', Vol 1 : 12: 5, ' (R* R* R)') ;
Writeln('V= ', Vo12 : 12 : 5 , · Exp(3"Ln(R)) ');

end.

FIGURE4.3
Program to compute the volume of a sphere.

51

The expression for Voll computes R-cubed by repeated multiplication, but
the same result is obtained using exp and In. Vol2 should equal Voll because

Exp (3 * Ln (Radius))

is exactly the same as

Radius * Radius * Radius

Notice that Pascal does not have an exponentiation operator; therefore, to
raise a value or a variable to a power, you must use the form shown in Vol2. In
general, to raise R to the power P, use the following expression.

Exp (P * Ln (R))

This works even when P is not an integer. Hence, if P is less than one, a root is
obtained, and if P is ·greater than one, a power is obtained.

Summary

In this session you learned how to form elementary expressions. These rules will
be used frequently throughout the remainder of this book. There are two
fundamental things you should remember:

52 INTEGER, REAL, AND CHAR EXPRESSIONS

1. When in doubt about the order in which calculations will be per­
formed, use parentheses to force the parenthetic subexpressions to be
done first.

2. When in doubt about mixed types in an expression, simply force the
type to be changed explicitly through assignment, the ORD function,
the CHR function, or follow the rule of thumb that says the mixed
expression will usually be converted to the next more sophisticated
level of data type.

You should use the Instant Window as a kind of scratch pad that lets you
experiment with expressions to make sure they do what you think they should.
When in doubt, try it out!

Problem Solving

1. What does the pair of symbols:= mean in Pascal?

2. What is the value computed by each of the following?
a. 4 / 2
b. 4 div 2
c. 4 mod 2
d. Exp (3 * Ln (2))
e. 3.12 / 1.6
f. 2 + 3 / 3 + 2
g. 2 * 3 I 3 * 2
h. 8 mod 5 div 2

3. Enter the following expressions into a WriteLn statement and find out
what they write to the Text Window.
a. 123 :2
b. -85.6 :5:0
c. round (1.56e + 1) :12:5
d. 13 mod 4 div 3 :10
e. Exp (5 * Ln(2)) :10

4. Write programs to compute the following areas:
a. circle with radius R
b. cylinder with radius R and height H
c. cube with side S
d. right triangle with base B and height H

5. Use the Instant Window to see what the following expressions
evaluate to:
a. 1+1/1
b. Ord('$')
c. Chr (Ord ('A')+ 32)
d. Ord ('1') :10
e. Ord ('1') :1
f. What is the difference between (d) and (e) ?

-

t'-11
' I

-

Session 5:

What Is a Subprogram?

In this session you will learn how to use small subprograms to refine larger programs. The idea is
very simple: Large programs are composed of small programs in a kind of "divide and conquer"
approach to programming. Pascal has two kinds of subprograms: procedures and functions.

Pascal Subprograms

Now that you have written a small program you will be eager to write larger
and more complex programs. As your programs grow in size and complexity,
they will become difficult to understand and write correctly. Small modifications
will "ripple" through the entire program and cause bugs in the least expected
places.

To combat rising complexity and to reduce the likelihood of errors, profes­
sional programmers have developed techniques for keeping programs as small
as possible. One of the most successful techniques is called program refinement, and
one of the most common units of program refinement is the procedure.

A procedure is a block of text containing local data declarations and a body of
instructions. It is very much like a miniature program.

A function is a block of text containing local data declarations and local
instructions like procedures, but unlike a procedure, a function takes on a value
much like a variable. The difference between a function and a procedure lies in
how they are used and how they return computed values to the main program.

53

54 WHAT IS A SUBPROGRAM?

A procedure represents an action, and its name in a program tells the
computer to perform one or more operations on data passed to the procedure. A
function, on the other hand, must represent a value, and its name in a program tells
the computer to calculate and store a value. Both procedures and functions are
used in a style of programming called modular programming.

Procedures

Suppose you want to compute the miles per gallon achieved on a vacation trip.
The formula for miles per gallon is

MPG = MILES I GALLONS

Given the number of miles traveled and the number of gallons consumed, the
value of MPG is calculated by simple division.

A program to compute MPG must do some other things as well. Here is a
"to do" list of the steps in computing MPG.

1. Get the numerical values of MILES and GALLONS from the user.

2. Perform the division shown in the formula.

3. Display the results, including the values of MILES and GALLONS.

A "to do" list should give you a good idea of what steps must be done in
the body of a program, but it does not reveal anything about the data to be used.
Recall that a Pascal program consists of both a data declaration section and a
program body. Therefore, in addition to the three steps above, you must include
a data declaration section.

A. MILES is a real number, initially input.

B. GALLONS is a real number, initially input.

B. MPG is a real number to be computed and then output.

The data declaration specification lists what each variable is and what it
does. This input/output status of each object is important because the Pascal
program must specify what the user is to enter and what the computer is to
display. The complete program in Figure 5.1 computes what we want.

In program GET _MPG the output is formatted using :6:2 and :6:1 follow­
ing the variables in the final WriteLn statement. Recall that the first digit means
to use six columns for the entire number including the sign, decimal point, and
decimal fraction. The second number indicates how many digits are to be dis­
played to the right of the decimal point. Therefore, :6:2 means to display a
number such as 18.57 or -20.00 (two decimal places) and :6:1 specifies numbers
such as 256.5 and -999.9 (one decimal place).

A procedure is like a miniature program since it has local data and local
instructions in its body. To convert GET-MPG from a program into a
procedure, do two things:

,..,
I

r

~
(I

PROCEDURES

4IS File Edit Search Run Windows

Fig 5.1 GELMPH

program GET _MPH;
var

MILES: real ; {Miles travel ed, Input}
GALLONS : real; {Fuel consumed, Input)
MPG : real; {Miles/Gal, Output}

begin
Wri te('Enter MI LES ');
ReadLn(MILES);
Write('Enter GALLONS ');
ReadLn(GALL ONS);
MPG :: MILES I GALLONS;

;;;Li Te Ht
Entero MILES 200
Entero GALL OHS 10

20.00 MPG 200.0/ 10.0

WriteLn(MPG : 6 : 2, 'MPG', MILES : 6 : 1, '/',GALLONS : 6 : 1);
end.

55

FIGURE5.1
Program GEL.MPH.

1. Change "Program" to "Procedure" in the program header, and change
the ending period into a semicolon.

2. Insert "Procedure GET_ MPG" inside another program (immediately
before the Begin), and then "call" it from somewhere inside the other
program.

Figure 5.2 shows how GET _MPG is used from within another program
called MAIN. First, the entire block of text called Procedure GET _MPG is in­
serted into the data declaration section of Program MAIN. Second, the actions
of GET _MPG are invoked by "calling" GET _MPG from within the body of
MAIN.

Procedure Call: A procedure is called by using its name as if it were a valid
statement in Pascal.

Notice the similarity between a p,rocedure call and a Write, WriteLn, and
ReadLn statement. Actually, Write, WriteLn, and ReadLn are special procedures
called intrinsic procedures because they are built into Pascal. An intrinsic pro­
cedure is one that is already defined in Pascal. Intrinsic procedures are called like
any other procedure, but since they are already defined by the language, you do
not need to insert them in the data declaration section of your main program.

56 WHAT IS A SUBPROGRAM?

Hands-On Example of Procedure GET _MPG

Enter program GET _MPG into your Macintosh just a.sit is shown in Figure 5.2
and RUN it. Enter 200 and 10 for the MILES and GALLONS, respectively. What
results do you get?

Now let's try something new. Add another procedure call immediately be­
fore the GET _MPG statement in the main program. The body of MAIN will
have two identical statements now.

Begin
GET_MPG;
GET_MPG

End.

{Don't forget the semicolon}
{Semicolon is optional here}

RUN the modified program with two different pairs of inputs. What happens?
You can see from this example how procedures save time and effort by

allowing you to call the same part of a program over and over again without
duplicating the text.

Procedures are important for a variety of reasons, but perhaps the most
important feature of a procedure is its ability to compartmentalize a section of
your program. Procedures act as fences or boxes which contain their own data
and instructions for doing a specific operation. Procedures should be used to do
a well-defined operation on well-defined input and output data.

The GET _MPG example can be improved by clearly defining all of its in­
puts and outputs. Here is how to improve GET_MPG.

1. Remove the Var statements from GET _MPG by marking them with
the mouse (drag the mouse across Var, MILES:Real; etc.) Press the back­
space key to delete them.

2. Change "Procedure GET _MPG;" to the following:

Procedure GET ..MPG (MILES,GALLONS:Real ; Var MPG:Real) ;

In other words, add the parenthetic list of objects to the procedure
heading.

3. Change the call statement in the body of MAIN to the following:

GET _MPG (M,G,MPG)

Add the parenthetic list of objects to the call statement.

4. Add the following declaration to the main program, immediately after
the program statement:

Var
M,G,MPG : Real ; {commas are a shortcut}

Notice that commas have been used to separate names in a list. This is
a shortcut way to declare groups of variables which are all of the same
type.

i-i
'

r'1
1.

HANDS-ON EXAMPLE OF PROCEDURE GETMPG

a File Edit Search Run Windows

Fig 5.2 Proc 6ELMPH

program MAIN;
procedure GET _MPH; {Procedure GET _MPH}
var

MILES : real; {Miles traveled, Input}
GALLONS: reol; {Fuel consumed, Input}

!rt

MPG : reol; {Miles/Gol, Output} IE=~D~~~~[T~e~H~t~~~~~~
begin ~

Write('Enter MILES'); Enter MILES 200
ReadLn(MILES); Ent er GALLONS 10
Write('Enter GALLONS'); 20.00 MPG 200.0/ 10.0

ReadLn(GALLONS);
MPG := MILES I GALLONS;
WriteLn(MPG : 6: 2, 'MPG', MILES: 6: 1, '/',GALLONS: 6: 1);

end; {GET _MPH}
begin {MAIN}

GET_MPH {Call MPH}
end. {MAIN}

FIGURE 5.2
Procedure GET...MPG.

57

5. Finally, erase all of the Write, Writeln, and Readln statements from
the body of GET _MPG and insert the following, immediately before
the call statement in the main program. (The final program is shown
in Figure 5.3.)

Write ('Enter miles traveled') ;
Readln (M) ;
Write('Enter gallons used') ;
Readln (G) ;

Then insert the following immediately after the GET _MPG call:

Writeln (MPG:6:2,' MPG', M:6:1,'/',G:6:1) ;

These steps have made GET _MPG a well-defined block of Pascal code for
computing mileage from two well-defined input values. The inputs and outputs
are called procedure parameters, and they are enclosed with parentheses.

The procedure heading contains a list of input and output parameters. The
first two are inputs:

MILES,GALLONS:Real ;

The third parameter is an output parameter, and has a reserved word Var in
front of it to designate it as such.

Var MPG:Real ;

58

a File Edit Search Run Windows

program MAIN;
vor

Fig 5.3 GELMPH(Porom)

M, G, MPG : re61; {M11es, Gallons, Mpg}

WHAT IS A SUBPROGRAM?

procedure GET _MPG (MILES, GALLONS : real; {Inputs}
var MPG : reol); {Output} ~

begin
MPG:= MILES I GALLONS;

end; {GET _MPG}
begin {MAIN}

Write('Enter MILES traveled');
ReadLn(M);
Write('Enter GALLONS used');
ReodLn(G);

!![] Te Ht
Enter MILES traveled 200
Enter GALLONS used 10

20 . 00 MPG 200.0/ 10 .0

GELMPG(M, G, MPG); {Call GELMPG}
WriteLn(MPG : 6 : 2, 'MPG', M : 6: 1, '/', G : 6 : 1);

end. {MAIN}

F/GURE5.3
Program to compute miles per gallon.

a File Edit Search Run Windows

Fig 5.4 Formol vs Actuol Porams

program MAIN; ~
'- Formal Parameters

procedure GET _MPG <71L~LLONS : real; {Inputs}

/ / vor MPG: real); {Output}

Inputs /

begin {MAl~/Output

GET_MPG(M, G, MPG); {Coll GET_MPG}

end. {MAIN} v Actuol P6rameters

FIGURE5.4
Actual vs. formal parameters and input vs. output variables.

FUNCTIONS 59

Therefore, in a procedure heading, all input and output variables must be de­
clared inside parentheses, and all output variables must have a leading Var
Reserved Word.

Procedure Parameters: A list of input and output variables appearing in the
procedure heading. The output variable must be
preceded by the reserved word Var. The list of
variables that appear in the procedure heading
statement are called the formal parameters, and the list
of variables appearing in a procedure call statement
are called actual parameters. The diagram in Figure 5.4
illustrates the relationship between formal and
actual parameters.

Notice in Figure 5.4 that it is possible for a formal and actual parameter to
have the same name. MPG is the name of both the formal and actual parameters
(output variable}. This is like two people having the same last name. The full
name of these two variables shows that they are different: MAIN MPG is the
full name of the actual parameter; GET _MPG is the full name of the formal
parameter. They are as different as Ted and Molly Lewis.

Even though the names may differ, the values passed back and forth are
the same. GET _MPG is calculated inside GET _MPG and its value is passed to
MAIN MPG. The value is either copied or shared, depending on whether the
formal parameter is prefixed with Var (shared} or not (copied}. For more infor­
mation on how procedures and functions communicate, see Session 14.

Run the modified program shown in Figure 5.3. How would you change it
to get two mileage calculations?

Procedures behave like statements in a Pascal program. They can process
multiple inputs and return multiple outputs back to the calling main program.
There is another form of subprogram called a function which behaves like a
variable. A function is a special kind of subprogram that returns a single value
corresponding with its name.

functions

Functions are subprograms consisting of a data declaration section and a body
just like a procedure. Functions can have zero or more input parameters, but
only one output variable. Furthermore, the output variable of a function is the
name of the function itself.

The function name is used just like a name of a variable. This means that a
function name may appear in an expression, for example, as part of an assign­
ment statement or inside a WriteLn statement.

60 WHAT IS A SUBPROGRAM?

Function Call: A function subprogram is called by using its name in an
expression, parameter list, or most places where a variable
may be used.

There are several notable exceptions to the rule above: Function names
may not be used in a list of variables in a ReadLn statement; the function name
may not appear on the left side of an assignment statement, except from within
the function itself; and so on. We will point out these exceptions as the need
arises.

Since functions behave like variables they must be declared as certain types.
The heading statement of a function differs from the heading of a procedure in
two respects. First, the word "Function" appears instead of "Procedure," and
second, the function name must be given a type.

Function Mileage (MILES, GALLONS:Real) : Real ;

The two input values, MILES and GALLONS, are used to compute
MILEAGE. Notice how MILEAGE is made into a real valued variable. MILEAGE
is the output value returned to the main program.

Hands-On Example of Function MILEAGE

Suppose the previous example is used to show the difference between a function
and a procedure. The GET _MPG procedure can be changed into a function
called MILEAGE by following the steps below (use the program in Figure 5.3 as
your starting point).

1. Change the following statements of Procedure GET _MPG.

a. Remove the procedure heading and put in its place:

Function MILEAGE (MILES, GALLONS:Real) :Real;

b. Change the assignment statement to:

MILEAGE := MILES I GALLONS;

2. Change the main program by removing MPG from the list of variables
and rewriting the WriteLn statement, as follows. (Also, remove the
GET _MPG (M,G,MPG); statement because it is no longer needed.)

WriteLn(MILEAGE(M,G) :6:2, ' MPG',M:6:1, 'f,G:6:1);

Notice how MILEAGE is used: the function is called from within the
WriteLn statement. The value of MILEAGE is computed in Function
MILEAGE and then returned to the WriteLn statement. The WriteLn
statement outputs this value according to the format :6:2.

SUMMARY

s File Edit Seorch Run Windows

progrom MAIN;
YOI'"

Fi 5.5 MILEAGE Function

M, G : real; {Miles, Gallons}
funcllon MILEAGE (MILES, GALLONS : real) : real;
begin ~

MILEAGE := MILES I GALLONS; {Output}
end; {MILEAGE} -o TeHt

begin {HAIN} Enter MILES traveled 200
Write('Enter MILES traveled'); Enter GRLLOHS u~ed 10
ReadLn(M); 20. 00 MPG 200, 0/ 10. 0
Write('Enter GALLONS used');
ReadLn(G);
Writeln(l'llLEAGE(M, G) : 6 : 2, 'MPG', M : 6 : 1, '/', G: 6 : 1);

end. {MAIN}

FIGURE5.5
Mileage function.

61

Figure 5.5 shows the complete program including Function MILEAGE as it
should appear before you attempt to RUN it. Try it on the following input pair:
350 and 15.

Functions return a single value, accept zero or more input parameters, and
work very much (but not exactly) like variables. Functions compartmentalize
frequently used calculations and should be used where a single value is computed
and then returned to the main program.

Summary

You can have as many functions and procedures as needed in a main program.
They are declared after the Var list and before the Begin reserved word in the
main program.

It is customary to use verb phrases for names of procedures because pro­
cedures perform actions similar to Pascal statements. Hence, GET _MPG,
WRITE_CHECK, CALCULATE_TAX, and other "action phrases" should be
used consistently. Similarly, it is best to use noun phrases for variable names
and function names. MILEAGE, GALLONS, MPG, and phrases such as PROP­
ERTY _TAX or HOUSE _PAYMENT are preferred for variables and functions.

62 WHAT IS A SUBPROGRAM?

Your programs can be made more readable by using a few rules of aesthe­
tics. Always indent the procedure and function data declaration and body
sections. Use comments to tell the reader what every object does. Bracket the
beginning and ending of procedures/functions with their names inside com­
ments. This will help others find the beginning and end of every subprogram
regardless of how many subprograms you have. Also, limit the size of all sub­
programs to approximately one page (screen) so they can be easily viewed in
their entirety. Remember, the major reason for using procedures and functions
is to decompose large programs into manageable subprograms.

Problem Solving

1. Write a procedure called CALC_TAX which takes TAX_RATE and
AMOUNT as inputs (Real), and computes TAX.

TAX= TAX_RATE *AMOUNT

2. Modify the procedure of Problem 1 to make a function called TAXES
(Real) which does the same thing.

3. George can mow his lawn in G = 3 hours by himself. Together,
George and Mary can mow the lawn in GM = 2 hours. How long
would it take for Mary to mow the lawn by herself? Write a Pascal
program that accepts values of G and GM as inputs, and calculate M =
time for Mary to mow the lawn by herself, as output. Use a function
called MARYS_ TIME to do the calculations. (Hint: When G = 5, GM
= 2, then MARYS_TIME should be 3.333 hours.)

4. The area and perimeter of a rectangle are computed as follows:

AREA = LENGTH * WIDTH

PERIMETER= 2 * (LENGTH+ WIDTH)

Given integer values of LENGTH and WIDTH, write a procedure to
compute AREA and PERIMETER.

Why is it not possible to use a single function to solve this
problem?

5. Write a procedure called GET _REAL which always writes a prompt,
'Enter Real number', and then gets a real number called R_NUMBER
from the user. R_NUMBER is returned as an output parameter of
GET_REAL.

6. Use the idea in Problem 5 to implement procedures GET _INTEGER
and GET _REAL for entering Integers and Reals. Use GET_
INTEGER to solve Problem 4 and GET _REAL to solve Problem 3.

-

Session 6:

Choosing in Pascal

In this session you will learn how to write programs which use Boolean ualues, uariables, and
expressions to control decision making from within a running program. Additionally, IF
statements containing Boolean expressions and case statements will be illustrated in seueral
hands-on examples. Finally, RUN-STEP, RUN-STOPS IN, RUN-STOPS OUT, and
the Obseroe Window of Macintosh Pascal will be introduced.

Boolean Variables

George Boole (1815-1864) was a British mathematician who invented Boolean
algebra-a peculiar form of algebra in which variables take on one of two possible
values. A Boolean constant is either True or False; a Boolean variable is a variable whose
type is Boolean.

One hundred years later, an American mathematician named Claude Shan­
non used Boolean algebra to show how an electronic digital computer might simu­
late human decision making. The idea was to model Yes-No decisions with
Boolean variables and then build an electronic circuit to "remember" the Yes-No
value of each Boolean variable. This later became the basis of all electronic binary
computers.

In Pascal a variable is of type Boolean if it is declared Boolean.

Var
P: Boolean;

63

64 CHOOSING IN PASCAL

The only value allowed for Pis either True or False. The simplest way to
establish the value of Pis to assign True or False to it directly.

P := True; { Assign TRUE to P }

True and False are constants just like 0, 5.3, and' A'. True and False should not be
used as names of objects in Pascal.

The constants True and False may be entered in a running program
through the ReadLn procedure and displayed from the Write and WriteLn
procedures. For example, run the following test program and True or False will
be echoed back to the Text Window.

Program Boole1;

Var
P: boolean;

Begin
ReadLn (P);
WriteLn (P)

End.

{ George's Great idea }

{ Enter True or False }
{ Echo }

Boolean variables are used to represent conditions in a Pascal program. For
example, marital status, sex, and whether or not a person can drive a car can all
be represented in a computer program using a Boolean variable for each possible
condition.

Var
MARRIED,
MALE,
Driver : boolean;

{ True means married }
{ True means male }
{ True means can drive }

Boolean variables are used in a number of ways: (I) in expressions; (2) to
determine which group of statements are to be executed (and consequently
which ones are to be skipped over); and (3) to control the execution of loops. We
will discuss the first two uses in this session and address the last use in the next
session.

Boolean Operators

A Boolean operator specifies an operation which may be performed on Boolean vari­
ables and constants. Boolean operators may not be used with non-Boolean typed
variables except when a Boolean result is obtained. As you might expect, there
are only three Boolean operators: NOT, OR, and AND (see Table 6.1).

These operators are quite simple, but don't let them surprise you. The NOT
operator works on a single Boolean variable. Not Pis False if Pis True, and True
if P is False.

OR and AND work on two Boolean variables or constants at a time. Both P
and Q must be False for "P or Q" to be False; both P and Q must be True for "P
and Q" to be True.

-

-

-

BOOLEAN OPERATORS

TABLE 6.1 BOOLEAN OPERA TORS

Boolean Operator

NOT

OR

AND

Example

not P

Pora

Pand Q

Explanation

Compute True only if
Pis false
Compute True if either
p or a is true
Compute True only if
P and a are true.

65

Explore these operators more fully by trying the following experiment.
Enter this program into your Macintosh and RUN-GO.

Program Boole2;

Var
P, Q : boolean;

Begin
Readln (P, Q) ;
Writeln (P, ' AND ' , Q ' = P and Q) ;
Writeln (P, ' OR ' Q, ' = ' , P or Q) ;
Writeln ('NOT ' , P , ' = ' , not P)

End.

Watch what happens as you enter the pairs of inputs below (RUN-GO after each
of the four experiments):

1. True True

2. True False

3. False False

4. False True

The outputs can be put into a truth table as shown. The first value (P) is listed hori­
zontally and the second value (Q) is listed vertically. The result is listed in the
table.

Q=

Q=

True

False

True

False

p = True

True

False

p = True

True

True

AND Truth Table

False

False

False

OR Truth Table

False

True

False

66

p =
NOT P =

True

False

NOT Truth Table

CHOOSING IN PASCAL

False

True

These two tables should agree with the results obtained from the example
above. It will be important to memorize the AND, OR, and NOT tables for
later use.

Boolean Expressions

While there are only three Boolean operators in Pascal, there are many more
ways to obtain a Boolean result. Anytime two objects are compared, a True or
False result may be obtained. The outcome of a comparison is a Boolean value.

A Boolean expression is an expression which evaluates to a Boolean value
during program execution. A Boolean value may be obtained any time the opera­
tions shown in Table 6.2 are performed in Pascal.

The results shown in Table 6.2 are False if any comparison is not true.
Thus, A = B is False if A does not equal B. A and B may be integers, real, or other
types not yet discussed, but the result of comparing A and B yields a Boolean
constant.

A Boolean expression may be used on the right-hand side of an assign­
ment statement. For example, if Pis a Boolean variable, then P may be assigned
the result of the comparisons shown in the table. Here are some examples.

P :=A= B;
P :=A<= B;
P := not P;

{ P is True if A equals B }
{ P is False if A > B }
{ Pis changed to (not P) }

Notice that A< = B is legal whereas A = < B is not. The<= and>= signs
must be written as shown; they cannot be written in reversed order.

Boolean expressions can be combined with other Boolean operators if you
are careful to use parentheses. The compound Boolean expressions below are
legal and unambiguous.

P := (A = B) and (A < > 0) ;

P := not ((A = B) and ((A > 0) or (A < 100)) ;

Sometimes you can do away with the parentheses, but to be safe use them­
they cannot hurt.

Try the following program and observe what happens to the value of Pas
different values of A and B are entered.

-

-

-
-
-
-

-

-

-

BOOLEAN EXPRESSIONS

TABLE 6.2 OPERATIONS RESULTING IN BOOLEAN VALUES

Operator Example Explanation

=
<>
<
>
<=
>=
in

A=B True if A equals B
A<>B True if A not equal to B
A<B True if A less than B
A>B True if A greater than B
A<=B True if A less than or equal to B
A>=B True if A greater than or equal to B
Ain S True if A is a member of set S

Program Boole3;

Var
A, B : Integer; { inputs }
P : Boolean; { calculated output }

Begin
Write ('Enter A, B ') ;

Readln (A,B) ;

P := not ((A > B) or (B • A < 59)) ;

Writeln (P)

End.

67

When 10 and 5 are entered, the output (value of P) is False, but when 6 and
10 are entered, the output is True. How can this program be analyzed to dis­
cover exactly what is happening? The answer is to use a truth table to clarify
the expression.

inputs

A,B = 10, 5

A,B = 6, 10

P := Not ((A > B) or (B • A < 59)) ;

Truth Table For P

(A> B) (B • A< 59) or

True True True

False False False

not

False

True

The truth table shows the Boolean value obtained at each step of the evalua­
tion. First, (A>B) is evaluated, followed by (B • A<S9). ThenOR is computed
between the two subexpressions. The result is inverted by the Not operator to
obtain a value for P.

Try running this program on your Macintosh. Remember to enter 5 and 10
on the same line separated by at least one space. Alternately, 5 can be entered on
one line, followed by RETURN, and then 10 entered on the next line, followed
by RETURN.

68 CHOOSING IN PASCAL

The truth table format can be used in many instances to clarify a program.
The idea is simple, but because it is tabular, it makes comprehending a program
much easier.

IF Statements

Computers are powerful tools for making decisions because programs can be
written to take different actions depending on their input values. A computer­
controlled automobile is much more versatile if it can decide which road to travel
down on its own.

Programs decide which of several alternative actions to perform by evalu­
ating a Boolean expression and then selecting one instruction or another, but
not both. This is done using the IF statement in Pascal. Its form is shown in
Figure 6.1. IF, THEN, and ELSE are reserved keywords used to punctuate this
decision-making statement in Pascal.

Here is an example of an IF statement in Pascal:

IF P THEN
WriteLn ('P is True')

ELSE
WriteLn ('P is False') ;

Notice how IF P THEN is written on one line followed by the other part of
the statement. Macintosh Pascal will automatically adjust an IF statement, thus
forcing this format onto the statement. (Try entering it as one long sentence, all
on the same line. As soon as you enter the semicolon, Macintosh Pascal rewrites
it in this format.)

Pis a Boolean variable (True or False), so when this statement is executed
the decision whether to write 'Pis True' or 'Pis False' depends on the value of P
at this point in the program. If Pis True the THEN clause is performed; other­
wise the ELSE clause is performed.

Enter the following program into the Macintosh Pascal Program Window
and RUN-GO.

Boolean expression

~",,__t I)-----. J
~ statement t-------·

FIGURE6.1
The format of an IF statement.

-

-

-

-

-

-

IF STATEMENTS

Program Boole4;
Var

P: Boolean;
Begin

Readln (P);

If P Then

{ input }

Writeln ('P is True')

Else
Writeln ('P is False')

End.

69

Of course, if you enter ''True," the result is 'Pis True'; if you enter "False," the
response is 'Pis False'.

RUN-STEP

Now try the following alternate method of running this program. Pull down the
RUN menu and select STEP instead of GO. Notice the pointing finger just to
the left of the Begin keyword.

Select RUN-STEP a second time. The pointing finger will move to the
ReadLn (P) statement and wait there until you type in "True" or "False." Enter
"False" followed by return, and watch the pointing finger move to the IF
statement.

Watch very closely now as you RUN-STEP one more time. The pointing
finger will skip over the THEN clause entirely and point to the ELSE clause
(which contains "WriteLn ('Pis False')'').

Do RUN-STEP one more time and watch the Text Window. The message
'Pis False' appears in the Text Window and the pointing finger moves to the
End keyword. Your program has stepped through each statement, one at a time.

RUN-STEP is a very useful tool for debugging programs containing IF state­
ments. Since an IF statement introduces a certain element of uncertainty into
programming, you will often wonder which way a program has proceeded. RUN­
S TEP makes quite clear which branch of an IF statement is actually done, and
most importantly, which branch is ignored.

Puffing in STOPS

In a large program it may be tedious to work your way through the program
using RUN-STEP. Instead, you can place STOPS anywhere desired using the
STOPS-IN option under RUN.

Select RUN-STOPS IN and then examine the left-hand margin that ap­
pears in the Program Window. At the lower left corner a small stop sign appears,
indicating the availability of STOPS.

70 CHOOSING IN PASCAL

Move the mouse to the left-hand margin above the stop sign. The cursor
will change into a stop sign when the cursor crosses over into the left margin.
Move the stop sign next to the statement where you want the program to stop.
Now click the mouse, and a stop sign will be fixed there. The stop sign marks a
statement as the next statement to be executed after the program is resumed.
(You can go on inserting as many stop signs as you like by repeating these steps.)
Try this on Boole4 by moving a stop sign next to the IF statement.

Select RUN-GO and watch what happens. The program stops right before
the IF statement is to be done. Pull down RUN-GO a second time, and the pro­
gram resumes. This method should be used when you are not sure what a certain
program is doing but you suspect a particular statement is creating a problem.
Place a stop sign before and after the suspicious statement and RUN-GO several
times.

To remove the stop signs, select RUN-STOPS OUT. Be sure to make the
Program Window active before attempting to select RUN-STOPS OUT, since
the option will be dimmed if another window is active.

One-Legged IF Statements

If you follow the lines in the diagram of Figure 6.1 it is possible to ignore the
ELSE clause entirely. The line splits into two paths after the THEN clause. The
ELSE clause is optional, as shown in the next example.

IF P THEN
Writeln ('To Write or not to Write .. .') ;

This statement tests the value of P, and if P is True, the message 'To Write or not
to Write ... ' is displayed in the Text Window. If Pis False, the WriteLn state­
ment is skipped and the IF statement has no effect on the Text Window.

Compound IF Clause

The IF statement chooses between two statements: Either one or the other is
done, but not both. The THEN and ELSE clauses may be compound statements
enclosed in Begin-End keywords, as shown in the next example. This greatly
increases the power of IF statements because large portions of your program
can be enclosed in either THEN or ELSE branches.

IF AGE > 21 THEN
Begin

End

Writeln ('Greater than 21 ') ;
AGE := AGE + 1 {optional semicolon here}

{no semicolon here}

r-'l
' !

-
-

-

-

HANDS-ON EXAMPLE OF COMPOUND IF STATEMENTS

ELSE
Begin

End;

WriteLn ('Less than 22') ;
AGE := AGE + 2

71

{may not need semicolon here}

This example contains a compound statement in both branches of the IF
statement. Be careful where you place semicolons in an IF-THEN-ELSE state­
ment-do not put a semicolon before the ELSE keyword.

Hands-On Example of Compound
IF Statements

Enter the program shown in Figure 6.2 into Macintosh Pascal and select RUN­
GO. This program solves the quadratic equation

Ax2+Bx+C=O

for the values of x (roots) which satisfy the equation. Given A, B, and C, there
may be zero, one, or two solutions, and each solution may be either real or
imaginary. (Entering the values: 0 0 1 causes the program to fail. Why7)

When the prompt 'Enter A, B, C : 'appears in the Text Window enter
values: 121. Then press the return key. The following should appear:

REAL ROOTS
TWO ROOTS = -1.00 -1.00

Now select RUN-GO a second time and enter the three values: 1 1 1.

IMAGINARY ROOTS
TWO ROOTS = 0.37 -1.37

Finally, run the program and enter the three values: 0 2 1.

ONE ROOT = -0.50

The mathematical properties of this program are not important in this dis­
cussion. Instead, notice that this program illustrates a typical use of IF statements
to perform some statements and avoid others. For example, in the body of the
main program an IF A = 0 statement is used to decide whether to use the formula
for a simple root or two roots. Without the IF statement the program would not
work correctly for the case when A = 0.

The code for calculating the roots of a quadratic equation has a bug in it. It
fails when A = 0 and B = 0 because of an attempted division by zero. The bug can
be removed by inserting another IF statement inside of the IF A = 0 THEN
clause. Here is the modified section.

72

IF A= 0 THEN
Begin

IF B = 0 THEN
WriteLn ('No Solutions')

ELSE
Begin

X1 := (-C/B) ;

CHOOSING IN PASCAL

WriteLn ('One Root =', X1 :8:2)
End {Inner Then}

program If I;
var

End

ELSE

A, B, c : real; (Inputs}
x I, X2 : real; (Outputs)

{Outer Then}

function DISCRIM (A, B, C : real) : real; (Discriminant)
var
D : real; (Working Variable)

begin
D := B * B - 4 * A* C;
If D < 0 then
begin

WRITELN('IMAGINARY ROOTS');
DISCRIM := SORT(-0);

end (then)
else
begin

WRITELN('REAL ROOTS');
DISCRIM := SORT(D);

end; (Else)
end; (Dlscrlm)

procedure Calc...Roots (A, B, C : REAL;
var x I, X2: REAL);

var
Denom : real; [Working denominator)
Temp : real; (Working stlrf)

begin
Denom := 2 * A; (Denominator Is used twice)
Temp:= Dlscrlm(A, B, C);
XI :• (-B +Temp) I Denom;
X2 :'" (-B -Temp) I Denom;

end; (Calc...Roots)

RGURE6.2
Program IF1 solves AX2 +BX= C + 0.

119111

i I

- MULTIWAY BRANCHING

begin (Body }
Wrlte('Enter A,B,C: ');
Readln(A, B, C); (Get ~"2 + Bx + C = 0)
If A= 0 then
begin

XI :=(-CI Bl;
Wrlteln('One Root=', XI : 8: 2);

end (then}
else
begin

Calc....Roots(A, B, C, XI, X2);
Wrlteln('Two roots •', XI : 8: 2, X2: 8: 2);

end
end.

FIGURE 6.2 (continued)

73

This example illustrates a very subtle difficulty in Pascal. The IF B = 0 THEN
statement is nested within the IF A = 0 THEN statement. One IF statement is in­
side of another IF statement. How does Pascal know which IF and ELSE clause to
match up? The rule is easy to remember if you keep in mind that the IF state­
ments are nested. Hence, the innermost ELSE clause is matched with the inner­
most IF statement, and so on.

If an inner-nested IF statement does not have an ELSE clause, then the rule
for nested IF-THEN statements must be strictly obeyed. Remember that a "state­
ment" can be another IF statement, and so on, up to any level of nesting.

Nested Ifs: One IF statement may be nested within another IF statement for
as many levels as desired. The rule concerning matching ELSE
clauses with IF statements must be strictly obeyed. Innermost
ELSE clauses go with innermost IFs, and so on, until all levels of
Ifs have been paired with their ELSE clause.

Multiway Branching

Nested IF statements become a necessary evil whenever your program must
choose between three or more alternate paths. For example, suppose you want
to write a procedure which categorizes people according to the first letter of their

74 CHOOSING IN PASCAL

last names. All people whose last name starts with the letters A through E are
placed in one category, F through Jin a second category, and so forth, according
to the table below.

Last Category

A-E 'Tigers'
F-J 'Lions'
K-0 'Panthers'
P-T 'Leopards'
u-z 'Sabres'

This problem can be solved in several different ways. The most general
solution is to use nested IF statements as shown in Figure 6.3. The nested Ifs
are each tested, one at a time, as follows (RUN-STEP the program and watch
what happens):

(Last >= 'A') and (Last <= 'E')
(Last >= 'F') and (Last <= 'J')

(Last >= 'U') and (Last <= 'Z')

When a Boolean expression evaluates to True, the corresponding THEN clause
is executed. After the corresponding THEN clause is executed, control skips
over the remaining Ifs. The outermost IF statement is terminated as soon as
one of the Boolean expressions evaluates to True. This is clearly shown by the
pointing finger when the program of Figure 6.3 is RUN-STEP for Last = 'Q'.

C:ase Statentent

A better method of multiway branching may be possible if the values being
tested are simple ordinal types (integer, Boolean, char) and the test conditions
are uncomplicated. The case statement format is shown in Figure 6.4

The problem of categorizing people by the first letter of their last name
can be solved using a case statement as shown in Program IF3 of Figure 6.5.
RUN-STEP this program with Last= 'M'. Notice how the pointing finger skips
over all case clauses except the one containing 'M' as a constant.

The case expression (Last) is called a selector, and the clauses are called case
clauses. Each clause may contain a single statement, but of course, that statement
can be a compound Begin-End statement made of additional nested statements.

r

'"""

i-i

-

-

CASE STATEMENT

FIGURE6.3

program IF2;
var

Last : char; (Input)
begin

Wrlte('Enter Letter:');
Readln(Last>;
If (Last >= • A') and (Last <11 'E') then
wrlteln('Tlgers')

else If (Last >= 'F') and (Last <= 'J) then
wrlteln('Llons')

else If (Last>• 'K') and (Last<= 'O') then
wrl te ln('Panthers')

else If (Last>= 'P') and (Last<= 'T') then
wrtteln('Leopards')

else If (Last>= 'U') and (Last<• 'Z') then
wrlteln('Sabres')

else
wrlteln('Em>r In Input')

end.

Program IF2 has six-way branching.

ordinal expression

ordinal constant statement

otherwise statement

FIGURE6.4
Format of case statement.

75

76

FIGURE6.5

program IF3;
var
Last : char; (Input)

begin
Write('Enter Letter: ');
Readln(Last);
Ir (Last>= 'A') and (Last <:a 'Z') then
case Last or

'A', ·e·, ·c, ·o·, ·e·:
Writeln(' Tigers ');

'F', 'G', 'H', 'I', 'J:
Wrl te ln('L tons');

'K', 'L', 'M', 'N', 'O':
Wrlteln('Panthers');

·p·, ·a·, 'R', ·s·, ·r·:
Write ln('Loepards');

'll, ·v, ·w, 'X', Y, ·z·:
Wri le ln('5abres');

end (Case}
else
wrlteln('Em>r In Input')

end.

Program IF3 has a five-way case statement.

CHOOSING IN PASCAL

If the selection in Figure 6.5 fails to match one of the constants, an error oc­
curs. This is why Program IF3 of Figure 6.5 has an IF statement around the case
statement. The IF statement diverts bad inputs away from the case statement.

Suppose the IF statement was removed from the program in Figure 6.5.
To do this, delete the IF-THEN and corresponding ELSE WriteLn () statements.
Now, RUN-STEP the program with lowercase 'a' as input.

This shows what happens when there is no corresponding case clause to
match the selector. A thumbs-down sign indicates approximately where the
search for a matching constant fails. Macintosh Pascal has an extended case state­
ment as shown in the Figure 6.4 diagram. When an OTHERWISE clause exists
and no matching clause is found while the Case is being executed, the OTHER­
WISE clause is executed.

Case statements have limited utility in Pascal programs, but when it is
possible to use them, they increase clarity and simplicity. When it is not possible
to use a case statement, use the nested IF-THEN-ELSE construction discussed
earlier.

""'1
I

,..,
i

~
I

:1
I '
I

l"'lll

-
-

-

A HANDS-ON EXAMPLE 77

Case Statements: A case statement consists of a selector and one or more
clauses to be selected. If no match is located among the
clauses (and there is no OTHERWISE clause), the case
statement is undefined and an error occurs. Every clause
must be uniquely identified with a constant, or a list of
constants separated by commas, or else the OTHERWISE
clause must be included once. Only integer, char, and
Boolean constants are allowed (exclude Real); therefore
only integer, char, Boolean, and non-real type selector
expressions are allowed.

A Hands-On Example

Enter the program of Figure 6.5 into Macintosh Pascal and RUN-STEP it with
the following inputs.

Input Result

A Tigers
z Sabres
a Error in Input

Why do you suppose the 'Error in Input' message occurred? How would you
change the program so that upper- and lower-case letters are treated alike?

Modify the first clause so that it looks as follows:

'a', 'A', 'B', 'C', 'D', 'E' :

Now change the IF statement by replacing 'Z' with 'z'. RUN-GO the modified
program. Does it display 'Tigers'? This experiment should suggest how you
might modify the program to handle upper-case and lower-case letters alike.

Now change the first clause so that' a' is 'aa' instead. RUN-GO the program
and observe the error message.

TYPE UNKNOWN OR NOT IMPLEMENTED

You will most likely see this error message frequently when first using the case
statement. A subtle error that you should remember occurs whenever a blank
space is accidentally inserted between the letter and the single quotation mark:
'a'. Check all constants to make sure there are no embedded spaces.

78 CHOOSING IN PASCAL

The Observe Window

Now pull down the WINDOWS menu and select OBSERVE. The Observe
Window will appear with the prompt:

Enter an expression

The blinking cursor indicates that you can enter any expression you want to
watch while your program executes. Enter Last and press RETURN.

Select RUN-STEP and watch the value of Last in the Observe Window
take on the value entered at the keyboard. After several RUN-STEPs enter the
two letters PU followed by RETURN. Last becomes 'P' (the "U" is discarded).

RUN-STEP through the remainder of the program. The value of Last
remains the same all the way through the program. Finally, Last becomes un­
defined when the program terminates.

Load one of the earlier programs and select WINDOW-OBSERVE. Watch
the values of selected variables change as you RUN-STEP through the program.
This technique is a very valuable method of locating bugs in new programs.

Summary

This has been a rather long session devoted to a difficult part of programming.
Branches and Boolean logic account for five times as many errors in programs
as other statement types. You should be very careful about how you use Boolean
variables and twice as careful about IF statements.

It will take practice and frequent use of the Observe Window before you
will become comfortable with IF statements. Fortunately, you will get a lot of
practice in subsequent sessions.

Problem Solving

1. Modify the program of Figure 6.5 so that it recognizes upper- and
lower-case letters of the alphabet.

2. Use a Begin-End compound statement to add the following WriteLn
between the IF and case statements of Figure 6.5

Writeln ('I am looking .. .') ;

What does this say about the IF statement format?

