
Dave Mark
Cartwright Reed

Inside the Toolbox Using IBINK Pascal™

Volume

Macintosh®Pascal
Programming Primer,
Volume I
Inside the Toolbox Using
THINK Pascal™

Dave Mark Cartwright Reed

• TT
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.
Inside the Toolbox using THINK Pascal I Dave Mark,

Cartwright Reed.
p. cm.-(Macintosh Pascal programming primer; v. 1)

Includes bibliographical references and index.
ISBN 0-201-57084-X
1. Macintosh (Computer)--Programming. 2. Pascal (Com

puter program language). 3. Macintosh Toolbox (Computer
programs). 4. Think Pascal. I. Reed, Cartwright. II. Title.
III. Series: Mark, Dave. Macintosh Pascal programming
primer; v. 1.
QA76.8.M3M3677 1990
005.265-dc20

90-20303
CIP

Copyright© 1991 by Dave Mark and Cartwright Reed

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of Addison-Wesley. Printed in the United
States of America.

ABCDEFGHIJ-MW-91
First printing, December 1990

To Kate and Deneen
and to

Mary and Andy, and Lise and Yoni -
Now you've done it!

Contents

Preface xi
Acknowledgments xin

1 Introduction 1
The Macintosh Vision 3

The Macintosh Interface 4
The Macintosh Toolbox 5
Resources 6

About the Book 7
What You Need to Know 8
Why We Chose THINK Pascal 8
Using THINK Pascal 9
Inside THINK Pascal 10
Writing Macintosh Applications 11
Chapter Synopsis 12

How to Use This Book 20
What You Need to Get Started 21
Ready, Set . . . 22

2 Setting Up 23
Installing THINK Pascal 25

Source Code Files 26
ResEdit 27

Macintosh Programming Issues 28
Accessing the Toolbox with Pascal 28
Naming Conventions 29
Predefined Data Types 29

v

vi Macintosh Programming Primer

Resources 30
Data Forks and Resource Forks 32

The Hello, World Program 33
Create a New Project 33
The Code 35
Running Hello, World 37
The Problem with Hello, World 39
In Review 39

3 Drawing on the Macintosh 41
Introduction 43

The QuickDraw Coordinate System 43
Window Management 48

Window Parts 48
Window Types 49
Setting Up a Window for Your Application 51

Drawing in Your Window: The QuickDraw
Toolbox Routines 54

Setting the Current Window 55
Drawing Lines 55
Drawing Shapes 56
Drawing Text 58
Drawing Pictures 59
About Regions 59
Basic MacProgram Structure 60

The QuickDraw Programs 61
Hello2 61

The Hello2 Project 64
Adding the Resource File 65
Running Hello2 66

Walking Through the Hello2 Code 66
Variants 70

Changing the Font 71
Changing Text Style 72
Changing Text Size 73
Changing the Hello2 Window 7 4

Mondrian 74
Resources 7 5
Running Mondrian 77

Walking Through the Mondrian Code 78
Variants 81
Show PICT 86

Resources 87

Contents vii

Running ShowPICT 90
Walking Through the ShowPICT Code 90

Variants 94
Screen Saver: The Flying Line Program 94

Running Flying Line 98
Walking Through the Flying Line Code 99
In Review 105

4 The Event Mechanism 107
Event Types 110
The Structure of a Mac Program: New and Improved 113
Retrieving Events from the Event Queue 116

Calling GetNextEvent and WaitNextEvent 117
Handling Events 119
Event'futor: The Return of Show PICT 120

Setting Up the Event'futor Project 120
Resources 121
Running Event'futor 129

Walking Through the Event'futor Code 132
Handling mouseDown Events 143

In Review 148

5 Menu Management 149
Menu Components 152
The Pull-Down Menu 154
The Hierarchical Menu 154
The Pop-Up Menu 155
Other Kinds of Menus 156
Putting Menus into Your Programs 157
Timer 157

Setting Up the Project 158
Resources 158
Timer Code 171
Running Timer 178

Walking Through the Timer Code 180
Zinger 191
Walking Through the Zinger Code 197
In Review 203

6 Working with Dialogs 205
How Dialogs Work 209

Modal Dialogs 210
Modeless Dialogs 210

viii Macintosh Programming Primer

The Modal Dialog Algorithm 210
The Modeless Dialog Algorithm 211

Dialog Items: Controls 211
Buttons 212
Checkboxes 212
Radio Buttons 213
Dials 214

Other Dialog Items 215
Working with Alerts 216

The Alert Algorithm 218
Adding Dialogs to Your Programs 218
The Notification Manager 224
Reminder 228

Setting Up the Project 229
Making the Resources for Reminder 229
Setting Up the Notification Manager Resources 234
Adding the Menu Resources 236
The Home Stretch 239
The Reminder Code 240
Running Reminder 252

Walking Through the Reminder Code 255
In Review 273

7 Toolbox Potpourri 275
277 Keeping Track of Windows: Window Maker

WindowMaker Specifications 277
Setting up the WindowMaker Project 278
Running WindowMaker 292

Walking Through the WindowMaker Code
The Scrap Manager 306

Scrap Manager Basics 306
InfoScrap 307
UnloadScrap and LoadScrap
ZeroScrap 307
PutScrap 308
GetScrap 308

ShowClip 308
ShowClip Specifications 309
Setting Up the ShowClip Project
Running ShowClip 315

307

Walking Through the ShowClip Code
Inside the Printing and File Managers

The Standard File Package 319

309

316
319

294

Contents

Using the File Manager
Using the Printing Manger

PrintPICT 325

322
324

PrintPICT Specifications 325
Setting Up PrintPICT Resources
Setting Up the PrintPICT Project
Changing the Compilation Order
Running PrintPICT 332

326
328
332

Walking Through the PrintPICT Code
Scroll Bars! We're Gonna Do Scroll Bars!

334
339

Making Use of Scroll Bars 339
Pager 342

Setting Up the Pager Project 342
Running Pager 350

Walking Through the Pager Code
The Sound Manager 358

Sounder 359
Setting Up the Sounder Project

Walking Through the Sounder Code
In Review 366

8 UsingResEdit 367
Notes on Using ResEdit 371

How ResEdit Works 372

350

359
364

ix

Completing a Stand-alone Application: Hello2 Revisited 377
Installing the Finder Resources 379

Examining the Resources of Hello2 380
Adding an Icon to Hello2 381

Rebuilding the Desktop 391
The v e r s Resource 392
Last of the Finder Resources:

The s I z E Resource 396
Minimalist, the ResEdit Program 398
In Review 401

9 The Final Chapter 403
Macintosh Periodicals 405
The Essential Inside Macintosh 406

The Typical Inside Mac Chapter 406
Appendixes and Special Sections 407

Apple Technical References 408

x Macintosh Programming Primer

Macintosh Technical Notes 408
Other Books 409

Apple's Developer Programs 409
Macintosh Developer Technical Support and AppleLink 410
Software Development Tools 411

MPW From Apple 411
Debugging with THINK Pascal, TMON, and Macsbug 412

To Boldly Go 412

Appendix A Glossary 415
Appendix B Code Listings 431
Appendix C Debugging Techniques 493
Appendix D Building Hypercard

XCMDs 499
Appendix E Bibliography 507

Index 511

Preface

This book shows you how to write Macintosh applications with
THINK Pascal. We wrote it to help people to get down to the business
of writing code that displays the distinctive Mac "feel."

The Macintosh Pascal Programming Primer evolved from an
earlier book that used THINK C to demonstrate the art of Mac
programming. That book, Macintosh Programming Primer: Inside
the Toolbox Using THINK C, was and is quite successful, and has
received favorable reviews from MacUser, Macworld and other
computer publications. Many readers sent many helpful suggestions
on the C book. A common one was that we write a Pascal version,
and here it is.

We stress that, although the program designs for these two books
are similar, the code has been written from the ground up to take
advantage of the THINK Pascal environment. These programs
consist of thoroughly tested, debugged, clean Pascal code. We hope
that they provide an impetus for you to write your own Pascal Mac
applications.

If you have THINK Pascal and don't yet own this book, consider
Info World magazine's concluding thoughts in a review of Symantec's
Pascal package:

"an excellent software development environment, with authoritative
reference material at a reasonable price. All it needs is a tutorial that
explains how to use it with the Macintosh Toolbox ... "

... We give you the Macintosh Pascal Programming Primer.

Dave Mark
Arlington, VA

Cartwright Reed
Philadelphia, PA

xi

Acknowledgments
WE'D LIKE TO express our appreciation to the people who helped make
this book possible, or at least coexisted with us harmoniously during
its development:

Deneen Melander and Kate Joyce, who know us and still smile;

Julie Stillman, Elizabeth Grose, Debbie McKenna and Diane
Freed, Addison-Wesley's finest!

Jim Reekes, our big red referee, who kept us from going down for
the compatibility count;

Symantec, whose THINK Pascal and THINK C products build
the best Mac programs;

Stu Mark, for keeping the studio humming;

Oleh Tretiak, director of Drexel University's Image Processing
Center: to Yoni Nissanov, Don McEachron, Sanjay Bhasin and
Phyllis Ebron-Downes; all curious and amiable workmates;

Andy and Mary - Congratulations!

Davood, Rick and Nick of P&T, and Andy Richter -- fellow
members of the sacred order of coders;

Charlie Derr - Thanks for all your patience, Carlos ...

and Anthony D'Amico, who provided a reason for staying in
Philadelphia.

In finishing up, kudos to the down under team in Colorado, the
Outbound people, who came up with the first practical, inexpensive
laptop Mac. If you code in taxis, there's no substitute for an
Outbound!

xiii

Source Code Disk
for the

Mac Pascal Primer
IF YOU WOULD like the source code presented in the Macintosh Pascal
Programming Primer on disk, please send in the coupon on the last
page (or a copy of the coupon -we're not picky).

We hope you like the Macintosh Pascal Programming Primer. If
you have any comments or suggestions regarding future editions, you
can reach us at this address:

The Mac Pascal Primer - Comments
2534 North Jefferson Street
Arlington, VA 22207

xv

Introduction

Macintosh Pascal Programming
Primer is a complete course in the art
of Macintosh programming. With this
book and Symantec's THINK Pascal,

you can learn to program the
Macintosh.

1

_J

N 0 OTHER COMPUTER is like the Macintosh.
The Mac is a new kind of computer. It's fast. It's different.
The Mac plays by a new set of rules. To program it, you need a new

rulebook. That's what the Mac Primer is.
At the heart of the Macintosh is the Toolbox, a collection of more than

700 procedures and functions that give you access to the Macintosh
interface. The Mac Primer will teach you how to use the Toolbox, to
add the power of pull-down menus, windows, and scroll bars to your
programs.

This book serves as a bridge to the Macintosh way of programming.

The Macintosh Vision

Nowadays, the Macintosh line is successful, praised, and emulated.
When the Macintosh was introduced in 1984, however, people were
perplexed: It was like no computer they had ever seen-a beige box
with a little screen and a mouse. People called the Macintosh a toy
because it had a graphic interface, and graphics were not the way
normal computers operated.

It was no sure thing.
Seven years later, computer hardware and software companies

scramble to provide now what the Mac has had for so long. Whether
you call the mouse a "pointing device" or refer to a windowed, iconic
environment as a GUI (graphical user interface), one thing is clear:
the standard is set.

The Mac is different from other systems in three ways:

• The interface: A consistent framework of graphic elements
simplifies Mac operations for users.

• The Toolbox: Comprehensive routines were defined in the
Macintosh ROM that drove the interface and allowed software
designers to write powerful, easy-to-use applications.

• The use of resources: The building blocks for all software on the
Macintosh, resources store program information in a series of
templates in the program file, simplifying the creation and
modification of Macintosh programs.

These three ingredients combined to make the Macintosh the basis
for one of the best selling microcomputer lines in history. In the
1990s, the vision holds strong. The Macintosh environment remains

3

4 Macintosh Programming Primer

unique. The careful planning that went into the original Mac has
paid off handsomely, as the Mac line continues to evolve and improve.

To write successful applications for the Macintosh, the would-be
Macintosh programmer must understand how those three Macintosh
ingredients-interface, Toolbox, and resources-work. First, let's look
at the most visible of the three: the Macintosh user interface.

The Macintosh Interface

The Macintosh makes its first impression on users with its graphical
user interface. Figure 1.1 shows some of the distinctive elements of
the Mac "look." Because new users understand and use the windows
and menus of Mac applications intuitively, the Macintosh interface
represents an impressive improvement over the command-based
interfaces common on other systems. Each element of the
interface-windows, menus, dialog boxes , icons-has a specific
function associated with it, and extensive guidelines exist for the use
of each element.

4 items

~
System Folder

Utilities

3.14159

Restart
Shut Down

TH INK PASCAL

Windows

Figure 1.1 Some elements of the Macintosh interface.

Introduction

The Macintosh interface was appropriated from the Lisa, which
lifted it from the Xerox Alto machine. Over time, the interface has
become more powerful without sacrificing ease of use. In addition,
every new version of the interface on the Mac gets sleeker. To look
at the Macintosh running version 1 or 2 of the Finder, or to see the
Lisa in operation (while not running under Mac emulation) is rather
like examining Microsoft Windows 3.0-quaint, but dated. The new
system software reflects Apple's ability to build on the old system
without modifying it beyond recognition.

5

Of course, pretty pictures aren't enough. The beauty of the
Macintosh interface lies in how it is created. Each part of the interface
is manipulated by a series of routines in the Macintosh ROM. For
example, you can create an application's window with one call to the
Macintosh ROM.

The routines that underlie the interface-that build windows,
control printing, and draw menus-are collectively known as the
Macintosh Toolbox.

The Macintosh Toolbox

The Toolbox can be thought of as a series of libraries that make it easy
for you to create those features indigenous to Macintosh applications.
For example, the Macintosh Toolbox call Get New W i n do w creates a
new window for use in your application.

Using the Toolbox calls to create your applications gives the
results a distinctive Macintosh look and feel. Operations common to
most applications, such as cutting, copying, and pasting, are always
handled in the same way, which makes it easier to learn a new
application.

The Toolbox routines are grouped functionally into Managers,
each of which is responsible for one part of the Macintosh environ
ment (Figure 1.2).

The Macintosh Toolbox undergoes constant updating and modifica
tion; each new system revision gives you some shiny new tools as
well as the old standbys to work with. As new routines are added to
the Toolbox, Apple cleans up problems with older routines.

The Macintosh graphic interface and the Toolbox are two of the
features that make the Mac unique. A third is the successfully
introduced concept of resources on the Macintosh.

6 Macintosh Programming Primer

Dialog

Sound
Manager

Menu

Notification
Manager

Window

Printing
Manager

Font
Manager Manager Manager Manager

QuickDraw I Control Resource Toolbox
Manager Manager Utilities

Scrap
Manager

Event
Manager

Figure 1.2 Parts of the Toolbox.

File
Manager

Although the Macintosh line has expanded greatly, the basic
compatibility of the different Macintosh models has been main
tained. Yet, more powerful machines always provide more
choices-and more decisions. When the only available Macintosh
workstations were the Macintosh and the Macintosh Plus, software
developers thought they had a certain flexibility about how they
followed the Mac programming guidelines provided by Apple. Now,
in the midst of machines that support color, MultiFinder, math
coprocessor chips, and new peripherals, the successful developer
hews closely to the Macintosh standards.

Resources

If the Toolbox is the library of routines that make up the Macintosh
interface, resources are the data that your program uses to execute
these library calls. Get New W i n do w, the Toolbox call that creates a
new window, requires you to specify window parameters such as size,
location, and window type. To do this, you can supply a resource con
taining that information, so the new window can be used in your
application. Resources come in various types, each serving as a
"holder" for a particular kind of data relating to windows, menus, and
other parts of the Macintosh interface. For example, a resource of type
W I N D contains information for one specific window in an application.

Introduction

_J

7

There may be a number of resources of type W I N D, but there is only
one WIND type, which is identical for all Mac applications.

Resources are integrated into the design of the Macintosh. Each
Macintosh application file may possess dozens of resources. This
simplifies many of the tasks of the applications programmer. For
example, resources make it easy to localize a program for a different
area. If you want to sell your program in, say, France, it is relatively
easy to replace resources containing English text with French
equivalents.

Resources are also essential in developing the complex code that
drives the Macintosh interface and hardware. Because they can be
easily copied from one program to another, menus and dialog boxes
need not be created more than once. Once you have built up a
collection of programs, creating new ones may begin with a cut-and
paste session with your existing programs.

To edit resources, Apple developed a program called ResEdit,
which allows you to edit any of the resources in Macintosh Primer
programs. You can also use them to explore other Macintosh appli
cations-even system files! Because these resources exist as part of
the completed application, they can be edited without recompilation.

We make extensive use of version 2 of ResEdit throughout the Mac
Primer. If you've never worked with ResEdit before, Chapter 8
contains a ResEdit tutorial to get you up to speed.

The Macintosh interface, the Toolbox, and resources are the three
intertwined subjects that we'll cover using THINK Pascal and
ResEdit to create stand-alone Macintosh applications. The next
sections discuss our approach to learning about these issues.

About the Book

Most Macintosh reference books, such as Inside Macintosh and
Macintosh Revealed, are excellent texts for those who already
understand the Macintosh programming paradigm. They can be
frustrating, however, if you're outside the Macintosh programming
world, looking in. The Mac Primer bridges the gap for those of you
who are just learning the basics of Mac programming.

Our aim is to help you write properly structured Mac applications.
If you're used to programming on a MS-DOS computer or a UNIX
system, the Mac Primer is the perfect place to start your Mac pro
gramming education. Our formative years were spent programming

8 Macintosh Programming Primer

under UNIX, on machines like the PDP-11 and the VAX-11/780; we've
also spent a lot of time with IBM PCs and compatibles. We wrote the
Macintosh Programming Primer with you in mind.

What You Need to Know

There are only two prerequisites for reading this book. Before starting
the Macintosh Primer, you should already have basic Mac experience:
You should be able to run Macintosh applications and have a good feel
for the Mac user interface. In addition, you should have some
experience with a programming language like Pascal or BASIC. If
you've never used Pascal before, we suggest a companion text, such as
Oh! Pascal, by Doug Cooper and Michael Clancy, to supplement your
instruction.

The Macintosh Programming Primer examples are all written in
Pascal, using the THINK Pascal development environment. Our
general approach, however, emphasizes the techniques involved in
programming with the Mac Toolbox. The skills you learn will serve
you no matter what programming language you intend to use in the
future.

Why We Chose THINK Pascal

Many development environments are available to the Mac pro
grammer. The Macintosh Programmer's Workshop (MPW) is a
complex and powerful development system written and marketed by
Apple. Most of Apple's internal development is done with MPW, and
many of the large Macintosh software development houses have
made MPW their first choice. MPW uses an "everything but the
kitchen sink" approach to software development. The basic system
consists of an editor shell that allows you to edit your source code as
well as to build and execute complex command scripts. You can do
just about anything in MPW, but it is definitely not a system for
beginners. In addition to learning the editor and shell, you have to
install, configure, and (oh, yes) pay for your choice of compilers. You
can buy Pascal and C compilers for MPW, as well as FORTRAN,
MacApp, and a few others. MPW is ideal for complex, multilanguage
development efforts, but not for learning to program the Macintosh.

THINK Pascal (formerly known as Lightspeed Pascal) is a
development environment that is powerful and friendly. It has
concise, accurate documentation. For those inevitable bugs, it has the
best debugging utilities on the market.

Finally, THINK Pascal is reasonably priced (see Figure 1.3).

Introduction

THINK
Pascal

SO Lunches

30Lunches

Macintosh
Programmer's

Workshop (MPW)

Figure 1.3 Lunch economics.

Using THINK Pascal

9

THINK Pascal is an integrated development environment. The
source code editor follows all the standard Macintosh conventions
and is very easy to use. The compiler is smart: It keeps track of the
files you're currently working with, noting which have been changed
since they were last compiled. THINK Pascal recompiles only what it
needs to.

THINK Pascal has a well-thought-out Macintosh interface. For
example, to build a stand-alone application, pull down the Project
menu and select Build Application. Installation is simple: Just
pull the floppies out of the box, copy the files onto your hard drive,*
and go!

THINK Pascal's documentation consists of three clearly written
manuals. The User Manual explains everything you need to know
about developing software using THINK Pascal. The other two texts
discuss resource editing tools and object programming. THINK
Pascal also comes with integrated debugging utilities that allow you

*For those of you without a hard drive, there are complete instructions for
running THINK Pascal on a floppy-based system in the THINK Pascal
User's Manual.

10 Macintosh Programming Primer

to test-drive your program while you monitor its progress in other
windows. The debugging utilities also work with other Macintosh
debugging tools like MacsBug and TMON.

Inside THINK Pascal

The Project file is unique to Symantec's Pascal and C development
environments. It contains the names of all your source code files, as
well as the name you'll eventually give to your application. It also
contains compilation information about each source file, such as the
size of the compiled code (see Figure 1.4).

THINK Pascal has the capability to do object programming and
can work directly with MacApp, Apple's ready-made library of user
interface routines. THINK Pascal's debugging facilities are without
peer. You can use THINK Pascal to write programs that will run
under MultiFinder, take full advantage of the Macintosh II's color
capabilities, and use AppleTalk. All of these features are supported in
the way Apple intended them to be. THINK Pascal also provides
routines to support extensions to Apple's HyperCard, or Silicon
Beach's SuperCard.

THINK Pascal also comes with a full complement of utilities,
including ResEdit, the resource editor mentioned earlier, and much
useful code on various types of Mac projects, including text editors,
cdevs and Desk Accessories. The manual that comes with THINK
Pascal explains how to use version 1.2 of ResEdit and is the best
discussion on using ResEdit 1.2 available. If you have version 2 of
ResEdit, use Chapter 8 of this text to learn how to use it.

Hello. n
Options File (by build order) Size

Runtime.lib 18222
Interface.lib 10106

rn:J[N] V R Hello .p 1 08 ,.~t:i"li:~·:s,;;:.~····················2a436

Figure 1.4 THINK Pascal's project window.

Introduction 11

Writing Macintosh Applications

Most Macintosh applications share a basic structure (Figure 1.5). They
start off by initializing the Toolbox data structures and routines that
support the Macintosh user interface. Then the application enters an
event loop and patiently waits for the user to do something-hitting
keys, moving the mouse, or some other action. Events outside the
application are also checked: Desk accessories may be used, or disks
may be inserted. No matter how complex the Macintosh program, this
simple structure is maintained.

At the heart of the Macintosh Programming Primer is a set of four
teen sample applications. Each builds on the basic program structure
to provide a successively more sophisticated use of the Macintosh
Toolbox. Each new chapter constructs a more powerful implementa
tion of the basic program structure. Chapter 3 programs show how to
create windows and draw inside them, Chapter 4 illustrates how to
handle events, Chapter 5 implements menus, and Chapter 6 makes
use of dialogs. Chapter 7 presents WindowMaker, a complete
example of how a Macintosh application should work, from handling
the interface and events to taking care of error-checking and memory
management.

Each Mac Primer example program is presented as completely as
possible, and each program listing is discussed extensively. Nothing
is left as an "exercise for the reader." Each chapter contains complete
instructions and figures for entering, compiling, and running the
programs using THINK Pascal.

Initialize
the

Toolbox

Perform
Other

Initializations

Figure 1.5 How a Macintosh application works.

Exitthe
Application

12 Macintosh Programming Primer

Chapter Synopsis

The Macintosh Primer is made up of nine chapters and seven
appendices. This introductory chapter provides an overview and
starts you on your way. Chapter 2 starts by going through the
installation of THINK Pascal and ResEdit, step by step. Then,
THINK Pascal basics are introduced. We present the standard Pascal
approach to the classic Hello, World program (Figure 1.6), and discuss
drawbacks. We then go on to illustrate the programming conventions
that we will use in the Primer.

Chapter 3 starts with an introduction to the fundamentals of
drawing on the Macintosh using QuickDraw. The Window Manager
and windows are discussed. Then, we introduce resources and the
Resource Manager.

QuickDraw, the Window Manager, and resources are very closely
related. Windows are drawn using QuickDraw commands from
information stored in resource files.

Four programs are introduced in Chapter 3. The Hello2 program
introduces some of the QuickDraw drawing routines related to text;
the Mondrian program (Figure 1. 7) demonstrates QuickDraw shape
drawing routines. Show PICT (Figure 1.8) illustrates how easy it is to
copy a picture from a program like MacDraw or MacPaint into a
resource file, then draw the picture in a window of your own. Finally,
as a bonus for completing the first three programs, you can try the
Flying Line (Figure 1.9), an intriguing program that can be used as a
screen saver.

D Te Ht

He I I o, wor I d !

Figure 1.6 Standard Pascal's Hello, World.

Introduction 13

.,

Figure 1.7 Mondrian.

r .,

My Picture

.0 i'.i:?'l 0
QJ i:;r__ •

0·:; <»; 0 (). 0

G , .. Qi •

·0·0)[. 0~0
0 °0 ~,,· 0

0

0!,P:'; Gg0 0
· .I. 0 , 0

· . . O .· . .
.. ·.o . .

<..:: - .•'

Figure 1.8 ShowPICT.

14 Macintosh Programming Primer

Figure 1.9 The Flying Line.

Chapter 4 introduces one of the most important concepts in
Macintosh programming: events. Events are the Macintosh's mecha
nism for describing the user's actions to your application. When the
mouse button is clicked, a key is pressed, or a disk is inserted in the
floppy drive, the operating system lets your program know by
queueing an event. The event architecture can be found in almost
every Macintosh application written. This chapter presents the
architecture of the main event loop and shows how events should be
handled. EventTutor, Chapter 4's sole program (Figure 1.10) provides
a working model of the event architecture.

The Macintosh popularized pull-down menus (Figure 1.11).
Chapter 5 shows you how to add the classic pull-down, hierarchical,
and pop-up menus to your own programs. Chapter 5's first program,
Timer (Figure 1.12), uses both classic pull-down and hierarchical
menus. This chapter also shows you how to create and implement
pop-up menus with a little program called Zinger (Figure 1.13).

Introduction

,..

Figure 1.10 EventTutor.

gPictWindow

acti vateEvt:
updateEvt:
updateEvt :
mous eDown
mou seUp
mou seDown
mouseUp

acti vating
gEventWindow
gPictWindow

d1Dim:IILl••······1 1.~ •... 1 1. .•... 1 1.'.1 ... 1 i... •... 1 1.~ •... 1 z.: .•... 1J~ •... 1 1 .. 0
Page Setup... s/inch ~ [§! E] ~ ~ ~ 1

Print... 8€P
Quit 8€0

Figure 1.11 The classic pull-down menu.

15

.,

.,

16 Macintosh Programming Primer

Figure 1.12 Timer with hierarchical menus.

Figure 1.13 Zinger with pop-up menu.

Introduction 17

Chapter 6 introduces dialogs and alerts (Figure 1.14). Dialog boxes
are another intrinsic part of the Macintosh user interface. They
provide a vehicle for customizing your applications as you use them.
Alerts are simplified dialogs, used to report errors and give warnings
to the user.

The Reminder program in Chapter 6 (Figure 1.15) uses dialogs,
alerts , and the Notification Manager to allow you to set an alarm.
The application then starts a countdown and notifies you when it
goes off-even if you are running another application.

Alarm goes off in ~seconds

[2] Sound on

[2] Rotate I con

[2] Display Alert

Saue

Use:

(~Seconds

O Minutes

[Cancel)

Saue changes before closing?

Figure 1.14 Dialog box and alert box.

18 Macintosh Programming Primer

Chapter 7, the final programming chapter, contains a potpourri of
programs illustrating concepts such as error-checking, memory
management, printing, generating sound, adding scroll bars to
windows, and file management. Each program explores a single topic
and provides a working example of reusable code. The WindowMaker
program (Figure 1.16) at the beginning of the chapter, which shows

Figure 1.15 Reminder.

,.- s File fdil

Window

Window

Window

Window

Window

Window

~D Window

b . .
" Qi 0

• · 0 b0
0•.:[G., Qj Qi 00 ~ ... · 0 0

0!_,p'to0° 0
• .J. 0,. Q

. . . o.-- .
. . ·.o . .

< - ··"

Figure 1.16 WindowMaker.

.,

Introduction 19

,.. .S File Edit Resource Window Uiew

ALRT DITL DLOG

w ~ DD . [gj ~ -
MBAR MENU SICN

<Jl~

Figure 1.17 ResEdit 2.0.

how to keep track of multiple windows, represents the most mature
implementation of the Macintosh interface of all the programs in the
book.

Chapter 8 discusses the creation, modification, and use of
resources. It starts with a ResEdit tutorial that covers ResEdit 2.0
operation and illustrates the creation of Finder resources (Figure
1.17).

After you've got a handle on the essentials of Macintosh program
ming, what's next? Chapter 9 talks about some of the tools available
to help you with your development efforts. It looks at Inside
Macintosh and some of the other Mac technical documentation. It
also looks at software tools, from compilers to debuggers, as well as
Apple's Certified Developer Program and other Macintosh technical
resources.

Appendix A is a glossary of the technical terms used in the
Macintosh Primer.

Appendix B contains a complete listing of each of the Mac Primer
applications, presented in the same order as they appear in the book.

Appendix C covers some debugging techniques that may be helpful
in the THINK Pascal environment.

Appendix D contains a short discussion of HyperCard 2.0 XCMDs,
along with an example XCMD written in THINK Pascal.

20

_J

Macintosh Programming Primer

For those of you who are not HyperCard aficionados, XCMDs are
procedures written in Pascal or C that can be called from within
HyperCard. XCMDs allow you to go beyond the limits of
HyperCard, performing functions not normally available from within
HyperCard.

Appendix E is a bibliography of Macintosh programming
references.

How to Use This Book

Each Macintosh Primer chapter is made up of the main text and tech
blocks. The main text is the narrative portion of this text. Read this
first. It contains the information you need to input and run the
example programs. Because we've placed a premium on getting you
going immediately, we have you run the program before discussing
how the code works. Impatient programmers are invited to go
directly to Appendix B, which contains commented listings of all the
programs discussed in the book. If you have questions after typing in
the programs, refer to the chapter in which the program is discussed.
If you prefer a more sedate pace, read a chapter at a time, type in the
programs, and test them as you go. Try the variants to the program if
they sound interesting. ·

At some points, we expand on the narrative with a tech block,
indicated by a distinctive gray background. It's OK to ignore them
during your first read-through.

Tech blocks will have this appearance in the main text. If you feel
comfortable with the subject discussed in the main text, read the
tech blocks for more detail. Otherwise, come back to them later.

Several important terms and conventions are used throughout the
Macintosh Primer. Whenever you see a notation like this:

(111:256-272)

Introduction

_J

21

it refers to a volume of Inside Macintosh and a set of pages within
that volume. The example here refers to Volume III, pages 256 to 272.
References to Tech Notes, documentation from Apple's Macintosh
Developers Technical Support Group, are annotated like this: (TN:78)
(referring to Tech Note 78). (See Chapter 9 to find out how to get Tech
Notes.) These references to Inside Macintosh and Tech Notes are
intended to help readers who are interested in a further discussion of
a topic.

All of our source code is presented in a special font. For example:

begin
; : = a;
DoTheRightThing;

end.

Toolbox routines and Pascal functions are also in the code font when
they are described in the text. Code should be typed in the same case
as presented in the text. C is a case-sensitive language. Please note
the similarity between the upper case L and the lower case l, and be
careful to type in the correct choice. Menu titles, menu items,
and dialog items appear in the book in Chicago font just as they do
on the screen.

Finally, boldface is used to point out the first occurrence of
important new terms.

What You Need to Get Started

First, you need THINK Pascal from Symantec. The examples from
the book use version 3.0. You'll also need a Toolbox reference manual.
Apple's Inside Macintosh series is the authoritative reference on
Macintosh software development. We suggest that you purchase
Volume I and Volume V of Inside Mac. Volume I contains a
description of a majority of the Toolbox routines used in this book.
Volume V contains color QuickDraw information that also affects the
Window and Menu Managers. Volumes II, III, and IV contain helpful,
but not indispensable, information about less commonly used
routines. Volume VI is due out soon and will contain information
about System 7 routines. This text does not use System 7 routines,
but all code in the book is compatible with the new functions.

Buy Volumes I and V with your lunch money. Buy Volumes II
through IV and VI with somebody else's lunch money.

22

_J

Macintosh Programming Primer

You'll also need access to a Macintosh Plus, SE, or II-series
workstation. You can use this book with anything from a Macintosh
Plus with 1 megabyte of RAM and an external drive to a fully loaded
Macintosh Ilfx. A hard drive is strongly recommended. The screen
shots that accompany the text assume that you have a hard disk.

Finally, use the latest system files with Mac Primer programs.
Don't use any system software older than version 6.02 (earlier
versions of System 6 are buggy).

The compiled, stand-alone programs that are developed in this
book may or may not work in the 512K and the 128K Macintosh. In
general, if a program uses a ROM call that is not supported by
these Macintoshes, we will mention it in a tech block and suggest
alternatives (if there are any) for programmers who wish to support
the older machines.

Ready, Set ...

When you finish this book, you'll be able to create your own
Macintosh applications.

Get all your equipment together, take the phone off the hook, and
fire up your Mac.

Go!

Setting Up

This chapter introduces you to the
software tools used in this book. It also
examines some issues that are specific
to the implementation of Pascal on the

Macintosh.

2

_J

THINK PASCAL Is the programming environment we'll use
throughout the Macintosh Primer. First, we'll show you how to install
it; then, we'll look at how to type in and run a sample program. We'll
talk about the programming conventions used in this book and some
of the rules you need to follow when you use the Mac and THINK
Pascal together.

Installing THINK Pascal

Let's start by installing THINK Pascal. These instructions were
tested using THINK Pascal 3.0. If you are using a different version,
check out the instructions in your THINK Pascal User Manual.

Create a folder called TH I N K Pa s c a l at the top level of your hard
disk. Next, insert the floppy disk labeled THINK Pascal 1 into your
floppy drive. Drag the following files from the floppy disk into the
TH INK Pas ca l folder on your hard drive:

• The THINK Pascal application
• Interface.lib
• Runtime.lib
• The Interfaces folder
• The Libraries folder

Your THINK Pascal folder should look something like Figure 2.1.

Cl Interface. lib

D Interfaces

D L ibr .aries

Cl Runtime.lib

~ TH INK P .asc.a l

Figure 2.1 The THINK Pascal folder.

25

26 Macintosh Programming Primer

THINK Pascal comes with five disks, but only one is used here.
Why? Because the rest of the disks contain utilities that aren't
necessary for us to deal with now. Most of the disks contain files
and utilities that deal with the THINK Pascal ability to do object
programming. Working with objects is beyond the scope of this
book. After you feel comfortable with the concepts in the Primer,
examine the object-programming manual that comes with THINK
Pascal. (Volume II of the Primer also contains a discussion on
using class libraries.)

Source Code Files

Set up a place for your source code by creating a folder called
Dev e L op men t , or something equally inspiring, also at the top level.
We'll create a separate folder inside the Dev e Lop men t folder for
each Mac Primer application (see Figure 2.2).

,. s File Edit Uiew Special
.,

Hard Disk
4 items 1 60 ,524K in disk 939K av ail ab le

00 CJ
System Folder THINK Pascal

Apps Development

Figure 2.2 The Development folder, ready for some source code.

Setting Up 27

ResEdit

THINK Pascal comes with a version of ResEdit on one of its disks.
Drag it onto the top level of your hard disk. Check the version of
ResEdit that you have. It's best to use version 2.0 (or later) for the
projects in this book (see Figure 2.3). There is no charge for this
utility, which is written and maintained by Apple. It's available on
many BBSs, so download it if you wish. If you purchase ResEdit from
the Apple Programmer's and Developer's Association (APDA), you
also receive additional documentation. See Chapter 9 for more
information about APDA. ResEdit versions consistently improve, so
use the latest version that you can find.

If you are unfamiliar with ResEdit, read Chapter 8, which dis
cusses ResEdit operations on resources. It illustrates how to install
the resources you need to complete a stand-alone program. (This
includes the techniques you'll need to add an icon to your own
applications.)

Info

"' ResEdit 121 ResEdit 2 .0

Kind: application

Locked D

Size : 576 ,454 bytes used, 563K on disk

Yhere : HotHouse, SCSI 0

Created : Sat, Apr 28, 1 990, 11 :00 AM
Modified : Sat, Apr 28, 1 990, 11 :00 AM
Version : 2 .0, ©App le Computer, Inc.

1984-1990

Suggested Memory Size (K): 500

Application Memory Size (K): §]

Figure 2.3 Get Info window for ResEdit 2.0. (To see this, select Res Edit
by clicking on it once. Then select Get Info from the Finder's F ii e menu.)

28

_J

Macintosh Programming Primer

Once you have THINK Pascal and ResEdit together on your
Macintosh, you're one step away from starting to program. The next
section discusses the ground rules for running THINK Pascal code:
steps for accessing the Toolbox, naming conventions, and predefined
Pascal and Toolbox data types.

Macintosh Programming Issues

Accessing the Toolbox with Pascal

Built into every Macintosh Plus, SE, and Mac II is a set of more than
700 routines, collectively known as the Mac Toolbox. These include
routines for drawing windows on the screen, routines for handling
menus, even routines for changing the date on the real-time clock
built into the Mac. The existence of these routines helps explain the
consistency of the Mac user interface. Everyone uses these routines.
When MacDraw pulls down a menu, it's calling a Toolbox routine.
When MacPaint pulls down a menu, it's calling the same routine.
That's why the menus look alike from application to application,
which has a rather soothing effect on users. This same principle
applies to scroll bars, windows, lists, dialog boxes, alerts, and so on.

If you look at Toolbox calls in the pages of Inside Macintosh, you'll
notice that the calling sequences and example code presented in each
chapter are written in Pascal. For example, the calling sequence for
the function Get New W i n do w (I:283) is listed as:

FUNCTION GetNewWindow CwindowID: INTEGER;
wStorage: Ptr; behind: WindowPtr) : WindowPtr;

Each calling sequence starts with either the word FUNCTION or the
word PROCEDURE. Just as you'd expect from Pascal, functions
return values; procedures don't. In the example, the function
Get New W i n do w returns a value of type W i n do w Pt r. Here's an
example of a call to Get New W i n do w from within a program:

VAR
myNewWindow, myOldWindow: WindowPtr;
myWindowID: INTEGER;

begin
myWindowID := 400;

Setting Up

end;

myNewWindow := GetNewWindow(myWindowID,
ni L, myOLdWindow);

29

In our code, we receive the value returned by Get New W i n do w in
the variable myN e wW i ndow, which is declared as a W i ndowPt r.

Most of the data types found in Inside Macintosh are automatically
available to you in THINK Pascal. Note that Pascal is not case-sensi
tive: Boo Le an and B 0 0 LE AN both represent the same data type.
Although both will compile, the examples presented in the Mac Primer
will use the case-spelling presented in the Inside Macintosh calling
sequences. In the previous example, the variable my W i n do w I D is
declared as an I NT E G E R, not as an I n t e g e r. Where possible, stick to
the standards presented in Inside Macintosh.

Naming Conventions

Another standard adopted by the Mac Primer concerns the naming of
PROCEDURES, FUNCTIONS, and variables. PROCEDURES and
Fu N c T ION s always start with an upper-case letter. Each new word
within a name should also start with an upper-case letter. For
example, G e t New W i n do w or S e e k Sp i n d L e are fine F UN CT I 0 N and
PROCEDURE names; badPrcName isn't.

Variables always start with a lower-case letter. Global variables
(variables accessible to your entire program) should start with a lower
case g. Use variable names like f i r s t E mp L o y e e and c u r r e n t T i me.

Use global names like gCurrentWi ndow and gDone. The use of
variable names such as g L k and s w p C k 7 is discouraged.

(These conventions have been adopted to make the code presented
here easy to understand and consistent. If you're feeling ornery,
s w p Ck 7 as often as you want. It's your Mac.)

Predefined Data Types

Although some of the data types you'll encounter in the pages of
Inside Macintosh will be familiar, many data types are defined
specifically for the Macintosh Toolbox. For example, note the calling
sequence for the Toolbox PROCEDURE Set Rec t, found in (1:174):

PROCEDURE SetRect(VAR r: Rect;
left, top, right, bottom: INTEGER);

30 Macintosh Programming Primer

The data type Re c t is used throughout the Toolbox and is defined
in Inside Macintosh (1:141). A Re ct holds the upper left and lower
right points of a rectangle. You'll see more of these "predefined" Mac
data structures later on. As you'll see, access to most of the Toolbox
types and constants defined in Inside Macintosh is provided
automatically by THINK Pascal.

Most of the Toolbox routines are built right into the Macintosh, in
read-only memory, or ROM. The original Macintosh came with 64K
ROMs; the Mac Plus comes with 128K ROMs; the Mac SE, II, and
llx have 256K ROMs. The Mac llfx has massive 512K ROMs.
Many of the routines built into the newer Macs are not found in the
original Mac, Mac Plus, or SE. Likewise, many routines found in
the Mac Plus were not found in the original Macintosh. The point is,
things change. If you're not careful, the programs you write on one
machine might not work on another. In the same vein, if you don't
follow Apple's programming guidelines, the program you write on
today's machine may break on tomorrow's.

Resources

As was mentioned in Chapter 1, much of a program's descriptive
information is stored in resources. Resources may be defined by their
t y p e and either their resource ID number or their name.

Each resource has a certain type, and each type has a specific
function. For example, the resource type WIND contains the descrip
tive information necessary to create a window; MENU resources
describe the menus at the top of the screen. Figure 2.4 gives a short
list of some of the resource types you'll see in this book.

Each resource type is composed of four characters. Case is not
ignored: WIND and w i n d are considered different resource types.
Occasionally, resource types may include a space-for example,
' s n d ' , where the fourth character is a space.

Actually, resource types are just Lo NG I NT s (4 bytes) represented
in ASCII format. Usually, the types are selected so the ASCII
version is readable (like w I N D, M E Nu, and so on).

Setting Up 31

Resource ID numbers are unique within their resource type and
file. An application can have several resources of type D LOG, each of
which normally has a unique resource ID within the application file.
For example, the program shown in Figure 2.5 has two D LO Gs with
ID = 4 0 0 and ID = 401 . The application also has a WIND type
resource with ID = 4 0 0. Thus, each resource is uniquely identified by
ID number and type.

If you prefer, you may also name your resources. All the examples
presented in the Mac Primer use the resource type and resource ID to
specify resources. When you create your resources, however, you
might want to specify resource names as well as resource IDs. This
will make your resource files easier to read in ResEdit.

~D~ Primer Resource Types ~0~

~~ EIEI
BNDL

iii HOU l,Al
~5R CAO)
CHP ~l,:Z
HE~
RU

CODE

L:J[j
~
ICN#

~Cl
PICT lllm:I

DITL DLOG

MBAR MENU

Figure 2.4 Some resource types used in the Mac Primer.

§0 DLOGs from Primer Resource Types t!l§
ID Size Name

400 31 19:
401 31 lZ

l2J
Figure 2.5 Two different D LOG resources in the same resource file.

32 Macintosh Programming Primer

ID numbers follow these conventions:

Range

-32,768 to-16,385

-16,384 to 127

128 to 32,767

Use

Reserved by Apple

Used for system resources

Free for use

Certain kinds of resources may have additional restrictions; check
Inside Macintosh for further information.

In this book, COD E resources will be created in THINK Pascal;
most of the other resources will be created using ResEdit.

co DE resources contain the actual code that is to be executed.
You may be used to an operating environment that allows you to
segment your executable code. The Mac supports segmentation as
well. Each segment is stored in a separate co DE resource and is
loaded and unloaded as necessary. If you are interested in learning
more about code segmentation, an informative discussion begins
on page 98 of the THINK Pascal User's Manual.

Data Forks and Resource Forks

Macintosh files, unlike files on most other operating systems, each
contain two parts: a data fork and a resource fork. The resource fork
stores the resources, and the data fork contains everything else. Most
word processors store a document's text in the document's data fork
and use the resource fork for storing the document's formatting
information. HyperCard stacks, interestingly enough, have all their
information on the data fork side. The THINK Pascal projects in this
book will use the resource fork exclusively.

Now that we've covered these weighty and important topics, let's
make THINK Pascal do something, right away!

_J The Hello, World Program

Now it's time for your first THINK Pascal program. It's the classic
program many of you may have encountered before. Hello, World
draws its name in a window on the screen.

Just to keep things neat, put a new folder inside the Dev e Lop men t

folder you created earlier. Call the new folder He L Lo, W or L d . Keep all
the files associated with the He L Lo, W or L d project in this folder.

Create a New Project

To create your first program, double-click on the THINK Pascal
application in the TH INK Pa s ca L folder. The first thing you'll see is
the Open Project dialog box (Figure 2.6).

Click on the New button, and you should see the dialog box in
Figure 2.7.

Use the standard Macintosh mechanisms to open the dialog to the
He L L o, W o r L d folder that you just created (move up once to the top
of the hard drive, down once into the Dev e Lop men t folder, and down
once more into the He LL o, Wo r L d folder). Type He l L o.n: in the
Name Project dialog box and click the Create button (use
Option-p for n:). The project window (titled He LL o. n:) will appear

lo THINK Pascal I
O Interfaces ~ c:::1 Hard Disk
0 Libraries

Driue

Open

New ~

Cancel

Figure 2.6 The 0 pen Project dialog box.

33

34 Macintosh Programming Primer

(Figure 2.8). Notice that two files have been added to your project
automatically. The file Runt i me • l i b gives your program access to
the standard Pascal input and output routines. Runt i me • l i b is
described on page 54 of the User Manual. The file Interface • l i b
contains the glue your program will need to access the Macintosh
Toolbox routines built into ROM.

As you add your own files to your project, they will be added to the
project window, with the object code size displayed in bytes.

I a Hello, World I
~ G::::> Hard Disk

(~:jt~c1)

[Driue)

~
Create the project: (Create)
I Hello.n I (Cancel)

Figure 2.7 The Name Project dialog box.

Hello. 'TT
Options File (by build order) Size

Runtime. lib 0
Interface. lib 0

·····························r.i:;1J.·1t.~·s.l:;;.;································a

Figure 2.8 The Project window.

Setting Up 35

As you may have noticed, we've snuck another naming convention
in at this point. This one came directly out of the THINK Pascal
User Manual. If you wish to keep consistency with our text, name
your source code files xx x. p, your project files xx x. n, and your
resource files xx x . n. rs r c. The n character is created by holding
down the Option key and pressing p.

Now, you're ready to type in your first program.

The Project file acts as an information center for all the files
involved in building an application. It contains the names of all the
source code and resource files necessary to run the application. In
addition, the Project file contains information about the THINK
Pascal environment, such as the preferred font and font size for
printing source code. Projects are a THINK Pascal concept, not a
Macintosh concept.

The Code

Pull down the File menu and select New. Figure 2.9 should show the
result.

Now that you have a blank window, type in the following program:

program Hello;
begin

ShowText;
writeln('Hello, world!');

end.

The THINK Pascal editor checks your syntax as you type. It will
catch most Pascal errors, displaying what it thinks is an illegal
statement using an outline font style. The editor will automatically
format your code, saving you lots of work and keystrokes. By
selecting Source Options ... from the Edit menu, you can customize
the editor's formatting rules to suit your own tastes.

