Dave Mark
Cartwright Reed

g .
Programming

\

Inside the Toolbox

Macintosh’Pascal
Programming Prlmer,

Volume 1

Inside the Toolbox Using
THINK Pascal™

Dave Mark Cartwright Reed

A
\A4

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.

Inside the Toolbox using THINK Pascal / Dave Mark,
Cartwright Reed.

p. cm.—(Macintosh Pascal programming primer; v. 1)

Includes bibliographical references and index.

ISBN 0-201-57084-X

1. Macintosh (Computer)—Programming. 2. Pascal (Com-
puter program language). 3. Macintosh Toolbox (Computer
programs). 4. Think Pascal. I. Reed, Cartwright. II. Title.
III. Series: Mark, Dave. Macintosh Pascal programming
primer; v. 1.
QA76.8.M3M3677 1990 90-20303
005.265—dc20 CIP

Copyright © 1991 by Dave Mark and Cartwright Reed

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of Addison-Wesley. Printed in the United
States of America.

ABCDEFGHIJ-MW-91
First printing, December 1990

To Kate and Deneen
and to
Mary and Andy, and Lise and Yoni —
Now you’ve done it!

Contents

Preface xi
Acknowledgments xiii

Introduction 1
The Macintosh Vision 3
The Macintosh Interface 4
The Macintosh Toolbox 5
Resources 6
About the Book 7
What You Need to Know 8
Why We Chose THINK Pascal 8
Using THINK Pascal 9
Inside THINK Pascal 10
Writing Macintosh Applications 11
Chapter Synopsis 12
How to Use This Book 20
What You Need to Get Started 21
Ready, Set . .. 22

Setting Up 23

Installing THINK Pascal 25
Source Code Files 26
ResEdit 27

Macintosh Programming Issues 28
Accessing the Toolbox with Pascal 28
Naming Conventions 29
Predefined Data Types 29

Macintosh Programming Primer

Resources 30
Data Forks and Resource Forks 32
The Hello, World Program 33

Create a New Project 33

The Code 35

Running Hello, World 37

The Problem with Hello, World 39
In Review 39

Drawing on the Macintosh 41
Introduction 43

The QuickDraw Coordinate System 43
Window Management 48

Window Parts 48

Window Types 49

Setting Up a Window for Your Application 51
Drawing in Your Window: The QuickDraw
Toolbox Routines 54

Setting the Current Window 55

Drawing Lines 55

Drawing Shapes 56

Drawing Text 58

Drawing Pictures 59

About Regions 59

Basic MacProgram Structure 60
The QuickDraw Programs 61
Hello2 61

The Hello2 Project 64

Adding the Resource File 65

Running Hello2 66
Walking Through the Hello2 Code 66
Variants 70

Changing the Font 71

Changing Text Style 72

Changing Text Size 73

Changing the Hello2 Window 74
Mondrian 74

Resources 75

Running Mondrian 77
Walking Through the Mondrian Code 78
Variants 81
ShowPICT 86

Resources 87

Contents

Running ShowPICT 90
Walking Through the ShowPICT Code 90
Variants 94
Screen Saver: The Flying Line Program 94
Running Flying Line 98
Walking Through the Flying Line Code 99
In Review 105

The Event Mechanism 107

Event Types 110

The Structure of a Mac Program: New and Improved 113

Retrieving Events from the Event Queue 116
Calling GetNextEvent and WaitNextEvent 117

Handling Events 119

EventTutor: The Return of ShowPICT 120
Setting Up the EventTutor Project 120
Resources 121
Running EventTutor 129

Walking Through the EventTutor Code 132
Handling mouseDown Events 143

In Review 148

Menu Management 149

Menu Components 152

The Pull-Down Menu 154

The Hierarchical Menu 154

The Pop-Up Menu 155

Other Kinds of Menus 156

Putting Menus into Your Programs 157

Timer 157
Setting Up the Project 158
Resources 158

Timer Code 171

Running Timer 178
Walking Through the Timer Code 180
Zinger 191
Walking Through the Zinger Code 197
In Review 203

Working with Dialogs 205
How Dialogs Work 209

Modal Dialogs 210

Modeless Dialogs 210

Macintosh Programming Primer

The Modal Dialog Algorithm 210
The Modeless Dialog Algorithm 211
Dialog Items: Controls 211
Buttons 212
Checkboxes 212
Radio Buttons 213
Dials 214
Other Dialog Items 215
Working with Alerts 216
The Alert Algorithm 218
Adding Dialogs to Your Programs 218
The Notification Manager 224
Reminder 228
Setting Up the Project 229
Making the Resources for Reminder 229
Setting Up the Notification Manager Resources
Adding the Menu Resources 236
The Home Stretch 239
The Reminder Code 240
Running Reminder 252
Walking Through the Reminder Code 255
In Review 273

Toolbox Potpourri 275
Keeping Track of Windows: WindowMaker 277
WindowMaker Specifications 277
Setting up the WindowMaker Project 278
Running WindowMaker 292
Walking Through the WindowMaker Code 294
The Scrap Manager 306
Scrap Manager Basics 306
InfoScrap 307
UnloadScrap and LoadScrap 307
ZeroScrap 307
PutScrap 308
GetScrap 308
ShowClip 308
ShowClip Specifications 309
Setting Up the ShowClip Project 309
Running ShowClip 315
Walking Through the ShowClip Code 316
Inside the Printing and File Managers 319
The Standard File Package 319

234

Contents

Using the File Manager 322
Using the Printing Manger 324
PrintPICT 325
PrintPICT Specifications 325
Setting Up PrintPICT Resources 326
Setting Up the PrintPICT Project 328
Changing the Compilation Order 332
Running PrintPICT 332
Walking Through the PrintPICT Code 334
Scroll Bars! We're Gonna Do Scroll Bars! 339
Making Use of Scroll Bars 339
Pager 342
Setting Up the Pager Project 342
Running Pager 350
Walking Through the Pager Code 350
The Sound Manager 358
Sounder 359
Setting Up the Sounder Project 359
Walking Through the Sounder Code 364
In Review 366

Using ResEdit 367
Notes on Using ResEdit 371
How ResEdit Works 372
Completing a Stand-alone Application: Hello2 Revisited
Installing the Finder Resources 379
Examining the Resources of Hello2 380
Adding an Icon to Hello2 381
Rebuilding the Desktop 391
The vers Resource 392
Last of the Finder Resources:
The SIZE Resource 396
Minimalist, the ResEdit Program 398
In Review 401

The Final Chapter 403

Macintosh Periodicals 405

The Essential Inside Macintosh 406
The Typical Inside Mac Chapter 406
Appendixes and Special Sections 407

Apple Technical References 408

377

Macintosh Programming Primer

Macintosh Technical Notes ~ 408

Other Books 409
Apple's Developer Programs 409
Macintosh Developer Technical Support and AppleLink 410
Software Development Tools 411

MPW From Apple 411

Debugging with THINK Pascal, TMON, and Macsbug 412
To Boldly Go 412

Appendix A Glossary 415
Appendix B Code Listings 431
Appendix C Debugging Techniques 493
Appendix D Building Hypercard

XCMDs 499
Appendix E Bibliography 507

Index 511

Preface

This book shows you how to write Macintosh applications with
THINK Pascal. We wrote it to help people to get down to the business
of writing code that displays the distinctive Mac "feel."

The Macintosh Pascal Programming Primer evolved from an
earlier book that used THINK C to demonstrate the art of Mac
programming. That book, Macintosh Programming Primer: Inside
the Toolbox Using THINK C, was and is quite successful, and has
received favorable reviews from MacUser, Macworld and other
computer publications. Many readers sent many helpful suggestions
on the C book. A common one was that we write a Pascal version,
and here it is.

We stress that, although the program designs for these two books
are similar, the code has been written from the ground up to take
advantage of the THINK Pascal environment. These programs
consist of thoroughly tested, debugged, clean Pascal code. We hope
that they provide an impetus for you to write your own Pascal Mac
applications.

If you have THINK Pascal and don’t yet own this book, consider
InfoWorld magazine's concluding thoughts in a review of Symantec's
Pascal package:

"an excellent software development environment, with authoritative
reference material at a reasonable price. All it needs is a tutorial that
explains how to use it with the Macintosh Toolbox..."

...We give you the Macintosh Pascal Programming Primer.

Dave Mark Cartwright Reed
Arlington, VA Philadelphia, PA

Acknowledgments

WE'D LIKE TO express our appreciation to the people who helped make
this book possible, or at least coexisted with us harmoniously during
its development:

Deneen Melander and Kate Joyce, who know us and still smile;

Julie Stillman, Elizabeth Grose, Debbie McKenna and Diane
Freed, Addison-Wesley's finest!

Jim Reekes, our big red referee, who kept us from going down for
the compatibility count;

Symantec, whose THINK Pascal and THINK C products build
the best Mac programs;

Stu Mark, for keeping the studio humming;

Oleh Tretiak, director of Drexel University's Image Processing
Center: to Yoni Nissanov, Don McEachron, Sanjay Bhasin and
Phyllis Ebron-Downes; all curious and amiable workmates;

Andy and Mary — Congratulations!

Davood, Rick and Nick of P&T, and Andy Richter -- fellow
members of the sacred order of coders;

Charlie Derr — Thanks for all your patience, Carlos. . .

and Anthony D'Amico, who provided a reason for staying in
Philadelphia.

In finishing up, kudos to the down under team in Colorado, the
Outbound people, who came up with the first practical, inexpensive
laptop Mac. If you code in taxis, there's no substitute for an
Outbound!

xiii

Source Code Disk
for the
Mac Pascal Primer

IF YOU WOULD like the source code presented in the Macintosh Pascal
Programming Primer on disk, please send in the coupon on the last
page (or a copy of the coupon — we're not picky).

We hope you like the Macintosh Pascal Programming Primer. If
you have any comments or suggestions regarding future editions, you
can reach us at this address:

The Mac Pascal Primer - Comments

2534 North Jefferson Street
Arlington, VA 22207

XV

Introduction

Macintosh Pascal Programming
Primer is a complete course in the art
of Macintosh programming. With this

book and Symantec’s THINK Pascal,
you can learn to program the
Macintosh.

No OTHER COMPUTER is like the Macintosh.

The Mac is a new kind of computer. It’s fast. It’s different.

The Mac plays by a new set of rules. To program it, you need a new
rulebook. That’s what the Mac Primer is.

At the heart of the Macintosh is the Toolbox, a collection of more than
700 procedures and functions that give you access to the Macintosh
interface. The Mac Primer will teach you how to use the Toolbox, to
add the power of pull-down menus, windows, and scroll bars to your
programs.

This book serves as a bridge to the Macintosh way of programming.

The Macintosh Vision

Nowadays, the Macintosh line is successful, praised, and emulated.
When the Macintosh was introduced in 1984, however, people were
perplexed: It was like no computer they had ever seen—a beige box
with a little screen and a mouse. People called the Macintosh a toy
because it had a graphic interface, and graphics were not the way
normal computers operated.

It was no sure thing.

Seven years later, computer hardware and software companies
scramble to provide now what the Mac has had for so long. Whether
you call the mouse a “pointing device” or refer to a windowed, iconic
environment as a GUI (graphical user interface), one thing is clear:
the standard is set.

The Mac is different from other systems in three ways:

* The interface: A consistent framework of graphic elements
simplifies Mac operations for users.

¢ The Toolbox: Comprehensive routines were defined in the
Macintosh ROM that drove the interface and allowed software
designers to write powerful, easy-to-use applications.

¢ The use of resources: The building blocks for all software on the
Macintosh, resources store program information in a series of
templates in the program file, simplifying the creation and
modification of Macintosh programs.

These three ingredients combined to make the Macintosh the basis

for one of the best selling microcomputer lines in history. In the
1990s, the vision holds strong. The Macintosh environment remains

3

Macintosh Programming Primer

unique. The careful planning that went into the original Mac has
paid off handsomely, as the Mac line continues to evolve and improve.

To write successful applications for the Macintosh, the would-be
Macintosh programmer must understand how those three Macintosh
ingredients—interface, Toolbox, and resources—work. First, let’s look
at the most visible of the three: the Macintosh user interface.

The Macintosh Interface

The Macintosh makes its first impression on users with its graphical
user interface. Figure 1.1 shows some of the distinctive elements of
the Mac “look.” Because new users understand and use the windows
and menus of Mac applications intuitively, the Macintosh interface
represents an impressive improvement over the command-based
interfaces common on other systems. Each element of the
interface—windows, menus, dialog boxes, icons—has a specific
function associated with it, and extensive guidelines exist for the use
of each element.

Clean Hyn ndon
Emply frash
Erase Disk
Set Startup... [calculator

4 items

Restart

Systern Folder Shut Down
Litilities THINK PASCAL

314159

Figure 1.1 Some elements of the Macintosh interface.

Introduction

The Macintosh interface was appropriated from the Lisa, which
lifted it from the Xerox Alto machine. Over time, the interface has
become more powerful without sacrificing ease of use. In addition,
every new version of the interface on the Mac gets sleeker. To look
at the Macintosh running version 1 or 2 of the Finder, or to see the
Lisa in operation (while not running under Mac emulation) is rather
like examining Microsoft Windows 3.0—quaint, but dated. The new
system software reflects Apple’s ability to build on the old system
without modifying it beyond recognition.

Of course, pretty pictures aren’t enough. The beauty of the
Macintosh interface lies in how it is created. Each part of the interface
is manipulated by a series of routines in the Macintosh ROM. For
example, you can create an application’s window with one call to the
Macintosh ROM.

The routines that underlie the interface—that build windows,
control printing, and draw menus—are collectively known as the
Macintosh Toolbox.

The Macintosh Toolbox

The Toolbox can be thought of as a series of libraries that make it easy
for you to create those features indigenous to Macintosh applications.
For example, the Macintosh Toolbox call GetNewWindow creates a
new window for use in your application.

Using the Toolbox calls to create your applications gives the
results a distinctive Macintosh look and feel. Operations common to
most applications, such as cutting, copying, and pasting, are always
handled in the same way, which makes it easier to learn a new
application.

The Toolbox routines are grouped functionally into Managers,
each of which is responsible for one part of the Macintosh environ-
ment (Figure 1.2).

The Macintosh Toolbox undergoes constant updating and modifica-
tion; each new system revision gives you some shiny new tools as
well as the old standbys to work with. As new routines are added to
the Toolbox, Apple cleans up problems with older routines.

The Macintosh graphic interface and the Toolbox are two of the
features that make the Mac unique. A third is the successfully
introduced concept of resources on the Macintosh.

Macintosh Programming Primer

Sound Notification Printing
Manager Manager Manager
Dialog Menu Window Font
Manager Manager Manager Manager
Control Resource . Toolbox
Manager I Manager I QuickDraw I‘ Utilities I
Scrap Event File
Manager Manager Manager

Figure 1.2 Parts of the Toolbox.

Although the Macintosh line has expanded greatly, the basic
compatibility of the different Macintosh models has been main-
tained. Yet, more powerful machines always provide more
choices—and more decisions. When the only available Macintosh
workstations were the Macintosh and the Macintosh Plus, software
developers thought they had a certain flexibility about how they

. followed the Mac programming guidelines provided by Apple. Now,
in the midst of machines that support color, MultiFinder, math
coprocessor chips, and new peripherals, the successful developer
hews closely to the Macintosh standards.

Resources

If the Toolbox is the library of routines that make up the Macintosh
interface, resources are the data that your program uses to execute
these library calls. GetNewWindow, the Toolbox call that creates a
new window, requires you to specify window parameters such as size,
location, and window type. To do this, you can supply a resource con-
taining that information, so the new window can be used in your
application. Resources come in various types, each serving as a
“holder” for a particular kind of data relating to windows, menus, and
other parts of the Macintosh interface. For example, a resource of type
WIND contains information for one specific window in an application.

Introduction

There may be a number of resources of type WIND, but there is only
one WIND type, which is identical for all Mac applications.

Resources are integrated into the design of the Macintosh. Each
Macintosh application file may possess dozens of resources. This
simplifies many of the tasks of the applications programmer. For
example, resources make it easy to localize a program for a different
area. If you want to sell your program in, say, France, it is relatively
easy to replace resources containing English text with French
equivalents.

Resources are also essential in developing the complex code that
drives the Macintosh interface and hardware. Because they can be
easily copied from one program to another, menus and dialog boxes
need not be created more than once. Once you have built up a
collection of programs, creating new ones may begin with a cut-and-
paste session with your existing programs.

To edit resources, Apple developed a program called ResEdit,
which allows you to edit any of the resources in Macintosh Primer
programs. You can also use them to explore other Macintosh appli-
cations—even system files! Because these resources exist as part of
the completed application, they can be edited without recompilation.

We make extensive use of version 2 of ResEdit throughout the Mac
Primer. If you’ve never worked with ResEdit before, Chapter 8
contains a ResEdit tutorial to get you up to speed.

The Macintosh interface, the Toolbox, and resources are the three
intertwined subjects that we’ll cover using THINK Pascal and
ResEdit to create stand-alone Macintosh applications. The next
sections discuss our approach to learning about these issues.

About the Book

Most Macintosh reference books, such as Inside Macintosh and
Macintosh Revealed, are excellent texts for those who already
understand the Macintosh programming paradigm. They can be
frustrating, however, if you're outside the Macintosh programming
world, looking in. The Mac Primer bridges the gap for those of you
who are just learning the basics of Mac programming.

Our aim is to help you write properly structured Mac applications.
If you’re used to programming on a MS-DOS computer or a UNIX
system, the Mac Primer is the perfect place to start your Mac pro-
gramming education. Our formative years were spent programming

Macintosh Programming Primer

under UNIX, on machines like the PDP-11 and the VAX-11/780; we’ve
also spent a lot of time with IBM PCs and compatibles. We wrote the
Macintosh Programming Primer with you in mind.

What You Need to Know

There are only two prerequisites for reading this book. Before starting
the Macintosh Primer, you should already have basic Mac experience:
You should be able to run Macintosh applications and have a good feel
for the Mac user interface. In addition, you should have some
experience with a programming language like Pascal or BASIC. If
you've never used Pascal before, we suggest a companion text, such as
Oh! Pascal, by Doug Cooper and Michael Clancy, to supplement your
instruction.

The Macintosh Programming Primer examples are all written in
Pascal, using the THINK Pascal development environment. Our
general approach, however, emphasizes the techniques involved in
programming with the Mac Toolbox. The skills you learn will serve
you no matter what programming language you intend to use in the
future.

Why We Chose THINK Pascal

Many development environments are available to the Mac pro-
grammer. The Macintosh Programmer’s Workshop (MPW) is a
complex and powerful development system written and marketed by
Apple. Most of Apple’s internal development is done with MPW, and
many of the large Macintosh software development houses have
made MPW their first choice. MPW uses an “everything but the
kitchen sink” approach to software development. The basic system
consists of an editor shell that allows you to edit your source code as
well as to build and execute complex command scripts. You can do
just about anything in MPW, but it is definitely not a system for
beginners. In addition to learning the editor and shell, you have to
install, configure, and (oh, yes) pay for your choice of compilers. You
can buy Pascal and C compilers for MPW, as well as FORTRAN,
MacApp, and a few others. MPW is ideal for complex, multilanguage
development efforts, but not for learning to program the Macintosh.

THINK Pascal (formerly known as Lightspeed Pascal) is a
development environment that is powerful and friendly. It has
concise, accurate documentation. For those inevitable bugs, it has the
best debugging utilities on the market.

Finally, THINK Pascal is reasonably priced (see Figure 1.3).

Introduction

9
s 80 Lunches
30 Lunches
N
THINK Macintosh
Pascal Programmer's

Workshop (MPW)

Figure 1.3 Lunch economics.

Using THINK Pascal

THINK Pascal is an integrated development environment. The
source code editor follows all the standard Macintosh conventions
and is very easy to use. The compiler is smart: It keeps track of the
files you're currently working with, noting which have been changed
since they were last compiled. THINK Pascal recompiles only what it
needs to.

THINK Pascal has a well-thought-out Macintosh interface. For
example, to build a stand-alone application, pull down the Project
menu and select Build Application. Installation is simple: Just
pull the floppies out of the box, copy the files onto your hard drive,”
and go!

THINK Pascal’s documentation consists of three clearly written
manuals. The User Manual explains everything you need to know
about developing software using THINK Pascal. The other two texts
discuss resource editing tools and object programming. THINK
Pascal also comes with integrated debugging utilities that allow you

*For those of you without a hard drive, there are complete instructions for
running THINK Pascal on a floppy-based system in the THINK Pascal
User’s Manual.

10

Macintosh Programming Primer

to test-drive your program while you monitor its progress in other
windows. The debugging utilities also work with other Macintosh
debugging tools like MacsBug and TMON.

Inside THINK Pascal

The Project file is unique to Symantec’s Pascal and C development
environments. It contains the names of all your source code files, as
well as the name you’ll eventually give to your application. It also
contains compilation information about each source file, such as the
size of the compiled code (see Figure 1.4).

THINK Pascal has the capability to do object programming and
can work directly with MacApp, Apple’s ready-made library of user
interface routines. THINK Pascal’s debugging facilities are without
peer. You can use THINK Pascal to write programs that will run
under MultiFinder, take full advantage of the Macintosh II’s color
capabilities, and use AppleTalk. All of these features are supported in
the way Apple intended them to be. THINK Pascal also provides
routines to support extensions to Apple’s HyperCard, or Silicon
Beach’s SuperCard.

THINK Pascal also comes with a full complement of utilities,
including ResEdit, the resource editor mentioned earlier, and much
useful code on various types of Mac projects, including text editors,
cdevs and Desk Accessories. The manual that comes with THINK
Pascal explains how to use version 1.2 of ResEdit and is the best
discussion on using ResEdit 1.2 available. If you have version 2 of
ResEdit, use Chapter 8 of this text to learn how to use it.

[ECJ=— Hello.n g
Options File (by build order) Size (&
Runtime.lib 18222 5

Interface lib 10106

[OIN] v R Hello.p 108 ||
Fofaf Lo Brma 28436 G

L=

Figure 1.4 THINK Pascal’s project window.

Introduction

11

Writing Macintosh Applications

Most Macintosh applications share a basic structure (Figure 1.5). They
start off by initializing the Toolbox data structures and routines that
support the Macintosh user interface. Then the application enters an
event loop and patiently waits for the user to do something—hitting
keys, moving the mouse, or some other action. Events outside the
application are also checked: Desk accessories may be used, or disks
may be inserted. No matter how complex the Macintosh program, this
simple structure is maintained.

At the heart of the Macintosh Programming Primer is a set of four-
teen sample applications. Each builds on the basic program structure
to provide a successively more sophisticated use of the Macintosh
Toolbox. Each new chapter constructs a more powerful implementa-
tion of the basic program structure. Chapter 3 programs show how to
create windows and draw inside them, Chapter 4 illustrates how to
handle events, Chapter 5 implements menus, and Chapter 6 makes
use of dialogs. Chapter 7 presents WindowMaker, a complete
example of how a Macintosh application should work, from handling
the interface and events to taking care of error-checking and memory
management.

Each Mac Primer example program is presented as completely as
possible, and each program listing is discussed extensively. Nothing
is left as an “exercise for the reader.” Each chapter contains comiplete
instructions and figures for entering, compiling, and running the
programs using THINK Pascal.

Initialize ‘
the
Toolbox Retrieve
an Event
Quit Yes Exit the
¥ Sel?’cted Application
Perform Process
Other B the
Initializations Event

Figure 1.5 How a Macintosh application works.

12

Macintosh Programming Primer

Chapter Synopsis

The Macintosh Primer is made up of nine chapters and seven
appendices. This introductory chapter provides an overview and
starts you on your way. Chapter 2 starts by going through the
installation of THINK Pascal and ResEdit, step by step. Then,
THINK Pascal basics are introduced. We present the standard Pascal
approach to the classic Hello, World program (Figure 1.6), and discuss
drawbacks. We then go on to illustrate the programming conventions
that we will use in the Primer.

Chapter 3 starts with an introduction to the fundamentals of
drawing on the Macintosh using QuickDraw. The Window Manager
and windows are discussed. Then, we introduce resources and the
Resource Manager.

QuickDraw, the Window Manager, and resources are very closely
related. Windows are drawn using QuickDraw commands from
information stored in resource files.

Four programs are introduced in Chapter 3. The Hello2 program
introduces some of the QuickDraw drawing routines related to text;
the Mondrian program (Figure 1.7) demonstrates QuickDraw shape-
drawing routines. ShowPICT (Figure 1.8) illustrates how easy it is to
copy a picture from a program like MacDraw or MacPaint into a
resource file, then draw the picture in a window of your own. Finally,
as a bonus for completing the first three programs, you can try the
Flying Line (Figure 1.9), an intriguing program that can be used as a
screen saver.

[[—= Tent =[]

[

Hello, world!

Izl

Figure 1.6 Standard Pascal’s Hello, World.

Introduction

13

Mondrian

R ——

Figure 1.7 Mondrian.

My Picture

Figure 1.8 ShowPICT.

Macintosh Programming Primer

Figure 1.9 The Flying Line.

Chapter 4 introduces one of the most important concepts in
Macintosh programming: events. Events are the Macintosh’s mecha-
nism for describing the user’s actions to your application. When the
mouse button is clicked, a key is pressed, or a disk is inserted in the
floppy drive, the operating system lets your program know by
queueing an event. The event architecture can be found in almost
every Macintosh application written. This chapter presents the
architecture of the main event loop and shows how events should be
handled. EventTutor, Chapter 4’s sole program (Figure 1.10) provides
a working model of the event architecture.

The Macintosh popularized pull-down menus (Figure 1.11).
Chapter 5 shows you how to add the classic pull-down, hierarchical,
and pop-up menus to your own programs. Chapter 5’s first program,
Timer (Figure 1.12), uses both classic pull-down and hierarchical
menus. This chapter also shows you how to create and implement
pop-up menus with a little program called Zinger (Figure 1.13).

Introduction

15

gPictWindow

@

°Q
)

° &3 @
@ §

e
oli® o Qoo

EDE

gE'uent'IDindow

Figure 1.10 EventTutor.

"% M Edit Search Format Font Style Spelling

act ivateEut ;
updateEut ;
updateEut ;
mouselown
mouselp
mouselown
mousellp

activating gEventHindow
gEventlindow
gPictWindow

Untitled =————"1=

I.||411.I.1.|§|I||6|.IG

Py
Page Setup..5ps/inch ==

Nepp HN

fipea.., i
=[] Close ®W
i Save %S =r 13 :
* a o A

Print... %P

Quit #0

Figure 1.11 The classic pull-down menu.

16 Macintosh Programming Primer

Underline

0lujtlliinle]

Figure 1.12 Timer with hierarchical menus.

Popup Window

Number:

Figure 1.13 Zinger with pop-up menu.

Introduction

17

Chapter 6 introduces dialogs and alerts (Figure 1.14). Dialog boxes
are another intrinsic part of the Macintosh user interface. They
provide a vehicle for customizing your applications as you use them.
Alerts are simplified dialogs, used to report errors and give warnings
to the user.

The Reminder program in Chapter 6 (Figure 1.15) uses dialogs,
alerts, and the Notification Manager to allow you to set an alarm.
The application then starts a countdown and notifies you when it
goes off—even if you are running another application.

Alarm goes off in ||10 seconds

Sound on Use:
Rotate lcon i@ Seconds
Display Alert iy Minutes

(save]

Save changes before closing?

(res) (o) (Cancen)

Figure 1.14 Dialog box and alert box.

18

Macintosh Programming Primer

Chapter 7, the final programming chapter, contains a potpourri of
programs illustrating concepts such as error-checking, memory
management, printing, generating sound, adding scroll bars to
windows, and file management. Each program explores a single topic
and provides a working example of reusable code. The WindowMaker
program (Figure 1.16) at the beginning of the chapter, which shows

Seconds ==

Figure 1.15 Reminder.

" & File fai

Window
Window
Window
Window
Window
Window

Figure 1.16 WindowMaker.

Introduction

19

" & File Edit Resource Window Uiew

Reminder.m.rsrc

Figure 1.17 ResEdit 2.0.

how to keep track of multiple windows, represents the most mature
implementation of the Macintosh interface of all the programs in the
book.

Chapter 8 discusses the creation, modification, and use of
resources. It starts with a ResEdit tutorial that covers ResEdit 2.0
operation and illustrates the creation of Finder resources (Figure
1.17).

After you've got a handle on the essentials of Macintosh program-
ming, what’s next? Chapter 9 talks about some of the tools available
to help you with your development efforts. It looks at Inside
Macintosh and some of the other Mac technical documentation. It
also looks at software tools, from compilers to debuggers, as well as
Apple’s Certified Developer Program and other Macintosh technical
resources.

Appendix A is a glossary of the technical terms used in the
Macintosh Primer.

Appendix B contains a complete listing of each of the Mac Primer
applications, presented in the same order as they appear in the book.

Appendix C covers some debugging techniques that may be helpful
in the THINK Pascal environment.

Appendix D contains a short discussion of HyperCard 2.0 XCMDs,
along with an example XCMD written in THINK Pascal.

20

Macintosh Programming Primer

For those of you who are not HyperCard aficionados, XCMDs are
procedures written in Pascal or C that can be called from within
HyperCard. XCMDs allow you to go beyond the limits of
HyperCard, performing functions not normally available from within
HyperCard.

Appendix E is a bibliography of Macintosh programming
references.

How to Use This Book

Each Macintosh Primer chapter is made up of the main text and tech
blocks. The main text is the narrative portion of this text. Read this
first. It contains the information you need to input and run the
example programs. Because we’ve placed a premium on getting you
going immediately, we have you run the program before discussing
how the code works. Impatient programmers are invited to go
directly to Appendix B, which contains commented listings of all the
programs discussed in the book. If you have questions after typing in
the programs, refer to the chapter in which the program is discussed.
If you prefer a more sedate pace, read a chapter at a time, type in the
programs, and test them as you go. Try the variants to the program if
they sound interesting.

At some points, we expand on the narrative with a tech block,
indicated by a distinctive gray background. It's OK to ignore them
during your first read-through.

Tech blocks will have this appearance in the main text. If you feel
comfortable with the subject discussed in the main text, read the
tech blocks for more detail. Otherwise, come back to them later.

Several important terms and conventions are used throughout the
Macintosh Primer. Whenever you see a notation like this:

(I11:256-272)

Introduction

21

it refers to a volume of Inside Macintosh and a set of pages within
that volume. The example here refers to Volume III, pages 256 to 272.
References to Tech Notes, documentation from Apple’s Macintosh
Developers Technical Support Group, are annotated like this: (TN:78)
(referring to Tech Note 78). (See Chapter 9 to find out how to get Tech
Notes.) These references to Inside Macintosh and Tech Notes are
intended to help readers who are interested in a further discussion of
a topic.
All of our source code is presented in a special font. For example:

begin
i = 0;
DoTheRightThing;
end.

Toolbox routines and Pascal functions are also in the code font when
they are described in the text. Code should be typed in the same case
as presented in the text. C is a case-sensitive language. Please note
the similarity between the upper case L and the lower case L, and be
careful to type in the correct choice. Menu titles, menu items,
and dialog items appear in the book in Chicago font just as they do
on the screen.

Finally, boldface is used to point out the first occurrence of
important new terms.

What You Need to Get Started

First, you need THINK Pascal from Symantec. The examples from
the book use version 3.0. You'll also need a Toolbox reference manual.
Apple’s Inside Macintosh series is the authoritative reference on
Macintosh software development. We suggest that you purchase
Volume I and Volume V of Inside Mac. Volume I contains a
description of a majority of the Toolbox routines used in this book.
Volume V contains color QuickDraw information that also affects the
Window and Menu Managers. Volumes II, III, and IV contain helpful,
but not indispensable, information about less commonly used
routines. Volume VI is due out soon and will contain information
about System 7 routines. This text does not use System 7 routines,
but all code in the book is compatible with the new functions.

Buy Volumes I and V with your lunch money. Buy Volumes II
through IV and VI with somebody else’s lunch money.

22

Macintosh Programming Primer

You’ll also need access to a Macintosh Plus, SE, or II-series
workstation. You can use this book with anything from a Macintosh
Plus with 1 megabyte of RAM and an external drive to a fully loaded
Macintosh IIfx. A hard drive is strongly recommended. The screen
shots that accompany the text assume that you have a hard disk.

Finally, use the latest system files with Mac Primer programs.
Don’t use any system software older than version 6.02 (earlier
versions of System 6 are buggy).

The compiled, stand-alone programs that are developed in this
book may or may not work in the 512K and the 128K Macintosh. In
general, if a program uses a ROM call that is not supported by
these Macintoshes, we will mention it in a tech block and suggest

alternatives (if there are any) for programmers who wish to support
the older machines.

Ready, Set ...

When you finish this book, you’ll be able to create your own
Macintosh applications.

Get all your equipment together, take the phone off the hook, and
fire up your Mac.

Go!

Setting Up

This chapter introduces you to the
software tools used in this book. It also
examines some issues that are specific
to the implementation of Pascal on the
Macintosh.

THINK PascAL Is the programming environment we’ll use
throughout the Macintosh Primer. First, we’ll show you how to install
it; then, we’ll look at how to type in and run a sample program. We'll
talk about the programming conventions used in this book and some
of the rules you need to follow when you use the Mac and THINK
Pascal together.

Installing THINK Pascal

Let’s start by installing THINK Pascal. These instructions were
tested using THINK Pascal 3.0. If you are using a different version,
check out the instructions in your THINK Pascal User Manual.

Create a folder called THINK Pascal at the top level of your hard
disk. Next, insert the floppy disk labeled THINK Pascal 1 into your
floppy drive. Drag the following files from the floppy disk into the
THINK Pascal folder on your hard drive:

* The THINK Pascal application
* Interface.lib

¢ Runtime.lib

* The Interfaces folder

® The Libraries folder

Your THINK Pascal folder should look something like Figure 2.1.

E[]Z THINK Pascal EFIE
MNarme

O Interface.lib i
[Interfaces
[Libraries

O Runtime.lib
<& THINK Pascal

L
& o

Figure 2.1 The THINK Pascal folder.

25

26 Macintosh Programming Primer

THINK Pascal comes with five disks, but only one is used here.
Why? Because the rest of the disks contain utilities that aren’t
necessary for us to deal with now. Most of the disks contain files
and utilities that deal with the THINK Pascal ability to do object
programming. Working with objects is beyond the scope of this
book. After you feel comfortable with the concepts in the Primer,
examine the object-programming manual that comes with THINK
Pascal. (Volume |l of the Primer also contains a discussion on
using class libraries.)

Source Code Files

Set up a place for your source code by creating a folder called
Development, or something equally inspiring, also at the top level.
We’ll create a separate folder inside the Development folder for
each Mac Primer application (see Figure 2.2).

" & File Edit Diew Special

Hard Disk E[E Development EH]
4 iterns 160,524K in disk 939K availabl MName

(]

Systern Folder THINK Pascal

K

(]

Figure 2.2 The Development folder, ready for some source code.

Setting Up

27

ResEdit

THINK Pascal comes with a version of ResEdit on one of its disks.
Drag it onto the top level of your hard disk. Check the version of
ResEdit that you have. It’s best to use version 2.0 (or later) for the
projects in this book (see Figure 2.3). There is no charge for this
utility, which is written and maintained by Apple. It’s available on
many BBSs, so download it if you wish. If you purchase ResEdit from
the Apple Programmer’s and Developer’s Association (APDA), you
also receive additional documentation. See Chapter 9 for more
information about APDA. ResEdit versions consistently improve, so
use the latest version that you can find.

If you are unfamiliar with ResEdit, read Chapter 8, which dis-
cusses ResEdit operations on resources. It illustrates how to install
the resources you need to complete a stand-alone program. (This
includes the techniques you’ll need to add an icon to your own
applications.)

E[[E==———== Info

P35, Locked []
g ResEdit
ResEdit 2.0
Kind : application
Size : 576,454 bytes used, 563K on disk

Where : HotHouse, SCSI 0

Created: Sat, Apr 28, 1990, 11:00 AM
Modified : Sat, Apr 28, 1990, 11:00 &M
Yersion: 2.0, ©®Apple Computer, Inc.
1984-1990

Suggested Memory Size (K): S00

Application Memory Size (K):

Figure 2.3 Get Info window for ResEdit 2.0. (To see this, select ResEdit
by clicking on it once. Then select Get Info from the Finder’s File menu.)

28

Macintosh Programming Primer

Once you have THINK Pascal and ResEdit together on your
Macintosh, you're one step away from starting to program. The next
section discusses the ground rules for running THINK Pascal code:
steps for accessing the Toolbox, naming conventions, and predefined
Pascal and Toolbox data types.

Macintosh Programming Issues

Accessing the Toolbox with Pascal

Built into every Macintosh Plus, SE, and Mac Il is a set of more than
700 routines, collectively known as the Mac Toolbox. These include
routines for drawing windows on the screen, routines for handling
menus, even routines for changing the date on the real-time clock
built into the Mac. The existence of these routines helps explain the
consistency of the Mac user interface. Everyone uses these routines.
When MacDraw pulls down a menu, it’s calling a Toolbox routine.
When MacPaint pulls down a menu, it’s calling the same routine.
That’s why the menus look alike from application to application,
which has a rather soothing effect on users. This same principle
applies to scroll bars, windows, lists, dialog boxes, alerts, and so on.

If you look at Toolbox calls in the pages of Inside Macintosh, you'll
notice that the calling sequences and example code presented in each
chapter are written in Pascal. For example, the calling sequence for
the function GetNewWindow (1:283) is listed as:

FUNCTION GetNewWindow (windowID: INTEGER;
wStorage: Ptr; behind: WindowPtr) : WindowPtr;

Each calling sequence starts with either the word FUNCTION or the
word PROCEDURE. Just as you'd expect from Pascal, functions
return values; procedures don’t. In the example, the function
GetNewWindow returns a value of type WindowPtr. Here’s an
example of a call to GetNewWindow from within a program:

VAR
myNewWindow, myOldWindow: WindowPtr;
myWindowID: INTEGER;

begin
myWindowID := 400;

Setting Up

29

myNewWindow := GetNewWindow(myWindowID,
nil, myoldWindow);
end;

In our code, we receive the value returned by GetNewWindow in
the variable myNewWindow, which is declared as a WindowPtr.

Most of the data types found in Inside Macintosh are automatically
available to you in THINK Pascal. Note that Pascal is not case-sensi-
tive: Boolean and BOOLEAN both represent the same data type.
Although both will compile, the examples presented in the Mac Primer
will use the case-spelling presented in the Inside Macintosh calling
sequences. In the previous example, the variable myWindowID is
declared as an INTEGER, not as an Integer. Where possible, stick to
the standards presented in Inside Macintosh.

Naming Conventions

Another standard adopted by the Mac Primer concerns the naming of
PROCEDUREs, FUNCTIONs, and variables. PROCEDUREs and
FUNCTIONs always start with an upper-case letter. Each new word
within a name should also start with an upper-case letter. For
example, GetNewWindow or SeekSpindle are fine FUNCTION and
PROCEDURE names; badPrcName isn’t.

Variables always start with a lower-case letter. Global variables
(variables accessible to your entire program) should start with a lower
case g. Use variable names like firstEmployee and currentTime.
Use global names like gCurrentWindow and gbone. The use of
variable names such as gLk and swpCk7 is discouraged.

(These conventions have been adopted to make the code presented
here easy to understand and consistent. If you're feeling ornery,
swpCk7 as often as you want. It’s your Mac.)

Predefined Data Types

Although some of the data types you’ll encounter in the pages of
Inside Macintosh will be familiar, many data types are defined
specifically for the Macintosh Toolbox. For example, note the calling
sequence for the Toolbox PROCEDURE SetRect, found in (1:174):

PROCEDURE SetRect(VAR r: Rect;
left, top, right, bottom: INTEGER);

30

Macintosh Programming Primer

The data type Rect is used throughout the Toolbox and is defined
in Inside Macintosh (1:141). A Rect holds the upper left and lower
right points of a rectangle. You'll see more of these “predefined” Mac
data structures later on. As you'll see, access to most of the Toolbox
types and constants defined in Inside Macintosh is provided
automatically by THINK Pascal.

Most of the Toolbox routines are built right into the Macintosh, in
read-only memory, or ROM. The original Macintosh came with 64K
ROMs; the Mac Plus comes with 128K ROMs; the Mac SE, |l, and
lix have 256K ROMs. The Mac llfx has massive 512K ROMs.
Many of the routines built into the newer Macs are not found in the
original Mac, Mac Plus, or SE. Likewise, many routines found in
the Mac Plus were not found in the original Macintosh. The point is,
things change. If you’re not careful, the programs you write on one
machine might not work on another. In the same vein, if you don't
follow Apple’s programming guidelines, the program you write on
today’s machine may break on tomorrow’s.

Resources

As was mentioned in Chapter 1, much of a program’s descriptive
information is stored in resources. Resources may be defined by their
type and either their resource ID number or their name.

Each resource has a certain type, and each type has a specific
function. For example, the resource type WIND contains the descrip-
tive information necessary to create a window; MENU resources
describe the menus at the top of the screen. Figure 2.4 gives a short
list of some of the resource types you'll see in this book.

Each resource type is composed of four characters. Case is not
ignored: WIND and wind are considered different resource types.
Occasionally, resource types may include a space—for example,
'snd ', where the fourth character is a space.

Actually, resource types are just LONGINTS (4 bytes) represented
in ASCII format. Usually, the types are selected so the ASCII
version is readable (like WIND, MENU, and so on).

Setting Up 31

Resource ID numbers are unique within their resource type and
file. An application can have several resources of type DLOG, each of
which normally has a unique resource ID within the application file.
For example, the program shown in Figure 2.5 has two DL0OGs with
ID = 400 and ID = 401. The application also has a WIND type
resource with ID = 400. Thus, each resource is uniquely identified by
ID number and type.

If you prefer, you may also name your resources. All the examples
presented in the Mac Primer use the resource type and resource ID to
specify resources. When you create your resources, however, you
might want to specify resource names as well as resource IDs. This
will make your resource files easier to read in ResEdit.

E[1== Primer Resource Types =[]

a)
S4B i =g —
S T | T E
BNDL CODE DITL DLOG
P T s
3 & &l =
FREF ICN# MB AR MENU
~
LE _

PICT T
2

Figure 2.4 Some resource types used in the Mac Primer.

IECIE DLOGs from Primer Resource Types =

> Size Name

400 31 =

401 31 {_}
=

Figure 2.5 Two different DLOG resources in the same resource file.

32

Macintosh Programming Primer

ID numbers follow these conventions:

Range Use
-32,768 to —16,385 Reserved by Apple
-16,384 to 127 Used for system resources
128 to 32,767 Free for use

Certain kinds of resources may have additional restrictions; check
Inside Macintosh for further information.

In this book, CODE resources will be created in THINK Pascal;
most of the other resources will be created using ResEdit.

CODE resources contain the actual code that is to be executed.
You may be used to an operating environment that allows you to
segment your executable code. The Mac supports segmentation as
well. Each segment is stored in a separate CODE resource and is
loaded and unloaded as necessary. If you are interested in learning
more about code segmentation, an informative discussion begins
on page 98 of the THINK Pascal User’s Manual.

Data Forks and Resource Forks

Macintosh files, unlike files on most other operating systems, each
contain two parts: a data fork and a resource fork. The resource fork
stores the resources, and the data fork contains everything else. Most
word processors store a document’s text in the document’s data fork
and use the resource fork for storing the document’s formatting
information. HyperCard stacks, interestingly enough, have all their
information on the data fork side. The THINK Pascal projects in this
book will use the resource fork exclusively.

Now that we've covered these weighty and important topics, let’s
make THINK Pascal do something, right away!

The Hello, World Program

Now it’s time for your first THINK Pascal program. It’s the classic
program many of you may have encountered before. Hello, World
draws its name in a window on the screen.

Just to keep things neat, put a new folder inside the Deve lopment
folder you created earlier. Call the new folder He L Lo, Wor Ld. Keep all
the files associated with the He L Lo, Wor Ld project in this folder.

Create a New Project

To create your first program, double-click on the THINK Pascal
application in the THINK Pascal folder. The first thing you'll see is
the Dpen Project dialog box (Figure 2.6).

Click on the Mew button, and you should see the dialog box in
Figure 2.7.

Use the standard Macintosh mechanisms to open the dialog to the
Hello, World folder that you just created (move up once to the top
of the hard drive, down once into the Deve lopment folder, and down
once more into the Hello, World folder). Type Hel Lo.w in the
Mame Project dialog box and click the Create button (use
Option-p for ©). The project window (titled He L Lo .7) will appear

[THINK Pascal |

0 Interfaces » — Hard Disk

O Libraries

el

Figure 2.6 The Open Project dialog box.

33

34

Macintosh Programming Primer

(Figure 2.8). Notice that two files have been added to your project
automatically. The file Runtime. Llib gives your program access to
the standard Pascal input and output routines. Runtime.lib is
described on page 54 of the User Manual. The file Interface.lib
contains the glue your program will need to access the Macintosh
Toolbox routines built into ROM.

As you add your own files to your project, they will be added to the
project window, with the object code size displayed in bytes.

[£3 Hello, World |

tipet

Drive

Create the project: Create
Hello.w Cancel

il

Figure 2.7 The Name Project dialog box.

E[1=— Hello.m

Options File (by build order) Size
Runtime lib 0
Interface.lib 0
Fosfal Lol Bgna 0

BFm

K]

v
2]

Figure 2.8 The Project window.

Setting Up 35

As you may have noticed, we’ve snuck another naming convention
in at this point. This one came directly out of the THINK Pascal
User Manual. If you wish to keep consistency with our text, name
your source code files xxx . p, your project files xxx. w, and your
resource files xxx .w. rsrc. The &t character is created by holding
down the Option key and pressing p.

Now, you’re ready to type in your first program.

The Project file acts as an information center for all the files
involved in building an application. It contains the names of all the
source code and resource files necessary to run the application. In
addition, the Project file contains information about the THINK
Pascal environment, such as the preferred font and font size for
printing source code. Projects are a THINK Pascal concept, not a
Macintosh concept.

The Code

Pull down the File menu and select New. Figure 2.9 should show the
result.
Now that you have a blank window, type in the following program:

program Hello;
begin

ShowText;

writeln('Hello, world!"');
end.

The THINK Pascal editor checks your syntax as you type. It will
catch most Pascal errors, displaying what it thinks is an illegal
statement using an outline font style. The editor will automatically
format your code, saving you lots of work and keystrokes. By
selecting Source Options... from the Edit menu, you can customize
the editor’s formatting rules to suit your own tastes.

36 Macintosh Programming Primer

Debug Windows

Figure 2.9 A new source code window.

Although the editor is pretty smart, it can be fooled. If the editor
outlines an error that you're sure is correct, try deleting the line and
retyping it. You might also check the lines before and after the
outlined error, in case the error occurred there.

Check the code for typing errors. If everything looks all right, then
select Save As... from the File menu. Call the file Hel Lo.p. Then
select the Add Window menu item from the Project menu to add
Hel Lo.p to the project.

If you typed in He L Lo . p. instead of He L Lo . p while following the
preceding instructions, you share your inclination with many readers
of earlier editions. To repeat: in this book, program files look like
xxx.p and project files look like xx x . and resource files (when we
get to them in Chapter 3) look like xxx.m.rsrc and that’s it.
Periods are not used at the end of any file names in this book.

Setting Up

37

The difference between Add Window and Add File... in the
Project menu is that Add Window adds the frontmost window
to the project, whereas Add File... allows you to select one or
more files to add to the project.

Running Hello, World

Note that the Hel lo.p file is now displayed in the project window
(Figure 2.10). Now try running the program by choosing 60 from the
Run menu, or by keying #6 (pronounced “command-G”). THINK
Pascal will load the two libraries and compile He L Lo.p. Note that
the libraries are loaded only the first time you try to compile a
project.

If the compiler encounters an error, it will do its best to describe
the problem to you. For example, Figure 2.11 shows the result when

ECl=——=—= Hello."n =——T|
Options _ File (by build order) Size |&
Runtirne.lib 0 5
Interface lib 0

M ¥ R Hello.p]
fofal Logk Sgna 0]
i
&l =

Figure 2.10 Hel lo.p added to the Project window.

S =———— Hello.p =———"=—"LF
program Hello; ﬁ
begin

SE.I-:-wText wreeln € Hells, weridl® J;
O
]

Figure 2.11 The Editor detects a missing semicolon.

38

Macintosh Programming Primer

the semicolon is left off the end of the call to ShowText. Notice that
the call to wri te Ln is outlined.

When you attempt to compile Hel Lo. p, the compiler will point
out the line with the error and display an error message in a window.
For the error in Figure 2.11, the error message in Figure 2.12
appeared.

To make the error message window go away, just click the mouse
button.

Once you’ve removed the errors, THINK Pascal will give you a
chance to save any changes you’ve made since the last time you
saved your source code file (Figure 2.13). Make sure you click ¥es to
save your changes.

Once you’ve saved your changes, THINK Pascal will run your
program. The call to ShowText brings up THINK Pascal’s built-in
text window. The call to Wri teLn writes the string Hel lo, world!
in the window (Figure 2.14). Congratulations! You’ve just completed
your very first Macintosh program.

GB This doesn't make sense.

Figure 2.12 A helpful THINK Pascal error message.

Do you want to save the changes to
“Hello.p” before running?

[_ves]

Figure 2.13 The save changes dialog box.

Setting Up 39

SO==—— Text =———o1]

Hel lo, world!

@[3

Figure 2.14 Hello, World in action!

You might be wondering about the or the [BIM] ¥ R in the
project window. Well, the icon shows you that the files are listed
in the build order, the order in which they will be compiled. Click
on the icon and it will change to E and sort the file listing to show
how the project is segmented. The [C][H] ¥ R refers to THINK
Pascal testing options for that file. There’s more information about
this on pages 93—-105 in the THINK Pascal User Manual. For your
purposes now, the default settings need not be changed.

The Problem with Hello, World

We don’t want to get you too excited about this version of Hello,
World. Although it does illustrate how to use THINK Pascal, it does
not make use of the Macintosh Toolbox. The first program in Chapter
3 is a Macintized version of Hello, World called Hello2.

In Review

In Chapter 2, you installed THINK Pascal and created your first
project. Chapter 3 looks at the basics of Mac programming:
QuickDraw, windows, and resources. It also presents four
applications that demonstrate the versatility of the Macintosh.

It’s almost too late to turn back. To all those who have come from
other environments: Beware! QuickDraw is addictive!

Drawing on the
Macintosh

On the Macintosh, the Toolbox
routines that are responsible for all
drawing are collectively known as
QuickDraw. Now that you have
installed THINK Pascal, you can start
programming. A good starting point is
the unique routines that define the
Macintosh graphic interface.

Introduction

QuickDraw Is THE Macintosh drawing environment. With it, you can
draw rectangles and other shapes and fill them with different
patterns. You can draw text in different fonts and sizes. The windows,
menus, and dialogs that are displayed on the Macintosh screen are all
created using QuickDraw routines.

In this chapter, we’ll show you how to create your own windows and
draw in them with QuickDraw. Let’s start by examining the
QuickDraw coordinate system, the mathematical basis for QuickDraw.

The QuickDraw Coordinate System

QuickDraw drawing operations are all based on a two-dimensional
grid coordinate system. The grid is finite, running from (-32,767,
-32,767) to (32,767, 32,767), as shown in Figure 3.1.

Every Macintosh screen is actually an array of pixels aligned to
the grid. The lines of the grid surround the pixels. The grid point
labeled (0,0) is just above, and to the left of, the upper left-hand
corner of the Mac screen (Figure 3.2).

(-32,767, -32,767)

(32,767, 32,767)
Figure 3.1 The grid.

43

44 Macintosh Programming Primer

{0, 0)

Figure 3.2 The Macintosh screen on the grid.

A screen measuring 32,768 pixels x 32,768 pixels with a screen
resolution of 1 pixel = 1/72 inch would be 38 feet wide and 38 feet
tall. The Mac Plus and SE monitors are 512 x 342 pixels. Apple’s
Mac 13" color monitor is 640 x 480 pixels.

The grid is also referred to as the global coordinate system.
Each window defines a rectangle in global coordinates. Every rec-
tangle has a top, left, bottom, and right. For example, the window
depicted in Figure 3.3 defines a rectangle whose top is 80, left is —50,
bottom is 220, and right is 300.

Interestingly, the window does not have to be set up within the
boundaries of the screen. You can set up a window whose left is
-50, top is 100, bottom is 200, and right is 800. On a Mac Plus, this
window would extend past the left and right sides of the screen
(Figure 3.4)! This is known as the Big Long Window Technique.
Use of the Big Long Window Technique is discouraged.

Drawing on the Macintosh 45

{300, 220)

Figure 3.3 A window on the grid.

Big Long Window

Figure 3.4 A big long window.

46

Macintosh Programming Primer

{0, 0) in Window's Local
Coordinate System

Figure 3.5 Local coordinates.

When drawing inside a window, you'll always draw with respect to
the window’s local coordinate system. The upper left-hand corner
of a window lies at coordinate (0,0) in that window’s local coordinate
system (Figure 3.5).

To draw a rectangle inside your window, specify the top, left,
bottom, and right in your window’s local coordinates (Figure 3.6).
Even if you move your window to a different position on the screen,
the rectangle coordinates stay the same. That’s because the rectangle
was specified in local coordinates.

