
Lowell A. Carmony and Robert L. Holliday

Macintosh Pascal

COMPUTERS AND HATH SERIES

MARVIN MARCUS. EDITOR
University of California at Santa Barbara

Lowen A Carmony and Robert L. Holliday
lfaclntosh Pascal

Lowen A Carmony, Robert J. McGllM, Ann Miller Millman, and
Jerry P. Becker
Pro/Jlem Solving In Apple Pascal

Marvin Marcus
Discrete lfathematlcs:

A Computational Approach Using BASIC

S. 6111 Williamson
Com/Jlnatorlcs ror Computer Science

Macintosh Pascal

· Lowell A. Carmony
Wt1 FortlSt CoJkJ/ftl

Robert L. Holliday
lakt1 F0rt1st Col/tl//fl

COMPUTER SCIENCE PRESS

Copyrl!llt • 1985 Computer Science Press, Inc.

Printed In the I.kilted Slates of America

All rl~ts reserved. No part of this book mav be reprclCKed, transmitted, or
stored In any form or by any means, without the prior written consent of the
pW>llsher# except by a reviewer who mav quote brief passages In a review or as
provided or In the Copyrl!lll Act of 1976;

Compul1r Sclmce Press, Inc.
II Tafl C()(Jl"f
RockY/111, /1aryland 2085()

234

Library of Congress cataloglng In Mllcatlon Data

Carmony, Lowell A., 1943-
ttaclntosh Pascal.

Includes Index.

88878685

1. ttactntosh (Computer) 2. PASCAL (Computer program lsiguage) I.
HDl1td8'f, Robert. II. Title.
QA76.8.t13CJ7 1985 001.64 84-19901
ISBN 0-88175-081-6

"t1ilclntosh" ls a registered trademai k of Apple Computer, Inc., Cupertino, CA.

Sc:hla.f t em Ue4 tn. alien DUMJm
8chlumrnert kQ.ummc£ fort u.ncl fort,
um clie k'eLt hebt an zu zi.rlcJen.
Tl'i.Jfst du nu.I' das Zau&er-wort.

Joseph von tidlendol'f f

PREFACE

Pascal ts a landmark language provtdtng the reader wtth an elegant
vehicle for studytng tmportant concepts of computer sctence. The
Macintosh ts a landmark computer provldtng the reader wtth a degree of
user-frtendltness and pedagogtcal features unparalleled In any other
machine. We are excited and deltghted to present the reader with th1s
self-study guide to /1aclntosh Pascal

This book ts designed for the beginner to Pascal as well as a
reference to the reader who already knows some Pascal. The book begins
at an elementary level and contains all the Information needed by the
novice to get started. New constructs are carefully developed with ample
examples. The reader who works through the materlal presented here and
writes the programs suggested In the exercises wtll have gained a
thorough understanding of Pascal.

This text contains a careful explanatlon of the Mactntosh Pascal
operating system as well as Pascal so that the reader has, In one place, all
the matertal needed. Learntng Pascal and at the same time learning to
gutde a program through the computer can be frustrattng If you must fltp
back and forth between a Pascal text and various computer manuals. In
thts book we guide the begtnner step by step through the language and the
operattng system.

Mactntosh Pascal ts an extension of standard Pascal. We have made
every effort to lndtcate which features belong to standard Pascal and
which are extensions so that the reader can transfer the knowledge
Obtained here to other Pascal systems. In particular, we have Included
detailed dtscusstons of random access ftles (because they are useful) and
graphtcs (because they are stunntng). The main nonstandard feature that
we have tncluded tn the core Is the string type. Thts dectslon was made to
keep the presentatton as simple as possible. In our experience begtnners
are not ready for the subtlettes of arrays of characters, espectally ff they
have never heard of arrays! We do, however, eventually tell the truth about
strings, tntroduce the character type, Introduce records, and show the

"'

vii

reader how to live In a Pascal without strings. We also Include the
built-In random number generator early In the text because It provides the
opportunity ror very nice exercises. Hence, although this Is a text meant
to be used with the Macintosh, It strives to present a balanced approach to
Pascal so that the successful reader will have no trouble In moving to a
Pascal on another machine.

This Is a book that emphasizes structured programming. The
method or structured programming Is taught through an extensive number
or problems solved In the text. Functions and procedures are Introduced
early and used throughout the remainder or the book. Since problem
solving and sound programming skills are only learned by the reader actu
ally solving problems and writing programs, we urge the reader to write
programs ror as many of the exercises as possible. Fortunately, the
computer checks programs carefully and gives the reader feedback about
the programs presented to It. For our part, we have tried to provide
Interesting and challenging exercises that we hope you will enjoy as have
our many students over the years.

Another convenience for the reader Is that a disk Is available to
""" accompany the book. This disk not only contains the sample programs from

the book so that the reader can run or modify them, but It also contains
text files for some or the exercises, as well as buggy programs. We have
saved some of our students' best errors and provide them to hone your
debugging skills. There Is much to learn In the debugging or programs.
Indeed, you can't call yourself a programmer untll you can debug your
programs. (Information on ordering this speclal disk Is provided at the end
of the book.)

Finally, the Macintosh's features entitle It to Its own Pascal text. We
do not want to give away the exciting story that follows, but we believe
that the Interpreted nature of Macintosh Pascal, together with the
'windows' Into the mind of the computer, will revolutionize and humanize
the study of Pascal. May your journey be as exciting as ours was.

About this book

Appropriately enough, this book was typeset on a Macintosh. The text
was created with MacWrlte using 12 point Geneva font. The pages were
then reduced to flt a standard 6 by 9 Inch rormat. Each chapter had to be
divided Into many pieces due to the limitations or the 1281< Macintosh and

viii

early versions of MacWrite. The pieces were then cut and pasted together
on a 512K Mac or on a Llsa running Macworks and then printed on an
lmageWriter printer. We are deeply grateful to Paul Collete and Jim
Fiester of Lake Shore Computers in Lake Forest for letting us use their
"Fat Mac" and to our colleague Jim Fryxell for making his Lls~ ava11able to
us. So much effort was given to the task that rumors spread on campus
that Bob was spending many hours in his office with Lisa wh11e Lowell
was in his office with Mac.

The program listings were produced from Macintosh Pascal and pasted
into the text. Since all of the programs have been tested, this serves to
ensure that no devastating typos have crept into the listings. In addition,
all of the exercises have been solved to ensure that they are reasonable
and can be done with the techniques at hand at the time they are given.

Acknowledgments

Our work in producing this book was made easier by the considerate
help of a number of people. We extend our appreciation to Don Enns. Larry
Jacober, and Bonnie Koven who worked through the material and provided
suggestions for preparing the final manuscript. Special thanks go to Joe
Hofmeister and George Pryjma who read the final manuscript and offered
many valuable suggestions. Also thanks to Steve Lipton who first brought
Koch's snowflake to our attention and suggested recursive graphics
(Chapter 15) on the Macintosh. Permission to quote material from 6Al1ES
magazine is greatly appreciated. We gratefully acknowledge McGraw-Hill,
Inc. for permission to quote from The Devil's OP Dictionary, by
Stan Kelly-Bootle (copyright (c) 1981 by McGraw-Hill, Inc.). Finally, we
are also deeply indebted to the dedicated staff of Lake Forest Computer
Camp who so graciously filled in for us during the summer of I 984 so that
we could complete the first draft of these materials.

Lowell A. Carmony
Robert L. Holliday

CONTENTS

CHAPTER I INTRODUCTION . • •
A Historical Sketch of Computing .
Computers of the Modem Era • •
Terminology . . . • • . • •
A Few More Remarks about the Macintosh
Programming a Computer.
Summary • . . . • . . • •
Exercises. • • • • . . • •

CHAPTER 2 THE OPERATING SYSTEM
A First Program • • • • • .
Loading Pascal Into the Macintosh •
Open and Close Shortcuts • •
Opening Macintosh Pascal
Moving and Adjusting Windows •
Creating and Editing a Program .
Saving Programs and Initializing Disks
Running and Simple Debugging of Programs
Closing Windows and Flies • •
Loading Programs from Disk. •
Printing a Ltsttng of a Program •
Quitting Macintosh Pascal
Renaming Programs and Disks
The Reset Switch . • . .
Final Words of Encouragement
Exercises • • •

CHAPTER J BEGINNING PASCAL •
A Pascal Program •
Variables and Memory Locations
Variables In Pascal . . •
The Assignment Statement
Variable Types •
The var Section • •
Arranging Output .
Simple Arithmetic

ix

I
3
8
9

12
13
18
19

22
22
23
24
29
34
35
44
49
56
59
62
63
64

. 65

. 65

. 67

68
69
73

. 75

. 75
. 77
. 80
. 84
. 86

)(

Conversion between Integers and Reals • • . . . •
Comment Ing Programs . . • • . . • . • • • •
A Complete Example
Sonny Tan Example • . • . . . • . • • •
Exercises . • . • . • • . • • • • • •

CHAPTER 4 INTERACTIVE INPUT AND TEXT FILES
Read and Readln . • • • . . . • •
Redirecting Input and Output • . • .
Copying Flies from One Disk to Another •
Exercises . . . • • . • . • . •

CHAPTER 5 FUNDAt1ENT AL CONTROL STRUCTURES •
Boolean Variables • • •
Compound Statements . •
The Conditional Statement
The Repeat ... Unt II • . .
The While. . . . • .
Examples • • . • • .
The "End of File" Function •
Finding Maxima and Minima
Repeat vs. While • •
Nested Loops . • .
The For Statement •
The Case Statement
Exercises . . . •

CHAPTER 6 EDITING AND DEBUGGING . •
The File Menu • •
The Edit Menu . •
The Search Menu •
The Windows Menu
The Run Menu • •
The Pause Menu .
Fan Shortcuts
A Complete Debugging Example •
The Apple Menu . . • • .
Macintosh System Commands
Deleting Flies
Renaming Flies . • • • .

Contents

. . . 88

. . . 90
91
94
97

99
. 100
• 109
• 114
. 117

• 119
• 120
. 124
• 126
.137
• 144
.147
.149
.153
.156
• 158
. 165
. 168
.173

.179
.179
.183
.189
• 195
• 196
. 198
• 198
.199
.207
.208
.208
.208

Contents

Copying Files • . • •
organizing Files In Folders
Summary • • • • . •
Exercises • • • . • •

CHAPTER 1 FUNCTIONS AND PROCEDURES
Functions • • • • • . •
Random Number Generation .
The Structure or Functions .
The Body or a Function
Combinations and Permutations
Procedures . • . • . . •
Procedures with Parameters
Variable Parameters In Procedures and Functions •
Scope Rules In Pascal • . • •
BAGELS--An Extended Example •
Conclusion • • • • • • • •
Exercises • . . • • • • •

A Note Concerning the Disk of Sample Programs

••
• 208
.210
• 213
.214

. 216

. 216
. 217

. . 222
. 223
• 229
• 233
. 237
. 238
. 244
• 250
. 255
. 256

Accompanying this Book 260

CHAPTER 8 THE PASCAL TYPE SYSTEM. USER-DEFINED TYPES
AND PRECISION . . .

User-defined Types
Succ, Pred, Qrd, and Chr . • • •
Representation of Characters .
Subranges • . • . • • .
Special Macintosh Pascal Types
Exercises. • • •

CHAPTER 9 ARRAYS. . . .
Introduction . • • • • .
The Need for Arrays . • •
Simple Operations on Arrays
An Extended Example - The Widget Works
Examples Using Arrays • • • • • •
Soggles, The Breakfast or Programmers •
The Twelve Days of Christmas • •
Searching and Sorting Arrays • • • •

. . 261
• . 266

. 271
. 272
. 280
. 281
• 283

. 286
. 286
. 291
. 294
. 296
.303
• 303
. 307
. 309

xii

BI nary Search . • . • • • • • • • .
Sorting an Array
Multi-Dimensional Arrays . • . • • • •
Simple Operations on Two-Dimensional Arrays
An Extended Example - The Widget Works Revisited
Summary •
Exercises • • • . • . •

CHAPTER I 0 RECORDS . . • . • •
Introducing File Terminology • • .
An Extended Example - A Small Hotel
The with Statement
Variant Fields •
Avoiding Strings •
Exercises

CHAPTER 11 FILES •
Reset, Rewrite, and Close
File Applications, Merging, and Updating
Merging Flies • . •
Updating Flies . . .
Text Flies • . . .
Random Access Flies •
Get and Put •
Summary. . . • .
Exercises • . • .

CHAPTER 12 GRAPHICS AND SOUND •
Coordinates • • . • • • . • •
LlneTo, Line, MoveTo, Move . • • •
A Turtle Graphics Package • . . •
A Macintosh Turtle Graphics Package •
Manipulating Text and Drawing Windows •
Text In the Drawing Window .
Rectangles and ovals •
Reading the Mouse .
Generating Sound
Exercises. . . •

Contents

. 312
. 316
. 319
. 324
. 328
. 333
. 333

. 339

. 339
. 343
. 348
. 350
. 352
. 357

. 359
361
368
368
371
373
378
380

. 383
. 383

. 385
. 385
. 386
. 388
.389
. 393
. 397
. 398
• 400
. 404
. 422

Contents

CHAPTER I J SETS • • • • • •
union, Intersection, and Dlff erence
Remarks • • • • • . • • •
Sets as Filters . • • • • • •
Soggles, The Breakfast of Programmers •
The Game of Taxman . •
The Hierarchical Company
Summary .
Exercises . • . • . •

CHAPTER 14 STRING MANIPULATION •
Strings In Macintosh Pascal
Examples •
5ummary •
Exercises •

CHAPTER 15 RECURSION • • •
Snowflakes and Flowsnakes
Exercises • • • . • • •

CHAPTER 16 POINTERS AND LINKED LISTS
Operations on linked lists
Exercises •

Index. . . .

Diskette Ordering Inf onnatlon

xiii

. 425
. 426
. 427
. 429
. 431
. 433
.439
.441
• 443

.444
.445
.448
.455
.455

.459

.467
.472

.474
.478
.485

.487

.497

Chapter 1

Introduction

COttPUTER SCIENCE - A stUCly akin to numerology
and astrology bUt lacking the precision or the
rormer and the success or the latter.

oev1rs DP Dictionary

The invention of the computer has caused a revolution in today's
society. One need not look very far to find seminars on ·computer llteracy"
or "computer awareness,· summer camps for children (and adults) on
·computer programming,· special sections in nearly every bookstore for
computer related magazines and books, and segments on television news
shows about the latest developments in computer technology. If a TV
news reporter asks a group of youngsters why they are so interested in
computers, one of the responses would likely be: "Understanding
computers will be necessary for success in tomorrow's society."

While the preceding statement might not be true for everyone, the
point is that the amount of attention given to computers is unlike the
attention focused on any other human invention. Microwave ovens,
washers and dryers, and video recorders have ·revolutionized" modern life,
but we seldom see a ·washer/dryer· section in a bookstore or a
videocassette recorder camp.

The revolution brought about by the computer is best called an
"information-processing revolution." The magnitude of this revolution can
be appreciated when It ls llkened In Importance with such events as the
discovery of fire, the Invention of the wheel, the Invention of the printing
press, or the Industrial revolution. Only the future will tell whether such
comparisons are justified, but there ls little doubt that computers wm
continue to have a major Impact on the quallty and style of llfe we
experience. Whether these Impacts are positive or negative ls an
important question, but ls not one for us to address directly here. Instead,

1

2 Introduction

we will be concerned with learning enough about the computer so that we
can make it do what we want.

Why has the computer become the focus of such attention? There are
several reasons. For a long time, science fiction authors have endowed
computers with all-powerful, humanllke qualities. Although there are no
thinking, reasoning HAL computers as In "2001--A Space Odyssey,·
many people think of computers In this way. On a more practical level,
computers have proved their worth In many diverse areas: 1nformat1on
storage and retrieval, sc1ent1f1c research, education, and recreation. It ls
this "general purpose" nature that we believe contributes most to the
universal appeal of computers. That Is the reason this book is about
programm1ng--so that we can learn to take advantage of the general
purpose capab111t1es of the computer.

We mention one last reason why computers have become so prevalent
--affordability. Unlike nearly every other phenomenon, as computer
technology has increased, the cost of this technology has decreased. The
amount of computing power that Is found on many executives' desks today
ls hundreds of times Jess expensive and tens of times more powerful than
the computers of just 30 years ago. It has been said that if the automobile
industry worked like the computer industry, then everyone would be
driving a Rolls Royce that costs $3.95, never needs any maintenance, and
gets 250 miles to the gallon.

The technological developments associated with the computer age
have been truly remarkable. There have been certain events that have
shaped much of what has followed--the switch from tubes to transistors,
the Integrated circuit, the "personal" computer.

The 1ntroduct1on of the Macintosh by the Apple Computer Corporation
on January 24, 1984, is another important event 1n the evolution of a
computer society. Far from being just another computer on an already
crowded market, the Macintosh represents a real step forward In personal
computer technology. The potential of this machine to create
opportunities for innovative techniques is tremendous. In particular,
programming on a Macintosh ls unlike programming on any predecessor
machine. The Macintosh, because of Its raw speed and power, offers the
personal computer owner features and conveniences heretofore
unavailable. Thus, 1t Is both exciting and worthwhile to investigate
programming 1n Pascal on the Macintosh, and the rest of thls book will be
devoted to that task.

Before we begin the actual material on programming, we must first
learn a little about the Macintosh Itself. This we do in Chapter 2. For
now, we will take a brief look at the history of computing. We think it is

I ntroduct ton 3

important to see the development of the computer in its historical
perspective. Moreover, this will provide a good opportunity to introduce
some of the terminology of computer science. One does not have to read
very many advertisements to get the impression that the computer field is
loaded with buzzwords and technical jargon. This can be very discouraging
to the beginner. We emphasize that one need not be technically inclined to
deal with computers, just as one need not be mechanically inclined to
drive an automobile. However, because of the widespread use of the
buzzwords, it becomes necessary to include many of them in any
discussion on computers.

A Historical Sketch of Computing

Man has been computing for thousands of years. The earliest form of
computing was sim[Jle counting--for example, a shepherd counting his
sheep to make sure all of them returned from grazing. Man has used tools
to assist him with computing for thousands of years also. The early
shepherd likely used pebbles to help count sheep. A very common counting
device that is as much as 4000 years old is the abacus. This device
consists of beads and rods and was used by Chinese merchants to handle
business transactions. It is still used by millions of people throughout
Asia today to perform routine numerical calculations.

Figure 1.1 The Pascaline
(Courtesy of International Business Mochines Corporation)

lntroducl ton

In the mid-1600's, a French philosopher and mathematician named
Blaise Pascal developed a mechanical adding/subtracting machine, the
Pascaline. Pascal's father worked for the "French IRS" and was
continuously adding long columns of numbers by hand. The young Pascal
believed that this was the sort of work appropriate for a machine, so he
constructed one using gear-driven counter wheels. Although other such
machines had been tried previously, Pascal's was one of the first such
machines to be reliable. Because of this contribution to computing, the
programming language that we will study in this book is named after
Blaise Pascal.

Before we turn to other more general computers, we mention two
other names associated with calculating machines. In 1671, Gottfried
Leibniz, who along with Isaac Newton developed calculus, invented the
first calculator that could multiply and divide as well as add and subtract.
His machine also worked on a gear-driven principle, and In fact, this
principle was used In nearly all mechanical calculators up through the
1950's. Of course, calculators are now electronic, but the staying power
of Leibniz's Idea ls a feat seldom repeated today. In 1884, W!lllam
Burroughs developed the first commercially successful adding machine.
Today, the Burroughs name remains at the front of the computer industry.

Figure 1.2 Jacquard's Loom

Introduction

The advent of more general computers, i.e., tools that can do more
than just numerical calculations, is often traced to an unexpected place-
the looms of France and Emil Jacquard. As Jacquard watched the weavers
constantly resetting the looms for the various patterns, he came upon the
Idea of using punched cards to record the loom settings and in 1801
designed a loom that could read these punched card "instructions."

In the late 1800's, Herman Hollerith used Jacquard's idea to develop a
punched card system to handle the 1890 Uni ted States census. While the
1880 census took nearly IO years to count by hand, Hollerith counted the
62.5 m111ion people of 1890 in just over a year. The punched card was also
the way early programmers often communicated their instruct Ions to
computers, and, in fact, was widely used, particularly in learning
environments, through the mid-1970's.

Figure 1.3 Ho11er1th's Tabulating Machine
(Courtesy of International Business Mochines Corporation)

While the Jacquard/Hollerith punched-card idea is familiar to many
people, a more fundamental, but less well-known, development occurred in
the 1830's. In 1833, Engllshman Charles Babbage conceived the first
general-purpose computer, that is, a computer that could do more than
just numerical calculations. Babbage's computer had the capab111ty of
accepting different sets of instructions to carry out different tasks.
Babbage was truly a man ahead of his time. Because there were no
transistorized circuits in his day, Babbage's computer, called the

6 lntroducttan

Analytical Engine, would have been driven by steam and been the size of a
football field. Unfortunately, the technology of the 1830's was not
advanced enough for Babbage to build a working model of his Analytical
Engine. Babbage did build some calculating machines, called Difference
Engines, but because of the steam technology, they turned out to be too
slow and unreliable. These setbacks caused years of struggling to receive
funding from the British government for his Analytical Engine project, and
he eventually gave up his work and died a bitter man. Interestingly enough,
when some of the 1950's pioneers of the first e lectronlc computers
became aware of Babbage's work, they were amazed at the slmllarlty of
Babbage's design of the Analytical Engine and the actual design of the
early computers. Many people feel today that If anyone deserves the title
"Father of the Computer,· it Is Indeed Charles Babbage.

In 1842, Ada Augusta, the Countess of Lovelace and the daughter of
the poet, Lord Byron, read, carefully analyzed, and refined Babbage's
theoretical work. Not only was she convinced that Babbage's ideas were
sound, she actually wrote sets of Instructions that the Analytical Engine
could conceivably carry out. Thus, Ada Augusta was the first computer
programmer and it is in her honor that the latest Department of Defense
language Is named. This language, Ada, Is considered by many to be the
"language of the future," or at least the language of the BO's and 90's.

The Ada programming language is the result of a United States
Department of Defense International design competition that lasted from
1975 to 1979 and Involved those lndlvlduals who were considered to be
the best language designers In the world. It Is worth mentioning that all
four finalist languages In the competition (Including Ada) are considered
to be derivatives or "descendants" of Pascal. That Is, the overall design of
Pascal was In some sense a starting point for these new languages. So a
good way to learn Ada for the future, admittedly a difficult language to
master, would be to learn Pascal now.

Let us now Investigate the ·modern" history of computing. The
Impetus for the birth of computer science was World War 11. Both the
United States and Great Britain were expending tremendous efforts to
build computers to assist In the war effort. The first general-purpose
computer was the MARK I, bul lt at Harvard In 1944 under the guidance of
Howard Aiken. This computer used electromagnetic relays and was very
slow, requiring six seconds to perform a multiplication.

In 1946, the ENIAC, Electronic Numerical Integrator And Calculator,
was developed at the University of Pennsylvania. This was the first
electronic digital computer. It used vacuum tubes to store information
(simllar to the tubes found In older radios and television sets). The entire

I ntroductton 7

memory of the computer could store only twenty 10-dlglt numbers.
Twelve vacuum tubes were needed to store each digit. The ENIAC could
perform about 300 multiplication operations per second, weighed 60,000
pounds, occupied 1600 square feel of floor space, and required a roomful
of air conditioners to offset the heat of the vacuum tubes.

During this time period there were several other machines developed,
with equally strange sounding names. One that deserves special mention
is the EDVAC, Electron Discrete Variable Automatic Computer, developed
In 1952. One of the Individuals working on the EDVAC project was John
Von Neumann. Wh11e Von Neumann made numerous Important contributions
to the field of computer science, we mention two that first appeared with
EDVAC.

The first of these was the concept of a stored program. Without
becoming too technical, the major comPonents of a computer system
Include the Input/output device, memory, and the processor/controller.
The Input/output device Is necessary so that people can communicate with
the computer. The memory store Is where Information (for example,
numbers) Is kept during processing. The processor/controller Is that part
of the computer that reads the Instructions of a computer program,
determines what Is to be done, and does It. It Is In the manner In which
the processor/controller finds the Instructions that Von Neumann had his
Impact. With early computers, each time a new program was to be
executed, the actual circuits had to be set, either by rewiring or by
positioning a number of switches. Von Neumann felt that the set of
Instructions should be loaded Into the memory store, just like the data on
which the Instructions were to operate. It would then be up to the
processor/controller to distinguish between Instructions and data.
Although this makes the processor/controller more complex, It greatly
facilitates the entering and running of new programs. Thus, the flexibility
of the general-purpose computer can be realized. Because of his Idea, the
modem-day computers are often referred to as Von Neumann machines and
the general layout of a computer Is called Von Neumann architecture.

Von Neumann's second contribution to EDVAC was In the way
computers do arithmetic. In general, computers operate based on the
presence or absence of electrical current. The presence Is usually
Indicated by a I and absence by a 0. Thus, Inside a computer, all one really
finds are strings of O's and l's. Humans, of course, use more than just O's
and t 's to communicate. When communicating numerically, we use the
digits O through 9 and operate In the base IO or decimal system. Although
this Is very natural for us, this Is not the natural way for computers to do
things. So Von Neumann proposed that computers do their arithmetic in

8 Introduction

base 2, or the binary system. Th1s Idea made the inner workings of
computers much more efficient, and today all computers operate using a
binary system.

We take this opportunity to mention some terminology. The numerals
that we humans use are called digits. The O's and l's of a computer are
called binary digits, which you may have seen abbreviated as "bits." So a
bit 1n a computer Is simply a o or a 1. The memory of a computer Is filled
with thousands of bits. Dealing with Information b1t by b1t Is very slow
and tedious, so bits are generally grouped together. A group of 6 bits ls
called a byte. A byte is a convenient grouping because it is used to store
one character of alphabetic Information. A computer's memory Is usually
given by the number of bytes of Information that 1t can store. 1024 bytes
are called one K (for kilobyte). Think of a K as approximately equalltng
1000. So a computer w1th a memory of 64K can store approximately
64,000 characters of Informal Ion.

Some computers move Information around 1n memory one byte at a
t1me. Such machines are called 6-bit machines. The typical personal
computer of the late 70's and early 60's was an 6-blt computer. There
exist 16-bit, 32-blt, and 64-blt machines. In general, the more bits a
computer can handle at a time, the faster the computer operates. The
number of bits handled at a time Is often referred to as the word size.

Computers of the Modern Era

In the 1960's, the vacuum tube was replaced by the transistor.
Computers using tubes are often called first generation computers, while
those employing transistors are second generation computers. What the
bulky vacuum tube could do, the tiny transistor could accomplish at a much
smaller cost. Because the transistor does not g1ve off nearly as much
heat, Its rellab1llty Is also much greater than that of the vacuum tube. In
the late 1960's, the Integrated circuit, a cluster of very tiny transistors
packed onto a chip of silicon, was Introduced. In 1970, scientists were
able to pack about 3000 transistors on a single chip of silicon about the
s1ze of a baby's fingernail. In 1975, the figure rose to 6000, 1n 1960 to
70,000, and the predictions for 1965 are for 400,000. Packing thousands
of transistors onto a chip Is known as LSI (Large Scale Integration)
technology, and computers using this technology are known as third
generation computers. VLSI CV for Very) technology, 11ke the 1960 and
1965 figures above, constitutes fourth generation computers.

From a cost standpoint, one dollar bought 300 transistors In 1970,
while one dollar in 1980 bought 5000 transistors. These statistics should

Introduction 9

make 1t clear to the reader why the computer Industry can off er more for
less as long as such progress continues. How much more? Well, how does
the Maclntosh compare wlth the ENIAC? It is 50 times faster, at least
1000 times more re11able, 1/30,000 of the volume, 1/100,000 the cost,
and consumes the power of a 11ght bulb Instead of a jet plane.

In the past year, the Japan Information Processing Development
Center proposed a plan to develop an advanced computer by the year 1990.
Following thls announcement, the race began to see who wm bu11d the
first fifth generation computer. Such computers are expected to make use
of advances 1n the field of artiftcla1 tntemgence, that area of
computer science concerned wlth computers that can perform functions
normally associated with human behavior, e.g., learning and Improving.

Terminology

We now give a survey of some computer terms. Wlth the mastery of
these terms comes the ab111ty to read sales pitches for various computer
related products. The order of the terms Is not alphabetical, but rather
designed for ease of discussion.

Computer--a devlce <usually electronic) that ls capable of storing and
retr1ev1ng data and of executing logical or mathematical operations
without human Intervention. With the previous historical sketch, we hope
this definition Is understandable. Because many people tend to be
frightened by computers (because of their seemingly mystical
capabilities), we recommend that the reader keep In mind the following
alternate definition (given with the companion definition of a human
being):

A computer Is a fast, accurate moron.
A human being Is a slow, error-prone genius.

Note the the computer, moron that It Is, has some good qualities that
most people lack, namely speed (we're talking speed of 11ght here, so don't
be off ended) and accuracy. But with all of Its wonderful qua11tles,
computers do not possess one bit of Intelligence. That Is where the human
comes In. Although most of us possess less intelligence than we would
really 11ke, there Is never any reason to be Intimidated by a computer.

Memory--thls ls the area where the computer stores Information. This
Information can of course be recalled, or fetched. any time It Is needed.

lO lntnduclkln

Think of memory as consisting of rows of cells, or mailboxes, each wlth
its own address. There are several adjectives that pertain to memory that
should be discussed.

RAH (random access memory)--thls ts the memory that Is available
to the user of the computer. For our purposes, thls ts where the programs
that we write are stored.

ROM Cread only memory)--these are memory cells in the computer
that contain Information necessary for the operation of the computer
Itself. When Information Is fetched from a memory location, we are
"reading· from that location. When information is placed Into a memory
location, we are ·writing" to that location. So random access memory ts
read/write memory, 1.e., we can change the contents of RAM If we wish.
ROM, on the other hand, has special Information In 1t that the programmer
can access but cannot change. Thus, 1t has the designation "read only."

Volattle--this refers to the memory inside the computer and ts also
called Internal memory. Volatile memory loses Its contents when the
power source ts disconnected. So, a program stored In the computer's
Internal memory Is lost If the computer ts turned off, If there ts a power
failure, or If there Is a blown fuse.

Nonvolattle--thls refers to external sources of memory, for
example, floppy disks, hard disks, magnetic tape, and punched cards. This
memory retains Its contents Indefinitely, short of natural disasters like
fires, floods, and sp1lled coffee. Any program that Is used repeatedly ts
stored on an external source, usually a disk, and Is simply loaded Into the
computer's memory when needed. The loading of Information from a disk
into a computer Is performed by a mechanical device called a disk drive.
The Macintosh has a built-In disk drive. Most earlier computers used a
separate, external disk drive.

Hardware--any component of a computer system that you can touch. The
keyboard, which ts the standard Input device for most computers, the
monitor CTV screen, sometimes called a CRT for "cathode ray tube,· the
method by which the Information Is relayed to the screen), the chips Inside
the computer, the disks, and disk drives are all hardware components.

Sortware--computer programs. Without Instructions, the computer
hardware just sits there. Computers contain some built-In software,
called the operating system, that allows the computer to function
properly. When you purchase a commercially developed program, such as
an accounting program, an Inventory control program, or a word processing

I ntroductton II

program, you are paying for the software, that Is, the Instructions that
allow the computer to behave as an accountant, an Inventory controller, or
a word processor. In this book, we are going to learn how to develop our
own software. Writing good software Is not easy. The following ironic
definition of software is often given: Software ls the hard part of a
computer system. We mention that the suffix "ware" is one that has
certainly made its Impact on computer jargon. In fact, with the diskware
that accompanies this bookware, we hope we have provided you with
excellent courseware for learning Pascal.

Documentation--the comments or explanatory remarks that accompany
software. Documentation comes in two types--internal and external.
Internal documentation consists of comments Included with a computer
program. External documentation is 11ke an automobile's owner's manual
and should be provided on any software project that ls sold commercially
or that is of a complex nature.

Printer--an output device that provides a paper copy (hard copy) of a
computer program or its execution. Printers are divided into several
categories. Dot matrix and letter quality are two of the most common
kinds. Dot matrix printers draw the characters by using tiny dots (the
same way the monitor displays characters on the screen). Letter quality
printers strike a ribbon with some type of wheel that contains the raised
imprint of the characters. Printer technology, 11ke all computer
technology, is changing rapidly. Laser printers, capable of printing dozens
of pages per minute, soon wlll be available even for personal computers.

We next give some terminology specific to the Macintosh.

Mouse--this is the small box that we roll around on the desktop. The
mouse lets us move a pointer on the screen without using the keyboard.

Menu--this is the list of options presented to us on the Macintosh screen.
We use the mouse to "point" to the option that we want.

Click--pushlng (and releasing) the button on the mouse. We do this to
activate the option we have chosen. Occasionally, we will double click
the mouse, as explained in the next chapter.

Drag--movlng the mouse while the button remains depressed. The need
for dragging is also explained in the next chapter.

IZ

A Few More Remarks about the Macintosh

Wfthout becomfng too technical, we would like to make some general
observations about the Macintosh. Certafnly the attentfon pafd to the
Macintosh, which Is reflected In the number of books about It wlthfn
weeks after fts Introduction, seems to fmply that there Is something
special about It. We agree. The Macfntosh Is based on the Motorola 68000
microprocessor chfp. The slgnlffcance to the user Is that the Macintosh Is
a 32-blt machine. The speed and power of a 32-blt machine, which was
once only found In large, mainframe computers occupying a room and
costfng In the hundreds of thousands of dollars, Is now available at the
personal computer level. The Macintosh screen Is of extremely high
resolution. The Images on the screen are drawn using tiny dots called
pixels. The Macintosh screen has 512- by 342-plxel resolution, nearly
twice the resolution of previous personal computers. With the Increased
resolution, the graphic Images drawn on the Macintosh screen are
extremely clear. This allows the Macintosh to be Icon (picture or symbol)
oriented. That Is, menu choices can be displayed using pictures Instead of
jargon. This, along with the mouse technology, contrfbutes to the overall
·user-frlendl lness· of the system. By this we mean that the Macf ntosh Is
easy for the computer novice to use, since recognizing pictures, moving
the mouse, and clicking a button are skills not generally associated with
computer whizzes. Although earlier computers could have used the mouse
technology with the high-resolution screen, It Is the 32-blt power of the
Macintosh that makes It all possfble. With the standard 8-blt power of
most personal computers, the user would have soon tired of waiting for
the computer to draw all the nice pictures. So the 32-blt architecture ls
clearly an Important step in the evolution of personal computers.

A second Important feature appearing for the first time In a popular
computer Is the use of the Sony 3 112-lnch disk. The personal computer
standard has been the 5 114-lnch floppy disk. In addition to being able to
flt nicely Into a shirt pocket, the Important advantages of the smaller disk
are Its rellablllty (the disk ls completely enclosed In a durable casing
with a tiny trap door that Is opened once the disk Is completely Inside the
computer), Its ability to store more Information (400K bytes on a single
side), and Its lower cost (when the density of storage and durability of the
disk are considered). Many people feel that the 3 1 /2-lnch Sony disk
technology Is better suited for personal computers of the future and that
the Macintosh will move the Industry In that direction.

The original Macintosh machines were bum with t 28K bytes of RAM
and 64K bytes of ROM. The Macintosh Is now available with 512K bytes of

lntroductton 13

RAM, allowlng the Maclntosh to run most programs wlth ease. The machine
Itself ls nicely packaged in a small box (less than 1 O by IO by 14 Inches),
contains an uncluttered, professlonal, detachable keyboard, and with the
keyboard and mouse weighs 22.7 pounds.

Although we marvel at the engineering feats of the Macintosh design
team, thls book ls about programming a computer. Thls Is the area of
computer science where the Macintosh excites us the most. Because of the
speed of the machine and the flex1b111ty of the display screen, the
Macintosh provides more assistance and as nice a programming
environment as any we have seen on any size computer. The amiable
relationship between machine and programmer will be made apparent In
the subsequent chapters of this book.

Programming a Computer

Since thls book is really about programming, 1t ls appropriate that we
close this first chapter wlth some remarks about programming. The first
and most Important remark Is that this book is really about problem
solving. Beginners often Jose slght of this fact, and It Is for this reason
that programming often becomes a difficult activity. Programmers must
first be problem solvers. That Is because a program Is nothing more than a
careful, specific sequence of Instructions for the computer to carry out to
solve a problem. The computer executes the Instructions, but it is the
programmer who must write the Instructions In the first place. Many
beginners spend far too much time learning all the technical aspects of a
programming language and far too little time sharpening their problem
solving skills. Such people never get much of a chance to use their
programming knowledge because they get stuck at step 1--what to do
after the problem is posed to them. Throughout this book, whenever a new
feature of Pascal Is Introduced, think about how it can be used. Analyze
the examples to see these features In action. Most Importantly, be able to
generalize the circumstances where various features are appropriate.

The preceding paragraph used the word Pascal. Pascal was developed
by Nlklaus Wirth of Switzerland in 1969. Wirth Intended Pascal to be an
educational language, so he kept the design small. Pascal w111 be the
vehicle by which we learn this problem-solving process called
programming. Earlier In this chapter we saw that the computer is a binary
machine, storing everything as either a O or a I. If we wanted to Cwe
don't, take our word for it), we could communicate to the computer in its
native language, Its machine language, by using strings of O's and l's.
Such a language is called a low-level language. This is in fact the way

H lntroduc:ttan

the ear11est programmers worked with computers. Not only was this
process extremely tedious, It was also unnecessarily complicated, making
programming a very specialized activity. The advent of high-level
languages In the 1950's has proved to be as Important a factor In making
programming a common activity as has the technological progress out11ned
In this chapter, which made the computer affordable. High-level languages
make computers understandable. High-level languages are closer to
English than they are to machine languages. People who have had no
training at all In programming are sometimes able to took at high-level
programs and figure out what they do.

If we are to write programs In a high-level language and If the
computer can only "understand" Its native machine language, there must be
something that performs a translation process between the programmer
and the computer. This translation process Is In fact performed by another
computer program, called a compiler or an Interpreter, depending on
how It carries out Its translation. We simply point out that compilers
tend to perform much faster than Interpreters, but Interpreters, like the
one used for Macintosh Pascal, generally provide a much friendlier
environment for programming, particularly at the beginning level. The
writing of a language translator Is an extremely complicated task
requiring several thousand person-years of work. A translator Is an
example of a systems program.

For historical reasons, we list three very Important high-level
languages.

FORTRAN--Uke most early languages, the name Is an acronym, where the
letters of the name stand for words. FORTRAN stands for FORmuta
TRANslator. FORTRAN was developed around 1957 and is a scientific
language, meaning it was designed to do numerical calculations. FORTRAN
was used extensively in scientific programming In the 1950's and 1960's,
most notably In the space program, and Is still In wide use today.

COBOL--COmmon Business Oriented Language, released In 1959. COBOL
was developed at the request of the United States Department of Defense.
It ls truly the language of the business world and Is probably the most
widely used language In the world today.

BASIC--Beglnner's All-purpose Symbolic Instruction Code. BASIC has
been the language of the microcomputer. By this we mean that a BASIC
Interpreter is bu11t In to the ROM by the manufacturer of nearly every
personal computer. It is an easy language to learn and has succeeded In

I ntroducUon

Introducing millions to computer programming. We point out that the
Macintosh does not Include a built-In version of BASIC, another radical
step for a personal computer to take. This can be viewed as a positive
step, though, because Independent software vendors will be encouraged to
develop versions of BASIC to be sold to Macintosh users. In general, with
personal computers, versions of BASIC Implemented by Independent
software houses are usually "enhanced" and better than the built-In
versions. The BASIC that Is being developed for the Macintosh will make
use of the computer's power and wlll provide a unique and powerful BASIC
programming environment.

A common buzzword In computer programming these days Is
structured. Programs should be structured and languages should be
structured. None of the above three languages Is generally considered to
be a modern, structured language. Pascal, on the other hand, Is usually
classified as a structured language. This classification alone is enough to
prompt some people to say that we should learn to program In Pascal.
Unfortunately, these people stop right there, without ever bothering to
define what this buzzword means. We agree that structured programming
is Important and that Pascal is a modern structured language as opposed to
FORTRAN, COBOL, and BASIC. So that we can support our contention that
Pascal is an excellent language for students serious about learning to
program, we will explain what structured programming means to us.

Often a program is a piece of work written by one group of people to
be read by another group of people. A well-written composition is more
than just a bunch of paragraphs thrown together. Likewise, a computer
program is more than just a bunch of Instructions thrown together. Each
needs to be held together by some overall structure. It is this structure
that is the primary focus of most beginning writing courses, although
some time is spent discussing grammar, spelllng, punctual ion, and
sentence construction. Similarly, in a beginning programming course, a
certain amount of time must be spent learning the atomic constructs of a
programming language so that these may be combined to form complete
programs. We must also learn how to manipulate a computer if we want to
see the results of our programs. But like the writing course, the bulk of
the emphasis should be on the ability to solve a problem and convey that
solution in a complete, well-structured program.

Some synonyms of structured programming are top-down
programming and modu1ar programming. To us, all of these terms
mean the following: When presented with a problem to solve, don't try to
solve it all at once. Don't start worrying about the intricate details.

16 lntroducttan

Instead, break the problem up 1nto major components and focus on each of
these components In tum. Apply th1s same technique to each of these
components unt11 you have broken the problem down 1nto subproblems that
are easy to solve. Solve the subproblems and then combine these solutions
1nto one overall solution for the or1g1nal problem. Wh11e this strategy ls
worthwhile In almost any type of environment, It Is especially appropriate
1n the programming environment. When deal1ng person-to-person, we can
sometimes be a b1t sketchy 1n our Instructions, allow1ng the rec1p1ent to
use his or her own 1ntelllgence to figure out our Intent. But because the
computer Is a moron, extremely deta11ed 1nstruct1ons must be given so
that there ls absolutely no doubt about what ls to be done. Most major
software projects are so complex that one soon becomes lost 1n a forest
of deta11s if the problem ls not first cut down to size.

Now we know what a structured program Is. What makes a language
structured? If we attack a problem as above, we should be able to write
the solutions to the subproblems as thelr·own separate programs, called
modules. A language Is structured If It provides the programmer with the
features necessary to carry out this modular approach eas11y and to link
these modules together conveniently Into a complete program. It Is our
hope that the readers who work through the chapters In this book will
possess the ability to write structured programs and provide their own
arguments that Pascal Is Indeed a structured language.

It ls not unusual for the beginning programmer to make the following
statement: "There's something wrong with this computer." Such a
statement usually follows a frustrating session where the computer won't
follow even the simplest of Instructions. There Is even a chance that the
statement might actually be true. Silicon chips do go bad either by misuse
or on their own (every hundred years or so). Disks do get damaged through
misuse or normal wear-and-tear. Because of their tremendous complexity,
compilers and Interpreters actually get written and marketed with
mistakes In them. This happens more often than 1t should, but 1t Is the
price we pay to avoid writing In machine language. Nonetheless, there Is
probably a 99.9" chance that the beginner's statement above ls false. The
statement should read: "There's something wrong w1th the Instructions I
gave to the computer." If you take this approach and start analyzing your
1nstruct1ons, you may overcome your problem much more quickly. All too
often, our human pride causes us to Insist that the first statement ls true
and we continually give the same instructions to the computer w1th the
same undesired results. Not only ls the computer a moron, it 1s also
Infinitely patient. Thus, it 1s so stupid that It can't help us find and

Introduction 17

correct our mistakes and It doesn't mind when we keep asking It to do the
same thing over and over.

The level of precision required In programming Is typically much
higher than has ever been required of the programmer In any other activity.
For this reason, be suspicious and critical of the Instructions you give to
the computer. It Is only through a critical look that you can convince
yourself that your programs are correct. Never expect the computer to
make any kind of distinction between what you type and what you mean.
Make sure that you type exactly what you mean. Computer languages are
often criticized for being overly picky, with every punctuation mark having
a significant Impact. This is just the nature of computers and we must
learn to accept some things. But to show the Importance of punctuation In
natural languages, consider the following prize-winning paragraph from
the May, 1984 Issue of GAMES Magazine:

"My wife. I think I'll keep her. In a spaceship, orbiting the
globe unt11 the end of time, I could never find another woman on
earth like her. If I wanted to, I could go on and on about her face
and figure. I'm reminded of Henry Kissinger when the subject of
her lntell1gence comes up. I often think of the time the
neighbors' Chihuahua gave birth to brain-damaged pups. My wife,
my gracious Clara, was willing to sit up nights with the pups. In
an effort to learn to speak more effectively, Clara began taking a
night class at the local college. She's learning how to become a
human relations counselor. Sam W1lklns, from the school, told
me Clara Is at the head of her class. When 1t comes to 'stupidity'
-- golly, the word's not even In her vocabulary."

Note what happens when this paragraph Is only repunctuated--none of the
words Is changed.

"My wife. I think I'll keep her In a spaceship, orbiting the globe
until the end of time. I could never find another woman on earth
like her, If I wanted to. I could go on and on. About her face and
figure -- I'm reminded of Henry Kissinger. When the subject of
her Intelligence comes up, I often think of the time the
neighbors' Chihuahua gave birth to brain-damaged pups. My wife
-- my gracious! Clara was wllling to sit up nights with the pups
In an effort to learn to speak. More effectively, Clara began
taking a night class at the local college. She's learning how to
become a human. Relations .counselor Sam Wilkins, from the

18 lntroducltan

school, told me Clara ts at the head of her class when it comes to
stupidity. 'Golly' -- the word's not even tn her vocabulary."

The above paragraphs were submitted to GAMES by Joyce Rogers in
response to a contest (GAMES, Jan, 1984) asking readers to create double
messages by changing punctuation. The magazine closed the challenge
with the following information:

"All entries will be considered. If they are clever, however,
they will be eliminated. If sufficiently stupid, any entry stands
a good chance of winning."

Of course, the Intended message was:

"All entries will be considered if they are clever. However,
they will be eliminated if sufficiently stupid. Any entry stands a
good chance of winning."

The reader will get an opportunity to repunctuate some other passages in
the exercises at the end of this chapter.

Summary

Although the concept of the present-day computer has been around
since Babbage's Analytical Engine of the 1830's, it is the technological
advances of integrated circuitry that have brought computers into the
home, into the reach of the average person. Along with the technological
advances have come advances in software design, most notably high-level
languages, which have placed the power of computers into the hands of the
average person. Because of these phenomena, the computer will have an
Impact on society like few other human Inventions. Most people will
benefit from computers and, in the near future, everyone will be a
computer user. But to really understand how a computer works and to
actually harness and control the power of the computer, one needs to learn
programming. Whtle programming comes naturally for some people, it
proves to be quite a challenge for many others due to the cold logic of the
computer and the precision required of the programmer. The environment
provided by the user-friendliness of the Macintosh computer coupled with
the features found in a small, modern, structured language like Pascal can
help make the beginning programmer's experience an enjoyable one instead
of a frustrating one.

lntroductton 19

Exercises

These first four exercises are designed to show the logic required of
computer programmers.

1.1 A boy is sent to a stream with a 5-quart jug and a 3-quart jug and is
asked to bring back 4 quarts of water. How can he do it? Can you come up
with two different ways of obtaining 4 quarts of water?

1.2 A jeweler has in his possession 8 gold coins and a two-pan balance.
One of the coins ls counterfeit and ls 11ghter than the authentic coins.
How can the jeweler, with just two weighings, determine which coin is
the counterfeit coin?

1.3 Consider a very strange universe where there are only two types of
people--Computer Programmers, who always tell the truth except on
Mondays, Tuesdays, and Wednesdays, when they always lie, and Computer
Salesmen, who always tell the truth except on Thursdays, Fridays, and
Saturdays, when they always lie. (We are being generous to the salesman,
at least according to the following old joke: How can you tel.1 when a
computer salesman is lying to you? Answer: When his lips are moving.)

a. You meet two people one day and they make the following
statements:

First person: I'm a computer salesman.
Second person: I'm a computer programmer.

What day ls it and which person ls which?

b. Later, that same month, you come across the same two people.
Your digital wristwatch ls broken so you don't know what day of the week
it is. However, the two acquaintances help you with the following
statements:

Programmer: I 1 ied yesterday.
Salesman: I lied yesterday, too.

What day of the week was it?

20 lnlrocb:lkln

1.4 A word processor is a device that assists in the writing of
documents. Word processors have a variety of commands that can be used
to correct mistakes. Suppose you own a very 11mlted word processor that
has only one correcting command, namely a change command of the
following format:

CHANGE*flrst word*second word*

The CHANGE command wm find all occurrences of the word listed between
the first two asterisks and change each occurrence to the word 11sted
between the last two asterisks. You are typing an Important document and
notice the following paragraph:

"Morris Is the dog on commercials who doesn't 11ke to eat his
food. Sylvester ls a dog on cartoons. "Old Yeller" Is a movie
about a cat that makes almost everyone cry. Probably the most
famous cat is Lassie. I wonder if a dog really does have nine
lives. Elvis Presley sang a song about a hound cat:

Obviously, you have been careless and completely mixed up the uses of the
words ·cat" and "dog". How could you use the CHANGE command (maybe
more than once) to make the paragraph read normally? (Note: This Isn't as
easy as 1t first seems.)

The remaining exercises In this chapter are courtesy of GAMES Magazine.
Exercises 5 and 6 are from the May, 1984, Issue and were submitted by
Ellen Jackson and Bob Schnitzer respectively. Exercise 7 appeared In the
January, 1984, Issue. You are to repunctuate each of the passages to give
a passage with a completely different meaning.

1.5 Dear President Reagan,
I would like to compliment you. I can't stop thinking that you are

one of the best Presidents we have had. So many leaders go ahead and
propose policies and then botch the job. We expect It. From you, in years
to come, I know we wm get better results.

1.6 Car for sale. A classic! Lemon yellow coupe. Exterior Is completely
rust-proof. Can be dellvered upon request. No engine runs better. If the
sun is out, you can remove the roof for the feel of wind In your hair. Go
ahead and kick the tires. As soon as they see it your neighbors wm hassle
you for a ride. Call 222-4401.

lntroductton 21

1. 7 Dear John,
I want a man who knows what love ls all about. You are

generous, kind, thoughtful. People who are not like you admit to being
useless and Inferior, John. You have ruined me for other men. I yearn for
you. I have no feelings whatsoever when we're apart. I can be forever
happy. wm you let me be yours?

Gloria

Chapter 2

The Operating System

OPERATING SYSTEM - That part of the
system that Inhibits operation.

Devlrs DP Dictionary

In this chapter we are going to enter, debug, and run our first Pascal
program on the Macintosh. For the beginner, there are two hurdles to
overcome: One is to learn a little Pascal and the second is to learn to
"steer" a program through the computer. That is, once we have a program
we must learn how to enter it into the computer, how to edit the program,
how to run it, how to get a printed listing, and finally, how to save our
program. These housekeeping tasks are performed by the operating
system. On many computers, the operating system is another foreign
language that stands between the user and the computer. Fortunately, the
Macintosh permits us to communicate our wishes by pointing, clicking, and
dragging. Nonetheless, the full operating system is powerful and will
require some study. This chapter introduces those features of the
operating system that the beginner needs. Further information about
advanced features of the operating system is given in Chapter 6.

A First Program

The listing on the next page shows a complete program called Simple.
More will be said about the structure of Pascal programs in the chapters
to come, so there is no need to worry about understanding the program
now. In fact, you can probably guess what Simple will do. The first line
names the program and the var section declares that "Name" will be a
string variable, i.e., that Name will be able to hold a string of up to 30
characters. The executable portion of the program begins and ends
reasonably enough with 'begin' and 'end.' (Note the period.) The 'Writeln'

22

Tiie Operating Systecn 23

statements write l1nes on the screen for us and the 'Readln' stops and
allows the user to enter some value from the keyboard. Thus, S1mple 1s
very s1mple and is not a very useful task to g1ve to a computer. Our
object1ve here, however, 1s to place only one hurdle at a t1me before you.
In th1s chapter we will accept the s1mple program S1mple and use 1t to
illustrate how we "mouse" a program through the Macintosh.

program Simple;
var

Name : string;
begin

Writeln('My name 1s Mac1ntosh.');
Writeln('What is your name?');
Readln(Name);
Writeln('Good to meet you,·, Name)

end.

Ustlng 2.1

Load1ng Pascal 1nto the Macintosh

If you have used the Mac1ntosh with other software app11cat1ons, then
you can qu1ckly scan th1s sect1on. F1nd your d1sk labelled Mac1ntosh
Pascal. Turn on the Macintosh by f11pp1ng the sw1tch on the left rear. You
can locate the sw1tch by fee11ng for the smooth spot on the left s1de of the
cab1net. Hold the d1sk as shown below and 1nsert 1t 1nto the Mac1ntosh.

D
0 --

Figure 2.1

24 The Operating System

Note that the front, r1ght corner ls c11pped off. Push the d1sk all the way
1n unt11 1t snaps 1nto place. After about twenty seconds, your screen
should appear 11ke f1gure 2.2 or perhaps f1gure 2.5. If your screen 1s
d1fferent, you are not start1ng w1th a fresh copy of the Pascal d1sk. Ask
your 1nstructor to help you prepare your d1sk for our d1scuss1on, or read
through th1s sect1on and begin with the 1nstruct1ons on clos1ng f11es. Your
screen may appear darker than ours. we have mod1f1ed the appearance of
the Mac1ntosh "desktop" to sharpen the contrast for our f1gures.

Suppose your screen appears as In f1gure 2.2. Move the mouse and
watch the arrow move on the screen. Move the mouse so that the arrow 1s
over the words at the upper left. Push and hold the mouse button w1th the
arrow over one of the words and a "window b11nd" w111 roll down revea11ng
a menu of options. F1gure 2.3 shows the f11e menu and 1ts 11st of
selections. Hold the mouse button down and move the mouse down until
the Open selection is h1gh11ghted as shown 1n figure 2.4. Note that the
selection that Is being po1nted to ls shown 1n 1nverse on the screen.
Release the mouse button and you have commanded the system to open the
Pascal d1sk. The result should be s1m11ar to figure 2.5. Don't worry 1f you
have s11ghtly different objects on your screen. For practice, pull down the
me menu aga1n and select Close as In f1gure 2.6. This returns you to
figure 2.2. Pract1ce the loop through figures 2.2 to 2.6 several more times
to get the feel of using the mouse to g1ve commands to the computer.

Start1ng from f1gure 2.2, move the mouse over to the trashcan and
"c11ck the trashcan." C11ck1ng an object simply means pushing the mouse
button w1th the arrow over the object. The trashcan should now be
h1gh11ghted as 1n f1gure 2.7. The 1tem that you have selected by c11ck1ng
w111 always appear h1gh11ghted on the screen. You should be able to move
back and forth between f1gures 2.2 and 2.7 by alternately c11ck1ng the
trashcan and the Pascal d1sk 1n the upper right hand corner. Starting from
f1gure 2.7, again choose Open from the f11e menu. Th1s t1me you should
obta1n the screen shown 1n f1gure 2.8. That Is, Open w1ll always open the
currently selected object. In th1s case we used Open to command the
computer to open the trashcan. S1nce we are assum1ng that your d1sk ls a
"clean" one, we suppose that the trashcan ls empty as 1nd1cated by there
be1ng o 1tems in the Trash. Please choose Close from the file menu and
then click on the d1sk to select 1t and return to figure 2.2.

Open and Close Shortcuts

S1nce Open and Close are such common commands, both have
shortcuts that you will probably prefer to use. Starting as in figure 2.2,

The Operating System

r s File Edit IJiew Speciol
,

:: :: : :: : : : : : :1::
:::::::::::::::::~:::

.. .

..
0 0 0 o 0 0 0 0 o o o o 0 0 I 0 0 0 0 0 0 0 o 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0

o o o o o o 0 0 0 0 0 0 0 o I 0 o 0 0 0 o o o 0 0 0 o o 0 0 0 0 0 0 o o 0 o 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 o o 0 0 0 o o ..

. mm· [[[["
: Truh:::
..

Figure 2.2

,

Open :Ii · : : :
Ouplic<tfe >l!<O •
6et Info au : • : :
Put B1u:I:: •

.... --------··· ..
Close • · •
Close Rll
Print

.. ..
o I 0 o 0 oo o 0 000 e 0 00 e 0 001 e 00 o 000 0 0 0 00 000 0 o e 0 0 0 0 eo o ..

!---·---~
E ect au ·. ·

0 0 0 0 • O e 0 0 0 e e 0 0 0 0 0 0 0 0 0 0 0 O O O O 0 0 O 0 0 0 0 e 0 0 e O I 0 0 0 I 0 o 0 0 0 O e O e O O O O O O O e o o o '
···1···· ... [[[["
: Truh::: "'

Figure 2.3

25

26

Uiew Special

Ou1>UC<1 e >.1<0
liet Info 8&1
Put Bnck

Close
: : : : !:lose 1111

· • • • Prin t

The Operating System

.,

: : : : Eject 8CE • •••

.. · mm· ...
·· ·· · · ···· ··· · ·· · · ·· · · ··· · · · ··· · · · · · ·· ·· · ··· ······ ···· ··· rrrr··· ·
: Trash : : :
...

Figure 2.4

r Ii File Edit Uiew Special
.,

Optn Mo Macintosh Pucal Tools -.rormotioo Dtmos

IQ:::::::::::::::::::
.i....IOT~----------J...,...,lr::rt=-ii~ ; ; ; ; ; : ; : : : : : : : : : : : ;

···1···· [[[['
: : : : : : '.::::::::::::::::::: :: '.::::::::::: ::::::::: :: :::: ::Trash:::
..

Figure 2.5

The Operating System

,

::::::::::::.:::
t==~=-===81C=· _1 ... ==r1.T't : : : : : : : : : : : : : : :

sv E ect l:E

CJ
Demos

...................
··················· ""1----------------,.,ct::-t ,,,.,.. ______________ .L;;i;J.1;1

·· ... IDID ,,,, ···
: Tr.ii : : :

Figure 2.6

,. s File Edit Ulew Speclal
,

·· .. ·· ·· ·· ·· ·· ..
·· ·· ·· ..
·· ..

..
··

! ! ! ! ! ! ! ! ! ! ! ! ! ! ~ ~ ! ~ ! ! ~ ~ ~ ~ ~ ! ~ ! ~ ~ ! ! ~ ! ! ~ ! ! ! ~ ! ~ ~ ! ! ! ! ~ ~~~~!!~NI~~~
Figure 2.7

27

28

r S File Edit Uiew Speciol

F:l Trosh
0 lt-s OKU.Tnsll

QI

Figure 2.8

r S File Edit Uiew Special

Poscol

11.-s 392K ill •1st

Optn Mt M•cintosll PHool Tools

The Operating Systetn

~

lQ
~

.,

· ·~1 •• l'I\ ••••

.,

······ ··· ·············· ····· ····················· ········1···· [[[[""'.
: Trash:::
...

Figure 2.9

The Operating System 29

double c11ck the d1sk 1con. "Double c11ck1ng" 1s performed by depressing
the mouse button tw1ce 1n succession. Clicking once .selects an object.
C11cklng twice selects and opens that object. Hence, your screen should
again appear as in figure 2.5, i.e., the Pascal d1sk should now be open. It
takes a little practice to get the correct tim1ng on a double click. If
noth1ng happens or if the disk icon jumps a little, then try 1t again. A
double click should be two dist1nct, consecutive c11cks. You'll quickly get
the hang of it.

Each w1ndow has a small box near Its upper left corner. Figure 2.9
shows the mouse polnt1ng to th1s box on the Pascal d1sk w1ndow. Th1s 1s
the 'close box· and 1s the shortcut that closes the w1ndow. Click the close
box and return, once aga1n, to figure 2.2.

Pract1ce us1ng double clicks to open things and the close box to close
th1ngs. Note that more than one window can be open at once. see 1f you
can get your screen to look like f1gure 2.10. Then close the Trash to get 1t
out of the way.

Open1ng Mac1ntosh Pascal

Now we are finally ready to open Mac1ntosh Pascal. You may e1ther
select the Macintosh d1sk 1con by clicking It, and then choosing Open from
the f11e menu, or you may double click the Mac1ntosh Pascal 1con. The icon
Is shown In figure 2.11. Note that even If an object Is already selected,
you may open it by double clicking It. Arter the disk whirls for a few
seconds, your screen should appear as 1n figure 2. 12. You have now loaded
Mac1ntosh Pascal!

Your screen, 11ke f1gure 2.12, should show three windows, labeled
"Unt1tled," "Text," and "Drawing." The text 1n the "Unt1tled" window ls
shown in inverse video (white letters on a black background). The reason
for this is explained later. For now click anywhere In the "Untitled"
window to make the text return to normal video (black letters on a white
background). Note that the "Untitled" w1ndow Is the only window that has
a close box and Is the only window w1th 6 grey bars across the top of It.
These bars Indicate that this Is the act1ve window. As we shall see,
commands usually apply only to the currently active window. To act1vate
another window, simply click anywhere Inside It. Figure 2.13 shows the
"Text" w1ndow as the active window.

Each w1ndow has a d1fferent purpose 1n Mac1ntosh Pascal. The
"Untitled" w1ndow is where you w111 see the 11sting of your program. The
name w111 change from "Untitled" to whatever name you choose for your
program when you save your program (as we shall learn to do later). The

JO The Operating Systm

r S File Edit Ulew Speclol

Po seal

El ~ 0 0 0
Optn Mt 11.cintosh P•sc•l Tools lnf~m•tion Domos

CJ CJ
~sttin Folder Emptv Folder

t===-==-==~===~~==~~~"""F.f"I'
Q::::::::::

:::.·::::
:;:;: ::: ·: ::

b:IO:r-1-----------------""1"'.J:"l:f.I·.. . ..
i;:;i. ________________ ...,11~012: : : : : : : : : : ~

Figure 2.1 O

r s File Edit Ulew Special

7ttems

CJ 0
~st>m Folder Emptv Folder

---- ---Po seal
3921C .. 4isk

- - ----

0 0
lnf~motion Domos

.,

tz;-r---------------='f;H ·········· .. .
~--------------~L.!:'I

················ ···1···· ············ ... [[[['
: Trosh::: "

Figure 2.11

The Operating System

s Fiie Edit Seorch Run Windows

Untitled

progrurn U1if 1 t I ~·J
:vo11r d+?(1.jf".jt 1r111-::

begin
:·:our rrn.11Ji-a111 :tat~1 ·· ·· 11t ~ l

end

I

Figure 2. 12

~ s Fiie Edit Search Run Windows

Un ti tied =o
program Unt1tled;

{Your decleretions}
begin

{Your progrem stetementsl
end.

Figure 2.13

Jl

TeHt

Drowlng

TeHI

Q

~

~
DrowJ:ng

J2 The Operating System

r C File [dit Search Run Windows

Untitled mi: TeHI

program Untitled; 21:
(Vour declerelions}

;~ begin
(Your progrem statements}

end. Drt1Wi'!.9_

.... .. ··---.. !

It I
i
!
!

i
•.. ___i

Figure 2.14

r c Fiie Edit Search Run Windows

..lJ.o.1J.1J..e .1:::::::::::::::::::::::::::::
r:;.:;:jF-~LD~ii~~rT~e~H~t ~~~~~· · · • ·

Pr~og;u ~:
begin
(Your

end.
~::::: : ::::::::: : ::::::::::::
;i:J Drawing

Figure 2.15

The Operating System JJ

s File Edit Search Run Windows

Figure 2.16

• Fiie Edit Search Run Windows
.,

llntltlatl }················:::::::::::::
Te Ht g;::::::::::::

.

1Jt l J: ll--------+-1

Figure 2.17

34 The Operating System

"Text" w1ndow 15 where the normal output from your program w111 appear.
The "Draw1ng" w1ndow 15 where graph1cs produced by your program w111
appear. Thus, Mac1nto5h Pascal perm1ts you to v1ew the listing of your
program whl le that program executes, creat1ng both textual and graphical
output.

Mov1ng and Adjust1ng W1ndows

The text window In f1gure 2.13 seems a b1t small to hold all the
output from our sample program S1mple. Fortunately, we may move the
w1ndow around on the screen as well as adjust 1ts s1ze. We accomplish
these feats s1mply by clfck1ng and dragg1ng the mouse.

Beg1nn1ng with the "Text" window active, as 1n figure 2.13, move the
mouse Into the grey bars at the head of the window and drag the w1ndow to
some other pos1t1on on the screen. Dragg1ng 1s accomp11shed by mov1ng the
mouse wh11e hold1ng the mouse button down. An out11ne of the text
window will move with the mouse. See figure 2.14. When you release the
mouse, the text w1ndow w111 jump to this pos1tlon. Pract1ce dragg1ng the
text window around the screen and end up with 1t pos1t1oned approximately
as shown 1n figure 2.15. Note that the text window ls still the active
window, and that the active window has some small boxes 1n 1ts lower
right hand corner. These are the stretch and shrink boxes for chang1ng the
size of a window. Position the mouse on these boxes and drag the mouse
down and to the r1ght as shown In figure 2.16. Th1s time when you release
the mouse the text window will grow to f1ll the new area as shown In
figure 2. 17.

Now, the text w1ndow appears large enough for the output, but most
of the program w1ndow is covered. By clicking anywhere in the "Untitled"
window, you make it the active window and bring 1t to the top of the desk
as shown 1n figure 2.18. By repeatedly clicking anywhere In the text and
program windows you should be able to fllp back and forth between figures
2.17 and 2.18. To make the program w1ndow wider, let's drag the stretch
and shrink box of the program window to the right as shown 1n figures 2.19
and 2.20.

As an exercise 1n window management, make the text window active
again, reduce 1ts width a little and then drag the entire window into the
upper right hand corner of the screen. Your screen should appear as 1n
figures 2.21 or 2.22 depending on which window ls currently active.

Figures 2.21 and 2.22 illustrate a handy arrangement of the program
and text windows. When the program executes <our first programs will
have no graphics and, hence, not use the drawing window), we w111 use the

The Operating System J5

s1tuatlon depleted 1n f1gure 2.21. In th1s case, the output of the program
1s on top, but the program window 1s clearly v1s1ble too. During creation
of our program, we w1ll use the s1tuat1on depleted in figure 2.22. In this
case, even fa1rly long program 11nes are v1 slble on the screen.

~ C File Edit Search Run Windows

i!D Untitled

progr11m Unli ll ed;
{Vour declerolions}

begin

l.!::Q]!J-------r-1: : : : : : : : : : : : :

{Vour progrom stotements)
end.

I

F1gure 2.18

Creat1ng and Edlt1ng a Program

.............
ng

I-

F1nally, we are almost ready to enter our program, 51mple, 1nto the
Mac1ntosh. 51nce we humans are error prone, the system provides ways for
us to correct our errors eas11y. In this chapter we shall not introduce the
full power of the Mac1ntosh system. Rather, we shall only introduce
enough for you to easily enter and run simple programs. As your
fam1liar1ty w1th the system grows and the s1ze of your Pascal programs
increases, we w1111ntroduce the full features of the system. For those too
1mpat1ent to watt, t he complete opt1ons of the system are collected 1n
Chapter 6.

We beg1n wlth ed1t1ng slnce the program window currently contains
the program outline shown in listing 2.2.

36 The Operating Systetn

r C Fiie Edit Seorch Run Windows

!ID
I

Untitled

progrom Un ti tied;
{Vour declorotionsl

begin

..... . ·:· .-:·:·:·:·:·:· .. ·j_·

-·--- IQ - · -·-··- r··i : : : : : : : : : : : : :
!

i
{Vour program stotements}

end. ng

H

l------·····--------·------~lt----------···--·---_L,_..._: ---1-f

,lQ.J._.___ ···- -··- ·-····--·-··-- ·-·----10~ ~-i._····---··-····--·-----·---~ l ._' ___

Figure 2.19

c File Edit Seorch Run Windows

• o: -- -- - -- Untitled

progrom Unt i tied;
{Vour decloretions}

begin
{Vour progrom stotementsl

end!

........
Figure 2.20

.... ·········
ng

The Operating System

' s File Edit Seorch Run Windows

Untitled ~[TeHt

progrom Untitled;
{Vour declorotions}

begin
{Your progrom stotements}

end.

~

................

Figure 2.21

r S File Edit Search Run Windows
. Untitled - - - -

progrom Unl1 ll ed;
{Vour declorotions}

begin
{Your progrnm stotements}

endj

I

.............
Figure 2.22

37

.,

~

~

.,

38

program Untitled;
(Your declarations)

begin
(Your program statements)

end.
Usting 2.2

The Operating System

Remember to click anywhere in the program window If your text ls still
shown In Inverse video (black letters on a white background). our
objective Is to replace this program with our program, Simple, whose
listing is repeated In listing 2.3.

program Simple;
var

Name : strtng;
begtn

Wrlteln('My name ts Macintosh.');
Wr1teln('What is your name?');
Readln(Name);
Wr1teln('Good to meet you,·, Name)

end.

Ust1ng 2.3

The first change we note Is that the name "Untitled" (after the word
program) needs to be changed to "Simple". To do this, move the mouse
until it Is over the word "Untitled." Note that when the mouse is inside a
window where text is expected the arrow changes into an "insertion
marker" (D. Position this marker at either end of the word "Untitled" and
drag the mouse to the other end of the word. Upon releasing the mouse the
word should be highlighted as in figure 2.23. <To save space, figures will
only show the pertinent parts of the screen instead of the entire screen.)

By clicking at any other position in the window, the highlighting w111
disappear. Try highlighting the word "Untitled" several times, from the
front as well as from the rear. Notice that if you drag the mouse up or
down as you drag it across the word, the line above or below ls also
highlighted. No harm ls done by this and 1f you haven't released the mouse
yet, you can recover by returning the mouse to the given 11ne. lf the mouse
has been released and incorrect material is highlighted, then you can click
anywhere on the screen and start again.

The Operating System 39

~D Untitled

progrom M@I; ~
{Your declerntions}

begin
{Your program statements}

end.
~

~ I c;: 112l
Figure 2.23

Since highlighting a word is a common occurrence in Macintosh
Pascal, there is a short cut for this also. Beginning with the word
"Untitled" not selected or highlighted, move the mouse anywhere into the
word and double click the mouse. Double clicking a word selects that
word and accomplishes the same as dragging the mouse from one end of
the word to the other. A further shortcut is triple clicking. If you triple
click anywhere on a line, then that entire line is selected. Practice a
couple of triple clicks. You will probably want to remember these short
cuts, but you will also need to drag the mouse when you want to select
only a portion of a word, or a portion of a line.

Assuming the word "Untitled" is selected as in figure 2.23, we replace
"Untitled" by "Simple" by typing "Simple". If you watch carefully, as soon
as you type the "S", the entire word "Untitled" disappears and is replaced
by an "S". The cursor is represented by a vertical bar, "I", and characters
are inserted, as typed, to the right of the cursor. Your program window
should now appear as in figure 2.24.

=o Untitled

progrom Simpl~; ~
{Your decleretions}

begin
{Your program statements}

end. IQ
fOT T¢ l'2l

F1gure 2.24

40 The Operating System

That ls, to replace one word with another, we s1mply select the word
to be changed and retype the correction. The same Idea ls used to make
small corrections or 1nsert1ons to the text. For example, move the mouse
and drag it over the "i" in "Simple." Remember, if you don't do it correctly
the first t1me, don't panic. S1mply click somewhere else in the program
w1ndow and try again. Your window should appear as 1n figure 2.25.

~D Untitled

program Simple; ~
{Vour decleretions}

beg1n
{Vour program statements}

end. jQ
~ 10 1'2J

Figure 2.25

Now type an "a" and presto, program "Simple" has become program
"Sample" with the cursor flashing between the "a" and the "m." By typing
the backspace key, we can erase the "a" and retype the "i" to restore the
name "Simple." That ls, another way to make corrections ls to use the
mouse to place the cursor after the text to be changed, then backspace
over the text and then type the new material.

As an exercise, use this method to change "program" to "procedure"
and then back to "program" again. Insertions are just as easy. Position the
cursor after "Simple" and then type "ton" to change the program name to
"Simpleton." Deleting text ls also easy. To delete "ton" from "Simpleton,"
you may e1ther position the cursor beh1nd the "ton" and then backspace
three times, or you may highlight "ton" by dragging the mouse across 1t and
then type the backspace once. Obviously, the latter method ls more useful
for making large deletions. To Illustrate, let us delete the phrase "(Your
variable declarations}" from the program. To do so, pos1t1on the cursor
beh1nd the phrase and drag the mouse to the left and up a little b1t. The
window should appear as in f1gure 2.26.

By dragging the mouse across a line you highlight that line. By
dragging the mouse up or down you highlight or select entire lines. Now
hit the backspace key and your program should appear as in figure 2.27.

The Operating System

Remember, 1f you accidently select the wrong phrase, just click
somewhere else In the window and try again.

~l

--::::===.:=.. -~ Untitled

program Simple1· •••• . ..,._._
begin
{Vour program statements}

end.

F1gure 2.26

Untitled

program Si mp I e J
begin
{Your program statements}
end.

~

F1gure 2.27

fQ

~
l2J ~

Let's try It again, th1s ttme delet1ng the phrase "(Your program
statements)". However, th1s time select only the g1ven line by dragging
the mouse from the left brace to the right brace, and then htt the
backspace key. See figures 2.28 and 2.29. Not1ce that th1s time the
deletion left a blank line 1n the text with the cursor flashing on thts ltne.
Thts ts the subtle d1fference between f1gures 2.26 and 2.28: In figure 2.26
we selected and subsequently deleted the 11ne return as well as the g1ven
11ne. Note that In the current case, if we want to, we can el1m1nate the
blank 11ne by typing a few backspaces.

42

!:r>
F-U

~

program Simple;
begin

end.

program Simple;
begin
I
end.

The Operating System

Untitled

F1gure 2.28

11-&:&•- ~
Ull ll lltm

IQ

Q
E '2l

F1gure 2.29

Now 1t ts. ttme to finally enter our stmple first program. Postt1on the
cursor after the first ltne and type In the declaration for the variable
"Name". That Is, type "var" followed by the Return key, and then type
"Name: strtng[30);". You do not need to worry about tndenttng the lines as
shown In the 11sttngs or about the boldface type of certain words. Stmply
type the lines. When you type the semicolon at the end of the ltne, the line
will jump to Its proper Indentation and the system will take care of
boldfacing. Then position the cursor after the "begin" and enter the four
given ltnes. Please type them carefully, noting the punctuation with
special care. That ls, don't forget the parentheses, use single quotation
marks, and place a semicolon after every line except the last. If you make
any typographical errors, correct them with backspacing or by mouse as
explained above. Ftgure 2.30 shows the program In progress. Note that the
last "Write Jn" statement has not yet jumped to its proper lndentat Ion and
that there is something wrong In the var section of the program.
Whenever you see text in the program window in outline form, you can be
sure you have committed some Pascal syntax error. In this case, we

The Operating System 43

accidentally left the "a" out of "var". To flx the problem, we place the
cursor between the "v'' and the "r" and type the "a" followed by the Enter
key. The purpose of the Enter key ls to ask the system to do a new syntax
check of the given 11ne. If 1t flnds no errors In the llne, then 1t 1ndents and
formats the line to the proper specifications. Figure 2.31 shows the
complete program. Make sure that your program ls exactly like ours! Note
that we have capltal1zed our variable, "Name," as well as the first letter
of each statement. This ls simply a matter of preference, but we believe
that 1t makes programs more readable.

!§(Untitled

progrom Simple; Q
Yrlllm@:
string[30);

begin
Writeln('My name is Macintosh.');

Writeln('What is your name?')
end.

Q
~ Jg '21

F1gure 2.30

~L Untitled

progrom Simple; ~
YOr

Name : string[30);
begin

Writeln('My name is Macintosh.');
WritelnC'What is your name?');
Reaclln(Name);
Writeln('Goocl to meet you, ·, Name)

end. Q
121 J2 ll2J

Figure 2.31

44 The (lpentlng System

Recall that when text Is highlighted, It can be deleted by typing the
backspace key. If you refer again to figure 2. 12, you see that the entire
program shell appears highlighted when you boot (startup) Macintosh
Pascal. By typing a backspace, you can delete the entire shell and begin
with a blank program window. This Is a matter of preference, but some
find It easier to type In the entire program rather than edit the shell.

Sav1ng Programs and ln1t1a11z1ng D1sks

Even before we run our program, let's save It to the disk. Once 1t Is
saved to the disk we w111 be able to recall It at w111. (See the sect1on on
loading programs from disk.) Right now our program 1s vulnerable. Should
the power fall, our valuable program would be lost and we would have to
type It In again. This Is because the program Is currently only stored In
the volatile memory of the computer. This memory falls when the power
Is turned off. However, saving the program to disk creates a version
stored electromagnetically (much like music Is stored on tapes), which
w111 not be disturbed when the power ls disconnected. Another reason to
save our program before we run It Is that novice programmers have been
known to write such confusing Instructions that they "hang" the computer.
That Is, the computer seems to go out for lunch and never comes back. The
computer w111 not respond to any command, either from keyboard or mouse.
The only way to proceed Is to reset the computer <see the section below on
the reset button> and start over. If your program hasn't been saved, you
w111 need to retype It.

When programs become longer, a word to the wise ls always save your
new version every fifteen minutes or so. That way you never lose more
than fifteen minutes worth of work. Every campus or office has horror
stories about people who failed to heed this advice and lost hOurs of work.

To save our program, we pull down the File menu and choose the
save As option as shown 1n figure 2.32. This presents us with a dialog
box similar to the one shown In figure 2.33.

At this point, there are several possibilities. If you have two drives,
then, by clicking on Drive, you make the other disk the active disk. The
name of the disk to which the save w111 be made ls shown above the Eject
box. (If you have only one drive, the Drive option w111 not appear 1n your
dialog box.> Here, we w111 assume that you have one disk drive and want to
save your programs on another diskette, rather than the Pascal system
diskette that Is now In the machine. If you wish to save your program
temporarily on the system diskette, proceed to the discussion concerning
figure 2.37.

The Operating System

§0 New
O!H~ I) ,,,

P Close
Smie

b
Scwe A~ ...
B~~ UNt

Page Setup ...
Print ...

Untitled

01;

is Macintosh.');
our name?');

._Q_u_it ___ _, eet you,· , Name)
end.

F1gure 2.32

Saue your program as

Cancel

Figure 2.33

Pascal

Eject

Driue

To switch diskettes, point to the Eject box and cl1ck. In a few
seconds the Macintosh Pascal diskette will be ejected. Insert the diskette
that you would like to save your programs on. If your diskette has never
been used before you will see a dialog box as in f igure 2.34. If your
diskette has already been initialized, meet us at the discussion concerning
figure 2.37.

Respond to figure 2.34 by cl icking inside the ln1tfa11ze box. The disk
w111 whirl for a couple of minutes as the sytem prepares the diskette for
use. You can think of initialization as the "drawing" of boundaries on the
disk so that the system will later be able to store and retrieve
information from the disk.

At the completion of the process you should see the dialog box shown
in figure 2.35. Type the name that you would like this disk to have. In
figure 2.36 we have given the disk the name "Programs". After naming
your disk, click the OK box as shown in figure 2.36.

46 The Operating Systecn

This disk is unreadable:

Do you want to initialize it?

Eject) (Initialize)

F1gure 2.34

Please name this disk:

OK

F1gure 2.35

Please name this disk:

jPrograms

-
F1gure 2.36

Your dialog box should now appear much as In figure 2.37 <wh1ch Is
also 11ke figure 2.33). The name of the diskette, or a portion of 1t, w111 be
displayed above the Eject box. Of course, 1f you have two drives, the
Drive option w111 also be available.

The Cancel box ls there in case you suddenly remember one more
change that you need to make to your program before you save it. Cancel
will take you back to the program window where you can make your
change, then start the save process again. Notice that the Save option In
figure 2.37 ls grey rather than black. Th1s Indicates that save Is not
currently one of your possible options. How, says the system, can I save
your program before you give me a name for It? Hence, take the keyboard

The Operettng System 47

In hand and enter some name for this program. Notice as you type that the
Save option becomes active by turning black Instead of grey. As shown In
figure 2.38, we have entered the name "Simple" for this program.

Saue your program as

I
Cancel

F1gure 2.37

Saue your program as

I simple

Saue Cancel

F1gure 2.38

Programs

Eject)

Programs

(Eject)

For your own sanity, we suggest that you name your programs on d1sk
w1th the same names used 1n the program statement of the program
11st1ng. We w111 follow th1s advice 1n th1s text so that 1r you look at a
11sting you w111 know how to f1nd the program on the sample d1sk that 1s
ava11able for this book and vice-versa. Note that the system does not care
what name you give to the program. You may call this program "Complex"
1f you feel that way about It. Whatever name you've chosen, click on the
Save box and your program w111 be saved to d1sk. With a one dr1ve system,
you w111 also be prompted to reinsert the Macintosh Pascal d1sk 1nto the
machine. Finally, your screen should clear or d1alog boxes and look 11ke
figure 2.39. Note that now the "Untitled" line has been replaced by
"S1mple."

48 The Operating System

i:-...., SI mp le SU

program Simple; IQ
Y8r
Name: str1ng(30];

begin
Writeln('My name is Macintosh.');
Writeln('What is your name?');
Readl n(Name);
Writeln('Good to meet you,·, Name)

end. Q
!QT w 121

Figure 2.39

Whlle we are on the subject of sav1ng programs, let's pretend that we
have made some changes to our program and want to save the new version
of "Simple." To do so, we pull down the f11e menu and choose Save as
again. This t1me we get the dialog box of f1gure 2.40. That 1s, now the
system knows that our program has been saved as "S1mple." If we wish we
can change this name to "Simpler" or whatever.

Pascal

Eject

Saue Cancel)

Figure 2.40

If we change the name then the disk w111 keep both vers1ons of our
program. We may at some t 1me want to keep various versions of a
program, but keeping each version of a program under a different name
w111 Quickly f111 up your disk. Hence, we w111 usually save the program
under the same name. Don't forget to eject the disk or click Drive if you
want to save your program on another d1sk. ·on a one drive system, after
inserting our disk Programs, the dialog box should appear as in figure 2.41.

The Operating System 49

Eject

Sa1.1e your program as

I
Programs

Sa1.1e Cancel

Figure 2.41

Now click save. Since there is already a version of "Simple" on this
diskette, the system seeks confirmation before destroying the first
version and replacing It with the second version. This dialog box is shown
in figure 2.42.

Replace eHisting
"Simple" 1

Yes) n No I

Figure 2.42

Note that the No box of figure 2.42 is much more prominent than the Yes
box. The reason for this is that If you are lost and not sure of what you
are doing, the No box is the safe box to choose. The Yes box will destroy
the current version of your program and could replace 1t with junk If you
didn't know what you were doing. We know what we are doing, so we
choose Yes by cl1cking it. This saves our new version of "Simple" and
returns control to figure 2.39, after asking us to reinsert the Macintosh
Pascal disk.

Running and Simple Debugging of Programs

Finally it's time to run our marvelous program. First, we need to
bring the "Text" window to the top. we accomplish this, of course, by
clicking anywhere In the portion of the "Text" window that sticks out from
behind the program window. Your screen should now look much like figure

50 The Operating System

2.43, except that your program and text windows are probably larger than
ours. To save space in our figures, we have reduced both windows as much
as possible and are showing only the top portion of the screen.

' s File Edit Search Run Windows

Simple ~ Te Ht

program Simple;]Q
var

Nome : strlng[30l;
begin It

~ Wr1teln("My nome is Mocinto
Wr1teln("Whot is your nome~
Reodln(Nome);
Writeln("Good to meet you, ·, Nome)

end.

w

F1gure 2.43

If you forget to bring the text window to the top, your program may well
run, but you may not see any of the output. No real harm is done, but you
w111 have to click the text window to the top.

To run the program, hold down the Run menu and select the Go option
as shown 1n figure 2.44.

' s Search Windows
~

file Edit

Cite< k :•:K TeHt
Reset ~ program Simple; ··············-·--·-···--'""'"'

var · l!I
Nome: strlng(30); Go-&o-'"'

begin
Step !!CS i Writeln('My nome is~

Writeln('Whot is your Step-Step

Reodln(Nome); ···-··-·---·-·

Writeln('Good to mee Sto1>s In
end.

L..-

Figure 2.44

The Operating System 51

If you haven't made any typing mistakes, your text window should begin to
show output from the program. Respond to the question and then push the
Return key. If your program has an error In It, you will see an error
message box at the top of the screen Cas In figure 2.47). If you get an
error message, click In the message box (after studying 1t), then click In
the program window, make any necessary corrections, and try again.
Below we Introduce some Intentional errors so that you will see how the
system responds to them. Assuming that you have no errors, your final
output should appear somewhat as In figure 2.45.

~D Te Ht
My name is Macintosh.
What is your na~e?
Lowel I
Good to meet you, Lowell

F1gure 2.45

As an exercise in debugging, let's place some errors in our program
and see how the system responds. If you were not successful In getting
your program to run, then keep reading. We hope this section will help you
find and eliminate those "bugs" in your program.

~[' Simpie

progrom Simple; ~
var
Name: string[30);

begin
Print('My name is Macintosh.');
Writeln('What is your name?')
Readl n(Nane);
Writeln('Good to meqt you, ', Name)

end. tQ
21]Q] '2l

Figure 2.46

52 The Operating Sptem

Let's agree to try the following errors In the program: In the first
Wrlteln statement, we w111 accidentally write "Print" for "Wr1teln". In the
second Wrlteln, we w111 forget the semicolon. In the Readln statement, we
w111 spell "Name" as "Nane" and In the final statement, we w111 spell
"meet" as "meat". To make these changes, first cl1ck In the program
window to make It the active window, then use the mouse to move the
cursor as necessary to make the required changes. Make sure your program
appears as ln figure 2.46

This time, let's not save this new version of the program, since, as
we know, It really Isn't an Improvement. Hence, pull down the Run menu
and Go. Your screen should appear as In figure 2.47. The "thumbs down"
symbol appears by the first 11ne after the beg1n. and the error message
"The name ·pr1ni- has not been def1ned yet" appears near the top of
the screen.

r S Fiie Edit Search Windows

~ The n11me "Print• hos not been defined yet.

m ~
N11me: strlng[30];

begin
Prlnt('Ny name Is Nocintosh.');
Writeln('Wh11t Is your n11me?')
Reodl n(None);
Wrl teln('Good to meat you, ', Nome)

end.

Figure 2.47

,

Learn to Interpret error messages with a proper amount of scorn.
What the computer ls trying to say Is that It doesn't know how to "Print."
With a 11ttle practice you will learn to understand error messages. You
may get plenty of practice on your own, but we also have Included some
buggy programs on the sample disk accompanying this book so that you can
practice the important skill of debugging programs. In this case, the
location of the "thumbs down" symbol and the message should be enough to
jog our memory that in Pascal we use "Writeln" instead of "Print." To
continue, click anywhere in the error box and the error message will
disappear. Then use the mouse to move the cursor to the offending line and

The Operating System SJ

change the "Print" back to a "Wr1teln". As you enter the word Wr1teln, the
"thumbs down" symbol should disappear from the line.

Pull down the Run menu and try Go again. This time you should get a
small surprise. The "thumbs down" symbol ls on the third line, not the
second 11ne, even though we know that the error Is the missing semicolon
on the second line. The error message, as shown 1n figure 2.48, however,
1nd1cates that the problem ls with the previous 11ne.

~ s Fiie Edit Se11rch • Windows

~ Either 11 semicolon (;) or 11n END Is eHpected following the preulous
/.£(st11tement, but neither h11s been found.

Nome : strlng[30);
begin
Writeln('My n11me is M11cintosh.');
Writeln('Wh11t is your name?')
Readln(Nene);
Writeln('Good to me11t you, ·, Name)

end.

F1gure 2.48

,

As we shall learn 1n the next chapter, the semicolon Is used in Pascal to
separate statements. Since we forgot the semicolon, a very common error
for beginners, the computer thinks statements two and three are one
statement. Thus, from this simple example an important moral should be
learned. The "thumbs down" symbol does not always point to the line with
the error on It. Learn to recognize this error message and keep 1n mind
that a missing semicolon on the 11ne above Is a common cause of it.

To proceed, c11ck In the error message and then Insert the semicolon
after line 2. Try Run and Go again. This time you should get the error
message shown in figure 2.49.

As we shall also soon learn, in Pascal, every variable that is used In
our program must be declared in the var section of the program. This time
due to a typing error, we have a variable "Nane" that is not delcared In the
var section. Of course, the problem Is that "Name" was intended, but a
typo gave us "Nane". Remember that the computer is a moron and treat its
messages appropriately. The computer is saying that "Nane" is not defined
and seems to want us to declare it. That would make the error go away,
but it wouldn't make the program work properly since then there would be

54 The Operating Spte111

no connection between the variable "Name" as used In line four and the
variable "Nane" as used in line three.

r a File Edit Seorch ' Windows

:If The nome "N1me• hos not been defined yet.

Nome: string[30); '
begin

Wrlteln('My nome 1s Mocfntosh.');
Wrlteln('Whot is your nome?')j
Reodln(None);
Wrlteln('Good to meot you,·, Nome)

end.

Figure 2.49

To proceed, click In the error message and then change "Nane" back to
"Name". Try Run and Go again. If you've been following along with us,
your program should run with no error messages, but you won't see
anything because we forgot to bring the text window to the foreground.
The best thing to do In this case ls to choose Pause by clicking it with the
mouse. The Pause option only appears during the execution of a program.
Since your program was Interrupted wh11e waiting at the "Readln" for you
to enter your name, you should get the message shown in figure 2.50.

r a Fiie Edit Seorch Windows

~ The entire reod will be re-eHecuted when you continue.

Nome: strlngl30l;
begin
Wr1teln('My nome is Mocintosh.');
Wrlteln('Whot fs your nllme?');
Reodl n(Norrje);
Wrlteln('Good to meot you,', Nome)

end.

Figure 2.50

,

The Operating System 55

To continue, click in the message box and then click in the text window.
You should now see the first part of the ouput as shown in figure 2.51.

'" s File Edit Search Run Windows
.,

Simple!!: Te Ht

progrom Simple; My name Is Macintosh. ~
vor IJhat is your naae?

Name : stringl301;
~ begin

Writeln("My name 1s Macinto

~ Writeln("Whot 1s your name?
~ Reedln(Neme);

Writeln("Good to meet you, ", Name)
end.

"-..)

Ftgure 2.51

The hand is pointing at the "Readln" simply to indicate that it is the
statement on which the execution was interrupted. At this point, there
are two ways to proceed. If you choose Go from the Run menu, the
program w111 resume execution from the "Readln" where it was previously
interrupted. If you first choose Reset and then choose Go from the Run
menu, then the hand will disappear, the text window w111 be cleared, and
the program will execute from the beginning. That is, Reset resets the
system so that the Go is a fresh start from the top rather than a continue
from the current position. The other options from the Run menu will be
explained later.

We hope you were not too start led by the fact that the computer
generated no error message regarding the misuse of the word "meat". As
you have probably guessed, the computer prints anything that you put
between single quotes. As long as you don't violate the syntax of the
language, the computer doesn't care what kind of. garbage it produces.
However, your failure to spell one of Macintosh Pascal's keywords (like
program, begtn, or writeln) or failure to spell one of your own variables
(like "Nane") w111 cause you a bit of grief. Your fa1lure to spell even
"Mcintosh" correctly will go unnoticed as long as it is between single
quotes.

56 The Operating Systna

Clostng Wtndows and Ftles

Within the Pascal system, the "close box" is used to hide a window.
To see this, click in the program window to make it the act1ve w1ndow and
then click in the small close box in the upper left corner of the window.
The text window should become the active window and your screen should
appear as in figure 2.52.

' s File Edit Search Run Windows

: ~[

.,

Te Ht
: My name I~ Mac int o~h.
: Uhat i ~ your na•e?
: Lowe I I
: Good to meat you, Lowe 11
: : : : : : : : : : : : : : : : : : :~:::::: In:

::::::::::::::::::::::::::""".,...,.,...,,.,.,..,~,..., .. ~--------.lr~=!ll

.................................... ~,,.....,..._.....,--...-....'"""''""-"...._,,......,......

Ftgure 2.52

How, you ask, do we get the program window back? Pull down the Wtndow
menu as in figure 2.53.

' s Fiie Edit Seorch Run
.,

• • • • · • · · · • · · • · • • · · · · · · · · · Obserue na1e?

you, Lowe 11 : TeHt

: Orowing

: Cllpboord

: Type Size ...
._."-~--'-,r--.,,_,...,..._~l'"'----/"V"-'--...-..__,..-J..J

Ftgure 2.53

The Operating System 57

The first option ls S1mp1e (or Unt1t1ed or whatever your program has
been saved as) and by selecting this option the program window is
restored to the screen and made the active window. Not1ce that two of the
other options are Text and Draw1ng, which 11kew1se can be used to
recover the text and drawing windows. Instant and Observe are two very
powerful new w1ndows that w1ll be introduced later (after you learn some
Pascal), while the C1tpboard is a window where we can store things
temporar11y. Type size allows you to choose any of three different type
sizes for the windows. Play with any of these options. Use the menu to
restore windows; use the close boxes to hide w1ndows. Eventually, restore
at least the program window and make it the active window so that your
screen appears as in figure 2.54.

,. t File Edit Search Run Windows

Simple

progr11m Simple;
vor I

Nome: strlng[30];
begin

Writeln('My norne is Mocinlosh.');
Wrtteln('Whot is your nome?');
Reodl n(Nome);
Writeln('Good lo meol you, ', Nome)

end.

Figure 2.54

-

II

To leave the program "Simple" and go on to better things, we must
pull down the file menu and choose the Close option as shown in figure
2.55.

Since we have made some changes to our program since we saved it,
the system presents the helpful message shown in figure 2.56. That is, if
the system simply closed the file as we had asked, any changes we have
made would be lost. Here it is giving us a chance to save the latest
version of our program. As shown by the shading, the expected response is
Save. However, in our case, the current version is not an improvement (it
has the misspelling "meat" 1n 10, so we choose the Discard option.
Cancel would, of course, cancel the command to close the file and return
us to figure 2.54.

58

b
Reuert
Page Setup ...
Print...

Simple

Quit eat you,·, Name)
end.

Figure 2.55

The Opentlng Syste11t

Do you want to saue or discard the changes
to your program before closing?

(Saue J (Discard) Cancel

Figure 2.56

• Obserue

: TeHt

: Drewing ~--
• Clipboard
••••••••••••••••••••••••• 1---............. ············

Type Size ...