'1
' I

i-'I
' I

i-,
!

i-'I
I

-

-

- PROBLEM SOLVING

-

-
-
-

-

79

3. A clever way to change a lower-case letter into an upper-case letter is
to subtract 32 from its ASCII code. This is done as follows for Last :
char; .

If Last >= 'Z' Then
Last := Chr (Ord(Last) - 32) ;

Use this trick to improve the program in Figure 6.5.

4. Rewrite the program of Figure 6.3 to make it a procedure. Now write
a main program which uses this procedure to categorize a person's first
and last initials. Your program must call the procedure twice: once for
each initial.

5. Write a program that does the following given the value of input vari­
able NUMBER : integer; .

NUMBER
1or2
3
5
7
11
13

Action
WriteLn ('No way!')
Add 1 to NUMBER and show it
Add 1 to NUMBER and show it
Subtract 1 from NUMBER and show it
Subtract 1 from NUMBER and show it
Add 1 to NUMBER and show it

All other numbers cause an error message, 'Wrong Input; to be
displayed.

6. Write a program that does the following given the value of input vari­
able NUMBER : Real.

NUMBER

1.414
between O and 1
between 1.415 and 2.25

Action

WriteLn ('Square root of 2')
WriteLn ('Zero')
WriteLn ('Greater than two')

Explain why Case cannot be used to solve this problem.

7. One tick of a clock means that one second has elapsed. Write a pro­
cedure called Tick (H,M,S) which adds one to S (seconds), and updates
M (minutes) and H (hours) whenever the minutes and hours change.

80 CHOOSING IN PASCAL

Your procedure returns H, M, and S; hence, these must be declared as
Var parameters.

The main program will accept H, M, and S as inputs; call Tick
(H,M,S); and then output H,M,S.

Your code will look something like the following:

s := s + 1; {one second tick}
If S > 59 Then

Begin
S := O;
M := M + 1;
If M > 59 then

Begin
M := O;
H:=H+1
If H > 23 Then { ... etc ... }

i-i
I

i-,
I

-
-

Session 7:

Iteration Using While, Repeat,
and For

In this session you will learn how to write sections of Pascal programs that are repeated. A
statement is said to be in a loop if it is executed repeatedly. Pascal has three kinds of looping
statements: While, Repeat, and For. All three will be examined in this session.

Algorithms

Muhammad al-Khwarizmi (780-850 A.O.) was an Arab mathematician whose
writings are perhaps most responsible for converting the Western world from
the cumbersome Roman numeral system to the efficient decimal system we use
today. Not only is he regarded as the father of algebra, but the word algorithm is
derived from his name, as well.

An algorithm is a mechanical procedure for doing a calculation. Computer
scientists study what can and cannot be computed by an algorithmic process.
They have discovered that everything which is computable can be computed by
means of three actions: sequence, choice, and iteration. An algorithm is, simply
stated, a recipe composed of three ingredients: sequence, choices, and iterations.

Iteration

You have already been introduced to sequences and choices. In this session you
will learn how to use iteration in a Pascal algorithm. Iteration is the process of

81

82 ITERATION USING WHILE, REPEAT, AND FOR

repeating one or more actions. It is sometimes called looping by programmers to
refer to the process of branching back to an earlier statement within the program.

A loop has two components: a body of statements which are repeated and a con­
dition which determines when the loop is to terminate. When a loop terminates,
the statement immediately following the loop body is executed. The loop condition
is a Boolean expression or loop counter which causes the loop to terminate at the
proper time. .

Of course, it is possible to accidentally write a looping program which
never terminates. This is called an infinite loop, and it should be avoided (infinite
loops terminate at the end of forever).

While Loops

The simplest loop in Pascal is called the While loop because it is implemented by
writing a While statement as shown in Figure 7.1 and below:

where:

While P Do
S;

P is a Boolean expression which evaluates to either True or False (the condition part).
S is a simple or compound statement (the body) to be iterated. A compound state­

ment S may contain any other statements between a Begin-End pair, assignment,
if, and even other While statements.

The While loop works as follows:

1. The Boolean expression P is evaluated.

2. If P is False, the body is skipped and the program goes on to the next
statement following the body of the loop.

3. If Pis True the body is executed.

4. After the body has executed, the While loop is executed again, starting
with step 1, above.

Suppose, for example, you want to total 10 numbers as they are entered
from the keyboard. Assume "SUM", "NUM" and "I" are integers and the follow­
ing section of Pascal code is properly embedded within a complete Pascal program:

I := O;
SUM:= O;

While (I <= 10) DO
begin

ReadLn (NUM) ;
SUM := SUM + NUM;
I I + 1

end; {while}

{loop counter and sum}
{initialized, equal to zero}

{check loop condition}

{keyboard entry}
{add to running total}
{count how many times}

WHILE LOOPS 83

Boolean expression

statement

FIGURE7.1
While loop syntax diagram.

This program section illustrates several important points:

1. The loop termination condition is a Boolean expression. When I<= 10
is not True, the loop will terminate.

2. The loop body is a compound Begin-End statement, which in tum con­
tains three other statements.

3. The variables "I" and "SUM" must be initialized before the While loop
and incremented during the loop (in the body). In the case of variable
"I", the loop condition is changed each time "I" is incremented. "I" is
used to test the loop termination condition before the loop body is exe­
cuted. It is possible for the body to not be executed at all since the condition
part is tested first.

4. The value of "I" corresponds to the number of times the loop body has
been executed. Hence, "I" is sometimes called the loop counter.

Using a While loop requires you to force a certain condition to be False in
order to terminate the loop. For example, a While loop was used to finally force
(I<= 10) to be False, terminating the iteration, in the example above.

It is awkward to think in terms of negatives such as "when (I < = 10) not
True", so another form of loop is available in Pascal. The Repeat-Until loop (con­
versely) forces the termination condition to be True.

repeat

statement

Boolean expression

RGURE7.2
Repeat loop syntax diagram.

84 ITERATION USING WHILE, REPEAT, AND FOR

Repeat Loops

A Repeat-Until loop consists of a loop and a loop condition just like the While loop,
but the loop condition is tested at the end of the body instead (see Figure 7.2).
This means that the loop body is always executed at least once.

Repeat
S1;
S2;

Sn
Until P;

You should notice immediately the differences between While and Repeat loops.
First, the Repeat loop body may contain one or more statements without resort­
ing to a nested Begin-End compound statement. The statements SI; S2; ... Sn
may be assignment, While, Repeat, If, or any valid Pascal statement.

The second big difference between a Repeat and While loop is the place­
ment of the loop condition. The Boolean expression P is tested after the body is
terminated only when Pis True. Here are steps in executing a Repeat-Until loop.

1. Execute the body of the loop. This includes all statements between the
reserved keywords Repeat and Until.

2. Test P; if it is False, repeat from step 1. If Pis True, the loop termi­
nates and control passes on to the next statement following the key­
word Until.

Here is an example in which the loop condition forces a user to enter the
proper value into a running program:

Repeat
Write ('Enter a number between O and 10: ') ;
Readln (NUM)

Until (NUM <= 0) and (NUM <= 10) ;

The only way the user can continue is to obey the prompt and enter a
·number between zero and ten. The loop condition becomes True when the
entered value is "between zero and ten."

It is important to use parentheses as shown in this example, because Pascal
cannot understand an ambiguous Boolean expression. Always use plenty of
parentheses when writing potentially ambiguous expressions.

,..,
I

'i

FOR LOOPS 85

for Loops

In a few situations a third possibility arises where it is not convenient to use a
loop condition to terminate the loop. Instead, a loop counter is preferred. The For
loop is used in this case (see Figure 7.3). Notice that the keyword "To" may be
replaced with "Downto," which is used in a loop that counts down from a larger
starting value to a smaller stopping value.

For I := LSTART To LSTOP Do
S;

"I" must be an ordinal type; LSTART and LSTOP must evaluate to an
ordinal value. This means I, LST ART, and LSTOP can be integers, characters,
and scalars (to be discussed later).

Here is how the For loop works.

1. The loop counter "I" is initially assigned the value of LSTART.
LSTART may be an expression; if it is, the expression is evaluated
and then its value is assigned to "I".

2. The loop counter "I" is compared with the terminal value LSTOP.
LSTOP could be an expression; if so, the expression is evaluated and
compared with "I".

3. If "I" exceeds LSTOP, the loop body Sis skipped and the statement
following S is executed, instead.

4. If "I" does not exceed LS TOP, the loop body S is executed. S may be a
single statement or a compound Begin-End statement.

5. The loop counter is incremented by 1 (To) or by-1 (Downto). Then, con-
trol goes back to the For statement and steps 2 through 5 are repeated.

6. "I", LST ART, and LSTOP must be of the same type.

7. The value of "I" must not be changed or modified inside the loop body.

8. "I" is considered undefined outside of the loop.

9. If LSTART is greater than LSTOP, the loop is not executed at all.

The following For loop and While loop statements do exactly the same
thing:

For I := 1 To 10 Do
S;

I := 1;
While I <= 10 Do

begin
S;
I := I + 1

end;

86

0 c:

~
1:J

c:
0
'iii
~
c.
x
GI

:E
"'

....
GI
~ ·;;
c:
GI

:!:!

ITERATION USING WHILE, REPEAT, AND FOR
r

-

-

HANDS-ON LOOPING EXAMPLE 87

Here is still another way to accomplish this exact same thing:

For I := 10 Downto 1 Do I := 10;
S; While I >= 1 Do

begin
S;
I := I - 1

end;

As you can see, the For loop is more direct and concise than the equivalent
While loop in this case. The For loop is only appropriate when a loop counter is
used, however. The For loop is not as general as a While or Repeat loop.

Hands-On Looping Example

Start up Macintosh Pascal and enter the procedure shown in Figure 7.4. This
procedure can be executed by editing the following statements into the Program
Window text:

1. Add a program heading:

Program MAIN;

2. Add A VG to the Declaration Part, following the header:

Var
AVG: Real; {actual parameter}

3. Add a program body containing the call to CALC _A VG, as follows:

Begin {MAIN}
CALC__AVG (AVG);
Writeln ('AVG = ' , AVG :12:3)

End. {MAIN}

4. RUN-GO.

Try this example with a few numbers. The average value should appear in the
Text Window. What happens when you try to enter a negative zero value for N?

Now select WINDOWS-OBSERVE and enter the name AVG into the first
cell of the Observe Window. Keep this window and the Text Window visible
while you RUN-STEP-STEP your program. You may want to close the Pro­
gram Window to make room for everything on the screen. Now watch as A VG
changes values. Does this explain what the procedure does?

Add the variable "I" to the next cell in the Observe Window. RUN-STEP­
STEP again and watch what happens to the value of "I". Clearly, the Observe
Window is a valuable debugging aid for "watching" loops while they execute.

88

FIGURE7.4

ITERATION USING WHILE, REPEAT, AND FOR

procedure CAL~VG (var AVG: real);
var

I, N: Integer; (loop counter and upper limit)
Nlt1: real; (Input numbers to be averaged}

begin
repeat

Wrlte('Enter number of numbers(N>O)');
Readln(N);

unt 11 (N > 0); (repeat}
AVG:= 0.0;
for I := I to N do (N>O}
begin

Write('Enter a number');
Readln(Nlt1);
AVG:= AVG+ Nlt1 (accumulate running total}

end; (for}
AVG:= AVG IN; (N>O}

end; (CALLAVG}

Procedure CALC-AVG.

Summary

The three loop statements in Pascal are While, Repeat-Until, and For. The For
loop is limited to counting the number of times its body (compound statement)
is repeated. The repeat statement to open always executes at least onte, and
the While statement is used when the test is to be done before the loop is entered.

You should use the Repeat and While loops to force a certain condition to
be True or False. The condition then becomes the loop condition. The While loop
condition must be able to eventually become False, and the Repeat loop condition
must be able to eventually become True.

Problem Solving

1. Fire up your Macintosh Pascal and enter the following program frag­
ments (you will have to add other statements to complete the program
in each case). What do these loops do?

a. P := 1.0;

For I := 1 To 5 Do
p := p * I;

-

-

-

PROBLEM SOLVING 89

b. For I := 1 To 39 Do
Writeln (2 * I, 2 * I - 1) ;

c. For I := 1 To 10 Do
Writeln (I * I) ;

d. Repeat
Readln (Ch) ; {Ch: char}
Writeln (Ord (Ch) - Ord ('A'))

Until Ch =' '; {blank}

e. While X < > Y DO {X, Y: Integer}

If X < Y Then
y := y - x

Else
x := x - y

2. Under what conditions (values of A and B) will this loop never
terminate?

While A<> B DO
begin

A:= A+ 1;
B := B - 1

end; {While}

3. Under what conditions (values of A and B) will this loop never
terminate?

Repeat
A:= A+ 1

Until A> B;

4. Write a procedure called RAISE which raises a real number X to a
power of P where Pis an integer. The procedure heading is:

Procedure RAISE (X : Real; P : Integer; Var RESULT : Real) ;

5. Write a procedure called GUESS containing the constant ANSWER =
67, which does the following:

a. Loops until the user correctly guesses the value of ANSWER.
b. Prompts the user to enter an integer.
c. Tells the user to guess again (a higher or lower number) if the

wrong value is entered.
d. Tells the user how many guesses were required to correctly guess

the value of ANSWER.

Your procedure should have a While or Repeat loop with an
appropriate loop termination condition in it. Incorporate GUESS in a
program and try it on a friend.

-

-

-

Session 8:

The Type Statement

In this session you will learn how to create your own data types in Pascal and to put these new
types in the data declaration part of a program, procedure, or function using the type statement.

The Notion of Data Types

Charles Babbage is known as the father of computing; in the mid-1800s he in­
vented several mechanical "engines" capable of automatic operation under the
guidance of a program punched into wooden cards. Babbage was an advanced
thinker highly critical of the British scientific community. He spent many years
of his life attempting to build the "analytic engine," but unfortunately it was
never constructed.

The program of the "analytic engine" was to have been encoded in punched
cards of different colors: white for addition, yellow for subtraction, blue for
multiplication, and green for division. This scheme would allow Babbage to
check the number of operations actually performed against the number of cards
of each color.

Babbage had so many ideas which closely match the ideas used in modern
computing that he is credited with being the first computer scientist even
though his ideas were not put to work for 100 years. The idea of color-coding
punched cards, for example, is similar to the concept of "types" in computing.

91

92 THE TYPE STATEMENT

We have previously defined a type as a set of values. Now we can refine
this notion since you have experienced several different data types and the legal
operations permitted on them.

Type: The set of objects and all of the permissible operations that may be
performed on objects of the given type.

The set of objects called integers is actually a set of values and a set of opera­
tions. For example, the integer operators div and mod only work with integers.
Therefore, div, mod,+,-,=, ord, chr, and so forth are the only permissible opera­
tions on integers. Try writing a Pascal program with two real variables X and Y,
and apply the mod operation on them.

X mod Y;

This will result in a bug dialog which tells you this operation cannot be per­
formed on variables of this type.

On occasion, Pascal violates its own strict rules concerning mixing types
and their operators. For example, integers I and J are coerced when the real
division operator is applied to them.

I I J;

The advantage of this exception is that it allows you to be a bit careless,
and it makes Macintosh Pascal take care of the details of type conversion. The
disadvantage, of course, is the confusion and sometimes the errors that mixing
types like this causes.

In general, relaxing strict typing in Pascal is acceptable and beneficial. But
be careful not to be led into run-time errors when bending the rules.

The Type Statement

One of the most elegant features of Pascal is its ability to accept programmer­
defined types. This is done with a type statement, which optionally goes after the
Const statement, but before the Var statement. The form of a type statement is
shown below (and in Figure 8.1):

Type
id1 = type;
id2 =type;

"

idn = type;

-

,,-ii
I

SUBRANGE TYPES 93

~ 8 ldontlfi~ f+0-+I iypo ~
FIGUREB.1
Type statement syntax diagram.

where:

Id is an identifier which is the name of the type.
type is the set of values (and operators) associated with the id.

Here is an example of a type statement:

Type
PAYMENTS = Real;
CODE_LETTER = Char ;
AGE = Integer;

The identifiers PAYMENTS, CODE_LETTER, and AGE are the names of
types, not variables. AGE can be used to declare the type of a variable in a Var
statement, for instance:

Var
X, Y, Z, : AGE; {new type}

As you can see, the new type called AGE more fully describes what X, Y,
and Z really represent. While this enhances the readability of any Pascal pro­
gram, the power and convenience of establishing your own types goes far be­
yond mere substitution for integers, real, and char.

Subrange Types

A subrange type is a subset of a type. Often it is a good idea to restrict the set of
characters or integers to a smaller collection of values. When this is done, we
say the new subset is a subrange of the base type. The values that a variable
potentially represents belong to that variable's base type. The base type must be

94 THE TYPE STATEMENT

an ordinal type (a set whose members can be counted in whole numbers-integer,
char, Boolean, and some user-defined types-reals are obviously excluded).

Type

Var

AGE = 0 .. 99;
WEIGHT = 0 .. 399

PERSON : AGE;

{restricted integer}
{restricted integer}

{type is applied here}

This illustrates how the type statement is used to create two new types: AGE
and WEIGHT (each of which is based on the set of integers). They are restricted,
however, to the integers from 0 to 99 (AGE) and 0 to 399 (WEIGHT).

A subrange is designated by the two periods (..) between its lower value
and the upper value. Pascal will not allow any values outside these value limits
to be stored in variables of a restricted type. To observe this, warm up your
Macintosh Pascal and attempt the following hands-on exercises.

Hands-On Experiments with New Types

Enter the following miniature program and RUN-GO

Program MAIN;

Const
N = 10;

Type
I = 0 .. N; {constants allowed}

Var
L TEST : I; {new type}

Begin
LTEST := 11; {won't work}

End. {MAIN}

Notice what happens because L TEST exceeds its allowed collection of
values. This bug message may appear unexpectedly someday when you are run­
ning a debugged program. It shows how serious Pascal is about type checking.

A type is like a template or house plan which tells Pascal variables what
values they can accept and what operations are permitted. To see the effect of
changing the base type, modify the sample program as follows:

1. Replace the definition of "I" in the type statement with this new
definition:

I= Real; {base type is real}

This causes L TEST to change from an integer to a real. Now RUN-GO
and see what happens. Obviously, the 11 has been converted to 11.0
and stored in LTEST.

-

-
HANDS-ON EXPERIMENTS WITH NEW TYPES 95

2. Replace the entire type statement with the following more complex
statement:

Type
COLORS = Integer;
SHADES = Char;
HUES = COLORS;
I = 0 .. N; {same as before}

3. Add the following variables to the list of variables in the Var statement:

HUE : HUES;
SHADE : SHADES;

4. Finally, add these executable statements to the body of the program
and select RUN-GO.

HUE := I + HUE;
SHADE:= I;

Here again, the first assignment statement works because the base
types of I and HUE are the same, even though they are different types.
The"+" operator works on integers regardless of their restrictions.

The second assignment statement fails, however, because the
base types are incompatible. SHADE is a character (char) and I is an
integer.

Notice the transitive type relationship of HUE. HUE is of type HUES; HUES
is of type COLORS; and COLORS is of type Integer. Any type can be defined in
terms of previously defined types. The order of definitions is critically important,
however, because a type must be defined before it can be used. Try to rearrange
the types as follows and see what happens when you select RUN-GO.

Type
HUE = COLORS;
COLORS = lnterger;
SHADES = Char;
I = 0 .. N;

As a final experiment, change the type declaration of SHADES to a restricted
set of characters and observe the results.

SHADES = 'a' . .'z'; {lower case only}

Characters can be restricted to a subset of all keyboard characters in the same
manner as integers are restricted to a subset of all allowable whole numbers.

Examples of Subrange Types

The subrange type mechanism is very important in Pascal because it improves
the readability, reliability, and maintainability of your programs. Because of

96 THE TYPE STATEMENT

these "abilities," we want to encourage you to use the subrange mechanism as
much as possible. Here is a list of useful subrange types to give you some ideas
of your own.

Type
CARDS = 1 .. 52;
WEEKS = 1 .. 52;
DAYS = 1 .. 31;
HOURS = 1 .. 24;
MINUTES = 0 .. 59;
YEARS = 1984 .. 2001;
INCHES = 0 .. 11;
FEET = 0 .. 2;
UPPERS = 'A' .. 'Z';
DIGITS = 0 .. '9';

{deck of playing cards}
{weeks in a year}
{days in longest month}
{24 hours per day}
{60 min per hour}
{rest of century}
{12 inches per foot}
{3 feet per yard}
{upper case letters}
{numerals}

Remember that subrange types must be restricted to ordinals. Hence, you can­
not restrict real values to a subrange. Both positive and negative bounds may be
used; the operators which apply to the base type also apply to the subrange type.

Summary

A type is a set of values and a set of operators. The ordinal types may be restricted
to subranges using the" .. "notation in either a type or a Var statement. For
example,

Var
CAT: 0 .. 2;

is valid, as well as,

Type
CATS= 0 .. 2;

Var
CAT: CATS;

The difference is that CA TS becomes a reusable type in the second illustration
and can be used in subsequent definitions.

Most types cannot be mixed in an expression (don't "add feet to inches"),
but several exceptions are permitted in Pascal.

Integers may be coerced by the real operators" I " and" := ". Furthermore,
integer values can be entered into real variables without harm using the ReadLn
procedure. You should be careful about using mixed types, however, because
they may be the source of bugs.

-

-

-
-

PROBLEM SOLVING 97

Madntosh Pascal Types

There are four standard ordinal types in Macintosh Pascal. Notice that Longlnt
is nonstandard.

Integer
longlnt
char
Boolean

is -32,768 .. +32,767.
is -2,147,483,648 .. +2,147,483,647.
is "any keyboard character."
is False .. True.

There are four real types in Macintosh Pascal. Extended, Double, and
Computational are nonstandard.

real is ±1.5e-45 to ±3.4e+38 (7 digits).
double
extended
computational

is ±5.0e-324 to ±1.7e+308 (15 digits).
is ±1.9e-4951 to ±1.1e+4932 (19 digits).
is a fixed-point real number where the exponent is always zero (19
digits).

In addition, see the description of the SANE library in Appendix D of the
Macintosh Pascal Reference Manual from Apple Computer Corp.

There are six other structured types which will be discussed in later sessions.

array
set
file
record
string
pointer

is an object with many values of the same type.
is a set of ordinals.
is a disk file or device such as the printer.
is an object with many mixed-type values.
is textual data-an ordered sequence of chars.
is an address of one or more objects.

The type statement is very powerful when combined with more sophisti­
cated data types. In future sessions, we will expand on this idea to build powerful
data structures.

Problem Solving

1. Use the two types below in a procedure for adding two lengths to­
gether, measured in feet and inches.

Type
FEET = Integer;
INCHES = 0 .. 11;

98 THE TYPE STATEMENT

Var
Feet1 , Feet2 : Feets;
ln1, ln2 : Inches;

(Note: Pascal doesn't differentiate between upper- and lower-case
identifiers, so FEETS and Feets name the same object.)

Your procedure should accept Feetl, Feet2, Inl, and In2 as in­
puts; calculate the SUM of Feetl, lnl; Feet2, In2 (converted to feet and
inches); and return the sum in variables Feet2 and ln2.

[Hint: be wary of exceeding 11 inches since INCHES = 0 .. 11.
This can be avoided by checking the sum before it is stored in a vari­
able of type INCHES.]

2. A cubic yard of sand is 27 cubic feet. Let Cubic_ Yds and Cubic_Fts be
types; CYDS and CFTS be variables.

Type

Var

Cubic_Fts = Real;
Cubic_ Yds = Real;

CYDS : Cubic_Fts;
CFTS : Cubic_ Yds;

Write a procedure called CONVERT_ TQ_FT which converts cubic
yards into cubic feet. Use the types and Vars given here.

3. Using the following Types, write a procedure called TIC_ TOC that
advances a hypothetical clock by one second of time each time it is called.

Type
HOURS = 0 .. 23;
MINS = 0 .. 59;
SECS = 0 .. 59;

The procedure takes the current time as inputs and returns the cur­
rent time, plus one second.

Procedure TIC_ TOG (Var HR : HOURS;
Var MIN : MINS; Var SEC : SECS);

4. Suggest types for the following:
a. Test scores as a percent.
b. Number of students in a class.
c. Number of squares in a checkerboard.
d. Number of months in a year.
e. The years from 100 BC to 2000 AD.
f. A person's initials (first and last).
g. The amount of an employee's hourly pay.
h. A person's weight to the nearest tenth of a pound.
i. The number of suits in a deck of playing cards.
j. The number of dots on a gambler's die.

-
-

-

Session 9:

Text Files and Printer Output

In this session you will learn how to write text to a disk file, read it back, and write text to the
printer from a running Pascal program. In addition, you will learn about sequential files; how to
open and close them, and how to use many of the elementary file functions and procedures built into
Macintosh Pascal.

What Is a file?

Herman Hollerith was responsible for inventing the first machine for auto­
matically processing huge quantities of information. In 1880 his tabulating
machines were used to help count the number of people living in the United
States, and later his company became International Business Machines. Because
of Hollerith we have punched cards which are exactly the same size as a dollar
bill, and 80-column printers (IBM discontinued using punched cards in 1984).

Hollerith's idea was simple, yet brilliant. Each person's census data was
punched on an 80-column card. The millions of cards were stored in filing cabi­
net drawers so the census bureau could easily handle them, look up informa­
tion, and store the data for long periods of time. This way of organizing large
amounts of information is still used today in what we call data files.

Throughout this session you will be introduced to many new terms, but
the notion of a data file is very simple. Think of a data file as a cabinet drawer
full of cards. Each card is a file record, and the information punched into each
column merely a single character per column.

99

100 TEXT FILES AND PRINTER OUTPUT

Inside your Macintosh are programs for opening, closing, and reading
through a file in a manner quite like opening, closing, and reading a drawer full
of punched cards. The trick is to learn the names of the file system programs,
how they are used in Macintosh Pascal, and then how to put them together so
you can do useful file processing.

A file is simply a region on diskette which has a name and other informa­
tion associated with it. (Use FILE-GET INFO to see this information.) Each file
is divided into units of storage called file records. File records should not be con­
fused with the record structure discussed in a later session.

Figure 9.l(a) illustrates the logical structure of a file. Records are num­
bered from zero to LAST; files can be up to 2,147,483,647 records in length.
The last record is followed by a special end-of-file marker called EOF. A pro­
gram cannot read beyond the EOF marker.

Kinds of Files

One way to classify Pascal files is by how they are processed. In a sequential file,
records are processed in order, one after the other. Record zero is processed
first, then record one, two, ... until all records have been processed.

Alternately, a random access file processes records in an arbitrary (random)
order. The second record may be processed, then the first, then the last, and so
forth. Random files are sometimes called direct files. We will discuss only sequen­
tial file processing in this session.

There are two basic file structures in Pascal: text and typed. A text file may
contain any kind of information (perhaps purely numerical information or a mix­
ture of numbers and characters). We will discuss only text files in this session.

A text file must be processed sequentially; therefore a text file is also a
sequential file. The records of a text file are strings of (possibly) varying length,

File named F

Record 0 Record 1 Record last End-of.file

(a) Sequential file

Text file named FX

String 0 EOLN String 1 EOLN ... String N EOLN EOF

(b) Text file

FIGURE9.1
Logical structure of a file.

,...

-

-

-
-

-

-

-
-

OPENING A FILE 101

terminated by an EOLN (end-of-line) marker. The EOLN marker is the carriage
return character produced by pressing the return key. The structure of a text
file is shown in Figure 9.l(b).

Declaring a Text File

A text file is declared in the data declaration part by simply listing its internal
name in the Var statement.

Var
F : Text; {file of strings}

This declaration causes Pascal to reserve main memory for a single record.
Thus, when a file is read into main memory only one record at a time is copied
from diskette to F. Similarly, when a file is written to a diskette only one record
at a time is copied from F to the diskette.

There is a difference between the name of the file within a running Pascal
program and the name used to refer to the file on the diskette. The diskette
stores a list of filenames (and their icons) on the diskette itself, but Pascal keeps a
different name within main memory while running a program. In this example,
F is the name kept in main memory by the Pascal program. F is called the internal
file name, and the name kept on the diskette is called the external file name. It is very
important to know the difference between an internal and external file name.

Opening a File

A file must be opened before it can be read or written. An Open procedure associ­
ates the internal file name with the external diskette name. There are two Open
procedures for sequential files:

reset
rewrite

Open an existing file for reading data into main memory.
Open a new file for writing from main memory to diskette; if the file
already exists it is erased and new data are written over the old data.

Two parameters are needed to open a file using either one of these two
procedures. The first parameter is the internal name of the file; the second is
the external name (or string variable containing the name) given in the diskette
directory.

Typically, a program must use a variable to hold the file records as they are
copied in and out of main memory and another variable to hold the name of the
diskette file.

Var
Ftype : Text;
Fname : String;

{internal name}
{external name}

102 TEXT FILES AND PRINTER OUTPUT

Now, when the file is opened the program must provide the value of Fname, as
shown below.

Readln (Fname);
Reset (Ftype, Fname); {associate}

During program execution, the internal name Ftype is associated with the
external diskette name in Fname.

Macintosh Pascal has an intrinsic function called NewFileName (Prompt) which
returns the filename (obtained from a dialog box), that you may wish to use. In
this case, your program gets the external filename from the dialog and associ­
ates it with the internal filename, as follows:

Fname := NewFileName ('Enter filename:');
Reset (Ftype, Fname) ;

Closing a File

After a file is used, it must be closed in order to copy out the last record pro­
cessed and to append an EOF mark to the end of the diskette file. Remember
that the file is processed one record at a time. If the last record is still in main
memory, the Close procedure forces it to be written to the diskette. For exam­
ple, Ftype can be closed by simply writing the following:

Close (Ftype);

Notice that only the internal file name is used as a parameter in the Close
procedure.

Hands-On File Output

Suppose you want to enter a single line of text into a file called DAT A. DAT A is
the external diskette directory name; Ftype is the internal filename used by the
running program.

Var
Ftype : Text;
Line : String;
I : Integer;
Fname : String;

The code to do this is given below.

Begin {MAIN}

Rewrite (Ftype, 'DATA');
ReadLn (Line);
WriteLn (Ftype, Line);
Close (Ftype)

End. {MAIN}

{output file}
{to be written}
{used later}
{used later}

{associate}
{get from user}
{output it}
{close file}

-

HANDS-ON FILE OUTPUT 103

The Rewrite procedure associates Ftype with 'DAT A' so the program
knows where to write the text to disk. Rewrite prepares the file for copying, one
record at a time, from main memory to diskette.

WriteLn (Ftype, Line) looks like any other WriteLn procedure, but notice
the first parameter. Ftype is the name of the internal file record containing the
information to be written to 'DAT A'. Here is what takes place when this pro­
cedure is executed.

1. The string in Line is copied to Ftype--.

2. The diskette file associated with Ftype is written to by copying the con­
tents of Ftype" to record zero of 'DAT A'.

3. The next record (record one) is prepared to receive another string of
text.

Notice the A following Ftype, This means to copy the information that Ftype
points to rather than Ftype itself. (The A means "points to.") Ftype" is the file buffer
or area in main memory used to temporarily hold one record while the diskette is
being accessed.

The Close procedure writes an EOF marker at the end of the file. The associ­
ation between Ftype and 'DAT A' is dropped and the file is closed.

Enter this small program into Macintosh Pascal and RUN-STEP-STEP. You
will hear the diskette run, but otherwise nothing unusual will occur. This means
the line of text you entered has been written to a disk file called DAT A. If you
FILE-QUIT and look at the file icons in the opened disk window, a new icon called
DAT A will appear there.

Replace the body of this program with the following statements. These state­
ments take N lines of input from the keyboard and write them to a file called
Fname. Each line of text is copied into Ftype--, then moved to a subsequent record
of Fname.

Begin
Rewrite (Ftype, Fname);

For I := 1 To 10 Do
begin

ReadLn (Line) ;
WriteLn (Ftype, Line)

end; (for)_

Close (Ftype)
End.

fassociate}

{I : Integer}

{from keyboard}
{to disk file}

{EOF marker}

To make this program run, you must add a line at the top which gets a value for
Fname.

Fname := NewFileName ('Enter filename:');

Now select RUN-STEP-STEP and enter DAT A as the value of Fname. This
causes the old DAT A file to be removed and another to be rewritten over it.

104 TEXT FILES AND PRINTER OUTPUT

Enter ten lines of text, each line terminated by EOLN (an end-of-line
marker is generated by pressing the return key). The disk whirrs and copies
each line to file DAT A.

Reading a Text File

Suppose you want to read the text from file DAT A back into the program and
display it. This is done by reversing the process and using Reset in place of
Rewrite.

Begin
Reset (Ftype, Fname);

For I := 1 To 10 Do
begin

ReadLn (Ftype, Line) ;
WriteLn (Line)

end;

Close (Ftype)
End.

{associate input}

{get a record}
{text window}

{flush}

This method works fine when you already know how many records are in
the file (ten in this example), but most of the time this is unknown. So instead of
a For loop, a While loop is used. The termination condition is given by an
intrinsic function called EOF. EOF returns True if an EOF marker is read. The
loop is better written as follows:

While Not EOF (Ftype) Do
begin

ReadLn (Ftype, Line) ;
WriteLn (Line)

End.

{get one}
{show it}

Each record, starting from record zero, is read and displayed. The EOF re­
turns False until the last record is obtained. When the EOF marker is sensed by
the EOF function, the loop terminates.

General Forms of 1/0

Some general forms of input and output are summarized here for purposes of
quick reference. For reading a text file use the following:

-

-

-l

-

-
-
-

-

-

-

THE PRINTER

Reset ();
While Not EOF (

begin

ReadLn);
end;

Close ();

Simply fill in the blanks to get a working program body.

105

The form for writing a new text file is shown below; a Repeat loop is used
to allow an arbitrary termination condition. This method allows you to enter
any number of text lines without providing beforehand the number of lines to
be entered.

Rewrite ();

Repeat
ReadLn ();
Done:=
If Not DONE Then

begin
WriteLn

end

Until DONE;

Close ();

{If}

{from keyboard, etc.}
{some termination condition}

); {write to file}

{termination ? }

The value of DONE is either True or False depending on whether or not
more text is to be processed. For example, DONE might be True if the length of
the string is zero, indicating that only a RETURN (null string) was entered,
without any characters. Hence, when a null string is entered, no more text is
processed.

DONE := (Line = "); {" is a null string}

The Printer

Macintosh Pascal treats devices such as the printer and modem like text files.
When a device looks like a file to a computer, it is said to be a pseudo-file. Macintosh
Pascal "knows" two useful pseudo-files: PRINTER: and MODEM:.

Output from a running program can be directed to the printer by opening
a pseudo-file called PRINTER:.

106

Var
Printer : Text;

Begin

Rewrite (Printer, 'PRINTER:');

WriteLn (Printer, ...);

Close (Printer)
End.

TEXT FILES AND PRINTER OUTPUT

{internal name of printer}

{external name}

{DO IT}

Don't forget to include the colon at the end of "PRINTER:" when using it as a
pseudo-file name. The internal name may be anything as long as the Rewrite
associates it with the pseudo-file named PRINTER: .

Copy a File to the Printer

Try the following procedure for copying a text file from a diskette to a printer.
This procedure is derived from the general form for file 1/0, provided previously.

While Not EOF (Ftype) Do {go to end of Ftype}
begin

ReadLn (Ftype, Line);
WriteLn (Printer, Line)

end;

{get a line}
{ .. print it}

The complete procedure appears in Figure 9.2 as Procedure COPY _FILE_
TO _PRINTER. Given that the name of the diskette file is Fname, this pro­
cedure opens both the diskette file and printer pseudo-file, reads one, and writes
to the other, until all records have been processed.

Notice that the printer is always opened with a Rewrite procedure. The
Reset procedure is never used. Rewrite prepares a pseudo-file for output.

Hands-On Pseudo-file 1/0

To demonstrate that text files and pseudo-files behave exactly the same, enter
the program shown in Figure 9.3 and select RUN-GO.

Enter DAT A when asked to 'Enter filename' and type in several lines
followed by a carriage return. To terminate the program, enter RETURN only
(a null string).

Select RUN-GO again; this time enter PRINTER: for the name of the file.
Now each line that you type is printed instead of copied to diskette. Terminate
the program by entering a null string.

-

-
-
-

-

-

-

HANDS-ON PSEUDO-FILE 1/0

FIGURE9.2
Text/O.

program TextlO;

var
FileName: string; (Name or file, Input}
Long : integer; f' of lines copied, Input}
I : integer; (loop counter}

procedure COPLFILLTO_PRINTER (fname: string);
var
Ftype: text; (Disk file}
Printer : text; (Printer}
Line : string; (Line or text}

begin (Transfer}
reset(Ftype, Fname); (Open existing file for input}
rewrite(printer, "printer:"); (Output device }
while not EOF(Ftype) do (up to EOF mark J
begin

ReadLnCFtype, Line); (from disk . .}
Writeln(Prlnter, Line); (..to printer}

end; (while}
close(Ftype);
close(Printer);

end; (COPLFILLTO_PRINTER}

procedure COPY.J<BO_TQ_FILE (N: integer; f' Lines)
Fname : string};

var
Ftype: text; (Disk file)
Line : string; (Line or text}

begin (Keyboard to file}
rewriteCFtype, Fname); (open new file)
ror I := I to N do
begin
Readln(Llne);
Writeln(Ftype, Line);

end; (for)
CloseCFtype); (write end-of-file mark}

end; (COPY.J<BO_TOJILE)

begin (MAIN)
Write('Enter name or file ');
ReadlnCFlleName);
Wrlte('Enter number lines to enter');
Readln(Long);
COPY.J<BILTCLFILE(Long, FileName);
COPYJILLTO_PRINTER(f I leName);

end.

107

108

FIGURE9.3
Pseudo-file.

TEXT FILES AND PRINTER OUTPUT

program PseudoJ i le;
var

Fname : string; (External name}
Ftype : text; (Output file)
Line: string; (Text to be transferred}

begin (PseudoJile)
Write('Enter file name:');
ReadlnCFname);
Rewrite(Ftype, Fname); (Open file or Pseudo-file)
repeat

ReadLn(L ine);
If Line<>" then
Writeln(Ftype, Line) (Output to device}

until Line=";
Close(Ftype)

end.

This experiment shows how Macintosh Pascal handles devices as if they
were files. Fname is the external name of either a diskette file or a device such as
the printer or modem.

Study the If statement to understand how this program terminates.

If Line<>'' Then

As you can see, the single quotation marks have no blank space between them.
Thus, Line<> ''will be True if you enter at least one character, and False if you
press only RETURN. Similarly, the Repeat-Until terminates when Line = ' '.

Summary

There are two kinds of files in Macintosh Pascal: sequential and random access.
In this session, you learned how to process a special kind of sequential file called
a text file.

A text file is a collection of records; each record contains one line of text.
The text lines may vary in length. An EOLN marker is used to signal the end-of­
line. The final character of a text file is an EOF marker.

Devices behave like files in Macintosh Pascal. The printer is called
PRINTER:, and the modem is called MODEM:. When devices act like text files,
they are called pseudo-files. Anywhere a text file is used in a program, a device
pseudo-file can be used as well.

-

-

-

-

-

PROBLEM SOLVING 109

All files must be declared in the Var statement, opened before being used,
and closed after being used. The WriteLn statement is used to write a record;
the ReadLn statement is used to input a record. The first identifier in the
parameter list of WriteLn/ReadLn must be the internal name of the text file.

Problem Solving

1. Modify the COPY_KBD_TO_FILE procedure in Figure 9.2 to echo
each line of input back to the Text Window in addition to writing the
line to diskette.

2. Add a procedure called COPY_FILE_TO_SCREEN to the program of
Figure 9.2 This procedure re-opens the diskette file and writes each
record to the Text Window. Insert a call to this procedure immediately
before the End statement in the main program.

3. What is the maximum number of records that a file can have?

4. What is EOLN? EOF?

5. How many EOF marks can a file contain?

6. What is the difference between a text file and any other sequential file?

7. Write a procedure called COPY_FILE_TO_FILE which copies the
contents of an existing text file to a new text file. Your procedure will
have two parameters: Fnamel, Fname2.

8. Write a procedure called APPEND _TO _FILE which does the following:
a. Opens an existing text file and reads to the end of the file (until

EOF is sensed).
b. Accepts lines of input text from the keyboard and appends (writes)

them to the existing open diskette file.
c. Quits when a null string is entered from the keyboard; closes the

diskette file.

9. A text file cannot be shortened without writing a new file to replace it.
Design and write a program to do the following:
a. Open and read an existing file. Display each line read in the Text

Window.
b. Ask the user if each line is to be kept or deleted.
c. If the line is to be deleted, skip over it and read the next line in

sequence.
d. If the line is to be kept, write the line to a new output file.
e. When all records have been processed, close all files.
f. Open all files and copy the new file over the old file.
g. Close all files and quit.

-

Session 10:

Array Strudures

In this session you will learn how to use objects called arrays which can hold more than a
single value. An array is declared in the Type or Var statement using the reserved keyword
array. Arrays are the simplest form of a structured data type. You will learn the basis of
structured types through examples of arrays.

The Notion of an Array

In previous sessions you used objects to hold single values. For example, a charac­
ter object holds a single character at a time; integer and real objects hold a single
at a time; and so forth. An array, however, is a data structure for holding many
objects at the same time.

An array is an object containing one or more values of the same type. Ar­
rays are used to keep a list of items in memory under a single name. Each value
in an array is called an array element or item and is associated with an array index or
designator. The index is used to reference the individual items in the array and can
be any expression which evaluates to an ordinal value (char, integer, Boolean).

The length of an array is fixed by the programmer when the array iden­
tifier is declared in a Var statement. The beginning and ending values of the
index are explicitly given, as shown by the examples below.

Var
LIST : Array [1 .. 10] of Integer;

111

112 ARRAY STRUCTURES

This declares LIST as an array of 10 integers; each integer is designated by
an index 1 .. 10. Another way to declare LIST is as follows.

Type
LISTS = Array [1 .. 10] of Integer;

Var
LIST : LISTS;

The length of an array can be set in a Const statement. Here are two ways
of doing this:

Const
N = 10;

Var
LIST : Array [1 .. NJ of integer;

A second method, which accomplishes the same thing, is perhaps more elegant.