36 Macintosh Programming Primer

,.. S File Edit Search Project Run Debug Windows
~~~~~~~~~~~~~ 

Hello.Tl 

Figure 2.9 A new source code window. 

Although the editor is pretty smart, it can be fooled. If the editor 
outlines an error that you're sure is correct, try deleting the line and 
retyping it. You might also check the lines before and after the 
outlined error, in case the error occurred there. 

Check the code for typing errors. If everything looks all right, then 
select Saue As ... from the File menu. Call the file He LL o. p. Then 
select the Add Window menu item from the Project menu to add 
He L Lo. p to the project. 

If you typed in He L L o . p . instead of He L L o . p while following the 
preceding instructions, you share your inclination with many readers 
of earlier editions. To repeat: in this book, program files look like 
xx x. p and project files look like xx x. 7t and resource files (when we 
get to them in Chapter 3) look like xx x . 7t. rs r c and that's it. 
Periods are not used at the end of any file names in this book. 



Setting Up 37 

The difference between Rdd Window and Rdd File ... in the 
Project menu is that Rdd Window adds the frontmost window 
to the project, whereas Rdd File ... allows you to select one or 
more files to add to the project. 

Running Hello, World 

Note that the He L Lo. p file is now displayed in the project window 
(Figure 2.10). Now try running the program by choosing Go from the 
Run menu, or by keying 8€6 (pronounced "command-G"). THINK 
Pascal will load the two libraries and compile He L Lo. p. Note that 
the libraries are loaded only the first time you try to compile a 
project. 

If the compiler encounters an error, it will do its best to describe 
the problem to you. For example, J.i:igure 2.11 shows the result when 

Hello. n 
Options File (by build order) Size 

Runtime. lib 0 
lnterfac:e. lib 0 

[Q]lli] V R Hello .p 0 ............................. ,..01.;;lt.~·si:'..~································a 

Figure 2.10 He L Lo . p added to the Project window. 

~D Hello.p 

program Hello; 
begin 

ShowText ~ ( ~" ~ga ~; 
end~ 

Figure 2.11 The Editor detects a missing semicolon. 



38 Macintosh Programming Primer 

the semicolon is left off the end of the call to S how Te x t. Notice that 
the call to w r i t e L n is outlined. 

When you attempt to compile He LL o. p, the compiler will point 
out the line with the error and display an error message in a window. 
For the error in Figure 2.11, the error message in Figure 2.12 
appeared. 

To make the error message window go away, just click the mouse 
button. 

Once you've removed the errors, THINK Pascal will give you a 
chance to save any changes you've made since the last time you 
saved your source code file (Figure 2.13). Make sure you click Yes to 
save your changes. 

Once you've saved your changes, THINK Pascal will run your 
program. The call to Show Text brings up THINK Pascal's built-in 
text window. The call to W r i t e L n writes the string He L L o , w o r L d ! 
in the window (Figure 2.14). Congratulations! You've just completed 
your very first Macintosh program. 

This doesn't make sense. 

Figure 2.12 A helpful THINK Pascal error message. 

Do you want to saue the changes to 
"Hello.p" before running? 

( Yes ) No ) [ Cancel ] 

Figure 2.13 The save changes dialog box. 

II 



Setting Up 39 

Te Ht 
He I I o, wor I d ! 

Figure 2.14 Hello, World in action! 

You might be wondering about the 1£1 or the [Q]IN] V R in the 
project window. Well, the ltl icon shows you that the files are listed 
in the build order, the or er in which they will be compiled. Click 
on the icon and it will change to I~ I and sort the file listing to show 
how the project is segmented. The [Q]IN] V R refers to THINK 
Pascal testing options for that file. There's more information about 
this on pages 93-105 in the THINK Pascal User Manual. For your 
purposes now, the default settings need not be changed. 

The Problem with Hello, World 

We don't want to get you too excited about this version of Hello, 
World. Although it does illustrate how to use THINK Pascal, it does 
not make use of the Macintosh Toolbox. The first program in Chapter 
3 is a Macintized version of Hello, World called Hello2. 

In Review 

In Chapter 2, you installed THINK Pascal and created your first 
project. Chapter 3 looks at the basics of Mac programming: 
QuickDraw, windows, and resources. It also presents four 
applications that demonstrate the versatility of the Macintosh. 

It's almost too late to turn back. To all those who have come from 
other environments: Beware! QuickDraw is addictive! 



Drawing on the 
Macintosh 

On the Macintosh, the Toolbox 
routines that are responsible for all 

drawing are collectively known as 
QuickDraw. Now that you have 

installed THINK Pascal, you can start 
programming. A good starting point is 

the unique routines that define the 
Macintosh graphic interface. 

3 



_J Introduction 

QuickDraw Is THE Macintosh drawing environment. With it, you can 
draw rectangles and other shapes and fill them with different 
patterns. You can draw text in different fonts and sizes. The windows, 
menus, and dialogs that are displayed on the Macintosh screen are all 
created using QuickDraw routines. 

In this chapter, we'll show you how to create your own windows and 
draw in them with QuickDraw. Let's start by examining the 
QuickDraw coordinate system, the mathematical basis for QuickDraw. 

The QuickDraw Coordinate System 

QuickDraw drawing operations are all based on a two-dimensional 
grid coordinate system. The grid is finite, running from (-32,767, 
-32,767) to (32,767, 32,767), as shown in Figure 3.1. 

Every Macintosh screen is actually an array of pixels aligned to 
the grid. The lines of the grid surround the pixels. The grid point 
labeled (0,0) is just above, and to the left of, the upper left-hand 
corner of the Mac screen (Figure 3.2). 

(-32,767, -32,767) 

(32,767, 32,767) 

Figure 3.1 The grid. 

43 



44 Macintosh Programming Primer 

H-1 (0. 0) I-I-

l\i 

-

Figure 3.2 The Macintosh screen on the grid. 

A screen measuring 32,768 pixels x 32,768 pixels with a screen 
resolution of 1 pixel = 1/72 inch would be 38 feet wide and 38 feet 
tall. The Mac Plus and SE monitors are 512 x 342 pixels. Apple's 
Mac 13" color monitor is 640 x 480 pixels. 

The grid is also referred to as the global coordinate system. 
Each window defines a rectangle in global coordinates. Every rec
tangle has a top, left, bottom, and right. For example, the window 
depicted in Figure 3.3 defines a rectangle whose top is 80, left is -50, 
bottom is 220, and right is 300. 

Interestingly, the window does not have to be set up within the 
boundaries of the screen. You can set up a window whose left is 
-50, top is 100, bottom is 200, and right is 800. On a Mac Plus, this 
window would extend past the left and right sides of the screen 
(Figure 3.4)! This is known as the Big Long Window Technique. 
Use of the Big Long Window Technique is discouraged. 



Drawing on the Macintosh 45 

(50, BO) 

~ 
IS 
~ 

t-++-: 
t-++-: 
t-++-: 
t-++-: 
t-++-: 
t-++-: 

!! II~ 

!!± ~ II 

' [ (300, 220)] 

Figure 3.3 A window on the grid. 

Figure 3.4 A big long window. 



46 Macintosh Programming Primer 

l(O, 0) in Window's Local 
Coordinate System 

['ot,i 
IS 

I-++-
I-++-
I-++-
I-++-
I-++-
I-++-

j_ j_ j_ j_ j_ j_ j_ 
_l__l__l__LU_l_ 
IIIIIII 

Figure 3.5 Local coordinates. 

When drawing inside a window, you'll always draw with respect to 
the window's local coordinate system. The upper left-hand corner 
of a window lies at coordinate (0,0) in that window's local coordinate 
system (Figure 3.5). 

To draw a rectangle inside your window, specify the top, left, 
bottom, and right in your window's local coordinates (Figure 3.6). 
Even if you move your window to a different position on the screen, 
the rectangle coordinates stay the same. That's because the rectangle 
was specified in local coordinates. 

[:I j_ :r 
f :r :r 

J: I 

(0, 0) in Yindov's Local 
Coordinate System, (50, 80) in 

Globa 1 Coordinates 

ISi 
!'SI 

~D 
HHH 
HHH 

Ill HHH 
HHH 
HHH 

(20, 30) in Yindov's Local H HHH 
Coordinate Sy stem, (70, 11 0) in j_ j_ j_ j_ j_ j_ j_ 

Global Coordinates j_ j_j_j_j_j_ 
j_ j_j_j_j_j_ 

Figure 3.6 Rectangle drawn in window's local coordinates. 



Drawing on the Macintosh 47 

Local coordinates are really handy! Suppose you write an 
application that puts up a window and draws a circle in the window 
(Figure 3.7) . Then, the user of your application drags the window to 
a new position (Figure 3.8). 

You still know exactly where that circle is, even though its window 
has been moved. That's because you specified your circle in the 
window's local coordinates. 

§0 Drawing Window = 

( 20, 20 ) 

Figure 3.7 Circle drawn in window's local coordinates. 

Still ( 20 , 20 ) 

Figure 3.8 When window moves, local coordinates stay the same. 



48 

_J 

Macintosh Programming Primer 

On the Macintosh, text and graphics created by your programs will 
be displayed in windows. Windows are the device that Macintosh 
programs use to present information to a user. 

Because we need windows to draw in, let's look more closely at 
windows and the Window Manager. 

Window Management 

When you draw graphics and text on the Macintosh, you draw them 
inside a window. The Window Manager is the collective name for 
all the routines that allow you to display and maintain the windows 
on your screen. Window Manager routines are called whenever a 
window is moved, resized, or closed. 

Window Parts 

Although windows can be defined to be any shape you choose, the 
standard Macintosh window is rectangular. Figure 3.9 shows the 
parts of a typical window. 

Close Box Title Bar or Drag Region Zoom Box 

Window_ 

Scroll Bars 

/ 

Thumb Grow Box 

Figure 3.9 Window components. 



Drawing on the Macintosh 49 

The close box is used when you wish to close the window. The 
drag region is where you grab the window to move it around the 
screen; this region also contains the window's title. Scroll bars are 
used to examine parts of the window content not currently in view. 
The thumb may be dragged within the scroll bar to display the corre
sponding part of the window content. The grow box (also known as 
the size box) lets you resize the window. The zoom box toggles the 
window between its standard size and a predefined size, normally 
about the size of the full screen. 

There are several types of windows. The window in Figure 3.9 is 
known as a document window. When you use desk accessories or 
print documents, you will notice other kinds of windows. These 
windows may not have all the same components as the standard 
window, but they operate in the same fashion. 

Window Types 

Six standard types of Windows are defined by the Window Manager. 
Each type has a specific use. In this section, each type is described 
and its use is discussed. 

The documentProc window, shown in Figure 3.10, is the stan
dard window used in applications. This one has a size box, so it is 
resizable; it has a close box in the upper left-hand corner that closes 
the window. 

The no Grow Doc Pro c window (shown in Figure 3.11), is the stan
dard window without scroll bars or a grow box. Use this window for 

i[ Window 

Q 

Q 
!QI ~ 121 

Figure3.10 The documentProc window. 



50 Macintosh Programming Primer 

D Window 

Figure 3.11 The no Gr ow Doc Pro c window. 

information that has a fixed size. The r Doc Pro c window (shown in 
Figure 3.12), has a black title bar; it has no scroll bars or grow box. 
This window is most often used with desk accessories. 

The remaining three types of windows are all dialog box windows: 
dBoxProc, plainDBox , and altDBoxProc (Figure 3.13). Dialog 
boxes will be discussed in Chapter 6. 

D Window 

Figure 3.12 The rDocProc window. 



Drawing on the Macintosh 51 

Figure 3.13 The dBoxProc, plain DBox, and alt DB ox P roe windows. 

The windows described here are the standard models. You can 
customize them by adding a few options. For example, most of the 
window types supported by the Mac can come either with or 
without the close box (also known as the go-away box). You can 
specify whether or not the window has a size box (grow box). 
A zoom box can be added to document Pro c and 
noGrowDocProc windows (see Chapter 4). We'll show you 
everything you need to know to create exactly the type of window 
you want for your application. 

Setting Up a Window for Your Application 

If you plan to use one of the standard window designs for your 
applications, creating a window is easy. First, build a W I N D resource 
using ResEdit (if you're not familiar with ResEdit, turn to Chapter 
8). The WIND resource requires the information shown in Figure 3.14. 
Use this resource ID within your application to refer to your WIND 
resource. 



52 Macintosh Programming Primer 

§0 WIND ID= 400 from Hello2.n.fsrc 

Window title: 

I . I 

top 

left 

proclD 

D Uisible D goRwayFlag 

Figure 3.14 WI ND resource fields. 

Once your W I ND resource is built, you're ready to start coding. One 
of the first things your program will do is initialize the Toolbox. The 
Window Manager is initialized at this point. 

Next, load your WIND resource from the resource file, using the 
Get NewW i ndow Toolbox routine: 

pictureWindow := GetNewWindowC windowID, 
wStorage, behind>; 

Ge t New W i n do w loads the W I N D resource that has a resource ID of 
W i n do w I D. The WI N D information is stored in memory at the space 
pointed to by w S t o r a g e. The Window Manager will automatically 
allocate its own memory if you pass n i L as your w Storage 
parameter. For now, this technique is fine. As your applications get 
larger, you'll want to consider developing your own memory 
management scheme. The parameter be h i n d determines whether 
your window is placed in front of or behind any other windows. If the 
value is n i L, it goes to the back; W i n do w Pt r C -1 > puts it in front. 
For example: 

theWindow := GetNewWindowC 400, nil, 
WindowPtrC-1> >; 



Drawing on the Macintosh 53 

loads a window with a resource ID of 4 0 0, asks the Window Manager 
to allocate storage for the window record, and puts the window in 
front of all other windows. A pointer to the window data is returned 
in the variable t h e W i n do w. 

Pascal is a strongly typed language. Basically, this means that the 
compiler is extremely cautious when it comes to passing 
parameters and assigning values of one type to variables of 
another type. The expression w i n do w Pt r c -1 > asks the compiler 
to make the constant -1 look like a w i n do w Pt r so that it can be 
passed as a parameter to Get New w i n do w. This technique, 
known as type-casting, is critical to programming on the Mac. For 
more information on type-casting, refer to page 285 in the THINK 
Pascal User Manual. 

When you create the WIND resource with ResEdit, you are given a 
choice of making the window visible or not. Visible windows appear as 
soon as they are loaded from the resource file with Ge t New W i n do w. 
If the visible flag is not set, you can use S how W i n do w to make the 
window visible: 

ShowWindowC theWindow >; 

where th eWi ndow is the pointer you got from Get NewW i ndow. Most 
applications start with invisible windows and use S how W i n do w when 
they want the window to appear. The Window Manager routine 
H i de W i n do w makes the window invisible again. In general, you'll 
use S howW i ndow and Hi deWi ndow to control the visibility of your 
windows. 

At this point, you've learned the basics of the Window Manager. 
You can create a window resource using ResEdit, load the resource 
using Ge t New W i n do w, and make the window appear and disappear 
using S h ow W i n do w and H i de W i n do w. This technique will be 
illustrated shortly. After you have put up the kind of window you 
want, you can start drawing in it. The next section shows you how to 
use QuickDraw routines to draw in your window. 



54 

Drawing in Your Window: The QuickDraw 
Toolbox Routines 

There are many QuickDraw drawing routines. They can be con
veniently divided into four groups: routines that draw lines, shapes, 
text, and pictures. These routines do all their drawing using a 
graphics "pen." The pen's characteristics affect all drawing, whether 
the drawing involves lines, shapes, or text. 

Before starting to draw, you have to put the pen somewhere 
(Move To), define the size of the line it will draw (Pen S i z e ), choose 
the pattern used to fill thick lines (Pen Pat), and decide how the line 
you are drawing changes what's already on the screen (Pen Mode ). 
Figure 3.15 shows how changing the graphics pen changes the 
drawing effect. 

Every window you create has its own pen. The location of a 
window's pen is defined in the window's local coordinate system. 
Once a window's pen characteristics have been defined, they will stay 
defined until you change them. 

, . 

' . , . 

Lines Drawn with 4-Pixels-Wide Graphics Pen, Using Pen Patterns 

IJ 
Source 
Pattern 

~ 
Destination 

Pattern 

IJ ~ ~ 
patCopy patOr patXor 

[] ~ ~ 
notPatCopy notPatOr notPatXor 

Copy Source Pattern Onto Destination Pattern Using 
One of Eight Graphics Pen Modes 

Figure 3.15 Graphics pen characteristics. 

' . , 

~ 
patBic 

~ 
notPatBic 



Drawing on the Macintosh 55 

Setting the Current Window 

Because your application can have more than one window open at 
the same time, you must first tell QuickDraw which window to draw 
in. This is done with a call to S e t Po r t: 

theWindow := GetNewWindow( 400, nil, 
WindowPtr(-1) ); 

SetPort( theWindow ); 

In this example, Set Port made t he W i n do w the current window. 
Until the next call to S e t Po r t, all QuickDraw drawing operations 
will occur in the W i n do w, using the W i n do w's pen. Once you've 
called Set Port and set the window's pen attributes, you're ready to 
start drawing. 

The basic data structure behind all QuickDraw operations is the 
Graf Port. When you call Set Port, you are actually setting the 
current Graf Port (1:271). Since every window has a GrafPort 
data structure associated with it, in effect you are setting the 
current window. The G r a f Port data structure contains fields like 
p n s i z e and p n Lo c, which define the Graf Port pen's current 
size and location. QuickDraw routines like Pens i z e modify the 
appropriate field in the current Graf Po rt data structure. 

Drawing Lines 

The L i n e To routine allows you to draw lines from the current pen 
position (which you have set with MoveTo) to any point in the 
current window. For example, a call to: 

theWindow := GetNewWindow( 400, nil, 
WindowPtr(-1) ); 

SetPort( theWindow ); 
MoveTo( 39, 47 ); 
LineTo( 407, 231 ); 

would draw a line from (37, 4 7) to (407, 231) in th eW i ndow's 
local coordinate system (Figure 3.16). 



56 Macintosh Programming Primer 

Window 

-,~"'--

~~ 
~-

~' 
'-,~,~ 

Figure 3.16 Drawing a line with QuickDraw. 

It is perfectly legal to draw a line outside the current boundary of a 
window. QuickDraw will clip it automatically so that only the portion 
of the line within the window is drawn. QuickDraw will keep you 
from scribbling outside the window boundaries. This is true for all 
the QuickDraw drawing routines. 

The last program in this chapter is the Flying Line, an extensive 
example of what you can do using the QuickDraw line-drawing 
routines. 

Drawing Shapes 

QuickDraw has a set of drawing routines for each of the following 
shapes: rectangles, ovals, rounded-corner rectangles, and arcs. Each 
shape can be drawn filled, inverted, or as an outline (Figure 3.17). 

The current pen's characteristics are used to draw each shape, 
where appropriate. For example, the current fill pattern will have no 
effect on a framed rectangle. The current Pen Mode setting, however, 
will affect all drawing. The second program in this chapter, 
Mondrian, shows you how to create different shapes with QuickDraw 
(Figure 3.18). It also demonstrates the different pen modes. 



Drawing on the Macintosh 

D 
:i .._ __ . 

Figure 3.17 Some QuickDraw shapes. 

Mondrian 

Figure 3.18 Mondrian. 

57 

., 



58 Macintosh Programming Primer 

Drawing Text 

QuickDraw allows you to draw different text formats easily on the 
screen. QuickDraw can vary text by font , style, size, spacing, and 
mode. Let's examine each one of the text characteristics. 

Font refers to the typeface of the text you are using. Courier, 
Helvetica, and Geneva are some of the typefaces available on the 
Macintosh. Style refers to the appearance of the typeface, (bold, 
italic , underline, etc. ). The size of text on the Macintosh is measured 
in points, where a point is equal to 1/72 inch. Spacing defines the 
average number of pixels in the space between letters on a line of 
text. Figure 3.19 shows some of these characterics of QuickDraw text. 

The mode of text is similar to the mode of the pen. The text mode 
defines the way drawn text interacts with text and graphics already 
drawn. Text can be defined to overlay the existing graphics ( s r c 0 r ); 
text can be inverted as it is placed on the existing graphics ( s r c X o r ); 
or text can simply paint over the existing graphics ( s r c Copy). The 
other modes described in QuickDraw shapes ( s r c Bi c, 
not Sr c Copy , not Sr c Or, etc.) can also be used with text. Figure 
3.20 demonstrates how text mode affects appearance. 

r s File Edit Search Format Font Document Window 

D Quickllraw TeHt Uariations.wd3 

~s the center of the United Worlds , New York 

was growing q U i Ck 1 Y. This was underlined by the fact that many of 
the poorer planets were unable to find s p ace for their embassies. New 
York landlords boldly demanded a rental of 1 million credits a day . 
As a result, ambassadors set up shop in two other cities. 

Chicago had the biggest spaceport on earth and ended up with many 
statesmen. 

., 

476 Chars }Normal V'i 1 1:.1.1.1.1.1 .:.!• ... !.:.!.:.!.:.!·.:.!.: ,,,,,.,.,,,,,,,.,,,,,. ,,,.,,,.,,,.,,,,,.,, '"'''''''''''''''''""" ..... ...................... 1,!.1,!.1,'.1,;.1nr,;.1 r?"l,,., 
~..Ji ::::::::::::::::::;:;:;:::;:::;:;:;:;:;:;:;:;:;:;:;:::::;:;:;:;:;:;:;:;:;:;:;:::::::::::::::::::·:· ~L..J 

Figure 3.19 Examples of QuickDraw text. 



Drawing on the Macintosh 59 

v v 
e e 
r r 

Horizontal Hori d.onta 1 
l i 
c c 
a a 
1 1 

I srcCopy I I srcOr I 

Figure 3.20 The two most popular QuickDraw text modes. 

Drawing Pictures 

QuickDraw can save text and graphics created with the drawing 
routines as picture resources called P I CT s. You can create a picture 
(using a program like MacPaint or MacDraw), copy the picture to the 
clipboard, and paste it into a PI CT resource using ResEdit. Later in 
the chapter, you'll see how to make use of PI CT resources in the 
ShowPICT program. 

About Regions 

QuickDraw allows you to define a collection of lines and shapes as a 
region. You can then perform operations on the entire region, as 
shown in Figure 3.21. 

By now most of you are probably itching to start coding. First, let's 
look at the basic Mac programming structure used in this chapter's 
programs. Then, we'll hit the keyboards! 



60 Macintosh Programming Primer 

-, 
I I 
I ,- -r-+--, 

I 
I 
I 
I L-t-:-< 

L...! " 

t-----
1 

~ 
OffsetRgn lnsetRgn I 

Figure 3.21 Two QuickDraw region operations. 

Basic Mac Program Structure 

We've looked at a general outline of the QuickDraw and Window 
routines necessary to make a Macintosh application go. The basic 
algorithm used in each of the Chapter 3 programs goes something 
like this: 

program MyApp; 
begin 

Doinitialization; 
DoPrimeDirective; 

while Cnot Button) do 
begin 
end 

end. 

As you'd expect, the first thing the program does is initialize 
variables and such. One nice feature of THINK Pascal is that it 
automatically initializes the Macintosh Toolbox for you. All you have 
to worry about is any program-specific initialization, such as loading 
windows or pictures from the resource file. Next, the program 
performs its prime directive. In the case of the Hello, World program, 
the prime directive is drawing a text string in a window. Finally, the 
program waits for the mouse button to be pressed. This format is 
very basic: Except for clicking the button, there is no interaction 
between the user and the program. This will be added in the next 
chapter. 



Drawing on the Macintosh 61 

_J 

_J 

Danger, Will Robinson! Normal Macintosh applications do not exit 
with a click of the mouse button. Mac programs are interactive. 
They use menus, dialogs, and events. We'll add these features 
later. For the purpose of demonstrating QuickDraw, we'll bend the 
rules a bit. 

The QuickDraw Programs 

The following programs each demonstrate different parts of the 
Toolbox. The Hello2 program demonstrates some of the QuickDraw 
routines related to text; Mondrian displays QuickDraw shapes and 
modes; Show PICT loads a PICT resource and draws the picture in a 
window. Finally, you'll code the Flying Line, an intriguing program 
that can be used as a screen saver. 

Let's look at another version of the Hello, World program pre
sented in Chapter 2. 

Hello2 

The new Hello2 program will do the following: 

• Load a resource window, show it, and make it the current port. 
• Draw the string ' He l l o , W o r l d ! ' in the window. 
• Quit when the mouse button is pressed. 

To get started, create a folder in the Dev e l op men t folder and call 
it He l l o 2. This is where you'll build your first Macintosh application. 

Create a resource of type W I N D. The W I N D resource allows you to 
define a window with the appearance and size that you desire. Use 
the tutorial in Chapter 8 if you feel hesitant about using ResEdit. 

To build the W I N D resource, run ResEdit. Select New from the 
F ii e menu and create a file named He l l o 2 • 7t • rs r c (remember, 7t is 
option-p). Make sure you save your resource file inside your newly 
created He l lo 2 folder (Figure 3.22). 



62 Macintosh Programming Primer 

I eil Hello2 I 
Q ~Hard Disk 

!: j(H t 

Oriue 

~ 
New File Name: t New D 
I Hello2. -rr .rs re ( Cancel ) 

Figure 3.22 ResEdit, naming the new resource file. 

Once you've named the new resource file, a window listing all of its 
resources will appear automatically. Because you just created the file, 
no resources are listed. Select Create New Res o u re e from the 
Resource menu. When prompted to select a resource type, select 
W I N D from the scrolling list and click 0 K (you could also have typed 
in WIND and clicked OK). Two new windows should appear, a window 
listing all of the W I N D resources and, on top of that, a window 
showing the newly created WIND (Figure 3.23). 

First, define the coordinates of the window. Pull down the WI ND 
menu and choose the menu item Display as TeHt. Then, fill out the 
fields as shown in Figure 3.24. 

Next, select Get Resource Info from the Resource menu. When 
the resource information window appears (Figure 3.25), set the 
WIN D's resource ID to 400 and make sure the Purgeable checkbox is 
checked. Checking the Purgeable checkbox allows the Macintosh 
Memory Manager to purge the W I N D resource from memory once it's 
not needed anymore. This approach maximizes the amount of memory 
available for your application. 

Choose Quit from the File menu. When prompted to save the file, 
click Yes. Now you're ready to start up THINK Pascal. 



Drawing on the Macintosh 63 

r- S File t di1 Resource Window WI ND 

Hello2. rr .rsrc 

Figure 3.23 The newly created WIND resource . 

~D WI ND ID = 400 from Hello2. n .rs re 

Window title: 

I Hello2 Window 

top 

left 

proclD 

~bottom~ 
~right~ 

I o I re fC on I O I 

D Uisible D goAwayFlag 

Figure 3.24 The w IND resource, displayed as text. 



64 Macintosh Programming Primer 

~D Info for WINO 400 from Hellow2.n.rsrc 

Type: WINO Size: 32 

Ill: 

Name: 

Attributes: 
D System Heap 
[2J Purgeable 

owner type 

D Locked D Preload 
D Protected 

Figure 3.25 The resource information window for W I N D. 

Some of you may note that the Size: field in Figure 3.25 has a 
number different from that in the w IND you just made. That's 
usually okay. Different versions of ResEdit make resources of 
slightly different sizes, so if you get 36 instead of 32, don't worry. 
This will be true for all the resources in this book, so stay calm if 
the sizes shown in the figures don't match up exactly with what you 
get at home or at work. 

The Hello2 Project 

Get into THINK Pascal and create a new project in the He LL o 2 
folder. If you need help creating a new project, refer to Chapter 2 or 
just review the THINK Pascal documentation. Call the project 
He LL o 2. n: (remember, n: is option-p ). Next, select New from the 
File menu and type the following source code into the window that 
appears: 

program Hello2; 
const 

BASE_RES_ID = 400; 
HORIZONTAL_PIXEL 30; 
VERTICAL PIXEL = 50; 



Drawing on the Macintosh 

{-----------------> 
procedure Window!nit; 

var 

Window!nit <--} 

helloWindow: WindowPtr; 
begin 

he~loWindow := GetNewWindow(BASE_RES_ID, 

65 

nil, WindowPtr(-1)); 
ShowWindow(helloWindow>; 
SetPortChelloWindow); 
MoveToCHORIZONTAL_PIXEL, VERTICAL_PIXEL); 
DrawStringC'Hello, world!'); 

end; 

{------------------> 
begin 

Window!nit; 
while Cnot Button) do 

begin 
end; 

end. 

Hello2 <--} 

Select Saue As ... from the File menu and save your source code 
as Hell o2. p. Select Add Window from the Project menu to add 
He l l o 2 • p to the project. When you're done, the Project window 
should look like Figure 3.26. 

Options File (by build order) Size £ 
Runtime. lib 0 
Interface.lib 0 

[Q]IN] V R He llo2 .p 0 ............................. r.01.:;"lt.~·:s&:.;.;········ ........................ o 

Figure 3.26 The Hello2 Project window. 

Adding the Resource File 

Before you run the program, you have to tell THINK Pascal to use 
your newly created resource file. Select Run Options ... from the Run 
menu. The Run-time Enuironment Settings window will appear. 



66 

_J 

Macintosh Programming Primer 

Click your mouse on the Use res o u r c e f i L e checkbox. When the 
file selection window appears, select the file He L L o 2 .1t. rs r c from 
your project folder. If you can't find your resource file, you probably 
don't have your project file (He L Lo 2 .1t) and the resource file 
(He L L o 2 .1t. rs r c) in the same folder at the same level. Quit THINK 
Pascal, drag them into the same folder and try again. Your Run-time 
Enuironment Settings window should look like Figure 3.27. Click 
0 K to save the settings. 

Running Hello2 

Now you're ready to run Hello2. Select Go from the Run menu. You 
may get a complaint about a syntax error or two. If so, just retype the 
line the compiler points to. 

If you make any changes to He L Lo2. p, you'll be asked whether 
you'd like to Saue changes before running?. Click Yes. 

Once you've gotten Hello2 to compile without a hitch, it will 
automatically start running, as shown in Figure 3.28. Voila! The new 
Hello, World should display a window with the text H e L L o, w o r L d ! 
in it. Quit the program by clicking the mouse button. 

Let's look at how the code works. 
If Hello2 compiles, but the Hello2 window fails to appear, it may 

indicate a problem with the resource file. If the WI N D resource has 
been entered correctly, try reselecting the resource file in the Run 
Options ... dialog box. Also make sure that the resource file is in the 
same folder as He L L o . p. 

Walking Through the Hello2 Code 

We'll be walking through the source code of each of the programs 
presented in the Mac Primer. We'll start with each program's global 
con s t and v a r declarations. Next, we'll dig into the main routine 
(usually found at the very bottom of the source code file) and discuss 
each routine in the order called. 

The Hello2 program starts off with some constant declarations. The 
constant BAS E_R E S_I D allows all resource references in the program 
to refer to the same starting ID. By convention, all of our resources 
start at 400 and go up from there. For example, if we had three WI ND 
resources, they'd most likely be numbered 400, 401, and 402. 

The constants HORIZONTAL_PIXEL and VERTICAL_PIXEL will 
determine where the top left-hand comer of the window is placed on 
the screen. 



Drawing on the Macintosh 

Resources 

Te Ht 
Window 

Memory 

Run-time Enuironment Settings 

181 Use resource file: I Hellow2.11.rsrc 

for resources used by the project. 

TeHt Window saues I sooo !characters 
D Echo to the printer 
DEcho to the file:j.----------.... 

IHel lo world. x = 811. 79. 

I Monaco I ._I _9__. 

Stack size: IH•MI kilobytes 

Zone size:@!Jkilobytes 

OK 

Cancel 

Figure 3.27 Adding the resource file to the project. 

Hello2 Window 

Hello, world! 

Figure 3.28 The new Hello, World. 

67 



68 Macintosh Programming Primer 

program Hello2; 
con st 

BASE_RES ID = 400; 
HORIZONTAL_PIXEL = 30; 
VERTICAL_PIXEL = 50; 

The main routine starts with a call to W i n do w I n i t. Hello2 then 
waits in an indefinite loop until the Toolbox routine Bu t t on returns 
t r u e. Bu t ton will return true when the mouse button is pressed. 

{------------------> Hello2 <--} 
begin 

Windowinit; 
while (not Button) do 

begin 
end; 

end. 

W i n d o w I n i t calls G e t N e w W i n d o w to load the W I N D resource 
with resource ID= BASE_RES_ID from your resource file. The first 
parameter specifies the resource ID. The second parameter tells the 
Toolbox how memory for the new window data structure should be 
allocated. Because you passed n i l as the second parameter, the 
Toolbox will allocate the memory for you. Finally, the third parameter 
to Ge t New W i n do w tells the Window Manager to create this window 
in front of any of the application's open windows. 

Get New W i n do w returns a pointer to the new window data 
structure. Next, W i n do w I n i t calls S h ow W i n do w to make the 
window visible. It is at this point that the window actually appears 
on the screen. The call to Se t Po r t makes h e l l o W i n do w the 
current window. All subsequent QuickDraw drawing operations will 
take place in hell ow i ndow. Next, hell oW i ndow's pen is moved to 
the local coordinates 50 down and 30 across from the upper left-hand 
comer of h e l l o W i n do w, and the string He l l o, w o r l d ! is drawn. 

{-------------------> 
procedure Windowinit; 

var 

Windowinit <--} 

helloWindow: WindowPtr; 
begin 

helloWindow := GetNewWindowCBASE_RES_ID, 
nil, WindowPtrC-1>>; 

ShowWindowChelloWindow>; 
SetPortChelloWindow); 
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL); 
DrawString('Hello, world!'>; 

end; 



Drawing on the Macintosh 69 

Unlike many programming environments, THINK Pascal takes care 
of initializing the Toolbox for you. If you wanted to initialize the 
Toolbox yourself, you'd use a routine that looked like this: 

{----------------> Toolboxlnit<--} 
procedure Toolboxlnit; 
begin 

InitGraf( @thePort >; 
InitFonts; 
InitWindows; 
InitMenus; 
TEinit; 
InitDialogs( nil >; 
MaxApplZone; 

end; 

Each call initializes a different part of the Macintosh interface. The 
call to In i t Graf initializes QuickDraw. 

The following global variables are initialized by I n i t Graf and 
can be used in your routines: 

• the Port always points to the current Graf Port. Because it is 
the first QuickDraw global, passing its address to In i t Graf 
tells QuickDraw where in memory all the QuickDraw globals are 
located. 

• white is a pattern variable set to a white fill; black, gray, 
l t Gray, and d k Gray are initialized as different shades 
between black and white. 

• arrow is set as the standard cursor shape, an arrow. You can 
pass arrow as an argument to QuickDraw's cursor-handling 
routines. 

• screen Bi ts is a data structure that describes the main Mac 
screen. The field s c re en Bi ts • bounds is declared as a 
Rec t and contains a rectangle that encloses the main Mac 
screen. 

• rands e e d is used as a seed by the Macintosh random number 
generator (we'll show you how to use the seed in this chapter). 



70 

_J 

Macintosh Programming Primer 

I n i t Fonts initializes the Font Manager and loads the system 
font into memory. Because the Window Manager uses the Font 
Manager (to draw the window's title, for example), you must 
initialize fonts first. In i t w i n do w s initializes the Window Manager 
and draws the desktop and the empty menu bar. In i t Menus 
initializes the Menu Manager so you can use menus. (Chapter 5 
shows how to use the Menu Manager.) 

I n i t W i n do w s and I n i t Menus both draw the empty menu bar. 
This is done intentionally by the ROM programmers for a reason 
that is such a dark secret that they didn't even document it in 
Inside Macintosh. 

TE In i t initializes Text Edi t, the Text-Editing Manager built right 
into the Toolbox. I n i t D i a l o gs initializes the Dialog Manager 
(illustrated in Chapter 6). MaxAppleZone maximizes the size of 
the application's memory area. 

As far as the Primer code is concerned, you needn't concern 
yourself with initialization procedures. If you're porting code from 
other Pascal programming environments, remove Toolbox initializa
tion code, as it will crash your Mac. Alternatively, you can disable 
the automatic initialization (see page 142 of the THINK Pascal User 
Manua~. 

The new Hello, World can easily be turned into a stand-alone 
application. Pull down the Project menu and select Build 
Application .... When the Build Application dialog box appears, 
type in the name of your application and press return. THINK 
Pascal will build a stand-alone application out of Hello2. If you'd like 
to add a custom icon to Hello2, take a quick tour through Chapter 8. 

Variants 

This section presents some variants to the Hello2 program. We'll 
start by changing the font used to draw Hello, World. Next, we'll 
modify the style of the text, using boldface, italics, and so on. We'll 
also show you how to change the size of your text. Finally, we'll 
experiment with different window types. 



Drawing on the Macintosh 71 

Changing the Font 

Every window has an associated font. You can change the current 
window's font by calling Text Font, passing an integer that 
represents the font you'd like to use: 

var 
myFontNumber : INTEGER; 

begin 
TextFontC myFontNumber >; 

end; 

Macintosh font numbers start at zero and count up from there. 
THINK Pascal has predefined a number of font names with which 
you can experiment. The best way to make use of a specific font is to 
pass its name as a parameter to the Toolbox routine Get F Nu m. 
Ge t F Nu m will return the font number associated with that name. 
You can then pass the font number to Text Font. 

Did someone in the back ask, "How can you tell which fonts have 
been installed in the system?" An excellent question! Not every 
Mac has the same set of fonts installed. Some folks have the 
LaserWriter font set; others a set of fonts for their lmageWriter. 
Some people might even have a complete set of foreign language 
fonts. For the most part, your applications shouldn't care which 
fonts are installed. There are, however, two exceptions to this rule. 
All dialog boxes and menus are drawn in the system font, which 
defaults to font number 0. The default font for applications is called 
the application font, usually font number 1. In the United States, 
the system font is Chicago, and the application font is Geneva. 

For now, put the Ge t F Nu m and Text Fon t calls before your call to 
D r a w S t r i n g and after your call to Set Po r t, and try different font 
names (use the Key Caps desk accessory for a list of font names on 
your Mac). 

{---------------> Windowlnit <--} 

procedure Windowlnit; 
var 

helloWindow: WindowPtr; 
fontNum : INTEGER; 



72 Macintosh Programming Primer 

begin 
helloWindow := GetNewWindowCBASE_RES_ID, 

nil, WindowPtrC-1)); 
ShowWindow(helloWindow>; 
SetPortChelloWindow); 
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL); 
GetFNum( 'Monaco', fontNum ); 
TextFont( fontNum ); 
{ Try other font names!!! } 
DrawString('Hello, world!'); 

end; 

Changing Text Style 

The Macintosh supports seven font styles: bold, italic, underlined, 
outline, shadow, cr.rrl=nm, and e x t e n d e d , or any combination of 
these. Chapter 5 shows you how to set text styles using menus. For 
now, try inserting the call T e x t F a c e < s t y l e ) before the call to 
Drawstring. Here's one example: 

{---------------> Window!nit <--} 

procedure Window!nit; 
var 

helloWindow: WindowPtr; 
begin 

helloWindow := GetNewWindow(BASE_RES_ID, 
nil, WindowPtr(-1)); 

ShowWindowChelloWindow); 
SetPortChelloWindow); 
MoveToCHORIZONTAL_PIXEL, VERTICAL_PIXEL); 
TextFace( [bold] >; 
{ Try the other predefined styles!!! } 
DrawStringC'Hello, world!'); 

end; 

Here's a list of predefined QuickDraw styles: 

bold 
• italic 

underline 
outline 

shadow 
condense 
extend 

You can also combine styles; try Text Face C [ b o l d, i ta l i c J ) 
or some other combination. 



Drawing on the Macintosh 73 

Changing Text Size 

It's also easy to change the size of the fonts, using the Text Size 
Toolbox routine: 

var 
myFontSize : INTEGER; 

begin 
TextSize( myFontSize ); 

end; 

The number you supply as an argument to Tex t S i z e is the font 
size that will be used the next time text is drawn in the current 
window. The Font Manager will scale a font up to the size requested; 
this may result in a jagged character, as shown in Figure 3.29. 

The default size is 0, which specifies that the system font size (12 
point) be used. Try this variant in your code. 

Window 

These Characters Aren't Scaled 

These Characters 
Rre Scaled 

Figure 3.29 The result of font scaling. 



74 

_J 

{-------------------> 
procedure Windowinit; 

var 

Macintosh Programming Primer 

Windowinit <--} 

helloWindow: WindowPtr; 
begin 

helloWindow := GetNewWindowCBASE_RES_ID, 
nil, WindowPtrC-1>>; 

ShowWindowChelloWindow); 
SetPortChelloWindow>; 
MoveToCHORIZONTAL_PIXEL, VERTICAL_PIXEL); 
TextSizeC 24 >; 
{ Try other pixel sizes!!! You } 
{ may have to change the value } 
{ of VERTICAL_PIXEL } 
DrawStringC'Hello, world!'); 

end; 

If you're trying different font sizes and you can't get the font to be 
jagged, you could be running System 7, which has a much more 
powerful font scaling procedure. Adobe Type Manager, a utility 
program from Adobe, also prevents scaled font jaggies. 

Changing the Hello2 Window 

Another modification you can try involves changing the window type 
from 0 to something else. Use ResEdit to change the WIND resource's 
p r o c I D from 0 to 1. (See the section on window types earlier in this 
chapter for other possibilities.) 

Now that you have mastered QuickDraw's text-handling routines, 
you're ready to exercise the shape-drawing capabilities of QuickDraw 
with the next program: Mondrian. 

Mondrian 

The Mondrian program opens a window and draws randomly 
generated ovals, alternately filled with white or black. Like Hello2, 
Mondrian waits for a mouse press to exit. The program, with its 
variants, demonstrates most of QuickDraw's shape-drawing 
functionality. 



Drawing on the Macintosh 75 

Mondrian is made up of two steps: 

• Initialize the window. 

• Draw random QuickDraw shapes in a loop, until the mouse button 
is clicked. 

First, create a new folder called Mon d r i a n in the Dev e l op men t 
folder. Next, create the resources you need for the program, and then 
enter the code. 

Resources 

The Mondrian program needs a WI N D resource, just as Hello2 did. In 
this case, create a new resource file called M o n d r i a n • 7t • r s r c in the 
Mon d r i an folder you just made. Then create a window with the 
specifications shown in Figure 3.30. Before you close and save 
Mondrian .7t. rs re, go to Get Resource Info, change the resource 
ID of the new w I ND to 4 0 0, and check the Purge ab I e checkbox. Quit 
ResEdit, saving your changes. 

Next, go into THINK Pascal and create a new project called 
Mon d r i an • 7t inside the Mon d r i a n folder. Then open up a new 
source code window and enter the program: 

~D~ UJlNII ill = 400 from Mondrian. n .rsrc ~ 

Window title: 

I 
top 

left 

proclD 

D Uisible D goAwayFlag 

Figure 3.30 WI ND parameters for Mondrian. 



76 Macintosh Programming Primer 

program Mondrian; 
con st 

BASE_RES ID = 400; 

var 
gDrawWindow: WindowPtr; 
gFillColor: LONGINT; 

{------------------> Randomize <--} 

function Randomize (range: INTEGER): INTEGER; 
var 

rawResult: LONGINT; 
begin 

rawResult := Random; 
rawResult := abs(rawResult>; 

Randomize := CrawResult * range) div 32768; 
end; 

{------------------> RandomRect <--} 

procedure RandomRect (var myRect: Rect; boundingWindow: 
WindowPtr>; 

begin 
myRect.left := Randomize(boundingWindowA.portRect.right -

boundingWindowA.portRect.left); 
myRect.right := Randomize(boundingWindowA.portRect.right -

boundingWindowA.portRect.left); 
myRect.top := RandomizeCboundingWindowA.portRect.bottom -

boundingWindowA.portRect.top); 
myRect.bottom := Randomize(boundingWindowA.portRect.bottom -

boundingWindowA.portRect.top); 
end; 

{------------------> DrawRandomRect 

procedure DrawRandomRect; 
var 

myRect: Rect; 
begin 

RandomRect(myRect, gDrawWindow>; 

<--} 



Drawing on the Macintosh 

ForeColor(gFillColor>; 
PaintOval(myRect); 

end; 

{------------------> MainLoop 

procedure MainLoop; 
begin 

GetDateTime(randSeed); 
gFillColor := blackColor; 

while (not Button) do 
begin 

DrawRandomRect; 

<--} 

if CgFillColor = blackColor> then 
gFillColor := whiteColor 

else 
gFillColor := blackColor 

end; 
end; 

{------------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gDrawWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1 »; 

ShowWindowCgDrawWindow>; 
SetPort(gDrawWindow>; 

end; 

{------------------> Mondrian 

begin 
Windowlnit; 
MainLoop; 

end. 

Running Mondrian 

<--} 

77 

Once you've finished typing in the code, save it as Mon d r i a n • p and 
add it to the project using Rdd Window. Next, select Run 
Options ... from the Run menu and tell the project to use the 



78 

_J 

Macintosh Programming Primer 

Mondrian 

Figure 3.31 Running Mondrian. 

resource file Mo n d r i a n • 7t • r s r c . Now, select Go from the Run 
menu. If everything went correctly, you should see something like 
Figure 3.31. The window should fill with overlapping black and white 
ovals until you click the mouse button. If you got a different result, 
then check out your resource; make sure the WI ND resource has the 
correct resource ID. If your resource is all right, go through the code 
for typos. 

Now let's look at the Mondrian code. 

Walking Through the Mondrian Code 

The Mac Primer uses the convention of starting resource ID numbers 
at 400 , adding one each time a new resource ID is needed. Use any 
number you wish (as long as it's between 128 and 32, 767). The 
constant BAS E RES I D used in Mondrian is identical to that used in 
Hello2. The global variable g Draw W i n do w is Mondrian's main 
window. Each shape you draw will be filled with the color in 
g Fi L LC o Lor , which is initialized as b Lack Co Lor . 



· Drawing on the Macintosh 

program Mondrian; 
con st 

var 

BASE_RES_ID = 400; 

gDrawWindow: WindowPtr; 
gFillColor: LONGINT; 

Mondrian's main routine calls Window In it, then Main Loop. 

{---------------> Mondrian <--} 

begin 
Window!nit; 
Mainloop; 

end. 

79 

W i n do w I n i t loads WI N D number 4 0 0 from the resource file, 
storing a pointer to it in g D raw W i n do w. Next, Show W i n do w is 
called to make the window visible, and set Po rt is called to make 
g D rawWi ndow the current window. 

{------~---------> Window!nit <--} 

procedure Window!nit; 
begin 

gDrawWindow := GetNewWindow CBASE_RES_ID, 
nil, WindowPtr C-1>>; 
ShowWindow CgDrawWindow>; 
SetPort CgDrawWindow>; 

end; 

Ma i n Loop starts by using the current time (in seconds since 
January 1, 1904) to seed the Mac random number generator. The 
QuickDraw global r a n d Seed is used as a seed by the random num
ber generator. If you didn't modify rand Seed, you'd generate the 
same patterns every time you ran Mondrian. 

Next, g F i l l Co l o r is initialized to b l a c k Co l o r. This means that 
the first oval will be filled with black. Next, Ma i n Loop loops, waiting 
for the press of the mouse button. In the loop, D raw Random Re c t is 
called, first generating a random rectangle inside the window, then 
drawing an oval in the rectangle. Next, g Fi l l Co lo r is flipped from 
black to white or from white to black. 



80 Macintosh Programming Primer 

{------------------> Main loop 

procedure Mainloop; 
begin 

GetDateTimeCrandSeed); 
gFillColor := blackColor; 

while Cnot Button) do 
begin 

DrawRandomRect; 

<--} 

if CgFillColor = blackColor) then 
gFillColor := whiteColor 

else 
gFillColor := blackColor 

end; 
end; 

D raw Ra n do m Re c t controls the actual drawing of the ovals in the 
window. Random Rec t generates a random rectangle inside 
g Draw W i n do w, Fore Co lo r sets the current drawing color to 
g F i l l Co l o r, and Pa i n t 0 v a l paints the oval inside the generated 
rectangle. 

{-----------------> DrawRandomRect <--} 

procedure DrawRandomRect; 
var 

myRect: Rect; 
begin 

RandomRectCmyRect, gDrawWindow); 
ForeColorCgFillColor>; 
PaintOvalCmyRect>; 

end; 

Ra n do m Re c t sets up the rectangle to be used in drawing the oval. 
Each of the four sides of the rectangle is generated as a random 
number between the right and left (or top and bottom, as 
appropriate) sides of the input parameter, bound i n g W i n do w. 

The notation myRecordPtr". myField refers to the:;;ield 
my Field in the record pointed to by my Re co rd Pt r. 

Every window data structure has a field named po r t Re c t that 
defines the boundary of the content region of the window. Because 
bound i n g W i n do w is a pointer to a window data structure, yo 
b o u n d i n g W i n do w .... po r t Re c t to access this rectangle. 



Drawing on the Macintosh 

{-----------------> RandomRect <--} 

procedure RandomRect (var myRect: Rect; 
boundingWindow: WindowPtr); 

begin 
myRect. Left := Randomize 

CboundingWindowA.portRect.right -
boundingWindowA.portRect.Left); 

myRect.right := 
Randomize(boundingWindowA.portRect.right -

boundingWindowA.portRect.Left); 
myRect.top := 

Randomize(boundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 

myRect.bottom := 
Randomize(boundingWindowA.portRect.bottom -

boundingWindowA.portRect.top); 
end; 

81 

Random i z e takes an integer argument and returns a positive 
integer greater than or equal to 0 and less than the argument. This is 
accomplished via a call to the Random Toolbox utility, which returns 
a random number in the range -32,767 through 32,767. You may find 
Random i z e helpful in your own applications. 

{-----------------> Randomize <--} 

function Randomize (range: INTEGER): INTEGER; 
var 

rawResult: LONGINT; 
begin 

rawResult .- Random; 
rawResult .- absCrawResult); 

Randomize .- CrawResult * range) div 32768; 
end; 

Variants 

Here are some variants of Mondrian. The first few change the shape 
of the repeated figure in the window from ovals to some other shapes. 

Your first new shape will be a rectangle. This one's easy: Just 
change the Pa i n t 0 v a L call to Pa i n t Re c t. When you run this, you 
should see rectangles instead of ovals. 



82 Macintosh Programming Primer 

Your next new shape is the rounded rectangle. You'll need two new 
parameters for Pa i n t Ro u n d R e c t : o v a L W i d t h and o v a L H e i g h t . 
Declare them as constants, each with a value of 20: 

canst 
OVAL_WIDTH = 20; 
OVAL_HEIGHT = 20; 

Now, change the D raw Random Re ct routine, as follows: 

{---------------> DrawRandomRect 

procedure DrawRandomRect; 
var 

myRect: Re ct; 
begin 

<--} 

RandomRectCmyRect, gDrawWindow); 
ForeColor(gFiLLColor); 
PaintRoundRect( myRect, OVAL_WIDTH, 

OVAL_HEIGHT ); 
end; 

You should see something like Figure 3.32 if you run this variation. 

Figure 3.32 Mondrian with rounded rectangles. 

, 



Drawing on the Macintosh 83 

Instead of filling the rectangles, try using F ram e Round Re c t to 
draw just the outline of your rectangles: 

{----------------> DrawRandomRect 

procedure DrawRandomRect; 
var 

myRect: Rect; 
begin 

<--} 

RandomRectCmyRect, gDrawWindow); 
ForeColorCgFillColor>; 
FrameRoundRectC myRect, OVAL_WIDTH, 

OVAL_HEIGHT >; 
end; 

The framing function is more interesting if you change the state of 
your pen: The default setting for your pen is a size of 1 pixel wide by 
1 pixel tall, and the pattern is black. Change it by modifying 
W i n do w I n i t as follows: 

{----------------> Wi ndowlni t <--} 

procedure Windowlnit; 
begin 

gDrawWindow := GetNewWindowCBASE_RES_ID, 
nil, WindowPtrC-1)); 

ShowWindowCgDrawWindow>; 
SetPortCgDrawWindow>; 

PenSizeC PEN_WIDTH, PEN_HEIGHT >; 
PenPatC gray >; 

end; 

Here, you changed the pen pattern to g r a y. Don't forget to declare 
the constants PE N_W I D TH and PE N_H EIGHT. We used values of 10 
and 2, respectively (Figure 3.33). 

While you're at it, try using Inv e rt Ro u n t Rec t instead of 
Frame Round Rec t. Inv e rt Round Rec t will invert the pixels in its 
rectangle. The arguments are handled in the same way (Figure 3.34). 

Next, try using F r a me A r c in place of I n v e r t R o u n d R e c t . 
F ram e A r c requires two new parameters. The first defines the arc's 
starting angle, and the second defines the size of the arc. Both are 
expressed in degrees (Figure 3.35). 



84 Macintosh Programming Primer 

Figure 3.33 Mondrian with framed, gray, rounded rectangles. 

~ , 

Figure 3.34 Mondrian with inverted, rounded rectangles. 



Drawing on the Macintosh 

Figure 3.35 Figuring your arc. 

Change Draw Random Rec t as follows: 

{---------------> DrawRandomRect 

procedure DrawRandomRect; 
var 

myRect: Rect; 
begin 

<--} 

RandomRect(myRect, gDrawWindow); 
ForeColor(gFi LLColor); 
FrameArc( myRect, START_DEGREES, 

ARC DEGREES ); 
end; 

85 

Don't forget to declare the constants ST ART _DEGREES and 
ARC_DEGREES. Try using values of 0 and 270. Experiment with 
Pa i n t A r c and I n v e r t A r c. 

We'll do one final variation with QuickDraw. This one is useful 
only for people with color monitors. If you change the Fore Co Lor 
arguments in Mai n Loop , you can see colored filled ovals (or 
whatever your program is currently producing). Modify your 
Mai n Loop routine as follows: 



86 

_J 

Macintosh Programming Primer 

{-----------------> Main Loop 

procedure MainLoop; 
begin 

GetDateTimeCrandSeed>; 
gFillColor := redColor; 

while (not Button) do 
begin 

DrawRandomRect; 

<--} 

if C gFillColor = redColor) then 
gFillColor := yellowColor 

else 
gFillColor := redColor 

end; 
end; 

The following colors have already been defined for you: 
blackColor, whiteColor, redColor, yellowColor, 
greenColor, blueColor, cyanColor, and magentaColor. These 
colors are part of Classic QuickDraw-the original, eight-color 
QuickDraw model that was part of the original Macintosh. Newer 
Macs support a new version of QuickDraw called Color QuickDraw, 
which supports millions of different colors. (Color QuickDraw is 
discussed in Volume II of the Mac Primer.) The programs you write 
using the eight colors of Classic QuickDraw will run on any Macintosh 
(even the Macintosh II Series). 

The next program demonstrates how to load QuickDraw picture 
resources and draw them in a window. 

Show PICT 

Show PICT will take your favorite artwork (in the form of a PICT 
resource) and display it in a window. You can create a PI CT resource 
by copying any graphic to the Mac clipboard and then pasting it into 
a ResEdit PI c T window. We'll show you how a little later on. We 
copied our artwork from the scrapbook that comes with the 
Macintosh System disks. 

ShowPICT is made up of four distinct steps: 

1. Load a resource window, show it, and make it the current port. 
2. Load a resource picture. 
3. Center the picture, then draw it in the window. 
4. Wait for the mouse button to be pressed. 



Drawing on the Macintosh 87 

Resources 

Start by creating a new folder, called Show PICT, in the 
Dev e L op men t folder. Next, using ResEdit, create a new resource file 
called S how PI CT • re. rs r c in the S how PI CT folder. Create a WI ND 
resource using the specifications shown in Figure 3.36. Select Get 
Resource Info from the Resource menu, set the resource ID of 
your new WIND to 400, and check the Purgeable checkbox. 

Next, create your PICT resource. Close the WIND list, so you get 
back to the main S h o w P I C T • re • r s r c window. Pull down the S 
menu and select the Scrapbook. Find a picture that is of type 
PI CT -you can tell by checking the label on the bottom right of the 
Scrapbook window-pull down the Edit menu, and select Copy. 
Now close the Scrapbook and return to ResEdit. Finally, select 
Paste; ResEdit will create a PI CT resource and put the picture in it. 
Figure 3.37 details this process. 

Now, click on your picture and select Get Res o u re e I n f o from 
the Res o u re e menu. Set the resource ID of the PI c T to 4 0 0 and set 
the Purgeable checkbox. Finally, quit ResEdit, saving your changes 
to ShowPICT .re. rsrc. 

§0 WIND ID = 400 from ShowPict. n .rsrc: 

Window title: 

My Picture 

top 

left 

proc: ID 

~bottom~ 
~right~ 

IO I refCon IO I 

D Uisible D goAwayFlag 

Figure 3.36 WIND parameters for Show PICT. 



88 

§0 ShowPict.n.rsrc §0§ 

CJ 
~ 

WIND 

~ 
l2J 

4/7 

Macintosh Programming Primer 

Scrapbook 

Downtown Office Occupancy Rate 

100% 
111111 

~7s5~mil i 11111 111111 m-;(!JEliEq!f---i 

111111 
50 111111 

111111 
111111 

111111 
111111 
111111 
II II II 
111111 

111111 
111111 
111111 
111111 
111111 

111111 
111111 
111111 
111111 
111111 

1982 1983 1984 1985 

PI Cls from ShowPict. n .rsrc 

PICT 

1111n1own IJTllle o~u am 

Figure 3.37 PICT from ScrapBook to resource file. 



Drawing on the Macintosh 89 

Next, go into THINK Pascal and create a new project called 
s how P I c T . n inside the s how P I c T folder. Select New from the F ii e 
menu and enter the following code: 

program ShowPICT; 
const 

BASE_RES_ID = 400; 

var 
gPictureWindow: WindowPtr; 

{-----------------> CenterPict <--} 

procedure CenterPict CthePicture: PicHandle; var myRect: 
Re ct); 

var 

begin 
windRect, pictureRect: Rect; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -
CpictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 
myRect.bottom := myRect.top + CpictureRect.bottom -

pictureRect.top); 
myRect.left := CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left)) div 2 + 
windRect.left; 
myRect.right := myRect.left + CpictureRect.right -

pictureRect.left); 
end; 

{-----------------> DrawMyPicture <--} 

procedure DrawMyPicture CpictureWindow: WindowPtr); 
var 

begin 

myRect: Rect; 
thePicture: PicHandle; 

myRect := pictureWindowA.portRect; 

thePicture := GetPictureCBASE_RES_ID); 

CenterPictCthePicture, myRect); 
DrawPictureCthePicture, myRect); 

end; 



90 Macintosh Programming Primer 

{-----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictureWindow := GetNewWindow(BASE_RES_ID, nil, 
WindowPtr(-1)); 

ShowWindow(gPictureWindow); 
SetPort(gPictureWindow); 

end; 

{-----------------> Show PICT <--} 

begin 
Windowlnit; 
DrawMyPicture(gPictureWindow); 

while (not Button) do 
begin 
end; 

end. 

Running ShowPICT 

After you've finished typing in the code, save the file as S how P I CT . p 
and add it to your project. Next, select Run Options ... from the Run 
menu and tell THINK Pascal to use S how PI CT . 7t. r s r c as the 
resource file. Next, select Go from the Run menu. If everything went 
well, you should get something like Figure 3.38. Your PICT should 
appear in your window. If it does not, check the resource ID of your 
PI CT. Did your PI CT make it into S howP I CT. 7t. rs r c? Check your 
W I N D resource and your code for typos. 

Walking Through the ShowPICT Code 

The constant BAS E_R E S_I D performs the same function as it does in 
earlier programs. The global g Pi ct u re W i n do w acts as a pointer to 
the P I CT window. 

program ShowPICT; 
con st 

BASE_RES ID = 400; 

var 
gPictureWindow: WindowPtr; 



Drawing on the Macintosh 91 

.., 

My Picture 

.0 ~ 0 
G U ... , o 

Gr ! iG::l
0

· o Qio 0 

Q. ' nQ. o 
• · . G.,000 
0g -~0 )[, 0 Q! 

"!~~ ·.I. Q , 0 

· . . o ,• . • 
. ··.o. . 

< - ··' 

Figure 3.38 Running Show PICT. 

ShowPICT's main routine sets up the window, draws the picture, 
and then waits for the mouse click before exiting. 

{-----------------> ShowPICT 

begin 

end. 

Windowlnit; 
DrawMyPicture(gPictureWindow); 

while (not Button) do 
begin 
end; 

<--} 

The window initialization code is the same as that in Hello2. (If 
you are cutting and pasting, note that the variable name has 
changed to g P i c t u r e W i n d o w . ) 



92 Macintosh Programming Primer 

{-----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictureWindow := GetNewWindowCBASE_RES_ID, 
nil, WindowPtr(-1)); 

ShowWindow(gPictureWindow); 
SetPort(gPictureWindow); 

end; 

D raw My Pi ct u re sets up a Re ct the size of p i c t u re W i n do w 
(the window passed in as a parameter). Then, it loads the picture with 
a call to Get Pi c t u re. Next, it passes t he Pi ct u re and the Rec t to 
C e n t e r P i c t. Finally, D r a w My P i c t u re draws t h e P i c t u re in the 
newly centered Rec t. 

{-----------------> DrawMyPicture <--} 

procedure DrawMyPicture (pictureWindow: 
WindowPtr); 

var 
myRect: Re ct; 
thePicture: PicHandle; 

begin 
myRect := pictureWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 

CenterPict(thePicture, myRect); 
DrawPicture(thePicture, myRect); 

end; 

C e n t e r P i c t takes a P i c H a n d L e ( t h e P i c t u r e) and a R e c t 
(my Rec t) as input parameters. the Picture is a handle to the 
picture to be centered in my Re c t. Ce n t e r P i c t constructs a new 
Rec t the size of t he Pi ct u re, centering it in the original Rec t. 



Drawing on the Macintosh 93 

A Handle is a specialized pointer to a pointer. Handles are a 
necessary part of the Mac's memory management scheme. They 
allow the Macintosh Memory Manager to relocate blocks of 
memory as it needs to, without disturbing your program. 

If you have a pointer to an object, when the Mac moves the obj~ct 
in memory, your pointer becomes invalid. If, however, you use a 
Handle (pointer to a pointer) to an object, then, when the Mac 
moves the object, as long as it updates the pointer, your handle 
remains valid. 

We'll show you some of the basics of using handles, but we won't 
spend a lot of time on them (there's an entire chapter dedicated to 
handles and related topics in Volume II of the Mac Primer). You 
should read up on handles and the Mac memory management 
scheme because eventually you'll want to write code that takes 
advantage of handles. 

In show PI c T, we declare a handle to a picture (pointer to a 
pointer to a picture). We then set the handle to the value returned 
by G e t P i c t u r e : 

thePicture : PicHandle; 
thePicture := GetPictureC BASE_RES_ID >; 

Like most of the Toolbox functions that return handles, Get P; ct u re 
actually allocates the memory for the picture itself, as well as the 
memory for the pointer to the picture. The great thing about 
handles is that you hardly know they're there. 

In this program, Cent e r Pi c t is used to center a picture in a 
window. The original Rec t is copied into the local variable 
w i n d Re c t . Then, the picture's frame R e c t is copied to the local 
variable p i c t u r e R e c t . Finally, each field in the original R e c t is 
modified, based on the corresponding fields in w i n d Re c t and 
pi ct u re Rec t. For example, my Rec t • top is adjusted to become 
the new top of the picture. 

C en t e r P i c t is a useful utility routine. You'll be seeing it again in 
other chapters. 

{-----------------> CenterPict <--} 

procedure CenterPict CthePicture: PicHandle; var myRect: Rect); 
var 

windRect, pictureRect: Rect; 



94 Macintosh Programming Primer 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) 
div 2 + windRect.top; 

myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top); 

myRect.Left := CwindRect.right - windRect.Left -
CpictureRect.right - pictureRect.Left)) 
div 2 + windRect.Left; 

myRect.right := myRect.Left + CpictureRect.right -
pictureRect.Left); 

_J Variants 

_J 

Try using different pictures, either from the Scrapbook or from 
MacPaint or some other Macintosh graphics program. With a little 
experimentation, you should be able to copy and paste these files into 
your resource file. In Chapter 4, you'll see an enhanced ShowPICT 
program. 

Screen Saver: The Flying Line Program 

The Flying Line is the last program in the QuickDraw chapter. 
Although it does demonstrate the use of line drawing in QuickDraw, 
we included it mostly because it's fun. The Flying Line draws a set of 
lines that move across the screen with varying speeds, directions, 
and orientations. The program can be used as a screen saver (we 
even show you how to hide the menu bar). 

The Flying Line program consists of three steps: 

1. Set up the Flying Line window. 
2. Initialize the Flying Line data structure, drawing it once. 
3. Redraw the Flying Line inside a loop until a mouse click occurs. 

Create a folder called F L y i n g Li n e inside your Dev e L op me n t 
folder. Flying Line needs no resources, so go into THINK Pascal and 
create a new project called F L y i n g Li n e • 1t inside the F L y i n g 



Drawing on the Macintosh 95 

Line folder. Select New from the File menu to open a new window 
for the Flying Line source code: 

program FlyingLine; 
con st 

NUM_LINES = 50; 
NI L_S TR ING = I I ; 

N I L_ T I T LE = I I ; 

VISIBLE = TRUE; 
NO_GO_AWAY = FALSE; 
NIL_REF_CON = 0; 

type 

var 

IntPtr = AINTEGER; 

gLineWindow: WindowPtr; 
gLines: array[1 .. NUM_LINESJ of Rect; 
gDeltaTop, gDeltaBottom: INTEGER; 
gDeltaLeft, gDeltaRight: INTEGER; 
gOldMBarHeight: INTEGER; 
gMBarHeightPtr: IntPtr; 

{-----------------> DrawLine <--} 

procedure DrawLine Ci: INTEGER>; 
begin 

MoveToCgLines[iJ.left, gLines[iJ.top); 
LineToCgLines[iJ.right, gLines[iJ.bottom>; 

end; 

{-----------------> RecalcLine 

procedure RecalcLine Ci: INTEGER); 
begin 

<--} 

gLines[iJ.top := gLines[iJ.top + gDeltaTop; 
if CCgLines[iJ.top < gLineWindowA.portRect.top) I 

CgLines[iJ.top > gLineWindowA.portRect.bottom)) then 
gDeltaTop := gDeltaTop * C-1); 

gLines[iJ.top := gLines[iJ.top + 2 * gDeltaTop; 

gLines[iJ.bottom := gLines[iJ.bottom + gDeltaBottom; 
if CCgLines[iJ.bottom < gLineWindowA.portRect.top) I 

CgLines[iJ.bottom > gLineWindowA.portRect.bottom)) 
then 

gDeltaBottom := gDeltaBottom * C-1); 
gLines[iJ.bottom := gLines[iJ.bottom + 2 * gDeltaBottom; 



96 Macintosh Programming Primer 

gLines[iJ.left := gLines[iJ.left + gDeltaLeft; 
if ((gLines[iJ.left < gLineWindowA.portRect.left) I 

(glines[i].left > glineWindowA.portRect.right)) 
then 

gDeltaLeft := gDeltaLeft * (-1); 
gLines[iJ.left := glines[iJ.left + 2 * gDeltaleft; 

gLines[iJ.right := glines[iJ.right + gDeltaRight; 
if CCgLines[iJ.right < glineWindowA.portRect.left) I 

CgLines[iJ.right > glineWindowA.portRect.right>> 
then 

gDeltaRight := gDeltaRight * (-1>; 
glines[iJ.right := gLines[iJ.right + 2 * gDeltaRight; 

end; 

{------------------> Main Loop <--} 

procedure Mainloop; 
var 

i: INTEGER; 

begin 
while (not Button) do 

begin 
Drawline(NUM_LINES); 
for i := NUM_LINES downto 2 do 

gLines[iJ := glines[i - 1J; 
RecalcLineC1>; 
DrawlineC1>; 
gMBarHeightPtrA := gOldMBarHeight; 

end; 
end; 

{------------------> Randomize <--} 

function Randomize (range: INTEGER): INTEGER; 
var 

rawResult: LONGINT; 

begin 
rawResult := Random; 
rawResult .- absCrawResult); 

Randomize := CrawResult * range) div 32768; 
end; 



Drawing on the Macintosh 

{------------------> RandomRect <--} 

procedure RandomRect Cvar myRect: Rect; boundingWindow: 
WindowPtr>; 

begin 

97 

myRect.left := RandomizeCboundingWindowA.portRect.right -
boundingWindowA.portRect.left); 

myRect.right := RandomizeCboundingWindowA.portRect.right -
boundingWindowA.portRect.left>; 

myRect.top := RandomizeCboundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 

myRect.bottom := RandomizeCboundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 

end; 

{------------------> 
procedure Lineslnit; 

var 
i: INTEGER; 

begin 
gDeltaTop := 3; 
gDeltaBottom := 3; 
gDeltaleft := 2; 
gDeltaRight := 6; 

HideCursor; 

Lineslnit 

GetDateTimeCrandSeed); 
RandomRect(glines[1J, glineWindow>; 
DrawlineC1>; 

for i : = 2 to NUM LINES do 

end; 

begin -
glines[iJ := glines[i - 1J; 
RecalclineCi>; 
Drawline(i); 

end; 

{------------------> Windowlnit 

procedure Windowlnit; 
var 

totalRect, mBarRect: Rect; 
mBarRgn: RgnHandle; 

<--} 

<--} 



98 Macintosh Programming Primer 

begin 
gMBarHeightPtr := IntPtrCSbaa>; 
gOldMBarHeight := gMBarHeightPtrA; 
gMBarHeightPtrA := O; 
glineWindow := NewWindowCnil, screenBits.bounds, 

NIL_TITLE, VISIBLE, plainDBox, WindowPtr(-1), 
NO_GO_AWAY, NIL_REF_CON>; 

SetRectCmBarRect, screenBits.bounds.left, 
screenBits.bounds.top, screenBits.bounds.right, 
screenBits.bounds.top + gOldMBarHeight); 

mBarRgn := NewRgn; 
RectRgnCmBarRgn, mBarRect>; 
UnionRgn(glineWindowA.visRgn, mBarRgn, 

glineWindowA.visRgn); 
DisposeRgnCmBarRgn); 
SetPort(glineWindow>; 
FillRectCglineWindowA.portRect, black>; 

{ Change black to ltGray, } 
PenModeCpatXor); { <-- and comment out this line } 

end; 

{------------------> Flyingline <--} 

begin 
Windowlnit; 
Lineslnit; 
Mainloop; 

end. 

Running Flying Line 

After you've finished typing in the code, save it as F l y i n g L i n e . p. 
Add the file to the project. Select Go from the Run menu. If 
everything went well, you should see something like Figure 3.39. The 
window will be completely black except for the flying line; the menu 
bar should be hidden. Now, let's take a look at the code. 



Drawing on the Macintosh 99 

_J 
Figure 3.39 Running Flying Line. 

Walking Through the Flying Line Code 

Most of Flying Line should be familiar to you. The biggest change is 
in W i n do w I n i t , where you create a window from scratch and hide 
the menu bar. We won't go into exhaustive detail on the Flying Line 
algorithm, because it has little to do with the Toolbox. This one's just 
for fun! 

NU M_L INES defines the number of lines in the Flying Line. The 
rest of the constants will be used as parameters later on in the 
program. 

program FlyingLine; 
const 

NUM_LINES = 50; 
NI L_S TR ING = I I ; 

N I L_ T I TL E = I I ; 

VISIBLE = TRUE; 
NO_GO_AWAY = FALSE; 
NIL REF CON = O; 



100 Macintosh Programming Primer 

The type I n t Pt r is used to declare the global g MB a r H e i g h t Pt r 
as a pointer to an INTEGER. gMBa rHe i g ht Pt r will give us access 
to one of the Macintosh System's internal globals. 

Although it's important to understand the technique involved here, it 
is even more important to remember that it's generally bad practice 
to mess with system globals. They are likely to change when new 
system versions come out. We use system globals in Flying Line 
because Apple doesn't make it easy to hide the menu bar, mainly 
because they don't want programmers to do it. Because a screen 
saver has to hide the menu bar, Flying Line uses a system global. 
Make sure you have good reasons to use system globals. 

type 
IntPtr = AINTEGER; 

gDeltaBottom,gDeltaTop,gDeltaleft,andgDeltaRight 
are all tuning parameters. Play around with their values until you 
get just the right Flying Line. 

The Flying Line is drawn in g Li n e W i n d ow. The array g L i n e s 
holds all of the individual lines in the Flying Line. Finally, 
g 0 l d MB a r He i g ht saves the menu bar height when you start, so 
you can restore it when the application quits. 

var 
glineWindow: WindowPtr; 
glines: array[1 •. NUM_LINESJ of Rect; 
gDeltaTop, gDeltaBottom: INTEGER; 
gDeltaleft, gDeltaRight: INTEGER; 
gOldMBarHeight: INTEGER; 
gMBarHeightPtr: IntPtr; 

Flying Line sets up its window, initializes its line data structure, 
then enters the main loop. 

{----------------> Flyingline <--} 

begin 
Windowinit; 
Linesinit; 
Mainloop; 

end. 
The window initialization code for Flying Line is unusual because 



Drawing on the Macintosh 101 

the window itself is unusual. Normally, Mac programs display a 
menu bar. Flying Line, however, will not. Flying Line hides the menu 
bar (by making it 0 pixels tall) and creates a window that covers the 
entire screen. 

The call to NewWi ndow is an alternative to GetNewWi ndow. 
Ge t New W i n do w creates a window using the information specified in 
a WIND resource. New W i n do w also creates a window, but gets the 
window specifications from its parameter list: 

FUNCTION NewWindowC wStorage : Ptr; boundsRect 
: Rect; 

title : Str255; visible : BOOLEAN; procID 
INTEGER; 

behind WindowPtr; goAwayFlag : BOOLEAN; 
refCon : LONGINT ) : WindowPtr; 

The program next specifies the size of the window as a Re c t, 
using the QuickDraw global s c re en Bi t s . bounds to create a 
window the size of the current screen. 

{-----------------> Windowinit <--} 

procedure Windowinit; 
var 

begin 

totalRect, mBarRect: Rect; 
mBarRgn: RgnHandle; 

gMBarHeightPtr := IntPtrC$baa); 
gOldMBarHeight := gMBarHeightPtrA; 
gMBarHeightPtrA := O; 
gLineWindow := NewWindowCnil, 

screenBits.bounds, NIL_TITLE, 
VISIBLE, plainDBox, WindowPtrC-1), 
NO_GO_AWAY, NIL_REF_CON); 

The next bit of code is tricky. It calls Set Rec t to create a 
rectangle surrounding the normal menu bar. Next, it uses this Rec t 
to create a new region, and then it adds this region to the visible 
region of your window. As a result of this hocus-pocus, your window 
can overlap the menu bar, taking up the entire screen. If this makes 
you uncomfortable, don't panic. The call to New W i n do w is normally 
all you'll need in your applications. This extra code is just here to 
allow your window to obscure the menu bar. 



102 Macintosh Programming Primer 

SetRect(mBarRect, screenBits.bounds.left, 
screenBits.bounds.top, 
screenBits.bounds.right, 
screenBits.bounds.top + gOldMBarHeight); 

mBarRgn := NewRgn; 
RectRgn(mBarRgn, mBarRect); 
UnionRgn(gLineWindowA.visRgn, mBarRgn, 

gLineWindowA.visRgn); 
DisposeRgn(mBarRgn); 

Next, the program calls Se t Po r t so that all its drawing will occur 
in g L i n e W i n do w. Then, it fills the window with the black pattern. It 
sets the Pen Mode to pat X or. Try some other pen modes, too. We 
suggest changing the second F i l l Re c t parameter to l t G ray, and 
commenting out the call to Pen Mode. 

SetPort(gLineWindow); 
FillRect(gLineWindowA.portRect, black); 

{ Change black to ltGray,} 
PenMode(patXor); {<-- and comment out this line} end; 

Don't be fooled by imitations. The second parameter to Fi l l Rec t 
is a pattern, not a color. These are the fill patterns you normally 
associate with the paint bucket in MacPaint, not the eight colors of 
Classic QuickDraw. You can experiment with colors by using a call 
to PaintRect. 

Lines In it starts off by hiding the cursor. Next, it seeds the 
random number generator with the current date (a la Mondrian). 
Finally, it generates the first line of the Flying Line, draws it, and 
then generates the rest of the lines and draws them. 

{-------------> Linesinit <--} 

procedure Linesinit; 
var 

i: INTEGER; 

begin 
gDeltaTop := 3; 
gDeltaBottom := 3; 
gDeltaLeft := 2; 
gDeltaRight := 6; 



Drawing on the Macintosh 

end; 

HideCursor; 
GetDateTimeCrandSeed); 
RandomRect(glines[1J, glineWindow>; 
Drawline(1); 

for i : = 2 to NUM_LINES do 
begin 

end; 

glines[iJ := glines[i - 1J; 
Recalcline(i); 
Drawline(i); 

You've seen this routine in Mondrian: 

{-------------> Randomize <--} 

103 

function Randomize (range: INTEGER>: INTEGER; 
var 

rawResult: LONGINT; 

begin 
rawResult := Random; 
rawResult .- abs(rawResult>; 

Randomize := CrawResult * range) div 32768; 
end; 

Another routine you've seen before: 

{-------------> RandomRect <--} 

procedure RandomRect Cvar myRect: Rect; 
boundingWindow: WindowPtr>; 
begin 

myRect.left := 
RandomizeCboundingWindowA.portRect.right -

boundingWindowA.portRect.left); 
myRect.right := 

Randomize{boundingWindowA.portRect.right -
boundingWindowA.portRect.left); 
myRect.top := 

RandomizeCboundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 
myRect.bottom := 

RandomizeCboundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 
end; 



104 Macintosh Programming Primer 

D r a w L i n e draws line number i , using the coordinates stored in 
g Li n es [ i J. Because the pen mode is set to pa t X o r, this may 
actually have the effect of erasing the line. 

{-------------> DrawLine <--} 

procedure DrawLine Ci: INTEGER); 
begin 

MoveToCgLines[iJ.left, gLines[iJ.top); 
LineToCgLines[iJ.right, gLines[iJ.bottom>; 

end; 

The Re Ca l c routine determines where to draw the next line: 

{-------------> RecalcLine <--} 

procedure RecalcLine Ci: INTEGER>; 
begin 

gLines[iJ.top := gLines[iJ.top + gDeltaTop; 
if CCgLines[iJ.top < gLineWindowA.portRect.top) I 

CgLines[iJ.top > gLineWindowA.portRect.bottom)) then 
gDeltaTop := gDeltaTop * C-1); 
gLines[iJ.top := gLines[iJ.top + 2 * gDeltaTop; 

gLines[iJ.bottom := gLines[iJ.bottom + gDeltaBottom; 
if CCgLines[iJ.bottom < gLineWindowA.portRect.top) I 

CgLines[iJ.bottom > gLineWindowA.portRect.bottom)) then 
gDeltaBottom := gDeltaBottom * C-1>; 

gLines[iJ.bottom := gLines[iJ.bottom + 2 * gDeltaBottom; 

gLines[iJ.left := gLines[iJ.left + gDeltaLeft; 
if CCgLines[iJ.left < gLineWindowA.portRect.left) I 

CgLines[iJ.left > gLineWindowA.portRect.right)) then 
gDeltaLeft := gDeltaLeft * C-1); 

gLines[iJ.left := gLines[iJ.left + 2 * gDeltaLeft; 

gLines[iJ.right := gLines[iJ.right + gDeltaRight; 
if CCgLines[iJ.right < gLineWindowA.portRect.left) I 

CgLines[iJ.right > gLineWindowA.portRect.right)) then 
gDeltaRight := gDeltaRight * C-1); 

gLines[iJ.right := gLines[iJ.right + 2 * gDeltaRight; 
end; 

Ma i n Loop sets up a loop that falls through when the mouse 
button is pressed. At the end of the loop, the menu bar height is 
restored. If you don't do this, you won't be able to pick from the menu 
bar when you exit the program. Oops! (If by accident, you don't reset 
the menu bar height, it won't come back when you return to the 
Finder. Restart your Mac to reset the menu bar height.) 



Drawing on the Macintosh 105 

_J 

Inside the loop, the program erases and redraws each line in the 
Flying Line. It erases lines by redrawing them in exactly the same 
position. Because the pen mode is set to pa t X o r, this has the effect 
of erasing the line. Thus, the first call to D r a w L i n e in Ma i n Loop 
erases the last line in the g Li n es array. This simulates the line 
moving across the screen. 

{-------------> Main Loop <--} 

procedure MainLoop; 
var 

i: INTEGER; 

begin 
while (not Button> do 

end; 

In Review 

begin 
DrawLineCNUM_LINES); 
for i := NUM_LINES downto 2 do 

gLines[tJ := gLines[i - 1J; 
RecalcLineC1>; 
DrawLineC1>; 
gMBarHeightPtrA := gOldMBarHeight; 

end; 

Whew! We've covered a lot in this chapter. We examined the basic 
Macintosh drawing model, QuickDraw, and showed you how to use 
many of the QuickDraw Toolbox routines. Now, you can read the 
QuickDraw chapter in Inside Macintosh, Volume I. Experiment with 
the programs presented here and try using some of the other 
QuickDraw routines. They're just as easy to use as the ones already 
covered. 

We've also shown you different ways of using resources in your 
programs. If you haven't already, you may want to skip ahead to 
Chapter 8, to read up on ResEdit. Build a stand-alone application; 
then add an icon to your application. Chapter 8 will show you how. 

Now that you understand how the Mac draws to the screen, you're 
ready to learn how the Mac interacts with users. Chapter 4 looks at 
the Event Manager-the manager that stage-directs operations. 



The Event 
Mechanism 

In this chapter, we'll tell you about 
events, the Mac's mechanism for 

describing the user's actions to your 
application. When the mouse button is 

clicked, a key is pressed, or a disk is 
inserted in the fioppy drive, the 

operating system lets your program 
know by queueing an event. 

4 



ONE OF THE basic differences between programming on the Mac and 
programming on other machines lies in the use of events. Events are 
descriptions of actions taken by the user of your application. For 
example, when a key is pressed on the keyboard, a piece of the Mac 
operating system (known as the Event Manager) captures some 
important information about the keystroke in an Even t Re co rd. AI3 
more keys are pressed, more Event Re co rd s are created and joined 
to the first, forming the event queue (Figure 4.1). 

The event queue is a FIFO (First In, First Out) queue: The event at 
the front of the queue is the oldest event in the queue. As you can 
see in Figure 4.1, different types of events live together in the same 
event queue. All events, no matter what their type, pass under the 
watchful eye of the Event Manager. 

The Event Manager gets events from many different sources, 
queues them up, and passes them to your application, one at a 
time. 

Your application can get at this information by retrieving 
Even t Re co rd s from the event queue, one at a time. If the retrieved 
Even t Re co rd describes a keystroke, your application can jump to 
some code that handles keystrokes. If it describes the pressing of the 
mouse button, it can jump to some code that deals with the mouse 
button. Let's look at the mouse button case. 

null Event ouseDow mouseUp keyDown keyUp null Event 

Figure 4.1 The event queue. 

109 



110 

_J 

Macintosh Programming Primer 