(0, 0} in ¥Window's Local
Coordinate System, (50, 80) in
Global Coordinates

(20, 30) in Yindow's Local 1
Coordinate System, (70, 110) in
Global Coordinates

Figure 8.6 Rectangle drawn in window’s local coordinates.

Drawing on the Macintosh 47

Local coordinates are really handy! Suppose you write an
application that puts up a window and draws a circle in the window
(Figure 3.7). Then, the user of your application drags the window to
a new position (Figure 3.8).

You still know exactly where that circle is, even though its window
has been moved. That's because you specified your circle in the
window’s local coordinates.

Drawing Window

(20,20)

Figure 3.7 Circle drawn in window’s local coordinates.

Still (20, 20)

Figure 3.8 When window moves, local coordinates stay the same.

48

Macintosh Programming Primer

On the Macintosh, text and graphics created by your programs will
be displayed in windows. Windows are the device that Macintosh
programs use to present information to a user.

Because we need windows to draw in, let’s look more closely at
windows and the Window Manager.

Window Management

When you draw graphics and text on the Macintosh, you draw them
inside a window. The Window Manager is the collective name for
all the routines that allow you to display and maintain the windows
on your screen. Window Manager routines are called whenever a
window is moved, resized, or closed.

Window Parts

Although windows can be defined to be any shape you choose, the
standard Macintosh window is rectangular. Figure 3.9 shows the
parts of a typical window.

| Close Box I I Title Bar or Drag RegionJ Zoom Box

S e——————— lllindow =——————7|

Scroll Bars

el

s

Figure 8.9 Window components.

Drawing on the Macintosh 49

The close box is used when you wish to close the window. The
drag region is where you grab the window to move it around the
screen; this region also contains the window’s title. Scroll bars are
used to examine parts of the window content not currently in view.
The thumb may be dragged within the scroll bar to display the corre-
sponding part of the window content. The grow box (also known as
the size box) lets you resize the window. The zoom box toggles the
window between its standard size and a predefined size, normally
about the size of the full screen.

There are several types of windows. The window in Figure 3.9 is
known as a document window. When you use desk accessories or
print documents, you will notice other kinds of windows. These
windows may not have all the same components as the standard
window, but they operate in the same fashion.

Window Types

Six standard types of windows are defined by the Window Manager.
Each type has a specific use. In this section, each type is described
and its use is discussed.

The documentProc window, shown in Figure 3.10, is the stan-
dard window used in applications. This one has a size box, so it is
resizable; it has a close box in the upper left-hand corner that closes
the window.

The noGrowDocProc window (shown in Figure 3.11), is the stan-
dard window without scroll bars or a grow box. Use this window for

[eem——= lllindow =————=|
>

Q]

<] =

Figure 3.10 The documentProc window.

Macintosh Programming Primer

S(J————— Window —r———

Figure 3.11 The noGrowbocProc window.

information that has a fixed size. The rDocProc window (shown in
Figure 3.12), has a black title bar; it has no scroll bars or grow box.
This window is most often used with desk accessories.

The remaining three types of windows are all dialog box windows:
dBoxProc, plainDBox, and altDBoxProc (Figure 3.13). Dialog
boxes will be discussed in Chapter 6.

L -

Figure 3.12 The rDocProc window.

Drawing on the Macintosh 51

Figure 3.13 The dBoxProc,plainDBox,and al tDBoxProc windows.

The windows described here are the standard models. You can
customize them by adding a few options. For example, most of the
window types supported by the Mac can come either with or
without the close box (also known as the go-away box). You can
specify whether or not the window has a size box (grow box).
A zoom box can be added to documentProc and
noGrowbDocProc windows (see Chapter 4). We'll show you
everything you need to know to create exactly the type of window
you want for your application.

Setting Up a Window for Your Application

If you plan to use one of the standard window designs for your
applications, creating a window is easy. First, build a WIND resource
using ResEdit (if you’re not familiar with ResEdit, turn to Chapter
8). The WIND resource requires the information shown in Figure 3.14.
Use this resource ID within your application to refer to your WIND
resource.

52

Macintosh Programming Primer

E[J=== WIND ID = 400 from Hello2.w.Fsrc E]

Window title:

top 40 bottom (238
left 40 right 428
prociD |D refCon |0

[J visible [] goAwayFlag

Figure 3.14 WIND resource fields.

Once your WIND resource is built, you're ready to start coding. One
of the first things your program will do is initialize the Toolbox. The
Window Manager is initialized at this point.

Next, load your WIND resource from the resource file, using the
GetNewWindow Toolbox routine:

pictureWindow := GetNewWindow(windowID,
wStorage, behind);

GetNewWindow loads the WIND resource that has a resource ID of
WindowID. The WIND information is stored in memory at the space
pointed to by wStorage. The Window Manager will automatically
allocate its own memory if you pass nil as your wStorage
parameter. For now, this technique is fine. As your applications get
larger, you’ll want to consider developing your own memory
management scheme. The parameter behind determines whether
your window is placed in front of or behind any other windows. If the
value is ni L, it goes to the back; WindowPtr (-1) puts it in front.
For example:

theWindow := GetNewWindow(400, nil,
WindowPtr(-1));

Drawing on the Macintosh 53

loads a window with a resource ID of 400, asks the Window Manager
to allocate storage for the window record, and puts the window in
front of all other windows. A pointer to the window data is returned
in the variable theWindow.

Pascal is a strongly typed language. Basically, this means that the
compiler is extremely cautious when it comes to passing
parameters and assigning values of one type to variables of
another type. The expression WindowPtr (-1) asks the compiler
to make the constant -1 look like a WindowPtr so that it can be
passed as a parameter to GetNewWindow. This technique,
known as type-casting, is critical to programming on the Mac. For
more information on type-casting, refer to page 285 in the THINK
Pascal User Manual.

When you create the WIND resource with ResEdit, you are given a
choice of making the window visible or not. Visible windows appear as
soon as they are loaded from the resource file with GetNewWindow.
If the visible flag is not set, you can use ShowWindow to make the
window visible:

ShowWindow(theWindow);

where theWindow is the pointer you got from GetNewWindow. Most
applications start with invisible windows and use ShowWindow when
they want the window to appear. The Window Manager routine
HideWindow makes the window invisible again. In general, you’ll
use ShowWindow and HideWindow to control the visibility of your
windows.

At this point, you've learned the basics of the Window Manager.
You can create a window resource using ResEdit, load the resource
using GetNewWindow, and make the window appear and disappear
using ShowWindow and HideWindow. This technique will be
illustrated shortly. After you have put up the kind of window you
want, you can start drawing in it. The next section shows you how to
use QuickDraw routines to draw in your window.

Drawing in Your Window: The QuickDraw
Toolbox Routines

54

There are many QuickDraw drawing routines. They can be con-
veniently divided into four groups: routines that draw lines, shapes,
text, and pictures. These routines do all their drawing using a
graphics “pen.” The pen’s characteristics affect all drawing, whether
the drawing involves lines, shapes, or text.

Before starting to draw, you have to put the pen somewhere
(MoveTo), define the size of the line it will draw (PenSize), choose
the pattern used to fill thick lines (PenPat), and decide how the line
you are drawing changes what’s already on the screen (PenMode).
Figure 3.15 shows how changing the graphics pen changes the
drawing effect.

Every window you create has its own pen. The location of a
window’s pen is defined in the window’s local coordinate system.
Once a window’s pen characteristics have been defined, they will stay
defined until you change them.

SN R
Pen Patterns

gw\x\\ﬁ
= o NS W W

Lines Drawn with 4-Pixels-Wide Graphics Pen, Using Pen Patterns

TEE NN ® W OW %

Source patCopy patOr patXor patBic
Pattern

Destination notPatCopy notPatOr notPatXor notPatBic
Pattern

Copy Source Pattern Onto Destination Pattern Using
One of Eight Graphics Pen Modes

Figure 3.15 Graphics pen characteristics.

Drawing on the Macintosh 55

Setting the Current Window

Because your application can have more than one window open at
the same time, you must first tell QuickDraw which window to draw
in. This is done with a call to SetPort:

theWindow := GetNewWindow(400, nil,
WindowPtr(-1));
SetPort(theWindow);

In this example, SetPort made theWindow the current window.
Until the next call to SetPort, all QuickDraw drawing operations
will occur in theWindow, using theWindow’s pen. Once you've
called SetPort and set the window’s pen attributes, you're ready to
start drawing.

The basic data structure behind all QuickDraw operations is the
GrafPort. When you call SetPort, you are actually setting the
current GrafPort (1:271). Since every window has a GrafPort
data structure associated with it, in effect you are setting the
current window. The GrafPort data structure contains fields like
pnSize and pnLoc, which define the GrafPort pen’s current
size and location. QuickDraw routines like PenSize modify the
appropriate field in the current Gra fPor t data structure.

Drawing Lines

The LineTo routine allows you to draw lines from the current pen
position (which you have set with MoveTo) to any point in the
current window. For example, a call to:

theWindow := GetNewWindow(400, nil,
WindowPtr(-1));

SetPort(theWindow);

MoveTo(39, 47);

LineTo(407, 231);

would draw a line from (37, 47) to (407, 231) in theWindow’s
local coordinate system (Figure 3.16).

56

Macintosh Programming Primer

Window

Figure 3.16 Drawing a line with QuickDraw.

It is perfectly legal to draw a line outside the current boundary of a
window. QuickDraw will clip it automatically so that only the portion
of the line within the window is drawn. QuickDraw will keep you
from scribbling outside the window boundaries. This is true for all
the QuickDraw drawing routines.

The last program in this chapter is the Flying Line, an extensive
example of what you can do using the QuickDraw line-drawing
routines.

Drawing Shapes

QuickDraw has a set of drawing routines for each of the following
shapes: rectangles, ovals, rounded-corner rectangles, and arcs. Each
shape can be drawn filled, inverted, or as an outline (Figure 3.17).

The current pen’s characteristics are used to draw each shape,
where appropriate. For example, the current fill pattern will have no
effect on a framed rectangle. The current PenMode setting, however,
will affect all drawing. The second program in this chapter,
Mondrian, shows you how to create different shapes with QuickDraw
(Figure 3.18). It also demonstrates the different pen modes.

Drawing on the Macintosh

57

Figure 3.17 Some QuickDraw shapes.

~

Mondrian

Figure 3.18 Mondrian.

58

Macintosh Programming Primer

Drawing Text

QuickDraw allows you to draw different text formats easily on the
screen. QuickDraw can vary text by font, style, size, spacing, and
mode. Let’s examine each one of the text characteristics.

Font refers to the typeface of the text you are using. Courier,
Helvetica, and Geneva are some of the typefaces available on the
Macintosh. Style refers to the appearance of the typeface, (bold,
italic, underline, etc.). The size of text on the Macintosh is measured
in points, where a point is equal to 1/72 inch. Spacing defines the
average number of pixels in the space between letters on a line of
text. Figure 3.19 shows some of these characterics of QuickDraw text.

The mode of text is similar to the mode of the pen. The text mode
defines the way drawn text interacts with text and graphics already
drawn. Text can be defined to overlay the existing graphics (srcOr);
text can be inverted as it is placed on the existing graphics (srcXor);
or text can simply paint over the existing graphics (srcCopy). The
other modes described in QuickDraw shapes (srcBic,
notSrcCopy, notSrcOr, etc.) can also be used with text. Figure
3.20 demonstrates how text mode affects appearance.

% File Edit Search Format Font Document Window
EMI=———— nuickDraw Text Variations.wd3-1

|As the center of the United Worlds, New Tork

was growing qQUIiCcK1y. This was underlined by the fact that many of
the poorer planets were unable to find space for their embassies. New
Tork landlords boldly detnanded a rental of 1 million credits a day.

As a result, ambassadors set up shop in two other cities.

Chicago had the biggest spaceport on earth and ended up with many
statesmen.

47?6 Chars Normal

Figure 3.19 Examples of QuickDraw text.

Drawing on the Macintosh 59

Y Y
e e
r i r
Horizontal Horidontal
1 i
c c
a a
1 1
srcCopy srcOr

Figure 3.20 The two most popular QuickDraw text modes.

Drawing Pictures

QuickDraw can save text and graphics created with the drawing
routines as picture resources called PICTs. You can create a picture
(using a program like MacPaint or MacDraw), copy the picture to the
clipboard, and paste it into a PICT resource using ResEdit. Later in
the chapter, you'll see how to make use of PICT resources in the
ShowPICT program.

About Regions

QuickDraw allows you to define a collection of lines and shapes as a
region. You can then perform operations on the entire region, as
shown in Figure 3.21.

By now most of you are probably itching to start coding. First, let’s
look at the basic Mac programming structure used in this chapter’s
programs. Then, we’ll hit the keyboards!

60

Macintosh Programming Primer

L

e i
(T

R

B

OffsetRgn InsetRgn I

Figure 3.21 Two QuickDraw region operations.

Basic Mac Program Structure

We've looked at a general outline of the QuickDraw and Window
routines necessary to make a Macintosh application go. The basic
algorithm used in each of the Chapter 3 programs goes something
like this:

program MyApp;

begin
DoInitialization;
DoPrimeDirective;

while (not Button) do
begin
end
end.

As you’d expect, the first thing the program does is initialize
variables and such. One nice feature of THINK Pascal is that it
automatically initializes the Macintosh Toolbox for you. All you have
to worry about is any program-specific initialization, such as loading
windows or pictures from the resource file. Next, the program
performs its prime directive. In the case of the Hello, World program,
the prime directive is drawing a text string in a window. Finally, the
program waits for the mouse button to be pressed. This format is
very basic: Except for clicking the button, there is no interaction
between the user and the program. This will be added in the next
chapter.

Drawing on the Macintosh 61

Danger, Will Robinson! Normal Macintosh applications do not exit
with a click of the mouse button. Mac programs are interactive.
They use menus, dialogs, and events. We’'ll add these features
later. For the purpose of demonstrating QuickDraw, we’ll bend the
rules a bit.

The QuickDraw Programs

The following programs each demonstrate different parts of the
Toolbox. The Hello2 program demonstrates some of the QuickDraw
routines related to text; Mondrian displays QuickDraw shapes and
modes; ShowPICT loads a PICT resource and draws the picture in a
window. Finally, you'll code the Flying Line, an intriguing program
that can be used as a screen saver.

Let’s look at another version of the Hello, World program pre-
sented in Chapter 2.

Hello2

The new Hello2 program will do the following:

¢ Load a resource window, show it, and make it the current port.
* Draw the string 'Hello, World!"' in the window.
* Quit when the mouse button is pressed.

To get started, create a folder in the Deve lopment folder and call
it He L Lo 2. This is where you’ll build your first Macintosh application.

Create a resource of type WIND. The WIND resource allows you to
define a window with the appearance and size that you desire. Use
the tutorial in Chapter 8 if you feel hesitant about using ResEdit.

To build the WIND resource, run ResEdit. Select New from the
File menu and create a file named Hel lo2.7w. rsrc (remember, Tt is
option-p). Make sure you save your resource file inside your newly
created He L Lo2 folder (Figure 3.22).

62

Macintosh Programming Primer

Q = Hard Disk

AR

[

!

New File Name:

Hello2.m.rsrc | | Cancel |

Figure 3.22 ResEdit, naming the new resource file.

Once you've named the new resource file, a window listing all of its
resources will appear automatically. Because you just created the file,
no resources are listed. Select Create New Resource from the
Resource menu. When prompted to select a resource type, select
WIND from the scrolling list and click DK (you could also have typed
in WIND and clicked OK). Two new windows should appear, a window
listing all of the WIND resources and, on top of that, a window
showing the newly created WIND (Figure 3.23).

First, define the coordinates of the window. Pull down the WIND
menu and choose the menu item Display as Text. Then, fill out the
fields as shown in Figure 3.24.

Next, select Get Resource Info from the Resource menu. When
the resource information window appears (Figure 3.25), set the
WIND’s resource ID to 400 and make sure the Purgeable checkbox is
checked. Checking the Purgeable checkbox allows the Macintosh
Memory Manager to purge the WIND resource from memory once it’s
not needed anymore. This approach maximizes the amount of memory
available for your application.

Choose Quit from the File menu. When prompted to save the file,
click Yes. Now you're ready to start up THINK Pascal.

Drawing on the Macintosh

® File #d¢it Resource Window WIND

Hello2.m.rsrc
WINDs from Hello2.m.rsrc

E[J== WIND ID = 128 from Hello2.m.rsrc

Figure 3.23 The newly created WIND resource.

ECJ=— WIND 1D = 400 from Hello2.7.rsrc =—=—|
Window title:
top 40 bottom | 238
left 40 right [428
prociD |0 refCon |0
[] visible [] goAwayFlag

Figure 3.24 The WIND resource, displayed as text.

Macintosh Programming Primer

=S[]== |Info for WIND 400 from Hellow?2.m.rsrc gl
Type: WIND Size: 32
1D: 400
MName: \ |
Owner type
Owner 1D: DRUR i+
: WDEF

Attributes:
[JSystem Heap []Locked] Preload
[Purgeable [JProtected

Figure 3.25 The resource information window for WIND.

Some of you may note that the §ize: field in Figure 3.25 has a
number different from that in the WIND you just made. That’s
usually okay. Different versions of ResEdit make resources of
slightly different sizes, so if you get 36 instead of 32, don’t worry.
This will be true for all the resources in this book, so stay calm if
the sizes shown in the figures don’t match up exactly with what you
get at home or at work.

The Hello2 Project

Get into THINK Pascal and create a new project in the Hel Lo?2
folder. If you need help creating a new project, refer to Chapter 2 or
just review the THINK Pascal documentation. Call the project
Hello2.m (remember, © is option-p). Next, select New from the
File menu and type the following source code into the window that
appears:

program Hello2;
const
BASE_RES_ID = 400;
HORIZONTAL_PIXEL = 30;
VERTICAL_PIXEL = 50;

Drawing on the Macintosh 65

I > WindowInit <--1}

procedure WindowlInit;
var
helloWindow: WindowPtr;
begin
helloWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(helloWindow);
SetPort(helloWindow);
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL);
DrawString('Hello, world!');
end;

{---————————— > Hel lo2 <--}

begin
WindowInit;
while (not Button) do
begin
end;
end.

Select Save As... from the File menu and save your source code
as Hello2.p. Select Add Window from the Project menu to add
Hello2.p to the project. When you're done, the Project window
should look like Figure 3.26.

S=——— Hello2." =———{T|
Options File (by build order) Size (&
Runtime.lib 0 5
Interface.lib 0

[CIM ¥ R Helloz.p 0
Fofal fodla SEna (n]]
L
] =

Figure 3.26 The Hello2 Project window.

Adding the Resource File

Before you run the program, you have to tell THINK Pascal to use
your newly created resource file. Select Run Options... from the Run
menu. The Run-time Environment Settings window will appear.

66

Macintosh Programming Primer

Click your mouse on the Use resource file checkbox. When the
file selection window appears, select the file Hello2.7m.rsrc from
your project folder. If you can’t find your resource file, you probably
don’t have your project file (Hello2.n) and the resource file
(Hello2.m.rsrc) in the same folder at the same level. Quit THINK
Pascal, drag them into the same folder and try again. Your Run-time
Environment Settings window should look like Figure 3.27. Click
0K to save the settings.

Running Hello2

Now you’re ready to run Hello2. Select 60 from the Run menu. You
may get a complaint about a syntax error or two. If so, just retype the
line the compiler points to.

If you make any changes to Hel lo2.p, you'll be asked whether
you'd like to Save changes before running?. Click Yes.

Once you've gotten Hello2 to compile without a hitch, it will
automatically start running, as shown in Figure 3.28. Voila! The new
Hello, World should display a window with the text Hello, world!
in it. Quit the program by clicking the mouse button.

Let’s look at how the code works.

If Hello2 compiles, but the Hello2 window fails to appear, it may
indicate a problem with the resource file. If the WIND resource has
been entered correctly, try reselecting the resource file in the Run
Options... dialog box. Also make sure that the resource file is in the
same folder as Hel Lo. p.

Walking Through the Hello2 Code

We'll be walking through the source code of each of the programs
presented in the Mac Primer. We'll start with each program’s global
const and var declarations. Next, we'll dig into the main routine
(usually found at the very bottom of the source code file) and discuss
each routine in the order called.

The Hello2 program starts off with some constant declarations. The
constant BASE_RES_ID allows all resource references in the program
to refer to the same starting ID. By convention, all of our resources
start at 400 and go up from there. For example, if we had three WIND
resources, they’d most likely be numbered 400, 401, and 402.

The constants HORIZONTAL_PIXEL and VERTICAL_PIXEL will
determine where the top left-hand corner of the window is placed on
the screen.

Drawing on the Macintosh

67

Resources

Run-time Environment Settings

[Use resource fiIe:|Hellow2.11.rsrc

for resources used by the project.

Texnt
Window

Teut Window saves characters

[JEcho to the printer

[JEcho to the file:l

Hello world. x = 811.79,

| Monaco || 9

Memory

stack size:[[[3lj ilobytes
Zone size:kilohgtes

Figure 3.27 Adding the resource file to the project.

HelloZ2 Window

Hello, world!

Figure 3.28 The new Hello, World.

68 Macintosh Programming Primer

program Hello2;
const
BASE_RES_ID = 400;
HORIZONTAL_PIXEL = 30;
VERTICAL_PIXEL = 50;

The main routine starts with a call to WindowInit. Hello2 then
waits in an indefinite loop until the Toolbox routine Button returns
true. Button will return true when the mouse button is pressed.

{--————m— - > Hello2 <--}%
begin
WindowlInit;
while (not Button) do
begin
end;
end.

WindowInit calls GetNewWindow to load the WIND resource
with resource ID = BASE_RES_1ID from your resource file. The first
parameter specifies the resource ID. The second parameter tells the
Toolbox how memory for the new window data structure should be
allocated. Because you passed nil as the second parameter, the
Toolbox will allocate the memory for you. Finally, the third parameter
to GetNewWindow tells the Window Manager to create this window
in front of any of the application’s open windows.

GetNewWindow returns a pointer to the new window data
structure. Next, WindowInit calls ShowWindow to make the
window visible. It is at this point that the window actually appears
on the screen. The call to SetPort makes helloWindow the
current window. All subsequent QuickDraw drawing operations will
take place in hel LoWindow. Next, hel LoWindow’s pen is moved to
the local coordinates 50 down and 30 across from the upper left-hand
corner of hel LoWindow, and the string Hel Lo, worlLd! is drawn.

{----——-———— > WindowInit <--1

procedure WindowInit;
var
helloWindow: WindowPtr;
begin
helloWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(helloWindow);
SetPort(helloWindow);
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL);
DrawString('Hello, world!");
end;

Drawing on the Macintosh

Unlike many programming environments, THINK Pascal takes care
of initializing the Toolbox for you. If you wanted to initialize the
Toolbox yourself, you'd use a routine that looked like this:

---------------- > ToolboxInit<--1%

procedure ToolboxInit;
begin
InitGraf(@athePort);
InitFonts;
InitWindows;
InitMenus;
TEInit;
InitDialogs(nil);
MaxApplZone;
end;

Each call initializes a different part of the Macintosh interface. The
callto InitGraf initializes QuickDraw.

The following global variables are initialized by InitGraf and
can be used in your routines:

thePort always points to the current GrafPort. Because it is
the first QuickDraw global, passing its address to InitGraf
tells QuickDraw where in memory all the QuickDraw globals are
located.

white is a pattern variable set to a white fill; bLlack, gray,
LtGray, and dkGray are initialized as different shades
between black and white.

arrow is set as the standard cursor shape, an arrow. You can
pass arrow as an argument to QuickDraw’s cursor-handling
routines.

screenBits is a data structure that describes the main Mac
screen. The field screenBits.bounds is declared as a
Rect and contains a rectangle that encloses the main Mac
screen.

randSeed is used as a seed by the Macintosh random number
generator (we'll show you how to use the seed in this chapter).

69

70

Macintosh Programming Primer

InitFonts initializes the Font Manager and loads the system
font into memory. Because the Window Manager uses the Font
Manager (to draw the window’s title, for example), you must
initialize fonts first. InitWindows initializes the Window Manager
and draws the desktop and the empty menu bar. InitMenus
initializes the Menu Manager so you can use menus. (Chapter 5
shows how to use the Menu Manager.)

InitWindows and InitMenus both draw the empty menu bar.
This is done intentionally by the ROM programmers for a reason
that is such a dark secret that they didn’'t even document it in
Inside Macintosh.

TEInit initializes TextEd1 t, the Text-Editing Manager built right
into the Toolbox. InitDialogs initializes the Dialog Manager
(illustrated in Chapter 6). MaxAppleZone maximizes the size of
the application’s memory area.

As far as the Primer code is concerned, you needn’t concern
yourself with initialization procedures. If you're porting code from
other Pascal programming environments, remove Toolbox initializa-
tion code, as it will crash your Mac. Alternatively, you can disable
the automatic initialization (see page 142 of the THINK Pascal User
Manual).

The new Hello, World can easily be turned into a stand-alone
application. Pull down the Project menu and select Build
Application.... When the Build Application dialog box appears,
type in the name of your application and press return. THINK
Pascal will build a stand-alone application out of Hello2. If you'd like
to add a custom icon to Hello2, take a quick tour through Chapter 8.

Variants

This section presents some variants to the Hello2 program. We’ll
start by changing the font used to draw Hello, World. Next, we’ll
modify the style of the text, using boldface, italics, and so on. We'll
also show you how to change the size of your text. Finally, we’ll
experiment with different window types.

Drawing on the Macintosh 71

Changing the Font

Every window has an associated font. You can change the current
window’s font by calling TextFont, passing an integer that
represents the font you’d like to use:

var
myFontNumber : INTEGER;

begin
TextFont(myFontNumber);
end;

Macintosh font numbers start at zero and count up from there.
THINK Pascal has predefined a number of font names with which
you can experiment. The best way to make use of a specific font is to
pass its name as a parameter to the Toolbox routine Get FNum.
GetFNum will return the font number associated with that name.
You can then pass the font number to TextFont.

Did someone in the back ask, “How can you tell which fonts have
been installed in the system?” An excellent question! Not every
Mac has the same set of fonts installed. Some folks have the
LaserWriter font set; others a set of fonts for their ImageWriter.
Some people might even have a complete set of foreign language
fonts. For the most part, your applications shouldn’t care which
fonts are installed. There are, however, two exceptions to this rule.
All dialog boxes and menus are drawn in the system font, which
defaults to font number 0. The default font for applications is called
the application font, usually font number 1. In the United States,
the system font is Chicago, and the application font is Geneva.

For now, put the Get FNum and TextFont calls before your call to
DrawString and after your call to SetPort, and try different font
names (use the Key Caps desk accessory for a list of font names on
your Mac).

P > WindowInit <--1}

procedure WindowInit;
var
helloWindow: WindowPtr;
fontNum : INTEGER;

72 Macintosh Programming Primer

begin

helloWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));

ShowWindow(helloWindow);
SetPort(helloWindow);
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL);
GetFNum('Monaco', fontNum);
TextFont(fontNum);

{ Try other font names!!! }
DrawString('Hello, world!"');
end;
Changing Text Style

The Macintosh supports seven font styles: bold, italic, underlined,
outline, shadow, condensed, and extended, or any combination of
these. Chapter 5 shows you how to set text styles using menus. For
now, try inserting the call TextFace(style) before the call to
DrawString. Here’s one example:

{--—— === > WindowInit <--}

procedure WindowInit;
var
helloWindow: WindowPtr;
begin
helloWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(helloWindow);
SetPort(helloWindow);
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL);
TextFace([boldl);

{ Try the other predefined styles!!! }
DrawString('Hello, world!");
end;

Here’s a list of predefined QuickDraw styles:

* bold * shadow
e djtalic * condense
¢ underline e extend

* outline

You can also combine styles; try TextFace([bold, italicl)
or some other combination.

Drawing on the Macintosh 73

Changing Text Size

It’s also easy to change the size of the fonts, using the TextSize
Toolbox routine:

var
myFontSize : INTEGER;

begin
TextSize(myFontSize);
end;

The number you supply as an argument to TextSize is the font
size that will be used the next time text is drawn in the current
window. The Font Manager will scale a font up to the size requested,;
this may result in a jagged character, as shown in Figure 3.29.

The default size is 0, which specifies that the system font size (12
point) be used. Try this variant in your code.

Window

These Characters Aren't Scaled

These Characters
Are Scaled

Figure 3.29 The result of font scaling.

74

Macintosh Programming Primer

{————r———r e > WindowInit <--}

procedure WindowInit;
var
helloWindow: WindowPtr;
begin
helloWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(helloWindow);
SetPort(helloWindow);
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL);
TextSize(24);

{ Try other pixel sizes!!! You }
{ may have to change the value }
{ of VERTICAL_PIXEL }
DrawString('Hello, world!"');

end;

If you're trying different font sizes and you can’t get the font to be
jagged, you could be running System 7, which has a much more
powerful font scaling procedure. Adobe Type Manager, a utility
program from Adobe, also prevents scaled font jaggies.

Changing the Hello2 Window

Another modification you can try involves changing the window type
from O to something else. Use ResEdit to change the WIND resource’s
procID from O to 1. (See the section on window types earlier in this
chapter for other possibilities.)

Now that you have mastered QuickDraw’s text-handling routines,
you're ready to exercise the shape-drawing capabilities of QuickDraw
with the next program: Mondrian.

Mondrian

The Mondrian program opens a window and draws randomly
generated ovals, alternately filled with white or black. Like Hello2,
Mondrian waits for a mouse press to exit. The program, with its
variants, demonstrates most of QuickDraw’s shape-drawing
functionality.

Drawing on the Macintosh 75

Mondrian is made up of two steps:

¢ Initialize the window.

¢ Draw random QuickDraw shapes in a loop, until the mouse button
is clicked.

First, create a new folder called Mondrian in the Development
folder. Next, create the resources you need for the program, and then
enter the code.

Resources

The Mondrian program needs a WIND resource, just as Hello2 did. In
this case, create a new resource file called Mondrian.n.rsrc in the
Mondrian folder you just made. Then create a window with the
specifications shown in Figure 3.30. Before you close and save
Mondrian.m.rsrc, goto Get Resource Info, change the resource
ID of the new WIND to 400, and check the Purgeable checkbox. Quit
ResEdit, saving your changes.

Next, go into THINK Pascal and create a new project called
Mondrian.mn inside the Mondrian folder. Then open up a new
source code window and enter the program:

[ECJ== WIND ID = 400 from Mondrian.n.rsrc e

Window title:

top 40 bottom (306
left 5 right (506
prociD (4 refCon |0

[J visible [] goAwayFlag

Figure 3.30 WIND parameters for Mondrian.

76 Macintosh Programming Primer

program Mondrian;
const ,
BASE_RES_ID = 400;

var
gbrawWindow: WindowPtr;
gFillColor: LONGINT;

{---————————— > Randomize <--}

function Randomize (range: INTEGER): INTEGER;

var
rawResult: LONGINT;
begin

rawResult := Random;
rawResult := abs(rawResult);

Randomize
end;

(rawResult * range) div 32768;

{--———————————— > RandomRect <--}

procedure RandomRect (var myRect: Rect; boundingWindow:
WindowPtr);
begin
myRect.left := Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.right := Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.top := Randomize(boundingWindow”.portRect.bottom -
boundingWindow”.portRect.top);
myRect.bottom := Randomize(boundingWindow”.portRect.bottom -

boundingWindow”.portRect.top);
end;

{---——————— > DrawRandomRect <--}

procedure DrawRandomRect;
var
myRect: Rect;
begin
RandomRect(myRect, gDrawWindow);

Drawing on the Macintosh 77

ForeColor(gFillColor);
PaintOval(myRect);
end;

{--——————————— > MainLoop <=--}

procedure MainLoop;

begin
GetDateTime(randSeed);
gFillColor := blackColor;

while (not Button) do
begin
DrawRandomRect;
if (gFillColor = blackColor) then
gFillColor := whiteColor
else
gFillColor := blackColor
end;
end;

{-——————————— > MWindowInit <--}

procedure WindowInit;
begin
gbrawWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
ShowWindow(gDrawWindow) ;
SetPort(gbrawWindow);
end;

{—m e > Mondrian <--}

begin
WindowInit;
MainLoop;
end.

Running Mondrian

Once you’ve finished typing in the code, save it as Mondrian.p and
add it to the project using Add Window. Next, select Run
Options... from the Run menu and tell the project to use the

Macintosh Programming Primer

Mondrian

Figure 3.31 Running Mondrian.

resource file Mondrian.m.rsrc. Now, select Go from the Run
menu. If everything went correctly, you should see something like
Figure 3.31. The window should fill with overlapping black and white
ovals until you click the mouse button. If you got a different result,
then check out your resource; make sure the WIND resource has the
correct resource ID. If your resource is all right, go through the code
for typos.
Now let’s look at the Mondrian code.

Walking Through the Mondrian Code

The Mac Primer uses the convention of starting resource ID numbers
at 400, adding one each time a new resource ID is needed. Use any
number you wish (as long as it’s between 128 and 32,767). The
constant BASE_RES_ID used in Mondrian is identical to that used in
Hello2. The global variable gdbrawWindow is Mondrian’s main
window. Each shape you draw will be filled with the color in
gFillColor, which is initialized as blackColor.

- Drawing on the Macintosh 79

program Mondrian;
const
BASE_RES_ID = 400;

var
gbrawWindow: WindowPtr;
gFillColor: LONGINT;

Mondrian’s main routine calls WindowInit, then MainLoop.

{--—————————— > Mondrian <--}

begin
WindowInit;
MainLoop;
end.

WindowInit loads WIND number 400 from the resource file,
storing a pointer to it in gDrawWindow. Next, ShowWindow is
called to make the window visible, and SetPort is called to make
gbrawWindow the current window.

{-——— > WindowlInit <--}

procedure WindowInit;
begin
gbrawWindow := GetNewWindow (BASE_RES_ID,
nil, WindowPtr (-1));
ShowWindow (gDrawWindow);
SetPort (gbrawWindow);
end;

MainLoop starts by using the current time (in seconds since
January 1, 1904) to seed the Mac random number generator. The
QuickDraw global randSeed is used as a seed by the random num-
ber generator. If you didn’t modify randSeed, you’d generate the
same patterns every time you ran Mondrian.

Next, gFilLColor is initialized to blackCo Lor. This means that
the first oval will be filled with black. Next, MainLoop loops, waiting
for the press of the mouse button. In the loop, DrawRandomRect is
called, first generating a random rectangle inside the window, then
drawing an oval in the rectangle. Next, gFillColor is flipped from
black to white or from white to black.

80

Macintosh Programming Primer

{---——————————— > MainLoop <--3

procedure MainLoop;

begin
GetDateTime(randSeed);
gFillColor := blackColor;

while (not Button) do

begin
DrawRandomRect;
if (gFillColor = blackColor) then
gFillColor := whiteColor
else
gFillColor := blackColor
end;

end;

DrawRandomRect controls the actual drawing of the ovals in the
window. RandomRect generates a random rectangle inside
gbrawWindow, ForeColor sets the current drawing color to

gFillColor,and PaintOval paints the oval inside the generated
rectangle.

{-—————————— > DrawRandomRect <--}

procedure DrawRandomRect;
var
myRect: Rect;
begin
RandomRect(myRect, gDrawWindow);
ForeColor(gFillColor);
PaintOval(myRect);
end;

RandomRect sets up the rectangle to be used in drawing the oval.
Each of the four sides of the rectangle is generated as a random
number between the right and left (or top and bottom, as
appropriate) sides of the input parameter, boundingWindow.

The notation myRecordPtr?.myField refers to the field
myField in the record pointed to by myRecordPtr.

Every window data structure has a field named portRect that
defines the boundary of the content region of the window. Because
boundingWindow is a pointer to a window data structure, yo
boundingWindow™ . portRect to access this rectangle.

Drawing on the Macintosh 81

{--————————————— > RandomRect <--1}

procedure RandomRect (var myRect: Rect;
boundingWindow: WindowPtr);
begin
myRect.left := Randomize
(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.right :=
Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.top :=
Randomize(boundingWindow”.portRect.bottom -
boundingWindow”.portRect.top);
myRect.bottom :=
Randomize(boundingWindow”.portRect.bottom -

boundingWindow”.portRect.top);
end;

Randomize takes an integer argument and returns a positive
integer greater than or equal to 0 and less than the argument. This is
accomplished via a call to the Random Toolbox utility, which returns
a random number in the range —32,767 through 32,767. You may find
Randomi ze helpful in your own applications.

{----———-——————— > Randomize <--}

function Randomize (range: INTEGER): INTEGER;
var

rawResult: LONGINT;
begin
rawResult := Random;
rawResult := abs(rawResult);

Randomize := (rawResult * range) div 32768;
end;

Variants

Here are some variants of Mondrian. The first few change the shape
of the repeated figure in the window from ovals to some other shapes.

Your first new shape will be a rectangle. This one’s easy: Just
change the PaintOval call to PaintRect. When you run this, you
should see rectangles instead of ovals.

82

Macintosh Programming Primer

Your next new shape is the rounded rectangle. You’ll need two new
parameters for PaintRoundRect: ovalWidth and ovalHeight.
Declare them as constants, each with a value of 20:

const
OVAL_WIDTH = 20;
OVAL_HEIGHT = 20;

Now, change the DrawRandomRec t routine, as follows:

(- > DrawRandomRect <-=}

procedure DrawRandomRect;
var
myRect: Rect;
begin
RandomRect(myRect, gDrawWindow);
ForeColor(gFillColor);
PaintRoundRect(myRect, OVAL_WIDTH,
OVAL_HEIGHT);
end;

You should see something like Figure 3.32 if you run this variation.

Mondrian

Figure 3.32 Mondrian with rounded rectangles.

Drawing on the Macintosh 83

Instead of filling the rectangles, try using FrameRoundRect to
draw just the outline of your rectangles:

{-——rrrre e - > DrawRandomRect <=-=3

procedure DrawRandomRect;
var
myRect: Rect;
begin
RandomRect(myRect, gDrawWindow);
ForeColor(gFillColor);
FrameRoundRect(myRect, OVAL_WIDTH,
OVAL_HEIGHT);
end;

The framing function is more interesting if you change the state of
your pen: The default setting for your pen is a size of 1 pixel wide by
1 pixel tall, and the pattern is black. Change it by modifying
WindowInit as follows:

{-———————————— > WindowInit <--1}

procedure WindowInit;
begin
gbrawWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(gDrawWindow);
SetPort(gbDrawWindow);

PenSize(PEN_WIDTH, PEN_HEIGHT);
PenPat(gray);
end;

Here, you changed the pen pattern to gray. Don’t forget to declare
the constants PEN_WIDTH and PEN_HEIGHT. We used values of 10
and 2, respectively (Figure 3.33).

While you’re at it, try using InvertRountRect instead of
FrameRoundRect. InvertRoundRect will invert the pixels in its
rectangle. The arguments are handled in the same way (Figure 3.34).

Next, try using FrameArc in place of InvertRoundRect.
FrameArc requires two new parameters. The first defines the arc’s
starting angle, and the second defines the size of the arc. Both are
expressed in degrees (Figure 3.35).

84

Macintosh Programming Primer

gE Mondrian

Figure 3.33 Mondrian with framed, gray, rounded rectangles.

i=———— Mondrian

Figure 3.34 Mondrian with inverted, rounded rectangles.

Drawing on the Macintosh 85

00

90¢

Figure 3.35 Figuring your arc.

Change DrawRandomRect as follows:
S s S S S rE S e > DrawRandomRect K=}

procedure DrawRandomRect;
var
myRect: Rect;
begin
RandomRect(myRect, gDrawWindow);
ForeColor(gFillColor);
FrameArc(myRect, START_DEGREES,
ARC_DEGREES) ;
end;

Don’t forget to declare the constants START_DEGREES and
ARC_DEGREES. Try using values of 0 and 270. Experiment with
PaintArcand InvertArc.

We’ll do one final variation with QuickDraw. This one is useful
only for people with color monitors. If you change the ForeColor
arguments in MainlLoop, you can see colored filled ovals (or
whatever your program is currently producing). Modify your
MainLoop routine as follows:

86

Macintosh Programming Primer

{------—-—-————— > MainLoop <--}

procedure MainlLoop;

begin
GetDateTime(randSeed);
gFillColor := redColor;

while (not Button) do

begin
DrawRandomRect;
if ¢ gFillColor = redColor) then
gFillColor := yellowColor
else
gFillColor := redColor
end;

end;

The following colors have already been defined for you:
blackColor, whiteColor, redColor, yellowColor,
greenColor,blueColor, cyanColor, and magentaColor. These
colors are part of Classic QuickDraw—the original, eight-color
QuickDraw model that was part of the original Macintosh. Newer
Macs support a new version of QuickDraw called Color QuickDraw,
which supports millions of different colors. (Color QuickDraw is
discussed in Volume II of the Mac Primer.) The programs you write
using the eight colors of Classic QuickDraw will run on any Macintosh
(even the Macintosh II Series).

The next program demonstrates how to load QuickDraw picture
resources and draw them in a window.

ShowPICT

ShowPICT will take your favorite artwork (in the form of a PICT
resource) and display it in a window. You can create a PICT resource
by copying any graphic to the Mac clipboard and then pasting it into
a ResEdit PICT window. We'll show you how a little later on. We
copied our artwork from the scrapbook that comes with the
Macintosh System disks.

ShowPICT is made up of four distinct steps:

1. Load a resource window, show it, and make it the current port.
2. Load a resource picture.

3. Center the picture, then draw it in the window.

4. Wait for the mouse button to be pressed.

Drawing on the Macintosh 87

Resources

Start by creating a new folder, called ShowPICT, in the
Development folder. Next, using ResEdit, create a new resource file
called ShowPICT.m.rsrc in the ShowPICT folder. Create a WIND
resource using the specifications shown in Figure 3.36. Select Get
Resource Info from the Resource menu, set the resource ID of
your new WIND to 400, and check the Purgeable checkbox.

Next, create your PICT resource. Close the WIND list, so you get
back to the main ShowPICT.xn.rsrc window. Pull down the
menu and select the Scrapbook. Find a picture that is of type
PICT—you can tell by checking the label on the bottom right of the
Scrapbook window—pull down the Edit menu, and select Copy.
Now close the Scrapbook and return to ResEdit. Finally, select
Paste; ResEdit will create a PICT resource and put the picture in it.
Figure 3.37 details this process.

Now, click on your picture and select Get Resource Info from
the Resource menu. Set the resource ID of the PICT to 400 and set
the Purgeable checkbox. Finally, quit ResEdit, saving your changes
to ShowPICT.w.rsrc.

E[1== WIND ID = 400 from ShowPict.n.rsrc ==
Window title:
top 40 bottom | 240
left 20 right |420
proclD (D refCon (0
[] Visible [] goAwayFlag

Figure 3.36 WIND parameters for ShowPICT.

88 Macintosh Programming Primer

E[= ShowPict.w.rsrc E0E

=
W IND
o
| E[l&=———————= Scrapbook E_—I
Q Downtown Office Occupancy Rate
100%
[T
[T
8 T R
[T (IRARN
50 [T 1T
[T T
[T [TIT
75
1982 1983 1984 1985
=)= ShowPict.mw.rsrc =0
= B &)
LE -
FICT WwIND
o
0
E[[=———="PICTs from ShowPict.m.rsrc |
o =
Mo DT Drcapancy Eate
o
|

Figure 3.37 PICT from ScrapBook to resource file.

Drawing on the Macintosh 89

Next, go into THINK Pascal and create a new project called
ShowPICT.7 inside the ShowPICT folder. Select New from the File
menu and enter the following code:

program ShowPICT;
const
BASE_RES_ID = 400;

var
gPictureWindow: WindowPtr;

{mmmm o > CenterPict <--}%

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);
var
windRect, pictureRect: Rect;
begin
windRect := myRect;
pictureRect := thePicture*”.picFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);
myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

{--——-—-———— > DrawMyPicture <--3}

procedure DrawMyPicture (pictureWindow: WindowPtr);
var
myRect: Rect;
thePicture: PicHandle;
begin
myRect := pictureWindow”.portRect;

thePicture := GetPicture(BASE_RES_ID);
CenterPict(thePicture, myRect);

DrawPicture(thePicture, myRect);
end;

920 Macintosh Programming Primer

{mmm e > WindowInit <--3}

procedure WindowInit;
begin
gPictureWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
ShowWindow(gPictureWindow);
SetPort(gPictureWindow);
end;

{-————————————— > ShowPICT <--}

begin
WindowInit;
DrawMyPicture(gPictureWindow);

while (not Button) do
begin
end;
end.

Running ShowPICT

After you've finished typing in the code, save the file as ShowPICT.p
and add it to your project. Next, select Run Options... from the Run
menu and tell THINK Pascal to use ShowPICT.n.rsrc as the
resource file. Next, select G0 from the Run menu. If everything went
well, you should get something like Figure 3.38. Your PICT should
appear in your window. If it does not, check the resource ID of your
PICT. Did your PICT make it into ShowPICT.x.rsrc? Check your
WIND resource and your code for typos.

Walking Through the ShowPICT Code

The constant BASE_RES_ID performs the same function as it does in
earlier programs. The global gPictureWindow acts as a pointer to
the PICT window.

program ShowPICT;
const
BASE_RES_ID = 400;

var
gPictureWindow: WindowPtr;

Drawing on the Macintosh 91

My Picture

Figure 3.38 Running ShowPICT.

ShowPICT’s main routine sets up the window, draws the picture,
and then waits for the mouse click before exiting.

{im = e R > ShowPICT L==3

begin
WindowInit;
DrawMyPicture(gPictureWindow);

while (not Button) do
begin
end;
end.

The window initialization code is the same as that in Hello2. (If
you are cutting and pasting, note that the variable name has
changed to gPictureWindow.)

92 Macintosh Programming Primer

{-———————————— > WindowInit <--}

procedure WindowInit;
begin
gPictureWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1));
ShowWindow(gPictureWindow);
SetPort(gPictureWindow);
end;

DrawMyPicture sets up a Rect the size of pictureWindow
(the window passed in as a parameter). Then, it loads the picture with
acall to GetPicture. Next, it passes thePicture and the Rect to
CenterPict. Finally, DrawMyPicture draws thePicture in the
newly centered Rect.

{---————————— > DrawMyPicture <--}

procedure DrawMyPicture (pictureWindow:

WindowPtr);
var
myRect: Rect;
thePicture: PicHandle;
begin
myRect := pictureWindow”.portRect;

thePicture := GetPicture(BASE_RES_ID);

CenterPict(thePicture, myRect);
" DrawPicture(thePicture, myRect);
end;

CenterPict takes a PicHandle (thePicture) and a Rect
(myRect) as input parameters. thePicture is a handle to the
picture to be centered in myRect. CenterPict constructs a new
Rect the size of thePicture, centering it in the original Rect.

Drawing on the Macintosh 93

A Handle is a specialized pointer to a pointer. Handles are a
necessary part of the Mac’s memory management scheme. They
allow the Macintosh Memory Manager to relocate blocks of
memory as it needs to, without disturbing your program.

If you have a pointer to an object, when the Mac moves the object
in memory, your pointer becomes invalid. If, however, you use a
Handle (pointer to a pointer) to an object, then, when the Mac
moves the object, as long as it updates the pointer, your handle
remains valid.

We'll show you some of the basics of using handles, but we won’t
spend a lot of time on them (there’s an entire chapter dedicated to
handles and related topics in Volume |l of the Mac Primer). You
should read up on handles and the Mac memory management
scheme because eventually you'll want to write code that takes
advantage of handles.

In ShowPICT, we declare a handle to a picture (pointer to a
pointer to a picture). We then set the handle to the value returned
by GetPicture:

thePicture : PicHandle;
thePicture := GetPicture(BASE_RES_ID);

Like most of the Toolbox functions that return handles, GetPicture
actually allocates the memory for the picture itself, as well as the
memory for the pointer to the picture. The great thing about
handles is that you hardly know they’re there.

In this program, CenterPict is used to center a picture in a
window. The original Rect is copied into the local variable
windRect. Then, the picture’s frame Rect is copied to the local
variable pictureRect. Finally, each field in the original Rect is
modified, based on the corresponding fields in windRect and
pictureRect. For example, myRect. top is adjusted to become
the new top of the picture.

CenterPict is a useful utility routine. You'll be seeing it again in
other chapters.

{--—————————- > CenterPict <--}
procedure CenterPict (thePicture: PicHandle; var myRect: Rect);

var
windRect, pictureRect: Rect;

Macintosh Programming Primer

begin
windRect := myRect;
pictureRect := thePicture**.picfFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top))
div 2 + windRect.top;
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);
myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left))
div 2 + windRect.left;
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

Variants

Try using different pictures, either from the Scrapbook or from
MacPaint or some other Macintosh graphics program. With a little
experimentation, you should be able to copy and paste these files into
your resource file. In Chapter 4, you’ll see an enhanced ShowPICT
program.

Screen Saver: The Flying Line Program

The Flying Line is the last program in the QuickDraw chapter.
Although it does demonstrate the use of line drawing in QuickDraw,
we included it mostly because it’s fun. The Flying Line draws a set of
lines that move across the screen with varying speeds, directions,
and orientations. The program can be used as a screen saver (we
even show you how to hide the menu bar).

The Flying Line program consists of three steps:

1. Set up the Flying Line window.
2. Initialize the Flying Line data structure, drawing it once.
3. Redraw the Flying Line inside a loop until a mouse click occurs.

Create a folder called Flying Line inside your Development
folder. Flying Line needs no resources, so go into THINK Pascal and
create a new project called Flying Line.n inside the Flying

Drawing on the Macintosh 95

Line folder. Select New from the File menu to open a new window
for the Flying Line source code:

program FlyingLine;

con

st
NUM_LINES = 50;
NIL_STRING = '';
NIL_TITLE = '';

VISIBLE = TRUE;
NO_GO_AWAY = FALSE;
NIL_REF_CON = 0;

type

var

IntPtr = ~INTEGER;

gLineWindow: WindowPtr;

gLines: array[1..NUM_LINES] of Rect;
gbeltaTop, gbeltaBottom: INTEGER;
gbeltalLeft, gDeltaRight: INTEGER;
gOldMBarHeight: INTEGER;
gMBarHeightPtr: IntPtr;

{———m - > DrawLine <--1}

procedure DrawLine (i: INTEGER);
begin

end;

MoveTo(gLines[il.left, gLinesCLil.top);
LineTo(gLines[il.right, gLinesCil.bottom);

{---—————————-- > RecalclLine <-=}

procedure RecalcLine (i: INTEGER);
begin

gLinesCil.top := gLines[il.top + gDeltaTop;

if ((gLines[il.top < gLineWindow”.portRect.top) |
(gLinesCil.top > gLineWindow”.portRect.bottom)) then
gbeltaTop := gbeltaTop * (-1);

gLines[il.top := gLinesl[il.top + 2 * gbDeltaTop;

gLines[il.bottom := gLines[Cil.bottom + gDeltaBottom;
if ((gLinesCil.bottom < gLineWindow”.portRect.top) |
(gLinesC[il.bottom > gLineWindow”.portRect.bottom))
then
gbeltaBottom := gDeltaBottom * (-1);
gLinesCil.bottom := gLinesCil.bottom + 2 * gDeltaBottom;

96 Macintosh Programming Primer

gLinesCil.left := gLinesCil.left + gDeltaleft;
if ((gLines[il.left < gLineWindow”.portRect.left) |
(gLines[il.left > gLineWindow”.portRect.right))
then
gbeltalLeft := gDeltaLeft * (-1);
gLines[il.left := gLines[Cil.left + 2 * gDeltaLeft;

gLinesCil.right := gLinesCil.right + gDeltaRight;
if ((gLinesCil.right < gLineWindow”.portRect.left) |
(gLinesCil.right > gLineWindow”.portRect.right))
then
gbeltaRight := gbeltaRight * (-1);
gLinesCil.right := gLines[il.right + 2 * gDeltaRight;
end;

{———————— > MainLoop <--}
procedure MainLoop;

var
i: INTEGER;

begin
while (not Button) do
begin
DrawLine (NUM_LINES);
for i := NUM_LINES downto 2 do
gLines[il := gLinesl[i - 11];
RecalcLine(1);
DrawLine(1);
gMBarHeightPtr* := gOldMBarHeight;
end;
end;
{-—————————— > Randomize <--}

function Randomize (range: INTEGER): INTEGER;
var
rawResult: LONGINT;

begin
rawResult :
rawResult :

= Random;
:= abs(rawResult);

Randomize
end;

(rawResult * range) div 32768;

Drawing on the Macintosh 97

{-—mrreere e > RandomRect <=-=}
procedure RandomRect (var myRect: Rect; boundingWindow:
WindowPtr);
begin
myRect.left := Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.right := Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.top := Randomize(boundingWindow”.portRect.bottom -
boundingWindow”.portRect.top);
myRect.bottom := Randomize(boundingWindow”.portRect.bottom -
boundingWindow”.portRect.top);
end;
{-mm——m > LinesInit <--}
procedure LinesInit;
var
i: INTEGER;
begin
gbeltaTop := 3;
gbeltaBottom := 3;
gbeltaLeft := 2;
gbeltaRight := 6;
HideCursor;
GetDateTime(randSeed);
RandomRect(gLines[1], gLineWindow);
DrawLine(1);
for i := 2 to NUM_LINES do
begin
gLines[i] := gLinesCi - 131;
RecalcLine(i);
DrawLine(i);
end;
end;
{———mr - > WindowInit <--}

procedure WindowlInit;
var
totalRect, mBarRect: Rect;
mBarRgn: RgnHandle;

98

Macintosh Programming Primer

begin

gMBarHeightPtr
gOlLdMBarHeight

IntPtr($baa);
gMBarHeightPtr4;

gMBarHeightPtr* := 0;
gLineWindow := NewWindow(nil, screenBits.bounds,

NIL_TITLE, VISIBLE, plainDBox, WindowPtr(-1),
NO_GO_AWAY, NIL_REF_CON);

SetRect(mBarRect, screenBits.bounds.left,

screenBits.bounds.top, screenBits.bounds.right,
screenBits.bounds.top + gOlLdMBarHeight);
mBarRgn

:= NewRgn;

RectRgn(mBarRgn, mBarRect);
UnionRgn(gLineWindow”.visRgn, mBarRgn,

gLineWindow”.visRgn);

DisposeRgn(mBarRgn);
SetPort(gLineWindow);
FillRect(gLineWindow”.portRect, black);

end;

{ Change black to LtGray, }

PenMode(patXor),; { <-- and comment out this line 1}

(e > FlyingLine <--}

beg

in

end.

