

M A c N T 0 s H

p A s c A L

M A c N T 0 s
p A s c A L

The Fear and Loathing Guide

by SCOTT KRONICK

..
TT

ADDISON-WESLEY PUBLISHING COMPANY, INC.

Reading, Massachusetts
Wokingham, England

Menlo Park, California Don Mills, Ontario
Amsterdam Sydney

Mexico City Bogota Santiago
Singapore

San Juan
Tokyo

H

Many of che designations used by manufacturers and sellers co distinguish cheir produces
are claimed as trademarks. Where those designations appear in chis book and Addison­
Wesley was aware of a trademark claim, che designations have been printed in initial
caps.

Library of Congress Cataloging In Publlcatlon Data

Kronick, Scott.
Macintosh Pascal illustrated.

Includes index.
1. Macintosh (Compucer)-Programming. 2. PASCAL

(Computer program language) I. Tide.
QA76.8.M3K76 1985 001.64'2 85-3907
ISBN 0-201-11675-8

Copyright© 1985 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of chis publication may be reproduced, stored in a retrieval
syscem, or cransmicced, in any form or by any means, eleccronic, mechanical, photo­
copying, recording, or otherwise, wichouc che prior wriccen permission of che Publisher.
Printed in che United Scates of America. Published simultaneously in Canada.

Second Printing, September 1985
BCDEFGHl]-HA-898765
Sec in 11 pc. Garamond by General Graphic Services, Inc., York, PA
Texc design by Pauy Lowy, NY, NY
Cover design by Marshall Henrichs

Teat

Ulthout the help of the following people, the Fear and
Loathing Guide would have been entirely possible, but their
generosity and talent allo1ed nr. nosa to goof off, hang out,
play with his girlfriend, and feel damn good about being
allue.

nlchael Cermak, 1ho knoms lots about friendship.
Carol, Gary, Ruth, and nason, who kno1 lots about family.
Rmanda Hixson and Rian Goldstein, 1ho kno1 lots about books.
nr. noss's girlfriend, •ho kno•s lots about nr. noss.

And the person to 1ho1 this book is dedicated:
Andy Hertzfeld, mho kno1s lots about lots.

Contents

1 Introduction

3 PART1 Running MacPascal: The User's
Guide

7 1 Entering the Sewer with a Boy or Girl Mac
entering and saving a program called

ComputerSewer

17 2 Low-Down, Cheating Computers
learning about errors before they freak you

out

27 3 Don't Call It the Runs Menu
exploring different ways to run and pause in a

program

35 4 Macintosh Saves, Gretzky Scores on the
Rebound
experimenting with the File, Edit, Search, and

Windows menus

45 5 An Instant Cure for Premature Compilation
running instructions immediately in the Instant

window

55 6 Observing: Different Pokes for Different Folks
watching variables in the Observe window as a

program runs

CONTENTS vii

63 PART 2 Programming with Quickdraw
and the Toolbox:
The Language Guide

67 7 Zen Pascal: Everything You Know Is Wrong
program I semicolons I var I begin I end

73 8 Of Mice and Mountains
integer I frameRect I moveTo I writeDraw I

repeat .. until I button I getMouse I if.. then I
and I invertRect

79 9 Procedures and True Boolean Confessions
var I boolean I procedure

85 10 Rect and Point: Types Not for Your Sister
point I rect I setPt I setRect I ptlnRect

89 11 Babies and the Input/Output Function
string I setTextRect I showText I write I

writeln I if .. then .. else I function I readln

97 12 The Mouse Yes, the Keyboard No
hideAll / setDrawingRect I showDrawing I

if .. then .. else I penSize I textSize I textFont I
frameRoundRect I function I or I not I
sysBeep I while .. do

105 13 The Printer Prints
text I rewrite I writeln

109 14 Printing In Style Without the Alligator
const I for .. to .. do I chr I case .. of

117 15 Filing Away Regrets on a Disk
array I newFileName I rewrite I close

123 16 Recalling Regrets from a Disk
oldFileName I reset I not I eof

129 17 Trading Licks with MacWrite
oldFileName I reset I eof I eoln

133 18 Trading Licks with MacPaint
const I procedure I eraseOval I paintOval I

viii MACINTOSH PASCAL ILLUSTRATED

frameOval I abs I random I mod I
save Drawing

141 19 QuickSounds for the Hard of Herring
sysBeep I note

145 20 Pick-Me-Ups at the Frequency Bar
fillRect I globalToLocal I eraseRoundRect I

eraseOval

151 21 Passing Parameters on E Street
procedure I note

155 22 A Springsteen Type Concert
type I ord

159 23 Detecting Shady Characters
type I set of I function I get

165 24 Stringy Strings and Split Ends
var I chr I length I delete I concat

171 25 Formatting Dollars with Common Cents
extended I stringOf I insert

177 26 Financial Programming: To the Bone
type I record I computational I [+, - , * ,/]

183 27 A Time for Mac, a Time for Martha
dateTimeRec I with .. do I writeln I insetRect I

fillOval I tickCount I fillArc I paintArc

191 28 Files for the Child in You
record I array I file of I open I seek I filepos

201 PART 3 Referencing Macintosh Pascal: The
Whiz Kid's Encyclopedic Guide

205 a New Frontiers, or Are We Having Fun Yet?

207 b Pascal Structures

211 c Macintosh Character Set

213 d Printer Control Codes

215 e Vocabulary and Symbols

CONTENTS Ix

x

219 f The Whiz Kid's Dictionary
defining 164 Pascal, Quickdraw, and Toolbox

terms
illustrated with 75 complete, ready-to-run Pascal

programs

331 Index

MACINTOSH PASCAL ILLUSTRATED

M A c N T 0 s H

p A s c A L

Introduction

If coloring books had instructions, kids would just chew the
pages. Give them some crayons. Leave them alone. They don't
need paper. They can Michelangelo the wall.

Macintosh is a mean set of crayons. Besides pictures, words, and
numbers, it draws tools that work and makes voices that sing.
But with the holy goose as my witness, no fat-pouted, mealy­
mouthed smudgepot calling hisself a teacher is going to put his
pigeon-smear ideas about computers near my new Macintosh.

That goes for books, too.

Computer books have got a boring evil that will
put the devil to an iceman's sleep.

Macintosh shows me what I need to know, and when I muck up
bad, it tells me that also.

All things considered, my Macintosh is probably stupider than
my houndog, Rollo. Though for a machine, it has plenty of spunk.
What's more, Rollo and I have taken a liking to Mac, and we're
the kind of folk who look after those we care about.

Rollo understands plain English. Macintosh talks something called
Macintosh Pascal. Without resorting to teaching-call me a teacher

INTRODUCTION

2

and you'll get a lip swollen the size of Missouri-there are some
pointers worth knowing.

Part 1 puts your hands on the Mac. A step-by-step guide shows
you how to use all the menu options of the MacPascal system.

Part 2 starts you writing programs with the Macintosh spirit. You
will explore Pascal programming by using Quickdraw, the mouse,
the printer, the disks, sound, the calendar/clock, and more from
the heart and soul of the Macintosh Toolbox. Every chapter
shows a working, practical program that you can build upon.
Every program adds to your understanding of Pascal.

Part 3 turns you loose. A learn-by-example encyclopedia of Pas­
cal, Quickdraw, and the Toolbox gives you immediate access to

knock-out Macintosh programming. Almost every entry is illus­
trated with a stand-alone program, showing MacPascal's vocab­
ulary in action . Beneath every program is the program's output,
giving you the freedom to explore programs even when your
computer is turned off.

No flow charts. No grammar lectures. No slobbering end-of­
chapter exercises you would never do anyway. This book shows
MacPascal sharp, active, and ripe for improvisation:

with 100 complete, unchopped programs.

The programs you create will have the Mactintosh feel that sets
Macintosh apart from all other computers.

Any of you hotshot programmers may want to read this guide
from the end backward. No matter how fast you get there, you
will end up playing hot and heavy with the Toolbox- the
tightest, cleanest box of crayons any kid has had in history.

MACINTOSH PASCAL ILLUSTRATED

p A R T

Running
MacPascal: The

User's Guide

The six chapters of Part 1 show
you how to use Macintosh Pascal.
All of the MacPascal menu op­
tions are introduced. You will see
how to enter, save, run, print, al­
ter, and investigate a Pascal
program.

Investigate a program? MacPascal
offers features that show you how
a computer program operates­
many of which have never before
been offered by other computers
or other versions of Pascal. At your
command is a pointing hand that
leads you through a program, a
practice area for trying out Pascal
instructions without actually writ­
ing a program, and an observation
deck that allows you to look inside
a program while it is running.

All along, even as you are typing
at the keyboard, MacPascal checks
for any errors you might make,
and tells you where and why you
have gone astray. And from the
start, the Fear and Loathing Guide
helps you prevent many problems
from ever occurring.

Here is a summary of what you
will find in Part 1:

• You will type in and run a tiny
program called FourPlay, then
enter and save an animated
graphics program called
ComputerSewer, which will be
used to illustrate MacPascal in
all six chapters.

• You will see the ways that
MacPascal catches errors 1n

programs and find out how to
protect your program from disk
and power foul-ups.

• You will explore the Run
menu's options, including
MacPascal's unique steps and
stops, which help you execute,
and understand, a program line
by line.

• You will experiment with the
File, Edit, Search, and Win­
dows menus to print a pro­
gram, close a program, be­
gin work on ~ new program,

and edit a program quickly with
the mouse and the automatic
search option.

• You will use the Instant win­
dow to begin hands-on explo­
ration of Macintosh's amazing
graphic capabilities known as
Quickdraw.

• You will open the Observe
window and observe the
changing values of a program
in progress, a powerful tool to
help you understand the me­
chanics of a computer language.

1.1 When the
going gets tough

1 Entering the Sewer
with a Boy or Girl Mac

Hook up your cords. Turn it on. Disk or no disk, your Macintosh
comes alive, drinking 60 waccs. Head for the fridge. Pet the dog.
Unless you are gone for a couple days, better to leave Mac on.
A powered-up Macintosh begs for attention.

Do you know how to pull down menus? Click and double click
the mouse? If not, go directly to MacPaint. Create a masterpiece.
But do not cut off your ear. You will need ears for the chapters
on making sound.

Do you know how to use the mouse to edit text? If so, you
already know most everything necessary to enter and manipulate
a Pascal program. The manuals for both MacPascal and MacWrite
explain how to edit text. The mouse, file, and edit features of
MacPascal are nearly the same as those of MacWrite.

Macintosh programmers are not wimps. They can draw and write.
And they can wield a mouse like pros.

At Apple, people say, "When the going gets tough, the tough
turn pro." Mr. Moss says:

When the going gets tough,
spend your nights with someone who isn't.

ENTERING THE SEWER WITH A BOY OR GIRL MAC 7

1.2 Those who
can do; those
who cannot
teach; and those
who cannot
teach teach
programming

8

If you are new to the Pascal programming languages, or all pro­
gramming languages, you can learn by practicing with the pro­
grams in this book. The grammar and structure of Pascal are
easier to learn after, not before, you have practiced running small
programs.

Insert the Pascal disk. Here is what you see.

r s File Edit Uiew Special
,

Double click on the Pascal disk icon. The disk icon opens into
the MacPascal Desktop window.

MACINTOSH PASCAL ILLUSTRATED

II

~[Pascal
7 it•ms 390K in disk IOK n~il~bl•

m ~]Q
CJ 0 0

Open Me Macintosh Pascal Tools Information Demos

0 0
Empty Folder System Folder

to
~]Q 121

If someone else has used the Macintosh Pascal disk before you,
or if you are using an updated version, your Desktop window
might be different from the one described in this section.

The MacPascal Desktop window initially displays several icons.
The icon titled Macintosh Pascal opens to the Pascal language.
You will be using this icon in the next section.

The System Folder contains operating information that Macin­
tosh needs. You will not need to access anything directly in the
System Folder to use MacPascal, yet it must stay on the disk.

The MacPascal icon and the System Folder are the only essential
items on a MacPascal disk. At a later time, all other programs
and folders should be dragged to the Trash to make more room
on your Pascal disk. But before you trash anything, transfer
copies of all programs and folders you might want to use later
to a blank disk.

The Demo Folder holds a windowful of nifty sample programs.
They are fine for seeing how Pascal works, but once you have
written a couple programs on your own, you will say of these
demos, "Gag me with a PCjr." Heck, later in this chapter your
ComputerSewer will knock the socks off MacPascal's samples.

The Information Folder contains five text documents. The doc­
ument titled Read Me introduces the MacPascal disk. The four
other documents contain information that was left out of the
Reference Manual.

ENTERING THE SEWER WITH A BOY OR GIRL MAC 9

1.3 A tiny tease
of a program

10

The Tools Folder contains three programs. "Browser" lets you
select any document in the Information Folder, or any other file,
for viewing on the screen. "PrintTextFile" offers the same option
as "Browser," except instead of displaying the file on the screen,
it prints a copy on your printer. A third program, "TextEditor,"
allows you to create your own text documents.

The "Open Me" program brings to the screen the text document
called Read Me. The Read Me document explains how to use the
Tools Folder to read what is in the Information Folder. The Read
Me document happens to mention a book by another publisher
to which Mr. Moss and the Fear and Loathing Guide say: Eat
sewer, pal.

In this section you will type then run a Pascal program that draws
a solid black circle in the Drawing window.

Double click on the Macintosh Pascal icon. Here is what you
see.

' s File Edit Search Run Windows

0 Untitled

program ,. tit 1 ~ j

: 1 (11 JI 1jt- ,- 1 :JI ,jf 11=1:1 =:
begin

: \I.I Ur pr ug1 .j111 : tat ~1ne11t ·=:
end

I

MACINTOSH PASCAL ILLUSTRATED

Te Ht

Drawing

Press the backspace key once. This will erase the blackened pro­
gram outline that appears in the Program window. Then type the
program as you see it below.

=o

I

Untitled

program FourPloy; IQ
begin
peint0ve1(4, 4, 44, 44)

end.

Do not bother to indent lines or use bold lettering. Macintosh
Pascal does this for you automatically. The upper-case letters
serve as a convenience for readability.

If you make an error or see your last typed line become ©ll\llU~Ull1l®©I ,
backspace or mouse-edit the unwanted characters and try again.
The outlined code will return to normal print when the error is
corrected and you click the mouse within the Program window.

Select Go from the Run menu. Here is what you should see in
the Drawing window.

ENTERING THE SEWER WITH A BOY OR GIRL MAC 11

II

1.4 The real stuff

12

iiiD Drawing

•
l2l

If the Macintosh makes a beeping sound and a message box
appears with a picture of a bug, click the mouse with the cursor
arrow anywhere inside the message box. The bug message will
go away. Now edit or retype the five words, four numbers, and
seven punctuation marks exactly as you see them in the Program
window on the previous page.

When a program runs, the output is displayed in the Drawing
window or the Text window. Graphics appear only in the Draw­
ing window. Text can be written in either the Text window or
the Drawing window. Text intended for the Text window uses
different Pascal instructions than text intended for the Drawing
window. Later chapters will show you how to take advantage of
both windows.

In this section you will type in an animated graphics program
that will be used to demonstrate MacPascal throughout Part 1.

Resize the Program window so that it fills most of the screen.
This will prevent the longer lines of the program from being
hidden behind the right margin of the window. In case you are
still new to the idea of Macintosh windows, they are resized by
holding down the mouse buttop ~nd dragging the cursor as it

MACINTOSH PASCAL ILLUSTRATED

points in the small box (showing two overlapping rectangles) at
the bottom-right corner.

~ s File Edit Search Run Windows

;;o Untitled

progrnm FourPlay; ~
begin
paintoval(4, 4, 44, 44)

end. r-
I ~

t--r- .

~ tQ
l2..l .h ll::J

Now, you need to get rid of FourPlay. Move the cursor back
into the Program window and select the text of FourPlay by
dragging the mouse down the left margin of the Program window
while holding down the button. Selected text appears black­
ened-white letters on a black background. Press the backspace
key once to erase the selected text. Then type the program as
you see it on the next page.

ENTERING THE SEWER WITH A BOY OR GIRL MAC 13

14

~[

?I

Untitled

jprogr11m ComputerSewer;
Yllr

top, left, topHop, leftHop, bend, line, node, girth : integer;
begin

top :: O;
left := O;
for bend := 1 to 25 do
begin

line :: rondom mod 30;
girth := rendom mod 25 + 24;
topHop := rendom mod 19 - 9;
leftHop := rendom mod 19 - 9;
for node := 1 to line do
begin

EreseOvel(top, left, top+ girth, left+ girth);
if node mod 3 = 1 then

PeintOvel(top, left, top + girth, left + girth)
else

Untitled

FremeOvel(top, left, top+ girth, left+ girth);
if top< O then

topHop := ebs(topHop)
else if top> 200 then

topHop := -ebs(topHop);
if left < o then

leftHop :: ebs(leftHop)
else if left > 200 then

leftHop := -obs(leftHop);
top := top + top Hop;
left := left + leftHop

end
end

end.

The Program window will scroll by itself as you fill the window
with code. Use the scroll bar when you want to see a different
section of the program.

The same rules found in FourPlay apply to ComputerSewer:
Indentations and bold lettering are done automatically by

MACINTOSH PASCAL ILLUSTRATED

1.5 A quick save
and a green light
for the brave

MacPascal. The ©l!Jl~~Uliil®©I lettering means a mistake needs to be
corrected.

Before going any further, even before you run ComputerSewer
for the first time, you should save the program you have typed
onto a disk. Saving a program onto disk is done through the File
menu. The contents of the Program window will be written onto
a disk under a name you assign. Once saved, a program will be
represented by its name and icon in the MacPascal Desktop
window. A program saved on disk can be brought back onto the
Macintosh screen by double clicking on the program's icon.

Choose Save As from the File menu. The following dialog box
will appear.

Saue your program as Pascal

I Eject

Saue cancel

Type in the name ComputerSewer. Now click the mouse as it
points on the Save button. The disk should whir and a copy of
ComputerSewer should be safely stored onto the Pascal disk.

Now that you have saved ComputerSewer, you can leave MacPascal
(by choosing Quit from the File menu), or even turn off the
Macintosh, without having to retype the program the next time
you want to use it. You can return the text of ComputerSewer
to the Program window at any time by double clicking on its
icon from the MacPascal Desktop window.

Chapters 2 and 4 have more information on saving programs on
disk and using the File menu.

Interested in seeing what ComputerSewer actually does? If you
are brave, bring forward the Drawing window by clicking the
button with the cursor arrow anywhere in the Drawing window,

ENTERING THE SEWER WITH A BOY OR GIRL MAC 15

1.6 How to tell if
your Mac is a
boy or a girl

16

then pull down the Run menu and select Go. If bravery is not
your forte, wait until after the next chapter to select Go-then
you will be better prepared to risk the twisted and ugly face of
the bug message.

Macintosh computers are machines. There is no boy or girl va­
riety. The fact that Mr. Moss calls his Macintosh Twila is not an
attempt to ascribe human traits to a machine. Nor should the
feminine name lead anyone to believe a computer has surrogate
potential. To the contrary, what a Macintosh can do best is allure
a special friend to your side. From then on, the evening is your
responsibility : fine wine, candlelight dinner, Macintosh demon­
stration, two hands reaching for the mouse, touching ...

Programming artists perform with imagination.
The others crank COBOL on corporation
mainframes.

MACINTOSH PASCAL ILLUSTRATED

What's next

2.1 White shirts,
blue suits

2 Low-Down, Cheating
Computers

Did you have any problems typing in ComputerSewer? If so,
you are in the right place. This chapter covers trouble and how
to get out of it. Everything that possibly could go wrong in a
Pascal program is documented. And if you believe that, Mr. Moss
requests you write him regarding real estate opportunities over­
looking the Everglades.

Bugs, errors, glitches, zaps, bombs, crashes-programmers have
more names for failure than Eskimos have for snow. No surprise
that so many people's attitude toward computers stinks.

Mr. Moss points to one industry giant for fostering the "hands
off, moron, they're our computers even after you buy them"
mentality, but adds, "I Better not Mention who."

Excuse Mr. Moss for any hint of bitterness, as his formative
exposure to computers was gotten by handing punched cards
through a window to a snotty grad student wedged in front of
the room-sized university mainframe, and then waiting three days
of down time and low priority to have a different trout-faced
flunkie hand him back the cards and mostly blank, trash paper,
saying a control card comma should have been in column 12
instead of column 11.

LOW-DOWN, CHEATING COMPUTERS 17

2.2. Mr. Moss
eats bugs for
breakfast

2.3 The outlined
code

18

The last chapter gave you a taste of computer programming. If
you are like most learners, while typing in ComputerSewer you
probably felt as hesitant as you would biting into lizard kidneys.
Perhaps you made an error or came to a point where you were
unsure of how to proceed.

A computer sucking electricity into its little plastic body can spew
gibberish faster than a late-night carpet dealer preaching on UHF.
Errors will come at you in all directions. Great; scream at them,
threaten them, belittle their silica origins. MacPascal's best fea­
ture is its uncanniness in flushing bugs from their slimy haunts.

The next three sections of this chapter show how Macintosh
Pascal reacts to incorrect programming. Sometimes MacPascal
will IQ)UJJ~llolfil® the words following an error. Sometimes a picture
of a thumbs down hand will appear in the left margin of the
Program window. Sometimes the screen will splat with queer
letters and designs. Sometimes a picture of a bomb appears,
saying "serious system error."

The bomb lies. No error is serious. Your program might be shot
to hell, but programming errors are no more serious than is
coming upon a new word while reading a book. Fixing those
errors and recovering from undetermined computer weirdness
demands, more than anything, your fascination. Your technical
skill will grow as a result.

Mr. Moss defines a serious error as failing to ask
for a telephone number in a chance meeting with
a person you would like to date.

MacPascal checks for errors and formats each line of code with
indentations and bold lettering after you type it in. Hitting the
return key or inserting a semicolon tells MacPascal you have
finished typing a program line.

The checking process will cause any unacceptable Pascal usage
to be outlined from the point of the error to the end of the line.
Here is a side-by-side example of an incorrect and correct Pascal
command.

MACINTOSH PASCAL ILLUSTRATED

II

~[

~r

ComputerSewer

progn1m ComputerSewer;
YO~

top, left , topHop, leftHop, bend, line, node, girth : integer;
begin

top := O;
left := O;
f or bends n a® ft! n
begin

progrom ComputerSewer;
YOr

Computers ewer

top , left , topHop, leftHop, bend, line, node, girth : integer;
begin

top := O;
left := O;
for bend := 1 to 25 do

begin

If you are curious about why the for .. to .. do statement requires
a colon/equals sign (: =), flip forward to for .. to .. do in Appendix
F, Part 3.

Whenever you get curious about the rules for using Pascal in­
structions, flip to the alphabetical list of explanations and ex­
amples in Appendix F, Part 3. Better to pace yourself than to
choke on the "Pascal Stuffed Down Your Throat Approach"
employed by the scholarly fishwrap .

Click into the Program window and introduce the error described
above. Find the for bend : = 1 to 25 do statement and erase the
colon. Click the mouse and watch the line become outlined. Now
you can fix the error simply by inserting the colon in the proper
place and clicking again. The outlining returns to normal print
without your having to backspace or erase the entire outlined
code.

LOW-DOWN , CHEATING COMPUTERS 19

2.4 The run time
bug message

20

In addition to checking each program line for proper usage,
MacPascal formats the line with indentations, and bold lettering.
Not only does this make the program easier to read, it brings to
your attention errors that might be grammatically correct but
operationally not what you intended.

For instance, if you were to use the words for, to, or do in any
other context than the for .. to .. do statement, their bold lettering
in the Program window would bring to your attention their re­
served word status in MacPascal. Likewise, you might notice an
errant semicolon because of the indention of the next code line.

MacPascal reserves the use of thirty-eight special purpose words
and highlights those words in bold lettering when a line is for­
matted. See Appendix E for a list of reserved words; also, each of
MacPascal's reserved words is defined in Appendix F, "The Whiz
Kid's Dictionary."

Bug messages appear when you run an improperly constructed
program. Here is a sample bug message:

Either 11 semicolon (;) or an END Is eHpected following the preuious
statement, but neither has been found.

There are innumerable ways of improperly constructing a pro­
gram; however, there are a limited number of different bug mes­
sages. This means the bug message may not exactly identify your
particular error. Clicking within the bug message will make the
bug message disappear and enable you to make adjustments to
the Program window.

In addition to the bug message, MacPascal will display a thumbs
down hand in the left margin of the Program window at the line
where the error is detected. Program execution will be halted at
this point. Until you fix the infraction, there is no way for the
program to proceed beyond the thumbs down hand.

MACINTOSH PASCAL ILLUSTRATED

2.5 The glitch
and the glop

The computer operates with Mr. Spock logic, yet many steps
may pass before an error offends this logic. The moral: Don't
expect the bug message and its thumbs down hand to explain
and pinpoint all errors. In the example below, ComputerSewer
was altered by inserting an extra begin. The pointing hand does
not detect the error until the program finds that there is no
corresponding end. Turn to the dictionary in Part 3 if you want
to know more about the hows and whys of begin and end.

' s file Edit Search ' Windows

~ This does not make sense as a statement.

if top < o then
topHop := abs(topHop)

else if top > 200 then
topHop = -abs(topHop);

if lei!. < 0 then
leftHop = abs(leftHop)

else if left > 200 then
leitHop = -Bbs(leftHop);

begin
top := top + topHop;
leit := leit + leftHop

end
end

..,

Evil manifests itself most forwardly with the glitch and the glop.
These are errors in the performance of a program, not its machine
readability. No outlined code. No bug messages. Just garbage in
the works. Though glitch and glop can be caused by computer
equipment problems, more likely than not your programming
will be the source.

A glitch is an unpleasant, often cosmetic, flaw . A program that
outputs "two plus two equals 4our" has a glitch. Glop is a zit on
your nose on prom night. "Two plus two equals five" is glop.

MacPascal offers tools to fight the glitch and the glop . Options
from the Run menu permit line-by-line program execution. The

LOW-DOWN, CHEATING COMPUTERS 21

2.6 The disk
munch

II

22

Instant and Observe windows of the Windows menu help you
explore the dynamic guts of a running program. Use of these
tools is illustrated in the next few chapters.

Glitch and glop are ridiculous terms used to say that a program
needs more work. More pertinent to a project's completion is
the creator's pride in his or her work. Good programs result from
clever engineering, not from removing bugs. A programming
artist's worst fear is that after all the glitches and glop have been
removed, the result will be perfectly running, error-free gunk.

A power failure or system error will clear the memory of the
computer and cause you to lose the contents of the Program
window. However, if you have saved the program onto a disk
before such a failure, you can reload the program by double
clicking on the program's icon from the MacPascal Desktop
window.

When you save a program, MacPascal creates a program icon
with your program's name and installs it in the MacPascal Desk­
top window. A second copy of the disk will further protect you
should your basset hound do something unmentionable with your
floppy disk.

Mr. Moss's dog, Rollo, has never dumped in the house. The one
time Mr. Moss found a deposit on the floor of his study, Rollo
pointed to the computer and said it was the disk's fault. The disk
was punished-Mr. Moss loaned it to a Hewlett-Packard sales­
man for a week-and a lesson was learned.

Disks, like reptiles, act on instinct, and should
not be left alone with loved ones.

Saving a program onto disk is done through the File menu. In
Chapter 1 you were instructed on how to save ComputerSewer.
You chose Save As from the menu, typed in a name, then either
pressed return or clicked the Save button. The File menu is

MACINTOSH PASCAL ILLUSTRATED

covered in more detail in a later chapter, but if you have not
done so already, save ComputerSewer onto a disk now.

Saue your program as

I ComputerSewe~

Saue Cancel

Pascal

Eject

The code in the Program window should be saved on a disk
frequently enough so that if someone accidendy pulled the plug
on your Macintosh, you would not commit a felonious assault.
For a steel-trap memory like Mr. Moss's, this translates to every
fifteen minutes.

Every two or three saves to disk, save a copy of your program
on a second disk. This is done by again choosing Save As from
the File menu, clicking the Eject button, then, since the program
name is already typed in from the first save, simply click the Save
button, and follow the Macintosh swapping instructions.

Those chumps lucky enough to have two disk drives need only
to click the Drive button to select the disk drive onto which the
program will be saved. The name of the currently selected drive
appears above the Eject and Drive buttons.

saue your program 6S

I ComputerSewe~

Saue Cancel

Pascal

Eject

Drlue

No gruesome horror stories of lost work are forthcoming. An
accidental yank of the Macintosh power cord or a sudden power
surge when your kid brother shuts off his model cyclotron could
wipe out your work in progress. Your only recourse is to protect

LOW-DOWN, CHEATING COMPUTERS 23

II

2. 7 The burnout

24

..

everything you do by periodically-that means often- saving the
contents of the Program window onto a disk. Then make a second
copy of the program on disk by saving it onto another disk.

Disks are cheap. Heart failure is not.

Most disks die with bug messages explaining their demise. Others
you can tell have croaked only because they are mired in glop.
Be sure to check the tiny write-protect notch in the back-left corner
of the disk before you decide a disk cannot be written on.

On Apple disks, opening and closing the sliding notch will re­
spectively prevent or permit saving new information onto a disk.
If you have a finished disk you do not want altered, protect it
by opening the notch. Paper clips work better than fingernails.

Macintosh disks are remarkably reliable compared to the flexible
disks used by many other machines. Do not let the cautions in
this chapter turn your enthusiasm to paranoia. When and if the
disk munch strikes, try to figure out what has happened. Like all
programming trouble, you can learn things from disk problems
you would not have learned elsewhere.

Untalented programmers who enjoy their work are better off
than W underkinds who always sleep alone at night. Balance your
efforts. Compulsive behavior is gross no matter what the en­
deavor. Your health, friends , generosity, and passions need to
balance with the hard work it takes to express yourself on a
computer.

Choose your own subject material. Don't let a jerky teacher who
forces you to write jerky programs ruin programming any more
than you would let a deranged English teacher who believes no
good literature has been written since the eighteenth century
ruin books. Writing code is a pain in the ass if you don't appreciate
the content of your program.

MACINTOSH PASCAL ILLUSTRATED

Pascal may be difficult, but challenges bring rewards; easy plea­
sures make you fat. Playing basketball like Dr. J or painting
pictures like Georgia O'Keeffe is hard, too.

As computers evolve, they will become primarily vehicles of
expression: thinking pens and paintbrushes more than spread­
sheets or processors. The programmers who will make this hap­
pen will not find their resources in textbooks, classrooms, or
years spent sequestered with electronics, but from the expan­
siveness and sensuality of their lives.

Call Mr. Moss a harping, maudlin piddlesnort who ought to stick
to the business of Pascal, but don't blame him when your dreams
at night fill with bloated hex demons, deviant variants, and suck­
ing black hole recursions.

LOW-DOWN, CHEATING COMPUTERS 25

What's next

3.1 Resizing the
drawing window

3 Don't Call It the Runs Menu

After a few words on windows, this section shows ways to run
and stop a MacPascal program. The illustrative pointing hand of
MacPascal will track the flow of program execution.

In Chapter 1 you typed ComputerSewer into the Program win­
dow. The Program window still hogs most of the Macintosh
screen. Since the screen output of Pascal programs uses the Draw­
ing and Text windows, the first step in running a program is
making space for its output.

Clicking anywhere within a window will activate that window.
The lines in the top of the window frame indicate an active
window. You will find that many of the menu bar choices are
dimmed, and thus unavailable, when the Program window is not
active.

Click anywhere inside the Text window. Since you will not be
using the Text window until Part 2, close the Text window by
clicking inside the small Close box in the window's upper-left
corner.

Now, reposition and resize the Drawing window to fill nearly all
the screen. The Drawing window handles both pictures and words,
and will show the output of ComputerSewer.

DON'T CALL IT THE RUNS MENU 27

3.2 Am I really
the first?

28

r s file Edit Senrch Run Windows

pr =o
v=

be
t
l
f

You have closed the Text window and buried most or all the
Program window, but who cares . ComputerSewer now has some
elbow room.

XK
Reset

Go XG
Go··· ho
Step XS
Step-Step

Stops In

Choose Go from the Run menu. If an error message appears,
find and correct the mistyped code in the Program window. Oth­
erwise, sit back and relax. With any luck, your Macintosh will
be as gentle with you for your first time as Twila was with Mr.
Moss .

MACINTOSH PASCAL ILLUSTRATED

3.3 Icons and
Mr. Moss's
girlfriend
mentioned

The disk purrs. The menu bar flickers, dims. Run is accentuated.
Pause appears. For twenty seconds an unearthly tunnel weaves
a cathodic tapestry. Then it is over. You are no longer a pro­
gramming virgin. Maybe you expected rockets and fireworks.
Instead you got the ComputerSewer. Mr. Moss puts his arm
around your shoulder and tells you, not for the last time, his
hurtful, troubling wisdom:

Programming is less fun than being in love.

In case you're wondering how many icon drawings this book
uses, here they are together. When you see the hammer ready to
hit the nail, you are being asked to do the following activity. The

DON'T CALL IT THE RUNS MENU 29

3.4 Going,
halting, stepping,
and veal

II

30

thinking bald man means a summary or noteworthy explanation
is being presented . The following paragraph, as shown by the
vehicle hanging a right turn , is a sidetrack.

Mr. Moss hates to be told to do things . When a book says do
this, he purposely does it differently. When a program goes ber­
serk because of a change Mr. Moss has made, he may laugh or
curse, snicker or stomp. Yet he will never let a computer daunt
him. Mr. Moss allows himself to be daunted only while he is
alone with his girlfriend and the door to the room is closed.

Associating run and menu gives Mr. Moss the heebie-jeebies .
Thank goodness the menu does not have an option called veal.

You can make a program Go in more ways than choosing Go
from the Run menu. Choosing Step will run exactly one line of
a program. To execute the next line you must select Step again.
A picture of a hand will appear in the Program window pointing
to the line that will be executed next.

Using the mouse and the Run menu can be tedious for stepping
through many program lines. Instead, press together the command
key and s key. Hereafter, the command key will be called the
cloverleaf because the key symbol looks like a highway cloverleaf.
This shortcut makes the stepping process more convenient.

All of the shortcut keypresses make use of the cloverleaf key and
a single letter. The pull down menus show which keypress com­
binations can be used as shortcuts instead of pointing the mouse
at a menu.

Click the mouse with the cursor arrow in the visible sliver of the
Program window. This will bring forward the Program window.
You could also activate the Program window by choosing
ComputerSewer from the Windows menu.

Now Step through ComputerSewer. The pointing hand of
MacPascal better. illustrates how a computer language talks to a
computer than a thousand words dribbled from Mr. Moss's mouth.

MACINTOSH PASCAL ILLUSTRATED

II

Step-Step also brings out the pointing hand, however, unlike
Step, the program does not stop after executing each program
line. The hand step-steps right on through the text of the pro­
gram, beginning to end, filling the Drawing window with sewer
the same as the Go command.

The sewer grows much slower with Step-Step than with Go. After
all, running with Step-Step points and scrolls along the Program
window, whereas Go simply draws a sewer. One reason to use
Step-Step is to give you more time to go up the Pause menu and
Halt the program at the place you want it halted.

Stopping a program midstream is one of your most powerful
debugging devices. As you watch something go haywire in an
output window, you can Halt the program and the pointing hand
ought to be near the suspected bug.

When you select Stops In from the Run menu, the Program
window adds a new feature. One or more stop signs can be
inserted in the left margin of the Program window by positioning
the arrow cursor in the margin. The cursor then becomes a mar­
ginal stop sign, and clicking will set it. To remove a single stop
sign, click on top of it. To remove all stop signs and return the
Program window to its original format, select Stops Out from
the Run menu.

DON'T CALL IT THE RUNS MENU 31

II

32

-D ComputerSewer

lprogn1m ComputerSew er;
vor

top, left , topHop, leftHop, bend, line, node, girth : integer;
begin

top := O;
left. := O;
for bend := 1 to 25 do

O begin
line := random mod 30;
girth:= random mod 25 • 24:
topHop := random mod 19 - 9;
l eftHop := rnndorn mod 19 - 9;
for node := 1 to line do

O begin
Ernseoval(top, left, top• girth, left• girth) ;
if node mod 3 = 1 then
PaintOval(top, left , top• girth, left• girth)

else

The Go or Step-Step commands will run a program from the
beginning until the first occurrence of a stop sign. The program
will halt with the pointing hand on top of the stop sign, telling
you this line of code will be executed next. Subsequent run
commands will resume execution from this pointing hand, stop­
ping again at any other stop signs you may have placed.

The Go-Go command will run a program identical to Go except
that all stop signs are ignored. This allows you to run the entire
program without first having to remove your stop signs.

The steps and stops of MacPascal will become more valuable as
the complexity of your programs increases . The path of pro­
gramming logic, which academic bozos call algorithms, has a nasty
tendency to loop and branch. This turns out to be quite useful
because, as Einstein taught, if all roads were straight and you
went to buy a quart of milk, you would have to go to the end
of the universe to return home. Still, loops and branches of even
the best laid plans can lead you to the ragweed-chewing farmer
in coveralls and flannel shirt who when asked for directions will
smartly say:

MACINTOSH PASCAL ILLUSTRATED

3.5 Check and
reset

You can't get there from here.

The Run menu offers two more commands, neither of which
actually run the program. Choosing Check will read the Program
window and produce an error message if the program breaks any
of Pascal's rules. The Go and Step commands will do this anyway,
but not as fast.

Choosing Reset is a way of making your program start from the
beginning. After you have been using Step or Halt or Stops In,
you can get rid of the pointing hand and begin the program afresh.

DON'T CALL IT THE RUNS MENU 33

What's next

4.1 Save
revisited

4 Macintosh Saves, Gretzky
Scores on the Rebound

This section describes File, Edit, Search, and Window options.
A work plan for programs-in-progress is presented.

N(~ll'

0f)PI\ ...
Close

Saue Rs ...
HPUPrt
Page Setup ...
Print ...
Quit

The File menu ought to be familiar to you from Chapter 2. After
you typed CompurerSewer into the Program window, you saved
the typed code onto disk by choosing Save As from the File
menu. If for any reason you did not save ComputerSewer on
disk, do so now by selecting Save As. Change the name if you
wish.

A program saved on disk is called a file, and each file is given an
identifying icon in the Desktop window, which opens when you
insert the MacPascal disk. Thus, if you were to choose Quit, you
would return to the Desktop window, also called the Finder, and

MACINTOSH SAVES, GRETZKY SCORES ON THE REBOUND 35

4.2 How to print

36

see a picture of a piece of paper with the name "ComputerSewer,"
or whatever name you chose. (Keep your names under 20 char­
acters. Spaces, numbers, and punctuation marks are okay to use.)

Don't use the Save option. The Save option, different from the
Save As option, will not ask you to specify a file name. Save uses
the contents of the Program window to replace the original file,
giving the new file the same name. The old version will be lost­
an unfortunate occurrence should you discover later that the old
version worked better than your new one.

Better to use Save As, always giving a new version of your pro­
gram a slightly different name. Save As allows you to save the
old file along with the new file, provided that each is given a
unique name.

Save a second copy of ComputerSewer using a similar name,
perhaps Sewer 2.

Soue your program os

Jsewer 2

Soue Cancel

Pascal

Eject

In the course of working on a program, your disk will fill with
many versions. At this point, return to the Finder and drag your
obsolete, unwanted versions into the Trash. Leave a couple of
recent or tested versions as backup. And don't neglect to save
recent or tested versions on a second disk. It is a simple procedure
to click Eject from the Save As dialog box, insert a backup disk,
and click the Save button.

In this section you will be creating a printed paper copy of the
program code. You will also see how to print a copy of any single
active window, as well as a method for printing an exact copy of
all that you see on the Macintosh screen.

MACINTOSH PASCAL ILLUSTRATED

Instructions for attaching the printer to Macintosh come with
the printer. If any printer trouble occurs while using Pascal, test
the printer from MacPaint or MacWrite to make sure your hard­
ware is functioning.

Selecting Print from the File menu produces a dialog box. The
dialog box allows you to specify the kind of paper, print quality,
page selection, and number of copies to print.

Quality: OHigh ®St11nd11rd 0 Draft OK
Page Range: @RU QFrom:DTo:D
Copies: D
Paper Feed: ® Continuous 0 Cut Sheet (Cancel)

To set up a page in a nonstandard way, select Page Setup from
the File menu prior to selecting Print, and toggle the dialog box
options.

Poper: ®US Letter

QUS Legol

Orientation: ®Toll

0R4Letter

O lntern11tion11I Fanfold

O Toll Adjusted O Wide

OK

(Cancel)

Each program's dialog boxes will remain adjusted to your spec­
ifications even after you have exited the program and turned the
computer off. Your changes are recorded on disk along with the
program.

Before attempting to print, check to see that the printer light
and the Select light are on, then click the Okay button. After a
few seconds delay, followed by a screen message telling you how
to halt the printing process, the contents of the Program window
should be printed.

The Print option of the File menu will be in bold lettering and
available for use only when the Program window is the active

MACINTOSH SAVES, GRETZKY SCORES ON THE REBOUND 37

4.3 Open, close,
revert, and new

38

window. If the Drawing or Text windows are active, Print will
be dimmed in the menu. Consequently, the output windows­
Drawing and Text-cannot be printed by using the mouse and
the menu bar.

Any active window-Program, Drawing, Text, Instant, Observe,
or Clipboard-can be printed by simultaneously holding down
a three-key combination: shift-cloverleaf-4. Remember, the clov­
er/ea/key, also called the command key, is marked with a highway
cloverleaf design.

An exact copy of everything on the Macintosh screen will be
printed by pressing in the caps lock key and then holding down
the same shift-cloverleaf-4 combination. This means everything:
the active window, the visible portions of inactive windows, the
menu bar, and the background pattern.

Whenever you print using the above key combinations, no dialog
or message boxes will appear. The printing will be done in stan­
dard quality.

Draft-quality printing will not print full-size or bold lettering.
However, the advantage of draft is that the printer operates twice
as fast as with standard quality and four times as fast as high
quality. Speed is nice for works in progress.

The best thing about paper copies of your programs is that you
can carry your work to someplace really nice. Mr. Moss likes the
city rose garden. Forget about Macintosh's cathodic omniscience.
Think sunny outdoors or cozy fireplaces. Think of being beside
your boyfriend or girlfriend, or sitting in a cafe where you might
meet that special someone. Choose a study spot where you can
concentrate on your work, look up, see faces and colors, unwind,
refresh, concentrate again. There will be other opportunities to
grind.

Usually you will open programs by clicking on an icon in the
Desktop window. Double click on the file icon and the program
opens. Use Close and Open from the File menu if you are already

MACINTOSH PASCAL ILLUSTRATED

4.4 When to quit

II
4.5 Search and
replace

working on one Pascal program and want to switch to work on
another. Using Close and OpP.n in this way is faster than using
Quit and double clicking the next file's icon. The reason is each
time a file is opened from the Desktop window, the Pascal lan­
guage is loaded into memory. Open and Close act on the files
alone; the Pascal language already in memory is unaffected.

Use Revert from the File menu to replace the current contents
of the Program window with the most recently saved version.
The Revert command cannot be undone, and as a precaution
after selecting Revert, you will be warned by a dialog box that
the current contents of the Program window will be lost. If you
do not have a version of the program saved on disk under the
same name as the Program window's title, the Revert option will
be dimmed and inaccessible.

Use New from the File menu to obtain a clean, unused Program
window in which to begin writing another program. Usually you
will start a new program file by clicking on the MacPascal icon
from the Finder. However, if MacPascal is already loaded, using
New is faster than returning to the Desktop window with Quit
and double clicking the MacPascal icon.

Us~ Quit when you have got a hot date. If you are not back by
Sunday noon, instruct a friend to sublet the apartment and UPS
the Macintosh to you.

Quit closes program files, leaves Pascal, and returns to the up­
dated MacPascal Desktop window. At this point, you may want
to free up disk space by dragging unwanted program versions to
the Trash.

Turning the power off after working on a Pascal program does
not substitute for selecting Quit. Quit performs protective house­
keeping to ensure that your files can be opened in the same
condition you left them.

In a computer program, there is sometimes the need to examine
and possibly change a certain text. You may need to correct an
error or add clarification by substituting new text into a program
long after the original code was written. The Search option will
help you find and, if desired, replace text in the program code.

MACINTOSH SAVES, GRETZKY SCORES ON THE REBOUND 39

40

:•ff
lh~pllll:(! '.•(fl
I 11eqjll'h<!rn :":i:
What to find... XW

Select What to Find from the Search menu.

Search for I bend
:==~

Replace with

@Separate Words

O Rll Occurrences

@ Case Is I rreleuant

O Cases Must Match

OK
Cancel

In the above example, to locate occurrences of the word bend,
enter bend in the Search For box. Two check boxes (circles) ask
whether you want to find bend as a separate word or all occur­
rences of the sequence of letters b-e-n-d, even if they happen to
be part of a larger word such as fender-bender. The other two
check boxes ask whether upper- and lower-case letters must match
exactly or if case is irrelevant. For now, the boxes Separate Words
and Case Is Irrelevant should be checked.

Click the Okay button and then choose Find from the Search
menu. The first occurrence of bend found beyond the insertion
bar is selected.

~o ComputerSewer
hA,

program CornputerSewer; F
var

top, left . topHop , leftHop, B . line, node, girth : integer;
begin

top := O;
left := O;
for bend = 1 to 25 do
begin

MACINTOSH PASCAL ILLUSTRATED

4.6 The edit
menu and the
clipboard

To find the next occurrence of bend select Find again, or try the
shortcut cloverleaf-/ key combination. Selected text can be re­
placed by cutting out bend and retyping curve or by using the
Replace option of the Search menu.

Select What to Find again. The dialog box returns with bend still
in the Search For box. Click in the Replace With box to put the
insertion bar inside it. Type in curve. Click the Okay button to
find the first occurrence of bend.

Now, choose Replace from the Search menu to replace bend with
curve. The Replace option will change only the first occurrence
of a word found beyond the insertion bar. Experiment using the
above example, then try changing curve back to bend.

The Everywhere option of the Search menu works the same as
the Replace option except that all occurrences of a word or text
will be replaced. Everywhere performs an automatic Find and
Replace from the insertion bar to the last occurrence of the
indicated text.

Do not confuse the Everywhere option with the check box All
Occurrences. Everywhere refers to everywhere the indicated word
or text appears. The check box refers to the search for a sequence
of letters such as bend occurring in fender-bender.

A warning message appears whenever you attempt to replace all
occurrences of a word. Replacing all occurrences, especially a
short sequence of letters, often encompasses more than you had
expected.

Try using Everywhere. Override the warning by clicking Okay.
Watch carefully in the Program window as each occurrence of
bend is replaced by curve. Then reverse your changes by searching
for curve and replacing them with bend.

:"JI
: .. :c

Pnsle :•>:ll
1:1ear
Select All XR

MACINTOSH SAVES, GRETZKY SCORES ON THE REBOUND 41

II

42

MacPascal's Edit menu looks and works nearly the same as
MacPaint's and MacWrite's. Mr. Moss could easily say "read about
the Edit menu from the MacPaint or MacWrite manuals, then
come back here when you are done." But failing to inform the
reader on these important and somewhat difficult Macintosh con­
cepts would be a cheap, inexcusable neglect of responsibility.