When the mouse button is pressed, what does it mean to the appli
cation? Maybe the user wants to select from a menu. Maybe the user 
is clicking on a window to bring it to the front, or has clicked in a 
scroll bar to move up or down in the document. One way to tell what 
the user is trying to accomplish is to compare the location of the 
mouse when its button was pressed with the locations of the menu 
bar, the windows on the screen, scroll bars, and so on. 

If the user clicked in the menu bar, you can jump to some code that 
handles menu selection. If the user clicked on a scroll bar, you can 
jump to the scroll bar handling routine. 

Event Types 

The Event Manager handles 15 distinct events (V:249): 

• nullEvent: This event is queued when the Event Manager has no 
other events to report. 

• mouseDown: mouse Down events are queued whenever the 
mouse button is pressed. Note that the button doesn't have to be 
released for the event to qualify as a mo u s e Down. 

• mouseUp: mouse Ups are queued whenever the mouse button is 
released. 

• key Down: key Down events are queued every time a key is 
pressed. Like mouseDowns, keyDowns are queued even if the key 
has not yet been released. 

• keyUp: key Ups are queued whenever a key is released. 

• autoKey: a u t o Key events are queued when a key is held down 
for a certain length of time (beyond the a u to Key threshhold). 
Usually, an au to Key event is treated just like a key Down. 

• updateEvt: up d a t e Ev ts are queued whenever a window needs 
redrawing. They are always associated with a specific window. 
This usually happens when a window is partially obscured and the 
obstruction is moved, revealing more of the window, as shown in 
Figure 4.2. 



The Event Mechanism 111 

Back Window Back Window 

"G 

Figure 4.2 F r on t W i n do w is moved down and to the right, generating 
an updateEvt for BackWi ndow. 

The auto Key thresh hold represents the time from the first 
keyDown until the autoKey event is generated. The default 
value is 16 ticks (sixtieths of a second). The autoKey rate is the 
interval between autoKeys. The default autoKey rate is 4 ticks. 
The user can change both of these from the control panel desk 
accessory. Their values are stored in the system global variables 
KeyTh re sh and KeyRepTh re sh. 

• diskEvt: d i s k Ev ts are queued whenever a disk is inserted into a 
disk drive, or when an action is taken that requires that a volume 
be mounted. Don't worry too much about these right now. We'll tell 
you how to deal with disks and files in Chapter 7. 

• activateEvt: a c t i v a t e Ev ts are also associated with windows. 
An act i vat e Ev t is queued whenever a window is activated 
(made to come to the front) or deactivated (replaced as the 
frontmost window by another window). As you might guess, 
a c t i v a t e Ev ts always occur in pairs (Figures 4.3 and 4.4). 



112 Macintosh Programming Primer 

Front Window 

Figure 4.3 Ba c kW i n do w is selected, an a c t i v a t e Ev t is generated to 
deactivate F r on t W i n do w, and an a c t i v a t e Ev t is generated to 
activate Ba c kW i ndow . 

Figure 4.4 Ba c kW i n do w is selected, an a c t i v a t e Ev t is generated to 
deactivate F r on t W i n do w, an a ct i v a t e Ev t is generated to activate 
Ba c kW i n do w, and an up d a t e Ev t is generated to redraw 
BackWindow . 



The Event Mechanism 113 

_J 

• networkEvt: n e two r k Ev ts are no longer used. 

• driverEvt: d r i v e r Ev ts are used by device drivers to signal 
special conditions. They (and device drivers in general) are beyond 
the scope of this book. 

• applEvt, app2Evt, app3Evt: These events are defined by your 
application and can be used for just about anything. With the 
advent of MultiFinder, the use of application-defined events is 
discouraged. 

• app4Evt (Suspend/Resume/mouseMoved events): The 
a pp 4 Ev t has been reserved by Apple for use with MultiFinder. 
MultiFinder will post an a pp 4 Ev t just before it moves your 
application into the background (suspends it) and just after it 
brings your application back to the foreground (resumes it). You 
can also set your application up to receive mouseMoved events. 
mo u s e Moved events are posted when the user moves the cursor 
outside a predefined region (such as a text-editing window) or back 
in again. When your application receives a mouseMoved event, it 
can change the cursor to one appropriate to that region. We'll 
discuss a pp 4 Ev t s in more detail later in the chapter. 

The next section discusses a new Macintosh application model 
based on event handling. After that, we'll present Even t Tu t o r, this 
book's first event-based application. 

The Structure of a Mac Program: 
New and Improved 

In Chapter 3, we presented a very primitive Macintosh application 
model that looked like this: 

program MyApp; 
begin 

Dolnitialization; 
DoPrimeDirective; 

end. 

while (not Button) do 
begin 
end; 



114 Macintosh Programming Primer 

First, the application model takes care of any program-specific 
initialization, such as loading windows or pictures from the resource 
file. Next, the model performs its "prime directive." In the case of 
Show Pict, the prime directive was drawing a PICT in the main 
application. Finally, the model waits for the mouse button to be 
pressed. 

There is one basic problem with this model: It does not reflect 
reality. Macintosh applications do not exit when the mouse button is 
pressed. Clearly, we need a better model. 

The new model does things a little differently: 

program MyApp; 
var 

gTheEvent : EventRecord; 
gDone : BOOLEAN; 

procedure HandleEvent; 
var 

gotOne : BOOLEAN; 
begin 

end; 

if waitNextEventisinstalled then 
gotOne .- WaitNextEvent( everyEvent, gTheEvent, 

sleepValue, mouseRgn ) 
else 

begin 
SystemTask; 
gotOne .- GetNextEvent( everyEvent, gTheEvent ); 

end; 

if gotOne then 
case gTheEvent.what of 

mouseDown: 

if ... then 
gDone := TRUE; 

end; 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
while gDone = FALSE do 

HandleEvent; 



The Event Mechanism 115 

begin 
Do!nitialization; 
Main Loop 

end. 

This model starts off the same way as the basic model, with calls 
to the initialization routines. The difference lies in the call of 
Ma i n Loop. Ma i n Loop contains the main event loop. The main 
event loop is part of the basic structure of any Mac program. Each 
time through the loop, your program retrieves an event from the 
event queue and processes the event. 

As we'll explain in the next section, events are retrieved in one of 
two ways. If the Toolbox routine w a i t Next Event is available (it 
isn't on older systems), it gets called. If Wai t Next Event isn't 
available, the older Toolbox routine, Get Next Event, is used. 

Eventually, some event will cause Hand L e Event to set g Done to 
TRUE, and the program will end. This might be the result of a 
mo u s e Down in the menu bar (selecting Quit from the Fi I e menu) or 
a k e y D o w n (typing the key sequence 00 Q). You can design your 
ending conditions any way you like. 

We should warn you that Apple has a little-known squad of 
mercenaries who seek out and eradicate applications that don't 
meet the user interface guidelines. Beware! 



_J 

116 

Retrieving Events from the Event Queue 

In the early days of Mac programming, the Toolbox routine 
Get Next Event was used to retrieve events from the event queue. 
Get Next Event worked just fine until MultiFinder was introduced. 
MultiFinder is a set of operating system functions that extend the 
capabilities of the Macintosh. Most notably, MultiFinder allows the 
Macintosh to run several applications at the same time. 

Figure 4 .5 shows MultiFinder in action. Notice that only one 
application at a time can be "in front." Notice also that the Finder is 
one of the applications under MultiFinder. To bring an application to 
the front, you click on one of its windows. 

One of the nicest features of MultiFinder is its ability to run 
applications in the background. Figure 4.5 shows the alarm clock 
desk accessory running in the background. Even though the alarm 
clock window is not the frontmost window, the time is updated 
because the alarm clock is running in the background. 

Get Next Event was written with the Finder in mind. When 
MultiFinder was introduced, Apple added a new routine to the 
Toolbox to handle things like background processing more efficiently. 
The new routine is called W a i t Next Event. 

As you'll see when you get to the EventTutor application, your 
programs should always check to see if W a i t Ne x t Event is installed 
before they call it. If it isn't installed, the program should call 
G e t N e x t Ev e n t instead. 

,.. s File Edit Search Format Font Document Window Work 

Hard Disk 
4 items 86 ,42 1K io disk 1,590K • v•ilable 

00 LJ 
Sys tem Folder Apps 

0 

0 t .t t . I 91~11~11§1 

This is an important document being prepared in Microsoft 
Word. We really like tllis word processor a lot! I 

Normal+ ... 

Figure 4.5 MultiFinder in action. 



The Event Mechanism 117 

You may have noticed a call to the Toolbox routine system Ta s k 
just before the call to Get Next Event in the new application 
model. system Task gives the Mac operating system a slice of 
time to do things like update desk accessories (such as the alarm 
clock), process AppleTalk messages, and so on. 
Wait Next Event has this functionality built right in, so an 
accompanying call to system Task isn't necessary. 

Calling GetNextEvent and WaitNextEvent 

The first parameter to both G e t N e x t E v e n t and W a i t N e x t E v e n t is 
an event mask, used to limit the types of events your program will 
handle. Figure 4.6 contains a list of predefined event mask constants. 
If your program needs only mouse Downs and key Downs, for example, 
you might use the following call: 

gTheEvent : EventRecord; 
gotOne : BOOLEAN; 

gotOne := GetNextEvent( (mDownMask I 
keyDownMask), &gTheEvent >; 

canst 
mDownMask = 2; 
mUpMask = 4; 
keyDownMask = 8; 
keyUpMask = 16; 
autoKeyMask = 32; 
updateMask = 64; 
diskMask = 128; 
activMask = 256; 
networkMask = 1024; 
driverMask = 2048; 
app1 Mask= 4096; 
app2Mask = 8192; 
app3Mask = 16384; 
app4Mask = -32768; 
everyEvent = -1 ; 

Figure 4.6 Event masks predefined in THINK Pascal. 



118 Macintosh Programming Primer 

In this case, Get Next Event will return only mouse Down, 
key Down, or nu l l Event information. nu l l Events are never 
masked out. To handle all possible events, pass the predefined 
constant every Event as the event Mask parameter. Inside Mac 
recommends that you use every Event as your event mask in all 
your applications unless there's a specific reason not to do so. 

The second parameter to both Get Next Event and 
W a i t N e x t Eve n t is g T h e E v e n t , declared as an Eve n t Re c o r d. 
Here's the type definition of an Event Record: 

type EventRecord = RECORD 
what : INTEGER; 
message : LONGINT; 
when : LONG INT; 

end; 

where : Point; 
modifiers : INTEGER 

Here's a description of each of the fields: 

• what: What type of event just occurred? Was it a nu l l Event, 
keyDown,mouseDown,orupdateEvt? 

• message: This part of the Even t Re c o rd is specific to the event. 
For key Down events, the mes s a g e field contains information 
about the actual key that was pressed (the key code) and the 
character that key represents (the character code). For 
a c t i v a t e Ev t s and u pd a t e Ev t s, the message field contains a 
pointer to the affected window. 

• when: When did the event occur? The Event Manager tells you, in 
ticks since the system was last started up (or booted). 

• where: Where was the mouse when the event occurred? This 
information is specified in global coordinates (see Chapter 3). 

• modifiers: This part of the Even t Re co rd describes the state of 
the mouse button and the modifier keys (the Shift, Option, Control, 
Command, and Caps Lock keys) when the event occurred. 

The third parameter to W a i t N e x t Eve n t is the s l e e p 
parameter. s l e e p is a LONG I NT specifying the amount of time (in 
clock ticks) your application is willing not to perform any background 
processing while waiting for an event. Inside Mac recommends a 
value of at least 6 0 for s lee p, to be truly MultiFinder friendly. If 
you pass a value of 0 for s lee p, you're telling W a i t Next Event to 
hog the processor. Pretty unfriendly! 



The Event Mechanism 119 

_J 

The fourth parameter to W a i t N e x t E v e n t is the mo u s e R g n 
parameter, used to simplify cursor tracking. If your application 
requires different cursors, depending on which part of the screen the 
cursor is in, the mo u s e R g n parameter is essential. With it, you can 
specify the screen region appropriate to the current cursor. Whenever 
the mouse is outside that region, the Event Manager queues up a 
mouseMoved event. When your program receives the mouseMoved 
event, the region is changed to reflect the new mouse position and is 
passed as a parameter to the next W a i t Ne x t Even t call. 

Calling Wai t Next Event with a s lee p value of 6 0 and a 
mo u s e R g n of n i l is exactly equivalent to calling Sys t em Ta s k and 
Ge t Ne x t Even t. The programs presented throughout the rest of the 
book will do just that. The Programmer's Guide to MultiFinder 
includes a program that uses the s l e e p and mo u s e R g n parameters 
of W a i t Next Even t. The program was written by Apple's Macintosh 
Technical Support Group. The Programmer's Guide to MultiFinder, 
published by Apple, is essential reading for writing truly 
MultiFinder-friendly applications. 

Handling Events 

Once you've retrieved an event via Ge t Ne x t Eve n t or W a i t Next 
Event, your next step is to process it. If the event is a mouse Down 
event, figure out where the mouse was clicked. If the mouse was 
clicked in a window's drag region, as shown in Figure 4. 7, you can 
call a Toolbox routine that handles window dragging. If the event is 
an up d a t e Ev t, you might want to redraw the window pointed to by 
theEvent.message. 

Figure 4. 7 Arrow cursor in window's drag region. 



120 

_J 

Macintosh Programming Primer 

If this sounds vague, don't worry. The concept of events may be 
unfamiliar to you, but it will be easier to understand once you see it 
in operation. This chapter's program, EventTutor, will show you how 
all types of events are handled. 

EventTutor: The Return of ShowPICT 

Back in Chapter 3, we presented a program called ShowPICT, which 
works like this: 

• It loads a resource window, shows it, and makes it the current port. 

• It loads a resource picture. 

• It centers the picture, then draws it in the window. 

• It waits for the mouse button to be pressed. 

The new program presented here, EventTutor, adds a main event 
loop to this model. EventTutor also adds a new window, 
g Event W i n do w. g Event W i n do w keeps a scrolling list of events, 
updated as the events occur. You can also drag both windows around 
the screen, as well as zoom and grow the picture window. 
EventTutor works like this: 

• It loads the picture and event windows from the resource file, 
shows them, and makes g Eve n t W i n do w the current port. 

• It loads a picture from the resource file. 

• While ( g done = FA LS E ), EventTutor handles events. 

• As events occur, it displays their names in g Even t W i n do w, then 
calls the appropriate routines to process them. 

Setting Up the EventTutor Project 

Start by creating a new project folder, called Event Tutor, inside 
your Dev e L op men t folder. Use ResEdit to create a new file inside 
this folder called E v e n t T u t o r • 7t • r s r c . 



The Event Mechanism 121 

Resources 

Create three new resources. The first two are WIN Ds with resource 
IDs 4 0 0 and 401 . Figure 4.8 shows the specifications for these 
WI N D s. When you set the resource IDs in the Ge t Re sou r c e I n f o 
window, make sure you make both W I N D s purgeable. 

The third resource is a PICT. In our example, we use the 
champagne picture from the standard Scrapbook, but feel free to use 
any P I CT you'd like. Make sure you change the resource ID to 4 0 0 
and make the resource purgeable. 

Next, start up THINK Pascal. When prompted, create a new project 
inside the Event Tu to r folder. Call the project Event Tut o r . 7t. 

Select New from the File menu to create a new source code file. Type 
the code listing in and save the file inside the Ev~ n t Tu to r folder as 
EventTutor. p. Select Add Window from the Project menu to 
add Even t Tu to r • p to the project. The Project window should now 
look like Figure 4.9. 

!§05 WIND ID= 400 from EuentTutor.n.r 505 WIND ID= 401 from EuentTutor.11.r 

Window title: Window title: 

I gPictWindow I I gEuentWindow I 
top ~bottom~ top ~bottom~ 
left right 420 left right 500 

proclD J a I refCon lo I proclD 14 I refCon lo I 

D Uisible 181 goRwayFlag D Uisible 181 goRwayFlag 

Figure 4.8 EventTutor W I N D specifications. 



122 Macintosh Programming Primer 

EuentTutor.11 
Options File (by build order) Size 

Runtime. lib 0 
Interface. lib 0 

[Q]lli] V R EventTutor .p 0 
·····························r.e:1t..i"lt.~·si.~······· ......................... o 

Figure 4.9 EventTutor's project window. 

Here's the source code for EventTutor. p: 

program EventTutor; 
const 

var 

BASE_RES_ID = 400; 
LEAVE_WHERE_IT_IS = FALSE; 
NORMAL_UPDATES = TRUE; 
SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = S9F; 
SUSPEND_RESUME_BIT = $0001; 
ACTIVATING = 1; 
RESUMING = 1; 
TEXT_FONT_SIZE = 12; 
DRAG_THRESHOLD = 30; 
MIN_WINDOW_HEIGHT = 50; 
MIN_WINDOW_WIDTH = 50; 
SCROLL_BAR_PIXELS = 15; 
ROWHEIGHT = 15; 
LEFTMARGIN = 10; 
STARTROW = 0; 
HORIZONTAL_OFFSET = O; 

gPictWindow, gEventWindow : WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 
gCurRow, gMaxRow: INTEGER; 
gSizeRect: Rect; 

{----------------> CenterPict <--} 
procedure CenterPict CthePicture: PicHandle; 

var myRect: Rect); 
var 



The Event Mechanism 123 

windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

CpictureRect.bottom -
pictureRect.top)) div 2 + windRect.top; 

myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top); 

myRect.left := CwindRect.right - windRect.left -
CpictureRect.right -
pictureRect.left)) div 2 + windRect.left; 

myRect.right := myRect.left + CpictureRect.right -
pictureRect.left); 

{----------------> DrawMyPicture <--} 

procedure DrawMyPicture CdrawingWindow: WindowPtr); 
var 

drawingClipRect, myRect: Rect; 
oldPort: GrafPtr; 
tempRgn: RgnHandle; 
thePicture: PicHandle; 

begin 

end; 

GetPortColdPort>; 
SetPcrt(drawingWindow>; 
tempRgn := NewRgn; 
GetClipCtempRgn); 
EraseRectCdrawingWindowA.portRect>; 
DrawGrowiconCdrawingWindow>; 

drawingClipRect := drawingWindowA.portRect; 
drawingClipRect.right := drawingClipRect.right -

SCROLL_BAR_PIXELS; 
drawingClipRect.bottom := drawingClipRect.bottom -

SCROLL_BAR_PIXELS; 
myRect := drawingWindowA.portRect; 

thePicture := GetPictureCBASE_RES_ID); 
CenterPictCthePicture, myRect); 
ClipRectCdrawingClipRect>; 
DrawPictureCthePicture, myRect>; 

SetClipCtempRgn>; 
DisposeRgn(tempRgn); 
SetPortColdPort>; 



124 Macintosh Programming Primer 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

whichWindow: WindowPtr; 
thePart: INTEGER; 
windSize: LONGINT; 
oldPort: GrafPtr; 

begin 

end; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

inSysWindow: 
SystemClickCgTheEvent, whichWindow>; 

inDrag: 
DragWindowCwhichWindow, gTheEvent.where, 

screenBits.bounds); 
inContent: 

if whichWindow <> FrontWindow then 
SelectWindowCwhichWindow>; 

inGrow: 
begin 

windSize := GrowWindowCwhichWindow, 
gTheEvent.where, gSizeRect); 

if CwindSize <> 0) then 
begin 

end; 

GetPortColdPort>; 
SetPortCwhichWindow); 
EraseRectCwhichWindowA.portRect); 
SizeWindowCwhichWindow, 

LoWordCwindSize), 
HiWordCwindSize), 
NORMAL_UPDATES); 

InvalRectCwhichWindowA.portRect>; 
SetPortColdPort); 

end; 
inGoAway: 

gDone := TRUE; 
inZoomin, inZoomOut: 

end; 

if TrackBoxCwhichWindow, gTheEvent.where, 
thePart) then 
begin 

end; 

GetPortColdPort); 
SetPortCwhichWindow>; 
EraseRectCwhichWindowA.portRect>; 
ZoomWindowCwhichWindow, thePart, 

LEAVE_WHERE_IT_IS); 
InvalRectCwhichWindowA.portRect>; 
SetPortColdPort>; 



The Event Mechanism 

{----------------> ScrollWindow 

procedure ScrollWindow; 
var 

tempRgn: RgnHandle; 
begin 

tempRgn := NewRgn; 

125 

<--} 

ScrollRect(gEventWindowA.portRect, HORIZONTAL_OFFSET, -
ROWHEIGHT, tempRgn); 

DisposeRgn(tempRgn); 
end; 

{----------------> DrawEventString <--} 

procedure DrawEventString Cs: Str255); 
begin 

end; 

if CgCurRow > gMaxRow) then 
ScrollWindow 

else 
gCurRow := gCurRow + ROWHEIGHT; 

MoveToCLEFTMARGIN, gCurRow); 
DrawString(s); 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

gotOne: BOOLEAN; 
begin 

if gWNEimplemented then 

else 

gotOne := WaitNextEventCeveryEvent, gTheEvent, 
SLEEP, nil) 

begin 
SystemTask; 
gotOne := GetNextEventCeveryEvent, gTheEvent); 

end; 

if gotOne then 
case gTheEvent.what of 

nullEvent: 
begin 

{ DrawEventStringC'nullEvent'); } 
{Uncomment the previous line for a burst of flavor! } 

' end; 
mouseDown: 



126 Macintosh Programming Primer 

begin 
DrawEventStringC'mouseDown'); 
HandleMouseDown; 

end; 
mouseUp: 

DrawEventStringC'mouseUp'); 
keyDown: 

DrawEventStringC'keyDown'>; 
keyUp: 

DrawEventStringC'keyUp'); 
autoKey: 

DrawEventString('autoKey'); 
updateEvt: 

if CWindowPtrCgTheEvent.message) = 
gPictWindow) then 

begin 
DrawEventStringC'updateEvt: gPictWindow'); 
BeginUpdateCWindowPtr CgTheEvent.message>>; 
DrawMyPictureCWindowPtr CgTheEvent.message)); 
EndUpdateCWindowPtr CgTheEvent.message)); 

end 
else 

begin 
DrawEventStringC'updateEvt: 

gEventWindow'>; 
BeginUpdateCWindowPtr 

CgTheEvent.message)); 
{ We won't handle updates to gEventWindow, } 
{ but we still need to empty the gEventWindow} 
{ Update Region so the Window Manager will stop} 
{ queing UpdateEvts. We do this with calls to} 
{ BeginUpdate and EndUpdate. } 

end; 
diskEvt: 

EndUpdateCWindowPtr 
CgTheEvent.message)); 

DrawEventStringC'diskEvt'>; 
activateEvt: 

if CWindowPtrCgTheEvent.message) = 
gPictWindow) then 

begin 
DrawGrowiconCWindowPtr 

CgTheEvent.message>>; 
if CBitAndCgTheEvent.modifiers, 

activeFlag) = ACTIVATING) then 
DrawEventString 

('activateEvt: activating gPictWindow') 
else 
DrawEventString 

C'activateEvt: deactivating gPictWindow'); 
end 



The Event Mechanism 

else 
begin 

if CBitAndCgTheEvent.modifiers, activeFlag) = 
ACTIVATING) then 

127 

DrawEventStringC'activateEvt: activating gEventWindow') 
else 

end; 

DrawEventString('activateEvt: deactivating gEventWindow'); 
end; 

end; 

networkEvt: 
DrawEventStringC'networkEvt'); 

driverEvt: 
DrawEventStringC'driverEvt'); 

app1Evt: 
DrawEventStringC'app1Evt'>; 

app2Evt: 
DrawEventStringC'app2Evt'>; 

app3Evt: 
DrawEventString('app3Evt'); 

app4Evt: 
if CBitAndCgTheEvent.message, 

SUSPEND_RESUME_BIT) = RESUMING) then 
DrawEventString('Resume event') 

else 
DrawEventStringC'Suspend event'>; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 

ToolTrap) <> NGetTrapAddressCUNIMPL_TRAP_NUM, ToolTrap)); 

end; 

while gDone = FALSE do 
HandleEvent; 

{----------------> SetUpSizeRect <--} 

procedure SetUpSizeRect; 
begin 

end; 

gSizeRect.top := MIN_WINDOW_HEIGHT; 
gSizeRect.left := MIN_WINDOW_WIDTH; 

gSizeRect.bottom := 32767; 
gSizeRect.right := 32767; 



128 Macintosh Programming Primer 

{----------------> SetupEventWindow <--} 

procedure SetupEventWindow; 
var 

eventRect: Rect; 
fontNum: INTEGER; 

begin 

end; 

eventRect := gEventWindowA.portRect; 
gMaxRow .- eventRect.bottom - eventRect.top -

ROWHEIGHT; 
gCurRow := STARTROW; 

SetPortCgEventWindow); 
GetFNumC'monaco', fontNum>; 
TextFont(fontNum); 
TextSizeCTEXT_FONT_SIZE); 

{----------------> Wi ndowini t <--} 

procedure Windowinit; 
begin 

gPictWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

gEventWindow := GetNewWindowCBASE RES ID+ 1, nil, 
WindowPtrC-1>>; - -

SetupEventWindow; 

ShowWindowCgEventWindow>; 
ShowWindowCgPictWindow); 

end; 

{----------------> EventTutor <--} 

begin 
Windowinit; 
SetUpSizeRect; 

Mainloop; 
end. 



The Event Mechanism 129 

Running EventTutor 

Now that your source code is entered, you're ready to run Event'futor. 
Select Go from the Run menu. THINK Pascal will start the compila
tion process. If you run into any compilation errors, try the debugging 
tips discussed in Appendix C. 

Once the code compiles, you'll be asked whether you'd like to Saue 
changes before running. Click Yes, and Event'futor will execute. 
Figure 4.10 shows Event'futor running under the Finder. 

Event'futor puts two windows up on the screen. The background 
window, g P i c t W i n do w, should display your centered picture. The 
foreground window, g Event W i n do w, should already list three events: 

• a c t i v a t e Ev t : a c t i v a t i n g g E v e n t W i n d o w: This event was 
caused by your code. You called Se Le ct W i n do w, requesting that 
g Event W i n do w be made the frontmost window. 

• updateEvt: gEventWindow. 

• updateEvt: gPi ctWi ndow: The Window Manager automati
cally generates an update Ev t for each of its windows as soon as 
they are drawn for the first time. 

gPictWindow 

activateEvt : activating 
updateE vt: gEventWindow 
updat eE vt : gP i ct 11 i ndow 
mouseDow n 
mouse Up 
mouse Down 
mouseUp 

Figure 4.10 EventTutor running under Finder. 

.., 

gE<-•ent. U i ndow 



130 Macintosh Programming Primer 

When the Window Manager draws a window, it first draws the 
window frame. The window frame includes the border, as well as a 
drag region, zoom box, and a go-away box, if appropriate. Next, it 
generates an update Ev t for the window, so the application will 
draw the window contents. 

Press the mouse button in the middle of g Event W i n do w. Now 
release the mouse button. You should see first a mo u s e Down and then 
a mo u s e Up event. Press the mouse button in the g Eve n t W i n d ow 
drag region (you'll see a mouseDown) and drag gEventWi ndow down 
and to the right. You should see an up d a t e Ev t for g Pi c t W i n do w. 
This is because you just revealed a piece of g Pi c t W i n do w that was 
covered before. The reason you didn't get a mouse Up when you 
released the mouse button is that the mo u s e Up was swallowed by the 
system routine that handles window dragging. This is also true when 
you zoom or resize a window. 

In Chapter 3 we established a standard of starting our program 
global variable names with the letter g. This led to Wi ndowPt rs 
named gEventWi ndow and gPi ctWi ndow. For clarity, we used 
these variable names as titles for their respective windows, but we 
could have used any titles we wanted. 

Click the mouse button in the center of g P i ct W i n do w. You should 
see a mouse Down, a deactivate event for gEventWi ndow, an activate 
event for g Pi ct W i n do w, an update event for g Pi ct W i n do w 
(assuming that you clicked on it while it was still at least partially 
covered by g Even tW i ndow), and a mou seUp (Figure 4.11). 

There is no such thing as a deactivate Evt. We use the term 
deactivate event to indicate an activate Ev t with the 
active F lag cleared. There's an example of this in the code. 

Try clicking in g Pi ct W i n do w's zoom box. The picture should remain 
centered in g Pi ct W i n do w. Click in the zoom box again. 
g Pi ct W i n do w should return to its original size. Resize g Pi ct W i n do w 



The Event Mechanism 131 

gPictWindow 

G ~ "° G Q 

o · Q0v 0G0 

: .,I_ 0, 0 

'\)'~0 ::. . ~ 
0!_,P'fGQG 0 

"""" -' ' ' 

·-~-
. ··.o . . 

: < - _.; 

ntWindow 

deactivating gE ve ntWindow 
activating gPictUindow 

mou seUp 
updat eEvt : gP i ct Window 

Figure 4.11 After g Pi ct W i n do w is activated. 

, 

by clicking and dragging the grow box. Keep an eye on 
g Event W i n do w. As you create events, review the list of event types 
presented earlier in the chapter. All these features were made possible 
by the use of events. Now, let's take a look at the code. 

Writing MultiFinder-friendly applications is not extremely difficult. 
We will try to get the basics across in our code, but we again 
recommend that you read the Programmer's Guide to MultiFinder 
from Apple for a thorough background (oops!) in MultiFinder 
programming. 

For starters, you can get your program to handle suspend and 
resume events by creating a resource of type s I z E. For a quick 
tutorial in creating a s I z E resource, check out Chapter 8. Once 
your s I z E resource is in place, your program will receive suspend 
and resume events when you send it to the background and bring it 
back again under MultiFinder. 

In Chapter 5, you'll build a clock that runs in the background under 
MultiFinder, and in Chapter 6, you'll build a countdown timer that 
also runs in the background under MultiFinder. 



_J 

132 

Walking Through the EventTutor Code 

Figure 4.12 shows EventTutor's software architecture. As we did 
in Chapter 3, we'll present the routines in the order they are called, 
not in the order they appear in the source code. Don't worry, we 
won't leave any of them out. 

Figure 4.12 EventTutor's architecture. 

DrawMyPictun 

Center Pict 

EventTutor starts with a slew of constants, some of which should 
be familiar from Chapter 3. We'll discuss each constant as it appears 
in the code: 

program EventTutor; 
const 

BASE_RES_ID = 400; 
LEAVE_WHERE_IT_IS = FALSE; 
NORMAL_UPDATES = TRUE; 
SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 
SUSPEND_RESUME_BIT = $0001; 
ACTIVATING = 1; 
RESUMING = 1; 
TEXT_FONT_SIZE = 12; 
DRAG_THRESHOLD = 30; 
MIN_WINDOW_HEIGHT = 50; 



The Event Mechanism 

MIN_WINDOW_WIDTH = 50; 
SCROLL_BAR_PIXELS = 15; 
ROWHEIGHT = 15; 
LEFTMARGIN = 10; 
STARTROW = 0; 
HORIZONTAL_OFFSET = O; 

133 

g Pi ct W i n do w and g Event W i n do w are pointers to the two 
program windows. g Done is initialized to FA LS E and checked each 
time through the main event loop. If anyone sets g Done to T RU E, the 
program exits. g W N E I mp l em en t e d is a B 0 0 LE AN you'll set to T RU E 
if W a i t Next Event is implemented in the current version of the 
system. g The Even t is your Even t Re co rd. Whenever you retrieve 
an event from the event queue, use g T h e Eve n t to hold the event 
information. g Cur Row holds the vertical pixel coordinate (in 
g Event Window's local coordinate system) for drawing the next 
event string in g Event Window. gM ax Row is the maximum value 
allowed for g C u r Row. If g C u r Row gets bigger than g Ma x Row, you'll 
scroll the text in g Eve n t W i n do w. g S i z e Re c t controls the size of a 
window. 

var 
gPictWindow, gEventWindow : WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 
gCurRow, gMaxRow: INTEGER; 
gSizeRect: Rect; 

EventTutor's main procedure starts by calling the window 
initialization routine. Next, it calls Set Up Si z e Rec t to set up a 
Rec t for resizing our windows (see Hand l e Mouse Down). Finally, 
EventTutor enters the main event loop by calling Ma i n Loop. 

{----------------> EventTutor <--} 

begin 
Windowlnit; 
SetUpSizeRect; 

Main loop; 
end. 



134 Macintosh Programming Primer 

W i n do w I n i t starts by loading the two windows from the resource 
file. Next, g Event W i n do w is made the current window, and its 
attributes are set via the call to Setup Event W i n do w. Both 
windows are made visible with S h ow W i n do w. 

{----------------> Window!nit <--} 

procedure Windowinit; 
begin 

gPictWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

gEventWindow := GetNewWindowCBASE_RES_ID + 1, 
nil, WindowPtr(-1)); 

SetupEventWindow; 

ShowWindowCgEventWindow); 
ShowWindowCgPictWindow); 

end; 

S e t u p E v e n t W i n d ow sets some of the g Ev e n t W i n do w global 
variables. event Rec t is a placeholder for g Event W i n do w's 
boundary rectangle. g Ma x Row is set to the maximum row you'll draw 
into (in g Event W i n do w's local coordinates). g Cur Row holds the 
current row number (also in local coordinates). g Event W i n do w's 
font is set to 12-point Monaco. 

{----------------> SetupEventWindow <--} 

procedure SetupEventWindow; 
var 

eventRect: Rect; 
fontNum: INTEGER; 

begin 

end; 

eventRect := gEventWindowA.portRect; 
gMaxRow .- eventRect.bottom -

eventRect.top - ROWHEIGHT; 
gCurRow := STARTROW; 

SetPortCgEventWindow); 
GetFNum('monaco', fontNum); 
TextFontCfontNum); 
TextSizeCTEXT_FONT_SIZE); 



The Event Mechanism 135 

Set Up Si z e Rec t sets up a resizing rectangle for your call to 
GrowWindow (see HandleMouseDown). gSizeRect.top defines 
the minimum number of pixels allowed for window height. 
g S i z e Re c t . l e f t defines the minimum number of pixels allowed for 
window width. g S i z e Re c t • bot t om defines the maximum number of 
pixels allowed for window height, and g S i z e Re c t • r i g h t defines the 
maximum number for width. By using a really large value for the 
maximum width and height, you make sure that your window can be 
grown as big as the biggest possible monitor. 

{----------------> SetUpSizeRect 

procedure SetUpSizeRect; 
begin 

<--} 

gSizeRect.top := MIN_WINDOW_HEIGHT; 
gSizeRect.left := MIN_WINDOW_WIDTH; 

gSizeRect.bottom := 32767; 
gSizeRect.right := 32767; 

end; 

Ma i n Loop starts by initializing g Done. Your application will exit 
when g Don e is set to T RU E. Next, check to see if W a i t Ne x t Eve n t 
is installed. Essentially, you're checking to see if W a i t Next Event 
and an unimplemented Toolbox routine have the same address in 
memory. If so, you know that W a i t Ne x t Even t is not implemented 
in the currently booted system. 

This piece of code has changed several times since 
w a i t Next Event was first made available. To be on the safe side, 
get the very latest copy of the Programmer's Guide to MultiFinder 
from APDA. In the back, you'll see an example of a program that 
reflects Apple's current thinking on w a i t Next Event. By following 
this example, you'll minimize the chances of your program breaking 
under future releases of the Mac operating system. 

Finally, Ma i n Loop loops on H a n d l e Eve n t until g Done is set to 
TRUE. 

{----------------> Mainloop 

procedure Mainloop; 
begin 

<--} 



136 Macintosh Programming Primer 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddress 

CWNE_TRAP_NUM, ToolTrap) <> 
NGetTrapAddressCUNIMPL_TRAP_NUM, ToolTrap)); 

while gDone = FALSE do 
HandleEvent; 

end; 

Hand L e Event starts with a call to either W a i t Next Event (if it's 
implemented), or SystemTask and GetNextEvent. Either way, 
g The Event gets filled with the latest event info. Each event is 
handled by drawing the name of the event in g Event W i n do w using 
D raw Event S t r i n g. If you uncomment the code in the nu L L Event 
case, you'll get a feel for the number of nu L LE vents the system 
generates. 

nu L L Events offer an excellent opportunity to do things like cursor 
tracking and internal housekeeping. For example, Chapter S's 
Timer program updates a clock window when it gets a 
null Event. 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

gotOne: BOOLEAN; 
begin 

if gWNEimplemented then 
gotOne .- WaitNextEvent(everyEvent,gTheEvent, 

SLEEP,nil) 
else 

begin 
SystemTask; 

end; 

gotOne := GetNextEvent(everyEvent, 
gTheEvent); 

if gotOne then 
case gTheEvent.what of 

nuLLEvent: 
begin 
{DrawEventString('nuLLEvent');} 
{Uncomment the previous Line for a burst of f Lavor} 
end; 



The Event Mechanism 

mousedown: 
begin 

DrawEventString('mouseDown'); 
HandleMouseDown; 

end; 
mouseUp: 

DrawEventString('mouseUp') 
keyDown: 

DrawEventString('keyDown') 
keyUp: 

DrawEventString('keyUp'); 
autoKey: 

DrawEventStri ng( 'autoKey'); 

137 

update Ev ts are handled in a special way. First, figure out which 
window is affected by the up d a t e Ev t. The Event Manager stores a 
pointer to the window requiring updating in g The Event . message. 
By comparing this pointer to gEventWi ndow and gPi ctWi ndow, 
you can tell which window is for the u pd a t e Ev t. If the u pd a t e Ev t 
is for g Pi ct W i n do w, draw the appropriate event string into 
g E v e n t W i n d o w, and then call B e g i n U p d a t e . 

Beg i n Update tells the Event Manager that you're about to take 
care of the condition that caused the update. In this case, you'll 
redraw the picture in g Pi c t W i n do w using D raw My Pi c t u re. 
Finally, call End Up d a t e to let the Event Manager know you're done. 

If you commented out the calls to Beg i n Up d a t e and End Up d a t e, 
you'd get an unending stream of update Ev ts for g Pict Window. The 
Event Manager, thinking you were ignoring the ones you'd already 
retrieved, would just keep generating them. Try it for yourself. 

You won't redraw the contents of g Event W i n do w in response to 
update Ev ts. If you want to add this capability, add a data 
structure to the program that keeps track of all the strings currently 
in the window and redraw them whenever an updateEvt occurs for 
g Eve n t W i n do w. In this version, you'll just call D r a w Eve n t S t r i n g 
to add the update Ev t to your list of events, and you'll call 
Be g i n U pd a t e and E n d Up d a t e to let the Window Manager know 
that you've responded to the u pd a t e Ev t. 



138 Macintosh Programming Primer 

Every window has an update region associated with it. When a 
previously covered section of a window is uncovered, the 
uncovered area is added to the window's update region. The 
Window Manager is constantly on the lookout for windows with 
nonempty update regions. When it finds one, it generates an 
update Ev t for that window. Beg i nu pd ate, as part of its 
processing, replaces the update region of the specified window 
with the empty region. Therefore, if you don't call Beg i nUpda te, 
you'll never empty the window's update region, and the Window 
Manager will never stop generating update Ev ts for the window. 

If you have not done so already, you absolutely should read the 
Window Manager chapter of Inside Macintosh (Volume I, Chapter 
9). The information presented in the Window Manager chapter is 
crucial to writing proper Macintosh applications. 

Before Beg i nu pd a t e empties the update region, it replaces the 
visible region of the window (called the vi sRgn) with the 
intersection of the vi sRgn and the update region (see Figure 4.13). 
The application then redraws the contents of the window. If it wants 
to, it can use this newly cropped v i s R g n to help reduce the amount 
of drawing necessary. For now, you'll just redraw the entire contents 
of the window. Finally, EndUpdate is called. EndUpdate replaces 
the original version of the vi s R g n. A call to Beg i nu pd a t e without 
a corresponding call to End update will leave your window in an 
unpredictable state. 

updateEvt: 
if CWindowPtrCgTheEvent.message) = gPictWindow) then 

begin 
DrawEventStringC'updateEvt: gPictWindow'>; 
BeginUpdateCWindowPtr(gTheEvent.message)); 
DrawMyPictureCWindowPtrCgTheEvent.message)); 
EndUpdateCWindowPtrCgTheEvent.message)); 

end 
else 

begin 
DrawEventStringC'updateivt: gEventWindow'>; 
BeginUpdateCWindowPtrCgTheEvent.message>>; 



The Event Mechanism 139 

VisRgn ~ ~ ~ ~ 
Update ~ L2J L[J L[J Region 

Before the bottom After the bottom After After 
window is selectec window is Begi nUpdate EndUpdate is 

selected, but is called called 
before 
BeginUpdate is 
called 

Figure 4.13 Beg i nUpda t e in action. 

{ We won't handle updates to gEventWindow, } 
{ but we still need to empty the gEventWindow } 
{ Update Region so the Window Manager will stop } 
{ queueing UpdateEvts. We do this with calls to} 
{ BeginUpdate and EndUpdate. } 

EndUpdateCWindowPtrCgTheEvent.message)); 
end; 

diskEvt: 
DrawEventStringC'diskEvt'); 

Another special case is the a ct i vat e Ev t. As you did with 
update Ev t, first check to see which window is affected by the 
a c t i v a t e Ev t . If the a c t i v a t e E v t is for g P i c t W i n do w, call 
D raw G row I con to redraw the grow box and the empty scroll bar 
areas. The grow box looks different depending on whether the 
window was activated or deactivated (see Figure 4.14). 
D raw G row I con is smart enough to draw the grow box correctly. 

Next, check a bit in the modifiers field to see if the event was an 
activate or a deactivate. event. Remember, a ct i vat e Ev ts usually 
occur in pairs: First, the frontmost window is deactivated and then 
the new front window is activated. Also draw the appropriate strings 
for network Ev ts, driver Ev ts, and a pp 1 through a pp 3 Ev ts, 
although you probably won't get any of these. 



140 Macintosh Programming Primer 

Front Window 

Figure 4.14 The grow box - activated and deactivated. 

activateEvt: 

else 

if (WindowPtr(gTheEvent.message) = gPictWindow) then 
begin 

DrawGrowicon(WindowPtr(gTheEvent.message)); 
if (BitAnd(gTheEvent.modifiers, activeFlag) = 

ACTIVATING) then 
DrawEventString 

('activateEvt: activating gPictWindow') 
else 

DrawEventString 

end 
else 

begin 

('activateEvt: deactivating gPictWindow'); 

if (BitAnd(gTheEvent.modifiers, activeFlag) = 
ACTIVATING) then 

DrawEventString 
('activateEvt: activating gEventWindow') 

DrawEventString('activateEvt: deactivating gEventWindow'); 
end; 

networkEvt: 
DrawEventString('networkEvt'); 

driverEvt: 
DrawEventString('driverEvt'); 

app1Evt: 
DrawEventString('app1Evt'); 

app2Evt: 
DrawEventString('app2Evt'); 

app3Evt: 
DrawEventString('app3Evt'); 

If you handle resume and suspend events, you'll get them in the 
form of an a pp4 Ev t. The SUS PEN D_R ES UM E_B IT is set if the event 
is a resume event and cleared if the event is a suspend event. 



The Event Mechanism 141 

Remember, you won't get resume or suspend events if you're not in 
MultiFinder, or if you haven't put a s I Z E resource in your 
application. For more information, read the discussion of the S I Z E 
resource in Chapter 8. 

end; 
end; 

app4Evt: 
if CBitAnd(gTheEvent.message, 

SUSPEND_RESUME_BIT) = RESUMING) then 
DrawEventStringC'Resume event') 

else 
DrawEventString('Suspend event'>; 

Draw Event St r i n g handles the text positioning in 
g Eve n t W i n do w. If the QuickDraw pen is near the bottom of the 
window, Scro l l W i n do w is called. The string is drawn with 
D r a w s t r i n g. ROW H E I G HT is the height in pixels of a single row of 
text. LE F TMA RGI N is the pixel coordinate (in g Event Window's local 
coordinate system) of the left margin of the text in g Even t W i n do w. 

{----------------> DrawEventString <--} 

procedure DrawEventString Cs: Str255>; 
begin 

if CgCurRow > gMaxRow) then 
ScrollWindow 

else 
gCurRow := gCurRow + ROWHEIGHT; 

MoveToCLEFTMARGIN, gCurRow); 
DrawString(s); 

end; 

S c r o l l W i n d ow calls S c r o l l R e c t to scroll the pixels in 
g Eve n t W i n do w up one row. S c r o l l Re c t scrolls the contents of the 
current Graf Port (in this case, gEventWi ndow) within the 
rectangle specified in the first parameter. The rectangle is scrolled to 
the right by the number of pixels specified in the second parameter 
and down by the number of pixels specified in the third parameter. 
Because you specified a negative third parameter, the contents of 
gEventWi ndow will be scrolled up. 

The last parameter to S c r o l l Re c t is a R g n Ha n d l e, or a handle 
to a region. Regions are collections of drawn lines, shapes, and curves, 
as shown in Figure 4.15 (we discussed them briefly in Chapter 3). 
After the pixels in the rectangle are scrolled, S c r o l l R e c t will fill 



142 Macintosh Programming Primer 

the vacated area of the rectangle with the G r a f Po rt 's background 
pattern. Then, these new areas are collected into the region handled 
by RgnHandle (Figure4.16). 

Many programs use this region as a guide to redrawing the window 
so that they don't have to redraw the entire window. This is 
especially useful if your window is extremely complex and takes a 
long time to redraw. In that case, a handle to the window's 
updateRgn is passed to Scrol LRect. Whenever the Window 
Manager detects that a window's up d a t e R g n is nonempty, the 
Window Manager generates an update Ev t for the window. As 
part of its processing, Beg i nu pd ate sets the specified window's 
updateRgn to the empty region. 

Figure 4.15 A region. 

ll!D~ Front Window §0§ 
updateRgn 

(filled with bkPat 

Figure 4.16 Front Window's update R g n after Scro L L Rec t 
( r, 10, 20, updateRgn ). 



The Event Mechanism 143 

Because you're not redrawing g Even t W i n do w in response to 
up d a t e Ev t s, you'll use a temporary region (temp R g n) as a 
parameter to S c r o l l Re c t. Deallocate the t em p R g n's memory by 
calling Di sposeRgn. 

{----------------> ScrollWindow <--} 

procedure ScrollWindow; 
var 

tempRgn: RgnHandle; 
begin 

end; 

tempRgn := NewRgn; 
ScrollRectCgEventWindowA.portRect, HORIZONTAL_OFFSET, 

- ROWHEIGHT, tempRgn); 
DisposeRgnCtempRgn); 

Handling mouseDown Events 

When you receive a mo u s e Down event, the first thing to do is find 
out which window the mouse was clicked in, by calling the Toolbox 
routine F i n d W i n do w. F i n d W i n do w takes, as input, a point on the 
screen; it returns, in the parameter w h i c h W i n do w, a W i n do w Pt r to 
the window containing the point. In addition, F i n d W i n do w returns 
an integer part code that describes the part of the window in which 
the point was located. 

Once you have your part code, compare it to the predefined Toolbox 
part codes (you can find a list of legal part codes in 1:287). The part 
code i n Sys W i n do w means that the mouse was clicked in a system 
window, very likely a desk accessory. (Because Even t Tu t o r doesn't 
support desk accessories, you probably won't see any i n Sys W i n do w 
mouse Downs, but you will see them in Chapter 5.) The appropriate 
thing to do in this case is to pass the event and the W i n do w Pt r to 
the system so that it can handle the event. Do this with the Toolbox 
routine SystemC lick. 

The part code i n Drag indicates a mouse click in w h i ch W i n do w's 
drag region. Handle this with a call to the Toolbox routine 
D ra gW i ndow. D ra gW i ndow wants a W i ndowPt r, the point on the 
screen where the mouse was clicked, and a boundary rectangle. 
D r a g W i n do w will allow the user to drag the window anywhere on 
the screen as long as it's within the boundary rectangle. Use 
s c re en B i t s . b o u n d s, which will let you drag the window pretty 
much anywhere. 



144 Macintosh Programming Primer 

The i n Con t e n t part code represents the part of the window in 
which you draw. When you detect a mouse click i n Content, call 
s e l e c t W i n do w. If the mouse click was not in the frontmost window, 
s e l e c t W i n do w deactivates the frontmost window and activates the 
clicked-in window. A call to Se le ct W i n do w usually results in a pair 
of a c t i v a t e E v t s . 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
windSize: LONGINT; 
oldPort: GrafPtr; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

inSysWindow: 
SystemClickCgTheEvent, whichWindow); 

inDrag: 
DragWindowCwhichWindow, gTheEvent.where, 

screenBits.bounds); 
inContent: 

if whichWindow <> FrontWindow then 
SelectWindowCwhichWindow); 

A click in the grow box is handled by a call to G row W i n do w, which 
takes the same arguments as D r a g W i n do w but allows the window to 
grow and shrink instead of move. Grow W i n do w returns a long 
integer composed of two words (four bytes) that define the number of 
pixels the window will grow or shrink in each direction. These words 
are passed to S i z e W i n do w, causing the window to be resized 
accordingly. The last parameter to S i z e W i n do w tells the Window 
Manager to accumulate any newly created content region into the 
update region. This means that the Window Manager will generate 
an update event whenever the window is made either taller or wider. 

The update event strategy is fairly simple. Use the routine 
I n v a l Rec t to add the entire contents of the window to the window's 
up d a t e R g n, guaranteeing that an up d a t e Ev t will be generated 
whether or not the window was grown. When you plan your 
applications, spend some time working out an appropriate update 
strategy. If redrawing the contents of your windows will be fairly 
easy and won't take too long, you may want to use the I n v a l Rec t 
approach. However, if the contents of your window are potentially 
complex (as is true of many drawing and CAD packages), you'll 



The Event Mechanism 145 

probably want to avoid the call to I n v a L Rec t and, instead, use the 
shape of the update region to aid you in updating your window 
efficiently. 

inGrow: 
begin 

windSize := GrowWindow(whichWindow, 
gTheEvent.where, gSizeRect); 

if (windSize <> 0) then 

end; 

begin 

end; 

GetPort(oldPort); 
SetPort(whichWindow); 
EraseRect(whichWindowA.portRect); 
SizeWindow(whichWindow, 

LoWord(windSize), 
HiWord(windSize), 
NORMAL_UPDATES); 

InvalRect<whichWindowA.portRect); 
SetPort(oldPort); 

A click in the go-away box of either window will result in g don e's 
being set to TRUE. This will cause the program to exit. 

inGoAway: 
gDone .- TRUE; 

A note from the thought police: A proper Macintosh application 
would never think of exiting just because someone clicked in the 
close box of a window! When we get to menu handling in Chapter 
5, we'll show you the correct way to Quit. 

If the mouse is clicked in the zoom box, respond by calling 
T r a c kB ox, which will return T RUE if the mouse button is released 
while the mouse is still in the zoom box. Zoom W i n do w zooms the 
window in or out, depending on the part code passed as a parameter. 
The constant LEAVE_WHERE_IT_IS tells ZoomWi ndow to leave the 
window in front if it was in front when the zoom box was pressed and 
in back if the window was in back when the zoom box was pressed. 
Just as you did with Si zeW i ndow, call I nva L Rec t to guarantee that 
an up d a t e Ev t is generated when the window is zoomed in or out. 



146 

end; 

Macintosh Programming Primer 

inZoomin, inZoomOut: 

end; 

if TrackBoxCwhichWindow, gTheEvent.where, thePart) 
then 

begin 

end; 

GetPortColdPort); 
SetPortCwhichWindow>; 
EraseRectCwhichWindowA.portRect>; 
ZoomWindowCwhichWindow, thePart, 

LEAVE_WHERE_IT_IS); 
InvalRectCwhichWindowA.portRect); 
SetPortColdPort); 

D raw My P i c t u re will draw the picture handled by t h e P i c t u r e 
in the window pointed to by d raw i n g W i n do w, clipping the drawing 
so that the scroll bar and grow areas aren't overwritten. Copy 
d raw i n g W i n do w's port Rec t to d raw i n g C l i p Rec t, and adjust 
the left and bottom to clip the two scroll bar areas. Use this new 
Rec t as a parameter to C l i p Re ct so that when you draw your 
picture, it gets clipped properly. 

Start by saving a pointer to the current G r a f Po r t in o l d Po r t so 
that you can restore it at the end of DrawMyPi cture. Next, make 
d raw i n g W i n do w the current G r a f Po r t so that the picture will be 
drawn in the correct window: 

{----------------> DrawMyPicture 

procedure DrawMyPicture 
CdrawingWindow: WindowPtr); 
var 

<--} 

drawingClipRect, myRect: Rect; 
oldPort: GrafPtr; 
tempRgn: RgnHandle; 
thePicture: PicHandle; 

begin 
GetPortColdPort); 
SetPortCdrawingWindow); 

Then, allocate memory for a region to save a copy of the current 
clip region. Call Get C l i p to copy the current clip region into 
temp R g n. New R g n allocates enough memory for the minimum-sized 
region. Get C l i p resizes the region to accommodate the current clip 
region. 

tempRgn := NewRgn; 
GetClipCtempRgn); 



The Event Mechanism 147 

If you created a region in the shape of a star and used SetClip to 
$et the clip region to your star region, all drawing in that window 

. would be clipped in the shapei ofa §tar. You can read more about 
·• regions in Inside Macintosh(l:t41,...142and1:166-167). 

Next, erase the whole window with a call to E r as e Rec t. You've 
just erased the Grow Icon, so call Draw Grow Icon to redraw it. 
Next, set up your clipping Rect, drawingCLipRect, so that it 
excludes the right and bottom scroll bar areas (and, as a result, the 
grow area). Then, set my Rec t to the d raw i n g W i n do w po rt Re ct. 
You'll use myRect as a parameter to CenterPi ct, where it will be 
adjusted to reflect the size of the picture, centered in the input Rec t. 

At this point, you have not changed the clip region of 
draw i n g W i n do w. You are about to do so. Call C L i p Re ct to set the 
clipping region to the rectangle defined by draw i n g C Li p Rec t. 
Now, draw the picture with Draw Picture. 

EraseRect(drawingWindowA.portRect); 
DrawGrowlcon(drawingWindow); 

drawingCLipRect := drawingWindowA.portRect; 
drawingCLipRect.right := drawingCLipRect.right -

SCROLL_BAR_PIXELS; 
drawingCLipRect.bottom := drawingCLipRect.bottom 

SCROLL_BAR_PIXELS; 
myRect := drawingWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 
CenterPict(thePicture, myRect); 
ClipRect(drawingCLipRect); 
DrawPicture(thePicture, myRect); 

Finally, reset the C Li p Rec t to the setting saved in temp R g n, 
release the memory allocated to temp R g n, and set the current 
G r a f Po r t back to the original setting. 

end; 

SetCLip(tempRgn); 
DisposeRgn(tempRgn); 
SetPort(oldPort); 



148 Macintosh Programming Primer 

Center Pi ct is the same as in Chapter 3's Show Pict program: 

{----------------> CenterPict <--} 

procedure CenterPict CthePicture: PicHandle; var myRect: 
Re ct); 

var 
windRect, pictureRect: Rect; 

begin 
windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top)) div 2 + windRect.top; 
myRect.bottom := myRect.top + CpictureRect.bottom -

pictureRect.top); 
myRect.left := CwindRect.right - windRect.left -

CpictureRect.right - pictureRect.left)) div 2 + windRect.left; 
myRect.right := myRect.left + CpictureRect.right -

pictureRect.left); 
end; 

_J 

If you'd like to learn more about event handling, read the Toolbox 
Event Manager chapter of Inside Macintosh (1:241-266). 

In Review 

At the heart of every Macintosh application is the main event loop. 
Mac applications are built around this loop. Each pass through the 
main event loop consists of the retrieval of an event from the event 
queue and the processing of the event. 

The Window Manager plays an important role in the handling of 
events by generating update Ev ts as a means of getting the 
application to draw (or update) the cont~nts of a window. In addition, 
Window Manager routines like F i n d W i n do w offer a mechanism for 
linking an event to a window. 

An underlying theme of this chapter is a concern for good user 
interface design. When you set out to build an application, concentrate 
on the user's view of your application. Use the main event loop in this 
chapter as your basic skeleton. Then, determine how you will handle 
each of the different events your user might initiate. 

In Chapter 5, you'll learn all about menus. You'll learn how to 
design and implement regular menus, hierarchical menus, and pop
up menus! 



Menu 
Management 

This chapter explains the use of menus 
in your programs. We'll show you how 

to install menus via MBAR and MENU 

resources, and we'll describe the 
routines available from the Menu 

Manager. We'll also discuss the best 
way to support desk accessories and 

do event handling 
with menus. 

5 



MACINTOSH MENUS HAVEN'T been the same since the advent of the 
Mac SE and the Mac II. The classic Mac menu was the pull-down 
menu-the strip at the top of the screen with options that, when 
clicked on, displayed the possibilities available to each program 
(Figure 5.1). The situation has changed for the better with two 
additional menu types: the hierarchical menu and the pop-up 
menu. We'll discuss and illustrate both. But first, let's look at the 
standard parts of all menu systems. 

Debug Windows 

Check SyntaH ~K 1-e_1~10_2_._n_--,--------,--1 
Build ~B § uild order) Size 

p.-ogr-am Hello2; 
Check Link 1s222 

con st 
BASLRES_ID = 400; 
HOR IWNT Al.J' IXEL = 30; 
l/ERTICAL.J'IXEL = 50; 

{-------------------------------- > 'vi 

procedure 'w'indo\•1 lnH; 
Yar-

Step Duer 
Step Into 

hello'v/indo\•/: WindowPlr ; Auto Saue 
begin ../Confirm Saues 
hello~lindow := Ge\New'vlindow(BASE , 
Show\'iindow(hello'vlindow); Don t Saue 
Se\Po.-t(he llo'vlindow); 
MoveTo(HORIZONTAL.J'IXEL , l/ERTIC 
Tex \Face([bold , italic]) ; Run Options ... 
DrawSlring('Hello , world! '); 

end; 

Figure 5.1 Classic pull-down menu. 

~J 

~I 

ib 10106 
218 

·sE;.· ··············28546 

151 



_J 

152 

Menu Components 

Before we discuss the structure of menus, let's examine the parts of a 
menu and their functions. Figure 5.2 shows the main parts of 
Macintosh menus. We'll discuss the parts of the classic menu first, 
then discuss differences in the new menu types in the section devoted 
to each type. 

The menu bar displayed at the top of the Mac screen is normally 
20 pixels high. The font type and size are always the same as the 
system font. The menu bar height may be changed, using the global 
variable MB a r He i g ht, as we saw in Chapter 3's screen saver 
program, the Flying Line. 

On the menu bar, each list of choices is known as a menu. The 
s, File, and Edit menus are found in most Macintosh applications. 
Menus are dimmed, or disabled, when none of their options 
is available. 

Menu items are the choices that are available in a given menu. For 
example, the File menu items in MacPaint are shown in Figure 5.3 . 

• ...----_/ 
Edit Uiew Special 

j Menu Bar I 
N(~W roMN :)[:N 

Open 3€0 
Print 
[!OS(~ 

i:.~~ t Priuih~1.ws :)(:!> 

Menu I tern t-----i"""' Get Info 3€ I 
nupHc<11 (~ :)(:!} 

Put HWIHJ 

Page Setup ... 
Print !Hrnc1 or~J .. , 

:)(:!; 

Figure 5.2 Components of Macintosh menus. 

Dimmed Menu Item 

Command Key Equiualent 

Ellipses ( ... ) indicate that 
further information will 
be required to complete 
the command. 



Menu Management 

New 
Open ••• 
Close 

Saue 
Saue Rs ... 
Reuert To Saued 

38N 
380 
38W 

XS 

Take Snapshot 38Y 
Throw Away Snapshot 

Page Setup ... 
Print ... 
Print Selection ... 

Quit 38Q 

Figure 5.3 MacPaint File menu. 

153 

A menu item is selected if the mouse button is released while the 
item is still highlighted. Individual items may also be disabled 
(dimmed). An icon or a check mark can be placed to the left of an 
item's text. The font and size of the item may be varied; command 
key equivalents may be placed to the right of a menu item. If a menu 
item list becomes too long for the screen, which is not uncommon on a 
compact Mac, the last item that would normally be seen is replaced 
with a downward-pointing arrow [T]. If the user drags the mouse 
cursor down farther, more menu items will scroll into view. 

The S menu is different in several respects from the other menus 
in the menu bar. By convention, the first item in the S menu is used 
by your application to display information (an about box) about 
itself. The remaining menu items make up a list of available desk 
accessories (Figure 5.4). 

Let's take a look at the classic pull-down menu and how it works. 

About the Finder ... 

Alarm Clock 
Calculator 
Chooser 
Control Panel 
Find File 
Key Caps 
On Location 
QuickOEH™ 
Quick Mail 
Scrapbook 

Figure 5.4 The S menu. 



_J 

_J 

154 

The Pull-Down Menu 

The pull-down menu, displayed at the top of the screen, is standard 
for most Macintosh applications. Pull down menus are created by the 
Menu Manager, which also takes care of drawing the menu items; 
handling menu selection (as well as command key equivalents); and, 
finally, restoring the screen when the menu is released. All you have 
to do is provide the menu information in the form of two resources, 
MB AR and MENU , and call them with Menu Manager routines. The 
MB AR resource contains a list of the menus that will be displayed on 
the menu bar. Each MENU resource contains information about the 
individual menu items. 

On the Mac II, menus and menu items can also be displayed in 
different colors (V:235). 

The Hierarchical Menu 

The hierarchical menu came on board in 1987, when it was added 
to the Toolbox. It was needed for the new, complex programs that had 
become available for the Mac. As more bells and whistles were added 
to Mac applications, it became harder to find a place for them on the 
menu bar. Hierarchical menus made it possible to put a whole menu 
into one item without inconveniencing the user (Figure 5.5). 

Menu items that have a hierarchical submenu associated with them 
have a small right-pointing triangle (11>) on their right side. When the 
menu item is selected, the hierarchical submenu is displayed. The user 
then moves the arrow over to the item desired on the hierarchical menu. 

Figure 5.5 Hierarchical menu. 



_J The Pop-Up Menu 

The pop-up menu is the only menu that can be placed anywhere on 
the screen. This menu is similar to a hierarchical menu, except that 
pop-up menus can be placed in windows, dialog boxes, even on the 
desktop. 

A pop-up menu appears when a mouse Down occurs in an area 
defined by an application. Once the pop-up menu appears, the user 
can select an item by moving the cursor up or down (Figure 5.6). 
When the mouse button is released, the selection is processed. Pop
up menu routines require a little more work than the other menu 
types, but the additional functionality makes a big difference to your 
users. We will build a pop-up menu project at the end of this chapter. 

,.. s File Edit Format Font Document Utilities Window 

D Chapter 1.w 
0 It.L. ~ I2 13 I4 Is 
Normal J1.!} H t J' t . 1::::1 l'=I l;sJ 1=>1 1-1 1-1 I!!!! IJii:ill 1~1 L..i...L 

1-1r--Rs~od~yl.te~xlt~'-'l1--.=:~~~~~~~~.=:~~~~-==--..:::::...._~~~~~7' 

Caption 11 .1.1 

Ch~~t~r ;;\;e ~ Introduction ij 
Code 
Figure 
footer 
foot note text 
Headline 
IN TEXT TABLE 
L 1 Title 
L2 Title 
Li st 
Normal 

./Normal 
Subhead 1 
Subhead 2 
TCH 

tF1 ... 

eci ntosh Prograrnrni ng Pri rner is e comp 1 ete cour-se in 
the art of Meci ntosh progrernrni ng. With this book end 
yrnentec 's THINK Pascal , you can learn to program the 

Meci ntosh. 

OTHER COM PUTER is like tt1e Macintosh. 

The Mee i s e new kind of cornputei-. It 's fest. It's 

IN 0 rm a I+ . . . J2l .1 i'iifJ!Ji!i y::m:mm<YH:J::::m:m:12 Q:] 
'AA. 

Figure 5.6 Application with pop-up menu (Microsoft Word 4). 

155 



_J 

156 

Other Kinds of Menus 

As with most other parts of the interface, you can make your own 
unique menus that use the same calls yet look very different from the 
three kinds of menus already described. Building your own menus, 
however, is more complicated than using the standards. And because 
many current applications don't even make good use of pop-up and 
hierarchical menus, there's no need to rush out and create something 
new (though if you'd like to, we show you how to create a different 
type of menu in Volume II of the Primer.) 

Another type of Macintosh menu that has become quite popular is 
the tear-off menu, which appears to be a regular menu but which 
can be torn off the menu bar and moved around the screen like a 
window. Its use in HyperCard and MacPaint 2.0 guaranteed its 
enshrinement in the System 7 Toolbox. Examine Volume VI of Inside 
Macinosh if you'd like to use tear-off menus. 

Menu formats from MS-DOS programs or other non-Macintosh 
systems are sometimes ported to the Macintosh. A result of this 
might be something like Figure 5.7. These MS-DOS style menus do 
not follow the Macintosh user interface guidelines. Don't use them or 
associate with developers that do. 

Figure 5.7 MS-DOS menu. 



_J 

_J 

Putting Menus into Your Programs 

There are a number of ways to add menus to the applications you 
create: You can insert menus at the end of the current menu bar (for 
example, desk accessories like QuickDex or DiskTop), you can build a 
new set of menus from scratch right inside your program, or you can 
create your menus in ResEdit and load them into your program. 
We're going to do it the last way, which makes for clean programming 
and easy changes without recompiling. 

We'll use two menu resources: MEN u and MB AR. The MB AR 
resource contains a list of all of the MENU resources that will be used 
to draw the menu bar. The MB AR resource also controls the order in 
which the menus are drawn on the menu bar. Each M EN U resource 
contains a menu title, a list of the menu items, and detailed 
information about the display of each item. 

Now, let's look at Timer, our first program with menus. 

Timer 

Timer displays the current time in a window and refreshes the time 
once per second. The standard S, File, and Edit menus are supported 
as well as an additional menu, Special. The Special menu has two 
hierarchical submenus, which allow you to change the display's font 
and style. 

Timer's menu supports desk accessories. The File menu has a 
single item, Quit. The Edit menu is disabled but is provided as a 
service to desk accessories. Every Macintosh application you write 
should support the standard Edit menu, as it is part of the 
Macintosh interface standards. 

Timer works like this: 

1. It loads the MB AR and MENU resources. 

2. It initializes the Timer window. 

3. It displays the time in the window. 

4. It handles events for the menus and the window, refreshing 
the Timer window once per second. 

157 



158 Macintosh Programming Primer 

Setting Up the Project 

Create a folder called T i me r inside your D eve l op me n t folder; keep 
your project and resource files inside the folder. 

Resources 

Now, add the resources you'll need for your Timer program. Create a 
file in your new T i me r folder using ResEdit. Call it T i me r . 7t. rs r c. 
Then build a W I ND with ID = 400, with the specifications as shown in 
Figure 5.8. 

Don't forget to make the W I ND resource purgeable. In general, you'll 
want to make resources in your applications purgeable, so that the 
Macintosh Memory Manager can do a better job if memory gets tight. 
However, unlike all other resources discussed in this book, NEVER 
make MENU resources purgeable (I:344). We won't mention making 
resources purgeable again in this chapter. As you create resources, just 
click the checkbox in the Get Resource Info dialog box. 

Next, you need an MB A R resource that lists the resource IDs of the 
four MEN Us that will be part of Timer's menu bar. Create a new MBAR 
resource inside T i me r . 7t. rs r c. You should see something like 
Figure 5.9. Click on the row of asterisks and select Add Resource 
from the Resource menu. A field for the first menu should appear, 
as well as a new row of asterisks. Create three more menu fields and 
fill all four as shown in Figure 5.10. Finally, change the MBAR 
resource ID to 400. Close the MBAR window. Now, you need to create 
four MENU resources (with ID numbers from 400 to 403. See?). 

~D~ WIND ID= 400 from Timer.n.rsrc §ij 

Window title: 

!Timer 

top 

left 

proclD 

E=:J bottom EJ 
~right~ 

IO I refCon IO I 

D Uisible [8J goRwayFlag 

Figure 5.8 Timer W I N D specifications. 



Menu Management 159 

,.. S File Edit Resource Window Font 

Timer. n .rs re 

MBRRs from Timer.n.rsrc 

§0 MORR ID= 400 from Timer.n.rsrc 

# of menus 0 

***** 

Figure 5.9 A new MB A R resource. 

D -- MBAR ID 400 from Timer.n.rsrc 

# of menus 4 
***** 
t'lenu res ID 1400 
***** 

~le nu res ID I 101 

***** 
t'lenu res ID 1402 
***** 
t'lenu res ID J4o~ 
***** 

Figure 5.10 Completed MB AR resource. 



160 Macintosh Programming Primer 

To build the first MENU resource, for the .S menu, start by creating a 
new resource, then typing in or selecting MENU from the scrolling list. 

The MENU editor in ResEdit 2 is a lot slicker than earlier versions. 
The new edit window for your MENU resource displays all the options 
available for menus, such as whether your MENU should be enabled 
or dimmed, and the coloring of the text and background of menu 
items. For now, just use the defaults. 

Click on the radio button labeled .S (Apple menu) (Figure 5.11). 
This is what creates the title of the menu for you. Use Get 
Res o u re e I t em to set the Resource ID to 4 0 0. (Remember, NEVER 
make MENU resources purgeable (1:344).) 

Then, select Create New Item from the Resource Menu and 
type in the text About Timer. Finally, select Create New Item 
and click on the radio button labeled (separator line). Creation of 
the two menu items is shown in Figure 5.12. 

"" s File Edit Resource 

Timer. n .rs re 

MENUs from Timer.n.rsrc 

MENU ID= 4DO from Timer.n.rsrc 

Entire Menu: 

Title: 0 
'--~~~~~~~~---' 

@ s (Apple menu) 

Color 

Title: I I 
I tern Te Ht Default: I I 
Menu Background: I I 

Figure 5.11 S MENU specifications. 



Menu Management 161 

MENU ID= 400 from Timer.Tf.rsrc 

[!]_ 
About Timer IO 

! Selected I tern: 181 Enabled 
i 

! TeHt: @ I About Timer 

I 0 ........... (separator line) 

lo 

! D has Submenu TeHt: 1°101 
I Cm::::§S ~ 

0 MENU ID= 400 from Timer.Tf.rsrc 

fil l Selected Item: 
1--A~b-o-u-tT_i_m_e_r~~~~-JQl~i 

• 1 I TeHt: 0 r~------~l 

D Enabled 

I @ ........... (separator line) 

' Color 

l D t1<1~ Sutlm<mu Teat: l•I 
i 

QI 
i: m1i··l<•~1.~: r ............ l l,TTlll 

toOooooOoOo•Mo: 

M1~rl<: r ............ ) [ ............ ] 

Figure 5.12 Creating S menu items. 

In the same fashion, create another M EN U resource with resource 
ID of 401. This resource will be used to create the File menu. As 
shown above, create one text menu item labeled Quit. This time, add 
a command key equivalent to the Quit menu by typing in a Qin the 
Cmd-Key editable text field (Figure 5.13). 

Close the File menu resource window (did you give it a resource 
number of 401?). Now, open a new MENU resource for the Edit menu 
information. Give it a resource ID of 4 0 2 and fill it in as shown in 
Figure 5.14. 

The completed Edit menu now follows Mac interface guidelines. 
Figure 5.15 shows how the Edit menu looks when it is not disabled. 
The Edit menu is different from the first two menus in that it is 
disabled. To disable it, select the title of the menu on the left (Edit) 
and toggle off the checkbox labeled Enabled. 



162 

~ 
Quit 

Macintosh Programming Primer 

MENU ID = 401 from Timer. TT .rsrc 

Selected I tern: l8] Enabled 

TeHt: @ ~' Q_u_i_t ________ ~ 
0 · (separator line) 

Color 

D has Submenu TeHt: !•I 
Cmd-Key: D j I 

Mark:LJ !•I 
MENU ID= 401 from Timer.TJ.rsrc 

8€Q IQ 

~ 

Selected Item: l8l Enabled 

TeHt: @ j Quit 
~---------~ 

0 ··········· (separator line) 

D has Submenu 

Color 

TeHt: I I 
Cmd-Key: jQMj !•I 

Mark:LJ !•I 
Figure 5.13 File MENU specifications. 

Because it is a little harder to read the menu items when they are 
disabled, try typing them all in and assigning their command key 
equivalents before deselecting them. The completed Edit menu 
should look like Figure 5.16. 



Menu Management 163 

MENU ID= 402 from Timer.TI.rsrc 

:::o MENU ID 

[EITil 
Un!fo 

............. .............. ............................... ................ . ....... 

!: ut 
[ npq 
Pns1e 
!: !1>ar 

D MENU ID 

Uni1o >](: z 
.... ............................ ........ ............................................. 

!: ut >](:}! 

[ O!H~ :](:C 

Pas1e >](:ti 

!: !Par 

Entire Menu: D Enabled 

Title: @ l~E_d_it ________ ~ 

0 a (Apple menu) 

Color 

Title:l•I 

Item Tettt Default: l•I 

Menu Background: I I 

402 from Timer. TI .rsrc 

Entire Menu: D Enabled 

~ 
Title : @ !Edit I 

0 a (Apple menu) 

Color 

Title: I I 
I tern Tettt Default: I I 

tQ Menu Background: l•I 
402 from Timer. TI .rsrc 

Entire Menu: D Enabled 
Q 

Title: @ !Edit I 
0 a (Apple menu) 

Color 

Title: I I 
Item Tettt Default: l• I 

QJ Menu Background: I I 

Figure 5.14 Edit MENU specifications. 



164 

Cut 
Copy 
Paste 
Clear 

3€H 
3€C 
oou 

Macintosh Programming Primer 

Figure 5.15 Standard Edit MENU specifications. 

The Timer application does not use the Edit menu at all. So why 
add it? The reason is that although your application may not use the 
Edit menu, the desk accesories you support may. Many desk 
accessories expect an Edit menu on a Mac application. If you don't 
put one there, the desk accessory may not be able to function 
properly. 

Now, add the Special menu. Open up a new MENU resource 
(Resource ID of 403) and fill it as shown in Figure 5.16. The 
Special menu has two menu items, both of which have submenus, 
which means that hierarchical menus will be attached to them. 

The Menu Manager will look for a MENU resource with ID = 1 0 0 to 
use as the Fon t hierarchical submenu. In the same way, the Menu 
Manager will look for a MENU resource with ID = 1 0 1 for the sty I e 
hierarchical submenu. Now let's build these submenus. 

Here's why you don't use 4 o 4 and 4 o 5 instead of 1 o o and 1 o 1 
for hierarchical submenu resource IDs. The hierarchical menu 
structure was defined in Volume V of Inside Macintosh. Only two 
bytes are used as a pointer to the hierarchical menus in the menu 
structure. Because the biggest two-digit hexadecimal number is FF, 
or 255 decimal, that's the biggest hierarchical menu number that 
you can use. 



Menu Management 

:D 

iDllW!ll 

Special} 
Font 

SpecialJ 
Font 
Style 

165 

MENU "Special" ID 403 from Timer. ff .rsrc 

Entire Menu: l2J Enabled 

[Q 
Title: ®I Special I 

0 s (Rpple menu) 

Color 

Title: l•I 
Item TeHt Default: l•I 

~ Menu Background: D 
MENU "Special" ID= 403 from Timer.-n.rsrc 

!: IQj 

~ 

Selected Item: l2J Enabled 

TeHt: ®~I F_o_n_~ -------~ 
0 ........... ( H:pnrn tor !iiu>} 

l2J has Submenu 

ID:~ 

Color 

TeHt: l•I 

~=• 
MENU "Special" ID= 403 from Timer.n.rsrc 

~ IQj 
_!._ 

~ 

Selected Item: l2J Enabled 

TeHt: @J ._ s_ty_I--'~---------' 
0 ··········· i wparn tor !hw} 

Color 

l2J has Submenu TeHt: J•I 
ID:~ ~=• 

Figure 5.16 The completed Special menu (finale). 



166 Macintosh Programming Primer 

Close the Special menu window. Create a new MENU resource and 
fill it as shown in Figure 5.17. Note that the Font menu has no 
menu items. As with the S menu, the items will be inserted from 
within the program. Change the Font menu resource ID to 1 0 0. 
Create another new MENU resource for the Style menu and fill it as 
shown in Figure 5.18. 

The text style of the menu items in the Style menu has been 
changed to reflect the operation it performs in Timer. For example, 
the bold menu item is actually bolded in the menu itself. This is 
done by selecting Bold from ResEdit's Style menu; the bold affects 
only the appearance of the menu item. The Timer code will actually 
do the work of setting the text style, as we will see shortly. Make sure 
the Style menu resource ID is 101. 

When you're finished with the Style menu, close and save 
your work. 

MENU ID= 403 from Timer.11.rsrc 

MENU "Font" ID= 100 fromTimer.11.rsrc 

! Entire Menu: 

-----------~ ! Title: 

0 s (Apple menu) 

181 Enabled 

Color 

Title: I I 

I 
'-----------"'-"-'! 

Item TeHt Default: l•I 
Menu Background: l•I 

Figure 5.17 Font menu specifications. 



Menu Management 167 

..- s File Edit Resource 

Timer. n .rs re 

~ 
Plain lQ 

-: l][I 

0 

Condensed 
E11tended 

0 ··········· (separator line) 

D has Submenu 

Color 

Te11t: I I 
Cmd-Key:D 

Mark:D 

MENU ID = 1O1 from Timer. n .rs re 

Plain 
Bold 
Italic 
Underline 
mmnaamrn 
~llltlJ(!J(i)l!!J 

Entire Menu: [ZJ Enabled 

Title: @~I mJilllllllll 
0 s (Apple menu) 

Color 

rn1e: I I 
I tern Te11t Oefault: I I 
Menu Background: I I 

Figure 5.18 Style menu specifications. 

.., 



168 Macintosh Programming Primer 

You've completed the resources necessary for the window and 
menus of Timer. Now, you'll create an alert that is displayed when 
Rbout Timer is selected from the S menu. For the moment, don't 
worry too much about the alert mechanism (the AL RT and DI TL 
resources). We'll cover alerts in Chapter 6. 

Create a DI TL resource (select Create New Resource and enter 
DI TL). The DI TL (for Dialog ITem List) contains the list of items you 
want to appear in your alert. By convention, the first item is always 
the OK button that the user clicks to make the alert disappear. 
Create a new item by selecting Create New Dialog Item from the 
Resource menu, making it look like Figure 5.19. Close the Item #1 
window and create a second item, making it look like Figure 5.20. 

~0§ Dill ID= 400 from Timer.n.rsrc ~ 

fififrafh'e·r:··"f"fil"e ... ii.roii·r:·a'ili···fr·£.-rn· .. rh'e"1 
jMac Programming Primer ! ! 
1@1990, D. Mark & C. Reed ! ! ! 1 
i ...................................................................................................... .J 

OK 

Edit Dill Item #t 

®Button ®Enabled 
0 Check bOH O Disabled 
0 Radio control 

0 Static teHt top 71 
O Editable teHt 

O CNTL resource 
left 117 

O I CON resource bottom 91 
O PICT resource right 177 
O User item 

Te Ht 
IOK 

Figure 5.19 The OK button. 



Menu Management 

Edit OITL Item #2 

0 Button @)Enabled 
0 Check boH 0 Disabled 
0 Radio control 

@ Static: teHt top 7 
0 Editable teHt 

0 CNTL resource 
left 70 

0 I CON resource bottom 61 

0 PICT resource right 280 
0 User item 

Te Ht Another fine program from the Mac 
Programming Primer ! 
©1990, 0. Mark G· C. Reed ! ! ! 

Figure 5.20 The About Box text. 

169 

Close the Item #2 window. Now, choose Get Res o u re e I n f o from 
the Res o u re e menu and change the D IT L resource ID to 4 0 0. 

Finally, make an alert template to display the D I TL items. Create 
a new AL RT resource. A new AL RT menu should appear in ResEdit's 
menu bar. Select Display as TeHt from the RLRJ menu. Change the 
alert fields so they look like those in Figure 5.21. Finally, change the 
A.LR T resource ID to 4 0 0. 

All the resources are now done. Select Saue from the File menu to 
finish up. 

This has been a pretty extensive resource editing session, so let's 
just make sure the resources went in like they were supposed to. 
Open up your resources as a final check. You should see something 
like Figure 5.22. 

One ALRT, one DITL , one MBAR , one WIND , six MENU s: You're 
ready to code! 



170 Macintosh Programming Primer 

~O~ ALRT ID= 400 from Timer.n.rsrc § 

Top ~ Bottom~ 
Left ~ Right ~ 

Items ID I 400 I Sound (0-3) 

Stage 1 

Stage 2 ~11 
Stage 4 O #2 bold 0 Drawn ~ 

0 #2 bold 0 Drawn 

0 #2 bold 0 Drawn 

O #2 bold 0 Drawn Stage 3 

Figure 5.21 The About Alert, displayed as text. 

'" s File Edit Resource Window Uiew 

LRTs from Ti 
Size 

12 

MBars from 1 
ID Size 

400 10 

D Ills from Ti 
ID Size 

400 116 

WINDS from l 
ID Size 

400 24 

MENUs from Timer.n .rsrc 
ID Size i.ame 

100 20 
101 88 
400 39 
401 29 
402 72 
403 42 

Figure 5.22 Timer resources . 

.., 



Menu Management 171 

Timer Code 

Some of this code can be cannibalized from EventTutor. Just be 
careful with variable names and the like. 

Get into THINK Pascal and start a new project in the T i me r 

folder. Call the project T i me r . 7t. Now, add the code. 

program Timer; 
canst 

var 

BASE_RES_ID = 400; 

PLAIN = [J; 
PLAIN_ITEM = 1; 
BOLD_ITEM = 2; 
ITALIC_ITEM = 3; 
UNDERLINE_ITEM = 4; 
OUTLINE_ITEM = 5; 
SHADOW_ITEM = 6; 

INCLUDE_SECONDS = TRUE; 

ADD_CHECK_MARK = TRUE; 
REMOVE_CHECK_MARK = FALSE; 

DRAG_THRESHOLD = 30; 

SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

QUIT_ITEM = 1; 
ABOUT_ITEM = 1; 

NOT_A_NORMAL_MENU = -1; 
APPLE_MENU_ID = BASE_RES_ID; 
FILE MENU ID = BASE RES ID + 1; 
FONT=MENU=ID = 100;- -
STYLE_MENU_ID = 101; 

CLOCK_LEFT = 12; 
CLOCK_TOP = 25; 
CLOCK_SIZE = 24; 

ABOUT_ALERT = 400; 

gClockWindow: WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gCurrentTime, gOldTime: LONGINT; 
gTheEvent: EventRecord; 



172 

gLastFont: INTEGER; 
gCurrentStyle: Style; 

Macintosh Programming Primer 

{----------------> HandleStyleChoice <--} 

procedure CheckStyles; 
var 

styleMenu: MenuHandle; 
begin 

end; 

styleMenu := GetMHandleCSTYLE_MENU_ID>; 
CheckitemCstyleMenu, PLAIN_ITEM, CgCurrentStyle = 

PLAIN>>; 
CheckitemCstyleMenu, BOLD_ITEM, Cbold in gCurrent 

Style)); 
CheckitemCstyleMenu, ITALIC_ITEM, (italic in gCurrent 

Style»; 
CheckitemCstyleMenu, UNDERLINE_ITEM, (underline in 

gCurrentStyle>>; 
CheckitemCstyleMenu, OUTLINE_ITEM, (outline in 

gCurrentStyle>>; 
CheckitemCstyleMenu, SHADOW_ITEM, (shadow in 

gCurrentStyle>>; 

{----------------> HandleStyleChoice <--} 

procedure HandleStyleChoice Ctheitem: INTEGER>; 
begin 

case theitem of 
PLAIN_ITEM: 

gCurrentStyle := PLAIN; 
BOLD_ITEM: 

if bold in gCurrentStyle then 
gCurrentStyle := gCurrentStyle - [bold] 

else 
gCurrentStyle := gCurrentStyle + [boldJ; 

ITALIC_ITEM: 
if italic in gCurrentStyle then 

gCurrentStyle := gCurrentStyle - [italic] 
else 

gCurrentStyle := gCurrentStyle + [italic]; 
UNDERLINE_ITEM: 

if underline in gCurrentStyle then 
gCurrentStyle := gCurrentStyle -
[underline] 

else 
gCurrentStyle := gCurrentStyle + 
[underline]; 



Menu Management 173 

OUT LIN E_IT EM: 
if outline in gCurrentStyle then 

gCurrentStyle .- gCurrentStyle - [outline] 
else 

end; 

end; 

gCurrentStyle .- gCurrentStyle + [outline]; 
SHADOW_ITEM: 

if shadow in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [shadow] 

else 
gCurrentStyle .- gCurrentStyle + [shadow]; 

CheckStyles; 
TextFaceCgCurrentStyle>; 

{----------------> HandleFontChoice <--} 

procedure HandleFontChoice Ctheltem: INTEGER>; 
var 

fontNumber: INTEGER; 
fontName: Str255; 
fontMenu: MenuHandle; 

begin 

end; 

fontMenu := GetMHandleCFONT_MENU_ID); 
CheckltemCfontMenu, glastFont, REMOVE_CHECK_MARK); 
CheckltemCfontMenu, theltem, ADD_CHECK_MARK); 
glastFont := theltem; 
GetltemCfontMenu, theltem, fontName); 
GetFNumCfontName, fontNumber); 
TextFontCfontNumber>; 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice Ctheltem: INTEGER>; 
begin 

case theltem of 
QUIT_ITEM: 

end; 
end; 