WindowInit;
LinesInit;
MainLoop;

Running Flying Line

After you've finished typing in the code, save it as Flying Line.p.
Add the file to the project. Select G0 from the Run menu. If
everything went well, you should see something like Figure 3.39. The
window will be completely black except for the flying line; the menu
bar should be hidden. Now, let’s take a look at the code.

Drawing on the Macintosh 99

Figure 3.39 Running Flying Line.

Walking Through the Flying Line Code

Most of Flying Line should be familiar to you. The biggest change is
in WindowInit, where you create a window from scratch and hide
the menu bar. We won’t go into exhaustive detail on the Flying Line
algorithm, because it has little to do with the Toolbox. This one’s just
for fun!

NUM_LINES defines the number of lines in the Flying Line. The
rest of the constants will be used as parameters later on in the
program.

program FlyinglLine;
const

NUM_LINES = 50;
NIL_STRING = '"';
NIL_TITLE = '';
VISIBLE = TRUE;
NO_GO_AWAY = FALSE;
NIL_REF_CON = 0;

100 Macintosh Programming Primer

The type IntPtr is used to declare the global gMBarHeightPtr
as a pointer to an INTEGER. gMBarHeightPtr will give us access
to one of the Macintosh System’s internal globals.

Although it's important to understand the technique involved here, it
is even more important to remember that it's generally bad practice
to mess with system globals. They are likely to change when new
system versions come out. We use system globals in Flying Line
because Apple doesn't make it easy to hide the menu bar, mainly
because they don’t want programmers to do it. Because a screen
saver has to hide the menu bar, Flying Line uses a system global.
Make sure you have good reasons to use system globals.

type
IntPtr = ~INTEGER;

gbeltaBottom,gbDeltaTop, gDeltalLeft,and gbeltaRight
are all tuning parameters. Play around with their values until you
get just the right Flying Line.

The Flying Line is drawn in gLineWindow. The array gLines
holds all of the individual lines in the Flying Line. Finally,
golLdMBarHeight saves the menu bar height when you start, so
you can restore it when the application quits.

var
gLineWindow: WindowPtr;
gLines: array[1..NUM_LINES] of Rect;
gbeltaTop, gbeltaBottom: INTEGER;
gbeltalLeft, gbheltaRight: INTEGER;
gOldMBarHeight: INTEGER;
gMBarHeightPtr: IntPtr;

Flying Line sets up its window, initializes its line data structure,
then enters the main loop.

{---———-——————— > FlyinglLine <--}

begin
WindowInit;
LinesInit;
MainLoop;
end.

The window initialization code for Flying Line is unusual because

Drawing on the Macintosh 101

the window itself is unusual. Normally, Mac programs display a
menu bar. Flying Line, however, will not. Flying Line hides the menu
bar (by making it 0 pixels tall) and creates a window that covers the
entire screen.

The call to NewWindow is an alternative to GetNewWindow.
GetNewWindow creates a window using the information specified in
a WIND resource. NewWindow also creates a window, but gets the
window specifications from its parameter list:

FUNCTION NewWindow(wStorage : Ptr; boundsRect
: Rect;
title : Str255; visible : BOOLEAN; proclD
INTEGER;
behind : WindowPtr; goAwayFlag : BOOLEAN;
refCon : LONGINT) : WindowPtr;

The program next specifies the size of the window as a Rect,
using the QuickDraw global screenBits.bounds to create a
window the size of the current screen.

{--———————— > WindowInit <--}

procedure WindowInit;
var
totalRect, mBarRect: Rect;
mBarRgn: RgnHandle;

begin
gMBarHeightPtr := IntPtr($baa);
gOldMBarHeight := gMBarHeightPtr#;

gMBarHeightPtr* := 0;
gLineWindow := NewWindow(nil,
screenBits.bounds, NIL_TITLE,
VISIBLE, plainDBox, WindowPtr(-1),
NO_GO_AWAY, NIL_REF_CON);

The next bit of code is tricky. It calls SetRect to create a -
rectangle surrounding the normal menu bar. Next, it uses this Rect
to create a new region, and then it adds this region to the visible
region of your window. As a result of this hocus-pocus, your window
can overlap the menu bar, taking up the entire screen. If this makes
you uncomfortable, don’t panic. The call to NewWindow is normally
all you’ll need in your applications. This extra code is just here to
allow your window to obscure the menu bar.

102 Macintosh Programming Primer

SetRect(mBarRect, screenBits.bounds.left,
screenBits.bounds.top,
screenBits.bounds.right,
screenBits.bounds.top + gOldMBarHeight);

mBarRgn := NewRgn;

RectRgn(mBarRgn, mBarRect);

UnionRgn(gLineWindow”.visRgn, mBarRgn,
gLineWindow”.visRgn);

DisposeRgn(mBarRgn);

Next, the program calls SetPort so that all its drawing will occur
in gLineWindow. Then, it fills the window with the black pattern. It
sets the PenMode to patXor. Try some other pen modes, too. We
suggest changing the second FillRect parameter to LtGray, and
commenting out the call to PenMode.

SetPort(gLineWindow);
FillRect(gLineWindow”.portRect, black);

{ Change black to LtGray,}
PenMode(patXor),; {<-- and comment out this Llinel} end;

Don't be fooled by imitations. The second parameterto Fil LRect
is a pattern, not a color. These are the fill patterns you normally
associate with the paint bucket in MacPaint, not the eight colors of
Classic QuickDraw. You can experiment with colors by using a call
to PaintRect.

LinesInit starts off by hiding the cursor. Next, it seeds the
random number generator with the current date (¢ la Mondrian).
Finally, it generates the first line of the Flying Line, draws it, and
then generates the rest of the lines and draws them.

{mmmmm > LinesInit <-=}%

procedure LinesInit;
var
i: INTEGER;

begin
gbeltaTop := 3;
gbeltaBottom :=
gbeltaLeft ::= 2;
gbeltaRight := 6;

3;

Drawing on the Macintosh 103

HideCursor;

GetDateTime(randSeed);
RandomRect(gLines[1]1, gLineWindow);
DrawLine(1);

for i := 2 to NUM_LINES do
begin
gLines[il := gLinesl[i - 11];
RecalclLine(i);
DrawLine(i);
end;
end;

You've seen this routine in Mondrian:

{-——--———--- > Randomize <--}

function Randomize (range: INTEGER): INTEGER;
var
rawResult: LONGINT;

begin
rawResult := Random;
rawResult := abs(rawResult);

(rawResult * range) div 32768;

[}

Randomize
end;

Another routine you’ve seen before:

. > RandomRect <--}

procedure RandomRect (var myRect: Rect;

boundingWindow: WindowPtr);

begin
myRect.left :=

Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.right :=

Randomize(boundingWindow”.portRect.right -
boundingWindow”.portRect.left);
myRect.top :=

Randomize(boundingWindow”.portRect.bottom -
boundingWindow”.portRect.top);
myRect.bottom :=

Randomize(boundingWindow”.portRect.bottom -

boundingWindow”.portRect.top);

end;

104 Macintosh Programming Primer

DrawlLine draws line number i, using the coordinates stored in
gLines[i 1. Because the pen mode is set to patXor, this may
actually have the effect of erasing the line.

Y > DrawlLine <--}

procedure DrawlLine (i: INTEGER);
begin

MoveTo(gLines[il.left, gLines[il.top);
LineTo(gLinesCil.right, gLinesCil.bottom);
end;

The ReCal ¢ routine determines where to draw the next line:

{--—————————— > RecalcLine <--}

procedure RecalcLine (i: INTEGER);
begin
gLines[Cil.top := gLines[il.top + gDeltaTop;
if ((gLines[il.top < gLineWindow”.portRect.top) |
(gLinesCil.top > gLineWindow”.portRect.bottom)) then
gbeltaTop := gbeltaTop * (-1);
gLinesCil.top := gLines[Cil.top + 2 * gDeltaTop;

gLinesCil.bottom := gLines[il.bottom + gDeltaBottom;

if ((gLines[il.bottom < gLineWindow”.portRect.top) |
(gLinesCil.bottom > gLineWindow”.portRect.bottom)) then
gbeltaBottom := gDeltaBottom * (-1);

gLinesCil.bottom := gLinesCil.bottom + 2 * gDeltaBottom;

gLinesCil.left := gLines[il.left + gDeltalLeft;

if ((gLines[il.left < gLineWindow”.portRect.left) |
(gLinesCiJ.left > gLineWindow”.portRect.right)) then
gbeltaLeft := gbeltaLeft * (-1);

gLines[Cil.left := gLines[il.left + 2 * gDheltalLeft;

gLinesCil.right := gLines[il.right + gDeltaRight;

if ((gLines[Cil.right < gLineWindow”.portRect.left) |
(gLinesCil.right > gLineWindow”.portRect.right)) then
gbeltaRight := gbeltaRight * (-1);

gLines[Cil.right := gLinesCil.right + 2 * gDeltaRight;

end;

MainLoop sets up a loop that falls through when the mouse
button is pressed. At the end of the loop, the menu bar height is
restored. If you don’t do this, you won’t be able to pick from the menu
bar when you exit the program. Oops! (If by accident, you don’t reset
the menu bar height, it won’t come back when you return to the
Finder. Restart your Mac to reset the menu bar height.)

Drawing on the Macintosh 105

Inside the loop, the program erases and redraws each line in the
Flying Line. It erases lines by redrawing them in exactly the same
position. Because the pen mode is set to patXor, this has the effect
of erasing the line. Thus, the first call to DrawLine in MainLoop
erases the last line in the gLines array. This simulates the line
moving across the screen.

S > MainLoop <--1}

procedure MainLoop;
var
i: INTEGER;

begin
while (not Button) do
begin
DrawLine(NUM_LINES);
for 1 := NUM_LINES downto 2 do
gLinesCil := gLinesl[i - 11;
RecalcLine(1);
DrawLine(1);
gMBarHeightPtr* := gOlLdMBarHeight;
end;
end;
In Review

Whew! We’ve covered a lot in this chapter. We examined the basic
Macintosh drawing model, QuickDraw, and showed you how to use
many of the QuickDraw Toolbox routines. Now, you can read the
QuickDraw chapter in Inside Macintosh, Volume I. Experiment with
the programs presented here and try using some of the other
QuickDraw routines. They’re just as easy to use as the ones already
covered.

We’ve also shown you different ways of using resources in your
programs. If you haven’t already, you may want to skip ahead to
Chapter 8, to read up on ResEdit. Build a stand-alone application;
then add an icon to your application. Chapter 8 will show you how.

Now that you understand how the Mac draws to the screen, you're
ready to learn how the Mac interacts with users. Chapter 4 looks at
the Event Manager—the manager that stage-directs operations.

The Event
Mechanism

In this chapter, we’ll tell you about
events, the Mac’s mechanism for
describing the user’s actions to your
application. When the mouse button is
clicked, a key is pressed, or a disk is
inserted in the floppy drive, the
operating system lets your program
know by queueing an event.

ONE OF THE basic differences between programming on the Mac and
programming on other machines lies in the use of events. Events are
descriptions of actions taken by the user of your application. For
example, when a key is pressed on the keyboard, a piece of the Mac
operating system (known as the Event Manager) captures some
important information about the keystroke in an EventRecord. As
more keys are pressed, more EventRecords are created and joined
to the first, forming the event queue (Figure 4.1).

The event queue is a FIFO (First In, First Out) queue: The event at
the front of the queue is the oldest event in the queue. As you can
see in Figure 4.1, different types of events live together in the same
event queue. All events, no matter what their type, pass under the
watchful eye of the Event Manager.

The Event Manager gets events from many different sources,
qgueues them up, and passes them to your application, one at a
time.

Your application can get at this information by retrieving
EventRecords from the event queue, one at a time. If the retrieved
EventRecord describes a keystroke, your application can jump to
some code that handles keystrokes. If it describes the pressing of the
mouse button, it can jump to some code that deals with the mouse
button. Let’s look at the mouse button case.

- - . - 1 —] —

nullEvent rnouseDowr1 mouseUp keyDown keyUp nuilEvent

Figure 4.1 The event queue.

109

110

Macintosh Programming Primer

When the mouse button is pressed, what does it mean to the appli-
cation? Maybe the user wants to select from a menu. Maybe the user
is clicking on a window to bring it to the front, or has clicked in a
scroll bar to move up or down in the document. One way to tell what
the user is trying to accomplish is to compare the location of the
mouse when its button was pressed with the locations of the menu
bar, the windows on the screen, scroll bars, and so on.

If the user clicked in the menu bar, you can jump to some code that
handles menu selection. If the user clicked on a scroll bar, you can
jump to the scroll bar handling routine.

Event Types

The Event Manager handles 15 distinct events (V:249):

¢ nullEvent: This event is queued when the Event Manager has no
other events to report.

¢ mouseDown: mouseDown events are queued whenever the
mouse button is pressed. Note that the button doesn’t have to be
released for the event to qualify as a mouseDown.

e mouseUp: mouseUps are queued whenever the mouse button is
released.

* keyDown: keyDown events are queued every time a key is
pressed. Like mouseDowns, keyDowns are queued even if the key
has not yet been released.

* keyUp: keyUps are queued whenever a key is released.

¢ autoKey: autoKey events are queued when a key is held down
for a certain length of time (beyond the autoKey threshhold).
Usually, an autoKey event is treated just like a keyDown.

¢ updateEvt: updateEvts are queued whenever a window needs
redrawing. They are always associated with a specific window.
This usually happens when a window is partially obscured and the
obstruction is moved, revealing more of the window, as shown in
Figure 4.2.

The Event Mechanism 111

Back Window Back Window
o — I o A -
.Q ECE Front Window S0) ©
2 0 [}

ECIE Front Window =0T
>

DK

]

K [

Figure4.2 FrontWindow is moved down and to the right, generating
an updateEvt for BackWindow.

The autoKey threshhold represents the time from the first
keyDown until the autoKey event is generated. The default
value is 16 ticks (sixtieths of a second). The autoKey rate is the
interval between autoKeys. The default autoKey rate is 4 ticks.
The user can change both of these from the control panel desk
' accessory. Their values are stored in the system global variables
KeyThresh and KeyRepThresh.

e diskEvt: diskEvts are queued whenever a disk is inserted into a
disk drive, or when an action is taken that requires that a volume
be mounted. Don’t worry too much about these right now. We'll tell
you how to deal with disks and files in Chapter 7.

¢ activateEvt: activateEvts are also associated with windows.
An activateEvt is queued whenever a window is activated
(made to come to the front) or deactivated (replaced as the
frontmost window by another window). As you might guess,
activateEvts always occur in pairs (Figures 4.3 and 4.4).

112

Macintosh Programming Primer

Front Window

Front Window

Back Window

Back Window

‘G o &
e @
) o!®

@

Figure 4.3 BackWindow is selected, an activateEvt is generated to
deactivate FrontWindow,and an activateEvt is generated to
activate BackWindow.

Front Window Front Window Front Window

‘Back‘ Window

[EDE Back Window

I

Figure 4.4 BackWindow isselected,an activateEvt is generated to
deactivate FrontWindow,an activateEvt is generated to activate
BackWindow, and an updateEvt is generated to redraw
BackWindow.

The Event Mechanism 113

* networkEvt: networkEvts are no longer used.

¢ driverEvt: driverEvts are used by device drivers to signal
special conditions. They (and device drivers in general) are beyond
the scope of this book.

* applEvt, app2Evt, app3Evt: These events are defined by your
application and can be used for just about anything. With the
advent of MultiFinder, the use of application-defined events is
discouraged.

* app4Evt (Suspend/Resume/mouseMoved events): The
app4Evt has been reserved by Apple for use with MultiFinder.
MultiFinder will post an app4Evt just before it moves your
application into the background (suspends it) and just after it
brings your application back to the foreground (resumes it). You
can also set your application up to receive mouseMoved events.
mouseMoved events are posted when the user moves the cursor
outside a predefined region (such as a text-editing window) or back
in again. When your application receives a mouseMoved event, it
can change the cursor to one appropriate to that region. We’ll
discuss app4Evts in more detail later in the chapter.

The next section discusses a new Macintosh application model
based on event handling. After that, we’ll present EventTutor, this
book’s first event-based application.

The Structure of a Mac Program:
New and Improved

In Chapter 3, we presented a very primitive Macintosh application
model that looked like this:

program MyApp;

begin
DoInitjalization;
DoPrimeDirective;

while (not Button) do
begin
end;
end.

114 Macintosh Programming Primer

First, the application model takes care of any program-specific
initialization, such as loading windows or pictures from the resource
file. Next, the model performs its “prime directive.” In the case of
ShowPict, the prime directive was drawing a PICT in the main
application. Finally, the model waits for the mouse button to be
pressed.

There is one basic problem with this model: It does not reflect
reality. Macintosh applications do not exit when the mouse button is
pressed. Clearly, we need a better model.

The new model does things a little differently:

program MyApp;
var
gTheEvent : EventRecord;
gbone : BOOLEAN;

procedure HandleEvent;
var
gotOne : BOOLEAN;
begin
if waitNextEventIsInstalled then
gotOne := WaitNextEvent(everyEvent, gTheEvent,
sleepValue, mouseRgn)

else
begin
SystemTask;
gotOne := GetNextEvent(everyEvent, gTheEvent);
end;

if gotOne then
case gTheEvent.what of
mouseDown:

if ... then
gbone := TRUE;
end;
end;

procedure MainLoop;
begin
gbone := FALSE;
while gbone = FALSE do
HandleEvent;
end;

The Event Mechanism 115

begin
DolInitialization;
MainLoop

end.

This model starts off the same way as the basic model, with calls
to the initialization routines. The difference lies in the call of
MainLoop. MainLoop contains the main event loop. The main
event loop is part of the basic structure of any Mac program. Each
time through the loop, your program retrieves an event from the
event queue and processes the event.

As we’'ll explain in the next section, events are retrieved in one of
two ways. If the Toolbox routine WaitNextEvent is available (it
isn’'t on older systems), it gets called. If WaitNextEvent isn't
available, the older Toolbox routine, GetNextEvent, is used.

Eventually, some event will cause HandleEvent to set gbone to
TRUE, and the program will end. This might be the result of a
mouseDown in the menu bar (selecting Quit from the File menu) or
a keyDown (typing the key sequence 30). You can design your
ending conditions any way you like.

We should warn you that Apple has a little-known squad of
mercenaries who seek out and eradicate applications that don’t
meet the user interface guidelines. Beware!

Retrieving Events from the Event Queue

116

In the early days of Mac programming, the Toolbox routine
GetNextEvent was used to retrieve events from the event queue.
GetNextEvent worked just fine until MultiFinder was introduced.
MultiFinder is a set of operating system functions that extend the
capabilities of the Macintosh. Most notably, MultiFinder allows the
Macintosh to run several applications at the same time.

Figure 4.5 shows MultiFinder in action. Notice that only one
application at a time can be “in front.” Notice also that the Finder is
one of the applications under MultiFinder. To bring an application to
the front, you click on one of its windows.

One of the nicest features of MultiFinder is its ability to run
applications in the background. Figure 4.5 shows the alarm clock
desk accessory running in the background. Even though the alarm
clock window is not the frontmost window, the time is updated
because the alarm clock is running in the background.

GetNextEvent was written with the Finder in mind. When
MultiFinder was introduced, Apple added a new routine to the
Toolbox to handle things like background processing more efficiently.
The new routine is called WaitNextEvent.

As you’ll see when you get to the EventTutor application, your
programs should always check to see if WaitNextEvent is installed
before they call it. If it isn’t installed, the program should call
GetNextEvent instead.

" & File Edit Search Format Font Document Window Work @ 3

Hard Disk
4 items 86 421K in disk 1,590K available
E [0 10:49:54 AM @
Systern Folder Apps
S(==——————— Mylocument =———-"=
|0 . i | 12 | 13 | 14 | 15 .
; T T T T T T T T T T ;1‘0
Fr af) = 1= 1= 1= = &= = 1=

This is an important document being prepared in Microsoft
Word. We really like this word processor a lot! |

ResEdit

Jl

Trash

Fage ! [Normal+... 3

Figure 4.5 MultiFinder in action.

The Event Mechanism 117

You may have noticed a call to the Toolbox routine SystemTask
just before the call to GetNextEvent in the new application
model. SystemTask gives the Mac operating system a slice of
time to do things like update desk accessories (such as the alarm
clock), process AppleTalk messages, and so on.
WaitNextEvent has this functionality built right in, so an
accompanying call to SystemTask isn't necessary.

Calling GetNextEvent and WaitNextEvent

The first parameter to both GetNextEvent and WaitNextEvent is
an event mask, used to limit the types of events your program will
handle. Figure 4.6 contains a list of predefined event mask constants.
If your program needs only mouseDowns and keyDowns, for example,
you might use the following call:

gTheEvent : EventRecord;
gotOne : BOOLEAN;

gotOne := GetNextEvent((mDownMask |
keyDownMask), &gTheEvent);

const

mDownMask = 2;
mUpMask = 4;
keyDownMask = 8;
keyUpMask = 16;
autoKeyMask = 32;
updateMask = 64;
diskMask = 128;
activMask = 256;
networkMask = 1024;
driverMask = 2048;
app1Mask = 4096;
app2Mask = 8192;
app3Mask = 16384;
app4Mask = -32768;
everyEvent = -1;

Figure 4.6 Event masks predefined in THINK Pascal.

118

Macintosh Programming Primer

In this case, GetNextEvent will return only mouseDown,
keyDown, or nullLEvent information. nullEvents are never
masked out. To handle all possible events, pass the predefined
constant everyEvent as the eventMask parameter. Inside Mac
recommends that you use everyEvent as your event mask in all
your applications unless there’s a specific reason not to do so.

The second parameter to both GetNextEvent and
WaitNextEvent is gTheEvent, declared as an EventRecord.
Here’s the type definition of an EventRecord:

type EventRecord = RECORD
what : INTEGER;
message : LONGINT;
when : LONGINT;
where : Point;
modifiers : INTEGER
end;

Here’s a description of each of the fields:

e what: What type of event just occurred? Was it a nulLEvent,
keyDown, mouseDown, or updateEvt?

¢ message: This part of the EventRecord is specific to the event.
For keyDown events, the message field contains information
about the actual key that was pressed (the key code) and the
character that key represents (the character code). For
activateEvts and updateEvts, the message field contains a
pointer to the affected window.

* when: When did the event occur? The Event Manager tells you, in
ticks since the system was last started up (or booted).

e where: Where was the mouse when the event occurred? This
information is specified in global coordinates (see Chapter 3).

* modifiers: This part of the EventRecord describes the state of
the mouse button and the modifier keys (the Shift, Option, Control,
Command, and Caps Lock keys) when the event occurred.

The third parameter to WaitNextEvent is the sleep
parameter. sleep is a LONGINT specifying the amount of time (in
clock ticks) your application is willing not to perform any background
processing while waiting for an event. Inside Mac recommends a
value of at least 60 for s leep, to be truly MultiFinder friendly. If
you pass a value of 0 for sleep, you're telling WaitNextEvent to
hog the processor. Pretty unfriendly!

The Event Mechanism 119

The fourth parameter to WaitNextEvent is the mouseRgn
parameter, used to simplify cursor tracking. If your application
requires different cursors, depending on which part of the screen the
cursor is in, the mouseRgn parameter is essential. With it, you can
specify the screen region appropriate to the current cursor. Whenever
the mouse is outside that region, the Event Manager queues up a
mouseMoved event. When your program receives the mouseMoved
event, the region is changed to reflect the new mouse position and is
passed as a parameter to the next WaitNextEvent call

Calling WaitNextEvent with a sleep value of 60 and a
mouseRgn of nil is exactly equivalent to calling SystemTask and
GetNextEvent. The programs presented throughout the rest of the
book will do just that. The Programmer’s Guide to MultiFinder
includes a program that uses the s Leep and mouseRgn parameters
of WaitNextEvent. The program was written by Apple’s Macintosh
Technical Support Group. The Programmer’s Guide to MultiFinder,
published by Apple, is essential reading for writing truly
MultiFinder-friendly applications.

Handling Events

Once you've retrieved an event via GetNextEvent or WaitNext
Event, your next step is to process it. If the event is a mouseDown
event, figure out where the mouse was clicked. If the mouse was
clicked in a window’s drag region, as shown in Figure 4.7, you can
call a Toolbox routine that handles window dragging. If the event is
an updateEvt, you might want to redraw the window pointed to by
theEvent.message.

=[IE Front mindow~§§|

Kl [

Figure 4.7 Arrow cursor in window’s drag region.

120

Macintosh Programming Primer

If this sounds vague, don’t worry. The concept of events may be
unfamiliar to you, but it will be easier to understand once you see it
in operation. This chapter’s program, EventTutor, will show you how
all types of events are handled.

EventTutor: The Return of ShowPICT

Back in Chapter 3, we presented a program called ShowPICT, which
works like this:

It loads a resource window, shows it, and makes it the current port.

It loads a resource picture.

¢ It centers the picture, then draws it in the window.

It waits for the mouse button to be pressed.

The new program presented here, EventTutor, adds a main event
loop to this model. EventTutor also adds a new window,
gEventWindow. gEventWindow keeps a scrolling list of events,
updated as the events occur. You can also drag both windows around
the screen, as well as zoom and grow the picture window.
EventTutor works like this:

¢ It loads the picture and event windows from the resource file,
shows them, and makes gEventWindow the current port.

¢ It loads a picture from the resource file.
¢ While (gdone = FALSE), EventTutor handles events.

* As events occur, it displays their names in gEventWindow, then
calls the appropriate routines to process them.

Setting Up the EventTutor Project

Start by creating a new project folder, called EventTutor, inside
your Development folder. Use ResEdit to create a new file inside
this folder called EventTutor.n.rsrc.

The Event Mechanism 121

Resources

Create three new resources. The first two are WINDs with resource
IDs 400 and 401. Figure 4.8 shows the specifications for these
WINDs. When you set the resource IDs in the Get Resource Info
window, make sure you make both WINDs purgeable.

The third resource is a PICT. In our example, we use the
champagne picture from the standard Scrapbook, but feel free to use
any PICT you'd like. Make sure you change the resource ID to 400
and make the resource purgeable.

Next, start up THINK Pascal. When prompted, create a new project
inside the EventTutor folder. Call the project EventTutor. .
Select New from the File menu to create a new source code file. Type
the code listing in and save the file inside the EventTutor folder as
EventTutor.p. Select Add Window from the Project menu to
add EventTutor.p to the project. The Project window should now
look like Figure 4.9.

ECJE WIND 1D = 400 from EventTutor.w.r{[ECJE WIND ID = 401 from EventTutor.m.r
Window title: Window title:
gPictlWindow gEventWindow
top 40 bottom | 240 top 122 bottom [341
left 20 right 420 left 200 right 500
proclD |8 refCon |0 prociD |4 refCon (0
[J visible goAwayFlag [visible [goAwayFlag

Figure 4.8 EventTutor WIND specifications.

122 Macintosh Programming Primer

=[J=—= FventTutor.n =

Options File (by build order) Size &
Runtime.lib 0 5
Interface.lib o

[CIN]v R EventTutorp . .. 0
................. T 6|
1
] =

Figure 4.9 EventTutor’s project window.

Here’s the source code for EventTutor.p:

program EventTutor;
const

BASE_RES_ID = 400;
LEAVE_WHERE_IT_IS = FALSE;
NORMAL_UPDATES = TRUE;
SLEEP = 60;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;
SUSPEND_RESUME_BIT = $0001;
ACTIVATING = 1;
RESUMING = 1;
TEXT_FONT_SIZE 12
DRAG_THRESHOLD = 30
MIN_WINDOW_HEIGHT = 50;
MIN_WINDOW_WIDTH = 50;
SCROLL_BAR_PIXELS = 15;
ROWHEIGHT = 15;
LEFTMARGIN = 10;
STARTROW = 0;
HORIZONTAL_OFFSET = 0;

~

N

var
gPictWindow, gEventWindow : WindowPtr;
gbone, gWNEImplemented: BOOLEAN;
gTheEvent: EventRecord;
gCurRow, gMaxRow: INTEGER;
gSizeRect: Rect;

{--————————— > CenterPict <--1%
procedure CenterPict (thePicture: PicHandle;
var myRect: Rect);
var

The Event Mechanism 123

windRect, pictureRect: Rect;

begin

windRect := myRect;

pictureRect := thePicture**.picFrame;

myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom -
pictureRect.top)) div 2 + windRect.top;

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);

myRect.left := (windRect.right - windRect.left -
(pictureRect.right -
pictureRect.left)) div 2 + windRect.left;

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);

{-——-—————— >DrawMyPicture <--1}

procedure DrawMyPicture (drawingWindow: WindowPtr);
var
drawingClipRect, myRect: Rect;
oldPort: GrafPtr;
tempRgn: RgnHandle;
thePicture: PicHandle;
begin
GetPort(oldPort);
SetPcrt(drawingWindow);
tempRgn := NewRgn;
GetClip(tempRgn);
EraseRect(drawingWindow”.portRect);
DrawGrowIcon(drawingWindow);

drawingClipRect := drawingWindow”.portRect;

drawingClipRect.right := drawingClipRect.right -
SCROLL_BAR_PIXELS;

drawingClipRect.bottom := drawingClipRect.bottom -
SCROLL_BAR_PIXELS;

myRect := drawingWindow”.portRect;

thePicture := GetPicture(BASE_RES_ID);
CenterPict(thePicture, myRect);
ClipRect(drawingClipRect);
DrawPicture(thePicture, myRect);

SetClip(tempRgn);

DisposeRgn(tempRgn);

SetPort(oldPort);
end;

124 Macintosh Programming Primer

{-—— e > HandleMouseDown <=-=3

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
windSize: LONGINT;
oldPort: GrafPtr;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inContent:
if whichWindow <> FrontWindow then
SelectWindow(whichWindow);
inGrow:
begin
windSize := GrowWindow(whichWindow,
gTheEvent.where, gSizeRect);
if (windSize <> 0) then
begin
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow”.portRect);
SizeWindow(whichWindow,
LoWord(windSize),
HiWword(windSize),
NORMAL_UPDATES);
InvalRect(whichWindow”.portRect);
SetPort(oldPort);
end;
end;
inGoAway:
gbone := TRUE;
inZoomIn, inZoomOut:
if TrackBox(whichWindow, gTheEvent.where,
thePart) then
begin
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow”.portRect);
ZoomWindow(whichWindow, thePart,
LEAVE_WHERE_IT_IS);
InvalRect(whichWindow”.portRect);
SetPort(oldPort);
end;
end;
end;

The Event Mechanism 125

{—mmm > ScrolilWindow <-=}

procedure ScrollWindow;
var
tempRgn: RgnHandle;
begin
tempRgn := NewRgn;
ScrollRect(gEventWindow”.portRect, HORIZONTAL_OFFSET, -
ROWHEIGHT, tempRgn);
DisposeRgn(tempRgn);
end;

e > DrawEventString <--}

procedure DrawEventString (s: Str255);
begin
if (gCurRow > gMaxRow) then
ScrollWindow
else
gCurRow := gCurRow + ROWHEIGHT;

MoveTo(LEFTMARGIN, gCurRow);
DrawString(s);
end;

{--——————————— > HandleEvent<--1

procedure HandleEvent;
var
gotOne: BOOLEAN;
begin
if gWNEImplemented then
gotOne := WaitNextEvent(everyEvent, gTheEvent,
SLEEP, nil)

else
begin
SystemTask;
gotOne := GetNextEvent(everyEvent, gTheEvent);
end;

if gotOne then
case gTheEvent.what of
nullEvent:

begin
{ DrawEventString('nullEvent'); }
{Uncomment the previous Lline for a burst of flavor! 1}
end;

mouseDown:

126 Macintosh Programming Primer

begin
DrawEventString('mouseDown');
HandleMouseDown;
end;
mouseUp:
DrawEventString('mouseUp');
keyDown:
DrawEventString('keyDown');
keyUp:
DrawEventString('keyUp');
autoKey:
DrawEventString('autoKey"');
updateEvt:
if (WindowPtr(gTheEvent.message) =
gPictWindow) then
begin
DrawEventString('updateEvt: gPictWindow');
BeginUpdate(WindowPtr (gTheEvent.message));
DrawMyPicture(WindowPtr (gTheEvent.message));
EndUpdate(WindowPtr (gTheEvent.message));
end
else
begin
DrawEventString('updateEvt:
gEventWindow');
BeginUpdate(WindowPtr
(gTheEvent.message));

{ We won't handle updates to gEventWindow, }
{ but we still need to empty the gEventWindow}
{ Update Region so the Window Manager will stop}
{ queing UpdateEvts. We do this with calls to}
{ BeginUpdate and EndUpdate. }
EndUpdate(WindowPtr
(gTheEvent.message));
end;
diskEvt:

DrawEventString('diskEvt');
activateEvt:
if (WindowPtr(gTheEvent.message) =
gPictWindow) then
begin
DrawGrowIcon(WindowPtr
(gTheEvent.message));
if (BitAnd(gTheEvent.modifiers,
activeFlag) = ACTIVATING) then
DrawEventString
('activateEvt: activating gPictWindow')
else
DrawEventString
('activateEvt: deactivating gPictWindow');
end

The Event Mechanism 127

else
begin
if (BitAnd(gTheEvent.modifiers, activeFlag) =
ACTIVATING) then
DrawEventString('activateEvt: activating gEventWindow')
else
DrawEventString('activateEvt: deactivating gEventWindow');
end;
networkEvt:
DrawEventString('networkEvt');
driverEvt:
DrawEventString('driverEvt');
app1Evt:
DrawEventString('app1Evt');
app2Evt:
DrawEventString('app2Evt');
app3Evt:
DrawEventString('app3Evt');
app4Evt:
if (BitAnd(gTheEvent.message,
SUSPEND_RESUME_BIT) = RESUMING) then
DrawEventString('Resume event')
else
DrawEventString('Suspend event');

F > MainLoop <--1}

procedure MainLoop;
begin
gbone := FALSE;
gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM, ToolTrap));

while gbone = FALSE do
HandleEvent;
end;

{-——————————— > SetUpSizeRect <--1}

procedure SetUpSizeRect;

begin
gSizeRect.top := MIN_WINDOW_HEIGHT;
gSizeRect.left := MIN_WINDOW_WIDTH;

gSizeRect.bottom := 32767;
gSizeRect.right := 32767;
end;

128 Macintosh Programming Primer

{——— > SetupEventWindow <--}

procedure SetupEventWindow;
var
eventRect: Rect;
fontNum: INTEGER;

begin
eventRect := gEventWindow”.portRect;
gMaxRow := eventRect.bottom - eventRect.top -
ROWHEIGHT;
gCurRow := STARTROW;

SetPort(gEventWindow);
GetFNum('monaco', fontNum);
TextFont(fontNum);
TextSize(TEXT_FONT_SIZE);

(e > WindowInit <--}

procedure WindowInit;
begin
gPictWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
gEventWindow := GetNewWindow(BASE_RES_ID + 1, nil,
WindowPtr(-1));
SetupEventWindow;

ShowWindow(gEventWindow);
ShowWindow(gPictWindow);
end;

- > EventTutor <--}
begin
WindowInit;

SetUpSizeRect;

MainLoop;
end.

The Event Mechanism 129

Running EventTutor

Now that your source code is entered, you're ready to run EventTutor.
Select G from the BAun menu. THINK Pascal will start the compila-
tion process. If you run into any compilation errors, try the debugging
tips discussed in Appendix C.

Once the code compiles, you'll be asked whether you’d like to Save
changes before running. Click ¥es, and EventTutor will execute.
Figure 4.10 shows EventTutor running under the Finder.

EventTutor puts two windows up on the screen. The background
window, gPictWindow, should display your centered picture. The
foreground window, gEventWindouw, should already list three events:

® activateEvt: activating gEventWindow: This event was
caused by your code. You called SelectWindow, requesting that
gEventWindow be made the frontmost window.

® updateEvt: gEventWindow.

e updateEvt: gPictWindow: The Window Manager automati-
cally generates an updateEvt for each of its windows as soon as
they are drawn for the first time.

gPictWindow

2 @ e
: I -
9% o (D o‘[(

K3l

gEventWindow
qctivateEut: activating gEventMindow
updateEut: gEventHindow

updateEuvt: gPictlindow

mouselown

mousellp

mouselown

mouselp

Figure 4.10 EventTutor running under Finder.

130

Macintosh Programming Primer

When the Window Manager draws a window, it first draws the
window frame. The window frame includes the border, as well as a
drag region, zoom box, and a go-away box, if appropriate. Next, it
generates an updateEvt for the window, so the application will
draw the window contents.

Press the mouse button in the middle of gEventWindow. Now
release the mouse button. You should see first a mouseDown and then
a mouseUp event. Press the mouse button in the gEventWindow
drag region (you’ll see a mouseDown) and drag gEventWindow down
and to the right. You should see an updateEvt for gPictWindow.
This is because you just revealed a piece of gPictWindow that was
covered before. The reason you didn’t get a mouseUp when you
released the mouse button is that the mouseUp was swallowed by the
system routine that handles window dragging. This is also true when
you zoom or resize a window.

In Chapter 3 we established a standard of starting our program
global variable names with the letter g. This led to WindowPtrs
named gEventWindow and gPictWindow. For clarity, we used
these variable names as titles for their respective windows, but we
could have used any titles we wanted.

Click the mouse button in the center of gPictWindow. You should
see a mouseDown, a deactivate event for gEventWindow, an activate
event for gPictWindow, an update event for gPictWindow
(assuming that you clicked on it while it was still at least partially
covered by gEventWindow), and a mouseUp (Figure 4.11).

There is no such thing as a deactivateEvt. We use the term
deactivate event to indicate an activateEvt with the
activeF lag cleared. There's an example of this in the code.

Try clicking in gPictWindow’s zoom box. The picture should remain
centered in gPictWindow. Click in the zoom box again.
gPictWindow should return to its original size. Resize gPictWindow

The Event Mechanism 131

gPictlWlindow

ntllindow

|

activateEut: deactivating gEventlindow
act ivateEvt: activating gPictlindow
mouselp

updateEvt: gPictlindow

Figure 4.11 After gPictWindouw is activated.

by clicking and dragging the grow box. Keep an eye on
gEventWindow. As you create events, review the list of event types
presented earlier in the chapter. All these features were made possible
by the use of events. Now, let’s take a look at the code.

Writing MultiFinder-friendly applications is not extremely difficult.
We will try to get the basics across in our code, but we again
recommend that you read the Programmer’s Guide to MultiFinder
from Apple for a thorough background (oops!) in MultiFinder
programming.

For starters, you can get your program to handle suspend and
resume events by creating a resource of type SIZE. For a quick
tutorial in creating a SIZE resource, check out Chapter 8. Once
your SIZE resource is in place, your program will receive suspend
and resume events when you send it to the background and bring it
back again under MultiFinder.

In Chapter 5, you'll build a clock that runs in the background under
MultiFinder, and in Chapter 6, you'll build a countdown timer that
also runs in the background under MultiFinder.

Walking Through the EventTutor Code

Figure 4.12 shows EventTutor’s software architecture. As we did
in Chapter 3, we'll present the routines in the order they are called,
not in the order they appear in the source code. Don’t worry, we

won’t leave any of them out.

WindowlInit |PSetUpSizeRect) MainLoop

; SetupEven if not done
-1 | Window [HandleEvent

if mouseDown

if update event

if other event

DrawEventString

DrawEventString

| SerouWindow |

| ScroliWindow |

DrawEventString

ScrollWindow

HandleMouseDown

ScrollWindow

DrawMyPicture

Figure 4.12 EventTutor’s architecture.

EventTutor starts with a slew of constants, some of which should
be familiar from Chapter 3. We'll discuss each constant as it appears
in the code:

program EventTutor;
const

BASE_RES_ID = 400;
LEAVE_WHERE_IT_IS = FALSE;
NORMAL_UPDATES = TRUE;
SLEEP = 60;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;
SUSPEND_RESUME_BIT = $0001;
ACTIVATING = 1;
RESUMING = 1;
TEXT_FONT_SIZE =
DRAG_THRESHOLD = ;
MIN_WINDOW_HEIGHT = 50;

132

The Event Mechanism 133

MIN_WINDOW_WIDTH = 50;
SCROLL_BAR_PIXELS = 15;
ROWHEIGHT = 15;
LEFTMARGIN = 10;
STARTROW = 0;
HORIZONTAL_OFFSET = 0;

gPictWindow and gEventWindow are pointers to the two
program windows. gDone is initialized to FALSE and checked each
time through the main event loop. If anyone sets gbone to TRUE, the
program exits. gWNEImplemented isa BOOLEAN you'll set to TRUE
if WaitNextEvent is implemented in the current version of the
system. gTheEvent is your EventRecord. Whenever you retrieve
an event from the event queue, use gTheEvent to hold the event
information. gCurRow holds the vertical pixel coordinate (in
gEventWindow’s local coordinate system) for drawing the next
event string in gEventWindow. gMaxRow is the maximum value
allowed for gCurRow. If gCurRow gets bigger than gMaxRow, you'll
scroll the text in gEventWindow. gSizeRect controls the size of a
window.

var
gPictWindow, gEventWindow : WindowPtr;
gbone, gWNEImplemented: BOOLEAN;
gTheEvent: EventRecord;
gCurRow, gMaxRow: INTEGER;
gSizeRect: Rect;

EventTutor’s main procedure starts by calling the window
initialization routine. Next, it calls SetUpSizeRect to set up a
Rect for resizing our windows (see HandlLeMouseDown). Finally,
EventTutor enters the main event loop by calling MainLoop.

{---—————————-- > EventTutor <--3}

begin
WindowInit;
SetUpSizeRect;

MainLoop;
end.

134

Macintosh Programming Primer

WindowInit starts by loading the two windows from the resource
file. Next, gEventWindow is made the current window, and its
attributes are set via the call to SetupEventWindow. Both
windows are made visible with ShowWindow.

{--—————— > WindowInit <--}

procedure WindowInit;
begin
gPictWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
gEventWindow := GetNewWindow(BASE_RES_ID + 1,
nil, WindowPtr(-1));

SetupEventWindow;

ShowWindow(gEventWindow);
ShowWindow(gPictWindow);
end;

SetupEventWindow sets some of the gEventWindow global
variables. eventRect is a placeholder for gEventWindow’s
boundary rectangle. gMaxRow is set to the maximum row you’ll draw
into (in gEventWindou’s local coordinates). gCurRow holds the
current row number (also in local coordinates). gEventWindow’s
font is set to 12-point Monaco.

{-————r e > SetupEventWindow <--}

procedure SetupEventWindow;
var
eventRect: Rect;
fontNum: INTEGER;
begin
eventRect := gEventWindow”.portRect;
gMaxRow := eventRect.bottom -
eventRect.top - ROWHEIGHT;
gCurRow := STARTROW;

SetPort(gEventWindow);

GetFNum('monaco', fontNum);

TextFont(fontNum);

TextSize(TEXT_FONT_SIZE);
end;

The Event Mechanism 135

SetUpSizeRect sets up a resizing rectangle for your call to
GrowWindow (see HandleMouseDown). gSizeRect.top defines
the minimum number of pixels allowed for window height.
gSizeRect. left defines the minimum number of pixels allowed for
window width. gSizeRect.bottom defines the maximum number of
pixels allowed for window height, and gSizeRect.right defines the
maximum number for width. By using a really large value for the
maximum width and height, you make sure that your window can be
grown as big as the biggest possible monitor.

{-——————— > SetUpSizeRect <--}

procedure SetUpSizeRect;

begin
gSizeRect.top := MIN_WINDOW_HEIGHT;
gSizeRect.left := MIN_WINDOW_WIDTH;

gSizeRect.bottom := 32767;
gSizeRect.right := 32767;
end;

MainLoop starts by initializing gbone. Your application will exit
when gDone is set to TRUE. Next, check to see if WaitNextEvent
is installed. Essentially, you’re checking to see if WaitNextEvent
and an unimplemented Toolbox routine have the same address in
memory. If so, you know that WaitNextEvent is not implemented
in the currently booted system.

This piece of code has changed several times since
WaitNextEvent was first made available. To be on the safe side,
get the very latest copy of the Programmer’s Guide to MultiFinder
from APDA. In the back, you'll see an example of a program that
reflects Apple’s current thinking on WaitNextEvent. By following
this example, you'll minimize the chances of your program breaking
under future releases of the Mac operating system.

Finally, MainLoop loops on HandleEvent until gDone is set to
TRUE.

{-——————————— > MainLoop <--}

procedure MainLoop;
begin

136 Macintosh Programming Primer

gbone := FALSE;
gWNEImplemented := (NGetTrapAddress
(WNE_TRAP_NUM, ToolTrap) <>
NGetTrapAddress(UNIMPL_TRAP_NUM, ToolTrap));

while gbone = FALSE do
HandleEvent;
end;

HandleEvent starts with a call to either WaitNextEvent (if it’s
implemented), or SystemTask and GetNextEvent. Either way,
gTheEvent gets filled with the latest event info. Each event is
handled by drawing the name of the event in gEventWindow using
DrawEventString. If you uncomment the code in the nul LEvent
case, you'll get a feel for the number of nul LEvents the system
generates

nul LEvents offer an excellent opportunity to do things like cursor
tracking and internal housekeeping. For example, Chapter 5's
Timer program updates a clock window when it gets a
nullEvent.

{-——— > HandleEvent<--1}

procedure HandleEvent;
var
gotOne: BOOLEAN;
begin
if gWNEImplemented then
gotOne := WaitNextEvent(everyEvent,gTheEvent,
SLEEP,nil)

else
begin
SystemTask;
gotOne := GetNextEvent(everyEvent,
gTheEvent);
end;

if gotOne then
case gTheEvent.what of
nullEvent:
begin
{DrawEventString('nullEvent');}
{Uncomment the previous line for a burst of flavorl}
end;

The Event Mechanism 137

mousedown:
begin
DrawEventString('mouseDown');
HandleMouseDown;
end;
mouseUp:
DrawEventString('mouseUp')
keyDown:
DrawEventString('keyDown')
keyUp:
DrawEventString('keyUp');
autoKey:
DrawEventString('autoKey');

updateEvts are handled in a special way. First, figure out which
window is affected by the updateEvt. The Event Manager stores a
pointer to the window requiring updating in gTheEvent.message.
By comparing this pointer to gEventWindow and gPictWindouw,
you can tell which window is for the updateEvt. If the updateEvt
is for gPictWindow, draw the appropriate event string into
gEventWindow, and then call BeginUpdate.

BeginUpdate tells the Event Manager that you’re about to take
care of the condition that caused the update. In this case, you'll
redraw the picture in gPictWindow using DrawMyPicture.
Finally, call EndUpdate to let the Event Manager know you're done.

If you commented out the calls to BeginUpdate and EndUpdate,
you’d get an unending stream of updateEvts for gPictWindow. The
Event Manager, thinking you were ignoring the ones you'd already
retrieved, would just keep generating them. Try it for yourself.

You won’t redraw the contents of gEventWindow in response to
updateEvts. If you want to add this capability, add a data
structure to the program that keeps track of all the strings currently
in the window and redraw them whenever an updateEvt occurs for
gEventWindow. In this version, you'll just call DrawEventString
to add the updateEvt to your list of events, and you’ll call
BeginUpdate and EndUpdate to let the Window Manager know
that you've responded to the updateEvt.

138 Macintosh Programming Primer

Every window has an update region associated with it. When a
previously covered section of a window is uncovered, the
uncovered area is added to the window’s update region. The
Window Manager is constantly on the lookout for windows with
nonempty update regions. When it finds one, it generates an
updateEvt for that window. BeginUpdate, as part of its
processing, replaces the update region of the specified window
with the empty region. Therefore, if you don’t call BeginUpdate,
you'll never empty the window’s update region, and the Window
Manager will never stop generating updateEvts for the window.

If you have not done so already, you absolutely should read the
Window Manager chapter of Inside Macintosh (Volume |, Chapter
9). The information presented in the Window Manager chapter is
crucial to writing proper Macintosh applications.

Before BeginUpdate empties the update region, it replaces the
visible region of the window (called the visRgn) with the
intersection of the vi sRgn and the update region (see Figure 4.13).
The application then redraws the contents of the window. If it wants
to, it can use this newly cropped visRgn to help reduce the amount
of drawing necessary. For now, you'll just redraw the entire contents
of the window. Finally, EndUpdate is called. EndUpdate replaces
the original version of the visRgn. A call to BeginUpdate without
a corresponding call to EndUpdate will leave your window in an
unpredictable state.

updateEvt:
if (WindowPtr(gTheEvent.message) = gPictWindow) then
begin
DrawEventString('updateEvt: gPictWindow');
BeginUpdate(WindowPtr(gTheEvent.message));
DrawMyPicture(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));
end
else
begin)
DrawEventString('updateEvt: gEventWindow');
BeginUpdate(WindowPtr(gTheEvent.message));

The Event Mechanism

139

A

Update
Region

Before the bottom
window is selectec

After the bottom
window is
selected, but
before
BeginUpdate is
called

After
BeginUpdate
is called

After
EndUpdate is
called

Figure 4.13 BeginUpdate in action.

EndUpdate(WindowPtr(gTheEvent.message));

{ We won't handle updates to gEventWindow,
{ but we still need to empty the gEventWindow
{
{
{ BeginUpdate and EndUpdate.
end;
diskEvt:

DrawEventString('diskEvt');

3
}

Update Region so the Window Manager will stop 2}
queueing UpdateEvts. We do this with calls to}

}

Another special case is the activateEvt. As you did with
updateEvt, first check to see which window is affected by the
activateEvt. If the activateEvt is for gPictWindow, call
DrawGrowIcon to redraw the grow box and the empty scroll bar
areas. The grow box looks different depending on whether the
window was activated or deactivated (see Figure 4.14).
DrawGrowlcon is smart enough to draw the grow box correctly.

Next, check a bit in the modifiers field to see if the event was an
activate or a deactivate event. Remember, activateEvts usually
occur in pairs: First, the frontmost window is deactivated and then
the new front window is activated. Also draw the appropriate strings
for networkEvts, driverEvts, and app1 through app3Evts,
although you probably won’t get any of these.

140 Macintosh Programming Primer

=J= Front Window SO Front Window
]
K] R

Figure 4.14 The grow box — activated and deactivated.

activateEvt:
if (WindowPtr(gTheEvent.message) = gPictWindow) then
begin
DrawGrowIcon(WindowPtr(gTheEvent.message));
if (BitAnd(gTheEvent.modifiers, activeFlag) =
ACTIVATING) then
DrawEventString
('activateEvt: activating gPictWindow')
else
DrawEventString
('activateEvt: deactivating gPictWindow');
end
else
begin
if (BitAnd(gTheEvent.modifiers, activeFlag) =
ACTIVATING) then
DrawEventString
('activateEvt: activating gEventWindow')
else
DrawEventString('activateEvt: deactivating gEventWindow');
end;
networkEvt:
DrawEventString('networkEvt');
driverEvt:
DrawEventString('driverEvt');
app1Evt:
DrawEventString('appl1Evt');
app2Evt:
DrawEventString('app2Evt');
app3Evt:
DrawEventString('app3Evt');

If you handle resume and suspend events, you'll get them in the
form of an app4Evt. The SUSPEND_RESUME_BIT is set if the event
1s a resume event and cleared if the event is a suspend event.

The Event Mechanism 141

Remember, you won’t get resume or suspend events if you’re not in
MultiFinder, or if you haven’t put a SIZE resource in your
application. For more information, read the discussion of the SIZE
resource in Chapter 8.

app4Evt:
if (BitAnd(gTheEvent.message,

SUSPEND_RESUME_BIT) = RESUMING) then
DrawEventString('Resume event')

else
DrawEventString('Suspend event');

end;
end;

DrawEventString handles the text positioning in
gEventWindow. If the QuickDraw pen is near the bottom of the
window, ScrollWindow is called. The string is drawn with
DrawString. ROWHEIGHT is the height in pixels of a single row of
text. LEFTMARGIN is the pixel coordinate (in gEventWindow’s local
coordinate system) of the left margin of the text in gEventWindow.