Const
N = 10;

Type
INDEXES = 1 .. N;
LISTS = Array [INDEXES] of Integer;

Var
LISTS : LISTS;

The syntax diagram of an array type declaration is shown in Figure 10.1 (a).
Square brackets are used to enclose the index part of an array. Figure 10.l (b)
shows the syntax of a reference to an array, for example, if the array is used in
an expression.

___. array simple type type

(a) Declaration syntax

variable identifier expression

(b) Reference syntax

FIGURE10.1
Array syntax diagrams

-

-

TABLES 113

Examples of Amiys

Tables

An array is a collection of values all of the same type; each value is designated by
an index. The index need only evaluate to an ordinal. Integer and char indexes
are both permitted. Here are some examples.

Type
INDX = 'a' .. 'z';
INDY= 0 .. 9;

Var
LETTERS : Array [INDX] of Char;
NUMS : Array [INDY] of Integer;

These can be used to hold and index values as illustrated by the assignment
statements below.

Also,

LETTERS ['a'] := 'A';
LETTERS ['b'] := 'B';
LETTERS ['y'] := 'Y';

NUMS [OJ := O;
NUMS [1) := 1;
NUMS [9) := 9;

Suppose you want to convert the vowels from character to integer values. A
conversion table might be used as follows:

Vowel Integer

a 1
e 2
i 3
0 4
u 5

The Pascal equivalent of this table might look as follows:

Type
VOWELS = Array ['a' .. 'u'] of 1 .. 5;

Var
VOWEL : VOWELS;

114 ARRAY STRUCTURES

The table must initially be set up in the body of the program by assigning each
of the array elements a number.

VOWEL ['a'] := 1;
VOWEL ['e'] := 2;
VOWEL ['i'] := 3;
VOWEL ['o'] := 4;
VOWEL ['u'] := 5;

A table similar to this one is used in the next hands-on example. Notice how
subrange 1 .. 5 is used to declare the type of each element of the array. Only
operations compatible with the base type are permitted on the array.

The array structure is commonly used to store tables in memory. In the
next hands-on experiment you will use an array to store a table.

Hands-On Arrays

Suppose you want a function called "BELONGS (Ch : Char; Var V : TABLE):
Boolean" which is True if "Ch" is a vowel and False otherwise. The body of
BELONGS compares Ch with each of the characters stored in an array of vowels
called "V". If a match occurs, the value True is returned (see Figure 10.2).

A second subprogram, shown in Figure 10.3, is needed to initialize the table
of vowels. Procedure INIT _TABLE simply assigns values to each element of the
array and returns these to the main program.

Enter both of these subprograms into the Program Window along with
the program heading and data declaration parts:

Program MAIN;

Const
N = 5;

Type
TABLE = Array [1 .. NJ of Char;

Var
LIST : TABLE;
Answer : Char; {input}

Now add the body of the main program as follows, and select RUN-GO.

Begin {MAIN}

INIT _TABLE (LIST);
WriteLn ('Enter a letter: ');
ReadLn (Answer);

If BELONGS (Answer, LIST) Then
WriteLn ('It's a vowel!')

Else

End.

WriteLn ('It's a boy!')

{MAIN}

-

-

LISTS 115

Lists

a File Edit Seorch Run Windows

~D Fi 1 0.2 l.lowels

funct1on BELONGS (Ch : char;
vor V : Table): boolean;

var
Done : booleon; {Loop condition}
I : integer; {Loop counter}

beg1n
Done := Folse; {assume not found}
I := I;
repent

Done := (V[I) = Ch) or (VIII= Chr(ord(Ch) + 32));
I:= I+ I;

until Done or (I = N + 1);
BELONGS := Done

end;{BELONGS)

FIGURE10.2
Function BELONGS.

Open the Text Window so you can see the results of running this program.
Enter a capital letter A and you should get "It's a vowel!". Enter a 'z' and you
should see "It's a boy!" appear in the Text Window.

One of the most common uses of arrays is for keeping lists. In this section you
will learn how to enter, sort, and display a list of phone numbers. The sort tech­
nique used here is well known as a simple, but inefficient method. For our pur­
poses, this method will be good enough, but be warned that it should not be
used on very large lists.

Suppose you want to keep a small list of telephone numbers in a table or
electronic phone book. Each phone book entry consists of an extension phone
number.

1212
5515
8150
5080

116

FIGURE10.3

program MAIN;
const
N = S; (• vowels)

type
Table= arrayll..N] of char;

var
LIST : Table; (Actual table)
Answer : char; (input}

function BELONGS (Ch : char;
var V: Table): boolean;

var
Done: boolean; (Loop condition)
I : Integer; (Loop counter)

begin
Done := False; (assume not found)
I := I;
repeat

ARRAY STRUCTURES

Done := (V(IJ = Ch) or (V(IJ = Chr(ord(Ch) + 32));
I := I + I;

unt II Done or (I = N + O;
BELONGS := Done

end;(BELONGS)
procedure INIT_TABLE (var V: Table);
begin

V(IJ:=·a·;
V(2J := 'e';
V(J] :='I';
V(4] := 'o';
V(S] := 'u';

end;(INIT _TABLE)
begin

INILT ABLE(LIST>;
WrlteC'Enter a Jetter:');
Readln(Answer);
if BELONGS(Answer, LIST) then
Wrlteln('lts a vowel')

else
WrltelnC'lts a boy');

end.

Complete program to search for vowels.

-

-

LISTS 117

Obviously this simple example is not very useful because we have dropped off
the person's name, but it will serve as a basis which can be expanded on in later
sessions.

The maximum length of the list must be declared first, and then the list
itself declared as an array. The following is one of many possible methods of
declaring a list.

Const
Max_Size = 10;

Type
Entries = integer; {•can be any type you want}
Book = Array (1 .. Max_Size] of Entries;

Var
PHBook : Book;

PHBook is an array of integers; each integer contains an extension num­
ber. Since the elements of PHBook are integers, the base type of PHBook is
integer.

The phone book program shown in Figure 10.4 contains three procedures
for operating on the PHBook list. Procedure Add is called to append an addi­
tional entry to the end of the existing list; Procedure Lookup searches the
PHBook, looking for a matching entry, and Procedure Sort orders the entries
into alphabetical order. (Note that Lookup has been left as an exercise for you to
complete.)

Each of these procedures is called from the case clause shown in the main
program body. The main body simply prompts for your request, then calls the
appropriate procedure to do the work.

Add to the Ust

Procedure Add reads an integer such as the following:

1212

and appends it to the end of PHBook. The index of the last entry in PHBook is
LAST. If incrementing LAST by one would cause it to exceed the length of the
list, an error message is displayed: "Sorry, no more room". If there is enough
room, LAST is increased by one and the new entry is stored in PHBook [LAST].

Initially, LAST is zero (see the main program body). Each new entry bumps
LAST up by one, until it eventually reaches Max_Size. Keep in mind that the list
must be entered each time the program is run. Saving the program does not save
the values stored in PHBook.

Sort the List

Procedure Sort rearranges the list of integers so that they are in increasing
order. The algorithm used by Sort is given in words

118

program Phone-8ook;
const

Ma><-Slze = 20; (Up to 20 entries)
type
Entries= integer;(whole numbers, only)
Book = array[t .. Ma><-Slze] of Entries;

var
PHBook : Book;
Last: Integer; (index of last entry)
Answer: Char; [Input)

procedure Sort (Last : integer;
var PHBook : Book);

var
I, J, Small : l..Ma><-Slze;{worklng counters)
Temp: Entries;(temporary piace)

begin

ARRAY STRUCTURES

for I:= I to (Last - I) do (order sub-list, l..Last-1)
begin

FIGURE10.4

Small:= I;
forJ :=I+ I to Last do
If PHBook[J] < PHBook[Small] then
Small:= J; (current smallest entry)

Temp := PHBook[Small];
PHBook[Small] := PHBook[I];
PHBook[I] :=Temp; (exchange smallest with top o'list)

end;(For I)
end;{Sort)
procedure Add Cvar Last : integer;

var PHBook : Book);
var
Entry : Entries; {Phone Number)

begin
WrlteC'Enter entry:');
ReadLnCEntry);
If Last.< Ma><-.Size then
begin
Last := succ(Last); (grow another entry)
PHBOOK[Last] :=Entry

end(If-then)
else

Wr1teLnC'Sorry, no more room');
end;(Add}

Program Phone_Book.

-

i-i
I

l""'I

LISTS

-

-

procedure Lookup (Last : integer;
PHBook: Book);

begin
(To be completed by You}
end;(Lookup}

begin [PHONE-BOOK}
Last:= O;
repeat

WrlteLnC' Enter 1,2,3 or a ');
WriteLnC' 1.Add an entry');
WrlteLn('2.Sort all entries ');
WrlteLn('3.Lookup an Entry ');
WrlteLnC'O.Oult');
Write(' ? ');
ReadLn(Answer);
case Answer of
'1' :

Add(Last, PHBook);
'2':
Sort(Last, PHBook);

'3':
Lookup(Last, PHBook);

·a·, ·q·:
Answer := ·a·;

end;(Case}
until Answer= ·a·;

end. [Phone;...Book}

FIGURE 10.4 (continued)

1. Starting with "I : = 1" and "For l:=l to LAST-I", do the following:
a. Assume Small is the index of the smallest integer in the list.

119

b. Search the remaining elements in " I + 1 to LAST " looking for an
element smaller than element Small.

c. If a smaller than element Small is found, make it the smallest
element.

d. Exchange the smallest element found with the first element '1" in
the list.

2. Each time "I" is incremented by one, the sublist to be ordered becomes
shorter. Finally, only one integer remains, so you are done.

After you have entered three or four integers into the list, select the Sort opera­
tion and study it. Pull down WINDOWS-OBSERVE and watch LAST, I, J,

120 ARRAY STRUCTURES

SMALL, PHBook[l], PHBook[2], and PHBook[3] change values as the sorting
takes place. Use RUN-STEP-STEP to step through the example.

Procedure Sort may be difficult to follow due to its nested For and If state­
ments. Carefully study the indented statements

For J := I + 1 To LAST Do
If PHBook [J]

Small:=

These are nested, one within the other. The assignment statement is the only
statement in the If-Then clause, and there is no Else clause. The If-Then state­
ment is the only statement in the body of the For loop.

These three nested statements find the index of the smallest integer within
the remaining sublist. The next three statements exchange the smallest integer
with the first integer in the sublist.

Look Up an Element in a List

The Lookup procedure has been left as an exercise. Its purpose is to search
PHBook looking for an Entry. If found, the entry is displayed, but how can you
search for something if you don't already know what it is?

A key is a portion of a list element that uniquely identifies the element. We
need a unique key to help search for phone numbers in PHBook. A person's
name is probably the best candidate for a key, but the simple phone book example
does not store names. Just for simplicity, assume that the extension number is
the key.

A general procedure or function for searching an array would look like the
following:

l:=O;
Found:=False;
while (not Found)

and
(I <= Last)

do begin ..

l:=I + 1;
end;

{loop counter}
{loop condition}

{Last is the length of the array}

{increment loop counter}

Remember, the loop can terminate either because the number has been found or
else because the entire list has been searched without finding the desired number.

-

-

-

-

-

-
-

-
-

SUMMARY 121

Two-Dimensional Arrays

A two-dimensional array is an array with two indexes. The two values are sepa­
rated by a comma, as shown below.

Type
ONE = 1 .. 5:
TWO = 1 .. 10;

Var
Two_D : Array [ONE, TWO] of Integer;

Both index values must be specified whenever referencing one of the elements.

TWO_D [I, J] := TWO_D [5, 9] + TWO_D [1, 3];

Arrays are not limited to only one or two dimensions, but may be multi­
dimensional.

Summary

The Sort and Lookup procedures of this session have illustrated several of the
more common operations on arrays. In general, arrays are used to keep lists in
memory while they are searched, sorted, and manipulated through procedures
that insert, delete, and change the elements of the list.

You will almost always use a loop to process arrays. The loop counter is
typically used as the array index. Be careful not to "run off the end" of an array
when reading, writing, or searching it. The loop counter should be the same type
as the array index in order to prevent exceeding the array index bounds, as
shown below.

con st
Max= 100;

type
sub = 1 .. Max;

var
i: sub;
A : array [sub] of blob; {i and sub same range}

Any ordinal type can be used as an array index. Hence, an index can be a
character, Boolean, or integer. This feature is convenient and helpful when an
array is used to store a table.

122 ARRAY STRUCTURES

An array is the simplest form of a structured type in Pascal. It is also the
simplest way to store a large number of elements under a single name. But your
program must know the length of an array prior to running. This restriction
can be removed by using dynamic storage, as discussed in Session 16.

Problem Solving

1. Write the Lookup procedure discussed in this session and add it to
Program Phone_Book in Figure 10.4. Try it.

2. Write a program that reads a list of N numbers into memory and then
computes their average value. Use the following, where appropriate:

var
Max= 50;

For I := 1 To N Do
ReadLn (LIST [I]);

For I := 1 To N Do
WriteLn (LIST [I]);

{maximum value of N}

3. Add a DISPLAY procedure to the hands-on example of Figure 10.4
that writes all elements of PHBook to the Text Window.

4. Add a DELETE procedure which removes an entry from PHBook of
Figure 10.4. The vacated element must be closed in by moving allele­
ments beyond the deleted element. Your procedure should contain
statements to move elements from the J-th position up.

For K := J To (LAST-1) Do
PHBook [J] := PHBook [J + 1];

LAST := Pred (LAST);

5. Write loops to do the following:
a. Fill an array of characters with blanks.
b. Fill an array of integers with zeros.
c. Multiply each element of an array of integers by 2.
d. Copy the even numbered elements from one array to the con-

secutively numbered elements of another array.
e. Reverse the elements of an array.
f. Find the largest element of an array of integers.
g. Count how many elements of an array of integers are greater than

integer B.

-

-
-

-

-

-

Session 11:

String Processing

In this session you will learn how to write programs that process text rather than numbers. A string
processing program stores, reads, writes, and uses intrinsic string processing functions and pro­
cedures to insert, delete, search, and move strings of text within computer memory.

Strings in Pascal

The seventh-century story of Beowulf is the oldest known story in English litera­
ture. It became a written document during the time of King Alfred (840-899).
However, Geoffrey Chaucer (1340-1400) was primarily responsible for estab­
lishing English as a written language, even though The Canterbury Tales had to be
copied by hand.

Manipulation of text is one of the most important applications of personal
computers, word processing being the most obvious example. All text process­
ing programs work with a special kind of array structure called a string. A string
is an array of characters; it has an attribute called length and a set of allowable
operations that work with it. This chapter will show you how to represent and
process strings from within a Pascal program.

In Pascal, a sequence of zero or more characters between two single quota­
tion marks is called a string. You have already used strings as prompts in Write
and WriteLn statements.

123

124 STRING PROCESSING

Writeln ('This is a character string.');

The statement above is an example of a literal string, but string constants and
variables are also permitted in Macintosh Pascal. (Standard Pascal does not have a
data type called String.)

String Declaration

Defining variables of type String is like defining variables of any other type. The
following Const and Var statements define one constant and two variables of
type String:

Const
Ans= 'Yes';

Var
String1 : String;
Str2 : String[20]

{constant string}

{up to 255 chars}
{up to 20 chars}

A constant whose value is two or more characters constitutes a string. If
ANS ='Y' it is a char constant, because it contains a single character. Therefore
Const ANS ='Yes' declares ANS as a string, rather than a char object.

Variables Stringl and Str2 illustrate two different methods of defining vari­
ables of type String. Stringl is a variable which can hold strings whose length
can vary up to the maximum default value of 255 characters. Str2 is defined as a
string valued variable which can hold up to 20 characters. The constant enclosed
in square brackets specifies an upper limit to the length of a string. Unless the
maximum length is specified, Pascal will assume 255 characters.

Length of Strings

Each variable of type String can hold a varying number of characters. For
example, after execution of the following assignment statement, the length of
str2 is five.

str2 'Minoa'; {assign 5 characters}

Obviously, if we delete all the characters from a string variable, its length
becomes zero. A string is called null or empty if its length is zero.

str2 ·- "· .- . {no blanks or characters}

Notice that an empty string is different from a string containing blank characters.
When a Pascal program begins to run, the length and contents of all string vari­
ables are undefined. Do not assume merely because you have declared a variable
of type String that its length stays at zero, since you have not yet assigned any
value to it. If you want to know the length of a string variable, you must use the
length function to find it out.

-

-

-

-

-
-

-
-

HANDS-ON STRING LENGTH 125

The Difference Between String Size and String Length

It is very important to distinguish between the size and length of a string. The
actual number of characters in the string variable at any time during the execu­
tion of a program is called its length. The size of a string-type variable remains
static throughout the execution of your program and is defined when you de­
clare the string variable. If at the time of declaration no size is specified, then the
size of the string variable is assumed to be 255. The size of str2 is 20, which
means the length of the string value in str2 cannot exceed 20. As a rule, length
may vary from 0 to the size, whereas size is always fixed by the Const or Var
declaration.

Finding the Length of a String

To find the exact number of characters that a string variable holds, use the in­
trinsic Length function.

WriteLn (Length (str2)) ;

If str2 contains 'Minoa', the WriteLn will cause five to be printed in the Text
Window. The length function returns an integer value equal to the current
length of its string parameter. Length may vary from zero (null string) to 255
(maximum length).

Hands-On String Length

Start your Macintosh Pascal and enter the following declarations to define str
and strl as String variables.

Var
str, str1 : String;

Now add the following to the main body of the program and select RUN-GO.

WriteLn (str);
WriteLn (Length (str1)) ;

{find initial value of str}
{find initial length of str1}

The Text Window of Figure 11.1 shows the result of running this program. You
may get something different, depending on what happens to be in main memory
at the time this example is run. The result you see confirms our warning that
you cannot assume the length of a string variable to be zero or its contents to be
null (empty) simply because it has been declared.

Insert the following statement above the first Writeln statement, then
select RUN-GO.

str := "; {two single quotes}

126

s file Edit Search Run Windows

Untitled

program Strings;
{Your declarations}
var ~

str, str 1 : string;

begin
{Your program statements}
writeln(str);
wri tel n(length(str));

end.

FIGURE11.1
Contents and length of str before initialization.

STRING PROCESSING

This time, you get zero as the length of strand nothing as its value. You initial­
ized str to empty and at the same time set its length to zero. This illustrates the
following important rule:

String Assignment: Whenever a value is assigned to a string variable, the
length of the string is automatically changed to equal
the number of characters assigned to the string.

Now add the following statements after the last WriteLn statement and RUN­
GO again:

str1 := ' ';
Writeln (Length(str1));
Writeln (str1) ;

{5 blank spaces}

This time, you get five for the length of strl and five blanks as its contents, even
though the blanks cannot be seen in the Text Window.

This example shows the subtle differences between an empty or null
string variable and a string variable which contains blank characters. Also, it
should be evident by now that the Length intrinsic function returns an integer
value for the length of a string variable. Figure 11.2 lists the resulting program.

-

-

-

STRING OPERATIONS.

FIGURE11.2

program string I;
var
str, str I : string;

begin
str := ";

write In(length(str));
writeln(str);
strl := ·

write In(length(str I));
writeln(strl);

end.

127

Program listing to display the difference between empty string variable and string
variable containing blanks.

String Operations

Macintosh Pascal provides many intrinsic functions that can be used to manipu­
late the contents of string variables.

Note:
S, T, PATTERN: are strings
Index, Count: are integers

Function

LENGTH (S)

POS (Pattem, S)

CONCAT (S, T)

COPY (S, Index, Count)

Explanation of Function

Returns the current length (integer value) of string S.

Returns zero if PATTERN cannot be found as a substring
within S. Returns the integer location (index) of the first
character of the first occurrence of PATTERN within S.
The location of characters in S are numbers from 1 to
Length (S).

Returns a string which is the value of T concatenated
(appended) to the tail of S. The resulting string is of length
Length (S) +Length (T). CONCAT may have more than
two arguments: CONCAT(S,T,U).

Returns a string containing the Count characters of S,
beginning with character Index. If count < = 0, returns
null string. If (Count + Index) > Length (S), returns the
tail of S.

DELETE (S, Index, Count) This is a procedure instead of a function, which modifies
S by removing Count characters from S beginning with

128

OMIT (S, Index, Count}

INSERT (S, T, Index}

INCLUDE (S, T, Index}

STRING PROCESSING

character S[lndex]. If fewer than Count characters are in
the string beginning with position Index, then the remain­
ing characters are removed.

The same as DELETE except OMIT is a function which
returns a string containing the result of deletion of Count
characters from S. The value of S is not changed.

This is a procedure instead of a function which modifies
T. String Sis inserted into string Tat character position
Index. The first character of S is put into T[lndex], the
second into T[lndex + 1], and so forth. If Index< 1 the
result is as if S were appended to T by concatenation:
T := CONCAT (S,T). If Index> Length (T) the result is T
:= CONCAT (T,S).

This is the same as INSERT except INCLUDE is a function
which returns the result as a string. The result is a string
which contains T with S inserted as described in INSERT.
S and T are not modified.

Searching Strings

Suppose you want to write a program to find the number of words in a sentence.
To do this, your program must first locate each word in the sentence and then
count them. Such a program would print 6 for the number of words in the sen­
tence stored in the following string variable.

str := 'This is a six word sentence.';

One way to count the number of words in a sentence is to search for and count
the number of blank spaces between words in the sentence. All but the last
word are followed by blank characters, so the number of words is one greater
than the number of blank spaces in the sentence, The following algorithm counts
words using this premise. (Notice that a space must consist of only one blank
character for this premise to hold up.)

Set No. of words to zero
Look for words in the sentence:

If a word is found
Then repeat until no more blanks:

add 1 to the number of words
look for the next blank

Otherwise add 1 to the number of words
Print the number of words found.

-

-
-

-

LOOKING FOR PATTERNS 129

This algorithm can be implemented in Macintosh Pascal using intrinsic string
functions, which are discussed next.

Looking for Patterns

The POS function returns the position of the first occurrence of a substring (in
our example, blank characters) in a string. To see how this works, start Mac­
intosh Pascal and enter the following in the Program Window:

Var

Begin

End.

str, str1 : String;
index : Integer;

str := 'This is a six word sentence';
Writeln (Length(str)) ;
index := POS (' ',str);
Writeln (index)

Now select RUN-GO. As you can see, this program prints 27 for the length of
str and 5 as the position of the first occurrence of a blank. In general, you can
use POS to find the starting position of any pattern in a string.

As another example, let's see what happens if you try to find the position
of "is" in the current value of str. Replace:

index := POS (' ', str);

with:

index := POS ('is',str);

Now RUN-GO. You may be surprised to get 3 instead of 6, although the word
"is" starts at position six. This example should remind you that POS starts search­
ing from the beginning of the string; when it finds the first instance of "is" in
"This;' the value of 3 is returned. If you want to find the word "is", you must
pass POS a unique pattern so that it continues to search for the desired sub­
string. To see how to find the position of the word "is" in the sentence, change
the POS statement as follows:

index := POS (' is' ,str) + 1; {blank}

Now RUN this new version. Voila! You get it right this time. The result is 6.
Actually, in order to get the right result, we cheated a little bit. The pattern

we looked for starts at postion five because of the character blank at its begin­
ning. We continually added 1 to help POS return the correct position of "is".

130 STRING PROCESSING

Deleting Substrings

Recall the program for counting the number of words in a sentence. POS by it­
self does not work. No matter how many times we use POS, it always returns
the position of only the first blank and does not continue to locate the others.

If each word is removed after it is found, then subsequent application of
POS finds the next word. Repeating, each new word is located, removed, and
counted until all words have been counted. For example, after the first word is
removed from position one the string looks like the following:

'is a six word sentence'

If you apply POS to the new string, you get 3 as the position of the next blank
character. This blank is the second blank character in the original sentence.

Use the Delete procedure to delete a portion of a string. The general format
of Delete is as follows:

Delete (dest.index,Count);

dest is the name of the string variable that you want to delete characters from
(dest = destination).

index is an expression of type Integer which specifies the starting position of what
you want to be deleted.

Count is an expression of type Integer that specifies the number of characters to be
deleted.

For example,

Delete (str,1,10);

deletes the first ten characters of the value of string variable str. If we assume
that the current value of str is:

'This is a six word sentence'

what remains in str after the Delete operation is

'six word sentence'

To delete each word as it is found, insert the following after the POS statement
in Program WordCntl:

Delete (str,1,index);

This causes all characters in str to be deleted starting from the beginning of str,
counting up to index. The first time the program executes Delete, index is 5 and
'This' is removed from str. The contents of str after this deletion are shown
below.

'is a six word sentence'

A careful application of POS and Delete, repeatedly, can help you count the
number of words in any sentence with one minor exception.

-

-

-

-

-

-

AN IMPROVEMENT TO THE HANDS-ON PROGRAM 131

More on POS

What if there is no blank character in a sentence? Perhaps the sentence contains
only one word or the string variable is null. In cases like this, POS cannot find a
matching pattern, so POS returns zero. A zero means no pattern was found in
the specified string.

Your word counting program will continue to find the position of blanks
and delete the corresponding words. Eventually, you get to the point where the
only value left instr is 'sentence'. If POS is applied one more time to str it will
return zero. To see this clearly, make the following additions to Program
WordCntl and RUN-GO.

str := 'sentence'
WriteLn (POS(' ',str1) ;

str := ";
WriteLn (POS(' ',str1) ;

{in case substring}
{blank doesn't exist}

{in case there is nothing}
{in the string variable}

POS returns zero in both cases. Figure 11.3 shows the first version of a pro­
gram that counts the number of words in str.

An Improvement to the Hands-On Program

Let's expand Program WordCntl (Figure 11.3) to print the sentence as well as
the number of words in it. As an example, the output should look like the
following:

This is a six word sentence 6

As a first attempt to modify the program, suppose you change the WriteLn
statement which prints the number of words to the following:·

WriteLn (str,NoOfWords) ;

When the modified program is run, you get the following incorrect. output:

sentence 6

The program repeatedly removed words until the value of str shrank to the last
word in the original sentence.

There are two solutions to this problem. The better solution is just to make
a copy of the whole sentence, keep it separate, and at the end print it along with
the number of words. To do so, you need to add

str1 := str; {to make a duplicate of str}

after

str := 'This is a six word sentence';

132

FIGURE11.3

program WordCnt I;
(Your declarations}
var

str, str I : string;
index : integer;
NoOfWords : Integer;

begin
(Your program statements}
str :='This is a six word sentence';

STRING PROCESSING

if length(str) = O then (for the case that str Is empty J
NoOfWords := O

else
begin

index:= Pos(' ·, str);
while (index> 0) do
begin

NoOf Words := NoOfWords + I;
Delete(str, I, index);
index:= Pos(' ·, str);

end;
NoOf Words := NoOfWords + I;

end;
writeln('No of words instr is: ·, NoOfWords);

end.

Program listing for first version of Word Count program.

and change the last WriteLn statement to:

Writeln (str1 ,NoOtwords);

Making these changes solves the problem, but for the sake of argument, suppose
you don't know about this simple solution. An alternate way of achieving the
same effect is to copy the deleted words into another string as the deletions take
place. Then, at the end, copy the last word left in str to the tail of the new string
variable.

Copy and Concat

The Copy and Concat functions can be used to copy the word to be deleted from
the original string into a temporary string variable and then append the saved
word to another string variable. When the program has removed all words from
the original string, the other string variable will contain the original sentence.

r-i
I

-

-

-

-
-

COPY AND CONCAT

FIGURE11.4

program WordCnt2;
(Your declarations)
var

str, str I, str2 : string;
index : integer;
NoOfWords : integer;

begin
(Your program statements)
str :=This is a six word sentence';
If length(str> = O then (for the case that str is empty J
NoOfWords := O

else
begin

Index:= Pos(' ·, str);
while (index> 0) do
begin

NoOfWords := NoOf Words + I;
str2 := Copy(str, I,· index);
str I := Concat(str I, str2);
Oelete(str, I, index);
Index := Pos(' ', str);

end;
NoOfWords := NoOfWords + I;
str I := Concat<str I, str);

end;
writeln(strl, NoOfWords);

end.

Program listing for second version of Word Count program.

133

The following changes should be inserted before the Delete statement in Pro­
gram WordCntl:

str2 := Copy (str,1,index);
str1 := Concat (str1 ,str2);

{extract a word}
{append to tail of str1}

Also, after the end of the While statement, add:

str1 := Concat (str1 ,str);

After these additions have been made, run the program. Figure 11.4 shows this
second version of the word counting program, called Program WordCnt2.

We can now look at the details of Copying and Concatenating strings. The
general format of the Copy function is:

Copy (str,index,Count);

134 STRING PROCESSING

str is a string variable or string value.
index is an Integer valued expression designating the starting location for the

Copy operator.
Count is an Integer valued expression designating the number of characters to be

copied.

Here are some examples using the Copy operator:

str := 'This is an example of Copy operators';

Copy (str,9,10); {returns 'an example'}
Copy (str,20,50); {returns 'of Copy operator'}
Copy (str.0,6); {returns 'This is'}

Notice in the second example, the Count value (50) is beyond the last character
of the current value of str. When the Count is larger than what the string vari­
able holds, Copy only returns as many characters as are available. In the third
example, the starting index was zero. If you specify 0 at the starting location,
Copy assumes you mean to start with the first character of str.

Concat pastes two or more strings together. For example, assume the
following:

str4 before

(empty)
Hi there
Hi there you
Hi there you

str1 := 'Hi';

str2 := 'there ' ;

str3 :='you';

str4 := ";

str4 := Concat (str1, str2)
str4 := Concat (str4, str3)
str4 := Concat (str1, str2, str3)
str4 := Concat (str4, str1, str2)

str4 after

Hi there
Hi there you
Hi there you
Hi there you hi there

Length (str4)

8
12
12
20

Inserting Strings

Concat is useful for appending one string to the tail of another, but what if you
want to add one string to the middle of another string? For example, suppose

str1 := 'This an example of insertion'

To add "is" to the sentence, you can use the Insert intrinsic procedure. The
general format of Insert is:

Insert (source, dest, index);

-

-

-

PROBLEM SOLVING

source
dest
Index

is the character string you want to insert into dest.
is the character string you want to insert source into.
is the starting position for insertion in dest.

135

For example, to insert 'is' into character position 6 of strl, use the following pro­
cedure call:

Insert ('is ',str1 ,6);

Insert puts the contents of the first string variable {the source) into the second
string variable (the destination), starting at the location specified by the index.
Whatever is already in position index of strl is shifted to the right to make room
for the inserted characters. Following are more examples showing the value of
strings before and after the Insert operation.

(before -> after).

Insert (' John', str1, Length(str1) + 1);
'Here is my friend'->'Here is my friend John'

Insert ('old ', str, 12);
'Here is my friend John'->'Here is my old friend John'

Insert ('May ',str, 1);
'I introduce my old friend John?'->'May I introduce my old friend John?'

Summary

This session covered the principal functions and procedures used to manipulate
character string values. Strings have a length, which is the number of charac­
ters stores in a string. There is a difference between empty or null strings and
strings containing blanks. A null string has a length of zero. A string containing
blanks actually contains characters. There are two ways to declare string vari­
ables: (1) by specifying the maximum length, for example, [20), and (2) by letting
the system use the default size of 255.

Strings are input and output just like any other value. For example, ReadLn
{STRl) is used to read a string from the keyboard and WriteLn {STRl) writes the
value of STRl to the Text Window.

Problem Solving

1. Write a new delete procedure using other intrinsic functions and pro­
cedures. (Hint: Use the Copy and Concat functions.)

136 STRING PROCESSING

2. Change the Hands-On example to use your own Delete procedure
instead of the Macintosh Pascal Delete procedures.

3. Write a program that counts the number of nonblank characters in a
sentence and displays the count next to the original sentence. Use
string functions to do this problem.

4. Modify the Hands-On example to read its input from the Text Window
(ReadLn (STR);) instead of assigning the value in the program.

5. Modify the program in Problem 4 to continue reading sentences from
the keyboard and printing the number of words found in each sentence
until the length of the input string read is zero.

-

-

Session 12:

Data Structures Containing
Records

In this session you will learn how to create new data types containing nested components of (pos­
sibly) different types called records. You will also learn how to use Pascal's With statement to
increase program efficiency and reduce programming effort.

The Structure of Data

In the early 1940s, Professor J. W. Mauchly believed that weather prediction
was possible if only a machine could be developed to rapidly solve mathematical
problems involving thousands of numbers. He and another University of Penn­
sylvania professor, J. Presper Eckert, invented and constructed the first full-scale
working electronic digital computer to do 100 years of calculations in 2 hours.
The ENIAC (Electronic Numerical Integrator and Computer) had 18,000 vacuum
tubes and consumed as much power as 15,000 Macintosh computers, but it could
perform 360 multiplications per second!

The early electronic computers were constructed for the sole purpose of
doing calculations on numbers, but today's problems often require nonnumerical
processing. Text, pictures, and sound are also processed by computers. The word
"data" no longer means long lists of numbers, but includes any representation of
information.

A data structure is any logical structure for organizing information so that it
can be processed by a machine. Macintosh Pascal has several mechanisms for

137

138 DATA STRUCTURES CONTAINING RECORDS

constructing data structures. You have already used the simplest form of data
structure: constant and variable objects which can be identified by name. Now
you will be introduced to structures for holding data of differing types.

The Record Structure

In the previous session you learned that an array was a collection of values of
the same type. In this session you will learn about a structure that is a collection
of values of possibly different types. A record is an object with components. A
component may be either another record structure or an object of a base type.
In a sense, a record is a nested data structure.

A record object is declared in Pascal by listing its components and their
types between a Record-End pair of keywords.

Var
PERSON : Record

AGE : Integer;
SEX : Char;
WEIGHT : Real

End;

{start record}
{first component}
{second component}
{last}
{end of record}

PERSON is a record object consisting of three components: AGE, SEX,
and WEIGHT. The three components are nested within PERSON and are of dif­
fering types. Hence, PERSON is an object containing three values.

Examples of Records

The record structure is very powerful because it allows you to extend the simple
types of Pascal to new data types which are closely related to your application.
For example, if you are simulating a game of cards, the following data structure
might be appropriate.

Type

Var

CARDS = Record
COLOR : Char;
SUIT : String;
VALUE : Integer;

End;

DECK : Array [1 .. 52] of CARDS;

{R = red; B = black}
{Hearts, Clubs, Spades, Diamonds}
{face value or ?}

The deck of playing cards is stored in an array called DECK. Each array ele­
ment contains three values of differing types. Your program might shuffle the
DECK, draw CARDS from DECK, and so on. The new data type called CARDS
and the object named DECK closely resemble the actual objects being simulated.

~
I

DOT NOTATION 139

As another familiar example, suppose the clock and calendar are simulated
by two new record structures.

Type
TIME = Record

End;

SEC: 0 .. 59;
MIN: 0 .. 59;
HR : 0 .. 23

DATES = Record

Var

DAY: 1 .. 31;
MO : 1 .. 12;
YR : 1900 .. 2001

End;

CLOCK: TIME;
DATE : DATES;

{seconds}
{minutes}
{hours}

{days of month}
{12 mo/yr}
{year}

Record structures can be nested within record structures, as shown by
this final example.

Type

Var

QUOTES = Record {stock market quotations}
Hi : Real;
Lo : Real;
Cloz: Real

End;

Stock : Record

End;

Co : String;
DATA : Record

Q : QUOTES;
Code : String;

End

{company name}

{quotations}
{4 letter code}
{inner record}
{outer record}

The structure of STOCK can best be described by a picture. In Figure
12.1, .boxes Hi, Lo, and Cloz (containing real numbers) are inside of Q. Q and
CODE are in an intermediate box called DAT A. STOCK is in the outermost
box and contains CO and DATA. Each record is a component of the enclosing
record structure. The question which naturally arises is, "How are data entered
and retrieved from these 'boxes'?"

Dot Notation

Pascal grammar uses the period or" dot" to denote a component of a record struc­
ture. Each dot corresponds with an enclosing box. or record. For example,
examine the following record structure:

140 DATA STRUCTURES CONTAINING RECORDS

Co String

Hi Real t------
Stock Q Lo Real t------

Cloz Real Data

Code String

FIGURE12.1
Structure of a nested record.

Var
BOX: Record

I : Integer;
A: Real;
C: Char;
S : String [10]

End;

The components of a BOX record are:

BOX.I
BOX.A
BOX.C
BOX.S

(integer component)
(real component)
(Char component)
(string component)

You assign a value to each component the same way you assign values to
simple variables.

BOX.I := 10;
ReadLn (BOX.A);
BOX.S := 'Hello, box';

{assign component value}

The CLOCK declared earlier as a record structure containing seconds,
minutes, and hours is manipulated like any other variable, except dots are used
to qualify which component is referenced.

If (CLOCK.SEC + 1) > 59 Then
begin

CLOCK.SEC := O;
CLOCK.MIN :=CLOCK.MIN+ 1

end;

This idea is used in the procedure shown in Figure 12.2 to simulate a 24-
hour clock. In Procedure TIC_TOC, the simulated clock is advanced one second
each time the procedure is called. This may cause the 24-hour clock to "roll over"
to 0:0:0.

DOT NOTATION

FIGURE12.2

program ClocLTic;
type

TIME = record
SEC : 0 .. 59; (seconds)
MIN : 0 .. 59; (minutes)
HR: o .. 23; (hours)

end; (TIME)
var

CLOCK : TIME;
Number, I: integer; (working variables)

procedure TIC...TOC (var TIMEX: TIME);
begin
if (TIMEX.SEC + I) > 59 then
if (TIMEX.MIN + I) > 59 then
if <TIMEX.HR + I) > 23 then
begin (reset to midnight}

TIMEX.HR := O; (time to go home}
TIMEX.MIN:= O; (synchronize your watches}
TIMEX.SEC := 0

end (IF-HR-THEN)
else
begin (BONG! next hour starts)

TIMEX.HR := TIMEX.HR + I;
TIMEX.MIN := O; (new hr)
TIMEX.SEC:= O (seconds, too)

end (if-hr-else)
else (middle if-else clause)
begin (TINKLE! next minute)

TIMEX.MIN:= TIMEX.MIN + I; (same hour)
TIMEX.SEC:= O; (new minute)

end (middle if is done)
else (outer .if-else clause}
begin (BEEP! next second}

TIMEX.SEC:= TIMEX.SEC+ I (no problem}
end (if mess}

end; (TIC...TOC}
begin
Write('Enter current time: Hour=');
Readln(CLOCK.HR);
Write('Mlnutes=');
Readln(CLOCK.MIN);
Write('Seconds=');

A simulated clock. (continued on next page)

141

142 DATA STRUCTURES CONTAINING RECORDS

Readln(CLOCK.SEC);
Wrlte('Enter number of tic._tocs ');
Readln(Number);
for I := I to Number do
nc_ TOC(CLOCK);

Writeln('The correct time at the tone is');
Wrlteln(CLOCK.HR, CLOCK.MIN, CLOCK.SEC);

end. (CloclLTicJ

FIGURE 12.2 (continued)

Hands-On Experiment with TIC_TQC

Enter the entire program shown in Figure 12.2 and do the following:

1. Open WINDOWS-OBSERVE and enter the variables CLOCK.HR,
CLOCK.MIN, and CLOCK.SEC as expressions to observe.

2. Click the Program Window, pull down and select the RUN-STOPS-IN
item. Place a stop sign next to the TIC_TOC (CLOCK) statement,
near the end of the main program.

3. Open the Text and Observe Windows so you can see their contents.
You may have to move Observe to a location on the screen where you
can see both the Observe and Text Windows at the same time.

4. Select RUN-GO. This causes the program to execute, pause, execute,
and so forth, while pausing at the stop sign to update the values shown
in the Observe Window.

5. Enter 23, 59, 55 as values for hour, minutes, and seconds. This is the
current time. Enter 6 as the number of tics to process.

6. Watch the values in the Observe Window change as the dock ticks six
times. The seconds will advance up to 59, then roll over to zero. The
minutes and hours will also roll over to zero. The final value will be
shown in the Text Window.

The action can be slowed down by selecting RUN-STEP over and over again.
Each time the RUN-STEP selection is made, the Observer Window will show a
new value for CLOCK. Watch as the CLOCK increases and then rolls over to
midnight.

i-,
I
I i

-

- THE WITH STATEMENT 143

- Nested Dots

Program Clock_Tic (Figure 12.2) shows how to access each component of a
f9I record structure, but what happens when the structure is several levels deep? A

record inside a record is designated by two or more dots. Recall the structure in
Figure 12.1. Here several dots are needed to resolve which value to access.

-

Notice how the dot notation mirrors the record structure; each dot corres­
ponds to a level of nesting as does each Record-End in the declaration.

Here are all components of STOCK:

STOCK.CO
STOCK.DATA.Q.HI
STOCK.DAT A.Q.LO
STOCK.DATA.Q.CLOZ
STOCK.DATA.CODE

The rule to remember is this: a dot notation is valid if it resolves an object all the
way down to a data type, such as string, integer, char, Boolean, and real. A counter
example, shown below, is invalid because it does not resolve to a data type.

STOCK.DATA.Q (invalid dot notation)

This will cause Macintosh Pascal to give you the thumbs-down error
message "Types are not compatible" or something similar.

The With Statement

Dots can become cumbersome to use in a highly nested structure, so Pascal has
a statement that allows you to drop the prefixes of dot notation variables. The
With statement is a statement that works only when the record structure prefix is refer­
enced and not modified. For example, PREFIX cannot be changed from within S
(even though the other components of PREFIX can be modified from within S).

With PREFIX Do
S;

The parts of this With statement are as follows:

PREFIX is a dot notation expression (up to any level of nesting) which prefixes a
record-structured variable.

S is any simple or compound statement.

For example, the modified CLOCK program of Figure 12.2 is shown in Figure
12.3. The dot notation variables CLOCK and TIMEX have been shortened using
With statements.

144

FIGURE 12.3 (continued)

With TIMEX Do
begin

DATA STRUCTURES CONTAINING RECORDS

SEC:=SEC + 1; {use or modify a component of TIMEX}
*

end; (with)

FIGURE12.3

program CloclL T le;
type

TIME = record
SEC : 0 .. 59; [seconds}
MIN: 0 .. 59; [minutes)
HR: 0 .. 23; [hours)

end; [TIME)
var

CLOCK : TIME;
Number, I : integer; [working variables}

procedure TIC...TOC (var TIMEX: TIME);
begin
with TIMEX do
begin
if (SEC + I) > 59 then
if (MIN + I) > 59 then
If (HR + I) > 23 then
begin [reset to midnight}

HR := O; [time to go home)
MIN := O; [synchronize your watches}
SEC:= 0

end [IF-HR-THEN}
else
begin [BONG! next hour starts)

HR:= HR+ I;
MIN := O; [new hr J
SEC := O [seconds, too)

end [if-hr-else)
else (middle if-else clause)
begin (TINKLEI next minute)

MIN := MIN + I; (same hour)
SEC := O; [new minute)

end (middle if is done}

CLOCK program using With statements. (continued on next page)

191\
I

t-i
' '

i-i
' '

r:
I

-!