gDone := TRUE; 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice Ctheltem: INTEGER); 
var 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 



174 Macintosh Programming Primer 

appleMenu: MenuHandle; 
begin 

case theitem of 
ABOUT_ITEM: 

end; 
end; 

dummy := NoteAlert(ABOUT_ALERT, nil); 
otherwise 

begin 

end; 

appleMenu := GetMHandleCAPPLE_MENU_ID); 
Getitem(appleMenu, theitem, accName); 
accNumber .- OpenDeskAcc(accName); 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice CmenuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

end; 

if menuChoice <> 0 then 
begin 

theMenu := HiWord(menuChoice); 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE MENU ID: 

end; 

HandleAppleChoiceCtheitem>; 
FILE_MENU_ID: 

HandleFileChoice(theitem>; 
FONT MENU ID: 

HandleFontChoiceCtheitem>; 
STYLE MENU ID: 

HandleStyleChoiceCtheitem); 

HiliteMenuCO>; 
end; 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindow(gTheEvent.where, whichWindow>; 



Menu Management 

case thePart of 
inMenuBar: 

begin 

175 

menuChoice := MenuSelect(gTheEvent.where>; 
HandleMenuChoice(menuChoice>; 

end; 
inSysWindow: 

SystemClickCgTheEvent, whichWindow>; 
inDrag: 

DragWindowCwhichWindow, gTheEvent.where, 
screenBits.bounds>; 

end; 
end; 

inGoAway: 
gDone := TRUE; 

{---------------->DrawClock<--} 

procedure DrawClock CtheWindow: WindowPtr>; 
var 

myTimeString: Str255; 
begin 

IUTimeString(gCurrentTime, INCLUDE_SECONDS, 
myTimeString); 
EraseRect(theWindowA.portRect); 
MoveTo(CLOCK_LEFT, CLOCK_TOP>; 
DrawString(myTimeString); 
gOldTime := gCurrentTime; 

end; 

{---------------->HandleNull 

procedure HandleNull; 
begin 

GetDateTime(gCurrentTime>; 

<--} 

if gCurrentTime <> gOldTime then 
DrawClockCgClockWindow>; 

end; 

{---------------->HandleEvent 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 

if gWNEimplemented then 

<--} 



176 Macintosh Programming Primer 

dummy := WaitNextEventCeveryEvent, gTheEvent, 
SLEEP, nil) 

else 
begin 

SystemTask; 
dummy := GetNextEventCeveryEvent, gTheEvent); 

end; 

case gTheEvent.what of 
nullEvent: 

end; 
end; 

HandleNull; 
mouse Down: 

HandleMouseDown; 
keyDown, autoKey: 

begin 

end; 

theChar := CHRCBitAndCgTheEvent.message, 
charCodeMask)); 

if CBitAndCgTheEvent.modifiers, cmdKey) <> 
Q) then 
HandleMenuChoiceCMenuKeyCtheChar)); 

updateEvt: 
begin 

BeginUpdateCWindowPtrCgTheEvent.message)); 
EndUpdateCWindowPtrCgTheEvent.message)); 

end; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 

ToolTrap) <> NGetTrapAddressCUNIMPL_TRAP_NUM, 
Tool Trap)); 

while CgDone = FALSE) do 
HandleEvent; 

{----------------> MenuBarlnit<--} 

procedure MenuBarlnit; 
var 

begin 

myMenuBar: Handle; 
aMenu: MenuHandle; 

myMenuBar := GetNewMBarCBASE_RES_ID); 



Menu Management 

end; 

SetMenuBar(myMenuBar); 
DisposHandle(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
AddResMenu(aMenu, 'DRVR'); 

aMenu := GetMenu(FONT_MENU_ID); 
InsertMenu(aMenu, NOT_A_NORMAL_MENU); 
AddResMenu(aMenu, 'FONT'); 

aMenu := GetMenu(STYLE_MENU_ID); 
InsertMenu(aMenu, NOT_A_NORMAL_MENU); 
Checkitem(aMenu, PLAIN_ITEM, TRUE); 

DrawMenuBar; 
gLastFont := 1; 
gCurrentStyle := PLAIN; 
HandleFontChoiceCgLastFont); 

{----------------> Wi ndowini t <--} 

procedure Windowinit; 
begin 

gClockWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

SetPort(gClockWindow); 
ShowWindow(gClockWindow); 

TextSize(CLOCK_SIZE); 
end; 

{---------------->Ti mer 

begin 
Windowinit; 
MenuBarinit; 

MainLoop; 
end. 

<--} 

177 



178 Macintosh Programming Primer 

Running Timer 

Now that your source code is in, you're ready to run Timer. Select Go 
from the Project menu. If you run into any compilation problems, 
check for typing errors, or consult the debugging tips found in the 
appendix. When asked to "Save changes before running,'' click Yes. 
Timer should be up and running (see Figure 5.23). 

Timer should display the time in a window in the upper left-hand 
corner of the screen. The menu bar should display the S, File, Edit, 
and Special menus. Desk accessories should work. The File menu 
has just one option, Quit, which should be operational. The Edit 
menu contains the standard menu items but is dimmed. The Special 
menu contains two hierarchical menu items: Font and Style. If you 
select Font, the hierarchical Font submenu should be displayed (top 
of Figure 5.24). If you select Style , the hierarchical Style submenu 
should be displayed (bottom of Figure 5.24). Both hierarchical menus 
should show a check mark next to the currently used font and style. 
If you change the style or font with the menus, the appearance of the 
timer window should change appropriately. Selecting About Timer 
from the menu should bring up the alert that you just created. Click 
on the OK button (or press Return) to make the alert disappear. 

Figure 5.23 Running Timer. 



Menu Management 

N Heluetic:a Narrow 
New Century Sc:hlbk 
Palatino 
Symbol 
Times 
Zapf Chanc:ery 
Zapf Dingbats 

179 

Figure 5.24 Timer hierarchical menus. 

Choose Quit from the File menu. Let's look at the code. 

If you make Timer an application and run it, you 'll notice that, if 
you 're running in MultiFinder, the time is updated only when Timer 
is in the foreground, not when another application is active. This is 
because Timer does not have a s I z E resource (EventTutor had 
the same problem) . See Chapter 8 if you 'd like to add background 
functionality to Timer. 



_J 

180 

Walking Through the Timer Code 

Timer consists of 13 procedures, as shown in Figure 5.25. 
The figure displays where each routine is called. W i n d ow I n i t 

runs, then Menu Ba r I n i t, then Ma i n Loop. Ma i n Loop calls 
Ha n d L e Even t, which runs until the user quits. 

Hand L eNu LL and Hand L eMouseDown handle the two events used 
in Timer: null events and mouseDown events. Hand L e Nu L L calls 
D r a w c L o c k if the time needs to be redrawn. H a n d L e Mou s e Down 
calls H a n d L e Menu C ho i c e if the mouse is clicked in the menu bar. 
Then, different routines handle the different menus. The last routine, 
Check Sty Les, is called within Hand Le Sty Le Choi c es. 

We'll discuss the Timer code following the order of Figure 5.25, in 
that routines are discussed in their order of operation, as they were 
in the discussion of Chapter 4's EventTutor. 

Timer starts off with a set of constants, which we will discuss when 
they are used in the routines. The first global, g C L o c kW i n do w, is the 
pointer to Timer's clock window. g Done, g The Event, and 
g W NE Imp L em en t e d are the same as they are in Chapter 4's 
EventTutor. g C u r re n t Ti me and g 0 L d T i me are used to determine 
when to change the clock display. g La s t Fon t is used to determine 
the current font number in use, and g C u r rent St y L e contains the 
current style used by Timer. 

File Font Style 
menu menu menu 

HandleFile Handle Font HandleStyle 
Choice Choice Choice 

l CheekStylesl 

Edit Menu not handled in Timer 

Figure 5.25 Timer procedures. 



Menu Management 

program Timer; 
const 

var 

BASE_RES_ID = 400; 

PLAIN = [J; 
PLAIN_ITEM = 1; 
BOLD_ITEM = 2; 
ITALIC_ITEM = 3; 
UNDERLINE_ITEM = 4; 
OUTLINE_ITEM = 5; 
SHADOW_ITEM = 6; 

INCLUDE_SECONDS = TRUE; 

ADD_CHECK_MARK = TRUE; 
REMOVE_CHECK_MARK = FALSE; 

DRAG_THRESHOLD = 30; 

SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

QUIT_ITEM = 1; 
ABOUT_ITEM = 1; 

NOT_A_NORMAL MENU = -1; 
APPLE_MENU_ID = BASE_RES_ID; 
FILE_MENU_ID = BASE_RES_ID + 1; 
FONT_MENU_ID = 100; 
STYLE_MENU_ID = 101; 

CLOCK_LEFT = 12; 
CLOCK_TOP = 25; 
CLOCK_SIZE = 24; 

ABOUT_ALERT = 400; 

gClockWindow: WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gCurrentTime, gOldTime: LONGINT; 
gTheEvent: EventRecord; 
gLastFont: INTEGER; 
gCurrentStyle: Style; 

181 



182 Macintosh Programming Primer 

Timer starts by initializing the window and menu bar, then starts 
the M a i n Lo o p : 

{----------------> Ti mer <--} 

begin 
Windowlnit; 
MenuBarlnit; 

MainLoop; 
end. 

W i n do w I n i t is straightforward. A pointer to the new window is 
put into g c lock W i n do w, its characteristics set up by the WIND 
resource. The clock window is made the current port and displayed 
with Show W i n do w. Then, the standard text size is set to 
C L 0 C K_ S I Z E. 

{----------------> Wi ndowlni t <--} 

procedure Windowlnit; 
begin 

end; 

gClockWindow := GetNewWindow 
(BASE_RES_ID, nil, WindowPtr(-1)); 
SetPort(gClockWindow); 
ShowWindow(gClockWindow); 

TextSize(CLOCK_SIZE); 

An initialization routine called Menu Ba r In i t is now called. 
Men u Ba r I n i t starts off by calling Ge t New MB a r to load the MB A R 
resource you created into memory. Get New MB a r automatically loads 
the individual M E N Us pointed to by the MB A R. 

Then S e t Me n u Ba r tells the system to use the MB AR handled by 
myMenuBa r as the current menu bar. (The phrase, "xxx is handled 
by my Men uBa r" really means that my Men uBa r is a handle to xxx.) 

{----------------> MenuBarinit<--} 

procedure MenuBarinit; 
var 

myMenuBar: Handle; 
aMenu: MenuHandle; 



Menu Management 

begin 

end; 

myMenuBar := GetNewMBarCBASE_RES_ID); 
SetMenuBarCmyMenuBar); 
DisposHandleCmyMenuBar); 

aMenu := GetMHandleCAPPLE_MENU_ID); 
AddResMenuCaMenu, 'DRVR'); 

aMenu := GetMenuCFONT_MENU_ID); 
InsertMenuCaMenu, NOT_A_NORMAL_MENU); 
AddResMenuCaMenu, 'FONT'); 

aMenu := GetMenuCSTYLE_MENU_ID); 
InsertMenuCaMen~, NOT_A_NORMAL_MENU); 
CheckltemCaMenu, PLAIN_ITEM, TRUE); 

DrawMenuBar; 
gLastFont := 1; 
gCurrentStyle := PLAIN; 
HandleFontChoice(gLastFont); 

183 

After that, the Ii menu and the hierarchical menus (Font and 
Style) are set to handle their respective MENU data structures. 
I n s e rt Menu is called to add the Font hierarchical submenu to the 
Menu Manager's list of available menus. The N 0 T _A_N ORM A L_M EN U 
parameter tells the Menu Manager not to place the Font menu 
directly on the menu bar. Add Res Menu adds the name of all 
resources of type FONT to the Font menu. Next, Insert Menu is 
called for the Style hierarchical submenu. A check mark is placed 
next to the Plain item on the Style menu with the call to 
C h e c k I t em. You use the handle to the Ii menu so that you can add 
desk accessories to it via the call to Add Res Menu. All desk 
accessories are resources of type D RV R. Add Re s Me n u looks for all 
resources of the specified type (we specified D RV R) and adds the 
resource names found to the specified menu. 

Next, Draw Menu Bar draws the menu bar, and 
Ha n d l e Fon t C ho i c e sets the current font to the first font on the 
Font menu. 

Main Loop is the same as it is in Chapter 4: 

{----------------> Mai nLoop 

procedure MainLoop; 
begin 

gDone := FALSE; 

<--} 



184 Macintosh Programming Primer 

gWNEimplemented := CNGetTrapAddress 
CWNE_TRAP_NUM, TooLTrap) <> 

NGetTrapAddressCUNIMPL_TRAP_NUM, ToolTrap)); 
while CgDone =FALSE) do 

HandleEvent; 
end; 

Ha n d L e Event is similar to the version in Chapter 4. Start by 
checking for the existence of W a i t Ne x t Eve n t and then make the 
appropriate call. Then, switch on g The Event . w ha t. The routine 
HandleNull handles null Events. As usual, mouseDowns are 
handled by H and L e Mou s e Down. key Down and a u t o Key events are 
handled by the same code. In either case, check to see if the 
Command key was depressed when the event occurred. If it was, 
convert the keystroke to a menu selection via Menu Key and pass 
that result to H a n d L e M e n u C h o i c e. Finally, handle u p d a t e E v t s by 
calling B e g i n U p d a t e and E n d U p d a t e . 

Because update Ev ts have a higher priority than nu L L Ev ts, it is 
imperative that you respond to every update Ev t by calling 
Begi nUpdate and EndUpdate. If you didn't, the Window 
Manager would keep queueing up d a t e Ev ts, thinking you hadn't 
received them, and no nu L L Ev ts would ever make it into the 
event queue. One type of event can prevent another from making it 
into the event queue because the queue is finite. If the queue is big 
enough for 20 events, and 20 up d a t e Ev ts are pending, there's 
no room for even one n u L l Ev t . 

You may notice that the update loop isn't used to redraw the 
window in Timer. Instead, the timer is redrawn in the Hand Le Nu L L 
routine every second. Generally, you should use update Ev ts as 
the place to redraw. Timer is coded like this to demonstrate one 
way to use null events. 



Menu Management 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 

if gWNEimplemented then 
dummy := WaitNextEventCeveryEvent, gTheEvent, 

SLEEP, nil) 
else 

begin 
SystemTask; 

185 

dummy := GetNextEvent(everyEvent, gTheEvent); 
end; 

case gTheEvent.what of 
nullEvent: 

HandleNull; 
mouse Down: 

HandleMouseDown; 
keyDown, autoKey: 

begin 

end; 

theChar := CHRCBitAnd(gTheEvent.message, 
charCodeMask)); 

if CBitAndCgTheEvent.modifiers, cmdKey) <> 
Q) then 
HandleMenuChoiceCMenuKeyCtheChar>>; 

updateEvt: 
begin 

BeginUpdateCWindowPtr(gTheEvent.message>>; 
EndUpdateCWindowPtrCgTheEvent.message)); 

end; 
end; 

end; 

Ha n d l e Nu l l is called whenever a nu L l Eve n t is retrieved from 
the event queue. Hand Le Nu L L checks the current time (in seconds) 
and compares it to the last check performed. If the time has changed, 
the clock window is refreshed. 

{----------------> Hand l eNu LL <--} 

procedure HandLeNuLL; 
begin 

GetDateTimeCgCurrentTime>; 

end; 

if gCurrentTime <> gOldTime then 
DrawClockCgCLockWindow>; 



186 Macintosh Programming Primer 

D rawC lock calls the International Utility I UT i me String to get 
the current time in a format suitable for display. Next, the window is 
erased, the pen is positioned, and the new time string is drawn. 
Finally, g O l d Ti me is updated. 

{---------------->Drawe lock<--} 

procedure DrawClock CtheWindow: WindowPtr>; 
var 

myTimeString: Str255; 
begin 

IUTimeStringCgCurrentTime, INCLUDE_SECONDS, 
myTimeString>; 

EraseRectCtheWindowA.portRect); 
MoveToCCLOCK_LEFT, CLOCK_TOP>; 
DrawStringCmyTimeString>; 
gOldTime .- gCurrentTime; 

end; 

Hand le Mouse Down is similar to its Chapter 4 counterpart. 
F i n d W i n do w is called, returning a part code that indicates the part 
of the window in which the mo u s e Down event occurred. In addition, 
F i n d W i n do w sets w h i ch W i n do w to the window in which the 
mouse Down occurred. 

If the mouse Down occurred in the menu bar, Menu Se l e ct is 
called, allowing the user to make a selection from the menu bar. The 
user's selection is passed on to H a n d l e Menu C h o i c e. 

The rest of the part codes are handled as they were in Chapter 4. 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

inMenuBar: 
begin 

end; 

menuChoice := MenuSelectCgTheEvent.where>; 
HandleMenuChoiceCmenuChoice>; 

inSysWindow: 
SystemClickCgTheEvent, whichWindow>; 



Menu Management 187 

end; 
end; 

inDrag: 
DragWindowCwhichWindow, gTheEvent.where, 

screenBits.bounds>; 
inGoAway: 

gDone := TRUE; 

Ha n d L e Me nu C h o i c e takes a four-byte argument. The first two 
bytes contain the menu selected, and the last two bytes contain the 
item selected from that menu. t h e Menu is set to the first two bytes 
and t h e I t em to the last two bytes using the Toolbox routines 
H i W o rd and Lo W o rd. After that, t h e Men u is compared against the 
four M EN U resource IDs to find which one was selected. A different 
routine exists for each of the four menus. When Menu Se L e ct is 
called, the selected menu title is left inverted. When you finish 
processing the menu selection, the menu title is uninverted with a 
call to Hi L i t e Menu C 0 > (1:357). 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice CmenuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

if menuChoice <> 0 then 
begin 

end; 

theMenu := HiWordCmenuChoice>; 
theitem := LoWordCmenuChoice>; 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoiceCtheitem>; 
FILE MENU ID: 

HandleFileChoiceCtheitem>; 
FONT_MENU_ID: 

HandleFontChoiceCtheitem>; 
STYLE_MENU_ID: 

HandleStyleChoiceCtheitem>; 

Hi liteMenuCO>; 
end; 



188 Macintosh Programming Primer 

Ha n d l e App l e Cho i c e handles all S menu selections. If the 
Rbout Timer menu item is selected, the alert with resource ID = 
ABOUT _AL ER T is drawn with Not e A l e r t. Alerts are discussed in 
more detail in Chapter 6. Any other item selected is assumed to be a 
desk accessory. The name of the desk accessory is retrieved with 
Get It em, and the desk accessory is opened with Open Des kAc c. 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theitem: INTEGER>; 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
appleMenu: MenuHandle; 

case theitem of 
ABOUT_ITEM: 

end; 
end; 

dummy := NoteAlertCABOUT_ALERT, nil); 
otherwise 

begin 

end; 

appleMenu := GetMHandleCAPPLE_MENU_ID); 
Getitem(appleMenu, theitem, accName>; 
accNumber .- OpenDeskAcc(accName>; 

Because there's only one item under the File menu, the code for 
Ha n d l e F i l e C ho i c e is pretty simple. The global variable g Done is 
set to TR U E if Quit is selected. The value of g Done is checked every 
time through the main loop. When g Done = TR U E, the program 
knows that it's time to exit. 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice (theitem: INTEGER>; 
begin 

case theitem of 
QUIT_ITEM: 

end; 
end; 

gDone := TRUE; 

The Edit menu is in this application only to support desk 
accessories. All items were dimmed when you created the MENU 
resource. Because you don't care what happens as far as your 
application is concerned, you need not do anything. 



Menu Management 189 

Actually, we've done only half the job so far; although Timer 
allows the use of desk accessories, the Cut, Copy, and Paste 
commands are not yet supported. We'll add this in Chapter 7's 
WindowMaker program. 

Hand le Font Choi c e is called when the Font item in the 
Special menu is selected. First, we get the font's menu handle with 
Ge t M Ha n d l e (you could have used globals for the menu handles, but 
GetMHand le makes it easy to use local.variables). Next, the first 
Check I t em call removes the check mark from whatever had been 
the last font selected. Then, the same call is used to place a check 
mark on the newly selected font. g Last Font is set to the selected 
item number. Next, the Ge t I t em call returns the f on t Name for the 
menu selection that you picked. Ge t F Nu m provides the font number 
given the f on t Name, and finally the font of the text is changed with 
the TextFont call, given the font ID number. 

{----------------> HandleFontChoice <--} 

procedure HandleFontChoice Ctheitem: INTEGER); 
var 

fontNumber: INTEGER; 
fontName: Str255; 
fontMenu: MenuHandle; 

begin 

end; 

fontMenu := GetMHandleCFONT_MENU_ID); 
Checkitem(fontMenu, glastFont, REMOVE_CHECK_MARK); 
CheckitemCfontMenu, theitem, ADD_CHECK_MARK); 
glastFont := theitem; 
Getitem(fontMenu, theitem, fontName); 
GetFNum(fontName, fontNumber); 
TextFontCfontNumber); 

The Style hierarchical submenu controls g Current Style. When 
a style is selected, it must be checked against g C u r r en t S t y l e. If 
the style is currently in use, it must be removed, and vice versa 
(1:171). CheckStyles is then called to update the check marks on 
the Style menu. Finally, Text Face is called to implement the styles 
in gCurrentStyle. 



190 Macintosh Programming Primer 

{----------------> HandleStyleChoice <--} 

procedure HandleStyleChoice (theitem: INTEGER>; 
begin 

end; 

case theitem of 
PLAIN_ITEM: 

end; 

gCurrentStyle := PLAIN; 
BOLD_ITEM: 

if bold in gCurrentStyle then 
gCurrentStyle := gCurrentStyle - [bold] 

else 
gCurrentStyle := gCurrentStyle + [bold]; 

ITALIC_ITEM: 
if italic in gCurrentStyle then 

gCurrentStyle .- gCurrentStyle - [italic] 
else 

gCurrentStyle := gCurrentStyle + [italic]; 
UN D ERL! N E_ITEM: 

if underline in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [underline] 

else 
gCurrentStyle := gCurrentStyle + [underline]; 

OUTLINE_ITEM: 
if outline in gCurrentStyle then 

gCurrentStyle .- gCurrentStyle - [outline] 
else 

gCurrentStyle := gCurrentStyle + [outline]; 
SHADOW_ITEM: 

if shadow in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [shadow] 

else 
gCurrentStyle .- gCurrentStyle + [shadow]; 

CheckStyles; 
TextFace(gCurrentStyle); 

CheckStyles steps through each item in the Style menu, 
placing a check mark next to those styles set in g C u r re n t S t y l e: 

{----------------> HandleStyleChoice <--} 

procedure CheckStyles; 
var 

styleMenu: MenuHandle; 
begin 

styleMenu := GetMHandleCSTYLE_MENU_ID); 
CheckitemCstyleMenu, PLAIN_ITEM, (gCurrentStyle = 

PLAIN)); 



Menu Management 191 

end; 

Checkitem(styleMenu, BOLD_ITEM, (bold in 
gCurrentStyle)); 

Checkitem(styleMenu, ITALIC_ITEM, (italic in 
gCurrentStyle)); 

Checkitem(styleMenu, UNDERLINE_ITEM, <underline in 
gCurrentStyle)); 

Checkitem(styleMenu, OUTLINE_ITEM, (outline in 
gCurrentStyle)); 

Checkitem(styleMenu, SHADOW_ITEM, (shadow in 
gCurrentStyle)); 

That's it for our discussion of Timer. With this code, you should be 
able to add pull down and hierarchical menus to your programs. The 
last menu type, pop-up menus, is explored in the next program. 

_J Zinger 

Zinger opens a window on the desktop and implements a pop-up 
menu of numbers inside the window. When a number is selected from 
the pop-up, Zinger beeps that number of times and resets the value 
on the face of the pop-up to reflect this selection. 

Zinger works like this: 

1. It initializes the window and the pop-up menu, drawing the pop-up 
for the first time. 

2. It activates the pop-up menu when a mouse Down occurs in the 
menu rectangle and redraws the pop-up when an update Ev t 
occurs. 

3. Finally, Zinger quits when the window's close box is clicked. 

Because you've seen much of Zinger's code in previous chapters, 
we'll concentrate on the code that makes the pop-up menu work. 
Start by building a folder called Z i n g e r for the project files. 

Next, create a resource file called Zinger. 7t. rs r c. Then, build a 
resource of type MENU with ID = 4 0 0 and with the specifications 
in Figure 5.26. Note that the resource is identical to a regular pull
down menu. 



192 Macintosh Programming Primer 

MENU ID= 400 from Zinger.n.rsrc 

---------"TA"l ! Entire Menu: 181 Enabled 

2 
3 
4 
5 

I Title: ® ~, N_u_m_b_e_r---------. 

0 s (Rpple menu) 

Figure 5.26 Zinger M EN U specifications. 

Color 

Title: l•I 
Item TeHt Default: l•I 
Menu Background: l•I 

Now, build a WIND with the specifications of Figure 5.27. 

§0§ WIND ID= 400 from Zinger:rr.rsrc s 
Window title: 

I Popup Window I 
~bottom~ 
~right E=:J 

proclD IO I refCon IO I 

top 

left 

D Uisible ~ goRwayflag 

Figure 5.27 Zinger W I N D resource. 



Menu Management 193 

Start a new project called Z i n g e r . 7t, and type in the following 
code: 

program Zinger; 
const 

var 

BASE_RES_ID = 400; 
SLEEP = 60; 
DRAG_THRESHOLD = 30; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 
POPUP_MENU_ID = BASE_RES_ID; 
NOT_A_NORMAL_MENU = -1; 
POPUP_LEFT = 100; 
POPUP_TOP = 35; 
POPUP_RIGHT = 125; 
POPUP_BOTTOM = 52; 
SHADOW_PIXELS = 1; 
RIGHT_MARGIN = 5; 
BOTTOM_MARGIN = 4; 
LEFT_MARGIN = 5; 
PIXEL_FOR_TOP_LINE = 1; 

gDone, gWNEimplemented: BOOLEAN; 
gPopUpitem, gPopUpLabelWidth: INTEGER; 
gPopUpMenu: MenuHandle; 
gTheEvent: EventRecord; 
gPopUpRect, gLabelRect, gDragRect: Rect; 
gPopUpLabelH: StringHandle; 

{----------------> DrawPopUpNumber <--} 

procedure DrawPopUpNumber; 
var 

menuitem: Str255; 
itemLeftMargin: INTEGER; 

begin 

end; 

GetitemCgPopUpMenu, gPopUpitem, menuitem); 
itemLeftMargin := CgPopUpRect.right - gPopUpRect.left -

StringWidthCmenuitem)) div 2; 
MoveToCgPopUpRect.left + itemLeftMargin, 

gPopUpRect.bottom - BOTTOM_MARGIN); 
DrawStringCmenuitem>; 

{----------------> DrawPopUp <--} 

procedure DrawPopUp; 
begin 

SetRectCgPopUpRect, POPUP_LEFT, POPUP_TOP, POPUP_RIGHT, 



194 

POPUP_BOTTOM); 
FrameRect(gPopUpRect); 

Macintosh Programming Primer 

MoveTo(gPopUpRect.left + SHADOW_PIXELS, 
gPopUpRect.bottom); 

LineTo(gPopUpRect.right, gPopUpRect.bottom); 
LineToCgPopUpRect.right, gPopUpRect.top + 

SHADOW_PIXELS); 

MOVETOCGPOPUPRECT.LEFT - GPOPUPLABELWIDTH -
RIGHT_MARGIN, GPOPUPRECT.BOTTOM - BOTTOM_MARGIN>; 

HLock(Handle(gPopUpLabeLH)); 
DrawString(gPopUpLabeLHAA); 
HUnlock(Handle(gPopUpLabeLH)); 

gLabelRect.top := gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabelRect.left := gPopUpRect.left - gPopUpLabelWidth -

LEFT_MARGIN - RIGHT_MARGIN; 
gLabeLRect.right := gPopUpRect.Left; 
gLabeLRect.bottom .- gPopUpRect.bottom; 

DrawPopUpNumber; 
end; 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart, i: INTEGER; 
theChoice: LONGINT; 
myPoint, popUpUpperLeft: Point; 

thePart := FindWindowCgTheEvent.where, whichWindow); 
case thePart of 

inContent: 
begin 

myPoint := gTheEvent.where; 
GlobaLToLocal(myPoint); 
if PtlnRect(myPoint, gPopUpRect) then 

begin 
InvertRect(gLabeLRect); 
popUpUpperLeft.v := gPopUpRect.top + 

PIXEL_FOR_TOP_LINE; 
popUpUpperLeft.h := gPopUpRect.Left; 
LocaLToGLobal(popUpUpperLeft); 
theChoice := PopUpMenuSelect 

CgPopUpMenu, popUpUpperLeft.v, 
popUpUpperLeft.h, gPopUp!tem); 

InvertRect(gLabeLRect); 



Menu Management 195 

end; 
end; 

end; 
end; 

inSysWindow: 

if LoWord(theChoice) > 0 then 
begin 

end; 

gPopUpitem := 
LoWord(theChoice); 

DrawPopUpNumber; 
for i := 0 to gPopUpitem -

1 do 
SysBeepC20); 

SystemClick(gTheEvent, whichWindow); 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
gDone := TRUE; 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 

else 

dummy .- WaitNextEvent(everyEvent, gTheEvent, 
SLEEP, nil) 

begin 
SystemTask; 
dummy := GetNextEvent(everyEvent, gTheEvent); 

end; 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
updateEvt: 

begin 
BeginUpdate(WindowPtr(gTheEvent.message)); 

DrawPopUp; EndUpdate 
(WindowPtr(gTheEvent.message)); 

end; 
end; 

end; 



196 Macintosh Programming Primer 

{---------------->Mai nLoop <--} 

procedure MainLoop; 
begin 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddressCUNIMPL_TRAP_NUM, 
Tool Trap)); 
while gDone = FALSE do 

HandleEvent; 
end; 

{----------------> MenuBarlnit<--} 

procedure MenuBarlnit; 
begin 

end; 

gPopUpMenu := GetMenuCPOPUP_MENU_ID); 
InsertMenuCgPopUpMenu, NOT_A_NORMAL_MENU); 
gPopUpLabelH := GetStringCBASE_RES_ID); 
HLockCHandleCgPopUpLabelH)); 
gPopUpLabelWidth := StringWidth(gPopUpLabelHAA); 
HUnlockCHandleCgPopUpLabelH)); 
gPopUpltem .- 1; 

{----------------> Window In it <--} 

procedure Windowlnit; 
var 

popUpWindow: WindowPtr; 
begin 

popUpWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtrC-1)); 

SetPortCpopUpWindow); 
ShowWindowCpopUpWindow); 

TextFontCsystemFont); 
TextModeCsrcCopy); 

end; 
{----------------> Zinger <--} 

begin 
Windowlnit; 
MenuBarlnit; 
DrawPopUp; 

MainLoop; 
end. 



Menu Management 197 

_J 

Save your code as Z i n g e r . p and add it to the project. When you 
run the program, you should get a window with a pop-up box in it 
(Figure 5.28). When you select a number on the menu, Sys Beep 

' should sound for the number of times that you selected. If you don't 
hear anything, check the volume in the control panel. If it's set above 
zero, and you don't have an external speaker attached to your Mac's 
sound port, check your code. 

Figure 5.28 Zinger! 

Walking Through the Zinger Code 

Figure 5.29 displays where each routine is called. W i n do w In i t 

runs, then MenuBarlnit, then DrawPopUp, then Mainloop. 
Main Loop calls Hand Le Event, which runs until the user quits. 

Draw PopUp and Hand Le Mouse Down handle two events used in 
Zinger, update events and mouse Down events. Hand Le Mouse Down 
calls Draw Pop Up Number if an item is selected in the pop-up menu. 
D raw Pop Up is called if an update event occurs. 



198 Macintosh Programming Primer 

We'll discuss the Zinger code following the order of Figure 5.29, so 
that routines are discussed in their order of operation. 

Zinger starts, as usual, with constants, followed by declaration of 
its global variables: 

con st 

var 

BASE_RES_ID = 400; 
SLEEP = 60; 
DRAG_THRESHOLD = 30; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 
POPUP_MENU_ID = BASE_RES_ID; 
NOT_A_NORMAL_MENU = -1; 
POPUP_LEFT = 100; 
POPUP_TOP = 35; 
POPUP_RIGHT = 125; 
POPUP_BOTTOM = 52; 
SHADOW_PIXELS = 1; 
RIGHT_MARGIN = 5; 
BOTTOM_MARGIN = 4; 
LEFT_MARGIN = 5; 
PIXEL_FOR TOP_LINE = 1; 

gDone, gWNElmplemented: BOOLEAN; 
gPopUpltem, gPopUpLabelWidth: INTEGER; 
gPopUpMenu: MenuHandle; 
gTheEvent: EventRecord; 
gPopUpRect, gLabelRect, gDragRect: Rect; 
gPopUpLabelH: StringHandle; 

If mouseDown( or cmdkey) 

Hendl eMouseDown 

if user chose menu item: 

IHendleMenuCh01ce 

if update event 
I DrowPopUp 

Figure 5.29 Zinger procedures. 



Menu Management 199 

Zinger starts like Timer, except that it calls Draw Pop Up before it 
enters the Main Loop: 

{---------------->Zinger 

begin 
Windowinit; 
MenuBarinit; 
DrawPopUp; 

Mainloop; 
end. 

<--} 

W i n do w In i t may give you a sense of deja vu, as well. 
pop Up W i n do w is loaded, made visible, and made the current port. 
Next, the font is changed to sys t em F o n t, the same font used to 
draw the regular pull-down menus. The srcCopy text mode is used 
to simplify drawing of the pop-up menu item. With s r c Copy 
enabled, text drawn in a window overlays existing graphics. 

{----------------> Windowinit <--} 

procedure Windowinit; 

begin 

end; 

var 
popUpWindow: WindowPtr; 

popUpWindow := GetNewWindowCBASE_RES_ID, 
nil, WindowPtr(-1)); 

SetPortCpopUpWindow>; 
ShowWindow(popUpWindow); 

TextFontCsystemFont); 
TextModeCsrcCopy); 

In Menu Ba r I n i t, as in the routines in Zinger that handled the 
hierarchical menus, you load the MENU and add it to the menu list 
via the call to I n s e r t Me n u. Next, get the pop-up label from the 
menu data structure and calculate its width in pixels. You'll use this 
information later. 

{----------------> MenuBarinit 

procedure MenuBarinit; 
begin 

<--} 

gPopUpMenu := GetMenuCPOPUP_MENU_ID); 
InsertMenu(gPopUpMenu, NOT_A_NORMAL_MENU); 
gPopUplabelH := GetStringCBASE_RES_ID); 
HLockCHandle(gPopUplabelH)); 



200 

end; 

Macintosh Programming Primer 

gPopUpLabelWidth := StringWidth(gPopUpLabelHAA); 
HUnlockCHandle(gPopUpLabelH)); 
gPopUpltem := 1; 

Ma i n Loop works as it did in Timer: 

{----------------> Main Loop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gWNEimplemented := (NGetTrapAddressCWNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM, 
Tool Trap)); 
while CgDone = FALSE) do 

HandleEvent; 

----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 
dummy := WaitNextEvent(everyEvent, gTheEvent, 

SLEEP, nil) 
else 

begin 
SystemTask; 
dummy := GetNextEvent(everyEvent, gTheEvent); 

end; 

case gTheEvent.what of 
mouse Down: 

HandleMouseDown; 

When Zinger gets an update Ev t, it redraws the pop-up menu: 

case updateEvt: 
updateEvt: 

end; 
end; 

begin 
BeginUpdate(WindowPtr(gTheEvent.message)); 
DrawPopUp; 
EndUpdate(WindowPtr(gTheEvent.message)); 

end; 



Menu Management 201 

If the mouse was clicked in the window, copy the point, convert it 
to the window's local coordinate system, and check to see if it's inside 
g Po p U p R e c t . If so . . . 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart, i: INTEGER; 
theChoice: LONGINT; 
myPoint, popUpUpperleft: Point; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

inContent: 
begin 

myPoint := gTheEvent.where; 
GlobalTolocalCmyPoint>; 
if PtinRectCmyPoint, gPopUpRect) then 

begin 

. . . invert the label and use g Pop Up Re c t to determine where the 
pop-up menu should appear. Because Pop Up Menu Se L e c t works 
with global coordinates, call Lo ca l To G lob a l to convert 
popUpUpperleft. Next, call PopUpMenuSelect to implement 
the pop-up menu. Then, uninvert the label. 

Finally, handle the selection by calling S y s Be e p the selected 
number of times. g Pop Up I t em is set to the selected item number, so 
the next time the pop-up appears, g Pop Up I t em will be the default. 

Early versions of Apple's system 6 software had problems with the 
sys Beep call. If you experience problems with Zinger, make sure 
that you are not using System 6.0 or 6.1 ! 

InvertRectCgLabeLRect); 
pop Up Upper Left . v : = g Po pU p Rec t • top + 

PIXEL_FOR_TOP_LINE; 
popUpUpperleft.h := gPopUpRect.left; 
LocaLToGlobaLCpopUpUpperleft); 
theChoice := PopUpMenuSelect 

CgPopUpMenu, popUpUpperleft.v, 
popUpUpperleft.h, gPopUpitem>; 

InvertRect(glabelRect); 
if LoWordCtheChoice) > 0 then 

begin 



202 

end; 
end; 

end; 
end; 

inSysWindow: 

end; 

Macintosh Programming Primer 

gPopUp!tem := LoWord 
(theChoice); 

DrawPopUpNumber; 
for i := 0 to gPopUpitem -

1 do 
SysBeep(2Q); 

SystemCLickCgTheEvent, whichWindow); 
inDrag: 

DragWindowCwhichWindow, gTheEvent.where, 
screenBits.bounds); 

This is not the way "proper" Macintosh applications exit. Use a 
Quit item in the File menu for your applications. 

inGoAway: 
gDone := TRUE; 

Draw Pop Up will draw the pop-up outline, its one-pixel drop 
shadow, the pop-up label, and set g Lab e L Rec t, which you'll invert 
when the pop-up is selected. D raw Pop Up will also be called to 
handle update Ev ts. After the background is drawn, call 
D raw Pop Up Numb e r to draw the current menu value-in this case, a 
number. 

{----------------> D rawPopUp <--} 

procedure DrawPopUp; 
begin 

SetRect(gPopUpRect, POPUP_LEFT, POPUP_TOP, POPUP_RIGHT, 
POPUP_BOTTOM); 

FrameRect(gPopUpRect); 

MoveTo(gPopUpRect.left + SHADOW_PIXELS, 
gPopUpRect.bottom); 

LineTo(gPopUpRect.right, gPopUpRect.bottom); 
LineTo(gPopUpRect.right, gPopUpRect.top + 

SHADOW_PIXELS); 

MoveTo(gPopUpRect.Left - gPopUpLabeLWidth -
RIGHT_MARGIN, gPopUpRect.bottom - BOTTOM_MARGIN); 

HLockCHandleCgPopUplabeLH)); 
DrawString(gPopUplabeLHAA); 
HUnlockCHandleCgPopUpLabeLH)); 



Menu Management 203 

gLabelRect.top := gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabeLRect.Left := gPopUpRect.Left - gPopUpLabeLWidth -

LEFT_MARGIN - RIGHT_MARGIN; 
gLabeLRect.right := gPopUpRect.Left; 
gLabeLRect.bottom .- gPopUpRect.bottom; 

DrawPopUpNumber; 
end; 

Draw Pop Up Number gets the menu item corresponding to 
g Pop Up I t em, calculates the margin, and draws it: 

{----------------> DrawPopUpNumber <--} 

procedure DrawPopUpNumber; 
var 

menultem: Str255; 
itemLeftMargin: INTEGER; 

begin 

end; 

Getltem(gPopUpMenu, gPopUpltem, menultem); 
itemLeftMargin := (gPopUpRect.right - gPopUpRect.Left -

StringWidth(menultem)) div 2; 
MoveTo(gPopUpRect.Left + itemLeftMargin, 

gPopUpRect.bottom - BOTTOM_MARGIN); 
DrawString(menultem); 

_J In Review 

Menus are an intrinsic part of the Macintosh interface. Designing 
them correctly allows you to take advantage of the familiarity of 
users with standard Mac menus. The standard pull-down menu does 
the job for many applications, and hierarchical and pop-up menus 
bring freshness to the interface. 

In Chapter 6, you'll learn about another essential part of the Mac 
interface: creating and controlling dialog boxes. While you're there, 
you'll also look at one of the newest managers on the Macintosh: the 
Notification Manager. 



Working with 
Dialogs 

In a dialog box, the computer presents 
a list of alternatives for the user to 
choose from. Alerts are simplified 

dialogs, used to report errors and give 
warnings to the user. Chapter 6 

discusses both of these, along with the 
Notification Manager, Apple's 

background notification mechanism. 

6 



DIALOGS ARE AN important part of the Macintosh interface; they 
provide a friendly, standardized way of communicating and receiving 
feedback from the user. Some dialogs ask questions of the user. Others 
offer the user the opportunity to modify current program parameters 
(Figures 6.1 and 6.2). Some dialogs are the direct result of a user 
menu selection. For example, when you select Print ... from within an 
application, the Print Job dialog appears (Figure 6.3). 

Dialogs that appear as a direct result of menu commands give you 
a chance to change your mind (with the Cancel button), to continue 
on as planned (with the OK button), or to change things around a bit 
before continuing. 

Wedding IJows ... 

® Change menu O Ch<m~j(~ ~•~h~i:Hon 

Bride: Groom: 

Amy ~ 

1~a~m~0m:~•ia••J 
Constraints: 
181 Loue 
181 Cherish 
0Dbey 

Reuert 

' I 

Bill 
oaue 
Fred 
Steue 
Zaphod I 

Marriage shall last: 
® -as long as they both 

shall Hue. 
O -subject to health and 

wealth settings. 

( Cancel J ([ DK ]J 

Figure 6.1 "Wedding Vow Options" dialog box. 

=L=as=e=r=W=r=it=e=r =Pa=g!E:e=Se=t=;u~p=====::========s=.2== ([ OK )J 
Paper: ® US Letter O R4 Letter O Tabloid 

O US Legal O 85 Letter ( Cancel ) 

Reduce or 1Hmil% 
Enlarge: 

Orientation 

-~ 

Printer Effects: 
181 Font Substitution? 
181 TeHt Smoothing? 
IZI Graphics Smoothing? 
181 Faster Bitmap Printing? 

Figure 6.2 Page Setup dialog box. 

(Options) 

Help 

207 



208 Macintosh Programming Primer 

By convention, menu items that spawn dialog boxes always end 
with an ellipsis ( •.• ). For example, the Print ... item on the File 
menu brings up a print dialog box. 

Another important part of the Mac interface is the alert mech
anism. Alerts (Figure 6.4) are simplified dialogs, used to report 
errors and give warnings to the user. From a programmer's point of 
view, alerts are easier to deal with than dialogs, so we'll use them 
when we can. 

Chapter 6 also presents the Notification Manager, one of the 
newer additions to the Toolbox. The Notification Manager is designed 
to work with MultiFinder, so that a program not currently in the 
foreground has a way of notifying the user of an important event. 

LaserWriter "LaserWriter" 5.2 ll OK J 
Copies:jlMj Pages:® Rll O From: CJ To: CJ ( Cancel ) 

Couer Page: ® No O First Page O Last Page 

Paper Source:® Paper Cassette O Manual Feed 

Figure 6.3 Print Job dialog box. 

There's not enough 
memory to edit another 
document. 

t OK » 
Figure 6.4 An Alert! 

Help 



_J 
How Dialogs Work 

Dialog boxes consist of a window and a list of dialog items. When the 
dialog first appears, each item on the dialog item list is drawn. Typical 
dialog items include checkboxes, radio buttons, and push buttons. 
These items are called controls. In addition, static text fields, editable 
text fields, PI C Ts, and I C 0 N s may also be part of an item list (Figure 
6.5). Every dialog box has at least one exit item (by convention, most 
dialog boxes offer an OK button for this purpose). There are two 
different kinds of dialogs: modal dialogs and modeless dialogs. 

Selected Radio Button Radio Button 

I mageWriter 

Paper: @ US Letter 
0 US Legal 

O A4 Letter 
v2.1 l'lii[ .... o .... K.......,D 

O International Fanfold 
O Computer Paper 

Orientation Special Effects: D Tall Adjusted 
[Z] 50 '7o Reduction 
[8] No Gaps Between Pages 

Checked Check BoH 

Static TeHt 

lmageWriter v2.7 

Quality: Q BPsi Q f <I~\~:~ Qnrnn 

Page Range: @All O From: D To: D 
Copies: D 
Paper Feed: @Automatic O Hand Feed 

Editable TeHt 

Figure 6.5 Dialog items. 

[ Cancel ) 

Button 

(( OK l 
[ Cancel ) 

209 



210 Macintosh Programming Primer 

Modal Dialogs 

A modal dialog is one to which the user must respond before the 
program can continue. Modal dialogs are used for decisions that must 
be made immediately. They represent the vast majority of dialog boxes. 

The Macintosh is generally a modeless machine. This means that 
most of the operations performed by an application are available to 
the user most of the time. For example, most of the operations 
performed by THINK Pascal are available via pull-down menus. 
Modal dialogs come into play when you must focus the user's 
attention on a specific task or issue. Alerts are always modal. 
Dialog boxes aren't always modal. 

Modeless Dialogs 

Modeless dialogs act more like regular windows; they appear to the 
user like any other window and can be brought to the front with a 
mouse click, or even dragged around the screen. Whereas modal 
dialogs require an immediate response from the user, modeless 
dialogs may be set aside until they are needed. The algorithms used 
to implement modal and modeless dialogs are quite different. 

The Modal Dialog Algorithm 

The algorithm for modal dialogs follows these steps: 

1. First, load the dialog (including the dialog's item list) from the 
resource file using G e t N e w D i a l o g . 

2. Then, make the dialog window visible (just as you would a new 
window). 

3. Next, enter a loop, first calling Mod a l D i a log to find out which 
item the user selected, then processing that item. When an exit 
item (such as OK or Cancel) is selected, exit the loop. 



Working with Dialogs 211 

_J 

The Modeless Dialog Algorithm 

The algorithm for modeless diaglogs follows these steps: 

1. First, load the dialog and make it visible (as was done with the 
modal dialog). 

2. AB an event is returned by Ge t Ne x t Event or W a i t Next Event, 
pass it on to I s D i a l o g Ev e n t . 

3. If IsDialogEvent returns FALSE, the event is not related to 
the dialog and should be handled normally. Otherwise, the event 
should be passed to D i a l o g S e l e c t . 

4. D i a l o g S e l e c t returns a pointer to the dialog box whose item 
was selected, as well as the number of the item selected by the 
user. Process the item as you would with Mod a l D i a log. 

Let's look at the types of items found in dialogs. 

Dialog Items: Controls 

One of the most important types of dialog items are controls. 
Controls are items that exist in at least two different states. For 
example, the checkbox can be checked or unchecked (Figure 6.6). 
Although controls may be defined by the program designer, four 
types of controls are already defined in the Toolbox. They are 
buttons, checkboxes, radio buttons, and dials. 

D C:heck boH # 1 

[81 C:heck boH #2 

Figure 6.6 The checkbox 



212 Macintosh Programming Primer 

These controls fall under the jurisdiction of the Control Manager, 
which handles the creation, editing, and use of controls. 

Buttons 

The classic example of a button is the 0 K button found in most dialog 
boxes (Figure 6. 7). When the mouse button is released with the cursor 
inside the button, the button's action is performed. For example, 
clicking an OK button might start a print job or save an application's 
data. Those of you who are familiar with HyperCard should note the 
similarity of HyperCard buttons to Toolbox buttons. Toolbox buttons 
have the shape of rounded-corner rectangles, whereas HyperCard 
buttons have more variation in shape and appearance. 

Checkboxes 

Checkboxes are generally used to set options or arguments of an 
action. For example, you might use a checkbox to determine whether 
the user wants sound turned on or off in an application (Figure 6.8). 

Scale selection so.oo I% 

( Cancel J OK D 

Figure 6.7 Cancel and OK buttons. 



Working with Dialogs 

Play Options: 

r:2J Sound On 

[;2J Aduanc:ed Leuel 

OK 

Figure 6.8 Checkbox example. 

Radio Buttons 

213 

Radio buttons are similar to checkboxes in function, in that they 
also are generally used to set options or choices in a dialog box. 
Figure 6.9 shows some radio buttons. The difference between radio 
buttons and checkboxes is that the choices displayed in radio buttons 
are mutually exclusive. Radio buttons appear in sets, and one and 
only one radio button in a set may be on (or highlighted) at any given 
time (Figure 6.10). 

Measure in: 

@ inches O centimeters 

Figure 6.9 Radio button example. 



214 

Your Order: 

® Hamburgers 
@ French Fries 
®Coca-Cola 

n OK D 

Wrong Way: radio 
buttons should indicate 
mutually eHclusiue 
options. 

Figure 6.10 Radio button etiquette. 

Dials 

Macintosh Programming Primer 

How much do you make? 

O I make a lot of money 
O I make enough money 
® Got a nickel? 

n OK D 

Right Way: only one 
of these choices 
would reasonable be 
picked. 

Dials are different from other controls: They display and supply 
qualitative instead of off/on information. The only dial control type 
predefined in the Toolbox is the scroll bar (Figure 6.11), which is an 
integral part of many Mac application windows. In Chapter 7, we'll 
show you how to set up a scroll bar. 

Pager 

li 

Q, .. ' ~ Q, ?' , \,, 
. .,G.,, GQ) G " 

Gf'"'i'" ,, Q) 
~"'G ..... 

~yG~ • .J. 0,. 0 

· .. o.·. -. ··.o. . 

< - ··" 

Figure 6.11 Scroll bar example (from Pager in Chapter 7). 



_J Other Dialog Items 

Controls are only one type of item used in dialogs. You can display 
pictures (PI CTs) and icons (resource type I CON) in dialog boxes. You 
can also add static and editable text fields, as well as user items, to 
your dialogs (Figure 6.12). User items designate an area of the dialog 
box that will be drawn in by a us e r I t em procedure. If the procedure 
draws outside the user item Rec t, the drawing is clipped. For 
example, you can define a clock-drawing procedure that gets updated 
each time M o d a l D i a l o g is called. 

ResEdit makes it easy to define a group of dialog items. Figure 
6.13 shows how ResEdit allows you to graphically edit the 
appearance of a dialog and the items within it. 

Info 
Custom Control 

Icon ,___,__A. Amazing Paint™ 
Amazing Paint v1 .0.1 

Locked D 

Kind: application 

Don't set 
Size : 197 ,025 by tos usod, 1951< on disk 

the 11olume ---.static TeHt 1--4---Yhere: Hard Disk, Fll'B scs1 •o 
too high! 

iJ---f+----IPICT 

~--~ 

([ DK JI 
User Item 

Editable TeHt 

Figure 6.12 Other dialog items. 

Created: Tuo, Jun 19, 1990, 12:00 AM 
Modified: Sun, Jul 29, 1990, 9:30 AM 
Version : v 1 .0 .1 , Copy right © 1990 

CE Softwaro, Inc. 

Suggested Memory Size (K): 448 

Application Memory Size (K): ~ 

215 



216 Macintosh Programming Primer 

:Alarm goes off in: 1 O :seconds : 
................... ....................................... ,~---························ ··· 

~ ................ ......................................... : : ............................ ; 

D Sound on 

D Rotate I con 

D Display Alert 

Saue 

Figure 6.13 Making dialogs (in ResEdit). 

Where do dialog items come from? 

Tise: : 
0 Seconds 

0 Minutes 

[Cancel ) 

., 

Some dialog items are controls , like check boxes and radio 
buttons. Other items, like PI CTs and I CONs, are resources that 
may be used in both windows and dialogs. Finally, there are items 
like editable text and static text items that are created and 
managed by the dialog manager-you won't see them in regular 
windows. 

Working with Alerts 

Alerts are very much like dialogs: You build them using ResEdit, and 
they consist of a window and a dialog item list. However, alerts are 
self-contained and can be invoked with a single line of code. Whereas 
Mod a L D i a Log is called repeatedly inside a loop, the alert procedures 
are called once. Each alert routine takes care of its own housekeeping. 



Working with Dialogs 217 

There are three standard types of alerts: note alerts, caution 
alerts, and stop alerts (Figure 6.14). Note alerts have an informa
tive tone and are an easy way to tell the user something. Caution 
alerts tell the user that the next step taken should be considered 
carefully, as it may lead to unexpected results. Stop alerts indicate a 
critical situation, such as a fatal error, that must be brought to the 
user's attention. 

Another fine program from the 
Mac Programming Primer! 
©1990, D. Mark & C. Reed!!! 

K OK JI 

The computer has now 
checkmated you 38 times in a 
row. 
Perhaps you should take up 
backgammon ... 

(( Gee! JJ 

Tri-Dimensional Desktop 
Professional Uersion 2.01 a 
requires 84 megabytes of 
RAM. Please purchase and 
install immediately. 

([ Aargh! JI 

Figure 6.14 Note, caution, and stop alerts. 



218 

_J 

Macintosh Programming Primer 

Each alert exists in stages. The first time an alert is presented, it 
is a stage 1 alert; the second time, a stage 2 alert; the third time, a 
stage 3 alert; the fourth and subsequent times, a stage 4 alert. You 
can design your alerts so that stage 1 alerts are silent but stage 2, 3, 
and 4 alerts beep when the alert is presented. You can also specify 
whether or not the alert is presented at different stages. 

The Alert Algorithm 

Working with alerts is easy. Build your alert with ResEdit by 
creating an AL RT and a DI TL. Unlike regular dialogs, the only type 
of control you should put in your alert dialog item list is a button. 
The alert mechanism is as follows: 

1. Load and present the alert with a call to Stop A Le rt, 
N o t e A L e r t , or C a u t i o n A L e r t . 

2. Use the value returned from each of these functions to determine 
which item was hit (i.e., which button was pressed). 

Adding Dialogs to Your Programs 

In this chapter, we'll show you how to build modal dialog boxes and 
alerts through the use of D LOG and D I TL resources. Although we 
could have created the dialog structure in THINK Pascal instead, we 
chose to emphasize the resource-based approach. 

As was stated in the dialog algorithm, to put a dialog box in your 
application, you do the following things: initialize the Dialog 
Manager and load your dialog box resources, call Mod a L D i a Log ,and 
respond to the events that occur in the dialog box window. 

Here's an outline of the procedure. First, initialize the Dialog 
Manager (THINK Pascal does this for you): 

InitDialogs( nil >; 

Then, load a dialog from your resource file with the 
GetNewDi a Log routine: 

myDialog: = GetNewDialog( resource_ID,nil, 
WindowPtr<-1>; 



Working with Dialogs 219 

Now, initialize each of your controls. Each control has a unique 
item number, defined in the DI TL resource (Figure 6.15). Use 
Get DI t em to get a handle to each control item in the dialog box; then 
use Set Ct l Va l u e to set the buttons, radio buttons, and check boxes 
to their initial values. For example, the following routine will fill the 
first radio button and clear the second radio button in a dialog box: 

FIRST_RADIO:= 2; 
SECOND RADIO := 3; 

ON . - 1; 
OFF .- O; 

GetDitem( myDialog, FIRST_RADIO, itemType,itemHandle, 
itemRect ); 

SetCtlValue( itemHandle, ON ); 
GetDltem( myDialog, SECOND_RADIO, itemType, itemHandle, 

itemRect ); 
SetCtlValue( itemHandle, OFF >; 

FIRST_RADIO and SECOND RADIO are the radio button item 
numbers defined in the D IT L resource. The first radio button will be 
set to ON, the second to OFF (Figure 6.16). 

§0§ Dill "Alarm" ID= 400 from Remind 

D Sound on 

D Rotate I con 

D Display Alert 

Saue ) 

Figure 6.15 A sample DI TL. 

!~:~·.~-_::] 
0 Seconds 

0 Minutes 

( Cancel ) 



220 

@ First Radio Button 
O Second Radio Button 

OK 

Figure 6.16 Radio buttons 

D Check boH # 1 

[8l Check boH #2 

18] Check boH #3 

(( OK JI 

Figure 6.17 Three checkboxes. 

Macintosh Programming Primer 

Here's an example of initialization of a series of checkboxes. The 
code fragment clears the first checkbox and checks the second and 
third checkboxes (Figure 6.17). 

FIRST_CHECKBOX := 4; 
SECOND_CHECKBOX := 5; 
THIRD_CHECKBOX .- 6; 

ON .- 1; 
OFF .- O; 



Working with Dialogs 221 

GetDitemC myDialog, FIRST_CHECKBOX, itemType, 
itemHandle, itemRect >; 

SetCtlValueC itemHandle, OFF >; 
GetDitem( myDialog, SECOND_CHECKBOX, itemType, 

itemHandle, itemRect >; 
SetCtlValueC itemHandle, ON >; 
GetDitem( myDialog, THIRD_CHECKBOX, itemType, 

itemHandle, itemRect >; 
SetCtlValueC itemHandle, ON >; 

When you create your o Lo G in Res Edit, make sure the vi s i b le 
box is unchecked. That way, if you load your dialog at the 
beginning of your program, it won't appear until you're ready. 

By the way, if you plan on drawing in the dialog box with QuickDraw 
(which you might want to do with a useritem procedure), make 
the dialog the current port: 

SetPort( myDialog >; 

Then, when the dialog is made visible, draw away. 

Make the dialog visible by calling S h ow W i n do w. You're now ready 
to call Mod a l D i a l o g to handle the events that occur in the dialog 
window. 

dialogDone = FALSE; 
ShowWindowC myDialog >; 
while dialogDone = FALSE do 

begin 
ModalDialogC nil, itemHit >; 
case itemHit of 
OK BUTTON: 

- begin 
dialogDone := TRUE; 

end; 



222 

end; 
end; 

Macintosh Programming Primer 

FIRST_RADIO: 
begin 

HandleRadio 
C SECOND_BUTTON >; 

end; 

THIRD_CHECKBOX : 
begin 

HandleCheck 
C THIRD_CHECKBOX ); 

end; 

HideWindowC myDialog >; 

When the user clicks the OK button, the dialog loop exits and the 
dialog window is made invisible again. 

If you're dealing with more than one window, make sure you are 
aware of routines like s e le ct w i n do w, which brings the window 
specified in the parameter to the front. You may also want to 
consider hiding your other windows while your dialog box is visible, 
and then showing them when you drop out of the dialog loop. 

Dialog items are either enabled or disabled. If an item is disabled, 
Mod a l D i a l o g will not report mouse clicks in the item. In general, 
clicking I CONs and PI CTs in a dialog box has no special significance, 
so disable both of these types of items. 

Static text and Editable text fields are also usually disabled, 
although you may change them in response to other events. For 
example, a timer might display the time in minutes or seconds, 
depending on the value of a set of radio buttons (Figure 6.18). If the 
Seconds radio button is clicked, the static text field could read 
Seconds. If the Minutes radio button is clicked, the static text field 
could be changed to read Minutes. Use the routines G e t IT ex t and 
S et I Tex t to read and set the values of static text fields. 



Working with Dialogs 

[3J Minutes -----1JL Static Te Ht J 
0 Seconds 

@Minutes 

t OK I 

Figure 6.18 Static text. 

223 

Pa ram Text allows you to create a set of four default strings that 
can be substituted in your static text fields. To specify them, call 
Pa ram Te x t with four S t r 2 5 5 s: 

ParamText( 'the tiny republic of Togo', 
'porkpie hats', 'babar', 
'Altarian dog biscuits' ); 

From now on, whenever the strings ""O", ""l'', ""2'', or ""3" appear 
in a static text item, they will be replaced by the appropriate 
Pa ram Text parameter. Pa ram Text is used in Chapter 7's error
handling routines. 

You can store Par am Text strings in your resource file as 
resources of type • s TR ' or inside a single • s TR# • resource, 
then read the strings in with Get Resource or Get st r i n g, and 
finally, pass them to Pa ram Text. If, during the course of running 
your program, you decide to change the values of your strings, you 
can write them back out to the resource file with 
w r i t e Res o u r c e. This is a little tricky, but it gives you a great 
way to store program defaults. The mechanism for modifying 
resources is covered in Inside Macintosh, Volume I, pages 
122-127. 



224 

_J 

Macintosh Programming Primer 

G e t I Te x t and S e t I Te x t can also be used to modify the contents 
of an editable text field. Here's an example: 

GetDitem( myDialog, TEXT_FIELD, itemType, 
itemHandle, itemRect ); 

Get!Text( itemHandle, myString ); 
Set!Text( itemHandle, 'I've been replaced!!!' ); 

The last three arguments to Get DI t em are placeholders. That is, 
they won't always be used, but you always need to provide a 
variable to receive the values returned. In the previous example, 
i temHand Le was used, but i temType and i temRect were not. 

Like I CON s and PI C Ts, editable and static text field items should 
be disabled so that mouse clicks are not reported. In the case 
of editable text fields, the dialog manager handles the mouse click 
for you. 

The Notification Manager 

The Notification Manager contains calls that allow applications 
running in the background to communicate with the user. The 
Notification Manager was first implemented in System 6.0. Because 
the Notification Manager is not described in Inside Macintosh, we've 
provided the following tech block. We warn you, though, that this is 
an experimental, highly classified, multipage tech block. Take your 
time. Remember, read all the directions before you start. 



Working with Dialogs 225 

How the Notification Manager Works 

The Notification Manager alerts the user that a background 
application requires the user's attention. The following notification 
techniques can be used. First, a small diamond-shaped mark ( +) 
may be placed on the notifying application's item in the .S menu. 

Next, the .S icon may be rotated with another small icon (see 
Figure 6.19). Then, the user may be notified of the event by a 
sound designated by the background application. Finally, an alert 
can be displayed with a message regarding the event (see Figure 
6.20). After the user clicks on the alert's OK button, a response 
procedure defined in the notifying application can be called . 

... • File Edit Uiew Special 

... 
(~) File Edit Uiew Special 

... • File Edit Uiew Special 

Figure 6.19 Small icon rotation. 

Figure 6.20 Alert message from the Notification Manager. 



226 Macintosh Programming Primer 

The Notification Manager will still run even if your program is not 
running under MultiFinder. Because your program can't run in the 
background, however, the Notification Manager's functionality will 
be limited. 

The Notification Manager Structure 

Each call to the Notification Manager makes use of the NM Re c 
data structure: 

TYPE NM Rec = 
qlink: 
qType: 

nmflags: 
nmPrivate: 
nmReserved: 
nmMark: 

nmSicon: 
nmSound: 
nmStr: 
nmResp: 

nmRefCon: 
END; 

RECORD 
QElemPtr; 
INTEGER; 

INTEGER; 
LONGINT; 
INTEGER; 
INTEGER; 

Handle; 
Handle; 
StringPtr; 
ProcPtr; 

LONGINT; 

<next queue entry} 
{queue type - ORDCnmType) 
= 8} 
<reserved} 
<reserved} 
<reserved} 
{item to mark in Apple 
menu} 
<handle to small icon} 
<handle to sound record} 
<string to appear in alert} 
{pointer to response 
routine} 
{for application use} 



Working with Dialogs 227 

Here's an explanation of the NM Re c fields: 

• q Li n k, q Type, nm F lags, nm Pr i vat e, and nm Reserved are 
either reserved or contain information about the notification 
queue; you won't adjust these values. 

• nm Ma r k: If nm Ma r k is 0, the ( +) will not be displayed in the S 
menu when the notification occurs; if nm Ma r k is 1 , the 
application that is making the notifying call receives the mark. If 
you want a desk accessory to be marked, use the r e fn um of 
the desk accessory. Drivers should pass O. 

• nmSicon: If nmSicon is nil, no icon is used; otherwise, the 
handle to the small icon (s I c N resource) to be used should be 
placed here. 

• nmSound: if nmSound is 0, no sound is played; -1 will result in 
the system sound being played. To play an • s n d • sound 
resource, put a handle to the resource here. The handle must be 
nonpurgeable. 

• nm st r contains the pointer to the text string to be used in the 
alert box. Put in n; l for no alert box. 

• nm Resp is a pointer to a response procedure that gets called 
once the notification is complete. We'll set nmResp to -1, which 
removes the request from the notification queue once the 
notification is complete. 

There are only two calls in the Notification Manager. The first, 
NM Inst a L L, adds the notification request to the Notification 
Queue, which is checked periodically: 

FUNCTION NMinstall (nmReqPtr: QElemPtr) 
OSErr; 

The second, NM Remove, removes the notification from the 
Notification Queue: 

FUNCTION NMRemove (nmReqPtr: QELemPtr) 

OSErr; 



228 

_J 

Macintosh Programming Primer 

The next section lists and describes Reminder, the biggest and 
most complex program in this book. Reminder will show you how to 
put together all the pieces we've talked about so far: windows, events, 
menus, fonts, dialogs, alerts, and the Notification Manager. 

Reminder 

Reminder sets a countdown timer and, when the time runs out, 
alerts the user of the event via the Notification Manager. Reminder 
also supports a dialog box that allows you to change some of its 
settings. Here's a quick look at the Reminder algorithm: 

1. It checks for System 6.0 or later. If the System version is too old, 
it puts up an alert and exits. 

2. It loads and initializes the settings dialog. 

3. It loads the S, File, and Edit menus. 

4. It initializes the Notification Manager data structure. 

5. It handles events. 

6. If the Change Settings menu item is selected, it handles the 
settings dialog box. 

7. If the Start Countdown menu item is selected, it pulls the 
number of seconds from the settings dialog, loads and shows the 
countdown window, counts down, and sets the notification. 

8. If the Kill Notification menu item is selected, it removes the 
notification from the Notification Queue. 

9. If the Quit menu item is selected, it exits. 

Warning: This is the longest of all of the Primer programs. You can 
save a little time by using resources and code from Chapter 5, but 
it's still going to take a while. You may wish to take a brief recess. 



Working with Dialogs 229 

Setting Up the Project 

Start by creating your project files. You can save some time by 
copying your Timer folder from Chapter 5 and renaming it 
Rem i n de r. But remember, if you do this, you11 need to change the 
source code file name, the project file name, and the resource file 
name. We'll assume you're starting from scratch. 

Making the Resources for Reminder 

Go into ResEdit and create a file named Rem i n de r . 7t • rs r c. As has 
been discussed earlier, it's a good idea to set each resource (except 
MENUs) to be purgeable in the Get Resource Info dialog box. 
Create a DI TL with the controls and fields shown in Figure 6.21. 
This D I T L will have eleven items. The table in Figure 6.22 lists the 
values for these items. 

Next, create a DI TL with the information shown in Figure 6.23. 
You'll use this D I T L in your About box alert. The About D I T L has 
two items. Create them from the table shown in Figure 6.24. 

§0§ D Ill 11 Rhum 11 ID = 400 from Remind 

1n·i·a·r:nl'··9·a·0·s;· .. a'f'f .. i·n·111D1 f5'0·c:·a·n"Ci's ... 1 
t ........................................................ JL..:..:...___j L ........................... ; 

D Sound on 1use:J 

D Rotate I con 0 Seconds 

D Display Rlert 0 Minutes 

( Cancel ) ( Saue ) 
E2j 

Figure 6.21 Settings D I T L appearance. 



230 Macintosh Programming Primer 

Item"' Type Enabled Top Left Bottom Right Text/Resource ID 

1 Button Ves 130 50 150 120 Save 
2 Button Ves 130 160 150 220 Cancel 
3 Static Text No 20 20 40 13B Alarm goes off in 
4 Editable Text No 20 142 40 184 10 
5 Static Text No 20 189 40 249 seconds 
6 Checkbox Ves 55 20 75 102 Sound on 
7 Checkbox Ves 75 20 95 122 Rotate Icon 
8 Checkbox Ves 95 20 115 130 Display Alert 
9 Radio Button Ves 54 157 74 192 Use: 

10 Radio Button Ves 75 170 95 247 Seconds 
11 Static Text No 95 170 115 249 Minutes 

Figure 6.22 Item specifications for settings DI TL. 

§0§ D Ill 11 About 11 ID = 401 from Reminder. n 
Another fine program from the 
Mac Programming Primer! 
© 1990, D. Mark & C. Reed!!! 

..iii 

( OK ) 

Figure 6.23 About box D I TL Get Info window. 

Item"' Type Enabled Top Left Bottom Right Text/Resource ID 

1 Button Ves 71 117 91 177 OK 
2 Static Text No 7 70 61 280 Another fine 

program from the 
Macintosh 
Programming 
Primer© 1990 
D. Mark & C. Reed!!! 

Figure 6.24 Item specifications for About D I T L. 



Working with Dialogs 231 

Finally, create a D I T L similar to Figure 6.25. This D I T L belongs 
to the alert shown for a system earlier than version 6.0. The Bad 
System D IT L also has two items. Create them using the table in 
Figure 6.26. 

Create an AL RT resource with ID = 401 that matches Figure 6.27. 
This snapshot was made by selecting Display as TeHt from the 
AL RT menu that appears when the A LR T is opened. Don't forget to 
set the items ID field to 401. This links the ALRT to D ITL 401. 

Next, create an ALRT resource with ID= 402 that matches the 
table in Figure 6.28. 

§0§ Dill "Bad System" ID= 402 from Reminder.-

f iil'e ... N'Ci~fi11·c:·aii'D'n ... Mii.il'~i9.i!'r .. 'i's ... n.ii'i" .................. l 
1 supported in this uersion of the 1 

!system software. Get 6.02 or newer!! 
: ........................................................................................................................... J 

( OK J 

Figure 6.25 Bad System D I T L. 

Item- Type Enabled Top Left Bottom Right Text/Resource ID 

1 Button Ves 71 117 91 177 OK 
2 Static Text No 7 70 61 280 The Notification 

Manager is not 
supported in this 
version of the 
system software. 
Get 6.02 or newer!! 

Figure 6.26 Item specifications for Bad System D I TL. 



232 Macintosh Programming Primer 

i§0i§ ALRT "About" ID= 401 from Reminder.-rr.rsrc 

Top ~Bottom~ 
Left ~Right ~ 

ltemsIDJ 401 J Sound (0-3) 

Stage 1 D #2 bold !Zl Drawn ~ 
Stage 2 D #2 bold !ZJ Drawn 1 

Stage 3 D #2 bold !ZJ Drawn 1 

Stage 4 D #2 bold !ZJ Drawn 1 

Figure 6.27 The About Box AL RT, displayed as text. 

§0§ ALRT "Bad System" ID= 402 from Reminder.-rr 

Top [iliiiil Bottom ~ 
Left ~Right ~ 

ltemsIDJ 402 J Sound (0-3) 

Stage 1 D #2 bold !Zl Drawn ~ 
Stage 2 D #2 bold !Zl Drawn 1 

Stage 3 D #2 bold !ZJ Drawn 1 

Stage 4 D #2 bold !Zl Drawn 1 

Figure 6.28 The Bad System A L RT, displayed as text. 



Working with Dialogs 233 

You're now ready to create your alarm settings dialog box. Create a 
D LOG with ID = 4 0 0 that matches Figure 6.29. Remember to set the 
pro c I D to 1 . This tells the Dialog Manager to draw the standard 
modal dialog type window. 

Next, we'll create two ' ST R ' resources to use in the Settings 
dialog. The first contains the default value to use when the time is 
displayed in seconds. The second contains the default value to use 
when the time is displayed in minutes. Figure 6.30a shows the value 
for 'STR' 401,andFigure6.30bshowsthevaluefor 'STR' 402. 

~D~ DLOG 11 Ria rm 11 ID = 400 from Reminder. n .rsrc 

Window title: 

ln1arm 

top ~bottom~ 
left ~right ~ 

proclD It lrefCon lo I 
itemslD 1400 I 

D Uisible D goRwayFlag 

Figure 6.29 The Settings D L 0 G, displayed as text. 



234 Macintosh Programming Primer 

§0 STR "Def. Secs." ID= 401 from Reminder.n.rsrc = 

The String 110 I 
~ 

Data $~ J 
a 

~ 
121 

§0 STR "Def. Mins." ID= 402 from Reminder.n.rsrc --

The String 1 
Q 

Data $ 

b 

~ 
Figure 6.30 Default time ' S T R ' resources. 

Setting Up the Notification Manager Resources 

Now that you've finished with the dialog and alert resources, you 
need to add three resources for the Notification Manager: a string, a 
sound, and a small icon. First, create another ' ST R ' resource, with 
ID = 400, that the Notification Manager will use in the alert that 
is presented to the user (Figure 6.31). 

D STR ID 400 from Reminder.n.rsrc 

The String I Zounds! ! ! It 's t i me. . . I 
Data $[ J 

'--~~~~~~~~~~~~~ 

Figure 6.31 The ' ST R' resource for the Notification Manager. 



Working with Dialogs 235 

Now, add the sound. There are a number of different sound 
resource types. The resource type needed is a ' s n d ' (space at the 
end), with resource ID = 400. If you have a favorite sound from a 
HyperCard stack, you can copy it using ResEdit and paste it into 
Reminder.7t. rsrc. 

A good check to determine if the sound will work properly is to use 
the play it option in ResEdit's snd menu, which shows when you 
are editing • s n d • resources. If that works, then the Notification 
Manager should be able to use it. If your • s n d • is a large file, 
you may have some problems. Start with a small • s n d 
resource. 

If you don't have a favorite sound, don't panic. Figure 6.32 shows 
the ' s n d ' resources found in System 6.0.5. Open up your system 
file (Careful! Use a backup!) and copy the 'snd ' of your choice into 
your resource file. Change the ID of the ' s n d ' to 4 0 0. 

System 

[7J [7J [C 
RTAB Save scrn 

DD 
<P~ 

snds from System 
(gj~ ID Size Name 

SICN snd 1 228 "Simple Beep" 
2 11206 "Clink-Kl ank" 

EJ m 3 7829 "Boing" 
4 2208 "Monkey" 

STR STR 11 

I--

Figure 6.32 System 6.0.5 's n d ' resources. 



236 Macintosh Programming Primer 

The final resource for the Notification Manager is the small icon 
that rotates with the S menu icon. Ours is a little bell. Use it or 
create your own small icon. Create a resource of type SICN, with ID 
= 4 0 0. Figure 6.33 is a snapshot of our S I C N editing session. To 
replicate the figure, just click on the "fat bits" in the 16-by-16 square 
of pixels to turn them on or off. 

Adding the Menu Resources 

Here's where cutting and pasting will reduce your time on this 
project. If you have the Timer project, copy the MB AR and MEN u 
resources from it into the Reminder project. They are quite similar, 
except for the names of a few menu items. 

If you don't have Timer resources, create the two menu resources. 
The first, MBAR, contains the three menu IDs (400, 401, and 402). 
Create a resource of type MB AR, with ID = 4 0 0 (Figure 6.34). 
Remember, to add a new menu to the list, click on the asterisks and 
select Insert New Field from the Resource menu. 

Reminder. TI .rsrc: 

SI CNs from Reminder. TI .I 

,, §0 SICN ID= 400 

•• • •• • • • •• • • • • • • • • • • • • • • 

I~ 

• • • • • • • • • • • • •••••••••••• • • •••••••••••• •• •••• 

Figure 6.33 The SIC N resource for the Notification Manager 



Working with Dialogs 237 

Reminder.11' .rsrc ] 

[ 
MBRRs from Reminder. 'Tl' ] 

D MBAR ID 400 from Reminder.11.rsrc 
= 

~ I 
ii 0 f menus 3 

E ***** 

t" 
Menu res ID 1-1 
***** 

c: Menu res ID 14D1 I 
***** 

I--. 
Menu res ID 14D2 I I--. 

***** ~ 
Q:] 

Figure 6.34 MB AR resource. 

Now you need to create each menu with its items. Create the S 
MENU, ID = 4 0 0, and make it look like the menu in Figure 6.35. 

Reminder.11.rsrc J 
[ 

MENUS from Reminder. TI 
ID Size Name 

= 
400 42 "'Apple "" T 

0 MENU "Rpple" ID 400 from Reminder.11.rsrc 

Cl Entire Menu: ~Enabled 

Rbout Reminder ~ ............ ················································ ......................... Title: o~ J 
@ IS (Apple menu) 

Color 

nt1e: I I 
Item TeHt Default: I I 

lo Menu Background: D 
Figure 6.35 S M E N U resources. 



238 Macintosh Programming Primer 

Next, create the File MENU, ID= 401, and make it look like the 
menu in Figure 6.36. (Don't forget to disable the Kill Notification 
menu item.) Finally, create the Ed it MENU, ID = 4 0 2, and make it 
look like the menu in Figure 6.37. The Edit menu is disabled and is 
provided only as a courtesy for desk accessories. (Cut and paste this 
menu from Timer in Chapter 5.) 

Reminder.11.rsrc ] 

[ 
MENUs from Reminder. Tl 

ID Size Name 

1 
400 42 "Apple" l 401 91 "File" 

=o MENU "File" ID= 401 from Reminder.11'.rsrc 

• Entire Menu: lZl Enabled 
Change Settings ooc ~ 
Start Countdown oos Title: @I rn~ I 
Kill NnWit<ilhm >l(<K 
Quit :l€Q 0 s (Rpple menu) 

Color 

m1e: I I 
I tern Te Ht Default: J I 

]QJ Menu Background: D 

Figure 6.36 File MENU resource. 

Reminder.11' .rsrc 

MENUs from Reminder.Tl 
ID Size Name 

400 42 "Apple" 
401 91 "File" 
402 72 "Edit" 

MENU "Edit" ID= 402 from Reminder.11'.rsrc 

Entire Menu: D Enabled 
Undo 

[ 1J \ 

[nfH_J 

Pm; le 
[1!'M 

>)c<Z 

Title: 

Figure 6.37 Edit M EN U resource. 

0 ei (Rpple menu) 

Color 

m1e: I I 
Item TeHt Default: J I 
Menu Background: D 



Working with Dialogs 239 

The Home Stretch 

Finally, add the old W I N D resource for your countdown window. 
Create a WIND, ID = 400, with the specifications in Figure 6.38. 
When you're done, save the resource file (whew!). Then, check it to 
see if you have all the resources listed in Figure 6.39. If you don't, go 
back and add them. 

§0~ WIND ID= 400 from Reminder.n.rsrc ~ 

Window title: 

lnme Remaining I 
top ~bottom ~06 
left ~right 156 

proclD lo lrefCon O 

D Uisible D goRwayFlag 

Figure 6.38 W I N D resource for countdown window. 

ALRT 

MBAR 

snd 

~6 D c·-·-
= = 
DITL DLOG 

MENU SICN 

R~ 
LJ bM 

STR 'w'IND 

Figure 6.39 Reminder resources completed. 



240 Macintosh Programming Primer 

This is, by far, the biggest set of resources in the book. It is not 
uncommon at this point to start making mistakes (such as mangling 
your motherboard and switching on the TV), so you might want to 
take a break before you start entering the code. 

The Reminder Code 

If you haven't done so already, go into THINK Pascal and create a 
new project named Rem i n de r • 7t. Next, create a new source code file 
named Rem i n de r . p and add it to the project. 

Some of the Reminder code can be copied from Chapter 5's Timer. 
Just be careful with variable names and the like. 

program Reminder; 
uses 

Notification; 

con st 
BASE_RES_ID = 400; 
ABOUT_ALERT = 401; 
BAD_SYS_ALERT = 402; 

SLEEP = 60; 

SAVE_BUTTON = 1; 
CANCEL_BUTTON = 2; 
TIME_FIELD = 4; 
S_OR_M_FIELD = 5; 
SOUND_ON_BOX = 6; 
ICON_ON_BOX = 7; 
ALERT_ON_BOX = 8; 
SECS_RADIO = 10; 
MINS_RADIO = 11; 

DEFAULT_SECS_ID = 401; 
DEFAULT_MINS_ID = 402; 

ON = 1; 
OFF = O; 

SECONDS PER_MINUTE = 60; 



Working with Dialogs 

type 

var 

TOP = 25; 
LEFT = 12; 

MARK_APPLICATION = 1; 

APPLE_MENU_ID = BASE_RES_ID; 
FILE_MENU_ID = BASE_RES_ID + 1; 
ABOUT _IT EM = 1; 

CHANGE_ITEM = 1; 
START_STOP_ITEM = 2; 
KILL_ITEM = 3; 
QUIT_ITEM = 4; 

SYS_VERSION = 2; 

Settings = record 
timeString: Str255; 
sound, icon, alert, secsRadio, minsRadio: INTEGER; 

end; 

gSettingsDialog: DialogPtr; 
gDone, gCounting, gNotify_set: BOOLEAN; 
gSeconds_or_minutes: (seconds, minutes>; 

241 

gNotifyStrH, gDefaultSecsH, gDefaultMinsH: 
StringHandle; 

gMyNMRec: NMRec; 
gTheEvent: EventRecord; 
savedSettings: Settings; 

procedure HandleEvent; 
forward; 

{----------------> SetNotification 

procedure SetNotification; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 
dummy: OSErr; 
fileMenu: MenuHandle; 

if gNotify_set then 
begin 

<--} 

dummy := NMRemoveCQElemPtr(@gMyNMRec>>; 



242 

end; 

Macintosh Programming Primer 

HUnlockCHandleCgNotifyStrH)); 
end; 

GetDitemCgSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect); 
if GetCtlValueCControlHandleCitemHandle)) = ON then 

gMyNMRec.nmSlcon .- GetResource('SICN', 
BASE_RES_ID) 
else 

gMyNMRec.nmSicon :=nil; 

GetDitemCgSettingsDialog, SOUND_ON_BOX, itemType, 
itemHandle, itemRect); 
if GetCtlValueCControlHandleCitemHandle)) = ON then 

gMyNMRec.nmSound := GetResourceC'snd ', 
BASE_RES_ID) 

else 
gMyNMRec.nmSound :=nil; 

GetDitemCgSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 
if GetCtlValue(ControlHandleCitemHandle)) = ON then 

begin 

end 
else 

MoveHHiCHandleCgNotifyStrH)); 
HlockCHandleCgNotifyStrH)); 
gMyNMRec.nmStr := gNotifyStrHA; 

gMyNMRec.nmStr :=nil; 

dummy := NMinstallCQElemPtrC@gMyNMRec)); 
fileMenu := GetMHandleCFILE_MENU_ID); 
EnableltemCfileMenu, KILL_ITEM); 
gNotify_set := TRUE; 

{----------------> CountDown <--} 

procedure CountDown CnumSecs: LONGINT); 
var 

begin 

myTime, oldTime, difTime: LONGINT; 
myTimeString: Str255; 
countDownWindow: WindowPtr; 

countDownWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 
SetPort(countDownWindow); 
ShowWindowCcountDownWindow); 
TextFaceC[boldJ); 
TextSizeC24); 



Working with Dialogs 

GetDateTimeCmyTime); 
oldTime := myTime; 

if gSeconds_or_minutes = minutes then 
numSecs := numSecs * SECONDS_PER_MINUTE; 

gCounting := TRUE; 

while CnumSecs > 0) and gCounting do 
begin 

end; 

HandleEvent; 
if gCounting then 

begin 

end; 

MoveToCLEFT, TOP); 
GetDateTimeCmyTime>; 
if myTime <> oldTime then 

begin 
difTime := myTime - oldTime; 
numSecs := numSecs - difTime; 
oldTime := myTime; 
NumToStringCnumSecs, 

myTimeString); 
EraseRectCcountDownWindowA. 

portRect>; 
DrawStringCmyTimeString); 

end; 

if gCounting then 
SetNotification; 

gCounting := FALSE; 

DisposeWindowCcountDownWindow>; 
end; 

{----------------> RestoreSettings 

procedure RestoreSettings; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

<--} 

GetDitemCgSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect>; 

SetITextCitemHandle, savedSettings.timeString); 
GetDitemCgSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 

243 



244 

end; 

Macintosh Programming Primer 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.sound); 

GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.icon>; 

GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect>; 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.alert>; 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect>; 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.secsRadio); 

GetDitem(gSettingsDialog, MINS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle>, 
savedSettings.minsRadio); 

if savedSettings.secsRadio = ON then 
begin 

GetDitem(gSettingsDialog, S_OR_M_FIELD, 
itemType, itemHandle, itemRect); 

SetIText(itemHandle, 'seconds'); 
end 

else 
begin 

end; 

GetDitem(gSettingsDialog, S_OR_M_FIELD, 
itemType, itemHandle, itemRect>; 

SetIText(itemHandle, 'minutes'); 

{----------------> SaveSettings <--} 

procedure SaveSettings; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

GetDitem(gSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect>; 

GetIText(itemHandle, savedSettings.timeString); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect>; 
savedSettings.sound := GetCtlValue 

(ControLHandle(itemHandle)); 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 



Working with Dialogs 

end; 

savedSettings.icon := GetCtlValue 
(ControlHandle(itemHandle)); 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
savedSettings.alert := GetCtlValue 
(ControlHandle(itemHandle)); 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect); 
savedSettings.secsRadio := GetCtlValue 
(ControlHandle(itemHandle)); 
GetDitemCgSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
savedSettings.minsRadio := GetCtlValue 
(ControlHandle(itemHandle)); 

{----------------> HandleDialog <--} 

procedure HandleDialog; 
var 

dialogDone: BOOLEAN; 
itemHit, itemType: INTEGER; 
alarmDelay: LONGINT; 
delayString: Str255; 
itemRect: Rect; 
itemHandle: Handle; 

begin 
ShowWindow(gSettingsDialog); 
SaveSettings; 

dialogDone := FALSE; 
while dialogDone = FALSE do 

begin 
ModalDialog(nil, itemHit); 
case itemHit of 

SAVE_BUTTON: 
begin 

HideWindow(gSettingsDialog); 
dialogDone .- TRUE; 

end; 
CANCEL_BUTTON: 

begin 
HideWindow(gSettingsDialog); 
RestoreSettings; 
dialogDone .- TRUE; 

end; 
SOUND_ON BOX: 

245 



246 Macintosh Programming Primer 

begin 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
if GetCtlValue(ControlHandle CitemHandle)) = ON then 

SetCtlValue(ControlHandle CitemHandle), Off) 
else 

SetCtlValue(ControlHandle CitemHandle), ON); 
end; 

ICON_ON_BOX: 
begin 

GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect>; 

if GetCtlValue(ControlHandle CitemHandle)) = ON then 
SetCtlValue(ControlHandle CitemHandle), OFF) 

else 
SetCtlValue(ControlHandle 
CitemHandle>, ON); 

end; 
ALERT_ON_BOX: 

begin 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect>; 
if GetCtlValue(ControlHandle (itemHandle)) = ON then 

SetCtlValue(ControlHandle (itemHandle), Off) 
else 

end; 
SECS_RADIO: 

begin 

SetCtlValue(ControlHandle CitemHandle), ON); 

gSeconds_or_minutes := seconds; 
GetDitem(gSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle CitemHandle), OFF); 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle CitemHandle), ON); 
GetDitem(gSettingsDialog, S_OR_M_FIELD, itemType, 

itemHandle, itemRect>; 
SetIText(itemHandle, 'seconds'>; 
GetDitem(gSettingsDialog, TIME_FIELD, itemType, 

itemHandle, item~ect>; 
SetIText(itemHandle, gDefaultSecsHAA); 

end; 
MINS_RADIO: 

begin 
gSeconds_or_minutes := minutes; 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect>; 
SetCtlValue(ControlHandle CitemHandle), OFF); 
GetDitem(gSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle CitemHandle), ON>; 



Working with Dialogs 24 7 

end; 
end; 

end; 
end; 

GetDitemCgSettingsDialog, S_OR_M_FIELD, itemType, 
itemHandle, itemRect); 

SetITextCitemHandle, 'minutes'); 
GetDitem(gSettingsDialog, TIME_FIELD, itemType, 

itemHandle, itemRect>; 
SetITextCitemHandle, gDefaultMinsHAA); 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice Ctheitem: INTEGER>; 
var 

begin 

timeString: Str255; 
countDownTime: LONGINT; 
itemType: INTEGER; 
i temRect: Re ct; 
itemHandle: Handle; 
dummy: OSErr; 
fileMenu: MenuHandle; 

fileMenu := GetMHandleCFILE_MENU_ID); 
case theitem of 

CHANGE_ITEM: 
HandleDialog; 

START_STOP_ITEM: 
if gCounting then 

begin 
gCounting := FALSE; 
SetitemCfileMenu, theitem, 'Start Countdown'); 

Countdown'); 
end 

else 
begin 

Hi liteMenuCO>; 
GetDitemCgSettingsDialog, TIME_FIELD, 

itemType, itemHandle, itemRect); 
GetITextCitemHandle, timeString>; 
StringToNumCtimeString, countDownTime); 

DisableitemCfileMenu, CHANGE_ITEM); 
SetitemCfileMenu, theitem, 'Stop Countdown'); 
CountDownCcountDownTime); 
Enableitem(fileMenu, CHANGE_ITEM>; 
SetitemCfileMenu, theitem, 'Start Countdown'); 

Countdown'>; 
end; 



248 Macintosh Programming Primer 

KILL_ITEM: 
begin 

dummy := NMRemove(QELemPtr(@gMyNMRec)); 
HUnlock(Handle(gNotifyStrH)); 
Disableitem(fileMenu, KILL_ITEM); 
gNotify_set := FALSE; 

end; 
QUIT_ITEM: 

begin 

end; 
end; 

end; 

gCounting := FALSE; 
gDone .- TRUE; 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice Ctheitem: INTEGER>; 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
appleMenu: MenuHandle; 

case theltem of 
ABOUT_IT EM: 

dummy := NoteAlert(ABOUT_ALERT, nil); 
otherwise 

end; 
end; 

begin 

end; 

appleMenu := GetMHandle(APPLE_MENU_ID); 
Getltem(appleMenu, theltem, accName); 
accNumber .- OpenDeskAcc(accName); 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice (menuChoice: LONGINT); 
var 

theMenu, theltem: INTEGER; 
begin 

if menuChoice <> 0 then 
begin 

theMenu := HiWord(menuChoice); 
theltem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

HandleAppleChoice(theltem); 



Working with Dialogs 

FILE MENU ID: 
HandleFi leChoice(theitem>; 

end; 

end; 

Hi liteMenu<D>; 
end; 

{----------------> HandleMouseDown 

procedure HandleMouseDown; 
var 

whichWindow: WindowPtr; 
thePart: INTEGER; 

<--} 