TeHt

name?

you, Lowe 11

•-..._..-ry..__.-~~-.,.._ ------- _..._I

Figure 2.57

The Operating System 59

After choosing D1scard or Save, the disk wlll hum for a few seconds
and then the program window w111 disappear as above. The difference
between the close box and the close option from the file menu is that the
close box only hides the window while the close option from the file menu
effectively removes the given program from the computer's memory (but
not from the disk). To see that "Simple" can not be quickly recovered, try
the Window menu. In grey, there is No Program available. See figure
2.57.

Loading Programs from Disk

We have now eliminated our old program "Simple." How do we
continue? By pulling down the File menu we see there are three choices
as shown 1n figure 2.58.

r S fdlt Seiirch Run Windows

New
Open ••.
(lose
Sat•<!
S<tt•e AL.
RetH•rt
Pttqe S<itup,,,
Print,,,
Quit

Te Ht
:: : : :: : : My name is Macintosh.

: : : : : : : : Uh at is your name?

: : : : : : : : Lo11el I

: : : : : : : : Good to meat you, Lowe 11

------··· ······ ·· ··· ····
•••••.•••. • ••..••.•.••.••••.•••••••._._~~J'V'...--.""'--__.....~ .,-~_,_,

Figure 2.58

we may choose New, Open .. ., or au1t. Quit ls our choice 1f we want to
qult the Macintosh Pascal system. New ls our choice if we would 11ke to
create our own new program. Open ... is our choice if we would like to
open or load one of the programs from the dlsk. For the present let's
choose Open with the intent of loading the program "Buggy" from the disk
accompanying thls book. (If you do not have the dlsk, you can load one of
the sample programs from the Macintosh Pascal disk.) After you select
Open ... , you should see a dialog box such as shown 1n figure 2.59. Don't
worry if the names listed in the little window are not exactly the same.
These are the sample Pascal programs provided on the Pascal diskette. By
clicking the up and down arrows, you can make the window scroll up and

60 The Operating System

down so that you can see the other choices. Since we want to load a
program from another diskette, click on the eject window to eject the
Pascal diskette. Then insert the sample diskette that accompanies the
book. You should have a dialog box much like figure 2.60. Of course, If you
have two drives, you do not need to Eject the Pascal disk. Simply click on
Drtve to see the programs on the other disk.

Open program named

*Bouncing Ball ~
*Bullseye

I
[Oiien) Pascal

*Calligraphy
*NeuerStops [Eject)
*Oscillation
*Pipeline (Cancel)
*Walter ~

Figure 2.59

Open program named

H ~
Hdd

I
(Op(m) Sample

Bagels
() BaseConuersion Eject

Blocks
Buggy (Cancel)
Cars_incompl ...

Figure 2.60

Note that the programs on the Sample diskette are llsted alphabetically .
By scrolling up and down with the up and down arrows, you can see the
names of the programs on the Sample disk. For now, scroll back towards
the top and select "Buggy" by clicking on it as shown in figure 2.61.

The Operating System

Open program named

R
Add Open

Cancel

F1gure 2.61

61

Sample

Eject

Now choose Open by clicking It and you will be asked to reinsert the
Pascal system diskette. Then you will find yourself with "Buggy" loaded
into the computer as shown In figure 2.62.

program Buggy;
var
First: string;

begin

Buggy

Writeln("What is your first name?");
Readln(Fist);
Writeln("Remember, ', First, ·, we computers -');
Writeln('even Macintoshes - are fast, accurate morons");
Writeln('but you, while slow and errror prone,')
Wirteln('are clearly e genius!')

end.

Figure 2.62

The method just described for loading a program presupposes that
Macintosh Pascal is already loaded into the computer. If you would like to
begin a session by loading a particular program, then the following
alternate method for loading a program may be useful. If the program you
wish to load is on the Macintosh Pascal disk, then you simply need double

62 The Openllng System

cltcl< that program's tcon to load tt and Macintosh Pascal Into the system.
If the program you wtsh to load ts on another disk, then proceed as
follows .. For sfmplicfty we assume the program we wt sh to load ts named
"Buggy" and that It Is on the dtsl< named SAMPLE. Turn on the Macintosh
and Insert the Macintosh Pascal disk. Then eject (from the File menu) the
Mactntosh Pascal dtsl< and tnsert SAMPLE. Open SAMPLE, tr necessary, by
double cltcktng tts disk tcon. Open the folder CH 2 by double cltcl<tng 1t and
finally open "Buggy" by double c11cl<1ng 1t. Follow 1nstructtons and re1nsert
Mac1ntosh Pascal and the SAMPLE d1sk as requested by the computer.

Prtnttng a Llsttng of a Program

You wm probably want to keep listings of all your programs for quick
reference. Sending a listing of the program in the program window to the
printer Is very s1mple. S1mply pull down the Ftle window and select
Prtnt ... as shown tn figure 2.63.

= Ne~1 Buggy
0 j>f.> IL.,

p Close
Sm1<~

b Saue As ...

our first nBme?');

r, ·, First, ·, we computers -');
._ ____ _.intoshes - are fast, accurate morons');
Writeln('but you, while slow and errror prone,')
Wirteln('are clearly a genius!')

end.

Ftgure 2.63

You w111 then see the dialog box shown tn figure 2.64, which allows you to
make various selections about the prtnttng. For example, you may choose
from three print qualtttes. The better the qua11ty, the slower the prtnttng.
You may also choose to pr1nt all of the document or certa1n pages of the
document, as well as choosing how many copies to print. You tndtcate
whether you are using continuous fanfold computer paper or single, cut
sheet paper. If you select Cut Sheet, then the printer w111 stop after

The Operating System 63

each page and let you insert another page. Finally, select OK to begin the
printing. After a brief pause and a message about saving the copy to disk,
your program should be printed.

Quality: 0High O Standard ®Draft OK
Page Range: @RH O From: D To: D
Coples: D
P11per Feed: ® Continuous O Cut Sheet (Cancel)

Figure 2.64

If you are using an lmageWrtter printer, both the green "power" and
"select" lights on the printer must be on, the red "paper error" light must
not be on, and the cable between printer and computer must be properly
attached. After the program in the program window is printed, your screen
should return to figure 2.62.

In the next chapter, when you begin to write Pascal programs. we will
show you how to get the program to send its output to the printer. For
now, the following trick should suffice. After a program has executed, and
the "Text" window is active, you may print the "Text" window by
simultaneously pressing the Sh1ft, Fan, and 4 keys. Make sure that the
Caps Lock key is not down. <The Fan key contains the symbol J::t and is to
the immediate left of the space bar.) This will print only the portion of
the active window that is visible on the screen, not necessarily the
complete output of the program. Nevertheless, this trick should work for
now to provide you with hard copy of a program's output. We mention in
passing that Shift, Fan, and 4 will print the active window while Shift,
Caps Lock, Fan, and 4 w111 dump the entire screen to the printer.

auttttng Macintosh Pascal

The debugging of "Buggy" is left as an exercise. Here we demonstrate
the method of exiting from Macintosh Pascal. Pull down the F11e menu and
choose Close. Save any changes, if you've made any, to "Buggy" before
closing the file. Now pull down the F11e menu and choose the Qutt option.
This should return you to figure 2.5, which 1s repeated here as figure 2.65.
You may close the disk or leave it as it 1s. In any case, the final step is to
choose Eject from the File menu as shown in figure 2.66.

The Qr>er.llng Systetn

r S File Edit Uiew Special

P8SCHI

392K in dlslc 81(noilobl• · · · • • • • • · • · ·
'l======~==~=====~~rr4:::::::::::: Puc•I:::

LJ
lnforn>1tm

CJ CJ
~stem Foldor Empt~ Foldor

+.,....,----------------.=+=-!u:.i, ______________1.,;::.l.l;;<I •••••••••••••••••••

Figure 2.65

=o UjH'H Pascal
Ouplie<11e :)[(j)

7 it
i;~~t Into :)['I

392K in disk SK available

Put B1~ck
........................ CJ 0 Close

l Tools Information D~rnos
0

Close Rll
Print

....................................

Sy

F1gure 2.66

This will cause the system to eject the Pascal diskette. You may then
power off the Macintosh and the printer.

Renam1ng Programs and D1sks

You may at some time wish to change the name of one of your
programs or even of your disk. The nice feature of the Macintosh is that
the editing skills you have already learned apply to this new situation.
Figure 2.67 shows the contents of our disk, Programs. Suppose we want to
change the name of the program "Simple." As figure 2.67 shows, we have

The Operating System

used the mouse to highlight "lmpl" In "Simple." Simply by typing backspace
or any other character, we can edit the name of the program just like we
would edit any other text on the Macintosh. Likewise, one can even edit
the name of the disk by using these same procedures on the text below the
disk icon.

~D Programs
2 items 3K in disk 397K anilable

I
~

CJ
Empty F o Ider -

~
~ J2l IQJ

Ftgure 2.67

The Reset Sw1tch

Your Macintosh Is shipped with a reset switch that Is not installed. If
your reset switch has not been installed, we suggest that you have your
dealer help you put it on. To find out whether your Macintosh has its reset
switch in place, look on the left side of the computer. If your Macintosh
has the switch, it will be near the back, lower corner of the left side. The
purpose of the switch is to reset the computer should you bring it to its
knees. A commercial program should be so well "idiot" proofed that the
user cannot crash the system. On the other hand, a not-completely
debugged student program may occasionally "hang" the system. If you ever
lose your mouse, or the computer wm not respond to any key, hit the reset
switch to reboot the system and continue.

Final Words of Encouragement

We hope this introduction to the Macintosh operating system has been
successful for you. You should work through the examples in the text with
your Macintosh until you feel reasonably comfortable about the system.
The entire system has not been presented In this chapter, but the subset of
the system that we have discussed should be enough for the beginner to
use to create, debug, run, save, and load simple programs. Later, we shall

66 The Operating System

introduce cutt1ng and pasting for quick editing of programs and we shall
introduce powerful debugging aids. First, however, you need to learn some
Pascal, and that is the subject of the next chapter (indeed, of most of the
rest of this book).

As a final caution, consider the following situation. The user wants
to save the program "Simple," which as you can see from figure 2.68 has
run properly. But as you can also see, the save As option of the File
menu 1s not active. The system is not allowing the user to save the
program. See if you can discern the problem before you read on.

p

S<1t•<i

ny name is Macintosh.
~hat is your na1e7
Lo•el I

Te Ht

b S<1l•e flL.
R•~uert

Good to 1eet you, Lome I I
is M

Pttqe Set \Ill--- our
Print ...

i....;;Q.;;.;ul;.;.t __ , eet
end.

F1gure 2.68

Search Run Windows

pie

tosh.
e?

Te Ht

Reoert
, Lo1el I

Pege Setup ...
Print ...

ls Macintosh.") ;
our nome?');

i....;;Q.;;.;ul;.;.t __ eet you, ·, Neme)
end.

Figure 2.69

The Operettng System 67

The problem 1s that commands usuaJJy apply only to the active
window. In figure 2.68, the text window Is the active window. The
system doesn't save text windows, so Save As 1s not one of the possible
commands that can currently be given. Remember this example! If the
command that you want to give ls not avallable, then that command does
not currently apply.

The problem may weJJ be that you need to make the program window
active before the command makes sense. That ls the problem, of course, 1n
the given situation. If the user clicks anywhere In the program window,
then Save As makes sense as shown 1n figure 2.69.

Exerc1ses

2.1 Enter, debug, and run the follow1ng program Squares. Note, Squares Is
a correct program, so you w111 not need to debug 1t unless you add your own
errors.

program Squares;
var

Number, Square: Integer;
begin
Wr1telnC'Please enter a smaJJ whole number.');
ReadlnCNumber);
Square := Number * Number;
Wr1telnC'The square of your number ls', Square>

end.

2.2 Make some Intentional errors to your program Squares to see how the
system reacts. In particular, omit the declaration of the variable "Square"
In the var section, and change the ":=" of the third 11ne after the begin to
an "=" by Itself. This last error ls another common one for beginning
programmers. Hence, It ls a good Idea to get used to the error message
that It generates.

2.3 Load the program "Buggy" from the Sample d1sk 1nto the computer (1.e.,
Open Buggy> and correct the errors 1n "Buggy" so that 1t runs and produces
correct output.

Chapter 3

Beginning Pasca 1

PR06RN1 - A sequence or detectable and
undetectable errors aimed at coaxing
some rorm or response rrom the system.

Devtl's DP Dictionary

In this chapter, we will learn how to write computer programs In
Pascal. A program Is nothing more than a set of Instructions that the
computer carries out (or executes). Programs can In general be executed
without human Intervention, and It is this property that makes computers
so useful and so much more powerful than calculators. which can of course
do many of the things that a computer can do. For example, averaging
three bowling scores ls a simple task on a calculator. We enter the three
scores. adding each one to the previous total and then divide by three. But
a secretary of a bowling league might find this process a little tedious
after handling dozens of bowlers. Since the process of averaging Is the
same regardless of the scores Involved, It would be nice If we could
"teach" our calculator how to average three numbers. Then, whenever we
needed to prepare a league statistics sheet, we could provide the numbers
to the calculator but we wouldn't have to keep repeating the add and divide
Instructions. This Is essentially what computers (and some programmable
calculators) can do.

To "teach" the computer how to do something, all we need to do Is
figure out for ourselves how this something ls to be accomplished, and
then communicate this to the machine In a language that It understands.
Interestingly enough, while It Is the second job that most people consider
computer programming, It Is the first task which Is the most Important.
So we state here for emphasis a fundamental truth of programming: The
computer cannot solve any problem that the programmer. In
principle. cannot solve first.

68

BeglMlng Pascal 69

Throughout this book, we will try to introduce methods whereby both
of the above tasks can be learned. While Macintosh Pascal will be our
vehicle for communicating with the Macintosh, we will use what are
considered to be sound, general programming techniques that can be
applied to nearly any other situation.

A Pascal Program

Because computers are unable to think and Interpret the way humans
do, when we communicate with them, we have to be very precise about
how we say things and we must learn to obey exactly the rules or the
language we are using. Pascal is no exception. This precise way of
expressing a program Is known as the syntax of the language, I.e., how
programs are physically constructed, or even more specifically, what
strings or letters, numbers, and punctuation marks constitute a legal
Pascal program. We begin by looking at the overall structure of a Pascal
program.

program Example;
begin

Wrtteln('Here is a complete Pascal program.');
Writeln('Even though I am just learning, I think');
Writeln('I can figure out what It does.')

end.

Listing J.1

Listing 3.1 Is an example of a complete, but very simple Pascal
program. There Is a heading, which consists of the word program
followed by the name of the program. The name ls selected by the
programmer, should start with a letter and then be followed by letters or
numbers, and can be pretty much whatever we want except for some
reserved words Cor keywords), which mean special things tn Pascal (llke
begin, end, program>. A list of Macintosh Pascal reserved words ls found
In the Macintosh Pascal Reference Manual. The manual also indicates that
"(Input, Output)" Is required 1n the heading Immediately after the program
name. However, like many versions of Pascal, the 1nclus1on or (Input,
output) Is, 1n fact, optional. Note that the program name Is followed by a
semicolon.

Following the heading is the body of the program. The body begins
with the keyword begin and ends with the keyword end. The keyword end
may occur several times In a Pascal program, but there Is always an end

70 Beglmlng Pascal

to mark the end of the program and this end must be followed by a period.
In fact, this Is the only time that end. should occur In a program.

Between the begin and end. of the body come the statements of the
program. These statements are the Instructions that the computer Is
supposed to carry out. The next several chapters of this book w111
Introduce you to the kinds of statements that you can use In a Pascal
program. There aren't that many, so It really doesn't take that long to
master the Pascal syntax. This Is the easy part of programming. There
also aren't that many keywords to worry about. Most of the keywords do
what they should, e.g., begin marks the start of something, end marks the
end.

The first Pascal statement we will consider Is the Wrlteln statement.
Wrlteln Is an example or an output statement and causes something to be
written or printed to the Macintosh screen. It Is Pascal's way of allowing
us to get Information out of a computer. In a Wrlteln, If we place
something In parentheses between single quotes, the computer w111 print
exactly what It sees. To emphasize how precise we need to be In
programming languages, we point out that using regular quotation marks,
"like this.· Instead or single quotation marks, 'like this.· w111 cause a
syntax error, as w111 forgetting either parenthesis.

Every language has an output statement, but different languages may
say things differently. so Instead of Write In, you might have to say Print
or Put, but the effect is the same. Many beginners to programming ask why
things have to be different. The answer Is that different languages were
designed by different people and there Is no reason to expect that
computer language designers as a group should be able to get along and
agree on things any better than any other group of people. There are
several brands or microwave ovens on the market, and their "keyboards"
look very different, with ENTER keys and ST ART keys and COOK keys that
perform the same function. And as Steve Martin once pointed out in a
comedy routine, "Those French have a different word for everything!"
Actually, because computer languages are small and more uniform than
most other forms of communication, the differences among them are
easily overcome once we become programmers. Good Pascal programmers
can learn BASIC In a few hours and FORTRAN In a few days. So the moral
of the story Is: Learn the concepts. Mastering the language wm
then ronow.

If we expect programming languages to be logically designed, it Is
certainly fair to wonder a little bit about the choice of ·wrlteln" for
writing something. What's wrong with Write? The answer to that Is
nothing. In fact, Write ls the other type or output statement In Pascal. If

Beginning Pascal 71

all of this is supposed to be logical, why a Wrlteln and a Write?
Remember that a program Is generally run without human Intervention.
Many times, the output of a computer program Is an extensive written
report and the most Important thing about the appearance of the report Is
Its layout on the paper--ror example, maybe In five columns across the
page. Since programs are run without human Intervention, we don't have
anyone to throw the typewriter carriage for us to get to the next line. The
computer has to know when to advance the output to the next line. But the
computer doesn't know unless we tell It. That Is what the ·1n· after the
word Write does. It is simply a signal to the computer to move to a new
line after It has written the Wrlteln message. Thus, the program In
listing 3. I should print out the quoted message on three lines whlle the
program in listing 3.2 will print its message on two lines.

program Example--2;
begin

Wrlte('Now I see the difference between ·write "');
Wrlteln(' and "writeln"');
Wrlteln('and will never confuse the two.')

end.

Listing 3.2

Figures 3.1 and 3.2 below show the output from the programs In
listings 3.1 and 3.2 respectively.

Te Ht
Here is a complete Pascal program. ;Q
Even though I am just learning, I think
I can f I gure out what it does . ~

~
Figure 3.1

Te Ht
Now see the difference between "write" and "writeln" ~
and wi I I never confuse the two.

F1gure J.2

72 BeglMlng PllCBI

We point out that figures 3.3 and 3.4 also show output from the above two
sample programs.

Te Ht
Here is a complete Pascal

;:~~~:;~:::.'.:: '.::: ::·::::'.· ~
Figure J.J

TeHt
Now I see the difference ~
between "write" and "write In";:
and will never confuse the ~
two. Qj

Figure J.4

The reason for the differences In the figures Is simply that the text
window in the latter two figures Is too narrow to hold a normal line of
output. so the Macintosh will start a new line when It runs out or room.
However, note that Instructions conveyed by Write (don't move to a new
line after printing) and Write In (do move to a new line after printing) are
still carried out. In the future we will assume that the text window Is
wide enough to allow ror a normal line or output In our discussions. We
also mention that If the text window Is accidentally left too small, after
the program has executed, the window can be stretched to a more normal
size and the output will be automatically adjusted.

We, of course, will not discuss every aspect of Pascal In such
agonizing detail. As we become more comfortable with the Macintosh and
with Pascal, a few remarks will usually suffice. But there are two points
to the above discussion:

1. Pascal Cror the most part> Is a well-designed language and there Is
usually a good reason ror why things are done the way they are.

Beginning Pascal

2. Even In these simple examples, you should be able to see that the
"power" of these sample programs (i.e .. when to start printing on a new
line) Is derived from the programmer telling the computer what to do and
not vice versa.

We make one final comment about the syntax of the above examples.
The body of a Pascal program consists of a sequence of statements. To
separate one statement from the next, Pascal uses the semicolon.
Notice that the last statement In each program does not have a semicolon
after It. That Is because the semicolon does not terminate statements
(like the period does In English), but Is used between staternents.
Although this seems like nitpicking, probably the most common syntax
error made by beginning programmers Is an error involving a semicolon.
More w111 be said about this later when we deal with compound
statements. For now, our programs w111 consist of a sequence of simple
statements. Place a semicolon after each one except the last one.

Var1ables and Memory Locat1ons

In this section we Introduce the concept of a variable. This concept
Is the most Important one for a beginning programmer to understand
completely. Edsgar Dijkstra, a most Important voice In the computer
science community, said, "Once a programmer learns the concept of a
variable, he has learned the quintessence of programming." We strongly
concur with this sentiment, and in fact believe that 1t also applies to
female programmers as well. Once you learn exactly how variables
behave, you should have no trouble grasping the more complex features of
programming.

We begin with the analogy of a simple calculator. Many hand-held
calculators have a special button, usually called M or MEM or STORE, for
storing a particular value. This is useful In the following type of
situation:

Compute (123 + 456 + 789) I (987 + 654 + 321).

Note that we really have to compute several additions before we can even
begin to think about performing the division. If we had a primitive
calculator (with no Memory key), we might want to have a pencil and piece
of paper nearby to help perform this calculation. We first add 987, 654,
and 321, obtaining 1962. Then we clear the calculator, add 123, 456, and
789 to obtain 1368. So all we do is d1vlde 1368 by, uh, let's see, what was

74 Beglmlng Pascal

the result of that f1rst calculat1on? I forgot, so I'll do 1t aga1n. That's
right, 1962. So I divide 1962 into, uh, now I forgot the result of the other
calculation. With a pencil and paper, we could at least write down the
1962, then when we do our second set of add1t1ons, we s1mply look at the
paper to find our d1visor. But how much simpler this becomes if our
calculator has a Memory key. We do the f1rst calculation and store the
answer using the M key. The calculator will remember this result for us.
For the time being, the M key can help us get th1s result back. That is, we
can 1mag1ne that M equals 1962. Now after we add 123, 456, and 789, we
s1mply 1nstruct the calculator to d1vide this sum by M. No pencil, no paper,
no repeating any calculation. Our memory is not so good, so we use the
calculator's memory.

If you followed the above example, you should apprec1ate how
convenient it is that the calculator had a memory, even though maybe it
could only remember one number for us. In fact, 1t doesn't take us very
Jong to wish our calculator could remember two numbers for us. Consider
the computation

(321 *987 - 123*789) I (123 + 456 + 789).

If we had two memory keys, M 1 and M2, we could add 123, 456, and 789
and store the result in M 1. Then, we multiply 123 by 789 and store that
result in M2. Finally, we mult1ply 321 by 987, subtract M2, and then divide
that resu It by M 1.

Of course, 1t ls not Jong before our greed begins to show, and we think
that the more memory locations we have, the more things we could do.
Well, from a memory standpoint, computers are essentially like
calculators. But computers have thousands and thousands (some even
millions) of memory locations that we can use. In fact, when you hear
people, mostly computer salespeople, talking about K's, as 1n 64K-machine,
they are telling you how many RAM memory locat1ons you have to work
with. The Mac1ntosh has at least 128K of RAM, so that should be enough to
take care of us for awhile. All we have to do 1s learn how to use these
memory locations. Th1s 1s where variables come 1n.

Imagine a very large keyboard with keys M 1, M2, M3, ... , M 100, ... ,
M128000. Without the concept of var1ables, this 1s what we might be
stuck with to handle the approximately 128,000 memory locat1ons 1n the
Mac1ntosh. L1ke a calculator, the computer would keep track of the names
of the locations for us. Not only would the keyboard be rather awkward,
but we might also have a hard time remembering whether we put the
calculation that we did five minutes ago in M3478 or in M3487. The power

Beginning Pascal 75

of variables Is that the computer allows us to call the memory locations
anything we want! In other words, a var1able 1s just a name for a
memory location. While this may seem like a small breakthrough, It Is
precisely this Idea that makes programming so accessible. Now, when we
want to save a piece of Information, we think up a name for where this
Information should be stored. Then when we want this Information back,
all we have to do ls remember the name. The Important point here Is that
we, tile programmers, are allowed to select the name. So if we are
computing how much money we spent last month on recreation, we could
store our subtotals 1n memory locations called Mov1es, Restaurants, and
Skiing Instead of locations like Ml, M2, and M3.

Var1ables 1n Pascal

In Pascal, variable names must start with a letter and then be
followed by letters, numbers, or underscores. The underscore in variable
names serves the purpose of a blank space, which is not allowed to appear
In variable names. So First Name ls an 111egal variable, but FlrsLName ls
legal. Again, we must avoid using the reserved words of the language.
Beyond that restriction, and an occasional restriction on how long a
variable can be (for example, no longer than 255 characters on the
Macintosh), our choices for variable names are unlimited. Because of this
freedom of choice, we state a very Important principle for good
programming. This principle Is one of the easiest to obey and yet one of
the most abused: Use descriptive var1able names! While this may
seem like an unimportant rule for some of our early, short programs, this
principle is indispensable In dealing with long complex programs over a
long period of time. Computer programs are documents that are meant to
be read by other people. So although the computer doesn't care whether we
use variable names like M 1, M2, and M3 or Principle, Interest, and Payment,
the human reader (maybe even a grader) wm be most appreciative of the
latter choices.

The Ass1gnment Statement

With a calculator, we store a value In memory by pushing the Memory
key. In a programming language, we give values to variables by using an
assignment statement. The syntax of the assignment statement in Pascal
is:

<variable> := <expression>

76 Beginning hlcal

where the left hand side is a legal variable name and the rlght hand side is
some expression resulting 1n a value. For the time being, think of
<expression> as belng any arithmetic expression. The Macintosh Pascal
Reference Manual contains the complete set of syntax rules for Pascal.
These rules prescribe precisely how syntactically legal Pascal statements
and programs are formed.

While the syntax can be described quite precisely, the semantics,
that Is, the meaning, of most Pascal constructs Is expressed In English.
The assignment statement has the following semantics: The <expression>
is evaluated and the resulting value Is assigned to the memory location
with the name <variable>. Let us consider some examples. Suppose that
Result is the name of a variable that can be assigned Integer values. Then
Result := 7 would assign the value 7 to Result while Result := 2*C3+2)
would assign the value 1 o to Result, since in Pascal (and most other
languages),* Is the multiplication symbol. If Result Is currently equal to
10, then Result :"' Result + 2 would assign the value 12 to Result. Finally,
1f Number were another variable currently equal to 6 and If Result were
currently equal to 12, then Result := 3*Result - 2*Number would assign
the value 24 to Result.

It ls Important to realize that the assignment operator In Pascal Is
":="and not just the equal sign. Think of this as one symbol and do not put
a space between the colon and the equal sign. The assignment statement
simply assigns a value to a variable; It does not make any assertion about
equality. Many other languages use the equal sign alone as the assignment
operator, resulting in the following kind of assignment statement:

Result = Result + 1

This is often read "Result equals Result plus 1." Of course, Result does
not equal Result plus 1. Result equals Result. Instead you should read an
assignment operator as "becomes" or "is assigned." So in Pascal, read

Result := Result + 1

as "Result is assigned the value Result plus l ." All an assignment
statement ever does Is give a new value to the variable on the left hand
side of the assignment operator.

Beginning Pascal 77

Variable Types

In the above examples, we assumed that Result and Number were
variables that held Integer values, that Is, whole numbers. Such variables
are said to be of type Integer. There are other types available to the
Macintosh Pascal programmer. we will mention two of them now. In later
chapters we will examine other types and eventually we will see how a
programmer can define new types.

The other types we consider now are the real type and the string type.
Real variables, like Integers, also hold numeric values, but these values do
not have to be whole numbers. Computers generally have two ways of
expressing real numbers. The first way Is using standard decimal
notation, e.g., 2.5, 3.14159, 1.414, and so on. The other way ls called
sctenttrtc notation Cor E notation). This method ts used to handle very
large numbers (the number of Inches to the sun> or very small numbers (the
weight, In pounds, of a politician's brain). Rather than writing a number
that requires many digits, scientlflc notation allows us to specify how
many digits to the right or left the decimal point should be moved to give
us the actual number.

Examples: The speed of llght Is 186,000 miles per second, or
5,865,700,000,000 miles per year. In scientific notation, these numbers
are written as 1.86E5 miles per second, or 5.8657E 12 miles per year,
where ES means "move the decimal point 5 places to the right" and E12
means "move the decimal point 12 places to the right."

The mass of an electron Is o.000000000000000000000000000911
grams. This 1s much easier to write as 9.1 lE-28, where E-28 means "move
the decimal point 28 places to the left."

A few general comments are In order. Because computers can only
represent a finite number of objects, there Is a 11m1t to how many numbers
can be represented on a computer. The llmltattons concerning real
numbers are discussed briefly In Chapter 8. Integer variables on the
Macintosh are llmited to values from -32767 to +32767. While this range
may be different for other computers, all versions of Pascal have a
built-In constant, called Maxlnt, which represents the largest possible
Integer value. So on the Macintosh, Maxtnt ts an integer constant that
equals 32767.

When writing numbers on a computer, do not use commas. Commas
serve a purpose in Pascal, but 1t Is not to make numbers easter to read.
Also, when using scientific notation, It Is standard practice to express the

78 Beglmlng Pascal

number between 1 and 1 o and then Indicate the number of places to move
the declmal point. However, this ls not requ1red. So we could also say
that the mass of an electron 1s 91.lE-29 or 0.91 lE-27 grams.
Furthermore, not all real numbers must have a decimal point. 1 E34 ls an
example of a real number with no declmal polnt. But all real numbers wlth
decimal points must have at least one dlglt on each side of the declmal
point. Thus, .5 and 3. are examples of 111egal real numbers. These number
should be written as 0.5 and 3.0 respectively.

Because modern computers deal as much with character information
as with numbers, 1t is also conven1ent to have variables that hold
alphabetic information as opposed to numeric information. The string type
is the s1mplest example of this. (Although Standard Pascal does not have a
str1ng type, most vers1ons of Pascal prov1de one. In Chapter 10, we w111
see how we could get by without a strlng type, but throughout this book,
we w111 use the string type freely.) A strlng value in Pascal ls nothing
more than a sequence of characters. When we explicitly write the values
of strings in programs, we enclose them in single quotes. For example, the
following two Pascal segments have the same output Cassum1ng Str ls a
var1able of type string):

Wr1telnC'Th1s ls an example of a character string.');

Str := 'Thls 1s an example of a character string.';
WritelnCStr);

Each of the above segments w1ll cause the quoted sentence to be
printed. Note that the object of an output statement can be a variable
name. In this case, the valueof the var1able 1s printed. In general, the
object of a write statement can be a variable, a constant (i.e., a number
constant I 1ke 7 or a str1ng constant 1 ike ·seven'), an expression (for now
think of an ar1thmetic computat1onl, or any sequence of these separated by
commas (now we see a use for the comma in Pascal). The program
segment 1n 11st1ng 3.3 111ustrates various output statements, where we
suppose Num 1, Num2, and Num3 are integer variables while Strt and Str2
are string var1ables.

The statements in ltsting 3.3 w111 produce the output shown 1n f1gure
3.5. Observe that the numbers from the first output statement are printed
r1ght justif1ed 1n columns of width 8. Notice how ·writeln;' by ltself ls
used to force a blank line to appear 1n the output. Finally, make sure you
see how the blanks are placed between the words "sentence" and "Str1ngs"
ln the last I ine.

Beginning Pascal

=,..., au

Numl := 1;
Num2 := 2;
Num3 := 3;
Strl :='Strings can be used to label output.';
Str2 :='If you want to insert spaces, do it between quotes';
Writeln(7, Num 1, Num2 + Num3);
Writeln(Strl);
Writeln(Str2);
Writeln('Strl is the sentence:', Strl);
Write In;
Wrlteln('Strl is the sentence: ', Strl)

Listing J.J

lt!Hl

7 5
Strings can be used to label output.
If you want to insert spaces, do it between quotes I
Strl is the sentence:Strings can be used to label output. mm

Strl is the sentence: Strings can be used to label output.~
Q]

Figure J.5

79

To see that you really understand variables and output statements, do
you know what the output or the following segment Is?

Num := 5;
Wrlteln(5);
WrltelnCNum>;
Wrlteln('Num')

The answer Is:
5
5

Num

80 Beglmlng Pmcml

Note the different manner In which the system "formats" strings and
Integers. Soon we w111 learn to format these to our own speclf1cat1ons. If
you do not understand exactly how the at>ove three lines of output were
produced, you should go back and reread the preced1ng discussion.

The var section

Now that we know about variables and types, It Is time to add to our
Pascal programs. Pascal Is a strongly typed language. To the beginning
programmer, this means several things:

1. Each variable must have a single type throughout the program.
2. The values that are assigned to variables must be compatible In type.
For example, an Integer variable cannot be assigned the real value 2.54.
3. The programmer must explicitly declare at the beginning of each
program the names of the variables that w111 be used and their types.

The explicit declaration of variables comes after the program heading
and before the program body. The declaration section begins with the
reserved word var. Following this come all the variable declarations. A
variable declaration consists of a list of variable names (separated by
commas>, followed by a colon and the name of the type Celther integer,
real, or string for now). The variables can be declared In any order. It Is
Important that every variable that 1s used In the program be declared and
that no variable be declared more than once. A semicolon follows every
declaration, Including the last one.

Suppose we are writing a program called Printing with Integer
variables Num 1, Num2, and Num3, real variables Score 1 and Score2, and
string variables Wordl and Word2. Then each of the var sections shown In
listings 3.4 and 3.5 shows a proper way to declare these variables. That
ls, there can be more than one Integer, real, or string declaration, and
these can be 1 n any order.

var
Num 1 , Num2 : Integer;
Score 1, Score2: Real;
Word 1, Word2 : string;
Num3: Integer;

Listing 3.4

Beginning Pascal

var
Num3: Integer;
Word I : string;
Score2: Real;
Score! : Real;
Num2: Integer;
Word2 : str1ng;
Num I : Integer;

Listing 3.5

81

When string variables are declared as above, the Macintosh will
reserve space for 255 characters. If we don't need that much space, we
can specify how much we need by placing a number In square brackets
after the word string. For example, Word! : strlng[20]; would reserve
space for a string of length 20. We will study strings in detail in Chapter
14.

While strong typing places a responsibility on the programmer to
Inform the computer what variables will be used, any inconvenience the
programmer experiences is offset by the capability of the Pascal system
to detect spelling errors in the names of variables. For example, BASIC is
not a strongly typed language. Comment on the output of the following
BASIC program (which uses only BASIC assignment and output statements):

10 LET NI = 7
20 LET N2 = 3
30 LET N3 = 8*N2 - 3*Nl
40 PRINT N3

This program produces the output:

24

Do you agree with the output? If this were a thousand-line program with
hundreds of computations, would you agree with the output? If the value
for NI were 0.03768 and the value for N2 were 34.78654, how would you
know to be suspicious of the output? If you were suspicious, would you
perform all the calculattons by hand? If so, why write a program in the
first place? Actually, the intended output is 3 so you were right to
disagree. The program above has an error in that NI ("NONE") is given a
value in line IO, but In the calculation in 1 ine 30 we accidentally use Nl ("N

82 Beglmlng Pmnl

LOWER CASE L"). Languages like BASIC, which are not strongly typed,
usually assign a value or o to NI and proceed merrily on their way. While
this may seem like a contrived situation, this error actually occurs fairly
often, particularly with programmers who learned to type several years
ago. Earlier typewriters did not have a I key and In fact It was proper to
use the lower case L to represent a 1. In general, any spelling error that
you make w1th variable names 1n BASIC Is undetected and erroneous
results are sure to follow.

The same mistake In Macintosh Pascal would produce the following
message:

The name ·Nr has not been defined yet.

So Instead or a program that runs, produces erroneous output, and lets us
hunt ror the error, we get a message rrom the system that allows us the
chance to correct our program and obtain re Hable results.

The ract that some languages automatically assign a value or zero to
numeric variables <and blank spaces to string variables> ls worthy or
comment because such a pol1cy can lead to some sloppy programming
habits. standard Pascal requires the programmer to expl1c1tly tntttallze
variables 1n the program before using them. Many beginners bel1eve th1s
means setting all variables equal to zero. Th1s ls not the case unless a
zero Is the desired Initial value. lnlt1allzat1on of variables simply means
the following: The r1rst time a variable ls used In a program, It should
appear only on the lert hand s1de or an assignment statement or as the
object of a Read or a Readln statement <see Chapter 4). 1r you follow the
above practice, no matter which language you use for programming, you are
taking matters 1nto your own hands and making sure that variables have
the desired 1n1t1al values and not values assigned automatically by the
system <or worse, "leftover· values rrom previous calculations>. some
versions or Pascal Cunrortunately, Macintosh Pascal automat1ca11y
ln1t1al1zes numeric variables to zero> wm report an error If you rorget to
assign an Initial value to a variable. While such actions may seem 11ke a
bother to some programmers, this Is just a case of the system trying to
protect us from ourselves.

A feature of Macintosh Pascal that ls seldom found 1n other versions
of Pascal ls the automatic formatting of programs. That Is, the system Is
very helpful 1n making Pascal programs appear neatly on the page.
Macintosh Pascal automatically boldfaces reserved words for us, places
each statement on 1ts own line, and provides a standard Indentation
scheme to make programs more readable. (Although It Is not technically a

Beglmlng Pascal 83

reserved word, Macintosh Pascal also boldfaces the word "string".) We
may Insert spaces at wm as long as we don't Insert spaces Into variable
names or In the middle or the assignment symbol. The system w111 adjust
our typing to a standardized format with regard to spacing. Additionally,
we mention that the Macintosh Interpreter doesn't really care whether we
type In upper case, lower case, or a mixture of the two. To see the
helpfulness of the Macintosh system, try to type In the following example
program, which averages three exam scores, just as you see 1t here:

program sloppy;
var x l ,x2,x3
:real;x4:real;begln
x 1 :=67.5;x2:=57.8;x3
:=78.2;x4:=Cx 1 +x2+x3)/3;
wrltelnCx4) end.

While the above program Is legal In standard Pascal, note In Jlstlng 3.6 the
nice appearance provided by the Macintosh system.

If this program Is In fact a program to average three quiz scores, the
choice or variable names ls poor. Even the helpful Macintosh system can't
provide any assistance with this problem. It Is entirely up to the
programmer to choose meaningful variable names. we prefer the version
In listing 3.7.

program sloppy;
var

xi, x2, x3: real;
x4: real;

begin
xl := 67.5;
x2 := 57.8;
x3 := 78.2;
x4 := (x I + x2 + x3) I 3;
writeln(x4)

end.

Listing J.6

84

program Neat;
var

Quiz 1, Quiz2, Quiz3 : real;
Average: real;

begin
Ouizl := 67.5;
Quiz2 := 57.8;
Ouiz3 := 78.2;
Average:= (Ouizl + Quiz2 + Ouiz3) I 3;
Writeln(Average)

end.

Listing l.7

Arranging output

Beglmlng Pascal

In an earlier example, we saw that when we printed the three Integer
values 7, 1, and 5, each appeared right justified In a column of width eight.
The width of eight Is just the standard way of printing numbers In
Macintosh Pascal and unless we ask for something dlff erent, this Is what
we wm get. However, It ls very easy to ask for output In some format
other than the standard format, and this Is an Important step In making the
results or computer programs easily readable.

Special formatting Instructions are placed In output statements, I.e.,
In either Write or Wrlteln statements, and are specified Immediately after
the values that we want to format. For example, suppose we wanted the
values 7, I, and 5 to be printed In columns of width six. Then the
following statement would accomplish this:

WrltelnC7:6, I :6,5:6)

With Integer values, simply follow the value to be printed with a colon and
then the width of the printing field. If the number of digits to be printed
Is less than the field width, then the value Is right justified. That Is,
blanks are Inserted to the left of the value so that the total number of
characters (blanks and digits> equals the field width. or course,
formatting Instructions can also follow variables and expressions as well
as constants. So If Num Is an Integer variable with current value 4926,
then the following statements

Begloolng Pascal

WrltelnCNum:4);
WrltelnCNum:6>;
Wrlteln<Num>

wlll produce the following output:

4926
4926

4926

85

If real numbers are formatted like Integers, that Is, with a specified
field width, then they will be printed In scientific notation. We have found
that scientific notation numbers are not right justified, but rather, are
printed In the following strange format:

A blank Is printed. Then <W-4) characters are printed, where w Is the
width specified. Finally, three trailing blanks are printed.

If we want real numbers to appear In decimal notation, we specify
two values:

I. A total field width, that Includes the decimal point
2. The number of digits to the right of the decimal point.

For example, suppose Pl Is a real variable with value 3.1415926. Then
these statements

WrltelnCPI >;
WrltelnCPI: 15);
Wrlteln(PI: I 0);
WrltelnCPl:7:5);
WrltelnCPl:8:3)

wm produce the following output:

3. le+O
3. 141593e+O
3. le+O
3.14159

3.142

86 Beglmlng PllClll

Note the three leading blanks In the last line and also note how the
Macintosh rounded the value or Pl In each case to the given specifications.
We wm discuss the rounding or numbers later In the chapter.

we make one final remark concerning formatting or numbers. Ir you
ask ror a field width that Is smaller than the actual width or the number
to be printed, the system will st111 print all or the number. That Is, 1r you
ask ror a five-digit number to be printed In a field or width rour, the
entire number will be printed, but the rest or your formatting on that line
may be Inconsistent. or course, the Inconsistency or formatting Is
preferable to getting only rour digits or a 5-dlglt number.

Slmple Arithmetic

Just like Inexpensive calculators, we expect more powerful
computers to be able to perform numeric calculations. In ract we have -
Included such calculations In some or the previous examples. Because of
the different types or numbers that Pascal allows, we need to be speclf1c
about some or the arithmetic operators. We first consider real numbers.

The standard operations or addition, subtraction, multiplication and
division are denoted by +, -, *, and I respective Jy. For those readers who
are fam111ar with an exponentiation operator <raising a number to a
power>, we remark that Standard Pascal has no built-In exponentiation.
We shall see later that Macintosh Pascal provides a version of
exponentiation, and we wm also learn how to construct one ourselves. As
In standard mathematical practice, there Is a precedence or operations.
Therefore, * and I have precedence over + and -. That means that
multiplications and divisions are performed before additions and
subtractions. If we want to change this order, we must group quantities In
parentheses. Since * and I have equal precedence, those operations are
performed Jett-to-right unless altered by parentheses. The same holds
true ror + and-. For example,

3+4*51s 23
(3+4)*5 Is 35
12/6-412 ls 2-2 or O
12/(6-4)/2 ls 1212/2, which ls 612 or 3
12/((6-4)/2) Is 12/(2/2), which Is 12/ 1 or 12

There are no restr1ct1ons on calculat1ng with real numbers, except or
course do not try to d1v1de by o. someone new to computers should
realize that the machine wm occas1onally Introduce errors 1nto

Beginning Pascal 87

calculations. There Is a good explanation as to why this happens. There Is
an lnrtnlte number or real numbers, but even the largest computers can
strn represent only a rtnlte number or these. Thererore, the computer has
to approximate many numbers. Consider, ror example, the number 1 /3.
Although the computer doesn't really use a decimal representation, we may
think or 1 /3 as being stored In the computer's memory as a decimal
number. From elementary mathematics, we should know that 1 /3 Is
exactly equal to .3333333..... where we have an Infinite number or
three's. However, the computer can approximate only 1 /3 to a certain
rtnlte number or terms. Although this may be a very close approximation,
there Is stlll a slight error. As programs get more complex and thousands
and thousands of computations are performed, these errors sometimes get
magnified and results may become worthless. Although this Is a real
problem, especially to numerical analysts, we won't have to worry much
about this wh1le we are learning to program.

Now we turn to Integers. The arithmetic operations are sometimes
called b1nary operations because they take two Inputs cror example, the
numbers to be added) to produce an output Cthe sum>. In a strongly typed
language like Pascal, the binary arithmetic operations produce an output
that Is or the same type as the Inputs. Note that this causes no problem
with addition, subtraction, and multiplication; and, In ract, the same three
symbols,+, -, and 11 , are used also with Integers. But when we d1vlde the
Integer 5 by the Integer 2, what Is the quotient? Another way of phrasing
the question Is, "How many times wm 2 go Into 5?" Ir we Insist on an
Integer answer, then the only logical answer Is 2.

When perrormlng Integer division, the I Is replaced with d1v and the
quotient Is computed as above. In other words, we disregard any
remainder In the division. So 1 o d1v 3 Is 3, 1 o d1v 4 Is 2, and 1 o d1v 5 Is
2. Note that this can cause some unusual results. Observe that In dealing
with Integers, the order or d1vlslon and multiplication can be slgnmcant,
since (1411 6) d1v 4 Is 84 d1v 4 or 21, wh1le 14 11 (6 d1v 4) Is 14 11 1 or 14.

The rules for Integer division lnvolv1ng negative numbers are
demonstrated with the following examples:

7 d1V (-3) ls -2.
-7 d1V 3 IS -2.
-7 d1v (-3) Is 2.

Note that when the second operand ls negative, then we must use
parentheses. So we are allowed to write X * <-3) or -3 * x, but not X * -3.
The reason again Is the order or precedence or the arithmetic operators.

88 Beginning Pascal

Although lt appears that we lose something <namely the remainder>
when we perform Integer division, there Is a way to retrieve the
remainder when dealing with positive lntegers--the mod operation. This
operation Is a standard mathematical operation, and A mod B ts defined to
equal the remainder upon dividing A by B. So 17 mod 5 ts 2. In Macintosh
Pascal, A Is allowed to be negative. B must always be positive. Even If A
ts negative, the result ts always nonnegative and we no longer obtain the
remainder. In fact, the result ls equal to the remainder plus B. So -17
mod 5 ls 3.

Conversion between Integers and Reals

For beginning programmers, there ls often a great deal of confusion
about how the two numeric types can be mixed. Technically, there
shouldn't be any mixing lf Pascal ls truly a strongly typed language. But
for convenience, there are a rew times when types can be mixed. It seems
proper to consider the set of Integers as a subset of the set of real
numbers. That ls, an Integer can be viewed as a real number whose
rracttonal part just happens to be zero. However, It doesn't really make
any sense to try and consider a real number, like 3.14159, as an Integer.
With this ln mind, It should be easy to remember the following basic rules:

I. Integer values can be used where reals are expected, but not vice versa.
2. In performing a computation, real values and Integer values can be
mixed as long as the overall result Is supposed to be real. However, when
mixing, do not try to apply div or mod to real numbers.

To see why we might want to mix Integers and reals, consider
converting a Fahrenheit temperature to a Celsius temperature. The
formula for doing th ls ls Ce ls = 5/9 * CFahr - 32). So lf we start with a
Fahrenheit temperature or 66, Its Celsius equivalent w111 not be a whole
number, but rather a decimal number. Suppose we wanted to compute the
area of circle with a radius or 2 Inches. Then we need to multiply Pl
Cwhlch Is approximately equal to 3.14159) by 4 (the square of the radius>.
Again, we start with an Integer, but expect a real result.

Now we give some examples that demonstrate the above rules.
Because there Is no context for the followtng statements other than to
demonstrate the type mixing rules, we wlll temporarlly allow ourselves to
use short, nondescrtpttve variable names Cslnce there ls nothing to
describe>. so suppose I, J, and K are Integer variables and A, B, and c are
real variables. Then each or the next seven statements ts legal:

Beginning Pascal

I := I;
J := 2;
K:= 3;
A:= I;
B := 2.0;
C :=I;
A:= (A*l+(J mod K)/B)

Each of the following three statements is illegal:

I:= 2.0;
J := B;
K := (A*l+(J mod K)IB)

69

What we have seen so far is that the computer w111 automatically
convert Integers to reals. There is no automatic conversion in the other
direction, but sometimes we want to convert reals to 1ntegers. In this
situation, we have to do the conversion explicitly. We do th1s with either
of two bullt-in functions. The first of these Is Round, and as Its name
1mplles, It rounds a real number to the nearest integer. So Round(3.4) 1s 3
and Round(3.7) Is 4. Macintosh Pascal rounds 3.5 up to 4 and -3.5 down to
-4. In general, Macintosh Pascal rounds the "halfway" numbers "away from
zero," (that is, to the number of greater absolute magnitude). Other
versions of Pascal might always round the "halfway· numbers "toward
zero." Be sure to check this on other versions of Pascal.

The second operation Is Trunc, wh1ch always chops off the fractional
part of a real number (i.e., Trunc chops toward zero). So Trunc(3.7) Is 3,
Trunc(3.0) Is 3, and Trunc(-3.7) is -3. Thus, If I and J are integer variables
and X Is a real variable, then the follow1ng two statements are legal:

I := Round(X);
J := Trunc(X)

We close this section by pointing out that there Is more to the
numeric types than we have explained in this chapter. We are just trying
to get started, so we don't want to get lost in a forest of details. We w111
see In Chapter 8 that there are really different varieties of Integers and
reals. We will learn about the Macintosh's limits on how big or small
numbers can be, and how precise the Macintosh is when dealing with the
various kinds of numbers.

90 Beginning PB1C1I

Commenting Programs

one of the most Important Jobs a programmer has Is to make
computer programs readable. This Is not a difficult thing to do and we
believe It Is largely a matter of cultivating good programming habits. For
example, one of the most Important things that beginning programmers
should learn Is the value of choosing good variable names. Another good
habit that has already been mentioned Is producing clear output. This can
be accomplished with ample labelling <using string constants to tell what
results mean> and using the formatting capabilities of Pascal. Just as
Important, and often neglected, Is the use of comments In programs.
Comments are Ignored by the computer--they are exclusively for humans.
Comments In Pascal are enclosed In braces, [and), and can occur at the
end of any program line, or as a line by themselves. All programs should
contain a heading comment stating such Information as the author, date,
and purpose or the program. For beginning programs, this may be all that
Is necessary. But as programs get longer and more complex, comments can
also explain what Is really going on In complicated parts of the program.
We feel that It Is extremely beneficial to get In the habit of using
comments In every program.

In case the reader feels we are being overdramat1c concerning
readability, we quote some findings reported by Elshorr and Marcotty In
the August, 1982 Issue of ·communications or the ACM" <Association
for Computing Machinery>. Much of the Information came from a survey of
programmers for General Motors.

"About 75 percent or all programmers· time In a
commercial data processing Installation Is spent on program
modlflcat Ion.·

• ... It was found that most programs were poorly written.
They were very large, extremely difficult to read, and more
complex than necessary."

"A readable program always seems to exhibit a common
set of properties. The program Is well commented Variable
names are mnemonic."

"Comments can be the most Important contribution that a
programmer makes.·

Beginning Pascal 91

A Complete Example

Since all we currently have at our disposal are the assignment
statement and the output statement, we conclude this introductory
chapter with a couple of examples that require only these constructs. The
first example is a series of three attempts to solve a simple problem. All
three attempts do solve the given problem, but not all three are of equal
quality. We hope the reader can recognize the better efforts and from
them learn to write better programs. Also, the third solution introduces
the important concept of a constant. we will make some remarks about
constants after the example. The final example of the chapter Is a bit
more complicated and again demonstrates that It is the programmer, not
the computer, who must solve the problem.

Example: Write a program to print out the area and circumference of a
circle whose radius is 6.72 inches. Recall that the area of a circle is
given by the formula Pl*R*R and the circumference of a circle is 2*Pl*R,
where Pl is approximately equal to 3.14159.

Solution A: The first solution to this problem Is found in listing 3.8 and
produces the output of figure 3.6.

program A;
begin

Writeln(2 * 3.14159 * 6.72: 12: 6, 3.14159 * 6.72 * 6.72: 12: 6)
end.

Listing J.8

~0 Te Ht
42.222970 141 .669178

Figure J.6

92 Beglmlng Pascal

Solution B, Circle, Is given In listing 3.9. Its output Is round In figure
3.7.

program Circle;
var

R, Pi, X, Y: Real;
begin

R := 6.72;
X := 3. 14159 * R * R;
Y := 2 * 3. 14159 * R;
Writeln('The area of a circle whose radius is 6.72 inches');
Writeln('is ', X: 6: 2, ·square inches, while');
Writeln('the circumference is', Y: 6: 2, · inches.')

end.

Listing J.9

j[Tent
The area of a circle whose radius is 6.72 inches ~
is 141 .87 square inches, while
the circumference is 42.22 inches.

Figure J.7

Solution C, Clrcle-2, to this example Is found In listing 3.10. Its output Is
the same as that rrom Solution B.

Discussion: Although solution A produces the correct answers, one
needs to look at the program to see what the answers mean. And even
then, It may not be easy for someone other than the author to decipher
things. In particular, someone who knows very little about the
mathematical formulas for a circle would likely be Jost. Another comment
worth making Is that output statements are for printing and assignment
statements are for computing. Try to keep computations within output
statements to a minimum.

The program Circle produces good, clear output, but the program
Itself Is not particularly nice to read. Again, someone who Is unfamiliar
with circle formulas can't really tell what Is being computed without

Beginning Pascal 9J

looking at the output statements. Clearly, better names could have been
chosen than the all too popular x and Y.

program Circle_2;

(This program computes the area and circumference of a circle.}
(It also demonstrates the use of CONST ANTS. Constants look like)
[variables, but are not allowed to change value during the program.}

con st
Pi= 3.14159;
R = 6.72;

var
Area, Circum: Real;

begin
Area := Pi * R * R;
Circum :"' 2 * Pi * R;
Wrlteln('The area of a circle whose radius is·, R: 4: 2, · inches');
Writeln('is ',Area: 6: 2, ·square inches, while');
Writeln('the circumference is·, Circum: 6 : 2, · inches.')

end.

Listing 3.10

The program Clrcle-2 Is a well-written program that produces clear
output. The use of constants Is something new, so we discuss them now.
As stated In the program's comment, constants look like variables, but are
not allowed to change In the program. Notice that constants are defined
In a constant section, which precedes the var section and begins with the
reserved word const. We point out two significant dlfrerences between
constant definitions and variable declarations. First, there Is no mention
of a type In a constant definition. This Is because the type ls Implicit In
the value that we give the constant. For example, the constants Pl and R
are both real because we have given them real values. Secondly, the
constant definitions use the equal symbol and not the assignment
operator. This ls because the constant name ls really equal to the
Indicated value all through the program.

There are two general advantages to using constants. First, constants
provide some security against a programmer accidentally changing a value

94 Begtmlng Pascal

that should not be changed, since Pascal systems will not allow constants
to change value. This can be very Important In long, Involved programs.
Secondly, constants can help us rid our programs or ·magic numbers:
These are numbers that occur throughout a program, but often the
quantities they represent are not readily apparent. For example, Instead or
cluttering up a program with lots or 3. 14 l 59's, we should use Pl Instead.
Moreover, we can save ourselves some work If we have to use a better
approximation ror Pl, like 3.14159265, In a later version or the program.
We can simply change the constant definition for Pl without having to
change any of the other statements In the program.

The careful reader might object to our use or the variable R as a
meaningful variable. In fact, one-letter variable names are usually poor
ch01ces. However, In this case, such a choice may well be justified
because anyone who Is ramlllar with the circle formulas would probably
recite them using R's C"Ple are squared!"). or course, any other one-letter
variable would be a poor choice, and we would certainly not argue against
the choice or Rad or Radius as a variable name.

Flnally, note that although both solutions B and c produce the same
output, the first Wrlteln statement In program Clrcle--2 Is more flexible
because It doesn't contain the magic number 6.72. To compute the area and
circumference for a different circle, program Circle would need to have
Its first Wrlteln statement altered, as well as the R assignment
statement. Clrcle--2, on the other hand, would only need to have the R
constant definition changed. Computer programs should be as flexible as
possible so that modifications to them can be kept to a minimum. Since
variable names and constant names add to that flexibility, use them.

We conclude this chapter with a more complex example.

Example. Sonny Tan has just completed another trip from the windy city
or Chicago to the sunny beaches or Miami, a distance or 1397 miles. As an
almost law-abiding citizen, sonny averaged a driving speed or 57 miles
per hour. While lying on the sand soaking up the sun, Sonny decided to
experiment with his new digital wristwatch/stopwatch. Arter timing
everything In sight, Sonny began timing the blinking of his eyes. He
noticed that he blinks about 17 times each minute and even determined
that each blink lasts about 0.12 seconds. With all or this Information,
determine how long It took Sonny to drive from Chicago to Miami, how
many times he blinked during his trip, and how many miles he drove with
his eyes closed.

Beginning Pascal 95

The solution to this problem Is given In listing 3.11. The output from
this program Is shown In figure 3.8.

Te Ht
Sonny Tan' s tr i p to n i am i took 21 . 5 hours. !0-1
During his trip, Sonny blinked 21998.9 times. rl

I At a speed of 57 miles per hour, Sonny drove
17.5 miles with his eyes closed.

Figure J.8

Q]

Note the built-In flexibility or the program. If we change a quantity
like the duration of each blink, the number or blinks per minute, or the
driving speed or distance, we need only modify a single line or the
program. Although we used constant names ror several quantities, we did
not use a name for converting times from one unit to another. In this case,
the "60" Is not really a magic number. Most people would know what
purpose the 60 Is serving, particularly In the context of the statements,
and It would make the program unnecessarily wordy to Introduce a
constant like "MlnutesPerHour· that Is set equal to 60.

We point out that we printed the apostrophe <single quote), by
entering It twice In the Wrlteln statement. That Is, we used the
following Write In statement In our program:

WrltelnC'Sonny Tan"s trip to Miami took ',Hours:S:2);

There are two single quotes between the n and the s above and not one
double quote. If we had used a double quote, the computer would have
printed a double quote. If we had used just one single quote, the Macintosh
would have Interpreted this as the matching, closing quote for the first
quote before the word Sonny. Thus, to print out an apostrophe, always
enter It twice.

Finally, note that It Is the programmer whO solves the problem. If
we don't know which conversions to perform when, the Macintosh will not
be or much help to us. Computers do not solve problems. People do.

96 Beginning Pascal

program Sonny;
(This program uses the assignment statement and the write statement)
(to determine how far Sonny Tan drove with his eyes closed on his trip)
(from Chicago to Florida. We are given the distance of the trip, his)
(driving speed and the frequency and duration of his blinks.)
con st

Distance = 1397; (miles)
Speed= 57; (m.p.h.1
Frequency= 17; (blinks per second)
Duration = 0. 12; (seconds)

var
Hours, Minutes: Real;
Blinks: Real;
Miles, Mile!LBlind: Real;
HoursJ:yes_Closed: Real;
MinutesJ:yes_Closed: Real;
SecondsJ:yes_Closed: Real;

begin
(Determine how long the trip took in minutes.)
Hours := Distance I Speed;
Minutes := Hours * 60;

(Now determine the total number of blinks.)
Blinks := Minutes* Frequency;

(Next, find out length of time Sonny's eyes were closed.)
SecondsJ:yes_Closed :=Blinks* Duration;
MinutesJ:yes_Closed := SecondsJ:yes_Closed I 60;
Hours-Eyes_Closed := MlnutesJ:yes_Closed I 60;

(Compute distance travelled with eyes closed.)
Mlle!LBllnd := HoursJ:yes_Closed *Speed;

(Finally, output the results of the program.}
Wrlteln('Sonny Tan"s trip to Miami took', Hours: 5: 1, ·hours. ');
Writeln('During his trlp, Sonny blinked', Blinks: 5: 1, · times.');
Wrlteln;
Wrlteln('At a speed of·, Speed: 2, ·miles per hour, Sonny drove');
Writeln(Mlle!LBJind: 5: 1, ·miles with his eyes closed.')

end.

listing J.11

BeglMlng Pascal 97

Exercises

J. I. What Is the output of the following Pascal program? In particular,
how many llnes of output are there and what Is on each llne?

program Rhyme;
begin

WrltelnC'Mary had a llttle lamb');
WrlteC'Llttle lamb');
WrltelnC'Llttle lamb');
Wrlte('Mary had a little lamb');
Wrlteln('lts fleece was white');
WrlteC'As snow:>

end.

Write well-commented, readable, and correct Pascal programs to solve the
following problems:

J.2. suppose Sonny Tan was In a much bigger hurry than In the example
problem and averaged 85 m.p.h. Instead of 57 m.p.h. Modify the program
"Sonny· to determine In this case how far he drove with his eyes closed.
Guess whether the distance will Increase, decrease or stay the same.
Explain any relationship you notice between this answer and the answer
from the example In the text.

J.J. Write a program to convert a temperature of 75 degrees Fahrenheit to
Celsius. Convert a temperature of 17 degrees Celsius to Fahrenheit. The
conversion rormulas are as follows:
F = 9/5*C+32
C = 5/9*CF-32)

J.4. The amount of beer brewed In the United States In 1975 was
4,894,000,000 gallons. If all this beer were placed In 12-ounce cans and
If all or these cans were stacked one on top or the other, how high would
the stack be In Inches? How high In feet? How high In miles? How many
times would the stack reach the moon? The following conversion factors
will be helpful:

1 gallon = 128 ounces 1 mile = 5280 feet
1 beer can = 4. 75 Inches 1 moon trip = 239,000 miles

98 Beginning Pascal

Note: You should use reals for all variables 1n problem 4 because the
numbers wlll become too large for Integers. We wlll d1scuss such
problems 1n Chapter 8.

Problems 5 through 9 were taken from the artlcle "Second Guesslng," by
Monny Sklov and Bob Spltzer, whlch appeared ln the September, 1983 Issue
of GAMES Magazine. The article was a quiz to see how well people could
quickly judge the proper un1t of time Cl.e., seconds, minutes, hours, days,
weeks, months, years, decades, centuries) that a task would take. Take
the quiz yourself on the following problems. Check the answers below and
then write Pascal programs that compute the time for each task In the
correct unit Again, you should use real variables because of the large
quant1tles Involved.

3.5. Suppose you can swim 3.8 miles per hour with flippers on. How long
would It take you to swim around the world at the equator? (Assume a
distance of 25,000 miles.)

3.6. Suppose you can write an average person's name 1n 6 seconds. How
long would It take you to wr1te all the names of the people 11V1ng In New
York City (approximately 7 m1111on people)?

3.7. A cement company has just bullt a sidewalk from your front door to
the sun (93 m111ion miles away). After you've put on your hiking boots,
how long will it take you to walk to the sun (assuming a hiking speed of 3
mlles per hour)?

3.8. Every day for 18 years your father takes one foot of 8mm film of you
ln act1on. On your 18th blrthday, your father shows you the mm ln lts
entlrety. How long w111 the fllm last? (It takes approxlmately 3.18
seconds for 1 foot of film to pass through the projector.)

3.9. You own a square mile of land. If one-tenth Inch of raln falls on your
land and you catch all the water before It hits the ground, how long w1l1 It
take you to drink all the water, assuming a drinking rate of 3 gallons of
water per day? There are 231 cubic 1nches In one gallon.

(Answers: The proper un1ts of time for problems 3.5 through 3.9 are:
months, years, centuries, hours, and centuries respectively.)

Chapter 4

Interactive Input and Text F i1 es

PROMPT - A delayed message from the
system demanding an Immediate response
from the user.

Devtrs DP Dictionary

One of the features of a computer that has caused some of Its
greatest impact is that people can use and execute complex programs
without having the slightest idea of how the programs are put together or
what makes them work. From the business people who use spreadsheet
programs like VlsiCalc to the secretaries using word processing programs
to the airline ticket agents who book seats on an airplane, thousands of
computer users have little Idea about how things work. Of course,
someone must eventually know what Is going on. This is the programmer's
job. But from the previous discussion, It becomes apparent that another
job of the programmer Is to write programs that are used easily by others.
One very fundamental way to do this Is through Interactive Input, which
is the primary emphasis of the first part of this chapter.

All of the programs in the previous chapter ran from start to finish
without any Interruptions by the user. This Is sometimes a good thing
because we may not want to be around while a long program Is executing.
we want to be able to start the program and walk away. such behavior
was especially common In the early days of computers when programmers
presented a deck of punched cards (the program and the data) to a
computer operator. The computer operator would then read the cards Into
the computer at the proper time and the computer would execute the
program. If the program generated some output, the operator would return
the printout to the programmer. such a system Is referred to as a batch
system since the programs are run 1n batches.

With the advent of terminals, programmers began "writing" programs
on a screen Instead of using a keypunch, and programmers had the
capability of executing their programs from their own terminals. Under

99

100 Interactive Input n1 Text Files

this environment, it became feasible for programs to request additional
information while they were running. This type of environment is called
an interactive environment because there is a continuous interaction
between the programmer and the computer. This interaction can make
programs extremely flexible and it is this flexibility that makes programs
easy for the nonprogrammer to use. The Macintosh is, of course, such an
interactive computer.

For example, consider the situation of the airline ticket agent. There
is usually a computer terminal hooked into an extremely complicated
reservation program. When you approach the agent, the program is already
executing. But in this case, the program halts several times to obtain
information, such as your name, destination, date of travel, etc. It is
precisely this interaction that allows you the flexibility to book a seat on
any flight on any day with any agent at the counter. And, of course, the
agent probably has no idea of how the program works, but can respond to
such questions as "destination?", "first class?", "non-smoking?". We are
not ready to write airline reservations programs, but we will see how to
add these interactive features to our simple Pascal programs.

Exercise 3.3 had you write a program to convert 75 degrees Celsius to
Fahrenheit. Now suppose we wanted to convert a different temperature,
like 29 degrees. If you have a solution to exercise 3.3 available, this new
problem is easy. Simply change the "75" to "29" and run the program
again. Although this is easy, notice that this simple task requires us to
know how to list the program (i.e., look at it on the screen), to be familiar
enough with Pascal to realize which statement needs to be changed, and to
be familiar with the editing mechanisms of the computer to generate a
new program. Finally, we need to know how to run the program. Of all
these tasks, running the program is the simplest. Wouldn't it be nice if,
when the program is run, we would be asked to enter from the keyboard the
temperature we wanted to convert? Then we would only need one program
to handle any Celsius temperature. This is precisely how the Read and
Readln statements work in Pascal.

Read and Readln

In Chapter 3, we learned how to assign values to variables using the
assignment statement. Of course, when we use the assignment statement,
we have to know the values ahead of time because these values are typed
into the program while we are creating it. In many cases, as the above
example indicates, we need more flexibility. We may not always know
when the program is written what values we will be working with.

Interactive Input and Text F Hes 101

To give us the flexibility we need, Pascal contains two statements
that provide a facility for interactive input. These statements are:

Read (List of variables)
Readln(List of variables)

We will explain how these statements execute and then detail the
differences between the two.

In essence, the Read and Readln statements behave like assignment
statements in that they assign values to variables. The variables that
receive the values are those in the list after the word Read (or Readln).
The values themselves are entered through the keyboard. We will give
several examples, and again we take this opportunity to mention that since
there is no context for the variable names in these examples, we will use
one-letter variables.

Example: Suppose A, B, and C are integer variables, and we execute the
statement:

Readln (A,B,C);

If the person at the keyboard types in

246

and then presses the Return key, A would contain the value 2, B the value
4, and C the value 6.

As with assignment statements, Pascal requires that types be
compatible. If the data entered from the keyboard were 2 4.2 6, many
versions of Pascal would report a type incompatibility error for trying to
assign the real value 4.2 to the integer variable B. The Macintosh Pascal
system behaves differently. Any illegal character produces a "beep," is
not printed, and terminates the current number being input. So in the
above situation, the decimal point would terminate the second input, the 2
would be considered the third input, and the space between the 2 and the 6
would terminate the third input. So with Macintosh Pascal, the above
mistake assigns 2 to A, 4 to B, and 2 to C, even though the screen appears
like this:

2 42 6

102 Interactive lf11Ut Ind Text Flies

If you notice a typing error before an input value has been terminated, you
can use the backspace key to correct the error. However, once you have
terminated an input value (with a comma, a space, or an illegal character),
that value cannot be changed. The system, in fact, does not even allow you
to backspace to the error. So, the first lesson to be learned from all of
this is that you should be very careful when entering input from the
keyboard. With the Macintosh's convenient Pause feature, we can easily
start all over. This wouldn't be bad in a short program. But if we make a
mistake on the 99th piece of data in a program that reads in 100 pieces of
data, starting over would prove undesirable. We will find a way around
this kind of problem later in the chapter.

When the Macintosh reaches a Read statement in a program, it
automatically pauses until it receives through the keyboard all the values
that it is expecting. It also puts in the Text window a flashing cursor (I),
referred to in the Macintosh documentation as an "insertion pointer." In
the above example, if only two values, say 2 and 4, were entered, the
computer would wait and wait and wait (forever if necessary) until a third
value for C is entered. Once all expected values have been entered, the
execution of the program proceeds normally.

One might ask what happens if we type in too many values. With the
Read statement, as soon as the Macintosh gets the values that it is
expecting, it resumes execution. Any extra value that is entered will be
assigned to the next variable appearing in the next Read statement.

Example: Consider the following segment:

Read(A,B);
Writeln(A,B);
Read(C);
Writeln(C)

When this segment is run, the Macintosh pauses at the first Read
statement and waits for two values. Suppose you type

45 67 89 (Return).

As soon as the computer obtains the 45 and the 67, the Read statement is
complete and the first Writeln statement is executed. So before you can
even type the 89, the values of A and B are read and printed, and the
computer begins waiting for a value for C. The Macintosh is so fast that

Interactive Input and Text Files 103

the 89 that you typed is typed after all of the above activity takes place.
So the computer is already waiting on a value for C when you type the 89,
and, hence, the 89 is assigned to C and printed. Thus, the screen appears
like this:

45 67 45 67
89 89

On other versions of Pascal, the input of 89 might be lost (or ignored)
because the first Read statement is not executed until the Return key is
pressed. In this situation, the Writeln(A,B) would then be performed and
the computer would wait for a third input. Always check other versions of
Pascal for their behavior in this situation.

Now it is time to explain the difference between Read and Readln.
Although the difference is similar to the difference between Write and
Writeln, the input statements tend to cause more confusion among
beginning programmers. Stated simply, Read statements will take their
data values as a continuous stream of values, with no regard to how many
lines they are on. On the other hand, once a Readln statement has obtained
all of its values, any data values for the next input statement (whether a
Read or a Readln) must begin on a new line. As a consequence, input for a
Readln statement must always be terminated by a Return key. This is not
the case for the Read statement, and that is why the output from the
previous example occurs on the same line as the input. The following
examples illustrate the difference between Read and Readln. In all cases,
we assume that X, Y, and Z are integer variables.

Examp1es: The statements

Readln(X,Y);
Readln(Z)

with keyboard input 2 4 6 (Return) would assign 2 to X and 4 to Y. The
computer would continue waiting for a third data value because after the
first Readln statement is completed, the next input statement needs data
from a new line. Thus, the 6 is lost.

Readln(X);
Readln(Y);
Readln(Z);

104

with the keyboard Input

2 4
6 8
10 12

would assign 2 to X, 6 to Y, and Io to Z.

Interactive lf1Mll IRd Tut Files

As a final example, suppose the Readln(Y) statement above were changed
to Read(Y) and that we tried to type In the same Input. In this case, the 2
would be assigned to X, the 6 to Y, and the 8 to Z. The values 10 and 12
would then be used with the next Input statement. If there were no
subsequent Read or Readln statements, the system would "beep" at us and
would not even allow the typing of the 1 O and 12.

When reading strings, always use Readln (instead of Read) and try to
read strings by themselves. That Is, do not try to read In the data line

Mickey Mouse, 50

by using the statement

Readln(Name, Age)

According to the manual, when reading a string, Macintosh Pascal reads
until the end of the line. So in the above example, If Name were declared
large enough to hold all the characters read, then Name would have the
value 'Mickey Mouse, 50' and the Macintosh would wait for a value of Age
to be entered. If Name were not declared large enough, then you get the
following error message:

A STRING value is too long for its intended use.

In neither case is 'Mickey Mouse· assigned to Name and 50 to Age.
Several things can go wrong when using Interactive Input. Sometimes

it Is difficult to tell whether the computer Is busy doing computations or
Is Instead waiting on the person at the keyboard to enter some data. Also,
as programs get more complex, there might be several Items of data that
need to be entered. How does the airline agent know whether the computer
wants a name, a destination, a date, or a seating class? To avoid type

Interactive Input and Text Files 105

compatibility errors and to make sure that the right values get assigned to
the right variables, it is important for the person at the keyboard to know
what is expected. Thus, we arrive at the fundamental rule for interactive
input:

Always precede interactive Read or Readln statements with
a prompt message to the screen explaining what type of
information is expected.

The purpose of the message is to tell the user, not t!Je programmer,
how to interact with the running program. For example, if we want to
convert someone's height from inches to meters, the following sequence
would be appropriate:

Writeln('Enter your height in inches.');
Readln(Height)

Note the importance of the phrase "in inches" to coax the proper response.
Moreover, if a program might be executed by a total beginner, the
following sequence might be better:

Writeln('Enter your height in inches.');
Writeln('Then press the "Return" key.');
Readln(Height)

The point here is that the programmer will likely not be around when the
program is executed and so should think of as many problems and plan for
as many contingencies as possible. Programs with interactive input
statements should be written in such a way that the person at the
keyboard has no question as to what information is being requested.

We now consider an extended example. Let us figure monthly car
payments for the purchase of a new car. The information we need includes
the customer's name, model, and price of car being purchased, down
payment, trade-in value, number of months in the payment plan, and the
interest rate. Although this is not a terribly complex problem, it is a bit
more involved than our previous examples. So we will take this
opportunity to demonstrate that we should plan some sort of strategy
before diving in to the actual writing of the program, or coding, as it is
called by professionals. We mention here one of "Murphy's Laws" of
computer programming: The sooner you start coding, the longer the
project will take.

106 Interactive Input and Text Flies

This is an ideal setting for the use of interactive input. The
information about the automobile will vary from customer to customer,
and the interest rate will vary according to the economy. So all of this
information should be input from the keyboard at the time the program is
run. Once we have obtained the information that we need, we then compute
the monthly payment. There are many formulas for computing payments
involving interest charges. We will not go through the mathematical
derivation of a formula, but will simply use one. The point here is that it
is not necessary to "reinvent the wheel" each time a program is written.
When other tools are available, use them. The use of this mathematical
formula is no different than our use of the formula F = 9/5*C + 32 to
convert a Celsius temperature to Fahrenheit. The payment formula is just
more complicated. Actually, the formula for computing the payment is
simple:

Monthly Payment
=Monthly Interest Rate* Amount Financed* Compounding Factor

where the Monthly Interest Rate is just the Annual Interest Rate divided
by 12, and the Amount Financed is the purchase price of the car minus the
combined value of any down payment and trade-in. The complex formula
involves computing the Compounding Factor. It is:

(1 +Monthly Interest Rate) Number of Months

Compounding Factor=
(1 + Monthly Interest Rate) Number of Months_ 1

We should first notice that the above formula involves raising a number to
a power, that is, multiplying a number by itself a certain number of times.
For example, 34, read "three to the fourth power," means 3*3*3*3. The 3
is called the base, the 4 is called the exponent, and the process is called
exponentiation. As we mentioned in Chapter 3, Standard Pascal has no
built-in exponentiation operator. However, because there are many
numeric tools that we would like to use that are not provided in Standard
Pascal, the authors of Macintosh Pascal have provided a library of such
tools. The official name of the library is The Standard Apple Numeric
Environment Library. This name is fortunately shortened to SANE for use
in Pascal programs. We will discuss the SANE Library in more detail in
Chapter 7. A list of SANE Library resources is found in the Macintosh
Pascal Reference Manual. There are in fact several libraries available to
the Pascal programmer. The other one that we will consider in detail in

lnteract1ve Input and Text Files 107

Chapter 12 allows us to make use of the Macintosh's graphics capabilities.
For now, we will just learn enough to be able to use the SANE
exponentiation operator.

First, we must inform the Macintosh system that we wish to make
use of the library. We do this with a uses clause, which comes after the
program heading and before the var section. A uses clause consists of the
word uses followed by the name of the library, so in this example we will
say uses SANE;. There are several exponential operators in SANE. The one
that we want to use is called Xpwrl (for "X to power n. To use this
operation, we simply list in parentheses after Xpwrl the values that we
want to use for X and for I, that is, the base and the exponent. To raise Pi
to the fifth power, we would write Xpwrl(Pi, 5). This particular
exponentiation operator requires the exponent to be an integer.

Now that we know essentially what information we are going to need
and what we should do with the information, let us write a pseudo-code
version of the program. This is an important step in the programming
process, particularly in longer, more involved programs. Pseudo-code is an
"English version" of a program. Without using the syntax of a particular
programming language, we will write down, in precise order, the steps
that we need to follow to solve our problem. Once this is accomplished,
we then only need to translate our pseudo-code into corresponding Pascal
statements. Pseudo-code for this example follows:

Car Payment Program
Enter the customer's name, make, and model of the car.
Enter the purchase price of the car.
Enter the down payment amount, if any.
Enter the trade-in value, if any.
Enter the length of the payment plan, in months.
Enter the current annual interest rate.
Compute the monthly interest rate (annual rate divided by 12).
Compute the compounding factor (use magical formula).
Compute the monthly payment.
Print out a summary stating the Customer's name, Model, price,
trade-in, down payment, monthly payment, and the number of
months financed.

In this simple case, the translation from pseudo-code to Pascal is
straightforward. The program is shown in listing 4.1 with a portion of a
sample execution in figure 4.1. Note how the use of descriptive variable
names adds to the readability of the program.

108
program Car _Payment;
uses

Sane;

Interactive •• and Text Flies

(This program computes the Monthly payment on the automobile of)
(your dreams. This program uses true amortization formulas;}
(See text for an explanation. Be aware of the fact that}
(many auto dealers use "mirrors· to compute Monthly payments!}
var

Name, Model : string[25);
Sticker _Price, Trade_ln, DowrLPayment : Real;
AnrLlnterest, Mo_lnterest : Real;
AmLFlnanced : Real;
Compounding, Numerator, Denominator: Real;
Months : Integer;
Mo_Payment : Real;

begin
(First obtain input from the user.)
wr1teln('Please enter customer"s name');
Readln(Name);
Wrlteln('Enter the make and model of the new car.');
Readln(Model);
Writeln('Enter the sticker price of the car.');
Writeln('Do not enter commas or the"$" in the price.');
Readln(St icker_Price);
Wrlteln('Enter the Amt of the down payment.');
Readln(DowrLPayment);
Writeln('Enter the trade in value - enter O for no trade in.');
Readln(Trade_ln);
Writeln('Enter the number of months payments are to be made.');
Readln(Months);
Writeln('Enter the current Ann interest rate, ');
Write In(' expressed as a decimal, i. e. I O.SX is 0.105.');
Readln(AnrLlnterest);

(Now compute, using magic formula of text, the monthly payment.)
Mo_lnterest := AnrLlnterest I 12;
Numerator:= Xpwrl((1 + Mo_lnterest), Months);
Denominator:= Numerator - 1.0;
Compounding := Numerator I Denominator;
AmLFlnanced := Sticker _Price - DowrLPayment - Trade_ln;
Mo_Payment := Mo_lnterest * AmLFinanced *Compounding;

(ContlnUlld)

Interactive Input and Text Files

(Now we print a summary for the user.}
Writeln(Chr(12)); [Clear Screen}
Writeln('Summary prepared exclusively for: ·, Name);
Write In;
Writeln('You will be delighted with your new·, Model,'.');
Wrlteln('Whlle its sticker price is a hefty$', Sticker _Price: 8: 2, ',');
Writeln('with your trade In of$', Trade_ln: a: 2);

109

Writeln('and your down payment of$', Oown._Payment: 8: 2, ',');
Writeln('your payment, at·, Ann._lnterest * I 00: 5: 2, ·x annual interest,');
WritelnC'will only be$', Mo_Payment: 8: 2);
Writeln('each month for only the next·, Months: 2, ·months.')

end.
Listing 4.1

TeHt

Summary prepared exclusively for: Lee lacocca

You wi I I be delighted with your new Mercedes 150SL.
While its sticker price is a hefty $17500.00,
with your trade in of $ 2000.00
and your down payment of $ 5000.00,
your payment, at 12, 000% annua I interest,
wil I only be$ 1066.52
each month for only the next 16 months.

Figure 4.1

Note that after the input is recorded and before the output is printed,
we "clear the screen" with a ·writeln(Chr(12))' command. We will explain
such statements in more detail in Chapter 8.

Although this program is fairly simple, it can rightfully be considered
a powerful program because of its great flexibility. Lee lacocca can easily
determine the monthly payment for the car of his dreams under a
multitude of circumstances without understanding how this program
works. It is interactive input that allows such great flexibility.

Redirecting Input and Output

An alternative to interactive input is to prepare and save data to disk
before a program is run. Of course, the program can no longer be

110 Interactive •• and Text Flies

Interactive, but if there Is a large amount of data, and that data is fixed,
then a disk flle can be handy. With Interactive Input you must enter all of
the data each time you run a program. Since you may make several runs
before you completely debug the program, interactive Input, while
providing great flexibility, can become very tedious. Also, we have seen
that If you type the wrong data In an Interactive program, you may have to
start all over. By saving the data once to a text ftle on disk, execution
becomes faster, more automatic, more reliable, and easier for the user.

A data fl le on disk also provides an easy way for us--or your
lnstructor--to provide data for programming exercises. The disk available
for this book contains many such data flies that are referenced throughout
the exercises.

Our intent at this point Is only to show you how to read data from
such flies. Chapter 11 presents flle processing In a much more general
setting. We should mention in passing, however, that text flies such as we
are discussing here may be created with MacWrlte, the Apple Macintosh
word processor. It is beyond the scope of this book to discuss MacWrite,
but suffice it to say that MacWrlte is very similar to the Macintosh Pascal
editing system and, hence, MacWrite is very easy to learn. Our only
technical word of caution Is that you must save text flies {that are to be
used In Pascal programs) In MacWrite with the Text Only option rather
than the Entire Document option. Small text files can also be created
using the Text Editor In the Tool folder on the Macintosh Pascal disk.

As an example of the use of a text file, let us suppose a two line text
file, SalesData, has been created for a salesperson. Suppose line one of
that file contains the salesperson's name and line two contains sales
amounts for that salesperson for each day of the week {Monday--Friday).
For example, the file might contain

Blaise Pascal
53.27 48.64 22.38 79.46 58.38

Let us write a program that wlll read the flle SalesData and total the
sales for the given salesperson. Admittedly, this Is not a very useful
program, but in the next chapter we wlll learn how to modify the program
so that It will process the weekly sales for 100 or 1000 salespersons. If
you learn the simple skill of reading from text files, then, when combined
with the methods to be learned in the next chapter, you wlll be able to
write powerful programs.

To redirect input so that it comes from a data file, SalesData, rather
than from the keyboard, we only need add two statements to our program.

Interactive Input and Text Files

These are

Close(Input);
Reset(lnput, 'SalesData');

111

While Close and Reset are discussed in more detail in a later chapter, their
effect can quickly be described as follows: Close(lnput) breaks the
connection between input to the Macintosh and the keyboard. Reset(lnput,
'SalesData') establishes that input will come from the external file
SalesData. The adjective external refers to the fact that the information
in the file does not reside in the Macintosh's memory, but rather outside
the Macintosh, on a disk. Of course, the name SalesData is arbitrary and
you can use the name of any text file. As with variable names in programs,
it is good practice to give meaningful names to text files as well. Don't
forget the single quotes around the filename in the Reset statement. Also
don't forget to close input before you try to reset it. If you forget, you
will get a file in use error message.

After input has been redirected to come from a disk file rather than
the keyboard, every Read or Readln in your program will get values from
the file rather than the keyboard. This means that the programmer must
know the structure of the data file. That is, the programmer must know
that SalesData consists of a name followed by five real numbers on the
next line. Note that the programmer does not need to know the name or the
actual values involved. Whenever, in an exercise, we ask you to read
such-and-such data file, we will always explicitly give you the structure
of that file. This is your starting point for the analysis of the given
problem.

Listing 4.2 shows the program Sales that reads the file SalesData and
totals the sales figures, and figure 4.2 shows the execution of the
program. This program assumes that the file SalesData resides on the
Macintosh Pascal disk. If it is not there you will get a "File does not
exist" error message. To place a copy of SalesData on the Pascal disk see
the brief section on Copying Files at the end of this chapter.

If you have two drives, then SalesData can reside on drive 2, but you
will have to modify the program so that the system can find it there. In
Macintosh Pascal, you may specify a volume name. The volume name is
simply the diskette name. For example, if SalesData is on the diskette
Sample, then

Reset(lnput, ·sample:SalesData')

112 Interactive l,.,ut 11111 Text Fl1es

instructs the system to redirect the input so that it comes from the file
SalesData on the diskette Sample. Warning: Do not type any blanks
between the colon and SalesData. These blanks are significant and the
system will look for a nonexistent file name with blanks in it.

program Sa les;
{This program reads data from the textfile 'SalesData')
(and totals sales fiqures for a given salesperson.)

var
Name : string;
Mon, Tues, Wed, Thurs, Fri : Real ;
Total : Real ;

begin
CloseClnput); (Redirect Input to be from)
Reset(Input, ·sa lesDat.a'); (the text.file 'SalesData· l
Readln(Name);
Readln(Mon, Tues, Wed, Thurs, Fri);
Total := Mon+ Tues+ Wed+ Thurs+ Fri ;
Writeln('The weekly total for ', Name, · is$', Total : 8 : 2)

end.

Listing 4.2

Te Ht
The weekly total for Blaise Pascal is$ 229.H Qj

Figure 4.2

Note that the Readlns of program Sales have no prompts before them. Is
this a violation of our earlier Programming Pract ice of always preceding
Read's with Write's? No. Interactive input from the keyboard should
always be prompted so that the human will know what to do. But it is
silly and unnecessary to prompt a computer that is reading data from a
text file. The moronic computer will not understand the prompts; rather,
it is the responsibility of the programmer to understand the structure of

Interactive Input and Text Files 113

the data and sequence the Reads and Readlns so that the computer finds
appropriate values for each input statement it executes.

If we can redirect input so that it comes from a file, we should also
be able to do the same with output. In this chapter, we only take up
redirecting output so that it is sent to a printer. Again, Chapter 11
discusses the general case of reading and writing files; here we learn how
to get the execution of a program to print on paper (for your scrapbook or
your instructor).

The following two statements will redirect output to the printer:

Close(Output);
Rewrite(Output, 'Printer:');

Note the single quotes in the Rewrite statement around the word printer
and note the colon at the end of the word printer. The purpose of these
statements is to break the connection between output and the Macintosh
screen and then to re-establish the printer as the output device. Note also
that we use "Reset" with input devices and "Rewrite" with output devices.

The program HanLCopy, on the disk that accompanies this book, is a
modification of the program Car_ Payment. Har<LCopy produces a "hard"
(paper) copy of its output for the customer to take home and study.

Har<LCopy and Car _Payment differ only in that Har<LCopy includes
the two statements "Close(Output);" and "Rewrite(Output, 'Printer:');''.
What is worthy of discussion is the placement of these statements within
the program Har<LCopy. They are not at the top of the program, but
rather are located just above the section that produces the output. The
reason for this is that we want the first section of the program to be
interactive. We want to print prompt messages on the screen and have the
user interactively enter information about the new car purchase. Since we
do not want the prompt messages sent to the printer, we must not redirect
the output too early.

Another point to ponder, especially with output to a printer, is the
following good programming habit: Always ·echo· the input into the
output. In the current example, this means we should send to the printer
all the Information about the purchase, that is, the model, price, down
payment, etc., as well as the monthly payment. The final monthly payment,
while important, is not very useful if we don't know or can't remember
what it is the monthly payment for!

Consider the very simple program, NoLSo_Good, in listing 4.3, which
prompts the user for a number and reports the square root of that number
(using the built-in, Standard Pascal square root function Sqrt).

114

program NoLSo_Good;
var

Number: Integer;
begin

Interactive Input 11\d Text Files

Writeln('Please enter a positive integer');
Readln(Number);
Close<Output);
Rewrite(Output, 'Printer:');
WritelnCThe square root of your number is', Sqrt(Number): 6: 3)

end.
Usting 4.3

The output of NoLSo_Good is sent to the printer and is shown below:

The square root of your number is 18.628

Much better is the output of program Better:

The square root of 347 is 18.628

The program Better, which you are asked to write in the exercises, is
better simply because it observes the above programming practice of
echoing our input, 347, back to us.

You may occasionally need to restore Input so that after reading a
text file, you can again enter data from the keyboard. The statement

Close(Input);

is sufficient to redirect input to come from the keyboard. Likewise,

Close(Output);

restores output to the screen.

Copying Files from One Disk to Another

If a program reads from a text file, that text file must be available
when the program executes. That is easy if you have two drives. Simply
put Macintosh Pascal in drive 1, your data disk in drive 2, and modify the
reset statement to

lnterect1ve Input and Text F11es 115

Reset(lnput, 'Sample:SalesData');

whlch lnltlates the reading of SalesData from the dlskette whose name ls
Sample.

However, lf you have only one drlve, then lt w111 be necessary to copy
the text me onto the Maclntosh Pascal dlsk. To do thls, start w1th the
Mac1ntosh Pascal dlsk (Quit Macintosh Pascal if already in use) so that
your screen appears as In figure 4.3.

r S file Edit Uiew Spetial

r~=i=t...,=s~~====3=9=::~:-~:=:s=k==~==6K=•=n=ll.,,;•b;p;!.~ ~ <iii ii
IQl::::::::::::

CJ CJ
Syslom FoldorErnpl~ Foldor

QI::::::::::::
]:;<;~:y---------------r~~Q] : : : : : : : : : : : :

Figure 4.J

Then choose Eject from the File menu and insert the disk that holds the
text me. Arrange the windows of the dlsks to occupy opposite halves of
the screen, and then drag the file from one disk to the other. Figure 4.4
shows the wlndow for the Pascal dlsk on the left and the wlndow for
Sample on the rlght. Further, the CH4 folder of Sample ls open and
SalesData ls being dragged from Sample to the Pascal disk. We point out
that thls method Is general and can be used to copy programs, as well as
text files, from disk to dlsk. Note that the original file is not removed, so
after the copying process, you have the file on both disks.

You will not be able to copy many flies to your Maclntosh Pascal disk
before lt becomes completely full. To make more room on your Maclntosh
Pascal disk, used the above method to copy such files as Open Me, Tools,
Information, and Demos to another dlsk. Then remove these files from the
Pascal disk by dragging them to the trash can.

116 lnle...:tlve Input and Text Flies

' t tiie tdit Uiew Special

P11scol S11mple

7 items 3941(in disk 61(.v oil ob lo 12 it oms 1281(in disk 272K •nibb lo

0 0 0
In~ Empty Folder CH 2 CH 3

CH 4

•• S items 101(in foldor 2721(.v•il•bl

S<jstem Folder Empty Folder

~t~ B
L •···•.•.• .tji\es Car _pay men\

m m
Hard....Copy Not....So...Good

. ~
Figure 4.4

' S File Edit Uiew Specl11I

Posco!
7 itoms 3941(in disk 61(.v•il•bl•
r-==~==========~=====.;;;,;.;;,,~~~::::: Puc~i:::

ti) ~ .-
Op.n Ho Macintosh Pasc1I

CJ
lnformotion

CJ CJ
Sojstem Foldff Empt~ Foldff

:l;r;-r-----------------....+~

Figure 4.5

Interactive Input and Text Files 117

Figure 4.5 shows Open Me on the way to the trash can. To put a me in
the Trash, be sure to place the pointer of the mouse over the trash can.
Also, be sure to choose the Empty Trash option from the Special menu
to actually delete the files that you have placed in the trash can.

Exercises

4.1 Write a program that interactively requests three real numbers from
the keyboard and prints out the average of the numbers.

4.2 Write a program that interactively requests a person's height in feet
and inches and converts the height to centimeters. One foot equals 30.48
centimeters.

4.3 Write a program that interactively requests a mileage figure before
the last fill-up, a mileage figure before the current fill-up, and an amount
(in gallons) of gasoline purchased. Then print out the miles per gallon
obtained on the last tankful of gas.

4.4 Write an interactive program for Pepi Roni's Pizza Parlor that fills
pizza orders as follows: Request both the customer's name and phone
number. Then obtain the number of small, medium, and large pizzas
requested by the customer. Prices are $5.80, $7.20, and $8.60 respectively
for small, medium, and large pizzas. Then add a 6% sales tax and print out
a total bill that is clearly labeled with the customer's name, phone
number, and a breakdown of the pizzas purchased. (Note that since the
phone number is not really an arithmetic quantitiy and since it contains a
hyphen, it should be read as a string.)

4.5 Write a program to read the information in the text file SalesData and
print out the average daily sales for the salesperson involved. (You should
pretend that you don't know what data is in the file. All you know is the
structure of the file. In other words, if your program has the name Blaise
Pascal in it, you have missed the point.)

4.6 Write the program Better, which sends its output, shown at the end of
this chapter, to the printer.

4. 7 Three friends are starting a software company. They have agreed to
name the business X, Y, and Z Software where X, Y, and Z are to be

118 Interactive Input and Text Flies

replaced by their actual names. They want you to write a program that
will output all six possible orderings of their names so they can determine
which ordering sounds best. Read the three names from the three-line text
file Friends.

4.8 Modify the Car _Payment program to print out the total amount
financed and the total interest charged over the life of the loan.

4.9 Modify the program Sales so that it reads from the file SalesData and
sends its output to the printer.

4.10 Write a program for Ferty Lizer's Lawn and Garden Shoppe. The user
will enter the width and depth of the lawn in feet. The program will
compute the area of the lawn, subtract 2,500 square feet for an average
house and driveway, and then tell the user how many bags of fertilizer are
needed to fertilize the lawn. One bag of fertilizer covers 5000 square
feet. Since Ferty wants to sell products, if the customer needs 3.2 bags,
the computer should indicate that 4 bags are needed. See if you can devise
a Trunc or Round trick to "round" 3.2 "up to" 4.

4.11 The program SalesTax (on the disk Sample) contains several bugs.
Debug it. The program should compute the total amount due on a given
purchase assuming a 6% sales tax.

Chapter 5

Fundamental Control Structures

LOOP - The repetition of a certain sequence
of program steps while a set of unforseen
circumstances prevails.