Read about the Edit menu from the MacPaint or MacWrite man­
uals, then come back here when you are done.

The Edit menu is most useful for copying sections of program
code from one place to another. Without a lot of retyping or the
expense of scissors, glue, and a Canon copier, you can rearrange
a computer program.

The Clipboard is a temporary storage window for edited text.
Using Cut or~ from the Edit menu, depending on whether
you want the original text to be removed or to remain, you can
place selected portions of text onto the Clipboard. The Clip­
board's contents can then be pasted, using Paste, elsewhere in
the program. The Clipboard's contents can also be pasted into a
different Pascal program on the same or another disk.

Select All is a quick way of selecting the entire text of a program
at once. When text is selected, the characters are shown in in­
verse-white characters on a black background.

Practice by selecting a random chunk of ComputerSewer. Just
drag the mouse vertically a few inches. Then choose ~ from
the Edit menu. Now choose Clipboard from the Window menu
to make the Clipboard visible. You can edit the contents of the
Clipboard directly. Try it. Paste the revised text back into the
Program window. Don't worry about messing up Computer­
Sewer because you have the original copy saved on disk.

Each Cut or Copy will replace the contents of the Clipboard with
the newly selected material. The Clipboard does not work well
for long-term storage purposes.

Clear works similar to Cut except that the selected text is not
placed on the Clipboard, and therefore is not recoverable. High­
lighted text can also be cleared by pressing the backspace key.

MACINTOSH PASCAL ILLUSTRATED

4.7 Whaddyamean

Like Clear, this will remove all selected text without the benefit
of the Clipboard's temporary storage.

The Edit menu will become increasingly useful in your program­
ming as you discover that some discrete sections of program code,
called subroutines, serve a general purpose that many of your
programs can use with little or no modification. Searching and
sorting are two common examples of subroutine tasks that might
be kept in a library file and inserted in your programs as desired.

Many of the programs to be found in Part 2 and Part 3 will be
useful for your own programming projects . Cut, Copy, and Paste
will make moving program code fast and convenient.

Starting a large computer program from scratch is a royal pain.
Reusing subroutines makes the early stages of programming fun
and visible. Likewise, don't be afraid to throw out everything
you have done and start over. Learn from others. Programming
artists enjoy their work.

Programming martyrs die of boredom.

I'm not your type ComputerSew ..
lnstont
Obserue

Te Ht
Drawing

Clipboard

Type Size ...

Choosing Type Size from the Window menu produces a dialog
box offering three sizes of type. The selected size will appear in
all windows. Macintosh Pascal defaults to the middle size. The
small size is nice for viewing lots of code with a minimum of
scrolling. The large size might be useful for people who have
tampered with their brains the night before.

MACINTOSH SAVES, GRETZKY SCORES ON THE REBOUND 43

44

~o

Type Size

0 Small OK

@Medium

O Large Cancel

,,...,. _ CornputtrSe'<o'er ;
.......

ComputerSewer

top, loft, topHop, J.ftHop, bend, line, nodt , girth : inltger ;
11 .. 91n

top :=O ;
J.ft := O;
for- bend := 1 to ~ do

Ngin
line ·= random •Oii 30 ·
girth := random mod 2S + 24 ;
topHop := r •ndom mod 1 9 - 9 ;

ComputerSewer

program ComputerSewer;
var
lop, lefl, lopHop, leflHop, bend, line, node, girth ·11i!i

begin
top := O;

MACINTOSH PASCAL ILLUSTRATED

What's next

5.1 The instant
window

5 An Instant Cure for
Premature Compilation

This section introduces the Instant window, an ideal place to
experiment with new code before it goes into your program.
New commands for drawing are shown in Instant examples and
characteristics of the Drawing window are explored.

Choose Instant from the Windows menu.

=o Instant

(Dci It

Pascal statements entered in the Instant window are performed
immediately by clicking the Do It button. This contrasts with
the Program window, which will only run a properly constructed
Pascal program. As with the Program window, graphic and text
statements of the Instant window output to the Drawing and
Text windows respectively.

AN INSTANT CURE FOR PREMATURE COMPILATION 45

5.2 Instant
alterations on
ComputerSewer

46

Proud as Macintosh programmers tend to be, Mr. Moss sincerely
hopes he never sees the bumper sticker:

MacPascal Programmers Do It in Windows

Beneath the Instant window should be the trusty, not yet rusty,
ComputerSewer. If between the last chapter and this chapter
you went on a muskrat safari in the Arkansas bush, bring
ComputerSewer back on to the screen by clicking on its icon.

Arrange the windows on the screen to look like the illustration
below.

s File Edit Search Run Lllindows

ComputerSe111er
!I-------- ·~---~-

pro g ro m ComputerSev'ier :
Yllr

top , left , topHop, lef tHop. tie.nd .. Jim
llegin

toc1 := o.
leit. := O;
for t1e111j := 1 to 25 do

m----- Instant

Do It

/An1J statement; an1d tune l

Parnl.Ova l (top, left, top+ girth
else

Drawing

Run ComputerSewer. Notice that while the program is running,
the only actions available to you are Pause and Halt. Once halted,
you can resume activity with any Run command. The program,
and its sewer, continues at the place it was halted .

MACINTOSH PASCAL ILLUSTRATED

II

If during a Halt the content of the Program window is changed
in any manner, subsequent running of ComputerSewer, whether
by Go, Go-Go, Step, or Step-Step, will clear the Drawing window
and reset the program to begin anew.

Unlike the Program window, the Instant window allows you to
make changes inside a program during a Halt without resetting
the program. The Drawing window will remain intact and any
Run selection will resume the program at the place it was halted.

Now you are going to use the Instant window to change
ComputerSewer in the middle of its construction.

Activate the Program window by placing the cursor anywhere in
the window and clicking.

Choose Go from the Run menu, then Halt the program while
the sewer is being built.

Select the Instant window and then type the following statements
into it. Do not forget to include the semicolon.

=D Instant

(Do It l ~
top := 120;
left := 80

QJ
~ IQ £ll

Click the Do It button, then choose Go again.

Drawing

AN INSTANT CURE FOR PREMATURE COMPILATION 47

5.3 Pinpointing
rectangles

48

The ComputerSewer begins again, yet a different place from
where it had stopped. The numbers you assigned to the words
top and left in the Instant window became the new screen location
assignments to the sewer. The program has adopted new screen
location assignments from the Instant window.

top and left are names for program variables. (See Part 3 for an
explanation of variables.) The values assigned to top and left are
used in the Pascal drawing statements to determine the top and
left screen locations for each sewer node. When top and le/t­
or any of the sewer variables- are assigned new values in the
Instant window, the program adopts these new values as the
program resumes.

The coordinate system by which the values of top and left plot
locations on the Macintosh screen will be discussed later in this
chapter. For now, you can see that the Instant window lets you
experiment with programming options in midcourse.

Try to click the Do It button now that ComputerSewer has ended.
Can you guess why the following message appears?

II~ ThO nom• 'top'"" oot """ '""""' y•t.
11

When a program has ended, the Instant statements cannot iden­
tify variable names such as top and left. The Instant window can
only Do It to variables of a program while the program is in
midcourse.

At this point, you are going to do some Instant work without
the help of ComputerSewer. ComputerSewer will come in handy
again in the next chapter, but it's goodbye for now.

MACINTOSH PASCAL ILLUSTRATED

Click in the Close box of the Program window. (Remember, the
Close box is the small square in the top-left corner of each win­
dow.) Any window can be returned to the screen through the
Windows menu.

Choose Reset from the Run menu to clear the Drawing window.

Clear the Instant window by selecting all the text, then pressing
the backspace key. You could also clear selected text by using Cut
or Clear from the Edit menu, but the backspace key is quicker.

Type the following statement into the Instant window.

;;O Instant

[Do It) ~
FrameRect(O, 0, 100, 1001

~
~ .12 '21

Click the Instant window's Do It button. Your Instant command
should draw a rectangle in the drawing window as shown below.

§0 Drawing

Q]

The four numbers in parentheses map the rectangle frame. Use
the mouse to change (0, 0, 100, 100) to (0, 50, 75, 150).

AN INSTANT CURE FOR PREMATURE COMPILATION 49

II

II

50

Now Do It again. See the difference?

The Drawing window consists of a rectangle full of invisible dots,
each represented in the computer's memory by two coordinate
numbers (x, y). The top, leftmost dot is numbered (0, 0). As you
address dots farther to the right-that is, horizontally-the first
coordinate increases. As you address dots downward-or verti­
cally-the second coordinate increases. For example, one dot to
the right would be (1, 0). The first coordinate below the top-left
coordinate would be (0, 1).

Sometimes while using the (x, y) notation, you will hear the
horizontal coordinates referred to as positions along the x-axis,
and vertical coordinates as positions along the y-axis. Point
(x, y) would be located x dots to the right, and y dots down from
the point (0, 0).

The visible dimensions of the Drawing window stretched to its
maximum size are 497 dots across by 311 dots down, with the
point (0, 0) at the top-left corner. At the bottom-right corner is
point (497, 311).

A rectangle can be defined by its two opposing corners. The four
numbers separated by commas in FrameRect are boundary co­
ordinates corresponding to the rectangles top-left and bottom­
right corners.

Using the coordinate notation described above, the new FrameRect
command should look like this: FrameRect(50, 0)(150, 75). How­
ever, MacPascal requires that all four numbers be lumped to­
gether in the order top-left, bottom-right. As a result, the com­
mand looks like this: FrameRect(O, 50, 75, 150).

What happens if you drag the Drawing window to another lo­
cation? Does the rectangle stay put, or move with the window?
If the grid is stationary with respect to the Macintosh screen, the
rectangle should not move. Yet if the grid is fixed solid in the
Drawing window, both the grid numbers and any rectangle it
contains should drag along with the window.

MACINTOSH PASCAL ILLUSTRATED

5.4 Ovals
and lines,
thick and thin

The Drawing window uses a local coordinate system. The num­
bered grid, and all drawings and text on that grid, adhere to the
window, and don't give a hoot about any other window or the
Macintosh screen as a whole.

Insert a semicolon at the end of the first line and press return
before adding this second line to the Instant window.

~D Instant

(Do It J
FrameRect(O, 50, 75, 150);
Fn1rneoval(O, 50, 75, 150~

Click Do It to produce this drawing:

~D Drawing

-"\

~ ,/'

'2l

If you forget the semicolon after the first statement, you will get
the thumbs down hand before the second statement and this bug
message:

AN INSTANT CURE FOR PREMATURE COMPILATION 51

II

52

~ ru
n semicolon (;) Is required on this line or 6boue but one hu not
been found.

The semicolon is a necessary evil in Pascal to separate statements.
The only statements that do not require the line-ending semi­
colon are those preceding other words that punctuate Pascal,
such as begin, end, and until, and those commencing an action
such as for .. to .. do, repeat .. , and while .. do.

You can see that the Instant window is capable of doing multiple
statements provided you separate them with semicolons.

The coordinates of FrameOval define a rectangle in the same
way as FrameRect. However, FrameOval draws an oval that fits
just inside the specified rectangle.

Experiment individually with the statements in the following
Instant window. Insert your own dimensions, large and small.
Try a decimal number; try a negative number.

Instant

(Do It

FrarneF:ect (O, 10, 20, 30);
Frt1rne0 val (50, 100, 150, 175);
F'aintF:ect(25 , 75 . 125, 150):
F'aintoval (100, 10, 200, 40);
EreseRect (30, 125, 175, 145);
ErnseOva l(BO, 10, 120. 140);
Li neTo(70, 70);
r·loveTo(22, 44);
Pen5i ze(3, 3);
LineTo(180, 70);
Pent'lode(pat Xor);
Line(-1 70, 120)

Do It to produce the following drawing:

MACINTOSH PASCAL ILLUSTRATED

5.5 Structures
in the instant
window

You may have discovered that if you draw to coordinates outside
the visible region of the Drawing window, neither dragging nor
resizing the window will succeed in recovering or exposing the
"hidden" drawing.

Similarly, when you hide part of a drawing by dragging, resizing,
or burying its window, the image cannot be recaptured. Unlike
the Program window or the MacPaint program, MacPascal does
not refresh drawings that have gone off the screen.

At first glance, the Instant window might appear to be simply a
second Program window. The difference lies in the ability to
structure a program.

The Instant window has the single capability of performing a
series of Pascal statements within or independent of a Pascal
program. The Program window has the capabilities of structuring
a program's statements into distinct blocks, naming the blocks,
declaring and defining data within blocks, passing information
between blocks, and executing blocks by calling their names.

The ability to structure a program makes programming code
easier to create and understand . Pascal's popularity is due to its
highly structured nature.

AN INSTANT CURE FOR PREMATURE COMPILATION 53

II

5.6 Prolonging
the pleasure

54

A note for the advanced Pascal programmer: You should be
aware that the Instant window does not support its own procedures,
Junctions, or the declaration of variables and constants. You can,
however, call upon these structures as they appear in the Program
window in midcourse of a program. The Instant window also
allows the use of the reserved words begin and end, as well as
conditional and looping statements.

MacPascal will format unacceptable structures in the Instant win­
dow like the Program window. However, after you click Do It,
you will get the thumbs down sign at the first occurrence of the
illegal structure. This will be followed by a bug message.

The Instant window is ideal for experimenting with Pascal state­
ments, formatting the Drawing and Text windows, and observing
how statements and structures of your program are functioning.
You can practice first, then install your tested code in the Pro­
gram window. This saves you the time wasted by prematurely
running an incomplete program.

Many a computer programmer knows the slow horror of pre­
mature compilation or even premature interpretation. (Compi­
lation and interpretation are two different methods by which a
computer language translates English into a machine-readable
format. MacPascal uses the interpreted method.) It is doubtful
the Macintosh will ever complain about your hastiness with a
bug message such as this:

Not tonight, I have a headache.

Yet the fulfillment of a complete, uninterrupted, bug-free pro­
gram run can be orgas ... well, can make you feel good.

MACINTOSH PASCAL ILLUSTRATED

What's next

6.1 The observe
window

6 Observing: Different Pokes
for Different Folks

This chapter concludes Part 1 on the MacPascal operating en­
vironment. The Observe window displays the names and contin­
ually updated values of selected variables, and you will see how
these values direct the construction of ComputerSewer.

Experimenting with the Observe window will illustrate how a
single name can be used to represent an entire series of values.
The Observe window will also serve as a prime debugging device
in your later programming efforts .

Close the Instant window from Chapter 5. Choose ComputerSewer
from the Windows menu. Now choose Observe from the Win­
dows menu.

~D Obserue

Enter an expression jQ

iQ

Position and resize the Observe window on top of the Program
window. Following the illustration on the next page, type each
word into the Observe window and press return to bring the
insertion bar to the next line. Use the horizontal scroll bar to
center the text in the Observe window.

OBSERVING: DIFFERENT POKES FOR DIFFERENT FOLKS 55

56

~ a File Edit Se11rch Run Windows
----------~""':::::::~::::: :::·

::~i~.·,:,~~:::~::~::.. ''"'· ,,,, : ~: ::~,! ~i 1li!!1\ljillli:ll!lli:lr~l1I
top := O;
left := O;
for bend := 1
begin

line := rend
girth := ran

;;~obserue~

top

left
!------+----~

topHop

~~f~:iD ==rr-----+1-e-ft_H_o_p--1::::::

f~~;f~e := ~ienned ilii!i
EraseDv node
if nodert-------+-----1
PaintD~----+=------r.~1

else

Dr11wlng

Now select Step-Step from the Run menu. To the left of each
box, numbers appear. The disk whirs, the numbers change, and
ComputerSewer plods along with the pointing hand. Choose Halt
from the Pause menu when you get bored.

~ a File Edit Se11rch Run Windows

top := O;
left := O;

ComputerSewer

for bend := 1 to 25 do
begin

line := random mod 30;
girth := ran =o Obserue =
topHop := r - -- ---
leftHop := r 72 top
for node := 54 left

begin -9 topHop
Eraseov 6 leftHop
if node n-----+------1

Pai ntD .,__ __ 1 _3+-b_e_nd __ ___,
else

FrameD
if top <

16 line

13

topHop 1------+-'----~n.1:.1
else if t!Ar,;:rn=

MACINTOSH PASCAL ILLUSTRATED

6.2 Observe at
work

Exciting stuff, this Observe window. You may be thinking, "Ugghh,
more number garbage," but amazingly, Macintosh is able to de­
code this seeming nonsense into the home telephone numbers
of Nastassja Kinski, Woody Allen, Princess Diana, Prince, and
the cast of the "Benny Hill Show."

Actually, you are looking at the changing values of your program's
variables as the program moves from line to line. A variable is a
name given to a particular type of data that might vary as the
program runs, hence the name variable.

The numbers you see in the Observe window change because
some line or lines in the program code instruct the number to
change. In sewer, the line top:= top + tophop changes the value
of the variable top. In English you might read this line, "Assign
a new value to top equal to the current values of top plus tophop."

The Observe window lets you examine both variables and expres­
sions made up of variables, numbers, and arithmetic signs. If you
are still unclear about variables, don't worry: The sun and the
moon are important too, but worrying doesn't make them work
better. Besides, Parts 2 and 3 are full of examples showing vari­
ables in action.

Programmers can name variables to describe their purpose.
Whereas a cartoon animator might label a sequence of pictures
"Road Runner drops anvil on Coyote," a sewer programmer
could label a sequence of oval locations top. Likewise, a sequence
of different sewer thicknesses could be represented by a variable
named girth.

The sewer is constructed from ovals with the top and leftmost
part of the first oval drawn touching the top-left sides of the
Drawing window. The variables top and left are initially set by
the code top : = O; left : = 0.

Choose Step-Step from the Run menu again. While
ComputerSewer is running, pay attention to the Observe win­
dow. In particular, watch the values of top and left to see how
they determine the location for the next node of sewer to be
built. Click on Pause if you need more time to think things out.

OBSERVING: DIFFERENT POKES FOR DIFFERENT FOLKS 57

58

Depending on how large you have resized the Drawing window,
the sewer may have momentarily escaped off the bottom or right
side of the screen. Or if you have resized the Drawing window
to take up the entire screen, you will see that the sewer never
draws onto the right half of the screen.

In both instances, the reason can be traced to the variables top
and left. These variables grow as a result of the last two statements
of ComputerSewer:

top : = top + tophop;
left : = left + lefthop

The Observe window shows these variables never grow much
larger than 200. Since a fully opened Drawing window can ac­
commodate coordinates 497 dots wide and 311 dots tall, the
sewer at its farthest reaches will not come near the bottom-right
corner. Similarly, a small Drawing window may not have room
to show a sewer growing near its outer limits.

You should look at the program code and try to find why top
and left do not extend much below 0 or over 200. Examine the
if..else statements toward the bottom of the program. These
statements catch top and left when they go below 0 or above 200,
and force them to hop-using absolute values and the incre­
menting variables tophop and lefthop-in the opposite direction.

For example, the statement else if top > 200 then checks to see
if the value of top exceeds 200. If it does, then the following
statement, tophop := -abs(tophop), is executed. -abs (short for
absolute value) is Pascal notation which makes sure that tophqp is
assigned a nonpositive value. This ensures that the statement at
the bottom of the program, top := top + tophop, will not allow
top to grow any larger.

The letters abs are short for absolute value. Placed before a vari­
able, abs will make certain the variable's value is not negative by
removing any minus sign. -abs will make certain the variable's
value is not positive by inserting a minus sign to all nonzero
absolutes.

If top = 203 and tophop = 4, then the execution of tophop :=
-abs(tophop) would change the value of tophop to -4. Now the

MACINTOSH PASCAL ILLUSTRATED

execution of top : = top + top hop will change the value of top to
199.

Using Step-Step to observe variables becomes tedious. Inserting
stop signs with Stops In enhances the power of the Observe
window.

,. j File Edit Search Run Windows
.,

tf~,;~:~:~~~:~ ,..1
girth := nm1~~~0~b~s!er~u!e~ijif~~
topHop := rl
leftHop := r1--__ 9_o+t_o;...p ---r-,;
f or node := !---1_3_S+-le_n __ --llh'li!il:~
begin 2 topHop
Ercseov 6 leftHop
If node n-----t---=---t!iiiiif.~
Pcinto'l-__ 14-+-b_en_d __ _

else 17 line
FrcmeO

if top< ~---+-----imE:r
topHop 1----~----Li

e I se if rolQ~]l ,_llJfi.

1. Choose Stops In from the Run menu. Set a stop sign in the
margin to the left of the line containing EraseOval. Remem­
ber, clicking the mouse in the margin will either set a new
stop sign or, if one already exists, remove it.

2. Rather than using Go from the Run menu, hold down the
shortcut cloverleaf-g keys to Go through a few loops.

3. Repeat step 2. You should notice in the Observe window
that the values of top and left show where the sewer has
stopped, and tophop and lefthop show the direction for the
next segment.

4. Change the boundaries of the sewer by activating the Pro­
gram window and then replacing the numbers 0 and 200 in

OBSERVING: DIFFERENT POKES FOR DIFFERENT FOLKS 59

6.3 Final rites for
the sewer's
Pascal mysteries

60

the four bottom if statements with - 40 and 400, or for a
claustrophobic mess, 10 and 60.

5. Repeat step 2 to watch the sewer grow with new boundaries.

A few of ComputerSewer's Pascal statements have yet to be
explained. Using the Observe window might help you to better
understand these concepts.

Enlarge the Observe window to display all of the variables in the
program. Each press of the cloverlea/-g keys will run the program
until the next occurrence of the loop's stop sign. The sewer makes
use of two loops, or repetitive structures. These are identified
by the reserved words for .. to .. do.

The sequence of the loop for bend:= 1 to 25 do could be read:

1. The variable bend shall be assigned the value of 1.

2. The program shall perform the statements between the fol­
lowing begin and its paired end.

3. Bend shall be incremented by one.

4. Sequence parts 2 and 3 shall be performed again and again
until the value of bend has exceeded 25.

This loop repeats a series of instructions for every bend the sewer
takes. Included in this loop are the random assignments that make
ComputerSewer run differently each time Go is selected.

Knowing which end belongs to which begin is tougher than
knowing your own end from your own elbow. Skip to Part 3
under begin if your elbow itches and you want to know where
to scratch.

The second loop, for node : = 1 to line do, is performed in every
repetition of the bend loop. This loop repeats a series of instruc­
tions for every node in each straight line of sewer. It is in this
second loop that the graphic commands EraseOval, PaintOval,
and FrameOval actually draw onto the Drawing window.

A stop sign in the margin halts program execution and tells the
Observe window to update its data. Step, Step-Step, and Go-Go

MACINTOSH PASCAL ILLUSTRATED

also update. Go, alone without stops, will not provide a running
tab of variable values.

With the descriptive names of ComputerSewer's variables, and
their values illustrated in the Observe window, you may be able
to piece together how the heck the program works.

random mod are reserved words that will assign to a variable a
random number in the range including 0 and one less than the
number following mod. random mod 30 will assign a value of 0
to 29 to line. random mod 19 - 9 assigns a number between - 9
and 9 to the variables tophop and lefthop. Notice the subtraction
occurs after the random number is determined.

Experiment by putting one or more stop signs elsewhere in the
program. Try changing the numbers to put more bends in the
sewer, or to make each line of sewer longer, or to extend the
hops between each node of a sewer line. A simple change worth
the effort is to make the sewer square. Replace the Oval with
Rect.

If you can look at the Observe window and predict how the next
segment of sewer will grow, you have reached a position of
programming expertise deserving of the title Sewer King or Sewer
Queen. Not everyone cares for aristocracy though, Mr. Moss
among those. Thus, simply for getting this far in the text, here
are some words of encouragement:

Congratulations, Sewer Punk

OBSERVING: DIFFERENT POKES FOR DIFFERENT FOLKS 61

p A R T

Programming with
Quickdraw and the

Toolbox: The
Language Guide

Each chapter in Part 2 begins with
a sample program. The programs
illustrate Quickdraw and the
Toolbox, the user-friendly soft­
ware built into every Macintosh.

You will see that Quickdraw and
the Toolbox do much more than
draw pictures. They can become
a user's interface to the computer.
Your programs will have the
Macintosh qualities that make
micemeat of programs run on
any other computer.

Along the way, you will pick up
the Pascal language. Line-by-line
explanations tell how each pro­
gram works. Each chapter adds a
few new pieces to Pascal and the
puzzle of computer programming.

By following the example pro­
grams, your first Pascal programs
will:

• use the mouse to initiate
graphics and answer questions

• manipulate windows

• send multistyled text to the
printer

• store and retrieve data on disks

• connect your Pascal programs
to MacPaint and MacWrite

And that's just the first few chap­
ters. By using Quickdraw and the
Toolbox the structure and gram­
mar of the Pascal language will
unfold.

Later chapters show you how to:

• create simple tones and full­
frequency sound

• perform error-checking input
routines

• format dollars and cents for
business applications

• keep track of time with the sys­
tem clock

• start a graphics-based filing
system

What's next

• Topics:

7.1 Program
AlrHead;

7.2 A savage
journey into the
head of Pascal

7 Zen Pascal: Everything You
Know Is Wrong

This chapter shows you the shell of a Pascal program. With this
shell you can begin writing your own programs. You will see that
programs can be written without months of monastic discipline,
deprivation, dispossession or, worse yet, attending school.

program

; {semicolons}

var {variables}

begin

end

program AlrHead;
begin
end.

All Pascal programs must begin with the reserved word program,
followed by a name chosen by the programmer, and a line-ending
semicolon. This is what you see in the first line of the program
above:

program AirHead;

ZEN PASCAL: EVERYTHING YOU KNOW IS WRONG 67

7 .3 Declarations

Iii

68

Pascal doesn't give a fig about lines or carriage returns, but semi­
colons are taken seriously. Semicolons separate statements.

All Pascal programs must contain at least one begin and one
end. The last word of every Pascal program is end and it is always
followed by a period, like this: end.

That is all that Pascal requires. In summary, a Pascal program
must have no less than:

1. The reserved words program, begin and end.

2. A made-up name chosen by the programmer.

3. A semicolon after the made-up name.

4. A period after the reserved word end.

5. All of the above inserted in the same order as shown m
program Airhead.

Most programs have a declaration section. program AirHead
has none. If program AirHead used any variables, they would
be declared beneath the line program AirHead; and above the
line begin.

Just for the heck of it, take a look at program AirHead2 with
a variable. Notice the reserved word var. var says to a program,
"Hey, pal, listed below are the names and types of variables that
I want to use in this program."

program AlrHead2;
var

thoughts : integer;
begin

thoughts := o
end.

Throughout Part 2, Pascal terms will be introduced without paus­
ing to define and give examples of each new word. The continuity
of seeing a program presented without interruption can help you
understand programs better than a series of definitions. Besides,
Mr. Moss busted his chops devising Part 3, a Pascal-Quickdraw-

MACINTOSH PASCAL ILLUSTRATED

7.4 The main
body

Toolbox dictionary; so if you want to know more about var and
variables, flip to the alphabetical listing in Part 3.

The variables listed below var might be thought of as a grocery
list. The variable name is equivalent to an item's brand name.
The variable type is equivalent to an item's kind. Name and type
are separated by a colon. Every listing, even the last, ends with
a semicolon.

Here is an example of a possible variable declaration:

var
rocky Road : ice cream;
snickers : candy;
grandmaDora : cookies;

The sample programs in the next few chapters will use Pascal's
predefined types such as integer, real, char, string, text, and array.
Here is a sample variable declaration using predefined types:

var
chocolateFix : integer;
sugarlntake : real;
bloatedFeeling : string;
constipation : packed array[l..26) of char;

You can read up on each of Pascal's predefined types in Part 3.
For now you should know that:

1. Each variable needs to be declared as to its type.

2. The declaration occurs following the reserved word var, in
the format:

var
variableName 1 : typeA;
variableName2 : typeB;

You might have guessed by now that a computer program is
nothing more than a list of instructions. When you write a com­
puter program, you are giving orders in the same manner that a
parent gives orders to a child. A parent might say: "Go to the
supermarket. Buy a loaf of whole wheat bread and a half gallon
of low-fat milk. Here is three dollars, bring back the change."

ZEN PASCAL: EVERYTHING YOU KNOW IS WRONG 69

70

The order of the instructions becomes important. You cannot
buy the bread and milk until you go to the supermarket. You
cannot get the change until you buy the bread and milk.

The order of a Pascal program is also important. You have to
know where your instructions begin and end. And guess what:
Pascal does not execute a program in a strict, linear, top-to­
bottom order.

In what order does Pascal perform instructions? The answer is
illustrated by following the pointing hand. Drooling teachers and
leaden books can try to explain program flow till hell serves
Haagen Dazs, but not as well as the pointing hand of MacPascal's
Step commands.

Whenever the order of program execution becomes confusing,
use the Step command to inch your way through the program.
The Step command will perform your program, putting output
in the Text and Drawing windows the same as the Run command,
yet at a line-by-line pace.

Step through program AirHead. Though the program does ab­
solutely nothing, you can see that it is an actual program. The
main body of AirHead consists of two words: begin and end.

The main body has no special name or reserved word to state
its presence. The main body requires only Pascal's delimiters,
begin and end. These reserved words serve throughout the Pas­
cal program as bookends to hold together two or more instruc­
tions as a unit. Only in the main body do they serve the added
purpose of beginning and ending a Pascal program.

The main body resides at the end of the program, following all
other parts of a program. In forthcoming chapters, you will be
introduced to the building blocks of a program called procedures
and functions. A block is simply a group of instructions that
have been lumped together under an assigned name in order to
accomplish a task.

In program AirHead, running the program with Step makes the
pointing hand point to begin. The next Step points to end.

MACINTOSH PASCAL ILLUSTRATED

Remember, the pointing hand points to the instruction that will
be performed next. One more call to Step will end the program.

All programs begin with the first begin in the main body. All
programs end with the last end in the main body. The instructions
between begin and end of the main body instigate all other
activity.

From this chapter on, you will be instructing a computer to "go
to the supermarket, buy bread and milk, and return with the
change." If the computer comes back with ice cream and cookies,
you will just have to shrug and say four of the most satisfying
words in the English language :

At least I tried.

ZEN PASCAL: EVERYTHING YOU KNOW IS WRONG 71

What's next

• Topics

8 Of Mice and Mountains

This program flips a rectangular coin when the cursor arrow is
on top of the coin. Move the mouse off the coin and you get
heads if the coin is black or tails if the coin is white. The key
command for a program to read the mouse is getMouse, a pre­
defined procedure from the Macintosh Toolbox.

integer

frameRect

move To

writeDraw

repeat .. until

button

getMouse

if .. then

and

invertRect

OF MICE AND MOUNTAINS 73

8.1 Program
Coinflip 1;

8.2 Declarations

8.3 Main

74

program CoinFI Ip I;
var

x, y : integer;
begin

frameRect(50, 50, I 00, 150);
moveTo(65, 70);
writeDraw('BlackHeads');
moveTo(65, 85);
writeDraw('WhlteTails');
repeat

getMouse(x, y);
Ir <x >= 50) and (x <= 150) and Cy >= 50) and <y <= I 00) then

lnvertRect(50, 50, I 00, 150)
untl I button

end.

-D Drawing

i - i
I

QJ

Two variables, x and y , are declared to be of type integer under
the reserved word var. The variable x will hold the horizontal
coordinate and y the vertical coordinate of the tip of the mouse's
cursor arrow.

The instruction frameRect(50, 50, 100, 150); draws a rectangular
outline in the Drawing window. The numbers in parentheses,
known as parameters, correspond to the top, left, bottom and
right sides of the rectangle, in that order.

moveTo(65 , 70),· puts the Quickdraw pen into position for text
to be written. (65, 70) is a coordinate point of the Drawing
window and is contained in the rectangle drawn above.

MACINTOSH PASCAL ILLUSTRATED

You never actually see the Quickdraw pen. It is an invisible tool
that positions and draws Macintosh graphics. What you can see
is the ink from the Quickdraw pen when you execute a drawing
or writeDraw command.

writeDraw('BlackHeads'); inserts the text of its string parameter
beginning at the pen location. The string parameter is the letters
between the single quotation marks.

moveTo(65, 85) repositions the pen location to a point directly
below where 'BlackHeads' was written.

writeDraw('WhiteTails'); inserts its text at the new pen location.

Now a repeat loop begins. All the instructions following repeat
up to the bold-lettered, similarly-indented until are contained
in the loop.

The loop will be repeated until the boolean Toolbox function
named button is true. Boolean implies a true or false condition.

A Toolbox function is a group of instructions defined inside the
MacPascal language. The Toolbox function button tests the status
of the mouse button and returns a true or false value wherever
the word button occurs. button returns the value true when, and
only when, the mouse button is pressed.

getMouse(x, y) is the first instruction in the repeat loop.

getMouse(x, y) is a Toolbox procedure that reads the integer co­
ordinates of the mouse's cursor, and returns the horizontal co­
ordinate to its first variable parameter and the vertical coordinate
to its second variable paramet~r. In program CoinFlip 1, the
parameter variables are named x and y.

A Toolbox procedure, similar to a Toolbox function, is a group
of instructions defined in the MacPascal language. The instruc­
tions are performed by calling the procedure's name. In the case
of getMouse(x, y), the Toolbox procedure assigns the integer co­
ordinates of the mouse to the parameter variables x and y.

OF MICE AND MOUNTAINS 75

II

76

Following getMouse is an if .. then statement. If the condition
following if is true, then the action following then is performed.
Otherwise, nothing is done and the program continues at the
statement beyond the then action, which in CoinFlip 1 is: until
button.

The if condition is: (x > = 50) and (x < = 150) and (y > = 50)
and (y < = 100).

The reserved word and means that the conditions on both sides
of and must be true in order for the entire condition to be true.

Since x and y represent coordinate integers that were assigned
in the getMouse(x, y) procedure, the if .. then statement says:
if the mouse's coordinates are within the specified rectangular
area then perform the action invertRect(50, 50, 100, 150).

invertRect is a Quickdraw procedure that inverts the dots within
the parameter rectangle. If they were black they become white;
if they were white they become black. The rectangle's parameters
are the same as the parameters of the /rameRect procedure.

The area specified by the if condition happens to be the same
area enclosed by the /rameRect box drawn in the first statement.
Matching the x and y coordinates with the top, left, bottom, and
right parameters of /rameRect deserves a few minutes of your
time.

The repeat loop ends at: until button. Assuming the button is
not being pressed, the getMouse procedure is performed again,
the location of the mouse is checked by the if statement, and if
the cursor is within the rectangle, the rectangle is inverted.

The best way to see how fast MacPascal performs this loop is to

run the program with the mouse pointing inside the rectangle.
Watch how fast the rectangle changes back and forth from white
to black. Point the mouse outside the rectangle to stop the rec­
tangle from inverting.

Are you quick enough to make the coin flip always stop at
BlackHeads?

Press the mouse button to exit the repeat loop and end the
program.

MACINTOSH PASCAL ILLUSTRATED

The mention of BlackHeads makes Mr. Moss think of his ado­
lescence, where hope and frustration stand out years after the
pimples have passed. Hope turns to resolve, frustration becomes
sadness; Mr. Moss's adolescence lasted too long. You have a
computer language to learn, but damned if Mr. Moss is going to
let a chapter pass without a kindred message on priorities and
patience.

Priorities? Patience? Lofty aims for a book on Pascal. Like the
blind man playing Impeccable Warrior at the video arcade: "Blind
man," says Mr. Moss's girlfriend, "How in heaven do you play
these machines?"

"Very poorly," he answers. Quarters exhausted, he steps back,
bumps her. "But I'm improving."

OF MICE AND MOUNTAINS 77

What's next

• Topics

9.1 Program
CoinFlip2;

9 Procedures and True
Boolean Confessions

This chapter's program performs the same trick as last chapter's
program. But two things are different. First, the main body has
been shortened by adding procedures to do its work. Second,
the use of a boolean expression makes the program more readable.

var {within procedures}

boolean

procedure

program ColnFl lp2;
procedure frame;
begin

frameRectC50, 50, 100, 150);
moveTo(65, 70);
wrl teDraw('B lackHeads');
moveTo(65, 85);
wr1teDrawC'Wh1teTails')

end;
procedure flash;
var

x, y : Integer;
lnBox : boolean;

PROCEDURES AND TRUE BOOLEAN CONFESSIONS 79

9.2 Declarations

II
80

begin
getMouse(x, y);
lnBox := (x >= 50) and <x <= 150) and <y >= 50) and (y <" I 00);
If lnBox then
lnvertRect(50, 50, 100, 150)

end;
begin
frame;
repeat
rt ash

untll button
end.

~D Drawing

BleckHeeds
Wh1teTeils

~

The same two variables, x and y, are declared to be of type integer
under the reserved word var, but now the declaration appears
lower down in the program code, beneath the line: procedure
flash;.

The declaration of a variable within a procedure or function block
is only effective within the group of statements that compose the
block. Outside the procedure or function, the variable is unknown.

MACINTOSH PASCAL ILLUSTRATED

9.3 Main

The advantages of declaring a variable locally within a block rather
than globally under the program heading, as in last chapter's
CoinFlip 1, are twofold. First, memory space is freed when the
variable's block is not being used. Second, rhe same variable name
can be used other places in the program, helping to prevent a
clutter of variable names all doing the same thing.

A third variable, inBox, of type boolean has been declared. Whereas
type integer represents a whole number in the range - 32, 767
to 32,767, type boolean represents one of only two values: true
or false. The value of inBox, once assigned, must be either true
or false. Such is the nature of all boolean variables.

The main body of CoinFlip2 consists of only five words, excluding
the required begin and end. The repeat .. until button instruc­
tion was introduced in the last chapter. The two new words.frame
and flash, are procedure calls.

A procedure call is an instruction to direct program execution
to a procedure block listed above. The instruction frame; directs
program flow toframeRect(50, 50, 100, 150);, the first instruction
of procedure frame.

Remember from Chapter 7, a procedure block is a group of
instructions that have been clumped together under an assigned
name in order to accomplish a task. The way to execute the
instructions of a procedure is to call that procedure by its as­
signed name.

Since you must call a procedure (or function) in order to per­
form its statements, you can see why all programs start from the
main body. The main body has no tide and resides at the bottom
of the program code. The main body begins with the first oc­
currence of the reserved word begin that is not a part of any
other block.

The main body of a program should not be cluttered with obscure
instructions. Treat the main body of your program like your
favorite girlfriend or boyfriend-give the clearest, most concise

PROCEDURES AND TRUE BOOLEAN CONFESSIONS 81

9.4 Procedure
frame;

9.5 Procedure
flash;

82

phrasing of your intentions, and orderly calls to the procedures
and functions you believe will satisfy both your needs.

And if the two of you are planning to spend the night discussing
existential metaphysics, at least have the decency to stick the
crummy code in an out-of-the-way procedure.

Whenever you are in doubt about how a program jumps from
one instruction to another, MacPascal's pointing hand, available
by running a program with Step or Step-Step, shows the path of
program execution. Assuming you have entered CoinFlip2 into
the Program window (as you should be doing with all of Part 2's
programs), choose Step from the Run menu a few times-or the
shortcut cloverleaf-S-and watch the pointing hand move from
frame; to /rameRect(50, 50, 100, 150);.

Program flow goes from the main body and procedure call frame;
toframeRect(50, 50, 100, 150); and on through the five instruc­
tions of procedure frame.

The commands within procedure frame are the same as those
in the previous chapter. The task of the procedure is to frame
the rectangular coins and write the strings 'Blackheads' and
'WhiteTails' within the rectangles.

When the last command, writeDraw('WhiteTails'), has been per­
formed, program execution continues where it left off before
procedure frame was called. The next instruction is repeat in
the main body.

The repeat loop now contains one command, the procedure call
flash. procedure flash will be repeated until the mouse button
is pressed making the button function return true.

procedure flash performs the mouse reading and interpreting
tasks. The getMouse procedure remains unchanged. The if con­
dition has been changed slightly.

Instead of inserting the long and .. and condition between if
and then, the same within-the-given-area condition is assigned
to a boolean variable with the descriptive name of inBox.

MACINTOSH PASCAL ILLUSTRATED

II

The variable inBox is assigned a true or false value by the line:
inBox := (x > = 50) and (x < = 150) and (y > = 50) and
(y < = 100);. Both sides of this assignment are boolean expres­
sions. The reserved word and joins all four of the expressions
in parentheses into a single boolean expi:ession that has a true
value only if all the individual expressions are true.

The variable inBox becomes true if mouse's coordinate point (x,
y) is contained within the rectangle's boundaries. Otherwise inBox
is assigned the value of false.

There are two important aspects of assignment statements:

1. Assignments are made using the colon/equals sign (: =). The
equals sign alone (=) is used for tests of equality.

2. The type of the variable must match the type of its assign­
ment. Boolean variables cannot be assigned integers or any­
thing else but a boolean value.

If you forget either of these aspects of assignment statements,
MacPascal will assuredly remind you with outlined text or a bug
message.

The boolean variable inBox makes the if .. then statement much
easier to understand. If the mouse is within the box, then inBox
is true and the invertRect command is performed. If the mouse
is not within the box, then inBox is false and the invertRect com­
mand is skipped over.

Following the if..then action, procedure flash ends and pro­
gram flow drops back to the main body. However, if the button
is not being pressed, the procedure is immediately called again
because flash is the only statement in the repeat loop.

A press of the mouse button drops out of the repeat loop and
ends the program.

PROCEDURES AND TRUE BOOLEAN CONFESSIONS 83

What's next

• Topics

10.1 Program
CoinFlip3;

10 Reef and Point: Types Not
for Your Sister

This program performs exactly the same trick as programs in the
last two chapters. But one important new concept is introduced.
Rectangles and points will not be identified by a series of integers.
They will be assigned names. These names will become variables
of the predefined Quickdraw types rect and point.

point

re ct

set Pt

setRect

ptlnRect

program CotnFltp3;
var
r: rect;

procedure frame;
begin
setRect(r, 50, 50, 150, 100);
frameRect(r);
moveTo(65, 70);
wrl teDraw('B JackHeads');
moveTo(65, 85);
wrtteDraw('WhtteTatls')

end;

RECT AND POINT: TYPES NOT FOR YOUR SISTER 85

procedure flash;
var

x, y : Integer;
pt : point;

begin
getMouse(x, y>;
setPt(pt, x, y);
If ptlnRect(pt, r> then
lnvertRect(r)

end;
begin

rrame;
repeat

flash
until button

end.

:o Drawing

-
121

10.2 Declarations As in the last chapter, variables x and y are declared to be of
type integer under the reserved word var within procedure flash.
The boolean variable inBox has been omitted.

86

Also declared in flash is pt, a variable of type point. Using a
variable of type point will replace the need for integer parameters
each time a point's coordinates are referenced.

The easiest way to remember about parameters is to think of the
JrameRect command. The four integers inframeRect(50, 50, 100,
150) are a parameter list, and each number is a parameter dic­
tating on which coordinate axis to draw a side of the rectangle
(top, left, bottom, right).

MACINTOSH PASCAL ILLUSTRATED

10.3 Main

II
10.4 Procedure
frame;

A variable of type point requires only two parameters. You will
see below that the Quickdraw procedure setPt assigns the variable
pt to two integer variables by listing them consecutively in its
parameter list: setPt(pt, x, y).

A global declaration of r, a variable of type rect, requires four
parameters. The variable name r, assigned its value by setRect(r,
50, 50, I 50, 100) , replaces the need for integer parameters each
time the rectangle is referenced.

point and rect are predefined in Quickdraw. As such, these types
can be used with the same ease as Pascal's predefined types like
integer an<l string. Because Quickdraw, the Toolbox, and MacPascal
are all computer language tools, the only time you will need to
differentiate among them is when you try Pascal programming
on a computer other than Macintosh.

The main body of CoinFlip3 is identical to Chapter 9's CoinFlip2.

The adage If It Ain't Broke, Don't Fix It applies wisely for main­
frame COBOL crankers, though MacPascal artists would more
likely be overheard saying:

Hell, my date won't be here for an hour.
In that time I can rewrite this sucker from
scratch.

The first instruction performed after frame; in the main body is
setRect(r, 50, 50, I 50, I 00); in procedure frame. This Quickdraw
procedure assigns the variable in the first parameter, in this case
r, with the four side parameter integers: left, top, right, and bottom,
respective! y.

Sorry, fans, but the order of the side parameters of setRect(r, 50,
50, 150, 100) is left, top, right, and bottom. This is different from
the order of integers placed directly in the parameter list of any
shape-drawing procedure such as frameRect. In frameRect(50, 50,

RECT AND POINT: TYPES NOT FOR YOUR SISTER 87

10.5 Procedure
flash;

II

88

100, 150), the order of the side parameters is: top, left, bottom,
and right.

frameRect(r); draws the identical rectangular outline of Jrame­
Rect(50, 50, 100, 150) used in Chapters 8 and 9. The single
variable r of type rect represents all four integers.

The remaining instructions of procedure frame have not changed.
When the last command, writeDraw('WhiteTails'), has been per­
formed, program execution continues where it left off before
procedure frame was called. The next instruction is repeat in
the main body.

procedure flash still performs the mouse reading and interpret­
ing tasks. The getMouse procedure remains unchanged.

setPt(pt, x, y); assigns the variable of its first parameter, in this
case pt, with the two integers of its second and third parameters.
The latter parameters are x and y, the horizontal and vertical
coordinates returned from the getMouse(x, y) procedure. As a
result, the variable pt of type point contains the two integers
indicating the position of the mouse cursor.

The next instruction is a beauty. ptlnRect(pt, r), as the condition
of the if..then statement, is a Quickdraw boolean (true/false)
function that determines if point pt is contained in rectangle r.

If pt is in r, pt! nRect returns true, and the instruction invertRect(r)
is performed. If pt is not in r, the function returns false, and the
action is not done.

The pt! nRect function will not accept integers directly inserted
into its parameter list. It accepts only a type point and a type rect
parameter. So even though the shape-drawing procedures accept
integer parameters, the use of setPt and setRect to create point
and rect types is strongly recommended. Besides, it is easier to
write invertRect(r) than it would be to write invertRect(50, 50,
100, 150).

This chapter is the last you will see of the rectangular coin flip.
You no longer need to scrounge in your pants pockets for a
nickel to make life's important decisions. Of course, if you enjoy
reaching into your pants pockets, don't let technology put a crimp
in your fun.

MACINTOSH PASCAL ILLUSTRATED

What's next

• Topics

11.1 Program
NotTheStork;

11 Babies and the
Input/Output Function

This program asks a question and waits for the user to type an
answer. The program will call a function to read the keyboard,
then issue an appropriate response. Also, the Text window will
be resized from within the program.

string

setTextRect

showText

write

writeln

if .. then .. else

function

readln

program NotTheStorl<;
var

txW1ndow : rect;
function getAnswer: strlng[20];
var
s: strlng[20];

begin
readln(s);
getAnswer :• s

BABIES AND THE INPUT/OUTPUT FUNCTION 89

end; (end getAnswer}
procedure question;
begin

write(' Among drugs, sex, and rock and roll,');
wrltelnC'whlch do you believe makes babies?');
write In;
If getAnswer = ·sex' then
wrlteln('Mr. Moss quessed this, too.')

else
begin

wrlte('Elther your Walkman Is on too tight or');
wrltelnC'the pipe between your ears needs cleaning.')

end
end; (end question}

begin
setRect(txWlndow, 100, 100, 400, 250);
setTextRectC txWlndow);
show Text;
question

end. (end NotTheStork)

Te Ht

Among drugs, sex, and rock and rol I, l:Q.
which do you believe makes babies?