menuChoice, windSize: LONGINT; 
begin 

thePart := FindWindow(gTheEvent.where, whichWindow>; 
case thePart of 

inMenuBar: 
begin 

249 

menuChoice := MenuSelect(gTheEvent.where>; 
HandleMenuChoice<menuChoice>; 

end; 
end; 

end; 
inSysWindow: 

SystemClick(gTheEvent, whichWindow>; 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
gDone .- TRUE; 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 

dummy := WaitNextEvent(everyEvent, gTheEvent, SLEEP, nil); 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
keyDown, autoKey: 

begin 
theChar := CHR(BitAnd(gTheEvent.message, 

charCodeMask>>; 



250 Macintosh Programming Primer 

if (BitAnd(gTheEvent.modifiers, cmdKey) <> 0) then 
HandleMenuChoice(MenuKey(theChar)); 

end; 
end; 

end; 

{----------------> Mai nLoop 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gCounting := FALSE; 
gNotify_set := FALSE; 

while gDone =FALSE do 
HandleEvent; 

<--} 

{----------------> Notifylnit <--} 

procedure Notifylnit; 
begin 

end; 

gNotifyStrH := GetStringCBASE_RES_ID); 
gMyNMRec.qType := nmType; 
gMyNMRec.nmMark .- MARK_APPLICATION; 
gMyNMRec.nmResp :=nil; 

{----------------> MenuBarlnit<--} 

procedure MenuBarinit; 
var 

begin 

myMenuBar: Handle; 
aMenu: MenuHandle; 

myMenuBar := GetNewMBar(BASE_RES_ID); 
SetMenuBar(myMenuBar); 
DisposHandleCmyMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
AddResMenu(aMenu, 'DRVR'); 

DrawMenuBar; 
end; 



Working with Dialogs 

{----------------> Dialoginit <--} 

procedure Dialoginit; 
var 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

begin 
gDefaultSecsH := GetString(DEFAULT_SECS_ID); 
gDefaultMinsH := GetString(DEFAULT_MINS_ID); 

gSettingsDialog := GetNewDialogCBASE_RES_ID, nil, 
WindowPtr(-1)); 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect>; 
SetCtlValueCControlHandle(itemHandle), ON>; 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), ON>; 

gSeconds_or_minutes := seconds; 
end; 

{----------------> Sys60rLater<--} 

function Sys60rLater: BOOLEAN; 
var 

status: OSErr; 
SysEnvData: SysEnvRec; 
dummy: INTEGER; 

begin 

end; 

status := SysEnvironsCSYS_VERSION, SysEnvData>; 
if (status <> noErr) or 

CSysEnvData.systemVersion < $0600) then 
begin 

end 
else 

dummy := StopAlertCBAD_SYS_ALERT, nil); 
Sys60rLater := FALSE; 

Sys60rLater := TRUE; 

251 



252 Macintosh Programming Primer 

{---------------->Reminder <--} 

begin 
if Sys60rLater then 

end. 

begin 
Dialoglnit; 
MenuBarlnit; 
Notifylnit; 

MainLoop; 
end; 

Running Reminder 

Now that your source code is updated, you're almost ready to run 
Reminder. You'll have to do something extra with this project because 
the Notification Manager requires some interface code that THINK 
Pascal doesn't normally use. Add Not i f i cat i on . p (it should be in 
THINK Pascal's interface folder) before Reminder . p in your 
project. 

Because Reminder is more interesting if it works in the 
background, use Chapter 8 to put a s I z E resource in Reminder's 
resource file so that you can run it properly in MultiFinder. 

Creating applications that are MultiFinder-friendly is very important. 
We've touched on the basics of MultiFinder friendliness by using 
w a i t Next Event and handling Suspend/Resume events, but 
there's a lot more to learn. If you want to write MultiFinder-friendly 
applications, read the Programmer's Guide to MultiFinder from 
Apple and APDA. 

To be truly MultiFinder-friendly, Reminder would have to worry 
about things like scrap conversion (we discuss the scrap in 
Chapter 7), mouse regions, sleep times, and much more. 

Select Go from the Project menu. If you run into any compilation 
problems, make sure that you put Not i f i cation. p before 
Rem i n de r . p in the project listing. Consult the debugging tips found 
in Appendix C. When asked to save changes before running, click 
Yes. Reminder should be up and running (Figure 6.40). 



Working with Dialogs 253 

Reminder does not display any windows initially. The File menu 
should display four menu items: Change Settings, Start 
Countdown, Kill Notification, and Quit. If Change Settings is 
selected, the alarm settings dialog box appears (Figure 6.41). You can 

,,. ,. . . . 
• File 1:d1t 

Figure 6.40 Running Reminder. 

,.. 

Alarm goes off in ~seconds 

[ZJ Sound on 

[ZJ Aotate I con 

[ZJ Display Alert 

Use: 

@Seconds 

0 Minutes 

Figure 6.41 Using the Change Settings dialog box. 



254 Macintosh Programming Primer 

select the countdown time in minutes or seconds, and you can choose 
the method or methods by which you wish to be notified. Saue will 
keep the settings and close the dialog box. Cance I will restore the 
last saved settings and close the dialog box. 

Start Countdown will begin the countdown: The countdown 
window is displayed, and the timer will count down in seconds. In the 
File menu, Start Countdown is changed to Stop Countdown 
and may be selected to cancel the countdown and close the count
down window. During countdown, the Change Settings item is 
dimmed. When the countdown reaches zero, up to three methods will 
be used to notify you that the time has been reached (Figure 6.42). 

Once the notification is set, the Kill Notification item under the 
File menu will become available. When it is used to cancel a 
notification, it will become dim again. 

If you installed a S I Z E resource in your Rem i n de r . n:. rs r c file, 
compile Reminder as an application and run it under MultiFinder. 
Use Change Settings to set the countdown time to 20 seconds and 
then start the countdown. Before time runs out, click on another 
application's window (such as the Finder) so that the countdown 
window is in the background. The countdown should continue and, 
when it reaches zero, you should be notified. If this doesn't work, 
your S I z E resource may need to be checked. 

Choose Quit from the File menu. Let's take a look at the code. 

'" '~ File HH1 
.., 

Zounds!!! It's time ... 

Figure 6.42 The Notification Manager comes through. 



_J 
Walking Through the Reminder Code 

First, look at the overall structure of Reminder as shown in Figure 6.43 . 
.Ai3 we have in earlier chapters, we'll examine the code in the order 

that it executes. 
First, set up your constants. Most of them relate to the Settings 

dialog box. Each dialog item is given an appropriate name. 
SAVE_BUTTON is dialog item number 1, CANCE L_BUTTON is dialog 
item number 2, and so on. DE FAULT SECS I D and 
DEFAULT _MIN S_I D are the resource IDs of the ' ST R ' resources 
used as second and minute defaults in the Settings dialog. 

ON and O F F are set to 1 and 0 for ease of use in setting controls. 
SYS_VERSION is set to 2. You use this in the Sys60rLater 
function to indicate which version of Sys En v i r on s to call. 

Sys En vi r on s fills out a record that describes the Mac operating 
environment. Most important, you can use it to tell what version of 
the system is running and, therefore, whether or not Toolbox 
routines like w a i t Next Event or the Notification Manager are 
present. sys En vi r on s is described completely n Inside 
Macintosh (V:5). 

if mouseDown( or cmdke ) 
dleMouseDown 

if mouse clicked in menu bar 

File 
menu 

if user chose: 
chang start countdown 

~Han;;;;..:.,,dle~C~ial-~-----,c=J I CountDown .! 
if cancel button 

I:::: 

Figure 6.43 Reminder. 

255 



256 

program Reminder; 
uses 

Notification; 

con st 

Macintosh Programming Primer 

BASE_RES_ID = 400; 
ABOUT_ALERT = 401; 
BAD_SYS_ALERT = 402; 

SLEEP = 60; 

SAVE_BUTTON = 1; 
CANCEL_BUTTON = 2; 
TIME_FIELD = 4; 
S_OR_M_FIELD = 5; 
SOUND_ON_BOX = 6; 
ICON_ON_BOX = 7; 
ALERT_ON_BOX = 8; 
SECS_RADIO = 10; 
MINS_RADIO = 11; 

DEFAULT_SECS_ID = 401; 
DEFAULT_MINS_ID = 402; 

ON = 1; 
OFF = 0; 

SECONDS_PER_MINUTE = 60; 

TOP = 25; 
LEFT = 12; 

MARK_APPLICATION = 1; 

APPLE_MENU_ID = BASE_RES_ID; 
FILE_MENU_ID = BASE_RES_ID + 1; 
ABOUT _ITEM = 1; 

CHANGE_ITEM = 1; 
START_STOP_ITEM = 2; 
KILL_ITEM = 3; 
QUIT_ITEM = 4; 

SYS_VERSION = 2; 

The variable gs et t i n gs Di a log will point to your Settings 
dialog. (Remember, you can treat a Di a log Pt r just like a 
W i n do w Pt r. For example, you could pass g S e t t i n g s D i a l o g as an 
argument to Set Port.) 



Working with Dialogs 257 

type 

var 

When g Done is set to TRUE, the program will exit. g Counting is 
TR u E only when the countdown window is displayed. gNo t i f y_se t 
is TRUE when a notification has been set. gSeconds_or _minutes 
is set to seconds or minutes, depending on the setting in the 
Settings dialog. It is reset to FALSE when Kill Notification is 
selected from the Fi I e menu. 

g Def au l t Secs H and g Def a 11 l t Mi n s H are handles to the 
default time ' ST R ' resources.dialog items. g Not i f y St r H and 
g My NM Re c are used by the Notification Manager. 

The s e t t i n g s s t r u c t u re is used to hold all the settings from 
the alarm settings dialog box, in case they need to be restored (if the 
user clicks the Cancel button). 

Settings = record 
timeString: Str255; 

end; 

sound, icon, alert, secsRadio, 
minsRadio: INTEGER; 

gSettingsDialog: DialogPtr; 
gDone, gCounting, gNotify_set: BOOLEAN; 
gSeconds_or_minutes: (seconds, minutes); 
gNotifyStrH, gDefaultSecsH, gDefaultMinsH: StringHandle; 
gMyNMRec: NMRec; 
gTheEvent: EventRecord; 
savedSettings: Settings; 

procedure HandleEvent; 
forward; 

Reminder starts by testing to see if System 6.0 or later is installed. 
If it is, you can use the Notification Manager. Initialize your dialogs, 
your menus, and the notification data structure. 

Finally, enter the Ma i n Loop. 

{---------------->Reminder 

begin 
if Sys60rLater then 

begin 
Dialoglnit; 
MenuBarlnit; 
Notifylnit; 

<--} 



258 

end. 

MainLoop; 
end; 

Macintosh Programming Primer 

Sys60rLater will return TRUE if System version 6.0 or later is 
installed. Otherwise, it returns FALSE. The key to this function lies in 
the call to Sys En v i r on s. Pass in the version number of 
Sys Environs that you'd like to use. In this case, use SY S_VERS I ON, 
which is set to 2. Apple will eventually add new features to the 
Sys En v i r on s call, but they'll always provide compatibility with older 
versions via the version parameter. 

SysEnvData is a data structure that gets filled by SysEnvi rons. 
One of the fields, system Ver s i on, gets filled with the current 
system version number. The first two bytes get the major version 
number, and the last two bytes get the minor version number. (In 
version 5.3, the major version number is 5, and the minor version 
number is 3.) As long as the version number is greater than $0600 
(hex for 6 * 2 5 6 ), you know you have a system with a major version 
greater than 6 . 0. 

If there is a problem, call S top A l e r t to put up your ''You don't 
have version 6.0 or later" alert. 

(Although Sys60rLater tests for 6.0, you generally don't want users 
to run your programs on any version of System 6 older than 6.02.) 

{----------------> Sys60 r Later <--} 

function Sys60rLater: BOOLEAN; 
var 

status: OSErr; 
SysEnvData: SysEnvRec; 
dummy: INTEGER; 

begin 

end; 

status := SysEnvironsCSYS_VERSION, SysEnvData>; 
if <status <> noErr) or CSysEnvData.systemVersion 

< $0600) then 
begin 

end 
else 

dummy := StopAlertCBAD_SYS_ALERT, nil); 
Sys60rLater := FALSE; 

Sys60rLater := TRUE; 



Working with Dialogs 259 

Di a log In i t starts by loading the default second and minute 
settings into the StringHandles g Def au l t Se cs H and g Def a u l t 
Mi n s H. The Settings dialog is then loaded from the resource file. 
When you designed the dialog box in ResEdit, you set it up to be 
invisible. When the time is right, you can call S how W i n do w to make 
it visible. 

Call Get D Item and Set Ct l Va l u e in pairs to set the 
SECS_RADIO,SOUND_ON_BOX, ICON_ON_BOX,andALERT_ON_BOX 
items to ON. 

{----------------> Dialoglnit <--} 

procedure Dialoglnit; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

gDefaultSecsH := GetStringCDEFAULT_SECS_ID); 
gDefaultMinsH := GetStringCDEFAULT_MINS_lD); 

gSettingsDialog := GetNewDialog(BASE_RES_ID, nil, 
WindowPtr(-1)); 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSetting•Dialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandleCitemHandle), ON); 
GetDltem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandleCitemHandle), ON); 

gSeconds_or_minutes := seconds; 
end; 

Menu Ba r In i t is similar to the earlier menu routines you've seen. 
First, you load your MBAR resource (disposing of the handle after you 
use it), and then you get a handle to the S menu so you can add all 
the desk accessories to it. Next, you get a handle to the Fi I e menu so 
you can change menu items later on. Finally, draw the menu bar: 



260 Macintosh Programming Primer 

{----------------> MenuBarlnit <--} 

procedure MenuBarlnit; 
var 

myMenuBa r: Hand Le; 
aMenu: MenuHandle; 

begin 

end; 

myMenuBar := GetNewMBar(BASE_RES_ID); 
SetMenuBar(myMenuBar); 
DisposHandle(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
AddResMenu(aMenu, 'DRVR'); 

DrawMenuBar; 

The Macintosh operating system, like most other operating 
systems, supports a set of operating system queues. You're 
already familiar with the Event Manager's queue. The Notification 
Manager maintains a queue, as well. Under MultiFinder, several 
applications might post notifications at the same time. Each 
notification request is handled by the operating system and posted 
on the Notification Manager's queue. 

In Not i f y In i t, load the ' ST R ' you want to appear in the noti
fication alert with Get String. Then, qTyp e is set to nmType. This 
tells the part of the operating system that manages queues that this 
request is destined for the Notification Manager's queue. 

Next, nmMark is set to MARK_APPLICATION, which means the 
( +) will be placed next to Reminder in the S Menu (if you're in 
MultiFinder). NM Resp is set to n i l, which means you have no 
response routine after the notification has been successfully made. 

{----------------> Noti fylni t <--} 

procedure Notifylnit; 
begin 

end; 

gNotifyStrH := GetString(BASE_RES_ID); 
gMyNMRec.qType := nmType; 
gMyNMRec.nmMark .- MARK_APPLICATION; 
gMyNMRec.nmResp .- nil; 



Working with Dialogs 261 

MainLoop initializes gDone, gCounting, and gNotify_set. 
It then loops on H a n d l e Ev e n t. 

{----------------> Main Loop 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gCounting := FALSE; 
gNotify_set := FALSE; 

while gDone =FALSE do 
HandleEvent; 

<--} 

The Hand l e Event routine is set up much like Hand le Event in 
Chapter 5. Call W a i t Next Event to see what is in the event queue. 
(Because you're running System 6.0 or later, you know that 
Wai t Next Event is installed.) Use a switch to find out what the 
event was. If the mouse button is depressed, the 
Hand l e Mouse Down routine is called. If a key down or a u t o Key 
event occurs, check to see if the Command key was depressed. If so, 
the Hand l e Menu Choi c e routine is called. If you don't check for a 
key do w n event first, you won't ever see the command key sequence 
(for example, when you type Q to Qui t ). 

We've left out some of the standard event handling, such as 
update Ev ts, to simplify the code. Don't worry-Reminder will work 
just fine without the extra code. 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 

dummy := WaitNextEvent(everyEvent, gTheEvent, SLEEP, nil); 

case gTheEvent.what of 
mouse Down: 

HandleMouseDown; 
keyDown, autoKey: 

begin 

end; 
end; 

theChar := CHR(BitAnd(gTheEvent.message, 
charCodeMask)); 

if CBitAndCgTheEvent.modifiers, cmdKey) <> 0) then 
HandleMenuChoice(MenuKeyCtheChar)); 

end; 



262 Macintosh Programming Primer 

Ha n d l e Mou s e Down is the same as its Chapter 5 counterpart: 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

inMenuBar: 
begin 

menuChoice := MenuSelectCgTheEvent.where>; 
HandleMenuChoice(menuChoice>; 

end; 
inSysWindow: 

SystemClickCgTheEvent, whichWindow>; 
inDrag: 

DragWindowCwhichWindow, gTheEvent.where, 
screenBits.bounds>; 

inGoAway: 
gDone : = TRUE; 

end; 
end; 

H a n d l e Me nu C ho i c e is also similar to its Chapter 5 counterpart: 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice CmenuChoice: LONGINT>; 
var 

theMenu, theitem: INTEGER; 
begin 

if menuChoice <> 0 then 
begin 

end; 

theMenu := HiWordCmenuChoice>; 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

HandleAppleChoice(theitem); 
FILE_MENU_ID: 

HandleFileChoiceCtheitem>; 
end; 

Hi liteMenuCO>; 
end; 



Working with Dialogs 263 

It's deja vu all over again. 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theitem: INTEGER); 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
appleMenu: Me~uHandle; 

case theitem of 
ABOUT_ITEM: 

dummy := NoteAlert(ABOUT_ALERT, nil); 
otherwise 

end; 
end; 

begin 
appleMenu := GetMHandle(APPLE_MENU_ID); 
Getitem(appleMenu, theitem, accName); 
accNumber .- OpenDeskAcc(accName); 

end; 

Hand Le Fi Le Choi c e takes care of the four items under the File 
menu. If Change Settings is selected call HandleDialog. If 
Start Countdown (or its counterpart, Stop Countdown) is 
selected, check to see if you are currently counting down. If you are, 
then the menu item must have been Stop Countdown, so change 
the item back to Start Countdown and set g Count i n'g to FALSE 
to stop the countdown. 

If you were not counting down, Start Countdown was the item 
selected. In this case, unhighlight the File menu (try commenting this 
line to get a feel for why this is necessary). Then, pull the countdown 
time from the settings dialog and convert it to a number. Dim the 
Change Settings item (you don't want to change the settings while 
you're actually counting down), and change the Start Countdown 
menu item to Stop Countdown. Next, call Count Down. When 
Count Down returns, reenable the Change Settings item and 
change Stop Countdown to Start Countdown. 

If the menu item selected was Kill Notification, call NMRemove to 
remove the notification from the Notification Manager's queue. Then, 
unlock the notification string you locked in Set Not if i cation. (We 
discuss handle locking and unlocking in a Tech Block a little later on.) 
Also, dim the Kill Notification item, since the notification is no 
longer active. Finally, set g Not i f y _ s e t to FA LS E, so everyone else 
knows that the notification is no longer active. 



264 Macintosh Programming Primer 

If Quit is selected, set g Counting to FALSE so you'll drop out of 
the counting loop (if the selection was made during the countdown). 
In addition, set g Done to FA LS E. 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice <theitem: INTEGER); 
var 

begin 

timeString: Str255; 
countDownTime: LONGINT; 
itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 
dummy: OSErr; 
fi leMenu: MenuHandle; 

fileMenu := GetMHandle(FILE_MENU_ID); 
case theitem of 

CHANGE_ITEM: 
HandleDialog; 

START_STOP_ITEM: 
if gCounting then 

begin 
gCounting := FALSE; 
Setitem(fileMenu, theitem, 'Start Countdown'); 

end 
else 

begin 
Hi liteMenu<O); 
GetDitem(gSettingsDialog, TIME_FIELD, 

itemType, itemHandle, itemRect); 
GetIText(itemHandle, timeString); 
StringToNum<timeString, countDownTime); 

Disableltem(fileMenu, CHANGE_ITEM); 
Setitem(fileMenu, theitem, 'Stop Countdown'); 
CountDown(countDownTime); 
Enableitem(fileMenu, CHANGE_ITEM); 
Setitem(fileMenu, theltem, 'Start Countdown'); 

end; 
KILL ITEM: 

begin 
dummy := NMRemove(QElemPtr(@gMyNMRec)); 
HUnlock(Handle(gNotifyStrH)); 
Disableitem(fileMenu, KILL_ITEM); 
gNotify_set := FALSE; 

end; 
QUIT_ITEM: 

begin 



Working with Dialogs 265 

end; 
end; 

gCounting := FALSE; 
gDone .- TRUE; 

end; 

As with Chapter S's Timer, we still haven't added support for copy, 
cut, and paste operations to desk accessories. Look at 
WindowMaker in Chapter 7 to see how to support desk 
accessories with the Edit menu. 

Hand L e D i a L o g is the key to Reminder's modal dialog. As we 
discussed in the beginning of the chapter, modal dialogs are 
implemented in a loop. First Mod a L Di a Log is called, returning the 
number of the selected item. The selected item is processed and, if it 
was an exit item, the loop ends. 

Ha n d L e D i a L o g is a long routine, but it is not complex. Most of it is 
a big case statement with branches for most of the items in the dialog. 

Start by making the Settings dialog visible and saving the settings 
you start off with (in case the user clicks on the Cancel button). You 
then enter the Mod a L D i a Log loop. If the user selects an exit item 
(in this case, Saue or Cancel), di a Log Done is set to TRUE. If the 
user selects the Saue button, make the dialog window invisible and 
set d i a L o g D o n e to T R U E . 

If the user selects the Cancel button, make the dialog window 
invisible and restore the old settings. (We made the window invisible 
first because we didn't want the user to watch as we changed the 
items back. It's not a pretty sight.) Again, set di a Log Done to TRUE 
to drop out of the while loop. 

{----------------> HandleDialog <--} 

procedure HandleDialog; 
var 

dialogDone: BOOLEAN; 
itemHit, itemType: INTEGER; 
alarmDelay: LONGINT; 
delayString: Str255; 
itemRect: Rect; 
itemHandle: Handle; 

begin 
ShowWindow(gSettingsDialog); 
SaveSettings; 



266 

dialogDone := FALSE; 
while dialogDone = FALSE do 

begin 

Macintosh Programming Primer 

ModalDialogCnil, itemHit); 
case itemHit of 

SAVE BUTTON: 
begin· 

HideWindowCgSettingsDialog); 
dialogDone := TRUE; 

end; 
CANCEL_BUTTON: 

begin 
HideWindowCgSettingsDialog); 
RestoreSettings; 
dialogDone := TRUE; 

end; 

If the user clicks in the sound, icon, or alert checkbox, set them to 
0 F F if they were 0 N or to ON if they were O F F. 

SOUND_ON_BOX: 
begin 

GetDitemCgSettingsDialog, 
SOUND_ON_BOX, itemType, itemHandle, 
itemRect); 
if GetCtlValueCControlHandle 

CitemHandle)) = ON then 
SetCtlValueCControlHandle 

CitemHandle), OFF) 
else 

SetCtlValueCControlHandle 
CitemHandle), ON); 

end; 
ICON_ON_BOX: 

begin 
GetDitemCgSettingsDialog, 
ICON_ON_BOX, itemType, itemHandle, 
itemRect>; 
if GetCtlValueCControlHandle 

CitemHandle)) = ON then 
SetCtlValueCControlHandle 

CitemHandle), OFF) 
else 

SetCtlValueCControlHandle 
CitemHandle), ON); 

end; 
ALERT_ON_BOX: 

begin 



Working with Dialogs 

end; 

GetDitem(gSettingsDialog, 
ALERT_ON_BOX, itemType, itemHandle, 
itemRect); 
if GetCtLValue(ControLHandle 

CitemHandle)) = ON then 
SetCtLValue(ControLHandle 

CitemHandle>, OFF> 
else 

SetCtLValue(ControLHandle 
CitemHandle), ON>; 

267 

If the user clicks in the Seconds radio button, change the global 
gSe conds_o r _minutes to seconds, turn off the Minutes radio 
button, and turn on the Seconds radio button. (It's important to turn 
off the old button and then turn on the new one, so the user never sees 
two radio buttons on at the same time.) Next, set the static text field 
to read seconds, and place the default value loaded into 
g Def au Lt Secs H in the editable text field (the resource was loaded 
in D i a L o g I n i t ). Lock the string handle, because you're passing a 
pointer to the string and not the string's handle to Se t I Text. 

Remember, a handle is a pointer to a pointer, allowing the system 
to move the data around in memory without changing the value of 
the handle. In this case, you need to use a pointer to your string 
instead of a handle to it, so you can't afford to let the system move 
your data around (relocate it). You can solve this problem in one of 
two ways. You can lock the handle and its data with H Lo c k or you 
can make a copy of the data and dispose of the handle. Each of 
these techniques has its place. For simplicity, we used the H Lo c k 
method, but this method is not necessarily the best. For more 
information, read about the Memory Manager in Inside Macintosh 
(II: 9-51 ). 

If the user clicks in the Minutes radio button, you will go through 
a similar exercise, using a default value in g De f a u L t M i n s H in the 
editable text field. 

SECS_RADIO: 
begin 

gSeconds_or_minutes := seconds; 
GetDitem(gSettingsDialog, 
MINS_RADIO, itemType, itemHandle, itemRect>; 



268 Macintosh Programming Primer 

SetCtlValue(ControlHandle (itemHandle), OFF); 
GetDitemCgSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle CitemHandle), ON>; 
GetDitem(gSettingsDialog, S_OR_M_FIELD, 

itemType, itemHandle, itemRect); 
SetIText(itemHandle, 'seconds'); 
GetDitem(gSettingsDialog, TIME_FIELD, itemType, 

itemHandle, itemRect>; 
SetIText(itemHandle, gDefaultSecsHAA); 

end; 
MINS_RADIO: 

begin 
gSeconds_or_minutes := minutes; 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle CitemHandle), OFF>; 
GetDltem(gSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValueCControlHandle CitemHandle), ON); 
GetDitem(gSettingsDialog, S_OR_M_FIELD, 

itemType, itemHandle, itemRect); 
SetIText(itemHandle, 'minutes'); 
GetDltem(gSettingsDialog, TIME_FIELD, itemType, 

itemHandle, itemRect); 
SetlText(itemHandle, gDefaultMinsHAA); 

end; 
end; 

end; 
end; 

S Blue Settings uses Get D I t em and either Get IT ext or 
Ge t C t l Va l u e to fill the saved Se t t i n g s data structure with the 
values currently set in the settings dialog items. 

{----------------> SaveSettings <--} 

procedure SaveSettings; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

GetDitem(gSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect); 

GetITextCitemHandle, savedSettings.timeString); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect>; 



Working with Dialogs 269 

end; 

savedSettings.sound := GetCtlValue 
CControlHandle(itemHandle)); 

GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect); 

savedSettings.icon := GetCtlValue 
CControlHandle(itemHandle)); 

GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 

savedSettings.alert := GetCtlValue 
(ControlHandleCitemHandle)); 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect); 

savedSettings.secsRadio := GetCtlValue 
CControlHandle(itemHandle)); 

GetDitem(gSettingsDialog, MINS_RADIO, itemType, 
itemHandle, itemRect); 

savedSettings.minsRadio := GetCtlValue 
CControlHandleCitemHandle)); 

Restore Set t i n gs uses Get DI t em, Set IT ext, and 
Set Ct l Va l u e to restore the settings dialog items to the values 
saved in the saved Set t i n gs data structure. Use the value saved 
in s a v e d Se t t i n g s . s e c s Rad i o to determine if the static text 
field should read seconds or minutes. 

{----------------> RestoreSettings <--} 

procedure RestoreSettings; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

GetDitem(gSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect); 

SetITextCitemHandle, savedSettings.timeString); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandleCitemHandle), 

savedSettings.sound); 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.icon); 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.alert); 



270 

end; 

Macintosh Programming Primer 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.secsRadio); 

GetDitem(gSettingsDialog, MINS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), 
savedSettings.minsRadio); 

if savedSettings.secsRadio = ON then 
begin 

end 
else 

GetDitem(gSettingsDialog, S_OR_M_FIELD, 
itemType, itemHandle, itemRect); 
SetIText(itemHandle, 'seconds'); 

begin 

end; 

GetDitem(gSettingsDialog, S_OR_M_FIELD, 
itemType, itemHandle, itemRect); 
SetIText(itemHandle, 'minutes'); 

Count Down takes the number of seconds (or minutes) to count 
down as its only argument, puts up the countdown window, and 
counts down in seconds. 

Start by loading the countdown window from the resource file. Set 
the current G r a f Po rt to the countdown window, and make it 
visible. Next, make the current font appear in boldface. Finally, set 
the current font's size to 24 point. 

{----------------> Count Down<--} 

procedure CountDown CnumSecs: LONGINT); 
var 

begin 

myTime, oldTime, difTime: LONGINT; 
myTimeString: Str255; 
countDownWindow: WindowPtr; 

countDownWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

SetPort(countDownWindow); 
ShowWindow(countDownWindow); 
TextFace([boldJ); 
TextSizeC24); 



Working with Dialogs 271 

Your next step is to get the current time (in seconds since midnight, 
January 1, 1904), and to convert the countdown time from minutes to 
seconds, if necessary. Also, set the global g Co u n t i n g to T RU E. 

GetDateTime(myTime); 
oldTime := myTime; 

if gSeconds_or_minutes = minutes then 
numSecs := numSecs * SECONDS_PER_MINUTE; 

gCounting := TRUE; 

While you count down, call Ha n d l e Even t. This lets the user drag 
the countdown window around the screen or make menu selections 
while you count down. This is very important, because it keeps your 
program from falling into a mode. Users won't feel as though they're 
in countdown mode because they'll be able to pull down desk 
accessories and, if they're in MultiFinder, switch to other applications. 

Every time my T i me changes, a second has passed, and you have to 
redraw the countdown time. Call E r as e Rec t to clear the window 
and redraw the time. 

while CnumSecs > Q) and gCounting do 
begin 

end; 

HandleEvent; 
if gCounting then 

begin 

end; 

MoveTo(LEFT, TOP); 
GetDateTime(myTime); 
if myTime <> oldTime then 

begin 

end; 

difTime := myTime - oldTime; 
numSecs := numSecs - difTime; 
oldTime := myTime; 
NumToString(numSecs, 

myTimeString); 
EraseRect(countDownWindowA 

.portRect); 
DrawString(myTimeString); 

If g count i n g is still TRUE, no one interrupted the countdown, 
and you can set your notification. Finally, set g Co u n t i n g to F A LS E 
and dispose of the countdown window. 



272 

if gCounting then 
SetNotification; 

Macintosh Programming Primer 

gCounting := FALSE; 
DisposeWindowCcountDownWindow); 

end; 

If a notification is already set, remove it so that you can set a new 
one. If appropriate, load the small icon ( ' S I C N ' ) from the resource 
file and put its handle in the notification data structure. Do the same 
for the ' s n d ' resource and the string you loaded earlier. 

Then, call NMinstall to set the notification. Also turn on the Kill 
Notification item in the File menu (after getting the handle for it). 
Finally, set g N o t i f y _ s e t to T R U E. 

{----------------> SetNotification <--} 

procedure SetNotification; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 
dummy: OSErr; 
fileMenu: MenuHandle; 

if gNotify_set then 
begin 

dummy := NMRemove(QElemPtr(@gMyNMRec)); 
HUnlockCHandle(gNotifyStrH)); 

end; 

GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle(itemHandle)) = ON then 
gMyNMRec.nmSicon .- GetResource('SICN', 

BASE RES_ID) 
else 

gMyNMRec.nmSicon :=nil; 

GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle(itemHandle)) = ON then 
gMyNMRec.nmSound .- GetResource('snd ', 

BASE_RES ID) 
else 

gMyNMRec.nmSound :=nil; 

GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 



Working with Dialogs 273 

end; 

if GetCtlValue(ControlHandle(itemHandle)) = ON then 
begin 

end 
else 

MoveHHi(Handle(gNotifyStrH)); 
HLockCHandle(gNotifyStrH)); 
gMyNMRec.nmStr := gNotifyStrHA; 

gMyNMRec.nmStr :=nil; 

dummy := NMinstall(QElemPtr(@gMyNMRec)); 
fileMenu := GetMHandle(FILE_MENU_ID); 
Enableitem(fileMenu, KILL_ITEM); 
gNotify_set .- TRUE; 

Note that the routine Move H Hi was called before g Notify St r H 
was locked. Normally, before you work with a pointer to a handled 
object, you H Lock the handle. When you're done with the pointer, 
you HU n lock the handle again. As we mentioned earlier, H Lo c k 
creates an obstruction in the middle of the application heap. If the 
handle will be H Locked only for a short period of time (a few lines of 
code), this won't be a problem. In Reminder, g Not i f y St r H is kept 
H Locked from the time the notification is installed until the 
notification is removed. That's too long to keep a handle locked in the 
middle of the heap. Move H H i reduces this problem by relocating the 
handled memory as high in the heap as possible. Locking the handle 
at this point creates an obstruction at one end of the heap instead of 
in the middle. 

The topic of memory management on the Macintosh is important, 
but it is beyond the scope of this book. Volume II of the Primer 
contains a complete description of the Memory Manager. As your 
programs get larger and more sophisticated, you'll make more use of 
this part of the Toolbox. 

_J In Review 

This chapter examined some of the oldest parts of the Macintosh 
Toolbox (dialog boxes), together with some of the newest parts 
(SysEnvi rons and the Notification Manager). You built an applica
tion that used most of the Toolbox routines presented in the previous 
three chapters. 



274 Macintosh Programming Primer 

In Chapter 7, we'll address some of the programming issues that 
we have not touched on so far, such as error-handling, managing 
multiple windows, using the clipboard, printing, and working with 
scroll bars. We'll end with a brief sojourn into the Macintosh Sound 
Manager. 

Congratulations! The toughest part of the book is behind you. 



Toolbox 
Potpourri 

Congratulations! Now that you 
have the Macintosh interface 

under your belt, you'll see 
how to implement other traits 

that Mac programs should 
possess: multiple window 

handling, error-checking, the 
Clipboard, file and print 
management, scroll bars 

and sound. 

7 



_J 

THE FIRST APPLICATION, Window Maker, shows you how to manage a 
dynamic windowing environment. In addition to supporting window 
creation, movement, and disposal, WindowMaker introduces an 
error-handling mechanism that you can use in your own applications. 

Next, the desk scrap, more commonly known as the Clipboard, is 
introduced. The Scrap Manager utilities that support cut, copy, and 
paste operations are discussed. The second application, ShowClip, 
uses these routines to display the current scrap in a window. 

The third application, PrintPICT, introduces the File Manager and 
the Printing Manager. You'll learn how to support the standard 
Open, Saue, and Saue Rs ... File menu options in your own code. 

Next, we present a discussion on the use of scroll bars. The fourth 
application, Pager, uses the Control Manager, as well as the Resource 
Manager, to build a kinescopic display of PI CT resources. 

For the piece de resistance, we present Sounder, an alternative to 
the dreary world of S y s Be e p. 

Keeping Track of Windows: Window Maker 

Most applications on the Macintosh allow you to open more than one 
window at a time. WindowMaker lets you create as many windows 
as you desire. After they are created, you can select, move, and close 
any window. 

WindowMaker Specifications 

Here's how Window Maker works: 

1. It initializes the menu bar. 

2. It loads a PI CT resource. 

3. It enters the Main Event Loop and performs the following 
functions. 

4. It creates a new window whenever the New menu item is 
selected, centering the P I CT in the window. 

5. It closes the currently selected window whenever the Close 
menu item is selected. 

6. It handles events for moving and updating windows. 

7. It quits when the Quit menu item is selected. 

277 



278 Macintosh Programming Primer 

WindowMaker is the first Primer program that does error
checking. Every time a Toolbox function is called, there is the 
possibility that it may not execute properly. For example, if you call 
Get Menu to load a MENU resource, and the operating system can't 
find the resource, the call returns an error code. Your program should 
check for and respond to these error codes. If you ignore Toolbox error 
codes, you do so at your own risk. Check Toolbox calls the way we do 
it in WindowMaker and the other programs in this chapter. 
Window Maker also fully supports desk accessory editing operations. 

Because WindowMaker uses the concepts of the previous chapters, 
and also handles error-checking and multiple windows, you should 
consider using it as the model for your own applications. 

Setting up the WindowMaker Project 

Create a folder called W i n do w Ma k er in your source code folder. 
Then use ResEdit to create a new file inside the new folder 
called W i n do w Ma k e r . 7t. rs r c . Build a purgeable WI ND with an ID 
of 400. Figure 7.1 shows the specifications of the WIND you need. 

§0§ WIND ID= 400 from WindowMaker.n.rsrc §:§ 

top 

left 

proclD 

O Uisible IZl goAwayFlag 

Figure 7.1 WIND resource for Window Maker. 



Toolbox Potpourri 279 

Now, create the menu resources. First, build the MB AR resource 
(Figure 7.2). Change the MBAR resource ID to 400. Now build the 
individual MENU items. Figure 7 .3 displays the S, Fi I e, and Edit 
menus for WindowMaker. (The Edit menu is the same as that in 
Chapter S's Timer program and Chapter 6's Reminder program; copy 
resources from the older programs whenever possible.) 

D MBRR ID 400 from lllindowMaker.·n.rsrc 

# of menus 3 

***** 

~1enu res ID 1-1 
***** 

Menu res ID 1401 
***** 

r"lenu res ID 1402 
***** 

Figure 7 .2 M BA R resource for Window Maker. 



280 Macintosh Programming Primer 

§0 MENU "f!r!Ple" ID= 4DO from Windo111Maker.n.rsrc ----

About Windo111Maker 
Entire Menu: [SJ Enabled 

Title: 01==. ______ _ 
(~ s (Apple menu) 

Color 

Title: I I 
I tern Te Ht Default: I I 
Menu Background: D 

§0 MENU "File" ID = 401 from Windo111Maker. n .rsrc 

New 
Close 
Quit 

rut 
r np~A 
Pnsie; 
t li>ar 

Entire Menu: [SJ Enabled 

Title: •:!) ~l!!ill~' _i!i!ll!i!i!iiiil 
0 s (Apple menu) 

Color 

rn1e: 1 I 
Item TeHt Default : I I 
Menu Background: D 

MENU "Edit" ID= 402 from Windo111Maker.n .rsrc 

Entire Menu: [SJ Enabled 

Title: 

() s (Apple menu) 

Color 

Title: I I 
I tern Te11t Default: I I 
Menu Background: D 

Figure 7.3 MENU resources for Window Maker. 

Next, create the two DI TL resources, one for the about box, the 
other for the new error-checking routines. Change the resource IDs to 
the ones shown in Figure 7.4. To frame those two D I TL resources, 
build the two AL RT resources shown in Figure 7.5. 



Toolbox Potpourri 

~D§DITL "About" ID= 400 from WindowMak 

[Fi'ii'Ci'tfi 0r:· f 1·il'e .. il'r'Ciii'r'il'iii ... fr'i:i'iii .. f h'e· : 

Item'" 

1 

2 

· ac Programming Primer! i 

1990, D. Mark & C. Reed!!! 
............................................................................. ,, 

OK 

Type Enabled Top Left Bottom 

Button Ves 71 117 91 

Static Text Ves 7 70 61 

iil:D~DITL "Fatal Error" ID= 401 from Window 
!Ffo ... l.iicr'iii'iffilfy .. f'iifiififr.rii·r .. fi'iii ............. ; 
µust occurred: "O 

Gasp! 

Item'" Type Enabled Top Left Bottom 

1 Button Ves 66 117 106 

2 Static Text Yes 5 67 71 

Figure 7.4 DI TL resources for Window Maker. 

281 

Right Text/Resource ID 

177 OK 

260 Another fine 

program from 

the Mee 

Programming 

Primer! 

©1990, D. 

Merk & C. 

Ree dill 

Right Text/Resource ID 

177 Gasp! 

263 An Incredibly 

fatal error 

has just 

occurred: ·o 



282 Macintosh Programming Primer 

§D~ RLRT "Rbout" ID= 400 from WindowMaker:rr.I 

Top ~Bottom~ 
Left Right 332 

Items ID I 400 I Sound (0-3) 
.--

Stage 1 D #2 bold ~Drawn 1 
1---

Stage 2 D #2 bold ~Drawn 1 
1---

Stage 3 D #2 bold ~Drawn 1 
1---

Stage 4 D #2 bold ~Drawn 1 .....__ 

§D!§RLRT "Fatal Error" ID= 401 from WindowMake 

Top [i:iiiii] Bottom ~ 
Left ~Right @O 
Items ID I 401 I Sound (0-3) 

.--
Stage 1 D #2 bold ~ Drawn 1 

r--
Stage 2 D #2 bold ~ Drawn 1 

1---
Stage 3 D #2 bold ~ Drawn 1 

1---
Stage 4 D #2 bold ~ Drawn 1 .....__ 

Figure 7.5 AL RT resources for WindowMaker. 



Toolbox Potpourri 283 

All you need now are the P I CT resources that you'll display in the 
WindowMaker windows and the STR resources that will be used in 
the error-checking routine. Use Chapter 3's Show PICT PICT 
resource, or just cut and paste a picture from the Scrapbook. Be sure 
the resource ID for the PICT is 4 0 0 and mark the PICT as 
purgeable. Finally, add the four STR resources shown in Figure 7.6 to 
the W i n do w Ma k e r . 7t. rs r c file. Again, be sure to change the 
resource IDs of each resource to those shown in the figure and mark 
each ST R as purgeable. When you're done, the resource window of 
W i n d o w Ma k e r . 7t • r s r c should look like Figure 7. 7. 

The String 

Data $ 

The String 

Data $ 

The Str.i ng 

Data $ 

The String 

Data $ 
'--~~~~~~~~~~~----' 

Figure 7.6 ST R resources for WindowMaker. 



284 Macintosh Programming Primer 

~D~ WindowMaker.n.rsrc ~0~ 

~ 

ALRT DITL MBAR 

MENU PICT STR 

'w'IND 

Figure 7.7 WindowMaker resources completed. 

Now, you're ready to launch THINK Pascal. When prompted for a 
project to open, create a new project in the WindowMaker folder 
called W i ndowMa ke r. 7t. Next, use the Run Options ... dialog box to 
add the resource file to the project. 

Create a new source file (call it Wi ndowMaker. p), and add it to 
W i n do w Ma k e r • 7t. Here's the source code for W i n do w Ma k e r • p: 

program WindowMaker; 
const 

BASE_RES_ID = 400; 
APPLE_MENU_ID = 400; 
FILE_MENU_ID = 401; 
EDIT_MENU_ID = 402; 

ABOUT_ITEM = 1; 
ABOUT_ALERT = 400; 
ERROR_ALERT_ID = 401; 

NO_MBAR = BASE_RES_ID; 
NO_MENU = BASE_RES_ID + 1; 
NO_PICTURE = BASE_RES_ID + 2; 
NO_WIND = BASE_RES_ID + 3; 

NEW_ITEM = 1; 
CLOS E_ITEM = 2; 
QUIT_ITEM = 3; 



Toolbox Potpourri 

var 

UNDO_ITEM = 1; 
CUT_ITEM = 3; 
COPY_ITEM = 4; 
PASTE_ITEM = 5; 
CLEAR_ITEM = 6; 

EDGE_THRESHOLD = 30; 

WINDOW HOME_LEFT = 5; 
WINDOW_HOME_TOP = 45; 
NEW_WINDOW_OFFSET = 20; 

MIN_SLEEP = 60; 

LEAVE_WHERE_IT_IS = FALSE; 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

NIL_STRING = ''; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

gDone, gWNEimplemented: Boolean; 
gTheEvent: EventRecord; 
gNewWindowLeft, gNewWindowTop: INTEGER; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler CstringNum: INTEGER>; 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 

285 

ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlertCERROR_ALERT_ID, nil); 
ExitToShell; 



286 Macintosh Programming Primer 

end; 
{----------------> CenterPict <--} 

procedure CenterPict (thePicture:' PicHandle; var myRect: 
Re ct); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 
myRect.bottom := myRect.top + (pictureRect.bottom -

pictureRect.top); 
myRect.left := CwindRect.right - windRect.left -

CpictureRect.right - pictureRect.left)) div 2 + 
wi ndRect. left; 
myRect.right := myRect.left + (pictureRect.right -

pictureRect.left); 

{----------------> DrawMyPicture <--} 

procedure DrawMyPicture (pictureWindow: WindowPtr); 
var 

myRect: Rect; 
thePicture: PicHandle; 

begin 

end; 

myRect := pictureWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 
if thePicture =nil then 

ErrorHandlerCNO_PICTURE); 

CenterPict(thePicture, myRect); 
SetPort(pictureWindow); 
DrawPicture(thePicture, myRect); 

{----------------> CreateWindow <--} 

procedure CreateWindow; 
var 

theNewestWindow: WindowPtr; 
begin 

theNewestWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

if theNewestWindow =nil then 
ErrorHandler(NO_WIND); 



Toolbox Potpourri 

if CCscreenBits.bounds.right - gNewWindowLeft) < 
EDGE THRESHOLD) or CCscreenBits.bounds.bottom -

gNewWindowTop) < EDGE_THRESHOLD) then 
begin 

gNewWindowLeft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 

end; 

MoveWindowCtheNewestWindow, gNewWindowLeft, 
gNewWindowTop, LEAVE_WHERE_IT_IS); 

287 

gNewWindowLeft := gNewWindowLeft + NEW_WINDOW_OFFSET; 
gNewWindowTop := gNewWindowTop + NEW_WINDOW_OFFSET; 
ShowWindowCtheNewestWindow); 

end; 

{----------------> HandleEditChoice <--} 

procedure HandleEditChoice Ctheitem: INTEGER>; 
var 

dummy: Boolean; 
begin 

dummy .- SystemEditCtheitem - 1); 
end; 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice Ctheitem: INTEGER); 
var 

whichWindow: WindowPtr; 
begin 

case theitem of 
NEW_ITEM: 

end; 
end; 

CreateWindow; 
CLOSE_ITEM: 

begin 
whichWindow := FrontWindow; 
if whichWindow <>nil then 

DisposeWindowCwhichWindow); 
end; 

QUIT_ITEM: 
gDone := TRUE; 



288 Macintosh Programming Primer 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theitem: INTEGER); 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
aMenu: MenuHandle; 

case theitem of 
ABOUT IT EM: 

end; 
end; 

dummy .- NoteAlert(ABOUT_ALERT, nil); 
otherwise 

begin 

end; 

aMenu := GetMHandle(APPLE_MENU_ID); 
Getitem(aMenu, theitem, accName); 
accNumber .- OpenDeskAcc(accName); 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice (menuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

end; 

if menuChoice <> 0 then 
begin 

theMenu := HiWord(menuChoice); 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoice(theitem); 
FILE_MENU_ID: 

HandleFileChoice(theitem>; 
EDIT_MENU_ID: 

HandleEditChoice(theitem); 

Hi LiteMenu<O); 
end; 



Toolbox Potpourri 

{----------------> IsDAWindow <--} 

function IsDAWindow CwhichWindow: WindowPtr): BOOLEAN; 
begin 

if whichWindow =nil then 
IsDAWindow := FALSE 

else 

289 

IsDAWindow := (WindowPeekCwhichWindow)A.windowKind < 0); 
end; 

{----------------> AdjustMenus<--} 

procedure AdjustMenus; 
var 

aMenu: MenuHandle; 
begin 

end; 

aMenu := GetMHandleCFILE_MENU_ID); 
if FrontWindow =nil then 

DisableltemCaMenu, CLOSE_ITEM) 
else 

Enableitem(aMenu, CLOSE_ITEM>; 

aMenu := GetMHandleCEDIT_MENU_ID); 
if IsDAWindow<FrontWindow) then 

begin 

end 
else 

EnableitemCaMenu, UNDO_ITEM); 
EnableitemCaMenu, CUT_ITEM); 
Enableltem(aMenu, COPY_ITEM); 
Enableltem(aMenu, PASTE_ITEM); 
Enableitem(aMenu, CLEAR_ITEM); 

begin 

end; 

Disableltem(aMenu, UNDO_ITEM); 
DisableitemCaMenu, CUT_ITEM>; 
Disableltem(aMenu, COPY_ITEM); 
DisableitemCaMenu, PASTE_ITEM); 
Disableltem(aMenu, CLEAR_ITEM); 



290 Macintosh Programming Primer 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

end; 
end; 

inMenuBar: 
begin 

AdjustMenus; 
menuChoice := MenuSelect(gTheEvent.where); 
HandleMenuChoice(menuChoice); 

end; 
inSysWindow: 

SystemCLick(gTheEvent, whichWindow); 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
DisposeWindow(whichWindow); 

inContent: 
SelectWindowCwhichWindow); 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 
oldPort: GrafPtr; 

if gWNEimplemented then 

else 

dummy .- WaitNextEvent(everyEvent, gTheEvent, 
MIN_SLEEP, nil) 

begin 
SystemTask; 
dummy .- GetNextEvent(everyEvent, gTheEvent); 

end; 



Toolbox Potpourri 291 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
keyDown, autoKey: 

begin 
theChar := CHRCBitAnd(gTheEvent.message, 
charCodeMask)); 
if CBitAndCgTheEvent.modifiers, cmdKey) <> 
Q) then 

end; 
updateEvt: 

begin 
AdjustMenus; 
HandleMenuChoice(MenuKey(theChar)); 

end; 

if not IsDAWindowCWindowPtr(gTheEvent.message)) 
then 

begin 
GetPort(oldPort); 
SetPortCWindowPtr(gTheEvent.message)); 

BeginUpdate(WindowPtrCgTheEvent.message)); 

DrawMyPictureCWindowPtr(gTheEvent.message)); 
EndUpdateCWindowPtrCgTheEvent.message)); 
SetPort(oldPort); 

end; 
end; 

end; 

{----------------> Main Loop 

procedure MainLoop; 
begin 

gDone := FALSE; 

<--} 

gNewWindowLeft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 

gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddressCUNIMPL_TRAP_NUM, TooLTrap)); 

while (gDone = FALSE) do 
HandleEvent; 

end; 

.... 



292 Macintosh Programming Primer 

{----------------> MenuBarlnit<--} 

procedure MenuBarlnit; 
var 

myMenuBar: Handle; 
aMenu: MenuHandle; 

begin 
myMenuBar := GetNewMBar(BASE_RES_ID); 
if myMenuBar =nil then 

ErrorHandlerCNO_MBAR>; 
SetMenuBar(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
if aMenu =nil then 

ErrorHandlerCNO_MENU); 

AddResMenuCaMenu, 'DRVR'); 

aMenu := GetMHandle(EDIT_MENU_ID); 
if aMenu =nil then 

ErrorHandler(NO_MENU); 

aMenu := GetMHandle(FILE_MENU_ID); 
if aMenu =nil then 

ErrorHandlerCNO_MENU); 

DrawMenuBar; 
end; 

{----------------> WindowMaker<--} 

begin 
MenuBarlnit; 

Mainloop; 
end. 

Running WindowMaker 

Now that your source code is done, you're ready to run WindowMaker. 
Select Go from the Run menu. If you run into any compilation 
problems, consult the debugging tips found in Appendix C. When 
asked if you want to save changes before running, click Yes. The menu 
bar should display the S, File, and Edit menus. Desk accessories 
should work. The File menu should contain three new menu items: 
New, Close, and Quit. The Edit menu contains the standard menu 



Toolbox Potpourri 293 

items but is dimmed. Select New from the File menu a few times: 
You should see something like Figure 7.8. 

Each window can be selected and dragged around the screen. 
Selecting Close closes the currently selected window. 

Try selecting New about a dozen times (or until you've created 
enough windows to cause window wrap). You should see something 
like Figure 7.9. Each new window is placed below and to the right of 
the previous window. When the new windows reach the bottom or the 
right of the screen, the window wraps back to the top left corner. 
Select a window and drag it partially off and then back onto the 
screen. An up d a t e Ev t will cause the PI CT to be redrawn. Click in 
the close box of a window to close it. Now, choose 0 u it from the Fi I e 
menu. Let's take a look at the code. 

,.. S File HM 

Window 

Window 

§0 Window 

G ~ i) G ... 
o ·oo,,0b0 ,.,.. 
0g ·~0 :[ 0 "' 

0!>P.'tbg0 ~ . .J 0 , 0 

· . . vo.· · _ 
.. ·.o. . 

....:- ··' 

Figure 7.8 Running Window Maker. 



294 

_J 

Macintosh Programming Primer 

,.. s File H!i1 

Window 

b ' ,, b • 
• · . Q,, 0b0 . 
00·~0 )f, . ~ 

0!·,p'f000 0 
. . 

. 

. 
indow 

Window 

Window 

Window 

Window 

Window 

Window 

Window 

Figure 7.9 Window wrap in WindowMaker. 

Walking Through the WindowMaker Code 

, 

Figure 7.10 shows a bird's-eye view of WindowMaker's software 
architecture. 

Window Maker. c starts off with constant declarations. 
BASE_RES_ID should be familiar to you. APPLE_MENU_ID , 
ED IT _MEN U_I D, and FIL E_M EN U_I D are the resource ID numbers 
of the MENU resources. ABOUT_ITEM , ABOUT_ALERT , and 
ERR O R_A LE RT _ID are used to implement the program alerts. The 
names NO_MBAR, NO_MENU, NO_PICTURE, and NO WIND are 
used to identify the resource ID of the four strings used in the error
handling routine. NEW_ITEM, CLOSE_ITEM, and QUIT_ITEM 
are used in the case statement in the menu-handling routines. 
UNDO_ITEM, CUT_ITEM, COPY_ITEM, PASTE_ITEM, and 
C LE AR I TE M will be used to control the [di t menu items for desk 
accessories. ED G E_ TH RE s HOLD sets the threshold from the edge, in 
pixels, b efore window wrap occurs. WINDOW_HOME_LEFT and 
WIND O W_H OM E_ TOP are the default positions for a new window on 
the screen. The NE w_w IND o w_o FF s ET is set to the number of pixels 



Toolbox Potpourri 295 

HandleEvent 

if mouseDown if keyDown/autoKey if update event 

HandleMouseDown r AdjustMenus l if not lsDAWindow 

inMenuBar l HandleMenuChoice Ir DrawMyPicture 
AdjustMenus I CenterPict I 
HandleMenuChoice 

HandleMenuChoice 

HandleAppleChoice 
HandleFileChoice 

I CreateWindow I 
HandleEditChoice 

Figure 7.10 WindowMaker's software architecture. 

that a new window will be offset from the previous window. 
MI N_S LEEP is provided as a parameter to Wai t Next Event; 
LE AVE WHERE IT I S is a constant for Move W i n do w • 
w N E_ T RA p _Nu M and u N I Mp L_ T RA p _Nu M are used to determine the 
availability of W a i t Next Event on the user's Mac. Finally, set up 
N I L s T R I N G and H 0 p E L E s s L y F A TA L E R R 0 R for use in the 
error-handling alert. 

program WindowMaker; 
const 

BASE RES_ID = 400; 

APPLE_MENU_ID = 400; 
FILE_MENU_ID = 401; 
EDIT_MENU_ID = 402; 

ABOUT_ITEM = 1; 
ABOUT_ALERT = 400; 
ERROR_ALERT_ID = 401; 

NO_MBAR = BASE_RES_ID; 
NO_MENU = BASE_RES_ID + 1; 
NO_PICTURE = BASE_RES_ID + 2; 
NO_WIND = BASE_RES ID + 3; 



296 

NEW_ITEM = 1; 
CLOSE_ITEM = 2; 
QUIT ITEM = 3; 

UNDO_ITEM = 1; 
CUT_ITEM = 3; 
COPY_ITEM = 4; 
PASTE_ITEM = 5; 
CLEAR_ITEM = 6; 

EDGE_THRESHOLD = 30; 

WINDOW_HOME LEFT = 5; 
WINDOW_HOME_TOP = 45; 
NEW_WINDOW_OFFSET = 20; 

MIN_SLEEP = 60; 

LEAVE_WHERE_IT_IS = FALSE; 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

NI L_S TR ING = I I ; 

Macintosh Programming Primer 

HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

g Done, as always, is used as a flag for program completion. 
g W N E I mp l em e n t e d is the flag used when evaluating whether or not 
Wait Next Event is available. g New Window Left and 
g New W i n do w Top are the left and top coordinates for new windows, 
which will be initialized for the first window. 

var 
gDone, gWNEimplemented: Boolean; 
gTheEvent: EventRecord; 
gNewWindowLeft, gNewWindowTop: INTEGER; 

W i n do w Ma k e r starts with familiar calls to Menu I n i t and 
Mai nLoop. 

{----------------> WindowMaker <--} 

begin 
MenuBarlnit; 

MainLoop; 
end. 



Toolbox Potpourri 297 

In Me n u Ba r I n i t, load your menu resources and draw the menu 
bar. Everything is standard operating procedure except for the new 
error handling. If GetNewMBar<BASE_RES_ID) returns nil, it 
indicates that the operating system could not find the MB AR resource 
in your resource file; the error-handling routine, Error Hand le r, 
will then display an alert containing the string ( ' ST R ' ) resource 
with an ID number of NO_MBAR. The same thing happens if the S, 
File, or Edit menu resources cannot be found: 

{----------------> MenuBarlnit <--} 

procedure MenuBarlnit; 
var 

begin 

myMenuBar: Handle; 
aMenu: MenuHandle; 

myMenuBar := GetNewMBar(BASE_RES_ID); 
if myMenuBar =nil then 

ErrorHandler(NO_MBAR>; 
SetMenuBar(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
if aMenu =nil then 

ErrorHandler(NO_MENU); 

AddResMenu(aMenu, 'DRVR'); 

aMenu := GetMHandle(EDIT_MENU_ID); 
if aMenu =nil then 

ErrorHandler(NO_MENU>; 

aMenu := GetMHandle(FILE_MENU_ID); 
if aMenu =nil then 

ErrorHandler(NO_MENU); 

DrawMenuBar; 
end; 

Ma i n Loop checks to see if W a i t Next Event is implemented. 

{----------------> Main Loop <--} 

procedure Mainloop; 
begin 

gDone := FALSE; 
gNewWindowleft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 



298 

end; 

Macintosh Programming Primer 

gWNEimplemented := CNGetTrapAddress(WNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM, 
Tool Trap»; 
while CgDone = FALSE) do 

HandleEvent; 

H a n d l e Eve n t is similar to the earlier event handlers, except that 
cut, copy, and paste operations are now supported in desk 
accessories. Ad j us t Menus is now called if a Command key 
equivalent event has occurred, to change the state of the Edit menu. 
up d a t e Ev t s are handled with a call to D r a w My P i c t u re. 

{----------------> HandleEvent <--} 

then 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 
oldPort: GrafPtr; 

if gWNEimplemented then 
dummy := WaitNextEvent(everyEvent, gTheEvent, 
MIN_SLEEP, nil) 

else 
begin 

SystemTask; 
dummy := GetNextEvent(everyEvent, gTheEvent>; 

end; 

case gTheEvent.what of 
mouse Down: 

HandleMouseDown; 
keyDown, autoKey: 

begin 
theChar := CHR(BitAnd(gTheEvent.message, 

charCodeMask>>; 
if CBitAnd(gTheEvent.modifiers, cmdKey) <> 0) 

then 

end; 
updateEvt: 

begin 
AdjustMenus; 
HandleMenuChoice(MenuKeyCtheChar>>; 

end; 

if not IsDAWindow(WindowPtr(gTheEvent.message)) 



Toolbox Potpourri 299 

end; 
end; 

begin 
GetPort(oldPort); 
SetPort(WindowPtr(gTheEvent.message)); 

BeginUpdate(WindowPtr(gTheEvent.message)); 

DrawMyPicture(WindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 
SetPort(oldPort); 

end; 

Now, Hand leMouseDown supports desk accessory use of the Edit 
menu. Adjust Menus is also called to activate the Edit menu if a 
mo u s e Dow n has occurred in the menu bar. Clicking in the close box 
calls D i s pose W i n do w, which will close and free up the memory 
used for the window. 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

end; 
end; 

inMenuBar: 
begin 

AdjustMenus; 
menuChoice := MenuSelect(gTheEvent.where); 
HandleMenuChoice(menuChoice); 

end; 
inSysWindow: 

SystemClick(gTheEvent, whichWindow); 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
DisposeWindow(whichWindow>; 

inContent: 
SelectWindow(whichWindow); 



300 Macintosh Programming Primer 

Ad j u s t Men u s and I s DAW i n do w work together: Ad j u s t Me n u s 
enables and disables the items in the Edit menu, depending on 
whether the current window is a desk accessory window or a 
Window Maker window. To determine this, look into the structure of 
the current window: One of the fields of a window, w i n do w Ki n d, is 
positive if the window is an application window and negative if it is a 
desk accessory window. So, in I s DAW i n d ow, FA LS E is returned if 
there is no window or if the window belongs to Window Maker, and all 
items in the Edit menu are disabled (dimmed). If TRUE is returned, 
the Edit items are enabled so that desk accessories can use them. 

{---------------->Adj ustMenus<--} 

procedure AdjustMenus; 
var 

aMenu: MenuHandle; 
begin 

end; 

aMenu := GetMHandleCFILE_MENU_ID); 
if FrontWindow =nil then 

DisableltemCaMenu, CLOSE_ITEM) 
else 

EnableltemCaMenu, CLOSE_ITEM); 

aMenu := GetMHandleCEDIT_MENU_ID); 
if IsDAWindowCFrontWindow) then 

begin 

end 
else 

EnableltemCaMenu, UNDO_ITEM); 
EnableltemCaMenu, CUT_ITEM); 
EnableltemCaMenu, COPY_ITEM); 
EnableltemCaMenu, PASTE_ITEM); 
EnableltemCaMenu, CLEAR_ITEM); 

begin 

end; 

DisableltemCaMenu, UNDO_ITEM); 
DisableltemCaMenu, CUT_ITEM); 
DisableltemCaMenu, COPY_ITEM); 
DisableltemCaMenu, PASTE_ITEM); 
DisableltemCaMenu, CLEAR_ITEM); 



Toolbox Potpourri 

{----------------> IsDAWindow <--} 

function IsDAWindow (whichWindow: WindowPtr): BOOLEAN; 
begin 

if whichWindow =nil then 
IsDAWindow := FALSE 

else 

301 

IsDAWindow := CWindowPeek(whichWindow)A.windowKind < 0); 
end; 

Ha n d l e Menu C ho i c e hasn't changed from the earlier programs 
with menus, except that you now handle Edit menu selections: 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice (menuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

if menuChoice <> 0 then 
begin 

end; 

theMenu := HiWord(menuChoice); 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoice(theitem); 
FILE_MENU_ID: 

HandleFileChoice(theitem); 
EDIT_MENU_ID: 

HandleEditChoice(theitem); 

Hi liteMenuCO); 
end; 

Hand l e App l e C ho i c e works the same way as Chapter 6's 
Reminder program. The about item calls Note Alert, which 
displays the AL RT and the D IT L you set up for the about box. 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theitem: INTEGER); 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
aMenu: MenuHandle; 



302 Macintosh Programming Primer 

case theltem of 
ABOUT_ITEM: 

end; 
end; 

dummy .- NoteAlert(ABOUT_ALERT, nil); 
otherwise 

begin 

end; 

aMenu := GetMHandle(APPLE_MENU_ID); 
Getltem<aMenu, theltem, accName); 
accNumber := OpenDeskAcc(accName); 

Handle Fi le Choi c e takes care of the File menu choices. The 
New menu item runs the routine CreateWindow, and the Close 
menu item closes the active window by calling D i s pose W i n do w. 
Using the Close menu item is the same as clicking in the active 
window's close box. Quit sets gDone to TRUE, which halts execution 
of the main event loop. 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice (theltem: INTEGER); 
var 

whichWindow: WindowPtr; 
begin 

case theltem of 
NEW_ITEM: 

end; 
end; 

CreateWindow; 
CLOSE_ITEM: 

begin 
whichWindow := FrontWindow; 
if whichWindow <>nil then 

DisposeWindow(whichWindow); 
end; 

QUIT_ITEM: 
gDone := TRUE; 

Hand le Edi t Choi c e calls System Edi t. If the active window 
belongs to a desk accessory, Sys t em Ed i t passes the appropriate edit 
command to the accessory. Otherwise, it returns FALSE, and your 
application should then handle the edit command. Because the Edit 
menu items are disabled in Window Maker, Ha n d l e Ed i t C ho i c e just 
takes care of desk accessories. 



Toolbox Potpourri 303 

{----------------> HandleEditChoice <--} 

procedure HandleEditChoice Ctheitem: INTEGER>; 
var 

dummy: Boolean; 
begin 

dummy := SystemEditCtheitem - 1); 
end; 

C re a t e W i n do w controls the creation and placing of new windows 
for Window Maker. First, use Get New W i n do w with your WIND 
resource to create a new window. If the WIND is missing, 
Ge t New W i n do w returns n i l , so you can call E r r o r H a n d l e r with 
a • s T R ' resource of No_ w I N D. 

{----------------> CreateWindow <--} 

procedure CreateWindow; 
var 

theNewestWindow: WindowPtr; 
begin 

theNewestWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr<-1>>; 

if theNewestWindow =nil then 
ErrorHandlerCNO_WIND>; 

Normally, you'd use the position of a window as specified in the 
WI ND resource. In this case, however, the position of each new 
window is defined by the globals g New W i n do w Le f t and 
g New W i n do w Top. Whenever a new window is defined, 
Mo v e W i n do w is called to move the window from the original W I N D
based position to the position described by g New W i n do w Le f t and 
g New W i n do w Top. The final parameter to Move W i n do w is a 
BOOLEAN that determines whether the window, once moved, is 
moved to the front of all other windows or is left in the same layer. 
LEAVE_WHERE_IT_IS tells MoveWindow not to move the window 
to the front. Because the window was created in the front, this 
parameter will have no effect. 

Next, gNewWindowleft and gNewWindowTop are incremented 
by NEW_WINDOW_OFFSET, so the next new window won't appear 
directly on top of the previous one. Finally, the window is made visible. 

if ((screenBits.bounds.right - gNewWindowleft) < 
EDGE THRESHOLD) or ((screenBits.bounds.bottom -

gNewWindowTop) < EDGE_THRESHOLD) then 
begin 

gNewWindowleft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 

end; 



304 

end; 

Macintosh Programming Primer 

MoveWindow(theNewestWindow, gNewWindowleft, 
gNewWindowTop, LEAVE_WHERE_IT_IS); 

gNewWindowleft := gNewWindowleft + NEW_WINDOW_OFFSET; 
gNewWindowTop := gNewWindowTop + NEW_WINDOW_OFFSET; 
ShowWindow(theNewestWindow); 

D r a w My P i c t u r e passes t h e P i c t u r e to C e n t e r P i c t and then 
draws the centered PI CT in pi ct u re W i n do w. 

The real value of parameter passing is seen here. By passing the 
WindowPtr embedded in gTheEvent.message as a 
parameter to D raw My Pi ct u re, you avoid hard-coded variable 
names that would limit the flexibility of this routine. 

{----------------> DrawMyPicture <--} 

proced4re DrawMyPicture (pictureWindow: WindowPtr); 
var 

myRect: Re ct; 
thePicture: PicHandle; 

begin 

end; 

myRect := pictureWindowA.portRect; 
thePicture := GetPicture(BASE_RES_ID); 
if thePicture =nil then 

ErrorHandler(NO_PICTURE); 

CenterPict(thePicture, myRect); 
SetPort(pictureWindow); 
DrawPicture(thePicture, myRect); 

Cent e r Pi ct is the same routine you've used in your other PI c T 
drawing programs: 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 
windRect := myRect; 
pictureRect := thePictureAA.picFrame; 



Toolbox Potpourri 305 

end; 

myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 + 
windRect. left; 

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left); 

Finally, there's the Error Hand le r routine. Error Hand le r 
takes an error ID as input, loads.the 'STR ' resource with that ID, 
and uses S t o p A l e r t to display the error message. If the program 
can't find the ' s TR ' resource it needs, it calls S top A le rt with 
the HOPELESSLY _FAT AL_E R RO R string defined at the beginning of 
WindowMaker ( ' Game over, man ! ' ), to inform the user that the 
situation is exceedingly grim. 

Finally, Ex i t To S he l l returns control of the Macintosh to the 
Finder. 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING,.NIL_STRING, 
NIL_STRING); 

dummy:= StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

There are many solutions to error handling on the Macintosh. 
Whenever you make a Toolbox function call, check to see if an error 
has occurred. This is called passive error handling. Sometimes this is 
good enough; sometimes it's not. 



306 

_J 

Macintosh Programming Primer 

You can also go out of your way to avoid errors by checking 
everything you can possibly check. For example, imagine adding a 
fourth MEN u resource, to implement a Utilities menu. Assuming 
there is nothing special about the Utilities menu, you could get all 
the way through Menu Ba r I n i t without checking for the existence 
of the Utilities ME NU resource. If the MENU is there, Men uBa r In it 
will load the MENU automatically and make it available to your 
program. In this case, passive error handling worked fine. 

Suppose, however, that the MENU resource were trashed or 
missing, preventing it from being loaded. Your program would not 
function properly and would most probably crash. Checking all your 
resources may be time-consuming, but in the end, it's well worth it. 

You can take error handling one step further and also check your 
resources just before you use them. For example, you could call 
Ge t M Ha n d l e immediately before Me n u S e l e c t in case the MENU 
was somehow corrupted. 

You'll decide on the appropriate amount of error handling to 
perform. Error handling adds bulk to code but provides a higher level 
of reliability for your program. We highly recommend the inclusion of 
error-handling code early in the programming cycle. 

The Scrap Manager 

Whenever you use the Mac's copy, cut, or paste facilities, you're 
making use of the Scrap Manager. The Scrap Manager manages 
the desk scrap, more commonly known as the Clipboard. The 
second program, ShowClip, will use the Scrap Manager Toolbox 
routines to open the Clipboard and display the contents in a window. 

Scrap Manager Basics 

Data copied to the desk scrap is stored in two basic flavors, T EXT and 
PICT. Data stored in TEXT format consist of a series of ASCII 
characters. Data stored in PICT format consist of a QuickDraw 
picture. ShowClip will handle both TEXT and PICT data types. 

The Scrap Manager consists of six routines: Info Scrap, 
U n l o a d S c r a p, Lo a d S c r a p, Z e r o S c r a p, P u t S c r a p, and 
Ge t S c rap. I n f o S c r a p returns a pointer to a S c rap S t u f f 
record. Each of the other functions return a L 0 NG I NT containing a 
result code (1:457). 



Toolbox Potpourri 307 

lnfoScrap 

Info Scrap is a function (of type PS crap Stuff) that returns 
information about the desk scrap in a struct of type S c r a p S t u f f: 

TYPE PScrapStuff = AScrapStuff; 
ScrapStuf f = 

RECORD 

END; 

scrapSize : LONGINT; 
scrapHandle : Handle; 
scrapCount : INTEGER; 
scrapState INTEGER; 
scrapName : StringPtr 

{size of desk scrap} 
{handle to desk scrap} 
{count changed by ZeroScrap} 
{tells where the desk scrap is} 
{scrap file name} 

The s c r a p S i z e field contains the actual size, in bytes, of the 
desk scrap. The s c r a pH a n d l e field contains a handle to the desk 
scrap (if it currently resides in memory). The scrap Count field is 
changed every time Zero Scrap is called (we'll get to Zero Scrap in 
a bit). The scrap St ate field is positive if the desk scrap is memory 
resident, zero if the scrap is on disk, and negative if the scrap has not 
yet been initialized. The s c r a p Name field contains a pointer to the 
name of the scrap disk file (usually called C l i p boa rd F i l e ). 

UnloadScrap and LoadScrap 

If the scrap is currently in memory, Un l o ad S c r a p copies the scrap 
to disk and releases the scrap's memory. If the scrap is currently 
disk-based, u n load Scrap does nothing. 

If the scrap is currently on disk, Lo ad S c r a p allocates memory for 
the scrap and copies it from disk. If the scrap is currently memory
resident, Lo a d S c r a p does nothing. 

ZeroScrap 

If the desk scrap does not yet exist, Z e r o Sc rap creates it in 
memory. If it does exist, Z e r o Sc rap clears it. As we mentioned 
before, Z e r o S c r a p always changes the s c r a p C o u n t field of the 
S c r a p S t u f f record. 



308 

_J 

Macintosh Programming Primer 

PutScrap 

Pu t s c r a p puts the data pointed to by sou r c e into the scrap: 

FUNCTION PutScrap( length : LONGINT; 
theType : ResType; 
source : Ptr ) : LONGINT; 

The parameter l en g t h specifies the length of the data, and 
the Type specifies their type (whether they are PICT or TEXT data). 
You must call Z e r o S c rap immediately before each call to Put S c rap. 

GetScrap 

Ge t S c r a p resizes the handle h D es t and stores a copy of the scrap 
in this resized block of memory: 

FUNCTION GetScrap( hDest : Handle; 
theType : ResType; 
VAR offset : LONGINT ) : LONGINT; 

Specify the type of data you want in the parameter t h e Type. The 
of f s e t parameter is set to the returned data's offset in bytes from 
the beginning of the desk scrap. Ge t S c r a p returns a long containing 
the length of the data in bytes. 

You can actually put and get data types other than TEXT and 
PI CT to and from the scrap (1:461). For the most part, however, the 
T EXT and PI CT data types should serve your needs. 

ShowClip 

The ability to use the Clipboard is basic to Mac applications. ShowClip 
shows you how to add this capability to your applications. If you cut or 
copy text or a picture in an application or in the Finder and then run 
ShowClip, it will display the cut or copied text in a window. 



Toolbox Potpourri 309 

ShowClip Specifications 

ShowClip works like this: 

1. It initializes a window. 

2. It puts whatever is in the Clipboard into the window. 

3. It quits. 

ShowClip also does error checking. It warns if the WI ND resource 
is missing, or if the scrap is empty. 

Setting Up the ShowClip Project 

Start by creating a folder for this project, called S h ow C L i p. Use 
ResEdit to create a new file called Show C L i p . re. rs r c and, within 
that, a purgeable WI ND with an ID of 4 0 0. Figure 7 .11 shows the 
specifications of this W I N D. 

~D~ WIND ID= 400 from ShowClip.rr.rsrc ~ 

Window title: 
ShowClip 

top 

left 

proclD 

~bottom~ 
~right~ 
IO I refCon I 0 I 

D Uisible D goRwayFlag 

Figure 7.11 WIND specifications for ShowClip. 



310 Macintosh Programming Primer 

Add the DI TL in Figure 7.12 (this is the same one as the 
"hopelessly fatal" DI TL in WindowMaker, so use the WindowMaker 
DI TL if you have it). 

~D~DITL "Fatal Error" ID= 401 from ShowCli 
lfi'il"''l"il"ci.eiffil"iii···1"fifaf "Efr·r:·a·r: .. ·h"a"S" ............. 1 
Just occurred: ..... 0 l 

I I ............................................................................................................ : 

( Gasp! ) 

Item• Type Enabled Top Left Bottom Rtght Text/Resource ID 

1 Button Yes B6 1 t7 106 177 Gasp! 

2 Stattc Text Yes s 67 71 263 An tncredtbly 

fatal error 

has just 

occurred: ·o 

Figure 7.12 DI TL resource for ShowClip. 



Toolbox Potpourri 311 

Next, create a purgeable AL RT resource for your new error
checking routines (Figure 7.13). Add the two ' s TR ' resources 
shown in Figure 7.14 to the Show CL i p. 7t. rs r c file. Again, be sure 
to change the resource IDs of each resource to those shown in the 
figure and mark each as purgeable. When you're done, the resource 
list window from S how C L i p . n. rs r c should look like Figure 7 .15. 

~D:~ALRT "Fatal Error" ID= 401 from ShowClip.n.r 

Top ~ Bottom §:=J 
Left ~Right ~ 

ltemslDl401 I Sound (0-3) 

Stage I D #2 bold 0 Drawn ~ 
Stage 2 D #2 bold 0 Drawn 1 

Stage 3 D #2 bold [8J Drawn 1 

Stage 4 D #2 bold 0 Drawn 1 

Figure 7.13 AL RT resource for ShowClip. 

The String 

Data $ 

The String 

Data $ 

Figure 7.14 ST R resources for ShowClip. 



312 Macintosh Programming Primer 

§0~ ShowClip.11 .rsrc ~BJ§ 

l2Il ~ E] 
ALRT DITL MIM 

'w'IND 

Figure 7 .15 Resource list for ShowClip. 

Now you're ready to launch THINK Pascal. When prompted for a 
project to open, create a new project in the S how e l i p folder and call 
it Showe lip .1t. Next, use the Run Options ... dialog box to add the 
resource file to the project. 

Create a new source file called Showe l i p • p and add it to 
Showe l i p.1t. Here's the source code for Showe lip. p: 

program Showelip; 
con st 

var 

BASE_RES_ID = 400; 
ERROR_ALERT_ID = BASE_RES_ID + 1; 
NO_WIND = BASE_RES_ID; 
EMPTY_SeRAP = BASE_RES_ID + 1; 

NIL_STRING = ''; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

gelipWindow: WindowPtr; 



Toolbox Potpourri 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 

313 

ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

end; 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> CenterPi ct <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 

myRect.left := CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left)) div 2 + 
wi ndRect. left; 

myRect.right := myRect.left + CpictureRect.right -
pictureRect.left); 

{----------------> Main Loop <--} 

procedure Mainloop; 
var 

begin 

myRect: Re ct; 
clipHandle: Handle; 
length, offset: LONGINT; 

clipHandle := NewHandle(Q); 



314 

end; 

Macintosh Programming Primer 

length := GetScrap(clipHandle, 'TEXT', offset); 
if length < 0 then 

begin 
length := GetScrapCclipHandle, 'PICT', offset); 
if length < 0 then 

ErrorHandlerCEMPTY_SCRAP) 
else 

end 
else 

begin 

end; 

begin 

end; 

myRect := gClipWindowA.portRect; 
CenterPictCPicHandle(clipHandle), 
myRect); 
DrawPictureCPicHandleCclipHandle), 
myRect); 

HLockCclipHandle); 
TextBoxCPtrCclipHandleA), length, 

thePortA.portRect, teJustLeft); 
HUnlockCclipHandle); 

while not Button do 
begin 
end; 

{----------------> Windowinit <--} 

procedure Windowinit; 
begin 

gClipWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

if gClipWindow =nil then 
ErrorHandlerCNO_WIND); 

ShowWindowCgClipWindow); 
SetPortCgClipWindow); 

end; 

{----------------> ShowClip 

begin 
Windowinit; 
MainLoop; 

end. 

<--} 



Toolbox Potpourri 315 

Running ShowClip 

Now that your source code is done, you're ready to run ShowClip. 
Before you run the program, however, do a cut or copy operation on 
the Show C l i p . p file, or copy a picture from the Scrapbook; 
otherwise, you'll get an alert telling you that the scrap is empty. Now 
run ShowClip. It should immediately display the text or picture that 
you cut or copied (Figure 7.16). 

Quit by clicking the mouse. Try copying varying sizes of text or 
different pictures and running ShowClip again. This code should 
point out the ease with which you can add the Clipboard functions to 
your applications. 

Now, let's see how it's done. 

ShowClip 
Sample Copied Text 

Figure 7.16 Running ShowClip. 



_J 

316 

Walking Through the ShowClip Code 

S how C l i p . p starts off with the constant declarations. ShowClip's 
constants are similar to those declared in WindowMaker. The sole 
global variable, g c l i p W i n do w, points to the clipboard window. 

program ShowClip; 
con st 

BASE_RES_ID = 400; 
ERROR_ALERT ID = BASE RES ID + 1; 
NO_WIND = BASE_RES_ID; 
EMPTY_SCRAP = BASE_RES_ID + 1; 

NIL_STRING = I I; 

HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

var 
gClipWindow: WindowPtr; 

Show C l i p calls W i n do w I n i t and then Ma i n Loop. No 
excitement here. 

{----------------> 
begin 

Windowinit; 
MainLoop; 

end. 

ShowClip <--} 

In W i n do w I n i t, use Ge t New W i n do w to load g C l i p W i n do w 
from the resource file. Then call Show W i n do w to make 
g C l i p W i n do w visible and call Set Port so that all drawing is done 
in gC l i pWi ndow: 

{----------------> Windowinit <--} 

procedure Windowinit; 
begin 

gClipWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

if gClipWindow =nil then 
ErrorHandler(NO_WIND); 

ShowWindow(gClipWindow); 
SetPort(gClipWindow); 

end; 



Toolbox Potpourri 317 

Main Loop is where the action is. You use NewHa nd le (11:32) to 
create minimum-size blocks of storage for your PI CT and TEXT data. 
Remember, Get S c r a p will resize these memory blocks for you, 
as needed. 

{----------------> Main loop <--} 

procedure Mainloop; 
var 

begin 

myRect: Rect; 
clipHandle: Handle; 
length, offset: LONGINT; 

clipHandle := NewHandleCO>; 

Now, call Ge t S c r a p, looking first for some T EXT data. If there are 
no TEXT data in the scrap, call Get Scrap to look for PI CT data. If 
you find no PI CT data, call Error Handler with the EMPTY _SC RAP 
string. If you do find PI CT data, call Cent e r Pi ct to center the 
picture in g C l i p W i n do w, and then call D raw Pi c t u re to draw 
the picture: 

length := GetScrapCclipHandle, 'TEXT', offset); 
if length < 0 then 

begin 

end 

length := GetScrapCclipHandle, 'PICT', offset); 
if length < 0 then 

else 
ErrorHandlerCEMPTY_SCRAP) 

begin 

end; 

myRect := gClipWindowA.portRect; 
CenterPictCPicHandleCclipHandle), 
myRect); 
DrawPictureCPicHandleCclipHandle), 
myRect); 

If you found the TEXT data in the scrap, lock c l i pH and le with 
H l o c k, then call Tex t Box to draw the text in g C l i p W i n do w. 

else 
begin 

HLockCclipHandle>; 



318 

end; 

Macintosh Programming Primer 

TextBoxCPtrCclipHandleA), length, 
thePortA.portRect, teJustLeft); 
HUnlockCclipHandle); 

Finally, wait for a mouse click to exit the program: 

end; 

while not Button do 
begin 
end; 

C en t e r P i c t is the same routine you've used in the other Primer 
P I CT drawing programs: 

{----------------> CenterPict <--} 

procedure CenterPict CthePicture: PicHandle; var myRect: 
Rect>; 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 

myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top>; 

myRect.left := CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left)) div 2 + 
wi ndRect. left; 

myRect.right := myRect.left + CpictureRect.right -
pictureRect.left); 

Error Handler is the same routine you encountered in 
WindowMaker. Here, you get the string you need and then display it 
with s t op A l e r t. Ex i t To s h e l l halts program execution and 
returns to the Finder. 

{----------------> ErrorHandler <--} 

procedure ErrorHandler CstringNum: INTEGER); 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 



Toolbox Potpourri 319 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
Pa ram Text ( e r r or S t r i n g H "'"', N I L_ STRING, N I L_ STRING, 

NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil>; 
ExitToShell; 

_J Inside the Printing and File Managers 

The next program, PrintPICT, uses both the Printing Manager and 
the File Manager. PrintPICT uses the Standard File Package 
(IV:71) to prompt for the name of a P I CT file to print. It opens the file, 
reads in a chunk of data, builds a page, and sends the page to the 
current printer. The power of the File and Printing Managers makes 
this task a simple one. Let's take a look at the Standard File Package. 

The Standard File Package 

The Standard File Package is used by most Macintosh applications to 
support the Open, Saue, and Saue ns ... File menu items. Figure 
7 .17 shows examples of calls to S F Get F i l e and S F Put F i le. 
S F Get F i le is used to get a file name from the user. It can be called 
with a list of file types, limiting the user's choices to files of the types 
specified on the list. PrintPICT prints a single PI CT file. By calling 
S F Get F i le, PrintPICT allows the user to select the print file from a 
list limited to PI CT files. 



320 

I CJ Hard Disk: I 
D Apps 
D System Folder 
D THINK Pascal 
D Utilities 

ICJ Hard Disk: I 
D Apps 
D System Folder 
D THINK Pascal 
D Utilities 

Saue this document as: 

Macintosh Programming Primer 

A CJ Hard Disk: 
~ 

Driue 

Cancel 

IA CJ Hard Disk: 
~ 

Driue 

Saue 

Cancel 

Figure 7.17 SF Get Fi Le and SF Put Fi Le . 

The File Manager was totally remade when the Mac Plus came 
out. The original Macintosh Filing System (MFS) was inadequate to 
handle the number of files that hard disks could hold. The 
Hierarchical Filing System (HFS) replaced it, and Volume IV of 
Inside Macintosh details the new Toolbox calls . So, if you need 
information about the File Manager, use Chapter 19 of Volume IV, 
not Chapter 4 of Volume II. 



Toolbox Potpourri 321 

Here's the calling sequence for S F Ge t F i L e: 

PROCEDURE SFGetFile( where : Point; 
prompt : Str255; 
fi Le Fi Lt er : ProcPtr; 
numTypes : INTEGER; 
typeList : SFTypeList; 
dlgHook : ProcPtr; 

VAR reply : SFReply; 
dlgID : INTEGER; 
filterProc : ProcPtr ); 

s F G e t F i L e displays the standard open dialog on the screen at 
the point where. The prompt string is ignored. nu mTy p es and 
type Li st allow you to specify up to four distinct file types (such as 
P I CT or T EXT) for the user to choose from. 

Actually, you can specify as many file types as you like by creating 
your own data type, instead of s FT y p e Li st. s F Get Fi Le looks 
in typeLi st for numTypes types. 

f i Le Fi Lt er is a pointer to a filtering routine called by 
S F Get Fi Le after the file list is built from the type Li st. This 
filtering routine can modify the file list before it's displayed to the user. 

d L g Hook also points to a function. The d L g Hook function you 
write allows you to add extra items (such as pop-up menus) to the 
standard open dialog. 

Once the user selects a file, S F Get F i L e fills in the struct pointed 
to by rep Ly with information about the selected file: 

TYPE SFReply = RECORD 
good : BOOLEAN; 
copy : BOOLEAN; 
fType : OSType; 
vRefNum : INTEGER; 
version : INTEGER; 
fName STRING[63J 

END; 

{FALSE if ignore command} 
{not used} 
{file type or not used} 
{volume reference number} 
{file's version number} 
{file name} 

The good field contains FALSE if the user pressed the Cance I 
button, TRUE otherwise. The copy field currently is not used. The 
f Type field contains the file type selected (if the good field contains 
TRUE). The version field always contains 0. The vRefNum and 
f Name fields specify the selected file. You'll see how to use these last 
two fields in the next section. 



322 Macintosh Programming Primer 

Using the File Manager 

Once the user has picked a file to open (via S F G e t F i l e ), you'll use 
the File Manager routines F SO pen to open thEl file, F SR ea d to read 