Devtrs DP Dictionary

It Is In this chapter that the real power of the computer Is finally
Introduced. The programs that we have written In previous chapters have
not been worthy of an expensive computer. Each program has asked the
computer to perform some fairly trMal computations and output Its
results. The form of each program has been nearly the same: Execution
begins at the first statement and continues directly to the bottom of the
program. Each statement Is executed exactly once. Hence, It has been
more bother than It was worth to write a program to solve one of our
problems! Now, all of that changes. We wm learn In this chapter how to
alter the flow of control so that programs can make decisions and chOose
between executing one group of statements or another group of
statements. we wm also see how the computer can perform a series of
statements over and over, without getting caught In an Infinite loop.
These fundamental control structures allow us to write short, powerful
programs that produce Interesting output. The material of this chapter ls
key to the understanding of Pascal. No program In the remainder of the
book falls to contain one of the features learned here. Time spent studying
and understanding these concepts will pay the student hefty dividends.

In the previous paragraph we stated that the computer Is able to make
decisions. This sometimes makes people nervous. They think that making
decisions Implies Intelligence, and therefore moronic computers should
not be capable of such acts. We simply point out that many mechanical
devices make simple decisions. My toaster decides when my toast ls
burned and then presents It to me. My smoke alarm decides that when my

119

120 Ftnllmental Control Structures

toaster has completed Its task, the fire department should be called! My
clock radio decides when I have finally gotten back to sleep and keeps
reminding me every 5 minutes that I have dozed off again. My car speaks
to me when It decides that I don't have enough gas to reach the next
station. Therefore, It should really be no surprise that the computer can
make simple decisions. It Is the blinding speed of the computer that
allows It to make what seem like complex decisions. For example, landing
a space shuttle, as complex as It seems, can be broken down Into simple,
discrete steps where each decision ts as simple as deciding If the toast Is
burned. We repeat our caveat from Chapter 3:

You won't get the computer to solve any problem that you
cannot, tn principle, solve yourself.

Computers can land space shuttles only because the mathematics and
physics Involved In such procedures Is well understood. We will not
consider examples of such complexity In this chapter. But always begin by
trying to understand the problem and then proceed to divide and conquer
the problem until eventually It Is In pieces small enough to give to the
computer.

Boolean Variables

Before we can actually discuss the main content of this chapter, we
must take care of a couple of preliminaries. The first of these Is the
notion of a logical or Boolean variable. The term 'Boolean' Is taken In
honor of George Boole (1815--1864), a British logician who discovered
many of the fundamental laws of logic. Boolean variables are among the
simplest of concepts In Pascal as they are variables that may only take on
one of the two values True or False. In this regard, True and False should
be regarded as constants known by the system, just as O and 3.14159 are
numeric constants of the system. Do not misquote us as saying that
"Pascal knows the meaning of truth." It ts simply that Pascal has decided
upon some Internal representation for True and False and wl11 allow us to
use these terms as an aid In writing programs. Also, as we shall see,
Pascal already knows some fundamental logical operations (and, or, and
not, for example) and these can be used to greatly simplify the expression
of our algorithms.

A Boolean variable, then, Is simply a variable whose only possible
values are True and False. We declare Boolean variables just like Integers,
reals, and strings:

Fundlmantal Control Structures

var
Count: Integer;
Rate: Real;
Maybe: Boolean;
Name : string;
Done: Boolean;

121

The point of this example Is that variables can be declared In any order. Of
course, Count Is now allowed to take any Integer value. Likewise, Maybe
can take any Boolean value, I.e., Maybe can be True or False. Boolean
variables can also be used In assignment statements:

Done :=False;
or

Maybe:= True;

or even the more Interesting example:

Done:= (Count> 10);

Here, ·count > 1 o· Is an expression, but It Is a 800/eanexpresslon, not an
arlthmet1c expression, I.e., It evaluates to True or False. That Is, If the
current value of Count Is greater than ten, then Done Is assigned the value
True, while otherwise Done Is assigned the value False. We shall soon see
how such Boolean expressions are used to alter the flow of control within
a program.

Simple Boolean expressions can be created from the following
re1atlona1 operators:

Alg~bc:sil~ S~mb2l esi:;i~sil s~mbgJ Engll~b t!~sinlng
< < less than
> > greater than

equals
~ <= less than or equals
~ >= greater than or equals
... <> not equals

Here are some more examples of simple Boolean expressions. Note that
these are expressions like "2+3" Is an expression. They are not complete
Pascal statements. Also, of course, the value of each expression, True or
False, depends upon the current value of the variables In the expression:

122

Rate <> o. 135
Name = 'Mickey Mouse·
Sum<= 100.0

Fllldlmental Control Structi.ns

Boolean expressions can be combined 1nto compound expressions using
the loglcal operators of not, and, and or. Whlle not as famrnar as the
ar1thmet1c operations such as+ and*, the logical operations are surely as
simple to understand. The conjunction operator Is and. We use 1t when we
wlsh to make two assertions and assert that both are, In fact, true. That
last sentence Is a conjunction, for example. In Pascal the keyword and
stands between the two expressions that you wish to conjoin. Of course,
the value of a conjunction Is True only If both parts are True. Otherwise,
the conjunction Is False. Thus,

(Count < 10) and (Name = 'Mickey Mouse')

ls True If and only 1f Count contains some value smaller than 10 and Name
contains exactly the value 'Mickey Mouse'.

The disjunction of two expressions Is formed by using the or
operator. Reasonably enough, a disjunction ls True If either or both of the
expressions are True. The disjunction ls False only 1f both parts are False.
For example,

(Rate > 1. 12) or csum <> 50.0)

Is True 1f Rate exceeds 1. 12 or 1f Sum has any value other than 50.0.
Finally, the negation of an expression ls formed by applying the not

operator. Thls gives the expression exactly the opposite truth value. So,

Not (Count <= 25)

Is True If and only If Count exceeds 25. The results of these operators are
often summarized In so-called truth tables:

true true false
false false false

true true true
false true false

Not I true false
false true

The reader should check that these are consistent with our Interpretations
above. For example, the conjunction Is True only lf both conjuncts are

Fundamental Control Structures 123

True. Often the beginner tries to memorize tables such as these. That ls
the wrong approach. If one really understands the discussion that
precedes these tables, then there ls nothing to memorize. Once they have
been understood they are so simple that one cannot forget theml

One very Important word of caution when forming complex Boolean
expressions ls the following: Always use parentheses around the operands
of the expressions unless they are simple Boolean variables. That ls, we
must write

(Count= 10) and (Rate> 1.0)

rather than

Count = 1 O and Rate> 1.0

As additional examples,

Maybe or Done
and

Maybe or (Name= 'Donald Duck')

are both okay. The reason for the parentheses ls the order ln which the
relat1onal and logical operators are applied. In Chapter 3, we discussed
the order of precedence of the arithmetic operations. Here ls the order of
precedence of the arithmetic, relational, and logical operations:

Highest Precedence: not
Second Precedence: *,I, dtv, mod, and
Third Precedence: +,-,or
Lowest Precedence: =, <>, <, >, <=, >=

This means that In the absence of parentheses, not wlll be applied
first, then the "multiplying· operators, then the "adding" operators, and
then flnally the "relational" operators. Within any level, evaluations w111
be from the left. Thus,

X+Y*Z
means

X +CY* Z)

slnce the* operator has h1gher precedence than the+ operator. Llkew1se,

124

X+V-Z
means

ex+ v> - z

Fllldllllln&al Control Structans

since the operators are of equal precedence, and, hence, evaluation
proceeds from the left.

To return to our logical example, we see that

Count .. 1 O and Rate > 1.0

Is evaluated as

(Count = Clo and Rate>» 1.0

which Is, unfortunately, nonsense. Remember, parentheses are needed to
force the meaning we want:

(Count= 10) and (Rate> 1.0)

Rather than memorize all the technical details of precedence, we
suggest you remember that the ·multiplicative· operators C*, /, div, and
mod) have higher precedence than the "additive· operators C + and -), but
otherwise simply use parentheses to guarantee your expression has the
meaning you desire. For example, even though

This and That or Whatever
and

((This and That> or (Whatever))
and

<This and That> or Whatever

all have the same meaning, the last expression Is the clearest. Don't use
every parenthesis possible; don't omit every parenthesis possible. Strive
for clarity.

Compound Statements

We need one more syntactical Ingredient before we begin the main
event. A compound statement Is simply a mechanism whereby we can
combine many statements Into one statement. Its format Is

Fundamental Control Structures

begin
Statement;
Statement;

Statement;
Statement

end;

125

where each 'Statement' ls replaced by any legal Pascal statement. Note
that since semicolons are used to separate Pascal statements, no
semicolon Is needed after the last statement before the end. We have
shown a semicolon after the end, but this semicolon Is only needed If
there Is another Pascal statement following the compound statement. We
should point out that plac1ng a semicolon after the last statement before
the end does not give an error--1t Is simply unnecessary. In this book we
will not Include extra semicolons, except that ln segments that are not
complete programs we will place a semicolon after the last statement
shown because we expect other statements (not shown> to follow our
segment.

A common error that beginners make ls to write

Statement-I and Statement-2

when they want the computer to do Statement- I and then do Statement-2.
The Intent may be clear to the programmer, but Pascal does not understand
such nonsense. The operator and Is only allowed to stand between two
Boolean expressions, that ls, and ls only allowed as a logical operator. To
combine the two statements Into one, the programmer needs the compound
statement:

begin
Statement-1;
Statement-2

end;

The begin and end should be thought or as big grouping symbols. In
this regard they are like the begin and end. that de11m1t the actual
executable portion of the program. Note that the end ln the compound

126 Fllldament•I Contnll Structures

statement does not Include a period. The necessity for the compound
statement and for Boolean variables will now be made clear.

The Condttfonal Statement

The conditional statement Is used to decide, based upon the value of
some Boolean expression, which of several courses of action the computer
should take. The conditional In Pascal takes on two forms, the first of
which Is known as the "If ... Then." Its format Is:

If Boolean expression then
Statement;

NexLStatement

When this statement ls executed the computer evaluates the given Boolean
expression. If the expression Is False, then the action of the If Is
complete and execution continues with the next statement. On the other
hand, If the given Boolean expression Is True, then the statement following
the then Is executed and then control passes to the next statement. It Is
Important to realize that In either case the flow of the program continues
with the next statement. If the condition happens to be True, then an extra
step Is added; otherwise, It Is skipped. The flow diagram of figure 5.1 may
help to make this situation clearer.

True

Statement

NexLStatement

Figure 5.1

If the Boolean expression ls True, then program control flows to the right
and then on to the next statement. On the other hand, If the expression ls
False, then flow "falls through" directly to the next statement.

Fundamental Control Structures 127

For example, suppose we would like to print the value of the variable
Count only 1f Count ls a multiple of 100 (Count= 100, 200, 300, etc.). This
we could do with

tf Count mod 100 = O then
Wrtteln('The value of Count ts·, Count>;

Of course, the statement following the then may be, as you have probably
guessed, a compound statement. Suppose that each time Count ls a
multiple of 100 we would like to print Count and assign to the variable
Century the value of Count divided by 100. To do so, we could write

If Count mod 100 = O then
begin
Century := Count div 100;
Wrtteln('The value of Count ls·, Count>

end;

Any time you want to perform more than one action In the then clause,
remember that you need to use the compound statement to bind all of your
actions together Into one statement. What happens 1f you forget? Suppose
you type

tf Count mod 100 .. o then
Century := Count div 100;
Wrlteln('The value of Count ts', Count); (Logical error!}

The system finds no syntax error and your program runs but It does not
execute as you expect. You find that the value of Count Is printed every
time, whether Count ls a multiple of 100 or not. This helps us see how the
computer Interprets the above segment. Since there ls no begin, the then
clause has only one statement 1n It. Thus, If Count Is a multiple of 100,
then the assignment Is performed and execution continues with the
Wrlteln statement <which Is what we wanted). However, If Count Is not a
multiple of 100, then the assignment Is skipped and control proceeds with
the next statement, which is the Wrlteln. Thus, the flow of control ls as
shown In figure 5.2a rather than what we had Intended In figure 5.2b.

Actually, Macintosh Pascal makes 1t easy for you to spot this error.
As soon as you type another line, or choose Go, the Indentation ls
automatically changed to

128

1f Count mod I oo = o then
Century := Count div I 00;

Fundamental Control Structares

Wr1telnC'The value of Count Is', Count> (Logical Error!)

That Is, Macintosh Pascal Ignores the Indentation (If any> that you used to
enter the program and formats the program as 1t understands It. In this
case, the Write In Is not part of the tf and th1s Is clear since the Wrlteln Is
not Indented under the 1f. Very few systems provide such helpful
debugging aids. Learn to read your program listings carefully. The
computer can't read your mind and decide whether you want the Write In as
a part of the If of not, but Macintosh Pascal helps you see that In the
present case, It Is not part of the If.

NexLStatement

a.

Ftgure 5.2

True

:•

False Write

NexLStatement

b.

For completeness, we provide the following example of poor
programming technique.

1f Count mod I 00 = o then
begtn

WrltelnC'The value of Count Is·, Count) (Poor style.}
end;

The problem, of course, Is that no begin/end block Is needed here. When
you only have one statement In the then clause, there Is no need to make It
a compound statement. The begin/end pair Is overused In Pascal as It Is.

Fundamental Control Structures 129

Try not to use extra pairs that are not needed. They only make your
program more difficult to read.

The other form of the conditional In Pascal Is very handy for choosing
between two alternative courses of act1on. Its format Is:

1f Boolean expression then
Statement

else
Statement;

When execut1on reaches th1s 1f ... then ... else statement, the g1ven Boolean
express1on 1s tested. If True, the then clause 1s executed and control
sk1ps the else clause and proceeds to the next statement. However, If the
g1ven express1on evaluates to False, then the else clause 1s executed and
then execution continues w1th the next statement. Thus, the flow diagram
for this sltuat1on Is as shown In figure 5.3. Of course, either the then or
the else clause can be compound as we shall see In the examples below.

False True

Else Clause Then Clause

NexLStatement

Figure 5.3

The eas1est Pascal error to make Is to Insert a semicolon after the
statement 1n the then clause:

If Boolean expression then
Statement; (This Is a syntax errorl)

else
Statement; (This';' 1s needed 1f another statement follows.)

130 Fundamental Control Structures

The sem1colon before the else ends the 1f. The system Is then not able to
attach the else to the If, and 1t complains 1mmed1ately to you by out11nlng
the else as shown In f1gure 5.4 Never put a sem1colon before an else.

if (Num mod 2 = 0) then
Writ el n('Even');

®U§®
lrfri tel n('Odd');

Figure 5.4

Let us begin our examples w1th the standard case of regular pay
versus overtime pay. Let us suppose that the var1ables Rate and Hours
already have values. We are to write a segment that computes the
appropr1ate value of the var1able Pay. Naturally, If the value of Hours 1s
40 or less, we use the s1mple formula

Pay:= Rate* Hours;

If the employee has worked more than 40 hours, we must compute
t1me-and-a-half for the overt1me hours. So we use the formulas

Regular := Rate * 40.0;
Overtime:= 1.5 *Rate* <Hours - 40.0);
Pay:= Regular+ Overt1me;

All of these except perhaps the middle one should be clear. The middle one
computes the Overtime pay by multiplying the overtime rate C 1.5 * Rate)
times the number of hours that were overtime (Hours - 40.0). In Pascal
our segment becomes

If Hours <= 40.0 then (Regular Case)
Pay := Rate * Hours

else (Overtime Case)
begin

Regular := Rate * 40.0;
Overtime := 1.5 * Rate * (Hours - 40.0);
Pay := Regular+ Overtime

end;
WrltelnC'The pay Is$', Pay:6:2);

Fundamental Control Structures 1J1

You should trace the above segment to see that If Rate has the value 5.00
and Hours Is 30, then the output Is:

The pay Is $150.00

while If Rate Is 5.00 and Hours Is 50, then the output Is:

The pay Is $275.00

This example also points out that the else clause may be compound while
the then clause Is simple. In this case, It would be possible to make both
clauses simple by combining the overtime formulas Into one long formula:

tf Hours<= 40.0 then (Regular Case}
Pay := Rate * Hours

else (Overtime Case}
Pay := (Rate * 40.0) .. 1.5 * Rate * (Hours - 40.0);

WrltelnC'The pay Is$', Pay:6:2);

The advantage of thls method ls that the program Is shorter and therefore
a 11ttle clearer. The disadvantage of this method Is that the overtime
formula Is a 11ttle complex and hence the else clause Is perhaps less
clear. In other words, It Is a trade-off and a personal decision as to whlcti
method Is better. Remember to strive to make your programs as clear as
possible. Sometimes too many variables will muddle the situation, while
too few variables are sure to make the program very hard to read. In this
situation, either of the above Is acceptable, but watch for this trade-off
as you write your own programs. Here Is definitely a poorer version of
this same segment. Can you spot the problem before we tell you?

tr Hours<= 40.0 then
begtn (Regular Case)

Pay := Rate * Hours;
WrltelnC'The pay Is$', Pay:6:2)

end
else (Poor style)

begtn (Overtime Case)
Pay := (Rate * 40.0) + 1.5 * Rate * (Hours - 40.0);
Wrlteln('The pay Is$', Pay:6:2)

end;

132 Fundamental Control Structures

This time there is no syntax error, and even the correct results are
produced. Our objection Is that the Writeln statement Is repeated in both
the then clause and the else clause. A good programming rule of thumb Is:
If something is repeated in the then clause and the else clause
of an If statement. It doesn't belong Inside the If. In our case, the
Wrlteln belongs after the If.

Here is another poor method on the same example. Can you spot the
problem?

ff Hours <= 40.0 then
Pay := Rate * Hours;

If Hours > 40.0 then
Pay:= (Rate* 40.0) + 1.5 *Rate* (Hours - 40.0);

Writeln('The pay is$', Pay:6:2);

Once again the sytem finds nothing wrong with this segment, and it
produces correct results. How picky can we get? Well, this time we
object because of the use of two If statements where only one Is needed.
Here the computer must check to see if Hours Is less than or equal to 40.0,
then tum around microseconds later and check to see If Hours Is greater
than 40.0. The point is that Hours either Is or It isn't, but we shouldn't
make the computer check it twice. An lf ... then ... else is far more
appropriate In this case.

An lf ... then ... else Is a natural two-way decision maker. How would
we make a three-way decision? No, there Is no 'lf ... Then ... Else ... Otherwise·
statement to learn. We simply use two tf ... then ... else statements nested
inside one another. Figure 5.5 shows a flow diagram for this situation.

False True

Case I

NexLStatement

Figure 5.5

Fundamental Control Structures lJJ

For example, suppose that Age ls an Integer variable and that we
would like to print CHILD If age ls less than 13, ADULT If age Is greater
than 19, and TEENAGER otherwise. The following segment accomplishes
this <The line numbers are for the discussion that follows.>:

1. If Age < 13 then
2. Wrlteln('CHILD')
3. else If Age> 19 then
4. WrltelnC'ADUL T')

5. else
6. Wrlteln('TEENAGER');
7. Wrlteln('DONE');

lines 1--6 are all one statement! It Is an 1f ... then ... e1se that just
happens to have an lf...then ... e1se In Its else clause. Of course, If Age
has the value 7, then the Boolean expression In line 1 ls True and the
output Is the two lines CHILD and DONE. That ls, since the then clause
was taken, the else clause Cl1nes 3-6) ls skipped and execution continues
with the statement following line 6. If Age has the value 98, then the
condition on line 1 Is False and so the flow of control skips to the else
clause, which begins on line 3. Here, another Boolean expression ls found
and this one evaluates to True. Hence, ADULT and DONE are output. To
follow the flow of control, note that since we have executed the then
clause of the If beginning at line 3, we have finished that If. Moreover,
that completes the else clause of the outer If and, hence, control again
passes to the statement following line 6. Finally, If Age ls 17, then both
the Boolean expressions are False and so control passes In each case to the
else clause and TEENAGER and DONE ls the output. Therefore, for every
value of Age, exactly one of the three clauses Is executed and control then
passes In each case to the writing of the "DONE" message.

When lf's are used In this way they are said to be nested. That ls, the
second If ls nested Inside the first If. Remember, one lf...then ... else
gives a two-way decision procedure. Two nested lf ... then ... else
statements give a three-way decision procedure. likewise, 17 nested lf's
will provide an 18-way decision procedure, but later we will learn a
better way to handle large numbers of cases.

The next example shows that compound statements are quite possible
with nested lf's. In addition to writing CHILD, ADULT, or TEENAGER, let us
suppose that we also want to Increment the appropriate variable
Num_Klds, Num-Adults, or Num_Teens. That Is, If Num_Klds, Num-Adults,

134 Fundamenl•I Control structures

and Num_Teens have the values 23, 9, and 56 respectively, and Age has the
value 13, then we want our segment to output TEENAGER and to also count
the teenager by Incrementing Num_Teens to 57. Variables like Num_Teens,
which count something, are called counters. Incrementing a counter Is
a very common operation In computer programs. Be sure you understand
how this works. The structure of this segment ls just like the previous
one, except each clause Is now compound:

tf Age< 13 then (Kid Case}
begtn

Wrlteln('CHILD');
Num-'<lds := Num-'<lds + 1

end
else tf Age> 19 then (Adult Case}
begtn
Wrlteln('ADUL T');
Num_Adults := Num_Adults + 1

end
else (Beware OfTeenager)
begtn

WrltelnC'TEENAGER');
Num_Teens := Num_Teens + 1

end;

The reader should trace the above segment for at least three carefully
chosen values of Age.

Sometimes beginners fall so In love with nested lf's that they get a
bit carried away. See If you can spot any excesses In the following
segment that assumes that Score has a value and uses this value to assign
and print a letter Grade (Grade Is a strtng and Score Is an Integer.):

1. tf Score >= 90 then
2. begtn
3. Grade:= 'A';
4. WrltelnCGrade)
5. end
6. else tf (Score < 90) and (Score >= 80) then
7. begtn
8. Grade := 'B';
9. Wrlteln(Grade)
10. end

Fundamental Control Structures

11. e1se If (Score < 80) and (Score>"' 70) then
12. begin
13. Grade:.,'C';
14. Wrlteln(Grade)
15. end
16. e1se If (Score < 70) and (Score >= 60) then
17. begin
18. Grade := ·o·;
19. Wrlteln(Grade)
20. end
21 e1se If Score< 60 then
22. begin
23. Grade := 'F';
24. Wrlteln(Grade)
25. end;

There are many ways to Improve this solution. First of all, each clause
contains a Wrlteln and, hence, the Wrlteln should be brought out of the If.
The beginner Is often so Intent on printing the 'A', 'B', ·c·, 'D', or 'F' that the
"commonal1ty" of the Wrlteln Is often overlooked. More Importantly, the
Boolean expressions are far more complex than they need to be. We, as
programmers, are doing unnecessary work and we are making the computer
do unnecessary work as well. For example, the only way to get to line 6 or
beyond Is to fall the test at 11ne 1. That Is, the flow of control does not
come to any line after line 6 unless Score Is less than 90. Hence, It Is
totally unnecessary to check If Score Is less than 90 at line 6. Likewise,
the only way to get to the test at 11ne 11 Is to fall the tests at lines 1 and
6. Thus, If flow reaches 11ne 11, we already know that Score Is less than
80. Hence, the above can be greatly simplified to:

1. If Score>= 90 then
2. Grade := ·A'
3. e1se If Score>= 80 then
4. Grade := 'B'
5. e1se If Score>= 70 then
6. Grade := ·c·
7. e1se If Score>= 60 then
8. Grade := ·o·
9. e1se
1 O. Grade := 'F';
11. Wrlteln(Grade);

136 Fundamental Control Structires

Note that the condition at line 21 In the original version 1s totally
unnecessary. That Is, 1n the new version the only way to get to line 1 O 1s
to enter the else clause at each opportun1ty by fal11ng the tests at lines 1,
3, 5, and 7. That Is, we only reach llne 1 O If Score Is Jess than 60.

Sometimes compound Boolean express1ons can avoid the need for
complex nested tr·s. For example, suppose we need to count all male,
senior, computer science majors at Abnormal State University. If we
assume that Sex, Class, and Major are string variables with the
appropriate values, then the following set of 1f's does the trick:

1r Sex = 'Male' then
tr Class= 'Senior' then
1r Major = ·cs· then

Count := Count + 1 ;

However, the following single tr statement Is certainly clearer:

tr <Sex= 'Male') and (Class = 'Senior') and (Major= 'CS') then
Count := Count + 1;

The moral of this example Is that some thought Is required In writing
clear programs. Even In a limited language llke Pascal, there Is usually
more than one way to express your Intentions. Strive for clarity!

As a final example of nesting, let us consider the following simple
problem. We would like to provide an appropriate message for students
with "exceptional" performance on an examination. A student who scored
over 90 on the exam should be given an encouraging message. Also a
student who scored Jess than 50 on the exam should be given a warning.
Those who scored between 50 and 90 do not receive any message. See If
you can figure out why the following segment does not work:

tr Score > 50 then
tr Score > 90 then
Wrlteln('Way to goll Keep It up.')

else
Wrlteln('Have you considered another major???');

The problem Is that we have two 1r statements fighting for one else.
That Is, In this case, we have a simple IL.then... nested In an
tr ... then ... else. Unfortunately, even though we aligned the else w1th the

Funda11ent11 Control Structures lJ7

outer If, Pascal always attaches a loose else to the nearest If. Here ls
another case where Macintosh Pascal helps us find our errors. Once again
lt formats the program to lts understanding and shows us:

tf Score> 50 then
If Score > 90 then

Wr1telnC'Way to golll Keep lt up.')
else
Wr1teln('Have you considered another major???');

This 1s certainly not equivalent to what we had Intended, for even Neal Lee
Perfect, who has a Score of 90, gets our nasty message, whlle Noe Hope,
w1th a score of 4, escapes our wrath! How can we correct the problem?
One method ls to rewrite the Boolean expressions so that an
tf ... then ... else lnslde an tf ... then ls what we want. We leave that
solution to the reader because It dodges the main problem, which ls to
nest a simple tf ... then lnslde an lf ... then ... else. Since an else ls always
attached to the nearest If, we provide a "do nothing else" for the Inner If.
The proper terminology for the "do nothing else" ls the null else:

If Score > 50 then
tf Score > 90 then
WrltelnC'Way to golll Keep lt up.')

else (do nothing}
else

Wrlteln('Have you considered another major???');

What we have actually done ls change the Inner If to an tf ... then ... else,
so that the nesting ls as we expect. Remember that lf you are nesting lf's
and some of them are lf ... then ... else statements, then you would be wise
to make them all tf ... then ... else statements by providing null else
clauses as needed.

The Repeat ... Unt 11

We now beg1n our discussion of control structures that allow for the
repetition of groups of statements. The If allows us to choose between
two courses of action whlle the repetitive statements allow our programs
to "loop· back repeatedly through a given set of statements. For example,
a payroll program loops through the employees creating the lndMdual
paychecks. It would really not be worth the effort lf we had to write a

136 Fw.damental Control structtna

separate program for each employee! The use of the conditional If allows
us to plan for all contingencies and then the loop structure allows one
program to process all the employees. This allows a program of 1O11nes,

. If 1t loops 100 times, to be the equivalent of a 1000-llne program. We
begin to see the power and convenience for the programmer of repetitive
control structures.

It wm be common for us to want to repeat some group of statements
unt11 some property becomes true. For example, for the payroll problem
above, we want to repeat the process of computing and printing checks
unt11 there are no more employees to be processed. Because this ls often a
useful way to view a problem, Pascal provides a 'Repeat...Untll' statement.
Its syntax Is:

repeat
Statement;
Statement;

Statement
untt1 Boolean expression;

The repeat ... untt1 Is one statement. Those statements caught between
the repeat and the untt1 are called the body of the repeat ... unt11.
Notice that no semicolon ls needed after the last statement In the body.
Of course, there ls a semicolon after the Boolean expression If another
statement follows the repeat ... unt11. When execution reaches the
repeat, the statements In the body are executed once, and then the
Boolean expression Is evaluated. If 1t ls False, then the body Is executed
again. After each execution of the body, the Boolean expression ls
evaluated. If 1t Is ever found to be True, then the flow of control passes to
the statement following the repeat ... untn.

It ls possible to write an 1nf1n1te loop, that ls, one that never
terminates, but It Is the respons1b1llty of the programmer to make sure
that there Is some mechanism within the body of the loop for the Boolean
expression to eventually become True, thus terminating the loop. Some
examples help to make these points clear. Let us try to write a program
that prints the Integers from 1 to 20. That seems simple enough. Of
course, we could use twenty separate Wrlteln's, but that would get pretty
tedious If we wanted to modify the program to pr1nt the Integers from 1 to
10001 Here Is a bas1c outline of our approach us1ng a repeat ... untt1:

Fundlraenllt Control Structures

Initialize Num to I
Repeat

Output Num
Increment Num by 1

Until Num = 20

1J9

You should trace the above outl1ne to see that It does Indeed produce a 1,
then a 2, then a 3, etc. In fact, If you trace It very carefully you should be
able to spot a small problem (that we will discuss later). Our outline Is
another example of what computer scientists call pseudo-code. The
outline Is not yet Pascal. Rather, It Is very Engllshllke and easy to read.
Writing good pseudo-code Is an art that you wm need to practice, but the
advantage or good pseudo-code Is that It makes the writing of a Pascal
program a much simpler task. With pseudo-code, one breaks a problem
down Into Its constituent parts and repeats this process until the task Is
broken Into manageable pieces. The use of pseudo-code Is an Important
step In top-down, structured programming. We do not believe you should
be forced to use a specific pseudo-code, and we will not attempt to create
a new pseudo-code language for you to memorize. Rather, we 1llustrate
throughout this text our pseudo-code for the example programs In the text.
We think It Is as worth your while to understand and practice writing
pseudo-code outlines as It Is to study the 11st1ngs of our programs. Now
back to the problem at hand. Listing 5.1 shows a Pascal program Count
that Implements our simple pseudo-code:

program Count;
(This amazing program is supposed to count from I to 20.}

var
Num: Integer;

begin
Num :=I;
repeat

Wrlteln(Num);
Num := Num + I

until Num = 20
end.

listing 5.1

140 F~I Cantrel Structures

The reader should compare the pseudo-code with the program to see how
each statement In the pseudo-code was translated Into Pascal. The
adVantage of the pseudo-code Is that It Is an Intermediate step between
raw English and the precise syntax needed In Pascal. If you haven't
guessed what Is wrong with the above program, load Count from the disk
Sample <or type It In) and run It. What happened to that final value?
Remember, It was supposed to print the Integers from 1 to 20. The
explanation Is, of course, quite simple. Num Is Incremented at the bottom
of the loop. After the Incrementation, the expression 'Num = 20' Is tested
and the loop Is repeated until the condition becomes True. Now, when Num
Is finally Incremented to 20, control exits from the loop before the value
of Num can be printed. We could "fix It up" by putting another
'Wrlteln<Num)' after the repeat ... untn, but It would be better to simply
change the Boolean expression to read 'until Num > 20'.

The moral of this story Is that you should learn to check the special
"boundary· values and make sure your loop repeats as you want It to. Later
we shall see that there Is, In fact, a better way to do a "counted loop· than
the method we have used here.

As another simple but Important example, let us write a program to
add together the ten numbers 1, 2, 3, ... , 10. The reason that this example
ts Important ts that It teaches us how the computer can sum a large group
of numbers, and we shall use this fact over and over In the pages to come.
Of course, the simplest way to add the Integers from 1 to 1 o Is to use the
following assignment statement:

Sum := 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 O;

However, that Is not a very general solution and Is certainly very tedious
If we want to sum up all the Integers from 1 to 1000. Therefore, we wm
devise a better, more general solution. Not surprisingly, we use a repeat
... until. But what Is It that Is going to be repeated? The answer Is that
we are going to loop ten times and on each execution of the loop add the
"next" number to a running sum. At the end of the loop, the running sum
should have accumulated the proper value. Trace the following
pseudo-code carefully to see that Sum takes on the successive values O, 1,
3, 6, 10, 15, ... , 55.

Initialize Sum to O.
Initialize Num to 1.

Fundamental Control Structures

Repeat
Add Num to Sum
Increment Num to the next number

Until Num > 10
Output the results to a walling world

The Pascal equivalent Is called Add and Is shown In listing 5.2.

program Add;
(This program adds the first ten integers. It introduces)
(the important notion of a "Running Summation".}

var
Num: Integer;
Sum : Integer;

begin
Sum:= O;
Num :=I;
repeat

Sum := Sum + Num;
Num := Num + I

until Num > 10;
writeln('The sum of the first ten integers is·, Sum: 3)

end.

Ltst1ng 5.2

141

Again notice how the pseudo-code has made the final step, the writing of
an actual Pascal program, an easy task. Another point to be made about
using a running sum Is that one must always Initialize the Sum to zero
before beginning. Here Is the way we look at It: Each time through the
loop we drop another Num Into the Sum bucket. At the end of the loop the
bucket contains the Sum of all the Nums. But to get the correct answer we
must make sure that we began with an empty bucket! That Is the purpose
and need for ·sum := o·.

Actually, Macintosh Pascal does Initialize all variables to zero for
you, but we think It Is a poor programming practice to depend on the
system to do your Initializations. The system never re-Initializes
variables for you, so you should get In the habit of doing all Initializations.

142 Fundamental Control structwes

Sometimes students Initialize every variable In sight. Consider the
following nonsense example, which adds 5 and 7 to some number Z read in
from the keyboard, and stores the answer In Sum:

x := 5;
y := 7;
Z := O;
Sum:= O;
ReadCZ>;
Sum := X + Y + Z;

Do you see any Initializations that are unnecessary? Since z Is given a
value In the 'Read', it Is pointless to Initialize Z to zero two lines before
the 'Read.' The point Is that z does not need a value In order to obtain a
value from the 'Read.' Hence, Initializing Z ls poor programming. Likewise,
Sum does not participate In the final line, but only receives a value.
Hence, Sum does not need to be Initialized In this example. However, If the
last line were 'Sum := Sum + X + Y + Z', then since Sum does participate In
the addition, It must have an Initial value. Finally, Initializing a variable
does not always mean setting It to zero. For example, in the program of
listing 5.2, the variable Num ls Initialized to one. The key to
understanding when a variable needs to be Initialized ls to understand the
notion of a variable (Chapter 3) and how that variable ls used. Any t1me
a var1ab1e part1c1pates on the rtght hand stde of an asstgnment
or 1n the evaluatton of any expression. tt must already have been
gtven a value.

Loops are very Important for what follows, so we consider the notion
In more detail. A loop consists of four parts. There ls an tnttta1tzatton
portion that Is needed before we enter the loop. Any variables that are
referenced on the right hand side of assignments must have values even on
the first loop execution. In the previous examples, this Initialization ls
handled by the statements 'Num := 1' and 'Sum := o: The body of the loop ls
the group of statements that Is repeated. In a repeat ... unttl the body Is
caught between the repeat and the unttl A loop also contains a test, or
Boolean condition, that can be used to decide when to terminate the loop.
In our two examples, the conditions have been 'Num > 20· and 'Num > 1 o·
respectively. Finally, to avoid an Infinite loop, there must be some means
for the loop to finally terminate. This ls called the modtftcatton portion
of the loop. In our examples, the statement 'Num := Num + 1' guarantees
that the loop eventually terminates. The modlflcatlon statement Is often
put at the bottom of the body. In summary, the four parts of any loop are:

Fundllnentel Control Structures 143

1. Initialization before the loop.
2. The body of the loop.
3. The test to end the loop.
4. Modification to avoid an Infinite loop.

Look for these parts In our examples. We shall also see how they can be
rearranged when we discuss further Pascal control structures.

Our next example needs the following mathematical fact: The series
1 + 1/2 + 1/3 + 1/4 + 1/5 + •.. eventually exceeds any given value. That
Is, If we add together enough terms of the above series, we eventually
pass even 6.0. Our next program answers the burning question, "How many
terms are needed to exceed 6.0?" This Is a nice example for the repeat ..
. until This time we have no Idea how many times we should repeat the
loop. Indeed, that Is our question. But we can provide the answer by
counting terms untll our sum exceeds 6.0. Here, then, Is an outline:

Initialize Sum to O
Initialize a counter, Count, to 0.
Initialize Term to 1.
Repeat

Increment Count.
Add the Term to the Sum.
Compute the next Term.

Until the Sum exceeds 6.0
Output the value Count.

Whlle the above pseudo-code could be Implemented, we do not do so.
Rather, we make some changes to It that make the program much easier to
write. The point of this exercise Is that time spent In planning a program
Is often time well spent. Do not dive Into the writing of the program
without having carefully considered the problem. Doing so only leads to a
very complex program that Is very difficult to get to run correctly. The
observation that we would like to make about the current problem Is that
there Is a very definite relationship between the value of Count, the
counter of the terms, and Term, the current term. For example, the third
term Is 1 /3, the eighth term Is 1 /8, etc. Hence, we do not need two
different variables for Term and Count. Term, for example, can be
obtained from Count. Here then ts a second, simpler, and more specific
pseudo-code from which the program Serles can easily be written:

144

Initialize Sum and Count too.
Repeat

Increment Count.
Add the reciprocal of Count to Sum.

Until the Sum exceeds 6.0
Output the value of Count.

Fmdlmental Control Structures

The reader should trace the above to see how Sum takes the successive
values 1.0, 1.5, 1.83333, 2.08333, etc., as Count takes on the values 1, 2,
3, 4, etc. In listing 5.3, we have moved the 'Wrlteln' Into the body of the
loop. This does not change the result, of course, but gives us output to
watch as the program runs.

program Series;
(This program sums the series I + t /2 + t /3 + t I 4 + t /5 + ... }

(until the sum exceeds 6.0 and then announces how many terms}
(were needed to exceed 6.0. }

var
Sum: Real;
Count: Integer;

begin
Sum:= 0.0;
Count:= O;
repeat

Count := Count + t;
Sum := Sum + I I Count;
Writeln('The sum after', Count: 3, · terms is·, Sum: 8: 6)

until Sum > 6.0
end.

listing 5.3

The reader should make a guess as to how many terms are needed, then run
Serles to see how far off the guess was.

The While

Pascal provides another form of a repetitive control structure called
the whHe. The while Is contrasted with the repeat ... unttl shortly.

Fundamental Control Structures 145

There are many Instances where either the whtle or the repeat ... unttl
can be used. It ls often a matter of programming convenience where you
choose whichever ms the given situation better. Actually, the whtle ls
slightly more general than the repeat ... unttl and therefore most texts
Introduce the whtle first. We believe, however, that the repeat ... unttl ls
simpler and easier to understand and, hence, we began with It. The order
of their Introduction Is not Important. Make sure that you understand the
slight differences between them. Both are "tools" that are very Important
for your understanding of Pascal.

If, In a given situation, you would like to loop while such and such ls
True, then the wh11e ls the answer to your prayers. The format of the
whtle Is:

Whtie Boolean expression do
Statement;

Fortunately, of course, the 'Statement' may be compound. When execution
reaches the wh11e, the Boolean expression Is tested. If It is False, then
the statement following the do Is skipped and the flow of control passes
to the next statement In your program. On the other hand, If the Boolean
expression Is True, then the statement following the do Is executed once.
Then the expression ls tested again and the statement ls repeatedly
executed w/11/e the expression remains True. Hence, there must be some
mechanism within the body of the loop for the Boolean expression to
eventually become False and for the loop to terminate.

How do the whtle and repeat ... unttl differ? There are several
fundamental differences:

The whtle tests the Boolean expression at the top of the loop and the
repeat ... unttl tests the Boolean expression at the bottom of the loop. As
a consequence, the repeat ... untll always executes the body of the loop at
least once--even If the condition Is Initially True. The wh11e, on the
other hand, If the condition Is Initially False, will execute the body of the
loop zero times and then continue with the next statement In your
program. Fortunately, from the syntax of the repeat ... unttl and the
whtle, It is easy to remember which tests the Boolean expression where.
Soon, we shall give an example of a situation where we might wish to
execute some loop zero times. Hence, It Is the whne that ls slightly more
flexible than the repeat ... unttl.

Another difference between these two statements ls that the whtle
loops while the expression Is True and the repeat ... unttl loops until the
expression Is True. Or If you like to view things perversely: The whtle

H6 Fundlmental Control structins

loops until the expression becomes False and the repeat ... unttl loops
while the expression Is False.

As our first example of a while, let's modify the amazing program
that counts from 1 to 20 to a whtle loop. The program Is shown In listing
5.4.

program CounL2;
(This amazing program counts from I to 20 using a WHILE.}

var
Num: Integer;

begin
Num := I;
while Num <= 20 do
begin

Wr1teln(Num);
Num := Num +I

end (While}
end.

Listing 5.4

Although CounL2 ls a very simple program, some remarks should be made.
Notice that whenever the body of the whtle ls more than one statement, a
begin and end pair Is necessary to make the statement following the do a
compound statement. Also note that, as always, all four parts of a loop
are present. The 1n1t1allzat1on ('Num := 1') ls done before the loop ls
entered. The test ls, of course, whether Num ls less than or equal to 20,
and 1n the body or the loop ls the mod1f1cat1on ('Num := Num + I> by which
the loop eventually terminates.

Since the wht1e and the simple tr have similar formats,

while Boolean expression do statement

If Boolean expression then statement

let us compare and contrast them so that you clearly understand the
difference. Both check the Boolean expression and skip the given
statement If the expression ls False. Likewise, both execute the given
statement if the expression ls True. However, the If executes the given

Fundmnent11 Control Structures H7

statement at most once and then continues on to the next statement In
your program. The while, on the other hand, continues to execute the
given statement as long as the expression remains True. The If ls used to
choose between two courses of action; the wh11e ls used to create a loop.

Examples

Professor Pedantlcs likes to give quizzes, and therefore needs a
program to compute averages for her students. Let us suppose that each of
her students has taken three quizzes and that names and quiz scores of her
students are stored on a text file Scores. Each student has two lines In
the text file. The first line consists of a name 00 characters), wh1le the
second line contains the three scores. Clearly, we want to loop, reading
students' names and quiz scores, outputting averages as we go. How shall
we terminate the loop? Probably the most natural suggestion would be to
count Professor Pedantlcs' students and to loop that many times. But
Professor Pedant I cs teaches at large, Abnormal State University and even
she doesn't know how many students she has. She could count them, but
that seems unnecessary with a computer around and, besides, humans are
error-prone at such activities as counting. Also, students, from our
experience, are a pretty shifty lot. They add classes late; they drop like
flies after the first exam. In short, you can never count on them anyway!
Therefore, a better and more general solution to our problem Is to make up
a final, fictitious student whose sole purpose wlll be to signify the end of
the data. This final value Is often called a tra11er, or sentinel value. It
Is chosen as some ridiculous value that could not possibly be In the real
data. For example, If we were entering student ID numbers, a value of O or
-1 would make a nice trailer value. Another term for a trailer value Is a
"Mickey Mouse· value. Hence, for our example we choose to end the loop
when we encounter the name 'Mickey Mouse'. Hence, the last line of the
text file Scores Is 'Mickey Mouse'. Stated In wh11e language, we loop
while we haven't found 'Mickey Mouse'. Here Is our outline for Professor
Pedantlcs:

Read the first Name
While the Name Is not 'Mickey Mouse' do

Read the three scores
Total the three scores
Average the three scores
Output the Name and the Average
Read the next name

li8 FWldamenlal Control Struct&na

Note that slnce thls Is pseudo-code, we have omitted the begtn's and
end's that are necessary In the final, Pascal version. Also note that, as
always, we must be sure that the condition In the whtle makes sense the
first time. Since this condition Involves a comparison of Name with
'Mickey Mouse', we must make sure that Name has an Initial value. Thus,
the first Input, which ls Implemented as a Readln (from a text file), ts
necessary before the whtle. Likewise, we know that there must be some
mechanism for the condition to eventually become False. Hence, at the
bottom of the body we modify the value of Name by obtaining the next
name. Now, of course, the expression ts tested agaln and If the name ts a
legltlmate one, the body ls executed again and Name aga1n ts updated.
Eventually, at the bottom of the loop, Name becomes 'Mickey Mouse· and the
loop terminates. Note also that the loop terminates without trying to
process three scores for Mickey. The Pascal equivalent Is shown In listing
5.5.

program Pedantics;
(This program averages 3 quizzes for a class of students.}
(The program reads the text file Scores, which has a trailer}
(name of "Mickey Mouse" to mark the end of the data.}
var

Name : string[30];
Quiz I, Quiz2, Quiz3 : Integer;
Average : Real;

begin
Close(lnput); (Redirect Input to come from the}
Reset(Input, 'Scores'); (text file Scores.}
Writeln('Professor Pedantics quiz averaging program.');
Write In;
Readln(Name);
while Name<> 'Mickey Mouse· do
begin
Readln(Quiz I, Quiz2, Quiz3);
Average.:= (Quiz I + Quiz2 + Quiz3) I 3.0;
Writeln('The average for·, Name,· is·, Average: 6: 2);
Readln(Name)

end [While}
end.

Ltsttng 5.5

Fundamental Control Structures 149

In all of our examples using text flies, we assume that the necessary
text file has been copied to the Macintosh Pascal d1sk. <See the d1scuss1on
at the end of Chapter 4.) Of course, If you have two drives, you can change
the Reset to "Reset(lnput, 'Sample:Scores');" and place the Sample disk In
drive 2.

Several changes between the pseudo-code and the Pascal version of
Pedant1cs are worthy of discussion. Note that In the program, the average
was computed on one 11ne, combining two 11nes from the pseudo-code. The
pseudo-code Is st111 the out11ne for the program, but It shouldn't be
considered a strait jacket for the writing of the program. In the program
we Included a Wrlteln to announce the purpose of the progam. That Is not
really part of the solution, but It Is a good programming practice. We also
remark that If th1s program had used Interactive Input from the keyboard,
we would also want to use a Wr1teln statement to remind the user of the
trailer value needed to terminate the while loop.

The ·End of Fne· Functton

If you are interactively entering data from the keyboard, a trailer
value ls an effective way to control the processing loop. If you are reading
data from a text file, there ls another alternative suppl1ed by the Pascal
system. This Is the built-In EOF or "End of File" function. EOF ls a Boolean
function that Is only True when the system detects the end of the data
file. Thus, unless the file ls empty, EOF Is ln1tla11zed by a Reset command
to False. When the last Item ls read from the file, EOF becomes true.
Thus,

wh11e not EOF(lnput> do

ls a natural construct to use with text files. Listing 5.6 shows
Pedantlcs-2, which uses EOF to control the processing of the text file
Scores2.

The only difference between Scores and Scores2 ls that Scores2 does
not contain any trailer value. Rather than quit when we find 'Mickey
Mouse', we quit when the system sets EOF to True.

We would like to emphasize that EOF Is particularly useful with disk
files, but not of much use with Interactive 1nput from the keyboard. The
reason for this ls simple: With a file on disk, the system has the complete
file, and, hence, can easily tell when the end of the file has been reached.
On the other hand, with interactive Input, the system ls unable to read the

ISO Fundlmentlll Control Structans

mind of the user and Is therefore unable to decide when all the data has
been entered. Thus, In what follows, we shall use EOF with disk flies and
use trailer or sentinel values to terminate Interactive Input.

program Pedant icS-2;
(This program averages 3 quizzes for a class of students.)
(The program reads the text file Scores2 and uses the}
(built-in function EOF to find the end of the data.)

var
Name : string[30];
Quiz I, Quiz2, Quiz3: Integer;
Average : Real;

begin
Close(lnput); (Redirect Input to come from the}
Reset(lnput, 'Scores2'); (text file Scores2.}
Writeln('Professor Pedantics quiz averaging program - Version 2.');
Write In;
while not EOF do
begin

Readln(Name);
Readln(Quiz 1, Quiz2, Quiz3);
Average := (Quiz I + Quiz2 + Qulz3) I 3.0;
Writeln(The average for·, Name,· is', Average: 6: 2)

end (While}
end.

Listing 5.6

There ls a subtle difference between listings 5.5 and 5.6 that Is quite
Important. This difference ls 1llustrated In figures 5.6 and 5.7. Consider
figure 5.6 first. As we have said, the condition In the while must be
1nlt1al1zed before the while. Hence, we must obtain the first Item
before the loop so that the test of the Item with the sentinel value w1ll
make sense. If the Item Is not the sentinel, It Is processed and the next
Item ls obtained at the foot of the wh11e. Eventually, after the last actual
data value ls processed, the sentinel ls read and the flow of execution
exits the wh11e. Note that the sentinel value Is not processed as an actual
data value. Figure 5.6 Illustrates the standard processing loop for a
situation controlled by a sentinel value.

Fundamental Control Structures

Read first Item
While the Item ls not the sentinel do

Begin

Process the Item

Read the next I tern
End

F1gure 5.6 Process1ng Loop w1th Sent1nel

While not EOF do
Begin

Read Item

Process Item

End

F1gure 5.7 Processtng Loop w1th EOF

151

On the other hand, figure 5.7 tllustrates the standard processing loop
for a situation controlled by EOF. Note that all the data values (Including
the first one> are read Inside the loop, at the top of the wh11e. The
reason for this placement of the Reads Cor Readlns> ls clear lf you
understand how EOF works. EOF Is Initialized by the Reset statement and
unless the me ts empty, EOF is set to False. Hence, as always, we have
ensured that the condition ln the whtle makes sense when execution
reaches the whtle. It ts also Important to note that the last data value Is
not "lost." When the last data Item Is read, EOF becomes True, but
execution does not exit the whtle until the body of the whtle Is
completed. Thus, the last Item Is processed before the condition Is tested
again and before control exits the whtle.

152 Fnllmental Control structll'IS

The differences between figures 5.6 and 5.7 may seem slight, but they
are not unimportant. Using the wrong processing method can lead to errors
that are difficult to debug. Make sure you understand how to write a
correct processing loop controlled by a sentinel and a correct processing
loop controlled by EOF.

As another example of EOF, we present ln listing 5.7 a very short but
useful program called UTFR.

program UTFR; (Universal Text File Reader}
(This program reads any text file, watching for EOF.}

var
FileName: string;
S: string;

begin
Wrlteln('What is the name of the text file you wish to see?');
Readln(FileName);
Close(Input);
Reset(lnput, FileName);
while not EOF do
begin

Readln(S);
Writeln(S)

end (While}
end.

Listing 5.7

UTFR stands for "Universal Text File Reader." The program UTFR reads
any text file. It works by prompting the user to enter the name of a file
and then resetting Input as that file. It then simply reads and writes llnes
of the file untll the end of the file Is encountered. UTFR can be a useful
program to see the "structure" of a given text file or to see the actual
values ln a text me. Remember that If you have two drives, you must
Include the volume name to access files on dlsk 2. For example, If the disk
Sample ls In drive 2, you would type "Sample:Scores4" to see the contents
or the me Scores4 on the Sample dlsk.

One or the first things you learn about wrltlng programs for people Is
that they are always thinking of changes to make to the programs. For

Fundamental Control Structures 153

example, Professor Pedantics would like to have class averages for each
of the three quizzes. This seems like a reasonable request, so let's
consider what modifications wlll be needed to the program. To compute an
average for Quiz!, we simply need to total all the scores for Quiz! and
then divide by the number of students. Likewise for Oulz2 and Ouiz3.
Hence, our program needs three new variables, Total I, Tota12, and Tota13.
Also, we need to have the program count the students, since Professor
Pedantics refuses to do such work. Hence, we also add a variable Count to
the program. Of course, all of our new variables, being running sums and
counters, must be initialized to zeros. Listing 5.8 shows Pedantics_3,
which also reads the text file Scores2.

Beginners often have trouble deciding which Wrlteln's go in the loop,
which go before the loop, and which go after the loop. Obviously, those
Wrlteln's that are to be repeated should go in the loop. Any headings that
are to be printed only once at the beginning should be placed before the
loop. Likewise, any summaries printed at the end should be placed after
the loop. This seems simple enough, but for some reason, in the above
example, beginners are Inclined to include the class average calculations
ln the loop. Of course, class averages don't make much sense until after
all the quizzes have been read in. The simple rule is this: How many times
should a given statement be executed? If the answer is once, then the
statement does not belong in a processing loop.

Finding Maxima and Minima

A frequent problem is to find the biggest or smallest value from
among a set of values. For example, let us suppose we are to find the
highest and lowest temperatures reported from among a group of cities.
Think, for a moment, how the human processor would find the answer .

37
26
54
89--:.
76 ~
98

....------. 0 0 0 ®
~

Ftgure 5.8

154 Ftlldlmental Control structures

program Pedantics_3;
(This program computes student averages on three quizzes as well }
(as class averages on each quiz. It also reads the text file Scores2.}

var
Name: string[30];
Quiz I, Quiz2, Quiz3 : Integer;
Total 1, Total2, Total3: Integer;
Count : Integer;
StudenLAve: Real;

begin
Close(lnput); (Redirect Input to come from the}
Reset(lnput, 'Scores2'); (text file Scores2.}
Writeln('Professor Pedantlcs quiz averaging program - Version 3');
Write In;
Total 1 := O;
Total2 := O;
Total3 := O;
Count:= O;
while not EOF do
begin

Count := Count + 1;
Readln(Name);
Readln(Quiz I, Quiz2, Quiz3);
StudenLAve := (Quiz 1 + Qulz2 + Qulz3) I 3.0;
Writeln('The average for·, Name,· is·, StudenLAve: 6: 2);
Total 1 := Total I +Quiz 1;
Total2 := Total2 + Quiz2;
Total3 := Total3 + Quiz3

end; (While}
Write In;
Writeln('The class contains·, Count: 3, ·students.');
write In;
Writeln('The class average on quiz• 1 was·, Total 1 I Count: 6: 2);
Writeln('The class average on quiz •2 was·, Total2 I Count: 6: 2);
Wr1teln('The class average on quiz •3 was·, Total3 I Count: 6: 2);

end.

Usttng 5.8

Fundallanta1 Control Structures 155

To find the maximum, we can Imagine the human 1n figure 5.8
scanning down through the data, remembering the largest number
encountered so far. likewise, for the minimum. If we give our human a
little larger memory, he can find both the minimum and the maximum on
one scan. Our program attempts to simulate this behavior. However, both
Max and Min need to be Initialized before the loop. One method Cwe shall
see more general methods later> ls to 1n1tlallze Max and Min to ridiculous
values so that any real temperature will be bigger than Max's Initial value
and smaller than Min's Initial value. For example, letting Min start at
Maxlnt, 1.e., 32767, and Max at -Max1nt, 1.e., -32767, should do the trick.
That Is, since Max Is getting bigger and bigger, we Initialize Max to the
smallest Integer In the computer. likewise, Min ls getting smaller and
smaller so It begins as the largest Integer In the computer. Here ls the
outline:

Initialize Max to -Maxlnt
Initialize Min to Maxlnt
While there are more Cities do

Obtain a City
Obtain a Temp for the city
Compare Temp and Max and change Max If necessary
Compare Temp and Min and change Min 1f necessary

Output the Max and Min

The program corresponding to this pseudo code ls shown in listing 5.9.

program Temperature;
(This program finds the highest and lowest temperature from}
(among a group of reporting cities. It reads the text file Temps}
(that is assumed to be on the Macintosh Pascal disk.}
(If you have two drives, see the text for an explanation of how}
(to read the text file from another disk.}

var
Max: Integer;
Min: Integer;
Temp: Integer;
City : string;

(Continued)

156 Fundamental Control Structans

begin
Close(Input); (Redirect Input to come from the}
Reset(lnput, 'Temps'); (text file Temps.}
Max := -Maxint;
Min := Maxint;
while not EOF do
begin
Readln(Clty);
Readln(T emp);
Wrlteln(Clty: 30, Temp);
if Temp> Max then
Max:= Temp;

If Temp < Min then
Min:= Temp

end; (While}
Write In;
Wrlteln('The maximum temperature reported was·, Max: 3);
Writeln('The minimum temperature reported was·, Min: 3)

end.
Listing 5.9

Run Temperature from your disk, or enter it from the keyboard. Note that
Temperature also needs the text file Temps. The program works, but
something is clearly missing. See exercise 5.7 to fix It up.

Repeat vs. Whtie

Our next example completes a promise made earlier in this chapter to
give a situation in which a while loop ls more appropriate than a
repeat ... untll loop.

Suppose the div instruction is "broken· on your Macintosh. How could
you live without it? Well, remember X div Y answers the burning question:
How many Y's are there In X? A method (admittedly slow) of finding the
answer ls to use repeated subtraction. That is, 19 div 5 is 3 since
19-5= 14, 14-5=9, and 9-5=4. That is, we subtracted 5 from 19 three
times before we obtained a remainder less than 5. This seems 11ke an
ideal situation for a repeat ... untll. We simply subtract Y's from X and
remember how many Y's we subtract, until we get a ·remainder· less than
Y. The program Division of listing 5.1 O Implements this alogrithm to
compute X div Y. However, the program contains a subtle logical error.
Can you spot it?

Fundamental Control Structures

program Dlvlsion;
(This program illustrates that a "Repeat ... Until" is not}
(always as appropriate as a "While". The program does)
[division by repeated subtraction, but has a small bug in it.)

var
Divisor, Dividend, Quotient, Temp : Integer;

begin
Writeln('I will do division problems by repeated subtraction.');
Write('Please enter the Divisor: ');
Readln(Divisor);
Write('Please enter the Dividend: ');
Readln(Dividend);
Temp:= Dividend;
Quotient := O;
repeat

Temp:= Temp - Divisor;
Quotient:= Quotient+ I

unttl Temp <Divisor;
Writeln;
WritelnCDividend: t, ·Div·, Divisor: 1, ·is·, Quotient: 1)

end.

Ltsttng 5. 1 o

157

Consider some typical output from various runs of the program
Division:

19Dfv Sfs3
4Dlv 9 ls 1

10Dlv 71s 1
3 DIV 11 Is 1

Walt a minutel 4 div 9 Is 0, not 1. Likewise, 3 div 11 is 0. The
program produces correct output for X div V ff X ~ V, but ft produces the
answer 1, not 0, If X < V. The reason for this, of course, Is that the body of
any repeat ... untt1 is executed at least once even if the condition (In this
case, Temp < DMsor) Is already true. What Is needed Is a whtle loop that
executes zero times If the dividend Is Jess than the divisor. The details
are left to the reader as an exercise.

158 Fmdamenlal Control Strucbns

Nested Loops

Since the statements In the body of a loop can be any legal Pascal
statements, tt ts possible for one loop to be nested within another one.
That ls, a while can be Inside another while or Inside a repeat ... untl I.
As an example of the complexlt1es Involved 1n nested loops, try to
determine the output of the program Nested shown In listing 5.11:

program Nested;
(This program 111ustrates nested loops.}
(Determine the output of this program.}

var
Outer, Inner: Integer;

begin
Writeln('Output from program "Nested".');
Write In;
Outer:= l;
while Outer <= 20 do
begin

Writeln('Multiples of·, Outer: 2);
Inner:= l;
while Inner <= 1 O do
begin

write(Outer * Inner: 4);
Inner:= Inner+ 1

end; (inner While}
Write In;
Outer := Outer + 1

end; (outer While}
Writeln('That"s all folks!')

end.

Listing 5. 11

In ant1c1pat1ng the output of th1s program, realize that the f1rst and last
Wr1teln's are outside of all loops and, hence, execute exactly once
providing a "header" and "footer" to our output. On the other hand, the
"Multiples of" statement ls In the outer loop, which clearly executes 20
t1mes. This, of course, gives us 20 sl1ghtly different lines of output. The

Fundamental Control Structures 159

'Wrlte(Outer * Inner : 4)' is caught Inside both loops. It clearly executes
10 times (Inner runs from 1 to 10) for each value of Outer. Hence, th1s
Inner Write executes 200 times. However, since 1t is a Write and not a
Wrlteln, we only get 20 lines of output. Run the program Nested to see the
output as It Is produced. It ts sometimes difficult for beginners to decide
which statements go Inside both loops, which outside both loops, and
which In the outer but not in the inner loop. Considering how many times
the statement should execute usually solves this problem. If the answer
is one, then the statement belongs outside all loops. If the answer 1s 20
times or 200 times, then the placement of the statement should be clear.

program Nested....2;
(This program illustrates nested loops. It is a modification)
[of "Nested". Determine the output of this program.}

var
Inner, Outer : Integer;

begin
Writeln('Output from program "Nested....2".');
Writeln;
Outer:= 1;
while Outer <= IO do
begin

Writeln('Multlples of·, Outer);
Inner:= I;
while Inner<= 20 do

begin
write(Outer * Inner: 4);
Inner:= Inner+ I

end; (Inner While)
Write In;
Outer := Outer + I

end; {outer While)
Writeln('That"s all folks!')

end.

Listing 5.12

160 Fundlmental Control Structures

The value of the index in the inner loop changes most quickly. Hence,
the successive values of Outer and Inner in the program of figure 5.11 are
1, 1, 1,2, 1,3, 1,4, ... ' 1, 10, 2, 1, 2,2, 2,3, ... ' 2, 10, 3, 1, 3,2, ... '
20,10. To see that the order of the inside and outside loops is critical,
consider Neste<L2 as in listing 5. 12. Neste<L2 ls like Nested except that
the loop from 1 to 1 o ls now on the outside. Predict the output from
Neste<L2 and run It to see if you were correct.

As a more useful example of nested loops, let's consider another
program for Professor Pedantlcs. Because different students have taken
different numbers of quizzes, she would like a program that would read a
student's name, the number of quizzes that student has taken, and then the
actual quiz scores for that student. The program should properly compute
the average for each student. For example, the data might look like this:

Otto Mobile
4 87 45 77 86
Dyna Sore
3 97 95 76
Neal Lee Perfect
5 100 99 100 100 99
Noe Hope
2 43 7

Thus, Otto has taken 4 quizzes with the scores indicated, Dyna only 3
quizzes, and so on. Obviously, we loop on the students and since different
students have taken different numbers of exams, we need an inner
summing loop for each student. Here ls our outline:

While there are more names do
Obtain the Name
Obtain the Number of Quizzes taken by this student
Initialize Sum to zero
Initialize a counter, Count, to zero.
While Count < Number of Quizzes do

Obtain the next score
Add the Score to Sum
Increment the counter

Move to the next line of the file
Compute the average
Output the average for the given student

Fundamental Control Structures 161

Notice how the Indentation makes the extent of each loop clear. Once
again, the translation Into Pascal Is very straightforward. Run
Pedantlcs_4, which Is shown In listing 5.13.

program Pedantics_4;
(This program computes averages for students, and allows for}
(different students to have taken different numbers of quizzes.}
(It reads the text file Scores4.}

var
Name: string[30];
Num_Quiz : Integer;
Score: Integer;
Sum : Integer;
Ave: Real;
Count: Integer;

begin
Close(Input); (Redirect Input to come from the}
Reset(lnput, ·scores4'); (text file Scores4}
Writeln('Professor Pedantics program - version 4.');
Writeln;
while not EOF do
begin

Sum:= O;
Readln(Name);
Read(Num_Quiz);
Count:= O;
while Count < Num_Qulz do
begin

Read(Score);
Sum := Sum + Score;
Count := Count + 1;

end; (Inner While}
Readln; (Advance to next line of the text file.}
Ave := Sum I Num_Quiz;
Writeln('The average for·, Name,· is·, Ave: 6: 2)

end (Outer While}
end.

Listing 5.13

162 Fund1111e11tal Contro1 structures

Thls tlme, Pedantlcs_4 reads the scores from the text file Scores4.
The purpose of the "Readln;" after the Inner whtle ls to advance the file to
the next line (lf there ls one), since the Inner whf1e only contains Read
statements (and not Readln statements). That ls, after the first execution
of the Inner whtle, the file has been processed up to the end of the second
line:

Otto Moblle
4 87 45 77 86t

So that the next execution of "Readln(Name)" finds Dyna's name <and not
the End-of-Line>, the file pointer needs to be positioned at the start of the
third line:

Otto Moblle
4 87 45 77 86

tDyna Sore

The "Readln;" accomplishes thls for us.

An example that Illustrates many of the topics covered up to this
point ls a program that determines prime numbers. Thls example requires
no higher mathematics, only arithmetic. A prime number, recall, ls a
positive Integer larger than 1 whose only divisors are 1 and Itself. For
example, 17 Is prime, but 15 Is not since 3*5 = 15. Let us write a program
to flnd all primes between 1000 and 1500. Obviously, we have found our
outer loop. However, since there are no even primes between 1000 and
1500, we need only consider the odd numbers between 1001 and 1499.
Hence, we may Initialize Number to 1001 and Increment It by 2 each tlme.
Here Is a preliminary outline of the program:

Initialize Number to 1001
Repeat

Determine whether Number Is prime and print It If so
Increment Number by 2

Until Number> 1500

What Is involved in determining if a given Number Is Prime? We must
try all possible divisors. Another loopl But where does this Inner loop
begin and end? Since Number is odd, It only has odd divisors (Why?).
Hence, we may begin our testing with the possible Factor 3, and we

Fundamental Control Structures 163

Increment Factor by 2 each time also. What ts the largest factor we need
to try? If a number has a factor, then It has a co-factor too. For example,
2 and 12 are co-factors of 24 since 2* 12=24. Likewise, 6 and 9 are
co-factors of 54. Notice that 7 ts Its own co-factor with respect to 49.
We claim that 1f a Number has a Factor, then 1t has a Factor less than or
equal to Its own square root. For If both co-factors are bigger than the
square root, then the product Is bigger than the given number. Hence, to
determine If a given odd Number ts prime, we need only try odd divisors
between 3 and the square root of the Number. For example, to decide 1f
3911sprlmeweneedonlytrythefactors3,5, 7,9, 11, 13, 15, 17, and 19
since ..f39T = 19.7737. In this case we see that 391 Is not prime since
391 = 17*23.

Of course, as we try the factors, If we f Ind one that dMdes evenly
Into the given Number, we may reject that Number and continue with the
next. However, just because 3 doesn't divide evenly Into the Number, we
are not permitted to declare the Number to be prime. We can only safely
declare the number to be prime If no factor at all ls found for It. Here Is
our expanded out 1 lne:

ln1t1alize Number to 1001
Repeat

Initialize Prime to True (Give every Number a chance)
ln1t1a11ze Factor to 3
ln1tla11ze Limit to ./~N,.....um_b,.....e-r

Whlle <Factor<= Limit) and Prime do
If Factor divides Number evenly then

Set Prime to False
Else

Increment Factor by 2
If still Prime then

Output the Number as a prime
Increment Number by 2

Unt 11 Number> 1500

Several points about the outline stl11 need to be discussed. Notice that the
Inner wh11e loops until either we find a Factor or until the Factor exceeds
the limit. Since there are two ways to exit from the wht1e, an If ls
needed after the wh11e to determine how the wh11e ended. If 1t ended
because all Factors were tried and none were found that would divide the
Number, then the Number ts granted "prlmehood." Of course, using such
operations as mod we can express 1n Pascal the question of whether

164 Fundamental Control structures

"Factor divides Number evenly." Namely, "Factor d1Vldes number evenly"
just fn case the remainder upon d1Vlslon of Number by Factor Is zero.
Since the mod function computes the remainder upon an Integer division,
we have that "Factor d1Vldes Number evenly" If Number mod Factor equals
zero. The Pascal program Is shown In listing 5.14.

program Prime;
(This program finds primes between 1000 and 1500)

var
Number: Integer;
Factor: Integer;
Prime: Boolean;
Limit: Integer;

begin
Writeln('Here are the primes between 1000 and 1500');
Write In;
Number:= 1001;
repeat
Prime:= True; (Give Number every chance.)
Factor:= 3;
Limit := Trunc(Sqrt(Number));
while (Factor <= Limit) and Prime do

if Number mod Factor= O then
Prime:= False (A factor has been found.}

else
Factor:= Factor+ 2; (Try next odd factor.)

tr Prime then (Time to announce the "Primehood" of Number.}
Writeln(Number);

Number:= Number+ 2 (Increment to next odd Number.)
untt I Number> 1500

end.

Usttng 5.14

Notice that the Boolean expression 'Factor <= Limit' cannot be changed to
'Factor < Umlt' because to prove that numbers 11ke 49 are not prime, we
must Include ../49 or 7 In our 11st of factors. Also, conserving on variables
and writing 'Factor <= Sqrt(Number)' Is not wise as this forces the system
to recompute the square root each time ft makes the comparison. Using
the variable Umlt, the system needs to take the square root of each

Fundlllantal Control Structures 165

Number only once. See exercise 5.14 for further details on this matter, an
efficiency question.

The For Statement

The final repetitive statement In Pascal ls the for, which ls useful If
you know In advance how many times you would like a loop to be executed.
The for ls often ref erred to as a "definite" loop, as opposed to "1ndefln1te"
loops like the whlle and the repeat...unttl. The format of the for loop
ls:

for lnde><-vartable := Initial to Final do
Statement;

where, for now, the lnde><-Varlable must be an Integer variable and Initial
and Final are Integer variables, constants, or expressions. For example, a
counted loop that ls to execute 1 O times can be generated by:

for Count := 1 to 1 o do
Statement;

where, of course, 'Statement' may be compound. L1st1ng 5.15 shows a
simple program, Table, that produces a table of the squares and cubes of
the first 20 Integers.

Notice that several of the parts of the loop are performed
automatically by the for. For example, In the above program when
execution reaches the for, Number ls automatically 1nltlallzed to the
Initial value 1. Also, before each execution of the body of the loop, the
system tests to see If Number has exceeded the final value of 20.
Moreover, after each execution of the body, the system automatically
Increments the Index variable Number by 1. Hence, all four parts of a loop
are present, but no longer ls each the responsibility of the programmer.
Notice that since the test ls made before the loop ls executed, It ls
possible for a loop to execute zero times. Thus, although fairly dumb, the
statement

for I:'" 5 to 1 do
Statement

1s not an error. In this case, the statement following the do ls not
executed and control passes to the next statement 1n your program.

166 FISldamenlal Control structures

program Table;
[This program produces a table of the squares}
(and cubes of the integers from I to 20.}
var

Number: Integer;
Square: Integer;
Cube : Integer;

begin
Writeln('Handy dandy table of squares and cubes.');
Write In;
Writeln('Number' : I 0, ·square· : Io, 'Cube' : IO);
Write In;
for Number:= I to 20 do
begin

Square := Number* Number;
Cube:= Number* Square;
Writeln(Number: I 0, Square: I 0, Cube: I 0)

end (For}
end.

Listing 5. 15

Very often, the final value of the Index Is given as a variable. Thus, In
the Professor Pedanttcs problem of the last section, we could easily
replace the Inner while with a for as we know that the current student
has taken Num_Qulz quizzes:

for Count := 1 to Num_Qutz do
begtn

Read(Score);
Sum := Sum + Score

end; (for}

As another example of the for statement, consider a program that
prints a table of dollar to German Mark conversions with the user
selecting the Initial and final dollar values. Here is an outline:

Obtain starting dollar value, Start, and final dollar value, Stop.
Output a heading for the Table.
For Dollar from starting value to stopping value do

Convert Dollar to German Marks
Output Dollar and Mark values.

Fundamental control Structures 167

Of course, to convert dollars to OM <Deutsche Mark), we need to know the
conversion rate. Let us assume that It Is 2.7389, I.e., each Dollar Is worth
2. 7389 OM. The program, given f n listing 5.16, ts agaf n a direct translation
of the pseudo-code.

program Dollars_To__[)M;
(This program creates a table of Dollar to OM conversions}
(where the user inputs the starting and ending values.}

const
Rate = 2. 7389;

var
Dollar: Integer;
OM: Real;
Start : Integer;
Stop: Integer;

begin
Wrlteln('This program converts US Dollars to German OM.');
Write In;
Writeln('Enter starting dollar value for the table.');
Readln(Start);
Writeln('Enter ending dollar value for the table.');
Readln(Stop);
Writeln;
Writeln('Table of conversions');
Write In;
Wrlteln('Dollar· : 10, 'OM': 10);
Wrlteln;
for Dollar:= Start to Stop do
begin

OM := Dollar* Rate;
Writeln(Dollar: 10, OM: 10: 2)

end (For}
end.

Usttng 5.16

You should F\ln Do I lar _ T o-1)M severa 1 t Imes Inc ludlng once where you enter
a smaller final value than Initial value.

168 FtlldlmenlBI Cantrel 9tructlns

There ls an alternate form of the for that ls useful If you need to run
a loop backwards. Its format Is:

for lnde><-Varlable := Initial downto Final do
Statement

This time the lndex_Varlable ls Initialized to the Initial value and the
body Is executed If the Index variable ls not smaller than the Final value.
Also, after each execution of the body, the Index variable Is decremented
by 1. Here Is a segment that sings a famous college song:

for Verse :"' 100 downto 1 do
begin
Write In(Verse,· bottles of beer on the wall.');
Wrlteln(Verse, 'bottles of beer on the wall.');
Wrlteln('Take one down, pass It around');
WrltelnCVerse - 1, ·bottles of beer on the wall.');
Write In

end;

The Case Statement

Pascal provides a case statement that ls useful when you have to
choose one of many possibilities. For example, to make a six-way
decision, one can use five nested lf ... then .•. else statements, but a case
statement Is probably the easier way. For example, suppose we have given
scores between o and 5 on a programming assignment and would like to
make an appropriate comment to each student. Suppose for this segment
that Name already has a string value and Score already has an Integer
value between O and 5. The following segment prints the appropriate
messages:

Wrlte(Name, ·,you are');
case Score of
5:
Wrlteln('outstandlngl I');

4:
Wrlteln('good.');

3:
WrltelnC'OK.');

Fundamental Control Structures

2:
Writeln('barely passing.');

1:
Wrlteln('fal ling.'};

0:
Wrlteln('hopeless.'}

end; (End of case}

169

When execution reaches the case, the value of Score is matched with one
of the labels and the Wrlteln corresponding to that label Is executed. For
example, If Name Is 'Neal Lee Perfect' and Score Is 4 then the output ls

Neal Lee Perfect, you are good.

On the other hand, if the Name Is 'Prokras Tonater· and the Score Is 0, then
the output ls

Prokras Tonater, you are hopeless.

Notice how the Write (and not Wrlteln) is used to write the first part of
the line. As with tf's, the Write should not be repeated In each case. If
any of the cases are compound, then begtn's and end's are necessary. The
syntax of the simple case statement Is

case Index of
Value_ I:

StatemenL 1;
Value-2:
StatemenL2;

Value_n:
Statement_n

end;

For the present, Index must be an Integer variable and Value_l to Value_n
must be distinct Integer constants, called the case labels. At
execution, the value of the case Index, Index, Is compared with the labels
and if a match Is found, the corresponding statement Is executed. Flow of
control then proceeds to the statement following the case statement.
Standard Pascal says that it Is an error if the case Index does not match

170 Fundmlental Control structw-es

any of the labels. Macintosh Pascal provides an otherwise clause for
such situations. The format of this extended case Is:

case Index of
Value_ I:
StatemenL I;

Value_2:
StatemenL2;

Value-1):
Statement_]);

otherwise
StatemenL(n+ I)

end;

In this case, if none of the values Is matched, then the statement
following the otherwise Is executed. Note that in Macintosh Pascal It Is
an error If none of the labels matches and no otherwise clause Is present.
Wh11e not Included In the standard definition of Pascal, the otherwise
clause Is surely a convenient way to handle all the special cases.

The case statement, we see, Is useful when one of many possibilities
is to be chosen. The case Is clearer than a long sequence of nested lf's.
But note that like the repeat ... unttl that could be replaced with a Whtie,
the case adds nothing but convenience to the language. In later chapters
we shall see that the case statement can be quite handy. Also note that
the case has an end but no begin. Sorry, there is no good reason for such
Inconsistency. That's just the way It Is. Also notice that the labels
should be distinct. Violation of this is an error in Standard Pascal,
although Macintosh Pascal does not report such an error but simply
executes the first case that Is matched.

As another example, consider a program to compute a simple,
progressive tax. A progressive tax Is designed to take more from the
wealthy and less, percentage-wise, from the poor. Let us suppose that our
progressive tax is designed In $5000.00 blocks and is given by table 5.1.
Our first problem Is to reduce the situation to a small number of cases as
we do not want to write a case with 25,000 dlff erent cases. As we can
see from the table, there are only six "brackets" In our progressive tax
structure. We can almost compute each person's tax bracket by using

Bracket := (Income div 5000) + 1

Fundamental Control Structures

Income Range

Up to $4999.99
Up to $9999.99
Up to $14999.99
Up to $19999.99
Up to $24999.99
Over $24999.99

Tax Table

Table 5.1

Tax Rate

3~

8~

15~

24~

35~
50~

171

Check that If Income has the value 12,500, then Bracket ls properly
assigned the value 3. Unfortunately, Lotta Bucks, with an Income of
$85,000, ls assigned to a nonexistent bracket number 18. This Is east Jy
corrected w1th an If and the program ls as shown In listing 5.17.

Finally, let us point out that a case may have multiple labels. As an
example, suppose we grade a project on a 20-polnt basis and then decide
to give Jetter grades as follows:

18-20 A
15-17 B
13-14 c
10-12 D
0- 9 F

Since there are really only five outcomes, It doesn't seem that we should
need 20 cases. The following segment 111ustrates the use of multiple
labels on one statement as well as the otherwise clause. In this
segment, we assume Mark and Name already have values:

case Mark or
18, 19,20:
Grade:= 'A';

15, 16:
Grade:= 'B';

13, 14:
Grade:= 'C';

10, 11, 12:
Grade:= ·o·;

172

otherwise
Grade:= 'F'

end;
WrltelnCName, ·.your grade Is: ·, Grade)

program Taxes;

FtlMllmental Control Structures

(This program computes taxes based upon a progressive}
{scale. See the Tax Tables in Table 5.1.}

var
Income: Integer;
Tax: Real;
Bracket : Integer;

begin
Writeln('Please enter your income - without the T sign.');
Writeln('To avoid overflow, keep your income below 32767');
Readln(lncome);
Bracket:= (Income dtv 5000) + 1;
tf Bracket > 6 then
Bracket := 6;

case Bracket of
1:
Tax:= Income* 0.03;

2:
Tax := Income * 0.08;

3:
Tax := Income * 0.15;

4:
Tax:= Income* 0.24;

5:
Tax:= Income* 0.35;

6:
Tax:= Income* 0.50

end; {Case}
Writeln('The tax on your income of$', Income: 5, · is$', Tax: 8: 2)

end.

Listing 5.17

Fundamental Control Structures 17'}

Here, naturally, 1f Mark matches any of the labels of a statement, then that
statement Is executed, while If Mark matches none of the labels, then the
otherwise clause Is executed. Note that the otherwise has no colon
after It. In this regard It Is more like an else than another regular case
label.

Exercises

5.1 Write a program that creates a table of Celsius to Fahrenheit
temperature conversions from 20 degrees to 40 degrees Celsius. Of
course, the magic formula ls

F = 9/S*C + 32.

5.2 Modify the program of exercise 5.1 so that the user may choose the
starting and ending temperatures for the table.

5.3 Modify the program of exercise 5.2 so that the user may also choose
the Interval (1n degrees Celsius) between entries of the table. Use the
program to request a table from -40 degrees Celsius to 50 degrees Celsius
In steps of 5 degrees Ce Isl us.

5.4 A colony of 700 Wallalumps Increases by 87' each year. Write a
program to predict the growth of the colony for each of the next 25 years.

5.5 Write a program that plays the following word game:

Player 1 chooses a word and enters it Into the computer as the secret
word for the game. Note that "WrltelnCChrC 12))" clears the screen so that
Player 2 cannot see the word.

Player 2 enters words, trying to guess the secret word. Suppose the
secret word Is "PASCAL and the user guesses "FORTRAN". Then the
computer gives the hint:

My word comes after FORTRAN In the dictionary.

Likewise, If the user guesses "ZEBRA", the computer responds with

My word comes before ZEBRA In the dictionary.

174 Fundamental Control structures

Finally (we hope), Player 2 guesses the secret word and the game ends
with the message

You guessed my word in XX guesses ..

where XX Is, of course, replaced by the appropriate value. Hint: If Guess
and SecretWord are string variables, then

Guess< SecretWord

is True ff the value of Guess fs alphabetically before the value of
SecretWord. Actually, the computer orders the letters from 'A' to 'Z' and
then from ·a· to 'z'. Hence, 'A' < 'M' and 'M' <·a· are both True. To avoid this
confusion, play the above game with the Caps Lock key depressed.

5.6 A piece of paper Is 0.005 Inches thick. How thick would the paper be
ff we folded ft In half 35 times? Note that each time we fold the paper
over on Itself, It becomes twice as thick.

5.7 Modify the program Temperature so that it prints the name of the city
with the maximum temperature as well as the name of the city with the
minimum temperature.

5.8 Programs Ex5.8a, Ex5.8b, and Ex5.8c are all stored on the disk of
sample programs and are all "buggy· versions of program Temperature.
Execute each of these versions and from the erroneous output determine
the error In each program.

5.9 Is the variable Temp necessary in program Division? What happens if
we just use Dividend In place of Temp?

5.10 In the text file Porridge, each line contains the temperature of a
bowl of porridge. Write a program for Goldilocks that prints the
temperature of each bowl of porridge, and "Too Hot", "Too Cold", or "Just
Right". Print "Too Hot" If the temperature exceeds 140 degrees, "Too Cold"
ff the temperature fs less than 90 degrees, and "Just Right" otherwise. At
the end of the program, you should print a count of how many bowls of each
kind were found.

5.11 FICA (Social Security) tax Is withheld at the rate of 6.7~ on the
first $35, 700 of your salary. If you work for two or more employers and

Fundamenta1 Control Structures 175

each withholds 6.7~ of your first $35,700, you may end up paying too much
FICA tax. Write a program that inputs the number of employers and the
salary from each, and then computes the overpayment, if any, of your FICA
tax.

5.12 Write a program that tabulates the totals of the Abnormal State
University Cow Chip Throwing Contest. The information concerning the
contest Is found on the text file Chips. There are four 11nes of information
for each entrant in the contest. The first line contains the name of the
contestant, the second line contains a sex designation, the third line
contains a status (Student or Faculty), and the fourth 11ne contains the
length of the throw in feet. A sample entry might look 11ke this:

Polly Tlshun
Female
Student
203.75

Your program should read the Chips file and print out a table of all
contestants, listing the name, sex, status, and throw. At the end of the
table, you should announce, with suitable fanfare, the winners in each of
four categories (e.g., Male-Faculty, Female-Student) and the overall winner
of the contest.

5. 13 Write a program to help the Lemon Motor Company decide whether to
keep its V-16 economy car, the Belchfire, in production. Data for the car
ls available on the text file Lemons and consists of two 11nes of data for
each dealer. For example, the first four lines of the file Lemons are:

Tricky Dicks
10 5 8 3 0 7 2
Ottos Autos
100 7 56 24 0 89 120 99 34

The first entry of the second line means that Tricky Dick is expected to
sell 10 Belchfires per month. The second value on that line indicates that
5 months of data are availabe for Tricky. The remaining data indicates
that he has, in fact, sold 20 cars C 8 + 3 + o + 7 + 2) in the last 5 months.
Likewise, Otto, a big city dealer, Is expected to sell 100 Belchfires a
month; 7 months of data are available for Otto; and he has sold 56 + 24 + O
+ 89 + 120 + 99 + 34 = 422 cars in the last 7 months.

176 Ftlldlmental Control structures

Your program for LMC should read the text ftle Lemons and output the
following for each dealer: Dealer's name, expected monthly sales, average
monthly sales, and an appropriate comment. If the dealer's average Is less
than half of the expected average, then the dealer should be warned
severely that his/her business <or family) Is In danger. On the other hand,
dealers who have sold more Lemons than expected should be heartily
congratulated. Those who deserve neither censure nor praise should
receive a noncommltal comment. Arrange the above output In 4 columns
with appropriate headings. Finally, output the average monthly sales, the
average expected sales, and an appropriate recommendation to Lemon
Motor Company based on the above guidelines to the Individual dealers.

5.14 Run program Prime from your disk of sample programs and time Its
execution. Also run ExS.14 from your disk of sample programs and time Its
execution. Compare the two programs. Notice that they produce the same
output. Why Is ExS.14 so much slower?

5.15 (Ulam's Conjecture) Write a program to generate a sequence of
numbers according to the following scheme:

Begin with any positive Integer greater than 1. If the current term Is
odd, then the next term Is obtained by tripling the current term and adding
1, but If the current term Is even, then the next term Is obtained by
halving the current term. Repeat this process until you obtain a term
equal to 1.

For example, suppose we begin with 7. Then the sequence of terms Is:

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Of course, your program should prompt the user for the starting term. Run
your program with 7 as the Input to verify your program. Also, use 97 for
an Interesting sequence.

The claim that you will always come down to 1 Is known as Ulam's
conjecture. It has never been proven, but It has already been verified by
computer for all "small" numbers. In our system, however, overflow
occurs quickly. For example, why won't the program work properly If you
begin the sequence with 30001? In Chapter 8, we shall see that Macintosh
Pascal has a "long Integer" type that Is needed If you wish to test Ulam's
conjecture on larger integers.

Hint: Use mod with a divisor of 2 to test the current term to see If It
Is even or odd.

Fundamental Control Structures 177

5. 16 <Armstrong Numbers> The number 153 has the odd property that
13 + 53 + 33 "' 1 + 125 + 27 "' 153

Namely, 153 Is equal to the sum of the cubes of Its own digits. Are there
other three digit numbers that have this property? Write a program that
tests all three digit numbers and prints out those that have the above
property. There are four such numbers and they are known as the
Armstrong Numbers of order three.

Hint: If you want to break a three digit number Into Its separate
digits, use d1v and mod tricks with divisors like I 00 or Io.

5. 17 <Perfect Numbers) A number Is said to be perfect If It Is the sum of
Its own divisors (excluding Itself). For example, 6 Is perfect since I, 2,
and 3 divide evenly Into 6 and I+ 2 + 3 = 6. Verify by hand that 28 ls also
perfect. Write a program to find the next perfect number.

Warning: This program takes several minutes, even on the computer.
Make sure that your program will find 6 and 28 before turning It loose.

5. 18 (Abundant Numbers) A number ls abundant if It ls Jess than the sum
of Its divisors (excluding 1tsel0. For example, 12 ls abundant since I, 2,
3, 4, and 6 are the dlvlsors of 12 and their sum ls 16. The terminology
"abundant" comes from the fact that such a number has an abundance of
divisors. Write a program to find all abundant numbers less than 500.
Since I ls a special case, you may begin your search at 2. After your
program runs, what do you notice about all abundant numbers less than
500?

5. 19 (Odd Abundant Numbers> Write a program to find the first odd
abundant number. Try to make your program as efficient as possible and
use the results of Exercise 5.18. Even so, this takes several minutes to
execute.

5.20 CMad Dog) A man ls In the center of the square garden depleted 1n
figure 5.9. A well-trained, but vicious, dog Is standing on the wall at the
southwest corner of the garden. The dog can run Pl (3.14159) times as
fast as the man, but the dog ls trained to stay on the wall and not enter
the garden at all.

Show by hand calculatlon that the ratio of distances for dog and man
to point N Is less than Pl, and, hence, the dog would be the winner to that
point. Show, by another hand calculation, that the ratio of distances to
corner C Is even less favorable for the man. Thus, If the man can escape,
he can only do so between points N and C.

178 FWlllllrlental Cantrel Structll'lll

Write a program that outputs the ratio for each point at two meter
Intervals from N to c. At each po1nt, print 1ts distance from N, the ratio,
and a message ("OUCH" or "SAFE") depending on the ratio at that point. Can
the man escape unscathed from the dog?

D

N
~~~-----...._~~---c -

• 
t1 

F1gure 5.9 

200m 



Chapter 6 

Editing and Debugging 

DEBUG61N6 - Removing a bug either by tinkering 
with the program or by amending the program 
spec1f1cauon so that the side errect or the bug 
Is pUbHshed as a desirable feature. 

Devffs DP Dictionary 

This chapter, like Chapter 2, 1s not about Pascal, but rather 1s about 
the Mac1ntosh Pascal operating system. There are many elegant ed1t1ng 
features of Macintosh Pascal, as well as useful, bunt-In debugging 
features to be revealed here. Thus, while you could skip this chapter, we 
believe you w111 find 1t most useful for your continued study of Mac1ntosh 
Pascal. Only 1f you are perfect and never need to mod1fy or debug your 
programs should you om1t this chapter. 

Do not try to memor1ze all the features of the system. This chapter 
demonstrates many features and the exercises help you pract1ce them. 
Remember the kinds of things you can do w1th these ed1t1ng and debugg1ng 
tools, and then when you have need for them, refer back to this chapter. 

The File Menu 

Open ••. 
Close 
Soue 
Soue Rs .•• 
Reuert 
Page Setup 
Print .•• 
Quit 

F1gure 6. t 

179 



180 Editing Ind Oebugg1ng 

Figure 6.1 shows the F11e menu. We briefly discuss each option. 

New starts a new program window for you. The program Is 'Untitled'. 
New Is not available as a command If the program window Is already open. 
Use Close (below> before New. 

Open ... presents a dialog box as shown In figure 6.2. The portion on 
the left Is a partial catalog of the files available on your disk. By clicking 
the up and down arrows, you can scroll through the complete catalog. 

Open program named 

R IQ 
Rdd 
Bagels ~ 
BaseConuersion mm 

:~o::; I 
Car_Payment IO 

Cancel 

Figure 6.2 

Open program named 

R 
Rdd 

b 
Bagels iilili 

:~::::••ersion I 
Buggy lililli 
Car_Payment IO 

Cancel 

Figure 6.3 

Sample 

Eject 

Sample 

Eject 

Driue 

By clicking on a program and then clicking on the word Open, that program 
Is loaded Into the program window for you. Or by double clicking the 



Editing and Debu11111na 181 

program, you can select and open It. By clicking Eject, you eject the 
current disk. After Inserting a new disk, the name and catalog of that disk 
are shown. With two disk drives, the dialog box appears as 1n figure 6.3. 
By clicking on Drive, you activate the other drlve. Another click on Drive 
returns control to the original disk drive. As wlth New, Open ts an 
avallable command only If the program window does not already contain a 
program. After a Close, Open ts an available option. 

Close puts away the current program 1n the program window. If your 
latest changes haven't been saved, then Close asks you 1f you wish to 
Save or Discard them before closing. 

Save saves the current version of the program 1n the program window 
to the disk It was previously saved to. The manual says that If the 
program ls 'Untitled,' then Save asks for Its name. It Is our experience 
that Save ts not an available command until the program has been both 
named by Save As ... and then subsequently modified. See the discussion 
below under Save As .... for the differences between Save and Save 
As .... 

Save As ... always asks for the name you would like to save your 
program as. If your program has been named already, this name shows In 
the dialog box. You may modify the name If you wlsh or leave It alone. See 
figure 6.4 and the discussion of Save As ..• In Chapter 2. 

Saue your program as Pascal 

I Eject 

saue cancel 

Figure 6.4 

To actually save the program, you simply click in the Save box. Eject 
allows you to eject the disk and save the program on another disk. Again, 
If you have two drives, you may choose to save to the other drive by 
clicking Drive. 

The differences between Save and Save As ... are as follows: Save 
As ... allows you to change the program's name or to change the disk. Save 



182 Editing Ind Debugging 

ls quicker, but always saves under the same name to the same disk that 
the program was loaded from. Save ls useful to make periodic saves of a 
program as you are working on It. 

If neither Save nor Save As ... is active In the Ftle menu, It probably 
means that your program window is not the active window. C11ck 
anywhere In the program window and then Save As ... , at least, should be 
an available option. 

Revert allows you to return to the previously saved version of your 
program. Suppose you are editing a program and decide that you have 
really botched It and wish that you could return to the original version. 
Revert presents you with the dialog box shown In figure 6.5 and If you 
choose Yes, your program reverts to Its previous form. 

Reuert to the preuious uersion 
of your program? 

n Yes B No 

Figure 6.5 

Warning: You cannot revert back past the last Save, so make sure that 
each Save you make ls a step forward. 

Page Setup allows you to choose from several different sizes of 
paper. For normal, American uses you should leave the settings at the 
standard sizes as shown In figure 6.6. 

Poper: ® US Letter 

0 US Legel 

Orlentotlon: ®Toll 

0R4 Letter 

0 lnternotionol Fonfold 

0 Toll Adjusted O Wide 

Figure 6.6 

OK 

( Concel ] 

Print ... begins the process of printing the program 1n the program 
window. You see the dialog box shown In figure 6.7. 



Ed1ttno and Debugg1ng 183 

Quality: @ High O Standard O Draft OK 

Page Range: @ Rll O From: D To: 0 
Copies: LJ 
Paper Feed: @Continuous O Cut Sheet ( Cancel J 

Figure 6.7 

This permits you several choices, which you make by appropriate c11cks. 
You choose from High, Standard, or Draft qualfty of print. The higher the 
quality, the slower the printing. You also choose a page range, if not All 
of the pages are to be printed. You decide the number of copies and tell the 
system whether the paper ls Cont1nuous feed <normal computer printout> 
or separate sheets of paper <Cut Sheet). If you are using separate sheets, 
then the system pauses after each page for you to insert the next page. 
The Tab key Is used to move the flashing Insertion pointer from option to 
option. Of course, you must also make sure that the printer is turned on 
and that it is ready. On an lmageWriter, the green select light must be on. 
Then click OK to start the printing. 

Quit closes the current program and exits the Macintosh system. If 
you have made changes to your program that have not been saved, you see 
the dialog box as shown in figure 6.8. 

Do you want to saue or discard the changes 
to your program before quitting? 

( Saue J ( Discard ) Cancel 

Figure 6.8 

The Edit Menu 

For reference purposes, the options under the Edit menu, shown in 
figure 6.9, are discussed together. Each is then illustrated in the example 
following the discussion of the options. Those who have used the 



184 Editing and Dllluggtng 

Macintosh for word processing or other appllcatlons are already famlllar 
with these useful editing features. 

Copy 8€C 
Paste 3€LI 
Clear 
Select All 3€A 

F1gure 6.9 

For most of these options, some text must be selected or h1ghllghted. 
Remember, as 1n Chapter 2, to select some text, drag the mouse over that 
text. A word can be selected by double cllcklng anywhere within the word. 

Cut takes the currently selected text and moves lt to the Cl1pboard, 
which ts another window of the system. Only the most recently cut text Is 
stored on the Cl1pboard. 

Copy puts a copy of the currently selected text on the Cl1pboard 
without disturbing the currently selected text. Thus, Cut and Copy are 
very similar. The difference ts that Cut removes the original and Copy 
does not. 

Paste Inserts the current contents of the Cl1pboard at the present 
position of the flashing Insertion pointer ( I ). The contents of the 
Cl1pboard are left unchanged, so one Item may be pasted repeatedly. 

Select All Is a shortcut whereby all text In the window becomes 
selected. 

All of the Ed1t menu options are applicable to the Instant and 
Observe windows (discussed below) as well as the regular program 
window. 

As an example, consider the program Edit shown In listing 6.1. Load 
Edit from your Sample diskette Cor type It In now) and follow along with 
this example. Adjust the program and text windows so that they are 
larger and run the program to produce the output shown In figure 6.10. 



Ed1ttng and Debugg1ng 

program Edtt; 
begin 
Wrtteln('Unfortunately, thts is the last sentence.'); 
Writeln('This is the second sentence.'); 
Writeln('This program prints three sentences.') 

end. 

Ltsttng 6.1 

Unfortunately, this is the last sentence. 
This is the second sentence. 
This program prints three sentences. 

Figure 6.1 O 

185 

Clearly, the program runs w1thout errors, but the output Is In the wrong 
order. To readjust the lines, click In the program window and, by starting 
at the end of the first Wrlteln statement, select the first line and the 
previous carriage return by dragging the mouse up and slightly to the left 
as shown 1n figure 6.11. 

§0 Edit 

program Edit; ~ 

Writeln('This is the second sentence.'); 
Writeln('This program prints three sentences.') 

end. 
~ 

QI ~ 121 

Figure 6.11 

Now choose Cut from the Ed1t menu as shown in figure 6.12 and the 
selected text "disappears," leaving your screen as 1n figure 6.13. Move the 
mouse to the end of the last Wrlteln and click at that position to place the 
insertion cursor there. See figure 6.14. 



186 

5U 

QJ_ 

_,.., 
_LJ 

21. 

program Edit; 
begin 

Copy 
Paste 
Clear 

3€C 
8€LI 

Select All 8€A 

Figure 6.12 

Edit 

Writeln(This is the second sentence.'); 
Writeln(This program prints three sentences.') 

end. 

Figure 6.13 

Edit 

program Edit; 
begin 

Writeln(This is the second sentence.'); 
Writeln(This program prints three sentences.'~ 

end. 

Figure 6.14 

Editing ml Debugging 

~ 

~ 
lQ l2J 

IQ 

~ 
~ 1121 

S1nce th1s ls no longer the last Pascal statement 1n the program, we 
need to type a semicolon and then choose Paste from the Ed1t menu. The 
previously Cut llne reappears at the end of the program as shown 1n figure 
6.15. 

The first two sentences are stlll out of order. We leave It to you to 
interchange them. You can Cut either sentence and then Paste It back into 
its proper place. When you finish, your program should appear as In figure 
6.16. 



Ed1t1 ng and Debuggt nu 187 

i;,...., r..1:& I 
~i tUll 

progrom Edit_; IQ 
begin 

Writeln('This is the second sentence.'); 
Writeln('This program prints three sentences.'); 
Writeln('Unfortunately, this is the last sentence.'); 

end. 
~ 

¢1 J2 Q] 

Figure 6.15 

'=D I"'' Edit 

progrom Edit; fQ 
begin 

Writeln(This program prints three sentences.')i 
Writeln('This is the second sentence.'); 
Writeln('Unfortunately, this is the last sentence.'); 

end. ro 
~ E Q] 

Figure 6.16 

Remember, tf you mess tt up completely, or would like to do this again for 
practice, use Revert from the File menu to restore your program to tts 
original form. 

To show how Copy can be useful, let's suppose that we want to double 
space the Important output from this program To do so, we need to enter a 
"Wrtteln;" between the current 11nes of the program. Being basically lazy, 
we want to do as little typing as possible. Therefore, pick any of the 
Wrtteln statements tn the program and select the word "Wrlteln" tn that 
statement by double clicking tt. Figure 6.17 shows the final "Wrlteln" 
selected. 

Now choose Copy from the Ed1t menu. Nothing appears to happen, but 
a copy of the Wrtteln ts placed on the Clipboard. (We shall learn how to 
view the Clipboard shortly.) 



188 Editing and Debugging 

-o Edit 

progrom Edit; & 
begin 

Writeln('This program prints three sentences.'); 
Writeln('This is the second sentence.'); 
wgm('Unfortunately, this is the last sentence.'); 

end. D 
¢f IQ Q] 

Figure 6.17 

Move the mouse and place the Insertion cursor after the first statement In 
the program. Then choose Paste and your screen should appear as In 
figure 6.18. 

progrom Edit; 
begin 

Edit 

Writeln(This program prints three sentences.'); 
Writel~Wlf'lllt@Ullll « "ii'llilU@ U@ ltllil@ §®®®llllmi §§lllllt©llll®@." ); 
Writeln('Unfortunately, this is the last sentence.'); 

end. 

Figure 6.18 

The problem Is that there Is, of course, a missing semicolon after the 
"Wrlteln." Since the Insertion pointer Is at that position, we simply type 
the semicolon and the screen jumps to figure 6.19. Since the Clipboard 
still contains "Wrlteln," we need only reposition the mouse behind the next 
statement, choose Paste and then type the missing semicolon to make our 
program appear as In figure 6.20. 

This example has been very simple, yet we hope It has shown you the 
power of the Edit options. We have only cut and pasted lines, but whole 
paragraphs may be cut and repasted by simply selecting a paragraph at a 



Editing and Dabugg1na 189 

time. The Clipboard preserves Its contents between programs. Hence, 
you may even cut or copy text from one program and paste It In another. 

program Edit; 
begin 

EU it 

Writeln('This program prints three sentences.'); 
Writeln; 
Writeln('This is the second sentence.'); 
Writeln('Unfortunately, this is the last sentence.'); 

end. 

program Edit; 
begin 

Figure 6. 19 

Edit 

Writeln('This program prints three sentences.'); 
Writeln; 
Writeln('This is the second sentence.'); 
Writeln; 
Writeln('Unfortunately, this is the last sentence.'); 

end. ~ 

1¢ r 1~~~~~nnl!niti~!i!~nliiit!1!~1~n!~!~~ni1~i~i!i~~~~n~ni~~n~1ii1!~i!!IH~mi~~~mruiii~11111~~I~n~i1filli~n!!~iii!Ii~~nm~~ lE: 

Figure 6.20 

The Search Menu 

Figure 6.21 



190 Editing IRd Debuggtng 

The Search menu, figure 6.21, allows you to find and replace phrases 
in your program. We discuss the options and then provide an example for 
you to test yourself on. We discuss the options 1n a different order than 
the one shown on the menu, since What to f1nd is the one wt th which you 
must always begin. 

What to f1nd, when chosen, displays the dialog box shown 1n figure 
6.22. 

Search for I 
:=::==============================~ 

Replace with 
~~~~~~~~~~~~~~~~ 

®Separate Words

O Rll Occurrences

®Case Is lrreleuant

O Cases Must Match

F1gure 6.22

OK
Cancel

In the Search for box, you type, reasonably enough, the text that you
would like to search for. In the Replace wnh box, you indicate what text
(ff any> you wish to have replace the sought-for text. Important: The Tab
key, not the Return Key, advances you from one box to the other. The
Return key Is shOrt for OK, which accepts your selections and returns you
to the program. If you accidentally hit the Return key, them simply choose
What to f1nd again and start over. The Cancel box also returns you to
the program window, but any selections you have made are lost. You have
two other choices that you may make in the dialog box. The simplest Is
the Case Is Irrelevant and Cases Must Match choice. This spec I fies
whether you want the string you are seeking to match exactly, with
repsect to upper case/lower case, the string In the Search for box. For
example, If the Search for string ts "Target" and you choose Case Is
Irrelevant, then "target", "TARGET", "Target", and even "tARGet" match.
Of course, If you select Cases Must Match then only "Target" matches
the given string.