11.2 Declarations txWindow, a variable of type rect, is declared globally. Remember,
a global declaration occurs beneath the program heading, and
global variables can be used throughout the program. A local
declaration occurs beneath a procedure or function heading,
and can be used only within its block.

90

The Quickdraw type rect was discussed in the last chapter. Vari­
ables of this type contain the integer coordinates that define a
rectangle. txWindow will be used to set, then display, a resized
Text window.

The only other variable declared in NotTheStork is s, a variable
of type string. The string variable s will hold the answer typed
by the user.

MACINTOSH PASCAL ILLUSTRATED

II

11.3 Main

11.4 Procedure
question;

A string is one or more characters held together by single quo­
tation marks. Any character can be inside a string except the
single quotation mark, which is reserved for identifying the string's
beginning and end.

The variable declaration of a string should also contain an integer
in brackets stating the maximum number of characters the string
can contain. s : string(20} declares that the variables is a string
of not more than 20 characters.

The purpose of stating the size of the string in brackets is to
conserve memory space. If the number is omitted, a default size
of 255 is assumed, and the variable will take up 255 characters
worth of space even if it is only 2 characters long.

The main body of NotTheStork consists of four procedure calls.
The first three, all Quickdraw procedures, concern the Text win­
dow. The last call performs the question and answer task.

You should be familiar with the setRect procedure from the last
chapter. In setRect(txWindow, 100, 100, 400, 250);, coordinates
are assigned to the type rect variable txW indow.

setTextRect(txWindow); is the Quickdraw procedure call that sets
the size of-but does not draw-the Text window. The size is
determined by its type rect parameter. The four coordinates as­
signed to the variable txWindow by the setRect command are
passed on as a single parameter of setTextRect.

showText; is the Quickdraw procedure call that draws the Text
window with whatever dimensions are currently assigned to the
Text window rectangle.

question is the call to procedure question in the program code.
Program execution continues at the first instruction of this
procedure.

The first instruction of procedure question is: write('Among drugs,
sex, and rock and roll, ');.

The characters between the single quotation marks of Pascal's
write command are written onto the Text window just as they

BABIES AND THE INPUT/OUTPUT FUNCTION 91

II

II

92

appear between the single quotation marks. Characters between
single quotation marks are called a literal string, or simply, a
literal.

When creating a literal, be careful not to use the single quotation
mark as part of your literal. When you need to use an apostrophe,
use the slanted apostrophe mark that is on the top-left key of
your keyboard.

The second instruction, writeln('which do you believe makes ba­
bies?'); also displays the characters between single quotation marks
on the Text window. Both write and writeln require their param­
eters to be parenthesized.

The difference between write and writeln is that writeln also sends
an invisible end-of-line character after the last literal character.
The consequence of this end-of-line character is that any sub­
sequent characters sent to the Text window will start a new line.

The third instruction, writeln;, has no characters, parentheses, or
single quotation marks. This command sends the end-of-line
character for the purpose of beginning a new line without dis­
playing any characters. The result is a blank line on the Text
window.

You don't have to worry whether each line of characters you
send to the Text window will spill ouside the boundaries of the
window. The Text window will format text into new lines when­
ever the edge of the window has been reached. If text extends
beyond the bottom of the window, the vertical scroll bar becomes
active, and the beginning text lines scroll off the top of the
window. Use the scroll bar or resize the window to recapture
the hidden text.

Unlike the Drawing window, the Text window does not lose its
contents when it is covered over by another window or resizing,
nor will the Text window write invisibly outside the window's
coordinates.

MACINTOSH PASCAL ILLUSTRATED

II

11.5 Function
getAnswer:
string[20];

The remaining instructions of procedure question are part of an
if .. then .. else statement. The boolean condition getAnswer = 'sex'
will be explained in the next section. If the boolean condition
of the if statement is evaluated as true, then the literal 'Mr. Moss
guessed this, too.' is written to the Text window. If the boolean
condition is false, the two literal strings following else are written
to the Text window.

You should notice that the write and writeln commands following
else are enclosed by a begin .. end. The purpose of bracketing­
or gluing together-the write and writeln commands between
begin and end is so both commands will be performed only if
the else condition is true. Without the begin .. end brackets, the
else condition would apply only to the write command, and the
latter writeln command would be performed regardless of whether
the else condition was true or not.

In section 11.4 above, the boolean condition getAnswer = 'sex'
of the if..then statement needed more explanation. Since get­
Answer was never declared as a variable under any var heading,
there must be some other way for getAnswer to be assigned a
string value such as 'sex.'

The block of code titled function getAnswer : string(20) per­
forms this task.

A function resembles a procedure in that it contains its own
declarations, its own statements, and a name by which it is called
from elsewhere in the program. A function differs from a pro­
cedure in that a function must return a single value to the function
call.

You might think of a function's name as a variable that assigns
itself a value through its own block of statements. Like a variable,
the function's name has a declared type. A colon (:) separates
the function name from its type in the title.

This is the function title in NotTheStork: Junction getAnswer :
string(20);. function getAnswer will return a value of type
string[20], a string of not more than 20 characters. The name

BABIES AND THE INPUT/OUTPUT FUNCTION 93

94

I~
Lil

getAnswer serves both as a call to the function and as the vari­
ablelike name of the returned value.

Now you can see that the if.. then condition if getAnswer = 'sex'
then is both calling function getAnswer and returning with a
string value that will be compared with the literal 'sex.'

function getAnswer contains only two statements. The first,
readln (s), causes the program to wait until input is received from
the Macintosh keyboard.

The input is recognized as complete when the end-of-line return
key is pressed. When return has been pressed, the characters
input from the keyboard are assigned to the parameter variable,
in this case, the string variable s.

The second instruction, getAnswer : = s, assigns the value of the
string variable s to the string type result of function getAnswer.
Just like a variable, a function must have a value assigned to it.

Remember, assignments-setting one value equal to another­
are done with the colon and equals sign (: =). The equals sign
(=) alone is used for a boolean (true/false) test of equality.

Use Step to go through NotTheStork line by line. This will
reaffirm how the name getAnswer in the if.. then statement directs
the pointing hand to the function getAnswer block. After you
execute the readln(s) command you will still have to type an
answer in from the keyboard.

For a little twerp of a program, this 1s a long and somewhat
difficult chapter. Do not be misled :

Programming is not simple, though many
programmers are.

MACINTOSH PASCAL ILLUSTRATED

Nor is programming always fun. The bug messages, outlined
code, and glitched-out glop can get on your nerves. Still, you
should be taking the programs in this book and twisting them
around so that they do what you want them to do. At the least,
change the window sizes and string literals. If you abhor drugs
and rock and roll, insert tofu and poetry. If you abhor sex, insert
... nah, just skip to the next chapter.

BABIES AND THE INPUT/OUTPUT FUNCTION 95

What's next

• Topics

12 The Mouse Yes, the
Keyboard No

Do not be frightened by the long program in this chapter. Almost
every instruction you have seen before in some manner. Best of
all, you will see how to use the mouse to answer yes or no
questions-all within a subroutine that you can reuse in any of
your own programs.

hide All

setDrawingRect

show Drawing

if .. then .. else {nested}

penSize

textSize

textFont

frameRoundRect

function {boolean}

or

not

sysBeep

while .. do

THE MOUSE YES, THE KEYBOARD NO 97

12.1 Program
LifeAfterDeath;

98

program L1feAfterDeath;
procedure windows;
var

txWlndow, drWlndow : rect;
begin
hideAll;
setRect(txWlndow, 60, 60, 455, 180);
setRect(drWindow, 40, 225, 225, 325);
setTextRect(txWlndow);
setDrawlngRect(drWlndow);
show Text;
showDrawlng

end; (end windows}
function getAnswer: boolean;
var

x, y : Integer;
lnBox : boolean;
pt: point;
okay, notOkay: rect;

begin
penSlze(2, 2);
textSlze(14);
textFont(5);
moveTo(18, 30);
wrlteDraw('Yes');
setRect(Okay, 10, 10, 50, 40);
frameRoundRect(Okay, 9, 9);
moveToClOO, 30);
wrlteDraw('No');
setRect(Notokay, 90, 1 o, 130, 40);
frameRoundRect(Notokay, 9, 9);
lnBox := false;
repeat

getMouse(x, y);
setPt(pt, x, y);
If button then
begin

lnBox := ptlnRect(pt, okay) or ptlnRect(pt, notokay);
If not inBox then
sysBeep(15)

end
until lnBox;
getAnswer := ptlnRect(pt, okay);
while button do (wait for mouse up)

end; (end getAnswer}
procedure questions;
begin
wrlteln('Do you believe In life after death?');
write In;

MACINTOSH PASCAL ILLUSTRATED

If getAnswer then
begin

wrlteln('Do you believe there will be sufficient orrstreet parl<lng?'l;
wrlteln;
If getAnswer then

wrlte('Wrlte Mr. Moss about his mosquito-free Everglades land.')
else

wrlte('Breathe exhaust, heretic.')
end

else
wrlte('Blte on a bug, heretic.')

end; (end questions) ·
begin

windows;
questions

end. (end LifeAfterDeath)

-o Te Kt

Do you bel ieue in I i fe after death?

Do you believe there wi I I be sufficient off street
parking?

:o- Drawing

~ B

12]

12.2 Declarations txWindow and drWindow, both variables of type rect, are declared
in procedure windows. Just as txWindow was used in the last
chapter to set, then display a resized Text window, drWindow
will do the same for the Drawing window.

The six other variables in LifeAfterDeath are declared in func­
tion getAnswer. The types of each of these variables should be
familiar to you from previous chapters. Four of the six variables

THE MOUSE YES, THE KEYBOARD NO 99

12.3 Main

II

12.4 Procedure
windows;

12.5 Procedure
questions;

100

even retain the same names. Only two rect variables, okay and
notOkay, are new.

The main body ofLifeAfterDeath consists of two procedure calls.
Both call procedures listed in the program code.

Procedures and functions should be placed in a program before
any statements that call it. This presents no problems for the
main body of a program, which is always placed at the end of a
program. However, when a procedure or function calls another
procedure or function, care must be exercized that the block
being called precedes the statement that calls it. In other words,
statements cannot call forward to procedures and functions.

There is an exception to this rule-a special declaration called a
forward declaration-which allows statements to precede the blocks
they call, but such declarations are not implemented in this book.

From windows;, program execution jumps to hideA/l;, the first
instruction of procedure windows. hideA/l is a Quickdraw pro­
cedure that clears the Macintosh screen of everything but the
menu bar.

The next six instructions are all Quickdraw procedure calls per­
forming the same task as the main body of last chapter's Not­
TheStork program. The setRect commands assign coordinates to
txWindow and drWindow, variables of type rect. setTextRect and
setDrawingRect assign those dimensions to the Text and Drawing
windows. showText and showDrawing display those windows on
the M~cintosh screen.

procedure windows gives LifeAfterDeath a clean, sharp look,
uncluttered by program code and overlapping windows. ·

The second instruction of the main body is a call to procedure
questions. This procedure consists of write and writeln state­
ments, and two if .. then .. else statements, nested such that the
second if statement begins before the first one has ended.

MACINTOSH PASCAL ILLUSTRATED

II

The write and writeln statements were explained in the last chap­
ter. The only reason some of the string literals in NotTheStork
and LifeAfterDeath are presented in consecutive write and writeln
statements rather than a single long writeln statement is to pre­
vent a long string literal from running off the right margin of the
Program window. Such a string would still work okay, but is not
as pleasant to view.

You should also be familiar with the if .. then .. else statements.
The action performed after then or else will be either a single
statement or a multiple statement block bracketed by begin and
end.

As the MacPascal indentations suggest, each end is paired with
the nearest preceding unpaired begin. A similar rule exists for
if .. then .. else statements. Each else is paired with the nearest
preceding unended if. Look at the examples in Part 3 under
begin and if for more information on this topic.

procedure questions does little more than write the string literals
that make up the questions and answers in LifeAfterDeath. The
only additional task of the procedure is to call function get­
Answer to provide the boolean branching condition of the two
if .. then .. else statements. The true or false value returned by
function getAnswer will determine whether the if statement
will branch to the action following then or the action following
else.

Note that the second, more deeply indented, if getAnswer then
instruction is part of the action taken only if the first call to
getAnswer returns with a true value. The second if .. then .. else
instruction is skipped over when the first call to getAnswer returns
false and program flow branches to the paired else action,
writeln('Bite on a bug, heretic.').

This chapter really needs a sidetrack here-something that has
absolutely nothing to do with Pascal or programming. Mr. Moss
wants to talk about his girlfriend. Seems that Mr. Moss always
wants to talk about his girlfriend. Tonight at around six-thirty
she is going to come over his house and they are going to take
a long walk around the neighborhood. Mr. Moss's girlfriend knows

THE MOUSE YES, THE KEYBOARD NO 101

12.6 Function
get Answer:
boolean;

102

the names of plants and flowers and trees and all sorts of good
information. Mr. Moss considers himself lucky that he can, at
least, spot poison oak.

The sunsets have been beautiful lately. Mr. Moss and his girl­
friend have been going to the marina to watch the sky change
colors. They hold hands or walk with their arms around each
other's back as if they were both seventeen years old.

Summer is almost over. The cool autumn evenings ought to be
nice. Mr. Moss's girlfriend is kind, generous, and sweet. What­
ever darkness there might have been earlier in his life, Mr. Moss
looks forward to tonight.

function getAnswer works much like its counterpart of the same
name in the last chapter. Its purpose is to return an answer to
the calling procedure in order for a branching decision to be
made.

In the last chapter, function getAnswer returned a string, and
that string was compared to the literal 'sex' to determine if the
boolean condition was true or false.

In LifeAfterDeath, function getAnswer returns a boolean result,
so no comparison is necessary. The function name alone-if
getAnswer then-calls function getAnswer and returns the boo­
lean result necessary to make a branching decision.

The declarations and statements in the revised getAnswer do much
more than its predecessor. Rather than demand that the user
answer a question by typing on the keyboard, a more elegant
method-one which befits the elegance of Macintosh-is to point
the mouse at an answer box and click within the box to select
the answer.

This is exactly what function getAnswer does. Two rounded­
corner boxes are drawn in the Drawing window-one with yes,
the other with no, printed inside the boxes. The first eleven
instructions-every one a Quickdraw procedure call-perform
this task.

See Part 3 to learn more about any of these Quickdraw calls.
You have used most of these calls before, including setRect, the

MACINTOSH PASCAL ILLUSTRATED

procedure that defines a variable of type rect. frameRoundRect
works like frameRect except that two additional parameters are
required to determine the roundness of the rectangle's rounded
corners.

The remainder of function getAnswer resembles the program
CoinFlip3, where the ptlnRect procedure is used to determine
whether the mouse is pointing within a specified rectangle. Here,
the same procedure is used to determine if the button has been
pushed while the mouse is pointing in the yes box, the no box,
or neither box.

Probably the most mysterious of all the instructions in function
getAnswer is: inBox : = false. It is the first command after the
eleven Quickdraw calls. This command is an initialization. The
boolean variable inBox is assigned, chat is, initialized with, a value
of false so chat the loop

repeat
.. {action}
until inBox

continues cycling until a command within the loop changes the
value of inBox to true.

Until a variable is specifically assigned, or initialized with, a value,
it is considered undefined. An undefined variable can cake un­
predictable values, and its use will, more often than not, cause
unwanted results.

The repeat .. until loop performs these tasks:

1. Reads the coordinates of the mouse.

2. Assigns these coordinates to variable pt of type point.

3. Calls the Toolbox button function to see if the button has
been pressed.

4 .. If the button has been pressed, branches to the block fol­
lowing then and

5. assigns inBox a value. Inbox is true if pt is located in either
rectangle okay or notOkay, otherwise inBox is false and the
if not action causes the sysBeep noise.

THE MOUSE YES, THE KEYBOARD NO 103

II

104

6. If button has not been pressed or if inBox was assigned false
in step 5, the boolean condition inBox following until re­
mains false and the loop is repeated starting at step 1.

or joins two boolean expressions to a single boolean value. The
value is true if either or both expressions are true, otherwise the
value is false.

not negates the boolean value of whatever expression it precedes.
If the reserved words or or not are confusing to you, read more
about them in Part 3.

When the mouse button has been pressed while pointing in the
yes or no box, the repeat loop is exited. The next instruction,
getAnswer := ptlnRect(pt, okay), assigned function getAnswer its
result value-true if point pt is contained in the yes rectangle
okay, false if not.

The last instruction of function getAnswer, while button do;, is
a delay mechanism necessary only because the Macintosh com­
puter is so fast in recognizing mouse input that a program needs
to allow for the slow touch of the user.

while button do; is a loop that performs no statements. The
semicolon signifies the end of the loop, and since there are no
statements between do and the semicolon, it is an empty loop.
Nonetheless, if the mouse button is being pressed, the computer
(think of the pointing hand of MacPascal) cycles around and
around from the semicolon to while button do, repeating the loop
until the button function reads that the mouse button is up and
returns a value of false.

The while .. do loop works nearly the same as the repeat .. until
loop. The difference is that the while loop interprets its boolean
condition before performing any action, whereas the repeat loop
always performs its action at least once before it interprets its
boolean condition.

When the while button do loop is exited, the program flow returns
from function getAnswer back to procedure questions. The
boolean result of the function determines which branch of the
if loop is performed and, consequently, which text is written on
the screen.

MACINTOSH PASCAL ILLUSTRATED

What's next

• Topics

13.1 Program
WordslnPrint;

13 The Printer Prints

This short program sends text to be printed on-what else?­
the printer. Mr. Moss has been using an Apple lmagewriter printer,
though there is a good chance this program would work the same
on any Macintosh-compatible printer.

text {files}

rewrite

writeln {to files}

program WordslnPrlnt;
var
f: text;
s I, s2, s3, s4: strlng[60];

begin
s I :="Mr. Moss recommends John Kennedy Toole's ·A Confederacy·;
s2 :="of Dunces· as soon as";
s3 := 'you have finished reading Vonnegut's "God Bless";
s4 :='You, Mr. Rosewater· and "Mother Night". ';
rewrlte(f, 'PRINTER:");
wrlte(f, chr(27), "c', chrC27), "p");
wrlteln(f);
wrlteln(f, sO;
wrlteln(f, s2, s3);
wrlteln(f, s4, 'Then, of course, Hunter Thompson's");
wrlteln(f, "'Fear and Loathing In Las Vegas· for a dose of nonfiction.')

end.

THE PRINTER PRINTS 105

Moss recommends John Kennedy Toole's "A Confederacy
of Dunces' as soon as you have finished reading Vonnegut's 'God Bless
You, Mr. Rosewater" and "Mother Night". Then, of course, Hunter Thompson··s
'Fear and Loathing in Las Vegas' for a dose of nonfiction.

13.2 Declarations WordslnPrint introduces a new variable type called text. The
variable f is declared to be of type text.

13.3 Main

II

106

Pascal does not recognize printers (or disk drives) directly. Pascal
does recognize variables and types. So the best method of using
a printer from Pascal is twofold:

1. Declare a variable to be of the text type.

2. Open the variable as a file organizer to the printer.

You never need to assign characters to the text variable f Instead,
you will use f as a file organizer that directs characters line by
line from the computer to the printer.

sl, s2, s3, and s4 are string variables whose space allotment has
been set to 60 characters. The characters in these strings will be
sent to the printer via the file organizer variable f

This program is short and direct, so there is no need to break
up tasks into procedures or functions. All statements are con­
tained in the main body of the program, bracketed by a single
begin and end.

The four string variables are assigned their strings by the first
four statements. The string variables could have been named
Manny, Moe, Jack, and Curly, but sl, s2, s3, and s4 was easier.

The fifth instruction is: rewrite(/, 'PRINTER:');. This Pascal pro­
cedure opens the connection between the file organizer f and
the external device named 'Printer:'.

Three rules of printing:

1. The printer can only be activated by the file command rewrite.

2. The proper name for the printer must appear as shown­
with colon and single quotation marks-though the letters
of 'printer:' can be upper or lower case.

MACINTOSH PASCAL ILLUSTRATED

3. The file organizer (variable) must be of type text, and be
included as the first parameter of rewrite.

The remaining six instructions of WordslnPrint are write or
wrtte!n commands, all using/, the file variable, as the first parameter.

write(f,chr(27),'c',chr(27),'p'); is an awful-looking instruction that
performs a useful printer task. The command sends control codes
to the printer that set the Imagewriter to a proportionally-spaced
pica print type.

The first parameter, /, lets the write command know that all
subsequent parameters are to be sent to the rewrite-designated
file, in this case, the printer. The control codes specified by the
cryptic chr(27) and a character in single quotation marks send
nonprinting information to the printer that regulates the printer
hardware. The next chapter presents more information on di­
recting the printer with control codes.

write!n(f); sends a line feed to the printer. The single parameter,
file organizer/, sends its information to the printer. Since there
are no text and no control codes, the only information sent is
the line feed implicit in the writeln command.

As you saw in the two previous chapters, a write!n command
with no parameters sent a line feed to the Macintosh screen. The
blank line makes adjoining text easier to read. Sending a line
feed to the printer also performs the handy task of straightening
the paper before any printing is done.

writeln(j, sl); sends the strings] to the printer. If the file variable
f had not been included, the string would have been sent to the
Macintosh screen.

Take a moment to think through the concept of a file organizer.
First, under var, you declared a variable/ of type text. Then, you
created (opened) the connection between/ and the printer with
rewrite(/,'PRINTER:');. Now, in the writeln commands, you are
using fas a file organizer to route strings to the printer.

writeln(/, s2, s3); sends both strings to the printer. This shows
you can combine more than one string parameter in a single
writeln(or write) command, as long as you separate them with a

THE PRINTER PRINTS 107

108

comma. The line feed of writeln occurs after the last string is
printed, not after. each string.

The last two instructions show that string literals can also be sent
to the printer. The string s4 is printed, followed by the literal
between single quotation marks. The final writeln command sends
the second half of the literal. The writeln command works the
same as when it is sending data to the Macintosh screen, except
now the file organizer, inserted as the first parameter, directs
output to the printer instead.

Besides Toole, Vonnegut, and Thompson, authors near the abyss
worth checking out are: Kate Braverman, Brett Singer, William
Kotzwinkle, Nathanael West-and one who has gone over­
R. A. Lafferty.

MACINTOSH PASCAL ILLUSTRATED

What's next

• Topics

14.1 Program
PrintStyles;

14 Printing in Style Without
the Alligator

Here is another program that makes use of the printer. You will
experiment with control codes to see eleven different print styles,
in addition to picking up some key Pascal pointers.

const

for .. to .. to

chr

case .. of

program PrlntStyles;
var

s 1, s2, s3 : strlng[70];
procedure asslgnUnes;
begin
sl :='Mr. Moss has written a novel about love In the';
s2 := 'Everglades which, strangely enough, never uses the';
s3 := ·word "love; nor Is anyone ever attacked by an alligator.'

end;
procedure prlntl ines;
const

esc = 27;
var

I, code: integer;
r; text;

begin
rewrite(f, 'printer:');

PRINTING IN STYLE WITHOUT THE ALLIGATOR 109

110

for I:= I to 12do
begin

wrlte(f, chr<esc), 'c');
case I of
I:
code:= 110;

2:
code:= 78;

3:
code:= 69;

4:
code:= 112;

5:
code:= 80;

6:
code:= 101;

7:
code:= 113;

8:
code:= 81;

9:
code:= 88;

10:
code:= 33;

11:
code:= 66;

12:
code :•99

end; (end case)
wrlte(f, chr<esc), chr<code));
wrlteln(f);
wrlteln(f, sl);
wrlteln(f, s2);
wrlteln(f, s3)

end; (end for loop)
wrlteln(f);
wrlteln(f, ·soon to be published.')

end;
begin

asslgnllnes;
prlntllnes

end.

MACINTOSH PASCAL ILLUSTRATED

14.2 Declarations
and definitions

Mr. Moss has written a novel about love in the
Everglades which, strangely enough, never uses the
word "love," nor is anyor1e ever attacKed by an alligator.

Mr. Moss has written a novel about love in the
Everglades which, strangely enough, never uses the
word "love,• nor is anyone ever attacked by an alligator.

Hr. Hoss has written a novel about love in the
Everglades which, strangely enough, never uses the
word 'love,• nor is anyone ever attacked by an alligator.

Mr. Moss has written a novel about love in the
Everglades which, strangely enough, never uses the
word "love," nor is anyone ever attacked by an alligator.

Mr. Moss has written a novel about love in the
Everglades which, strangely enough, never uses the
word "love,• nor is anyone ever attacked by an alligator,

Mr. Moss has written a novel about love in the
Everglades which, strangely enough, never uses the
word 'loue,' nor is anyone ever attacked by an alligator.

Hr. Hoss has 1r1ritten a novel about love in the
Everglades 11111 i ch, strange 1 y enough, never uses the
word 'love,' nor is anyone ever attacked by an alligator.

Hr, Hoss has 11ritten a novel about love in the
Everglades 11hich, strangely enough, never uses the
11ord 'love,' nor is anyone ever attacked by an alligator.

Hr. Hoss has written a novel about love in the
Everglades which, strangely enough, never uses the
word 'love.• nor is anyone ever attacked by an alligator.

Hr. Hoss has written a novel about loue in the
Everglades which, strangely enough, never uses the
word 'loue,• nor is anyone ever attacked by an alligator.

Hr. Hoss has written a novel about love in the
Everglades which, strangely enough 1 never uses the
word "love,• nor is anyone ever attacked by an alligator.

Hr. Hoss has written a novel about love in the
Everglades which, strangely enough, never uses the
word 'love,• nor is anyone ever attacked by an alligator.

Soon to be published.

You have seen all of the var types used in previous chapters.
Integer and string types should be old hat by now. The variable
f of type text was explained in detail in the last chapter. f is the
file organizer that directs output to the printer.

Some variables are declared locally in procedure printLines be­
cause they are only going to be used in procedure printLines.
However, the string variables, sl, s2, and s3, are used in both of
the program procedures. So rather than declare these variables
twice, a single global declaration beneath the program heading
makes them available for use anywhere in the program.

PRINTING IN STYLE WITHOUT THE ALLIGATOR 111

II

14.3 Main

112

Beneath the heading of procedure printLines, and above the
title var, is a new section of a Pascal program titled const. Be­
neath const is the definition: esc = 27;.

const is short for constant. A constant is similar to a variable
except its value can never change. With a constant, you equate
a name with a value. Later, you can substitute that name for the
value in the program code.

Unlike variable assignment statements that use the colon/equals
sign (: =) for notation, a constant definition uses the equals sign
(=) alone. The const definition equates a name with a value.
Each definition under const is followed by a semicolon.

The use of constants (defined by const) adds clarity to your
program. Names are more apt to be descriptive and self-docu­
menting than values.

By defining under const esc = 27;, each occurrence of the number
27 in procedure printLines can be substituted with the letters
esc. As a result, the control code chr(esc) is more easily understood
as the escape character than would be chr(27).

Another important advantage of using constants is the ease with
which you can revise Pascal constants. For example, if after you
have written a program, you discover that the correct escape code
number is 32 instead of 27 (it's not), you would have to revise
only the const definition. Yet if you had the number 27 written
throughout your code, you would have to edit every occurrence
of 27 to 32.

The definition const, like the declaration var, can be inserted
globally beneath the program heading, or locally beneath a pro­
cedure or function heading. The former allows the constant to
be used anywhere in the program, whereas the local definition
can conserve memory space and enhance the building-block na­
ture of a Pascal program.

The main body of PrintStyles calls the two procedures listed
above. Notice that the names of the procedures tell you what
the procedures will do.

MACINTOSH PASCAL ILLUSTRATED

14.4 Procedure
assignLines;

14.5 Procedure
printlines;

If you write a program, and then forget about it for a couple
days, the descriptive names of constants, variables, procedures,
and functions, help immensely in trying to figure out what the
heck you have done.

You think you will remember how a program works, but you
won't. Biologists say that in each person, millions of brain cells
die every minute; and a visit to your neighborhood users group
might convince you that programmers lose more than most. Then,
of course, there is the word of Mr. Moss who says:

You will forget your Pascal techniques far more
readily than those used in the bedroom.

procedure assignLines contains three assignment statements, giving
strings values to the string variables sl, s2, and s3. Since there
is nothing new to examine in this procedure, take a moment to

review the use of semicolons in a procedure.

The procedure name and the end of a procedure are always
followed by semicolons. Because begin and end serve as brackets
for Pascal instructions, neither begin nor the statement imme­
diately preceding end requires a semicolon.

The text of the three strings in PrintStyles might have you won­
dering whether Mr. Moss's novel concerns computers. For the
most part, no; however there is a short, dreamy sequence in
which a programmer ingests a program and spends the next eight
hours playing an adventure game from the inside out.

procedure printLines performs a task very similar to the program
in the last chapter. The variable f of type text works as a file
organizer to send strings to the printer. The command that opens
the connection between/ and the printer is: rewrite(/, 'PRINTER:');.

The writeln commands at the end of procedure printLines are
nearly identical to those in the last chapter. The file organizer f
as the first parameter directs the strings to be written on the
printer rather than the screen.

PRINTING IN STYLE WITHOUT THE AILIGATOR 113

II

II
114

To examine how printlines works first look at the program's
output. If you have a printer and have typed PrintStyles into the
Program window, run the program. In this way you can have a
paper copy of the different styles.

The first thing you will notice as you look at PrintStyle's output
is that the same text is repeated twelve times. Not surprisingly,
the line of code: for i : = 1 to 12 do is responsible.

Similar to repeat .. until and while .. do, for .. to .. do is a looping
mechanism. Loops allow a program to run the same instructions
more than once without rewriting the code for each repetition.
The method by which you want the loop to exit determines which
looping mechanism is appropriate.

The repeat and while loops evaluate a boolean condition to de­
termine when to exit. The for .. to .. do loop uses integers to count
out an exact number of repetitions. When the last repetition has
been completed, the loop is exited.

The format for the for .. to .. do loop requires that a variable of an
ordered type such as integer or char be used as a counter. Then,
expressions of that same type are inserted on both sides of the
reserved word to to establish the counter's beginning and end
points.

The sequence goes like this:

1. The counter variable is assigned the beginning value.

2. The instruction(s) following do is (are) performed.

3. The counter is automatically incremented by one and checked
against the loop's endpoint integer.

4. Unless the endpoint has been exceeded, sequence parts 2
and 3 are repeated. If the endpoint has been exceeded, the
loop is exited.

MacPascal requires that the variable used as counter must be
declared at the same level, that is, locally, to the for .. to .. do loop.
An attempt to use a global variable as the counter will produce
an error message.

MACINTOSH PASCAL ILLUSTRATED

II

The instructions contained within the loop of for .. to .. do are
bracketed by begin and end. Whenever the action of a for loop
contains more than one instruction, the multiple statements must
be bracketed.

You should pay special attention to just where the for .. to .. do
loop ends. A curly bracket command {end for loop} will help
you.

The first instruction of the for .. to .. do loop is write(/, chr(esc), 'c');.
This sends a control code to the printer that sets the printer to
its standard setting (12 characters to an inch, pica type).

Remember from the const definition that esc equates to the in­
teger 27. The parameter chr(27) is a Pascal function that converts
numbers to their assigned character equivalents. chr(27) assigns
an invisible character (one not represented on the Macintosh
keyboard) to the printer, which in conjunction with the third
parameter, instructs the printer to adopt a certain print style.

The third parameter of the write statement is the literal 'c.' When
preceded by the invisible escape[chr(27)] character, the literal 'c'
tells the printer to reset the print style to its original settings.
The literal 'c' could have been written as chr(99) because 99 is
the decimal equivalent of the character 'c.'

Information about printer control codes, including many not il­
lustrated in this chapter, can be found in Appendix D of Part 3.
The Imagewriter User's Manual offers further detail about the
operation of the printer. More information about the chr func­
tion can be found in Part 3.

The next instruction of PrintStyles is: case i of This is a Pascal
structure that closely resembles the if .. then conditional struc­
ture. The case structure examines the variable i between the
reserved words case and of, then selects the appropriate action
from the case list that follows.

For example, if the value of i equals 6, then the action labeled
6 in the case list is performed. In that instance, the variable code
would be assigned the value 101.

PRINTING IN STYLE WITHOUT THE ALLIGATOR 115

116

Since the case selector, the variable i, is the same variable used
as the counter in the for .. to .. do loop, every case option will be
performed as the for loop makes its twelve repetitions. The
variable code will, one at a time, be assigned each of the values
listed in the case list.

The purpose of assigning code these integer values becomes ap­
parent in the first instruction following the case list. But first,
take notice that the case list must end with an end;.

The instruction write(j,chr(esc),chr(code)); sends to the printer twelve
different control codes-one for each value of code that the case
statement has assigned on the twelve passes through the for .. to .. do
loop.

writeln statements send a line feed and the three strings to the
printer in each repetition of the loop. This is why the same three
strings are repeated twelve times in PrintStyles' output.

Remember, the different styles occur because the case statement
has assigned a new value to code on each pass, and the variable
code is then used as the invisible control code that sets the printer
mechanism.

The final line of procedure printLines sends the literal 'Soon to
be published.' to the printer. Until then, Mr. Moss suggests lots
of sunsets, long walks, fiber in your diet, and bringing out a
kindness that surprises even you.

MACINTOSH PASCAL ILLUSTRATED

What's next

•Topics

15.1 Program
Write Regrets

15 Filing Away
Regrets on a Disk

This little program shows you how to store information on a disk.
In Part 1 you saw how to save the program code onto a disk, but
here you will see how to save data created within a program. The
data you save will be represented by its own MacPascal desktop
icon under a name chosen by the program user. The next chap­
ter's program will show you how to open the datafile and display
its contents.

array

newFileName

rewrite {to disk files}

close

program WriteRegrets;
var
regrets: array[0 . .4) or strlng[75J;

procedure toDtsk;
var

t: Integer;
dataName : strlng[75J;
regretFtle : text;

begin
dataName := newFtleName('type tn new file name');
rewrtte(regretFtle, dataName);
for t := O to 4 do
wrtteln(regretFtle, regrets[I));

close(regretFtle)
end;

FILING AWAY REGRETS ON A DISK 117

begin
regrets[O] :=The only regrets 1n the l1fe of Mr. Moss--thus far:';
regrets[I):= 'Be1ng shy with Nedra at age sixteen.';
regrets[2] := 'Being shy w1th Linda at age eighteen.';
regrets[3] :"' 'Be1ng shy with Tw1la at age twenty-five.';
regrets[4] := 'Be1ng careless with Rebecca at age twenty-eight.';
toDisk

end.

15.2 Declarations You should be familiar with three of the four variables declared
in program WriteRegrets. Again you will be using a variable of
type text. Like the file organizer fused in the last two chapters,
the variable regretFile is also a file organizer, though regretFile will
be used to organize a disk file instead of the printer.

15.3 Main

118

The new var declaration is: regrets: array(0 .. 4} of string(75};.
You know that string(7 5} is a series of up to 7 5 characters notated
between single quotation marks. array(0 .. 4} of string(75} is a
fancy, shortcut method of creating five different strings, each
with up to 7 5 of its own characters. The numbers in brackets
(0 .. 4} indicate the range of the array, in this case, five elements
numbered o', 1, 2, 3, and 4.

Each of these five strings has the name regrets. The way to tell
one string from another is by indicating its element number
immediately after the name regrets. regrets(O} contains the first
string of the array. regrets(l} is the second string. regrets(4} is the
last. Remember, each one of these strings can be assigned its
own characters between single quotation marks.

Look at the five string assignment statements in the main body
of program WriteRegrets. Notice that the array element re­
grets(O} has an assignment distinct from regrets(l}, and so on. By
declaring the variable regrets as an array(0 .. 4} of string(75}, you
have at your access the equivalent of five new variables.

You might want to think of an array as a line of mailboxes on a
post office wall. They are numbered consecutively, and they are
all of an identical type, but each contains its own private mail.

The main body consists of five string assignments to the array
variable regrets and a procedure call. As you can see from the

MACINTOSH PASCAL ILLUSTRATED

15.4 Procedure
to Disk;

text of the five strings, there are three shy's and one careless.
Behind both is much sadness.

Much of what Mr. Moss says derives from his regrets. For young
people playing with their first romances, courage and caution are
difficult to balance. In less poetic terms-being lonely sucks, and
so does a broken heart.

The courage to touch and the wisdom to be careful are more
elusive than programming skills. If you don't know how to touch­
try, because getting older doesn't make it any easier. If you know
how to touch, make sure you also know about kindness and
gentleness and how not to make babies.

And if you are going to mess around-even for the first time­
especially for the first time-do it with someone you really, really
like.

The first instruction makes use of the powerful Macintosh Tool­
box procedure newFileName. The call to newFileName will cause
a dialog box to appear on the screen prompting the user to type
in a file name for the datafile to be created on disk. Whatever
name is typed will be returned by the function as a string value.

The instruction dataName: = newFileName('type in new file name');
assigns the function's returning string to the variable dataName.
Here is an example of a dialog box after the user has typed in a
datafile name.

type in new file name

I regretsData

Saue Cancel

Pascal

Eject

!lrifH'

The parameter of the function newFileName is a string literal.
You will see the purpose of this literal when you run the program:

FILING AWAY REGRETS ON A DISK 119

II

120

it prompts the user to type in a name for the datafile. newFileName
performs three tasks:

1. uses its parameter string to prompt the user to type a datafile
name on the keyboard

2. returns as a string value whatever name has been typed

3. creates an empty data file on disk represented by the datafile
name and a Pascal desktop icon.

The second instruction, rewrite(regretFile, dataName);, opens a
connection between the newly created dataName and the file
organizing variable regretF ile. ·

Remember, just as the printer required a file organizer to direct
output to it instead of the Macintosh screen, so does the disk
drive require a file organizer to direct input and output to it. In
both cases, the two steps for using a file organizer are:

1. Declare a variable (the organizer) of a file type, such as text.

2. Open a connection between the organizer and file/device
name.

The file/device name for the printer was 'PRINTER:'. The
file/device for a disk drive is the datafile string dataName that
was returned by function newFileName.

You do not have to use function newFileName in order to create
a datafile. You can assign a datafile name from within the program
or you can write your own instructions to prompt the user to
provide a name. An example of how to assign a datafile name
from within the program can be found in Part 3 under text.
Creating a file without newFileName requires a rewrite statement
much like the one used in the last two chapters except, instead
of 'PRINTER:', its second parameter uses 'diskName: datafileName'
(where the programmer must insert the disk's actual name and
datafile's desired name). The name of your disk can be found in
the Macintosh desktop beneath the disk icon. The original name
of your disk was Pascal, but yours might have been changed.

MACINTOSH PASCAL ILLUSTRATED

You were introduced to the for .. to .. do loop in the last chapter.
Here it is again. This rime the counter variable will be used as
the array's subscript, the bracketed number that identifies the
individual elements of the array. That is the reason why the range
of the for loop (for i : = 0 to 4) is identical to the range of the
array (array (0 .. 4} of string(75}).

The action performed within the for loop is a single instruction:
writeln(regretFile, regrets(i});. This instruction will be executed five
times. Each pass will write the string assigned to the array element
regrets(O} through regrets(4} onto the disk file.

Remember, the first parameter, regretFile, is the file organizer
that sends the contents of the second parameter to a disk instead
of to the Macintosh screen. The rewrite command opened the
connection between file organizer and the disk's datafile.

The final instruction of procedure toDisk, close(regretFile), closes
the connection between the file organizer and the disk's datafile.
It is always a good idea to close a file connection when you are
finished using it. Though MacPascal will automatically close any
open files when a program terminates, there might come a rime
when your programs use two or more file connections. Closing a
file will protect it from being written on with data meant for
another file.

FILING AWAY REGRETS ON A DISK 121

What's next

•Topics

16.1 Program
Read Regrets

16 Reca.Hing Regrets
from a Disk

This program, even shorter than the last chapter's, shows you
how to retrieve information that has been stored in a disk datafile.
The datafile that was created in the last chapter will be opened,
and its contents displayed in the Text window.

oldFileName

reset

not

eof

program ReadRegrets;
var

I: Integer;
dataName : strlng[75J;
regrets : array[0 .. 41 or strlng[75];
regretFlle : text;

begin
I :"O;
dataName := oldFlleName('select file name');
reset(regretFlle, dataName);
whlle not eof(regretFlle) do
begin
readln(regretFlle, regrets[!]);
wrl te In(regrets[I]);
I:= I+ 1

end;
c I ose(regretF II e)

end.

RECALLING REGRETS FROM A DISK 123

=o TeHt
The on I y regrets in the I i f e of Mr. Moss--t hus fap: Q
Being shy with Nedra at age sixteen.
Being shy with Linda at age eighteen .
Being ahy with Twila al age twenty-five.
Being careless with Rebecca at age twenty-eight.

16.2 Declarations The variables declared in ReadRegrets are the same as those
declared in last chapter's WriteRegrets. The only difference is in
their placement. Since ReadRegrets does not use a procedure
block, the variables are declared globally beneath the program
heading.

16.3 Main

124

~
~

Since ReadRegrets performs a single, simple task, the use of
procedure blocks is not warranted.

Whenever your program, or a part of your program, requires the
retrieval of information from a datafile, you should examine the
type of the variables that inserted the data. Pascal has an affinity
for matching types so you should be prepared to read from datafiles
using that same type with which the datafile was written.

Hence, regrets is declared as an array(0 . .4} of string(75} and the
file organizer declared as type text in both Write Regrets and
ReadRegrets.

The first instruction assigns an initial value of 0 to the integer
variable i. Until a variable is initialized, its value is undefined.
The use of an undefined variable causes unpredictable results.

Mr. Moss's girlfriend causes unpredictable results, too. You might
even say she is an undefined variable. Her spontaneity is en­
chanting. When she says the three most important values in life
are awareness, intimacy, and spontaneity, you ought to take note
because she knows more about important values than any com­
puter ever built.

Mr.Moss has a list of the five most important values in life. They
are: health, diversion, friends, intimacy, and children. Only one

MACINTOSH PASCAL ILLUSTRATED

item in Mr. Moss's list matches with an item in his girlfriend's
list.

But, hi ho, it's a good one.

The second instruction in program ReadRegrets is: dataName
: = oldFileName('select file name');. oldFileName is a Toolbox func­
tion call similar to the function newFileName used in the last
chapter. But instead of prompting for the user to input a new
file name, oldFileName produces a dialog box containing all of
the disk's file names. From this list, the user can select the ap­
propriate file name.

Since the purpose of program ReadRegrets is to read the datafile
created by program WriteRegrets, the correct file to select from
the dialog box is same one the user typed in the dialog box
produced by newFileName.

select file name

PaintDemo
Pascal

~g;:.•mo I Open

Eject

repeat/splot ~
ResetDemo Q

Cancel

The string 'regretData' is returned by function oldFileName and
assigned to the variable dataName. The parameter of function
oldFileName('select file name') works just like the parameter of
newFileName-the literal is placed in the dialog box to help in­
struct the user what to do.

The next instruction, reset(regretFile, dataName), opens the con­
nection between the file organizer regretFile and the user-selected
datafile dataName.

RECALLING REGRETS FROM A DISK 125

II

126

reset is a companion Pascal procedure to rewrite. Whereas rewrite
creates an empty datafile ready for writing, reset opens an existing
datafile in order for it to be read. See Part 3 under reset and
rewrite to find out more about file opening procedures.

There is a third MacPascal procedure that opens files; it is called
open. The procedure open will either create a new datafile or open
an existing one. However, the use of open is limited to random­
access files. You can see examples of reading and writing to a
random-access file in Part 3 under the definitions of open and
seek.

Briefly, the files used in this chapter and the last are sequential­
access files. When the file was opened by rewrite or reset, the first
component of the file is number 0, and each sequential write or
read operation affects component number 1, then component
number 2, and so on.

Random-access files will not automatically increment to the next
component with each write or read operation. To access any
component other than component 0, a program must use the
Pascal procedure seek to direct the file organizer to the desired
component.

The definitions and examples in Part 3 offer more information
on MacPascal's file capabilities.

The fourth instruction of program ReadRegrets is: while not
eo/(regretFile) do. The while .. do loop will read each component
of the datafile and write the string into the Text window. The
loop will be performed if and until the boolean condition
eof(regretFile) is not true.

The reserved word not reverses the boolean condition necessary
for the loop to make its branching decision.

The boolean condition eo/(regretFile) uses the Pascal function eof
to determine whether the file organizer has reached the end of
the datafile. The eof function returns a result of true when the
file organizer has read (or written to) the last component of a
datafile.

Since program WriteRegrets wrote five components into data­
file, the while not .. do loop will repeat five times before the

MACINTOSH PASCAL ILLUSTRATED

function eof(regretFile) returns true and the loop is exited. In each
repetition, the instruction readln(regretF ile, regrets(i}) will assign
a component of the datafile to an element of the array regrets.

The assignment statement i = i = 1 increments the array sub­
script in brackets in each repetition of the loop. In this way the
elements of the array are incremented at the same rate as the
readln statement automatically increments along the datafile.

close(regretFile) closes the connection between the file organizer
and the datafile. Regrets are useful to the extent they give you
courage to make new decisions and the caution not to make the
same mistakes twice.

RECALLING REGRETS FROM A DISK 127

What's next

•Topics

17.1 Program
Mac Write Read;

17 Trading Licks
with MacWrite

This chapter's program retrieves the text of a MacWrite docu­
ment. MacWriteRead will use the MacPascal Text window to
display the contents of any document created by the MacWrite
word processor. This program will also retrieve text from a doc­
ument created by the Text Editor program found in the Tools
folder of the Pascal disk.

oldFileName

reset

eof

eoln

program MacWrtteRead;
var

glveName, docName: strlng[75);
line: string;
macWrtteFtle : text;

begin
glveName :='Select MacWrtte file name';
docName := oldFlleName(glveName);
reset(macWrlteFlle, docName);
while not eof(macWrlteFlle) do
begin
readln(macWrlteFlle, line);
wrlteln(llne)

end;
close(macWrlteFi le)

end.

TRADING LICKS WITH MACWRITE 129

17 .2 Declarations

17.3 Main

130

0 Te Ht
"You w i II find the spec i a I g i r I, " said the ~
Adidas Lady. "Don't worry." Then she added
softly, "But while you look, please be careful
not to hurt the feelings of those who, to you,
are not so special,"

You won't find much new anywhere in this chapter, including
the var declarations. Reading text from a MacWrite file is even
simpler than reading text from your own disk files . Notice that
the new name for the variable of type text, the file organizer, is
macWriteFife.

MacPascal can read MacWrite documents only when those doc­
uments are saved using MacWrite's Text Only option. When you
save a document from MacWrite, the Text Only option appears
in the Save/Save As dialog box. As a result, the fancy print styles,
fonts, and pasted-in graphics are not transferable to MacPascal.

In MacWrite, the datafile is called a document. Since Pascal files
can contain any type of data- strings, integers, real numbers,
arrays, records- the name datafile is more appropriate than
document.

The MacWrite document uses only string type data. Whereas the
last two chapters stored and retrieved data from the array regrets,
program MacWriteRead requires only the declaration of line, a
variable of type string.