{-——————————- > DrawEventString <--}

procedure DrawEventString (s: Str255);
begin
if (gCurRow > gMaxRow) then
ScrollWindow
else .
gCurRow := gCurRow + ROWHEIGHT;

MoveTo(LEFTMARGIN, gCurRow);
DrawString(s);
end;

ScrollWindow calls ScrollLRect to scroll the pixels in
gEventWindow up one row. Scrol LRect scrolls the contents of the
current GrafPort (in this case, gEventWindow) within the
rectangle specified in the first parameter. The rectangle is scrolled to
the right by the number of pixels specified in the second parameter
and down by the number of pixels specified in the third parameter.
Because you specified a negative third parameter, the contents of
gEventWindow will be scrolled up.

The last parameter to ScrolLRect is a RgnHandle, or a handle
to a region. Regions are collections of drawn lines, shapes, and curves,
as shown in Figure 4.15 (we discussed them briefly in Chapter 3).
After the pixels in the rectangle are scrolled, Scrol LRect will fill

142 Macintosh Programming Primer

the vacated area of the rectangle with the GrafPort’s background
pattern. Then, these new areas are collected into the region handled
by RgnHand le (Figure 4.16).

Many programs use this region as a guide to redrawing the window
so that they don’t have to redraw the entire window. This is
especially useful if your window is extremely complex and takes a
long time to redraw. In that case, a handle to the window’s
updateRgn is passed to ScrolLRect. Whenever the Window
Manager detects that a window’s updateRgn is nonempty, the
Window Manager generates an updateEvt for the window. As
part of its processing, BeginUpdate sets the specified window’s
updateRgn to the empty region.

Figure 4.15 A region.

1]
L]
i

Front Window

updateRgn
(filled with bkPat

5

Figure 4.16 FrontWindow’s updateRgn after ScrollLRect
(r, 10, 20, updateRgn).

The Event Mechanism 143

Because you're not redrawing gEventWindow in response to
updateEvts, you'll use a temporary region (tempRgn) as a
parameter to Scrol LRect. Deallocate the tempRgn’s memory by
calling DisposeRgn.

{-—————————— > ScrollWindow <--}

procedure ScrollWindow;
var
tempRgn: RgnHandle;
begin
tempRgn := NewRgn;
ScrollRect(gEventWindow”.portRect, HORIZONTAL_OFFSET,
- ROWHEIGHT, tempRgn);
DisposeRgn(tempRgn);
end;

Handling mouseDown Events

When you receive a mouseDown event, the first thing to do is find
out which window the mouse was clicked in, by calling the Toolbox
routine FindWindow. FindWindow takes, as input, a point on the
screen; it returns, in the parameter whichWindow,a WindowPtr to
the window containing the point. In addition, FindWindow returns
an integer part code that describes the part of the window in which
the point was located.

Once you have your part code, compare it to the predefined Toolbox
part codes (you can find a list of legal part codes in I1:287). The part
code inSysWindow means that the mouse was clicked in a system
window, very likely a desk accessory. (Because EventTutor doesnt
support desk accessories, you probably won’t see any inSysWindow
mouseDowns, but you will see them in Chapter 5.) The appropriate
thing to do in this case is to pass the event and the WindowPtr to
the system so that it can handle the event. Do this with the Toolbox
routine SystemCLlick.

The part code inDrag indicates a mouse click in whichWindow’s
drag region. Handle this with a call to the Toolbox routine
DragWindow. DragWindow wants a WindowPtr, the point on the
screen where the mouse was clicked, and a boundary rectangle.
DragWindow will allow the user to drag the window anywhere on
the screen as long as it’s within the boundary rectangle. Use
screenBits.bounds, which will let you drag the window pretty
much anywhere.

144

Macintosh Programming Primer

The inContent part code represents the part of the window in
which you draw. When you detect a mouse click inContent, call
SelectWindow. If the mouse click was not in the frontmost window,
SelectWindow deactivates the frontmost window and activates the
clicked-in window. A call to Se LectWindow usually results in a pair
ofactivateEvts.

————— > HandleMouseDown <-=-3}

procedure HandleMouseDown;

var

whichWindow: WindowPtr;
thePart: INTEGER;
windSize: LONGINT;
oldPort: GrafPtr;

begin

thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of

inSysWindow:

SystemClick(gTheEvent, whichWindow);

inDrag:

DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);

inContent:

if whichWindow <> FrontWindow then
SelectWindow(whichWindow);

A click in the grow box is handled by a call to GrowWindow, which
takes the same arguments as DragWindow but allows the window to
grow and shrink instead of move. GrowWindow returns a long
integer composed of two words (four bytes) that define the number of
pixels the window will grow or shrink in each direction. These words
are passed to SizeWindow, causing the window to be resized
accordingly. The last parameter to SizeWindow tells the Window
Manager to accumulate any newly created content region into the
update region. This means that the Window Manager will generate
an update event whenever the window is made either taller or wider.

The update event strategy is fairly simple. Use the routine
InvalRect to add the entire contents of the window to the window’s
updateRgn, guaranteeing that an updateEvt will be generated
whether or not the window was grown. When you plan your
applications, spend some time working out an appropriate update
strategy. If redrawing the contents of your windows will be fairly
easy and won’t take too long, you may want to use the InvalRect
approach. However, if the contents of your window are potentially
complex (as is true of many drawing and CAD packages), you’ll

The Event Mechanism 145

probably want to avoid the call to InvalRect and, instead, use the
shape of the update region to aid you in updating your window
efficiently.

inGrow:
begin
windSize := GrowWindow(whichWindow,
gTheEvent.where, gSizeRect);
if (windSize <> 0) then
begin
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow”.portRect);
SizeWindow(whichWindow,
LoWord(windSize),
HiWord(windSize),
NORMAL_UPDATES);
InvalRect(whichWindow”.portRect);
SetPort(oldPort);
end;
end;

A click in the go-away box of either window will result in gdone’s
being set to TRUE. This will cause the program to exit.

inGoAway:
gbone := TRUE;

A note from the thought police: A proper Macintocsh application
would never think of exiting just because someone clicked in the
close box of a window! When we get to menu handling in Chapter
5, we’'ll show you the correct way to Quit.

If the mouse is clicked in the zoom box, respond by calling
TrackBox, which will return TRUE if the mouse button is released
while the mouse is still in the zoom box. ZoomWindow zooms the
window in or out, depending on the part code passed as a parameter.
The constant LEAVE_WHERE_IT_IS tells ZoomWindow to leave the
window in front if it was in front when the zoom box was pressed and
in back if the window was in back when the zoom box was pressed.
Just as you did with SizeWindow, call InvalRect to guarantee that
an updateEvt is generated when the window is zoomed in or out.

146

Macintosh Programming Primer

end;

inZoomIn, inZoomOut:

end;

if TrackBox(whichWindow, gTheEvent.where, thePart)

then

begin
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow”.portRect);
ZoomWindow(whichWindow, thePart,

LEAVE_WHERE_IT_IS);

InvalRect(whichWindow”.portRect);
SetPort(oldPort);

end;

DrawMyPicture will draw the picture handled by thePicture
in the window pointed to by drawingWindouw, clipping the drawing
so that the scroll bar and grow areas aren’t overwritten. Copy
drawingWindow’s portRect to drawingClipRect, and adjust
the left and bottom to clip the two scroll bar areas. Use this new
Rect as a parameter to CLipRect so that when you draw your
picture, it gets clipped properly.

Start by saving a pointer to the current GrafPortin oldPort so
that you can restore it at the end of DrawMyPicture. Next, make
drawingWindow the current GrafPort so that the picture will be
drawn in the correct window:

{---————————— > DrawMyPicture <--}

procedure DrawMyPicture
(drawingWindow: WindowPtr);
var
drawingClipRect, myRect: Rect;
oldPort: GrafPtr;
tempRgn: RgnHandle;
thePicture: PicHandle;
begin
GetPort(oldPort);
SetPort(drawingWindow);

Then, allocate memory for a region to save a copy of the current
clip region. Call GetClip to copy the current clip region into
tempRgn. NewRgn allocates enough memory for the minimum-sized
region. GetClip resizes the region to accommodate the current clip
region.

tempRgn := NewRgn;
GetClip(tempRgn);

The Event Mechanism 147

If you created a region in the shape of a star and used SetClip to

set the clip region to your star region, all drawing in that window
- would be clipped in the shape of a star. You can read more about
_regions in Inside Macintosh (1:141-142 and 1:166-167).

Next, erase the whole window with a call to EraseRect. You've
just erased the GrowIcon, so call DrawGrowIcon to redraw it.
Next, set up your clipping Rect, drawingClipRect, so that it
excludes the right and bottom scroll bar areas (and, as a result, the
grow area). Then, set myRect to the drawingWindow portRect.
You'll use myRect as a parameter to CenterPict, where it will be
adjusted to reflect the size of the picture, centered in the input Rect.

At this point, you have not changed the clip region of
drawingWindow. You are about to do so. Call CLipRect to set the
clipping region to the rectangle defined by drawingClipRect.
Now, draw the picture with DrawPicture.

EraseRect(drawingWindow”.portRect);
DrawGrowIcon(drawingWindow);

drawingClipRect := drawingWindow”.portRect;

drawingClipRect.right := drawingClipRect.right -
SCROLL_BAR_PIXELS;

drawingClipRect.bottom := drawingClipRect.bottom

SCROLL_BAR_PIXELS;
myRect := drawingWindow”.portRect;

thePicture := GetPicture(BASE_RES_ID);
CenterPict(thePicture, myRect);
ClipRect(drawingClipRect);
DrawPicture(thePicture, myRect);

Finally, reset the ClipRect to the setting saved in tempRgn,
release the memory allocated to tempRgn, and set the current
GrafPort back to the original setting.

SetClip(tempRgn);

DisposeRgn(tempRgn);

SetPort(oldPort);
end;

148 Macintosh Programming Primer

CenterPict is the same as in Chapter 3’s ShowPict program:

{—mmm e = > CenterPict <--12

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);
var
windRect, pictureRect: Rect;

begin
windRect := myRect;
pictureRect := thePicture?*”.picFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 + windRect.top;
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);
myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 + windRect.left;
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

If you’d like to learn more about event handling, read the Toolbox
Event Manager chapter of Inside Macintosh (1:241-266).

In Review

At the heart of every Macintosh application is the main event loop.
Mac applications are built around this loop. Each pass through the
main event loop consists of the retrieval of an event from the event
queue and the processing of the event.

The Window Manager plays an important role in the handling of
events by generating updateEvts as a means of getting the
application to draw (or update) the contents of a window. In addition,
Window Manager routines like FindWindow offer a mechanism for
linking an event to a window.

An underlying theme of this chapter is a concern for good user
interface design. When you set out to build an application, concentrate
on the user’s view of your application. Use the main event loop in this
chapter as your basic skeleton. Then, determine how you will handle
each of the different events your user might initiate.

In Chapter 5, you'll learn all about menus. You’ll learn how to
design and implement regular menus, hierarchical menus, and pop-
up menus!

Menu
Management

This chapter explains the use of menus
in your programs. We'll show you how
to install menus via MBAR and MENU
resources, and we’ll describe the
routines available from the Menu
Manager. We’ll also discuss the best
way to support desk accessories and
do event handling

with menus.

MaciNToSH MENUsS HAVEN'T been the same since the advent of the
Mac SE and the Mac II. The classic Mac menu was the pull-down
menu—the strip at the top of the screen with options that, when
clicked on, displayed the possibilities available to each program
(Figure 5.1). The situation has changed for the better with two
additional menu types: the hierarchical menu and the pop-up
menu. We'll discuss and illustrate both. But first, let’s look at the
standard parts of all menu systems.

File Edit Search Project @il Debug Windows

| Check Syntax K jello2.n

Build ¥B
Check Link

program Helloz;

Gonct Haspl
BASE_RES_ID = 400;

HORIZONT AL_PIXEL = 30; . -
VERTICAL_PIXEL = 50;

Step Over #dJ

i . w{ StepInto #1
Siep Bul Hedf
procedure Windowlnit;
var
hello'window : WindowPtr; Auto Save
begin v Confir e
helloindow = GetNew'Window(BASE] .f' m Saves
Show'window(helloWindow); Don't Save
SetPortlhellawWindow) ;
MoveTolHORIZONT AL_PIXEL, VERTICA .
TextFace([bold, italic]); Run Options...
DrawString('Hello, waorld!");
end;

Figure 5.1 Classic pull-down menu.

151

Menu Components

152

Before we discuss the structure of menus, let’s examine the parts of a
menu and their functions. Figure 5.2 shows the main parts of
Macintosh menus. We'll discuss the parts of the classic menu first,
then discuss differences in the new menu types in the section devoted
to each type.

The menu bar displayed at the top of the Mac screen is normally
20 pixels high. The font type and size are always the same as the
system font. The menu bar height may be changed, using the global
variable MBarHeight, as we saw in Chapter 3’s screen saver
program, the Flying Line.

On the menu bar, each list of choices is known as a menu. The
%, File, and Edit menus are found in most Macintosh applications.
Menus are dimmed, or disabled, when none of their options
is available.

Menu items are the choices that are available in a given menu. For
example, the File menu items in MacPaint are shown in Figure 5.3.

immit View Special

Negw Folder SN

Print Dimmed Menu ltem
{ipse HiH

Led Prigiipges P

— Get Info 81 ——' Command Key Equivalent

Buplinate HE
Pl Bussy

Page Setup...

Print Birpoiary.. Ellipses (...) indicate that

further information will
be required to complete
the command.

£iact HeE

Figure 5.2 Components of Macintosh menus.

Menu Management 153

New N
Open... 1]

Close ®W
Save 38

Save Rs...

Revert To Saved

Take Snapshot 8y
Throw Away Snapshot

Page Setup...
Print...
Print Selection...

Quit %0

Figure 5.3 MacPaint File menu.

A menu item is selected if the mouse button is released while the
item is still highlighted. Individual items may also be disabled
(dimmed). An icon or a check mark can be placed to the left of an
item’s text. The font and size of the item may be varied; command
key equivalents may be placed to the right of a menu item. If a menu
item list becomes too long for the screen, which is not uncommon on a
compact Mac, the last item that would normally be seen is replaced
with a downward-pointing arrow [V¥]. If the user drags the mouse
cursor down farther, more menu items will scroll into view.

The % menu is different in several respects from the other menus
in the menu bar. By convention, the first item in the #% menu is used
by your application to display information (an about box) about
itself. The remaining menu items make up a list of available desk
accessories (Figure 5.4).

Let’s take a look at the classic pull-down menu and how it works.

About the Finder...

Alarm Clock
Calculator
Chooser
Control Panel
Find File

Key Caps

On Location
QuickDEHR™
QuickMail
Scrapbook

Figure 5.4 The % menu.

The Pull-Down Menu

The pull-down menu, displayed at the top of the screen, is standard
for most Macintosh applications. Pull down menus are created by the
Menu Manager, which also takes care of drawing the menu items;
handling menu selection (as well as command key equivalents); and,
finally, restoring the screen when the menu is released. All you have
to do is provide the menu information in the form of two resources,
MBAR and MENU, and call them with Menu Manager routines. The
MBAR resource contains a list of the menus that will be displayed on
the menu bar. Each MENU resource contains information about the
individual menu items.

On the Mac II, menus and menu items can also be displayed in

different colors (V:235).

The Hierarchical Menu

154

The hierarchical menu came on board in 1987, when it was added
to the Toolbox. It was needed for the new, complex programs that had
become available for the Mac. As more bells and whistles were added
to Mac applications, it became harder to find a place for them on the
menu bar. Hierarchical menus made it possible to put a whole menu
into one item without inconveniencing the user (Figure 5.5).

Menu items that have a hierarchical submenu associated with them
have a small right-pointing triangle (») on their right side. When the
menu item is selected, the hierarchical submenu is displayed. The user
then moves the arrow over to the item desired on the hierarchical menu.

% File it EYILHE]

v Plain
Bold

Time Jialic

74307 PM_ | Munderine

Olultdiinle]
Shadom

Figure 5.5 Hierarchical menu.

The Pop-Up Menu

The pop-up menu is the only menu that can be placed anywhere on
the screen. This menu is similar to a hierarchical menu, except that
pop-up menus can be placed in windows, dialog boxes, even on the
desktop.

A pop-up menu appears when a mouseDown occurs in an area
defined by an application. Once the pop-up menu appears, the user
can select an item by moving the cursor up or down (Figure 5.6).
When the mouse button is released, the selection is processed. Pop-
up menu routines require a little more work than the other menu
types, but the additional functionality makes a big difference to your
users. We will build a pop-up menu project at the end of this chapter.

% File Edit Format Font Document Utilities Window K

E(I=———— Chapter l.v
s PR IR T 3 - OGN

T T T

Normal I:] Ty il EI=EE = F = =]

Body text

Caption I | 1

Chapter Title Introduction
Code

Figure

footer X : 5 e i §
Faotnote tast acintosh Programming Primer is a complete course in

Headline the art of Macintosh programming. with this book and
INTEXT TAELE pumantec’s THIMK Pascal, you can learn to program the
L1 Title Macintosh.
L2 Title
List

Normal

e Morma e ‘
Subhead 1 OTHER COMPUTER is 1ike the Macintosh.

Subhead 2 ; : 5 ’
TEH i The Mac is a new kind of computer. It's fast. I[t's

ALY Normal+...

Figure 5.6 Application with pop-up menu (Microsoft Word 4).

155

Other Kinds of Menus

156

As with most other parts of the interface, you can make your own
unique menus that use the same calls yet look very different from the
three kinds of menus already described. Building your own menus,
however, is more complicated than using the standards. And because
many current applications don’t even make good use of pop-up and
hierarchical menus, there’s no need to rush out and create something
new (though if you'd like to, we show you how to create a different
type of menu in Volume II of the Primer.)

Another type of Macintosh menu that has become quite popular is
the tear-off menu, which appears to be a regular menu but which
can be torn off the menu bar and moved around the screen like a
window. Its use in HyperCard and MacPaint 2.0 guaranteed its
enshrinement in the System 7 Toolbox. Examine Volume VI of Inside
Macinosh if you’d like to use tear-off menus.

Menu formats from MS-DOS programs or other non-Macintosh
systems are sometimes ported to the Macintosh. A result of this
might be something like Figure 5.7. These MS-DOS style menus do
not follow the Macintosh user interface guidelines. Don’t use them or
associate with developers that do.

Menu System

. Get A Document
2. New Document
. Print Document

4. Ouit Application

Input 1, 2, 3 or 4>_

Figure 5.7 MS-DOS menu.

Putting Menus into Your Programs

There are a number of ways to add menus to the applications you
create: You can insert menus at the end of the current menu bar (for
example, desk accessories like QuickDex or DiskTop), you can build a
new set of menus from scratch right inside your program, or you can
create your menus in ResEdit and load them into your program.
We're going to do it the last way, which makes for clean programming
and easy changes without recompiling.

We’ll use two menu resources: MENU and MBAR. The MBAR
resource contains a list of all of the MENU resources that will be used
to draw the menu bar. The MBAR resource also controls the order in
which the menus are drawn on the menu bar. Each MENU resource
contains a menu title, a list of the menu items, and detailed
information about the display of each item.

Now, let’s look at Timer, our first program with menus.

Timer

Timer displays the current time in a window and refreshes the time
once per second. The standard %, File, and Edit menus are supported
as well as an additional menu, Special. The Special menu has two
hierarchical submenus, which allow you to change the display’s font
and style.

Timer’s menu supports desk accessories. The File menu has a
single item, Quit. The Edit menu is disabled but is provided as a
service to desk accessories. Every Macintosh application you write
should support the standard Edit menu, as it is part of the
Macintosh interface standards.

Timer works like this:

1. It loads the MBAR and MENU resources.
2. It initializes the Timer window.
3. It displays the time in the window.

4. It handles events for the menus and the window, refreshing
the Timer window once per second.

157

158

Macintosh Programming Primer

Setting Up the Project

Create a folder called Timer inside your Deve lopment folder; keep
your project and resource files inside the folder.

Resources

Now, add the resources you’ll need for your Timer program. Create a
file in your new Timer folder using ResEdit. Call it Timer.®. rsrc.
Then build a WIND with ID = 400, with the specifications as shown in
Figure 5.8.

Don’t forget to make the WIND resource purgeable. In general, you'll
want to make resources in your applications purgeable, so that the
Macintosh Memory Manager can do a better job if memory gets tight.
However, unlike all other resources discussed in this book, NEVER
make MENU resources purgeable (1:344). We won’t mention making
resources purgeable again in this chapter. As you create resources, just
click the checkbox in the Get Resource Info dialog box.

Next, you need an MBAR resource that lists the resource IDs of the
four MENUs that will be part of Timer’s menu bar. Create a new MBAR
resource inside Timer.n. rsrc. You should see something like
Figure 5.9. Click on the row of asterisks and select Add Resource
from the Resource menu. A field for the first menu should appear,
as well as a new row of asterisks. Create three more menu fields and
fill all four as shown in Figure 5.10. Finally, change the MBAR
resource ID to 400. Close the MBAR window. Now, you need to create
four MENU resources (with ID numbers from 400 to 403. See?).

=[] WIND ID = 400 from Timer.w.rsrc

Window title:

Timer

top 40 bottom |74
left 20 right 200
proclD |0 refCon |0

[visible X goAwayFlag

Figure 5.8 Timer WIND specifications.

Menu Management 159

" % File Edit Resource Window Font

MBARs from Timer.m.rsrc

= |==————= MBAR ID = 400 from Timer.w.rsrc

¥ of menus I

EE 22 24

Figure 5.9 A new MBAR resource.

S[J=——= MBAR ID = 400 from Timer.m.rsfrc ———|

[

of menus 4

RS S 2

Menu res |0 400

EEE 22

Henu res |0 [401

EE % 3 4

Menu res |0 402

2 22 2

Menu res |0 40';1

R 2

P[]

Figure 5.10 Completed MBAR resource.

160

Macintosh Programming Primer

To build the first MENU resource, for the % menu, start by creating a
new resource, then typing in or selecting MENU from the scrolling list.

The MENU editor in ResEdit 2 is a lot slicker than earlier versions.
The new edit window for your MENU resource displays all the options
available for menus, such as whether your MENU should be enabled
or dimmed, and the coloring of the text and background of menu
items. For now, just use the defaults.

Click on the radio button labeled ® (Apple menu) (Figure 5.11).
This is what creates the title of the menu for you. Use Get
Resource ltem to set the Resource ID to 400. (Remember, NEVER
make MENU resources purgeable (1:344).)

Then, select Create New Item from the Resource Menu and
type in the text About Timer. Finally, select Create New ltem
and click on the radio button labeled (separator line). Creation of
the two menu items is shown in Figure 5.12.

® File Edit Resource Window MENU S$igis

v
-

MENUs from Timer.7.rsrc ,
EDE MENU ID = 400 f

u Entire Menu:
i

Title: O

@ & (Apple menu)

Figure 5.11 #® MENU specifications.

Menu Management 161

[J=——=———= MENU ID = 400 from Timer.w.rsrc —————1|

€ Selected Item: X Enabled
About Timer n

Texnt: @ |About Timer |

O e (separator line)

[J has Submenu Texnt: E]

rgt Mark: [__] D

ECJ=——=————— MENU ID = 400 from Timer.m.rsrc =

?l Selected Item: [J Enabled
About Timer 43

Text: O |

@ - (separator line)

has Submeny
O

|

Figure 5.12 Creating ® menu items.

In the same fashion, create another MENU resource with resource
ID of 401. This resource will be used to create the File menu. As
shown above, create one text menu item labeled Quit. This time, add
a command key equivalent to the Quit menu by typing in a 0 in the
Cmd-Key editable text field (Figure 5.13).

Close the File menu resource window (did you give it a resource
number of 401?). Now, open a new MENU resource for the Edit menu
information. Give it a resource ID of 402 and fill it in as shown in
Figure 5.14.

The completed Edit menu now follows Mac interface guidelines.
Figure 5.15 shows how the Edit menu looks when it is not disabled.
The Edit menu is different from the first two menus in that it is
disabled. To disable it, select the title of the menu on the left (Edit)
and toggle off the checkbox labeled Enabled.

162

Macintosh Programming Primer

E[[==——= MENU ID = 401 from Timer.v.rsrc
selected Item: & Enabled
Quit £
Tent: @ |l1uit I
) - (separator line)
Color
[has Submenu Text: B
Cmd-Key: ‘:l E]
gy Mark: [___] E

=] MENU ID = 401 from Timer.7.rsrc ——————|
File Selected Item: [Enabled
Quit ®0 K>
Text: @ |Quit |
) - (separator line)
Color
[] has Submenu Texnt: E
gt Mark: [] El

Figure 5.13 File MENU specifications.

Because it is a little harder to read the menu items when they are
disabled, try typing them all in and assigning their command key
equivalents before deselecting them. The completed Edit menu
should look like Figure 5.16.

Menu Management 163

S[[&=———-—= MENU ID = 402 from Timer.m.rsrc S—o"—0——
m Entire Menu: [J Enabled
Title: @ |Edit |

O & (Apple menu)

| Menu Background: El
S[]=———— MENU ID = 402 from Timer.7.rsit —————|
£t Entire Menu: [JEnabled
Hasn K3
Title: @ |Edit |
£t
£ ooy) & (Apple menu)
#aste
Color

fipny

17 Menu Background: _I

S[J[&=—————= MENU ID = 402 from Timer.m.rsrc

Entire Menu: [J Enabled
Hiin #®2
Title: @ |Edit |
£t B
fopy e (O & (Apple menu)
Pasta Heid
{ipar Color
itle:]
Item Text Default: |:]
7] Menu Background: @

Figure 5.14 Edit MENU specifications.

164

Macintosh Programming Primer

Edit |

Undo ®2 K
Cut EH
Copy &C
Paste #®U
Clear

Figure 5.15 Standard Edit MENU specifications.

The Timer application does not use the Edit menu at all. So why
add it? The reason is that although your application may not use the
Edit menu, the desk accesories you support may. Many desk
accessories expect an Edit menu on a Mac application. If you don’t
put one there, the desk accessory may not be able to function
properly.

Now, add the Special menu. Open up a new MENU resource
(Resource ID of 403) and fill it as shown in Figure 5.16. The
Special menu has two menu items, both of which have submenus,
which means that hierarchical menus will be attached to them.

The Menu Manager will look for a MENU resource with ID = 100 to
use as the Font hierarchical submenu. In the same way, the Menu
Manager will look for a MENU resource with ID = 101 for the S§tyle
hierarchical submenu. Now let’s build these submenus.

Here’s why you don’'t use 404 and 405 instead of 100 and 101
for hierarchical submenu resource IDs. The hierarchical menu
structure was defined in Volume V of Inside Macintosh. Only two
bytes are used as a pointer to the hierarchical menus in the menu
structure. Because the biggest two-digit hexadecimal number is FF,
or 255 decimal, that's the biggest hierarchical menu number that
you can use.

Menu Management

165

MENU "Special" 1D = 403 from Timer.m.rsrc

Entire Menu: X Enabled
Title: @ [Special |
O & (Apple menu)
Color
e |
Item Text Default: B
1 Menu Background: D
EJ=———=— MENU "Special” ID = 403 from Timer.n.rsrc D0e—=—=|
Special Selected Item: < Enabled
Font |
Tent: @lFont| |
[e {sppnralnr Hap)
Color
[has Submenu Texnt: E'
g
E[] MENU "Special” ID = 403 from Timer.w.rsrc 0—e—=—=—|
Special Selected Item: K Enabled
Font » K
STule b1 | Test: @[stylq]
O e fopparalor Hapd
Color
& has Submenu Texut: l:l
7

Figure 5.16

The completed Special menu (finale).

166

Macintosh Programming Primer

Close the Special menu window. Create a new MENU resource and
fill it as shown in Figure 5.17. Note that the Font menu has no
menu items. As with the ® menu, the items will be inserted from
within the program. Change the Font menu resource ID to 100.
Create another new MENU resource for the $tyle menu and fill it as
shown in Figure 5.18.

The text style of the menu items in the $tyle menu has been
changed to reflect the operation it performs in Timer. For example,
the bold menu item is actually bolded in the menu itself. This is
done by selecting Bold from ResEdit’s $tyle menu; the bold affects
only the appearance of the menu item. The Timer code will actually
do the work of setting the text style, as we will see shortly. Make sure
the Style menu resource ID is 101.

When you're finished with the Style menu, close and save
your work.

MENU 1D = 403 from Timer.7.rsrc |
MENU "Font" ID = 100 from Timer.m.rsrc §_|

Entire Menu: X Enabled
<
Title: ®

O & (Apple menu)

13 Menu Background:

Figure 5.17 Font menu specifications.

167

Menu Management

Timer.m.rsrc
q MENUs from Timer.T.rsrc ftalic
E[J=———= MENU "Style" 1D = 101 frq Underline
Qultlliinte!
Style Selecte| ghadom

Plain {r Condensed
Bold Tent: @ Extended

(separator line)

[J has Submenu

ES[[==——"—— MENU ID = 101 from Timer.m.rsrc g_l

Style Entire Menu: (] Enabled
Plain 4

Bold titie: ® |

fialic
Underline) % (Apple menu)
Oniline e
Shacdom
Title: |:|
Item Text Default: [
x| Menu Background: El

Figure 5.18 5tyle menu specifications.

168

Macintosh Programming Primer

You’ve completed the resources necessary for the window and
menus of Timer. Now, you'll create an alert that is displayed when
About Timer is selected from the ® menu. For the moment, don’t
worry too much about the alert mechanism (the ALRT and DITL
resources). We'll cover alerts in Chapter 6.

Create a DITL resource (select Create New Resource and enter
DITL). The DITL (for Dialog ITem List) contains the list of items you
want to appear in your alert. By convention, the first item is always
the DK button that the user clicks to make the alert disappear.
Create a new item by selecting Create New Dialog Item from the
Resource menu, making it look like Figure 5.19. Close the Item #1
window and create a second item, making it look like Figure 5.20.

E(]= DITL ID = 400 from Timer.NW.rsrc ==
Another fine program from the
Mac Programming Primer !
§©1990, D. Mark & C. Reed !!!
(=3
S(J=——= Edit DITL Item #1 0=
@ Button @ Enabled
{0 Check boy () Disabled

{> Radio control

O St@tic texnt top 21
) Editable test left)
{0 CNTL resource e

(O ICON resource bottom |91
O PICT resource right [177
O User item

Text 0K

Figure 5.19 The 0K button.

Menu Management 169

E[I==———=— Edit DITL Item #2
i) Button i@ Enabled
{3 Check box " Disabled
i Radio control
i) Stf_:til: text top 7
i) Editable text i =

e
{3 CNTL resource
() ICON resource bottom |61
i3 PICT resource right |280

i3 User item

Text Another fine program from the Mac
Programming Primer !
©1990, D. Mark & C. Reed !1!

Figure 5.20 The About Box text.

Close the Item #2 window. Now, choose Get Resource Info from
the Resource menu and change the DITL resource ID to 400.

Finally, make an alert template to display the DITL items. Create
anew ALRT resource. A new ALRT menu should appear in ResEdit’s
menu bar. Select Display as Text from the ALRT menu. Change the
alert fields so they look like those in Figure 5.21. Finally, change the
ALRT resource ID to 400.

All the resources are now done. Select $ave from the File menu to
finish up.

This has been a pretty extensive resource editing session, so let’s
just make sure the resources went in like they were supposed to.
Open up your resources as a final check. You should see something
like Figure 5.22.

One ALRT, one DITL, one MBAR, one WIND, six MENUs: You're
ready to code!

170

Macintosh Programming Primer

O

ALRT 1D = 400 from Timer.w.rsrc =

Top 40 Bottom
Left 40 Right

Itemsl[l

142

332

Stage 1 []#2 bold [Drawn |1
Stage 2 []#2 bold [Drawn |1
Stage 3 []#2 bold [Drawn |1
Stage 4 []#2 bold [Drawn |1

Sound (0-3)

Figure 5.21 The About Alert, displayed as text.

& File Edit Resource Window Uiew

JEJ= Timer.m.rsrc =

ALRTs from Ti

Size

12

MBars from 1 LWINDs from 1

Size 11} Size

400 24

MENUs from Timer.7.rsrc

Size Name

Figure 5.22 Timer resources.

101 88
400 39
401 29
402 2

20

42

Menu Management 171

Timer Code

Some of this code can be cannibalized from EventTutor. Just be
careful with variable names and the like.

Get into THINK Pascal and start a new project in the Timer
folder. Call the project Timer . 7. Now, add the code.

program Timer;
const
BASE_RES_ID = 400;

PLAIN = [I1;
PLAIN_ITEM = 1;
BOLD_ITEM = 2;
ITALIC_ITEM = 3;
UNDERLINE_ITEM =
OUTLINE_ITEM = 5;
SHADOW_ITEM = 6;

4;

INCLUDE_SECONDS = TRUE;

ADD_CHECK_MARK = TRUE;
REMOVE_CHECK_MARK = FALSE;

DRAG_THRESHOLD = 30;

SLEEP = 60;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

QUIT_ITEM = 1;
ABOUT_ITEM = 1;

NOT_A_NORMAL_MENU = -1;
APPLE_MENU_ID = BASE_RES_ID;
FILE_MENU_ID BASE_RES_ID + 1;
FONT_MENU_ID 100;
STYLE_MENU_ID = 101;

CLOCK_LEFT = 12;
CLOCK_TOP = 25;
CLOCK_SIZE = 24;

ABOUT_ALERT = 400;

var
gClockWindow: WindowPtr;
gDone, gWNEImplemented: BOOLEAN;
gCurrentTime, gOlLdTime: LONGINT;
gTheEvent: EventRecord;

172 Macintosh Programming Primer

gLastFont: INTEGER;
gCurrentStyle: Style;

{-——— > HandleStyleChoice <-=-}

procedure CheckStyles;
var
styleMenu: MenuHandle;
begin
styleMenu := GetMHandle(STYLE_MENU_ID);
CheckItem(styleMenu, PLAIN_ITEM, (gCurrentStyle =

PLAIN));

CheckItem(styleMenu, BOLD_ITEM, (bold in gCurrent
Style));

CheckItem(styleMenu, ITALIC_ITEM, (italic in gCurrent
Style));

CheckItem(styleMenu, UNDERLINE_ITEM, (underline in
gCurrentStyle));

CheckItem(styleMenu, OUTLINE_ITEM, (outline in
gCurrentStyle));

CheckItem(styleMenu, SHADOW_ITEM, (shadow in
gCurrentStyle));

{-——— > HandleStyleChoice <--}

procedure HandleStyleChoice (theltem: INTEGER);
begin
case theltem of
PLAIN_ITEM:
gCurrentStyle := PLAIN;
BOLD_ITEM:
if bold in gCurrentStyle then
gCurrentStyle := gCurrentStyle
else
gCurrentStyle := gCurrentStyle
ITALIC_ITEM:
if italic in gCurrentStyle then
gCurrentStyle := gCurrentStyle - [italicl
else
gCurrentStyle := gCurrentStyle
UNDERLINE_ITEM:
if underline in gCurrentStyle then
gCurrentStyle := gCurrentStyle -
Cunderlinel
else
gCurrentStyle := gCurrentStyle +
Cunderlinel;

Cbold]

+

Cbold];

+

Citalic];

Menu Management 173

OUTLINE_ITEM:
if outline in gCurrentStyle then
gCurrentStyle := gCurrentStyle - [outlinel
else
gCurrentStyle := gCurrentStyle
SHADOW_ITEM:
if shadow in gCurrentStyle then
gCurrentStyle := gCurrentStyle
else
gCurrentStyle := gCurrentStyle + L[shadowl;

+

Loutlinel;

[shadowl

end;

CheckStyles;

TextFace(gCurrentStyle);
end;

{—mmmmm e > HandleFontChoice <--}

procedure HandleFontChoice (theItem: INTEGER);
var

fontNumber: INTEGER;

fontName: Str255;

fontMenu: MenuHandle;
begin
fontMenu := GetMHandle(FONT_MENU_ID);
CheckItem(fontMenu, glLastFont, REMOVE_CHECK_MARK);
CheckItem(fontMenu, thelItem, ADD_CHECK_MARK);
gLastFont := theltem;
GetItem(fontMenu, theltem, fontName);
GetFNum(fontName, fontNumber);
TextFont(fontNumber);

{-——=--——————— > HandleFileChoice <--2
procedure HandleFileChoice (theltem: INTEGER);
begin

case theltem of
QUIT_ITEM:
gbone := TRUE;
end;
end;
{-—————————— > HandleAppleChoice <--}

procedure HandleAppleChoice (theItem: INTEGER);
var
accName: Str255;
accNumber, itemNumber, dummy: INTEGER;

174 Macintosh Programming Primer

appleMenu: MenuHandle;
begin
case theltem of
ABOUT_ITEM:
dummy := NoteAlert(ABOUT_ALERT, nil);
otherwise
begin
appleMenu := GetMHandle(APPLE_MENU_ID);
GetItem(appleMenu, theltem, accName);
accNumber := OpenDeskAcc(accName);
end;

{-——————— > HandleMenuChoice <-=-}

procedure HandleMenuChoice (menuChoice: LONGINT);
var
theMenu, theltem: INTEGER;
begin
if menuChoice <> 0 then
begin
theMenu := HiWord(menuChoice);
theItem := LoWord(menuChoice);

case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(theltem);
FILE_MENU_ID:
HandleFileChoice(theltem);
FONT_MENU_ID:
HandleFontChoice(theItem);
STYLE_MENU_ID:
HandleStyleChoice(theltem);
end;

HiliteMenu(0);
end;

{-——————————— > HandleMouseDown <=-=3

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);

Menu Management 175

case thePart of
inMenuBar:
begin
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
gbone := TRUE;
end;
end;

{-————————————— >DrawClock <--1%

procedure DrawClock (theWindow: WindowPtr);
var

myTimeString: Str255;
begin
IUTimeString(gCurrentTime, INCLUDE_SECONDS,
myTimeString);
EraseRect(theWindow”.portRect);
MoveTo(CLOCK_LEFT, CLOCK_TOP);
DrawString(myTimeString);
g0ldTime := gCurrentTime;

S > HandleNull <--3

procedure HandleNull;
begin
GetDateTime(gCurrentTime);
if gCurrentTime <> gOldTime then
DrawClock(gClockWindow);
end;

{—mmmmm e ————— - > HandleEvent <--1}

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
begin
if gWNEImplemented then

176 Macintosh Programming Primer

dummy := WaitNextEvent(everyEvent, gTheEvent,
SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
nullEvent:
HandleNull;
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));
if (BitAnd(gTheEvent.modifiers, cmdKey) <>
0) then
HandleMenuChoice(MenuKey(theChar));
end;
updateEvt:
begin
BeginUpdate(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));
end;

{—mmmmmm > MainLoop <--}

procedure MainLoop;
begin
gbone := FALSE;
gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));
while (gbone = FALSE) do
HandleEvent;
end;

{--——————— > MenuBarInit<--}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;
begin
myMenuBar := GetNewMBar(BASE_RES_ID);

Menu Management 177

SetMenuBar(myMenuBar);
DisposHandle(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
AddResMenu(aMenu, 'DRVR');

aMenu := GetMenu(FONT_MENU_ID);
InsertMenu(aMenu, NOT_A_NORMAL_MENU);
AddResMenu(aMenu, 'FONT');

aMenu := GetMenu(STYLE_MENU_ID);
InsertMenu(aMenu, NOT_A_NORMAL_MENU);
CheckItem(aMenu, PLAIN_ITEM, TRUE);

DrawMenuBar;

gLastFont := 1;
gCurrentStyle := PLAIN;
HandleFontChoice(gLastFont);

{--—————————— > WindowInit <--}

procedure WindowlInit;
begin
gClockWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1)>);
SetPort(gClockWindow);
ShowWindow(gClockWindow);

TextSize(CLOCK_SIZE);

begin
WindowlInit;
MenuBarlInit;

MainLoop;
end.

178

Macintosh Programming Primer

Running Timer

Now that your source code is in, you're ready to run Timer. Select GO
from the Project menu. If you run into any compilation problems,
check for typing errors, or consult the debugging tips found in the
appendix. When asked to “Save changes before running,” click Yes.
Timer should be up and running (see Figure 5.23).

Timer should display the time in a window in the upper left-hand
corner of the screen. The menu bar should display the %, File, Edit,
and Special menus. Desk accessories should work. The File menu
has just one option, Quit, which should be operational. The Edit
menu contains the standard menu items but is dimmed. The Special
menu contains two hierarchical menu items: Font and Style. If you
select Font, the hierarchical Font submenu should be displayed (top
of Figure 5.24). If you select $tyle, the hierarchical $tyle submenu
should be displayed (bottom of Figure 5.24). Both hierarchical menus
should show a check mark next to the currently used font and style.
If you change the style or font with the menus, the appearance of the
timer window should change appropriately. Selecting About Timer
from the menu should bring up the alert that you just created. Click
on the OK button (or press Return) to make the alert disappear.

" & File fai¢ Special

Figure 5.23 Running Timer.

Menu Management 179

% File

o

Avant Garde

Bookman
+Chicago

Courier

Geneva

Helvetica

Monaco

M Helvetica Narrow

New Century Schibk

Palatino

Symbol

Times

Zapf Chancery

Zapf Dingbats

SUCEEY - Plain

flafic
Underline
SeVV= 0[uitilfiinfe

8:57:08 FM e

Figure 5.24 Timer hierarchical menus.

Choose Quit from the File menu. Let’s look at the code.

If you make Timer an application and run it, you'll notice that, if
you're running in MultiFinder, the time is updated only when Timer
is in the foreground, not when another application is active. This is
because Timer does not have a SIZE resource (EventTutor had
the same problem). See Chapter 8 if you'd like to add background
functionality to Timer.

Walking Through the Timer Code

180

Timer consists of 13 procedures, as shown in Figure 5.25.

The figure displays where each routine is called. WindowInit
runs, then MenuBarInit, then MainLoop. MainLoop calls
HandleEvent, which runs until the user quits.

HandleNull and HandleMouseDown handle the two events used
in Timer: null events and mouseDown events. HandleNul Ll calls
DrawClock if the time needs to be redrawn. HandleMouseDown
calls HandleMenuChoice if the mouse is clicked in the menu bar.
Then, different routines handle the different menus. The last routine,
CheckStyles,iscalled within HandlLeStyleChoices.

We’ll discuss the Timer code following the order of Figure 5.25, in
that routines are discussed in their order of operation, as they were
in the discussion of Chapter 4’s EventTutor.

Timer starts off with a set of constants, which we will discuss when
they are used in the routines. The first global, gClockWindow, is the
pointer to Timer’s clock window. gbone, gTheEvent, and
gWNEImplemented are the same as they are in Chapter 4’s
EventTutor. gCurrentTime and gOldTime are used to determine
when to change the clock display. gLastFont is used to determine
the current font number in use, and gCurrentStyle contains the
current style used by Timer.

| Timer Procedures

WindowlInit

¥ MainLoop

| ifnot done

k- MenuBarlnit

el

andleEvent

if null event f mouseDown(or cmdkey)
[HandleNull | [HandleMouseDown

if new time if mouse clicked in menu bar

[DrawClock || | [HandleMenuChoice

if user chose:

apple File Font Style
menu menu menu menu

dleApple HandleFile HandleFont HandleStyle
hoice Choice Choice Choice

CheckStyles:

Edit Menu not handled in Timer

Figure 5.25 Timer procedures.

Menu Management 181

program Timer;
const
BASE_RES_ID = 400;

PLAIN = [1;
PLAIN_ITEM = 1;
BOLD_ITEM = 2;
ITALIC_ITEM = 3;
UNDERLINE_ITEM =
OUTLINE_ITEM = 5;
SHADOW_ITEM = 6;

4;

INCLUDE_SECONDS = TRUE;

ADD_CHECK_MARK = TRUE;
REMOVE_CHECK_MARK = FALSE;

DRAG_THRESHOLD = 30;

SLEEP = 60;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

QUIT_ITEM = 1;
ABOUT_ITEM = 1;

NOT_A_NORMAL_MENU = -1;
APPLE_MENU_ID = BASE_RES_ID;
FILE_MENU_ID = BASE_RES_ID + 1;
FONT_MENU_ID = 100;
STYLE_MENU_ID = 101;

CLOCK_LEFT = 12;
CLOCK_TOP = 25;
CLOCK_SIZE = 24;

ABOUT_ALERT = 400;

var
gClockWindow: WindowPtr;
gbone, gWNEImplemented: BOOLEAN;
gCurrentTime, gOlLdTime: LONGINT;
gTheEvent: EventRecord;
gLastFont: INTEGER;
gCurrentStyle: Style;

182 Macintosh Programming Primer

Timer starts by initializing the window and menu bar, then starts
the MainLoop:

{-—————————— >Timer <--3%

begin
WindowInit;
MenuBarlnit;

MainLoop;
end.

WindowInit is straightforward. A pointer to the new window is
put into gClockWindow, its characteristics set up by the WIND
resource. The clock window is made the current port and displayed
with ShowWindow. Then, the standard text size is set to
CLOCK_SIZE.

{-—--—— - > WindowInit <--3}

procedure WindowInit;

begin
gClockWindow := GetNewWindow
(BASE_RES_ID, nil, WindowPtr(-1));
SetPort(gClockWindow);
ShowWindow(gClockWindow);

TextSize(CLOCK_SIZE);
end;

An initialization routine called MenuBarInit is now called.
MenuBarInit starts off by calling GetNewMBar to load the MBAR
resource you created into memory. GetNewMBar automatically loads
the individual MENUs pointed to by the MBAR.

Then setMenuBar tells the system to use the MBAR handled by
myMenuBar as the current menu bar. (The phrase, “xxx is handled
by myMenuBar” really means that myMenuBar is a handle to xxx.)

(- > MenuBarInit<--3}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;

Menu Management 183

begin
myMenuBar := GetNewMBar(BASE_RES_ID);
SetMenuBar(myMenuBar);
DisposHandle(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
AddResMenu(aMenu, 'DRVR');

aMenu := GetMenu(FONT_MENU_ID);
InsertMenu(aMenu, NOT_A_NORMAL_MENU);
AddResMenu(aMenu, 'FONT');

aMenu := GetMenu(STYLE_MENU_ID);
InsertMenu(aMenu, NOT_A_NORMAL_MENU);
CheckItem(aMenu, PLAIN_ITEM, TRUE);

DrawMenuBar;
gLastFont := 1
gCurrentStyle := PLAIN;
HandleFontChoice(gLastFont);

" N,

end;

After that, the % menu and the hierarchical menus (Font and
Style) are set to handle their respective MENU data structures.
InsertMenu is called to add the Font hierarchical submenu to the
Menu Manager’s list of available menus. The NOT_A_NORMAL_MENU
parameter tells the Menu Manager not to place the Font menu
directly on the menu bar. AddResMenu adds the name of all
resources of type FONT to the Font menu. Next, InsertMenu is
called for the Style hierarchical submenu. A check mark is placed
next to the Plain item on the Style menu with the call to
CheckItem. You use the handle to the % menu so that you can add
desk accessories to it via the call to AddResMenu. All desk
accessories are resources of type DRVR. AddResMenu looks for all
resources of the specified type (we specified DRVR) and adds the
resource names found to the specified menu.

Next, DrawMenuBar draws the menu bar, and
HandleFontChoice sets the current font to the first font on the
Font menu.

MainLoop is the same as it is in Chapter 4:

{---——-————-- > MainLoop <--3
procedure MainLoop;

begin
gbone := FALSE;

184

Macintosh Programming Primer

gWNEImplemented := (NGetTrapAddress
(WNE_TRAP_NUM, ToolTrap) <>
NGetTrapAddress (UNIMPL_TRAP_NUM, ToolTrap));
while (gbone = FALSE) do
HandleEvent;
end;

HandleEvent is similar to the version in Chapter 4. Start by
checking for the existence of WaitNextEvent and then make the
appropriate call. Then, switch on gTheEvent.what. The routine
HandleNul l handles nullEvents. As usual, mouseDowns are
handled by HandLleMouseDown. keyDown and autoKey events are
handled by the same code. In either case, check to see if the
Command key was depressed when the event occurred. If it was,
convert the keystroke to a menu selection via MenuKey and pass
that result to HandlLeMenuChoi ce. Finally, handle updateEvts by
calling BeginUpdate and EndUpdate.

Because updateEvts have a higher priority than nul LEv ts, itis
imperative that you respond to every updateEvt by calling
BeginUpdate and EndUpdate. If you didn’t, the Window
Manager would keep queueing updateEv ts, thinking you hadn’t
received them, and no nul LEvts would ever make it into the
event queue. One type of event can prevent another from making it
into the event queue because the queue is finite. If the queue is big
enough for 20 events, and 20 updateEvts are pending, there's
no room for even one nul LEvt.

You may notice that the update loop isn’t used to redraw the
window in Timer. Instead, the timer is redrawn in the Hand LeNu L L
routine every second. Generally, you should use updateEvts as
the place to redraw. Timer is coded like this to demonstrate one
way to use null events.

Menu Management 185

- > HandleEvent<--1}

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
begin
if gWNEImplemented then
dummy := WaitNextEvent(everyEvent, gTheEvent,
SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
nullEvent:
HandleNull;
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));
if (BitAnd(gTheEvent.modifiers, cmdKey) <>
0) then
HandleMenuChoice(MenuKey(theChar));
end;
updateEvt:
begin
BeginUpdate(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));

end;

end;
end;

HandleNull is called whenever a nul LEvent is retrieved from
the event queue. HandLeNul L checks the current time (in seconds)
and compares it to the last check performed. If the time has changed,
the clock window is refreshed.

{----——— > HandleNull <--1}

procedure HandleNull;
begin
GetDateTime(gCurrentTime);
if gCurrentTime <> gOldTime then
DrawClock(gClockWindow);
end;

186 Macintosh Programming Primer

DrawCLock calls the International Utility IUTimeString to get
the current time in a format suitable for display. Next, the window is
erased, the pen is positioned, and the new time string is drawn.
Finally, g0 LdTime is updated.

{mmmmmmmeee >DrawClock <--12

procedure DrawClock (theWindow: WindowPtr);

var)
myTimeString: Str255;
begin
IUTimeString(gCurrentTime, INCLUDE_SECONDS,
myTimeString);

EraseRect(theWindow”.portRect);
MoveTo(CLOCK_LEFT, CLOCK_TOP);
DrawString(myTimeString);
goOldTime := gCurrentTime;

end;

HandleMouseDown is similar to its Chapter 4 counterpart.
FindWindow is called, returning a part code that indicates the part
of the window in which the mouseDown event occurred. In addition,
FindWindow sets whichWindow to the window in which the

mouseDown occurred.

If the mouseDown occurred in the menu bar, MenuSelect is
called, allowing the user to make a selection from the menu bar. The
user’s selection is passed on to HandlLeMenuChoice.

The rest of the part codes are handled as they were in Chapter 4.

{-———————————— - > HandleMouseDown <=-=}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inMenuBar:
begin
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);

Menu Management 187

inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
gbone := TRUE;
end;
end;

HandleMenuChoice takes a four-byte argument. The first two
bytes contain the menu selected, and the last two bytes contain the
item selected from that menu. theMenu is set to the first two bytes
and theltem to the last two bytes using the Toolbox routines
HiWord and LoWord. After that, theMenu is compared against the
four MENU resource IDs to find which one was selected. A different
routine exists for each of the four menus. When MenuSelect is
called, the selected menu title is left inverted. When you finish
processing the menu selection, the menu title is uninverted with a
callto HiliteMenu(0) (1:357).

{--————————— > HandleMenuChoice <--1}

procedure HandleMenuChoice (menuChoice: LONGINT);
var
theMenu, theltem: INTEGER;

begin
if menuChoice <> 0 then
begin
theMenu := HiWord(menuChoice);
theltem := LoWord(menuChoice);

case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(theltem);
FILE_MENU_ID:
HandleFileChoice(theltem);
FONT_MENU_ID:
HandleFontChoice(thelItem);
STYLE_MENU_ID:
HandleStyleChoice(thelItem);
end;

HiliteMenu(0);
end;
end;

188 Macintosh Programming Primer

HandleAppleChoice handles all ® menu selections. If the
About Timer menu item is selected, the alert with resource ID =
ABOUT_ALERT is drawn with NoteAlert. Alerts are discussed in
more detail in Chapter 6. Any other item selected is assumed to be a
desk accessory. The name of the desk accessory is retrieved with
GetItem, and the desk accessory is opened with OpenDeskAcc.

{-———————————— > HandleAppleChoice <--1

procedure HandleAppleChoice (theltem: INTEGER);
var
accName: Str255;
accNumber, itemNumber, dummy: INTEGER;
appleMenu: MenuHandle;
begin
case theltem of
ABOUT_ITEM:
dummy := NoteAlert(ABOUT_ALERT, nil);
otherwise
begin
appleMenu := GetMHandle(APPLE_MENU_ID);
GetItem(appleMenu, theltem, accName);
accNumber := OpenDeskAcc(accName);
end;
end;
end;

Because there’s only one item under the File menu, the code for
HandleFileChoice is pretty simple. The global variable gbone is
set to TRUE if Quit is selected. The value of gDone is checked every
time through the main loop. When gbone = TRUE, the program
knows that it’s time to exit.