Separate Words tells the system to look for the Search for string
only as a complete word while All Occurrences looks for the Search
for string anywhere ft can find ft. For example, a Separate Words
search for "dog" In the sentence

Edtt1ng and Debugg1ng 191

To escape the big dogs, our dog went Into his doghouse.

only finds "dog" once (at the seventh word). On the other hand, a search for
All Occurrences of "dog" finds It three times In the above sentence. We
cannot say which search method you should always use. Sometimes one Is
easier than the other. For example, If you wanted to change each Instance
of the string "I" to "We", you would be wise to use a Separate Words
search. Otherwise, words like "Indeed" would be turned into "Wendeed". An
All Occurrences search usually Involves less typing, but can easily lead
to unexpected changes. Remember, click OK to accept your choices In the
What to ftnd dialog box.

Ftnd advances the insertion pointer from Its current position to the
next occurrence of the Search for string. Hence, remember to place the
cursor at the beginning of the program If you wish to find the first
occurrence of the string. Each Ftnd advances to the next occurrence so
that you can leaf through the program, stopping at each occurrence of the
given string. The Replace with box (from the What to find dialog box)
has nothing to do with a Find.

Replace replaces the currently selected text with the Replace with
string. The Search for string has nothing to do with a Replace. Find and
Replace can be used In tandem to find and then selectively replace text
with other text.

Everywhere Is the most powerful of the Search options. It begins
at the top of the window and finds and replaces every occurrence of the
Search for string with the Replace with string. Because Everywhere
can wipe out a program, It asks for final permission before making the
changes.

To 111ustrate these Ideas, load or type the program Search Into your
Macintosh. The listing for Search Is shown In listing 6.2. This program
has two things wrong with It. "BASIC" Is misspelled and also "Print" has
accidentally been typed for "Wrlteln".

Of course, the easiest way to fix the spelling of "BASIC" Is to drag the
mouse over the "SA" and retype It as "AS". However, let us pretend that
this is a very long program and that we know that "BASIC" Is misspelled,
but we don't know where the line containing the misspelling Is since the
program Is so long.

192

program Search;
begtn

Editing nl Debugging

Print('This program was written by a BSAIC programmer');
Print;
Print('who forgot that the output statement in Pascal');
Print;
Print('is the "Writeln" statement.');
Print;
Print('Use the ·search" options to fix the program.')

end.

Ustlng 6.2

We can use the Search options to do a find and replace for us. Choose
What to rtnd from the Search menu and type "BSAIC" as the Search for
string. Hit the Tab key, then type "BASIC" as the Replace with string.
Since we have entered whole words, we use a Separate Words search.
Either case selection Is fine: Our selections are given in figure 6.23.

Seorch for j BSA IC
!===============================~

Reploce with j'-e_As_1c ______________ _,

® Seporote Words

O All Occurrences

®Cose Is lrreleunnt

O Coses Must Motch

Figure 6.23

OK
Concel

Cilek OK and watch nothing happenl All we have done Is define how the
find and replace will operate. We must now select those options to effect
the change. Make sure that your cursor Is near the beginning of the
program and select Find from the Search menu. The word "BSAIC" should
now be hlghllghted. Choose Replace from the Search menu and the
spelling Is corrected. Once again, Find and Replace may seem like more
bother than they are worth, but as your programs grow In size you will
f1nd that these options become more useful.

Everywhere Is certainly a useful option In this example. Keep It in
mind when you decide to change a variable's name or make other such
global changes. To beg1n we must aga1n choose What to find and then

Edtttng and Debugging 193

enter "Print" and "Wrlteln" as the Search for and Replace with strings
respectively. Once again, Separate Words and Irrelevant Case
searches are fine. Don't forget that you need the Tab key between your
test strings.

Seflrch for I Print
l==============================~

Replflce with Llw_r_ite_ln _____________ __J

® Sepflrflte Words

0 Rll Occurrences

® Cflse Is lrreleuflnt

O Cflses Must Mfltch

Figure 6.24

OK
Concel

Click OK again to remove the dialog box. Then pull down the Search menu
and choose the Everywhere option. Because you can make lots of changes
that you may later regret, you are given one last chance to back out of the
deal, as shown in figure 6.25.

Change "Print" to "Writeln" euerywhere in the actiue
window?

No

Figure 6.25

Since we want to continue, click Yes and watch all occurrences of "Print"
become "Wrlteln".

As a final nonsense example, let's try to change all occurrences of the
letter "e" In our program to the letter "z". Choose What to find and enter
"e" and "z" as the Search for and Replace with strings. To see what
happens, leave the other settings at Separate Words and Case Is
Irrelevant, as In figure 6.26.

Click OK, choose Everywhere, and then click Yes to give permission
for all the e's to be changed to z's. You should get the message shown In
figure 6.27.

194 Editing and Debugging

Search for e
~===============================:

Replace with z

@ Separate Words

O Rll Occurrences

@Cose Is lrreleuant

O Coses Must Match

Ffgure 6.26

i 11!!} too't fiod '•'lo tho "t;"' wlodow.

Ffgure 6.27

OK
Cancel

II

How can 1t be that the system can't f1nd an "e" 1n our program? We can see
about a dozen of them. The answer 1s that we asked for a search by
Separate Words, and there are no words conslst1ng of the s1ngle letter
"e" In our program. Go back to What to find and select AH Occurrences.
This t1me your program should be converted to the gobbledygook shown In
figure 6.28.

:U

progrom Szarch; ~
bzgin Wirllll!!DllD « "'ii"llil9@ Wllr®~lf'®ll!lil WH wll"ll~~!!llil !QlW) ® ~~~Ole
Writzln;
Writzln('who forgot that thz output statzmznt in Pascal');
Writzln;
Writzln('is thz "Writzln" statzmznt.');
Writzln;
Writzln('Usz thz "Szarch" options to fix thz program.')
~d ~

IQ

Ffgure 6.28

Ed1tlnu and Debugg1nu 195

Fortunately, If you replace "z" with "e" everywhere, you restore your
program to Its previous form. Such "undoing" may not always work. It
works In this example because the letter "z'' does not occur In the original
version.

Keep the Search options In mind as you start to write longer
programs. Remember especially the power of Everywhere.

The Windows Menu

ll!!ill I !I!lrJm

Untitled
lnst11nt
Obserue

Te Ht
Dr11wing

Clipbo11rd

Type size

Figure 6.29

This menu, figure 6.29, allows the user to activate several different
windows. The first ls the program window, labelled Untitled above. Your
screen may show the name of a specific program. Choosing this option
makes the program window active and brings It to the top of the desk.

Instant Is a window In which you can place Pascal commands and
then have them executed Instantly. The use of the Instant window will be
illustrated after the Run options In the next section. Clicking Instant
gives you a window as In figure 6.30. Use the close box to hide It again.

:o Instant

(Do It

Figure 6.30

196 Editing and Debuggtng

Observe Is a window that allows you to watch the values of
variables and expressions as the program executes. This window is
extremely useful for debugging programs that run, but produce garbage.
Its use is also illustrated In the next section. To see its appearance,
choose Observe and you get the window shown In figure 6.31. Use the
close box to hide it again.

~D Obserne
Enter an expression lQ

J;::;-
IQ

¢1 lQ 121

Figure 6.31

Text Is the normal output window. Choosing Text simply makes the
text window the active window of the system.

Drawing is the graphics window for the system. Its use Is discussed
1n Chapter 12.

C11pboard ls the window used by the Edit options Cut, Copy, and
Paste. By activating the Clipboard, you can see Its contents and see
them change as the result of a Cut or Copy. Figure 6.32 shows our
Clipboard still holding the "Wrlteln" from the editing of program Edit.

150 Clipboard

Figure 6.32

Type size Is not really a window. It places a dialog box on the
screen and allows the user to choose from three different sizes of text.
We recommend the standard, medium-size type for most purposes.

The Run Menu

For reference purposes, the Run options, which are shown In figure
6.33, are all discussed briefly. Then these are Illustrated along with the

Ed1t1ng and Debugging 197

Instant and Observe windows to show the user how a program may be
debugged.

60 8€6
60-60
Step 8€S
Step-Step

Stops In

Figure 6.JJ

Check simply checks the program In the program window to see If Its
syntax is correct. Go, discussed below, does an automatic Check, so you
do not need to explicitly use Check. This option ls included for those
occasions when you want to check but not run your program. For example,
you may want to check the portion of a program that you are currently
writing, but which is Incomplete. Here, Check would be preferable to Run.

Reset reinitializes your program to Its condition just prior to
execution. The output window is cleared and the hand (If any> is removed
from the program. See the discussion concerning Go below.

Go makes your program execute. If the program was halted In
mid-execution, then Go resumes execution of your program from the point
of interruption. Use Reset before Go if you wish to start a halted
program over from the beginning. One halts a program, as we Illustrate
below, to Investigate the program during execution.

Go-Go Is much like Go except that It pauses briefly at "stop-signs"
<explained below>, updates the Observe window, and then continues
execution. Go-Go Is thus explicitly a debugging mode. It allows the
program to execute, but also allows us to watch through the Observe
window as the program executes.

Step permits execution of one line of your program at a time. Thus,
Step ls also a debugging tool. A hand points at the statement being
executed so that you can see what the program is doing.

198 Editing md Debugging

Step-Step Is similar to Step except that the program only pauses
after execution of each statement, updates the Observe window, then
continues.

Stops In allows the user to set "stop signs" at various statements in
a program. These stops permit the user to Inspect the values of various
variables before continuing execution. The setting of stop signs Is
described In the example program below. If Stops In has been chosen,
then the menu reads Stops Out. Clicking Stops Out removes all stop
signs from the program. Clicking a particular stop sign removes that stop
sign.

The Pause Menu

Figure 6.34

The menu of figure 6.34 Is only visible while your program Is
executing. Clicking Pause Interrupts your program unt11 the mouse button
Is released. Choosing Han halts the execution or your program.

Fan Shortcuts

Many of the mouse actions can also be performed, If more convenient,
from the keyboard. Each shortcut uses two keys, the so-called Fan key ("')
and a regular key. For example, "Fan G" (hold down the Fan Key and push the
G Key> ls short ror Go rrom the Run menu. For selections, such as Go, that
are used very often, the Fan key shortcut can be worth remembering. Here
Is a table of Fan shortcuts for Macintosh Pascal:

Edit Shortcuts

Cut
Copy
Paste
Select All

Search Shortcuts

Find
Replace
Everywhere
What to find

Run Shortcuts

Check :J::tK
Go :J::tG
Step :J::t S

Edlttng and Debugg1ng

A Complete Debugging Example

Consider the program 'Debug· shown in listing 6.3.

program Debug; (WARNING: THIS PROGRAM IS BUGGY.)
(This program assumes that the text file QuizScores is]
(on the Macintosh Pascal disk.]

var
Name : string;
Score: Integer;
Sum: Integer;
Average : Real;
Index: Integer;

begin
Close(Input);
Reset(lnput, ·auizScores');
Writeln('This program is supposed to compute averages');
Writeln('on four quizzes, but it has a bug in it.');
Writeln;
Sum:= O;
wht le not Eof do
begin

Readln(Name);
for Index:= 1 to 4 do
begin

Read(Score);
Sum := Sum + Score

end; (For}
Readln;
Average := Sum I 4.0;
Writeln(The average for·, Name, · is ·, Average: 6 : 2)

end; (While J
end.

Listing 6.3

199

You should Open Debug from your Sample diskette and run 1t by choosing
Go from the Run menu. Unless you have two drives, be sure that the text

200 Editing and Debugging

file QulzScores Is also on the Macintosh Pascal disk. If you have to create
your own text file, then use the format shown here:

Lowell
98 95 96 99
Bob
14 11723

Notice that Debug Is supposed to average four quiz scores for students.
The output from this program begins as follows:

The average for Lowell is 97.00
The average for Bob Is 110.75

The first line Is reasonable, but that second line seems a bit odd. Bob's
highest score Is a lousy 23 and that stupid computer says his average Is
over I 001 <Notice that you do not hear Bob complaining.> Observe as the
program continues to run that the averages get bigger and bigger.
Something Is clearly wrong with the computer!

This ls an example of a Jog1ca1 error. We apparently have managed
to write a syntactically correct Pascal program. That ls, the program runs
without errors. Unfortunately, however, It doesn't produce the correct
results to our problem. We have managed to write a "correct" program, but
It's not the program that solves our problem. Remember that computers
are just fast, accurate morons, and always check your output for
reasonableness. Just because the computer says It's so doesn't make It so.
A logical error indicates that our design of the program was faulty. Our
algorithm has been implemented without syntax errors, but our algorithm
doesn't solve the given problem. Apparently, the problem was more subtle
than we thought and we missed some fine point. Too often the student
thinks the objective Is to get a program that runs and so anything Is tried
to remove pesky syntax errors. Finally the program runs, but produces
garbage because the programmer has lost sight of the objective. This has
happened often enough that programmers have an acronym for It:
GIGO--Garbage In, Garbage Out, meaning that the quality of the output
Is no better than the quality of the Input. You are responsible for the
quality of the program, so always remember that your objective Is a
correct program that solves the given problem.

Logical errors are harder to find and fix than syntax errors. There are
no error messages to direct us to the llne(s) with the logical error<s>.

Ed1tlna and Debugging 201

Most systems leave the debugging of such errors ent1rely to the user.
Fortunately, Mac1ntosh Pascal provides a large set or tools that can help
the programmer f1nd and correct these kinds of errors. We suggest you
follow along as we Illustrate some of these tools on Debug.

Bring down the Windows menu and select Observe, glv1ng us a
w1ndow like the one 1n figure 6.35.

~o Obserue
Enter an expression I ~

to
191 -,¢ I~

Figure 6.35

The purpose of the Observe w1ndow Is to allow us to check the values of
Important expressions In our program as our program executes. For
express1ons we usually enter simple variables, but complex expressions
are allowed. Our first problem Is to decide what we would like to observe.
Since the average Is not correct, perhaps we should observe the variable
Average. But that Is not likely to get us anywhere as the program Debug
1tself displays Average each time through the while loop. Average ls
wrong, but to see why It ls wrong we need to observe more deeply. Since
Average Is computed as Sum/4.0 and Sum Is the sum of the scores, Jet's
observe Sum and Score. To do so, click 1n the Observe window, If It Is not
already the active w1ndow, and type Sum (followed by the Return key> and
Score. Your Observe window should now appear as In figure 6.36.

Obserue
Sum

Enter an expression Score

Figure 6.36

Now choose Go and begin the execution of your program. Click and hold
Pause as the program runs. (You may have to hold Pause twice to get

202 Editing and Debugging

results.> The program will pause and the current contents of Sum and
Score appear 1n the Observe w1ndow, much as 1n f1gure 6.37.

r ' .. me Hlit Se<11< h flun IJJtni!OUIS ~

,.-J Hult L

This program is supposed ~[Obserne
Close(1103lsum ~ Reset(on four quizzes, but i l h

Write I 12Jscore tr\
Write I The average for Lowe 11 is 2£ J_ ~

Write I The average for Bob is II '21
Sum:= The average for Rosanne is 201.50
while The average for Ralph is 275.75

begi
Rea
for

be
R

~ s
en

Rell
Ave
Wri

H
end;

IL

Figure 6.37

Note that there Is also a hand that Indicates the statement to be executed
next. Release the button, then Pause the program several more times
during Its execution to see the values of Sum and Score updated. The
Observe window only shows the values of variables during execution. At
the end of the program the values of Sum and Score disappear and your
Observe window appears as In figure 6.38.

:o Obserne
llndetlned nome Sum
llndefined nome Score

Figure 6.38

Editing and Debugging 203

Besides Pause, you can also use Halt from the Pause menu during
execution. Execution halts and the values of Sum and Score may be
studied. When you select Go, execution continues. Run the program again
using Halt to stop the execution several times whlle observing the
changing values of Sum and Score.

Interrupting the execution of the program to observe values of key
variables can be a very useful debugging tool, but It Is difficult to know
where the program will be Interrupted. It would be more convenient If the
system would pause at certain key statements so that we could make our
observations. To perform this neat trick, pull down the Run menu and
choose Stops In. The program window must be the active window
before Stops In becomes a possible choice on the Run menu. Your
program window should show a stop sign In the lower left hand corner.

filJ Debug
l;t;

Reset(lnput, 'QuizScores'); ~;
Writeln(This program is supposed to compute averages'); l!m
Writeln('on four quizzes, but it has a bug in it.'); mm
Writeln· ~~~
Sum:= O; !!!II
while not Eof do 1111
beg1n '•P•·

Readln(Name)- l!~!i
tor Index:= 1' to 4 do i!mi

:oJ::·

~~n •
Read(Score)- mlt
Sum := Sum ~ Score ;!li!i

end· {For} llllli ' ::::::
Readln· fii!ii"
Averag'e := sum I 4.0; jj~~
Writeln(The average for·, Name,· is·, Average: 6: 2) ~!l!i

end; {While ~ ~
end. K)]

·~ [Jl!11111111111~1111llli11111mmmmm~mm~mm1111~mmmmmmmmm1~m1mmm1111i11111111111111mmm1mmm11mmE ~

Figure 6.39

Bring the mouse Into this column and notice that It changes Into a
stop sign. Align the mouse with the end at the foot of the wht1e loop and

204 Editing Ind Debugging

cllck the mouse. This leaves a stop sign at the end as shown In figure
6.40.

_o Debug

Reset(lnput, 'QuizScores'); g,
Wri tel n('Tt1i s program is supposed to compute averages ') ; !i!m
'w'riteln('on four quizzes, but it has 8 bug in it.'); mm
Writeln;
Sum := O;
while not Eof do
begin

Readl n(Narrie);
for Index := 1 to 4 do

begin
Read(Score) ;
Sum := Sum + Score

end; {For}
Readln;

i!ii!!

ill!!!