The file-finding function ofdFifeName will again be used. Just for
a change of pace, the literal used as the function's parameter will
be replaced by the string variable giveName. The first instruction
of MacWriteRead will assign a string value to giveName.

The main body of MacWriteRead is remarkably similar to the
main body of last chapter's RegretRead. The primary difference
is in the composition of the datafile .

MACINTOSH PASCAL ILLUSTRATED

II

II

regrets was an array variable where each sequential component of
the datafile was assigned to an element of the array. The datafile
consisted of five components.

line is a string variable where each line of text in the datafile
(document) is assigned to the variable line. The datafile consists
of lines of text all in a single component.

The first two instructions of MacWriteRead prompt the user to
select the file name of a MacWrite document. Function old­
F ileName produces a dialog box from which to choose a Mac Write
file name. You can use the Eject oval of the dialog box if your
MacWrite document is on another disk. The function will return
the selected document name, and be assigned to the datafile
docName.

The instruction reset(macWriteFile, docName); will open a con­
nection between the file organizer macWriteFile and the datafile
docName.

Remember, the Pascal command reset must be used when ac­
cessing an existing datafile. The command rewrite will create an
empty datafile, effectively erasing the contents of any other file
using the same file organizer name.

while not eof(macWriteFile) do creates the loop that exits upon
finding a true value for the end-of-file function eof

Just as the file organizer parameter directs readln and writeln
statements to external devices (printer/disk), the same parameter
directs the eo/function to check the status of a datafile. The check
for an end-of-file condition must be directed to a particular de­
vice's datafile, or else the function will assume the default device
of the Macintosh so;een.

A true value for the end-of-file condition is triggered by an in­
visible end-of-file marker. The last character of the last compo­
nent of all datafiles is the end-of-file marker. Thus, when a readln
or writeln statement encounters the marker at the end of a file,
the eof function will return true. Otherwise, eof will return false.

program MacWriteRead also makes implicit use of the eoln (end­
of-line) function. While not actually calling the eoln function, the

TRADING LICKS WITH MACWRITE 131

132

instruction readln (macWriteFile, line); takes input from the datafile
up until it reaches an eoln marker, assigning the input to its string
parameter line. The eoln marker is also an invisible character. The
eoln marker is set by the carriage return key and marks the end­
of-line of files organized by type text.

After the readln instruction retrieves a line of text from the
MacWrite document and assigns it to the string variable line, the
next instruction writeln displays the string in the Text window.

The readln and writeln commands are repeated within the while
not .. do loop. Each repetition retrieves another line of text from
the MacWrite document. When the readln statement encounters
an end-of-file marker at the end of the datafile, the eof function
is set to true, the loop exited, and the file connection closed.

You will find that MacWrite and MacPascal's Text Editor pro­
grams are able to read your program files and the text files your
programs create. This should convince you that text files follow
a standard protocol. Graphics present more of a challenge when
trying to exchange data from one program to another, though as
you will see in the next chapter, MacPascal makes some graphics
exchanges very simple.

The MacWrite document used in this chapter came from Mr.
Moss's private library. He refuses to divulge the identity of the
Adidas Lady except to say she is over seventy, plays tennis, drives
a sixteen-year-old Chrysler Newport, lives alone (she lost her
family in the Holocaust), and modestly describes herself as:

A Cosmopolitan girl with a Racing Form face.

MACINTOSH PASCAL ILLUSTRATED

What's next

• Topics

18 Trading Licks
with MacPaint

This chapter's program fills the Drawing window with a familiar
graphics display, then saves the window's contents as a Mac.Paint
document. As a MacPaint file, you can use any of the tools of
MacPaint to "touch up" your Pascal displays.

const {string}

procedure {nested}

eraseOval

paintOval

frameOval

abs

random

mod

saveDrawing

TRADING LICKS WITH MACPAINT 133

18.1 Program
SaveTheSewer;

134

program SaveTheSewer;
con st

macPaintTitle =·sewer Portrait';
var

top, left, bend: Integer;
procedure createSewer;
var

topHop, leftHop, line, node, girth: integer;
procedure drawSewer;
const

min= 20;
max= 250;

begin
EraseOval(top, left, top+ girth, left+ girth);
If node mod 3 = 1 then
PaintOval(top, left, top + girth, left + girth)

else
Frameoval(top, left, top + girth, left + girth);

If top < min then
topHop := abs(topHop)

else If top> max then
topHop := -abs(topHop);

tr left < min then
leftHop := absOeftHop)

else If left> max then
leftHop := -abs(JeftHop);

top := top + topHop;
left := left + JeftHop

end; (end drawsewer)
begin

line:= random mod 30;
girth:= random mod 25 + 24;
topHop := random mod 19 - 9;
leftHop := random mod 19 - 9;
for node:= 1 to line do
drawsewer;

end; (end createSewer)
begin

top:= O;
left := O;
for bend := 1 to 25 do
createSewer;

saveDraw1ng(macPa1ntT1tle)
end. (end Computersewer)

MACINTOSH PASCAL ILLUSTRATED

18.2 Definitions
and declarations

---. {l

om
o~

o•
CJ ~

Cl a:

-
There are two const sections in SaveTheSewer. The global con­
stant macPaintTitle is defined as the string literal 'Sewer Portrait'.
The constant name can now substitute for the literal anywhere
in the program.

The other const section is local to procedure drawSewer. You
might have already noticed that procedure drawSewer begins
before procedure createSewer has ended (or really even begun).
This technique of nesting procedures will be explained later in
this chapter.

The constants min and max have been defined with drawSewer
to have values equal to 20 and 250 respectively. There are two
reasons for defining these constants:

1. The constant names min and max help clarify that their in­
teger values will be used to specify a minimum and maximum
range.

2. Should you at a later time decide you want to alter the
minimum or maximum values, it will be simpler to change
the const definition than to search for and change each oc­
currence of the integers in the program code.

TRADING LICKS WITH MACPAINT 135

18.3 Main

18.4 Procedure
createSewer;

136

All of the variables declared in SaveTheSewer are of type integer.
You should be familiar not only with the integer type, but also
the variable names. They are the same variables used in Part l's
ComputerSewer.

Only the last instruction of program SaveTheSewer makes it
significantly different than Part l's ComputerSewer. That instruc­
tion is: saveDrawing(macPaintTitle).

This MacPascal procedure call is all that is necessary to save the
contents of the Drawing window as a MacPaint document (or if
you'd rather-datafile). The parameter macPaintT itle was defined
as a constant equal to the literal 'Sewer Portrait'; however, the
literal could have just as easily been inserted as the parameter
(between single quotation marks).

The MacPaint document created by saveDrawing is represented
with an icon like any other MacPascal datafile. However, this
icon differs from other MacPaint icons, and the document cannot
be opened directly through the icon. Instead, you must open
MacPaint, Close the current window, then choose Open from
the File menu. The resulting dialog box will allow you to choose
'Sewer Portrait' from among its document options.

This chapter could end right here. You have seen how to send
a MacPascal display to MacPaint, and unfortunately, the process
of getting a MacPascal program to retrieve a Macpaint document
is too tricky to tackle here. But SaveTheSewer has been written
a bit differently than ComputerSewer, and these differences de­
serve attention.

The first three instructions are the same in the main body of both
programs. Of course, in ComputerSewer all the code is contained
in the main body, whereas SaveTheSewer has been broken down
into procedures. As a result, these three instructions occupy the
top of ComputerSewer and the bottom of SaveTheSewer.

The fourth instruction of SaveTheSewer is the procedure call
createSewer;. Below the heading procedure createSewer; are the
procedure's var declarations, but below the declarations is the
heading procedure drawSewer;. You might be wondering: Where
does the body of procedure createSewer begin and end?

MACINTOSH PASCAL ILLUSTRATED

The easiest way to figure this out is to examine the Program
window's indentations. The begin and end of all blocks, even
the main body, are indented the same as the block's heading.

The begin immediately following procedure drawSewer; is in­
dented the same as the heading of drawSewer. Consequently,
the block of statements following this begin belong to draw­
Sewer. The end of drawSewer follows the rules of all begin .. end
brackets. An end is matched to the immediately preceding un­
ended begin.

To make the pairing even clearer, a comment between curly
brackets {end drawSewer} has been added. You should use com­
ments within your programs wherever there might be a point of
confusion: either for yourself at a later time or for someone else
trying to understand your programming.

The first instruction of procedure createSewer is: line:= random
mod 30;.

Run SaveTheSewer using Step if you have any doubts about the
sequence of program flow. The pointing hand of MacPascal will
show you in what order a program executes its instructions.

Random and mod were explained in Part 1 and can also be found
in Part 3, so they won't be covered here. But in a sentence, the
integer variable line will be assigned a random value of between
0 and 29.

The instruction girth : = random mod 25 + 24; assigns girth a
random integer value of between 24 and 48. The addition of 24
is performed after the random mod 25 value is ascertained. (This
makes a lot of sense, because otherwise you might just as well
have written random mod 49, which produces a value between 0
and 48.)

The next two instructions are also random mod assignments, fol­
lowed by the loop for node= 1 to line do.

Notice that the range of the for loop allows for integer variables
as well as integers.

The action performed by the for loop is the procedure call
drawSewer. Program flow continues at the first instruction of pro­
cedure drawSewer.

TRADING LICKS WITH MACPAINT 137

18.5 Procedure
drawSewer;

II

138

The instructions of drawSewer are the same as those performed
in ComputerSewer. The interesting characteristic of the proce­
dure is that it is nested inside of procedure createSewer. drawSewer
would work as well had it been placed before createSewer, just as
ComputerSewer worked without any procedures.

The primary advantage to nesting is the enhancement of Pascal's
block design. The purpose of blocks is to make programming
easier and more efficient by grouping instructions by the task
they perform. Likewise, a design is enhanced when you group
together blocks by the task they perform. Part of creating a sewer
is drawing the sewer, so it makes sense to have the draw pro­
cedure be part of the create procedure.

A caution to nesting arises because a nested procedure is local
to its host procedure, and therefore cannot be used from outside
the host block. The concept of local versus global applies to blocks
in the same way as it does to definitions and declarations. Since
drawSewer is only called from createSewer, its locality presents
no problems.

The Quickdraw commands eraseOval, paintOval, and frameOval
are explained in detail in Part 3. The building of the sewer is
accomplished by looping through the erase, paint, and frame
commands, and changing the location parameters on each pass.

The abs (absolute value) function used in the assignment state­
ments of drawSewer force turnaround values to the topHop and
leftHop, the sewer's growth variables. This assures that values
outside the min and max window range will redirect to within
the range.

Here it is at the close of another chapter and Mr. Moss has yet
to put in his two cents' worth. A whole chapter without any
sidetrack might disappoint those who don't give a damn about
Pascal, and are reading this book for spiritual uplifting and in­
terpersonal growth. Proselytizing philosophy is fodder for the
dim of mind, but at least here you pick up a computer language.

The few words Mr. Moss does find pertinent fall somewhere near
the asphalt's middle white line. On one shoulder is enough fever,

MACINTOSH PASCAL ILLUSTRATED

fear, and decay to make a person want to puke in all directions
at once. On the other are the giving, brown eyes of Rollo, the
salt-sweet tastes from the neck of Mr. Moss's girlfriend, fath­
omless colors in daytime and in dreams, "Late Night with David
Letterman," grilled cheese and avocado sandwiches, and the in­
vention of the electric blanket.

No, Mr. Moss has nothing to say in this chapter. Maybe your
soul needs saving, but here all you'll find out is how to Save­
TheSewer. When Mr. Moss needs truth he walks down a crowded
sidewalk and overhears bits of conversation. Once, he heard­
or thought he heard-a young man with a coal miner's accent
say:

I not only believe in God,
I believe I can get revenge.

TRADING LICKS WITH MACPAINT 139

What's next

• Topics

19.1 Program
NoteTaker;

19 QuickSounds for
the Hard of Herring

The programs in the next four chapters create sounds using the
note procedure. This chapter explains the three parameters of the
procedure, allowing you to experiment with different sounds in
a very simple Pascal program.

sys Beep

note

program NoteTaker;
const

amp= 150;
time= 30;

var
freq : Integer;

begin
note(I 000, 200, 45);
note(29830, 111, 83);
note(-19005, amp, 140);
sysBeep(60);
note(7, 255, 99);
for freq:= I to 8 do
note(freq* I 000, 85, time)

end.

QUICKSOUNDS FOR THE HARD OF HERRING 141

19.2 Definitions
and declarations

19.3 Main

142

The constant names amp and time are equated with the values
150 and 30, respectively. The variable name freq is declared to
be an integer type.

amp, time, andfreq will be used to provide values to the Toolbox
procedure note. amp is short for amplitude. freq is short for fre­
quency. time will represent the duration of a sound.

procedure note requires three integer parameters. The order of
the integers in the parameter list distinguish their purpose. The
format for the procedure is: note(jrequency, amplitude, duration);.

The value for frequency can be any integer value. The boundaries
for an integer-type value are: [- 32676 .. 32676}. However, fre­
quency cannot have a value of zero [0} because MacPascal uses
the integer in a division and a divide by zero error will result.

The values for amplitude and duration must be integers in the
range: (0 .. 255}.

Execution of the note procedure causes a single square-wave tone
to be produced. Frequency is measured in hertz, a wave mea­
surement equal to one cycle per second. Amplitude defines a
range of sound intensity. Duration indicates the number of six­
tieths of a second that the tone will last.

Macintosh sound capabilities are much more extensive than those
provided by the note procedure. As you might imagine, the more
complex sound, speech, and music syntheses require more com­
plex programming techniques. The MacPascal Reference Manual
offers more information on multichannel sound generation.

The main body of NoteTaker shows the note procedure using a
wide range of parameter values. Sometimes values are inserted
directly in the parameter list. Other times, a variable or constant
is substituted for an integer.

Also included is the Toolbox procedure sysBeep. Its single pa­
rameter is a duration integer chat increments by .022 seconds.
The statement sysBeep(60) produces a square-wave cone lasting
about 1. 3 seconds. You should recognize this square-wave tone
as the same you hear when the Macintosh is turned on.

MACINTOSH PASCAL ILLUSTRATED

The last two statements constitute a for loop, a quick means of
hearing a series of different frequencies with a minimum of code.
The frequency parameter is incremented by 1000 with each pass
of the loop. The star symbol (*) signifies multiplication in Pascal.

Regarding this chapter's title : Herring is one of nature's more
intriguing foods. This sea creature is most commonly found in
bottles on supermarket shelves. Served on top of crackers with
sour cream and onions, it is a snack you will likely remember
throughout one day and part of the next. Mr. Moss strongly
recommends you add your own sour cream and onions, even if
you have the opportunity to purchase it already prepared.

Similar advice applies to another magical food. More important
than Pascal, schmascal, says Mr. Moss's mom:

You never know how long the chopped liver has
been sitting in the deli case. Better you should
make it yourself and know it's fresh.

QUICKSOUNDS FOR THE HARD OF HERRING 143

What's next

• Topics

20.1 Program
FrequencyBar;

20 Pick-Me-Ups
at the Frequency Bar

This program lets the user test a wide range of Macintosh's sound
frequencies simply by pressing the mouse button. Graphics and
sound are combined, as the frequency bar will display in hertz
the tone being produced. The drawing window is sized from
within the program, and an end oval is drawn for a friendly pro­
gram exit.

fillRect

global To Local

eraseRoundRect

eraseOval

program FrequencyBar;
var

drWlndow, rl, r2: rect;
pt: point;

procedure makeBar;
begin

setRect(r I, 40, 30, 390, 80);
eraseRoundRect(rl, 50, 50);
moveTo(90, 60);
textSlze(18);
wrlteDrawC'frequency In hertz =');
setRect(r2, I 00, I 00, 150, 130);
eraseOval(r2);
moveTo(l 10, 120);
wrlteDraw('end')

end;

PICK-ME-UPS AT THE FREQUENCY BAR 145

146

procedure soundNote;
const

amp= 200;
time= 20;
range= 26;

var
x, y, freq: Integer;

begin
getMouse(x, y);
setPt(pt, x, yl;
if ptlnRect(pt, rl) then
begin

freq := (x - 39) * range;
eraseRect<40, 300, 60, 380);
moveTo(300, 60);
wr1 teDraw(freq);
while button do

note(freq, amp, time);
end

end;
begin

hideAll;
setRect(drWindow, 30, 100, 475, 265);
setDraw1ngRect(drW1ndow);
showDrawing;
globalToLocal(drWindow);
fillRect(drWindow, dkGray);
makeBar;
repeat

soundNote
until ptlnRect(pt, r2) and button

end.

MACINTOSH PASCAL ILLUSTRATED

20.2 Definitions
and declarations

20.3 Main

You should be familiar with all the const and var listings. The
constants amp and time are used the same way as in the last
chapter. The constant range will help correlate the mouse position
to the range of frequencies.

The variable drWindow of type reel will establish the dimensions
of the drawing window. The other two variables of type rect, rl
and r2, will determine the rounded rectangular area of the fre­
quency bar and the oval area of the end button.

The variable pt of type point is assigned with procedure setPt
using the mouse's current coordinates.

The first four instructions format the Macintosh screen with the
single enlarged Drawing window. You last saw these window
drawing commands used in Chapters 11 and 12.

The fifth and sixth instructions are new. First, look at the sixth
instruction: fillRect(drWindow, dkGray);.

fil!Rect is similar to the other shape-drawing procedures­
frameRect, paintRect, and eraseRect. The dimensions provided
by the type rect parameter drWindow determine the area to be
filled with the pattern indicated by the second parameter, in this
case, dkGray.

However, the dimensions provided by the variable drW indow
might not plot on the Macintosh screen exactly as you imagined.
The coordinates are identical to those set four instructions earlier
by setRect(drWindow, 30, 100, 475, 265), yet the coordinate maps
have changed.

The setRect command plots points based on a coordinate map
where point (0,0) is the upper-left corner of the Macintosh screen.
The fil!Rect command plots points based on a coordinate map
where point (0,0) is the upper-left corner of the Drawing window.

The intent of the fil!Rect command is to fill the entire Drawing
window with the dark gray pattern. This could be accomplished
by the commandfil!Rect(O, 0, 165, 445). This provides the same
sized rectangle as the setRect command with a top-left corner point
that is the top-left corner of the Drawing window.

PICK-ME-UPS AT THE FREQUENCY BAR 147

20.4 Procedure
makeBar;

148

Alternatively, program FrequencyBar uses the Toolbox proce­
dure globa!ToLocal. This procedure converts a point expressed in
global coordinates (the Macintosh screen) to one expressed in
local coordinates (the Drawing window). The corner points of
the rect variable drWindow are converted onto the coordinate
map of the Drawing window.

As usual, difficult concepts are best illustrated by experimenta­
tion. Try running FrequencyBar after you have removed the
command globa!T oLocal(drWindow).

The remainder of the main body performs procedure calls to the
program code. The soundNote procedure is encased in a re­
peat .. until loop whose exit condition is : ptlnRect(pt, r2) and
button. As you might expect, the parameter variable r2 is the end
oval, so that if the mouse is pointing within this oval and the
button is being pressed, the loop is exited and the program ends.

Let it be known right from the start that Mr. Moss rarely fre­
quents bars . Bars are for getting sloshed among sloshed people,
a recreation Mr. Moss chooses to forego. As for meeting people,
the singles scene at drinking establishments gives Mr. Moss the
willies.

The ineptitude of single people trying to meet a mate is nothing
less than an American cultural disgrace . Mastering Pascal is a
cinch compared to the task of finding a good life partner. Dear
Abby, whose credentials far outweigh Mr. Moss's, says to put
your friends on the lookout and involve yourself in community
activities. All that Mr. Moss can add is:

Be brave,
be considerate,
ask for a phone number,
and floss your teeth every day.

MACINTOSH PASCAL ILLUSTRATED

II

20.5 Procedure
soundNote;

The commands in procedure makeBar are straightforward: Cre­
ate a type rect variable, draw it, position the Quickdraw pen within
the rectangle, set the text size, and write out the string. The same
set of procedures works for the end oval as for the rectangle
called frequency bar, except that textSize(l 8) does not need to be
repeated.

The two shape-drawing commands are eraseRoundRect and eraseOval.
Since the entire Drawing window was filled with a dark gray
pattern, the erase commands draw their shapes in the white pat­
tern. The same effect could have been achieved by using the
fillRoundRect and fillOvaf procedures, specifying as the second
parameter of each, the pattern constant white.

The rounded-corner rectangular shapes require three parame­
ters. The latter two integers specify an oval shape within the
rectangle that determines the degree of roundness.

The writeDraw command allows the same versatility as the writeln
command, including numeric parameters and colon/format mod­
ifiers. The Quickdraw procedure drawString will also draw text
into the Drawing window, though its parameter must be type
string. Part 3 has more information on this procedure.

This procedure reads the position of the mouse, and if the mouse
button is pressed while the mouse is pointing inside the frequency
bar rectangle, a note is played. The horizontal coordinate of the
mouse (x-axis) is used in an equation to determine the frequency
(first parameter) of the note procedure. Also, the value of the
first parameter is displayed on screen within the bar.

The conversion of the mouse's x coordinate to the variable freq
is performed by the assignment statement freq:= (x- 39) * range;.
The logic behind this equation is that, within the rectangular area
of r1 , the range of possible x coordinate values is: [40 .. 390}.
Look at the first setRect command in procedure make Bar to verify
this.

By subtracting 39 from x, the range becomes: [l..351}. The
constant range equated with the integer 26 is an arbitrary mu!-

PICK-ME-UPS AT THE FREQUENCY BAR 149

150

tiplicand which magnifies the range of freq values to: [26 .. 7236}.
This gives the frequency bar a much broader spectrum of notes.
A horizontal movement of a single dot will increase or decrease
the frequency response by 26 hertz.

The instruction eraseRect(40, 300, 60, 380); is necessary to erase
the prior frequency value before a new value is drawn onto the
screen. The writeDraw command inserts the integer value of freq
at the pen location specified by moveTo(300,60), but makes no
provision to erase the current screen dots. The eraseRect in­
struction makes sure the new numbers are not drawn on top of
old numbers.

You might need to experiment to find the rectangle occupied by
text in the Drawing window. Text is drawn in the Drawing win­
dow to the right of the pen location, with the left end of the
text's base line at the pen's location.

MACINTOSH PASCAL ILLUSTRATED

What's next

• Topics

21.1 Program
EStreet;

21 Passing Parameters
on E Street

This chapter's program executes the note command seven times,
each time sounding a note of a different frequency. The method
by which the frequency is assigned introduces a new and powerful
Pascal concept.

procedure {with parameters}

note

program EStreet;
procedure hltlt (eStreet: Integer);
begin
note(eStreet, 225, 70) (eStreet freq range: (-32767 .. 32767)}

end; (but freq cannot equal zero}
begin
hltlt(400);
hltlt(8000);
hltlt(-19000);
hitlt(32000);
hltlt(555);
hltlt(17);
hltlt(9 I 00)

end.

21.2 Declarations Look at program EStreet. Do you see any declarations? There
appears to be a declaration on the same line as the tide to pro­
cedure hitlt: procedure hitlt (eStreet : integer);.

PASSING PARAMETERS ON E STREET 151

21.3 Main

21.4 Procedure
hitlt (eStreet :
integer);

152

The name eStreet is not declared anywhere else in the program,
and it does have the colon/type (: integer) format that is char­
acteristic of var declarations. You might come to the conclusion
that this is an alternative way of declaring a local variable.

This assumption would be correct, but variables declared by this
method serve a distinct purpose. They are a communication de­
vice between the procedure call and the procedure instructions.

The main body of EStreet consists of seven calls to procedure
hitlt. In each case, a number in parentheses accompanies the
procedure name. This number is the procedure call's parameter.

You have used parameters many times while calling Quickdraw,
Toolbox, and Pascal procedures, but here, for the first time, you
are using parameters in the procedures listing in the program
code.

The parameter stated in parentheses is passed along to the pro­
cedure while being assigned to the variable name eStreet. Since
eStreet has been declared to be of type integer, you can rightly
assume that the parameter in the procedure call must be an
integer value.

There is only one instruction in procedure hitlt, the call to the
Toolbox procedure note. The amplitude and duration parameters
of note are given the integer values of 225 and 70. The frequency
parameter will be assigned by values passed from the main body
to the parameter name eStreet.

The first call to procedure hitlt sends a value of 400 to the eStreet
parameter. As a result, a note is sounded that has a frequency
value of 400, a amplitude of 225, and a duration of 70.

The second call to procedure hitlt passes along a value of 8000
to eStreet. The third call passes a value of -19000, and so on
through the seven calls to hitlt.

Once the parameter name eStreet has been sent a value from the
procedure call's parameter list, the name eStreet works just like

MACINTOSH PASCAL ILLUSTRATED

a local variable declared with var. Better yet, the value of eStreet
has already been assigned.

By passing parameters, Pascal's block structure is greatly en­
hanced. Not only can you group together instructions that per­
form a certain task, you can also send data to those instructions.
Procedures can retain the advantages oflocal declarations (clarity,
modularity) and still receive communications from other blocks
of the program.

In case you have any friends who think the BASIC computer
language is hot stuff, ask them if they can name blocks of state­
ments and pass data to those blocks.

Basic programmers tend to be an ornery lot
because of all the times they are told where they
ought to GOTO.

PASSING PARAMETERS ON E STREET 153

What's next

•Topics

22.1 Program
BornToRun

22 A Springsteen
Type Concert

This program closely resembles the last chapter's. The procedure
call hitlt will pass along a frequency parameter, and seven notes
will be played. Bur instead of passing an integer, the parameter
will be a new type defined within the program. The use of a type
declaration can make a program easier to understand.

type

ord

program BomToRun;
type
band= (theB1gMan, theBoss, max, danny, garry, theProfessor, nlls);

procedure hltlt (eStreet: band);
var

amp, time, freq: Integer;
begin

amp := random mod 200 + 50;
time:= random mod 80 + 20;
freq := Cord(eStreet) + 1) * 600;
note(freq, amp, tlme)

end;
begin
hltlt(max);
h1tlt(theB1gMan);
hltlt(danny);
hltlt<ntls);
hltl t<theProfessor);
hltl tCgarry>;
hltl tCtheBoss)

end.

A SPRINGSTEEN TYPE CONCERT 155

22.2 Definitions
and declarations

II

156

A new definition heading called type is listed directly below the
program heading. The type heading follows many of the same
rules as the const and var headings. type definitions can be either
global or local, and each listing must be ended with a semicolon.

Pascal requires that definitions and declarations of the same block
be placed in the following order:

const

type

var

procedure or function

Information on two additional definitions, uses and label, can
be found in Part 3.

A type definition can rake a few different formats. The one you
see in BornToRun is an ordered list. The name band is equated
with the entire list of names. Punctuation requires that the list
be stated between parentheses, with a comma separating each
item on the list. The equals sign (=) equates the name band with
the ordered list.

The reason that the list of names is called an ordered list is because
the position of each name has a numeric significance. theBigMan
is the first name on the list, and later on in the program, the
number 0 will be associated with theBigMan. (Pascal likes to begin
counting with the number zero.) Likewise, nils is the seventh
name on the list, and the number 6 will be associated with nils.

Nils Lofgren, guitarist for Bruce Springsteen's E Street Band,
put out some fine music of his own with a band called Grin. Grin
never sold many records, but their fine music helped bring Nils
and Bruce together.

Partnerships such as Lennon/McCartney, Jagger/Richards, and
Jobs/Wozniak have done well: add to the list Andy Hertzfeld,
Burrell Smith, and Bill Atkinson, the core behind the Macintosh
computer. The Macintosh team-not much larger than the E

MACINTOSH PASCAL ILLUSTRATED

22.3 Main

22.4 Procedure
hitlt(eStreet :
band);

II

Street Band-showed an artistic side of technology that the suit­
and-tie clones of corporate America could not even envision.

The main body of BornToRun consists of the same seven pro­
cedure calls to hitlt you saw in last chapter's EStreet. Only the
parameter list of each procedure has been changed. Instead of
an integer parameter, you are sending to hit! t a band-type parameter.

Now band might not seem to be as logical a generic type as integer,
but that is exactly what you accomplished when you defined band
beneath the definition heading type. Whereas an integer type
consists of the set of whole numbers between [- 32676 .. 32676),
the band type consists of the set of names [theBigMan .. nils].

The first instruction of the main body, hitlt(max), passes the name
max to the parameter eStreet. eStreet has been declared to be of
type band in the procedure heading, and is being passed the
value of max.

The first two instructions of hitlt set values for the variables amp
and time. Rather than giving the amplitude and duration of the
note procedure constant values, procedure hitlt uses Pascal's
predefined function/operator random mod to assign a range of
random values to these variables.

amp will be assigned a value in the range (50 .. 249). time will be
assigned a value in the range (20 .. 99).

The next instruction of procedure hitlt assigns a value to the
variable freq: freq : = ord(eStreet) + 1) * 600;.

The Pascal function ord returns the ordinal number of its param­
eter. (Pascal uses a standard assignment of ordinal numbers called
the ASCII character set, about which you can find more infor­
mation under ord in Part 3.) Ordinal numbers are always of type
integer.

The ordinal number of an item in a program-defined type such
as band is determined by the position of the item in the ordered
list. The first item has an ordinal value of 0, the second item has

A SPRINGSTEEN TYPE CONCERT 157

158

the ordinal value of 1, and so on through the seventh item, whose
ordinal value is 6.

When procedure hitlt is first executed, the value that has been
passed to eStreet is max. The Pascal function ord(max) returns the
integer 2. max occupies the third position in the ordered list of
type band, thus its ordinal number is 2. (Remember, in lists and
files, Pascal counts beginning with the number 0.)

Now that ord(eStreet) has returned with a value of 2, an addition
and multiplication is performed. (2 + 1) * 600 produces a fre­
quency value of 1800.

The Toolbox note procedure is then executed with the assigned
values of freq, amp, and time. The next time note is executed, amp
and time will again be assigned random values, and freq will be
assigned the ordinal value of theBigMan (0) plus 1 times 600.
The second note will have a frequency value of 600 since (0 +
1) * 600 = 600.

MACINTOSH PASCAL ILLUSTRATED

What's next

•Topics

23.1 Program
lnpunestlng

23 Detecting
Shady Characters

The program InputTesting is composed largely of a single func­
tion called checkChar. All input entered from the keyboard is
filtered through this function so that only designated characters
are accepted and written onto the screen. Weeding out bad input
before it enters a program is one of the best ways of making your
program bug-free.

type

set of

function {with parameters}

get

program lnputTestlng;
type
keys = set or char;

var
flneNumber : keys;
chi: char;

function checkChar CflneKey: keys): char;
var
fine : boolean;
ch: char;

DETECTING SHADY CHARACTERS 159

23.2 Definitions
and declarations

160

begin
repeat

ch := Input·;
get(Input);
fine := ch In flneKey;
If not fine then

sysBeep(5)
else

wrlte(ch)
until fine;
checkChar := ch

end;
begin

flneNumber := ['0' . .'9');
wrlteln('Program w1ll only accept Integer Input. Try It.');
wrlteln('(Press Return to exit.)');
write In;
repeat

ch I := checkChar(flneNumber)
until eoln

end.

D Te Ht

Program w i 11 on I y accept integer i npL1t . Try it . Qj
(Press Return to ex it .)

14928472902936183576

A new kind of type definition is used in lnputTesting. The name
keys is equated with set of char. You have used predefined types
such as integer and char, and you have defined your own type
with an ordered list of band members. Now you are defining your
own type as a group of, as yet, unspecified characters.

The difference between type char and type set of char is that a
variable of type char can only represent a single character at a
time, whereas a variable of type set of char can represent a group
of characters at the same time.

The letters ['a','b', 'c','x','z'} are a set of characters. The upper­
case letters from ['A'..'Z'} are also a set of characters. The fol­
lowing are all examples of legitimate sets of characters:

MACINTOSH PASCAL ILLUSTRATED

II

23.3 Main

['a' . .'z'} {all the lowercase letters from 'a' to 'z'}
['2' . .'6','8'} {the numbers 2,3,4,5,6 and 8}
['$',' + ','*',chr(32)} {the symbol characters plus the return
key}

Any single character that can be represented as type char can be
included in a variable of type set of char. The characters assigned
to a variable of type set of char must be enclosed by brackets[].

Individual characters can be notated in one of three ways:

1. directly, in which case they must be placed between single
quotation marks["]

2. within an ordered list that abbreviates using two-dot notation
[..]

3. through ASCII representation: [chr(ordinal) number)]

The var declarations of program lnputTesting include fine­
Number, a variable of the newly defined type keys. The actual
assignment of a set of characters to the variable fineN umber occurs
in the main body.

chl is declared a global variable of type char. This variable will
be assigned the result of function checkChar.

Two variables are declared locally with checkChar. ch is a variable
of type char which holds the current character typed in from the
keyboard. fine is a boolean variable which is assigned a true value
if the character entered from the keyboard is a member of the
designated set of allowable keys.

The first instruction assigns a value to fineN umber, the variable
of type set of char. The right side of the assignment statement
shows that fineNumber has a value of the numeric characters 'O'
through '9'.

program lnputTesting will only allow these keyboard characters
to appear on the Macintosh screen. If any other character is
pressed, a beeping sound will result without the character ever
appearing on screen.

DETECTING SHADY CHARACTERS 161

23.5 Function
checkChar
(fineKey : keys) :
char;

162

The repeat .. until eofn loop at the bottom of the main body
contains the function call to checkC har. The function will return
a single character to be assigned to the variable chl . If the eofn
condition is true, that is, the line return character (return key,
chr(32)) has been pressed, the loop is exited and the program
ends.

You should take note that the call to function checkChar con­
tains a parameter. The value of fineN umber will be passed along
to function checkChar in the same way that parameters were
passed to procedures in the last two chapters.

Though the advantages of passing parameters are less apparent
in short programs, the result is functions and procedures that
are more self-sufficient. Self-sufficient program blocks enhance
the clarity of longer programs accomplishing many tasks.

On clarity, Mr. Moss reflects:

The beauty of clear writing derives in large part
from contrast to the pea soup fog within which
our brains operate.

checkC har uses two variables and the fineKey parameter to check
for valid keyboard input. But the first task is to wait for input
from the keyboard.

Early in Part 2, you were introduced to Pascal's readfn command,
which accepted input from the keyboard. However, one of the
characteristics of readfn is that as soon as an entry from the
keyboard is recognized, the character is displayed on screen.
checkChar uses another method of getting input from the key­
board, one that does not automatically display the keyboard entry .

This alternative method of keyboard entry is shown in the first
two instructions of checkC har:

ch : = input A;
get(input),·

MACINTOSH PASCAL ILLUSTRATED

II

The assignment statement ch : = inpun assigns a character from
the keyboard buffer to the variable ch. The keyboard buffer is a
holding place where each keypress is kept while waiting for fur­
ther instruction. Pascal accesses the keyboard buffer through a
predefined file called input. The file name input, followed by the
caret sign(), represents the file's buffer.

The second instruction, get(input);, advances the file buffer so that
the next character input can be read from the keyboard. More
information on the uses of Pascal's get procedure can be found
in Part 3.

The remaining instructions of function checkChar explain them­
selves. The boolean variable fine is assigned a true value if the
character ch is in the set of acceptable characters represented by
the parameter fineKey.

fineKey and fineNumber are assigned the same values, the set of
characters ['0'..'9']. The difference between the two is thatfineKey
is the parameter name given in the heading of function checkChar,
whilefineNumber is the global variable assigned in the main body
whose value is then passed on to fineKey. Though the use of
parameters is not required by this example, the technique is
useful in many other applications.

A false value of fine will result in sysBeep(5) sounding its disap­
proval. The else condition, a true value of fine, will result in the
character being written onto the Macintosh screen. Only when
an acceptable character is entered will checkC har be assigned the
value of ch, and the function exited.

DETECTING SHADY CHARACTERS 163

What's next

• Topics

24.1 Program
StringTesting;

24 Stringy Strings
and Split Ends

The program StringTesting expands upon the keypress filter used
in the last chapter. The designated characters that pass through
function checkChar are used to create character-tested strings.
Remember, input-checking techniques are an effective way of
making a program run without error.

var {parameters}

chr

length

delete

concat

program StringTesting;
type
keys = set of char;

var
flneKey: keys;
sp: char;
s: string;

function checkChar (flneKey: keys): char;
var

fine: boolean;
ch: char;

STRINGY STRINGS AND SPLIT ENDS 165

166

begin
repeat
ch:= Input";
get(Input>;
fine := ch in flneKey;
If not fine then
sysBeep(5)

else
write(ch)

until fine;
checkChar := ch

end;
procedure flneStrlng (vars: string;

flneKey : keys);
var

newChar, bs : char;
okayKey : keys;

begin
bs := chr(8); (ascll code for backspace key)
repeat
If length(s) <> O then
okayKey := flneKey + [bs]

else
okayKey := fineKey;

newChar := checkChar(okayKey);
If CnewChar = bs) then
delete(s, length(s), 1)

else
s := concat(s, newChar)

until eoln
end;

begin
wrltelnC'The keyboard will only accept flneKey characters. Try It.');
wrltelnC'Try the backspace key. Press Return to exit.');
wrlteln;
sp := chrC32); (asc11 code for space bar)
flneKey := ['a'..'z', 'A'..'Z', sp];
flneStrlng(s, flneKey);
write In;
wrlteln(s, · only contains letters or spaces.');

end.

MACINTOSH PASCAL ILLUSTRATED

24.2 Definitions
and declarations

24.3 Main

§'D TeHt
The keyboard wil I only accept fineKey characters. Try It. ~
Try the backspace key. Press Return to exit.

Six is afraid of seven because seven eight nine
Six is afraid of seven because seven eight nine only
contains letters or spaces.

You have seen all of the types used in String'J'esting in previous
chapters. The program-defined type keys is again equated with
set of char. The variables fineKey and okay Key of type keys will be
used to designate acceptable keypresses just as fineKey and
fineNumber did in the last chapter.

The variables.fineKey, sp, ands are declared globally because they
are used in the program's main body. The only other occasion
for using global variables is when the variable will be used in
many of the program's procedures and functions. Use of a global
variable will avoid the need for repeating the same local decla­
ration in each block.

The fourth instruction of the main body is: sp := chr(32);.

The Pascal function chr returns the character whose ordinal num­
ber is given as the function's parameter. The table of ASCII values
in Appendix C, Part 3, shows that the character associated with
the number 32 is the space bar key. Since the space bar key does
not have a literal character of its own, it must be referenced by
its ASCII code number. The assignment statement shown above
allows the program to substitute sp instead of the unwieldy chr(32)
whenever the space bar character is mentioned.

The next instruction assigns the variable fineKey to the set of
characters made up of all letters, both lower and upper case, as
well as the space bar character, sp. Remember from last chapter
that all characters not included infineKey (fine Number) got beeped
and never appeared on the screen.

STRINGY STRINGS AND SPLIT ENDS 167

II

24.4 Procedure
flneString (var s:
string; flneKey:
keys);

168

Once a character set has been assigned to fineKey, the variable is
passed on to procedure fineString as a parameter: fineString(s,
fineKey);.

The parameter list of the procedure call uses two parameters:
fineKey passes the designated character set to the procedure, and
s passes the string created in procedure fineString back to the
procedure call.

The parameter s is a special kind of parameter that has not been
used before. A parameter that passes data back to the procedure
call is titled a var parameter. The reserved word var serves as the
title for both variable and var parameter declarations.

The two kinds of parameters are sometimes called value param­
eters and variable parameters. The value parameter sends data to a
block. The variable parameter (var parameter) sends data back
from a block. Since the word variable is used so often in Pascal,
you might find it less confusing to simply refer to the two kinds
as:

1. the plain parameter, which needs no title and sends data to
a block

2. the var parameter, which requires var in the block heading
and returns data from the block to the block call

The char type variable bs is assigned the value chr(B) (8 is the
ordinal number of the backspace key) in the same manner that
the variable sp was assigned to the space bar key. Since the back­
space key has no literal character of its own, it must be referenced
by its ordinal number.

The string parameter s is initialized to an empty string, notated
by two consecutive single quotation marks. The remainder of
procedure fineString is contained in a repeat .. until loop. The
purpose of this loop is to add characters, one by one, to the var
parameters. The string's completion occurs when the return key
has been pressed (and the eoln function becomes true).

In order to accomplish the construction of a string, three of
Pascal's predefined string commands are used. The length func-

MACINTOSH PASCAL ILLUSTRATED

II

tion checks the number of characters in the parameter string s
and if the string has no characters, the backspace key (bs) is not
permitted. However, for any length of s other than zero, the
backspace key is added to the set of characters in fineKey.

The variable okayKey, also of type keys, will be sent as the param­
eter to function checkChar. okayKey will be assigned the same
value as fineKey ifs is an empty string. Otherwise, okayKey will
be assigned the value of fineKey plus the character bs. When
okayKey includes bs, the program allows the user to backspace
over any unwanted characters.

function checkChar is called from the instruction: newChar : =
checkChar(okayKey);. checkChar is the exact same function in
program StringTesting as it was in program lnputTesting. The
okayKey parameter that is sent to the function determines which
keypresses will be beeped and which will be written onto the
screen, then assigned to variable newChar.

The last part of procedure fineString is an if .. then .. else con­
dition that checks to see if the character returned from function
checkChar is the backspace key. If newChar = bs then the delete
procedure removes from string s one character beginning at the
position given by length(s).

The delete procedure requires three parameters. The first is the
string from which characters are to be deleted. The second is the
numeric position of the first character to be deleted. The third
is the number of characters to be deleted.

If newChar has been assigned any character other than the back­
space character, that character is concatenated (added) onto string
s, ands is assigned its new, one-character-longer value.

The concat function requires two or more parameters. The con­
tents of each parameter are joined together and returned by the
function as a single string value. The order in which the param­
eters are joined is the same order in which they appear in the
parameter list.

In this way, each new character that has been tested by function
checkChar is joined to the existing characters of string s. The

STRINGY STRINGS AND SPLIT ENDS 169

170

construction of the string is completed when the eoln character,
the return key, has been pressed.

procedure fineKey concludes and the var parameters is returned
from the procedure back to the procedure call in the main body.
The string assigned to variables can be used like any other string.
The last instruction of the main body is a writeln statement that
sends to the screen the string contents of s as well as the string
literal 'only contains letters or spaces.'

Pascal offers many other predefined procedures and functions
that help a programmer manipulate strings. You will find defi­
nitions and examples of these as you browse through the unfa­
miliar terms of Part 3.

But do not try to find the term Split Ends in any Pascal glossary.
Only the Fear and Loathing Guide has the breadth to acknowledge
the cruxes of the human condition.

There are many theories to the problem of split ends, whose
nasty trademark is frizzy, unmanageable hair. Diet, weather,
shampoos, and stress could all be contributing factors. Pascal
offers no solution. Mr. Moss can only share the hope with others
that modern science might one day find an answer to this follicular
bane.

MACINTOSH PASCAL ILLUSTRATED

What's next

•Topics

25.1 Program
DollarCents;

25 Formatting Dollars
with Common Cents

This program presents numbers so that they appear on screen as
dollar and cent amounts. Numeric data will be formatted to two
decimal places, then converted to strings in order that dollars
signs ($) and commas be inserted. The conversion occurs in a
single procedure that can be relocated into any program.

extended

stringOf

insert

program DollarCents;
var

answer : array(1 .. 5) or strtng(20];
I, cost: Integer;

procedure convertMoney (amount : extended;
var stAmount : string);

const
width"' 15;

var
len : Integer;

FORMATTING DOLLARS WITH COMMON CENTS 171

25.2 Definitions
and declarations

172

begin
stAmount := stringOf(amount : width : 2);
while stAmount[I) = · · do
deJete(stAmount, I, I);

Jen := Jength(stAmountl;
while Jen > 6 do
begin

Insert(',', stAmount, len - 5);
Jen:= Jen - 3

end;
Insert('$', stAmount, I)

end;
begin

convertMoney(7365. 7 4, answer[Ill;
convertMoney(I 0.035, answer[2));
cost:= 623;
convertMoney(cost, answer[3));
convertMoney(0.2, answer[4Jl;
convertMoney(9 I 64358729 I .98495, answer[5));
for i := I to 5 do
begin

write Jn;
wrl te Jn(answer[i));

end
end.

=0 Te Ht

$7,365.74

$10.04

$623.00

$0.20

$91,643,587,291 .96

The global declarations are used only to show examples of the
dollar and cents formatting. procedure convertMoney is self­
contained, in that it does not use any global or outside references.

The variable answer is declared as type array{l .. 5} of string(20};
The five elements of answer will be assigned the formatted dollar­
string values by procedure convertMoney's var parameter. Re-

MACINTOSH PASCAL ILLUSTRATED

25.3 Main

member, var parameters send back data from a block to the block
call.

The constant width and the variable len, local to procedure
convertMoney, are used because they add clarity. width refers
to the number of character-spaces an expression will occupy when
displayed on the screen. len substitutes for the cumbersome func­
tion call length(stAmount).

A new type, extended, is introduced in program DollarCents.
The parameter amount in procedure convertMoney is declared
to be of type extended. extended is one of MacPascal's four real­
types that represent a range of real numbers, which for the pur­
pose of DollarCents means numbers that allow the use of a dec­
imal point.

See Part 3 under real, extended, double, and computational to find
out more about real-types.

Five of the first six instructions of the main body call procedure
convertMoney. The first parameter of each call serves to send
data to the procedure. The second parameter receives data from
the procedure. If you look up to the heading of procedure
convertMoney, you will see that the first parameter (which has
no tide) is amount : extended;, while the second parameter (titled
var) is var stAmount : string.

The call to convertMoney will send a numeric value to the pro­
cedure, then take back the converted value as array elements of
a string type.

The for .. to .. do loop at the end of the main body will display the
formatted contents of the array answer.

The reason for storing the string results in an array (as opposed
to creating five different variable names) is the ease with which
a for loop can write out the contents of the array. The for loop's
counter (i) serves the double purpose of the array's subscript
([i]). If five different variable names had been used, you would
have needed to write out all five names in a writeln statement to

display their contents.

FORMATTING DOLLARS WITH COMMON CENTS 173

25.4 Procedure
convertMoney
(amount:
extended; var
stAmount:
string);

174

The first instruction of convertMoney converts the parameter amount
from type extended to type string: stAmount := stringOj(amount
: width : 2);.

The MacPascal function stringO/ works similarly to the write
procedure except that instead of displaying its parameter on the
screen, stringO/ returns the characters of its parameter as a string
value. In DollarCents, this function will take a real-type number
as its parameter and return a string value. stAmount will be as­
signed the function's string result.

The parameter of the stringo/function deserves special attention.
The real-type value amount has been appended with (: width :
2). These are colon modifiers that can be applied to any write,
writeln, writeDraw, or stringO/ statement.

Colon modifers are integer type values that specify:

1. : minimum field width

2. : number of decimal places

The purpose of specifying field width and decimal places is to
help a programmer format the display of output. If a list of output
expressions all occupy the same number of character spaces, and
are extended the same number of places to the right of the
decimal point, much of.the formatting task is already done.

Colon modifiers must be placed in the order shown(: field width
: decimal places) and must have a value greater than zero. A
decimal place modifier cannot be used without a field width
modifier.