{——— > HandleFileChoice <--}

procedure HandleFileChoice (theltem: INTEGER);
begin
case theltem of
QUIT_ITEM:
gbone := TRUE;
end;
end;

The Edit menu is in this application only to support desk
accessories. All items were dimmed when you created the MENU
resource. Because you don’t care what happens as far as your
application is concerned, you need not do anything.

Menu Management 189

Actually, we've done only half the job so far; although Timer
allows the use of desk accessories, the Cut, Copy, and Paste
commands are not yet supported. We’ll add this in Chapter 7’s
WindowMaker program.

HandleFontChoice is called when the Font item in the
Special menu is selected. First, we get the font’s menu handle with
GetMHandle (you could have used globals for the menu handles, but
GetMHandle makes it easy to use local variables). Next, the first
CheckItem call removes the check mark from whatever had been
the last font selected. Then, the same call is used to place a check
mark on the newly selected font. gLastFont is set to the selected
item number. Next, the GetItem call returns the fontName for the
menu selection that you picked. Get FNum provides the font number
given the fontName, and finally the font of the text is changed with
the TextFont call, given the font ID number.

{--———-————- > HandleFontChoice <--1}

procedure HandleFontChoice (theltem: INTEGER);

begi

end;

var

fontNumber: INTEGER;

fontName: Str255;

fontMenu: MenuHandle;
n
fontMenu := GetMHandle(FONT_MENU_ID);
CheckItem(fontMenu, gLastFont, REMOVE_CHECK_MARK);
CheckItem(fontMenu, theltem, ADD_CHECK_MARK);
gLastFont := theltem;
GetItem(fontMenu, theltem, fontName);
GetFNum(fontName, fontNumber);
TextFont(fontNumber);

The Style hierarchical submenu controls gCurrentStyle. When
a style is selected, it must be checked against gCurrentStyle. If
the style is currently in use, it must be removed, and vice versa
(I:171). CheckStyles is then called to update the check marks on
the Style menu. Finally, TextFace is called to implement the styles
ingCurrentStyle.

190 Macintosh Programming Primer

{---—————————— > HandleStyleChoice <--3

procedure HandleStyleChoice (thelItem: INTEGER);
begin
case theltem of
PLAIN_ITEM:
gCurrentStyle := PLAIN;
BOLD_ITEM:
if bold in gCurrentStyle then
gCurrentStyle := gCurrentStyle
else
gCurrentStyle := gCurrentStyle + [bold];
ITALIC_ITEM:
if italic in gCurrentStyle then
gCurrentStyle := gCurrentStyle
else
gCurrentStyle := gCurrentStyle + [italicl;
UNDERLINE_ITEM:
if underline in gCurrentStyle then
gCurrentStyle := gCurrentStyle - [Cunderlinel
else
gCurrentStyle := gCurrentStyle + L[underlinel;
OUTLINE_ITEM:
if outline in gCurrentStyle then
gCurrentStyle := gCurrentStyle
else
gCurrentStyle := gCurrentStyle + L[outlinel;
SHADOW_ITEM:
if shadow in gCurrentStyle then
gCurrentStyle := gCurrentStyle - [shadowl
else
gCurrentStyle := gCurrentStyle + [shadow];

Cboldl

Citalicl

Coutlinel

end;

CheckStyles;

TextFace(gCurrentStyle);
end;

CheckStyles steps through each item in the Style menu,
placing a check mark next to those styles set in gCurrentStyle:

{-————————————— > HandleStyleChoice <--3

procedure CheckStyles;
var
styleMenu: MenuHandle;
begin
styleMenu := GetMHandle(STYLE_MENU_ID);
CheckItem(styleMenu, PLAIN_ITEM, (gCurrentStyle =
PLAIN));

Menu Management 191

end;

CheckItem(styleMenu, BOLD_ITEM, (bold in
gCurrentStyle));

CheckItem(styleMenu, ITALIC_ITEM, (italic in
gCurrentStyle));

CheckItem(styleMenu, UNDERLINE_ITEM, (underline in
gCurrentStyle));

CheckItem(styleMenu, OUTLINE_ITEM, (outline in
gCurrentStyle));

CheckItem(styleMenu, SHADOW_ITEM, (shadow in
gCurrentStyle));

That’s it for our discussion of Timer. With this code, you should be
able to add pull down and hierarchical menus to your programs. The
last menu type, pop-up menus, is explored in the next program.

Zinger

Zinger opens a window on the desktop and implements a pop-up
menu of numbers inside the window. When a number is selected from
the pop-up, Zinger beeps that number of times and resets the value
on the face of the pop-up to reflect this selection.

Zinger works like this:

1. It initializes the window and the pop-up menu, drawing the pop-up
for the first time.

2. It activates the pop-up menu when a mouseDown occurs in the
menu rectangle and redraws the pop-up when an updateEvt
occurs.

3. Finally, Zinger quits when the window’s close box is clicked.

Because you've seen much of Zinger’s code in previous chapters,
we’ll concentrate on the code that makes the pop-up menu work.
Start by building a folder called Zinger for the project files.

Next, create a resource file called Zinger.n.rsrc. Then, build a
resource of type MENU with ID = 400 and with the specifications
in Figure 5.26. Note that the resource is identical to a regular pull-
down menu.

192 Macintosh Programming Primer

=] MENU 1D = 400 from Zinger.7.rsrc ———
m Entire Menu: X Enabled
1 &
2 Title: @ |Numher l
3
4 O & (Apple menu)
5
Color
itie: [
tem Text Default: [:]
v Menu Background: m

Figure 5.26 Zinger MENU specifications.

Now, build a WIND with the specifications of Figure 5.27.

EC]E WIND ID = 400 from Zinger.w.rsrc £
Window title:
Popup Window
top 80 bottom |165
left 40 right 215
prociD |0 refCon |0
[1 visible X goAwayFlag

Figure 5.27 Zinger WIND resource.

Menu Management 193

Start a new project called Zinger.n, and type in the following
code:

program Zinger;
const

BASE_RES_ID = 400;
SLEEP = 60;
DRAG_THRESHOLD = 30;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;
POPUP_MENU_ID = BASE_RES_ID;
NOT_A_NORMAL_MENU = -1;
POPUP_LEFT = 100;
POPUP_TOP = 35;
POPUP_RIGHT = 125;
POPUP_BOTTOM = 52;
SHADOW_PIXELS = 1;
RIGHT_MARGIN = 5;
BOTTOM_MARGIN = 4;
LEFT_MARGIN = 5;
PIXEL_FOR_TOP_LINE = 1;

var
gbone, gWNEImplemented: BOOLEAN;
gPopUpItem, gPopUpLabelWidth: INTEGER;
gPopUpMenu: MenuHandle;
gTheEvent: EventRecord;
gPopUpRect, gLabelRect, gbragRect: Rect;
gPopUpLabelH: StringHandle;

{——mmmme > DrawPopUpNumber <-=12

procedure DrawPopUpNumber;
var
menultem: Str255;
itemLeftMargin: INTEGER;
begin
GetItem(gPopUpMenu, gPopUpItem, menultem);
itemLeftMargin := (gPopUpRect.right - gPopUpRect.left -
StringWidth(menulItem)) div 2;
MoveTo(gPopUpRect.left + itemLeftMargin,
gPopUpRect.bottom - BOTTOM_MARGIN);
DrawString(menultem);

{-———————— > DrawPopUp <--}

procedure DrawPopUp;
begin
SetRect(gPopUpRect, POPUP_LEFT, POPUP_TOP, POPUP_RIGHT,

194

Macintosh Programming Primer

POPUP_BOTTOM) ;
FrameRect(gPopUpRect);

MoveTo(gPopUpRect.left + SHADOW_PIXELS,
gPopUpRect.bottom);

LineTo(gPopUpRect.right, gPopUpRect.bottom);

LineTo(gPopUpRect.right, gPopUpRect.top +
SHADOW_PIXELS);

MOVETO(GPOPUPRECT.LEFT - GPOPUPLABELWIDTH -
RIGHT_MARGIN, GPOPUPRECT.BOTTOM - BOTTOM_MARGIN);
HLock(Handle(gPopUpLabelH));
DrawString(gPopUpLabelH**);
HUnlock(Handle(gPopUpLabelH));

gLabelRect.top := gPopUpRect.top + PIXEL_FOR_TOP_LINE;
gLabelRect.left := gPopUpRect.left - gPopUpLabelWidth -
LEFT_MARGIN - RIGHT_MARGIN;
gLabelRect.right := gPopUpRect.left;
gLabelRect.bottom := gPopUpRect.bottom;
DrawPopUpNumber;
end;
(- > HandleMouseDown <--}

procedure HandleMouseDown;

begi

var
whichWindow: WindowPtr;
thePart, i: INTEGER;
theChoice: LONGINT;
myPoint, popUpUpperLeft: Point;
n
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inContent:
begin
myPoint := gTheEvent.where;
GlobalToLocal(myPoint);
if PtInRect(myPoint, gPopUpRect) then
begin
InvertRect(gLabelRect);
popUpUpperLeft.v := gPopUpRect.top +
PIXEL_FOR_TOP_LINE;
popUpUpperLeft.h := gPopUpRect.left;
LocalToGlobal(popUpUpperLeft);
theChoice := PopUpMenuSelect
(gPopUpMenu, popUpUpperLeft.v,
popUpUpperLeft.h, gPopUpltem);
InvertRect(gLabelRect);

Menu Management 195

if LoWord(theChoice) > 0 then
begin
gPopUpltem :=
LoWord(theChoice);

DrawPopUpNumber;
for i := 0 to gPopUpItem -
1 do

SysBeep(20);
end;
end;

end;
inSysWindow:

SystemClick(gTheEvent, whichWindow);
inDrag:

DragWindow(whichWindow, gTheEvent.where,

screenBits.bounds);

inGoAway:

gbone := TRUE;

end;
end;

{--—————————— > HandleEvent<--1}

procedure HandleEvent;
var
dummy: BOOLEAN;
begin
if gWNEImplemented then
dummy := WaitNextEvent(everyEvent, gTheEvent,
SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
mouseDown:
HandleMouseDown;
updateEvt:
begin
BeginUpdate(WindowPtr(gTheEvent.message));
DrawPopUp,; EndUpdate
(WindowPtr(gTheEvent.message));
end;
end;
end;

Macintosh Programming Primer

{mmmm e > MainLoop <-=}

procedure MainlLoop;
begin
gbone := FALSE;

gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,

ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));
while gbone = FALSE do

HandleEvent;

{-—————————— > MenuBarInit<--}

procedure MenuBarlInit;

begin

gPopUpMenu := GetMenu(POPUP_MENU_ID);
InsertMenu(gPopUpMenu, NOT_A_NORMAL_MENU);
gPopUpLabelH := GetString(BASE_RES_ID);
HLock(Handle(gPopUpLabelH));
gPopUpLabelWidth := StringWidth(gPopUpLabelH”%);
HUnlock(Handle(gPopUpLabelH));
gPopUpItem := 1;

(- > WindowInit <--1}

procedure WindowlInit;
var
popUpWindow: WindowPtr;
begin
popUpWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
SetPort(popUpWindow) ;
ShowWindow(popUpWindow);

TextFont(systemFont);
TextMode(srcCopy);

{mmmmm > Zinger <--}

begin
WindowInit;
MenuBarInit;
DrawPopUp;

MainLoop;
end.

Menu Management 197

Save your code as Zinger.p and add it to the project. When you
run the program, you should get a window with a pop-up box in it
(Figure 5.28). When you select a number on the menu, SysBeep
should sound for the number of times that you selected. If you don’t
hear anything, check the volume in the control panel. If it’s set above
zero, and you don’t have an external speaker attached to your Mac’s
sound port, check your code.

E 1

Number:

Figure 5.28 Zinger!

Walking Through the Zinger Code

Figure 5.29 displays where each routine is called. WindowInit
runs, then MenuBarlInit, then DrawPopUp, then MainLoop.
MainLoop calls HandlLeEvent, which runs until the user quits.

DrawPopUp and HandleMouseDown handle two events used in
Zinger, update events and mouseDown events. HandleMouseDown
calls DrawPopUpNumber if an item is selected in the pop-up menu.
DrawPopUp is called if an update event occurs.

198

Macintosh Programming Primer

We’ll discuss the Zinger code following the order of Figure 5.29, so
that routines are discussed in their order of operation.
Zinger starts, as usual, with constants, followed by declaration of

its global variables:

const
BASE_RES_ID =
SLEEP = 60;
DRAG_THRESHOLD = 30;
WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;
POPUP_MENU_ID =
NOT_A_NORMAL_MENU = -1;
POPUP_LEFT = 100;
POPUP_TOP = 35;
POPUP_RIGHT = 125;
POPUP_BOTTOM = 52;
SHADOW_PIXELS = 1;
RIGHT_MARGIN = 5;
BOTTOM_MARGIN = 4;
LEFT_MARGIN = 5;
PIXEL_FOR_TOP_LINE = 1;

400;

var
gbone,
gPopUpItem,
gPopUpMenu:

gWNEImplemented:

MenuHandle;
gTheEvent: EventRecord;
gPopUpRect, glLabelRect,
gPopUpLabelH:

gbragRect:
StringHandle;

BASE_RES_ID;

BOOLEAN;
gPopUpLabelWidth:

INTEGER;

Rect;

Z1ngerlProcedures : S ,
HenuBarln!!HﬁowPopUp)rNainLoop - '
if not done
HandleEvent
1 | if mouseDown(or emdkey) if update event
HandleMouseDown | DrewPopUp |
if user chose menu item:
|HandieMenuChoice

Figure 5.29 Zinger procedures.

Menu Management 199

Zinger starts like Timer, except that it calls DrawPopUp before it
enters the MainLoop:

(- > Zinger <--}

begin
WindowInit;
MenuBarlInit;
DrawPopUp;

MainLoop;
end.

WindowInit may give you a sense of déja vu, as well.
popUpWindow is loaded, made visible, and made the current port.
Next, the font is changed to systemFont, the same font used to
draw the regular pull-down menus. The srcCopy text mode is used
to simplify drawing of the pop-up menu item. With srcCopy
enabled, text drawn in a window overlays existing graphics.

{--———————————— > WindowInit <--}

procedure WindowInit;
var
popUpWindow: WindowPtr;
begin
popUpWindow := GetNewWindow(BASE_RES_ID,
nil, WindowPtr(-1)>);
SetPort(popUpWindow);
ShowWindow(popUpWindow);

TextFont(systemFont);
TextMode(srcCopy);
end;

In MenuBarlInit, as in the routines in Zinger that handled the
hierarchical menus, you load the MENU and add it to the menu list
via the call to InsertMenu. Next, get the pop-up label from the
menu data structure and calculate its width in pixels. You’'ll use this
information later.

{—mmmmmm e - > MenuBarlInit <--}

procedure MenuBarlInit;

begin
gPopUpMenu := GetMenu(POPUP_MENU_ID);
InsertMenu(gPopUpMenu, NOT_A_NORMAL_MENU);
gPopUpLabelH := GetString(BASE_RES_ID);
HLock(Handle(gPopUpLabelH));

200 Macintosh Programming Primer

gPopUpLabelWidth := StringWidth(gPopUpLabelH”*%);
HUnlock(Handle(gPopUpLabelH));

gPopUpltem := 1;

end;

MainLoop works as it did in Timer:

{-=——————— > MainLoop <--}

procedure MainLoop;
begin
gbone := FALSE;
gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));
while (gbone = FALSE) do
HandleEvent;

---------------- > HandleEvent <--}

procedure HandleEvent;
var
dummy: BOOLEAN;
begin
if gWNEImplemented then
dummy := WaitNextEvent(everyEvent, gTheEvent,
SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
mouseDown:
HandleMouseDown;

When Zinger gets an updateEvt, it redraws the pop-up menu:

case updateEvt:
updateEvt:
begin
BeginUpdate(WindowPtr(gTheEvent.message));
DrawPopUp;
EndUpdate(WindowPtr(gTheEvent.message));
end;
end;
end;

Menu Management 201

If the mouse was clicked in the window, copy the point, convert it
to the window’s local coordinate system, and check to see if it’s inside
gPopUpRect.Ifso...

{=mmmmm e > HandleMouseDown <--12

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart, i: INTEGER;
theChoice: LONGINT;
myPoint, popUpUpperLeft: Point;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inContent:
begin
myPoint := gTheEvent.where;
GlobalToLocal(myPoint);
if PtInRect(myPoint, gPopUpRect) then
begin

. . invert the label and use gPopUpRect to determine where the
pop-up menu should appear. Because PopUpMenuSelect works
with global coordinates, call LocalToGlobal to convert
popUpUpperLeft. Next, call PopUpMenuSelect to implement
the pop-up menu. Then, uninvert the label.

Finally, handle the selection by calling SysBeep the selected
number of times. gPopUpItem is set to the selected item number, so
the next time the pop-up appears, gPopUpI tem will be the default.

Early versions of Apple’s system 6 software had problems with the
SysBeep call. If you experience problems with Zinger, make sure
that you are not using System 6.0 or 6.1!

InvertRect(gLabelRect);
popUpUpperLeft.v := gPopUpRect.top +

PIXEL_FOR_TOP_LINE;
popUpUpperLeft.h := gPopUpRect.left;
LocalToGlobal(popUpUpperLeft);
theChoice := PopUpMenuSelect

(gPopUpMenu, popUpUpperLeft.v,

popUpUpperLeft.h, gPopUpltem);
InvertRect(gLabelRect);
if LoWord(theChoice) > 0 then

begin

202 Macintosh Programming Primer

gPopUpItem := LoWord
(theChoice);
DrawPopUpNumber;
for i := 0 to gPopUpIltem -
1 do
SysBeep(20);
end;
end;
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);

This is not the way “proper” Macintosh applications exit. Use a
Quit item in the File menu for your applications.

inGoAway:
gbone := TRUE;
end;
end;

dDrawPopUp will draw the pop-up outline, its one-pixel drop
shadow, the pop-up label, and set gLabe LRect, which you'll invert
when the pop-up is selected. DrawPopUp will also be called to
handle updateEvts. After the background is drawn, call
DrawPopUpNumber to draw the current menu value—in this case, a
number.

{-———————— > DrawPopUp <--2

procedure DrawPopUp;
begin
SetRect(gPopUpRect, POPUP_LEFT, POPUP_TOP, POPUP_RIGHT,
POPUP_BOTTOM) ;
FrameRect(gPopUpRect);

MoveTo(gPopUpRect.left + SHADOW_PIXELS,
gPopUpRect.bottom);

LineTo(gPopUpRect.right, gPopUpRect.bottom);

LineTo(gPopUpRect.right, gPopUpRect.top +
SHADOW_PIXELS);

MoveTo(gPopUpRect.left - gPopUpLabelWidth -
RIGHT_MARGIN, gPopUpRect.bottom - BOTTOM_MARGIN);
HLock(Handle(gPopUpLabelH));
DrawString(gPopUpLabelH”**);
HUnlock(Handle(gPopUpLabelH));

Menu Management 203

gLabelRect.top := gPopUpRect.top + PIXEL_FOR_TOP_LINE;

gLabelRect.left := gPopUpRect.left - gPopUplLabelWidth -
LEFT_MARGIN - RIGHT_MARGIN;

gLabelRect.right := gPopUpRect.left;

gLabelRect.bottom := gPopUpRect.bottom;

DrawPopUpNumber;
end;

DrawPopUpNumber gets the menu item corresponding to
gPopUpItem, calculates the margin, and draws it:

{ommmm - > DrawPopUpNumber <--12

procedure DrawPopUpNumber;
var
menultem: Str255;
itemLeftMargin: INTEGER;
begin
GetItem(gPopUpMenu, gPopUpItem, menultem);
itemLeftMargin := (gPopUpRect.right - gPopUpRect.left -
StringWidth(menulItem)) div 2;
MoveTo(gPopUpRect.left + itemLeftMargin,
gPopUpRect.bottom - BOTTOM_MARGIN);
DrawString(menultem);
end;

In Review

Menus are an intrinsic part of the Macintosh interface. Designing
them correctly allows you to take advantage of the familiarity of
users with standard Mac menus. The standard pull-down menu does
the job for many applications, and hierarchical and pop-up menus
bring freshness to the interface.

In Chapter 6, you'll learn about another essential part of the Mac
interface: creating and controlling dialog boxes. While you're there,
you’ll also look at one of the newest managers on the Macintosh: the
Notification Manager.

Working with
Dialogs

In a dialog box, the computer presents
a list of alternatives for the user to
choose from. Alerts are simplified
dialogs, used to report errors and give
warnings to the user. Chapter 6
discusses both of these, along with the
Notification Manager, Apple’s
background notification mechanism.

DiaLoGs ARE AN important part of the Macintosh interface; they
provide a friendly, standardized way of communicating and receiving
feedback from the user. Some dialogs ask questions of the user. Others
offer the user the opportunity to modify current program parameters
(Figures 6.1 and 6.2). Some dialogs are the direct result of a user
menu selection. For example, when you select Print... from within an
application, the Print Job dialog appears (Figure 6.3).

Dialogs that appear as a direct result of menu commands give you
a chance to change your mind (with the Cancel button), to continue
on as planned (with the DK button), or to change things around a bit

before continuing.

Nancy
Ophelia

Wedding Vows...
® Change menu

Bride:

O Change selection

Groom:

Bill
Dave
Fred
Steve
Zaphod

Constraints:
Love

[X] Cherish
[J obey

Marriage shall last:

@® -as long as they both
shall live.

O -subject to health and
wealth settings.

Figure 6.1 "Wedding Vow Options" dialog box.

LaserlWriter Page Setup

Paper: @ US Letter O A4 Letter (O Tabloid

QO US Legal

(O BS Letter

Reduce or 7 Printer Effects:
Enlarge: m : (X Font Substitution?

Orientation

X Text Smoothing?
[Graphics Smoothing?
X Faster Bitmap Printing?

Figure 6.2 Page Setup dialog box.

207

208 Macintosh Programming Primer

By convention, menu items that spawn dialog boxes always end
with an ellipsis (...). For example, the Print... item on the File
menu brings up a print dialog box.

Another important part of the Mac interface is the alert mech-
anism. Alerts (Figure 6.4) are simplified dialogs, used to report
errors and give warnings to the user. From a programmer’s point of
view, alerts are easier to deal with than dialogs, so we’ll use them
when we can.

Chapter 6 also presents the Notification Manager, one of the
newer additions to the Toolbox. The Notification Manager is designed
to work with MultiFinder, so that a program not currently in the
foreground has a way of notifying the user of an important event.

—

LaserlWriter “LaserWriter” 5.2 li 0K]!
Copies:@ Pages:@ Al O From:l |Tn: l:l
Cover Page: @ No (O First Page O Last Page

Paper Source: @ Paper Cassette (O Manual Feed

—

Figure 6.3 Print Job dialog box.

!s There's not enough
memory to edit another

document.

Figure 6.4 An Alert!

How Dialogs Work

Dialog boxes consist of a window and a list of dialog items. When the
dialog first appears, each item on the dialog item list is drawn. Typical
dialog items include checkboxes, radio buttons, and push buttons.
These items are called controls. In addition, static text fields, editable
text fields, PICTs, and I CONs may also be part of an item list (Figure
6.5). Every dialog box has at least one exit item (by convention, most
dialog boxes offer an DK button for this purpose). There are two
different kinds of dialogs: modal dialogs and modeless dialogs.

[Selected Radio Button| | Radio Button |
ImageWriter va 7
Paper: @ US Letter O A4 Letter

QO US Legal (O International Fanfold

(O Computer Paper
Orientation Special Effects: []Tall Adjusted

50 % Reduction
— [J No Gaps Between Pages
[Check Box| [Checked Check Box |

Static Text | [Button |

1
Imagellriter v2.7 0K i

Quality: O Best O fastey O Brafl
Page Range: @ Al O From: | I To: l_ [Cancel |
Copies: D

Paper Feed: @ Automatic (O Hand Feed

[Editable Text |

Figure 6.5 Dialog items.

209

210 Macintosh Programming Primer

Modal Dialogs

A modal dialog is one to which the user must respond before the
program can continue. Modal dialogs are used for decisions that must
be made immediately. They represent the vast majority of dialog boxes.

The Macintosh is generally a modeless machine. This means that
most of the operations performed by an application are available to
the user most of the time. For example, most of the operations
performed by THINK Pascal are available via pull-down menus.
Modal dialogs come into play when you must focus the user’s
attention on a specific task or issue. Alerts are always modal.
Dialog boxes aren’t always modal.

Modeless Dialogs

Modeless dialogs act more like regular windows; they appear to the
user like any other window and can be brought to the front with a
mouse click, or even dragged around the screen. Whereas modal
dialogs require an immediate response from the user, modeless
dialogs may be set aside until they are needed. The algorithms used
to implement modal and modeless dialogs are quite different.

The Modal Dialog Algorithm

The algorithm for modal dialogs follows these steps:

1. First, load the dialog (including the dialog’s item list) from the
resource file using GetNewDialog.

2. Then, make the dialog window visible (just as you would a new
window).

3. Next, enter a loop, first calling ModalDialog to find out which
item the user selected, then processing that item. When an exit
item (such as OK or Cancel) is selected, exit the loop.

Working with Dialogs 211

The Modeless Dialog Algorithm

The algorithm for modeless diaglogs follows these steps:

1. First, load the dialog and make it visible (as was done with the
modal dialog).

2. As an event is returned by GetNextEvent or WaitNextEvent,
passitonto IsDialogEvent.

3. If IsbialogEvent returns FALSE, the event is not related to
the dialog and should be handled normally. Otherwise, the event
should be passed to DialogSelect.

4. DialogSelect returns a pointer to the dialog box whose item
was selected, as well as the number of the item selected by the
user. Process the item as you would with ModalDialog.

Let’s look at the types of items found in dialogs.

Dialog Items: Controls

One of the most important types of dialog items are controls.
Controls are items that exist in at least two different states. For
example, the checkbox can be checked or unchecked (Figure 6.6).
Although controls may be defined by the program designer, four
types of controls are already defined in the Toolbox. They are
buttons, checkboxes, radio buttons, and dials.

] Check box #1
B Check box #2

Figure 6.6 The checkbox

212

Macintosh Programming Primer

These controls fall under the jurisdiction of the Control Manager,
which handles the creation, editing, and use of controls.

Buttons

The classic example of a button is the DK button found in most dialog
boxes (Figure 6.7). When the mouse button is released with the cursor
inside the button, the button’s action is performed. For example,
clicking an OK button might start a print job or save an application’s
data. Those of you who are familiar with HyperCard should note the
similarity of HyperCard buttons to Toolbox buttons. Toolbox buttons
have the shape of rounded-corner rectangles, whereas HyperCard
buttons have more variation in shape and appearance.

Checkboxes

Checkboxes are generally used to set options or arguments of an
action. For example, you might use a checkbox to determine whether
the user wants sound turned on or off in an application (Figure 6.8).

Scale selection 50.00 (%

Figure 6.7 Cancel and 0K buttons.

Working with Dialogs 213

Play Options:

B Sound On
< Advanced Level

Figure 6.8 Checkbox example.

Radio Buttons

Radio buttons are similar to checkboxes in function, in that they
also are generally used to set options or choices in a dialog box.
Figure 6.9 shows some radio buttons. The difference between radio
buttons and checkboxes is that the choices displayed in radio buttons
are mutually exclusive. Radio buttons appear in sets, and one and
only one radio button in a set may be on (or highlighted) at any given
time (Figure 6.10).

Measure in:

@® inches (O centimeters

Figure 6.9 Radio button example.

214

Macintosh Programming Primer

Your Order: How much do you make?
® Hamburgers O 1 make a lot of money
® French Fries O 1 make enough money
@® Coca-Cola @® Got a nickel?

Wrong Way: radio Right Way: only one
buttons should indicate of these choices
mutually exclusive would reasonable be
options. picked.

Figure 6.10 Radio button etiquette.

Dials

Dials are different from other controls: They display and supply
qualitative instead of off/on information. The only dial control type
predefined in the Toolbox is the seroll bar (Figure 6.11), which is an
integral part of many Mac application windows. In Chapter 7, we’ll

show you how to set up a scroll bar.

E=————— Pager

QO o & ®
@ o@."

) oli®) o Qo0
e @ o

Figure 6.11 Scroll bar example (from Pager in Chapter 7).

Other Dialog Items

Controls are only one type of item used in dialogs. You can display
pictures (PICTs) and icons (resource type ICON) in dialog boxes. You
can also add static and editable text fields, as well as user items, to
your dialogs (Figure 6.12). User items designate an area of the dialog
box that will be drawn in by a userItem procedure. If the procedure
draws outside the user item Rect, the drawing is clipped. For
example, you can define a clock-drawing procedure that gets updated
each time ModalDialog is called.

ResEdit makes it easy to define a group of dialog items. Figure
6.13 shows how ResEdit allows you to graphically edit the
appearance of a dialog and the items within it.

|Custom Control

£y

Don't set
the volume —
too high!

E[I=——— Info

Static Text

e

A Locked []
— AA Amazing Paint™

Amazing Paint v1.0.1
Kind: application
Size: 197,025 bytes used, 195K on disk

—— Where: Hard Disk, FWB SCS| #0

Created: Tue, Jun 19, 1990, 12:00 AM
Modified: Sun, Jul 29, 1990, 9:30 AM
Yersion: v1.0.1, Copyright © 1990
CE Software, Inc.

Illser Item '[

Suggested Memory Size (K): 448

Application Memory Size (K):

Editable Text

Figure 6.12 Other dialog items.

215

216 Macintosh Programming Primer

% File Edit Resource Window DITL Font Size

DLOGs from Reminder. 7.
DLOG "Alarm" 1D = 400 from Reminder.7.rsrc

e yon E“wnnr

O Sound wa Ll
O Betwte v O Ssconds
[0 Wapiny Bevt el TIIT3

Sowe Comcrd

Alarm goes off in} 10 ‘se

[] Sound on :
[J Rotate Icon) Seconds
[Display Alert i) Minutes

[save | [cancel |

Figure 6.13 Making dialogs (in ResEdit).

Where do dialog items come from?

Some dialog items are controls, like check boxes and radio
buttons. Other items, like PICTs and ICOMSs, are resources that
may be used in both windows and dialogs. Finally, there are items
like editable text and static text items that are created and
managed by the dialog manager—you won’t see them in regular
windows.

Working with Alerts

Alerts are very much like dialogs: You build them using ResEdit, and
they consist of a window and a dialog item list. However, alerts are
self-contained and can be invoked with a single line of code. Whereas
ModalDialog is called repeatedly inside a loop, the alert procedures
are called once. Each alert routine takes care of its own housekeeping.

Working with Dialogs 217

There are three standard types of alerts: note alerts, caution
alerts, and stop alerts (Figure 6.14). Note alerts have an informa-
tive tone and are an easy way to tell the user something. Caution
alerts tell the user that the next step taken should be considered
carefully, as it may lead to unexpected results. Stop alerts indicate a

critical situation, such as a fatal error, that must be brought to the
user’s attention.

Another fine program from the
!@ Mac Programming Primer!

©1990, D. Mark & C. Reed!!!

—

The computer has now
checkmated you 38 times in a
row.

Perhaps you should take up
backgammon...

Tri-Dimensional Desktop
Professional Version 2.01a
requires 84 megabytes of

RAM. Please purchase and
install immediately.

Figure 6.14 Note, caution, and stop alerts.

218

Macintosh Programming Primer

Each alert exists in stages. The first time an alert is presented, it
is a stage 1 alert; the second time, a stage 2 alert; the third time, a
stage 3 alert; the fourth and subsequent times, a stage 4 alert. You
can design your alerts so that stage 1 alerts are silent but stage 2, 3,
and 4 alerts beep when the alert is presented. You can also specify
whether or not the alert is presented at different stages.

The Alert Algorithm

Working with alerts is easy. Build your alert with ResEdit by
creating an ALRT and a DITL. Unlike regular dialogs, the only type
of control you should put in your alert dialog item list is a button.
The alert mechanism is as follows:

1. Load and present the alert with a call to StopAlert,
NoteAlert, or CautionAlert.

2. Use the value returned from each of these functions to determine
which item was hit (i.e., which button was pressed).

Adding Dialogs to Your Programs

In this chapter, we’ll show you how to build modal dialog boxes and
alerts through the use of DLOG and DITL resources. Although we
could have created the dialog structure in THINK Pascal instead, we
chose to emphasize the resource-based approach.

As was stated in the dialog algorithm, to put a dialog box in your
application, you do the following things: initialize the Dialog
Manager and load your dialog box resources, call ModalDialog,and
respond to the events that occur in the dialog box window.

Here’s an outline of the procedure. First, initialize the Dialog
Manager (THINK Pascal does this for you):

InitDialogs(nil);

Then, load a dialog from your resource file with the
GetNewDialog routine:

myDialog: = GetNewDialog(resource_ID,nil,
WindowPtr(-1);

Working with Dialogs 219

FIRST_RADIO:=
SECOND_RADIO

ON = 1;
OFF := 0;

GetDItem(myD

Now, initialize each of your controls. Each control has a unique
item number, defined in the DITL resource (Figure 6.15). Use
GetDItem to get a handle to each control item in the dialog box; then
use SetCtlValue to set the buttons, radio buttons, and check boxes
to their initial values. For example, the following routine will fill the
first radio button and clear the second radio button in a dialog box:

2;
= 3’-

ijalog, FIRST_RADIO, itemType,itemHandle,

itemRect);

SetCtlValue(
GetDItem(myD

itemHandle, ON);
ialog, SECOND_RADIO, itemType, itemHandle,

itemRect);

SetCtlValue(

itemHandle, OFF);

FIRST_RADIO and SECOND_RADIO are the radio button item
numbers defined in the DI TL resource. The first radio button will be
set to ON, the second to O FF (Figure 6.16).

EE DITL "Alarm" 1D = 400 from Remind

flarm goes off in)10 [seconds |
[sound on Use: |

[] Rotate Icon) Seconds
[] Display Alert (O Minutes

[&

Figure 6.15 Asample DITL.

220 Macintosh Programming Primer

® First Radio Button
(O Second Radio Button

Figure 6.16 Radio buttons

[J Check box #1
I Check box #2
& Check box #3

Figure 6.17 Three checkboxes.

Here’s an example of initialization of a series of checkboxes. The
code fragment clears the first checkbox and checks the second and
third checkboxes (Figure 6.17).

FIRST_CHECKBOX :=
SECOND_CHECKBOX := 5;

THIRD_CHECKBOX := 6
ON =1;
= 0;

OFF

Working with Dialogs 221

GetDItem(myDialog, FIRST_CHECKBOX, itemType,
itemHandle, itemRect);

SetCtlvValue(itemHandle, OFF);

GetDItem(myDialog, SECOND_CHECKBOX, itemType,
itemHandle, itemRect);

SetCtlValue(itemHandle, ON);

GetDItem(myDialog, THIRD_CHECKBOX, itemType,
itemHandle, itemRect);

SetCtlvValue(itemHandle, ON);

When you create your DL0G in ResEdit, make sure the Visible
box is unchecked. That way, if you load your dialog at the
beginning of your program, it won't appear until you're ready.

By the way, if you plan on drawing in the dialog box with QuickDraw
(which you might want to do with a userItem procedure), make
the dialog the current port:

SetPort(myDialog);

Then, when the dialog is made visible, draw away.

Make the dialog visible by calling ShowWindow. You're now ready
to call ModalDialog to handle the events that occur in the dialog
window.

dialogbone = FALSE;
ShowWindow(myDialog);
while dialogbone = FALSE do
begin
ModalDialog(nil, itemHit);
case itemHit of
OK_BUTTON:
begin
dialogbone := TRUE;
end;

222

Macintosh Programming Primer

FIRST_RADIO:
begin
HandleRadio
(SECOND_BUTTON);
end;

THIRD_CHECKBOX :
begin
HandleCheck
(THIRD_CHECKBOX);
end;
end;

end;
HideWindow(myDialog);

When the user clicks the OK button, the dialog loop exits and the
dialog window is made invisible again.

If you're dealing with more than one window, make sure you are
aware of routines like Se lectWindow, which brings the window
specified in the parameter to the front. You may also want to
consider hiding your other windows while your dialog box is visible,
and then showing them when you drop out of the dialog loop.

Dialog items are either enabled or disabled. If an item is disabled,
ModalDialog will not report mouse clicks in the item. In general,
clicking ICONs and PICTs in a dialog box has no special significance,
so disable both of these types of items.

Static text and Editable text fields are also usually disabled,
although you may change them in response to other events. For
example, a timer might display the time in minutes or seconds,
depending on the value of a set of radio buttons (Figure 6.18). If the
Seconds radio button is clicked, the static text field could read
Seconds. If the Minutes radio button is clicked, the static text field
could be changed to read Minutes. Use the routines GetIText and
SetIText toread and set the values of static text fields.

Working with Dialogs 223

E Minutes J|!itatic: Text |

{ Seconds
@® Minutes

Figure 6.18 Static text.

ParamText allows you to create a set of four default strings that
can be substituted in your static text fields. To spemfy them, call
ParamText with four Str255s:

ParamText('the tiny republic of Togo',
'porkpie hats', 'babar',
'"Altarian dog biscuits');

From now on, whenever the strings “A0”, “A1”, “A2” or “A3” appear
in a static text item, they will be replaced by the appropriate
ParamText parameter. ParamText is used in Chapter 7’s error-
handling routines.

You can store ParamText strings in your resource file as
resources of type 'STR ' or inside a single 'STR#"' resource,
then read the strings in with GetResource or GetString, and
finally, pass them to ParamText. If, during the course of running
your program, you decide to change the values of your strings, you
can write them back out to the resource file with
WriteResource. This is a little tricky, but it gives you a great
way to store program defaults. The mechanism for modifying
resources is covered in Inside Macintosh, Volume |, pages
122-127.

224 Macintosh Programming Primer

GetIText and SetIText can also be used to modify the contents
of an editable text field. Here’s an example:

GetDItem(myDialog, TEXT_FIELD, itemType,
itemHandle, itemRect);

GetIText(itemHandle, myString);

SetIText(itemHandle, 'I've been replaced!!!');

The last three arguments to GetDItem are placeholders. That is,
they won’t always be used, but you always need to provide a
variable to receive the values returned. In the previous example,
itemHandle was used, but itemType and i temRect were not.

Like ICONs and PICTs, editable and static text field items should
be disabled so that mouse clicks are not reported. In the case
of editable text fields, the dialog manager handles the mouse click
for you.

The Notification Manager

: The Notification Manager contains calls that allow applications
running in the background to communicate with the user. The
Notification Manager was first implemented in System 6.0. Because
the Notification Manager is not described in Inside Macintosh, we've
provided the following tech block. We warn you, though, that this is
an experimental, highly classified, multipage tech block. Take your
time. Remember, read all the directions before you start.

Working with Dialogs 225

How the Notification Manager Works

The Notification Manager alerts the user that a background
application requires the user’s attention. The following notification
techniques can be used. First, a small diamond-shaped mark (#)
may be placed on the notifying application’s item in the % menu.

Next, the ® icon may be rotated with another small icon (see
Figure 6.19). Then, the user may be notified of the event by a
sound designated by the background application. Finally, an alert
can be displayed with a message regarding the event (see Figure
6.20). After the user clicks on the alert’s DK button, a response
procedure defined in the notifying application can be called.

% File Edit View Special

" Y% File Edit Uiew Special

r

® File Edit View Special

Figure 6.19 Small icon rotation.

" File Edit

An event has taken place which
requires your attention...

Figure 6.20 Alert message from the Notification Manager.

226

Macintosh Programming Primer

The Notification Manager will still run even if your program is not
running under MultiFinder. Because your program can't run in the
background, however, the Notification Manager’s functionality will

be limited.

The Notification Manager Structure

Each call to the Notification Manager makes use of the NMRec

data structure:

TYPE NMRec = RECORD

qLink: QElemPtr;
qType: INTEGER;
nmFlags: INTEGER;

nmPrivate: LONGINT;
nmReserved: INTEGER;

nmMark: INTEGER;
nmSIcon: Handle;
nmSound: Handle;
nmStr: StringPtr;
nmResp: ProcPtr;

nmRefCon: LONGINT;
END;

{next queue entryl

{queue type — ORD{(nmType)
= 8}

{reserved}

{reserved}

{reserved}

{item to mark in Apple
menul

{handle to small icon}
{handle to sound record}
{string to appear in alert}
{pointer to response
routine}

{for application use}

Working with Dialogs 227

Here’s an explanation of the NMRe ¢ fields:

e qLink,qType, nmFlags, nmPrivate,and nmReserved are
either reserved or contain information about the notification
queue; you won't adjust these values.

e nmMark: If nmMark is 0, the (#) will not be displayed in the &
menu when the notification occurs; if nmMark is 1, the
application that is making the notifying call receives the mark. If
you want a desk accessory to be marked, use the refnum of
the desk accessory. Drivers should pass 0.

e nmSIcon:Ilf nmSIconis nil, noicon is used; otherwise, the
handie to the small icon (SICN resource) to be used should be
placed here.

e nmSound: if nmSound is 0, no sound is played; =1 will result in
the system sound being played. To play an 'snd ' sound
resource, put a handle to the resource here. The handle must be
nonpurgeable.

e nmStr contains the pointer to the text string to be used in the
alert box. Putin n1i L for no alert box.

e nmResp is a pointer to a response procedure that gets called
once the notification is complete. We'll set nmResp to -1, which
removes the request from the notification queue once the
notification is complete.

There are only two calls in the Notification Manager. The first,
NMInstall, adds the notification request to the Notification
Queue, which is checked periodically:

FUNCTION NMInstall (nmRegPtr: QElemPtr) :
OSErr;

The second, NMRemove, removes the notification from the
Notification Queue:

FUNCTION NMRemove (nmRegPtr: QElemPtr)
OSErr;

228

Macintosh Programming Primer

The next section lists and describes Reminder, the biggest and
most complex program in this book. Reminder will show you how to
put together all the pieces we’ve talked about so far: windows, events,
menus, fonts, dialogs, alerts, and the Notification Manager.

Reminder

Reminder sets a countdown timer and, when the time runs out,
alerts the user of the event via the Notification Manager. Reminder
also supports a dialog box that allows you to change some of its
settings. Here’s a quick look at the Reminder algorithm:

1. It checks for System 6.0 or later. If the System version is too old,
it puts up an alert and exits.

It loads and initializes the settings dialog.

It loads the &, File, and Edit menus.

It initializes the Notification Manager data structure.

It handles events.

IR

If the Change Settings menu item is selected, it handles the
settings dialog box.

7. If the Start Countdown menu item is selected, it pulls the
number of seconds from the settings dialog, loads and shows the
countdown window, counts down, and sets the notification.

8. If the Kill Notification menu item is selected, it removes the
notification from the Notification Queue.

9. If the Duit menu item is selected, it exits.

Warning: This is the longest of all of the Primer programs. You can
save a little time by using resources and code from Chapter 5, but
it’s still going to take a while. You may wish to take a brief recess.

Working with Dialogs 229

Setting Up the Project

Start by creating your project files. You can save some time by
copying your Timer folder from Chapter 5 and renaming it
Reminder. But remember, if you do this, you'll need to change the
source code file name, the project file name, and the resource file
name. We'll assume you're starting from scratch.

Making the Resources for Reminder

Go into ResEdit and create a file named Reminder.xw.rsrc. As has
been discussed earlier, it’s a good idea to set each resource (except
MENUs) to be purgeable in the Get Resource Info dialog box.
Create a DITL with the controls and fields shown in Figure 6.21.
This DITL will have eleven items. The table in Figure 6.22 lists the
values for these items.

Next, create a DITL with the information shown in Figure 6.23.
You’ll use this DITL in your About box alert. The About DITL has
two items. Create them from the table shown in Figure 6.24.

[ECIE DITL "Alarm" 1D = 400 from Remind

#resesnnnneiesnnenensiciniens

§Hlarm goes off in: 10 seconds
[] Sound on

[] Rotate Icon) Seconds
[] Display Alert) Minutes

(o) (Gow)

Figure 6.21 Settings DITL appearance.

230 Macintosh Programming Primer

Item* | Type Enabled | Top | Left | Bottom| Right| Text/Resource ID

1 Button Yes 130 | S0 150 120 | Save
2 | Button Yes 130 [160 150 220 | Cancel
3 | Static Text No 20| 20 40 138 | Alarm goes off in
4 | Editable Text | No 20 | 142 40 184 10
5 [Static Text No 201189 40 249 | seconds
6 Checkbox Yes 55| 20 75 102 | Sound on
7 | Checkbox Yes 73| 20 935 122 | Rotate Icon
g8 Checkbox Yes =) 20 115 130 | Display Alert
9 Radio Button | Yes 54 | 157 74 192 | Use:

10 | Radio Button | Yes 751170 95 247 | Seconds

11 Static Text No 95 | 170 115 249 | Minutes

Figure 6.22 Item specifications for settings DITL.

[ECIE DITL "About" 1D = 401 from Reminder.”m

Another fine program from the
Mac Programming Primer!
©1990, D. Mark & C. Reed!!!

5

Figure 6.23 About box DI TL Get Info window.

Item#* | Type Enabled | Top |Left | Bottom| Right | Text/Resource 1D

1 Button Yes |71 |17 91 177 | OK

2 Static Text No 7| 70 61 280 | Another fine
program from the
Macintosh

Programming
Primer ® 1990
D. Mark & C. Reed!!!

Figure 6.24 Item specifications for About DITL.

Working with Dialogs

231

Finally, create a DITL similar to Figure 6.25.

This DITL belongs

to the alert shown for a system earlier than version 6.0. The Bad

System DITL also has two items. Create them
Figure 6.26.

using the table in

Create an ALRT resource with ID = 401 that matches Figure 6.27.

This snapshot was made by selecting Display

as Tedt from the

ALRT menu that appears when the ALRT is opened. Don’t forget to

set the items|1D field to 401. This links the ALRT

toDITL 401.

Next, create an ALRT resource with ID = 402 that matches the

table in Figure 6.28.

IECIE DITL "Bad System"” 1D = 402 from Reminder.’

The Notification Manager is not
supported in this version of the

system software. Get 6.02 or newer!

[

Figure 6.25 Bad System DITL.

Item#* | Tupe Enabled | Top | Left | Bottom| Right | Text/Resource ID
1 Button Yes |71 |117 91 | 177 |OK
2 Static Text No 71 70 61 | 280 [The Notification

Manager is not
supported in this
version of the
system software.
Get 6.02 or newerll

Figure 6.26 Item specifications for Bad System DITL.

232

Macintosh Programming Primer

O

ALRT "About” ID = 401 from Reminder.m.rsrc

Top Bottom | 142

Left 40 Right |[332

Itemsll]

Stage 1 []#2 bold X Drawn
Stage 2 []#2 bold X Drawn
Stage 3 []#2 bold X Drawn
Stage 4 [#2 bold X Drawn

Sound (0-3)

— | ot | | -

Figure 6.27 The About Box ALRT, displayed as text.

sLE

ALRT "Bad System" ID = 402 from Reminder.n

Top Bottom | 142

Left 40 Right (332

ltemsll]

Stage 1 []#2 bold [Drawn
Stage 2 []#2 bold [Drawn
Stage 3 []#2 bold [Drawn
Stage 4 []#2 bold [Drawn

Sound (0-3)

—h | o | o— | —

Figure 6.28 The Bad System ALRT, displayed as text.

Working with Dialogs

233

You’re now ready to create your alarm settings dialog box. Create a
DLOG with ID = 400 that matches Figure 6.29. Remember to set the
proclID to 1. This tells the Dialog Manager to draw the standard
modal dialog type window.

Next, we’ll create two 'STR ' resources to use in the Settings
dialog. The first contains the default value to use when the time is
displayed in seconds. The second contains the default value to use
when the time is displayed in minutes. Figure 6.30a shows the value
for 'STR ' 401, and Figure 6.30b shows the value for ' STR ' 402.

E[JE DLOG "Alarm" 1D = 400 from Reminder.m.rsrc

Window title:

Alarm

top 40

left 40

prociD (1

itemsiD |400

[visible

bottom | 200

right [300

refCon |0

[] goAwayFlag

Figure 6.29 The Settings DL 0G, displayed as text.

234

Macintosh Programming Primer

EJ= STR "Def. Secs.” ID = 401 from Reminder.m.rsrc

gl

The String 10
Data $
a
0]
|
== STR "Def. Mins." 1D = 402 from Reminder.v.rsrc =—=|
>
The String 1 I |
Data $ I
b
0]
=

Figure 6.30 Default time 'STR "' resources.

Setting Up the Notification Manager Resources

Now that you've finished with the dialog and alert resources, you
need to add three resources for the Notification Manager: a string, a
sound, and a small icon. First, create another ' STR ' resource, with
ID = 400, that the Notification Manager will use in the alert that
is presented to the user (Figure 6.31).

E[]===—== STR ID = 400 from Reminder.w.rsrc
The String [Zounds!!! It's time... B
Data $|

K<l

Figure 6.31 The ' STR' resource for the Notification Manager.

Working with Dialogs

Now, add the sound. There are a number of different sound
resource types. The resource type needed is a 'snd
end), with resource ID = 400. If you have a favorite sound from a
HyperCard stack, you can copy it using ResEdit and paste it into

Reminder.w.rsrc.

resource.

A good check to determine if the sound will work properly is to use
the play it option in ResEdit's snd menu, which shows when you
are editing 'snd ' resources. If that works, then the Notification
Manager should be able to use it. If your 'snd
you may have some problems. Start with a small 'snd

If you don’t have a favorite sound, don’t panic. Figure 6.32 shows
the "snd ' resources found in System 6.0.5. Open up your system
file (Careful! Use a backup!) and copy the 'snd ' of your choice into

your resource file. Change the ID of the 'snd ' to 400.

System

RTAB Save scrn

() a) snds from System

<‘§ I<]}}D) D Size Name

SICN snd 1 228 "Simple Beep”
2 11206 "Clink-Klank"

——-- 3 7529 “Boing”
4 2208 "Monkey”

STR

Figure 6.32 System 6.0.5°‘snd' resources.

' (space at the

' is a large file,

236

Macintosh Programming Primer

The final resource for the Notification Manager is the small icon
that rotates with the % menu icon. Ours is a little bell. Use it or
create your own small icon. Create a resource of type SICN, with ID
= 400. Figure 6.33 is a snapshot of our SICN editing session. To
replicate the figure, just click on the “fat bits” in the 16-by-16 square
of pixels to turn them on or off.

Adding the Menu Resources

Here’s where cutting and pasting will reduce your time on this
project. If you have the Timer project, copy the MBAR and MENU
resources from it into the Reminder project. They are quite similar,
except for the names of a few menu items.

If you don’t have Timer resources, create the two menu resources.
The first, MBAR, contains the three menu IDs (400, 401, and 402).
Create a resource of type MBAR, with ID = 400 (Figure 6.34).
Remember, to add a new menu to the list, click on the asterisks and
select Insert New Field from the Resource menu.

Reminder..rsrc |
|E SICNs from Reminder.w.l |
o

ELE SICN 1D = 400

1 [1]

] AR B N

. &

Figure 6.33 The SICN resource for the Notification Manager

237

Working with Dialogs
Reminder.m.rsrc |
MBARs from Reminder.m
’I_EDE— MBAR ID = 400 from Reminder.7.rsrc ——=—|
] o
of menus 3
= EE LS
1| tenu res 10
Fk kK
ol Menu res |0 [401
REEEE
== Menu res 10 |402
|

Figure 6.34 MBAR resource.

Now you need to create each menu with its items. Create the %
MENU, ID = 400, and make it look like the menu in Figure 6.35.

Reminder.m.rsrc |
MENUs from Reminder.7
l[o Size Narne
1 400 42 “Apple” |
S[1=——= MENU "Apple" ID = 400 from Reminder.m.rsrc
Entire Menu: (< Enabled
About Reminder 3
Title: O |
@ % (Apple menu)
Color
itle:]
Item Text Default: E]
| Menu Background: D

Figure 6.35 % MENU resources.

238

Macintosh Programming Primer

Next, create the File MENU, ID = 401, and make it look like the
menu in Figure 6.36. (Don’t forget to disable the Kill Notification
menu item.) Finally, create the Edit MENU, ID = 402, and make it
look like the menu in Figure 6.37. The Edit menu is disabled and is
provided only as a courtesy for desk accessories. (Cut and paste this
menu from Timer in Chapter 5.)

Reminder.w.rsrc |
MENUs from Reminder.w
D Size Name
] 400 42 "Apple”
401 a1 “File”
ECJ=———=—= MENU "File" ID = 401 from Reminder.7.rsrc ——=—=|
m Entire Menu: X Enabled
Change Settings ®C W
start Countdown %S [| Titie: @ [File |
Kii MNotification #K
Quit %0 O & (Apple menu)
Color
Title: [
Item Text Default: E
w Menu Background: D

Figure 6.36 File MENU resource.

Reminder..rsrc |

MENUs from Reminder. 7
|[] Size Name
1 400 42 “Apple”
401 ai “File”
3 402 72 "Edit"

MENU "Edit" 1D = 402 from Reminder.n.rsrc e——=

Entire Menu: [Enabled

Title: ®

O & (Apple menu)

#ndn %27 K

fut
fopy
Pasie
{ipar

item Text Default: [l

1| Menu Background: :I

Figure 6.37 Edit MENU resource.