a block of data, and F S C l o s e to close the file. 

You should know a few key terms before you use the File Manager. 
Volumes are the media used to store files. When the user presses the 
D ri u e button in the S F G e t F i l e dialog box, the files on the next 
available volume are displayed. Macintosh floppy and hard disks are 
both examples of volumes. In the original Macintosh (the one with 
64K ROMs), all the files on a volume were organized in a flat file 
format called the Macintosh File System (MFS) (Figure 7.18). 

The concept of folders existed on these "flat" Macs, but internally 
the files on a volume were all stored in one big list. The folders were 
an illusion maintained by the Finder. On flat volumes, users can't 
have two files with the same name, even if they're in different 
folders. The Mac Plus (with 128K ROMs) introduced a new method 
for organizing files: the Hierarchical File System (HFS) (Figure 7.19). 

Within each HFS volume is a set of files and directories. Within 
each directory, there can be still more files and directories. You'll 
use the File Manager Toolbox calls to open, read, write, and close 
these files and directories. 

DDDDD 
Figure 7.18 Flat files. 



Toolbox Potpourri 323 

Figure 7.19 Hierarchical files. 

F SO pen opens the specified file for reading and/or writing, 
depending on the file's open permission: 

FUNCTION FSOpen( fileName : Str255; 
vRefNum : INTEGER; 

VAR refNum : INTEGER ) : OSErr; 

s F Get F i l e translates the user's file selection into a v Ref Nu m and 
an fName. The vRefNum specifies the file's volume and directory, 
and the f Name specifies the file name. F sop en gets open 
permission from a file control block stored on the file's volume. 

Use the f i l e Na me and v Re f n um fields of the rep l y record 
returned by S F G e t F i l e as parameters to F S 0 p e n. F S 0 p e n will 
return a path reference number in the ref Nu m parameter that you 
can use in F S Re ad: 

FUNCTION FSRead( refNum : INTEGER; 
VAR count : LONGINT; 

buff Ptr : Ptr OSErr; 



324 Macintosh Programming Primer 

The re fN um returned by F s.o pen is known as an acces~ path, 
specifying the file's volume and the file's location on the volume all 
in one variable. 

Specify the file to be read from using the parameter r e f Nu m, and 
specify the number of bytes to be read using the parameter count. 
The bytes will be read into the space pointed to by the parameter 
buff Pt r (make sure you allocate the memory to which buff Pt r 
points), and the number of bytes actually read will be returned 
in count. 

Finally, close the file by calling F S C l o s e: 

FUNCTION FSClose( refNum : INTEGER ) : OSErr; 

Specify the file to be closed via the parameter re f Nu m. 
For a detailed discussion of the File Manager, turn to Inside 

Macintosh (Volume rv, Chapter 1) and Tech Notes 47, 77, 80, and 190. 
You'll need this for any substantial development effort. 

Now, let's take a look at the Printing Manager. 

Using the Printing Manager 

Prepare the Printing Manager for use by calling Pr Open. Then, 
allocate a new print record using New Hand le. The print record 
contains information the Printing Manager needs to print your job, 
including page setup information and information specific to the 
print job. 

You can prompt the user to fill in the page setup information by 
calling Pr St l D i a l o g. Prompt the user for job-specific information 
via a call to P r J ob D i a l o g. Each of these routines displays the 
appropriate dialog box and fills the newly allocated print record with 
the results. 

Then, call Pr Open Doc to set up a printing gr a f Port. The 
printing gr a f Port is made up of pages. Pr Open Doc calls 
Set Port, so you don't need to do so. You'll call Pr Open Page to start 
a new page, and then make a set of QuickDraw calls (such as 
Draw Picture) to fill the page with graphics. Next, call 
P r C l o s e Page to close the current page. Call P r Open Page and 
Pr C lose Page for each page you want to create. 



Toolbox Potpourri 

_J 

325 

When you've drawn all your pages, close the document with a call 
to P r C l o s e Doc. Now, it's time to print your document. Do this with 
a call to P r P i c F i l e. When you're done with the Printing Manager, 
call Pre lose. 

The Printing Manager is described in detail in Inside Macintosh, 
Volume II, Chapter 5. If you plan on writing an application that 
supports printing, read this chapter thoroughly. 

Now, let's look at PrintPICT. 

PrintPICT 

Because the "paperless society" seems to be rapidly receding into the 
distance, it's reasonable to expect a Mac application to be able to 
print. PrintPICT shows you how to print PICT files. 

PrintPICT reads in the contents of a PI c T file. Reading in the 
contents of a TE x T file is no different. Instead of interpreting the 
data as a PI c T, you would run the data through a parser that 
handles pagination, line breaks, hyphenation, and so on, before 
you draw it on the print g ra f Port. 

PrintPICT Specifications 

PrintPICT works like this: 

1. It uses the Standard File Package to locate a file of type PI CT. 

2. It uses the File Manager to open a file of type PI CT. 

3. It uses the Printing Manager to print the PI CT file. 

4. It quits. 

PrintPICT also has error checking. It puts up an alert if the 
printing operation goes astray at a number of different points. 



326 Macintosh Programming Primer 

Setting Up PrintPICT Resources 

Start by creating a folder for this project, called P r i n t P I CT. Then, 
use ResEdit to create a new file called Pr i n t PICT • 7t. rs r c. 

Make sure all of the following resources are marked as purgeable. 
Create a DI TL resource for your error alert (Figure 7 .20). Add 
the same old AL RT (Figure 7.21). Next, add the six 's TR 
resources shown in Figure 7 .22 to the Pr i n t PICT . 7t. rs r c file. 
Be sure to change the resource IDs of each resource to those shown 
in the figures. When you're done, the resource window of 
Print PICT. n. rs r c should look like Figure 7.23. 

§0§ Dill "Fatal Error" ID= 401 from PrintPI 
:nn···fra't"re.iil"fri'y···1·iifiii""Ei·r:·r:·c:;-r···h"a"S" ............. 1 
just occurred: ... o l 

[ ........................................................................................................ ..! 

Gasp! 

Item• Type Enabled Top Left Bottom Right Text/Resource ID 

1 Button Ves B6 117 106 177 Gasp I 

2 Static Text Ves 5 67 71 263 An incredibly 

fatal error 

has just 

occurred: ·o 

Figure 7.20 D IT L resource for PrintPICT. 



Toolbox Potpourri 

;;O;;RLRT "Fatal Error" ID= 400 from PrintPICT.11.r 

Top OOiilJ Bottom~ 
Left ~ Right ~ 

Items ID I 400 I Sound (0-3) 

Stage 1 D #2 bold [8J Drawn ~ 
Stage 2 D #2 bold [8J Drawn 1 

Stage 3 D #2 bold [8J Drawn 1 

Stage 4 D #2 bold [8J Drawn 1 

Figure 7.21 AL RT resource for PrintPICT. 

_O STR ID - 400 from PrintPICT.11.rsrc 

The String Can't open the f i I e ! ! ! 

Data $ 

~0 STR 

The String 

Data $ 

Th e St r ing 

Data $ 

Figure 7.22 ' ST R ' resources for PrintPICT. 

327 



328 Macintosh Programming Primer 

The Strin9 

Data $ 

The String 

Data $ 

The Str ing 

Data $ 

Figure 7.22 ' ST R ' resources for PrintPICT. (continued) 

Figure 7.23 PrintPICT resources completed. 

Once again, it's time to code. 

Setting Up the PrintPICT Project 

Start up THINK Pascal. Create a new project in the Print PI c T 
folder. Call it Pri ntPI CT .Jt. Use the Run Options ... dialog box to 
add the resource file to the project. Next, select Add File ... from the 



Toolbox Potpourri 329 

Project menu and add the two files that contain the Toolbox 
printing interface declarations and the interface routines. Both files 
can be found inside folders in the T H I N K Pa s c a l folder. First, add 
the file Printing. p (you'll find it inside the Interfaces folder). 
Next, add the file Print Cal ls. lib (you'll find it inside the 
Li bra r i es folder). 

Next, create a new source file called Pr i n t PI CT . p and add it to 
Pr i n t PICT. 7t. Here's the source code for Pr i n t PICT . p: 

program PrintPICT; 
uses 

Printing; 

con st 

var 

HEADER_SIZE = 512; 
BASE_RES ID = 400; 

ERROR_ALERT_ID = BASE_RES_ID; 
CANT_OPEN_FILE = BASE_RES_ID; 
GET_EOF ERROR = BASE_RES_ID + 1; 
HEADER TOO SMALL = BASE RES ID + 2; 
OUT_OF=MEMORY = BASE_RES_ID-+ 3; 
CANT_READ_HEADER = BASE_RES_ID + 4; 
CANT READ PICT = BASE_RES_ID + 5; 

NIL_STRING = ''; 
IGNORED_STRING = NIL_STRING; 
H 0 PELES SLY_ FAT A L_E RR OR = ' Game over, man ! ' ; 

gPrintRecordH: THPrint; 
gReply: SFReply; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
N IL_S TR ING) ; 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 



330 Macintosh Programming Primer 

{----------------> PrintPictFile <--} 

procedure PrintPictFile <reply: SFReply); 
var 

begin 

srcFile: INTEGER; 
printPort: TPPrPort; 
printStatus: TPrStatus; 
thePict: PicHandle; 
pictHeader: packed array[O .. HEADER_SIZEJ of CHAR; 
pictSize, headerSize: LONGINT; 
dummy: OSErr; 

if CFSOpen(reply.fName, reply.vRefNum, srcFile) <> 
noErr) then 

ErrorHandlerCCANT_OPEN_FILE>; 

if CGetEOFCsrcFile, pictSize) <> noErr) then 
ErrorHandlerCGET_EOF_ERROR); 

headerSize := HEADER_SIZE; 
if CFSReadCsrcFile, headerSize, @pictHeader) <> noErr) 
then 

ErrorHandlerCCANT_READ_HEADER); 

pictSize := pictSize - HEADER_SIZE; 
if pictSize <= 0 then 

ErrorHandlerCHEADER_TOO_SMALL); 

thePict := PicHandleCNewHandleCpictSize>>; 
if thePict =nil then 

ErrorHandlerCOUT_OF_MEMORY>; 

HLockCHandle(thePict>>; 

if FSRead(srcFile, pictSize, PtrCthePictA)) <> noErr 
then 

ErrorHandlerCCANT_READ_PICT); 

dummy := FSCloseCsrcFile>; 

printPort := PrOpenDoc(gPrintRecordH, nil, nil>; 
PrOpenPage(printPort, nil>; 
DrawPictureCthePict, thePictAA.picFrame); 
PrClosePage(printPort>; 
PrCloseDoc(printPort>; 

PrPicFileCgPrintRecordH, nil, nil, nil, printStatus); 

HUnlockCHandleCthePict)); 
end; 



Toolbox Potpourri 331 

{----------------> DoD i al og s <--} 

function DoDialogs: BOOLEAN; 
var 

keepGoing: BOOLEAN; 
begin 

end; 

keepGoing := PrStlDialog(gPrintRecordH); 

if keepGoing then 
DoDialogs .- PrJobDialog(gPrintRecordH) 

else 
DoDialogs := FALSE; 

{----------------> GetFileName<--} 

procedure GetFileName (var replyPtr: SFReply); 
var 

myPoint: Point; 
typeList: SFTypeList; 
numTypes: INTEGER; 

begin 

end; 

myPoint.h := 100; 
myPoint.v := 100; 
typeList[OJ := 'PICT'; 
numTypes := 1; 
SFGetFile(myPoint, IGNORED_STRING, nil, numTypes, 
typeList, nil, replyPtr); 

{----------------> Printinit <--} 

procedure Printinit; 
begin 

end; 

gPrintRecordH := THPrint(NewHandle(sizeof(TPrint))); 
PrOpen; 
PrintDefault(gPrintRecordH); 

{----------------> PrintPICT <--} 

begin 

end. 

Printinit; 
GetFileName(gReply); 
if gReply.good then 

begin 

end; 

if DoDialogs then 
PrintPictFile(gReply); 



332 Macintosh Programming Primer 

Changing the Compilation Order 

Notice that when you move the cursor over one of the file names in 
the Project window, the cursor turns into a hand. You can use the 
hand to drag files up and down, thus changing their compilation 
order. This is very important. Use the hand cursor to rearrange the 
files in the Project window so that they agree exactly with the order 
in Figure 7 .24. If you don't do this, the program won't be able to 
resolve all of its references. 

Running PrintPICT 

Now that your source code is entered, you're ready to run PrintPICT. 
PrintPICT will bring up an S F Get F i Le dialog box (Figure 7 .25). 

_o PrintP I CT. Tr 
Options File (by build order) 

Runtime .lib 
Size ~ 

0 
Interface . lib 

[Q][fil I/ R Printing .p 
0 
0 

1111m '·/ F" F't·in+P IC T , 0 
PrintCa lls .lib 0 

·····························r.;1:1T.:..~·si.~································o 

Figure 7.24 PrintPICT's Project window. 

le Prinmnl 

0 My Test PICT ~ =Hard Disk 

Driue 

Open 

Cancel 

Figure 7 .25 S F G e t F i L e dialog box. 



Toolbox Potpourri 333 

Select a PI c T file to be printed. The Page Setup dialog box will 
then be displayed (Figure 7.26). After you click OK, the Print Job 
dialog box appears (Figure 7.27). If you click on OK or press Return, 
PrintPICT will print your PI CT file and quit. Let's see how it's done 

=La=s=e=r=W=r=it=e=r=P=a=g=e=S=e=tu=p============5==.2= n OK D 
Paper: ® US Letter O R4 Letter O Tabloid · • 

O US Legal O 85 Letter ( Cancel ) 

Reduce or jllmij% 
Enlarge: 

Orientation 

ll[!eJ] 

Printer Effects: 
[21 Font Substitution? 
[8J Te11t Smoothing? 
[8J Graphics Smoothing? 
[8J Faster Bitmap Printing? 

(Options) 

Help 

Figure 7.26 PrintPICT brings up the Page Setup dialog box. 

LaserWriter "LaserWriter" 5.2 n OK B 
Copies:JIMI Pages:® Rll 0 From: D To: D ( Cancel ] 

Couer Page: ® No O First Page O Last Page Help 
Paper Source:® Paper Cassette 0 Manual Feed 

Figure 7.27 PrintPICT brings up the Print Job dialog box. 



_J 

334 

Walking Through the PrintPICT Code 

PrintPICT starts off with a uses statement, telling the compiler to 
give it access to the Pr i n t i n g unit. The Pr i n t i n g unit is found in 
the file P r i n t i n g • p (which we added to the project ear lier). 

program PrintPICT; 
uses 

Printing; 

Next, PrintPICT declares its constants. HEADE R_S I Z E is used for 
removing the header at the top of PI CT files. ERR O R_A LE RT_ I D, 
CANT_OPEN_FILE, GET_EOF_ERROR, HEADER_TOO_SMALL, 
OUT_OF_MEMORY, CANT_READ_HEADER, and CANT_READ_PICT 
are all used for the appropriate error strings in the error-handling 
routine. Finally, HOPELESSLY_FATAL_ERROR is for your ALRT of 
last resort. 

con st 
HEADER_SIZE = 512; 
BASE RES ID = 400; 

ERROR_ALERT_ID = BASE_RES_ID; 
CANT_OPEN_FILE = BASE_RES_ID; 
GET_EOF_ERROR = BASE_RES_ID + 1; 
HEADER_TOO_SMALL = BASE_RES_ID + 2; 
OUT_OF_MEMORY = BASE_RES_ID + 3; 
CANT_READ_HEADER = BASE_RES_ID + 4; 
CANT READ_PICT = BASE RES ID + 5; 

NIL_STRING = I I; 

IGNORED_STRING = NIL_STRING; 
HOPELESSLY FATAL_ERROR = 'Game over, man!'; 

The global g Pr i n t Re co rd H is the handle to the print record 
you'll create. g Reply will hold the data returned by our call to 
SFGetFi le. 

var 
gPrintRecordH: THPrint; 
gReply: SFReply; 

PrintPICT's main routine starts off with a call to Pr i n t In i t. 
Next, G e t F i l e Na me is run and S F Ge t F i l e is invoked. If the user 
doesn't click on the Cance I button, Do Di a logs is called. If 
Do Di al o gs returns TRUE, the file is printed via a call to 
PrintPICTFi le. 



Toolbox Potpourri 335 

{----------------> PrintPICT <--} 

begin 

end. 

Printlnit; 
GetFileName(gReply); 
if gReply.good then 

begin 

end; 

if DoDialogs then 
PrintPictFile(gReply); 

The information entered by the user in the Page Setup and Print 
Job dialog boxes is stored in a print record. Print Def au Lt fills 
the print record with default print values. A handle to the print 
record is passed to Pr Pi c Fi Le at print time. 

Pr i n t I n i t uses New Hand L e to allocate a block of memory the 
size of a print record and makes g P r i n t Re c o rd H a handle to that 
memory. Call P r Ope n to start up the Printing Manager, and then set 
the default print record to g Pr i n t Record H by calling 
P r i n t D e f a u L t. Doing this ensures that any changes you make to 
the Page Setup and Print Job dialogs will be implemented when 
you print. 

{----------------> Print In it<--} 

procedure Printlnit; 
begin 

end; 

gPrintRecordH := THPrint(NewHandle(sizeof(TPrint))); 
PrOpen; 
PrintDefault(gPrintRecordH); 

Get F i L e Name sets up the arguments and calls S F Get Fi Le. 
n um Type s was set to 1 , so you need to set up a single entry in the 
type L i s t array. Display only files of type PI CT. The pointer to the 
reply from S F Ge t F i L e will be placed in r e p L y P t r: 



336 Macintosh Programming Primer 

{----------------> GetFileName <--} 

procedure GetFileName (var replyPtr: SFReply); 
var 

my Point: Point; 
typeList: SFTypeList; 
numTypes: INTEGER; 

begin 

end; 

myPoint.h := 100; 
myPoint.v := 100; 
typeList[OJ := 'PICT'; 
numTypes := 1; 
SFGetFileCmyPoint, IGNORED_STRING, nil, numTypes, 
typeList, nil, replyPtr); 

DoDialogs calls PrStlDialog to do the Page Setup dialog, 
then calls PrJobDi a log to do the Print Job dialog. If the user hits 
the Cancel button in the Print Job dialog box, DoDi a logs returns 
FALSE. The value returned by Pr Job Di a log is returned by 
DoDialogs. 

Normally, your application would bring up the Page Setup dialog 
in response to a Page Setup ... menu selection and the Print 
Job dialog in response to a Print ... menu selection. PrintPICT 
calls both dialogs for demonstration purposes only. 

{----------------> DoDialogs <--} 

function DoDialogs: BOOLEAN; 
var 

keepGoing: BOOLEAN; 
begin 

end; 

keepGoing := PrStlDialog(gPrintRecordH); 

if keepGoing then 
DoDialogs := PrJobDialog(gPrintRecordH) 

else 
DoDialogs := FALSE; 

Pr i n t Pi ct Fi le starts off with a call to F SO pen to get the access 
path of the file selected by S F Get F i l e. If the file can be opened, 
G e t E O F is called, returning the size of the file in the parameter 
pi ct Size. Next, FSRead attempts to read the 512-byte header that 



Toolbox Potpourri 337 

describes the rest of the file. The actual number of bytes read is 
returned in the parameter h e ad e r S i z e. If fewer than 512 bytes were 
read, or if you run out of memory while trying to read the picture, call 
the Error Hand Le r. Because PrintPICT won't need the 512-byte 
PICT header, pi ct Si z e is decremented by 512. This reduced version 
of p i c t S i z e will be used to read in the headerless PI CT. 

{----------------> PrintPictFile <--} 

procedure PrintPictFile (reply: SFReply); 
var 

begin 

srcFi Le: INTEGER; 
printPort: TPPrPort; 
printStatus: TPrStatus; 
thePict: PicHandle; 
pictHeader: packed array[O .. HEADER_SIZEJ of CHAR; 
pictSize, headerSize: LONGINT; 
dummy: OSErr; 

if (FSOpen(reply.fName, reply.vRefNum, srcFile) <> 
noErr) then 

ErrorHandler(CANT_OPEN_FILE); 

if (GetEOF(srcFile, pictSize) <> noErr) then 
ErrorHandler(GET_EOF_ERROR); 

headerSize := HEADER_SIZE; 
if (FSRead(srcFile, headerSize, @pictHeader) <> noErr) 
then 

ErrorHandler(CANT_READ_HEADER); 

pictSize := pictSize - HEADER_SIZE; 
if pictSize <= 0 then 

ErrorHandler(HEADER_TOO_SMALL); 

thePict := PicHandle(NewHandle(pictSize)); 
if thePict =nil then 

ErrorHandler(OUT_OF_MEMORY); 

If you've passed through these trials successfully, you're ready to 
read in the PI CT data. Because F s Re ad requires a pointer to the 
read buffer, and because you allocated a handle (the Pi ct), you'll 
have to H Lo c k the handle before you pass its pointer ( t h e P i c t A) to 
FSRead. Call FSRead to read in the PICT. If this fails (IV:109), 
E r r or Hand L e r is run yet again. Assuming that you finally have the 
PI CT in memory at this point, close the PI CT file with F SC L o s e. 
Next, P r 0 p e n D o c is called, returning a pointer ( p r i n t Po r t) to the 
printing gr a f Port. Open a new page with P rOpe n Page, and draw 



338 Macintosh Programming Primer 

the PICT with DrawPicture. When you're done, PrClosePage 
closes the page and P r C l o s e Doc closes the printing g r a f Po rt. 

Finally, print the file with P r P i c F i l e. 

HLockCHandleCthePict>>; 

if FSReadCsrcFile, pictSize, PtrCthePictA)) <> noErr 
then 

ErrorHandlerCCANT_READ_PICT); 

dummy := FSCloseCsrcFile>; 

printPort := PrOpenDoc(gPrintRecordH, nil, nil); 
PrOpenPageCprintPort, nil); 
DrawPictureCthePict, thePictAA.picFrame>; 
PrClosePageCprintPort>; 
PrCloseDocCprintPort>; 

PrPicFileCgPrintRecordH, nil, nil, nil, printStatus>; 

HUnlockCHandleCthePict>>; 
end; 

E r r o r Ha n d l e r is the same as in the earlier programs. Take the 
alert string resource ID and set up Pa ram Text with it. Then, 
display the alert with S t op A l e r t and quit with Ex i t To S he l l. 

{----------------> ErrorHandler <--} 

procedure ErrorHandler CstringNum: INTEGER>; 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetStringCstringNum>; 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamTextCerrorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlertCERROR_ALERT_ID, nil); 
ExitToShell; 



_J Scroll Bars! We're Gonna Do Scroll Bars! 

Scroll bars are a common control used in Macintosh applications 
(Figure 7.28). This section shows you how to set one up to control 
paging between a series of pictures in a window. 

Making Use of Scroll Bars 

The routines that create and control scroll bars are part of the 
Control Manager. New Cont r o l is used to create a new control: 

FUNCTION NewControl( theWindow : WindowPtr; 
boundsRect : Rect; 
title : Str255; 
visible : BOOLEAN; 
value : INTEGER; 
min,max : INTEGER; 
procID INTEGER; 
refCon : LONGINT ) : ControlHandle; 

The parameter pro c I D specifies the type of control to be created. 
To create a new scroll bar, pass the constant s c r o l l Ba r Pro c to 
New Control. Every scroll bar has a minimum, maximum, and 
current v a l u e. For example, a scroll bar may go from 1 to 20, and 
may currently be at 10 (Figure 7.29). 

Pager 

Figure 7.28 Window with scroll bar (Pager). 

• • 

339 



340 Macintosh Programming Primer 

illll-1 
::::::----1~-T-h_u_m_b_a_t_P_o_s_it-io_n_l_O--. 

1111 ~.--P-o-s-it_i_o_n_2_0___, 

Position 1 

Figure 7.29 Scroll bar positioning. 

Once the scroll bar is created, call D raw Cont r o L s to draw it in 
your window: 

PROCEDURE DrawControls( theWindow WindowPtr >; 

Because the calls to Window Manager routines (such as 
ShowWi ndow and MoveWi ndow) do not redraw controls in a 
window, Draw cont r o Ls must be called whenever the window 
receives an update event. 

When a mouseDown event occurs, Fi ndWi ndow is called, 
returning a part code describing the part of the window in which the 
mo u s e Down occurred. If the mo us e D own was i n Cont e n t, call 
FindControl: 

FUNCTION FindControl( thePoint : Point; 
theWindow : WindowPtr; 

VAR whichControl : ControLHandle ) 
INTEGER; 



Toolbox Potpourri 341 

Like F i n d W i n do w, Fi n d Cont r o l returns a part code. This time, 
the part code specifies which part of the scroll bar was clicked in 
(Figure 7.30). Pass the part code returned by Find Control to 
TrackControl: 

FUNCTION TrackControL< theControl: ControlHandle; 
startPt: Point; 
actionProc: ProcPtr): INTEGER; 

T r a c k Co n t r o l will perform the action appropriate to that part 
of the scroll bar. For example, if the mouse Down was in the thumb of 
the scroll bar, an outline of the thumb is moved up and down (or 
across) the scroll bar until the mouse button is released. Once 
Tr a c k Cont r o l returns, take the appropriate action, depending on 
the new value of the scroll bar. 

Next, let's look at Pager, a program that uses a scroll bar to page 
between PI CT drawings in a window. 

Up Rrrow 

"Page Up" Region 

Thumb 

"Page Down" Region 

Down Rrrow 

Figure 7.30 Parts of scroll bars. 



_J 

342 

Pager 

Pager illustrates the use of scroll bars in a Macintosh application. It 
works like this: 

1. It initializes a window. 

2. It creates a new scroll bar, using the number of available PI CT 
resources to determine the number of positions in the scroll bar. 

3. When a mouse Down occurs in the scroll bar, it updates the value 
of the scroll bar, loads the appropriate P I CT, and displays it in the 
window. 

4. It quits when the close box is clicked. 

Pager also warns if the W I N D or P I CT resources are unavailable. 

Setting Up the Pager Project 

Start by creating a folder for this project, called Pa g e r. Use ResEdit 
to create a new file called Pa g e r • 7t. r s r c. You might want to save 
some time by just copying and pasting the W I N D, A LR T, and D I T L 
resources from the W i n do w Ma k e r . 7t • r s r c file. Remember to make 
each resource purgeable. 

The WIND resource information appears in Figure 7.31. 

!!!D WI ND ID = 400 from Pager. 11 .rsrc 

Window title: 
Suollmg Pictures 

top 

left 

proclD 

E==1 bottom~ 
LJright ~ 

14 I refton I o I 

D Uisible 181 goAwayFlag 

Figure 7.31 WI ND resource for Pager. 



Toolbox Potpourri 343 

Next, create a D IT L resource (Figure 7.32). Add the AL RT (Figure 
7.33). Then, add the three • STR •resources shown in Figure 7.34 to 
Pa g e r . 7t • r s r c. Change the resource IDs of each resource to those 
shown in the figures and make each resource purgeable. 

§Di~ Dill "Fatal Error" ID= 401 from Pager 

iFi"il'··1nc.re.i:fififu··"f"a·i·a·i··er:r:·or:··fia"S"··········· .. 1 
tiust occurred: "O i 

l. ....................................................................................................... ..I 
Gasp! 

Item• Type Enabled Top Left Bottom 

1 Button Yes B6 117 106 

2 Static Text Yes 5 67 71 

Figure 7.32 D I T L resource for Pager. 

~Di RLRT "Fatal Error" ID= 401 from Pager.11.rsrc 

Top IUiii] Bottom~ 
Left ~Right ~ 

ltemsrnl 401 I Sound (0-3) 

Stage 1 D #2 bold 181 Drawn ~ 
Stage 2 D #2 bold 181 Drawn 1 

Stage 3 D #2 bold 181 Drawn 1 

Stage 4 D #2 bold 181 Drawn 1 

Figure 7.33 AL RT resource for Pager. 

Right Text/Resource ID 

177 Gasp I 

2B3 An 1ncred1bly 

fatal error 

has just 

occurred: ·o 



344 Macintosh Programming Primer 

The String 

Data $ 

D STA ID 401 from Pager.n.rsrc 

The String 

Data $ 

The String 

Data $ 

e are no PICT resources 
I ab I e ! ! ! 

Figure 7 .34 ' S T R ' resources for Pager. 

Next, create some PI CT resources from your favorite clip art and 
paste them into the Page r . n:. rs r c. Paste in as many as you like. 
Don't worry about changing resource IDs for the PI CT resources. 
We'll display every available PICT, regardless of race, creed, or 
resource ID. Remember to mark each PICT as purgeable. When 
you're done, the resource window of P a g e r . n: • r s r c should look like 
Figure 7.35. 

ALRT DITL PICT 

EJ b1 
STR mimJI 

Figure 7.35 Pager resources completed. 



Toolbox Potpourri 345 

Now you're ready to launch THINK Pascal. Create a new project in 
the Page r folder. Call it Page r . 1t. Create Page r . p and add it to 
Pager .1t. Here's the source code for Pager. p: 

program Pager; 
con st 

var 

BASE_RES_ID = 400; 

SCROLL_BAR_PIXELS = 16; 

MIN_SLEEP = 0; 
NIL_REF_CON = O; 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

ERROR_ALERT_ID = BASE_RES ID + 1; 
NO_WIND = BASE_RES_ID; 
NO_PICTS = BASE_RES_ID + 1; 
CANT LOAD PICT = BASE RES ID + 2; 

NIL_STRING = I'; 
NIL_TITLE = NIL_STRING; 
VISIBLE = TRUE; 
START_VALUE = 1; 
MIN_VALUE = 1; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

gPictWindow: WindowPtr; 
gScrollBarHandle: ControlHandle; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER>; 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 



346 

end; 

Macintosh Programming Primer 

dummy := StopAlertCERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> CenterPict <--} 

procedure CenterPict CthePicture: PicHandle; var myRect: 
Re ct); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := CwindRect.bottom - windRect.top -
CpictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 
myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top); 
myRect.left := CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left)) div 2 + 
windRect. left; 
myRect.right := myRect.left + CpictureRect.right -
pictureRect.left); 

{----------------> UpdateMyWindow <--} 

procedure UpdateMyWindow CdrawingWindow: WindowPtr); 
var 

begin 

currentPicture: PicHandle; 
drawingClipRect, myRect: Rect; 
tempRgn: RgnHandle; 

tempRgn :; NewRgn; 
GetClip(tempRgn); 

myRect := drawingWindowA.portRect; 
myRect.right := myRect.right - SCROLL_BAR_PIXELS; 
EraseRect(myRect); 

currentPicture := PicHandle(GetlndResource('PICT', 
GetCtlValue(gScrollBarHandle))); 

if currentPicture =nil then 
ErrorHandler(CANT_LOAD_PICT); 

CenterPict(currentPicture, myRect); 

drawingClipRect := drawingWindowA.portRect; 



Toolbox Potpourri 

drawingCLipRect.right := drawingCLipRect.right -
SCROLL_BAR_PIXELS; 
ClipRect(drawingCLipRect); 

DrawPicture(currentPicture, myRect); 

SetCLip(tempRgn); 
DisposeRgn(tempRgn); 

end; 

{----------------> ScroLLProc <--} 

347 

procedure ScroLLProc (theControl: ControLHandle; theCode: 
INTEGER); 

var 
curControLValue, maxControLValue, minControLValue: 
INTEGER; 

begin 
maxControLValue .- GetCtLMax(theControl); 
curControLValue .- GetCtLValue(theControl); 
minControLValue .- GetCtLMin(theControl); 

case theCode of 

end; 

inPageDown, inDownButton: 
if curControLValue < maxControLValue then 

curControLValue := curControLValue + 1; 
inPageUp, inUpButton: 

if curControLValue > minControLValue then 
curControLValue := curControLValue - 1; 

SetCtLValue(theControl, curControLValue>; 
end; 

{----------------> SetUpScroLLBar <--} 

procedure SetUpScroLLBar; 
var 

begin 

vScroLLRect: Rect; 
numPictures: INTEGER; 

numPictures := CountResources('PICT'); 
if numPictures <= 0 then 

ErrorHandler(NO_PICTS); 
vScroLLRect := gPictWindowA.portRect; 
vScroLLRect.top := vScroLLRect.top - 1; 
vScroLLRect.bottom := vScroLLRect.bottom + 1; 
vScroLLRect.Left := vScroLLRect.right -

SCROLL_BAR_PIXELS + 1; 
vScroLLRect.right := vScroLLRect.right + 1; 



348 

end; 

Macintosh Programming Primer 

gScrollBarHandle := NewControl(gPictWindow, 
vScrollRect, NIL_TITLE, VISIBLE, START_VALUE, 
MIN_VALUE, numPictures, scrollBarProc, NIL_REF_CON>; 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

whichWindow: WindowPtr; 
thePart: INTEGER; 
thePoint: Point; 
theControl: ControlHandle; 

begin 
thePart := FindWindow(gTheEvent.where, whichWindow>; 
case thePart of 

inSysWindow: 
SystemClick(gTheEvent, whichWindow); 

inDrag: 
DragWindow CwhichWindow, gTheEvent.where, screenBits.bounds); 

inContent: 
begin 

thePoint := gTheEvent.where; 
GlobalTolocalCthePoint>; 
thePart := FindControlCthePoint, whichWindow, theControl); 
if theControl = gScrollBarHandle then 

begin 
if thePart = inThumb then 

begin 
thePart := TrackControl(theControl, thePoint, nil>; 
UpdateMyWindowCwhichWindow>; 

end 
else 

begin 
thePart := TrackControl CtheControl,thePoint, 
@ScrollProc>; 
UpdateMyWindowCwhichWindow>; 

end; 
end; 

end; 
inGoAway: 

gDone .- TRUE; 
end; 

end; 



Toolbox Potpourri 

{----------------> HandleEvent<--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 

else 

dummy := WaitNextEvent(everyEvent, gTheEvent, 
MIN_SLEEP, nil) 

begin 
SystemTask; 

349 

dummy := GetNextEvent(everyEvent, gTheEvent); 
end; 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
updateEvt: 

begin 
BeginUpdate(WindowPtr(gTheEvent.message)); 
DrawControls(WindowPtr(gTheEvent.message)); 

UpdateMyWindow(WindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 

end; 
end; 

end; 

{----------------> Main Loop 

procedure MainLoop; 
begin 

gDone := FALSE; 

<--} 

gWNEimplemented := CNGetTrapAddress(WNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddress(UNIMPL_TRAP_NUM, 
Tool Trap)); 

end; 

while (gDone =FALSE) do 
HandleEvent; 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1 )); 



350 

_J 

end; 

Macintosh Programming Primer 

if gPictWindow =nil then 
ErrorHandler(NO_WIND); 

SelectWindow(gPictWindow); 
ShowWindow(gPictWindow); 
SetPort(gPictWindow); 

{----------------> Pager <--} 

begin 
Windowlnit; 
SetUpScrollBar; 

MainLoop; 
end. 

Running Pager 

When you've finished typing in your source code, run Pager. You 
should see something like Figure 7.28 (shown earlier), except that it 
will use the PICTs that you put in Pager .7t. rsrc. The scroll bar 
should allow you to page back and forth between the PICT s. 
Clicking in the close box ends Pager's execution. 

Walking Through the Pager Code 

Figure 7.36 offers an overview of Pager's software architecture. 

if not done 

HandleEvent 

if mouseDown 

HandleMouseDown 

~ FindControl ] 
TrackControl 
UpdateMyWindow 

if update event 

DrawControls 
UpdateMyWindow 

Figure 7.36 Pager's software architecture. 



Toolbox Potpourri 351 

You've seen most of this program before. You'll create a window 
with Ge t New W i n do w and get and handle events just as you did in 
WindowMaker. Now, let's look at th1e code. 

Pager starts off with constant and global variable declarations. 
We'll discuss these in context. 

program Pager; 
con st 

var 

BASE_RES_ID = 400; 

SCROLL_BAR_PIXELS = 16; 

MIN_SLEEP = 0; 
NIL_REF_CON = 0; 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_~UM = $9F; 

ERROR_ALERT_ID = BASE_RES_ID + 1; 
NO_WIND = BASE_RES_ID; 
NO_PICTS = BASE_RES_ID + 1; 
CANT_LOAD_PICT = BASE_RES ID + 2; 

NIL_STRING = I I; 

NIL_TITLE = NIL_STRING; 
VISIBLE = TRUE; 
START_VALUE = 1; 
MIN_VALUE = 1; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

gPictWindow: WindowPtr; 
gScroLLBarHandle: ControLHandle; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 

Pager's main routine first calls W i n do w In i t, next calls 
Set Up Scro L LB a r to initialize the scroll bar control, and then runs 
Ma i n Loop to start the main event loop. 

{----------------> 
begin 

Windowlnit; 
SetUpScroLLBar; 

MainLoop; 
end. 

Pager<--} 



352 Macintosh Programming Primer 

W i n do w In it is uneventful. The WIND resource is loaded and 
displayed, with the customary call to E r r o r Hand l e r if the WI ND 
resource is missing. 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

end; 

gPictWindow := GetNewWindowCBASE_RES_ID, nil, 
Wi ndow•Pt r (-1)); 

if gPictWindow =nil then 
ErrorHandlerCNO_WIND); 

SelectWindow(gPictWindow); 
ShowWindow(gPictWindow); 
SetPort(gPictWindow); 

S e t U p S c r o l l Ba r calls Co u n t Re s o u r c e s to find out how many 
PI CT resources are available. 

Every application has access to resources from two different 
places: the resource fork of the application itself and the resource 
fork of the system file. In addition, an application may use the 
Resource Manager to open additional resource files. When looking 
for a resource, the Resource Manager searches the most recently 
opened resource file first. 

If no PI CT resources are available, the E r r or Hand l e r is called. 
Otherwise, Se t Up S c r o l l Ba r creates a Re ct the proper size for 
your scroll bar and then creates the scroll bar with a call to 
New Cont r o l. The scroll bar ranges in value from M I N_ VALUE to 
nu m Pi ct u res, the number of available PICT resources. 
ST ART VALUE is the initial value of the scroll bar and determines 
the initial position of the scroll bar thumb. The final parameter is a 
reference value available for your application's convenience. You can 
use these four bytes as scratch pad space. 



Toolbox Potpourri 

{----------------> SetUpScrollBar <--} 

procedure SetUpScrollBar; 
var 

vScrollRect: Rect; 
numPictures: INTEGER; 

begin 

end; 

numPictures := CountResourcesC'PICT'); 
if numPictures <= 0 then 

ErrorHandlerCNO_PICTS); 
vScrollRect := gPictWindowA.portRect; 
vScrollRect.top := vScrollRect.top - 1; 
vScrollRect.bottom := vScrollRect.bottom + 1; 
vScrollRect.left := vScrollRect.right -
SCROLL_BAR_PIXELS + 1; 
vScrollRect.right := vScrollRect.right + 1; 
gScrollBarHandle := NewControl(gPictWindow, 
vScrollRect, NIL_TITLE, VISIBLE, START_VALUE, 
MIN_VALUE, numPictures, scrollBarProc, NIL_REF_CON); 

353 

Main Loop sets the flag for Get Next Event or Wait Next Event, 
and then calls Hand leEvent. 

{---------------->Mai nLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 

gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddressCUNIMPL_TRAP_NUM, 
Tool Trap)); 
while (gDone = FALSE) do 

HandleEvent; 

Pager handles two different events. mouse Down s are handled by 
HandleMouseDown. updateEvts are handled in line. First, 
Beg i n Up d a t e is called. Then, D raw Con t r o l s draws the scroll bar 
with the thumb in the proper position. Finally, End Up d a t e is called. 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 



354 Macintosh Programming Primer 

dummy := WaitNextEvent(everyEvent, gTheEvent, 
MIN_ SLEEP, n i L) 

else 
begin 

SystemTask; 
dummy := GetNextEvent(everyEvent, gTheEvent); 

end; 

case gTheEvent.what of 
mouseDown: 

end; 
end; 

HandleMouseDown; 
updateEvt: 

begin 
BeginUpdateCWindowPtr(gTheEvent.message)); 
DrawControlsCWindowPtr(gTheEvent.message)); 

UpdateMyWindow(WindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 

end; 

Ha n d L e Mouse Down looks the same at the start: 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
thePoint: Point; 
theControl: ControLHandle; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

inSysWindow: 
SystemCLick(gTheEvent, whichWindow); 

inDrag: 
DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

The big change comes when a mo u s e Down occurs in the content 
region (in Content) of a window. The mouse Dow n's location 
( g Event . where) is translated into the window's local coordinate 
system. The localized point is passed to Fi n d Cont r o L, which 
returns a Hand Le to the selected control (in the parameter 
t he Cont r o L) and a part code indicating what part of the control 
was selected. If t he Cont r o L is your scroll bar, find out if it was in 
the thumb. If it was, call Tr a ck Cont r o L to drag an outline of the 



Toolbox Potpourri 355 

thumb up and down the scroll bar. When the thumb is released, 
update the window using the new scroll bar value. If any other part 
of the control was used, call Track Control with a pointer to 
S c r o l l P r o c. S c r o l l P r o c scrolls the scroll bar until the mouse 
button is released. 

Call Track cont r o l with a pointer to an action procedure if you 
want the control to change while the mouse button is still down. If 
you pass n i l as an action proc, the control will animate, but its 
value will not change until the mouse button is released. 

inContent: 
begin 

thePoint := gTheEvent.where; 
GlobalTolocal(thePoint); 
thePart := FindControl(thePoint, whichWindow, theControl); 
if theControl = gScrollBarHandle the begin 

if thePart = inThumb then 
begin 

thePart := TrackControl(theControl, thePoint, nil); 
UpdateMyWindow(whichWindow); 

end 
else 

begin 
thePart := TrackControl(theControl, 
thePoint,@ScrollProc); 
UpdateMyWindow(whichWindow); 

end; 
end; 

end; 
inGoAway: 

gDone .- TRUE; 
end; 

end; 

Scrol lProc handles mouse Downs in the page up, page down, up 
button, and down button regions of the scroll bar. 
m a x C o n t r o l V a l u e , c u r C o n t r o l V a l u e, and m i n C o n t r o l V a l u e 
are set to the maximum, current, and minimum values of 
t h e Cont r o l. If the mouse click was i n Pa g e Down or 
i n Down Button, increase the value of the control. If the mouse click 
was i n Page Up or i n Up But ton, decrease the value of the control. 
Finally, update the control to this new value with Set Ct l Va l u e. 



356 Macintosh Programming Primer 

{----------------> Scro LL P roe <--} 

procedure ScroLLProc (theControl: ControLHandle; theCode: 
INTEGER); 

var 
curControLValue, maxControLValue, minControLValue: 
INTEGER; 

begin 
maxControLValue := GetCtLMax(theControl); 
curControLValue .- GetCtLValue(theControl); 
minControLValue := GetCtLMin(theControl); 

case theCode of 

end; 

inPageDown, inDownButton: 
if curControLValue < maxControLValue then 

curControLValue := curControLValue + 1; 
inPageUp, inUpButton: 

if curControLValue > minControLValue then 
curControLValue := curControLValue - 1; 

SetCtLValue(theControl, curControLValue); 
end; 

Update My W i n do w works in a fashion similar to that of the 
Draw Pi ct u re routine in EventTutor (Chapter 4). The algorithm 
works as follows: Temporarily reset the window's clipping region so it 
does not include the area covered by the scroll bar. Center the 
picture, draw it, and reset the original clip region. The call to 
Get Ind Resource uses the current value of the scroll bar 
(Get Ct L Va Lue ( g Sc r o L L Ba r Hand L e ) ) to load the appropriate 
P I C T resource. 

For example, if there were 30 PI c T resources available, the scroll 
bar would run from 1 to 30. If the current thumb setting were 10, the 
call to Get Ind Resource would return a handle to the tenth PI c T 
resource. Since Get Ind Resource returns a handle, you can use 
Pascal's type-casting mechanism to convert it to a Pi c Ha n d L e. 

Note that only one PICT at a time is ever loaded into memory. 
When the scroll bar's value changes, a replacement PI CT is loaded, 
not an additional one. 



Toolbox Potpourri 

{----------------> UpdateMyWindow <--} 

procedure UpdateMyWindow (drawingWindow: WindowPtr); 
var 

currentPicture: PicHandle; 
drawingCLipRect, myRect: Rect; 
tempRgn: RgnHandle; 

begin 
tempRgn := NewRgn; 
GetCLip(tempRgn); 

myRect := drawingWindowA.portRect; 
myRect.right := myRect.right - SCROLL_BAR_PIXELS; 
EraseRect(myRect); 

currentPicture := PicHandle(GetindResource('PICT', 
GetCtlValue(gScrollBarHandle))); 

if currentPicture =nil then 
ErrorHandler(CANT_LOAD_PICT); 

CenterPict(currentPicture, myRect); 

drawingClipRect := drawingWindowA.portRect; 
drawingClipRect.right := drawingClipRect.right -
SCROLL_BAR_PIXELS;. 
ClipRect(drawingClipRect); 

DrawPicture(currentPicture, myRect); 

SetClip(tempRgn); 
DisposeRgn(tempRgn); 

end; 

Cent e r Pi ct is the same as it ever was. 

{----------------> CenterPict <--} 

357 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 
windRect := myRect; 
pictureRect := thePictureAA.picframe; 
myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) div 2 + 
windRect.top; 
myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 



358 

end; 

Macintosh Programming Primer 

myRect.left := CwindRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) div 2 + 
windRect. left; 
myRect.right := myRect.left + (pictureRect.right -
pictureRect.left); 

E r r o r Hand l e r should be familiar by now: Pa ram Text to 
S top A l e rt to Ex i t To She l l, leaving nothing to chance. 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

_J The Sound Manager 

If you're tired of the same old Sys 8 e e p, there is an alternative. 
Within the system file is a set of ' s n d ' resources, commonly known 
as beep sounds. The ' s n d ' with resource ID = 1 is the familiar Beep. 
The current system comes with three additional ' s n d ' s: Monkey, 
Clink-Klank, and Boing. Hundreds more are available on electronic 
bulletin boards throughout the country. 

Using the Sound Manager, you can add these sounds to your 
applications. The final Mac Primer application, Sounder, shows 
you how. 



Toolbox Potpourri 359 

Sounder 

Sow1der works like this: 

1. It loads the ' s n d ' resources from the system file. 

2. It plays them (assuming you have the volume set above 0). 

3. It quits. 

Sounder also performs error checking. It puts up an alert if the 
' s n d ' resources can't be accessed. 

Setting Up the Sounder Project 

Start by creating a folder for this project, called Sound e r. Use 
ResEdit to create a new file called Sound e r . 7t. rs r c. Sounder uses 
the same DI TL and AL RT resources as all the other Chapter 7 
programs, so you can cut and paste if you've typed in the other 
programs. If not, use Figures 7.37 and 7.38 for those resources. Add 
the four ' ST R ' resources shown in Figure 7 .39 to the 
Sound e r . 7t. r s r c file. Again, be sure to change the resource IDs of 
each resource to those shown in the figure. When you're done, the 
resource window of Sound e r . 7t. r s r c should look like Figure 7.40. 

~D~ Dill "Fatal Error" ID= 401 from Pager 
!ifri··1n·c·re"Cffti"fy ... fiifaf·0·r:r·o·r: ... fi"a"S"· ............ 1 
Just occurred: "O ~ 

l ........................................................................................................ ..I 
Gasp! J 

Figure 7 .37 D I T L resource for Sounder. 



360 Macintosh Programming Primer 

Item"' Type Enabled Top Left Bottom Right 

I Button Yes 86 117 106 177 

2 Static Text Yes 5 67 71 283 

Figure 7.37 DI TL resource for Sounder. (Continued) 

§0§ ALRT "Fatal Error" ID= 401 from Sounder.n.rs 

Top i!iiiJ Bottom ~ 
Left ~Right ~ 

Items ID I 401 I Sound (0-3) 

Stage 1 

Stage 2 

Stage 3 

Stage 4 

D #2 bold ~ Drawn 

D #2 bold ~ Drawn 

D #2 bold ~ Drawn 

D #2 bold ~ Drawn 

.-----, 
1 
t--
1 
r--
1 

1---
1 
'--

Figure 7 .38 A L R T resource for Sounder. 

Text/Resource ID 

Gespl 

An Incredibly 

fetal error 

hes just 

occurred: ·o 



Toolbox Potpourri 

STR ID= 400 from Sounder.n.rsrc 

The String 

Data $ 

The String 

Data 

The String 

Data $ 

The String 

Data $ 

Figure 7.39 ' s n d ' resources from Sounder. 

§0 Sounder.11.rsrc t!]§ 

[0]] ~ D 
ALRT D ITL HIM 

Figure 7.40 Pager resources completed. 

361 



362 Macintosh Programming Primer 

Now you're ready to launch THINK Pascal. Create a new project in 
the Sounder folder. Call it Sounder . 7t. Create a new source file 
(Sound e r • p ), and add it to Sound e r . 7t. Here's the source code for 
Sounder.p: 

program Sounder; 
uses 

Sound; 

const 
BASE_RES ID = 400; 
SYNCHRONOUS = FALSE; 

ERROR_ALERT_ID = BASE_RES_ID + 1; 
CANT_LOAD_BEEP_SND = BASE_RES_ID; 
CANT_LOAD_MONKEY_SND = BASE_RES_ID + 1; 
CANT_LOAD_KLANK_SND = BASE_RES_ID + 2; 
CANT LOAD_BOING SND = BASE_RES ID + 3; 

NIL_STRING = I I; 

HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

BEEP_SND = 1; 
MONKEY_SND = 2; 
KLANK_SND = 3; 
BOING_SND = 4; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 



Toolbox Potpourri 363 

{----------------> MakeSound <--} 

procedure MakeSound; 
var 

begin 

soundHandle: Handle; 
dummy: OSErr; 

soundHandle := GetResource('snd ', BEEP_SND); 

if soundHandle =nil then 
ErrorHandler(CANT_LOAD_BEEP_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', MONKEY_SND); 

if soundHandle =nil then 
ErrorHandler(CANT_LOAD_MONKEY_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', KLANK_SND); 

if soundHandle =nil then 
ErrorHandler(CANT_LOAD_KLANK_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', BOING_SND); 

if soundHandle =nil then 
ErrorHandler(CANT_LOAD_BOING_SND); 

dummy .- SndPlay(nil, soundHandle, SYNCHRONOUS); 
end; 

{---------------->Sounder<--} 

begin 
MakeSound; 

end. 



_J 

364 

Walking Through the Sounder Code 

Sounder is short and sweet. These constants should be familiar to 
you Chapter 7 cognoscenti. 

program Sounder; 
uses 

Sound; 

const 
BASE_RES_ID = 400; 
SYNCHRONOUS = FALSE; 

ERROR_ALERT_ID = BASE_RES_ID + 1; 
CANT_LOAD_BEEP_SND = BASE_RES_ID; 
CANT_LOAD_MONKEY_SND = BASE_RES_ID + 1; 
CANT_LOAD_KLANK_SND = BASE_RES_ID + 2; 
CANT_LOAD_BOING_SND = BASE_RES_ID + 3; 

NIL_STRING = ''; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

BEEP_SND = 1; 
MONKEY_SND = 2; 
KLANK_SND = 3; 
BOING_SND = 4; 

Sounder's main routine consists of a call to Ma k e Sound. 

{----------------> Sounder <--} 

begin 
MakeSound; 

end. 

The key to this program is the Sound Manager routine S n d P l a y. 
Load each of the four ' s n d ' resources normally found in the 
system file, and play them with Sn d P l a y. 

Because the Mac System file didn't always use 's n d 
resources, older systems may cause an error AL RT to appear. 
Check out the Sound Manager (Chapter 27) in Inside Macintosh, 
Volume V, for more detail. 



Toolbox Potpourri 365 

The first parameter to S n d P l a y is the S n d C h a n n e l P t r. By 
passing n i l, you've told S n d P l a y to allocate a channel for you. The 
second parameter is the ' s n d ' handle. The third parameter tells 
Sn d P l a y whether or not to play the sound asynchronously. When 
you pass n i l as the S n d C h a n n e l Pt r, you must pass FA LS E as the 
third parameter. That is, if you ask S n d P l a y to allocate a channel 
for you, you must play the sound synchronously. If you cannot find 
the ' s n d ' resource, go to the beloved E r r o r Ha n d l e r. 

{----------------> MakeSound <--} 

procedure MakeSound; 
var 

begin 

soundHandle: Handle; 
dummy: OSErr; 

soundHandle := GetResourceC'snd ', BEEP_SND); 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_BEEP_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', MONKEY_SND); 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_MONKEY_SND); 

dummy := SndPlayCnil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResourceC'snd ', KLANK_SND>; 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_KLANK_SND); 

dummy := SndPlayCnil, soundHandle, SYNCHRONOUS>; 

soundHandle := GetResourceC'snd ', BOING_SND>; 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_BOING_SND); 

dummy .- SndPlayCnil, soundHandle, SYNCHRONOUS); 
end; 



366 Macintosh Programming Primer 

The error-handling routine is similar to what you've seen in the 
other Chapter 7 programs: 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

_J In Review 

We covered a lot of ground in this chapter. Each of the four programs 
we presented involved a different part of the Mac Toolbox. If you're 
unsure about any of the concepts discussed, take the time to read 
about them in their respective Inside Macintosh chapters. The Scrap 
Manager is covered in Volume I, Chapter 15. The Standard File 
Package is covered in Volume I, Chapter 20 and updated in Volume 
IV, Chapter 15. The File Manager is covered in Volume IV, Chapter 
19. (Warning: Don't be fooled by imitations! The File Manager section 
in Volume II, Chapter 4, has been completely replaced by Chapter 19 
of Volume IV.) The Printing Manager is covered in Volume II, 
Chapter 5. 

The Control Manager is covered in Volume I, Chapter 10. Scroll 
bars make up a small part of this chapter, but the concepts 
implemented in Pager will carry through to other types of controls. 

Finally, the Sound Manager is covered in Volume V, Chapter 27. 
An authoritative version of this chapter has been published by 
Macintosh Developer Technical Support under the title The Sound 
Manager. If you're really interested in sound on the Mac, read the 
"Sound Driver" chapter (Volume I, Chapter 8). This is the way sound 
originally worked on the Mac, and many of the basic concepts are 
still supported. 

Chapter 8 introduces the wonderful world of ResEdit. See you 
there! 



Using ResEdit 

ResEdit provides a simple, yet 
powerful way to edit resources. This 

chapter shows you how to use this tool 
to create the Finder resources 

necessary to turn your projects into 
stand-alone applications. 

8 



BY Now, You should have a good grip on the most important aspects 
of Macintosh application programming. We've described how to 
handle events, access files, and display pictures and text. You've 
worked with menus, windows, and dialogs. This chapter discusses 
some issues that become important after you have your basic 
programming problems in hand. 

After you compile your debugged application, but before you 
announce your first stock offering, you need to take care of a few loose 
ends. For example, you'll want to turn your code into a stand-alone 
application. Then, you'll want to design your own custom icon. These 
finishing touches require the creation of the Finder resources. 
These resources do not affect the operation of the application; rather, 
they affect the way your application interfaces with the Finder. This 
chapter discusses how to add Finder resources to your application. 

If you are here because you are unfamiliar with ResEdit, read the 
first section of this chapter, which deals with general ResEdit 
operations. 

As was mentioned earlier, version 2 of ResEdit is used in this 
chapter; please refer to the resource manual that comes with THINK 
Pascal if you have an earlier version of ResEdit (typically 1.2). 

You may already have used other programming utilities, such as 
Rez or RMaker, that create and edit resources. ResEdit is used in 
this book because it creates and edits resources graphically, 
whereas Rez and RMaker build resources by describing them 
textually. For example, here is a text description of a w IND 
resource: 

TYPE WIND 
,128 

My Window 
40 40 200 472 

Visible GoAway 
0 
0 

, , 
, , 
, , 

, , 
, , 
,, 

the resource number 
the window title 
the window re ct (top left 

bottom right) 
resource flags 
window definition ID 
ref con (points to user call) 

This is the way RMaker describes resources. (RMaker also comes 
with THINK Pascal.) 

369 



370 Macintosh Programming Primer 

ResEdit's w IN o editor looks like Figure 8.1. When you're creating 
resources for the first time, ResEdit's graphic approach has many 
advantages: It's more intuitive, and it gives you a chance-with 
many resource types-to examine the appearance of a resource 
without actually running your program. You can use RMaker and 
ResEdit interchangeably; see the appendix in THINK Pascal's 
User Manual if you're interested in using RMaker. 

We'll explore ResEdit in this chapter in the following way: First, 
you'll create the resource file needed for the first program in Chapter 
3, Hello2. Then you'll compile Hello2 into a stand-alone application. 
Finally, you'll use ResEdit to add the Finder resources to it. 

§0 WI ND ID = 128 from Untitled 

Figure 8.1 Graphic representation of WI ND resource. 



_J Notes on Using ResEdit 

ResEdit works well in MultiFinder. If you plan to use MultiFinder, 
make sure that the application memory size used by ResEdit is at 
least 500K (Figure 8.2). Here are a few caveats about using ResEdit: 

You can't edit resources in files that are currently in use, such as 
the Finder file. This is not much of a disadvantage, as editing open 
files is not such a hot idea anyway. 

Make a copy of any file you plan to edit. It is very easy to modify 
resources irrevocably. Be careful. If you're planning to enter more 
than one or two resources in a single ResEdit session, save your file 
periodically. 

Although ResEdit works with all resource types, it may have 
difficulty performing some operations on large resources, such as 
color icons, or sound resources ( ' s n d ' ) that exceed a few hundred K 
in size. In these cases, proceed with caution (and double ResEdit's 
memory allocation if you're using MultiFinder). 

These guidelines are a little like the sign posted at swimming 
pools about waiting 30 minutes after you eat: Most of the time, 
they're not necessary. ResEdit is quite well mannered and will 
quickly become an indispensable programming tool. 

Info 

~ ResEdit 121 ResEdit 2 .0 

Kind: application 

Locked D 

Size: 576,454 bytes used, 563K on disk 

Vher-e : HotHouse, SCSI 0 

Cr-eated : Sat, Apr 28, 1990, 11 :00 AM 
Modified : Sat, Apr 28, 1 990, 11 :00 AM 
Yer-sion : 2 .0, ©App le Computer, Inc. 

1984-1990 

Suggested Memor-y Size (K) : 500 

Application Memor-y Size (K): ~ 

Figure 8.2 ResEdit version 2. 

371 



372 Macintosh Programming Primer 

How ResEdit Works 

Before you start using ResEdit to install the Finder resources, you 
should examine how ResEdit accomplishes the job of creating and 
editing resources in files . Let's start by building the resource file for 
the first program in Chapter 3: Hello2. 

Double-click on ResEdit to start it up. 
ResEdit will put up a dialog box asking you to select a file or to 

create a new one. To build a resource file for a Primer project, click on 
the new button and name the new resource file (in this case 
He L Lo 2 • n. rs r c ) . ResEdit then displays Hello2's resource window, 
which will hold any resources that we plan to make (Figure 8.3). 

ResEdit has five basic menus: File, Edit, Resource, Window, 
and Uiew. File allows you to open or create resource files; Edit 
allows you to cut and paste resources between files. The Resource 
menu lists operations specific to a given resource type. Window lists 
all the currently open windows for ResEdit, so you can bring a 
window that is hidden by others up to the front. Uiew allows you to 
display resources graphically (using icons) or by a regular text list. 
The figures in this book utilize the iconic display. 

Let's build the WIN D resource necessary to make Hello2 work. 
Starting from the empty resource file of Figure 8.3, choose Create 
New Resource from the Resource menu to add a new resource 

" s File Edit Resource Window Uiew 
., 

Figure 8.3 ResEdit with a new resource file. 



Using ResEdit 373 

type to the current file. The Resource Type dialog box (Figure 8.4) 
appears: You can either select the new resource type from the 
scrolling window or type in the name of the new resource type in the 
field provided. 

Type in WI ND or select it from the scrolling list and click on the 0 K 
button. 

Two windows are displayed. First a WI ND Picker Window is 
shown. This is where the list of all resources of type WIND is 
displayed. Then the WIND editor displays a newly created WIND 
resource, ready to be edited (Figure 8.5). 

Select New Type 

STR# ~ 
TEHT '!'''' 
TMPL : rn~ : 
uers 

~ rn n 
wctb !nn! 

llUl~l!.I 

wstr fQ-1 

R OK Il 

( Cancel ) 

Figure 8.4 The Resource Type dialog box. 

,. llS File Hlil Resource Window WI NO 

Figure 8.5 WIND Picker window and WIND Editor window (offset). 



374 Macintosh Programming Primer 

The WIND .editor displays the new window in a miniaturized 
version of the screen. Click in the middle of the mini-window and you 
can drag the window around the mini-desktop. This changes its 
global coordinates (Figure 8.6). Click and drag on the lower right 
corner of the window to resize it (Figure 8. 7). 

Finally, select the Display as Te Ht item in the WI ND menu. This 
shows another way to enter the parameters for your W I ND resource. 
If you make changes here and select Dis p I a y Graphic a II y from the 
WIND menu, the adjusted window will be positioned correctly on the 
mini-desktop. 

Some information about windows can be changed only in the 
Display as TeHt mode. For example, Figure 8.8 shows a window 
whose title and procID have been changed with a new title and 
window type (see Chapter 3 about window types). 

Figure 8.6 Changing WI ND coordinates. 

Figure 8. 7 Resizing the W I N D resource. 



Using ResEdit 375 

Next, select Get Resource Info from the Resource menu while 
the WI ND editing window for WI ND 1 2 8 is up. ResEdit will display 
information about the resource (Figure 8.9). 

The only information you're concerned with is the I 0 number and 
the Purge ab I e flag. ResEdit defaults to a resource ID of 1 2 8 (if no 
other resource of that type has that ID). To finish the Hello2 resource 
file that you created, set the WI ND 's resource ID to 4 0 0 and check the 
Purge ab I e checkbox. 

Most resources used in this book are marked Purgeable to 
conserve memory. It's not necessary, but it's a good idea (see Volume 
II of the Primer for a discussion of why that's so). 

Window title: 

top 

left 

proclD 

11 I 
~bottom~ 
~right~ 

I 16 I refCon IO I 

[8J Uisible D goAwayFlag 

Figure 8.8 Great American WIND resource. 

D Info for WI NO 128 from Hello2. n .rsrc 

Type: WINO Size: 40 

ID: 
1 ·2~ I 

Name: 

Owner type 

Owner ID: DALIA Kt] 
r--

WOEF 
~ Sub ID: MOH IOI 

Attributes: 

I 

D System Heap D Locked D Preload 
D Purgeable D Protected 

Figure 8.9 WI N D resource information. 



376 Macintosh Programming Primer 

Here's a brief description of the fields and flags in the resource 
i n f o window: 

Owner Type: Special programs such as desk accessories must 
be handled differently. If you click on Owner Type, your resource 
ID changes. Certain programs (such as desk accessories) play by 
a different set of rules when it comes to resource IDs (IMl:127). 

Owner ID and Sub ID are used when you are sharing the 
resource with other programs. 

Preload resources are loaded into memory as soon as your 
application starts running. Purgeable resources are removed 
from memory if the Memory Manager needs to reclaim that space. 

If System Heap is selected, the resource will be loaded into the 
System Heap instead of the Application Heap. If the resource is 
Locked, the Memory Manager cannot move it around when it is 
rearranging memory. If the resource is Protected, the Resource 
Manager can't modify it. 

When you've finished with the W I N D resource, choose Sa LI e from 
the File menu to save your changes. Your resource file now contains 
the information necessary for Hello2 to build a window (Figure 8.10). 

§0 Hello2.n.rsrc 0§ 

D 
IQ 

WIND 

~ 
Figure 8.10 Completed resources in He L Lo 2 . TI' • rs r c. 



Using ResEdit 377 

Apple has authored a manual called ResEdit Reference, published 
by Addison-Wesley. Get it if you'd like more technical information 
about how ResEdit works. You can also procure the manual from 
APDA (see Chapter 9 for more information). 

That's the end of the ResEdit overview. Those of you who needed to 
get your ResEdit feet wet should go back and finish your projects. 
The next step is to build an application (we'll build Hello2) and then 
add the Finder resources to it. 

Everybody who wants an icon on their application, onward! 

Completing a Stand-alone Application: 
Hello2 Revisited 

The first step is to create a stand-alone application from a working 
project. Do this by compiling Hello2, the first program in Chapter 3. 
Open the Hello2 project. Select Set Project Type ... from the 
Project menu. You should see something like Figure 8.11. There are 
four project options in the dialog box. Make sure the R pp Ii cation 
icon is selected in the dialog; click on OK. See THINK Pascal's User 
Manual for a description of the other three project types. 

Now choose Build Application from the Project menu. If the 
project is up to date, it should prompt you for an application name 
(Figure 8.12). Call the application Hello2. (The Smart Link checkbox 
should be checked.) When you click on Sal.le, THINK Pascal will 
build the Hello2 application. When it's completed, quit THINK Pascal 
and try double-clicking on the Hello2 application created in your 
Hello2 folder. It should display the text Hello, World in a window 
(Figure 8.13). 

Now that you have a working stand-alone application, let's add the 
Finder resources to it. Click the mouse button to quit Hello2. 



378 

Li11 
Dosk Accessory 

~ 
~ 
Driver 

n 
8 

Code Resource 

Macintosh Programming Primer 

,- File Information ----------------. 

Type: I RPPL I Creator: IWMJ IZI Bundle Bit 

.. .. ~ :: :::~: l[~-.... 1 ........ l ... !.~ .. ~ .. !) .... :-.. !:·~--'.~ .. ~-~~--!·~ ..... -::::::: .. :~ .. :: .. ::: .. ::: .. :·:·:~ .. -. .. ::~ .. :: .. ::~ .. :-~::·.·.-::·:~ .. ::·:·:::·:·::·:·: .. :·: .. :·::::: .. :: .. ::·: .. ::: .. j····"l 
1··························: :······································ .. : I 

r~we: L. ...................... .J Ht \... .................................. ; ' 

L ....... !~-~-~-~-i-!~-!~-~-~~-~.'. .... ~.L:~··_:.J ....................................... '.·:::·:1 __ ~:-~1-~-~-!~.!~~---!~.'.~.~~-~~-!~-~ ....... .J 
r······ nril•er ! nfmm<11 km ....... ···········:::::.:::::::::::::::::::::::::::::···: 

f!nqs: ~ [·.·.·.···.·.··.-.·.··.·.·.·.·.] I!(~l<l~J: l.... ............................ J j ([ OK )J 

N<1~1<: ~ [.·:.::·.-.-.:·:.-.:··:.-.] C.-:1 Mu! ti .. S!'!.Jnwn t j ( Cancel ) 
: ..................................................................................................................................... ; 

Figure 8.11 Project Type dialog box. 

j a He1102 I 
:·-... 
L.: HeHo2, n !QJ I;:::) Hard Disk 
:·-... H(~Ho2, n ,Hsn L.: ( ] Ci Hdhl2,p [j~~d 

( Brill(~ ] 

tQJ 
Saue Rpplication as ( Saue ] 
1Hello2 I ( Cancel ] 
[Z1 Smart Link 

Figure 8.12 Build Rpplication dialog box. 



Using ResEdit 

_J 

379 

., 

Hello2 Window 

Hello, ·world 

Figure 8.13 Running Hello2. 

Installing the Finder Resources 

Apple recommends that software developers install six special 
resources in their applications. Each resource plays an essential role 
in your application's interface to the Finder. They are grouped into 
three categories: 

• Application icon: The I C N # , F R E F, B ND L, and signature 
resources are used to add a unique icon to an application as it 
appears on the desktop. 

• Application version information: The v e rs resource contains 
general information used by the Finder, including the specific 
version of an application, the country for which it is localized, 
and its creation date. 

• Application MultiFinder requirements: The S I z E resource 
designates the recommended and minimum application memory 
size needed for an application; it also contains further details on 
the application's level of MultiFinder compatibility. 



380 Macintosh Programming Primer 

Examining the Resources of Hello2 

Open up the Hello2 application you just made with ResEdit. Figure 
8.14 shows the resource window for the completed Hello2. The six 
resources shown make up the entire Hello2 application. The compiler 
makes the CODE , DATA, OREL, LSP, and ZERO resource types; the 
W I N D resource was copied from the W I N D resource you made and put 
into the H e L L o 2 . 1t • r s r c file. 

,. s File Edit Resource Window Uiew 

LSP WIND ZERO 

Figure 8.14 The resources of the Hello2 application. 

In Figure 8.14, some resource icons in Hello2 have a question 
mark. This doesn't mean that there's anything wrong with these 
resource types. Editing information for each resource type is stored 
in templates in the ResEdit application. If there's no template for a 
resource type, the default question mark icon is used. 

Each resource type can have a different method for editing 
individual resources of the type. Some resource types contain a 
MacPaint "fat bits" editor (ICON, ICN#). Many types simply display 
named fields for you to input (FREF, BNDL, MENU, MBAR). Other 
resource types can be resized and positioned graphically on a 
miniature desktop (WIND, DITL, DLOG) . 

If ResEdit doesn't know how to handle a certain resource type, it 
defaults to a hexadecimal editor. 



Using ResEdit 381 

Adding an Icon to Hello2 

Four resources need to be installed in an application file to get the 
Finder to replace the generic application icon with a unique icon. 
Adding your own icon to an application used to be an involved 
procedure. However, with version 2 of ResEdit, the job has been 
simplified dramatically so that one operation automatically creates 
all the necessary resources for you. 

Open up Hello2 with ResEdit and choose Create New Resource 
from the Resource menu. Either key in BN D L or select it from the 
scrolling list. Your screen should look something like Figure 8.15. 

Type HE LO in the Signature text field (Figure 8.16). 

.. s File Edit Resource 

Hello2 

BNDLs from Hello2 

§0~ BNDL ID = 128 from Hello2 ~ 

Signature: liiiiMI 
Type Finder Icons 

fr 

tQ 

Figure 8.15 A new B ND L resource. 



382 Macintosh Programming Primer 

§0 BNDL ID = 1 28 from Hello2 

Signature: I HELO I 

Type Finder I cons 

~ 

lQ 

Figure 8.16 Entering the Signature. 

Next, select Create New File Type from the Resource Menu. 
You should see something like Figure 8.17. 

§0 BNDL ID = 128 from Hello2 

Signature: I HELO I 

Finder I cons 

••• IJIRIJ 

Figure 8.17 The result of Create New File Type . 



Using ResEdit 383 

Click on the?? '? '? and type in APPL, as shown in Figure 8.18. 
Now you can create the icon for Hello2. Select the boxes under the 

title Finder Icons by clicking on them. Then select the Choose 
Icon ... menu item from the BNDL menu (Figure 8.19). 

§0 BNDL ID = 128 from Hello2 

Signature: I HELO 

Type Finder I cons 

jAPPL 

Figure 8.18 Hello2 and APPL . 

.- s File Edit Resource 

Hello2 

Figure 8.19 Choosing an icon .. . 



384 Macintosh Programming Primer 

The icon selection dialog box pops up (Figure 8.20). Because you 
don't have an icon in your resource fork yet, you'll have to make one. 
Click on the New button. 

Choose an icon for the type APPL: 

( New J fdi.~ l [Cancel J ( DK 

Figure 8.20 Slim pickings in the icon selection dialog box. 

An IC N # editing window is now displayed (Figure 8.21) . The 
special editor for IC N # resources allows you to build your 
application's icon graphically. 

I CN# ID = 128 from Hello2 

Figure 8.21 The I C N # Editor (blank). 



Using ResEdit 385 

The IC N # editor is like the "fat bits" mode in MacPaint. The pane 
on the left is the icon displayed by the application. The pane on the 
right is the mask, which governs the change in the application's icon 
when selected. Figure 8.22 shows how THINK Pascal's application 
icon looks in the I C N # editor . 

•••••••••••••••••••••••• • • • ••• ••••••• • • • • • • • ••••• ••••• • ••••• • • • • • • • • • ••• • ••••••• • • • • • • • • ••• • • • • • • •• • ••• ••• • • • • • • ••• • • • II • ••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • ••••• ••••• • • •• • • • • • •• • • •• • • • • • • • • • a • • • • • • • • •••• ••• • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •• •••• • •• • • • • • • • • • • • • • • • • •••••••• • ••••••• 

Figure 8.22 THINK Pascal's I C N #. 

The I c N # Resource Editor in ResEdit allows you to preview the 
icon on both a light and a dark background. It also shows you what 
the icon will look like if the application is unavailable. (This 
commonly occurs if you ejected the disk with the program on it 
using Command E. If the application was on the desktop, it will still 
show up but will be dimmed, indicating that it can't be used.) 



386 

•••••••••••••••••••••••••••• • •••••• • • • • • • • •••••• • •••••••••••••••••••••••••••••••• • • •• • • • • • • • • • • •• •• • • •• •• • • • • • • • • • • • • •• • • • • • • • • • • •• •• ••• •• •••••••••••••••••• • • • •• • • •••• •• • ••• •••••••••••••• • • • • • •• •• ••• • ••• •• ••• •••••••••••••••••• • • • •• • •• • • ••• •• • • • ••• • •• •••••• • ••• •• • • •• • •• •• •• •• • • •• • •• •• •• •• • • •• • •• •• •• •• • • •• • •• •• •• •• • • •• • ••••••••••••••••••••••••••• •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • •• •••••••••••••••••••••••••••• 

11111·1111111.li ~ -

Macintosh Programming Primer 

Figure 8.23 Hello2's new IC N # (with mask drawn). 

Once you're comfortable drawing figures with the bit map editor, 
try creating an icon for your application. We'll use the icon in Figure 
8.23. 

When you're done with your icon, select Data->Mask from the 
IC N # menu. This will automatically draw a mask for your 
application in the right pane of the window. 

A desktop icon (I c N #) actually consists of an icon and its mask. 
The mask is used to change the appearance of the icon to indicate 
a change in condition (TN :55). Resources that contain an icon 
without the mask are of resource type I CON. 



Using ResEdit 387 

Type Finder I cons 

APPL 

Figure 8.24 Icon attached to the BN D L. 

You're almost there! Close the I C N # editor and return to the B ND L 
window (Figure 8.24). As you can see, the icon is now attached. 

What are the other boxes, you say? The remaining five boxes are 
placers for icons of varying sizes and colors and are optimized for 
specific color display environments. These icons can be added to 
Hello2, but are displayed only when you are running System 7. The 
method used to attach these icons is similar to the method used 
above. See Apple's ResEdit reference manual for more 
information. 

Now close the B N D L window. 
Note that more than the B ND L resource was added (Figure 8.25). 

D Hello2 0 

~~ 
ilH(llJ l_.ill 

[7] 
~ 

.,l!mR ('9(1) 
CHP 01.-l 

Ei El a:Nt Iii 
~T~ 

BNDL CODE DATA 

[7] 
Resources 

[7] ~El created by 
El 

El the BNOL 
OREL FREF HELO editor. 

LID [7] D ~ .... 
ICN# LSP 'w"IND 

[7] 
fQ ZERO 

'2J 
Figure 8.25 Icon attached to the B N D L. 



388 Macintosh Programming Primer 

The B ND L editor took care of the resources needed to put up an icon, 
which are the B N D L, I C N #, F RE F, and the Signature resource (created 
when we put HE LO in the Signature field back in Figure 8.17). 

While the Hello2 resource window is still open, select Get I n f o 
for Hello2 from the File menu (Figure 8.26). ResEdit doesn't always 
use the name He II o 2. The name of the currently selected file 
resource window is placed in the menu. This dialog contains 
information that the system has on your new application. Files 
having type RPPL are recognized as applications by the Finder. 

Finish the installation of your Finder resources by changing the 
Creator from ? ? ? ? to HE L 0. (Be careful: ResEdit discriminates 
between upper and lower case.) Now close the window by clicking in 
the close box, and save your changes. 

Info for Hello2 

File ~I ========~=======~========~ 
Type I RPPL Creator I???? 

D System D lnuisible Color:! Black 
D On Desk [811 nited [8l Bundle 
D Shared D No I nits 
D Rlways switch launch 

D Resource map is read only D File Protect 

D Printer driuer is MultiFinder compatible [8l File Busy 

Created B/22/90 1 :55:00 PM 

Modified B/22/90 1:55:16 PM 

Size I 001 bytes in resource fork 
O bytes in data fork 

D File Locked 

Figure 8.26 File information for the Hello2 application. 



Using ResEdit 389 

The four-character Creator name H EL 0 will be used when the 
Finder looks for the application's icon. If, by chance, another 
application with a defined icon has the same Creator, the first icon 
the Finder finds will be used. 

Be careful in your choice of Creator names. If you plan to market a 
Macintosh application, register the Creator name with Macintosh 
Developer Technical Support; they can tell you whether others have 
used this Creator tag. We registered HELO, so go ahead and use it for 
this Primer application. 

Here is a brief description of the Finder flags found in the File Info 
box (see Figure 8.26). 

The System bit indicates that the file cannot be renamed, and that 
a warning will be given when the file is dragged to the trash. 

If the file is on the Desktop (that is, not in any folder), the On Desk 
flag is set. 

If the Shared flag is set, the application can be opened more than 
once. 

If the I n1.1isible bit is set, the file is not displayed by the Finder. 
ResEdit can see it, however, as can Finder substitutes like 
Disk Top. 

The lnited bit is set by the Finder whef'! it determines the file's 
location and window. 

The No I nits flag is set if an application wants to ensure that any 
INIT attached to the application will not be executed. 

The Color pull-down menu shows the current color that the Finder 
uses to draw the file's icon. 

The Bundle flag is set by the Finder if you have a BN D L resource 
in the file. We'll talk more about BN D Ls later in this chapter. 

The File Protect flag is not currently used. 

If the File Busy bit is set, the file is open or executing. 

If the File Lock bit is set, the file cannot be renamed (although it 
can be thrown away). 

If the Resource map is read only check box is checked, the 
resources in the file cannot be changed. 



390 Macintosh Programming Primer 

The Printer driuer is MultiFinder compatible flag is set 
only for printer drivers that work with Multi Finder. 

The File Information dialog box also contains created and 
modified dates for the file. 

At the bottom, the dialog box displays the size of the resource fork 
and the data fork. As was discussed in Chapter 2, all Macintosh 
applications have a resource fork and a data fork. The resource 
fork contains resources. The data fork may store information about 
user preferences or anything else you desire. 

The flags displayed in the File Information window are 
information that the Finder keeps regarding your application. 
Normally, you should not change them. 

You're done! The four required Finder resources are installed into 
your Hello2 application. Save your changes and quit ResEdit. You 
may be expecting to see something like Figure 8.27. Unfortunately, 
you are more likely to see Figure 8.28. 

If your new icon appeared, great! If not, you'll need to rebuild your 
Desktop. Before you go downstairs for a hammer and nails, read the 
next section. 

D Hello2 0= 
4 items 13, 167K in disk 17 ,506K available 

r:I ~ ~ [jJ 
lQ: 

Hello2 Hello2.p Hello2.11 He llo2 :rr .rsrc 

tQ 
IQJ_ 12 l2J 

Figure 8.27 The Hello2 folder (working icon). 



Using ResEdit 

)~ 

_J 

391 

-o Hello2 0 
4 items 1 3 ,256K in disk 17 ,417K available 

~ ~ ~ ~ 
IQ 

Hello2 Hello2.p Hello2.TI" He llo2. TI" .rsrc 

IO 
IQ1 TO Q] 

Figure 8.28 The Hello2 folder (icon out to lunch). 

Rebuilding the Desktop 

The icon you made failed to show up in the Finder when you quit 
ResEdit. The reason is that the Desktop file needs to be rebuilt after 
you modify the Finder resources. The Desktop file is the Finder's 
application database. Among other things, the Desktop file holds 
information about the volume's file B ND Ls. So, when the Hello2 
application was created, its B ND L information was noted. 
Unfortunately, it is hard to get the MacOS to look at a particular file 
whose B ND L you have modified, short of using ResEdit directly on 
the Desktop file (not recommended). 

The way to get the icon displayed is to rebuild the Desktop file. 
When a volume's Desktop is rebuilt, the entire volume is searched, 
and the Desktop database is reconstructed. 

However, rebuilding the Desktop does one irrevocable thing, so if 
you're not a person who likes to do seven irrevocable things before 
breakfast, read carefully: It causes the loss of information that has 
been placed in the text box of the Get Info window for all your 
applications. 

Rebuilding the Desktop file is simple. First, make sure your Mac is 
not in MultiFinder (if you're using System 6), as you may run out of 
memory during the rebuilding process. Restart your Mac and keep 
down the Option and Command keys. Don't let them up until an 
alert dialog like Figure 8.29 shows up. 



392 Macintosh Programming Primer 

Rre you sure you want the desktop 
rebuilt on the disk "Hard Disk"? (This 
may take a few minutes.) 

n OK D ( Cancel ) 

Figure 8.29 Rebuild the Desktop? 

If you click on OK, the drive will work for a while before the Finder 
comes back. At this point, your icon should be proudly displayed 
when you open up the Hello2 folder. 

Now that you understand how to install the Finder resources, add 
them directly to the . rs r c file of your project, instead of adding 
them to completed applications. That way, each time you build a 
stand-alone application from your project, THINK Pascal will 
automatically add the Finder resources to it. This normally solves 
the missing icon problem, as the first time that the Finder examines 
your application, the B ND L information is in order. 

Okay! You did the icon. Now, you need to add the v er s and the 
s I z E resources. First, let's look at the v e rs resource, which stores 
information about the current version of an application. 

The v e r s Resource 

Fire up ResEdit and open up the iconized Hello2. Create a new 
resource of type v er s. Key in the fields as shown in Figure 8.30. 
Then close the v e rs edit window and change the resource ID to 1 . 

The information you put in tells the Finder more about your 
application. Most of this additional information refers to the 
application's version. The version is designated using Apple's 
intricate numbering system for program releases, which works like 
this: A new program has version 1.0. If there is a minor revision to 
the program, it is then labeled Version 1.1. If there's a bug fix to 



Using ResEdit 393 

,.. S File Edit Resource lllindow Font 

uers ID = 12B from Hello2 

Uersion 
Humber 

Revision 
Humber 

Rev ision 
Stage 

Elu i Id HLimber 

La nguage 
Integer 

Abbreviated 
string 

Get Info 
string 

§CJ 

1$00 

1$00 

I too 
lo 

1'0 

I He I I o2 1 '0 

Figure 8.30 The v e r s resource. 

from the Mac Primer 

., 

Version 1.1, it's designated 1.1.1. So, if you have a program that just 
had a second bug fix to a third minor revision, it would be Version 
1.3.2. If there's a major revision of the program, the first number is 
incremented. If the program has gone through a major revision, four 
minor revisions, and six bug fixes, the current version is 2.4.6. 

There's also a development suffix, which is added to indicate 
how far along the product is. There are three different stages: The 
earliest is d for "development" (for example, l.Od). The next level j s a 
(for "alpha"- 1.0a). Then, the b ("beta") version comes out (l.Ob). 
Theoretically, the released version would then be 1.0. If you have a 
product labeled 1.3dl.2, it's the second bug fix of the first 
development version of the third revision of the first release of the 
product. 

Now that we've said all that, it's unlikely that you'll need as 
complex a version number as that, unless you own Microsoft. This 
relates to the v er s resource fields as follows: 

• The version number is the first number- the "1" in 1.0. 

• The revision number is the second number-the "3" in 4.3.1. 

• The revision stage is the development level- the "b" in l.Ob2. 



394 Macintosh Programming Primer 

• The build number is the number following the development 
suffix-the "5" in 2.3a5. 

• The language integer refers to the country to which this 
version of the program is headed. The United States is O; see 
Figure 8.31 for a list of numbers for other countries. 

• The abbreviated string is the whole version strung together, 
such as l.2bl.l. 

• The Get Info string is the text that is put in the Get Info box 
when you're in the Finder. 

Test the v e rs resource by saving Hello2 and quitting ResEdit. 
Click once on the Hello2 application icon and choose Get Info from 
the File menu of the Finder (Figure 8.32). The dialog box should 
show what you put into the v e rs resource. 

us 0 
France 1 
Great Britain 2 
Germany 3 
Italy 4 
Netherlands 5 
Belgium 6 
Sweden 7 
Spain 8 
Denmark 9 
Portugal 10 
French Canada 11 
Norway 12 
Israel 13 
Japan 14 
Australia 15 
Arabia 16 
Finland 17 
French Swiss 18 
German Swiss 19 
Greece 20 
Iceland 21 
Malta 22 
Cyprus 23 
Turkey 24 
Yugoslavia 25 

Figure 8.31 Country numbers. 



Using ResEdit 395 

The v er s resource type is a relatively recent addition to the 
Finder resources; Apple will have plans for it in the future, so put it 
in your applications (TN:189). 

Info 

l!:J Hello2 

Kind: application 

Locked 0 

Size: 1 ,469 bytes used, 2K on disk 

Yhere: Hard Disk, Microtech (SCSI Addr = 
1) 

Created: W"ed, Aug 22, 1990, 1 :55 PM 