In DollarCents, the field width value of 15 ensures a minimum
of 15 character spaces to represent the value of amount. The
decimal place value of 2 causes the value of amount to be notated
using two decimal places to the right of the decimal point.

MACINTOSH PASCAL ILLUSTRATED

II

Version 1.0 of MacPascal has a bug with some uses of colon
modifiers. To sidestep this bug, do not use a minimum width
modifier any smaller than the actual width of your largest expres­
sion. Though a minimum field width is supposed to accommodate
enough characters as necessary to represent an expression's value,
a field width smaller than an expression's actual width causes
errors in the decimal places modifier.

Now that amount has been converted from type extended to type
string, leading spaces can be deleted, and commas and a dollar
sign can be inserted. Two while .. do loops accomplish the leading
spaces and commas task.

Leading spaces are deleted by the instructions:

while stAmount{l} = ''do
delete(stAmount, 1, 1);

The subscript {1} of the string stAmount is a method for notating
the first character of the string value. stAmount(2} represents the
second character of stAmount, and so on.

Remember, the field width modifier of amount specified a min­
imum of 15 character spaces, yet most values of amount require
far fewer spaces. As a result, the leading spaces of stAmount are
blank. The while loop checks to see if the first character of
stAmount is blank (' ') and if so, Pascal's delete procedure deletes
that space character. The loop continues until all leading spaces
are deleted.

The second while loop counts the number of characters in stAmount
and inserts commas after every third character to the left of the
decimal point. See if you can figure out how this loop works after
reading the following note.

The predefined procedure insert requires three parameters. The
first is the string to be inserted. The second is the result string,
which will take in the insertion. The third is an integer, which
determines the character position at which the first parameter
will be inserted into the second parameter (an integer value of
1 will cause the first parameter to be inserted before the first

FORMATTING DOLLARS WITH COMMON CENTS 175

176

character of the result string, a value of 2 will cause an insertion
before the second character, and so on).

The last instruction of procedure convertMoney inserts a dollar
sign into the result string stAmount before the first character. The
insert procedure returns stAmount as its own var parameter, with
the dollar sign appended.

This final value of stAmount is returned by procedure
convertMoney to the procedure call in the main body. The var
parameter stAmount is sent back to the procedure call as an array
element of answer. The array elements, each of type string, are
displayed on the Macintosh screen in their dollar and cents format.

Much of Mr. Moss's acumen can be attributed to his training at
the University of Pennsylvania's Wharton School of Finance
(Wanton, for short). Mr. Moss strongly urges anyone with the
opportunity to pursue a higher education, not to squander it.
The wealth of experience offered within a setting of young men
and women living together, bonded by the pursuit of knowledge,
far outweighs the occasional inconvenience of attending classes
and reading books.

MACINTOSH PASCAL ILLUSTRATED

What's next

•Topics

26.1 Program
RolloAtMacys;

26 Financial Programming:
To the Bone

The program in this chapter illustrates a common business ap­
plication. A short invoice is prepared from the retail sale of
merchandise. The computation involves items purchased, price,
tax, and a pay-by-installment plan. You will use Pascal's arith­
metic tools, a new type definition, and last chapter's convertMoney
procedure to format a dollar amount.

type {string subset}

record

computational

(+,-,*,/}

program RolloAtMacys;
type
str20 = strlng[20);

var
amountDue : extended;

procedure convertMoney (amount : extended;
var stAmount: str20);

const
width= 15;

var
Jen : Integer;

FINANCIAL PROGRAMMING: TO THE BONE 177

178

begin
stAmount := strlngOf(amount : width : 2);
while stAmount[1] = · · do
delete(stAmount, 1, 1);

Jen := length(stAmount);
while len > 6 do
begin

Insert(',', stAmount, len - 5);
len := len - 3

end;
Insert('$', stAmount, 1)

end;
procedure calculateB1ll (var amountDue: extended);
const

salesTax = 0.065;
Installments = l O;

type
boneRec = record

units : computational;
unitCost: computational

end;
var
bones: boneRec;
fleaPowder, subTotal : computational;
total : extended;

begin
bones.units:= 800; (number of bones)
bones.unitCost := 49; (in cents ($0.49))
fleaPowder := 279; (In cents ($2.79))
subTotal := (bones.units* bones.unitCost) - fleaPowder;
total :=(sub Total I I 00) * (1.00 + sales Tax);
amountoue :=total I installments;

end;
procedure prlntB1ll CamountDue: extended);
var

rolloOwes : str20;
begin
wrlteln;
wrlteln('Rollo's Charge Account at Macy's');
wrlteln('--------------------------------');
write in;
wrlte('Please Pay Promptly, Punk: ');
convertMoney(amountDue, rol loOwes);
wrlteln(rolloOwes);

end;
begin
calculateBI ll(amountDue);
prlntB1ll(amountDue)

end.

MACINTOSH PASCAL ILLUSTRATED

26.2 Definitions
and declarations

Te Ht

Roi Io ' s Charge Account at Macy ' s

Please Pay Promptly, Punk: $11 .15

At the top of the program, beneath the type heading, is the
definition: str20 = string(20};. In this way, str20 becomes a
subset of the string type. Any variable declared of type str20
must be a string of 20 or fewer characters.

Two purposes are served by creating type str20. First, it is shorter
and easier to write str20 than string(20} . Second, and more
significantly, str20 can now be used as a type in a parameter list.
Pascal does not allow string subscripts in a parameter list so
string(20} would not have been permitted. string alone would
have been okay, except that its default length is 2 5 5 characters,
which is a waste of space for variables that will never exceed 20
characters.

program RolloAtMacys introduces two other new words: record
and computational. Both appear locally in the definition section
of procedure calculateBill:

type
boneRec = record

units : computational,·
unitCost : computational

end;

A record is a type composed of two or more fields, each with
their own type. The fields of a record work like variables. You
might think of a record as a suitcase full of assorted variables.
The name of the record serves as the suitcase's handle.

Just like a suitcase, the purpose of a record is to keep your
possessions (variable fields) organized when you move from one

FINANCIAL PROGRAMMING: TO THE BONE 179

26.3 Main

26.4 Procedure
calculateBill (var
amountDue:
extended);

180

place to another. When two variables are intimately associated
with one another, you should consider joining them as fields of
a record.

procedure calculateBill has done this. The fields units and unitCost
represent the number purchased of a piece of merchandise and
the price of that merchandise. When these fields are multiplied,
a dollar amount due for the purchase is derived.

The fields of a record can be accessed individually. First, a variable
must be declared of the record type. Second, the field name must
be appended to the variable name: recordV ariableName.fieldName.

A single period separates the variable name from the field name.
The first two instructions of procedure calculateBill illustrate
this notation as both fields of the record boneRec are assigned
values. Notice that under var, the variable bones has been declared
of type boneRec.

Both fields of record boneRec are of type computational. com­
putational is one of MacPascal's predefined real-types, designed
specifically for financial applications. The computational type of­
fers a large range of values without any loss of precision. See
Part 3 for more information on MacPascal's four real-types.

The main body of RolloAtMacy's consists of two procedure calls.
Both calls use a single parameter. procedure calculate Bill returns
as a var parameter amountDue. procedure printBill takes the
value of amountDue and displays the formatted value in an invoice.

Borrowing from the renowned economist Wimpy, Rollo offers
this insight to the infrastructure of modern civilization:

I would gladly pay you Tuesday for a bone
today.

This procedure assigns values to the record fields of bones and
the variable fleaPowder, then performs simple arithmetic to de­
termine the invoice's amountDue. The first three assignments
have comments to explain the values being assigned. You should
notice that computational values do not use decimal points, there­
fore all money figures are represented in cents.

MACINTOSH PASCAL ILLUSTRATED

26.5 Procedure
prlntlill
(amountDue :
extended);

subTotal is assigned the product of the record field units and the
record field unitCost, less the cost of fleaPowder. fleaPowder is
subtracted from the cost of bones because Rollo is returning the
flea powder and Macy's is giving credit toward the purchase of
bones.

total is assigned the product of a division and an addition. First,
subTotal is divided by 100 (in order to convert from type com­
putational cents to type extended dollars). Second, salesT ax is added
to 1. Third, the results of the division and the addition are mul­
tiplied to produce a dollar value with tax added.

amountDue is assigned the total bill divided by the number of
installments. amountDue is then returned as the var parameter of
procedure calculateBill.

printBill consists of six writeln statements that display invoice
information in the Text window. The only other instruction in
printBill is the procedure call to convertMoney, the same proce­
dure used in the last chapter to format numbers into a dollar
format.

The call to convertMoney uses two parameters. The first sends the
extended type amountDue to the procedure. convertMoney returns
a string as its var parameter. This string value returns to the
procedure call with the name of the second parameter, rolloOwes.
In a dollar and cents format, rolloOwes is written to the Text
window.

FINANCIAL PROGRAMMING: TO THE BONE 181

I

What's next

• Topics

27 A Time for Mac,
a Time for Martha

This program shows you how to communicate date and time
information between the Macintosh clock and your Pascal pro­
grams. The Text window will display a digital display of date and
time, while the Drawing window will display the second hand of
an analog clock face.

dateTimeRec

with .. do

writeln {with modifiers}

insetRect

fill Oval

tickCount

fill Arc

paint Arc

A TIME FOR MAC, A TIME FOR MARTHA 183

27.1 Program
SecondHand;

184

program SecondHand;
var

currentTlme: dateTlmeRec;
procedure textDlsplay CcurrentTlme : dateTlmeRec);
begin
with currentTlme do
begin
wrltelnC'Thls procedure was called on·, month: 2, '/',day: 2, '/',year: 2);
wrlteln('at the time·, hour: 2, ':',minute: 2, ':',second: 2, '.');
write In

end
end;
procedure drawlngDlsplay;
const
slxDegree = 6;
ticks= 3600;

var
face: rect;
perSec, arcSec: Integer;
starter : longlnt;

begin
setRect(face, 5, 5, 195, 195);
penSlzeC3, 3);
frameOval(face);
lnsetRect(face, 3, 3);
rmoval(face, gray>;
perSec := O;
starter:= tlckCount;
whlle not CtlckCount =starter+ ticks) do
begin
getTlme(currenttlme);
If currentTlme.second <> perSec then
begin

perSec := currentTlme.second;
arcSec := perSec * slxDegree;
flllArc(face, arcSec - slxDegree, slxDegree, ltGray);
palntArc(face, arcSec, slxDegree)

end (end If .. then}
end (end whlle .. do loop}

end; (end procedure drawlngDlsplay}
begin

getTlmeCcurrentTlme);
textDlsplay(currentTlme);
drawlngDlsplay;
textDlsplay(currentTlme>

end.

MACINTOSH PASCAL ILLUSTRATED

27 .2 Definitions
and declarations

0 Te HI

program SecondHand uses a new Toolbox data type called
dateTimeRec. Since the type dateTimeRec has already been defined
as a Toolbox record type, a Pascal program can simply declare
a variable of that type. After that, any field of the record can be
accessed just as the record boneRec was accessed in the last
chapter.

Of course, you need to know the field names of dateTimeRec in
order to access them. You could find this information in Part 3,
but here they are anyway: year, month, day, hour, minute, second,
dayOjWeek : integer.

All the fields of the record type dateTimeRec are of type integer.
The integers that represent date and time data are easy to inter­
pret. For example, the month field uses 1 to represent January,
2 to represent February, and so on. The year field contains all
four digits of the year. The dayOjWeek field gives a number from
1 to 7, representing Sunday through Saturday.

A TIME FOR MAC, A TIME FOR MARTHA 185

27.3 Main

186

The variable currentT ime is declared of type dateT imeRec. The
fields of dateT imeRec can be accessed by using the notation
currentTime.fieldName wherefieldName is replaced by month, day,
hour, etc.

The variable face is declared of type rect. This will be used to set
the oval for the clock face. You have used type rect variables
many times before. What you might not have known is that the
rect type, like dateT imeRect is a record type. rect is a Quickdraw
record of four integer fields-top, left, bottom, and right. You
could access any field of a rect type using the notation rect­
VariableName.fieldName. For instance, face.bottom has been as­
signed the value of 195 in the setRect command.

Quickdraw's rect type is actually a variant record defined either
as four integers as stated above or two fields of type point. The
fields of type point are topLeft and botRight, corresponding to the
corner points of the rectangle.

The variables perSec and arcSec are assigned field values of
currentTime. currentTime is assigned its value (all field values at
once) as the var parameter of the Toolbox's getTime command.

The variable starter is declared of type longint. This variable is
assigned the value returned by the Toolbox function tickCount.
tickCount is a timer function that measures elapsed time in six­
tieths of a second.

The main body consists of four procedure calls. The first call is
to the predefined Toolbox procedure getTime. The remaining
three calls are to procedures textDisplay and drawingDisplay.
Notice that textDisplay is called twice, once before and once after
the call to drawingDisplay. By watching the Text window, you
can see that the parameter currentTime sends new data on the
second call.

The call getTime(currentTime) assigns the fields of the record
dateT imeRec to the var variable currentT ime with data from Ma­
cintosh's internal clock. In the next instruction, the field values
contained in currentTime are passed as a parameter to procedure
textDisplay.

MACINTOSH PASCAL ILLUSTRATED

27 .4 Procedure
textDisplay
(currentTime :
datelimeRec);

There is also a MacPascal procedure to set the data of the Ma­
cintosh clock called setTime. You can read about this procedure
in Part 3, though more likely you would want to use the Control
Panel option from the Apple menu to set the date and time.

No matter the perspective, it seems that time tends to make
people old, that old tends to make people weak, and that weak
tends to make people die. For its cruel tendencies, time must
have something fun to off er in return.

Mr. Moss would hate to become philosophical this late in the
text, therefore he has no choice but to relate his plans for to­
morrow night with his girlfriend. At seven-thirty, they will meet
at his house, then walk to an ice cream store a half mile away.
They don't know what they will talk about, yet they know it will
be interesting because each likes the way the other talks. At
home, after the ice cream has been finished, they will touch each
other, and at a point in their touching, before they go to sleep,
time will fizz and tingle and pay back all it owes.

The first instruction of textDisplay introduces with, a new Pascal
reserved word: with currentTime do.

Beneath this statement are three writeln instructions bracketed
by begin and end. Notice that the writeln statements use the
field names of record dateTimeRect without referencing the
variable name currentTime. The reason the prefix currentTime (and
the separating period) has been omitted is because the with .. do
instruction automatically affixes the variable name currentTime to
all the field names within the begin .. end brackets.

The with .. do command is simply a shortcut. The same effect
could be accomplished by omitting with currentT ime do, and
instead using the full currentTime.fieldName notation. However,
you should be able to see that procedure textDisplay would be
quite a bit lengthier (and less easy to read) without the with .. do
shortcut. If only one field of dateTimeRec was being accessed, it
would be shorter to affix currentTime to the field name.

A TIME FOR MAC, A TIME FOR MARTHA 187

27 .5 Procedure
drawing Display;

188

The writeln statements of procedure textDisplay also make use
of the colon modifiers. Only the first modifier, specifying mini­
mum width, is necessary since all field values are integers, and
there are no decimal places. If the width modifier is omitted, the
integers will make up 6 character spaces, the default width size
used by MacPascal and the text display would look awkward.

The first five instructions of drawingDisplay call Quickdraw pro­
cedures in order to frame a thick oval, then fill inside the frame
with a gray pattern. The setRect command sets the rectangle into
which the oval frame will fit. The penSize command sets the black
line thickness of the oval frame. frameOval draws the oval. insetRect
takes the type rect variable face and shrinks it, horizontally and
vertically, by the dimensions given in the second and third pa­
rameters respectively. Then the fillOval command fills the area
within, but not covering, the framed oval.

The instruction perSec: = O; is an initialization. The variable perSec
will be used if the second field of the record has changed since
the previous getT ime call.

The variable starter is assigned the value returned by the tickCount
function. Though starter will represent the time elapsed (in six­
tieths of a second) since the Macintosh was started, the usefulness
of starter is its use as a base. When a subsequent call to tickCount
returns a value 3600 (the constant ticks) larger than starter, the
while not .. do loop is exited.

The while not .. do loop is repeated for as long as it takes tickC ount
to increment by 3600 ticks (about 60 seconds). In this time,
getT ime is called and the field values are assigned to currentT ime.
Each time a new value of the field currentTime.second is detected
(by comparing it to perSec), the four instructions of the if .. then
condition are performed.

The if..then condition updates perSec, then assigns an integer
value to arcSec based on the number of elapsed seconds multiplied
by the constant sixDegree. The value of arcSec will determine the
number of degrees at which an arc should be drawn. This sim­
ulates the position of a clock's second hand. Each increment of
6 degrees corresponds to 1 second (6 degrees * 60 seconds =
360 degrees per minute).

MACINTOSH PASCAL ILLUSTRATED

The last two instructions of procedure drawingDisplay create
the sweep motion of the clock's second hand. The previous sec­
ond's arc is filled by fillArc, then the current second's arc is painted
by paintArc.

All the arc commands-frame, paint, invert, erase, and .fill-re­
quire two degree parameters. These determine the starting angle
of the arc and the number of degrees it will extend. The second
and third parameters of fillArc and paintArc accomplish this task.
The fillArc command has a fourth parameter which determines
the fill pattern.

The arc-drawing commands should draw sixty arcs, or one com­
plete revolution, before the tickCount function returns a value
equal to starter plus ticks. At this point, the loop and procedure
are exited. The main body calls procedure textDisplay again,
updating the Text window with the most recent date and time
data received from getT ime. The new Text window display should
show the time one minute later than the first display.

A TIME FOR MAC, A TIME FOR MARTHA 189

What's next

• Topics

28.1 Program
BabiesAreUs;

28 Files for the Child in You

This chapter's program presents an illustrated filing system using
fast, random-access commands. The spirit of Macintosh graphics
is upheld as the user retrieves file data by pointing and clicking
the mouse.

record {of record}

array {of record}

file of

open

seek

filepos

program Bab1esAreUs;
const

cr1bs = 10;
empty=";

type
babyRec = record

name : strlng[30];
weight : strlng[S];
t1me: dateTlmeRec

end;

FILES FOR THE CHILD IN YOU 191

192

var
baby : array[O .. crlbs] of babyRec;
dataName : strlng[SOJ;
babyFlle: me of babyRec;

procedure addRecord;
var
currentTlme: dateTlmeRec;

begin
getTlme<currentTime);
baby[O].name := ";
baby[O].welght := ";

baby[OJ.tlme.month := O;
baby[OJ.tlme.day := O;
baby[l].name :='Chloe Modigliani';
baby[l].welght := '7-7';
baby[1].time.month:= currentTlme.month;
baby[1].time.day := currentTlme.day;
baby[4J.name :='Charles Santabara';
baby[4].welght := '6-8';
baby[4J.tlme.month := currentTlme.month;
baby[4].tlme.day := currentTlme.day;
baby[7J.name :='Charlotte Karine';
baby[7].welght := '7-15';
baby[7J.tlme.month := currentTlme.month;
baby[7J.tlme.day := currentTime.day

end;
procedure lnsertRecord;

const
Instruct ='type a new datafile name';

var
I: Integer;

begin
dataName := newFileName(instruct);
open(babyFlle, dataName);
fot I := o to cribs do
b•gtn

seek(babyFlle, O;
tf baby[IJ.name <>empty then (empty string constant"}
babyFlle" := baby[I]

else
babyFlle" := baby[O];

put(babyFlle)
end; (end for loop)

close(babyFlle)
end; (end procedure lnsertRecord}
procedure r .ttrleveRecord;
const
Instruct = 'select the file to read';

MACINTOSH PASCAL ILLUSTRATED

var
line, I, x, y: Integer;
doBox : array[I .. cribs] or rect;
pt: point;
lnBox : boolean;
tot : babyRec;

begin
ltne := 30;
dataName := oldflleName(lnstruct);
open(babyFlle, dataName);
ror I := I to cribs do
begin
seek(babyFlle, I);
If babyF11e·.name <> empty then
begin
setRect(doBox[I], 10, ltne - 20, 150, ltne + 10);
line:= line+ 40;
frameRoundRect(doBox[t], 11, 11);
moveTo(doBox[l].Jeft + 8, doBox(IJ.bottom - 8);
wrlteDraw(babyFlle".name)

end
end;

repeat
getMouse<x, y>;
setPt(pt, x, y);
If button then
begin

I:= O;
repeat
I:= I+ I;
lnBox :• ptlnRect(pt, doBox[I]);

untll lnBox or (I .. cribs);
If not lnBox then
sysBeep(7)

end
untll lnBox;
seek(babyFlle, O;
tot := babyFlle";
writer•·, fllepos(babyFlle): 2, · '); (writes out file number}
with tot do
begin
wrlteln(name);
wrlteln('wetght (lb-oz): ·, wetght);
wrlteln('date (month/day): ·,time.month: 2, '/',time.day: 2)

end;
c Jose(babyFlle)

end;
begin
addRecord;
lnsertRecord;
retrleveRecord

end.

FILES FOR THE CHILD IN YOU 193

28.2 Definitions
and declarations

II

194

:O Te Kt

1 7 Charlotte Karine
weight (lb-oz): 7-15

ldate (month/day): 11/ 1

=o Drawing

[Chloe Modigliani l
[Charles Santabara l
(Charlotte Karine)

'2l

Under the global type heading is the record definition of babyRec.
The third field of babyRec is time, whose type is the predefined
record type dateTimeRec. Hence, you have defined a record of
a record type.

This means that each value of type baby Rec will contain all the
field values (year, month, hour, etc.) of type dateTimeRec. A vari­
able of type baby Rec will also contain the two string types, name
and weight.

Pascal allows all sorts of nestings such as the above. In BabiesAreUs
the variable baby is an array of a record. Each element of the
array body is a record defined by babyRec.

The nesting of Pascal's structures is not easy for a beginner to
understand. You can reread the definitions till your head spins,
but the assignments in procedure addRecord should make the
nesting process more clear.

Understanding assignments is easier than understanding struc­
tures. For example, you will probably get lost trying to figure

MACINTOSH PASCAL ILLUSTRATED

II

28.3 Main

the value of the month field of the predefined record date­
TimeRec of the program-defined record babyRec contained in
the array baby. But by studying procedure addRecord's assign­
ments (with the period notation separating fields), you can work
backward from the actual data itself to the Pascal structures that
hold it.

program BabiesAreUs contains a declaration of a new variable
type: babyFile: file of babyRec;.

The reserved words file of serve to connect a variable name with
an external device, in this case, the disk drive. The declaration
makes babyFile the file organizer through which data is com­
municated to and from disks. The data organized through the
variable babyFile will be of type babyRec, but the primary signif­
icance of the file of declaration is the association with the disk
drive.

Files can be created of any Pascal type except other files. Files
of integer, string, array, and record types all use the same format:
file of type. There is one special-purpose file-type you have
already used in previous chapters called text. Since text is a stan­
dard, predefined file-type, the reserved words file of are not used
in its declaration.

The main body contains three simple procedure calls. Their names
help indicate their tasks. In the first procedure, data is added to
the record fields through assignment statements. In a general use
application, a programmer would prompt the user to input data
through read commands, or better yet, through the string-testing
routine illustrated in Chapter 24.

The second procedure inserts the filled-in records into a file on
disk and creates a graphic display for each insertion. The name
of the datafile is selected by the user through use of the Toolbox
file procedure newFileName. Since BabiesAreUs automatically calls
newFileName in order to create a new file, a major enhancement
to the program would be to ask the user to choose between
creating a new datafile or add/delete/change/observe an existing
datafile.

FILES FOR THE CHILD IN YOU 195

28.4 Procedure
add Record;

196

The rhird procedure presents a graphic, rided display of rhe
available records, wairs for rhe user ro make a selecrion wirh rhe
mouse, rhen rerrieves rhe selected dara using a fasr, random-access
retrieval insrrucrion. The program ends afrer rhe dara has been
displayed in the Texr window, though an easy enhancement al­
lows the user to selecr other records to view before exiting the
program.

The first instruction of addRecord fills the fields of the currentT ime
wirh data gorten from rhe Macintosh clock. Only the month and
day fields will be used in addRecord. The ocher date and time
fields will be ignored.

The remaining instructions assign values ro four elements of the
array baby. Notice thar rhe first expression of each assignment
is: baby{subscript}.

The subscript distinguishes which element of rhe array is being
assigned a value. In this example, the element of rhe array is
composed of a record. Thus, element and record refer to the
same dara.

All assignments with the subscript of (0} belong to the same array
element and record. The assignments with the subscript of (1}
belong to another array element/record, and so on. Though the
array has been declared ro allow for 11 elements (0 .. crib}, pro­
cedure addRecord only fills in four of these elements.

The subscripts are given nonconsecutive numbers to illusrrate a
random-access filing system. You will find our more about chis
in the next section.

The name, weight, and time field names in addRecord distinguish
which field of the record is to be assigned a value. You saw the
period notation used in rhe last two chapters. In the case of the
dateTimeRec fields, the period notation must be used twice: once
to separate the record name from the time field, and again to
separate the time field from the month and day fields.

The right side of the date assignments are values returned by the
getTime procedure and its currentTime parameter. These will be
integer values, as all of the predefined record dateT imeRec are of
type integer.

MACINTOSH PASCAL ILLUSTRATED

28.5 Procedure
lnsertRecord;

II

The file system used in insertRecord differs from the type text files
you used in earlier chapters in one major respect. The file or­
ganizer babyFile is able to directly access a component by first
seeking a component position in the file, then inserting or re­
trieving the data through the babyFileA buffer variable.

The file organizer's buffer variable is the crucial connection be­
tween your program and the data stored on disk. The buffer
variable has the same name as the file organizer, with a caret sign
C) appended to the last character. The nature of files is such that
only one component of a file can be accessed at a time, and this
is accomplished by positioning the file organizer along the file,
then assigning data to and from the file organizer's buffer variable.

The Toolbox procedure newFileName creates a disk datafile and
produces a dialog box prompting the program user (with the
instruct string parameter) to make up a datafile name. The datafile
is then opened with the instruction: open(babyFile, dataName);.

The open instruction is similar to the rewrite and reset instructions
you used in earlier chapters. open makes the connection between
the file organizer variable baby File and the disk datafile dataName.

open opens both new and existing files for random access to the
file's components. rewrite opens new files for sequential access,
while reset opens existing files for sequential access. All three
procedures serve the purpose of connecting the file organizer
variable name (first parameter) to the datafile name (second pa­
rameter). See Part 3 for more specific information and additional
examples.

The first command in the/or i := 0 to cribs do loop is: seek(babyFile,
i);.

This command positions the file organizer babyFile to the i1h

position (component place) of the disk file. The first repetition
of the for loop will seek the O'h position (first component place)
of the file.

The conditional actions following if baby{i}.name <>empty then
assign a value to the file organizer's buffer variable, babyFileA. If
baby{t}.name has a value that is not equal(<>) to the constant
empty (")-that is, a name has been assigned to record field name

FILES FOR THE CHILD IN YOU 197

28.6 Procedure
retrieve Data~

198

for the i'h element of the array baby-then the entire record
value of baby{i} is assigned to the buffer variable babyFileA.

The else action of the if..then condition (performed when no
name is in the record's name field) assigns initializing or empty
values to the buffer variable. The initializing values, shown in
the first four assignments of procedure addRecord in the O'h
element of the baby array, are necessary to fill the unused spaces
in a file so that the random-access process can keep count of
component positions.

The last instruction of the for .. to .. do loop is: put(babyFile).

This inserts the contents of the buffer variable into the file at
the current component position. The parameter of Pascal's put
procedure is the file organizer (babyFile), not the organizer's buffer
variable (babyFileA). Since Pascal's files can only access one com­
ponent at a time, the file commands put and get operate implicitly
on the buffer variable.

The for .. to .. do loop performs the seek, the conditional
babyFileA assignment, and the put instructions for all values of i
from 0 to cribs (a constant equated to 10). In this way, procedure
insertRecord creates a disk file with eleven components, three
of which are assigned informative record data.

The second instruction of retrieveData calls the Toolbox proce­
dure oldFileName. This produces a dialog box on the screen
prompting the user (with the instruct string parameter) to select
a datafile name. In program BabiesAreUs, the user should select
the same datafile name that the user assigned ip. the newFileName
call of procedure insertRecord.

The open(babyFile, dataName) command is identical to that used
in procedure insertRecord. Remember, open, unlike rewrite and
reset, is used to open both new and existing datafiles, aQ.d the
files' components are randomly accessed. A connection is made
between the file organizer babyName and the disk datafile dataName.

The loop for i : = 1 to cribs do creates a graphic display in the
Drawing window by:

1. using seek to advance the file organizer

2. testing whether the name field of the buffer variable
(babyFileA.name) is an empty string

MACINTOSH PASCAL ILLUSTRATED

3. if the name field is not(<>) empty, then setting and drawing
a rounded rectangle with the field's string value written inside.

Each rectangle created by the setRect command is an array ele­
ment given the name doBox{ i}. The integer i serves both as the
seek command's file position parameter and the rectangle's array
subscript. In this way, the babyRec data and its graphic display
are linked.

The integer variable line is used to determine the top and bottom
sides of' each rectangle. After each setRect command, line is in­
cremented so that the new rectangle is positioned below the prior
rectangle.

The moveT o and write Draw commands in the for loop insert the
babyRec field name within the framed rectangles. Notice that the
moveTo parameters use the variableName.fieldName notation to
access the left and bottom fields of the type rect record of four
boundary integers.

The repeat .. until loop reads the mouse action of the user. A
second repeat .. until loop inside the first determines (by the
value of i upon the loop's exit) within which rectangle in the array
of doBox rectangles the mouse button has been pressed. The
ptlnRect function returns a true value only when the mouse button
has been pressed with the mouse pointing inside a drawn rectangle.

When inBox has been found to have a true value, the outer
repeat .. until loop is exited. The subscript of doBox{i} is used by
the instruction seek(babyFile, t); to position the file organizer to

the selected component position.

At this point, the organizer's buffer variable, babyFileA, is assigned
to the type babyRec variable tot. Now the data contained in the
selected file component can be displayed in the Text window.

The first write instruction displays the component file position.
The MacPascal function filepos returns an integer noting the i'h
position of the file organizer. The buffer variable contains the
data of the component indicated by filepos.

The other three writeln statements of procedure retrieveRecord
are bracketed following a with .. do command. The use of with .. do
provides a shortcut so that the variable tot does not need to be

FILES FOR THE CHILD IN YOU 199

200

affixed before every field name of the tot record. The colon
modifiers are added to the month and day fields so that the Text
window does not display extra character spaces before each integer.

The purpose of assigning the buffer variable babyFile' to the
variable tot is that the with .. do structure of MacPascal does not
allow the buffer variable to be used as the record variable.

The last instruction of procedure retrieveRecord, close(babyFile) ,
closes the connection between the file organizer and the datafile.
Closing a datafile is good practice even when the program 1s
about to end, and all files will be automatically closed.

Part 2 ends here.

Part 3's programs reveal more from Mr. Moss, bur his textual
heresy has found a comfortable place to exit. Enjoy your pro­
gramming and your time not programming. See if 'you can make
your Macintosh do something nice for someone else.

Create a program to make a child smile. Then,
when you really have your act together, create a
child to smile at your program.

MACINTOSH PASCAL ILLUSTRATED

p A R T

Referencing MacPascal:
The Whiz Kid's

Encyclopedic Guide

Part 3 contains a dictionary of Mac­
intosh Pascal including all of the
Quickdraw and Toolbox routines
used in the Fear and Loathing
Guide. Most entries are illustrated
by program examples.

The dictionary is presented as a
single alphabetic listing. Since
MacPascal takes its vocabulary
from many sources, each entry is
categorized.

The MacPascal vocabulary con­
sists of:

• Pascal reserved words, proce­
dures, functions, types, and
constants

• UCSD Pascal procedure, func­
tion, type, and constant ex­
tensions

• MacPascal procedure and func-. .
t10n extensions

• Quickdraw procedures and
functions

• Toolbox procedures and
functions

Also included at the front of Part
3 are five short references:

• a guide for programming in new
frontiers

• an outline of Pascal's structures

• a table of the Macintosh char­
acter set

• a table of Imagewriter printer
codes

• a listing by category of the
MacPascal vocabulary and
symbols

a New Frontiers, or Are We
Having Fun Yet?

Don't you hate it when you work your butt off to learn something
new, only to have some clod say, "You've only scratched the
surface?"

The Fear and Loathing Guide deplores such condescension. An
authority no less than Rollo goads you on for a second helping
while recognizing your accomplishments:

You have taken a chunk out of the postman's
leg.

Mr. Moss recommends this path along the Macintosh frontier:

• Write programs. The more you learn about programming, the
more astounded you become at how little nearly everyone else
knows. Computer programmers write programs; computer
talkers trade faulty information on subjects they do not
understand.

• Prepare yourself for pointers. Variables of a pointer type are
used for dynamic memory allocation. Pointers give data a
fluidity that makes programs more efficient. Every other in­
troductory Pascal book waits till the last chapter to explain
pointers and fails in the attempt. The best way to understand

NEW FRONTIERS, OR ARE WE HAVING FUN YET? 205

206

pointers is to first understand how a computer works. See the
last item in this list for the best way to learn about how a
computer works.

• Explore Quickdraw and the Toolbox. The programs in this
book take up more computer space than the Macintosh ROM,
but don't be misled. The Quickdraw and Toolbox routines
built in the ROM can keep you fascinated for years, and rep­
resent an elegance of programming technique you will find
nowhere else. The MacPascal Reference Manual will clue you
to new vistas of Quickdraw and the Toolbox. Down the road,
consider perusing the bible of the Macintosh ROM, Inside
Macintosh. Written at Apple, it is long, dry, difficult:, and
excellent.

• Get your paws on Macintosh 68000 Assembly Illustrated: The
Fear and Loathing Guide. People tend to be scared of assembly
language because programs use fewer English words, but the
advantages are considerable. The most important is: assembly
language offers beauty and grace; it is the language closest to
the heart of the computer, showing you how a computer works
and allowing you to touch the flesh of the beast.

MACINTOSH PASCAL ILLUSTRATED

Program
structure

Statement
structures

b Pascal Structures

program title;
uses list;
label list;
const list;
type list;
var list;
procedure or function title;

begin
statements;

end;
begin

statements; {main body}
end.

case expression of
label constant:

statements;
label constant:

statements;
otherwise {optional}

statements;
end;

for variable : = expression to expression do {downto
can replace to}

statements;

PASCAL STRUCTURES 207

Definition
structures

208

if boolean expression then
statements;

else {optional}
statements;

repeat
statements;

until boolean expression;

while boolean expression do
statements;

with record name
do fieldName statements;

uses
SANE;
Quickdraw2;

const
age = 31;
experience = 'silly willy university';

type
friend = string[50};
friendList = array[l..8} of strl;
play = record

name : friend
interests : string;
phone : integer

end;
purpleBook = array[l..24} of play;
purpleDisk = file of play;
neatFriends = (michael, andy, susan, martha,

karen); {enumerated list}
womenFriends = susan .. karen; {subrange}
fairGame = 18 . .48; {subrange}
purpleFriends = set of neatFriends;
purplePeople = array[subrange,'a' .. 'z'} of friend;

MACINTOSH PASCAL ILLUSTRATED

Declaration
structures

var
musician: string[40};
weight : integer;
height : real;
skier : friend;
playVar : play;
book Var : purpleBook;
diskVar : purpleDisk
programmer : neatFriends;
partner : womenFriends;

procedure doSomething; {parameters optional}
statements;

function returnSomething; {parameters optional}
statements;

PASCAL STRUCTURES 209

ord value in
decimal-ASCII
name

c Macintosh Character Set

m Drawing

O nul 16 1jJe 32 sp 48 0 64 @ 80 p 96 ' 112 p
1 soh 17 de 1 33, ! 49 1 65 A 81 C! 97 a 113 Q

2 stx 18 1jc2 34 " 50 2 66 B 82 R 98 b 114 r
3 etx 19 dc3 35 ,, 51 3 67 c 83 s 99 c 115 s
4 eot 20 dc4 36 $ 52 4 68 D 84 T 100 d 116 t
5 enq 21 nak 37 % 53 5 69 E 85 LI 101 e 117 u
6 ack 22 syn 38 & 54 6 70 F 86 v 102 f 118 I/

7 bel 23 etb 39 ' 55 7 71 G 87 w 103 g 119 w
8 bs 24 can 40 (56 8 72 H 88 x 104 h 120 x
9 ht 25 em 41) 57 9 73 I 89 v 105 i 121 y
1 (I 1f 26 sub 42 * 58 : 74 J 90 z 106 j 122 z
11 vt 27 esc 43 + 59 ; 75 K 91 [107 k 123 {
12 ff 28 fs 44' 60 < 76 L 92 \ 108 1 124 I
13 er 29 gs 45 - 61 = 77 M 93 I 109 m 125)
14 so 30 rs 46 . 62 > 76 N 94 . 110 n 126 -
15 si 31 us 47 I 63 ? 79 0 95 - 111 0 127 del

MACINTOSH CHARACTER SET

Qi

211

:o Drawing

128 A 144 e 160 I 176 00 192 l 208 - 224 0 240 0
129 $. 145 e 161 0 177 ± 193 i 209 - 225 0 241 0
130 ~ 146 i 162 ¢ 178 £ 194 ~ 210

.. ,
226 0 242 0

13 1 E 147 1 163 £ 179 ~ 195 / 2 11 " 227 0 243 0
132 fl 145 i 164 § 180 ¥ 196 j 212 228 0 244 0
133 b 149 ·1 165 • 161 µ 197 " 2 13 229 0 245 0
134 0 150 i'i 166 qi 152 0 195 /'; 214 230 D 246 D
135 a 15 1 6 167 n 183 2 199 « 215 0 23 1 0 247 0
136 a 152 6 168 ® 184 n 200 » 21 6 y 232 0 248 0
137 il 153 6 169 © 185 n 20 1 217 233 D 249 D
138 a 154 0 170 TM 186 f 202 2 18 0 234 0 250 0
139 a 155 (i 171 167 9 203 A 2 19 0 "7C: L.._>.._I 0 251 0
140

0 156 u 172 188 Q 204 A 220 D 236 D 252 D a
141 c 157 ll 173 .. 189 \/ 205 0 22 1 0 237 0 253 0
142 e 158 a 174 fE 190 (f! 206 CE 222 D 238 D 254 D
143 e 159 u 175 jJ 19 1 ff 207 CB 223 0 239 0 255 0

l2:J

212 MACI NTO SH PASC AL ILL US TRATE D

Name

ESCAPE p
ESCAPE P
ESCAPE n
ESCAPE N
ESCAPEE
ESCAPE e

ESCAPE q
ESCAPE Q

ESCAPE!
ESCAPE"
ESCAPE X
ESCAPE Y
CONTROL-N
CONTROL-0
ESCAPE A

d Printer Control Codes

A complete list of Apple Imagewriter control codes can be found
in the lmagewriter User's Manual.

(d) denotes the default setting.

Decimal Type/Spacing

27 112 Pica proportional
27 80 Elite proportional
27 110 Extended {9 characters per inch}
27 78 Pica {10 characters per inch}
27 69 Elite {12 characters per inch} (d)
27 101 Semicondensed {13.4 characters

per inch}
27 113 Condensed {15 characters per inch}
27 81 Ultracondensed {17 characters per

inch}

27 33 Starts boldface printing
27 34 Ends boldface printing (d)
27 88 Starts underlining text

27 89 Ends underlining text (d)
14 Starts headline mode
15 Ends headline mode (d)
27 65 6 lines per vertical inch (d)

PRINTER CONTROL CODES 213

ESCAPE B
CONTROL- n

CONTROL-1
ESCAPE L nnn
ESCAPE c

214

27 66
31 n

12
27 76 nnn
27 99

8 lines per vertical inch
Scrolls n lines of blank paper
{n = 1,2,3,4,5,6, 7,8,9,:,;,<, = ,>,?}
Scrolls paper to next top of form
Sets left margin at position nnn
Resets to default settings (d)
{Software Reset}

MACINTOSH PASCAL ILLUSTRATED

• Pascal reserved
words

• Pascal files

• Pascal constants

• Pascal types

e Vocabulary and Symbols

and end not string
array file of of then
begin for .. to .. do or to
case .. of function otherwise type
const goto packed until
div if.. then procedure uses
do m program var
downto label record while .. do
else mod repeat .. until with

nil set of

input, output

false, maxint, maxlongint, true

boolean, char, computational, double, extended, integer, longint,
real, text

VOCABULARY AND SYMBOLS 215

• Pascal
procedures

• Pascal functions

• Macintosh units

• Quickdraw
procedures

• Quickdraw
functions

•Toolbox
procedures

•Toolbox
functions

• Extensions

216

close, get, insert, open, pack, page, put, read, readln, reset, re­
write, seek, unpack, write, writeln

abs, arctan, chr, concat, copy, cos, delete, eof, eoln, exp, filepos,
include, length, ln, odd, omit, ord, ord4, pos, pred, round, sin,
sqr, sqrt, stringOf, succ, trunc

Quickdrawl, Quickdraw2, SANE

addPt, drawLine, drawString, eraseArc, eraseOval, eraseRect,
eraseRoundRect, fillArc, fillOval, fillRect, fillRoundRect, frameArc,
frameOval, frameRect, frameRoundRect, getPen, globalToLocal,
insetRect, invertArc, invertCircle, invertOval, invertRect,
invertRoundRect, line, lineTo, localToGlobal, move, moveTo,
offsetRect, paintArc, paintCircle, paintOval, paintRect, paint­
RoundRect, penMode, penNormal, penPat, penSize, pt2Rect,
setPt, setRect, subPt, textFace, textFont, textMode, textSize

equalPt, ptlnRect, random

getMouse, getTime, hideAll, note, saveDrawing, setDrawing­
Rect, setTextRect, setTime, showDrawing, showText, sysBeep,
write Draw

button, newFileName, oldFileName, tickCount

The UCSD extensions to Standard Pascal included above are:

concat, copy, delete, insert, length, longint, maxlongint, pos, seek,
string, uses

MACINTOSH PASCAL ILLUSTRATED

The Macintosh Pascal extensions to Standard Pascal included
above are:

computational, double, extended, filepos, include, omit, ord4,
otherwise, Quickdrawl, Quickdraw2, SANE, stringOf, all Quick­
draw and Toolbox functions and procedures.

The Macintosh Pascal extensions to Quickdraw (in ROM) in­
cluded above are:

drawline, paintCircle, invertCircle.

Symbols

+

*
div
I

mod

<>
<
>

<=
>=
1n

not
or

and

@
$

Purpose

plus
minus
multiply
integer divide
real divide
modulus

equal to
not equal to
less than
greater than
less than or equal to; subset of
greater than or equal to; superset of
set membership

negation
disjunction
conjunction

create pointer
hex number specifier

assignment
list delimiter
statement delimiter
variable name/type delimiter
character and string literal delimiter
decimal point, program endpoint, and

record notation
subrange notation

VOCABULARY AND SYMBOLS 217

218

Symbols

[
}
{
}
(.
.)
(*
*)

Purpose

buffer variable notation
parameter list or nested expression

startpoint
parameter list or nested expression

endpoint
subscript list or set expression startpoint
subscript list or set expression endpoint
comment startpoint
comment endpoint
alternative for [
alternative for }
alternative for {
alternative for }

MACINTOSH PASCAL ILLUSTRATED

abs

• Pascal function

f The Whiz Kid's Dictionary

abs(number) evaluates a single numeric parameter, and returns
a type longint value if the parameter is of an integer-type, or a
type extended value if the parameter is a real-type.

The absolute value function has the effect of removing the minus
sign from a negative value parameter. Zero or positive parameter
values are unaffected. The returned value is always zero or greater.

Inserting a minus sign before the abs function forces a returned
value of zero or less.

program AbsDemo;
var

temp : integer;
begin

wrlteln(abs(-45));
writeln(abs(26));
wrlteln(abs(O));
writeln(abs(-4.65));
temp:= -14;
writeln(abs(temp));
wrlteln(-abs(62));
write In(-abs(- 73))

end.

THE WHIZ KID'S DICTIONARY 219

add Pt

• Quickdraw
procedure

220

:D Te Ht

45 fJ_
26
0

4.7e+O
14

-62
-73

i

addPt(sourcePoint, destinationPoint) changes the coordinates of
destinationPoint by adding the value of the coordinates of
sourcePoint. The procedure returns with a new value of
destinationPoint.

Both parameters of addPt are of the Quickdraw type point. In­
formation on type point can be found under setPt.

program AddPtDemo;
var

x, y : integer;
pt 1, pt2, pt3 : point;
r : rect;

begin
repeat
untl I button;
getMouse(x, y);
setPt(pt 1, x, y);
repeat

getMouse(x, y);

(pt I is a record variable of two integers such that)
(pt I .h := x and pt I .v := yl

setPt(pt2, x, y); (pt2 is a record variable of integers pt2.h and pt2.v)
setRect(r, pt 1.h, pt 1.v, pt2.h, pt2.v);
frameRect(r);
eraseRect(r)

unti I not button;
frameRect(r);
writeln('top-left point= ·,pt I .h, pt I .v);
writeln('bottom-right point= ·, pt2.h, pt2.v);
pt3 := pt2;
addPt(pt 1, pt2);
writeln('sum of points=
subPt(pt I, pt2);
writeln('sum less pt I =

·, pt2.h, pt2.v);

·, pt2.h, pt2.v);

MACINTOSH PASCAL ILLUSTRATED

and

• Pascal reserved
word

If equa1Pt(pt2, pt3) then
begin

writeln('addPt performed pt2 := pt2 + pt I ');
writeln('subPt performed pt2 := pt2 - pt 1');

writeln('equalPt returns true because new pt2 = pt3 (original pt2)');
end

end.

~o
top-left point =
bott om-right point
sum of points =

Te Ht
31

162
196

36
83

119
sum less ptl = 162 83
addPt performed pt2 := pt2 + ptl
subPt performed pt2 := pt2 - ptl
equalPt returns true because nem pt2 = pt3 (original pt2)

f:[Drawing

I I
1£

and unites two type boolean expressions into a single boolean
expression. The new expression is true only if both original
expressions are true. Otherwise, the new expression is false.

Expressions using and require any equalities and inequalities (=,
< , > , = < , = >) to be parenthesized.

and has greater precedence than the boolean operator or, and
less than not.

THE WHIZ KID'S DICTIONARY 221

arctan

• Pascal function

array

• Pascal reserved
word

222

program AndDemo;
var

baldMenAreMoreVlrile, womenFlockToBaldMen : boolean;
begin

baldMenAreMoreVlri le := (1 + 1 = 2) and (2 + 2 = 4);
(true and true = true)

womenFlockToBaldMen := (1 + 1 = 3) and (2 + 2 = 5);
(false and false= false)

If (baldMenAreMoreVirile) and (womenFlockToBaldMen) then
(true and false= false)

writeln('Mr. Moss is a lucky man.')
else

wrlteln('Mr. Moss Is lucky he has a faithful dog.')
end.

Te Ht - -

Mr . Moss Is lucky he has a faithful dog.

arctan(expression) evaluates a single real or integer tangent value
of an angle, and returns the value of the angle expressed in
radians.

An array is a series of variables, called elements, identified by
a common name, and whose elements are distinguished by a
numeric subscript. The structure of an array resembles a series
of mailboxes on a Post Office wall. Just as each mailbox is of the
same type, so is each element of the array. Likewise, just as the
contents of each mailbox belong to different people, the contents
of each element are independent and individually accessible.