Working with Dialogs

239

The Home Stretch

Finally, add the old WIND resource for your countdown window.
Create a WIND, ID = 400, with the specifications in Figure 6.38.
When you’re done, save the resource file (whew!). Then, check it to

see if you have all the resources listed in Figure 6.39. If you don’t, go
back and add them.

S[J== WIND ID = 400 from Reminder.m.rsrc

Window title:

Time Remaining

top
left

proclD

70

36

[Jvisible

bottom | 106

right

refCon

156

[goAwayFlag

Figure 6.38 WIND resource for countdown window.

ECJ= Reminder..rsrc

=0E|

ALRT

MBAR

<)

=

DITL DLOG
riet D D
= 2o
MENU SICN
STR W IND

oy

=kl

Figure 6.39 Reminder resources completed.

240

This is, by far, the biggest set of resources in the book. It is not
uncommon at this point to start making mistakes (such as mangling
your motherboard and switching on the TV), so you might want to
take a break before you start entering the code.

The Reminder Code

If you haven’t done so already, go into THINK Pascal and create a
new project named Reminder.n. Next, create a new source code file
named Reminder.p and add it to the project.

Some of the Reminder code can be copied from Chapter 5’s Timer.
Just be careful with variable names and the like.

program Reminder;
uses
Notification;

const
BASE_RES_ID 4
ABOUT_ALERT 4
BAD_SYS_ALERT =

SLEEP = 60;

SAVE_BUTTON =
CANCEL_BUTTON
TIME_FIELD = &;
S_OR_M_FIELD
SOUND_ON_BOX
ICON_ON_BOX =
ALERT_ON_BO
SECS_RADIO
MINS_RADIO

1

x>
QT

7
0
1
DEFAULT_SECS_ID
DEFAULT_MINS_ID

ON = 1;
OFF = 0;

SECONDS_PER_MIN

00;
01;
402;

.
’

2;
5
6
8
;

’

UTE = 60;

Macintosh Programming Primer

Working with Dialogs 241
ToP = 25;
LEFT = 12;

type

var

MARK_APPLICATION = 1;

APPLE_MENU_ID = BASE_RES_ID;
FILE_MENU_ID = BASE_RES_ID +

ABOUT_ITEM = 1;
CHANGE_ITEM = 1;
START_STOP_ITEM = 2;
KILL_ITEM = 3;
QUIT_ITEM = &;
SYS_VERSION = 2;
Settings = record
timeString: Str255;
sound,
end;

gSettingsDialog:

gbone, gCounting,
gSeconds_or_minutes:
gNotifyStrH,

DialogPtr;

StringHandle;

gMyNMRec:
gTheEvent:
savedSettings:

NMRec;
EventRecord;
Settings;

procedure HandleEvent;
forward;

---------- > SetNotification

procedure SetNotification;

var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
dummy: OSErr;
fileMenu: MenuHandle;

begin

if gNotify_set then
begin
dummy :=

1;

gNotify_set:
(seconds,
gbefaultSecsH,

icon, alert, secsRadio, minsRadio:

BOOLEAN;
minutes)

<--}

INTEGER;

-
14

gbefaultMinsH:

NMRemove(QElLemPtr(2agMyNMRec));

242

Macintosh Programming Primer

HUnlock(Handle(gNotifyStrH));
end;

GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle(itemHandle)) = ON then
gMyNMRec.nmSIcon := GetResource('SICN',
BASE_RES_ID)
else
gMyNMRec.nmSIcon := nil;

GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,

itemHandle, itemRect);

if GetCtlValue(ControlHandle(itemHandle)) = ON then
gMyNMRec.nmSound := GetResource('snd ',
BASE_RES_ID)

else
gMyNMRec.nmSound := nil;

GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle(itemHandle)) = ON then
begin
MoveHHi(Handle(gNotifyStrH));
HLock(Handle(gNotifyStrH));
gMyNMRec.nmStr := gNotifyStrH*;
end
else
gMyNMRec.nmStr := nil;

dummy := NMInstall(QElemPtr(@agMyNMRec));
fileMenu := GetMHandle(FILE_MENU_ID);
EnableItem(fileMenu, KILL_ITEM);

gNotify_set := TRUE;

{-————————————- > Countbown <--}

procedure CountDown (numSecs: LONGINT);

begi

var
myTime, oldTime, difTime: LONGINT;
myTimeString: Str255;
countDownWindow: WindowPtr;

n

countDownWindow := GetNewWindow(BASE_RES_ID, nil,

WindowPtr(-1));

SetPort(countDownWindow);

ShowWindow(countDownWindow);

TextFace(Lboldl);

TextSize(24);

Working with Dialogs

243

GetDateTime(myTime);
oldTime := myTime;

if gSeconds_or_minutes = minutes then
numSecs := numSecs * SECONDS_PER_MINUTE;

gCounting := TRUE;

while (numSecs > 0) and gCounting do
begin
HandleEvent;
if gCounting then
begin

MoveTo(LEFT, TOP);
GetDateTime(myTime);
if myTime <> oldTime then

begin
difTime := myTime - oldTime;
numSecs := numSecs - difTime;
oldTime := myTime;

NumToString(numSecs,
myTimeString);

EraseRect(countDownWindow”.

portRect);
DrawString(myTimeString);
end;
end;
end;

if gCounting then
SetNotification;

gCounting := FALSE;

DisposeWindow(countDownWindow) ;
end;

{-—————————— > RestoreSettings <-=2

procedure RestoreSettings;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
GetDItem(gSettingsDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
SetIText(itemHandle, savedSettings.timeString);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);

244 Macintosh Programming Primer

SetCtlValue(ControlHandle(itemHandle),
savedSettings.sound);
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlvVvalue(ControlHandle(itemHandle),
savedSettings.icon);
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.alert);
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.secsRadio);
GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.minsRadio);

if savedSettings.secsRadio = ON then
begin
GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);
SetlText(itemHandle, 'seconds');

end
else

begin

GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);

SetlText(itemHandle, 'minutes');

end;

end;
{--——————————— > SaveSettings <--}

procedure SaveSettings;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
GetDItem(gSettingsbDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
GetIText(itemHandle, savedSettings.timeString);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
savedSettings.sound := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);

Working with Dialogs 245

savedSettings.icon := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
savedSettings.alert := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
savedSettings.secsRadio := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsbialog, MINS_RADIO, itemType,
itemHandle, itemRect);
savedSettings.minsRadio := GetCtlValue
(ControlHandle(itemHandle));

{---———-————-- > HandleDialog <--}

procedure HandleDialog;
var
dialogbone: BOOLEAN;
itemHit, itemType: INTEGER;
alarmDelay: LONGINT;
delayString: Str255;
itemRect: Rect;
itemHandle: Handle;
begin
ShowWindow(gSettingsDialog);
SaveSettings;

dialogbDone := FALSE;
while dialogbone = FALSE do
begin
ModalDialog(nil, itemHit);
case itemHit of
SAVE_BUTTON:
begin
HideWindow(gSettingsDialog);
dialogbone := TRUE;
end;
CANCEL_BUTTON:
begin
HideWindow(gSettingsDialog);
RestoreSettings;
dialogbone := TRUE;
end;
SOUND_ON_BOX:

246 Macintosh Programming Primer

begin
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle (itemHandle)) = ON then
SetCtlValue(ControlHandle (itemHandle), OFF)
else
SetCtlvalue(ControlHandle (itemHandle), ON);
end;
ICON_ON_BOX:
begin
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle (itemHandle)) = ON then
SetCtlValue(ControlHandle (itemHandle), OFF)
else
SetCtlValue(ControlHandle
(itemHandle), ON);
end;
ALERT_ON_BOX:
begin
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle (itemHandle)) = ON then
SetCtlValue(ControlHandle (itemHandle), OFF)
else
SetCtlValue(ControlHandle (itemHandle), ON);
end;
SECS_RADIO:
begin
gSeconds_or_minutes := seconds;
GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle (itemHandle), OFF);
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle (itemHandle), ON);
GetDItem(gSettingsDialog, S_OR_M_FIELD, itemType,
itemHandle, itemRect);
SetIText(itemHandle, 'seconds');
GetDItem(gSettingsDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
SetIText(itemHandle, gbefaultSecsH**);
end;
MINS_RADIO:
begin
gSeconds_or_minutes := minutes;
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlvalue(ControlHandle (itemHandle), OFF);
GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle (itemHandle), ON);

Working with Dialogs 247

GetDItem(gSettingsDialog, S_OR_M_FIELD, itemType,
itemHandle, itemRect);
SetIText(itemHandle, 'minutes');
GetDItem(gSettingsDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
SetlText(itemHandle, gDefaultMinsH”*);

{--——————- > HandleFileChoice <--1}

procedure HandleFileChoice (theItem: INTEGER);
var
timeString: Str255;
countDownTime: LONGINT;
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
dummy: OSErr;
fileMenu: MenuHandle;
begin
fileMenu := GetMHandle(FILE_MENU_ID);
case thelItem of
CHANGE_ITEM:
HandleDialog;
START_STOP_ITEM:
if gCounting then
begin
gCounting := FALSE;
SetItem(fileMenu, theltem, 'Start Countdown');
Countdown');
end
else
begin
HiliteMenu(0);
GetDItem(gSettingsDialog, TIME_FIELD,
itemType, itemHandle, itemRect);
GetIText(itemHandle, timeString);
StringToNum(timeString, countDownTime);

DisablelItem(fileMenu, CHANGE_ITEM);
SetItem(fileMenu, theltem, 'Stop Countdown');
CountDown(countDownTime);
EnableItem(fileMenu, CHANGE_ITEM);
SetItem(fileMenu, theltem, 'Start Countdown');
Countdown');
end;

248 Macintosh Programming Primer

KILL_ITEM:
begin
dummy := NMRemove(QElemPtr(agMyNMRec));
HUnlock(Handle(gNotifyStrH));
DisableItem(fileMenu, KILL_ITEM);
gNotify_set := FALSE;
end;
QUIT_ITEM:
begin
gCounting := FALSE;
gbone := TRUE;
end;

{--—————————— > HandleAppleChoice <--1}

procedure HandleAppleChoice (thelItem: INTEGER);
var
accName: Str255;
accNumber, itemNumber, dummy: INTEGER;
appleMenu: MenuHandle;
begin
case theltem of
ABOUT_ITEM:
dummy := NoteAlert(ABOUT_ALERT, nil);
otherwise
begin
appleMenu := GetMHandle(APPLE_MENU_ID);
GetItem(appleMenu, theltem, accName);
accNumber := OpenDeskAcc(accName);
end;

{-——— - > HandleMenuChoice <-=2

procedure HandleMenuChoice (menuChoice: LONGINT);
var
theMenu, theltem: INTEGER;

begin
if menuChoice <> 0 then
begin
theMenu HiWord(menuChoice);

theltem := LoWord(menuChoice);

case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(theltem);

Working with Dialogs 249

FILE_MENU_ID:
HandleFileChoice(theltem);
end;

HiliteMenu(0);
end;

{-mrrmmrreme e > HandleMouseDown <-=3}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inMenuBar:
begin
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
gbone := TRUE;
end;
end;

{-—————————— > HandleEvent<--}

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
begin
dummy := WaitNextEvent(everyEvent, gTheEvent, SLEEP, nil);

case gTheEvent.what of
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));

250

Macintosh Programming Primer

if (BitAnd(gTheEvent.modifiers, cmdKey) <> 0) then

HandleMenuChoice(MenuKey(theChar));
end;

------ > MainLoop <--}

procedure MainLoop;

begin

gbone := FALSE;
gCounting := FALSE;
gNotify_set := FALSE;

while gbone = FALSE do

HandleEvent;

------ > NotifyInit <--1}

procedure NotifylInit;

begin

gNotifyStrH := GetString(BASE_RES_ID);
gMyNMRec.qType := nmType;

gMyNMRec.nmMark :=
gMyNMRec.nmResp := nil;

end;

MARK_APPLICATION;

------ > MenuBarInit<--1}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;
begin
myMenuBar := GetNewMBar(BASE_RES_ID);
SetMenuBar(myMenuBar);
DisposHandle(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
AddResMenu(aMenu, 'DRVR');

DrawMenuBar;
end;

Working with Dialogs 251

{-—--——————— >DialoglInit <--1%

procedure Dialoglnit;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
gbefaultSecsH
gbefaultMinsH

= GetString(DEFAULT_SECS_ID);
= GetString(DEFAULT_MINS_ID);
gSettingsDialog := GetNewDialog(BASE_RES_ID, nil,
WindowPtr(-1));
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);

gSeconds_or_minutes := seconds;
end;

{---———-——————— > Sysé60rLater<--1%

function SyséOrLater: BOOLEAN;
var
status: OSErr;
SysEnvData: SysEnvRec;
dummy: INTEGER;
begin
status := SysEnvirons(SYS_VERSION, SysEnvData);
if (status <> noErr) or
(SysEnvData.systemVersion < $0600) then
begin
dummy := StopAlert(BAD_SYS_ALERT, nil);
Sysé60rLater := FALSE;
end
else
Sysé0rLater := TRUE;
end;

252 Macintosh Programming Primer

{--——-——————- > Reminder <--1%

begin
if Sysé60OrLater then
begin
DialoglInit;
MenuBarlInit;
NotifyInit;

MainLoop;
end;
end.

Running Reminder

Now that your source code is updated, you’re almost ready to run
Reminder. You'll have to do something extra with this project because
the Notification Manager requires some interface code that THINK
Pascal doesn’t normally use. Add Notification.p (it should be in
THINK Pascal’s interface folder) before Reminder.p in your
project.

Because Reminder is more interesting if it works in the
background, use Chapter 8 to put a SIZE resource in Reminder’s
resource file so that you can run it properly in MultiFinder.

Creating applications that are MultiFinder-friendly is very important.
We've touched on the basics of MultiFinder friendliness by using
WaitNextEvent and handling Suspend/Resume events, but
there’s a lot more to learn. If you want to write MultiFinder-friendly
applications, read the Programmer’s Guide to MultiFinder from
Apple and APDA.

To be truly MultiFinder-friendly, Reminder would have to worry
about things like scrap conversion (we discuss the scrap in
Chapter 7), mouse regions, sleep times, and much more.

Select Go from the Project menu. If you run into any compilation
problems, make sure that you put Notification.p before
Reminder.p in the project listing. Consult the debugging tips found
in Appendix C. When asked to save changes before running, click
¥Yes. Reminder should be up and running (Figure 6.40).

Working with Dialogs 253

Reminder does not display any windows initially. The File menu
should display four menu items: Change Settings, Start
Countdown, Kill Notification, and Quit. If Change Settings is
selected, the alarm settings dialog box appears (Figure 6.41). You can

" & File qi K

Figure 6.40 Running Reminder.

r

1 File [T K

Alarm goes off in seconds

(4 Sound on Use:
(] Rotate Icon ® Seconds
[Display Rlert () Minutes

[save | [cancel |

Figure 6.41 Using the Change Settings dialog box.

254

Macintosh Programming Primer

select the countdown time in minutes or seconds, and you can choose
the method or methods by which you wish to be notified. Save will
keep the settings and close the dialog box. Cancel will restore the
last saved settings and close the dialog box.

Start Countdown will begin the countdown: The countdown
window is displayed, and the timer will count down in seconds. In the
File menu, Start Countdown is changed to $top Countdown
and may be selected to cancel the countdown and close the count-
down window. During countdown, the Change Settings item is
dimmed. When the countdown reaches zero, up to three methods will
be used to notify you that the time has been reached (Figure 6.42).

Once the notification is set, the Kill Notification item under the
File menu will become available. When it is used to cancel a
notification, it will become dim again.

If you installed a SIZE resource in your Reminder.mw.rsrc file,
compile Reminder as an application and run it under MultiFinder.
Use Change Settings to set the countdown time to 20 seconds and
then start the countdown. Before time runs out, click on another
application’s window (such as the Finder) so that the countdown
window is in the background. The countdown should continue and,
when it reaches zero, you should be notified. If this doesn’t work,
your S1IZE resource may need to be checked.

Choose Quit from the File menu. Let’s take a look at the code.

T File £t

Zounds!!! It's time...

Figure 6.42 The Notification Manager comes through.

Walking Through the Reminder Code

First, look at the overall structure of Reminder as shown in Figure 6.43.

As we have in earlier chapters, we'll examine the code in the order
that it executes.

First, set up your constants. Most of them relate to the Settings
dialog box. Each dialog item is given an appropriate name.
SAVE_BUTTON is dialog item number 1, CANCEL_BUTTON is dialog
item number 2, and so on. DEFAULT_SECS_ID and
DEFAULT_MINS_ID are the resource IDs of the "STR ' resources
used as second and minute defaults in the Settings dialog.

ON and OFF are set to 1 and 0 for ease of use in setting controls.
SYS_VERSION is set to 2. You use this in the Sys60rLater
function to indicate which version of SysEnvirons to call.

SysEnvirons fills out a record that describes the Mac operating
environment. Most important, you can use it to tell what version of
the system is running and, therefore, whether or not Toolbox
routines like WaitNextEvent or the Notification Manager are
present. SysEnvirons is described completely n Inside
Macintosh (V:5).

MainLoop
if not done
HandleEvent

f mouseDown(or cmdkey)
[HandleMouseDown

if mouse clicked in menu bar

[HandleMenuChoice
if user chose:

apple File
menu menu

andleApple if user chose:
hoice chang start countdown

HandleCialog CountDo
ountDown

if cancel button

Settings

Figure 6.43 Reminder.

255

256 Macintosh Programming Primer

program Reminder;
uses
Notification;

const
BASE_RES_ID =
ABOUT_ALERT = 401;
BAD_SYS_ALERT = 402;

SLEEP = 60;

SAVE_BUTTON =
CANCEL_BUTTON
TIME_FIELD = &4;
S_OR_M_FIELD =
SOUND_ON_BOX =
ICON_ON_BOX =
ALERT_ON_BOX
SECS_RADIO =
MINS_RADIO =

DEFAULT_SECS_ID

_ 401;
DEFAULT_MINS_ID

402;

ON = 1;
OFF = 0;

SECONDS_PER_MINUTE = 60;

TOP = 25;
LEFT = 12;

MARK_APPLICATION = 1;

APPLE_MENU_ID = BASE_RES_ID;
FILE_MENU_ID = BASE_RES_ID + 1;
ABOUT_ITEM = 1;

CHANGE_ITEM = 1;
START_STOP_ITEM = 2;
KILL_ITEM = 3;
QUIT_ITEM =

SYS_VERSION = 2;

The variable gSettingsDialog will point to your Settings
dialog. (Remember, you can treat a DialogPtr just like a
WindowPtr. For example, you could pass gSettingsDialog as an
argument to SetPort.)

Working with Dialogs 257

When gbone is set to TRUE, the program will exit. gCountingis
TRUE only when the countdown window is displayed. gHoti fy_set
is TRUE when a notification has been set. gSeconds_or_minutes
is set to seconds or minutes, depending on the setting in the
Settings dialog. It is reset to FALSE when Kill Notification is
selected from the Fil@ menu.

gbefaultSecsH and gbefaultMinsH are handles to the
default time 'STR ' resources.dialog items. gNotifyStrH and
gMyNMRec are used by the Notification Manager.

The settings structure is used to hold all the settings from
the alarm settings dialog box, in case they need to be restored (if the
user clicks the Cancel button).

type

var

Settings = record
timeString: Str255;
sound, icon, alert, secsRadio,
minsRadio: INTEGER;
end;

gSettingsDialog: DialogPtr;

gbone, gCounting, gNotify_set: BOOLEAN;
gSeconds_or_minutes: (seconds, minutes);

gNotifyStrH, gbefaultSecsH, gbefaultMinsH: StringHandle;
gMyNMRec: NMRec;

gTheEvent: EventRecord;

savedSettings: Settings;

procedure HandleEvent;
forward;

Reminder starts by testing to see if System 6.0 or later is installed.
If it is, you can use the Notification Manager. Initialize your dialogs,
your menus, and the notification data structure.

Finally, enter the MainLoop.

{--———————————— > Reminder <=--}

begin
if Sysé0OrLater then
begin
DialogInit;
MenuBarInit;
NotifyInit;

258

Macintosh Programming Primer

MainLoop;
end;
end.

Sysé0rLater will return TRUE if System version 6.0 or later is
installed. Otherwise, it returns FALSE. The key to this function lies in
the call to SysEnvirons. Pass in the version number of
SysEnvirons that you'd like to use. In this case, use SYS_VERSION,
which is set to 2. Apple will eventually add new features to the
SysEnvirons call, but theyll always provide compatibility with older
versions via the version parameter.

SysEnvData is a data structure that gets filled by SysEnvirons.
One of the fields, systemVersion, gets filled with the current
system version number. The first two bytes get the major version
number, and the last two bytes get the minor version number. (In
version 5.3, the major version number is 5, and the minor version
number is 3.) As long as the version number is greater than $0600
(hex for 6*256), you know you have a system with a major version
greater than 6 .0.

If there is a problem, call StopAlert to put up your “You don’t
have version 6.0 or later” alert.

(Although Sys60rLater tests for 6.0, you generally don’t want users
to run your programs on any version of System 6 older than 6.02.)

--------- > Sysé0rLater <--}

function Sysé60OrLater: BOOLEAN;

status: OSErr;
SysEnvData: SysEnvRec;
dummy: INTEGER;

status := SysEnvirons(SYS_VERSION, SysEnvData);
if (status <> noErr) or (SysEnvData.systemVersion

< $0600) then

begin
dummy := StopAlert(BAD_SYS_ALERT, nil);
Sysé60rLater := FALSE;

end

else

Sysé60rLater := TRUE;

Working with Dialogs 259

Dialoglnit starts by loading the default second and minute
settings into the StringHandles gDefaultSecsH and gbefault
MinsH. The Settings dialog is then loaded from the resource file.
When you designed the dialog box in ResEdit, you set it up to be
invisible. When the time is right, you can call ShowWindow to make
it visible.

Call GetDItem and SetCtlValue in pairs to set the
SECS_RADIO, SOUND_ON_BOX, ICON_ON_BOX,and ALERT_ON_BOX
items to ON.

{—mmmmrm e >Dialoglnit <--}

procedure Dialoglnit;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
gbefaultSecsH
gbefaultMinsH

= GetString(DEFAULT_SECS_ID);
= GetString(DEFAULT_MINS_ID);
gSettingsDialog := GetNewDialog(BASE_RES_ID, nil,
WindowPtr(-1));
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle), ON);

gSeconds_or_minutes := seconds;
end;

MenuBarInit is similar to the earlier menu routines you've seen.
First, you load your MBAR resource (disposing of the handle after you
use it), and then you get a handle to the % menu so you can add all
the desk accessories to it. Next, you get a handle to the Fil@ menu so
you can change menu items later on. Finally, draw the menu bar:

260 Macintosh Programming Primer

(- > MenuBarlInit <--1}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;
begin
myMenuBar := GetNewMBar(BASE_RES_ID);
SetMenuBar(myMenuBar);
DisposHandle(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
AddResMenu(aMenu, 'DRVR');

DrawMenuBar;
end;

The Macintosh operating system, like most other operating
systems, supports a set of operating system queues. You're
already familiar with the Event Manager’s queue. The Notification
Manager maintains a queue, as well. Under MultiFinder, several
applications might post notifications at the same time. Each
notification request is handled by the operating system and posted
on the Notification Manager’s queue.

In NotifyInit,loadthe 'STR ' you want to appear in the noti-
fication alert with GetString. Then, qType is set to nmType. This
tells the part of the operating system that manages queues that this
request is destined for the Notification Manager’s queue.

Next, nmMark is set to MARK_APPLICATION, which means the
(¢) will be placed next to Reminder in the % Menu (if you’re in
MultiFinder). NMResp is set to nil, which means you have no
response routine after the notification has been successfully made.

{-——-—————— > Notifylnit <--}
procedure NotifylInit;
begin
gNotifyStrH := GetString(BASE_RES_ID);
gMyNMRec.qType := nmType;

gMyNMRec.nmMark
gMyNMRec.nmResp
end;

MARK_APPLICATION;
nil;

Working with Dialogs 261

MainLoop initializes gDone, gCounting, and gNotify_set.
It then loops on HandlLeEvent.

{--—————————— > MainLoop <--12

procedure MainLoop;
begin
gbone := FALSE;
gCounting := FALSE;
gNotify_set := FALSE;

while gbone = FALSE do
HandleEvent;
end;

The HandleEvent routine is set up much like HandleEvent in
Chapter 5. Call WaitNextEvent to see what is in the event queue.
(Because you’re running System 6.0 or later, you know that
WaitNextEvent is installed.) Use a switch to find out what the
event was. If the mouse button is depressed, the
HandleMouseDown routine is called. If a keydown or autoKey
event occurs, check to see if the Command key was depressed. If so,
the HandleMenuChoice routine is called. If you don’t check for a
keydown event first, you won’t ever see the command key sequence
(for example, when you type 0 to Qui t).

We’ve left out some of the standard event handling, such as
updateEvts, to simplify the code. Don’t worry—Reminder will work
just fine without the extra code.

{--———————- > HandleEvent <--}

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
begin
dummy := WaitNextEvent(everyEvent, gTheEvent, SLEEP, nil);

case gTheEvent.what of
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));
if (BitAnd(gTheEvent.modifiers, cmdKey) <> 0) then
HandleMenuChoice(MenuKey(theChar));
end;
end;
end;

262 Macintosh Programming Primer

HandleMouseDown is the same as its Chapter 5 counterpart:
{-——————— > HandleMouseDown <--}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inMenuBar:
begin
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
gbone := TRUE;
end;
end;

HandleMenuChoi ce is also similar to its Chapter 5 counterpart:

(- > HandleMenuChoice <-=-3}

procedure HandleMenuChoice (menuChoice: LONGINT);

var
theMenu, theltem: INTEGER;
begin
if menuChoice <> 0 then
begin
theMenu := HiWord(menuChoice);
theltem := LoWord(menuChoice);
case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(thelItem);
FILE_MENU_ID:
HandleFileChoice(theltem);
end;
HiliteMenu(0);
end;

end;

Working with Dialogs 263

It's deja vu all over again.

—————— > HandleAppleChoice <--}

procedure HandleAppleChoice (theltem: INTEGER);

var

accName: Str255;
accNumber, itemNumber, dummy: INTEGER;
appleMenu: MenuHandle;

begin

case theltem of
ABOUT_ITEM:

dummy := NoteAlert(ABOUT_ALERT, nil);

otherwise

begin

appleMenu := GetMHandle(APPLE_MENU_ID);
GetItem(appleMenu, theltem, accName);
accNumber := OpenDeskAcc(accName);

end;

HandleFileChoice takes care of the four items under the File
menu. If Change Settings is selected call HandleDialog. If
Start Countdown (or its counterpart, Stop Countdown) is
selected, check to see if you are currently counting down. If you are,
then the menu item must have been $top Countdown, so change
the item back to Start Countdown and set gCounting to FALSE
to stop the countdown.

If you were not counting down, $tart Countdown was the item
selected. In this case, unhighlight the File menu (try commenting this
line to get a feel for why this is necessary). Then, pull the countdown
time from the settings dialog and convert it to a number. Dim the
Change Settings item (you don’t want to change the settings while
you're actually counting down), and change the S$tart Countdown
menu item to Stop Countdown. Next, call CountDown. When
CountDown returns, reenable the Change Settings item and
change $top Countdown to Start Countdown.

If the menu item selected was Kill Notification, call NMRemove to
remove the notification from the Notification Manager’s queue. Then,
unlock the notification string you locked in SetNotification. (We
discuss handle locking and unlocking in a Tech Block a little later on.)
Also, dim the Kill Notification item, since the notification is no
longer active. Finally, set gNotify_set to FALSE, so everyone else
knows that the notification is no longer active.

264 Macintosh Programming Primer

If Quit is selected, set gCounting to FALSE so you'll drop out of
the counting loop (if the selection was made during the countdown).
In addition, set gbDone to FALSE.

{-——————————— > HandleFileChoice <--}

procedure HandleFileChoice (thelItem: INTEGER);
var
timeString: Str255;
countDownTime: LONGINT;
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
dummy: OSErr;
fileMenu: MenuHandle;
begin
fileMenu := GetMHandle(FILE_MENU_ID);
case theltem of
CHANGE_ITEM:
HandleDialog;
START_STOP_ITEM:
if gCounting then
begin
gCounting := FALSE;
SetItem(fileMenu, theltem, 'Start Countdown');
end
else
begin
HiliteMenu(0);
GetDItem(gSettingsDialog, TIME_FIELD,
itemType, itemHandle, itemRect);
GetIText(itemHandle, timeString);
StringToNum(timeString, countDownTime);

DisableItem(fileMenu, CHANGE_ITEM);
SetItem(fileMenu, theltem, 'Stop Countdown');
CountDown(countDownTime);
EnablelItem(fileMenu, CHANGE_ITEM);
SetItem(fileMenu, theltem, 'Start Countdown');
end;
KILL_ITEM:
begin
dummy := NMRemove(QElemPtr(agMyNMRec));
HUnlock(Handle(gNotifyStrH));
DisableItem(fileMenu, KILL_ITEM);
gNotify_set := FALSE;
end;
QUIT_ITEM:
begin

Working with Dialogs 265

end;

gCounting := FALSE;
gbDone := TRUE;

As with Chapter 5’s Timer, we still haven’t added support for copy,
cut, and paste operations to desk accessories. Look at
WindowMaker in Chapter 7 to see how to support desk
accessories with the Edit menu.

HandleDialog is the key to Reminder’s modal dialog. As we
discussed in the beginning of the chapter, modal dialogs are
implemented in a loop. First ModalDialog is called, returning the
number of the selected item. The selected item is processed and, if it
was an exit item, the loop ends.

HandleDialog is a long routine, but it is not complex. Most of it is
a big case statement with branches for most of the items in the dialog.

Start by making the Settings dialog visible and saving the settings
you start off with (in case the user clicks on the Cancel button). You
then enter the ModalDialog loop. If the user selects an exit item
(in this case, Save or Cancel), dialogDone is set to TRUE. If the
user selects the Save button, make the dialog window invisible and
set dialogDone to TRUE.

If the user selects the Cancel button, make the dialog window
invisible and restore the old settings. (We made the window invisible
first because we didn’t want the user to watch as we changed the
items back. It’s not a pretty sight.) Again, set dialogDone to TRUE
to drop out of the while loop.

————— > HandleDialog <--3}

procedure HandleDialog;

var

begin

dialogbDone: BOOLEAN;
itemHit, itemType: INTEGER;
alarmDelay: LONGINT;
delayString: Str255;
itemRect: Rect;

itemHandle: Handle;

ShowWindow(gSettingsDialog);
SaveSettings;

266 Macintosh Programming Primer

dialogbone := FALSE;
while dialogbone = FALSE do
begin
ModalDialog(nil, itemHit);
case itemHit of
SAVE_BUTTON:
begin’
HideWindow(gSettingsDialog);
dialogbone := TRUE;
end;
CANCEL_BUTTON:
begin
HideWindow(gSettingsDialog);
RestoreSettings;
dialogbone := TRUE;
end;

If the user clicks in the sound, icon, or alert checkbox, set them to
OFF if they were ON or to ON if they were OFF.

SOUND_ON_BOX:
begin
GetDItem(gSettingsDialog,
SOUND_ON_BOX, itemType, itemHandle,
itemRect);
if GetCtlValue(ControlHandle
(itemHandle)) = ON then
SetCtlValue(ControlHandle
(itemHandle), OFF)
else
SetCtlValue(ControlHandle
(itemHandle), ON);
end;
ICON_ON_BOX:
begin
GetDItem(gSettingsDialog,
ICON_ON_BOX, itemType, itemHandle,
itemRect);
if GetCtlValue(ControlHandle
(itemHandle)) = ON then
SetCtlvValue(ControlHandle
(itemHandle), OFF)
else
SetCtlValue(ControlHandle
(itemHandle), ON);
end;
ALERT_ON_BOX:
begin

Working with Dialogs 267

GetDItem(gSettingsDialog,
ALERT_ON_BOX, itemType, itemHandle,
itemRect);
if GetCtlvValue(ControlHandle
(itemHandle)) = ON then
SetCtlValue(ControlHandle
(itemHandle), OFF)
else
SetCtlValue(ControlHandle
(itemHandle), ON);
end;

If the user clicks in the $econds radio button, change the global
gSeconds_or_minutes to seconds, turn off the Minutes radio
button, and turn on the 5econds radio button. (It’s important to turn
off the old button and then turn on the new one, so the user never sees
two radio buttons on at the same time.) Next, set the static text field
to read seconds, and place the default value loaded into
gbefaultSecsH in the editable text field (the resource was loaded
in DialogInit). Lock the string handle, because you’re passing a
pointer to the string and not the string’s handle to SetIText.

Remember, a handle is a pointer to a pointer, allowing the system
to move the data around in memory without changing the value of
the handle. In this case, you need to use a pointer to your string

. instead of a handle to it, so you can't afford to let the system move
your data around (relocate it). You can solve this problem in one of
two ways. You can lock the handle and its data with HLo ck or you
can make a copy of the data and dispose of the handle. Each of
these techniques has its place. For simplicity, we used the HLock
method, but this method is not necessarily the best. For more
information, read about the Memory Manager in Inside Macintosh
(1: 9-51).

If the user clicks in the Minutes radio button, you will go through
a similar exercise, using a default value in gbefaultMinsH in the
editable text field.

SECS_RADIO:
begin
gSeconds_or_minutes := seconds;
GetDItem(gSettingsDialog,
MINS_RADIO, itemType, itemHandle, itemRect);

268 Macintosh Programming Primer

SetCtlvValue(ControlHandle (itemHandle), OFF);

GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);

SetCtlValue(ControlHandle (itemHandle), ON);

GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);

SetIText(itemHandle, 'seconds');

GetDItem(gSettingsDialog, TIME_FIELD, itemType,
itemHandle, itemRect);

SetIText(itemHandle, gDefaultSecsH”*);

end;
MINS_RADIO:
begin

gSeconds_or_minutes := minutes;

GetDItem(gSettingsbDialog, SECS_RADIO, itemType,
itemHandle, itemRect);

SetCtlValue(ControlHandle (itemHandle), OFF);

GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);

SetCtlValue(ControlHandle (itemHandle), ON);

GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);

SetIText(itemHandle, 'minutes');

GetDItem(gSettingsbDialog, TIME_FIELD, itemType,
itemHandle, itemRect);

SetIText(itemHandle, gDefaultMinsH”%);

end;
end;
end;
end;

SaveSettings uses GetDItem and either GetIText or

GetCtlValue to fill the savedSettings data structure with the

values currently set in the settings dialog items.

{--—————— > SaveSettings <--1}

procedure SaveSettings;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
GetDItem(gSettingsbDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
GetIText(itemHandle, savedSettings.timeString);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);

Working with Dialogs 269

savedSettings.sound := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
savedSettings.icon := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
savedSettings.alert := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
savedSettings.secsRadio := GetCtlValue
(ControlHandle(itemHandle));
GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);
savedSettings.minsRadio := GetCtlValue
(ControlHandle(itemHandle));
end;

RestoreSettings uses GetDItem, SetIText, and
SetCtlValue to restore the settings dialog items to the values
saved in the savedSettings data structure. Use the value saved
in savedSettings.secsRadio to determine if the static text
field should read seconds or minutes.

{--———————————— > RestoreSettings <--1}

procedure RestoreSettings;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
begin
GetDItem(gSettingsDialog, TIME_FIELD, itemType,
itemHandle, itemRect);
SetlIText(itemHandle, savedSettings.timeString);
GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.sound);
GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.icon);
GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.alert);

270 Macintosh Programming Primer

GetDItem(gSettingsDialog, SECS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.secsRadio);
GetDItem(gSettingsDialog, MINS_RADIO, itemType,
itemHandle, itemRect);
SetCtlValue(ControlHandle(itemHandle),
savedSettings.minsRadio);

if savedSettings.secsRadio = ON then
begin
GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);
SetIText(itemHandle, 'seconds');
end
else
begin
GetDItem(gSettingsDialog, S_OR_M_FIELD,
itemType, itemHandle, itemRect);
SetIText(itemHandle, 'minutes');
end;
end;

CountDown takes the number of seconds (or minutes) to count
down as its only argument, puts up the countdown window, and
counts down in seconds.

Start by loading the countdown window from the resource file. Set
the current GrafPort to the countdown window, and make it
visible. Next, make the current font appear in boldface. Finally, set
the current font’s size to 24 point.

{-———————— > CountDown<--1

procedure CountDown (numSecs: LONGINT);
var
myTime, oldTime, difTime: LONGINT;
myTimeString: Str255;
countDownWindow: WindowPtr;
begin
countDownWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
SetPort(countbDownWindow);
ShowWindow(countDownWindow);
TextFace(Lboldl);
TextSize(24);

Working with Dialogs 271

Your next step is to get the current time (in seconds since midnight,
January 1, 1904), and to convert the countdown time from minutes to
seconds, if necessary. Also, set the global gCounting to TRUE.

GetDateTime(myTime);
oldTime := myTime;

if gSeconds_or_minutes = minutes then
numSecs := numSecs * SECONDS_PER_MINUTE;

gCounting := TRUE;

While you count down, call HandLeEvent. This lets the user drag
the countdown window around the screen or make menu selections
while you count down. This is very important, because it keeps your
program from falling into a mode. Users won’t feel as though they’re
in countdown mode because they’ll be able to pull down desk
accessories and, if they’re in MultiFinder, switch to other applications.

Every time my T ime changes, a second has passed, and you have to
redraw the countdown time. Call EraseRect to clear the window
and redraw the time.

while (numSecs > 0) and gCounting do
begin
HandleEvent;
if gCounting then
begin

MoveTo(LEFT, TOP);
GetDateTime(myTime);
if myTime <> oldTime then

begin
difTime := myTime - oldTime;
numSecs := numSecs - difTime;
oldTime := myTime;

NumToString(numSecs,
myTimeString);

EraseRect(countDownWindow”?

.portRect);
DrawString(myTimeString);
end;
end;
end;

If gCounting is still TRUE, no one interrupted the countdown,
and you can set your notification. Finally, set gCounting to FALSE
and dispose of the countdown window.

272 Macintosh Programming Primer

if gCounting then
SetNotification;

gCounting := FALSE;
DisposeWindow(countDownWindow);
end;

If a notification is already set, remove it so that you can set a new
one. If appropriate, load the small icon (' SICN') from the resource
file and put its handle in the notification data structure. Do the same
for the 'snd ' resource and the string you loaded earlier.

Then, call NMinstall to set the notification. Also turn on the Kill
Notification item in the File menu (after getting the handle for it).
Finally, set gNotify_set to TRUE.

{--———————————— > SetNotification <--}

procedure SetNotification;
var
itemType: INTEGER;
itemRect: Rect;
itemHandle: Handle;
dummy: OSErr;
fileMenu: MenuHandle;
begin
if gNotify_set then
begin
dummy := NMRemove(QElemPtr(@agMyNMRec));
HUnlock(Handle(gNotifyStrH));
end;

GetDItem(gSettingsDialog, ICON_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle(itemHandle)) = ON then
gMyNMRec.nmSIcon := GetResource('SICN',
BASE_RES_ID)
else
gMyNMRec.nmSIcon := nil;

GetDItem(gSettingsDialog, SOUND_ON_BOX, itemType,
itemHandle, itemRect);
if GetCtlValue(ControlHandle(itemHandle)) = ON then
gMyNMRec.nmSound := GetResource('snd ',
BASE_RES_1ID)
else
gMyNMRec.nmSound := nil;

GetDItem(gSettingsDialog, ALERT_ON_BOX, itemType,
itemHandle, itemRect);

Working with Dialogs 273

end;

if GetCtlValue(ControlHandle(itemHandle)) = ON then
begin

MoveHHi(Handle(gNotifyStrH));
HLock(Handle(gNotifyStrH));
gMyNMRec.nmStr := gNotifyStrH*;

end

gMyNMRec.nmStr := nil;

:= NMInstall(QELemPtr(agMyNMRec));

fileMenu := GetMHandle(FILE_MENU_ID);
EnableItem(fileMenu, KILL_ITEM);
gNotify_set := TRUE;

Note that the routine MoveHH1i was called before gNotifyStrH
was locked. Normally, before you work with a pointer to a handled
object, you HLock the handle. When you’re done with the pointer,
you HUnlock the handle again. As we mentioned earlier, HLock
creates an obstruction in the middle of the application heap. If the
handle will be HLocked only for a short period of time (a few lines of
code), this won’t be a problem. In Reminder, gNotifyStrH is kept
HLocked from the time the notification is installed until the
notification is removed. That’s too long to keep a handle locked in the
middle of the heap. MoveHH i reduces this problem by relocating the
handled memory as high in the heap as possible. Locking the handle
at this point creates an obstruction at one end of the heap instead of
in the middle.

The topic of memory management on the Macintosh is important,
but it is beyond the scope of this book. Volume II of the Primer
contains a complete description of the Memory Manager. As your
programs get larger and more sophisticated, you’ll make more use of
this part of the Toolbox.

In Review

This chapter examined some of the oldest parts of the Macintosh
Toolbox (dialog boxes), together with some of the newest parts
(SysEnvirons and the Notification Manager). You built an applica-
tion that used most of the Toolbox routines presented in the previous
three chapters.

274

Macintosh Programming Primer

In Chapter 7, we’ll address some of the programming issues that
we have not touched on so far, such as error-handling, managing
multiple windows, using the clipboard, printing, and working with
scroll bars. We'll end with a brief sojourn into the Macintosh Sound
Manager.

Congratulations! The toughest part of the book is behind you.

Toolbox
Potpourri

Congratulations! Now that you
have the Macintosh interface
under your belt, you’'ll see

how to implement other traits
that Mac programs should
possess: multiple window
handling, error-checking, the
Clipboard, file and print
management, scroll bars

and sound.

THE FIRST APPLICATION, WindowMaker, shows you how to manage a
dynamic windowing environment. In addition to supporting window
creation, movement, and disposal, WindowMaker introduces an
error-handling mechanism that you can use in your own applications.

Next, the desk scrap, more commonly known as the Clipboard, is
introduced. The Scrap Manager utilities that support cut, copy, and
paste operations are discussed. The second application, ShowClip,
uses these routines to display the current scrap in a window.

The third application, PrintPICT, introduces the File Manager and
the Printing Manager. You’ll learn how to support the standard
Open, Save, and Save As... File menu options in your own code.

Next, we present a discussion on the use of scroll bars. The fourth
application, Pager, uses the Control Manager, as well as the Resource
Manager, to build a kinescopic display of PICT resources.

For the piece de résistance, we present Sounder, an alternative to
the dreary world of SysBeep.

Keeping Track of Windows: WindowMaker

Most applications on the Macintosh allow you to open more than one
window at a time. WindowMaker lets you create as many windows
as you desire. After they are created, you can select, move, and close
any window.

WindowMaker Specifications
Here’s how WindowMaker works:

1. It initializes the menu bar.
It loads a PICT resource.

3. It enters the Main Event Loop and performs the following
functions.

4. It creates a new window whenever the NewWw menu item is
selected, centering the PICT in the window.

5. It closes the currently selected window whenever the Close
menu item is selected.

It handles events for moving and updating windows.

7. It quits when the Quit menu item is selected.

277

278

Macintosh Programming Primer

WindowMaker is the first Primer program that does error-
checking. Every time a Toolbox function is called, there is the
possibility that it may not execute properly. For example, if you call
GetMenu to load a MENU resource, and the operating system can’t
find the resource, the call returns an error code. Your program should
check for and respond to these error codes. If you ignore Toolbox error
codes, you do so at your own risk. Check Toolbox calls the way we do
it in WindowMaker and the other programs in this chapter.
WindowMaker also fully supports desk accessory editing operations.

Because WindowMaker uses the concepts of the previous chapters,
and also handles error-checking and multiple windows, you should
consider using it as the model for your own applications.

Setting up the WindowMaker Project

Create a folder called WindowMaker in your source code folder.
Then use ResEdit to create a new file inside the new folder
called WindowMaker.m.rsrc. Build a purgeable WIND with an ID
of 400. Figure 7.1 shows the specifications of the WIND you need.

E[JE WIND ID = 400 from WindowMaker.n.rsrc =

Window title:

top 45 bottom | 200
left 5 right |200
prociD |4 refCon |0

[visible X goAwayFlag

Figure 7.1 WIND resource for WindowMaker.

Toolbox Potpourri 279

Now, create the menu resources. First, build the MBAR resource
(Figure 7.2). Change the MBAR resource ID to 400. Now build the
individual MENU items. Figure 7.3 displays the ®, File, and Edit
menus for WindowMaker. (The Edit menu is the same as that in
Chapter 5’s Timer program and Chapter 6’s Reminder program; copy
resources from the older programs whenever possible.)

=[J=— MBAR ID = 400 from WindowMaker.n.rsrc =
K
* of menus 3 |
Rk
fenu res 1D
KRR KK
Menu res 1D 401
ARk
Menu res |0 402
R AR
||
o
|

Figure 7.2 MBAR resource for WindowMaker.

280 Macintosh Programming Primer

MENU "Apple" 1D = 400 from WindowMaker.n.rsrc =c——

Entire Menu: Enabled
About WindowMaker K|
Title: O |
@ & (Apple menu)
Color
Title:
Item Text Default: |:|
| Menu Background: D
Ell MENU "File" 1D = 401 from WindowMaker.m.rsrc |
Entire Menu: Enabled
Neww EN
Close EW| | Tite: ® R |
Quit *®0 .
7} % (Apple menu)
Color
Title: [
Item Texrt Default: E
] Menu Background: |:]
=——= MENU "Edit" ID = 402 from WindowMaker.m.rsrc
Entire Menu: Enatled
fngn
Title: @ ||
i) % (Appie menu)
Color
Title: E:l
item Text Default: [
] Menu Background: l

Figure 7.3 MENU resources for WindowMaker.

Next, create the two DITL resources, one for the about box, the
other for the new error-checking routines. Change the resource IDs to
the ones shown in Figure 7.4. To frame those two DITL resources,
build the two ALRT resources shown in Figure 7.5.

Toolbox Potpourri 281

I |
L]
i

DITL "About" 1D = 400 from WindowMak

Another fine program from the
Mac Programming Primer! i
©1990, D. Mark & C. Reed!!!

[

Item# | Type Enabled | Top Left Bottom Right Text/Resource ID
1 Button Yes 71 17 91 177 oK
2 Static Text Yes 7 70 61 280 Another fine
program from
the Mac
Programming
Primer!
©1990, D.
Mark & C.
Reedlll
ECIEDITL "Fatal Error" 1D = 401 from Window
An incredibly fatal error has
{just occurred: "0
[
Item#* | Type Enabled | Top Left Bottom Right | Text/Resource ID
1 Button Yes 86 17 106 177 Gasp!
2 Static Text Yes S 67 71 283 An incredibly
fatal error
has just
occurred: *0

Figure 7.4 DITL resources for WindowMaker.

282

Macintosh Programming Primer

==

ALRT "About" 1D = 400 from WindowMaker.m.|

Top Bottom | 142

Left 40 Right |332

Itemsll]

Stage 1 []#2 bold X Drawn
Stage 2 []#2 bold] Drawn
Stage 3 []#2 bold X Drawn
Stage 4 []#2 bold [X] Drawn

Sound (0-3)

ot | o | ot | -

SIEALRT "Fatal Error" ID = 401 from WindowMake

Top Bottom | 156

Left 40 Right 332

ltemsll]

Stage 1 [#2 bold X Drawn
Stage 2 []#2 bold X Drawn
Stage 3 [] #2 bold X Drawn
Stage 4 []#2 bold X Drawn

Sound (0-3)

Figure 7.5 ALRT resources for WindowMaker.

Toolbox Potpourri 283

All you need now are the PICT resources that you'll display in the
WindowMaker windows and the STR resources that will be used in
the error-checking routine. Use Chapter 3’s ShowPICT PICT
resource, or just cut and paste a picture from the Scrapbook. Be sure
the resource ID for the PICT is 400 and mark the PICT as
purgeable. Finally, add the four STR resources shown in Figure 7.6 to
the WindowMaker.n.rsrc file. Again, be sure to change the
resource IDs of each resource to those shown in the figure and mark
each STR as purgeable. When you're done, the resource window of
WindowMaker .. rsrc should look like Figure 7.7.

EJESTR "MBAR Error” ID = 400 from WindowMaker.nw.rsrcE
>
The String Couldn't load the MERR resource! |
Data $| |
e
|
E[JE STR "MENU Error” 1D = 401 from WindowMaker.m.rsrc 5
i
The String
Data
4
|
=[J= STR "PICT Error” ID = 402 from WindowMaker.m.rsrc S|
>
The String Couldn't load the PICT resource!]
Data l
W
=
SJE STR "WIND Error” 1D = 403 from WindowMaker.mw.rsrc =
i
The String
Data
]
|

Figure 7.6 S TR resources for WindowMaker.

284 Macintosh Programming Primer

E[E WindowMaker.m.rsrc E0=E

ALRT DITL MBAR
H /g ———
(55}
PICT STR

W IND

ke

‘ Figure 7.7 WindowMaker resources completed.

Now, you’re ready to launch THINK Pascal. When prompted for a
project to open, create a new project in the WindowMaker folder
called WindowMaker .n. Next, use the Run Options... dialog box to
add the resource file to the project.

Create a new source file (call it WindowMaker.p), and add it to
WindowMaker .. Here’s the source code for WindowMaker. p:

program WindowMaker;
const
BASE_RES_ID = 400;
APPLE_MENU_ID = 400;
FILE_MENU_ID 401;
EDIT_MENU_ID 402;

ABOUT_ITEM = 1;
ABOUT_ALERT = 400;
ERROR_ALERT_ID = 401;

NO_MBAR BASE_RES_ID;
NO_MENU BASE_RES_ID + 1;
NO_PICTURE = BASE_RES_ID + 2;
NO_WIND = BASE_RES_ID + 3;

NEW_ITEM =
CLOSE_ITEM
QUIT_ITEM = 3

1;

2;

Toolbox Potpourri 285

UNDO_ITEM = 1;
CUT_ITEM = 3;
COPY_ITEM = &
PASTE_ITEM
CLEAR_ITEM

O\ V1N,
Ne N.