-

-
-
-

-

-

-
-
-
-
-
-

THE WITH STATEMENT

else (outer if-else clause}
begin (BEEP! next second)

SEC := SEC + I (no problem}
end (if mess)

end (WITH CLAUSE}
end; (Tic_ TOC}

begin
with CLOCK do
begin

WrlteC'Enter current time: Hour=');
Readl.n(HR);
Wrlte('Mlnutes=');
ReadLn(MIN);
Wri teC'Seconds=');
ReadLnCSEC);
Write('Enter number of tic....tocs ');
Readln<Number);

end; (WITH)
for I := I to Number do
TICTOC(CLOCK);

WriteLnC'The correct time at the tone is');
with CLOCK do

Writeln(HR, MIN, SEC);
end. (CloclLTic}

145

Instead of writing the full name as a long dot notation, the With statement
allows you to abbreviate all names using the prefix "TIMEX.". Similarly,
"CLOCK." can be removed from expressions involving components, when the
following With statement is used in the main program:

With CLOCK Do

In general, any level of prefixing can be taken care of using a With state­
ment. For example, the nested STOCK variable could be handled by using a
With as follows:

With STOCK.DATA.Q Do
ReadLn (HI, LO, CLOZ);

Alternately, With statements can be nested to mirror the data structure
being prefixed.

With STOCK Do
With DATA Do

With Q Do
ReadLn (HI, LO, CLOZ);

146

FIGURE12.4

DATA STRUCTURES CONTAINING RECORDS

program GeLwithit;
type

QUOTES = record
HI: REAL;
LO: REAL;
CLOZ: REAL

end;
var

STOCK : record
CO: string;
data : record

0: QUOTES;
CODE : string;

end
end;

Nested With statements and dot notation. (continued on next page).

This form is not as readable, but is sometimes preferable when a program is work­
ing its way through different levels of a complex record structure.

Hands-On With Statements

A small experiment will help to familiarize you with the dot notation used in
nested With statements. Start up Macintosh Pascal and enter the program
shown in Figure 12.4. This program uses the STOCK variable we have been dis­
cussing. The purpose of Program GeLwithit is to show you how to enter data
into a record structure.

Select the Text and Observe Windows while running this program. Enter
the following variables into the Observe Window expression boxes:

STOCK.CO
STOCK.DATA.Q.CODE
STOCK.DATA.Q.HI
STOCK.DATA.Q.LO
STOCK.DATA.Q.CLOZ

RUN-STEP-STEP and watch the values of each component of STOCK change
as the following are entered:

Intel
64.5
30.25
35.75
INTC

-

-

-

-
-

SUMMARY

FIGURE 12.4 (continued)

begin
w Ith STOCK do
begin

Write('Enter company name ');
Readln(CO);
with DATA.a do
begin

Wrlte('Enter high');
Readln(HI);
Write('Enter low ');
Readl.n(LO);
Wrlte('Enter close ');
Readln(CLOZ);

end; (Inner with)
with DATA do
begin

Write('Enter company code');
Readln(COOE);

end; (inner with)
end; (outer with}

Writeln('Done')
end.

147

Now, examine the structure of Program GeLwithit more closely. The
main program has three With statements: one outer With statement containing
two inner With statements. The outer With statement establishes a prefix of
"STOCK." for the inner statements.

The With DAT A.Q Do statement establishes a prefix of "STOCK.DAT A.
Q." for all names contained within it. Thus, HI, LO, and CLOZ can be refer­
enced without the need for lengthy dot notation.

Run this program again and try different input values and different expres­
sions inside the Observe Window.

Summary

You should become familiar with record structures because they are used very
often in Pascal programs. They improve readability and make programming
easier and faster. Record structures can be declared in Type and Var statements,
but not in Const or Function header statements. (Only single constants and
base types apply to the Const and Function header declarations.)

Dot notation mirrors the record structure of a record structured variable.
This is true consistently throughout Pascal. For example, an array of record
structured elements is possible, as illustrated below.

148 DATA STRUCTURES CONTAINING RECORDS

Var
A : Array [1 .. 10) of Record

X : Integer;
Y: Real;
Z: Char

End;

The dot notation is used exactly as you would expect:

A[5).X := 10;
A[3).Y := 3.2;
A[J].Z := 'm';

{record}

The indexes of an array appear as usual, and the components appear where you
would expect them to appear. This consistency also holds for With statements:

With A[J] Do
x := 3;

The With statement is simply a device for abbreviating names of record
structured variables. With statements are used to access or "work through" a
data structure without having to write long names and lots of dots. You should
be careful when using With statements, however, because they can be confusing.
(This becomes evident whenever you have two or more record structures inter­
acting with one another in a program.)

Finally, you should note that it is possible to move entire record structures
without reference to their components, if they are of the same types. Suppose,
for example, P and Q are both of type TIME.

Var
P, Q: TIME;

Instead of copying each component one at a time, you can simply transfer the
entire record as follows:

p := Q;

This shortcut only works when the entire structure is copied from Q to P.

Problem Solving

1. Write a record structure for the following:
a. A calendar with months (12), weeks, and days.

A checkerboard with red and black squares.
c. A complex (real and imaginary) number.
d. A description of a person: weight, height, age, sex.
e. An apartment to be rented.
f. A student grade book.

i-i
'

-
-

-

-
-

-
-
-
-

-
-

PROBLEM SOLVING 149

2. Modify the TIC_TOC procedure and the program of Figure 12.3 so
that it works on a 7-day week. Each day is stored as a string ('MON­
DAY', 'TUESDAY' ... 'SUNDAY') in an Array [1 .. 7].

3. Write a dot notation for each component of the record structured vari­
able described by the following piece of code:

With S Do
begin

A := 1;
With T Do

begin
B := 'n';
c := 2

end;
With W Do

D := 5;
end;

Assume all identifiers are actually components of variable S.

4. Write a piece of Pascal code to display all components of the following
structure, using With clauses:

Var
A: Record

End;

X: Real;
Y : Record

B : Integer;
C : Char

End;
Z : Char;

S. Use dot notation to list all components of the structure declared in
Problem 4.

6. Write a procedure for entering a deck of cards into the following data
structure:

Var

Type
CARDS = Record
COLOR : Char;
SUIT : String;
VALUE : Integer

End;

DECK : Array [1 .. 52] of CARDS;

Keep in mind that the format used in DECK [1]. COLOR is a valid dot
notation for accessing a record-structured array element.

-
-

-

-
-
-

-
-

Session 13:

Sets and Scalars

In this session you will learn two new data types: sets and scalars. A set is an unordered collec­
tion of manifest constants (a manifest constant is a named object whose value is fixed). A
scalar is an ordered collection of manifest constants. Since these two are closely related, and yet
often confused, you will learn their differences as well as how to use them.

How Data Are Encoded

In 1799 a company of French soldiers (part of Napoleon's army) discovered a
strange black monolith in a wall they were demolishing to make way for Fort
Julien on the west bank of the Nile in Egypt. The large black basalt slab was
covered with carved text, which turned out to be the same proclamation written
in three different languages: Greek, demotic, and ancient hieroglyphic. The
famous Rosetta Stone contained the key to understanding hieroglyphic writing,
and through its decipherment, the ancient history of Egypt.

Learning the way computers work is much like deciphering an ancient code
of writing. Hieroglyphs are icons of familiar objects such as trees, animals, and
weapons. Data within a computer are coded representations of familiar objects
such as real numbers, whole numbers, strings of characters, and so on. Some
hieroglyphs directly represent the objects drawn (a human body), others stand
for ideas suggested by these objects (a bull for power). Similarly, some data
directly represent the values shown (52), while others stand for ideas suggested

151

152 SETS AND SCALARS

by the name of the value (NO_CARDS). When a name is used to stand for a
value, we call this a manifest constant.

You have already used manifest constants. The Const statement declares
integer, real, boolean, char, and string constants as shown below.

Const
NO_CARDS = 52;
INITIAL = 'T';
PROMPT ='Enter Data ';
Pl = 3.14159;

{integer}
{Char}
{string}
{real}

This Const statement illustrates how to declare manifest constants whose types
are familiar to you by now. With the exception of string, these are the basic scalar
types in Pascal.

A scalar is a single value such as a number or character. A string, array, or
record structure is not a scalar because each object of a string, record, or array
type has more than a single value associated with its object.

Now that you are an experienced Pascal programmer, it is time to intro­
duce you to two new data types which have a collection of manifest constants as
their values. These are called enumerated scalars and sets in Pascal.

Enumerated Scalars

Suppose you want to associate the digits 0 ... 9 with the names ZERO,ONE,
TWO, THREE, ... NINE in order to make the meaning of your program clear.
The association shown below could be represented within a Pascal program in
several ways.

0
ZERO

1
ONE

2 3 4
TWO THREE FOUR

5
FIVE

6
SIX

7 8 9
SEVEN EIGHT NINE

One method might employ Const and manifest constants, as shown below:

Const
ZERO= O;
ONE = 1;

*

*
NINE = 9;

You might also use a subrange type, but subrange would not allow you to use
meaningful names in place of numbers.

-

-
-

-
-

-

-

-
-

-

HANDS-ON SCALARS 153

An enumerated scalar type is an association between the integer subrange O ... n
and the names IDO, IDl, ID2, ... ION. The association is made by simply listing
the manifest constants in order, enclosed in parentheses.

Var
NUMERALS : (ZERO, ONE, TWO, THREE, FOUR, FIVE,

SIX, SEVEN, EIGHT, NINE);

The list is automatically associated with the whole numbers beginning with zero.
To see this, do the following hands-on experiment.

Hands-On Scalars

Fire up your Macintosh Pascal and enter the following small program into the
Program Window:

Program Scalar;

Var
COLORS : (RED, WHITE, BLUE);

Begin
WriteLn (RED, WHITE, BLUE);
WriteLn (Ord(RED), Ord(WHITE), Ord(BLUE))

End. {scalar}

Select the Text Window and RUN-GO. The following output should appear in
the Text Window:

redwhiteblue
0 1 2

This is the correspondence between the manifest constants RED, WHITE,
BLUE and the whole numbers 0, 1, 2. The correspondence always starts at zero
and increases by one (the list is ordered).

Now modify the program by replacing the data declaration part with the
following Type and Var statements and the program body with the following
statements:

Type

Var

COLORS = (RED, WHITE, BLUE);

COLOR, HUE : COLORS;

Begin
ReadLn (COLOR);
HUE := COLOR;
WriteLn (HUE, Ord(HUE):3)

End.

{new type}

{2 scalars}

154 SETS AND SCALARS

Select RUN-GO and type "WHITE" from the keyboard. Press RETURN
and watch what appears on the next line. The manifest constant "WHITE" and
its ordinal value are displayed.

Repeat the program by selecting RUN-GO a second time, only enter a non­
valid manifest constant, say "GREEN". You should get a thumbs-down icon and
a bug dialog that says,

"This is not in the enumeration list."

Only valid manifest constants are allowed as input (so be careful to spell them
correctly).

Examples of Enumerated Scalars

Keep in mind that enumerated scalars are really manifest constants representing
the subrange 0 .. N where (N + 1) names are in the list. They are like hieroglyphs
which stand for the whole numbers they represent. You have already seen how
the Ord function is used to get the underlying whole number represented by
the manifest constant.

Enumerated scalars tend to make your program more reliable and much
easier to understand. Here are some examples of their uses:

Type
COLORS = (RED, WHITE, BLUE);
SEXES = (MALE, FEMALE, OTHER);
WEEKENDS= (SATURDAY, SUNDAY);

Var
SUIT : (CLUBS, DIAMONDS, SPADES, HEARTS);
SUMMER : (JUNE, JULY, AUGUST);
YEAR : (FROSH, SOPH, JR, SR);

Once an enumerated type has been declared, it and its subrange values can
be used by another declarative statement. Here is an example of an enumerated
subrange:

Type

Var

DAYS= (MON, TUE, WED, THUR, FRI, SAT, SUN);

WKEND : FRI .. SUN;
WKDAY: MON .. FRI;

The only values accepted in WKEND are FRI, SAT, and SUN. If you attempt to
assign anything else to WKEND, a bug dialog will get you.

Enumerated scalars are the names for whole numbers, so most operations
that apply to integers also apply to integers also apply to scalars. Here are a few
examples of how to process scalars:

-
-
-
-
i-il

- SETS

-
-

-
-
-
-

Sets

-

WKDAY := TUE;
WKDAY := succ(WKDAY);
WKDAY := pred(WKDAY);

For WKDAY := MON To FRI Do
WriteLn (WKDAY);

{next day}
{backup a day}

{count them}

155

Finally, scalars can be used anywhere whole numbers can be used, as shown
by the following data structure for a simulated calendar:

Type
CENTURY = Record

YEAR : 1900 .. 1999;
MONTH : JAN .. DEC;
DAYS : 1 .. 31;
CLOCK : Record

AMPM : (AM, PM);
HRS : 0 .. 12;
MIN : 0 .. 59;
SEC : 0 .. 59;

End

End;

{100 years}
{20th century}
{from months}
{worst case}
{wall clock}
{afternoon?}
{include noon}
{the usual}
{ditto}

This data structure assumes a previously declared enumeration:

MONTHS= (JAN, FEB, MAR, APR, MAY, JUNE, JULY, AUG,
SEPT, OCT, NOV, DEC);

This defines a type whose subrange JAN .. DEC includes all of the MONlHS.
Enumerated scalars increase the readability of your program and make it

more reliable by limiting the values that a scalar object can assume. They are not
magical, however; when in doubt about when and how to use them, remember
they are really the whole numbers 0 .. N.

Another kind of data structure commonly found in Pascal programs is the set. A
set is an unordered list of manifest constants, but with a different collection of
allowable operations than the operations permitted on enumerated scalars.

Think of a set as an object which can hold more than one element, much
like an array. Most of the operations on sets are simple operations to put ele­
ments into a set, remove elements, and make comparisons to determine whether
or not an element is in a certain set.

In Pascal a set is defined as a collection of ordinal values; integers, enume­
rated scalars, and characters may belong to a set, but reals, strings, and records
cannot. The values allowed in a set are all the legal combinations of its scalars.

156

Row of mailboxes

Set U is empty: I
Set Uhas

FRI one element:

Set U is full: FRI SAT

Set U is FRI
partially filled

FIGURE13.1
Sets as a row of mailboxes.

Var
S : Set of 0 .. 1;
T : Set of -1 .. 1;

I
I
I
I

SUN

SUN

U : Set of (FRI, SAT, SUN);

SETS AND SCALARS

S, T, and U can take on zero or more of the ordinals defined in their base type.
The possible combinations of the subranges (without repetition) are:

S is empty, 0, 1, or 01

Tis empty, -1, 0, +1, -10, -11, 01, -101

U is empty, FRI, SAT, SUN, FRI SAT, FRI SUN, SAT SUN, FRI SAT SUN

To keep sets separate from scalars and arrays, think of a set as a row of
mailboxes. Each mailbox is a place to put a single letter. Each mailbox may be
empty; if all the mailboxes are empty, then the entire set is empty (see Figure
13.1). Some of the mailboxes may be empty and some of them may be full. The
entire collection of mailbox "values" constitutes the value of the set.

Examples Using Sets

Suppose the following declarations have been made prior to using sets:

Type

Var

WKEND =.(FRI, SAT, SUN);
GRADE = (A, B, C, 0, F);

FUNDAYS : Set of WKEND;
PASSING : Set of A .. C;

i-

"""'

-

-
-

-

- SETS

-

-

-
-
-

-
-

157

The following operations and their meaning should be studied before trying sets
in Pascal:

FUNDAYS := []; {empty set}

The [] is called an empty set. The square brackets are the set constructor in Pascal; they
cause a set to be constructed from the elements found within the brackets.
Thus, to put one element into FUNDA YS, use the following assignment state­
ment and set constructor:

FUNDAYS := [FRI];

Alternately, you could put all elements into a set by separating the list with
commas:

FUNDAYS := [FRI, SAT, SUN];

A subrange of scalars can be put into a set using the subrange operator:

FUNDAYS := [FRI .. SUN];

Another way to add elements to a set is to include them using the set inclusion
operator " + ":

FUNDAYS := FUNDAYS + [SAT];

Elements can be removed by subtracting them:

FUNDAYS := FUNDAYS - [FRI];

You can test for an element in a list by using the In operation, which
returns a Boolean value:

If FRI In FUNDA VS Then
Write ('Hurray')

Else
Write ('Get down anyway!');

The set operators are listed below:

<>
+

<=
>=
in

Assign a set value to a set variable.
Compare two sets and return True if they contain the same elements.
Return True if one set contains an element not found in the other set.
Add two sets by taking their union (no duplicates).
Remove the elements in one set from another set.
Form the intersection of two sets; all elements common to both sets are put
in the resulting set.
Return True if one set is completely included in another set, e.g., A<= Bis
True if A is completely contained in B.
Return True if an element is a member of a set.

The following operations are acceptable in Pascal:

158

PASSING := [A, B, CJ
PASSING := PASSING * [A];
PASSING := PASSING - [A];

If C in PASSING Then
Writeln ('I passed')

ELSE
Writeln ('Oops .. .');

{include A, B, C}
{leaves A, only}
{now it is empty}

{is C in the set?}

SETS AND SCALARS

Hands-On Sets

The program in Figure 13.2 illustrates several important but subtle differences
between sets, characters, and scalars. Enter this program into Macintosh Pascal
and select RUN-STEP-STEP.

Here is a statement-by-statement explanation of Figure 13.2:

Type
bag = (comb, lipstick, wallet, mirror);

This is a new enumerated scalar type with four manifest constants. This
type will be used to form a set containing zero, one, two, ... four elements.

FIGURE132
Hands-on sets example.

program Sets;
type
bag= (comb, lipstick, wallet, mirror);

var
PURSE : set of bag;
VOWEL: set of ·a·.:z·;
STUFF: bag;
LETTER : char;

begin
PURSE:= IJ; (initialize sets}
VOWEL:= f'a', ·e·, 'i', 'o', 'u'];
ReadLn(STUFF); [enter an item)
PURSE:= PURSE+ (STUFF];
Readln(LETTER);
if LETTER in VOWEL then
Writeln('lts a vowel')

else
Writeln(' No way Jose');

end.

-

r-t
I

t-i
'

-

-
-

-

-
-
-

HANDS-ON SETS

Var
PURSE : Set of bag;
VOWEL : Set of 'a' .. 'z';
STUFF : bag;
LETTER : Char;

159

PURSE is a set containing elements from bag. This declares the object, but
does not put anything in it. The program body must fill PURSE with one or
more elements. PURSE can be empty or contain one, two, ... four elements.

VOWEL is a set which can be empty or contain one or more lower-case
letters. The subrange 'a' .. 'z' includes all lower-case letters, but the set 'a' .. 'z'
may contain zero, one, two, ... twenty-six letters.

STUFF and LETTER are working variables whose types must match the
base types of the sets they are going to work with. The base types of char and
'a' .. 'z' are both char, for example.

PURSE := [);
VOWEL := ['a', 'e', 'i', 'o', 'u'];

The two sets are initialized. PURSE is initially empty, and VOWEL initially
contains the five lower-case letters given in the constructor list.

PURSE := PURSE+ [STUFF];

The contents of STUFF are added to the empty PURSE. Now PURSE
contains one element. The same result could have been achieved as follows:

PURSE := [STUFF];

But we could have put three elements in PURSE by using a loop:

For I := 1 To 3 Do
begin

ReadLn (STUFF);
PURSE := PURSE + [STUFF]

end;

A set cannot be written from a WriteLn statement, but you can list the
contents of PURSE by indirectly retrieving and displaying its contents:

For STUFF := COMB To MIRROR Do
If STUFF in PURSE Then

WriteLn (STUFF);

Similarly, the PURSE can be emptied by subtracting elements, one at a time,
from PURSE:

For STUFF := COMB To MIRROR Do
If STUFF In PURSE Then

PURSE := PURSE - [STUFF];

160 SETS AND SCALARS

The elements of PURSE are manifest constants (enumerated scalars
whose values are 0, 1, 2, 3, 4), but the elements of VOWEL are characters. You
can add characters to VOWEL using the set constructor as follows:

VOWEL := VOWEL + ['y');

Compare this method with

PURSE := PURSE + [COMB];

The character set requires single quotation marks around values, but the scalar
set does not require quotes around a manifest constant.

Things to Remember About Sets and Scalars

If there are N elements in the base type of a set, then the set can hold up to zn
different combinations of values. Thus, the set of (FRI, SAT, SUN) can hold
eight different possible values. These values are the eight possible combinations
of zero, one, two, and three values taken from (FRI, SAT, SUN).

Sets can be formed from scalars: integer, enumerated scalar, boolean, and
char. Records, strings, and arrays cannot be the basis of a set variable. Subrange
specification is allowed where meaningful, for instance, when characters are
used.

Var
LETTERS : Set of 'A' .. 'Z';

Begin
LETTERS := ['A' .. 'Z']; (full set)

The set constructor is the pair of square brackets; it must be used when­
ever a set of values is being processed.

Sets cannot be written out to the Text Window, nor can they be entered
from the keyboard. Enumerated scalars, on the other hand, can be both entered
and displayed from a running program.

Elements can be added, subtracted, compared, unioned, intersected, and so
on to a set only when the element is base-type-compatible with the set. (The
base type of the element and the base type of the set must be the same.)

For, While, and Repeat loops can be used to process sets and scalars. The
loop counter in a For loop can be an enumerated scalar, but not an element of a
set. The "in" operator should be used to search a set for a particular element.

While PURSE < > [] Do
begin

ReadLn (STUFF);
If STUFF in PURSE Then

PURSE := PURSE - [STUFF];
WriteLn (STUFF)

end;

!ml)
I
I

-

-

-
-

-
-
-

-
-

PROBLEM SOLVING 161

Sets are typically used, along with the In operator, to check for member­
ship. For example, they are used to restrict user input, as shown below.

Repeat
ReadLn (CH) {CH : char}

Until CH in ['O .. '9', 'A' .. 'Z');

Sets and scalars should not be confused. Sets are like a row of mailboxes,
each box is either empty or contains one element. The entire row of boxes
constitutes the set. A scalar, on the other hand, is a single value encoded as a
manifest constant, integer, character, or boolean.

Summary

Use enumerated scalars to improve the readability of your programs. Use sets to
simplify coding through the elegant application of set membership, compari­
sons, and so forth.

Sets cannot be either input or output via the keyboard and Text Window.
They are used internally as a convenience.

Scalars, however, can be entered and displayed in Macintosh Pascal. This
feature is nonstandard; if you want your programs to run on other computers,
do not input/output enumerated scalars.

Scalars are manifest constants, and when used in an enumerated list, they
become ordered. The Ord of a scalar yields its underlying value. You should be
careful when mixing characters and scalars. Their base types are quite different,
as illustrated by the two sets below.

['A', 'B']
[A, BJ

The first set contains two characters,' A' and 'B'. The second set contains two
manifest constants from an enumerated scalar.

Problem Solving

1. Give the Boolean value which results from the following set
operators:
a. [1] = [1,2]
b. 1 in [1,2]
c. 0 in []
d. [0,1] <= [O, 1, 2]
e. [O, 1] >= [1,2]
f. 'A' in ['a' .. 'z1

162 SETS AND SCALARS

2. Write a program similar to the program of Figure 13.2 which (1)
allows the user to specify how many items will be put into PURSE, (2)
loops to get the items from the user, and (3) then adds each item to
PURSE.

3. Add the ability to display the elements of PURSE to the program in
Problem 2.

4. Write a procedure that simulates a calendar. Each time the procedure
is called from a main program, one additional day passes. Your proce­
dure should handle the 12 months of the year, varying days, and so
forth. Assume February has 28 days.

5. Design a data structure for a deck of playing cards and write a proce­
dure for entering the deck of cards into a running Pascal program.

6. List all possible values for the following sets:
a. Set of 1 .. 3;
b. Set of (MALE, FEMALE);
c. Set of 'O' .. '2';
d. Set of (RED, WHITE, BLUE);

7. Explain the difference between X and Y:

Var
X : Set of (A, 8, C);
Y: A .. C;

-

-

-

-
-

Session 14:

Random and Typed Files

In this session you will learn how to use procedures Open, Close, Get, Put, Seek, and FilePos to
process random files. In addition, you will find out how Write and Read can be used to output and
input nontext data to a diskette file.

Nontext Files

A nontext file is a collection of records consisting of numbers, or numbers and
characters mixed together. Nontext files are sometimes called typed files because
the format of each record of the file is specified by a Pascal type.

The "File of" reserved phrase is used to declare a typed file. For example, a
file consisting of records given by CLUMP would be declared as follows:

Type

Var

CLUMP = Record {record format}
X: Real;
Y : Integer;
Z: Char;
S : String;
End; {CLUMP}

Ftype : File of CLUMP; {internal filename}

Each record of the file called Ftype contains four components of differing types,
hence the name "typed file."

163

164 RANDOM AND TYPED FILES

Typed files must be opened and closed just like any other file, but the
procedures chosen to do this depend on whether the file will be accessed
sequentially or randomly.

Sequential vs. Random files

Figure 14.1 shows the logical structure of file Ftype. Each record is numbered
beginning with zero and ending with the LAST record. The end of the file is
marked with an EOF character. Each time the file is accessed, an entire record
containing X, Y, Z, and S is moved between main memory and the file on the
diskette.

The file of Figure 14.1 can be processed sequentially by reading or writing
the records in sequence (0, 1, 2, ... LAST) or randomly by skipping around from
one record to the other (5, 0, l, LAST ...). A randomly typed file has several
advantages over a sequential file:

1. Random files can be accessed in a nonsequential manner. Thus, if only
a few records are to be processed, it is not necessary to read the records
in front of the records to be processed.

2. Typed files can store numbers and a mixture of numbers and text,
thereby extending what can be stored beyond pure text files.

3. It is not necessary to rewrite the entire random file merely to change
one or more records.

file of CLUMP Record#

X:real
Y:integer
Z:char 0

S:string
X:real
Y:integer
Z:char
S:string

~ ... ~

X:real
Y:integer
Z:char

Last

S:string

EOF

FIGURE14.1
Logical structure of a typed file.

~
I

-

-
-
-

-

RANDOM FILES IN MACINTOSH PASCAL 165

A random typed file also has some disadvantages, compared with text files:

1. The record type and its length must be fixed.

2. In order to retrieve a certain record from a random file, you must
know the desired record number in advance.

In general, text and records that are subject to variable length are stored in
sequential files; fixed-length records containing mixed data type components
are stored in random files.

Random Files in Macintosh Pascal

A Macintosh Pascal random file is subject to additional constraints. Here is a
brief list of things to remember about random files.

1. Create all files sequentially. When appending records to the end of an
existing file, do so as a sequential file.

2. Read typed files using procedures for accessing random files, since
random access is faster, in general.

3. Modify existing random file records by accessing them, making the
modifications, and then putting them back in the file in the same
location that they came from.

4. Record numbers should never be less than zero or greater than the
last record number in the file.

Figure 14.2 shows how random file access works in conjunction with the
file buffer pointed at by the internal filename.

Random file file buffer, f A

R

o~ R 1 ,,v-;:..;;-
R

........... Ge"
2 f

R 3

R 4

R 5

R 6 2

R 7

EOF

Var
f:file of R;

FIGURE14.2
How a random file record is accessed.

166

f ,.
Record number
EOF

Internal filename.
File buffer for f.

RANDOM AND TYPED FILES

Index of record to be accessed.
End of file character.

During a Read access, the record number is used to point to a record. The
selected record is copied into the file buffer f ·, so the program can access its
components. Dot notation is used along with the up-caret (A) to designate
components.

r .component1

f •. component2 ..

r .componentN

During a Write operation, the file buffer f A must be filled with data
(component-by-component), the record number selected, and the entire buffer
copied to the corresponding file record.

All but the Seek operations on files automatically increment the record
number by one either before or after an access. Automatic record number
updating is one of the most confusing aspects of file access-so confusing, in
fact, that it does not always work as it should even in Macintosh Pascal!

Constructing a Typed File

Now we can begin to write some useful routines for random file access. One
constraint is that you build a new file sequentially. To do this, you will need the
following tools:

Reset(f, Fname)
Rewrite(f, Fname)
Open(f, Fname)

Close(f)
Put(f)

Get(f)

Seek (f, RecorcLNo)

FilePos(f) :Integer
Read(f, list)
Write(f, list)

Open sequential file for input.
Open sequential file for output.
Open typed file fas Fname. If Fname already exists, the file
is opened and the first record is read into main memory.
Otherwise, a new typed file by the diskette directory name
of Fname:string is created. The opened file may be either
Written or Read.
Close typed file f. This is the same as a text file Close.
Write the file buffer contents f• to the file at location Record
Number (see Figure 14.2).
Read the record at location specified by (Record Number
+ 1), into the file buffer of r.
Select record Record_No and prepare it to be accessed via
the file buffer f•.
Returns the current value of Record Number.
Get values from the file and assign them to the list.
Put the list values in the file record.

-

-

-
-

CONSTRUCTING A TYPED FILE 167

In addition to these definitions, you should memorize the effects each of
the following have on the current record number:

Get Increments Record Number before reading a record into f'.
Put Writes the current contents off' before incrementing the record number.
Seek Sets the record number.
Open
Read

Record number is set to zero.
Same as Get.

Write Same as Put.

Now suppose you want to create a file Fname of type Ftype:

Type
R = Record

X : Integer;
Y : String [10)

End;

Var
Ftype : File of R;
Fname : String;

The following routine can be used:

Open (Ftype, Fname);
Repeat

ENTERJ)ATA (Ftype);
Write ('More to enter (Y /N?');
ReadLn (Answer)

{open typed file}

{put one or more records}

Until (Answer = 'n') or (Answer = 'N');
Close (Ftype); {all done}

The ENTER-DAT A procedure must be written and included along with this
routine. The following simple ENTER_DA TA routine shows how the records
of Ftype might be entered, one at a time:

Begin

End;

Var
Entry : R;

ReadLn (Entry.X);
ReadLn (Entry.Y);
Ftype • := Entry;
Put (Ftype)

{temporary}

{get components}
{get components}
{copy to buffer}
{write, increment record#}

This procedure gets a record, moves it to the file buffer Ftype ·, and then
forces the buffer to Write out to the file. The Open initially sets the record
number to zero, so the first time a Put is performed, the zero-th record is filled
and then the record number is incremented to 1. The next time Put is executed, the
second record is copied to record 1, and the record number is incremented to 2.
This continues sequentially until all records have been written to the newly
created file.

168 RANDOM AND TYPED FILES

The output was broken down into two steps to prove a point. First the file
buffer must be filled, and then the buffer must be written to the diskette file.

Ftype· := Entry;
Put (Ftype);

{fill buffer}
{write it}

This could have been done more directly with a single statement:

Write (Ftype, Entry); {direct way}

In other words, a Write is equivalent to a copy followed by a Put. Notice the file
buffer (Ftype ·)is designated with an up-caret.

Reading a Typed File

Now let's see if we can do the reverse operation and Read the contents of a typed
file back into main memory. The routine for doing this is simply:

Open (Ftype, Fname);
Repeat

WriteLn (Ftype· .X);
WriteLn (Ftype· .X);
Get (Ftype)

Until EOF (Ftype);
Close (Ftype);

{set Record Number = O}

{display in Text Window}

{copy from buffer}
{all have been read}

This routine may seem odd at first, because the Open procedure not only
sets record number to zero, but it copies the zero-th record from the diskette
into the file buffer Ftype •. Again, the Get is equivalent to the following pair of
statements:

Read (Ftype, Entry);
Ftype • := Entry;

Remember, the Get increments the record number before it copies a record into
the file buffer. For this reason, the Get is done at the end of the Repeat-Until
loop. The Get procedure advances the record number before fetching the next
record to be displayed.

This method of processing a typed file is nearly identical to processing a
sequential file. Once a file has been entered, it can be accessed randomly, using
the Seek procedure.

Random Retrieval

An existing typed file can be opened and read randomly by using the Seek
procedure followed by the Get procedure. Here is a routine to do this:

Open (Ftype, Fname);
Read (Record_No);

{open typed file}
{which record?}

r

I""\
I

-

-
-

-

HANDS-ON RANDOM FILES

Seek (Ftype, Record_No);
Get (Ftype);
WriteLn (Ftype".x, Ftype".Y);
Close (Ftype);

{Position record#}
{Get it}
{show them}

169

The seek procedure sets the record number to a certain value, then Get fetches
the corresponding record. Do not Seek beyond the end of a file, and do not Seek
negative record numbers! (According to the Macintosh Pascal Reference Manual,
Seek is supposed to Seek and Get the record. We could not make this work, so
to be sure, always use a Get after a Seek to guarantee that you get the desired
record into memory.)

The nice thing about Seek is that you can jump around from one record to
another without reading the records in between. In fact, you can update a
record in the middle of a file by Seeking, Getting, editing it, Seeking again, and
then putting the record back in the file.

Random File Update

A record in the middle of a typed file can be modified, if you are very careful
how you do it. The idea is to get the record, modify it, and put it back in the
same place in the diskette file.

The following steps should be followed when updating a typed file:

Seek (Ftype, Record...J\lo);
Get (Ftype);
Seek (Ftype, Record...J\lo);
Ftype".X =
Ftype" .Y =
Put (Ftype);

{get a record}
{Make sure you have it}
{Force Pascal to behave}
{changes ... }
{ ... changes}
{update record}

The Seek-Get combination gets the Record_No-th record from Ftype and
stores a copy in Ftype ". The components in Ftype" are modified; then Put
moves a copy of the modified buffer back to the same record. Put also incre­
ments the current record number, thus making it point to the next record.

(Earlier versions of Macintosh Pascal did not work correctly. The Put would
write the modified version of the buffer in the next record following Record_No.
Even in the current version we had difficulty forcing the record numbers to be­
have when doing a Get operation. This problem can be overcome by Seeking
before and after each Get just to make Macintosh Pascal remember where it is
in the file. If you have an older version, trade it in on a corrected one.)

Hands-On Random Files

The ideas discussed in this session can be combined into a small mailing list
program, as shown in Figure 14.3. Program Random_File should be entered
into Macintosh Pascal and executed with the Observe Window containing File-

170 RANDOM AND TYPED FILES

Pos (Ftype) and Record_No. Select RUN-STEP-STEP and watch both the Text
and Observe Windows. The three procedures do the following things:

ENTER_ DATA Captures name, street address, city, state, zipcode, and telephone
number of a single person. Writes this information to the current
record number of file Ftype.

LOOKUP_DATA Clears the screen and asks the user for a record number of a
record to retrieve. Gets the record using Seek to position the
record number to the desired record and copies that record into
the memory buffer. Displays the contents of the buffer in the Text
Window. LOOKUP _OAT A displays one record.

DISPLAY_FILE Clears the Text Window and displays all records, beginning with
record zero and ending with the last record. The Page intrinsic
procedure clears the Text Window. The Get procedure reads the
next record from disk.

The main part of this program Gets all records first, then displays the
entire list, and finally lets you randomly select any record for display. Notice
how the file name is obtained using the intrinsic function NewFileName and is
then retained in variable Fname throughout the program.

Each time the file is Opened, its record number is set to zero. When the file
already exists, record zero is read into the buffer by the Open procedure.
(Actually, Open sometimes fails to pre-fetch the first record, so the Display
section of the program in Figure 14.3 used two Seeks and Get to make Open
work as advertised. Your version of Macintosh Pascal may not require this fix.)

FIGURE14.3

program Random_Fi le;

type
List =record (Image of a record}

Name: string[30]; (Last name, First name}
Street : string[20]; (Street address}
City : strtng[20]; (City)
State: string[2]; (State abbreviation)
Zip: string[9]; (Zipcode)
Ph : string[12); (phone •)

end; (List}
Data511e =file of List; (Disk file}

var
Ftype: Data_Flle; (List of Records}
Fname: string; (External file name}
Answer: Char; (YIN answer, working variable)

Random-file Mailing List program. (continued on next page)

-
-

-

-

HANDS-ON RANDOM FILES

procedure ENTER...DATA <var Ftype: Data....Flle);
var
Entry : List; (Data entry record}

begin
with Entry do
begin

Page;
Wrlte('Name:');
Readln(Name);
Write('Street:');
Readln(Street);
Write('Clty:');
Readln(Clty);
Wrlte('State:');
Readln(State);
Wrlte('Zipcode:');
Readln(Zip);
Wrlte('Phone •');
Readln(Ph);

end; (with}
Ftype· := Entry; (These two are .. }
Put<Ftype); (..same as Write(Ftype, Entry)}

end; (ENTER...DAT A}

procedure LOOKUP_[)ATA (var Ftype: Data....File);
var

Record....No: integer; (Record number, working value}
begin

Page;
Write('Enter record number:');
ReadLn(Recor<LNo);
Seek(Ftype, Recor<LNo); (copy Record....No record Into Ftype"}
Get(Ftype);
with Ftype· do
begin

Page;
Wrl teln(Name);
Wrl teln(Street);
Wrlte(City);
Writeln(', ·, State);
Wrlteln(Ph)

end (with}
end; (LOOKUP_[)ATA}

FIGURE 14.3 (continued)

171

172 RANDOM AND TYPED FILES

procedure DISPLA¥_FILE (var Ftype: Data.File);
begin

Page;
repeat (until EOF}
with FtypeA do
begin

Page;
Writeln(Name);
Wrl teln(Street);
Wrlte(Clty);
Wrlteln(', ·,State);
Writeln(Ph)

end; (with}
Get(Ftype) (same as Read(Ftype, Entry);FtypeA:=Entry;}

until EOFCFtype)
end; la1SPLA¥_FILE}

begin (Main}
Fname := NewFlleName('Enter file name:');

(Enter Records, One At A Time}
dpen(Ftype, Fname);
repeat (until done}

ENTER..DAT A(Ftype);
Write('More to enter(V /N)?');
Readln(Answer);

until (Answer= 'n') or (Answer= 'N');
CJoseCFtype);

(Display entire file}
Open(Ftype, Fname);
Seek(Ftype, 0); (Force record O to .. .}
Get(Ftype); (... be copied to buffer}
Seek(Ftype, 0); (Reset record" to fix bug}
DISPLAVJILE(Ftype);
Close(Ftype);

(Randomly Retrieve Records}
Open(Ftype, Fname);
repeat (until done searching}

LOOKUP....DATA(Ftype); (Search file, randomly}
Write('More to lookup(V /N)?');
Readln(Answer);

until (Answer= 'n') or (Answer= 'N');

end.

FIGURE 14.3 (continued)

-

-

-

-

-

-
-

PROBLEM SOLVING 173

Summary

Typed files can be processed sequentially or randomly. A typed file has a certain
type associated with its records. Here are several examples:

File of Integer;

File of Real;

File of Record
X : String;
Y: Real

End;

File of Record
M : Char;
Z : Record

End;

S : String;
T: Real
End

Use the following intrinsic functions and procedures to process typed files
(some of these have been discussed in the session on text files, but they also
work in the expected way on typed files):

Reset
Rewrite
Open
Close
EOF
GET
Put
Seek
FilePos
Read

Write

NewfileName
OldfileName

Open for input.
Open for output.
Open for input and output.
Close.
True if EOF reached.
Advance Record Number and read.
Write and advance Record Number.
Seek Record Number-th record.
Return the current record number.
Same as: Get (f);

F _data := f';
Same as: f' := Ldata;

Put (f);
Dialog box for getting a new filename.
Dialog box of getting an old filename.

Random file processing follows a pattern. Create and append new records
to an existing file using sequential access methods. Look up and modify existing
records using random access methods.

Problem Solving

I. What are the differences between the following:
a. Random vs. sequential files?

174 RANDOM AND TYPED FILES

b. Text vs. typed files?
c. Reset vs. Rewrite?
d. Seek vs. Get?
e. Write vs. Put?

2. Write a program to store a list of names, entered from the keyboard,
in a file called PEOPLE. Add procedure that prints this list on the
printer. Add another procedure that retrieves and displays any name,
given its record number as input.

3. Modify the program of Figure 14.3 by adding a procedure called
MODIFY _DAT A which allows you to change all components of a
randomly accessed record.

4. Suggest a data declaration section for a program that builds a file to
keep student grades. The file must contain the following:
a. Student's last and first names.
b. Two midterm and one final test score (in percents).
c. Five homework scores (in percents).
d. Student's class standing (Fr., Soph., Jr., Sr.).

5. Write a program to create, display, and look up records in the file of
Problem 4.

6. Modify the program of Figure 14.3 so you can search the data file for a
certain name and display the entire record found in the Text Window.
If the name cannot be found, your program should display, "Name not
found."

-

-

-
-

Session 15:

More on Procedures and Functions

In this session you will learn about scope rules; nested procedures and functions; side-effects;
global, local, and nonlocal names; recursion and the subtleties of advanced subprogramming
techniques.

Scope Rules

Pascal is sometimes called a block-structured language because of the way Pascal
programs are organized in units called blocks. A block is a section of program
containing its own data declaration part and executable statement part. Const,
Type, Var, and subprogram headings are put in the data declaration part, while
executable statements are put between an enclosing Begin-End pair.

The main program consists of a block which in turn can contain other
blocks. Procedures and functions are named blocks-they have an identifier and
their own data declaration and executable statement parts.

Procedures and functions can be nested one within another; this causes
many programmers difficulty in using Pascal. Nested blocks create program
environments called scopes. The scope of an identifier (whether Const, Type,
Var, Procedure, or Function) is the block in which it is declared.

Identifiers declared in the main program are called global identifiers because
they exist in the outermost block and are accessible in all other parts of the
program. The scope of a global variable, for instance, is the main program block.

175

176 MORE ON PROCEDURES AND FUNCTIONS

Unfortunately, blocks can be nested within blocks as if they were boxes
packed one inside of the other. Global identifiers penetrate these inner boxes,
which gives rise to some problems to Pascal programmers. Some of the conse­
quences of nested block structure are discussed in the remainder of this section.

Spelling Anomaly

A nested block may contain an identifier that is spelled the same as a global
variable. The two names may look the same, but they are the names of two
entirely different objects. When the inner name is used inside the inner block,
the inner object is referenced. When the outer name is used inside the outer
block (yet still outside the inner block), it references the outer object.