The array type can be one dimensional like a row of mailboxes,
two dimensional like a wall of mailboxes, three dimensional like
a room full of mailboxes, or have more than three dimensions.
The additional dimensions are created by declaring its boundaries
in brackets.

The two dots{ .. } separating the array bounds mean "through and
including." A comma separates the bounds for arrays of more
than one dimension.

MACINTOSH PASCAL ILLUSTRATED

The array boundaries can be of type integer, char, or boolean. Road
maps use types char and integer, like D-2 and K-8, in the same
way that arrays use different types of boundaries.

program ArrayDemo 1 ;
var

ark : array(1..4) or string;
creatures : Integer;

begin
ark[1 I := ·aardvark';
ark[2] :='bear';
ark(3] :='camel';
arkf 4] := 'davld bowie';
for creatures := 1 to 4 do
wrl te ln(ark[creatures])

end. ·

program ArrayDemo2;
var

ark : array[1 .. 3, 1 .. 2] or strlng[20];
creatures : Integer;

begin
ark[I, I I := 'girl all I gator';
ark[l, 2]:= 'boy alligator';
ark[2, 1] :='girl buffalo';
ark[2, 2) :='boy buffalo';
ark[3, 1] := 'davld bowie';
ark[3, 2] :='boy george';
for creatures:= 1 to 3 do

wrtteln(ark[creatures, 1]);
for creatures:= 1 to 3 do
write ln(ark[creatures, 2])

end.

THE WHIZ KID'S DICTIONARY

~o
aardvark
bear
camel
david bowie

=o

Te Ht

Te Ht

girl al I igalor
girl buffalo
david bowie
boy a I I i gal or
boy bu f fa Io
boy george

223

begin

• Pascal reserved
word

224

begin, in conjunction with the reserved word end, serves as a
bracket to hold together sections of a Pascal program. Proce­
dures, functions, and the main body are individual blocks whose
statements require a begin and end.

Also, begin and end hold together multiple statements so that
preceding control structures such as for .. to .. do, if .. then .. else,
and while .. do will act upon two or more statements, instead of
performing only the single statement following the control
structure.

Every begin requires its own end.

Every end belongs to the immediately preceding unended begin.

begin and end are not statements, merely punctuation to hold
together associated or block statements. Nested blocks can begin
and begin and begin inside one another, but always the inner­
most block must end before any outer block.

Macintosh Pascal illustrates the nesting process through its for­
matting. Each end is indented to match the nearest prior unended
begin.

program BeginDemo;
var

oneRoll, countRolls: integer;
twoSlxes: boolean;

begin
countRolls := O;
twoSlxes := false;
repeat

oneRo 11 := random mod 6 + 1;
countRolls := countRolls + 1;
Ir oneRo 11 = 6 then
begin

oneRoll :=random mod 6 + 1;
countRolls := countRolls + I;
If oneRoll = 6 then
begin

twoSlxes := true;
wrlteln('Consecut1ve sixes after', countRolls, · tosses of one die.');

end (end for second If statement)
end (end for first If statement)

until twoSlxes
end. (end for program BeglnDemo)

MACINTOSH PASCAL ILLUSTRATED

boolean

• Pascal type

TeHt
Consecutive sixes after !ill
21 tosses of one die.

A boolean type of constant, variable, or function has one of two
possible values: true or false. Whenever logic suggests a yes/no,
on/off, true/false, or similar choice, use of the boolean type should
be considered. Descriptively named booleans add clarity, and
often efficiency, to program code.

Equalities and inequalities expressed by mathematical operators
(=,<,>,<=,>=,<>)are boolean in nature because expres­
sions using these symbols are either true or false.

Three reserved words, and, or, and not, are also boolean op­
erators. They are used to construct boolean valued expressions.
Expressions using and, or, and not require equalities and ine­
qualities to be parenthesized.

program BooleanOemo;
var
goodAccountant: boolean;

begin
write('When asked "How much is two plus two?"');
wrlteln(' the sharp accountant says:');
writeln;
goodAccountant := (2 + 2 = 4);
If goodAccountant then
writeln('How much do you want It to be?')

else
wrlteln('Four.')

end.

TeHt
When asked "How much is two plus two?" the sharp Q
accountant says:

How much do you want it to be?

THE WHIZ KID'S DICTIONARY 225

button

• Toolbox function

case .. of

• Pascal reserved
word

226

button evaluates the status of the Macintosh's mouse button,
and returns a boolean value of true if the mouse button is cur­
rently being held down. A value of false indicates the mouse
button is up at the moment the button function is executed.

The button function has no parameters.

program ButtonDemo;
var
xi, yl, x2, y2: Integer;

begin
repeat
until button;
getMouse(x I, y I);
repeat

getMouse(x2, y2);
rrameRect(y I, x 1, y2, x2);
eraseRect(y I, x I, y2, x2)

unti I not button;
frameRect(y I, x I, y2, x2);

end.

~[Drowi'!.!I_

I I

~

Use of the case .. of statement closely resembles use of the if .. then
statement.

The if .. then statement reads a true/false expression, then selects
between two choices of action. The case .. of statement reads any
ordered expression, then selects between two or more choices
of action from a constant list of options.

MACINTOSH PASCAL ILLUSTRATED

The case statement uses the form:

case expression of
constant I:

statement;
constant2:

statement;
otherwise

statement
end;

The optional use of the reserved word otherwise after the last
label-constant will perform the indicated action for all values of
the expression not otherwise listed. If the constant list has no
value matching the value of the case expression, and no other­
wise action is included, an error will halt the program.

The case structure must be concluded with end.

The expression between case and of acts as the constant selector
and must be of the same type as the list of constants. The expres­
sion and con~tants can be of type integer, char, boolean or a sub­
range of a self-defined type.

More than one constant can be used to perform the same action
by separating each constant in the constant list with a comma.

The action statements-equivilent to the statements following
then in an if.. then statement-can consist of one or, using begin
and end, more than one statement. The choice of no action can
be implemented by inserting the semicolon without any statement.

program CaseDemo; (Three Stooges Horoscope)
var

flrstletter: char;
begin

wrlteln("Who is your favorite stooge: Moe, Larry or Curly?');
write In;
readln(flrstletter);
write In;

THE WHIZ KID'S DICTIONARY 227

char

• Pascal type

228

case firstletter of
'M', 'm':

begin
write('Do not try to impress your date by asking her to');
write In(' pick two fingers then poking her in the eyes.');

end; [end 'M' option}
'L', 'I':

writeln('Beware of people who rip out chunks of your hair.');
·c, ·c·:

begin
write('Curly was more than a comedic genius.');
write(' He was a saint.');
writeln(' Allow the child in you to flourish.')

end; [end 'C' option}
'S', 's':

writeln('Shemp fans: greatness sometimes stands shadowed.');
otherwise

writeln('Hey stooge, you didn't type Moe, Larry, Curly or even Shemp.');
end [end case statement}

end. [end program CaseDemo}

=o Te Ht
Who is your favorite stooge: Moe, Larry or Curly? ~

Moe

Do not try to impress your date by asking her to
pick two fingers then poking her in the eyes.

char is a predefined type representing a single character. A char
type belongs to an ordered set of characters including, though
not limited to, the letters A to Z in upper and lower case, the
numbers 0 to 9 and all keyboard punctuation marks.

In order to keep better track of characters, Pascal assigns each
character an integer number. Thus, the char type becomes an
ordered set of characters or ordinal type.

A function exists to yield the ordinal number of each character.
The function ord(ch) returns an integer value assigned to the
character ch.

A complementary function exists to yield the character associated
with an ordinal number. The function chr(int) returns the char­
acter assigned to the integer int.

MACINTOSH PASCAL ILLUSTRATED

chr

• Pascal function

Macintosh Pascal supports both upper- and lower-case letters.
Each case of a letter has its own ordinal number.

The integer characters 0 through 9 are also represented by ordinal
numbers. The ordinal numbers of the integers differ in value
from the integer itself. The ordinal value of the character 0 is
48, the ordinal value of 1 is 49, and so on through 5 7, the ordinal
value of 9.

See chr for an example of the char type.

The function chr(int) returns the character whose ordinal number
is the integer int.

See char for more information on ordinal numbers.

program ChrDemo;
var

i : integer;
begin
for i := 1 to 255 do
begin

write("");
write(chr(i))

end
end.

:o Te Ht

D D D D D D D D D D D D D D D D D D ! " • $ % & ' (
) * + , - . I 0 1 2 3 1 5 6 7 6 9 : ; < = > ? @ A 5 C
o E F G H 1 J K L n N o P o R s T u u w x v z [\ J A

_ ' a b c d e f g h i j k I m n o p q r s t u v w x y
z I I l - A ~ C E R 6 0 d a n 6 5 B ~ 6 A & ~ i 1 i 1
n o o o o o u u o o ' 0

¢ £ § • ' ~ o o ~ · ~ 1 0 N

± ' 2 ' µ ~ I i J I g Q Q ! 0 l i , J f • ~ < > . A
~ 5 l e - - u " ' ' ~ o g f D D D D D D D D D D D D D
D

THE WHIZ KID'S DICTIONARY

IQ

229

close

• Pascal
procedure

computational

• Macintosh type

230

The statement close(fileName) terminates the connection be­
tween the file organizer fileName and the associated external de­
vice. No further input or output to the file can occur until the
file is opened again.

The close procedure serves to protect a file's data from accidental
intrusion. Even though MacPascal closes some files automatically,
the connection between the file organizer and its external device
should be terminated when the file is no longer needed.

If a program ends with any file still open, MacPascal will auto­
matically close it. Likewise, if a procedure or function is exited
with a local file organizer still open, the file is automatically
closed.

See rewrite, reset, or open for more information and examples
of the close procedure.

computational is one of four predefined real-types for repre­
senting numbers in floating-point notation. The others are real,
double, and extended. The name real is used both as a Macintosh
type and as a category of the four floating-point types.

Unlike integer-types, real-type numbers can express values with
a fractional part, and allow for numbers to be displayed using
decimal points.

The purpose of having more than one real-type as options is to
provide the range and precision necessary for a particular pro­
gram application without being wasteful of computer memory
space. The higher the range and precision, the more memory
space must be allocated.

The type computational is a special real-type in that only integral
values may be represented. This provides for precise, fixed-point
decimal notation as is required for financial applications. A dec­
imal point can be implied to the left of the second to last digit
in order to represent dollars and cents.

The procedures write and writeln allow formatting within their
parameter lists to output a computational value with the inser­
tion of a decimal point. The format is:

MACINTOSH PASCAL ILLUSTRATED

co neat

• UCSD Pascal
function

writeln(realValue : fieldWidthlnteger :
decimalPlaceslnteger);

The range of type computational is -9.2 x 10 18 to 9.2 x 10 18 .

For arithmetic operations, all real-type values are converted to
type extended, and the results are also type extended. When a
computational-type value is required, the extended type can be
used provided that the value, when rounded to an integral value,
falls within the range allowed by computational.

See real for more information and an example.

concat(string 1, string2) concatenates (links) its string param­
eters, and returns a single string composed in the order of the
parameter strings.

More than two literals or variables of type string can be joined,
though the result string cannot have more than 2 SS characters.
A literal is a string-type set of characters enclosed by single
quotation marks.

program Concatoemo;
var

s 1, s2, s3 : strlng[60);
begin

s 1 :='is a missed opportunity.';
s2 :=The saddest thing in';
s3 := concat(s2, · romance·, s 1);
writeln(s3)

end.

-o TeHt
The saddest thing in romance is a It'. µ:!:
missed opportunity.

THE WHIZ KID'S DICTIONARY 231

const

• Pascal reserved
word

copy

• UCSD Pascal
function

232

canst (shore for "constant") is the heading for a definition section
within a program. The definitions in a canst section identify data
items whose values cannot be changed under program control.

Constants give identifying names to individual data.

Constants can be of any simple type: integer-type, real-type, char,
string, or boolean. The type of a constant does not need to be
declared because the constant's value indicates its type.

Constants of an enumerated type cannot be defined at the same
level as the type definition. Structured constants such as arrays
and records are not allowed.

The canst section belongs before type and var sections. canst
definitions can be included globally for use anywhere in a pro­
gram, or locally within a procedure or function block.

program ConstDemo;
const

pi=3.1416;
pie= 'strawberry rhubarb';
pieFaced = true;

begin
If pleFaced then
wrtteln('Mr. Moss prefers·, pie, · to', pi)

end.

Te Kt
Mr . Moss prefers strawberry rhubarb ~
to 3. le+O

copy(string,positionlnteger,lengthlnteger) evaluates a string and
two integers parameters, and returns a string that copies a subset
of characters from the string parameter. The subset begins at the
positionlnteger'h character and continues for lengthlnteger char­
acters.

MACINTOSH PASCAL ILLUSTRATED

cos

• Pascal function

delete

• UCSD Pascal
procedure

program CopyDemo;
var

s 1, s2, s3, s4, sS, s6, s7, s8: string[SO);
begin
sl :='Mildred, Peter, Zachary, Leslie, Steven, Neil';
s2 :='Annette, Jay, Arlene, Harvey';
s3 :='Leslie, Matthew, Benjamin';
s4:= 'Rose, Louie, Dora, Charlie';
sS := copy(s 1, 17, 7);
s6 := copy(s2, pos('Harvey', s2), 6);
s7 := copy(s3, 1, length('Leslie'));
s8 := copy(s4, 1, 4);
writeln(s5);
writeln(s6);
writeln(s7);
writeln('Gramma ', s8)

end.

Zachary
Harvey
Les Ii e
Gramma Rose

Tettt

cos(expression) evaluates a single real or integer angle parameter
expressed in radians, and returns an extended real value equal
to the angle's trigonometric cosine.

delete(string,positionlnteger,lengthlnteger) changes the string
value of the first parameter by removing characters. The char­
acters to be deleted begin at the positionlnteger'h character and
continue for lengthlnteger characters.

program DeleteDemo;
var

s 1, s2 : string[75);
begin

s l := 'By 23, you're too old to make excuses for being shy.';
writeln(s l);

THE WHIZ KID'S DICTIONARY 233

div

• Pascal reserved
word

234

write Jn;
s2 :=·make excuses for';
delete(s 1, posC'make', s 1 l, length(s2ll;
delete(s 1, pos('ing·, s 1 l, 3);
write ln(s 1 l

end.

"'0 Te Ht
By 23, you ' re too old to make excuses for j1!.
being shy .

By 23, you're too old to be shy.

div works as a mathematical symbol in the same family as +,
- , *, /, and mod. div performs the operation of division with
an integer result.

The value of p div q is the quotient of p/q rounded to the type
longint value nearest zero. Both p and q must be an integer-type.
If q = 0, an error will result.

program DivDemo;
begin

writeln(9 div 5);
write In(1 O div 5);
write In(11 div 5);
writeln(-7 div 2);
writeln(7 div (-2));
writeln(-7 div (-2))

end.

~0 Te Ht

2
2

-3
·3
3

MACINTOSH PASCAL ILLUSTRATED

do

• Pascal reserved
word

double

• Macintosh type

downto

• Pascal reserved
word

do precedes the action statement(s) in the for .. to .. do loop. See
for for more information and an example.

double is one of four predefined real-types for representing
numbers in floating-point notation. The others are real, extended,
and computational. The name real is used both as a Macintosh
type and as a category of the four floating-point types.

Unlike integer-types, real-type numbers can express values with
a fractional part, and allow for numbers to be displayed using
decimal points.

The purpose of having more than one real-type as options is to

provide the range and precision necessary for a particular appli­
cation without being wasteful of computer memory space. The
higher the range and precision, the more memory space must be
allocated.

The range of type double is 5.0 x 10- 324 to 1. 7 x 10308 . The
precision extends 15 to 16 decimal digits. Type real offers less
range and precision than double, while type extended offers more.

For arithmetic operations, all real-type values are converted to
type extended, and the results are also type extended. When a real
or double type value is required, the extended type can be used
provided that the value falls within the ranges allowed by real
and double respectively.

See real for more information and an example.

downto is an alternative to the reserved word to in a for .. to .. do
loop. Whereas to indicates an incrementing loop count, downto
indicates a decrementing loop count. In both cases, the loop
count changes by one.

program DowntoDemo;
var

count : integer;
begin
for count := 5 downto I do

writelnC'T minus·, count);
writeln('BLAST OFF')

end.

THE WHIZ KID'S DICTIONARY 235

drawLine

• MacPascal
procedure

drawstring

• Quickdraw
procedure

else

• Pascal reserved
word

end

• Pascal reserved
word

236

~D Te Ht
T minus 5
T minus 4
T minus 3
T minus 2
T minus
BLAST OFF

drawLine(horiz llnteger, vertllnteger, horiz21nteger,
vert21nteger) draws a line from the coordinate point (horiz llnteger,
vertllnteger) to the coordinate point (horiz21nteger, vert21nteger).
This MacPascal addition to Quickdraw offers an alternative method
of drawing a line to the lineTo procedure.

drawString(stringName) places the parameter string into the
Drawing window to the right of the Quickdraw pen location.
The variable stringName is of the predefined Quickdraw type
str255.

The type str255 is defined as string(255], allowing from 0 to
255 characters to be assigned.

The current pen location moves to the right of each character as
the string is drawn. drawString performs no carriage returns,
line feeds, or text formatting.

See writeDraw for information on a similar procedure that offers
limited text formatting.

else is the optional third word of the if .. then statement. In the
format if .. then .. else, else precedes the action statement(s) to be
performed when the if condition is false.

See if for more information and an example.

end, in conjunction with the reserved word begin, serves as a
bracket to hold together as a unit a program's main body, pro­
cedures, functions, multiple statements, record declarations, and
case statements. begin and end show the boundaries of a section
of Pascal code that is to be performed as a unit.

MACINTOSH PASCAL ILLUSTRATED

eof

• Pascal function

The end; of a procedure or function requires the statement­
separating semicolon. The end. of the main body, the final end
of a program, requires a period.

The end of a multiple statement sometimes requires a semicolon.
If the instruction following the end is a statement, a semicolon
is required. If the instruction following the end is another end
or an else, the semicolon should be omitted.

The instruction preceding any end does not require a semicolon.
end serves the purpose of the semicolon by separating state­
ments.

Macintosh Pascal automatically formats code, and each end is
indented to match the nearest prior unended begin.

See begin for more information and an example.

eof(fileName) is a boolean function that returns a value of false
if the file position of the organizer (fileName) is at or before the
last component of the file, and true if the organizer is beyond the
last component of the file. eof is an abbreviation for end-of-file.

The file organizer parameter is a variable of a file type that directs
instructions to a particular file component. Pascal allows only one
component to a file to be accessed at a time.

Since Pascal regards all input from devices such as the disk,
keyboard, and printer as files, the eof function signifies where
data input has ended. An error will result if a program tries to

access a data item beyond the end of a file.

If the parameter of eof is omitted, the standard file variable input
is assumed, and the default input device is the keyboard. Pressing
the keyboard's enter key causes eof(input) to return true.

Whenever eof(fileName) returns true, the value of the buffer
variable fileName' is undefined.

THE WHIZ KID'S DICTIONARY 237

eoln

• Pascal function

238

program EofDemo;
var

oneChar : char;
begin

wrlteln<Thls program translates your typing to CltyTalk.'l;
wrlteln('Press 'enter' to end file and exit program.');
write In;
while not eof do
begin
while not eoln do
begin

read(one Char l;
If oneChar = · · then
wrlte('you know,');

end; (end while not eoln loop}
readln; (discard rest of line}
write In

end (end while not eof loop}
end. (end EofDemo}

~o Te Ht
This program translates your typing to CityTalk .
Press ' enter · to end file and exit program.

;m~~
Back you know, in you know, Phi I I y you knoui, where you know, :)
I you know, come you know, from you know, the you know,
people you know, are you know, real you know, cool.

My you know, Engli sh you know, teachers you know, at you
know, Harriton you know, High you know, deserve you know,
credit you know, for you know, showing you know, us you
know, the you know, beauty you know, of you know, the you
know, I anguage .

eoln(fileName) is a boolean function that returns a value of false
if the character position of the organizer (fileName) is before an
end-of-line character, and true if the organizer is at an end-of­
line character. eoln is an abbreviation for end-of-line.

The file organizer fileName must be a variable of type text. If the
parameter is omitted, the standard file input is assumed, and the
default input device is the keyboard . Pressing the keyboard's
return key issues an end-of-line character. Since only text-type

MACINTOSH PASCAL ILLUSTRATED

equal Pt

• Quickdraw
function

erase Arc
eraseOval
eraseRect
eraseRoundRect

• Quickdraw
procedures

files are organized with respect to end-of-line characters, it is an
error if eoln is used with a nontext file.

See eof for more information and an example.

equalPt(pointlName, point2Name) evaluates its two point pa­
rameters, and returns the boolean result true if they are equal,
false if they are not. The variables pointlName and point2Name
are of the predefined Quickdraw type point.

See addPt for an example.

In all the following procedures, rectName is a variable of type
rect, which can be created by using the setRect procedure. Al­
ternatively, the rectName variable can be substituted with four
integers representing the rectangle's boundary coordinates top,
left, bottom, and right, respectively.

All procedures paint the specified shape with the Drawing win­
dow's background pattern. Drawing is done in the patCopy mode.
The Quickdraw pen pattern and draw-over mode are ignored.
The pen location is unaffected. See penMode, penPat, and penSize
for more information on the Quickdraw pen.

eraseArc(rectName, startAnglelnteger, arcAnglelnteger) paints
in the background pattern a wedge of the oval that fits within
the rectangular dimensions set by rectName. The parameter
startAnglelnteger is a degree value between 0 and 3 59 that works
like the hand of an oval clock: 0 points to 12 o'clock, 90 points
to 3 o'clock, 180 points to 6 o'clock, and so on. The parameter
arcAnglelnteger is a degree value between - 359 and 359 that
sets the extent of the arc, positive angles extending clockwise,
negative angles counterclockwise.

eraseOval(rectName) paints in the background pattern an oval
that fits within the rectanglar dimensions set by rectName.

eraseRect(rectName) paints in the background pattern a rectan­
gle within the dimensions set by rectName.

eraseRoundRect(rectName, ovalWidthlnteger, ovalHeightln­
teger) paints in the background pattern a rounded-corner rec-

THE WHIZ KID'S DICTIONARY 239

240

tangle within the dimensions set by rectName. The curvature of
the rounded corners is set by two integers that specify the di­
ameters of an oval shape suggested by the rounded corners.

program EraseDemo;
procedure createDrawingWindow;
var

drWindow : rect;
begin

hideAll;
setRect(drWindow, 20, 60, 480, 320);
setDraw ingRect(drWindow);
showDrawing

end;
procedure paintArt;
var
I: integer;
r 1, r2, r3, r4, rs : rect;

begin
paintRect(60, 160, 90, 215);
eraseRect(70, 180, 80, 195);
setRect(r 1, 50, 30, 100, 120);
setRect(r2, 120, 140, 250, 210);
setRect(r3, 300, 160, 400, 200);
setRect(r4, 270, 30, 355, 120);
setRect(rS, 150, 160, 200, 190);
paintRect(r 1);
frameRect(r2);
paintoval(r2);
eraseOval(rS);
paintRoundRect(r3, 20, 20);
eraseRoundRect(r3, 60, 60);
frameRect(r4);
penPat(gray);
paintArc(r4, 45, 225);
eraseArc(r4, 75, 90);
penSize(3, 3);
penPat(black);
frameRect(10, 20, 230, 430);
for i := 1 to 5000 do [time delay)

' eraseRect(r 1);
end;

begin
createDrawingWindow;
paintArt

end.

MACINTOSH PASCAL ILLUSTRATED

exp

• Pascal function

extended

• Macintosh type

-o Drawing

a

exp(expression) evaluates a single real or integer value, and re­
turns an extended real value of its exponential. exp(x) computes
the value of e where e is the base of the natural logarithms
(2.718 ...).

extended is one of four predefined real-types for representing
numbers in floating-point notation. The others are real, double,
and computational. The name real is used both as a Macintosh
type and as a category of the four floating-point types.

Unlike integer-types, real-type numbers can express values with
a fractional part, and allow for numbers to be displayed using
decimal points.

The purpose of having more than one real-type as options is to
provide the range and precision necessary for a particular pro­
gram application without being wasteful of computer memory
space. The higher the range and precision, the more memory
space must be allocated .

The range of type extended is 1. 9 x 1o - 495 1 to 1. 1 x 10493 2 .

The precision extends 19 to 20 decimal digits . Types real and
double economize space by offering less range and precision.

For arithmetic operations, all real-type values are converted to
type extended, and the results are also type extended. When a real

THE WHIZ KID'S DICTIONARY 241

false

• Pascal constant

file of

• Pascal reserved
words

242

or double type value is required, the extended type can be used
provided that the value falls within the ranges allowed by real
and double respectively.

See real for more information and an example.

false is one of two predefined values of type boolean. Boolean is
an enumerated type whose members are the ordered constants
false and true.

type
boolean = (false,true);

The written output of a boolean expression will be the word false
or true.

See the boolean function odd for an example.

file of denotes, in part, a Pascal type declaration. The format of
this kind of declaration is:

fileName : file of componentType;

A primary purpose of declaring a file is to communicate infor­
mation to an external device such as a disk drive or printer. When
a file is opened, a connection can be made between the file
variable fileName and the external device.

A file is composed of a linear sequence of data items or com­
ponents. The sequence is numbered so that each component has
its own numeric position. Only one component of a file can be
accessed at a time. To access a particular component of a file,
you open the file and reference the numbered position of the
component.

This nature of a file demands that a file not only keep track of
what components are contained in a file, but where among the
components is the file currently active.

MACINTOSH PASCAL ILLUSTRATED

filepos

• Macintosh
function

A variable of a file-type is used to organize the access to a file's
components. This variable, called the file organizer, represents all
of a file's components while keeping track of the current file
position.

A buffer variable-created by appending a caret sign C on the 6
key) to the end of the file organizer name-represents the current
component of the file organizer. Whereas the organizer is a vari­
able of a file-type, the buffer variable is of the same type as the
file's component.

A file must be opened in order to access any component. Three
predefined procedures exist for this purpose. rewrite opens a
file so that components can be written to the file sequentially.
reset opens a file so that components can be read from the file
sequentially. open opens a file so that components can be either
written or read randomly.

The predefined procedure close closes a file, thus protecting its
contents from inadvertent activity.

A file must belong to one of two classes: those declared with the
file of notation, and those declared of type text. A text-type file
is unique because its data is organized into lines. Data sent to
the printer must be contained in a file variable of type text.

Files cannot contain other files.

See eof, eoln, filepos, get, open, put, reset, rewrite, seek, and
text for information on other predefined procedures and func­
tions affecting files.

Use filepos(fileName) to return a longint value that indicates the
current position of the file organizer parameter among a file's
components.

Components are numbered consecutively, the first component
numbered zero and the last component followed by an end-of­
file character. A file's current component is accessible through
the buffer variable, notated by the file organizer name with a
caret sign appended (fileNameA).

THE WHIZ KID'S DICTIONARY 243

fill Arc
fillOval
fill Reef
fill Round Reef

• Quickdraw
procedures

244

The filepos function returns the file posmon number of the
component currently available through the buffer variable.

See file for more information. See get for an example.

In the following procedures, rectName is a variable of type rect,
which can be created by using the setRect procedure. Alterna­
tively, rectName can be substituted with four integers representing
the rectangle's boundary coordinates top, left, bottom, and right,
respectively.

All procedures fill a specified shape with patternName, a variable
of type pattern. The five predefined patterns are: white, black,
gray, ltGray, and dkgray. See penPat for more information on
creating custom patterns.

All procedures fill using the patCopy mode. The current state
of the Quickdraw pen's pattern and mode, as well as the back­
ground pattern, are ignored. The pen location is unaffected. See
penMode, penPat, and penSize for more information on the
Quickdraw pen.

fillArc(rectN ame, startAnglelnteger, arcAnglelnteger,
patternName) fills a wedge of the oval that fits within the rec­
tangular dimensions set by rectName. The parameter start­
Anglelnteger is a degree value between 0 and 3 59 that works
like the hand of an oval clock: 0 points to 12 o'clock, 90 points
to 3 o'clock, 180 points to 6 o'clock, and so on. The parameter
arcAnglelnteger is a degree value between - 3 59 and 3 59 that
sets the extent of the arc, positive angles extending clockwise,
negative angles counterclockwise. The fill pattern is set by the
parameter patternName.

fillOval(rectName, patternName) fills an oval that fits within the
rectangular dimensions set by rectName. The fill pattern is set
by the parameter patternName.

fillRect(rectName, patternName) fills a rectangle within the di­
mensions set by rectName. The fill pattern is set by the parameter
patternN ame.

fillRoundRect(rectN ame, ovalWidthlnteger, ovalHeightlnte­
ger, patternName) fills a rounded-corner rectangle within the

MACINTOSH PASCAL ILLUSTRATED

dimensions set by rectName. The curvature of the rounded cor­
ners is set by two integers that specify the diameters of an oval
shape suggested by the rounded corners. The fill pattern is set
by the parameter patternName.

program FlllDemo;
procedure createDrawlngWlndow;
var

drWlndow : reel;
begin
hldeAll;
setRect(drWlndow, 20, 60, 480, 320);
setDraw lngRectCdrWlndow >;
showDrawlng

end;
procedure flllArt;
var
rl, r2, r3, r4: reel;

begin
f111Rect(60, 160, 90, 21 S, gray);
setRectCrl, 50, 30, 100, 120);
setRectCr2, 120, 140, 250, 210);
setRect(r3, 300, 160, 400, 200);
setRectCr4, 270, 30, 355, 120);
flllRect(rl, ltgray);
frameRectCr2);
fl110val(r2, dkgray);
fl11RoundRectCr3, 20, 20, black);
palntRect(r4);
fl11Arc(r4, 45, 225, white);
penSlzeC3, 3);
penPat(black);
frameRect(1 O, 20, 230, 430)

end;
begin
createoraw lngWlndow;
fill Art

end.

THE WHIZ KID'S DICTIONARY 245

for .. to .. do

• Pascal reserved
word

246

Drawing

•

for .. to .. do creates a loop that will perform an action for a set
number of repetitions. The for loop requires the following format:

for variable : = initialExpression to finalExpression do
statement

The type of the variable and two expressions must be identical
to one another, and be ordered such that the loop can be counted.
The for variable counts repetitions and cannot be assigned a new
value within the loop.

The completion of each repetition causes the for variable to be
incremented by one. When the value of the first expression has
been incremented to the value of the second expression, the
statement(s) will be performed for the final repetition.

If the action following do consists of more than one statement,
the statements of the loop must be bracketed by begin and end.

The reserved word to can be replaced by the reserved word
downto. Instead of incrementing the for variable, downto causes
the value to decrement by one, and the loop performs its last
repetition when the first expression drops to the value of the
second.

MACINTOSH PASCAL ILLUSTRATED

frameArc
frameOval
frameRect
frame Round Reef

• Quickdraw
procedures

program ForDemo;
var
I: Integer;
ch : char;

begin
for I := 1 to 26 do
begin

moveTo(lOO, 100);
llneTo(I *I, I+ I)

end;
moveTo(lO, 130);
for ch :• ·a· to 'z' do

wrlteDraw(ch, · ')
end.

Drawing

abcdefghi jkl mnopqrstuvwxyz

In the following procedures, rectName is a variable of type rect,
which can be created by using the setRect procedure. Alterna­
tively, rectName can be substituted with four integers repre­
senting the rectangle's boundary coordinates top, left, bottom, and
right, respectively .

The frame or outline drawn by each procedure uses Quickdraw's
currently selected pen pattern, size, and mode. Pen location is
unaffected. See penMode, penPat, and penSize for more in­
formation on the Quickdraw pen.

frameArc(rectName, startAnglelnteger, arcAnglelnteger) draws
an arc of the oval that fits within the rectangular dimensions set
by rectName. The parameter startAnglelnteger is a degree value
between 0 and 359 that works like the hand of an oval clock:
0 points to 12 o'clock, 90 points to 3 o'clock, 180 points to

THE WHIZ KID'S DICTIONARY 247

248

6 o'clock, and so on. The parameter arcAnglelnteger is a degree
value between - 359 and 359 that sets the extent of the arc,
positive angles extending clockwise, negative angles counter­
clockwise.

frameOval(rectName) draws an oval outline that fits within the
rectanglar dimensions set by rectName.

frameRect(rectName) draws a rectangular outline within the di­
mensions set by rectName.

frameRoundRect(rectN ame, ovalWidthlnteger, ovalHeightln­
teger) draws a rounded-corner rectangular outline within the
dimensions set by rectName. The curvature of the rounded cor­
ners is set by two integers that specify the diameters of an oval
shape suggested by the rounded corners.

program FrameDemo;
procedure crealeDrawingWindow;
var

drWindow : reel;
begin

h1deA11;
selRecl(drWlndow, 20, 60, 480, 320);
selDrawlngRecl(drWindow);
showDrawing

end;
procedure frameArt;
var

r I, r2, r3, r4: reel;
begin

selRecl(r I, 50, 30, I 00, 120);
selRecl(r2, 120, 140, 250, 210);
selRecl(r3, 300, 160, 400, 200);
selRecl(r4, 270, 30, 355, 120);
frameRect(r I);
frameRecl(r2);
frame0val(r2);
penSize(6, 4);
penPal(dkgray);
frameRoundRecl(r3, 20, 20);
penNormal;
frameRecl(r4);
pen51ze(3, 3);
frameArc(r4, 45, 225);
frameRecl(Io, 20, 230, 430)

end;

MACINTOSH PASCAL ILLUSTRATED

function

• Pascal reserved
word

begin
createDraw ingWindow;
frame Art

end.

::O

D
Drowing

D
D

()

f2J

A function takes a value, acts on that value, then returns a value.
Functions are created by giving the function a name, declaring
its type and, between begin and end;, inserting statements that
will assign the function's name a returning value.

The format of a function is as follows:

function name (parameters-if any) : type;
begin

statements
end;

The function's type must be stated after the colon, and refers to
the result type, the type of the value that the function returns to

the program.

Functions always return a single value assigned by the function's
statements. This differs from procedures, which execute state­
ments without being required to return anything.

THE WHIZ KID'S DICTIONARY 249

250

Like procedures, functions are executed when called by name.
Functions can use parameters, as well as local const and var
declarations, in a similar way as do procedures. See procedure
for more information on these features.

Pascal's predefined functions require only that the function be
called using an appropriate result type and parameters.

program FunctionDemo;
function rightAnswer: boolean;
var

ch: char;
begin

rightAnswer :=false;
read(ch);
rightAnswer := (ch = T) or (ch = 'F')

end;
begin

write('Only one multllettered word in the English language');
writelnC'is known simply by its first letter.');
writeln;
writeln('What Is the missing letter of the ?-word?');
writeln;
If rightAnswer then

writeln(' You're right. Shame on you. ')
else

writeln(' Sorry, you mucked-up, and no, it's not the M-word.')
end.

~L leHt
Only one multi lettered word in the English
language is known simply by its first letter.

What is the missing letter of the ?-word? ~

~
program FunctionDemo2;
var

answer : char;
function getAnswer : char;
var

ch: char;
begin

read(ch);
getAnswer := ch

end;

MACINTOSH PASCAL ILLUSTRATED

get

• Pascal
procedure

begin
wrlte('Only one multllettered word In the English language');
wrlteln('ls known simply by Its first letter.');
write In;
wrlteln('What Is the missing letter of the ?-word?');
write In;
answer := getAnswer;
tr <answer= 'f') or (answer= 'F') then
writeln(' You're right. Shame on you.')

else
write In(' Sorry, you mucked-up, and no, It's not the M-word.')

end.

TeHt
Only one multi lettered word in the English
language is known simply by its first letter.

What is the missing letter of the ?-word?

get(fileName) advances the file organizer by one position to the
next file component. Then the buffer variable fileName' is as­
signed the value of the current component. If the new position
of the file organizer is beyond the last component of the file,
then the value of fileName' becomes undefined.

Subsequent calls to the get procedure will access the next se­
quential component of the file. The get procedure advances itself
through a file, one component at a time.

To randomly access a component, that is, without first getting
all preceding components, use the procedure seek. seek uses a
numeric parameter to directly position the file organizer any­
where along the numbered file, whereas get advances the file
organizer by a single component position.

get advances the file organizer for the purpose of accessing a file
data. In order to insert a file component, use the file command
put.

THE WHIZ KID'S DICTIONARY 251

getMouse

•Toolbox
procedure

252

program GetDemo; (GetDemo's file was created in PutDemo}
var

giveName, fileName : string[SO];
Jaime : string[20];
friends: file of strlng[20];

begin
giveName :='type in new file name';
fileName := oldFileName(giveNamel;
reset(friends, fileName); (reset performs the first get)
while not eof(friends) do

begin
write('f11e position·, f11epos(friends): 3, ·: '); [file window}
write Jn(friends"); [write contents of current window)
get(friends) (advance window and get new contents)

end;
close(friends)

end.

~[
file posit ion
file position
f i I e pos i l ion
file posit ion

0

2
3

Te Ht
Char I i e
Kale

IQ
Black
sweet Jaime

~

getMouse(horizlnteger,verrlnteger) returns two integers cor­
responding the current coordinates of the mouse cursor. The
coordinates (0,0) plot the upper-left corner of the Drawing window.

If the mouse is left of the Drawing window when getMouse is
called, the horizontal integer-the first parameter-will return
as negative. If the mouse is above the Drawing window, the
vertical coordinate will return as negative .

The two var parameters horizlnteger and vertlnteger can be
given the field names of the record type point (pt.h,pt.v). lo this
way , a variable of type point can be defined. Alternatively, the
setPt procedure can be used to create a variable of type point.

MACINTOSH PASCAL ILLUSTRATED

getPen

• Quickdraw
procedure

program getMouseDemo;
var

x I, y I, x2, y2 : integer;
begin
repeat
until button;
getMouse(x 1, y 1);

moveTo(x1, y1 - 5);
writeDraw('(', x I : 3, ',', y I : 3, ')');
repeat

getMouse(x2, y2);
frameRect(y I, x I , y2, x2);
eraseRect(y 1, x 1, y2, x2)

untl I not button;
frameRect(y 1, x 1, y2, x2);
moveTo(x2, y2);
writeDraw('(', x2 : 3, ·;, y2: 3, ')')

end.

::o Druwing

(39, 54)

lf19s, 134)

112l

getPen(varPointName) returns with the variable varPointName
assigned to the current pen location expressed in the local co­
ordinates of the Drawing window. The parameter varPointName
is of type point.

See line for an example.

THE WHIZ KID'S DICTIONARY 253

getlime

• Toolbox
procedure

globalloLocal

• Quickdraw
procedure

254

getTime(recordName) returns the date and time information
from the Macintosh system clock. The var parameter of getTime
is of a record type. This record type is defined as:

DateTimeRec = record
year,
month,
day,
hour,
minute,
second,
dayOfW eek : integer

end;

The field year must be greater than or equal to 1904. month is a
number from 1to12, corresponding to January through Decem­
ber, respectively. day is a number from 1 to 31, representing the
day of the month.

The field hour is the number of hours since midnight. The first
hour of the day is 01h hour. The P.M. hours are represented by
the numbers 12 through 23. minute and second are numbers from
0 to 59.

dayOj\'(f eek is a number from 1 to 7, corresponding to Sunday
through Saturday, respectively.

The Toolbox procedure setTime can be used to set the date and
time of the Macintosh system clock.

See Chapters 27 and 28 in Part 2 for more information and
examples of getTime.

globalToLocal(pointName) converts a point expressed in global
coordinates-such as the Macintosh screen-to the local coor­
dinates of the Drawing window. The variable pointName of type
point is created using the setPt procedure.

A complementary procedure, localToGlobal performs the op­
posite conversion.

See Chapter 20 in Part 2 for more information and an example.

MACINTOSH PASCAL ILLUSTRATED

goto

• Pascal reserved
word

hideAll

• Toolbox
procedure

if..then

• Pascal reserved
word

The goto(labelnumber) statement searches for the place in the
program code where labelnumber has been inserted, then con­
tinues program execution from point of the label.

Label numbers must be defined using the reserved word label
followed by the label numbers to be used. label 1,2,3,4; defines
four labels. The label definition part must immediately follow
the program, procedure, or function heading.

To place a label in the program code, insert the label number
with a colon attached. goto(3) will go to the label marked 3:.

The use of goto disrupts program readability. It can and should
be avoided, hence no example.

Use hideAll to clear the Macintosh screen of all windows. Any
window can be redrawn by selecting the window from the Win­
dow menu. From within a program, the Text and Drawing win­
dows can be drawn by the showText and showDrawing pro­
cedures, respectively.

The hideAll procedure cannot selectively hide windows. All
windows are hidden and, except for the menu bar, the screen
displays the background pattern.

See setTextRect and setDrawingRect for drawing windows to
specified dimensions from within a program, and an example of
hide All.

Use an if.. then statement when a decision between two possible
courses of action is necessary. The decision must be based on
whether a condition is either true or false.

The format of the if .. then statement is as follows:

if booleanExpression then
statement

THE WHIZ KID'S DICTIONARY 255

256

The expression must be a boolean type, that is, true or false. An
expression evaluated as true would cause the action after then
to be performed. An expression evaluated as false would ignore
the action after then.

An action of more than one statement needs to be bracketed by
begin and end.

An optional format of the if .. then statement includes the re­
served word else.

if booleanExpression then
statement

else
statement

The else option permits a defined alternative course of action
should the expression be evaluated as false.

When an if .. then .. else statement is used within the action part
of another if .. then .. else statement, the word else will be asso­
ciated with the nearest preceding if that is not already paired
with an else.

program I memo;
var

I, x, y : Integer;
begin

i :=0;
repeat

getMouse(x, y);
If odd(x) then
lnvertRect(y - i, x - I, y + I, x + I)

else
lnvertOVal(y - i, x - I, y + I, x + I);

I:= i + 3;
If i = 60 then
begin
palntRect(y - I, x - I, y + I, x + i);
I :=O

end
until button

end.

MACINTOSH PASCAL ILLUSTRATED

in

• Pascal reserved
word

Drawing

in works like the mathematical symbols (=, <, >), except that
instead of testing whether an expression's value is equal to, less
than, or greater than another value, in tests whether the value is
contained in a listed set of ordered values. The format is as
follows:

expression in [set of ordered values]

The result is a boolean expression; true if the value is a member
of the specified set, false if the value is not.

A set of ordered values is created by enclosing the member values
with square brackets. Each member must be separated by a comma,
though an inclusive list of integer and char values can be notated
using two periods (..) between the first and last members.

program lnDemo;
var

mophead : char;
yearsAgo : integer;

begin
writeln(Type the first Jetter of a Beatie name.');
repeat

readln(mophead)
until mophead in [0J', "f, 'P', 'p', 'G', ·g·, 'R', 'r'l;
write('Good. Now type the number of years ago, within five,');
writeln(" that Sgt. Pepper taught the band to play.');
readln(yearsAgo);
If yearsAgo in [15 .. 25] then
writelnC"Billy Shears thanks you.')

THE WHIZ KID'S DICTIONARY 257

include

• Macintosh
function

258

else
writeln('lt was twenty years ago today.')

end.

0 Te11t
Type the first letter ~fa Beatie name.
J
Good. Now type the number of years ago, within
five, that Sgt . Pepper taught the band to play .
20
Bi I ly Shears thanks you.

include(addString, baseString, positonlnteger) inserts the
addString parameter into the baseString parameter beginning at
the positionlnteger'h character of the baseString, and returns the
resulting string.

The include function differs from the insert procedure because
include returns a result string without affecting baseString, whereas
insert changes the value of, and returns as a var parameter,
baseString.

program lncludeDemo;
var

s I, s2, s3 : string[80);
begin
sl :='Thinking about baseball helps chase away nightmares.';
s2 :=·a little boy';
s3 := include(s2, s 1, pos('chase·, s I));
writeln(s 1);
write In;
write 1n(s3)

end.

MACINTOSH PASCAL ILLUSTRATED

input

• Pascal file

insert

• UCSD Pascal
procedur~

Te Ht

Thinking about basebal I helps chase a~ay ~
nightmares.

Thinking about basebal I helps a I ittle boy
chase away nightmares.

input is a predeclared file allowing read operations to the Mac­
intosh keyboard. MacPascal does not require input, or the pre­
declared write file output, to be explicitly stated. Other versions
of Pascal require input and output to be stated as program
parameters.

Program parameters are never required in MacPascal. input and
output are the only program parameters allowed.

The format is:

program programName(input, output);

insert(addString, baseString, positionlnteger) inserts the add­
String parameter into the baseString parameter beginning at the
positionlnteger'h character of the baseString. The var parameter
baseString returns from the procedure with a new value.

The insert procedure differs from the include function because
insert changes the value of, and returns as a var parameter,
baseString, whereas include returns a result string without af­
fecting baseString.

program lnsertDemo;
var

s I, s2 : strlng[80);
begin

s 1 :='Thinking about baseball helps prolong making love.';
s2 := ·a big boy ';
wrlteln(s I>;
wrlteln;
lnsert(s2, s 1, pos('prolong·, s I));
wrl te ln(s I)

end.

THE WHIZ KID'S DICTIONARY 259

insetRect

• Quickdraw
procedure

260

iiO TeHt
Thinking about basebal I helps prolong making
love.

Thinking about basebal I helps a big boy
prolong 1aking love.

insetRect(rectName, horizlnteger, vertlnteger) shrinks or ex­
pands the variable rectName. The variable parameter rectName
is of the predefined Quickdraw type rect, which can be created
with the setRect procedure.

The left and right sides of rectName are shrunk toward one
another by positive values of horizlnteger, and expanded away
from one another by negative values. The horizontal coordinates
of both sides are changed by the amount of horizlnteger.

The top and bottom sides of rectN ame are shrunk toward one
another by positive values of vertlnteger, and expanded away
from one another by negative values. The vertical coordinates of
both sides are changed by the amount of vertlnteger.

The insetRect procedure does not affect the centering of the
rectangle unless the rectangle is shrunk to where its width or
height is less than one, whereupon it becomes an empty rectangle
(0, 0, 0, 0).

program lnsetRectoemo;
var
r: rect;

begin
setRect(r, 80, 45, 250, 125);
paintRect(r);
insetRect(r, 30, 25);
invertRect(r);
insetRect(r, -50, -40);
rrameRect(r)

eod.

MACINTOSH PASCAL ILLUSTRATED

integer

• Pascal type

invertArc
invertOval
invertRect
invertRoundRect

• Quickdraw
procedures

~o Drawing

integer is a predefined type whose members include all positive
and negative whole numbers between - 32,767 and 32,767 in­
clusive. Zero is also an integer.

Variables declared to be of type integer can take any value in
the range stated above. Whole numbers outside the range of
integer and numbers requiring floating-point notation can be
declared using types longint and real, respectively.

The following predefined Pascal functions will produce an integer
result: abs, sqr, trunc, round, succ, and pred. See each clas­
sification for information and an example.

Examples of type integer can be found throughout Part 3.

In the following proc~dures, rectName is a variable of type rect,
which can be created by using the setRect procedure. Alterna­
tively, rectName can be substituted with four integers repre­
senting the rectangle's boundary coordinates top, left, bottom, and
right, respectively.