Modified : Thu, Aug 23, 1 990, 1 2 :22 AM 
Version: Hello2 1 .0 from the Mac Primer 

Suggested Memory Size (K) : n I a 

Application Memory Size (K): Ej 

Figure 8.32 Hello2's Get Info box (courtesy the v er s resource). 

Some of you may have read in other places that the s i g n a tu re 
resource puts information into the Finder's Get Info box in the 
same way that we're saying that the v e rs resource does. You're 
right, and here's what happened: The s; gnat u re resource was 
the old way of attaching the icon to the application and putting 
information in the Get Info box. The vers resource type is 
intended to supply the Finder with extra information, including the 
Get Info data, about your application. If there is no vers 
resource, the Get Info information in the signature resource 
is used. If there is a v er s resource, the s i gnat u re resource is 
ignored, and the vers Get Info field is used. In any event, don't 
dump the s; gnat u re resource! It still is used to identify the 
desktop icon for the application. There doesn't have to be anything 
in it, however; version 2 of Res Edit creates a blank s i gnat u re 
resource automatically when you make your BN D L resource. 



396 Macintosh Programming Primer 

D Info 

Locked D 
DA H.andler 
Sy stem Software Ver-sion 6 .0 .5 

Kind : documo?nt 
Size : 6, 145 bytes used, 9K on disk 

Yhere: H.ard Disk , F\o/B SCS I #0 

Created : \'led, M.ar 7, 1990, 12 :00 PM 
Modified : vied .. ~1.a r- 7, 1990 , 12 :00 PM 
Version : 6 .0 .5, © App le Computer-, Inc . 

1987- 90 

Figure 8.33 System v e r s resources. 

System 
Information 
from uers 
Resource 

If you have a v e rs resource with a resource ID nl:lmber of 2, it can 
be used to link a set of files together. Apple has used this number to 
identify the current system level of the files in its disks. Figure 8.33 
shows how this system information is displayed. 

In the bottom of the Get Info box for Hello2, there are two other 
fields, Application and Suggested Memory Size for the applica
tion. These fields are controlled by the SIZE resource, which is 
discussed next. 

Last of the Finder Resources: The S I z E Resource 

The last Finder resource is the SI Z E resource , which contains 
MultiFinder information. Figure 8.34 (suitably elongated) shows the 
fields contained in a standard S I Z E resource. 

The following is a brief description of these fields: 

• Save screen (Switcher): A flag used by the Switcher, an early 
version of MultiFinder. 

• Accept Suspend/Resume events: If your application handles 
Suspend/Resume events, set this flag. 



Using ResEdit 397 

~D SIZE ID= -1 from Hello2 

Save screen @O 01 
(Switcher) 

Accept @O 01 
suspend 
events 

Disable @O 01 
option 
(Switcher) 

Can @O 01 
background 

MultiFinder @O 01 
aware 

Only @O 01 
background 

Get front @O 01 
c I i cks 

Accept ch i Id @°) 0 01 
died events 
(debuggers) 

32 Bit @O 01 
Compatible 

Reserved bit @O 01 

Reserved bit @O 01 

Reserved bit @O 01 

Reserved bit @O 01 
Reserved bit @O 01 
Reserved bit @O 01 
Res erved bit @O 01 

Size I I 

Min s ize lsoooo 

Figure 8.34 The SIZE resource. 



398 

_J 

Macintosh Programming Primer 

• Disable option: Another flag used by Switcher. 

• Can Background: A MultiFinder flag set if your application uses 
null events while in the background. 

• MultiFinder aware: If you use W a i t Next Even t in your pro
grams, set this flag. 

• Only Background: This flag is set if your application runs only 
in the background and has no user interface (e.g., Backgrounder in 
the System folder). 

• Get Front Clicks: If set, this flag allows your application to 
receive mouse clicks even if it is working in the background. If this 
flag is not set, clicking on your application window will only make 
the application active; it will not pass on the click. 

• Accept Child died: A debugger flag. 

• 32 Bit Compatible: Is the application 32-bit clean? (necessary for 
A/UX. and System 7). 

The rest of the bits are reserved by Apple. This is just a brief 
description of the flags in the S I Z E resource. For a detailed 
discussion of the S I Z E resource, read The Programmer's Guide to 
MultiFinder, available from Apple through APDA. 

If you are reading this section because you'd like to make Timer or 
Reminder work better in the background, give your projects s I z E 
resources with the Can Background and MultiFinder Rware 
radio buttons set. Don't forget to set the resource ID to -1 . 

The final section of this chapter demonstrates how intrinsic 
resources are to the Macintosh. This section presents Minimalist, a 
working program that contains nothing except two CODE resources 
and a WIND resource, all created with ResEdit. 

Minimalist, the ResEdit Program 

Minimalist could be charitably described as a very small, useless 
program. It illustrates, however, how resources make Macintosh 
programs work. 

In ResEdit, create a new file named Minimalist. Using the Get 
File Info menu item, change the file type to APPL. Then, create a 
new resource of type C 0 DE (Figure 8.35). The general hexadecimal 
editor appears. 



Using ResEdit 

-D 
000000 
000008 
000010 
000018 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 
000050 
000058 

CODE ID - o from Minimalist 
0000 0028 0000 0200 aaa< aaaa !Al p;:q 
0000 0008 0000 0020 aaaaaaa 
0000 3F3C 0001 A9FO aa?<DD9D 

Figure 8.35 A C 0 D E resource for Minimalist. 

399 

Type in the hexadecimal code in Figure 8.35. As you're typing, 
alphanumeric characters will appear on the right. When you're done, 
click on the close box. Change the ID of the resource by choosing Get 
Resource Info from the File menu. Change the ID to 0. 

Build the second CODE resource with the hexadecimal code in 
Figure 8.36. 

Change the resource ID number of the second C 0 D E resource ID to 
1 . Finally, build a W I N D resource with a resource ID of 4 0 0. Use any 
size or window type that you prefer, but make sure that the Uisible 
and goHwayflag checkboxes are checked. Save the WIND and the 
two C 0 D E resources. 

You now have an application. If you double-click on Minimalist, it 
will display the window using the W I N D specifications you entered. 
Clicking anywhere on the screen will return you to the Finder. 



400 Macintosh Programming Primer 

0 CODE ID 1 from Minimalist 
000000 
000008 
000010 
000018 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 
000060 
000068 

pooo 0001 4860 FFFC 
A86E A8FE A912 A850 
594F 3F3C 0190 42A7 
2F3C FFFF FFFF A9BD 
554F A974 4A1F 67F8 
A9F4 

aaaaHmaa 
RlnRl a~ DRlP 
YO?< aeBi1 
/<aaaa~o 
UO:?>tJDga 
~a 

Figure 8.36 Second C 0 D E resource for Minimalist. 

To get the C 0 D E hexadecimal, we wrote a short assembly language 
program that does initialization, draws a window, and quits on a 
mouse click. Here's the code: 

include 'Traps.a' 
main 
pea -4CA5) 
InitGraf 
!nit Fonts 
InitWindows 
InitCursor 

subq #4,sp 
move #400,-Csp) 
clr. l -(sp) 
move.l #-1,-(sp) 

GetNewWindow 

TryButton 
subq #2,sp 
Button 

tst.b (sp)+ 
beq.s TryButton 

ExitToShell 

end 

This strategy is not generally recommended for serious program 
development. Use THINK Pascal to code CODE resources. 



_J 
In Review 

Chapter 8 explored the use of ResEdit and discussed the steps 
necessary to install Finder resources into your applications. Chapter 
9 discusses the issues you'll face as you start developing your own 
Macintosh applications. It starts by taking a look at a few Mac 
periodicals you may find useful. It also talks about Inside Macintosh 
and other Apple technical references. Finally, it also looks at Apple's 
support apparatus for Macintosh programmers and developers. 

401 



The Final 
Chapter 

To successfully develop software for 
the Macintosh, you need current 

technical information. You need to 
know how to use the standard 

Macintosh references effectively. You 
also need to know about the different 

technical support programs Apple 
offers. In this chapter, we'll discuss 

these and other Macintosh 
development issues. 

9 



_J 

THE BASICS OF programming the Macintosh have been laid out in the 
eight preceding chapters. Familiarity with these basics is half the job 
of becoming a successful developer. The other half is understanding 
how the Macintosh programming world works and knowing where to 
get the information you, as a Macintosh software developer, will 
need. 

To succeed in developing software for the Macintosh, you need 
current technical information. You need to be able to use the 
standard Macintosh references effectively. You also need to know 
about the different technical support programs Apple offers. 

This chapter investigates the periodicals that are your link to the 
Macintosh community. It looks at Inside Macintosh and other Mac 
technical texts, as well as software tools, from compilers to debuggers. 
The chapter also examines Apple's support programs for Macintosh 
software developers. 

The Macintosh Programming Primer is your passport to Mac 
application programming. When you've finished reading this book, 
join a local Macintosh users group, and buy a copy of the best Mac 
programmer's magazine, MacTutor. Get involved and write some 
code! 

Macintosh Periodicals 

Whether you're interested in making a commercial product or a 
shareware product, or whether you just want to know the inside 
stories of the Mac community, get the trade magazines. Mac Week is 
great, and PCWeek and Info World are good, if less oriented to the 
Macintosh computer line. All three magazines deliver timely dollops 
of news: the new software packages, scoops on company goings-on, 
and juicy industry gossip. 

The Macintosh programming journal is MacTutor, an invigorating 
monthly discourse on the art of Mac programming. Popular Mac 
magazines include MacUser and MacWorld. Their broad viewpoint 
can show you what is of interest to Macintosh users and what's 
available. 

While you wait for the idea that will make you the seventh richest 
person in the world, you need to learn the Macintosh inside out. To 
do this, you need Inside Macintosh. 

405 



_J 

406 

The Essential Inside Macintosh 

The Inside Macintosh technical reference series is written by Apple 
and published by Addison-Wesley. The series has seven books 
(Volumes I-VI and the Inside Macintosh X-Ref). In Chapter 1, we 
suggested that you could get by with Volumes I and V. 

We lied. Get them all. 
Volumes I, II, and III represent the Mac technical world as it was 

before the Mac Plus was introduced. All three volumes focus on the 
original 128K Mac, describing interfaces to the ROM routines, 
memory management, hardware specs, and more. 

Volume IV was released after the Mac Plus and the Mac 512KE 
were introduced. Both of these new Macs sported 128K ROMs (as 
opposed to the 128K Macintoshes' 64K ROMs). These larger ROMs 
contain the routines that handle the Hierarchical File System (HFS), 
routines that interface to the SCSI (Small Computer System 
Interface) port, and updates to most of the 64K ROM routines. 
Volume N covers all these changes. 

Volume V was released after the introduction of the Mac SE and 
the Mac II. The Mac II and the SE have 256K ROMs and support 
features like pop-up, hierarchical, and scrolling menus; a 
sophisticated sound manager; new text edit routines; and more. 
Perhaps the biggest change was the addition of color support to the 
Mac II series. 

Finally, Volume VI explains the enhancements provided by the 
long-awaited System 7: InterApplication Communication (IAC), 
virtual memory, AppleEvents, a redesigned Finder, new printing, 
database routines, and more! 

The Typical Inside Mac Chapter 

One of the best features of the Inside Mac volumes is their 
consistency. Each chapter starts with a table of contents, followed by 
the "About This Chapter" section, which gives you an overview of 
what the chapter covers and what you should already be familiar 
with before you continue. 

The next section or sections give an overview of the chapter's 
technical premise-for example, "About the Event Manager" or 
"About the Window Manager." The fundamental concepts are 
explained in great detail. At first, you may be overwhelmed by the 
wealth of detail, but after a few readings (and a little experimen
tation), you'll warm to the concept. 



The Final Chapter 407 

Next, the chapter's data structures, constants, and essential 
variables are detailed. These are presented in Pascal and/or 
assembly language. Then come the chapter's Toolbox routines. Each 
routine's calling sequence is presented in Pascal, along with a 
detailed explanation of the uses of the routine. This section includes 
notes and warnings, as appropriate. 

Some chapters follow the Toolbox routines section with a few 
additional sections. Among these extras are a deS'cription of the 
resources pertinent to that chapter and, perhaps, a description of 
extensions available to the advanced programmer. 

Finally, there's a chapter summary, with unadorned lists of 
constants, data types, routines, and variables. 

Appendixes and Special Sections 

Inside Macintosh, Volume I, Chapter 1, contains a road map that 
gives you a feel for the basics of the Macintosh and how the Inside 
Mac volumes work. The road map suggests you read Chapters 1 
through 4, then read the chapters that are relevant to your current 
development effort. This is sage advice. These chapters offer an 
excellent grounding in Mac basics (or an excellent review if you've 
been at it for a while). 

Volume III contains three chapters, some appendixes, a glossary, 
and an index. Chapter 1 discusses the Finder (with an emphasis on 
Finder-related resources). Chapter 2 discusses the pre-Mac Plus 
hardware. Chapter 3 is a compendium of all the summary sections 
from Volumes I and II. Appendix A is a handy, if occasionally 
inaccurate, table of result codes from the functions defined in 
Volumes I and II. The rest of the appendixes in Volume III have been 
superseded by the appendixes in the Inside Macintosh X-Ref. 

The Inside Mac X-Ref starts off with a general index covering the 
first five Inside Mac volumes, the Macintosh Technical Notes, 
Programmer's Introduction to the Macintosh Family, Technical 
Introduction to the Macintosh Family, and Designing Cards and 
Drivers for the Macintosh II and Macintosh SE. The general index is 
followed by an index of constants and field names. Appendix A of the 
X-Ref lists every Toolbox routine that may move or purge memory. A 
new version of the X-Ref should be out shortly that also includes 
Volume VI of Inside Mac. 

Appendix B of Inside Mac consists of two lists. The first is a list of 
Toolbox routines presented alphabetically by name, with each name 
followed by the routine's trap address, which is the four-byte 



408 

_J 

Macintosh Programming Primer 

instruction the compiler generates to call the routine. The second is a 
list of the trap addresses, in order, with each trap address followed by 
the routine name. This information is extremely useful if you ever 
have to look at code in hexadecimal format, a likely event if you use 
TMON or MacsBug, two Mac debuggers. 

Appendix C lists most of the operating system global variables, 
with their memory location and a brief description. Finally, Appendix 
C is followed by a glossary of terms presented in Volumes I through V. 

Apple Technical References 

In the first few years of the Mac era, Inside Macintosh was the only 
definitive reference on the Macintosh. Recently, however, Apple has 
published some additional reference texts for the Macintosh, including 
Technical Introduction to the Macintosh Family, Programmer's 
Introduction to the Macintosh Family, and Designing Cards and 
Drivers for the Macintosh II and Macintosh SE. These books are all 
part of Addison-Wesley's Apple Technical Library. Another excellent 
source of technical information is the Macintosh Technical Notes. 

Macintosh Technical Notes 

Macintosh Technical Notes are published on a regular basis by Apple 
and distributed to developers free of charge. The Tech Notes are a 
necessity for serious Mac developers. They contain technical infor
mation that was not yet available when the latest volume of Inside 
Macintosh went to press. For example, Tech Note #184 describes the 
Notification Manager (used in Chapter 6). Without this Tech Note, 
developers wouldn't even know the Notification Manager existed, let 
alone know how to use it. 

A timely way to receive Tech Notes if you are not a developer is to 
become a member of APDA, the Apple Programmer's and Developer's 
Association (developers are automatically members of APDA). APDA 
charges $20.00 per year for membership, and they sell most of the 
technical references mentioned in this chapter. They sell the Tech 



The Final Chapter 409 

__J 

Notes in both hard copy and disk formats. For more information on 
APDA, contact: 

Apple Programmer's and Developer's Association 
Apple Computer, Inc. 
20525 Mariani Avenue, MS: 33-G 
Cupertino, CA 95014-6299 

If you're not either a developer or a member of APDA, you can still 
get Tech Notes by downloading them from Mac-oriented bulletin 
boards around the country. 

Other Books 

There are a number of excellent books on Mac programming. The 
classic is Scott Knaster's How to Write Macintosh Software. This book 
is little too advanced for the beginner, but it's worth the struggle to 
get through it. If you plan on writing a lot of Mac code, read this book. 

Another popular set of books is the Macintosh Revealed series, 
written by Stephen Chernicoff. 

Last but not least, you might want to try the Macintosh Pascal 
Programming Primer, Volume II. Object programming, color 
QuickDraw, I NI Ts, C D EV s, and other interesting Toolbox routines 
are examined, with lots of examples and code walkthroughs. Be sure 
to get the Pascal version of Volume II. Volume II, like this volume, 
also comes in a C flavor. 

Apple's Developer Programs 

The Apple Partners program provides additional technical support 
from Apple. Developers accepted into the new Apple Partners 
program receive complete Apple technical documentation, system 
software updates, membership in APDA, access to training classes, 
and discounts on Apple hardware and software. Developers also get a 
year's subscription to AppleLink, Apple's electronic communication 
network, and access to Macintosh Developer Technical Support (see 
below). If you have a CD-ROM drive, you may want to take advantage 



410 Macintosh Programming Primer 

of the Developer CD Series, which is a set of CD-ROMs shipped to 
developers every few months, containing sample code, utility pro
grams, and Inside Macintosh in HyperCard! 

The only disadvantage of being a developer is in parting with the 
check you include with your Apple Partners application (currently 
$600). 

You don't have to be a Fortune 500 company to qualify as an Apple 
Partner, but Apple is looking specifically for developers of Apple 
hardware and software who intend to resell their products. If you are 
interested in developing software but don't have an immediate plan 
to market it, you might consider the Apple Associates Program, 
another support program from Apple. 

The Apple Associates Program is aimed at educators, in-house 
developers, and shareware programmers. It provides a basic level of 
support, including AppleLink (one month prepaid), system software 
upgrades, APDA, Tech Notes, and access to other technical informa
tion. The Associates program currently has a yearly charge of $350.00. 

If you plan on writing a product for the Mac, the information you 
receive in either program is invaluable. Call the Developer Programs 
Hotline at (408) 974-4897 and ask them to send you an application. 

If you are a developer, there's nothing more satisfying than talking 
to people who have solved, or at least are aware of, the technical 
programs you encounter in writing programs. At Apple, these people 
come from Macintosh Developer Technical Support, or MacDTS. 

Macintosh Developer Technical Support 
and AppleLink 

Macintosh Developer Technical Support is composed of talented Mac 
software engineers dedicated to helping developers with their 
technical problems. To work with MacDTS, send them a message via 
MCI Mail. Or you can use AppleLink. 

AppleLink is Apple's electronic communication network. It gives 
access to information about Apple products, prices, programs, and 
policy information. You can write to Developer Technical Support at 
MacDTS on AppleLink, and they will make every possible effort to 
answer your question promptly. 

Both Apple Partners and Apple Associates receive subscriptions to 
AppleLink: Apple Partners receive a full year's subscription with the 



The Final Chapter 411 

_J 

minimum monthly fees prepaid; Apple Associates receive one month 
of the minimum monthly fee prepaid. 

Besides access to MacDTS, AppleLink gives you access to a lot of 
other services. You can download the new system utilities or look at 
the Help Wanted ads posted on the bulletin board. You can send beta 
versions of your products to your evangelist at Apple or to other 
developers. AppleLink makes you a part of the developer community. 

Software Development Tools 

All the applications presented in this book were written in Pascal, 
using the THINK Pascal development environment from Symantec. 
The advantages of THINK Pascal lie primarily in its ease of use and 
debugging facilities. Symantec also makes a powerful, yet friendly, C 
development environment called THINK C. 

Both THINK environments are basically nonextensible. This 
means that you can't create shell scripts to back up your files 
automatically, or rebuild an older version of your project. You also 
can't create custom menu items that automate your development 
process. THINK environments handle most of the development cycle 
so thoroughly that you may not miss these features. If you do, you 
may want to take a look at the Macintosh Programmer's Workshop 
(MPW) from Apple. 

MPW from Apple 

MPW is an extremely powerful development environment that is 
totally extensible-so extensible, in fact, that several third parties 
have produced compilers that run under MPW. MPW is like a Mac
based UNIX shell. You can write shell scripts, tie them to your own 
menus, and create tools that have total access to the Toolbox yet run 
inside the Toolbox environment with access to all your data. The 
catch is that MPW is more complex than THINK Pascal and, 
therefore, more difficult to master. MPW also is not cheap, typically 
costing more than three times as much as THINK Pascal or C. 

Both MPW and THINK have many followers and are supported by 
MacDTS. Whichever way you go, you'll be in good company. 



412 

_J 

Macintosh Programming Primer 

Debugging with TIDNK Pascal, TMON, and 
MacsBug 

Debugging on any computer can be a tedious and frustrating experi
ence. Luckily, there are some excellent tools that you can use to fix up 
your code. 

Normally, THINK Pascal will handle most debugging tasks 
quickly and efficiently. The editor automatically catches syntax 
errors on the fly. After your program compiles successfully, you can 
easily step through your code while it executes, and you can examine 
or change variable values as you go. THINK Pascal's Obserue win
dow lets you track a list of variable or expression values. The 
I n st ant window allows you to insert new lines of code during 
execution! All in all, you probably will be able to solve most problems 
without leaving THINK Pascal. If you need lower level support, 
however, two other products are available. 

MacsBug is an object-level debugger developed by Motorola for the 
68000 family of processors. For a long time, it was the only debugger 
available for the Mac. 

If you need a little more horsepower than MacsBug offers, consider 
TMON. TMON is the pro's debugger. Instead of running as a separate 
program under MultiFinder, TMON takes over the processor when it 
runs. TMON preserves your program's run-time environment by not 
calling any of the Mac Toolbox routines (which might alter the state of 
your program). Instead, the folks at ICOM Simulations cleverly wrote 
their own window and menu handlers. Although TMON is somewhat 
difficult to learn, it's worth it. When you run into an exasperatingly 
unexplainable bug, pop into TMON and step through your program. 
You can set breakpoints, disassemble your executable image, and even 
make changes to your program and data. For debugging drivers, 
IN I Ts, and D As, TMON can't be beat. 

To Boldly Go 

The Macintosh world is accelerating. 
New hardware and software products are being designed and 

marketed faster than ever before. Each successive system software 
version paves the way to wonderful things: multimedia, image 
processing, CD-quality sound, voice recognition. There's a feeling that 



The Final Chapter 413 

everything is finally arriving. This vision may seem daunting, but 
remember-a few years ago, the Mac was an intriguing experiment; 
the people who gambled on it won big. 

The changes that Apple is making are setting the stage for 
machines that will be as big a jump as the Macintosh was from the 
Apple II line. In the Mac world, you're close to the edge. 

Enjoy it! 



Appendix A 

Glossary 

access path: A description of the route that the File Manager 
follows to access a file; created when a file is opened. 

access path buffer: Memory used by the File Manager to transfer 
data between an application and a file. 

action procedure: A procedure, used by the Control Manager 
function TrackControl, that defines an action to be performed 
repeatedly for as long as the mouse button is held down. 

activate event: An event generated by the Window Manager when a 
window changes from active to inactive or vice versa. 

active control: A control that will respond to the user's actions with 
the mouse. 

active end: In a selection, the location to which the insertion point 
moves to complete the selection. 

active window: The frontmost window on the desktop. 
address: A number used to identify a location in the computer's 

address space. Some locations are allocated to memory, others to 
I/O devices. 

alert: A warning or report of an error, in the form of an alert box, 
sound from the Macintosh's speaker, or both. 

alert box: A box that appears on the screen to give a warning or 
report an error during a Macintosh application. 

alert template: A resource that contains information from which the 
Dialog Manager can create an alert. 

alert window: The window in which an alert box is displayed. 
allocate: To reserve an area of memory for use. 

Source: Inside Macintosh X-Ref © 1988 Apple Computer, Inc. Reprinted with 
permission of Addison-Wesley Publishing Company. 

415 



416 Macintosh Programming Primer 

application font: The font your application will use unless you 
specify otherwise-Geneva, by default. 

application list: A data structure, kept in the Desktop file, for 
launching applications from their documents in the hierarchical 
file system. For each application in the list, an entry is 
maintained that includes the name and signature of the 
application, as well as the directory ID of the folder containing it. 

application window: A window created as the result of something 
done by the application, either directly or indirectly (as through 
the Dialog Manager). 

asynchronous execution: After calling a routine asynchronously, 
an application is free to perform other tasks until the routine is 
completed. 

auto-key event: An event generated repeatedly when the user 
presses and holds down a character key on the keyboard or 
keypad. 

auto-key rate: The rate at which a character key repeats after it's 
begun to do so. 

auto-key threshold: The length of time a character key must be 
held down before it begins to repeat. 

background activity: A program or process that runs while the 
user is engaged with another application. 

bit image: A collection of bits in memory that have a rectilinear 
representation. The screen is a visible bit image. 

bit map: A set of bits that represent the position and state of a 
corresponding set of items; in QuickDraw, a pointer to a bit 
image, the row width of that image, and its boundary rectangle. 

boundary rectangle: A rectangle, defined as part of a QuickDraw 
bit map, that encloses the active area of the bit image and 
imposes a coordinate system on it. Its top left corner is always 
aligned around the first bit in the bit image. 

bundle: A resource that maps local IDs of resources to their actual 
resource IDs; used to provide mappings for file references and 
icon lists needed by the Finder. 

button: A standard Macintosh control that causes some immediate 
or continuous action when clicked or pressed with the mouse. See 
also radio button. 

catalog tree file: A file that maintains the relationships between 
the files and directories on a hierarchical directory volume. It 
corresponds to the file directory on a flat directory volume. 

cdev: A resource file containing device information, used by the 
Control Panel. 

channel: A queue that's used by an application to send commands to 
the Sound Manager. 

character code: An integer representing the character that a key or 
combination of keys on the keyboard or keypad stands for. 



Appendix A: Glossary 417 

character key: A key that generates a keyboard event when 
pressed; any key except Shift, Caps Lock, Command, or Option. 

character style: A set of stylistic variations, such as bold, italic, and 
underline. The empty set indicates plain text (no stylistic 
variations). 

character width: The distance to move the pen from one character's 
origin to the next character's origin. 

check box: A standard Macintosh control that displays a setting, 
either checked (on) or unchecked (oft). Clicking inside a check box 
reverses its setting. 

Chooser: A desk accessory that provides a standard interface for 
device drivers to solicit and accept specific choices from the user. 

clipping: Limiting drawing to within the bounds of a particular 
area. 

clipping region: Same as clipRgn. 
clipRgn: The region to which an application limits drawing in a 

grafPort. 
closed file: A file without an access path. Closed files cannot be read 

from or written to. 
compaction: The process of moving allocated blocks within a heap 

zone in order to collect the free space into a single block. 
content region: The area of a window that the application draws in. 
control: An object in a window on the Macintosh screen with which 

the user, moving the mouse, can cause instant action with visible 
results or change settings to modify a future action. 

Control Manager: The part of the Toolbox that provides routines for 
creating and manipulating controls (such as buttons, check 
boxes, and scroll bars). 

control definition function: A function called by the Control 
Manager when it needs to perform type-dependent operations on 
a particular type of control, such as drawing the control. 

control definition ID: A number passed to control-creation routines 
to indicate the type of control. It consists of the control definition 
function's resource ID and a variation code. 

control list: A list of all the controls associated with a given window. 
control record: The internal representation of a control, where the 

Control Manager stores all the information it needs for its 
operations on that control. 

control template: A resource that contains information from which 
the Control Manager can create a control. 

coordinate plane: A two-dimensional grid. In QuickDraw, the grid 
coordinates are integers ranging from -32,767 to 32,767, and all 
grid lines are infinitely thin. 

current resource file: The last resource file opened, unless you 
specify otherwise with a Resource Manager routine. 



418 Macintosh Programming Primer 

cursor: A 16-by-16 bit image that appears on the screen and is 
controlled by the mouse; called the "pointer" in Macintosh user 
manuals. 

cursor level: A value, initialized by InitCursor, that keeps track of 
the number of times the cursor has been hidden. 

data fork: The part of a file that contains data accessed via the File 
Manager. 

data mark: In a sector, information that primarily contains data 
from an application. 

date/time record: An alternate representation of the date and time 
(which is stored on the clock chip in seconds since midnight, 
January 1, 1904). 

default button: In an alert box or modal dialog, the button whose 
effect will occur if the user presses Return or Enter. In an alert 
box, it's boldly outlined; in a modal dialog, it's boldly outlined or 
the OK button. 

default directory: A directory that will be used in File Manager 
routines whenever no other directory is specified. It may be the 
root directory, in which case the default directory is equivalent to 
the default volume. 

default volume: A volume that will receive I/O during a File 
Manager routine call, whenever no other volume is specified. 

dereference: To refer to a block by its master pointer instead of its 
handle. 

Desk Manager: The part of the Toolbox that supports the use of 
desk accessories from an application. 

desk accessory: A "mini-application," implemented as a device 
driver, that can be run at the same time as a Macintosh 
application. 

desk scrap: The place where data is stored when it's cut (or copied) 
and pasted among applications and desk accessories. 

desktop: The screen as a surface for doing work on the Macintosh. 
Desktop file: A resource file in which the Finder stores the version 

data, bundle, icons, and file references for each application on the 
volume. 

device driver event: An event generated by one of the Macintosh's 
device drivers. 

device driver: A program that controls the exchange of information 
between an application and a device. 

dial: A control with a moving indicator that displays a quantitative 
setting or value. Depending on the type of dial, the user may be 
able to change the setting by dragging the indicator with the 
mouse. 

dialog: Same as dialog box. 
dialog box: A box that a Macintosh application displays to request 

information it needs to complete a command, or to report that it's 
waiting for a process to complete. 



Appendix A: Glossary 419 

Dialog Manager: The part of the Toolbox that provides routines for 
implementing dialogs and alerts. 

dialog record: The internal representation of a dialog, where the 
Dialog Manager stores all the information it needs for its 
operations on that dialog. 

dialog template: A resource that contains information from which 
the Dialog Manager can create a dialog. 

dialog window: The window in which a dialog box is displayed. 
dimmed: Drawn in gray rather than black. 
directory ID: A unique number assigned to a directory, which the 

File Manager uses to distinguish it from other directories on the 
volume. (It's functionally equivalent to the file number assigned 
to a file; in fact, both directory IDs and file numbers are assigned 
from the same set of numbers.) 

directory: A subdivision of a volume that can contain files as well as 
other directories; equivalent to a folder. 

disabled: A disabled menu item or menu is one that cannot be 
chosen; the menu item or menu title appears dimmed. A disabled 
item in a dialog or alert box has no effect when clicked. 

Disk Initialization Package: A Macintosh package for initializing 
and naming new disks; called by the Standard File Package. 

disk-inserted event: An event generated when the user inserts a 
disk in a disk drive or takes any other action that requires a 
volume to be mounted. 

display rectangle: A rectangle that determines where an item is 
displayed within a dialog or alert box. 

document window: The standard Macintosh window for presenting 
a document. 

double-click time: The greatest interval between a mouse-up and 
mouse-down event that would qualify two mouse clicks as a 
double-click. 

draft printing: Printing a document immediately as it's drawn in 
the printing grafPort. 

drag delay: A length of time that allows a user to drag diagonally 
across a main menu, moving from a submenu title into the 
submenu itself without the submenu disappearing. 

drag region: A region in a window frame. Dragging inside this 
region moves the window to a new location and makes it the 
active window unless the Command key was down. 

drive number: A number used to identify a disk drive. The internal 
drive is number 1, the external drive is number 2, and any 
additional drives will have larger numbers. 

empty handle: A handle that points to a NIL master pointer, 
signifying that the underlying relocatable block has been purged. 

end-of-file: See logical end-of-file or physical end-of-file. 
event: A notification to an application of some occurrence that the 

application may want to respond to. 



420 Macintosh Programming Primer 

event code: An integer representing a particular type of event. 
Event Manager: See Toolbox Event Manager. 
event mask: A parameter passed to an Event Manager routine to 

specify which types of events the routine should apply to. 
event message: A field of an event record containing information 

specific to the particular type of event. 
event queue: The Operating System Event Manager's list of 

pending events. 
event record: The internal representation of an event, through 

which your program learns all pertinent information about that 
event. 

exception: An error or abnormal condition detected by the processor 
in the course of program execution; includes interrupts and traps. 

external reference: A reference to a routine or variable defined in a 
separate compilation or assembly. 

file: A named, ordered sequence of bytes; a principal means by which 
data is stored and transmitted on the Macintosh. 

file catalog: A hierarchical file directory. 
file control block: A fixed-length data structure, contained in the 

file-control-block buffer, where information about an access path 
is stored. 

file directory: The part of a volume that contains descriptions and 
locations of all the files and directories on the volume. There are 
two types of file directories: hierarchical file directories and flat 
file directories. 

File Manager: The part of the Operating System that supports file 
1/0. 

file name: A sequence of up to 255 printing characters, excluding 
colons (:), that identifies a file. 

file number: A unique number assigned to a file, which the File 
Manager uses to distinguish it from other files on the volume. A 
file number specifies the file's entry in a file directory. 

file reference: A resource that provides the Finder with file and 
icon information about an application. 

file type: A four-character sequence, specified when a file is created, 
that identifies the type of file. 

Finder information: Information that the Finder provides to an 
application upon starting it up, telling it which documents to 
open or print. 

font: A complete set of characters of one typeface, which may be 
restricted to a particular size and style, or may comprise multiple 
sizes, or multiple sizes and styles, as in the context of menus. 

Font Manager: The part of the Toolbox that supports the use of 
various character fonts for QuickDraw when it draws text. 

font number: The number by which you identify a font to 
QuickDraw or the Font Manager. 



Appendix A: Glossary 421 

font size: The size of a font in points; equivalent to the distance 
between the ascent line of one line of text and the ascent line of 
the next line of single-spaced text. 

fork: One of the two parts of a file; see data fork and resource 
fork. 

free block: A memory block containing space available for 
allocation. 

full pathname: A pathname beginning from the root directory. 
global coordinate system: The coordinate system based on the top 

left corner of the bit image being at (0,0). 
go-away region: A region in a window frame. Clicking inside this 

region of the active window makes the window close or disappear. 
grafPort: A complete drawing environment, including such elements 

as a bit map, a subset of it in which to draw, a character font, 
patterns for drawing and erasing, and other pen characteristics. 

graphics device: A video card, a printer, a display device, or an 
offscreen pixel map. Any of these device types may be used with 
Color QuickDraw. 

GrayRgn: The global variable that in the multiple screen desktop 
describes and defines the desktop, the area on which windows 
can be dragged. 

grow image: The image pulled around when the user drags inside 
the grow region; whatever is appropriate to show that the 
window's size will change. 

grow region: A window region, usually within the content region, 
where dragging changes the size of an active window. 

handle: A pointer to a master pointer, which designates a 
relocatable block in the heap by double indirection. 

heap: The area of memory in which space is dynamically allocated 
and released on demand, using the Memory Manager. 

hierarchical menu: A menu that includes, among its various menu 
choices, the ability to display a submenu. In most cases the 
submenu appears to the right of the menu item used to select it, 
and is marked with a filled triangle indicator. 

highlight: To display an object on the screen in a distinctive visual 
way, such as inventing it. 

hotSpot: The point in a cursor that's aligned with the mouse 
location. 

icon: A 32-by-32 bit image that graphically represents an object, 
concept, or message. 

icon list: A resource consisting of a list of icons. 
icon number: A digit from 1 to 255 to which the Menu Manager 

adds 256 to get the resource ID of an icon associated with a menu 
item. 



422 Macintosh Programming Primer 

inactive control: A control that won't respond to the user's actions 
with the mouse. An inactive control is highlighted in some special 
way, such as dimmed. 

inactive window: Any window that isn't the frontmost window on 
the desktop. 

indicator: The moving part of a dial that displays its current 
setting. 

interface routine: A routine called from Pascal whose purpose is to 
trap to a certain Toolbox or Operating System routine. 

International Utilities Package: A Macintosh package that gives 
you access to country-dependent information such as the formats 
for numbers, currency, dates, and times. 

invert: To highlight by changing white pixels to black and vice versa. 
invisible control: A control that's not drawn in its window. 
invisible window: A window that's not drawn in its plane on the 

desktop. 
item: In dialog and alert boxes, a control, icon, picture, or piece of 

text, each displayed inside its own display rectangle. See also 
menu item. 

item list: A list of information about all the items in a dialog or alert 
box. 

item number: The index, starting from 1, of an item in an item list. 
IWM: "Integrated Woz Machine"; the custom chip that controls the 3 

112-inch disk drives. 
job dialog: A dialog that sets information about one printing job; 

associated with the Print command. 
jump table: A table that contains one entry for every routine in an 

application and is the means by which the loading and unloading 
of segments is implemented. 

key code: An integer representing a key on the keyboard or keypad, 
without reference to the character that the key stands for. 

key-down event: An event generated when the user presses a 
character key on the keyboard or keypad. 

key-up event: An event generated when the user releases a 
character key on the keyboard or keypad. 

keyboard equivalent: The combination of the Command key and 
another key, used to invoke a menu item from the keyboard. 

keyboard event: An event generated when the user presses, 
releases, or holds down a character key on the keyboard or 
keypad; any key-down, key-up, or auto-key event. 

List Manager: The part of the Operating System that provides 
routines for creating, displaying, and manipulating lists. 

local coordinate system: The coordinate system local to a 
g r a f Port, imposed by the boundary rectangle defined in its bit 
map. 



Appendix A: Glossary 423 

local ID: A number that refers to an icon list or file reference in an 
application's resource file and is mapped to an actual resource ID 
by a bundle. 

localization: The process of adapting an application to different 
languages, including converting its user interface to a different 
script. 

lock: To temporarily prevent a relocatable block from being moved 
during heap operation. 

lock bit: A bit in the master pointer to a relocatable block that 
indicates whether the block is currently locked. 

locked file: A file whose data cannot be changed. 
locked volume: A volume whose data cannot be changed. Volumes 

can be locked by either a software flag or a mechanical setting. 
logical end-of-file: The position of one byte past the last byte in a 

file; equal to the actual number of bytes in the file. 
main event loop: In a standard Macintosh application program, a 

loop that repeatedly calls the Toolbox Event Manager to get 
events and then responds to them as appropriate. 

main screen: On a system with multiple display devices, the screen 
with the menu bar is called the main screen. 

main segment: The segment containing the main program. 
master pointer: A single pointer to a .relocatable block, maintained 

by the Memory Manager and updated whenever the block is 
moved, purged, or reallocated. All handles to a relocatable block 
refer to it by double indirection through the master pointer. 

Memory Manager: The part of the Operating System that 
dynamically allocates and releases memory space in the heap. 

menu: A list of menu items that appears when the user points to a 
menu title in the menu bar and presses the mouse button. 
Dragging through the menu and releasing over an enabled menu 
item chooses that item. 

menu bar: The horizontal strip at the top of the Macintosh screen 
that contains the menu titles of all menus in the menu list. 

menu definition procedure: A procedure called by the Menu 
Manager when it needs to perform type-dependent operations on 
a particular type of menu, such as drawing the menu. 

menu ID: A number in the menu record that identifies the menu. 
menu item: A choice in a menu, usually a command to a current 

application. 
menu list: A list containing menu handles for all menus in the menu 

bar, along with information on the position of each menu. 
Menu Manager: The part of the Toolbox that deal with setting up 

menus and letting the user choose from them. 
menu title: A word or phrase in the menu bar that designates one 

menu. 



424 Macintosh Programming Primer 

modal dialog: A dialog that requires the user to respond before 
doing any other work on the desktop. 

modeless dialog: A dialog that allows the user to work elsewhere on 
the desktop before responding. 

mounted volume: A volume that previously was inserted into a disk 
drive and had descriptive information read from it by the File 
Manager. 

mouse-down event: An event generated when the user presses the 
mouse button. 

mouse-up event: An event generated when the user releases the 
mouse button. 

network event: An event generated by the AppleTalk Manager. 
null event: An event reported when there are no other events to 

report. 
offspring: For a given directory, the set of files and directories for 

which it is the parent. 
on-line volume: A mounted volume with its volume buffer and 

descriptive information contained in memory. 
open file: A file with an access path. Open files can be read from and 

written to. 
open permission: Information about a file that indicates whether 

the file can be read from, written to, or both. 
Operating System: The lowest-level software in the Macintosh. It 

does basic tasks such as I/O, memory management, and interrupt 
handling. 

Operating System Utilities: Operating System routines that 
perform miscellaneous tasks such as getting the date and time, 
finding out the user's preferred speaker volume and other 
preferences, and doing simple string comparison. 

page rectangle: The rectangle marking the boundaries of a printed 
page image. The boundary rectangle, portRect, and clipRgn of the 
printing grafPort are set to this rectangle. 

panel: An area of a window that shows a different interpretation of 
the same part of a document. 

part code: An integer between 1 and 253 that stands for a particular 
part of a control (possibly the entire control). 

partial pathname: A pathname beginning from any directory other 
than the root directory. 

path reference number: A number that uniquely identifies an 
individual access path; assigned when the access path is created. 

pathname: A series of concatenated directory and file names that 
identifies a given file or directory. See also partial pathname 
and full pathname. 

pattern: An 8-by-8 bit image, used to define a repeating design (such 
as stripes) or tone (such as gray). 



Appendix A: Glossary 425 

physical end-of-file: The position of one byte past the last 
allocation block of a file; equal to 1 more than the maximum 
number of bytes the file can contain. 

picture: A saved sequence of QuickDraw drawing commands (and, 
optionally, picture comments) that you can play back later with a 
single procedure call; also, the image resulting from these 
commands. 

pixel: A dot on a display screen. Pixel is short for picture element. 
plane: The front-to-back position of a window on the desktop. 
point: The intersection of a horizontal grid line and a vertical grid 

line on the coordinate plane, defined by a horizontal and a 
vertical coordinate; also, a typographical term meaning 
approximately 1/72 inch. 

polygon: A sequence of connected lines, defined by QuickDraw line
drawing commands. 

pop-up menu: A menu not located in the menu bar, which appears 
when the user presses the mouse button in a particular place. 

port: See grafPort. 
portBits: The bit map of a grafPort. 
portRect: A rectangle, defined as part of a grafPort, that encloses a 

subset of the bit map for use by the grafPort. 
post: To place an event in the event queue for later processing. 
print record: A record containing all the information needed by the 

Printing Manager to perform a particular printing job. 
Printer Driver: The device driver for the currently installed printer. 
printer resource file: A file containing all the resources needed to 

run the Printing Manager with a particular printer. 
Printing Manager: The routines and data types that enable 

applications to communicate with the Printer Driver to print on 
any variety of printer via the same interface. 

printing grafPort: A special grafPort customized for printing 
instead of drawing on the screen. 

purgeable block: A relocatable block that can be purged from the 
heap. 

queue: A list of identically structured entries linked together by 
pointers. 

QuickDraw: The part of the Toolbox that performs all graphic 
operations on the Macintosh screen. 

radio button: A standard Macintosh control that displays a setting, 
either on or off, and is part of a group in which only one button 
can be on at a time. 

RAM: The Macintosh's random access memory, which contains 
exception vectors, buffers used by hardware devices, the system 
and application heaps, the stack, and other information used by 
applications. 



426 Macintosh Programming Primer 

reallocate: To allocate new space in the heap for a purged block, 
updating its master pointer to point to its new location. 

reference number: A number greater than 0, returned by the 
Resource Manager when a resource file is opened, by which you 
can refer to that file. In Resource Manager routines that expect a 
reference number, 0 represents the system resource file. 

region: An arbitrary area or set of areas on the QuickDraw 
coordinate plane. The outline of a region should be one or more 
closed loops. 

release. To free an allocated area of memory, making it available for 
reuse. 

relocatable block: A block that can be moved within the heap 
during compaction. 

resource: Data or code stored in a resource file and managed by the 
Resource Manager. 

resource attribute: One of several characteristics, specified by bits 
in a resource reference, that determine how the resource should 
be dealt with. 

resource data: In a resource file, the data that comprises a 
resource. 

resource file: The resource fork of a file. 
resource fork: The part of a file that contains data used by an 

application (such as menus, fonts, and icons). The resource fork 
of an application file also contains the application code itself. 

resource header: At the beginning of a resource file, data that gives 
the offsets to and lengths of the resource data and resource map. 

resource ID: A number that, together with the resource type, 
identifies a resource in a resource file. Every resource has an ID 
number. 

Resource Manager: The part of the Toolbox that reads and writes 
resources. 

resource name: A string that, together with the resource type, 
identifies a resource in a resource file. A resource may or may not 
have a name. 

resource specification: A resource type and either a resource ID or 
a resource name. 

resource type: The type of a resource in a resource file, designated 
by a sequence of four characters (such as 'MENU' for a menu). 

result code: An integer indicating whether a routine completed its 
task successfully or was prevented by some error condition (or 
other special condition, such as reaching the end of a file). 

resume procedure: A procedure within an application that allows 
the application to recover from system errors. 

ROM: The Macintosh's permanent Read-Only Memory, which 
contains the routines for the Toolbox and Operating System, and 
the various system traps. 



Appendix A: Glossary 

root directory: The directory at the base of a file catalog. 
row width: The number of bytes in each row of a bit image. 

427 

Scrap Manager: The part of the Toolbox that enables cutting and 
pasting between applications, desk accessories, or an application 
and a desk accessory. 

scrap: A place where cut or copied data is stored. 
scrap file: The file containing the desk scrap (usually named 

"Clipboard File"). 
SCSI: See Small Computer Standard Interface. 
SCSI Manager: The part of the Operating System that controls the 

exchange of information between a Macintosh and peripheral 
devices connected through the Small Computer Standard 
Interface (SCSI). 

segment: One of several parts into which the code of an application 
may be divided. Not all segments need to be in memory at the 
same time. 

selection range: The series of characters (inversely highlighted), or 
the character position (marked with a blinking caret), at which 
the next editing operation will occur. 

signature: A four-character sequence that uniquely identifies an 
application to the Finder. 

Small Computer Standard Interface (SCSI): A specification of 
mechanical, electrical, and functional standards for connecting 
small computers with intelligent peripherals such as hard disks, 
printers, and optical disks. 

solid shape: A shape that's filled in with any pattern. 
Sound Driver: The device driver that controls sound generation in 

an application. 
sound procedure: A procedure associated with an alert that will 

emit one of up to four sounds from the Macintosh's speaker. Its 
integer parameter ranges from 0 to 3 and specifies which sound. 

source transfer mode: One of eight transfer modes for drawing text 
or transferring any bit image between two bit maps. 

stack: The area of memory in which space is allocated and released 
in LIFO (last-in-first-out) order. 

Standard File Package: A Macintosh package for presenting the 
standard user interface when a file is to be saved or opened. 

startup screen: When the system is started up, one of the display 
devices is selected as the startup screen, the screen on which 
the "happy Macintosh" icon appears. 

structure region: An entire window; its complete "structure." 
style: See character style. 
style dialog: A dialog that sets options affecting the page 

dimensions; associated with the Page Setup command. 
subdirectory: Any directory other than the root directory. 



428 Macintosh Programming Primer 

submenu delay: The length of time before a submenu appears as a 
user drags through a hierarchical main menu; it prevents rapid 
flashing of submenus. 

System Error Handler: The part of the Operating System that 
assumes control when a fatal system error occurs. 

system error alert: An alert box displayed by the System Error 
Handler. 

system error ID: An ID number that appears in a system error alert 
to identify the error. 

system event mask: A global event mask that controls which types 
of events get posted into the event queue. 

system font: The font that the system uses (in menus, for example). 
Its name is Chicago. 

system font size: The size of text drawn by the system in the system 
font; 12 points. 

system heap: The portion of the heap reserved for use by the 
Operating System. 

system resource: A resource in the system resource file. 
system resource file: A resource file containing standard resources, 

accessed if a requested resource wasn't found in any of the other 
resource files that were searched. 

system window: A window in which a desk accessory is displayed. 
target device: An SCSI device (typically an intelligent peripheral) 

that receives a request from an initiator device to perform a 
certain operation. 

thumb: The Control Manager's term for the scroll box (the indicator 
of a scroll bar). 

tick: A sixtieth of a second. 
Toolbox: Same as User Interface Toolbox. 
Toolbox Event Manager: The part of the Toolbox that allows your 

application program to monitor the user's actions with the 
mouse, keyboard, and keypad. 

Toolbox Utilities: The part of the Toolbox that performs generally 
useful operations such as fixed-point arithmetic, string 
manipulation, and logical operations on bits. 

transfer mode: A specification of which Boolean operation 
QuickDraw should perform when drawing or when transferring a 
bit image from one bit map to another. 

trap dispatcher: The part of the Operating System that examines a 
trap word to determine what operation it stands for, looks up the 
address of the corresponding routine in the trap dispatch table, 
and jumps to the routine. 

trap word: An unimplemented instruction representing a call to a 
Toolbox or Operating System routine. 



Appendix A: Glossary 429 

type coercion: Many compilers feature type coercion (also known as 
typecasting), which allows a data structure of one type to be 
converted to another type. In many cases, this conversion is 
simply a relaxation of type-checking in the compiler, allowing the 
substitution of a differently typed but equivalent data structure. 

unlock: To allow a relocatable block to be moved during heap 
compaction. 

unmounted volume: A volume that hasn't been inserted into a disk 
drive and had descriptive information read from it, or a volume 
that previously was mounted and has since had the memory used 
by it released. 

unpurgeable block: A relocatable block that can't be purged from 
the heap. 

update event: An event generated by the Window Manager when a 
window's contents need to be redrawn. 

update region: A window region consisting of all areas of the 
content region that have to be redrawn. 

User Interface Toolbox: The software in the Macintosh ROM that 
helps you implement the standard Macintosh user interface in 
your application. 

version data: In an application's resource file, a resource that has 
the application's signature as its resource type; typically a string 
that gives the name, version number, and date of the application. 

vertical blanking interval: The time between the display of the 
last pixel on the bottom line of the screen and the first one on the 
top line. 

virtual key codes: The key codes that appear in keyboard events. 
visible control: A control that's drawn in its window (but may be 

completely overlapped by another window or other object on the 
screen). 

visible window: A window that's drawn in its plane on the desktop 
(but may be completely overlapped by another window or object 
on the screen). 

visRgn: The region of the grafPort, manipulated by the Window 
Manager, that's actually visible on the screen. 

volume: A piece of storage medium formatted to contain files; 
usually a disk or part of a disk. A 3.5-inch Macintosh disk is one 
volume. 

volume attributes: Information contained on volumes and in 
memory indicating whether the volume is locked, whether it's 
busy (in memory only), and whether the volume control block 
matches the volume information (in memory only). 

volume name: A sequence of up to 27 printing characters that 
identifies a volume; followed by a colon (:) in File Manager 
routine calls, to distinguish it from a file name. 



430 Macintosh Programming Primer 

window: An object on the desktop that presents information, such as 
a document or a message. 

window class: In a window record, an indication of whether a 
window is a system window, a dialog or alert window, or a 
window created directly by the application. 

window definition function: A function called by the Window 
Manager when it needs to perform certain type-dependent 
operations on a particular type of window, such as drawing the 
window frame. 

window definition ID: A number passed to window-creation 
routines to indicate the type of window. It consists of the window 
definition function's resource ID and a variation code. 

window frame: The structure region of a window minus its content 
region. 

window list: A list of all windows ordered by their front-to-back 
positions on the desktop. 

Window Manager: The part of the Toolbox that provides routines 
for creating and manipulating windows. 

Window Manager port: A grafPort that has the entire screen as its 
portRect and is used by the Window Manager to draw window 
frames. 

window record: The internal representation of a window, where the 
Window Manager stores all the information it needs for its 
operations on that window. 

window template: A resource from which the Window Manager can 
create a window. 

word wraparound: Keeping words from being split between lines 
when text is drawn. 

working directory: An alternative way of referring to a directory. 
When opened as a working directory, a directory is given a 
working directory reference number that's used to refer to it in 
File Manager calls. 

working directory control block: A data structure that contains 
the directory ID of a working directory, as well as the volume 
reference number of the volume on which the directory is located. 

working directory reference number: A temporary reference 
number used to identify a working directory. It can be used in 
place of the volume reference number in all File Manager calls; 
the File Manager uses it to get the directory ID and volume 
reference number from the working directory control block. 



AppendixB 

Code Listings 

The following pages contain complete 
listings of all the source code 

presented in Chapters 1-9. The 
listings are presented in order by 

chapter. Remember, you can send in 
the coupon in the back of the book for 
a disk containing the complete set of 

Macintosh Pascal Primer 
applications. 



Chapter2: Hello. p 

program Hello; 
begin 

ShowText; 
writeln('Hello, world!'); 

end. 

Chapter 3: Hello2.p 

program Hello2; 
const 

BASE_RES_ID = 400; 
HORIZONTAL_PIXEL = 30; 
VERTICAL_PIXEL = 50; 

{- -------------> Windowlnit <--} 

procedure Windowlnit; 
var 

helloWindow: WindowPtr; 
begin 

end; 

helloWindow := GetNewWindow<BASE_RES_ID, nil, 
WindowPtr(-1)); 

ShowWindow(helloWindow); 
SetPort(helloWindow); 
MoveTo(HORIZONTAL_PIXEL, VERTICAL_PIXEL); 
DrawString('Hello, world!'); 

{----------------> Hello2 <--} 

begin 
Windowlnit; 

end. 

while (not Button) do 
begin 
end; 

433 



434 Macintosh Programming Primer 

Chapter 3: Mondrian.p 

program Mondrian; 
const 

BASE_RES ID = 400; 

var 
gDrawWindow: WindowPtr; 
gfillColor: LONGINT; 

{-----------------> Randomize <--} 

function Randomize (range: INTEGER): INTEGER; 
var 

rawResult: LONGINT; 
begin 

rawResult := Random; 
rawResult .- abs(rawResult); 

Randomize .- (rawResult * range) div 32768; 
end; 

{----------------> RandomRect <--} 

procedure RandomRect (var myRect: Rect; boundingWindow: 
WindowPtr); 

begin 

end; 

myRect.Left := Randomize(boundingWindowA.portRect.right -
boundingWindowA.portRect.Left); 

myRect.right := Randomize(boundingWindowA.portRect.right -
boundingWindowA.portRect.Left); 

myRect.top := Randomize(boundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 

myRect.bottom := Randomize(boundingWindowA. 
portRect.bottom -
boundingWindowA. 
portRect.top); 

{----------------> DrawRandomRect <--} 

procedure DrawRandomRect; 
var 

myRect: Rect; 
begin 

end; 

RandomRect(myRect, gDrawWindow); 
ForeColor(gfiLLColor); 
PaintOval(myRect); 



Appendix B: Code Listings 

{----------------> Mainloop <--} 

procedure Mainloop; 
begin 

end; 

GetDateTime(randSeed); 
gFillColor := blackColor; 

while (not Button) do 
begin 

DrawRandomRect; 

end; 

if CgFillColor = blackColor) then 
gFillColor := whiteColor 

else 
gFillColor .- blackColor 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gDrawWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

ShowWindowCgDrawWindow); 
SetPort(gDrawWindow); 

end; 

{----------------> Mondrian <--} 

begin 
Windowlnit; 
Main loop; 

end. 

Chapter 3: ShowPICT.p 

program ShowPICT; 
con st 

BASE RES ID = 400; 

var 
gPictureWindow: WindowPtr; 

435 



436 Macintosh Programming Primer 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect>; 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) 
div 2 + windRect.top; 

myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top); 

myRect.left := CwindRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
div 2 + windRect.left; 

myRect.right := myRect.left + (pictureRect.right -
pictureRect.left); 

{----------------> DrawMyPicture <--} 

procedure DrawMyPicture (pictureWindow: WindowPtr>; 
var 

begin 

myRect: Re ct; 
thePicture: PicHandle; 

myRect := pictureWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 

CenterPict(thePicture, myRect>; 
DrawPicture(thePicture, myRect); 

end; 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictureWindow := GetNewWindow(BASE_RES_ID, nil, 
WindowPtr(-1 »; 

ShowWindow(gPictureWindow>; 
SetPortCgPictureWindow); 

end; 



Appendix B: Code Listings 

{----------------> ShowPICT <--} 

begin 

end. 

Windowinit; 
DrawMyPicture(gPictureWindow); 

whi Le (not Button) do 
begin 
end; 

Chapter 3: Flying Line.p 

program FlyingLine; 
canst 

type 

var 

NUM_LINES = 50; 
NIL_STRING = I I; 

NIL_TITLE = I'; 
VISIBLE = TRUE; 
NO_GO_AWAY = FALSE; 
NIL_REF_CON = O; 

IntPtr = AINTEGER; 

gLineWindow: WindowPtr; 
gLines: array[1 .. NUM_LINESJ of Rect; 
gDeltaTop, gDeltaBottom: INTEGER; 
gDeltaLeft, gDeltaRight: INTEGER; 
gOldMBarHeight: INTEGER; 
gMBarHeightPtr: IntPtr; 

{----------------> DrawLine <--} 

procedure DrawLine (i: INTEGER); 
begin 

MoveTo(gLines[iJ.Left, gLines[iJ.top); 
LineTo(gLines[iJ.right, gLines[iJ.bottom); 

end; 

{----------------> RecalcLine <--} 

procedure RecalcLine (i: INTEGER); 
begin 

gLines[iJ.top := gLines[iJ.top + gDeltaTop; 

437 



438 

end; 

Macintosh Programming Primer 

if ((glines[iJ.top < glineWindowA.portRect.top) I 
(glines[iJ.top > glineWindowA.portRect.bottom)) then 
gDeltaTop := gDeltaTop * (-1); 

glines[iJ.top := glines[iJ.top + 2 * gDeltaTop; 

gLines[iJ.bottom := glines[iJ.bottom + gDeltaBottom; 
if ((glines[iJ.bottom < gLineWindowA.portRect.top) I 

(glines[iJ.bottom > gLineWindowA.portRect.bottom)) 
then gDeltaBottom := gDeltaBottom * (-1); 

glines[iJ.bottom := glines[iJ.bottom + 2 * gDeltaBottom; 

glines[iJ.Left := glines[iJ.Left + gDeltaleft; 
if ((glines[iJ.Left < glineWindowA.portRect.Left) I 

(glines[iJ.Left > glineWindowA.portRect.right)) then 
gDeltaleft := gDeltaleft * (-1); 

glines[iJ.Left := glines[iJ.Left + 2 * gDeltaleft; 

glines[iJ.right := glines[iJ.right + gDeltaRight; 
if ((glines[iJ.right < glineWindowA.portRect.Left) I 

(glines[iJ.right > glineWindowA.portRect.right)) 
then gDeltaRight := gDeltaRight * (-1); 

glines[iJ.right := glines[iJ.right + 2 * gDeltaRight; 

{----------------> Mainloop <--} 

procedure Mainloop; 
var 

i: INTEGER; 

begin 
while (not Button) do 

end; 

begin 
Drawline(NUM_LINES); 
for i := NUM_LINES downto 2 do 

glines[iJ := glines[i - 1J; 
Recalcline(1); 
Drawline(1); 
gMBarHeightPtrA .- gOldMBarHeight; 

end; 

{----------------> Randomize <--} 

function Randomize (range: INTEGER): INTEGER; 
var 

rawResult: LONGINT; 

begin 



Appendix B: Code Listings 439 

end; 

rawResult .- Random; 
rawResult .- abs(rawResult); 

Randomize .- (rawResult * range) div 32768; 

{----------------> RandomRect <--} 

procedure RandomRect (var myRect: Rect; 
boundingWindow: WindowPtr); 

begin 

end; 

myRect.left := Randomize(boundingWindowA.portRect.right -
boundingWindowA.portRect.left); 

myRect.right := Randomize(boundingWindowA.portRect.right -
boundingWindowA.portRect.left); 

myRect.top := Randomize(boundingWindowA.portRect.bottom -
boundingWindowA.portRect.top); 

myRect.bottom := Randomize(boundingWindowA.portRect.bottom 
- boundingWindowA.portRect.top); 

{----------------> Lineslnit <--} 

procedure Lineslnit; 
var 

i: INTEGER; 

begin 

end; 

gDeltaTop := 3; 
gDeltaBottom := 3; 
gDeltaleft := 2; 
gDeltaRight := 6; 

HideCursor; 
GetDateTime(randSeed); 
RandomRect(glines[1J, glineWindow); 
DrawlineC1>; 

for i := 2 to NUM_LINES do 
begin 

end; 

glines[iJ := glines[i - 1J; 
RecalclineCi>; 
Drawline(i); 



440 Macintosh Programming Primer 

{----------------> Windowinit <--} 

procedure Windowinit; 
var 

totaLRect, mBarRect: Rect; 
mBarRgn: RgnHandle; 

begin 

end; 

gMBarHeightPtr := IntPtr($baa); 
gOldMBarHeight := gMBarHeightPtrA; 
gMBarHeightPtrA := O; 
gLineWindow := NewWindow(nil, screenBits.bounds, 

NIL_TITLE, VISIBLE, plainDBox, 
WindowPtr(-1), NO_GO_AWAY, 
NIL_REF_CON); 

SetRect(mBarRect, screenBits.bounds.Left, 
screenBits.bounds.top, screenBits.bounds.right, 
screenBits.bounds.top + gOLdMBarHeight); 

mBarRgn := NewRgn; 
RectRgn(mBarRgn, mBarRect); 
UnionRgn(gLineWindowA.visRgn, mBarRgn, 

gLineWindowA.visRgn); 
DisposeRgn(mBarRgn); 
SetPort(gLineWindow); 
FiLLRect(gLineWindowA.portRect, black); 

{ Change black to LtGray, } 
PenMode(patXor); { <-- and comment out this Line } 

{----------------> FlyingLine <--} 

begin 
Windowinit; 
Linesinit; 
MainLoop; 

end. 

Chapter 4: EventTutor.p 

program EventTutor; 
canst 

BASE_RES_ID = 400; 
LEAVE_WHERE_IT_IS = FALSE; 
NORMAL_UPDATES = TRUE; 
SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 



Appendix B: Code Listings 441 

var 

SUSPEND_RESUME_BIT = $0001; 
ACTIVATING = 1; 
RESUMING = 1; 
TEXT_FONT_SIZE = 12; 
DRAG_THRESHOLD = 30; 
MIN_WINDOW_HEIGHT = 50; 
MIN_WINDOW_WIDTH = 50; 
SCROLL_BAR_PIXELS = 15; 
ROWHEIGHT = 15; 
LEFTMARGIN = 10; 
STARTROW = O; 
HORIZONTAL_OFFSET = 0; 

gPictWindow, gEventWindow: WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 
gCurRow, gMaxRow: INTEGER; 
gSizeRect: Rect; 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := (windRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top)) 
div 2 + windRect.top; 

myRect.bottom := myRect.top + CpictureRect.bottom -
pictureRect.top); 

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
div 2 + windRect.left; 

myRect.right .- myRect.left + CpictureRect.right -
pictureRect.left); 

{----------------> DrawMyPicture <--} 

procedure DrawMyPicture (drawingWindow: WindowPtr); 
var 

drawingClipRect, myRect: Rect; 
oldPort: GrafPtr; 
tempRgn: RgnHandle; 



442 Macintosh Programming Primer 

thePicture: PicHandle; 
begin 

end; 

GetPort(oldPort); 
SetPort(drawingWindow); 
tempRgn := NewRgn; 
GetCLip(tempRgn); 
EraseRect(drawingWindowA.portRect); 
DrawGrowlcon(drawingWindow); 

drawingCLipRect := drawingWindowA.portRect; 
drawingCLipRect.right := drawingCLipRect.right -

SCROLL_BAR_PIXELS; 
drawingCLipRect.bottom := drawingCLipRect.bottom -

SCROLL_BAR_PIXELS; 
myRect := drawingWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 
CenterPict(thePicture, myRect); 
ClipRect(drawingCLipRect); 
DrawPicture<thePicture, myRect); 

SetCLip(tempRgn); 
DisposeRgn(tempRgn); 
SetPort(oldPort); 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
windSize: LONGINT; 
oldPort: Graf Ptr; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

inSysWindow: 
SystemCLick(gTheEvent, whichWindow); 

inDrag: 
DragWindow(whichWindow, gTheEvent.where, 

screenBits.bounds); 
inContent: 

if whichWindow <> FrontWindow then 
SelectWindow(whichWindow); 

inGrow: 
begin 

windSize := GrowWindow(whichWindow, 
gTheEvent.where, 
gSizeRect); 



Appendix B: Code Listings 

if (windSize <> Q) then 

end; 
inGoAway: 

begin 

end; 

GetPort(oldPort); 
SetPort<whichWindow); 
EraseRect(whichWindowA.portRect); 
SizeWindow<whichWindow, 

LoWord(windSize), 
HiWord(windSize), 
NORMAL_UPDATES); 

InvalRect(whichWindowA.portRect); 
SetPort(oldPort); 

gDone := TRUE; 
inZoomin, inZoomOut: 

443 

if TrackBox(whichWindow, gTheEvent.where, thePart) 
then 

begin 

end; 

GetPort(oldPort); 
SetPort(whichWindow); 
EraseRect(whichWindowA.portRect); 
ZoomWindow(whichWindow, thePart, 

LEAVE_WHERE_IT_IS); 
InvalRect(whichWindowA.portRect); 
SetPort(oldPort); 

end; 
end; 

{----------------> ScrollWindow <--} 

procedure ScrollWindow; 
var 

tempRgn: RgnHandle; 
begin 

end; 

tempRgn := NewRgn; 
ScrollRect(gEventWindowA.portRect, HORIZONTAL_OFFSET, -

ROWHEIGHT, tempRgn); 
DisposeRgn(tempRgn); 

{----------------> DrawEventString <--} 

procedure DrawEventString Cs: Str255); 
begin 

if (gCurRow > gMaxRow) then 
ScrollWindow 



444 

end; 

Macintosh Programming Primer 

else 
gCurRow := gCurRow + ROWHEIGHT; 

MoveTo(LEFTMARGIN, gCurRow); 
DrawString(s); 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

gotOne: BOOLEAN; 
begin 

if gWNEimplemented then 
gotOne .- WaitNextEvent(everyEvent, gTheEvent, 

SLEEP, nil) 
else 

begin 
SystemTask; 
gotOne .- GetNextEvent(everyEvent, gTheEvent); 

end; 

if gotOne then 
case gTheEvent.what of 

nullEvent: 
begin 

{ DrawEventString('nullEvent'); 
{ Uncomment the previous line for a burst of flavor!} 

end; 
mouseDown: 

begin 
DrawEventString('mouseDown'); 
HandleMouseDown; 

end; 
mouseUp: 

DrawEventString('mouseUp'); 
key Down: 

DrawEventString('keyDown'); 
keyUp: 

DrawEventString( 'keyUp' ); 
autoKey: 

DrawEventString('autoKey'); 
updateEvt: 

if (WindowPtr(gTheEvent.message) = 
gPictWindow) then begin 

DrawEventString('updateEvt: gPictWindow'); 



Appendix B: Code Listings 

BeginUpdate(WindowPtr(gTheEvent.message)); 
DrawMyPicture(WindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 

end 
else 

begin 
DrawEventString('updateEvt: gEventWindow'); 
BeginUpdateCWindowPtr 

CgTheEvent.message)); 
{ We won't handle updates to gEventWindow, } 
{ but we still need to empty the gEventWindow } 
{ Update Region so the Window Manager will stop } 
{ queing UpdateEvts. We do this with calls to } 
{ BeginUpdate and EndUpdate. } 

EndUpdateCWindowPtr(gTheEvent.message)); 
end; 

diskEvt: 
DrawEventString('diskEvt'); 

activateEvt: 
if CWindowPtr(gTheEvent.message) = gPictWindow) 

then begin 
DrawGrowicon(WindowPtr(gTheEvent.message)); 
if CBitAnd(gTheEvent.modifiers, 

activeFlag) = ACTIVATING) then 
DrawEventString 

445 

('activateEvt: activating gPictWindow') 
else 

DrawEventString 
('activateEvt: deactivating gPictWindow'); 

end 
else 

begin 

end; 
networkEvt: 

if (BitAnd(gTheEvent.modifiers, 
activeFlag) = ACTIVATING) then 
DrawEventString 

else 
('activateEvt: activating gEventWindow') 

DrawEventString 
('activateEvt: deactivating gEventWindow'); 

DrawEventString('networkEvt'); 
driverEvt: 

DrawEventString('driverEvt'); 



446 

end; 
end; 

Macintosh Programming Primer 

app1Evt: 
DrawEventStringC'app1Evt'>; 

app2Evt: 
DrawEventStringC'app2Evt'); 

app3Evt: 
DrawEventStringC'app3Evt'>; 

app4Evt: 
if CBitAndCgTheEvent.message, 

SUSPEND_RESUME_BIT) = RESUMING) then 
DrawEventStringC'Resume event') 

else 
DrawEventStringC'Suspend event'>; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 

ToolTrap) <> 
NGetTrapAddressCUNIMPL_TRAP_NUM, 
Tool Trap)); 

while gDone = FALSE do 
HandleEvent; 

{----------------> SetUpSizeRect <--} 

procedure SetUpSizeRect; 
begin 

gSizeRect.top := MIN_WINDOW_HEIGHT; 
gSizeRect.left := MIN_WINDOW_WIDTH; 

gSizeRect.bottom := 32767; 
gSizeRect.right := 32767; 

end; 

{----------------> SetupEventWindow <--} 

procedure SetupEventWindow; 
var 

begin 

eventRect: Rect; 
fontNum: INTEGER; 



Appendix B: Code Listings 447 

eventRect := gEventWindowA.portRect; 
gMaxRow := eventRect.bottom - eventRect.top - ROWHEIGHT; 
gCurRow := STARTROW; 

end; 

SetPort(gEventWindow); 
GetFNum('monaco', fontNum>; 
TextFont(fontNum>; 
TextSizeCTEXT_FONT_SIZE); 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtrC-1>>; 

gEventWindow := GetNewWindowCBASE_RES_ID + 1, nil, 
WindowPtrC-1>>; 

SetupEventWindow; 

ShowWindow(gEventWindow); 
ShowWindowCgPictWindow>; 

end; 

{----------------> EventTutor <--} 

begin 
Windowlnit; 
SetUpSizeRect; 

MainLoop; 
end. 

Chapter 5: Timer.p 

program Timer; 
con st 

BASE_RES_ID = 400; 

PLAIN = [J; 
PLAIN_ITEM = 1; 
BOLD_ITEM = 2; 
ITALIC_ITEM = 3; 
UNDERLINE_ITEM = 4; 
OUTLINE_ITEM = 5; 



448 

var 

SHADOW_ITEM = 6; 

INCLUDE_SECONDS = TRUE; 

ADD_CHECK_MARK = TRUE; 
REMOVE_CHECK_MARK = FALSE; 

SLEEP = 60; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

QUIT_ITEM = 1; 
ABOUT _IT EM = 1; 

NOT A NORMAL MENU = -1; 
APPLE_MENU_ID = BASE_RES_ID; 
FILE_MENU_ID = BASE_RES_ID + 1; 
FONT_MENU_ID = 100; 
STYLE_MENU_ID = 101; 

CLOCK_LEFT = 12; 
CLOCK_TOP = 25; 
CLOCK_SIZE = 24; 

ABOUT_ALERT = 400; 

gClockWindow: WindowPtr; 
gDone, gWNEimplemented: BOOLEAN; 
gCurrentTime, gOldTime: LONGINT; 
gTheEvent: EventRecord; 
gLastFont: INTEGER; 
gCurrentStyle: Style; 

Macintosh Programming Primer 

{----------------> HandleStyleChoice <--} 

procedure CheckStyles; 
var 

styleMenu: MenuHandle; 
begin 

styleMenu := GetMHandleCSTYLE_MENU_ID); 
CheckitemCstyleMenu, PLAIN_ITEM, CgCurrentStyle = 

PLAIN)); 
Checkitem(styleMenu, BOLD_ITEM, (bold in gCurrentStyle>>; 
Checkitem(styleMenu, ITALIC_ITEM, <italic in 

gCurrentStyle)); 
CheckitemCstyleMenu, UNDERLINE_ITEM, <underline in 

gCurrentStyle)); 
CheckitemCstyleMenu, OUTLINE_ITEM, (outline in 

gCurrentStyle)); 



Appendix B: Code Listings 449 

end; 

CheckltemCstyleMenu, SHADOW_ITEM, (shadow in 
gCurrentStyle)); 

{----------------> HandleStyleChoice <--} 

procedure HandleStyleChoice Ctheltem: INTEGER); 
begin 

end; 

case theltem of 
PLAIN_ITEM: 

gCurrentStyle := PLAIN; 
BOLD_ITEM: 

if bold in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [bold] 

else 
gCurrentStyle .- gCurrentStyle + CboldJ; 

ITALIC_ITEM: 
if italic in gCurrentStyle then 

gCurrentStyle .- gCurrentStyle - [italic] 
else 

gCurrentStyle := gCurrentStyle + [italic]; 
UNDERLINE ITEM: 

if underline in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [underline] 

else 

end; 

gCurrentStyle := gCurrentStyle + [underline]; 
OUTLINE ITEM: 

if outline in gCurrentStyle then 
gCurrentStyle .- gCurrentStyle - [outline] 

else 
gCurrentStyle := gCurrentStyle + [outline]; 

SHADOW_ITEM: 
if shadow in gCurrentStyle then 

gCurrentStyle .- gCurrentStyle - [shadow] 
else 

gCurrentStyle .- gCurrentStyle + [shadow]; 

CheckStyles; 
TextFace(gCurrentStyle>; 

{----------------> HandleFontChoice <--} 

procedure HandleFontChoice Ctheltem: INTEGER); 
var 

fontNumber: INTEGER; 
fontName: Str255; 
fontMenu: MenuHandle; 



450 Macintosh Programming Primer 

begin 

end; 

fontMenu := GetMHandleCFONT_MENU_ID); 
CheckitemCfontMenu, glastFont, REMOVE_CHECK_MARK); 
CheckitemCfontMenu, theitem, ADD_CHECK_MARK); 
glastFont := theitem; 
GetitemCfontMenu, theitem, fontName>; 
GetFNumCfontName, fontNumber); 
TextFontCfontNumber>; 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice Ctheitem: INTEGER>; 
begin 

case theitem of 
QUIT_ITEM: 

end; 
end; 

gDone : = TRUE; 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice Ctheitem: INTEGER>; 
var 

begin 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
appleMenu: MenuHandle; 

case theitem of 
ABOUT_ITEM: 

end; 
end; 

dummy := NoteAlertCABOUT_ALERT, nil); 
otherwise 

begin 

end; 

appleMenu := GetMHandleCAPPLE_MENU_ID>; 
GetitemCappleMenu, theitem, accName>; 
accNumber := OpenDeskAccCaccName>; 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice CmenuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

if menuChoice <> 0 then 
begin 



Appendix B: Code Listings 

end; 

theMenu := HiWordCmenuChoice); 
theitem := LoWordCmenuChoice); 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoiceCtheitem); 
FILE_MENU_ID: 

HandleFileChoice(theitem); 
FONT MENU ID: 

HandleFontChoiceCtheitem); 
STYLE_MENU_I D: 

HandleStyleChoiceCtheitem); 

Hi liteMenuCO); 
end; 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindowCgTheEvent.where, whichWindow); 
case thePart of 

inMenuBar: 
begin 

451 

menuChoice := MenuSelectCgTheEvent.where); 
HandleMenuChoiceCmenuChoice); 

end; 
end; 

end; 
inSysWindow: 

SystemClickCgTheEvent, whichWindow); 
inDrag: 

DragWindowCwhichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
gDone := TRUE; 

{----------------> DrawClock <--} 

procedure DrawClock CtheWindow: WindowPtr); 
var 

myTimeString: Str255; 
begin 



452 

end; 

Macintosh Programming Primer 

IUTimeString(gCurrentTime, INCLUDE_SECONDS, 
myTimeString); 

EraseRect(theWindowA.portRect); 
MoveTo(CLOCK_LEFT, CLOCK_TOP); 
DrawString(myTimeString); 
gOldTime .- gCurrentTime; 

{----~---~-------> HandleNull <--} 

procedure HandleNull; 
begin 