Here is a simple example showing that although objects X have the same
name in two blocks, they refer to different objects.

Program ALIAS;
Var

X : Integer;

Procedure INNER;
Var

X: Real;
begin

x := 9.99
end; {procedure}

Begin
x := 100

End. {ALIAS}

{global X}

{local X}

{inner object assignment}

{outer object assignment}

The inner X is different from the outer X. The inner X is called a local
identifier and is used to access the local object. The outer or global identifier X cannot
be accessed from within procedure INNER because its name is used to reference
the local object.

The most local identifier always has precedence. In other words, if you make
an assignment to a local identifier, it won't change the value of a global
identifier with the same name.

Side-Effed Anomaly

A nested block may reference an outer object by using the name of the outer
object from within the inner block. This is called a side-effect when an action from
within the nested block produces a change to an outer block object.

-

-
-

-

-

SCOPE RULES

Program SIDE;
Var

X : Integer;

Procedure INNER;
Var

Y : Integer;
begin

x := 0
end;

Begin (SIDE)
x := 1
INNER:
Writeln (X)

End. {SIDE}

{global X}

{local Y}

{side-effect}

{side-effect}
{outputs: O}

This simple program illustrates how procedure INNER produces a side­
effect in the main program. First, the value of X is set to l; then INNER is
executed. Within INNER, X is set to 0. The value of X becomes O in both the
inner and global blocks.

Enter program SIDE in your Macintosh Pascal Program Window, then open
the Observe Window. Enter variables X and Y as expressions in the Observe
Window. Repeatedly select RUN-STEP and watch how variable Y goes from
"Unknown" to some random (undefined) numeric value. Xis set to 1 in the main
program, and then to 0 in block INNER, as you STEP through the program.

Nonlocal Objects

The ramifications of block structure are shown in Figure 15.1, which matches
the skeleton program shown in Figure 15.2. Put on your thinking headphones
and follow this explanation:

First, program MAIN has three nested blocks inside its global block. The
two blocks named Bl and B3 are nested one level deep. These two blocks are
accessible by any statement in the executable statement part of MAIN.

Block B2 is nested within block Bl-we say it is nested two levels deep.
Procedure B2 cannot be accessed from the executable statements of MAIN
because block Bl hides block B2 from view by the global block. The only way B2
can be executed is from a call within block Bl.

The connecting lines in Figure 15.1 show the meaning of each identifier
in terms of global, local, and nonlocal objects. A nonlocal identifier is the name of a
nonlocal object. A nonlocal objed is an object which is inherited from an outer,
nonglobal block. For example, the objects from block Bl are also accessible to
block B2, except for the Spelling Anomaly rule. This means all Bl locals are
accessible by block B2, and all globals except the ones with identical spellings are
accessible by B2.

178

FIGURE15.1
Scope rules.

Globals: A

MORE ON PROCEDURES AND FUNCTIONS

c Bl B3

x 62

--------tll}U~ g
Globals 83 A B C Bl
Locals x v

Nonlocal identifiers are the names inherited from an outer, nonglobal
block. A program must have at least two levels of nesting in order to have
nonlocal identifiers.

~

; I

-
-

WHAT BLOCK ACTIVATION DOES

FIGURE15.2
MAIN program.

program MAIN;
var

A, B, C : INTEGER; (Global variables}
procedure BI; (Global procedure}
var

B, X : integer; (local variables}

procedure B2; (Nested local proc)
var
c, Y : integer; (local variables)

begin (B2}
C := Y + B + X + A; (uses scope rules)

end;(B2}

begin (Bl}
C := B; (Side-effect)

end; (Bl}

procedure BJ; (Another global proc}
var

X, Y : Integer; (Locals In diff. block)
begin (BJ}
C := Y + B + X + A; (Compare with B2}

end; (BJ)

begin (MAIN}
(Experiment here}
end.

What Block Activation Does

179

A program block is activated whenever it is entered and its first executable state­
ment is executed. Conversely, a program block is deactivated as soon as its last
statement is executed and control leaves the block. A procedure is activated each
time it is called and deactivated each time control passes back to the calling block.

180 MORE ON PROCEDURES AND FUNCTIONS

Local objects do not exist unless the block containing them is activated.
You can see a block become activated and then deactivated by running a pro­
gram with a local variable displayed in the Observe Window. An object is
"Unknown" if it is local to a deactivated block.

As soon as a block is entered, its local objects (Const, Type, Var) are created,
but they remain undefined until values are provided for them. The Observe
Window usually displays large negative numbers for undefined objects.

When a block is exited, all of its local variables no longer exist in main
memory; hence, they become "Unknown." However, if a local identifier has the
same spelling as a global identifier, the value of the name object will revert to
the value of the global object. This effect will become apparent in the following
hands-on experiments.

Hands-On Blocks

Perhaps the best way to become familiar with the scope rules of Pascal is
through experience. In the following experiments you should use RUN-STEP
and put in STOPS to make your program execute very slowly. Also, open the
Observe Window and display all variables, so you can see them change values
from one step to the next.

Modify the program of Figure 15.2 so that it contains executable state­
ments, as shown in Figure 15.3. Each block contains a WriteLn to tell you it is
activated. In addition, all local variables are assigned a value so you can follow
what happens to them as the program is stepped to completion.

Initially, global variables A, B, and C are assigned the values of 100, 200,
and 300. These values will change as blocks Bl and B3 are first activated (called)
and then deactivated.

Variables A, B, and C are global variables that start out "Unknown,"
become undefined, and then finally become defined. Global variables B and C
are spelled the same as local variables: B in Bl and C in B2. Hence, you will
observe the Spelling Anomaly rule when running the program. Variable C is
modified by a side-effect in Bl and another side-effect in block B3.

Next, modify Testl by adding a call to Procedure B2 from within Pro­
cedure Bl, as shown in Figure 15.4. Program Test2 calls Procedure Bl, which in
turn calls Procedure B2. RUN-STEP through the program and observe the
changing values of all variables. Here is what happens when the assignment
statement inside B2 is executed:

C := Y + B + X + A; {uses scope rules}

Local object Y is referenced from within block B2 and added to nonlocal
objects Band X referenced from block Bl. Finally, the sum is increased by the
amount stored in global object A referenced from the main program block. The
following values are used to compute C:

-

-

- HANDS-ON BLOCKS 181

program Test I;
var

A, B, C : INTEGER; {Global variables}
procedure BI; {Global procedure}
var

B, X : integer; {local variables}

procedure B2; (Nested local proc}
var

C, Y: integer; {local variables}
begin (B2}

Wrlteln('ln B2');
y :=I;
C := Y + B + X + A; (uses scope rules} - end;(B2}

begin (Bl}
Writeln('ln BI');
X := 7; (define X, locally}
B := 2; [define B, locally} - C := B; (Side-effect}

end; (Bl}

procedure BJ; {Another global proc} - var
X, Y: integer; {Locals in diff. block}

begin [B3} - Writeln('ln BJ');
X := J; [define X, locally}
Y := 4; [define Y, locally} - C := Y + B + X + A; [Compare with B2}

end; (B3}

begin (MAIN} - WrlteLn('ln Main');
A:= 100;
B := 200; - c := 300;
Bl;
B3;

end. -
FIGURE 15.3 - Program Test1.

182

F/GURE15.4
Program Test2.

program Test2;
var

MORE ON PROCEDURES AND FUNCTIONS

A, B, C : INTEGER; (Global variables}
procedure BI; (Global procedure}
var

B, X: integer; (local variables}

procedure B2; (Nested local proc}
var

C, Y: integer; (local variables}
begin (B2}

Wrlteln('ln B2');
y := I;
C := Y + B + X + A; (uses scope rules}

end;(B2)

begin (Bl}
WriteLn('ln BI');
X := 7; (define X, locally}
B := 2; (define B, locally)
C := B; (Side-effect}
B2; (****Added to Testl****}

end; (Bl)

procedure B3; (Another global prod
var

X, Y: integer; (Locals in diff. block}
begin (B3J

Writeln('ln B3');
X := 3; (define X, locally}
Y := 4; (define Y, locally}
C := Y + B + X + A; (Compare with B2}

end; (B3)

begin (MAIN}
Wrlteln('ln Main');
A:= JOO;
B := 200;
c := 300;
BI;
B3;

end.

-

-

-
-

-

PARAMETER PASSING 183

y

8
x
A

is
is
is
is

1
2
7

100

from
from
from
from

82
81
81
Test2

C is computed as 110, but then thrown away when B2 is deactivated.
RUN-STEP through this example and convince yourself that the scope rules
work.

Simple Scope Rules

Scope rules can be simplified if you never use the same identifier for two
different objects in two different blocks.

1. The scope of an identifier is the block in which it is defined and all the
blocks (nested or otherwise) contained within the definition block.

2. Global objects are declared in the outermost (main) block.

3. Local objects are declared in their own blocks.

4. Nonlocal objects are declared in some other block.

Some identifiers may not be accessible by blocks which do not contain them.
This occurs whenever a nested block is contained within another nested block
which shields the inner nested local identifiers from access. This is illustrated by
Figure 15.l, showing local variables C and Yin B2, which cannot be accessed from
statements in MAIN or B3. In fact, Procedure B2 cannot be called from any­
where other than block Bl.

Parameter Passing

Passing information in and out of a block by side-effect is considered poor form
by most programmers. Rather than commit such a faux pas, you should always
communicate information from one block to another through parameter lists.

Recall that an actual parameter is an object listed in the procedure or
function call. A formal parameter is an identifier listed in the procedure or
function heading.

There are two ways to pass information back and forth between a calling
block and a called block. The first method works for input to the called block; the
second for both input and output to the called block.

Pass-by-Value

A parameter is passed-by-value if a copy of its value is made and the copy is
assigned to the formal parameter at the time the called block is activated. The

184 MORE ON PROCEDURES AND FUNCTIONS

copy is destroyed when the called block is deactivated. Hence, this method
works only when the parameter value is an input to the called block. "Pass-by­
value" parameter passing has the virtue of causing no side-effects.

Procedure DESTINATION (A : Integer);
begin

Writeln (A)
end;

Pass-by-value parameters are declared in the procedure heading, as shown
above. They become local objects when the procedure is activated; their initial
value is obtained from the copy of the actual parameter's value.

Begin
DESTINATION

{MAIN}
{3 is the actual parameter's value}
{MAIN} End.

The actual parameter can be any expression which evaluates to a com­
patible type. The following actual parameters are computed before a copy is
assigned to A:

DESTINATION (B * C);

DESTINATION (Ord('Z'));

DESTINATION (3 * (B-5));

J>ass-by-~eference

The Var reserved word is used in the list of formal parameters to indicate that a
parameter is to be passed by indirect reference. Instead of making a copy of the
value to be passed, the rule of pass-by-reference is to pass a pointer to the value.
A pointer is like a page number in the index of this book; it tells where a word or
topic appears (its page number). The value of a pointer is the location in memory
of the actual parameter.

A Var parameter is actually an alias for the original object. The value in the
calling block is accessed and manipulated by the called block. No copies are
made, and the value is changed as if by side-effect.

Pass-by-reference has two advantages:

1. Memory space is saved because no copy is made. This may be impor­
tant when long arrays are passed.

2. The called block can return one or more computed values to the calling
block.

There is one negative aspect to "pass-by-reference" parameter passing that you
should be aware of:

Actual parameters cannot be expressions or con­
stants if they are passed by reference. Instead,
they must be Var identifiers.

-

-

RECURSION 185

You can test this disadvantage by typing the following incorrect program in the
Pascal Program Window:

Program MAIN;

Begin

Procedure SUB (Var X : Integer);
begin
end;

SUB (2)
End. {MAIN}

Selecting RUN-GO will result in a thumbs-down error message when the
program reaches the call statement containing the constant 2 as an actual
parameter.

External Blocks

An external block is one that is not contained within the global block of your
program. There are two kinds of external blocks: (1) intrinsic functions and
procedures and (2) user-defined functions and procedures.

Intrinsic functions and procedures consist of 1/0 subprograms such as
WriteLn, Reset, Get, or Seek and special library functions and procedures given
in the Macintosh Pascal manual. Library routines exist for doing sound, gra­
phics, text processing, mouse 1/0, and other Macintosh system operations.

User-defined functions and procedures are accessed through the "Uses"
statement. (We will not discuss this statement here. See the Macintosh Pascal
manual and the Inside Macintosh documentation for information on this advanced
feature.)

Recursion

Consider the following definition:

The sum of the first N natural numbers is equal to N plus the sum of the first
N-1 numbers; the sum of the first number is 1.

To formulate this definition, assuming S denotes the sum, we can write:

1)

2)
S(N) = N + S(N - 1)

S(1) = 1

{for the first clause}

{for the second clause}

Furthermore, let's compute the sum of the first five natural numbers, or in
mathematical notation S(5). Substituting 5 for N, the first equation becomes:

S(5) = 5 + S(4)

You need the sum of the first four natural numbers before you can compute the
value of S(5). Applying the same definition for S(4) produces:

186 MORE ON PROCEDURES AND FUNCTIONS

8(4) = 4 + S(3)

Continuing in this manner yields the following:

(a) 8(5) = 5 + S(4)

(b) 8(4) = 4 + S(3)

(c) 8(3) = 3 + S(2)

(d) 8(2) = 2 + 8(1)

(e) 8(1) = 1 <- according to the
second clause of
the definition

Careful examination of this list reveals that you can use the result of (e) 5(1) to
compute the result of (d), use (d) 5(2) to find the result of (c), and so on through
the list of formulas until you get the value for (a) 5(5). Therefore, substituting
for 5(1), 5(2), ... until you reach 5(5) should produce 5(5) = 15.

Recursive Definition

This example is intended to show you an example of a definition (the sum of the
first N natural numbers) used in its own definition. A definition in which the
object being defined is used within its own definition is called a recursive definition.

Before going any further, let's analyze how the solution for 5(5) was
achieved. To arrive at the solution, we reduced the problem to the slightly
simpler problem of finding the sum of the first four natural numbers and then
added 5. This process was repeated over and over again, until we reached the
self-defined value S(l) = 1.

In general, a recursive definition consists of two parts: One part relates
the final solution to an intermediate solution of a simpler form of the same
problem (i.e., 5(5) = 5 + 5(4)). The second part yields a nonrecursive solution to
a specific segment of the problem (i.e., 5(1) = 1).

Recursion in Pascal

Recursive solutions to programming problems are possible if procedures and
functions are allowed to call themselves. In Pascal, when a procedure or func­
tion calls itself, it is called simple recursion. Also, a procedure or function may call
a second procedure or function, which at some point calls the original procedure
or function; this is called indirect recursion.

Each time a block is called recursively, all the local variables are copied; the
new copies do not have any impact on the copies generated by previous calls.
Therefore, if a procedure is called three times from itself, at some point four
copies of its local objects exist (each object may possibly contain different
values). This idea is important to understand, so it will be illustrated in the next
experiment.

-

-

-

-
-

HANDS-ON RECURSIVE FUNCTION S(N) 187

Hands-On Recursive function S(N)

Fire up your Macintosh Pascal, enter Program SumRec, shown in Figure 15.5,
and select RUN-GO. You should get 15-exactly the same result obtained when
we analyzed S(5) earlier in this session. In Function Sum, the local value of N is
compared with 1; if it is not equal to 1, Function Sum is called again. This
process corresponds exactly to the first part of the recursive definition pre­
sented above. If N is equal to l, Function Sum returns 1, corresponding to S(l) =
1 in the second part of the definition.

Now, to see how the function calls are performed, open the Observe
Window and enter N as an expression. Insert a STOP sign in front of

If N = 1 Then

Select RUN-GO with the Observe Window visible so you can watch as the value
of N changes. Notice that at first the value of N is 5. Select RUN-GO again. This
time, the value displayed will be 4. As you repeat RUN-GO, N will decrease by 1
until N = 1; then the final result is computed and displayed in the Text Window.

Each of the values of N corresponds to one call of Function Sum. Also
remember that for each call a copy of N is created (previous copies are not
affected). What you saw in the Observe Window were the values of different copies
of N.

Each time Sum returns from a call, its copy of N is destroyed. The copy of
N = 1 is destroyed, followed by N = 2, N = 3 ... until the final copy is destroyed
and Sum returns 15 to the main program.

program SumRec;
(Recursive Solution of the Sum of the first N natural number}
function Sum (N: Integer): Integer;
begin
if N = I then
Sum:= I (to take care of SC I)= I }

else
Sum := N + Sum(N - I); (this is for S(n)=n+S(n-1) }

end;
begin

Writeln(Sum(S))
end.

FIGURE15.5
Hands-on recursion.

188 MORE ON PROCEDURES AND FUNCTIONS

When Not to Use Recursion

Most of the time, a recursive solution is the most concise and elegant solution
possible, but there are many occasions when recursive problems are best solved
using simple iteration. Figure 15.6 is an alternate solution to the summation prob­
lem using iteration. Enter and run it, to see that you achieve the same result.

Often a recursive solution is not the best solution. As a simple rule, use a
recursive solution if you need temporary storage at each stage of calculation;
otherwise use an iterative method for solving the problem. In the hands-on
example, there was no need to store temporary variables, so naturally the itera­
tive solution is more attractive.

Forward Referencing

In Pascal, all identifiers should be defined before they are used; yet there are
exceptions to this rule. One exception occurs in the definition of types, which
you will learn about later. The second exception occurs when you must use pro­
cedures or functions before they are defined in the data declaration part of a
block. In cases where it is necessary to use a procedure or function name before
it is defined, the procedure or function heading should be declared as a forward
reference (located before the procedure or function is called).

FIGURE15.6

program SumNRec; (Sum Iterative solution}

funcUon Sum (N: integer): integer;
var

I, j : Integer;
begin
j := O;
for I := I to N do
j := j + i;

Sum:= j
end;

begin
Wrlteln(Sum(S))

end.

Hands-on nonrecursive solution.

!Im\
I

-

-
-

-

-

SUMMARY

Procedure Add
(Var Result : Integer; Num1 : Integer;

Num2 : Integer); Forward;

189

{forward reference}

A call to a procedure can be made even before the definition of its body
appears. When Procedure Add is defined by forward reference, the actual pro­
cedure header appearing later must not include its parameters.

Procedure Add; {notice, this time parameters are not repeated}
b!=lgin

Result := Num1 + Num2
end;

This definition must appear at some point beyond the forward reference.

Program AVANTE;

Procedure HAI (X : Integer); Forward;

Procedure LOW;
begin

HAI (5)
end;

Procedure HAI;
begin

WriteLn ('Hi!')
end;

Begin {AVANTE}
LOW

End. {AVANTE}

{header only in reference}

{reference to a forward}

{no parameters here,
body definition only}

Summary

Procedures and functions are valuable because they provide a mechanism for
decomposing a large program into small, manageable parts. Divide-and-conquer
is one of the most powerful methods of solving complex problems.

The scope rules of procedures and functions are sometimes confusing.
There are two areas where they must be fully understood, however: nested
blocks and parameter passing.

First, when in doubt, always use unambiguous names in nested blocks;
this will help you avoid the Spelling Anomaly problem. Second, do not use
global identifiers from within nested blocks; this will prevent side-effects.

In general, it is a good idea to avoid nesting beyond one level. Thus, a
program should consist of a main block and many other blocks at the same level
within the main program. This convention will guarantee that all subprograms
are global and therefore can be called from anywhere in the main program or
other subprograms.

190 MORE ON PROCEDURES AND FUNCTIONS

Problem Solving

1. "Repair" Program Test2 by changing the names of identifiers that
conflict with one another; then remove all side-effects. Your new
program must use parameters to pass data between blocks.

2. Draw a diagram like the one in Figure 15.1 for the following program
and its nested blocks.

Program MAIN;

Var
X : Integer;

Function A (Y:lnteger) : Integer;
begin

A:= y
end:

Procedure B (Var M : Integer);
Var

Z : Integer;
begin

end;

Begin {MAIN}
X := O;
B (X)

End. {MAIN}

Z := A(M)

{function A}

{procedure B}

3. A function for generating random numbers is in an external pro­
cedure library called SANE. Run the following program and report the
numbers generated.

Program RAND;

Uses

Begin

SANE;

Var
S : Extended;
i : Integer;

s := 137;
For i := 1 To 7 Do
begin
S := Random;
Writeln(S)

end
End. {RAND}

{external blocks}

{extended arithmetic}
{loop counter}

-

-
-
-

PROBLEM SOLVING 191

4. Modify the test program in Figure 15.4 as follows, then RUN-STEP to
see what the effect is on the final value of C.
(1) Remove local variable C from Block 82.
(2) Remove the call to 83 from the main block so that 83 is not used.
(3) Leave the statement C := Y + B + X + A; as it appears in 82.

What is the effect on C?

5. Draw a diagram like the one in Figure 15.1 for the following program.

Program Test3;

Var
A : Integer;

Function T1 (A:lnteger) : Integer;
Var

B : Integer;
Function T2 (B:lnteger) : Integer;

Var
C : Integer;

begin
c := 1;

end;
T2 := T1 (C)

{T2}
begin {T1}

B := 2;
T1 := B

end;
Begin {Test3}

{T1}

End.

A:= 3;
A := T1 (A)

{Test3}

6. Write a recursive function to compute the pi-product defined as
follows:

Recursively,

pi = 1 * 2 * .. N

pi(N) = N * pi (N + 1)
pi(1) = 1

(where N > 0)

(where N > 1)
(where N >= 1)

Session 16:

Pointers and
Dynamic Data Structures

Data types such as arrays and records that you'ue learned about in earlier sessions are called
static data structures because their size remains fixed during program execution. In this
session, you will learn about a class of data structures called dynamic data structures. A
dynamic data structure can grow or shrink as a program runs.

Why Do We Need Dynamic Data Structures?

Recall the program for building, sorting, and printing a list of phone numbers in
Session 10. The solution given there stored the list in an array of a fixed size.
You needed to know exactly how many phone numbers were to be kept in the
list before declaring the array size accordingly. Rarely would you know in
advance how many phone numbers to store. You can estimate the upper limit
(say 100), but what if you only need to store a relatively small amount, say, five
or ten numbers? In that case, your program would waste computer memory.
Conversely, if the phone number list exceeds 100, the array would not be long
enough and you'd need to modify the program to handle more numbers.

Addition Problem

When using an array to store a list you face the problem of how to do insertions
(or additions) to the list. More specifically, if a list of phone numbers must be

193

194 PRINTERS AND DYNAMIC DATA STRUCTURES

kept in order all the time, then adding a new number will cause one or more
entries to be pushed down the list to make room for the new number in the
correct position. For example, suppose a list has the following phone numbers
ordered alphabetically:

Emily 305 452 4111
John 503 254 1114
Teel 350 542 1141

To add Molly 530 606 2128 in the right spot, you must move John and Ted to
make room for Molly. This may not seem difficult when there are only two or
three items to move, but what if there are 100 or more!

Deletion Problem

Similarly, when you delete items (a phone number, for instance) you must move
all of the items below the deleted item up.

Examples like these show that static data structures are unsuitable for
storing information whose length is subject to change. Dynamic data structures
should be used to store information that may be changed through insertion,
deletion, or addition.

Pointers

A pointer is another type like integer, real, or boolean. It is also called the reference
type because pointers are used to reference objects indirectly. A pointer variable
is a channel through which you can access other types of information. For
example, a page number in an index containing important words in a textbook
could be considered a pointer. To quickly locate the page containing information
you can't recall, first look up the page number in the index and then turn to it. A
page number is a reference to other information just as a Pascal pointer is a
reference to other values stored in memory. In Pascal, pointer types are defined
in the following way:

A Page PhonePage

Name

-- Phone no.

FIGURE16.1
Pointer variable referencing an object.

-

-

POINTERS 195

Type
PagePoi nter = 'PhonePage; {using the up-arrow}

You should read this type declaration as "PagePointer is a pointer to a Phone­
Page." The up-arrow or caret(') symbol tells Pascal that PagePointer is a pointer
type. What it means is that a variable of type PhonePage can be accessed with a
pointer of type PagePointer.

In Figure 16.1, AP age references an object of type PhonePage. Use APage ',
which is read "AP age points to ... ", to show this association in Pascal. In gen­
eral, the following rule applies:

APage: contains a pointer value (pointer).
APage': contains the value pointed at by pointer.

We often abuse the English language by calling APage a pointer and what APage'
points at the pointee, to keep the two separate.

Nil Pointers

Suppose you have a phone book and one of its pages is missing. Perhaps some­
one tore out the page that a friend's number is on. Now the references to the
missing page are futile because they refer to "nothing." Similarly, in Pascal there
is a special value for variables of type pointer called Nil, which points to nothing.
For instance:

A Page PhonePage

Name

Phone

NextPhonePage

FIGURE16.2
Two pointer variables referencing the same object.

196 PRINTERS AND DYNAMIC DATA STRUCTURES

APage := Nil; {vacuum}

This means that APage is undefined. We usually use a special symbol such as
the "ground wire" shown in Figure 16.3 to graphically represent a nil pointer.

Operations on Pointers

The operations allowed on pointers are:

=,<>

New (P)

Assigns a pointer to another pointer variable of the same type. For
example, assuming both identifiers are of the same type:

NextPhonePage := APage;

This means that both NextPhonePage and APage point to the same
object (see Figure 16.2).
Compares the value of two pointer variables for equality (=) or not
equality (< >). Comparing for equality, the result will be True if both
variables are pointing to the same object and False otherwise.
Creates an object of type P that can be referenced by P •. For example,
to create a new PhonePage:

New (NewPhonePage);

Here NewPhonePage is a pointer to a PhonePage. To refer to an item in
PhonePage:

NewPhonePage'.Name := 'Allen';
or

NewPhonePage'.Phone := '555 777 5124';

Dispose (P) Destroys the object referenced by pointer variable P. For example, if
NewPhonePage· currently points to the PhonePage with Allen's
number.

Dispose(NewPhonePage);

will destroy (omit, erase) the pointee information. NewPhonePage· no
longer designates anything.

Hands-On Linked Lists

Throughout this experiment, you will develop a simple list of phone numbers
using dynamic data structures. Each time you add a new number to the list, a
new page is created dynamically and linked or connected to a previous page.
Imagine a phone book binder to which you add new pages each time you want
to enter a new number. First, you will make a program to add new numbers to
the front of the list. Then in the next section you will modify the program to
make insertions into the middle of the phone book, as well as the beginning or
end, so that it remains in alphabetical order.

i1
I

-

HANDS-ON LINKED LISTS

Phonelist

JOHN

317-2412-4111

IRENE

I
I 713.2411-0001
I
I
I
I
I I

/ / I ___ _....... ________ __.... ________ ,_,,,,,,,

Threads to connect each phone page

FIGURE16.3
PhoneList with three phone pages.

197

BA KUS

777-888-666

The following type declarations and variables are needed, so bring up your
Macintosh Pascal and enter:

Type

Var

PagePointer = "PhonePage;
PhonePage = Record

Name : String (20];
Phone : String (12];
Next Page : PagePointer
end;

string20 = String [20];
string12 = String [12];

Phonelist : PagePointer;
NextPhone : Page Pointer;
AName : string20;
Phone : string12;
done : Boolean;

198 PRINTERS AND DYNAMIC DATA STRUCTURES

PhonePage defines the format of each page in the "binder." It defines a
place for the name of the person (Name); a place for the phone number (Phone);
and a place to be used for linking this page to the next page of the binder
(NextPage), if there is a next page.

NextPage is a pointer variable of type PagePointer. Notice in the first type
declaration that PagePointer points to a variable of type PhonePage.

PagePointer = "PhonePage; {points to PhonePage}

We've also defined the binder itself (PhoneList) as a pointer to the very first
page of the list. PhoneList always points to the first PhonePage. See Figure 16.3
for the case of three phone pages in the PhoneList binder.

At the very beginning, the binder (or PhoneList) is empty, so it points to
nothing.

Phonelist Nil;

Adding to PhoneList

To add a new page to PhoneList, first create a new PhonePage. Second, record
the information (name and phone numb~r) and then add the new entry to the
existing list. ·

New (NewPage);

NewPage".Name := 'Albert';
NewPage".Phone := '418 001 2781'
NewPage".NextPage := Nil;

{creates a new PhonePage that
can be referenced by NewPage}

Notice how NextPage is -set to Nil because (for the time being) it is not con­
nected to any other page. Now add this new page to the PhoneList. For simplic­
ity, let's add each new page to the beginning of the PhoneList and not worry
about ordering them.

NewPage"NextPage := Phonelist;

Phonelist := NewPage;

{first connect existing pages to
the new one}

{second, point to the new page}

This is how it works: The new page will be the very first page since PhoneList is
initially Nil. The first step assigns Nil to NextPage, as shown in the "before" part
of Figure 16.4 (a). If there are some pages already in the list, then the first step
will insert a new page before the existing pages. (Refer to Figure 16.4 (b).)

Procedure AddPhone in Figure 16.5 employs the method explained above.
AddPhone is called each time a new entry is added to the beginning of the list.

Printing a Phone List

Procedure AddPhone takes care of building a list of names and phone numbers.
To print or display each PhonePage, start from the very first page pointed at by

HANDS-ON LINKED LISTS 199

- Phone List PhoneList

- Before After

ALBERT

418-001-2781

(a) Addition of a new page to the empty PhoneList.

Phone List

Before JOHN

513-419-6711

DAVID

318-412-1109

P.honeList
I

-=i:::::-
-- ALBERT --After

418-001-2781

JOHN

513-419-6711

DAVID - 318-412-1109

1
~

(b) Addition of a new page when there are already some in PhoneList. -
FIGURE16.4

200 PRINTERS AND DYNAMIC DATA STRUCTURES

PhoneList

ALBERT ,-f---,1/ r DAVID

418-001-27-----181 ,__ ___ , 1------t 513-419-6711
318-412-1109

JOHN

AnotherPage

PhoneList

AnotherPage

FIGURE16.5
Printing a list.

1

(a) After: AnotherPage = Phonelist.

ALBERT
JOHN

t
DAVID

418-001-2781
513-419-6711

318-412-1109

•
....

-

(b) After: AnotherPage = AnotherPage?NextPage.

AnotherPage

(c) Time to stop printing happens after printing last page.

I I

-
-
-

-
-
-
-

HANDS-ON LINKED LISTS 201

PhoneList, print it, and then use the pointer stored in NextPage to get the next
page. Repeat the same action until the last page is reached. Since the pointer on
the last page (see the page of David, Figure 16.4 (b)) is Nil, stop.

The following shows how to go from one page to the next (see Figure 16.5).

AnotherPage := Phonelist;

AnotherPage := AnotherPage".NextPage

{for first page}

{for going from one
page to the r ~xt}

PrintPhones is a complete procedure to print the entire PhoneList:

Procedure PrintPhones (Phonelist : PagePointer);
Var

AnotherPage : PagePointer;
begin

AnotherPage := Phonelist
While (AnotherPage <> Nil) Do

end;

begin
Writeln ('Name : ', AnotherPage".Name);
Writeln ('Phone : ', AnotherPage".Phone);
AnotherPage := AnotherPage·.NextPage

end
{PrintPhones}

The While statement tests (AnotherPage < > Nil) for the end of the list; if so,
the loop is terminated (AnotherPage is Nil).

To make this hands-on example complete, you need a routine to read in
names and phone numbers. The Repeat loop in the following code reads names
and numbers and adds them to the list until an empty or Nil response is entered.

Begin

End.

Phonelist := Nil;
done := false;
Repeat

Writeln ('Enter Name: ');
Readln (AName);
Writeln ('Enter Phone#: ');
Readln (Aphone);
If (AName <> ' ') or (APhone <> ' ') Then

AddPhone (Phonelist, AName, APhone)
Else

done := true;
Until done;
PrintPhones (Phonelist);

Figure 16.6 shows the complete listing of Program PhoneBookl. Type in the
program and select RUN-GO to see how it works.

202

FIGURE16.6

PRINTERS AND DYNAMIC DATA STRUCTURES

program PhoneBook I ;
type
PagePointer = "PhonePage;
PhonePage = record

Name : string[20];
Phone : string[12);
NextPage : PagePointer;

end;
string20 = string[20];
string 12 = string[12);

var
Phonelist : PagePointer;
NextPhone : PagePointer;
AName : string20;
APhone : string 12;
done : boolean;

procedure AddPhone <var PhoneL ist : PagePointer;
Name : string20;
Phone: string20);

var
NewPage : PagePointer;

begin
New(New Page);
NewPage".Name := Name;
NewPage".Phone :=Phone;
NewPage".NextPage :=nit;
If Phonelist =nil then
Phonelist := NewPage

else
begin

NewPage·.NextPage := PhoneL ist;
Phonelist := NewPage

end
end;
procedure PrintPhones (Phonelist: PagePointer);
var

AnotherPage: PagePointer;
begin

AnotherPage := Phonellst;
while (ANotherPage <> ni I) do
begin
Writeln('Name: ·, AnotherPage".Name);
writeln('Phone: ', AnotherPage".Phone);

Listing of Program PhoneBook1. (continued on next page)

-

-

-

-
-
-

-
-

HANDS-ON LINKED LISTS REVISITED

AnotherPage := AnotherPage·.NextPage
end

end; (PrintPhones)
begin
Phonelist :=nil;
done:= false;
repeat

writeln('Enter Name:');
read(AName);
writeln('Enter Phone: ');
read(APhone);
if (AName <> ")or (APhone <> ")then
AddPhone(Phonelist, AName, APhone)

else
done := true;

until done;
PrintPhonesCPhoneL 1st);

end.

FIGURE 16.6 (continued)

Hands-On Linked Lists Revisited

203

In this hands-on experiment, you are going to modify Program PhoneBookl to
make it more versatile. Basically, you will add a new function to delete an entry
from the list and modify the procedure for inserting new phone numbers so
that the PhoneList is always in alphabetical order.

Deleting from PhoneList

Two things must be done in order to delete a page from the list. First, locate the
name to be deleted, and second, do the actual deleting.

Procedure FindPhone in Figure 16.9 locates a specific name and number.
FindPhone starts from the beginning of the PhoneList and compares the names
in each page with the name to be deleted. If the name is found, FindPhone
returns the pointer value referencing the page (CurrentPage) and another poin­
ter value referencing the page before the one to be deleted (PreviousPage).
FindPhone also sets the Boolean variable "found" to true.

You must return the pointer to the page preceding the one to be deleted.
Remember, we used the NextPage pointer variable stored in each page to make
the connection to the next page in the list. Now if we delete the page containing
the next pointer, the location of the next page will be lost! Furthermore, the list

204

Phonelist

.... ALBERT

41.8-001-2781

PRINTERS AND DYNAMIC DATA STRUCTURES

? •
,-------,
I JOHN I
I I
1---------l
I I
I 513-419-6711 I
I
1---------l
I I
I I L ________ I

Deleted page

DAVID

318-412-1109

•

(a) Deletion of phone page for John (16.5) without connecting the page before to the
page after.

Phonelist

ALBERT

418-001-2781

r--------,
I JOHN I
I I
l-------1
I
I 513-419-6711 I
1--------;
I I
I I
L--------1

Deleted page

(b) Deletion preserving the connection.

FIGURE16.7

DAVID

318-412-1109

-

-

HANDS-ON LINKED LISTS REVISITED 205

will "break" and your program will no longer be able to get to the page following
the deleted one. See Figure 16.7 (a). To avoid a "break" in the list and preserve
its continuity, make PreviousPage". Next Page point to the page after the one to
be deleted. See Figure 16.7 (b).

The pointer to the previous page and the pointer to the page to be deleted
are both needed to connect the list again following a deletion.

Phone List

ALBERT

r JOHN
418·001-2781

V1
DAVID

513-419-6711 -
318-412-1109 -

•
L--

(a) Before deleting the first page.

PhoneList

JOHN ...-
513·419-6711 r DAVID

318-412-1109 r----------, ____,
I I

I ALBERT I • , ________ ,
I I
I 418-001-2781 I
I I __,__
1--------~

I I
-

I L __________ I

(b)AfterPhonelist= CurrentPage. NextPage, and before DISPOS (CurrentPage).

FIGURE16.8
Deleting the first page of PhoneList.

206 PRINTERS AND DYNAMIC DATA STRUCTURES

PreviousPage· .NextPage := CurrentPage· .NextPage;

Finally, to dispose of the page which was just removed, insert the following
statement:

Dispose (CurrentPage); {release}

This will work fine as long as the deleted page is not the very first page;
otherwise the value of PreviousPage is Nil. Add the If statement below to take
care of this exception.

If PreviousPage = Nil Then
Phonelist := CurrentPage· .NextPage {if 1st page}

Else
PreviousPage· .NextPage := CurrentPage· .NextPage;

Figure 16.8 illustrates the deletion of the very first page of PhoneList.

Insertion in PhoneList

To insert new names and phone numbers in the proper locations and keep
PhoneList in alphabetical order, we must almost duplicate FindPhone. First,
search the list to find the right place to insert the new entry and then adjust the
pointer values of the new page, the page before (PreviousPage), and the page
after (CurrentPage).

When inserting a new element, three cases must be considered. First, the
page insertion might occur at the very beginning of PhoneList because either
the PhoneList is empty or NewPage should appear first alphabetically. Second,
NewPage might be inserted at the very end of PhoneList and third, it might be
inserted between two other pages. The following code handles all three of these
conditions. For the complete program listing for insertion, see Program Phone­
Book2 in Figure 16.9.

If found Then
begin

If PreviousPage = Nil Then

end
Else

begin

end
Else

NewPage".NextPage := CurrentPage;
Phonelist := NewPage

begin
NewPage".NextPage := CurrentPage
PreviousPage· .NextPage := NewPage;

end

PreviousPage".NextPage := NewPage;

{insert at beginning}

{insert in middle}

{insert at end}

The last change to PhoneBookl makes it much easier to use. The follow­
ing commands have been added to Program PhoneBook2:

-

-

-
-
-

-

-
-
-

HANDS-ON LINKED LISTS REVISITED

S for STOP.
A for adding a new page to PhoneList.
D for deleting a PhonePage.
P for printing the PhoneList.

207

All commands can be entered as lower-case letters, as well as in capitals. After
entering a command you will be prompted for more information if necessary.

program PhoneBook2;

FIGURE16.9

type
string20 = string(20];
string 12 = string(12);
PagePointer = "PhonePage;
PhonePage = record

Name : string20;
Phone : string 12;
NextPage : PagePointer;

end;

var
Phonelist : PagePointer;
NextPhone : PagePointer;
AName : string20;
APhone : string 12;
Command : char;
done : boolean;

procedure lnsertPhone <var Phonelist: PagePointer;
Name : strlng20;
Phone : string 12);

var
NewPage : PagePointer;
PreviousPage, CurrentPage : PagePointer;
found: boolean;

begin
New(New Page);
NewPage".Name := Name;
NewPage".Phone := Phone;
NewPage".NextPage := ni I;
if Phonelist =nil then
Phonelist :=NewPage (The very first time}

else

Program listing for PhoneBook2.

208 PRINTERS AND DYNAMIC DATA STRUCTURES

begin
PreviousPage := nl I;
CurrentPage := Phonelist;
found := false;
while (CurrentPage <> nm and (not found) do
begin

If CurrentPage·.Name <=Name then
begin

PreviousPage := CurrentPage;
CurrentPage := ~urrentPage·.nextPage; (going to the next page)

end
else

found := true
end;

tr found then
begin
if PreviousPage =nil then
begin

NewPage".NextPage := CurrentPage; (Insertion at the beginning}
Phonellst := NewPage

end
else
begin

NewPage".NextPage := CurrentPage; [at the middle)
PreviousPage·.nextPage := NewPage

end
end

else
PreviousPage·.NextPage :=NewPage (end of list J

end
end;
procedure FindPhone (Phonelist: PagePointer;

Name : string20;

begin

var CurrentPage, PreviousPage: PagePointer;
var found: boolean);

found := false;
CurrentPage := Phonelist;
PreviousPage :=nil;
whtle (CurrentPage <> nm and <not found> do
begin

If CurrentPage·.Name =Name then
found : = true

else

FIGURE 16.9 (continued)

n
; i

\'""'!
!

ri
I I

I""'!
I, I

' I

~
I

-

-

HANDS-ON LINKED LISTS REVISITED

begin
PreviousPage := CurrentPage;
CurrentPage := CurrentPage".NextPage

end
end;

end; (FlndPhone)

procedure DeletePhone <var Phonelist: PagePolnter;
Name : Strlng20);

var
CurrentPage, PreviousPage : PagePointer;
found : boolean;

begin
FlndPhone(Phonellst, Name, CurrentPage, PreviousPage, found);
If found then
begin
If PrevtousPage = nll then

PhoneL ist := CurrentPage".NextPage
else

PreviousPage".NextPage := CurrentPage".NextPage;
Olspose<CurrentPage)

end
else

writeln('Name:·; Name,· Is not In the Phonellst')
end; (Delete J

procedure PrlntPhones (Phonellst: PagePolnter);
var

AnotherPage : PagePolnter;
begin

AnotherPage := Phonel ist;
while (ANotherPage <> nil) do

begin
Writeln('Name : ·, AnotherPage".Name);
wrlteln('Phone: ·, AnotherPage".Phone);
AnotherPage := AnotherPage".NextPage

end
end; (PrlntPhones }

begin
Phonellst :=nil;
wrlteln('Enter Your Command:');
readln(Command);
while (Command <> 'S') and (Command <> 's') do

FIGURE 16.9 (continued)

209

210

begin
case command of

'A', 'a':
begin
Wrlteln('Enter Name:');
Readln<AName);
wrtteln('Enter Phone:');
read(APhone);

PRINTERS AND DYNAMIC DATA STRUCTURES

lnsertPhone(PhoneUst, AName, APhone)
end;

'P', 'p':
Print Phones< PhoneL 1st);

·o·, 'd':
begin
Writeln('Enter Name to be deleted:');
Readln(AName);
De letePhone(PhoneL 1st, AName)

end;
otherwise
writeln('lnvalid Command entered:', Command)

end;
writeln('Enter Your Command:');
read In(Command)

end
end.

FIGURE 16.9 (continued)

Summary

Use pointers to process lists which may vary in length or require insertion or
deletion. Pointers are used to reference objects indirectly.

The up-arrow" is used to designate a pointer value. Either A· or ·A may
be used. A· means to reference the value that A points to. ·A means to declare a
variable as a "pointer to A."

Linked list programs must be written carefully, because it is easy to change
pointer values improperly. An improperly set pointer can point off into a
vacuum and cause your program to crash. It is a good idea to draw a sketch as
we have done here, to help visualize the "before" and "after" state of your list.