II
~~~~:?:{';h;u~~:r:g~; for·, Name, · is ', Average : 6 : 2) ·::'.I 

ai end; {Vvrii 1 e ~ ~ 
end. ITT 

D::'. 

Figure 6.40 

Now, bring both the Text and Observe windows to the front of the 
desktop, arrange them so both can be seen, and execute the program by 
choosing Go from the Run menu. The program executes up to the stop sign, 
then halts and shows us Sum and Score as In figure 6.41 . Also notice the 
hand to Indicate that execution was Interrupted at the stop sign. Continue 
the program by repeatedly choosing Go. Note that the program stops each 
time through the while at the stop sign. 

A useful variant of Go is Go-Go. Reset the program and choose 
Go-Go from the Run menu. This time the program pauses briefly at the 
stop sign, updates the Observe window, and then continues. Pause may 
be used with Go-Go to suspend execution to allow you more time to 
observe either the program output or the values in the Observe window. 
Note that Go-Go ls strictly a debugging tool. Go-Go is not even a possible 
choice from the Run menu unless Stops In has already been selected. 



Edtung and Debugging 205 

r c File Edit Search Run Windows 

ill[ Te Ht 

Reset(lnput, 'QuizSca This program is supposed to co~rute averages ~ 
Writeln('This progrer on four quizzes, but it has a bug in it. 
Writeln('on four quiz 
Writeln; The average for Lowe I I is 97.00 
Sum := O; 
while not Eof do 
begin ~ 

Readl n(Name); In 
for Index := 1 to Lj ~ 
begin 

Read( Score); Obserue 
Sum := Sum + Score 388 Sum 

end; {For} 
Reodln; 

99 Score 

Average := Sum I 4.0; 

~ 
Writeln(The average for·, Name, is , Average: b : 'LJ 

end; {While} 
end. 

~ 

Figure 6.41 

Step and Step-Step are also useful debugg1ng tools. Step allows 
you to single-step through your program. That is, Step executes one line 
of your program and then halts. You may continue the execution w1th 
another Step (use the Fan-S shortcut!) or w1th Go or any other of the Run 
commands. Step can also be used to cont1nue at the cr1t1cal stage of a 
program that has been interrupted by a Halt or stop sign. Try stepping 
through the program Debug. You quickly see that Step, while a powerful 
debugging tool, must be used selectively. You do not want to Step through 
a long program a statement at a time. 

Step-Step 1s much 11ke Go-Go except that Step-Step pauses after 
each statement, updates the Observe window if necessary, and then 
automatically resumes execution of your program. Try Step-Step on the 
program Debug. Watch that hand go through the f or loop four times and 
around and around through the while loop. 

Our final debugging tool ls the Instant window. Bring down the 
Windows menu and select Instant to see the window in figure 6.42. 



206 Editing 11111 Debugging 

-= 1nst11nt 

Do It 

Figure 6.42 

The purpose of the Instant window ls to allow you, wh11e a program 
ls halted, to perform any statement at all. We can use the Instant 
window, for example, to view values that we didn't think to put 1n the 
Observe window. We can even use the Instant window to assign values 
to variables 1n our program. For example, If we feel that our program 
crashes whenever certain cond1t1ons arise, we can create those cond1t1ons 
In the Instant window and then test our hypothesis. 

~ s File Edit Search Run Windows 
, 

TeHt 

Reset(lnput, 'QuizSco The average for Lowell i8 97.00 

Writeln(This progror The average for Bob i8 110.75 

Wr1teln('on rour Quiz The average for Ro8anne is 201.50 
Wrfteln; The average for Ralph is 275.75 
Sum:= O; The average for Larry is 363.00 
while not Eor do The average for Phil i8 365.25 

begin The average for George is 176.00 
Readln(Name); George 
for Index := 1 to ~ r-

!I] Instant Obserue 

CJ&!l] ~ 1912 Sum 

Wri teln(Name~ 93 Score 

12 is;, Average: 6: 2) 

IQ_ 12~ 
l"llU. 

~ 

Figure 6.43 



Editing and Debugging 207 

The Instant window can be very useful for discovering why a program 
Is stuck In an Infinite loop (see the exercises). To use the Instant 
window, we type our Pascal statement(s) in the window, then click Do It. 
Figure 6.43 shows the screen with the Instant window asking for a display 
of the variable Name. Do It has already been clicked, and "George" has 
been written In the Text window. 

We have spent quite some time describing the debugging features of 
Macintosh Pascal. Since you are an error-prone human, you wm probably 
find It worth your while to refer back to this section as you continue 
through the book. You can't really call yourself a programmer until you can 
debug your own programs. Learn to use Macintosh Pascal's tools to make 
this task as simple as possible. 

Finally, what Is wrong with the program Debug? We hope by now you 
have spotted the problem. If not, take another look at figure 6.43 How 
does George, even with four scores like 93, ever get a Sum like 1912? Or 
Step-Step through the program and watch Sum get bigger and bigger. The 
problem, of course, is that Sum 1s never reset to zero. Rather than being 
the sum of one person's four scores, sum is accumulating the sum of all 
the scores. We leave the problem of finding the correct placement of the 
statement ·sum := O;' to the reader. We also point out that this is one 
instance In which we must do our own Initialization of Sum, rather than 
rely on the system to do It for us. 

This example makes one more point that we would like to emphasize 
about the process of debugging a program. To spot a problem, it helps to 
see that certain values are not what they should be. This means that It 
may be necessary to do some hand computations with which to compare 
the observed values. A very direct way to have debugged the above 
program would be: 

Since Bob's average is the first average that Is wrong, 
observe Bob's four scores and add them up to obtain Sum. 
Immediately we see that Sum Is wrong. We then see why Sum 
Is wrong. If not, we start again and compare at each step Sum's 
expected value with Sum's actual value. 

The Apple Menu 

There is one other menu that is common to all Macintosh applications. 
This Is the Apple menu. When you drag down the Apple, you will see the 
menu shown in figure 6.44. 



208 Editing and Debuggtng 

Scrapbook 
Alarm Clock 
Note Pad 
Calculator 
Key Caps 
Control Panel 
Puzzle 

F1gure 6.44 

Of the options listed, the Alarm Clock and the Calculator are 
probably the most useful. See your Macintosh manuals If you need more 
Information about any of the selections. 

Macintosh System Commands 

This section lists, for Quick reference, Instructions for deleting, 
renaming, copying, and organizing disk f11es on the Macintosh. The menu 
Items referred to here are ava1lable after you Insert your Pascal disk 1nto 
the Macintosh. Don't worry If your disk shows other files than those listed 
here. 

Delet1ng F11es 
First, drag the rne to be removed to the Trash can as In figure 6.45, 

wh1ch shows Junk on Its way to the Trash. Place the arrow over the trash 
can to deposit Junk Into the Trash. Second, you usually need to pull down 
the Spec1a1 menu and select Empty Trash to actually delete the file 
from your disk. 

Renaming Flies 
See the section on renaming files In Chapter 2. 

Copying Flies 
To copy a single file from one disk to another, Insert one of the disks. 

On one-drive systems, eject the disk and then Insert the other disk. On a 
two-dr1ve system, Insert the other disk Into drive 2. Arrange the two dlsk 
windows so that they share the screen as In figure 6.46. Now, drag the 
file from one disk window to the other. If you have only a one-drive 
system, you need to swap disks several times as requested by the system. 



Editing end Debugging 

' C File Edit Uiew Speclol 

4 itoms 

CJ ~ 

PllSClll 

3221( in dist 

I 
S.,,stem folder 11.cintosh Pose>l -

0 
Empty folder 

77K n•il•blo • • • · · · • • • 

.... ... .... ..... ......... .... ..... ................... ........... 

~ ~ ~ ~ ) ) ) ) ) ) ) ) ) ) ) ~ ) ~ ~ ) ~ ) ) ~ ) ) ~ ~ : ) ~ ~ ) : : ) ) ) ) ) ) ) ~ ~ ) ) ) ) ) ) ) ) ) ) ~ti) : ~ 
............ .................................................... .. . . ... . ... . . .. . . .. . .. .. . . .. . . . . . .. . ... . .. . . . .. . .. . . .. . .. . . . . .. . .. 

Figure 6.45 

~ c file Edit Uiew Speciol 
, 

1§0 Poscal Somple . . . 
4 itoms 322K in disk 77K ovoilobl 12 itoms 128K in disk 272K •nilob 1 

0 0 CJ 
Empty folder CH2 CH3 

CJ ~ 
S.,,stem folder Macintosh Pascal 

0 0 0 CH4 
CHS CH6 

0 
Empty folder 

[I 
dUL&LiUli 

!······ 0 0 
CH 7 

CJ 
CH 8 

. ~ CH9 

:: ~: -.. -~ ~ 
In : : 

,.i..;.1<5T....._ _____ :.u~m~:: ~ .. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. -.. ~ .. :: ~ 
Figure 6.46 

209 



210 Editing and Debugging 

To copy more than one file at once, 1nsert the d1sks as above. Drag 
the mes to be cop1ed to one corner of the1r w1ndow. Then select all the 
files to be copied by dragging a rectangle around them as in figure 6.47. 

' c file [dit Ulew Special 

~o Posco! Snmple 

6 it•ms 365K iA disk 34K onilo~l• :1=1~2-it_•-~==1=4<JK~in=d=is=k =25=7=K-ov-•i=l ..... i._: 

CJ 0 
CH2 CH 3 

~: 
·!::Ii : EmpQ~ 
Wi! · 

Emply Folder 

0 
CH 6 

0 
CH4 

CJ 
CH 5 

0 ,··················· ··········· 

~.~,.~ I ~i 
0 CJ 0 

CH 7 CHS CH9 

......... .. ... ............... \ :::m 

Fl : 
~: 

CJ CJ CJ 
CH 10 Ch11 

T•xlFiles 

"' 

F1gure 6.47 

To form the rectangle, click the mouse above and to the left of the 
group of files and drag the mouse down and to the r1ght. When all the files 
are caught in the rectangle, release the mouse button. Now, by dragg1ng 
any or the mes, all follow 1n tow. F1gure 6.48 shows Larry, curly, and Moe 
on the1r way to another d1sk. 

To copy an ent1re d1sk, you can use the d1sk copy program on the 
Mac1ntosh system D1sk. However, you should be aware that certa1n f1 les, 
such as Macintosh Pascal, are copy-protected and cannot be copied by any 
or the means described here. 

Organizing Files 1n Folders 

To keep your disk from getting too cluttered, we suggest you organize 
your programs from each chapter Into a separate folder. To do this you 



Edlttng and Debugging 211 

r S File Edit Uiew Specie! 

PllSClll Sample 

6 itHIS 365K in disk 34K •nil•bl~ :1=1=2= i=t•=m=s===l=4=3=K=in=d=is=k=25=7=K=•=Y-•i=l•=bi.""""' 

0 0 0 0 
M•cintosf\ P asca 1 Empty Foldor Empty foldor CH2 CH3 

0 
S.,,stl'!Tl Foldff 

0 
CH 6 

CJ 
CH4 

CJ 
CHS 

0 
CH9 r~ .... .!CH 7 

CJ 
CHS 

0 
Ttxtfiles 

L. 
CJ 

Ch11 

Figure 6.48 

Close 
Close Rll Larry 

Print 

[i 
Sy st Eject ~E 

Moe 

F1gure 6.49 



212 Edttlng ftl Debugging 

need to have an Empty Folder on your disk. If you do not already have one, 
then you may copy one, as explained above, from the system Disk. 

The first thing to do Is make a duplicate copy of the Empty Folder, so 
that the Empty Folder Is available when needed again. To duplicate a 
document, select that document by cl1cklng It, then choose Dupl1cate from 
the Fl le menu as shown In figure 6.49. After a few seconds you have a 
copy or the document as shown In figure 6.50. 

Pascal 
7 items 365K in disk 34K available 

ciritosh Pascal 

Sy stem Fo Ider 

m m Larry 

Cur~ m 
Moe 

Emg. 

Figure 6.50 

~D Puscul 
7 items 365K in disk 34K available 

~ 
~aciritosh Pa sea 1 

CJ 
· Sy stem folder 

m 
~ Larry 

Curly ~ 
Moe 

Ill 
Emp~y folder ··-·-

Figure 6.51 



Editing and Debugging 213 

H1t the backspace key to delete the name ·copy of Empty Folder· and then 
type 1n your new name for the folder. You can even drag the folder to a 
more convenient location on the disk window if you wish. See figure 6.51. 

Open the new folder by double-cllcking it and then arrange Its window 
to share the screen as shown in figure 6.52. Now drag, either one at a time 
or all together (by lassoing the group with a rectangle), the files that you 
would llke to keep In the given folder. Figure 6.53 again shows Larry, 
Curly, and Moe on the move. 

r s Fiie Edit Ulew Special 

Pascal li!O==-== Three Sto~es 

~ 
j-1.cintosh p,..,.1 

CJ 
S.,,sltm Foldor 

CJ 
Emptv F oldor 

•• •• ,.-, rr ••• • • ................................ 
Figure 6.52 

Note that this time the files are being moved, not just copied, Into 
the folder. To tidy up the disk, close the folder (make It active If 
necessary). The secret to a well-organized disk Is folder names that are 
descr1pt1ve. Folder I, Folder2, ... won't help you much when you are looking 
for Larry, curly, or Moe. 

Summary 

This chapter has not presented any new Pascal constructs. But we 
hope it has convinced you that the Macintosh Pascal system contains a rich 



2H Editing 11111 Debugging 

assortment of debugging tools that make the human task of programming 
as pleasant as possible. We don't wish you bad luck, but we expect you 
w111 have many occasions to practice the debugging sk111s given here. We 
repeat our admonition from the beginning of the chapter: Do not try to 
memorize all the options of the system at once, but rather, return to the 
chapter as needed. 

r s File Edit Uiew Special 
., 

~o 

~ 
j-lacintosh Pascal 

CJ 
Stjstem Folder 

CJ 
Empty Folder 

Pascal Three Stoo..9_es 
365K in dist 34K &nilabi. • o itoms 

IQ:·I=========~ 

I 
OK in fold.r 34K 1ni11blo 

Ii 
111!1 

!~]~!~~~ 
Three Stooges 

r--·--···1 

r········"'I L. ....... .J 
i ("'"'·········: 

l I I I 

t... ...... 1 !L~) 

~ : : : : : : : : : : : : : : : : : : : : : : : :--:-: : : : : .......................................... ._... .............................. ..... 

Figure 6.53 

Exercises 

6.1 Using the editing features described In this chapter, open the program 
Sloppy (from the sample diskette accompanying this book) and convert the 
program Into the program Neat. Listings of Sloppy and Neat are given In 
Chapter 3. 

6.2 The program BuggyGame, from the accompanying disk Sample, Is a 
very messed up program that Is supposed to play the word game of 
Exercise 5.5. Debug BuggyGame. 



Edtt1ng end Debugging 215 

6.3 The program BuggyCh1p, from the d1sk Sample, ts an Incorrect version 
of the Cow Chip Throwing contest of Exercise 5.12. Debug BuggyChtp. 

6.4 The program lnLLoop, from the d1sk Sample, ls a program that ls 
supposed to add up the first twenty 1ntegers. However, 1t gets caught ln 
an lnf1n1te loop. Debug lnLLoop. 



Chapter 7 

Funct 1 ons and Procedures 

TOP DOWN - A programming methodology 
whereby unwritten modules are I Inked 
together to produce the target program. 

oevlrs DP Dictionary 

In th1s chapter, we are go1ng to learn an extremely 1mportant concept 
that Is Indispensable for good programmlng--namely the not1on of 
functions and procedures. Th1s 1dea allows us to attack big problems by 
breaking them 1nto smaller sub-problems. We then solve the small 
problems and put the solutions together to form a solution to our original 
problem. Such a strategy Is referred to as a divide and conquer 
strategy or a top-down approach. 

What this top-down approach encourages Is structured 
programming. The Idea of structured programming Is that a computer 
program should be put together In an organized fashion so that the 
structure of the program models as closely as possible the solution path 
that the programmer used to solve the problem. Some languages by the1r 
very nature discourage structured programmm1ng while others are 
well-suited for It. Pascal certainly falls Into the latter category. And one 
of the language's features that encourages the programmer to take a 
structured approach Is Its function/procedure capab111ty. There are some 
fundamental differences between functions and procedures, but the basic 
Ideas are the same. Because they may be more fam1llar, we w111 discuss 
functions f1rst. 

Functions 

Actually, we have already seen and used functions In Pascal. The 
functions that we have seen are called built-In functions because they 
come with the language. This should not be surprlslng--even the cheapest 
of calculators comes with some "function keys" 11ke "square root" or "log." 

216 



Funct1ons and Procedures 217 

Two of the functions that we saw In Chapter 3 were Round and Trunc. 
Recall that Round(X) rounded the real number X to the nearest Integer 
while Trunc(X) chopped off the decimal part of the real number X. Each of 
these functions has a single 1nput, wh1ch ls a real number, and returns a 
single output, an Integer. In general, we can think of a function as a 
"black box" that performs an operation for us. We do not have to 
understand how this black box works, only what It produces. We simply 
give the black box the Input that 1t expects and It returns the output to us. 
In Pascal, functions can have a single Input (11ke Trunc and Round) or they 
may have several Inputs. All the computer really needs to know ls how 
many Inputs there are and what their types are. Regardless of how many 
Inputs a function has, there ls always a single, simple output. By this 
we mean that there is only one output and it must have a simple type--for 
now, Integer, Real, Boolean, Char, or string. 

Table 7.1 contains the most commonly used built-Jn functions in 
Pascal. The reader is referred to Chapter 1 O of the Macintosh Pascal 
Reference Manual for a complete listing of the standard functions. 

Random Number Generatton 

In addition to the built-in functions of Standard Pascal, many 
versions of Pascal provide other functions for the programmer to use. We 
saw such an example 1n Chapter 4 where we used Xpwrl to raise a number 
to a power. The SANE library contains an extensive 11st of functions as 
described 1n the language reference manual. The Qulckdraw Library, which 
Is the graphics package for the Macintosh, also has several useful 
functions. The one we want to discuss here Is a function for generating 
random numbers. 

Computer simulation Is an Important app11cat1ons area and In many 
simulations, the computer needs to exhibit random behavior. Examples of 
randomness Include the tossing of a coin, the rolling of dice, and the 
presence of a genetic defect In an organism. Because the computer ls a 
deterministic machine <meaning that It always does the same thing given 
the same Instructions and the same circumstances), It might seem that a 
computer can't really exhibit random behavior. In fact, computers can't 
exhibit truly random behavior, but they can follow a "pseudo-random" 
pattern <meaning almost truly random), which In many appllcatlons Is good 
enough. To generate a random number, the computer does some numeric 
computations on a starting number (called the random number "seed"). 
This input number In some sense needs to be random if random output Is to 
be generated. How does the computer get this random input? There are 



218 

various methods for doing this. In computers with a built-in clock, like 
the Macintosh, part of the seed may come from the precise time of day 
when we ask the computer to generate a random number for us. For now, 
we just accept the fact that Random is the name of a random number 
generator that has no input and returns as output a random integer 
between -32767 and 32767. 

Name Meantng Input Output 

Abs(X) Absolute Value Integer or Real Integer or Real 

Arctan(X) Arctangent of X Integer or Real Real 
(X in Radians) Positive Principal value 

Cos(X) Cosine of X (X In Radians) Integer or Rea I Real 

Exp(X) eX e is base of Integer or Rea 1 Real 
natural logarithms 

Ln(X) Natural log of X Integer or Real Real 

Round(X) Rounds X to nearest Real Integer 
integer 

Sin(X) Sine of X (X in Radians) Integer or Real Real 

Sqr(X) Square of X Integer or Rea 1 Integer or Real 

Sqrt(X) Positive Square Integer or Real Real 
Root of X Positive Positive 

Trunc(X) Rounds to nearest Real Real 
integer between 
OandX 

Table 7.1 Mactntosh Pascal Built-In Functions 

We are interested In generating random integers, but many times we 
don't want to generate such a large range of Integers. For example, if we 
are simulating an experiment that Involves rolling a die, we would like to 



Funct1ons and Procedures 219 

generate random integers from 1 to 6. To do this, we can use Random with 
some of the other functions available. To generate random integers from 1 
to 6, we can apply the mod operation to the integer generated by Random 
to get a remainder of 0, 1, 2, 3, 4, or 5. Then, if we add 1 to the result, we 
have a random integer from 1 to 6. Thus, the following expression assigns 
to Die an integer for a die-rolling experiment: 

Die := Random mod 6 + 1 

Consider some examples. First, we write a program that simulates 
the tossing of a coin 1000 times, counting the number of heads and the 
number of tans. All we need to do is generate 1000 random integers, 
where each integer ls either O Cf or Tails) or 1 (for Heads). Thus, we use 
Random mod 2. This program, Coln, ts found in listing 7.1. Run Coln 
several times and observe the random behavior. 

program Coin; 
{This program simulates 1 ooo tosses of a coin.} 

var 
Toss: Integer; 
NumHeads, NumTails : Integer; 
Outcome: Integer; 

begin 
Writeln('Please wait while I toss the coin 1000 times.'); 
Writeln; 
NumHeads := O; 
for Toss:= 1 to 1000 do 
begin 
Outcome := Random mod 2; 
if Outcome = I then 
NumHeads := NumHeads + I 

end; (For} 
NumTails := 1000 - NumHeads; 
Write In(' After 1000 tosses, the number of heads was', NumHeads: 3); 
Writeln('and the number of tails was·, NumTa11s: 3) 

end. 

Listtng 7.1 



220 Functions and Procedl.ns 

progr• Die; 
(This prog-am simulates 600 rolls or a ralr die.) 
v.-

Ones. Twos. Threes. Fcxrs. Fives. Sixes: Integer; 
Roll. outcome : Integer; 

begin 
Ones:• O; 
Twos:• O; 
Threes:• O; 
Fcxrs :• O; 
Fives:• O; 
Sixes:• O; 
wrtteln('Please wait while I roll the die.'); 
write In; 
for Roll:• I to 600 do 
begin 
outcome :• Random mod 6 + I; 
case outcome or 
I: 
Ones :• Ones + I; 

2: 
Twos :• Twos + 1; 

J: 
Threes :• Threes + 1; 

4: 
Fcxrs :• Fcxrs + I; 

5: 
Fives:• Fives+ 1; 

6: 
Sixes :• Sixes + 1 

end (Case) 
end; (For) 

wr1tetn('5unmary or 600 rolls or a die'); 
wrtteln('OUtcomes' : 12. 'Ocarrences': 14); 
wr1te1n< 1 : 8. Ones: 12); 
wr1te1n<2: 8, Twos: 12); 
wrtteln(:J : 8, Threes : 12); 
wr1teln(4: 8, Fcxrs: 12); 
wrlteln(S: 8, Fives: 12); 
wr1teln(6: 8, Sixes: 12) 

end. 

listing 7.2 



Functtons and Procedures ZZl 

In our next example, we roll a fair die 600 times, printing the number 
of times each of the possible outcomes 1 through 6 occurs. In a random 
situation, each should occur about 100 times. You should run this program, 
shown In listing 7.2, several times to see how close the results are to 
what Is expected. 

To motivate a later chapter on arrays, notice that although this 
program ls quite simple, It Is somewhat bothersome and repetitive. Think 
how bothersome It would have been had we been rolling two dice Instead 
of just one, or If we were performing an experiment that had so different 
outcomes. Remember that computers are supposed to make such repetition 
and drudgery easier to handle. This ls exactly what arrays do for us In 
Chapter 9. 

There are many other applications for random numbers. For example, 
many of the most popular arcade games have their main characters move In 
a random fashion so that the game does not play exactly the same every 
time. We mix randomness with graphics In Chapter 12. 

Built-In functions are very useful because they allow us to do 
complex things, 11ke taking a square root, by just ustng the name of the 
square root function. But the real power of functions in Pascal comes not 
from the built-In functions of the language, but from the programmer's 
ability to define any new function that ts needed. 

For example, we mentioned tn Chapter 3 that tn Standard Pascal there 
Is no general exponentiation operator for raising numbers to powers. 
Although Macintosh Pascal provides several such functions in the SANE 
Library, let us pretend for a minute that there are no such functions. 
Suppose we had the need to raise numbers to the third power. Then we 
might find ourselves wishing that Pascal had a Cube function like It has a 
Sqr function. It doesn't, but we can write one if we want. If we name the 
function Cube, then whenever we need to raise X to the third power we 
just say Cube(X). Functions give us the unlimited capabillty to expand the 
vocabulary of the Pascal language. 

As another example, suppose we were doing an arithmetic program 
and In several Instances we needed to know tf an Integer were prtme. 
Although the prime number program from Chapter 5 Is not terribly 
difficult to write, we would soon tire of writing It every time we needed 
to test the prlmallty of a number. But If we could write a function called 
Prime, which would have an Integer input and a Boolean output (a "yes" or 
"no" answer to the prime question), then to test If an Integer X were prime 
we could simply write 

tr Prlme(X) then .... 



222 Functions and Proceclres 

This is really all there is to usingfunctions. What we need to learn now 
Is how to deflnethem. 

The Structure of Functions 

The first thing that a function must have is a heading. This is 
analogous to the program heading but contains some additional 
information. The following Information must be found In the heading: 

The keyword function 
The Name of the function 
The Number and Types of input 
The Type of the output 

The heading ls terminated by a semicolon. We present several sample 
headings. 

The "test for prime" function has one Integer input, produces a 
Boolean result, and therefore has a heading such as: 

function Prime(Candidate: Integer): Boolean; 

Suppose we wanted to write a function that compared three real values 
and returned the maximum value. Its heading could be: 

function Max(Num_ 1, Num_2, Num-3 : Real): Real; 

Note that Max takes three Real Inputs and produces a Real output. 
Finally, so that we may see the syntax involved when we have inputs 

of different types, suppose we wanted to write a simple Income tax 
function that uses as input a person's age, number of dependents, and 
taxable Income, and returns as output a real number representing the 
amount of taxes to be paid. The following heading would suffice: 

function TaxesCAge, Dependents: Integer; 
Income: Real): Real; 

The items in parentheses are called the parameters of the function. 
Parameters have the syntax of variable declarations. There Is no 
particular order in which the parameters have to be listed, but once they 
are listed, that order becomes important when we want to use the 
function. 



Functtons and Procedures 223 

The use of a function In a Pascal program is called an tnvocation, or 
a ca11, of the function. We call the function by using the function name 
and specifying the inputs to the function. These inputs are called 
arguments, and they may be variables, expressions, or constants. There 
must be exactly the same number of arguments as there are parameters. 
When the function is invoked, the first parameter receives its initial value 
from the first argument. Likewise, the second parameter receives Its 
initial value from the second argument, ... , and the last parameter receives 
its initial value from the last argument. So not only must we have the 
same number of each, the ordering of the parameters and the arguments 
must be "type compatible." 

For example, the first invocation below is a legal invocation of Taxes, 
while the second Invocation is lllegal. The third invocation is legal, but ls 
most likely incorrect because the arguments for Age and Dependents seem 
to be reversed. 

Taxes(38,4,25420.79); 
Taxes(38.5,4,25420.79); 
Taxes(4,38,25420.79); 

The Body of a Function 

(OK} 
(1 llegal} 
(Legal, but illogical} 

Functions look like little Pascal programs except we use the keyword 
function In the heading instead of the word program. The body of the 
function, that is, the statements that carry out the function's task, 
whatever that may be, can contain any legal Pascal statements. There is, 
however, one fundamental difference. Since a function is supposed to 
compute a single, simple value Cits output), when we are finished 
computing this value, we must assign this value to the name of the 
function. Often, beginning programmers forget this required step. 
Another common error Is to try to use the name of the function within the 
body of the function for a use other than receiving the assignment of the 
final value. We now give some examples to illustrate these points. First, 
consider the simple, but complete, function for cubing an integer. 

function Cube(Num: Integer): Integer; 
begtn 
Cube := Num * Num * Num 

end; 

We make some remarks about the above function. 



ZZ4 F111ttlona and Ptoccdlns 

1. The function body ts surrounded by begin/end, but wtth functions 
there is a semicolon and not a period after the end because function 
definitions are placed before the main program. The semicolon Is needed 
because there are more statements after the function body. 

2. Note that the body in this simple case Is just a single assignment 
statement. The function name is used as the variable on the left hand side 
of the assignment operator and the parameter serves as a variable on the 
right hand side. Notice that neither of these "variable" names is declared. 
Parameters and function names are not declared explicitly by the 
programmer in a var section because they are implicitly declared by the 
function heading. 

Listing 7.3 shows a complete program that uses the Cube function to print 
out a table of squares and cubes from 1 to 20. 

program Squares_an<LCubes; 
(This program creates a table of squares and cubes using the} 
(built-in function, Square, and the user-defined function, Cube.} 

var 
Entry : Integer; 

function Cube (Num: Integer): Integer; 
begin 

Cube := Num * Num * Num 
end; (Definition of function Cube} 

begin (Body of main program Table} 
Wrlteln('Table of Squares and Cubes'); 
Writeln('Number·: 10, ·square·: 10, 'Cube': 10); 
for Entry:= I to 20 do 
Writeln(Entry: 8, Sqr(Entry): 10, Cube(Entry): 10) 

end. 

Listing 7.3 

We point out to the reader that such a simple program does not 
require the use of functions and In fact is easier to write without 
functions by using the following Writeln statement: 



Functtons and Procedures 22'.) 

Writeln(Entry, Entry *Entry, Entry* Entry* Entry); 

However, we use such a simple example to point out how programs with 
functions work. The main program ts called Squares_and....Cubes and of 
course consists of two major parts--a declaration part and a statement 
part. The declaration part informs the computer of the things that are 
used in the program--namely a list of all the variables and their types. 
Now we see that In the declaration part we may also define any functions 
that we intend to use. Thus, function definitions come after the var 
section and before the body of the main program. Of course, after we 
inform the computer about the function (with the function heading), we 
also explain how the function works (with the function body). 

It ls Important for the reader to understand how the statements In 
the above program are executed, so we will give a detailed explanation. 
When the program Squares_and....Cubes is run, the first statement executed 
by the computer is "Writeln('Table of Squares and Cub~s')," which prints 
the table heading. The reason for this Is completely logical. That 
statement is the first statement In the program. The fact that the 
statement in the body of Cube appears first as we read the program does 
not make it the first statement in the program. It is the first (and only) 
statement In the Cube function and so It ts the statement executed 
whenever we invoke the Cube function. It is important for beginning 
programmers to understand this flow of the execution. 

So how is the table printed? After printing the two lines that serve 
as table headings, the computer begins to execute the for loop. When it 
comes to the Wrtteln statement inside the for loop, the value of Entry 
(which ls 1 the first time through the loop) ts printed. Next, the built-In 
function Sqr is invoked with Sqr(Entry). Thus, the square of Entry is 
computed and printed. Now, when the computer reaches the expression 
Cube(Entry), it realizes that Cube is the name of a function (that's why 
functions come before the program body), stops what it is doing (but 
remembers where it was), and goes off to find and execute the function as 
requested. Since Entry is the argument (the input to the function) and Num 
ls the parameter by which we explained how the function Is to be carried 
out, the value of Entry is given to Num. So Num is 1. Now the body of the 
function is executed. When the function is completed, the computer 
returns to where it was when it stopped to go to the function In the first 
place. But it carries back with It the value of the function (I.e., the 
function's output). This Information Is carried back through the function 
name and that is why we assign the output to the function name before we 



226 FlllCtlons Ind Prec:ecllres 

leave the function. When the computer returns to the point of the function 
Invocation, it substitutes for the function cali the output that It brought 
back. in this case, a 1 Is brought back. The second time through the loop, a 
2 is carried as Input to the function and an 8 is brought back. The reader 
should trace through the entire program to see how the complete table is 
printed. 

In the previous simple example, we were able to do all of our 
calculations In the function using only the parameter and the function 
name. There are occasions when these things are not enough. That is, we 
might need to use some other variables to store answers to Intermediate 
calculations. In this case, we simply put a var section into our function 
just like the var section that appears In the main program. In this section 
we declare any variables that we might need to use In the function body. 
Such variables are called local variables. This terminology means that 
the variables are local to the function and have meaning only when the 
program is executing Inside the function body. In fact, these variables do 
not even exist In the computer until we actually call the function. At that 
point, the computer allocates storage for the local variables. Then when 
the function ends, the variables no longer exist (until the function Is 
called the next time). 

The counterpart to a local variable is a global variable. These are 
the variables that are declared In the main program's var section. Such 
variables have meaning throughout the program and can be used anywhere 
in the progam. The reader may wonder why we need to declare variables In 
the function at all. Why not just declare everything at the main program 
level and not worry about local variables? The answer to this question is 
discussed In detail later when we cover procedures. For now, we simply 
state as another law of good programming practice the following advice: 

In most cases. the use of global variables in functions 
should be avoided. 

Using global variables inside functions can cause side effects, that Is, 
changing the values of variables that exist outside the function. In very 
large programs, side effects can cause disastrous results and can be very 
difficult to detect. So the above law is saying that when you go Into a 
function, you go there to compute an answer. Compute the answer, but 
leave everything else alone. 

Now we start a series of examples that demonstrate the flexibility of 
functions. We have to use a var section In some of our functions and some 
of our programs use more than one function. 



Functions end Procedures 227 

Recall the definition of the factorial function: 

If N is a positive integer, then N! Cread "N factorial") is equal to the 
product N*CN-1 )*(N-2)* ... *3*2* 1. 

Examples: 11 = 1 
21 = 2 
31 = 6 
41 = 24 
5! = 120 

Let us write a function that computes the factorial of a given number. All 
we need to do ts accumulate a product (similar to a running sum). We start 
our product at 1 and keep multtplytng the product by successive integers 
until we have multiplied it by the number whose factorial we are trying to 
compute. 

function FactorialCNumber: Integer): Integer; 
var 
Product: Integer; 
Loop: Integer; 

begin 
Product := 1 ; 
for Loop:= 1 to Number do 
Product := Product * Loop; 

Factorial := Product 
end; 

Notice that we used a local variable Loop to count us through the loop. In a 
larger program, we wouldn't want to disturb the contents of some possibly 
Important variable to get us through our factorial loop. So a local variable 
ls appropriate. The careful reader might wonder why we use a second 
local variable Product, which seems to serve the same purpose as the 
function name Factorial. In other words, why not delete the last 
statement of the function and replace the loop body by 

Factorial :=Factorial *Loop; 

The reason goes back to a remark we made earller. Yes, it ts true that we 
must always assign the function's result to the function's name. So in this 



228 Functions and Pnlc:edlns 

instance, the function name is treated like a variable. But this is the only 
instance where the function name can be treated like a variable. If we 
consider a function name in an expression to be a function invocation, then 
the above statement makes it appear as if the Factorial function is trying 
to call itself. Such a thing is not only possible, but is In fact a very 
powerful and useful programming tool. However, we delay discussion of 
this topic until Chapter 15. Until then, whenever a function name is used 
In Its body, It can only appear on tile left hand side of an 
assignment statement. The above "revision" uses the name on the right 
hand side also. Thus, the use of the local variable Product Is required. 

Listing 7.4 contains a program that prints a table of factorials. We 
hope the reader begins to see the flexibility allowed by functions. 

program FactTable; 
(This program computes factorials, but overflows Integer values} 

var 
Entry: Integer; 

function Factorial (Number: Integer): Integer; 
var 

Product: Integer; 
Loop : Integer; 

begin 
Product := 1; 
for Loop:= t to Number do 

Product := Product * Loop; 
Factorial:= Product 

end; (Definition of function Factorial} 

begin (Body of Main Program} 
Writeln('Factorial Table'); 
Writeln('Number· : I 0, 'Factorial' : t O); 
for Entry := 1 to IO do 

Writeln(Entry: 4, Factorial(Entry): 12) 
end. 

Llsttng 7.4 

Of course, in this simple case, there is no requirement to use 
functions. But with a function, we can write a "generic" factorial loop 



Functions and Procedures ZZ9 

that works for any size input. All we have to do is specify the input and 
the argument-parameter correspondence takes care of the rest. Observe 
how the argument, Entry, in giving its value to the parameter, Number, 
controls how many times the factorial loop is executed. So, in fact, we do 
get the proper factorial returned to the main program after each function 
Invocation. 

There is, however, one slight problem. Run the program FactTable. 
The factorial function grows so fast that we get an integer overflow when 
we try to compute 8!. Integer variables can only take on values in the 
range from -32767 to +32767. We can try to overcome this problem by 
using the "long integer" capability of Macintosh Pascal. These integers 
have a range between -2, 147,483,647 and +2, 147,483,647. So we should 
declare Product to be of type Longlnt and we must also indicate that the 
output of the function Factorial ls also of type Longlnt. Make these 
changes and then run the program. Notice that the factorial function 
grows so rapidly, that with Jong integers, we still get overflow when 
computing 13!. We will discuss more about the other types available to us 
In the next chapter. But for the remainder of this chapter, we will employ 
the Longlnt type freely. 

Combinations and Permutations 

To continue the factorial example, we introduce another concept. In 
this application, it becomes convenient to have a value for 01 and the value 
that we need is I. So, as Is done In standard mathematics, we define 
0!=1. 

Suppose we have a group of N objects and that we have to select K of 
the objects. We might be interested in how many different ways we can 
make such a selection. In this first case, we aren't concerned wlth the 
order of the objects selected, only with which objects finally get 
selected. It turns out that the number of ways of making such a selection 
of K objects out of N, written C(N,K), is 

N! 
(N-K)! * K! 

This expression is read as "N choose K." For example, suppose we have a 
group of 6 people and we want to form a team of 2 people to accomplish 
some project. Then there should be C(6,2) = 6!/(41*2!) = 6*5/(2*1) = 15 
different teams available. To see that this Is really so, let us denote the 
people by the letters A, B, c, D, E, and F. A list of all possible teams is: 



ZJO Functions and Procedures 

AB BC CD DE EF 
AC BD CE DF 
AD BE CF 
AE BF 
AF 

program Combinations; 
(This program computes C(N,K}, the number of ways} 
[of choosing K objects from N objects.} 

var 
N, K : Integer; 
NChooseK : Longlnt; 

function Factorial (Number: Integer}: Longlnt; 
var 

Product : Longlnt; 
Loop: Integer; 

begin 
Product := 1; 
for Loop:= I to Number do 
Product:= Product* Loop; 

Factorial := Product 
end; [Definition of function Factorial} 

begin [Body of main program Combinations} 
Writeln('This program calculates the number of committees of'}; 
Writeln('K people that can be formed from a group of N people.'}; 
Writeln('Please enter the value for N, the number of people.'}; 
Readln(N}; 
Writeln('Please enter the value for K, the committee size.'}; 
Readln(K}; 

[Now calculate NChooseK, using the Factorial function.} 
NChooseK := Factorial(N} div (Factorial(K} * Factorial(N - K}}; 
Writeln('C(', N: 2, ·,·, K: 2, '} is·, NChooseK} [Study this write In to} 

[see where each printed Item comes from!} 
end. 

Listing 7.5 



Functions and Procedures 231 

Notice that team CD is, of course, the same as team DC (since we are 
not concerned with order, but only with the final makeup of the team). 
Listing 7.5 contains a Pascal program to compute an arbitrary value C(N,K) 
where N and K are entered from the keyboard. Again, to avoid overflow 
Immediately, the Longint type is used. Note, however, that C( 13, 1) causes 
overflow. If we use a little Ingenuity, we can compute higher values 
without causing overflow. This is explored in the exercises. 

C(N,K) counts the number of combinat1ons of N objects taken Kat a 
time. Perhaps the reader has also heard the word permutations in the 
same context as combinations. Permutations are much like combinations 
except that when we select the K objects from our pool of N, we are 
concerned with the order of the selection. In other words, with 
combinations, we are only concerned with which K objects we select, 
whereas with permutations, a different order of selection constitutes a 
different permutation, even If the final K objects are the same. For 
example, suppose there is a club with 20 members and it has been decided 
that the club will be ruled by a committee of three people. If all three 
people on the committee are considered equal, then there are C(20,3) ways 
of forming different ruling committees. However, if the three people on 
the committee are designated as the club president, vice president, and 
secretary, then the same group of three people can form more than one 
committee, depending on which person holds which office. Thus, in this 
second situation, we need to count permutations. The notation for 
permutations is P(N,K) and this expression Is equal to 

_NL_ 
(N-K)! 

Permutations and combinations often arise in the same application, so It 
would not be unusual to have a program with functions for calculating each 
of C(N,K) and PCN,K). Listing 7.6 contains a program that makes a table of 
each kind of number. Run the program and compare the two kinds of 
numbers. You might want to verify by hand some of the smaller values in 
the table. Note that P(l0,10) = 3,628,800 while C(l0,10) = 1. This 
contrast points out that the number of permutations grows much faster 
than the number of combinations. This should be no surprise, because once 
we make an unordered selection, there are many ways to give an order to 
the selection. 

We conclude this section on functions with two remarks. 



232 FunctlOIW and Procedlns 

program Combs_an<LPerms; 
[This program compares the number or combinations C(N,K),} 
[with the number or permutations (P(N,K).} 

var 
N, K: Integer; 

function Factorial (Number: Integer): Longlnt; 
var 

Product : Longlnt; 
Loop: Integer; 

begin 
Product := I; 
for Loop := 1 to Number do 

Product:= Product* Loop; 
Factorial := Product 

end; [Definition or function Factorial} 

function Combs (N, K: Integer): Longlnt; 
begin 

Combs:= Factorial(N) div (Factorlal(K) * Factorlal(N - K)) 
end; [Definition of function Combs} 

function Perms (N, K : Integer) : Longlnt; 
begin 

Perms := Factorial(N) div Factorial(N - K) 
end; [Definition of function Perms} 

begin (Body or main program Combs_and _Perms} 
Writeln('Table or Combinations and Permutations'); 
Writeln('N' : 5, 'K': 7, 'C(N,K)' : 14, 'P(N,K)' : 1 O); 
for N := 1 to 1 Odo 
for K := O to N do 
begin 

Write(N : 5, K : 7); 
Wrlteln(Combs(N, K): 10, Perms(N, K): 10) 

end; [For} 
end. 

Listing 7.6 



FuncUons and Procedures 233 

1. Notice that we can use N and K as variables In the main program, 
as arguments when we call both functions, as well as parameters in eacll 
function. The arguments and parameters may be the same variables or 
they may be different. The computer keeps track of all the detalls 
Involved. When we enter each function, a new (local) N and Kare created 
and these are the variables referred to during execution of each function. 
The global N and K are not used during the execution of either function. 
Whlle to the beginner this may seem l1ke an opportunity for creating 
confusion, such a system allows different people to write different parts 
of one big program. If each person Is writing a separate function, then the 
lnd1v1duals do not need to worry that the names they choose for their 
parameters and local variables might conf11ct with someone else's 
choices. In the case of possible conf11cts, the computer keeps track of 
everything for us. Such Ideas are part of Pascal's Scope rules, which are 
described at the end of this chapter. After that discussion, it Is suggested 
that you return to the program Combs-An<LPerms and carefully trace 
through It by hand to see how the computer keeps track of the N's and K's. 

2. The other point that we make at this time and that wlll be 
demonstrated In later examples, Is that functions are Indeed l1ke Pascal 
programs in that they, themselves, can have other functions and 
procedures nested Inside them. 

Procedures 

After our Introduction to functions, the Idea of a procedure should be 
easy to grasp. In fact, procedures and functions look much the same--each 
kind of structure has a heading and a body. A procedure is really just a 
general1zatlon of a function. By that, we mean that functions are l1mlted 
In what they can do, namely compute a single, simple value. But there are 
often times In a program where we might need to compute several values 
or no values--we might just need to print something. In these more 
general situations, we w1ll use procedures. 

We first consider some examples of when we might use procedures. 
Suppose we are writing a program that generates an extensive written 
report for a large company. The report would likely have several sections, 
for example, sales, Inventory, taxes, personnel, etc. To make the report 
easier to read, it might be nice to print the report in such a way that the 
various sections are clearly separated from each other. An example is 
given In figure 7.1. 



234 Functions and Procedlres 

************************************************** 
* 
* 

* 
* 

******************** Sales ********************* 
* 
* 

* 
* 

************************************************** 
Month 
Jan 
Feb 

Number of Units Sold 
123 
145 

Dec 245 

************************************************** 
* 
* 
*********** 
* 
* 

* 
* 

Departmental Employees ************** 
* 
* 

************************************************** 

Dept 
Sales 
Shipping 
Administration 

Number 
23 
12 
8 

Figure 7.1 

If this were a very long report, there would be several Instances 
where we would want the asterisks surrounding the section title and the 
line of dashes to separate the various sections. Note the the line is very 
easy to print. Simply perform a for loop the proper number of times, 
where the body of the loop consists of the printing of a dash. In the 
example above, the report is printed in a field width of size 50. So the 
following would draw the line: 



Functions end Procedures 

for Dash:= 1 to 50 do 
Wrtte('-'); 

Wrlteln; 

235 

We would soon tire of wr1t1ng this simple loop over and over In our 
program. Notice that we can't use a function here because drawing the 
dashed line does not Involve the computation of anything. But we want the 
convenience of a functlon--that ls, we want to be able to write the 
necessary Instructions once, give this set of Instructions a name, and then 
whenever we want to carry out these instructions, we invoke them by 
using the name. This Is precisely what a procedure does. A procedure to 
draw the dashed line follows. We will explain in detail the various parts 
of a procedure later, but the reader should be able to follow this example 
because of its similarity to a function. 

procedure Dashed; 
var 
Dash: Integer; 

begin 
for Dash:= 1 to 50 do 
Write('-'); 

Writeln 
end; 

We take this opportunity to point out some Important differences 
between functions and procedures. The most obvious is the keyword 
procedure instead of the keyword function. Next notice that because a 
procedure doesn't return a value (which Is what a function does), there is 
no output type listed at the end of the heading line. Despite these 
differences, there are similarities. Although the procedure above does not 
have any parameters (inputs), procedures may have parameters just like 
functions. Also notice that the procedure body is syntactically like a 
function body, with its own var section and Its begin/end statement 
section. However, as to be expected, there is no assignment statement to 
assign a value to the procedure name. Again, this Is because it Is not the 
job of a procedure to compute one result. 

Looking beyond appearances and investigating how procedures are 
used, we come to the most Important difference between procedures and 
functions. It is this difference that probably gives beginning programmers 
the most trouble. Since functions compute a value, and In fact assign that 



236 Fmctlam and Pnceclns 

value to the name of the function, function names are used anywhere In a 
Pascal program where the value could be used. In other words, functions 
are Invoked from within expressions. For example, If Fun Is a 
function with two Integer Inputs that returns an integer value, then Fun 
can occur anywhere that an Integer value can occur. So statements 11ke 
the following (In a main program that contains a definition of Fun) are 
legal: 

A := 8 div Fun(2,c>; 
If Fun(A,8) < FunCC,D) then ... 

while the following statements would be 111egal: 

FunC3,C>; (There ls no legal Pascal statement that consists solely ) 
{of an integer, so a statement containing only an evaluation) 
{of Fun, which Is just an Integer, is likewise 111ega1. ) 

FunCA,8) := 7; {This Is Illegal for the same reason "5 := 7;" ls 111ega1. ) 
(The left hand side of an assignment statement must be) 
{a variable. FunCA,8) is an integer value. ) 

With procedures, the situation is completely different. Invoking a 
procedure is like asking the computer to carry out a sequence of 
statements (i.e., to do something without necessar11y computing anything). 
To get the computer to carry out this sequence of statements, the 
procedure name is used as a stand-alone statement. So in the 
example above, any time we want a line of 50 dashes to be printed, we 
simply use the complete Pascal statement 

Dashed; 

Like functions, procedures allow us to expand the vocabulary of Pascal In 
any way that we want. The procedure ca 11 can occur anywhere that a 
regular Pascal statement (assignment statement, output statement, etc.) 
can occur. So it makes sense to write 

If En<LoLSectlon then 
Dashed 

else 
... {Continue printing the report) 



Functions and Procedures 237 

Procedures with Parameters 

Because of its simplicity, let us continue with the example of the 
dashed line. As it is written now, we can only create a line of width 50. 
There might be occasions where we need more flexibility. The following 
procedure gives us this flexibility: 

procedure DashecL2 {Width: Integer); 
var 
Dash : Integer; 

begin 
for Dash:= 1 to Width do 
Write{'-'); 
Write In 

end; 

This procedure has one integer parameter--Width. So to invoke this 
procedure correctly, we must call it with one argument, which must of 
course have an integer value. So if J is an integer variable with current 
value equal to 40, each of the following is a legal invocation of DashecL2: 

DashecL2(25); (Prints 25 dashes} 
DashecL2(J); (Prints 40 dashes} 
DashecL2(2 * J - 10); (Prints 70 dashes) 

Let us make one more modification to the procedure, which uses the 
type Char (for character), discussed in Chapter 8. Suppose we wanted to 
print some character other than dashes. For example, in a bar graph, we 
might want to print dollar signs. Here is how to do this: 

procedure Line(Width: Integer; Symbol : Char); 
var 
Count: Integer; 

begin 
for Count:= 1 to Width do 
Write(Symbol); 
Write In 

end; 

Then, to print 25 dollar signs we would write Line(25,'$') while Line(40,'!') 
prints 40 exclamation points. 



238 Functions and Procedures 

It is important to understand how the procedure is executed. When 
the statement Line(25,'$') is encountered, the first thing the computer 
does is set up the argument/parameter correspondence. The arguments 
(the Inputs to the procedure) are matched with their corresponding 
parameters in the procedure heading. There must, of course, be the same 
number of arguments as parameters, and their types must be compatible. 
So in the above example, since the first parameter is an Integer and the 
second a single character, it is essential that the procedure be Invoked 
with an integer first argument and a character second argument. When the 
procedure is entered, the system creates memory locations for the 
parameters and the parameters are then treated like variables. The 
initial value of each parameter Is obtained from the value of the 
corresponding argument. So in the above example, Width is given the value 
25 while Symbol is assigned the value '$'. At this point, the system also 
creates a memory location for each local variable declared in the 
procedure. After the procedure has completed, the storage locations for 
the parameters and the local variables are reclaimed by the system for 
possible use elsewhere. But that is of course no problem, because by that 
time we have successfully printed the 25 dollar signs. This local 
creation/destruction process is one of the features of Pascal that 
simp11fies the writing of large, complex programs. We will discuss this in 
more detail at the end of this chapter. 

Finally, can you tell why each of the following procedure calls is 
invalid? 

Dashed(50); 
DashecL2( 40, · + ·); 

Line(80); 
Line('•',40); 

Variable Parameters in Procedures and Functions 

The type of parameter used In the previous examples is called a value 
parameter. A value parameter gets its initial value from its corresponding 
argument, but while inside the procedure, it has its own memory location. 
Therefore, changes to the parameter, such as "X := X + 1· do not change 
the actual argument. There are, however, many occasions when we want 
the procedure to change the actual argument. We consider a very common 
example to motivate this discussion, that of swapping values. 

The need to exchange the values of two variables comes up very often 
in programming applications. For example, one of the most common of all 
operations performed by a computer is that of sorting a list (of names, 



Functtons and Procedures 239 

numbers, etc.>. There are many ways to sort lists (we discuss sorting 
briefly in Chapter 9), but almost all sorts require the swapping of values. 
In general, let us see how this ls done. Suppose X and V are Integer 
variables containing the current values 5 and 1 O respectively. Many 
beginners attempt to swap the values wlth 

X := V; 
v := x 

but It Is easy to see that this does not work. X In fact takes on the value 
10, but after execution of the first statement, the old value of X is lost, 
and so Vis assigned the new value of X, namely 10. So V does not change 
values. What Is needed is a third memory location, to temporarily 
remember X's old value, and a third assignment statement: 

Temp:= X; 
X := V; 
V :=Temp 

Now if a program Is going to be swapping values repeatedly, It might be 
useful to have a procedure for swapping two values. Then we wouldn't 
have to keep repeating the same three assignment statements over and 
over. The program In listing 7.7 contains a swapping procedure, but It Is 
incorrect. After we analyze the program, we will see why. 

program Wrong; 
[This program DOESN'T swap two values properly} 
[because the parameters are not VARIABLE parameters.} 

var 
First, Second : Integer; 

procedure Swap (X, Y: Integer); 
var 

Temp: Integer; 
begin 

Temp:= X; 
X := Y; 
Y :=Temp 

end; [Definition of defective procedure Swap} 

(Conllnu11d) 



240 

begin 
First:= I; 
Second:= 2; 
Writeln('Before the swap First and Second are:', First, Second); 
Swap(First, Second); 
Wrlteln('After the swap First and Second are:', First, Second) 

end. 

Listing 7.7 

The output of this program is: 

Before the swap, First and Second are: 
After the swap, First and Second are : 

2 
2 

So something has gone wrong. Because we have used value 
parameters, the exchange of values of the variables First and Second has 
not taken place. This Is because the corresponding parameters for these 
values are given their own memory locations wh11e the Swap procedure Is 
being executed. So when Swap Is entered, the computer allocates storage 
for X, Y, and the local variable Temp. Now X and Y are initialized to I and 2 
respectively, the values of the corresponding arguments. And In fact, the 
Swap procedure does Indeed swap the values of X and Y. However, since X 
and Y have their own storage locations separate from First and Second, 
this exchange of values has no effect on First and Second, the variables 
whose values we intended to swap. What is needed is a variable 
parameter. 

Variable parameters differ from value parameters In that they do not 
get their own memory locations. Instead, a variable parameter snares 
the memory location of its corresponding argument. Note that this implies 
that the argument corresponding to a variable parameter must Itself be a 
variable (I.e., not an expression or a constant>. In this case, changes that 
the procedure makes to the parameters are reflected In the corresponding 
arguments. So to effect the swap of First and Second, all that Is required 
Is that we make X and Y variable parameters. This ls accomplished by 
using the abbreviation var before any parameter that we wish to be a 
variable parameter. So the correct swap procedure follows: 

procedure Swap( var X, Y: Integer); 
var 

Temp: Integer; 



Functions and Procedures 

begin 
Temp:= X; 
X := Y; 
y := x 

end; 

Wlth this version of procedure Swap, the output of the program ls: 

Before the swap, Flrst and Second are: 
After the swap, First and Second are : 

1 
2 

2 
1 

241 

When we were discussing functions, we saw how declaring local 
variables was good practice because we avoided side effects. Now It 
seems that we are encouraging side effects through the use of variable 
parameters. In some sense this ls true, because to write a swapping 
procedure, we do in fact want to change the environment outside the 
procedure. In general, variable parameters give us a way of 
communicating the effect of a computation to the outside world, so there 
are many times when we want side effects. But variable parameters give 
us controlled side effects in that the only values changed are those 
corresponding to arguments. As with functions, changing the value of a 
global variable Is probably a risky thing to do. If you need to change the 
value of a variable In a procedure, make It an argument corresponding to a 
variable parameter. Functions can also have variable parameters, but we 
do not consider It good programming practice to use variable parameters 
with functions. Functions should compute a result and should have no side 
effects. Procedures may have side effects, but good programming practice 
dictates that these should be through variable parameters, not global 
variables. 

Suppose all arguments to a procedure or function are variables and we 
don't need to change any of their values. Which type of parameter should 
we use? There Is no simple answer, but the following advice should 
answer most situations for beginning programmers. 

t. Value parameters should be used In most instances because they 
protect against accidental change of the arguments. Since value 
parameters have their own memory locations separate from their 
arguments, changes made to these parameters do not effect the argument 
values. So value parameters provide more safety than variable 
parameters. 



242 

2. If the arguments contain a large amount of data <see the chapter on 
arrays, for example), It may be preferable to use variable parameters. In 
this case, the system does not have to allocate a completely new set of 
memory locations and does not have to spend t1me copying C1nltla11zlng> 
the argument values 1nto the corresponding parameter locations. The 
sharing of memory locations between arguments and parameters makes the 
program more eff1c1ent In terms of both storage management and 
execution t1me. 

Now we see how procedures really are genera11zat1ons of functions. 
Although we have Indicated that functions compute and procedures do 
th1ngs, 1t turns out that one of the th1ngs that procedures can do ls 
compute! But even when procedures do compute, they are not called from 
w1th1n expressions. They are stlll Invoked as stand-alone statements. 
When we return from a procedure, we can then use the computed values 1n 
expressions just 11ke any other value, and the values get returned through 
the procedure's arguments, not through the procedure name. 

As an example, let us consider a procedure w1th one integer 1nput, a 
year, that computes for us the day and month of Easter during that year. 
We use an Integer variable for the day, but we Introduce a new type, 1n a 
type section, for the possible months of Easter. Although this capab111ty 
ls not discussed unt11 the next chapter, 1ts use 1n th1s example ls a natural 
one that should pose no problem to the understanding of the program. 

We see already how th1s procedure ls more powerful than a function 
because we are computing two things Instead of just one. To see how the 
procedure ls used 1n a program, suppose we wanted to pr1nt out a table of 
all Easters s1nce 1940 to see 1f there ls any kind of pattern. The program 
1n 11st1ng 7.8 accomplishes this. Th1s program uses an elementary, but 
strange, formula to compute Easter day for a given year. A s1m11ar 
algorithm was known to Karl Friedrich Gauss 1n the early 1800's. 

Note that stnce the value of Yr does not change tn the procedure, tt ts 
a value parameter. On the other hand, the job that the procedure ts 
supposed to do for us, namely compute the day and month of Easter, 
requires that the parameters Da and Mo, corresponding to the arguments 
Day and Month, be variable parameters. Wh11e we are In the procedure, the 
calculations eventually assign values to Da and Mo, which are carried back 
to the ma1n program and assigned to Day and Month 1n the ma1n program. 

You should carefully trace the execution of this program to gain a 
thorough understanding of the relattonshtp between parameters and 
arguments and of the creat1on/destruct1on of the procedure's local 
variables. 



Functions and PrllCldures 

program Easter -5unday; 
[This program computes the date of Easter in a given year.} 
[The formula, used here without explanation, is valid} 
[ in the range of years from 1900 to 2099.} 

type 
Months= (March, April); 

var 
Year, Day : Integer; 
Month: Months; 

procedure Easter (Yr: Integer; 
var Da : Integer; 
var Mo : Months); 

[This procedure, given a Yr, computes the Da and Mo of Easter.} 
var 

A, B, C, D, E, F, G: Integer; [We use one letter variables because} 
(these intermediate results do not represent anything.} 

begin 
A:= Yr - 1900; 
B:= A mod 19; 
C:=(7*B+ l)div 19; 
D := ( 11 * B + 4 - C) mod 29; 
E :=A div 4; 
F := (A + E + 31 - D) mod 7; 
G := 25 - D - F; 
If G <= O then 
begin 
Mo:= March; 
Day:= 31 + G 

end 
else 
begin 
Mo:= April; 
Da := G 

end 
end; [Definition of (strange) procedure Easter} 

( C11111i111111d) 

243 



244 

begin 
Writeln('Easter Sundays from 1940 to 1990: '); 
Writeln; 
for Year:= 1940 to 1990 do 
begin 

Easter(Year, Day, Month); 
Writeln(Month, Day: 3, ·•·• Year: 4) 

end (For} 
end. 

Ltstlng 7.8 

scope Rules tn Pascal 

We have seen how local variables are used in functions and procedures 
as "scratch paper" to remember details wh1le the functions and procedures 
are executing. Some benefits of these local variables have already been 
mentioned--conservatlon of storage and protection against side effects. 
There is another very important benefit of local variables. Suppose you 
are a member of a team that is writing a very large programming project. 
In such situations, the project manager often breaks the project up Into 
more manageable pieces and assigns the various pieces to members of the 
team. These pieces are written as separate functions/procedures, and 
then it is the project manager's job to combine them into one main 
program. Now, there might be some global variables that several different 
programmers need to use In their programs. In this case, there has to be 
some coordination among the team as to what these variables are. On the 
other hand, if you are coding your portion of the project and you need to 
write a for loop, it would be nice if you could write 

for Index:= 1 to 100 do 

if you wanted, without having to worry about whether someone else is 
going to use the variable Index for some other purpose. Well, you can If 
you declare Index to be a local variable in your procedure/function. So 
local variables play an important role in making procedures truly 
independent from each other (if that Is what is desired). 

Of course, this poses a little bit of a problem. If you can safely use 
Index in your procedure, then anyone else should be able to use Index as 
well. So in a large program, it is not at all uncommon to have a variable 
declared and used several different times in several different ways in the 



Functions and Procedures 245 

same program. The quest1on then 1s, "How does the computer know which 
var1able goes w1th wh1ch memory locat1on?" The answer 1s found 1n 
Pascal's scope rules. 

A variable's scope Is defined to be that part of the program where the 
variable 1s active. Pascal uses a scheme called stat1c scop1ng, whereby 
the scope of a var1able 1s determ1ned by the textual structure of the 
program. By th1s, we mean that one only has to look at how the program Is 
laid out on paper to dec1de how memory locations and var1able names are 
assoc1ated. An alternate form of scop1ng, called dynam1c scop1ng, which 
Is used 1n languages 11ke SNOBOL and APL, determ1nes a variable's scope by 
the way the program executes. 

As mentioned previously, procedures and functions can have other 
procedures and functions nested 1ns1de them. Eventually, everyth1ng ls 
nested inside the ma1n program. For th1s part of the discuss1on, we treat a 
main program just llke another procedure, and we refer to programs, 
functions, and procedures as blocks. W1th th1s 1n m1nd, we expla1n the 
scope rules of Pascal. 

1. If a var1able X 1s declared 1n a block B, then X may be used 1n Band 
1n all blocks nested 1ns1de of B. 

2. When a variable X ls used 1n a block B, where B 1s the 1nnermost 
block surround1ng th1s use of x, search the declarat1on part of B. If there 
1s a declarat1on of X, then that 1s the X referred to 1n the statement us1ng 
X. If there 1s no declarat1on of X, move outward one level of nest1ng, and 
search for a declaration of X. If one 1s found, that 1s the x referred to. If a 
declarat1on 1s not found, move out another level of nest1ng and search for a 
declarat1on. Repeat th1s process until the first declaration Is found. If no 
declaration ls ever found, then the or1g1nal use of X 1n block B 1s 
111ega1--1t ls an undeclared variable. 

We 111ustrate the scope rules w1th three examples. We start w1th the 
simple program found 1n l1st1ng 7.9. The reader should carefully trace 
through the execut1on of the program Blocks and predict the output before 
looking at the output given below. 

The output of the program Blocks Is: 

15 16 
1 2 

15 2 



Z46 

program Blocks; 

var 
X, Y: Integer; 

procedure PI; 
var 
X: Integer; 

begin 
X := I; [This is Pt's X} 
Y := 2; (This is the main program's Y } 
Writeln(X, Y) 

end; (Definition of procedure PI } 

begin (Body of Main program Blocks} 
x := 15; 
y := 16; 
Writeln(X, Y); 
Pl; 

FIR:tlons and Pnc:eU'es 

Wrlteln(X, Y); (Main program's X didn't change, but Y did.} 
end. 

L1st1ng 7.9 

To understand where this output comes from, note that there are two 
Wrlteln statements In the main program and one Wrlteln statement In 
procedure Pl. So the Writeln statements in the main program refer to the 
main program's x and Y. PI has only a declaration of X, so the x referred to 
within PI ts P 1 ·s local X whtle the Y referred to in PI ts the global Y of the 
matn program. So the global variables are set equal to 15 and 16 In the 
first two lines of the main program and are printed out In the third line of 
the program. Pl then sets tts local X equal to I and the g/o/Ja/ Y equal to 
2 and prints out these values. When we return from PI to the matn 
program, global x remains unchanged. However, Y reflects the value 
assigned to It from PI. Note that P 1 has a side effect through the global 
variable Y. This ts allowed, but we consider It poor programming practice. 
If Pl wants to change Y, a variable parameter should be Included In PJ's 
heading. Then the lnvocat Ion of PI would read P ICY) and we are no longer 
so surprised that Pt changes Y. 

The program Nest of listing 7.10 Is a bit more complicated. This 
program contains one Illegal statement. 



FuncUons and Procadures 

program Nest; 
var 

X, V : Integer; 
procedure P 1; 
var 

V: Integer; 
begin 

V := I; (P l's V ) 
V := 2; (Main program's V J 
Writeln(V, V) 

end; (Definition of procedure Pl ) 
procedure P2; 
var 

X: Integer; 
procedure P3; 
var 

V: Integer; 
begin 
X := 5;(P2's X) 
V := 6; (P3's V } 
V := 7; (I llegall P3 is nested inside P2 which is nested inside} 

(the main program. None of these blocks has a declaration of VJ 
Wrlteln(X, V) 

end; (Definition of procedure P3 J 
begin (Body of procedure P2} 

X := 25; (P2's X } 
V := 35; (Main program's V J 
Writeln(X, V); 
P3; 
Writeln(X, V) 

end; (Definition of procedure P2} 
begin (Body of main program Nest} 
X:= 100; 
v := 200; 
Writeln(X, V); 
Pl; 
P2; 
Writeln(X, V) 

end. 

Listing 7.10 

Z47 



248 Fimctlons and Proceclns 

program Scope; 
(This program illustrates Pascal's scope rules} 

var 
A, B, C : Integer; 

procedure PI; 
begin 

A:= 5; 
B := 6; 
Writeln(A, B) 

end; (Definition of procedure PI} 

procedure P2; 
var 

A: Integer; 
begin 

A:= 10; 
Pl; 
Writeln(A, B, C) 

end; (Definition of procedure P2 J 

procedure P3; 
var 

C: Integer; 
procedure PI; 
var 

B: Integer; 
begin 

B:= 27 
end; (Definition of "other" procedure Pl J 

begin (Body of procedure P3 J 
c := 5; 
Pl; 
Writeln(A, B, C); 
P2 

end; (Definition of procedure P3 J 

(Continued) 



Functions and Procedures 

begin [Body of main program Scope} 
A:= 12; 
B := 13; 
c := 14; 
Writeln(A, B, C); 
Pl; 
P2; 
P3 

end. 

Ltsttng 7.11 

249 

Run the program Nest to see the error message. As usual, the error 
message ls a little misleading. What the computer ls trying to say ls that 
"V Is not defined 1n this section of the program." Remove the statement, 
run the program, and study the output, whtch Is given In figure 7.2. 

100 200 
1 2 

25 35 
5 6 
5 35 

100 35 

Ftgure 7.2 

The third example, program Scope, ts found tn ltstlng 7.11. Thts 
example shows that procedure and function names have a scope also and 1n 
fact follow the same scope rules that govern the use of variables. Try to 
predict the output of Scope, which Is given In figure 7.3. You should be 
certatn you understand where each ttem or output comes from. 

12 13 14 
5 6 
5 6 

10 6 14 
5 6 5 
5 6 

10 6 14 

Ftgure 7.3 



250 F111etlons Ind Proceckes 

BAGELS--An Extended Example 

we conclude this chapter by demonstrating a game that one person 
plays against the computer. The name of the game Is Bagels, a 
computerized version of the board game "Mastermind." In th1s game, the 
computer generates a random three-d1g1t number, with all digits distinct 
and the first digit never zero. The player then tries to guess the number In 
as few guesses as possible. The player's guess must also be a three digit 
number with no repeated digits. The computer gives hints to the player 
about how close the guess Is according to the following scheme: 

One Fermi for each correct digit in its correct position 
One Pico for each correct digit In an Incorrect position 
Bagels if no correct digits are guessed 

For example, If the secret number were 482, then a guess of 127 would 
receive a Pico, a guess of 842 would receive a Fermi Pico Pico, and a 
guess of 375 would be rewarded with Bagels. Note that all Fermi's, If 
any, are printed before any Ptco·s. Also notice that we are not told which 
digit generates which hint! 

We first outline a pseudo-code solution and then translate this 
solution into a Pascal program to play Bagels. Procedures are appropriate 
for two reasons: 

I. There are several tasks to perform. Rather than trying to write a 
single program to handle all the tasks, let us break the program up Into 
smaller, manageable pieces, tackling each p1ece as we go. 

2. There are two different occasions when we need to do the same 
thing, namely break a three-digit number Into Its component digits and 
then make sure the first one Is not zero and that all three digits are 
distinct. We must do this when the computer generates the secret number 
at the start of the game and we must also do this each time the player 
makes another guess. Rather than writing the statements to perform this 
analysts twice, functions and procedures allow us to wrtte these 
statements once, give them a name, and then perform the analysts simply 
by calling the name. Here ts a rough outline of the algorithm. Notice that 
we use the top-down approach where we worry about the big steps we 
need to take to solve the problem. We handle the details of each of these 
steps later. 



FuncUons and Procedures 

The pseudo-code follows: 

Provide instructions to the player, if needed 
Repeat 

Repeat 
Have the computer generate a three digit number 
Break the generated number up Into Individual digits 
Check the legality of the generated number 

Until the generated number Is valid 
lnitla11ze the number of guesses too 
Repeat 

Repeat 
Accept a guess from the player 
Break the guess up into Individual digits 
Check the legaltty of the guess 

Unt11 the guess ts valid 
Increment the guess counter 
If the game is over, summarize results 

251 

Else analyze the guess and print the appropriate response 
Unt 11 the game is over 

Until the player quits 

The Pascal equivalent of the above pseudo-code is given in listing 7.12. 
Run this program and see how well you can do. If you're good <and a little 
lucky), you should be able to guess the number in about a half dozen 
guesses. 

There ts an Important observation that we should make about the 
Bagels program. Note that the procedure Analyze Invokes the procedure 
Give. This ts a common occurrence tn Pascal programs. The point to make 
is that since Analyze makes use of Give, Analyze must follow Give. That 
way, the system already "knows about" Give when Analyze Invokes lt. 

program Bagels; 
(This program plays the game of Bagels.} 

var 
CompNum, Comp I, Comp2, Comp3 : Integer; 
Guess, Digit I, Digit2, Digit3 : Integer; 
NumGuesses: Integer; 
Over: Boolean; 

(Contlnu11d) 



252 

procedure Instructions; 
[This procedure gives the rules of the game.} 

var 
Response : Char; 

begin 

F.:tlons and Proceclns 

Writeln('Do you want the rules for the game of Bagels? (Y/N)'); 
Readln(Response ); 
if (Response= 'Y') or (Response= 'y') then 
begin 

Wrlteln(Chr( 12)); [Clear Screen} 
Writeln('The computer will randomly generate a three digit'); 
Wrlteln('number wlth all digits distinct and the flrst digit'); 
Writeln('never zero. Your job is to guess the computer"s'); 
Writeln('number in as few guesses as possible. Your guess'); 
Writeln('must also be a three digit number with no repeated'); 
Writeln('diglts. The computer will give hints as follows:'); 
Write In; 
Writetn('One FERMI for each correct digit in the correct place.'); 
Writeln('One PICO for each correct digit in an Incorrect place.'); 
Writeln('BAGELS if no correct digits are guessed.'); 
Write In; 
Writeln('Hit RETURN to continue.'); 
Read In; 
Write In; 
Writeln('For example, if the secret number is 482, then'); 
Writeln('a guess of 127 receives a PICO,'); 
Writeln('a guess of 842 receives a FERMI PICO PICO,'); 
Writeln('and a guess of 375 receives a BAGELS.'); 
Write In; 
Writeln('Note that all FERMls are given before any PICOs.'); 
Writeln('Also notice that we are NOT told which diglt'); 
Wrlteln('generates which hint.') 

end (If) 
end; [Definition of procedure Instructions} 

procedure Generate (var CompNum: Integer); 
(This procedure generates a 3 digit number between I 00 and 999.} 
begin 

CompNum := Random mod 900 + I 00 
end; [Definition of procedure Generate} 

(Co111/11111H1) 



Functions and Procedures 

procedure Break (Num: Integer; 
var Huns, Tens, Ones : Integer); 

{This procedure splits the given Number into its three digits.} 
begin 

Huns := Num div 100; 
Tens:= (Num mod 100) div 10; 
Ones:= Num mod 10 

end; (Definition of procedure Break} 

function Valid (Huns, Tens, Ones: Integer): Boolean; 
(This function determines if the digits are distinct} 
(and if Huns is nonzero.} 
begin 
if Huns = O then 
Valid:= False 

else if (Huns= Tens) or (Huns= Ones) or (Tens= Ones) then 
Valid:= False 

else 
Valid:= True 

end; (Definition of function Valid} 

procedure Obtain (var Guess : Integer); 
(This procedure obtains the next guess from the player.} 
begin 

Write('Please enter your guess: '); 
Readln(Guess) 

end; (Definition of procedure Obtain.} 

procedure Determine (var over: Boolean; 
CompNum, Guess: Integer); 

(This procedure decides if the game is over or not.} 
begin 
over := (CompNum = Guess) 

end; (Definition of procedure Determine.} 

procedure Summarize (NumGuesses: Integer); 
begin 

Writeln('You finally got it. It tool<', NumGuesses: 2, ·tries.') 
end; (Definition of procedure Summarize.} 

(C11nlln1111d) 

2S3 



254 

procedure Give (Message: string; 
var GaveHint : Boolean); 

FWICllons IAll Procedures 

(This procedure actually gives the FERMls and PICOs,) 
(and sets the variable GaveHint to True.} 
begin 

GaveHint := True; 
Write(Message, · ') 

end; (Definition of procedure Give] 

procedure Analyze (XI, X2, X3, YI, Y2, Y3: Integer); 
var 
GaveHint: Boolean; 

begin 
GaveHint := False; 
if (X I = Y I ) then 
Give('FERMI', GaveHint); 

if (X2 = Y2) then 
Give('FERMI', GaveHint); 

if (X3 = Y3) then 
Give('FERMI', GaveHint>; 

if (XI = Y2) or (XI = Y3) then 
Give('PICO', GaveHint); 

if (X2 =YI) or (X2 = Y3) then 
Give('PICO', GaveHint); 

if (X3 =YI) or (X3 = Y2) then 
Give('PICO', GaveHint); 

if not GaveHint then 
Write('BAGELS'); 

Writeln 
end; (Definition of procedure Analyze] 

function PlayerOuits: Boolean; 
(This function determines if the player wants to play again.) 

var 
Response : Char; 

begin 
Write('Do you want to play again? (Y /N) '); 
Readln(Response ); 
PlayerOuits := (Response = 'N') or (Response = 'n') 

end; (Definition of function PlayerOuits) 

(Continued) 



Funct1ons and Procedures 

begin (Body of main program Bagels} 
Instructions; 
repeat 
repeat 

Generate(CompNum); 
Break(CompNum, Comp I, Comp2, Comp3) 

until Valid(Compl, Comp2, Comp3); 
NumGuesses := O; 
repeat 

repeat 
Obtain(Guess); 
Break(Guess, Digit I, Digit2, Digit3); 

until Valid(Digit I, Digit2, Digit3); 
NumGuesses := NumGuesses + I; 
Determine(Over, CompNum, Guess); 
if Over then 
Summarize(NumGuesses) 

else 
Analyze( Comp I, Comp2, Comp3, Digitl, Digit2, Digit3); 

until Over; 
until PlayerOuits 

end. 

Listing 7. 12 

Concluston 

255 

We cannot overestimate the Importance of this chapter ln the 
development of programming sk11ls. Most real world problems are too 
d1ff1cult to be attacked w1th a single program. The top-down, 
divide-and-conquer strategy, which uses functions and procedures, 
provtdes an organized method for making difficult programs manageable. 
It ts not unusual to see very large programs <more than 1 ooo lines> wtth a 
main program consisting of just a few dozen ltnes. These few 11nes are 
just procedure and function Invocations. 

The concepts of scope, local variables, global variables, dynamic 
storage allocation, arguments, and parameters are critical to the 
understanding of the programming process and are pertinent regardless of 
the language one Is using. 



256 Functions and Procedures 

Exerctses 

7. 1 Write and save a program that prints out 1 o pseudo-random numbers 
generated by the bu11t-1n function Random. Turn off the system and then 
load and run your program. Turn off the system a second time and load and 
run your program again. What do you notice about the output from your two 
runs? 

7.2 The output from your two executions of the program of Exercise 7.1 
should have been the same because the system 1n1tlal1zes a global variable 
RandSeed to 1, and RandSeed determines the sequence of numbers 
generated by Random. This ls unfortunate If you are using Random to play 
a game. Every time you turn on the computer, It starts to play the same 
old game. The easiest way to fix this ls to use the built-In function 
TlckCount. TlckCount ls a function, like Random, with no parameters. 
TlckCount returns a long Integer which represents the number of 6oths of 
a second since the system was turned on. Hence, the statement 

RandSeed := TlckCount 

added at the beginning of your program has the effect of randomizing the 
generation of random numbers. That Is, TlckCount Is used to determine the 
starting point for the random number sequence, and since TlckCount 
changes so quickly, 1t ls highly unlikely that two runs of a program 
containing this statement would produce the same results. 

Add the above statement to your program of Exercise 7.1. Run the 
program from a "cold start" Ca turned-off computer) a few times to verify 
that the output ls Indeed different. Note: You do not need to declare 
RandSeed or TlckCount as they are both Macintosh Pascal system built-Ins. 

7.3 Write a function GenRandomCN) that generates a random Integer 
between 1 and N. Make sure GenRandom uses RandSeed and TlckCount 
<Exercise 7.2). 

7.4 Write a program that uses GenRandom of Exercise 7.3 to simulate 50 
rolls of two dice, a red die and a green die. The output should have 3 
columns showing Red's value, Green's value, and the total value. 

7.5 a. Why does the statement "Dice := GenRandomC 12)" not properly 
simulate the rolling of two dice? 



Functtons and Procedures 257 

b. Why does the statement "Dice := GenRandom< 11 l + 1" not properly 
simulate the rolling of two dice? 

7.6 <Burr vs. Hammon) Mr. Hammon and Mr. Burr are about to fight a duel. 
Hamilton hits his target, on the average, once In two tries, while Burr hits 
his target, on the average, once In three tries. Being a gentleman, 
Hamilton allows Burr to shoot first. The duel continues, with each taking 
turns, until someone Is shot. Write a structured program with functions 
and procedures to simulate the duel 100 times. The output should 
announce how many times each person won, and the average length Un 
shots) of the duels. Of course, use random number generation to simulate 
the shots. 

7.7 <Compl1ter Roulette) Write a structured program that simulates the 
following perverse version of Russian Roulette. In a six-cylinder gun, 
place one silver bullet and two blanks. Three of the cylinders are left 
empty. Spin the cylinder and pull the trigger. If an empty chamber Is 
beneath the firing pln, the gun goes "CLICK." If either a blank or the silver 
bullet Is under the firing pin, then the gun goes "BANG." After a brief 
pause, you find out whether you are still alive and still playing, or whether 
the game is over. Hint: Use a "Readln;" to halt execution and allow the 
user to "pull the trigger" by typing the Return key. Simulate the pause 
after the BANG by giving the computer a big "do nothing" loop such as: 

for Index:= 1 to 2000 do 
; (Nothing) 

7.8 A dog has buried 3 bones randomly in his backyard, which Is 50 feet 
by 50 feet. Naturally, he has forgotten where the bones are burled, so he 
randomly begins digging holes. His nose Is so good <and his holes so bigD 
that he will find a bone 1f he digs within one foot of It. That Is, suppose a 
bone Is burled at point <x,yl. The dog finds the bone If he digs at <x,yl, 
<x-1,yl, Cx+ 1,yl, <x,y-1 ), or <x,y+ 1 ). For simplicity, we assume x and y are 
integers. That ls, the dog only digs at points with Integer coordinates. 

Write a program to randomly bury 3 bones and then randomly dlg holes 
until a bone ls found. Have the program repeat the experiment 20 times so 
that the dog gets a feeling for the average number of holes needed to find a 
bone. Make sure the program ls structured by using functions and 
procedures. Also notice that the dog ls so dumb that he may dig the same 
hole more than once. 



258 Functions and Procedures 

7.9 A man leaves a pub In a slightly tipsy state. His home ls 8 blocks 
west of the pub, while the jail is 8 blocks east of the pub. The man is as 
likely to go east as west, and after each block he falls down. When he gets 
up, he goes east or west with equal probability. In his journey, If he 
passes the pub, he goes In for one last drink before continuing his journey. 
Wr1te a structured program to simulate the man's walk, which ends when 
he reaches home or jail. The output should Include the man's current 
pos1t1on (3 blocks east, etc> and, at the end, the program should output the 
length C1n blocks) the man walked and the total number of t1mes he 
returned to the pub. 

7.1 O Wr1te a procedure Time that converts a number N of seconds 1nto 
hours, minutes, and seconds. For example, 3724 seconds ts 1 hour, 2 
minutes, and 4 seconds. Assume that N ls a long Integer. 

7.11 Wrtte a program that uses the bu11t-1n functton TickCount Csee 
Exercise 7.2) and the procedure Time of Exercise 7. 1 o to print a message 
of the form 

You turned me on 2 hours, 14 minutes, and 6 seconds ago. 

Remember that TlckCount returns a long Integer which represents the 
number of 6otn s of a second s1nce the system was turned on. convert 
this number to seconds before call1ng T1me. 

7.12 The four dlg1t number 9801 has the odd property that C98 + 01)2 = 
9801. This problem presents an outline of a structured program to find all 
such four digit numbers. 

a. Write a procedure SplitCN, L, R> that accepts a four digit number N 
and returns L and R, the left and right two-digit numbers formed from N. 

b. Write a function SqSumCX, Y) that returns the square of the sum of 
Its Inputs X and Y. Important: SqSum should compute CX + v>2 and not x2 + 

v2. To avoid integer overflow, have SqSum return a long integer. 

c. Write a main program that uses Split and SqSum fo ftnd all 
four-digit numbers with the given property. Warning: Expect this program 
to be pretty slow. If you wonder about the status of your program, use the 
Pause option and the Instant window. 



Functions and Procedures 259 

7.13 Perhaps you noticed a certain symmetry to the output of program 
Combinations. For example, C(6, 1) = 6, C(6,2) = 15, C(6,3) = 20, C(6,4) = 
15, C(6,5) = 6. That ls, C(N,K) = C(N,N-K). This ls easy to prove from the 
formula for C(N,K), but It is also obvious from the fact that for every 
committee of K people you choose, there ls a corresponding committee of 
N-K people not chosen. Hence, If asked to compute C(N,K), we may compute 
C(N,N-Kl if we wish. Thus we may suppose that K ~ N d1v 2. 

Notice that much cancellation ls possible 1n the formula for C(N,K): 

C(N,K) = ___..N...._! __ 
K! * (N-K)! 

N* ... *(K+ J) 

(N-K)! 

The last expression will not cause long Integer overflow as easily as the 
first, especially If you alternate divisions and multiplications. Use these 
ideas to write a better version of the program Combinations. 

7.14 Write a function sumDlvs(N) that adds the proper divisors of Its 
input N. That is, SumDivs< 15) should be 9, since 1, 3, and 5 are the only 
positive Integers less than 15 that divide evenly into 15. 

7.15 <Perfect Revisited, see Exercise 5.17) Write a program that uses 
SumDlvs to find all perfect numbers between 2 and 500. 

7.16 (Abundant Revisited, see Exercise 5.18) Modify the program of 
Exercise 7.15 so that It finds all abundant numbers between 2 and 500. 

7.17 (Primes Revisited, see Listing 5.14) Even though it is not very 
efficient, modify the program of Exercise 7.15 and use the function 
5umD1vs to find all primes between 2 and 500. 

7.18 Two Integers M and N are said to be am1cable If each ls the sum of 
the divisors of the other. Use sumD1vs to write a program that finds the 
first pair of amicable numbers. 

Historical note: This pair was known to Pythagoras 2500 years 
before computers were Invented and had great mystical s1gn1f1cance even 
Into the middle ages, where 1t was "used" 1n witchcraft and astrology. In 
1636 Pierre de Fermat found the next amicable pair, 17,296 and 18,416. 
You can use SumDlvs to verify that this Is not a misprint. Computers have 
aided In the search for amicable numbers, and now more than 600 pairs are 
known. 



260 Functions and Procedures 

7.19 In 1956 Easter fell on Apr11 Fools' Day CAprll 1 ). When will this 
happen again? 

7.20 The latest that Easter can occur 1s Apr11 25. When did this last 
happen? When w111 thfs next happen? 

•••••••••••••••••••••• 
A Note ConcemiDCJ the Disk of Sample 

Programs Accompanying this Book 

Because of ltmltations of the ortglnal Macintosh operating system, 
only about I 00 files could be stored on any one disk. Since we have more 
than 100 text files and sample programs in thts book, it was necessary to 
compact the programs for Chapters 8-16. Inf ormatton on this compact
tficatlon can be found by running the program RUN t'E FIRST on the dtsk. 

As thts book goes to press, a new verston of the operating system has 
been promised As soon as It ts available, a new version of the Sample 
dtsk will be made avatlable. Again, roo the program RUN t'E FIRST to see 
which version of the disk you have. 



Chapter 8 

The Pascal Type System 1 User
Def1ned Types and Precision 

BOTTOt1 UP - A programming methodology In 
which the finer details are coded before any 
study or the overall needs of the system 
has been made. 

Devil's DP Dictionary 

Earlier programming languages, like FORTRAN, are often called "action 
oriented" languages. This description stems from the fact that early 
applications were often numeric in nature. For example, many people think 
of programs that control rocket ships in outer space when they think of 
the uses of computers. Because these programs almost always dealt with 
numbers, the operations performed on these numbers were what was 
important. In fact, it was the nature of these early applications that 
earned the computer its name. 

In more recent times, computers have developed into what might more 
appropriately be called information processors. Computers are used to 
simulate airplane flight and customer lines in a bank, to control processes 
on oil refineries and robots on assembly lines, and for storing massive 
amounts of data of varying types on people, places, and things. Thus, more 
modern languages, like Pascal, have become less action oriented and more 
"object oriented." Such languages have the capability of representing data 
in ways other than just numbers, and the goal of such languages is the 
capability to represent data objects in a way that more closely resembles 
the actual data items themselves. 

Standard Pascal has four built-in types: Integer, Real, Char, and 
Boolean for representing numbers, whole and decimal, characters, and 
conditions that are either True or False. Since variables of the standard 

261 



262 The Pascal Type System, User Defined Types, and Precision 

type Char can only hold values that are one character long, it is usually 
more convenient to use the Macintosh Pascal string type. In fact, we have 
used the Char type in only one of our previous examples. Because Char, and 
not string, is the standard Pascal type, we consider some examples of 
the Char type in this chapter. We also discuss briefly in Chapter 1 O how 
one can survive with a version of Pascal that does not include a string 
package. 

In addition, Macintosh Pascal has some additional types that are 
concerned with the precision of numeric data. These types will be 
discussed at the end of this chapter. Most older languages also have this 
same concept of different types. FORTRAN distinguishes between 
integers, real numbers, and characters, as do most versions of BASIC. 
Neither language has a corresponding Boolean type, although anyone who 
has programmed In either language should realize that a Boolean type is 
not required. In other languages, for example, a true condition could be 
represented as the number I and a false condition as the number 0. Since 
computer languages by their nature need to be as precise as possible, 
critics of such a representation would say that Boolean conditions are not 
numbers and should not be represented as numbers. It makes sense to 
divide one number by another or take a square root of a number, but 
corresponding operations on Boolean conditions make no sense at all and 
the language should prohibit such nonsense. While the reader may think 
that such criticism is unnecessarily picky, consider the following 
expressions in BASIC, where X = 7, V = 5, and Z = 2: 

IF X < V < Z THEN .. . 
IF X > V > Z THEN .. . 

Such expressions are usually written by beginning programmers and are 
intended to test the compound Boolean conditions 

IF (X < V) AND (V < Z) THEN .. . 
IF (X > V) AND (V > Z) THEN .. . 

This second version is the correct way to write the compound test, i.e., 
compound conditions in BASIC are built as they are In Pascal, by 
separating simple conditions with the words AND and OR. However, many 
implementations of BASIC allow the syntactically incorrect versions, and 
even worse, assign the wrong truth value to them! The problem stems 
from the fact that Boolean conditions are actually treated as numbers. 
Thus, X < V < Z Is evaluated from left to right as follows: A test is made to 



The Pascal Type System, User-defined Types, end Precision 263 

see If 7 < 5. It isn't, of course, and so this part of the expression is 
replaced by the BASIC equivalent of False, which is 0. So now the 
computer tests to see if O < Z. But O < 2 is true, and so the entire 
expression is true. The reader should analyze the second expression and 
see why BASIC might evaluate that one incorrectly also. It Is small 
wonder that beginners who have been led to believe that computers don't 
make mistakes find such occurrences to be very frustrating. This is also a 
frustrating problem for teachers who try to explain the correct way to 
form compound conditions, because the system seems to accept as 
syntactically correct almost any string of comparisons. 

What would a Pascal translator do with an expression like X < Y < Z? 
It would also evaluate 7 < 5 as False. But then, when it tried to evaluate 
False < 2, it would generate a syntax error because one cannot compare 
two objects If they have different types. Thus, we see that one advantage 
of types Is that the system can protect us from ourselves. In other words, 
languages with strict type rules tend to be more secure than languages 
with more permissive type mixing. 

When we say that a variable (or a data object) has a particular type, 
we are actually specifying two properties of the data object: 

I. The set of values that may be assigned to the object. 
2. The set of operations that may be performed on the object. 

For example, a variable of type Integer may take on any of the values 
from - 3276 7 to + 3276 7 and may have any of the standard numeric 
operations performed on it. Real variables of course take on a different 
set of values, from approximately 10-45 to 1038 in absolute value, and 
there are certain operations allowed on integers that are illegal for reals 
(mod and div for example). Boolean values may be operated on by and, or, 
and not, and may be assigned to and compared with other Boolean values. 
Character variables may be compared with other character values and 
assigned to other character variables. 

We will discuss character manipulation In detail in a later chapter. 
The reason we do not include it here is because we normally use the 
special Macintosh Pascal String Package for most of our work with 
character information. The String Package Is flexible and powerful, 
making character manipulation easy and convenient. As we mentioned 
earlier, strings were unfortunately omitted from Standard Pascal. This 
omission makes character manipulation tedious and difficult. But because 
the Char type Is the standard Pascal type, it Is worthwhile to consider 
some examples. 



264 The Pascal 1,,e System, User Oerlned 1,,es, llld Precision 

Example: Write a Pascal program that inputs a name from the keyboard in 
the form 

Last, First Middle 

and prints the initials in the form 

F. M. L. 

For example, the input 

Bear, Smokey The 

should produce the output 

S. T. B. 

When dealing with the Standard Pascal Char type, we must remember 
that every value of that type is a single character. Thus, we must 
process the input character-by-character. Note that all we need to 
remember from each individual name is the initial letter. So we should 
scan these parts and save the initial. Then we print the initials, each 
followed by a period. Of course, we find our way through the name by 
looking for the blanks between the various parts of the name. We point out 
to the reader that character values are enclosed in single quotes. The 
program Initials Is given in listing 8.1. 

Notice that the main part of Initials consists of 3 repeat ... unti1 
loops. The first two read over letters until they find the blanks separating 
the names. The third loops until It finds the "End of line." EOLN is a 
"cousin" of EOF that was introduced in Chapter 5. EOF Is False unless the 
item you just read was the last item in the file. Similarly, EOLN is False 
unless the Item you just read was the last item on the line. EOLN is, thus, 
very useful for controlling the reading of character input, either from a 
disk file or from interactive input. In general 

While not EOLN do 
Read a character 
Process a character 



The Pascal Type System, User-defined Types, end Prec1s1on 265 

1s the proper way to process a line of characters one character at a time. 
In Initials we used repeat loops Instead of while loops, but that should 
be all right since we expect each name to consist of at least one letter. 

program Initials; 
{This program converts a name of the form} 
("Bear, Smokey The" into its initials: ·s. T. B."} 

const 
Period=·:; 
Blank=·'; 

var 
Letter, Last, First, Middle : Char; 

begin 
Wrlteln('Enter your name in the form "Last, First Middle".'); 
Read(Last); 
repeat (Look for first blank.} 

Read(Letter) 
until Letter= Blank; 
Read(First); 
repeat (Look for second blank.} 

Read(Letter) 
until Letter= Blank; 
Read(Middle ); 
repeat (Look for end of input line.} 

Read(Letter) 
until EOLN; 
Writeln; 
Wrlte('The Initials are: '); 
Write(FirsO; 
Write( Period); 
Wrlte(Blank); 
Write(Middle); 
Write( Period); 
Write(Blank); 
Write(Last); 
Wri te(Period) 

end. 
listing 8.1 



266 The Pascal Type System, User Defined Types, and Precision 

User-defined Types 

Now we introduce the reader to a concept that first appeared in 
Pascal and has since been widely adopted In many recent programming 
languages. The topic is User-defined Types, and, as its name implies, this 
feature allows the programmer to "invent" types other than the standard 
data types (like Integer, Real, Char, and Boolean) to aid in solving 
problems. This feature in a language is very important for two reasons: 

I. Computer programs are tools to help people solve problems. The 
more closely the program can reflect the real-world situation, the better 
the solution is likely to be. 

2. Computer programs should be written with the human reader, not 
the computer, in mind. In general, the more readable a program is, the 
easier it is to understand, debug, and modify. 

We start by giving a simple example that we have seen before. Let us 
input from the keyboard an hourly pay rate and seven hourly figures 
representing the number of hours worked on the days Monday through 
Sunday, and let us compute the amount of pay for the week. We assume 
that the pay rate Is standard for Monday through Friday, with 
time-and-a-half for Saturday and double-time for Sunday. Listings 8.2, 
8.3, and 8.4 show three versions of this program, with each successive 
version striving for more readability. 

program Pay 1; 
[This program computes a weekly pay, given the hours worked each} 
[day. Saturday gets time and a half, Sunday gets double time.} 

var 
Rate, Hours, Pay : Real; 
Day : Integer; 

begin 
Pay:= O; 
Write('Enter the pay rate per hour: '); 
Readln(Rate ); 

(Cont in1111d) 



The Pascal Type System. User-defined Types. and Precision 

for Day:= I to5do 
begin 

Wrlte('Enter the hours for day', Day : 2, ': '); 
Readln(Hours); 
Pay := Pay + Hours * Rate 

end; (For} 
Wrlte('Enter the hours for day 6: '); 
Readln(Hours); 
Pay := Pay + Hours * Rate * 1.5; 
Wrlte('Enter the hours for day 7: '); 
Readln(Hours); 
Pay := Pay + Hours * Rate * 2; 
Write In; 
Writeln('The total pay for the week is$', Pay: 5: 2) 

end. 

Listing 8.2 

program Pay2; (Slightly improved version} 
(This program computes a weekly pay, given the hours worked each} 
(day. Saturday gets time and a half, Sunday gets double time.} 

const 
Monday= I; 
Friday= 5; 

var 
Rate, Hours, Pay : Real; 
Day: Integer; 

begin 
Pay:= O; 
Wrlte('Enter the pay rate per hour: '); 
Readln(Rate); 
for Day := Monday to Friday do 
begin 

Write('Enter the hours for day·, Day: 2, ': '); 
Readln(Hours); 
Pay := Pay + Hours * Rate 

end; (For} 

( Co111i1111llll) 

267 



266 The PasA1 T,,e Spin, User Defined Types, and Precision 

Write('Enter the hours for day 6: '); 
Readln(Hours); 
Pay := Pay + Hours * Rate * 1.5; 
Write('Enter the hours for day 7: '); 
Readln(Hours); 
Pay := Pay + Hours * Rate * 2; 
Write In; 
Writeln('The total pay for the week is$', Pay: 5: 2) 

end. 

Listing 8.J 

program Pay3; (Vastly Improved version) 
(This program computes a weekly pay, given the hours worked each) 
(day. Saturday gets time and a half, Sunday gets double time.) 

type 
Days= (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday); 

var 
Rate, Hours, Pay: Real; 
Day: Days; 

begin 
Pay:= O; 
Write('Enter the pay rate per hour: '); 
Readln(Rate ); 
for Day:= Monday to Sunday do 
begin 
Write('Enter the hours for·, Day, ': '); 
Readln(Hours); 
case Day of 

Monday, Tuesday, Wednesday, Thursday, Friday: 
Pay := Pay + Hours * Rate; 

Saturday: 
Pay := Pay + Hours* Rate * 1.5; 

Sunday: 
Pay := Pay + Hours * Rate * 2 

end; (Case) 
end; (For) 

(Continued) 



The Pascal Type System. User-defined Types. and Precision 

Write In; 
Wrlteln('The total pay for the week is$', Pay: 5: 2) 

end. 

Listing 8.4 

269 

The first and second versions are somewhat standard in that we use a 
loop controlled by an integer to get us through the weekdays. The second 
version makes some attempt at improving readability by using constants 
for Monday and Friday. In the third version, we see something truly 
different. Before the body of the program, up in the const/var section of 
the program, we now see a type section. It is in this section that we can 
define new types. Before we discuss these new types, let us review the 
purposes of types. 

When we declare a variable to be of type Integer, we have implicitly 
accomplished two things: 

1. We have specified the valves that the variable is allowed to take, 
i.e., 5 and -234 are legal values while 2.7 and True and ·x· are illegal 
values. 

2. We have specified the operations that may be performed on the 
variable, e.g., assignment or addition. 

So, in general, types define allowable values and operations. Also, types 
provide some security--again the system tries to protect us from 
ourselves. If we try to assign a real value to an integer variable, or to 
divide one character value by another, the system alerts us that we are 
trying to do something illegal. 

In the third version of the payroll program above, a new type, Days, is 
defined. This type exists throughout the program and as with other types, 
we can declare any variables we wish to be of this new type. Such a type 
is called an ordinal type, or an enumerated type, because we list (or 
enumerate) its possible values when we define the type. Thus, variables 
of type Days may take on any one of the values Monday, Tuesday, 
Wednesday, ... , Sunday, but no other values. These are the so-called 
constant values of the type Days, just like True and False are the 
constant values of the Boolean type, and integers like 1, 2, and 3 are 
constant values of type Integer. We emphasize this point because many 
beginners confuse a constant value like Monday with the string constant 
'Monday·. In other words, the assignment statement Day := 'Monday· is 



270 The Pasca1 Type System, User Defined Types, and Prectstan 

illegal because the types are not compatible. Also, If St ls a string 
variable, the statement St:= Monday ls also illegal because Monday is not a 
string. 

In this chapter, we only define ordinal types. In later chapters we 
see how to use records and arrays to form more complex, structured types. 
The adjective "ordinal" is important. Essentially, an ordinal type has a 
first (or smallest> value, a last (or largest> value, and a well-defined 
ordering among the values so that each value has a unique successor 
(except the last) and a unique predecessor (except the first). The Standard 
Pascal built-in types of Integer, Boolean, and Char are all ordinal types. 
The type Real is not. The string type, when provided, is also not 
considered an ordinal type. 

The reason the Real type is not an ordinal type should be clear after 
considering the following question: What real number comes immediate
ly after 1.0376? Is it 1.0377, or 1.03761, or 1.03760000000000001? In 
a general mathematical setting, there is in fact no next number! Suppose 
there were. If X represents 1.0376 and Y represents the very next real 
number after 1.0376, then it is easy to see that (X+Y)/2 is smaller than Y 
and bigger than X. In fact, (X+Y)/2 is just half way between X and Y. The 
reason there is no next number is related to the density of the set of all 
real numbers. Now on a computer, we can only represent a finite number 
of real numbers, so why aren't the reals considered to be an ordinal type? 
One reason is there would be too much confusion programming on different 
machines. Suppose one computer stores real numbers to 10 decimal places 
of accuracy while a larger computer might store real numbers to 30 
decimal places of accuracy. Then the answer to "What comes after 
1.0376?" has different answers on different machines. Consequently, 
programs that try to treat the real numbers as an ordinal type could 
possibly give much different results as they are moved from machine to 
machine. 

Why are ordinal types important? There are many places in Pascal 
where we mllst use an ordinal type. For example, the variable that 
controls a case statement (that is, the variable following the keyword 
case) must be of an ordinal type so we can list, or enumerate, the 
alternatives. Likewise, the control variable of a for loop must again be 
ordinal. This restriction makes perfectly good sense, because when we 
finish an iteration of the loop, we must execute the loop again with the 
next value, and we must terminate the loop after we have used the last 
value. 

With the ordinal user-defined types that we are discussing, it is easy 
to see how we specify the values of the type. We list the values, in 



The P8SC81 Type System, User-def1ned Types, and Precision 271 

order, within parentheses when the type ts being defined. The next thing 
that we must know are the operations allowed on these types. These are 
not specified by the programmer but are part of Standard Pascal. The most 
basic operations that are available with all types are equality and 
assignment. That ts, we can always assign values to variables as long as 
the types involved are the same and we can always test two values of the 
same type for equality. For example, if Workday and Dayoff are both of 
type Days, then all of the following are legal: 

Workday:= Thursday; 
Dayoff := Monday; 
Dayoff := Workday; 
if Dayoff = Workday then ... 
if Dayoff <> Wednesday then ... 

With ordinal types, there are some important features that are built-in. 
The ordering of a user-defined type is given when we list the values in the 
type definition. So in the program of listing 8.4, Monday is the smallest 
value and Sunday is the largest. Thus, we can compare ordinal values using 
the relational operators <, <=,>,and>=. It Is this ordering that also allows 
us to write for loops with ordinal types as control variables. 

Succ. Pred. Ord, and Chr 

A common operation performed on the integers is that of 
incrementing a value, as in Index := Index + I. With a type like Days, 
addition doesn't really make any sense. But getting to the next value does. 
For example, we may be keeping track of a company's records and the first 
thing we need to do each day is update the day of the week. So if we need 
to change the value of Day from Tuesday to Wednesday, we do it with the 
built-in function Succ (for successor), which applies to all ordinal types: 

Day:= Succ(Day); 

To get to the previous value, Pascal employs the function Pred (for 
predecessor). Thus, if Day is Tuesday, then 

Day := Pred(Day); 

assigns Day the value Monday. Often we may want to know where in the 
list a particular value is. For this, Pascal uses the function Ord (for 



272 The Pasal Type System, User Defined Types, Ind Precision 

ordinal position). One bothersome detail is that Pascal starts counting 
with zero. So Ord(Monday) equals o and Ord(Thursday) equals 3. 

We point out that it Is illegal to attempt to apply the Succ function to 
the last value of an ordinal type or to attempt to apply the Pred function 
to the first value of an ordinal type. So to write a segment that updates 
the day of the week, we would need to employ some sort of test as 
follows: 

if Day= Sunday then 
Day:= Monday 

else 
Day:= Succ(Day) 

Representation of Characters 

The observant reader may notice that the functions Succ and Pred are 
inverses of each other. This means that each function "undoes" the effect 
of the other. Another way of looking at inverses Is to notice that if we 
apply the functions in succession, we end up where we started. It might 
seem natural to expect an inverse function for Ord, that is, a function that 
takes a nonnegative integer as Input and gives us the element of the 
ordinal list corresponding to the position denoted by the input. That is, 
since Ord associates Wednesday with 2, there should be a function that 
associates 2 with Wednesday. The problem with such a general Inverse Is 
that we may define several different types in a single program. Then how 
are we to know which type we are talking about? For example, if in a 
program, we have the following delarations 

type 
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun); 
Colors= (Red, Violet, Blue, Green, Yellow, Orange); 

should the inverse function of Ord associate Wed with 2 or Blue with 2? 
Because of this problem, there is a special inverse of Ord, called Chr, but 
it applies to only one specific ordinal type, the character type Char. Chr 
associates with the integer N the Nth character in the computer's set of 
characters. Notice that this does not necessarily mean the Nth letter of 
the alphabet, because the character set contains all the possible 
characters that can be typed from the keyboard, including special 
characters, some of which are invisible on the screen but which 
nevertheless have meaning to the computer. This representation of the 



The Pascal Type System. User-defined Types. and Precision 273 

character set is known as the American Standard Code for Information 
Interchange, or ASCII (pronounced "askey") for short. It is one of the two 
most common representations of characters in computers. The other 
representation is the EBCDIC ("ebsidik") representation, which is found 
primarily in IBM systems. We assume an ASCII representation throughout 
this book, but we caution the reader that one should always check the 
particular representation that a machine uses and try to write general 
programs that are independent of the character representation. If this is 
not possible, then such programs should be carefully documented in case 
problems arise when executing these programs on different machines. The 
use of the Chr function is useful when we want to embed instructions into 
output statements. For example, Chr(9) has the same effect as the Tab key 
(since the Tab key is the ninth character in the ASCII character set) while 
Chr( 12) is the "form feed" or "page eject"; i.e., it causes printing to begin 
on a new page. Even when a printer is not being used, Chr( 12) can be used 
to "clear the screen." 

Table 8.1 shows the ASCII values for standard characters of the 
Macintosh character set. Empty positions in the table correspond to 
unprintable control characters (like the form feed) or to special Macintosh 
characters not found on ordinary keyboards (like mathematical symbols or 
letters for foreign alphabets). In addition to the tab key, Chr(9), and the 
form feed, Chr( 12), some other useful "invisible" characters are the 
vertical tab, Chr( 11), the carriage return, Chr( 13), which returns the 
carriage to the beginning of the line without advancing to a new line, and 
the line feed, Chr( 1 O), which returns to the beginning of the line and also 
advances to a new line. A list of the complete character set for the 
Macintosh is found in the Macintosh Pascal Reference Manual. The ordinal 
value of each of the standard characters in the table below is determined 
by adding its row and column labels. For example, Ord(' A') is 65. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 

16 
32 " # $ 7i: & ( ) * + I 
48 0 2 3 4 5 6 7 8 9 < > ? 
64 @ A B c D E F G H I J K L M N 0 
80 p a R s T u v w x y z [ \ l 
96 a b c d e f g h j k I m n 0 

112 p q r s t u v w x y z ( I ) 

Table 8.1 



274 The Pascal Type System, User Defined Types, and Preclekln 

We began the chapter by explaining that a good type system makes a 
language more secure by separating objects that are of differing types. 
But now the truth must come out. Because the computer really only stores 
zeros and ones in its memory (for the absence or presence of electrical 
current), everything, regardless of its type, is represented 
internally in tile computer as a number! How, then, are we able to 
separate Boolean values from numeric values and numeric values from 
characters? The answer is that we don't have to worry about this 
problem--this is a problem for the writers of systems programs. As 
programmers, we are in general not concerned about the internal 
representation of data. The purpose of high-level languages (like Pascal) 
is to free the programmer from worrying about such details. If the 
systems writer does a good job of implementing a high-level language, we 
as programmers should be able to picture the data in our minds in any way 