GetDateTime(gCurrentTime); 

end; 

if gCurrentTime <> gOldTime then 
DrawClock(gClockWindow); 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 

if gWNEimplemented then 

else 

dummy .- WaitNextEvent(everyEvent, gTheEvent, 
SLEEP, nil) 

begin 
SystemTask; 
dummy := GetNextEvent(everyEvent, gTheEvent); 

end; 

case gTheEvent.what of 
nullEvent: 

HandleNull; 
mouse Down: 

HandleMouseDown; 
keyDown, autoKey: 

begin 
theChar := CHRCBitAnd(gTheEvent.message, 

charCodeMask)); 
if (BitAnd(gTheEvent.modifiers, cmdKey) <> Q) 

then 

end; 
updateEvt: 

begin 

HandleMenuChoice(MenuKey(theChar)); 



Appendix B: Code Listings 453 

BeginUpdateCWindowPtrCgTheEvent.message)); 
EndUpdateCWindowPtrCgTheEvent.message>>; 

end; 
end; 

end; 

{----------------> Mainloop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gWNEimplemented := CNGetTrapAddressCWNE_TRAP_NUM, 

ToolTrap) <> 
NGetTrapAddressCUNIMPL_TRAP_NUM, 
Tool Trap»; 

while CgDone =FALSE) do 
HandleEvent; 

{----------------> MenuBarinit <--} 

procedure MenuBarinit; 
var 

myMenuBar: Handle; 
aMenu: MenuHandle; 

begin 

end; 

myMenuBar := GetNewMBarCBASE_RES_ID); 
SetMenuBarCmyMenuBar); 
DisposHandleCmyMenuBar>; 

aMenu := GetMHandleCAPPLE_MENU_ID); 
AddResMenu(aMenu, 'DRVR'>; 

aMenu := GetMenuCFONT_MENU_ID>; 
InsertMenuCaMenu, NOT_A_NORMAL_MENU); 
AddResMenuCaMenu, 'FONT'>; 

aMenu := GetMenuCSTYLE_MENU_ID); 
InsertMenuCaMenu, NOT_A_NORMAL_MENU); 
CheckitemCaMenu, PLAIN_ITEM, TRUE); 

DrawMenuBar; 
gLastFont := 1; 
gCurrentStyle := PLAIN; 
HandleFontChoiceCgLastFont>; 



454 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

Macintosh Programming Primer 

gClockWindow := GetNewWindow(BASE_RES_ID, nil, 
WindowPtrC-1>>; 

SetPort(gClockWindow>; 
ShowWindow(gClockWindow>; 

TextSize(CLOCK_SIZE); 
end; 

{----------------> Timer <--} 

begin 
Windowlnit; 
MenuBarlnit; 

MainLoop; 
end. 

Chapter 5: Zinger.p 

program Zinger; 
const 

var 

BASE_RES_ID = 400; 
SLEEP = 60; 
DRAG_THRESHOLD = 30; 
WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 
POPUP_MENU_ID = BASE_RES_ID; 
NOT_A_NORMAL_MENU = -1; 
POPUP_LEFT = 100; 
POPUP_TOP = 35; 
POPUP_RIGHT = 125; 
POPUP_BOTTOM = 52; 
SHADOW_PIXELS = 1; 
RIGHT_MARGIN = 5; 
BOTTOM_MARGIN = 4; 
LEFT_MARGIN = 5; 
PIXEL_FOR_TOP_LINE = 1; 

gDone, gWNEimplemented: BOOLEAN; 
gPopUpltem, gPopUpLabelWidth: INTEGER; 
gPopUpMenu: MenuHandle; 
gTheEvent: EventRecord; 



Appendix B: Code Listings 455 

gPopUpRect, gLabelRect, gDragRect: Rect; 
gPopUpLabelH: StringHandle; 

{----------------> DrawPopUpNumber <--} 

procedure DrawPopUpNumber; 
var 

menu!tem: Str255; 
itemLeftMargin: INTEGER; 

begin 

end; 

Get!tem(gPopUpMenu, gPopUpitem, menu!tem); 
itemLeftMargin := (gPopUpRect.right - gPopUpRect.left -

StringWidth(menuitem)) div 2; 
MoveToCgPopUpRect.left + itemLeftMargin, 

gPopUpRect.bottom - BOTTOM_MARGIN); 
DrawString(menuitem); 

{----------------> DrawPopUp <--} 

procedure DrawPopUp; 
begin 

SetRect(gPopUpRect, POPUP_LEFT, POPUP_TOP, POPUP_RIGHT, 
POPUP_BOTTOM); 

FrameRect(gPopUpRect); 

MoveTo(gPopUpRect.left + SHADOW_PIXELS, 
gPopUpRect.bottom); 

LineTo(gPopUpRect.right, gPopUpRect.bottom); 
LineTo(gPopUpRect.right, gPopUpRect.top + SHADOW_PIXELS); 

MoveTo(gPopUpRect.left - gPopUpLabelWidth - RIGHT_MARGIN, 
gPopUpRect.bottom - BOTTOM_MARGIN); 

HLock(HandleCgPopUpLabelH)); 
DrawString(gPopUpLabeLHAA); 
HUnlock(Handle(gPopUpLabelH)); 

gLabelRect.top := gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabelRect.left := gPopUpRect.left - gPopUpLabelWidth -

LEFT_MARGIN - RIGHT_MARGIN; 
gLabelRect.right := gPopUpRect.left; 
gLabelRect.bottom .- gPopUpRect.bottom; 

DrawPopUpNumber; 
end; 



456 Macintosh Programming Primer 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart, i: INTEGER; 
theChoice: LONGINT; 
myPoint, popUpUpperLeft: Point; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

end; 
end; 

inContent: 
begin 

myPoint := gTheEvent.where; 
GlobalToLocal(myPoint); 
if PtlnRect(myPoint, gPopUpRect) then 

begin 

end; 
end; 

inSysWindow: 

InvertRect(gLabelRect); 
popUpUpperLeft.v := gPopUpRect.top + 

PIXEL_FOR_TOP_LINE; 
popUpUpperLeft.h := gPopUpRect.left; 
LocalToGlobal(popUpUpperLeft); 
theChoice := PopUpMenuSelect 

CgPopUpMenu, 
popUpUpperLeft.v, popUpUpperLeft.h, 
gPopUpltem); 

InvertRect(gLabelRect); 
if LoWord(theChoice) > 0 then 

begin 

end; 

gPopUpltem := LoWord(theChoice); 
DrawPopUpNumber; 
for i := 0 to gPopUpltem - 1 do 

SysBeepC20); 

SystemClickCgTheEvent, whichWindow); 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
gDone := TRUE; 



Appendix B: Code Listings 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 

else 

dummy .- WaitNextEvent(everyEvent, gTheEvent, 
SLEEP, nil) 

begin 
SystemTask; 

457 

dummy := GetNextEvent(everyEvent, gTheEvent); 
end; 

case gTheEvent.what of 
mouse Down: 

HandleMouseDown; 
updateEvt: 

begin 
BeginUpdate(WindowPtr(gTheEvent.message)); 
DrawPopUp; 
EndUpdate(WindowPtr(gTheEvent.message)); 

end; 
end; 

end; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gWNEimplemented .- (NGetTrapAddress(WNE_TRAP_NUM, 

TooLTrap) <> 
NGetTrapAddress(UNIMPL_TRAP_NUM, 
Tool Trap)); 

while gDone = FALSE do 
HandleEvent; 

{----------------> MenuBarlnit <--} 

procedure MenuBarlnit; 
begin 

gPopUpMenu := GetMenu(POPUP_MENU_ID); 
InsertMenu(gPopUpMenu, NOT_A_NORMAL_MENU); 
gPopUpLabelH := GetStringCBASE_RES_ID); 
HLock(Handle(gPopUpLabelH)); 
gPopUpLabelWidth := StringWidth(gPopUpLabeLHAA); 



458 

end; 

HUnlock(Handle(gPopUpLabelH)); 
gPopUpitem := 1; 

{----------------> Windowinit <--} 

procedure Windowinit; 
var 

popUpWindow: WindowPtr; 
begin 

Macintosh Programming Primer 

popUpWindow := GetNewWindowCBASE_RES_ID, nil, WindowPtr 
(-1)); 

SetPortCpopUpWindow); 
ShowWindowCpopUpWindow); 

Textfont(systemfont>; 
TextModeCsrcCopy>; 

end; 

{----------------> Zinger <--} 

begin 
Windowinit; 
MenuBarinit; 
DrawPopUp; 

MainLoop; 
end. 

Chapter 6: Reminder.p 

program Reminder; 
uses 

Notification; 

con st 
BASE_RES_ID = 400; 
ABOUT_ALERT = 401; 
BAD_SYS_ALERT = 402; 

SLEEP = 60; 

SAVE BUTTON = 1; 
CANCEL_BUTTON = 2; 
TIME_FIELD = 4; 
s_oR_M_FIELD = 5; 



Appendix B: Code Listings 

SOUND_ON_BOX = 6; 
ICON_ON_BOX = 7; 
ALERT_ON_BOX = 8; 
SECS_RADIO = 10; 
MINS_RADIO = 11; 

DEFAULT_SECS_ID = 401; 
DEFAULT_MINS ID = 402; 

ON = 1; 
OFF = O; 

SECONDS_PER_MINUTE = 60; 

TOP = 25; 
LEFT = 12; 

MARK_APPLICATION = 1; 

APPLE_MENU_ID = BASE_RES_ID; 
FILE_MENU_ID = BASE_RES ID + 1; 
ABOUT_ITEM = 1; 

CHANGE_ITEM = 1; 
START_STOP_ITEM = 2; 
KILL_ITEM = 3; 
QUIT_ITEM = 4; 

SYS_VERSION = 2; 

type 
settings = record 

timeString: Str255; 
sound, icon, alert, secsRadio, minsRadio: 

INTEGER; 

var 

end; 

gSettingsDialog: DialogPtr; 
gDone, gCounting, gNotify_set: BOOLEAN; 
gSeconds_or_minutes: (seconds, minutes); 

459 

gNotifyStrH, gDefaultSecsH, gDefaultMinsH: StringHandle; 
gMyNMRec: NMRec; 
gTheEvent: EventRecord; 
savedSettings: settings; 

procedure HandleEvent; 
forward; 



460 Macintosh Programming Primer 

{----------------> SetNotification <--} 

procedure SetNotification; 
var 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 
dummy: OSErr; 
fi leMenu: MenuHandle; 

begin 

end; 

if gNotify_set then 
begin 

dummy := NMRemoveCQElemPtr(@gMyNMRec)); 
HUnlockCHandleCgNotifyStrH)); 

end; 

GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle(itemHandle)) = ON then 
gMyNMRec.nmSicon .- GetResource('SICN', 

BASE RES ID) 
else 

gMyNMRec.nmSicon := nil; 

GetDitemCgSettingsDialog, SOUND_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle(itemHandle)) = ON then 
gMyNMRec.nmSound .- GetResource('snd ', 

BASE_RES ID) 
else 

gMyNMRec.nmSound :=nil; 

GetDitemCgSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandleCitemHandle)) = ON then 
begin 

end 
else 

MoveHHiCHandle(gNotifyStrH)); 
HLockCHandleCgNotifyStrH>>; 
gMyNMRec.nmStr := gNotifyStrHA; 

gMyNMRec.nmStr :=nil; 

dummy := NMinstall(QElemPtr(@gMyNMRec)); 
fileMenu := GetMHandleCFILE_MENU_ID); 
Enableitem(fileMenu, KILL_ITEM); 
gNotify_set .- TRUE; 



Appendix B: Code Listings 

{----------------> CountDown <--} 

procedure CountDown CnumSecs: LONGINT); 
var 

begin 

myTime, oldTime, difTime: LONGINT; 
myTimeString: Str255; 
countDownWindow: WindowPtr; 

countDownWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr(-1)); 

SetPortCcountDownWindow); 
ShowWindowCcountDownWindow); 
TextFaceC[boldJ); 
TextSizeC24); 

GetDateTimeCmyTime); 
oldTime := myTime; 

if gSeconds_or_minutes = minutes then 
numSecs := numSecs * SECONDS_PER_MINUTE; 

gCounting := TRUE; 

while CnumSecs > 0) and gCounting do 
begin 

HandleEvent; 
if gCounting then 

begin 
MoveToCLEFT, TOP); 
GetDateTimeCmyTime); 
if myTime <> oldTime then 

begin 

461 

difTime := myTime - oldTime; 
numSecs := numSecs - difTime; 
oldTime := myTime; 
NumToStringCnumSecs, 

end; 
end; 

if gCounting then 
SetNotification; 

gCounting := FALSE; 

end; 

myTimeString); 
EraseRect(countDownWindowA. 

portRect); 
DrawString(myTimeString); 

DisposeWindow(countDownWindow); 
end; 



462 Macintosh Programming Primer 

{----------------> RestoreSettings <--} 

procedure RestoreSettings; 
var 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Handle; 

begin 

end; 

GetDitem(gSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, savedSettings.timeString); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.sound); 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.icon); 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.alert); 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.secsRadio); 
GetDitem(gSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), 

savedSettings.minsRadio); 

if savedSettings.secsRadio = ON then 
begin 

GetDitem(gSettingsDialog, S_OR_M_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, 'seconds'); 
end 

else 
begin 

end; 

GetDitem(gSettingsDialog, S_OR_M_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, 'minutes'); 

{----------------> SaveSettings <--} 

procedure SaveSettings; 
var 

itemType: INTEGER; 



Appendix B: Code Listings 

i temRect: Re ct; 
itemHandle: Handle; 

begin 

end; 

GetDitem(gSettingsDialog, TIME_FIELD, itemType, 
itemHandle, itemRect); 

GetIText(itemHandle, savedSettings.timeString); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
savedSettings.sound := 

GetCtlValue(ControlHandle(itemHandle>>; 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
savedSettings.icon := 

GetCtlValue(ControlHandleCitemHandle>>; 
GetDitem(gSettingsDialog, ALERT_ON_BOX, itemType, 

itemHandle, itemRect); 
savedSettings.alert := 

GetCtlValue(ControlHandleCitemHandle)); 
GetDitem(gSettingsDialog, SECS_RADIO, itemType, 

itemHandle, itemRect>; 
savedSettings.secsRadio := 

GetCtlValue(ControlHandleCitemHandle)); 
GetDitem(gSettingsDialog, MINS_RADIO, itemType, 

itemHandle, itemRect); 
savedSettings.minsRadio := 

GetCtlValue(ControlHandle(itemHandle>>; 

{----------------> HandleDialog <--} 

procedure HandleDialog; 
var 

dialogDone: BOOLEAN; 
itemHit, itemType: INTEGER; 
alarmDelay: LONGINT; 
delayString: Str255; 
i temRect: Re ct; 
itemHandle: Handle; 

begin 
ShowWindowCgSettingsDialog); 
SaveSettings; 

dialogDone := FALSE; 
while dialogDone = FALSE do 

begin 
ModalDialogCnil, itemHit); 
case itemHit of 

SAVE_BUTTON: 
begin 

HideWindow(gSettingsDialog); 
dialogDone := TRUE; 

463 



464 Macintosh Programming Primer 

end; 
CANCEL_BUTTON: 

begin 
HideWindow(gSettingsDialog); 
RestoreSettings; 
dialogDone .- TRUE; 

end; 
SOUND_ON_BOX: 

begin 
GetDitem(gSettingsDialog, 

SOUND_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControLHandle 
CitemHandle)) = ON then 

SetCtlValue(ControlHandle 
CitemHandle), OFF) 

else 
SetCtlValue(ControlHandle 

CitemHandle), ON); 
end; 

ICON_ON_BOX: 
begin 

end; 

GetDitem(gSettingsDialog, 
ICON_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle 
CitemHandle)) = ON then 

SetCtlValue(ControlHandle 
(itemHandle), OFF) 

else 
SetCtlValue(ControlHandle 

CitemHandle), ON); 

ALERT_ON_BOX: 
begin 

GetDitem(gSettingsDialog, 
ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 

if GetCtlValue(ControlHandle 
CitemHandle)) = ON then 

SetCtlValue(ControlHandle 
CitemHandle), OFF) 

else 

end; 
SECS_RADIO: 

begin 

SetCtlValue(ControlHandle 
CitemHandle), ON); 

gSeconds_or_minutes := seconds; 
GetDitem(gSettingsDialog, 

MINS_RADIO, itemType, 
itemHandle, itemRect); 



Appendix B: Code Listings 465 

end; 

end; 
end; 

end; 

SetCtLValue(ControLHandle 
(itemHandle), OFF); 

GetDitemCgSettingsDialog, 
SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtLValue(ControLHandle 
CitemHandle), ON); 

GetDitem(gSettingsDialog, 
S_OR_M_FIELD, itemType, 
itemHandle, itemRect); 

SetIText<itemHandle, 'seconds'); 
GetDitem(gSettingsDialog, 

TIME_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, gDefaultSecsHAA); 

M INS_RAD I 0: 
begin 

gSeconds_or_minutes := minutes; 
GetDitem(gSettingsDialog, 

SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtLValue(ControLHandle 
(itemHandle), OFF); 

GetDitem(gSettingsDialog, 
MINS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtLValue(ControLHandle 
(itemHandle), ON); 

GetDitem(gSettingsDialog, 
S_OR_M_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, 'minutes'); 
GetDitem(gSettingsDialog, 

TIME_FIELD, itemType, 
itemHandle, itemRect); 

SetIText(itemHandle, gDefaultMinsHAA); 
end; 

{----------------> HandleFileChoice <--} 

procedure Handle Fi LeChoice Ctheitem: INTEGER); 
var 

timeString: Str255; 
countDownTime: LONGINT; 
itemType: INTEGER; 
itemRect: Rect; 



466 

begin 

itemHandle: Handle; 
dummy: OSErr; 
fileMenu: MenuHandle; 

Macintosh Programming Primer 

fileMenu := GetMHandleCFILE_MENU_ID); 
case theltem of 

end; 
end; 

CHANGE_ITEM: 
HandleDialog; 

START_STOP_ITEM: 
if gCounting then 

begin 

end 
else 

gCounting := FALSE; 
Setitem(fileMenu, theitem, 'Start 

Countdown'>; 

begin 

end; 
KILL ITEM: 

begin 

HiliteMenu<D>; 
GetDitem(gSettingsDialog, TIME_FIELD, 

itemType, itemHandle, itemRect); 
GetIText(itemHandle, timeString); 
StringToNum(timeString, countDownTime); 

Disableitem(fileMenu, CHANGE_ITEM); 
Setitem(fileMenu, theitem, 'Stop 

Countdown'); 
CountDown<countDownTime>; 
Enableitem(fileMenu, CHANGE_ITEM); 
Setitem(fileMenu, theitem, 'Start 

Countdown'); 

dummy := NMRemove(QElemPtr(@gMyNMRec)); 
HUnlock(Handle(gNotifyStrH)); 
Disableitem(fileMenu, KILL_ITEM); 
gNotify_set .- FALSE; 

end; 
QUIT_ITEM: 

begin 

end; 

gCounting := FALSE; 
gDone .- TRUE; 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theitem: INTEGER); 
var 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 



Appendix B: Code Listings 

appleMenu: MenuHandle; 
begin 

case theitem of 
ABOUT _ITEM: 

dummy := NoteAlert(ABOUT_ALERT, nil); 
otherwise 

begin 

end; 

appleMenu := GetMHandleCAPPLE_MENU_ID); 
Getitem(appleMenu, theitem, accName); 
accNumber .- OpenDeskAcc(accName); 

end; 
end; 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice (menuChoice: LONGINT); 
var 

theMenu, theitem: INTEGER; 
begin 

end; 

if menuChoice <> 0 then 
begin 

theMenu := HiWord(menuChoice>; 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoice(theitem); 
FILE_MENU_ID: 

HandleFileChoice(theitem); 

HiliteMenu(Q); 
end; 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

inMenuBar: 
begin 

467 

menuChoice := MenuSelect(gTheEvent.where); 



468 

end; 
end; 

Macintosh Programming Primer 

HandleMenuChoice(menuChoice); 
end; 

inSysWindow: 
SystemClick(gTheEvent, whichWindow); 

inDrag: 
DragWindow(whichWindow, gTheEvent.where, 

screenBits.bounds); 
inGoAway: 

gDone .- TRUE; 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

theChar: CHAR; 
dummy: BOOLEAN; 

begin 
dummy := WaitNextEvent(everyEvent, gTheEvent, SLEEP, nil); 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
keyDown, autoKey: 

begin 

end; 

theChar := CHR(BitAnd(gTheEvent.message, 
charCodeMask)); 

if (BitAnd(gTheEvent.modifiers, cmdKey) <> Q) 
then 
HandleMenuChoice(MenuKey(theChar)); 

end; 
end; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gCounting := FALSE; 
gNotify_set := FALSE; 

while gDone =FALSE do 
HandleEvent; 



Appendix B: Code Listings 

{----------------> Notifylnit <--} 

procedure Notifyinit; 
begin 

end; 

gNotifyStrH := GetString(BASE_RES_ID); 
gMyNMRec.qType := nmType; 
gMyNMRec.nmMark .- MARK_APPLICATION; 
gMyNMRec.nmResp .- nil; 

{----------------> MenuBarinit <--} 

procedure MenuBarinit; 
var 

begin 

myMenuBar: Handle; 
aMenu: MenuHandle; 

myMenuBar := GetNewMBar(BASE_RES_ID); 
SetMenuBar(myMenuBar); 
DisposHandle(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
AddResMenu(aMenu, 'DRVR'); 

DrawMenuBar; 
end; 

{----------------> Dialoglnit <--} 

procedure Dialoglnit; 
var 

begin 

itemType: INTEGER; 
itemRect: Rect; 
itemHandle: Hand~e; 

gDefaultSecsH := GetString(DEFAULT_SECS_ID); 
gDefaultMinsH := GetString(DEFAULT_MINS_ID); 

gSettingsDialog := GetNewDialog(BASE_RES_ID, nil, 
WindowPtr(-1)); 

GetDitem(gSettingsDialog, SECS_RADIO, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSettingsDialog, SOUND_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), ON); 
GetDitem(gSettingsDialog, ICON_ON_BOX, itemType, 

itemHandle, itemRect); 
SetCtlValue(ControlHandle(itemHandle), ON); 

469 



470 Macintosh Programming Primer 

GetDltem(gSettingsDialog, ALERT_ON_BOX, itemType, 
itemHandle, itemRect); 

SetCtlValue(ControlHandle(itemHandle), ON); 

gSeconds_or_minutes .- seconds; 
end; 

{----------------> Sys60rLater <--} 

function Sys60rLater: BOOLEAN; 
var 

status: OSErr; 
SysEnvData: SysEnvRec; 
dummy: INTEGER; 

begin 

end; 

status := SysEnvironsCSYS_VERSION, SysEnvData); 
if (status <> noErr) or CSysEnvData.systemVersion 

< $0600) then 
begin 

end 
else 

dummy := StopAlertCBAD_SYS_ALERT, nil); 
Sys60rLater := FALSE; 

Sys60rLater := TRUE; 

{----------------> Reminder <--} 

begin 
if Sys60rLater then 

end. 

begin 
Dialoglnit; 
MenuBarlnit; 
Notifylnit; 

MainLoop; 
end; 

Chapter 7: WindowMaker.p 

program WindowMaker; 
const 

BASE_RES_ID = 400; 

APPLE_MENU_ID = 400; 



Appendix B: Code Listings 

var 

FILE_MENU_ID = 401; 
EDIT MENU_ID = 402; 

ABOUT _IT EM = 1; 
ABOUT_ALERT = 400; 
ERROR_ALERT_ID = 401; 

NO_MBAR = BASE_RES_ID; 
NO MENU = BASE_RES_ID + 1; 
NO PICTURE = BASE_RES ID + 2; 
NO_WIND = BASE_RES ID + 3; 

NEW_ITEM = 1; 
CLOSE_ITEM = 2; 
QUIT_ITEM = 3; 

UNDO_ITEM = 1; 
CUT_ITEM = 3; 
COPY_ITEM = 4; 
PASTE_ITEM = 5; 
CLEAR_ITEM = 6; 

EDGE THRESHOLD = 30; 

WINDOW_HOME_LEFT = 5; 
WINDOW_HOME_TOP = 45; 
NEW_WINDOW_OFFSET = 20; 

MIN_SLEEP = 60; 

LEAVE_WHERE_IT IS = FALSE; 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

NIL_STRING = I I; 

HOPELESSLY FATAL_ERROR = 'Game over, man!'; 

gDone, gWNEimplemented: Boolean; 
gTheEvent: EventRecord; 
gNewWindowLeft, gNewWindowTop: INTEGER; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

471 



472 

end; 

Macintosh Programming Primer 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 

NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) div 
2 + windRect.top; 

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 

myRect.left := (windRect.right - windRect.left -
CpictureRect.right - pictureRect.left)) 
div 2 + windRect.left; 

myRect.right .- myRect.left + (pictureRect.right -
pictureRect.left); 

{----------------> DrawMyPicture <--} 

procedure DrawMyPicture (pictureWindow: WindowPtr); 
var 

myRect: Rect; 
thePicture: PicHandle; 

begin 

end; 

myRect := pictureWindowA.portRect; 

thePicture := GetPicture(BASE_RES_ID); 
if thePicture =nil then 

ErrorHandler(NO_PICTURE); 

CenterPict(thePicture, myRect); 
SetPort(pictureWindow); 
DrawPicture(thePicture, myRect); 



Appendix B: Code Listings 

{----------------> CreateWindow <--} 

procedure CreateWindow; 
var 

theNewestWindow: WindowPtr; 
begin 

theNewestWindow := GetNewWindow(BASE_RES_ID, nil, 
WindowPtr(-1)); 

if theNewestWindow =nil then 
ErrorHandler(NO_WIND); 

if ((screenBits.bounds.right - gNewWindowLeft) < 
EDGE_THRESHOLD) or ((screenBits.bounds.bottom -
gNewWindowTop) < EDGE_THRESHOLD) then 
begin 

gNewWindowLeft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 

end; 

473 

MoveWindow(theNewestWindow, gNewWindowLeft, gNewWindowTop, 

end; 

LEAVE_WHERE_IT_IS); 
gNewWindowLeft := gNewWindowLeft + NEW_WINDOW_OFFSET; 
gNewWindowTop := gNewWindowTop + NEW_WINDOW_OFFSET; 
ShowWindow(theNewestWindow); 

{----------------> HandleEditChoice <--} 

procedure HandleEditChoice Ctheitem: INTEGER); 
var 

dummy: Boolean; 
begin 

dummy .- SystemEditCtheitem - 1); 
end; 

{----------------> HandleFileChoice <--} 

procedure HandleFileChoice (theitem: INTEGER); 
var 

whichWindow: WindowPtr; 
begin 

case theltem of 
NEW_ITEM: 

CreateWindow; 
CLOSE_ITEM: 

begin 
whichWindow := FrontWindow; 
if whichWindow <>nil then 

DisposeWindowCwhichWindow); 



474 

end; 
end; 

end; 
QUIT ITEM: 

gDone := TRUE; 

Macintosh Programming Primer 

{----------------> HandleAppleChoice <--} 

procedure HandleAppleChoice (theltem: INTEGER>; 
var 

accName: Str255; 
accNumber, itemNumber, dummy: INTEGER; 
aMenu: MenuHandle; 

begin 
case theitem of 

ABOUT_ITEM: 
dummy .- NoteAlert(ABOUT_ALERT, nil); 

otherwise 
begin 

end; 

aMenu := GetMHandle(APPLE_MENU_ID); 
Getitem(aMenu, theitem, accName); 
accNumber .- OpenDeskAcc(accName); 

end; 
end; 

{----------------> HandleMenuChoice <--} 

procedure HandleMenuChoice (menuChoice: LONGINT>; 
var 

theMenu, theitem: INTEGER; 
begin 

end; 

if menuChoice <> 0 then 
begin 

theMenu := HiWord(menuChoice); 
theitem := LoWord(menuChoice); 

case theMenu of 
APPLE_MENU_ID: 

end; 

HandleAppleChoice(theitem); 
FILE_MENU_ID: 

HandleFileChoice(theitem); 
ED IT _MENU_I D: 

HandleEditChoice(theitem); 

Hi LiteMenu<O>; 
end; 



Appendix B: Code Listings 

{----------------> IsDAWindow <--} 

function IsDAWindow (whichWindow: WindowPtr): BOOLEAN; 
begin 

if whichWindow =nil then 
IsDAWindow := FALSE 

else 

475 

IsDAWindow := (WindowPeek<whichWindow)A.windowKind < Q); 
end; 

{----------------> AdjustMenus <--} 

procedure AdjustMenus; 
var 

aMenu: MenuHandle; 
begin 

end; 

aMenu := GetMHandleCFILE_MENU_ID); 
if FrontWindow =nil then 

DisableltemCaMenu, CLOSE_ITEM) 
else 

EnableltemCaMenu, CLOSE_ITEM); 

aMenu := GetMHandle(EDIT_MENU_ID); 
if IsDAWindowCFrontWindow) then 

begin 

end 
else 

EnableltemCaMenu, UNDO_ITEM); 
Enableltem<aMenu, CUT_ITEM); 
EnableltemCaMenu, COPY_ITEM); 
EnableltemCaMenu, PASTE_ITEM); 
Enableltem(aMenu, CLEAR_ITEM); 

begin 

end; 

Disableltem(aMenu, UNDO_ITEM); 
Disableltem(aMenu, CUT_ITEM); 
DisableltemCaMenu, COPY_ITEM); 
DisableltemCaMenu, PASTE_ITEM); 
DisableltemCaMenu, CLEAR_ITEM); 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
menuChoice, windSize: LONGINT; 



476 Macintosh Programming Primer 

thePart := FindWindow(gTheEvent.where, whichWindow); 
case thePart of 

end; 
end; 

inMenuBar: 
begin 

AdjustMenus; 
menuChoice := MenuSelect(gTheEvent.where); 
HandleMenuChoice(menuChoice); 

end; 
inSysWindow: 

SystemCLick(gTheEvent, whichWindow); 
inDrag: 

DragWindow(whichWindow, gTheEvent.where, 
screenBits.bounds); 

inGoAway: 
DisposeWindow(whichWindow); 

inContent: 
SelectWindow(whichWindow); 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

begin 

theChar: CHAR; 
dummy: BOOLEAN; 
oldPort: GrafPtr; 

if gWNEimplemented then 

else 

dummy .- WaitNextEvent(everyEvent, gTheEvent, 
MIN_SLEEP, nil) 

begin 
SystemTask; 
dummy .- GetNextEvent(everyEvent, gTheEvent); 

end; 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
keyDown, autoKey: 

begin 
theChar := CHRCBitAnd(gTheEvent.message, 

charCodeMask)); 
if CBitAnd(gTheEvent.modifiers, cmdKey) <> Q) 

then 
begin 

end; 

AdjustMenus; 
HandleMenuChoice(MenuKey(theChar)); 



Appendix B: Code Listings 

end; 
updateEvt: 

477 

if not IsDAWindowCWindowPtr(gTheEvent.message)) 
then 

begin 

end; 

GetPort(oldPort); 
SetPort(WindowPtr(gTheEvent.message)); 
BeginUpdateCWindowPtr(gTheEvent.message)); 
DrawMyPictureCWindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 
SetPort(oldPort>; 

end; 
end; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 
gNewWindowLeft := WINDOW_HOME_LEFT; 
gNewWindowTop := WINDOW_HOME_TOP; 

gWNEimplemented := CNGetTrapAddress(WNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddress 
(UNIMPL_TRAP_NUM, ToolTrap)); 

while CgDone = FALSE) do 
HandleEvent; 

{----------------> MenuBarlnit <--} 

procedure MenuBarlnit; 
var 

begin 

myMenuBar: Handle; 
aMenu: MenuHandle; 

myMenuBar := GetNewMBar(BASE_RES_ID); 
if myMenuBar =nil then 

ErrorHandler(NO_MBAR); 
SetMenuBar(myMenuBar); 

aMenu := GetMHandle(APPLE_MENU_ID); 
if aMenu =nil then 

ErrorHandler(NO_MENU>; 

AddResMenu(aMenu, 'DRVR'); 

aMenu := GetMHandleCEDIT_MENU_ID); 



478 

if aMenu =nil then 
ErrorHandlerCNO_MENU); 

Macintosh Programming Primer 

aMenu := GetMHandleCFILE_MENU_ID); 
if aMenu =nil then 

ErrorHandlerCNO_MENU); 

DrawMenuBar; 
end; 

{----------------> WindowMaker <--} 

begin 
MenuBarinit; 

Mainloop; 
end. 

Chapter 7: ShowClip.p 

program ShowClip; 
const 

var 

BASE_RES_ID = 400; 
ERROR_ALERT_ID = BASE RES ID + 1; 
NO_WIND = BASE_RES_ID; 
EMPTY_SCRAP = BASE_RES_ID + 1; 

NIL_STRING = ''; 
HOPELESSLY_FATAL_ERROR ='Game over, man!'; 

gClipWindow: WindowPtr; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler CstringNum: INTEGER); 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

errorStringH := GetStringCstringNum>; 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 



Appendix B: Code Listings 479 

end; 

ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rec t); 

var 
windRect, pictureRect: Rect; 

begin 

end; 

windRect := myRect; 
pictureRect := thePictureAA.picFrame; 
myRect.top := (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) 
div 2 + windRect.top; 

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
div 2 + windRect.left; 

myRect.right .- myRect.left + (pictureRect.right -
pictureRect.left); 

{----------------> MainLoop <--} 

procedure MainLoop; 
var 

begin 

my R.e ct : Rec t ; 
clipHandle: Handle; 
length, offset: LONGINT; 

clipHandle := NewHandle(Q); 
length := GetScrap(clipHandle, 'TEXT', offset); 
if length < 0 then 

begin 
length := GetScrap(clipHandle, 'PICT', offset); 
if length < 0 then 

else 
ErrorHandler(EMPTY_SCRAP) 

begin 
myRect .- gClipWindowA.portRect; 
CenterPict(PicHandle(clipHandle), 

myRect); 



480 Macintosh Programming Primer 

DrawPictureCPicHandleCclipHandle), myRect); 
end; · 

end; 

else 
end 

begin 

end; 

HLockCclipHandle>; 
TextBoxCPtrCclipHandleA), length, 

thePortA.portRect, teJustLeft>; 
HUnlockCclipHandle); 

while not Button do 
begin 
end; 

{----------------> Window!nit <--} 

procedure Window!nit; 
begin 

gClipWindow := GetNewWindowCBASE_RES_ID, nil, 
WindowPtr C-1>>; 

if gClipWindow =nil then 
ErrorHandlerCNO_WIND>; 

ShowWindowCgClipWindow>; 
SetPortCgClipWindow); 

end; 

{----------------> ShowClip <--} 

begin 
Window!nit; 
MainLoop; 

end. 

Chapter 7: PrintPICT.p 

program PrintPICT; 
uses 

Printing; 

con st 
HEADER_SIZE = 512; 
BASE RES ID = 400; 



Appendix B: Code Listings 

var 

ERROR_ALERT_ID = BASE_RES_ID; 
CANT_OPEN_FILE = BASE_RES_ID; 
GET_EOF_ERROR = BASE_RES_ID + 1; 
HEADER_TOO_SMALL = BASE_RES_ID + 2; 
OUT_OF_MEMORY = BASE_RES_ID + 3; 
CANT_READ_HEADER = BASE_RES ID + 4; 
CANT_READ_PICT = BASE_RES_ID + 5; 

NIL_STRING = ''; 
IGNORED_STRING = NIL_STRING; 
HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

gPrintRecordH: THPrint; 
gReply: SFReply; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler CstringNum: INTEGER>; 
var 

begin 

errorStringH: StringHandle; 
dummy: INTEGER; 

errorStringH := GetStringCstringNum>; 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 

481 

ParamTextCerrorStringHAA, NIL_STRING, NIL_STRING, 
NIL_STRING>; 

end; 

dummy := StopAlertCERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> PrintPictFile <--} 

procedure PrintPictFile (reply: SFReply>; 
var 

begin 

srcFile: INTEGER; 
printPort: TPPrPort; 
printStatus: TPrStatus; 
thePict: PicHandle; 
pictHeader: packed array[O .. HEADER_SIZEJ of CHAR; 
pictSize, headerSize: LONGINT; 
dummy: OSErr; 

if CFSOpenCreply.fName, reply.vRefNum, srcFile) 
<> noErr) then 
ErrorHandlerCCANT_OPEN_FILE); 



482 Macintosh Programming Primer 

if (GetEOF(srcFile, pictSize) <> noErr) then 
ErrorHandler(GET_EOF_ERROR); 

headerSize := HEADER_SIZE; 
if (FSRead(srcFile, headerSize, @pictHeader) <> noErr) 

then ErrorHandler(CANT_READ_HEADER); 

pictSize := pictSize - HEADER_SIZE; 
if pictSize <= 0 then 

ErrorHandler(HEADER_TOO_SMALL); 

thePict := PicHandle(NewHandle(pictSize)); 
if thePict =nil then 

ErrorHandler(OUT_OF_MEMORY); 

HLock(Handle(thePict)); 

if FSRead(srcFile, pictSize, Ptr(thePictA)) <> noErr then 
ErrorHandler(CANT_READ_PICT); 

dummy := FSClose(srcFile); 

printPort := PrOpenDoc(gPrintRecordH, nil, nil); 
PrOpenPage(printPort, nil); 
DrawPicture(thePict, thePictAA.picFrame); 
PrClosePage(printPort); 
PrCloseDoc(printPort); 

PrPicFile(gPrintRecordH, nil, nil, nil, printStatus); 

HUnlock(Handle(thePict)); 
end; 

{----------------> DoDialogs <--} 

function DoDialogs: BOOLEAN; 
var 

keepGoing: BOOLEAN; 
begin 

end; 

keepGoing := PrStlDialog(gPrintRecordH); 

if keepGoing then 
DoDialogs .- PrJobDialog(gPrintRecordH) 

else 
DoDialogs := FALSE; 



Appendix B: Code Listings 

{----------------> GetFileName <--} 

procedure GetFileName (var replyPtr: SFReply); 
var 

myPoint: Point; 
typeList: SFTypeList; 
numTypes: INTEGER; 

begin 

end; 

myPoint.h := 100; 
myPoint.v := 100; 
typeList[OJ := 'PICT'; 
numTypes : = 1; 
SFGetFileCmyPoint, IGNORED_STRING, nil, numTypes, 

typeList, nil, replyPtr); 

{----------------> Printinit <--} 

procedure Printinit; 
begin 

end; 

gPrintRecordH := THPrint(NewHandle(sizeofCTPrint))); 
PrOpen; 
PrintDefault(gPrintRecordH); 

{----------------> PrintPICT <--} 

begin 

end. 

Printinit; 
GetFileName(gReply); 
if gReply.good then 

begin 

end; 

if DoDialogs then 
PrintPictFile(gReply); 

Chapter 7: Pager.p 

program Pager; 
const 

BASE_RES_ID = 400; 

SCROLL_BAR_PIXELS = 16; 

MIN_SLEEP = 0; 
NIL_REF CON = 0; 

483 



484 

var 

WNE_TRAP_NUM = $60; 
UNIMPL_TRAP_NUM = $9F; 

Macintosh Programming Primer 

ERROR_ALERT_ID = BASE_RES ID + 1; 
NO_WIND = BASE_RES_ID; 
NO_PICTS = BASE_RES_ID + 1; 
CANT_LOAD PICT = BASE RES ID + 2; 

NIL_STRING = I'; 
NIL_TITLE = NIL_STRING; 
VISIBLE = TRUE; 
START_VALUE = 1; 
MIN_VALUE = 1; 
HOPELESSLY_FATAL ERROR= 'Game over, man!'; 

gPictWindow: WindowPtr; 
gScrollBarHandle: ControlHandle; 
gDone, gWNEimplemented: BOOLEAN; 
gTheEvent: EventRecord; 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER); 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum>; 
if errorStringH =nil then 

ParamTextCHOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 

NIL_ STRING ) ; 

dummy := StopAlertCERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> CenterPict <--} 

procedure CenterPict (thePicture: PicHandle; var myRect: 
Rect); 

var 
windRect, pictureRect: Rect; 

begin 
windRect := myRect; 
pictureRect := thePictureAA.picFrame; 



Appendix B: Code Listings 485 

end; 

myRect.top := (windRect.bottom - windRect.top -
(pictureRect.bottom - pictureRect.top)) 
div 2 + windRect.top; 

myRect.bottom := myRect.top + (pictureRect.bottom -
pictureRect.top); 

myRect.left := (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
div 2 + windRect.left; 

myRect.right .- myRect.left + CpictureRect.right -
pictureRect.left); 

{----------------> UpdateMyWindow <--} 

procedure UpdateMyWindow (drawingWindow: WindowPtr); 
var 

begin 

currentPicture: PicHandle; 
drawingClipRect, myRect: Rect; 
tempRgn: RgnHandle; 

tempRgn := NewRgn; 
GetClip(tempRgn); 

myRect := drawingWindowA.portRect; 
myRect.right := myRect.right - SCROLL_BAR_PIXELS; 
EraseRect(myRect); 

currentPicture := PicHandle(GetlndResource('PICT', 
GetCtlValue 
(gScrollBarHandle))); 

if currentPicture =nil then 
ErrorHandler(CANT_LOAD_PICT); 

CenterPict(currentPicture, myRect); 

drawingClipRect := drawingWindowA.portRect; 
drawingClipRect.right := drawingClipRect.right -

SCROLL_BAR_PIXELS; 
ClipRect(drawingClipRect); 

DrawPicture(currentPicture, myRect); 

SetClip(tempRgn); 
DisposeRgn(tempRgn); 

end; 



486 Macintosh Programming Primer 

{----------------> ScroLLProc <--} 

procedure ScroLLProc (theControl: ControLHandle; theCode: 
INTEGER); 

var 
curControLValue, maxControLValue, minControLValue: 

INTEGER; 
begin 

maxControLValue .- GetCtLMax(theControl); 
curControLValue .- GetCtLValue(theControl); 
minControLValue .- GetCtLMin(theControl); 

case theCode of 

end; 

inPageDown, inDownButton: 
if curControLValue < maxControLValue then 

curControLValue := curControLValue + 1; 
inPageUp, inUpButton: 

if curControLValue > minControLValue then 
curControLValue := curControLValue - 1; 

SetCtLValue(theControl, curControLValue); 
end; 

{----------------> SetUpScroLLBar <--} 

procedure SetUpScroLLBar; 
var 

vScroLLRect: Rect; 
numPictures: INTEGER; 

begin 

end; 

numPictures := CountResources('PICT'); 
if numPictures <= 0 then 

ErrorHandlerCNO_PICTS); 
vScroLLRect := gPictWindowA.portRect; 
vScroLLRect.top := vScroLLRect.top - 1; 
vScroLLRect.bottom := vScroLLRect.bottom + 1; 
vScroLLRect.Left := vScroLLRect.right -

SCROLL_BAR_PIXELS + 1; 
vScroLLRect.right := vScroLLRect.right + 1; 
gScroLLBarHandle := NewControl(gPictWindow, 

vScrollRect, NIL_TITLE, 
VISIBLE, START_VALUE, 
MIN_VALUE, numPictures, 
scroLLBarProc, 
NIL_REF_CON); 



Appendix B: Code Listings 487 

{----------------> HandleMouseDown <--} 

procedure HandleMouseDown; 
var 

begin 

whichWindow: WindowPtr; 
thePart: INTEGER; 
thePoint: Point; 
theControl: ControLHandle; 

thePart := FindWindowCgTheEvent.where, whichWindow>; 
case thePart of 

end; 
end; 

inSysWindow: 
SystemCLickCgTheEvent, whichWindow>; 

inDrag: 
DragWindowCwhichWindow, gTheEvent.where, 

screenBits.bounds>; 
inContent: 

begin 
thePoint := gTheEvent.where; 
GlobaLTolocaLCthePoint>; . 
thePart := FindControLCthePoint, whichWindow, 

theControl); 
if theControl = gScroLLBarHandle then 

begin 

end; 
inGoAway: 

end; 

if thePart = inThumb then 
begin 

thePart := TrackControl 
CtheControl, thePoint, 
n i L >; 

UpdateMyWindowCwhichWindow>; 
end 

else 
begin 

thePart := TrackControl 
CtheControl, thePoint, 
@ScroLLProc>; 

UpdateMyWindowCwhichWindow>; 
end; 

gDone .- TRUE; 



488 Macintosh Programming Primer 

{----------------> HandleEvent <--} 

procedure HandleEvent; 
var 

dummy: BOOLEAN; 
begin 

if gWNEimplemented then 

else 

dummy := WaitNextEvent(everyEvent, gTheEvent, 
MIN_SLEEP, nil) 

begin 
SystemTask; 
dummy := GetNextEventCeveryEvent, gTheEvent); 

end; 

case gTheEvent.what of 
mouseDown: 

HandleMouseDown; 
updateEvt: 

begin 

end; 

BeginUpdateCWindowPtr(gTheEvent.message)); 
DrawControls(WindowPtr(gTheEvent.message)); 
UpdateMyWindow(WindowPtr(gTheEvent.message)); 
EndUpdate(WindowPtr(gTheEvent.message)); 

end; 
end; 

{----------------> MainLoop <--} 

procedure MainLoop; 
begin 

end; 

gDone := FALSE; 

gWNEimplemented := (NGetTrapAddress(WNE_TRAP_NUM, 
ToolTrap) <> NGetTrapAddress 
CUNIMPL_TRAP_NUM, ToolTrap)); 

while (gDone = FALSE) do 
HandleEvent; 

{----------------> Windowlnit <--} 

procedure Windowlnit; 
begin 

gPictWindow := GetNewWindow(BASE_RES_ID, nil, 
WindowPtr(- 1)); 



Appendix B: Code Listings 

end; 

if gPictWindow =nil then 
ErrorHandler(NO_WIND); 

SelectWindow(gPictWindow); 
ShowWindow(gPictWindow); 
SetPort(gPictWindow); 

{----------------> Pager <--} 

begin 
Windowlnit; 
SetUpScroLLBar; 

Mainloop; 
end. 

Chapter 7: Sounder.p 

program Sounder; 
uses 

Sound; 

con st 
BASE_RES ID = 400; 
SYNCHRONOUS = FALSE; 

ERROR_ALERT_ID = BASE_RES_ID + 1; 
CANT_LOAD_BEEP_SND = BASE_RES_ID; 
CANT_LOAD_MONKEY_SND = BASE_RES_ID + 1; 
CANT_LOAD_KLANK_SND = BASE_RES_ID + 2; 
CANT_LOAD_BOING_SND = BASE_RES_ID + 3; 

NIL_STRING = I I; 

HOPELESSLY_FATAL_ERROR = 'Game over, man!'; 

BEEP_SND = 1; 
MONKEY_SND = 2; 
KLANK_SND = 3; 
BOING SND = 4; 

489 



490 Macintosh Programming Primer 

{----------------> ErrorHandler <--} 

procedure ErrorHandler (stringNum: INTEGER>; 
var 

errorStringH: StringHandle; 
dummy: INTEGER; 

begin 

end; 

errorStringH := GetString(stringNum); 
if errorStringH =nil then 

ParamText(HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING, NIL_STRING) 

else 
ParamText(errorStringHAA, NIL_STRING, NIL_STRING, 

NIL_STRING); 

dummy := StopAlert(ERROR_ALERT_ID, nil); 
ExitToShell; 

{----------------> MakeSound <--} 

procedure MakeSound; 
var 

begin 

soundHandle: Handle; 
dummy: OSErr; 

soundHandle := GetResource('snd ', BEEP_SND>; 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_BEEP_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', MONKEY_SND); 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_MONKEY_SND); 

dummy := SndPlay(nil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResourceC'snd ', KLANK_SND); 

if soundHandle =nil then 
ErrorHandlerCCANT_LOAD_KLANK_SND); 

dummy := SndPlayCnil, soundHandle, SYNCHRONOUS); 

soundHandle := GetResource('snd ', BOING_SND); 



Appendix B: Code Listings 

if soundHandle =nil then 
ErrorHandler(CANT_LOAD_BOING_SND); 

dummy.- SndPlay(nil, soundHandle, SYNCHRONOUS); 
end; 

{----------------> Sounder <--} 

begin 
MakeSound; 

end. 

491 



Appendix C 

Debugging 
Techniques 

One of the most frustrating 
experiences in programming is 

running up against a really tough 
bug. In this appendix, we'll discuss 
some techniques for hunting down 

bugs, and some others for avoiding 
them in the first place. 



_J Compilation Errors 

The First Bugs you're likely to encounter will pop up during 
compilation, when you've typed in your code and selected Go from the 
Project menu. When THINK Pascal asks you if you'd like to rebuild 
your project, click Yes. 

THINK Pascal will attempt to compile your program. More often 
than not, it will not be able to complete its job. Let's look at some of 
the basic errors that occur. 

Typing Mistakes 

Because THINK Pascal has a "smart" editor, many typing mistakes 
are found immediately, such as the space typed in between S h ow and 
Window in Figure C.1. 

Mistakes in typing that the editor doesn't find are usually caught 
by the compiler, which will display a bug alert. The one in Figure C.2 
is straightforward, unlike others that may occur. 

procedure Window lnit; 
begin 

gClock\v'indow := GetNew\v'indow(B ASE....RES_ID, nil, W'indowPtr(-1 )) ; 
SetPort(gClock\v'indow); 
Show~«~,; 

T extSize(CLOCK.....S IZE); 
end; 

Figure C.1 THINK Pascal editor highlights typing mistakes. 

m Semicolon (;) or END eHpected after the preuious statement. 

procedure Window I nit; 
begin 

gClock'vlindow := GetNew'v/indow(BASE...RES-ID, nil, 'vlindowPtr(-1)); 
SetPort(gClock'v/indow) 
Show'v/indow(gClock'vlindow); 

TextSize(CLOCK..S IZE); 
end; 

Figure C.2 Missing semicolon. 

495 



496 Macintosh Programming Primer 

Syntax errors are usually indicative of a misspelled keyword or 
bad programming grammar. For example, if you misspell const or 
type something like: 

program Hello2; 
const 

VERTICAL_PIXEL .- 50; 

instead of 

program Hello2; 
con st 

VERTICAL_PIXEL = 50; 

you'll end up with a syntax error. This happens frequently. Carefully 
review the line of code with the "thumbs down" in the left-hand 
column. If you still can't find the bug, check the previous line. Is 
there a semicolon at the end of the line? Is there supposed to be one? 

Another popular error message is the H H H has not been 
de c I a red alert. Sometimes this is the result of a missing 
declaration, but often it's the result of a misspelled variable name. 

Indirect Compiler Errors 

An example of a indirect compiler error is one caused by a missing 
library file. For example, the printing program presented in Chapter 
7 depended on the library file P r i n t C a l l s . l i b. This file is not one 
of the two standard libraries automatically included by THINK 
Pascal. If you leave out this file, you get a Link Failed alert with a 
list of the procedures and functions that were undefined: 

undefined: 
undefined: 
undefined: 
undefined: 
undefined: 
undefined: 
undefined: 
undefined: 
undefined: 

PrJobDialog" 
PrintDefault" 
PrOpen" 
PrPicFile" 
PrStlDialog" 
PrOpenPage" 
PrClosePage" 
PrOpenDoc" 
PrCloseDoc" 

The real trick is to figure out which file to add to your project. 
Chapter 7 lists all the library files not automatically included by 
THINK Pascal. You'll find these files in the Li bra r i es folder on 



Appendix C: Debugging Techniques 497 

_J 

one of your THINK Pascal disks. The files are well named, so picking 
a likely candidate shouldn't be too hard. Use the THINK Pascal Find 
facility to search for the missing type or global variable. 

Linker Errors 

If you call a procedure or function in your program that was never 
declared, you'll get a Not Declared alert with the "thumbs down" 
displayed at the line containing the procedure or function that the 
linker couldn't locate. This error is often the result of a misspelled 
procedure name, such as the following: 

sysBeeep( 20 >; 

The compiler will accept this line because it will assume that 
you've written a routine called sys Bee e p that will be provided at 
link time. 

Improving Your Debugging Technique 

Once your program compiles, your next step is to get the bugs out. 
One of the best ways to debug a Mac program is to use the debugging 
utilities in THINK Pascal or the TMON debugger from ICOM Simu
lations. Debuggers are real life-savers. 

No matter which debugging tool you use, there are some things 
you can do to improve your debugging technique. 

Being a Good Detective 

When your program crashes or exhibits some unusual behavior, you 
have to be a detective. Did the system error occur just before your 
dialog box was scheduled to appear? Did those wavy lines start 
appearing immediately after you clicked on the OK button? 

The key to being a good detective is having a good surveillance tech
nique. Try to establish a definite pattern in your program's mis
behavior. Can you pinpoint exactly where in your code things started to 
go awry? These clues will help you home in on the offending code. 

If you can't tell by observation exactly when things went sour, 
don't give up. You can always use the binary method of bug control. 



498 Macintosh Programming Primer 

The Binary Method 

The key to the binary method lies in establishing good boundary 
conditions for the bug. First, you'll need to establish a lower limit, a 
place in your code at which you feel fairly certain the bug has not yet 
occurred. You'd like the lower limit to be as close to the actual bug as 
possible, but make sure the bug has not yet happened. 

Next, establish an upper limit in your code, a point by which 
you're certain the bug has occurred (because the system has crashed, 
or the screen has turned green, or whatever). 

To use the binary method, split the difference between the upper 
and lower limits. If the bug still has not occurred, split the difference 
again. Now, if the bug has occurred, you have a new upper limit. By 
repeating this procedure, you'll eventually locate the exact line of 
source code in which the bug occurs. 

There are several different ways to split the difference between 
two lines of source code. If you're using a debugger, you can set a 
breakpoint halfway between the lines of code representing the upper 
and lower limits. Did you hit the breakpoint without encountering 
the bug? If so, set a new breakpoint, halfway between this one and 
the upper limit. 

If you don't have a debugger, use a ROM call like Sys Beep to give 
you a clue. Did you hear the beep before the bug occurred? If so, put a 
new S y s Beep halfway between the old one and the upper limit. The 
nice thing about using Sys 8 e e p is that it is reasonably 
nonintrusive, unlike putting up a new window and drawing some 
debugging information in it, which tends to interfere with your 
program's basic algorithm. 

Recommended Reading 

In closing, we'd like to recommend some good reading material: your 
THINK Pascal User Manual! The User Manual is a treasure trove of 
valuable tips for writing and debugging Mac programs. The more you 
know about the Macintosh and the THINK Pascal development 
environment, the better you'll be at debugging your programs. 



AppendixD 

Building 
Hypercard XCl\IDs 

The introduction of HyperCard in 
August 1987 caused quite a stir in 

the Macintosh world. A complete 
programming environment in its own 
right, HyperCard became even richer 

with the addition of XCMDs and 
XFCNs. Now you can access the raw 

power of THINK Pascal from 
inside HyperCard. 



_J 

HYPERCARD COMES WITH its own powerful programming language: 
HyperTalk. The designers of HyperTalk thoughtfully provided a 
mechanism for adding extensions to the HyperTalk command set. 
These extensions are code resources of type XCMD and XFCN. 

X CM Ds (X-Commands) take a pointer to a record as input from 
HyperCard, perform some calculations, put the results back into the 
record, and return to the calling script. X F C Ns (X-functions) take a 
pointer to the same record as input, perform the same types of 
calculations, but return the results as a Pascal function would. 

We've written an X CM D (called XChooser) that puts the Chooser 
name in the record and returns to HyperCard. A typical call of 
XChooser looks like this: 

XChooser 
Put the result into card field 1 

We also created an X F C N (called FChooser) that performs the same 
service. A typical call of FChooser looks like this: 

Put FChooser() into card field 1 

The source code for FChooser and XChooser is identical. Although 
this appendix presents the steps necessary to build an X CM D, you can 
use the same project to build an X F c N by selecting Set Project 
Type ... from the Project menu and changing the resource type from 
X CM D to X F C N. We've included the source code (as well as a 
HyperCard test stack and a resource mover stack) on the Mac Primer 
source code disk (use the coupon on the last page). 

The XChooser XCMD 

Create a new folder in your development folder called X Choose r. 
Create a new project in the X Choose r folder called X C ho o s e r . n. 
Select Set Project Type ... from the Project menu and click the 
c o d e Re s o u r c e icon on the left side of the dialog box. Next, fill in 
the dialog according to the specifications in Figure D.l. Click OK to 
save your changes. 

501 



502 Macintosh Programming Primer 

File Information --------------. 

Application 

LID 
Desk Accessory 

~ 
~ 

Type: I rsrc I Creator: I RSED 

Nnme:jl.!!!!~~ 

Type: IHCMD 

Attributes: ~ ~ 

D Bundle Bit 

ID: 

D Custom Hender 

Driver r····· Dl'il'<ff lnforrn<11im1 ............................................................ , l'J!!'.!!!!!!!!!!!!!!!!!!!!!~ 

[_;~;~=1~3---~~~~~~~J ~ c.::.. ~ I 
!MIMI@ 

Figure D.1 Set Project Type .•. dialog box. 

Next, you'll need to add some files to the project that are necessary 
for creating stand-alone code resources that work with HyperCard. 
First, you'll replace the file Runt i me • l i b with its code resource 
counterpart, D R V R R u n t i me • l i b. Click on the file R u n t i me • l i b in 
the project window. Remove it from the project by selecting Remoue 
from the Project menu. The file Run t i me • l i b should disappear 
from the project window. 

Select Add File ... from the Project menu and add the files 
D R V R R u n t i m e • l i b, H y p e r X L i b . l i b, and H y p e r X C m d • p to the 
project. All three files can be found within the TH I N K Pa s ca l folder. 
D RV R R u n t i me • l i b and H y p e r X L i b . l i b are in the L i b r a ri e s 
subfolder. H y p e r X C m d • p is in the I n t e r f a c e s subfolder. 

Next, create a new source code file and type in the following code: 

unit DummyUnit; 

interface 
uses 

HyperXCmd; 

procedure Main CparamPtr: XCmdPtr); 

implementation 



Appendix D: Building Hypercard XCMDs 

procedure Main (paramPtr: XCmdPtr); 
var 

chooserStr255H: StringHandle; 
begin 

chooserStr255H := GetStringC-16096); 
HLock(Handle(chooserStr255H)); 
paramPtrA.returnValue := 

503 

PasToZero(paramPtr, Str255CchooserStr255HAA)); 
HUnlockCHandleCchooserStr255H)); 

end; 
end. 

Save the file as X Choose r . p and add the file to the project. Next, 
rearrange the order of the project files, using the hand cursor that 
appears when the mouse is inside the project window. Drag the files 
up or down until the order matches that of Figure D.2. Now you're 
ready to build the code resource. 

§0 HChooser.n 0§ 
Of!tions File (by build order) fE, 

DRVRRuntime. lib 
Interface .lib 
Hy perXL ib. lib 

[Q]lli] v R Hy perXCmd .p 
[Q]lli] v R XChooser.p 

Figure D.2 XChooser's project window. 

Building the XChooser Code Resource 

Select Build Code Resourc:e ... from the Projec:t menu. You'll be 
prompted for a file name. Save the X CM D as X C ho o s e r Res o u r c e. 
To add the X C M D to your HyperCard stack, use ResEdit to copy the 
X CM D resource in the file X C ho o s e r Res o u r c e into the resource 
fork of your stack. This will automatically make the X CM D available 
to your stack. If you copy the resource directly into the HyperCard 
application itself, the X CM D will be available to all of your stacks. 
Several different resource mover stacks are also available that allow 
you to copy resources directly within HyperCard. One of these has 
been included on the Mac Primer source code disk. 



_J 

504 

HyperCard 2.0 

The release of HyperCard 2.0 opened up a world of possibilities for 
XCMD programmers. One key feature ofHyperCard 2.0 is the addition 
of external windows, windows that are created and controlled by your 
X CM D. When HyperCard receives an event associated with an external 
window, it passes the event on to the X CM D. Here's how this works. 

As was described earlier, each X CM D receives a pointer to a record 
as its sole parameter. The pointer and record are declared as follows: 

XCmdPtr = AXCmdBlock; 
XCmdBlock = RECORD 

paramCount: INTEGER; 
params: ARRAY [1 .. 16] OF Handle; 
returnValue: Handle; 
passFlag: BOOLEAN; 
entryPoint: ProcPtr; {to call back to HyperCard} 
request: INTEGER; 
result: INTEGER; 
inArgs: ARRAY [1 .. 8] OF LONGINT; 
outArgs: ARRAY [1 .. 4] OF LONGINT; 
END; 

The first time your X CM D is called, it can create a new window by 
calling either New X W i n do w or Get New X W i n do w. New X W i n do w 
takes the same parameters as New W i n do w , and Ge t New X W i n do w 
takes the same parameters as Get New W i n do w. Because THINK 
Pascal 3.0 was released long before HyperCard 2.0, support for the 
two external window routines was not built into THINK Pascal 3.0. 
Check with Symantec technical support for information about the 
THINK Pascal HyperCard 2.0 interface library. 

Once your X CM D has created an external window, return control to 
HyperCard. HyperCard will call the X CM D again as soon as an event 
has occurred that concerns your X CM D's window. HyperCard sets the 
pa ram Count field to -1 , telling your X CM D not to create a new 
window, just to handle an event associated with an existing window. 
If the pa ram Co u n t field is set to -1 , pa rams [ 1 J will be a handle 
to an event data structure, X WE vent Info: 



Appendix D: Building Hypercard XCMDs 505 

_J 

XWEventinfoPtr = AXWEventinfo; 
XWEventlnfo = RECORD 

event: EventRecord; 
eventWindow: WindowPtr; 
eventParams: ARRAY[ 1 .. 9 J OF Longint; 
eventResult: Handle; 
END; 

The event field behaves in much the same way as a standard 
toolbox Eve n t Re co rd. 

Getting More Specific 

There's a lot more to HyperCard 2.0 X CM Ds than we could cover in 
this appendix. Several excellent texts on HyperCard 2.0 have been 
published, and several more are in the works. Apple has published a 
treatise entitled HyperCard: The Extended XCMD Interface. Get a 
copy wherever you get your technical documentation. 



AppendixE 

Bibliography 



Apple Computer. Inside Macintosh, Volume I. Reading, MA: Addison-Wesley, 
1985. $24.95. 

Apple Computer. Inside Macintosh, Volume II. Reading, MA: Addison-Wesley, 
1985. $24.95. 

Apple Computer. Inside Macintosh, Volume III. Reading, MA: Addison
Wesley, 1985. $19.95. 

Apple Computer. Inside Macintosh, Volume IV. Reading, MA: Addison
Wesley, 1986. $24.95. 

Apple Computer. Inside Macintosh, Volume V. Reading, MA: Addison-Wesley, 
1988. $26.95. 

Apple Computer. Inside Macintosh X-Ref Reading, MA: Addison-Wesley, 
1988. $9.95. 

Apple Computer. Programmer's Introduction to the Macintosh Family. 
Reading, MA: Addison-Wesley, 1988. $22.95 (HC). 

Apple Computer. Technical Introduction to the Macintosh Family. Reading, 
MA: Addison-Wesley, 1987. $19.95. 

Chernicoff, Stephen. Macintosh Revealed, Volume One: Unlocking the 
Toolbox, 2nd edition. Indianapolis, IN: Hayden, 1987. $26.95. 

Chernicoff, Stephen. Macintosh Revealed, Volume Two: Programming with 
the Toolbox, 2nd edition. Indianapolis, IN: Hayden, 1987. $26.95. 

Chernicoff, Stephen, Macintosh Revealed, Volume Three: Mastering the 
Toolbox. Indianapolis, IN: Hayden, 1989. $26.95. 

Goodman, Paul. Advanced Macintosh Pascal. Indianapolis, IN: Hayden, 
1986. $19.95. 

Knaster, Scott. How to Write Macintosh Software. Indianapolis, IN: Hayden, 
1988. $28.95. 

Knaster, Scott. Macintosh Programming Secrets. Reading, MA: Addison
Wesley, 1988. $24.95. 

Smith, David E., ed. The Best of MacTutor, The Macintosh Programming 
Journal, Volume 1. Placentia, CA. 1985. $24.95. 

Smith, David E., ed. The Complete MacTutor, The Macintosh Programming 
Journal, Volume 2. Placentia, CA. 1986. $24.95. 

West, Joel. Programming with Macintosh Programmer's Workshop. New 
York: Bantam, 1987. $29.95. 

A good Pascal language reference is: 

Cooper, Doug, and Michael Clancy. Oh! Pascal, 2nd edition. New York: W.W. 
Norton, 1982. $29.95. 

509 



Index 
About Timer command, 168 
activate Ev t event, 111-112, 129, 

139-140 
Add File ... command, 37, 328 
Add Resource command, 158 
Add Window command, 37, 65, 77, 

121 
Adjust Menus procedure, 300 
Adobe Type Manager, 7 4 
Alarm settings dialog box, 253 
Alert (A L R T) resource 

see also Alerts 
Pager program, 342 
PrintPICT program, 326 
Reminder program, 231-232 
ShowClip program, 311 
Sounder program, 359 
Timer program, 169 
Window Maker program, 280 

Alerts 
see also Alert 
algorithm, 218 
Caution alerts, 217 
definition of, 7, 208, 216, 218 
Note alerts, 217 
Notification Manager, 224-228 
Stop alerts, 217 

Algorithms 
alert, 218 
modal dialog box, 210 

modeless dialog box, 211 
ALRT menu, 169 
a Lt DB ox P roe window, 50 
a pp 1 Ev t event, 113 
app2Evt event, 113 
app3Evt event, 113 
app4Evt event, 113, 141 
Apple Associates program, 410 
Apple menu, 87, 152-153, 157, 160, 

168,178,292 
Apple Partners program, 409-410 
Apple Programmer's and 

Developer's Association 
(APDA), 408-409 

AppleLink, 410-411 
Applications 

displaying information, 153 
Finder resources, 377 
font, 71 
icon resources, 379 
menus and, 157 
MultiFinder resource 

requirements, 379 
sounds, 358 
stand-alone, 70 
version information resource, 379 
windows, 51-53 

ARC_DEGREES constant, 85 
a r row global variable, 69 
autoKey event, 110-111 

511 



512 

BASE_RES_I D constant, 66, 78, 90 
Big Long Window Technique, 44 
b Lack global variable, 69 
BNDL menu, 383 
BNDL resource, 379, 381, 387-388 
Build Application ... dialog box, 70 
Build Application ... command, 9, 70, 

377 
Build Code Resource ... command, 

503 
Build order, 39 
Buttons, 212 

C programming language 
as case-sensitive language, 21 
THINK Pascal and project files, 

IO 
Calling sequences, 28 
Cancel command, 254 
Caution alert, 217 
c en t e r P i c t procedure 

EventTutor program, 148 
Pager program, 357-358 
ShowClip program, 318 
Show PICT program, 93-94 
Window Maker program, 304-305 

Change Settings command, 253-254 
Checkboxes, 212 
Clip region, allocating memory, 146 
Clipboard, 306, 308-311 
Close command, 293 
co DE resource, 32, 380, 398-399 
Color QuickDraw, 86 
Command-Q (Quit) shortcut keys, 

115 
Compilation errors, 495-497 
Compiler, detecting error, 37-38 
Control Manager, 212, 339 
Copy command, 87 
count Down procedure, 270 
Create New Dialog Item command, 

168 
Create New File Type command, 382 
Create New Item command, 160 
Create New Resource command, 62, 

168,372,381 . 
Cr eat eW i ndow procedure, 303 
Cursor, standard shape, 69 

Data forks, 32 
DAT A resource, 380 
Data types, predefined, 29-30 
dBoxProc window, 50 
Debugging, 412, 495-498 

binary method, 498 

Index 

compilation errors, 495-497 
improving technique, 497 
indirect compiler errors, 496-497 
L i n k F a i l e d alert, 496 
Linker errors, 497 
Not Dec l a red alert, 497 
THINK Pascal User Manual, 498 
typing mistakes, 495-496 

Defaults 
autoKey event, 111 
storing program, 223 

Desk scrap, 306-308 
Desktop file, rebuilding, 391-392 
Development folder, 26 
Dialog boxes, 17, 207-273 

adding to programs, 218-224 
controls, 209-214 

buttons, 212 
checkboxes, 212 
dials, 214 
initializing, 219 
radio buttons, 213 

DI TL resource, 219 
editable text fields, 215, 222, 224 
editing with ResEdit, 215 
enabling/disabling, 222 
handling, 221-222 
icons, 215 
initializing checkboxes, 220-221 
modal, 209-210 
modeless, 209-211 
operation of, 209-215 
pictures, 215 
static text fields, 215, 222-224 
user items, 215 
windows, 50 

Dialog ITem List see D I TL resource 
Dialog Manager, 218, 233 

initializing, 70 
D i a log I n i t procedure, 259 
Dials, 214 

scroll bar, 214 



Index 

d i s k Ev t s event, 111 
Display as Text command, 62, 169, 

374 
Display Graphically command, 37 4 
D I T L resource 

dialog boxes, 219 
Pager program, 342-343 
PrintPICT program, 326 
Reminder program, 229-231 
ShowClip program, 310 
Sounder program, 352 
Timer program, 168-169 
WindowMaker program, 280 

d k G ray global variable, 69 
D Lo G resource, 31, 233 
Document window, 49 
documentProc window, 49, 51 
D o D i a L o g s function, 336 
D r a g W i n do w Toolbox routine, 143 
D raw C L o c k procedure, 186 
Draw Cont ro Ls procedure, 340 
DrawEventStri ng procedure, 141 
Drawing 

local coordinate system, 46-4 7 
two-dimensional grid coordinate 

system, 43-44, 46-48 
D raw Li n e procedure, 104 
Dr a wMyP i ct u re procedure, 92, 

146,304 
Draw Pop Up procedure, 202-203 
Draw PopUpNumbe r procedure, 203 
DrawRandomRect procedure, 80-

83, 85 
D RE L resource, 380 
d r i v e r Ev t event, 113 
DR V RR u n t i me . L i o file, 502 

Edit menu, 35, 87, 152, 157, 161-
162, 164,178,292,372 

Editable text fields, 215, 222, 224 
Error messages 

This doesn't make sense, 38 
xxx has not been declared, 496 

Error-checking programs, 278 
E r r o r H a n d L e r procedure 

Pager program, 358 
PrintPICT program, 338 

513 

ShowClip program, 318-319 
Sounder program, 366 
WindowMaker program, 305 

Error-detection, by compiler, 37-38 
Errors 

compilation, 495-497 
handling, 306 

passive, 305 
indirect compiler, 496-497 
linker, 497 
syntax, 496 
typing mistakes, 495-496 

Event Manager, 109 
application-defined, 113 
device driver special conditions, 

113 
key pressed/released, 110 
mounting volumes, 111 
mouse button pressed/released, 

110 
MultiFinder, 113 
no events to report, 110 
windows, 110-112 

Event masks, 117-118 
EventRecord,109 
Event queue, 109 

retrieving events, 116-119 
Events, 14, 109-148 

activateEvt, 111-112, 129, 
139-140 

a p p 1 Ev t , 113 
a pp2 Evt, 113 
app3Evt, 113 
app4Evt, 113, 141 
autoKey, 110, 111 
di s k Ev ts, 111 
d r i v er Ev t, 113 
handling, 119-120 
keyDown, 110-111 
keyUp, 110 
mouse Down, 110, 119, 143-148, 

353,355 
mouseUp, 110, 130 
MultiFinder and, 116 
networkEvt, 113 
nu LL Ev ts, 110, 184 
resume, 140-141 



514 

Events (continued) 
retrieving from event queue, 116-

119 
scrolling list, 120 
suspend, 140-141 
updateEvt, 110, 119, 129-130, 

137-139, 184, 353 
EventTutor program, 120-148 

code explanations, 132-148 
resources, 121 
running, 129-132 

EventTutor. p file, 121 
Event Tutor . p . rs r c file, 120 
EventTutor.p listing, 121-128, 440-

447 

FIFO (First In, First Out) queue, 
109 

File Manager, 319-320, 322-324 
File menu, 

as standard application menu 
item, 152, 157 

exiting programs, 115 
Finder, 394 
Hello program, 35-36 
Hello2 program, 62, 64-65 
menu creation, 161 
Reminder program, 253-254 
ResEdit, 372, 376 
saving resources, 169 
Show PICT program, 95 
source code file, 121 
Timer program, 178-179 
WindowMaker program, 292-293 

Files 
closing, 322 
data forks, 32 
listed in build order, 39 
opening, 322 
reading, 322 
resource forks, 32 
selecting to open, 319-321 
storing, 322 

F i n d c o n t r o L function, 340 
Finder 

application interfaces, 369, 388, 
392 

desktop and, 391 

EventTutor program, 129 
folders, 322 

Index 

general information used by, 379 
GetNextEvent,116 
icons not appearing, 391 
Notification Manager, 226 

Finder resources, 369, 379, 391-392 
adding to applications, 377 
installing, 379 
v e rs resource, 395 

Fi ndW i ndow Toolbox routine, 143 
Flying Line program, 94-105 

code explanations, 99-105 
running, 98 

Flying Line.p listing, 95-98, 437-440 
F L y i n g Li n e . p file, 94 
Folders, 322 
Font Manager, 73-7 4 

initializing, 70 
Font menu, 166 
fonts, 58, 71-72 

resizing, 73-74 
system, 71 
windows and, 71-72 

FR E F resource, 379, 388 
F S C lose function, 322, 324 
F S O p e n function, 322-324 
F s Re ad function, 322-323 
functions, 28-29 

g cl i pW ind ow global variable, 316 
g D raw W i n do w global variable, 78-

79 
Get Info command, 394 
Get Resource Info command, 62, 75, 

87, 169,375 
Get Resource Info dialog box, 158, 

229 
Get Resource Info window, 121 
Get F i L e Name procedure, 336 
Get F Number Toolbox routine, 71 
Get IT ext routine, 222 
GetNewDi a log routine, 218 
Get New W i n do w Toolbox routine, 

5-7, 28-29, 52-53 
Get Next Event Toolbox routine, 

115-119 
Get S c rap function, 306, 308 



Index 

gEventWi ndow, 120, 129-130, 133 
g Fi L L co Lor global variable, 78-79 
Global coordinate system, 44 
Global variables, naming 

conventions, 29 
Glossary, 415-430 
g MB a r He i g ht Pt r global variable, 

100 
Go(Command-G)keyboard 

shortcut, 37 
Go command, 37, 66, 90, 98, 129, 

178,252,292 
g Pict u r eW i ndow global variable, 

90-91 
gPi ctWi ndow, 129-130, 133 
Graphical User Interface (GUI), 3-5 
Graphics pen, 54 
G r a f Po r t data structure, 55 
g ray global variable, 69 
GrowWi ndow Toolbox routine, 144 

H a n d L e App L e C h o i c e procedure, 
188, 263, 301-302 

Hand Le Di a Log procedure, 265, 
266 

H a n d L e Ed i t C h o i c e procedure, 
303 

Hand Le Event procedure 
EventTutor program, 136-137 
Pager program, 353-354 
Reminder program, 261 
Timer program, 185 
WindowMaker program, 298-299 
Zinger program, 200 

Ha n d L e F i L e C h o i c e procedure, 
188, 264-265, 302 

Hand L e Font ch o i c e procedure, 
189 

Hand L eMenu Choice procedure, 
187,262,301 

Hand LeMouseDown procedure, 144, 
186-187,201,262,299,354 

Hand L eNu LL procedure, 185 
Handles, 93, 267 
Hand L est y Le c ho i c e procedure, 

190-191 
Hardware requirements, 22 
H e L L o , W o r L d folder, 33 

Hello, World program, 33-39 
running, 37-39 

He L Lo . p file, 33, 64, 66 
He L Lo . p . rs r c file, 62, 66 
Hello.p listing, 35, 433 

515 

Hello2 program, 61-68, 377-397 
adding icon, 381-390 
changing window type, 74 
code explanation, 66-68 
resources, 380, 392 
running, 66 
variants, 70-74 

Hello2.p listing, 35, 433 
H i de W i n do w Toolbox routine, 53 
Hierarchical Filing System (HFS), 

320,322 
Hierarchical menus, 151, 154, 157, 

164, 178 
HORI ZONT AL_P Ix EL constant, 66 
How to Write Macintosh Software, 

409 
HyperCard 

HyperTalk, 501 
XCMDs, 20, 501-505 
XFCNs, 501 

HyperCard: The Extended XCMD 
Interface, 505 

HyperTalk, 501 
Hype r X Cm d . p file, 502 
Hype r XL i b • L i b file, 502 

I C N # editor, 384-385 
IC N # resource, 379, 384-386, 388 
I CON resource, 386 
Icons, 215 

adding to Hello2 program, 381-
390 

Indirect compiler errors, 496-497 
I n f o S c r a p function, 306-307 
lnfoWorld, 405 
In it Di a Logs global variable, 70 
In i t Font s global variable, 70 
In i t Menus global variable, 70 
In it WI ndow s global variable, 70 
Insert New Field command, 236 
Inside Macintosh technical 

reference series, 21, 406-408 
Installing THINK Pascal, 25-28 



516 

Instant window, 412 
Interface, 3-5 
Int e r face • l i b file, 34 
Is DAWi ndow function, 301 

keyDown event, 110-111 
KeyRepTh res h system global 

variable, 111 
Keys 

Option-Command (Rebuild 
Desktop on Startup), 391 

pressed/released, 110 
Key Th res h system global variable, 

111 
keyUp event, 110 
Kill Notification command, 254 

Lines,drawing,55-56 
Li n es I n i t procedure, 102-103 
Li n e To QuickDraw routine, 55 
Link Failed alert, 496 
Linker errors, 497 
Lo a d S c r a p function, 306-307 
Local coordinate system, 46-4 7 
Loops, main event, 115 
Ls P resource, 380 
l t G ray global variable, 69 

Macintosh 
interface, 3-5 
main screen description, 69 
resources, 3, 6-7 
Toolbox, 3, 5 
writing applications, 11 

Macintosh Developer Technical 
Support, 410 

Macintosh Filing System (MFS), 
320,322 

Macintosh Pascal Programming 
Primer, Volume II, 409 

Macintosh Programmer's Workshop 
(MPW),8 

Macintosh Revealed series, 409 
Macintosh Technical Notes, 408-409 
MacsBug debugger, 412 
MacTutor, 405 
MacUser, 405 

MacWeek, 405 
Mac World, 405 
Main event loop, 115 
Mai nloop procedure 

Index 

EventTutor program, 135-136 
FlyingLine program, 105 
MyApp program, 115 
Pager program, 353 
Reminder program, 261 
ShowClip program, 317 
Timer program, 183-184 
WindowMaker program, 297-298 
Zinger program, 200 

Main screen description, 69 
Ma keSound procedure, 365 
Managers, 5 
Ma xApp l eZone global variable, 70 
MBAR resource, 154, 157-158, 236, 

279 
MB a r He i g ht global variable, 152 
Memory 

allocating to clip region, 146 
maximizing size, 70 
relocating blocks, 93 

Menu bar, 152 
Menu Manager, 164 

intializing, 70 
pull-down menus, 154 

M E N U resource 
Apple menu, 160 
Edit menu, 164 
File menu, 161 
menus, 30, 157-158 
pull-down menus, 154 
Reminder program, 236-238 
Special menu, 166 
Zinger program, 191 

Menu Ba r In i t procedure, 182-183, 
199-200, 260, 297 

Menus, 14, 151-203 
building resources, 160 
command-key equivalents, 161 
components, 152-154 
describing, 30 
hierarchical, 151-152, 157, 164, 

178 
items, 152-153, 160-161 



Index 

MS-DOS style, 156 
pop-up, 151, 155 
programs and, 157 
pull-down, 151, 153-154 
resources, 236-238 
Run, 77 
tear-off, 156 

Minimalist program, 398-400 
Modal dialog boxes, 209-210 

algorithm, 210 
Modeless dialog boxes, 209-211 

algorithm, 211 
Mondrian program, 7 4-86 

changing color, 85-86 
code explanations, 78-81 
drawing rectangles, 81-82 
outline instead of fill, 83-84 
running, 77-78 
variants, 81-86 

Mondrian.p listing, 76-77, 434-435 
Mondrian. p. rs r c file, 75, 78 
Mondrian. p file, 77 
Mouse, button pressed/released, 110 
mouse Down event, 143-148 

Event Manager, 110 
EventTutor program, 130 
handling events, 119 
Pager program, 353, 355 

mouseUp event, 110, 130 
Move To QuickDraw routine, 54 
MS-DOS style menu, 156 
MultiFinder 

application requirements, 379 
creating applications, 252 
events, 116 
Notification Manager, 208, 260 
printer drivers, 390 
Programmers Guide to 

MultiFinder, 119, 252 
Reminder program, 254, 260, 271 
ResEdit and, 371 
Timer program, 179 
WaitNextEvent,116 
writing applications, 131 

MWP, 411 
MyApp listing, 60, 113-115 

517 

networkEvt event, 113 
New command, 35, 62, 64, 89, 95, 

121,293 
New Cont r o L function, 339 
New Hand Le routine, 324 
NewWi ndow function, 101 
NM Inst a L L function, 227 
NM Rec data structure, 226-227 
NM Remove function, 227 
noG row Do cP r o c window, 49-51 
Note alerts, 217 
Notification Manager, 208, 224-228 

queue,260 
resources, 234-236 

Not i f i ca t i on . p file, 252 
Not i f y I n i t procedure, 260 
nots r cc op y QuickDraw routine, 

58 
not Sr c Or QuickDraw routine, 58 
nu LL Ev ts event, 110, 184 
NU M_LI NE s constant, 99 

Observe window, 412 
Open command, 319 
Open Project dialog box, 33 
Operating system requirements, 22 

Page Setup dialog box, 333, 335-336 
Page setup for print job, 324 
Pager program, 342-358 

code explanations, 350-358 
resources, 342-344 
running, 350 

Pager.p listing, 345-350, 483-489 
Page r . p file, 345 
Pager . p . rs r c file, 342-344 
Part codes, 143-144 
Paste command, 87 
Pattern variable, 69 
PCWeek, 405 
Pen Mode QuickDraw routine, 54, 

56 
Pen Pat QuickDraw routine, 54 
Pen Si z e QuickDraw routine, 54 
p E N_H EIGHT constant, 83 
PE N_W IDT H constant, 83 



518 

Picker Window, resources, 373 
PI e T data type, 306, 308, 317 
PICT files, printing, 319, 325-338 
PI e T resource, 59, 86-88, 121, 283, 

344 
Pictures, 215 

drawing, 59 
p L a i n D Box window, 50 
Pop-up menu, 151, 155 
Pre LoseDoc routine, 325 
Pre LosePage routine, 324 
Print job, page setup, 324 
Print Job dialog box, 333, 335-336 
Pr i n tea L L s . L i b file, 329 
Pr i n ti n g . p file, 329, 334 
Pr i n t I n i t procedure, 335 
Printing Manager, 319, 324-325 
Printing PICT files, 319, 325-338 
PrintPICT program, 325-338 

changing compilation order, 332 
code explanations, 334-338 
resources, 326-327 
running, 332-333 

Pr i n t PI e T • p file, 328-329 
Pr i n t PI e T • p . rs r c file, 326 
PrintPICT.p listing, 329-331, 480-483 
Pr i n t Pi ct Fi Le procedure, 337 
Pr J ob D i a L o g routine, 324 
Procedures, 28-29 
Program listings 

EventTutor.p, 122-128, 440-447 
Flying Line.p, 95-98, 437-440 
Hello.p, 35, 433 
Hello2.p, 64-65, 433 
Mondrian.p, 76-77, 434-435 
MyApp, 60, 113-115 
Pager.p, 345-350, 483-489 
PrintPICT.p, 329-331, 480-483 
Reminder.p, 240-252, 458-470 
ShowClip.p, 312-314, 478-480 
ShowPICT.p, 89-90, 435-437 
Sounder.p, 362-363, 489-491 
Timer.p, 171-177, 447-454 
WindowMaker.p, 284-292, 470-

478 
XChooser.p, 502-503 
Zinger.p, 193-196, 454-458 

Index 

Programs 
adding dialog boxes, 218-224 
Adobe Type Manager, 7 4 
basic structure, 60-61 
bug fix, 392 
developmental suffix, 393 
error-checking, 278 
major revision, 393 
ResEdit, 7, 10, 19, 27, 51, 53, 61-

62, 64, 7 4, 369-400 
storing defaults, 223 
versions, 392-395 

Project file, 10 
naming x x x . p, 35-36 

Project menu, 9, 37, 65, 70, 121, 
178,252,329,377,501,503 

Project window, 33 
Pr Open routine, 324 
P rOpenPag e routine, 324 
Pr P i c F i Le routine, 325 
P r St D i a Log routine, 324 
Pull-down menus, 151, 153-154 
Put Sc rap function, 306, 308 

QuickDraw, 12, 43-105 
Big Long Window Technique, 44 
color, 86 
coordinate system, 43-48 
fonts, 71-72 
graphics pen, 54 
lines, 55-56 
local coordinate system, 46-4 7 
pictures, 59 
programs,61-105 
regions, 59 
routines, 54-59 
shapes, 56-57 
text, 58 

resizing, 73-74 
style, 72 

windows 
managing, 48-53 
setting current, 55 
type, 74 

Quit command, 62, 115, 157, 179, 
254,293 



Index 

Radio buttons, 213 
Random Toolbox utility, 81, 103 
Randomize function, 81, 103 
Random number generator seed, 69 
RandomRect procedure, 81 
r a n d S e e d global variable, 69, 79 
rDocProc window, 50 
Rebuild Desktop on Startup 

(Option-Command) keys, 391 
Rec al c Line procedure, 104 
Rec t data type, 30 
Regions, 59 
Reminder program, 228-273 

code explanations, 255-273 
resources, 229-233 
running, 252-254 

R em i n d e r . p . r s r c file, 229 
Reminder. p file, 240, 252 
Reminder.p listing, 240-252, 458-

470 
ResEdit, 7, 10, 27, 369-400 

I c N # resource editor, 385 
editing dialog boxes, 215 
Get Info window, 27 
MENU editor, 160 
MultiFinder and, 371 
Picker Window, 373 
Resource menu, 372, 381-382 
resources, 31, 371-377 
WIND resource, 51, 53, 61-62, 64, 

74 
Resource forks, 32, 352 
resource info window, 376 
Resource menu 

BN D L resource, 381-382 
D IT L resource, 168-169 
MBAR resource, 158, 236 
M E N U resource, 160 
P I C T resource, 87 
ResEdit, 372, 375 
WIND resource, 62, 87 

Resource Type dialog box, 373 
Resources, 3, 6-7, 30, 31-32 

application 
icon, 379 
MultiFinder requirements, 
379 
version information, 379 

displaying information, 375 

editing, 7, 371-377 
files,65 

519 

naming xx x . p . r s r c, 35-36 
Finder, 369 
names, 30-31 
purgeable, 229, 375 
resource ID number, 30-32 
storing in resource forks, 32 
templates, 380 
types, 30 

Resto re Settings procedure, 
269-270 

Resume events, 140-141 
Rez utility, 369 
RMaker utility, 369 
Run menu, 37, 65-77, 90, 98, 129, 

292 
Run Options ... command, 65, 77, 90 
Run Options ... dialog box, 66, 284, 

312,328 
Run-time Environment Settings 

window, 65-66 
Runt i me . l i b file, 34, 502 

Save As ... command, 36, 65, 319 
Save command, 169,254,319,376 
Save Sett i n gs procedure, 268-269 
Scrap Manager, 306-308 

Clipboard, 306 
desk scrap, 306 

Scrapbook, 87 
copying picture from, 315 

s c r e e n B i t s global variable, 69 
Screen saver, 94-105 
Scroll bar, 214, 339-358 
Scrolling windows, 141-143 
Scro l l Pro c procedure, 356 
Scroll Window procedure, 143 
Select Window routine, 222 
S e t I T ex t routine, 222 
Set Not if i cation procedure, 

272-273 
set Port QuickDraw routine, 55, 79 
Set Project Type ... command, 377, 

501 
set Rec t procedure, 29 
Set up Even tW i ndow procedure, 

134 
set UpS c roll Bar procedure, 353 



520 

Set UpS i ze Rec t procedure, 135 
S F G e t F i L e dialog box, 332 
s F Get Fi Le procedure, 319, 321 
s F Put Fi Le procedure, 319 
Shapes, drawing, 56-57 
ShowClip program, 308-319 

code explanations, 316-319 
running, 315 

ShowClip.p listing, 312-314, 478-
480 

ShowCLip.p,312 
Showe Lip. p. rsrc file, 309, 311 
ShowPICT program, 86-94 

code explanations, 90-94 
running, 90 
variants, 94 

ShowPICT.p listing, 89-90, 435-437 
S h ow P I C T . p file, 89 
Show PI CT • p • rs r c file, 87 
Show Text,38 
Show W i n do w Toolbox routine, 53, 79 
S I c N resource, 236 
s i g n a tu re resource, 388, 395 
SI z E resource, 131, 141, 179, 252, 

254, 379, 396-398 
S i z e W i n do w Toolbox routine, 144 
Software development tools, 411 
Sound Manager, 358 

error ALRT, 364 
Sounder program, 359-366 

code explanations, 364-366 
resources, 359-361 

Sounder.p listing, 362-363, 489-491 
Sounder. p file, 362 
Sou n d e r . p • r s r c file, 359 
Sounds, adding to applications, 358 
Source code 

customizing entry, 35 
files, 26, 64-65 
naming xx x • p, 35-36 

Source Options ... command, 35 
' s n d ' resource, 235, 358-359, 361 
Special menu, 157, 164, 166, 178 
s r c Bi c QuickDraw routine, 58 
s r c Copy QuickDraw routine, 58 
s r c O r QuickDraw routine, 58 
s r c X or QuickDraw routine, 58 

Index 

Standard File Package, 319, 321 
Start Countdown command, 254 
START_DEGREES constant, 85 
Static text fields, 215, 222-224 
Stop alerts, 217 
'STR ' resource, 233-234, 283, 311, 

343,359 
Strings 

drawing,141 
error routines, 297 
Pager program, 344 
pointers to, 267 
purgeable, 283 
Reminder program, 257 
ShowClip program, 311 
Sounder program, 361 
static text item, 223 
storing in resource file, 223 
WindowMaker, 303, 305 

Style menu, 166 
Suspend events, 140-141 
Sys60rLater functions, 258 
System font, 71 
System global variables, 100-111 
SystemTask Toolbox routine, 117 

Tear-off menu, 156 
TE I n i t global variable, 70 
Templates for resources, 380 
Text, 58 

mode, 58 
QuickDraw, 72-74 

TE x T data type, 306, 308, 317 
Text-Editing Manager, initializing, 

70 
Text Fa c e Toolbox routine, 72 
Text Font Toolbox routine, 71 
Text S i z e Toolbox routine, 73-7 4 
t he Port global variable, 69 
theWi ndow variable, 53 
THINK Pascal, 8-10, 411 

accessing Toolbox, 28-29 
calling sequences, 28 
case sensitivity, 29 
debugging,412,497 
installing, 25-28 
MacApp and, 10 



Index 

predefined data types, 29-30 
programs, 33-35 

basic structure, 60-61 
resources, 30-32, 65 
source code file, 26, 64-65 
type-casting, 53 
User Manual, 498 
utilities, 10 
writing applications, 11 

TH I N K Pa s ca L folder, 25 
Timer program, 157-191 

code explanations, 180-191 
resources, 158-170 
running, 178-179 

Timer.p listing, 171-176, 447-454 
T i me r . p . r s r c file, 158 
TMON debugger, 412, 497 
Toolbox, 3, 5, 277-366 

accessing with THINK Pascal, 
28-29 

initializing, 69-70 
Managers, 5 
part codes, 143 

Too L box I n i t procedure, 69 
Tools, 19 
TrackControl function, 341, 354-

355 
Trap addresses, 407-408 
Type-casting, 53 

U n L o a d S c r a p function, 306-307 
updateEvt event, 110, 119, 129-

130, 137-139, 184,353 
UpdateMyWi ndow procedure, 357 
User items, 215 

Variables, global naming 
conventions, 29 

v er s resource, 379, 392-395 
v E RT I c A L_P Ix EL constant, 66 
View menu, 372 
Volumes, 322 

mounting, 111 

Wai t Next Event Toolbox routine, 
115-119, 135 

w h i t e global variable, 69 

521 

WIND menu, 62, 374 
WIND resource, 6-7, 30-31, 51-53, 

61-64, 66, 74-75, 87, 121, 158, 
239, 278, 309, 342, 369-370, 
372-376, 380, 399 

Window ID resource ID, 52 
Window In it procedure 

EventTutor program, 134 
FlyingLine program, 101-102, 
Hello2 program, 68 
Mondrian program, 79, 83 
Pager program, 352 
ShowClip program, 316 
Show PICT program, 92 
Timer program, 182 
Zinger program, 199 

Window Manager, 48-49, 52-53 
automatically updating windows, 

129 
drawing window, 130 
initializing, 70 

Window menu, 372 
WindowMaker program, 277-306 

code explanations, 294-306 
resources, 278-283 
running, 292-293 

WindowMaker.p listing, 284-292, 
470-478 

W i n do w Ma k e r . p file, 284 
W i n do w Ma k e r . p . rs r c file, 278, 

283 
Windows 

activating/deactivating, 111-112 
altDBoxProc,50 
automatically updated, 129 
dBoxProc,50 
changing type, 7 4 
close box, 49 
current, 55 
dialog box, 50 
displaying, 53 

miniature, 374 
time, 157 

document, 49 
documentProc,49,51 
drag region, 49 
drawing, 46-4 7, 54-59 



522 

Windows (continued) 
fonts and, 71-72 
gEventWindow, 120, 129-130, 

133 
gPi ctWi ndow, 129-130, 133 
graphics pens, 54 
grow box, 49 
information to create, 30 
Instant, 412 
managing, 48-53, 277-284 
n o G r ow D o c P r o c, 49-51 
Observe, 412 
parts of, 48-49 
plainDBox,50 
project, 33 
rDocProc,50 
redrawing, 110, 142-148 
resource info,376 
scroll bars, 49 
scrolling, 141-143 
setting up for application, 51-53 
thumb, 49 
types, 49-51 

update region, 138 
zoom box, 49 
zooming, 130 

write L n, 38 

XChooser XCMD, 501-505 
code resource, 503-505 

XChooser.p listing, 502-503 

Index 

X Choose r Res o u r c e file, 503 
X Chooser . p file, 501 
XCMDs, 20, 501-505 

XChooser, 501-505 
XFCNs, 501 
xxx has not been declared alert, 496 

z ER o resource, 380 
Z e r o S c rap function, 306-307 
Zinger program, 191-203 

code explanations, 197-200 
Zinger.p program listing, 193-196, 

454-458 
Z i n g er . p. rs r c file, 191 
ZoomWi ndow Toolbox routine, 145 



Macintosh® Pascal 
Programming Primer, Volume I: 

The Disk! 

If you'd like to receive a complete set of source code, projects, and 
resources from Volume I of the Mac Pascal Primer: 

' 

1) Fill out the coupon. Print clearly. 

Primer 
2) Attach a check for $30. Make the 

check out to M/MAC. Make sure that 
the check is in U.S. dollars, drawn on 
a U.S. or Canadian bank. If you'd like 
the disk shipped outside the United 
States, please add $5. 

Disk 

D 3) Send the check and the coupon to: 

Here's my $30! 

Pascal Primer Disk, Volume I 
2534 North Jefferson Street 
Arlington, Virginia 22207 

Send me the Pascal Primer Disk I, 
quick!!! Mail the disk to: 

Company ------------

Address 

City State Zip 

No Credit Cards, Please! 



Macintosh Programming > $24-95 FPT u: 
> $31. 95 CANAD1 

Macintosh® Pascal Programming Primer, Volume I 
Dave Mark and Cartwright Reed 

Praise for Mark and Reed's Macintosh C Programming Primer: 

'The book. wastes no time with peripheral issues but goes straight to the matter of writing real Mac 
applications . . . and making the best use of the Mac Toolbox and resources." 

- MacWEEK 

"The authors' easy introductory programs help even the non-experienced beginner along. 
The Primer's clear, friendly style, combined with an exceptional layout, numerous 

illustrations, annotated examples, and highlighted tips, make this a lush 
addition to the Macintosh programming library. " 

- Bay Area Computer Currents 

"One of the easiest-reading Mac programming books ever written. " 
- MacWorld 

The Macintosh Pascal Programming Primer is a tutorial in the art of Macintosh programming using 
Symantec's THINK Pascal™. Programmers new to the Macintosh but with some previous programming 
experience will learn how to use the powerful Toolbox, resources, and the Macintosh interface to create 
stand-alone applications with the distinctive Macintosh look and feel. The authors present concepts 
involved in building an application - starting with the most basic and progressing to the more complex 
aspects of event-driven programming - and show you how to enter, compile, and run the programs you 
have created. 

You will learn how to: 

display and manipulate windows 
use ResEdit™ to build Madntosh programs 
manage scroll bars and dialog boxes 

create HyperCard® XCMDs 
create pull-down, pop-up, and hierarchical 
menus. 

Five useful appendices include a glossary, commented code listings for each application presented, and 
important information on debugging techniques. 

When you have completed the Macintosh Pascal Programming Primer you will possess the essential 
skills needed to build your own full-scale Macintosh applications. 

Dave Mark, a veteran Macintosh programmer and an Apple Certified Developer, works at Planning 
Research Corporation in McLean, Virginia. Cartwright Reed is a research engineer engaged in Macintosh 
software development at Drexel University's Image Processing Center. 
They are the authors of the bestselling Macintosh C Programming 5 2 4 9 5: 
Primer. 

Cover design by Doliber Skeffingron 

Addison-Wesley Publishing Company, Inc. 
9 780201 570847 

ISBN 0-201-57084-X 
57084 