Pointers cannot be displayed or entered by way of Read or Write. They are
for internal use by Macintosh Pascal. If you want to see a pointer, take up bird
dog training.

r-i
'

i ;

-

-

-

-

-
-

PROBLEM SOLVING 211

Problem Solving

1. Add a new command "O" to PhoneBook2 which saves your PhoneList
on a disk file as text.

2. Add a new command "R" to read the PhoneList from a text file and
build PhoneList from it.

3. Run PhoneBook2, enter the following sequence of commands, and see
what the results of each are:
a. p
b. a

Steve
513 315 1630

c. a
Anne
303 417 2211

d. p
e. d
f. M
g. s

4. What change should be made to the insertion process in PhoneBook2
so that the PhoneList is built in descending order, instead of ascending
order?

5. Write a program for maintaining an ordered list of names and
addresses. Use your program to build a list of acquaintances.

-

-
-
-
-

-

Session 17:

Music (Sound)

In this session you will learn how to generate sound from a running Pascal program. You
will use the sound generator intrinsic function StartSound and be introduced to elementary
music theory.

Description of Music

Mathematics is music for the mind;
Music is mathematics for the soul.

-Anonymous

If you happen to be among musicians and hear them use terms such as bright,
dark, hollow, harsh, golden, rich, raspy, woody, and reedy to describe the quality of a tone,
do not be surprised. They know exactly what they are talking about, because a
musician's ear is trained to distinguish differences among various tones.

A computer cannot rely on subjective terms to describe the quality of
sound it can produce. The only way you can describe tones to a computer is by
using terms such as frequency, intensity, and wave form.

As an example, enter and RUN-GO the program in Figure 17.1. The
sound you hear is the single note called middle C. Program Musicl describes
middle C in terms of the frequency, duration, and amplitude of sound generated
by the loudspeaker inside your Macintosh.

213

214

FIGURE17.1
Music1.

program Music I;
(Your declarations}
const

MiddleC = 2967;
type

Tone = record
count : integer;
Amplitude: integer;
Duration: integer;

end;
SWSynthRec = record

Mode : integer;
Triplets: Tone

end;
var

Note : SWSynthRec;

begin
(Your program statements}
with Note do
begin

Mode := - I; (Use square wave synthesizer J
Triplets.count := MiddleC;
Triplets.Duration:= 80;
Triplets.Amplitude:= 100;

end;
StartSound(@Note, SizeOf(Note), Pointer(- I));

end.

MUSIC (SOUND)

These three attributes are defined by the integer values Count, Duration,
and Amplitude. To see what these variables do, change their values to any other
number between 0 and 255 and run Musicl again.

The Language of Music

Music has its own notation and grammar for communicating characteristics of
sound. The table in Figure 17.2 lists the musical symbols and their descriptions.
Figure 17.3 lists the meaning of each note in one octave of sheet music.

-

-

-

-

-
-
-

THE LANGUAGE OF MUSIC 215

Music symbol Description Music symbol Description Music symbol Description

0 Whole note • Quarter rest c Pitch representations

j Half note i Eighth rest D
j

Quarter note If Sixteenth rest E

) Eighth note ~ Thirty-second rest f

), Sixteenth note ~ Left hand repeat G

) Thirty-second note ~ Right hand repeat A

--- Whole rest ~ Bar B

--- Half rest m Triplets # Sharp

3

=
Natural

j, Flat

JJ Slur

• Dot

FIGURE17.2
Table of musical symbols_

Musical Scales

The source of sound is vibrating air, metal, plastic, strings, and so forth. A
high-pitched sound is caused by rapid vibration; a low-pitched sound by slow
vibration. The number of vibrations per second of sound wave, guitar string, or
piano wire is called its frequency. Musical notes are defined by their frequencies,
as shown in the table in Figure 17.4.

If the frequency of a note is doubled, we say it is an octave above the
original note; if the frequency is cut in half, we say the note is an octave below
it. The table in Figure 17.4 shows that the frequency of each higher octave note
is twice the frequency of each lower octave note. As you move from one octave

216

~ 0
(' 0 CJ 0

-e-0 0 <)

"Middle C" D E F G A B c D

(b) The G Clef (Treble)

0

:>=
t)

0 ~' e
(' 0

(,
0
G A B c D E F G A

(c) The F Clef (Bass)

= eJ ---&-

"Middle C" F G A B C D

FIGURE17.3
Musical notations.

FIRST SECOND

C133.0 C2 66.0

0 137.1 02 74.3

E1 41.3 E2 82.5

F144.0 F2 88.0

G149.5 G2 99.0

A155.0 A2 110.0

81 61.9 82123.8
C2 66.0 C3 132.0

FIGURE 17.4

(d) The Grand Staff

THIRD FOURTH FIFTH

C3 132 C4 264 Cs 528

03148.5 04 297 Os 594
E3 165 ~ 330 Es 660
F3 176 F4 372 Fs 704
G3 198 G4 396 Gs 792
A3 220 ~ 14401 As 880

83 247.5 84 495 8s 990
C4 264 Cs 528 C6 1056

MUSIC (SOUND)

c > 0

E F

0 -e-

B C-"Middle C"

SIXTH SEVENTH

C6 1056 C72112

06 1188 072376

~ 1320 E72640
F6 1408 F72816

G6 1584 G~168

~ 1760 A~520

861980 8~960

~2112 Ca4224

Table of frequencies (in Hertz) for seven octaves of the Just Diatonic Scale.

-' '

,_,

-

-

-
-
-
-

HANDS-ON: PLAYING ALL THE NOTES 217

to another, the frequency changes by a factor of two. The Just Diatonic Scale is
a musical scale in which octaves change by a factor of two. (Diatonic means
"twice-the-tone.")

Sharp and Flat Notes

The difference between the frequency of any note and its sharp or flat can be
calculated by the ratio 25/24 or 24/25, respectively. For example, the frequency
of C sharp in the fourth octave can be calculated as shown below:

CSharp = frequency of C4 * 25/24
= 264 * 25/24
= 275

To calculate the frequency of D4 (D flat), use the following formula.

DFlat = frequency of D4 * 24/25
= 297 * 24/25
= (almost) 285

Figure 17.5 displays the frequency of each note and its corresponding sharp and
flat.

Hands-On: Playing All the Notes

275
264

Now let's modify Musicl to play all the notes on the fourth octave. First, you
must calculate the count value related to the frequency of each note.

Count= 783360 I frequency of the note (from Figure 17.4)

309 344 367 412 458 516
297 330 352 396 440 495 528 Hz

285 317 338 380 422 475 507

FIGURE17.5
Frequencies of all notes with their sharps and flats (for fourth octave).

218 MUSIC (SOUND)

Insert the following constants after MiddleC in the Const statement of Pro­
gram Musicl.

D = 2638;
G = 1978;
B = 1583;

F = 2225;
A= 1780;
HighC = 1484;

Instead of repeating the main body of Musicl seven times to play each of the
above notes, build a procedure that plays all the notes. The plan is to call this
procedure one time for each note played. Type in the following, before the main
body of your program:

Procedure Play (musicnote : Integer);
begin
end;

Now "cut and paste" (see your Macintosh manual if you need further explana­
tion) the following statements from the main program to the body of procedure
Play:

With Note Do
begin

end;

Mode := -1; {use square wave synthesizer}
Triplets.count := MiddleC;
Triplets.Duration := 80;
Triplets.Amplitude := 100;

StartSound (@Note, SizeOf(Note), Pointer(-1));

Your procedure should look like procedure Play in Figure 17.6 after pasting the
above and changing:

Triplets.count := MiddleC;

to:

Triplets.count := musicnote;

Finally, modify Musicl so that procedure Play is called once for each of the eight
notes, as shown in Figure 17.6. Save this program as Music2, for later use if you
like. Select RUN-GO and listen as your Macintosh plays each note in the octave.

Hands-On "Oh! Susanna"

Not all musical scores are played using the same time duration for all notes. A
note can be played for a whole beat, half a beat, and so on. Figure 17.7 (b) lists
the encoding of "Oh! Susanna" for the score shown in Figure 17.7 (a).

The sharp sign (#) is used to designate a sharp note. The digit after the
note specifies the fraction of the beat that the note should be played. For
example, B means to play "B" for one whole beat; A2 means to play "A" ~ of a

~
I

-
-
-

-

-

HANDS-ON "OH! SUSANNA"

program Music2;
(Your declarations}
const
MiddleC = 296 7;
D = 2638;
E = 2374;
F = 2225;
HlghC = 1484;

type
Tone = record

G = 1978;
A= 1780;
6=1583;

count : Integer;
Amplitude: integer;
Duration : integer;

end;
SWSynthRec = record

Mode : Integer;
Triplets: Tone

end;
var

Note : SWSynthRec;
procedure Play Cmuslcnote: Integer);
begin

with Note do
begin

Mode := - I; (Use square wave synthesizer)
Triplets.count := musicnote;
Triplets.Duration:= 80;
Trip lets.Amp I itude := I 00;

end;
StartSound(@Note, SizeOf(Note), Pointer(-!));

end;
begin

(Your program statements}
Play(MiddleC);
Play(O);
Play(E);
Play(F);
Play(G);
Play(A);
Play(B);
Play(HighC);

end.

FIGURE17.6
Listing of Program Music2.

219

220 MUSIC (SOUND)

beat; FB means to play "F" 1,i of a beat. If you look carefully, some of the notes
are followed by a dot (.). The dot means that the length of time the note should
be played is one and one-half times the number of its beats. For example, "F."
means note F should be played for 1112 whole beats; "A2." means note A should
be played for 34 of a beat.

Figure 17.8 lists a new version of Music2 (called Music3) which has been
modified to play "Oh! Susanna." The only changes to Music2 were: (1) changing
the Play procedure to take care of variations in the beat of each note, and (2)
including a Boolean flag to notify the Play procedure that the dotted notes
should be played SO percent longer.

Hands-On Concerto

Programs Musicl, Music2, and Music3 all lack the flexibility needed for playing
any general song or melody. Program Concerto shown in Figure 17.9 is (almost)
a general program that enables you to play a variety of songs, yet is much easier
to use than the previous three programs. When you run Concerto, it prompts

~ r r I r r r I r r r r I ~- µ I
Oh Su· san-na Oh don't you cry for me. I've

I J r r· ~ I r J J. 11 J J :J :J I 0 I
come from Al - a · barn-a With my

(a) "Ohl Susanna" musical score.

A#2

A#2
D4
D2
D4
C4
C4
A4
F4
G2

G.
F8
GS
A4
C4
C4
c.
DB
C4
A4

(b) Encoding of "Ohl Susanna" musical score.

FIGURE17.7

ban-jo on my knee.

F4
F.
GB
A4
A4
G4
G4
F2
F.

-

I I

HANDS-ON CONCERTO 221

program Music3;
(Your declarations)
const

GTempo = 100;
MiddleC = 2967;
CSharp = 2849;
D = 2638;
EFlat = 2471;
E = 2374;
F = 2225;

~
FSharp = 2134;
G= 1978;
GSharp = 190 I ;
A= 1780; ,_
ASharp = 1710;
Bflat = 1649;
B = 1583;
HighC = 1484;

type
Tone = record

count : integer;
Amplitude: integer;
Duration : integer;

end;
SWSynthRec = record

Mode: Integer;
Triplets : Tone

l"'9J end;
var

Note : SWSynthRec;
GDuration: Integer; - dot: boolean;

procedure Play (musicnote : integer;
length: integer);

,_,
begin
with Note do - begin

Mode:= -I;
Triplets.count:= musicnote;
Triplets.Duration:= GDuration div length;

~ if dot then
begin

- FIGURE 17.8
Program Music3.

222 MUSIC (SOUND)

.dot:= False;
Triplets.Duration:= Triplets.Duration+ round<Triplets.Duration * 0.5);

end;
Triplets.Amplitude:= 100;

end;
StartSound(@Note, SizeOf(Note), Pointer<- I));

end;
begin

(Your program statements)
GDuration := 900 div GTempo * 16; (Duration of a Whole beat}
dot := False;
Play(ASharp, 2);
Play(ASharp, 2);
PlayCD, 4);
PlayCD, 2);
PlayCD, 4);
Play(MiddleC, 4);
Play(MiddleC, 4);
Play(A, 4);
PLayCF, 4);
Play(G, 2);
dot:= True;
Play(G, I);
Play(F, 8);
Play(G, 8);
Play(A, 4);
PlayCMiddleC, 4);
Play(MlddleC, 4);
dot:= True;
Play(MiddleC, I);
PlayCD, 8);
Play(MiddleC, 4);
Play(A, 4);
PLayCF, 4);
dot:= True;
PLayCF, I);
Play(G, 8);
PlayCA, 4);
Play(A, 4);
PlayCG, 4);
Play(G, 4);
PLayCF, 2);
dot::= True;
PLayCF, I);

end.
FIGURE 17.8 (continued)

i-"I
i

~
' I

-
HANDS-ON CONCERTO 223

you to enter the notes you want played. After you are done entering your
notes, it plays them all. Here is how it works.

Entering Notes

To enter each note, the following format must be used: the NoteName followed
by an optional sharp or flat symbol, followed by an optional length, followed by
an optional dot.

NoteName/Sharp or Flat /Length /Dot

Here are some examples:

A4 is a note A having a % note duration.
C#16 is a C sharp with a 1/16 note duration.
02. is a note D with a % note duration (Y2 + % for the dot).
e_ is a B flat.

The default octave is always octave 4, # designates a note as sharp, _is
used to designate a note as flat, and . is used to express a dotted note.

When you have finished entering all the notes you want, type either END
or end.

If you'd like to play notes from an octave different from the default fourth
octave, use the 0 command. Typing "O" followed by a number from 1 to 7
changes the default octave to the number selected. The default octave remains
at the new selection until you enter another 0 command .. For example:

03 sets the octave for all notes entered after it, which will be played in the
third octave.

Remember, to change back to the default octave (fourth octave) or any other
octave you need, enter a new 0 command.

Assumptions and Limitations of Concerto

Program Concerto assumes that all the symbols entered for the notes are
correct, so no error checking is done. Moreover, it does not check for invalid
sharps or flats-flats or sharps which have no corresponding black key on the
piano keyboard (B#, C_, E_, and F _j. It also assumes a default for duration and
amplitude. To change these default values modify procedure lnit, which handles
the initializations. In addition, it assumes the maximum number of notes
entered will not exceed 40. To change this limit, modify MaxNote in the Const
statement.

224

program Concerto;
(Your declarations}
const
MaxNote = 41; (Max Note+ I J

type
Note= 1..7;
Tone = record

cnt : integer;
Amplitude: integer;
duration: integer;

end;
SWYnthRec = record

Mode : integer;
Song: array[I .. MaxNote) of Tone;

end;
var

Freq : array[Note) of integer;
StNote : array[Note) of string;
Concert : SWYnthRec;
Oct: real;
i, NoteNo : integer;

MUSIC (SOUND)

GDuration, GTempo, GOct, TicksPl6Th, GAmplitude: integer;
k: Note;
Flat, Dot, Sharp: boolean;

procedure init;
begin

Freq[I I := 264;
Freq[2) := 297;
Freq[3] := 330;
Freq(4J := 352;
Freq[S] := 396;
Freq[6] := 440;
Freq[7] := 495;
StNote(I]:= 'C';
StNote(2] := 'D';
StNote[3) := 'E';
StNotel41 := 'F';
StNote[S] := 'G';
StNote[6] :='A';
StNote[7) := 'B';
GOct := 4;

FIGURE 17.9 (continued)

-

-

HANDS-ON CONCERTO

GAmplitude := 100;
GT empo := 75;
TicksPl6TH := 900 div GTempo;
Gduration := TicksPl6TH * 16; (Whole Duration}

end;
function Octave CN: note;

OctNum: integer): real;
var
0, m : integer;
Temp: real;

begin

if OctNum = 4 then
Octave:= Freq[N]

else if OctNum < 4 then
begin
O := 4 - OctNum;
Temp:= Freq(N];
form := I to 0 do
Temp:= Temp I 2;

Octave:= Temp;
end

else
begin
o := OctNum - 4;
Temp:= Freq[NJ;
form := I to 0 do
Temp:= Temp* 2;

Octave:= Temp;
end;

end;
function Convert (str : string> : integer;
var

i, Jen, No: integer;
strl : char;

begin
Jen:= length(str);
No:= O;
for i := I to len do
begin
str I := copy(str, i, I);
No := ord(str I) - ord('O') + No* IO;

end;

FIGURE 17.9 (continued)

225

226

Convert:= No;
end; (Convert J
function FindNote (str: string>: Note;
var

index : Note;
found: boolean;

begin
(Note: we are assuming the note exist for sure J

found:= false;
index:= I;
while not found do
begin
if StNote[lndex] = str then
begin

FindNote :=index;
found := true;

end
else

index := Succ(Index);
end;

end;(FlndFreq}
function Count (Frequency : real) : integer;
begin

Count := round(783360 I Frequency);
end;
procedure FndDotShFI <var str: string);
var
str I : string;

begin
strl :=copy(str, I, I);
Sharp := false;
Dot := false;
Flat:= false;
If strl =···then
begin

Sharp := true;
delete(str, I, I);

end
else If strl = ·_· then
begin

Flat := true;
delete(str, I, I);

end;

FIGURE 11.9 (continued)

MUSIC (SOUND)

""" I

I""'!
I

-

HANDS-ON CONCERTO

strl := copy(str, length(str), 1);
if strl =·:then
begin

delete(str, length(str), 1);
Dot:= true;

end;
end;
procedure Bui ldNote (str : string);
var
str I , str2 : string;
temp, period : integer;
frq: real;
index: Note;

begin
str 1 := copy(str, 1, 1);
index:= FindNote(strl);
period:= 1;
if length(str) = I then
begin

wt th Concert do
begin

Song[NoteNo).Duration := GDuration;
Song[NoteNo).Amplitude := GAmplitude;
Song[NoteNo).cnt := Count<Octave(index, GOct));

end
end

else
begin

deleteCstr, 1, I);
FndDotShF l(str);
if length(str> > O then
period:= Convert<str);

frq := Octave(index, Goct);
if Flat then
frq := frq * 24 I 25

e I se if Sharp then
frq := frq * 25 I 24;

Temp:= Gduration div period;
if Dot then
Temp:= Round(Temp * 1.5);

wt th Concert do
begin

Song[NoteNo}.Duration :=Temp;
Song(NoteNo).Amplitude := GAmplitude;

FIGURE 17.9 (continued)

227

228

Song[NoteNoJ.cnt := Count(frq);
end

end
end; [of Bui Id Note)
procedure RdNotes;
var

done : boolean;
str, str I : string;

begin

MUSIC (SOUND)

writeln('To.End Entering the Notes Type End for the Note');
Write In;
writeln('Enter the Notes: ');
done:= False;
NoteNo := I;
repeat
readln(str);
if Cstr = 'end') or Cstr = 'END') then
begin

done := true;
w Ith Concert do
begin

Song[NoteNo].Duration := GDuration;
Song[NoteNo}.Amplitude := GAmplitude;
Song[NoteNo].cnt := O;

end
end

else
begin
strl :=Copy(str, I, I);
if strl = ·o· then
begin
strl := Copy(str, 2, I);
GOct := Convert(str I);

end
else
begin

Bui ldNote(str);
NoteNo := NoteNo + I

end
end

until done;
end;

FIGURE 17.9 (continued)

,.,
!

,.,

r-1
I

-

-

HANDS-ON CONCERTO

procedure Play;
begin

Concert.Mode:= - I;
StartSound(@Concert, SizeOf(Concert), Pointer(- I));

end;
begin

[Your program statements)
in it;
RdNotes;
Play;

end.

FIGURE 17.9 (continued)

Structure of Concerto

229

Program Concerto is composed of three modules: initialization, reading notes,
and playing notes. The following is the main body of Concerto, which calls a
procedure for doing each of these three actions.

Begin

End.

I nit;
Rd Notes;
Play

Initialization: Procedure lnit stores the frequencies of the default octave in array
Freq and sets the values of Gduration, GOct (for the default octave), and GTemp
(for the default amplitude).

Reading Notes: Procedure RdNotes reads the entered notes and calls BuildNote to
extract the musical information from the input string.

Procedure BuildNote uses FndDotShFl, Octave, FindNote, and Convert to
determine the frequency and length of each entered note. It then stores this
information in the Song array (see the definition of Concert in the listing).
Function FindNote returns the type of note entered (C,D,E,F,G,A,B). To deter­
mine whether a note is sharp, flat, and/or a dotted note, BuildNote calls the
FndDotShFl procedure. Procedure Octave is used to get the frequency of the
octave; function Convert is a peripheral function that returns a numerical value
for the duration of a note (if its length has been specified).

230 MUSIC (SOUND)

Summary

What you've been exposed to so far is only one of three different methods for
generating sound using the Macintosh. As a matter of fact, you learned the
simplest method of sound generation, which uses the square-wave synthesizer.
Using the four-tone synthesizer you can generate tones with up to four voices
producing sound simultaneously. Using the free-form synthesizer, you can create
complex music and speech. These other two methods require much more
knowledge of the physics of sound and music than we have discussed here.

Problem Solving

I. Normal, staccato, and legato are different musical styles. Normal
notes have enough pause between them to make then distinct. Stac­
cato notes have short breaks between them, and legato notes have no
break between them.

Add an S command to Concerto to provide a staccato style by
holding each note for % of its length, an L command to provide a
legato style that plays each note to its full length, and an N to provide
a normal style by playing each note % of its length with a pause or rest
for the remaining 118 of its length.

2. Add new command LNnn to set the length of the notes globally. All
notes entered after the LNnn command will be played according to the
value of nn, where nn is an integer from I to 64. Here are some
examples:

nn = 1

nn = 2

nn = 8

nn = 64

for a whole note
for a% note
for a 1Ai note
for a 1/64 note

3. Modify Concerto so that it will not accept the notes that do not have a
corresponding black key on the piano.

4. Modify Concerto to save the notes on the disk for later use.

5. Write a program that reads the notes of a melody from disk and then
plays them.

-

-

-

Session 18:

Graphics

In this session you will learn the elements of graphics using the Macintosh Quickdraw
procedures for drawing rectangles, polygons, and icons. We will introduce you to pixels and
other new terms used to understand how the Macintosh draws.

The Drawing Window

If the drawing Window is not already visible on the Macintosh screen, select it
from the Windows menu. This is the area where all graphics output will appear.
The Drawing Window is a window into a large two-dimensional grid which
contains picture elements called pixels. Each pixel is a small dot which can be
either black or white depending on its setting. We often use 1 to indicate a black
pixel setting and 0 to indicate a white pixel setting. Since pixels can only be 0 or
1 in value, we also call them bits.

A picture is merely a mosaic of black and white pixels. Macintosh Pascal
uses a collection of intrinsic functions and procedures called the Quickdraw library
to perform the necessary details for setting pixels. In this session, you will use
only a few of the Quickdraw routines to draw several simple pictures in the
Drawing Window.

The routines are in two separate libraries called Quickdrawl and Quick­
draw2, respectively. In the advanced hands-on exercises shown later in this
session, you will need a uses statement at the top of your program. The uses

231

232 GRAPHICS

statement tells Pascal which library routines to use during the execution of a
program.

Two-Dimensional Grid

The pixels in the Drawing Window are located by giving two numbers: a hori­
zontal coordinate and a vertical coordinate. Figure 18.1 shows how each number
ranges from -32,768 to +32,767. The upper left-hand comer of the Drawing
Window is assumed to be at location (0, 0).

To get a quick idea of how a picture is drawn from a running Pascal
program, enter and run the simple program shown in Figure 18.2. This program
moves an imaginary pen around the two-dimensional grid and "draws" the

-32768

Horizontal coordinate increase

.,
"' "' ...
~

Origin

"' .!:
!!!
"' 0,0 c

-32768 'O 32767
0
0
"'
"' "' ·-e .,
>

37767

FIGURE18.1
Horizontal and vertical coordinates increase direction.

-
-

-
-

-

-

-
-

RECTANGLES

FIGURE18.2
Hands-on drawing simple lines.

program Graph 1 ;
(Your declarations)

begin
pensize(2, 2);
MoveTo(40, 40);
lineTo<ISO, 40);
LlneTo(ISO, 100);
lineTo(40, 100);
lineTo(40, 40);

end.

233

figures you command it to draw. Program Graphl selects the pen size (width of
lines to be drawn) and then draws a rectangle with corners at pixels (40, 40),
(150, 40), (150, 100), and (40, 100). Let's study how program Graphl does its
work in greater detail.

Pensize(2,2);

Pensize sets the width of the drawing styles. Consult the Macintosh Pascal Reference
Manual for a list of different drawing sizes.

Move(40,40);

Move moves the pen to a point with horizontal and vertical coordinates (40, 40),
respectively.

LineTo(150,40);

This procedure draws a straight line from the previous pixel at (40, 40) to a pixel
with coordinates equal to (150, 40).

The other LineTo procedure calls complete the picture by drawing one
side of the rectangle each.

Rectangles

Instead of drawing the four sides of each rectangle every time you want a
rectangle in a picture, you can use other intrinsic functions that draw entire
rectangles in one operation. Automatic rectangles can be defined by specifying
the left-top and right-bottom corner coordinates. This short cut method of
drawing rectangles is illustrated in Figure 18.3.

Enter Program Graph2 (Figure 18.3) and select RUN-GO. Notice that
Program Graph2 produces the same result as Program Graphl, but Graph2
uses objects of predefined type Rect.

234

FIGURE18.3
Rectangles.

program Graph2;
(Your declarations]
var
rectangle : Rect;

begin
penslze(2, 2};
SetRect(rectangle, 40, 40, 150, I 00);
FrameRect(rectangle };

end.

Type VHselect = (V,H)
Point = Record

Case Integer Of
o : (V, H : Integer)
1 : (Vh : Array [VHselect] of Integer);

end;
Rect = Record

case Integer Of

end;

Var

0 : (top, bottom, right, left : Integer);
1 : (topleft, bottright : Point);

Rectangle : Rect;

GRAPHICS

Variable Rectangle holds the necessary information for drawing a rectangle
whose two corner coordinates are given by procedure SetRect.

SetRect (Rectangle, 40, 40, 150, 100);

Calling Procedure SetRect is equivalent to executing the following assignment
statements:

With Rectangle Do
begin

end;

top := 40;
left := 40;
bottom := 150;
right := 100;

In general, the parameters of SetRect are:

SetRect (Rectangle, top, left, bottom, right);

Next, your program must use the information set up by SetRect to actually
draw the sides of a rectangle. One way to do this is to draw a square frame
using Procedure FrameRect.

r-i
' I

..

-

RECTANGLES 235

FrameRect (Rectangle);

The width and height of the sides are specified by the width and height of the
pen which is set in Procedure Pensize. In this example, both the width and
height of Pen are set to 2.

PenSize (2,2);

Experiment with different line widths and heights by changing the parameters
of PenSize to (1, 1), (1, 2), or (1, 3) and select RUN-Go for each case.

Opmitions on Rectangles

Many operations can be done on objects of type Rectangle. For example, rectan­
gles can be moved around by adding or subtracting an offset value to each of
their coordinates. The contents of the rectangular areas can be erased or filled
with different patterns.

Add the following procedure calls before the End statement of Graph2 and
select RUN-GO.

OffsetRect (Rectangle, 25, 15);
FrameRect (Rectangle);

Figure 18.4 shows the program after this change. As you can see, a new rectan­
gle is framed, but offset from the original by (25, 15). Now change (25, 15) to
(-25, -15) and select RUN-GO again.

Generally, if the offset values are positive, the movement is to the right or
down; if they are negative, the movement will be the reverse, left or up.

In some cases, you may want to dear or erase the area within a rectangle.
To do so, call Procedure EraseRect. Figure 18.5 shows how to erase the area
within the second rectangle created by offsetting the first one before framing it.

RGURE18.4
Moving rectangles.

program Graph2-. I;

(Your declarations}
var
rectangle: Rect;

begin
penslze(2, 2);
SetRectCrectangle, 40, 40, I SO, I 00);
FrameRect<rectangte);
OffsetRect(rectangle, 25, I 5);
FrameRect<rectangte);

end.

236

FIGURE18.5
More on rectangles.

program Graph2-2;

(Your declarations}
var
rectangle : Rect;

begin
penslze(2, 2);
SetRect(rectangle, 40, 40, 150, I 00);
FrameRect(rectang le);
OffsetRect(rectangle, 25, 15);
EraseRect(rectangle);
FrameRect<rectangle);

end.

GRAPHICS

Rounded-Corner Redangles

There is a procedure to draw rectangles with rounded comers. In addition to the
coordinates of the top-left and bottom-right corners, you must provide the oval
width and height (see Figure 18.6).

Modify your program to incorporate these changes and select RUN-GO to
see their effect. The oval height and oval width of the corners are 30 and 15,
respectively.

Now change (30, 15) to (15, 30), (10, 5), and (10, 10). Select RUN-GO in
each case to see the different results.

Regions

Any arbitrary area or set of areas in the two-dimensional grid is called a region. A
rectangle can be considered the simplest form of a region. You create a region
each time you draw lines or shapes such as rectangles and ovals.

One of the most significant features of the Macintosh is its ability to
capture and store information concerning a region and then "play back" the
region at a later time. To capture the definition of a region your program must
have a variable of predefined type Region to hold the graphical information of
the region.

Type Region = Record
Rgnsize : Integer;
RgnBbox : Rect;
{optional region definition data .. }
end;

~
i i , I

-

-

-
-
-
-

-

HANDS-ON POLYGONS 237

ovalWidth oval Height program Graph2-4;

(Your declarations)
var
rectangle:Rect;

begin
pensize(2, 2);
SetRect(rectangle, 40, 40, 150, 100);
FrameRoundRect(rectangle, 30, 15);
OffsetRect(rectangle, 25, 20);
EraseRect(rectangle);
FrameRect(rectangle);

end

{draw it}

(a) Rounded-Corner Rectangle (b) Rounded-Corner Program Listing

FIGURE18.6

Rgnsize contains the size of the region in bytes; RgnBbox is a rectangle which
completely encloses the region; the remaining components information used to
draw the picture.

Two of the most useful regions are called Pictures and Polygons. In the
following sections, you will use regions to draw and play back pictures and
polygons.

Polygons and Pictures

Polygons and Pictures are graphical objects which hold pen movements to be
played back later, using a simple procedure call. Both Polygons and Pictures are
objects containing a sequence of connected lines which are manipulated as a
single region. Pictures can be scaled to different sizes, whereas the size of a
polygon cannot be changed.

Hands-On Polygons

Program Poly in Figure 18. 7 is an example of building a polygon region in
memory and replaying it later. Libraries Quickdrawl and Quickdraw2 are
needed because they contain the procedures for processing regions. Enter Pro­
gram Poly and select RUN-GO.

238

FIGURE18.7

program Poly;
uses
Oulckdraw I, Oulckdraw2;

var
testPoly: PolyHandle;

begin
testPoly := OpenPoly; (define the Poly)
MoveTo(100, ISO);
LineTo(I 00, 160);
LineTo(40, 170);
LineTo(65, 140);
LineTo(IOO, 150);
ClosePoly;
FramePoly(testPoly);
offsetPolyCtestPoly, -30, -40);
FlllPolyCtestPoly, gray>;
FramePolyCtestPoly);
Kl llPoly(testPoly);

end.

Hands-on creating polygons.

32-

32 t-++-t-t+++++H-++i..,...t-+++-t++H+++-++iH

l ~+-+++-++-l'W-++++++++-1

FIGURE18.8
32 x 32 rectangle for defining an icon.

GRAPHICS
ri
I !

~
i

i-1
I I

!""'
i I

'

-

-

-

-

CREATING ICONS 239

OpenPoly opens an object called testPoly, which captures and saves all
subsequent pen movements. MoveTo and Line To are written to testPoly until
the ClosePoly procedure is executed; then FramePoly draws the polygon stored
in testPoly. You can replay the polygon stored in testPoly as many times as you
want in any form. For example:

OffSetPoly (testPoly, -30, -40);
FillPoly (testPoly, gray);
FramePoly (testPoly);

{move it}
{fill it with gray}
{draw it{

These operations create another Polygon offset by (-30, -40) and fill it with a
gray background.

When you're done with a polygon, you should destroy it so that the
storage can be used by Quickdraw for other purposes.

KillPoly (testPoly); {release storage}

Creating Icons

An icon is a 32 x 32 pixel pattern. Figure 18.8 shows a 32 x 32 rectangle con­
taining an icon. To create an icon, you set each of the 32 x 32 pixels to either 1
or 0. A 1 corresponds to a black pixel and a 0 to a white pixel.

A more compact way to enter the 32 x 32 pixel pattern is to use hexa­
decimal numbers; one hexadecimal number equals four bits. For example, the
first five rows of Figure 18.8 are shown in binary and hexadecimal as follows.

1. Binary form

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
oodoooooooooooo10000000000000000
00000000000000101000000000000000
0000 0000 0000 0100 0100 0000 0000 0000

I
0

I
0

2. Hexadecimal form

I
0

I
4

I
4

00000000
00000000
00010000
00028000
00044000

I
0

I
0

I
0

240 GRAPHICS

Use the following table for conversion.

Binary Hexadecimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 c
1101 = D
1110 = E
1111 = F

Enter program Icons (Figure 18.9) and select RUN-GO. This program uses
ManFace of type IconData to store the pattern. konData is an array of 32 ele­
ments of type Longlnt, and since each Longlnt consists of 32 bits, each element of
ManFace can store one row of the icon pattern.

The intrinsic procedure for drawing icons, Plotlcon, uses a pointer to a
location in memory which contains the address of the place you've stored your
icon pattern. A pointer to an address is called a handle. The following type
definitions are needed to declare handles and pointers to locations in memory
where icon patterns are stored.

Type
Icon Data =Array[O .. 31] of Long Int;
lconPtr ='lconData;
lconHandle= • lconPtr;

{the pattern}
{address of pattern}
{handle to pattern}

From the type declarations above, you can define the following variables:

ManFace :lconData;
FacePtr :lconPtr;
FaceHandle:lconHandle;
Where :Rect;

{to keep actual pattern}
{a pointer to pattern}
{pointer to the pointer pattern}
{rectangle that icon is drawn within}

StuffHex converts a string of characters into an equivalent group of hexa­
decimal numbers and then stores the binary equivalent of the hexadecimal
numbers in a specific location in memory. In Figure 18.9 each StuffHex pro­
cedure call converts a string of hex characters and then copies the hex values to
four elements of array ManFace. After the first call to StuffHex, the first four
elements of ManFace contain the following.

!!""I
I
I
I

-

-

-

-

-

-
-

CREATING ICONS

ManFace [O]is01 FFFEOO

Man Face [1] is 03000300

ManFace [2]is06000180

ManFace [3]isOCOOOOCO

241

The @ operator extracts the address of an object-@ is the inverse of 0

For example, to obtain the address of array ManFace make the following
assignment:

FactPtr := @FacePtr;

This is read as "FacePtr is assigned the address of ManFace."
Similarly, the address of variable FacePtr can be obtained by assigning the

"address of FacePtr" to FaceHandle.

program Icons;
uses

FaceHandle := @FacePtr;

qulckdraw I, qulckdraw2;
type

lconData = array[0 .. 31] of Longlnt;
lconPtr = ·1conData;
lconHandle = ·1conPtr;

var
ManFace: lconData;
FacePtr: lconPtr;
FaceHandle: lconHandle;
Where: rect;

begin
StuffHex(@ManFace[O], 'O I FFFE000300030006000 I 800COOOOC0');
StuffHexC®ManFace[4], · 1800006030000030200000 I 863F8 I F8C');
StuffHex(OManF ace[8), 'AOOC700AAOOOOOOAA060060AA060060A');
StuffHex(@ManF ace[12), 'AOOOOOOAAOOOOOOAAOOOOOOCA003C004');
StuffHex(OManFace[16], .'E003C004400FF00440381 C0440700E04');
StuffHex(@ManF ace[20), · 400000046000000C30000008 l 00000 I 0');
Stuf fHexC OManF ace[24),.' I 8000030080000600COOOOC006000180');
StuffHex(OManF ace[28], '030003000 I 80060000COOC00003FF800');
FacePtr := @ManFace;
FaceHandle := @FacePtr;
SetRect(where, 20, 20, 60, 60);
Plotlcon(Where, FaceHandle);

end.

FIGURE 18.9
Program Icons.

242 GRAPHICS

The rest of Program Icons is easy. First, define the rectangular area where you
want to draw an icon and simply call Plotkon. Plotkon takes the pattern stored
in FaceHandle and copies it to the rectangle called Where. The Quickdraw
system displays the rectangular area on the screen at the location given by
SetRect.

program Picture;
uses

SetRect (Where, 20, 20, 60, 60);
Plotlcon (Where, FaceHandle);

quickdraw 1, quickdraw2;
type

lconData = array[0 .. 31 J of Longlnt;
lconPtr = ·1conData;
lconHandle = ·1conPtr;

var
ManFace: lconData;
FacePtr: lconPtr;
FaceHandle: lconHandle;
Where : rect;
Picture : PicHandle;
PicFrame : reel;

begin
StuffHex(®ManFace[O], 'O I FFFE000300030006000 I 800COOOOC0');
StuffHex(@ManF ace[4), · 1800006030000030200000 I 863F8 IF BC');
S tuf fHex(@ManF ace[BJ, 'AOOC700AAOOOOOOAA060060AA060060A');
StuffHex(@ManF ace(12), 'AOOOOOOAAOOOOOOAAOOOOOOCA003C0.04');
StuffHex(@ManFace(161, 'E003C004400FF00440381 C0440700E04');
StuffHex(@ManF ace[20], · 400000046000000C30000008100000 IO');
StuffHex(@ManF ace[24], ' I 8000030080000600COOOOC006000180');
StuffHex(@ManFace(281, '030003000180060000COOC00003FF800');
FacePtr := @ManFace;
FaceHandle := @FacePtr;
SetRect(PicFrame, 20, 20, 60, 60);
Picture:= OpenPicture(PicFrame);
Plotlcon(PicFrame, FaceHandle);
ClosePicture;
DrawPicture(Picture, PicFrame);
SetRect(where, 70, 70, 150, 150);
DrawPicture(Picture, where);
SetRect(where, 20, 80, 30, 90);
DrawPicture(Picture, where);
KillPicture(Picture);

end.

FIGURE 18.10
Program Pictures.

~I

-
-

-

-
-

HANDS-ON PICTURES 243

Hands-On Pictures

Pictures are in many respects similar to polygons except pictures can be scaled­
changed to a different size. In this hands-on experiment you will modify the
icon program of Figure 18. 9 to capture a picture, move it, and then display it in a
reduced size. Change Program Icons to get a program called Pictures (Figure
18.10). Select RUN-GO to see the results shown in Figure 18.11.

The middle-sized face shown in the upper-left corner is the original icon
drawn in Rectangle (20, 20, 60, 60). The enlarged version is drawn in the larger
Rectangle (70, 70, 150, 150); the reduced version is drawn in the smaller Rec­
tangle (70, 80, 30, 90).

To set up and use a picture, first define a handle and a region.

Var
Picture : PicHandles;
PicFrame : Rect;

{pointer to pointer}
{region}

Next set the initial picture size and open a region for it.

SetRect (PicFrame, 20, 20, 60, 60);
Picture := OpenPicture (PicFrame);

Now, all operations on Picture are "remembered" so they can be played back
whenever you want. In Figure 18.10 you only need to remember one
operation-the drawing of ManFace.

Plotlcon (PicFrame, FaceHandle);

To prevent other operations from being recorded as well, you must close
the picture frame.

FIGURE 18.11
Scaling pictures.

~D

ClosePicture;

Drawing

®

244 GRAPHICS

From here on, you can use Picture to draw different-sized replicas of the origi­
nal picture.

DrawPicture (Picture, PicFrame);

SetRect (Where, 70, 70, 150, 150);
DrawPicture (Picture, Where);

SetRect (Where, 20, 80, 30, 90);
DrawPicture (Picture, Where);

{mamma bear: mid-size}

{papa bear: large-size}

{baby bear: small-size}

When you are done, destroy the object which contains your picture.

KillPicture (Picture); {release object}

Hands-On Text Drawings

The Quickdraw library provides a set of procedures for defining the shape and
size of textual information to be displayed. For example, you may decide to draw
characters as bold, bold and underlined, and so on. This is done by calling the ap­
propriate procedure to set up the characteristics of the textual data before
drawing. Program Text (Figure 18.12) is an example of how to do this. Enter it
and select RUN-GO to see how Quickdraw handles drawing textual
information.

FIGURE 18.12
Program Text.

program Text;
uses

quickdraw I, quickdraw2;
begin

Moveto(50, 50);
drawstring('Norma I Text');
Moveto(50, 65);
TextFace((italic]);
DrawString('ltalic Text'>;
Moveto(50, 80);
TextFace((italic, bold]);
DrawString('ltalic and Bold');
Moveto(SO, 95);
TextFaceC(bold, underline]);
DrawStringC'Bold and Under I ined');

end.

l'9'!
: I

i-1

; 1.

-
-
-

-

-

-
-

PROBLEM SOLVING 245

Drawing Environment: Graf Port

Imagine yourself in an art supply shop where you have access to many drawing
boards simultaneously and you are able to draw on each of them any time you
want. Furthermore, assume you have a separate set of brushes for each board
and you can adjust the size and background patterns of the canvas on each
drawing board. Since all drawing boards are equipped with their own set of
tools, none of them affects any of the others. Quickdraw provides a similar
facility which enables you to define different drawing boards called Graf Ports.

You can have more than one GrafPort in your program at the same time,
each with its own characteristics (background patterns, pen or brush size, etc.).
GrafPorts are the basis of multiple windows in Macintosh; each window is
associated with one Graf Port. Refer to your Macintosh Pascal Reference Manual for
more details on Graf Ports.

Summary

Quickdraw is the graphics library through which you can define points, lines,
regions, rectangles, ovals, polygons, and pictures. When using regions, you
must declare variables of certain predefined types before creating objects of
these types.

Quickdraw assumes all the drawings occur in a two-dimensional grid. The
horizontal coordinates in the grid increase from left to right, and vertical coor­
dinates increase from top to bottom.

Problem Solving

1. Create your own icon by hand and use Program Icons (Figure 18.9) to
draw your icon.

2. Write a program to draw a 32 x 32 pixel grid and accept input from
the mouse for defining an icon.

3. Write a procedure to print out the hex values for the icon created by
the program in Problem 1.

4. Write a program to track the mouse and draw a "rubber-band" line
from the point where the mouse button is pressed to the point where
the button is released.