that is convenient for us. However, there are occasional instances where 
we do need to know how data is represented. Most of these instances 
involve character data and require an understanding of the ASCII 
representation. 

For example, the ASCII code for the upper case A is 65. Suppose Ch is 
a variable of type Char with current value 'A', and that Num is a variable of 
type Integer with current value 65. Then, if it were possible for us to look 
into the Macintosh's memory at the memory cells corresponding to Ch and 
to Num, we would not be able to tell any difference between the two. To 
reinforce the discussion of the previous paragraph, it is the "magic" of 
high-level languages that causes the computer to "convert" the 65 to the 
letter 'A' when we access Ch but leaves the 65 alone when we access Num. 
It is the translator writer's job to make sure the magic works and it is 
precisely this feature that makes high-level languages the powerful tool 
that they are to the "common" programmer. Programmers do not have to be 
experts on machine architecture and internal representation. Their minds 
can be freed from such details so that they can focus on the problems they 
are trying to solve. 

But what if we actually wanted to do some numeric calculations with 
some characters? This is where a knowledge of the ASCII code comes in 
handy, as we see in the next two examples. 

Example: Input from the keyboard 1 O grades, each of the form A, B, C, D, 
or F, and calculate a grade point average, where an A is worth 4 points, a B 
is worth 3 points, ... , an F is worth O points. 



The Pascal Type System. Usar-daf1nad Types. and Precision 275 

Discussion: We need to add to a running sum the appropriate point value 
for each of the grades. One possibility would be to use a case statement 
or nested tf ... then ... else st~tements to assign the correct value. We take 
a different approach in the program in listing 8.5 to Illustrate the Ord 
function. 

program GPA; 
(This program averages ten letter grades and reports) 
(the Grade Point Average for the given individual.) 

var 
Grade : Char; 
Count, Value, Total : Integer; 
Ave: Real; 

begin 
Total:= O; 
for Count := I to IO do 
begin 
Write('Enter the next grade (A, B, C, D, or F) '); 
Readln(Grade); 
tr Grade = 'F' then 
Value:= O 

else 
Value:= Ord(' A')+ 4 - Ord(Grade); 

Total :=Total + Value 
end; (For) 

Ave:= Total I 10; 
Writeln('The GPA is·, Ave: 5: 2, '.') 

end. 

listing 8.5 

Note that the statement Involving the Ord function assigns the correct 
number to Value, a 4 for an 'A', a 3 for a 'B', etc. 

Example: Base Conversion 

To follow this example, the reader needs some understanding of 
number bases. Ordinary numbers are written in base I 0. Base Io numbers 
have two basic properties: 



Z76 The Pacal Tnie System, User Dertnecl Types, and Prectslon 

1. These numbers are formed using any of 1 O different digits, O 
through 9. 

2. Each of the digits represents a power of 10. 
For example, 372 is 3*102 + 7*10 + 2*1=300 + 70 + 2. 

There is nothing special about IO except for its standard use, and it 
is possible to write numbers In anY. base. So 243 (base 7) is equal to 129 
(base 10) since 243 (base 7) is 2*72 + 4*7 + 3*1 = 96 + 26 + 3 = 129 (base 
10). 

The reader may be wondering why bases other than 1 O are ever used. 
It turns out that non-decimal bases are not used much outside of computer 
applications, but are extensively used in the computer field. We have 
mentioned several times that computers essentially store their 
information as strings of O's and 1 's. Since computers only have two 
"fingers,· the most natural base for numeric operations in a computer is 
base 2, or the binary number system. The binary system is easy to 
understand since the only digits used are o and I, and the only number fact 
one needs to learn Is that I+ 1 = I 0 (base 2). However, for humans, base 2 
Is cumbersome because it takes so many digits to express even moderately 
sized numbers. For example, the decimal number 163 is written in binary 
as 10110111 (the reader should check that this is correct>. Note that 163 
= 128 + 32 + 16 + 4 + 2 + I. 

Because of the clumsiness of the binary system, many computer 
systems also use base 6 (octal), or base 16 (hexadecimal). We will give a 
program shortly that converts base 6 numbers Into decimal numbers. But 
first, we briefly explain the hexadecimal notation. Since in base 16 we 
need 16 different digits with which to form numbers, after using O 
through 9, we still need six more symbols. The symbols that are used are 
the upper case letters A through F, where A stands for 10, ... , F stands for 
15. So in base 16, the decimal number 163 Is written as B7 (which Is 11 * 
16 + 7). The hexadecimal system is explored a bit further in the exercises. 

Now we present an algorithm that reads in a number from the 
keyboard In octal and prints out its decimal equivalent. Note that if we 
read the input in as an integer, It Is treated as a decimal number. Thus, we 
must read the input as a sequence of characters. Moreover, observe that 
we do not know how many characters we are reading (because we do not 
know how long the number is). While this may seem like a difficult 
problem at first glance, it becomes easy when one key observation Is 
made: 



The Pascal Type System, User-defined Types, and Precision 

Each time we scan a new digit, the previous number 
Is multiplied by the base and the new digit is added. 

Z77 

To illustrate this, consider the decimal number 372. Now pretend 
you can't see all of the number and that you must scan it a digit at a time 
from the left. So you start with zero, see the 3, and add it to your total. 
So after scanning the first digit, you think the number is 3. If there are, in 
fact, no more digits to be scanned, you are correct. However, when you 
scan the 7, multiply lhe old number (3) by IO and add in the new digit. 
This gives you 37, and again you are correct If the number stops there. 
Finally, upon scanning the 2, multiply the previous number (37) by IO and 
add in the 2, giving 372. We use the EOLN (End of Line) function to 
determine when we have read the last digit of the number. This method 
works for any base and is the idea behind the program in listing 8.6. 

program BaseConverslon; 
(This program converts base 8 numbers into base IO.) 

var 
Digit: Char; 
Decimal : Integer; 

begin 
Decimal := O; 
Write('Enter a number in OCT AL (base 8) notation: '); 
while not EOLN do 

begin 
ReadCDigit); 
Decimal := 8 *Decimal + (OrdCDigit) - Ord('O')) 

end; (While} 
Write In; 
Writeln('The decimal equivalent is', Decimal) 

end. 

Listing 8.6 

Although the ordinal value of a digit is not equal to the value of the 
digit itself, the digits do in fact occur consecutively in the ASCII 
character set. Thus, we "convert" a character digit to its numeric value by 
subtracting the ordinal value of zero from the ordinal value of the digit in 
question. 



278 The Pmcal Type System, User Defined Types, and Preclslan 

There are two major restrictions in Standard Pascal that apply to 
user-defined types. The reader should be aware of them: 

I. Values of a user-defined type cannot be written using the Write 
(or Write In) statement. 

2. Values of a user-defined type cannot be read using the Read (or 
Readln) statement. 

While these restrictions were placed on the Pascal language for 
implementation simplicity and efficiency, they are sometimes bothersome 
and confusing, particularly for the beginning programmer. Fortunately, the 
authors of Macintosh Pascal have removed these restrictions and the 
programmer is free to treat user-defined types just like the other simple 
types. However, this is an exception, so we feel it is worthwhile to 
present an example so the reader can see how someone using Standard 
Pascal can get around the normal restrictions. 

Consider a program that calculates for an individual the weekly total 
and daily average of the number of hours of television viewing. Such a 
program might have a prompt like this: 

Enter the number of hours of television watched on Monday: 
Enter the number of hours of television watched on Tuesday: 

Enter the number of hours of television watched on Sunday: 

If the days of the week are a user-defined type, how do we get their values 
printed in the prompt message? The procedure WriteDay In the program of 
listing 8.7 does it for us. Again we point out that such a procedure is not 
required in Macintosh Pascal because of the flexibility given to the 
programmmer in regards to user-defined types. 

Another restriction concerning user-defined types is that two 
different types may not contain the same constant value. So the following 
segment Is illegal 

type 
FlagColor = (Red, White, Blue); 
StopLightColor =(Red, Yellow, Green); 

because the value of Red is a constant of two different types. 



The Pascal Type System. User-defined Types. and Precision 

program TV; 
(This program shows how standard Pascal ·writes· user defined types.) 
type 
Days • (Mon, Tues, Wed, Ttvs, Fri, sat, Sul); 

v .. 
Day: Days; 
Total, Hotrs. Average: Real; 

procedure wr1te0ay (Day : Days); 
begin 
c•se Dayof 
Mon: 

wr1te<'Monday'); 
Tues: 
Wl'lte(Tuesday'); 

Wed: 
wrlte('We<Nsday'); 

ltU's: 
Wl'lte('TIU'sday'); 

Fri: 
wr1te('Frlday'); 

sat: 
wr1te<'sattl'day'); 

Sul: 
wr1te<'Smday') 

end (Case) 
end; (Definition or procedlre wrlteOay)) 

begin (Body of main program TV.) 
Total:• O; 
for Day:• Mon to Sun do 
begin 
wrlte('Enter the amount or TV watched on '); 
Wl'lteOay(Day); 
write<· : '); 
Readln(Hotrs); 
Total :•Total • Hotrs 

end; (For) 
Average:• Total/ 7; 
wrlteln('The total runber or how's or TV viewing for the week'); 

Z79 

Wrtteln('ls •• Total : S: I, · which Is a dally average or •• Average: 4: 2, · holrs.') 
encl. 

Listtng 8.7 



280 The Pascal Type System, User Defined Types, and Prectston 

Subranges 

There are occasions when we need only use a portion of the values of 
an ordinal type. If the values that we need are consecutive values, we can 
define a subrange of an ordinal type. Subranges are defined by listing the 
first and last values of the subrange, separated by two periods. Subranges 
can be defined for any of the built-in ordinal types or for any user-defined 
types. The following examples show the syntax of subrange definitions: 

type 
ExamScore = 0 .. 100; 
Lowercase= 'a'..'z'; 
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun); 
Workdays= Mon .. Fri; 
Weekend = Sat.Sun; 

The overall type from which the subrange is taken is referred to as the 
parent type. Subranges can be mixed freely with their parent type and 
with other subranges derived from the same parent type, but, of course, 
the values involved must lie within the allowable ranges. Subranges 
provide two benefits: 

I. Again, the system can protect us from ourselves. Using the above 
type definition, suppose we declare a variable Grade to be of type 
ExamScore. Then, if we try to assign a value to Grade that is not in the 
range from O to 100, the system reports an error. However, if we just 
declare Grade to be of type Integer, such a mistake would go undetected. 

2. Subranges, like user-defined types themselves, can make programs 
more readable. The declaration 

Grade: ExamScore; 

carries more meaning than the declaration 

Grade: Integer; 

We point out that subranges can be used in the var section of a Pascal 
program instead of the type section if desired. This is sometimes helpful 
if there is no real reason to have a separate type name for a subrange. For 
example, the following two alternatives are equivalent: 



The Pascal Type System, User-defined Types, and Precision 

and 

type 
ExamScore = o .. 100; 

var 
Grade : ExamScore; 

var 
Grade: o .. 100; 

281 

We caution the reader that type names are required for parameters of 
procedures and functions and so there may be occasions when it is 
necessary to define a type name. We point out some examples of this later 
in the book. 

Special Macintosh Pascal Types 

Macintosh Pascal has some additional built-in numeric types that give 
the Macintosh increased arithmetic capabilities. The simplest 
enhancement deals with integers. In addition to the standard Integer type, 
whose set of values ranges from -32767 to +32767, there is the "long 
Integer" type Longint. With Longint, the set of values ranges from 
-2, 147,483,647 to +2, 147,483,647. These strange values come from the 
way integers are stored in the Macintosh. The upper range of the Integer 
type is 215_ 1 while the upper range of the Longint type is 231_1. Long 
integers require 32 bits of storage as opposed to 16 bits for regular 
Integers, so programmers should use variables of type Integer unless the 
expanded range is needed. The Macintosh converts all integers to long 
integers to perform arithmetic, so in fact, in a computation in which the 
result is supposed to be of type Integer, Longinteger values can be mixed 
with regular Integer values as long as all numbers fall in the range from 
- 3276 7 to .. 3276 7. 

The situation with real numbers is not quite so simple. Computers 
are able to represent integers exactly and to perform exact integer 
arithmetic. Such is not the case with real numbers. Real numbers can only 
be approximated in a computer, and, therefore, real arithmetic is 
approximate as well. For most beginners, real arithmetic can be assumed 
to be meaningful, although it should be pointed out that correct 
calculations involving real arithmetic can, because of "roundoff" errors, 
lead to nonsensical results. Without going into detail about how the 



282 The Pascal Type Sptem, User Defined Types, and Preclslan 

Macintosh stores real numbers, we simply list the type names In table 8.2, 
giving their range of values and their precision. 

Dtgtts of 
Real Type Range Precision 

Real 1.5* 1 o-45 to 3.4* 1038 7-8 

Double 5.0*l0-324 to 1.7*10308 15-16 

Extended 1.9*10-4951to1.1*104932 19-20 

Computational -9.2*1016 to 9.2*1016 Exact (Integer) 

Table 8.2 

Remarks: 
1. The precision is given in decimal digits and measures how many 

digits of accuracy are maintained. For example, If Pl is a Real variable 
with value 3.14159265358979264846, it would be stored In the Macintosh 
as 3.1415927. But as a Double variable it would be stored as 
3.141592653589793. If we needed the extra accuracy, we would declare 
Pi as follows: 

var 
Pl: Double; 

2. The Real type is sufficient for most of our purposes. The 
computational type is a special purpose real type that provides exact 
arithmetic. If decimal numbers are desired, it is up to the programmer to 
keep track of where the decimal point belongs. Macintosh Pascal provides 
a special form of the Write (Write In) statement to handle the Insertion of 
the decimal point into a number of Computational type. The reader is 
referred to the Macintosh Pascal Reference Manual for the use of this 
special type. 

We conclude this chapter with a simple example of the kind of 
problem that can occur with the approximations involved In real 
arithmetic. We ask the reader to run the program RealEquality of listing 
8.8. If you were surprised by the result, just remember never to test real 
numbers for exact equality. 



The Pascal Type System. User-defined Types, and Precision 

program RealEquality; 
var 

X, Y: Real; 
begin 
x := 5.24; 
y := 3.76; 
1f X + Y = 9.0 then 

Wrlteln('Eureka') 
else 

Wrlteln('Phooey.'); 
Writeln(X + v: 3 : 1) 

end. 

Listing 8.8 

283 

Instead, decide on a margin of error Oike 5 decimal places for normal Real 
numbers). That is, if two numbers are equal to 5 decimal places, then they 
are considered the same. Then test as follows: 

Margin:= 0.000001 (Margin should be declared Double precision} 
if abs(X-Y) <Margin then 
Write ln('Eureka!') 

else 
Writeln('Phooey.') 

Although such problems are not of serious concern to us as beginners, it is 
Important to be aware of the problems that can occur when doing real 
arithmetic on a computer. 

Exercises 

8.1 Write a program that picks a card at random from a standard, 52-card 
bridge deck. Define a type Suit with values Clubs, Diamonds, Hearts, and 
Spades, and a type Rank with values Ace, Two, Three, ... ,Jack, Queen, King. 
Then generate two random integers, the first in the range 1 to 4 and the 
second in the range 1 to 13. Use these numbers to print out the card that 
was selected. Use a case statement to assign the value of the Sult and 
use a loop to assign the appropriate rank. For example, if the Rank value is 
7, then loop through the values of the type Rank until you get to the 
seventh one. 



284 The Pllac1I Type System, User Defined Types, and Precision 

8.2 Roxy wants to write "Dear John" letters to her 5 steady boyfriends 
Arnold, Bubba, Clarence, Drew, and Egbert, whose nicknames are Hunk, 
Moose, Cat, Bull, and Hulk respectively. To make the letters as personal as 
possible, she will use the real names, the nicknames, and the cities 
(Montreal, Chicago, Boston, Paris, Carbondale) In which they met. Write a 
program that writes Roxy's 5 letters for her. 

8.3 FEMALES (The Fair Employment to Men and Ladies Equally Society) 
needs a program to report on alleged salary discrimination at the Widget 
Works. A text file Employees contains, for each employee, a line with 3 
items: Sex (Male or Female), Category (Blue or White), and Monthly Salary. 
For example, the line 

Female White 617.18 

means some female, white collar employee earns $617.18 per month. 

Your program should output three comparisons: Total male average vs. 
total female average, male blue collar average vs. female blue collar 
average, and male white collar average vs. female white collar average. 
Also, in each case, if any average exceeds the other by more than 1 o~. 
issue a comment indicating possible salary discrimination based upon sex. 

Note: The data in the file Employees is arranged to give an unexpected 
result. What is the irony or "paradox" of the results? 

8.4 The text file Payroll contains weekly payroll data on employees of the 
Widget Works. There are two lines of information for each employee in the 
following format: 

C6.5 7.5 4.5 5.0 8.0 4.0 3.0 
John Smith 

The significance of each item in the data lines is: 
First item--A, B, C, or D is the category of the worker. The hourly pay 

for these categories is $14.75, $16.25, $17.02, and $18.43 respectively. 
Next seven items--These are the numbers of hours worked each day 

from Monday to Sunday. On Monday through Friday, the regular hourly rate 
is paid, while on Saturday, the worker is paid time and a half, and on 
Sunday, the worker is paid double time. 

Last item--Worker's name. 



The Pascal Type System, User-defined Types, and Precision 285 

Write a program that figures the payroll for the Widget Works. Your 
program should print a table with two columns--the first column should 
contain the name of the employee and the second column the weekly pay. 
Incorporate the following features into your program: 

1. Define a type Day and use a variable of that type to control the loop for 
computing the pay. 

2. Use a case statement to determine the appropriate rate. 

8.5 Write a program that reads in a number in hexadecimal and prints out 
its decimal equivalent. You should read In the number as a string of 
Individual characters. To find the decimal equivalent of a particular 
hexadecimal digit, you need to consider only two basic cases--the hex 
digits 0--9, and the hex digits A--F. 

8.6 Write a program that prints out a handy base conversion table of the 
numbers from 1 to 31 as shown below: 

Decimal 

1 
2 

31 

Base Conversion Table 

Binary 

00001 
00010 

11111 

Octal 

01 
02 

37 

Hexadecimal 

01 
02 

IF 

Write separate procedures ConverLto-8inary, ConverLto_Octal, and 
ConverLtoJiexadecimal. These procedures should write out the converted 
numbers character by character. For simplicity in aligning the columns of 
the table, print leading zeros as shown above. Note that we can convert 27 
to Octal, for example, by computing 27 div 8 and 27 mod 8. 



Chapter 9 

Arrays 

Introduction 

MIDDLE OUT - A programming methodology 
allowing progress up or down as the mood 
or the team dictates. This approach allows 
an early. hOnest. and reassuring report that 
the programming project ts ·dertnttely 
about halfway. -

Devil's DP Dictionary 

Each of our variables has been capable of holding just one value. That 
Is, Name, a string variable, can ·remember· one name for us while 
Number, an Integer, can ·remember" one Integer at a time. To each variable 
we have associated a memory cell tn the computer and each cell ts large 
enough to store one string, one Integer, one real, etc. We now learn how to 
make the computer "remember· an entire list or table of values. For 
example, the tonnage of marshmallows produced tn the united States In 
the years 1975 to 1984 Is an example of an array. This Information ts 
shown In table 9.1. 

Since this Is not a history of marshmallow production In the united 
States, we wm not go tnto detail on the reasons for the decline tn U.S. 
production. Suffice It to say that beginning about 1980 the Importation of 
foreign marshmallows began to have a serious effect on U.S. suppliers. 
This can be seen from table 9.2 showing the growing Importance of 
marshmallow Imports from the Grand Duchy of Fenwick. 

In each of the tables the year Is called the Index to the table. It Is 
called an Index since If someone asks what the U.S. production tn 1979 
was, the answer can be f ounct by looking tn the row labelled 1979. Arrays, 
or tables, come In many sizes and shapes. Table 9.1 Is an example of a 
one-dimensional array. That Is, It Is simply a list of lo values, Indexed by 

286 



Z87 

the years 1975 to 1984. Table 9.2, on the other hand, Is an example of a 
two-dimensional array as each row contains more than one value. 

1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 

Tonnage of U.S. l"larshmaHows 

1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 

Table 9.1 

U.S. Tonnage 

44,573.5 
46,734.9 
46,934.6 
48,324.3 
48,056.2 
47,298.4 
45,238.4 
44,573.2 
42,745.1 
39,298.0 

Table 9.2 

44,573.5 
46,734.9 
46,934.6 
48,324.3 
48,056.2 
47,298.4 
45,238.4 
44,573.2 
42,745.1 
39,298.0 

GDF Tonnage 

583.4 
692.5 

1,745.2 
2,482.4 
3,264.1 
6,392.5 
9,883.4 

12,389.0 
15,399.3 
19,343.2 

Pasca.l allows arrays with any number of dimensions, but we shall not 
consider the general case until later. For now the tenn ·array" Is 
synonymous with ·one-dimensional array: 

Suppose that we wish to use the Pascal variable us_Tonnage to 
denote the array of table 9.1. We have two problems: How do we declare 
our Intention to store many values under the one name, and how do we 
access the Individual values? Let us consider the declaration first. 



288 

Because Integers, reals, strings, etc. a11 have dlff erent storage 
requirements, we must Inform the system of the type of the components of 
the list. In our example, the tonnages are obviously real numbers. Hence, 
the component type Is rea1. Of course, we must also Inform the system 
of the possible Indices to be used with the array. The component type 
must be carefu11y distinguished from the Index type. In our example the 
Indices are a subrange of Integers (1975 to 1984) whl1e the values being 
stored In the array are real. Here, flna11y, Is the declaration for 
U5_T onnage: 

var 
us_Tonnage: array (1975 .. 1984) of Real; 

When the system sees this declaration It rea11zes that us_Tonnage Is an 
array, not a simple variable, that the Indices are Integers In the given 
subrange, and that the values being kept In thts array are a11 rea1. With 
this Information the system can determine how many elements there are 
In the array< 10 In this case> and can provide proper storage for the array. 

To refer to a particular Item In the array us_Tonnage, we simply 
supply the appropriate Index between square brackets. This Index Is also 
ca11ed a subscript. Thus, U5_Tonnage[1979] Is the fifth value In the 11st. 
Note that us_Tonnage[l979] Is a real value, and as such can be read, 
written, or assigned a value as In: 

us_ Tonnage[ 1979) :• 48056.2; 

The real power of arrays comes In the next section when we learn how to 
manipulate arrays with var/able Indices. That Is, If Vear Is an Integer 
variable In the range 1975 to 1984, then U5-Tonnage[VearJ Is a legal 
expression, and If the variable Vear currently has the value 1983, then 
U5-Tonnage[VearJ names the ninth element of the array. 

The general form of the declaration of a one-dimensional array ts: 

variable : array [ low Index .. high Index J of componenLtype; 

where "componenLtype" can be any Pascal type, and "low Index" and "high 
Index· are the 11mlts of permissible Indices for the array. The type of the 
Indices Is given lmp11cltly by these 11mlts and may be any ordinal type 
such as Integer, Char, or a user-defined type. The Index type may not be 
Real or string. Also, In Pascal, the 11mlts of the Indices must be 
constants, not variables with values supplled at execution time. 



Consider the following declarations: 

const 
Num...-5tudents =JO; 

type 
Months • (Jan,F eb,Mar,Apr,May ,Jun,Jul,Aug,Sep,Oct,Nov ,Dec); 
Children .. (John, Kathryn, Sarah, Anne, Natalie); 
Grades .. (A, B, C, D, F>; 

var 
Rainfall : array (Jan .. Dec] of Real; 
Blrth...Month : array (John .. Natalle] of Months; 
5e1TLGrade : array ( 1 .. Num...Students] of Grades; 
Fee-5tatus : array [ 1 .. Num...Students] of Boolean; 
Names : array ( 1 .. Num-5tudents] of string; 
Month : Months; 
Child : Children; 
ID : 1 .. Num-5tudents; 

289 

Rainfall Is declared as an array of twelve reals since the rainfall 
each month Is measured to the nearest hundredth of an Inch. Rainfall 
(Month] Is used to denote the amount of rain received during the given 
Month. To Initialize that amount to zero, we would write: 

Ralnfall(Month] := 0.0; 

Blrth...Month has component type Months and Index type Children. It 
has 5 elements and Blrth...Month (Chl1d] Is, of course, used to denote the 
month of birth of the given Child. To assign John's month of birth, we 
write: 

Blrth...Month(John] := Oct; 

Sem-6rade Is an array of JO Grades and to assign the student with 
Identification number ID, In the range from 1 to JO, the grade of C we 
would use: 

SelTLGrade(ID] :11 C; 

Fee-5tatus Is an array of Boolean values. That ts, the component type 
Is Boolean. The Interpretation Is that Fee-5tatus(IDJ Is True only If the 



290 

student with Identification number ID has paid all the appropriate fees. 
Assuming that Fee.....Status and Names already have values, we could check 
for negligent students with: 

If not Fee.....Status[ID] then 
Wr,lteln(Names[ID], ·,you have not paid your fees.'); 

where Names [ID] Is the name or the student with the given ID number. or 
course, this If needs to be In a loop on ID numbers In order to check all 
students. 

There Is an apparently alternate form of the array declaration 
whereby the Index type Is given explicitly and the limits of the Index are 
given Implicitly. For example, Rainfall or Blrth...Month could be declared 
by: 

var 
Rainfall : array [Months] of Real; 
Blrth...Month: array [Children] of Months; 

While this method Is more consistent In that both the Index and component 
types are named, It Is often slightly less convenient than the previous 
method. That Is, to declare Summer-Rain to be an array or J real numbers 
to keep track of summer rainfall, we could use: 

var 
Summer -Rain : array [Jun .. Aug] of Real; 

whereas to declare SUmmer -Rain using the second method, we must first 
declare explicitly a subrange type: 

type 
Summer _Tfme • Jun .. Aug; 

var 
Summer -Rain : array [Summer_ Time] or Real; 

The reader should realize that the two methods are equivalent and that the 
system obtains the same Information from each. For purposes or clarity, 
we think the first method Is usually preferable and will use It throughout 
this book. 



Ar revs 

The Need for Arrays 

Consider the following two problems: 

Snidely Whiplash, sales manager at The Widget 
Works, has a one hundred member sales staff. The 
name and dollar amount of sales for each person Is 
kept on a text file. Snidely wants a program to print 
the names of all salespersons who have sales of at 
least $5,000.00 worth of widgets. 

Snidely Whiplash, sales manager at the Widget 
Works, has a one hundred member sales staff. The 
name and dollar amount of sales for each person ts 
kept on a text file. Snidely wants a program to print 
the names of all salespersons who have sales of at 
least the average sales of all salespersons. 

291 

Obviously, these two problems appear to be very similar. However, as we 
shall see, the second Is considerably more complex than the first. In the 
first problem no arrays are needed. We read a name and a sales amount. If 
the amount ts at least $5,000.00, we print the name. We simply loop 100 
times making the above simple decision. listing 9.1 contains such a 
program, called Sntdely_t. Note that the data Is available on the text file 
WldgeLSales, which Is assumed to be on the Pascal disk and which 
actually has data for considerably less than 100 salespersons tn tt. For 
each salesperson, there are two lines In the file. The first line consists of 
a name (30 characters) while the second line contains a sales amount. 

program Snidely_ I; 
{This program commends persons with sales of $5,000.00 or more.} 

const 
Sales_Ouota = 5000.0; 

var 
Name : strtng[30]; 
Sales: Real; 
Loop : Integer; 

( Co111/111111tl) 



292 

begin 
Close(lnput); 
Reset(lnput, 'WidgeLSales'); 
Writeln('Snidely Whiplash Program I - No arrays!'); 
Write In; 
whl le not Eof do 
begin 

Readln(Name ); 
Readln(Sales); 
If Sales>= SaJes_Quota then 
Wrlteln(Name, · has met Snidely"s sales quota.') 

end (While} 
end. 

Listing 9.1 

We leave 1t to the reader to Improve upon Sntdely_I so that tt also 
prints a ·get on the stick· message for those who have not met Sntdely's 
quota, as well as counts of the total number of salespersons and the 
number reaching the quota. 

To solve the second problem, why can't we stmply change the 
condition of the If to 

If Sales >• Average then ... 

The answer, of course, ts that the average of the sales amounts ts not 
known until all sales figures have been seen. That ts, suppose the ftrst 
person's name ts 'Belle Ringer' and that Belle's sales are $7,894.86. It ts 
easy to see that Belle's sales exceed $5,000.00 but It ts Impossible to say 
whether Belle's sales exceed the average or not. We cannot compute the 
average until all the sales amounts are known. In this case we need the 
computer to remember all the sales figures. The basic dlfference between 
the above problems Is that there Is no Interaction between the data for the 
dlff erent salespersons tn the first case. We can decide whether to 
commend a given salesperson tn the first case stmply by looking at the 
data for that salesperson. There Is no need to save each of the names and 
sales figures; arrays should not be used In the ftrst case. In the second 
case, however, arrays provide the elegant solution. We simply read the 
names and sales amounts Into two arrays, compute the average, then look 
through the sales array to see whose sales have exceeded the average. 



Arrays 

program Snidely_2; 
(This program commends persons with average sales or better.} 

var 
Names : array( 1 .. 100] of string(30]; 
Sales: array( 1..100] of Real; 
Loop: Integer; 
Sum: Real; 
Average: Real; 
Count: Integer; 

begin 
Close( Input); 
Reset(lnput, 'WldgeLSales'); 
Wrlteln('Snidely Whiplash Program 2 - Uses arrays!'); 
Writeln; 
Sum:= 0.0; 
Count:= O; 
while not Eof do 
begin 

Count := Count + 1; 
Readln(Names(Count]); 
Readln(Sales[Count]); 
Sum := Sum + Sales[Count] 

end; (While} 
Average := Sum I Count; 
Writeln('The average sales figure was$', Average: 7: 2); 
Write In; 
Writeln('Snidely"s best salespersons include:'); 
for Loop:= 1 to Count do 
if Sales[Loop] >= Average then 
Wrlteln(Names[Loop]) 

end. 

Listing 9.2 

293 

Consider the other alternatives: We could have the computer read the data 
twice: once for the computer to find the average and once to determine 
whose sales are above the average. But reading from the text file ts 
slow--and there ts no need for the computer to do so a second time, unless 
the text file ts so large that It can't be read Into arrays In memory. 



294 

Another alternative would be to use one hundred different name and sales 
variables: Namel, Name2, ... , NamelOO, Sales!, Sales2, ... , SaleslOO. But 
then we would need distinct reads and writes for the one hundred different 
salespersons. The program would be more bother than It would be worth! 

The array solution Is given In listing 9.2. An Improved version of 
Snldely-2 Is left for the exercises. Note that the program contains ty.'O 
loops, a white loop and a for loop. The first loop reads In the names and 
sales figures. Note that the expressions ·Names(Count]• and ·sates[Count]• 
run through the arrays Names and Sales as Count Increases from one. That 
Is, when Count Is 1, we read and store Names( 11 and Sales[ 1 ]. Then Count 
becomes 2 and we read and store Names(2] and Sales[2], etc. Also notice 
that the ftrst loop also sums the sales figures. Stnce thts can be done as 
the sales amounts are read In, It should be done In the same loop as the 
reads. Furthermore, note that the calculation of the average comes after 
the first loop and before the second loop. Beglmers often place the 
average calculation within the ftrst loop. This ts tnefftclent, as the 
system then computes a ·running· average. All we need Is one f Ina! 
average, so, the average calculation belongs outside all loops. Once we 
know the average tt ts a st mp le matter for the second for loop to output 
those salespersons with better-than-average sales. Note that since the 
values were stored durtng the first loop, they are now 
referenced-- without rereading the~-tn the second loop. The second 
loop Is a for loop stnce we now know (after the ftrst loop) how many 
salespersons Snidely has. It ts also Important to observe that the program 
does not need to be changed to handle a larger sales force. 

Run Snidely_! and Sntdely-2 and study their listings unttl the small 
but Important differences between these programs are clear to you. 

Stmple Operations on Arrays 

This section presents many elementary array operations. The reader 
who takes the time to carefully understand the segments that follow wlll 
be well-prepared when It comes time to write programs. For each of the 
following segments, we assume the following declarations: 

var 
Ust : array [ 1..50) of Integer; 
Index: 1 .. 50; 

Example 1: Assign the value 37 to the 17th element of List. The solution 
Is straightforward: 



ArrlVS Z95 

List[ 17) := 37; 

Example 2: Assign the value zero to each element of the array List. In 
this case we use a for loop: 

for Index:= 1 to SO do 
Ltst[lndex) := O; 

Notice the power of the for loop. The same statement wt th 5000 tn place 
of SO would tntttaltze a list of 5000 elements to all zeros. 

Example 3: Assign 1 to List[ 1), 2 to Ltst[2), ... , 50 to Ltst[50). Again a 
for loop provides the most elegant solution: 

for Index:= 1 to SO do 
Ltst[lndex) := Index; 

Example 4: Assign List[ 1 ), Ltst[JL Ltst[5), ... , Ltst[49) the value 87. This 
time, since we want Index to take on only odd values (Increment by two 
each time), we use a repeat ... untll: 

Index:= I; 
repeat 
Ltst[lndex) := 87; 
Index := Index • 2 

untl I Index > 50; 

Example 5: Input 50 values, obtained from the user, tnto List. Again, a 
for loop Is called for: 

for Index := 1 to SO do 
begin 
Wrtte('Enter the next number: '); 
Readln(Ltst[lndex)) 

end; 

Example 6: Assuming that List already has values, compute the sum of 
the elements of List. Also assume that Sum ts an Integer variable. This ts 
another for loop with a ·running· Sum: 



296 

Sum:" O; 
for Index :" 1 to 50 do 
Sum:"' Sum + Ltst[lndex]; 

Wrlteln('The sum or your numbers Is·, Sum); 

Example 7: Let the user decide how many numbers are to be In the List. 
<The maximum Is 50, or course.) Let the user enter that many numbers and 
then compute the sum of the numbers. 

This example Is a generalization and combination of examples 5 and 6. 
It shows that we should not always use small, separate loops, but should 
try to combine activities where possible Into one loop. For this example, 
we assume that LerL.Llst Is also a declared Integer variable: 

repeat 
wrltelnC'How many numbers do you want In your list?'); 
Readln(LerL.Llst) 

until (LerL.Llst > 0) and (LerL.Llst <= 50); 
Sum:= O; 
for Index:"' 1 to LerL.Llst do 
begin 
Wrlte('Enter the next number: '); 
Readln(Llst[lndex]); 
Sum := Sum + Ust[lndex] 

end; 
Wrlteln('The sum of your numbers Is', Sum); 

Example 8: Assuming that List already has values and that the length of 
the list Is LerL.Llst, count the number of negative elements In the List. 

This time we assume that Neg_Count ls an Integer variable and use a 
simple If: 

Neg_Count := O; 
for Index:= I to LerL.Llst do 

If Llst[lndex] < O then 
Neg_Count :'" Neg_Count + 1 ; 

wrltelnCNeg_Count, ·negative elements were found.'); 

An Extended Example 

Let us return to the Widget Works and consider how we might use an 
array Sales to keep track of the number of widgets sold by each Individual 



Arrays 297 

salesperson. Since The Widget Works has nearly 100 salespersons, who 
are Identified by the ID numbers 1, 2, 3, ... , 100, we declare Sales by 

var 
Sales: array [ 1..100) of Integer; 

Notice that the Widget Works may not have exactly 100 salespersons. We 
know there are at most 100, but salesperson 49 may have quit last week. 
Certain of the cells of the array Sales may not be used. The extra space 
provides for expansion by the Widget Works, and as long as the true number 
of employees Is not drastically less than 100, we are not wasting much 
memory space. Suppose ID ls an Integer variable. If ID ls the valid ID of a 
salesperson, then Sales[ID) eventually contains the number of widgets sold 
by that salesperson. We begin by Initializing each entry of Sales to zero: 

for ID:= 1 to 100 do 
Sales[ID) := O; 

Each time widgets are sold, the salesperson fills out a sales 
transaction containing the salesperson's ID and the Quantity of widgets 
sold. For example, the transaction '7 12· would signify that salesperson 7 
has sold 12 more widgets. Suppose these transactions are saved (batched) 
for a two-week period and then entered Into the computer to be analyzed. 
Since we do not want to count the number of transactions, we shall simply 
ask the person doing the data entry to enter a fictitious negative ID after 
all of the valid transactions have been entered. Since each salesperson Is 
expected to tum In many transactions during the two-week period, Sales 
Is really an array of ·running sums." Hence, we see the need for 
Initializing each entry to zero before beginning the processing of the 
transactions. Here Is the segment that processes the transact Ions: 

Wrlteln('Enter the first ID'); 
Readln(ID); 
whlle ID > O do 
begin 
Wrlteln('Enter the quantity of widgets sold.'); 
Readln(Quantlty); 
Sales[ID) :'" Sales[ID) + Quantity; 
Wrlteln('Enter the next ID. Enter -1 to terminate program.'); 
Readln(ID) 

end; (Whtie} 



298 

The key statement In the above segment Is the assignment 

Sales[ID) := Sales[ID) +Quantity; 

which, or course, adds the Quantity from the current transaction to the 
total of the salesperson whose ID Is also on the transaction. 

Snidely Whiplash, the sales manager, has asked for a program that 
determines the maximum quantity of widgets sold by anyone during the 
two-week period. We discussed finding a maximum In Chapter 5 and we 
can use the same method on arrays. Recall that we set Max to some 
ridiculous value and then looped through the actual values adjusting Max 
whenever a larger value was found. Since all the entries In Sales must be 
nonnegative, we can Initialize Max to -1 If we wish. Here Is a segment 
that determines Max: 

Max:= - I; (Initialize Max to a ridiculous value.) 
for ID:= I to 100 do 
If Sales[ID) > Max then (New Max has been found.} 
Max :· Sales[ID); 

Wrlteln('The greatest number or widgets sold by anyone was·. Max); 

When dealing with arrays, there Is an alternate, more general, method or 
finding a maximum. We can Initialize Max to the first value In the array 
and then compare all the other elements as before. This method has the 
advantage that It finds the maximum In an array even If all the numbers 
are negative (which the above strategy does not do). or course, In our 
example we know that the entries of Sales are nonnegative so either 
method works. But If we are dealing with an array of low temperatures In 
International Falls, Minnesota, In January, It would be dangerous to begin 
by Initializing Max to -1. At the end Max might still be -1 and we would 
not know If that were correct or not. Here Is the segment using this 
alternate method: 

Max:= Sales( I]; 
for ID:= 2 to 100 do 
If Sales[ ID]> Max then (New Max has been found.) 
Max := Sales[ID); 

Wrlteln('The greatest amount of widgets sold by anyone was·, Max); 



Arravs 299 

The output rrom either or the above segments ts: 

The greatest amount or widgets sold by anyone was 963 

where 963, say, ts the maximum value In Sales. When you take this 
tnrormatlon to Snidely, he ts, or course, not pleased. Even though It 
answers his original question, It Isn't what he wants to know. "Who," he 
wants to know, "Is the salesperson who has sold 963 widgets?" 

Let's see tr we can modify the program that rtncts the maximum so 
that It also rtnds the associated ID or the salesperson. This time, when 
we rtnd a new Max, we shall also have to remember the associated ID. 
Here ts the segment: 

Max:• Sales[ IJ; 
Wimer _ID :• 1; (lnttlallze Max and Winner _ID to first person.) 
for ID:• 2 to 100 do 
If Sales[IO) >Max then (New Max has been found.) 
begin 
Max:= Sales[ID); (Remember new Max) 
Wtmer_IO :=ID (Remember new ID} 

end 
Wrlteln('Salesperson •·, Wtnner_ID,' has sold·, Max,· widgets.'); 

This time the output ts: 

Salesperson "47 has sold 963 widgets. 

Snidely stm Isn't happy. "Who ts salesperson "47? Why can't computers 
speak English?" 

The answer, of course, ts that the computer can ten us the name of 
the winner of the sales contest If we give It the names of all the 
salespersons. From the personnel omce we should be able to get the ID 
and name or each salesperson. Suppose they look like this: 

34 Belle Ringer 
39 Lotta Bull 
22 Polly Tlshun 

Notice that the ID numbers are not In order. Also notice that we cannot 
use a for loop as we are not sure of the exact number of salespersons on 



JOO 

the current payroll. It's another great opportunity for a trailer loop, or an 
EOF If using a text file. Here Is the segment, assuming that some data 
entry clerk interactively enters the names. We assume that Names has 
been declared by: 

Names : array [ 1 .. 100) of strlng(30); 

Limiting the string's length Is absolutely necessary to avoid wasting 
Immense amounts of memory. Declaring an ·array [1..100) of string· sets 
aside space for 100 strings of 255 characters each! 

WritelnC'Enter the first ID'); 
ReadlnCID); 
while ID > o do 
begin 

Wrlteln('Enter the name for this person.'); 
Readln(Names[IDJ); 
Wrlteln('Enter the next ID. Enter -1 to terminate program.'); 
Readln(IO) 

end; 

Notice how the ID's are accepted in any order. If the data begins as above, 
then 'Belle Ringer· ls the first name read In and Is stored ln the 34th cell 
of the Names array. Ltkewlse, 'Lotta Bull' goes Into the 39th cell, etc. 
When all or the names have been read In they are In the correct places In 
the Names array. Notice that lf there Is no salesperson •59, then 
Names[59) Is undefined. That Is not a problem unless we try to print out 
by order of ID number the names of the salespersons. If we ever wanted to 
do this we could, of course, lnltiallze each entry of names to ", the null 
string. The null string contains no characters and should not be confused 
with the string that consists of a single blank. The null string Is written 
using two single quotes, a beginning quote and an ending quote, with 
nothing In between. More wlll be said about the null string In Chapter 14. 
After reading In all the names we would know that those cells that are 
stlll equal to the null string correspond to ID numbers that are not 
currently being used. 

Names and Sales are examples of parallel arrays. That Is, the 
Information In Names[ID) ls related to the Information In Sales[ID). In this 
case Names[ID) ts the name of the person who has sold Sales[ID) widgets. 
Th ls ls l I lustrated ln figure 9.1. 



301 

N•es Sales 

ID i--------1 IDi------1 

Figure 9.1 

Now that the system knows the names of the salespersons, we can modify 
the loop that determines the winner of the sales contest to finally provide 
Snidely with the desired Information: 

Max:'" Sales[ 1 ); 
Winner _ID := 1; (Initialize Max and Wlooer _ID to first person.} 
for ID:• 2 to 100 do 
If Sales[ID) >Max then (New Max has been found.} 
begin 
Max:· Sales[ID); (Remember new Max) 
Winner _ID := ID (Remember new ID) 

end; 
Wrlteln('The winner or the Widget Company sales contest Is .. .'); 
Wr1teln(Names[Wlnner _ID), 'who sold·. Max, · widgets In the last'); 
Wr1teln('two weeks. That''s Incredible!'); 

Snidely has one more request. He often needs to check up on a 
particular salesperson. Of course, If he knew the salesperson's ID number, 
then we could simply print out Sales[ID) to answer his question. But 
Snidely can't be expected to learn nearly 100 ID numbers. Hence, we need 
to write a segment that accepts a name of a salesperson and looks the 
person up In the arrays. To be more precise, since the name Is the only 
Information that we have, we shall need to look the person up In the Names 
array and note the ID number. Then using that ID number we can find the 
sales amount from the corresponding position In the parallel array Sales. 
Since human Input Is Involved, we shall also have to be careful to watch 
for bad Input. Due to a typing error or due to a recent dismissal, the name 
may no longer be In the Names array. In such a case, all we can do Is 
report failure. 



302 

Wrtteln('Enter the name of the salesperson'); 
Readln(TargeL.Name); 
ID:" 1; 
Found:• False; 
whtle (ID<• 100) and <not Found) do 
If Names[ID) = TargeL.Name then 
Found:"' True 

else 
ID:= ID+ I; 

If Found then 
WrttelnCTargeL.Name, · has sold·. SalesllD), · widgets.') 

else 
Wrlte1n('Sorry, •• TargeL.Name, • ts not tn our records.'); 

Since there are two ways to extt from the whtle loop, either with the 
TargeL.Name found or with ID having exhausted the posstbntttes, we need 
an If after the loop to determine which condition caused the exit from the 
Whtie. 

The f onowtng whtle to search for the TargeL.Name seems simpler: 

ID :11 I; 
whtle CID<= 100) and CNamesllD) <> TargeL.Name) do 

ID:= ID+ 1; 

However, this can lead to a subtle error. Suppose the TargeL.Name ts not 
tn the array of Names. Then ID eventuany becomes 1 o I and we hope the 
whtle terminates. Certainly the condition 

.ID<• 100· 

ts now False. Unfortunately, the moronic computer ts not smart enough to 
reallze that since the first part of the and ts False, the whole condition 
must be False. It goes ahead and tries to evaluate the condition 

·Names[ID) <> TargeL.Name· 

But since ID ts 1O1, "NamesltDr ts not a valld express ton. In common 
language, our subscript ts ·out of bounds: Macintosh Pascal's language ls 
a bit more stilted. Your program abends (abnormany ends), the hand 
points to the while, and you receive the error message: 



Ar rap 

The value of a variable or subexpression ts out of range for 
Its Intended use. 

Remember that the above message can mean ·subscript out of bounds: 
Also keep In mind the Instant and Observe windows for help In 
Interpreting error messages such as the above. By putting a stop sign on 
the statement that generates the error and by observing the variables 
Involved In the statement, you can quickly determine which variable has 
run amuck. 

Examples Using Arrays 

Soggtes, The Breakfast of Programmers 

Each bo>< of Soggles, the breakfast of programmers, has a prize In It. 
There are IO dlff erent prizes In a11 and you would, of course, like to be the 
first programmer In your class to co11ect a11 10 premiums. We assume 
that the 10 different prizes are randomly distributed In the bo><es and also 
we assume that there are so many bo><es of Soggles that the chances of 
getting any one prize always remains I In 10. That Is, just because you 
already have 17 of the IBM punch card trinkets and none of the floppy disk 
lapel pins doesn't mean that either Is more likely than the other In the 
ne><t bo>< of Soggles. The problem (flna11y0 Is: How many bo><es of Soggles, 
on the average, would you e><pect to buy to obtain a11 1 o prizes? That 
seems like a very vague question. You could, of course, obtain a11 10 
prizes In your f lrst Io bo><es, but we've never seen It happen In many years 
of discussing this problem. You could, of course, still not have a11 10 
prizes after 1000 bo><es of Soggles, but that Is not likely either. OUr 
question Is this: If you repeated this e><Perlment many times, what would 
the average of a11 your trials be? An e><perlment, of course, means buying 
bo><es or Soggles until you have co11ected a fu11 set of prizes. There are 
two obvious ways to solve this problem. The first Is to run to yotr 
nelghborhood grocery and begin ripping open (buy them first, please) bo><es 
of Soggles. Before we begin to reel that our answer Is at a11 reliable, we 
need to make many trials. This solution Is messy and e><penslve. The 
second solution, of course, Involves a computer simulation. That Is, using 
Random, the random number generator from Chapter 7, we can easily 
Instruct the computer to Imagine that we are opening bo><es of Soggles In 
order to note the prize within. We can put the simulation In a loop and 
quickly generate an average based upon many trials. We hope this simple 
simulation demonstrates the power and ease of computer slmulattons. As 



304 

you shall see later tn the exerctses, stmulattons can also be a lot safer 
than the real thtng. 

Here Is our outline for the Soggtes problem: 

lntttaltze TotaL.Boxes to zero and Trtal to one. 
Repeat 

Perform the experiment once. That ts, remember Num...Boxes 
needed to collect all ten prtzes. 

Increment Total...Boxes by Num...Boxes needed on this Trtal. 
Increment Trtal by one. 

unttl Trtal .. 20 
Compute and prtnt the average of the twenty Trtals. 

where, of course, ·perform the expertment once· ts a procedure that we 
shall have to refine further. We need some means of keeping track of 
which of the 10 prtzes we already have. All array comes to mtnd. But an 
array of what? We could declare Prtzes to be an array of Integer and then 
Prtzes(7) would be 17 tf we currently had 17 of prize 7. But we really 
don't need to know how many of each prtze we have. We only need to know 
tf we have or sttll need a prtze. Thts suggests that Prtzes could be an 
array of Boolean values, where Prlzes(7] would be True tf we have any of 
prtze number 7. However, the most elegant way would be to deftne a new 
type conststtng of ·Gotli- and ·Needle and use an array of Gotlt's and 
Needlt's. The advantage of thts method ts that no one can fatl to 
understand the meaning of the fact that Prlzes[7] ls Gotlt. Although Gout 
and Needlt are eqlvalent to the Boolean values True and False, tt ts 
possible to become confused about whether Prlzes(7] being True means It 
ts true that we have tt or It ts true that we need tt. In order to make our 
program as clear as posstble we shall use Gotlt and Needlt. Here Is the 
outline of the procedure ·perform the experiment once·: 

lnlttaltze Num...Boxes to zero. 
lnltlaltze the array Prizes to all Needlt's. 
Repeat 

Generate randomly a Premtum number between 1 and 10. 
Set Prlzes(Premlum) to Gout. 
Increment Num...Boxes by one. 

untt1 no more prem lums are needed. 

Of the above statements, each except ·no more premiums are needed. ts 
easily expressed tn Pascal. The latter can be expressed as a functton that 



Arravs 305 

looks through the array Prizes and returns True only If some premium Is 
still marked as Needlt. Here Is the pseudo-code for a function 
More_Needed: 

Initialize More-Needed to False. 
For each or the ten entries or Prizes 

If any entry equals Needlt Then 
Set More-Needed to True. 

Ustlng 9.3 shows the complete program Soggles. Please study It 
carefully. Make a ·guesstimate· or the number or boxes that are needed on 
the average, and then run Soggles to see how It turns out. 

program Sogg i es; 
[This program simulates the purchase of boxes of Soggies} 
[until all ten different premiums have been collected. It} 
[performs the experiment twenty times and provides an} 
[average of the twenty trials.} 

const 
Trial--1. imit = 20; 

var 
TotaLBoxes: Integer; 
Num_boxes: Integer; 
Trial : Integer; 
Average: Real; 

procedure One_Experiment (var Num_Boxes : Integer); 
type 

Prize_Status = (Needlt, Gotlt); 
Prize_Array = array[ 1 .. 10) of Prize_Status; 
Prize_ Type = I .. 1 O; 

var 
Index: Prize_Type; 
Premium: Prize_ Type; 
Prizes : Prize_Array; 

( Co11t ln111d) 



306 

function Generate_Premium: Prize_Type; 
begin 

Generate_Premium :=(Random mod 10) + I 
end; (Definition of function Generate_Premium} 

function More_Needed (Prizes: Prize-Array): Boolean; 
var 

Index: Prize_ Type; 
begin 

More_Needed :=False; 
for Index:= 1 to IO do 
if Prizes[lndexl = Needlt then 
More_Needed :=True 

end; (Definition of function More_Needed} 

begin [Body of Procedure One_Experiment} 
Num_Boxes := O; 
for Index := I to IO do 

Prizes[ Index]:= Need It; 
repeat 

Premium:= Generate_Premium; 
Prizes[Premium] := Gotlt; 
Num_Boxes := Num_Boxes + I 

unt i I not More_Needed(Prizes) 
end; [Definition of procedure One-Experiment} 

begin (Body of main program, Soggies} 
Trial:= 1; 
TotaLBoxes := O; 
repeat 

One_Experiment(Num-6oxes); 
TotaLBoxes := TotaLBoxes + Num_Boxes; 
Writeln('Trial ',Trial: 2, ·took·, Num_Boxes: 2, ·boxes.'); 
Trial :=Trial + I 

until Trial> TriaLLimit; 
Average:= TotaLBoxes I TriaLLimit; 
Writeln; 
Writeln('The average of all the trials was·, Average: 7: 3) 

end. 
Listing 9.l 



307 

The way to read the above program Is to begin with the body of the main 
program at the end of the listing. Notice that this cans a procedure 
One-Experlment(Num-8oxes> that performs the experiment once--and uses 
Num-8oxes or Soggles In so doing. Then look at the details of the 
definition of the procedure One-Experiment, beginning with Its body. Note 
that this procedure uses two functions that are defined within It. Also, 
note that the type definitions are Included In the procedure, but not In the 
main program. They could be moved out Into the main program, but there Is 
no reason to do so. We will Investigate Soggles further In the exercises, 
where we suggest a more efficient way of answering the question of 
"More......Needed?". 

The Twelve Days of Christmas 

How many golden rings did the young lady receive from her true love 
In the song "The Twelve Days of Christmas"? Five Is not the correct 
answer! She received 5 golden rings on several consecutive days, hence, 
she had a whole pile or golden rings after the twelfth day. In fact, how 
many gifts did she receive In total and how many of each of the 12 gifts 
did she receive? Since we are counting lots of things, you should smell an 
array. Let us suppose that Nu11L6lfts Is an array of 12 Integers. Note that 
on any given day the young lady receives gifts of all lower Indices than the 
current day Index. That Is, on day 7 she receives 7 of gift 7, 6 or gift 6, 5 
of gift 5, etc. 

Here then Is the outl lne of the program: 

Initialize an array, GlfLDesc, to the twelve gifts. 
Initialize an array, NullLGlfts to zeros. 
For Day from 1 to 12 

For Gift from Day backwards to 1 
Increment NU11LGlfts{Glftl by Gift 

Sum the entries of the array NunLGlft. 
Output the sum of each gift as well as the total of all gifts. 

You should trace the above outline to see that on day one It gives one 
of gift one, on day two It gives two of gift two and one or gift one, etc. 
The program Is shown In listing 9.4. Run Xmas to see how many gifts in all 
are Involved in the song. We are deeply grateful to Fred Koch for granting 
us permission to use his lyrics to this traditional song. 



308 

program Xmas; 
(This program sums the gifts of each type received) 
(by the fair maiden In the song ·The Twelve Days of Christmas•.) 
(Special lyrics by Fred Koch.) 

const 
Num_()ays .. 12; 

type 
Desc_ Type = array( I .. Num_()ays) of strlng(25); 
GlfLCounts = array( I .. NurrLl>aysJ of Integer; 

var 
NunLGifts : GlfLCounts; 
GlfLDesc: Desc_Type; 
Day: 1 .. Num.J)ays; 
Gift : 1 .. NulTLDays; 
SuJTLGlfts : Integer; 

procedure Initialize (var NuJTLGlfts : GlfLCounts; 
var GlfLDesc: Desc_Type); 

var 
Day : 1 .. NulTLDays; 

begin 
for Day:= 1 to NurTL.Days do 
NUJTLGlfts(Day) := O; 

GlfLDesc( 11 :" 'a pickle In a peach pie'; 
GlfLDesc(2) :• 'two talking turtles'; 
GlfLDesc(3) := 'three French chefs'; 
GlfLDesc(4) :"''four silly sisters'; 
GlfLDesc(SJ :• 'five frozen frogs'; 
GlfLDesc[6) :'" 'six ducks on diets'; 
GlfLDesc[7) := 'seven Santas sleeping'; 
GlfLDesc(8) :"' 'eight eggs escaping'; 
GlfLDesc(9) := 'nine noisy neighbors'; 
GlfLDesc( 1 OJ:= 'ten tons of termites'; 
GlfLDesc(l I):"' 'eleven lizards laughing'; 
GifLDesc( 12] := 'twelve tubas tooting' 

end; (Definition of procedure Initialize.} 

( C11111i11111H1) 



function Sum (Num._Gifts : GifLCounts) : Integer; 
var 

Temp-5um : Integer; 
Day : 1 .. Num....Days; 

begin 
Temp-5um := O; 
for Day:= 1 to NunLOays do 
Temp-5um := Temp-5um + NUJJLGlfts[Day]; 

Sum:= Temp-5um 
end; (Definition of function Sum) 

procedure PrlnLResults (NunL.Glfts : GlfLCounts; 
GlfLDesc: Desc._Type; 
SunLGlfts : Integer); 

var 
Day : 1 .. Num....Days; 

begin 
Wrlteln('Gift': 10, 'Quantity Received': 30); 
Writeln; 
for Day := 1 to Num....Days do 

Writeln(GlfLDesc[Oay]: 25, Num_Glfts[Day] : 5); 
Wrlteln; 
Wrlteln('The total number of gifts received was', Sum_Gifts: 3) 

end; (Definition of procedure PrlnLResults) 

begin (Body of Main Program, Xmas} 
lnltlallze(Num_Gifts, GlfLDesc); 
for Day:= 1 to Num_days do 
for Gift := Day downto 1 do 
NunLGifts[Glft] := NUJJLGlfts[Glft] + Gift; 

SunL.Glfts := Sum(Num._Glfts); 
PrlnLResults(NunL.Glfts, GifLDesc, SunLGifts) 

end. 

Listing 9.4 

Searching and Sorting Arrays 

309 

It has been said that computers spend more t1me ·searching and 
sorting· than doing any other activity. Whether this Is true or not, these 
applications are certainly two of the most Important to learn. Searching 



310 

an array means, of course, that given an array and a target, we are to find 
the location of the target In the array. The location Is reported by giving 
the Index of the target. Even with this simple notion several problems can 
arise. For example, what If the target Is In the array several times? What 
If the target Is not In the array at all? We could, of course, ask that the 
search return all Indices In the first case, but since this Is a beginning 
text, we shall take the easy way out and assume that the search returns 
any of the Indices Involved. If the target Is not In the array, we shall 
assume that the search returns this Inf ormatlon by returning some absurd 
value for the Index. For example, If we are searching In an array whose 
Indices run from 1 to some upper limit, we could have our search return 
the Index of O to Indicate an unsuccessful search. The simplest search, 
which we have already used In the Widget problem earlier In the chapter, 
Is called a linear search. It begins at one end of the array and searches 
each element In order until the target Is found or until we reach the other 
end of the array. Here Is an outline of the linear search for a Target In a 
list with Indices from Lo to HI. We assume that o Is not a legal Index and 
return It If the target Is not found: 

Initialize Found to False. 
Initialize Index to Lo. 
While Index <= HI and the Target hasn't been Found Do 

If Llst[lndex] equals the Target Then 
Found := True 

Else 
Index := Index + I 

If Target Is stm not Found then 
Index:= 0. 

You should trace the above to see that If the target Is In the array, then 
Found Is set to True. We exit the whtle, and Index "points• to the place In 
the array occupied by the Target. On the other hand, If the Target Is not In 
the array, we eventually exit the whtle after Index finally exceeds HI and 
at that point we give Index the absurd value of 0. or course, a program 
that uses this search also must test the value of the Index returned and, If 
It Is zero, take appropriate action. 

Writing the above as a Pascal function Is extremely straightforward. 
We assume that List Is of type Some-11st where Some-11st Is declared by: 

type 
Some-11st ·array [Lo,HI] of ComponenLType; 



Ar rap Jll 

and that Lo and HI are some constants of type lnde><-Type and 
ComponenLType ts any type. We also assume that Absurd ts a constant of 
the tnde>< type and that the function should return Absurd If the Target ts 
not found In the list. The Pascal version of the function ts found In listing 
9.5. 

function Linear! (List: Some_List; (NOT A COMPLETE PROGRAM} 
Target: ComponenLType; 
Lo, Hi : lndex_Type): lndex_Type; 

var 
Found : Boolean; 
Index: Index_ Type; 

begin 
Found:= False; 
Index:= Lo; 
while (Index<= Hi) and not Found do 
if List!lndex] = Target then 
Found := true 

else 
Index:= Index+ 1; 

if not Found then 
Linear! :=Absurd 

else 
Linear! := Index 

end; (Definition of function Linearl} 

listing 9.5 

Agatn the while In llnear1 has a compound condition and thus an If ts 
needed after the whtle to dectde whether the Target was Found or not. If 
you knew the Target was In the list you could simplify the program. Thts 
suggests the following trtck: Guarantee that the Target ts found by 
putting It In the Listi In fact, If the Target Is put In a special zeroth cell 
of the array and the search proceeds down from the top, our function Is 
made much simpler as In listing 9.6. 

Here we have assumed that list was declared with lower subscript O, 
although the actual elements of the list are stored from tndex 1 up to HI. 
The zeroth place In the list ts for the Target. Thts means that the Target 
will be found. Hence, the Whtie Is very stmple. Note that stnce we search 
backwards we return the tndex of the last Target In list. Of course, If 
the Target wasn't tn the original list, then we find It at the zeroth place 



312 

(since that Is where we put It), our whtle terminates, and Llnear2 returns 
the absurd Index 0. 

function Linear2 (List: Some_List; (NOT A COMPLETE PROGRAM} 
Target: ComponenLType; 
Hi: lndex_Type): lndex_Type; 

(This version assumes that the array List has a zeroth cell} 
(just for linear searches. It also assumes that the} 
(search is between the subscripts of 1 and Hi.} 

var 
Index: Index_ Type; 

begin 
List[O] := Target; (Place Target in array.) 
Index:= Hi; (Search backwards from Hi} 
while List[ Index] <> Target do 

Index:= Index - 1; 
Linear2 :=Index 

end; (Definition of function Linear2} 

Listing 9.6 

Binary Search 

It Is perhaps difficult to think or any other type or search to perform 
besides a linear search. What could we do that would be any better than 
starting at one end and looking through the array? Nothing, actually, 
unless the array Is ordered. Consider the task or finding a book In the 
fiction section at the library. If the books were arranged by the colors of 
their jackets and all you know Is the author's name, you would have no 
choice but to apply a linear search to the books In the fiction section. But 
If the books are arranged alphabetically by the authors' last names, you 
wouldn't start at one end of the fiction section and look at each book until 
you find the one you want! That Is, you don't use a linear search at the 
library. Rather, you use your knowledge of the order of the alphabet to 
obtain useful Information from a book even If It Is not the book you want. 
For example, If the first book you see Is by Asimov and the book you are 
looking for ls by Ludlum, you know that you are not really warm yet and 
you can shift over several aisles. If, however, you find yourself among the 
Vonneguts, you know you've gone too far. In fact, your Ludlum book should 
be about halfway between the Asimov books and the Vonnegut books. This 



method may seem very clear to actually use In a library but difficult to 
give precisely to a computer. We shall, therefore, refine and define the 
algorithm. 

Another example, perhaps, makes It clear that we use ordered 
searches In many Instances In everyday life. Finding a telephone number 
for a given Chicagoan Is not difficult lf you have the proper spelllng of the 
name. Imagine the opposite problem: Given a Chicago telephone number, 
find the name of the person who has that telephone number. Unless you 
have a "reverse directory· ordered by telephone number Instead of name, 
you are forced to do a linear search through the directory. 

Note that the array must be ordered before we can apply our fancy 
search method. If the Items In the array are not ordered, then the only 
Information we can get from a cell Is that It ls--or is not--the cell we are 
looking for. However, If the array Is arranged In order, then each cell 
gives us Information. If It does not contain our target, It at least tells us 
on which side of that cell to concentrate our search, allowing us to zero ln 
on the target much more quickly. 

Assume that Ust Is an ordered array. For definiteness, assume that 
the elements of List are In Increasing order. Note that the elements of 
Ust can be any ordinal type, such as Integer, Real, Char, or user-defined. 
Of course, only minor modifications are needed If the array Is In 
decreasing order. In what follows, assume that we are looking for Target 
In List between the Indices Lo and Hi. The binary search algorithm 
proceeds as follows: Start the search In the middle of the array List. That 
Is, let Mid be the middle index between Lo and HI. Then consider Ust[Mid]. 
Of course, If Llst[Mld] Is our Target, then our search stops with success. 
However, if our Target is less than Llst[Mid] then It is clear that we should 
continue our search between the new limits, Lo and Mid-1. On the other 
hand, if Target exceeds Llst[Mld] then we should continue the search 
between the Indices Mid+ 1 and HI. The easiest way to continue the search 
between Lo and Mld-1 is to set HI to Mld-1 and then repeat the entire 
process. Likewise, to continue between Mid+ 1 and HI, we simply give Lo 
the new value Mid+ 1 and repeat the process. Let us 11lustrate this 
algorithm with an example. 

Suppose we have a list consisting or the following numbers: 

13 15 18 25 27 32 39 42 45 48 53 57 60 65 66 

Assume that the Target ls 48. or course, we begin with Lo equal to 1 and 
Hl equal to 15. We set Mid equal to (Lo•HO div 2, or 8 in this case. Since 
Llst[8] Is 42, which Is smaller than our Target, we know that 48, If In the 



Jli 

list at all, must be tn the half between Ust[9] and Ltst[tSJ. Hence, we set 
Lo to 9 and continue. The midpoint between 9 and 15 ts 12, so we consider 
List[ 12) next. Since List[ 12) Is 57 and therefore too large, the search has 
narrowed to between the Indices 9 and 11 for Lo and HI respectively. The 
Mid value ts 1 o and List[ 1 OJ ts the Target and the search ends wtth 
success. 

Before we Implement the binary search, consider how an unsuccessful 
search terminates. For example, suppose we search the above array for 26. 
We begin again with Lo equal to 1 and HI equal to 15. The search begins at 
Ltst[Mld] where Mid Is 8. Since that value Is too big, the search Is 
narrowed to between the Indices 1 and 7. The new Mid point is 4 and 
Llst[4] is too small, so the search continues between the indices 5 and 7. 
Since Llst[6] is too big, we continue between the indices 5 and 5. Ahal 
Since Ust[SJ Is not our Target, we must report a failure! Actually, there 
is no reason to consider the case where Lo equals HI as a special case. 
First of all, we need to make one last check at that cell CUst[SJ in the 
above example) to see whether it is the Target or not. In our case the Mid 
value between 5 and 5 is, of course, 5. Hence, we compare Target and 
Ust(5J. Here Ust[SJ Is too large. That means that we should set HI to 
Mid- I and conttnue. Thus, Lo ts 5 and Hi is now 4. The absurd condltton 
that Lo is bigger than HI Is our signal that the Target Is not tn the array. 
What we have seen Is that Llst[4] Is too small and hence the Target, If In 
the List, must be at or beyond the 5th place In the List. Later we learn 
that Ust(SJ Is too large. Hence, the Target Is at or before the 4th place. 
These two conditions together are contradictory. Hence, we may safely 
conclude that our Target Is not In the List. 

The Pascal function for the binary search Is given In llsttng 9.7. It 
assumes the following type declaratton: 

type 
Some-1..lst .. array [lnde><--Type) or ComponenLType; 

where lndex__Type Is any subrange of the Integer type and ComponenLType 
Is any type. It also assumes that List Is ordered In an ascending sequence 
and that you wish the search to proceed between the Indices Lo and HI. 
Further, we assume that Absurd Is a constant of lnde><--Type and that Its 
value Is not In the range from Lo to HI. Of course, the function returns the 
Index of the Target If the Target Is found and the ridiculous value Absurd 
otherwise. 



Ar revs J15 

function Btnary-5earch (List : Some-1.tst; (t<K>T A Ca"IPLETE PROGRAM) 
Target: ComponenLType; 
Lo, Ht : lnde><-Type): lnde><-Type; 

var 
Mtd: lnde><-Type; 
Found: Boolean; 

begin 
Found:= False; 
while (Lo <= HI) and not Found do 
begin 
Mid := (Lo + HO div 2; 
If Llst[Mld) .. Target then 
Found :• True 

else If List(Mld) >Target then 
Ht :a Mtd - 1 

else 
Lo:• Mtd + 1 

end; Ur and While} 
If Found then 
Btnary-5earch :• Mtd 

else 
Btnary-5earch :• ABSURD 

encl. (Deftnttion or function Binary-5earch} 

Listing 9.7 

It ts worthwhile polnttng out to the reader the difference In 
efficiency between the two kinds of searches. For example, if we are 
searching an array or size 1000, using a linear search It would take, on the 
average, 500 comparisons to find the target, while the binary search 
takes, In the worst case, only 10 comparisons. Doubling the size or the 
array doubles the number of comparisons needed with the linear search 
while the number of comparisons needed tn the btnary search only 
Increases by 11 Thus, the difference becomes enormous as the array size 
gets large. For example, If the list Is 1,000,000 elements long, the 
difference tn the number of comparisons Is 500,000 Con the average) for 
the ltnear search compared wtth 20 In the btnary search. If the reader is 
surprised at this figure, think about how easy It Is to find a book tn a large 
Hbrary or a phone number tn a large city telephone directory using an 
ordered search and how difficult these tasks would be If a linear search 
were used. 



J16 

Sorting an Array 

As we have seen, tt ts necessary that an array be In order before a 
binary search can be applied. Hence, sorting an array Into order ts 
obviously an Important topic. Also, often before a list Is output for human 
consumption, It Is useful to sort the list Into order. 

Here we consider a simple, fairly efficient sort known as the 
Insertion sort. Before we look at the Implementation In Pascal, let's try 
to understand how Insertion sort works. Insertion sort begins with the 
totally obvious Idea that any list of one Item Is properly sorted. If we 
have a list of two Items, then we simply decide whether the second Item 
should be Inserted before or after the first Item. If we have a list of three 
Items then we Ignore the third Item for a moment and Insert the second In 
the correct spot relative to the first. Then we Insert the third, either 
before the first, between the first and second, or after the second. In 
general then, If we have N Items, we Insert the second, third, ... , Nth Items 
Into their proper place with regard to those already present. 

We Illustrate the Idea of the Insertion sort with an example. Let us 
sort the list: 

86 39 42 12 24 53 

Note that here the Items are Integers. We could just as well sort reals or 
even strings since the system knows the alphabetical ordering of strings. 
Also, we are going to sort the list Into ascending sequence. We could just 
as well sort the list Into descending order. Moreover, the given list has no 
duplicates (no 39 twice, for example), but duplicates do not cause any 
problems to the Insertion algorithm. We leave these cases to the reader as 
exercises. 

Back to our sort. Sine~ a one-element list Is In order, we need only 
Insert elements 2 through 6 Into their proper places. The key to Inserting 
an element Is to l'fore all elements with higher Indices. That Is, when 
Inserting the Index h element, we need only look at elements I to Index- I. 

Index• 2, Insert 39 with respect to the first element: 

Ber ore: 86 / 39 42 12 24 53 After: 39 86 / 42 12 24 53 

Index .. 3, Insert 42 with respect to the first two elements: 

Before: 39 86 I 42 12 24 53 After: 39 42 86 I 12 24 53 



117 

Index = 4, 1nsert 12 with respect to the first three elements: 

Before: 39 42 86I12 24 53 After: 12 39 42 86 I 24 53 

Index .. 5, Insert 24 with respect to the first four elements: 

After: 12 39 42 86 I 24 53 After: 12 24 39 42 86 J 53 

Index = 6, Insert 53 with respect to the f1rst five elements: 

Before: 12 24 39 42 86153 After: 12 24 39 42 53 86 I 

Presto, the list Is sorted. Notice that an numbers to the left of the 
verltcal bar are sorted, and on each pass the number to the Immediate 
right of the bar Is Inserted Into tts proper place. 

Now that we understand how insertion sort works, our concern 
becomes Implementing It In a fairly efficient manner In Pascal. To be 
specific, let us suppose that the array 1s A and that there are N elements 
in A. Here, In general pseudo-code Is the Idea of the Insertion sort: 

For Index := 2 to N Do 
Find the Place where Allndex) should fo11ow A[Place) 
Slide elements from A[Place+ 1) to Allndex-1) up one ce11 
Insert Al Index) Into A[Place+ 1 ). 

Let's consider in more detat1 what Is Involved In finding the Place, 
sliding elements, and inserting a new element. In particular, consider the 
situation when the list Is 

A:. 12 39 42 86 24 53 

and Index .. 5, I.e., it 1s time to insert 24 into the list. We see that 39, 42, 
and 86 must slide over to make room for 24, but how do we instruct the 
computer to do this? F1rst, we know that whenever we swap elements 
around, we need a temporary storage location so we don't lose any values. 
Hence, let us first store 24 tn Temp: 

Temp: 24 
A:. 12 39 42 86 24 53 



318 

Now, cell Al5J Is really not being used, so we can slide Al4) Into Al5): 

Temp: 24 
A 12 39 42 86 86 53 

Now, cell Al4) Is free and we slide again: 

Temp: 24 
A 12 39 42 42 86 53 

And again: 

Temp: 24 
A 12 39 39 42 86 53 

Finally, Al 1) Is not larger than Temp, so the sliding stops and we Insert 
Temp Into Al21: 

Temp: 24 
A 12 24 39 42 86 53 

Now the first five elements are sorted and the procedure continues by 
saving 53 In Temp, sliding 86 over and then Inserting 53 Into Its proper 
place. 

There Is one problem with our algorithm. What If the element to be 
Inserted Is smaller than all the others? Obviously then, everybody should 
slide and the new element should be Inserted Into Al 1). However, we 
Indicated above that the sliding should continue while the Temp element Is 
smaller than the current element In the list. If we are not careful we get 
a ·subscript out of bounds error: Namely, after we slide All) Into Al2), 
our program Is likely to check to see If the nonextstent element A{O) needs 
to slide. 

One can handle this problem by special checks, but the most elegant 
method, since we need a temporary location anyway, Is to declare zero to 
be a legal subscript for the array A and then use A{O) for Temp. Since we 
slide elements until we find one not smaller than A{O), A[O) Itself, If 
necessary, stops the sliding! The procedure lnsertlon....Sort, given In 
listing 9.8, sorts the list A of length N Into ascending order using this 
technique. 



Arravs 319 

procedure lnsertion_Sort (var A: List; [NOT A COMPLETE PROGRAM} 
N: Integer); 

(This procedure sorts the array A of N elements using insertion} 
(sort. We assume A has a zeroth element. See text for details.} 
var 

Index, Spot : Integer; 
begin 
for Index:= 2 to N do 
begin 

A[O] := A[lndex]; (Save A[lndex] temporarily.} 
Spot := Index - I; 
while A[Spot) > A[O) do (Slide bigger elements up.} 

begin 
A[Spot + I) := A[Spot]; 
Spot := Spot - I 

end; (While} 
A[Spot + I 1 := A[O] (Insert new element.} 

end (For} 
end; (Definition of procedure lnsertion_Sort} 

Listing 9.8 

Multt-Dimenslonal Arrays 

The fact that you are reading this sect ton labels you as a ·survivor· of 
one-dimensional arrays. This section should seem natural to those who 
have learned the previous sections well (but may well push others ·over 
the edge"). Actually the main subject of the remainder of this chapter is 
the care and feeding of two-dimensional arrays. Arrays In Pascal can 
come In any dimension, but two-dimensional arrays are very common and 
anyone who can handle them well understands the general principles and 
can Implement 17-dlmenstonal arrays without us. 

A secret, well-kept from students, ts that a two-dimensional array Is 
nothing other than a "table" of Information. For example, the table of 
marshmallow production In the united States and In the Grand Duchy of 
Fenwick (table 9.2) ts an example of a two-dimensional array. It Is 
two-dimensional since It has rows and columns. In this case each row Is a 
one-dimensional array of two elements (don't count the Index) 
representing marshmallow productions In a given year. In contrast, each 
column Is a one-dimensional array of ten elements representing 
marshmallow productions over the 1 O years in a given country. That Is, 



320 

the rows are Indexed by years and the columns are Indexed by countries. A 
particular entry In the table Is determined If we fix a year and a country. 
For example, the marshmallow production In the Grand Duchy In 1980 Is 
easily determined to be 6,392.5 tons. 

We recommend that the reader view a one-dimensional array as a 
"list" of Items, and likewise view a two-dimensional array as a "table" of 
Items. The word array has frightened many a beginning student of 
programming. Realizing that an array Is really not some strange object 
created by your professors to paralyze you Is very Important. Arrays, as 
we shall see throughout the remainder of this book, are critical to 
programming. 

It may become difficult to picture, but If we add other products to our 
example, we obtain a three-dimensional array. That Is, ff we keep track of 
the production of marshmallows, bicycles, paper clips, and moustache wax 
over a period of several years In the U.S. and the G.D.F., then we have a 
table with three Indices. To determine a specific entry we must give a 
product, a year, and a country. If we add a further complication, such as 
the color of the product, then we have a four-dimensional array. Again, 
Pascal has no limit to the number of dimensions that a given table may 
have. However, the reader should be aware that seemingly Innocent tables 
can be giant memory hogs. For example, If the above table stores 
Information for 20 products over a Io-year span for 15 countries, and 
lists 12 colors for each product, then that table occupies 36,000 cells tn 
memory (Why?). 

As with one-dimensional arrays, we have two major questions that 
we must answer. How does one declare and how does one use 
multi-dimensional arrays? The following declarations should seem 
natural: 

type 
Countries • (US, GDF); 
Colors= (Red, Green, Orange, Yellow, Blue); 
Categories = (Student, Faculty, Alumnus, Guest>; 
Students • (Amy, Bill, Carol, David, Edith, Fred); 
Grades= (A, B, c, D, F, INC, W, WP, Wf); 

var 
Marshmallows: array I 1975 .. 1984, US .. GDFJ of Real; 
Gradebook: array (Amy .. Fred, 1 .. 10) of Grades; 
Parklng_Fees: array [ 1980 .. 1985, Student.Guest, Red .. Blue) of Real; 
MulLTable: array (0 .. 9, 0 .. 9) of Integer; 



Arravs 321 

Marshmallows Is, as previously discussed, a table of 20 entries 
arranged Into 10 rows and 2 columns. If Vear and Country are variables of 
the obVlous types, then Harshmallows[Vear, Country) Is a real number 
representing the tonnage of marshmallows produced In that Country In the 
given Vear. Gradebook, on the other hand, Is a table of sixty entries 
arranged In 6 rows and 10 columns. The rows of Gradebook are Indexed by 
students' names and the columns are Indexed by the subrange of Integers 
from 1 to 1 O. Of course, Gradebook[Carol, 7) Is of type Grades and 
represents the grade Carol received from Professor Pedantlcs on project 
number 7. Parklng....Fees Is an example of a three-dimensional array. It Is 
a table of the history of parking fees at Abnormal University for the years 
1980 to 1985 for the various categories of users (students to guests) and 
for the various lots on campus, which are Identified by colors. That Is, If 
Vear, Class, and Hue are variables of the proper types, then 
Parklng....Fees[Vear, Class, Hue) represents the fee needed to park In a lot of 
color Hue for a user of the given Class In the given Vear. HulLTable ts a 
simple two-dimensional array--and we hope HulLTable[R, Cl stores the 
product of Rand C, the row and column Indices, each of which we assume 
Is between O and 9. 

There ts an alternate form of the array declaration for 
multi-dimensional arrays that we now discuss. Since any type can be 
placed after the of In an array declaration, It Is possible to define an 
array as follows: 

AdcLTable: array [0 .. 9) of array [0 .. 9) of Integer; 

For most purposes this Is fully equivalent to the array definition of 
HulLTable given above. That ts, AdcLTable[R, Cl Is an Integer, we hope 
the sum of R and C, the row and column Indices. 

HulLTable must be used with zero or two Indices. For example, If we 
assume that Dtv_Table Is another variable declared In the same 
declaration as HuLTable, then both of the following are valid: 

Div_ Table :"' HuLTable; (This ts an entire array operation. It Is valid) 
(only If both arrays are of the same type) 

HuLTable[7,6) := 42; (This Is an operation on a specific element) 

On the other hand, AdcLTable may be used with zero, one, or two 
Indices. For example, If Sub_Table Is another variable declared In the 
same declaration as AdcLTable, then all of the following are valid: 



322 

Sub_Table := Ad<LTable; (Entire array operation} 
Ad<LTable[3] := Ad<LTable[7]; (This Is a "row· operation. The 7th row} 

(of Ad<LTable Is assigned to the 3rd J 
(row of Ad<LTable J 

Ad<LTable[4, 7) := 11; (Operation on a specific element) 

That Is, Ad<LTable[R] Is Itself an array of 10 Integers, and can be assigned 
any value of that same type. In the above example, the 3rd row of the 
table Is replaced by the contents of the 7th row. In summary, the two 
forms are very close. If one would like to do entire row operations, then 
the second form must be used. If there Is no need In the given appllcatlon 
for such operations, the first form Is probably the preferable form to use. 
Also, since Ad<LTable(RJ Is an array, we may write Ad<LTable[R)(CJ to 
Indicate the cth Item In the Rth row of Ad<LTable. This ls an alternate form 
to the more common expression Ad<LTable[R,CJ. 

Finally, we need to make a remark about when two variables In Pascal 
have the same type. Although this may seem obvious, ft Isn't. First, ff a 
type has a name, then all variables of that type, or that are subranges of 
that type, are naturally considered to be of the same type. Prior to this 
chapter, this was always the situation. However, ff we declare a variable 

List : array [I.. I OJ of Integer; 

then List Is said to be declared anonymously, that Is, without a type 
name. In the anonymous case, variables are of the same type only ff they 
are declared In the same variable declaration. 
Consider the following examples: 

var 
UsLI : array [l.. IOJ of Integer; 
LlsL2: array [1.. IOJ of Integer; 

In the above case, the statement LlsLl :" UsL2 Is fllegal because the 
two variables are not of the same type. If we want them to be of the same 
type, we have two alternatives. The first one Is to declare them together: 

var 
LlsL I, LlsL2 : array [I.. 1 OJ of Integer; 

The second alternative Involves making up a type name and using ft In the 
variable declarations: 



Arrays 

type 
Lists = array [ 1 .. 1 OJ of Integer; 

var 
LlsL 1 : Lists; 
LlsL2 : Lists; 

323 

In each of the prevtous two sttuattons, LtsL1 :'" LlsL2 ts now legal 
because both vartables are of the same type. 

Thts example points out a sttuatton when the •tnventton· of a type 
name ts destrable Cor required). Although we can use the ftrst altemattve 
of declartng thtngs together wtthtn any one block, we must use the second 
altemattve tf we are to set up argument/parameter correspondences wtth 
procedures and functtons. Thts potnt ts often a source of confuston 
(understandably) to begtnners. Stmply remember that to use arrays as 
arguments/parameters, the arrays must be declared wtth named types. 
They cannot be passed anonymously. 

A two-dtmenstonal array often has several parallel one-dlmenstonal 
arrays assoctated wtth tt. For example, suppose Marks ts an array declared 
by: 

Marks : array l 1 .. 30, 1 .. 1 OJ of Integer; 

We assume that Marks ts to be used to keep the scores of up to JO students 
on up to 1 O homework assignments. An obvtous parallel array would be an 
array In whtch to keep the names of the students. Stnce strtngs are not 
compatible wtth tntegers, we must use dtfferent arrays for the names and 
for the marks. Thus, we could declare Names by 

Names : array [ 1 .. JO) of strtngl25); 

The reader should reflect upon why we chose 1 .. JO and not 1 .. 1 O tn the 
above example. Two other logtcal arrays to assoctate with Marks would be 
StudenLAverage and HomeworLAverage. StudenLAverage, of course, ts 
destgned to hold the average of each student, while HomeworLAverage ts 
supposed to keep track of the class average on each homework. Hence, we 
declare these two arrays (very dtff erently) as follows: 

StudenLAverage : array l 1 .. 30) of Real; 
HomeworLAverage: array [1 .. 10) of Real; 



324 

We hope the picture of figure 9.2 helps to explain these parallel arrays. 
Simply for human understanding, those that deal with rows of Marks are 
drawn In a vertical format, while those that deal with the columns of 
Marks are drawn In a horizontal format. 

1 2 l . . . 10 

lO 

I 2 l ... 10 

I 11 I I I 
HomeworlLAverage 

Figure 9.2 

2 
l 

lO 

Simple Operations on Two-Dimensional Arrays 

StudenLAverage 

For each of the following segments we assume that the arrays Marks, 
Names, StudenLAverage, and HomeworlLAverage have been declared as In 
the previous section. Further, we assume that the arrays Marks and Names 
already have values stored in them and that any index variables that we 
need have been so declared. 

Example I: Assign the score o to the element In the 3rd row and 2nd 
column. 



Arrays 325 

Trivially, we write: 

Marks[3,2] := O; 

Notice that this assignment means that we have given the 3rd student the 
mark of zero on the 2nd homework. This Is radically different from 

Marks[2,3] := O; 

so be very careful with the order of the Indices! 

Example 2: Assign the score of 100 to each element In the 17th row. 

Here, obviously, someone has purchased "failure Insurance." The point Is 
that a row operation corresponds to an Individual, while a column 
operation corresponds to a particular homework assignment. The solution 
uses a loop: 

for Paper:= I to 1 Odo 
Marks[17, Paper]:= 100; 

Example l: Assign the score of Oto each element in the 6th column. 

This time, everyone got caught cheating on homework number 6. We 
obviously use a loop, but note that we loop 30 times, not 10, and also 
notice carefully the placement of the constant 6 In this example: 

for Person := 1 to 30 do 
Marks[Person, 6) := O; 

Example 4: Count the number of zeros In the Rth row, where 1 ~ R ~ 30. 

This counts the number of homeworks "blown off" by the Rth student. The 
segment Is very straightforward, assuming all the variables have been 
previously defined: 

Blown_Off := O; 
for Paper:= 1 to 10 do 
if Marks[R, Paper) =O then 
BIOWrL.Off := BlowrL.Off + 1; 



3Z6 

Example 5: Count the number of 1 OO's on the Hth homework assignment, 
where 1 i H i 10. This Is clearly a column operation. The details are left 
to the reader. 

Example 6: Count the number of lOO's In the entire array Marks. 

For this purpose assume that Num-Asslgnments Is an Integer Cat most 10) 
that contains the number of assignments actua11y given and that 
Num.....Students Is also an Integer Cat most JO) that contains the actual 
number of students In the class. That Is, only Num....Students rows and 
Num-Asslgnments columns of the array Marks are In use. There are two 
obvious ways to proceed: 

or 

Count:• O; 
for Row :• 1 to Num.....Students do 
for Col :• 1 to Mum-Assignments do 
If Marl<s[Row, Col] .. 100 then 
Count :'" Count + 1 ; 

Count:= O; 
for Col :• 1 to Num-Asslgnments do 
for Row :• 1 to Num.....5tudents do 
If Marks[Row, Col] .. 100 then 
Count :• Count + 1 ; 

The reader should trace the above to discover the slightly different paths 
taken to achieve the same final counts. For simplicity In the exposition, 
let us assume for a moment that Num.....5tudents Is JO and 
Num-Asslgnments Is 10. The first solution considers the elements or 
Marks In row order. That Is, It looks at Marks[ 1, 1 J, Marks[ 1,2J, 
Marks[ 1,JJ, ... , Marks[ 1, 1 OJ, then looks In the second row at Marks[2, 1), 
Marks[2,2J, Marks[2,JJ, ... , Marks[2, 1 OJ and proceeds thusly through the rows 
or Marks. The second solution, on the other hand, has the column Index on 
the outside and hence, It changes more slowly than the row Index. The 
second method Is therefore known as the column order solution. Trace 
enough or It to see that the elements considered are Marks[ 1, 1 J, Marks[2, 1 J, 
Marks[J, 1J, ... ,Marks[JO,1 J, then the second column's Marks[ 1,2J, Marks[2,2J, 
Marks[J,2J, ... , Marks[J0,2J, etc. In a situation where our object Is simply 
to count the number or times that a particular value occurs In a given 



Arravs 327 

table, It obviously doesn't matter whether we proceed In a row or column 
order. But as we shall see In examples 7 and 8, sometimes one needs row 
order and sometimes one needs column order. 

Example 7: Compute and store the entries of the array StudenLAverage. 

For each student we add his/her scores and divide by Num-Asstgnments. 
Of course, we must repeat this operation NulTLStudents times, storing the 
results at each stage In the proper place In the array StudenLAverages. 
Thus, since the outside loop ts on people, the solution uses row order: 

for Person :• 1 to Num-5tudents do 
begin 

Sum:'" O; 
for Paper:• 1 to Nul'TLAsstgnments do 

Sum := Sum + Marks(Person, Paper); 
StudenLAverage(PersonJ := Sum I NUl'TLAsstgnments 

end; 

Please observe very carefully the placement of the 'Sum := O;' statement. 
Why must It go between the for's Instead of before both or Inside both? 

Example 8: Compute and store the entries of HomeworlLAverage. 

This time we must process the array by papers, not people. Hence, a 
column order Is appropriate. We leave the detatls to the reader. 

Example 9: Assuming that Who Is a string variable containing the name 
of one of our students, find the score of Who on paper number 5. First, we 
must find Who In the parallel array of names, then remembering the Index, 
look up Who's score In the table Marks. For this segment let us assume a 
linear search function, called Find, that accepts an array of names and a 
target string and returns the Index of the target In the array (or zero If the 
search Is unsuccessful). With this ·black box· the segment Is easy: 

Place :• Ftnd(Names, Who); 
If Place = o then 
Wrtteln('Sorry, ·,Who,· ts not In the class.') 

else 
Wrtteln(Who, ·has a score of·, Marks(Place, SJ); 



328 

An Extended Example 

Previously we considered an extended example Involving the Widget 
Works. The astute reader realizes, no doubt, that the example was 
fictitious and was devised just to give an example of one-dimensional 
arrays. The truth, of course, Is that the Widget Works has a whole line of 
products, and, hence, needs a two-dimensional array to keep track of sales 
or Individual products by Individual salespersons. For simplicity, let us 
assume that the Widget Works has at most 100 salespersons and has 1 O 
distinct products. We assume that each salesperson has an ID number 
between 1 and I 00 and that each product has a product number between 1 
and 1 o. Thus, we declare the array Amounts as follows: 

Amounts : array [ 1 .. 100, 1 .. 1 OJ or Integer; 

We also assume a parallel one-dimensional array Names given by: 

Names : array [ 1 .. 100) or strtng(30); 

Figure 9.3 Illustrates the relationship between Amounts and Names. 

Names 1 1-----1 
2 ,____ _ _, 

.100......_ _ _, 

I 2 ... 10 

I t--t--+----~---1 
2 t--t--+----~---1 

100 ............ __._ ____ _..'----' 

Figure 9.l 

Amounts 

Other parallel arrays are explained as they are used. Here are some 
segments that solve simple problems posed by Snidely Whiplash, the Sales 
Manager. In each or these segments we assume that the arrays Amounts 
and Names already have values. We also assume that any Indices needed 
have been declared. 



Arravs 329 

Examp1e I 0: Snidely would like to see how salesperson number 15 Is 
doing. Listing the sales by product for salesperson number 15 ls a row 
operation on the array Amounts. Here Is the segment: 

Wrlteln('Sales by·, Names[l 5), ': '); 
for Col :•I to 10 do 
Wrlteln('Quantlty of product•·, Col,· was·, Amounts[ 15, Col)); 

Examp1e 11: Determine for Snidely the total number of product number 6 
that has been sold by all salespersons. We need to scan down the 6th 
column of the array Amounts totalling the entries. Here Is the segment: 

Total-6 := O; 
for Row:= 1 to 100 do 
TotaL6 := TotaL6 + Amounts[Row, 6); 

Wrlteln('The company total for product "6 Is ',TotaL6); 

In both of the above examples we have used the Index names Row and 
Col to suggest the type of operation we are performing on the array 
Amounts. Alternately, It would be proper and acceptable to use Index 
names that referred to the real situation. For example, In the first case an 
Index such as Pro~um would clearly indicate that we were looping on 
products. In the second example an Index such as ID or Salesperson would 
clearly Indicate that we were looping on people. Either way Is all right 
and Infinitely better than totally meaningless Indices such as X and Y. 

Examp1e 12: Let Person_Totals be an array In which Person_Totals[ID) 
holds the total number of products sold by salesperson number ID. Since 
Person_ Totals has an entry for each salesperson, It Is declared by: 

Person_Totals: array (1 .. 100) of Integer; 

To compute the entries of Person_Totals, we need to sum the entries of 
row 1, then sum the entries of row 2, etc. Here Is the segment: 

for ID:= I to 100 do 
begin 
Person_Totals[ID) := O; 
for Pro~um := I to IO do 
Person_Totals[ID) := Person_Totals[ID) + Amounts[ID, Pro~um) 

end; 



330 

Example 1 l: As an exercise for the reader, we leave the problem of 
writing a segment to compute and fill the array Prod...Totals so that 
Prod...Totals[Pro<LNum) contains the total number of that product sold by 
all the salespersons. This ls an extension of a previous segment that 
determined TotaL6. Do not forget to declare Prod...Totals properly. 

Example 14: The array Person...Totals ls not a very meaningful array. 
Since the Widget Works sells paper clips as well as tanks, It doesn't make 
much sense to simply total up the number of products sold by each 
Individual. Total value of goods sold would be more meaningful to the 
Widget Works management. Thus, we need two more arrays, Price and 
Sales....Totals. Price contains the selllng prices of the products and 
Sales_Totals Is to contain the total dollar amount of sales by each 
salesperson. Hence, Price and Sales.... Totals are declared by: 

Price: array [ 1 .. 10) of Real; 
Sales.... Totals : array [ 1..100) of Real; 

In the following segment, we assume that Price already has values and use 
these to compute the entries of Sales....Totals: 

for ID:• 1to100 do 
begin 

Sales....Totals[ID) := 0.0; 
for Pro<LNum := 1 to 10 do 
Sales....Total[ID) := Sales....Totals[ID) + 

Amounts[ID, Pro<LNum) * Prlce[Pro<LNumJ 
end; 

Example 15: Now let us consider how the array Amounts could obtain 
values In the first place. We assume that each salesperson, on completing 
a sale, fills out a sales transaction form. The Information needed on that 
form Is the salesperson's ID, the product number CPro<LNum) of the 
product, and the quantity Caty) of the product sold. That ls, the 
transaction '17 6. 12' Indicates that salesperson number 17 has sold 12 
more of product number 6. We save (batch) the transactions for a 
two-week period, then enter them all Into the computer. Thus, we expect 
(Snidely demands It> that there wm be many transactions for each 
salesperson. Also, rather than count the number of transactions, we tell 
the data entry operator to enter a nonsensical zero ID when all the 
transactions have been entered. Thus, the array Amounts ls really 1000 



ArrlfS 331 

accumulators for running sums. For example, all the above transaction 
does Is add 12 to the current value In the 17th row and 6th column of 
Amounts. Of course, before we process the transactions we should 
Initialize every entry of the table to zero. That Is left as an exercise for 
the reader. Here Is the segment that processes the transactions: 

Wrlteln('Enter the first ID'); 
Readln(ID); 
while ID> o do 
begin 
Wrlteln('Enter product number and quantity'); 
Readln(Pro<LNum, Qty>; 
Amounts[ID, Pro<LNumJ := Amounts[ID, Pro<LNum] + Qty; 
Wrlteln('Enter the next ID. Enter Oto terminate data entry.'); 
Readln(ID) 

end; 

The exercises at the end of this chapter Indicate many other segments 
that you may write for Snidely. 

We complete this chapter with one final example of parallel array 
processing. Let us suppose we have data on approximately 150 students 
who have taken the SAT exams. We would like to read in this data and 
store lt In appropriate arrays. Since part of the Information Is numeric 
and part of the Inf ormatton Is alphabetic (string), we need to use two 
arrays. One of the weaknesses of arrays Is that they only may store 
information of one fixed type. When we have several types of data, we are 
forced to use several parallel arrays. Let us assume that each student has 
taken the verbal and the mathematics portions of the SAT examinations. 
Hence, for each student we store three scores, a verbal, a mathematics •. 
and a composite score, which Is the sum of the verbal and mathematics 
scores. Computers can add. more quickly and accurately than people, so 
there Is no reason for us to enter the composite score; the computer can 
compute It by Itself. Thus, for each Individual we have a name (30 
characters) and two scores to enter. Thus, logically, the data might 
appear as follows: 

Lowell Carmony 
750 790 
Robert Holliday 
260 310 



332 

Jacque Strappe 
130 40 
HI lque 
800 740 

Notice that the names are not separated from the scores. We cannot read 
In the 150 names followed by the 300 scores. We must read a name, then 
two stores for that person, and then repeat the process. Often, the data ls 
prepared by someone other than the programmer and the programmer must 
adjust to the given data. The program of Listing 9.9 reads the data from 
the text file SAT-5cores and computes and prints the composite scores. 

program SAT; 
(This program reads SAT scores from the text file SALScores.} 

type 
ScoreType =(Verb, Math, Comp); 

var 
Names: array[ 1 .. 150] of string[25); 
SAT : array[ 1 .. 150, Verb .. Comp] of Integer; 
Person : 0 .. 150; 

begin 
Close(lnput); (Redirect Input to be from the text file.} 
Reset( Input, 'SA LScores'); 
Person:= O; 
Writeln('Name·: 25, 'Verbal': 10, 'Math' : 10, ·composite': 15); 
Write In; 
while not EOF do 
begin 

Person := Person + 1; 
Readln(Names[Person]); 
Read In( SA T[Person, Verb], SA T[Person, Math)); 
SA Tl Person, Comp] := SA T[Person, Verb] + SA T[Person, Math]; 
Write( Names[ Person) : 25, SA Tl Person, Verb] : 10); 
Write In( SA Tl Person, Math) : 10, SA T[Person, Comp): 15); 

end {While} 
end. 

listing 9.9 



Arravs 333 

Summary 

The concept of an array Is Indispensable for writing programs of any 
size or sophistication. It has been our experience that arrays are often the 
point In a beglnlng programming course where many students begin to ·1ose 
It: One reason Is that those students have never really understood the 
concepts of variables and memory locations, so when they try to use 
variable subscripts In a multi-dimensional array setting, there Is nothing 
but confusion. We encourage the reader to tackle all the exercises In this 
chapter to ensure a thorough understanding of arrays. Many of these 
exercises also give practice using functions and procedures as part of a 
divide-and-conquer strategy. 

Exercises 

9.1 Modify Sntdely_l so that It prints a message to each salesperson. 
Salespersons with sales of less than $5000.00 should be warned that their 
jobs (health) are In jeopardy, while those who reach the sales quota should 
be commended. Also print out a count of those reaching the quota as well 
as a count of those fatltng to reach the quota. Note that the order of the 
output Is fixed by the order of the salespersons In the text file 
WldgeLSales. You are not to use arrays In this problem. 

9.2 Modify Snldely--2 so that It prints two lists. First, print a list of all 
the salespersons whose sales exceed the average sales, then print all 
salespersons who sales are less than average. Be sure to Include a title 
for each list. 

9.l The function More_Needed In Soggles checks all ten premiums to see 
If any are needed. Obviously It could stop looping as soon as It finds one 
premium that Is still needed. Write such a version of More_Needed and try 
It out In Soggles. 

9.4 Try to eliminate the function More_Needed from Soggtes by using a 
counter that Is Incremented by I each time a new premium ts obtained. 

9.5 Modify the program Xmas (Bah, Humbug!) so that It also computes the 
retail value of the gifts received. For this purpose, add an array 
RetalLValue, to the program. Allow the user to enter the retail value of 
each gift. Itemize the gifts, showing the number and total value of each, 
as well as the total number and the total dollar value of all the gifts. 



334 

9.6 The text file SAT-5cores contains names and two scores (verbal and 
math) for at most twenty students. The names and scores are on separate 
llnes. Modify the program SAT of the text that reads the data Into two 
arrays so that It also sorts the scores. The output should be three llsts, In 
descending order by each type of score, gMng the name and scores of each 
student. That Is, rank the students by verbal, math, and composite scores. 
Caution: Be sure you keep the scores associated wlth the correct people. 

9.7 (Selection Sort) Another simple sort Is known as Selection Sort. It 
works as follows: On the first pass lt finds the largest element In the 
array and swaps this element wlth the last element In the array. For 
example, If the array Is 

I 2 6 I 8 24 I 5 9 2 I 1 

then on pass one lt finds 24 In the fourth place and swaps 24 and I I, 
putting 24 at the end: 

I 2 6 18 I I 15 9 2 24 

On the second pass It finds the largest element among the first N-1 
elements (N Is the number of elements In the array) and swaps it with the 
(N-1 )st element. In our example, I 8 Is found and swapped with 2 to give 

I 2 6 2 I I I 5 9 I 8 24 

On successive passes the next biggest element is found and moved to the 
"back" of the array. After N- I passes, the array Is sorted. 

Write a procedure Selection that implements this sort. Verify that It 
works by having It sort 25 randomly generated numbers Into ascending 
order. 

9.8 Write the segment for Example 5 on page 326. 

9.9 Write the segment for Example 8 on page 327. 

9.10 Write the segment for Example I 3 on page 330. 

9.11 Write a segment for Snidely that finds the winner of the sales 
contest. That Is, find the person whose total value of sales Is greatest. 



ArrlVS 335 

9.12 Write a segment that ranks the salespersons for Snidely by their 
total values of goods sold. 

9.13 Guess the number of jelly beans In the jarl Everyone enrolled In 
Pascal has entered the contest and the data Is available In the text file 
Candy, which contains two lines tor each person: 

Debby Fulton 
32776 

The first line contains the name and the second line contains the guesses 
tor the total number of jelly beans In the jar and the number of yellow 
jelly beans In the jar. You may assume that there are at most 100 
contestants. The grand prize winner Is the person who guesses closest to, 
but does not exceed, the actual number of candles In the jar. Anyone 
who guesses within 25 of the winning guess Is a runner-up and receives 
one jelly bean of each color. Anyone who guesses within 100 of the 
winning guess ts a consolation prize wlmer and receives a jelly bean of 
his/her choice. The grand prize winner gets all the jelly beans except 
those awarded as runner-up and consolation prizes <and those eaten by the 
judges, Ors. Carmony and Holliday). 

The actual number of jelly beans In the jar and the number of yellow 
jelly beans are given In the first line of the text file Candy. This Is 
followed by pairs of lines giving names and guesses for each of the 
contestants. 

Note the perverse rules of this game. For example, If there are 789 
jelly beans In the jar and we have three contestants with guesses of 650, 
790, and 551, then 650 Is the grand-prize winning guess; there are no 
runners-up; and 551 gets a consolation prize while 790 gets nothing. On 
the other hand, If the three guesses are 750, 790, and 551, then 750 wins 
and 790 Is a consolation prize winner. 

Important: For this exercise you may assume that there are no ties 
for the Grand Prize. The next exercise asks you to handle ties using the 
yellow guess. Both exercises use the text file Candy. In this exercise read 
Candy only until you find the name 'George Pryjma·. If you stop without 
reading George's guesses, there will be no tie for the Grand Prize. 
Nevertheless, In this exercise you must be sure you properly Ignore the 
data concerning yellow jelly beans. 

9.14 Consider the above problem, but In case of a tie for the Grand Prize, 
the winner Is the person whose yellow guess comes closest to, but does 



336 

not exceed, the actual number of yellow jelly beans. In this e1<erclse you 
should read Candy to the end of the file. 

9.15 The table below contains the tonnage of Smurfberry wine consumed 
In the United States and In Smurf Village during the years 1976--1985. 
Write a program that Interactively reads the data and prints two llsts In 
the following format: 

In the following years, the Americans drank more Smurfberry wine: 
1975 
1977 

In the following years, the Smurfs drank more Smurfberry wine: 
1976 

1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 

Smurfberry Wine Consumption 

United States 
27,435 
23,358 
22,398 
19,327 
20,752 
23,882 
21,472 
24,752 
23, 153 
21,252 
20,941 

Table 9.l 

Smurf Village 
21,376 
25,212 
22, 150 
24,386 
19,642 
26,321 
24,661 
25,371 
22, 165 
21,853 
22,341 

9.16 The procedure Easter of Chapter 7 determines the day and month of 
Easter In a given year. The procedure Is valid for the years 1900 to 2099. 
What date during the 2otn and 21st centuries Is the most common for 
Easter? 

9.17 Each bottle of Debug, the headache relief medicine for programmers, 
contains a letter on the Inside of the bottle cap. You win a free bottle of 



Arrays 

Debug tr you collect letters to spell 

out of every 100 bottles there are 

JO A's 
2SB's 
20C's 
15 l's 
10 S's 

337 

Write a procedure that stmulates the collecttng or bottle caps until you 
wtn the prtze. Write a program that runs your stmulatton twenty ttmes 
and computes an average number of bottles purchased to win a free bottle. 

9. 18 Do exercise 9.17, except collect letters to spe II 

where the dtstrlbutton or the letters In 100 bottles ts 

10A's 
IOC's 
20L's 
2SP's 
35S's 

Why Is this program more dtrrtcult than 9.18? 

9.19 The Lake Forest College Rumlng Club needs a program to sort out 
the winner In Its Strawman Triathlon. The competition consists or a 
114-mlle swtm, a 5-mlle bicycle ride, and a 2-mlle run. The data for each 
competitor Is available on the text ftle Triathlon on the Sample diskette 
accompanying the book. There are two lines ror each person. The first line 



338 

1s the name, of type strtng[JOl The second Hne conta1ns a category 
(either the character 'S', 'F', or 'A' for Student, Faculty, or Administration 
respectively) followed by 3 real numbers representing, 1n hours, the sw1m 
time, b1ke time, and run time respectively. 

Write a program that prints out the f ollow1ng: 

The w1nner of the Swim Competition was ... with a time of ... 
The winner of the Bicycle Competition was ... with a time of ... 
The wtmer of the Rlmlng Competition was ... with a time of ... 
The winner of the Overall Competition was ... with a time or ... 

cor COll"se, the winner or each Individual competltton Is the Individual 
with the fastest time for that event, while the winner of the overall 
triathlon Is the 1ndlvldual with the fastest combined time. You do not need 
to worry about ties.) 

The above fotr statements should be followed by a table that prints 
all the entrants In Increasing order of total time, e.g., the winner ts listed 
f lrst and the loser Is listed last. Each line 1n the table should contain the 
participant's name and category, followed by the three tndlvldual times 
and the total combined time. 

(Note: The category Is not really used In this exercise. It ts Included for 
use with an exercise tn Chapter 16.) 



Chapter 1 o 

Records 

BOTTOM-DOWN - A pessimistic and discredited 
programming methodology; bottom-down projects 
are characterized by deep-rooted doubts as to 
where to start. and by a stgnal lack or progress 
once started. 

Devtl's DP Dictionary 

Introducing File Terminology 

A file is an orderly arrangement of information. Usually the 
information is about some group of individuals or products. For example, 
the Social Security Administration maintains a large file with information 
on most Americans, while the Widget Works maintains inventory files both 
on raw materials and finished Widgets, as well as various personnel files. 
One should think of a file as a collective noun. That Is, a file is the total 
collection of information. 

When we open a file folder, we usually find many "forms; one for 
each person or product involved. These forms are called records. For 
example, there Is almost certainly a record In the Social Security 
Administration's file for you. That record collects all the information 
that Is kept about you, such as name, social security number, blrthdate, 
address, as well as a list of contributions by you and your employers to 
your retirement account. Likewise, the Widget Works' Inventory file 
contains a record for each product kept In the warehouse. That record 
contains the product number, the cost, the supplier, the quantity, etc. of 
the given product. 

The Individual data Items that make up the record are called the 
fields of the record. In our examples above, the name, the address, the 
social security number, the supplier, the cost, etc. are all fields of their 

JJ9 



340 Records 

respective records. Flies, records, and fields are easy to distinguish. The 
file Is the complete collection of Information while a record Is the 
Information about one Individual product or thing. The file is the complete 
folder full of Information. The records are the forms of which the file Is 
composed. The fields are the Individual data Items. The record Is 
composed of fields; the file Is composed of records. 

In this chapter we shall consider only tnterna1 files, which are files 
that reside completely In the memory of the computer. In the next chapter 
we shall take up the more Interesting and valuable subject of external or 
dtsk files. Internal files allow us to Introduce and study records without 
worrying about disk Input and output. However, the limitations of Internal 
files should be obvious: They must be small enough to flt In memory, and 
they are lost when the computer is turned off. Indeed, an Internal file Is 
simply an array of records. 

As an example to develop in this chapter, let us consider creating a 
small internal file for a group of students, say those enrolled In a first 
Pascal class. We must first decide upon the fields that compose the 
record for each person. Let's say that we shall keep the name, class, 
Identification number, grade point average, fee status (paid or unpaid), and 
sex of each member of the class. Since Pascal is a strongly typed 
language, we must also decide the type of each of these fields. Clearly, 
name should be a string, say, of maximum length 25. Let us also suppose 
that the lndentification numbers have the form XXX-XX-XXXX and, thus, are 
strings of length 11. For the class we shall use the abbreviations FROSH, 
SOPH, JR, and SR and shall define an enumerated type for this purpose. Fee 
status can be chosen to be of type Boolean, while sex can be chosen to be 
of type Char. Hence, we see one fundamental difference between records 
and arrays--the types do not all need to be the same in a record. Indeed, 
our example is fairly typical in that records are often composed of many 
very different kinds of fields. There is another fundamental distinction 
between arrays and records that we should like the reader to consider. 
Both records and arrays are "sequences" of information. Records, however, 
are used to gather various non-homogeneous information about an 
individual while arrays are used to gather homogeneous information across 
a group of individuals. That Is, an array of names or an array of grade 
point averages has one cell for each individual. Using arrays, the 
information is grouped by kind; using records, the information is grouped 
by the individual or object to whom the information refers. 

A record type StudenLRecord, and an internal file, Students, are 
declared in Pascal as shown in listing I 0.1. 



Recerds 

type 
Class_ Type .. <Frosh, Soph, Jr, Sr); 
StudenLRecord = record 

Name: strlng[25]; 
Class: Class_ Type; 
ID : string[ 11 ]; 
GPA: Real; 
Fee-5tatus: Boolean; 
Sex: Char 

end; 

var 
Students : array[ 1 .. 30] of StudenLRecord; 
One-5tudent : StudenLRecord; 

Listing 10.1 

J41 

The variable One-5tudent Is a record variable. That Is, It Is an 
aggregate name for the six fields we have listed. In a moment we shall 
see how to access those Individual f le Ids. Students, on the other hand, is 
an Internal file. Students Is an array of 30 records. Students[ 17] Is, of 
course, the record of the 17th student. S Ince Students[ 17] and 
One-5tudent are both of type StudenLRecord, they may be compared or 
assigned one to another as In 

If One-5tudent = Students[ 17] then ... 
or 

Students[ 17] := One-5tudent; 

That Is, Pascal allows whole record operations. That should not be a 
surprise since statements like 

X:=Y 

are legal whenever X and Y are objects of the same type. 

The individual fields of a record are chosen by a mechanism known as 
selection. Selection simply adds the field name to the record name, 
separating them by a period. Thus, One-5tudent.Name ts the name field of 
One-5tudent. Also, One-5tudent.Class, One-5tudent.ID, One-5tudent.GPA, 
One-5tudent.Fee_Status, and One-5tudent.Sex denote the other fields of 



34Z Records 

One-5tudent. Hence, the statements shown In listing 10.2 are all legal 
statements. 

Wrlteln{One_Student.Name); 
If One-5tudent.Fee-5tatus then (Fees paid} 
If (One-5tudent.Class =Sr) and {One_Student.GPA >= 3.75) then 
Honor{One_Student) (Invoke Honor procedure} 

else (Do Nothing} 
else 

Sen<LBill(One_Student); (Invoke Sen<LBlll procedure} 

Listing I 0.2 

Thus, a record ls declared by using the record and end keywords and 
by placing the field names along with their types between the record and 
end. Notice that there ls no begin to match the end. In the example 
above, this record is declared and given a name In the type section. It is 