EDGE_THRESHOLD = 30;

WINDOW_HOME_LEFT = 5;
WINDOW_HOME_TOP = 45;
NEW_WINDOW_OFFSET = 20;

MIN_SLEEP = 60;
LEAVE_WHERE_IT_IS = FALSE;

WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

var
gbone, gWNEImplemented: Boolean;
gTheEvent: EventRecord;
gNewWindowLeft, gNewWindowTop: INTEGER;

{---———————- > ErrorHandler <--1}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorString
NIL_STRING);

HAA

, NIL_STRING, NIL_STRING,

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;

286 Macintosh Programming Primer

end;
{-———mmmreee e > CenterPict <--}
procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);
var
windRect, pictureRect: Rect;
begin

windRect := myRect;

pictureRect := thePicture*”.picFrame;

myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +

windRect.top;

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +

windRect.left;

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);

{--————————— > DrawMyPicture <--}

procedure DrawMyPicture (pictureWindow: WindowPtr);
var
myRect: Rect;
thePicture: PicHandle;
begin
myRect := pictureWindow”.portRect;

thePicture := GetPicture(BASE_RES_ID);
if thePicture = nil then
ErrorHandler(NO_PICTURE);

CenterPict(thePicture, myRect);
SetPort(pictureWindow);
DrawPicture(thePicture, myRect);

- > CreateWindow <--1}

procedure CreateWindow;
var
theNewestWindow: WindowPtr;
begin
theNewestWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
if theNewestWindow = nil then
ErrorHandler(NO_WIND);

Toolbox Potpourri 287

if ((screenBits.bounds.right - gNewWindowLeft) <
EDGE_THRESHOLD) or ((screenBits.bounds.bottom -
gNewWindowTop) < EDGE_THRESHOLD) then
begin
gNewWindowLeft :
gNewWindowTop := W
end;

= WINDOW_HOME_LEFT;
INDOW_HOME_TOP;

MoveWindow(theNewestWindow, gNewWindowlLeft,
gNewWindowTop, LEAVE_WHERE_IT_IS);
gNewWindowLeft := gNewWindowLeft + NEW_WINDOW_OFFSET;
gNewWindowTop := gNewWindowTop + NEW_WINDOW_OFFSET;
ShowWindow(theNewestWindow);

end;

{--——————— > HandleEditChoice <--3
procedure HandleEditChoice (theltem: INTEGER);

var
dummy: Boolean;

begin
dummy := SystemEdit(theltem - 1);
end;
{--——-————— > HandleFileChoice <--12

procedure HandleFileChoice (theltem: INTEGER);
var
whichWindow: WindowPtr;
begin
case theltem of
NEW_ITEM:
CreateWindow;
CLOSE_ITEM:
begin
whichWindow := FrontWindow;
if whichWindow <> nil then
DisposeWindow(whichWindow);
end;
QUIT_ITEM:
gbone := TRUE;
end;
end;

288 Macintosh Programming Primer

{-— - > HandleAppleChoice <-=}

procedure HandleAppleChoice (theltem: INTEGER);
var
accName: Str255;
accNumber, itemNumber, dummy: INTEGER;
aMenu: MenuHandle;
begin
case theltem of
ABOUT_ITEM:
dummy := NoteAlert(ABOUT_ALERT, nil);
otherwise
begin .
aMenu := GetMHandle(APPLE_MENU_ID);
GetItem(aMenu, theltem, accName);

accNumber := OpenDeskAcc(accName);
end;

{-—————— > HandleMenuChoice <-=3}

procedure HandleMenuChoice (menuChoice: LONGINT);
var

theMenu, theltem: INTEGER;

begin
if menuChoice <> 0 then
begin
theMenu := HiWord(menuChoice);
theItem := LoWord(menuChoice);

case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(theltem);
FILE_MENU_ID:
HandleFileChoice(theltem);
EDIT_MENU_ID:
HandleEditChoice(theltem);
end;

HiliteMenu(0);
end;
end;

Toolbox Potpourri 289

{--—————————— > IsDAWindow <--1}

function IsDAWindow (whichWindow: WindowPtr): BOOLEAN;
begin
if whichWindow = nil then
IsDAWindow := FALSE
else
IsDAWindow := (WindowPeek(whichWindow)?.windowKind < 0);
end;

{-—————————————— > AdjustMenus<--}
procedure AdjustMenus;

var
aMenu: MenuHandle;

begin
aMenu := GetMHandle(FILE_MENU_ID);
if FrontWindow = nil then
DisableItem(aMenu, CLOSE_ITEM)
else

Enableltem(aMenu, CLOSE_ITEM);

aMenu := GetMHandle(EDIT_MENU_ID);
if IsDAWindow(FrontWindow) then
begin
EnableItem(aMenu, UNDO_ITEM);
EnablelItem(aMenu, CUT_ITEM);
Enableltem(aMenu, COPY_ITEM);
EnableItem(aMenu, PASTE_ITEM);
EnablelItem(aMenu, CLEAR_ITEM);
end
else
begin
DisableItem(aMenu, UNDO_ITEM);
Disableltem(aMenu, CUT_ITEM);
DisableItem(aMenu, COPY_ITEM);
DisableItem(aMenu, PASTE_ITEM);
DisableItem(aMenu, CLEAR_ITEM);
end;
end;

290 Macintosh Programming Primer

{-—————————— > HandleMouseDown <--}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inMenuBar:
begin
AdjustMenus;
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
DisposeWindow(whichWindow);
inContent:
SelectWindow(whichWindow);
end;
end;

{-—————————— > HandleEvent<--}

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
oldPort: GrafPtr;
begin
if gWNEImplemented then
dummy := WaitNextEvent(everyEvent, gTheEvent,
MIN_SLEEP, nil)
else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

Toolbox Potpourri 291

case gTheEvent.what of
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));
if (BitAnd(gTheEvent.modifiers, cmdKey) <>
0) then
begin
AdjustMenus;
HandleMenuChoice(MenuKey(theChar));
end;
end;
updateEvt:
if not IsDAWindow(WindowPtr(gTheEvent.message))

then
begin
GetPort(oldPort);
SetPort(WindowPtr(gTheEvent.message));
BeginUpdate(WindowPtr(gTheEvent.message));
DrawMyPicture(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));
SetPort(oldPort);
end;
end;
end;
{--—————————- > MainLoop <--}

procedure MainlLoop;

begin
gbone := FALSE;
gNewWindowLeft := WINDOW_HOME_LEFT;
gNewWindowTop := WINDOW_HOME_TOP;

gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM, ToolTrap));
while (gbone = FALSE) do
HandleEvent;
end;

292 Macintosh Programming Primer

TPy > MenuBarInit<--}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;

begin
myMenuBar := GetNewMBar(BASE_RES_ID);
if myMenuBar = nil then

ErrorHandler(NO_MBAR);
SetMenuBar(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
if aMenu = nil then
ErrorHandler (NO_MENU) ;

AddResMenu(aMenu, 'DRVR');

aMenu := GetMHandle(EDIT_MENU_ID);
if aMenu = nil then
ErrorHandler (NO_MENU) ;

aMenu := GetMHandle(FILE_MENU_ID);
if aMenu = nil then
ErrorHandler (NO_MENU) ;

DrawMenuBar;
end;

{—-—————_— > WindowMaker<--}

begin
MenuBarlInit;

MainLoop;
end.

Running WindowMaker

Now that your source code is done, you're ready to run WindowMaker.
Select 60 from the Run menu. If you run into any compilation
problems, consult the debugging tips found in Appendix C. When
asked if you want to save changes before running, click Yes. The menu
bar should display the %, File, and Edit menus. Desk accessories
should work. The File menu should contain three new menu items:
New, Close, and Quit. The Edit menu contains the standard menu

Toolbox Potpourri 293

items but is dimmed. Select Mew from the File menu a few times:
You should see something like Figure 7.8.

Each window can be selected and dragged around the screen.
Selecting Close closes the currently selected window.

Try selecting New about a dozen times (or until you've created
enough windows to cause window wrap). You should see something
like Figure 7.9. Each new window is placed below and to the right of
the previous window. When the new windows reach the bottom or the
right of the screen, the window wraps back to the top left corner.
Select a window and drag it partially off and then back onto the
screen. An updateEvt will cause the PICT to be redrawn. Click in
the close box of a window to close it. Now, choose Quit from the File
menu. Let’s take a look at the code.

| % - = o) R
&€ File §ai

Window
Window
Window

[T}
HD

@ ap o
0% 0% 0
O G e H#eo
LRy -2

6,2%¥3g

@

=]
o
@

Figure 7.8 Running WindowMaker.

294

Macintosh Programming Primer

o
indow
Window
Window
Window
Window
Window

Window
B [Window

@i e

s =W e

Figure 7.9 Window wrap in WindowMaker.

Walking Through the WindowMaker Code

Figure 7.10 shows a bird's-eye view of WindowMaker’s software
architecture.

WindowMaker.c starts off with constant declarations.
BASE_RES_ID should be familiar to you. APPLE_MENU_ID,
EDIT_MENU_ID, and FILE_MENU_ID are the resource ID numbers
of the MENU resources. ABOUT_ITEM, ABOUT_ALERT, and
ERROR_ALERT_ID are used to implement the program alerts. The
names NO_MBAR, NO_MENU, NO_PICTURE, and NO_WIND are
used to identify the resource ID of the four strings used in the error-
handling routine. NEW_ITEM, CLOSE_ITEM, and QUIT_ITEM
are used in the case statement in the menu-handling routines.
UNDO_ITEM, CUT_ITEM, COPY_ITEM, PASTE_ITEM, and
CLEAR_ITEM will be used to control the Edit menu items for desk
accessories. EDGE_THRESHOLD sets the threshold from the edge, in
pixels, before window wrap occurs. WINDOW_HOME_LEFT and
WINDOW_HOME_TOP are the default positions for a new window on
the screen. The NEW_WINDOW_OFFSET is set to the number of pixels

Toolbox Potpourri

295

WindowMaker Routinéé -

lMenuBarInid-" 'é MainLoop

if not done

HandleEvent

if mouseDown if keyDown/autoKey if update event

I HandleMouseDown AdjustMenus if not IsDAWindow
inMenuBar HandleMenuChoice DrawMyPicture

AdjustMenus CenterPict

HandleMenuChoice

HandleMenuChoice

HandleAppleChoice
HandleFileChoice

CreateWindow

HandleEditChoice

Figure 7.10 WindowMaker's software architecture.

that a new window will be offset from the previous window.
MIN_SLEEP is provided as a parameter to WaitNextEvent;
LEAVE_WHERE_IT_IS is a constant for MoveWindow.
WNE_TRAP_NUM and UNIMPL_TRAP_NUM are used to determine the
availability of WaitNextEvent on the user’s Mac. Finally, set up
NIL_STRING and HOPELESSLY_FATAL_ERROR for use in the
error-handling alert.

program WindowMaker;
const
BASE_RES_ID = 400;

APPLE_MENU_ID = 400;
FILE_MENU_ID 401;
EDIT_MENU_ID 402;

ABOUT_ITEM = 1;
ABOUT_ALERT = 400;
ERROR_ALERT_ID = 401;

NO_MBAR = BASE_RES_ID;
NO_MENU = BASE_RES_ID + 1;
NO_PICTURE = BASE_RES_ID + 2;
NO_WIND = BASE_RES_ID + 3;

296

Macintosh Programming Primer

NEW_ITEM =
CLOSE_ITEM 2;
QUIT_ITEM = 3;

1;

UNDO_ITEM = 1;
CUT_ITEM = 3;

COPY_ITEM = 4;
PASTE_ITEM = 5;
CLEAR_ITEM = 6;

EDGE_THRESHOLD = 30;

WINDOW_HOME_LEFT = 5
WINDOW_HOME_TOP = 45

;
’
NEW_WINDOW_OFFSET 20;

MIN_SLEEP = 60;
LEAVE_WHERE_IT_IS = FALSE;

WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = "Game over, man!'!';

gbone, as always, is used as a flag for program completion.
gWNEImplemented is the flag used when evaluating whether or not
WaitNextEvent 1is available. gNewWindowLeft and
gNewWindowTop are the left and top coordinates for new windows,
which will be initialized for the first window.

var
gbone, gWNEImplemented: Boolean;
gTheEvent: EventRecord;
gNewWindowLeft, gNewWindowTop: INTEGER;

WindowMaker starts with familiar calls to MenulInit and
MainLoop.

{-————————— > WindowMaker <--}

begin
MenuBarInit;

MainLoop;
end.

Toolbox Potpourri 297

In MenuBarInit, load your menu resources and draw the menu
bar. Everything is standard operating procedure except for the new
error handling. If GetNewMBar (BASE_RES_ID) returns nil, it
indicates that the operating system could not find the MBAR resource
in your resource file; the error-handling routine, ErrorHandler,
will then display an alert containing the string (*STR ') resource
with an ID number of NO_MBAR. The same thing happens if the @,
File, or Edit menu resources cannot be found:

{--—————————-- > MenuBarlInit <--}

procedure MenuBarlInit;
var
myMenuBar: Handle;
aMenu: MenuHandle;

begin
myMenuBar := GetNewMBar(BASE_RES_ID);
if myMenuBar = nil then

ErrorHandler (NO_MBAR);
SetMenuBar(myMenuBar);

aMenu := GetMHandle(APPLE_MENU_ID);
if aMenu = nil then
ErrorHandler (NO_MENU) ;

AddResMenu(aMenu, 'DRVR');
aMenu := GetMHandle(EDIT_MENU_ID);
if aMenu = nil then

ErrorHandler (NO_MENU);
aMenu := GetMHandle(FILE_MENU_ID);
if aMenu = nil then

ErrorHandler (NO_MENU);

DrawMenuBar;
end;

MainLoop checks toseeif WaitNextEvent is implemented.

{(-———————————- > MainLoop <==1}
procedure MainlLoop;
begin
gDone := FALSE;
gNewWindowLeft := WINDOW_HOME_LEFT;

gNewWindowTop := WINDOW_HOME_TOP;

298

Macintosh Programming Primer

gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,

ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));

while (gbone = FALSE) do
HandleEvent;
end;

HandleEvent is similar to the earlier event handlers, except that
cut, copy, and paste operations are now supported in desk
accessories. AdjustMenus is now called if a Command key
equivalent event has occurred, to change the state of the Edit menu.
updateEvts are handled with a call to DrawMyPicture.

{--———————————— > HandleEvent <--3

procedure HandleEvent;
var
theChar: CHAR;
dummy: BOOLEAN;
oldPort: GrafPtr;
begin
if gWNEImplemented then

dummy := WaitNextEvent(everyEvent, gTheEvent,
MIN_SLEEP, nil)

else
begin
SystemTask; -
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
mouseDown:
HandleMouseDown;
keyDown, autoKey:
begin
theChar := CHR(BitAnd(gTheEvent.message,
charCodeMask));

if (BitAnd(gTheEvent.modifiers, cmdKey) <> 0)
then

begin

AdjustMenus;

HandleMenuChoice(MenuKey(theChar));

end;
end;

updateEvt:

if not IsDAWindow(WindowPtr(gTheEvent.message))
then

Toolbox Potpourri 299

begin
GetPort(oldPort);
SetPort(WindowPtr(gTheEvent.message));

BeginUpdate(WindowPtr(gTheEvent.message));

DrawMyPicture(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));
SetPort(oldPort);

end;

end;

end;

Now, HandLeMouseDown supports desk accessory use of the Edit
menu. AdjustMenus is also called to activate the Edit menu if a
mouseDown has occurred in the menu bar. Clicking in the close box
calls DisposeWindow, which will close and free up the memory
used for the window.

{---————————————— > HandleMouseDown <--}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
menuChoice, windSize: LONGINT;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inMenuBar:
begin
AdjustMenus;
menuChoice := MenuSelect(gTheEvent.where);
HandleMenuChoice(menuChoice);
end;
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);
inGoAway:
DisposeWindow(whichWindow);
inContent:
SelectWindow(whichWindow);
end;
end;

300

Macintosh Programming Primer

AdjustMenus and IsDAWindow work together: AdjustMenus
enables and disables the items in the Edit menu, depending on
whether the current window is a desk accessory window or a
WindowMaker window. To determine this, look into the structure of
the current window: One of the fields of a window, windowKind, is
positive if the window is an application window and negative if it is a
desk accessory window. So, in IsDAWindow, FALSE is returned if
there is no window or if the window belongs to WindowMaker, and all
items in the Edit menu are disabled (dimmed). If TRUE is returned,
the Edit items are enabled so that desk accessories can use them.

{--———————————- > AdjustMenus<--}

procedure AdjustMenus;

var
aMenu: MenuHandle;

begin

end;

aMenu := GetMHandle(FILE_MENU_ID);
if FrontWindow = nil then
DisableItem(aMenu, CLOSE_ITEM)
else
EnableItem(aMenu, CLOSE_ITEM);

aMenu := GetMHandle(EDIT_MENU_ID);
if IsDAWindow(FrontWindow) then
begin
EnableItem(aMenu, UNDO_ITEM);
EnableItem(aMenu, CUT_ITEM);
EnableItem(aMenu, COPY_ITEM);
EnableItem(aMenu, PASTE_ITEM);
EnableItem(aMenu, CLEAR_ITEM);
end
else
begin
DisableItem(aMenu, UNDO_ITEM);
DisableItem(aMenu, CUT_ITEM);
DisableItem(aMenu, COPY_ITEM);
DisableItem(aMenu, PASTE_ITEM);
DisableItem(aMenu, CLEAR_ITEM);
end;

Toolbox Potpourri 301

{-—-—-———————— > IsDAWindow <--}
function IsDAWindow (whichWindow: WindowPtr): BOOLEAN;
begin
if whichWindow = nil then
IsDAWindow := FALSE
else
IsDAWindow := (WindowPeek(whichWindow)”*.windowKind < 0);
end;
HandleMenuChoice hasn’t changed from the earlier programs
with menus, except that you now handle Edit menu selections:
{-—————— > HandleMenuChoice <--}

procedure HandleMenuChoice (menuChoice: LONGINT);
var
theMenu, theltem: INTEGER;
begin
if menuChoice <> 0 then
begin
theMenu
theltem

HiWword(menuChoice);
LoWord(menuChoice);

case theMenu of
APPLE_MENU_ID:
HandleAppleChoice(theIltem);
FILE_MENU_ID:
HandleFileChoice(theltem);
EDIT_MENU_ID:
HandleEditChoice(theltem);
end;

HiliteMenu(0);
end;
end;

HandleAppleChoice works the same way as Chapter 6’s
Reminder program. The about item calls NoteAlert, which
displays the ALRT and the DITL you set up for the about box.

{——————————————— > HandleAppleChoice <--3

procedure HandleAppleChoice (theltem: INTEGER);
var
accName: Str255;
accNumber, itemNumber, dummy: INTEGER;
aMenu: MenuHandle;
begin

302 Macintosh Programming Primer

case theltem of
ABOUT_ITEM:
dummy := NoteAlert(ABOUT_ALERT, nil);
otherwise
begin
aMenu := GetMHandle(APPLE_MENU_ID);
GetItem(aMenu, theltem, accName);
accNumber := OpenDeskAcc(accName);
end;
end;
end;

HandleFileChoice takes care of the File menu choices. The
New menu item runs the routine CreateWindow, and the Close
menu item closes the active window by calling DisposeWindow.
Using the Close menu item is the same as clicking in the active
window’s close box. QuUit sets gbone to TRUE, which halts execution
of the main event loop.

{-—-————————— > HandleFileChoice <--3}

procedure HandleFileChoice (thelItem: INTEGER);
var
whichWindow: WindowPtr;

begin
case theltem of
NEW_ITEM:
CreateWindow;
CLOSE_ITEM:
begin
whichWindow := FrontWindow;
if whichWindow <> nil then
DisposeWindow(whichWindow);
end;
QUIT_ITEM:
gbone := TRUE;
end;
end;

HandleEditChoice calls SystemEdit. If the active window
belongs to a desk accessory, SystemEd1it passes the appropriate edit
command to the accessory. Otherwise, it returns FALSE, and your
application should then handle the edit command. Because the Edit
menu items are disabled in WindowMaker, HandLeEditChoice just
takes care of desk accessories.

Toolbox Potpourri 303

{-----——— > HandleEditChoice <--}

procedure HandleEditChoice (thelItem: INTEGER);
var
dummy: Boolean;

begin
dummy := SystemEdit(theltem - 1);
end;

CreateWindow controls the creation and placing of new windows
for WindowMaker. First, use GetNewWindow with your WIND
resource to create a new window. If the WIND is missing,
GetNewWindow returns nil, so you can call ErrorHandler with
a "STR ' resource of NO_WIND.

{--———————————— > CreateWindow <--}

procedure CreateWindow;
var
theNewestWindow: WindowPtr;
begin
theNewestWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));
if theNewestWindow = nil then
ErrorHandler(NO_WIND);

Normally, you’d use the position of a window as specified in the
WIND resource. In this case, however, the position of each new
window is defined by the globals gNewWindowLeft and
gNewWindowTop. Whenever a new window is defined,
MoveWindow is called to move the window from the original WIND-
based position to the position described by gNewWindowLeft and
gNewWindowTop. The final parameter to MoveWindow is a
BOOLEAN that determines whether the window, once moved, is
moved to the front of all other windows or is left in the same layer.
LEAVE_WHERE_IT_IS tells MoveWindow not to move the window
to the front. Because the window was created in the front, this
parameter will have no effect.

Next, gNewWindowLeft and gNewWindowTop are incremented
by NEW_WINDOW_OFFSET, so the next new window won’t appear
directly on top of the previous one. Finally, the window is made visible.

if ((screenBits.bounds.right - gNewWindowLeft) <
EDGE_THRESHOLD) or ((screenBits.bounds.bottom -
gNewWindowTop) < EDGE_THRESHOLD) then
begin
gNewWindowLeft :
gNewWindowTop := W
end;

= WINDOW_HOME_LEFT;
INDOW_HOME_TOP;

304 Macintosh Programming Primer

MoveWindow(theNewestWindow, gNewWindowlLeft,
gNewWindowTop, LEAVE_WHERE_IT_IS);
gNewWindowLeft := gNewWindowLeft + NEW_WINDOW_OFFSET;
gNewWindowTop := gNewWindowTop + NEW_WINDOW_OFFSET;
ShowWindow(theNewestWindow);

end;
DrawMyPicture passes thePicture to CenterPict and then
draws the centered PICT in pictureWindow.
The real value of parameter passing is seen here. By passing the
WindowPtr embedded in gTheEvent.message as a
parameter to DrawMyPicture, you avoid hard-coded variable
names that would limit the flexibility of this routine.
{——————— - > DrawMyPicture <--}

procedure DrawMyPicture (pictureWindow: WindowPtr);
var
myRect: Rect;
thePicture: PicHandle;
begin
myRect := pictureWindow”.portRect;
thePicture := GetPicture(BASE_RES_ID);
if thePicture = nil then
ErrorHandler(NO_PICTURE);

CenterPict(thePicture, myRect);
SetPort(pictureWindow);
DrawPicture(thePicture, myRect);

end;
CenterPict is the same routine you've used in your other PICT
drawing programs:
{-—— > CenterPict <--}

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);
var
windRect, pictureRect: Rect;
begin
windRect := myRect;
pictureRect := thePicture*”.picFrame;

Toolbox Potpourri 305

myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

Finally, there’s the ErrorHandler routine. ErrorHandler
takes an error ID as input, loads.the ' STR ' resource with that ID,
and uses StopAlert to display the error message. If the program
can’t find the 'STR ' resource it needs, it calls StopAlert with
the HOPELESSLY_FATAL_ERROR string defined at the beginning of
WindowMaker ('Game over, man!"'), to inform the user that the
situation is exceedingly grim.

Finally, ExitToShel Ll returns control of the Macintosh to the
Finder.

{—mmmmmmm e > ErrorHandler <--}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)
else

ParamText(errorStringH**, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;
end;

There are many solutions to error handling on the Macintosh.
Whenever you make a Toolbox function call, check to see if an error
has occurred. This is called passive error handling. Sometimes this is
good enough; sometimes it’s not.

306

Macintosh Programming Primer

You can also go out of your way to avoid errors by checking
everything you can possibly check. For example, imagine adding a
fourth MENU resource, to implement a Utilities menu. Assuming
there is nothing special about the Utilities menu, you could get all
the way through MenuBarInit without checking for the existence
of the Utilities MENU resource. If the MENU is there, MenuBarInit
will load the MENU automatically and make it available to your
program. In this case, passive error handling worked fine.

Suppose, however, that the MENU resource were trashed or
missing, preventing it from being loaded. Your program would not
function properly and would most probably crash. Checking all your
resources may be time-consuming, but in the end, it’s well worth it.

You can take error handling one step further and also check your
resources just before you use them. For example, you could call
GetMHandle immediately before MenuSelect in case the MENU
was somehow corrupted.

You’ll decide on the appropriate amount of error handling to
perform. Error handling adds bulk to code but provides a higher level
of reliability for your program. We highly recommend the inclusion of
error-handling code early in the programming cycle.

The Scrap Manager

Whenever you use the Mac’s copy, cut, or paste facilities, you're
making use of the Scrap Manager. The Scrap Manager manages
the desk scrap, more commonly known as the Clipboard. The
second program, ShowClip, will use the Scrap Manager Toolbox
routines to open the Clipboard and display the contents in a window.

Scrap Manager Basics

Data copied to the desk scrap is stored in two basic flavors, TEXT and
PICT. Data stored in TEXT format consist of a series of ASCII
characters. Data stored in PICT format consist of a QuickDraw
picture. ShowClip will handle both TEXT and PICT data types.

The Scrap Manager consists of six routines: InfoScrap,
UnloadScrap, LoadScrap, ZeroScrap, PutScrap, and
GetScrap. InfoScrap returns a pointer to a ScrapStuff
record. Each of the other functions return a LONGINT containing a
result code (1:457).

Toolbox Potpourri

307

InfoScrap

InfoScrap is a function (of type PScrapStuff) that returns
information about the desk scrap in a struct of type ScrapStuf f:

TYPE PScrapStuff = ~ScrapStuff;

ScrapStuf

f =

RECORD
scrapSize : LONGINT; {size of desk scrap}
scrapHandle : Handle; {handle to desk scrap}
scrapCount : INTEGER; {count changed by ZeroScrapl}

scrapState
scrapName

END;

INTEGER; {tells where the desk scrap is}
StringPtr {scrap file namel

The scrapSize field contains the actual size, in bytes, of the
desk scrap. The scrapHandle field contains a handle to the desk
scrap (if it currently resides in memory). The scrapCount field is
changed every time ZeroScrap is called (we'll get to ZeroScrap in
a bit). The scrapState field is positive if the desk scrap is memory
resident, zero if the scrap is on disk, and negative if the scrap has not
yet been initialized. The scrapName field contains a pointer to the
name of the scrap disk file (usually called CLipboard File).

UnloadScrap and LoadScrap

If the scrap is currently in memory, UnloadScrap copies the scrap
to disk and releases the scrap’s memory. If the scrap is currently
disk-based, UnloadScrap does nothing.

If the scrap is currently on disk, LoadScrap allocates memory for
the scrap and copies it from disk. If the scrap is currently memory-
resident, LoadScrap does nothing.

ZeroScrap

If the desk scrap does not yet exist, ZeroScrap creates it in
memory. If it does exist, ZeroScrap clears it. As we mentioned
before, ZeroScrap always changes the scrapCount field of the
ScrapStuff record.

308

Macintosh Programming Primer

PutScrap

PutScrap puts the data pointed to by sour ce into the scrap:

FUNCTION PutScrap(lLength : LONGINT;
theType : ResType;
source : Ptr) : LONGINT;

The parameter Length specifies the length of the data, and
theType specifies their type (whether they are PICT or TEXT data).
You must call ZeroScrap immediately before each call to PutScrap.

GetScrap

GetScrap resizes the handle hDest and stores a copy of the scrap
in this resized block of memory:

FUNCTION GetScrap(hDest : Handle;
theType : ResType;
VAR offset : LONGINT) : LONGINT;

Specify the type of data you want in the parameter theType. The
of fset parameter is set to the returned data’s offset in bytes from
the beginning of the desk scrap. GetScrap returns a long containing
the length of the data in bytes.

You can actually put and get data types other than TEXT and
PICT to and from the scrap (1:461). For the most part, however, the
TEXT and PICT data types should serve your needs.

ShowClip

The ability to use the Clipboard is basic to Mac applications. ShowClip
shows you how to add this capability to your applications. If you cut or
copy text or a picture in an application or in the Finder and then run
ShowClip, it will display the cut or copied text in a window.

Toolbox Potpourri 309

ShowClip Specifications
ShowClip works like this:

1. It initializes a window.
2. It puts whatever is in the Clipboard into the window.
3. It quits.

ShowClip also does error checking. It warns if the WIND resource
is missing, or if the scrap is empty.

Setting Up the ShowClip Project

Start by creating a folder for this project, called ShowClip. Use
ResEdit to create a new file called ShowClip.xw.rsrc and, within
that, a purgeable WIND with an ID of 400. Figure 7.11 shows the
specifications of this WIND.

EC= WIND ID = 400 from ShowClip.m.rsrc =—]|
Window title:
top 40 bottom | 240
left 20 right 420
proclD |D refCon |0
[J visible [J goAwayFlag

Figure 7.11 WIND specifications for ShowClip.

310

Macintosh Programming Primer

Add the DITL in Figure 7.12 (this is the same one as the
“hopelessly fatal” DITL in WindowMaker, so use the WindowMaker
DITL if you have it).

EIEDITL "Fatal Error" 1D = 401 from ShowCh

Ain incredibly fatal error has
just occurred: ~0

-

Item# | Type Enabled | Top Left Bottom Right | Text/Resource ID
1 Button Yes 86 "z 106 177 Gasp!
2 Static Text Yes 5 67 7 283 An incredibly
fatal error
has just
occurred: “0

Figure 7.12 DITL resource for ShowClip.

Toolbox Potpourri

311

Next, create a purgeable ALRT resource for your new error-
checking routines (Figure 7.13). Add the two 'STR ' resources
shown in Figure 7.14 to the ShowCLlip.m.rsrc file. Again, be sure
to change the resource IDs of each resource to those shown in the
figure and mark each as purgeable. When you’re done, the resource
list window from ShowCLlip.m.rsrc should look like Figure 7.15.

ECE ALRT "Fatal Error" 1D = 401 from ShowClip.7.r

Top Bottom [156

Left 40 Right |[332

|temsII] Sound (0-3)

Stage 1 []#2 bold [Drawn
Stage 2 []#2 bold [Drawn
Stage 3 [] #2 bold [Drawn
Stage 4 []#2 bold [Drawn

| ot | o | —

Figure 7.13 ALRT resource for ShowClip.

E[J==———= STR ID = 400 from ShowClip.m.rsrc |
1>
The String Efaru't load the WIND resource!!!
Data $|
%
]
E[1=——— STR ID = 401 from ShowClip.m.rsrc |
o
The String The Clipboard is empty!!!
Data $
&
el

Figure 7.14 STR resources for ShowClip.

312

Macintosh Programming Primer

== ShowClip.w.rsrc =FE

— i
@ -
=SS
ALRT DITL TR
L 1 H L—
W IND ¥
4|

Figure 7.15 Resource list for ShowClip.

Now you're ready to launch THINK Pascal. When prompted for a
project to open, create a new project in the ShowC L ip folder and call
it ShowC Ll ip.m. Next, use the Run Options... dialog box to add the
resource file to the project.

Create a new source file called ShowClip.p and add it to
ShowC Lip.w. Here’s the source code for ShowClip.p:

program ShowClip;
const
BASE_RES_ID = 400;
ERROR_ALERT_ID = BASE_RES_ID + 1;
NO_WIND = BASE_RES_ID;
EMPTY_SCRAP = BASE_RES_ID + 1;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

var
gClipWindow: WindowPtr;

Toolbox Potpourri 313

- >ErrorHandler <--}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH”A”, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;
end;

{-——— - > CenterPict <--1}

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);
var
windRect, pictureRect: Rect;
begin
windRect := myRect;
pictureRect := thePicture*?.picFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);
myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

{--—————— > MainLoop <--1}

procedure MainLoop;
var
myRect: Rect;
clipHandle: Handle;
length, offset: LONGINT;
begin
clipHandle := NewHandle(0);

314 " Macintosh Programming Primer

length := GetScrap(clipHandle, 'TEXT', offset);
if Length < 0 then
begin
length := GetScrap(clipHandle, 'PICT', offset);
if length < 0 then
ErrorHandler (EMPTY_SCRAP)

else
begin
myRect := gClipWindow”.portRect;
CenterPict(PicHandle(clipHandle),
myRect);
DrawPicture(PicHandle(clipHandle),
myRect);
end;
end
else
begin
HLock(clipHandle);
TextBox(Ptr(clipHandle”), Llength,
thePort”.portRect, telJustLeft);
HUnlock(clipHandle);
end;

while not Button do
begin
end;

(e > WindowInit <--}

procedure WindowInit;

begin
gClipWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));

if gClipWindow = nil then
ErrorHandler (NO_WIND);

ShowWindow(gCLlipWindow);
SetPort(gClipWindow);
end;

Lt T LT p——— > ShowClip <--}

begin
WindowInit;
MainLoop;
end.

Toolbox Potpourri 315

Running ShowClip

Now that your source code is done, you're ready to run ShowClip.
Before you run the program, however, do a cut or copy operation on
the ShowCLlip.p file, or copy a picture from the Scrapbook;
otherwise, you'll get an alert telling you that the scrap is empty. Now
run ShowClip. It should immediately display the text or picture that
you cut or copied (Figure 7.16).

Quit by clicking the mouse. Try copying varying sizes of text or
different pictures and running ShowClip again. This code should
point out the ease with which you can add the Clipboard functions to
your applications.

Now, let’s see how it’s done.

EBBQ——————— shoullip Dc—0——"7———|
Sample Copied Text

Figure 7.16 Running ShowClip.

Walking Through the ShowClip Code

316

ShowClip.p starts off with the constant declarations. ShowClip’s
constants are similar to those declared in WindowMaker. The sole
global variable, gC L ipW1indow, points to the clipboard window.

program ShowClip;
const
BASE_RES_ID = 400;
ERROR_ALERT_ID = BASE_RES_ID + 1;
NO_WIND = BASE_RES_ID;
EMPTY_SCRAP = BASE_RES_ID + 1;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

var
gClipWindow: WindowPtr;

ShowClip calls WindowInit and then MainLoop. No
excitement here.

{-—————————- > ShowClip <--1}

begin
WindowInit;
MainLoop;
end.

In WindowInit, use GetNewWindow to load gClipWindow
from the resource file. Then call ShowWindow to make
gClipWindow visible and call SetPort so that all drawing is done
ingClipWindow:

{--——-—————— > WindowInit <--}

procedure WindowlInit;

begin
gClipWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1)>);

if gClipWindow = nil then
ErrorHandler(NO_WIND);

ShowWindow(gClipWindow);
SetPort(gClipWindow);
end;

Toolbox Potpourri 317

MainLoop is where the action is. You use NewHandle (II:32) to
create minimum-size blocks of storage for your PICT and TEXT data.
Remember, GetScrap will resize these memory blocks for you,
as needed.

R > MainLoop <--}%

procedure MainLoop;
var
myRect: Rect;
clipHandle: Handle;
length, offset: LONGINT;
begin
clipHandle := NewHandle(0);

Now, call GetScrap, looking first for some TEXT data. If there are
no TEXT data in the scrap, call GetScrap to look for PICT data. If
you find no PICT data, call ErrorHandler with the EMPTY_SCRAP
string. If you do find PICT data, call CenterPict to center the
picture in gClipWindow, and then call DrawPicture to draw
the picture:

length := GetScrap(clipHandle, 'TEXT', offset);
if Length < 0 then
begin
length := GetScrap(clipHandle, 'PICT', offset);
if Length < 0 then
ErrorHandler (EMPTY_SCRAP)

else

begin
myRect := gClipWindow”.portRect;
CenterPict(PicHandle(clipHandle),
myRect);
DrawPicture(PicHandle(clipHandle),
myRect);

end;

end

If you found the TEXT data in the scrap, lock clipHandle with
Hlock, then call TextBox to draw the textin gClipWindow.

else
begin
HLock(clipHandle);

318

Macintosh Programming Primer

TextBox(Ptr(clipHandle?), length,
thePort*.portRect, teJustlLeft);

HUnlock(clipHandle);
end;

Finally, wait for a mouse click to exit the program:

while not Button do
begin
end;
end;

CenterPict is the same routine you’ve used in the other Primer
PICT drawing programs:

———————————————— > CenterPict <--}

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);

var

windRect, pictureRect: Rect;
begin
windRect := myRect;

pictureRect := thePicture**.picFrame;

myRect.top := (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);

myRect.left := (windRect.right - windRect.left -

(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);
end;

ErrorHandler is the same routine you encountered in
WindowMaker. Here, you get the string you need and then display it

with StopAlert. ExitToShell halts program execution and
returns to the Finder.

ErrorHandler <--3}

procedure ErrorHandler (stringNum: INTEGER);
var

errorStringH: StringHandle;
dummy: INTEGER;
begin

Toolbox Potpourri

319

end;

errorStringH := GetString(stringNum);
if errorStringH = nil then
ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING,

else

NIL_STRING, NIL_STRING)

ParamText(errorStringH**, NIL_STRING, NIL_STRING,

dummy

NIL_STRING);

:= StopAlert(ERROR_ALERT_ID, nil);

ExitToShell;

Inside the Printing and File Managers

The next program, PrintPICT, uses both the Printing Manager and
the File Manager. PrintPICT uses the Standard File Package
(IV:71) to prompt for the name of a PICT file to print. It opens the file,
reads in a chunk of data, builds a page, and sends the page to the
current printer. The power of the File and Printing Managers makes
this task a simple one. Let’s take a look at the Standard File Package.

The Standard File Package

The Standard File Package is used by most Macintosh applications to
support the Open, Save, and Save As... File menu items. Figure
7.17 shows examples of calls to SFGetFile and SFPutFile.
SFGetFile is used to get a file name from the user. It can be called
with a list of file types, limiting the user’s choices to files of the types
specified on the list. PrintPICT prints a single PICT file. By calling
SFGetFile, PrintPICT allows the user to select the print file from a
list limited to PICT files.

320 Macintosh Programming Primer

— Hard Disk

O Apps {r = Hard Disk
[0 System Folder 3

O THINK Pascal
.o Utilities

e

o
e
i

Cancel

= Hard Disk

£ Apps <+ = Hard Disk

O System Folder _

3 THINK Pascal

[0 Utilities
&

save this document as:

(I | (Concel)

Figure 7.17 SFGetFileand SFPutFile.

The File Manager was totally remade when the Mac Plus came
out. The original Macintosh Filing System (MFS) was inadequate to
handle the number of files that hard disks could hold. The
Hierarchical Filing System (HFS) replaced it, and Volume IV of
Inside Macintosh details the new Toolbox calls. So, if you need
information about the File Manager, use Chapter 19 of Volume [V,
not Chapter 4 of Volume 1.

Toolbox Potpourri 321

Here’s the calling sequence for SFGetFile:

PROCEDURE SFGetFile(where : Point;

prompt : Str255;
fileFilter : ProcPtr;
numTypes : INTEGER;
typelList : SFTypelList;
dlgHook : ProcPtr;

VAR reply : SFReply;
dlgID : INTEGER;
filterProc : ProcPtr);

SFGetFile displays the standard open dialog on the screen at
the point where. The prompt string is ignored. numTypes and
typelList allow you to specify up to four distinct file types (such as
PICT or TEXT) for the user to choose from.

Actually, you can specify as many file types as you like by creating
your own data type, instead of SFTypeList. SFGetFile looks
intypeList fornumTypes types.

fileFilter is a pointer to a filtering routine called by
SFGetFile after the file list is built from the typeList. This
filtering routine can modify the file list before it’s displayed to the user.

dlgHook also points to a function. The dLgHook function you
write allows you to add extra items (such as pop-up menus) to the
standard open dialog.

Once the user selects a file, SFGe t Fi Le fills in the struct pointed
to by reply with information about the selected file:

TYPE SFReply = RECORD

good : BOOLEAN; {FALSE if ignore command}
copy : BOOLEAN; {not used}
fType : 0SType; {file type or not used}

vRefNum : INTEGER; {volume reference number}
version : INTEGER; {file's version numberl}
fName : STRINGL63] {file namel}

END;

The good field contains FALSE if the user pressed the Cancel
button, TRUE otherwise. The copy field currently is not used. The
fType field contains the file type selected (if the good field contains
TRUE). The version field always contains 0. The vRe fNum and
fName fields specify the selected file. You’ll see how to use these last
two fields in the next section.

322

Macintosh Programming Primer

Using the File Manager

Once the user has picked a file to open (via SFGetFile), you'll use
the File Manager routines FSOpen to open the file, FSRead to read
a block of data, and FSClose to close the file.

You should know a few key terms before you use the File Manager.
Volumes are the media used to store files. When the user presses the
Drive button in the SFGetFile dialog box, the files on the next
available volume are displayed. Macintosh floppy and hard disks are
both examples of volumes. In the original Macintosh (the one with
64K ROMs), all the files on a volume were organized in a flat file
format called the Macintosh File System (MFS) (Figure 7.18).

The concept of folders existed on these “flat” Macs, but internally
the files on a volume were all stored in one big list. The folders were
an illusion maintained by the Finder. On flat volumes, users can’t
have two files with the same name, even if they’re in different
folders. The Mac Plus (with 128K ROMs) introduced a new method
for organizing files: the Hierarchical File System (HFS) (Figure 7.19).

Within each HFS volume is a set of files and directories. Within
each directory, there can be still more files and directories. You'll
use the File Manager Toolbox calls to open, read, write, and close
these files and directories.

REERRRERE

Figure 7.18 Flat files.

Toolbox Potpourri 323

_b]/ -

Figure 7.19 Hierarchical files.

FSOpen opens the specified file for reading and/or writing,
depending on the file’s open permission:

FUNCTION FSOpen(fileName sStr255;
vRefNum : INTEGER;

VAR refNum : INTEGER) : OSErr;

SFGetFile translates the user’s file selection into a vRe fNum and
an fName. The vRe fNum specifies the file’s volume and directory,
and the fName specifies the file name. FSoOpen gets open
permission from a file control block stored on the file’s volume.

Use the fileName and vRefnum fields of the reply record
returned by SFGetFile as parameters to FSOpen. FSOpen will
return a path reference number in the re fNum parameter that you

can use in FSRead:

FUNCTION FSRead(refNum : INTEGER;
VAR count : LONGINT;
buffPtr : Ptr) : OSErr;

324 Macintosh Programming Primer

The refNum returned by FSOpen is known as an access path,
specifying the file’s volume and the file’s location on the volume all
in one variable.

Specify the file to be read from using the parameter re fNum, and
specify the number of bytes to be read using the parameter count.
The bytes will be read into the space pointed to by the parameter
buffPtr (make sure you allocate the memory to which buffPtr
points), and the number of bytes actually read will be returned
in count.

Finally, close the file by calling FSClose:

FUNCTION FSClose(refNum : INTEGER) : OSErr;

Specify the file to be closed via the parameter re fNum.

For a detailed discussion of the File Manager, turn to Inside
Macintosh (Volume IV, Chapter 1) and Tech Notes 47, 77, 80, and 190.
You’ll need this for any substantial development effort.

Now, let’s take a look at the Printing Manager.

Using the Printing Manager

Prepare the Printing Manager for use by calling PrOpen. Then,
allocate a new print record using NewHand le. The print record
contains information the Printing Manager needs to print your job,
including page setup information and information specific to the
print job.

You can prompt the user to fill in the page setup information by
calling PrStlDialog. Prompt the user for job-specific information
via a call to PrJobDialog. Each of these routines displays the
appropriate dialog box and fills the newly allocated print record with
the results.

Then, call PrOpenDoc to set up a printing grafPort. The
printing grafPort is made up of pages. PrOpenbDoc calls
SetPort, so you don’t need to do so. You'll call PrOpenPage to start
a new page, and then make a set of QuickDraw calls (such as
DrawPicture) to fill the page with graphics. Next, call
PrClosePage to close the current page. Call PrOpenPage and
PrClosePage for each page you want to create.

Toolbox Potpourri 325

When you've drawn all your pages, close the document with a call
to PrCloseDoc. Now, it’s time to print your document. Do this with
acall to PrPicFile. When you're done with the Printing Manager,
call PrClose.

The Printing Manager is described in detail in Inside Macintosh,
Volume II, Chapter 5. If you plan on writing an application that
supports printing, read this chapter thoroughly.

Now, let’s look at PrintPICT.

PrintPICT

Because the “paperless society” seems to be rapidly receding into the
distance, it’s reasonable to expect a Mac application to be able to
print. PrintPICT shows you how to print PICT files.

PrintPICT reads in the contents of a PICT file. Reading in the
contents of a TEXT file is no different. Instead of interpreting the
data as a PICT, you would run the data through a parser that
handles pagination, line breaks, hyphenation, and so on, before
you draw it on the print grafPort.

PrintPICT Specifications
PrintPICT works like this:

1. It uses the Standard File Package to locate a file of type PICT.
2. It uses the File Manager to open a file of type PICT.

3. It uses the Printing Manager to print the PICT file.

4. It quits.

PrintPICT also has error checking. It puts up an alert if the
printing operation goes astray at a number of different points.

326

Macintosh Programming Primer

Setting Up PrintPICT Resources

Start by creating a folder for this project, called PrintPICT. Then,

use ResEdit to create a new file called PrintPICT.%.rsrc.

Make sure all of the following resources are marked as purgeable.
Create a DITL resource for your error alert (Figure 7.20). Add

the same old ALRT (Figure 7.21). Next, add the six 'STR

resources shown in Figure 7.22 to the PrintPICT.®w.rsrc file.
Be sure to change the resource IDs of each resource to those shown
in the figures. When you're done, the resource window of

PrintPICT.z.rsrc should look like Figure 7.23.

E[]E DITL "Fatal Error" ID = 401 from PrintP|

An incredibly fatal error has
just occurred: 0

=]

Item#* | Tupe Enabled Top Left Bottom Right Text/Resource ID
1 Button Yes 86 17 106 177 Gaspl
2 Static Text Yes S 67 71 283 An incredibly
fatal error
has just
occurred: "0

Figure 7.20 DITL resource for PrintPICT.

Toolbox Potpourri

327

E[JEALRT "Fatal Error" 1D = 400 from PrintPICT.7.r

Top [CEN
Left 40

Stage 1

Itemslﬂ

[J#2 bold [Drawn
Stage 2 []#2 bold [Drawn
Stage 3 []#2 bold [Drawn
Stage 4 []#2 bold [Drawn

Bottom
Right

156

332

Sound (0-3)

Figure 7.21

ALRT resource for PrintPICT.

S[J=——=—= STR |D = 400 from PrintPICT.7.rsrc |
o
The string | BRI |
Data $| |
|
&
E[[&==— STR ID = 401 from PrintPICT.m.rsrc |
e
The String Error returned by GetEOF()!!! |
Data $r
O
ol
SCJ=———= STR ID = 402 from PrintPICT.m.rsrc |
L
The String The file header was less than]
5]: tl!:]tﬁ::i 'EII’IE]l ! '
Data $ |
W
&
Figure 7.22 'STR ' resources for PrintPICT.

328

Macintosh Programming Primer

S[J=——= STR ID = 403 from PrintPICT.7.rsrc |
o
The String Could not al locate enough memory]
for the PICT!!Y s
Data $ —l
]
]
E[1==———— STR 1D = 404 from PrintPICT.m.rsrc |
K3
The String E-:luld not read the headep!!! —‘]
Data $| |
]
|
S[[&=———= STR 1D = 405 from PrintPICT.W.rsrc
Ko
IGCRSAT I o 't Read the PICT!! e]
Data $| J
]
]

Figure 7.22 'STR ' resources for PrintPICT. (continued)

=S = PrintPICT.7.rsrc =05

@ ;-ﬁ o
=

LITL STR

Figure 7.23 PrintPICT resources completed.

Once again, it’s time to code.

Setting Up the PrintPICT Project

Start up THINK Pascal. Create a new project in the PrintPICT
folder. Call it PrintPICT.n. Use the Run Dptions... dialog box to
add the resource file to the project. Next, select Add File... from the

Toolbox Potpourri 329

Project menu and add the two files that contain the Toolbox
printing interface declarations and the interface routines. Both files
can be found inside folders in the THINK Pascal folder. First, add
the file Printing.p (you'll find it inside the Interfaces folder).
Next, add the file PrintCalls.Llib (you’ll find it inside the
Libraries folder).

Next, create a new source file called PrintPICT.p and add it to
PrintPICT.n. Here’s the source code for PrintPICT.p:

program PrintPICT;
uses

Printing;

const

var

HEADER_SIZE
BASE_RES_ID

512;
400;

ERROR_ALERT_ID = BASE_RES_ID;
CANT_OPEN_FILE = BASE_RES_ID;
GET_EOF_ERROR = BASE_RES_ID + 1;
HEADER_TOO_SMALL = BASE_RES_ID + 2;
OUT_OF_MEMORY = BASE_RES_ID + 3;
CANT_READ_HEADER = BASE_RES_ID + 4;
CANT_READ_PICT = BASE_RES_ID + 5;

NIL_STRING = '';
IGNORED_STRING = NIL_STRING;
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

gPrintRecordH: THPrint;
gReply: SFReply;

__________ > ErrorHandler <--1

procedure ErrorHandler (stringNum: INTEGER);

var
errorStringH: StringHandle;
dummy: INTEGER;

begin

end;

errorStringH := GetString(stringNum);

if errorStringH = nil then
ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH**, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;

330 Macintosh Programming Primer

---------------- >PrintPictFile <--}%

procedure PrintPictFile (reply: SFReply);
var
srcFile: INTEGER;
printPort: TPPrPort;
printStatus: TPrStatus;
thePict: PicHandle;
pictHeader: packed array[O..HEADER_SIZE] of CHAR;
pictSize, headerSize: LONGINT;
dummy: OSErr;
begin
if (FSOpen(reply.fName, reply.vRefNum, srcFile) <>
noErr) then
ErrorHandler(CANT_OPEN_FILE);

if (GetEOF(srcFile, pictSize) <> noErr) then
ErrorHandler(GET_EOF_ERROR);

headerSize := HEADER_SIZE;
if (FSRead(srcFile, headerSize, @apictHeader) <> noErr)
then

ErrorHandler (CANT_READ_HEADER);

pictSize := pictSize - HEADER_SIZE;
if pictSize <= 0 then
ErrorHandler (HEADER_TOO_SMALL);

thePict := PicHandle(NewHandle(pictSize));
if thePict = nil then
ErrorHandler(OUT_OF_MEMORY);

HLock(Handle(thePict));

if FSRead(srcFile, pictSize, Ptr(thePict?)) <> noErr
then
ErrorHandler(CANT_READ_PICT);

dummy := FSClose(srcFile);

printPort := PrOpenDoc(gPrintRecordH, nil, nil);
PrOpenPage(printPort, nil);

DrawPicture(thePict, thePict**.picFrame);
PrClosePage(printPort);

PrCloseDoc(printPort);

PrPicFile(gPrintRecordH, nil, nil, nil, printStatus);

HUnlock(Handle(thePict));
end;

Toolbox Potpourri

331

{--—————————— > Dobialogs <--1

function DoDialogs: BOOLEAN;
var
keepGoing: BOOLEAN;
begin
keepGoing := PrStlDialog(gPrintRecordH);

if keepGoing then

DoDialogs := PrJobDialog(gPrintRecordH)

else
DoDialogs := FALSE;

{--——————————— > GetFileName<--1

procedure GetFileName (var replyPtr: SFReply);

var
myPoint: Point;
typelList: SFTypelList;
numTypes: INTEGER;

begin
myPoint.h := 100;
myPoint.v := 100;

typeList[0]1 := 'PICT';

numTypes := 1;

SFGetFile(myPoint, IGNORED_STRING, nil,
typeList, nil, replyPtr);

end;
{--————-——————— >PrintInit <--1%
procedure PrintInit;
begin
gPrintRecordH := THPrint(NewHandle(sizeof(TPrint)));
PrOpen;
PrintDefault(gPrintRecordH);
end;
{-———————— >PrintPICT <--2

begin
PrintInit;
GetFileName(gReply);
if gReply.good then
begin
if DoDialogs then
PrintPictFile(gReply);
end;
end.

numTypes,

332 Macintosh Programining Primer

Changing the Compilation Order

Notice that when you move the cursor over one of the file names in
the Project window, the cursor turns into a hand. You can use the
hand to drag files up and down, thus changing their compilation
order. This is very important. Use the hand cursor to rearrange the
files in the Project window so that they agree exactly with the order
in Figure 7.24. If you don’t do this, the program won’t be able to
resolve all of its references.

Running PrintPICT

Now that your source code is entered, you're ready to run PrintPICT.
PrintPICT will bring up an SFGetFi Le dialog box (Figure 7.25).

E[[===—== PrintPICT.7 HIE
Options File (by build order) Size é
. - =]
Runtime.lib 0 L
Interface.lib 0
[OI[N] ¥ R Printing.p 0
[C][M] Y R FrintPICT .o]
PrintCalis.lib 0
Fofal Lo Simw 0
i
I [l

Figure 7.24 PrintPICT’s Project window.

3 PrintPICT
< Hard Disk
fipel
5

Figure 7.25 SFGetFi le dialogbox.

Toolbox Potpourri

333

Select a PICT file to be printed. The Page Setup dialog box will
then be displayed (Figure 7.26). After you click OK, the Print Job
dialog box appears (Figure 7.27). If you click on OK or press Return,
PrintPICT will print your PICT file and quit. Let’s see how it’s done

LaserWriter Page Setup 52

Paper: @ US Letter (O A4 Letter (O Tabloid
QO us Legal (O BS Letter

Reduce or m @ Printer Effects:
Enlarge: [Font Substitution?
Orientation] Text Smoothing?

i Graphics Smoothing?
% i Faster Bitmap Printing?

Figure 7.26 PrintPICT brings up the Page Setup dialog box.

" « st I |
LaserWriter “LaserWriter 52__ | ok]

Copies:@ Pages: ® All O I-'rom:| ITo: | I

Cover Page: @ No O First Page (O Last Page

Paper Source: ® Paper Cassette () Manual Feed

Figure 7.27 PrintPICT brings up the Print Job dialog box.

Walking Through the PrintPICT Code

334

PrintPICT starts off with a uses statement, telling the compiler to
give it access to the Printing unit. The Printing unit is found in
the file Printing.p (which we added to the project earlier).

program PrintPICT;
uses
Printing;

Next, PrintPICT declares its constants. HEADER_SIZE is used for
removing the header at the top of PICT files. ERROR_ALERT_ID,
CANT_OPEN_FILE, GET_EOF_ERROR, HEADER_TOO_SMALL,
OUT_OF_MEMORY, CANT_READ_HEADER, and CANT_READ_PICT
are all used for the appropriate error strings in the error-handling
routine. Finally, HOPELESSLY_FATAL_ERROR is for your ALRT of
last resort.

const
HEADER_SIZE = 512;
BASE_RES_ID = 400;

ERROR_ALERT_ID = BASE_RES_ID;
CANT_OPEN_FILE = BASE_RES_ID;
GET_EOF_ERROR = BASE_RES_ID + 1;
HEADER_TOO_SMALL = BASE_RES_ID + 2;
OUT_OF_MEMORY = BASE_RES_ID + 3;
CANT_READ_HEADER = BASE_RES_ID + 4;
CANT_READ_PICT = BASE_RES_ID + 5;

NIL_STRING = '';
IGNORED_STRING = NIL_STRING;
HOPELESSLY_FATAL_ERROR = 'Game over, man!'';

The global gPrintRecordH is the handle to the print record
youw’ll create. gRep ly will hold the data returned by our call to
SFGetFile.

var
gPrintRecordH: THPrint;
gReply: SFReply;

PrintPICT’s main routine starts off with a call to PrintInit.
Next, GetFileName is run and SFGetFi le is invoked. If the user
doesn’t click on the Cancel button, DoDialogs is called. If
DobDialogs returns TRUE, the file is printed via a call to
PrintPICTFile.