5. Write a graphics program to display any card from a deck of playing
cards.

-

-

-

-

-

Appendix A:

An Overview of Pascal

Pascal programs consist of data and instructions. The data reside in a section
called the data declaration part, and the instructions reside in a section called the
program body. All programs begin with a program header (the first line containing
the program's name) and end with a period.

Program MAIN;

{ Data Declaration Part}

Begin

{ Program Body }

End.

Data Declaration Part

The data declaration part has many optional subsections. The simplest form con­
tains a list of variables along with the type of each variable. Recall that a type is a
set of values. For example, all of the integer values between -32,768 and +32,767
make up a set called integer values in Pascal.

Another set of values in Pascal is called char because it contains all of the
single-letter characters that Pascal programs can process. Thus, 'a', 'b', ... 'z' and
'A', 'B', ... 'Z' (letter characters) and the remaining keyboard characters make up
the set of values called char. Character values are enclosed in single quotes to
distinguish them from names.

247

248 AN OVERVIEW OF PASCAL

A simple data declaration part contains a list of variables and their types.
The reserved word (a word having special meaning in Pascal) Var is used to specify
all variables in a program.

Var
ALFA: Char;
PAY : Real;
AGE : Integer;
YEAR : Integer;

This list can be abbreviated using commas whenever two or more variables
belong to the same type.

Var
ALFA : Char;
PAY : Real;
AGE, YEAR : Integer;

The data declaration part may optionally contain a list of constants. A
constant is an object much like a variable, except that a constant can never be
changed.

Const
N = 10;
A= 'M'
x = 5.2

{ Integer }
{ Char }
{ Real }

The value of each constant is associated with the name of each constant. The
type is inferred from the constant value. We've noted the type in each case by
enclosing it between curly brackets. Optional notes like these are called comments
and have no effect on the program; their purpose is solely to make the program
easier to read and understand.

N is an integer constant equal to 10; A is a character constant equal to "M";
and X is a real constant equal to 5.2.

Pascal programmers can invent new types by declaring them in an optional
type statement in the data declaration part. A new type is simply a combination
of other (previously defined) types.

Type

Var

DAY = Integer;
YEAR = Integer;
MONTH = 1 .. 12;
DATE = Record

X,Y,Z

D : DAY;
YR : YEAR;
MO: MONTH;
End;

: DATE;

{ subrange of Integer }

{ user defined type}

In the example above, DAY, YEAR, MONTH, and DATE are the names
of new types created by the programmer. MONTH is a restricted integer

""' • I

1 i

~
I
i !

n
I

- DATA DECLARATION PART 249

because it can take on the values 1 through 12 and no others. DA TE is a new
type with three components; D, YR, and MO. A Pascal record is a data type
consisting of components-each component possibly of different types.

X, Y, and Z are the names of three variables, each of type DA TE. To access
a component of a DATE variable, you must use a dot notation as shown below.

X.D
X.YR
X.MO

{ D component of X }
{ YR component of X }
{ MO component of X }

Finally, the data declaration part contains optional subprograms defined for a
program. A subprogram is either a function or a procedure. In both cases, the
subprogram consists of its own data and instructions. The subprograms are
defined following the Var statement.

Function MOUSE (X: lnterger) :Real;

VAR
I := integer;

Begin
MOUSE := I - X;

End. { MOUSE }

Functions take on values like variables, so they must have a declared type. Pro­
cedures, on the other hand, work like statements. They do not have a type, but
rather they perform actions like any other statement in the instruction or body
part of a program.

Procedures and functions communicate with the main program by way of
a list of variables enclosed in parentheses. These are called parameters, and they
make it possible for data to flow into and out of the subprogram.

A fully configured Pascal program contains constants, types, variables, and
subprograms within its data declaration part. The optional subsections must
occur in the following order:

Program MAIN;

Const

Begin

End.

x = 10;

Type
Y = real;

Var
Z :Y

Function W : char;
begin

end;

{ program body }

{ Const first }

{ ... followed by Type }

{ ... then Var ... }

{ ... and subprograms }

250 AN OVERVIEW OF PASCAL

Body Part

The body part contains the instructions to be carried out when the program
"runs," and it is enclosed between a pair of reserved words: Begin and End.

Begin { start instructions }

{ executable instructions }

End. { end of body, and a period

The instructions of Pascal belong to one of three classes: sequence, looping, and
decisions. These three allow you to write any program by combining statements
in two fundamental ways: (1) consecutive statements are done one following
the other, and (2) nested statements are done from the outer level to the inner
level, and then out again.

Program body

(a) Consecutive

Program body

(b) Nested

FIGUREA.1
Consecutive versus nested instructions.

11111!\

!

1-i
I !

i-1
i '

r

!mil
i

BODY PART 251

- The difference between consecutive and nested statement structure in

Sequence

Looping

-

Pascal is shown graphically in Figure A.1. A nested structure resembles boxes
stacked on top of one another. A Pascal program contains both nested and
consecutive statements.

Assignment, procedure calls, and compound Begin-End statements belong to
this group. Here is an example of an assignment statement and procedure-call
sequence.

Begin

End.

A:= B + C;
Writeln (A, 8, C);

{ program body }

The Begin-End pair is used to nest one level of statements within another layer.
The following example is exaggerated, but legal nonetheless.

Begin
Begin

Begin
Begin

{ program body
{ level 1 }

{ level 2 }
{ level 3 }

A:= B + C;
End;

End;
End;

End.

{ level 3 }
{ level 2 }

{ level 1 }
{ program body }

Typically, nesting occurs in combination with other (sequence) state­
ments. The following examples show more realistic uses of Begin-End.

A loop is any section of a program which is repeatedly executed. Pascal has three
looping statements. Repeat-Until checks for loop termination at the end of the
loop; While-Do tests for termination at the beginning of the loop, and For-Do
repeats the loop a specified number of times.

Repeat
SUM := Sum + X;
N := N + 1

Until N > 10;

This Repeat loop continues to execute the two assignment statements until "N >
10" becomes True.

252

Dedsions

While N < 10 Do
begin

SUM := SUM + X;
N := N + 1

end;

AN OVERVIEW OF PASCAL

This While loop first tests "N < 10" and then performs the loop as long as "N <
10" is True. The test is repeated before each iteration (loop). Notice the use of a
Begin-End nested level in the While-Do loop versus the absence of the Begin­
End pair in the Repeat-Until statement. This is an inconsistency in Pascal, but
one which you must remember. The While-Do statement iterates a single
(compound) statement, whereas the Repeat-Until statement can iterate one or
more statements.

For I := 1 To N Do
begin

SUM:= SUM+ X
end;

The For loop simply repeats for as long as "I" equals 1,2,3, ... N. The value
of "I" is automatically incremented (by one) each pass through the body of the
loop. Again, notice the use of Begin-End nesting if two or more statements are
to be iterated. (This example could have been written without the Begin-End
reserved words because only one statement was to be iterated.)

There are two kinds of decision statements in Pascal. The If-Then-Else statement
is used to select one path to be followed by the program from among two
choices. The case statement is used to select one path to be followed from among
many choices.

If A< B
Then A:= 0
Else B := O;

This simple If-Then-Else statement tests the truth of "A < B", and if it is
True, the Then clause is executed. If the test is False, the Else clause is executed.
Either "A := O" or "B := O" is performed; not both.

The If-Then-Else statement works for all types of data, but it is capable of
making only a two-way choice. The case statement can make a multi-way choice
but is restricted to making decisions on character, integer, and Boolean {logical
variables valued only as true or false) data types only.

CASE X Of
'A' Writeln ('a');
'B' Writeln ('b');
·c· Writeln ('c');

End;

r-!
i I

~
[I

: '

M
I

'

r"
I ,

r\

rl!I\
!

-
-

-
-

AN EXAMPLE 253

Here the type of X must be character, and which WriteLn statement is
executed depends on the value of X. If X is 'A', 'B', or 'C', the appropriate case
clause is executed, but if X is none of the three choices, the case statement has
no defined action (a BUG!).

An Example

The following example summarizes the features of Pascal discussed in this brief
overview. Pascal contains many more features than surveyed here; this
serves to introduce the overall nature of Pascal rather than as a reference. For
the complete story, work through the sessions.

Program MAIN;

Const
N = 10;

Type
DATA = Integer;

Var
COUNT: 1 ... N;

Function SUM(M:lnteger) : DATA;
Var

I : Integer;
S,Y: DATA;

begin
S := O;
For I := 1 To M Do

begin
ReadLn (Y);
s := s + y

end;
SUM:= S;

{ For loop }

end; { Function Sum
Begin { program body }

Repeat
Write('Enter COUNT = ');
ReadLn(COUNT)

Until (COUNT <= N);

WriteLn (SUM(COUNT))

End. { program MAIN)

This example contains a single function subprogram with its own data and
instructions. The body of SUM computes the sum of M numbers entered from
the keyboard.

The body of the main program iterates until a number less than or equal
to N is entered from the keyboard. Then the value of SUM is computed and
displayed on the screen.

254 AN OVERVIEW OF PASCAL

N is 10, and COUNT is an integer between 1 and N, inclusively. M is an
input parameter to SUM, and SUM is the output returned from function SUM.
S is simply a working variable used to accumulate the running total of numbers
entered through variable Y. Similarly, I is a working counter within SUM.

I"'!
. I
I :

~
i :

!""1
I

r

i-i
I

i-i
i
I ,

r

II!'!!\
I

-

-

Appendix B

Pascal Syntax Diagrams

Numbers

digit-sequence c·~)

hex-digit-sequence (•I hex-digit b-+

sign

unsigned-res I

digit-sequence

hex-digit-sequence

scsle-fsctor ~e >----..-..-------~•!digit-sequence~

~~
unsi ed-number
--~..;;;..;;.~;.....;:..:;.;;... __-4~ unsigned-Integer

signed-number •I unsigned-number f----.
~

255

256 PASCAL SYNTAX DIAGRAMS

Character-Strings

chsrscter-strlng

string-character

Constant-Declarations

constsnt-declaratlon Identifier constant

constant constant-Identifier

signed-number 1------------...i
character-string 1---------------.

n
1111\
' '

!""'!
I

l""I
I

11!11\
I

! I

DEFINITION OF A BLOCK 257

- Definition of a Block

_b ... l.._o ... ck __ ..., declaration-part statement-part

declaratlon- art label-declaration-part

constant-declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

_la_b_e_l -4•~1 digit-sequence J--.

258 PASCAL SYNTAX DIAGRAMS

procedure-and-functJon-declaratJon-part

procedure-declaration

functlon-declaratlon

statement-part •I compound-statement i---••

Simple-Types

Types

t e-declaratJon identmer

.:.c.1::.::;..._"""'"___.~ simple-type --­

structured-type

string-type

pointer.:.type t----"-•

==.:.:.....::.i..c;:__ __ ~ ordinal-type --­

real-type -------•

real-tYPe •I real-type-identifier 1-----••

subrange-type

enumerated-type -----..... 1

ordinal-type-identifier

ri
I I

r-1
I I

,...,

r
I

TYPES 259

Enumerated-Types

identlfler-llst

JdentJfler-1/st

Subrange-Types

constant constant

packed

structured-type-identifier

Array-Types

-
- lndeK-type •I ordinal-type ~

260

Record-Types

field-list

fleld-llst

variant-part

flxed-psrt (•I field-declaration I)
----0,..--.

...,fl=e.-ld--.-de-..c_1s ... r.-.s_t1_on.....__~ ldentmer-llst

vsrlsnt-psrt

Identifier tag-field-type

vsrlant

field-list

t•g-fleld-type •I ordlnal-type-ldentlfler ~

PASCAL SYNTAX DIAGRAMS

r
r
r

~
I I
' '

-
~
I

~
I i

TYPES 261

- Set-Types

-
ordinal-type

File-Types

flle-t

String-Types

size-attribute

strlng-type-ldentlfler

,:=s~lz:==•:::-•~t~tr~lbu=t•~-~•I unslgned-lntegerj 1----"'•

Pointer-Types

-
base-type •I type-Identifier r---+

-

262

Variables

variable-declaration Identifier-list

variable-reference

--..j variable-Identifier q quall'1er P
variable-Identifier •I 1dentmer ~

allfler

Index •C!)i-....... ~•ril expression I) • ~ c __ -1Q,...~ --·

Identifier

PASCAL SYNTAX DIAGRAMS
11111111!

I

~
I

~

i :

I I

VARIABLES

-
-
-

-

-

Expressions

term

.:.f'.:•::.c:.:to::.r _____________ ...-...i varlable-rererence 1----
i-c;..-.....i procedure-ldentmer ..---•

runctlon-ldeAt!rier

unsigned-constant

runctlon-call

unsl ned-constsnt
-..;;:;;.:.;;i:;.;.:;.=--::;.;;.;=~-----~ unsigned-number 1-----

_quoted-strlng-constant

263

264 PASCAL SYNTAX DIAGRAMS

expression

simple-expression !-..---------------,~•

function-call
~-------,

runction-ldentmer

actual- arameter-Jlst

actual- arameter

Set-Constructors

set-constructor

actual-parameter-list

expre~slon

variable-reference

procedure-Identifier

runctlon-ldentlfler

.:;m:..;;e"'m.:..:b:ce:..:r:--.... g""ro:..:u.p'--~•I expression 1-.,-----------1{-r---.•
~ expression t"-'

i-i
I

!

r

-
i-i
I

- STATEMENTS

-

-

-

-

-

Statements

structured-statement

label I t___
---•~ ~!git-sequence_ ~

slm le-statement
assignment-statement

procedure-st& tement

goto-statement

assignment-statement

varlable-rererence

runctlon-ldentmer

procedure-statement

procedure-ldentmer

expression

actual-parameter-list

oto-statement label

265

266 PASCAL SYNTAX DIAGRAMS

structured-statement compound-statement

compound-statement

conditional-statement

repetitive-statement

with-statement 1------'--•

begin statement-list

statement-list statement

Jr-statement expression

statement

case-statement expression

otherwise-clause

case ~t-""""""-.. •O+I statement r-.

otherwise-clause otherwise statement

i I

;
I I

I""'!
i I

(911
I

-
-

-

-

STATEMENTS

re etltlve-statement

repeat-statement

repeat

while-statement

repeat-statement

whlle-statement

for-statement

statement-list expression

expression statement

for-statement

control-variable

statement

control-variable •I variable-Identifier ~

Initial-value •I expression ~

final-value •I expression ~

with-statement

record-varlable-rererence statement

267

268 PASCAL SYNTAX DIAGRAMS

Procedures and Functions

procedure-declaration

procedure-heading procedure-body

procedure-bocly

procedure-heading

procedure ldentlfler

rormal-parameter-llst

functlon-declsrstlon

function-heading runctlon-body

functlon-bocly q ::,tµ ______ _

""'unc=-tl:.::;on-'--'h.;;:e:.::;a.::dl:;.;n.,._..i function Identifier

result-type

formal-parameter-list

result-t e ____ to1 type-ldentmer 1------..---1~

lndeflnlte-strlng-type

._Jncte _.fl_nl ... t e-.... s...,tr ... 'l_.ng.._-_.t YP""'e'"--.i•~i----•

n
i I

~
I

"""' !

PROGRAMS

-

-

procedure-heading

function-heading

~:=:.:==..:.u::.:....-""""'i;----1~ type-Identifier

Indefinite-string-type

program

program-heading

program

Programs

uses-clause

parameter-type

program-parameters

program-parameters •l ldentlrter-llst ~

uses-clause ldentmer-llst

269

-
-
-

-

-

-
-

Appendix C

Debugging Madntosh
Pascal Programs

Throughout this book you have used STOPS-IN, Observe, or Instant Windows to either slow
down or stop the execution of your programs so you could examine the effect of the running pro­
gram on one or more statements. These techniques are debugging tools, and they come in
handy for finding bugs in programs.

In general, the nature of bugs can be so different from one program to another that cate­
gorizing them is not a simple task; a solution to one bug may not work for another bug. Neverthe­
less, the following list of common bugs may be used as a general guide to finding program errors
and fixing them.

Where to Look for Bugs

1. Certain variables are not set to the correct values.

2. There are one or more infinite loops.

3. A flow control problem exists, and the segments in which the
operations are supposed to be performed are not correct.

4. A bug exists in the Pascal Interpreter itself.

You should consider the last possibility very unlikely and not jump to the
conclusion that since your program is not working, there is a bug in the
Interpreter. Pascal has been tested thoroughly before being released for public
use.

271

272 DEBUGGING MACINTOSH PASCAL PROGRAMS

Possibility 1: Variables Not Set to Correct Values.

The following is a partial list of cases that may cause this error.

1. You have forgotten to initialize one or more variables.

2. If their values were read in:
a. They were not read correctly.
b. The contents of the file from which they were read are not correct.
c. You may not have read them at all.

3. If they are to be set by a procedure call:
a. Their corresponding procedure parameters may be defined as

pass-by-value instead of pass-by-reference.
b. They are not changed in the procedure.

4. A side-effect from one or more procedures and functions altered the
value of one or more variables.

S. A scope rule is not understood and the variable is not defined in the
block you are using it in.

Possibility 2: The Program Contains an Infinite Loop.

A partial list of cases that may cause this error is as follows:

1. Loop variables are not set to correct values.

2. The terminating condition is not set within the loop:

STOP := False;
While (not STOP) Do
begin

*
*
*

end;

3. Loop index variables are modified within the loop, so that they can
never reach a termination value.

4. Due to a flow control problem, the loop termination condition cannot
be reached.

Possibility 3: Flow Control Problem

The following is a partial list of cases that may cause this error:

1. Boolean variables and expressions are not computed correctly.

:1
I I

i-t
I

,...
i

-

I"-'
I '

-

-
-

-

-
-

HOW TO LOCATE A BUG 273

2. The formation of a Boolean expression may not be correct:

If A< B Then

when what you meant was:

If A> B Then

3. Incorrect use of AND, OR, or NOT:

Not (A and B)

is incorrectly written as:

(Not A) and (Not B)

Instead of:

(Not A) or (Not B)

Possibility 4: Pascal Interpreter Has a Bug

The Interpreter as a program may have problems which cause failure in a
correct program. But as stated earlier, this possibility should be ruled out as long
as all the other possibilities have not been ruled out.

How to Locate a Bug

The general approach to locating a bug is by "divide and conquer." Find the
portion of the program causing the bug by checking and eliminating one piece of
the program at a time.

Check the parameter declarations of all procedures, the scope rules of all
variables, and make sure there are no side effects of any kind.

Next use STOPS-IN to trace the flow of control of the program to make
sure statements are executed in the correct order. Use the Observe Window to
verify the values of certain variables, both global and local. You may want to
stop the program at certain critical places and examine the value of important
expressions using the Instant Window. In particular, examine control variables,
variables used in conditional expressions, and the value of global variables or
variables passed as parameters. Also, make sure the terminating conditions for
While and Repeat-Until loops are stated correctly and that they are initialized
correctly.

-
-
-

-

-

-

Appendix D:

Error Messages

1. This doesn't make sense

A very general error message which will be triggered only when no
other specific error can be identified.

2. The name "<name>" has already been defined at this level.

Any attempt to re-declare an identifier within a block will elicit this
message.

3. An invalid variable, field, or formal parameter list definition is found.
A colon might be missing.

A general error message which will be triggered by any attempt to use
an undefined identifier. {"Undefined name" in Observe}

4. The name "<name>" has not been defined yet.

A general error message which will be triggered by any attempt to use
an undefined identifier. {"Undefined name" in Observe}

5. A type or procedure name has been found where a variable, field
name, or value is required.

A general error message which covers this situation in many contexts.
{"Wrong kind of name" in Observe}

6. A type is expected. "<name>" is defined, but not as a type.

A general error message which covers this situation in many contexts.

275

276 ERROR MESSAGES

7. A constant is expected. "<name>" is defined, but not as a constant. i-.

A general error message which covers this situation in many contexts.

8. A subrange boundary has been found whose type is not integer, char,
or enumerated.

A specific error message that can arise in any subrange definition.
Note that Longlnt is excluded as a subrange host type.

9. A subrange has been found whose boundaries are not of the same
type.

A specific error message that can arise in any subrange definition.

10. A subrange has been found whose lower boundary is greater than its
upper boundary;

A specific error message that can arise in any subrange definition.

11. An array index has been found whose type is not integer, char, enu­
merated, or subrange.

A specific error message that can arise in any array declaration. Note
that Longlnt is excluded as an array index type.

12. An invalid enumerated list has been found.

A very general error message that can occur whenever an enumerated
type is defined explicitly or implicitly.

13. A semicolon (;) is required on this line or above but one has not been
found.

A very general error message that can occur wherever a semicolon
and only a semicolon is required (i.e., an End won't work).

14. Did not find a valid result type in the heading of this function's
definition.

Occurs whenever the result type of a function declaration is
syntactically incorrect.

15. A colon (:)is required on this line or above but one has not been found.

A very general message that can occur whenever a colon has been
omitted. A colon is required after a statement label, after a case
constant, and before the type of a function, variable, parameter, or a
field declaration.

16. Either a semicolon (;) or an Until is expected following the previous
statement, but neither has been found.

A specific error message that can occur only in the context of an open
repeat statement.

17. Either a semicolon (;) or an End is expected following the previous
statement, but neither has been found.

-

-

lmll
I

-

ERROR MESSAGES 277

'"" A specific error message that can occur only in the context of an open
compound statement or case statement.

-

-

18. An invalid Program parameter list has been found.

A general error message that can arise whenever any syntactical error
is discovered in the parameter list of a program heading.

19. Uses can only appear immediately following the Program heading.

20. A variable or function name is expected. "<name>" is defined, but
not as a variable or function.

A general error message that can arise whenever the name to the left
of an assignment is defined to be other than a function name or
variable name.

21. A period (.) is required following the last End of the program but one
has not been found.

22. A type is required to complete a definition on this line or above but
one has not been found.

A very general error message that can occur whenever a type is
required but not found.

23. An invalid formal parameter list has been found.

A general error message that can arise whenever any syntactical error
is discovered in the formal parameter list of a procedure or function
declaration.

24. An End is required to complete the record definition above but one has
not been found.

25. A field name is expected. "<name>" is defined, but not as a record.

{"Undefined field name" in Observe}

26. A record name is expected. "<name>" is defined, but not as a record.

{"Undefined record name" in Observe}

27. A Case constant is required here but one has not been found.

A general error that will arise whenever a case statement lacks at least
one case constant.

28. An invalid variant definition has been found.

A general error that can arise whenever any syntactical error occurs
in a variant declaration.

29. The size of this String should be a number between 1and255 but it is
not.

30. A set should have elements whose type is integer, char, or
enumerated but this set does not.

278 ERROR MESSAGES

This error can arise whenever an attempt is made to construct a set
whose base type is other than integer, char or enumerated. Note that
Longlnt is excluded as the base type of a set.

31. The name "<name>" doesn't make sense here.

A general error that arises when an identifier that is not a procedure
name appears in statement context.

32. This label has not been defined.

33. A Program keyword was not found at the beginning of this program.

34. This statement or keyword doesn't belong here.

A general error message that will arise when statements appear in a
declaration context or declaration parts are out of sequence.

35. This kind of declaration doesn't belong here.

A very general error message that arises whenever a declaration
appears in an inappropriate declaration part.

36. At least one constant declaration is required after the keyword Const,
but none has been found.

37. At least one variable declaration is required after the keyword Var,
but none has been found.

38. At least one type declaration is required after the keyword Type, but
none has been found.

39. "End." is required at the end of a program, but it was not found.

40. At least one library name is required after the keyword Uses, but none
has been found.

41. An invalid library name has been found.

42. This is not allowed in the Instant Window.

A general error message that will arise whenever there is an attempt
to use declarations in the Instant Window.

43. The value of this constant is not numeric and may not have a sign.

A very specific error message covering the situation where an attempt
is made to put a sign before a nonnumeric value in a constant
declaration.

44. This does not make sense as a statement.

A very general error message that can arise whenever something that
is not a valid statement is encountered in a statement context.

1""'t
I

-

-

-

-

-
-
-

ERROR MESSAGES 279

4S. The available memory for variables defined at this level has been
exhausted.

A fairly specific error message that will arise when a stack frame
exceeds the implementation-defined limit.

46. This declaration or statement does not belong here.

A fairly general error message that will arise whenever a statement or
declaration or invalid directive immediately follows the heading of a
procedure or function declaration.

47. A variable of this type would be too large.

A fairly specific error message that will arise when the size of a
declared type exceeds the implementation-defined limit.

48. Too many up-arrows are being applied to "<name>".

{"Too many up-arrows" in Observe}

49. Too many indices are being applied to "<name>".

A very general error message that can arise when more indices are
used in an array variable reference than are defined for the variable.
This error will also be issued when an attempt to index a non-array
variable is made. {"Too many indices" in Observe}

SO. This attempt to assign a result to the function named "<name>"
outside of its definition is invalid.

An assignment to a function name can only be done inside the
function itself, in order to specify the value that the function returns.

SI. This formal parameter type should be a named type or String, but is
not.

S2. This is an invalid variant selector.

S3. This Case selector is not a valid expression.

S4. An invalid list of variable names has been found.

A very general error message that can occur whenever any syntactical
error occurs in the declaration of a list of variables.

SS. An invalid label was found on this line. A label must be a number
between 0 and 9999.

S6. A statement has already been labeled with this label.

S7. The control variable in this For statement is invalid because it is
defined outside of this procedure or function.

280 ERROR MESSAGES

Errors While Editing

1. Excessive nesting of expressions, statements, or record has been
detected at least once.

2. This statement is too long.

3. One or more comments containing more than 255 characters has
been truncated.

4. One or more names or constants containing more than 255 characters
has been truncated.

-

-

-

Appendix E:

Selected Solutions to
Session Problems

Session 1

Session 2

4. Drag a window to a new location on the desk top.
Drag an icon around the desk top.
Change the size of a window.
Pulling down a menu.
Selection of menu item by pulling down a window to the item to be

selected and releasing the mouse button.
Activating different windows or icons by clicking while pointing to

them using the mouse.

3. Locating the mouse pointer on the visible portion of the Text Window
and clicking.

4. Nothing happens (the request is ignored).

5. Move the I-beam (insertion point) to the end of the first line: click the
mouse; enter the line; then press the return key.

281

282

Session 3

Session 4

SELECTED SOLUTIONS TO SESSION PROBLEMS

1.
Var

Pl: Real;

7.
WriteLn ('IT'S TIME TO PARTY!');

8. The content of a variable can be altered during a program, whereas
the content of a constant cannot.

9.

1. a. 20
c. 4
e. 1.95
f. 5.0
g. 4.0

Program Add;
Var

Begin

End.

B, C : Integer;

ReadLn(B);
ReadLn(C);
WriteLn(B + C);

3. a. 123 printed

4.

b. a BUG message appeared

Program Cube:
Var

S: Real;

Begin
Write('Enter a value for S: ');
ReadLn(S);
WriteLn('The AREA of a cube is: ', S • S • S:10:2);

End.

5. a. 2.00 or 2.0 e+O (depending on the Write statement)
b. 36
c. a

i-i
' i

""" I I

- SESSION 6

Session 5

Session 6

-

1. Procedure CALC_TAX (Var TAX, T~ATE, AMOUNT: Real);
Begin

4.

TAX := T~ATE * AN.MOUNT;
End;

Procedure AREAJ>ERI (Var AREA : Real;
Var PERIMETER : Real;

Length : Real;
Width : Real);

Begin
AREA := Length * Width;
PERIMETER := 2 • (Length • Width);

End;

283

Because we need to calculate values, functions are good when only
one value is to be returned.

1. If (Last >= 'A') And (Last <= 'Z')

end
Else

Or ((Last > = 'a') And (Last <= 'z')) Then
Case Last of
'A', 'a', 'B', 'b', 'C', 'c', 'D', 'd', 'E', 'e' :

WriteLn('Tigers');
'P, 'f, 'G', 'g', 'H', 'h', 'I', 'i', 'J', 'j' :

WriteLn('Lions');
'K', 'k', 'L', 'l','M', 'm', 'N', 'n','O', 'o' :

WriteLn('Panthers');
'P', 'p','Q', 'q', 'R', 'r','S', 's', T, ·r :

WriteLn('Leopards');
'U', 'u', 'V', 'v', W, 'w', 'X', 'x';Y', 'y', 'Z', 'z' :

WriteLn(Sabres');

284

Session 7

SELECTED SOLUTIONS TO SESSION PROBLEMS

5. Program No5;
Var

Number : Integer;
Begin

Write ('Enter Number: ');
ReadLn (NUMBER);
Case NUMBER of

1,2
WriteLn ('No way!');

5,3,13
begin

NUMBER := NUMBER + 1;
WriteLn (NUMBER)

end;
7,11

begin
NUMBER := NUMBER - 1;
WriteLn (NUMBER)

end
Otherwise

WriteLn ('Wrong Input!');
end; {Case}

End. {Program No5}

1. a. Computes:

p := 1 * 2 * 3 * 4 * 5
p = 120

c. Computes square of 1 .. 10

I • I
1 • 1 12 = 1

2·2 = 22 = 4

3.3 = 32 = 9
3

*

10 * 10 = 102 = 100

!"Ill
i :

n

l'""I

-

r"'1
I i

,.,
' '

- SESSION 8

--

flllll

flllll

111111

flllll

Session 8

flllll

,...,

111111

"""'

285

5. Program GUESS;
Const

ANSWER= 67;
Var

i : Integer;
nog : Integer;

Begin
i := O; nog := O;
While (i <> ANSWER) Do

begin
Write('Enter your guess ');
Readln (i);
If i > ANSWER Then

Writeln('Next time enter a lower number.')
Else

If i < ANSWER Then
Writeln('Next time enter a higher number');

nog := nog + 1;
end;

nog := nog + 1;
Writeln ('You made ',nog, 'guesses.')

End. {GUESS}

1. Procedure SUM (Var Feet2 : Integer;
Feet1 : Integer;

(Varln2 : INCHES;
ln1 : INCHES);

Var Totin : Integer;
begin

Totin := ln1 + ln2;
Feet2 := Feet1 + Totin Div 12;
ln2 := Totin Mod 12

end; {procedure}

3. Procedure TIC_TOC (VarHR:Hours; Var MIN : MINS; Var SEC : SECS);
Var l,J : Integer;

begin
I :=SEC+ 1;
SEC := I MOD 60;

J := MIN + I Div 60;
MIN := J MOD 60;
HR := HR + J Div 60

end;

286

Session 9

Session 10

SELECTED SOLUTIONS TO SESSION PROBLEMS

1. To Procedure COPY _KBD_ TO_FILE, insert

Writeln (Line);

after : Readln (Line);

5. 1

7. Procedure COPY _FILE_ TO_FILE (Fname1
Var

lnFile
OutFile

: text;
: text;

Line : String;
begin

Reset (lnFile, Fname1);
Rewrite (OutFile, Fname2);
Readln (lnFile, Line);
While Not EOF (lnFile);

end
end:

Writeln (OutFile, Line);
Readln (lnFile, Line)

{while}
{COPY _FILE_ TO_FILE}

:· String; Fname2 : String);

{open input file}
{open output file}

3. Procedure DISPLAY (PHBook: Book; Last: Integer);
Var

i = Integer;
begin

For i := 1 TO Last Do
Writeln (PHBook [i]);

end; {DISPLAY}

5. b.

d.

For i := 1 To N Do
List[i] := O;

j := O;
i := 2;
While i <= N Do

begin
j := j + 1;
Out [j] := In[i];

:= i + 2
end {For} ri

!

- SESSION 11

g.

Session 11

3.

-

-
-

Count := O;
For i := 1 to ARRAY _MAX Do

If LIST[i] > B Then
COUNT := COUNT + 1;

WriteLn ('No. of array elements > B: ', COUNT);

program StrPrblm3;
(Your declarations}
var

str, strl, str2: string;
Index : Integer;
NoOfChars : Integer;

begin
(Your program statements}
Wrlte('Enter the line: ');
Readln(str);
If length(str) = O then (for the case that str is empty}
NoOfChars := o

else
begin

Index:= Pose· ·, str);
whlle (Index> 0) do
begin

NoOfChars := NoOfChars + Index - I;
str2 := Copy(str, I, Index);
str I := Concat(str I, str2);
Delete(str, 1, Index>;
index:= Pos(' ·, str);

end;
NoOfChars := NoOfChars + Length(str);
strl := Concat(strl, str);

end;
wrlteln(strl, NoOfChars);

end.

287

!"'II
288 SELECTED SOLUTIONS TO SESSION PROBLEMS i

I
I
I

4. !"'II
I

program StrPrblm4;
(Your declarations}
var

str, str I, str2 : string;
Index : Integer;

i-1 NoOfWords : Integer;
I

begin
(Your program statem~nts}
Wrlte('Enter the line:');
Readln(str);
If length(str) = O then (for the case that str Is empty J
NoOfWords := O i-i

else '
I

begin
Index:= PosC' ·, str);
while (Index > 0) do
begin

NoOfWords := NoOfWords + I;
str2 := Copy(str, I, Index);
str I := Concat(str I, str2);
Delete(str, I, Index);
Index:= Pos(' ·, str);

end;
NoOfWords := NoOfWords + I;
strl := Concat(strl, str);

end;
writeln(strl, NoOfWords);

end.

r-\

Session 12

1. a.
Calendar= Record

Months : 1 .. 12;
Weeks : 1 .. 52;
Days : 1 .. 7 I"'\ end; {record} I

- SESSION 14

-
-

- Session 13

-
-

Session 14

-

3.

d. PERSON = Record

S.A. := 1;
S.T.B. := 'n';
S.T.C. := 2;
S.W.D. := 5;

AGE : 1 .. 99;
SEX : Char;
Weight : 1 .. 400;
Height : 1 .. 20
end; {record}

4. With A Do
begin

WriteLn (X);
With Y Do

WriteLn (B,C);
WriteLn (Z)

end; {With}

1. a. False
b. True
c. False

6. a.
(], [1], [2], [3], [1,2], [2,3] [1,3], [1,2,3]

d.

289

(], [Red], [White], [Blue], [Red, White], [Red, Blue], [White, Blue],
[Red, White, Blue]

7. Y can only take one value at a time, which is either A, B, or C. X can
take more than one value up to 3 ([A,B,C]) or no value ([]). Alto­
gether, X can have up to 8 different combinations of (A,B,C} as its
value.

1. a. Records in a sequential file must be accessed one at a time in
sequence. To get record #5, the first four records must be read and dis­
carded. In a random file, record #5 can be accessed directly-your pro­
gram need only locate record #5 with a SEEK and then read the record.

290

Session 15

Session 16

SELECTED SOLUTIONS TO SESSION PROBLEMS

c. RESET opens a file for input, thus a RESET file can be read only.
REWRITE opens a file for output; hence a REWRITE file can be
written only. Furthermore, if an existing file is opened with a
REWRITE, its contents are lost!

4. STUDENT = RECORD

3. 1.4 e+4
1.4 e+4
1.7 e+4

-1.5 e+4
1.9 e+4
1.2 e+4
1.1 e+4

LastName : string[20];
FirstName : string[10];
Midterm1 : O .. 100;
Midterm2 : 0 .. 100;
Homeworks : array[1 .. 5] of 0 .. 100;
ClassStand : (Fr, Soph, Jr, Sr);

end;

6. Function Pl (N : Integer) : Integer;
begin

end;

If N = 1 Then
Pl := 1

Else
Pl := N * Pl (N - 1)

1. Add the following to the main program:

'O', 'o' : SAVE(Phonelist);

before the "otherwise" keyword. Then add the SAVE procedure at the
beginning of your program.

procedure SAVE (Phonelist: PagePointer);
Type

OutRec = record
Name : String20;
Phone : String12;

end;

r-l
!

-
-
-
-

SESSION 16

-

-
-
-

-

-

Var
FileName : string[8];
OutFile : file of OutRec;

begin
WriteLn ('Enter output file name:');
ReadLn (FileName);
REWRITE (OutFile, FileName);
while (Phonelist <> NIL) do

begin
OutFile ·.Name := Phonelist ·.Name;
OutFile ·.Phone := Phonelist ·.Phone;
PUT (OutFile);
Phonelist := Phonelist • .NextPage;

end; {while}
CLOSE (OutFile);
end; {SAVE}

291

Note: It is assumed that the list contains at least one element already.
Otherwise, an empty file will be created.

2. Add the following before the" otherwise" keyword in the main program.

'R', 'r' : READP (Phonelist);

Then add the following procedure to your program.

procedure READP (var Phonelist: PagePointer);
Type

lnRec = record
Name : String20;
Phone : String12;

end;

Var
lnFile : file of lnRec;
FileName : string[8];

Begin
WriteLn ('Enter input file name:');
ReadLn (FileName);
RESET (lnFile, FileName);
while not EOF (lnFile) do

begin
lnsertPhone (Phonelist, lnFile".Name, lnfile" .Phone);
GET (lnFile);

end; {while}
end; {READP}

Note: It is assumed that the file name is valid and that the file already
exists.

292

Session 17

2.

SELECTED SOLUTIONS TO SESSION PROBLEMS

program ConcertoM;
(Modified version for problem 2 session 17)

const
MaxNote = 41; (Max Note +1)

type
Note = 1 .. 7;
Tone = record

cnt : integer;

Amplitude : integer;

duration : integer;

end;

SWYnthRec = record

Mode : integer;
Song : array {1 .. MaxNote} of Tone;

end;

var

Freq : array [Note] of integer;
Gperiod : integer;
StNote : array [Note] of string;
Concert : SWYnthRec;
Oct : real;
i, NoteNo : integer;
GDuration, GTempo, GOct, TicksP16Th, GAmplitude : integer;
k : Note;
Flat, Dot, Sharp : Boolean;

procedure init;

begin
Freq[1] := 264;
Freq[2] := 297;
Freq[3] := 330;
Freq[4] := 352;
Freq[5] := 396;
Freq[6] := 440;
Freq[?] := 495;
StNote[1] := 'C';
StNote[2] := 'D';
StNote[3] := 'E';
StNote[4] := 'F';
StNote[5] := 'G';
StNote[6] := 'A';

~
I I

i-i
I

i-i
I !

- SESSION 17

-
-
-

-

-

-

-
-

StNote[7] := 'B';
GOct := 4;
GAmplitude := 100;
Gtempo := 75;
TicksP16TH := 900 div GTempo;
Gduration := TicksP16TH * 16; {Whole Duration}
Gperiod := 1;

end;

function Octave (N : note;
OctNum : integer) : real;

var

0, m : integer;
Temp : real;

begin

if OctNum = 4 then
Octave := Freq[N]

else if OctNum < 4 then

begin

O := 4 - OctNum;
Temp := Freq[N];
for m := 1 to 0 do
Temp := Temp I 2;

Octave := Temp;

end

else

begin

0 := 4 - OctNum;
Temp := Freq[N];
for m := 1 to 0 do
Temp := Temp * 2;

Octave := Temp;

end;

end;

function Convert (str : string) : integer;

var
i, len, No : integer;
str : char;

293

294

begin

len := length(str);
No:= O;
for 1 := 1 to len do

begin

SELECTED SOLUTIONS TO SESSION PROBLEMS

str1 := copy(str, i, 1);
No := ord(str1) - ord('O') + No * 10;

end;

Convert := No;

end; { Convert)

function FindNote (str : string) : Note;

var

index : Note;
found : boolean;

begin

{Note: we are assuming the note exists for sure)

found: := false;
index := 1;

while not found do

begin

if StNote[index] = str then

begin

FindNote := index;
found := true;

end

else

index := Succ(index);

end;

end; { FindFreg}

function Count (Frequency : real) : integer;

begin

Count := round(783360 I Frequency);

end;

procedure FndDotShF1 (var str : string);

var
st r1 : string ;

r1
I '

i-i
I I

i-i
' !

l""'l
I :

SESSION 17

-

-

-

begin

str1 := copy(str, 1,);
Sharp := false;
Dot := false;
Flat := false;
if str1 ='#' then

begin

Sharp := true;
delete(str, 1 1);

end

else if str1 = ·...: then

begin

Flat := true;
delete(str, 1 1);

end;
str1 := copy(str, length(str), 1);
if str1 = '.' then

begin

delete(str, length(str), 1);
Dot := true;

end;

procedure BuildNote (str : string);

var
str1, str2 : string ;
temp, period : integer;
frq : real;
index : Note;

begin

str1 := copy(str, 1, 1);
index := FindNote(str1);
if length(str) = 1 then

begin

with Concert do

begin

Song[NoteNo].Duration := GDuration div Gperiod;
Song[NoteNo].Amplitude := GAmplitude;
Song[NoteNo].cnt := Count(Octave(index, GOct));

end

295

296

end

else

begin

delete(str, 1, 1);
FndDotShF1 (str);

SELECTED SOLUTIONS TO SESSION PROBLEMS

if length(str) > 0 then
period := Convert(str)

else

period := Gperiod;
frq := Octave(index, Goct);
if Flat then
frq := frq * 24 I 25

else if Sharp then
frq := frq * 25 I 24;

Temp := Gduration div period;
If Dot then
Temp := Round(Temp * 1.5);

with Concert do

begin

song[NoteNo].Duration := Temp;
Song[NoteNo].Amplitude := GAmplitude;
Song[NoteNo].cnt := Count(frq);

end

end

end; { of Build Note }

procedure RdNotes;

var

done : Boolean;
str, str1 : string ;

begin

writeln('To End Entering the Notes Type End for the Note');
Writeln;
wrintln('Enter the Notes ');
done := False;
NoteNo := 1;

repeat

readln(str);
if (str = 'end') or (str = 'END') then

begin

done := true;
with Concert do

I ;

SESSION 17

-

-

-
-

-
-

-

-

begin

Song[NoteNo].Duration := GDuration div Gperiod;
Song[NoteNo].Amplitude := GAmplitude;
Song[NoteNo].cnt := O;

end

end

else

begin

str1 := Copy(str, 1, 1);
if str1 = ·o· then

begin

str1 := Copy(str, 2, 1);
GOct := Convert(str1);

end

else if Copy(str, 1, 2) = 'LN' then

Gperiod: = Convert(copy(str, 3, length(str)))

else

begin

BuildNote(str);
NoteNo := NoteNo + 1

end

end

until done;

end;

procedure Play;

begin

Concert.Mode := -1;
StartSound(3Concert, SizeOf(Concert), Pointer(-1));

end;

begin

{Your program statements}
in it;
Rd Notes;
Play;

end.

297

298 SELECTED SOLUTIONS TO SESSION PROBLEMS

Session 18

The solutions to this session are too long to present here. You should consult
the graphics reference card for help in doing these problems.