also possible to use anonymous record types. Thus, the declaration of 
Students in listing I 0.1 Is equivalent to the segment shown in listing I 0.3. 

var 
Students: array[ 1 .. 30] of record 

Name : string[25]; 
Class : Class_ Type; 
ID: string! 1 IJ; 
GPA: Real; 
Fee_Status: Boolean; 
Sex: Char 

end; 

Listing 1 O.J 

The first method, with the named type, ls preferable on several grounds. 
First, it is less "intense,· and hence, probably clearer. Secondly, and most 
importantly, once the record type StudenLRecord is defined, it may be 
used throughout the program. Thus, variables such as One_Student can 
also be defined without repeating the record definition. Also, with the 
named record type, procedures and functions can be written, such as Honor 
and Sen<LBill of listing 10.2, that accept arguments of type StudenLType. 
Hence, in the examples to follow, we shall always choose a name for our 
record type. 



Records 343 

An Extended Example 

Let us set up an employee file for a small hotel. We shall need a 
record for each employee and we shall suppose that the hotel has at most 
50 employees. In this chapter, we shall keep the file in the computer's 
memory, so we will need an array of 50 records to hold the file. The 
format of each record is decided by the administration of the hotel. Let us 
suppose that they have agreed to store the ID number, name, address, 
department of the employee, birthdate, date of employment, marital 
status, and salary of the employee. Thus, each record consists of eight 
fields. For each of these fields we must determine an appropriate type. 

The name Is, of course, a strlng--or it could be three separate 
strings (first name, middle Initial, and last name). In Chapter 14, we 
shall learn how to manipulate strings so that we can put together and take 
apart names and, thus, change from one form to the other. Here we shall 
assume that It has been decreed that we store three separate names. To 
keep the number of fields In the employee's record from Increasing (and to 
make the example more Interesting), we shall use a name field that Is 
Itself a record consisting of the three parts of the name. That Is, we shall 
have a record, one of whose fields Is itself a record. This nesting of 
records Is very common In complex data structures. In fact, notice that 
the blrthdate field and the date of employment field are clearly of the 
same type. Let us call this type Datetype. For Datetype we could use a 
string such as · 1 Jan 1985', but It would be more convenient to think of a 
Datetype as the aggregate of three things: a day, a month, and a year. 
Hence, Datetype Itself is implemented as a record with three fields. 

Likewise, the address can be broken down Into Its components: street 
address, city, state, and zip. Hence, we shall make the address field of 
type Addresstype, which is Itself a record with four fields. Marital status 
and department are simple, user-defined types. The possibilities for 
marital status are Single, Married, Separated, and Divorced while the 
possibilities for department are Administrative, Food Services, and 
Housekeeping. We shall declare the salary to be real. Actually, to ensure 
accuracy, the salary might better be declared to be of type Longinteger or 
Computational. We shall not be concerned here with such need for 
precision. Finally, Jet the ID number be a three-digit integer in the range 
100 to 999. Listing 10.4, then, contains the complete declaration of the 
employee file. 

Assuming that the array Employees has values stored in it and that 
Index is some integer in the range 1 to 50, then Employees[lndex) ts the 
complete record of the lndexlh employee of the hotel. As In the previous 



344 _..... 

type 
Months= (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec); 
Days= 1..31; 
Years= 1860 .. 2050; 
Departments = (Administrative, Housekeeping, Foo<LServlces); 
Stats = (Single, Married, Divorced, Separated); 
lnfoString = string[20]; 

NameType =record 
First: lnfoString; 
Middle : Char; 
Last : lnfoString 

end; 
DateType =record 

Month: Months; 
Day: Days; 
Vear: Years 

end; 
AddressType = record 

Street: lnfoString; 
City : lnfoString; 
State : lnfoString; 
Zip : string[5] 

end; 
Employee-Record= record 

IDJJumber: 100 .. 999; 
Name: NameType; 
Address: AddressType; 
Birthdate: DateType; 
EmploymenLDate : DateType; 
Department : Departments; 
l"L..Status : Stats; 
Salary: Real 

end; 

EmployeeFile = array[l..50) of Employee-Record; 

var 
Employees : EmployeeFile; 
One-Employee: Employee-Record; 
Index: 1..50; 

Listing 10.4 



Records 345 

example, Employees[lndex].IO_Number is the ID_Number of this employee 
while Employees[lndexl.Blrthdate Is the blrthdate of the given person. 
Since the birthdate Is itself a record, we can obtain the month of birth 
with the expression 

Employees[lndex].Birthdate.Month 

Likewise, since we can access the characters In a string as though the 
string were an array, the expression 

Employees[lndexl.Name.Last[ 11 

picks off the first character in the Last field of the Name field of the 
lndextll employee's record. In other words, it Is the first Initial of the last 
name of the lndextll employee. 

Suppose the hotel administration decides to host a birthday dinner 
during the birthmonth of all employees who have been employed for at 
least 10 years. That is, the June party is for all those employees with 
birthdays in June who have been with the hotel for 10 years or more. We 
are to write a program that prompts the user to enter the current month 
and year and then the program will search the records and print the names 
of all employees that should be honored that month. Here is our solution In 
outline: 

Prompt user for desired Month. 
Prompt user for the CurrenLYear. 
Search the Employees file for those who have the given blrthmonth 
and have been employed since CurrenLYear - 10. 

We could, of course, assign the CurrenLYear a value in the program, but 
we expect this valuable program to have many years of useful life, so we 
let the user supply the CurrenLYear. Procedure Search Is very 
straightforward. We simply search, using a linear search, the file of 
Employees and print the name fields whenever we find someone who 
satisfies the given conditions. To Illustrate record notation, the program 
Is shown In listing 10.5. Since you are going to Interactively enter the 
data, Employee_Records have been abbreviated to contain just a single 
name (with a maximum length of 30 characters), date of birth, and date of 
employment. 

This example shows that searching an array of records is really no 
different than searching an array of integers. Of course, If the array of 



346 Records 
program Party; 
(This program Invites employees to this month's birthday party. J 

type 
Months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec); 
Days= 1..31; 
Years= 1860 .. 2050; 

DateType =record 
Month : Months; 
Day: Days; 
Year: Years 

end; (Record) 

EmployeeRecord =record 
Name: string[30]; 
Employmentoate: DateType; 
BlrthDate: DateType 

end; (Record) 

EmployeeFlle =array[ 1 .. 1 O] of EmployeeRecord; 

var 
Blrth.J1onth : Months; 
CurrenLYear: Years; 
Employees: EmployeeFlle; 

procedure Enterdata <var Employees: EmployeeFlle); 
var 

Index : Integer; 
begin 
Wrlteln('Next you must enter the data on the ten employees.'); 
Write In; 
for Index:= I to 10 do 
begin 
Writeln('Enter the name of employee .... Index: I); 
Readln(Emp loyees[ I ndex].Name ); 
Writeln('Enter the blrthdate in the form "Jun 8 1943"'); 
Read(Employees[lndex).Blrthdate.Month); 
ReadCEmp loyees[ I ndex).B lrthdate.Day); 
Readln(Employees[lndex).Blrthdate.Year>; 

(Continued) 



Records 

Writeln('Enter the date of employment in the same form.'); 
Read(Employees[lndexl.ErriploymentDate.Month); 
Read(Employees[lndexJ.Employmentoate.Day>; 
Readln(Employees[lndex].EmploymentDate.Year); 
Write In 

end; (For) 
end; (Definition of procedure EnterData) 

procedure Search (Employees: EmployeeFile; 
BlrttLmonth: Months; 
CurrenLYear: Years>; 

var 
Index : Integer; 

begin 
Write In; 
Wrlteln('Employees Invited to the·, Blrth.....Month, ·party.'); 
Writeln; 
for Index:= 1 to IO do 

347 

If (Employees[lndex].EmploymentDate.Year <= CurrenLYear - 10) then 
tr Employees[lndex].BlrthDate.Month = Blrth.....Month then 
Wrl te ln(Emp loyees[ I ndex].Name) 

end; (Definition of procedure Search) 

procedure Prompt <var Blrth.....Month : Months; 
var CurrenLYear: Years); 

begin 
Wrlteln('Enter the birth month of the party.'); 
Wrlte('Glve the 3 letter abbreviation, please: '); 
Readln(Birth.....Month); 
Wrlte('Enter the current year: '); 
Readln(CurrenLYear) 

end; (Definition of procedure Prompt) 

begin 
Prompt(Blrth.....Month, CurrenLYear); 
EnterData(Emp 1 oyees >; 
Search(Employees, Blrth.....Month, CurrenLYear) 

end. 
List Ing 10.5 



)46 Records 

records Is first sorted on some field, then It is possible to conduct a 
binary search of the records using that field. Since these are 
straightforYJard extensions of the binary search and Insertion sort from 
the previous chapter, 'Ne leave these topics as exercises. 

We also note, for the careful reader, that our Party program may not 
'Nork quite the 'Nay Intended by the hotel management. Very often, 'Ne find 
that the problem that 'Ne thought 'Nas so clear turns out in fact to be 
some'Nhat ambiguous. Take the case of the June 1985 party. Should an 
employee born In June 1943, 'Nho began employment In December 1975, be 
honored or not? The employee is In the 10th year of employment, but has 
not completed Io years with the company yet. The procedure Party Invites 
such employees. We leave It as an exercise to modify the program so that 
it doesn't Invite anyone who has not yet completed 10 years of 
employment. 

The with Statement 

Even the simple procedure Search shows how awkward record 
variables can become because of the repetition of the record variable 
name. Fortunately, there Is a construct, the with, that permits an 
abbreviation of some record names. The with is probably best Illustrated 
with an example. Listing 10.6 gives an equivalent form for reading the 
birthdate in the procedure EnterData. 

Writeln('Enter the birthdate in the from "Jun 8 1943" '); 
with Employees[lndex].Birthdate do 
Readln(Month, Day, Year); 

Listing I 0.6 

The format of the with statement Is: 

with recorcLvariable do 
Statement 

where the statement may be compound if necessary. Any variable used in 
the body of the with first is considered to be a reference to a field in the 
record variable that follows the keyword with. Thus, we do not have to 
keep repeating the name of the record variable. Consider the following 
example: 



Records 

with This_Record do 
begin 
x := x + 1; 
y := y + 1; 
z := z + 1 

end; 

349 

Suppose that there Is a variable X declared in some block containing this 
statement and that X Is also a field of This_Record. Then X, within the 
with, refers to the X field of This__Record, and not the variable X of the 
surrounding block. Suppose that there is no Y field of This_Record, but 
there is a Y variable in some block containing the with statement. Then 
the reference Is really to that Y. Suppose that there is no variable Z 
declared and there i5 no Z field to This__Record. Then the reference to Z Is 
an undeclared Identifier error. 

program Tlme_amLDate; 
(This program displays the date and time from the built-in clock.} 

type 
DateTimeRec =record 

Year, Month, Day, Hour, Minute, Second, DayOfWeek: Integer 
end; 

var 
DateTime: DateTimeRec; 

begin 
with DateTime do 
begin 

GetTime(OateTime); 
Writeln('Today"s date is: ·,Month: 2, '/',Day: 2, '/',Year: 4); 
Write In; 
Writeln('The current time is: ·,Hour: 2, ':',Minute: 2, ·:·,Second: 2); 
Write In; 
Wrlteln('and today is the·, OayOfWeek : 1, 'th day of the week.') 

end (With) 
end. 

Listing 10.7 



J'..)0 

Records are used extensively within Macintosh Pascal. For example, 
the built-in GetTime procedure returns a record consisting of 7 integers 
representing the Year, Month, Day. Hour, Minute, Second, and Day of the 
Week currently in the system clock. Again, these fields are all integers 
and their values are obvious except that Hours Is measured from midnight, 
so 15 hours is 3 p.m., and the Day of the Week Is in the range from 1 to 7, 
with 1 representing Sunday. Program Time_an<LDate in listing 10.7 
invokes GetTime for us. 

Variant Fields 

Sometimes we need different kinds of records for different kinds of 
situations. Suppose for example that we would like to store the name of 
the spouse, lf any, of our employees. Obviously, there Is a spouse only If 
the employee's marital status ts Married or Separated. We could add a 
field to each record, and only use the spouse field for married employees, 
but Pascal has a more convenient and elegant way to solve the problem 
using variant records. Variant records permit some records to have an 
extra Spouse field. The syntax of the variant record is demonstrated In 
listing 10.8. 

Employee_Record =record 
ID_Number: 100 .. 999; 
Name : Name Type 
Address: AddressType: 
Blrthdate : DateType; 
EmploymentDate: DateType; 
Department: Departments; 
Salary: Real; 
case tLStatus : Stats of 
Married, Separated : ( 

SpouseName: NameType 
); 
Single, Divorced: ( 
) (Nothing} 

end; (record} 

Listing I 0.8 

tLStatus Is called the tag field of the record. Note that tLStatus is given 
a type In a "case like" construction that lists the variant fields. If 



Records 351 

tLStatus is Married or Separated, then that record has a SpouseName field. 
Listing 10.9 gives another nonsense example to Illustrate the syntax and 
possibilities with variant records. 

type 
Color= (Red, Blue, Green, Orange); 
Your -Record .. record 

x: Real; 
Y: Integer; 
case Hue: Color of 
Red: ( 

A: Integer; 
B: Boolean 

); 

Blue: ( 
c: string 

); 

Green: ( 
o. E, F: Real 

); 

Orange: ( 
) [Nothing) 

end; [record) 

var 
Z: Your -Record; 

Listing 1o.9 

Z has three fixed fields and from O to 3 variant fields. The fixed 
fields of Z are X, Y, and Hue. Of course, Z.X Is real, Z.Y is an integer, and 
Z.Hue Is a Color. The Hue field Is also the tag field of Z. Note that the tag 
field must be an ordinal type, and it must occur after all the "regular" 
fields of the record. If Z.Hue Is Red, then we may also speak of Z.A and Z.B, 
which are Integer and Boolean respectively. The situation is similar for 
the other values of Hue. Note that the variant declaration is much like the 
case statement. However, note that the tag variable has its type given 
and also note that there Is no end for the case, only an end for the 
record. Furthermore, note the parentheses that are required to enclose 
the variant fields for each case. 



352 Records 

Not surprisingly, a variant record is most often manipulated with a 
case statement. For example, the segment of listing 10.10 prints the Y 
field and the A, C, or D field of Z. 

Write(Z.Y); 
case Z.Hue of 

Red: 
Writeln(Z.A); 

Blue: 
Wrlteln(Z.C); 

Green: 
WrltelnCZ.D); 

Orange: 
Write In 

end; (Case} 

Avoiding Strings 

Listing I 0.1 o 

Standard Pascal doesn't contain a string type and in this section we 
demonstrate how one could live with a version of Pascal without strings. 
Nlklaus Wirth wanted his original Pascal to be small and simple. 
Therefore, he chose to omit a built-In string type, leaving the creation of 
this data type to the user. The type Char Is, or course, a part of standard 
Pascal, and, as we shall see, the string type can be based on the type Char. 
Writing one's own string package Is not very difficult now that you know 
about arrays and records. However, for the beginning programmer, strings 
are certainly a convenient data type and, hence, In this book we have 
permitted from the beginning the use of Macintosh Pascal's string type. 
Now we come clean and show you how you could function In a Pascal 
without a built-In string. 

A string Is very much like an array of characters. The problem with 
defining a string to be an array of characters Is that arrays In Pascal 
always have to be of some fixed length. That Is, If we view 'John' and 
'Marsha' as arrays of characters, then 'John' Is an array of four characters 
and 'Marsha' Is an array of six characters. Since Pascal Is so highly typed, 
arrays of four characters and arrays of six characters are considered to be 
distinct types and hence not comparable. That Is, In standard Pascal, 
'John' < 'Marsha' is not True (or even False) but nonsense since 'John' and 
'Marsha' are of differing types. The comparison Is as silly as 3.14 < ·x·, 



Records 353 

which mixes reals and characters. Of course, it is possible to say that 
strings are arrays of 30 characters and pad 'John' with 26 blanks and 
'Marsha' with 24 blanks, but typing 

If 'John ·<'Marsha ·then ... 

is pretty awkward. 
The solution is to agree that a string Is an array of characters that 

also has a length attribute. The array must be of fixed size, but the length 
attribute tells how many of the characters are currently being used. Thus, 
a string can be defined to be a record with two fields, Arr, a packed array 
of characters, and Len, an integer. We choose Arr to be a packed array to 
save memory (see the explanation below). Since Arr has to be declared of 
some fixed size, we choose a constant StringMax for this length. The value 
of StringMax Is arbitrary, but 80 and 255 are common, reasonable choices: 

const 
StringMax = 80; 

type 
StringType = record 

Arr : packed array [ 1 .. StrlngMax] of Char; 
Len : O .. StringMax 

end; 

var 
Name, Address: StringType; 

The array Arr above is declared as a "packed array·. This simply 
means that the system should store Arr as compactly as possible. For 
example, consider the declarations 

A: array [ 1 .. 100] of Char; 
B: packed array [ 1 .. 100] of Char; 

Since a character can be stored In one byte (8 bits), the array B needs only 
100 bytes of storage. The manner in which A is stored is system 
dependent. On many systems, A uses 4 bytes (32 bits) for each character, 
and hence, four times as much storage as B uses. If A and B are Boolean 
arrays, the difference can be even more dramatic since only one bit is 
needed to store a True or a False. A good rule of thumb is to use packed 



354 

arrays with small ordinal types. The system automatically packs and 
unpacks for us, so we use packed arrays just like regular arrays. 

Name.Arr[!] is the first Initial of the name and Address.Len Is the 
number of characters actually in the address. Notice that Len was 
declared to be In the subrange from zero to StrlngMax. If X Is of 
StrlngType and X.Len is zero, then X is the null string. In Chapter 14, we 
shall see that the null string plays a roll similar to zero in arithmetic. 

A string package is more than just a declaration of a StrlngType. The 
package should also contain useful functions and procedures for dealing 
with strings. In Chapter 14, we present the built-In strtng procedures 
and functions. The point Is that this section Is a ·survival" course In how 
to function In Pascal without strings. It Is also an Interesting appHcatlon 
of records and a review of functions and procedures. 

Our first function, Length, returns the length of a string. If X 1s 
declared to be a StrlngType, then X.Len Is the length of X. Why do we need 
a function for this? We don't absolutely need the function, but we might 
like to have It to help make our string package more natural. That Is, the 
function Length hides the implementation and allows us to write Length(X) 
rather than X.Len. With the Implementation "hidden·, our programs are 
cleaner and a beginner, who has never even heard of records, could use our 
string package. Here Is the simple function Length: 

function Length(X: StrlngType): Integer; 

begtn 
Length := X.Len 

end; {Def lnitlon of function Length) 

One disadvantage of our StringType is that we cannot write a string 
because we cannot write (directly) arrays and records. Therefore, we need 
a procedure WrlteString that will output a string for us: 

procedure Wrltestrlng(X: StringType); 

var 
Index : Integer; 

begin 
for Index := 1 to Length(X) do 
Wrlte(X.Arr( Index]) 

end; (Definition of procedure WrlteStringJ 



Records 355 

Notice that WriteString only writes Length(X) characters of X. Of course, 
WriteString is not as convenient to use as Macintosh Pascal's bunt-in 
string type that can be written with an ordinary Write statement. Using 
WriteStrlng to output 

Congratulations, John, you are the winner! 

where 'John' Is filled in with the value of Name uses the statements: 

Write('Congratulations, '); 
WriteStrlng(Name ); 
Writeln(', you are the winner!'); 

As a more complex example, let us consider a concatenation 
function. Concatenation certainly sounds complex, but it is really one of 
the simplest ideas possible. The roots of the word mean to "chain 
together· and every preschool youngster practices concatenation by 
pushing alphabet blocks together to form words. For example, the 
concatenation of the two strings 'Macintosh' and 'Pascal' is 
'MacintoshPascal'. That is, the concatenation of two strings is just the 
new string obtained by joining the two strings together. Figure 10.1 
illustrates cartoonist Sandra Boynton's view of concatenation. 

CONCATENATION 

t 
) 

Figure 10.1 
(C) Recycled Paper Products, Inc. AH rights reserved. 

Original design by Sandra Buynton--Reprinted by permission. 



356 Recards 

Concatenation takes two strings and produces a new string. Any 
procedure or function that defines a string must give that string a length 
as well as place values in the Arr field of the string. The length seems 
obvious: The length of the new string is the sum of the lengths of the old 
strings. But wait, what if both of the old strings are pretty long? The 
n.ew string could be too long to fit into StringMax characters. We do the 
following: We store all the characters of the first string and as many as 
fit of the second string . If necessary, we also announce that the result 
was too large and truncation of the result has occurred. The function 
Concatenation is given in listing 10.11. 

function Concatenation (X, Y: StringType): StringType; 

var 
Index: Integer; 
TempLen: Integer; 

begin 
[Determine the length of the result.} 

TempLen := X.Len + Y.Len; 
if TempLen > StringMax then 
begin 
Writeln('Concatenatlon overflow, result has been truncated.'); 
TempLen := StringMax 

end; [If} 
Concatenation.Len:= TempLen; 

[Place the characters from X into the result.} 
for Index:= I to X.Len do 
Concatenation.Arr( Index]:= X.Arrllndex]; 

[Place as many characters from Y into the result as will flt.} 
for Index:= X.Len + I to Concatenation.Len do 
Concatenation.Arr[lndex] := Y.Arrllndex - X.Len] 

end; [Definition of function Concatenation} 

Listing I 0.11 

You should verify that the first section defines Concatenation.Len to be the 
smaller of StringMax and the sum of X.Len and Y.Len. The second section 
copies the characters of X Into the first X.Len locations of the Arr field of 



Records 357 

Concatenation. The third section copies characters up to the length of the 
concatenation from Y and places them after the characters from X. Note 
that the expression Index - X.Len runs up from I as Index runs up from 
X.Len + I. Also note In section one that we did not write 

Concatenation.Len := X.Len + Y.Len; 
if Concatenation.Len> StrtngMax then ... 

because the assignment may well generate an out of range error. That is, 
if X.Len + Y.Len is greater than StrtngMax, then It cannot, even temporarily, 
be assigned to the Len field of the result. If you wish to avoid the need for 
the temporary variable, then you should write: 

if X.Len + Y.Len > StringMax then 
begin 
Writeln('Concatenation overflow, result has been truncated.'); 
Concatenation.Len := StringMax 

end 
else 
Concatenation.Len := X.Len + Y.Len; 

With these examples, we leave other string handling functions and 
procedures such as ReadString, Left, Right, and Mid to the exercises. 

Exercises 

10.1 Write a ReadString(S) procedure. That is, since the standard 
Read/Readln statements cannot be used to read arrays or records, write a 
procedure that reads a line of characters Cone at a time) Into a variable of 
type StringType. Use EOLN to control the input. 

10.2 Write a Left(S, N) function that returns a StrtngType consisting of 
the first N characters of S. For example, tr S ts a string with current 
value 'Programmer·, then Left(S, 3) equals 'Pro'. Generate an error message 
If N > Length(S). 

10.J Write a function Mld(S, N, M) that returns a StringType consisting of 
the M characters of s starting at the Nth character or s. For example, if S 
has current value 'Programmer', then Left(S, 4, 4) equals 'gram·. Generate 
an error message if appropriate. 



356 Records 

10.4 Modify the Party program so that employees in their 10th year of 
service are not honored unless they have actually completed 10 years of 
service. 

I 0.5 Modify the Time_an<LDate program so that it prints the date, time, 
and day in the form 

Today is June 4, 1985 
The current time is 3:35:22 p.m. 
Today Is Tuesday. 

I 0.6 Modify the Party program so that the employees are sorted and 
output in alphabetical order. Make the Name field into a record consisting 
of Last name and First name fields. 

10.7 Modify the program of Exercise 10.6 to do a binary search (by Last 
name) for a given employee. 



Chapter 1 1 

Files 

SEQUENTIAL FILE - A place where things can 
get lost In lexicographic order. 
RANDOM ACCESS FILE - A place where things 
can get lost In any order. 

Devil's DP Dictionary 

In th1s chapter, we d1scuss both sequential and random access files. 
Because sequential files are Included 1n Standard Pascal, we beg1n with 
them. A sequential rue, as the name suggests, 1s s1mply a sequence of 
records. We v1ew a sequential me as In figure 11.1. 

] 
Figure 11.1 

Thus, a file Is very much 11ke an array. There are, however, some 
critically Important differences. One difference Is the manner In wh1ch 
elements are accessed. In an array you may access the elements In any 
order simply by gMng the appropriate subscript. That Is, you may first 
consider A[ 17], then Al45], and then go "backwards" to A[JJ. In a sequential 
me, access always begins with the first element and proceeds element by 
element sequent1ally through the rne. If you think or a book as a me or 
words, then yo11 normally access a novel In sequential order from f1rst to 
last <except when you Jump ahead to the last page to f1nd out who d1d 1t). 
The two forms or access are called ·sequential" access and ·random" 
access. The array Is a random access data structure, and the sequential 
me ts, or course, a sequential data structure. 

Another major difference between mes and arrays Is the physical 
location of the Information. An array Is always In the volat11e memory of 

)59 



360 Flies 

the computer. A file ts usually stored on some kind of disk. As a 
consequence, the Information Is not volatile, that ts, Is not lost, when the 
computer Is turned off. Also, disk space Is usually far larger than RAM 
memory In the computer. Hence, files can be far larger than arrays. 
Indeed, many files are so large that they do not f It Into computer memory 
at one time. We simply access the file, a record at a time, and only the 
current record Is actually In memory. A disadvantage of disk files Is that 
the disk access time ts much greater than memory access time. Hence, tt 
Is slower to read or write a record to a file than tt ts to read or write an 
element of an array. 

In summary, sequential files are In many ways very limited, but their 
major advantages are that they can be very large and they can store 
Information that Is not lost when the current program ts f Int shed. Imagine 
how worthless a payroll program would be If after each pay period we had 
to type tn all the datal With a file, we can store the name, address, 
number of dependents, total tax withheld, etc, on disk. Then each pay 
period we read the file sequentially from the beginning, compute and print 
the pay checks, and write the new Inf ormatlon back to the disk to be used 
next time. Because of this ability to permanently store Information, It ts 
difficult to think of a business example where files are not Important. 

A file Is declared much ltke an array. The actual syntax Is: 

var 
F: ftle of Some_Type; 

where Some-Type Is any non-file type. Some_Type ts normally a record, 
but you may have a file of Integers or even a file of Boolean values. 

To continue our example from the previous chapter, If we wanted to 
keep a file on a group of students, we might well declare: 

type 
Class.._ Type .. <Frosh, Soph, Jr, Sr); 
StudenLRecord = record 

Name : strlng[30); 
Class : Class._ Type; 
ID : string[ I I); 
GPA: Real; 
Fee-5tatus : Boolean; 
Sex: Char 

end; 
( Co111/111161/) 



Files 

StudenLflle ·file of StudenLRecord; 

var 
Students : StudenLf lie; 
One-5tudent : StudenLRecord; 

361 

Here we have named the file type 'StudenLflle' so that variables of this 
type can easily be passed as parameters In functions and procedures. We 
could also have used the anonymous declaration 

Students : f Ile of StudenLRecord; 

but as mentioned In Chapter t O, named types are generally pref erred over 
anonymous types. 

Reset, Rewrite, and Close 

Now that we have seen how to declare a rn~. the only thing left to do 
Is to see how to manipulate mes. Perhaps because files are so Important 
In real applications, students think that files must be very difficult. Some 
older languages did make file handling a particularly tricky topic, but In 
Pascal, sequential mes are very easy to use. We may either read from or 
write to a sequential file. In a read, we take Information r.rom the file 
and In a write, we place Information Into the file. With a sequential file, 
we may not mix reads and writes. Thus, to change one record In a 
sequential me, It ts necessary to read from one version of the file and 
write to a new version of the file. All the records but one are written 
without change to the new file. 

To create a sequential me, you use the Rewrite statement. This 
creates the file and prepares It for ·write-only" access. Preparing a file 
for use Is called opening the file. If the file already exists, then Rewrite 
deletes the old version of the me and begins a new version. The syntax 
of the Rewrite statement Is: 

Rewrlte(F, SystelTLName); 

where F ts the name of the file In the program and SystelTLName ts the 
external, system name of the file on the disk. These two names can, but 
do not have to be, the same. Here are valtd examples of Rewrite 
statements: 



J6Z 

Rewrlte(Students, 'StudenLData'); 
Rewrlte(Students, ·sample:StudenLData'); 

Flies 

The first says that the file variable Students, which must have been 
declared tn the program, ts attached to a file on the Pascal disk that the 
system kno't;'S as StudenLData. If you have two disk drives, you can use 
the second Rewrite, which attaches Students to the file StudenLData on 
the diskette Sample tn drive 2. After the Rewrite creates the file, you 
should see a StudenLData tcon on your disk when you turn your Macintosh 
on or after you quit Pascal. 

The System....Name can be given as a string variable, so that the user 
can select the name of the file at execution time. 

Wrtteln('Enter the name of the file to be created.'); 
Readln(Flle.....Name ); 
Rewrtte(F, Flle_Name); 

The above segment assumes that F has been declared In the var 
section as a me variable of some sort and that Ftle_Name Is a string 
variable. The segment creates a new file whose name Is whatever name 
the user enters. 

To write Information Into a me created by Rewrite, we use our friend 
'Write'. The syntax ts: 

Wrtte(F, Record_Name) 

where F, of course, ls the me variable and Record...Name ls the record that 
you would like written to the me. Thus, we see that whole records are 
written at once. In our example from above, we would assign values to the 
fields of One-5tUdent and then write all that lnf ormatlon to the me 
StUdents with: 

Wrlte(Students, One-5tudent); 

Notice that the above Write does not cause any output to occur on the 
screen, but rather writes the Information contained In the record, 
One-5tudent, to the me 'StudenLData' associated vta the Rewrite with 
the me Students. The general form of the Write statement has a me name 
after the opening parenthesis. If that me name Is missing, the system 
assumes that you want to use the normal ·output• file that sends 



Ftl9 J6J 

Information to your screen. But If a me name ts present, the tnf ormatton 
ts written to the given me. If X, V, and Z are Integer vartables, then 

Wrtte(X, V, Z); 
and 

wrtte(OUtput, x, v, Z>; 

are equtvalent and cause output to the screen, but the latter ts not often 
used. 

Note that we use wrtte, not wrtteln, wtth general ftles. A sequential 
me ts not composed of separate ·unes, • but rather ts one long sequence of 
records. Hence, never use ·wrtte1n· wtth general mes (one exception to 
this, a text me, ts discussed later). 

We make one last remark about the 'Rewrite' statement. It can also 
be used In the form 

Rewrlte(F); 

which creates an anonymous me. Such mes are useful for ·scratch· mes 
that yoir program might need but that you do not wtsh to keep 
permanently. In thts text we wm not use anonymous mes. 

If a sequential me already exists, then you can prepare tt for 
read-only access with the Reset statement. The format of the Reset ts: 

Reset(F, Ftle-Name); 

where F and Ftle~ame are as above. It ts an error tf there ts no me by 
the gtven Flle....Name or If the me ts stm open from a Reset or a Rewrite. 
There ts an alternate form of the Reset given by 

Reset(F) 

It may only be used on a me that was previously opened, and It ·rewtnds• 
the me. That Is, It resets the me as a read-only me and prepares the me 
to be read from the begtmtng. Reset(F) ts useful If one part of your 
program creates a me with a Rewrite and then another part of that same 
program needs to read from the ftle. 

As you may have guessed, we use the 'Read' verb with a me that has 
been Reset. The format of the Read Is: 



J64 Flies 

Read(F, RecorcLName) 

which, of course, obtains the next record from the file F and places the 
Information Into Record...Name. For example, 

Read(Student, one_studenU; 

obtains the next student's record and places the Information tn the fields 
of One-5tudent. There should be no confusion between reading the file F 
and reading the keyboard. If no file ts given, then the system expects the 
Input to be from the keyboard. The name of the standard Input file Is 
Input, so the f ollowtng are equivalent: 

Read(X, Y, Z); 
and 

Read(lnput, X, Y, Z); 

Notice that 'Read', not 'Readln', ts used to Input Information from a general 
file. This ts because a general sequential file Is not organized Into lines, 
but Is just one long sequence of records. 

In summary, we use Rewrite to create (write) a sequential file and 
Reset to access <read) an already existing sequential file. Remember that 
you may not use both Read and Write at the same time on a sequential file. 
Indeed, you may only use Read If the file has been Reset, and you may only 
use Write If the file has been opened with a Rewrite. 

What ts opened should eventually be closed and that Is the purpose of 
the Close statement, whose format ts: 

Close(f) 

Close breaks the association between F and any external file and marks 
that external file as ·closed". The system automatically closes any files 
that we forget to close, but It ts good programming practice to be 
responsible for our own files. Hence, we should expltctt1y close files 
when we no longer need them. Note that to keep the discussion concerning 
redirecting Input and output In Chapter 4 as simple as possible, we did not 
close the mes Input and output In our examples. 

A few words on the placement of the Reset, Rewrite, and Close 
statements may be tn order. In a simple program, the Reset's and 



Fnes '36'.> 

Rewrlte's are at the beglmlng of the program while the Close's are at the 
end. Almost certainly, we can say that none of these statements belong 
within a processing loop. If your Rewrite, for example, Is In a processing 
loop, then you are continually deleting your file and beglmlng over. All 
you have at the end Is the last record written to the file. In a more 
complex program, you may use Reset, Rewrite, and Close In the middle of 
the program, but these statements are almost certainly placed between 
processing loops. Any one file Is opened and closed only a very small 
number of t Imes In a program. 

program Create; 
(This program creates a sequential file of five student records.} 

type 
ShortString = string[30]; 
Class_ Type= (Frosh, Soph, Jr, Sr); 
StudenLRecord = record 

Name : ShortString; 
Class: Class_ Type; 
ID: string[ 11 ]; 
GPA: Real; 
Fee __ status: Boolean; 
Sex: Char 

end; (Record} 

StudenLFile =file of StudenLRecord; 

var 
Students: StudenLFi le; 
One_Student : StudenLRecord; 
File_Name: ShortString; 

procedure Purpose; 
begin 

Writeln('This program creates a sequential file of five'); 
Writeln('student records, and names the file according to'); 
Writeln('your wishes. Use program Fetch to recover the file.'); 
Writeln 

end; (Definition of procedure Purpose} 

( C11111/111111d) 



366 

procedure ObtainFileName (var FileName: ShortString); 
begin 

Writeln('Enter the name of the file you wish to create.'); 
Readln(FileName) 

end; (Definition of procedure ObtainFileName} 

procedure ObtainData (var Students: StudenLFile); 
var 

Index: Integer; 
One_Student : StudenLRecord; 

begin 
for Index := 1 to 5 do 
with One_Student do 
begin 

Writeln(Chr( 12)); (Clear screen} 
Wrlte('Enter name of next student: '); 
Readln(Name ); 
Wrlte('Enter class <Frosh, Soph, Jr, Sr): '); 
Readln(Class); 
Write<'Enter ID (XXX-XX-XXXX): '); 
Readln(ID); 
Wrlteln('Enter GPA for·, Name,': '); 
Readln(GPA); 
Wrlte('Enter Fee_Status (True for paid): '); 
Readln<Fee_Status); 
Write('Enter sex CM or F>: '); 
Readln(Sex); 
WriteCStudents, One_Student) (Write record to flle.} 

end (With and For} 
end; {Definition of procedure ObtalnData} 

begin 
Purpose; 
ObtalnFIJeName<Flle_Name); 
Rewrlte(Students, File_Name ); 
ObtalnData(Students, One_Student); 
CloseCStudents) 

end. 

Listing 11.1 

Files 



FHes 

program Fetch; 
(This program reads a sequential file or student records.I 
type 
ShortString • strlng(30); 
Class_ Type• (Frosh, Soph, Jr, Sr); 
StudenLRecord • record 

Name : ShortStrlng; 
Class: Class_ Type; 
ID : string( l l J; 
GPA: Real; 
Fee-5tatus: Boolean; 
Sex: Char 

end; (Record) 
StudenLFile = file of StudenLRecord; 

var 
Students: StudenLFile; 
One-5tudent: StudenLRecord; 
File_Name: strlng[30); 

procedure ObtainFileName (var FileName: ShortString); 
begin 

Writeln("Enter the name or the me you wish to read."); 
Readln(F i leName) 

end; (Definition of procedure ObtalnFileNameJ 
procedure WrlteData (var Students: StudenLFlle; 

One-5tudent : StudenLRecord); 
begin 
while not EOF(Students) do 
with One-5tudent do 
begin 
Read(Students, One-5tudent); 
Writeln(Name); 
Write(Class : 6, ID: 12, GPA : 8 : 2); 
Writeln<Fee_Status: 6, Sex: 2); 
Write In 

end (While and With) 
end; (Definition or procedure WrlteData) 

begin 
ObtalnFlleName(Flle_Name); 
Reset(Students, Flle_Name); 
WrtteData(Students, One-5tudent); 
Close(Students) 

end. 

listing 11.2 

367 



368 Files 

listings 11. 1 and 11.2 show two simple but Important programs that 
the reader should consider carefully. The first creates a sequential me of 
5 student records, and the second fetches those records. We choose only 5 
records since you must enter the data, but the principle Is the same for 
500 or 5000 records. You should run Create and then Fetch to verify the 
programs. Note that as you quit the system, there Is an Icon for a new me 
on the disk. Remember that Fetch still works when you come back next 
week, as long as the me Is not discarded. 

Notice that In Fetch the processing loop of the WriteData procedure Is 
controlled by an "end of file" condition. The expression EOF(Students) Is, 
of course, False unless the last record has been read from the Students 
me. Thus, EOF(F) works just like our friend EOF, except that EOF(F) tells 
us whether me F Is at the end or not. EOF Is equivalent to EOFClnput), bUt 
as usual, the system Infers Input If no me Is mentioned. EOF(F) Is a very 
useful way to control the processing of the reading of the me F, and the 
reader should expect to use It often. 

File App1tcatlons. Merging. and Updating 

We consider two traditional, Important uses of sequential files. The 
first Is the merging of two files Into one new ftle. This Is a frequent 
business problem, when for example, two malling lists need to be 
combined Into one new list. We assume that the two lists are ordered In 
some way, and the object of the merge Is to form a new ordered list 
containing all the Items from the two lists. The second problem deals 
with the updating of a file of accounts. This Is a very standard billing 
problem, where we need to reflect both charges and payments made by the 
customer. Actually, the second problem Is also a kind or merge. We are 
merging old balances with current transactions to yield new balances. In 
the true merge, we are merging files with the same structure to yield a 
new file or that same structure. In the update problem, the balances and 
transactions are different kinds of records, but the end result Is still the 
merging of this Information Into new balance records. For this reason, we 
consider the merge problem In considerable detail and leave the update 
problem as an exercise. 

Merging Flies 

To be specific, let us suppose that Adam Flrstperson and Eve 
Applesnake have decided to get married. Being a modem couple, they both 
keep track of their friends with the computer. The problem Is to merge 



Files 369 

the file Adam with the file Eve to produce a new file AdanL.and...Eve. We 
suppose that both Adam and Eve are ordered alphabetically, and we suppose 
that no one Is on both lists. The assumption that there are no duplicates Is 
simply for convenience. In the problems, we let the reader extend the 
program to handle duplicates. We also make the unwarranted assumption 
that the two files Adam and Eve have the same structure. That Is, they 
both contain the same kinds of records. Again, we leave It to the reader to 
consider what to do If this Is not the case. For simplicity, let us assume 
that both files contain records with last name, first name, and telephone 
number. 

Consider for a moment how you would merge two lists manually: 

List 1 

v' Amy 
J Biii 

Dotty 
Fred 

List 2 

v'Carol 
Edith 

~ Greg 

Figure 11.2 

Merge List 

Amy 
Biii 
Carol 

You look at the top Item of each list and move the "winner· to the new list. 
Then consider the new top Items and continue this process until one list Is 
exhausted. At that point move all the remaining Items to the new list. 
Here Is the pseudo-code In Pascal: 

Obtain the first record from each file 
While neither file Is at the end do 

Compare the current records of each file 
Write "winning· record to the new file 
Read the next record of the "wlmlng· file 

Transfer the nonempty file to the new file. 

The corresponding Pascal program ls shown In listing 11.3. 



370 Flies 

program Merge; 
(This program merges the files 'Adam· and 'Eve· into 'Adarn_ancLEve'.] 
('Adam· and 'Eve· are assumed to be on the Pascal disk.) 

type 
FriendsRecord =record 

Last : string[ 15]; 
First: string[ 15]; 
Telephone: string[ 12] 

end; (Record} 

var 
Adam, Eve, Friends: file of FriendsRecord; 
AdamsFriend, EvesFriend : FriendsRecord; 

begin 
Reset(Adam, 'Adam'); 
Reset(Eve, 'Eve'); 
Rewrite(Friends, · Adarn_and....Eve'); 
Read(Adam, AdamsFriend); 
Read(Eve, EvesFriend); 
while (AdamsFriend.Last <> 'END') and (EvesFriend.Last <> 'END') do 
if AdamsFriend.Last < EvesFriend.Last then 
begin 

Write(Friends, AdamsFriend); 
Read(Adam, AdamsFriend) 

end 
else 
begin 
Write(Friends, EvesFriend); 
Read(Eve, EvesFriend) 

end; [If and While} 
while AdamsFriend.Last <> 'END' do 
begin 
Write(Friends, AdamsFriend); 
Read(Adam, AdamsFriend) 

end; 
while EvesFriend.Last <> 'END' do 
begin 

Write(Friends, EvesFriend); 
Read(Eve, EvesFriend) 

end; 
( Conl/11111/t/) 



Flies 

Write(Friends, EvesFriend); (Write "END" to Adam_anct._Eve file.} 
Wrlteln('Merge completed. Use "ViewJrlends" to see the results.'); 
Close(Adam); 
Close(Eve); 
Close(Friends) 

end. 

Llsttng 11.3 

371 

Notice how the while construct Is perfect for this situation. We 
don't know which flle will end first. The solution used here Is to use two 
while statements after the main while, one of which executes zero 
times. The files Adam and Eve, as well as the program Merge, are on the 
disk accompanying this book so that you can try out the program. You may 
also want to use the program VlewJrlends so that you can see the 
contents or Adam, Eve, and Adam_anct._Eve. To create your own lists to 
merge, use the program MakeJrlends. Note that MakeJrlends writes a 
sentinel "END" record to each file. This sentinel record Is used to control 
the merging. MakeJrlends and VlewJrlends are Included on the disk, but 
are not listed here since they are easy modifications of Create and Fetch 
discussed earlier. A modification or View-Friends, called VlewJrlends2, 
Is listed In the last section of this chapter. When using Make-Friends, be 
sure to enter the names In alphabetical order. (Why?) 

Updattng Files 

The EZ COME--EZ GO credit card company keeps a master file on 
everyone who carries one of their credit cards. Each record In the file 
contains Information about a customer, Including name, address, employer, 
annual salary, years employed by present company, name or bank, account 
number at the bank, EZ COME--EZ GO account number, mother's maiden 
name, etc., etc. To keep It simple, we suppose In our example that only the 
name, the EZ COME--EZ GO account number, the current balance, and the 
credit limit are kept on each Individual. The credit limit Is, of course, the 
maximum amount that you are allowed to charge to your account. The 
problem Is that people are always using their cards, running around 
charging things, and occasionally paying their bills. We must write a 
program to update the accounts for EZ COME--EZ GO. 

Every time someone uses their credit card, a transaction slip Is 
prepared. For simplicity we assume that there are only three kinds of 
transactions: payments, charges, and changes or credit limits. or course, 



372 Flies 

a more realistic example would also need to be able to handle changes of 
address, changes of name, Interest charges, etc. Let us assume that the 
three transactions are coded by the letters P, C, and L. The transaction 
does not need to contain the complete credit history of the Individual 
Involved. The purpose of the transactions Is to report that some action 
has taken place In a given account. Hence, all that Is required on a 
transaction Is an account number, a transaction code, and an amount. For 
example, these three transactions 

25385P9.98 
14676L 750.00 
20032C49.98 

mean that the person whose account number Is 25385 has paid $9.98 on 
his/her bill, the person with account 14676 has had the credit limit on 
his/her account changed to $750.00, and someone has charged $49.98 to 
account 20032. It would be better to Include the name of the customer on 
transactions as well and then not update an account unless both the name 
and the account number match. That way, a simple typing error, such as 
typing 25835 for 25385, could be caught by the program. In our simple 
case, we Initially make the totally ridiculous assumption that the data Is 
correct. Since EZ COME--EZ GO has millions of customers using Its cards 
dally, you see how unwarranted this assumption Is. 

At first glance this update problem does not appear to be a good one 
for a sequential file. An external file Is needed simply because of the 
volume of data Involved. There Is no way that all of the millions of 
accounts can be read Into an array. But with a sequential file, processing 
would appear to be very slow. For example, to process the above 
transactions we could proceed as follows: Hunt for account number 25385 
and update that account. Then, reset the file and hunt for account number 
14676, etc. Each time, we would need to reset the file and sequentially 
search from the beginning for one particular account. Sometimes we 
would get lucky, sometimes unlucky. On the average, we would need to 
look through half of the accounts just to update one. That ts too slow. 

The solution lies through the observation that the update does not 
have to take place Immediately upon receipt of the transaction. EZ 
CONE--EZ GO bills Its customers once a month, so It Is only necessary to 
update accounts once a month. Hence, the transactions can be saved, or 
batched, and processed all at once Instead of Individually. The final 
Ingredient to the solution Is to require that the file of master accounts 
and the file of transactions be sorted by ascending account number. Thus, 



Filas 373 

If account 10012 Is the first account, then all transactions for that 
account are at the front of the transact Ion file. After account 10012 Is 
updated, processing can proceed to the second record of the file. Of 
course, It Is possible that someone has not used his/her EZ COME--EZ GO 
credit card at all this month, and hence, some of the records do not need to 
be updated. Since EZ COME--EZ GO knows by experience that most of Its 
customers use their credit cards very frequently, there are few records 
that do not require updating, and, hence, this Is a very efficient algorithm 
to use on the update problem. With one pass over the file of master 
accounts and one pass over the file of transactions, we can create the 
updated file. 

We leave the update problem to the exercises with the f ollowlng 
cautions: Be aware that there are In general many transactions that 
·match" any one master account. A person Is certainly allowed to use 
his/her credit card more than once a month. Each use of the card, as well 
as any payments made, create transactions. The point Is that the newly 
updated record should not be written to the file until all transactions for 
that account have been processed. If we assume that Oldmaster and 
Transactions are the Input files to YOW" program, your program should 
create a new file called NewMaster. You need to create a new file 
Newmaster because you cannot both read and write to the sequential file 
Oldmaster simultaneously. Even If you could, It would be dangerous, for 
suppose your program "blows up· during execution. You may then have a 
mixed file with some updated accounts and some non-updated accounts. 
How do you proceed? It Is better to preserve your Input data, so that If 
the program dies you can try again. Of course, next month we rename 
Newmaster as Oldmaster and create a new Newmaster. 

Text Ftles 

A text me Is a special file of characters that Is organized Into 
lines. The standard Input and output files, Input and Output, are such files. 
Ever since Chapter 4 we have been redirecting Input to come from a text 
file. All of the file operations described previously apply to text files, 
and, In addition, other procedures and functions, such as Readln, Wrlteln, 
and EOLN apply to text files. Besides redirecting Input or Output to a text 
file, a text file F may be declared using the keyword text as follows: 

var 
F: text; 



374 Flies 

Macintosh Pascal allows the user to read or write Integers, Reals, 
strings. or enumerated types with text mes. That Is, 

Read(f, X); 

reads, depending on X's type, the next character, Integer, real, ordinal type 
value, or string from the file associated with F. If X Is a string variable, 
then all of the characters to the next ·end-of-line· (or ·end-of-file") 
marker are assigned to X. However, a Read or a string variable does not 
advance the file pointer beyond the current end-of-line marker. and thl!S 
subsequent reads to x assign x the null string. For this reason, one must 
always remember to use 

ReadlnCF. X); 

with a string variable as Readln reads to the end-of-line marker and 
advance the file pointer to the rlrst character In the next line. 

EOLN(F) Is set to true If the last character read was the last 
character or the current line. Likewise, EOF(f) Is true If the last 
character read was In fact the last character of the file. Actually, there 
Is room for confusion In Pascal concerning what Is the last character In a 
text file. We demonstrate the problem In a program TestEOF later In this 
section. 

Write may be used with variables or expressions or character. 
Integer, real, string, or ordinal types. In addition, the writes may be 
formatted, exactly as with the standard output file Output. That Is, you 
may give a width factor Cand optionally with reals the number or places to 
the right or the decimal point> and your values are right justified In a field 
or that width. If the width you specify Is too small, then the system 
"elbows· enough room so that your value can be printed. 

To Illustrate text files, consider a program that compares the two 
keyboards available on the Apple lie. Many people have suggested alternate 
keyboards to the standard "QWERTY" keyboard. The QWERTY keyboard Is so 
named by the placement or the first six keys on the upper row or letters on 
a standard typewriter or computer keyboard. The particular arrangement 
or letters In the QWERTY keyboard was chOsen tn the late nineteenth 
century. At that time. human typists could push the new typewriter 
technology to Its limits and jam keys by typing too rast. Hence, the 
QWERTY keyboard was chosen partially to slow humans down. Today, of 
course, microcomputers can respond to keypresses In microseconds, so 
there ts little danger of humans typing faster than machines can respond. 



Flies 375 

One or the many keyboards that has been proposed to supplant the QWERTY 
keyboard Is the Dvorak keyboard, whose layout Is as depicted In figure 
11.3. 

111•1•1s1s1·1&1•1<1>1i1 1 1 
esc I I I 2 I J I 4 I 5 I 6 I 7 I 8 I 9 I 0 I I I I I delete 
_1_1_1_1_1_1_1_1_1_1_1_1_1 __ 

I ? I < I > I I I I I I I I · I I 
tab 1 1 1 I IP1Y1Fl6ICIRILl 0.1•1I 

I I • I · I I I I I I I I • I - I \ 
---1 --1 --1 --, --1 --, --1 --, --1 --, --, --, ---
control I A I 0 I E I u I I I D I H I T I N I s I - I return 
___ 1_1_1_1_1_1_1_1_1_1 I - '-~-I 

I •I I I I I I I I -,--,- I 
Shirt I ' I Q I J I K I X I 8 I t1 I W I V I l I shirt I 
____ 1_1_1_1_1_1_1_1_1_1_1 __ 1 
caps I - I I I I I I I 1-
lock 11 I I 0 I I ... I - I - I I I f 

.___...._-'I I I I I I I t I 

Figure 11.3 

Just by rncktng a sw1tch on your Apple lie you can choose between these 
two keyboards. The keycaps come arranged for the traditional QWERTY 
system, but you can rearrange them or obtain "dual" keycaps. Perhaps 
there wm come a day when systems such as Dvorak's wm be tn 
widespread use. Certainly, the Apple llc's switch ts a good Idea. If 
Dvorak's system can be demonstrated to be much better, perhaps new 
typists wm learn this system while we old QWERTY typists die out. Let 
us consider a simple test of the two systems. We take a text file and read 
the file and count the number of times our fingers leave the home row, 
both for the QWERTY system and for the Dvorak system. or course, the 
number of times we leave the home row ts not the only factor that makes 
for a good keyboard, but tt mustrates our point sumctently. The program 
Keys that makes this comparison ts shown In ltstlng 11.4. 

The text file Typing contains the text or the previous paragraph. The 
output of the program Keys Is: 

The Qwerty keyboard needed 1385 jumps. 
The Dvorak keyboard needed 873 jumps. 

You can also create your own text file If you wish. Be sure to use only 
upper case letters as these are all the program Keys looks for. Also note 
that In the program we have declared a file variable, F, of type text rather 
than redirect the Input file, as we did In Chapter 4. 



376 

program Keys; 
(This program compares the Dvorak and QWERTY keyboards.} 
(It reads a text file, Typing, and counts how many times} 
(your fingers would have to leave the home row in each case.} 

var 
F: Text; 
DvoraLHops: Integer; 
QWERTLHops: Integer; 
Ch: Char; 

begin 
Reset(F, 'Typing'); 
DvorakJlops := O; 
QWERTYJlops := O; 
Writeln('Please wait while I process the text file'); 
WrltelnC'Typing to see whether the QWERTY or Dvorak'); 
Writeln('keyboard is best.'); 

while not EOF(F) do 
begin 

Read(F, Ch); 
case Ch of 
'A1

, 'S', 'D', 'F', 'G', 'H', 'J', 'K', 'L', ';', ,.,, : 
; (QWERTY home row - Do nothing.} 

otherwise 
QWERTLHops := QWERTLHops + I 

end; (Case for QWERTY keyboard} 
case Ch of 
'A', 'O', 'E', ·u·, 'I', 'D', 'H', 'T', 'N', 'S', '-': 
; (Dvorak home row - Do nothing.} 

otherwise 
DvorakJlops := DvoraLHops + I 

end (Case for Dvorak keyboard} 
end; (While} 

Files 

Writeln('The QWERTY keyboard needed·, QWERTYJlops: 3, · jumps.'); 
Writeln('The Dvorak keyboard needed·, DvorakJlops : 3, · jumps.'); 
Close(F) 

end. 
Listing 11.4 



Flies 377 

The text file Eofflle contains precisely the 23 characters of the 
following sentence: 

This file has 23 chars. 

Yet, when read by the very simple program TestEOF of listing 11.s. the 
output Is 

There are 24 characters In the file. 

This apparent discrepancy Is due to the potentially misleading nature of 
the EOF Indicator when a text fl le ts read character by character. one 
would like the EOF Indicator to become True when the last actual 
character Is read. However, EOF does not become true until the ·end of 
file" marker Is read, and, Incidentally, when this happens, a blank Is 
assigned to the character variable Ch. The same kind of problem arises If 
you try to use Reads for numeric data In a text file. The best solution to 
the problem Is to use Readlns with numeric data, and strings and Reactlns 
with character data. 

program T estEOF; 
(This program illustrates a bug In version 1.0 of the software.} 

var 
Ch: Char; 
Count : Integer; 
F: Text; 

begin 
Reset<F, 'EofFi le'); 
Count:= O; 
while not EOFCF> do 
begin 

Read(F, Ch); 
Wrlte(Ch); 
Count := Count + 1 

end; 
Write In; 
Wrlteln('There were·, Count: 2, ·characters In the file.') 

end. 

Listing I 1.5 



378 Flies 

Random Access FI les 

Standard Pascal does not support random access files, so the reader 
should be forewarned that programs using such files are probably not 
portable to other Pascals. Even other Pascals that support random access 
files do not use quite the same procedures as described here. Nonetheless, 
because of their power, random access files are useful tools In many 
situations. 

Random access, again, simply means that we have the right to access 
the records or a file In any order. We may read record number 45 first, 
then backup to examine record number 2, then advance to record number 
89. We are not limited, as with sequential files, to processing the records 
In their natural order. Nor are we limited to doing only reads or only 
writes to the file. We may read a record Into memory, update that record, 
and then write the new record back to the file. 

Random access files are very powerful and flexible. Fortunately, we 
now learn that manipulating random access files ts really as easy as 
manipulating sequential files. There Is only one "open· statement for 
random access files and It Is: 

Open(f, System_Name); 

If a file by the name System_Name already exists, then It Is opened for 
read/write access. If there ts no such file, then one Is created by the open 
statement. 

Obviously, there must be some mechanism for us to select the 
particular record that we wish to access. This we do through the 'Seek' 
procedure: 

Seek(F, N); 

which advances (or retreats) the file associated with F so that the next 
read or write Is to the Ntn record of the file. N, of course, must be an 
Integer constant, variable, or expression. Also, to make life as difficult 
as possible, records are numbered from zero. That Is, the first record Is 
record number zero. Hence, to get the "tenth" record In the file, you should 
seek the ninth record from the system. Also, If N Is larger than the 
number of records In the file, then the file Is advanced to the end, EOF(F) 
becomes true, but no error message Is Issued. This Is so that you may 
append records to the end or a random access file, even without knowing 
how many records are In the file. 



mes 379 

In summary, we Open random access files Instead of using Reset or 
Rewrite, and then we precede every Read or Write with a Seek to the 
record we wish to access. In fact, Macintosh Pascal allows us to mix 
sequential and random access modes In that a file created sequentially 
with Rewrite can later be opened for random access with the Open 
statement. 

Here Is a segment that outlines how to update the Nth record of our 
fl le Students: 

Open(Students, Students...Data); 

Seek(Students, N); [We assume N already has a proper value.} 
Read(Students, One-5tudent); 

[Update the record One-5tudent as needed.} 

Seek(Students, N); 
Wrlte(Students, One-5tudent); [Write the updated record back to the) 

[flle) 

Note that both the Read and the Write are preceded by Seek's. Forgetting 
to precede each Read or Write with a seek Is a common error, but you are 
Jess likely to make this error If you understand why the Seek's are 
necessary: After the Read obtains the Nth record, the me Is automatlcall~ 
advanced to the (N+ ost record. If you forget to Seek back to the N' 
record, your Write actually overwrites the (N+ 1 )9l record, wiping It out, 
and leaving your file with two versions of the Nth record. The reason that 
the system operates In such a perverse way Is that It permits you to mix 
random and sequential access. If you seek the Nth record and then do five 
consecutive Read's (without Seek's), you obtain records N, N+ 1, N+2, N+J, 
and N+4. Also, very often we create a random access file In sequential 
order. That ls, we know the order of the file when we create it, so we 
create it with sequential Wrlte's. But when we read the file or wish to 
update certain records of the file, we access the file randomly. Since the 
manipulation of random access files ls so much like the manipulation of 
sequential files, we leave the remainder of this discussion to the 
exercises. 



380 Flies 

Get and Put 

Pascal provides an alternate method of 1/0 (Input and output) that we 
now discuss. Get and Put are more primitive routines than Read and Write 
and allow the reader to understand more clearly how 1/0 really operates. 

Every time we declare a file F of SomeType, the system allocates a 
"buffer· or "window· In memory for the file F. We depict the file F and Its 
buffer as In figure 11.4 

Figure 11.4 

It ts Important to realize that the file F resides on a disk external to main 
memory, while the buffer Is In main memory. The buffer has the same type 
as the record type of the file F. If we think of the buffer as containing the 
current record of the file, we see where the terminology "window to the 
file" comes from. All Input from the file and all output to the file must go 
through the buffer. The system name for the buffer to the file Is r·, which 
should be read as "the buffer to file r·. The "buffer· character Is typed by 
holding down the Shift key and pressing the 6 key. 

A Get(F) simply transfers Information from the next record of F to the 
buffer r·. Of course, It also advances the file so that the next Get obtains 
the next record. After a Get(F), not Get(F"), the fields of F" have values 
(unless there was no record to get, In which case EOF(F) Is set to True). A 
Put(F), not Put(F"), transfers the Information In the buffer r· out to the 
next record of the file F. Hence, before we execute a Put<F), we should 
place values In the fields of r·. As a word of caution, note that sequential 
files cannot mix Get's and Put's, just like they can't mix Reads and Writes. 
In fact, Put Is used with files that you open with Rewrite and Get Is used 
with files that are opened with Reset. Get and Put can both be used with 
files that are prepared for random access with Open. 

It Is very Important to note and remember that a Reset always 
does an automatic Get. Hence, a Reset prepares the file F and brings the 
first record Into the buffer r·. Students often forget that Reset Includes 
the f lrst Get and do their own Get. Then they wonder where the first 
record of their file went! 

.. 



FHes 381 

Before we demonstrate with a complete example the correct 
placement of Gets In a program, we Indicate how Read and Write can be 
replaced with Gets and Puts. Let us suppose that F Is a file of SomeType 
and that R Is a record of SomeType. We know that Read(f,R) reads the next 
record of the file F Into R. Since Reset did an automatic Get, the 
Inf ormatlon Is already In the buffer r. Noting that F" and R are both 
records of Some Type, we see that Read(F ,R) Is equivalent to: 

R :" F"; (Transfer buffer to R. J 
Get(F); (Prepare buffer for next Read.) 

The order of these two statements Is critical. The order Is not what the 
beginner would expect, but the explanation Is that the buffer Is always one 
record "ahead" of the Read because of the original Get done by the Reset. 

Likewise, Put can be used Instead of Wrlte(F,R). Wrlte(F,R) writes the 
Information tn Rout to the file F. Hence, Wrlte(F,R) Is equivalent to: 

F" := R; (Transfer Information to the buffer.) 
Put(F); (Put the Information out to the file.) 

The fact that Reset does the first Get also means that a control loop 
using Gets Is structured differently than It would be with Reads. Figure 
11.5 shows the differences: 

(Using GETS) 
Reset(F, 'Something'); 
While not EOF(F) do 
begin 
. . . (Process f") 
Get CF) 
end; 

Figure 11.5 

(Using READS) 
Reset(F, 'Something'); 
While not EOF(F) do 
begin 
Read(F,R); 
. . . (Process R) 

end; 

Note that the Get Is at the bottom of Its loop and that the corresponding 
Read Is at the top of Its loop. The loop with the Get seems unusual since 
we use F" before we do a Get. We leave the explanation for the reader. 

The simple program VlewJrlends2, of listing 11.6, allows you to see 
the contents of any of the files Adam, Eve, or Friends used In the merge 
problem earlier In this chapter. Study the listing to see that the main 
while loop Is controlled exactly as described above. 



382 

program ViewJriends2; 
(This program views the files Adam, Eve, or Adam_an<LEve.} 
(This program illustrates the use of Get instead of Read.} 

type 
FriendsRecord =record 

Last : string[ 15]; 
First: string[ 15]; 
Telephone: string[ 12] 

end; (Record} 

var 
Generic : file of FriendsRecord; 
Ans: Char; 

begin 
repeat 

Write('View Adam"s, Eve"s, or Friend"s file? ( 112/3) '); 
Readln(Ans); 
case Ans of 
'I': 
Reset(Generic, 'Adam'); 

'2': 
Reset(Generic, 'Eve'); 

'3': 
Reset(Generic, 'Adam_ancLEve'); 

otherwise 
writeln('Pay Attention!!') 

end; (Case} 
unti I (Ans = 'I') or (Ans = '2') or (Ans = '3'); 
while not EOF(Generic) do 
begin 

Writeln(Generic".First, · ·, Generic".Last); 
Write ln(Generi c".T e lephone ); 
Write In; 
Get( Generic) 

end; (While} 
Close(Generic) 

end. 

Listing 11.6 

Flies 



Fnes 383 

Summary 

Arrays, records, and files are the three most fundamental data 
structures in computer programming. Almost any sophisticated 
applications program uses at least one, tr not all three, of these 
structures. Arrays of records and files or records are the most natural 
ways to structure most kinds of data, so It ts crucial that the begtmtng 
programmer establish a strong understanding of each of these concepts. In 
fact, as programs become more complicated, the programmer soon learns 
that ·understanding· the data ts as Important as writing the algorithms to 
process the data. 

Exercises 

11.1 The flle Years, on the Sample disk accompanying this book, contains 
records with two fields, a name (25 characters) and an integer 
representing the number of years that person has been working at the 
Widget Works. For example, the record 

Coffy Breaks 
27 

indicates that Coffy has been with the firm for 27 years. Snidely has 
decided to give year-end bonuses to those employees who have been with 
the company for at least 25 years. The bonus ts to be S 100 for every year 
beyond the 24th year of service. Thus, Coffy's bonus ts $300. Write a 
program that reads Years and creates a me Bonus which contains the 
names of the employees earning a bonus, as well as the amount of that 
bonus. Also Include a procedure to allow you to view Bonus and thereby 
verify that It ts correct. 

11.2 Write the update program described in the text for the EZ Come--EZ 
Go Company. The disk accompanying this book contains the mes Old1aster 
and Transactions. Each record of Old1aster contains four fields: a name 
(25 characters), an account number (Integer), the current balance (real), 
and the credit limit Creal). As described In the text, each record of 
Transactions contains 3 fields: an account number (Integer), a transaction 
code ( 1 character), and an amount Crean. You may assume that both 
Old1aster and Transactions are in order by account number. 

Your program should create NewMaster and Trouble. NewMaster 
contains the updated records for all customers. Trouble contains the 



)84 Flies 

record of any Individual 'Whose current balance exceeds his/her current 
credit limit. Include procedures so that you can vle'W the contents of 
Old'1aster and Transactions, as 'Well as Ne'W Master and Trouble. 

11.l Use MakeJrlends to create ne'W versions of Adam and Eve. Include 
t'Wo or three Individuals on both files. Modify Merge so that It handles 
these duplicates properly. 

11.4 What could 'We do If the files Adam and Eve do not have exactly the 
same structure? Suppose the fields are similar, but not exactly the same. 
For example, maybe Adam keeps phone numbers as strings of 8 characters 
(555-1212) 'While Eve keeps phone numbers as strings of 12 characters 
(201-555-1212). Neither 'Wants to recreate his/her file from scratch. 
Ho'W can they most easily merge the t'Wo dlff erent files? 

11.5 Write a small Inventory control program for the Widget Works. 
Since there are ten products, 'Write a procedure that creates an 'Inventory' 
file of ten records containing: 

Description (25 characters> 
ParLNo ( 1--10) 
Ouantlty_onJfand (Integer) 
Cost Creal) 

Write a procedure LookUp that uses the part number to find the 
corresponding record In the random access file 'Inventory'. Remember that 
part number 7 Is stored In record 6 of the file. Allo'W the user to change 
the quantity on hand or the cost to reflect sales, receipt of goods, or price 
gouging. 

11.6 Write a program UTFW, universal Text File Writer, that reads 
strings and 'Writes them to a file 'Whose name Is selected by the user. 
UTFW can serve as a substitute for MacWrlte as a means to create text 
files. While UTFW lacks the po'Wer of MacWrlte, It Is convenient to use 
during a Pascal session because It Is not necessary to exit the Pascal 
system to create text files for programs. 



Chapter 12 

Graphics and Sound 

GRAPHICS - Any system capable of. and 
mainly engaged tn. the display or printing 
of contlnuous-ltne Snoopy renditions. 

Devtl's DP Dictionary 

The graphics capabllitles of the Macintosh are very extensive. Indeed, 
in reallty, everything on the Macintosh is graphics. The icons that we 
manipulate with the mouse are a very fundamental part of the Macintosh's 
user-friendly operating system. This chapter introduces you to the most 
useful of the built-in graphics routines available In Macintosh Pascal. 
After you master the procedures and functions given here, you will find 
many more in Appendix C of the Macintosh Pascal Reference Manual. 

Most of the graphics routines that we are going to describe are In the 
OuickDraw system library. Since the designers of Macintosh Pascal 
expected users to make heavy use of this library, it is automatically 
included when your program makes use of any of its routines. Thus, a uses 
statement is not necessary to use the Macintosh graphics package. We 
also point out that none of the statements described in this chapter is 
included In standard Pascal. 

Coordinates 

The Macintosh screen is 512 pixels wide by 342 pixels high. Each 
pixel can be white or black giving the Macintosh Its incredible powers of 
resolution. To address a particular point on the screen we need to give Its 
horizontal position (X coordinate) and Its vertical position CY coordinate). 
The upper left hand corner is the point CO,O), the upper right hand corner is 
(511,0), the lower right hand comer Is (511,341), etc. Figure 12.1 
Illustrates these points as well as the points (I 00, 300) and (300, I 00). 
Actually, due to the menu bar and the side bars, which are about 20 pixels 

385 



386 Graphics and Sound 

wide, none of the corner points are available to the user. Remember that 
the horizontal coordinate ls always given before the vertical coordinate. 

(0,0) ---------- (511,0) 

• 
(300,100) 

•ooo,3oo> 
(0,341)---------- (511,341) 

Ftgure 12.1 

When you begin Macintosh Pascal, the system gives you the small 
drawing window shown In figure 12.2. We shall soon learn how to 
manipulate this window to make It any size and occupy any place on the 
screen, but for now let's accept It as It Is and learn to draw In It. Each 
drawing window has local coordinates that simplify drawing In that 
window. ThUs, (0,0) Is the coordinate of the upper left hand corner of the 
drawing window, even though the window ls In the lower right portion of 
the screen. The drawing window as set by the system ls 200 pixels wide 
and 200 pixels high, so Its coordinates range from (0,0) to ( 199, 199). 
Again, (199,0) Is the upper right corner; (0, 199) Is the lower left comer. 
As long as we keep our coordinates In these ranges we can use the 
system's predefined drawing window. 

Linero. Line. MoveTo. Move 

These four built-In procedures are used to draw lines and to move on 
the screen without drawing. If we Imagine a pen placed on the screen, 
then these procedures manipulate that pen. 

The LlneTo procedure 

Format: UneTo<X,Y) where X and Y are Integer values. 
Effect: UneTo draws a line to the polnt(X,Y) from the current 

position of the pen. The new pen position becomes (X,Y). 



8repbtca Md Sound 387 

r Ii file Edit Seorch Run Windows 

Untitled Te Ht 

H· 

: "'0 Drawing 

Figure 12.2 

r Ii file Edit Seorch Run Windows 

Untitled Te Ht 

progr11m DoNothing; 
begin 
end. 

I- : 

Drowing 

0 lnst11nt 

L§O~U IQj 
MoveTo(O, O); 
LineTo(50, 50); 
LineTo(30, 1 BO); 
LineTo(150, 10~ 

In 
!QI JQJ 

Figure 12.J 



J68 Graphics and SoWld 

The Line procedure 
Format: Line(dX, dY) where dX and dY are Integer values. 
Effect: Line draws a 11ne to the point that is dX units horlzontally 

and dY units vertlcally from the current position of the pen. Remember 
that a positive dX moves the pen to the right and a positive dY moves the 
pen down. Actually, Line(dX, dY) calls LlneTo(X+dX, Y+dY) where X and Y are 
the old pen coordinates. (X+dX, Y+dY) become the new pen coordinates. 

The Move To procedure 
Format: MoveTo(X,Y) where X and Y are Integer values. 
Effect: MoveTo moves the pen to the point (X,Y), but no drawing Is 

performed. 

The Move procedure 
Format: Move(dX, dY) where dX and dY are Integer values. 
Effect: Moves the pen dX horizontally and dY vertically without 

performing any drawing. 

You may try out these procedures In Immediate mode as follows. Pull 
down the Instant Window and give commands through It as shown In figure 
12.3. Note the DoNothlng program In the Program Window. It Is present 
because we have found that the Instant Window occasionally crashes the 
system If the Program Window Is empty. 

A Turtle Graphics Package 

Some versions of Pascal come with the capability of manipulating an 
Imaginary turtle on the screen. Many educators feel that "turtle graphics· 
Is an Ideal way to Introduce chlldren to computers and programming. 
Indeed, the language LOGO has gained much recognition as an Introductory 
language for chlldren because of Its turtle graphics capabll1tles. 
Unfortunately, there are no built-In turtle graphics routines for the 
Macintosh, but In this section we present our own small turtle graphics 
package. Of necessity, some of the explanations In this section are fairly 
mathematical. We have included these discussions for the reader who 
wants to understand how the package operates. We stress, however, that 
the mathematically unlncllned reader may skip the explanations and 
simply use the routines in the same manner that most people use the LOGO 
routines without understanding how they are actually Implemented. 
Indeed, for reference purposes, we describe the routines together, then 
discuss their Implementations. 



8rephtcs end Sound 389 

A Macintosh Turtle Graphics Package 

The routtnes described below are Included (within programs that use 
them) on the disk that accompanies this book. Their listings are also 
given below. Remember that they are not system built-Ins, so you must 
Include them In your programs. 

The lnltlaHze procedure 
Format: Initialize. (no parameters) 
Effect: Initialize sets the global variables Angle (Integer), and X and 

Y (Real) that must be declared In your program. Angle Is set to zero, which 
means the turtle Is facing right. x and Y are each set to 100.0 and the 
turtle (pen) Is moved to the point ( 100, 100). This places the turtle In the 
center of the standard drawing window. If you change the size of the 
drawing window, as described below, then you will need to modify 
Initialize appropriately. 

The Tum procedure 
Format: Tum(Alpha) where Alpha Is an Integer value. 
Effect: Tum(Alpha) changes the turtle's heading by turning It Alpha 

degrees counterclockwise Ca negative Alpha produces a clockwise tum). 
Thus, Turn(90) Is a ·1ert· tum from the turtle's vlewPolnt and Tum(-90) Is 
a ·right• tum. Turn produces no drawing, but the next Line, LlneTo, or 
Forward draws In the turtle's new heading. 

The Forward procedure 
Format: Forward(Dlstance) where Distance Is an Integer value. 
Effect: Forward(Dlstance) moves the turtle forward Distance units 

In the direction or Its current heading. Forward does not change the 
heading or the turtle, but Forward does draw a line as It moves. 

The DegT oRad function 
Format: DegToRadCDegrees) where Degrees Is an Integer value. 
Result: DegToRad converts the angle given In degrees to an equiva

lent angle measured In radians. The casual user does not need to Invoke 
the DegToRad function. It Is needed by our graphics system to convert 
angles given by the user In degrees Into angles In radian measure needed by 
the body or Forward. 

The procedure Initialize Is easy to write and Is given In listing 12.1. 
Note that Initialize needs to be modtfled when we change the size or the 



'J90 

drawing window. So, always be sure that you have the proper version or 
lnltlaltze for your program. Also, remember to declare Angle (Integer), 
and X and Y (Real) In your main program as global varlables that are used 
by the entire graphics package. 

procedure lnltlaHze; 
begin 

Angle:= O; 
x := 100.0; 
y := 100.0; 
MoveTo(Trunc(X), Trunc(Y)) 

end; 

Listing 12.1 

Procedln Tum Is also very simple. Tum keeps track, using the global 
variable Angle, or the CUrTent heading or the ttrtle. We subtract AIPha 
from Angle rather than add AIPha to Angle because or the fact that •up· on 
the Macintosh coordinate system ts ·ciown· tn a normal mathematical 
coordinate system. Tum also keeps the angle In the range from O to 359 
degrees by using the mod function. Tum Is given In listing 12.2: 

procedure Tum(AIPha: Integer); 
begin 

Angle := Angle - Alpha; 
Angle :• Angle mod 360 

end; 

Listing 12.2 

Function DegToRad, using the fact that Pt radians equals 180 degrees, 
converts an Integer angle given In degrees to a real result In radians. The 
function Is shown In listing 12.3. To use DegToRad you also need to 
declare Pl as a constant In your program with the value or 3.1415927. 

function DegToRad (Degrees: Integer> : Real; 
begin 

DegToRad :=Degrees* Pl I 160 
end; 

Listing 12.J 



Graphics and Sound 391 

The Forward procedure 

Forward uses the Sin and Cos functions to compute the horizontal and 
vertical displacements Involved 1n moving forward Distance units. 
Because Sin and Cos expect real, radian arguments, DegToRad Is Invoked 
by Forward. Forward then calls Linero to actually draw the line. The 
geometry ls given in figure 12.4 and the Pascal code In listing 12.4. 

dh 

dh "' Distance • Cos(Angle) 

dY - Distance • Sin(Angle) 

Figure 12.4 

procedure Forward (Distance: Integer); 
var 

dh, dV: Real; 
begin 

dh :=Distance* Cos(DegToRad(Angle)); 
dv :=Distance* Stn<DegToRad(Angle)); 
x := x + dh; 
Y := Y + dv; 
LlneToCTrunc(X), Trunc(Y)) 

end; 

Listing 12.4 

As an example of our turtle graphics package, consider a program that 
draws a hexagon, then turns 1 O degrees and draws another hexagon, etc. 
The drawing of one hexagon ts simple: We loop 6 times drawing an edge 
and turning 60 degrees. If we tum 1 o degrees between hexagons, then we 
should repeat this process 36 times (360 degrees) to come back to where 
we started. List Ing 12.5 shows the program Roll 1ngHex and figure 12.5 
demonstrates its spectacular output. 

Note that RollingHex declares the constant Pi as we11 as the global 
variables Angle, X, and Y, which are manipulated by the graphics package. 
The variables Side and Roll, on the other hand, are variables that 
RollingHex uses tn Its own body to control the two for loops. 



392 Gnphlc1 and SIMnl 

program RollingHex; 
(This program Illustrates the use of our graphics} 
(routines to draw and roll a hexagon . } 
const 
Pl= 3.1415927; 

var 
Angle : Integer; 
X, Y: Real; 
Side, Roll : Integer; 

(Graphics Package goes here.} 
begin 

Initialize; 
ror Roll := 1 to 36 do 
begin 
for Side:= I to 6 do 
begin 

Forward(SO); 
TumC60) 

end; (Inner For} 
Tum( JO) 

end (Outer For} 
end. 

listing 12.5. 

Figure 12.5 



Graphics and Sound 393 

Manipulating Text and Drawing Windows 

To really use the Drawing window we need to be able to make It the 
size we need and to move It about the screen. These manipulations are 
easy, but first we need the notion of a ·rectangle." 

In Macintosh Pascal, a rectangle Is determined by four points, the 
coordinates of Its left, top corner and the coordinates of its right, bottom 
corner. OulckDraw Includes a predefined type Reel that Is a record 
consisting of four Integers. The four fields represent the left, top, right, 
and bottom coordinates of the rectangle. Hence, we may declare Window 
to be of type Rect by the declaration: 

var 
Window : Rect; 

Such a declaration Is needed for some of the window manipulation routines 
that follow. 

The SetRect procedure 

Format: SetRect(Wlndow, Left, Top, Right, Bottom) where Window Is 
a variable of type Reel and Left, Top, Right, and Bottom are Integer values. 

Effect: SetRect sets the four fields of Window to the four given 
values. Note the order of the points! A call to SetRect Is often needed 
before a call to SetorawlngRect or SetTextRect as described below. Left, 
Top, Right, and Bottom should be relative to the global coordinates of the 
Macintosh screen (that Is, (0,0) ls the left, upper corner, (511, 341) Is the 
right, lower corner, etc.) and they determine where the Window appears on 
the screen. 

The SetDrawlngRect procedure 

Format: SetDrawlngRect(Wlndow> where window Is a value of type 
Rect. 

Effect: SetorawlngRect positions the Drawing window so that It 
occupies the rectangle whose coordinates are given In Window. Thus, 
SetorawlngRect Is used to determine the location and size of the Drawing 
window. It does not make the Drawing window the active window (see 
ShowDrawlng below). Also remember that the drawing window always 
uses a local coordinate system so that (0,0) is its upper, left corner, no 
matter where It is located on the screen. 



394 

The SetTextRect procedure 
Format: 5etTextRect(Wlndow) where window Is a value of type Rect. 
Effect: SetTextRect detennlnes the size and placement of the Text 

Window. 

The ShowDrawtng procedure 
Format: ShowDrawlng. (No parameters) 
Effect: ShowDrawlng makes the Drawing window the currently active 

window and brings the Drawing window to the top of the desk. 

The ShowText procedure 
Format: ShowText. (No parameters) 
Effect: ShowText makes the Text window the currently active 

window and brings the Text window to the top of the desk. ShowText 
should be used before a prompt If there Is any danger that the Text window 
Is not visible. 

How large can we make the Drawing Window? The top menu bar Is 20 
pixels wide and Is not covered by the Drawing Window even If we use 
SetDrawlngRect to place the Drawing Window In the area of the menu bar. 
Thus, If we set one corner of the Drawing Window at (0,0) then no point 
whose Y coordinate Is Jess than 20 appears on the screen. Hence, (0, 20) Is 
a good left, top coordinate for the Drawing Window. on the other hand, the 
side and bottom bars of the Drawing Window Itself are 16 pixels wide. 
Again, any point whose coordinates place It In one of these bars will not 
be seen. However, as part of the Drawing Window, these side and bottom 
bars can be moved off the screen. Since the right, bottom corner of the 
screen Is (511. 341) and the bars are 16 pixels wide. If we place the other 
corner of the Drawing Window at (527, 357) then the usable portion of the 
Drawing Window occupies the entire screen except for the menu bar. In 
terms of the local coordinates of such a Drawing Window, (0,0) Is the left, 
top comer just below the menu bar while (511, 320 Is the right. bottom 
corner. The coordinate of 51 I comes from the fact that we are using the 
entire width of the screen while the 321 Y-cooordlnate results from the 
fact that 20 pixels are "lost" at the top of the screen. Note, therefore, 
that In local coordinates (256, 16 0 Is the approximate center of the 
screen. 

To Illustrate the use of these window manipulating procedures, 
consider the program Spiral of listing 12.6. 



8replllca end Sound 

program Spiral; 
{This program illustrates the use of our graphics } 
(routines to draw a spiral whose angle you determine. } 

const 
Pi= 3.1415927; 

var 
Angle : Integer; 
X, Y: Real; 
Distance, Alpha : Integer; 
WindowSize: Rect; 

procedure Initialize; 
begin 

Angle:= O; 
x := 256.0; 
y := 161.0; 
Moveto(Trunc(X), Trunc(Y)) 

end; 

(Rest of Graphics Package goes here.} 

begin 
Initialize; 
Distance := I; 
ShowText; 
Write('Please enter angle for spiral: '); 
Readln(Alpha); 
ShowDraw ing; 
SetRect(WindowSize, 0, 20, 527, 357); 
SetDrawingRect(WindowSize); 
repeat 

F orw ard(D i stance); 
Distance := Distance + I; 
Tum(Alpha) 

until Distance> 300 
end. 

Ustlng 12.6 

395 



396 Graphics and SCMlad 

Procedure lnltlallze has been lnclUded In the llstlng because It has 
changed. Spiral uses the whole screen as the Drawing window, so 
lnltlallze centers the turtle by moving It to the point (256, 161). Note 
that Spiral uses ShowText because tt wants to prompt the user ror some 
Input. ShowText ensures that the text window Is vlslble. Likewise, Spiral 
uses SetRect, SetDrawtngRect; and ShowDrawtng to make the Drawing 
window cover the entire screen. Finally, what ts It that Spiral draws? 
The reader should trace the repeat...unttl loop In Spiral with an angle 
(Alpha) or 90 degrees to see where the name comes from. Run Spiral 
several times with dtrrererent angles. Figure 12.6 shows the result with 
an angle or 89 degrees. Of course, the drawing fllls the screen and the 
program window Is no longer visible. You can recover the program window 
by pulling down the Windows menu and choosing ·sptrar. 

r S Fiie Edit Search Run Windows 

Figure 12.6 

We mention In passing one procedure that may be or great Interest to 
some readers. This Is the SaveDrawlng(Tltle) procedure with one 
parameter of type string. SaveDrawlng saves the contents or your Drawing 
window to disk In a format that may be read by MacPaint, the Macintosh 
artists' program. 



8rapllfcs end Sound 397 

Text In the Drawing Window 

Some systems make the placing of text within the graphics window 
an extremely difficult task. This Is not so with Macintosh Pascal since 
QulckDraw Includes several routines to make the work as simple as 
possible. We describe these now. 

The Drawstring procedure 
Format: Drawstrlng(Str) where Str Is any string value. 
Effect: Drawstring writes the given string to the Drawing window. 

The string begins at the current pen location and the new pen location Is at 
the end of the string. The appearance of the text, namely the size, font, 
and style, are determined by the procedures TextSlze, TextFont, and 
TextFace. 

The TextSlze procedure 
Format: TextSlze(Slze) where Size Is an Integer value. 
Effect: TextSlze changes the size of the text that Is written by 

Drawstring. For best results, Size should be one of the font sizes of the 
system (9, IO, 12, 14, 18, 24) or a multiple of one of these sizes. 

The TextF ont procedure 
Format: TextFontCFont> where Font Is an Integer value. 
Effect: TextFont sets the font that Is used by Drawstring. The only 

Interesting fonts we have found correspond to Font values of zero to five. 
We leave It as an exercise for the reader to discover what these fonts look 
like. 

The Textface procedure 
Format: TextFace(Face) where Face Is a set of styles. 
Effect: TextFace determines the style that Drawstring uses when 

writing characters to the Drawing window. Sets are discussed In the next 
chapter, but It suffices here to say that the styles you want are placed 
between square brackets and given as the argument to TextFace. Thus, 

Textface([bold, underline]); 

means that any string written with Drawstring Is both In boldface and 
underlined. The possible text styles are bold, Italic, underline, shadow, 
outline, condense, and extend. The reader can experiment with these to 
see what each looks like. 



398 

The statement 

TextFaceC [ 1 ); 

will restore the style to plain text. 

The program Textorawlng of listing 12.7 mustrates the ease of use 
of these tools. The resulting output Is shown In figure 12.7. Note that 
TextDrawlng sets the Drawing window so that a llttle portion of the 
program window Is visible behind It. 

program TextDrawlng; 
var 

Window : Rect; 
begin 

SetRect(Window, 70, 70, 500, 300); 
ShowDrawing; 
SetorawingRect(Window); 
MovetoC 10, 20); 
OrawString('This is all there is to itl'); 
TextFont(S); 
TextFace([Bold, Shadow]); 
TextSize(24); 
MoveTo(20, 100); 
Drawstrlng('Any child could do it.'); 
TextFace([)); {Plain Text) 
TextFont( 1 ); {Standard Font) 
TextSlze( 12); {Standard Sfze} 
MoveTo(30, 200); 
DrawString('Study the program to see how to get normal text back.') 

end. 

Listing 12. 7 

Rectangles and ovals 

Rectangles and ovals are two of the predefined shapes that can easily 
be drawn In Macintosh Pascal. A rectangle, as discussed earller, Is 
determined by four integers: The Left, Top coordinates and the Right, 
Bottom coordinates of the rectangle. Actually, a rectangle also uniquely 
determines an oval, namely the oval that Is tangent to the midpoints or the 



8r1phics and Sound 

r S Fii Edit S e eorc h R un WI d n ows ~ 

TeHtorowing l 
Win°iiL 

J. J. Jill: 
begin 

Drow Ing 

SetRe This is ell there is to itl 
Showq 
SetDr 
Movet 
Draw~ 
TextF 
TextF 
Texts 
MoveT 
Draw~ 
TextF 
TextF 
Texts 
MoveT 
Drew~ 

end. 

=D 

&lmqJ ~ UJJ/\!00 dlD oog 

Study the progrem to see how to get normol text bock. 

1'2 

]J'"'''"': . .......... . . . .. . . . . . . 
I 

Figure 12.7 

Oraming 

(\ 
( \ 

Figure 12.8 

. . . . . . . . . . . 
I• '• '•••••• W 

399 



400 Gnphlcs Ind Sculd 

rectangle. For example, the rectangles of figure 12.8 determine the 
Indicated ovals. Also note that If the rectangle Is a square, then the oval 
ts a circle. Since they are so similar we describe the routines for 
manipulating rectangles and ovals together. 

The FrameRect and Frameoval procedures 
Format: FrameRect(Box> or Frameoval(Oval) where Box and oval are 

values of type Rect. 
Effect: FrameRect and FrameOval draw the rectangle or oval 

determined by the argument. As always, the coordinates are Interpreted to 
be In the local coordinates of the Drawing window. 

The EraseRect and EraseOval procedures 
Format: EraseRect(Box) or Eraseoval(Oval) where Box and Oval are 

values of type Rect. 
Effect: EraseRect and Eraseoval erase the rectangle or oval 

determined by the argument. 

The PatntRect and Pa1ntoval procedures 
Format: PalntRect(Box) or Pa1ntoval(Oval) where Box and Oval are 

values of type Rect. 
Effect: PalntRect and Paintoval draw, and then flll in, the rectangle 

or oval determined by the argument. 

The sample program ModernArt Illustrates the use of these 
procedures. ModernArt calls the random number function and then draws 
three rectangles and three ovals of random size at random positions on the 
screen. The program Is shown In listing 12.8. One of the executions of 
ModernArt, showing great balance, bold Imagination, and deep suffering, Is 
shown In figure 12.9. Another lllustratton of these notions is shown In 
11st1ng 12.9. The program given there, AnlmatedBox, moves a box across 
the screen by repeatedly painting and erasing rectangles. Notice that 
SetRect Is In the loop and that the size of the box is constantly growing. 
Since AnlmatedBox Involves animation, you have to run It for yourself. 

Reading the Mouse 

Whl le not actually Included in Macintosh's OulckDraw routines, we 
present two built-Ins that can be used In conjunction with the graphics 
routines to produce some Interesting results. These two routines ·read" 
and report on the state of the mouse. 



Graphics end Sound 401 

The Button function 
Fonnat: Button. CNo Parameters) 
Result: Button Is a Boolean function that returns True only If the 

button on the mouse Is currently being pressed. 

The GetMouse procedure 
Format: GetMouse(X,Y) where x and Y are Integer variables. 
Result: GetMouse sets X and Y to the current coordinates of the 

mouse. X Is, of course, the horizontal coordinate and Y Is the vertical 
coordinate of the mouse's current location. 

program ModernArt; 
(This program uses Random to draw three rectangles and ovals.} 

var 
Size, Box, Oval : Rect; 
Loop, Width, Length, Top, Left: Integer; 

procedure SetSlzes <var Width, Length, Top, Left: Integer); 
begin 

Width := Random mod 150; 
Length := Random mod 200; 
Top:= Random mod 200; 
Left := Random mod 300 

end; {Definition of procedure SetSlzes} 

begin 
SetRectCSlze, o, 20, 527, 357); 
SetDrawlngRectCSlze); 
ShowDrawlng; 
for Loop := I to 3 do 
begin 
SetSizes(Width, Length, Top, Left); 
SetRect<Box, Left, Top, Left+ Length, Top+ Width); 
FrameRect<Box); 
SetSlzesCWldth, Length, Top, Left); 
SetRect<Oval, Left, Top, Left + Length, Top+ Width); 
Frameoval(Oval); 

end (For} 
end. 

Listing 12.8 



402 

c 

) L 
{\ ( 
II '~~ 
II 
'.J 

Ftgure 12.9 

program AnlmatedBox; 
(This program moves a box across the screen.} 

var 
Box: Reel; 
Top, Left, Size: Integer; 

begin 
SetRect(Box, 0, 20, 527, 357); 
SetDraw ingRect(Box); 
ShowDrawing; 
Top:= O; 
Left:= O; 
for Size:= 20 to 80 do 
begin 

Graphics and !DIDI 

SetRect(Box, Left, Top, Left+ Size, Top+ Size); 
PaintRect(Box); 
EraseRect<Box); 
Top:= Top+ 5; 
Left := Left + 5 

end 
end. 

Llsttng 12. 9 



Graphics end Sound 403 

The program Sketch of listing 12.10 Illustrates the use of Button and 
GetMouse, along with some of the graphics routines, to tum the Macintosh 
Into a sketch pad. 

program Sketch; 
(This program uses the mouse to turn the Mac into a sketch pad.) 

var 
Size: Reel; 
X, Y: Integer; 

begin 
SetRect(Size, 0, 20, 527, 357); 
Setoraw lngRect(S ize ); 
ShowDrawing; 
MoveTo( I 0, 20); 
DrawString('Stop'); 
SetRect(Slze, 0, 0, 50, 30); 
FrameRect(Size); 
Moveto(30, 320); 
DrawStrlng('Hold button to draw. Click In Stop box to stop.'); 
repeat 

while not Button do (Wait for mouse click.) 
; (Do Nothing} 

GetMouse(X, Y); 
MoveTo(X, Y); 
while Button do (Draw until button released.) 
begin 

GetMouse(X, Y); 
LirieTo(X, Y) 

end; 
GetMouse(X, Y) 

until (X < 50) and (Y < 30) 
end. 

Listing 12.1 O 

We want to draw whenever the mouse button Is held down and not draw 
otherwise. Hence, we use two wh11e statements Inside a big repeat 
until. The first while does nothing until the button on the mouse ts 
depressed. When the button Is depressed, then the now or control exits 



404 

from the while. Hence, all the first while does Is wait for the button to 
be pressed. The second while loops while the button Is held down, uses 
GetMouse to find the mouse, and uses UneTo to draw a line to the mouse's 
current location. These two while statements then repeat unless the 
mouse Is In the little stop box drawn at the top or the screen. The authors· 
artistic ability Is demonstrated using program Sketch In figure 12.1 O 

,. s File Edit Search Run Windows 

.. Hold button to drow. Click in Stop box to stop . 

Figure 12.10 

General Ing Sound 

To go along with Its dazzling graphics package, the Macintosh also has 
an extensive sound capability. There are three different sound 
synthesizers that we can use. These are: 

I. The four-tone synthesizer, for making harmonic tones with up to 
*four voices· simultaneously. 

2. The free-form synthesizer, for creating speech and complex music. 
3. The single, square-wave synthesizer for producing simple tones. 

All three synthesizers are accessed through built-in procedures. The first 
two synthesizers are quite complex to use and so we will not discuss them 



8raphtcs end Sound 405 

tn thts book. but instead refer the reader to the Mactntosh Pascal 
Reference Manual. However. we do mention that the concepts needed to 
work wtth these procedures are covered in thts book (although the pointer 
type Is not discussed until the last chapter) and so the reader who ts 
wtlltng to fight through the manual should be able to use the fancier 
synthesizers. We ltmtt our dlscusston to the square-wave synthesizer. 

To access the Macintosh's square wave synthesizer. all we need to do 
ts tnvoke the butlt-tn procedure Note to produce a single tone. A call to 
Note Is of the following format: 

NoteCFrequency. Amplitude. Duration) 

where Frequency ts of type Integer (although the manual says Longlnt>. and 
Amplftude and Duration are values In the subrange 0 .. 255 of Integer. The 
value of Frequency determines the pttch of the tone, Amplitude controls 
the volume. and Duration controls the length of the tone. The smaller the 
value of Amplitude, the lower the volume Is. Duration Is measured In 6oths 
of a second. Table 12.1 shows some approximate frequencies to use to 
generate the various notes of a piano keyboard. We point out that the table 
can be easily extended to higher Clower> frequencies by multiplying 
(dividing) the last Cftrst> table entry by 1.05946. 

First Octave Second Octave 

liQli Frequency liQli Freauency 

c 131 (Middle) C 262 
c• 139 c• 277 
D 147 D 294 
o• 156 o• 311 
E 165 E 330 
F 175 F 349 
F· 185 F• 370 
G 196 G 392 
G• 208 G• 415 
A 220 A 440 
A• 233 A• 466 
B 247 B 494 

c 523 

Table 12.1 



406 Gnphlcs and Sound 

The simplest way to use the table Is to create a text me containing 
the frequencies or the notes we want to play. Then whenever we want to 
play some music, we can read the frequencies into an array In memory and 
access them directly. The text me Notes on the sample disk contains the 
frequencies that are listed In the table. The simple program Mary in 
listing 12.11 plays a primitive version or "Mary Had a Little Lamb: The 
program works by reading from a text me Numbers the sequence of notes 
that we want to play. That Is, a 3 in Lamb means that we want to play the 
third note listed In table 12. 1. 

program Mary; 
(This program plays "Mary Had A Little Lamb" by reading the ) 
(26 numbers from the text file 'Lamb' that represent the ) 
(frequencies of the notes for the song. The frequencies them-) 
[selves are read from the text file Notes. ) 

var 
Notes, Lamb: Text; 
Key: array[ 1 .. 26) of Integer; 
Freq: array[ 1 .. 25) of Integer; 
I: Integer; 

begin 
Reset(Lamb, 'Lamb'); 
Reset(Notes, 'Notes'); 
for I := 1 to 25 do 
Read(Notes, Freq[I]); 

for I := I to 26 do 
Read(Lamb, Key[I]); 

for I := I to 26 do 
Note(Freq[Key[I]], 7, 30); [This loop actually "plays· the song) 

(via the call to the built-in procedure Note. The 7 controls the) 
(volume and the 30 controls the duration. ) 

Close(Lamb); 
Close(Notes) 

end. 

Listing 12.11 



8rephlcs end Sound 407 

We counted the notes that we need to play the song--that Is why 
there Is a loop from 1 to 26. This Is, of course, not very general and we 
will Improve on our "playing ab111ty• as we progress through this section 
of the chapter. Our rendition of "Nary" Is not very good because all notes 
are played with the same duration. A simple-minded way of fixing this Is 
to reaHze which notes need to be held longer On "Mary· we should hold the 
7th, 1 Oth, and 13th notes twice as long as an the others> and then "fudge" 
the ror loop by breaking It up Into several smaller ror loops. So we could 
change the body or the program of Hstlng 12.11 to have the following 
structure: 

for Tone:= 1 to 6 do .... (Play first 6 notes) 
(Play 7th note) 
for Tone:= 8 to 9 do .... (Play notes 8 and 9) 
(Play 1 Oth note) 
for Tone:= 11 to 12 do .... (Play notes 11 and 12) 
(Play 13th note) 
for Tone:= 14 to 26 do ... (Play the rest of the notes) 

Again, this "band-aid" Is far too clumsy to use In any sort of complex song 
so we develop a better way to play songs. 

To hear how nice our general method sounds, run the program 
Composer and load and play the song Solf from the sample disk with this 
book. This song, Solfeggletto, ls a nice example for the square wave 
synthesizer because It Is one of the few classical pieces that Is played 
almost entirely with single notes. We will explain later how the program 
Composer was written. 

Now we develop our song-playing capability. As a special bonus, we 
add a song-writing capability that allows us to compose our own works or 
allows us to ·copy· songs from a piece of music. Thus, very little musical 
ability Is required to ·write• songs. 

To get us In the proper mood, we use the graphics package to create 
our own piano keyboard. If you do not like our keyboard (for example, 
because It doesn't show enough keys>. we urge you to make your own. Look 
ahead to figure 12.11 to see our keyboard. A few comments should prepare 
you for the program Plano of listing 12.12. The white keys are drawn with 
some vertical lines. To draw the black keys, we use a procedure that 
draws a black rectangle and nested loops (to get 2 black keys, then 3 black 
keys) to get them In the correct positions. 

Now that we have our new piano, let's play it. How? With the mouse! 
We let the position of the mouse determine which key we want to press. 



408 Gnphlcs and Sound 

First, we read the frequencies corresponding to the white keys Into an 
array White and the frequencies of the black keys Into an array Black. 
Then, when we place our mouse on the fourth white key, for example, we 
call the Note procedure with a frequency of Whlte[4). We make two 
simplifying assumptions. Since the mouse position determines the notes 
that are played, we require the mouse to be on the lower part of the screen 
to play the white keys. That Is, we can't play the white keys while up In 
the "black" area (even though we may actually be on a white key). This 
allows us to divide the screen essentially In half, so that the Y-coordlnate 
of the mouse position can tell us Immediately which color of key we are 
pressing. The x-coordlnate determines which key. With the white keys, 
this is easy, since we can divide the screen (from left-to-right) Into 15 
equal pieces. We would like to do the same thing for the black keys. That 
Is, since there are Io black keys, If the mouse Is In the third tenth from 
the left end of the screen, we would like to play the third black key. 
However, because of the Jack of perfect symmetry among the black keys, 
such a simple-minded solution won't quite work. It will, however, If we 
Insert three Invisible black keys. These keys won't play any tones, but 
they cause the black keys to be uniformly distributed over the keyboard. 
The text file Scale contains the frequencies of the keyboard, much like the 
file Notes, except that the Information In Scale Is arranged In the order: 

15 white frequencies 

2 black frequencies 
very high frequency 

3 black frequencies 
very high frequency 

2 black frequencies 
very high frequency 

3 black frequencies 

The very high frequencies are undetectable by human ears, so If we try to 
play one of our Invisible black keys, we hear an "Invisible" note. The 
program In listing 12.12 reads the frequency Information from Scale, 
determines the key to be played based on the position or the mouse, and 
then actually calls the Note procedure when the mouse button ls pressed. 



8r11thlcs end Sound 

program Plano; 

const 
Amp .. 7; 
Dur .. 32; 
Width= 32; 
Depth= 180; 

type 
List = array( 1 .. 15] of Integer; 

var 
White, Black : List; 
X, Y, Tone: Integer; 

procedure Instructions; 
var 
TextWlndow: Rect; 

begin 
SetRectCTextWlndow, 16, 20, 500, 120); 
SetTextRect(TextWlndow ); 
ShowText; 
wrlteln('Polnt mouse at key and press button.'); 
wrlteln('To play a white key, point at the lower half of the key.'); 
write In; 
wrlteln('Use HALT from the PAUSE menu to halt this program.') 

end; (Definition of procedure Instructions) 

procedure lnttScreen; 
var 

R: Rect; 
begin 

SetRect(R, 16, 20, 496, 320); 
SetOrawlngRect(R); 
ShowOrawing 

end; (Definition of procedure lnltScreen) 

{ Cllnlinlllld) 

409 



410 

procedure DrawWhlteKeys; 
var 

Key: Integer; 
begin 

MoveTo(O, 125); 
for Key:= 1 to 14 do 
begin 
Move(Width, 0); 
Ltne(O, Depth); 
Move(O, -Depth) 

end; 
llneTo(O, 125) 

end; [Definition of procedure OrawWhiteKeys) 

procedure BlackKey (var Key: Integer); 
var 

Black : Rect; 
Lap : Integer; 

begin 
Lap :• Width div 4; 
Key:= Key+ I; 

Graphics and S04Di 

SetRect(Black, Key* Width - Lap, 125, Key* Width + Lap, 220); 
PalntRect(Black) 

end; [Definition of procedure BlackKey) 

procedure DrawBlackKeys; 
var 

Key, Group, Pair, Triple: Integer; 
begin 

Key:= O; 
for Group := 1 to 2 do 
begin 
for Pair := 1 to 2 do 
BlackKey(Key); 

Key:= Key+ I; 
for Triple := I to 3 do 
B lackKey(!<ey ); 

Key:" Key+ I 
end 

end;[Deflnltlon of procedure OrawBlackKeys) 

(Conlinlllld) 



8rephtcs end Sound 

procedure ReadTones; 
var 
Scale: Text; 
Index : Integer; 

begin 
Reset(Scale, ·scale'); 
for Index := I to 15 do 
Read(Scale, Whlte(lndex)); 

for Index := I to 13 do 
Read(Scale, Black[lndex)); 

Close(Scale) 
end; (Definition of procedure ReadTones) 

procedure PlayNote; 
var 

X, V: Integer; 
begin 

GetMouse(X, V); (Read Mouse) 
If V > 220 then 
begin 
X := X div Width+ I; 
tf X <I then 
X :=I; 

tr X > 15 then 
X:= 15; 

Note(Whlte(X), Amp, Dur) 
end 

else 
begin 
X := (X + 8) div Width; 
If x < I then 
X :=I; 

tr x > 13 then 
X:= 13; 

Note(Black(X), Amp, Dur) 
end (IF) 

end; (Definition of procedure PlayNote) 

( Ctllltlnlllld) 

411 



412 Graphics and Sound 

,. • file 

begin 
lnltScreen; 
I nstructlons; 
ReadTones; 
OrawWhtteKeys; 
OrawBJackKeys; 
repeat 
while not Button do (Walt for button.} 
; (Nothing} 

GetMouse(X, Y); 
If Y > 125 then 

PlayNote 
until False 

end. 

Listing 12.12 

Edl1 Seanh Windows Pause 
.,... Point mouse at key and press button. 
I- To play a 1hite key, point at the lo1er half of the key. 

Use HALT fro• the PAUSE 111enu to halt this progra1. 

t--i ....-- ,........, ~ ....-- ........., 

+ 
be 

,......--, 

....................... ............... . . . . . . . . . . . ' . . . . . . . ..................... 

IQ 

~: 't! . 
' . 
.. 
' . . . . . 
. . 
. . 
! • 
: . 
.. 

Q:J 
e e ••I I I I 0 I I I I I I I I I I II I II I I I I I I I I I I II I I I I I I I I I 111 I I I I I IO I I I I I I IO O 

.. I 0 I I I I I I I It I I I I I I I I I I I 0 I I I I I I I I I I II I II I I I I I I IO IO I I I I IO I 0 I IO O IO .. 

Figure 12.11 



Graphics and Sound 41J 

Now we add to our capabilities. Pointing to keys with the mouse and 
clicking the notes that we want to play might be amusing for a while, but 
Is much too clumsy for playing anything other than short, slow songs. So 
let us use the mouse to Indicate what sequence of notes we want to play, 
but Instead of just playing them when we click the mouse, let us store the 
sequence of notes to a me on disk (with the name of the song!). When we 
have finished specifying the sequence of notes, we can "play the song· 
often and effortlessly by reading the file. So we modify the Plano program 
to obtain Composer. Composer gives us a menu of rour options. We can 
play the keyboard as in Plano, and then select "Play· to hear our efforts 
played back to us. We may select ·save· to cause Composer to write our 
notes to a text file. The program asks us for the name of the song before 
creating a file. This is how Solf was written. "Load" requests the name of 
a previously stored song and places It Into memory so that we can "Play· 
It. Finally, "Clear" erases the current song from memory so that we can 
start over. In addition to writing the frequencies of the notes to a file, 
Composer also allows us to specify a duration by clicking any of the notes 
drawn above the keyboard. The duration of each note pictured Is half that 
of the note to its right. Thus, to write a song (or copy one from a piece of 
music). click a key and then click a note. The visible execution of 
Composer Is shown In Figure 12.12 

I Plo~ See text for help on using this progroa. 

I Loed 

I Sm The Composer 
I Cleer -~ d 0 

t---, ,......, ...----,--, ......, .-- ...----,--, .-- ...----,--, .-- .-- r-

Figure 12. 12 



414 Gnlphlcs and Sound 

Because of the length of the program Composer, we w111 present It In 
pieces. Some of these pieces receive only short explanatory comments 
because of their similarity to the corresponding portions of Plano. 

program Composer; 

const 
Amp= 7; 
Eighth= 16; 
Fourth= 32; 
Half= 64; 
Whole= 128; 
Width= 32; 
Depth= 180; 

type 
L isl = array[ 1 .. 15) of Integer; 
Music = array[ 1 .. 200) of Integer; 

var 
White, Black : list; 
X, Y, Dur, NumNotes, Tone: Integer; 
Notes, Duration: Music; 
Song : string[20]; 
F: Text; 

procedure lnitScreen; 
var 
R: Rect; 

begin 
SetRect(R, 16, 20, 496, 320); 
SetDrawlngRect(R); 
ShowDrawing; 
SetRect(R, 100, 20, 496, 80); 
SetTextRect(R); 
ShowText; 
Writeln('See text for help on using this program.') 

end; 

( Co111/11111N1) 



8repbtcs end Seund 

procedure ReadTones; 
var 
Scale: Text; 
Index : Integer; 

begin 
Reset(Scale, 'Scale'); 
for Index:= 1 to 15 do 
Read(Scale, White[lndex)); 

for Index:= 1 to 13 do 
Read(Scale, Blacl<[lndex)); 

Close(Scale) 
end; 

procedure PlayNote <var Tone: Integer); 
var 

X, Y : Integer; 
begin 

GetMouse(X, Y); (Read House} 
If Y > 220 then 
begin 
X := X div W1dth + 1; 
If X < 1 then 
X:= 1; 

If X > 15 then 
X:= 15; 

Tone:= White[X]; 
Note(Tone, Amp, our); 

end 
else 
begin 
X := (X + 8) div Width; 
If X < 1 then 
x := 1; 

If X > 13 then 
x := 13; 

Tone:= Blacl<(X]; 
Note(Tone, Amp, Our) 

end (IF} 
end; 

Listing 12.1 l 

415 



416 Graphics and SDUnd 

Listing 12.13 contains the declaration section of Composer and the 
procedures to set up the drawing screen, read the tones from the text file 
Scale, and actually play the notes using the Note procedure. These 
procedures are like the ones In Plano. Note that lnltScreen also writes the 
"help message· to the text window. 

The procedure DrawScreen of listing 12. 14 contains the procedures 
for drawing the keyboard and the rest of the screen. DrawWhlteKeys, 
BlackKey, and DrawBlackKeys are as In Plano. DrawNotes draws the four 
notes above the keyboard, DrawChoices draws the menu boxes, and 
DrawName places "The Composer· above the keyboard. 

procedure DrawScreen; 
procedure DrawWhiteKeys; 
var 

Key: Integer; 
begin 

MoveTo(O, 125); 
for Key:= 1 to 14 do 
begin 
Move(Width, 0); 
Line(O, Depth); 
Move(O, -Depth) 

end; 
LineTo(l, 125) 

end; 

procedure BlackKey (var Key : Integer); 
var 
Black : Rect; 
Lap: Integer; 

begin 
Lap := Width div 4; 
Key:= Key+ 1; 
SetRect(Black, Key* Width - Lap, 125, Key* Width+ Lap, 220); 
PaintRect(Black) 

end; 

(Cont lnu11d) 



8rapbtcs end Sound 

procedure DrawBlackKeys; 
var 

Key, Group, Pair, Triple : Integer; 
begin 
Key:= O; 
for Group:= 1 to 2 do 
begin 
for Pair:= 1 to 2 do 
BlackKey(Key); 

Key:= Key+ 1; 
for Triple:= 1 to 3 do 
B lackKey(Key ); 

Key:= Key+ 1 
end 

end; 

procedure DrawNotes; 
var 
Note: Rect; 

begin 
SetRect(Note, 350, 90, 360, 100); 
Paintoval(Note); 
MoveTo(360, 100); 
LineTo(360, 80); 
LineTo(365, 85); 
SetRect(Note, 380, 90, 390, 100); 
Palntova l(Note ); 
MoveTo(390, 100); 
LineTo(390, 80); 
SetRect(Note, 410, 90, 420, 100); 
FrameOval(Note); 
MoveTo(420, 100); 
LineTo(420, 80); 
SetRect(Note, 440, 90, 450, 100); 
FrameOval(Note); 

end; 

( Ct1111/111111d) 

417 



418 

procedure DrawChoices; 
var 

Box: Reel; 
begin 
MoveTo(30, 25); 
Drawstring('Play'); 
SetRect(Box, 20, 10, 80, 30); 
FrameRect(Box); 
MoveTo(30, 55); 
DrawString('Load'); 
SetRect(Box, 20, 40, 80, 60); 
FrameRect(Box); 
MoveTo(30, 85); 
Drawstring('Save'); 
SetRect(Box, 20, 70, 80, 90); 
FrameRect(Box); 
MoveTo(30, 115); 
DrawString('Clear'); 
SetRect(Box, 20, 100, 80, 120); 
FrameRect(Box) 

end; 
procedure DrawName; 
begin 

MoveTo( 120, 100); 
TextFace([bold]); 
TextSize(24); 
DrawString('The Composer'); 
TextFace((J); 
TextSize( 12) 

end; 

begin (Body of DrawScreen) 
DrawName; 
DrawWhiteKeys; 
DrawBlackKeys; 
DrawNotes; 
DrawChoices 

end; 

Listing t 2. t 4 

Gnphlcs and Sowad 



eraphics and Sound 419 

The procedure Play Is shown In listing 12.15. Play simply calls the 
built-In procedure Note. The frequency Is determined by the key that was 
chosen with the mouse, while the duration Is determined by which of the 
four notes drawn above the keyboard was chosen for that note. 

procedure Play; 
var 

Index: Integer; 
begin 
for Index := I to NumNotes do 
Note(Notes[lndex], Amp, Duratlon[lndex]) 

end; 

Ust1ng 12. 15 

The remaining procedures of Composer are given In 1 lst Ing 12. 16. 
These procedures handle Composer's remaining menu options. Save writes 
Information to a text file. The user Is requested to enter a name of a song 
from the keyboard. This name Is stored In the string variable Song, which 
Is used In the Rewrite statement of Save. 

Load reads Information from a text file. As with Save, Load also asks 
for the name of a previously saved song. This name Is, of course, used In 
the Reset statement. 

DecideAction determines the position of the mouse on the screen and 
calls the appropriate menu procedure. Note that there is no Clear 
procedure. We simply set NumNotes equal to O In DecldeActlon If the 
mouse Is clicked In the Clear box. The last tf...then statement of Decide
Action also determines the duration of the note, again by monitoring the 
mouse position. 

Finally, the main program Is given In listing 12.17. Notice how simple 
It Is. All the work Is accomplished In the procedures. Because of this 
modularity, Composer Is very easy to modify. We simply change the 
procedures that need changing and leave the rest of the program alone. 

We make some final remarks about Composer. Because of memory 
limitations with a 128K Macintosh, Composer can only handle songs of 200 
notes or Jess. In fact, after running Composer several times, you may 
receive an "Insufficient memory· error. In this case, tum off your 
Macintosh and start all over. Finally, because of the memory limitations, 
our Composer program is as compact as we could make It. This explains 
the lack of comments within the routines themselves. 



420 

procedure Save; 
var 

Index: Integer; 
begin 

Wrlteln('Enter name of song (RETURN):'); 
Read In( Song); 
Rewrite(F, Song); 
for Index:= 1 to NumNotes do 
begin 

Write(F, Notes[lndex]); 
Write(F, Duration[lndex]) 

end; 
Write(F, 0); 
Close(F) 

end; 
procedure Load; 
var 

Freq : Integer; 
begin 

Writeln('Enter name of song (RETURN):'); 
Readln(Song); 
Reset(F, Song); 
NumNotes := O; 
ReadCF, Freq); 
while Freq <> O do 
begin 

NumNotes := NumNotes + 1; 
Notes[NumNotesJ := Freq; 
Read(F, Duration[NumNotes)); 
Read(F, Freq) 

end; 
Close(F) 

end; 

procedure DecideAction; 
begin 

tf Y > 125 then 
begin 

PlayNote(Tone); 

( Con/111111111) 

Graphics and SCMlld 



8raphtcs end Sound 

if NumNotes < I 00 then 
begin 
NumNotes := NumNotes + I; 
Notes[Numnotes) := Tone; 
Duration[NumNotes] :=Dur 

end 
end 

else 
begin 
if (X >= 20) and (X <= 80) then 
begin 
y := y div 10; 
case Yof 

I, 2: 
Play; 

4, 5: 
Load; 

7, 8: 
Save; 

10, 11 : 
NumNotes := O; 

otherwise (Nothing) 
end 

end; 
if (Y >= 90) and (Y <= 100) then 
begin 
X := X div 10; 
case X of 

35: 
Dur:= Eighth; 

38: 