All procedures invert the dots within the specified shape. Every
black dot becomes white and every white dot becomes black.
The Quickdraw pen pattern and draw-over mode, as well as the
background pattern, are ignored. The pen location is unaffected.
See penMode, penPat, and penSize for more information on
the Quickdraw pen.

THE WHIZ KID'S DICTIONARY 261

262

invertArc(rectName, startAnglelnteger, arcAnglelnteger) in­
verts the dots enclosed in a wedge. The wedge is specified by
the oval that fits within the rectangular dimensions set by rectName.
The parameter startAnglelnteger is a degree value between 0
and 359 that works like the hand of an oval clock: 0 points to

12 o'clock, 90 points to 3 o'clock, 180 points to 6 o'clock, and
so on. The parameter arcAnglelnteger is a degree value between
- 359 and 359 that sets the extent of the arc, positive angles
extending clockwise, negative angles counterclockwise.

invertOval(rectName) inverts the dots enclosed in an oval that
fits within the rectangular dimensions set by rectName.

invertRect(rectName) inverts the dots enclosed in a rectangle
whose dimensions are set by rectName.

invertRoundRect(rectName, ovalWidthlnteger, ovalHeight­
lnteger) inverts the dots enclosed in a rounded-corner rectangle
whose dimensions are set by rectName. The curvature of the
rounded corners is set by two integers that specify the diameters
of an oval shape suggested by the rounded corners.

program lnvertDemo;
var
i: integer;

procedure createDrawingWindow;
var

drWtndow : rect;
begin

hideAll;
setRect(drWtndow, 20, 60, 480, 320);
setDrawingRect(drWindow);
showDrawing

end;
procedure invertArt;
var

r 1, r2, r3, r4: rect;
begin

invertRect(60, 160, 100, 215);
setRect(rl, 50, 30, 100, 120);
setRect(r2, 120, 140, 250, 210);
setRect(r3, 300, 160, 400, 200);
setRect(r4, 270, 30, 355, 120);
invertRect(r 1);
penSize(1, I); (default pensize}

MACINTOSH PASCAL ILLUSTRATED

invertCircle

• MacPascal
procedure

frameRect(r2);
invert0val(r2);
invertOval(160, 140, 190, 230);
invertRoundRect(r3, 20, 20);
frameRect(r4);
invertArc(r4, 45, 225);
pen5ize(3, 3);
frameRect(10, 20, 230, 430)

end;
begin

createDraw i ngWi ndow;
penPat(dkGray);
paintRect(60, 160, 100, 215);
penPat(black);
for i := I to 49 do

invertArt
end.

Drawing

invertCircle(horizlnteger, verrlnteger, radiuslnteger) inverts the
dots enclosed in a circle that has its center at coordinate point
(horizlnteger, vertlnteger) and a radius of radiuslnteger. This
addition to Quickdraw offers a limited alternative to the invertOval
procedure.

THE WHIZ KID'S DICTIONARY 263

label

• Pascal reserved
word

length

• UCSD Pascal
function

line

• Quickdraw
procedure

264

label is used in the definition part of a program to identify a 1-
to 4-digit number as a goto location reference.

See goto for more information.

length(stringExpression) returns the number of characters in the
string parameter. Each space within a string is considered a char­
acter. The length function returns an integer value.

program LengthDemo;
var
sl, s2, s3, s4: strtng[SO];

begin
sl :="If anyone knows a woman named Tw11a';
s2 :=·who lived In Chico, California, and';
s3 := • who owned a goldfish named Squirt;;
s4 :=·please ask her to write to Mr. Moss.';
writeln(length(s I));
wrtteln0ength(s2) > Jength(s3));
if Jength(concat(s I, s2, s3, s4)) <= 160 then
wrtteln(sl, s2, s3, s4)

end.

35
True
If on~one knows o woman named Twi lo who I ived
in Chico, Cal ifornio, and who owned a goldfish
named Squirt, please ask her to write to nr.
Moss.

line(horizlnteger, vertlnteger) draws a line starting from the cur­
rent Quickdraw pen location to a distance that is horizlnteger dots
to the right or left, and vertlnteger dots up or down. The param­
eters of line measure a distance; they are not the coordinates of
the line's endpoint.

MACINTOSH PASCAL ILLUSTRATED

Positive parameters draw a line to the right or down. This is
consistent with the coordinate map of the Drawing window whose
origin, point (0, 0), is the upper-left corner of the window.

After the line procedure is completed, the current pen location
becomes the point at the end of the drawn line. If the starting
point is coordinate (x, y), then the endpoint is (x + horizlnteger,
y + vertlnteger).

The procedure line (x + horizlnteger, y + vertlnteger) is equiv­
alent to the procedure lineTo(x, y).

program LineDemo;
var
pt: point;

procedure triangle; (moves and draws To coordinates}
begin

moveTo(50, 50);
1ineTo(50, 0);
lineTo(O, 50);
lineTo(50, 50);
getPen(pt);
wrlteDraw(' (', pt.h: 3, ·,·, pt.v: 3, ')');
moveTo(50, 50)

end;
procedure square; (moves and draws distances}
begin

move(50, 50);
line(50, 0);
line(O, 50);
line(-50, 0);
line(O, -50);
move(50, 50);
getPen(pt);
writeDraw(' (', pt.h: 3, ·;, pt.v: 3, ')')

end;
begin

triangle;
square

end.

THE WHIZ KID'S DICTIONARY 265

line To

• Quickdraw
procedure

In

• Pascal function

localloGlobal

• Quickdraw
procedure

266

!iD Drawing

_/,,,,
/ (50, 50)

0(150,150)

~

lineTo(hCoordlnreger, vCoordlnreger) draws a line starting from
the current Quickdraw pen location to the coordinate point lo­
cation specified by the parameters. The parameters of lineTo
are the coordinates of the line's endpoint, they do not measure a
distance.

After the lineTo procedure is completed, the current pen lo­
cation becomes the endpoint coordinate (hCoordlnteger,
vCoordlnteger.)

See line for an example.

ln(expression) evaluates a positive real or integer value, and re­
turns the extended real value of its natural logarithm. ln(x) com­
putes log to the base e(loge) of x. e is approximately 2. 718.

The exponential function, exp(x), performs the inverse of the
natural log function, ln(x).

localToGlobal(pointName) converts a point expressed in the
Joe~~ coordinates of the Drawing window to global coordinates­
such as the Macintosh screen. The variable pointName of type
point is created using the setPt procedure.

MACINTOSH PASCAL ILLUSTRATED

program LocaJToGlobalDemo;
var

drWindow : rect;
procedure bop;
const
offset= 15;

var
x, y : integer;
pt: point;

begin
getMouse(x, y);
setPt(pt, x, y);
locaJT oGlobal(pt);
If ptlnRect(pt, drWindow) then
invertoval(y - offset, x - offset, y + offset, x + offset);

end;
begin

setRect(drWindow, 50, 50, 466, 326);
setDraw ingRect(drWindow);
showDrawing;
repeat

bop
until button

end.

Drawing

THE WHIZ KID'S DICTIONARY 267

longint

• UCSD Pascal
type

maxint
maxlonglnt

• Pascal constant
UCSD Pascal
constant

mod

• Pascal reserved
word

268

longint is a predefined integer-type whose members include all
positive and negative whole numbers between -2,147,483,647
and 2,147,483,647 inclusive.

Variables declared to be of type longint can take any value in
the range stated above. Whole numbers outside the range of
longint and numbers requiring floating-point notation can be
declared using a real-type.

The longint type provides for a much larger subset of whole
numbers than does the integer type. Conversely, the use of
integer types provides an economy of memory space when the
integer range is sufficient for the particular application. Integers
can take a value from -32,767 to 32,767.

See integer and real for more information.

maxint and maxlongint are predefined constants representing
the largest allowable values of types integer and longint respectively.

The integer constant maxint is defined to be 32,767.

The longintconstant maxlongint is defined to be 2,147 ,483,647.

mod works a mathematical symbol in the same family as +, - ,
*,/,and div. mod computes a division returning a remainder result.

The value of p mod q is the remainder part of the quotient p/q.
The expressions p and q must be an integer-type.

Whereas div provides the largest whole-number quotient of a
division ignoring any remainder, mod ignores the whole number
and provides only the integer remainder.

MACINTOSH PASCAL ILLUSTRATED

move

• Qulckdraw
procedure

program ModDemo;
var

I :. Integer;
begin

wrttelh(9 mod 5);
write In(1Omod5);
write In(11 mod 5);
for I:= 1 to 4do
wrlteln(random mod 20

end.

~D TeHt
4
0
1

18
20
0

11

lit

~

move(horizlnteger, vertlnteger) moves the Quickdraw pen start­
ing from the current pen location to a distance that is horizlnteger
dots to the right or left, and vertlnteger dots up or down. The
parameters of move measure a distance; they are not the coor­
dinates of the new pen location.

move and moveTo, unlike line and lineTo, do not perform
drawing. Like lifting a pencil to begin a drawing elsewhere, they
only move the current Quickdraw pen location.

Positive numbers move a line to the right or down. This is con­
sistent with the coordinate map of the Drawing window whose
origin, point (0,0), is the upper-left corner of the window.

After the move procedure is completed, the current pen location
becomes the endpoint. If the starting point is coordinate (x,y),
then the endpoint is (x + horizlnteger, y + vertlnteger).

The procedure move (x + horizlnteger, y + vertlnteger) is
equivalent to the procedure moveTo(x,y).

See line for an example.

THE WHIZ KID'S DICTIONARY 269

move To

• Quickdraw
procedure

newFileName

• Toolbox function

nil

• Pascal reserved
word

270

moveTo(hCoordlnteger, vCoordlnteger) moves a line starting
from the current Quickdraw pen location to the coordinate point
location specified by the parameters. The parameters of moveTo
are the coordinates of the new pen location, they do not measure
a distance.

moveTo and move, unlike lineTo and line, do not perform
drawing. Like lifting a pencil to begin a drawing elsewhere, they
only move the current Quickdraw pen location.

After the moveTo procedure is completed, the current pen lo­
cation becomes the coordinate (hCoordlnteger, vCoordlnteger).

See line for an example.

newFileName(promptString) first produces a dialog box on the
Macintosh screen with the parameter promptString displayed
inside. The promptString gives a message instructing the user to
type in a name for a new datafile. After a name has been typed
and the Save button clicked (or the return key pressed), a datafile
with the new name is created on the active disk and the function
returns the user-selected file name.

The dialog box allows for different disks to be inserted and either
drive to become active. The function returns the selected file
name, which in turn can be opened by the program using reset,
rewrite, or open.

Both the prompt and the function's result value are string types.
An error will result if no file name is typed into the dialog box.

See rewrite, or Chapter 15 in Part 2 for an example.

The use of nil is an advanced Pascal topic relating to pointers.
Because of its status as a reserved word, nil cannot be used in
any other context. MacPascal will format any occurrence of nil
in bold lettering. As with any reserved word, a program cannot
redefine the name.

MACINTOSH PASCAL ILLUSTRATED

not

• Pascal reserved
word

note

• Toolbox
procedure

not works to reverse the boolean value of the expression it
immediately precedes. not before a true value creates a false
value. not before a false value creates a true value.

Expressions using not require any equalities and inequalities (=,
< , > , < =, > =) to be parenthesized.

not has the highest precedence of the boolean operators not,
and, and or.

program Notoemo;
var

x, y : integer;
begin

repeat
getMouse(x, y);
while not (x < 0) and not (y < 0) do

begin
eraseRect(y, x, y + 40, x + 40);
frameRect(y, x, y + 40, x + 40);
x := x - 1 O;
y := y - 10

end
until button [press Button to end}

end.

note(frequency, amplitude, duration) evaluates three parameters
to produce a single square-wave tone. The value of frequency
must be a longint type in the range 12 .. 783360. The values of
amplitude and duration must be integers in the range 0 .. 255 .

See sysBeep for additional sound capability.

THE WHIZ KID'S DICTIONARY 271

odd

• Pascal function

272

program NoteDemo;
const

time= 4; (time range (0 .. 255])
var

freq : longlnt;
amp : Integer;

begin
freq:= 1; (freq range (-32767 .. 32767), cannot be 0)
repeat

amp := O; (amp range (0 .. 255])
repeat

note(freq, amp, time);
amp:= amp+ 15

until amp = 255;
freq :"' freq + 1 ooo

until freq> 31767
end.

odd(expression) returns a boolean value of true if the parameter
is an odd number, or a value of false if the parameter is an even
number. The parameter must be an integer-type.

program OddDemo;
var

i, x: integer;
begin

writeln(odd(21));
writeln(odd(4));
for i := 1 to 5 do
begin

x := random mod IO;
if odd(x) then
writeln(x, · is odd.")

else
writeln(x, · is even.')

end
end.

=o TeHt
True
False

7 is odd.
5 is odd.
9 is odd.
0 is even.
8 is even.

MACINTOSH PASCAL ILLUSTRATED

of

• Pascal reserved
word

offsetRect

• Quickdraw
procedure

of is used in conjunction with the reserved words array, file,
and set in the declaration part of a program. of is also used as
part of the case statement to separate the selector expression
from the list of constants.

See each of the above reserved words for formats and examples.

offsetRect(varRectName, horizlnteger, vertlnteger) changes the
coordinate position of the rectangle rectName. The variable pa­
rameter rectName is of the predefined Quickdraw type rect, cre­
ated with the setRect procedure.

The left and right sides of rectName are moved to the right by
positive values of horizlnteger, and moved to the left by negative
values. The horizontal coordinates of both sides are changed by
adding the amount of horizlnteger.

The top and bottom sides of rectName are moved downward by
positive values of vertlnteger, and moved upward by negative
values. The vertical coordinates of both sides are changed by
adding the amount of vertlnteger.

The offsetRect procedure does not affect the shape or size of
the rectangle. The procedure simply moves the rectangle to dif­
ferent coordinates.

The new position of the rectangle is not drawn onto the Macin­
tosh screen by the offsetRect procedure. Drawing within the
new rectangle must be done with a shape-drawing routine.

program offsetRectDemo;
var
r: rect;

begin
setRect(r, 80, 45, 250, 125);
paintRect(r);
offsetRect(r, 30, 25);
invertRect(r);
offsetRect(r, -50, -40);
frameRect(r)

end.

THE WHIZ KID'S DICTIONARY 273

oldFileName

• Toolbox function

omit

• Macintosh
function

274

Drawing

oldFileName(promptString) first produces a dialog box on the
Macintosh screen with the parameter promptString displayed
inside. The promptString gives a message instructing the user to
select a file name from among those displayed in the dialog box.
After a file has been selected and the Open button clicked or
the return key pressed), the function returns the user-selected
file name.

The dialog box will display all the files on the active disk. When
more than seven files are on the disk, the dialog box's mini-finder
uses a scroll bar to allow the user to view all the files on the disk.

The dialog box also allows for different disks to be inserted and
either disk drive (on a two-drive system) to become active. The
user can mouse-select any file, which in turn can be opened by
the program using reset, rewrite, or open.

Both the prompt and the function's result are string-types.

See reset, or Chapter 16 in Part 2 for an exmaple.

omit(string,positionlnteger,lengthlnteger) removes characters
from the string parameter beginning at the positionlnteger'h char­
acter and continuing for lengthlnteger characters. The resulting
string is returned.

The omit function differs from the delete procedure in that omit
returns a result string without affecting the parameter string,
whereas delete changes the value of the returning variable pa­
rameter string.

MACINTOSH PASCAL ILLUSTRATED

open

• Macintosh
procedure

program OmitDemo;
var

s 1, s2 : strlng[75];
begin
sl := 'By 23, you're too old to blame your life on your parents.';
s2 := omit(sl, pos('your·, sl), length('your life on'));
writeln(s 1);
writeln;
writeln(s2)

end.

~[Te Kt
By 23, you ' re loo old lo blame your I ife ~
on your parents.

By 23, you ' re loo old lo blame your
parents .

Use open to open a new or existing file for random access. open
allows a component to be read from or written to the file. The
format for open is:

open(fileName, deviceName);

The file organizer fileName represents all the components con­
tained in the datafile on the external device deviceName.

After a file is opened with open, the file organizer is positioned
at the first component, number 0. The file organizer's current
component can be read or written to through the buffer variable,
fileName ~.

Any component can be randomly accessed by positioning the
file organizer with the seek procedure. The seek procedure uses
an integer parameter to directly position the file organizer at a
specified component file position. Unlike reset and rewrite, files
opened with open do not sequentially advance the buffer fol­
lowing each read or write operation.

If the opened file is empty, the eof function returns true and the
buffer variable fileName' is undefined .

THE WHIZ KID'S DICTIONARY 275

or

• Pascal reserved
word

276

program OpenDemo; (see SeekDemo to read the file created here}
var

mossNote: array!0 .. 20] of string;
procedure makeNote;
begin

mossNote(O] :='From Mr. Moss's purple notebook:';
mossNote[l3] :='Wheat Hearts cereal sticks to your ribs; broccoli ls magic.';
mossNote[8] :='Don't skimp on tires or shoes--they connect you to earth.';
mossNote(S] :='Ask only that your mate smells good and doesn't get too fat.';
mossNote[3] :=To make romance last, take lots of walks and watch sunsets.';
mossNote[16] :='When sick and in bed, television ls a miracle drug.';
mossNote[11] := 'Ken Kesey and J. D. Salinger ought to give us more to read.';

end;
procedure storeNote;
const
empty=";

var
1: Integer;
fileName: strlng[SO];
mossNoteF1le: file of string;

begin
fileName := newF1leNameC'type a datafile name');
openCmossNoteFlle, fileNamel;
for 1 := O to 20 do
begin

seek(mossNoteFlle, O;
If mossNote[1) <> empty then (empty ls the const "}
mossNoteFlle· := mossNote[1]

else
mossNoteFne· := ";

putCmossNoteF1le)
end;

closeCmossNoteFile)
end;

begin
makeNote;
storeNote

end.

or unites two boolean (true/false) expressions into a new single
boolean expression. The new expression is true if either or both
original expressions are true. The new expression is false only if
both original expressions are false.

Expressions using or require any equalities and inequalities (=,
<, >, = <, =>)to be parenthesized.

or has the least precedence of the boolean operators not, and,
and or.

MACINTOSH PASCAL ILLUSTRATED

ord

• Pascal function

program OrDemo;
var

justFriends, intimacy: boolean;
begin

justFriends := (1 + 1 = 5) or (2 + 2 = 9);
(false or false= false)

intimacy:= (1 + I = 2) or (2 + 2 = 4);
(true or true = true)

If justFriends or intimacy then
(false or true= true)

begin
write('Said the bashful mother to her breastfeeding baby,');
writeln(' "Couldn't we just be friends?"')

end
end.

Said the bashfu l mother to her breast feeding IQ.
baby, "Couldn ' t we just be fr iends 7 "

The function ord(orderedExpression) returns the ordinal num­
ber assigned to the parameter. The ordinal number is an integer­
type.

Ordinal numbers are assigned according to the ASCII character
set. The sample program below shows how to create such a table
of characters and their ordinal numbers.

If the parameter is a pointer type, the function result is the
address of the dynamic variable pointed to by expression.

See char and chr for more information.

program OrdDemo;
var

ch: char;
begin

for ch := 'A' to ·z· do
begin

write(ord(ch));
write(' ·, ch)

end
end.

THE WHIZ KID'S DICTIONARY 277

ord4

•Macintosh
function

otherwise

• Pascal reserved
word

output

• Pascal flle

pack

•Pascal
procedure

278

~o Te Ht
65 A 66 B IQ1

67 c 66 D 69 E
70 F 71 G 72 H
73 I 74 cl 75 K
76 L 77 M 78 N
79 0 80 p 81 Q
82 A 83 s 84 T
85 u 86 u 87 w
88 x 89 'I 90 2 ;

ord4(ch) returns a longint value by converting the ordered or
pointer type value of its parameter ch. The value of ord4(ch) is
the same as ord(ch).

otherwise can be used in conjunction with the case statement
after the list of case constants. If the case expression does not
match any of the constants, the statement(s) following otherwise
will be performed.

See case for more information and an example.

output is a predeclared file allowing write operations to the
Macintosh screen. MacPascal does not require output, or the
predeclared read file input, to be explicitly stated. Other versions
of Pascal require output and input to be stated as program
parameters.

Program parameters are never required in MacPascal. output
and input are the only program parameters allowed.

The format is:

program programName(input, output);

pack(arrayName, index, packedName) transfers the contents of
the ordinary array arrayName to the packed array packedName,
starting at the index'h position of arrayName. index must be of
a type that is compatible with the index-type of arrayName.

See packed and unpack for more information.

MACINTOSH PASCAL ILLUSTRATED

packed

• Pascal reserved
word

page

•Pascal
procedure

paint Arc
paintOval
paintRect
paintRoundRect

• Quickdraw
procedures

The internal storage of structured types can be modified by pre­
ceding the type's declaration with the word packed.

packed types will be compressed to economize storage space,
possibly at the expense of increased access time to components
of variables of these types. Unpacked, or ordinary types, are
stored in such a way as to make access time efficient by spacing
components uniformly.

Record, file, and set types cannot be declared as packed. Any
arrays can be declared as packed, but MacPascal will actually
pack only the component types char, 0 .. 255 (unsignedj, and
-128 .. 127 (signed).

Use page(textfileName) to advance the printer to the top of the
next page or to clear the Macintosh screen. Only files of type
text can be referenced. If the textfileName parameter is omitted,
the Macintosh screen is assumed as the standard output device.

In the following procedures, rectName is a variable of type rect,
which can be created by using the setRect procedure. Alterna­
tively, rectName can be substituted with four integers repre­
senting the rectangle's boundary coordinates top, left, bottom, and
right, respectively.

All procedures paint the specified shape with the Quickdraw
pen's currently selected pattern and draw-over mode. The pen
location is unaffected. See penMode, penPat, and penSize for
more information on the Quickdraw pen.

paintArc(rectName, startAnglelnteger, arcAnglelnteger) paints
a wedge of the oval that fits within the rectangular dimensions
set by rectName. The parameter startAnglelnteger is a degree
value between 0 and 3 59 that works like the hand of an oval
clock: 0 points to 12 o'clock, 90 points to 3 o'clock, 180 points
to 6 o'clock, and so on. The parameter arcAnglelnteger is a
degree value between - 359 and 359 that sets the extent of the
arc, positive angles extending clockwise, negative angles
counterclockwise.

THE WHIZ KID'S DICTIONARY 279

280

paintOval(rectName) paints an oval that fits within the rectan­
gular dimensions set by rectName.

paintRect(rectName) paints a rectangle within the dimensions
set by rectName.

paintRoundRect(rectName, ovalWidthlnteger, ovalHeightln­
teger) paints a rounded-corner rectangle within the dimensions
set by rectName. The curvature of the rounded corners is set by
two integers that specify the diameters of an oval shape suggested
by the rounded corners.

program PaintDemo;
procedure createDraw i ngWi ndow;
var

drWindow : rect;
begin

hideAll;
setRect(drWindow, 20, 60, 480, 320);
setDraw ingRect(drWindow);
showDrawing

end;
procedure paintArt;
var

r 1, r2, r3, r4 : rect;
begin

paintRect(60, 160, 90, 215);
setRect(rl, 50, 30, 100, 120);
setRect(r2, 120, 140, 250, 210);
setRect(r3, 300, 160, 400, 200);
setRect(r4, 270, 30, 355, 120);
paintRect(r 1);
frameRect(r2);
paintoval(r2);
paintRoundRect(r3, 20, 20);
frameRect(r4);
penPat(gray);
paintArc(r4, 45, 225);
penSize(3, 3);
penPat(b lack);
frameRect(10, 20, 230, 430)

end;
begin

createDraw ingWindow;
paintArt

end.

MACINTOSH PASCAL ILLUSTRATED

paintCircle

• MacPascal
procedure

penMode

• Quickdraw
procedure

Drawing _ _

•

paintCircle(horizlnteger, vertlnteger, radiuslnteger) paints a circle
with the center point given by the coordinate point (horizlnteger,
vertlnteger) with a radius of radiuslnteger. This MacPascal ad­
dition to Quickdraw offers an alternative, and more limited, cir­
cle-drawing procedure to paintOval

penMode(modeName) determines how the Quickdraw pen will
draw over the existing dot at a particular location on the Macintosh
screen. The eight available modes listed in the table below cause
the pen's inkdots to draw differently depending on the selected
pen pattern and whether the pen is drawing over a black dot or
a white dot.

Ordinarily, the pen draws in black dots, but the Quickdraw pen
can also draw in white dots or in a thick line pattern made up of
both black and white inkdots. The following table shows the color
dot each of the eight modes will produce according to the pen's
inkdot and the dot already on the screen.

modeName black inkdot white inkdot

patCopy always black always white
patOr always black unchanged
parXor invert unchanged
patBic always white unchanged

THE WHIZ KID'S DICTIONARY 281

282

modeName black inkdot white inkdot

notPatCopy always white always black
notPatOr unchanged always black
notPatXor unchanged invert
notPatBic unchanged always white

The initial setting of penMode is to patCopy. In this mode, black
ink will always draw a black dot, no matter which dot it is drawing
over, and white ink will always draw a white dot.

program penModeDemo;
var

mode : integer;
procedure setMode;
begin

case mode of
I:
penMode(patXor);

2:
penMode(patOr);

3:
penMode(patBic);

4:
penMode(patCopy);

end
end;
procedure lines;

const
core= 100;
edge= 200;

var
i: integer;

begin
for i :=Oto edge do
begin

moveTo(core, core);
lineTo(i, 0);
moveTo(core, core);
lineTo(edge, O;
moveTo(core, core);
lineToCO, i);
moveTo(core, core);
lineTo(i, edge)

end
end;

MACINTOSH PASCAL ILLUSTRATED

penNormal

• Quickdraw
procedure

penPat

• Quickdraw
procedure

begin
for mode := 1 to 4 do
begin

setMode;
lines;

end
end.

penNormal resets the characteristics of the Quickdraw pen to
the initial settings. penSize becomes (1, 1), penMode becomes
patCopy, pen Pattern becomes black. The location of the pen
does not change.

See penPat or penSize for an example.

penPat(patternName) sets the ink pattern of the Quickdraw pen.
Five patterns are predefined: black, white, gray, ltGray, and dkGray.
The initial pen pattern is black.

Custom patterns can be designed by declaring and assigning a
variable of type pattern , a predefined Quickdraw type. The type
pattern is a packed array [0 .. 7} of [0 .. 255}.

THE WHIZ KID'S DICTIONARY 283

penSize

B Quickdraw
procedure

284

program PenPatoemo;
begin

penPatCgray);
pa1ntRect(30, 50, 95, I 00);
penPat(ltGrayl;
pa1ntova1(50, 150, I 00, 260);
penPat(dkGray);
penS1ze(3, 3);
move To(100, 125);
lineTo(225, 125);
penPat(black);
frameRect(1 o, 20, 160, 300);
penNormal;
frameRectC20, 30, 150, 290)

end.

Drotuing

penSize(widthlnteger, heightlnteger) sets the thickness dimen­
sions of the Quickdraw pen. All line drawings and framed shapes
are drawn with a pen thickness as set by penSize.

The initial setting of penSize is (1, 1), its thinnest dimensions. If
either parameter is set to zero or a negative value, the pen will
not draw anything.

MACINTOSH PASCAL ILLUSTRATED

pos

• UCSD Pascal
function

program PenSizeDemo;
begin

frameRect(30, 40, 95, 90);
penSize(5, 2);
frameRect(40, 130, 115, 170);
penSize(2, 5);
frameRect(25, 220, 80, 260);
penSize(4, 4);
moveTo(50, 140);
1ineTo(200, 140);
penNormal;
11neTo(280, 100)

end.

:o Dn1111ing

D D D
/ /

.,,, .. /_,.,./"

121

pos(findString, sourceString) returns an integer corresponding
to the position of findString within sourceString. The integer
corresponds to the n1

h character of sourceString where find String
begins.

The n1
h character of sourceString is determined by the number

of characters preceding the occurrence of the first character of
findString. If findString does not exactly match characters rn
sourceString, the pos function returns a value of zero.

The parameters of the pos function must be a string type.

THE WHIZ KID'S DICTIONARY 285

pred

• Pascal function

286

program PosDemo;
var

s I, s2 : strlng[75);
begin
sl :='Mr. Moss's novel makes Vonnegut read like Melville.';
s2 :='Vonnegut';
writeln(pos(s2, s I));
tnsert('soon to be released·, s I, pos('nover, s 1));
writeln(s I)

end.

TeHt
24

Mr. Moss's soon lo be released novel makes
Uonnegul read I ike Mel vii le.

pred(orderedExpression) returns a value that precedes the value
of the parameter. The parameter must belong to an ordered type.

If the parameter is the first value of an ordered type, the pred
function remains undefined.

See succ for information on the complementary successor func­
tion.

program PredSuccDemo;
begin

writeln(pred(8));
writeln(succ(8));
wri teln(pred('t'));
writeln(pred('B'));
writeln(succ('Q'));
write ln(pred('~'));
write ln(pred(ord('M')));
writeln(ord('M'));
write ln(succ(ord('M')));
write I n(pred(succ('M')))

end.

MACINTOSH PASCAL ILLUSTRATED

procedure

• Pascal reserved
word

-o Te Ht
7
9

:3

A
Fl

$
76
77
76

M

~
'2J

A procedure works like a small Pascal program inserted into a
larger Pascal program. Using procedures to accomplish specific
tasks, makes writing and reading Pascal clearer and easier.

Two important differences distinguish a procedure from a self­
contained program.

First, a procedure cannot run by itself. Statement execution can­
not begin inside a procedure until the procedure name is first
called from outside. A program, on the other hand, will begin
executing its main body on a run command without reference to
the program name.

Second, a procedure can keep its data private from the rest of a
program, exchanging only data that is globally declared or trans­
mitted through its parameters.

A procedure heading has the following format:

procedure name(formal parameters-if any);

Any definitions or declarations should follow the heading in the
same manner as the program heading. These definitions and
declarations are local, and for use only within the procedure.
Following this are the procedure's statements bracketed by begin
and end.

To execute a procedure, the calling statement has this format:

proced ureN ame(values/variables-if any);

THE WHIZ KID'S DICTIONARY 287

288

The name only, without the reserved word procedure, calls the
procedure. The values/variables in parentheses, sometimes called
actual parameters, must correspond in number, type, and position
to the parameters listed in the procedure heading.

Parameters work to exchange data between procedures and the
part of the program from which they are called. The two primary
kinds of parameters are value and variable. Value parameters send
values from the procedure call to the procedure. Variable or var
parameters send variable values (only) back from the procedure
to the procedure call.

Pascal's predefined procedures require only that the procedure
be called using appropriate parameters.

program ProcedureDemo;
var
horiz, vert: integer;

procedure windows;
var
r: rect;

begin
hldeAll;
setRect(r, 20, 50, 490, 320);
setDrawlngRect(r);
showDrawlng

end; (end windows}
procedure title Cs : string);
begin

moveTo(325, 25);
textSlze(18);
wrlteDraw(s)

end;
procedure readMouse (var x, y: Integer);
begin (to demonstate var parameters only}
getMouse(x, y);

end; (end readMouse}
procedure buster Cx, y : Integer);
const
amp= 225;
time= 7;
eyePop = 5;
core= 3;

MACINTOSH PASCAL ILLUSTRATED

<•

var
i : Integer;

procedure sound Ca, t : Integer); (a procedure Inside another procedure)
var

freq : longint;
begin

freq := random mod 30 + I;
freq := freq * I 000;
note(freq, a, t)

end; (end procedure sound)
begin

i := eyePop;
repeat

frameOval(y - core, x - core, y +core, x +core);
sound(amp, time);
lnvertoval(y - I, x - i, y + i, x + I);
i := I + eyePop

until I= 75;
eraseoval(y - I, x - I, y + I, x + I)

end; (end buster)
begin

windows;
tit I e('Mus I cBusters·);
repeat

readMouse(horiz, vertl;
buster(horlz, vert);

unt II button
end. (end ProcedureDemo}

Drnwing

THE WHIZ KID'S DICTIONARY

f1usicBusters

289

program

• Pascal reserved
word

ptlnRect

• Quickdraw
function

290

program must be the first word of every Pascal program. The
format for the first line of every Pascal program is:

program programN ame;

The parameter programName following program cannot be ac­
cessed or reused by any instruction within the program. The name
is required and used only for identification.

ptlnRect(pointName, rectName) evaluates a point type and a rect
type parameter, and returns the boolean result of true if the dot
below and to the right of the coordinate point is enclosed in the
given rectangle. Otherwise the function returns a value of false.

The Quickdraw predefined types point and rect can be assigned
variables using the setPt and setRect procedures, respectively.

program PtlnRectDemo;
var

x, y : integer;
r: rect;
pt: point;

begin
SetRect(r, 50, 50, 150, 100);
FrameRect(r);
MoveTo(65, 77);
WriteDraw('Point Here');
repeat

GetMouse(x, y);
SetPt(pt, X, y);
if PtlnRect(pt, r) then

lnvertRect(r)
until button

end.

MACINTOSH PASCAL ILLUSTRATED

pt2Rect

• Quickdraw
procedure

put

•Pascal
procedure

:D Dra111ing

-
pt2Rect(point1Name, point2Name, varRectname) evaluates two
parameters of type point, and returns the smallest rectangle that
encloses the two points in the variable parameter varRectName.
The result varRectN ame is a variable of type rect.

put(fileName) inserts the value of the buffer variable fileNameA
at the current file position of the file organizer, then advances
the file organizer by one position. If the new position of the file
organizer is beyond the last component of the file, then the value
of fileNameA becomes undefined.

Subsequent calls to the put procedure will insert a component
into the next sequential position of the file. The put procedure
advances itself through a file one component at a time.

To randomly insert a component, that is, without putting values
into all preceding components of the file, first use the procedure
seek. seek uses an integer parameter to directly position the file
organizer anywhere along the numbered file. Then put(fileName)
will insert the value of the buffer variable at the current position
of the file organizer.

put inserts a new file component, then advances the file organ­
izer. In order to read an existing file component, use the file
command get.

program PutDemo; (see GetDemo to read this file}
var

giveName, fileName: string[SO];
Jaime : string[20];
friends : file of string[20];

THE WHIZ KID'S DICTIONARY 291

Quickdraw1
Quickdraw2

• Macintosh units

292

begin
giveName :='type in new file name';
fileName := newF11eName(giveName);
rewrite(friends, fileName);
friends":= 'Charlie';
put(friends);
friends":= 'Kate';
put(friends);
friends":= 'Black';
put(friends);
Jaime:= ·sweet Jaime';
friends· := Jaime;
put(friends);
close(friends)

end.

Quickdraw is a predefined set of procedures, functions, and def­
initions built into the Macintosh circuitry that has been integrated
into the Macintosh Pascal language. For space economy, Mac­
Pascal has divided the Quickdraw library into the two units,
Quickdraw 1 and Quickdraw2.

Quickdraw 1 contains all of Quickdraw except those declarations
involving grafForts, regions, pictures, polygons, bit transfer op­
erations, and customizing Quickdraw operations. Those are in­
cluded in Quickdraw2.

The unit name Quickdrawl may optionally be included in the
uses clause of a program for LisaPascal compatibility, but is un­
necessary in MacPascal because the unit is included automatically.

The unit name Quickdraw2 must be included in the uses clause
immediately following the program heading in order to make
use of its features. The format for this is:

uses Quickdraw2;

The additional memory requirements of Quickdraw2 makes its
use limited on 128K Macintoshes.

MACINTOSH PASCAL ILLUSTRATED

random

• Quickdraw
function

read

• Pascal
procedure

read In

• Pascal
procedure

random returns a single integer from - 32768 through 32767.
The function generates a uniformly distributed pseudorandom
integer.

See mod for an example and information on producing random
numbers between specific boundaries.

The read procedure works similar to readln except that the end­
of-line character will not halt the procedure and advance to the
file's next component.

See readln for more information and an example.

Use readln as a one-step process to access a single component
of a file and assign that component to a variable. The format for
this procedure is:

readln(fileName, componentVar);

If the file organizer fileName is omitted, the file device is assumed
to be the keyboard. In this instance, the program will wait until
input is received from the keyboard.

The readln procedure will access a single component from the
file named in the first parameter, and assign its value to the
variable named as the second parameter.

The same process could be accomplished by the following
statements:

componentVar : = fileNameA;
get(fileName);

The readln procedure should only be used for inputting char or
string variables. Numeric input should be read as a char type,
then converted to a numeric equivilent using the ord function.
Reading numeric input directly makes a program too susceptible

·to error.

The file-type of the file organizer affects the way readln (and
writeln) operate. For nontextfiles, read and write values must

THE WHIZ KID'S DICTIONARY 293

real

• Pascal type

294

be of type char. For textfiles, read and write values can be of
other types, and their values will be translated to and from their
character representations.

read will not recognize an end-of-line mark as will readln. For
this reason, readln is the recommended procedure for reading
strings.

See text for an example of readln with file parameters.

program ReadlnDemo;
var
ch: char;
s : strtng[30);

begin
wrlteln('Type the first letter of your name.');
read(ch);
wrlteln;
wrlteln('Now type your second Initial, then press return.');
readln(ch);
wrlteln('Now type your entire name, then press return.');
readln(s);
wrltelnC'What a coincidence,', s, '. Mr. Moss Is Estonian, too.')

end.

Te Ht
Type the first letter of your name.
w
How type your second in it iol, then press return.
B
Now type your entire name, then press return.
Ei i I I Budge
What o coincidence, Bi I I Budge. Mr. Moss is
Estonian, too.

The name real is used both as a Pascal type and as a category
that includes all four floating-point types.

The type real is one of four predefined real-types for repre­
senting numbers in floating-point notation. The others are double,
extended, and computational.

The purpose of having more than one real-type as options is to

provide the range and precision necessary for a particular pro-

MACINTOSH PASCAL ILLUSTRATED

gram application without being wasteful of computer memory
space. The higher the range and precision, the more memory
space must be allocated.

Any number requiring a decimal point must be expressed as a
real-type. All real-types represent numbers in floating-point no­
tation. In floating-point notation, numbers are expressed as a
power of ten.

The type real can accommodate values in a range from 1. 5 x
10- 45 to 3.4 x 10'8 with precision of 7 to 8 digits.

The real-types double and extended extend the range and precision
of the type real. The type computational is specifically designed
for precise, fixed-decimal place applications such as financial pro­
grams. More information can be found under each real-type
classification.

For arithmetic operations, all real-type values are converted to
type extended, and the results are also type extended. When a real
type value is required, the extended type can be used provided
that the value, when rounded to an integral value, falls within
the range allowed by real.

The procedures write and writeln allow formatting within their
parameter lists to output a real-type value.

writeln(realValue: fieldWidthlnteger :
decimalPlaceslnteger);

program RealDemo;
var
c: real;
d: double;
e : extended;
f: computational;

procedure makeDollar;
var
st: string;

begin
st:= stringOf(f: 18: 2);
insert('$', st, 1);
writeln;
writeln(st)

end;

THE WHIZ KID'S DICTIONARY 295

record

• Pascal reserved
word

296

begin
writeln('Enter any large number Including decimal point.');
readln(e);
c := e;
d := e;
f := e;
writeln;
writeln(c, d, e, f);

writeln;
writeln(c: 18: 2); (:minimum field width,: decimal places)
writeln(d: 18: 2);
writeln(e: 18: 2); (note: MacPascal 1.0 has a decimal place bug when)
writeln(f: 18: 2); (field width parameter is smaller than actual width)
makeDollar

end.

~[TeKt
3918757661209573.1656723

3.9e+l5 3.9e+l5 3.9e+l5 3.9e+l5

3916757766697661,00
3916757661209573.50
3918757661209573.19
3916757661209573.00

$3916757661209573.00

A record is a user-defined type composed of two or more variable
fields each with their own type. A record has the following format:

type recordN ame = record
fi.eldN ame 1 : fi.eldType 1;
fi.eldName2 : fieldType2;
fi.eldName3, fi.eldName4:
fi.eldType3

end;

To use a record, its structure must first be defined in the type
section of a program. Once defined, variables can be declared

MACINTOSH PASCAL ILLUSTRATED

of the record type. Defined types can also be used to define
subsequently listed types.

Use the record type to group together logically associated vari­
ables. These variables, or fields, can be accessed individually or
as a whole.

Individual fields are accessed by referencing a variable of type
recordName, then the name of the record field. The variable and
field must be separated by a single period.

A field of a record can be another record. To reference fields of
the imbedded record, append its fieldName onto the reference
of the outer field, once again separated by a single period.

Record fields may also be referenced using the reserved word
with. See with for more information.

The purpose of giving variables a record structure is to provide
programming clarity. The record type works like a suitcase, hold­
ing together chosen belongings and offering a handle-the
recordName-to make traveling easier.

program RecordDemo;
type
album= record

artist: strlng[SO];
title : strlng[SOJ;
year : Integer;

end;
var
Bruce4: album;

procedure lnlt;
begin
Bruce4.artlst := 'Bruce Springsteen';
Bruce4.tltle :='Darkness on the Edge of Town';
Bruce4.year := 1978;

end;
procedure display;
begin

wrltelnC'Press button for Springsteen facts.');
repeat (wait until button Is pressed)
until button;
write In;
wrlteCBruce4.artlst, "s fourth album, "', Bruce4.tltle);
wrlteln('," states that It's not a sin to be glad you're alive.');

end;

THE WHIZ KID'S DICTIONARY 297

repeat..until

• Pascal reserved
word

298

begin
tnit;
display

end.

=o Te Kt
Press button for Springsteen facts .

Bruce Springsteen ' s fourth album, "Darkness on
the Edge of Town," states that it's not cl s in to
be glad you ' re alive.

repeat .. until creates a loop that will perform an action one or
more times, stopping only when the boolean expression following
the word until is true. The repeat loop takes the following
format:

repeat
statement

until booleanExpression

Since the loop's stopping mechanism-the boolean expression­
comes after the statement action, the repeat loop will always
perform the specified action at feast one time.

This contrasts with the while loop whose stopping mechanism
comes before the statement action. The while loop may never
perform its action if its boolean expression never has a true value.

Because the word repeat indicates the beginning of the loop and
until indicates the end of the loop, the reserved words begin
and end are not needed to bracket an action of more than one
statement.

MACINTOSH PASCAL ILLUSTRATED

reset

• Pascal
procedure

program RepeatDemo;
procedure arcAround;
const

arclen = 15;
arcJump = 55;
spins= 8;

var
x, y, arcA, revolve : integer;

begin
getMouse(x, yl;
arcA := O;
revolve := O;
repeat

frameOval(y, x, y + 70, x + 70);
invertArc(y, x, y + 70, x + 70, arcA, arclen);
arcA := (arcA + arcJump);
If arcA >= 360 then
begin

arcA := arcA - 360;
revolve:= revolve+ 1

end
until revolve= spins

end;
begin
repeat

arcAround
untl I button

end.

Drawing

Use reset to open an existing file before any reading or writing
operation on a sequential file. The format for reset is :

reset(fileName, deviceName);

THE WHIZ KID'S DICTIONARY 299

300

The file organizer fileName represents all of the components con­
tained in the datafile on the external device deviceName.

After a file is opened with reset, the file organizer is always
positioned at the first component, number 0. The file organizer's
current component can be read or written to through the buffer
variable fileName A.

All subsequent access to a file opened with reset must be done
sequentially, one component at a time. For random access to a
file's components, the open procedure must be used to create
and open the file.

Opening a file with reset will not affect the file's contents. Open­
ing a file with rewrite will erase its contents . Use rewrite only
to open a new file.

program ResetDemo; (ResetDemo's fl le was created In RewriteDemo}
var
i: integer;
fileName: strlng[SO];
treasures : array[0 .. 5] of strlng[SOJ;
treasureFlle : text;

begin
fileName := oldFileName('select file name');
reset(treasureFile, fileName);
for I := o to 5 do
begin

readln(treasureFlle, treasures[I]);
write ln(treasures[i])

end;
c 1 ose(treasureF i 1 e)

end.

~o Te Ht
Life ' s treasures according to Mr . Moss: jbt
hea I th
divePsion
friends
intimacy
chi I dren

MACINTOSH PASCAL ILLUSTRATED

rewrite

• Pascal
procedure

Use rewrite to open a new file before any reading or writing
operation on a sequential file. If the parameter for rewrite spec­
ifies a file that already exists, the file's contents will be erased.
The format for rewrite is:

rewrite(fileName, deviceName);

The file organizer fileName represents all of the components con­
tained in the datafile on the external device deviceName.

After a file is opened with rewrite, the file organizer is always
positioned at the first component, number 0. The file organizer's
current component can be written to through the buffer variable
fileName'.

All subsequent input to a file opened with rewrite must be done
sequentially, one component at a time. For random access to a
file's component positions, the open procedure must be used to
create and open the file.

Use rewrite only to open a new file. All files opened with rewrite
are empty regardless of their prior contents. To open an existing
file without destroying its contents, use reset.

program RewrlteDemo; (See ResetDemo to read this file}
var
i: integer;
flleName: strtng[SOJ;
treasures : array[0 .. 5] of strtng[SO];
treasureFile : text;

begin
flleName := newFileName('type In new file name');
rewrlte(treasureFlle, flleName);
treasures[OJ :='Life's treasures according to Mr. Moss:';
treasures[I):= 'health';
treasures[2] := 'diversion';
treasures[3] := 'friends';
treasures[4] :='Intimacy';
treasures[SJ := 'children';
for I:= Oto 5 do
wrl te ln(treasureF Ile, treasures[I]);

close(treasureF I le)
end.

THE WHIZ KID'S DICTIONARY 301

round

• Pascal function

SANE

• Macintosh unit

302

Use the function round(realNumber) to return the integer clos­
est in value to the real number parameter.

If the real number is exactly between two integers-the fractional
part of the real number equal to 0. 5-then positive reals are
rounded to the higher integer and negative reals are rounded to

the lower integer.

The round function returns an integer-type.

program RoundDemo;
begin

write 1n(round(3. 7));
write ln(trunc(3. 7));
writeln(round(89.S));
writeln(trunc(89.5));
writeln(22 I 7);
writeln(round(22 I 7));
writeln(trunc(22 I 7));
writeln(22 div 7);
writeln(22 mod 7)

end.

D
4
3

90

59

3. I e+O
3
3
3
I

Te Ht

SANE is the name of a predefined unit offering extended math­
ematical procedures and functions. It is an acronym for Standard
Apple Numeric Environment.

The SANE unit can be included in a program by including this
declaration below the program heading: uses SANE;. The fea­
tures of SANE are described in the Macintosh Pascal Reference
Manual.

MACINTOSH PASCAL ILLUSTRATED

saveDrawing

•Toolbox
procedure

SANE also refers to the arithmetic methodology used throughouL
MacPascal. This intrinsic use of SANE requires no uses declaration.

See uses for more information and an example.

Use saveDrawing(fileName) to save the contents of the Drawing
window as a picture file. The picture file then can be accessed
by MacPaint.

The parameter fileName is a string containing the name of the
picture file to be created. The file will replace any existing file
with the same name.

If the current Quickdraw grafPort has been changed from the
default Drawing window grafPort, saveDraw will save the cur­
rent grafPort instead of the Drawing window.

program SaveDrawingDemo;
begin

paintoval(15, 15, 125, 350);
saveDrawing('MacPascalToMacPaint')

end.