-

-
-
-
-
-

-

-

-
-

Index/Glossary

@, 241

An operator that extracts the
address of an object.

active window, 5

A window that is active; its
controls are activated and it is on
the "top" of the desk.

actual parameters, 59
The list of function or procedure
parameters given when the
function or procedure is called.

algorithm ii, 81
A procedure for doing a calculation
in an unambiguous, mechanical
manner.

AND truth table, 65
array, 111

A collection of elements.
ASCII character set, 49
ASCII code, 49

The American Standard Code for
Information Interchange.

assignment, 32
The process of copying a value into
a variable.

assignment operator, 33

assignment operator (continued)
The assignment operator in Pascal
is:=.

base type, 93
Begin, 415

A reserved word in Pascal to
designate the beginning of a
program or a section within a
program.

binary number, ii
A string of ones and zeros, when
interpreted by a computer,
represent characters, numbers,
pictures, and instructions.

block activation, 179

The proces of running a block.
block-structure, 17 5

The feature of Pascal that allows
program parts to be connected
together as either separate blocks,
or nested blocks.

blocks, 175
A section of a Pascal program
containing its own data and
instructions.

299

l""\
300 INDEX/GLOSSARY

boolean, 31 ClosePicture, 243 l""l
A type whose values can be either closing a window, 6

I
I

TRUE or FALSE, only. See close box.
boolean constant, 63 comments, 40

TRUE or FALSE. Statements that are ignored by the
boolean variable, 63 Pascal interpreter, but are used by

A variable whose value can only be programmers to document the
TRUE or FALSE. program.

ii""!
boolean, operations on, 64-66 compiler, 12 I

bug dialog, 18 A language translator that converts
A dialog box which appears a high-level language program into
whenever your program cannot machine language prior to running 1""'I
continue due to a programming the program. Contrast with

I

error. interpreter.
bugs, 271-273 compound if clause, 70

An error in a program. CONCAT, 127 ~

buttons, 20 consecutive statements, 250
A dialog box has special selection Const, 31, 92
boxes called buttons which are The reserved word that designates
selected by clicking them. For the list of constants used by a
example, OK and CANCEL are program.
buttons. constant, 30-31

Objects which cannot change in l""\
case clause, 7 4 value are called constants See also
case selector, 7 4 Const.

The ordinal value used to control bar, 5
determine which case clause is A region at the top of a window
executed. that is used to close the window or

case statement, 74 move the window by clicking or
definition 77 dragging.

char,31, COPY, 127 ~

operations on 49-50 CRT, 1
A type whose values can be a A cathode-ray-tube; the display
single letter, numeral, or keyboard screen of a computer.
character.

CHR, 52 cursor, 2

click-hold, 3 An arrow, vertical line, or other

The act of pressing the mouse graphical image which indicates the

button and not releasing the current position of a mouse or

button. keyboard character.
clicking, 2

The act of pressing and releasing data declaration part, 247

the button on the mouse. data structure, 13 7

close box, 5 A logical structure for organizing
A small rectangular region in the information so that it can be
upper left-hand corner of a processed by a machine. 1""'I

window (in the control bar), that data type, 91

closes the window when it is debugging tools, 271
clicked. Techniques for finding and

~

-
-

-
-
-
-
-

-

-
-

INDEX/GLOSSARY

debugging tools (continued)

eliminating errors in programs.
decisions, 250
declaration part, 30

The section of a Pascal program
that defines all objects used by the
program.

DELETE, 23, 127
designator, 111

An array subscript or index.
desk top, i, 2

The simulated top of a desk
showing windows, icons, and
dialogs: the metaphor used to make
using the Macintosh easy and
intuitive.

dialog, 8
A special window that is used to
communicate between the user and
the program running on the
Macintosh.

dimmed
A button, or menu item appears
dimmed (in half-tone gray) when it
is disabled-thus it cannot be
selected.

direct access file, 100
A file whose records can be directly
accessed without reading the other
records in the file.

disabled button, 20
A dialog button that is not
available for selection-it will
appear as a dimmed button.

DISPOSE, 196
dot notation, 143
dragging, 3

The act of moving the mouse while
click-holding. Dragging is used to
move graphical objects (icons,
windows) or to select an item from
a menu.

dragging a window, 7
See size box or control bar.

drawing window, 10, 13, 231
A window in the Macintosh Pascal
interpreter program where the
graphical output from a running
program is displayed.

editing, 22

The process of changing a
program.

eject, 11, 21

301

A diskette is removed from the
disk drives by first ejecting it and
then manually removing it. The
File menu contains an EJECT item
which must be selected to eject the
selected diskette.

element, 111

A single value or record within an
array or data structure.

empty string, 124
A string containing no characters,
i.e., its length is zero.

enabled button, 20

A dialog button that can be
selected.

End, 41

A reserved word in Pascal to
designate the termination of a
program or a section within a
program.

enumerated scalars, 152
EOF, 102

End of File mark.
EOLN, 101

End of Line.
external blocks, 185

Procedures or functions which are
defined outside the program that
uses them.

external file name, 101
The name of the file used by the
diskette directory.

file. 99
A collection of records stored on
diskette.

file buffer, 103, 165
file operations, summary, 1 7 3
file records, 100

The smallest unit of file storage.
file update, 169
flow control, 272
For loop, 85
formal parameters, 59

302

formal parameters (continued)
The list of procedure or function
parameters given when the
procedure or function is defined.
See also actual parameters.

forward reference, 188
A reference to a procedure or
function before it is defined.

frequency, 215
function, 53, 59, 249

A subprogram that returns and
stores a value in the name of the
function.

function call, 60
The process of activating a
function.

global identifiers, 17 5
Names which are accessible from
aii parts of a program.

G0, 14
The GO item is used to start a
program running. See RUN.

GraEPort, 245
graphics, 231
grid, 232

handle, 240
A pointer to a pointer.

high-level language, ii
An English-like, mathematical-like
notation for communicating ideas
called algorithms to a machine.

horizontal scroll bars, 8
A scroll bar at the bottom of a
window that is used to scroll the
contents of the window
honizontally.

icon, 1, 230
A graphical symbol which
represents a program, data, or
some other object in a computer
system.

IconData 240
identifier, 29,

rules 30
Names used in Pascal to identify

INDEX/GLOSSARY

identifier (continued)
programs, procedures, functions,
types, constants, and variables.

if statement, 68, 252
INCLUDE, 128
index, 111

An array subscript or designator.
indirect reference, 184

The location, rather than the value
of a value is passed to a function
or procedure, See pass-by-reference.

infinite loop, 82, 272
A non-terminating loop. This
usually indicates an error in the
program (although some programs
are designed to run forever).

input, 35
The flow of information into a
computer system. The process of
entering information into a
computer.

INSERT, 128
insertion point, 14

A special purpose cursor that
indicates the current location of
text should you decide to enter a
character or number. The insertion
point appears when attempting to
edit text.

instant window, 43
A special window within the Pascal
interpreter program that allows
you to instantly perform a
statement.

instruction, ii
A single command that governs
the lowest level operations of a
modem digital computer.

integer, iii, 31,
operations on, 45

A whole number, usually ranging
from the smallest value that can be
stored (-32768) to the largest
number (+32767).

interactive program, 3 7
A program that interacts with its
user while running.

internal file name, 101
The name of a file used by the

-

-

INDEX/GLOSSARY

internal file name (continued)
Pascal program.

interpreter, iv
A language translator program that
directly interprets the statements
of some other (high-level)
language.

iteration, 81
A program iterates when a section
of the program is repeated.

key, 120
An element or portion of an
element in a data structure which
is used to identify, locate, or store
an element in a list.

keywords, 27
Special words in Pascal that cannot
be used for anything except to
construct syntactically correct
statements in Pascal. See also
reserved words.

LENGTH, 127
linked list, 196

A data structure containing
elements linked together by
pointers.

list, 115
A data structure for arranging and
storing information.

literal string, 124
A string that is self-defined. A
constant string.

locating bugs, 273
locking

A file or entire diskette may be
locked using the Get Info item
under menu File in the desk top.
Locked files and diskettes can not
be written onto.

Longlnt, 240
loop, 82, 251

An iteration in a program. See
iteration.

loop condition, 82
A condition that determines the
number of times a loop repeats.

303

loop counter, 82, 85
A variable that keeps track of the
number of times a loop is repeated.

looping, 250

machine language, ii
The sequence of binary numbers
which directly control the
electronic circuits of a computer.

Macintosh Pascal types (Table), 97
manifest constant, 155

A named constant, i.e. an identifier
in Pascal that is assigned a constant
value.

menu, 1, 3
A list of options which can be
selected from the desk top. A
running program is controlled by
its user through selections made
from a menu.

menubar, 3

A region at the top of the
Macintosh screen where all menu
titles appear.

modem, 105
A device for communicating with
another computer over the
telephone network.

modular programming, 54
A technique whereby a program is
sub-divided into manageable parts
called modules.

mouse, 1
A hand-controlled device used to
point and select items on the
screen of a computer.

multidimensional programming, 12
A style of programming in which
multiple windows are used to
simultaneously display many views
of a program while it is being
developed, tested, or run.

multiple windows, 12
A desk top with two or more
windows simultaneously displayed.

multiway branching, 7 3
See also case statement.

music, 218

i-,
304 INDEX/GLOSSARY

named blocks, 175 ordinal type (continued) ""I
Procedures and functions. correspondence with whole I

nested blocks, 176 numbers.
nested if statement, 7 3
nested statements, 73, 250 Pascal file operations, summary 17 3

"""" A statement contained within Pascal, ii
another statement. A high level programming

NEW, 196 language invented by Niklaus
NewFileName, 102 Wirth and named in honor of
nil pointer, 195 Blaise Pascal who invented one of

A pointer that points to nothing. the first adding machines in the
nonlocal, 177 1600's. i-,
null string, 124 Pascal syntax diagrams, 29, Appendix B

A string of length zero. The complete defintion of Pascal
according to the syntax rules which

object, 29 govern the formation of correct r-1

A number, location of a value in statements in Pascal.
memory, program, statement, or a pass-by-reference, 184
series of action in a program. An The location of a value is passed to
entity in a program. a procedure or function.

observe window, 7 8 pass-by-value, 183
A special window in the Pascal The value of a parameter is passed
interpreter program that allows to a function or procedure. !""I
you to view the values of variables patterns, 129
and expressions as it is running. Plotlcon, 240, 243
Opened from the WINDOW menu. pointer, 194

OK button, 25 A location of an object. 1911

A dialog button which you click pointer, operations on, 196
when you want to continue. POS, 127

OMIT 128 printer, 105
one-legged if statements, 70 procedure, 53, 249 -

An if-then statement (without an A block of program text much like
else clause) is called a one-legged if a miniature program, but with
statement because it lacks a second inputs and outputs defined in a
clause. parameter list, and with scope rules

open,25 which define an environment
The process of copying a file from within a main program.
diskette into main memory. See also procedure call, 55
Restoring a Saved Program. Also The act of causing a procedure or
the process of preparing a data file function to be activated.
for access. procedure heading, 59

OpenPicture, 243 A statement containing the name -OR truth table, 65 of the procedure and zero or more
ORD, 52 input and output parameters.
ordinal type, 94 procedure parameters, 57, 59 1911

A collection of values which can be The list of input and output I

enumerated, i.e. can be made to variables and constants that are
match-up in a 1-to-l contained in the procedure heading -

-
-
-

-

-

INDEX/GLOSSARY

procedure parameters (continued)
statement.
program, ii
A list of instructions which control
the operation of a computer.

program body, 30, 247
program refinement, 53

The process of successively
increasing the details within a
program by interatively modifying
until the final program is obtained.
Usually done by using
subprograms.

program statement, 29
The first line of every Pascal
program.

program text, 13
program window, 1 O

A window in the Macintosh Pascal
interpreter program where the
current Pascal program is entered,
displayed, edited, and run.

programming language, ii
See high-level language.

pseudo-file, 108
pull-down menu, 4

A menu that appears on the screen
only when selected, and disappears
when no selection is being made.

Quickdraw, 231
The collection of graphics routines
stored in the Macintosh ROM.

quit, 25
The current session is ended by
selecting the File-Quit item.

random access file, 100
A direct access file.

random files, 164
random retrieval, 168
Readln, 35

The intrinsic procedure in Pascal
that is used to enter data into a
running program.

real, iii, 31
operations on, 47

A real number containing a decimal

real (continued)

point.
record, 13 7, 249

definition, 138

305

A data structure consisting of
components, each component may
in tum be either a single type, or
another record.

recursion, 18 5
The process of a procedure or
function activation from within
itself; a procedure or function calls
itself.

reference type, 194
The collection of all locations
addressable by a Pascal program.

Repeat loop, 83
reserved words, 27

Special words in Pascal that cannot
be used for anything except to
construct syntactically correct
statements in Pascal. See also
keywords.

Reset, 101
restoring a saved program, 25

A program that has been saved can
be copied from diskette back into
the Program Window by opening it
from the File-Open menu.

reverse video, 15
The white areas are changed to
black, and the black areas are
changed to white. This is usually
employed to indicate that the
reverse text has been selected.

Rewrite, 101
RUN, 14

The run menu controls a running
program.

RUN-GO, 70
RUN-STEP, 69
running a program, 16

SAVE, 21
A program can be copied to a
diskette file so that you can get it
back later by selecting the File item
SAVE.

306 INDEX/GLOSSARY
~

SAVE AS ... , 20 size box (continued) \"""
A File item used to save a program it is dragged.
under a new or different name. skeleton program, 2 7

saving a program, 19 A program that does nothing, but ,.,
A program is saved by copying it is used as an example.

' ' from the Program Window to a file STOPS, 69 I

on diskette. Set restoring a saved string, 123
program. constant, 124 llllll

scalars, 152 declaration, 124
Simple types; char, integer, real, assignment rule, 126
and boolean. A data structure consisting of a

scientific notation, 47 length attribute and zero or more
A notation used to express large characters.
real numbers in compact form. string length, 124

scope rules, 175 The number of characters stored in
The rules which govern the ability the string. ~

to access names in one subprogram string, operations on, 127
from another subprogram. strong-type, iii

scroll bar, 5 A feature of a programming
~

A vertical and/or horizontal region language in which the variables are
along the edge of a window that is restricted to take on only the
used to scroll the contents of a values belonging to one type. See
window by dragging or clicking in also type. ~

the scroll bar. StuffHex, 240
searching strings, 128 subprogram, 53, 249
selecting text, 14 Functions and procedures.

The act of using the mouse to subrange type, 93
highlight text in a window. The substring, 130
selected text can be edited- syntax diagrams, 28
removed, changed, or copied. Graphical representation of syntax

sequence, 250 rules. These diagrams are used to
sequential file, 100, 164 help you form syntactically correct

A file which is accessed Pascal statements.
sequentially. syntax rules, 28 -sets, 155 The rules of grammar. These rules

operations on, 15 7 govern the composition of Pascal
An unordered list of manifest statements.
constants. I'"'!'

side-effect, 176, 184 table, 113
The execution of a procedure or A data structure which stores
function has an effect on the value information in tabular form.
of an object outside of the text editor, 12
procedure or function. A program that allows you to

size box, 5 enter, modify, delete, copy, and
in a window, 7 move text from a window, dialog,

"""' A rectangular region in the bottom or desk top.
left-hand comer of a window that text file, 100
changes the size of a window when A special kind of sequential file

""!

-

-
-

-

-
-

INDEX/GLOSSARY

text file (continued)
which stores text, only.

text window, 10

A window in the Macintosh Pascal
interpreter program where the
textual (text and numbers) output
from a running program is
displayed. Contrast with the
drawing window.

trash can, 3
An icon representing a place where
objects are discarded.

truth table, 65
A table showing the result of a
boolean operation on one, two, or
more boolean values.

two-dimensional array, 121

An array with two subscripts.
type, iii, 3 1. 91

A collection of values and the
operations that may be performed
on the collection. See data type.

TYPE, 92

A reserved word in Pascal
designating the names and
definitions of all types in a
program.

base, 93.
subrange, 93

typed file, 163
operations on, 166

Files that store heterogenous types
of data.

up arrow, 210
The colloquial term for a pointer
reference.

307

use statement, 231

Designates the external procedures
used by a program.

Var, 32

The reserved word designating the
list of all variables used in a
program.

Var parameter, 59
A procedure or function parameter
that receives an output value back
from the procedure or function.

variable, iii, 32

Objects which store information
that can be changed during the
execution of a program

variable declaration, 30
vertical scroll bar, 8

A scroll bar at the right edge of a
window that is used to scroll the
contents of the window vertically.

while-do, 82, 251
window, 1, 4-5

A region of the display screen
where text or graphics is shown
when a program is running.

With statement, 143
write protected, 19, 26

A diskette is protected from
accidental erasure by setting the
write protection tab. See locking.

Writeln, 16, 35

The intrinsic procedure in Pascal
that is used to output data from a
running program.

r=, ~ ~ ' =1 . .---,

Graph port
(Graf Port Routines)

(2) procedure lnitGraf (globalPtr : ODPtr);
(2) procedure OpenPort (port : Graf Ptr);
(2) procedure lnitPort (port : GrafPtr);
(2) procedure ClosePort (port : GrafPtr);
(2) procedure SetPort (port : Graf Ptr);
(2) procedure GetPort (var port : GrafPtr);
(2) procedure GrafOevice(device : Integer);
(2) procedure SetPortBits(bm : BitMap);
(2) procedure PortSize(width, height : Integer);

'-----1

(2) procedure MovePortTo(leftGlobal, topGlobal : Integer):
(2) procedure SetOrigin(h, v : Integer);
(2) procedure SetClip(rgn : RgnHandle);
(2) procedure GetClip(rgn : RgnHandle);
(1) procedure ClipRect(r : Rect);
(1) procedure BackPat(pat : Pattern);

I---~·· ~
r ---11 r--~1 h~ !----1 ~

QUICKDRAW GRAPHICS
T. G. Lewis, Abbas Birjandi

From Macintosh"' Hands-On Pascal by T. G. Lewis and Abbas
Birjandi. Wadsworth Publishing Company, Belmont, CA.
\~J 1986 by Wadsworth, Inc.

,

Pictures------------ Polygons
(Picture Routines)

(2) function OpenPicture(picFrame : Rect) : PicHandle;
(2) procedure ClosePicture;
(2) procedure DrawPicture(myPicture : PicHandle; dstRect : Rect);
(2) procedure PicComment(kind, dataSize : Integer; dataHandle :

QDHandle);
(2) procedure KillPicture(myPicture : PicHandle);

(Oval Routines)

(1) procedure FrameOval (r : Rect);
(1) procedure PaintOval (r : Rect);
(1) procedure EraseOval (r : Rect);
(1) procedure lnvertOval (r : Rect):
(1) procedure Fil!Oval (r : Rect; pat : Pattern);

(Graphical Operations on Regions) -----­

(2) procedure FrameRgn (rgn) : RegHandle);
(2) procedure PaintRgn (rgn) : RgnHandle);
(2) procedure EraseRgn (rgn) : RgnHandle);
(2) procedure lnvertRgn (rgn) : RgnHandle);
f?\ nrn~urA FillRnn fmn\ · RanHandlA" nAt • PAttAm\·

(Polygon Routines)

(2) function OpenPoly : PolyHandle;
(2) procedure ClosePoly;
(2) procedure KillPoly (poly : PolyHandle);
(2) procedure OffsetPoly (poly : PolyHandle; dh, dv : Integer);
(2) procedure MapPoly (poly : PolyHandle; fromRect, toRect : Rect);
(2) procedure FramePoly (poly : PolyHandle);
(2) procedure PaintPoly (poly : PolyHandle);
(2) procedure ErasePoly (poly : PolyHandle):
(2) procedure lnvertPoly (poly : PolyHandle);
(2) procedure FillPoly (poly : PolyHandle; pat : Pattern);

1_ ---:--0:.,

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

notSrcOr
notSrcXor
notSrcBic
patCopy
patOr
patXor
patBic
notPatCopy
notPatOr
notPatXor
notPatBic

=~
=~
=~
=~
=~
=m
= 11;
=~
=~
=~
=~

(QulckDraw color separation constants)

(2) normalBit = o: { normal screen mapping)
(2) lnversBit = 1; { inverse screen mapping)
(2) redBit = 4; { RGB additive mapping }
(2) greenBit = 3;
(2) blueBit = 2;
(2) cyanBit = 8; { CMYBk subtractive
(2) magentaBit = 7; mapping }
(2) yellowBit = 6;
(2) blackBit = 5;
(2) blackColor = 33; t colors expressed in
(2) whiteColor = 30; these mappings J
(2) redColor = 205;
(2) greenColor = 341;
(2) blueColor = 409;
(2) cyanColor = 273;
(2) magentaColor = 137;
(2) yellowColor = 69;

(standard p!cture comments)

(2) picLParen = O;
(2) picRParen = 1;
(1) type QDByte = -128 .. 127;
(1) ODPtr = ·aoeyte; { blind pointer }
(1) OD Handle = ·aoPtr; { blind handle }
(1) Str255 = string[255);
(1) Pattern = packed array (0 .. 7) of 0 .. 255;
(1) Bits16 = array (0 .. 15) of Integer;
(1) VHSelect = (v, h);
(2) Gratverb = (frame, paint, erase, invert. full):
(1) Styleltem = (bold, italic, underline, outline,

shadow, condense, extend);
(1) Style = set of Styleltem;
(1) Fontinfo = record

ascent Integer
descent Integer
WidMax Integer
leading Integer

end:

The comments in the left-hand margin indicate whether
the declared Item is to be found in Quick0raw1 (1) or
OuickDraw2 (2).

.___A . ..__.JI .__j ~ 'i-J

(1)

(1)

(1)

(1)

(2)
(2)
(2)

(2)
(2)
(2)

(2)
(2)
(2)

.___j

Rect = record case lnterger of
O: {top : Integer;

left : Integer;
bottom : Integer;
right : Integer);

1: (topleft : Point;
botRight : Point);

end:
BitMap = record

baseAddr : QDPtr:
rowBytes : Integer;
bounds : Rect;

end;
Cursor = record

data : Bits16;
mask : Bits16;
hotspot : Point;

end;
PenState = record

pnloc : Point;
pnSize : Point;
pnMode: Integer;
pnPat : Pattern;

end
PolyHandle = ·Polyptr;
Polyptr =·Polygon;
Polygon = record

polySize : Integer;
polyBBox : Rect;
polyPoints : array (0 .. 0) of Point:

end;
RgnHandle = ·Rgnptr,
Rgnptr ="Region;
Region = record

rgnSize : Integer; I rgnSize = 10 for
rectangular)

rgnBBox : Rect; I plus more data if not
rectangular }

end;
PicHandle = "Picptr;
Picptr ="Picture;
Picture = record

picSize : Integer;
picFrame : Rect: { plus byte codes for

end; picture content }

~ ~ ~ ._A Ti

rRectProc : ODPtr;
ovalProc : QDPtr;
arcProc : QDPtr;
polyProc : QDPtr;
rgnProc : QDPtr;
bitsProc : QDPtr;
commentProc : QDPtr;
txMeasProc : ODPtr;
getPicProc : ODPtr;
putPicProc : QDPtr;

end;
(2) Grafptr = ·GrafPort;
(2) Graf Port = record

device : Integer;
portBits : BitMap;
portRect : Rect;
vsRgn : RgnHandle;
clipRgn : RgnHandle;
bk Pat : Pattern;
fill Pat : Pattern;
pnloc : Point;
pnSize : Point:
pnMode : Integer;
pnPat : Pattern;
pnVis : Integer;
txFont : Integer;
txFace : Style;
txMode : Integer;
txSize : Integer.
spExtra : Longlnt;
fgColor : Longlnt;
bkColor : Longlnt;
colrBit : Integer.
patStretch : Integer.
picSave : ODHandle;
rgnSave : ODHandle;
polySave : ODHandle;
grafProcs : ODProcsptr;

end
(2) var thePort : GrafPlr;
(1) white : Pattern:
(1) black : Pattern:
(1) gray : Pattern:
(1) ltGray : Pattern:
(1) dkGray : Pattern;
(1) arrow : Cursor;
(1) screenBits : BitMap;
(1) rand Seed : Longlnt;

~ ~ .__A '.___A

(Region Calculations)

(2) function NewRgn : RgnHandle;
(2) procedure DisposeRgn(rgn : RgnHandle);
(2) procedure CopyRgn(srcRgn, dstRgn : RgnHandle);
(2) procedure SetEmptyRgn(rgn : RgnHandle);
(2) procedure SetRecRgn(rgn : RgnHandle;

left, top, right, bottom : Integer);
(2) procedure RectRgn(rgn : RgnHandle; r : Rect);
(2) procedure OpenRgn;
(2) procedure CloseRgn(dstRgn : RgnHandle);
(2) procedure OffsetRgn(rgn : RgnHandle; dh, dv : Integer);
(2) procedure MapRgn(rgn : RgnHandle;fromRect, toRect : Rect):
(2) procedure lnsetRgn(rgn : RgnHandle; dh, dv : Integer);
(2) procedure SectRgn(srcRgnA, srcRgnB, dstRgn : RgnHandle);
(2) procedure UnionRgn(srcRgnA. srcRgnB, dstRgn : RgnHandle);
(2) procedure DiffRgn(srcRgnA, srcRgnB, dstRgn : RgnHandle);
(2) procedure XorRgn(srcRgnA, srcRgnB, dstRgn : RgnHandle);
(2) function EqualRgn(rgnA, rgnB : RgnHandle) : boolean;
(2) function EmptyRgn(rgn : RgnHandle) : boolean;
(2) function PtlnRgn(pt : Point; rgn : RgnHandle) : boolean:
(2) function RectlnRgn(r : Rect; rgn : RgnHandle) : boolean;

(Graphical Operations on Rectangles) ------~

(1) procedure FrameRect (r : Rect);
(1) procedure PaintRect (r : Rect);
(1) procedure EraseRect (r : Rect);
(1) procedure lntertRect (r : Rect);
(1) procedure FillRect (r : Rect; pat : Pattern);

(Rectangle Calculations)

(1) procedure SetRect(var r : Rect; left, top, right, bottom : Integer);
(1) function EqualRect (rect1, rect2 : Rect) : boolean;
(1) function EmptyRect(r : Rect) : boolean;
(1) procedure OffsetRect(var r : Rect; dh, dv : Integer);
(1) procedure MapRect(var r : Rect; fromRect, toRect : Rect);
(1) procedure lnsetRect(var r : Rect; dh, dv : Integer);
(1) function SectRect (src1, src2 : Rect; var dstRect : Rect) : boolean;
(1) procedure UnionRect(src1, src2 : Rect; var dstRect : Rect);
(1) function PtlnRect(pt : Point; r : Rect) : boolean;
(1) procedure Pt2Rect(pt1, pt2 : Point; var dstRect : Rect);

(An::Routines) ~~---~---~-~~--'
(1) procedure FrameArc (r : Rect; startAngle, arcAngle : Integer);
(1) procedure PaintArc (r : startAngle, arcAngle : Integer);
(1) procedure EraseArc (r : startAngle, arcAngle : Integer);
(1) procedure lnvertArc (r : startAngle, arcAngle : Integer);
(1) procedure FillArc (r : rect; startAngle, arcAngle : Integer; pat : Pattern);
(1) procedure PtToAngle (r : Rect; pt : Point, var angle : Integer);

(RoundRect Routines)

(1) procedure FrameRoundRect (r : Rect ovWd, ovHt : Integer);
(1) procedure PaintRoundRect (r : Rect; ovWd, ovHt : Integer);
(1) procedure EraseRoundRect (r : Rect; ovWd, ovHt : Integer);
(1) procedure lnvertRoundRect (r : Rect ovWd, ovHt : Integer);
(1) procedure FillRoundRect (r : Rect; ovWd, ovHt : Integer; pat : Pattern);

Common Procedures
Frame

Paint

Erase

Invert

Fill

(...);
(...);
(...);
(...);
(...);

I
I

.I
I

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

(1)
(1)
(1)

(1)

(2)

(Point calculations)

procedure AddPt(src : Point; var dst : Point):
procedure SubPt(src : Point; var dst : Point):
procedure SetPt(var pt : Point, h, v : Integer):
function Equa1Pt(pt1, Pt2 : Point) : boolean;
procedure ScalePt(var pt : Point: from Rect, to Rect : Rect);
procedure MapPt (var pt : Point; fromRect, toRect : Rect);
procedure LocalToGlobal(var pt : Point):
procedure GlobalTolocal(var pt : Point):

(Uno RouUnes)

procedure HidePen:
procedure ShowPen;
procedure GetPen(var pt : Point);
procedure GetPenState(var pnState : PenState);
procedure SetPenState(pnState : PenState);
procedure PenSize(width, height : Integer);
procedure PenMode(mode : Integer);
procodure PenPat(pat : Pattern);
procedure PenNormal;
procedure MoveTo(h, v : Integer);
procedure Move (dh, dv : Integer);
procedure LineTo(h, v : Integer);
procedure Line (dh, dv : Integer);

(Text Routines)

procedure Textfont(font : Integer);
procedure Textfact(face : Style);
procedure TextMode(mode : Integer):
procedure TextSize(size : Integer):
procedure SpaceExtra(extra : Longlnt):
procedure DrawChar(ch : Char):
procedure DrawString (s : Str255):
procedure DrawText(textBuf : QDPtr;

firstByte, byteCount : Integer);
function CharWidth(ch : Char); : Integer;
function StringWidth(s : Str255); : Integer;
function TextWidth(textBuf : QOPtr;

firstByte, byteCount : Integer) : Integer;
procedure Getfontlnfo(var info : Fontinfo);

(BotUeneck Interface)

procedure SetStoProcs(var procs : QDProcs);

(2)

(2)
(2)
(2)
(2)
(2)

(2)
(2)
(2)

(2)
(2)

(2)
(2)

(1)
(1)
(1)
(1)
(1)

(1)
(1)
(1)
(2)
(2)
(2)

procedure StdText(count : Integer;
textAddr : QOPtr; numer, denom : Point);

procedure Stdline(newPt : Point):
procedure StdRect (verb : GrafVerb; r : Rect):
procedure StdRect (verb : GrafVerb; r : Rect; ovWd, ovHt : Integer);
procedure StdOval (verb : GrafVerb: r : Rect):
procedure StdArc (verb : GrafVerb: r : Rect;

startAngle, arcAngle : Integer);
procedure StdPoly(verb : GrafVerb: poly : PolyHandle);
procedure StdRgn (verb : GrafVerb; rgn : RgnHandle);
procedure StdBits(var srcBits : BitMap;

var srcRect, dstRect : Rect;
mode : Integer;
maskRgn : RgnHandle);

procedure StdComment(kind, dataSize : Integer; dataHandle : QDHandle);
function StdTxMeas(count : Integer;

textAddr : OOPtr;
var numer, denom : Point;
var info : Fontinfo) : Integer;

procedure StdGetPic(dataPtr : ODPtr; byteCount : Integer);
procedure StdPutPic(dataPtr : ODPtr; byteCount : Integer);

(Graphical Operations on BHMaps)

procedure ScrollRect(dstRect : Rect;
dh, dv : Integer; updateRgn : rgnHandle);

procedure CopyBits (srcBits, dstBits : BitMap;
srcRect, dstRect : Rect;
mode : Integer;
maskRgn : RgnHandle);

(Cursor Routines)

procedure lnitCursor;
procedure SetCursor(crse : Cursor);
procedure HideCursor;
procedure ShoWCursor;
procedure ObScureCursor;

(Misc Utility Routines)

function Get Pixel(h, v : Integer) : boolean;
function Randon : Integer;
procedure StuffHex(thingptr : ODPtr; s : Str255);
procedure ForeColor(color : Longlnt);
procedure BackColor(color : Longlnt):
procedure BackBit (whichBit : Integer);

(1) const srcCopy = O: f the 16 transfer modes } (1) Point = record case Integer of; (2) QOProcsPtr = ·aoProcs;
(1) srcOr = 1; O: (v = Integer;
(1) srcXor = 2; h = Integer);
(1) srcBic = 3: 1: (vh = array [VHSelect] of Integer);
11 \ nntC:rrf"'.l'\nv = .4• _a..,,,t.

(2) ODProcs = record
textProc
lineProc

: QDPtr;
: QDPtr;

STRUCTURED TYPES POINTER
RECORD VARIANT RECORD FILE
Definition: Definition : Definition : Definition :

TYPE TYPE TYPE TYPE
Typename = RECORD Typename = RECORD Typename = Fl LE OF pointemame =

field : fieldtype; CASE fieldname any type: +anytype;
fieldtype OF or
const : fields; TYPE

TEXT = FILE OF
field : fieldtype CHAR:

END;
const : fields;

END;

Example: Example: Example: Example:

TYPE TYPE TYPE TYPE
Class =RECORD Class =RECORD TEXT =FILE OF CHAR; listptr =+list;

Max : Integer; Max : Integer; VAR list= RECORD
Size: Integer; Size: Integer; Class : TEXT; item: integer;
Full : Boolean Case Full : Boolean Writeln (Class, 'Pro- next : listptr

END; OF grammingl'); END;

VAR True: (EmptySeats

Math : Class; : Integer);

Math.Size := 25;
Fasle: ()

Math.full := FALSE;
END;

.!
5 0 0

~ CJ) I-

w 'C z Q) 0 ::::i w c 3: c.
a: Q. Cll :::- iii'

I- a: iii 0 ~
:::::>

::::i c 0 Cl>

0 :::::> 0 .9.
c = ~

I- a 0

~i: I- n CD

(.) ::::i c c 0 0 Ill 5
Q. -~ iii

0 ~ 0 .!!! I- .. !! en Cl

:::::> ~ :8 :I ~ '2 & 8. z :::::> c 'C Q) l .! :::::>
c

j j i 'i .Q c :I '> a: CD .!!: ~ ~o a: t: :I iii GJ- 0
'C 'O 0 > 0 I- E "

,,
~ ~ t 8. D u. c ;e gi GJ.e iii' co Q) CD " II I- !'. 0

.Q
gE w CJ) c Q) CD w ..,

~ ·i c 0 E-E E E Q) z en cc co c: co E Cll •• Cll E .. ·E .. • CD II) .

~ -g :¥ ~ CD
. . .Q QI,,

a.~ z C CDC:
f! -c c m Ill E E ::::i irl~ E E 6 E .. -'E ~ 'E ~ ~~ 'Iii 'Iii c c Ill Ill u.. ...J Cll :I 'O Q)

~
s Ill CD ~Ill <C .e c c: Q) 8. E E 0 Q) ·- ~ .8

c: E :I ~E h~ c. 0 c:-~ g g !ii ~ D <C Q. ~ 8 8 :::- :::- Cll Ill 0 ~ j w~ ...J !!! > > w u.., u

a: a: a: Q) c ...J
::::i Ea> w CJ ::E ...J I- 0 I- Q) E

0 < w U) w w s~ 0 0
0 a: CXl z Q. a: 0 z .., 1n I-

(!) :5 8 > < 0 z
0 Zw

w < ...J w en 0 :
a: I- > g:: C3 0 ...J w

~ ti I- I: 0 WU) a:
0 :c 0 Q. II)

0 !: a.. a: w z u :c ...J 0 w < z ~ Q. CXl w I- w u. 0 3: 0 a: ::::i 0 w (!) 3:

SCALAR STRUCTURED
USER-DEFINED SUBRANGE SET ARRAY
Definition : Definition : Definition: Definition:

TYPE TYPE TYPE TYPE
Typename = (Const, Typename = Const .. Typename = SET Typename = ARRAY

.... Const); Const; OF scalar type; [bound .. bound,
Const can be any ... bound .. bound]
scalar type Of any type;
except REAL.

Example: Example: Example: Example:

TYPE TYPE TYPE TYPE
Fruit =(Apple Day = (M,T,W,R,F, Day = (M,T,W,R,F, Day = (M,T,W,R,F,

Orange, Pear); Sa.Su); Sa.Su); Sa,Su);
VAR Workday= M .. F; DaySet = SET OF Schedule = ARRAY

Snack : Fruit; Day; (M .. F] OF Day;
Snack : Orange; Age= ARRAY (1 ..

120) OF INTEGER;

FUNCTIONS PROCEDURES
TYPES TYPES

ARITHMETIC I R INPUT/OUTPUT c F I R
ABS Y := ABS(X), Y becomes IXI. x x READ READ(X), Reads a value x x x x

y y from the input file

cos Y := COS(X), Y becomes x x READLN AEADLN(X), Reads a x x x x
cos(X), X Is in radians. y value from the input

SIN Y := SIN(X). Y becomes sin(X). x x fi le and advances
y to the next input line

ARCTAN Y := ARCTAN(X), Y becomes x x WRITE WRITE(X), Writes a x x x x
arctan(X). y value on the output

EXP Y := EXP(X). Y becomes ex.
line x x

y WRITELN WRITELN(X), Writes a x x x x
LN Y := LN(X), Y becomes lnex. x x value on the output

line and advances
X must be > n . y to the next output line

SOR Y := SOR(X). Y becomes x2. x x
y y TRANSFER

SQRT Y := SORT(X), Y becomes....tX: x x UNPACK UNPACK(X,Y,Z), The contents of packed
y array X are assigned to the not packed

ROUND Y := ROUND(X), Y becomes x array Y starting at index integer Z.

the integer nearest X. y PACK PACK(X,Y,Z), The contents of not packed

TAU NC Y := TAUNC(X), Y becomes x array X are assigned to the packed array

the integer between X y Z starting at index integer Y.

and 0 nearest X.

TYPES
FILE HANDLING

ORDERING c RESET RESET(X). Sets the file X pointer to the
beginning of file X.

PRED Y := PRED(X), Y becomes x REWRITE REWAITE(X), Creates an empty file X.
the character preceeding y

Erases any file X contents.
X in the character set.

succ Y := SUCC(X), Y becomes x
the character succeeding y GET GET(X), Moves the file X pointer to the next

X in the character set. character In f ile X.

ORD Y := ORD(X), Y becomes the x PUT PUT(X). Places the value of the file X

position number of X y pointer at the end of file X.

in character set.

CHA Y := CHR(X), Y becomes the x DYNAMIC ALLOCATION
character at position on num- y NEW NEW(X), Refers pointer X to a memory
ber X in the character set. location.

TYPES DISPOSE DISPOSE(X), Frees the memory location

BOOLEAN B I
that X refers to.

ODD Y := ODD(X), Y becomes true x
if X is odd else Y y
becomes false.

EDLN EDLN, True if next character
is the end-of-the-line
control character.

EDF EDF, True ii next character
is the end-of-file
control character.

TYPES KEY: B-boolean, C-Char, I-Integer, A-Real TYPES KEY: C- Char, F-File, I-Integer, A-Real ~

TYPE

SCALAR POINTER STRUCTURES

CHAR BOOLEAN REAL SET

SUBRANGE

VARIANT
RECORD

RECORD ARRAY Ft LE

r
ll:

r

fr'
L

~ ' '

r

" [._i

r

~
l1

r

OPERATORS
TYPES TYPES

EXAMPLE BCIPR SU EXAMPLE BCI PRSU
a := b, a becomes b a a a a a a <::: a < ::: b, true if a precedes a a a

b b bb b b b or a is the same as b b bb

* a := b * c, If a, b, and c a a a >::: a > = b, true if a succeeds a a a
are sets : a becomes b b b b or a is the same as b b bb
b 0 C, else a becomes c c c <> a <> b, true if a is not a a a b. c.

the same as b b bb
a :::: b/c, a becomes a DIV a:= b DIV c, a becomes a
b/c. b b b+c - the remainder b c c c

+ a :::: b + c, If a, b, and c a a a MOD a := b MOD c, a becomes
are sets : a becomes b b b a

b L• c, else a becomes c c
the remainder of b ~ c b c c b + c.

a := b - c. If a, b, and c
NOT NOT a, true if a is false a

a a a and false if a is true
are sets : a becomes b b b
b - c (bOc), else a be- c c c AND a AND b, true only if a
comes b - c. a is true and be is true, b

< a < b , true if a preceeds a a a a a
else false.

bin the type definition b bb b b OR a OR b, true if a is a
else false. true, b is true, or both b

> a > b , true if a succeeds a a a a a a and b are true.

b, else false. b bb b b IN a IN b, true if a is a a a

a = b , true if a is the a a a a a an element of set b

same as b. b bb b b

TYPES KEY: 8-boolean, C-char, I-integer, P-pointer, A-real, S-set, U-user-defined

SCALAR TYPES
INTEGER
Implied Definition :

TYPE
Integer=(---.
... ,+_):

CHAR
Implied Definition :

TYPE
Char = (--. -):Const

BOOLEAN
Implied Definition :

TYPE
Boolean = (FALSE,

TRUE):

REAL
Implied Definition:

TYPE
Real = (-___E+ _ ••

----E---.0.0,

a a
b b

a a
b b

a a
b b

a a
b

+ ___E-_, • + ___E+ _);

Example:

VAR
Total : INTEGER

Total:= 14;
Total := 2 * 46:

Example:

VAR
Alpha : CHAR;

Alpha := 'S';

SYNTAX SUMMARY
T. G. Lewis, Abbas Birjandi

Example:

VAR
Same : BOOLEAN:

Same := TRUE;

From Macintosh ... Hands-On Pascal by T. G. Lewis and Abbas
Birjandi. Wadsworth Publishing Company, Belmont, CA.
1c; 1986 by Wadsworth, Inc.

Example:

VAR
Root: REAL;
Hyp: REAL:

Root := SQRT(hyp):

•

<t,

Macintoslf'
Hands-On
Pascal

lnside-
The easy way to learning
Pascal on the Macintosh

Pascal programming on the ~\acintosh becomes easy and enjoyable when you use Lewis and Birjancli's new primer.
MACINTOSH"' HANOS-ON PASCAi. is special because it creates :111 enl'ironme11t th:tt encourages your participation from the
start. In fact. each chapter is ac!llally a session :tt the ~\acintosh where you'll learn P:L5CTtl concepts in close interaction
with the machine. There arc also plenty of detailed examples. intcrcstini; case studies. and excellent problem-solving
sections in each chapter to reinforce what you've just learned. With this kind of hamls-on experience and backup support.
you 'll soon he programming Pascal on the 1\lacintosh like a sca.5oncd pro.

Other features:

Covers the entire Pascal language. plus the l.raphics and Sound featu res of the Macintosh

Includes a tear-out Pascal syntax chart and a tear-out Quickdraw reference card

Contains an appendix on debugging Pascal programs

M:mmosh is a 1r:1dc111:1.rk lh.-c11sL-d 10 Apple Computl'r. l11r
Illustration by Stephen j:1n1hs

ISBN 0-534-06354-3