Dur:= Fourth; 

41: 
Dur:= Half; 

44: 
Dur:= Whole; 

otherwise {Nothing} 
end 

end 
end 

end; 
Listing 12.16 

i21 



i22 Gnphlcs 11111 Sound 

begin 
lnitScreen; 
ReadTones; 
DrawScreen; 
Dur:= Fourth; 
NumNotes := O; 
repeat 
while not Button do (Wait for button.} 
; (Nothing} 

GetMouse(X, Y); 
DecideAction 

until false 
end. 

Listing 12.17 

We hope that this chapter has been an enjoyable one. The graphics on 
the Macintosh are striking and simple, and the sound capability Is 
remarkable. Those readers who don't quite appreciate these capabilities 
should run one or the better commerclally sold ·arcade" games for the 
Macintosh or "listen· to the Macintosh recite the Gettysburg Address. We 
also hope the reader appreciates the power or programming the 
Macintosh. Although the graphics are stunning, If what you really wanted 
was a "turtle graphics· package to teach programming to small chlldren, 
you essentlally have three alternatives: Do without; buy another computer 
or a commerclally produced turtle graphics package for the Macintosh (at 
a high cost, If one even exists); or program your own package, as we have 
outlined In this chapter. With a little bit or programming sk111 and a lot or 
creativity, you will be surprised at the remarkable things you can do. We 
suggest some projects for you to try In the exercises. 

Exercises 

12.1 Modify the slmulat Ion or exercise 7. 9 so that we can see the man's 
progress from the bar to home or jail. Denote the man by a moving circle, 
and label the bar, home, and jail. 

12.2 Write a program to simulate a typsy turtle that moves In random 
directions for random lengths (I 0-50 units). 



Graphics end Sound i23 

12.l Wrtte a program that draws a gallows and a person at the gallows. 
Draw the person in six distinct procedures (head, body, 2 arms, 2 legs> so 
that In Chapter 14 we can make a Hangman game. 

12.4 Write a program to allow two players to play Tic Tac Toe on the 
Macintosh. Just by clicking the mouse In the appropriate cell, an X or an O 
should appear. 

12.S Write a game of Pong with J walls (toP and sides) and a moving 
paddle on the bottom of the screen. See figure 12. I J. 

/' 
/ ' 

----
Figure 12.13 

12.6 Write a program to simulate 600 rolls of two dice and display the 
results as a bar graph. 

12.7 Dr. Noble Price of M.l.T. (Mouse Institute of Technology) has spent a 
lifetime studying the behaVlor or animals In mazes. His research Indicates 
that mice are affected by the aroma of the cheese at the end of the maze. 

Jerry 

Tom 

Cheese 

Figure 12.14 



424 Graphics and Sound 

In fact, the mouse, Jerry, of figure 12.14 rolls a die and moves right If he 
obtains a 1 or 2 on the die. He moves down If he obtains a 3 or a 4, while a 
5 causes him to move left and a 6 makes him move up. Thus, Jerry Is 
biased toward the cheese and should move, In a staggering fashion, from 
the upper left to the cheese In the lower right portion of the diagram. 
Tom, the cat, Is basically lazy and also hates cheese. Thus, Tom moves as 
Jerry except that Tom stays put If he rolls a 2 or a 4. Thus, Tom's 
behavior Is to wander about his starting position, the center of the grid. 
Neither animal leaves the grid. If a move would take an animal off the 
grid, then the move Is disallowed and the animal rolls the die again. Thus, 
for example, Jerry's first move must be either to the right or down. If he 
rolls a 5 or a 6, then he rolls again until he obtains a legal move. 

Write a program to simulate and graphically display the animals on a 
19-by-19 grid. Jerry starts In cell (1, 1), Tom In (10,10). and the cheese In 
(19,19). Run the simulation until a winner Is declared. Of course, Tom 
wins If he and Jerry ever occupy the same cell, while Jerry wins If he 
reaches the cheese without meeting Tom. Use an open oval to denote Jerry 
and a painted oval to denote Tom. Write a ·c· In cell ( 19, 19) to denote the 
cheese. 

12.8 Add graphics to the Russian Roulette problem of exercise 7.7. In 
particular, show the gun, the CLICK or BANG, the bullet if any, and the 
happy or dead player. 

12.9 Draw a helicopter that Is controlled by moving the mouse. If you 
redraw the chopper at the new mouse coordinates, the chopper will jump 
all over the screen. Rather than that, use the current position of the 
mouse to determine how Quickly the chopper moves. That Is, determine the 
new location of the chopper with the statements 

x := x + dX; 
Y := Y + dY; 

where the size and sign of dX and dY are determined by the mouse's 
position on the screen. For example, If the mouse Is In the center of the 
screen, then dX and dY are zero. If the mouse Is In the upper right comer, 
then dX and dY are + 1 o, and so on. Draw a landing pad at the bottom or the 
screen. Can you land without crashing? (You crash If you miss the landing 
pad or If either dX or dY ls larger than 3.) 



Chapter 13 

Sets 

ttY PR06RN1 - A gem or algorlstlc precision. 
off erlng the most sUbllme balance between 
compact. efficient coding on the one hand. Ind 
fully commented leglblllty ror posterity on the 
other. 
YOUR PROGRAM - A maze or non sequlturs Uttered 
with clever-clever tricks Ind Irrelevant 
comments. 

Devtrs DP Dictionary 

The f1nal structured type avatlable 1n Pascal 1s the set type. While 
nearly all modern structured languages have arrays and records, very rew 
or them have a set capab111ty. This Is unrortunate because sets are easy to 
use and easy to understand. 

The word "set" has many dlrrerent meanings. In ract, the dictionary 
listing for "set" Is typically one or the longest. In Pascal, a set Is just a 
collection or objects. However, It Is necessary In a programm1ng language 
to place some restrictions on sets. That ts, sets In Pascal are not quite as 
general as sets In mathematics. The major restrictions are: 

1. The elements or a set must all be or the same ordinal type. This 
means that sets cannot contain real numbers, records, or arrays, nor can a 
set contain both 1ntegers and characters. 

2. Sets must be finite. This makes sense because the computer Is a 
finite mach1ne. In ract, each Pascal Implementation Imposes an upper 
limit on the size or any set. Many Implementations Impose a fairly severe 
s1ze limitation or 64, 128, or 256 elements In a set. The documentation 
for Version 1.0 of Macintosh Pascal Is not completely clear as to the set 
size 11mltatlon. However, we have executed programs using sets with as 
many as 10,000 elements. or course, too many large sets wm cause 



'126 Sets 

memory problems. We suggest defining subranges, particularly for sets of 
integers, and then using these subranges in set declarations. Specifically, 
do not use "Integer" as the type of a set element. Examples of set 
declarations are given after a discussion of the operations on sets. 

Sets in Pascal are enclosed in square brackets. Although this is the 
same notation for array subscripts, we can always tell from the context of 
a statement what the square brackets mean. There are three basic 
operations performed on sets. These operations are binary operations 
because they take two sets as input and produce a third set as output. 
These operations are: 

Union (denoted in Pascal by "+"): The union of two sets A and B 
consists of all the elements that belong to either A or B. With sets, we 
are only concerned with whether an clement belongs to a set or not. There 
is no concept of belonging to a set "twice." So if an element belongs to 
both A and B, it appears In the union of A and B once. Thus, If A= [ 1,2,3] 
and B = (2,3,4], then A + B = [ 1,2,3,4). 

Intersection (denoted In Pascal by "*"): The Intersection of two 
sets A and B consists of the elements that belong to both A and B. So If A 
= [ 1,2,3) and B = (2,3,4], then A * B = (2,31. Note that there ls the 
posslbtllty that two sets have no elements in common. For example, let c = 
[ 1,2) and D = (3,4]. Since the intersection of two sets results in a set, 
what set is C * D? This is the set that contains no elements, called the 
empty set. In Pascal, the empty set is denoted by"(]". So, C * D = []. 

Difference (denoted In Pascal by "-"): The difference of two sets, 
written A - B, ls the set that contains the elements of A that do not belong 
to B. In other words, to form A - B, simply remove from A any elements 
that also belong to B. So If A= (1,2,3,4,5] and B = (3,4,5,6,7], then A- B = 
[ 1,2]. 

In addition to the three binary operations on sets, Pascal also 
provides for some Boolean tests on sets. The first of these is the equality 
test between sets. That is, one may test whether two sets are equal or 
not. Two sets are equal if they contain exactly the same elements. We 
mention here that sets are ·unordered" structures. That Is, the order In 
which the elements of a set are listed ls Irrelevant. So, [ 1,2,3) = (3, 1,2]. 
Additionally, there are two other Boolean tests that apply to sets. These 
are: 



Sets <127 

Subset (denoted in Pascal by "<="): This test involves two sets. A 
set A Is a subset of a set B if every element of A is also an element of B. 
So If A = [ 1,2,3), B = [2,3,4), and C = [2,3, 1,6), then ·A <= a· is False whl le 
• A <= c· ts True. 

Membership (denoted In Pascal by "In"): This test involves an 
element and a set. The result of the test Is True If the element belongs to 
the set, and False If the element is not a member of the set. For example, 
If A is a set of Integers with current value [ 1,2,3) and if X and V are 
Integer variables with current values 2 and 5 respectively, then ·x in A" Is 
True, ·v tn A" is False, and "(V-X) In A" ts True. This last example shows 
that the element in question does not have to be a variable, but can be any 
expression whose type is the same as the members of the set in question. 

Remarks 

There are two common sources of syntax errors among beginning 
Pascal programmers when working with sets. The first of these deals 
with confusion between the "in" and the"<=" relations. Remember that <= 
stands between two sets while in stands between an element and a set. 

The second difficulty is in testing if an element X is not a member 
of a set A. Many beginners write an incorrect test 1 ike this: 

if X not in A then ... 

This is, of course, wrong because not is an operator that takes a single 
Boolean Input Ca value that is either True or False) and reverses it. In the 
above formulation, an attempt is made to apply the not operation to "in 
A", which is certainly not a Boolean value< since It isn't even a complete 
expression). What is needed is the membership test applied first, giving a 
True or False value, and then the not applied to this. But there is still a 
chance for error as many beginners then write a second incorrect 
version: 

If not X in A then ... 

The reason that this is still wrong is that the not operator has the highest 
precedence of all Pascal operators. This means that the not operator is 
always applied as soon as possible. So the system tries to perform ·not x·, 
which again is nonsense <unless X happens to be a Boolean type, which is 



i28 Sets 

usually not the case). So parentheses are necessary and the correct syntax 
Is: 

If not (X in A) then ... 

Set types/variables are defined/declared using the keywords set and 
of. We give several examples below, but first we point out that the 
subrange notation,· . .", introduced in Chapter 8 can also be used with sets. 
So the sets [1,4,5,6,7,9, 10] and [1,4..7,9, 10] are the same sets. 

type 
Digits= set of '0' . .'9'; 
Uppercase .. set of 'A' . .'Z'; 
Colors= (Red, Violet, Blue, Green, Yellow, Orange); 

var 
Nums: Digits; 
Numbers: set of 0 .. 9; 
Small : set of 1..5; 
Rainbow : set of Colors; 
Letters: Uppercase; 

Some remarks are in order. We point out that Nums and Numbers are two 
sets with different types of objects. The elements of Nums are characters 
while the elements of Numbers are integers. It is important to realize that 
the variable declaration for Small is like any other variable declaration in 
its effect, that of simply naming a variable and telling what Its type Is. 
Small is not a set containing the Integers from 1 to 5, as many beginners 
seem to think It is. Small is a set that ls permitted to contain only the 
Integers from 1 to 5, but the variable declaration does not assign any 
value to Small. This must be done with an assignment statement. So If 
the first statement In the body of the program were 

Small := [ 1,3,5); 

then Small would In fact contain the odd integers from 1 to 5. 
We mention again the difference between defining type names and 

then declaring variables using the type names (as ls done with Letters 
above) and declaring variables anonymously, i.e., without using a type name 
(as Is done with Numbers). The difference Is that anonymous variables 
may not be used as the inputs to procedures and functions since arguments 



Sets i29 

and parameters must have type names. So If we wanted Numbers to be the 
Input to some function, we would need to define a type name, like 

type 
Values= set of 0 .. 9; 

and then declare 

var 
Numbers : Values; 

Sets as Filters 

A very common problem in programming is examining data to make 
sure It Is of the proper form. An example from Chapter 8 involved reading 
in exam scores from the keyboard and computing a gradepoint average. 
Since typing errors are very likely, a thorough program needs to test each 
input to make sure it Is a legal one, I.e., one of the characters 'A', 'B', 'C', 
·o·, or 'F'. In most languages, this test would be made as follows: 

repeat 
Writeln('Enter the next exam score.'); 
Readln(Score ); 
if (Score< 'A') or (Score> 'F') or (Score= 'E') then 
Writeln('l llegal input. Try again.') 

unttl (Score>= 'A') and (Score<= 'F') and (Score<> 'E'); 

However, in Pascal, such a "filtering out" of bad data is most naturally 
accomplished by using a set because all we are doing is making sure that 
the input belongs to a certain set of values. So with the variable 
declaration 

var 
ValicLGrades: set of Char; 

and the assignment statement 

ValicLGrades :=('A' .. ·o·, 'F']; 

the above loop can be written as 



i)O 

repeat 
Wrlteln('Enter the next Score.'); 
Readln(Score ); 
If not(Score In ValicLGrades) then 

Wrlteln('l llegal input. Try again.') 
untt1 Score in ValicLGrades; 

Sets 

As another example, suppose we wanted to read some text from a file 
and count the number of words. We assume that the text contains only 
letters, digits, blanks, and the following punctuation symbols: , ! . ? • ; 

The program In I ist ing 13. 1 counts the words in the text file Typing. 
For simplicity we assume that the file begins with a word and ends with a 
single punctuation mark. 

We now tum our attention to a different use of sets. In these next 
examples, sets are not used as filters, but are used as the natural data 
structure for solving the given problem. In each case, there Is an alternate 
solution that does not employ sets--typlcally an array solution. However, 
it should be clear that the set solution is somehow "better." By this we 
mean that the set solution provides a clearer, less complicated algorithm 
for solving the problem than does the array solution. We repeat our earlier 
advice: "The sooner you start coding, the longer the job will take." In 
other words, the more time spent planning a solution, the better the 
solution will probably be. This does not mean just planning the algorithm, 
but also analyzing the best way to represent the data. Often, the proper 
choice of data structures can make a significant difference in the overall 
solution to a problem. This Is an important lesson for programmers to 
learn. What we hope to illustrate with these examples is that using sets 
to solve these problems makes the programs much easier to write. 

program WordCounter; 
(This program counts the number of words in the text file Typing.) 

var 
AlphaNumeric : set of Char; 
Separators : set of Char; 
Ch: Char; 
ScanningWord: Boolean; 
Count: Integer; 
Wordfile: Text; 

(Cont in1111d) 



Sets 

begin 
Reset(Wordfi le, 'Typing'); 
AlphaNumeric := ['A' .. 'Z', ·a·.:z·, '0' . .'9']; 
Separators:=['·, ·:, ·,·, '?', '!', ';']; 
Count:= 1; 
ScanningWord :=True; 
while not EOF(Wordfile) do 
begin 

Read(Wordfile, Ch); 
Write( Ch); 
if (Ch in Separators) and ScanningWord then 
ScanningWord := False; 

if (Ch in AlphaNumeric) and not ScanningWord then 
begin 

ScanningWord := True; 
Count := Count + 1 

end 
end; (While} 

Write In; 
Write In; 
Writeln('There were·, Count: 3, ·words in the text file Words.') 

end. 

Listing 1J.1 

Examples 

Soggies. the Breakfast of Programmers 

4Jl 

Every box of Soggles breakfast cereal contains one of 10 different 
prizes. If the prizes are distributed at random, on the average how many 
boxes of cereal must you purchase to acquire all 1 O different prizes? 

We solved this problem in Chapter 9 using arrays. Again, we generate 
a random integer between 1 and IO to simulate winning one of the IO 
prizes. We stop when we have won all 1 O prizes. Using sets, we start 
with the empty set (the set of prizes won so far), each time we win a 
prize, we add the number of that prize to the set (using set union), and we 
quit purchasing boxes of cereal when the set equals [ 1 .. 1 O]. Note that sets 
are a natural structure for this problem because of the nature of set union. 
If we win a prize for the second or third or subsequent time, It does not 
hurt anything to "add" that prize number to the set again. The solution to 



432 Sela 

the problem, which simulates 20 different people purchasing boxes of 
Soggles until each has obtained all 1 o prizes, Is given In listing 13.2. Try 
to predict the average before running the program. 

program SetSoggles; 
(This program uses sets to solve the Soggles problem.} 

const 
Experiment = 20; 

type 
Numbers = 1 .. IO; 

var 
Prizes: set of Numbers; 
Premium: Numbers; 
Count, Trials, Total : Integer; 
Average: Real; 

begin 
Total:= O; 
for Trials:= 1 to Experiment do 
begin 

Prizes:=[]; (Initialize Prizes to the Empty set.} 
Count:= O; 
repeat 

Premium := Random mod 1 o + 1; 
Prizes := Prizes + [Premium); 
Count := Count + 1 

untl I Prizes = [ 1..1 OJ; 
Wrlteln('lt took·, Count: 2, ·boxes to get them all.'); 
Total := Total + Count 

end; (For} 
Average:= Total I Experiment; 
Write In; 
Wrlteln('The average was·, Average: 5: 2, ·boxes to get all 10 prizes.') 

end. 

Listing 13.2 

The above solution is quite straightforward but there are some 
Important comments to make. The variable Premium takes on random 
values between I and IO representing the prize won. It is this value that 



Sets 4JJ 

needs to be added to the set of Prizes. This is accomplished using set 
union. Recall that set union is an operation applied to two sets. 
Therefore, the brackets around Premium are absolutely necessary. If 
Premium is a Number, then [Premium] is a set consisting of one Number. 
Beginners often write the syntactically incorrect statement 

Prizes := Prizes + Premium 

which generates a type incompatibility error. Also note that the use of 
the empty set as the initial value of the set of prizes is similar to the use 
of 0 to initialize "running" sums and counters. 

The next example is one of our favorites. It demonstrates very 
clearly the Importance of using the appropriate data structure. It is also 
complex enough that a divide-and-conquer approach using procedures and 
functions is helpful in solving the overall problem. Finally, the finished 
product Is an entertaining and challenging number game for one player to 
play against the computer. 

The Game of Taxman 

This is a one-player number game designed by Diane Resek. The player 
chooses how many numbers (positive integers) are in the game, from 1 up 
to some upper limit. During the course of the game, the player and the 
computer each accumulate a total. The object of the game is for the 
player to accumulate a larger total than the computer, hereafter referred 
to as the Taxman. 

The player's total accumulates simply by selecting one of the numbers 
left In the game. The Taxman then gets all the numbers left in the game 
that divide evenly Into the player's chosen number. Once numbers are used 
(either by the player or the Taxman), they are removed from the game. 

There Is one major restriction on the numbers that the player may 
select. As In real life, the Taxman must always get something, so the 
player can never select a number unless at least one proper divisor of that 
number remains In the game. Once no numbers with divisors remain Cat the 
end of the game), the Taxman gets all the numbers left and the game Is 
over. 

For example, suppose the game Is played with the numbers I, 2, 3, 4, 
5, and 6. If the greedy player chooses 6, then the Taxman gets all the 
divisors of 6, namely 1, 2, and 3. But now the only numbers left in the 
game are 4 and 5. Neither has a divisor left in the game, so the Taxman 



434 Sets 

gets those also and wins 15 to 6. However, If the player Is a bit smarter 
and chooses 5 first, the player gets 5 and the Taxman gets 1. Now the 
numbers remaining are 2, 3, 4, and 6, and the smart player chooses the 4 
(before the 6), giving the Taxman 2. Finally, the player chooses 6 and wins 
15 to 6. When played with more than 50 numbers, the game can be quite 
challenging. Beginners are often surprised at the treasures they give the 
Taxman after a seemingly Innocent choice. 

An array solution to the Game of Taxman Is certainly possible and Is 
usually required In a language without sets. However, with arrays, there 
Is a bothersome detail In the algorithm, namely testing If the game should 
be terminated, I.e., discovering when there are no numbers with divisors 
left In the game. Array solutions typically use a component of 1 to denote 
that a number Is still left In the game and a O to denote that a number has 
been removed from the game. How, then, Is the En<LoLGame condition 
noted? The array must be scanned looking for a number left In the game, 
and then the divisors of that number must be examined to see If any of 
them Is left. If none remains, then another number remaining In the game 
must be located and a similar test applied to its divisors. This looping and 
testing can become quite tedious, and the algorithms often become 
unnecessarily comp Jicated. 

However, when one considers utilizing sets, some new Ideas spring 
forth. Although these ideas can be implemented In the array solution, it Is 
Interesting that the ideas seem to come to programmers who are thinking 
about sets in the first place. The point to be made here is that it Is 
important to be thinking about solving the problem in its most natural 
setting and not about how to manipulate arrays. 

Suppose the game consists of the numbers from 1 to N. Then the only 
Integers that can ever qualify as divisors are 1 to N div 2, and, in fact, 
each of these numbers will be the divisor of some number In the game. 
Place these numbers In a set at the beginning of the program, and each 
time anyone gets a number, remove that number from this pool of possible 
divisors. When this set is empty, the game Is over. 

Another detail handled nicely with sets Is determining whether a 
choice made by the player Is illegal because it has no divisors left in the 
game. The set of divisors of the chosen number can be formed, and If the 
Intersection of this set with the numbers remaining In the game is empty, 
the choice is illegal. 

Since this problem Is more complex than the Soggles problem, we 
present an outline of its solution in pseudo-code. This solution provides 
another example of structured, top-down programming where a sequence 
of small procedures Is used to divide and conquer the original problem. 



Sets 4J'.) 

Observe how closely the pseudo-code resembles the main program in the 
Pascal solution. Here Is the pseudo-code: 

Set up the original list of numbers. 
Repeat 

Repeat 
Display the scores and the list of numbers. 
Obtain a choice from the player. 
Form the divisors of that choice. 
If no divisors remain, threaten the player with an audit. 

Until the player makes a legal choice. 
Update the scores. 

Until the player has no legal choices. 
Give the rest of the numbers to the Taxman. 
Determine the winner. 

program Taxman; 
(This program plays the game ofTaxman, a number game} 
( designed by Diane Resek. See text for the rules} 

type 
Number _Set = set of I .. I 00; 

var 
Limit, Choice: Integer; 
Player _score, Taxman__Score : Integer; 
Divisor_Pool, Number _Pool, Divisors: Number _Set; 

procedure SeLUp; 
(This procedure initializes the scores and the pool of numbers.} 
begin 

Taxman__Score := O; 
Player _score:= O; 
repeat 

Writeln('How many numbers do you want to play with?'); 
Writeln('The maximum number allowed is 100.'); 
Readln(Limit) 

until (Limit> I) and (Limit<= 100); 
Number _Pool:= [!..limit]; 
Divisor _Pool := [!..Limit div 2] 

end; (Definition of procedure SeLUp.} 

( Co11t /11u11d) 



4J6 

procedure Display_Scores; 
(This procedure shows the scores and the remaining numbers.) 

var 
Index: Integer; 

begin 
Writeln; 
Writeln('Your score: ·, Player_Score: 4); 
Writeln('Taxman : ·, TaxmalLScore: 4); 
Write In; 
for Index:= t to Limit do 

if Index in Number _Pool then 
Write( Index: 4); 

Write In 
end; (Definition of procedure Display_Scores.) 

procedure Obtain (var Choice: Integer); 
(This procedure loops until the player makes a legal choice.} 

begin 
repeat 

Writeln; 
Write('What is your choice? '); 
Readln(Choice ); 
if not (Choice in Number_Pool) then 
Writeln('Try that again and I will have you audited!'); 

unti I Choice in Number _Pool 
end; (Definition of procedure Obtain.} 

procedure Form_Divisors (Choice: Integer; 
var Divisors: Number _set); 

(This procedure builds the set of divisors of the player's number.} 

var 
Index: Integer; 

begin 
Divisors := []; 
for Index:= 1 to Choice div 2 do 

if (Choice mod Index = 0) and (Index in Divisor _Pool) then 
Divisors := Divisors + [Index] (Set union with singleton set} 

end; (Definition of procedure FormJ)ivisors.} 

( Co111/11u11d) 

Sets 



Sets 

function Sum (Nums : Number -5et) : Integer; 
(This function sums the elements of the set Nums.} 

var 
Index: Integer; 
Total : Integer; 

begin 
Total:= O; 
for Index := I to limit do 

if Index in Nums then 
Total := Total + Index; 

Sum:= Total 
end; (Definition of function Sum.} 

procedure Update_Scores (Choice: Integer; 
var Divisors : Number _Set); 

(This procedure adds the choice to the player's score and all of} 
(its divisors that remain in the game to the Taxman·s score.} 

var 
Index: Integer; 

begin 
Player _score := Player _score + Choice; 
Taxman_Score := Taxman_Score + Sum(Divisors); 

[Now, remove Choice and its Divisors from the game) 
Divisor _Pool :=Divisor _Pool - [Choice]; 
Number _Pool := Number _Pool - [Choice]; 
Divisor _Pool := Divisor _Pool - [Divisors]; 
Number_Pool := Number _Pool - !Divisors); 
Write In; 
Write('The Taxman gets: '); 
for Index := I to Choice div 2 do 
if Index in Divisors then 
Write( Index: 4); 

Write In 
end; (Definition of procedure Update_Scores.) 

( C1111l /1111ed) 

437 



4J8 

procedure Determine_Winner; 
[This procedure decides who won and prints the final score.} 

begin 
Writeln; 
Writeln; 
if Taxman_Score > Player _Score then 
Writeln('The Taxman won -- as usual.') 

else if Player_Score > Taxman_Score then 
Writeln('You won -- expect an audit soon.') 

else 
Writeln('The game ended in a tie.') 

end; [Definition of procedure Determine_Winner.} 

begin [Body of Main program Taxman.} 
SeLUp; [Initialize the list of numbers.} 
repeat 
repeat 

Disp lay_Scores; 
Obtain(Choice); 
Form_Divisors(ChOice, Divisors); 
if Divisors= []then 

Writeln('Don"t try to cheat the Taxman!') 
unt ii Divisors <> []; 
Update_Scores(Choice, Divisors) 

until Divisor_Pool = Il; 
Writeln; 
Writeln('No factors remain, the Taxman takes all.'); 
Taxman_Score := Taxman_Score + Sum(Number_Pool); 
Number _Pool := []; 

Display_Scores; 
Determine_ Winner 

end. 

Listing IJ.J 

Sets 

The Pascal solution is given In listing 13.3. It should be read 
"bottom-up." That Is, the reader should first read the main program at the 
bottom of the listing to see the overall strategy of the solution. Then, as 
each procedure or function Is Invoked, the details of that particular 
procedure or function can be examined. Run the program and see if you can 
beat the Taxman with 50 numbers In the game. 



Sets 4J9 

The last example of the chapter points out that although the elements 
of a set must be of some simple, ordinal type, the components of other 
structured types can in fact be sets. For example, we can declare arrays 
of sets or records with set components. Such a scheme can be very useful, 
particularly In applications related to Graph Theory. Graph Theory Is an 
area of discrete mathematics that is becoming Increasingly important. A 
graph Is simply a set of points with some pairs of the points joined by 
edges. Graphs are very useful in representing various kinds of data. 
Examples include communications networks, transportation networks, 
relationships between pairs of people in a psychological study, and 
relationships between resources and users of a multi-user computer 
system. 

The Hierarchical Company 

The example we wish to consider is the following: The employee 
records of the Hierarchical Company contain an employee identification 
number and the Identification number of the employee's Immediate 
supervisor. The president of the company has employee number l and, of 
course, no supervisor. We present a program that reads in each employee's 
number, except for the president, followed by the number of the immediate 
supervisor of that employee. The program then prints out a summary 
listing all the subordinates of each employee. 

For example, suppose the graph in figure 13.1 represents the 
supervisor/subordinate relationships between the company's employees. 

2 1 

3 6 5 

Figure 13. I 



440 Sets 

The input corresponding to the graph of figure 13. I might be as follows: 

5 7 
7 I 
2 I 
6 4 
3 2 
4 I 

The pertinent output In this case would be: 

The subordinates of Employee I are: 2 3 4 5 6 7 
The subordinates of Employee 2 are: 3 
The subordinates of Employee 3 are: None 
The subordinates of Employee 4 are: 6 
The subordinates of Employee 5 are: None 
The subordinates of Employee 6 are: None 
The subordinates of Employee 7 are: 5 

Now suppose the relationships are given by the graph in figure 13.2. 

1 

4 

Figure 13.2 

Then the input might look like this: 

2 1 
4 3 
5 3 
6 5 
7 I 
3 2 

1 



Sets 

The pertinent output would be: 

The subordinates of Employee 1 are: 2 3 4 5 6 7 
The subordinates of Employee 2 are: 3 4 5 6 
The subordinates of Employee 3 are: 4 5 6 
The subordinates of Employee 4 are: None 
The subordinates of Employee 5 are: 6 
The subordinates of Employee 6 are: None 
The subordinates of Employee 7 are: None 

441 

To solve this problem, we use an array of sets. The array contains a 
component for each employee. Each of these components Is a set that 
represents the subordinates of that employee. Whenever we read an 
employee's number, followed by the supervisor's number, we do the 
following: 

1. Place the subordlnate's number Into the supervisor's set. 
2. Add the subordlnate's set Into the supervisor's set. 
3. Add the supervisor's set (since It has now possibly changed} Into 

any set that contains the supervisor's number. 

The solution shown In listing 13.4 obtains the structure of the company 
from the user at the keyboard, who enters Worker, Boss pairs for the graph 
In question. The user enters O, O to terminate the Input. Run the program 
and enter either of the graphs given In figures 13.1 and 13.2, or any other 
graph of your choosing. Note that the pairs may be entered In any order. 

Summary 

Although sets are rare among programming languages, they are an 
Important part of the Pascal language. The filter example certainly makes 
a strong case for using sets to validate input. But not only are sets 
convenient to use, they are easy to understand. Beginning programmers 
tend to have more success (at least less trouble} understanding sets than 
understanding arrays or records. Sets also give the programmer more 
options for structuring data, and the more options available, the more 
natural the algorithm for solving a problem Is likely to be. We Invite those 
readers who are not convinced of this to write their own array version of 
Taxman and compare the readability of the array version with the set 
version. 



442 

program Hierarchy; 
(This program lists the subordinates of each employee.) 
const 

Company_Size = IO; 
type 
Subordinates = set of I .. I 00; 

var 
Superiors: array[ I .. Company_Size] of Subordinates; 
Worker, Boss: Integer; 
Person, Individual : Integer; 

begin 
for Person:= 1 to Company_Size do 
Superiors[Person] := []; 

Writeln('For this program we assume a maximum of I 0 employees'); 
Writeln('numbered from I to 1 O.'); 
Writeln('Please enter two numbers giving a worker and boss pair.'); 
Readln(Worker, Boss); 
while Worker<> Odo 
begin 

Sets 

Superiors[Boss] := Superiors[Boss] + [Worker]+ Superiors[Worker]; 
(Add the Worker and all of the Worker's subordinates to the Boss's set) 

for Person := 1 to Company_Slze do 
If Boss in Superlors[Person) then 
Superiors[Person] := Superiors[Person] + Superlors[Boss]; 

(Add the Boss's set to the set of anyone superior to the Worker's Boss} 
Writeln('Please enter two numbers giving a worker and boss pair.'); 
Writeln('Enter "O O" to terminate the Input.'); 
Readln(Worker, Boss); 

end; 
for Person := I to Company_Slze do 
begin 

Write('The subordinates of Employee ·, Person: 2, · are: '); 
if Superiors(Person] =(]then 
Write('None') 

else 
for Individual := 1 to Company-5ize do 
tf Individual In Superlors(Person] then 
Write(lndividual : 3); 

Write In 
end 

end. 
Listing 13.4 



Sets 443 

Exercises 

13.1 Write a sets version of the program Keys (Chapter 11) that reads 
the text file Typing and compares the Qwerty and Dvorak keyboards. 

13.2 Our program Hierarchy outputs information for ten employees even 
if there are only seven employees. Modify Hierarchy so that it reports the 
subordinates of an employee only If that employee's number was entered. 

13.3 (Primes Revisited) If a whole number is not prime, then it must 
have a prime divisor less than or equal to Its square root. Since Maxint ts 
32,767 and Its square root Is 181.01657, any odd Integer represented tn 
Macintosh Pascal must be either prime or divisible by some prime between 
3 and the largest prime less than or equal to 181. 

Write a procedure that generates the set of odd primes through 181. 
Notice that since the square root of 181 Is 13.45362, you need only use the 
divisors 3,5, 7, 11, and 13 to generate the primes less than or equal to 181. 

Write a function Prime that uses the set generated above to test for 
primehood any large odd integers entered by the user. 

13.4 Write a program that reads a sentence from the keyboard and 
provides three 1 lsts: 

1. All the letters included in the sentence. 
2. All the letters excluded from the sentence. 
3. All the letters Included exactly once in the sentence. 

Remember that ·A' and ·a· are distinct letters. 

13.5 Everyttme you visit Wendy's you get a piece of a WendyBurger puzzle. 
If you collect all five pieces to complete the puzzle you win a date with 
Clara Pell, the famous ·Where's the Been?· lady. The probability of getting 
each piece is 0.5, 0.25, 0.10, 0.10, and 0.05 respectively. Write a program 
to run twenty trials that simulate the collecting of WendyBurger puzzle 
pieces. How many visits does tt take on the average to win? 



Chapter 14 

String Manipulation 

AIBOHPHOBIA - The rear of pallndromes. 
Devn·s DP Dictionary 

computers probably spend more time deal1ng with non-numeric data 
than performing numeric calculations. Computers maintain lists of names, 
addresses, account numbers, and part numbers. Authors write books and 
articles using word processing programs and then store their works on 
magnetic disks. Thus, the programmer must have the ability to manipulate 
character Information In a computer. The Macintosh has a powerful string 
package for manipulating characters. Before we Investigate this, however, 
we will review the facilities available In Standard Pascal. 

The fundamental built-In type ln Pascal for handl1ng characters ls the 
Char type. Recall that variables of type Char consist of only one character. 
That ts, character variables In Pascal are not used to store words, names, 
or addresses. We looked at a few simple examples tn Chapter 8 that used 
the character type. The reader should recall that such simple tasks as 
changing a name from Last, First Middle to F. M. L. Involved setting up 
repeat ... unttl loops to process the Information character by character. 

Not every version of Pascal has a built-In string package, and there 
are certainly occasions where a program must process names or some 
other kind of data that ts more than just a single character. In Standard 
Pascal, this processing Is done using arrays of characters, as discussed In 
Chapter 10. For example, If we wanted to read the name 'Smokey The Bear· 
from the keyboard and store It Into memory, we could do tt as follows: 

Index:= O; 
Whtie not EOLN do 
begin 

Index := Index + 1; 
Read(Namellndex)) 

end; 

444 



String HMtpullttan 445 

Here we assume that Name Is declared as a packed array (1..15) of Char. 
The difficulty of doing this Is that the length of Name Is a static 
attribute (or characteristic). The adjective static Is a common one In 
computer science. It ts usually used In contrast to dynamic. Static 
means unchanging while dynamic means varying. So we would be unable to 
store a name In Name that was longer than 15 characters. It Is precisely 
this Inflexibility that prompts most Pascal developers to Include a string 
package. 

Strings In Macintosh Pascal 

As we know, strings are declared using the word string. When a 
string Is declared, a size attribute, ranging from 1 to 255 and enclosed In 
brackets, can be given for the string. When there Is no size given, the 
default value of 255 Is assumed. An example of each kind of declaration Is 
given below: 

var 
Name : string; 
Address: strlnglJO); 

We point out that the size of a string Is a static attribute Indicating the 
maximum allowable length of any value of that string. However, the 
length of the string ts In fact dynamic. So a string variable can store 
values of any length up to Its maximum. 

There ts a special string value called the null string. This string 
has length O and Is denoted by " (two single quotes with nothing between 
them). Beginners sometimes confuse the null string with a blank. 
Although we can't see either one of them, they are dlff erent. A blank Is 
just another character Centered by typing the space bar), and so treated as 
a string, has length 1. There are blanks between the words of this 
sentence (and we can see them). The null string, however, has no length at 
alt. We could place 100 or 1000 null strings within the string 'Null' and 
when we printed the string out, It would still look like 'Null'. Believe It or 
not, the null string Is very useful. It Is often the Initial value of strings, 
just like o ts often the Initial value for Integer counters or ·running· sums 
and the empty set Is often the Initial value for sets. 

If one wants to think of strings as (packed) arrays of characters, 
Macintosh Pascal gives that flexibility. That ts, If St Is a string with 
current value 'Smokey The Bear·, then St[4) Is 'k', and the assignment 
statement 



446 String 1111nlpulallan 

St[ 12) := 'P'; 

would change the value of St to 'Smokey The Pear'. If a reference ts made 
to a component of a string that Is undefined Ctn thts case, for example, 
Stl200]), this ts an error. 

Occastonally treating a string as an array of characters Is useful, but 
for the most part the programmer ts better off utilizing the butlt-tn strtng 
functions and procedures of Macintosh Pascal. Before we present these, 
we describe the simple operations on strings that are available for most 
Pascal types. 

First of all, asstgnments can be made freely among strtng types. 
Because of the dynamtc property of string length, we do not have to worry 
about length compatibility. However, we do need to make sure that we do 
not violate any size restriction. For example, tf SLI ts declared to have 
maximum stze 2, then the assignment statement 

SLI :•'ABC'; 

Is Illegal, glvtng the error message: 

A STRING value ts too long for tts intended use. 

We can also test the standard relations between two strings, namely 
•, <>, <, <•, >, > ... The ·1ess than• and ·greater than• relations wtth strtngs 
are lextcographtc (or alphabetic) relations. So, to say string A ts less 
than strtng B means that A ·comes before· B tn the dtctlonary. Actually, 
stnce strtngs can contatn any valid character, tt ts the ASCII code whtch 
really determines the lextcographtc ordering. There are several points 
that need to be made concemtng thts ordering. The upper case letters 
precede the lower case letters, so 'Banana· ts less than 'apple' (since 'B' < 
'a'). The blank ( or space) precedes all letters so 'Cat · < 'Cats'. Finally, 
'Cat' ts not equal to ·cat · stnce they are of dtff erent lengths. In fact, 'Cat' 
< 'Cat ', and tn general, an tnttlal substring of a string ts always less than 
the string ttself. 

Now we discuss several butlt-tn string procedures and functions. We 
follow the descriptions of these wtth several examples. 

The Length Funct ton 
Format: Length(Str), where Str ts any string value. 
Result: Returns the current length of Str. 
Example: If Str ='Smokey The Bear', then Length(Str) ts 15. 



String H•1pulal1• 447 

The Position Function 
Format: Pos(Substr, Str), where both Substr and Str are -any string 

values 
Result: A search for an occurrence of the value of Substr w1thtn Str 

ts made. The function returns the post ti on of the f trst character of Substr 
within Str. If Substr ts not found, the function returns zero. 

Example: If Str .. 'Smokey The Bear', Subt • 'The', and Sub2 • 'the', 
then PoS(Subt, Str) ts 8 and Pos(Sub2, Str) ts o. Also, PoS('e', Str> ts 5 
since that ts the position of the first 'e' In Str. 

The Concatenation Function 
Format: Concat(Strt, Str2, Str3, ... , StrN), where each parameter ts 

a string value. According to the Macintosh Pascal Reference Manual, the 
number of parameters ts ltmtted to a •practlcar number. 

Result: The parameters are concatenated tn the order ltsted. 
Example: If Strt .. 'dog' and Str2 .. 'house· then Concat(Strt, Str2) 

equals 'doghouse' while Concat(Str2, Strt >equals 'housedog'. 

The Copy Function 
Format: Copy(Source, Index, Count>, where Source ts a string value, 

Index and Count are Integer values. 
Result: This function returns the string value that ts Count 

characters long and begins at position Index of Source Ct.e., at position 
Source[ Index)). 

Example: If Str • 'Example', Place • 3, and Len .. 2, then Copy(Str, 
Place, Len) ts 'am'. Note that If the Copy function attempts to access 
characters outside the range of the Source string, this ts not considered 
an error. Only those characters wtthtn the range of Source are actua11y 
copied. So If Str ts as above, then Copy(Str, 3, 9) ts 'ample'. 

The Delete Procedure 
Format: Oelete(Source, Index, Count) where Source ts a string 

varlable1 Index and Count are Integer values. 
Effect: The substring of Sotrce of length Count begtootng at posttton 

Index ts deleted from source. Note that the value of Source ts actua11y 
changed by the Delete procedure. It ts a variable parameter Cwhtch 
explains why tt must be a string variable and not simply a string value). 

Example: If source .. 'Through', then Oelete(Source, 2, 2) causes the 
value of Source to be changed to 'Tough'. As wtth Copy, tf characters are 
referenced outside the range of Source, there ts no error, but only 
characters wtthtn the range are deleted. 



448 String Hlnlpulaltan 

The Omit Function 
Format: Omlt(Source, Index, Count) where Source Is a string value, 

Index and Count are Integer values. 
Result: Returns the substring of Source obtained by removing Count 

characters beginning at position Index. The value of Source remains 
unchanged. 

Example: If Source = 'Through', then Omlt(Source, 2, 2) ts 'Tough'. 
Source ts still equal to 'Through' after the evaluation of the function. 

Although Delete and Omit appear similar, Delete ts a procedure while 
Omit Is a function. So Delete Is used as a stand-alone statement to change 
the value of Its source. Omit, however, ts used within an expression and ts 
replaced by Its value (without altering the value of Its source). 

The Insert Procedure 
Format: lnsert(Source, Destination, Index), where Source ts a string 

value, Destination ts a string variable, and Index Is an Integer value. 
Effect: The string value given by Source Is Inserted Into the string 

value of Destination beginning at position Index. Note that the value of 
Destination Is changed"1>y the Insert procedure. If Index Is less than 1, 
Source Is Inserted on the left of Destination. If Index Is greater than the 
length of Destination, the Insertion Is to the right of Destination. 

Example: If Source .. 're' and Destination .. 'Bad', then lnsert(Source, 
Destination, 2) changes the value of Destination to 'Bread' while 
lnsert(Source, Destination, 3) changes the value of Destination to 'Bared'. 

The Include Function 
Format: lnclude(Source, Destination, Index) where Source and 

Destination are string values and Index Is an Integer value. 
Result: Returns the string obtained by Inserting the value of Source 

Into the value of Destination beginning at position Index. The value of 
destination ts not changed. 

Example: If Source .. 're' and Destination .. 'Bad', then lnclude(Source, 
Destination, 2) ts 'Bread' and lnclude(Source, Destination, 3) Is 'Bared'. In 
each case, the value of Destination remains equal to 'Bad'. 

Examples 

Now we use these procedures and funct tons to do some string 
processing. Some of the following examples have no apparent realistic 
applications, but are Included just for practice. 



String n111tpu1atton 449 

Examp1e 1: Suppose Word Is a string variable. Write a segment to 
Interchange the first and last letters of Word. That Is, If Word .. 
'Something', the segment should change the value of Word to ·gomethlnS'. 
While this may sound easy, the reader Is encouraged to try to accomplish 
this before looking at the solution below. The solution should be a general 
one that works for any value of Word, and not just the value given. 

This can actually be performed with one very "busy· statement, but 
for readability purposes, we write this as 4 statements: 

First:• Copy(Word, 1, 1 ); 
Last:= Copy(Word, Length(Word), 1 >; 
Middle :• Copy(Word, 2, Length(Word) - 2); 
Word := Concat(Last, Middle, First>; 

It ts worthwhile to explain the above process In detail. We are assigning a 
new value to Word, namely the concatenation of three strlngs--'g' + 

'omethln' + ·s·. Clearly, the first statement above assigns the first letter 
of Word to First. Also, the second statement assigns the last letter of 
Word to Last. Notice that the use of the Length function within the Copy 
function ts one way to make the solution a general one. Since we don't 
necessarily know how Jong the word ts that we are dealing with, we use 
Length to find the end of the word for us. To obtain the middle part of the 
word, we, of course, start at position 2 and extract all of Word except for 
the first and last letters. Thus, we want all but 2 characters, or 
Length(Word) - 2 characters. A common mistake for beginners ts to write 
Length(Word - 2). This ts nonsense because Word - 2 ts a meaningless 
expression. If the reader tests the above segment with several cases, It 
might be easy to be convinced that the solution Is a completely general 
one. This demonstrates the danger of jumping to conclusions. There ts, In 
fact, one case where the above segment does not perform as It should, 
namely when the length of Word ts exactly one. What happens? 

Examp1e 2: Write a segment to change the form of Name Ca string 
variable) from First Middle Last to Last, F. M .. 

We use the Pos function to find the blanks between names, the Copy 
function to extract the first and middle Initials, and the Delete function to 
remove the first and middle names from Name. The solution Is given In 
listing 14. 1. 



450 

program Reverse_Name; 

const 
Period='.'; 
Comma=·;; 
Blank=·'; 

var 
First, Middle: Char; 
Name: string[40]; 
Place: Integer; 

begin 
Writeln('Enter a name in the form: First Middle Last'); 
Readln(Name ); 
First:= Copy(Name, I, 1 ); [Find the first initial.} 
Place:= Pos(Blank, Name); [Find the first blank.} 

String HlnlpulaUan 

Middle:= Copy(Name, Place+ 1, I); [Find the middle initial} 
Delete(Name, 1, Place); (Remove first name so we can search J 

[for second blank) 
Place:= Pos(Blank, Name); (Find second blank) 
Name:= Copy(Name, Place+ I, Length(Name) - Place); 
[Name now equals Last name) 
Name:= Concat(Name, Comma, Blank, First, Period, Blank, Middle, Period); 
Writeln('The reversed name is: ',Name) 

end. 

listing 14.1 

Example 3: Enter a sentence or length less than 256 characters from the 
keyboard and cooot the number or occurrences of 'e'. For stmpltclty, we 
will not search for upper case E's, but we mentton that In many text 
processtng sttuatlons, care must be taken to handle both upper case and 
lower case letters. 

This solution ts shown tn listing 14.2. Since the Pos flllctlon always 
searches from the beglmtng of the strtng, whenever we ftnd an 'e', we chop 
off the first part or Sentence up through that 'e'. Whtie thts makes the 
searchtng more efficient, we are only able to do thts because we don't need 
the value of Sentence. 



String tlentpu1aUon 

program Ease; 
var 

Count: Integer; 
Place: Integer; 
Sentence : string; 

begin 
Writeln('Enter a sentence.'); 
Readln(Sentence ); 
Count:= O; 
Place:= Pos('e', Sentence); 
while Place <> o do 
begin 

Count:= Count + 1; 
Delete(Sentence, 1, Place); 
Place := Pos('e', Sentence) 

end; 
Writeln(The number of e"s in the sentence is: ·,Count); 

end. 

Listing 14.2 

451 

Example 4: Remove all occurrences of the letter 'e' from a given 
sentence typed at the keyboard and print the sentence without the e's. 

We present two strategies for removing e's. The first strategy treats 
the string as an array of characters. The second makes use of the string 
functions and procedures. In the first, we copy Sentence Into another 
string variable called Alternate. We do this by concatenating letters of 
Sentence one at a time to Alternate. Of course, we copy everything but the 
letter ·e·. Thts program, EChop I, Is given In list Ing 14.3. 

The second program uses the Delete procedure to remove the 
occurrences of ·e· and doesn't require the additional storage of Alternate 
because the occurrences of ·e· are removed directly from Sentence. Notice 
that the value of Sentence Is changed by EChop2, shown In listing 14.4. 

One of the exercises at the end of the chapter ls to test character 
strings to see If they are palindromes, which are words, phrases, or 
sentences that read the same forwards and backwards, like ·Madam, I'm 
Adam·. A good first step In that problem would be to follow the Idea of 
this example and remove all blanks and punctuation marks to obtain 
·MadamlmAdam·. 



i52 

program EChop I ; 

var 
Sentence, Alternate: string; 
Place : Integer; 

begin 
Writeln('Please enter a sentence.'); 
Readln(Sentence ); 
Alternate:="; 
for Place:= 1 to Length(Sentence) do 

if Sentence[Place) <> ·e· then 

String ttlnlpulatlan 

Alternate:= Concat(Alternate, Sentence[Place)); 
Writeln('The sentence without any e" s is:'); 
Write ln(A l ternate) 

end. 

Listing 14.l 

program EChop2; 

var 
Sentence: string; 
Place : Integer; 

begin 
Writeln('Please enter a sentence.'); 
Readln(Sentence ); 
Place:= Pos('e', Sentence); 
while Place <> Odo 
begin 
Delete(Sentence, Place, I); 
Place:= Pos('e', Sentence) 

end; 
Writeln('The sentence without any e"s is:'); 
Writeln(Sentence) 

end. 

Listing 14.4 



453 

Example 5: Examine a piece of text and change all occurrences of 'cle' to 
'eel'. 

Before providing the solution, we discuss the application behind such 
a process. Many word processing programs can help find and correct 
spelling errors. Although most do so by looking words up In a ·dictionary· 
stored on a disk, with certain rules It may be possible to actually program 
various error-detecting capablltties. This example Is taking care of the 
rule: 

·1 before E except after c: 

There are, of course, some exceptions to this rule Cllke ·science· and Its 
derivatives), but In many cases, the number of exceptions Is small, and 
before a spelling change Is made, the program could make sure It Is not 
changing one of the exceptional cases. Natural languages are so complex 
compared to formal languages such as Pascal that we are a long way from 
having computerized proofreaders. For example, Imagine trying to •teach· 
a computer how to recognize when to use •there· as opposed to •their: 
wm computers ever ·understand· the Intended meaning of everyday 
phrases such as 

"This ticket good for one fare from Chicago to Lake Forest or Vice 
Versa.· 

or wm computers expect people to travel from Chicago to Vice Versa? 
Despite such dlff lcultles, natural language understanding remains one of 
the most researched areas of artificial lnteHtgence. The solution to 
the spelling checker Is given In ltstlng 14.S. The program reads a list of 
words (all entered on one ltne) from the keyboard. one of Its executions ts 
shown In figure 14.1. 

TeHt 
Enter spel I ing I isl: 
recieve deceive science believe percieve 

The "corrected" I ist is: 
receive deceive sceince believe perceive 

Figure 14.1 



454 

program Speller; 

const 
Pattern= 'cie'; 

var 
Spelling: string; 
Place : Integer; 
List: Text; 

begin 
Write ln('Enter spe 11 ing 1 ist:'); 
Readln(Spe 1 ling); 
Writeln; 
Place:= Pos(Pattern, Spelling); 
while Place<> Odo 
begin 

Spelling[Place + 1] := 'e'; 
Spelling[Place + 2] := 'i'; 
Place:= Pos(Pattern, Spelling) 

end; 
Writeln('The "corrected" list is:'); 
Writeln(Spell ing) 

end. 

Listing 14.5 

String t'llnlpulallan 

Notice that In the above program we have used both the string 
capability and the array of characters representation. The reason for 
mixing here ts one of efficiency. To find the pattern 'cle', It ts easer to Jet 
the Pos function search as opposed to doing a character-by-character 
search. Such a character search wouJd Involve stopping at each 'c', 
checking the next Jetter to see If It ts an 'I', and If so, checking to see If 
the next Jetter Is an 'e'. However, once we have found such a pattern, It ts 
more efficient to directly Insert the two letters after the 'c' using the 
character components rather than empJoylng the Delete/Insert procedures 
or the Concat/Copy functions. It ts up to the programmer to choose those 
operations that are most efficient for the partlcuJar situation. In fact, we 
remark that using Pos as we have here ts efficient In terms or the actual 
writing of the PascaJ program but ts Jess eff tclent In terms or execution. 
The reason Pos ts not very efficient tn this case ts that tt returns to the 



strtnt ttentpullllton 455 

beginning or the string each time to resume Its search for the pattern 'cle', 
and so Is searching over text that has already been processed. Other string 
packages often provide a function similar to Pos, but with the capability 
or specifying a starting position other than the first position of a string. 
Such Implementations tend to Increase searching efficiency. 

Summary 

The beginner Is often surprised at how often the need for character 
manipulation arises. It may seem that reversing strings Is simply an 
exercise In using the string manipulation functions. But consider a 
business that keeps all or Its customer records on disk. It Is likely that 
these records are Indexed by last names so that given records can be 
easily found. However, If the business wishes to pull the names from the 
disk to use In a letter, the names need to be In normal order. There are 
two options: Store the names twice, once as Last, First, and another time 
as First Last. This uses twice as much storage, and although computer 
storage Is becoming less and less expensive, It still Isn't free. The other 
alternative Is to store the names only In the form Last, First, and make the 
software that processes the names and writes the letter manipulate the 
names Into the form needed. 

Systems programming Is another area where manipulation of string 
Information Is crucial. A Pascal program Is treated by the system 
translator as a string of characters. The translator's first job Is to parse 
the program, that Is, to break It up Into Its component parts, like keywords 
and operators, so that the program can be checked for syntax errors. 

With so many dtrrerent kinds of data being stored In computer 
systems, It Is up to the programmer to find the way through the data, 
extracting the Inf ormatlon needed ror a given application. In many 
situations, the string manipulation functions, like Pos and Copy, provide 
the easiest way to find the desired Information. 

Exercises 

14.1 Write a function that accepts a string and counts the number or Z's 
(both 'z' and 'Z') In the string. 

14.2 Write a function Distinct that accepts a string and outputs True 
only If all the characters of the string are distinct. For example, 
Dlstlnct('Maclntosh') Is True while Olstlnct('Pascal') Is False since Pascal 
contains two a's. Notice that Dlstlnct('Bob') ts True. 



456 String 1111'1tpulat Ian 

14.J As chief censor or Stktnta, tt ts your duty to implement the latest 
royal decree that states: 

f)ncdor" • ._ bJW k call• Wttte 11* 11Jttte lDW k 
~--. 
Write a program that reads a sentence and outputs the ·censored· version. 
Be careful that you do not keep changing the same word over and over. 

14.4 Rtteway ayay rogrampay hattay ranslatestay entencessay tntoyay 
tgPay atinl.ay. The rules ror Ptg Latin are: 

If a word begins with a vowel CA, E, I, o, U), then ·yay· ts added to the 
end of the word. Thus, ·Apple· becomes • Appleyay·. On the other hand, tf 
the word begins with a consonant, then that consonant ts moved to the end 
and ·ay· ts added. Thus, ·Macintosh· becomes ·actnt05tt1ay•. 

14.5 Write a program that translates Ptg Latin back tnto English. Are 
there any problems with thts translation? Can you think of a word or 
sentence that can't be translated back without ambiguity? 

14.6 Write the function PlaceCStr, Pattern, Index), which ts a smart 
version of Pos(Str, Pattern). Place returns the position of the first 
occurrence of the string Pattern tn the target string Str starting tts 
search at the 1ndexth place. For example, Place(' Pascal', ·a·, 3) returns 5, 
the location of the f trst ·a· beginning with the third character tn 'Pascal'. 

14. 7 A palindrome Is a phrase that reads the same backwards as 
forwards. For example 

Able was I ere I saw Elba 

ts a palindrome. The notion of a palindrome can be extended to tnclUde 
phrases such as 

Madam, I'm Adam 

that, except for blanks and punctuation, read the same backwards as 
forwards. We tnclUde such phrases tn our definition of a palindrome for 
this exercise. 



String Hatpulatt111 457 

Write a proced\J'e Strip that removes all the blanks and punctuation 
from a string. Strip may assume that commas and hyphens are the only 
punctuation In the given string. Thus, Strip would tum 'Madam, Im Adam' 
Into 'MadamlmAdam'. 

Write a procedure Flip that reverses a given String. Thus, Flip would 
turn 'Pascal' Into 'lacsaP'. 

wrtte a procedure LowerCase that converts all the letters of a given 
string to lower case. Thus, LowerCase would convert 'Pascal' Into 'pascal'. 
Note that Lowercase leaves the blanks and punctuation, If any, alone. Hint: 
Lowercase Should make use of the built-In functions Ord and Chr. 

wrtte a program that finds the winner In a palindrome contest. The 
rather strange rules are: 

1. If an entry Is not a palindrome, It scores o points. 
2. If an entry ts a palindrome, It scores 1 point for each character, 

not counting blanks or punctuation Thus, 'Madam, Im Adam' scores 11 
points. 

3. If an entry Is a palindrome with respect to blanks and punctuation, 
then It scores a bonus of 30 points. Thus, 'Able was I ere I saw Elba' 
scores 19 + 30 .. 49 points. Note that case changes are allowed In entries. 

Here are the contestants and their entries. You may make a text file of 
them If you wish <two lines per entry> and add entries of your own. We 
Include these to get you started. 

Name 
Eve F lrstperson 
Adam Flrstperson 
Abel Flrstperson 
Napolean Bonaparte 
Minnesota Fats 

Theodore Roosevelt 
Marquis de Sade 
Ralph Shively 

Entry 
Eve 
Madam, Im Adam 
Abel was I ere I saw Caln 
Able was I ere I saw Elba 
Doc, note, I dissent-a fast never prevents a 
fatness-I diet on cod 
A man, a plan, a canal, Panama 
Evil I did dwel-lewd did I live 
Naomi-sex at noon taxes, I moan 

Your program should output each person's score, whether the bonus was 
earned, and finally, the name of the winner followed by the winning entry. 



String 111nlpullllon 

14.8 Write a program that uses your graphics or exercise 12.J to play a 
game or hangman. In the game or hangman the computer selects a secret 
word at random from a text file or words. The computer displays a star 
(*)for each letter in the word, thereby giving the player the length or the 
word. The player then tries to guess the word letter by letter. If the 
letter guessed is in the word, then the computer shows all instances or 
that letter in the given word. For example, if the secret word is ·hangman· 
and the initial guess is ·a·, then the display changes from "*******' to 
·•a•**a•·. If the letter guessed is not in the word, then the computer 
draws the next piece or the player at the gallows. If the player guesses 
all the letters or the word before the computer completes the drawing 
then the player wins, otherwise the player hangs. 



Chapter 15 

Recursion 

RECURS I VE - See RECURS I VE. 
Devll's DP Dictionary 

In Pascal 1t 1s possible for a procedlre or function to Invoke Itself. 
Th1s 1s known as recursion since the function or procedure ·re-occurs· 
within Itself. This chapter Illustrates several Instances In which 
recll'Sion leads to elegant solutions of seemingly complex problems. We 
prov1de several examples so that you may begin to recogn1ze sttuat1ons 
where recursion Is an appropriate Instrument to apply. 

To avoid an infinite sequence of cans, there must, of course, be some 
means whereby the given procedure or funct1on stops invoking more 
Instances of Itself. Thus, for recursion to apply, both of the f ollowtng 
must be true: 

1. There must be at least one trMal case that ends the 
sequence of recursive calls. 
2. There must be some way to put together solutions to ·easy· 
Instances to solve ·hard· Instances of the problem. 

Let us cons1der an example to see how these pr1nc1ples apply. The 
factor1al function was Introduced In Chapter 7. For example, 51 Is 
5*4*J*2* 1 or 120. In general, NI Is N * (N-1) * (N-2) * ... * J * 2 * I. This 
expression, wr1tten equivalently as NI ., N * (N-1 )I, Is the approach needed 
If we wish to write a recursive factorial function. It says that the ·hard" 
problem of finding NI can be solved by simply multiplying N and (N-1 )I. 
Likewise, (N-1)1 Is simply the product of N-1 and (N-2)1. To prevent an 
Infinite descent, we need a trivial, nonrecurslve case that ends the 
process. Since 01 Is def lned to be I, we use this case to end the recursion. 
For example, trace how the computer could use the above Ideas to compute 
JI. First, JI= 3*21, and 21 .. 2*11, and 11 = 1*01. Since 01 ls defined to be I, 

459 



460 Recurs tan 

the computer traces backwards that 11 is also 1, 2! Is 2, and thus, 3! Is 6. 
Listing 15.1 shows the recursive, Pascal version of Factorial: 

function FactorlalCN : Integer) : Longlnt; 
begin 
if N = o then 
Factorial := 1 

else 
Factorial := N * Factorlal(N-1) 

end; (Recursive Definition of function Factorial} 

Listing 15.1 

Notice that the then clause contains the trivial case In which 
Factorial is simply assigned a value. The else clause contains the general 
case in which the factorial of N is computed using the factorial of N-1. 
Also observe that unlike nonrecursive functions, recursive functions are 
allowed to use the function name on the right-hand-side of an assignment 
statement within the body of the function. As an exercise to aid in your 
understanding of recursion, carefully trace the evaluation of Factorial(S). 
If you see how Factorial(S) Is evaluated, then you are well on your way to 
understanding recursion. 

Also note that Factorial returns a long Integer, rather than a regular 
Integer, to help avoid overflow. Actually, 131 overflows even Longlnts, so 
Longlnts postpone the overflow problem only a little bit. Furthermore, 
note that recursion is not needed to compute the factorial function. 
Indeed, In Chapter 7 we Implemented Factorial as a simple, iterative 
(looping) function. This Illustrates a fact about recursion: Any problem 
that can be solved with recursion can also be solved without recursion. 
Why then should students ·waste time" studying recursion? The answer, 
Illustrated in the examples that follow, Is that In many Instances the 
recursive solution provides a short and elegant solution to what appears to 
be a very complicated problem. Thus, recursion Is simply a tool that can 
make problem solving easier. The trick Is to learn to recognize when 
recursion applies. Let us consider several situations, some old, some new, 
In which recursion can be used. 

An excellent example of the power of recursion Is provided by the 
puzzle known as the Tower of Hanoi. Figure 15.1 Illustrates the puzzle In 
which one must move the tower of disks from peg 'A' to peg 'C' by only 
moving one disk at a time. Also, one can never place a large disk on a 



Recursion 461 

small disk. If you have never played with this puzzle, make some disks 
from paper and solve the puzzle with three or four disks before reading the 
next section. 

A B c 

Figure 15.1 The Tower of Hanoi 

We will write a procedure Towers(N, 'A', 'B', 'C') that will solve 
general Tower of Hanoi problems. That Is, given a positive Integer N, and 
three pegs labelled 'A', 'B', and 'C', the procedure should give us explicit 
move-by-move lntructlons for getting the N disks from peg 'A' to peg ·c· 
using peg 'B' as the auxiliary peg. For example, the output from Towers(2, 
'A', 'B', 'C') should solve the two disk problem with the following 
Instructions: 

Move disk I from peg A to peg B. 
Move disk 2 from peg A to peg C. 
Move disk I from peg B to peg C. 

Throughout this discussion, disk I is the smallest disk, disk 2 Is the next 
smallest, etc. 

It Is far from obvious how to write the procedure Towers. Let us 
consider looking for a recursive solution. We need a trivial case of the 
puzzle to end the recursion. If there were going to be a Tower of Hanoi 
puzzle on your final exam, how many disks would you like to see on the 
first peg? Most of us would agree that the puzzle with only one disk is 
indeed trivial. Secondly, how can we use solutions to smaller puzzles to 
help us solve the N disk puzzle? Figure 15.2 shows how to patch solutions 
to easier puzzles together to solve "hard" puzzles. Namely, solve the N 
disk puzzle in three stages: 



462 

Move the N-1 top disks from peg A to peg B. 
Move disk N from peg A to peg C. 
Move the N-1 top disks from peg B to peg c. 

A B 
Stage 1 

c 

A B C 
Stage 2 

I lA c I 
A 8 c 

Stage 3 

Figure 15.2 Recursive Solution 

) 

Moving the N-1 top disks is simply an instance of solving the N-1 disk 
problem. Thus, we have an algorithm, much as in the factorial problem, for 
solving N disk puzzles from N-1 disk puzzles. Listing 15.2 shows the 
Pascal for our pseudo-code: 



Recursion 

procedure Towers (N: Integer; 
From, Aux, Dest : Char); 

begin 
if N = I then 
Wrlteln('Move disk 1 from peg·. From,· to peg·. Dest) 

else 
begin 

Towers(N - 1, From, Dest, Aux); 
Wr lteln('Move disk·. N: 1, · from peg·, From,· to peg·. Dest); 
Towers(N - 1, Aux, From, Dest) 

end (If) 
end; (Recursive definition of procedure Towers) 

Ltsting 15.2 

463 

You should work through the above procedure for N = 2 or N = 3 to see 
how it works. In particular, note how the From, Dest, and Aux pegs are 
used. That is, to move N disks from the From peg to the Dest peg, the 
Tower procedure first moves N-1 disks from the From peg to the Aux peg 
using the Dest peg as the auxiliary peg. Then it moves the Nth disk to the 
Dest peg and then moves the N-1 disks from the Aux peg to the Dest peg 
using the From peg as the auxi llary. 

program Hanoi; 
(This program recursively solves Tower of Hanoi puzzles.} 

var 
N: Integer; 

procedure Towers (N: Integer; 
From, Aux, Dest: Char); 

begin 
if N = I then 

Writeln('Move disk I from peg·. From, · to peg·. Dest) 
else 
begi'n 

Towers(N - 1, From, Dest, Aux); 
Writeln('Move disk·, N: I,· from peg·, From,· to peg·, Dest); 
Towers(N - I, Aux, From, Dest> 

end (If} 
end; (Recursive definition of procedure Towers} 

(Conlln1111d) 



Recursion 

begin (Body of main program Hanoi} 
Writeln('Please enter the number of disks in the puzzle.'); 
Readln(N); 
Towers(N, 'A', 'B', 'C') 

end. 

Listing 15.3 

Listing 15.3 shows the complete program Hanoi that prompts the user 
to enter N, the number of disks, then invokes the recursive procedure 
Towers to print the explicit Instructions for moving the N disks from peg 
'A' to peg 'C'. If you are not Impressed with the brevity and elegance of 
this solution, consider writing your own non-recursive solution. We 
think you will quickly learn to appreciate recursion. 

In Chapter 14, we presented an exercise to test strings to see If they 
were palindromes. A palindrome, of course, Is a phrase that reads the 
same backwards as forwards. Let us write a recursive function to test for 
palindromes. In general, we need only check the first and last letters of a 
string. If they are different the string cannot be a palindrome. If they are 
the same, then throw them away and repeat the process on the remaining 
string. Eventually, we must come down to a string of zero or one 
character. These are our trivial cases because any such string Is a 
palindrome. Here, then, Is our pseudo-code: 

If the length is zero or one, then it Is a palindrome, 
else if the first and last characters don't match, then It Isn't. 
Otherwise, throw away the first and last characters and repeat. 

The resulting recursive function, Pals, Is contained, along with a main 
program to show it off, In listing 15.4. 

The next example is a counting problem. Suppose you would like to 
know how many strings of zeros and ones you can form of a certain length 
that do not contain two consecutive ones. For example, there are 3 such 
strings of length 2. They are 00, 01, and 10. Likewise, there are 5 of 
length 3. They are 000, 001, 010, 100, and 101. Can you find the 8 of 
length 4 and the 13 of length 5? (How about the 17,711 of length 20?). 
More Importantly, do you see a pattern that will help you compute these 
numbers? Table 15.1 shows the values for lengths up to 5. 



Recursion 

program RecurslvePals; 
(This program uses the recursive function} 
(Pals to test given strings for "pallndromeness"} 

var 
Sentence : string; 

function Pals CS: string>: Boolean; 
begin 
If (Length(S) = 0) or (Length(S) = 1 > then 
Pals:= True (Trivial case of a palindrome.) 

else If S[ 1) <> S[Length(S)) then 
Pals:= False (Trivial case of a NON-palindrome.} 

else 
begin 

(Delete the first and last characters and try again.) 
Delete(S, 1, D; 
Delete(S, Length(S), I>; 
Pals := Pals(S) 

end (If} 
end; (Recursive definition of function Pals) 

begin 
Write In(' Please enter your candidate sentence:'); 
Readln(Sentence ); 
If Pals(Sentence) then 
Wrlteln('lt Is a palindrome.') 

else 
Wrlteln('Sorry, not a palindrome.') 

end. 

Listing 15.4 

Length 
1 

Number of Strings 
2 

2 3 
3 5 
4 8 
5 13 

Table 15.1 



466 Aeanton 

We hope a pattern becomes clear. The next value is always the sum of the 
last two values. That is, In general, if Count(N) counts the number of such 
strings of length N, then Count(N) = Count(N-1) + Count(N-2). This is 
clearly a recursive relationship! Since the recursive expression involves 
two previous values, we need two trivial cases to get us started. We take 
Count( 1) = 2 and Count(2) = 3 as the trivial cases and then use the 
recursive formula for any N ~ 3. 

Before we write the program, let's see If we can understand where 
the recursive relationship comes from. Consider constructing a string of 
length N that does not contain two consecutive ones. It either starts with 
a o or a 1. If it starts with a 1, then It must have a O next (why?) and then 
there are N-2 places left to consider. Any legal string of N-2 characters 
can occupy these spots. Hence, there are Count(N-2) legal strings of 
length N that begin with a 1. We leave it to the reader to argue that there 
are Count(N-1) legal strings of length N that begin with a 0. Thus, there 
are Count(N-1) + Count(N-2) legal strings of length N altogether, and the 
recursive relationship Is established. If you are still confused, try to see 
how the 8 legal strings of length 4 come from the 5 strings of length 3 and 
the 3 of length 2. 

Notice that we do not need two separate cases for the two trivial 
cases. Because of the simplicity of the situation, we have Count(N) = N + I 
for both N = I and N " 2. Finally, the simple program Zeros._and....Ones, 
which invokes the recursive procedure Count, Is given In listing 15.5. 

program Zeros_and....Ones; 
(This program Invokes the recursive function Count(N) to} 
(count the number of strings of Os and Is of length N that} 
(can be made that do not contain two Is In a row. } 

var 
N: Integer; 

function Count (N: Integer>: Integer; 
begin 
If N < 3 then 
Count:= N + I 

else 
Count := Count(N - 1 > + Count(N - 2) 

end; (Recursive definition of function Count} 

(Conlin1111d) 



Recurston 

begin 
Wrlteln('N': 5, 'Number of strings'); 
for N := I to 20 do 
Writeln(N: 3, Count(N): 10) 

end. 

Listing 15.S 

467 

Run the program Zeros_an<LOnes and watch lt slow down as N grows. 
Why does the program get so slow? Computers are supposed to be fast, 
but when the output reaches the upper teens, lt gets much slower than we 
humans. For example, suppose the output ls as follows: 

14 
15 
16 
17 
18 
19 

987 
1597 
2584 
4181 
6765 

10946 

All the computer has to do to get the 20th term ls to add 10,946 and 
6, 765. Why does lt take so long? The answer Is that even though the 
computer only has to add Count< 19) and Count( 18) to f Ind Count(20), the 
computer didn't remember Count( 19) or Count( 18) and has to compute them 
both again. Of course, Count( 19) Involves Count( 18) and Count( 17), etc. 
And then, when It finally computes Count( 19), lt discovers that lt needs 
Count( 18) and starts all over on that calculation. Remember that 
computers are dumb and that recursion can be very Inefficient! Recursion 
ls not really appropriate for this situation and we leave the details of a 
more efficient, nonrecurslve solution to this problem to the exercises. 

Snowflakes and Flowsnakes 

In 1904 Helge von Koch described an interesting geometrical shape 
that has come to be known as Koch's Snowflake. It is an Ideal example for 
Macintosh Pascal as It combines graphics and recursion, and, hence, allows 
the beginner to "see" recursion at work. Koch's snowflake is constructed 
as follows: You begin with an equilateral triangle as In figure 15.3a. 
Then, on each side you place an equilateral triangle of one third the size of 
the original. This gives the design of figure 15.3b. Of course, one repeats 
this process on the new figure producing the designs of figure 15.3c and d. 



468 Recurs tan 

a b c d 

Figure 15.3 

Koch's Snowflake Is the figure you get if you repeat this process forever! 
To avoid an infinite loop, we incorporate a level in our recursive procedure 
and each time the procedure calls itself, the level is reduced by one. When 
the level reaches zero, then the recursion stops. The procedure DrawSide 
of Listing 15.6 presents the recursive Pascal version that draws one side 
of Koch's snowflake. The reader should trace (with paper and pencil!) a 
call to this procedure with a Level of 2 or so. Notice that DrawSide makes 
use of our graphics package of Chapter 12. 

procedure DrawSlde (Length, Level : Integer); 
begin 
If Level = 0 then 
F orward(Length) 

else 
begin 

Length := Length div 3; 
DrawSlde(Length, Level - 1 ); 
Tum(60); 
DrawSlde(Length, Level - 1 ); 
Tum(-120); 
DrawSldeCLength, Level - 1 ); 
Tum(60); 
DrawSlde(Length, Level - 1) 

end [If) 
end; 

Listing 15.6 

The program Snowflake, that calls DrawSides three times, is given in 
listing15.7. Its execution with Level equal to 4, is given in figure 15.4. 



Recursion 

program Snowflake; 
(This recursive program draws Koch's snowflake.} 

const 
Pl= 3.1415927; 

var 
Angle: Integer; 
X, Y: Real; 
Length, Level, Side: Integer; 
Size: Rect; 

(Procedure DrawSlde and Graphics Package goes here.} 

begin (Body of main program Snowflake} 
SetRect(Slze, o, 20, 527, 357); 
SetDrawlngRect(Slze>; 
Showoraw Ing; 
Length := 243; (3 to the 5th powerl} 
Level:= 4; 
Initialize; 
for Side := I to 3 do 
begin 
DrawSlde(Length, Level); 
Tum(-120) 

end (For} 
end. 

Listing 15.7 

469 

It is clear why this design is called a snowflake. The reader who runs 
the program Snowflake also discovers why mathematicians call such 
designs "flowsnakes: We hope that carefully observing the execution of 
Snowflake will Increase your understanding of how recursion actually 
works. 

As another, different example, consider the recursive tree shown in 
figure 15.5. The tree has intentionally been constructed asymmetrically 
to make It look more like a real tree. We leave It to the reader to trace 
the program Tree, given In listing 15.8, to see how the recursion Is 
performed. Many other interesting trees can be drawn by modifying the 
constants Size, LAngle, RAngle, and Level. 



470 Recll"Ston 

Figure 15.4 

Figure 15.5 



Recurston 

program Tree; {This recursive program draws a tree.} 
const 

Pl= 3.1415927; 
Size= 30; 
LAngle = 40; 
RAngle = 25; 
Level= 5; 

var 
Angle : Integer; 
X, Y: Real; 
Window : Rect; 

(Graphics Package goes here.} 

procedure Backward (Distance: Integer); 
begin 
Tum( 180); 
F orward<D I stance); 
Tum(l80) 

end; 

procedure DrawBranch (Size, Level : Integer); 
begin 

if Level = O then 
begin 
Forward(Slze); 
Backward(Slze) 

end 
else 
begin 
Forward(Slze); 
Tum(LAngle); 
DrawBranch(Slze, Level - I); 
Tum(-LAngle ); 
DrawBranch(Size, Level - I); 
TumC-RAngle); 
DrawBranch(Slze, Level - 1 }; 
TumCRAngle); 
Backward(Slze) 

end 
end; (Continued) 

471 



472 

begin [Body of main program Tree) 
SetRectCWlndow, O, 20, 527, 357); 
SetDrawlngRect<Wlndow); 
ShowDrawlng; 
Initialize; 
Turn(90); 
Llne(O, -3 *Size); [Draw Trunk of tree) 
Y := Y - 3 *Size; 
DrawBranch(Slze, Level) 

end. 

Listing 15.8 

Exercises 

Recurs ton 

15. 1 Write a non-recursive version of the program Zeros_ancL.Ones from 
the text. 

15.2 Modify the constants Size, LAngle, RAngle, or Level of the program 
Tree to produce some new varieties. 

15.3 Write a recursive function Exponent(X, K) that computes x"'. Is this 
an appropriate use of recursion? 

15.4 The greatest common divisor (gcd) of two posit Ive integers X and Y 
is Is defined to be the largest positive Integer that divides evenly Into 
both X and Y. For example, gcd(2I,15) = 3, gcd(22, 15) = I, and gcd(30, 15) 
= 15. The Euclidean algorithm is a standard way of finding the gcd of two 
Integers. The Euclidean algorithm essentially says: Divide Y Into X where 
Y is the second of the two numbers. (Usually Y is the smaller of the two 
numbers, but this is not necessary.) If Y divides evenly into X, then the 
gcd(X, Y) = Y. If Y does not divide evenly Into X, take the remainder and 
divide It Into Y. If that division is not even, divide the second remainder 
into the first remainder. Continue this process until a division operation 
has no remainder. The divisor for the "last" division is the gcd(X, Y). 

The two statements on the following page give a nice recursive 
formulation for the Euclidean algorithm. Use these to write a recursive 
function to compute the gcd of two integers. Test your function on several 
pairs of integers by writing a main program that asks for two integers 
from the keyboard and computes their gcd. 



Recursion 473 

gcd(X, Y) = Y If X mod Y = O 
gcd(X, Y) = gcd(Y, X mod Y) If X mod Y" o 

15.4 Wallalumps breed according to the following strange rules: I and 
2-year old Wallalumps produce I child each. 3-year old Wallalumps 
produce 2 children each. Older Wallalumps do not bear children. Assuming 
that you begin with 10 I-year old Wallalumps and 10 2-year old 
Wallalumps and that no Wallalumps die, write recursive and nonrecurslve 
versions of a program to count the Wallalump population for each of the 
next Io years. 



Chapter 16 

Po1nters and L1nked L1sts 

LINO - Last In. Never out. 
Devlrs DP Dictionary 

The array ts an example of a static data structure. It ts called stattc 
because tts stze must be ftxed when the program ts wrttten. For example, 
suppose you haVe an array of 100 elements, bUt suddenly you ftnd that you 
need to store a 101st element tn the array. It can't be done wtthout halttng 
the program, changtng the deelaratton of the array, and rumtng the 
program agatn. In thts chapter, we are gotng to tntroduce ltnked ltsts as an 
example of a dynamic data structure. As we shall see, ltnked ltsts can 
grow to any arbttrary stze (that ftts tnto the RN1 of the computer> and are 
not ltmtted to some ftxed, predeclared stze. 

In the general sttuatton, you may need many arrays. Betng stattc data 
structures, thts probably leads to a poor uttltzatton of memory. Ftgure 
16.1 Illustrates a frustrattng problem that can occur wtth separate arrays. 

Figure 16.1 

As mustrated, four of the arrays are nearly empty, and, hence, great 
amounts of memory are betng wasted. But unfortunately, one of the arrays 

474 



Pointers and Linked Lists 475 

has overflowed, and the program abends (abnormally ends) because there Is 
no more room In the indicated array. We call this poor memory 
management because we have simultaneously wasted memory In four of 
the arrays and yet have no available memory In the other array. 

With linked lists, memory utl lizatlon Is as depicted In figure 16.2. 
That Is, each dynamic list uses just the amoun! of memory that It needs. 
Overflow only occurs when all available memory_ In the computer Is In use . 

• - • Figure 16.2 

In the dynamic situation the system keeps track of memory 
utilization and gives and takes back memory from our linked lists. For 
now, let us suppose we have two "black boxes,· New and Dispose, that 
magically fetch and dispose of memory for us. We shall have more to say 
about New and Dispose later. 

The array Is, of course, an ordered sequence of elements. Note that 
the elements of an array are even stored physically In order In RAM. We 
shall want our linked lists to be ordered sequences of elements, but we 
shall not Insist that the elements of the linked list be stored physically In 
order. That Is, we shall distinguish between the logical order and the 
actual physical order of the elements. As long as we can easily recover 
the logical order, It Is not essential that the elements actually be kept In 
physical order. The mechanism that we use to recover the logical order Is 
simple: Each element contains a "pointer· to the next logical element. 
Thus, a linked list Is usually drawn as In figure 16.3. 

List 

Figure 16.l 



476 Pointers and LIMed Lists 

It Is Important to realize that the cells depicted above may be anywhere In 
memory. For example, the element that P points to Is logically the 
element after the element that a points to. However, the cell that P 
points to may come before, or even be on the ·other side. or memory from, 
the cell that a points to. As long as we have a pointer, List, to the first 
cell, we can use the pointers to quickly recover the logical order of the 
linked list. 

The components of a linked list are called nodes. As shown In f lgure 
16.3, we Implement the nodes of a linked list as records with two fields. 
The first field Is an Information field and the second field Is a link field 
to the next node In the list. The Information field ts determined by the 
given application. If much Information Is betng stored, then the 
Information field can Itself be organized as a record. In the example that 
follows, let us suppose that the Information field consists or just a name 
(30 characters) and an Identification number (Integer). 

We first tum to the question of how the link field Is Implemented. 
This situation Is so Important that Pascal provides a "pointer type· just to 
Implement such dynamic data structures. A pointer ts declared as follows: 

var 
P : Alnteger; 
X: Integer; 

Notice the little A tn the declaration. This means that P ts not an Integer, 
but a pointer to an Integer. That Is, P contains the address or a cell that 
can contain an Integer. Contrast the dlff erence between P and X as shown 
In f tgure 16.4. 

x 

p-0 D 
Figure 16.4 

Since P Is a pointer (and not an Integer), the assignment P := 6 ts an 
tllegal mtxtng or types and does not assign 6 to the Integer that P points 
to. The correct statement Is PA := 6 and this Is read as: 

"The Integer that P points to Is assigned the value 6". 



Pointers llld United Usts 477 

That Is, the • symbol Is used In two distinct ways that the beginner must 
carefully distinguish: 

The symbol • Is used on the left of type names In var and type 
sections to declare pointer variables. 

The symbol • Is used on the right of pointer variables In the body of 
the program to reference the actual element that the pointer Is pointing 
to. 

The beauty (and confusion) of pointers Is that we can use both the pointer 
(address) as well as the value (contents) of the cell being pointed to. That 
Is, If Panda are both pointers to the same type, then both of the following 
are valid: 

Q := P; 
a·:= P"; 

The first assigns P's value to a so that a now points to the same cell that 
P does. The second assigns the value pointed to b.y P to the cell that a 
points to. Both operations are needed In what follows. The first moves 
pointers, the second moves Information accessed through the pointers. For 
example, suppose that P lnltlally points to an Integer with current value 7 
while a lnltlally points to an Integer with current value 4. Then the effect 
of each of the above assignments Is Illustrated In figure 16.5. 

P-G 

a-~ 

Q :• P; a·:• P"; 

Figure 16.5 



478 Pointers a Ll'*cd Lists 

Let's use po1nters to declare a linked list. The complete declaration 
Is given In listing 16.1: 

type 
lnfoFleld = record 

Name: strtng[30]; 
ID_No : Integer 

end; 
UstPtr = "Node; 
Node .. record 

Info: lnfoFleld; 
Link: UstPtr 

end; 

var 
List : UstPtr; 
Newlnfo: lnfoFleld; 
Index : Integer; 

Ltsttng 16. 1 

Notice that the Node Is a record with two fields as promised. The Info 
field Is very straightforward. The link field ls of type UstPtr which Is 
simply a pointer to another node. Note the "chicken and egg· problem with 
this declaration. That Is, a Node references a UstPtr and a UstPtr 
references a Node. This Is the one case In Pascal that something may be 
referenced before It Is declared. That Is, It Is legal to declare a pointer to 
an object even before that object Is Itself declared. Also notice that we 
keep track of a linked list with just one pointer, List, to the first element 
of the list. 

Operattons on Ltnked Ltsts 

Suppose that List has been declared as above as a UstPtr. Recall that 
declaring List does not give It any Initial value. How should we Initialize 
List? We shall suppose that every list has a special first element, called 
a llsthead. The purpose of the llsthead Is twofold: It makes every list, 
even the empty list, "visible" and It makes many routines that follow 
easier to write. Figure 16.6 depicts two linked lists with llstheads. 



Pointers and Linked Lists 479 

Ltst1 /\ 

Ltst2--

Figure 16.6 

List 1 In ftgure 16.6 contains 3 elements (In addition to the ltsthead). 
Llst21s the empty 11st that contains no elements Cother than the llsthead). 
Notice that the last element or a list needs some special nun po1nter to 
Indicate that there 1s no next element. In Llst2 we see that the pointer 
f1e1d of the listhead contains this special value. Again, because of this 
need, Pascal conta1ns a special pointer constant nll ror precisely this 
situation. The nll po1nter Is used to mark the end or a linked list. It Is 
Important that the last link be set to nll. ror 1f some "old" pointer value 
Is left In the last link f1e1d then we might mistakenly think that the llst 
goes on beyond the last element, and we would likely end up accessing 
lnval1d data. 

Thus, to Initialize List, we need to get a new node (the 11sthead) and 
make List point to this node. We also need to put nll In the ltnk f le1d or 
this node. Note that we do not need to place any Information in the 
Information field of the llsthead. Listing 16.2 shows the lnitiallze 
procedure In Pascal. 

procedure lnltlallze (var List : LlstPtr); 
begin 
New(Llst>; 
Llst·.unk := nn 

end; (Defln1tion or procedure lnitiallze} 

Listing 16.2 

The bunt-In procedure New Is very useful. If Pis a pointer to some type T, 
then New(P) causes the system to allocate a new cell or memory or type T, 
and to place the address or this cell In P. One should always draw pictures 
with 11nked 11sts to help visual1ze what is happening 1n the computer's 
memory. Figure 16.7 depicts the action or New(Llst). 



480 Potnters and Limed Lists 

List --GJ!l 
Figure 16.7 

Another simple procedure that Is useful Is one that prints the 
contents of a linked list. Clearly, the only way to print the contents of the 
nodes Is to trace through the pointers going from node to node until we 
encounter the ntl pointer. We must also skip the llsthead and begin with 
the first node. Here ts the pseudo-code for our plan: 

set P to the link field of list (P points to first element>. 
While P Isn't ntl do 

Print the contents of the node P points to. 
Advance P to the next node (P becomes link of P). 

listing 16.3 gives the Pascal equivalent of the above. The reader should 
draw a picture and carefully trace the code. 

procedure Prlntltst (list : LtstPtr); 
var 

P: llstPtr; 
begin 
P := ust·.unk; 
while P <> ntl do 
begin 
Wrlteln(P-.lnfo.Name: 30, P-.lnfo.ID_No: 10); 
P :• P-.llnk 

end 
end; (Definition of procedure Prlntllst) 

Listing 16.l 

A routine to print a list Is not of much value unless we also have 
routines that allow us to construct lists. As we shall see, Inserting and 
deleting elements from lists Is not difficult. Indeed, as figure 16.8 
shows, to Insert an element after the element Q points to only Involves 



Potnters and Ltnked Ltsts 481 

getting a new node, putting the new Information Into It, and then adjusting 
a couple of links: + 0 

I '-..... P-tE-) 
Figure 16.8 

For ease In discussion In the remainder of the chapter, we shall use 
some "imprecise· but shorter temlnology. Namely, we wm refer to "node 
P" even though P Is a pointer to a node and not a node Itself. When we 
make such a reference, we are, of course, referring to the node pointed to 
by P. With this convention, we do not have to keep repeating phrases like 
"the node pointed to by P". With this in mind, we present the pseudo-code 
for the Insertion operation that places a new node after the node a: 

Get a new node and let P point to it. 
Place the new Information In the Info field of node P. 
Set the link field of node P equal to the link field of node a. 
Set the link field of node a equal to P. 

The reader should verify that these Instructions produce the drawing of 
figure 16.8. To test your understanding, you should also draw a picture and 
see what Is wrong with the above pseudo-code if we reverse the order of 
the last two statements. When changing link fields, you should always be 
careful to consider the order in which you make your changes. 

We Include our Insertion routine In a procedure Build that constructs 
an ordered linked list. That Is, we shall choose to Insert new elements 
Into the list so that the list remains ordered. Notice that PrlntUst then 
prints the list In order! How do we find the correct place for a new 
element? We use two pointers P and a, with a following behind P. We 
want to find the place where O's Info Is smaller than the new Info and P's 
Info Is larger than the new Info. Then, clearly, the new node belongs 
between P and a, so we use the above routine to Insert It after a. What If 
the new Info belongs at the end of the list? Then P eventually becomes nil 
and we Insert after a anyway. Hence, since we are only lnterested in 
o, we can set P to nil as a signal that the proper place has been found. 



482: Pointers Ind Limed L11ta 

our build routine In pseudo-code ts: 

Set Q to list. 
Set P to link or List. (Q will follow behind P} 
While P ts not nll do 

tr P's Info Is bigger than the new Info then 
Set P to nll (exit the loop w1th place round} 

else (advance a and P and keep looking} 
Set Q to P 
Set P to link of P 

Insert the new element after the node that a points to. 

Trace the above pseudo-code Insert Ing "13" Into the linked list shown 
In figure 16.9. 

List 

Figure 16.9 

The Pascal equivalent of our pseudo-code ts given In listing 16.4. It 
orders the nodes by the llLNo rteld or the Information record. In our 
pseudo-code, we did not worry about such details. or course, in the actual 
Implementation we have to choose one or the fields as the "key" field on 
which all or the nodes are ordered. It is just a minor modification to order 
the nodes alphabetically by name. 

Note that Build works even If the linked list ts Initially empty. In 
that case, a points to the llsthead and P ts already nll, hence, the whlle 
executes zero times and the new element Is Inserted after the llsthead. 
Thus, Build can be used, after Initialize, to construct an ordered, linked 
list. 

We have gathered the procedures Initialize, Build, and Prlntllst Into a 
main program, Ltnke<Lltsts, that uses these procedures to build an 
ordered, linked list or ten elements. The program Is shown In listing 16.5. 
You should run the program with data of your own design. 



Pointers and Linked Lists 

procedure Build (List : LlstPtr; 
Newlnfo: lnfoFleld); 

var 
P, a : LlstPtr; 

begin 
a:= List; (Q will follow behind P. } 
P := List".Llnk; (New element will go between a and P.} 
while P <> nil do 
begin 

if P".lnfo.IDJlo >= Newlnfo.IDJlo then 
P := ntl (Exit loop} 

else 
begin 
a := P; (Move a and P forward one link.} 
P := P".Llnk 

end (If} 
end; (While} 

(Get new node, put info Into it, link It In after Q.} 
New(P); 
P".lnfo := Newlnfo; 
P".Llnk := a·.unk; 
a·.Llnk := P 

end; (Definition of procedure Build.} 

Listing 16.4 

program L inke<LL lsts; 
(This program mustrates the use of llnked lists.} 

type 
lnfoFleld =record 

Name : strtng[30]; 
ID_No : Integer 

end; 
LlstPtr = "Node; 
Node = record 

Info: lnfoFleld; 
Link : LlstPtr 

end; 

( Co111/111111d) 

483 



484 

var 
list : LtstPtr; 
Newlnfo: lnfofleld; 
Index: Integer; 

Pointers and Linked Lists 

(Procedures INITIALIZE, PRINTLIST, and BUILD go here.} 

beg1n (Body of main program, llnked..l.lst.} 
lnltlaltze<Llst>; 
for Index:= I to 10 do 
beg1n 

Wrlteln('Please enter name number·, Index: I>; 
Readln(Newlnfo.Name); 
Writeln('Please enter the ID number for·, New Info.Name); 
Readln(Newlnf o.IDJlo); 
Bulld(ltst, Newlnfo); 

end; (For) 
Write In; 
Wrlteln('Here Is your list In order by ID number:'); 
Prlntllst(Llst) 

end. 

Ust1ng 16.5 

Deleting from a linked list Is also easy. As shown In figure 16.10, we 
have only to adjust a pointer to delete the node that P points to. However, 
note that since the link field of the node before P must be changed, It Is a 
good Idea to have a pointer a to the node that precedes P. 

Figure 16.1 O 

Also, what shall we do with the newly ·freed" node P? It would be 
wasteful to simply abandon It. We should return It to the system for 
recycling. Since this Is a common and Important need with dynamic 



Petaters IRll ltntld Lists 485 

memory allocatton, Macintosh Pascal provides a built-In recovery 
procedure, Dlspose(P). We should think of Oispose(P) as the opposite of 
New(P). New(P) allocates a unit of memory from the system for our use 
while Dtspose(P) returns that unit of memory to the system. We leave the 
details of the deletion routine to the exercises, but do not forget to tnvoke 
Dispose tn your deletion routine. 

Exercises 

16.1 Wrtte a function CounLNodes that accepts a potnter to a ltst and 
returns a count of the mmber of nodes in the I ist. Do not count the 
ltsthead. 

16.2 Wrtte a procedure Delete(ltst, ID-Hum) that deletes the node from 
the linked ltst list whose 10...No is the gtven ID...Num. If there Is no such 
node, Delete prints a "Sorry, not found" message. Remember to Invoke 
Dispose to actually free the given node. 

16.l Write a procedure Flip(Ltst) that Inverts the order of List. That Is, 
the last element Is now the first element, the next-to-last element Is now 
the second element, etc. 

16.4 <Compare with Exercise 9.19.) The Lake Forest College RuMtng Club 
needs a program to sort out the wlooer In Its Strawman Triathlon. The 
competition consists of a 1/4-mlle swim, a 5-mlle blcycle ride, and a 
2-mlle run. The data for each competitor ts available on the text file 
Triathlon on the Sample diskette accompanying the book. There are two 
lines for each person. The first line Is the name, of type strtng[30). The 
second line contains a category (either the character 'S', 'F', or 'A' for 
Student, Faculty, or Administration respectively) followed by 3 real 
numbers representing, tn hours, the swim time, bike time, and run time 
respectively. 

Using linked lists with pointers, Identify the following Individuals: 
1. overall Grand Champion (Best swn of times). 
2. Grand Champion and runner-up In each category. 
3. overall best swimmer and runner-up. 
4. overall best biker and runner-up. 
s. overall best runner and rumer-up. 
6. Best Sport Award <Worst swn of times). 



486 Pointers and United Lists 

In case of a tie for a first prtze, award duplicate prizes and no runners-up 
prizes tn that competition In case of ties only among the runners-up, 
award duplicate runners-up prtzes. 

Htnt: Use several ordered, linked lists. Insert each person Into the 
appropriate lists. Take advantage of modular programmtng--do not wrtte 
an Insertion routine for each list! 

Warning: Remember, do not test real numbers for true equality. 



Index 

Entries followed by (Prog) are titles of programs In the text. 

A (Prog), 91 
Abacus,3 
Abend, 302, 475 
Abs,218 
Abundant Numbers, 177, 259 
Act Ive Window, 29 
Ada,6 
Add (Prog), 141 
Adjusting Windows, 34 
Amicable Numbers, 259 
Analytical Engine, 6 
and operation, 120, 122-124 
AnlmatedBox (Prog), 402 
Anonymous types, 322 
Apple Menu, 207-208 
Arctan, 218 
Arguments, 223 
Armstrong Numbers, 177 
Arranging output, 84-86 
Array, 286-333 

as Args/Params, 323 
column order, 326-327 
component type, 288 
multi-dimensional, 319-332 
packed, 353 
parallel, 300-301, 323-324, 

328,331 
row order, 326-327 
searching, 309-315 
simple operations, 294-296, 

324-327 
sorting, 3 16-3 19 

Artificial Intelligence, 9, 453 
ASCII, 273-274 

487 

Assignment statement, 75-76 
Augusta, Ada, 6 

Babbage, Charles, 5 
Bagels (Prog), 251-255 
Bagels Game, 250-255 
Base, 106 
Base Conversion, 275-277 
BaseConverslon, (Prog) 277 
BASIC, 14, 81-82, 262-263 
Batch, 99 
begtn,69-70, 125 
Binary system, 8, 276 
Binary search, 312-315 
Bit, 8 
Block structure, 245 
Blocks (Prog), 246 
Body 

of function, 223-224 
of procedure, 235 
of program, 69-70 

Boole, George, 120 
Boolean variables, 120-124 
Buffer, file, 380 
Buggy (Prog), 59-60, 67 
Build procedure, 481-482 
Built-in functions 216-218 
Burroughs, William, 4 
Button function, 401 
Byte, 8 

Cancel, 46 
Car Payment example 105-106 
Car _Payment (Prog) 108-109 



486 

case statement, 168- 173 
case index, 169 
case label, 169 

Chartype,261-265, 444 
Character manipulation, 444-455 
Check, 197 
Chr, 272-273 
Circle (Prog), 92 
Circle-2 (Prog), 93 
Click, 11 
Clipboard, 57, 184, 196 
Close option, 24-29, 57-59 

shortcut, 24-29 
Closing 

files, 57-59 
windows, 56 

Close (Pascal stmt), 111, 364 
Coln (Prog), 219 
Combinations 229-233 
Combinations (Prog), 230 
Comb5-And...Perms (Prog), 232 
Comments, 90 
Compiler, 14 
Composer (Prog), 414-422 
Compound statement, 124- 126 
Computational type, 282 
Computer 

definition, 9 
genera I purpose, 5 
generations, 8-9 

Concatenation, 355-357 
Concatenation function, 447 
Conditional stmts, 126-137 
Conjunction, 122 
const,93 
Constants, 91, 93-94 
Conversion between Integers 

and reals, 88-89 
Coordinates, 385 
Copy option, 184, 187 
Copy function, 447 

Copying files, 114-117 
Cos,218 
Count (Prog), 139 
CounL2 (Prog), 146 
Counters, 134 
Create (Prog), 365-366 
Creating a program, 35-44 
Cut option, 184-186 

Index 

Dashed procedure, 235-236 
Oashed-2 procedure, 237-238 
Debug (Prog), 199 
Debugging example, 51-55, 

199-207 
DegToRad function, 389-390 
Delete procedure, 447 
Deleting files, 208 
Deletions, linked list, 484-485 
Die (Prog), 220 
Ole, simulation of, 218-221 
Difference Engine, 6 
Difference, Sets, 426 
Disjunction, 122 
Disk files, 340 
div, 87 
DMde and Conquer strategy, 

216,250-255,433 
Division (Prog), 157 
Documentation, 11 
Dollars_To_DM (Prog), 167 
Double click, 11, 29, 39 
Double type, 282 
Drag, 11, 34 
Drawing Window, 29-34, 57, 196 

manipulating, 393-394 
text In, 397-398 

Drawstring procedure, 397 
Drive option, 44-46, 48, 181 
Oup Ii cat Ing files, 212 
Dvorak keyboard, 375-376 
Dynamic, 445, 474 



Index 

Ease (Prog), 451 
Easter 

algorithm, 242-244 
exercises, 260, 336 

Easter _Sunday (Prog), 243-244 
EBCDIC, 273 
Echo Rule, 113 
EChop 1 (Prog), 452 
EChop2 (Prog), 452 
Edtt menu, 183-189 
Edit (Prog), 185 
Editing a program, 35-44 

·EOVAC, 7 
Efficiency of searches, 315 
Eject option, 45, 63, 115 
Elshoff, James, 90 
Empty Trash, 117, 208 
end,69-70, 125 
End of File function, 149-152 
End of Line function, 374 
ENIAC, 6 
Enter key, 43 
Enumerated type, 269-271 
EOF, 149-152 
EOLN,374 
EraseOvalprocedure,400 
EraseRect procedure, 400 
Errors 

logical, 200 
real arithmetic, 87, 283 

Everywhere, 191-195 
Exp, 218 
Exponent, 106 
Extended type, 282 
EZ Come--EZ Go example, 

371-373 

Factorial function, 227-232, 
459-460 

FactTable (Prog), 228 
Fan key, 63 

Fan shortcuts, 198 
Fetch (Prog), 367 
Fields, output, 339-340 
File,339-340 

buffer, 380 

469 

File menu, 44-45, 179-183 
window, 380 

Files, 359-383, 
copying, 208-210 
deleting, 208 
disk, 340 
duplicating, 212 
extema 1, 340 
internal, 340 
merging, 368-371 
organizing folders, 210-214 
random access, 359, 378-379 
sequential, 359-383 
text, 373-377 
updating, 368, 371-373 

Find, 191 
Flowsnakes, 467 
for statement, 165-168 
Formatting 

automatic, 82-83 
output, 84-86 

FORTRAN, 14 
Forward procedure, 389, 391 
FrameOval procedure, 400 
FrameRect procedure, 400 
Function 

body, 223-224 
heading, 222 
invocation, 223 
side effects, 226 
vs.procedures,235-236 

Games Magazine, 17-18, 
20-21, 98 

Gauss, Karl Friedrich, 242 
GC0,472 



490 

Get, 380-382 
GetMouse procedure, 401 
Global variables, 226, 244-249 
Go option, 50, 55, 197 
Go-Go, 197,204 
GPA (Prog), 275 
Graphics, 385-424 

recursive, 467-472 
turtle, 388-392 

Graphs, 439 

Halt, 198, 203 
Hanoi (Prog), 463-464 
Har<LCopy (Prog), 113 
Hardware, 10 
Harmonic Serles example, 

143-144 
Heading 

function, 222 
procedure, 235,237 
program, 69 

Hexadecimal, 276 
Hierarchical Company, 439-441 
Hierarchy CProg), 442 
High Level Language, 14 
Highlighting text, 39 
Hollerith, Herman, 5 
Hotel (record example), 343-348 

Icon, 12 
tf...then, 126-128 
if ... then ... else, 129-132 
if VS. Whtie, 146-147 
lmagewrlter printer, 63, 183 
Include function, 448 
Index, 286 
Index type, 288 

of an array, 286 
Initialize option, 45-46 
Initialize procedure, 389-390, 

479 

Initializing variables, 82, 
141-142 

Initials CProg), 265 
Input 

Redirecting, 109-113 
Restoring, 114 

Insert procedure, 448 

Index 

Insertion In Linked list, 480-482 
Insertion Sort, 316-319 
Instant Window, 57, 184, 

195,205-207,258,303 
Integer, 77 
Interactive Input, 99-100 
Interpreter, 14 
Intersection of sets, 426 

Jacquard, Emil, 5 

K, 8 
Keys (Prog), 376 
Keywords, 69 
Koch's Snowflake, 467-470 

Language 
high level, 14 
low level, 13-14 
machine, 13-14 
structured, 15 

Leibniz, Gottfried, 4 
Length function, 354, 446 
Lexicographic, 446 
Library, I 06 
Line procedure, 237-238, 388 
Linear Search, 310-312 
Linero procedure, 387 
Linked Lists, 475-485 

Operations, 478-485 
Linked Lists CProg), 483-484 
Usthead, 478-479 
Listing a program, 62-63 
Ln,218 



Index 

Loading programs, 59-62 
Local variables, 226-228, 

244-249 
Logical 

error, 200 
variable, 120 
vs. physical order, 475 

Logo,388 
Longlnt, 229, 281 
Loops, 142 

MacPaint, 396 
MacWrite, 110 
MakeJriends (Prog), 371 
Marcotty, Michael, 90 
Mark I, 6 
Mary (Prog), 406 
Maxima, 153-156, 298-299 
Maxint, 77, 155 
Membership in sets, 427 
Memory, 9- Io 

volatile, 44 
Menu, 11 
Merge (Prog), 370-371 
Merging Files, 368-371 
Minima, 153-156 
mod, 88 
ModemArt (Prog), 401 
Modular Programming, 15-16 
Mouse, 11 

reading, 400-403 
Move procedure, 388 
MoveTo procedure, 388 
Moving & adjusting windows, 34 
Multiple case labels, 171 
Murphy's Law, 105 

Neat (Prog), 83 
Negation, 122 
Nest (Prog), 247 
Nested (Prog), 158 

NestecL2 (Prog), 159 
Nested t f's, 132-136 
Nested loops, 158-165 
New option, 59, 180 
New procedure, 479-480 
Newton, Isaac, 4 
Nodes,476 
Nonvolatile memory, 10 
not operation, 120, 122-124 
Note procedure, 405 
Notes, frequency table, 405 
NoLSo_Good (Prog), 114 
Null else, 137 
Null string, 445 

491 

Observe Window, 57, 184, 196, 
201-205, 303 

Octal, 276-277 
Omit function, 448 
Open, 24-29 

Open option, 180-181 
Open ... option, 59 
Pascal statement, 378 
shortcut, 24-29 

Opening MacPascal, 29-34 
Operating system, 10, 22 
or operation, 120, 122-124 
Ord, 271-272 
Ordinal type,269-271 
otherwise clause, 170 
Output 

printing, 63 
redirecting, 113-114 
restoring, 1 14 

Ovals, 398-400 

Packed arrays, 353 
Page Setup option, 182 
Paintoval procedure, 400 
PaintRect procedure, 400 
Palindrome, 45 I, 455, 464-465 



i92 

Parameters, 222, 237-244, 323 
value, 238 
variable, 238-244 

Party (Prog), 346-347 
Pascal, Blaise, 3 
Pascaline, 3 
Paste, 184, 186, 188 
Pause option, 54, 102 
Pause menu, 198,201,258 
Payl (Prog), 266-267 
Pay2 (Prog), 267-268 
Pay3 (Prog), 268-269 
Pedant ics, 150 
Pedantics (Prog), 148 
Pedantics_2, 150 
Pedantics_3, (Prog), 154 
Pedantics_4, (Prog), 161 
Perfect Numbers, 177, 259 
Permutations, 231-233 
Physical vs. logical order, 475 
Piano (Prog), 409-412 
Pixel, 12, 385 
Precedence,86, 123 
Pointers, 476-478 
Position function, 447 
Precision, 282 
Pred, 271 
Prime numbers, 259, 443 

function, 221-222 
Prime Numbers (Prog), 164 
Print opt ion, 62-63, 182-183 
Printer, 11 
Printing output, 63 
Printllst procedure, 480 
Problem Solving, 13, 120 
Procedures, 233-244 
Procedures vs. functions, 

235-236 
Programs 

debugging, 51-55 
loading, 59-62 

Programs (Continued) 
renam Ing, 64-65 
running, 49-50 

Index 

Prompt message, 105 
Pseudo-code, 107, 139, 143, 

251,369,435 
Punched Card, 5 
Put, 380-382 

Quit option, 59, 63, 183 
Quitting MacPascal, 63-63 
Qwerty keyboard, 374-376 

RAM, 10 
Random, 218-220 
Random access files, 359, 

378-379 
Random number generation, 

217-221 
RandSeed,256 
Read, 100-105 
Read vs. Readln, 103-104 
Read-only access, 363 
Readln, I 00-105 
Real, 77-78 
RealEquallty (Prog), 283 
Record 339-357 

fields, 341 
Hotel Example, 343-348 
selection, 341-342 
variant, 350-352 

Rect (built-in type), 393 
Rectangles, 398-400 
Recursion, 459-472 

inefficiencies, 467 
Recursive graphics, 467-472 
RecursivePals (Prog), 465 
Relational operators, 121 
Renaming 

disks, 64-65 
programs, 64-65 



Index 

repeat ... unti1, 137-144 
repeat vs. while, IS6-IS7 
Replace, 191-192 
Replace with, 190-192 
Resek, Diane, 433 
Reserved words, 69 
Reset, (Pascal stmt), 111, 

363 
Reset option, SS, 197, 204 
Reset switch, 6S 
Reverse-Harne (Prog), 4SO 
Revert, 187 
Revert option, 182 
Rewrite, 113, 361-363 
RollingHex (Prog), 392 
ROM, 10 
Round, 89, 217 
Run menu, SO, SS, 196-198 
Running programs, 49-SO 
Running sum, 140-141 

Sales (Prog), 112 
SANE, 106-107,217 
SAT (Prog), 331 
SAT example, 331-332 
Save as option, 44-4S, 48, 

66-67, 181-182 
Save option, 46-47, 49, 

181-182 
Save vs. Save as, 181-182 
SaveDrawing procedure, 396 
Saving programs, 44-49 
Scientific notation, 77 
Scope CProg), 248-249 
Scope rules, 244-249 
Screen dumping, 63 
Search (Prog), 192 
Search For, 190-192 
Search menu, 189-19S 
Searching algorithms, 

309-315 

Seek, 378-379 
Select All, 184 
Selection Sort, 334 
Semantics, 76 
Semicolon, 73, 12S 
Sentinel value, 147 
Sentinel vs. EOF processing, 

150-IS2 
Sequential access files, 

359-383 

i93 

Series (Prog), 144 
SetorawingRect procedure, 393 
SetRect procedure, 393 
Sets, 425-442 

as filters, 429-430 
difference, 426 
equallty,426 
intersection, 426 
membership, 427 
subsets, 427 
union, 426 

SetSoggies (Prog), 432 
SetText procedure, 394 
Shortcuts 

close, 24-29 
fan, 198 
highlighting, 39 
open, 24-29 

ShowDrawing procedure, 394 
ShowText procedure, 394 
Shrink box, 34 
Side effects, 226, 241 
Simple (Prog), 22-23, 38-S7 
Simulation, 303-304 
Sin, 218 
Sketch (Prog), 403 
Sloppy (Prog), 83 
Snidely_ l (Prog), 291-292 
Snidely-2 (Prog), 293 
Snowflake (Prag), 469 
Snowflakes, 46 7 



i9i 

Software, 10-11 
Soggies (Prog), 305-306 
Soggies example, 303-307, 

431-433 
Solfeggietto, 407 
Sonny Tan (Prog), 96 
Sonny Tan example, 94-96 
Sorting arrays, 316-319 
Sound, 404,422 
Special Macintosh Pascal 

types, 281-282 
Special menu, 117, 208 
Speller (Prog), 454 
Spiral (Prog), 395 
Sqr, 218 
Sqrt, 113, 218 
SquaresJ.ncLCubes (Prog), 224 
Statement 

assignment, 75-76 
case, 168-173 
Close, 111, 364 
compound, 124-126 
conditional, 126-137 
for, 165-168 
if, 126-132 
Open,378 
Read and Readln, 100-105 
repeat ... until, 137-144 
Reset, 111, 363 
Rewrite, 113, 361-363 
Seek, 378-379 
with, 348-349 
while, 144-153 
Write and Writeln, 70-72 

Static, 445, 474 
Step, 197,205 
Step-Step, 198,205,207 
Stops In, 198,203-204 
Stops Out, 198 
Stored program 7 
Stretch box, 34 

string, 78 
String 

Index 

avoiding built-In, 352-357 
manipulation, 444-455 
null, 445 
ordering, 446 
size, 445 

Structured 
languages, 15 
programming, 139, 216 
programming example, 

250-255 
Subrange types, 280-281 
Subscript, 288, 302 

out of bounds, 302 
Subsets, 427 
Succ, 271-272 
Syntax, 69 

Table (Prog), 166 
Tag field of record, 350 
Taxes (Prog), 172 
Taxman (Prog), 435-438 
Taxman game, 433-438 
Temperature (Prog), 155-156 
TestEOF (Prog), 377 
Text file, 110, 373-377 
Text Window, 29-34, 49-50, 

57, 196 
manipulating, 393 

Textorawlng (Prog), 398 
TextFace procedure, 397 
TextFont procedure, 397 
TextSize procedure, 397 
TickCount, 256 
Top Down 

design, 107, 304 
example, 250-255 
programming, 15-16, 139, 

216 
Tower of Hanoi puzzle, 460-464 



Index 

Trailer value, 147 
Trash, 117 
Tree (Prog), 471-472 
Triple click, 39 
Trunc, 89, 217 
Truth tables, 122 
Turn procedure, 389-390 
Turtle Graphics package, 

388-392 
TV (Prog), 279 
Twelve Days of Christmas, 

307-309 
Type, 261-283 

computational, 282 
double, 282 
enumerated, 269-271 
extended, 282 
ordinal, 269-271 
same, 322-323 
subrange, 280-281 
type section, 268-269 

Type size, 196 
Type size option, 57 

Union of sets, 426 
Untitled Window, 29, 31 
Updating files, 368, 371-373 
User-Defined types, 266-272 
uses, 107 
UTFR {Prog), 152 

Value parameters, 238 
var,80-81 
Variable 

global, 226, 244-249 
Initialization, 82 
local, 226-228, 244-249 
notion of, 73-75 
parameters, 238-244 
Pascal, 75 
types, 77-79 

Variant records, 350-352 
ViewJ'riends (Prog), 371 
VlewJ'riends2 (Prog), 382 
Volatile memory, 10, 44 
Volume (disk name), 111 
Von Koch, Helge, 467 
Von Neumann architecture, 7 
Von Neumann, John, 7 

What to find, 190-194 
while, 144-153 

495 

while vs. repeat, 156-157 
Widget Works array examples, 

291-294,296-302,328-301 
Window 

active, 29 
Drawlng,29-34,57, 196 
Instant, 57, 184, 195, 

205-207,258,303 
Observe,57, 184, 196,303 
Text,29-34,49-50,57, 196 
Untitled, 29, 31 

Window to a file, 380 
Windows 

closing, 56 
manipulating, 393-394 
Windows menu, 56-57 
moving and adjusting, 34 

Wirth, Niklaus, 13 
with statement, 348-349 
WordCounter (Prog), 430-431 
Write vs. Wrlteln, 70-71 
Write-only access, 361 
Writeln, 70-72 
WriteStrlng procedure, 

354-355 

Xmas {Prog), 308-309 
Xpwrl, 107 



497 

MACINTOSH PASCAL DISKETTE IS AVAILABLE 

For your convenience, a diskette Is available from the publisher to 
accompany this book. The diskette contains all sample programs from the 
book as well as text files for the sample programs and exercises. The 
diskette wm operate on any Macintosh computer that utrnzes Macintosh 
Pascal software, Version 1.0. To order the diskette, please return the 
order form below with check or cred1t card Information. 

"l11JClntosh # Is a r8fllsterlld trlldllmark of Apple Computer, Inc. 

r------------------------------------------------------------------------i 

I 
I 
I 
I 
I 

Ordering Information 
can ( 301) 251-9050 or write to Computer science Press, Inc., 11 Taft Court, Rookvtlle, 
Marylend 20850, to order our publlcetlons. Ask for our complete cetelog of quality books at 
ell levels from Introductory to the 81Wenced levels. Residents of Marylend should 8'tl 51 
sales tax. Prices subject to ch8ngl3 without notice. 

MACINTOSH PASCAL 
DISKETTE 
ISBN 0-88175-088-3 

QUAN. 
ttS20.oo, __ 

Sub Total 
Postage end Handling $2.00 

Total 

PRICE 

0Payment enclosed Ovisa No. ______ OMastercard No.-----
Stgnatur..__ __________ _ Expiration d8t...,11 ____ _ Nam.,__ ____________________ _ 

Amlr'~---------------------Clty sta...__ _____ Zlp ------
ALL ORDERS FROM INDIVIDUALS MUST BE PREPAID 

0 Ml my 11811le to your malling list. Dsend me your current catalog. 
Computer Science Press, Inc., I ITencourt. Rockville, MD 20850. USA. (301) 251-9050 ! _______________________________________________________________________ _ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



-----

ABOUT THE BOOK 

This book is a complete introduction to the Pascal programming language on the . 
Macintosh computer. It is suitable for those wishing to learn Pascal or as a 
reference for those who are already familiar with the language and want to quickly 
learn the special features and extensions made possible through Macintosh Pascal. 
The book stresses the importance of structured programming and, through a wide 
range of examples, tries to show the reader that problem solving , not language 
syntax, is the objective of this book . In a light and witty style, all of the main topics 
found in an introductory programming course are covered, including graphics and 
sound, editing, records, pointers , sets, character manipulation, files, user-defined 
types, arrays, debugging , and more. Macintosh Pascal provides an ideal learning 
environment by showing the reader how to take advantage of Pascal's special 
features which make programming and debugging accessible for all. 

ABOUT THE AUTHORS 

Dr. Lowell A. Carmony, Associate Professor of Computer Science at Lake 
Forest College , has been active in computer science and mathematics education for 
twenty years . Dr. Carmony has taught mathematics or computer science at every 
grade level from first grade to graduate school. He has been awarded numerous 
grants by the National Science Foundation to provide in-service instruction for 
elementary and secondary school teachers . He is the founder of the Lake Forest 
Computer Camp and is co-chairman of the Illinois Council of Teachers of Mathe
matics Computer Curriculum Committee . Dr. Carmony is also the editor of the 
l llinois Mathematics Teacher and an author of the popular Computer Science Press 
publication Problem Solving in Apple Pascal. 

Dr. Robert L. Holliday, Assistant Professor of Mathematics and Computer 
Science at Lake Forest College , earned his Ph.D. from Southern Illinois Univer
sity at Carbondale. His research interests include quasi-symmetric block designs , 
programming language design , and programming language implementation . 

ISBN 0-88175-081-6 