Drowing

THE WHIZ KID'S DICTIONARY 303

seek

• UCSD Pascal
procedure

304

,,_ {/

D R
OB
o•

Mac:PascalToMac:Paint

Use seek to position the file organizer at a specified component
number of a random access file. The format for seek is :

seek(fileName, componemNumber);

When a random access file is opened with the open procedure,
the current position of the file organizer is the first component,
number 0. seek offers direct access to a particular component
by advancing the file organizer componentNumber positions from
the beginning of the file.

Once the file organizer has been positioned, the buffer variable
fileName ' can be used to insert a component into the file or read
a component from the file.

If the file organizer is positioned at or before the last component
of the file, the value of fileName ' becomes the value of the current
component. If the file organizer is positioned beyond the last

MACINTOSH PASCAL ILLUSTRATED

component of the file, the value of fileName · is undefined, and
eof(f) becomes true.

seek requires two parameters. The component number must be
a positive integer.

program SeekDemo; [run OpenDemo to create the file read here)
const
empty=";

var
note : integer;
fileName: strlng[50);
mossNote : array[0 .. 20) of string;
mossNoteFile: file of string;

begin
fileName := oldFtleName('select the file to read');
open<mossNoteFi le, f i leName l;
write ln(mossNoteFi le·);
writeln;
wrlteln('Choose a note number (3, 5, 8, 11, 13, 161.' l;
readln(note l;
writeln;
lfnoteln[3,5,8, 11, 13, 16)then
begin

seek(mossNoteFile, note);
write('•', filepos(mossNoteFilel : 2, · '); [write out the file number)
write ln(mossNoteFi 1e·i

end
else

writeln('Sorry;but Twila says you didn't type 3, 5, 8, 11, 13, or 16.');
close(mossNoteFi le)

end.

Te Ht
From Mr. Moss ' s purple notebook:

Choose a note number [3, 5, 8, 11 , 13, 16) ,
6

• 8 Don ' t skimp on tires or shoes--they connect
you to earth.

THE WHIZ KID'S DICTIONARY 305

set of

• Pascal reserved
word

306

A set is a group of values belonging to the same type. set of
establishes a user-defined Pascal type composed of a group of
values. The individual members of a set must be of an ordered
type. The format for set of is:

type
typeName = set of orderedType;

In MacPascal, the values of orderedType must be in the range
-8192 to 8191.

After a set has been defined, variables can be declared of the set
type. Within a program, a variable of a set type can be assigned
any value that is a member of the set.

Notation for individual members of a set requires square brackets.
An inclusive list of set members can be shortened by using two
dots [.. } between the boundary members.

Sets may be evaluated using the relational expressions =, < =,
> = , < >, and in.

Sets can also be used arithmetically. The union of two sets, con­
taining all members of both sets, is obtained using the plus sign
(+). The difference of two sets, containing all members of the
first set that are not members of the second set, is obtained using
the minus sign (-). The intersection of two sets, containing only
members of the first set that are also members of the second set,
is obtained using the multiplication sign (*).

program SetDemo;
type
keys = set or char;

var
fineletter: keys;
chl : char;

function checkChar (fineKey: keys): char;
var

fine: boolean;
ch: char;

MACINTOSH PASCAL ILLUSTRATED

setDrawingRect

• Toolbox
procedure

begin
repeat

ch := input·;
get(input);
fine := ch In fineKey;
If not fine then
sysBeep(5)

else
write(ch)

untl I fine;
checkChar := ch

end;
begin

fineletter := ['a'..'z', 'A'..'Z'];
writeC'The keyboard will only accept a letter or Return.');
write(' Try typing a number or punctuation mark.');
write(' Only letters will appear on screen.');
writeln(' The Return key wi 11 end the program.');
writeln;
repeat

ch I := checkChar(fineLetter)
until eoln

end.

·o Tettt
The keyboard wi I I only accept a letter or Return. IQ!
Try typing a number or punctual ion mark . Only
letters wi I I appear on screen. The Return key
wi I I end the program.

MarthaOoYouUantToGoForAUalkOrSomething

Use setDrawingRect(windowRect) to establish the position and
size of the Drawing window on the Macintosh screen. Note that
setDrawingRect does not actually display the window. Use the
showDrawing procedure to display the Drawing window.

The value of windowRect is of type rect. See setRect for infor­
mation on creating a variable of type rect.

THE WHIZ KID'S DICTIONARY 307

308

program SetDrawingRectDemo;
procedure doDrawtng;
var

drWtndow : rect;
begin

setRect(drWtndow, 30, 50, 475, 200);
setDrawtngRect(drWlndowl;
show Drawing;
paint0val(20, 10, 120, 400);
invert0val(40, 60, 100, 350)

end;
procedure do Text;
var

txWtndow : rect;
begin

setRect(txWindow, 150, 240, 500, 320);
setT extRect(txWindow l;
showText;
wrtteln('Above is an artist's conception of a bathtub ring.')

end;
begin

hldeAll;
doDrawtng;
do Text

end.

::O

Drawing

Above is an artist ' s conception of a bathtub
ring .

MACINTOSH PASCAL ILLUSTRATED

setPt

• Quickdraw
procedure

setRect

• Qulckdraw
procedure

setTextRect

•Toolbox
procedure

setPt(pointName, horizlnteger, vertlnteger) assigns the hori­
zontal and vertical integer coordinates to the variable pointName.
pointName is of the Quickdraw type point.

Most Quickdraw procedures involving points require coordinates
to be expressed as type point rather than two integers. The setPt
procedure performs this task.

See addPt or ptlnRect for an example.

setRect(rectName, leftlnteger, toplnteger, rightlnteger,
bottomlnteger) assigns the four side or boundary coordinates to
the variable rectName. rectName is of the Quickdraw type rect.

Rectangles, rounded'-corner rectangles, ovals, arcs, and wedges
are drawn within a rectangle's coordinates. The coordinates can
be assigned to a single variable of type rect using setRect. The
variable rectName can then be used as the single parameter nec­
essary to define a rectangle.

The alternative to using setRect is to insert the four boundary
integers of a rectangle directly into the particular procedure's
parameter list.

The use of setRect and the rect variable to define a rectangle
makes no significant difference in code size or execution speed
than its four integer counterpart, however, the rect variable is
easier to write and manipulate.

See frameRect for an example.

Use setTextRect(windowRect) to establish the position and size
of the Text window on the Macintosh screen. Note that set­
TextRect does not actually display the window. Use the showText
procedure to display the Text window.

The value of windowRect is of type rect. See setRect for infor­
mation on creating a variable of type rect.

See setDrawingRect for an example.

THE WHIZ KID'S DICTIONARY 309

setTlme

•Toolbox
procedure

showDrawing

•Toolbox
procedure

showText

•Toolbox
procedure

sin

• Pascal function

sqr

• Pascal function

310

setTime(recordName) sends date and time information to the
Macintosh system clock. The parameter of setTime is of record
type.

The setTime procedure sends data to the system clock through
its value parameter. The getTime procedure receives data from
the system clock through its var parameter.

See getTime for the type definition of dateTimeRec, the record
used by both setTime and getTime.

Use showDrawing to display the Drawing window on the Ma­
cintosh screen. showDrawing makes the Drawing window the
active window. The procedure has no parameters.

The position and size of the Drawing window are unaffected by
showDrawing. Use the setDrawingWindow procedure to es­
tablish the window's position and size.

See setDrawingRect for an example.

Use showText to display the Text window on the Macintosh
screen. showText makes the Text window the active window.
The procedure has no parameters.

The position and size of the Text window are unaffected by
showText. Use the setTextWindow procedure to establish the
window's position and size.

See setTextRect for an example.

sin(expression) evaluates a single real or integer angle parameter
expressed in radians, and returns a real value corresponding to
the angle's sine.

sqr(expression) evaluates a single real or integer parameter, and
returns the square of the parameter, expressed in the same type.

MACINTOSH PASCAL ILLUSTRATED

sqrt

• Pascal function

string

• Pasal reserved
word

program SqrDemo;
const
pi= 3.1416;

begin
writeln(sqr(9));
writeln(sqrt(9));
write ln(round(sqrt(9)));
writeln(sqr(6.81));
writeln(sqrt(43.26ll;
writeln(sqrt((15 + 5) I 5));
writeln('area =', round(sqr(7.2) *pi))

end.

;;0
61

3.0e+O
3

1 .6e+1
6.6e+O
2.0e+O

area = 1 l'.>3

Te Ht

sqrt(expression) evaluates a single real or integer parameter, and
returns the square root of the parameter, expressed as a real
number. The parameter cannot be less than zero.

See sqr for an example.

string is a predefined type whose members are a sequence of
characters. Each string type has a declared length, stated in brack­
ets, equal to the maximum number of characters a variable of
that type can contain. The format for the string type is:

string [integer};

The specification of a string length can range from 1 to 255 . If
the length specification is omitted, a default length of 2 5 5 is
assigned .

THE WHIZ KID'S DICTIONARY 311

stringOf

• MacPascal
function

312

Variables of a declared string type can be any number of char­
acters up to and including the length specification. The exact
length of a variable will be returned by the integer function
length(stringVariable).

A null string has no characters and has a length of 0. A null string
is notated by two consecutive single quotation marks ["}.

The size of a string, different from the length, can be used to
compare strings. Size comparisons are evaluated by the ordinal
value of the first pair of nonidentical characters. If a shorter string
has identical characters to the beginning of a longer string, the
longer string is evaluated as larger. Two strings must have the
same characters and the same length to be considered equal.

Strings can be manipulated using the following procedures and
functions: concat, copy, delete, include, insert, length, omit,
pos, and stringOf. See each classification for more information
and string examples.

stringOf(writeVariable) returns its parameter as a string-type
value. The function works like the write procedure except that
instead of displaying its parameter on the screen, stringOf re­
turns the characters of the parameter as a string value.

Like the parameter of a write procedure, the parameter of stringOf
can include colon modifiers. Colon modifiers specify, in order,
minimum field width and number of decimal places. The format
for stringOf with colon modifiers is:

stringOf(writeVariable : fieldWidthlnteger:
decPlacelnteger);

Colon modifiers are explained in more detail in Chapter 25 of
Part 2.

Unlike the write procedure, stringOf does not allow for a file
parameter. The function returns a string-type value only to the
program. The function's parameter can be an integer-type, real­
type, char-type, string-type, packed-string-type or enumerated­
type.

MACINTOSH PASCAL ILLUSTRATED

sub Pf

• Quickdraw
procedure

succ

• Pascal function

The primary reason for converting other types into a string value
is to take advantage of numerous string functions and procedures
that test and manipulate the characters of a string.

program StringOfDemo;
var
dollar: longint;
stDollar: string[1 OJ;

begin
dollar:= 81572;
stDollar := stringOf(dollar: 5);
insert('.', stDollar, length(stDollar) - 1);
insert('$', stDollar, I);
wrlteln(stDollar)

end.

,$615.72
i

I

subPt(sourcePoint,destinationPoint) changes the coordinates of
destinationPoint by subtracting their value by the coordinates of
sourcePoint. The procedure returns with a new value of
destinationPoint.

Both parameters of subPt are of the Quickdraw type point. See
setPt for more information on type point.

See addPt for an example.

succ(ordered Expression) returns a value that succeeds-that is,
follows-the value of the parameter. The parameter must belong
to an ordered type.

If the parameter is the last value of an ordered type, the succ
function returns undefined.

See pred for information of the complementary predecessor
function and an example of both.

THE WHIZ KID'S DICTIONARY 313

sysBeep

• ToolBox
procedure

text

• Pascal type

314

sysBeep(durationlnteger) produces a simple square-wave tone.
The integer parameter determines the amount of time the tone
lasts.

A durationlnteger value of 45 lasts approximately 1 second as
does each increment of 4 5. A value of 90 lasts about 2 seconds,
and so on. The sound produced by a single call to sysBeep fades
within 5 to 6 seconds, so parameter values greater than 360 leave
a silent gap.

The square wave produced by sysBeep is the same one produced
when the Macintosh is turned on.

See note for additional sound capability.

program SysBeepDemo;
var

i : integer;
begin

for i := O to 45 do
begin

sysBeep(i);
write(t ickCount)

end
end.

::o Te Ht
3825 3897 3903

3911 :1954 3969 3984
1038 4059 4081 4102
41B2 4212 4244 4277
4371 4405 4440 1477
4594 4637 4684 4726
4869 4923 4976 5029
5193 5257 5318 5377

3910 3917 3928
4000 40 17
4127 4152
4306 4340
4514 4551
4771 4816
5081 5138

~

~

text is a predefined file type whose components are characters
organized into lines. Files of this kind are called textfiles. The
organization into lines makes textfiles unique; however, in most
instances, a file of type text resembles and responds like a file
of char.

MACINTOSH PASCAL ILLUSTRATED

The eoln function can be used in conjunction with textfiles to
test for the end-of-line character. The return key issues an end­
of-line character.

Non-textfiles can be created using the declaration file of
componentType. See file of for more information on these file­
types.

Files to be sent to a printer must be declared to be of type text.
The standard file input associated with the Macintosh keyboard
and the standard file output associated with the Macintosh screen
are textfiles.

Specialized input and output tasks using a text file parameter are
discussed in the Macintosh Pascal Reference Manual.

program TextDemo;
var

s 1, s2 : string;
sense : text;

procedure toPrinter;
begin

rewrite(sense, 'printer:'); (open printer to receive text file)
writeln(sense); (send a 11ne feed to straighten paper}
write(sense, chr(27), "c', chr(27), 'p'); (set printer to standard style)
writeln(sense, s 1); (write text on printer paper}
writeln(sense, s2);
close(sense);

end;
procedure toDisk; (disk write and read}
begin

rewrite(sense, "MacPascal 1.04: senseData'); (open disk to receive text)
writeln(sense, s 1, s2); (write text on disk}
close(sense);
reset(sense, 'MacPascal 1.04: senseData'); (open disk to read text}
readln(sense, s2, s 1); (read text from disk}
writeln(s2, s 1); (display text in text window}
close(sense)

end;
begin
sl :='Sight and sound are tons of fun, and only touch can keep your';
s2 :='soul warm, but smell and taste tell you when you are in love:;
toPrinter;
toDisk

end.

THE WHIZ KID'S DICTIONARY 315

textFace

• Quickdraw
procedure

316

D Te Ht
Sight and sound are tons of fun, and only touch ~
can keep your soul warm , but smel I and taste
tel I you when you are in love.

textFace([styleName}) sets the style for text written in the Draw­
ing window. The seven predefined styles are: bold, italic, under­
line, outline, shadow, condense, and extend.

The style name parameter must be enclosed in brackets.

More than one style can be implemented at the same time. The
format for setting more than one style is:

textFace([styleName 1, styleName2});

The initial or normal style setting is obtained using empty brack­
ets: textFace([}) .

program TextFace;
type

face= (bold, italic, underline, outline, shadow, condense, extend);
var

i, x, y : integer;
style : face;

begin
y := 20;
for i :=Oto 5 do

begin
x := 5;
textFont(i); [default textSize is 12)
for style:= bold to extend do
begin

textFace([stylell;
moveTo(x, yl;
writeDraw('Hi Mom');
x := x + 65

end;
y := y + 40

end
end.

MACINTOSH PASCAL ILLUSTRATED

textFont

• Qulckdraw
procedure

~o Drawing

HI Mom HiMom HIMom IIJO ll:i'lm!ID IDB IMl!!JWJ HI Mom HI Mom

Hi Mom /-II !torn Hi Mom !MIU 111l®llllll 000 ll!IWllD Hi t1om Hi t1orn

Hi Mom H1 M1'm !ii..MQm lmlti& Ill i1fi1lm Hi Morn H1 Mom

Hi Mom /-II /'!tmJ Hi tlorn oou 111l@llllll 000 INWllD Hi Morn Hi t1orn

Hi no. Ill lit>~ li.U1.run OOH llll®lill IDI lllH Hi Mom Hi Mom

Ki1'om ff.i ff.urn Kil1ilm rfil. m-(l'm". er. mm» Hi.'.11om 'ttt. '.l'totn

12!

textFont(integer) sets the font for text written in the Drawing
window. The system font is the initial setting represented by 0.

Five different fonts are available, numbered 0 through 5.
textFont(l) and textFont(3) are identical. Paramaters over 5
will default to setting 1.

The names and point sizes of the fonts on the Pascal disk are as
follows:

#0 Chicago (system font)-12 pt.
#1 Geneva (program window)-9, 12, 18 pts.
#2 Monaco (text window)-9, 12 pts.
#3 (same as #1)
#4 New York-12 pt.
#5 Venice-14 pt.
#6... (default to # 1)

THE WHIZ KID'S DICTIONARY 317

318

The New York and Venice fonts can be removed, and other
fonts added, with the Font Mover utility program supplied with
Macintosh.

program TextFontDemo;
var

i, p: integer;
begin
for i :=Oto 6 do
begin

textFontCO;
p := 9;
repeat

textSize(p);
moveTo(p * p - 75, i * 30 + 30);
If p = 9 then
p := p + 3

else
p := p + 2;

writeDraw('Yes No');
until p = 22

end
end.

:o
~ ... No Yes No Yes No

~·es No 'v'es No Yes No

T...r. J.t. Yes No Yes No

Yes N" \les No Yes lfo

Ves No Yes Ho "les No

"'*No Yes No Yrs No

Y•s No Ves No Yes No

Drawing

Yes No

Yes No

Yes No

Yes r·,Jo

Yes lfo

Yl?S '.No

Yes No

Yes Na '/es No
Yes No Ye:; ~\lo

Yes No Ye-s No
Yes ~·Jo Yes No

Ves tfo 1ies Mo
y~sNo ~JES No
Yes No Ye:; t'~D

MACINTOSH PASCAL ILLUSTRATED

~

textMode

• Quickdraw
procedure

textSlze

• Qulckdraw
procedure

then

• Pascal reserved
word

tickCount

• Toolbox function

to

• Pascal reserved
word

textMode(modeName) determines how text will write over the
current contents of the Drawing window. The names for text
modes are: srcOr, srcXor, and srcBic.

The initial setting for textMode is srcOr.

See penMode more information on transfer modes.

textSize(integer) sets the size of text in the Drawing window.
The integer parameter corresponds to the font's point size with
one exception: a parameter of 0 will select the initial system font
size of 12 point.

Any size can be selected. However, if Quickdraw does not have
the font in the selected size, the nearest size will be scaled. This
could result in funny looking letters. An even multiple of an
available size for the font produces the best approximation.

See textFont for a listing of available fonts and point sizes, and
an example.

then precedes the action statement(s) as part of the if..then
statement. See if .. then for more information and an example.

tickCount returns a longint value representing the elapsed time,
in sixtieths of a second, from the moment the Macintosh system
starts to the moment it encounters the tickCount function.

See sysBeep for an example.

to separates the two boundary expressions that determine the
number of repetitions to be performed in the for .. to .. do loop.
See for .. to .. do for more information.

THE WHIZ KID'S DICTIONARY 319

true

• Pascal constant

trunc

• Pascal function

type

• Pascal reserved
word

320

true is one of two predefined values of type boolean. Boolean is
an enumerated type whose members are the ordered constants
false and true.

type
boolean = (false,true);

The written output of a boolean expression will be the word false
or true. See the boolean function odd for an example.

trunc(expression) evaluates a single real parameter, truncates the
fractional part of the expression, and returns the integer part. By
removing the portion of the expression less than one, trunc
rounds a real number to the nearest integer toward 0.

trunc will also return an integer type when the given parameter
is a longint type.

See round for an example.

type works like a generic classification. Pascal requires that data
be identified by type. A type can be predefined or user-defined.

The reserved word type begins a definition section of a program.
A user-defined type takes the following format:

type
typeName = typeValue;

Below are the types in their categories. Predefined types are in
italics.

1. simple type
a. ordinal or ordered type

1) integer
2) long integer
3) boolean
4) char
5) enumerated type
6) subrange type

b. real type

MACINTOSH PASCAL ILLUSTRATED

unpack

• Pascal
procedure

2. structured type
a. array type
b. set type
c. record type
d. file type

1) fileName type
2) text

e. string type

3. pointer type

The user-defined types-enumerated, subrange, and struc­
tured-can be defined either in a type declaration or directly in
the var declaration.

An enumerated type is an ordered list between parentheses with
each component separated by a comma. The components of an
enumerated type can take any name and their order is sequential,
beginning at 0, according to the position each occupies in the
list.

A subrange type consists of two constants separated by two dots
(..).The components of the subrange include both constants and
all ordered values between those constants.

A pointer type is used in advanced programming. Appendix A
presents information on pursuing advanced topics.

Simple and structured types are explained separately under their
own classifications.

See set, textFace, and with for examples of programs using type
declarations.

unpack(packedName, arrayName, index) transfers the contents
of the packed array packedName to the ordinary array array­
Name, starting at the index'h position of array Name.

See packed and pack for more information.

THE WHIZ KID'S DICTIONARY 321

until

• Pascal reserved
word

uses

• Pascal reserved
word

322

until precedes the boolean expression of the repeat .. until loop.

When the expression is false, the program execution loops back
to repeat the action statement(s). When the expression is true,
the loop stops repeating, and program execution continues at the
statement following the until expression.

See repeat .. until for more information and an example.

uses is the heading of a definition part of a program which allows
separate and distinct sections of Pascal program code, called units,
to be accessed. The host program does not contain the unit's
code. The uses declaration automatically inserts the unit into
memory.

In MacPascal, the only available units are predefined. Other ver­
sions of Pascal allow the user to create units.

Units work like libraries of code. They contain Pascal subpro­
grams that are too bulky to have around all the time, but are
available when you need them.

The uses clause must be placed immediately following the pro­
gram declaration. The format to use MacPascal's predefined units
1s:

uses
unitName;

MacPascal's units are Quickdraw2 and SANE. Quickdraw2 offers
extended graphic capabilities. SANE offers an extended math­
ematical environment.

Technically, Quickdraw 1 is also a unit; however, programs do
not need to declare Quickdraw 1 in a uses clause. Because the
basic graphic instructions are used so often in Macintosh pro­
gramming, the Quickdraw 1 unit has been automatically inserted
into all MacPascal programs and works as if it is part of the Pascal
language.

See the Macintosh Pascal Reference Manual for more information
on using Quickdraw2 and SANE.

MACINTOSH PASCAL ILLUSTRATED

var

• Pascal reserved
word

program UsesDemo;
uses

SANE; (example of the financial compound function)
var

i, rate, periods : extended;
begin

rate := 0. 14; (compounded interest: $100 for 8 years at 14%)
periods := 8;
i := 100 * compound(rate, periods); ((1 + 0.14) to the power of 8)
writeln('$ ', i : 1 : 2)

end.

Te Ht
$265 .26

var (short for variable) is the heading of a declaration section of
a program or program block. A variable is a name given to a
particular type of data. The name can l"epresent a variety of
changing values, as long as each value belongs to the declared
generic type.

The format for var is :

var
variableName : type;

The var declaration can be used globally, below the program
heading, to make the variable recognized throughout the pro­
gram, or locally, within a procedure or function, to make the
variable recognized only within that block.

The reserved word var also identifies variable parameters. A var
parameter takes a value from within a procedure, and returns
the value to a variable outside the block. The use of var param­
eters instead of global variables can enhance a program's effi­
ciency in terms of memory space and modular clarity .

The format for a var parameter is:

procedure procedureName(var variableName : type);

THE WHIZ KID'S DICTIONARY 323

while .. do

• Pascal reserved
word

324

More than one var parameter requires only that the additional
variableName(s)--:and type if different-be included, separated
by a comma. var parameters must be separated from value (un­
titled) parameters by a semicolon.

Examples of var can be found in almost all program examples.

while .. do creates a loop that will perform an action only if, and
as long as, the boolean expression following the word while is
true. The format for the while loop is:

while booleanExpression do
statement

If the action of the loop contains multiple statements, the state­
ments must be bracketed by begin and end.

Since the loop's stopping mechanism-the boolean expression­
comes before the statement-action, the while loop might never
perform its action if its boolean expression never has a true value.

This contrasts with the repeat loop, whose stopping mechanism
comes after the statement-action. The repeat loop will always
perform the specified action at least one time before it: encounters
the stopping mechanism.

program WhileDemo;
var

drWindow: rect;
procedure drawScreen;
begin

hideAll;
setRect(drWindow, 50, 50, 466, 326);
setDrawingRect(drWindow);
showDrawing

end;
procedure bop;
var

x, y, offset: integer;
pt: point;
r: rect;

MACINTOSH PASCAL ILLUSTRATED

with

• Pascal reserved
word

begin
offset := O;
getMouse(x, y);
setPt(pt, x, y);
loca 1T oG loba l(pt);
while ptlnRect(pt, drWindow) and (offset < 75) do
begin

setRect(r, x - offset, y - offset, x + offset, y + offset);
lnvertRect(r);
offset := offset + 3

end
end;

begin
draw Screen;
while not button do

bop
end.

Drowing

111111
11

111111

with works as a shortcut method of accessing the fields of a
record. The format for the with statement is :

with recordN ame do
begin

fi.eldN ame 1 statement;
fieldN ame2 statement

end;

THE WHIZ KID ' S DICTIONARY 325

326

The statements between begin and end can reference the fields
of the record without needing to specify the recordName. The
period notation (recordName.fieldName) is not necessary be­
cause the with statement automatically attaches the recordName
before the fieldName.

More than one recordName can be in the with .. do statement
by separating each with a comma: with recordNamel,
recordName2 do. This replaces the need for period notation
(recordN ame 1.recordN ame2 .fieldN ame) in situations where rec­
ords are nested within other records.

When more than one recordName is included in the with state­
ment, the innermost, or latter recordName has precedence and
is the first name attached to a field reference.

See record for information on records and their fields.

program WlthDemo;
type

song = record
name : strlng[SO];
time: Integer

end;
album= record

artist : strlng[SO];
title: strlng[SO];
year : Integer;
track : array[I .. 12] or song

end;
var

Bruce 1 : album;
procedure lnlt;
begin

with Brucel do
begin
artist :='Bruce Springsteen';
title:= 'Greetings from Asbury Park';
year := 1972;
track[1].name := 'Splrl t In the Night';
track[IJ.ttme := 225;
track[2J.name :"'Lost In the Flood';
track[2J.tlme := 410

end
end;
procedure display;

MACINTOSH PASCAL ILLUSTRATED

write

• Pascal
procedure

write Draw

•Toolbox
procedure

begin
writeln('Press button for Springsteen facts.');
repeat [watt until button is pressed)
untl I button;
wrtteln('His first album, ··, Bruce I.title, '," came out in·, Bruce I.year, '.');
wrtteln('Press button for Mr. Moss-Springsteen trivia.');
while not button do [alternative watt for button)

write(' At a 1973 Ph11adelph1a concert, on a request by Mr. Moss,');
wr1teln('Bruce played··, Bruce1.track[2].name, '."')

end;
begin

init;
display

end.

:o Te Ht
Press button for Springsteen facts.
His first albu~, Greetings from Asbury Park came out in
1972.
Press button for Mr. Moss -Springsteen trivia.
Al a 1973 Philadelphia concert, on a request by Mr. Mos s ,
Bruce played Lost in the Flood.

The write procedure works similar to writeln except that the
end-of-line character will not halt the procedure and advance to
the file 's next component.

See writeln for more information and an example.

Use writeDraw to insert text into the Drawing window.
writeDraw works like write except that no file parameter is
allowed. The format for writeDraw is:

writeDraw(write Variable);

If there is more than one parameter, they must be separated by
commas. Variables must be one of the following types : integer,
real, char, string, or enumerated. At least one parameter must be
included.

THE WHIZ KID'S DICTIONARY 327

writeln

• Pascal
procedure

328

The parameter of writeDraw can include colon modifiers. Colon
modifiers specify, in order, minimum field width and number of
decimal places. The format for using colon modifiers is the same
as with the writeln procedure. See writeln for more information.

writeDraw inserts text at the current pen position, drawn in the
pen's current size, mode, and pattern.

See textFace or textFont for an example.

Use writeln as a one-step process to insert a single component
to a file, or in its simplest form, to display an output expression
on the Macintosh screen. The format for writeln is:

writeln(fileName, componentVar);

If the file organizer fileN ame is omitted, the file device is assumed
to be Macintosh screen. In this instance, the writeln output will
be displayed on screen rather than inserted into a datafile.

The writeln procedure will insert the single component named
in the second parameter into the file named in the first parameter.

The same process could be accomplished by the following
statements:

fileNameA : = componentVar;
put(fileName);

The file-type of the file organizer affects how writeln (and readln)
operate. For non-textfiles, read and write values must be of type
char. For textfiles, read and write values can be of other types,
and their values will be translated to and from their character
representations.

The output parameter (componentVar) of writeln can include
colon modifiers. Colon modifiers are useful in formatting output
such that it occupies a specific number of character spaces, and
that real-type values are displayed in decimal point form rather
than floating-point notation.

MACINTOSH PASCAL ILLUSTRATED

Colon modifiers specify, in order, minimum field width and num­
ber of decimal places. The format for using colon modifiers is:

writeln(outputExpression : fieldWidth : decimalPlaces)

Both fieldWidth and decimalPlaces must be integer values. A
decimal place parameter cannot be used without a field width
parameter, though fieldWidth can be used without decimalPlaces.

See text for an example of writeln with file parameters. See
Chapter 25 in Part 2 for more information on colon modifiers.

program WritelnDemo; (to create the dedication page)
var
i: integer;
s: array[1 .. 6) of string[80];

procedure thanks;
begin
s[I] :='Michael Cermak, who knows lots about friendship.';
s[2] :='Carol, Gary, Ruth, and Mason, who know lots about family.';
s[3] :='Amanda Hixson and Alan Goldstein, who know lots about books.';
s[4] :='Mr. Moss's girlfriend, who knows lots about Mr. Moss.';
s[SJ :='And the person to whom this book Is dedicated: ';
s[6] :='Andy Hertzfeld, who knows lots about lots.'

end;
begin

thanks;
writeln;
wrlteC'Wlthout the help of the following people, the Fear and');
writeC'Loathing Gulde would have been entirely possible, but');
write('their generosity and talent allowed Mr. Moss');
write('to goof off, hang out, play with his girlfriend, and feel ');
writeln('damn good about being alive.');
write In;
for i := I to 6 do
begin

writeln(s[1]);
ifi=4lhen
write In

end
end. (See dedication page for output}

THE WHIZ KID'S DICTIONARY 329

INDEX

Abs, 58, 138, 219
Absolute value, 58
AddPt, 220-221
AirHead program, 67-71
Algorithms, 32
Amplitude, 142, 157, 158
And, 76, 82-83, 221-222
Arc, 188-189
Arctan, 222
Array, ll8, 121, 194-195, 198,

222-223
Assignments, 83, 94

BabiesAreUs program, 191-199
Backspace key, 42, 49, 169
Begin, 21, 52, 54, 60, 68, 70,

71, 81, 101, ll3, 136-137,
224

Bold lettering, 14, 20
Boolean, 81-83, 225
BornToRun program, 155-158
Browser program, 10
Bug messages, 20-21, 51-52,

54
Button, 75, 76, 103, 104, 226

INDEX

Case .. of, ll5-ll6, 226-228
Char, 160-163, 228-229
Character set, 211-212
Character-tested strings,

165-170
Check, 33
Chr, 107, ll2, ll5, 167, 168,

229
Clear, 42-43, 49
Clipboard, 38, 42-43
Clock, 183-189
Close, 38-39, 121, 230
Cloverleaf key. See Command

key
CoinFlip programs, 7 4-88
Colon, 19, 83, 94
Colon modifiers, 174-175
Command (cloverleaf) key, 30,

38, 41, 59, 60, 82
Computational, 173, 180, 181,

230-231
ComputerSewer program,

14-61
instant alterations on, 46-48
observing variables in, 55-60
printing, 36-38

331

332

(continued)
running, 28-33
saving, 15, 22-23, 35-36

Concac, 169, 231
Const, 112, 115, 135, 156, 215,

232
Control codes, 107, 109-116,

213-214
Coordinates, 48, 50, 51, 52-53
Copy,42,43, 232-233
Cos, 233
Cuc, 42, 43, 49

Datafile:
MacPaint, 136-139
MacW rite, 130_.: 132
retrieving, 123-127
scoring, 11 7-121

DateTimeRec, 183-186, 194,
195

See also getTime
Declarations, 68-69, 74, 80-81,

86-87,90-91, 99-100,
106, 111-112, 118, 124,
130, 135-136, 142, 147,
151-152, 156, 160-161,
167, 172-173, 179-180,
185-186, 194-195

forward, 100
Declaration structures, 209
Definitions, 112, 135, 142, 147,

156, 160, 167, 172-173,
179-180, 185-186,
194-195

Definition structures, 208
Delete, 169, 233-234
Demo Folder, 9
Desktop window, 8-9, 35
Dialog box, 3 7, 39
Disk:

retrieving data from, 12 3-127
saving data on, 117-121
saving programs on, 15,

MACINTOSH PASCAL ILLUSTRATED

22-24
write-protect notch of, 24

Div, 234
Do, 235

See also For .. to .. do
Document:

MacPaint, 136-139
MacWrite, 130-132

Do It button, 45, 47, 48, 49,
50, 51, 52, 54

DollarCents program, 171-176
Double, 173, 235
Downto, 235
Drawing, 48-5 3

arc, 188-189
lines, 52-5 3
ovals, 51-52, 138, 149, 188
rectangles, 48-51, 85-88,

147, 149-150, 188
Drawing window, 12, 45, 47,

49-53
printing, 38
resizing, 27-28, 58

DrawLine, 236
DrawString, 149, 236
Duration, 142

See also Time

Edit menu, 41-43
Else, if .. then, 58, 100, 101,

163, 236
End, 21, 52, 54, 60, 68, 70, 71,

101, 113, 136--137,
236-237

Eof, 126-127, 131, 237-238
Eoln, 131-132, 162, 238-239
EqualPt, 239
Equals sign, 83, 94
EraseArc, 189, 239
EraseOval, 138, 149, 239
EraseRect, 150, 239
EraseRoundRect, 149, 239-240
Errors, 18-25

bug messages, 20-21, 51-52,
54

glitches and glop, 21-22
outlined code, 18-20
saving programs, 22-24

Escape character, 112, 115
EStreet program, 151-15 3
Everywhere, 41
~xp;241
Extended, 173, 241-242
Extensions, 216-217

False, 75, 81, 83, 103, 242
File, 35, 107, 215

closing, 121, 127
opening, 126
random-access, 126
saving, 36
See also Datafile

File menu, 15, 22-23, 35
File of, 195, 242-243
File organizer, 106, 107-108,

113, 118, 130, 197-198
Filepos, 199, 243-244
File variable, 107
FillArc, 189, 244
FillOval, 149, 188, 244
FillRect, 147, 244
FillRoundRect, 149, 244-245
Find, 40-41
Finder, 35

See also Desktop window
For .. to .. do, 19, 52, 60,

114-115, 121, 137, 143,
173, 197, 198, 246-247

Forward declaration, 100
FourPlay program, 13
FrameArc, 189, 247-248
FrameOval, 52, 138, 188, 248
FrameRect, 50, 74, 76, 81, 82,

86, 87-88, 248
FrameRoundRect, 103, 248
Frequency, 142, 143, 157, 158

INDEX

FrequencyBar program,
145-150

Function, 70, 81, 89, 90, 93,
156, 249-251

Pascal, 216
Quickdraw, 216
Toolbox, 216
See also names of specific

Junctions

Get, 251-252
GetMouse, 73, 75, 82, 88,

252-253
GetPen, 253
GetTime, 186, 189, 196, 254
GlobalToLocal, 148, 254
Go, 28, 30, 31, 32, 33,47, 59,

61
Go-Go, 32, 47, 60
Goto, 255

Halt, 31, 33, 46-47, 56
HideAll, 100, 255

Icon, 8-9, 22, 29-30
If .. then, 76, 82, 93, 94, 100,

101, 169, 255-257
In, 257-258
Include, 258-259
Indentations, 14, 20
Information Folder, 9
Initialization, 10 3
Input, 215, 259
lnputTesting program, 159-163
Insert, 175-176, 259-260
InsectRect, 188, 260-261
Instant window, 38, 45-54
Integer, 80-81, 136, 157, 261
lnvertArc, 189, 261-263
lnvertCircle, 263
lnvertOval, 261-263

333

334

lnvertRect, 76, 83, 88,
261-263

InvertRoundRect, 261-263

Label, 156, 264
Length, 168-169, 173, 264
Lettering:

bold, 14, 20
outlined, 15, 18-20

LifeAfterDeath program,
98-104

Line, 52-53, 264-266
LineTo, 266
Literal string, 92
Ln, 266
LocalToGlobal, 266-267
Longint, 268
Loops:

for .. to .. do, 19, 60, 114-115,
121, 137, 143, 173, 197,
198, 246-247

repeat .. until, 75, 76, 82, 83,
148, 162, 168, 199,
298-299

while .. do, 104, 126, 131,
132, 175, 188, 324-325

MacPascal, leaving, 15
MacWrite, 129-132
MacWriteRead program,

129-132
Maxim, 268
Maxlongint, 268
Menu:

Edit, 41-43
File, 15, 22-23, 35
Pause, 56
Run,28-33,49
Search, 40, 41
Window, 43, 45, 49

Mod, 61, 137, 157, 268-269
Mouse, 73-76, 97-104

MACINTOSH PASCAL ILLUSTRATED

Move, 269
MoveTo, 74, 75, 198, 270
Mr. Moss on:

adolescence, 77, 102, 119,
234, 259, 275

education, 17, 24-25, 176,
180, 225

food, 116, 139, 143, 232,
276, 277

life, values, and truth, 7, 71,
77, 116, 119, 124-125,
138-139, 170, 187, 200,
276, 300, 305, 316

Mr. Moss's girlfriend, 30, 77,
101-102, 124--125, 139,
187' 307

programming, artists, 16, 22,
24-25, 43, 87, 156-157,
294

programming, attitudes, 1 7,
18, 24-25, 30, 71, 94-95,
153

programming, romance and,
7, 16, 24-25, 29, 46, 54,
81-82, 88, 95, 113, 200

Rollo, 22, 139, 180, 205, 222
romance, finding, 18, 119,

148, 176, 231, 264, 316
romance, nurturing, 81-82,

101-102, 187, 231, 260,
276

Springsteen, Three Stooges,
et al., 57, 156-157, 228,
258, 298, 327

writing, 108, 132, 162, 238,
250-251, 276, 286

New, 39
NewFileName, 119-120,

197-198, 270
Nil, 270
Not, 103, 104, 126, 271
Note, 142, 152, 158, 271-272

NoreTaker program, 141-143
NotTheStork program, 89-95

Observe window, 38, 55-61
Odd, 272
Of, 273
OffsetRect, 273
OldFileName, 125, 130, 131,

198, 274
Omit, 274-275
Open, 38-39, 126,197-198,

275-276
Open Me program, 10
Or, 103-104, 276-277
Ord, 157-158, 277
Ordered list, 156
Ord4, 278
Otherwise, 278
Outlined lettering, 15, 18-20
Output, 215, 278
Ovals, 51-52, 138, 149, 188

Pack, 278
Packed, 279
Page, 279
Page Setup, 3 7
PaintArc, 189, 279
PaintCircle, 281
PaintOval, 138, 280
PaintRect, 280
PaintRoundRect, 280
Parameters, 74, 75, 86-87, 152,

168-170
integer, 15 7
type, 157-158
var, 168, 172-173

Pascal functions, 216
See also names of specific

functions
Pascal procedures, 216

See also na11Jes of specific
procedures

INDEX

Paste, 42, 43
Pause, 29, 46
Pause menu, 56
PenMode, 281-283
PenNormal, 283
PenPat, 283-284
PenSize, 98, 188, 284-285
Point, 86-87, 186
Pos, 285-286
Pred, 286
Print, 36-38, 106-116
Printer control codes, 107,

109-116, 213-214
PrintStyles program, 109-116
PrintTextFile program, 10
Procedures, 70, 81-82, 90, 156,

215, 287-289
Pascal, 216
Quickdraw, 216
Toolbox, 216
See also names of specific

procedures
Program, 6 7-71

body of, 69-71
closing, 38-39
declaring variables, 68-69
halting, 46-4 7
instant alterations on, 46-48
naming, 36
observing variables in, 55-60
opening, 38-39
order of instructions in, 70
printing, 36-38
as reserved word, 67, 290
reverting, 39
running, 28-33
saving, 15, 22-24, 35-36
structuring, 53-54, 207

Program window, 27, 30, 53
new, 39
printing, 37-38

PtlnRect, 88, 290
Pt2Rect, 291
Put, 291-292

335

336

Quickdraw, 206
Quickdraw functions, 216

See also names of specific
functions

Quickdrawl, 216, 292
Quickdraw pen, 74-75, 98,

188, 281-285
Quickdraw procedures, 216

See also names of specific
procedures

Quickdraw2, 216, 292
Quit, 15, 35, 39
Quotation mark (single), 91, 92,

108

Random, 61, 137, 157, 293
Random-access files, 126
Read, 293
Readln, 94, 127, 131, 132, 162,

293-294
Read Me, 9, 10
ReadRegrets program, 123-127
Real, 173, 294-296
Real-types, 173
Record, 179-180, 185-186,

194-195, 296-298
Rect, 87, 100
Rectangles, 48-51, 85-88, 147,

149-150, 188
Reference Manual, 9
Repeat .. until, 52, 75, 76, 81,

82, 83, 88, 103-104, 114,
148, 162, 168, 199,
298-299

Replace, 41
Reserved words, 20, 54, 215

See also specific reserved words
Reset, 33, 49, 126, 131,

299-300
Return key, 94
Revert, 39
Rewrite, 106, 113, 126, 131,

197-198, 301

MACINTOSH PASCAL ILLUSTRATED

RolloAtMacys program,
177-181

Round, 302
Run,29, 70
Run menu, 28-33, 49

SANE, 216, 302-303
Save, 36
Save As, 15, 22, 23, 35, 36
SaveDrawing, 136, 303
SaveTheSewer program,

134-139
Scrolling, 14, 43
Search, 39-41
Search menu, 40, 41
SecondHand program, 184-189
See~ 126, 197-198, 304-305
Select All, 42
Semicolon, 20, 51-52, 113
SetDrawingRect, 100, 307-308
Set of, 160-161, 306-307
SetPt, 87, 88, 309
SetRect, 87, 88, 91, 100, 147,

149, 188, 199, 309
SetTextRect, 91, 100, 309
SetTime, 187, 310
ShowDrawing, 100, 310
ShowText, 91, 100, 310
Sin, 310
Sound, 141-158
Space bar key, 167, 168
Sqr, 311
Sqrt, 311
Statement structures, 207-208
Step, 30, 31, 33, 47, 60, 70, 71,

82,94
Step-Step, 31, 32, 47, 56, 57,

59, 60, 82
Stops In, 31, 33, 59
Stops Out, 31
String, 90-91, 93-94, 106, 111,

118, 130, 173, 311-312
character-tested, 165-170

StringOf, 174, 312-313
StringTesting program,

165-170
Structures, 207-209

declaration, 209
definition, 208
program, 53-54, 207
statement, 207-208

SubPt, 313
Subroutines, 43
Succ, 313
Symbols, 217-218
SysBeep, 103, 142, 163, 314
System Folder, 9

Text, 106, 107, 118, 314-316
TextEditor program, 10, 132
TextFace, 316-317
TextFont, 98, 317-318
TextMode, 319
Text Only option, 130
TextSize, 98, 319
Text window, 12, 45, 91, 92

printing, 38
Then, 319

See also If .. then
Thumbs down hand, 18, 20
TickCount, 186, 188, 189, 319
Time:

clock and, 183-189
sound and, 142, 157, 158

To, 319
See also For .. to .. do

Toolbox, 75, 206
Toolbox functions, 216

See also names of specific
functions

Toolbox procedures, 216
See also names of specific

procedures
Tools Folder, 10
True, 75, 81, 83, 320
Trunc, 320

INDEX

Type, 156, 179, 215, 320-321
Type Size, 43-44

Unpack, 321
Until, 52, 75, 76, 81, 322
Uses, 156, 322-323

Var, 68, 69, 74, 107, 111, 112,
118, 156, 168, 323-324

Variables, 48, 57, 61
boolean, 81-83
declaration of (see

Declarations)
file, 107
integer, 80-81, 136
name of, 57
rect, 87, 99-100
string, 90-91, 93-94, 106,

111, 118, 130, 173
text, 106, 107, 118
value of, 48, 58

Var parameters, 168, 172-173

While .. do, 52, 104, 114, 126,
131, 132, 175, 188,
324-325

Windows, 100
Clipboard, 38, 42-43
Desktop, 8-9, 35
Drawing, 12, 38, 45, 47,

49-53, 58
Instant, 38, 4 5-54
menu,43,45,49
Observe, 38, 55-61
printing, 3 7-38
Program, 27, 30, 38, 39, 53
resizing, 12-13, 27.:....28
Text, 12, 38, 45, 91, 92

With .. do, 187, 199, 325-327
WordslnPrint program,

105-108

337

338

Write, 92, 93, 100-101, 107,
115, 132, 327

WriteDraw, 75, 82, 199,
327-328

Writeln, 92, 93, 100-101,
107-108, 113, 116, 121,

MACINTOSH PASCAL ILLUSTRATED

131, 132, 173, 187, 188,
328-329

Write-protect notch, 24
WriteRegrets program,

117-121

> $16-95 FPT USA

"If coloring books had in ructions, kids would just chew the pages." Thus begins 1 e tirade of
Mr. Moss, philosopher, programmer, and excitable boyfriend, in his crusade to stri~ he boring
evil that plagues computer books.

You don't need any programming experience to use this book. By the time you ha e finished
reading it, you'll know more than Pascal, the standard development language of t e Apple
Macintosh; you'll know how to enjoy programming. No flowcharts, no grammar I
slobbering end-of-chapter exercises you would never do anyway. THE FEAR AND L
GUIDE presents MacPascal as sharp, active, and ripe for improvisation.

MACINTOSH PASCAL ILLUSTRATED will carefully escort you through the graphic t
MacPascal. From Mr. Moss you will discover why programming and being in love e the ideal
complements, how to prevent such programming tragedies as premature compilat on, and
when a well-placed variable can produce satisfaction beyond your imagination. In addition, you'll:

• Build programs filled with the friendly Macintosh spirit

• Observe strange goings-on and perform amazing feats instantly in Macintos~ windows

• Explore 100 complete, ready-to-run programs that demonstrate Quickdraw a d the
Toolbox in action

• Discover an illustrated dictionary that gives immediate access to the MacPas I facts
you want to know

Learn to create files, play music to soothe your soul, make your printer perform lik never before,
and keep tabs with the calendar/clock. When your computer is on, your hands wil always be on
the mouse (and when your computer is off, Mr. Moss tells you where your hands ught to be).

"It's funny. It's well-written. It will encourage people to play with their Macinto hes."
Andy Hertzfeld, Macintosh Software Creator

"A good telling of the facts of existence as we know them. And I like the pr: ams too."
Bill Budge, Premier Software Artist

ISBN 0-201-11675-8
Addison-Wesley Publishing Company, Inc.