Toolbox Potpourri 335

{-——————————— > PrintPICT <--}

begin
PrintInit;
GetFileName(gReply);
if gReply.good then
begin
if DoDialogs then
PrintPictFile(gReply);
end;
end.

The information entered by the user in the Page Setup and Print
Job dialog boxes is stored in a print record. Printbefault fills
the print record with default print values. A handle to the print
record is passed to PrP1icFi Le at print time.

PrintInit uses NewHandLle to allocate a block of memory the
size of a print record and makes gPrintRecordH a handle to that
memory. Call Propen to start up the Printing Manager, and then set
the default print record to gPrintRecordH by calling
PrintDefault. Doing this ensures that any changes you make to
the Page Setup and Print Job dialogs will be implemented when
you print.

{--——————————— >PrintInit<--2

procedure PrintInit;

begin

gPrintRecordH := THPrint(NewHandle(sizeof(TPrint)));
PrOpen;

PrintDefault(gPrintRecordH);

end;

GetFileName sets up the arguments and calls SFGetFile.
numTypes was set to 1, so you need to set up a single entry in the
typelist array. Display only files of type PICT. The pointer to the
reply from SFGetFile will be placed in replyPtr:

336

Macintosh Programming Primer

{--——————————- > GetFileName <--}

procedure GetFileName (var replyPtr: SFReply);
var
myPoint: Point;
typelList: SFTypelList;
numTypes: INTEGER;

begin
myPoint.h := 100;
myPoint.v := 100;
typeList[0] := 'PICT';

numTypes := 1;
SFGetFile(myPoint, IGNORED_STRING, nil, numTypes,
typeList, nil, replyPtr);

end;

DoDialogs calls PrStlDialog to do the Page Setup dialog,
then calls PrJobDialog to do the Print Job dialog. If the user hits
the Cancel button in the Print Job dialog box, DoDialogs returns

FALSE. The value returned by PrJobDialog is returned by
DoDialogs.

Normally, your application would bring up the Page Setup dialog
in response to a Page Setup... menu selection and the Print
Job dialog in response to a Print... menu selection. PrintPICT
calls both dialogs for demonstration purposes only.

(-~ > Dobialogs <--1}

function DoDialogs: BOOLEAN;
var
keepGoing: BOOLEAN;
begin .
keepGoing := PrStlDialog(gPrintRecordH);

if keepGoing then

DoDialogs := PrJobDialog(gPrintRecordH)
else

DoDialogs := FALSE;
end;

PrintPictFile starts off with a call to FSOpen to get the access
path of the file selected by SFGetFile. If the file can be opened,
GetEOF is called, returning the size of the file in the parameter
pictSize. Next, FSRead attempts to read the 512-byte header that

Toolbox Potpourri 337

describes the rest of the file. The actual number of bytes read is
returned in the parameter headerSize. If fewer than 512 bytes were
read, or if you run out of memory while trying to read the picture, call
the ErrorHandler. Because PrintPICT won’t need the 512-byte
PICT header, pictSize is decremented by 512. This reduced version
of pictSize will be used to read in the headerless PICT.

------ > PrintPictFile <--%

procedure PrintPictFile (reply: SFReply);

var

begin

srcFile: INTEGER;

printPort: TPPrPort;

printStatus: TPrStatus;

thePict: PicHandle;

pictHeader: packed array[O..HEADER_SIZEJ] of CHAR;
pictSize, headerSize: LONGINT;

dummy: OSErr;

if (FSOpen(reply.fName, reply.vRefNum, srcFile) <>
noErr) then

ErrorHandler(CANT_OPEN_FILE);

if (GetEOF(srcFile, pictSize) <> noErr) then

ErrorHandler(GET_EOF_ERROR);

headerSize := HEADER_SIZE;
if (FSRead(srcFile, headerSize, apictHeader) <> noErr)
then

ErrorHandler(CANT_READ_HEADER) ;

pictSize := pictSize - HEADER_SIZE;
if pictSize <= 0 then

ErrorHandler (HEADER_TOO_SMALL);

thePict := PicHandle(NewHandle(pictSize));
if thePict = nil then

ErrorHandler(OUT_OF_MEMORY) ;

If you've passed through these trials successfully, you're ready to
read in the PICT data. Because FSRead requires a pointer to the
read buffer, and because you allocated a handle (thePict), you'll
have to HLock the handle before you pass its pointer (thePict*) to
FSRead. Call FSRead to read in the PICT. If this fails (IV:109),
ErrorHandler is run yet again. Assuming that you finally have the
PICT in memory at this point, close the PICT file with FSClose.
Next, PropenDoc is called, returning a pointer (printPort) to the
printing grafPort. Open a new page with PrOpenPage, and draw

338 Macintosh Programming Primer

the PICT with DrawPicture. When you're done, PrClosePage
closes the page and PrCloseDoc closes the printing grafPort.
Finally, print the file with PrPicFile.

HLock(Handle(thePict));

if FSRead(srcFile, pictSize, Ptr(thePict”?)) <> noErr
then
ErrorHandler (CANT_READ_PICT);

dummy := FSClose(srcFile);

printPort := PrOpenDoc(gPrintRecordH, nil, nil);
PrOpenPage(printPort, nil);

DrawPicture(thePict, thePict**.picFrame);
PrClosePage(printPort);

PrCloseDoc(printPort);

PrPicFile(gPrintRecordH, nil, nil, nil, printStatus);

HUnlock(Handle(thePict));

end;

ErrorHandler is the same as in the earlier programs. Take the
alert string resource ID and set up ParamText with it. Then,
display the alert with StopAlert and quit with ExitToShell.

{--——————————— > ErrorHandler <--}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH*?*, NIL_STRING, NIL_STRING,
MIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;
end;

Scroll Bars! We’re Gonna Do Scroll Bars!

Scroll bars are a common control used in Macintosh applications
(Figure 7.28). This section shows you how to set one up to control
paging between a series of pictures in a window.

Making Use of Scroll Bars

The routines that create and control scroll bars are part of the
Control Manager. NewControl is used to create a new control:

FUNCTION NewControl(theWindow : WindowPtr;

boundsRect : Rect;

title = SEr255;

visible : BOOLEAN;

value : INTEGER;

min,max : INTEGER;

procID : INTEGER;

refCon : LONGINT) : ControlHandle;

The parameter procID specifies the type of control to be created.
To create a new scroll bar, pass the constant scrollBarProc to
NewControl. Every scroll bar has a minimum, maximum, and
current value. For example, a scroll bar may go from 1 to 20, and
may currently be at 10 (Figure 7.29).

S[&=————— Pager

Figure 7.28 Window with scroll bar (Pager).

339

340 Macintosh Programming Primer

Position 1

Thumb at Position 10

Position 20

Figure 7.29 Scroll bar positioning.

Once the scroll bar is created, call DrawControls to draw it in
your window:

PROCEDURE DrawControls(theWindow : WindowPtr);

Because the calls to Window Manager routines (such as
ShowWindow and MoveWindow) do not redraw controls in a
window, DrawControls must be called whenever the window
receives an update event.

When a mouseDown event occurs, FindWindow is called,
returning a part code describing the part of the window in which the
mouseDown occurred. If the mouseDown was inContent, call
FindControl:

FUNCTION FindControl(thePoint : Point;
theWindow : WindowPtr;
VAR whichControl : ControlHandle)
INTEGER;

Toolbox Potpourri 341

Like FindWindow, FindControl returns a part code. This time,
the part code specifies which part of the scroll bar was clicked in
(Figure 7.30). Pass the part code returned by FindControl to
TrackControl:

FUNCTION TrackControl(theControl : ControlHandle;
startPt : Point;
actionProc : ProcPtr) : INTEGER;

TrackControl will perform the action appropriate to that part
of the scroll bar. For example, if the mouseDown was in the thumb of
the scroll bar, an outline of the thumb is moved up and down (or
across) the scroll bar until the mouse button is released. Once
TrackControl returns, take the appropriate action, depending on
the new value of the scroll bar.

Next, let’s look at Pager, a program that uses a scroll bar to page
between PICT drawings in a window.

| Up Arrow

“Page Up" Region

Thumb

| "Page Down" Region |-

| Down Arrow I_

Figure 7.30 Parts of scroll bars.

Pager

342

Pager illustrates the use of scroll bars in a Macintosh application. It
works like this:

1. It initializes a window.

2. It creates a new scroll bar, using the number of available PICT
resources to determine the number of positions in the scroll bar.

3. When a mouseDown occurs in the scroll bar, it updates the value
of the scroll bar, loads the appropriate PICT, and displays it in the
window.

4. It quits when the close box is clicked.

Pager also warns if the WIND or PICT resources are unavailable.

Setting Up the Pager Project

Start by creating a folder for this project, called Pager. Use ResEdit
to create a new file called Pager.n.rsrc. You might want to save
some time by just copying and pasting the WIND, ALRT,and DITL
resources from the WindowMaker.m. rsrc file. Remember to make
each resource purgeable.

The WIND resource information appears in Figure 7.31.

S[J== WIND ID = 400 from Pager.n.rsrc ——|
Window title:
Scrolling Pictures
top 46 bottom | 246
left 8 right 408
prociD |4 refCon |0
[J visible X goAwayFlag

Figure 7.31 WIND resource for Pager.

Toolbox Potpourri

343

Next, create a DITL resource (Figure 7.32). Add the ALRT (Figure
7.33). Then, add the three ' STR ' resources shown in Figure 7.34 to
Pager.m.rsrc. Change the resource IDs of each resource to those
shown in the figures and make each resource purgeable.

ECIE DITL "Fatal Error" ID = 401 from Pager
An incredibly fatal error has
just occurred: "0
|
Item* |Type Enabled | Top | Left Bottom | Right | Text/Resource ID
1 Button Yes 86 17 106 177 Gasp!
2 | static Text ves 5 67 71 283 | Anincredibly
fatal error
has just
occurred: “0

Figure 7.32 DITL resource for Pager.

ECJE ALRT "Fatal Error” 1D = 401 from Pager.v.rsrc
Top Bottom | 156

left |40 |Right |[332
ItemsiD Sound (0-3)

Stage 1 []#2 bold [X Drawn m
Stage 2 [] #2 bold X Drawn m
Stage 3 [] #2 bold X Drawn

Stage 4 []#2bold X Drawn |1 |

Figure 7.33 ALRT resource for Pager.

344

Macintosh Programming Primer

S[J=————= STR ID = 400 from Pager.7.rsrc |
i
The String Couldn't load the WIHD
Oata
¥
|
E[J=———= STR ID = 401 from Pager.7.rsrc |
i
The String There' are no PICT resources
aguailable!!! -
Data
1
|
=(J=———= STR 1D = 402 from Pager.m.rsrc |
Ko
The String I-know there's a PICT auailable,
| justican't load it!l! . . ’
Data] |
O]
|

Figure 7.34 'STR ' resources for Pager.

Next, create some PICT resources from your favorite clip art and
paste them into the Pager.m.rsrc. Paste in as many as you like.
Don’t worry about changing resource IDs for the PICT resources.
We'll display every available PICT, regardless of race, creed, or
resource ID. Remember to mark each PICT as purgeable. When
you're done, the resource window of Pager.m.rsrc should look like

0= Pager.n.rsrc =P|

El =

ALRT DITL PICT

L)
STR %
=3

Figure 7.35 Pager resources completed.

Toolbox Potpourri 345

Now you're ready to launch THINK Pascal. Create a new project in
the Pager folder. Call it Pager .n. Create Pager.p and add it to
Pager .n. Here’s the source code for Pager. p:

program Pager;
const
BASE_RES_ID = 400;

SCROLL_BAR_PIXELS = 16;

MIN_SLEEP = 0;
NIL_REF_CON = 0;

WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

ERROR_ALERT_ID = BASE_RES_ID + 1;
NO_WIND = BASE_RES_ID;

NO_PICTS = BASE_RES_ID + 1;
CANT_LOAD_PICT = BASE_RES_ID + 2;

NIL_STRING = '';

NIL_TITLE = NIL_STRING;

VISIBLE = TRUE;

START_VALUE = 1;

MIN_VALUE = 1;

HOPELESSLY_FATAL_ERROR = 'Game over, man!';

var
gPictWindow: WindowPtr;
gScrollBarHandle: ControlHandle;
gbone, gWNEImplemented: BOOLEAN;
gTheEvent: EventRecord;

{--————————— > ErrorHandler <--}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH**, NIL_STRING, NIL_STRING,
NIL_STRING);

346 Macintosh Programming Primer

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;
end;

S, > CenterPict <--}

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);

var

windRect, pictureRect: Rect;

begin
windRect := myRect;
pictureRect := thePicture*?.picFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top);
myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);

{-—————————- > UpdateMyWindow <--}

procedure UpdateMyWindow (drawingWindow: WindowPtr);
var
currentPicture: PicHandle;
drawingClipRect, myRect: Rect;
tempRgn: RgnHandle;
begin .
tempRgn := NewRgn;
GetClip(tempRgn);

myRect := drawingWindow”.portRect;
myRect.right := myRect.right - SCROLL_BAR_PIXELS;
EraseRect(myRect);

currentPicture := PicHandle(GetIndResource('PICT',
GetCtlValue(gScrollBarHandle)));

if currentPicture = nil then
ErrorHandler(CANT_LOAD_PICT);

CenterPict(currentPicture, myRect);

drawingClipRect := drawingWindow”.portRect;

Toolbox Potpourri 347

drawingClipRect.right := drawingClipRect.right -
SCROLL_BAR_PIXELS;
ClipRect(drawingClipRect);

DrawPicture(currentPicture, myRect);

SetClip(tempRgn);
DisposeRgn(tempRgn);

{--——————————— >ScrollProc <--1}

procedure ScrollProc (theControl: ControlHandle; theCode:
INTEGER) ;
var
curControlValue, maxControlValue, minControlValue:
INTEGER;
begin
maxControlValue GetCtlMax(theControl);
curControlValue := GetCtlValue(theControl);
minControlValue := GetCtlLMin(theControl);

case theCode of
inPageDown, inDownButton:
if curControlValue < maxControlValue then
curControlValue := curControlValue + 1;
inPageUp, inUpButton:
if curControlValue > minControlValue then

curControlValue := curControlValue - 1;
end;
SetCtlValue(theControl, curControlValue);
end;
{————rr—em - > SetUpScrollBar <--}

procedure SetUpScrollBar;
var
vScrollRect: Rect;
numPictures: INTEGER;
begin
numPictures := CountResources('PICT'");
if numPictures <= 0 then
ErrorHandler(NO_PICTS);
vScrollRect := gPictWindow”.portRect;
vScrollRect.top := vScrollRect.top - 1;
vScrollRect.bottom := vScrollRect.bottom + 1;
vScrollRect.left := vScrollRect.right -
SCROLL_BAR_PIXELS + 1;
vScrollRect.right := vScrollRect.right + 1;

348 ’ Macintosh Programming Primer

gScrollBarHandle := NewControl(gPictWindow,

vScrollRect, NIL_TITLE, VISIBLE, START_VALUE,

MIN_VALUE, numPictures, scrollBarProc, NIL_REF_CON);
end;

{——— - > HandleMouseDown <--}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
thePoint: Point;
theControl: ControlHandle;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow (whichWindow, gTheEvent.where, screenBits.bounds);
inContent:
begin
thePoint := gTheEvent.where;
GlobalToLocal(thePoint);
thePart := FindControl(thePoint, whichWindow, theControl);
if theControl = gScrollBarHandle then

begin
if thePart = inThumb then
begin
thePart := TrackControl(theControl, thePoint, nil);
UpdateMyWindow(whichWindow);
end
else
begin
thePart := TrackControl (theControl,thePoint,
aScrollProc);
UpdateMyWindow(whichWindow);
end;
end;
end;

inGoAway:
gbone := TRUE;
end;
end;

Toolbox Potpourri 349

{--————————- > HandleEvent<--}

procedure HandleEvent;
var
dummy: BOOLEAN;
begin
if gWNEImplemented then
dummy := WaitNextEvent(everyEvent, gTheEvent,
MIN_SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
mouseDown:
HandleMouseDown;
updateEvt:
begin .
BeginUpdate(WindowPtr(gTheEvent.message));
DrawControls(WindowPtr(gTheEvent.message));

UpdateMyWindow(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));

end;
end;
end;
{----———————————— > MainLoop <--}
procedure MainLoop;
begin
gbone := FALSE;
gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,

ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));

while (gbone = FALSE) do
HandleEvent;

end;
{---————————- > WindowInit <--}%
procedure WindowInit;
begin
gPictWindow := GetNewWindow(BASE_RES_ID, nil,

WindowPtr(-1));

350

Macintosh Programming Primer

if gPictWindow = nil then
ErrorHandler (NO_WIND);

SelectWindow(gPictWindow);
ShowWindow(gPictWindow);
SetPort(gPictWindow);

begin
WindowInit;
SetUpScrollBar;

MainLoop;
end.

Running Pager

When you've finished typing in your source code, run Pager. You
should see something like Figure 7.28 (shown earlier), except that it
will use the PICTs that you put in Pager.n.rsrc. The scroll bar
should allow you to page back and forth between the PICTs.
Clicking in the close box ends Pager’s execution.

Walking Through the Pager Code

Figure 7.36 offers an overview of Pager’s software architecture.

Pager Routines

Windownit | || MainLoop

— - if not done
SetUpScrollBa
s . HandleEvent

if mouseDown if update event
HandleMouseDown DrawControls
FindControl UpdateMyWindow
TrackControl
UpdateMyWindow

:L

Figure 7.36 Pager’s software architecture.

Toolbox Potpourri 351

You’ve seen most of this program: before. You’ll create a window
with GetNewWindow and get and handle events just as you did in
WindowMaker. Now, let’s look at the code.

Pager starts off with constant and global variable declarations.
We'll discuss these in context.

program Pager;
const
BASE_RES_ID = 400;

SCROLL_BAR_PIXELS = 16;

MIN_SLEEP = 0;
NIL_REF_CON = O;

WNE_TRAP_NUM = $60;
UNIMPL_TRAP_NUM = $9F;

ERROR_ALERT_ID = BASE_RES_ID + 1;
NO_WIND = BASE_RES_ID;

NO_PICTS = BASE_RES_ID + 1;
CANT_LOAD_PICT = BASE_RES_ID + 2;

NIL_STRING = '';

NIL_TITLE = NIL_STRING;

VISIBLE = TRUE;

START_VALUE = 1;

MIN_VALUE = 1; ’

HOPELESSLY_FATAL_ERROR = 'Game over, man!';

var
gPictWindow: WindowPtr;
gScrollBarHandle: ControlHandle;
gbone, gWNEImplemented: BOOLEAN;
gTheEvent: EventRecord;

Pager’s main routine first calls WindowInit, next calls
SetUpScrol LBar to initialize the scroll bar control, and then runs
MainLoop to start the main event loop.

{-———=———— > Pager <--}

begin
WindowInit;
SetUpScrollBar;

MainLoop;
end.

352 Macintosh Programming Primer

WindowInit is uneventful. The WIND resource is loaded and
displayed, with the customary call to ErrorHandler if the WIND
resource is missing.

{--———————=—==- > WindowInit <--1}

procedure WindowInit;

begin
gPictWindow := GetNewWindow(BASE_RES_ID, nil,
WindowPtr(-1));

if gPictWindow = nil then
ErrorHandler (NO_WIND);

SelectWindow(gPictWindow);
ShowWindow(gPictWindow);
SetPort(gPictWindow);

end;

SetUpScrollBar calls CountResources to find out how many
PICT resources are available.

Every application has access to resources from two different
places: the resource fork of the application itself and the resource
fork of the system file. In addition, an application may use the
Resource Manager to open additional resource files. When looking
for a resource, the Resource Manager searches the most recently
opened resource file first.

If no PICT resources are available, the ErrorHandler is called.
Otherwise, SetUpScrol lBar creates a Rect the proper size for
your scroll bar and then creates the scroll bar with a call to
NewControl. The scroll bar ranges in value from MIN_VALUE to
numPictures, the number of available PICT resources.
START_VALUE is the initial value of the scroll bar and determines
the initial position of the scroll bar thumb. The final parameter is a
reference value available for your application’s convenience. You can
use these four bytes as scratch pad space.

Toolbox Potpourri 353

{——mmmmm > SetUpScrollBar <--1}

procedure SetUpScrollBar;

begi

end;

var
vScrollRect: Rect;
numPictures: INTEGER;
n
numPictures := CountResources('PICT');
if numPictures <= 0 then
ErrorHandler(NO_PICTS);
vScrollRect := gPictWindow”.portRect;
vScrollRect.top := vScrollRect.top - 1;
vScrollRect.bottom := vScrollRect.bottom + 1;
vScrollRect.left := vScrollRect.right -
SCROLL_BAR_PIXELS + 1;
vScrollRect.right := vScrollRect.right + 1;
gScrollBarHandle := NewControl(gPictWindow,
vScrollRect, NIL_TITLE, VISIBLE, START_VALUE,
MIN_VALUE, numPictures, scrollBarProc, NIL_REF_CON);

MainLoop sets the flag for GetNextEvent or WaitNextEvent,
and then calls HandleEvent.

{-——————————- > MainLoop <--1

procedure MainLoop;

begi

end;

n
gbone := FALSE;

gWNEImplemented := (NGetTrapAddress(WNE_TRAP_NUM,
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM,
ToolTrap));
while (gbone = FALSE) do

HandleEvent;

Pager handles two different events. mouseDowns are handled by
HandleMouseDown. updateEvts are handled in line. First,
BeginUpdate is called. Then, DrawControls draws the scroll bar
with the thumb in the proper position. Finally, EndUpdate is called.

{--———————————— > HandleEvent <==}

procedure HandleEvent;

begi

var
dummy: BOOLEAN;
n
if gWNEImplemented then

354

Macintosh Programming Primer

dummy := WaitNextEvent(everyEvent, gTheEvent,
MIN_SLEEP, nil)

else
begin
SystemTask;
dummy := GetNextEvent(everyEvent, gTheEvent);
end;

case gTheEvent.what of
mouseDown:
HandleMouseDown;
updateEvt:
begin
BeginUpdate(WindowPtr(gTheEvent.message));
DrawControls(WindowPtr(gTheEvent.message));

UpdateMyWindow(WindowPtr(gTheEvent.message));
EndUpdate(WindowPtr(gTheEvent.message));

end;
end;
end;
HandleMouseDown looks the same at the start:
{-——— - > HandleMouseDown <-=}

procedure HandleMouseDown;
var
whichWindow: WindowPtr;
thePart: INTEGER;
thePoint: Point;
theControl: ControlHandle;
begin
thePart := FindWindow(gTheEvent.where, whichWindow);
case thePart of
inSysWindow:
SystemClick(gTheEvent, whichWindow);
inDrag:
DragWindow(whichWindow, gTheEvent.where,
screenBits.bounds);

The big change comes when a mouseDown occurs in the content
region (inContent) of a window. The mouseDown’s location
(gEvent.where) is translated into the window’s local coordinate
system. The localized point is passed to FindControl, which
returns a Hand le to the selected control (in the parameter
theControl) and a part code indicating what part of the control
was selected. If theControl is your scroll bar, find out if it was in
the thumb. If it was, call TrackControl to drag an outline of the

Toolbox Potpourri 355

thumb up and down the scroll bar. When the thumb is released,
update the window using the new scroll bar value. If any other part
of the control was used, call TrackControl with a pointer to

ScrollProc. ScrollProc scrolls the scroll bar until the mouse
button is released.

Call TrackControl with a pointer to an action procedure if you
want the control to change while the mouse button is still down. If
you pass nil as an action proc, the control will animate, but its
value will not change until the mouse button is released.

inContent:

in

end;
end;

begin

thePoint := gTheEvent.where;

GlobalToLocal(thePoint);

thePart := FindControl(thePoint, whichWindow, theControl);

if theControl = gScrollBarHandle the begin

if thePart = inThumb then
begin
thePart := TrackControl(theControl, thePoint, nil); .
UpdateMyWindow(whichWindow);
end
else

begin

thePart := TrackControl(theControl,

thePoint,aScrollProc);

UpdateMyWindow(whichWindow);
end;
end;
end;
GoAway:
gDone := TRUE;

ScroltProc handles mouseDowns in the page up, page down, up
button, and down button regions of the scroll bar.
maxControlValue, curControlValue, and minControlValue
are set to the maximum, current, and minimum values of
theControl. If the mouse click was inPageDown or
inDownButton, increase the value of the control. If the mouse click
was inPageUp or inUpButton, decrease the value of the control.
Finally, update the control to this new value with SetCtlValue.

356 Macintosh Programming Primer

S > ScrollProc <--}

procedure ScrollProc (theControl: ControlHandle; theCode:
INTEGER) ;
var
curControlValue, maxControlValue, minControlValue:
INTEGER;
begin
maxControlValue :
curControlValue
minControlValue

GetCtlMax(theControl);
GetCtlValue(theControl);
GetCtlMin(theControl);

case theCode of
inPageDown, inDownButton:
if curControlValue < maxControlValue then
curControlValue := curControlValue + 1;

inPageUp, inUpButton:
if curControlValue > minControlValue then
curControlValue := curControlValue - 1;
end;
SetCtlvValue(theControl, curControlValue);
end;

UpdateMyWindow works in a fashion similar to that of the
DrawPicture routine in EventTutor (Chapter 4). The algorithm
works as follows: Temporarily reset the window’s clipping region so it
does not include the area covered by the scroll bar. Center the
picture, draw it, and reset the original clip region. The call to
GetIndResource uses the current value of the scroll bar
(GetCtlvValue(gScrollBarHandle)) to load the appropriate
PICT resource.

For example, if there were 30 PICT resources available, the scroll
bar would run from 1 to 30. If the current thumb setting were 10, the
call to GetIndResource would return a handle to the tenth PICT
resource. Since GetIndResource returns a handle, you can use
Pascal’s type-casting mechanism to convertittoa PicHandle.

Note that only one PICT at a time is ever loaded into memory.
When the scroll bar’s value changes, a replacement PICT is loaded,
not an additional one.

Toolbox Potpourri

357

{--———--—-—————— > UpdateMyWindow <--}

procedure UpdateMyWindow (drawingWindow: WindowPtr);

begi

end;

var
currentPicture: PicHandle;
drawingClipRect, myRect: Rect;
tempRgn: RgnHandle;

n

tempRgn := NewRgn;

GetClip(tempRgn);

myRect := drawingWindow”.portRect;
myRect.right := myRect.right - SCROLL_BAR_PIXELS;
EraseRect(myRect);

currentPicture := PicHandle(GetIndResource('PICT"',
GetCtlValue(gScrollBarHandle)));

if currentPicture = nil then
ErrorHandler (CANT_LOAD_PICT);

CenterPict(currentPicture, myRect);
drawingClipRect := drawingWindow”.portRect;
drawingClipRect.right := drawingClipRect.right -
SCROLL_BAR_PIXELS;

ClipRect(drawingClipRect);

DrawPicture(currentPicture, myRect);

SetClip(tempRgn);
DisposeRgn(tempRgn);

CenterPict is the same as it ever was.

{—m—m—— - > CenterPict <--2

procedure CenterPict (thePicture: PicHandle; var myRect:
Rect);

begi

var

windRect, pictureRect: Rect;
n
windRect := myRect;
pictureRect := thePicture**.picFrame;
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 +
windRect.top;

myRect.bottom := myRect.top + (pictureRect.bottom -

pictureRect.top);

358 Macintosh Programming Primer

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 +
windRect.left;

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left);

end;
ErrorHandler should be familiar by now: ParamText to
StopAlert to ExitToShell, leaving nothing to chance.
{--—————————— > ErrorHandler <--}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH**, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);

ExitToShell;
end;

The Sound Manager

If you'’re tired of the same old SysBeep, there is an alternative.
Within the system file is a set of 'snd ' resources, commonly known
as beep sounds. The 'snd ' with resource ID = 1 is the familiar Beep.
The current system comes with three additional 'snd 's: Monkey,
Clink-Klank, and Boing. Hundreds more are available on electronic
bulletin boards throughout the country.

Using the Sound Manager, you can add these sounds to your
applications. The final Mac Primer application, Sounder, shows
you how.

Toolbox Potpourri 359

Sounder

Sounder works like this:

1. It loads the 'snd ' resources from the system file.
2. It plays them (assuming you have the volume set above 0).
3. It quits.

Sounder also performs error checking. It puts up an alert if the
'snd ' resources can’t be accessed.

Setting Up the Sounder Project

Start by creating a folder for this project, called Sounder. Use
ResEdit to create a new file called Sounder.n. rsrc. Sounder uses
the same DITL and ALRT resources as all the other Chapter 7
programs, so you can cut and paste if you've typed in the other
programs. If not, use Figures 7.37 and 7.38 for those resources. Add
the four "STR ' resources shown in Figure 7.39 to the
Sounder.m.rsrc file. Again, be sure to change the resource IDs of
each resource to those shown in the figure. When you’re done, the
resource window of Sounder.n. rsrc should look like Figure 7.40.

IECJE DITL "Fatal Error” 1D = 401 from Pager

An incredibly fatal error has
just occurred: "0

Figure 7.37 DITL resource for Sounder.

360 Macintosh Programming Primer

Item* |Tupe Enabled | Top Left Bottom Right |Text/Resource ID
1 Button Yes 86 "z 106 177 Gasp!
2 Static Text Yes 5 67 71 283 An incredibly
fatal error
has just
occurred: "0

Figure 7.37 DITL resource for Sounder. (Continued)

E[JE ALRT "Fatal Error" ID = 401 from Sounder.7.rs

Top Bottom | 156

Left |40 Right (332

ltemsln Sound (0-3)

Stage 1 [#2 bold [Drawn
Stage 2 [] #2 bold X Drawn
Stage 3 []#2 bold X Drawn
Stage 4 []#2 bold Drawn

ot | et | ot | -

Figure 7.38 ALRT resource for Sounder.

Toolbox Potpourri

361

E[J=———=— STR ID = 400 from Sounder.m.rsrc

— _ O
The String Can'ty logd Beep
Data $|
W4
ol

[J===== STR ID = 401 from Sounder.7.rsrc

o)

The String Car "t lond ﬂankeg\'ﬁﬂd SR
Data
™
&
E[1==——=— STR 1D = 402 from Sounder.m.rsrc
The String jdﬂ't rﬁud Elﬂﬁk\iéﬁd\f!!}]
Data
Q'
&
S[J=——— STR ID = 403 from Sounder.¥.rsrc |
The String |Epnft'lmmd Boing. " snd &
Data $l
W
|

Figure 7.39 'snd ' resources from Sounder.

E[]== Sounder.m.rsrc

E %
S =

ALRT DITL

DlE

Figure 7.40 Pager resources completed.

[[<]

362 Macintosh Programming Primer

Now you're ready to launch THINK Pascal. Create a new project in
the Sounder folder. Call it Sounder .n. Create a new source file
(Sounder.p), and add it to Sounder .n. Here’s the source code for
Sounder.p:

program Sounder;

uses
Sound;

const
BASE_RES_ID = 400;
SYNCHRONOUS = FALSE;

ERROR_ALERT_ID = BASE_RES_ID + 1;
CANT_LOAD_BEEP_SND = BASE_RES_ID;
CANT_LOAD_MONKEY_SND = BASE_RES_ID + 1;
CANT_LOAD_KLANK_SND = BASE_RES_ID + 2;
CANT_LOAD_BOING_SND = BASE_RES_ID + 3;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

BEEP_SND

MONKEY_SN
KLANK_SND = 3
BOING_SND = 4

o

- >ErrorHandler <--3}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;

begin
errorStringH := GetString(stringNum);
if errorStringH = nil then

ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)

else
ParamText(errorStringH”~*~, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);
ExitToShell;
end;

Toolbox Potpourri 363

{--———————————— > MakeSound <--1}
procedure MakeSound;
var
soundHandle: Handle;
dummy: OSErr;
begin
soundHandle := GetResource('snd ', BEEP_SND);

if soundHandle = nil then
ErrorHandler(CANT_LOAD_BEEP_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);
soundHandle := GetResource('snd ', MONKEY_SND);

if soundHandle = nil then
ErrorHandler(CANT_LOAD_MONKEY_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);
soundHandle := GetResource('snd ', KLANK_SND);

if soundHandle = nil then
ErrorHandler (CANT_LOAD_KLANK_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);
soundHandle := GetResource('snd ', BOING_SND);

if soundHandle = nil then
ErrorHandler(CANT_LOAD_BOING_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);
end;
{-————————————— > Sounder <--1}
begin

MakeSound;
end.

Walking Through the Sounder Code

Sounder is short and sweet. These constants should be familiar to
you Chapter 7 cognoscenti.

program Sounder;

uses
Sound;

const
BASE_RES_ID = 400;
SYNCHRONOUS = FALSE;

ERROR_ALERT_ID = BASE_RES_ID + 1;
CANT_LOAD_BEEP_SND = BASE_RES_ID;
CANT_LOAD_MONKEY_SND = BASE_RES_ID + 1;
CANT_LOAD_KLANK_SND = BASE_RES_ID + 2;
CANT_LOAD_BOING_SND = BASE_RES_ID + 3;

NIL_STRING = '';
HOPELESSLY_FATAL_ERROR = 'Game over, man!';

BEEP_SND = 1;
MONKEY_SND =
KLANK_SND
BOING_SND

2;
]
’
f
r

3
4

Sounder’s main routine consists of a call to MakeSound.

{--——-———————- > Sounder <--}

begin
MakeSound;
end.

The key to this program is the Sound Manager routine SndPLlay.
Load each of the four 'snd ' resources normally found in the
system file, and play them with SndPlay.

Because the Mac System file didn't always use 'snd '
resources, older systems may cause an error ALRT to appear.
Check out the Sound Manager (Chapter 27) in Inside Macintosh,
Volume V, for more detail.

364

Toolbox Potpourri

365

The first parameter to SndPlay is the SndChannelPtr. By
passing ni L, you've told SndPLlay to allocate a channel for you. The
second parameter is the 'snd ' handle. The third parameter tells
SndPlay whether or not to play the sound asynchronously. When
you pass nil as the SndChannelPtr, you must pass FALSE as the
third parameter. That is, if you ask SndPlay to allocate a channel
for you, you must play the sound synchronously. If you cannot find

the 'snd ' resource, go to the beloved ErrorHandler.

{-——————— > MakeSound <--3}

procedure MakeSound;

begi

end;

var
soundHandle: Handle;
dummy: OSErr;
n
soundHandle := GetResource('snd ', BEEP_SND);

if soundHandle = nil then
ErrorHandler (CANT_LOAD_BEEP_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);

soundHandle := GetResource('snd ', MONKEY_SND);

if soundHandle = nil then
ErrorHandler (CANT_LOAD_MONKEY_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);

soundHandle := GetResource('snd ', KLANK_SND);

if soundHandle = nil then
ErrorHandler (CANT_LOAD_KLANK_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);

soundHandle := GetResource('snd ', BOING_SND);

if soundHandle = nil then
ErrorHandler(CANT_LOAD_BOING_SND);

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS);

366 Macintosh Programming Primer

The error-handling routine is similar to what you’ve seen in the
other Chapter 7 programs:

{--——-——————— > ErrorHandler <--1}

procedure ErrorHandler (stringNum: INTEGER);
var
errorStringH: StringHandle;
dummy: INTEGER;
begin
errorStringH := GetString(stringNum);
if errorStringH = nil then
ParamText (HOPELESSLY_FATAL_ERROR, NIL_STRING,
NIL_STRING, NIL_STRING)
else
ParamText(errorStringH~*, NIL_STRING, NIL_STRING,
NIL_STRING);

dummy := StopAlert(ERROR_ALERT_ID, nil);

ExitToShell;
end;

In Review

We covered a lot of ground in this chapter. Each of the four programs
we presented involved a different part of the Mac Toolbox. If you're
unsure about any of the concepts discussed, take the time to read
about them in their respective Inside Macintosh chapters. The Scrap
Manager is covered in Volume I, Chapter 15. The Standard File
Package is covered in Volume I, Chapter 20 and updated in Volume
IV, Chapter 15. The File Manager is covered in Volume IV, Chapter
19. (Warning: Don’t be fooled by imitations! The File Manager section
in Volume II, Chapter 4, has been completely replaced by Chapter 19
of Volume IV.) The Printing Manager is covered in Volume II,
Chapter 5.

The Control Manager is covered in Volume I, Chapter 10. Scroll
bars make up a small part of this chapter, but the concepts
implemented in Pager will carry through to other types of controls.

Finally, the Sound Manager is covered in Volume V, Chapter 27.
An authoritative version of this chapter has been published by
Macintosh Developer Technical Support under the title The Sound
Manager. If you're really interested in sound on the Mac, read the
“Sound Driver” chapter (Volume I, Chapter 8). This is the way sound
originally worked on the Mac, and many of the basic concepts are
still supported.

Chapter 8 introduces the wonderful world of ResEdit. See you
there!

Using ResEdit

ResEdit provides a simple, yet
powerful way to edit resources. This
chapter shows you how to use this tool
to create the Finder resources
necessary to turn your projects into
stand-alone applications.

By Now, You should have a good grip on the most important aspects
of Macintosh application programming. We’ve described how to
handle events, access files, and display pictures and text. You’ve
worked with menus, windows, and dialogs. This chapter discusses
some issues that become important after you have your basic
programming problems in hand.

After you compile your debugged application, but before you
announce your first stock offering, you need to take care of a few loose
ends. For example, you'll want to turn your code into a stand-alone
application. Then, you'll want to design your own custom icon. These
finishing touches require the creation of the Finder resources.
These resources do not affect the operation of the application; rather,
they affect the way your application interfaces with the Finder. This
chapter discusses how to add Finder resources to your application.

If you are here because you are unfamiliar with ResEdit, read the
first section of this chapter, which deals with general ResEdit
operations.

As was mentioned earlier, version 2 of ResEdit is used in this
chapter; please refer to the resource manual that comes with THINK
Pascal if you have an earlier version of ResEdit (typically 1.2).

You may already have used other programming utilities, such as
Rez or RMaker, that create and edit resources. ResEdit is used in
this book because it creates and edits resources graphically,
whereas Rez and RMaker build resources by describing them
textually. For example, here is a text description of a WIND
resource:

TYPE WIND
,128 ;; the resource number
My Window ;; the window title

40 40 200 472 ;; the window rect (top left
bottom right)

Visible GoAway ;; resource flags

0 ;; window definition ID

0 ;; refcon (points to user call)

This is the way RMaker describes resources. (RMaker also comes

with THINK Pascal.)

369

370 Macintosh Programming Primer

ResEdit's WIND editor looks like Figure 8.1. When you're creating
resources for the first time, ResEdit’s graphic approach has many
advantages: It's more intuitive, and it gives you a chance—uwith
many resource types—to examine the appearance of a resource
without actually running your program. You can use RMaker and
ResEdit interchangeably; see the appendix in THINK Pascal’s
User Manual if you're interested in using RMaker.

We'll explore ResEdit in this chapter in the following way: First,
you’ll create the resource file needed for the first program in Chapter
3, Hello2. Then you’ll compile Hello2 into a stand-alone application.
Finally, you’ll use ResEdit to add the Finder resources to it.

E[J= WIND ID = 128 from Untitled

New Window

Figure 8.1 Graphic representation of WIND resource.

Notes on Using ResEdit

ResEdit works well in MultiFinder. If you plan to use MultiFinder,
make sure that the application memory size used by ResEdit is at
least 500K (Figure 8.2). Here are a few caveats about using ResEdit:

You can’t edit resources in files that are currently in use, such as
the Finder file. This is not much of a disadvantage, as editing open
files is not such a hot idea anyway.

Make a copy of any file you plan to edit. It is very easy to modify
resources irrevocably. Be careful. If you’re planning to enter more
than one or two resources in a single ResEdit session, save your file
periodically.

Although ResEdit works with all resource types, it may have
difficulty performing some operations on large resources, such as
color icons, or sound resources ('snd"') that exceed a few hundred K
in size. In these cases, proceed with caution (and double ResEdit’s
memory allocation if you’re using MultiFinder).

These guidelines are a little like the sign posted at swimming
pools about waiting 30 minutes after you eat: Most of the time,
they’re not necessary. ResEdit is quite well mannered and will
quickly become an indispensable programming tool.

S(J=———= Info —=——r——|
753 Lacked []
@ ResEdit
ResEdit 2.0
Kind : application
Size: 576,454 bytes used, 563K on disk

Yhere : HotHouse, SCSI0

Created: Sat, spr 28, 1990, 11:00 AM
Modified: Sat, Apr 28, 1990, 11.:00 AM
Yersion: 2.0, ©®Apple Computer, Inc.
1984-1990

Suggested Memory Size (K): 500

Application Memory Size (K):

Figure 8.2 ResEdit version 2.

371

372

Macintosh Programming Primer

How ResEdit Works

Before you start using ResEdit to install the Finder resources, you
should examine how ResEdit accomplishes the job of creating and
editing resources in files. Let’s start by building the resource file for
the first program in Chapter 3: Hello2.

Double-click on ResEdit to start it up.

ResEdit will put up a dialog box asking you to select a file or to
create a new one. To build a resource file for a Primer project, click on
the new button and name the new resource file (in this case
Hello2.rn.rsrc). ResEdit then displays Hello2’s resource window,
which will hold any resources that we plan to make (Figure 8.3).

ResEdit has five basic menus: File, Edit, Resource, Window,
and Diew. File allows you to open or create resource files; Edit
allows you to cut and paste resources between files. The Resource
menu lists operations specific to a given resource type. Window: lists
all the currently open windows for ResEdit, so you can bring a
window that is hidden by others up to the front. liew allows you to
display resources graphically (using icons) or by a regular text list.
The figures in this book utilize the iconic display.

Let’s build the WIND resource necessary to make Hello2 work.
Starting from the empty resource file of Figure 8.3, choose Create
New HResource from the Resource menu to add a new resource

Hello2.m.rsrc

Figure 8.3 ResEdit with a new resource file.

Using ResEdit

373

" & File ¥

type to the current file. The Resource Type dialog box (Figure 8.4)
appears: You can either select the new resource type from the
scrolling window or type in the name of the new resource type in the
field provided.

Type in WIND or select it from the scrolling list and click on the OK
button.

Two windows are displayed. First a WIND Picker Window is
shown. This is where the list of all resources of type WIND is
displayed. Then the WIND editor displays a newly created WIND
resource, ready to be edited (Figure 8.5).

Select New Type

IWIND
r!:

Figure 8.4 The Resource Type dialog box.

¢ Hesource Window WI

Hello2.m.rsrc
LWINDs from Hello2.7.rsrc
F‘ [1¥] Size Marne
1258 29
E WIND ID = 128 from Hello2.w.rsrc

Figure 8.5 WIND Picker window and WIND Editor window (offset).

374

Macintosh Programming Primer

The WIND editor displays the new window in a miniaturized
version of the screen. Click in the middle of the mini-window and you
can drag the window around the mini-desktop. This changes its
global coordinates (Figure 8.6). Click and drag on the lower right
corner of the window to resize it (Figure 8.7).

Finally, select the Display as Text item in the WIND menu. This
shows another way to enter the parameters for your WIND resource.
If you make changes here and select Display Graphically from the
LIWIND menu, the adjusted window will be positioned correctly on the
mini-desktop.

Some information about windows can be changed only in the
Display as Tedt mode. For example, Figure 8.8 shows a window
whose title and procID have been changed with a new title and
window type (see Chapter 3 about window types).

JIII}
I
=
4
=2
=
L}
N
==}
=
-
=
3
=
o
=)
o
2
=
*
-
=]
1111
I

E WIND ID = 128 from Hello2.m.rsrc £

Figure 8.6 Changing WIND coordinates.

=CJ= WIND 1D = 128 frem Hello2.w.rsrc E|[ECJE WIND ID = 128 from Hello2.7.rsrc

Figure 8.7 Resizing the WIND resource.

Using ResEdit

375

Next, select Get Resource Info from the Resource menu while
the WIND editing window for WIND 128 is up. ResEdit will display
information about the resource (Figure 8.9).

The only information you’re concerned with is the 10 number and
the Purgeable flag. ResEdit defaults to a resource ID of 128 (if no
other resource of that type has that ID). To finish the Hello2 resource
file that you created, set the WIND’s resource ID to 400 and check the
Purgeable checkbox.

Most resources used in this book are marked Purgeahle to
conserve memory. It’s not necessary, but it’s a good idea (see Volume
II of the Primer for a discussion of why that’s so).

ECJ= WIND 1D = 128 from Hello2.w.rsrc E| [ECIE WIND 1D = 128 from Hello2.7m.rsrc

Window title:

Great American Window

top 78 bottom | 280
left 76 right 420
proclD |16 refCon |0

[visible [1 goAwayFlag

Figure 8.8 Great American WIND resource.

|

E[1== Info for WIMND 128 from Hello2.m.rsrc

Type: WIND Size: 40
1D: 128
Name: |

Owner type

Owner 10: DRUR i+
IDEF
Sub 1D: MDEF -{,:,:
Attributes:
[JSsystem Heap []Locked] Preload
[] Purgeable] Protected

Figure 8.9 WIND resource information.

376 Macintosh Programming Primer

Here's a brief description of the fields and flags in the resource
info window:

Owner Type: Special programs such as desk accessories must
be handled differently. If you click on Owner Type, your resource
ID changes. Certain programs (such as desk accessories) play by
a different set of rules when it comes to resource IDs (IMI:127).

Owner 1D and Sub 1D are used when you are sharing the
resource with other programs.

PrelLoad resources are loaded into memory as soon as your
application starts running. Purgeable resources are removed
from memory if the Memory Manager needs to reclaim that space.

If System Heap is selected, the resource will be loaded into the
System Heap instead of the Application Heap. If the resource is
Locked, the Memory Manager cannot move it around when it is
rearranging memory. If the resource is Protected, the Resource
Manager can’t modify it.

When you've finished with the WIND resource, choose Save from
the File menu to save your changes. Your resource file now contains
the information necessary for Hello2 to build a window (Figure 8.10).

SO0= Hello2.7.rsrc =03
ﬁ
WIND

o
=

Figure 8.10 Completed resourcesin Hello2.m.rsrc.

Using ResEdit

377

Apple has authored a manual called ResEdit Reference, published
by Addison-Wesley. Get it if you'd like more technical information
about how ResEdit works. You can also procure the manual from
APDA (see Chapter 9 for more information).

That’s the end of the ResEdit overview. Those of you who needed to
get your ResEdit feet wet should go back and finish your projects.
The next step is to build an application (we’ll build Hello2) and then
add the Finder resources to it.

Everybody who wants an icon on their application, onward!

Completing a Stand-alone Application:
Hello2 Revisited

The first step is to create a stand-alone application from a working
project. Do this by compiling Hello2, the first program in Chapter 3.
Open the Hello2 project. Select Set Project Type... from the
Project menu. You should see something like Figure 8.11. There are
four project options in the dialog box. Make sure the Application
icon is selected in the dialog; click on OK. See THINK Pascal’s User
Manual for a description of the other three project types.

Now choose Build Application from the Project menu. If the
project is up to date, it should prompt you for an application name
(Figure 8.12). Call the application Hello2. (The Smart Link checkbox
should be checked.) When you click on Save, THINK Pascal will
build the Hello2 application. When it’s completed, quit THINK Pascal
and try double-clicking on the Hello2 application created in your
Hello2 folder. It should display the text Hello, World in a window
(Figure 8.13).

Now that you have a working stand-alone application, let’s add the
Finder resources to it. Click the mouse button to quit Hello2.

378 Macintosh Programming Primer

— File Information
Type: Creator: X Bundle Bit

- Resaures informatisn

Name!]

Desk Accessory ?’i} pe: ¢

[0 3|

Mask: b i iMuit-Segment

Code Resource

Figure 8.11 Project Type dialog box.

0 Hellad.n w i
0 Helod, n B
0y Haellelp

I
=
o
=
=
[
x

fipnt

o
Save RApplication as
Hello2 (Cancel)

] Smart Link

Figure 8.12 Build Application dialog box.

Using ResEdit

379

Hello2 Window

Hello, world

Figure 8.13 Running Hello2.

Installing the Finder Resources

Apple recommends that software developers install six special
resources in their applications. Each resource plays an essential role
in your application’s interface to the Finder. They are grouped into
three categories:

e Application icon: The ICN#, FREF, BNDL, and signature
resources are used to add a unique icon to an application as it
appears on the desktop.

e Application version information: The vers resource contains
general information used by the Finder, including the specific
version of an application, the country for which it is localized,
and its creation date.

e Application MultiFinder requirements: The SIZE resource
designates the recommended and minimum application memory
size needed for an application; it also contains further details on
the application’s level of MultiFinder compatibility.

380

Macintosh Programming Primer

Examining the Resources of Hello2

Open up the Hello2 application you just made with ResEdit. Figure
8.14 shows the resource window for the completed Hello2. The six
resources shown make up the entire Hello2 application. The compiler
makes the CODE, DATA, DREL, LSP, and ZERO resource types; the
WIND resource was copied from the WIND resource you made and put
into the He L Llo2.m. rsrc file.

" & File Edit Resource Window Uiew

anou LAl

Figure 8.14 The resources of the Hello2 application.

In Figure 8.14, some resource icons in Hello2 have a question
mark. This doesn’t mean that there’s anything wrong with these
resource types. Editing information for each resource type is stored
in templates in the ResEdit application. If there's no template for a
resource type, the default question mark icon is used.

Each resource type can have a different method for editing
individual resources of the type. Some resource types contain a
MacPaint “fat bits” editor (ICON, ICN#). Many types simply display
named fields for you to input (FREF, BNDL, MENU, MBAR). Other
resource types can be resized and positioned graphically on a
miniature desktop (WIND, DITL, DLOG).

If ResEdit doesn’t know how to handle a certain resource type, it
defaults to a hexadecimal editor.

Using ResEdit 381

Adding an Icon to Hello2

Four resources need to be installed in an application file to get the
Finder to replace the generic application icon with a unique icon.
Adding your own icon to an application used to be an involved
procedure. However, with version 2 of ResEdit, the job has been
simplified dramatically so that one operation automatically creates
all the necessary resources for you.

Open up Hello2 with ResEdit and choose Create New Resource
from the Resource menu. Either key in BNDL or select it from the
scrolling list. Your screen should look something like Figure 8.15.

Type HELO in the Signature text field (Figure 8.16).

F

® File Edit Resource Window BNDL ki

Hello2
BNDLs from Hello2
EJ== BNDL ID = 128 from Hello

Signature:

Type Finder lcons

Figure 8.15 A new BNDL resource.

382 Macintosh Programming Primer

S[J== BNDL ID = 128 from Hello2 —=]

Signature: |[HELD

Type Finder lcons
ik
o

Figure 8.16 Entering the Signature.

Next, select Create New File Type from the Resource Menu.
You should see something like Figure 8.17.

S[J== BNDL ID = 128 from Hello2 ==
Signature: [HELD

Finder lcons

&

Figure 8.17 The result of Create New File Type.

Using ResEdit

383

Click on the 77?7 and type in APPL, as shown in Figure 8.18.
Now you can create the icon for Hello2. Select the boxes under the

title Finder

Icons by clicking on them. Then select the Choose

Icon... menu item from the BNDL menu (Figure 8.19).

E[]=== BNDL ID = 128 from Hello2 =
Signature: [HELO
Type Finder Icons
i
APPL |
o

Figure 8.18 Hello2 and APPL.

Extended View

Choose Icon.

== BNDL ID - 128 from Hello

signature:

Type

Finder Icons

APPL

Figure 8.19 Choosing anicon. ..

384

Macintosh Programming Primer

The icon selection dialog box pops up (Figure 8.20). Because you
don’t have an icon in your resource fork yet, you'll have to make one.
Click on the New button.

Choose an icon for the type APPL:
i
o
[New | [#sit | B¥

Figure 8.20 Slim pickings in the icon selection dialog box.

An ICN# editing window is now displayed (Figure 8.21). The
special editor for ICN# resources allows you to build your
application’s icon graphically.

S[J=—-=ICN# ID = 128 from Hello2 ———=—=|

Figure 8.21 The I CN# Editor (blank).

Using ResEdit 385

The I1CN# editor is like the "fat bits" mode in MacPaint. The pane
on the left is the icon displayed by the application. The pane on the
right is the mask, which governs the change in the application’s icon
when selected. Figure 8.22 shows how THINK Pascal’s application
icon looks in the I CN# editor.

Ell ICN# 1D = 128 from THINK Pascal
..-...--..--..I..-.-..-=
= L L[] EEERNER [}
=--.. [1 11]] ll..-=
= | |]] B BEEEEER = =
- f wmm £ B
] u] [] "]
[] [[]} [1]] =
E ..-I. =
-.-=.---...-.........-.--.=.. .=
] B E EN NN EEREBEBEN n [1]
n L1 | n [[11 1]] 1]
n N B E B B N EE BN @ EE n 1]
SRS EEEsun gnE EE NN N H
as" N " i -H
N [] |] n n [1|
" .- " =
[] | | []]
H " " H
=..-..-= =-...--=
i 3 =
w “ [4]

Figure 8.22 THINK Pascal’s ICN#.

The ICN# Resource Editor in ResEdit allo